1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This coordinates the per-module state used while generating code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenModule.h" 15 #include "CGBlocks.h" 16 #include "CGCUDARuntime.h" 17 #include "CGCXXABI.h" 18 #include "CGCall.h" 19 #include "CGDebugInfo.h" 20 #include "CGObjCRuntime.h" 21 #include "CGOpenCLRuntime.h" 22 #include "CGOpenMPRuntime.h" 23 #include "CodeGenFunction.h" 24 #include "CodeGenPGO.h" 25 #include "CodeGenTBAA.h" 26 #include "CoverageMappingGen.h" 27 #include "TargetInfo.h" 28 #include "clang/AST/ASTContext.h" 29 #include "clang/AST/CharUnits.h" 30 #include "clang/AST/DeclCXX.h" 31 #include "clang/AST/DeclObjC.h" 32 #include "clang/AST/DeclTemplate.h" 33 #include "clang/AST/Mangle.h" 34 #include "clang/AST/RecordLayout.h" 35 #include "clang/AST/RecursiveASTVisitor.h" 36 #include "clang/Basic/Builtins.h" 37 #include "clang/Basic/CharInfo.h" 38 #include "clang/Basic/Diagnostic.h" 39 #include "clang/Basic/Module.h" 40 #include "clang/Basic/SourceManager.h" 41 #include "clang/Basic/TargetInfo.h" 42 #include "clang/Basic/Version.h" 43 #include "clang/Frontend/CodeGenOptions.h" 44 #include "clang/Sema/SemaDiagnostic.h" 45 #include "llvm/ADT/APSInt.h" 46 #include "llvm/ADT/Triple.h" 47 #include "llvm/IR/CallSite.h" 48 #include "llvm/IR/CallingConv.h" 49 #include "llvm/IR/DataLayout.h" 50 #include "llvm/IR/Intrinsics.h" 51 #include "llvm/IR/LLVMContext.h" 52 #include "llvm/IR/Module.h" 53 #include "llvm/ProfileData/InstrProfReader.h" 54 #include "llvm/Support/ConvertUTF.h" 55 #include "llvm/Support/ErrorHandling.h" 56 57 using namespace clang; 58 using namespace CodeGen; 59 60 static const char AnnotationSection[] = "llvm.metadata"; 61 62 static CGCXXABI *createCXXABI(CodeGenModule &CGM) { 63 switch (CGM.getTarget().getCXXABI().getKind()) { 64 case TargetCXXABI::GenericAArch64: 65 case TargetCXXABI::GenericARM: 66 case TargetCXXABI::iOS: 67 case TargetCXXABI::iOS64: 68 case TargetCXXABI::GenericMIPS: 69 case TargetCXXABI::GenericItanium: 70 case TargetCXXABI::WebAssembly: 71 return CreateItaniumCXXABI(CGM); 72 case TargetCXXABI::Microsoft: 73 return CreateMicrosoftCXXABI(CGM); 74 } 75 76 llvm_unreachable("invalid C++ ABI kind"); 77 } 78 79 CodeGenModule::CodeGenModule(ASTContext &C, const HeaderSearchOptions &HSO, 80 const PreprocessorOptions &PPO, 81 const CodeGenOptions &CGO, llvm::Module &M, 82 DiagnosticsEngine &diags, 83 CoverageSourceInfo *CoverageInfo) 84 : Context(C), LangOpts(C.getLangOpts()), HeaderSearchOpts(HSO), 85 PreprocessorOpts(PPO), CodeGenOpts(CGO), TheModule(M), Diags(diags), 86 Target(C.getTargetInfo()), ABI(createCXXABI(*this)), 87 VMContext(M.getContext()), TBAA(nullptr), TheTargetCodeGenInfo(nullptr), 88 Types(*this), VTables(*this), ObjCRuntime(nullptr), 89 OpenCLRuntime(nullptr), OpenMPRuntime(nullptr), CUDARuntime(nullptr), 90 DebugInfo(nullptr), ARCData(nullptr), 91 NoObjCARCExceptionsMetadata(nullptr), RRData(nullptr), PGOReader(nullptr), 92 CFConstantStringClassRef(nullptr), ConstantStringClassRef(nullptr), 93 NSConstantStringType(nullptr), NSConcreteGlobalBlock(nullptr), 94 NSConcreteStackBlock(nullptr), BlockObjectAssign(nullptr), 95 BlockObjectDispose(nullptr), BlockDescriptorType(nullptr), 96 GenericBlockLiteralType(nullptr), LifetimeStartFn(nullptr), 97 LifetimeEndFn(nullptr), SanitizerMD(new SanitizerMetadata(*this)) { 98 99 // Initialize the type cache. 100 llvm::LLVMContext &LLVMContext = M.getContext(); 101 VoidTy = llvm::Type::getVoidTy(LLVMContext); 102 Int8Ty = llvm::Type::getInt8Ty(LLVMContext); 103 Int16Ty = llvm::Type::getInt16Ty(LLVMContext); 104 Int32Ty = llvm::Type::getInt32Ty(LLVMContext); 105 Int64Ty = llvm::Type::getInt64Ty(LLVMContext); 106 FloatTy = llvm::Type::getFloatTy(LLVMContext); 107 DoubleTy = llvm::Type::getDoubleTy(LLVMContext); 108 PointerWidthInBits = C.getTargetInfo().getPointerWidth(0); 109 PointerAlignInBytes = 110 C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(0)).getQuantity(); 111 IntAlignInBytes = 112 C.toCharUnitsFromBits(C.getTargetInfo().getIntAlign()).getQuantity(); 113 IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth()); 114 IntPtrTy = llvm::IntegerType::get(LLVMContext, PointerWidthInBits); 115 Int8PtrTy = Int8Ty->getPointerTo(0); 116 Int8PtrPtrTy = Int8PtrTy->getPointerTo(0); 117 118 RuntimeCC = getTargetCodeGenInfo().getABIInfo().getRuntimeCC(); 119 BuiltinCC = getTargetCodeGenInfo().getABIInfo().getBuiltinCC(); 120 121 if (LangOpts.ObjC1) 122 createObjCRuntime(); 123 if (LangOpts.OpenCL) 124 createOpenCLRuntime(); 125 if (LangOpts.OpenMP) 126 createOpenMPRuntime(); 127 if (LangOpts.CUDA) 128 createCUDARuntime(); 129 130 // Enable TBAA unless it's suppressed. ThreadSanitizer needs TBAA even at O0. 131 if (LangOpts.Sanitize.has(SanitizerKind::Thread) || 132 (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0)) 133 TBAA = new CodeGenTBAA(Context, VMContext, CodeGenOpts, getLangOpts(), 134 getCXXABI().getMangleContext()); 135 136 // If debug info or coverage generation is enabled, create the CGDebugInfo 137 // object. 138 if (CodeGenOpts.getDebugInfo() != CodeGenOptions::NoDebugInfo || 139 CodeGenOpts.EmitGcovArcs || 140 CodeGenOpts.EmitGcovNotes) 141 DebugInfo = new CGDebugInfo(*this); 142 143 Block.GlobalUniqueCount = 0; 144 145 if (C.getLangOpts().ObjCAutoRefCount) 146 ARCData = new ARCEntrypoints(); 147 RRData = new RREntrypoints(); 148 149 if (!CodeGenOpts.InstrProfileInput.empty()) { 150 auto ReaderOrErr = 151 llvm::IndexedInstrProfReader::create(CodeGenOpts.InstrProfileInput); 152 if (std::error_code EC = ReaderOrErr.getError()) { 153 unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error, 154 "Could not read profile %0: %1"); 155 getDiags().Report(DiagID) << CodeGenOpts.InstrProfileInput 156 << EC.message(); 157 } else 158 PGOReader = std::move(ReaderOrErr.get()); 159 } 160 161 // If coverage mapping generation is enabled, create the 162 // CoverageMappingModuleGen object. 163 if (CodeGenOpts.CoverageMapping) 164 CoverageMapping.reset(new CoverageMappingModuleGen(*this, *CoverageInfo)); 165 } 166 167 CodeGenModule::~CodeGenModule() { 168 delete ObjCRuntime; 169 delete OpenCLRuntime; 170 delete OpenMPRuntime; 171 delete CUDARuntime; 172 delete TheTargetCodeGenInfo; 173 delete TBAA; 174 delete DebugInfo; 175 delete ARCData; 176 delete RRData; 177 } 178 179 void CodeGenModule::createObjCRuntime() { 180 // This is just isGNUFamily(), but we want to force implementors of 181 // new ABIs to decide how best to do this. 182 switch (LangOpts.ObjCRuntime.getKind()) { 183 case ObjCRuntime::GNUstep: 184 case ObjCRuntime::GCC: 185 case ObjCRuntime::ObjFW: 186 ObjCRuntime = CreateGNUObjCRuntime(*this); 187 return; 188 189 case ObjCRuntime::FragileMacOSX: 190 case ObjCRuntime::MacOSX: 191 case ObjCRuntime::iOS: 192 ObjCRuntime = CreateMacObjCRuntime(*this); 193 return; 194 } 195 llvm_unreachable("bad runtime kind"); 196 } 197 198 void CodeGenModule::createOpenCLRuntime() { 199 OpenCLRuntime = new CGOpenCLRuntime(*this); 200 } 201 202 void CodeGenModule::createOpenMPRuntime() { 203 OpenMPRuntime = new CGOpenMPRuntime(*this); 204 } 205 206 void CodeGenModule::createCUDARuntime() { 207 CUDARuntime = CreateNVCUDARuntime(*this); 208 } 209 210 void CodeGenModule::addReplacement(StringRef Name, llvm::Constant *C) { 211 Replacements[Name] = C; 212 } 213 214 void CodeGenModule::applyReplacements() { 215 for (auto &I : Replacements) { 216 StringRef MangledName = I.first(); 217 llvm::Constant *Replacement = I.second; 218 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 219 if (!Entry) 220 continue; 221 auto *OldF = cast<llvm::Function>(Entry); 222 auto *NewF = dyn_cast<llvm::Function>(Replacement); 223 if (!NewF) { 224 if (auto *Alias = dyn_cast<llvm::GlobalAlias>(Replacement)) { 225 NewF = dyn_cast<llvm::Function>(Alias->getAliasee()); 226 } else { 227 auto *CE = cast<llvm::ConstantExpr>(Replacement); 228 assert(CE->getOpcode() == llvm::Instruction::BitCast || 229 CE->getOpcode() == llvm::Instruction::GetElementPtr); 230 NewF = dyn_cast<llvm::Function>(CE->getOperand(0)); 231 } 232 } 233 234 // Replace old with new, but keep the old order. 235 OldF->replaceAllUsesWith(Replacement); 236 if (NewF) { 237 NewF->removeFromParent(); 238 OldF->getParent()->getFunctionList().insertAfter(OldF, NewF); 239 } 240 OldF->eraseFromParent(); 241 } 242 } 243 244 void CodeGenModule::addGlobalValReplacement(llvm::GlobalValue *GV, llvm::Constant *C) { 245 GlobalValReplacements.push_back(std::make_pair(GV, C)); 246 } 247 248 void CodeGenModule::applyGlobalValReplacements() { 249 for (auto &I : GlobalValReplacements) { 250 llvm::GlobalValue *GV = I.first; 251 llvm::Constant *C = I.second; 252 253 GV->replaceAllUsesWith(C); 254 GV->eraseFromParent(); 255 } 256 } 257 258 // This is only used in aliases that we created and we know they have a 259 // linear structure. 260 static const llvm::GlobalObject *getAliasedGlobal(const llvm::GlobalAlias &GA) { 261 llvm::SmallPtrSet<const llvm::GlobalAlias*, 4> Visited; 262 const llvm::Constant *C = &GA; 263 for (;;) { 264 C = C->stripPointerCasts(); 265 if (auto *GO = dyn_cast<llvm::GlobalObject>(C)) 266 return GO; 267 // stripPointerCasts will not walk over weak aliases. 268 auto *GA2 = dyn_cast<llvm::GlobalAlias>(C); 269 if (!GA2) 270 return nullptr; 271 if (!Visited.insert(GA2).second) 272 return nullptr; 273 C = GA2->getAliasee(); 274 } 275 } 276 277 void CodeGenModule::checkAliases() { 278 // Check if the constructed aliases are well formed. It is really unfortunate 279 // that we have to do this in CodeGen, but we only construct mangled names 280 // and aliases during codegen. 281 bool Error = false; 282 DiagnosticsEngine &Diags = getDiags(); 283 for (const GlobalDecl &GD : Aliases) { 284 const auto *D = cast<ValueDecl>(GD.getDecl()); 285 const AliasAttr *AA = D->getAttr<AliasAttr>(); 286 StringRef MangledName = getMangledName(GD); 287 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 288 auto *Alias = cast<llvm::GlobalAlias>(Entry); 289 const llvm::GlobalValue *GV = getAliasedGlobal(*Alias); 290 if (!GV) { 291 Error = true; 292 Diags.Report(AA->getLocation(), diag::err_cyclic_alias); 293 } else if (GV->isDeclaration()) { 294 Error = true; 295 Diags.Report(AA->getLocation(), diag::err_alias_to_undefined); 296 } 297 298 llvm::Constant *Aliasee = Alias->getAliasee(); 299 llvm::GlobalValue *AliaseeGV; 300 if (auto CE = dyn_cast<llvm::ConstantExpr>(Aliasee)) 301 AliaseeGV = cast<llvm::GlobalValue>(CE->getOperand(0)); 302 else 303 AliaseeGV = cast<llvm::GlobalValue>(Aliasee); 304 305 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) { 306 StringRef AliasSection = SA->getName(); 307 if (AliasSection != AliaseeGV->getSection()) 308 Diags.Report(SA->getLocation(), diag::warn_alias_with_section) 309 << AliasSection; 310 } 311 312 // We have to handle alias to weak aliases in here. LLVM itself disallows 313 // this since the object semantics would not match the IL one. For 314 // compatibility with gcc we implement it by just pointing the alias 315 // to its aliasee's aliasee. We also warn, since the user is probably 316 // expecting the link to be weak. 317 if (auto GA = dyn_cast<llvm::GlobalAlias>(AliaseeGV)) { 318 if (GA->mayBeOverridden()) { 319 Diags.Report(AA->getLocation(), diag::warn_alias_to_weak_alias) 320 << GV->getName() << GA->getName(); 321 Aliasee = llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast( 322 GA->getAliasee(), Alias->getType()); 323 Alias->setAliasee(Aliasee); 324 } 325 } 326 } 327 if (!Error) 328 return; 329 330 for (const GlobalDecl &GD : Aliases) { 331 StringRef MangledName = getMangledName(GD); 332 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 333 auto *Alias = cast<llvm::GlobalAlias>(Entry); 334 Alias->replaceAllUsesWith(llvm::UndefValue::get(Alias->getType())); 335 Alias->eraseFromParent(); 336 } 337 } 338 339 void CodeGenModule::clear() { 340 DeferredDeclsToEmit.clear(); 341 if (OpenMPRuntime) 342 OpenMPRuntime->clear(); 343 } 344 345 void InstrProfStats::reportDiagnostics(DiagnosticsEngine &Diags, 346 StringRef MainFile) { 347 if (!hasDiagnostics()) 348 return; 349 if (VisitedInMainFile > 0 && VisitedInMainFile == MissingInMainFile) { 350 if (MainFile.empty()) 351 MainFile = "<stdin>"; 352 Diags.Report(diag::warn_profile_data_unprofiled) << MainFile; 353 } else 354 Diags.Report(diag::warn_profile_data_out_of_date) << Visited << Missing 355 << Mismatched; 356 } 357 358 void CodeGenModule::Release() { 359 EmitDeferred(); 360 applyGlobalValReplacements(); 361 applyReplacements(); 362 checkAliases(); 363 EmitCXXGlobalInitFunc(); 364 EmitCXXGlobalDtorFunc(); 365 EmitCXXThreadLocalInitFunc(); 366 if (ObjCRuntime) 367 if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction()) 368 AddGlobalCtor(ObjCInitFunction); 369 if (Context.getLangOpts().CUDA && !Context.getLangOpts().CUDAIsDevice && 370 CUDARuntime) { 371 if (llvm::Function *CudaCtorFunction = CUDARuntime->makeModuleCtorFunction()) 372 AddGlobalCtor(CudaCtorFunction); 373 if (llvm::Function *CudaDtorFunction = CUDARuntime->makeModuleDtorFunction()) 374 AddGlobalDtor(CudaDtorFunction); 375 } 376 if (PGOReader && PGOStats.hasDiagnostics()) 377 PGOStats.reportDiagnostics(getDiags(), getCodeGenOpts().MainFileName); 378 EmitCtorList(GlobalCtors, "llvm.global_ctors"); 379 EmitCtorList(GlobalDtors, "llvm.global_dtors"); 380 EmitGlobalAnnotations(); 381 EmitStaticExternCAliases(); 382 EmitDeferredUnusedCoverageMappings(); 383 if (CoverageMapping) 384 CoverageMapping->emit(); 385 emitLLVMUsed(); 386 387 if (CodeGenOpts.Autolink && 388 (Context.getLangOpts().Modules || !LinkerOptionsMetadata.empty())) { 389 EmitModuleLinkOptions(); 390 } 391 if (CodeGenOpts.DwarfVersion) { 392 // We actually want the latest version when there are conflicts. 393 // We can change from Warning to Latest if such mode is supported. 394 getModule().addModuleFlag(llvm::Module::Warning, "Dwarf Version", 395 CodeGenOpts.DwarfVersion); 396 } 397 if (CodeGenOpts.EmitCodeView) { 398 // Indicate that we want CodeView in the metadata. 399 getModule().addModuleFlag(llvm::Module::Warning, "CodeView", 1); 400 } 401 if (DebugInfo) 402 // We support a single version in the linked module. The LLVM 403 // parser will drop debug info with a different version number 404 // (and warn about it, too). 405 getModule().addModuleFlag(llvm::Module::Warning, "Debug Info Version", 406 llvm::DEBUG_METADATA_VERSION); 407 408 // We need to record the widths of enums and wchar_t, so that we can generate 409 // the correct build attributes in the ARM backend. 410 llvm::Triple::ArchType Arch = Context.getTargetInfo().getTriple().getArch(); 411 if ( Arch == llvm::Triple::arm 412 || Arch == llvm::Triple::armeb 413 || Arch == llvm::Triple::thumb 414 || Arch == llvm::Triple::thumbeb) { 415 // Width of wchar_t in bytes 416 uint64_t WCharWidth = 417 Context.getTypeSizeInChars(Context.getWideCharType()).getQuantity(); 418 getModule().addModuleFlag(llvm::Module::Error, "wchar_size", WCharWidth); 419 420 // The minimum width of an enum in bytes 421 uint64_t EnumWidth = Context.getLangOpts().ShortEnums ? 1 : 4; 422 getModule().addModuleFlag(llvm::Module::Error, "min_enum_size", EnumWidth); 423 } 424 425 if (uint32_t PLevel = Context.getLangOpts().PICLevel) { 426 llvm::PICLevel::Level PL = llvm::PICLevel::Default; 427 switch (PLevel) { 428 case 0: break; 429 case 1: PL = llvm::PICLevel::Small; break; 430 case 2: PL = llvm::PICLevel::Large; break; 431 default: llvm_unreachable("Invalid PIC Level"); 432 } 433 434 getModule().setPICLevel(PL); 435 } 436 437 SimplifyPersonality(); 438 439 if (getCodeGenOpts().EmitDeclMetadata) 440 EmitDeclMetadata(); 441 442 if (getCodeGenOpts().EmitGcovArcs || getCodeGenOpts().EmitGcovNotes) 443 EmitCoverageFile(); 444 445 if (DebugInfo) 446 DebugInfo->finalize(); 447 448 EmitVersionIdentMetadata(); 449 450 EmitTargetMetadata(); 451 } 452 453 void CodeGenModule::UpdateCompletedType(const TagDecl *TD) { 454 // Make sure that this type is translated. 455 Types.UpdateCompletedType(TD); 456 } 457 458 llvm::MDNode *CodeGenModule::getTBAAInfo(QualType QTy) { 459 if (!TBAA) 460 return nullptr; 461 return TBAA->getTBAAInfo(QTy); 462 } 463 464 llvm::MDNode *CodeGenModule::getTBAAInfoForVTablePtr() { 465 if (!TBAA) 466 return nullptr; 467 return TBAA->getTBAAInfoForVTablePtr(); 468 } 469 470 llvm::MDNode *CodeGenModule::getTBAAStructInfo(QualType QTy) { 471 if (!TBAA) 472 return nullptr; 473 return TBAA->getTBAAStructInfo(QTy); 474 } 475 476 llvm::MDNode *CodeGenModule::getTBAAStructTypeInfo(QualType QTy) { 477 if (!TBAA) 478 return nullptr; 479 return TBAA->getTBAAStructTypeInfo(QTy); 480 } 481 482 llvm::MDNode *CodeGenModule::getTBAAStructTagInfo(QualType BaseTy, 483 llvm::MDNode *AccessN, 484 uint64_t O) { 485 if (!TBAA) 486 return nullptr; 487 return TBAA->getTBAAStructTagInfo(BaseTy, AccessN, O); 488 } 489 490 /// Decorate the instruction with a TBAA tag. For both scalar TBAA 491 /// and struct-path aware TBAA, the tag has the same format: 492 /// base type, access type and offset. 493 /// When ConvertTypeToTag is true, we create a tag based on the scalar type. 494 void CodeGenModule::DecorateInstruction(llvm::Instruction *Inst, 495 llvm::MDNode *TBAAInfo, 496 bool ConvertTypeToTag) { 497 if (ConvertTypeToTag && TBAA) 498 Inst->setMetadata(llvm::LLVMContext::MD_tbaa, 499 TBAA->getTBAAScalarTagInfo(TBAAInfo)); 500 else 501 Inst->setMetadata(llvm::LLVMContext::MD_tbaa, TBAAInfo); 502 } 503 504 void CodeGenModule::Error(SourceLocation loc, StringRef message) { 505 unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, "%0"); 506 getDiags().Report(Context.getFullLoc(loc), diagID) << message; 507 } 508 509 /// ErrorUnsupported - Print out an error that codegen doesn't support the 510 /// specified stmt yet. 511 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type) { 512 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, 513 "cannot compile this %0 yet"); 514 std::string Msg = Type; 515 getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID) 516 << Msg << S->getSourceRange(); 517 } 518 519 /// ErrorUnsupported - Print out an error that codegen doesn't support the 520 /// specified decl yet. 521 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type) { 522 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, 523 "cannot compile this %0 yet"); 524 std::string Msg = Type; 525 getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg; 526 } 527 528 llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) { 529 return llvm::ConstantInt::get(SizeTy, size.getQuantity()); 530 } 531 532 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV, 533 const NamedDecl *D) const { 534 // Internal definitions always have default visibility. 535 if (GV->hasLocalLinkage()) { 536 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 537 return; 538 } 539 540 // Set visibility for definitions. 541 LinkageInfo LV = D->getLinkageAndVisibility(); 542 if (LV.isVisibilityExplicit() || !GV->hasAvailableExternallyLinkage()) 543 GV->setVisibility(GetLLVMVisibility(LV.getVisibility())); 544 } 545 546 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(StringRef S) { 547 return llvm::StringSwitch<llvm::GlobalVariable::ThreadLocalMode>(S) 548 .Case("global-dynamic", llvm::GlobalVariable::GeneralDynamicTLSModel) 549 .Case("local-dynamic", llvm::GlobalVariable::LocalDynamicTLSModel) 550 .Case("initial-exec", llvm::GlobalVariable::InitialExecTLSModel) 551 .Case("local-exec", llvm::GlobalVariable::LocalExecTLSModel); 552 } 553 554 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel( 555 CodeGenOptions::TLSModel M) { 556 switch (M) { 557 case CodeGenOptions::GeneralDynamicTLSModel: 558 return llvm::GlobalVariable::GeneralDynamicTLSModel; 559 case CodeGenOptions::LocalDynamicTLSModel: 560 return llvm::GlobalVariable::LocalDynamicTLSModel; 561 case CodeGenOptions::InitialExecTLSModel: 562 return llvm::GlobalVariable::InitialExecTLSModel; 563 case CodeGenOptions::LocalExecTLSModel: 564 return llvm::GlobalVariable::LocalExecTLSModel; 565 } 566 llvm_unreachable("Invalid TLS model!"); 567 } 568 569 void CodeGenModule::setTLSMode(llvm::GlobalValue *GV, const VarDecl &D) const { 570 assert(D.getTLSKind() && "setting TLS mode on non-TLS var!"); 571 572 llvm::GlobalValue::ThreadLocalMode TLM; 573 TLM = GetLLVMTLSModel(CodeGenOpts.getDefaultTLSModel()); 574 575 // Override the TLS model if it is explicitly specified. 576 if (const TLSModelAttr *Attr = D.getAttr<TLSModelAttr>()) { 577 TLM = GetLLVMTLSModel(Attr->getModel()); 578 } 579 580 GV->setThreadLocalMode(TLM); 581 } 582 583 StringRef CodeGenModule::getMangledName(GlobalDecl GD) { 584 StringRef &FoundStr = MangledDeclNames[GD.getCanonicalDecl()]; 585 if (!FoundStr.empty()) 586 return FoundStr; 587 588 const auto *ND = cast<NamedDecl>(GD.getDecl()); 589 SmallString<256> Buffer; 590 StringRef Str; 591 if (getCXXABI().getMangleContext().shouldMangleDeclName(ND)) { 592 llvm::raw_svector_ostream Out(Buffer); 593 if (const auto *D = dyn_cast<CXXConstructorDecl>(ND)) 594 getCXXABI().getMangleContext().mangleCXXCtor(D, GD.getCtorType(), Out); 595 else if (const auto *D = dyn_cast<CXXDestructorDecl>(ND)) 596 getCXXABI().getMangleContext().mangleCXXDtor(D, GD.getDtorType(), Out); 597 else 598 getCXXABI().getMangleContext().mangleName(ND, Out); 599 Str = Out.str(); 600 } else { 601 IdentifierInfo *II = ND->getIdentifier(); 602 assert(II && "Attempt to mangle unnamed decl."); 603 Str = II->getName(); 604 } 605 606 // Keep the first result in the case of a mangling collision. 607 auto Result = Manglings.insert(std::make_pair(Str, GD)); 608 return FoundStr = Result.first->first(); 609 } 610 611 StringRef CodeGenModule::getBlockMangledName(GlobalDecl GD, 612 const BlockDecl *BD) { 613 MangleContext &MangleCtx = getCXXABI().getMangleContext(); 614 const Decl *D = GD.getDecl(); 615 616 SmallString<256> Buffer; 617 llvm::raw_svector_ostream Out(Buffer); 618 if (!D) 619 MangleCtx.mangleGlobalBlock(BD, 620 dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()), Out); 621 else if (const auto *CD = dyn_cast<CXXConstructorDecl>(D)) 622 MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out); 623 else if (const auto *DD = dyn_cast<CXXDestructorDecl>(D)) 624 MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out); 625 else 626 MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out); 627 628 auto Result = Manglings.insert(std::make_pair(Out.str(), BD)); 629 return Result.first->first(); 630 } 631 632 llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) { 633 return getModule().getNamedValue(Name); 634 } 635 636 /// AddGlobalCtor - Add a function to the list that will be called before 637 /// main() runs. 638 void CodeGenModule::AddGlobalCtor(llvm::Function *Ctor, int Priority, 639 llvm::Constant *AssociatedData) { 640 // FIXME: Type coercion of void()* types. 641 GlobalCtors.push_back(Structor(Priority, Ctor, AssociatedData)); 642 } 643 644 /// AddGlobalDtor - Add a function to the list that will be called 645 /// when the module is unloaded. 646 void CodeGenModule::AddGlobalDtor(llvm::Function *Dtor, int Priority) { 647 // FIXME: Type coercion of void()* types. 648 GlobalDtors.push_back(Structor(Priority, Dtor, nullptr)); 649 } 650 651 void CodeGenModule::EmitCtorList(const CtorList &Fns, const char *GlobalName) { 652 // Ctor function type is void()*. 653 llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false); 654 llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy); 655 656 // Get the type of a ctor entry, { i32, void ()*, i8* }. 657 llvm::StructType *CtorStructTy = llvm::StructType::get( 658 Int32Ty, llvm::PointerType::getUnqual(CtorFTy), VoidPtrTy, nullptr); 659 660 // Construct the constructor and destructor arrays. 661 SmallVector<llvm::Constant *, 8> Ctors; 662 for (const auto &I : Fns) { 663 llvm::Constant *S[] = { 664 llvm::ConstantInt::get(Int32Ty, I.Priority, false), 665 llvm::ConstantExpr::getBitCast(I.Initializer, CtorPFTy), 666 (I.AssociatedData 667 ? llvm::ConstantExpr::getBitCast(I.AssociatedData, VoidPtrTy) 668 : llvm::Constant::getNullValue(VoidPtrTy))}; 669 Ctors.push_back(llvm::ConstantStruct::get(CtorStructTy, S)); 670 } 671 672 if (!Ctors.empty()) { 673 llvm::ArrayType *AT = llvm::ArrayType::get(CtorStructTy, Ctors.size()); 674 new llvm::GlobalVariable(TheModule, AT, false, 675 llvm::GlobalValue::AppendingLinkage, 676 llvm::ConstantArray::get(AT, Ctors), 677 GlobalName); 678 } 679 } 680 681 llvm::GlobalValue::LinkageTypes 682 CodeGenModule::getFunctionLinkage(GlobalDecl GD) { 683 const auto *D = cast<FunctionDecl>(GD.getDecl()); 684 685 GVALinkage Linkage = getContext().GetGVALinkageForFunction(D); 686 687 if (isa<CXXDestructorDecl>(D) && 688 getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D), 689 GD.getDtorType())) { 690 // Destructor variants in the Microsoft C++ ABI are always internal or 691 // linkonce_odr thunks emitted on an as-needed basis. 692 return Linkage == GVA_Internal ? llvm::GlobalValue::InternalLinkage 693 : llvm::GlobalValue::LinkOnceODRLinkage; 694 } 695 696 return getLLVMLinkageForDeclarator(D, Linkage, /*isConstantVariable=*/false); 697 } 698 699 void CodeGenModule::setFunctionDLLStorageClass(GlobalDecl GD, llvm::Function *F) { 700 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 701 702 if (const auto *Dtor = dyn_cast_or_null<CXXDestructorDecl>(FD)) { 703 if (getCXXABI().useThunkForDtorVariant(Dtor, GD.getDtorType())) { 704 // Don't dllexport/import destructor thunks. 705 F->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 706 return; 707 } 708 } 709 710 if (FD->hasAttr<DLLImportAttr>()) 711 F->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass); 712 else if (FD->hasAttr<DLLExportAttr>()) 713 F->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass); 714 else 715 F->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass); 716 } 717 718 void CodeGenModule::setFunctionDefinitionAttributes(const FunctionDecl *D, 719 llvm::Function *F) { 720 setNonAliasAttributes(D, F); 721 } 722 723 void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D, 724 const CGFunctionInfo &Info, 725 llvm::Function *F) { 726 unsigned CallingConv; 727 AttributeListType AttributeList; 728 ConstructAttributeList(Info, D, AttributeList, CallingConv, false); 729 F->setAttributes(llvm::AttributeSet::get(getLLVMContext(), AttributeList)); 730 F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv)); 731 } 732 733 /// Determines whether the language options require us to model 734 /// unwind exceptions. We treat -fexceptions as mandating this 735 /// except under the fragile ObjC ABI with only ObjC exceptions 736 /// enabled. This means, for example, that C with -fexceptions 737 /// enables this. 738 static bool hasUnwindExceptions(const LangOptions &LangOpts) { 739 // If exceptions are completely disabled, obviously this is false. 740 if (!LangOpts.Exceptions) return false; 741 742 // If C++ exceptions are enabled, this is true. 743 if (LangOpts.CXXExceptions) return true; 744 745 // If ObjC exceptions are enabled, this depends on the ABI. 746 if (LangOpts.ObjCExceptions) { 747 return LangOpts.ObjCRuntime.hasUnwindExceptions(); 748 } 749 750 return true; 751 } 752 753 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D, 754 llvm::Function *F) { 755 llvm::AttrBuilder B; 756 757 if (CodeGenOpts.UnwindTables) 758 B.addAttribute(llvm::Attribute::UWTable); 759 760 if (!hasUnwindExceptions(LangOpts)) 761 B.addAttribute(llvm::Attribute::NoUnwind); 762 763 if (D->hasAttr<NakedAttr>()) { 764 // Naked implies noinline: we should not be inlining such functions. 765 B.addAttribute(llvm::Attribute::Naked); 766 B.addAttribute(llvm::Attribute::NoInline); 767 } else if (D->hasAttr<NoDuplicateAttr>()) { 768 B.addAttribute(llvm::Attribute::NoDuplicate); 769 } else if (D->hasAttr<NoInlineAttr>()) { 770 B.addAttribute(llvm::Attribute::NoInline); 771 } else if (D->hasAttr<AlwaysInlineAttr>() && 772 !F->getAttributes().hasAttribute(llvm::AttributeSet::FunctionIndex, 773 llvm::Attribute::NoInline)) { 774 // (noinline wins over always_inline, and we can't specify both in IR) 775 B.addAttribute(llvm::Attribute::AlwaysInline); 776 } 777 778 if (D->hasAttr<ColdAttr>()) { 779 if (!D->hasAttr<OptimizeNoneAttr>()) 780 B.addAttribute(llvm::Attribute::OptimizeForSize); 781 B.addAttribute(llvm::Attribute::Cold); 782 } 783 784 if (D->hasAttr<MinSizeAttr>()) 785 B.addAttribute(llvm::Attribute::MinSize); 786 787 if (LangOpts.getStackProtector() == LangOptions::SSPOn) 788 B.addAttribute(llvm::Attribute::StackProtect); 789 else if (LangOpts.getStackProtector() == LangOptions::SSPStrong) 790 B.addAttribute(llvm::Attribute::StackProtectStrong); 791 else if (LangOpts.getStackProtector() == LangOptions::SSPReq) 792 B.addAttribute(llvm::Attribute::StackProtectReq); 793 794 F->addAttributes(llvm::AttributeSet::FunctionIndex, 795 llvm::AttributeSet::get( 796 F->getContext(), llvm::AttributeSet::FunctionIndex, B)); 797 798 if (D->hasAttr<OptimizeNoneAttr>()) { 799 // OptimizeNone implies noinline; we should not be inlining such functions. 800 F->addFnAttr(llvm::Attribute::OptimizeNone); 801 F->addFnAttr(llvm::Attribute::NoInline); 802 803 // OptimizeNone wins over OptimizeForSize, MinSize, AlwaysInline. 804 assert(!F->hasFnAttribute(llvm::Attribute::OptimizeForSize) && 805 "OptimizeNone and OptimizeForSize on same function!"); 806 assert(!F->hasFnAttribute(llvm::Attribute::MinSize) && 807 "OptimizeNone and MinSize on same function!"); 808 assert(!F->hasFnAttribute(llvm::Attribute::AlwaysInline) && 809 "OptimizeNone and AlwaysInline on same function!"); 810 811 // Attribute 'inlinehint' has no effect on 'optnone' functions. 812 // Explicitly remove it from the set of function attributes. 813 F->removeFnAttr(llvm::Attribute::InlineHint); 814 } 815 816 if (isa<CXXConstructorDecl>(D) || isa<CXXDestructorDecl>(D)) 817 F->setUnnamedAddr(true); 818 else if (const auto *MD = dyn_cast<CXXMethodDecl>(D)) 819 if (MD->isVirtual()) 820 F->setUnnamedAddr(true); 821 822 unsigned alignment = D->getMaxAlignment() / Context.getCharWidth(); 823 if (alignment) 824 F->setAlignment(alignment); 825 826 // Some C++ ABIs require 2-byte alignment for member functions, in order to 827 // reserve a bit for differentiating between virtual and non-virtual member 828 // functions. If the current target's C++ ABI requires this and this is a 829 // member function, set its alignment accordingly. 830 if (getTarget().getCXXABI().areMemberFunctionsAligned()) { 831 if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D)) 832 F->setAlignment(2); 833 } 834 } 835 836 void CodeGenModule::SetCommonAttributes(const Decl *D, 837 llvm::GlobalValue *GV) { 838 if (const auto *ND = dyn_cast<NamedDecl>(D)) 839 setGlobalVisibility(GV, ND); 840 else 841 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 842 843 if (D->hasAttr<UsedAttr>()) 844 addUsedGlobal(GV); 845 } 846 847 void CodeGenModule::setAliasAttributes(const Decl *D, 848 llvm::GlobalValue *GV) { 849 SetCommonAttributes(D, GV); 850 851 // Process the dllexport attribute based on whether the original definition 852 // (not necessarily the aliasee) was exported. 853 if (D->hasAttr<DLLExportAttr>()) 854 GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass); 855 } 856 857 void CodeGenModule::setNonAliasAttributes(const Decl *D, 858 llvm::GlobalObject *GO) { 859 SetCommonAttributes(D, GO); 860 861 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) 862 GO->setSection(SA->getName()); 863 864 getTargetCodeGenInfo().setTargetAttributes(D, GO, *this); 865 } 866 867 void CodeGenModule::SetInternalFunctionAttributes(const Decl *D, 868 llvm::Function *F, 869 const CGFunctionInfo &FI) { 870 SetLLVMFunctionAttributes(D, FI, F); 871 SetLLVMFunctionAttributesForDefinition(D, F); 872 873 F->setLinkage(llvm::Function::InternalLinkage); 874 875 setNonAliasAttributes(D, F); 876 } 877 878 static void setLinkageAndVisibilityForGV(llvm::GlobalValue *GV, 879 const NamedDecl *ND) { 880 // Set linkage and visibility in case we never see a definition. 881 LinkageInfo LV = ND->getLinkageAndVisibility(); 882 if (LV.getLinkage() != ExternalLinkage) { 883 // Don't set internal linkage on declarations. 884 } else { 885 if (ND->hasAttr<DLLImportAttr>()) { 886 GV->setLinkage(llvm::GlobalValue::ExternalLinkage); 887 GV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass); 888 } else if (ND->hasAttr<DLLExportAttr>()) { 889 GV->setLinkage(llvm::GlobalValue::ExternalLinkage); 890 GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass); 891 } else if (ND->hasAttr<WeakAttr>() || ND->isWeakImported()) { 892 // "extern_weak" is overloaded in LLVM; we probably should have 893 // separate linkage types for this. 894 GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage); 895 } 896 897 // Set visibility on a declaration only if it's explicit. 898 if (LV.isVisibilityExplicit()) 899 GV->setVisibility(CodeGenModule::GetLLVMVisibility(LV.getVisibility())); 900 } 901 } 902 903 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD, llvm::Function *F, 904 bool IsIncompleteFunction, 905 bool IsThunk) { 906 if (llvm::Intrinsic::ID IID = F->getIntrinsicID()) { 907 // If this is an intrinsic function, set the function's attributes 908 // to the intrinsic's attributes. 909 F->setAttributes(llvm::Intrinsic::getAttributes(getLLVMContext(), IID)); 910 return; 911 } 912 913 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 914 915 if (!IsIncompleteFunction) 916 SetLLVMFunctionAttributes(FD, getTypes().arrangeGlobalDeclaration(GD), F); 917 918 // Add the Returned attribute for "this", except for iOS 5 and earlier 919 // where substantial code, including the libstdc++ dylib, was compiled with 920 // GCC and does not actually return "this". 921 if (!IsThunk && getCXXABI().HasThisReturn(GD) && 922 !(getTarget().getTriple().isiOS() && 923 getTarget().getTriple().isOSVersionLT(6))) { 924 assert(!F->arg_empty() && 925 F->arg_begin()->getType() 926 ->canLosslesslyBitCastTo(F->getReturnType()) && 927 "unexpected this return"); 928 F->addAttribute(1, llvm::Attribute::Returned); 929 } 930 931 // Only a few attributes are set on declarations; these may later be 932 // overridden by a definition. 933 934 setLinkageAndVisibilityForGV(F, FD); 935 936 if (const SectionAttr *SA = FD->getAttr<SectionAttr>()) 937 F->setSection(SA->getName()); 938 939 // A replaceable global allocation function does not act like a builtin by 940 // default, only if it is invoked by a new-expression or delete-expression. 941 if (FD->isReplaceableGlobalAllocationFunction()) 942 F->addAttribute(llvm::AttributeSet::FunctionIndex, 943 llvm::Attribute::NoBuiltin); 944 } 945 946 void CodeGenModule::addUsedGlobal(llvm::GlobalValue *GV) { 947 assert(!GV->isDeclaration() && 948 "Only globals with definition can force usage."); 949 LLVMUsed.emplace_back(GV); 950 } 951 952 void CodeGenModule::addCompilerUsedGlobal(llvm::GlobalValue *GV) { 953 assert(!GV->isDeclaration() && 954 "Only globals with definition can force usage."); 955 LLVMCompilerUsed.emplace_back(GV); 956 } 957 958 static void emitUsed(CodeGenModule &CGM, StringRef Name, 959 std::vector<llvm::WeakVH> &List) { 960 // Don't create llvm.used if there is no need. 961 if (List.empty()) 962 return; 963 964 // Convert List to what ConstantArray needs. 965 SmallVector<llvm::Constant*, 8> UsedArray; 966 UsedArray.resize(List.size()); 967 for (unsigned i = 0, e = List.size(); i != e; ++i) { 968 UsedArray[i] = 969 llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast( 970 cast<llvm::Constant>(&*List[i]), CGM.Int8PtrTy); 971 } 972 973 if (UsedArray.empty()) 974 return; 975 llvm::ArrayType *ATy = llvm::ArrayType::get(CGM.Int8PtrTy, UsedArray.size()); 976 977 auto *GV = new llvm::GlobalVariable( 978 CGM.getModule(), ATy, false, llvm::GlobalValue::AppendingLinkage, 979 llvm::ConstantArray::get(ATy, UsedArray), Name); 980 981 GV->setSection("llvm.metadata"); 982 } 983 984 void CodeGenModule::emitLLVMUsed() { 985 emitUsed(*this, "llvm.used", LLVMUsed); 986 emitUsed(*this, "llvm.compiler.used", LLVMCompilerUsed); 987 } 988 989 void CodeGenModule::AppendLinkerOptions(StringRef Opts) { 990 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opts); 991 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 992 } 993 994 void CodeGenModule::AddDetectMismatch(StringRef Name, StringRef Value) { 995 llvm::SmallString<32> Opt; 996 getTargetCodeGenInfo().getDetectMismatchOption(Name, Value, Opt); 997 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt); 998 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 999 } 1000 1001 void CodeGenModule::AddDependentLib(StringRef Lib) { 1002 llvm::SmallString<24> Opt; 1003 getTargetCodeGenInfo().getDependentLibraryOption(Lib, Opt); 1004 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt); 1005 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 1006 } 1007 1008 /// \brief Add link options implied by the given module, including modules 1009 /// it depends on, using a postorder walk. 1010 static void addLinkOptionsPostorder(CodeGenModule &CGM, Module *Mod, 1011 SmallVectorImpl<llvm::Metadata *> &Metadata, 1012 llvm::SmallPtrSet<Module *, 16> &Visited) { 1013 // Import this module's parent. 1014 if (Mod->Parent && Visited.insert(Mod->Parent).second) { 1015 addLinkOptionsPostorder(CGM, Mod->Parent, Metadata, Visited); 1016 } 1017 1018 // Import this module's dependencies. 1019 for (unsigned I = Mod->Imports.size(); I > 0; --I) { 1020 if (Visited.insert(Mod->Imports[I - 1]).second) 1021 addLinkOptionsPostorder(CGM, Mod->Imports[I-1], Metadata, Visited); 1022 } 1023 1024 // Add linker options to link against the libraries/frameworks 1025 // described by this module. 1026 llvm::LLVMContext &Context = CGM.getLLVMContext(); 1027 for (unsigned I = Mod->LinkLibraries.size(); I > 0; --I) { 1028 // Link against a framework. Frameworks are currently Darwin only, so we 1029 // don't to ask TargetCodeGenInfo for the spelling of the linker option. 1030 if (Mod->LinkLibraries[I-1].IsFramework) { 1031 llvm::Metadata *Args[2] = { 1032 llvm::MDString::get(Context, "-framework"), 1033 llvm::MDString::get(Context, Mod->LinkLibraries[I - 1].Library)}; 1034 1035 Metadata.push_back(llvm::MDNode::get(Context, Args)); 1036 continue; 1037 } 1038 1039 // Link against a library. 1040 llvm::SmallString<24> Opt; 1041 CGM.getTargetCodeGenInfo().getDependentLibraryOption( 1042 Mod->LinkLibraries[I-1].Library, Opt); 1043 auto *OptString = llvm::MDString::get(Context, Opt); 1044 Metadata.push_back(llvm::MDNode::get(Context, OptString)); 1045 } 1046 } 1047 1048 void CodeGenModule::EmitModuleLinkOptions() { 1049 // Collect the set of all of the modules we want to visit to emit link 1050 // options, which is essentially the imported modules and all of their 1051 // non-explicit child modules. 1052 llvm::SetVector<clang::Module *> LinkModules; 1053 llvm::SmallPtrSet<clang::Module *, 16> Visited; 1054 SmallVector<clang::Module *, 16> Stack; 1055 1056 // Seed the stack with imported modules. 1057 for (Module *M : ImportedModules) 1058 if (Visited.insert(M).second) 1059 Stack.push_back(M); 1060 1061 // Find all of the modules to import, making a little effort to prune 1062 // non-leaf modules. 1063 while (!Stack.empty()) { 1064 clang::Module *Mod = Stack.pop_back_val(); 1065 1066 bool AnyChildren = false; 1067 1068 // Visit the submodules of this module. 1069 for (clang::Module::submodule_iterator Sub = Mod->submodule_begin(), 1070 SubEnd = Mod->submodule_end(); 1071 Sub != SubEnd; ++Sub) { 1072 // Skip explicit children; they need to be explicitly imported to be 1073 // linked against. 1074 if ((*Sub)->IsExplicit) 1075 continue; 1076 1077 if (Visited.insert(*Sub).second) { 1078 Stack.push_back(*Sub); 1079 AnyChildren = true; 1080 } 1081 } 1082 1083 // We didn't find any children, so add this module to the list of 1084 // modules to link against. 1085 if (!AnyChildren) { 1086 LinkModules.insert(Mod); 1087 } 1088 } 1089 1090 // Add link options for all of the imported modules in reverse topological 1091 // order. We don't do anything to try to order import link flags with respect 1092 // to linker options inserted by things like #pragma comment(). 1093 SmallVector<llvm::Metadata *, 16> MetadataArgs; 1094 Visited.clear(); 1095 for (Module *M : LinkModules) 1096 if (Visited.insert(M).second) 1097 addLinkOptionsPostorder(*this, M, MetadataArgs, Visited); 1098 std::reverse(MetadataArgs.begin(), MetadataArgs.end()); 1099 LinkerOptionsMetadata.append(MetadataArgs.begin(), MetadataArgs.end()); 1100 1101 // Add the linker options metadata flag. 1102 getModule().addModuleFlag(llvm::Module::AppendUnique, "Linker Options", 1103 llvm::MDNode::get(getLLVMContext(), 1104 LinkerOptionsMetadata)); 1105 } 1106 1107 void CodeGenModule::EmitDeferred() { 1108 // Emit code for any potentially referenced deferred decls. Since a 1109 // previously unused static decl may become used during the generation of code 1110 // for a static function, iterate until no changes are made. 1111 1112 if (!DeferredVTables.empty()) { 1113 EmitDeferredVTables(); 1114 1115 // Emitting a v-table doesn't directly cause more v-tables to 1116 // become deferred, although it can cause functions to be 1117 // emitted that then need those v-tables. 1118 assert(DeferredVTables.empty()); 1119 } 1120 1121 // Stop if we're out of both deferred v-tables and deferred declarations. 1122 if (DeferredDeclsToEmit.empty()) 1123 return; 1124 1125 // Grab the list of decls to emit. If EmitGlobalDefinition schedules more 1126 // work, it will not interfere with this. 1127 std::vector<DeferredGlobal> CurDeclsToEmit; 1128 CurDeclsToEmit.swap(DeferredDeclsToEmit); 1129 1130 for (DeferredGlobal &G : CurDeclsToEmit) { 1131 GlobalDecl D = G.GD; 1132 llvm::GlobalValue *GV = G.GV; 1133 G.GV = nullptr; 1134 1135 // We should call GetAddrOfGlobal with IsForDefinition set to true in order 1136 // to get GlobalValue with exactly the type we need, not something that 1137 // might had been created for another decl with the same mangled name but 1138 // different type. 1139 // FIXME: Support for variables is not implemented yet. 1140 if (isa<FunctionDecl>(D.getDecl())) 1141 GV = cast<llvm::GlobalValue>(GetAddrOfGlobal(D, /*IsForDefinition=*/true)); 1142 else 1143 if (!GV) 1144 GV = GetGlobalValue(getMangledName(D)); 1145 1146 // Check to see if we've already emitted this. This is necessary 1147 // for a couple of reasons: first, decls can end up in the 1148 // deferred-decls queue multiple times, and second, decls can end 1149 // up with definitions in unusual ways (e.g. by an extern inline 1150 // function acquiring a strong function redefinition). Just 1151 // ignore these cases. 1152 if (GV && !GV->isDeclaration()) 1153 continue; 1154 1155 // Otherwise, emit the definition and move on to the next one. 1156 EmitGlobalDefinition(D, GV); 1157 1158 // If we found out that we need to emit more decls, do that recursively. 1159 // This has the advantage that the decls are emitted in a DFS and related 1160 // ones are close together, which is convenient for testing. 1161 if (!DeferredVTables.empty() || !DeferredDeclsToEmit.empty()) { 1162 EmitDeferred(); 1163 assert(DeferredVTables.empty() && DeferredDeclsToEmit.empty()); 1164 } 1165 } 1166 } 1167 1168 void CodeGenModule::EmitGlobalAnnotations() { 1169 if (Annotations.empty()) 1170 return; 1171 1172 // Create a new global variable for the ConstantStruct in the Module. 1173 llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get( 1174 Annotations[0]->getType(), Annotations.size()), Annotations); 1175 auto *gv = new llvm::GlobalVariable(getModule(), Array->getType(), false, 1176 llvm::GlobalValue::AppendingLinkage, 1177 Array, "llvm.global.annotations"); 1178 gv->setSection(AnnotationSection); 1179 } 1180 1181 llvm::Constant *CodeGenModule::EmitAnnotationString(StringRef Str) { 1182 llvm::Constant *&AStr = AnnotationStrings[Str]; 1183 if (AStr) 1184 return AStr; 1185 1186 // Not found yet, create a new global. 1187 llvm::Constant *s = llvm::ConstantDataArray::getString(getLLVMContext(), Str); 1188 auto *gv = 1189 new llvm::GlobalVariable(getModule(), s->getType(), true, 1190 llvm::GlobalValue::PrivateLinkage, s, ".str"); 1191 gv->setSection(AnnotationSection); 1192 gv->setUnnamedAddr(true); 1193 AStr = gv; 1194 return gv; 1195 } 1196 1197 llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) { 1198 SourceManager &SM = getContext().getSourceManager(); 1199 PresumedLoc PLoc = SM.getPresumedLoc(Loc); 1200 if (PLoc.isValid()) 1201 return EmitAnnotationString(PLoc.getFilename()); 1202 return EmitAnnotationString(SM.getBufferName(Loc)); 1203 } 1204 1205 llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) { 1206 SourceManager &SM = getContext().getSourceManager(); 1207 PresumedLoc PLoc = SM.getPresumedLoc(L); 1208 unsigned LineNo = PLoc.isValid() ? PLoc.getLine() : 1209 SM.getExpansionLineNumber(L); 1210 return llvm::ConstantInt::get(Int32Ty, LineNo); 1211 } 1212 1213 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV, 1214 const AnnotateAttr *AA, 1215 SourceLocation L) { 1216 // Get the globals for file name, annotation, and the line number. 1217 llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()), 1218 *UnitGV = EmitAnnotationUnit(L), 1219 *LineNoCst = EmitAnnotationLineNo(L); 1220 1221 // Create the ConstantStruct for the global annotation. 1222 llvm::Constant *Fields[4] = { 1223 llvm::ConstantExpr::getBitCast(GV, Int8PtrTy), 1224 llvm::ConstantExpr::getBitCast(AnnoGV, Int8PtrTy), 1225 llvm::ConstantExpr::getBitCast(UnitGV, Int8PtrTy), 1226 LineNoCst 1227 }; 1228 return llvm::ConstantStruct::getAnon(Fields); 1229 } 1230 1231 void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D, 1232 llvm::GlobalValue *GV) { 1233 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 1234 // Get the struct elements for these annotations. 1235 for (const auto *I : D->specific_attrs<AnnotateAttr>()) 1236 Annotations.push_back(EmitAnnotateAttr(GV, I, D->getLocation())); 1237 } 1238 1239 bool CodeGenModule::isInSanitizerBlacklist(llvm::Function *Fn, 1240 SourceLocation Loc) const { 1241 const auto &SanitizerBL = getContext().getSanitizerBlacklist(); 1242 // Blacklist by function name. 1243 if (SanitizerBL.isBlacklistedFunction(Fn->getName())) 1244 return true; 1245 // Blacklist by location. 1246 if (!Loc.isInvalid()) 1247 return SanitizerBL.isBlacklistedLocation(Loc); 1248 // If location is unknown, this may be a compiler-generated function. Assume 1249 // it's located in the main file. 1250 auto &SM = Context.getSourceManager(); 1251 if (const auto *MainFile = SM.getFileEntryForID(SM.getMainFileID())) { 1252 return SanitizerBL.isBlacklistedFile(MainFile->getName()); 1253 } 1254 return false; 1255 } 1256 1257 bool CodeGenModule::isInSanitizerBlacklist(llvm::GlobalVariable *GV, 1258 SourceLocation Loc, QualType Ty, 1259 StringRef Category) const { 1260 // For now globals can be blacklisted only in ASan and KASan. 1261 if (!LangOpts.Sanitize.hasOneOf( 1262 SanitizerKind::Address | SanitizerKind::KernelAddress)) 1263 return false; 1264 const auto &SanitizerBL = getContext().getSanitizerBlacklist(); 1265 if (SanitizerBL.isBlacklistedGlobal(GV->getName(), Category)) 1266 return true; 1267 if (SanitizerBL.isBlacklistedLocation(Loc, Category)) 1268 return true; 1269 // Check global type. 1270 if (!Ty.isNull()) { 1271 // Drill down the array types: if global variable of a fixed type is 1272 // blacklisted, we also don't instrument arrays of them. 1273 while (auto AT = dyn_cast<ArrayType>(Ty.getTypePtr())) 1274 Ty = AT->getElementType(); 1275 Ty = Ty.getCanonicalType().getUnqualifiedType(); 1276 // We allow to blacklist only record types (classes, structs etc.) 1277 if (Ty->isRecordType()) { 1278 std::string TypeStr = Ty.getAsString(getContext().getPrintingPolicy()); 1279 if (SanitizerBL.isBlacklistedType(TypeStr, Category)) 1280 return true; 1281 } 1282 } 1283 return false; 1284 } 1285 1286 bool CodeGenModule::MustBeEmitted(const ValueDecl *Global) { 1287 // Never defer when EmitAllDecls is specified. 1288 if (LangOpts.EmitAllDecls) 1289 return true; 1290 1291 return getContext().DeclMustBeEmitted(Global); 1292 } 1293 1294 bool CodeGenModule::MayBeEmittedEagerly(const ValueDecl *Global) { 1295 if (const auto *FD = dyn_cast<FunctionDecl>(Global)) 1296 if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation) 1297 // Implicit template instantiations may change linkage if they are later 1298 // explicitly instantiated, so they should not be emitted eagerly. 1299 return false; 1300 // If OpenMP is enabled and threadprivates must be generated like TLS, delay 1301 // codegen for global variables, because they may be marked as threadprivate. 1302 if (LangOpts.OpenMP && LangOpts.OpenMPUseTLS && 1303 getContext().getTargetInfo().isTLSSupported() && isa<VarDecl>(Global)) 1304 return false; 1305 1306 return true; 1307 } 1308 1309 ConstantAddress CodeGenModule::GetAddrOfUuidDescriptor( 1310 const CXXUuidofExpr* E) { 1311 // Sema has verified that IIDSource has a __declspec(uuid()), and that its 1312 // well-formed. 1313 StringRef Uuid = E->getUuidAsStringRef(Context); 1314 std::string Name = "_GUID_" + Uuid.lower(); 1315 std::replace(Name.begin(), Name.end(), '-', '_'); 1316 1317 // Contains a 32-bit field. 1318 CharUnits Alignment = CharUnits::fromQuantity(4); 1319 1320 // Look for an existing global. 1321 if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name)) 1322 return ConstantAddress(GV, Alignment); 1323 1324 llvm::Constant *Init = EmitUuidofInitializer(Uuid); 1325 assert(Init && "failed to initialize as constant"); 1326 1327 auto *GV = new llvm::GlobalVariable( 1328 getModule(), Init->getType(), 1329 /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name); 1330 if (supportsCOMDAT()) 1331 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 1332 return ConstantAddress(GV, Alignment); 1333 } 1334 1335 ConstantAddress CodeGenModule::GetWeakRefReference(const ValueDecl *VD) { 1336 const AliasAttr *AA = VD->getAttr<AliasAttr>(); 1337 assert(AA && "No alias?"); 1338 1339 CharUnits Alignment = getContext().getDeclAlign(VD); 1340 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType()); 1341 1342 // See if there is already something with the target's name in the module. 1343 llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee()); 1344 if (Entry) { 1345 unsigned AS = getContext().getTargetAddressSpace(VD->getType()); 1346 auto Ptr = llvm::ConstantExpr::getBitCast(Entry, DeclTy->getPointerTo(AS)); 1347 return ConstantAddress(Ptr, Alignment); 1348 } 1349 1350 llvm::Constant *Aliasee; 1351 if (isa<llvm::FunctionType>(DeclTy)) 1352 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, 1353 GlobalDecl(cast<FunctionDecl>(VD)), 1354 /*ForVTable=*/false); 1355 else 1356 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), 1357 llvm::PointerType::getUnqual(DeclTy), 1358 nullptr); 1359 1360 auto *F = cast<llvm::GlobalValue>(Aliasee); 1361 F->setLinkage(llvm::Function::ExternalWeakLinkage); 1362 WeakRefReferences.insert(F); 1363 1364 return ConstantAddress(Aliasee, Alignment); 1365 } 1366 1367 void CodeGenModule::EmitGlobal(GlobalDecl GD) { 1368 const auto *Global = cast<ValueDecl>(GD.getDecl()); 1369 1370 // Weak references don't produce any output by themselves. 1371 if (Global->hasAttr<WeakRefAttr>()) 1372 return; 1373 1374 // If this is an alias definition (which otherwise looks like a declaration) 1375 // emit it now. 1376 if (Global->hasAttr<AliasAttr>()) 1377 return EmitAliasDefinition(GD); 1378 1379 // If this is CUDA, be selective about which declarations we emit. 1380 if (LangOpts.CUDA) { 1381 if (LangOpts.CUDAIsDevice) { 1382 if (!Global->hasAttr<CUDADeviceAttr>() && 1383 !Global->hasAttr<CUDAGlobalAttr>() && 1384 !Global->hasAttr<CUDAConstantAttr>() && 1385 !Global->hasAttr<CUDASharedAttr>()) 1386 return; 1387 } else { 1388 if (!Global->hasAttr<CUDAHostAttr>() && ( 1389 Global->hasAttr<CUDADeviceAttr>() || 1390 Global->hasAttr<CUDAConstantAttr>() || 1391 Global->hasAttr<CUDASharedAttr>())) 1392 return; 1393 } 1394 } 1395 1396 // Ignore declarations, they will be emitted on their first use. 1397 if (const auto *FD = dyn_cast<FunctionDecl>(Global)) { 1398 // Forward declarations are emitted lazily on first use. 1399 if (!FD->doesThisDeclarationHaveABody()) { 1400 if (!FD->doesDeclarationForceExternallyVisibleDefinition()) 1401 return; 1402 1403 StringRef MangledName = getMangledName(GD); 1404 1405 // Compute the function info and LLVM type. 1406 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 1407 llvm::Type *Ty = getTypes().GetFunctionType(FI); 1408 1409 GetOrCreateLLVMFunction(MangledName, Ty, GD, /*ForVTable=*/false, 1410 /*DontDefer=*/false); 1411 return; 1412 } 1413 } else { 1414 const auto *VD = cast<VarDecl>(Global); 1415 assert(VD->isFileVarDecl() && "Cannot emit local var decl as global."); 1416 1417 if (VD->isThisDeclarationADefinition() != VarDecl::Definition && 1418 !Context.isMSStaticDataMemberInlineDefinition(VD)) 1419 return; 1420 } 1421 1422 // Defer code generation to first use when possible, e.g. if this is an inline 1423 // function. If the global must always be emitted, do it eagerly if possible 1424 // to benefit from cache locality. 1425 if (MustBeEmitted(Global) && MayBeEmittedEagerly(Global)) { 1426 // Emit the definition if it can't be deferred. 1427 EmitGlobalDefinition(GD); 1428 return; 1429 } 1430 1431 // If we're deferring emission of a C++ variable with an 1432 // initializer, remember the order in which it appeared in the file. 1433 if (getLangOpts().CPlusPlus && isa<VarDecl>(Global) && 1434 cast<VarDecl>(Global)->hasInit()) { 1435 DelayedCXXInitPosition[Global] = CXXGlobalInits.size(); 1436 CXXGlobalInits.push_back(nullptr); 1437 } 1438 1439 StringRef MangledName = getMangledName(GD); 1440 if (llvm::GlobalValue *GV = GetGlobalValue(MangledName)) { 1441 // The value has already been used and should therefore be emitted. 1442 addDeferredDeclToEmit(GV, GD); 1443 } else if (MustBeEmitted(Global)) { 1444 // The value must be emitted, but cannot be emitted eagerly. 1445 assert(!MayBeEmittedEagerly(Global)); 1446 addDeferredDeclToEmit(/*GV=*/nullptr, GD); 1447 } else { 1448 // Otherwise, remember that we saw a deferred decl with this name. The 1449 // first use of the mangled name will cause it to move into 1450 // DeferredDeclsToEmit. 1451 DeferredDecls[MangledName] = GD; 1452 } 1453 } 1454 1455 namespace { 1456 struct FunctionIsDirectlyRecursive : 1457 public RecursiveASTVisitor<FunctionIsDirectlyRecursive> { 1458 const StringRef Name; 1459 const Builtin::Context &BI; 1460 bool Result; 1461 FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C) : 1462 Name(N), BI(C), Result(false) { 1463 } 1464 typedef RecursiveASTVisitor<FunctionIsDirectlyRecursive> Base; 1465 1466 bool TraverseCallExpr(CallExpr *E) { 1467 const FunctionDecl *FD = E->getDirectCallee(); 1468 if (!FD) 1469 return true; 1470 AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>(); 1471 if (Attr && Name == Attr->getLabel()) { 1472 Result = true; 1473 return false; 1474 } 1475 unsigned BuiltinID = FD->getBuiltinID(); 1476 if (!BuiltinID || !BI.isLibFunction(BuiltinID)) 1477 return true; 1478 StringRef BuiltinName = BI.getName(BuiltinID); 1479 if (BuiltinName.startswith("__builtin_") && 1480 Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) { 1481 Result = true; 1482 return false; 1483 } 1484 return true; 1485 } 1486 }; 1487 1488 struct DLLImportFunctionVisitor 1489 : public RecursiveASTVisitor<DLLImportFunctionVisitor> { 1490 bool SafeToInline = true; 1491 1492 bool VisitVarDecl(VarDecl *VD) { 1493 // A thread-local variable cannot be imported. 1494 SafeToInline = !VD->getTLSKind(); 1495 return SafeToInline; 1496 } 1497 1498 // Make sure we're not referencing non-imported vars or functions. 1499 bool VisitDeclRefExpr(DeclRefExpr *E) { 1500 ValueDecl *VD = E->getDecl(); 1501 if (isa<FunctionDecl>(VD)) 1502 SafeToInline = VD->hasAttr<DLLImportAttr>(); 1503 else if (VarDecl *V = dyn_cast<VarDecl>(VD)) 1504 SafeToInline = !V->hasGlobalStorage() || V->hasAttr<DLLImportAttr>(); 1505 return SafeToInline; 1506 } 1507 bool VisitCXXDeleteExpr(CXXDeleteExpr *E) { 1508 SafeToInline = E->getOperatorDelete()->hasAttr<DLLImportAttr>(); 1509 return SafeToInline; 1510 } 1511 bool VisitCXXNewExpr(CXXNewExpr *E) { 1512 SafeToInline = E->getOperatorNew()->hasAttr<DLLImportAttr>(); 1513 return SafeToInline; 1514 } 1515 }; 1516 } 1517 1518 // isTriviallyRecursive - Check if this function calls another 1519 // decl that, because of the asm attribute or the other decl being a builtin, 1520 // ends up pointing to itself. 1521 bool 1522 CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) { 1523 StringRef Name; 1524 if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) { 1525 // asm labels are a special kind of mangling we have to support. 1526 AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>(); 1527 if (!Attr) 1528 return false; 1529 Name = Attr->getLabel(); 1530 } else { 1531 Name = FD->getName(); 1532 } 1533 1534 FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo); 1535 Walker.TraverseFunctionDecl(const_cast<FunctionDecl*>(FD)); 1536 return Walker.Result; 1537 } 1538 1539 bool 1540 CodeGenModule::shouldEmitFunction(GlobalDecl GD) { 1541 if (getFunctionLinkage(GD) != llvm::Function::AvailableExternallyLinkage) 1542 return true; 1543 const auto *F = cast<FunctionDecl>(GD.getDecl()); 1544 if (CodeGenOpts.OptimizationLevel == 0 && !F->hasAttr<AlwaysInlineAttr>()) 1545 return false; 1546 1547 if (F->hasAttr<DLLImportAttr>()) { 1548 // Check whether it would be safe to inline this dllimport function. 1549 DLLImportFunctionVisitor Visitor; 1550 Visitor.TraverseFunctionDecl(const_cast<FunctionDecl*>(F)); 1551 if (!Visitor.SafeToInline) 1552 return false; 1553 } 1554 1555 // PR9614. Avoid cases where the source code is lying to us. An available 1556 // externally function should have an equivalent function somewhere else, 1557 // but a function that calls itself is clearly not equivalent to the real 1558 // implementation. 1559 // This happens in glibc's btowc and in some configure checks. 1560 return !isTriviallyRecursive(F); 1561 } 1562 1563 /// If the type for the method's class was generated by 1564 /// CGDebugInfo::createContextChain(), the cache contains only a 1565 /// limited DIType without any declarations. Since EmitFunctionStart() 1566 /// needs to find the canonical declaration for each method, we need 1567 /// to construct the complete type prior to emitting the method. 1568 void CodeGenModule::CompleteDIClassType(const CXXMethodDecl* D) { 1569 if (!D->isInstance()) 1570 return; 1571 1572 if (CGDebugInfo *DI = getModuleDebugInfo()) 1573 if (getCodeGenOpts().getDebugInfo() >= CodeGenOptions::LimitedDebugInfo) { 1574 const auto *ThisPtr = cast<PointerType>(D->getThisType(getContext())); 1575 DI->getOrCreateRecordType(ThisPtr->getPointeeType(), D->getLocation()); 1576 } 1577 } 1578 1579 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD, llvm::GlobalValue *GV) { 1580 const auto *D = cast<ValueDecl>(GD.getDecl()); 1581 1582 PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(), 1583 Context.getSourceManager(), 1584 "Generating code for declaration"); 1585 1586 if (isa<FunctionDecl>(D)) { 1587 // At -O0, don't generate IR for functions with available_externally 1588 // linkage. 1589 if (!shouldEmitFunction(GD)) 1590 return; 1591 1592 if (const auto *Method = dyn_cast<CXXMethodDecl>(D)) { 1593 CompleteDIClassType(Method); 1594 // Make sure to emit the definition(s) before we emit the thunks. 1595 // This is necessary for the generation of certain thunks. 1596 if (const auto *CD = dyn_cast<CXXConstructorDecl>(Method)) 1597 ABI->emitCXXStructor(CD, getFromCtorType(GD.getCtorType())); 1598 else if (const auto *DD = dyn_cast<CXXDestructorDecl>(Method)) 1599 ABI->emitCXXStructor(DD, getFromDtorType(GD.getDtorType())); 1600 else 1601 EmitGlobalFunctionDefinition(GD, GV); 1602 1603 if (Method->isVirtual()) 1604 getVTables().EmitThunks(GD); 1605 1606 return; 1607 } 1608 1609 return EmitGlobalFunctionDefinition(GD, GV); 1610 } 1611 1612 if (const auto *VD = dyn_cast<VarDecl>(D)) 1613 return EmitGlobalVarDefinition(VD); 1614 1615 llvm_unreachable("Invalid argument to EmitGlobalDefinition()"); 1616 } 1617 1618 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old, 1619 llvm::Function *NewFn); 1620 1621 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the 1622 /// module, create and return an llvm Function with the specified type. If there 1623 /// is something in the module with the specified name, return it potentially 1624 /// bitcasted to the right type. 1625 /// 1626 /// If D is non-null, it specifies a decl that correspond to this. This is used 1627 /// to set the attributes on the function when it is first created. 1628 llvm::Constant * 1629 CodeGenModule::GetOrCreateLLVMFunction(StringRef MangledName, 1630 llvm::Type *Ty, 1631 GlobalDecl GD, bool ForVTable, 1632 bool DontDefer, bool IsThunk, 1633 llvm::AttributeSet ExtraAttrs, 1634 bool IsForDefinition) { 1635 const Decl *D = GD.getDecl(); 1636 1637 // Lookup the entry, lazily creating it if necessary. 1638 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 1639 if (Entry) { 1640 if (WeakRefReferences.erase(Entry)) { 1641 const FunctionDecl *FD = cast_or_null<FunctionDecl>(D); 1642 if (FD && !FD->hasAttr<WeakAttr>()) 1643 Entry->setLinkage(llvm::Function::ExternalLinkage); 1644 } 1645 1646 // Handle dropped DLL attributes. 1647 if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>()) 1648 Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 1649 1650 // If there are two attempts to define the same mangled name, issue an 1651 // error. 1652 if (IsForDefinition && !Entry->isDeclaration()) { 1653 GlobalDecl OtherGD; 1654 // Check that GD is not yet in ExplicitDefinitions is required to make 1655 // sure that we issue an error only once. 1656 if (lookupRepresentativeDecl(MangledName, OtherGD) && 1657 (GD.getCanonicalDecl().getDecl() != 1658 OtherGD.getCanonicalDecl().getDecl()) && 1659 DiagnosedConflictingDefinitions.insert(GD).second) { 1660 getDiags().Report(D->getLocation(), 1661 diag::err_duplicate_mangled_name); 1662 getDiags().Report(OtherGD.getDecl()->getLocation(), 1663 diag::note_previous_definition); 1664 } 1665 } 1666 1667 if ((isa<llvm::Function>(Entry) || isa<llvm::GlobalAlias>(Entry)) && 1668 (Entry->getType()->getElementType() == Ty)) { 1669 return Entry; 1670 } 1671 1672 // Make sure the result is of the correct type. 1673 // (If function is requested for a definition, we always need to create a new 1674 // function, not just return a bitcast.) 1675 if (!IsForDefinition) 1676 return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo()); 1677 } 1678 1679 // This function doesn't have a complete type (for example, the return 1680 // type is an incomplete struct). Use a fake type instead, and make 1681 // sure not to try to set attributes. 1682 bool IsIncompleteFunction = false; 1683 1684 llvm::FunctionType *FTy; 1685 if (isa<llvm::FunctionType>(Ty)) { 1686 FTy = cast<llvm::FunctionType>(Ty); 1687 } else { 1688 FTy = llvm::FunctionType::get(VoidTy, false); 1689 IsIncompleteFunction = true; 1690 } 1691 1692 llvm::Function *F = 1693 llvm::Function::Create(FTy, llvm::Function::ExternalLinkage, 1694 Entry ? StringRef() : MangledName, &getModule()); 1695 1696 // If we already created a function with the same mangled name (but different 1697 // type) before, take its name and add it to the list of functions to be 1698 // replaced with F at the end of CodeGen. 1699 // 1700 // This happens if there is a prototype for a function (e.g. "int f()") and 1701 // then a definition of a different type (e.g. "int f(int x)"). 1702 if (Entry) { 1703 F->takeName(Entry); 1704 1705 // This might be an implementation of a function without a prototype, in 1706 // which case, try to do special replacement of calls which match the new 1707 // prototype. The really key thing here is that we also potentially drop 1708 // arguments from the call site so as to make a direct call, which makes the 1709 // inliner happier and suppresses a number of optimizer warnings (!) about 1710 // dropping arguments. 1711 if (!Entry->use_empty()) { 1712 ReplaceUsesOfNonProtoTypeWithRealFunction(Entry, F); 1713 Entry->removeDeadConstantUsers(); 1714 } 1715 1716 llvm::Constant *BC = llvm::ConstantExpr::getBitCast( 1717 F, Entry->getType()->getElementType()->getPointerTo()); 1718 addGlobalValReplacement(Entry, BC); 1719 } 1720 1721 assert(F->getName() == MangledName && "name was uniqued!"); 1722 if (D) 1723 SetFunctionAttributes(GD, F, IsIncompleteFunction, IsThunk); 1724 if (ExtraAttrs.hasAttributes(llvm::AttributeSet::FunctionIndex)) { 1725 llvm::AttrBuilder B(ExtraAttrs, llvm::AttributeSet::FunctionIndex); 1726 F->addAttributes(llvm::AttributeSet::FunctionIndex, 1727 llvm::AttributeSet::get(VMContext, 1728 llvm::AttributeSet::FunctionIndex, 1729 B)); 1730 } 1731 1732 if (!DontDefer) { 1733 // All MSVC dtors other than the base dtor are linkonce_odr and delegate to 1734 // each other bottoming out with the base dtor. Therefore we emit non-base 1735 // dtors on usage, even if there is no dtor definition in the TU. 1736 if (D && isa<CXXDestructorDecl>(D) && 1737 getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D), 1738 GD.getDtorType())) 1739 addDeferredDeclToEmit(F, GD); 1740 1741 // This is the first use or definition of a mangled name. If there is a 1742 // deferred decl with this name, remember that we need to emit it at the end 1743 // of the file. 1744 auto DDI = DeferredDecls.find(MangledName); 1745 if (DDI != DeferredDecls.end()) { 1746 // Move the potentially referenced deferred decl to the 1747 // DeferredDeclsToEmit list, and remove it from DeferredDecls (since we 1748 // don't need it anymore). 1749 addDeferredDeclToEmit(F, DDI->second); 1750 DeferredDecls.erase(DDI); 1751 1752 // Otherwise, there are cases we have to worry about where we're 1753 // using a declaration for which we must emit a definition but where 1754 // we might not find a top-level definition: 1755 // - member functions defined inline in their classes 1756 // - friend functions defined inline in some class 1757 // - special member functions with implicit definitions 1758 // If we ever change our AST traversal to walk into class methods, 1759 // this will be unnecessary. 1760 // 1761 // We also don't emit a definition for a function if it's going to be an 1762 // entry in a vtable, unless it's already marked as used. 1763 } else if (getLangOpts().CPlusPlus && D) { 1764 // Look for a declaration that's lexically in a record. 1765 for (const auto *FD = cast<FunctionDecl>(D)->getMostRecentDecl(); FD; 1766 FD = FD->getPreviousDecl()) { 1767 if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) { 1768 if (FD->doesThisDeclarationHaveABody()) { 1769 addDeferredDeclToEmit(F, GD.getWithDecl(FD)); 1770 break; 1771 } 1772 } 1773 } 1774 } 1775 } 1776 1777 // Make sure the result is of the requested type. 1778 if (!IsIncompleteFunction) { 1779 assert(F->getType()->getElementType() == Ty); 1780 return F; 1781 } 1782 1783 llvm::Type *PTy = llvm::PointerType::getUnqual(Ty); 1784 return llvm::ConstantExpr::getBitCast(F, PTy); 1785 } 1786 1787 /// GetAddrOfFunction - Return the address of the given function. If Ty is 1788 /// non-null, then this function will use the specified type if it has to 1789 /// create it (this occurs when we see a definition of the function). 1790 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD, 1791 llvm::Type *Ty, 1792 bool ForVTable, 1793 bool DontDefer, 1794 bool IsForDefinition) { 1795 // If there was no specific requested type, just convert it now. 1796 if (!Ty) 1797 Ty = getTypes().ConvertType(cast<ValueDecl>(GD.getDecl())->getType()); 1798 1799 StringRef MangledName = getMangledName(GD); 1800 return GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable, DontDefer, 1801 /*IsThunk=*/false, llvm::AttributeSet(), 1802 IsForDefinition); 1803 } 1804 1805 /// CreateRuntimeFunction - Create a new runtime function with the specified 1806 /// type and name. 1807 llvm::Constant * 1808 CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy, 1809 StringRef Name, 1810 llvm::AttributeSet ExtraAttrs) { 1811 llvm::Constant *C = 1812 GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false, 1813 /*DontDefer=*/false, /*IsThunk=*/false, ExtraAttrs); 1814 if (auto *F = dyn_cast<llvm::Function>(C)) 1815 if (F->empty()) 1816 F->setCallingConv(getRuntimeCC()); 1817 return C; 1818 } 1819 1820 /// CreateBuiltinFunction - Create a new builtin function with the specified 1821 /// type and name. 1822 llvm::Constant * 1823 CodeGenModule::CreateBuiltinFunction(llvm::FunctionType *FTy, 1824 StringRef Name, 1825 llvm::AttributeSet ExtraAttrs) { 1826 llvm::Constant *C = 1827 GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false, 1828 /*DontDefer=*/false, /*IsThunk=*/false, ExtraAttrs); 1829 if (auto *F = dyn_cast<llvm::Function>(C)) 1830 if (F->empty()) 1831 F->setCallingConv(getBuiltinCC()); 1832 return C; 1833 } 1834 1835 /// isTypeConstant - Determine whether an object of this type can be emitted 1836 /// as a constant. 1837 /// 1838 /// If ExcludeCtor is true, the duration when the object's constructor runs 1839 /// will not be considered. The caller will need to verify that the object is 1840 /// not written to during its construction. 1841 bool CodeGenModule::isTypeConstant(QualType Ty, bool ExcludeCtor) { 1842 if (!Ty.isConstant(Context) && !Ty->isReferenceType()) 1843 return false; 1844 1845 if (Context.getLangOpts().CPlusPlus) { 1846 if (const CXXRecordDecl *Record 1847 = Context.getBaseElementType(Ty)->getAsCXXRecordDecl()) 1848 return ExcludeCtor && !Record->hasMutableFields() && 1849 Record->hasTrivialDestructor(); 1850 } 1851 1852 return true; 1853 } 1854 1855 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module, 1856 /// create and return an llvm GlobalVariable with the specified type. If there 1857 /// is something in the module with the specified name, return it potentially 1858 /// bitcasted to the right type. 1859 /// 1860 /// If D is non-null, it specifies a decl that correspond to this. This is used 1861 /// to set the attributes on the global when it is first created. 1862 llvm::Constant * 1863 CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName, 1864 llvm::PointerType *Ty, 1865 const VarDecl *D) { 1866 // Lookup the entry, lazily creating it if necessary. 1867 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 1868 if (Entry) { 1869 if (WeakRefReferences.erase(Entry)) { 1870 if (D && !D->hasAttr<WeakAttr>()) 1871 Entry->setLinkage(llvm::Function::ExternalLinkage); 1872 } 1873 1874 // Handle dropped DLL attributes. 1875 if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>()) 1876 Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 1877 1878 if (Entry->getType() == Ty) 1879 return Entry; 1880 1881 // Make sure the result is of the correct type. 1882 if (Entry->getType()->getAddressSpace() != Ty->getAddressSpace()) 1883 return llvm::ConstantExpr::getAddrSpaceCast(Entry, Ty); 1884 1885 return llvm::ConstantExpr::getBitCast(Entry, Ty); 1886 } 1887 1888 unsigned AddrSpace = GetGlobalVarAddressSpace(D, Ty->getAddressSpace()); 1889 auto *GV = new llvm::GlobalVariable( 1890 getModule(), Ty->getElementType(), false, 1891 llvm::GlobalValue::ExternalLinkage, nullptr, MangledName, nullptr, 1892 llvm::GlobalVariable::NotThreadLocal, AddrSpace); 1893 1894 // This is the first use or definition of a mangled name. If there is a 1895 // deferred decl with this name, remember that we need to emit it at the end 1896 // of the file. 1897 auto DDI = DeferredDecls.find(MangledName); 1898 if (DDI != DeferredDecls.end()) { 1899 // Move the potentially referenced deferred decl to the DeferredDeclsToEmit 1900 // list, and remove it from DeferredDecls (since we don't need it anymore). 1901 addDeferredDeclToEmit(GV, DDI->second); 1902 DeferredDecls.erase(DDI); 1903 } 1904 1905 // Handle things which are present even on external declarations. 1906 if (D) { 1907 // FIXME: This code is overly simple and should be merged with other global 1908 // handling. 1909 GV->setConstant(isTypeConstant(D->getType(), false)); 1910 1911 GV->setAlignment(getContext().getDeclAlign(D).getQuantity()); 1912 1913 setLinkageAndVisibilityForGV(GV, D); 1914 1915 if (D->getTLSKind()) { 1916 if (D->getTLSKind() == VarDecl::TLS_Dynamic) 1917 CXXThreadLocals.push_back(std::make_pair(D, GV)); 1918 setTLSMode(GV, *D); 1919 } 1920 1921 // If required by the ABI, treat declarations of static data members with 1922 // inline initializers as definitions. 1923 if (getContext().isMSStaticDataMemberInlineDefinition(D)) { 1924 EmitGlobalVarDefinition(D); 1925 } 1926 1927 // Handle XCore specific ABI requirements. 1928 if (getTarget().getTriple().getArch() == llvm::Triple::xcore && 1929 D->getLanguageLinkage() == CLanguageLinkage && 1930 D->getType().isConstant(Context) && 1931 isExternallyVisible(D->getLinkageAndVisibility().getLinkage())) 1932 GV->setSection(".cp.rodata"); 1933 } 1934 1935 if (AddrSpace != Ty->getAddressSpace()) 1936 return llvm::ConstantExpr::getAddrSpaceCast(GV, Ty); 1937 1938 return GV; 1939 } 1940 1941 llvm::Constant * 1942 CodeGenModule::GetAddrOfGlobal(GlobalDecl GD, 1943 bool IsForDefinition) { 1944 if (isa<CXXConstructorDecl>(GD.getDecl())) 1945 return getAddrOfCXXStructor(cast<CXXConstructorDecl>(GD.getDecl()), 1946 getFromCtorType(GD.getCtorType()), 1947 /*FnInfo=*/nullptr, /*FnType=*/nullptr, 1948 /*DontDefer=*/false, IsForDefinition); 1949 else if (isa<CXXDestructorDecl>(GD.getDecl())) 1950 return getAddrOfCXXStructor(cast<CXXDestructorDecl>(GD.getDecl()), 1951 getFromDtorType(GD.getDtorType()), 1952 /*FnInfo=*/nullptr, /*FnType=*/nullptr, 1953 /*DontDefer=*/false, IsForDefinition); 1954 else if (isa<CXXMethodDecl>(GD.getDecl())) { 1955 auto FInfo = &getTypes().arrangeCXXMethodDeclaration( 1956 cast<CXXMethodDecl>(GD.getDecl())); 1957 auto Ty = getTypes().GetFunctionType(*FInfo); 1958 return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false, 1959 IsForDefinition); 1960 } else if (isa<FunctionDecl>(GD.getDecl())) { 1961 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 1962 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 1963 return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false, 1964 IsForDefinition); 1965 } else 1966 return GetAddrOfGlobalVar(cast<VarDecl>(GD.getDecl())); 1967 } 1968 1969 llvm::GlobalVariable * 1970 CodeGenModule::CreateOrReplaceCXXRuntimeVariable(StringRef Name, 1971 llvm::Type *Ty, 1972 llvm::GlobalValue::LinkageTypes Linkage) { 1973 llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name); 1974 llvm::GlobalVariable *OldGV = nullptr; 1975 1976 if (GV) { 1977 // Check if the variable has the right type. 1978 if (GV->getType()->getElementType() == Ty) 1979 return GV; 1980 1981 // Because C++ name mangling, the only way we can end up with an already 1982 // existing global with the same name is if it has been declared extern "C". 1983 assert(GV->isDeclaration() && "Declaration has wrong type!"); 1984 OldGV = GV; 1985 } 1986 1987 // Create a new variable. 1988 GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true, 1989 Linkage, nullptr, Name); 1990 1991 if (OldGV) { 1992 // Replace occurrences of the old variable if needed. 1993 GV->takeName(OldGV); 1994 1995 if (!OldGV->use_empty()) { 1996 llvm::Constant *NewPtrForOldDecl = 1997 llvm::ConstantExpr::getBitCast(GV, OldGV->getType()); 1998 OldGV->replaceAllUsesWith(NewPtrForOldDecl); 1999 } 2000 2001 OldGV->eraseFromParent(); 2002 } 2003 2004 if (supportsCOMDAT() && GV->isWeakForLinker() && 2005 !GV->hasAvailableExternallyLinkage()) 2006 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 2007 2008 return GV; 2009 } 2010 2011 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the 2012 /// given global variable. If Ty is non-null and if the global doesn't exist, 2013 /// then it will be created with the specified type instead of whatever the 2014 /// normal requested type would be. 2015 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D, 2016 llvm::Type *Ty) { 2017 assert(D->hasGlobalStorage() && "Not a global variable"); 2018 QualType ASTTy = D->getType(); 2019 if (!Ty) 2020 Ty = getTypes().ConvertTypeForMem(ASTTy); 2021 2022 llvm::PointerType *PTy = 2023 llvm::PointerType::get(Ty, getContext().getTargetAddressSpace(ASTTy)); 2024 2025 StringRef MangledName = getMangledName(D); 2026 return GetOrCreateLLVMGlobal(MangledName, PTy, D); 2027 } 2028 2029 /// CreateRuntimeVariable - Create a new runtime global variable with the 2030 /// specified type and name. 2031 llvm::Constant * 2032 CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty, 2033 StringRef Name) { 2034 return GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), nullptr); 2035 } 2036 2037 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) { 2038 assert(!D->getInit() && "Cannot emit definite definitions here!"); 2039 2040 if (!MustBeEmitted(D)) { 2041 // If we have not seen a reference to this variable yet, place it 2042 // into the deferred declarations table to be emitted if needed 2043 // later. 2044 StringRef MangledName = getMangledName(D); 2045 if (!GetGlobalValue(MangledName)) { 2046 DeferredDecls[MangledName] = D; 2047 return; 2048 } 2049 } 2050 2051 // The tentative definition is the only definition. 2052 EmitGlobalVarDefinition(D); 2053 } 2054 2055 CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const { 2056 return Context.toCharUnitsFromBits( 2057 getDataLayout().getTypeStoreSizeInBits(Ty)); 2058 } 2059 2060 unsigned CodeGenModule::GetGlobalVarAddressSpace(const VarDecl *D, 2061 unsigned AddrSpace) { 2062 if (LangOpts.CUDA && LangOpts.CUDAIsDevice) { 2063 if (D->hasAttr<CUDAConstantAttr>()) 2064 AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_constant); 2065 else if (D->hasAttr<CUDASharedAttr>()) 2066 AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_shared); 2067 else 2068 AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_device); 2069 } 2070 2071 return AddrSpace; 2072 } 2073 2074 template<typename SomeDecl> 2075 void CodeGenModule::MaybeHandleStaticInExternC(const SomeDecl *D, 2076 llvm::GlobalValue *GV) { 2077 if (!getLangOpts().CPlusPlus) 2078 return; 2079 2080 // Must have 'used' attribute, or else inline assembly can't rely on 2081 // the name existing. 2082 if (!D->template hasAttr<UsedAttr>()) 2083 return; 2084 2085 // Must have internal linkage and an ordinary name. 2086 if (!D->getIdentifier() || D->getFormalLinkage() != InternalLinkage) 2087 return; 2088 2089 // Must be in an extern "C" context. Entities declared directly within 2090 // a record are not extern "C" even if the record is in such a context. 2091 const SomeDecl *First = D->getFirstDecl(); 2092 if (First->getDeclContext()->isRecord() || !First->isInExternCContext()) 2093 return; 2094 2095 // OK, this is an internal linkage entity inside an extern "C" linkage 2096 // specification. Make a note of that so we can give it the "expected" 2097 // mangled name if nothing else is using that name. 2098 std::pair<StaticExternCMap::iterator, bool> R = 2099 StaticExternCValues.insert(std::make_pair(D->getIdentifier(), GV)); 2100 2101 // If we have multiple internal linkage entities with the same name 2102 // in extern "C" regions, none of them gets that name. 2103 if (!R.second) 2104 R.first->second = nullptr; 2105 } 2106 2107 static bool shouldBeInCOMDAT(CodeGenModule &CGM, const Decl &D) { 2108 if (!CGM.supportsCOMDAT()) 2109 return false; 2110 2111 if (D.hasAttr<SelectAnyAttr>()) 2112 return true; 2113 2114 GVALinkage Linkage; 2115 if (auto *VD = dyn_cast<VarDecl>(&D)) 2116 Linkage = CGM.getContext().GetGVALinkageForVariable(VD); 2117 else 2118 Linkage = CGM.getContext().GetGVALinkageForFunction(cast<FunctionDecl>(&D)); 2119 2120 switch (Linkage) { 2121 case GVA_Internal: 2122 case GVA_AvailableExternally: 2123 case GVA_StrongExternal: 2124 return false; 2125 case GVA_DiscardableODR: 2126 case GVA_StrongODR: 2127 return true; 2128 } 2129 llvm_unreachable("No such linkage"); 2130 } 2131 2132 void CodeGenModule::maybeSetTrivialComdat(const Decl &D, 2133 llvm::GlobalObject &GO) { 2134 if (!shouldBeInCOMDAT(*this, D)) 2135 return; 2136 GO.setComdat(TheModule.getOrInsertComdat(GO.getName())); 2137 } 2138 2139 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D) { 2140 llvm::Constant *Init = nullptr; 2141 QualType ASTTy = D->getType(); 2142 CXXRecordDecl *RD = ASTTy->getBaseElementTypeUnsafe()->getAsCXXRecordDecl(); 2143 bool NeedsGlobalCtor = false; 2144 bool NeedsGlobalDtor = RD && !RD->hasTrivialDestructor(); 2145 2146 const VarDecl *InitDecl; 2147 const Expr *InitExpr = D->getAnyInitializer(InitDecl); 2148 2149 // CUDA E.2.4.1 "__shared__ variables cannot have an initialization as part 2150 // of their declaration." 2151 if (getLangOpts().CPlusPlus && getLangOpts().CUDAIsDevice 2152 && D->hasAttr<CUDASharedAttr>()) { 2153 if (InitExpr) { 2154 Error(D->getLocation(), 2155 "__shared__ variable cannot have an initialization."); 2156 } 2157 Init = llvm::UndefValue::get(getTypes().ConvertType(ASTTy)); 2158 } else if (!InitExpr) { 2159 // This is a tentative definition; tentative definitions are 2160 // implicitly initialized with { 0 }. 2161 // 2162 // Note that tentative definitions are only emitted at the end of 2163 // a translation unit, so they should never have incomplete 2164 // type. In addition, EmitTentativeDefinition makes sure that we 2165 // never attempt to emit a tentative definition if a real one 2166 // exists. A use may still exists, however, so we still may need 2167 // to do a RAUW. 2168 assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type"); 2169 Init = EmitNullConstant(D->getType()); 2170 } else { 2171 initializedGlobalDecl = GlobalDecl(D); 2172 Init = EmitConstantInit(*InitDecl); 2173 2174 if (!Init) { 2175 QualType T = InitExpr->getType(); 2176 if (D->getType()->isReferenceType()) 2177 T = D->getType(); 2178 2179 if (getLangOpts().CPlusPlus) { 2180 Init = EmitNullConstant(T); 2181 NeedsGlobalCtor = true; 2182 } else { 2183 ErrorUnsupported(D, "static initializer"); 2184 Init = llvm::UndefValue::get(getTypes().ConvertType(T)); 2185 } 2186 } else { 2187 // We don't need an initializer, so remove the entry for the delayed 2188 // initializer position (just in case this entry was delayed) if we 2189 // also don't need to register a destructor. 2190 if (getLangOpts().CPlusPlus && !NeedsGlobalDtor) 2191 DelayedCXXInitPosition.erase(D); 2192 } 2193 } 2194 2195 llvm::Type* InitType = Init->getType(); 2196 llvm::Constant *Entry = GetAddrOfGlobalVar(D, InitType); 2197 2198 // Strip off a bitcast if we got one back. 2199 if (auto *CE = dyn_cast<llvm::ConstantExpr>(Entry)) { 2200 assert(CE->getOpcode() == llvm::Instruction::BitCast || 2201 CE->getOpcode() == llvm::Instruction::AddrSpaceCast || 2202 // All zero index gep. 2203 CE->getOpcode() == llvm::Instruction::GetElementPtr); 2204 Entry = CE->getOperand(0); 2205 } 2206 2207 // Entry is now either a Function or GlobalVariable. 2208 auto *GV = dyn_cast<llvm::GlobalVariable>(Entry); 2209 2210 // We have a definition after a declaration with the wrong type. 2211 // We must make a new GlobalVariable* and update everything that used OldGV 2212 // (a declaration or tentative definition) with the new GlobalVariable* 2213 // (which will be a definition). 2214 // 2215 // This happens if there is a prototype for a global (e.g. 2216 // "extern int x[];") and then a definition of a different type (e.g. 2217 // "int x[10];"). This also happens when an initializer has a different type 2218 // from the type of the global (this happens with unions). 2219 if (!GV || 2220 GV->getType()->getElementType() != InitType || 2221 GV->getType()->getAddressSpace() != 2222 GetGlobalVarAddressSpace(D, getContext().getTargetAddressSpace(ASTTy))) { 2223 2224 // Move the old entry aside so that we'll create a new one. 2225 Entry->setName(StringRef()); 2226 2227 // Make a new global with the correct type, this is now guaranteed to work. 2228 GV = cast<llvm::GlobalVariable>(GetAddrOfGlobalVar(D, InitType)); 2229 2230 // Replace all uses of the old global with the new global 2231 llvm::Constant *NewPtrForOldDecl = 2232 llvm::ConstantExpr::getBitCast(GV, Entry->getType()); 2233 Entry->replaceAllUsesWith(NewPtrForOldDecl); 2234 2235 // Erase the old global, since it is no longer used. 2236 cast<llvm::GlobalValue>(Entry)->eraseFromParent(); 2237 } 2238 2239 MaybeHandleStaticInExternC(D, GV); 2240 2241 if (D->hasAttr<AnnotateAttr>()) 2242 AddGlobalAnnotations(D, GV); 2243 2244 // CUDA B.2.1 "The __device__ qualifier declares a variable that resides on 2245 // the device. [...]" 2246 // CUDA B.2.2 "The __constant__ qualifier, optionally used together with 2247 // __device__, declares a variable that: [...] 2248 // Is accessible from all the threads within the grid and from the host 2249 // through the runtime library (cudaGetSymbolAddress() / cudaGetSymbolSize() 2250 // / cudaMemcpyToSymbol() / cudaMemcpyFromSymbol())." 2251 if (GV && LangOpts.CUDA && LangOpts.CUDAIsDevice && 2252 (D->hasAttr<CUDAConstantAttr>() || D->hasAttr<CUDADeviceAttr>())) { 2253 GV->setExternallyInitialized(true); 2254 } 2255 GV->setInitializer(Init); 2256 2257 // If it is safe to mark the global 'constant', do so now. 2258 GV->setConstant(!NeedsGlobalCtor && !NeedsGlobalDtor && 2259 isTypeConstant(D->getType(), true)); 2260 2261 // If it is in a read-only section, mark it 'constant'. 2262 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) { 2263 const ASTContext::SectionInfo &SI = Context.SectionInfos[SA->getName()]; 2264 if ((SI.SectionFlags & ASTContext::PSF_Write) == 0) 2265 GV->setConstant(true); 2266 } 2267 2268 GV->setAlignment(getContext().getDeclAlign(D).getQuantity()); 2269 2270 // Set the llvm linkage type as appropriate. 2271 llvm::GlobalValue::LinkageTypes Linkage = 2272 getLLVMLinkageVarDefinition(D, GV->isConstant()); 2273 2274 // On Darwin, the backing variable for a C++11 thread_local variable always 2275 // has internal linkage; all accesses should just be calls to the 2276 // Itanium-specified entry point, which has the normal linkage of the 2277 // variable. 2278 if (!D->isStaticLocal() && D->getTLSKind() == VarDecl::TLS_Dynamic && 2279 Context.getTargetInfo().getTriple().isMacOSX()) 2280 Linkage = llvm::GlobalValue::InternalLinkage; 2281 2282 GV->setLinkage(Linkage); 2283 if (D->hasAttr<DLLImportAttr>()) 2284 GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass); 2285 else if (D->hasAttr<DLLExportAttr>()) 2286 GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass); 2287 else 2288 GV->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass); 2289 2290 if (Linkage == llvm::GlobalVariable::CommonLinkage) 2291 // common vars aren't constant even if declared const. 2292 GV->setConstant(false); 2293 2294 setNonAliasAttributes(D, GV); 2295 2296 if (D->getTLSKind() && !GV->isThreadLocal()) { 2297 if (D->getTLSKind() == VarDecl::TLS_Dynamic) 2298 CXXThreadLocals.push_back(std::make_pair(D, GV)); 2299 setTLSMode(GV, *D); 2300 } 2301 2302 maybeSetTrivialComdat(*D, *GV); 2303 2304 // Emit the initializer function if necessary. 2305 if (NeedsGlobalCtor || NeedsGlobalDtor) 2306 EmitCXXGlobalVarDeclInitFunc(D, GV, NeedsGlobalCtor); 2307 2308 SanitizerMD->reportGlobalToASan(GV, *D, NeedsGlobalCtor); 2309 2310 // Emit global variable debug information. 2311 if (CGDebugInfo *DI = getModuleDebugInfo()) 2312 if (getCodeGenOpts().getDebugInfo() >= CodeGenOptions::LimitedDebugInfo) 2313 DI->EmitGlobalVariable(GV, D); 2314 } 2315 2316 static bool isVarDeclStrongDefinition(const ASTContext &Context, 2317 CodeGenModule &CGM, const VarDecl *D, 2318 bool NoCommon) { 2319 // Don't give variables common linkage if -fno-common was specified unless it 2320 // was overridden by a NoCommon attribute. 2321 if ((NoCommon || D->hasAttr<NoCommonAttr>()) && !D->hasAttr<CommonAttr>()) 2322 return true; 2323 2324 // C11 6.9.2/2: 2325 // A declaration of an identifier for an object that has file scope without 2326 // an initializer, and without a storage-class specifier or with the 2327 // storage-class specifier static, constitutes a tentative definition. 2328 if (D->getInit() || D->hasExternalStorage()) 2329 return true; 2330 2331 // A variable cannot be both common and exist in a section. 2332 if (D->hasAttr<SectionAttr>()) 2333 return true; 2334 2335 // Thread local vars aren't considered common linkage. 2336 if (D->getTLSKind()) 2337 return true; 2338 2339 // Tentative definitions marked with WeakImportAttr are true definitions. 2340 if (D->hasAttr<WeakImportAttr>()) 2341 return true; 2342 2343 // A variable cannot be both common and exist in a comdat. 2344 if (shouldBeInCOMDAT(CGM, *D)) 2345 return true; 2346 2347 // Declarations with a required alignment do not have common linakge in MSVC 2348 // mode. 2349 if (Context.getLangOpts().MSVCCompat) { 2350 if (D->hasAttr<AlignedAttr>()) 2351 return true; 2352 QualType VarType = D->getType(); 2353 if (Context.isAlignmentRequired(VarType)) 2354 return true; 2355 2356 if (const auto *RT = VarType->getAs<RecordType>()) { 2357 const RecordDecl *RD = RT->getDecl(); 2358 for (const FieldDecl *FD : RD->fields()) { 2359 if (FD->isBitField()) 2360 continue; 2361 if (FD->hasAttr<AlignedAttr>()) 2362 return true; 2363 if (Context.isAlignmentRequired(FD->getType())) 2364 return true; 2365 } 2366 } 2367 } 2368 2369 return false; 2370 } 2371 2372 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageForDeclarator( 2373 const DeclaratorDecl *D, GVALinkage Linkage, bool IsConstantVariable) { 2374 if (Linkage == GVA_Internal) 2375 return llvm::Function::InternalLinkage; 2376 2377 if (D->hasAttr<WeakAttr>()) { 2378 if (IsConstantVariable) 2379 return llvm::GlobalVariable::WeakODRLinkage; 2380 else 2381 return llvm::GlobalVariable::WeakAnyLinkage; 2382 } 2383 2384 // We are guaranteed to have a strong definition somewhere else, 2385 // so we can use available_externally linkage. 2386 if (Linkage == GVA_AvailableExternally) 2387 return llvm::Function::AvailableExternallyLinkage; 2388 2389 // Note that Apple's kernel linker doesn't support symbol 2390 // coalescing, so we need to avoid linkonce and weak linkages there. 2391 // Normally, this means we just map to internal, but for explicit 2392 // instantiations we'll map to external. 2393 2394 // In C++, the compiler has to emit a definition in every translation unit 2395 // that references the function. We should use linkonce_odr because 2396 // a) if all references in this translation unit are optimized away, we 2397 // don't need to codegen it. b) if the function persists, it needs to be 2398 // merged with other definitions. c) C++ has the ODR, so we know the 2399 // definition is dependable. 2400 if (Linkage == GVA_DiscardableODR) 2401 return !Context.getLangOpts().AppleKext ? llvm::Function::LinkOnceODRLinkage 2402 : llvm::Function::InternalLinkage; 2403 2404 // An explicit instantiation of a template has weak linkage, since 2405 // explicit instantiations can occur in multiple translation units 2406 // and must all be equivalent. However, we are not allowed to 2407 // throw away these explicit instantiations. 2408 if (Linkage == GVA_StrongODR) 2409 return !Context.getLangOpts().AppleKext ? llvm::Function::WeakODRLinkage 2410 : llvm::Function::ExternalLinkage; 2411 2412 // C++ doesn't have tentative definitions and thus cannot have common 2413 // linkage. 2414 if (!getLangOpts().CPlusPlus && isa<VarDecl>(D) && 2415 !isVarDeclStrongDefinition(Context, *this, cast<VarDecl>(D), 2416 CodeGenOpts.NoCommon)) 2417 return llvm::GlobalVariable::CommonLinkage; 2418 2419 // selectany symbols are externally visible, so use weak instead of 2420 // linkonce. MSVC optimizes away references to const selectany globals, so 2421 // all definitions should be the same and ODR linkage should be used. 2422 // http://msdn.microsoft.com/en-us/library/5tkz6s71.aspx 2423 if (D->hasAttr<SelectAnyAttr>()) 2424 return llvm::GlobalVariable::WeakODRLinkage; 2425 2426 // Otherwise, we have strong external linkage. 2427 assert(Linkage == GVA_StrongExternal); 2428 return llvm::GlobalVariable::ExternalLinkage; 2429 } 2430 2431 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageVarDefinition( 2432 const VarDecl *VD, bool IsConstant) { 2433 GVALinkage Linkage = getContext().GetGVALinkageForVariable(VD); 2434 return getLLVMLinkageForDeclarator(VD, Linkage, IsConstant); 2435 } 2436 2437 /// Replace the uses of a function that was declared with a non-proto type. 2438 /// We want to silently drop extra arguments from call sites 2439 static void replaceUsesOfNonProtoConstant(llvm::Constant *old, 2440 llvm::Function *newFn) { 2441 // Fast path. 2442 if (old->use_empty()) return; 2443 2444 llvm::Type *newRetTy = newFn->getReturnType(); 2445 SmallVector<llvm::Value*, 4> newArgs; 2446 2447 for (llvm::Value::use_iterator ui = old->use_begin(), ue = old->use_end(); 2448 ui != ue; ) { 2449 llvm::Value::use_iterator use = ui++; // Increment before the use is erased. 2450 llvm::User *user = use->getUser(); 2451 2452 // Recognize and replace uses of bitcasts. Most calls to 2453 // unprototyped functions will use bitcasts. 2454 if (auto *bitcast = dyn_cast<llvm::ConstantExpr>(user)) { 2455 if (bitcast->getOpcode() == llvm::Instruction::BitCast) 2456 replaceUsesOfNonProtoConstant(bitcast, newFn); 2457 continue; 2458 } 2459 2460 // Recognize calls to the function. 2461 llvm::CallSite callSite(user); 2462 if (!callSite) continue; 2463 if (!callSite.isCallee(&*use)) continue; 2464 2465 // If the return types don't match exactly, then we can't 2466 // transform this call unless it's dead. 2467 if (callSite->getType() != newRetTy && !callSite->use_empty()) 2468 continue; 2469 2470 // Get the call site's attribute list. 2471 SmallVector<llvm::AttributeSet, 8> newAttrs; 2472 llvm::AttributeSet oldAttrs = callSite.getAttributes(); 2473 2474 // Collect any return attributes from the call. 2475 if (oldAttrs.hasAttributes(llvm::AttributeSet::ReturnIndex)) 2476 newAttrs.push_back( 2477 llvm::AttributeSet::get(newFn->getContext(), 2478 oldAttrs.getRetAttributes())); 2479 2480 // If the function was passed too few arguments, don't transform. 2481 unsigned newNumArgs = newFn->arg_size(); 2482 if (callSite.arg_size() < newNumArgs) continue; 2483 2484 // If extra arguments were passed, we silently drop them. 2485 // If any of the types mismatch, we don't transform. 2486 unsigned argNo = 0; 2487 bool dontTransform = false; 2488 for (llvm::Function::arg_iterator ai = newFn->arg_begin(), 2489 ae = newFn->arg_end(); ai != ae; ++ai, ++argNo) { 2490 if (callSite.getArgument(argNo)->getType() != ai->getType()) { 2491 dontTransform = true; 2492 break; 2493 } 2494 2495 // Add any parameter attributes. 2496 if (oldAttrs.hasAttributes(argNo + 1)) 2497 newAttrs. 2498 push_back(llvm:: 2499 AttributeSet::get(newFn->getContext(), 2500 oldAttrs.getParamAttributes(argNo + 1))); 2501 } 2502 if (dontTransform) 2503 continue; 2504 2505 if (oldAttrs.hasAttributes(llvm::AttributeSet::FunctionIndex)) 2506 newAttrs.push_back(llvm::AttributeSet::get(newFn->getContext(), 2507 oldAttrs.getFnAttributes())); 2508 2509 // Okay, we can transform this. Create the new call instruction and copy 2510 // over the required information. 2511 newArgs.append(callSite.arg_begin(), callSite.arg_begin() + argNo); 2512 2513 llvm::CallSite newCall; 2514 if (callSite.isCall()) { 2515 newCall = llvm::CallInst::Create(newFn, newArgs, "", 2516 callSite.getInstruction()); 2517 } else { 2518 auto *oldInvoke = cast<llvm::InvokeInst>(callSite.getInstruction()); 2519 newCall = llvm::InvokeInst::Create(newFn, 2520 oldInvoke->getNormalDest(), 2521 oldInvoke->getUnwindDest(), 2522 newArgs, "", 2523 callSite.getInstruction()); 2524 } 2525 newArgs.clear(); // for the next iteration 2526 2527 if (!newCall->getType()->isVoidTy()) 2528 newCall->takeName(callSite.getInstruction()); 2529 newCall.setAttributes( 2530 llvm::AttributeSet::get(newFn->getContext(), newAttrs)); 2531 newCall.setCallingConv(callSite.getCallingConv()); 2532 2533 // Finally, remove the old call, replacing any uses with the new one. 2534 if (!callSite->use_empty()) 2535 callSite->replaceAllUsesWith(newCall.getInstruction()); 2536 2537 // Copy debug location attached to CI. 2538 if (callSite->getDebugLoc()) 2539 newCall->setDebugLoc(callSite->getDebugLoc()); 2540 callSite->eraseFromParent(); 2541 } 2542 } 2543 2544 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we 2545 /// implement a function with no prototype, e.g. "int foo() {}". If there are 2546 /// existing call uses of the old function in the module, this adjusts them to 2547 /// call the new function directly. 2548 /// 2549 /// This is not just a cleanup: the always_inline pass requires direct calls to 2550 /// functions to be able to inline them. If there is a bitcast in the way, it 2551 /// won't inline them. Instcombine normally deletes these calls, but it isn't 2552 /// run at -O0. 2553 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old, 2554 llvm::Function *NewFn) { 2555 // If we're redefining a global as a function, don't transform it. 2556 if (!isa<llvm::Function>(Old)) return; 2557 2558 replaceUsesOfNonProtoConstant(Old, NewFn); 2559 } 2560 2561 void CodeGenModule::HandleCXXStaticMemberVarInstantiation(VarDecl *VD) { 2562 TemplateSpecializationKind TSK = VD->getTemplateSpecializationKind(); 2563 // If we have a definition, this might be a deferred decl. If the 2564 // instantiation is explicit, make sure we emit it at the end. 2565 if (VD->getDefinition() && TSK == TSK_ExplicitInstantiationDefinition) 2566 GetAddrOfGlobalVar(VD); 2567 2568 EmitTopLevelDecl(VD); 2569 } 2570 2571 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD, 2572 llvm::GlobalValue *GV) { 2573 const auto *D = cast<FunctionDecl>(GD.getDecl()); 2574 2575 // Compute the function info and LLVM type. 2576 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 2577 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 2578 2579 // Get or create the prototype for the function. 2580 if (!GV || (GV->getType()->getElementType() != Ty)) 2581 GV = cast<llvm::GlobalValue>(GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, 2582 /*DontDefer=*/true, 2583 /*IsForDefinition=*/true)); 2584 2585 // Already emitted. 2586 if (!GV->isDeclaration()) 2587 return; 2588 2589 // We need to set linkage and visibility on the function before 2590 // generating code for it because various parts of IR generation 2591 // want to propagate this information down (e.g. to local static 2592 // declarations). 2593 auto *Fn = cast<llvm::Function>(GV); 2594 setFunctionLinkage(GD, Fn); 2595 setFunctionDLLStorageClass(GD, Fn); 2596 2597 // FIXME: this is redundant with part of setFunctionDefinitionAttributes 2598 setGlobalVisibility(Fn, D); 2599 2600 MaybeHandleStaticInExternC(D, Fn); 2601 2602 maybeSetTrivialComdat(*D, *Fn); 2603 2604 CodeGenFunction(*this).GenerateCode(D, Fn, FI); 2605 2606 setFunctionDefinitionAttributes(D, Fn); 2607 SetLLVMFunctionAttributesForDefinition(D, Fn); 2608 2609 if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>()) 2610 AddGlobalCtor(Fn, CA->getPriority()); 2611 if (const DestructorAttr *DA = D->getAttr<DestructorAttr>()) 2612 AddGlobalDtor(Fn, DA->getPriority()); 2613 if (D->hasAttr<AnnotateAttr>()) 2614 AddGlobalAnnotations(D, Fn); 2615 } 2616 2617 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) { 2618 const auto *D = cast<ValueDecl>(GD.getDecl()); 2619 const AliasAttr *AA = D->getAttr<AliasAttr>(); 2620 assert(AA && "Not an alias?"); 2621 2622 StringRef MangledName = getMangledName(GD); 2623 2624 if (AA->getAliasee() == MangledName) { 2625 Diags.Report(AA->getLocation(), diag::err_cyclic_alias); 2626 return; 2627 } 2628 2629 // If there is a definition in the module, then it wins over the alias. 2630 // This is dubious, but allow it to be safe. Just ignore the alias. 2631 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 2632 if (Entry && !Entry->isDeclaration()) 2633 return; 2634 2635 Aliases.push_back(GD); 2636 2637 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType()); 2638 2639 // Create a reference to the named value. This ensures that it is emitted 2640 // if a deferred decl. 2641 llvm::Constant *Aliasee; 2642 if (isa<llvm::FunctionType>(DeclTy)) 2643 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GD, 2644 /*ForVTable=*/false); 2645 else 2646 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), 2647 llvm::PointerType::getUnqual(DeclTy), 2648 /*D=*/nullptr); 2649 2650 // Create the new alias itself, but don't set a name yet. 2651 auto *GA = llvm::GlobalAlias::create( 2652 cast<llvm::PointerType>(Aliasee->getType()), 2653 llvm::Function::ExternalLinkage, "", Aliasee, &getModule()); 2654 2655 if (Entry) { 2656 if (GA->getAliasee() == Entry) { 2657 Diags.Report(AA->getLocation(), diag::err_cyclic_alias); 2658 return; 2659 } 2660 2661 assert(Entry->isDeclaration()); 2662 2663 // If there is a declaration in the module, then we had an extern followed 2664 // by the alias, as in: 2665 // extern int test6(); 2666 // ... 2667 // int test6() __attribute__((alias("test7"))); 2668 // 2669 // Remove it and replace uses of it with the alias. 2670 GA->takeName(Entry); 2671 2672 Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA, 2673 Entry->getType())); 2674 Entry->eraseFromParent(); 2675 } else { 2676 GA->setName(MangledName); 2677 } 2678 2679 // Set attributes which are particular to an alias; this is a 2680 // specialization of the attributes which may be set on a global 2681 // variable/function. 2682 if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakRefAttr>() || 2683 D->isWeakImported()) { 2684 GA->setLinkage(llvm::Function::WeakAnyLinkage); 2685 } 2686 2687 if (const auto *VD = dyn_cast<VarDecl>(D)) 2688 if (VD->getTLSKind()) 2689 setTLSMode(GA, *VD); 2690 2691 setAliasAttributes(D, GA); 2692 } 2693 2694 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID, 2695 ArrayRef<llvm::Type*> Tys) { 2696 return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID, 2697 Tys); 2698 } 2699 2700 static llvm::StringMapEntry<llvm::GlobalVariable *> & 2701 GetConstantCFStringEntry(llvm::StringMap<llvm::GlobalVariable *> &Map, 2702 const StringLiteral *Literal, bool TargetIsLSB, 2703 bool &IsUTF16, unsigned &StringLength) { 2704 StringRef String = Literal->getString(); 2705 unsigned NumBytes = String.size(); 2706 2707 // Check for simple case. 2708 if (!Literal->containsNonAsciiOrNull()) { 2709 StringLength = NumBytes; 2710 return *Map.insert(std::make_pair(String, nullptr)).first; 2711 } 2712 2713 // Otherwise, convert the UTF8 literals into a string of shorts. 2714 IsUTF16 = true; 2715 2716 SmallVector<UTF16, 128> ToBuf(NumBytes + 1); // +1 for ending nulls. 2717 const UTF8 *FromPtr = (const UTF8 *)String.data(); 2718 UTF16 *ToPtr = &ToBuf[0]; 2719 2720 (void)ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, 2721 &ToPtr, ToPtr + NumBytes, 2722 strictConversion); 2723 2724 // ConvertUTF8toUTF16 returns the length in ToPtr. 2725 StringLength = ToPtr - &ToBuf[0]; 2726 2727 // Add an explicit null. 2728 *ToPtr = 0; 2729 return *Map.insert(std::make_pair( 2730 StringRef(reinterpret_cast<const char *>(ToBuf.data()), 2731 (StringLength + 1) * 2), 2732 nullptr)).first; 2733 } 2734 2735 static llvm::StringMapEntry<llvm::GlobalVariable *> & 2736 GetConstantStringEntry(llvm::StringMap<llvm::GlobalVariable *> &Map, 2737 const StringLiteral *Literal, unsigned &StringLength) { 2738 StringRef String = Literal->getString(); 2739 StringLength = String.size(); 2740 return *Map.insert(std::make_pair(String, nullptr)).first; 2741 } 2742 2743 ConstantAddress 2744 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) { 2745 unsigned StringLength = 0; 2746 bool isUTF16 = false; 2747 llvm::StringMapEntry<llvm::GlobalVariable *> &Entry = 2748 GetConstantCFStringEntry(CFConstantStringMap, Literal, 2749 getDataLayout().isLittleEndian(), isUTF16, 2750 StringLength); 2751 2752 if (auto *C = Entry.second) 2753 return ConstantAddress(C, CharUnits::fromQuantity(C->getAlignment())); 2754 2755 llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty); 2756 llvm::Constant *Zeros[] = { Zero, Zero }; 2757 llvm::Value *V; 2758 2759 // If we don't already have it, get __CFConstantStringClassReference. 2760 if (!CFConstantStringClassRef) { 2761 llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy); 2762 Ty = llvm::ArrayType::get(Ty, 0); 2763 llvm::Constant *GV = CreateRuntimeVariable(Ty, 2764 "__CFConstantStringClassReference"); 2765 // Decay array -> ptr 2766 V = llvm::ConstantExpr::getGetElementPtr(Ty, GV, Zeros); 2767 CFConstantStringClassRef = V; 2768 } 2769 else 2770 V = CFConstantStringClassRef; 2771 2772 QualType CFTy = getContext().getCFConstantStringType(); 2773 2774 auto *STy = cast<llvm::StructType>(getTypes().ConvertType(CFTy)); 2775 2776 llvm::Constant *Fields[4]; 2777 2778 // Class pointer. 2779 Fields[0] = cast<llvm::ConstantExpr>(V); 2780 2781 // Flags. 2782 llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy); 2783 Fields[1] = isUTF16 ? llvm::ConstantInt::get(Ty, 0x07d0) : 2784 llvm::ConstantInt::get(Ty, 0x07C8); 2785 2786 // String pointer. 2787 llvm::Constant *C = nullptr; 2788 if (isUTF16) { 2789 ArrayRef<uint16_t> Arr = llvm::makeArrayRef<uint16_t>( 2790 reinterpret_cast<uint16_t *>(const_cast<char *>(Entry.first().data())), 2791 Entry.first().size() / 2); 2792 C = llvm::ConstantDataArray::get(VMContext, Arr); 2793 } else { 2794 C = llvm::ConstantDataArray::getString(VMContext, Entry.first()); 2795 } 2796 2797 // Note: -fwritable-strings doesn't make the backing store strings of 2798 // CFStrings writable. (See <rdar://problem/10657500>) 2799 auto *GV = 2800 new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true, 2801 llvm::GlobalValue::PrivateLinkage, C, ".str"); 2802 GV->setUnnamedAddr(true); 2803 // Don't enforce the target's minimum global alignment, since the only use 2804 // of the string is via this class initializer. 2805 // FIXME: We set the section explicitly to avoid a bug in ld64 224.1. Without 2806 // it LLVM can merge the string with a non unnamed_addr one during LTO. Doing 2807 // that changes the section it ends in, which surprises ld64. 2808 if (isUTF16) { 2809 CharUnits Align = getContext().getTypeAlignInChars(getContext().ShortTy); 2810 GV->setAlignment(Align.getQuantity()); 2811 GV->setSection("__TEXT,__ustring"); 2812 } else { 2813 CharUnits Align = getContext().getTypeAlignInChars(getContext().CharTy); 2814 GV->setAlignment(Align.getQuantity()); 2815 GV->setSection("__TEXT,__cstring,cstring_literals"); 2816 } 2817 2818 // String. 2819 Fields[2] = 2820 llvm::ConstantExpr::getGetElementPtr(GV->getValueType(), GV, Zeros); 2821 2822 if (isUTF16) 2823 // Cast the UTF16 string to the correct type. 2824 Fields[2] = llvm::ConstantExpr::getBitCast(Fields[2], Int8PtrTy); 2825 2826 // String length. 2827 Ty = getTypes().ConvertType(getContext().LongTy); 2828 Fields[3] = llvm::ConstantInt::get(Ty, StringLength); 2829 2830 CharUnits Alignment = getPointerAlign(); 2831 2832 // The struct. 2833 C = llvm::ConstantStruct::get(STy, Fields); 2834 GV = new llvm::GlobalVariable(getModule(), C->getType(), true, 2835 llvm::GlobalVariable::PrivateLinkage, C, 2836 "_unnamed_cfstring_"); 2837 GV->setSection("__DATA,__cfstring"); 2838 GV->setAlignment(Alignment.getQuantity()); 2839 Entry.second = GV; 2840 2841 return ConstantAddress(GV, Alignment); 2842 } 2843 2844 ConstantAddress 2845 CodeGenModule::GetAddrOfConstantString(const StringLiteral *Literal) { 2846 unsigned StringLength = 0; 2847 llvm::StringMapEntry<llvm::GlobalVariable *> &Entry = 2848 GetConstantStringEntry(CFConstantStringMap, Literal, StringLength); 2849 2850 if (auto *C = Entry.second) 2851 return ConstantAddress(C, CharUnits::fromQuantity(C->getAlignment())); 2852 2853 llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty); 2854 llvm::Constant *Zeros[] = { Zero, Zero }; 2855 llvm::Value *V; 2856 // If we don't already have it, get _NSConstantStringClassReference. 2857 if (!ConstantStringClassRef) { 2858 std::string StringClass(getLangOpts().ObjCConstantStringClass); 2859 llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy); 2860 llvm::Constant *GV; 2861 if (LangOpts.ObjCRuntime.isNonFragile()) { 2862 std::string str = 2863 StringClass.empty() ? "OBJC_CLASS_$_NSConstantString" 2864 : "OBJC_CLASS_$_" + StringClass; 2865 GV = getObjCRuntime().GetClassGlobal(str); 2866 // Make sure the result is of the correct type. 2867 llvm::Type *PTy = llvm::PointerType::getUnqual(Ty); 2868 V = llvm::ConstantExpr::getBitCast(GV, PTy); 2869 ConstantStringClassRef = V; 2870 } else { 2871 std::string str = 2872 StringClass.empty() ? "_NSConstantStringClassReference" 2873 : "_" + StringClass + "ClassReference"; 2874 llvm::Type *PTy = llvm::ArrayType::get(Ty, 0); 2875 GV = CreateRuntimeVariable(PTy, str); 2876 // Decay array -> ptr 2877 V = llvm::ConstantExpr::getGetElementPtr(PTy, GV, Zeros); 2878 ConstantStringClassRef = V; 2879 } 2880 } else 2881 V = ConstantStringClassRef; 2882 2883 if (!NSConstantStringType) { 2884 // Construct the type for a constant NSString. 2885 RecordDecl *D = Context.buildImplicitRecord("__builtin_NSString"); 2886 D->startDefinition(); 2887 2888 QualType FieldTypes[3]; 2889 2890 // const int *isa; 2891 FieldTypes[0] = Context.getPointerType(Context.IntTy.withConst()); 2892 // const char *str; 2893 FieldTypes[1] = Context.getPointerType(Context.CharTy.withConst()); 2894 // unsigned int length; 2895 FieldTypes[2] = Context.UnsignedIntTy; 2896 2897 // Create fields 2898 for (unsigned i = 0; i < 3; ++i) { 2899 FieldDecl *Field = FieldDecl::Create(Context, D, 2900 SourceLocation(), 2901 SourceLocation(), nullptr, 2902 FieldTypes[i], /*TInfo=*/nullptr, 2903 /*BitWidth=*/nullptr, 2904 /*Mutable=*/false, 2905 ICIS_NoInit); 2906 Field->setAccess(AS_public); 2907 D->addDecl(Field); 2908 } 2909 2910 D->completeDefinition(); 2911 QualType NSTy = Context.getTagDeclType(D); 2912 NSConstantStringType = cast<llvm::StructType>(getTypes().ConvertType(NSTy)); 2913 } 2914 2915 llvm::Constant *Fields[3]; 2916 2917 // Class pointer. 2918 Fields[0] = cast<llvm::ConstantExpr>(V); 2919 2920 // String pointer. 2921 llvm::Constant *C = 2922 llvm::ConstantDataArray::getString(VMContext, Entry.first()); 2923 2924 llvm::GlobalValue::LinkageTypes Linkage; 2925 bool isConstant; 2926 Linkage = llvm::GlobalValue::PrivateLinkage; 2927 isConstant = !LangOpts.WritableStrings; 2928 2929 auto *GV = new llvm::GlobalVariable(getModule(), C->getType(), isConstant, 2930 Linkage, C, ".str"); 2931 GV->setUnnamedAddr(true); 2932 // Don't enforce the target's minimum global alignment, since the only use 2933 // of the string is via this class initializer. 2934 CharUnits Align = getContext().getTypeAlignInChars(getContext().CharTy); 2935 GV->setAlignment(Align.getQuantity()); 2936 Fields[1] = 2937 llvm::ConstantExpr::getGetElementPtr(GV->getValueType(), GV, Zeros); 2938 2939 // String length. 2940 llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy); 2941 Fields[2] = llvm::ConstantInt::get(Ty, StringLength); 2942 2943 // The struct. 2944 CharUnits Alignment = getPointerAlign(); 2945 C = llvm::ConstantStruct::get(NSConstantStringType, Fields); 2946 GV = new llvm::GlobalVariable(getModule(), C->getType(), true, 2947 llvm::GlobalVariable::PrivateLinkage, C, 2948 "_unnamed_nsstring_"); 2949 GV->setAlignment(Alignment.getQuantity()); 2950 const char *NSStringSection = "__OBJC,__cstring_object,regular,no_dead_strip"; 2951 const char *NSStringNonFragileABISection = 2952 "__DATA,__objc_stringobj,regular,no_dead_strip"; 2953 // FIXME. Fix section. 2954 GV->setSection(LangOpts.ObjCRuntime.isNonFragile() 2955 ? NSStringNonFragileABISection 2956 : NSStringSection); 2957 Entry.second = GV; 2958 2959 return ConstantAddress(GV, Alignment); 2960 } 2961 2962 QualType CodeGenModule::getObjCFastEnumerationStateType() { 2963 if (ObjCFastEnumerationStateType.isNull()) { 2964 RecordDecl *D = Context.buildImplicitRecord("__objcFastEnumerationState"); 2965 D->startDefinition(); 2966 2967 QualType FieldTypes[] = { 2968 Context.UnsignedLongTy, 2969 Context.getPointerType(Context.getObjCIdType()), 2970 Context.getPointerType(Context.UnsignedLongTy), 2971 Context.getConstantArrayType(Context.UnsignedLongTy, 2972 llvm::APInt(32, 5), ArrayType::Normal, 0) 2973 }; 2974 2975 for (size_t i = 0; i < 4; ++i) { 2976 FieldDecl *Field = FieldDecl::Create(Context, 2977 D, 2978 SourceLocation(), 2979 SourceLocation(), nullptr, 2980 FieldTypes[i], /*TInfo=*/nullptr, 2981 /*BitWidth=*/nullptr, 2982 /*Mutable=*/false, 2983 ICIS_NoInit); 2984 Field->setAccess(AS_public); 2985 D->addDecl(Field); 2986 } 2987 2988 D->completeDefinition(); 2989 ObjCFastEnumerationStateType = Context.getTagDeclType(D); 2990 } 2991 2992 return ObjCFastEnumerationStateType; 2993 } 2994 2995 llvm::Constant * 2996 CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) { 2997 assert(!E->getType()->isPointerType() && "Strings are always arrays"); 2998 2999 // Don't emit it as the address of the string, emit the string data itself 3000 // as an inline array. 3001 if (E->getCharByteWidth() == 1) { 3002 SmallString<64> Str(E->getString()); 3003 3004 // Resize the string to the right size, which is indicated by its type. 3005 const ConstantArrayType *CAT = Context.getAsConstantArrayType(E->getType()); 3006 Str.resize(CAT->getSize().getZExtValue()); 3007 return llvm::ConstantDataArray::getString(VMContext, Str, false); 3008 } 3009 3010 auto *AType = cast<llvm::ArrayType>(getTypes().ConvertType(E->getType())); 3011 llvm::Type *ElemTy = AType->getElementType(); 3012 unsigned NumElements = AType->getNumElements(); 3013 3014 // Wide strings have either 2-byte or 4-byte elements. 3015 if (ElemTy->getPrimitiveSizeInBits() == 16) { 3016 SmallVector<uint16_t, 32> Elements; 3017 Elements.reserve(NumElements); 3018 3019 for(unsigned i = 0, e = E->getLength(); i != e; ++i) 3020 Elements.push_back(E->getCodeUnit(i)); 3021 Elements.resize(NumElements); 3022 return llvm::ConstantDataArray::get(VMContext, Elements); 3023 } 3024 3025 assert(ElemTy->getPrimitiveSizeInBits() == 32); 3026 SmallVector<uint32_t, 32> Elements; 3027 Elements.reserve(NumElements); 3028 3029 for(unsigned i = 0, e = E->getLength(); i != e; ++i) 3030 Elements.push_back(E->getCodeUnit(i)); 3031 Elements.resize(NumElements); 3032 return llvm::ConstantDataArray::get(VMContext, Elements); 3033 } 3034 3035 static llvm::GlobalVariable * 3036 GenerateStringLiteral(llvm::Constant *C, llvm::GlobalValue::LinkageTypes LT, 3037 CodeGenModule &CGM, StringRef GlobalName, 3038 CharUnits Alignment) { 3039 // OpenCL v1.2 s6.5.3: a string literal is in the constant address space. 3040 unsigned AddrSpace = 0; 3041 if (CGM.getLangOpts().OpenCL) 3042 AddrSpace = CGM.getContext().getTargetAddressSpace(LangAS::opencl_constant); 3043 3044 llvm::Module &M = CGM.getModule(); 3045 // Create a global variable for this string 3046 auto *GV = new llvm::GlobalVariable( 3047 M, C->getType(), !CGM.getLangOpts().WritableStrings, LT, C, GlobalName, 3048 nullptr, llvm::GlobalVariable::NotThreadLocal, AddrSpace); 3049 GV->setAlignment(Alignment.getQuantity()); 3050 GV->setUnnamedAddr(true); 3051 if (GV->isWeakForLinker()) { 3052 assert(CGM.supportsCOMDAT() && "Only COFF uses weak string literals"); 3053 GV->setComdat(M.getOrInsertComdat(GV->getName())); 3054 } 3055 3056 return GV; 3057 } 3058 3059 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a 3060 /// constant array for the given string literal. 3061 ConstantAddress 3062 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S, 3063 StringRef Name) { 3064 CharUnits Alignment = getContext().getAlignOfGlobalVarInChars(S->getType()); 3065 3066 llvm::Constant *C = GetConstantArrayFromStringLiteral(S); 3067 llvm::GlobalVariable **Entry = nullptr; 3068 if (!LangOpts.WritableStrings) { 3069 Entry = &ConstantStringMap[C]; 3070 if (auto GV = *Entry) { 3071 if (Alignment.getQuantity() > GV->getAlignment()) 3072 GV->setAlignment(Alignment.getQuantity()); 3073 return ConstantAddress(GV, Alignment); 3074 } 3075 } 3076 3077 SmallString<256> MangledNameBuffer; 3078 StringRef GlobalVariableName; 3079 llvm::GlobalValue::LinkageTypes LT; 3080 3081 // Mangle the string literal if the ABI allows for it. However, we cannot 3082 // do this if we are compiling with ASan or -fwritable-strings because they 3083 // rely on strings having normal linkage. 3084 if (!LangOpts.WritableStrings && 3085 !LangOpts.Sanitize.has(SanitizerKind::Address) && 3086 getCXXABI().getMangleContext().shouldMangleStringLiteral(S)) { 3087 llvm::raw_svector_ostream Out(MangledNameBuffer); 3088 getCXXABI().getMangleContext().mangleStringLiteral(S, Out); 3089 3090 LT = llvm::GlobalValue::LinkOnceODRLinkage; 3091 GlobalVariableName = MangledNameBuffer; 3092 } else { 3093 LT = llvm::GlobalValue::PrivateLinkage; 3094 GlobalVariableName = Name; 3095 } 3096 3097 auto GV = GenerateStringLiteral(C, LT, *this, GlobalVariableName, Alignment); 3098 if (Entry) 3099 *Entry = GV; 3100 3101 SanitizerMD->reportGlobalToASan(GV, S->getStrTokenLoc(0), "<string literal>", 3102 QualType()); 3103 return ConstantAddress(GV, Alignment); 3104 } 3105 3106 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant 3107 /// array for the given ObjCEncodeExpr node. 3108 ConstantAddress 3109 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) { 3110 std::string Str; 3111 getContext().getObjCEncodingForType(E->getEncodedType(), Str); 3112 3113 return GetAddrOfConstantCString(Str); 3114 } 3115 3116 /// GetAddrOfConstantCString - Returns a pointer to a character array containing 3117 /// the literal and a terminating '\0' character. 3118 /// The result has pointer to array type. 3119 ConstantAddress CodeGenModule::GetAddrOfConstantCString( 3120 const std::string &Str, const char *GlobalName) { 3121 StringRef StrWithNull(Str.c_str(), Str.size() + 1); 3122 CharUnits Alignment = 3123 getContext().getAlignOfGlobalVarInChars(getContext().CharTy); 3124 3125 llvm::Constant *C = 3126 llvm::ConstantDataArray::getString(getLLVMContext(), StrWithNull, false); 3127 3128 // Don't share any string literals if strings aren't constant. 3129 llvm::GlobalVariable **Entry = nullptr; 3130 if (!LangOpts.WritableStrings) { 3131 Entry = &ConstantStringMap[C]; 3132 if (auto GV = *Entry) { 3133 if (Alignment.getQuantity() > GV->getAlignment()) 3134 GV->setAlignment(Alignment.getQuantity()); 3135 return ConstantAddress(GV, Alignment); 3136 } 3137 } 3138 3139 // Get the default prefix if a name wasn't specified. 3140 if (!GlobalName) 3141 GlobalName = ".str"; 3142 // Create a global variable for this. 3143 auto GV = GenerateStringLiteral(C, llvm::GlobalValue::PrivateLinkage, *this, 3144 GlobalName, Alignment); 3145 if (Entry) 3146 *Entry = GV; 3147 return ConstantAddress(GV, Alignment); 3148 } 3149 3150 ConstantAddress CodeGenModule::GetAddrOfGlobalTemporary( 3151 const MaterializeTemporaryExpr *E, const Expr *Init) { 3152 assert((E->getStorageDuration() == SD_Static || 3153 E->getStorageDuration() == SD_Thread) && "not a global temporary"); 3154 const auto *VD = cast<VarDecl>(E->getExtendingDecl()); 3155 3156 // If we're not materializing a subobject of the temporary, keep the 3157 // cv-qualifiers from the type of the MaterializeTemporaryExpr. 3158 QualType MaterializedType = Init->getType(); 3159 if (Init == E->GetTemporaryExpr()) 3160 MaterializedType = E->getType(); 3161 3162 CharUnits Align = getContext().getTypeAlignInChars(MaterializedType); 3163 3164 if (llvm::Constant *Slot = MaterializedGlobalTemporaryMap[E]) 3165 return ConstantAddress(Slot, Align); 3166 3167 // FIXME: If an externally-visible declaration extends multiple temporaries, 3168 // we need to give each temporary the same name in every translation unit (and 3169 // we also need to make the temporaries externally-visible). 3170 SmallString<256> Name; 3171 llvm::raw_svector_ostream Out(Name); 3172 getCXXABI().getMangleContext().mangleReferenceTemporary( 3173 VD, E->getManglingNumber(), Out); 3174 3175 APValue *Value = nullptr; 3176 if (E->getStorageDuration() == SD_Static) { 3177 // We might have a cached constant initializer for this temporary. Note 3178 // that this might have a different value from the value computed by 3179 // evaluating the initializer if the surrounding constant expression 3180 // modifies the temporary. 3181 Value = getContext().getMaterializedTemporaryValue(E, false); 3182 if (Value && Value->isUninit()) 3183 Value = nullptr; 3184 } 3185 3186 // Try evaluating it now, it might have a constant initializer. 3187 Expr::EvalResult EvalResult; 3188 if (!Value && Init->EvaluateAsRValue(EvalResult, getContext()) && 3189 !EvalResult.hasSideEffects()) 3190 Value = &EvalResult.Val; 3191 3192 llvm::Constant *InitialValue = nullptr; 3193 bool Constant = false; 3194 llvm::Type *Type; 3195 if (Value) { 3196 // The temporary has a constant initializer, use it. 3197 InitialValue = EmitConstantValue(*Value, MaterializedType, nullptr); 3198 Constant = isTypeConstant(MaterializedType, /*ExcludeCtor*/Value); 3199 Type = InitialValue->getType(); 3200 } else { 3201 // No initializer, the initialization will be provided when we 3202 // initialize the declaration which performed lifetime extension. 3203 Type = getTypes().ConvertTypeForMem(MaterializedType); 3204 } 3205 3206 // Create a global variable for this lifetime-extended temporary. 3207 llvm::GlobalValue::LinkageTypes Linkage = 3208 getLLVMLinkageVarDefinition(VD, Constant); 3209 if (Linkage == llvm::GlobalVariable::ExternalLinkage) { 3210 const VarDecl *InitVD; 3211 if (VD->isStaticDataMember() && VD->getAnyInitializer(InitVD) && 3212 isa<CXXRecordDecl>(InitVD->getLexicalDeclContext())) { 3213 // Temporaries defined inside a class get linkonce_odr linkage because the 3214 // class can be defined in multipe translation units. 3215 Linkage = llvm::GlobalVariable::LinkOnceODRLinkage; 3216 } else { 3217 // There is no need for this temporary to have external linkage if the 3218 // VarDecl has external linkage. 3219 Linkage = llvm::GlobalVariable::InternalLinkage; 3220 } 3221 } 3222 unsigned AddrSpace = GetGlobalVarAddressSpace( 3223 VD, getContext().getTargetAddressSpace(MaterializedType)); 3224 auto *GV = new llvm::GlobalVariable( 3225 getModule(), Type, Constant, Linkage, InitialValue, Name.c_str(), 3226 /*InsertBefore=*/nullptr, llvm::GlobalVariable::NotThreadLocal, 3227 AddrSpace); 3228 setGlobalVisibility(GV, VD); 3229 GV->setAlignment(Align.getQuantity()); 3230 if (supportsCOMDAT() && GV->isWeakForLinker()) 3231 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 3232 if (VD->getTLSKind()) 3233 setTLSMode(GV, *VD); 3234 MaterializedGlobalTemporaryMap[E] = GV; 3235 return ConstantAddress(GV, Align); 3236 } 3237 3238 /// EmitObjCPropertyImplementations - Emit information for synthesized 3239 /// properties for an implementation. 3240 void CodeGenModule::EmitObjCPropertyImplementations(const 3241 ObjCImplementationDecl *D) { 3242 for (const auto *PID : D->property_impls()) { 3243 // Dynamic is just for type-checking. 3244 if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) { 3245 ObjCPropertyDecl *PD = PID->getPropertyDecl(); 3246 3247 // Determine which methods need to be implemented, some may have 3248 // been overridden. Note that ::isPropertyAccessor is not the method 3249 // we want, that just indicates if the decl came from a 3250 // property. What we want to know is if the method is defined in 3251 // this implementation. 3252 if (!D->getInstanceMethod(PD->getGetterName())) 3253 CodeGenFunction(*this).GenerateObjCGetter( 3254 const_cast<ObjCImplementationDecl *>(D), PID); 3255 if (!PD->isReadOnly() && 3256 !D->getInstanceMethod(PD->getSetterName())) 3257 CodeGenFunction(*this).GenerateObjCSetter( 3258 const_cast<ObjCImplementationDecl *>(D), PID); 3259 } 3260 } 3261 } 3262 3263 static bool needsDestructMethod(ObjCImplementationDecl *impl) { 3264 const ObjCInterfaceDecl *iface = impl->getClassInterface(); 3265 for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin(); 3266 ivar; ivar = ivar->getNextIvar()) 3267 if (ivar->getType().isDestructedType()) 3268 return true; 3269 3270 return false; 3271 } 3272 3273 static bool AllTrivialInitializers(CodeGenModule &CGM, 3274 ObjCImplementationDecl *D) { 3275 CodeGenFunction CGF(CGM); 3276 for (ObjCImplementationDecl::init_iterator B = D->init_begin(), 3277 E = D->init_end(); B != E; ++B) { 3278 CXXCtorInitializer *CtorInitExp = *B; 3279 Expr *Init = CtorInitExp->getInit(); 3280 if (!CGF.isTrivialInitializer(Init)) 3281 return false; 3282 } 3283 return true; 3284 } 3285 3286 /// EmitObjCIvarInitializations - Emit information for ivar initialization 3287 /// for an implementation. 3288 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) { 3289 // We might need a .cxx_destruct even if we don't have any ivar initializers. 3290 if (needsDestructMethod(D)) { 3291 IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct"); 3292 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 3293 ObjCMethodDecl *DTORMethod = 3294 ObjCMethodDecl::Create(getContext(), D->getLocation(), D->getLocation(), 3295 cxxSelector, getContext().VoidTy, nullptr, D, 3296 /*isInstance=*/true, /*isVariadic=*/false, 3297 /*isPropertyAccessor=*/true, /*isImplicitlyDeclared=*/true, 3298 /*isDefined=*/false, ObjCMethodDecl::Required); 3299 D->addInstanceMethod(DTORMethod); 3300 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false); 3301 D->setHasDestructors(true); 3302 } 3303 3304 // If the implementation doesn't have any ivar initializers, we don't need 3305 // a .cxx_construct. 3306 if (D->getNumIvarInitializers() == 0 || 3307 AllTrivialInitializers(*this, D)) 3308 return; 3309 3310 IdentifierInfo *II = &getContext().Idents.get(".cxx_construct"); 3311 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 3312 // The constructor returns 'self'. 3313 ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(getContext(), 3314 D->getLocation(), 3315 D->getLocation(), 3316 cxxSelector, 3317 getContext().getObjCIdType(), 3318 nullptr, D, /*isInstance=*/true, 3319 /*isVariadic=*/false, 3320 /*isPropertyAccessor=*/true, 3321 /*isImplicitlyDeclared=*/true, 3322 /*isDefined=*/false, 3323 ObjCMethodDecl::Required); 3324 D->addInstanceMethod(CTORMethod); 3325 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true); 3326 D->setHasNonZeroConstructors(true); 3327 } 3328 3329 /// EmitNamespace - Emit all declarations in a namespace. 3330 void CodeGenModule::EmitNamespace(const NamespaceDecl *ND) { 3331 for (auto *I : ND->decls()) { 3332 if (const auto *VD = dyn_cast<VarDecl>(I)) 3333 if (VD->getTemplateSpecializationKind() != TSK_ExplicitSpecialization && 3334 VD->getTemplateSpecializationKind() != TSK_Undeclared) 3335 continue; 3336 EmitTopLevelDecl(I); 3337 } 3338 } 3339 3340 // EmitLinkageSpec - Emit all declarations in a linkage spec. 3341 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) { 3342 if (LSD->getLanguage() != LinkageSpecDecl::lang_c && 3343 LSD->getLanguage() != LinkageSpecDecl::lang_cxx) { 3344 ErrorUnsupported(LSD, "linkage spec"); 3345 return; 3346 } 3347 3348 for (auto *I : LSD->decls()) { 3349 // Meta-data for ObjC class includes references to implemented methods. 3350 // Generate class's method definitions first. 3351 if (auto *OID = dyn_cast<ObjCImplDecl>(I)) { 3352 for (auto *M : OID->methods()) 3353 EmitTopLevelDecl(M); 3354 } 3355 EmitTopLevelDecl(I); 3356 } 3357 } 3358 3359 /// EmitTopLevelDecl - Emit code for a single top level declaration. 3360 void CodeGenModule::EmitTopLevelDecl(Decl *D) { 3361 // Ignore dependent declarations. 3362 if (D->getDeclContext() && D->getDeclContext()->isDependentContext()) 3363 return; 3364 3365 switch (D->getKind()) { 3366 case Decl::CXXConversion: 3367 case Decl::CXXMethod: 3368 case Decl::Function: 3369 // Skip function templates 3370 if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() || 3371 cast<FunctionDecl>(D)->isLateTemplateParsed()) 3372 return; 3373 3374 EmitGlobal(cast<FunctionDecl>(D)); 3375 // Always provide some coverage mapping 3376 // even for the functions that aren't emitted. 3377 AddDeferredUnusedCoverageMapping(D); 3378 break; 3379 3380 case Decl::Var: 3381 // Skip variable templates 3382 if (cast<VarDecl>(D)->getDescribedVarTemplate()) 3383 return; 3384 case Decl::VarTemplateSpecialization: 3385 EmitGlobal(cast<VarDecl>(D)); 3386 break; 3387 3388 // Indirect fields from global anonymous structs and unions can be 3389 // ignored; only the actual variable requires IR gen support. 3390 case Decl::IndirectField: 3391 break; 3392 3393 // C++ Decls 3394 case Decl::Namespace: 3395 EmitNamespace(cast<NamespaceDecl>(D)); 3396 break; 3397 // No code generation needed. 3398 case Decl::UsingShadow: 3399 case Decl::ClassTemplate: 3400 case Decl::VarTemplate: 3401 case Decl::VarTemplatePartialSpecialization: 3402 case Decl::FunctionTemplate: 3403 case Decl::TypeAliasTemplate: 3404 case Decl::Block: 3405 case Decl::Empty: 3406 break; 3407 case Decl::Using: // using X; [C++] 3408 if (CGDebugInfo *DI = getModuleDebugInfo()) 3409 DI->EmitUsingDecl(cast<UsingDecl>(*D)); 3410 return; 3411 case Decl::NamespaceAlias: 3412 if (CGDebugInfo *DI = getModuleDebugInfo()) 3413 DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(*D)); 3414 return; 3415 case Decl::UsingDirective: // using namespace X; [C++] 3416 if (CGDebugInfo *DI = getModuleDebugInfo()) 3417 DI->EmitUsingDirective(cast<UsingDirectiveDecl>(*D)); 3418 return; 3419 case Decl::CXXConstructor: 3420 // Skip function templates 3421 if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() || 3422 cast<FunctionDecl>(D)->isLateTemplateParsed()) 3423 return; 3424 3425 getCXXABI().EmitCXXConstructors(cast<CXXConstructorDecl>(D)); 3426 break; 3427 case Decl::CXXDestructor: 3428 if (cast<FunctionDecl>(D)->isLateTemplateParsed()) 3429 return; 3430 getCXXABI().EmitCXXDestructors(cast<CXXDestructorDecl>(D)); 3431 break; 3432 3433 case Decl::StaticAssert: 3434 // Nothing to do. 3435 break; 3436 3437 // Objective-C Decls 3438 3439 // Forward declarations, no (immediate) code generation. 3440 case Decl::ObjCInterface: 3441 case Decl::ObjCCategory: 3442 break; 3443 3444 case Decl::ObjCProtocol: { 3445 auto *Proto = cast<ObjCProtocolDecl>(D); 3446 if (Proto->isThisDeclarationADefinition()) 3447 ObjCRuntime->GenerateProtocol(Proto); 3448 break; 3449 } 3450 3451 case Decl::ObjCCategoryImpl: 3452 // Categories have properties but don't support synthesize so we 3453 // can ignore them here. 3454 ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D)); 3455 break; 3456 3457 case Decl::ObjCImplementation: { 3458 auto *OMD = cast<ObjCImplementationDecl>(D); 3459 EmitObjCPropertyImplementations(OMD); 3460 EmitObjCIvarInitializations(OMD); 3461 ObjCRuntime->GenerateClass(OMD); 3462 // Emit global variable debug information. 3463 if (CGDebugInfo *DI = getModuleDebugInfo()) 3464 if (getCodeGenOpts().getDebugInfo() >= CodeGenOptions::LimitedDebugInfo) 3465 DI->getOrCreateInterfaceType(getContext().getObjCInterfaceType( 3466 OMD->getClassInterface()), OMD->getLocation()); 3467 break; 3468 } 3469 case Decl::ObjCMethod: { 3470 auto *OMD = cast<ObjCMethodDecl>(D); 3471 // If this is not a prototype, emit the body. 3472 if (OMD->getBody()) 3473 CodeGenFunction(*this).GenerateObjCMethod(OMD); 3474 break; 3475 } 3476 case Decl::ObjCCompatibleAlias: 3477 ObjCRuntime->RegisterAlias(cast<ObjCCompatibleAliasDecl>(D)); 3478 break; 3479 3480 case Decl::LinkageSpec: 3481 EmitLinkageSpec(cast<LinkageSpecDecl>(D)); 3482 break; 3483 3484 case Decl::FileScopeAsm: { 3485 // File-scope asm is ignored during device-side CUDA compilation. 3486 if (LangOpts.CUDA && LangOpts.CUDAIsDevice) 3487 break; 3488 auto *AD = cast<FileScopeAsmDecl>(D); 3489 getModule().appendModuleInlineAsm(AD->getAsmString()->getString()); 3490 break; 3491 } 3492 3493 case Decl::Import: { 3494 auto *Import = cast<ImportDecl>(D); 3495 3496 // Ignore import declarations that come from imported modules. 3497 if (Import->getImportedOwningModule()) 3498 break; 3499 if (CGDebugInfo *DI = getModuleDebugInfo()) 3500 DI->EmitImportDecl(*Import); 3501 3502 ImportedModules.insert(Import->getImportedModule()); 3503 break; 3504 } 3505 3506 case Decl::OMPThreadPrivate: 3507 EmitOMPThreadPrivateDecl(cast<OMPThreadPrivateDecl>(D)); 3508 break; 3509 3510 case Decl::ClassTemplateSpecialization: { 3511 const auto *Spec = cast<ClassTemplateSpecializationDecl>(D); 3512 if (DebugInfo && 3513 Spec->getSpecializationKind() == TSK_ExplicitInstantiationDefinition && 3514 Spec->hasDefinition()) 3515 DebugInfo->completeTemplateDefinition(*Spec); 3516 break; 3517 } 3518 3519 default: 3520 // Make sure we handled everything we should, every other kind is a 3521 // non-top-level decl. FIXME: Would be nice to have an isTopLevelDeclKind 3522 // function. Need to recode Decl::Kind to do that easily. 3523 assert(isa<TypeDecl>(D) && "Unsupported decl kind"); 3524 break; 3525 } 3526 } 3527 3528 void CodeGenModule::AddDeferredUnusedCoverageMapping(Decl *D) { 3529 // Do we need to generate coverage mapping? 3530 if (!CodeGenOpts.CoverageMapping) 3531 return; 3532 switch (D->getKind()) { 3533 case Decl::CXXConversion: 3534 case Decl::CXXMethod: 3535 case Decl::Function: 3536 case Decl::ObjCMethod: 3537 case Decl::CXXConstructor: 3538 case Decl::CXXDestructor: { 3539 if (!cast<FunctionDecl>(D)->doesThisDeclarationHaveABody()) 3540 return; 3541 auto I = DeferredEmptyCoverageMappingDecls.find(D); 3542 if (I == DeferredEmptyCoverageMappingDecls.end()) 3543 DeferredEmptyCoverageMappingDecls[D] = true; 3544 break; 3545 } 3546 default: 3547 break; 3548 }; 3549 } 3550 3551 void CodeGenModule::ClearUnusedCoverageMapping(const Decl *D) { 3552 // Do we need to generate coverage mapping? 3553 if (!CodeGenOpts.CoverageMapping) 3554 return; 3555 if (const auto *Fn = dyn_cast<FunctionDecl>(D)) { 3556 if (Fn->isTemplateInstantiation()) 3557 ClearUnusedCoverageMapping(Fn->getTemplateInstantiationPattern()); 3558 } 3559 auto I = DeferredEmptyCoverageMappingDecls.find(D); 3560 if (I == DeferredEmptyCoverageMappingDecls.end()) 3561 DeferredEmptyCoverageMappingDecls[D] = false; 3562 else 3563 I->second = false; 3564 } 3565 3566 void CodeGenModule::EmitDeferredUnusedCoverageMappings() { 3567 std::vector<const Decl *> DeferredDecls; 3568 for (const auto &I : DeferredEmptyCoverageMappingDecls) { 3569 if (!I.second) 3570 continue; 3571 DeferredDecls.push_back(I.first); 3572 } 3573 // Sort the declarations by their location to make sure that the tests get a 3574 // predictable order for the coverage mapping for the unused declarations. 3575 if (CodeGenOpts.DumpCoverageMapping) 3576 std::sort(DeferredDecls.begin(), DeferredDecls.end(), 3577 [] (const Decl *LHS, const Decl *RHS) { 3578 return LHS->getLocStart() < RHS->getLocStart(); 3579 }); 3580 for (const auto *D : DeferredDecls) { 3581 switch (D->getKind()) { 3582 case Decl::CXXConversion: 3583 case Decl::CXXMethod: 3584 case Decl::Function: 3585 case Decl::ObjCMethod: { 3586 CodeGenPGO PGO(*this); 3587 GlobalDecl GD(cast<FunctionDecl>(D)); 3588 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 3589 getFunctionLinkage(GD)); 3590 break; 3591 } 3592 case Decl::CXXConstructor: { 3593 CodeGenPGO PGO(*this); 3594 GlobalDecl GD(cast<CXXConstructorDecl>(D), Ctor_Base); 3595 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 3596 getFunctionLinkage(GD)); 3597 break; 3598 } 3599 case Decl::CXXDestructor: { 3600 CodeGenPGO PGO(*this); 3601 GlobalDecl GD(cast<CXXDestructorDecl>(D), Dtor_Base); 3602 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 3603 getFunctionLinkage(GD)); 3604 break; 3605 } 3606 default: 3607 break; 3608 }; 3609 } 3610 } 3611 3612 /// Turns the given pointer into a constant. 3613 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context, 3614 const void *Ptr) { 3615 uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr); 3616 llvm::Type *i64 = llvm::Type::getInt64Ty(Context); 3617 return llvm::ConstantInt::get(i64, PtrInt); 3618 } 3619 3620 static void EmitGlobalDeclMetadata(CodeGenModule &CGM, 3621 llvm::NamedMDNode *&GlobalMetadata, 3622 GlobalDecl D, 3623 llvm::GlobalValue *Addr) { 3624 if (!GlobalMetadata) 3625 GlobalMetadata = 3626 CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs"); 3627 3628 // TODO: should we report variant information for ctors/dtors? 3629 llvm::Metadata *Ops[] = {llvm::ConstantAsMetadata::get(Addr), 3630 llvm::ConstantAsMetadata::get(GetPointerConstant( 3631 CGM.getLLVMContext(), D.getDecl()))}; 3632 GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops)); 3633 } 3634 3635 /// For each function which is declared within an extern "C" region and marked 3636 /// as 'used', but has internal linkage, create an alias from the unmangled 3637 /// name to the mangled name if possible. People expect to be able to refer 3638 /// to such functions with an unmangled name from inline assembly within the 3639 /// same translation unit. 3640 void CodeGenModule::EmitStaticExternCAliases() { 3641 for (auto &I : StaticExternCValues) { 3642 IdentifierInfo *Name = I.first; 3643 llvm::GlobalValue *Val = I.second; 3644 if (Val && !getModule().getNamedValue(Name->getName())) 3645 addUsedGlobal(llvm::GlobalAlias::create(Name->getName(), Val)); 3646 } 3647 } 3648 3649 bool CodeGenModule::lookupRepresentativeDecl(StringRef MangledName, 3650 GlobalDecl &Result) const { 3651 auto Res = Manglings.find(MangledName); 3652 if (Res == Manglings.end()) 3653 return false; 3654 Result = Res->getValue(); 3655 return true; 3656 } 3657 3658 /// Emits metadata nodes associating all the global values in the 3659 /// current module with the Decls they came from. This is useful for 3660 /// projects using IR gen as a subroutine. 3661 /// 3662 /// Since there's currently no way to associate an MDNode directly 3663 /// with an llvm::GlobalValue, we create a global named metadata 3664 /// with the name 'clang.global.decl.ptrs'. 3665 void CodeGenModule::EmitDeclMetadata() { 3666 llvm::NamedMDNode *GlobalMetadata = nullptr; 3667 3668 // StaticLocalDeclMap 3669 for (auto &I : MangledDeclNames) { 3670 llvm::GlobalValue *Addr = getModule().getNamedValue(I.second); 3671 EmitGlobalDeclMetadata(*this, GlobalMetadata, I.first, Addr); 3672 } 3673 } 3674 3675 /// Emits metadata nodes for all the local variables in the current 3676 /// function. 3677 void CodeGenFunction::EmitDeclMetadata() { 3678 if (LocalDeclMap.empty()) return; 3679 3680 llvm::LLVMContext &Context = getLLVMContext(); 3681 3682 // Find the unique metadata ID for this name. 3683 unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr"); 3684 3685 llvm::NamedMDNode *GlobalMetadata = nullptr; 3686 3687 for (auto &I : LocalDeclMap) { 3688 const Decl *D = I.first; 3689 llvm::Value *Addr = I.second.getPointer(); 3690 if (auto *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) { 3691 llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D); 3692 Alloca->setMetadata( 3693 DeclPtrKind, llvm::MDNode::get( 3694 Context, llvm::ValueAsMetadata::getConstant(DAddr))); 3695 } else if (auto *GV = dyn_cast<llvm::GlobalValue>(Addr)) { 3696 GlobalDecl GD = GlobalDecl(cast<VarDecl>(D)); 3697 EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV); 3698 } 3699 } 3700 } 3701 3702 void CodeGenModule::EmitVersionIdentMetadata() { 3703 llvm::NamedMDNode *IdentMetadata = 3704 TheModule.getOrInsertNamedMetadata("llvm.ident"); 3705 std::string Version = getClangFullVersion(); 3706 llvm::LLVMContext &Ctx = TheModule.getContext(); 3707 3708 llvm::Metadata *IdentNode[] = {llvm::MDString::get(Ctx, Version)}; 3709 IdentMetadata->addOperand(llvm::MDNode::get(Ctx, IdentNode)); 3710 } 3711 3712 void CodeGenModule::EmitTargetMetadata() { 3713 // Warning, new MangledDeclNames may be appended within this loop. 3714 // We rely on MapVector insertions adding new elements to the end 3715 // of the container. 3716 // FIXME: Move this loop into the one target that needs it, and only 3717 // loop over those declarations for which we couldn't emit the target 3718 // metadata when we emitted the declaration. 3719 for (unsigned I = 0; I != MangledDeclNames.size(); ++I) { 3720 auto Val = *(MangledDeclNames.begin() + I); 3721 const Decl *D = Val.first.getDecl()->getMostRecentDecl(); 3722 llvm::GlobalValue *GV = GetGlobalValue(Val.second); 3723 getTargetCodeGenInfo().emitTargetMD(D, GV, *this); 3724 } 3725 } 3726 3727 void CodeGenModule::EmitCoverageFile() { 3728 if (!getCodeGenOpts().CoverageFile.empty()) { 3729 if (llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu")) { 3730 llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov"); 3731 llvm::LLVMContext &Ctx = TheModule.getContext(); 3732 llvm::MDString *CoverageFile = 3733 llvm::MDString::get(Ctx, getCodeGenOpts().CoverageFile); 3734 for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) { 3735 llvm::MDNode *CU = CUNode->getOperand(i); 3736 llvm::Metadata *Elts[] = {CoverageFile, CU}; 3737 GCov->addOperand(llvm::MDNode::get(Ctx, Elts)); 3738 } 3739 } 3740 } 3741 } 3742 3743 llvm::Constant *CodeGenModule::EmitUuidofInitializer(StringRef Uuid) { 3744 // Sema has checked that all uuid strings are of the form 3745 // "12345678-1234-1234-1234-1234567890ab". 3746 assert(Uuid.size() == 36); 3747 for (unsigned i = 0; i < 36; ++i) { 3748 if (i == 8 || i == 13 || i == 18 || i == 23) assert(Uuid[i] == '-'); 3749 else assert(isHexDigit(Uuid[i])); 3750 } 3751 3752 // The starts of all bytes of Field3 in Uuid. Field 3 is "1234-1234567890ab". 3753 const unsigned Field3ValueOffsets[8] = { 19, 21, 24, 26, 28, 30, 32, 34 }; 3754 3755 llvm::Constant *Field3[8]; 3756 for (unsigned Idx = 0; Idx < 8; ++Idx) 3757 Field3[Idx] = llvm::ConstantInt::get( 3758 Int8Ty, Uuid.substr(Field3ValueOffsets[Idx], 2), 16); 3759 3760 llvm::Constant *Fields[4] = { 3761 llvm::ConstantInt::get(Int32Ty, Uuid.substr(0, 8), 16), 3762 llvm::ConstantInt::get(Int16Ty, Uuid.substr(9, 4), 16), 3763 llvm::ConstantInt::get(Int16Ty, Uuid.substr(14, 4), 16), 3764 llvm::ConstantArray::get(llvm::ArrayType::get(Int8Ty, 8), Field3) 3765 }; 3766 3767 return llvm::ConstantStruct::getAnon(Fields); 3768 } 3769 3770 llvm::Constant * 3771 CodeGenModule::getAddrOfCXXCatchHandlerType(QualType Ty, 3772 QualType CatchHandlerType) { 3773 return getCXXABI().getAddrOfCXXCatchHandlerType(Ty, CatchHandlerType); 3774 } 3775 3776 llvm::Constant *CodeGenModule::GetAddrOfRTTIDescriptor(QualType Ty, 3777 bool ForEH) { 3778 // Return a bogus pointer if RTTI is disabled, unless it's for EH. 3779 // FIXME: should we even be calling this method if RTTI is disabled 3780 // and it's not for EH? 3781 if (!ForEH && !getLangOpts().RTTI) 3782 return llvm::Constant::getNullValue(Int8PtrTy); 3783 3784 if (ForEH && Ty->isObjCObjectPointerType() && 3785 LangOpts.ObjCRuntime.isGNUFamily()) 3786 return ObjCRuntime->GetEHType(Ty); 3787 3788 return getCXXABI().getAddrOfRTTIDescriptor(Ty); 3789 } 3790 3791 void CodeGenModule::EmitOMPThreadPrivateDecl(const OMPThreadPrivateDecl *D) { 3792 for (auto RefExpr : D->varlists()) { 3793 auto *VD = cast<VarDecl>(cast<DeclRefExpr>(RefExpr)->getDecl()); 3794 bool PerformInit = 3795 VD->getAnyInitializer() && 3796 !VD->getAnyInitializer()->isConstantInitializer(getContext(), 3797 /*ForRef=*/false); 3798 3799 Address Addr(GetAddrOfGlobalVar(VD), getContext().getDeclAlign(VD)); 3800 if (auto InitFunction = getOpenMPRuntime().emitThreadPrivateVarDefinition( 3801 VD, Addr, RefExpr->getLocStart(), PerformInit)) 3802 CXXGlobalInits.push_back(InitFunction); 3803 } 3804 } 3805 3806 llvm::MDTuple *CodeGenModule::CreateVTableBitSetEntry( 3807 llvm::GlobalVariable *VTable, CharUnits Offset, const CXXRecordDecl *RD) { 3808 std::string OutName; 3809 llvm::raw_string_ostream Out(OutName); 3810 getCXXABI().getMangleContext().mangleCXXVTableBitSet(RD, Out); 3811 3812 llvm::Metadata *BitsetOps[] = { 3813 llvm::MDString::get(getLLVMContext(), Out.str()), 3814 llvm::ConstantAsMetadata::get(VTable), 3815 llvm::ConstantAsMetadata::get( 3816 llvm::ConstantInt::get(Int64Ty, Offset.getQuantity()))}; 3817 return llvm::MDTuple::get(getLLVMContext(), BitsetOps); 3818 } 3819