xref: /llvm-project/clang/lib/CodeGen/CodeGenModule.cpp (revision 7f4945aa9ccb178bb494d6b619b9cd09e69c3527)
1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This coordinates the per-module state used while generating code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenModule.h"
15 #include "CGDebugInfo.h"
16 #include "CodeGenFunction.h"
17 #include "CGCall.h"
18 #include "CGObjCRuntime.h"
19 #include "Mangle.h"
20 #include "TargetInfo.h"
21 #include "clang/CodeGen/CodeGenOptions.h"
22 #include "clang/AST/ASTContext.h"
23 #include "clang/AST/CharUnits.h"
24 #include "clang/AST/DeclObjC.h"
25 #include "clang/AST/DeclCXX.h"
26 #include "clang/AST/RecordLayout.h"
27 #include "clang/Basic/Builtins.h"
28 #include "clang/Basic/Diagnostic.h"
29 #include "clang/Basic/SourceManager.h"
30 #include "clang/Basic/TargetInfo.h"
31 #include "clang/Basic/ConvertUTF.h"
32 #include "llvm/CallingConv.h"
33 #include "llvm/Module.h"
34 #include "llvm/Intrinsics.h"
35 #include "llvm/LLVMContext.h"
36 #include "llvm/Target/TargetData.h"
37 #include "llvm/Support/ErrorHandling.h"
38 using namespace clang;
39 using namespace CodeGen;
40 
41 
42 CodeGenModule::CodeGenModule(ASTContext &C, const CodeGenOptions &CGO,
43                              llvm::Module &M, const llvm::TargetData &TD,
44                              Diagnostic &diags)
45   : BlockModule(C, M, TD, Types, *this), Context(C),
46     Features(C.getLangOptions()), CodeGenOpts(CGO), TheModule(M),
47     TheTargetData(TD), TheTargetCodeGenInfo(0), Diags(diags),
48     Types(C, M, TD, getTargetCodeGenInfo().getABIInfo()),
49     MangleCtx(C), VtableInfo(*this), Runtime(0),
50     MemCpyFn(0), MemMoveFn(0), MemSetFn(0), CFConstantStringClassRef(0),
51     VMContext(M.getContext()) {
52 
53   if (!Features.ObjC1)
54     Runtime = 0;
55   else if (!Features.NeXTRuntime)
56     Runtime = CreateGNUObjCRuntime(*this);
57   else if (Features.ObjCNonFragileABI)
58     Runtime = CreateMacNonFragileABIObjCRuntime(*this);
59   else
60     Runtime = CreateMacObjCRuntime(*this);
61 
62   // If debug info generation is enabled, create the CGDebugInfo object.
63   DebugInfo = CodeGenOpts.DebugInfo ? new CGDebugInfo(*this) : 0;
64 }
65 
66 CodeGenModule::~CodeGenModule() {
67   delete Runtime;
68   delete DebugInfo;
69 }
70 
71 void CodeGenModule::createObjCRuntime() {
72   if (!Features.NeXTRuntime)
73     Runtime = CreateGNUObjCRuntime(*this);
74   else if (Features.ObjCNonFragileABI)
75     Runtime = CreateMacNonFragileABIObjCRuntime(*this);
76   else
77     Runtime = CreateMacObjCRuntime(*this);
78 }
79 
80 void CodeGenModule::Release() {
81   EmitDeferred();
82   EmitCXXGlobalInitFunc();
83   if (Runtime)
84     if (llvm::Function *ObjCInitFunction = Runtime->ModuleInitFunction())
85       AddGlobalCtor(ObjCInitFunction);
86   EmitCtorList(GlobalCtors, "llvm.global_ctors");
87   EmitCtorList(GlobalDtors, "llvm.global_dtors");
88   EmitAnnotations();
89   EmitLLVMUsed();
90 }
91 
92 /// ErrorUnsupported - Print out an error that codegen doesn't support the
93 /// specified stmt yet.
94 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type,
95                                      bool OmitOnError) {
96   if (OmitOnError && getDiags().hasErrorOccurred())
97     return;
98   unsigned DiagID = getDiags().getCustomDiagID(Diagnostic::Error,
99                                                "cannot compile this %0 yet");
100   std::string Msg = Type;
101   getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID)
102     << Msg << S->getSourceRange();
103 }
104 
105 /// ErrorUnsupported - Print out an error that codegen doesn't support the
106 /// specified decl yet.
107 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type,
108                                      bool OmitOnError) {
109   if (OmitOnError && getDiags().hasErrorOccurred())
110     return;
111   unsigned DiagID = getDiags().getCustomDiagID(Diagnostic::Error,
112                                                "cannot compile this %0 yet");
113   std::string Msg = Type;
114   getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg;
115 }
116 
117 LangOptions::VisibilityMode
118 CodeGenModule::getDeclVisibilityMode(const Decl *D) const {
119   if (const VarDecl *VD = dyn_cast<VarDecl>(D))
120     if (VD->getStorageClass() == VarDecl::PrivateExtern)
121       return LangOptions::Hidden;
122 
123   if (const VisibilityAttr *attr = D->getAttr<VisibilityAttr>()) {
124     switch (attr->getVisibility()) {
125     default: assert(0 && "Unknown visibility!");
126     case VisibilityAttr::DefaultVisibility:
127       return LangOptions::Default;
128     case VisibilityAttr::HiddenVisibility:
129       return LangOptions::Hidden;
130     case VisibilityAttr::ProtectedVisibility:
131       return LangOptions::Protected;
132     }
133   }
134 
135   // This decl should have the same visibility as its parent.
136   if (const DeclContext *DC = D->getDeclContext())
137     return getDeclVisibilityMode(cast<Decl>(DC));
138 
139   return getLangOptions().getVisibilityMode();
140 }
141 
142 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV,
143                                         const Decl *D) const {
144   // Internal definitions always have default visibility.
145   if (GV->hasLocalLinkage()) {
146     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
147     return;
148   }
149 
150   switch (getDeclVisibilityMode(D)) {
151   default: assert(0 && "Unknown visibility!");
152   case LangOptions::Default:
153     return GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
154   case LangOptions::Hidden:
155     return GV->setVisibility(llvm::GlobalValue::HiddenVisibility);
156   case LangOptions::Protected:
157     return GV->setVisibility(llvm::GlobalValue::ProtectedVisibility);
158   }
159 }
160 
161 const char *CodeGenModule::getMangledName(const GlobalDecl &GD) {
162   const NamedDecl *ND = cast<NamedDecl>(GD.getDecl());
163 
164   if (const CXXConstructorDecl *D = dyn_cast<CXXConstructorDecl>(ND))
165     return getMangledCXXCtorName(D, GD.getCtorType());
166   if (const CXXDestructorDecl *D = dyn_cast<CXXDestructorDecl>(ND))
167     return getMangledCXXDtorName(D, GD.getDtorType());
168 
169   return getMangledName(ND);
170 }
171 
172 /// \brief Retrieves the mangled name for the given declaration.
173 ///
174 /// If the given declaration requires a mangled name, returns an
175 /// const char* containing the mangled name.  Otherwise, returns
176 /// the unmangled name.
177 ///
178 const char *CodeGenModule::getMangledName(const NamedDecl *ND) {
179   if (!getMangleContext().shouldMangleDeclName(ND)) {
180     assert(ND->getIdentifier() && "Attempt to mangle unnamed decl.");
181     return ND->getNameAsCString();
182   }
183 
184   llvm::SmallString<256> Name;
185   getMangleContext().mangleName(ND, Name);
186   Name += '\0';
187   return UniqueMangledName(Name.begin(), Name.end());
188 }
189 
190 const char *CodeGenModule::UniqueMangledName(const char *NameStart,
191                                              const char *NameEnd) {
192   assert(*(NameEnd - 1) == '\0' && "Mangled name must be null terminated!");
193 
194   return MangledNames.GetOrCreateValue(NameStart, NameEnd).getKeyData();
195 }
196 
197 /// AddGlobalCtor - Add a function to the list that will be called before
198 /// main() runs.
199 void CodeGenModule::AddGlobalCtor(llvm::Function * Ctor, int Priority) {
200   // FIXME: Type coercion of void()* types.
201   GlobalCtors.push_back(std::make_pair(Ctor, Priority));
202 }
203 
204 /// AddGlobalDtor - Add a function to the list that will be called
205 /// when the module is unloaded.
206 void CodeGenModule::AddGlobalDtor(llvm::Function * Dtor, int Priority) {
207   // FIXME: Type coercion of void()* types.
208   GlobalDtors.push_back(std::make_pair(Dtor, Priority));
209 }
210 
211 void CodeGenModule::EmitCtorList(const CtorList &Fns, const char *GlobalName) {
212   // Ctor function type is void()*.
213   llvm::FunctionType* CtorFTy =
214     llvm::FunctionType::get(llvm::Type::getVoidTy(VMContext),
215                             std::vector<const llvm::Type*>(),
216                             false);
217   llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy);
218 
219   // Get the type of a ctor entry, { i32, void ()* }.
220   llvm::StructType* CtorStructTy =
221     llvm::StructType::get(VMContext, llvm::Type::getInt32Ty(VMContext),
222                           llvm::PointerType::getUnqual(CtorFTy), NULL);
223 
224   // Construct the constructor and destructor arrays.
225   std::vector<llvm::Constant*> Ctors;
226   for (CtorList::const_iterator I = Fns.begin(), E = Fns.end(); I != E; ++I) {
227     std::vector<llvm::Constant*> S;
228     S.push_back(llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext),
229                 I->second, false));
230     S.push_back(llvm::ConstantExpr::getBitCast(I->first, CtorPFTy));
231     Ctors.push_back(llvm::ConstantStruct::get(CtorStructTy, S));
232   }
233 
234   if (!Ctors.empty()) {
235     llvm::ArrayType *AT = llvm::ArrayType::get(CtorStructTy, Ctors.size());
236     new llvm::GlobalVariable(TheModule, AT, false,
237                              llvm::GlobalValue::AppendingLinkage,
238                              llvm::ConstantArray::get(AT, Ctors),
239                              GlobalName);
240   }
241 }
242 
243 void CodeGenModule::EmitAnnotations() {
244   if (Annotations.empty())
245     return;
246 
247   // Create a new global variable for the ConstantStruct in the Module.
248   llvm::Constant *Array =
249   llvm::ConstantArray::get(llvm::ArrayType::get(Annotations[0]->getType(),
250                                                 Annotations.size()),
251                            Annotations);
252   llvm::GlobalValue *gv =
253   new llvm::GlobalVariable(TheModule, Array->getType(), false,
254                            llvm::GlobalValue::AppendingLinkage, Array,
255                            "llvm.global.annotations");
256   gv->setSection("llvm.metadata");
257 }
258 
259 static CodeGenModule::GVALinkage
260 GetLinkageForFunction(ASTContext &Context, const FunctionDecl *FD,
261                       const LangOptions &Features) {
262   CodeGenModule::GVALinkage External = CodeGenModule::GVA_StrongExternal;
263 
264   Linkage L = FD->getLinkage();
265   if (L == ExternalLinkage && Context.getLangOptions().CPlusPlus &&
266       FD->getType()->getLinkage() == UniqueExternalLinkage)
267     L = UniqueExternalLinkage;
268 
269   switch (L) {
270   case NoLinkage:
271   case InternalLinkage:
272   case UniqueExternalLinkage:
273     return CodeGenModule::GVA_Internal;
274 
275   case ExternalLinkage:
276     switch (FD->getTemplateSpecializationKind()) {
277     case TSK_Undeclared:
278     case TSK_ExplicitSpecialization:
279       External = CodeGenModule::GVA_StrongExternal;
280       break;
281 
282     case TSK_ExplicitInstantiationDefinition:
283       // FIXME: explicit instantiation definitions should use weak linkage
284       return CodeGenModule::GVA_StrongExternal;
285 
286     case TSK_ExplicitInstantiationDeclaration:
287     case TSK_ImplicitInstantiation:
288       External = CodeGenModule::GVA_TemplateInstantiation;
289       break;
290     }
291   }
292 
293   if (!FD->isInlined())
294     return External;
295 
296   if (!Features.CPlusPlus || FD->hasAttr<GNUInlineAttr>()) {
297     // GNU or C99 inline semantics. Determine whether this symbol should be
298     // externally visible.
299     if (FD->isInlineDefinitionExternallyVisible())
300       return External;
301 
302     // C99 inline semantics, where the symbol is not externally visible.
303     return CodeGenModule::GVA_C99Inline;
304   }
305 
306   // C++0x [temp.explicit]p9:
307   //   [ Note: The intent is that an inline function that is the subject of
308   //   an explicit instantiation declaration will still be implicitly
309   //   instantiated when used so that the body can be considered for
310   //   inlining, but that no out-of-line copy of the inline function would be
311   //   generated in the translation unit. -- end note ]
312   if (FD->getTemplateSpecializationKind()
313                                        == TSK_ExplicitInstantiationDeclaration)
314     return CodeGenModule::GVA_C99Inline;
315 
316   return CodeGenModule::GVA_CXXInline;
317 }
318 
319 /// SetFunctionDefinitionAttributes - Set attributes for a global.
320 ///
321 /// FIXME: This is currently only done for aliases and functions, but not for
322 /// variables (these details are set in EmitGlobalVarDefinition for variables).
323 void CodeGenModule::SetFunctionDefinitionAttributes(const FunctionDecl *D,
324                                                     llvm::GlobalValue *GV) {
325   GVALinkage Linkage = GetLinkageForFunction(getContext(), D, Features);
326 
327   if (Linkage == GVA_Internal) {
328     GV->setLinkage(llvm::Function::InternalLinkage);
329   } else if (D->hasAttr<DLLExportAttr>()) {
330     GV->setLinkage(llvm::Function::DLLExportLinkage);
331   } else if (D->hasAttr<WeakAttr>()) {
332     GV->setLinkage(llvm::Function::WeakAnyLinkage);
333   } else if (Linkage == GVA_C99Inline) {
334     // In C99 mode, 'inline' functions are guaranteed to have a strong
335     // definition somewhere else, so we can use available_externally linkage.
336     GV->setLinkage(llvm::Function::AvailableExternallyLinkage);
337   } else if (Linkage == GVA_CXXInline || Linkage == GVA_TemplateInstantiation) {
338     // In C++, the compiler has to emit a definition in every translation unit
339     // that references the function.  We should use linkonce_odr because
340     // a) if all references in this translation unit are optimized away, we
341     // don't need to codegen it.  b) if the function persists, it needs to be
342     // merged with other definitions. c) C++ has the ODR, so we know the
343     // definition is dependable.
344     GV->setLinkage(llvm::Function::LinkOnceODRLinkage);
345   } else {
346     assert(Linkage == GVA_StrongExternal);
347     // Otherwise, we have strong external linkage.
348     GV->setLinkage(llvm::Function::ExternalLinkage);
349   }
350 
351   SetCommonAttributes(D, GV);
352 }
353 
354 void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D,
355                                               const CGFunctionInfo &Info,
356                                               llvm::Function *F) {
357   unsigned CallingConv;
358   AttributeListType AttributeList;
359   ConstructAttributeList(Info, D, AttributeList, CallingConv);
360   F->setAttributes(llvm::AttrListPtr::get(AttributeList.begin(),
361                                           AttributeList.size()));
362   F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv));
363 }
364 
365 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D,
366                                                            llvm::Function *F) {
367   if (!Features.Exceptions && !Features.ObjCNonFragileABI)
368     F->addFnAttr(llvm::Attribute::NoUnwind);
369 
370   if (D->hasAttr<AlwaysInlineAttr>())
371     F->addFnAttr(llvm::Attribute::AlwaysInline);
372 
373   if (D->hasAttr<NoInlineAttr>())
374     F->addFnAttr(llvm::Attribute::NoInline);
375 
376   if (Features.getStackProtectorMode() == LangOptions::SSPOn)
377     F->addFnAttr(llvm::Attribute::StackProtect);
378   else if (Features.getStackProtectorMode() == LangOptions::SSPReq)
379     F->addFnAttr(llvm::Attribute::StackProtectReq);
380 
381   if (const AlignedAttr *AA = D->getAttr<AlignedAttr>()) {
382     unsigned width = Context.Target.getCharWidth();
383     F->setAlignment(AA->getAlignment() / width);
384     while ((AA = AA->getNext<AlignedAttr>()))
385       F->setAlignment(std::max(F->getAlignment(), AA->getAlignment() / width));
386   }
387   // C++ ABI requires 2-byte alignment for member functions.
388   if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D))
389     F->setAlignment(2);
390 }
391 
392 void CodeGenModule::SetCommonAttributes(const Decl *D,
393                                         llvm::GlobalValue *GV) {
394   setGlobalVisibility(GV, D);
395 
396   if (D->hasAttr<UsedAttr>())
397     AddUsedGlobal(GV);
398 
399   if (const SectionAttr *SA = D->getAttr<SectionAttr>())
400     GV->setSection(SA->getName());
401 
402   getTargetCodeGenInfo().SetTargetAttributes(D, GV, *this);
403 }
404 
405 void CodeGenModule::SetInternalFunctionAttributes(const Decl *D,
406                                                   llvm::Function *F,
407                                                   const CGFunctionInfo &FI) {
408   SetLLVMFunctionAttributes(D, FI, F);
409   SetLLVMFunctionAttributesForDefinition(D, F);
410 
411   F->setLinkage(llvm::Function::InternalLinkage);
412 
413   SetCommonAttributes(D, F);
414 }
415 
416 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD,
417                                           llvm::Function *F,
418                                           bool IsIncompleteFunction) {
419   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
420 
421   if (!IsIncompleteFunction)
422     SetLLVMFunctionAttributes(FD, getTypes().getFunctionInfo(GD), F);
423 
424   // Only a few attributes are set on declarations; these may later be
425   // overridden by a definition.
426 
427   if (FD->hasAttr<DLLImportAttr>()) {
428     F->setLinkage(llvm::Function::DLLImportLinkage);
429   } else if (FD->hasAttr<WeakAttr>() ||
430              FD->hasAttr<WeakImportAttr>()) {
431     // "extern_weak" is overloaded in LLVM; we probably should have
432     // separate linkage types for this.
433     F->setLinkage(llvm::Function::ExternalWeakLinkage);
434   } else {
435     F->setLinkage(llvm::Function::ExternalLinkage);
436   }
437 
438   if (const SectionAttr *SA = FD->getAttr<SectionAttr>())
439     F->setSection(SA->getName());
440 }
441 
442 void CodeGenModule::AddUsedGlobal(llvm::GlobalValue *GV) {
443   assert(!GV->isDeclaration() &&
444          "Only globals with definition can force usage.");
445   LLVMUsed.push_back(GV);
446 }
447 
448 void CodeGenModule::EmitLLVMUsed() {
449   // Don't create llvm.used if there is no need.
450   if (LLVMUsed.empty())
451     return;
452 
453   const llvm::Type *i8PTy = llvm::Type::getInt8PtrTy(VMContext);
454 
455   // Convert LLVMUsed to what ConstantArray needs.
456   std::vector<llvm::Constant*> UsedArray;
457   UsedArray.resize(LLVMUsed.size());
458   for (unsigned i = 0, e = LLVMUsed.size(); i != e; ++i) {
459     UsedArray[i] =
460      llvm::ConstantExpr::getBitCast(cast<llvm::Constant>(&*LLVMUsed[i]),
461                                       i8PTy);
462   }
463 
464   if (UsedArray.empty())
465     return;
466   llvm::ArrayType *ATy = llvm::ArrayType::get(i8PTy, UsedArray.size());
467 
468   llvm::GlobalVariable *GV =
469     new llvm::GlobalVariable(getModule(), ATy, false,
470                              llvm::GlobalValue::AppendingLinkage,
471                              llvm::ConstantArray::get(ATy, UsedArray),
472                              "llvm.used");
473 
474   GV->setSection("llvm.metadata");
475 }
476 
477 void CodeGenModule::EmitDeferred() {
478   // Emit code for any potentially referenced deferred decls.  Since a
479   // previously unused static decl may become used during the generation of code
480   // for a static function, iterate until no  changes are made.
481   while (!DeferredDeclsToEmit.empty()) {
482     GlobalDecl D = DeferredDeclsToEmit.back();
483     DeferredDeclsToEmit.pop_back();
484 
485     // The mangled name for the decl must have been emitted in GlobalDeclMap.
486     // Look it up to see if it was defined with a stronger definition (e.g. an
487     // extern inline function with a strong function redefinition).  If so,
488     // just ignore the deferred decl.
489     llvm::GlobalValue *CGRef = GlobalDeclMap[getMangledName(D)];
490     assert(CGRef && "Deferred decl wasn't referenced?");
491 
492     if (!CGRef->isDeclaration())
493       continue;
494 
495     // Otherwise, emit the definition and move on to the next one.
496     EmitGlobalDefinition(D);
497   }
498 }
499 
500 /// EmitAnnotateAttr - Generate the llvm::ConstantStruct which contains the
501 /// annotation information for a given GlobalValue.  The annotation struct is
502 /// {i8 *, i8 *, i8 *, i32}.  The first field is a constant expression, the
503 /// GlobalValue being annotated.  The second field is the constant string
504 /// created from the AnnotateAttr's annotation.  The third field is a constant
505 /// string containing the name of the translation unit.  The fourth field is
506 /// the line number in the file of the annotated value declaration.
507 ///
508 /// FIXME: this does not unique the annotation string constants, as llvm-gcc
509 ///        appears to.
510 ///
511 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV,
512                                                 const AnnotateAttr *AA,
513                                                 unsigned LineNo) {
514   llvm::Module *M = &getModule();
515 
516   // get [N x i8] constants for the annotation string, and the filename string
517   // which are the 2nd and 3rd elements of the global annotation structure.
518   const llvm::Type *SBP = llvm::Type::getInt8PtrTy(VMContext);
519   llvm::Constant *anno = llvm::ConstantArray::get(VMContext,
520                                                   AA->getAnnotation(), true);
521   llvm::Constant *unit = llvm::ConstantArray::get(VMContext,
522                                                   M->getModuleIdentifier(),
523                                                   true);
524 
525   // Get the two global values corresponding to the ConstantArrays we just
526   // created to hold the bytes of the strings.
527   llvm::GlobalValue *annoGV =
528     new llvm::GlobalVariable(*M, anno->getType(), false,
529                              llvm::GlobalValue::PrivateLinkage, anno,
530                              GV->getName());
531   // translation unit name string, emitted into the llvm.metadata section.
532   llvm::GlobalValue *unitGV =
533     new llvm::GlobalVariable(*M, unit->getType(), false,
534                              llvm::GlobalValue::PrivateLinkage, unit,
535                              ".str");
536 
537   // Create the ConstantStruct for the global annotation.
538   llvm::Constant *Fields[4] = {
539     llvm::ConstantExpr::getBitCast(GV, SBP),
540     llvm::ConstantExpr::getBitCast(annoGV, SBP),
541     llvm::ConstantExpr::getBitCast(unitGV, SBP),
542     llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext), LineNo)
543   };
544   return llvm::ConstantStruct::get(VMContext, Fields, 4, false);
545 }
546 
547 bool CodeGenModule::MayDeferGeneration(const ValueDecl *Global) {
548   // Never defer when EmitAllDecls is specified or the decl has
549   // attribute used.
550   if (Features.EmitAllDecls || Global->hasAttr<UsedAttr>())
551     return false;
552 
553   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) {
554     // Constructors and destructors should never be deferred.
555     if (FD->hasAttr<ConstructorAttr>() ||
556         FD->hasAttr<DestructorAttr>())
557       return false;
558 
559     // The key function for a class must never be deferred.
560     if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Global)) {
561       const CXXRecordDecl *RD = MD->getParent();
562       if (MD->isOutOfLine() && RD->isDynamicClass()) {
563         const CXXMethodDecl *KeyFunction = getContext().getKeyFunction(RD);
564         if (KeyFunction &&
565             KeyFunction->getCanonicalDecl() == MD->getCanonicalDecl())
566           return false;
567       }
568     }
569 
570     GVALinkage Linkage = GetLinkageForFunction(getContext(), FD, Features);
571 
572     // static, static inline, always_inline, and extern inline functions can
573     // always be deferred.  Normal inline functions can be deferred in C99/C++.
574     if (Linkage == GVA_Internal || Linkage == GVA_C99Inline ||
575         Linkage == GVA_CXXInline || Linkage == GVA_TemplateInstantiation)
576       return true;
577     return false;
578   }
579 
580   const VarDecl *VD = cast<VarDecl>(Global);
581   assert(VD->isFileVarDecl() && "Invalid decl");
582 
583   // We never want to defer structs that have non-trivial constructors or
584   // destructors.
585 
586   // FIXME: Handle references.
587   if (const RecordType *RT = VD->getType()->getAs<RecordType>()) {
588     if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl())) {
589       if (!RD->hasTrivialConstructor() || !RD->hasTrivialDestructor())
590         return false;
591     }
592   }
593 
594   // Static data may be deferred, but out-of-line static data members
595   // cannot be.
596   Linkage L = VD->getLinkage();
597   if (L == ExternalLinkage && getContext().getLangOptions().CPlusPlus &&
598       VD->getType()->getLinkage() == UniqueExternalLinkage)
599     L = UniqueExternalLinkage;
600 
601   switch (L) {
602   case NoLinkage:
603   case InternalLinkage:
604   case UniqueExternalLinkage:
605     // Initializer has side effects?
606     if (VD->getInit() && VD->getInit()->HasSideEffects(Context))
607       return false;
608     return !(VD->isStaticDataMember() && VD->isOutOfLine());
609 
610   case ExternalLinkage:
611     break;
612   }
613 
614   return false;
615 }
616 
617 void CodeGenModule::EmitGlobal(GlobalDecl GD) {
618   const ValueDecl *Global = cast<ValueDecl>(GD.getDecl());
619 
620   // If this is an alias definition (which otherwise looks like a declaration)
621   // emit it now.
622   if (Global->hasAttr<AliasAttr>())
623     return EmitAliasDefinition(Global);
624 
625   // Ignore declarations, they will be emitted on their first use.
626   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) {
627     // Forward declarations are emitted lazily on first use.
628     if (!FD->isThisDeclarationADefinition())
629       return;
630   } else {
631     const VarDecl *VD = cast<VarDecl>(Global);
632     assert(VD->isFileVarDecl() && "Cannot emit local var decl as global.");
633 
634     if (VD->isThisDeclarationADefinition() != VarDecl::Definition)
635       return;
636   }
637 
638   // Defer code generation when possible if this is a static definition, inline
639   // function etc.  These we only want to emit if they are used.
640   if (MayDeferGeneration(Global)) {
641     // If the value has already been used, add it directly to the
642     // DeferredDeclsToEmit list.
643     const char *MangledName = getMangledName(GD);
644     if (GlobalDeclMap.count(MangledName))
645       DeferredDeclsToEmit.push_back(GD);
646     else {
647       // Otherwise, remember that we saw a deferred decl with this name.  The
648       // first use of the mangled name will cause it to move into
649       // DeferredDeclsToEmit.
650       DeferredDecls[MangledName] = GD;
651     }
652     return;
653   }
654 
655   // Otherwise emit the definition.
656   EmitGlobalDefinition(GD);
657 }
658 
659 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD) {
660   const ValueDecl *D = cast<ValueDecl>(GD.getDecl());
661 
662   PrettyStackTraceDecl CrashInfo((ValueDecl *)D, D->getLocation(),
663                                  Context.getSourceManager(),
664                                  "Generating code for declaration");
665 
666   if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) {
667     getVtableInfo().MaybeEmitVtable(GD);
668     if (MD->isVirtual() && MD->isOutOfLine() &&
669         (!isa<CXXDestructorDecl>(D) || GD.getDtorType() != Dtor_Base)) {
670       if (isa<CXXDestructorDecl>(D)) {
671         GlobalDecl CanonGD(cast<CXXDestructorDecl>(D->getCanonicalDecl()),
672                            GD.getDtorType());
673         BuildThunksForVirtual(CanonGD);
674       } else {
675         BuildThunksForVirtual(MD->getCanonicalDecl());
676       }
677     }
678   }
679 
680   if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(D))
681     EmitCXXConstructor(CD, GD.getCtorType());
682   else if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(D))
683     EmitCXXDestructor(DD, GD.getDtorType());
684   else if (isa<FunctionDecl>(D))
685     EmitGlobalFunctionDefinition(GD);
686   else if (const VarDecl *VD = dyn_cast<VarDecl>(D))
687     EmitGlobalVarDefinition(VD);
688   else {
689     assert(0 && "Invalid argument to EmitGlobalDefinition()");
690   }
691 }
692 
693 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the
694 /// module, create and return an llvm Function with the specified type. If there
695 /// is something in the module with the specified name, return it potentially
696 /// bitcasted to the right type.
697 ///
698 /// If D is non-null, it specifies a decl that correspond to this.  This is used
699 /// to set the attributes on the function when it is first created.
700 llvm::Constant *CodeGenModule::GetOrCreateLLVMFunction(const char *MangledName,
701                                                        const llvm::Type *Ty,
702                                                        GlobalDecl D) {
703   // Lookup the entry, lazily creating it if necessary.
704   llvm::GlobalValue *&Entry = GlobalDeclMap[MangledName];
705   if (Entry) {
706     if (Entry->getType()->getElementType() == Ty)
707       return Entry;
708 
709     // Make sure the result is of the correct type.
710     const llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
711     return llvm::ConstantExpr::getBitCast(Entry, PTy);
712   }
713 
714   // This function doesn't have a complete type (for example, the return
715   // type is an incomplete struct). Use a fake type instead, and make
716   // sure not to try to set attributes.
717   bool IsIncompleteFunction = false;
718   if (!isa<llvm::FunctionType>(Ty)) {
719     Ty = llvm::FunctionType::get(llvm::Type::getVoidTy(VMContext),
720                                  std::vector<const llvm::Type*>(), false);
721     IsIncompleteFunction = true;
722   }
723   llvm::Function *F = llvm::Function::Create(cast<llvm::FunctionType>(Ty),
724                                              llvm::Function::ExternalLinkage,
725                                              "", &getModule());
726   F->setName(MangledName);
727   if (D.getDecl())
728     SetFunctionAttributes(D, F, IsIncompleteFunction);
729   Entry = F;
730 
731   // This is the first use or definition of a mangled name.  If there is a
732   // deferred decl with this name, remember that we need to emit it at the end
733   // of the file.
734   llvm::DenseMap<const char*, GlobalDecl>::iterator DDI =
735     DeferredDecls.find(MangledName);
736   if (DDI != DeferredDecls.end()) {
737     // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
738     // list, and remove it from DeferredDecls (since we don't need it anymore).
739     DeferredDeclsToEmit.push_back(DDI->second);
740     DeferredDecls.erase(DDI);
741   } else if (const FunctionDecl *FD = cast_or_null<FunctionDecl>(D.getDecl())) {
742     // If this the first reference to a C++ inline function in a class, queue up
743     // the deferred function body for emission.  These are not seen as
744     // top-level declarations.
745     if (FD->isThisDeclarationADefinition() && MayDeferGeneration(FD))
746       DeferredDeclsToEmit.push_back(D);
747     // A called constructor which has no definition or declaration need be
748     // synthesized.
749     else if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD)) {
750       if (CD->isImplicit())
751         DeferredDeclsToEmit.push_back(D);
752     } else if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(FD)) {
753       if (DD->isImplicit())
754         DeferredDeclsToEmit.push_back(D);
755     } else if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
756       if (MD->isCopyAssignment() && MD->isImplicit())
757         DeferredDeclsToEmit.push_back(D);
758     }
759   }
760 
761   return F;
762 }
763 
764 /// GetAddrOfFunction - Return the address of the given function.  If Ty is
765 /// non-null, then this function will use the specified type if it has to
766 /// create it (this occurs when we see a definition of the function).
767 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD,
768                                                  const llvm::Type *Ty) {
769   // If there was no specific requested type, just convert it now.
770   if (!Ty)
771     Ty = getTypes().ConvertType(cast<ValueDecl>(GD.getDecl())->getType());
772   return GetOrCreateLLVMFunction(getMangledName(GD), Ty, GD);
773 }
774 
775 /// CreateRuntimeFunction - Create a new runtime function with the specified
776 /// type and name.
777 llvm::Constant *
778 CodeGenModule::CreateRuntimeFunction(const llvm::FunctionType *FTy,
779                                      const char *Name) {
780   // Convert Name to be a uniqued string from the IdentifierInfo table.
781   Name = getContext().Idents.get(Name).getNameStart();
782   return GetOrCreateLLVMFunction(Name, FTy, GlobalDecl());
783 }
784 
785 static bool DeclIsConstantGlobal(ASTContext &Context, const VarDecl *D) {
786   if (!D->getType().isConstant(Context) && !D->getType()->isReferenceType())
787     return false;
788   if (Context.getLangOptions().CPlusPlus &&
789       Context.getBaseElementType(D->getType())->getAs<RecordType>()) {
790     // FIXME: We should do something fancier here!
791     return false;
792   }
793   return true;
794 }
795 
796 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module,
797 /// create and return an llvm GlobalVariable with the specified type.  If there
798 /// is something in the module with the specified name, return it potentially
799 /// bitcasted to the right type.
800 ///
801 /// If D is non-null, it specifies a decl that correspond to this.  This is used
802 /// to set the attributes on the global when it is first created.
803 llvm::Constant *CodeGenModule::GetOrCreateLLVMGlobal(const char *MangledName,
804                                                      const llvm::PointerType*Ty,
805                                                      const VarDecl *D) {
806   // Lookup the entry, lazily creating it if necessary.
807   llvm::GlobalValue *&Entry = GlobalDeclMap[MangledName];
808   if (Entry) {
809     if (Entry->getType() == Ty)
810       return Entry;
811 
812     // Make sure the result is of the correct type.
813     return llvm::ConstantExpr::getBitCast(Entry, Ty);
814   }
815 
816   // This is the first use or definition of a mangled name.  If there is a
817   // deferred decl with this name, remember that we need to emit it at the end
818   // of the file.
819   llvm::DenseMap<const char*, GlobalDecl>::iterator DDI =
820     DeferredDecls.find(MangledName);
821   if (DDI != DeferredDecls.end()) {
822     // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
823     // list, and remove it from DeferredDecls (since we don't need it anymore).
824     DeferredDeclsToEmit.push_back(DDI->second);
825     DeferredDecls.erase(DDI);
826   }
827 
828   llvm::GlobalVariable *GV =
829     new llvm::GlobalVariable(getModule(), Ty->getElementType(), false,
830                              llvm::GlobalValue::ExternalLinkage,
831                              0, "", 0,
832                              false, Ty->getAddressSpace());
833   GV->setName(MangledName);
834 
835   // Handle things which are present even on external declarations.
836   if (D) {
837     // FIXME: This code is overly simple and should be merged with other global
838     // handling.
839     GV->setConstant(DeclIsConstantGlobal(Context, D));
840 
841     // FIXME: Merge with other attribute handling code.
842     if (D->getStorageClass() == VarDecl::PrivateExtern)
843       GV->setVisibility(llvm::GlobalValue::HiddenVisibility);
844 
845     if (D->hasAttr<WeakAttr>() ||
846         D->hasAttr<WeakImportAttr>())
847       GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage);
848 
849     GV->setThreadLocal(D->isThreadSpecified());
850   }
851 
852   return Entry = GV;
853 }
854 
855 
856 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the
857 /// given global variable.  If Ty is non-null and if the global doesn't exist,
858 /// then it will be greated with the specified type instead of whatever the
859 /// normal requested type would be.
860 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D,
861                                                   const llvm::Type *Ty) {
862   assert(D->hasGlobalStorage() && "Not a global variable");
863   QualType ASTTy = D->getType();
864   if (Ty == 0)
865     Ty = getTypes().ConvertTypeForMem(ASTTy);
866 
867   const llvm::PointerType *PTy =
868     llvm::PointerType::get(Ty, ASTTy.getAddressSpace());
869   return GetOrCreateLLVMGlobal(getMangledName(D), PTy, D);
870 }
871 
872 /// CreateRuntimeVariable - Create a new runtime global variable with the
873 /// specified type and name.
874 llvm::Constant *
875 CodeGenModule::CreateRuntimeVariable(const llvm::Type *Ty,
876                                      const char *Name) {
877   // Convert Name to be a uniqued string from the IdentifierInfo table.
878   Name = getContext().Idents.get(Name).getNameStart();
879   return GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), 0);
880 }
881 
882 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) {
883   assert(!D->getInit() && "Cannot emit definite definitions here!");
884 
885   if (MayDeferGeneration(D)) {
886     // If we have not seen a reference to this variable yet, place it
887     // into the deferred declarations table to be emitted if needed
888     // later.
889     const char *MangledName = getMangledName(D);
890     if (GlobalDeclMap.count(MangledName) == 0) {
891       DeferredDecls[MangledName] = D;
892       return;
893     }
894   }
895 
896   // The tentative definition is the only definition.
897   EmitGlobalVarDefinition(D);
898 }
899 
900 llvm::GlobalVariable::LinkageTypes
901 CodeGenModule::getVtableLinkage(const CXXRecordDecl *RD) {
902   if (RD->isInAnonymousNamespace() || !RD->hasLinkage())
903     return llvm::GlobalVariable::InternalLinkage;
904 
905   if (const CXXMethodDecl *KeyFunction
906                                     = RD->getASTContext().getKeyFunction(RD)) {
907     // If this class has a key function, use that to determine the linkage of
908     // the vtable.
909     const FunctionDecl *Def = 0;
910     if (KeyFunction->getBody(Def))
911       KeyFunction = cast<CXXMethodDecl>(Def);
912 
913     switch (KeyFunction->getTemplateSpecializationKind()) {
914       case TSK_Undeclared:
915       case TSK_ExplicitSpecialization:
916         if (KeyFunction->isInlined())
917           return llvm::GlobalVariable::WeakODRLinkage;
918 
919         return llvm::GlobalVariable::ExternalLinkage;
920 
921       case TSK_ImplicitInstantiation:
922       case TSK_ExplicitInstantiationDefinition:
923         return llvm::GlobalVariable::WeakODRLinkage;
924 
925       case TSK_ExplicitInstantiationDeclaration:
926         // FIXME: Use available_externally linkage. However, this currently
927         // breaks LLVM's build due to undefined symbols.
928         //      return llvm::GlobalVariable::AvailableExternallyLinkage;
929         return llvm::GlobalVariable::WeakODRLinkage;
930     }
931   }
932 
933   switch (RD->getTemplateSpecializationKind()) {
934   case TSK_Undeclared:
935   case TSK_ExplicitSpecialization:
936   case TSK_ImplicitInstantiation:
937   case TSK_ExplicitInstantiationDefinition:
938     return llvm::GlobalVariable::WeakODRLinkage;
939 
940   case TSK_ExplicitInstantiationDeclaration:
941     // FIXME: Use available_externally linkage. However, this currently
942     // breaks LLVM's build due to undefined symbols.
943     //   return llvm::GlobalVariable::AvailableExternallyLinkage;
944     return llvm::GlobalVariable::WeakODRLinkage;
945   }
946 
947   // Silence GCC warning.
948   return llvm::GlobalVariable::WeakODRLinkage;
949 }
950 
951 static CodeGenModule::GVALinkage
952 GetLinkageForVariable(ASTContext &Context, const VarDecl *VD) {
953   // If this is a static data member, compute the kind of template
954   // specialization. Otherwise, this variable is not part of a
955   // template.
956   TemplateSpecializationKind TSK = TSK_Undeclared;
957   if (VD->isStaticDataMember())
958     TSK = VD->getTemplateSpecializationKind();
959 
960   Linkage L = VD->getLinkage();
961   if (L == ExternalLinkage && Context.getLangOptions().CPlusPlus &&
962       VD->getType()->getLinkage() == UniqueExternalLinkage)
963     L = UniqueExternalLinkage;
964 
965   switch (L) {
966   case NoLinkage:
967   case InternalLinkage:
968   case UniqueExternalLinkage:
969     return CodeGenModule::GVA_Internal;
970 
971   case ExternalLinkage:
972     switch (TSK) {
973     case TSK_Undeclared:
974     case TSK_ExplicitSpecialization:
975 
976       // FIXME: ExplicitInstantiationDefinition should be weak!
977     case TSK_ExplicitInstantiationDefinition:
978       return CodeGenModule::GVA_StrongExternal;
979 
980     case TSK_ExplicitInstantiationDeclaration:
981       llvm_unreachable("Variable should not be instantiated");
982       // Fall through to treat this like any other instantiation.
983 
984     case TSK_ImplicitInstantiation:
985       return CodeGenModule::GVA_TemplateInstantiation;
986     }
987   }
988 
989   return CodeGenModule::GVA_StrongExternal;
990 }
991 
992 CharUnits CodeGenModule::GetTargetTypeStoreSize(const llvm::Type *Ty) const {
993     return CharUnits::fromQuantity(
994       TheTargetData.getTypeStoreSizeInBits(Ty) / Context.getCharWidth());
995 }
996 
997 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D) {
998   llvm::Constant *Init = 0;
999   QualType ASTTy = D->getType();
1000   bool NonConstInit = false;
1001 
1002   const Expr *InitExpr = D->getAnyInitializer();
1003 
1004   if (!InitExpr) {
1005     // This is a tentative definition; tentative definitions are
1006     // implicitly initialized with { 0 }.
1007     //
1008     // Note that tentative definitions are only emitted at the end of
1009     // a translation unit, so they should never have incomplete
1010     // type. In addition, EmitTentativeDefinition makes sure that we
1011     // never attempt to emit a tentative definition if a real one
1012     // exists. A use may still exists, however, so we still may need
1013     // to do a RAUW.
1014     assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type");
1015     Init = EmitNullConstant(D->getType());
1016   } else {
1017     Init = EmitConstantExpr(InitExpr, D->getType());
1018 
1019     if (!Init) {
1020       QualType T = InitExpr->getType();
1021       if (getLangOptions().CPlusPlus) {
1022         EmitCXXGlobalVarDeclInitFunc(D);
1023         Init = EmitNullConstant(T);
1024         NonConstInit = true;
1025       } else {
1026         ErrorUnsupported(D, "static initializer");
1027         Init = llvm::UndefValue::get(getTypes().ConvertType(T));
1028       }
1029     }
1030   }
1031 
1032   const llvm::Type* InitType = Init->getType();
1033   llvm::Constant *Entry = GetAddrOfGlobalVar(D, InitType);
1034 
1035   // Strip off a bitcast if we got one back.
1036   if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
1037     assert(CE->getOpcode() == llvm::Instruction::BitCast ||
1038            // all zero index gep.
1039            CE->getOpcode() == llvm::Instruction::GetElementPtr);
1040     Entry = CE->getOperand(0);
1041   }
1042 
1043   // Entry is now either a Function or GlobalVariable.
1044   llvm::GlobalVariable *GV = dyn_cast<llvm::GlobalVariable>(Entry);
1045 
1046   // We have a definition after a declaration with the wrong type.
1047   // We must make a new GlobalVariable* and update everything that used OldGV
1048   // (a declaration or tentative definition) with the new GlobalVariable*
1049   // (which will be a definition).
1050   //
1051   // This happens if there is a prototype for a global (e.g.
1052   // "extern int x[];") and then a definition of a different type (e.g.
1053   // "int x[10];"). This also happens when an initializer has a different type
1054   // from the type of the global (this happens with unions).
1055   if (GV == 0 ||
1056       GV->getType()->getElementType() != InitType ||
1057       GV->getType()->getAddressSpace() != ASTTy.getAddressSpace()) {
1058 
1059     // Remove the old entry from GlobalDeclMap so that we'll create a new one.
1060     GlobalDeclMap.erase(getMangledName(D));
1061 
1062     // Make a new global with the correct type, this is now guaranteed to work.
1063     GV = cast<llvm::GlobalVariable>(GetAddrOfGlobalVar(D, InitType));
1064     GV->takeName(cast<llvm::GlobalValue>(Entry));
1065 
1066     // Replace all uses of the old global with the new global
1067     llvm::Constant *NewPtrForOldDecl =
1068         llvm::ConstantExpr::getBitCast(GV, Entry->getType());
1069     Entry->replaceAllUsesWith(NewPtrForOldDecl);
1070 
1071     // Erase the old global, since it is no longer used.
1072     cast<llvm::GlobalValue>(Entry)->eraseFromParent();
1073   }
1074 
1075   if (const AnnotateAttr *AA = D->getAttr<AnnotateAttr>()) {
1076     SourceManager &SM = Context.getSourceManager();
1077     AddAnnotation(EmitAnnotateAttr(GV, AA,
1078                               SM.getInstantiationLineNumber(D->getLocation())));
1079   }
1080 
1081   GV->setInitializer(Init);
1082 
1083   // If it is safe to mark the global 'constant', do so now.
1084   GV->setConstant(false);
1085   if (!NonConstInit && DeclIsConstantGlobal(Context, D))
1086     GV->setConstant(true);
1087 
1088   GV->setAlignment(getContext().getDeclAlign(D).getQuantity());
1089 
1090   // Set the llvm linkage type as appropriate.
1091   GVALinkage Linkage = GetLinkageForVariable(getContext(), D);
1092   if (Linkage == GVA_Internal)
1093     GV->setLinkage(llvm::Function::InternalLinkage);
1094   else if (D->hasAttr<DLLImportAttr>())
1095     GV->setLinkage(llvm::Function::DLLImportLinkage);
1096   else if (D->hasAttr<DLLExportAttr>())
1097     GV->setLinkage(llvm::Function::DLLExportLinkage);
1098   else if (D->hasAttr<WeakAttr>()) {
1099     if (GV->isConstant())
1100       GV->setLinkage(llvm::GlobalVariable::WeakODRLinkage);
1101     else
1102       GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage);
1103   } else if (Linkage == GVA_TemplateInstantiation)
1104     GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage);
1105   else if (!getLangOptions().CPlusPlus && !CodeGenOpts.NoCommon &&
1106            !D->hasExternalStorage() && !D->getInit() &&
1107            !D->getAttr<SectionAttr>()) {
1108     GV->setLinkage(llvm::GlobalVariable::CommonLinkage);
1109     // common vars aren't constant even if declared const.
1110     GV->setConstant(false);
1111   } else
1112     GV->setLinkage(llvm::GlobalVariable::ExternalLinkage);
1113 
1114   SetCommonAttributes(D, GV);
1115 
1116   // Emit global variable debug information.
1117   if (CGDebugInfo *DI = getDebugInfo()) {
1118     DI->setLocation(D->getLocation());
1119     DI->EmitGlobalVariable(GV, D);
1120   }
1121 }
1122 
1123 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we
1124 /// implement a function with no prototype, e.g. "int foo() {}".  If there are
1125 /// existing call uses of the old function in the module, this adjusts them to
1126 /// call the new function directly.
1127 ///
1128 /// This is not just a cleanup: the always_inline pass requires direct calls to
1129 /// functions to be able to inline them.  If there is a bitcast in the way, it
1130 /// won't inline them.  Instcombine normally deletes these calls, but it isn't
1131 /// run at -O0.
1132 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
1133                                                       llvm::Function *NewFn) {
1134   // If we're redefining a global as a function, don't transform it.
1135   llvm::Function *OldFn = dyn_cast<llvm::Function>(Old);
1136   if (OldFn == 0) return;
1137 
1138   const llvm::Type *NewRetTy = NewFn->getReturnType();
1139   llvm::SmallVector<llvm::Value*, 4> ArgList;
1140 
1141   for (llvm::Value::use_iterator UI = OldFn->use_begin(), E = OldFn->use_end();
1142        UI != E; ) {
1143     // TODO: Do invokes ever occur in C code?  If so, we should handle them too.
1144     unsigned OpNo = UI.getOperandNo();
1145     llvm::CallInst *CI = dyn_cast<llvm::CallInst>(*UI++);
1146     if (!CI || OpNo != 0) continue;
1147 
1148     // If the return types don't match exactly, and if the call isn't dead, then
1149     // we can't transform this call.
1150     if (CI->getType() != NewRetTy && !CI->use_empty())
1151       continue;
1152 
1153     // If the function was passed too few arguments, don't transform.  If extra
1154     // arguments were passed, we silently drop them.  If any of the types
1155     // mismatch, we don't transform.
1156     unsigned ArgNo = 0;
1157     bool DontTransform = false;
1158     for (llvm::Function::arg_iterator AI = NewFn->arg_begin(),
1159          E = NewFn->arg_end(); AI != E; ++AI, ++ArgNo) {
1160       if (CI->getNumOperands()-1 == ArgNo ||
1161           CI->getOperand(ArgNo+1)->getType() != AI->getType()) {
1162         DontTransform = true;
1163         break;
1164       }
1165     }
1166     if (DontTransform)
1167       continue;
1168 
1169     // Okay, we can transform this.  Create the new call instruction and copy
1170     // over the required information.
1171     ArgList.append(CI->op_begin()+1, CI->op_begin()+1+ArgNo);
1172     llvm::CallInst *NewCall = llvm::CallInst::Create(NewFn, ArgList.begin(),
1173                                                      ArgList.end(), "", CI);
1174     ArgList.clear();
1175     if (!NewCall->getType()->isVoidTy())
1176       NewCall->takeName(CI);
1177     NewCall->setAttributes(CI->getAttributes());
1178     NewCall->setCallingConv(CI->getCallingConv());
1179 
1180     // Finally, remove the old call, replacing any uses with the new one.
1181     if (!CI->use_empty())
1182       CI->replaceAllUsesWith(NewCall);
1183 
1184     // Copy any custom metadata attached with CI.
1185     if (llvm::MDNode *DbgNode = CI->getMetadata("dbg"))
1186       NewCall->setMetadata("dbg", DbgNode);
1187     CI->eraseFromParent();
1188   }
1189 }
1190 
1191 
1192 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD) {
1193   const llvm::FunctionType *Ty;
1194   const FunctionDecl *D = cast<FunctionDecl>(GD.getDecl());
1195 
1196   if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) {
1197     bool isVariadic = D->getType()->getAs<FunctionProtoType>()->isVariadic();
1198 
1199     Ty = getTypes().GetFunctionType(getTypes().getFunctionInfo(MD), isVariadic);
1200   } else {
1201     Ty = cast<llvm::FunctionType>(getTypes().ConvertType(D->getType()));
1202 
1203     // As a special case, make sure that definitions of K&R function
1204     // "type foo()" aren't declared as varargs (which forces the backend
1205     // to do unnecessary work).
1206     if (D->getType()->isFunctionNoProtoType()) {
1207       assert(Ty->isVarArg() && "Didn't lower type as expected");
1208       // Due to stret, the lowered function could have arguments.
1209       // Just create the same type as was lowered by ConvertType
1210       // but strip off the varargs bit.
1211       std::vector<const llvm::Type*> Args(Ty->param_begin(), Ty->param_end());
1212       Ty = llvm::FunctionType::get(Ty->getReturnType(), Args, false);
1213     }
1214   }
1215 
1216   // Get or create the prototype for the function.
1217   llvm::Constant *Entry = GetAddrOfFunction(GD, Ty);
1218 
1219   // Strip off a bitcast if we got one back.
1220   if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
1221     assert(CE->getOpcode() == llvm::Instruction::BitCast);
1222     Entry = CE->getOperand(0);
1223   }
1224 
1225 
1226   if (cast<llvm::GlobalValue>(Entry)->getType()->getElementType() != Ty) {
1227     llvm::GlobalValue *OldFn = cast<llvm::GlobalValue>(Entry);
1228 
1229     // If the types mismatch then we have to rewrite the definition.
1230     assert(OldFn->isDeclaration() &&
1231            "Shouldn't replace non-declaration");
1232 
1233     // F is the Function* for the one with the wrong type, we must make a new
1234     // Function* and update everything that used F (a declaration) with the new
1235     // Function* (which will be a definition).
1236     //
1237     // This happens if there is a prototype for a function
1238     // (e.g. "int f()") and then a definition of a different type
1239     // (e.g. "int f(int x)").  Start by making a new function of the
1240     // correct type, RAUW, then steal the name.
1241     GlobalDeclMap.erase(getMangledName(D));
1242     llvm::Function *NewFn = cast<llvm::Function>(GetAddrOfFunction(GD, Ty));
1243     NewFn->takeName(OldFn);
1244 
1245     // If this is an implementation of a function without a prototype, try to
1246     // replace any existing uses of the function (which may be calls) with uses
1247     // of the new function
1248     if (D->getType()->isFunctionNoProtoType()) {
1249       ReplaceUsesOfNonProtoTypeWithRealFunction(OldFn, NewFn);
1250       OldFn->removeDeadConstantUsers();
1251     }
1252 
1253     // Replace uses of F with the Function we will endow with a body.
1254     if (!Entry->use_empty()) {
1255       llvm::Constant *NewPtrForOldDecl =
1256         llvm::ConstantExpr::getBitCast(NewFn, Entry->getType());
1257       Entry->replaceAllUsesWith(NewPtrForOldDecl);
1258     }
1259 
1260     // Ok, delete the old function now, which is dead.
1261     OldFn->eraseFromParent();
1262 
1263     Entry = NewFn;
1264   }
1265 
1266   llvm::Function *Fn = cast<llvm::Function>(Entry);
1267 
1268   CodeGenFunction(*this).GenerateCode(D, Fn);
1269 
1270   SetFunctionDefinitionAttributes(D, Fn);
1271   SetLLVMFunctionAttributesForDefinition(D, Fn);
1272 
1273   if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>())
1274     AddGlobalCtor(Fn, CA->getPriority());
1275   if (const DestructorAttr *DA = D->getAttr<DestructorAttr>())
1276     AddGlobalDtor(Fn, DA->getPriority());
1277 }
1278 
1279 void CodeGenModule::EmitAliasDefinition(const ValueDecl *D) {
1280   const AliasAttr *AA = D->getAttr<AliasAttr>();
1281   assert(AA && "Not an alias?");
1282 
1283   const llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
1284 
1285   // Unique the name through the identifier table.
1286   const char *AliaseeName =
1287     getContext().Idents.get(AA->getAliasee()).getNameStart();
1288 
1289   // Create a reference to the named value.  This ensures that it is emitted
1290   // if a deferred decl.
1291   llvm::Constant *Aliasee;
1292   if (isa<llvm::FunctionType>(DeclTy))
1293     Aliasee = GetOrCreateLLVMFunction(AliaseeName, DeclTy, GlobalDecl());
1294   else
1295     Aliasee = GetOrCreateLLVMGlobal(AliaseeName,
1296                                     llvm::PointerType::getUnqual(DeclTy), 0);
1297 
1298   // Create the new alias itself, but don't set a name yet.
1299   llvm::GlobalValue *GA =
1300     new llvm::GlobalAlias(Aliasee->getType(),
1301                           llvm::Function::ExternalLinkage,
1302                           "", Aliasee, &getModule());
1303 
1304   // See if there is already something with the alias' name in the module.
1305   const char *MangledName = getMangledName(D);
1306   llvm::GlobalValue *&Entry = GlobalDeclMap[MangledName];
1307 
1308   if (Entry && !Entry->isDeclaration()) {
1309     // If there is a definition in the module, then it wins over the alias.
1310     // This is dubious, but allow it to be safe.  Just ignore the alias.
1311     GA->eraseFromParent();
1312     return;
1313   }
1314 
1315   if (Entry) {
1316     // If there is a declaration in the module, then we had an extern followed
1317     // by the alias, as in:
1318     //   extern int test6();
1319     //   ...
1320     //   int test6() __attribute__((alias("test7")));
1321     //
1322     // Remove it and replace uses of it with the alias.
1323 
1324     Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA,
1325                                                           Entry->getType()));
1326     Entry->eraseFromParent();
1327   }
1328 
1329   // Now we know that there is no conflict, set the name.
1330   Entry = GA;
1331   GA->setName(MangledName);
1332 
1333   // Set attributes which are particular to an alias; this is a
1334   // specialization of the attributes which may be set on a global
1335   // variable/function.
1336   if (D->hasAttr<DLLExportAttr>()) {
1337     if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
1338       // The dllexport attribute is ignored for undefined symbols.
1339       if (FD->getBody())
1340         GA->setLinkage(llvm::Function::DLLExportLinkage);
1341     } else {
1342       GA->setLinkage(llvm::Function::DLLExportLinkage);
1343     }
1344   } else if (D->hasAttr<WeakAttr>() ||
1345              D->hasAttr<WeakImportAttr>()) {
1346     GA->setLinkage(llvm::Function::WeakAnyLinkage);
1347   }
1348 
1349   SetCommonAttributes(D, GA);
1350 }
1351 
1352 /// getBuiltinLibFunction - Given a builtin id for a function like
1353 /// "__builtin_fabsf", return a Function* for "fabsf".
1354 llvm::Value *CodeGenModule::getBuiltinLibFunction(const FunctionDecl *FD,
1355                                                   unsigned BuiltinID) {
1356   assert((Context.BuiltinInfo.isLibFunction(BuiltinID) ||
1357           Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) &&
1358          "isn't a lib fn");
1359 
1360   // Get the name, skip over the __builtin_ prefix (if necessary).
1361   const char *Name = Context.BuiltinInfo.GetName(BuiltinID);
1362   if (Context.BuiltinInfo.isLibFunction(BuiltinID))
1363     Name += 10;
1364 
1365   const llvm::FunctionType *Ty =
1366     cast<llvm::FunctionType>(getTypes().ConvertType(FD->getType()));
1367 
1368   // Unique the name through the identifier table.
1369   Name = getContext().Idents.get(Name).getNameStart();
1370   return GetOrCreateLLVMFunction(Name, Ty, GlobalDecl(FD));
1371 }
1372 
1373 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,const llvm::Type **Tys,
1374                                             unsigned NumTys) {
1375   return llvm::Intrinsic::getDeclaration(&getModule(),
1376                                          (llvm::Intrinsic::ID)IID, Tys, NumTys);
1377 }
1378 
1379 llvm::Function *CodeGenModule::getMemCpyFn() {
1380   if (MemCpyFn) return MemCpyFn;
1381   const llvm::Type *IntPtr = TheTargetData.getIntPtrType(VMContext);
1382   return MemCpyFn = getIntrinsic(llvm::Intrinsic::memcpy, &IntPtr, 1);
1383 }
1384 
1385 llvm::Function *CodeGenModule::getMemMoveFn() {
1386   if (MemMoveFn) return MemMoveFn;
1387   const llvm::Type *IntPtr = TheTargetData.getIntPtrType(VMContext);
1388   return MemMoveFn = getIntrinsic(llvm::Intrinsic::memmove, &IntPtr, 1);
1389 }
1390 
1391 llvm::Function *CodeGenModule::getMemSetFn() {
1392   if (MemSetFn) return MemSetFn;
1393   const llvm::Type *IntPtr = TheTargetData.getIntPtrType(VMContext);
1394   return MemSetFn = getIntrinsic(llvm::Intrinsic::memset, &IntPtr, 1);
1395 }
1396 
1397 static llvm::StringMapEntry<llvm::Constant*> &
1398 GetConstantCFStringEntry(llvm::StringMap<llvm::Constant*> &Map,
1399                          const StringLiteral *Literal,
1400                          bool TargetIsLSB,
1401                          bool &IsUTF16,
1402                          unsigned &StringLength) {
1403   unsigned NumBytes = Literal->getByteLength();
1404 
1405   // Check for simple case.
1406   if (!Literal->containsNonAsciiOrNull()) {
1407     StringLength = NumBytes;
1408     return Map.GetOrCreateValue(llvm::StringRef(Literal->getStrData(),
1409                                                 StringLength));
1410   }
1411 
1412   // Otherwise, convert the UTF8 literals into a byte string.
1413   llvm::SmallVector<UTF16, 128> ToBuf(NumBytes);
1414   const UTF8 *FromPtr = (UTF8 *)Literal->getStrData();
1415   UTF16 *ToPtr = &ToBuf[0];
1416 
1417   ConversionResult Result = ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes,
1418                                                &ToPtr, ToPtr + NumBytes,
1419                                                strictConversion);
1420 
1421   // Check for conversion failure.
1422   if (Result != conversionOK) {
1423     // FIXME: Have Sema::CheckObjCString() validate the UTF-8 string and remove
1424     // this duplicate code.
1425     assert(Result == sourceIllegal && "UTF-8 to UTF-16 conversion failed");
1426     StringLength = NumBytes;
1427     return Map.GetOrCreateValue(llvm::StringRef(Literal->getStrData(),
1428                                                 StringLength));
1429   }
1430 
1431   // ConvertUTF8toUTF16 returns the length in ToPtr.
1432   StringLength = ToPtr - &ToBuf[0];
1433 
1434   // Render the UTF-16 string into a byte array and convert to the target byte
1435   // order.
1436   //
1437   // FIXME: This isn't something we should need to do here.
1438   llvm::SmallString<128> AsBytes;
1439   AsBytes.reserve(StringLength * 2);
1440   for (unsigned i = 0; i != StringLength; ++i) {
1441     unsigned short Val = ToBuf[i];
1442     if (TargetIsLSB) {
1443       AsBytes.push_back(Val & 0xFF);
1444       AsBytes.push_back(Val >> 8);
1445     } else {
1446       AsBytes.push_back(Val >> 8);
1447       AsBytes.push_back(Val & 0xFF);
1448     }
1449   }
1450   // Append one extra null character, the second is automatically added by our
1451   // caller.
1452   AsBytes.push_back(0);
1453 
1454   IsUTF16 = true;
1455   return Map.GetOrCreateValue(llvm::StringRef(AsBytes.data(), AsBytes.size()));
1456 }
1457 
1458 llvm::Constant *
1459 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) {
1460   unsigned StringLength = 0;
1461   bool isUTF16 = false;
1462   llvm::StringMapEntry<llvm::Constant*> &Entry =
1463     GetConstantCFStringEntry(CFConstantStringMap, Literal,
1464                              getTargetData().isLittleEndian(),
1465                              isUTF16, StringLength);
1466 
1467   if (llvm::Constant *C = Entry.getValue())
1468     return C;
1469 
1470   llvm::Constant *Zero =
1471       llvm::Constant::getNullValue(llvm::Type::getInt32Ty(VMContext));
1472   llvm::Constant *Zeros[] = { Zero, Zero };
1473 
1474   // If we don't already have it, get __CFConstantStringClassReference.
1475   if (!CFConstantStringClassRef) {
1476     const llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
1477     Ty = llvm::ArrayType::get(Ty, 0);
1478     llvm::Constant *GV = CreateRuntimeVariable(Ty,
1479                                            "__CFConstantStringClassReference");
1480     // Decay array -> ptr
1481     CFConstantStringClassRef =
1482       llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2);
1483   }
1484 
1485   QualType CFTy = getContext().getCFConstantStringType();
1486 
1487   const llvm::StructType *STy =
1488     cast<llvm::StructType>(getTypes().ConvertType(CFTy));
1489 
1490   std::vector<llvm::Constant*> Fields(4);
1491 
1492   // Class pointer.
1493   Fields[0] = CFConstantStringClassRef;
1494 
1495   // Flags.
1496   const llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy);
1497   Fields[1] = isUTF16 ? llvm::ConstantInt::get(Ty, 0x07d0) :
1498     llvm::ConstantInt::get(Ty, 0x07C8);
1499 
1500   // String pointer.
1501   llvm::Constant *C = llvm::ConstantArray::get(VMContext, Entry.getKey().str());
1502 
1503   llvm::GlobalValue::LinkageTypes Linkage;
1504   bool isConstant;
1505   if (isUTF16) {
1506     // FIXME: why do utf strings get "_" labels instead of "L" labels?
1507     Linkage = llvm::GlobalValue::InternalLinkage;
1508     // Note: -fwritable-strings doesn't make unicode CFStrings writable, but
1509     // does make plain ascii ones writable.
1510     isConstant = true;
1511   } else {
1512     Linkage = llvm::GlobalValue::PrivateLinkage;
1513     isConstant = !Features.WritableStrings;
1514   }
1515 
1516   llvm::GlobalVariable *GV =
1517     new llvm::GlobalVariable(getModule(), C->getType(), isConstant, Linkage, C,
1518                              ".str");
1519   if (isUTF16) {
1520     CharUnits Align = getContext().getTypeAlignInChars(getContext().ShortTy);
1521     GV->setAlignment(Align.getQuantity());
1522   }
1523   Fields[2] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2);
1524 
1525   // String length.
1526   Ty = getTypes().ConvertType(getContext().LongTy);
1527   Fields[3] = llvm::ConstantInt::get(Ty, StringLength);
1528 
1529   // The struct.
1530   C = llvm::ConstantStruct::get(STy, Fields);
1531   GV = new llvm::GlobalVariable(getModule(), C->getType(), true,
1532                                 llvm::GlobalVariable::PrivateLinkage, C,
1533                                 "_unnamed_cfstring_");
1534   if (const char *Sect = getContext().Target.getCFStringSection())
1535     GV->setSection(Sect);
1536   Entry.setValue(GV);
1537 
1538   return GV;
1539 }
1540 
1541 /// GetStringForStringLiteral - Return the appropriate bytes for a
1542 /// string literal, properly padded to match the literal type.
1543 std::string CodeGenModule::GetStringForStringLiteral(const StringLiteral *E) {
1544   const char *StrData = E->getStrData();
1545   unsigned Len = E->getByteLength();
1546 
1547   const ConstantArrayType *CAT =
1548     getContext().getAsConstantArrayType(E->getType());
1549   assert(CAT && "String isn't pointer or array!");
1550 
1551   // Resize the string to the right size.
1552   std::string Str(StrData, StrData+Len);
1553   uint64_t RealLen = CAT->getSize().getZExtValue();
1554 
1555   if (E->isWide())
1556     RealLen *= getContext().Target.getWCharWidth()/8;
1557 
1558   Str.resize(RealLen, '\0');
1559 
1560   return Str;
1561 }
1562 
1563 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a
1564 /// constant array for the given string literal.
1565 llvm::Constant *
1566 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S) {
1567   // FIXME: This can be more efficient.
1568   // FIXME: We shouldn't need to bitcast the constant in the wide string case.
1569   llvm::Constant *C = GetAddrOfConstantString(GetStringForStringLiteral(S));
1570   if (S->isWide()) {
1571     llvm::Type *DestTy =
1572         llvm::PointerType::getUnqual(getTypes().ConvertType(S->getType()));
1573     C = llvm::ConstantExpr::getBitCast(C, DestTy);
1574   }
1575   return C;
1576 }
1577 
1578 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant
1579 /// array for the given ObjCEncodeExpr node.
1580 llvm::Constant *
1581 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) {
1582   std::string Str;
1583   getContext().getObjCEncodingForType(E->getEncodedType(), Str);
1584 
1585   return GetAddrOfConstantCString(Str);
1586 }
1587 
1588 
1589 /// GenerateWritableString -- Creates storage for a string literal.
1590 static llvm::Constant *GenerateStringLiteral(const std::string &str,
1591                                              bool constant,
1592                                              CodeGenModule &CGM,
1593                                              const char *GlobalName) {
1594   // Create Constant for this string literal. Don't add a '\0'.
1595   llvm::Constant *C =
1596       llvm::ConstantArray::get(CGM.getLLVMContext(), str, false);
1597 
1598   // Create a global variable for this string
1599   return new llvm::GlobalVariable(CGM.getModule(), C->getType(), constant,
1600                                   llvm::GlobalValue::PrivateLinkage,
1601                                   C, GlobalName);
1602 }
1603 
1604 /// GetAddrOfConstantString - Returns a pointer to a character array
1605 /// containing the literal. This contents are exactly that of the
1606 /// given string, i.e. it will not be null terminated automatically;
1607 /// see GetAddrOfConstantCString. Note that whether the result is
1608 /// actually a pointer to an LLVM constant depends on
1609 /// Feature.WriteableStrings.
1610 ///
1611 /// The result has pointer to array type.
1612 llvm::Constant *CodeGenModule::GetAddrOfConstantString(const std::string &str,
1613                                                        const char *GlobalName) {
1614   bool IsConstant = !Features.WritableStrings;
1615 
1616   // Get the default prefix if a name wasn't specified.
1617   if (!GlobalName)
1618     GlobalName = ".str";
1619 
1620   // Don't share any string literals if strings aren't constant.
1621   if (!IsConstant)
1622     return GenerateStringLiteral(str, false, *this, GlobalName);
1623 
1624   llvm::StringMapEntry<llvm::Constant *> &Entry =
1625     ConstantStringMap.GetOrCreateValue(&str[0], &str[str.length()]);
1626 
1627   if (Entry.getValue())
1628     return Entry.getValue();
1629 
1630   // Create a global variable for this.
1631   llvm::Constant *C = GenerateStringLiteral(str, true, *this, GlobalName);
1632   Entry.setValue(C);
1633   return C;
1634 }
1635 
1636 /// GetAddrOfConstantCString - Returns a pointer to a character
1637 /// array containing the literal and a terminating '\-'
1638 /// character. The result has pointer to array type.
1639 llvm::Constant *CodeGenModule::GetAddrOfConstantCString(const std::string &str,
1640                                                         const char *GlobalName){
1641   return GetAddrOfConstantString(str + '\0', GlobalName);
1642 }
1643 
1644 /// EmitObjCPropertyImplementations - Emit information for synthesized
1645 /// properties for an implementation.
1646 void CodeGenModule::EmitObjCPropertyImplementations(const
1647                                                     ObjCImplementationDecl *D) {
1648   for (ObjCImplementationDecl::propimpl_iterator
1649          i = D->propimpl_begin(), e = D->propimpl_end(); i != e; ++i) {
1650     ObjCPropertyImplDecl *PID = *i;
1651 
1652     // Dynamic is just for type-checking.
1653     if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) {
1654       ObjCPropertyDecl *PD = PID->getPropertyDecl();
1655 
1656       // Determine which methods need to be implemented, some may have
1657       // been overridden. Note that ::isSynthesized is not the method
1658       // we want, that just indicates if the decl came from a
1659       // property. What we want to know is if the method is defined in
1660       // this implementation.
1661       if (!D->getInstanceMethod(PD->getGetterName()))
1662         CodeGenFunction(*this).GenerateObjCGetter(
1663                                  const_cast<ObjCImplementationDecl *>(D), PID);
1664       if (!PD->isReadOnly() &&
1665           !D->getInstanceMethod(PD->getSetterName()))
1666         CodeGenFunction(*this).GenerateObjCSetter(
1667                                  const_cast<ObjCImplementationDecl *>(D), PID);
1668     }
1669   }
1670 }
1671 
1672 /// EmitNamespace - Emit all declarations in a namespace.
1673 void CodeGenModule::EmitNamespace(const NamespaceDecl *ND) {
1674   for (RecordDecl::decl_iterator I = ND->decls_begin(), E = ND->decls_end();
1675        I != E; ++I)
1676     EmitTopLevelDecl(*I);
1677 }
1678 
1679 // EmitLinkageSpec - Emit all declarations in a linkage spec.
1680 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) {
1681   if (LSD->getLanguage() != LinkageSpecDecl::lang_c &&
1682       LSD->getLanguage() != LinkageSpecDecl::lang_cxx) {
1683     ErrorUnsupported(LSD, "linkage spec");
1684     return;
1685   }
1686 
1687   for (RecordDecl::decl_iterator I = LSD->decls_begin(), E = LSD->decls_end();
1688        I != E; ++I)
1689     EmitTopLevelDecl(*I);
1690 }
1691 
1692 /// EmitTopLevelDecl - Emit code for a single top level declaration.
1693 void CodeGenModule::EmitTopLevelDecl(Decl *D) {
1694   // If an error has occurred, stop code generation, but continue
1695   // parsing and semantic analysis (to ensure all warnings and errors
1696   // are emitted).
1697   if (Diags.hasErrorOccurred())
1698     return;
1699 
1700   // Ignore dependent declarations.
1701   if (D->getDeclContext() && D->getDeclContext()->isDependentContext())
1702     return;
1703 
1704   switch (D->getKind()) {
1705   case Decl::CXXConversion:
1706   case Decl::CXXMethod:
1707   case Decl::Function:
1708     // Skip function templates
1709     if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate())
1710       return;
1711 
1712     EmitGlobal(cast<FunctionDecl>(D));
1713     break;
1714 
1715   case Decl::Var:
1716     EmitGlobal(cast<VarDecl>(D));
1717     break;
1718 
1719   // C++ Decls
1720   case Decl::Namespace:
1721     EmitNamespace(cast<NamespaceDecl>(D));
1722     break;
1723     // No code generation needed.
1724   case Decl::UsingShadow:
1725   case Decl::Using:
1726   case Decl::UsingDirective:
1727   case Decl::ClassTemplate:
1728   case Decl::FunctionTemplate:
1729   case Decl::NamespaceAlias:
1730     break;
1731   case Decl::CXXConstructor:
1732     // Skip function templates
1733     if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate())
1734       return;
1735 
1736     EmitCXXConstructors(cast<CXXConstructorDecl>(D));
1737     break;
1738   case Decl::CXXDestructor:
1739     EmitCXXDestructors(cast<CXXDestructorDecl>(D));
1740     break;
1741 
1742   case Decl::StaticAssert:
1743     // Nothing to do.
1744     break;
1745 
1746   // Objective-C Decls
1747 
1748   // Forward declarations, no (immediate) code generation.
1749   case Decl::ObjCClass:
1750   case Decl::ObjCForwardProtocol:
1751   case Decl::ObjCCategory:
1752   case Decl::ObjCInterface:
1753     break;
1754 
1755   case Decl::ObjCProtocol:
1756     Runtime->GenerateProtocol(cast<ObjCProtocolDecl>(D));
1757     break;
1758 
1759   case Decl::ObjCCategoryImpl:
1760     // Categories have properties but don't support synthesize so we
1761     // can ignore them here.
1762     Runtime->GenerateCategory(cast<ObjCCategoryImplDecl>(D));
1763     break;
1764 
1765   case Decl::ObjCImplementation: {
1766     ObjCImplementationDecl *OMD = cast<ObjCImplementationDecl>(D);
1767     EmitObjCPropertyImplementations(OMD);
1768     Runtime->GenerateClass(OMD);
1769     break;
1770   }
1771   case Decl::ObjCMethod: {
1772     ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(D);
1773     // If this is not a prototype, emit the body.
1774     if (OMD->getBody())
1775       CodeGenFunction(*this).GenerateObjCMethod(OMD);
1776     break;
1777   }
1778   case Decl::ObjCCompatibleAlias:
1779     // compatibility-alias is a directive and has no code gen.
1780     break;
1781 
1782   case Decl::LinkageSpec:
1783     EmitLinkageSpec(cast<LinkageSpecDecl>(D));
1784     break;
1785 
1786   case Decl::FileScopeAsm: {
1787     FileScopeAsmDecl *AD = cast<FileScopeAsmDecl>(D);
1788     llvm::StringRef AsmString = AD->getAsmString()->getString();
1789 
1790     const std::string &S = getModule().getModuleInlineAsm();
1791     if (S.empty())
1792       getModule().setModuleInlineAsm(AsmString);
1793     else
1794       getModule().setModuleInlineAsm(S + '\n' + AsmString.str());
1795     break;
1796   }
1797 
1798   default:
1799     // Make sure we handled everything we should, every other kind is a
1800     // non-top-level decl.  FIXME: Would be nice to have an isTopLevelDeclKind
1801     // function. Need to recode Decl::Kind to do that easily.
1802     assert(isa<TypeDecl>(D) && "Unsupported decl kind");
1803   }
1804 }
1805