1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This coordinates the per-module state used while generating code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenModule.h" 15 #include "CGBlocks.h" 16 #include "CGCUDARuntime.h" 17 #include "CGCXXABI.h" 18 #include "CGCall.h" 19 #include "CGDebugInfo.h" 20 #include "CGObjCRuntime.h" 21 #include "CGOpenCLRuntime.h" 22 #include "CGOpenMPRuntime.h" 23 #include "CGOpenMPRuntimeNVPTX.h" 24 #include "CodeGenFunction.h" 25 #include "CodeGenPGO.h" 26 #include "ConstantEmitter.h" 27 #include "CoverageMappingGen.h" 28 #include "TargetInfo.h" 29 #include "clang/AST/ASTContext.h" 30 #include "clang/AST/CharUnits.h" 31 #include "clang/AST/DeclCXX.h" 32 #include "clang/AST/DeclObjC.h" 33 #include "clang/AST/DeclTemplate.h" 34 #include "clang/AST/Mangle.h" 35 #include "clang/AST/RecordLayout.h" 36 #include "clang/AST/RecursiveASTVisitor.h" 37 #include "clang/Basic/Builtins.h" 38 #include "clang/Basic/CharInfo.h" 39 #include "clang/Basic/Diagnostic.h" 40 #include "clang/Basic/Module.h" 41 #include "clang/Basic/SourceManager.h" 42 #include "clang/Basic/TargetInfo.h" 43 #include "clang/Basic/Version.h" 44 #include "clang/CodeGen/ConstantInitBuilder.h" 45 #include "clang/Frontend/CodeGenOptions.h" 46 #include "clang/Sema/SemaDiagnostic.h" 47 #include "llvm/ADT/StringSwitch.h" 48 #include "llvm/ADT/Triple.h" 49 #include "llvm/Analysis/TargetLibraryInfo.h" 50 #include "llvm/IR/CallSite.h" 51 #include "llvm/IR/CallingConv.h" 52 #include "llvm/IR/DataLayout.h" 53 #include "llvm/IR/Intrinsics.h" 54 #include "llvm/IR/LLVMContext.h" 55 #include "llvm/IR/Module.h" 56 #include "llvm/ProfileData/InstrProfReader.h" 57 #include "llvm/Support/CodeGen.h" 58 #include "llvm/Support/ConvertUTF.h" 59 #include "llvm/Support/ErrorHandling.h" 60 #include "llvm/Support/MD5.h" 61 62 using namespace clang; 63 using namespace CodeGen; 64 65 static llvm::cl::opt<bool> LimitedCoverage( 66 "limited-coverage-experimental", llvm::cl::ZeroOrMore, llvm::cl::Hidden, 67 llvm::cl::desc("Emit limited coverage mapping information (experimental)"), 68 llvm::cl::init(false)); 69 70 static const char AnnotationSection[] = "llvm.metadata"; 71 72 static CGCXXABI *createCXXABI(CodeGenModule &CGM) { 73 switch (CGM.getTarget().getCXXABI().getKind()) { 74 case TargetCXXABI::GenericAArch64: 75 case TargetCXXABI::GenericARM: 76 case TargetCXXABI::iOS: 77 case TargetCXXABI::iOS64: 78 case TargetCXXABI::WatchOS: 79 case TargetCXXABI::GenericMIPS: 80 case TargetCXXABI::GenericItanium: 81 case TargetCXXABI::WebAssembly: 82 return CreateItaniumCXXABI(CGM); 83 case TargetCXXABI::Microsoft: 84 return CreateMicrosoftCXXABI(CGM); 85 } 86 87 llvm_unreachable("invalid C++ ABI kind"); 88 } 89 90 CodeGenModule::CodeGenModule(ASTContext &C, const HeaderSearchOptions &HSO, 91 const PreprocessorOptions &PPO, 92 const CodeGenOptions &CGO, llvm::Module &M, 93 DiagnosticsEngine &diags, 94 CoverageSourceInfo *CoverageInfo) 95 : Context(C), LangOpts(C.getLangOpts()), HeaderSearchOpts(HSO), 96 PreprocessorOpts(PPO), CodeGenOpts(CGO), TheModule(M), Diags(diags), 97 Target(C.getTargetInfo()), ABI(createCXXABI(*this)), 98 VMContext(M.getContext()), Types(*this), VTables(*this), 99 SanitizerMD(new SanitizerMetadata(*this)) { 100 101 // Initialize the type cache. 102 llvm::LLVMContext &LLVMContext = M.getContext(); 103 VoidTy = llvm::Type::getVoidTy(LLVMContext); 104 Int8Ty = llvm::Type::getInt8Ty(LLVMContext); 105 Int16Ty = llvm::Type::getInt16Ty(LLVMContext); 106 Int32Ty = llvm::Type::getInt32Ty(LLVMContext); 107 Int64Ty = llvm::Type::getInt64Ty(LLVMContext); 108 HalfTy = llvm::Type::getHalfTy(LLVMContext); 109 FloatTy = llvm::Type::getFloatTy(LLVMContext); 110 DoubleTy = llvm::Type::getDoubleTy(LLVMContext); 111 PointerWidthInBits = C.getTargetInfo().getPointerWidth(0); 112 PointerAlignInBytes = 113 C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(0)).getQuantity(); 114 SizeSizeInBytes = 115 C.toCharUnitsFromBits(C.getTargetInfo().getMaxPointerWidth()).getQuantity(); 116 IntAlignInBytes = 117 C.toCharUnitsFromBits(C.getTargetInfo().getIntAlign()).getQuantity(); 118 IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth()); 119 IntPtrTy = llvm::IntegerType::get(LLVMContext, 120 C.getTargetInfo().getMaxPointerWidth()); 121 Int8PtrTy = Int8Ty->getPointerTo(0); 122 Int8PtrPtrTy = Int8PtrTy->getPointerTo(0); 123 AllocaInt8PtrTy = Int8Ty->getPointerTo( 124 M.getDataLayout().getAllocaAddrSpace()); 125 ASTAllocaAddressSpace = getTargetCodeGenInfo().getASTAllocaAddressSpace(); 126 127 RuntimeCC = getTargetCodeGenInfo().getABIInfo().getRuntimeCC(); 128 129 if (LangOpts.ObjC1) 130 createObjCRuntime(); 131 if (LangOpts.OpenCL) 132 createOpenCLRuntime(); 133 if (LangOpts.OpenMP) 134 createOpenMPRuntime(); 135 if (LangOpts.CUDA) 136 createCUDARuntime(); 137 138 // Enable TBAA unless it's suppressed. ThreadSanitizer needs TBAA even at O0. 139 if (LangOpts.Sanitize.has(SanitizerKind::Thread) || 140 (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0)) 141 TBAA.reset(new CodeGenTBAA(Context, TheModule, CodeGenOpts, getLangOpts(), 142 getCXXABI().getMangleContext())); 143 144 // If debug info or coverage generation is enabled, create the CGDebugInfo 145 // object. 146 if (CodeGenOpts.getDebugInfo() != codegenoptions::NoDebugInfo || 147 CodeGenOpts.EmitGcovArcs || CodeGenOpts.EmitGcovNotes) 148 DebugInfo.reset(new CGDebugInfo(*this)); 149 150 Block.GlobalUniqueCount = 0; 151 152 if (C.getLangOpts().ObjC1) 153 ObjCData.reset(new ObjCEntrypoints()); 154 155 if (CodeGenOpts.hasProfileClangUse()) { 156 auto ReaderOrErr = llvm::IndexedInstrProfReader::create( 157 CodeGenOpts.ProfileInstrumentUsePath, CodeGenOpts.ProfileRemappingFile); 158 if (auto E = ReaderOrErr.takeError()) { 159 unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error, 160 "Could not read profile %0: %1"); 161 llvm::handleAllErrors(std::move(E), [&](const llvm::ErrorInfoBase &EI) { 162 getDiags().Report(DiagID) << CodeGenOpts.ProfileInstrumentUsePath 163 << EI.message(); 164 }); 165 } else 166 PGOReader = std::move(ReaderOrErr.get()); 167 } 168 169 // If coverage mapping generation is enabled, create the 170 // CoverageMappingModuleGen object. 171 if (CodeGenOpts.CoverageMapping) 172 CoverageMapping.reset(new CoverageMappingModuleGen(*this, *CoverageInfo)); 173 } 174 175 CodeGenModule::~CodeGenModule() {} 176 177 void CodeGenModule::createObjCRuntime() { 178 // This is just isGNUFamily(), but we want to force implementors of 179 // new ABIs to decide how best to do this. 180 switch (LangOpts.ObjCRuntime.getKind()) { 181 case ObjCRuntime::GNUstep: 182 case ObjCRuntime::GCC: 183 case ObjCRuntime::ObjFW: 184 ObjCRuntime.reset(CreateGNUObjCRuntime(*this)); 185 return; 186 187 case ObjCRuntime::FragileMacOSX: 188 case ObjCRuntime::MacOSX: 189 case ObjCRuntime::iOS: 190 case ObjCRuntime::WatchOS: 191 ObjCRuntime.reset(CreateMacObjCRuntime(*this)); 192 return; 193 } 194 llvm_unreachable("bad runtime kind"); 195 } 196 197 void CodeGenModule::createOpenCLRuntime() { 198 OpenCLRuntime.reset(new CGOpenCLRuntime(*this)); 199 } 200 201 void CodeGenModule::createOpenMPRuntime() { 202 // Select a specialized code generation class based on the target, if any. 203 // If it does not exist use the default implementation. 204 switch (getTriple().getArch()) { 205 case llvm::Triple::nvptx: 206 case llvm::Triple::nvptx64: 207 assert(getLangOpts().OpenMPIsDevice && 208 "OpenMP NVPTX is only prepared to deal with device code."); 209 OpenMPRuntime.reset(new CGOpenMPRuntimeNVPTX(*this)); 210 break; 211 default: 212 if (LangOpts.OpenMPSimd) 213 OpenMPRuntime.reset(new CGOpenMPSIMDRuntime(*this)); 214 else 215 OpenMPRuntime.reset(new CGOpenMPRuntime(*this)); 216 break; 217 } 218 } 219 220 void CodeGenModule::createCUDARuntime() { 221 CUDARuntime.reset(CreateNVCUDARuntime(*this)); 222 } 223 224 void CodeGenModule::addReplacement(StringRef Name, llvm::Constant *C) { 225 Replacements[Name] = C; 226 } 227 228 void CodeGenModule::applyReplacements() { 229 for (auto &I : Replacements) { 230 StringRef MangledName = I.first(); 231 llvm::Constant *Replacement = I.second; 232 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 233 if (!Entry) 234 continue; 235 auto *OldF = cast<llvm::Function>(Entry); 236 auto *NewF = dyn_cast<llvm::Function>(Replacement); 237 if (!NewF) { 238 if (auto *Alias = dyn_cast<llvm::GlobalAlias>(Replacement)) { 239 NewF = dyn_cast<llvm::Function>(Alias->getAliasee()); 240 } else { 241 auto *CE = cast<llvm::ConstantExpr>(Replacement); 242 assert(CE->getOpcode() == llvm::Instruction::BitCast || 243 CE->getOpcode() == llvm::Instruction::GetElementPtr); 244 NewF = dyn_cast<llvm::Function>(CE->getOperand(0)); 245 } 246 } 247 248 // Replace old with new, but keep the old order. 249 OldF->replaceAllUsesWith(Replacement); 250 if (NewF) { 251 NewF->removeFromParent(); 252 OldF->getParent()->getFunctionList().insertAfter(OldF->getIterator(), 253 NewF); 254 } 255 OldF->eraseFromParent(); 256 } 257 } 258 259 void CodeGenModule::addGlobalValReplacement(llvm::GlobalValue *GV, llvm::Constant *C) { 260 GlobalValReplacements.push_back(std::make_pair(GV, C)); 261 } 262 263 void CodeGenModule::applyGlobalValReplacements() { 264 for (auto &I : GlobalValReplacements) { 265 llvm::GlobalValue *GV = I.first; 266 llvm::Constant *C = I.second; 267 268 GV->replaceAllUsesWith(C); 269 GV->eraseFromParent(); 270 } 271 } 272 273 // This is only used in aliases that we created and we know they have a 274 // linear structure. 275 static const llvm::GlobalObject *getAliasedGlobal( 276 const llvm::GlobalIndirectSymbol &GIS) { 277 llvm::SmallPtrSet<const llvm::GlobalIndirectSymbol*, 4> Visited; 278 const llvm::Constant *C = &GIS; 279 for (;;) { 280 C = C->stripPointerCasts(); 281 if (auto *GO = dyn_cast<llvm::GlobalObject>(C)) 282 return GO; 283 // stripPointerCasts will not walk over weak aliases. 284 auto *GIS2 = dyn_cast<llvm::GlobalIndirectSymbol>(C); 285 if (!GIS2) 286 return nullptr; 287 if (!Visited.insert(GIS2).second) 288 return nullptr; 289 C = GIS2->getIndirectSymbol(); 290 } 291 } 292 293 void CodeGenModule::checkAliases() { 294 // Check if the constructed aliases are well formed. It is really unfortunate 295 // that we have to do this in CodeGen, but we only construct mangled names 296 // and aliases during codegen. 297 bool Error = false; 298 DiagnosticsEngine &Diags = getDiags(); 299 for (const GlobalDecl &GD : Aliases) { 300 const auto *D = cast<ValueDecl>(GD.getDecl()); 301 SourceLocation Location; 302 bool IsIFunc = D->hasAttr<IFuncAttr>(); 303 if (const Attr *A = D->getDefiningAttr()) 304 Location = A->getLocation(); 305 else 306 llvm_unreachable("Not an alias or ifunc?"); 307 StringRef MangledName = getMangledName(GD); 308 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 309 auto *Alias = cast<llvm::GlobalIndirectSymbol>(Entry); 310 const llvm::GlobalValue *GV = getAliasedGlobal(*Alias); 311 if (!GV) { 312 Error = true; 313 Diags.Report(Location, diag::err_cyclic_alias) << IsIFunc; 314 } else if (GV->isDeclaration()) { 315 Error = true; 316 Diags.Report(Location, diag::err_alias_to_undefined) 317 << IsIFunc << IsIFunc; 318 } else if (IsIFunc) { 319 // Check resolver function type. 320 llvm::FunctionType *FTy = dyn_cast<llvm::FunctionType>( 321 GV->getType()->getPointerElementType()); 322 assert(FTy); 323 if (!FTy->getReturnType()->isPointerTy()) 324 Diags.Report(Location, diag::err_ifunc_resolver_return); 325 } 326 327 llvm::Constant *Aliasee = Alias->getIndirectSymbol(); 328 llvm::GlobalValue *AliaseeGV; 329 if (auto CE = dyn_cast<llvm::ConstantExpr>(Aliasee)) 330 AliaseeGV = cast<llvm::GlobalValue>(CE->getOperand(0)); 331 else 332 AliaseeGV = cast<llvm::GlobalValue>(Aliasee); 333 334 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) { 335 StringRef AliasSection = SA->getName(); 336 if (AliasSection != AliaseeGV->getSection()) 337 Diags.Report(SA->getLocation(), diag::warn_alias_with_section) 338 << AliasSection << IsIFunc << IsIFunc; 339 } 340 341 // We have to handle alias to weak aliases in here. LLVM itself disallows 342 // this since the object semantics would not match the IL one. For 343 // compatibility with gcc we implement it by just pointing the alias 344 // to its aliasee's aliasee. We also warn, since the user is probably 345 // expecting the link to be weak. 346 if (auto GA = dyn_cast<llvm::GlobalIndirectSymbol>(AliaseeGV)) { 347 if (GA->isInterposable()) { 348 Diags.Report(Location, diag::warn_alias_to_weak_alias) 349 << GV->getName() << GA->getName() << IsIFunc; 350 Aliasee = llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast( 351 GA->getIndirectSymbol(), Alias->getType()); 352 Alias->setIndirectSymbol(Aliasee); 353 } 354 } 355 } 356 if (!Error) 357 return; 358 359 for (const GlobalDecl &GD : Aliases) { 360 StringRef MangledName = getMangledName(GD); 361 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 362 auto *Alias = dyn_cast<llvm::GlobalIndirectSymbol>(Entry); 363 Alias->replaceAllUsesWith(llvm::UndefValue::get(Alias->getType())); 364 Alias->eraseFromParent(); 365 } 366 } 367 368 void CodeGenModule::clear() { 369 DeferredDeclsToEmit.clear(); 370 if (OpenMPRuntime) 371 OpenMPRuntime->clear(); 372 } 373 374 void InstrProfStats::reportDiagnostics(DiagnosticsEngine &Diags, 375 StringRef MainFile) { 376 if (!hasDiagnostics()) 377 return; 378 if (VisitedInMainFile > 0 && VisitedInMainFile == MissingInMainFile) { 379 if (MainFile.empty()) 380 MainFile = "<stdin>"; 381 Diags.Report(diag::warn_profile_data_unprofiled) << MainFile; 382 } else { 383 if (Mismatched > 0) 384 Diags.Report(diag::warn_profile_data_out_of_date) << Visited << Mismatched; 385 386 if (Missing > 0) 387 Diags.Report(diag::warn_profile_data_missing) << Visited << Missing; 388 } 389 } 390 391 void CodeGenModule::Release() { 392 EmitDeferred(); 393 EmitVTablesOpportunistically(); 394 applyGlobalValReplacements(); 395 applyReplacements(); 396 checkAliases(); 397 emitMultiVersionFunctions(); 398 EmitCXXGlobalInitFunc(); 399 EmitCXXGlobalDtorFunc(); 400 registerGlobalDtorsWithAtExit(); 401 EmitCXXThreadLocalInitFunc(); 402 if (ObjCRuntime) 403 if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction()) 404 AddGlobalCtor(ObjCInitFunction); 405 if (Context.getLangOpts().CUDA && !Context.getLangOpts().CUDAIsDevice && 406 CUDARuntime) { 407 if (llvm::Function *CudaCtorFunction = 408 CUDARuntime->makeModuleCtorFunction()) 409 AddGlobalCtor(CudaCtorFunction); 410 } 411 if (OpenMPRuntime) { 412 if (llvm::Function *OpenMPRegistrationFunction = 413 OpenMPRuntime->emitRegistrationFunction()) { 414 auto ComdatKey = OpenMPRegistrationFunction->hasComdat() ? 415 OpenMPRegistrationFunction : nullptr; 416 AddGlobalCtor(OpenMPRegistrationFunction, 0, ComdatKey); 417 } 418 OpenMPRuntime->clear(); 419 } 420 if (PGOReader) { 421 getModule().setProfileSummary(PGOReader->getSummary().getMD(VMContext)); 422 if (PGOStats.hasDiagnostics()) 423 PGOStats.reportDiagnostics(getDiags(), getCodeGenOpts().MainFileName); 424 } 425 EmitCtorList(GlobalCtors, "llvm.global_ctors"); 426 EmitCtorList(GlobalDtors, "llvm.global_dtors"); 427 EmitGlobalAnnotations(); 428 EmitStaticExternCAliases(); 429 EmitDeferredUnusedCoverageMappings(); 430 if (CoverageMapping) 431 CoverageMapping->emit(); 432 if (CodeGenOpts.SanitizeCfiCrossDso) { 433 CodeGenFunction(*this).EmitCfiCheckFail(); 434 CodeGenFunction(*this).EmitCfiCheckStub(); 435 } 436 emitAtAvailableLinkGuard(); 437 emitLLVMUsed(); 438 if (SanStats) 439 SanStats->finish(); 440 441 if (CodeGenOpts.Autolink && 442 (Context.getLangOpts().Modules || !LinkerOptionsMetadata.empty())) { 443 EmitModuleLinkOptions(); 444 } 445 446 // Record mregparm value now so it is visible through rest of codegen. 447 if (Context.getTargetInfo().getTriple().getArch() == llvm::Triple::x86) 448 getModule().addModuleFlag(llvm::Module::Error, "NumRegisterParameters", 449 CodeGenOpts.NumRegisterParameters); 450 451 if (CodeGenOpts.DwarfVersion) { 452 // We actually want the latest version when there are conflicts. 453 // We can change from Warning to Latest if such mode is supported. 454 getModule().addModuleFlag(llvm::Module::Warning, "Dwarf Version", 455 CodeGenOpts.DwarfVersion); 456 } 457 if (CodeGenOpts.EmitCodeView) { 458 // Indicate that we want CodeView in the metadata. 459 getModule().addModuleFlag(llvm::Module::Warning, "CodeView", 1); 460 } 461 if (CodeGenOpts.ControlFlowGuard) { 462 // We want function ID tables for Control Flow Guard. 463 getModule().addModuleFlag(llvm::Module::Warning, "cfguardtable", 1); 464 } 465 if (CodeGenOpts.OptimizationLevel > 0 && CodeGenOpts.StrictVTablePointers) { 466 // We don't support LTO with 2 with different StrictVTablePointers 467 // FIXME: we could support it by stripping all the information introduced 468 // by StrictVTablePointers. 469 470 getModule().addModuleFlag(llvm::Module::Error, "StrictVTablePointers",1); 471 472 llvm::Metadata *Ops[2] = { 473 llvm::MDString::get(VMContext, "StrictVTablePointers"), 474 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 475 llvm::Type::getInt32Ty(VMContext), 1))}; 476 477 getModule().addModuleFlag(llvm::Module::Require, 478 "StrictVTablePointersRequirement", 479 llvm::MDNode::get(VMContext, Ops)); 480 } 481 if (DebugInfo) 482 // We support a single version in the linked module. The LLVM 483 // parser will drop debug info with a different version number 484 // (and warn about it, too). 485 getModule().addModuleFlag(llvm::Module::Warning, "Debug Info Version", 486 llvm::DEBUG_METADATA_VERSION); 487 488 // We need to record the widths of enums and wchar_t, so that we can generate 489 // the correct build attributes in the ARM backend. wchar_size is also used by 490 // TargetLibraryInfo. 491 uint64_t WCharWidth = 492 Context.getTypeSizeInChars(Context.getWideCharType()).getQuantity(); 493 getModule().addModuleFlag(llvm::Module::Error, "wchar_size", WCharWidth); 494 495 llvm::Triple::ArchType Arch = Context.getTargetInfo().getTriple().getArch(); 496 if ( Arch == llvm::Triple::arm 497 || Arch == llvm::Triple::armeb 498 || Arch == llvm::Triple::thumb 499 || Arch == llvm::Triple::thumbeb) { 500 // The minimum width of an enum in bytes 501 uint64_t EnumWidth = Context.getLangOpts().ShortEnums ? 1 : 4; 502 getModule().addModuleFlag(llvm::Module::Error, "min_enum_size", EnumWidth); 503 } 504 505 if (CodeGenOpts.SanitizeCfiCrossDso) { 506 // Indicate that we want cross-DSO control flow integrity checks. 507 getModule().addModuleFlag(llvm::Module::Override, "Cross-DSO CFI", 1); 508 } 509 510 if (CodeGenOpts.CFProtectionReturn && 511 Target.checkCFProtectionReturnSupported(getDiags())) { 512 // Indicate that we want to instrument return control flow protection. 513 getModule().addModuleFlag(llvm::Module::Override, "cf-protection-return", 514 1); 515 } 516 517 if (CodeGenOpts.CFProtectionBranch && 518 Target.checkCFProtectionBranchSupported(getDiags())) { 519 // Indicate that we want to instrument branch control flow protection. 520 getModule().addModuleFlag(llvm::Module::Override, "cf-protection-branch", 521 1); 522 } 523 524 if (LangOpts.CUDAIsDevice && getTriple().isNVPTX()) { 525 // Indicate whether __nvvm_reflect should be configured to flush denormal 526 // floating point values to 0. (This corresponds to its "__CUDA_FTZ" 527 // property.) 528 getModule().addModuleFlag(llvm::Module::Override, "nvvm-reflect-ftz", 529 CodeGenOpts.FlushDenorm ? 1 : 0); 530 } 531 532 // Emit OpenCL specific module metadata: OpenCL/SPIR version. 533 if (LangOpts.OpenCL) { 534 EmitOpenCLMetadata(); 535 // Emit SPIR version. 536 if (getTriple().getArch() == llvm::Triple::spir || 537 getTriple().getArch() == llvm::Triple::spir64) { 538 // SPIR v2.0 s2.12 - The SPIR version used by the module is stored in the 539 // opencl.spir.version named metadata. 540 llvm::Metadata *SPIRVerElts[] = { 541 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 542 Int32Ty, LangOpts.OpenCLVersion / 100)), 543 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 544 Int32Ty, (LangOpts.OpenCLVersion / 100 > 1) ? 0 : 2))}; 545 llvm::NamedMDNode *SPIRVerMD = 546 TheModule.getOrInsertNamedMetadata("opencl.spir.version"); 547 llvm::LLVMContext &Ctx = TheModule.getContext(); 548 SPIRVerMD->addOperand(llvm::MDNode::get(Ctx, SPIRVerElts)); 549 } 550 } 551 552 if (uint32_t PLevel = Context.getLangOpts().PICLevel) { 553 assert(PLevel < 3 && "Invalid PIC Level"); 554 getModule().setPICLevel(static_cast<llvm::PICLevel::Level>(PLevel)); 555 if (Context.getLangOpts().PIE) 556 getModule().setPIELevel(static_cast<llvm::PIELevel::Level>(PLevel)); 557 } 558 559 if (getCodeGenOpts().CodeModel.size() > 0) { 560 unsigned CM = llvm::StringSwitch<unsigned>(getCodeGenOpts().CodeModel) 561 .Case("tiny", llvm::CodeModel::Tiny) 562 .Case("small", llvm::CodeModel::Small) 563 .Case("kernel", llvm::CodeModel::Kernel) 564 .Case("medium", llvm::CodeModel::Medium) 565 .Case("large", llvm::CodeModel::Large) 566 .Default(~0u); 567 if (CM != ~0u) { 568 llvm::CodeModel::Model codeModel = static_cast<llvm::CodeModel::Model>(CM); 569 getModule().setCodeModel(codeModel); 570 } 571 } 572 573 if (CodeGenOpts.NoPLT) 574 getModule().setRtLibUseGOT(); 575 576 SimplifyPersonality(); 577 578 if (getCodeGenOpts().EmitDeclMetadata) 579 EmitDeclMetadata(); 580 581 if (getCodeGenOpts().EmitGcovArcs || getCodeGenOpts().EmitGcovNotes) 582 EmitCoverageFile(); 583 584 if (DebugInfo) 585 DebugInfo->finalize(); 586 587 if (getCodeGenOpts().EmitVersionIdentMetadata) 588 EmitVersionIdentMetadata(); 589 590 EmitTargetMetadata(); 591 } 592 593 void CodeGenModule::EmitOpenCLMetadata() { 594 // SPIR v2.0 s2.13 - The OpenCL version used by the module is stored in the 595 // opencl.ocl.version named metadata node. 596 llvm::Metadata *OCLVerElts[] = { 597 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 598 Int32Ty, LangOpts.OpenCLVersion / 100)), 599 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 600 Int32Ty, (LangOpts.OpenCLVersion % 100) / 10))}; 601 llvm::NamedMDNode *OCLVerMD = 602 TheModule.getOrInsertNamedMetadata("opencl.ocl.version"); 603 llvm::LLVMContext &Ctx = TheModule.getContext(); 604 OCLVerMD->addOperand(llvm::MDNode::get(Ctx, OCLVerElts)); 605 } 606 607 void CodeGenModule::UpdateCompletedType(const TagDecl *TD) { 608 // Make sure that this type is translated. 609 Types.UpdateCompletedType(TD); 610 } 611 612 void CodeGenModule::RefreshTypeCacheForClass(const CXXRecordDecl *RD) { 613 // Make sure that this type is translated. 614 Types.RefreshTypeCacheForClass(RD); 615 } 616 617 llvm::MDNode *CodeGenModule::getTBAATypeInfo(QualType QTy) { 618 if (!TBAA) 619 return nullptr; 620 return TBAA->getTypeInfo(QTy); 621 } 622 623 TBAAAccessInfo CodeGenModule::getTBAAAccessInfo(QualType AccessType) { 624 if (!TBAA) 625 return TBAAAccessInfo(); 626 return TBAA->getAccessInfo(AccessType); 627 } 628 629 TBAAAccessInfo 630 CodeGenModule::getTBAAVTablePtrAccessInfo(llvm::Type *VTablePtrType) { 631 if (!TBAA) 632 return TBAAAccessInfo(); 633 return TBAA->getVTablePtrAccessInfo(VTablePtrType); 634 } 635 636 llvm::MDNode *CodeGenModule::getTBAAStructInfo(QualType QTy) { 637 if (!TBAA) 638 return nullptr; 639 return TBAA->getTBAAStructInfo(QTy); 640 } 641 642 llvm::MDNode *CodeGenModule::getTBAABaseTypeInfo(QualType QTy) { 643 if (!TBAA) 644 return nullptr; 645 return TBAA->getBaseTypeInfo(QTy); 646 } 647 648 llvm::MDNode *CodeGenModule::getTBAAAccessTagInfo(TBAAAccessInfo Info) { 649 if (!TBAA) 650 return nullptr; 651 return TBAA->getAccessTagInfo(Info); 652 } 653 654 TBAAAccessInfo CodeGenModule::mergeTBAAInfoForCast(TBAAAccessInfo SourceInfo, 655 TBAAAccessInfo TargetInfo) { 656 if (!TBAA) 657 return TBAAAccessInfo(); 658 return TBAA->mergeTBAAInfoForCast(SourceInfo, TargetInfo); 659 } 660 661 TBAAAccessInfo 662 CodeGenModule::mergeTBAAInfoForConditionalOperator(TBAAAccessInfo InfoA, 663 TBAAAccessInfo InfoB) { 664 if (!TBAA) 665 return TBAAAccessInfo(); 666 return TBAA->mergeTBAAInfoForConditionalOperator(InfoA, InfoB); 667 } 668 669 TBAAAccessInfo 670 CodeGenModule::mergeTBAAInfoForMemoryTransfer(TBAAAccessInfo DestInfo, 671 TBAAAccessInfo SrcInfo) { 672 if (!TBAA) 673 return TBAAAccessInfo(); 674 return TBAA->mergeTBAAInfoForConditionalOperator(DestInfo, SrcInfo); 675 } 676 677 void CodeGenModule::DecorateInstructionWithTBAA(llvm::Instruction *Inst, 678 TBAAAccessInfo TBAAInfo) { 679 if (llvm::MDNode *Tag = getTBAAAccessTagInfo(TBAAInfo)) 680 Inst->setMetadata(llvm::LLVMContext::MD_tbaa, Tag); 681 } 682 683 void CodeGenModule::DecorateInstructionWithInvariantGroup( 684 llvm::Instruction *I, const CXXRecordDecl *RD) { 685 I->setMetadata(llvm::LLVMContext::MD_invariant_group, 686 llvm::MDNode::get(getLLVMContext(), {})); 687 } 688 689 void CodeGenModule::Error(SourceLocation loc, StringRef message) { 690 unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, "%0"); 691 getDiags().Report(Context.getFullLoc(loc), diagID) << message; 692 } 693 694 /// ErrorUnsupported - Print out an error that codegen doesn't support the 695 /// specified stmt yet. 696 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type) { 697 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, 698 "cannot compile this %0 yet"); 699 std::string Msg = Type; 700 getDiags().Report(Context.getFullLoc(S->getBeginLoc()), DiagID) 701 << Msg << S->getSourceRange(); 702 } 703 704 /// ErrorUnsupported - Print out an error that codegen doesn't support the 705 /// specified decl yet. 706 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type) { 707 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, 708 "cannot compile this %0 yet"); 709 std::string Msg = Type; 710 getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg; 711 } 712 713 llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) { 714 return llvm::ConstantInt::get(SizeTy, size.getQuantity()); 715 } 716 717 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV, 718 const NamedDecl *D) const { 719 if (GV->hasDLLImportStorageClass()) 720 return; 721 // Internal definitions always have default visibility. 722 if (GV->hasLocalLinkage()) { 723 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 724 return; 725 } 726 if (!D) 727 return; 728 // Set visibility for definitions. 729 LinkageInfo LV = D->getLinkageAndVisibility(); 730 if (LV.isVisibilityExplicit() || !GV->isDeclarationForLinker()) 731 GV->setVisibility(GetLLVMVisibility(LV.getVisibility())); 732 } 733 734 static bool shouldAssumeDSOLocal(const CodeGenModule &CGM, 735 llvm::GlobalValue *GV) { 736 if (GV->hasLocalLinkage()) 737 return true; 738 739 if (!GV->hasDefaultVisibility() && !GV->hasExternalWeakLinkage()) 740 return true; 741 742 // DLLImport explicitly marks the GV as external. 743 if (GV->hasDLLImportStorageClass()) 744 return false; 745 746 const llvm::Triple &TT = CGM.getTriple(); 747 if (TT.isWindowsGNUEnvironment()) { 748 // In MinGW, variables without DLLImport can still be automatically 749 // imported from a DLL by the linker; don't mark variables that 750 // potentially could come from another DLL as DSO local. 751 if (GV->isDeclarationForLinker() && isa<llvm::GlobalVariable>(GV) && 752 !GV->isThreadLocal()) 753 return false; 754 } 755 // Every other GV is local on COFF. 756 // Make an exception for windows OS in the triple: Some firmware builds use 757 // *-win32-macho triples. This (accidentally?) produced windows relocations 758 // without GOT tables in older clang versions; Keep this behaviour. 759 // FIXME: even thread local variables? 760 if (TT.isOSBinFormatCOFF() || (TT.isOSWindows() && TT.isOSBinFormatMachO())) 761 return true; 762 763 // Only handle COFF and ELF for now. 764 if (!TT.isOSBinFormatELF()) 765 return false; 766 767 // If this is not an executable, don't assume anything is local. 768 const auto &CGOpts = CGM.getCodeGenOpts(); 769 llvm::Reloc::Model RM = CGOpts.RelocationModel; 770 const auto &LOpts = CGM.getLangOpts(); 771 if (RM != llvm::Reloc::Static && !LOpts.PIE) 772 return false; 773 774 // A definition cannot be preempted from an executable. 775 if (!GV->isDeclarationForLinker()) 776 return true; 777 778 // Most PIC code sequences that assume that a symbol is local cannot produce a 779 // 0 if it turns out the symbol is undefined. While this is ABI and relocation 780 // depended, it seems worth it to handle it here. 781 if (RM == llvm::Reloc::PIC_ && GV->hasExternalWeakLinkage()) 782 return false; 783 784 // PPC has no copy relocations and cannot use a plt entry as a symbol address. 785 llvm::Triple::ArchType Arch = TT.getArch(); 786 if (Arch == llvm::Triple::ppc || Arch == llvm::Triple::ppc64 || 787 Arch == llvm::Triple::ppc64le) 788 return false; 789 790 // If we can use copy relocations we can assume it is local. 791 if (auto *Var = dyn_cast<llvm::GlobalVariable>(GV)) 792 if (!Var->isThreadLocal() && 793 (RM == llvm::Reloc::Static || CGOpts.PIECopyRelocations)) 794 return true; 795 796 // If we can use a plt entry as the symbol address we can assume it 797 // is local. 798 // FIXME: This should work for PIE, but the gold linker doesn't support it. 799 if (isa<llvm::Function>(GV) && !CGOpts.NoPLT && RM == llvm::Reloc::Static) 800 return true; 801 802 // Otherwise don't assue it is local. 803 return false; 804 } 805 806 void CodeGenModule::setDSOLocal(llvm::GlobalValue *GV) const { 807 GV->setDSOLocal(shouldAssumeDSOLocal(*this, GV)); 808 } 809 810 void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV, 811 GlobalDecl GD) const { 812 const auto *D = dyn_cast<NamedDecl>(GD.getDecl()); 813 // C++ destructors have a few C++ ABI specific special cases. 814 if (const auto *Dtor = dyn_cast_or_null<CXXDestructorDecl>(D)) { 815 getCXXABI().setCXXDestructorDLLStorage(GV, Dtor, GD.getDtorType()); 816 return; 817 } 818 setDLLImportDLLExport(GV, D); 819 } 820 821 void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV, 822 const NamedDecl *D) const { 823 if (D && D->isExternallyVisible()) { 824 if (D->hasAttr<DLLImportAttr>()) 825 GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass); 826 else if (D->hasAttr<DLLExportAttr>() && !GV->isDeclarationForLinker()) 827 GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass); 828 } 829 } 830 831 void CodeGenModule::setGVProperties(llvm::GlobalValue *GV, 832 GlobalDecl GD) const { 833 setDLLImportDLLExport(GV, GD); 834 setGlobalVisibilityAndLocal(GV, dyn_cast<NamedDecl>(GD.getDecl())); 835 } 836 837 void CodeGenModule::setGVProperties(llvm::GlobalValue *GV, 838 const NamedDecl *D) const { 839 setDLLImportDLLExport(GV, D); 840 setGlobalVisibilityAndLocal(GV, D); 841 } 842 843 void CodeGenModule::setGlobalVisibilityAndLocal(llvm::GlobalValue *GV, 844 const NamedDecl *D) const { 845 setGlobalVisibility(GV, D); 846 setDSOLocal(GV); 847 } 848 849 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(StringRef S) { 850 return llvm::StringSwitch<llvm::GlobalVariable::ThreadLocalMode>(S) 851 .Case("global-dynamic", llvm::GlobalVariable::GeneralDynamicTLSModel) 852 .Case("local-dynamic", llvm::GlobalVariable::LocalDynamicTLSModel) 853 .Case("initial-exec", llvm::GlobalVariable::InitialExecTLSModel) 854 .Case("local-exec", llvm::GlobalVariable::LocalExecTLSModel); 855 } 856 857 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel( 858 CodeGenOptions::TLSModel M) { 859 switch (M) { 860 case CodeGenOptions::GeneralDynamicTLSModel: 861 return llvm::GlobalVariable::GeneralDynamicTLSModel; 862 case CodeGenOptions::LocalDynamicTLSModel: 863 return llvm::GlobalVariable::LocalDynamicTLSModel; 864 case CodeGenOptions::InitialExecTLSModel: 865 return llvm::GlobalVariable::InitialExecTLSModel; 866 case CodeGenOptions::LocalExecTLSModel: 867 return llvm::GlobalVariable::LocalExecTLSModel; 868 } 869 llvm_unreachable("Invalid TLS model!"); 870 } 871 872 void CodeGenModule::setTLSMode(llvm::GlobalValue *GV, const VarDecl &D) const { 873 assert(D.getTLSKind() && "setting TLS mode on non-TLS var!"); 874 875 llvm::GlobalValue::ThreadLocalMode TLM; 876 TLM = GetLLVMTLSModel(CodeGenOpts.getDefaultTLSModel()); 877 878 // Override the TLS model if it is explicitly specified. 879 if (const TLSModelAttr *Attr = D.getAttr<TLSModelAttr>()) { 880 TLM = GetLLVMTLSModel(Attr->getModel()); 881 } 882 883 GV->setThreadLocalMode(TLM); 884 } 885 886 static std::string getCPUSpecificMangling(const CodeGenModule &CGM, 887 StringRef Name) { 888 const TargetInfo &Target = CGM.getTarget(); 889 return (Twine('.') + Twine(Target.CPUSpecificManglingCharacter(Name))).str(); 890 } 891 892 static void AppendCPUSpecificCPUDispatchMangling(const CodeGenModule &CGM, 893 const CPUSpecificAttr *Attr, 894 raw_ostream &Out) { 895 // cpu_specific gets the current name, dispatch gets the resolver. 896 if (Attr) 897 Out << getCPUSpecificMangling(CGM, Attr->getCurCPUName()->getName()); 898 else 899 Out << ".resolver"; 900 } 901 902 static void AppendTargetMangling(const CodeGenModule &CGM, 903 const TargetAttr *Attr, raw_ostream &Out) { 904 if (Attr->isDefaultVersion()) 905 return; 906 907 Out << '.'; 908 const TargetInfo &Target = CGM.getTarget(); 909 TargetAttr::ParsedTargetAttr Info = 910 Attr->parse([&Target](StringRef LHS, StringRef RHS) { 911 // Multiversioning doesn't allow "no-${feature}", so we can 912 // only have "+" prefixes here. 913 assert(LHS.startswith("+") && RHS.startswith("+") && 914 "Features should always have a prefix."); 915 return Target.multiVersionSortPriority(LHS.substr(1)) > 916 Target.multiVersionSortPriority(RHS.substr(1)); 917 }); 918 919 bool IsFirst = true; 920 921 if (!Info.Architecture.empty()) { 922 IsFirst = false; 923 Out << "arch_" << Info.Architecture; 924 } 925 926 for (StringRef Feat : Info.Features) { 927 if (!IsFirst) 928 Out << '_'; 929 IsFirst = false; 930 Out << Feat.substr(1); 931 } 932 } 933 934 static std::string getMangledNameImpl(const CodeGenModule &CGM, GlobalDecl GD, 935 const NamedDecl *ND, 936 bool OmitMultiVersionMangling = false) { 937 SmallString<256> Buffer; 938 llvm::raw_svector_ostream Out(Buffer); 939 MangleContext &MC = CGM.getCXXABI().getMangleContext(); 940 if (MC.shouldMangleDeclName(ND)) { 941 llvm::raw_svector_ostream Out(Buffer); 942 if (const auto *D = dyn_cast<CXXConstructorDecl>(ND)) 943 MC.mangleCXXCtor(D, GD.getCtorType(), Out); 944 else if (const auto *D = dyn_cast<CXXDestructorDecl>(ND)) 945 MC.mangleCXXDtor(D, GD.getDtorType(), Out); 946 else 947 MC.mangleName(ND, Out); 948 } else { 949 IdentifierInfo *II = ND->getIdentifier(); 950 assert(II && "Attempt to mangle unnamed decl."); 951 const auto *FD = dyn_cast<FunctionDecl>(ND); 952 953 if (FD && 954 FD->getType()->castAs<FunctionType>()->getCallConv() == CC_X86RegCall) { 955 llvm::raw_svector_ostream Out(Buffer); 956 Out << "__regcall3__" << II->getName(); 957 } else { 958 Out << II->getName(); 959 } 960 } 961 962 if (const auto *FD = dyn_cast<FunctionDecl>(ND)) 963 if (FD->isMultiVersion() && !OmitMultiVersionMangling) { 964 if (FD->isCPUDispatchMultiVersion() || FD->isCPUSpecificMultiVersion()) 965 AppendCPUSpecificCPUDispatchMangling( 966 CGM, FD->getAttr<CPUSpecificAttr>(), Out); 967 else 968 AppendTargetMangling(CGM, FD->getAttr<TargetAttr>(), Out); 969 } 970 971 return Out.str(); 972 } 973 974 void CodeGenModule::UpdateMultiVersionNames(GlobalDecl GD, 975 const FunctionDecl *FD) { 976 if (!FD->isMultiVersion()) 977 return; 978 979 // Get the name of what this would be without the 'target' attribute. This 980 // allows us to lookup the version that was emitted when this wasn't a 981 // multiversion function. 982 std::string NonTargetName = 983 getMangledNameImpl(*this, GD, FD, /*OmitMultiVersionMangling=*/true); 984 GlobalDecl OtherGD; 985 if (lookupRepresentativeDecl(NonTargetName, OtherGD)) { 986 assert(OtherGD.getCanonicalDecl() 987 .getDecl() 988 ->getAsFunction() 989 ->isMultiVersion() && 990 "Other GD should now be a multiversioned function"); 991 // OtherFD is the version of this function that was mangled BEFORE 992 // becoming a MultiVersion function. It potentially needs to be updated. 993 const FunctionDecl *OtherFD = 994 OtherGD.getCanonicalDecl().getDecl()->getAsFunction(); 995 std::string OtherName = getMangledNameImpl(*this, OtherGD, OtherFD); 996 // This is so that if the initial version was already the 'default' 997 // version, we don't try to update it. 998 if (OtherName != NonTargetName) { 999 // Remove instead of erase, since others may have stored the StringRef 1000 // to this. 1001 const auto ExistingRecord = Manglings.find(NonTargetName); 1002 if (ExistingRecord != std::end(Manglings)) 1003 Manglings.remove(&(*ExistingRecord)); 1004 auto Result = Manglings.insert(std::make_pair(OtherName, OtherGD)); 1005 MangledDeclNames[OtherGD.getCanonicalDecl()] = Result.first->first(); 1006 if (llvm::GlobalValue *Entry = GetGlobalValue(NonTargetName)) 1007 Entry->setName(OtherName); 1008 } 1009 } 1010 } 1011 1012 StringRef CodeGenModule::getMangledName(GlobalDecl GD) { 1013 GlobalDecl CanonicalGD = GD.getCanonicalDecl(); 1014 1015 // Some ABIs don't have constructor variants. Make sure that base and 1016 // complete constructors get mangled the same. 1017 if (const auto *CD = dyn_cast<CXXConstructorDecl>(CanonicalGD.getDecl())) { 1018 if (!getTarget().getCXXABI().hasConstructorVariants()) { 1019 CXXCtorType OrigCtorType = GD.getCtorType(); 1020 assert(OrigCtorType == Ctor_Base || OrigCtorType == Ctor_Complete); 1021 if (OrigCtorType == Ctor_Base) 1022 CanonicalGD = GlobalDecl(CD, Ctor_Complete); 1023 } 1024 } 1025 1026 const auto *FD = dyn_cast<FunctionDecl>(GD.getDecl()); 1027 // Since CPUSpecific can require multiple emits per decl, store the manglings 1028 // separately. 1029 if (FD && 1030 (FD->isCPUDispatchMultiVersion() || FD->isCPUSpecificMultiVersion())) { 1031 const auto *SD = FD->getAttr<CPUSpecificAttr>(); 1032 1033 std::pair<GlobalDecl, unsigned> SpecCanonicalGD{ 1034 CanonicalGD, 1035 SD ? SD->ActiveArgIndex : std::numeric_limits<unsigned>::max()}; 1036 1037 auto FoundName = CPUSpecificMangledDeclNames.find(SpecCanonicalGD); 1038 if (FoundName != CPUSpecificMangledDeclNames.end()) 1039 return FoundName->second; 1040 1041 auto Result = CPUSpecificManglings.insert( 1042 std::make_pair(getMangledNameImpl(*this, GD, FD), SpecCanonicalGD)); 1043 return CPUSpecificMangledDeclNames[SpecCanonicalGD] = Result.first->first(); 1044 } 1045 1046 auto FoundName = MangledDeclNames.find(CanonicalGD); 1047 if (FoundName != MangledDeclNames.end()) 1048 return FoundName->second; 1049 1050 // Keep the first result in the case of a mangling collision. 1051 const auto *ND = cast<NamedDecl>(GD.getDecl()); 1052 auto Result = 1053 Manglings.insert(std::make_pair(getMangledNameImpl(*this, GD, ND), GD)); 1054 return MangledDeclNames[CanonicalGD] = Result.first->first(); 1055 } 1056 1057 StringRef CodeGenModule::getBlockMangledName(GlobalDecl GD, 1058 const BlockDecl *BD) { 1059 MangleContext &MangleCtx = getCXXABI().getMangleContext(); 1060 const Decl *D = GD.getDecl(); 1061 1062 SmallString<256> Buffer; 1063 llvm::raw_svector_ostream Out(Buffer); 1064 if (!D) 1065 MangleCtx.mangleGlobalBlock(BD, 1066 dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()), Out); 1067 else if (const auto *CD = dyn_cast<CXXConstructorDecl>(D)) 1068 MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out); 1069 else if (const auto *DD = dyn_cast<CXXDestructorDecl>(D)) 1070 MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out); 1071 else 1072 MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out); 1073 1074 auto Result = Manglings.insert(std::make_pair(Out.str(), BD)); 1075 return Result.first->first(); 1076 } 1077 1078 llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) { 1079 return getModule().getNamedValue(Name); 1080 } 1081 1082 /// AddGlobalCtor - Add a function to the list that will be called before 1083 /// main() runs. 1084 void CodeGenModule::AddGlobalCtor(llvm::Function *Ctor, int Priority, 1085 llvm::Constant *AssociatedData) { 1086 // FIXME: Type coercion of void()* types. 1087 GlobalCtors.push_back(Structor(Priority, Ctor, AssociatedData)); 1088 } 1089 1090 /// AddGlobalDtor - Add a function to the list that will be called 1091 /// when the module is unloaded. 1092 void CodeGenModule::AddGlobalDtor(llvm::Function *Dtor, int Priority) { 1093 if (CodeGenOpts.RegisterGlobalDtorsWithAtExit) { 1094 DtorsUsingAtExit[Priority].push_back(Dtor); 1095 return; 1096 } 1097 1098 // FIXME: Type coercion of void()* types. 1099 GlobalDtors.push_back(Structor(Priority, Dtor, nullptr)); 1100 } 1101 1102 void CodeGenModule::EmitCtorList(CtorList &Fns, const char *GlobalName) { 1103 if (Fns.empty()) return; 1104 1105 // Ctor function type is void()*. 1106 llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false); 1107 llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy); 1108 1109 // Get the type of a ctor entry, { i32, void ()*, i8* }. 1110 llvm::StructType *CtorStructTy = llvm::StructType::get( 1111 Int32Ty, llvm::PointerType::getUnqual(CtorFTy), VoidPtrTy); 1112 1113 // Construct the constructor and destructor arrays. 1114 ConstantInitBuilder builder(*this); 1115 auto ctors = builder.beginArray(CtorStructTy); 1116 for (const auto &I : Fns) { 1117 auto ctor = ctors.beginStruct(CtorStructTy); 1118 ctor.addInt(Int32Ty, I.Priority); 1119 ctor.add(llvm::ConstantExpr::getBitCast(I.Initializer, CtorPFTy)); 1120 if (I.AssociatedData) 1121 ctor.add(llvm::ConstantExpr::getBitCast(I.AssociatedData, VoidPtrTy)); 1122 else 1123 ctor.addNullPointer(VoidPtrTy); 1124 ctor.finishAndAddTo(ctors); 1125 } 1126 1127 auto list = 1128 ctors.finishAndCreateGlobal(GlobalName, getPointerAlign(), 1129 /*constant*/ false, 1130 llvm::GlobalValue::AppendingLinkage); 1131 1132 // The LTO linker doesn't seem to like it when we set an alignment 1133 // on appending variables. Take it off as a workaround. 1134 list->setAlignment(0); 1135 1136 Fns.clear(); 1137 } 1138 1139 llvm::GlobalValue::LinkageTypes 1140 CodeGenModule::getFunctionLinkage(GlobalDecl GD) { 1141 const auto *D = cast<FunctionDecl>(GD.getDecl()); 1142 1143 GVALinkage Linkage = getContext().GetGVALinkageForFunction(D); 1144 1145 if (const auto *Dtor = dyn_cast<CXXDestructorDecl>(D)) 1146 return getCXXABI().getCXXDestructorLinkage(Linkage, Dtor, GD.getDtorType()); 1147 1148 if (isa<CXXConstructorDecl>(D) && 1149 cast<CXXConstructorDecl>(D)->isInheritingConstructor() && 1150 Context.getTargetInfo().getCXXABI().isMicrosoft()) { 1151 // Our approach to inheriting constructors is fundamentally different from 1152 // that used by the MS ABI, so keep our inheriting constructor thunks 1153 // internal rather than trying to pick an unambiguous mangling for them. 1154 return llvm::GlobalValue::InternalLinkage; 1155 } 1156 1157 return getLLVMLinkageForDeclarator(D, Linkage, /*isConstantVariable=*/false); 1158 } 1159 1160 llvm::ConstantInt *CodeGenModule::CreateCrossDsoCfiTypeId(llvm::Metadata *MD) { 1161 llvm::MDString *MDS = dyn_cast<llvm::MDString>(MD); 1162 if (!MDS) return nullptr; 1163 1164 return llvm::ConstantInt::get(Int64Ty, llvm::MD5Hash(MDS->getString())); 1165 } 1166 1167 void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D, 1168 const CGFunctionInfo &Info, 1169 llvm::Function *F) { 1170 unsigned CallingConv; 1171 llvm::AttributeList PAL; 1172 ConstructAttributeList(F->getName(), Info, D, PAL, CallingConv, false); 1173 F->setAttributes(PAL); 1174 F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv)); 1175 } 1176 1177 /// Determines whether the language options require us to model 1178 /// unwind exceptions. We treat -fexceptions as mandating this 1179 /// except under the fragile ObjC ABI with only ObjC exceptions 1180 /// enabled. This means, for example, that C with -fexceptions 1181 /// enables this. 1182 static bool hasUnwindExceptions(const LangOptions &LangOpts) { 1183 // If exceptions are completely disabled, obviously this is false. 1184 if (!LangOpts.Exceptions) return false; 1185 1186 // If C++ exceptions are enabled, this is true. 1187 if (LangOpts.CXXExceptions) return true; 1188 1189 // If ObjC exceptions are enabled, this depends on the ABI. 1190 if (LangOpts.ObjCExceptions) { 1191 return LangOpts.ObjCRuntime.hasUnwindExceptions(); 1192 } 1193 1194 return true; 1195 } 1196 1197 static bool requiresMemberFunctionPointerTypeMetadata(CodeGenModule &CGM, 1198 const CXXMethodDecl *MD) { 1199 // Check that the type metadata can ever actually be used by a call. 1200 if (!CGM.getCodeGenOpts().LTOUnit || 1201 !CGM.HasHiddenLTOVisibility(MD->getParent())) 1202 return false; 1203 1204 // Only functions whose address can be taken with a member function pointer 1205 // need this sort of type metadata. 1206 return !MD->isStatic() && !MD->isVirtual() && !isa<CXXConstructorDecl>(MD) && 1207 !isa<CXXDestructorDecl>(MD); 1208 } 1209 1210 std::vector<const CXXRecordDecl *> 1211 CodeGenModule::getMostBaseClasses(const CXXRecordDecl *RD) { 1212 llvm::SetVector<const CXXRecordDecl *> MostBases; 1213 1214 std::function<void (const CXXRecordDecl *)> CollectMostBases; 1215 CollectMostBases = [&](const CXXRecordDecl *RD) { 1216 if (RD->getNumBases() == 0) 1217 MostBases.insert(RD); 1218 for (const CXXBaseSpecifier &B : RD->bases()) 1219 CollectMostBases(B.getType()->getAsCXXRecordDecl()); 1220 }; 1221 CollectMostBases(RD); 1222 return MostBases.takeVector(); 1223 } 1224 1225 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D, 1226 llvm::Function *F) { 1227 llvm::AttrBuilder B; 1228 1229 if (CodeGenOpts.UnwindTables) 1230 B.addAttribute(llvm::Attribute::UWTable); 1231 1232 if (!hasUnwindExceptions(LangOpts)) 1233 B.addAttribute(llvm::Attribute::NoUnwind); 1234 1235 if (!D || !D->hasAttr<NoStackProtectorAttr>()) { 1236 if (LangOpts.getStackProtector() == LangOptions::SSPOn) 1237 B.addAttribute(llvm::Attribute::StackProtect); 1238 else if (LangOpts.getStackProtector() == LangOptions::SSPStrong) 1239 B.addAttribute(llvm::Attribute::StackProtectStrong); 1240 else if (LangOpts.getStackProtector() == LangOptions::SSPReq) 1241 B.addAttribute(llvm::Attribute::StackProtectReq); 1242 } 1243 1244 if (!D) { 1245 // If we don't have a declaration to control inlining, the function isn't 1246 // explicitly marked as alwaysinline for semantic reasons, and inlining is 1247 // disabled, mark the function as noinline. 1248 if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline) && 1249 CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining) 1250 B.addAttribute(llvm::Attribute::NoInline); 1251 1252 F->addAttributes(llvm::AttributeList::FunctionIndex, B); 1253 return; 1254 } 1255 1256 // Track whether we need to add the optnone LLVM attribute, 1257 // starting with the default for this optimization level. 1258 bool ShouldAddOptNone = 1259 !CodeGenOpts.DisableO0ImplyOptNone && CodeGenOpts.OptimizationLevel == 0; 1260 // We can't add optnone in the following cases, it won't pass the verifier. 1261 ShouldAddOptNone &= !D->hasAttr<MinSizeAttr>(); 1262 ShouldAddOptNone &= !F->hasFnAttribute(llvm::Attribute::AlwaysInline); 1263 ShouldAddOptNone &= !D->hasAttr<AlwaysInlineAttr>(); 1264 1265 if (ShouldAddOptNone || D->hasAttr<OptimizeNoneAttr>()) { 1266 B.addAttribute(llvm::Attribute::OptimizeNone); 1267 1268 // OptimizeNone implies noinline; we should not be inlining such functions. 1269 B.addAttribute(llvm::Attribute::NoInline); 1270 assert(!F->hasFnAttribute(llvm::Attribute::AlwaysInline) && 1271 "OptimizeNone and AlwaysInline on same function!"); 1272 1273 // We still need to handle naked functions even though optnone subsumes 1274 // much of their semantics. 1275 if (D->hasAttr<NakedAttr>()) 1276 B.addAttribute(llvm::Attribute::Naked); 1277 1278 // OptimizeNone wins over OptimizeForSize and MinSize. 1279 F->removeFnAttr(llvm::Attribute::OptimizeForSize); 1280 F->removeFnAttr(llvm::Attribute::MinSize); 1281 } else if (D->hasAttr<NakedAttr>()) { 1282 // Naked implies noinline: we should not be inlining such functions. 1283 B.addAttribute(llvm::Attribute::Naked); 1284 B.addAttribute(llvm::Attribute::NoInline); 1285 } else if (D->hasAttr<NoDuplicateAttr>()) { 1286 B.addAttribute(llvm::Attribute::NoDuplicate); 1287 } else if (D->hasAttr<NoInlineAttr>()) { 1288 B.addAttribute(llvm::Attribute::NoInline); 1289 } else if (D->hasAttr<AlwaysInlineAttr>() && 1290 !F->hasFnAttribute(llvm::Attribute::NoInline)) { 1291 // (noinline wins over always_inline, and we can't specify both in IR) 1292 B.addAttribute(llvm::Attribute::AlwaysInline); 1293 } else if (CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining) { 1294 // If we're not inlining, then force everything that isn't always_inline to 1295 // carry an explicit noinline attribute. 1296 if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline)) 1297 B.addAttribute(llvm::Attribute::NoInline); 1298 } else { 1299 // Otherwise, propagate the inline hint attribute and potentially use its 1300 // absence to mark things as noinline. 1301 if (auto *FD = dyn_cast<FunctionDecl>(D)) { 1302 if (any_of(FD->redecls(), [&](const FunctionDecl *Redecl) { 1303 return Redecl->isInlineSpecified(); 1304 })) { 1305 B.addAttribute(llvm::Attribute::InlineHint); 1306 } else if (CodeGenOpts.getInlining() == 1307 CodeGenOptions::OnlyHintInlining && 1308 !FD->isInlined() && 1309 !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) { 1310 B.addAttribute(llvm::Attribute::NoInline); 1311 } 1312 } 1313 } 1314 1315 // Add other optimization related attributes if we are optimizing this 1316 // function. 1317 if (!D->hasAttr<OptimizeNoneAttr>()) { 1318 if (D->hasAttr<ColdAttr>()) { 1319 if (!ShouldAddOptNone) 1320 B.addAttribute(llvm::Attribute::OptimizeForSize); 1321 B.addAttribute(llvm::Attribute::Cold); 1322 } 1323 1324 if (D->hasAttr<MinSizeAttr>()) 1325 B.addAttribute(llvm::Attribute::MinSize); 1326 } 1327 1328 F->addAttributes(llvm::AttributeList::FunctionIndex, B); 1329 1330 unsigned alignment = D->getMaxAlignment() / Context.getCharWidth(); 1331 if (alignment) 1332 F->setAlignment(alignment); 1333 1334 if (!D->hasAttr<AlignedAttr>()) 1335 if (LangOpts.FunctionAlignment) 1336 F->setAlignment(1 << LangOpts.FunctionAlignment); 1337 1338 // Some C++ ABIs require 2-byte alignment for member functions, in order to 1339 // reserve a bit for differentiating between virtual and non-virtual member 1340 // functions. If the current target's C++ ABI requires this and this is a 1341 // member function, set its alignment accordingly. 1342 if (getTarget().getCXXABI().areMemberFunctionsAligned()) { 1343 if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D)) 1344 F->setAlignment(2); 1345 } 1346 1347 // In the cross-dso CFI mode, we want !type attributes on definitions only. 1348 if (CodeGenOpts.SanitizeCfiCrossDso) 1349 if (auto *FD = dyn_cast<FunctionDecl>(D)) 1350 CreateFunctionTypeMetadataForIcall(FD, F); 1351 1352 // Emit type metadata on member functions for member function pointer checks. 1353 // These are only ever necessary on definitions; we're guaranteed that the 1354 // definition will be present in the LTO unit as a result of LTO visibility. 1355 auto *MD = dyn_cast<CXXMethodDecl>(D); 1356 if (MD && requiresMemberFunctionPointerTypeMetadata(*this, MD)) { 1357 for (const CXXRecordDecl *Base : getMostBaseClasses(MD->getParent())) { 1358 llvm::Metadata *Id = 1359 CreateMetadataIdentifierForType(Context.getMemberPointerType( 1360 MD->getType(), Context.getRecordType(Base).getTypePtr())); 1361 F->addTypeMetadata(0, Id); 1362 } 1363 } 1364 } 1365 1366 void CodeGenModule::SetCommonAttributes(GlobalDecl GD, llvm::GlobalValue *GV) { 1367 const Decl *D = GD.getDecl(); 1368 if (dyn_cast_or_null<NamedDecl>(D)) 1369 setGVProperties(GV, GD); 1370 else 1371 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 1372 1373 if (D && D->hasAttr<UsedAttr>()) 1374 addUsedGlobal(GV); 1375 1376 if (CodeGenOpts.KeepStaticConsts && D && isa<VarDecl>(D)) { 1377 const auto *VD = cast<VarDecl>(D); 1378 if (VD->getType().isConstQualified() && VD->getStorageClass() == SC_Static) 1379 addUsedGlobal(GV); 1380 } 1381 } 1382 1383 bool CodeGenModule::GetCPUAndFeaturesAttributes(const Decl *D, 1384 llvm::AttrBuilder &Attrs) { 1385 // Add target-cpu and target-features attributes to functions. If 1386 // we have a decl for the function and it has a target attribute then 1387 // parse that and add it to the feature set. 1388 StringRef TargetCPU = getTarget().getTargetOpts().CPU; 1389 std::vector<std::string> Features; 1390 const auto *FD = dyn_cast_or_null<FunctionDecl>(D); 1391 FD = FD ? FD->getMostRecentDecl() : FD; 1392 const auto *TD = FD ? FD->getAttr<TargetAttr>() : nullptr; 1393 const auto *SD = FD ? FD->getAttr<CPUSpecificAttr>() : nullptr; 1394 bool AddedAttr = false; 1395 if (TD || SD) { 1396 llvm::StringMap<bool> FeatureMap; 1397 getFunctionFeatureMap(FeatureMap, FD); 1398 1399 // Produce the canonical string for this set of features. 1400 for (const llvm::StringMap<bool>::value_type &Entry : FeatureMap) 1401 Features.push_back((Entry.getValue() ? "+" : "-") + Entry.getKey().str()); 1402 1403 // Now add the target-cpu and target-features to the function. 1404 // While we populated the feature map above, we still need to 1405 // get and parse the target attribute so we can get the cpu for 1406 // the function. 1407 if (TD) { 1408 TargetAttr::ParsedTargetAttr ParsedAttr = TD->parse(); 1409 if (ParsedAttr.Architecture != "" && 1410 getTarget().isValidCPUName(ParsedAttr.Architecture)) 1411 TargetCPU = ParsedAttr.Architecture; 1412 } 1413 } else { 1414 // Otherwise just add the existing target cpu and target features to the 1415 // function. 1416 Features = getTarget().getTargetOpts().Features; 1417 } 1418 1419 if (TargetCPU != "") { 1420 Attrs.addAttribute("target-cpu", TargetCPU); 1421 AddedAttr = true; 1422 } 1423 if (!Features.empty()) { 1424 llvm::sort(Features); 1425 Attrs.addAttribute("target-features", llvm::join(Features, ",")); 1426 AddedAttr = true; 1427 } 1428 1429 return AddedAttr; 1430 } 1431 1432 void CodeGenModule::setNonAliasAttributes(GlobalDecl GD, 1433 llvm::GlobalObject *GO) { 1434 const Decl *D = GD.getDecl(); 1435 SetCommonAttributes(GD, GO); 1436 1437 if (D) { 1438 if (auto *GV = dyn_cast<llvm::GlobalVariable>(GO)) { 1439 if (auto *SA = D->getAttr<PragmaClangBSSSectionAttr>()) 1440 GV->addAttribute("bss-section", SA->getName()); 1441 if (auto *SA = D->getAttr<PragmaClangDataSectionAttr>()) 1442 GV->addAttribute("data-section", SA->getName()); 1443 if (auto *SA = D->getAttr<PragmaClangRodataSectionAttr>()) 1444 GV->addAttribute("rodata-section", SA->getName()); 1445 } 1446 1447 if (auto *F = dyn_cast<llvm::Function>(GO)) { 1448 if (auto *SA = D->getAttr<PragmaClangTextSectionAttr>()) 1449 if (!D->getAttr<SectionAttr>()) 1450 F->addFnAttr("implicit-section-name", SA->getName()); 1451 1452 llvm::AttrBuilder Attrs; 1453 if (GetCPUAndFeaturesAttributes(D, Attrs)) { 1454 // We know that GetCPUAndFeaturesAttributes will always have the 1455 // newest set, since it has the newest possible FunctionDecl, so the 1456 // new ones should replace the old. 1457 F->removeFnAttr("target-cpu"); 1458 F->removeFnAttr("target-features"); 1459 F->addAttributes(llvm::AttributeList::FunctionIndex, Attrs); 1460 } 1461 } 1462 1463 if (const auto *CSA = D->getAttr<CodeSegAttr>()) 1464 GO->setSection(CSA->getName()); 1465 else if (const auto *SA = D->getAttr<SectionAttr>()) 1466 GO->setSection(SA->getName()); 1467 } 1468 1469 getTargetCodeGenInfo().setTargetAttributes(D, GO, *this); 1470 } 1471 1472 void CodeGenModule::SetInternalFunctionAttributes(GlobalDecl GD, 1473 llvm::Function *F, 1474 const CGFunctionInfo &FI) { 1475 const Decl *D = GD.getDecl(); 1476 SetLLVMFunctionAttributes(D, FI, F); 1477 SetLLVMFunctionAttributesForDefinition(D, F); 1478 1479 F->setLinkage(llvm::Function::InternalLinkage); 1480 1481 setNonAliasAttributes(GD, F); 1482 } 1483 1484 static void setLinkageForGV(llvm::GlobalValue *GV, const NamedDecl *ND) { 1485 // Set linkage and visibility in case we never see a definition. 1486 LinkageInfo LV = ND->getLinkageAndVisibility(); 1487 // Don't set internal linkage on declarations. 1488 // "extern_weak" is overloaded in LLVM; we probably should have 1489 // separate linkage types for this. 1490 if (isExternallyVisible(LV.getLinkage()) && 1491 (ND->hasAttr<WeakAttr>() || ND->isWeakImported())) 1492 GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage); 1493 } 1494 1495 void CodeGenModule::CreateFunctionTypeMetadataForIcall(const FunctionDecl *FD, 1496 llvm::Function *F) { 1497 // Only if we are checking indirect calls. 1498 if (!LangOpts.Sanitize.has(SanitizerKind::CFIICall)) 1499 return; 1500 1501 // Non-static class methods are handled via vtable or member function pointer 1502 // checks elsewhere. 1503 if (isa<CXXMethodDecl>(FD) && !cast<CXXMethodDecl>(FD)->isStatic()) 1504 return; 1505 1506 // Additionally, if building with cross-DSO support... 1507 if (CodeGenOpts.SanitizeCfiCrossDso) { 1508 // Skip available_externally functions. They won't be codegen'ed in the 1509 // current module anyway. 1510 if (getContext().GetGVALinkageForFunction(FD) == GVA_AvailableExternally) 1511 return; 1512 } 1513 1514 llvm::Metadata *MD = CreateMetadataIdentifierForType(FD->getType()); 1515 F->addTypeMetadata(0, MD); 1516 F->addTypeMetadata(0, CreateMetadataIdentifierGeneralized(FD->getType())); 1517 1518 // Emit a hash-based bit set entry for cross-DSO calls. 1519 if (CodeGenOpts.SanitizeCfiCrossDso) 1520 if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD)) 1521 F->addTypeMetadata(0, llvm::ConstantAsMetadata::get(CrossDsoTypeId)); 1522 } 1523 1524 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD, llvm::Function *F, 1525 bool IsIncompleteFunction, 1526 bool IsThunk) { 1527 1528 if (llvm::Intrinsic::ID IID = F->getIntrinsicID()) { 1529 // If this is an intrinsic function, set the function's attributes 1530 // to the intrinsic's attributes. 1531 F->setAttributes(llvm::Intrinsic::getAttributes(getLLVMContext(), IID)); 1532 return; 1533 } 1534 1535 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 1536 1537 if (!IsIncompleteFunction) { 1538 SetLLVMFunctionAttributes(FD, getTypes().arrangeGlobalDeclaration(GD), F); 1539 // Setup target-specific attributes. 1540 if (F->isDeclaration()) 1541 getTargetCodeGenInfo().setTargetAttributes(FD, F, *this); 1542 } 1543 1544 // Add the Returned attribute for "this", except for iOS 5 and earlier 1545 // where substantial code, including the libstdc++ dylib, was compiled with 1546 // GCC and does not actually return "this". 1547 if (!IsThunk && getCXXABI().HasThisReturn(GD) && 1548 !(getTriple().isiOS() && getTriple().isOSVersionLT(6))) { 1549 assert(!F->arg_empty() && 1550 F->arg_begin()->getType() 1551 ->canLosslesslyBitCastTo(F->getReturnType()) && 1552 "unexpected this return"); 1553 F->addAttribute(1, llvm::Attribute::Returned); 1554 } 1555 1556 // Only a few attributes are set on declarations; these may later be 1557 // overridden by a definition. 1558 1559 setLinkageForGV(F, FD); 1560 setGVProperties(F, FD); 1561 1562 if (const auto *CSA = FD->getAttr<CodeSegAttr>()) 1563 F->setSection(CSA->getName()); 1564 else if (const auto *SA = FD->getAttr<SectionAttr>()) 1565 F->setSection(SA->getName()); 1566 1567 if (FD->isReplaceableGlobalAllocationFunction()) { 1568 // A replaceable global allocation function does not act like a builtin by 1569 // default, only if it is invoked by a new-expression or delete-expression. 1570 F->addAttribute(llvm::AttributeList::FunctionIndex, 1571 llvm::Attribute::NoBuiltin); 1572 1573 // A sane operator new returns a non-aliasing pointer. 1574 // FIXME: Also add NonNull attribute to the return value 1575 // for the non-nothrow forms? 1576 auto Kind = FD->getDeclName().getCXXOverloadedOperator(); 1577 if (getCodeGenOpts().AssumeSaneOperatorNew && 1578 (Kind == OO_New || Kind == OO_Array_New)) 1579 F->addAttribute(llvm::AttributeList::ReturnIndex, 1580 llvm::Attribute::NoAlias); 1581 } 1582 1583 if (isa<CXXConstructorDecl>(FD) || isa<CXXDestructorDecl>(FD)) 1584 F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 1585 else if (const auto *MD = dyn_cast<CXXMethodDecl>(FD)) 1586 if (MD->isVirtual()) 1587 F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 1588 1589 // Don't emit entries for function declarations in the cross-DSO mode. This 1590 // is handled with better precision by the receiving DSO. 1591 if (!CodeGenOpts.SanitizeCfiCrossDso) 1592 CreateFunctionTypeMetadataForIcall(FD, F); 1593 1594 if (getLangOpts().OpenMP && FD->hasAttr<OMPDeclareSimdDeclAttr>()) 1595 getOpenMPRuntime().emitDeclareSimdFunction(FD, F); 1596 } 1597 1598 void CodeGenModule::addUsedGlobal(llvm::GlobalValue *GV) { 1599 assert(!GV->isDeclaration() && 1600 "Only globals with definition can force usage."); 1601 LLVMUsed.emplace_back(GV); 1602 } 1603 1604 void CodeGenModule::addCompilerUsedGlobal(llvm::GlobalValue *GV) { 1605 assert(!GV->isDeclaration() && 1606 "Only globals with definition can force usage."); 1607 LLVMCompilerUsed.emplace_back(GV); 1608 } 1609 1610 static void emitUsed(CodeGenModule &CGM, StringRef Name, 1611 std::vector<llvm::WeakTrackingVH> &List) { 1612 // Don't create llvm.used if there is no need. 1613 if (List.empty()) 1614 return; 1615 1616 // Convert List to what ConstantArray needs. 1617 SmallVector<llvm::Constant*, 8> UsedArray; 1618 UsedArray.resize(List.size()); 1619 for (unsigned i = 0, e = List.size(); i != e; ++i) { 1620 UsedArray[i] = 1621 llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast( 1622 cast<llvm::Constant>(&*List[i]), CGM.Int8PtrTy); 1623 } 1624 1625 if (UsedArray.empty()) 1626 return; 1627 llvm::ArrayType *ATy = llvm::ArrayType::get(CGM.Int8PtrTy, UsedArray.size()); 1628 1629 auto *GV = new llvm::GlobalVariable( 1630 CGM.getModule(), ATy, false, llvm::GlobalValue::AppendingLinkage, 1631 llvm::ConstantArray::get(ATy, UsedArray), Name); 1632 1633 GV->setSection("llvm.metadata"); 1634 } 1635 1636 void CodeGenModule::emitLLVMUsed() { 1637 emitUsed(*this, "llvm.used", LLVMUsed); 1638 emitUsed(*this, "llvm.compiler.used", LLVMCompilerUsed); 1639 } 1640 1641 void CodeGenModule::AppendLinkerOptions(StringRef Opts) { 1642 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opts); 1643 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 1644 } 1645 1646 void CodeGenModule::AddDetectMismatch(StringRef Name, StringRef Value) { 1647 llvm::SmallString<32> Opt; 1648 getTargetCodeGenInfo().getDetectMismatchOption(Name, Value, Opt); 1649 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt); 1650 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 1651 } 1652 1653 void CodeGenModule::AddELFLibDirective(StringRef Lib) { 1654 auto &C = getLLVMContext(); 1655 LinkerOptionsMetadata.push_back(llvm::MDNode::get( 1656 C, {llvm::MDString::get(C, "lib"), llvm::MDString::get(C, Lib)})); 1657 } 1658 1659 void CodeGenModule::AddDependentLib(StringRef Lib) { 1660 llvm::SmallString<24> Opt; 1661 getTargetCodeGenInfo().getDependentLibraryOption(Lib, Opt); 1662 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt); 1663 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 1664 } 1665 1666 /// Add link options implied by the given module, including modules 1667 /// it depends on, using a postorder walk. 1668 static void addLinkOptionsPostorder(CodeGenModule &CGM, Module *Mod, 1669 SmallVectorImpl<llvm::MDNode *> &Metadata, 1670 llvm::SmallPtrSet<Module *, 16> &Visited) { 1671 // Import this module's parent. 1672 if (Mod->Parent && Visited.insert(Mod->Parent).second) { 1673 addLinkOptionsPostorder(CGM, Mod->Parent, Metadata, Visited); 1674 } 1675 1676 // Import this module's dependencies. 1677 for (unsigned I = Mod->Imports.size(); I > 0; --I) { 1678 if (Visited.insert(Mod->Imports[I - 1]).second) 1679 addLinkOptionsPostorder(CGM, Mod->Imports[I-1], Metadata, Visited); 1680 } 1681 1682 // Add linker options to link against the libraries/frameworks 1683 // described by this module. 1684 llvm::LLVMContext &Context = CGM.getLLVMContext(); 1685 1686 // For modules that use export_as for linking, use that module 1687 // name instead. 1688 if (Mod->UseExportAsModuleLinkName) 1689 return; 1690 1691 for (unsigned I = Mod->LinkLibraries.size(); I > 0; --I) { 1692 // Link against a framework. Frameworks are currently Darwin only, so we 1693 // don't to ask TargetCodeGenInfo for the spelling of the linker option. 1694 if (Mod->LinkLibraries[I-1].IsFramework) { 1695 llvm::Metadata *Args[2] = { 1696 llvm::MDString::get(Context, "-framework"), 1697 llvm::MDString::get(Context, Mod->LinkLibraries[I - 1].Library)}; 1698 1699 Metadata.push_back(llvm::MDNode::get(Context, Args)); 1700 continue; 1701 } 1702 1703 // Link against a library. 1704 llvm::SmallString<24> Opt; 1705 CGM.getTargetCodeGenInfo().getDependentLibraryOption( 1706 Mod->LinkLibraries[I-1].Library, Opt); 1707 auto *OptString = llvm::MDString::get(Context, Opt); 1708 Metadata.push_back(llvm::MDNode::get(Context, OptString)); 1709 } 1710 } 1711 1712 void CodeGenModule::EmitModuleLinkOptions() { 1713 // Collect the set of all of the modules we want to visit to emit link 1714 // options, which is essentially the imported modules and all of their 1715 // non-explicit child modules. 1716 llvm::SetVector<clang::Module *> LinkModules; 1717 llvm::SmallPtrSet<clang::Module *, 16> Visited; 1718 SmallVector<clang::Module *, 16> Stack; 1719 1720 // Seed the stack with imported modules. 1721 for (Module *M : ImportedModules) { 1722 // Do not add any link flags when an implementation TU of a module imports 1723 // a header of that same module. 1724 if (M->getTopLevelModuleName() == getLangOpts().CurrentModule && 1725 !getLangOpts().isCompilingModule()) 1726 continue; 1727 if (Visited.insert(M).second) 1728 Stack.push_back(M); 1729 } 1730 1731 // Find all of the modules to import, making a little effort to prune 1732 // non-leaf modules. 1733 while (!Stack.empty()) { 1734 clang::Module *Mod = Stack.pop_back_val(); 1735 1736 bool AnyChildren = false; 1737 1738 // Visit the submodules of this module. 1739 for (clang::Module::submodule_iterator Sub = Mod->submodule_begin(), 1740 SubEnd = Mod->submodule_end(); 1741 Sub != SubEnd; ++Sub) { 1742 // Skip explicit children; they need to be explicitly imported to be 1743 // linked against. 1744 if ((*Sub)->IsExplicit) 1745 continue; 1746 1747 if (Visited.insert(*Sub).second) { 1748 Stack.push_back(*Sub); 1749 AnyChildren = true; 1750 } 1751 } 1752 1753 // We didn't find any children, so add this module to the list of 1754 // modules to link against. 1755 if (!AnyChildren) { 1756 LinkModules.insert(Mod); 1757 } 1758 } 1759 1760 // Add link options for all of the imported modules in reverse topological 1761 // order. We don't do anything to try to order import link flags with respect 1762 // to linker options inserted by things like #pragma comment(). 1763 SmallVector<llvm::MDNode *, 16> MetadataArgs; 1764 Visited.clear(); 1765 for (Module *M : LinkModules) 1766 if (Visited.insert(M).second) 1767 addLinkOptionsPostorder(*this, M, MetadataArgs, Visited); 1768 std::reverse(MetadataArgs.begin(), MetadataArgs.end()); 1769 LinkerOptionsMetadata.append(MetadataArgs.begin(), MetadataArgs.end()); 1770 1771 // Add the linker options metadata flag. 1772 auto *NMD = getModule().getOrInsertNamedMetadata("llvm.linker.options"); 1773 for (auto *MD : LinkerOptionsMetadata) 1774 NMD->addOperand(MD); 1775 } 1776 1777 void CodeGenModule::EmitDeferred() { 1778 // Emit deferred declare target declarations. 1779 if (getLangOpts().OpenMP && !getLangOpts().OpenMPSimd) 1780 getOpenMPRuntime().emitDeferredTargetDecls(); 1781 1782 // Emit code for any potentially referenced deferred decls. Since a 1783 // previously unused static decl may become used during the generation of code 1784 // for a static function, iterate until no changes are made. 1785 1786 if (!DeferredVTables.empty()) { 1787 EmitDeferredVTables(); 1788 1789 // Emitting a vtable doesn't directly cause more vtables to 1790 // become deferred, although it can cause functions to be 1791 // emitted that then need those vtables. 1792 assert(DeferredVTables.empty()); 1793 } 1794 1795 // Stop if we're out of both deferred vtables and deferred declarations. 1796 if (DeferredDeclsToEmit.empty()) 1797 return; 1798 1799 // Grab the list of decls to emit. If EmitGlobalDefinition schedules more 1800 // work, it will not interfere with this. 1801 std::vector<GlobalDecl> CurDeclsToEmit; 1802 CurDeclsToEmit.swap(DeferredDeclsToEmit); 1803 1804 for (GlobalDecl &D : CurDeclsToEmit) { 1805 // We should call GetAddrOfGlobal with IsForDefinition set to true in order 1806 // to get GlobalValue with exactly the type we need, not something that 1807 // might had been created for another decl with the same mangled name but 1808 // different type. 1809 llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>( 1810 GetAddrOfGlobal(D, ForDefinition)); 1811 1812 // In case of different address spaces, we may still get a cast, even with 1813 // IsForDefinition equal to true. Query mangled names table to get 1814 // GlobalValue. 1815 if (!GV) 1816 GV = GetGlobalValue(getMangledName(D)); 1817 1818 // Make sure GetGlobalValue returned non-null. 1819 assert(GV); 1820 1821 // Check to see if we've already emitted this. This is necessary 1822 // for a couple of reasons: first, decls can end up in the 1823 // deferred-decls queue multiple times, and second, decls can end 1824 // up with definitions in unusual ways (e.g. by an extern inline 1825 // function acquiring a strong function redefinition). Just 1826 // ignore these cases. 1827 if (!GV->isDeclaration()) 1828 continue; 1829 1830 // Otherwise, emit the definition and move on to the next one. 1831 EmitGlobalDefinition(D, GV); 1832 1833 // If we found out that we need to emit more decls, do that recursively. 1834 // This has the advantage that the decls are emitted in a DFS and related 1835 // ones are close together, which is convenient for testing. 1836 if (!DeferredVTables.empty() || !DeferredDeclsToEmit.empty()) { 1837 EmitDeferred(); 1838 assert(DeferredVTables.empty() && DeferredDeclsToEmit.empty()); 1839 } 1840 } 1841 } 1842 1843 void CodeGenModule::EmitVTablesOpportunistically() { 1844 // Try to emit external vtables as available_externally if they have emitted 1845 // all inlined virtual functions. It runs after EmitDeferred() and therefore 1846 // is not allowed to create new references to things that need to be emitted 1847 // lazily. Note that it also uses fact that we eagerly emitting RTTI. 1848 1849 assert((OpportunisticVTables.empty() || shouldOpportunisticallyEmitVTables()) 1850 && "Only emit opportunistic vtables with optimizations"); 1851 1852 for (const CXXRecordDecl *RD : OpportunisticVTables) { 1853 assert(getVTables().isVTableExternal(RD) && 1854 "This queue should only contain external vtables"); 1855 if (getCXXABI().canSpeculativelyEmitVTable(RD)) 1856 VTables.GenerateClassData(RD); 1857 } 1858 OpportunisticVTables.clear(); 1859 } 1860 1861 void CodeGenModule::EmitGlobalAnnotations() { 1862 if (Annotations.empty()) 1863 return; 1864 1865 // Create a new global variable for the ConstantStruct in the Module. 1866 llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get( 1867 Annotations[0]->getType(), Annotations.size()), Annotations); 1868 auto *gv = new llvm::GlobalVariable(getModule(), Array->getType(), false, 1869 llvm::GlobalValue::AppendingLinkage, 1870 Array, "llvm.global.annotations"); 1871 gv->setSection(AnnotationSection); 1872 } 1873 1874 llvm::Constant *CodeGenModule::EmitAnnotationString(StringRef Str) { 1875 llvm::Constant *&AStr = AnnotationStrings[Str]; 1876 if (AStr) 1877 return AStr; 1878 1879 // Not found yet, create a new global. 1880 llvm::Constant *s = llvm::ConstantDataArray::getString(getLLVMContext(), Str); 1881 auto *gv = 1882 new llvm::GlobalVariable(getModule(), s->getType(), true, 1883 llvm::GlobalValue::PrivateLinkage, s, ".str"); 1884 gv->setSection(AnnotationSection); 1885 gv->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 1886 AStr = gv; 1887 return gv; 1888 } 1889 1890 llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) { 1891 SourceManager &SM = getContext().getSourceManager(); 1892 PresumedLoc PLoc = SM.getPresumedLoc(Loc); 1893 if (PLoc.isValid()) 1894 return EmitAnnotationString(PLoc.getFilename()); 1895 return EmitAnnotationString(SM.getBufferName(Loc)); 1896 } 1897 1898 llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) { 1899 SourceManager &SM = getContext().getSourceManager(); 1900 PresumedLoc PLoc = SM.getPresumedLoc(L); 1901 unsigned LineNo = PLoc.isValid() ? PLoc.getLine() : 1902 SM.getExpansionLineNumber(L); 1903 return llvm::ConstantInt::get(Int32Ty, LineNo); 1904 } 1905 1906 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV, 1907 const AnnotateAttr *AA, 1908 SourceLocation L) { 1909 // Get the globals for file name, annotation, and the line number. 1910 llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()), 1911 *UnitGV = EmitAnnotationUnit(L), 1912 *LineNoCst = EmitAnnotationLineNo(L); 1913 1914 // Create the ConstantStruct for the global annotation. 1915 llvm::Constant *Fields[4] = { 1916 llvm::ConstantExpr::getBitCast(GV, Int8PtrTy), 1917 llvm::ConstantExpr::getBitCast(AnnoGV, Int8PtrTy), 1918 llvm::ConstantExpr::getBitCast(UnitGV, Int8PtrTy), 1919 LineNoCst 1920 }; 1921 return llvm::ConstantStruct::getAnon(Fields); 1922 } 1923 1924 void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D, 1925 llvm::GlobalValue *GV) { 1926 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 1927 // Get the struct elements for these annotations. 1928 for (const auto *I : D->specific_attrs<AnnotateAttr>()) 1929 Annotations.push_back(EmitAnnotateAttr(GV, I, D->getLocation())); 1930 } 1931 1932 bool CodeGenModule::isInSanitizerBlacklist(SanitizerMask Kind, 1933 llvm::Function *Fn, 1934 SourceLocation Loc) const { 1935 const auto &SanitizerBL = getContext().getSanitizerBlacklist(); 1936 // Blacklist by function name. 1937 if (SanitizerBL.isBlacklistedFunction(Kind, Fn->getName())) 1938 return true; 1939 // Blacklist by location. 1940 if (Loc.isValid()) 1941 return SanitizerBL.isBlacklistedLocation(Kind, Loc); 1942 // If location is unknown, this may be a compiler-generated function. Assume 1943 // it's located in the main file. 1944 auto &SM = Context.getSourceManager(); 1945 if (const auto *MainFile = SM.getFileEntryForID(SM.getMainFileID())) { 1946 return SanitizerBL.isBlacklistedFile(Kind, MainFile->getName()); 1947 } 1948 return false; 1949 } 1950 1951 bool CodeGenModule::isInSanitizerBlacklist(llvm::GlobalVariable *GV, 1952 SourceLocation Loc, QualType Ty, 1953 StringRef Category) const { 1954 // For now globals can be blacklisted only in ASan and KASan. 1955 const SanitizerMask EnabledAsanMask = LangOpts.Sanitize.Mask & 1956 (SanitizerKind::Address | SanitizerKind::KernelAddress | 1957 SanitizerKind::HWAddress | SanitizerKind::KernelHWAddress); 1958 if (!EnabledAsanMask) 1959 return false; 1960 const auto &SanitizerBL = getContext().getSanitizerBlacklist(); 1961 if (SanitizerBL.isBlacklistedGlobal(EnabledAsanMask, GV->getName(), Category)) 1962 return true; 1963 if (SanitizerBL.isBlacklistedLocation(EnabledAsanMask, Loc, Category)) 1964 return true; 1965 // Check global type. 1966 if (!Ty.isNull()) { 1967 // Drill down the array types: if global variable of a fixed type is 1968 // blacklisted, we also don't instrument arrays of them. 1969 while (auto AT = dyn_cast<ArrayType>(Ty.getTypePtr())) 1970 Ty = AT->getElementType(); 1971 Ty = Ty.getCanonicalType().getUnqualifiedType(); 1972 // We allow to blacklist only record types (classes, structs etc.) 1973 if (Ty->isRecordType()) { 1974 std::string TypeStr = Ty.getAsString(getContext().getPrintingPolicy()); 1975 if (SanitizerBL.isBlacklistedType(EnabledAsanMask, TypeStr, Category)) 1976 return true; 1977 } 1978 } 1979 return false; 1980 } 1981 1982 bool CodeGenModule::imbueXRayAttrs(llvm::Function *Fn, SourceLocation Loc, 1983 StringRef Category) const { 1984 const auto &XRayFilter = getContext().getXRayFilter(); 1985 using ImbueAttr = XRayFunctionFilter::ImbueAttribute; 1986 auto Attr = ImbueAttr::NONE; 1987 if (Loc.isValid()) 1988 Attr = XRayFilter.shouldImbueLocation(Loc, Category); 1989 if (Attr == ImbueAttr::NONE) 1990 Attr = XRayFilter.shouldImbueFunction(Fn->getName()); 1991 switch (Attr) { 1992 case ImbueAttr::NONE: 1993 return false; 1994 case ImbueAttr::ALWAYS: 1995 Fn->addFnAttr("function-instrument", "xray-always"); 1996 break; 1997 case ImbueAttr::ALWAYS_ARG1: 1998 Fn->addFnAttr("function-instrument", "xray-always"); 1999 Fn->addFnAttr("xray-log-args", "1"); 2000 break; 2001 case ImbueAttr::NEVER: 2002 Fn->addFnAttr("function-instrument", "xray-never"); 2003 break; 2004 } 2005 return true; 2006 } 2007 2008 bool CodeGenModule::MustBeEmitted(const ValueDecl *Global) { 2009 // Never defer when EmitAllDecls is specified. 2010 if (LangOpts.EmitAllDecls) 2011 return true; 2012 2013 if (CodeGenOpts.KeepStaticConsts) { 2014 const auto *VD = dyn_cast<VarDecl>(Global); 2015 if (VD && VD->getType().isConstQualified() && 2016 VD->getStorageClass() == SC_Static) 2017 return true; 2018 } 2019 2020 return getContext().DeclMustBeEmitted(Global); 2021 } 2022 2023 bool CodeGenModule::MayBeEmittedEagerly(const ValueDecl *Global) { 2024 if (const auto *FD = dyn_cast<FunctionDecl>(Global)) 2025 if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation) 2026 // Implicit template instantiations may change linkage if they are later 2027 // explicitly instantiated, so they should not be emitted eagerly. 2028 return false; 2029 if (const auto *VD = dyn_cast<VarDecl>(Global)) 2030 if (Context.getInlineVariableDefinitionKind(VD) == 2031 ASTContext::InlineVariableDefinitionKind::WeakUnknown) 2032 // A definition of an inline constexpr static data member may change 2033 // linkage later if it's redeclared outside the class. 2034 return false; 2035 // If OpenMP is enabled and threadprivates must be generated like TLS, delay 2036 // codegen for global variables, because they may be marked as threadprivate. 2037 if (LangOpts.OpenMP && LangOpts.OpenMPUseTLS && 2038 getContext().getTargetInfo().isTLSSupported() && isa<VarDecl>(Global) && 2039 !isTypeConstant(Global->getType(), false) && 2040 !OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(Global)) 2041 return false; 2042 2043 return true; 2044 } 2045 2046 ConstantAddress CodeGenModule::GetAddrOfUuidDescriptor( 2047 const CXXUuidofExpr* E) { 2048 // Sema has verified that IIDSource has a __declspec(uuid()), and that its 2049 // well-formed. 2050 StringRef Uuid = E->getUuidStr(); 2051 std::string Name = "_GUID_" + Uuid.lower(); 2052 std::replace(Name.begin(), Name.end(), '-', '_'); 2053 2054 // The UUID descriptor should be pointer aligned. 2055 CharUnits Alignment = CharUnits::fromQuantity(PointerAlignInBytes); 2056 2057 // Look for an existing global. 2058 if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name)) 2059 return ConstantAddress(GV, Alignment); 2060 2061 llvm::Constant *Init = EmitUuidofInitializer(Uuid); 2062 assert(Init && "failed to initialize as constant"); 2063 2064 auto *GV = new llvm::GlobalVariable( 2065 getModule(), Init->getType(), 2066 /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name); 2067 if (supportsCOMDAT()) 2068 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 2069 setDSOLocal(GV); 2070 return ConstantAddress(GV, Alignment); 2071 } 2072 2073 ConstantAddress CodeGenModule::GetWeakRefReference(const ValueDecl *VD) { 2074 const AliasAttr *AA = VD->getAttr<AliasAttr>(); 2075 assert(AA && "No alias?"); 2076 2077 CharUnits Alignment = getContext().getDeclAlign(VD); 2078 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType()); 2079 2080 // See if there is already something with the target's name in the module. 2081 llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee()); 2082 if (Entry) { 2083 unsigned AS = getContext().getTargetAddressSpace(VD->getType()); 2084 auto Ptr = llvm::ConstantExpr::getBitCast(Entry, DeclTy->getPointerTo(AS)); 2085 return ConstantAddress(Ptr, Alignment); 2086 } 2087 2088 llvm::Constant *Aliasee; 2089 if (isa<llvm::FunctionType>(DeclTy)) 2090 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, 2091 GlobalDecl(cast<FunctionDecl>(VD)), 2092 /*ForVTable=*/false); 2093 else 2094 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), 2095 llvm::PointerType::getUnqual(DeclTy), 2096 nullptr); 2097 2098 auto *F = cast<llvm::GlobalValue>(Aliasee); 2099 F->setLinkage(llvm::Function::ExternalWeakLinkage); 2100 WeakRefReferences.insert(F); 2101 2102 return ConstantAddress(Aliasee, Alignment); 2103 } 2104 2105 void CodeGenModule::EmitGlobal(GlobalDecl GD) { 2106 const auto *Global = cast<ValueDecl>(GD.getDecl()); 2107 2108 // Weak references don't produce any output by themselves. 2109 if (Global->hasAttr<WeakRefAttr>()) 2110 return; 2111 2112 // If this is an alias definition (which otherwise looks like a declaration) 2113 // emit it now. 2114 if (Global->hasAttr<AliasAttr>()) 2115 return EmitAliasDefinition(GD); 2116 2117 // IFunc like an alias whose value is resolved at runtime by calling resolver. 2118 if (Global->hasAttr<IFuncAttr>()) 2119 return emitIFuncDefinition(GD); 2120 2121 // If this is a cpu_dispatch multiversion function, emit the resolver. 2122 if (Global->hasAttr<CPUDispatchAttr>()) 2123 return emitCPUDispatchDefinition(GD); 2124 2125 // If this is CUDA, be selective about which declarations we emit. 2126 if (LangOpts.CUDA) { 2127 if (LangOpts.CUDAIsDevice) { 2128 if (!Global->hasAttr<CUDADeviceAttr>() && 2129 !Global->hasAttr<CUDAGlobalAttr>() && 2130 !Global->hasAttr<CUDAConstantAttr>() && 2131 !Global->hasAttr<CUDASharedAttr>()) 2132 return; 2133 } else { 2134 // We need to emit host-side 'shadows' for all global 2135 // device-side variables because the CUDA runtime needs their 2136 // size and host-side address in order to provide access to 2137 // their device-side incarnations. 2138 2139 // So device-only functions are the only things we skip. 2140 if (isa<FunctionDecl>(Global) && !Global->hasAttr<CUDAHostAttr>() && 2141 Global->hasAttr<CUDADeviceAttr>()) 2142 return; 2143 2144 assert((isa<FunctionDecl>(Global) || isa<VarDecl>(Global)) && 2145 "Expected Variable or Function"); 2146 } 2147 } 2148 2149 if (LangOpts.OpenMP) { 2150 // If this is OpenMP device, check if it is legal to emit this global 2151 // normally. 2152 if (OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(GD)) 2153 return; 2154 if (auto *DRD = dyn_cast<OMPDeclareReductionDecl>(Global)) { 2155 if (MustBeEmitted(Global)) 2156 EmitOMPDeclareReduction(DRD); 2157 return; 2158 } 2159 } 2160 2161 // Ignore declarations, they will be emitted on their first use. 2162 if (const auto *FD = dyn_cast<FunctionDecl>(Global)) { 2163 // Forward declarations are emitted lazily on first use. 2164 if (!FD->doesThisDeclarationHaveABody()) { 2165 if (!FD->doesDeclarationForceExternallyVisibleDefinition()) 2166 return; 2167 2168 StringRef MangledName = getMangledName(GD); 2169 2170 // Compute the function info and LLVM type. 2171 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 2172 llvm::Type *Ty = getTypes().GetFunctionType(FI); 2173 2174 GetOrCreateLLVMFunction(MangledName, Ty, GD, /*ForVTable=*/false, 2175 /*DontDefer=*/false); 2176 return; 2177 } 2178 } else { 2179 const auto *VD = cast<VarDecl>(Global); 2180 assert(VD->isFileVarDecl() && "Cannot emit local var decl as global."); 2181 // We need to emit device-side global CUDA variables even if a 2182 // variable does not have a definition -- we still need to define 2183 // host-side shadow for it. 2184 bool MustEmitForCuda = LangOpts.CUDA && !LangOpts.CUDAIsDevice && 2185 !VD->hasDefinition() && 2186 (VD->hasAttr<CUDAConstantAttr>() || 2187 VD->hasAttr<CUDADeviceAttr>()); 2188 if (!MustEmitForCuda && 2189 VD->isThisDeclarationADefinition() != VarDecl::Definition && 2190 !Context.isMSStaticDataMemberInlineDefinition(VD)) { 2191 if (LangOpts.OpenMP) { 2192 // Emit declaration of the must-be-emitted declare target variable. 2193 if (llvm::Optional<OMPDeclareTargetDeclAttr::MapTypeTy> Res = 2194 OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD)) { 2195 if (*Res == OMPDeclareTargetDeclAttr::MT_To) { 2196 (void)GetAddrOfGlobalVar(VD); 2197 } else { 2198 assert(*Res == OMPDeclareTargetDeclAttr::MT_Link && 2199 "link claue expected."); 2200 (void)getOpenMPRuntime().getAddrOfDeclareTargetLink(VD); 2201 } 2202 return; 2203 } 2204 } 2205 // If this declaration may have caused an inline variable definition to 2206 // change linkage, make sure that it's emitted. 2207 if (Context.getInlineVariableDefinitionKind(VD) == 2208 ASTContext::InlineVariableDefinitionKind::Strong) 2209 GetAddrOfGlobalVar(VD); 2210 return; 2211 } 2212 } 2213 2214 // Defer code generation to first use when possible, e.g. if this is an inline 2215 // function. If the global must always be emitted, do it eagerly if possible 2216 // to benefit from cache locality. 2217 if (MustBeEmitted(Global) && MayBeEmittedEagerly(Global)) { 2218 // Emit the definition if it can't be deferred. 2219 EmitGlobalDefinition(GD); 2220 return; 2221 } 2222 2223 // If we're deferring emission of a C++ variable with an 2224 // initializer, remember the order in which it appeared in the file. 2225 if (getLangOpts().CPlusPlus && isa<VarDecl>(Global) && 2226 cast<VarDecl>(Global)->hasInit()) { 2227 DelayedCXXInitPosition[Global] = CXXGlobalInits.size(); 2228 CXXGlobalInits.push_back(nullptr); 2229 } 2230 2231 StringRef MangledName = getMangledName(GD); 2232 if (GetGlobalValue(MangledName) != nullptr) { 2233 // The value has already been used and should therefore be emitted. 2234 addDeferredDeclToEmit(GD); 2235 } else if (MustBeEmitted(Global)) { 2236 // The value must be emitted, but cannot be emitted eagerly. 2237 assert(!MayBeEmittedEagerly(Global)); 2238 addDeferredDeclToEmit(GD); 2239 } else { 2240 // Otherwise, remember that we saw a deferred decl with this name. The 2241 // first use of the mangled name will cause it to move into 2242 // DeferredDeclsToEmit. 2243 DeferredDecls[MangledName] = GD; 2244 } 2245 } 2246 2247 // Check if T is a class type with a destructor that's not dllimport. 2248 static bool HasNonDllImportDtor(QualType T) { 2249 if (const auto *RT = T->getBaseElementTypeUnsafe()->getAs<RecordType>()) 2250 if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl())) 2251 if (RD->getDestructor() && !RD->getDestructor()->hasAttr<DLLImportAttr>()) 2252 return true; 2253 2254 return false; 2255 } 2256 2257 namespace { 2258 struct FunctionIsDirectlyRecursive : 2259 public RecursiveASTVisitor<FunctionIsDirectlyRecursive> { 2260 const StringRef Name; 2261 const Builtin::Context &BI; 2262 bool Result; 2263 FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C) : 2264 Name(N), BI(C), Result(false) { 2265 } 2266 typedef RecursiveASTVisitor<FunctionIsDirectlyRecursive> Base; 2267 2268 bool TraverseCallExpr(CallExpr *E) { 2269 const FunctionDecl *FD = E->getDirectCallee(); 2270 if (!FD) 2271 return true; 2272 AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>(); 2273 if (Attr && Name == Attr->getLabel()) { 2274 Result = true; 2275 return false; 2276 } 2277 unsigned BuiltinID = FD->getBuiltinID(); 2278 if (!BuiltinID || !BI.isLibFunction(BuiltinID)) 2279 return true; 2280 StringRef BuiltinName = BI.getName(BuiltinID); 2281 if (BuiltinName.startswith("__builtin_") && 2282 Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) { 2283 Result = true; 2284 return false; 2285 } 2286 return true; 2287 } 2288 }; 2289 2290 // Make sure we're not referencing non-imported vars or functions. 2291 struct DLLImportFunctionVisitor 2292 : public RecursiveASTVisitor<DLLImportFunctionVisitor> { 2293 bool SafeToInline = true; 2294 2295 bool shouldVisitImplicitCode() const { return true; } 2296 2297 bool VisitVarDecl(VarDecl *VD) { 2298 if (VD->getTLSKind()) { 2299 // A thread-local variable cannot be imported. 2300 SafeToInline = false; 2301 return SafeToInline; 2302 } 2303 2304 // A variable definition might imply a destructor call. 2305 if (VD->isThisDeclarationADefinition()) 2306 SafeToInline = !HasNonDllImportDtor(VD->getType()); 2307 2308 return SafeToInline; 2309 } 2310 2311 bool VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) { 2312 if (const auto *D = E->getTemporary()->getDestructor()) 2313 SafeToInline = D->hasAttr<DLLImportAttr>(); 2314 return SafeToInline; 2315 } 2316 2317 bool VisitDeclRefExpr(DeclRefExpr *E) { 2318 ValueDecl *VD = E->getDecl(); 2319 if (isa<FunctionDecl>(VD)) 2320 SafeToInline = VD->hasAttr<DLLImportAttr>(); 2321 else if (VarDecl *V = dyn_cast<VarDecl>(VD)) 2322 SafeToInline = !V->hasGlobalStorage() || V->hasAttr<DLLImportAttr>(); 2323 return SafeToInline; 2324 } 2325 2326 bool VisitCXXConstructExpr(CXXConstructExpr *E) { 2327 SafeToInline = E->getConstructor()->hasAttr<DLLImportAttr>(); 2328 return SafeToInline; 2329 } 2330 2331 bool VisitCXXMemberCallExpr(CXXMemberCallExpr *E) { 2332 CXXMethodDecl *M = E->getMethodDecl(); 2333 if (!M) { 2334 // Call through a pointer to member function. This is safe to inline. 2335 SafeToInline = true; 2336 } else { 2337 SafeToInline = M->hasAttr<DLLImportAttr>(); 2338 } 2339 return SafeToInline; 2340 } 2341 2342 bool VisitCXXDeleteExpr(CXXDeleteExpr *E) { 2343 SafeToInline = E->getOperatorDelete()->hasAttr<DLLImportAttr>(); 2344 return SafeToInline; 2345 } 2346 2347 bool VisitCXXNewExpr(CXXNewExpr *E) { 2348 SafeToInline = E->getOperatorNew()->hasAttr<DLLImportAttr>(); 2349 return SafeToInline; 2350 } 2351 }; 2352 } 2353 2354 // isTriviallyRecursive - Check if this function calls another 2355 // decl that, because of the asm attribute or the other decl being a builtin, 2356 // ends up pointing to itself. 2357 bool 2358 CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) { 2359 StringRef Name; 2360 if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) { 2361 // asm labels are a special kind of mangling we have to support. 2362 AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>(); 2363 if (!Attr) 2364 return false; 2365 Name = Attr->getLabel(); 2366 } else { 2367 Name = FD->getName(); 2368 } 2369 2370 FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo); 2371 Walker.TraverseFunctionDecl(const_cast<FunctionDecl*>(FD)); 2372 return Walker.Result; 2373 } 2374 2375 bool CodeGenModule::shouldEmitFunction(GlobalDecl GD) { 2376 if (getFunctionLinkage(GD) != llvm::Function::AvailableExternallyLinkage) 2377 return true; 2378 const auto *F = cast<FunctionDecl>(GD.getDecl()); 2379 if (CodeGenOpts.OptimizationLevel == 0 && !F->hasAttr<AlwaysInlineAttr>()) 2380 return false; 2381 2382 if (F->hasAttr<DLLImportAttr>()) { 2383 // Check whether it would be safe to inline this dllimport function. 2384 DLLImportFunctionVisitor Visitor; 2385 Visitor.TraverseFunctionDecl(const_cast<FunctionDecl*>(F)); 2386 if (!Visitor.SafeToInline) 2387 return false; 2388 2389 if (const CXXDestructorDecl *Dtor = dyn_cast<CXXDestructorDecl>(F)) { 2390 // Implicit destructor invocations aren't captured in the AST, so the 2391 // check above can't see them. Check for them manually here. 2392 for (const Decl *Member : Dtor->getParent()->decls()) 2393 if (isa<FieldDecl>(Member)) 2394 if (HasNonDllImportDtor(cast<FieldDecl>(Member)->getType())) 2395 return false; 2396 for (const CXXBaseSpecifier &B : Dtor->getParent()->bases()) 2397 if (HasNonDllImportDtor(B.getType())) 2398 return false; 2399 } 2400 } 2401 2402 // PR9614. Avoid cases where the source code is lying to us. An available 2403 // externally function should have an equivalent function somewhere else, 2404 // but a function that calls itself is clearly not equivalent to the real 2405 // implementation. 2406 // This happens in glibc's btowc and in some configure checks. 2407 return !isTriviallyRecursive(F); 2408 } 2409 2410 bool CodeGenModule::shouldOpportunisticallyEmitVTables() { 2411 return CodeGenOpts.OptimizationLevel > 0; 2412 } 2413 2414 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD, llvm::GlobalValue *GV) { 2415 const auto *D = cast<ValueDecl>(GD.getDecl()); 2416 2417 PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(), 2418 Context.getSourceManager(), 2419 "Generating code for declaration"); 2420 2421 if (isa<FunctionDecl>(D)) { 2422 // At -O0, don't generate IR for functions with available_externally 2423 // linkage. 2424 if (!shouldEmitFunction(GD)) 2425 return; 2426 2427 if (const auto *Method = dyn_cast<CXXMethodDecl>(D)) { 2428 // Make sure to emit the definition(s) before we emit the thunks. 2429 // This is necessary for the generation of certain thunks. 2430 if (const auto *CD = dyn_cast<CXXConstructorDecl>(Method)) 2431 ABI->emitCXXStructor(CD, getFromCtorType(GD.getCtorType())); 2432 else if (const auto *DD = dyn_cast<CXXDestructorDecl>(Method)) 2433 ABI->emitCXXStructor(DD, getFromDtorType(GD.getDtorType())); 2434 else 2435 EmitGlobalFunctionDefinition(GD, GV); 2436 2437 if (Method->isVirtual()) 2438 getVTables().EmitThunks(GD); 2439 2440 return; 2441 } 2442 2443 return EmitGlobalFunctionDefinition(GD, GV); 2444 } 2445 2446 if (const auto *VD = dyn_cast<VarDecl>(D)) 2447 return EmitGlobalVarDefinition(VD, !VD->hasDefinition()); 2448 2449 llvm_unreachable("Invalid argument to EmitGlobalDefinition()"); 2450 } 2451 2452 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old, 2453 llvm::Function *NewFn); 2454 2455 static unsigned 2456 TargetMVPriority(const TargetInfo &TI, 2457 const CodeGenFunction::MultiVersionResolverOption &RO) { 2458 unsigned Priority = 0; 2459 for (StringRef Feat : RO.Conditions.Features) 2460 Priority = std::max(Priority, TI.multiVersionSortPriority(Feat)); 2461 2462 if (!RO.Conditions.Architecture.empty()) 2463 Priority = std::max( 2464 Priority, TI.multiVersionSortPriority(RO.Conditions.Architecture)); 2465 return Priority; 2466 } 2467 2468 void CodeGenModule::emitMultiVersionFunctions() { 2469 for (GlobalDecl GD : MultiVersionFuncs) { 2470 SmallVector<CodeGenFunction::MultiVersionResolverOption, 10> Options; 2471 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 2472 getContext().forEachMultiversionedFunctionVersion( 2473 FD, [this, &GD, &Options](const FunctionDecl *CurFD) { 2474 GlobalDecl CurGD{ 2475 (CurFD->isDefined() ? CurFD->getDefinition() : CurFD)}; 2476 StringRef MangledName = getMangledName(CurGD); 2477 llvm::Constant *Func = GetGlobalValue(MangledName); 2478 if (!Func) { 2479 if (CurFD->isDefined()) { 2480 EmitGlobalFunctionDefinition(CurGD, nullptr); 2481 Func = GetGlobalValue(MangledName); 2482 } else { 2483 const CGFunctionInfo &FI = 2484 getTypes().arrangeGlobalDeclaration(GD); 2485 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 2486 Func = GetAddrOfFunction(CurGD, Ty, /*ForVTable=*/false, 2487 /*DontDefer=*/false, ForDefinition); 2488 } 2489 assert(Func && "This should have just been created"); 2490 } 2491 2492 const auto *TA = CurFD->getAttr<TargetAttr>(); 2493 llvm::SmallVector<StringRef, 8> Feats; 2494 TA->getAddedFeatures(Feats); 2495 2496 Options.emplace_back(cast<llvm::Function>(Func), 2497 TA->getArchitecture(), Feats); 2498 }); 2499 2500 llvm::Function *ResolverFunc = cast<llvm::Function>( 2501 GetGlobalValue((getMangledName(GD) + ".resolver").str())); 2502 if (supportsCOMDAT()) 2503 ResolverFunc->setComdat( 2504 getModule().getOrInsertComdat(ResolverFunc->getName())); 2505 2506 const TargetInfo &TI = getTarget(); 2507 std::stable_sort( 2508 Options.begin(), Options.end(), 2509 [&TI](const CodeGenFunction::MultiVersionResolverOption &LHS, 2510 const CodeGenFunction::MultiVersionResolverOption &RHS) { 2511 return TargetMVPriority(TI, LHS) > TargetMVPriority(TI, RHS); 2512 }); 2513 CodeGenFunction CGF(*this); 2514 CGF.EmitMultiVersionResolver(ResolverFunc, Options); 2515 } 2516 } 2517 2518 void CodeGenModule::emitCPUDispatchDefinition(GlobalDecl GD) { 2519 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 2520 assert(FD && "Not a FunctionDecl?"); 2521 const auto *DD = FD->getAttr<CPUDispatchAttr>(); 2522 assert(DD && "Not a cpu_dispatch Function?"); 2523 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(FD->getType()); 2524 2525 StringRef ResolverName = getMangledName(GD); 2526 llvm::Type *ResolverType = llvm::FunctionType::get( 2527 llvm::PointerType::get(DeclTy, 2528 Context.getTargetAddressSpace(FD->getType())), 2529 false); 2530 auto *ResolverFunc = cast<llvm::Function>( 2531 GetOrCreateLLVMFunction(ResolverName, ResolverType, GlobalDecl{}, 2532 /*ForVTable=*/false)); 2533 2534 SmallVector<CodeGenFunction::MultiVersionResolverOption, 10> Options; 2535 const TargetInfo &Target = getTarget(); 2536 for (const IdentifierInfo *II : DD->cpus()) { 2537 // Get the name of the target function so we can look it up/create it. 2538 std::string MangledName = getMangledNameImpl(*this, GD, FD, true) + 2539 getCPUSpecificMangling(*this, II->getName()); 2540 llvm::Constant *Func = GetOrCreateLLVMFunction( 2541 MangledName, DeclTy, GD, /*ForVTable=*/false, /*DontDefer=*/false, 2542 /*IsThunk=*/false, llvm::AttributeList(), ForDefinition); 2543 llvm::SmallVector<StringRef, 32> Features; 2544 Target.getCPUSpecificCPUDispatchFeatures(II->getName(), Features); 2545 llvm::transform(Features, Features.begin(), 2546 [](StringRef Str) { return Str.substr(1); }); 2547 Features.erase(std::remove_if( 2548 Features.begin(), Features.end(), [&Target](StringRef Feat) { 2549 return !Target.validateCpuSupports(Feat); 2550 }), Features.end()); 2551 Options.emplace_back(cast<llvm::Function>(Func), StringRef{}, Features); 2552 } 2553 2554 llvm::sort( 2555 Options, [](const CodeGenFunction::MultiVersionResolverOption &LHS, 2556 const CodeGenFunction::MultiVersionResolverOption &RHS) { 2557 return CodeGenFunction::GetX86CpuSupportsMask(LHS.Conditions.Features) > 2558 CodeGenFunction::GetX86CpuSupportsMask(RHS.Conditions.Features); 2559 }); 2560 CodeGenFunction CGF(*this); 2561 CGF.EmitMultiVersionResolver(ResolverFunc, Options); 2562 } 2563 2564 /// If an ifunc for the specified mangled name is not in the module, create and 2565 /// return an llvm IFunc Function with the specified type. 2566 llvm::Constant * 2567 CodeGenModule::GetOrCreateMultiVersionIFunc(GlobalDecl GD, llvm::Type *DeclTy, 2568 const FunctionDecl *FD) { 2569 std::string MangledName = 2570 getMangledNameImpl(*this, GD, FD, /*OmitMultiVersionMangling=*/true); 2571 std::string IFuncName = MangledName + ".ifunc"; 2572 if (llvm::GlobalValue *IFuncGV = GetGlobalValue(IFuncName)) 2573 return IFuncGV; 2574 2575 // Since this is the first time we've created this IFunc, make sure 2576 // that we put this multiversioned function into the list to be 2577 // replaced later if necessary (target multiversioning only). 2578 if (!FD->isCPUDispatchMultiVersion() && !FD->isCPUSpecificMultiVersion()) 2579 MultiVersionFuncs.push_back(GD); 2580 2581 std::string ResolverName = MangledName + ".resolver"; 2582 llvm::Type *ResolverType = llvm::FunctionType::get( 2583 llvm::PointerType::get(DeclTy, 2584 Context.getTargetAddressSpace(FD->getType())), 2585 false); 2586 llvm::Constant *Resolver = 2587 GetOrCreateLLVMFunction(ResolverName, ResolverType, GlobalDecl{}, 2588 /*ForVTable=*/false); 2589 llvm::GlobalIFunc *GIF = llvm::GlobalIFunc::create( 2590 DeclTy, 0, llvm::Function::ExternalLinkage, "", Resolver, &getModule()); 2591 GIF->setName(IFuncName); 2592 SetCommonAttributes(FD, GIF); 2593 2594 return GIF; 2595 } 2596 2597 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the 2598 /// module, create and return an llvm Function with the specified type. If there 2599 /// is something in the module with the specified name, return it potentially 2600 /// bitcasted to the right type. 2601 /// 2602 /// If D is non-null, it specifies a decl that correspond to this. This is used 2603 /// to set the attributes on the function when it is first created. 2604 llvm::Constant *CodeGenModule::GetOrCreateLLVMFunction( 2605 StringRef MangledName, llvm::Type *Ty, GlobalDecl GD, bool ForVTable, 2606 bool DontDefer, bool IsThunk, llvm::AttributeList ExtraAttrs, 2607 ForDefinition_t IsForDefinition) { 2608 const Decl *D = GD.getDecl(); 2609 2610 // Any attempts to use a MultiVersion function should result in retrieving 2611 // the iFunc instead. Name Mangling will handle the rest of the changes. 2612 if (const FunctionDecl *FD = cast_or_null<FunctionDecl>(D)) { 2613 // For the device mark the function as one that should be emitted. 2614 if (getLangOpts().OpenMPIsDevice && OpenMPRuntime && 2615 !OpenMPRuntime->markAsGlobalTarget(GD) && FD->isDefined() && 2616 !DontDefer && !IsForDefinition) { 2617 if (const FunctionDecl *FDDef = FD->getDefinition()) { 2618 GlobalDecl GDDef; 2619 if (const auto *CD = dyn_cast<CXXConstructorDecl>(FDDef)) 2620 GDDef = GlobalDecl(CD, GD.getCtorType()); 2621 else if (const auto *DD = dyn_cast<CXXDestructorDecl>(FDDef)) 2622 GDDef = GlobalDecl(DD, GD.getDtorType()); 2623 else 2624 GDDef = GlobalDecl(FDDef); 2625 EmitGlobal(GDDef); 2626 } 2627 } 2628 2629 if (FD->isMultiVersion()) { 2630 const auto *TA = FD->getAttr<TargetAttr>(); 2631 if (TA && TA->isDefaultVersion()) 2632 UpdateMultiVersionNames(GD, FD); 2633 if (!IsForDefinition) 2634 return GetOrCreateMultiVersionIFunc(GD, Ty, FD); 2635 } 2636 } 2637 2638 // Lookup the entry, lazily creating it if necessary. 2639 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 2640 if (Entry) { 2641 if (WeakRefReferences.erase(Entry)) { 2642 const FunctionDecl *FD = cast_or_null<FunctionDecl>(D); 2643 if (FD && !FD->hasAttr<WeakAttr>()) 2644 Entry->setLinkage(llvm::Function::ExternalLinkage); 2645 } 2646 2647 // Handle dropped DLL attributes. 2648 if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>()) { 2649 Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 2650 setDSOLocal(Entry); 2651 } 2652 2653 // If there are two attempts to define the same mangled name, issue an 2654 // error. 2655 if (IsForDefinition && !Entry->isDeclaration()) { 2656 GlobalDecl OtherGD; 2657 // Check that GD is not yet in DiagnosedConflictingDefinitions is required 2658 // to make sure that we issue an error only once. 2659 if (lookupRepresentativeDecl(MangledName, OtherGD) && 2660 (GD.getCanonicalDecl().getDecl() != 2661 OtherGD.getCanonicalDecl().getDecl()) && 2662 DiagnosedConflictingDefinitions.insert(GD).second) { 2663 getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name) 2664 << MangledName; 2665 getDiags().Report(OtherGD.getDecl()->getLocation(), 2666 diag::note_previous_definition); 2667 } 2668 } 2669 2670 if ((isa<llvm::Function>(Entry) || isa<llvm::GlobalAlias>(Entry)) && 2671 (Entry->getType()->getElementType() == Ty)) { 2672 return Entry; 2673 } 2674 2675 // Make sure the result is of the correct type. 2676 // (If function is requested for a definition, we always need to create a new 2677 // function, not just return a bitcast.) 2678 if (!IsForDefinition) 2679 return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo()); 2680 } 2681 2682 // This function doesn't have a complete type (for example, the return 2683 // type is an incomplete struct). Use a fake type instead, and make 2684 // sure not to try to set attributes. 2685 bool IsIncompleteFunction = false; 2686 2687 llvm::FunctionType *FTy; 2688 if (isa<llvm::FunctionType>(Ty)) { 2689 FTy = cast<llvm::FunctionType>(Ty); 2690 } else { 2691 FTy = llvm::FunctionType::get(VoidTy, false); 2692 IsIncompleteFunction = true; 2693 } 2694 2695 llvm::Function *F = 2696 llvm::Function::Create(FTy, llvm::Function::ExternalLinkage, 2697 Entry ? StringRef() : MangledName, &getModule()); 2698 2699 // If we already created a function with the same mangled name (but different 2700 // type) before, take its name and add it to the list of functions to be 2701 // replaced with F at the end of CodeGen. 2702 // 2703 // This happens if there is a prototype for a function (e.g. "int f()") and 2704 // then a definition of a different type (e.g. "int f(int x)"). 2705 if (Entry) { 2706 F->takeName(Entry); 2707 2708 // This might be an implementation of a function without a prototype, in 2709 // which case, try to do special replacement of calls which match the new 2710 // prototype. The really key thing here is that we also potentially drop 2711 // arguments from the call site so as to make a direct call, which makes the 2712 // inliner happier and suppresses a number of optimizer warnings (!) about 2713 // dropping arguments. 2714 if (!Entry->use_empty()) { 2715 ReplaceUsesOfNonProtoTypeWithRealFunction(Entry, F); 2716 Entry->removeDeadConstantUsers(); 2717 } 2718 2719 llvm::Constant *BC = llvm::ConstantExpr::getBitCast( 2720 F, Entry->getType()->getElementType()->getPointerTo()); 2721 addGlobalValReplacement(Entry, BC); 2722 } 2723 2724 assert(F->getName() == MangledName && "name was uniqued!"); 2725 if (D) 2726 SetFunctionAttributes(GD, F, IsIncompleteFunction, IsThunk); 2727 if (ExtraAttrs.hasAttributes(llvm::AttributeList::FunctionIndex)) { 2728 llvm::AttrBuilder B(ExtraAttrs, llvm::AttributeList::FunctionIndex); 2729 F->addAttributes(llvm::AttributeList::FunctionIndex, B); 2730 } 2731 2732 if (!DontDefer) { 2733 // All MSVC dtors other than the base dtor are linkonce_odr and delegate to 2734 // each other bottoming out with the base dtor. Therefore we emit non-base 2735 // dtors on usage, even if there is no dtor definition in the TU. 2736 if (D && isa<CXXDestructorDecl>(D) && 2737 getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D), 2738 GD.getDtorType())) 2739 addDeferredDeclToEmit(GD); 2740 2741 // This is the first use or definition of a mangled name. If there is a 2742 // deferred decl with this name, remember that we need to emit it at the end 2743 // of the file. 2744 auto DDI = DeferredDecls.find(MangledName); 2745 if (DDI != DeferredDecls.end()) { 2746 // Move the potentially referenced deferred decl to the 2747 // DeferredDeclsToEmit list, and remove it from DeferredDecls (since we 2748 // don't need it anymore). 2749 addDeferredDeclToEmit(DDI->second); 2750 DeferredDecls.erase(DDI); 2751 2752 // Otherwise, there are cases we have to worry about where we're 2753 // using a declaration for which we must emit a definition but where 2754 // we might not find a top-level definition: 2755 // - member functions defined inline in their classes 2756 // - friend functions defined inline in some class 2757 // - special member functions with implicit definitions 2758 // If we ever change our AST traversal to walk into class methods, 2759 // this will be unnecessary. 2760 // 2761 // We also don't emit a definition for a function if it's going to be an 2762 // entry in a vtable, unless it's already marked as used. 2763 } else if (getLangOpts().CPlusPlus && D) { 2764 // Look for a declaration that's lexically in a record. 2765 for (const auto *FD = cast<FunctionDecl>(D)->getMostRecentDecl(); FD; 2766 FD = FD->getPreviousDecl()) { 2767 if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) { 2768 if (FD->doesThisDeclarationHaveABody()) { 2769 addDeferredDeclToEmit(GD.getWithDecl(FD)); 2770 break; 2771 } 2772 } 2773 } 2774 } 2775 } 2776 2777 // Make sure the result is of the requested type. 2778 if (!IsIncompleteFunction) { 2779 assert(F->getType()->getElementType() == Ty); 2780 return F; 2781 } 2782 2783 llvm::Type *PTy = llvm::PointerType::getUnqual(Ty); 2784 return llvm::ConstantExpr::getBitCast(F, PTy); 2785 } 2786 2787 /// GetAddrOfFunction - Return the address of the given function. If Ty is 2788 /// non-null, then this function will use the specified type if it has to 2789 /// create it (this occurs when we see a definition of the function). 2790 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD, 2791 llvm::Type *Ty, 2792 bool ForVTable, 2793 bool DontDefer, 2794 ForDefinition_t IsForDefinition) { 2795 // If there was no specific requested type, just convert it now. 2796 if (!Ty) { 2797 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 2798 auto CanonTy = Context.getCanonicalType(FD->getType()); 2799 Ty = getTypes().ConvertFunctionType(CanonTy, FD); 2800 } 2801 2802 // Devirtualized destructor calls may come through here instead of via 2803 // getAddrOfCXXStructor. Make sure we use the MS ABI base destructor instead 2804 // of the complete destructor when necessary. 2805 if (const auto *DD = dyn_cast<CXXDestructorDecl>(GD.getDecl())) { 2806 if (getTarget().getCXXABI().isMicrosoft() && 2807 GD.getDtorType() == Dtor_Complete && 2808 DD->getParent()->getNumVBases() == 0) 2809 GD = GlobalDecl(DD, Dtor_Base); 2810 } 2811 2812 StringRef MangledName = getMangledName(GD); 2813 return GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable, DontDefer, 2814 /*IsThunk=*/false, llvm::AttributeList(), 2815 IsForDefinition); 2816 } 2817 2818 static const FunctionDecl * 2819 GetRuntimeFunctionDecl(ASTContext &C, StringRef Name) { 2820 TranslationUnitDecl *TUDecl = C.getTranslationUnitDecl(); 2821 DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl); 2822 2823 IdentifierInfo &CII = C.Idents.get(Name); 2824 for (const auto &Result : DC->lookup(&CII)) 2825 if (const auto FD = dyn_cast<FunctionDecl>(Result)) 2826 return FD; 2827 2828 if (!C.getLangOpts().CPlusPlus) 2829 return nullptr; 2830 2831 // Demangle the premangled name from getTerminateFn() 2832 IdentifierInfo &CXXII = 2833 (Name == "_ZSt9terminatev" || Name == "?terminate@@YAXXZ") 2834 ? C.Idents.get("terminate") 2835 : C.Idents.get(Name); 2836 2837 for (const auto &N : {"__cxxabiv1", "std"}) { 2838 IdentifierInfo &NS = C.Idents.get(N); 2839 for (const auto &Result : DC->lookup(&NS)) { 2840 NamespaceDecl *ND = dyn_cast<NamespaceDecl>(Result); 2841 if (auto LSD = dyn_cast<LinkageSpecDecl>(Result)) 2842 for (const auto &Result : LSD->lookup(&NS)) 2843 if ((ND = dyn_cast<NamespaceDecl>(Result))) 2844 break; 2845 2846 if (ND) 2847 for (const auto &Result : ND->lookup(&CXXII)) 2848 if (const auto *FD = dyn_cast<FunctionDecl>(Result)) 2849 return FD; 2850 } 2851 } 2852 2853 return nullptr; 2854 } 2855 2856 /// CreateRuntimeFunction - Create a new runtime function with the specified 2857 /// type and name. 2858 llvm::Constant * 2859 CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy, StringRef Name, 2860 llvm::AttributeList ExtraAttrs, 2861 bool Local) { 2862 llvm::Constant *C = 2863 GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false, 2864 /*DontDefer=*/false, /*IsThunk=*/false, 2865 ExtraAttrs); 2866 2867 if (auto *F = dyn_cast<llvm::Function>(C)) { 2868 if (F->empty()) { 2869 F->setCallingConv(getRuntimeCC()); 2870 2871 if (!Local && getTriple().isOSBinFormatCOFF() && 2872 !getCodeGenOpts().LTOVisibilityPublicStd && 2873 !getTriple().isWindowsGNUEnvironment()) { 2874 const FunctionDecl *FD = GetRuntimeFunctionDecl(Context, Name); 2875 if (!FD || FD->hasAttr<DLLImportAttr>()) { 2876 F->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass); 2877 F->setLinkage(llvm::GlobalValue::ExternalLinkage); 2878 } 2879 } 2880 setDSOLocal(F); 2881 } 2882 } 2883 2884 return C; 2885 } 2886 2887 /// CreateBuiltinFunction - Create a new builtin function with the specified 2888 /// type and name. 2889 llvm::Constant * 2890 CodeGenModule::CreateBuiltinFunction(llvm::FunctionType *FTy, StringRef Name, 2891 llvm::AttributeList ExtraAttrs) { 2892 return CreateRuntimeFunction(FTy, Name, ExtraAttrs, true); 2893 } 2894 2895 /// isTypeConstant - Determine whether an object of this type can be emitted 2896 /// as a constant. 2897 /// 2898 /// If ExcludeCtor is true, the duration when the object's constructor runs 2899 /// will not be considered. The caller will need to verify that the object is 2900 /// not written to during its construction. 2901 bool CodeGenModule::isTypeConstant(QualType Ty, bool ExcludeCtor) { 2902 if (!Ty.isConstant(Context) && !Ty->isReferenceType()) 2903 return false; 2904 2905 if (Context.getLangOpts().CPlusPlus) { 2906 if (const CXXRecordDecl *Record 2907 = Context.getBaseElementType(Ty)->getAsCXXRecordDecl()) 2908 return ExcludeCtor && !Record->hasMutableFields() && 2909 Record->hasTrivialDestructor(); 2910 } 2911 2912 return true; 2913 } 2914 2915 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module, 2916 /// create and return an llvm GlobalVariable with the specified type. If there 2917 /// is something in the module with the specified name, return it potentially 2918 /// bitcasted to the right type. 2919 /// 2920 /// If D is non-null, it specifies a decl that correspond to this. This is used 2921 /// to set the attributes on the global when it is first created. 2922 /// 2923 /// If IsForDefinition is true, it is guaranteed that an actual global with 2924 /// type Ty will be returned, not conversion of a variable with the same 2925 /// mangled name but some other type. 2926 llvm::Constant * 2927 CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName, 2928 llvm::PointerType *Ty, 2929 const VarDecl *D, 2930 ForDefinition_t IsForDefinition) { 2931 // Lookup the entry, lazily creating it if necessary. 2932 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 2933 if (Entry) { 2934 if (WeakRefReferences.erase(Entry)) { 2935 if (D && !D->hasAttr<WeakAttr>()) 2936 Entry->setLinkage(llvm::Function::ExternalLinkage); 2937 } 2938 2939 // Handle dropped DLL attributes. 2940 if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>()) 2941 Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 2942 2943 if (LangOpts.OpenMP && !LangOpts.OpenMPSimd && D) 2944 getOpenMPRuntime().registerTargetGlobalVariable(D, Entry); 2945 2946 if (Entry->getType() == Ty) 2947 return Entry; 2948 2949 // If there are two attempts to define the same mangled name, issue an 2950 // error. 2951 if (IsForDefinition && !Entry->isDeclaration()) { 2952 GlobalDecl OtherGD; 2953 const VarDecl *OtherD; 2954 2955 // Check that D is not yet in DiagnosedConflictingDefinitions is required 2956 // to make sure that we issue an error only once. 2957 if (D && lookupRepresentativeDecl(MangledName, OtherGD) && 2958 (D->getCanonicalDecl() != OtherGD.getCanonicalDecl().getDecl()) && 2959 (OtherD = dyn_cast<VarDecl>(OtherGD.getDecl())) && 2960 OtherD->hasInit() && 2961 DiagnosedConflictingDefinitions.insert(D).second) { 2962 getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name) 2963 << MangledName; 2964 getDiags().Report(OtherGD.getDecl()->getLocation(), 2965 diag::note_previous_definition); 2966 } 2967 } 2968 2969 // Make sure the result is of the correct type. 2970 if (Entry->getType()->getAddressSpace() != Ty->getAddressSpace()) 2971 return llvm::ConstantExpr::getAddrSpaceCast(Entry, Ty); 2972 2973 // (If global is requested for a definition, we always need to create a new 2974 // global, not just return a bitcast.) 2975 if (!IsForDefinition) 2976 return llvm::ConstantExpr::getBitCast(Entry, Ty); 2977 } 2978 2979 auto AddrSpace = GetGlobalVarAddressSpace(D); 2980 auto TargetAddrSpace = getContext().getTargetAddressSpace(AddrSpace); 2981 2982 auto *GV = new llvm::GlobalVariable( 2983 getModule(), Ty->getElementType(), false, 2984 llvm::GlobalValue::ExternalLinkage, nullptr, MangledName, nullptr, 2985 llvm::GlobalVariable::NotThreadLocal, TargetAddrSpace); 2986 2987 // If we already created a global with the same mangled name (but different 2988 // type) before, take its name and remove it from its parent. 2989 if (Entry) { 2990 GV->takeName(Entry); 2991 2992 if (!Entry->use_empty()) { 2993 llvm::Constant *NewPtrForOldDecl = 2994 llvm::ConstantExpr::getBitCast(GV, Entry->getType()); 2995 Entry->replaceAllUsesWith(NewPtrForOldDecl); 2996 } 2997 2998 Entry->eraseFromParent(); 2999 } 3000 3001 // This is the first use or definition of a mangled name. If there is a 3002 // deferred decl with this name, remember that we need to emit it at the end 3003 // of the file. 3004 auto DDI = DeferredDecls.find(MangledName); 3005 if (DDI != DeferredDecls.end()) { 3006 // Move the potentially referenced deferred decl to the DeferredDeclsToEmit 3007 // list, and remove it from DeferredDecls (since we don't need it anymore). 3008 addDeferredDeclToEmit(DDI->second); 3009 DeferredDecls.erase(DDI); 3010 } 3011 3012 // Handle things which are present even on external declarations. 3013 if (D) { 3014 if (LangOpts.OpenMP && !LangOpts.OpenMPSimd) 3015 getOpenMPRuntime().registerTargetGlobalVariable(D, GV); 3016 3017 // FIXME: This code is overly simple and should be merged with other global 3018 // handling. 3019 GV->setConstant(isTypeConstant(D->getType(), false)); 3020 3021 GV->setAlignment(getContext().getDeclAlign(D).getQuantity()); 3022 3023 setLinkageForGV(GV, D); 3024 3025 if (D->getTLSKind()) { 3026 if (D->getTLSKind() == VarDecl::TLS_Dynamic) 3027 CXXThreadLocals.push_back(D); 3028 setTLSMode(GV, *D); 3029 } 3030 3031 setGVProperties(GV, D); 3032 3033 // If required by the ABI, treat declarations of static data members with 3034 // inline initializers as definitions. 3035 if (getContext().isMSStaticDataMemberInlineDefinition(D)) { 3036 EmitGlobalVarDefinition(D); 3037 } 3038 3039 // Emit section information for extern variables. 3040 if (D->hasExternalStorage()) { 3041 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) 3042 GV->setSection(SA->getName()); 3043 } 3044 3045 // Handle XCore specific ABI requirements. 3046 if (getTriple().getArch() == llvm::Triple::xcore && 3047 D->getLanguageLinkage() == CLanguageLinkage && 3048 D->getType().isConstant(Context) && 3049 isExternallyVisible(D->getLinkageAndVisibility().getLinkage())) 3050 GV->setSection(".cp.rodata"); 3051 3052 // Check if we a have a const declaration with an initializer, we may be 3053 // able to emit it as available_externally to expose it's value to the 3054 // optimizer. 3055 if (Context.getLangOpts().CPlusPlus && GV->hasExternalLinkage() && 3056 D->getType().isConstQualified() && !GV->hasInitializer() && 3057 !D->hasDefinition() && D->hasInit() && !D->hasAttr<DLLImportAttr>()) { 3058 const auto *Record = 3059 Context.getBaseElementType(D->getType())->getAsCXXRecordDecl(); 3060 bool HasMutableFields = Record && Record->hasMutableFields(); 3061 if (!HasMutableFields) { 3062 const VarDecl *InitDecl; 3063 const Expr *InitExpr = D->getAnyInitializer(InitDecl); 3064 if (InitExpr) { 3065 ConstantEmitter emitter(*this); 3066 llvm::Constant *Init = emitter.tryEmitForInitializer(*InitDecl); 3067 if (Init) { 3068 auto *InitType = Init->getType(); 3069 if (GV->getType()->getElementType() != InitType) { 3070 // The type of the initializer does not match the definition. 3071 // This happens when an initializer has a different type from 3072 // the type of the global (because of padding at the end of a 3073 // structure for instance). 3074 GV->setName(StringRef()); 3075 // Make a new global with the correct type, this is now guaranteed 3076 // to work. 3077 auto *NewGV = cast<llvm::GlobalVariable>( 3078 GetAddrOfGlobalVar(D, InitType, IsForDefinition)); 3079 3080 // Erase the old global, since it is no longer used. 3081 GV->eraseFromParent(); 3082 GV = NewGV; 3083 } else { 3084 GV->setInitializer(Init); 3085 GV->setConstant(true); 3086 GV->setLinkage(llvm::GlobalValue::AvailableExternallyLinkage); 3087 } 3088 emitter.finalize(GV); 3089 } 3090 } 3091 } 3092 } 3093 } 3094 3095 LangAS ExpectedAS = 3096 D ? D->getType().getAddressSpace() 3097 : (LangOpts.OpenCL ? LangAS::opencl_global : LangAS::Default); 3098 assert(getContext().getTargetAddressSpace(ExpectedAS) == 3099 Ty->getPointerAddressSpace()); 3100 if (AddrSpace != ExpectedAS) 3101 return getTargetCodeGenInfo().performAddrSpaceCast(*this, GV, AddrSpace, 3102 ExpectedAS, Ty); 3103 3104 return GV; 3105 } 3106 3107 llvm::Constant * 3108 CodeGenModule::GetAddrOfGlobal(GlobalDecl GD, 3109 ForDefinition_t IsForDefinition) { 3110 const Decl *D = GD.getDecl(); 3111 if (isa<CXXConstructorDecl>(D)) 3112 return getAddrOfCXXStructor(cast<CXXConstructorDecl>(D), 3113 getFromCtorType(GD.getCtorType()), 3114 /*FnInfo=*/nullptr, /*FnType=*/nullptr, 3115 /*DontDefer=*/false, IsForDefinition); 3116 else if (isa<CXXDestructorDecl>(D)) 3117 return getAddrOfCXXStructor(cast<CXXDestructorDecl>(D), 3118 getFromDtorType(GD.getDtorType()), 3119 /*FnInfo=*/nullptr, /*FnType=*/nullptr, 3120 /*DontDefer=*/false, IsForDefinition); 3121 else if (isa<CXXMethodDecl>(D)) { 3122 auto FInfo = &getTypes().arrangeCXXMethodDeclaration( 3123 cast<CXXMethodDecl>(D)); 3124 auto Ty = getTypes().GetFunctionType(*FInfo); 3125 return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false, 3126 IsForDefinition); 3127 } else if (isa<FunctionDecl>(D)) { 3128 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 3129 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 3130 return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false, 3131 IsForDefinition); 3132 } else 3133 return GetAddrOfGlobalVar(cast<VarDecl>(D), /*Ty=*/nullptr, 3134 IsForDefinition); 3135 } 3136 3137 llvm::GlobalVariable *CodeGenModule::CreateOrReplaceCXXRuntimeVariable( 3138 StringRef Name, llvm::Type *Ty, llvm::GlobalValue::LinkageTypes Linkage, 3139 unsigned Alignment) { 3140 llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name); 3141 llvm::GlobalVariable *OldGV = nullptr; 3142 3143 if (GV) { 3144 // Check if the variable has the right type. 3145 if (GV->getType()->getElementType() == Ty) 3146 return GV; 3147 3148 // Because C++ name mangling, the only way we can end up with an already 3149 // existing global with the same name is if it has been declared extern "C". 3150 assert(GV->isDeclaration() && "Declaration has wrong type!"); 3151 OldGV = GV; 3152 } 3153 3154 // Create a new variable. 3155 GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true, 3156 Linkage, nullptr, Name); 3157 3158 if (OldGV) { 3159 // Replace occurrences of the old variable if needed. 3160 GV->takeName(OldGV); 3161 3162 if (!OldGV->use_empty()) { 3163 llvm::Constant *NewPtrForOldDecl = 3164 llvm::ConstantExpr::getBitCast(GV, OldGV->getType()); 3165 OldGV->replaceAllUsesWith(NewPtrForOldDecl); 3166 } 3167 3168 OldGV->eraseFromParent(); 3169 } 3170 3171 if (supportsCOMDAT() && GV->isWeakForLinker() && 3172 !GV->hasAvailableExternallyLinkage()) 3173 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 3174 3175 GV->setAlignment(Alignment); 3176 3177 return GV; 3178 } 3179 3180 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the 3181 /// given global variable. If Ty is non-null and if the global doesn't exist, 3182 /// then it will be created with the specified type instead of whatever the 3183 /// normal requested type would be. If IsForDefinition is true, it is guaranteed 3184 /// that an actual global with type Ty will be returned, not conversion of a 3185 /// variable with the same mangled name but some other type. 3186 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D, 3187 llvm::Type *Ty, 3188 ForDefinition_t IsForDefinition) { 3189 assert(D->hasGlobalStorage() && "Not a global variable"); 3190 QualType ASTTy = D->getType(); 3191 if (!Ty) 3192 Ty = getTypes().ConvertTypeForMem(ASTTy); 3193 3194 llvm::PointerType *PTy = 3195 llvm::PointerType::get(Ty, getContext().getTargetAddressSpace(ASTTy)); 3196 3197 StringRef MangledName = getMangledName(D); 3198 return GetOrCreateLLVMGlobal(MangledName, PTy, D, IsForDefinition); 3199 } 3200 3201 /// CreateRuntimeVariable - Create a new runtime global variable with the 3202 /// specified type and name. 3203 llvm::Constant * 3204 CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty, 3205 StringRef Name) { 3206 auto *Ret = 3207 GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), nullptr); 3208 setDSOLocal(cast<llvm::GlobalValue>(Ret->stripPointerCasts())); 3209 return Ret; 3210 } 3211 3212 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) { 3213 assert(!D->getInit() && "Cannot emit definite definitions here!"); 3214 3215 StringRef MangledName = getMangledName(D); 3216 llvm::GlobalValue *GV = GetGlobalValue(MangledName); 3217 3218 // We already have a definition, not declaration, with the same mangled name. 3219 // Emitting of declaration is not required (and actually overwrites emitted 3220 // definition). 3221 if (GV && !GV->isDeclaration()) 3222 return; 3223 3224 // If we have not seen a reference to this variable yet, place it into the 3225 // deferred declarations table to be emitted if needed later. 3226 if (!MustBeEmitted(D) && !GV) { 3227 DeferredDecls[MangledName] = D; 3228 return; 3229 } 3230 3231 // The tentative definition is the only definition. 3232 EmitGlobalVarDefinition(D); 3233 } 3234 3235 CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const { 3236 return Context.toCharUnitsFromBits( 3237 getDataLayout().getTypeStoreSizeInBits(Ty)); 3238 } 3239 3240 LangAS CodeGenModule::GetGlobalVarAddressSpace(const VarDecl *D) { 3241 LangAS AddrSpace = LangAS::Default; 3242 if (LangOpts.OpenCL) { 3243 AddrSpace = D ? D->getType().getAddressSpace() : LangAS::opencl_global; 3244 assert(AddrSpace == LangAS::opencl_global || 3245 AddrSpace == LangAS::opencl_constant || 3246 AddrSpace == LangAS::opencl_local || 3247 AddrSpace >= LangAS::FirstTargetAddressSpace); 3248 return AddrSpace; 3249 } 3250 3251 if (LangOpts.CUDA && LangOpts.CUDAIsDevice) { 3252 if (D && D->hasAttr<CUDAConstantAttr>()) 3253 return LangAS::cuda_constant; 3254 else if (D && D->hasAttr<CUDASharedAttr>()) 3255 return LangAS::cuda_shared; 3256 else if (D && D->hasAttr<CUDADeviceAttr>()) 3257 return LangAS::cuda_device; 3258 else if (D && D->getType().isConstQualified()) 3259 return LangAS::cuda_constant; 3260 else 3261 return LangAS::cuda_device; 3262 } 3263 3264 return getTargetCodeGenInfo().getGlobalVarAddressSpace(*this, D); 3265 } 3266 3267 LangAS CodeGenModule::getStringLiteralAddressSpace() const { 3268 // OpenCL v1.2 s6.5.3: a string literal is in the constant address space. 3269 if (LangOpts.OpenCL) 3270 return LangAS::opencl_constant; 3271 if (auto AS = getTarget().getConstantAddressSpace()) 3272 return AS.getValue(); 3273 return LangAS::Default; 3274 } 3275 3276 // In address space agnostic languages, string literals are in default address 3277 // space in AST. However, certain targets (e.g. amdgcn) request them to be 3278 // emitted in constant address space in LLVM IR. To be consistent with other 3279 // parts of AST, string literal global variables in constant address space 3280 // need to be casted to default address space before being put into address 3281 // map and referenced by other part of CodeGen. 3282 // In OpenCL, string literals are in constant address space in AST, therefore 3283 // they should not be casted to default address space. 3284 static llvm::Constant * 3285 castStringLiteralToDefaultAddressSpace(CodeGenModule &CGM, 3286 llvm::GlobalVariable *GV) { 3287 llvm::Constant *Cast = GV; 3288 if (!CGM.getLangOpts().OpenCL) { 3289 if (auto AS = CGM.getTarget().getConstantAddressSpace()) { 3290 if (AS != LangAS::Default) 3291 Cast = CGM.getTargetCodeGenInfo().performAddrSpaceCast( 3292 CGM, GV, AS.getValue(), LangAS::Default, 3293 GV->getValueType()->getPointerTo( 3294 CGM.getContext().getTargetAddressSpace(LangAS::Default))); 3295 } 3296 } 3297 return Cast; 3298 } 3299 3300 template<typename SomeDecl> 3301 void CodeGenModule::MaybeHandleStaticInExternC(const SomeDecl *D, 3302 llvm::GlobalValue *GV) { 3303 if (!getLangOpts().CPlusPlus) 3304 return; 3305 3306 // Must have 'used' attribute, or else inline assembly can't rely on 3307 // the name existing. 3308 if (!D->template hasAttr<UsedAttr>()) 3309 return; 3310 3311 // Must have internal linkage and an ordinary name. 3312 if (!D->getIdentifier() || D->getFormalLinkage() != InternalLinkage) 3313 return; 3314 3315 // Must be in an extern "C" context. Entities declared directly within 3316 // a record are not extern "C" even if the record is in such a context. 3317 const SomeDecl *First = D->getFirstDecl(); 3318 if (First->getDeclContext()->isRecord() || !First->isInExternCContext()) 3319 return; 3320 3321 // OK, this is an internal linkage entity inside an extern "C" linkage 3322 // specification. Make a note of that so we can give it the "expected" 3323 // mangled name if nothing else is using that name. 3324 std::pair<StaticExternCMap::iterator, bool> R = 3325 StaticExternCValues.insert(std::make_pair(D->getIdentifier(), GV)); 3326 3327 // If we have multiple internal linkage entities with the same name 3328 // in extern "C" regions, none of them gets that name. 3329 if (!R.second) 3330 R.first->second = nullptr; 3331 } 3332 3333 static bool shouldBeInCOMDAT(CodeGenModule &CGM, const Decl &D) { 3334 if (!CGM.supportsCOMDAT()) 3335 return false; 3336 3337 if (D.hasAttr<SelectAnyAttr>()) 3338 return true; 3339 3340 GVALinkage Linkage; 3341 if (auto *VD = dyn_cast<VarDecl>(&D)) 3342 Linkage = CGM.getContext().GetGVALinkageForVariable(VD); 3343 else 3344 Linkage = CGM.getContext().GetGVALinkageForFunction(cast<FunctionDecl>(&D)); 3345 3346 switch (Linkage) { 3347 case GVA_Internal: 3348 case GVA_AvailableExternally: 3349 case GVA_StrongExternal: 3350 return false; 3351 case GVA_DiscardableODR: 3352 case GVA_StrongODR: 3353 return true; 3354 } 3355 llvm_unreachable("No such linkage"); 3356 } 3357 3358 void CodeGenModule::maybeSetTrivialComdat(const Decl &D, 3359 llvm::GlobalObject &GO) { 3360 if (!shouldBeInCOMDAT(*this, D)) 3361 return; 3362 GO.setComdat(TheModule.getOrInsertComdat(GO.getName())); 3363 } 3364 3365 /// Pass IsTentative as true if you want to create a tentative definition. 3366 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D, 3367 bool IsTentative) { 3368 // OpenCL global variables of sampler type are translated to function calls, 3369 // therefore no need to be translated. 3370 QualType ASTTy = D->getType(); 3371 if (getLangOpts().OpenCL && ASTTy->isSamplerT()) 3372 return; 3373 3374 // If this is OpenMP device, check if it is legal to emit this global 3375 // normally. 3376 if (LangOpts.OpenMPIsDevice && OpenMPRuntime && 3377 OpenMPRuntime->emitTargetGlobalVariable(D)) 3378 return; 3379 3380 llvm::Constant *Init = nullptr; 3381 CXXRecordDecl *RD = ASTTy->getBaseElementTypeUnsafe()->getAsCXXRecordDecl(); 3382 bool NeedsGlobalCtor = false; 3383 bool NeedsGlobalDtor = RD && !RD->hasTrivialDestructor(); 3384 3385 const VarDecl *InitDecl; 3386 const Expr *InitExpr = D->getAnyInitializer(InitDecl); 3387 3388 Optional<ConstantEmitter> emitter; 3389 3390 // CUDA E.2.4.1 "__shared__ variables cannot have an initialization 3391 // as part of their declaration." Sema has already checked for 3392 // error cases, so we just need to set Init to UndefValue. 3393 if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice && 3394 D->hasAttr<CUDASharedAttr>()) 3395 Init = llvm::UndefValue::get(getTypes().ConvertType(ASTTy)); 3396 else if (!InitExpr) { 3397 // This is a tentative definition; tentative definitions are 3398 // implicitly initialized with { 0 }. 3399 // 3400 // Note that tentative definitions are only emitted at the end of 3401 // a translation unit, so they should never have incomplete 3402 // type. In addition, EmitTentativeDefinition makes sure that we 3403 // never attempt to emit a tentative definition if a real one 3404 // exists. A use may still exists, however, so we still may need 3405 // to do a RAUW. 3406 assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type"); 3407 Init = EmitNullConstant(D->getType()); 3408 } else { 3409 initializedGlobalDecl = GlobalDecl(D); 3410 emitter.emplace(*this); 3411 Init = emitter->tryEmitForInitializer(*InitDecl); 3412 3413 if (!Init) { 3414 QualType T = InitExpr->getType(); 3415 if (D->getType()->isReferenceType()) 3416 T = D->getType(); 3417 3418 if (getLangOpts().CPlusPlus) { 3419 Init = EmitNullConstant(T); 3420 NeedsGlobalCtor = true; 3421 } else { 3422 ErrorUnsupported(D, "static initializer"); 3423 Init = llvm::UndefValue::get(getTypes().ConvertType(T)); 3424 } 3425 } else { 3426 // We don't need an initializer, so remove the entry for the delayed 3427 // initializer position (just in case this entry was delayed) if we 3428 // also don't need to register a destructor. 3429 if (getLangOpts().CPlusPlus && !NeedsGlobalDtor) 3430 DelayedCXXInitPosition.erase(D); 3431 } 3432 } 3433 3434 llvm::Type* InitType = Init->getType(); 3435 llvm::Constant *Entry = 3436 GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative)); 3437 3438 // Strip off a bitcast if we got one back. 3439 if (auto *CE = dyn_cast<llvm::ConstantExpr>(Entry)) { 3440 assert(CE->getOpcode() == llvm::Instruction::BitCast || 3441 CE->getOpcode() == llvm::Instruction::AddrSpaceCast || 3442 // All zero index gep. 3443 CE->getOpcode() == llvm::Instruction::GetElementPtr); 3444 Entry = CE->getOperand(0); 3445 } 3446 3447 // Entry is now either a Function or GlobalVariable. 3448 auto *GV = dyn_cast<llvm::GlobalVariable>(Entry); 3449 3450 // We have a definition after a declaration with the wrong type. 3451 // We must make a new GlobalVariable* and update everything that used OldGV 3452 // (a declaration or tentative definition) with the new GlobalVariable* 3453 // (which will be a definition). 3454 // 3455 // This happens if there is a prototype for a global (e.g. 3456 // "extern int x[];") and then a definition of a different type (e.g. 3457 // "int x[10];"). This also happens when an initializer has a different type 3458 // from the type of the global (this happens with unions). 3459 if (!GV || GV->getType()->getElementType() != InitType || 3460 GV->getType()->getAddressSpace() != 3461 getContext().getTargetAddressSpace(GetGlobalVarAddressSpace(D))) { 3462 3463 // Move the old entry aside so that we'll create a new one. 3464 Entry->setName(StringRef()); 3465 3466 // Make a new global with the correct type, this is now guaranteed to work. 3467 GV = cast<llvm::GlobalVariable>( 3468 GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative))); 3469 3470 // Replace all uses of the old global with the new global 3471 llvm::Constant *NewPtrForOldDecl = 3472 llvm::ConstantExpr::getBitCast(GV, Entry->getType()); 3473 Entry->replaceAllUsesWith(NewPtrForOldDecl); 3474 3475 // Erase the old global, since it is no longer used. 3476 cast<llvm::GlobalValue>(Entry)->eraseFromParent(); 3477 } 3478 3479 MaybeHandleStaticInExternC(D, GV); 3480 3481 if (D->hasAttr<AnnotateAttr>()) 3482 AddGlobalAnnotations(D, GV); 3483 3484 // Set the llvm linkage type as appropriate. 3485 llvm::GlobalValue::LinkageTypes Linkage = 3486 getLLVMLinkageVarDefinition(D, GV->isConstant()); 3487 3488 // CUDA B.2.1 "The __device__ qualifier declares a variable that resides on 3489 // the device. [...]" 3490 // CUDA B.2.2 "The __constant__ qualifier, optionally used together with 3491 // __device__, declares a variable that: [...] 3492 // Is accessible from all the threads within the grid and from the host 3493 // through the runtime library (cudaGetSymbolAddress() / cudaGetSymbolSize() 3494 // / cudaMemcpyToSymbol() / cudaMemcpyFromSymbol())." 3495 if (GV && LangOpts.CUDA) { 3496 if (LangOpts.CUDAIsDevice) { 3497 if (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>()) 3498 GV->setExternallyInitialized(true); 3499 } else { 3500 // Host-side shadows of external declarations of device-side 3501 // global variables become internal definitions. These have to 3502 // be internal in order to prevent name conflicts with global 3503 // host variables with the same name in a different TUs. 3504 if (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>()) { 3505 Linkage = llvm::GlobalValue::InternalLinkage; 3506 3507 // Shadow variables and their properties must be registered 3508 // with CUDA runtime. 3509 unsigned Flags = 0; 3510 if (!D->hasDefinition()) 3511 Flags |= CGCUDARuntime::ExternDeviceVar; 3512 if (D->hasAttr<CUDAConstantAttr>()) 3513 Flags |= CGCUDARuntime::ConstantDeviceVar; 3514 getCUDARuntime().registerDeviceVar(*GV, Flags); 3515 } else if (D->hasAttr<CUDASharedAttr>()) 3516 // __shared__ variables are odd. Shadows do get created, but 3517 // they are not registered with the CUDA runtime, so they 3518 // can't really be used to access their device-side 3519 // counterparts. It's not clear yet whether it's nvcc's bug or 3520 // a feature, but we've got to do the same for compatibility. 3521 Linkage = llvm::GlobalValue::InternalLinkage; 3522 } 3523 } 3524 3525 GV->setInitializer(Init); 3526 if (emitter) emitter->finalize(GV); 3527 3528 // If it is safe to mark the global 'constant', do so now. 3529 GV->setConstant(!NeedsGlobalCtor && !NeedsGlobalDtor && 3530 isTypeConstant(D->getType(), true)); 3531 3532 // If it is in a read-only section, mark it 'constant'. 3533 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) { 3534 const ASTContext::SectionInfo &SI = Context.SectionInfos[SA->getName()]; 3535 if ((SI.SectionFlags & ASTContext::PSF_Write) == 0) 3536 GV->setConstant(true); 3537 } 3538 3539 GV->setAlignment(getContext().getDeclAlign(D).getQuantity()); 3540 3541 3542 // On Darwin, if the normal linkage of a C++ thread_local variable is 3543 // LinkOnce or Weak, we keep the normal linkage to prevent multiple 3544 // copies within a linkage unit; otherwise, the backing variable has 3545 // internal linkage and all accesses should just be calls to the 3546 // Itanium-specified entry point, which has the normal linkage of the 3547 // variable. This is to preserve the ability to change the implementation 3548 // behind the scenes. 3549 if (!D->isStaticLocal() && D->getTLSKind() == VarDecl::TLS_Dynamic && 3550 Context.getTargetInfo().getTriple().isOSDarwin() && 3551 !llvm::GlobalVariable::isLinkOnceLinkage(Linkage) && 3552 !llvm::GlobalVariable::isWeakLinkage(Linkage)) 3553 Linkage = llvm::GlobalValue::InternalLinkage; 3554 3555 GV->setLinkage(Linkage); 3556 if (D->hasAttr<DLLImportAttr>()) 3557 GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass); 3558 else if (D->hasAttr<DLLExportAttr>()) 3559 GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass); 3560 else 3561 GV->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass); 3562 3563 if (Linkage == llvm::GlobalVariable::CommonLinkage) { 3564 // common vars aren't constant even if declared const. 3565 GV->setConstant(false); 3566 // Tentative definition of global variables may be initialized with 3567 // non-zero null pointers. In this case they should have weak linkage 3568 // since common linkage must have zero initializer and must not have 3569 // explicit section therefore cannot have non-zero initial value. 3570 if (!GV->getInitializer()->isNullValue()) 3571 GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage); 3572 } 3573 3574 setNonAliasAttributes(D, GV); 3575 3576 if (D->getTLSKind() && !GV->isThreadLocal()) { 3577 if (D->getTLSKind() == VarDecl::TLS_Dynamic) 3578 CXXThreadLocals.push_back(D); 3579 setTLSMode(GV, *D); 3580 } 3581 3582 maybeSetTrivialComdat(*D, *GV); 3583 3584 // Emit the initializer function if necessary. 3585 if (NeedsGlobalCtor || NeedsGlobalDtor) 3586 EmitCXXGlobalVarDeclInitFunc(D, GV, NeedsGlobalCtor); 3587 3588 SanitizerMD->reportGlobalToASan(GV, *D, NeedsGlobalCtor); 3589 3590 // Emit global variable debug information. 3591 if (CGDebugInfo *DI = getModuleDebugInfo()) 3592 if (getCodeGenOpts().getDebugInfo() >= codegenoptions::LimitedDebugInfo) 3593 DI->EmitGlobalVariable(GV, D); 3594 } 3595 3596 static bool isVarDeclStrongDefinition(const ASTContext &Context, 3597 CodeGenModule &CGM, const VarDecl *D, 3598 bool NoCommon) { 3599 // Don't give variables common linkage if -fno-common was specified unless it 3600 // was overridden by a NoCommon attribute. 3601 if ((NoCommon || D->hasAttr<NoCommonAttr>()) && !D->hasAttr<CommonAttr>()) 3602 return true; 3603 3604 // C11 6.9.2/2: 3605 // A declaration of an identifier for an object that has file scope without 3606 // an initializer, and without a storage-class specifier or with the 3607 // storage-class specifier static, constitutes a tentative definition. 3608 if (D->getInit() || D->hasExternalStorage()) 3609 return true; 3610 3611 // A variable cannot be both common and exist in a section. 3612 if (D->hasAttr<SectionAttr>()) 3613 return true; 3614 3615 // A variable cannot be both common and exist in a section. 3616 // We don't try to determine which is the right section in the front-end. 3617 // If no specialized section name is applicable, it will resort to default. 3618 if (D->hasAttr<PragmaClangBSSSectionAttr>() || 3619 D->hasAttr<PragmaClangDataSectionAttr>() || 3620 D->hasAttr<PragmaClangRodataSectionAttr>()) 3621 return true; 3622 3623 // Thread local vars aren't considered common linkage. 3624 if (D->getTLSKind()) 3625 return true; 3626 3627 // Tentative definitions marked with WeakImportAttr are true definitions. 3628 if (D->hasAttr<WeakImportAttr>()) 3629 return true; 3630 3631 // A variable cannot be both common and exist in a comdat. 3632 if (shouldBeInCOMDAT(CGM, *D)) 3633 return true; 3634 3635 // Declarations with a required alignment do not have common linkage in MSVC 3636 // mode. 3637 if (Context.getTargetInfo().getCXXABI().isMicrosoft()) { 3638 if (D->hasAttr<AlignedAttr>()) 3639 return true; 3640 QualType VarType = D->getType(); 3641 if (Context.isAlignmentRequired(VarType)) 3642 return true; 3643 3644 if (const auto *RT = VarType->getAs<RecordType>()) { 3645 const RecordDecl *RD = RT->getDecl(); 3646 for (const FieldDecl *FD : RD->fields()) { 3647 if (FD->isBitField()) 3648 continue; 3649 if (FD->hasAttr<AlignedAttr>()) 3650 return true; 3651 if (Context.isAlignmentRequired(FD->getType())) 3652 return true; 3653 } 3654 } 3655 } 3656 3657 return false; 3658 } 3659 3660 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageForDeclarator( 3661 const DeclaratorDecl *D, GVALinkage Linkage, bool IsConstantVariable) { 3662 if (Linkage == GVA_Internal) 3663 return llvm::Function::InternalLinkage; 3664 3665 if (D->hasAttr<WeakAttr>()) { 3666 if (IsConstantVariable) 3667 return llvm::GlobalVariable::WeakODRLinkage; 3668 else 3669 return llvm::GlobalVariable::WeakAnyLinkage; 3670 } 3671 3672 if (const auto *FD = D->getAsFunction()) 3673 if (FD->isMultiVersion() && Linkage == GVA_AvailableExternally) 3674 return llvm::GlobalVariable::LinkOnceAnyLinkage; 3675 3676 // We are guaranteed to have a strong definition somewhere else, 3677 // so we can use available_externally linkage. 3678 if (Linkage == GVA_AvailableExternally) 3679 return llvm::GlobalValue::AvailableExternallyLinkage; 3680 3681 // Note that Apple's kernel linker doesn't support symbol 3682 // coalescing, so we need to avoid linkonce and weak linkages there. 3683 // Normally, this means we just map to internal, but for explicit 3684 // instantiations we'll map to external. 3685 3686 // In C++, the compiler has to emit a definition in every translation unit 3687 // that references the function. We should use linkonce_odr because 3688 // a) if all references in this translation unit are optimized away, we 3689 // don't need to codegen it. b) if the function persists, it needs to be 3690 // merged with other definitions. c) C++ has the ODR, so we know the 3691 // definition is dependable. 3692 if (Linkage == GVA_DiscardableODR) 3693 return !Context.getLangOpts().AppleKext ? llvm::Function::LinkOnceODRLinkage 3694 : llvm::Function::InternalLinkage; 3695 3696 // An explicit instantiation of a template has weak linkage, since 3697 // explicit instantiations can occur in multiple translation units 3698 // and must all be equivalent. However, we are not allowed to 3699 // throw away these explicit instantiations. 3700 // 3701 // We don't currently support CUDA device code spread out across multiple TUs, 3702 // so say that CUDA templates are either external (for kernels) or internal. 3703 // This lets llvm perform aggressive inter-procedural optimizations. 3704 if (Linkage == GVA_StrongODR) { 3705 if (Context.getLangOpts().AppleKext) 3706 return llvm::Function::ExternalLinkage; 3707 if (Context.getLangOpts().CUDA && Context.getLangOpts().CUDAIsDevice) 3708 return D->hasAttr<CUDAGlobalAttr>() ? llvm::Function::ExternalLinkage 3709 : llvm::Function::InternalLinkage; 3710 return llvm::Function::WeakODRLinkage; 3711 } 3712 3713 // C++ doesn't have tentative definitions and thus cannot have common 3714 // linkage. 3715 if (!getLangOpts().CPlusPlus && isa<VarDecl>(D) && 3716 !isVarDeclStrongDefinition(Context, *this, cast<VarDecl>(D), 3717 CodeGenOpts.NoCommon)) 3718 return llvm::GlobalVariable::CommonLinkage; 3719 3720 // selectany symbols are externally visible, so use weak instead of 3721 // linkonce. MSVC optimizes away references to const selectany globals, so 3722 // all definitions should be the same and ODR linkage should be used. 3723 // http://msdn.microsoft.com/en-us/library/5tkz6s71.aspx 3724 if (D->hasAttr<SelectAnyAttr>()) 3725 return llvm::GlobalVariable::WeakODRLinkage; 3726 3727 // Otherwise, we have strong external linkage. 3728 assert(Linkage == GVA_StrongExternal); 3729 return llvm::GlobalVariable::ExternalLinkage; 3730 } 3731 3732 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageVarDefinition( 3733 const VarDecl *VD, bool IsConstant) { 3734 GVALinkage Linkage = getContext().GetGVALinkageForVariable(VD); 3735 return getLLVMLinkageForDeclarator(VD, Linkage, IsConstant); 3736 } 3737 3738 /// Replace the uses of a function that was declared with a non-proto type. 3739 /// We want to silently drop extra arguments from call sites 3740 static void replaceUsesOfNonProtoConstant(llvm::Constant *old, 3741 llvm::Function *newFn) { 3742 // Fast path. 3743 if (old->use_empty()) return; 3744 3745 llvm::Type *newRetTy = newFn->getReturnType(); 3746 SmallVector<llvm::Value*, 4> newArgs; 3747 SmallVector<llvm::OperandBundleDef, 1> newBundles; 3748 3749 for (llvm::Value::use_iterator ui = old->use_begin(), ue = old->use_end(); 3750 ui != ue; ) { 3751 llvm::Value::use_iterator use = ui++; // Increment before the use is erased. 3752 llvm::User *user = use->getUser(); 3753 3754 // Recognize and replace uses of bitcasts. Most calls to 3755 // unprototyped functions will use bitcasts. 3756 if (auto *bitcast = dyn_cast<llvm::ConstantExpr>(user)) { 3757 if (bitcast->getOpcode() == llvm::Instruction::BitCast) 3758 replaceUsesOfNonProtoConstant(bitcast, newFn); 3759 continue; 3760 } 3761 3762 // Recognize calls to the function. 3763 llvm::CallSite callSite(user); 3764 if (!callSite) continue; 3765 if (!callSite.isCallee(&*use)) continue; 3766 3767 // If the return types don't match exactly, then we can't 3768 // transform this call unless it's dead. 3769 if (callSite->getType() != newRetTy && !callSite->use_empty()) 3770 continue; 3771 3772 // Get the call site's attribute list. 3773 SmallVector<llvm::AttributeSet, 8> newArgAttrs; 3774 llvm::AttributeList oldAttrs = callSite.getAttributes(); 3775 3776 // If the function was passed too few arguments, don't transform. 3777 unsigned newNumArgs = newFn->arg_size(); 3778 if (callSite.arg_size() < newNumArgs) continue; 3779 3780 // If extra arguments were passed, we silently drop them. 3781 // If any of the types mismatch, we don't transform. 3782 unsigned argNo = 0; 3783 bool dontTransform = false; 3784 for (llvm::Argument &A : newFn->args()) { 3785 if (callSite.getArgument(argNo)->getType() != A.getType()) { 3786 dontTransform = true; 3787 break; 3788 } 3789 3790 // Add any parameter attributes. 3791 newArgAttrs.push_back(oldAttrs.getParamAttributes(argNo)); 3792 argNo++; 3793 } 3794 if (dontTransform) 3795 continue; 3796 3797 // Okay, we can transform this. Create the new call instruction and copy 3798 // over the required information. 3799 newArgs.append(callSite.arg_begin(), callSite.arg_begin() + argNo); 3800 3801 // Copy over any operand bundles. 3802 callSite.getOperandBundlesAsDefs(newBundles); 3803 3804 llvm::CallSite newCall; 3805 if (callSite.isCall()) { 3806 newCall = llvm::CallInst::Create(newFn, newArgs, newBundles, "", 3807 callSite.getInstruction()); 3808 } else { 3809 auto *oldInvoke = cast<llvm::InvokeInst>(callSite.getInstruction()); 3810 newCall = llvm::InvokeInst::Create(newFn, 3811 oldInvoke->getNormalDest(), 3812 oldInvoke->getUnwindDest(), 3813 newArgs, newBundles, "", 3814 callSite.getInstruction()); 3815 } 3816 newArgs.clear(); // for the next iteration 3817 3818 if (!newCall->getType()->isVoidTy()) 3819 newCall->takeName(callSite.getInstruction()); 3820 newCall.setAttributes(llvm::AttributeList::get( 3821 newFn->getContext(), oldAttrs.getFnAttributes(), 3822 oldAttrs.getRetAttributes(), newArgAttrs)); 3823 newCall.setCallingConv(callSite.getCallingConv()); 3824 3825 // Finally, remove the old call, replacing any uses with the new one. 3826 if (!callSite->use_empty()) 3827 callSite->replaceAllUsesWith(newCall.getInstruction()); 3828 3829 // Copy debug location attached to CI. 3830 if (callSite->getDebugLoc()) 3831 newCall->setDebugLoc(callSite->getDebugLoc()); 3832 3833 callSite->eraseFromParent(); 3834 } 3835 } 3836 3837 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we 3838 /// implement a function with no prototype, e.g. "int foo() {}". If there are 3839 /// existing call uses of the old function in the module, this adjusts them to 3840 /// call the new function directly. 3841 /// 3842 /// This is not just a cleanup: the always_inline pass requires direct calls to 3843 /// functions to be able to inline them. If there is a bitcast in the way, it 3844 /// won't inline them. Instcombine normally deletes these calls, but it isn't 3845 /// run at -O0. 3846 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old, 3847 llvm::Function *NewFn) { 3848 // If we're redefining a global as a function, don't transform it. 3849 if (!isa<llvm::Function>(Old)) return; 3850 3851 replaceUsesOfNonProtoConstant(Old, NewFn); 3852 } 3853 3854 void CodeGenModule::HandleCXXStaticMemberVarInstantiation(VarDecl *VD) { 3855 auto DK = VD->isThisDeclarationADefinition(); 3856 if (DK == VarDecl::Definition && VD->hasAttr<DLLImportAttr>()) 3857 return; 3858 3859 TemplateSpecializationKind TSK = VD->getTemplateSpecializationKind(); 3860 // If we have a definition, this might be a deferred decl. If the 3861 // instantiation is explicit, make sure we emit it at the end. 3862 if (VD->getDefinition() && TSK == TSK_ExplicitInstantiationDefinition) 3863 GetAddrOfGlobalVar(VD); 3864 3865 EmitTopLevelDecl(VD); 3866 } 3867 3868 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD, 3869 llvm::GlobalValue *GV) { 3870 const auto *D = cast<FunctionDecl>(GD.getDecl()); 3871 3872 // Compute the function info and LLVM type. 3873 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 3874 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 3875 3876 // Get or create the prototype for the function. 3877 if (!GV || (GV->getType()->getElementType() != Ty)) 3878 GV = cast<llvm::GlobalValue>(GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, 3879 /*DontDefer=*/true, 3880 ForDefinition)); 3881 3882 // Already emitted. 3883 if (!GV->isDeclaration()) 3884 return; 3885 3886 // We need to set linkage and visibility on the function before 3887 // generating code for it because various parts of IR generation 3888 // want to propagate this information down (e.g. to local static 3889 // declarations). 3890 auto *Fn = cast<llvm::Function>(GV); 3891 setFunctionLinkage(GD, Fn); 3892 3893 // FIXME: this is redundant with part of setFunctionDefinitionAttributes 3894 setGVProperties(Fn, GD); 3895 3896 MaybeHandleStaticInExternC(D, Fn); 3897 3898 3899 maybeSetTrivialComdat(*D, *Fn); 3900 3901 CodeGenFunction(*this).GenerateCode(D, Fn, FI); 3902 3903 setNonAliasAttributes(GD, Fn); 3904 SetLLVMFunctionAttributesForDefinition(D, Fn); 3905 3906 if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>()) 3907 AddGlobalCtor(Fn, CA->getPriority()); 3908 if (const DestructorAttr *DA = D->getAttr<DestructorAttr>()) 3909 AddGlobalDtor(Fn, DA->getPriority()); 3910 if (D->hasAttr<AnnotateAttr>()) 3911 AddGlobalAnnotations(D, Fn); 3912 3913 if (D->isCPUSpecificMultiVersion()) { 3914 auto *Spec = D->getAttr<CPUSpecificAttr>(); 3915 // If there is another specific version we need to emit, do so here. 3916 if (Spec->ActiveArgIndex + 1 < Spec->cpus_size()) { 3917 ++Spec->ActiveArgIndex; 3918 EmitGlobalFunctionDefinition(GD, nullptr); 3919 } 3920 } 3921 } 3922 3923 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) { 3924 const auto *D = cast<ValueDecl>(GD.getDecl()); 3925 const AliasAttr *AA = D->getAttr<AliasAttr>(); 3926 assert(AA && "Not an alias?"); 3927 3928 StringRef MangledName = getMangledName(GD); 3929 3930 if (AA->getAliasee() == MangledName) { 3931 Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0; 3932 return; 3933 } 3934 3935 // If there is a definition in the module, then it wins over the alias. 3936 // This is dubious, but allow it to be safe. Just ignore the alias. 3937 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 3938 if (Entry && !Entry->isDeclaration()) 3939 return; 3940 3941 Aliases.push_back(GD); 3942 3943 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType()); 3944 3945 // Create a reference to the named value. This ensures that it is emitted 3946 // if a deferred decl. 3947 llvm::Constant *Aliasee; 3948 if (isa<llvm::FunctionType>(DeclTy)) 3949 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GD, 3950 /*ForVTable=*/false); 3951 else 3952 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), 3953 llvm::PointerType::getUnqual(DeclTy), 3954 /*D=*/nullptr); 3955 3956 // Create the new alias itself, but don't set a name yet. 3957 auto *GA = llvm::GlobalAlias::create( 3958 DeclTy, 0, llvm::Function::ExternalLinkage, "", Aliasee, &getModule()); 3959 3960 if (Entry) { 3961 if (GA->getAliasee() == Entry) { 3962 Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0; 3963 return; 3964 } 3965 3966 assert(Entry->isDeclaration()); 3967 3968 // If there is a declaration in the module, then we had an extern followed 3969 // by the alias, as in: 3970 // extern int test6(); 3971 // ... 3972 // int test6() __attribute__((alias("test7"))); 3973 // 3974 // Remove it and replace uses of it with the alias. 3975 GA->takeName(Entry); 3976 3977 Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA, 3978 Entry->getType())); 3979 Entry->eraseFromParent(); 3980 } else { 3981 GA->setName(MangledName); 3982 } 3983 3984 // Set attributes which are particular to an alias; this is a 3985 // specialization of the attributes which may be set on a global 3986 // variable/function. 3987 if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakRefAttr>() || 3988 D->isWeakImported()) { 3989 GA->setLinkage(llvm::Function::WeakAnyLinkage); 3990 } 3991 3992 if (const auto *VD = dyn_cast<VarDecl>(D)) 3993 if (VD->getTLSKind()) 3994 setTLSMode(GA, *VD); 3995 3996 SetCommonAttributes(GD, GA); 3997 } 3998 3999 void CodeGenModule::emitIFuncDefinition(GlobalDecl GD) { 4000 const auto *D = cast<ValueDecl>(GD.getDecl()); 4001 const IFuncAttr *IFA = D->getAttr<IFuncAttr>(); 4002 assert(IFA && "Not an ifunc?"); 4003 4004 StringRef MangledName = getMangledName(GD); 4005 4006 if (IFA->getResolver() == MangledName) { 4007 Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1; 4008 return; 4009 } 4010 4011 // Report an error if some definition overrides ifunc. 4012 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 4013 if (Entry && !Entry->isDeclaration()) { 4014 GlobalDecl OtherGD; 4015 if (lookupRepresentativeDecl(MangledName, OtherGD) && 4016 DiagnosedConflictingDefinitions.insert(GD).second) { 4017 Diags.Report(D->getLocation(), diag::err_duplicate_mangled_name) 4018 << MangledName; 4019 Diags.Report(OtherGD.getDecl()->getLocation(), 4020 diag::note_previous_definition); 4021 } 4022 return; 4023 } 4024 4025 Aliases.push_back(GD); 4026 4027 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType()); 4028 llvm::Constant *Resolver = 4029 GetOrCreateLLVMFunction(IFA->getResolver(), DeclTy, GD, 4030 /*ForVTable=*/false); 4031 llvm::GlobalIFunc *GIF = 4032 llvm::GlobalIFunc::create(DeclTy, 0, llvm::Function::ExternalLinkage, 4033 "", Resolver, &getModule()); 4034 if (Entry) { 4035 if (GIF->getResolver() == Entry) { 4036 Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1; 4037 return; 4038 } 4039 assert(Entry->isDeclaration()); 4040 4041 // If there is a declaration in the module, then we had an extern followed 4042 // by the ifunc, as in: 4043 // extern int test(); 4044 // ... 4045 // int test() __attribute__((ifunc("resolver"))); 4046 // 4047 // Remove it and replace uses of it with the ifunc. 4048 GIF->takeName(Entry); 4049 4050 Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GIF, 4051 Entry->getType())); 4052 Entry->eraseFromParent(); 4053 } else 4054 GIF->setName(MangledName); 4055 4056 SetCommonAttributes(GD, GIF); 4057 } 4058 4059 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID, 4060 ArrayRef<llvm::Type*> Tys) { 4061 return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID, 4062 Tys); 4063 } 4064 4065 static llvm::StringMapEntry<llvm::GlobalVariable *> & 4066 GetConstantCFStringEntry(llvm::StringMap<llvm::GlobalVariable *> &Map, 4067 const StringLiteral *Literal, bool TargetIsLSB, 4068 bool &IsUTF16, unsigned &StringLength) { 4069 StringRef String = Literal->getString(); 4070 unsigned NumBytes = String.size(); 4071 4072 // Check for simple case. 4073 if (!Literal->containsNonAsciiOrNull()) { 4074 StringLength = NumBytes; 4075 return *Map.insert(std::make_pair(String, nullptr)).first; 4076 } 4077 4078 // Otherwise, convert the UTF8 literals into a string of shorts. 4079 IsUTF16 = true; 4080 4081 SmallVector<llvm::UTF16, 128> ToBuf(NumBytes + 1); // +1 for ending nulls. 4082 const llvm::UTF8 *FromPtr = (const llvm::UTF8 *)String.data(); 4083 llvm::UTF16 *ToPtr = &ToBuf[0]; 4084 4085 (void)llvm::ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, &ToPtr, 4086 ToPtr + NumBytes, llvm::strictConversion); 4087 4088 // ConvertUTF8toUTF16 returns the length in ToPtr. 4089 StringLength = ToPtr - &ToBuf[0]; 4090 4091 // Add an explicit null. 4092 *ToPtr = 0; 4093 return *Map.insert(std::make_pair( 4094 StringRef(reinterpret_cast<const char *>(ToBuf.data()), 4095 (StringLength + 1) * 2), 4096 nullptr)).first; 4097 } 4098 4099 ConstantAddress 4100 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) { 4101 unsigned StringLength = 0; 4102 bool isUTF16 = false; 4103 llvm::StringMapEntry<llvm::GlobalVariable *> &Entry = 4104 GetConstantCFStringEntry(CFConstantStringMap, Literal, 4105 getDataLayout().isLittleEndian(), isUTF16, 4106 StringLength); 4107 4108 if (auto *C = Entry.second) 4109 return ConstantAddress(C, CharUnits::fromQuantity(C->getAlignment())); 4110 4111 llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty); 4112 llvm::Constant *Zeros[] = { Zero, Zero }; 4113 4114 // If we don't already have it, get __CFConstantStringClassReference. 4115 if (!CFConstantStringClassRef) { 4116 llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy); 4117 Ty = llvm::ArrayType::get(Ty, 0); 4118 llvm::Constant *C = 4119 CreateRuntimeVariable(Ty, "__CFConstantStringClassReference"); 4120 4121 if (getTriple().isOSBinFormatELF() || getTriple().isOSBinFormatCOFF()) { 4122 llvm::GlobalValue *GV = nullptr; 4123 4124 if ((GV = dyn_cast<llvm::GlobalValue>(C))) { 4125 IdentifierInfo &II = getContext().Idents.get(GV->getName()); 4126 TranslationUnitDecl *TUDecl = getContext().getTranslationUnitDecl(); 4127 DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl); 4128 4129 const VarDecl *VD = nullptr; 4130 for (const auto &Result : DC->lookup(&II)) 4131 if ((VD = dyn_cast<VarDecl>(Result))) 4132 break; 4133 4134 if (getTriple().isOSBinFormatELF()) { 4135 if (!VD) 4136 GV->setLinkage(llvm::GlobalValue::ExternalLinkage); 4137 } 4138 else { 4139 if (!VD || !VD->hasAttr<DLLExportAttr>()) { 4140 GV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass); 4141 GV->setLinkage(llvm::GlobalValue::ExternalLinkage); 4142 } else { 4143 GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass); 4144 GV->setLinkage(llvm::GlobalValue::ExternalLinkage); 4145 } 4146 } 4147 4148 setDSOLocal(GV); 4149 } 4150 } 4151 4152 // Decay array -> ptr 4153 CFConstantStringClassRef = 4154 llvm::ConstantExpr::getGetElementPtr(Ty, C, Zeros); 4155 } 4156 4157 QualType CFTy = getContext().getCFConstantStringType(); 4158 4159 auto *STy = cast<llvm::StructType>(getTypes().ConvertType(CFTy)); 4160 4161 ConstantInitBuilder Builder(*this); 4162 auto Fields = Builder.beginStruct(STy); 4163 4164 // Class pointer. 4165 Fields.add(cast<llvm::ConstantExpr>(CFConstantStringClassRef)); 4166 4167 // Flags. 4168 Fields.addInt(IntTy, isUTF16 ? 0x07d0 : 0x07C8); 4169 4170 // String pointer. 4171 llvm::Constant *C = nullptr; 4172 if (isUTF16) { 4173 auto Arr = llvm::makeArrayRef( 4174 reinterpret_cast<uint16_t *>(const_cast<char *>(Entry.first().data())), 4175 Entry.first().size() / 2); 4176 C = llvm::ConstantDataArray::get(VMContext, Arr); 4177 } else { 4178 C = llvm::ConstantDataArray::getString(VMContext, Entry.first()); 4179 } 4180 4181 // Note: -fwritable-strings doesn't make the backing store strings of 4182 // CFStrings writable. (See <rdar://problem/10657500>) 4183 auto *GV = 4184 new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true, 4185 llvm::GlobalValue::PrivateLinkage, C, ".str"); 4186 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 4187 // Don't enforce the target's minimum global alignment, since the only use 4188 // of the string is via this class initializer. 4189 CharUnits Align = isUTF16 4190 ? getContext().getTypeAlignInChars(getContext().ShortTy) 4191 : getContext().getTypeAlignInChars(getContext().CharTy); 4192 GV->setAlignment(Align.getQuantity()); 4193 4194 // FIXME: We set the section explicitly to avoid a bug in ld64 224.1. 4195 // Without it LLVM can merge the string with a non unnamed_addr one during 4196 // LTO. Doing that changes the section it ends in, which surprises ld64. 4197 if (getTriple().isOSBinFormatMachO()) 4198 GV->setSection(isUTF16 ? "__TEXT,__ustring" 4199 : "__TEXT,__cstring,cstring_literals"); 4200 // Make sure the literal ends up in .rodata to allow for safe ICF and for 4201 // the static linker to adjust permissions to read-only later on. 4202 else if (getTriple().isOSBinFormatELF()) 4203 GV->setSection(".rodata"); 4204 4205 // String. 4206 llvm::Constant *Str = 4207 llvm::ConstantExpr::getGetElementPtr(GV->getValueType(), GV, Zeros); 4208 4209 if (isUTF16) 4210 // Cast the UTF16 string to the correct type. 4211 Str = llvm::ConstantExpr::getBitCast(Str, Int8PtrTy); 4212 Fields.add(Str); 4213 4214 // String length. 4215 auto Ty = getTypes().ConvertType(getContext().LongTy); 4216 Fields.addInt(cast<llvm::IntegerType>(Ty), StringLength); 4217 4218 CharUnits Alignment = getPointerAlign(); 4219 4220 // The struct. 4221 GV = Fields.finishAndCreateGlobal("_unnamed_cfstring_", Alignment, 4222 /*isConstant=*/false, 4223 llvm::GlobalVariable::PrivateLinkage); 4224 switch (getTriple().getObjectFormat()) { 4225 case llvm::Triple::UnknownObjectFormat: 4226 llvm_unreachable("unknown file format"); 4227 case llvm::Triple::COFF: 4228 case llvm::Triple::ELF: 4229 case llvm::Triple::Wasm: 4230 GV->setSection("cfstring"); 4231 break; 4232 case llvm::Triple::MachO: 4233 GV->setSection("__DATA,__cfstring"); 4234 break; 4235 } 4236 Entry.second = GV; 4237 4238 return ConstantAddress(GV, Alignment); 4239 } 4240 4241 bool CodeGenModule::getExpressionLocationsEnabled() const { 4242 return !CodeGenOpts.EmitCodeView || CodeGenOpts.DebugColumnInfo; 4243 } 4244 4245 QualType CodeGenModule::getObjCFastEnumerationStateType() { 4246 if (ObjCFastEnumerationStateType.isNull()) { 4247 RecordDecl *D = Context.buildImplicitRecord("__objcFastEnumerationState"); 4248 D->startDefinition(); 4249 4250 QualType FieldTypes[] = { 4251 Context.UnsignedLongTy, 4252 Context.getPointerType(Context.getObjCIdType()), 4253 Context.getPointerType(Context.UnsignedLongTy), 4254 Context.getConstantArrayType(Context.UnsignedLongTy, 4255 llvm::APInt(32, 5), ArrayType::Normal, 0) 4256 }; 4257 4258 for (size_t i = 0; i < 4; ++i) { 4259 FieldDecl *Field = FieldDecl::Create(Context, 4260 D, 4261 SourceLocation(), 4262 SourceLocation(), nullptr, 4263 FieldTypes[i], /*TInfo=*/nullptr, 4264 /*BitWidth=*/nullptr, 4265 /*Mutable=*/false, 4266 ICIS_NoInit); 4267 Field->setAccess(AS_public); 4268 D->addDecl(Field); 4269 } 4270 4271 D->completeDefinition(); 4272 ObjCFastEnumerationStateType = Context.getTagDeclType(D); 4273 } 4274 4275 return ObjCFastEnumerationStateType; 4276 } 4277 4278 llvm::Constant * 4279 CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) { 4280 assert(!E->getType()->isPointerType() && "Strings are always arrays"); 4281 4282 // Don't emit it as the address of the string, emit the string data itself 4283 // as an inline array. 4284 if (E->getCharByteWidth() == 1) { 4285 SmallString<64> Str(E->getString()); 4286 4287 // Resize the string to the right size, which is indicated by its type. 4288 const ConstantArrayType *CAT = Context.getAsConstantArrayType(E->getType()); 4289 Str.resize(CAT->getSize().getZExtValue()); 4290 return llvm::ConstantDataArray::getString(VMContext, Str, false); 4291 } 4292 4293 auto *AType = cast<llvm::ArrayType>(getTypes().ConvertType(E->getType())); 4294 llvm::Type *ElemTy = AType->getElementType(); 4295 unsigned NumElements = AType->getNumElements(); 4296 4297 // Wide strings have either 2-byte or 4-byte elements. 4298 if (ElemTy->getPrimitiveSizeInBits() == 16) { 4299 SmallVector<uint16_t, 32> Elements; 4300 Elements.reserve(NumElements); 4301 4302 for(unsigned i = 0, e = E->getLength(); i != e; ++i) 4303 Elements.push_back(E->getCodeUnit(i)); 4304 Elements.resize(NumElements); 4305 return llvm::ConstantDataArray::get(VMContext, Elements); 4306 } 4307 4308 assert(ElemTy->getPrimitiveSizeInBits() == 32); 4309 SmallVector<uint32_t, 32> Elements; 4310 Elements.reserve(NumElements); 4311 4312 for(unsigned i = 0, e = E->getLength(); i != e; ++i) 4313 Elements.push_back(E->getCodeUnit(i)); 4314 Elements.resize(NumElements); 4315 return llvm::ConstantDataArray::get(VMContext, Elements); 4316 } 4317 4318 static llvm::GlobalVariable * 4319 GenerateStringLiteral(llvm::Constant *C, llvm::GlobalValue::LinkageTypes LT, 4320 CodeGenModule &CGM, StringRef GlobalName, 4321 CharUnits Alignment) { 4322 unsigned AddrSpace = CGM.getContext().getTargetAddressSpace( 4323 CGM.getStringLiteralAddressSpace()); 4324 4325 llvm::Module &M = CGM.getModule(); 4326 // Create a global variable for this string 4327 auto *GV = new llvm::GlobalVariable( 4328 M, C->getType(), !CGM.getLangOpts().WritableStrings, LT, C, GlobalName, 4329 nullptr, llvm::GlobalVariable::NotThreadLocal, AddrSpace); 4330 GV->setAlignment(Alignment.getQuantity()); 4331 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 4332 if (GV->isWeakForLinker()) { 4333 assert(CGM.supportsCOMDAT() && "Only COFF uses weak string literals"); 4334 GV->setComdat(M.getOrInsertComdat(GV->getName())); 4335 } 4336 CGM.setDSOLocal(GV); 4337 4338 return GV; 4339 } 4340 4341 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a 4342 /// constant array for the given string literal. 4343 ConstantAddress 4344 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S, 4345 StringRef Name) { 4346 CharUnits Alignment = getContext().getAlignOfGlobalVarInChars(S->getType()); 4347 4348 llvm::Constant *C = GetConstantArrayFromStringLiteral(S); 4349 llvm::GlobalVariable **Entry = nullptr; 4350 if (!LangOpts.WritableStrings) { 4351 Entry = &ConstantStringMap[C]; 4352 if (auto GV = *Entry) { 4353 if (Alignment.getQuantity() > GV->getAlignment()) 4354 GV->setAlignment(Alignment.getQuantity()); 4355 return ConstantAddress(GV, Alignment); 4356 } 4357 } 4358 4359 SmallString<256> MangledNameBuffer; 4360 StringRef GlobalVariableName; 4361 llvm::GlobalValue::LinkageTypes LT; 4362 4363 // Mangle the string literal if that's how the ABI merges duplicate strings. 4364 // Don't do it if they are writable, since we don't want writes in one TU to 4365 // affect strings in another. 4366 if (getCXXABI().getMangleContext().shouldMangleStringLiteral(S) && 4367 !LangOpts.WritableStrings) { 4368 llvm::raw_svector_ostream Out(MangledNameBuffer); 4369 getCXXABI().getMangleContext().mangleStringLiteral(S, Out); 4370 LT = llvm::GlobalValue::LinkOnceODRLinkage; 4371 GlobalVariableName = MangledNameBuffer; 4372 } else { 4373 LT = llvm::GlobalValue::PrivateLinkage; 4374 GlobalVariableName = Name; 4375 } 4376 4377 auto GV = GenerateStringLiteral(C, LT, *this, GlobalVariableName, Alignment); 4378 if (Entry) 4379 *Entry = GV; 4380 4381 SanitizerMD->reportGlobalToASan(GV, S->getStrTokenLoc(0), "<string literal>", 4382 QualType()); 4383 4384 return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV), 4385 Alignment); 4386 } 4387 4388 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant 4389 /// array for the given ObjCEncodeExpr node. 4390 ConstantAddress 4391 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) { 4392 std::string Str; 4393 getContext().getObjCEncodingForType(E->getEncodedType(), Str); 4394 4395 return GetAddrOfConstantCString(Str); 4396 } 4397 4398 /// GetAddrOfConstantCString - Returns a pointer to a character array containing 4399 /// the literal and a terminating '\0' character. 4400 /// The result has pointer to array type. 4401 ConstantAddress CodeGenModule::GetAddrOfConstantCString( 4402 const std::string &Str, const char *GlobalName) { 4403 StringRef StrWithNull(Str.c_str(), Str.size() + 1); 4404 CharUnits Alignment = 4405 getContext().getAlignOfGlobalVarInChars(getContext().CharTy); 4406 4407 llvm::Constant *C = 4408 llvm::ConstantDataArray::getString(getLLVMContext(), StrWithNull, false); 4409 4410 // Don't share any string literals if strings aren't constant. 4411 llvm::GlobalVariable **Entry = nullptr; 4412 if (!LangOpts.WritableStrings) { 4413 Entry = &ConstantStringMap[C]; 4414 if (auto GV = *Entry) { 4415 if (Alignment.getQuantity() > GV->getAlignment()) 4416 GV->setAlignment(Alignment.getQuantity()); 4417 return ConstantAddress(GV, Alignment); 4418 } 4419 } 4420 4421 // Get the default prefix if a name wasn't specified. 4422 if (!GlobalName) 4423 GlobalName = ".str"; 4424 // Create a global variable for this. 4425 auto GV = GenerateStringLiteral(C, llvm::GlobalValue::PrivateLinkage, *this, 4426 GlobalName, Alignment); 4427 if (Entry) 4428 *Entry = GV; 4429 4430 return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV), 4431 Alignment); 4432 } 4433 4434 ConstantAddress CodeGenModule::GetAddrOfGlobalTemporary( 4435 const MaterializeTemporaryExpr *E, const Expr *Init) { 4436 assert((E->getStorageDuration() == SD_Static || 4437 E->getStorageDuration() == SD_Thread) && "not a global temporary"); 4438 const auto *VD = cast<VarDecl>(E->getExtendingDecl()); 4439 4440 // If we're not materializing a subobject of the temporary, keep the 4441 // cv-qualifiers from the type of the MaterializeTemporaryExpr. 4442 QualType MaterializedType = Init->getType(); 4443 if (Init == E->GetTemporaryExpr()) 4444 MaterializedType = E->getType(); 4445 4446 CharUnits Align = getContext().getTypeAlignInChars(MaterializedType); 4447 4448 if (llvm::Constant *Slot = MaterializedGlobalTemporaryMap[E]) 4449 return ConstantAddress(Slot, Align); 4450 4451 // FIXME: If an externally-visible declaration extends multiple temporaries, 4452 // we need to give each temporary the same name in every translation unit (and 4453 // we also need to make the temporaries externally-visible). 4454 SmallString<256> Name; 4455 llvm::raw_svector_ostream Out(Name); 4456 getCXXABI().getMangleContext().mangleReferenceTemporary( 4457 VD, E->getManglingNumber(), Out); 4458 4459 APValue *Value = nullptr; 4460 if (E->getStorageDuration() == SD_Static) { 4461 // We might have a cached constant initializer for this temporary. Note 4462 // that this might have a different value from the value computed by 4463 // evaluating the initializer if the surrounding constant expression 4464 // modifies the temporary. 4465 Value = getContext().getMaterializedTemporaryValue(E, false); 4466 if (Value && Value->isUninit()) 4467 Value = nullptr; 4468 } 4469 4470 // Try evaluating it now, it might have a constant initializer. 4471 Expr::EvalResult EvalResult; 4472 if (!Value && Init->EvaluateAsRValue(EvalResult, getContext()) && 4473 !EvalResult.hasSideEffects()) 4474 Value = &EvalResult.Val; 4475 4476 LangAS AddrSpace = 4477 VD ? GetGlobalVarAddressSpace(VD) : MaterializedType.getAddressSpace(); 4478 4479 Optional<ConstantEmitter> emitter; 4480 llvm::Constant *InitialValue = nullptr; 4481 bool Constant = false; 4482 llvm::Type *Type; 4483 if (Value) { 4484 // The temporary has a constant initializer, use it. 4485 emitter.emplace(*this); 4486 InitialValue = emitter->emitForInitializer(*Value, AddrSpace, 4487 MaterializedType); 4488 Constant = isTypeConstant(MaterializedType, /*ExcludeCtor*/Value); 4489 Type = InitialValue->getType(); 4490 } else { 4491 // No initializer, the initialization will be provided when we 4492 // initialize the declaration which performed lifetime extension. 4493 Type = getTypes().ConvertTypeForMem(MaterializedType); 4494 } 4495 4496 // Create a global variable for this lifetime-extended temporary. 4497 llvm::GlobalValue::LinkageTypes Linkage = 4498 getLLVMLinkageVarDefinition(VD, Constant); 4499 if (Linkage == llvm::GlobalVariable::ExternalLinkage) { 4500 const VarDecl *InitVD; 4501 if (VD->isStaticDataMember() && VD->getAnyInitializer(InitVD) && 4502 isa<CXXRecordDecl>(InitVD->getLexicalDeclContext())) { 4503 // Temporaries defined inside a class get linkonce_odr linkage because the 4504 // class can be defined in multiple translation units. 4505 Linkage = llvm::GlobalVariable::LinkOnceODRLinkage; 4506 } else { 4507 // There is no need for this temporary to have external linkage if the 4508 // VarDecl has external linkage. 4509 Linkage = llvm::GlobalVariable::InternalLinkage; 4510 } 4511 } 4512 auto TargetAS = getContext().getTargetAddressSpace(AddrSpace); 4513 auto *GV = new llvm::GlobalVariable( 4514 getModule(), Type, Constant, Linkage, InitialValue, Name.c_str(), 4515 /*InsertBefore=*/nullptr, llvm::GlobalVariable::NotThreadLocal, TargetAS); 4516 if (emitter) emitter->finalize(GV); 4517 setGVProperties(GV, VD); 4518 GV->setAlignment(Align.getQuantity()); 4519 if (supportsCOMDAT() && GV->isWeakForLinker()) 4520 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 4521 if (VD->getTLSKind()) 4522 setTLSMode(GV, *VD); 4523 llvm::Constant *CV = GV; 4524 if (AddrSpace != LangAS::Default) 4525 CV = getTargetCodeGenInfo().performAddrSpaceCast( 4526 *this, GV, AddrSpace, LangAS::Default, 4527 Type->getPointerTo( 4528 getContext().getTargetAddressSpace(LangAS::Default))); 4529 MaterializedGlobalTemporaryMap[E] = CV; 4530 return ConstantAddress(CV, Align); 4531 } 4532 4533 /// EmitObjCPropertyImplementations - Emit information for synthesized 4534 /// properties for an implementation. 4535 void CodeGenModule::EmitObjCPropertyImplementations(const 4536 ObjCImplementationDecl *D) { 4537 for (const auto *PID : D->property_impls()) { 4538 // Dynamic is just for type-checking. 4539 if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) { 4540 ObjCPropertyDecl *PD = PID->getPropertyDecl(); 4541 4542 // Determine which methods need to be implemented, some may have 4543 // been overridden. Note that ::isPropertyAccessor is not the method 4544 // we want, that just indicates if the decl came from a 4545 // property. What we want to know is if the method is defined in 4546 // this implementation. 4547 if (!D->getInstanceMethod(PD->getGetterName())) 4548 CodeGenFunction(*this).GenerateObjCGetter( 4549 const_cast<ObjCImplementationDecl *>(D), PID); 4550 if (!PD->isReadOnly() && 4551 !D->getInstanceMethod(PD->getSetterName())) 4552 CodeGenFunction(*this).GenerateObjCSetter( 4553 const_cast<ObjCImplementationDecl *>(D), PID); 4554 } 4555 } 4556 } 4557 4558 static bool needsDestructMethod(ObjCImplementationDecl *impl) { 4559 const ObjCInterfaceDecl *iface = impl->getClassInterface(); 4560 for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin(); 4561 ivar; ivar = ivar->getNextIvar()) 4562 if (ivar->getType().isDestructedType()) 4563 return true; 4564 4565 return false; 4566 } 4567 4568 static bool AllTrivialInitializers(CodeGenModule &CGM, 4569 ObjCImplementationDecl *D) { 4570 CodeGenFunction CGF(CGM); 4571 for (ObjCImplementationDecl::init_iterator B = D->init_begin(), 4572 E = D->init_end(); B != E; ++B) { 4573 CXXCtorInitializer *CtorInitExp = *B; 4574 Expr *Init = CtorInitExp->getInit(); 4575 if (!CGF.isTrivialInitializer(Init)) 4576 return false; 4577 } 4578 return true; 4579 } 4580 4581 /// EmitObjCIvarInitializations - Emit information for ivar initialization 4582 /// for an implementation. 4583 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) { 4584 // We might need a .cxx_destruct even if we don't have any ivar initializers. 4585 if (needsDestructMethod(D)) { 4586 IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct"); 4587 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 4588 ObjCMethodDecl *DTORMethod = 4589 ObjCMethodDecl::Create(getContext(), D->getLocation(), D->getLocation(), 4590 cxxSelector, getContext().VoidTy, nullptr, D, 4591 /*isInstance=*/true, /*isVariadic=*/false, 4592 /*isPropertyAccessor=*/true, /*isImplicitlyDeclared=*/true, 4593 /*isDefined=*/false, ObjCMethodDecl::Required); 4594 D->addInstanceMethod(DTORMethod); 4595 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false); 4596 D->setHasDestructors(true); 4597 } 4598 4599 // If the implementation doesn't have any ivar initializers, we don't need 4600 // a .cxx_construct. 4601 if (D->getNumIvarInitializers() == 0 || 4602 AllTrivialInitializers(*this, D)) 4603 return; 4604 4605 IdentifierInfo *II = &getContext().Idents.get(".cxx_construct"); 4606 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 4607 // The constructor returns 'self'. 4608 ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(getContext(), 4609 D->getLocation(), 4610 D->getLocation(), 4611 cxxSelector, 4612 getContext().getObjCIdType(), 4613 nullptr, D, /*isInstance=*/true, 4614 /*isVariadic=*/false, 4615 /*isPropertyAccessor=*/true, 4616 /*isImplicitlyDeclared=*/true, 4617 /*isDefined=*/false, 4618 ObjCMethodDecl::Required); 4619 D->addInstanceMethod(CTORMethod); 4620 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true); 4621 D->setHasNonZeroConstructors(true); 4622 } 4623 4624 // EmitLinkageSpec - Emit all declarations in a linkage spec. 4625 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) { 4626 if (LSD->getLanguage() != LinkageSpecDecl::lang_c && 4627 LSD->getLanguage() != LinkageSpecDecl::lang_cxx) { 4628 ErrorUnsupported(LSD, "linkage spec"); 4629 return; 4630 } 4631 4632 EmitDeclContext(LSD); 4633 } 4634 4635 void CodeGenModule::EmitDeclContext(const DeclContext *DC) { 4636 for (auto *I : DC->decls()) { 4637 // Unlike other DeclContexts, the contents of an ObjCImplDecl at TU scope 4638 // are themselves considered "top-level", so EmitTopLevelDecl on an 4639 // ObjCImplDecl does not recursively visit them. We need to do that in 4640 // case they're nested inside another construct (LinkageSpecDecl / 4641 // ExportDecl) that does stop them from being considered "top-level". 4642 if (auto *OID = dyn_cast<ObjCImplDecl>(I)) { 4643 for (auto *M : OID->methods()) 4644 EmitTopLevelDecl(M); 4645 } 4646 4647 EmitTopLevelDecl(I); 4648 } 4649 } 4650 4651 /// EmitTopLevelDecl - Emit code for a single top level declaration. 4652 void CodeGenModule::EmitTopLevelDecl(Decl *D) { 4653 // Ignore dependent declarations. 4654 if (D->isTemplated()) 4655 return; 4656 4657 switch (D->getKind()) { 4658 case Decl::CXXConversion: 4659 case Decl::CXXMethod: 4660 case Decl::Function: 4661 EmitGlobal(cast<FunctionDecl>(D)); 4662 // Always provide some coverage mapping 4663 // even for the functions that aren't emitted. 4664 AddDeferredUnusedCoverageMapping(D); 4665 break; 4666 4667 case Decl::CXXDeductionGuide: 4668 // Function-like, but does not result in code emission. 4669 break; 4670 4671 case Decl::Var: 4672 case Decl::Decomposition: 4673 case Decl::VarTemplateSpecialization: 4674 EmitGlobal(cast<VarDecl>(D)); 4675 if (auto *DD = dyn_cast<DecompositionDecl>(D)) 4676 for (auto *B : DD->bindings()) 4677 if (auto *HD = B->getHoldingVar()) 4678 EmitGlobal(HD); 4679 break; 4680 4681 // Indirect fields from global anonymous structs and unions can be 4682 // ignored; only the actual variable requires IR gen support. 4683 case Decl::IndirectField: 4684 break; 4685 4686 // C++ Decls 4687 case Decl::Namespace: 4688 EmitDeclContext(cast<NamespaceDecl>(D)); 4689 break; 4690 case Decl::ClassTemplateSpecialization: { 4691 const auto *Spec = cast<ClassTemplateSpecializationDecl>(D); 4692 if (DebugInfo && 4693 Spec->getSpecializationKind() == TSK_ExplicitInstantiationDefinition && 4694 Spec->hasDefinition()) 4695 DebugInfo->completeTemplateDefinition(*Spec); 4696 } LLVM_FALLTHROUGH; 4697 case Decl::CXXRecord: 4698 if (DebugInfo) { 4699 if (auto *ES = D->getASTContext().getExternalSource()) 4700 if (ES->hasExternalDefinitions(D) == ExternalASTSource::EK_Never) 4701 DebugInfo->completeUnusedClass(cast<CXXRecordDecl>(*D)); 4702 } 4703 // Emit any static data members, they may be definitions. 4704 for (auto *I : cast<CXXRecordDecl>(D)->decls()) 4705 if (isa<VarDecl>(I) || isa<CXXRecordDecl>(I)) 4706 EmitTopLevelDecl(I); 4707 break; 4708 // No code generation needed. 4709 case Decl::UsingShadow: 4710 case Decl::ClassTemplate: 4711 case Decl::VarTemplate: 4712 case Decl::VarTemplatePartialSpecialization: 4713 case Decl::FunctionTemplate: 4714 case Decl::TypeAliasTemplate: 4715 case Decl::Block: 4716 case Decl::Empty: 4717 break; 4718 case Decl::Using: // using X; [C++] 4719 if (CGDebugInfo *DI = getModuleDebugInfo()) 4720 DI->EmitUsingDecl(cast<UsingDecl>(*D)); 4721 return; 4722 case Decl::NamespaceAlias: 4723 if (CGDebugInfo *DI = getModuleDebugInfo()) 4724 DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(*D)); 4725 return; 4726 case Decl::UsingDirective: // using namespace X; [C++] 4727 if (CGDebugInfo *DI = getModuleDebugInfo()) 4728 DI->EmitUsingDirective(cast<UsingDirectiveDecl>(*D)); 4729 return; 4730 case Decl::CXXConstructor: 4731 getCXXABI().EmitCXXConstructors(cast<CXXConstructorDecl>(D)); 4732 break; 4733 case Decl::CXXDestructor: 4734 getCXXABI().EmitCXXDestructors(cast<CXXDestructorDecl>(D)); 4735 break; 4736 4737 case Decl::StaticAssert: 4738 // Nothing to do. 4739 break; 4740 4741 // Objective-C Decls 4742 4743 // Forward declarations, no (immediate) code generation. 4744 case Decl::ObjCInterface: 4745 case Decl::ObjCCategory: 4746 break; 4747 4748 case Decl::ObjCProtocol: { 4749 auto *Proto = cast<ObjCProtocolDecl>(D); 4750 if (Proto->isThisDeclarationADefinition()) 4751 ObjCRuntime->GenerateProtocol(Proto); 4752 break; 4753 } 4754 4755 case Decl::ObjCCategoryImpl: 4756 // Categories have properties but don't support synthesize so we 4757 // can ignore them here. 4758 ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D)); 4759 break; 4760 4761 case Decl::ObjCImplementation: { 4762 auto *OMD = cast<ObjCImplementationDecl>(D); 4763 EmitObjCPropertyImplementations(OMD); 4764 EmitObjCIvarInitializations(OMD); 4765 ObjCRuntime->GenerateClass(OMD); 4766 // Emit global variable debug information. 4767 if (CGDebugInfo *DI = getModuleDebugInfo()) 4768 if (getCodeGenOpts().getDebugInfo() >= codegenoptions::LimitedDebugInfo) 4769 DI->getOrCreateInterfaceType(getContext().getObjCInterfaceType( 4770 OMD->getClassInterface()), OMD->getLocation()); 4771 break; 4772 } 4773 case Decl::ObjCMethod: { 4774 auto *OMD = cast<ObjCMethodDecl>(D); 4775 // If this is not a prototype, emit the body. 4776 if (OMD->getBody()) 4777 CodeGenFunction(*this).GenerateObjCMethod(OMD); 4778 break; 4779 } 4780 case Decl::ObjCCompatibleAlias: 4781 ObjCRuntime->RegisterAlias(cast<ObjCCompatibleAliasDecl>(D)); 4782 break; 4783 4784 case Decl::PragmaComment: { 4785 const auto *PCD = cast<PragmaCommentDecl>(D); 4786 switch (PCD->getCommentKind()) { 4787 case PCK_Unknown: 4788 llvm_unreachable("unexpected pragma comment kind"); 4789 case PCK_Linker: 4790 AppendLinkerOptions(PCD->getArg()); 4791 break; 4792 case PCK_Lib: 4793 if (getTarget().getTriple().isOSBinFormatELF() && 4794 !getTarget().getTriple().isPS4()) 4795 AddELFLibDirective(PCD->getArg()); 4796 else 4797 AddDependentLib(PCD->getArg()); 4798 break; 4799 case PCK_Compiler: 4800 case PCK_ExeStr: 4801 case PCK_User: 4802 break; // We ignore all of these. 4803 } 4804 break; 4805 } 4806 4807 case Decl::PragmaDetectMismatch: { 4808 const auto *PDMD = cast<PragmaDetectMismatchDecl>(D); 4809 AddDetectMismatch(PDMD->getName(), PDMD->getValue()); 4810 break; 4811 } 4812 4813 case Decl::LinkageSpec: 4814 EmitLinkageSpec(cast<LinkageSpecDecl>(D)); 4815 break; 4816 4817 case Decl::FileScopeAsm: { 4818 // File-scope asm is ignored during device-side CUDA compilation. 4819 if (LangOpts.CUDA && LangOpts.CUDAIsDevice) 4820 break; 4821 // File-scope asm is ignored during device-side OpenMP compilation. 4822 if (LangOpts.OpenMPIsDevice) 4823 break; 4824 auto *AD = cast<FileScopeAsmDecl>(D); 4825 getModule().appendModuleInlineAsm(AD->getAsmString()->getString()); 4826 break; 4827 } 4828 4829 case Decl::Import: { 4830 auto *Import = cast<ImportDecl>(D); 4831 4832 // If we've already imported this module, we're done. 4833 if (!ImportedModules.insert(Import->getImportedModule())) 4834 break; 4835 4836 // Emit debug information for direct imports. 4837 if (!Import->getImportedOwningModule()) { 4838 if (CGDebugInfo *DI = getModuleDebugInfo()) 4839 DI->EmitImportDecl(*Import); 4840 } 4841 4842 // Find all of the submodules and emit the module initializers. 4843 llvm::SmallPtrSet<clang::Module *, 16> Visited; 4844 SmallVector<clang::Module *, 16> Stack; 4845 Visited.insert(Import->getImportedModule()); 4846 Stack.push_back(Import->getImportedModule()); 4847 4848 while (!Stack.empty()) { 4849 clang::Module *Mod = Stack.pop_back_val(); 4850 if (!EmittedModuleInitializers.insert(Mod).second) 4851 continue; 4852 4853 for (auto *D : Context.getModuleInitializers(Mod)) 4854 EmitTopLevelDecl(D); 4855 4856 // Visit the submodules of this module. 4857 for (clang::Module::submodule_iterator Sub = Mod->submodule_begin(), 4858 SubEnd = Mod->submodule_end(); 4859 Sub != SubEnd; ++Sub) { 4860 // Skip explicit children; they need to be explicitly imported to emit 4861 // the initializers. 4862 if ((*Sub)->IsExplicit) 4863 continue; 4864 4865 if (Visited.insert(*Sub).second) 4866 Stack.push_back(*Sub); 4867 } 4868 } 4869 break; 4870 } 4871 4872 case Decl::Export: 4873 EmitDeclContext(cast<ExportDecl>(D)); 4874 break; 4875 4876 case Decl::OMPThreadPrivate: 4877 EmitOMPThreadPrivateDecl(cast<OMPThreadPrivateDecl>(D)); 4878 break; 4879 4880 case Decl::OMPDeclareReduction: 4881 EmitOMPDeclareReduction(cast<OMPDeclareReductionDecl>(D)); 4882 break; 4883 4884 case Decl::OMPRequires: 4885 EmitOMPRequiresDecl(cast<OMPRequiresDecl>(D)); 4886 break; 4887 4888 default: 4889 // Make sure we handled everything we should, every other kind is a 4890 // non-top-level decl. FIXME: Would be nice to have an isTopLevelDeclKind 4891 // function. Need to recode Decl::Kind to do that easily. 4892 assert(isa<TypeDecl>(D) && "Unsupported decl kind"); 4893 break; 4894 } 4895 } 4896 4897 void CodeGenModule::AddDeferredUnusedCoverageMapping(Decl *D) { 4898 // Do we need to generate coverage mapping? 4899 if (!CodeGenOpts.CoverageMapping) 4900 return; 4901 switch (D->getKind()) { 4902 case Decl::CXXConversion: 4903 case Decl::CXXMethod: 4904 case Decl::Function: 4905 case Decl::ObjCMethod: 4906 case Decl::CXXConstructor: 4907 case Decl::CXXDestructor: { 4908 if (!cast<FunctionDecl>(D)->doesThisDeclarationHaveABody()) 4909 return; 4910 SourceManager &SM = getContext().getSourceManager(); 4911 if (LimitedCoverage && SM.getMainFileID() != SM.getFileID(D->getBeginLoc())) 4912 return; 4913 auto I = DeferredEmptyCoverageMappingDecls.find(D); 4914 if (I == DeferredEmptyCoverageMappingDecls.end()) 4915 DeferredEmptyCoverageMappingDecls[D] = true; 4916 break; 4917 } 4918 default: 4919 break; 4920 }; 4921 } 4922 4923 void CodeGenModule::ClearUnusedCoverageMapping(const Decl *D) { 4924 // Do we need to generate coverage mapping? 4925 if (!CodeGenOpts.CoverageMapping) 4926 return; 4927 if (const auto *Fn = dyn_cast<FunctionDecl>(D)) { 4928 if (Fn->isTemplateInstantiation()) 4929 ClearUnusedCoverageMapping(Fn->getTemplateInstantiationPattern()); 4930 } 4931 auto I = DeferredEmptyCoverageMappingDecls.find(D); 4932 if (I == DeferredEmptyCoverageMappingDecls.end()) 4933 DeferredEmptyCoverageMappingDecls[D] = false; 4934 else 4935 I->second = false; 4936 } 4937 4938 void CodeGenModule::EmitDeferredUnusedCoverageMappings() { 4939 // We call takeVector() here to avoid use-after-free. 4940 // FIXME: DeferredEmptyCoverageMappingDecls is getting mutated because 4941 // we deserialize function bodies to emit coverage info for them, and that 4942 // deserializes more declarations. How should we handle that case? 4943 for (const auto &Entry : DeferredEmptyCoverageMappingDecls.takeVector()) { 4944 if (!Entry.second) 4945 continue; 4946 const Decl *D = Entry.first; 4947 switch (D->getKind()) { 4948 case Decl::CXXConversion: 4949 case Decl::CXXMethod: 4950 case Decl::Function: 4951 case Decl::ObjCMethod: { 4952 CodeGenPGO PGO(*this); 4953 GlobalDecl GD(cast<FunctionDecl>(D)); 4954 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 4955 getFunctionLinkage(GD)); 4956 break; 4957 } 4958 case Decl::CXXConstructor: { 4959 CodeGenPGO PGO(*this); 4960 GlobalDecl GD(cast<CXXConstructorDecl>(D), Ctor_Base); 4961 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 4962 getFunctionLinkage(GD)); 4963 break; 4964 } 4965 case Decl::CXXDestructor: { 4966 CodeGenPGO PGO(*this); 4967 GlobalDecl GD(cast<CXXDestructorDecl>(D), Dtor_Base); 4968 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 4969 getFunctionLinkage(GD)); 4970 break; 4971 } 4972 default: 4973 break; 4974 }; 4975 } 4976 } 4977 4978 /// Turns the given pointer into a constant. 4979 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context, 4980 const void *Ptr) { 4981 uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr); 4982 llvm::Type *i64 = llvm::Type::getInt64Ty(Context); 4983 return llvm::ConstantInt::get(i64, PtrInt); 4984 } 4985 4986 static void EmitGlobalDeclMetadata(CodeGenModule &CGM, 4987 llvm::NamedMDNode *&GlobalMetadata, 4988 GlobalDecl D, 4989 llvm::GlobalValue *Addr) { 4990 if (!GlobalMetadata) 4991 GlobalMetadata = 4992 CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs"); 4993 4994 // TODO: should we report variant information for ctors/dtors? 4995 llvm::Metadata *Ops[] = {llvm::ConstantAsMetadata::get(Addr), 4996 llvm::ConstantAsMetadata::get(GetPointerConstant( 4997 CGM.getLLVMContext(), D.getDecl()))}; 4998 GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops)); 4999 } 5000 5001 /// For each function which is declared within an extern "C" region and marked 5002 /// as 'used', but has internal linkage, create an alias from the unmangled 5003 /// name to the mangled name if possible. People expect to be able to refer 5004 /// to such functions with an unmangled name from inline assembly within the 5005 /// same translation unit. 5006 void CodeGenModule::EmitStaticExternCAliases() { 5007 if (!getTargetCodeGenInfo().shouldEmitStaticExternCAliases()) 5008 return; 5009 for (auto &I : StaticExternCValues) { 5010 IdentifierInfo *Name = I.first; 5011 llvm::GlobalValue *Val = I.second; 5012 if (Val && !getModule().getNamedValue(Name->getName())) 5013 addUsedGlobal(llvm::GlobalAlias::create(Name->getName(), Val)); 5014 } 5015 } 5016 5017 bool CodeGenModule::lookupRepresentativeDecl(StringRef MangledName, 5018 GlobalDecl &Result) const { 5019 auto Res = Manglings.find(MangledName); 5020 if (Res == Manglings.end()) 5021 return false; 5022 Result = Res->getValue(); 5023 return true; 5024 } 5025 5026 /// Emits metadata nodes associating all the global values in the 5027 /// current module with the Decls they came from. This is useful for 5028 /// projects using IR gen as a subroutine. 5029 /// 5030 /// Since there's currently no way to associate an MDNode directly 5031 /// with an llvm::GlobalValue, we create a global named metadata 5032 /// with the name 'clang.global.decl.ptrs'. 5033 void CodeGenModule::EmitDeclMetadata() { 5034 llvm::NamedMDNode *GlobalMetadata = nullptr; 5035 5036 for (auto &I : MangledDeclNames) { 5037 llvm::GlobalValue *Addr = getModule().getNamedValue(I.second); 5038 // Some mangled names don't necessarily have an associated GlobalValue 5039 // in this module, e.g. if we mangled it for DebugInfo. 5040 if (Addr) 5041 EmitGlobalDeclMetadata(*this, GlobalMetadata, I.first, Addr); 5042 } 5043 } 5044 5045 /// Emits metadata nodes for all the local variables in the current 5046 /// function. 5047 void CodeGenFunction::EmitDeclMetadata() { 5048 if (LocalDeclMap.empty()) return; 5049 5050 llvm::LLVMContext &Context = getLLVMContext(); 5051 5052 // Find the unique metadata ID for this name. 5053 unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr"); 5054 5055 llvm::NamedMDNode *GlobalMetadata = nullptr; 5056 5057 for (auto &I : LocalDeclMap) { 5058 const Decl *D = I.first; 5059 llvm::Value *Addr = I.second.getPointer(); 5060 if (auto *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) { 5061 llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D); 5062 Alloca->setMetadata( 5063 DeclPtrKind, llvm::MDNode::get( 5064 Context, llvm::ValueAsMetadata::getConstant(DAddr))); 5065 } else if (auto *GV = dyn_cast<llvm::GlobalValue>(Addr)) { 5066 GlobalDecl GD = GlobalDecl(cast<VarDecl>(D)); 5067 EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV); 5068 } 5069 } 5070 } 5071 5072 void CodeGenModule::EmitVersionIdentMetadata() { 5073 llvm::NamedMDNode *IdentMetadata = 5074 TheModule.getOrInsertNamedMetadata("llvm.ident"); 5075 std::string Version = getClangFullVersion(); 5076 llvm::LLVMContext &Ctx = TheModule.getContext(); 5077 5078 llvm::Metadata *IdentNode[] = {llvm::MDString::get(Ctx, Version)}; 5079 IdentMetadata->addOperand(llvm::MDNode::get(Ctx, IdentNode)); 5080 } 5081 5082 void CodeGenModule::EmitTargetMetadata() { 5083 // Warning, new MangledDeclNames may be appended within this loop. 5084 // We rely on MapVector insertions adding new elements to the end 5085 // of the container. 5086 // FIXME: Move this loop into the one target that needs it, and only 5087 // loop over those declarations for which we couldn't emit the target 5088 // metadata when we emitted the declaration. 5089 for (unsigned I = 0; I != MangledDeclNames.size(); ++I) { 5090 auto Val = *(MangledDeclNames.begin() + I); 5091 const Decl *D = Val.first.getDecl()->getMostRecentDecl(); 5092 llvm::GlobalValue *GV = GetGlobalValue(Val.second); 5093 getTargetCodeGenInfo().emitTargetMD(D, GV, *this); 5094 } 5095 } 5096 5097 void CodeGenModule::EmitCoverageFile() { 5098 if (getCodeGenOpts().CoverageDataFile.empty() && 5099 getCodeGenOpts().CoverageNotesFile.empty()) 5100 return; 5101 5102 llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu"); 5103 if (!CUNode) 5104 return; 5105 5106 llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov"); 5107 llvm::LLVMContext &Ctx = TheModule.getContext(); 5108 auto *CoverageDataFile = 5109 llvm::MDString::get(Ctx, getCodeGenOpts().CoverageDataFile); 5110 auto *CoverageNotesFile = 5111 llvm::MDString::get(Ctx, getCodeGenOpts().CoverageNotesFile); 5112 for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) { 5113 llvm::MDNode *CU = CUNode->getOperand(i); 5114 llvm::Metadata *Elts[] = {CoverageNotesFile, CoverageDataFile, CU}; 5115 GCov->addOperand(llvm::MDNode::get(Ctx, Elts)); 5116 } 5117 } 5118 5119 llvm::Constant *CodeGenModule::EmitUuidofInitializer(StringRef Uuid) { 5120 // Sema has checked that all uuid strings are of the form 5121 // "12345678-1234-1234-1234-1234567890ab". 5122 assert(Uuid.size() == 36); 5123 for (unsigned i = 0; i < 36; ++i) { 5124 if (i == 8 || i == 13 || i == 18 || i == 23) assert(Uuid[i] == '-'); 5125 else assert(isHexDigit(Uuid[i])); 5126 } 5127 5128 // The starts of all bytes of Field3 in Uuid. Field 3 is "1234-1234567890ab". 5129 const unsigned Field3ValueOffsets[8] = { 19, 21, 24, 26, 28, 30, 32, 34 }; 5130 5131 llvm::Constant *Field3[8]; 5132 for (unsigned Idx = 0; Idx < 8; ++Idx) 5133 Field3[Idx] = llvm::ConstantInt::get( 5134 Int8Ty, Uuid.substr(Field3ValueOffsets[Idx], 2), 16); 5135 5136 llvm::Constant *Fields[4] = { 5137 llvm::ConstantInt::get(Int32Ty, Uuid.substr(0, 8), 16), 5138 llvm::ConstantInt::get(Int16Ty, Uuid.substr(9, 4), 16), 5139 llvm::ConstantInt::get(Int16Ty, Uuid.substr(14, 4), 16), 5140 llvm::ConstantArray::get(llvm::ArrayType::get(Int8Ty, 8), Field3) 5141 }; 5142 5143 return llvm::ConstantStruct::getAnon(Fields); 5144 } 5145 5146 llvm::Constant *CodeGenModule::GetAddrOfRTTIDescriptor(QualType Ty, 5147 bool ForEH) { 5148 // Return a bogus pointer if RTTI is disabled, unless it's for EH. 5149 // FIXME: should we even be calling this method if RTTI is disabled 5150 // and it's not for EH? 5151 if ((!ForEH && !getLangOpts().RTTI) || getLangOpts().CUDAIsDevice) 5152 return llvm::Constant::getNullValue(Int8PtrTy); 5153 5154 if (ForEH && Ty->isObjCObjectPointerType() && 5155 LangOpts.ObjCRuntime.isGNUFamily()) 5156 return ObjCRuntime->GetEHType(Ty); 5157 5158 return getCXXABI().getAddrOfRTTIDescriptor(Ty); 5159 } 5160 5161 void CodeGenModule::EmitOMPThreadPrivateDecl(const OMPThreadPrivateDecl *D) { 5162 // Do not emit threadprivates in simd-only mode. 5163 if (LangOpts.OpenMP && LangOpts.OpenMPSimd) 5164 return; 5165 for (auto RefExpr : D->varlists()) { 5166 auto *VD = cast<VarDecl>(cast<DeclRefExpr>(RefExpr)->getDecl()); 5167 bool PerformInit = 5168 VD->getAnyInitializer() && 5169 !VD->getAnyInitializer()->isConstantInitializer(getContext(), 5170 /*ForRef=*/false); 5171 5172 Address Addr(GetAddrOfGlobalVar(VD), getContext().getDeclAlign(VD)); 5173 if (auto InitFunction = getOpenMPRuntime().emitThreadPrivateVarDefinition( 5174 VD, Addr, RefExpr->getBeginLoc(), PerformInit)) 5175 CXXGlobalInits.push_back(InitFunction); 5176 } 5177 } 5178 5179 llvm::Metadata * 5180 CodeGenModule::CreateMetadataIdentifierImpl(QualType T, MetadataTypeMap &Map, 5181 StringRef Suffix) { 5182 llvm::Metadata *&InternalId = Map[T.getCanonicalType()]; 5183 if (InternalId) 5184 return InternalId; 5185 5186 if (isExternallyVisible(T->getLinkage())) { 5187 std::string OutName; 5188 llvm::raw_string_ostream Out(OutName); 5189 getCXXABI().getMangleContext().mangleTypeName(T, Out); 5190 Out << Suffix; 5191 5192 InternalId = llvm::MDString::get(getLLVMContext(), Out.str()); 5193 } else { 5194 InternalId = llvm::MDNode::getDistinct(getLLVMContext(), 5195 llvm::ArrayRef<llvm::Metadata *>()); 5196 } 5197 5198 return InternalId; 5199 } 5200 5201 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierForType(QualType T) { 5202 return CreateMetadataIdentifierImpl(T, MetadataIdMap, ""); 5203 } 5204 5205 llvm::Metadata * 5206 CodeGenModule::CreateMetadataIdentifierForVirtualMemPtrType(QualType T) { 5207 return CreateMetadataIdentifierImpl(T, VirtualMetadataIdMap, ".virtual"); 5208 } 5209 5210 // Generalize pointer types to a void pointer with the qualifiers of the 5211 // originally pointed-to type, e.g. 'const char *' and 'char * const *' 5212 // generalize to 'const void *' while 'char *' and 'const char **' generalize to 5213 // 'void *'. 5214 static QualType GeneralizeType(ASTContext &Ctx, QualType Ty) { 5215 if (!Ty->isPointerType()) 5216 return Ty; 5217 5218 return Ctx.getPointerType( 5219 QualType(Ctx.VoidTy).withCVRQualifiers( 5220 Ty->getPointeeType().getCVRQualifiers())); 5221 } 5222 5223 // Apply type generalization to a FunctionType's return and argument types 5224 static QualType GeneralizeFunctionType(ASTContext &Ctx, QualType Ty) { 5225 if (auto *FnType = Ty->getAs<FunctionProtoType>()) { 5226 SmallVector<QualType, 8> GeneralizedParams; 5227 for (auto &Param : FnType->param_types()) 5228 GeneralizedParams.push_back(GeneralizeType(Ctx, Param)); 5229 5230 return Ctx.getFunctionType( 5231 GeneralizeType(Ctx, FnType->getReturnType()), 5232 GeneralizedParams, FnType->getExtProtoInfo()); 5233 } 5234 5235 if (auto *FnType = Ty->getAs<FunctionNoProtoType>()) 5236 return Ctx.getFunctionNoProtoType( 5237 GeneralizeType(Ctx, FnType->getReturnType())); 5238 5239 llvm_unreachable("Encountered unknown FunctionType"); 5240 } 5241 5242 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierGeneralized(QualType T) { 5243 return CreateMetadataIdentifierImpl(GeneralizeFunctionType(getContext(), T), 5244 GeneralizedMetadataIdMap, ".generalized"); 5245 } 5246 5247 /// Returns whether this module needs the "all-vtables" type identifier. 5248 bool CodeGenModule::NeedAllVtablesTypeId() const { 5249 // Returns true if at least one of vtable-based CFI checkers is enabled and 5250 // is not in the trapping mode. 5251 return ((LangOpts.Sanitize.has(SanitizerKind::CFIVCall) && 5252 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIVCall)) || 5253 (LangOpts.Sanitize.has(SanitizerKind::CFINVCall) && 5254 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFINVCall)) || 5255 (LangOpts.Sanitize.has(SanitizerKind::CFIDerivedCast) && 5256 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIDerivedCast)) || 5257 (LangOpts.Sanitize.has(SanitizerKind::CFIUnrelatedCast) && 5258 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIUnrelatedCast))); 5259 } 5260 5261 void CodeGenModule::AddVTableTypeMetadata(llvm::GlobalVariable *VTable, 5262 CharUnits Offset, 5263 const CXXRecordDecl *RD) { 5264 llvm::Metadata *MD = 5265 CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0)); 5266 VTable->addTypeMetadata(Offset.getQuantity(), MD); 5267 5268 if (CodeGenOpts.SanitizeCfiCrossDso) 5269 if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD)) 5270 VTable->addTypeMetadata(Offset.getQuantity(), 5271 llvm::ConstantAsMetadata::get(CrossDsoTypeId)); 5272 5273 if (NeedAllVtablesTypeId()) { 5274 llvm::Metadata *MD = llvm::MDString::get(getLLVMContext(), "all-vtables"); 5275 VTable->addTypeMetadata(Offset.getQuantity(), MD); 5276 } 5277 } 5278 5279 TargetAttr::ParsedTargetAttr CodeGenModule::filterFunctionTargetAttrs(const TargetAttr *TD) { 5280 assert(TD != nullptr); 5281 TargetAttr::ParsedTargetAttr ParsedAttr = TD->parse(); 5282 5283 ParsedAttr.Features.erase( 5284 llvm::remove_if(ParsedAttr.Features, 5285 [&](const std::string &Feat) { 5286 return !Target.isValidFeatureName( 5287 StringRef{Feat}.substr(1)); 5288 }), 5289 ParsedAttr.Features.end()); 5290 return ParsedAttr; 5291 } 5292 5293 5294 // Fills in the supplied string map with the set of target features for the 5295 // passed in function. 5296 void CodeGenModule::getFunctionFeatureMap(llvm::StringMap<bool> &FeatureMap, 5297 const FunctionDecl *FD) { 5298 StringRef TargetCPU = Target.getTargetOpts().CPU; 5299 if (const auto *TD = FD->getAttr<TargetAttr>()) { 5300 TargetAttr::ParsedTargetAttr ParsedAttr = filterFunctionTargetAttrs(TD); 5301 5302 // Make a copy of the features as passed on the command line into the 5303 // beginning of the additional features from the function to override. 5304 ParsedAttr.Features.insert(ParsedAttr.Features.begin(), 5305 Target.getTargetOpts().FeaturesAsWritten.begin(), 5306 Target.getTargetOpts().FeaturesAsWritten.end()); 5307 5308 if (ParsedAttr.Architecture != "" && 5309 Target.isValidCPUName(ParsedAttr.Architecture)) 5310 TargetCPU = ParsedAttr.Architecture; 5311 5312 // Now populate the feature map, first with the TargetCPU which is either 5313 // the default or a new one from the target attribute string. Then we'll use 5314 // the passed in features (FeaturesAsWritten) along with the new ones from 5315 // the attribute. 5316 Target.initFeatureMap(FeatureMap, getDiags(), TargetCPU, 5317 ParsedAttr.Features); 5318 } else if (const auto *SD = FD->getAttr<CPUSpecificAttr>()) { 5319 llvm::SmallVector<StringRef, 32> FeaturesTmp; 5320 Target.getCPUSpecificCPUDispatchFeatures(SD->getCurCPUName()->getName(), 5321 FeaturesTmp); 5322 std::vector<std::string> Features(FeaturesTmp.begin(), FeaturesTmp.end()); 5323 Target.initFeatureMap(FeatureMap, getDiags(), TargetCPU, Features); 5324 } else { 5325 Target.initFeatureMap(FeatureMap, getDiags(), TargetCPU, 5326 Target.getTargetOpts().Features); 5327 } 5328 } 5329 5330 llvm::SanitizerStatReport &CodeGenModule::getSanStats() { 5331 if (!SanStats) 5332 SanStats = llvm::make_unique<llvm::SanitizerStatReport>(&getModule()); 5333 5334 return *SanStats; 5335 } 5336 llvm::Value * 5337 CodeGenModule::createOpenCLIntToSamplerConversion(const Expr *E, 5338 CodeGenFunction &CGF) { 5339 llvm::Constant *C = ConstantEmitter(CGF).emitAbstract(E, E->getType()); 5340 auto SamplerT = getOpenCLRuntime().getSamplerType(E->getType().getTypePtr()); 5341 auto FTy = llvm::FunctionType::get(SamplerT, {C->getType()}, false); 5342 return CGF.Builder.CreateCall(CreateRuntimeFunction(FTy, 5343 "__translate_sampler_initializer"), 5344 {C}); 5345 } 5346