xref: /llvm-project/clang/lib/CodeGen/CodeGenModule.cpp (revision 7e34a308ff8d9270d2654ce0e8ed9e1600676afb)
1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This coordinates the per-module state used while generating code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenModule.h"
15 #include "CGBlocks.h"
16 #include "CGCUDARuntime.h"
17 #include "CGCXXABI.h"
18 #include "CGCall.h"
19 #include "CGDebugInfo.h"
20 #include "CGObjCRuntime.h"
21 #include "CGOpenCLRuntime.h"
22 #include "CGOpenMPRuntime.h"
23 #include "CGOpenMPRuntimeNVPTX.h"
24 #include "CodeGenFunction.h"
25 #include "CodeGenPGO.h"
26 #include "ConstantEmitter.h"
27 #include "CoverageMappingGen.h"
28 #include "TargetInfo.h"
29 #include "clang/AST/ASTContext.h"
30 #include "clang/AST/CharUnits.h"
31 #include "clang/AST/DeclCXX.h"
32 #include "clang/AST/DeclObjC.h"
33 #include "clang/AST/DeclTemplate.h"
34 #include "clang/AST/Mangle.h"
35 #include "clang/AST/RecordLayout.h"
36 #include "clang/AST/RecursiveASTVisitor.h"
37 #include "clang/Basic/Builtins.h"
38 #include "clang/Basic/CharInfo.h"
39 #include "clang/Basic/Diagnostic.h"
40 #include "clang/Basic/Module.h"
41 #include "clang/Basic/SourceManager.h"
42 #include "clang/Basic/TargetInfo.h"
43 #include "clang/Basic/Version.h"
44 #include "clang/CodeGen/ConstantInitBuilder.h"
45 #include "clang/Frontend/CodeGenOptions.h"
46 #include "clang/Sema/SemaDiagnostic.h"
47 #include "llvm/ADT/Triple.h"
48 #include "llvm/Analysis/TargetLibraryInfo.h"
49 #include "llvm/IR/CallSite.h"
50 #include "llvm/IR/CallingConv.h"
51 #include "llvm/IR/DataLayout.h"
52 #include "llvm/IR/Intrinsics.h"
53 #include "llvm/IR/LLVMContext.h"
54 #include "llvm/IR/Module.h"
55 #include "llvm/ProfileData/InstrProfReader.h"
56 #include "llvm/Support/ConvertUTF.h"
57 #include "llvm/Support/ErrorHandling.h"
58 #include "llvm/Support/MD5.h"
59 
60 using namespace clang;
61 using namespace CodeGen;
62 
63 static llvm::cl::opt<bool> LimitedCoverage(
64     "limited-coverage-experimental", llvm::cl::ZeroOrMore, llvm::cl::Hidden,
65     llvm::cl::desc("Emit limited coverage mapping information (experimental)"),
66     llvm::cl::init(false));
67 
68 static const char AnnotationSection[] = "llvm.metadata";
69 
70 static CGCXXABI *createCXXABI(CodeGenModule &CGM) {
71   switch (CGM.getTarget().getCXXABI().getKind()) {
72   case TargetCXXABI::GenericAArch64:
73   case TargetCXXABI::GenericARM:
74   case TargetCXXABI::iOS:
75   case TargetCXXABI::iOS64:
76   case TargetCXXABI::WatchOS:
77   case TargetCXXABI::GenericMIPS:
78   case TargetCXXABI::GenericItanium:
79   case TargetCXXABI::WebAssembly:
80     return CreateItaniumCXXABI(CGM);
81   case TargetCXXABI::Microsoft:
82     return CreateMicrosoftCXXABI(CGM);
83   }
84 
85   llvm_unreachable("invalid C++ ABI kind");
86 }
87 
88 CodeGenModule::CodeGenModule(ASTContext &C, const HeaderSearchOptions &HSO,
89                              const PreprocessorOptions &PPO,
90                              const CodeGenOptions &CGO, llvm::Module &M,
91                              DiagnosticsEngine &diags,
92                              CoverageSourceInfo *CoverageInfo)
93     : Context(C), LangOpts(C.getLangOpts()), HeaderSearchOpts(HSO),
94       PreprocessorOpts(PPO), CodeGenOpts(CGO), TheModule(M), Diags(diags),
95       Target(C.getTargetInfo()), ABI(createCXXABI(*this)),
96       VMContext(M.getContext()), Types(*this), VTables(*this),
97       SanitizerMD(new SanitizerMetadata(*this)) {
98 
99   // Initialize the type cache.
100   llvm::LLVMContext &LLVMContext = M.getContext();
101   VoidTy = llvm::Type::getVoidTy(LLVMContext);
102   Int8Ty = llvm::Type::getInt8Ty(LLVMContext);
103   Int16Ty = llvm::Type::getInt16Ty(LLVMContext);
104   Int32Ty = llvm::Type::getInt32Ty(LLVMContext);
105   Int64Ty = llvm::Type::getInt64Ty(LLVMContext);
106   HalfTy = llvm::Type::getHalfTy(LLVMContext);
107   FloatTy = llvm::Type::getFloatTy(LLVMContext);
108   DoubleTy = llvm::Type::getDoubleTy(LLVMContext);
109   PointerWidthInBits = C.getTargetInfo().getPointerWidth(0);
110   PointerAlignInBytes =
111     C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(0)).getQuantity();
112   SizeSizeInBytes =
113     C.toCharUnitsFromBits(C.getTargetInfo().getMaxPointerWidth()).getQuantity();
114   IntAlignInBytes =
115     C.toCharUnitsFromBits(C.getTargetInfo().getIntAlign()).getQuantity();
116   IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth());
117   IntPtrTy = llvm::IntegerType::get(LLVMContext,
118     C.getTargetInfo().getMaxPointerWidth());
119   Int8PtrTy = Int8Ty->getPointerTo(0);
120   Int8PtrPtrTy = Int8PtrTy->getPointerTo(0);
121   AllocaInt8PtrTy = Int8Ty->getPointerTo(
122       M.getDataLayout().getAllocaAddrSpace());
123   ASTAllocaAddressSpace = getTargetCodeGenInfo().getASTAllocaAddressSpace();
124 
125   RuntimeCC = getTargetCodeGenInfo().getABIInfo().getRuntimeCC();
126   BuiltinCC = getTargetCodeGenInfo().getABIInfo().getBuiltinCC();
127 
128   if (LangOpts.ObjC1)
129     createObjCRuntime();
130   if (LangOpts.OpenCL)
131     createOpenCLRuntime();
132   if (LangOpts.OpenMP)
133     createOpenMPRuntime();
134   if (LangOpts.CUDA)
135     createCUDARuntime();
136 
137   // Enable TBAA unless it's suppressed. ThreadSanitizer needs TBAA even at O0.
138   if (LangOpts.Sanitize.has(SanitizerKind::Thread) ||
139       (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0))
140     TBAA.reset(new CodeGenTBAA(Context, TheModule, CodeGenOpts, getLangOpts(),
141                                getCXXABI().getMangleContext()));
142 
143   // If debug info or coverage generation is enabled, create the CGDebugInfo
144   // object.
145   if (CodeGenOpts.getDebugInfo() != codegenoptions::NoDebugInfo ||
146       CodeGenOpts.EmitGcovArcs || CodeGenOpts.EmitGcovNotes)
147     DebugInfo.reset(new CGDebugInfo(*this));
148 
149   Block.GlobalUniqueCount = 0;
150 
151   if (C.getLangOpts().ObjC1)
152     ObjCData.reset(new ObjCEntrypoints());
153 
154   if (CodeGenOpts.hasProfileClangUse()) {
155     auto ReaderOrErr = llvm::IndexedInstrProfReader::create(
156         CodeGenOpts.ProfileInstrumentUsePath);
157     if (auto E = ReaderOrErr.takeError()) {
158       unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
159                                               "Could not read profile %0: %1");
160       llvm::handleAllErrors(std::move(E), [&](const llvm::ErrorInfoBase &EI) {
161         getDiags().Report(DiagID) << CodeGenOpts.ProfileInstrumentUsePath
162                                   << EI.message();
163       });
164     } else
165       PGOReader = std::move(ReaderOrErr.get());
166   }
167 
168   // If coverage mapping generation is enabled, create the
169   // CoverageMappingModuleGen object.
170   if (CodeGenOpts.CoverageMapping)
171     CoverageMapping.reset(new CoverageMappingModuleGen(*this, *CoverageInfo));
172 }
173 
174 CodeGenModule::~CodeGenModule() {}
175 
176 void CodeGenModule::createObjCRuntime() {
177   // This is just isGNUFamily(), but we want to force implementors of
178   // new ABIs to decide how best to do this.
179   switch (LangOpts.ObjCRuntime.getKind()) {
180   case ObjCRuntime::GNUstep:
181   case ObjCRuntime::GCC:
182   case ObjCRuntime::ObjFW:
183     ObjCRuntime.reset(CreateGNUObjCRuntime(*this));
184     return;
185 
186   case ObjCRuntime::FragileMacOSX:
187   case ObjCRuntime::MacOSX:
188   case ObjCRuntime::iOS:
189   case ObjCRuntime::WatchOS:
190     ObjCRuntime.reset(CreateMacObjCRuntime(*this));
191     return;
192   }
193   llvm_unreachable("bad runtime kind");
194 }
195 
196 void CodeGenModule::createOpenCLRuntime() {
197   OpenCLRuntime.reset(new CGOpenCLRuntime(*this));
198 }
199 
200 void CodeGenModule::createOpenMPRuntime() {
201   // Select a specialized code generation class based on the target, if any.
202   // If it does not exist use the default implementation.
203   switch (getTriple().getArch()) {
204   case llvm::Triple::nvptx:
205   case llvm::Triple::nvptx64:
206     assert(getLangOpts().OpenMPIsDevice &&
207            "OpenMP NVPTX is only prepared to deal with device code.");
208     OpenMPRuntime.reset(new CGOpenMPRuntimeNVPTX(*this));
209     break;
210   default:
211     if (LangOpts.OpenMPSimd)
212       OpenMPRuntime.reset(new CGOpenMPSIMDRuntime(*this));
213     else
214       OpenMPRuntime.reset(new CGOpenMPRuntime(*this));
215     break;
216   }
217 }
218 
219 void CodeGenModule::createCUDARuntime() {
220   CUDARuntime.reset(CreateNVCUDARuntime(*this));
221 }
222 
223 void CodeGenModule::addReplacement(StringRef Name, llvm::Constant *C) {
224   Replacements[Name] = C;
225 }
226 
227 void CodeGenModule::applyReplacements() {
228   for (auto &I : Replacements) {
229     StringRef MangledName = I.first();
230     llvm::Constant *Replacement = I.second;
231     llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
232     if (!Entry)
233       continue;
234     auto *OldF = cast<llvm::Function>(Entry);
235     auto *NewF = dyn_cast<llvm::Function>(Replacement);
236     if (!NewF) {
237       if (auto *Alias = dyn_cast<llvm::GlobalAlias>(Replacement)) {
238         NewF = dyn_cast<llvm::Function>(Alias->getAliasee());
239       } else {
240         auto *CE = cast<llvm::ConstantExpr>(Replacement);
241         assert(CE->getOpcode() == llvm::Instruction::BitCast ||
242                CE->getOpcode() == llvm::Instruction::GetElementPtr);
243         NewF = dyn_cast<llvm::Function>(CE->getOperand(0));
244       }
245     }
246 
247     // Replace old with new, but keep the old order.
248     OldF->replaceAllUsesWith(Replacement);
249     if (NewF) {
250       NewF->removeFromParent();
251       OldF->getParent()->getFunctionList().insertAfter(OldF->getIterator(),
252                                                        NewF);
253     }
254     OldF->eraseFromParent();
255   }
256 }
257 
258 void CodeGenModule::addGlobalValReplacement(llvm::GlobalValue *GV, llvm::Constant *C) {
259   GlobalValReplacements.push_back(std::make_pair(GV, C));
260 }
261 
262 void CodeGenModule::applyGlobalValReplacements() {
263   for (auto &I : GlobalValReplacements) {
264     llvm::GlobalValue *GV = I.first;
265     llvm::Constant *C = I.second;
266 
267     GV->replaceAllUsesWith(C);
268     GV->eraseFromParent();
269   }
270 }
271 
272 // This is only used in aliases that we created and we know they have a
273 // linear structure.
274 static const llvm::GlobalObject *getAliasedGlobal(
275     const llvm::GlobalIndirectSymbol &GIS) {
276   llvm::SmallPtrSet<const llvm::GlobalIndirectSymbol*, 4> Visited;
277   const llvm::Constant *C = &GIS;
278   for (;;) {
279     C = C->stripPointerCasts();
280     if (auto *GO = dyn_cast<llvm::GlobalObject>(C))
281       return GO;
282     // stripPointerCasts will not walk over weak aliases.
283     auto *GIS2 = dyn_cast<llvm::GlobalIndirectSymbol>(C);
284     if (!GIS2)
285       return nullptr;
286     if (!Visited.insert(GIS2).second)
287       return nullptr;
288     C = GIS2->getIndirectSymbol();
289   }
290 }
291 
292 void CodeGenModule::checkAliases() {
293   // Check if the constructed aliases are well formed. It is really unfortunate
294   // that we have to do this in CodeGen, but we only construct mangled names
295   // and aliases during codegen.
296   bool Error = false;
297   DiagnosticsEngine &Diags = getDiags();
298   for (const GlobalDecl &GD : Aliases) {
299     const auto *D = cast<ValueDecl>(GD.getDecl());
300     SourceLocation Location;
301     bool IsIFunc = D->hasAttr<IFuncAttr>();
302     if (const Attr *A = D->getDefiningAttr())
303       Location = A->getLocation();
304     else
305       llvm_unreachable("Not an alias or ifunc?");
306     StringRef MangledName = getMangledName(GD);
307     llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
308     auto *Alias  = cast<llvm::GlobalIndirectSymbol>(Entry);
309     const llvm::GlobalValue *GV = getAliasedGlobal(*Alias);
310     if (!GV) {
311       Error = true;
312       Diags.Report(Location, diag::err_cyclic_alias) << IsIFunc;
313     } else if (GV->isDeclaration()) {
314       Error = true;
315       Diags.Report(Location, diag::err_alias_to_undefined)
316           << IsIFunc << IsIFunc;
317     } else if (IsIFunc) {
318       // Check resolver function type.
319       llvm::FunctionType *FTy = dyn_cast<llvm::FunctionType>(
320           GV->getType()->getPointerElementType());
321       assert(FTy);
322       if (!FTy->getReturnType()->isPointerTy())
323         Diags.Report(Location, diag::err_ifunc_resolver_return);
324       if (FTy->getNumParams())
325         Diags.Report(Location, diag::err_ifunc_resolver_params);
326     }
327 
328     llvm::Constant *Aliasee = Alias->getIndirectSymbol();
329     llvm::GlobalValue *AliaseeGV;
330     if (auto CE = dyn_cast<llvm::ConstantExpr>(Aliasee))
331       AliaseeGV = cast<llvm::GlobalValue>(CE->getOperand(0));
332     else
333       AliaseeGV = cast<llvm::GlobalValue>(Aliasee);
334 
335     if (const SectionAttr *SA = D->getAttr<SectionAttr>()) {
336       StringRef AliasSection = SA->getName();
337       if (AliasSection != AliaseeGV->getSection())
338         Diags.Report(SA->getLocation(), diag::warn_alias_with_section)
339             << AliasSection << IsIFunc << IsIFunc;
340     }
341 
342     // We have to handle alias to weak aliases in here. LLVM itself disallows
343     // this since the object semantics would not match the IL one. For
344     // compatibility with gcc we implement it by just pointing the alias
345     // to its aliasee's aliasee. We also warn, since the user is probably
346     // expecting the link to be weak.
347     if (auto GA = dyn_cast<llvm::GlobalIndirectSymbol>(AliaseeGV)) {
348       if (GA->isInterposable()) {
349         Diags.Report(Location, diag::warn_alias_to_weak_alias)
350             << GV->getName() << GA->getName() << IsIFunc;
351         Aliasee = llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(
352             GA->getIndirectSymbol(), Alias->getType());
353         Alias->setIndirectSymbol(Aliasee);
354       }
355     }
356   }
357   if (!Error)
358     return;
359 
360   for (const GlobalDecl &GD : Aliases) {
361     StringRef MangledName = getMangledName(GD);
362     llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
363     auto *Alias = dyn_cast<llvm::GlobalIndirectSymbol>(Entry);
364     Alias->replaceAllUsesWith(llvm::UndefValue::get(Alias->getType()));
365     Alias->eraseFromParent();
366   }
367 }
368 
369 void CodeGenModule::clear() {
370   DeferredDeclsToEmit.clear();
371   if (OpenMPRuntime)
372     OpenMPRuntime->clear();
373 }
374 
375 void InstrProfStats::reportDiagnostics(DiagnosticsEngine &Diags,
376                                        StringRef MainFile) {
377   if (!hasDiagnostics())
378     return;
379   if (VisitedInMainFile > 0 && VisitedInMainFile == MissingInMainFile) {
380     if (MainFile.empty())
381       MainFile = "<stdin>";
382     Diags.Report(diag::warn_profile_data_unprofiled) << MainFile;
383   } else {
384     if (Mismatched > 0)
385       Diags.Report(diag::warn_profile_data_out_of_date) << Visited << Mismatched;
386 
387     if (Missing > 0)
388       Diags.Report(diag::warn_profile_data_missing) << Visited << Missing;
389   }
390 }
391 
392 void CodeGenModule::Release() {
393   EmitDeferred();
394   EmitVTablesOpportunistically();
395   applyGlobalValReplacements();
396   applyReplacements();
397   checkAliases();
398   emitMultiVersionFunctions();
399   EmitCXXGlobalInitFunc();
400   EmitCXXGlobalDtorFunc();
401   EmitCXXThreadLocalInitFunc();
402   if (ObjCRuntime)
403     if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction())
404       AddGlobalCtor(ObjCInitFunction);
405   if (Context.getLangOpts().CUDA && !Context.getLangOpts().CUDAIsDevice &&
406       CUDARuntime) {
407     if (llvm::Function *CudaCtorFunction = CUDARuntime->makeModuleCtorFunction())
408       AddGlobalCtor(CudaCtorFunction);
409     if (llvm::Function *CudaDtorFunction = CUDARuntime->makeModuleDtorFunction())
410       AddGlobalDtor(CudaDtorFunction);
411   }
412   if (OpenMPRuntime)
413     if (llvm::Function *OpenMPRegistrationFunction =
414             OpenMPRuntime->emitRegistrationFunction()) {
415       auto ComdatKey = OpenMPRegistrationFunction->hasComdat() ?
416         OpenMPRegistrationFunction : nullptr;
417       AddGlobalCtor(OpenMPRegistrationFunction, 0, ComdatKey);
418     }
419   if (PGOReader) {
420     getModule().setProfileSummary(PGOReader->getSummary().getMD(VMContext));
421     if (PGOStats.hasDiagnostics())
422       PGOStats.reportDiagnostics(getDiags(), getCodeGenOpts().MainFileName);
423   }
424   EmitCtorList(GlobalCtors, "llvm.global_ctors");
425   EmitCtorList(GlobalDtors, "llvm.global_dtors");
426   EmitGlobalAnnotations();
427   EmitStaticExternCAliases();
428   EmitDeferredUnusedCoverageMappings();
429   if (CoverageMapping)
430     CoverageMapping->emit();
431   if (CodeGenOpts.SanitizeCfiCrossDso) {
432     CodeGenFunction(*this).EmitCfiCheckFail();
433     CodeGenFunction(*this).EmitCfiCheckStub();
434   }
435   emitAtAvailableLinkGuard();
436   emitLLVMUsed();
437   if (SanStats)
438     SanStats->finish();
439 
440   if (CodeGenOpts.Autolink &&
441       (Context.getLangOpts().Modules || !LinkerOptionsMetadata.empty())) {
442     EmitModuleLinkOptions();
443   }
444 
445   // Record mregparm value now so it is visible through rest of codegen.
446   if (Context.getTargetInfo().getTriple().getArch() == llvm::Triple::x86)
447     getModule().addModuleFlag(llvm::Module::Error, "NumRegisterParameters",
448                               CodeGenOpts.NumRegisterParameters);
449 
450   if (CodeGenOpts.DwarfVersion) {
451     // We actually want the latest version when there are conflicts.
452     // We can change from Warning to Latest if such mode is supported.
453     getModule().addModuleFlag(llvm::Module::Warning, "Dwarf Version",
454                               CodeGenOpts.DwarfVersion);
455   }
456   if (CodeGenOpts.EmitCodeView) {
457     // Indicate that we want CodeView in the metadata.
458     getModule().addModuleFlag(llvm::Module::Warning, "CodeView", 1);
459   }
460   if (CodeGenOpts.ControlFlowGuard) {
461     // We want function ID tables for Control Flow Guard.
462     getModule().addModuleFlag(llvm::Module::Warning, "cfguard", 1);
463   }
464   if (CodeGenOpts.OptimizationLevel > 0 && CodeGenOpts.StrictVTablePointers) {
465     // We don't support LTO with 2 with different StrictVTablePointers
466     // FIXME: we could support it by stripping all the information introduced
467     // by StrictVTablePointers.
468 
469     getModule().addModuleFlag(llvm::Module::Error, "StrictVTablePointers",1);
470 
471     llvm::Metadata *Ops[2] = {
472               llvm::MDString::get(VMContext, "StrictVTablePointers"),
473               llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
474                   llvm::Type::getInt32Ty(VMContext), 1))};
475 
476     getModule().addModuleFlag(llvm::Module::Require,
477                               "StrictVTablePointersRequirement",
478                               llvm::MDNode::get(VMContext, Ops));
479   }
480   if (DebugInfo)
481     // We support a single version in the linked module. The LLVM
482     // parser will drop debug info with a different version number
483     // (and warn about it, too).
484     getModule().addModuleFlag(llvm::Module::Warning, "Debug Info Version",
485                               llvm::DEBUG_METADATA_VERSION);
486 
487   // We need to record the widths of enums and wchar_t, so that we can generate
488   // the correct build attributes in the ARM backend. wchar_size is also used by
489   // TargetLibraryInfo.
490   uint64_t WCharWidth =
491       Context.getTypeSizeInChars(Context.getWideCharType()).getQuantity();
492   getModule().addModuleFlag(llvm::Module::Error, "wchar_size", WCharWidth);
493 
494   llvm::Triple::ArchType Arch = Context.getTargetInfo().getTriple().getArch();
495   if (   Arch == llvm::Triple::arm
496       || Arch == llvm::Triple::armeb
497       || Arch == llvm::Triple::thumb
498       || Arch == llvm::Triple::thumbeb) {
499     // The minimum width of an enum in bytes
500     uint64_t EnumWidth = Context.getLangOpts().ShortEnums ? 1 : 4;
501     getModule().addModuleFlag(llvm::Module::Error, "min_enum_size", EnumWidth);
502   }
503 
504   if (CodeGenOpts.SanitizeCfiCrossDso) {
505     // Indicate that we want cross-DSO control flow integrity checks.
506     getModule().addModuleFlag(llvm::Module::Override, "Cross-DSO CFI", 1);
507   }
508 
509   if (CodeGenOpts.CFProtectionReturn &&
510       Target.checkCFProtectionReturnSupported(getDiags())) {
511     // Indicate that we want to instrument return control flow protection.
512     getModule().addModuleFlag(llvm::Module::Override, "cf-protection-return",
513                               1);
514   }
515 
516   if (CodeGenOpts.CFProtectionBranch &&
517       Target.checkCFProtectionBranchSupported(getDiags())) {
518     // Indicate that we want to instrument branch control flow protection.
519     getModule().addModuleFlag(llvm::Module::Override, "cf-protection-branch",
520                               1);
521   }
522 
523   if (LangOpts.CUDAIsDevice && getTriple().isNVPTX()) {
524     // Indicate whether __nvvm_reflect should be configured to flush denormal
525     // floating point values to 0.  (This corresponds to its "__CUDA_FTZ"
526     // property.)
527     getModule().addModuleFlag(llvm::Module::Override, "nvvm-reflect-ftz",
528                               LangOpts.CUDADeviceFlushDenormalsToZero ? 1 : 0);
529   }
530 
531   // Emit OpenCL specific module metadata: OpenCL/SPIR version.
532   if (LangOpts.OpenCL) {
533     EmitOpenCLMetadata();
534     // Emit SPIR version.
535     if (getTriple().getArch() == llvm::Triple::spir ||
536         getTriple().getArch() == llvm::Triple::spir64) {
537       // SPIR v2.0 s2.12 - The SPIR version used by the module is stored in the
538       // opencl.spir.version named metadata.
539       llvm::Metadata *SPIRVerElts[] = {
540           llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
541               Int32Ty, LangOpts.OpenCLVersion / 100)),
542           llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
543               Int32Ty, (LangOpts.OpenCLVersion / 100 > 1) ? 0 : 2))};
544       llvm::NamedMDNode *SPIRVerMD =
545           TheModule.getOrInsertNamedMetadata("opencl.spir.version");
546       llvm::LLVMContext &Ctx = TheModule.getContext();
547       SPIRVerMD->addOperand(llvm::MDNode::get(Ctx, SPIRVerElts));
548     }
549   }
550 
551   if (uint32_t PLevel = Context.getLangOpts().PICLevel) {
552     assert(PLevel < 3 && "Invalid PIC Level");
553     getModule().setPICLevel(static_cast<llvm::PICLevel::Level>(PLevel));
554     if (Context.getLangOpts().PIE)
555       getModule().setPIELevel(static_cast<llvm::PIELevel::Level>(PLevel));
556   }
557 
558   SimplifyPersonality();
559 
560   if (getCodeGenOpts().EmitDeclMetadata)
561     EmitDeclMetadata();
562 
563   if (getCodeGenOpts().EmitGcovArcs || getCodeGenOpts().EmitGcovNotes)
564     EmitCoverageFile();
565 
566   if (DebugInfo)
567     DebugInfo->finalize();
568 
569   EmitVersionIdentMetadata();
570 
571   EmitTargetMetadata();
572 }
573 
574 void CodeGenModule::EmitOpenCLMetadata() {
575   // SPIR v2.0 s2.13 - The OpenCL version used by the module is stored in the
576   // opencl.ocl.version named metadata node.
577   llvm::Metadata *OCLVerElts[] = {
578       llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
579           Int32Ty, LangOpts.OpenCLVersion / 100)),
580       llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
581           Int32Ty, (LangOpts.OpenCLVersion % 100) / 10))};
582   llvm::NamedMDNode *OCLVerMD =
583       TheModule.getOrInsertNamedMetadata("opencl.ocl.version");
584   llvm::LLVMContext &Ctx = TheModule.getContext();
585   OCLVerMD->addOperand(llvm::MDNode::get(Ctx, OCLVerElts));
586 }
587 
588 void CodeGenModule::UpdateCompletedType(const TagDecl *TD) {
589   // Make sure that this type is translated.
590   Types.UpdateCompletedType(TD);
591 }
592 
593 void CodeGenModule::RefreshTypeCacheForClass(const CXXRecordDecl *RD) {
594   // Make sure that this type is translated.
595   Types.RefreshTypeCacheForClass(RD);
596 }
597 
598 llvm::MDNode *CodeGenModule::getTBAATypeInfo(QualType QTy) {
599   if (!TBAA)
600     return nullptr;
601   return TBAA->getTypeInfo(QTy);
602 }
603 
604 TBAAAccessInfo CodeGenModule::getTBAAAccessInfo(QualType AccessType) {
605   // Pointee values may have incomplete types, but they shall never be
606   // dereferenced.
607   if (AccessType->isIncompleteType())
608     return TBAAAccessInfo::getIncompleteInfo();
609 
610   uint64_t Size = Context.getTypeSizeInChars(AccessType).getQuantity();
611   return TBAAAccessInfo(getTBAATypeInfo(AccessType), Size);
612 }
613 
614 TBAAAccessInfo
615 CodeGenModule::getTBAAVTablePtrAccessInfo(llvm::Type *VTablePtrType) {
616   if (!TBAA)
617     return TBAAAccessInfo();
618   return TBAA->getVTablePtrAccessInfo(VTablePtrType);
619 }
620 
621 llvm::MDNode *CodeGenModule::getTBAAStructInfo(QualType QTy) {
622   if (!TBAA)
623     return nullptr;
624   return TBAA->getTBAAStructInfo(QTy);
625 }
626 
627 llvm::MDNode *CodeGenModule::getTBAABaseTypeInfo(QualType QTy) {
628   if (!TBAA)
629     return nullptr;
630   return TBAA->getBaseTypeInfo(QTy);
631 }
632 
633 llvm::MDNode *CodeGenModule::getTBAAAccessTagInfo(TBAAAccessInfo Info) {
634   if (!TBAA)
635     return nullptr;
636   return TBAA->getAccessTagInfo(Info);
637 }
638 
639 TBAAAccessInfo CodeGenModule::mergeTBAAInfoForCast(TBAAAccessInfo SourceInfo,
640                                                    TBAAAccessInfo TargetInfo) {
641   if (!TBAA)
642     return TBAAAccessInfo();
643   return TBAA->mergeTBAAInfoForCast(SourceInfo, TargetInfo);
644 }
645 
646 TBAAAccessInfo
647 CodeGenModule::mergeTBAAInfoForConditionalOperator(TBAAAccessInfo InfoA,
648                                                    TBAAAccessInfo InfoB) {
649   if (!TBAA)
650     return TBAAAccessInfo();
651   return TBAA->mergeTBAAInfoForConditionalOperator(InfoA, InfoB);
652 }
653 
654 TBAAAccessInfo
655 CodeGenModule::mergeTBAAInfoForMemoryTransfer(TBAAAccessInfo DestInfo,
656                                               TBAAAccessInfo SrcInfo) {
657   if (!TBAA)
658     return TBAAAccessInfo();
659   return TBAA->mergeTBAAInfoForConditionalOperator(DestInfo, SrcInfo);
660 }
661 
662 void CodeGenModule::DecorateInstructionWithTBAA(llvm::Instruction *Inst,
663                                                 TBAAAccessInfo TBAAInfo) {
664   if (llvm::MDNode *Tag = getTBAAAccessTagInfo(TBAAInfo))
665     Inst->setMetadata(llvm::LLVMContext::MD_tbaa, Tag);
666 }
667 
668 void CodeGenModule::DecorateInstructionWithInvariantGroup(
669     llvm::Instruction *I, const CXXRecordDecl *RD) {
670   I->setMetadata(llvm::LLVMContext::MD_invariant_group,
671                  llvm::MDNode::get(getLLVMContext(), {}));
672 }
673 
674 void CodeGenModule::Error(SourceLocation loc, StringRef message) {
675   unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, "%0");
676   getDiags().Report(Context.getFullLoc(loc), diagID) << message;
677 }
678 
679 /// ErrorUnsupported - Print out an error that codegen doesn't support the
680 /// specified stmt yet.
681 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type) {
682   unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
683                                                "cannot compile this %0 yet");
684   std::string Msg = Type;
685   getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID)
686     << Msg << S->getSourceRange();
687 }
688 
689 /// ErrorUnsupported - Print out an error that codegen doesn't support the
690 /// specified decl yet.
691 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type) {
692   unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
693                                                "cannot compile this %0 yet");
694   std::string Msg = Type;
695   getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg;
696 }
697 
698 llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) {
699   return llvm::ConstantInt::get(SizeTy, size.getQuantity());
700 }
701 
702 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV,
703                                         const NamedDecl *D,
704                                         ForDefinition_t IsForDefinition) const {
705   if (GV->hasDLLImportStorageClass())
706     return;
707   // Internal definitions always have default visibility.
708   if (GV->hasLocalLinkage()) {
709     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
710     return;
711   }
712 
713   // Set visibility for definitions.
714   LinkageInfo LV = D->getLinkageAndVisibility();
715   if (LV.isVisibilityExplicit() ||
716       (IsForDefinition && !GV->hasAvailableExternallyLinkage()))
717     GV->setVisibility(GetLLVMVisibility(LV.getVisibility()));
718 }
719 
720 static bool shouldAssumeDSOLocal(const CodeGenModule &CGM,
721                                  llvm::GlobalValue *GV, const NamedDecl *D,
722                                  ForDefinition_t IsForDefinition) {
723   const llvm::Triple &TT = CGM.getTriple();
724   // Only handle ELF for now.
725   if (!TT.isOSBinFormatELF())
726     return false;
727 
728   // If this is not an executable, don't assume anything is local.
729   const auto &CGOpts = CGM.getCodeGenOpts();
730   llvm::Reloc::Model RM = CGOpts.RelocationModel;
731   const auto &LOpts = CGM.getLangOpts();
732   if (RM != llvm::Reloc::Static && !LOpts.PIE)
733     return false;
734 
735   // A definition cannot be preempted from an executable.
736   if (IsForDefinition)
737     return true;
738 
739   // Most PIC code sequences that assume that a symbol is local cannot produce a
740   // 0 if it turns out the symbol is undefined. While this is ABI and relocation
741   // depended, it seems worth it to handle it here.
742   if (RM == llvm::Reloc::PIC_ && GV->hasExternalWeakLinkage())
743     return false;
744 
745   // PPC has no copy relocations and cannot use a plt entry as a symbol address.
746   llvm::Triple::ArchType Arch = TT.getArch();
747   if (Arch == llvm::Triple::ppc || Arch == llvm::Triple::ppc64 ||
748       Arch == llvm::Triple::ppc64le)
749     return false;
750 
751   // If we can use copy relocations we can assume it is local.
752   if (isa<VarDecl>(D) &&
753       (RM == llvm::Reloc::Static || CGOpts.PIECopyRelocations))
754     return true;
755 
756   // If we can use a plt entry as the symbol address we can assume it
757   // is local.
758   if (isa<FunctionDecl>(D) && !CGOpts.NoPLT)
759     return true;
760 
761   // Otherwise don't assue it is local.
762   return false;
763 }
764 
765 void CodeGenModule::setDSOLocal(llvm::GlobalValue *GV, const NamedDecl *D,
766                                 ForDefinition_t IsForDefinition) const {
767   if (shouldAssumeDSOLocal(*this, GV, D, IsForDefinition))
768     GV->setDSOLocal(true);
769 }
770 
771 void CodeGenModule::setGVProperties(llvm::GlobalValue *GV, const NamedDecl *D,
772                                     ForDefinition_t IsForDefinition) const {
773   setGlobalVisibility(GV, D, IsForDefinition);
774   setDSOLocal(GV, D, IsForDefinition);
775 }
776 
777 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(StringRef S) {
778   return llvm::StringSwitch<llvm::GlobalVariable::ThreadLocalMode>(S)
779       .Case("global-dynamic", llvm::GlobalVariable::GeneralDynamicTLSModel)
780       .Case("local-dynamic", llvm::GlobalVariable::LocalDynamicTLSModel)
781       .Case("initial-exec", llvm::GlobalVariable::InitialExecTLSModel)
782       .Case("local-exec", llvm::GlobalVariable::LocalExecTLSModel);
783 }
784 
785 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(
786     CodeGenOptions::TLSModel M) {
787   switch (M) {
788   case CodeGenOptions::GeneralDynamicTLSModel:
789     return llvm::GlobalVariable::GeneralDynamicTLSModel;
790   case CodeGenOptions::LocalDynamicTLSModel:
791     return llvm::GlobalVariable::LocalDynamicTLSModel;
792   case CodeGenOptions::InitialExecTLSModel:
793     return llvm::GlobalVariable::InitialExecTLSModel;
794   case CodeGenOptions::LocalExecTLSModel:
795     return llvm::GlobalVariable::LocalExecTLSModel;
796   }
797   llvm_unreachable("Invalid TLS model!");
798 }
799 
800 void CodeGenModule::setTLSMode(llvm::GlobalValue *GV, const VarDecl &D) const {
801   assert(D.getTLSKind() && "setting TLS mode on non-TLS var!");
802 
803   llvm::GlobalValue::ThreadLocalMode TLM;
804   TLM = GetLLVMTLSModel(CodeGenOpts.getDefaultTLSModel());
805 
806   // Override the TLS model if it is explicitly specified.
807   if (const TLSModelAttr *Attr = D.getAttr<TLSModelAttr>()) {
808     TLM = GetLLVMTLSModel(Attr->getModel());
809   }
810 
811   GV->setThreadLocalMode(TLM);
812 }
813 
814 static void AppendTargetMangling(const CodeGenModule &CGM,
815                                  const TargetAttr *Attr, raw_ostream &Out) {
816   if (Attr->isDefaultVersion())
817     return;
818 
819   Out << '.';
820   const auto &Target = CGM.getTarget();
821   TargetAttr::ParsedTargetAttr Info =
822       Attr->parse([&Target](StringRef LHS, StringRef RHS) {
823                     // Multiversioning doesn't allow "no-${feature}", so we can
824                     // only have "+" prefixes here.
825                     assert(LHS.startswith("+") && RHS.startswith("+") &&
826                            "Features should always have a prefix.");
827                     return Target.multiVersionSortPriority(LHS.substr(1)) >
828                            Target.multiVersionSortPriority(RHS.substr(1));
829                   });
830 
831   bool IsFirst = true;
832 
833   if (!Info.Architecture.empty()) {
834     IsFirst = false;
835     Out << "arch_" << Info.Architecture;
836   }
837 
838   for (StringRef Feat : Info.Features) {
839     if (!IsFirst)
840       Out << '_';
841     IsFirst = false;
842     Out << Feat.substr(1);
843   }
844 }
845 
846 static std::string getMangledNameImpl(const CodeGenModule &CGM, GlobalDecl GD,
847                                       const NamedDecl *ND,
848                                       bool OmitTargetMangling = false) {
849   SmallString<256> Buffer;
850   llvm::raw_svector_ostream Out(Buffer);
851   MangleContext &MC = CGM.getCXXABI().getMangleContext();
852   if (MC.shouldMangleDeclName(ND)) {
853     llvm::raw_svector_ostream Out(Buffer);
854     if (const auto *D = dyn_cast<CXXConstructorDecl>(ND))
855       MC.mangleCXXCtor(D, GD.getCtorType(), Out);
856     else if (const auto *D = dyn_cast<CXXDestructorDecl>(ND))
857       MC.mangleCXXDtor(D, GD.getDtorType(), Out);
858     else
859       MC.mangleName(ND, Out);
860   } else {
861     IdentifierInfo *II = ND->getIdentifier();
862     assert(II && "Attempt to mangle unnamed decl.");
863     const auto *FD = dyn_cast<FunctionDecl>(ND);
864 
865     if (FD &&
866         FD->getType()->castAs<FunctionType>()->getCallConv() == CC_X86RegCall) {
867       llvm::raw_svector_ostream Out(Buffer);
868       Out << "__regcall3__" << II->getName();
869     } else {
870       Out << II->getName();
871     }
872   }
873 
874   if (const auto *FD = dyn_cast<FunctionDecl>(ND))
875     if (FD->isMultiVersion() && !OmitTargetMangling)
876       AppendTargetMangling(CGM, FD->getAttr<TargetAttr>(), Out);
877   return Out.str();
878 }
879 
880 void CodeGenModule::UpdateMultiVersionNames(GlobalDecl GD,
881                                             const FunctionDecl *FD) {
882   if (!FD->isMultiVersion())
883     return;
884 
885   // Get the name of what this would be without the 'target' attribute.  This
886   // allows us to lookup the version that was emitted when this wasn't a
887   // multiversion function.
888   std::string NonTargetName =
889       getMangledNameImpl(*this, GD, FD, /*OmitTargetMangling=*/true);
890   GlobalDecl OtherGD;
891   if (lookupRepresentativeDecl(NonTargetName, OtherGD)) {
892     assert(OtherGD.getCanonicalDecl()
893                .getDecl()
894                ->getAsFunction()
895                ->isMultiVersion() &&
896            "Other GD should now be a multiversioned function");
897     // OtherFD is the version of this function that was mangled BEFORE
898     // becoming a MultiVersion function.  It potentially needs to be updated.
899     const FunctionDecl *OtherFD =
900         OtherGD.getCanonicalDecl().getDecl()->getAsFunction();
901     std::string OtherName = getMangledNameImpl(*this, OtherGD, OtherFD);
902     // This is so that if the initial version was already the 'default'
903     // version, we don't try to update it.
904     if (OtherName != NonTargetName) {
905       // Remove instead of erase, since others may have stored the StringRef
906       // to this.
907       const auto ExistingRecord = Manglings.find(NonTargetName);
908       if (ExistingRecord != std::end(Manglings))
909         Manglings.remove(&(*ExistingRecord));
910       auto Result = Manglings.insert(std::make_pair(OtherName, OtherGD));
911       MangledDeclNames[OtherGD.getCanonicalDecl()] = Result.first->first();
912       if (llvm::GlobalValue *Entry = GetGlobalValue(NonTargetName))
913         Entry->setName(OtherName);
914     }
915   }
916 }
917 
918 StringRef CodeGenModule::getMangledName(GlobalDecl GD) {
919   GlobalDecl CanonicalGD = GD.getCanonicalDecl();
920 
921   // Some ABIs don't have constructor variants.  Make sure that base and
922   // complete constructors get mangled the same.
923   if (const auto *CD = dyn_cast<CXXConstructorDecl>(CanonicalGD.getDecl())) {
924     if (!getTarget().getCXXABI().hasConstructorVariants()) {
925       CXXCtorType OrigCtorType = GD.getCtorType();
926       assert(OrigCtorType == Ctor_Base || OrigCtorType == Ctor_Complete);
927       if (OrigCtorType == Ctor_Base)
928         CanonicalGD = GlobalDecl(CD, Ctor_Complete);
929     }
930   }
931 
932   auto FoundName = MangledDeclNames.find(CanonicalGD);
933   if (FoundName != MangledDeclNames.end())
934     return FoundName->second;
935 
936 
937   // Keep the first result in the case of a mangling collision.
938   const auto *ND = cast<NamedDecl>(GD.getDecl());
939   auto Result =
940       Manglings.insert(std::make_pair(getMangledNameImpl(*this, GD, ND), GD));
941   return MangledDeclNames[CanonicalGD] = Result.first->first();
942 }
943 
944 StringRef CodeGenModule::getBlockMangledName(GlobalDecl GD,
945                                              const BlockDecl *BD) {
946   MangleContext &MangleCtx = getCXXABI().getMangleContext();
947   const Decl *D = GD.getDecl();
948 
949   SmallString<256> Buffer;
950   llvm::raw_svector_ostream Out(Buffer);
951   if (!D)
952     MangleCtx.mangleGlobalBlock(BD,
953       dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()), Out);
954   else if (const auto *CD = dyn_cast<CXXConstructorDecl>(D))
955     MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out);
956   else if (const auto *DD = dyn_cast<CXXDestructorDecl>(D))
957     MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out);
958   else
959     MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out);
960 
961   auto Result = Manglings.insert(std::make_pair(Out.str(), BD));
962   return Result.first->first();
963 }
964 
965 llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) {
966   return getModule().getNamedValue(Name);
967 }
968 
969 /// AddGlobalCtor - Add a function to the list that will be called before
970 /// main() runs.
971 void CodeGenModule::AddGlobalCtor(llvm::Function *Ctor, int Priority,
972                                   llvm::Constant *AssociatedData) {
973   // FIXME: Type coercion of void()* types.
974   GlobalCtors.push_back(Structor(Priority, Ctor, AssociatedData));
975 }
976 
977 /// AddGlobalDtor - Add a function to the list that will be called
978 /// when the module is unloaded.
979 void CodeGenModule::AddGlobalDtor(llvm::Function *Dtor, int Priority) {
980   // FIXME: Type coercion of void()* types.
981   GlobalDtors.push_back(Structor(Priority, Dtor, nullptr));
982 }
983 
984 void CodeGenModule::EmitCtorList(CtorList &Fns, const char *GlobalName) {
985   if (Fns.empty()) return;
986 
987   // Ctor function type is void()*.
988   llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false);
989   llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy);
990 
991   // Get the type of a ctor entry, { i32, void ()*, i8* }.
992   llvm::StructType *CtorStructTy = llvm::StructType::get(
993       Int32Ty, llvm::PointerType::getUnqual(CtorFTy), VoidPtrTy);
994 
995   // Construct the constructor and destructor arrays.
996   ConstantInitBuilder builder(*this);
997   auto ctors = builder.beginArray(CtorStructTy);
998   for (const auto &I : Fns) {
999     auto ctor = ctors.beginStruct(CtorStructTy);
1000     ctor.addInt(Int32Ty, I.Priority);
1001     ctor.add(llvm::ConstantExpr::getBitCast(I.Initializer, CtorPFTy));
1002     if (I.AssociatedData)
1003       ctor.add(llvm::ConstantExpr::getBitCast(I.AssociatedData, VoidPtrTy));
1004     else
1005       ctor.addNullPointer(VoidPtrTy);
1006     ctor.finishAndAddTo(ctors);
1007   }
1008 
1009   auto list =
1010     ctors.finishAndCreateGlobal(GlobalName, getPointerAlign(),
1011                                 /*constant*/ false,
1012                                 llvm::GlobalValue::AppendingLinkage);
1013 
1014   // The LTO linker doesn't seem to like it when we set an alignment
1015   // on appending variables.  Take it off as a workaround.
1016   list->setAlignment(0);
1017 
1018   Fns.clear();
1019 }
1020 
1021 llvm::GlobalValue::LinkageTypes
1022 CodeGenModule::getFunctionLinkage(GlobalDecl GD) {
1023   const auto *D = cast<FunctionDecl>(GD.getDecl());
1024 
1025   GVALinkage Linkage = getContext().GetGVALinkageForFunction(D);
1026 
1027   if (isa<CXXDestructorDecl>(D) &&
1028       getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D),
1029                                          GD.getDtorType())) {
1030     // Destructor variants in the Microsoft C++ ABI are always internal or
1031     // linkonce_odr thunks emitted on an as-needed basis.
1032     return Linkage == GVA_Internal ? llvm::GlobalValue::InternalLinkage
1033                                    : llvm::GlobalValue::LinkOnceODRLinkage;
1034   }
1035 
1036   if (isa<CXXConstructorDecl>(D) &&
1037       cast<CXXConstructorDecl>(D)->isInheritingConstructor() &&
1038       Context.getTargetInfo().getCXXABI().isMicrosoft()) {
1039     // Our approach to inheriting constructors is fundamentally different from
1040     // that used by the MS ABI, so keep our inheriting constructor thunks
1041     // internal rather than trying to pick an unambiguous mangling for them.
1042     return llvm::GlobalValue::InternalLinkage;
1043   }
1044 
1045   return getLLVMLinkageForDeclarator(D, Linkage, /*isConstantVariable=*/false);
1046 }
1047 
1048 void CodeGenModule::setFunctionDLLStorageClass(GlobalDecl GD, llvm::Function *F) {
1049   const auto *FD = cast<FunctionDecl>(GD.getDecl());
1050 
1051   if (const auto *Dtor = dyn_cast_or_null<CXXDestructorDecl>(FD)) {
1052     if (getCXXABI().useThunkForDtorVariant(Dtor, GD.getDtorType())) {
1053       // Don't dllexport/import destructor thunks.
1054       F->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
1055       return;
1056     }
1057   }
1058 
1059   if (FD->hasAttr<DLLImportAttr>())
1060     F->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass);
1061   else if (FD->hasAttr<DLLExportAttr>())
1062     F->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass);
1063   else
1064     F->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass);
1065 }
1066 
1067 llvm::ConstantInt *CodeGenModule::CreateCrossDsoCfiTypeId(llvm::Metadata *MD) {
1068   llvm::MDString *MDS = dyn_cast<llvm::MDString>(MD);
1069   if (!MDS) return nullptr;
1070 
1071   return llvm::ConstantInt::get(Int64Ty, llvm::MD5Hash(MDS->getString()));
1072 }
1073 
1074 void CodeGenModule::setFunctionDefinitionAttributes(const FunctionDecl *D,
1075                                                     llvm::Function *F) {
1076   setNonAliasAttributes(D, F);
1077 }
1078 
1079 void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D,
1080                                               const CGFunctionInfo &Info,
1081                                               llvm::Function *F) {
1082   unsigned CallingConv;
1083   llvm::AttributeList PAL;
1084   ConstructAttributeList(F->getName(), Info, D, PAL, CallingConv, false);
1085   F->setAttributes(PAL);
1086   F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv));
1087 }
1088 
1089 /// Determines whether the language options require us to model
1090 /// unwind exceptions.  We treat -fexceptions as mandating this
1091 /// except under the fragile ObjC ABI with only ObjC exceptions
1092 /// enabled.  This means, for example, that C with -fexceptions
1093 /// enables this.
1094 static bool hasUnwindExceptions(const LangOptions &LangOpts) {
1095   // If exceptions are completely disabled, obviously this is false.
1096   if (!LangOpts.Exceptions) return false;
1097 
1098   // If C++ exceptions are enabled, this is true.
1099   if (LangOpts.CXXExceptions) return true;
1100 
1101   // If ObjC exceptions are enabled, this depends on the ABI.
1102   if (LangOpts.ObjCExceptions) {
1103     return LangOpts.ObjCRuntime.hasUnwindExceptions();
1104   }
1105 
1106   return true;
1107 }
1108 
1109 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D,
1110                                                            llvm::Function *F) {
1111   llvm::AttrBuilder B;
1112 
1113   if (CodeGenOpts.UnwindTables)
1114     B.addAttribute(llvm::Attribute::UWTable);
1115 
1116   if (!hasUnwindExceptions(LangOpts))
1117     B.addAttribute(llvm::Attribute::NoUnwind);
1118 
1119   if (LangOpts.getStackProtector() == LangOptions::SSPOn)
1120     B.addAttribute(llvm::Attribute::StackProtect);
1121   else if (LangOpts.getStackProtector() == LangOptions::SSPStrong)
1122     B.addAttribute(llvm::Attribute::StackProtectStrong);
1123   else if (LangOpts.getStackProtector() == LangOptions::SSPReq)
1124     B.addAttribute(llvm::Attribute::StackProtectReq);
1125 
1126   if (!D) {
1127     // If we don't have a declaration to control inlining, the function isn't
1128     // explicitly marked as alwaysinline for semantic reasons, and inlining is
1129     // disabled, mark the function as noinline.
1130     if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline) &&
1131         CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining)
1132       B.addAttribute(llvm::Attribute::NoInline);
1133 
1134     F->addAttributes(llvm::AttributeList::FunctionIndex, B);
1135     return;
1136   }
1137 
1138   // Track whether we need to add the optnone LLVM attribute,
1139   // starting with the default for this optimization level.
1140   bool ShouldAddOptNone =
1141       !CodeGenOpts.DisableO0ImplyOptNone && CodeGenOpts.OptimizationLevel == 0;
1142   // We can't add optnone in the following cases, it won't pass the verifier.
1143   ShouldAddOptNone &= !D->hasAttr<MinSizeAttr>();
1144   ShouldAddOptNone &= !F->hasFnAttribute(llvm::Attribute::AlwaysInline);
1145   ShouldAddOptNone &= !D->hasAttr<AlwaysInlineAttr>();
1146 
1147   if (ShouldAddOptNone || D->hasAttr<OptimizeNoneAttr>()) {
1148     B.addAttribute(llvm::Attribute::OptimizeNone);
1149 
1150     // OptimizeNone implies noinline; we should not be inlining such functions.
1151     B.addAttribute(llvm::Attribute::NoInline);
1152     assert(!F->hasFnAttribute(llvm::Attribute::AlwaysInline) &&
1153            "OptimizeNone and AlwaysInline on same function!");
1154 
1155     // We still need to handle naked functions even though optnone subsumes
1156     // much of their semantics.
1157     if (D->hasAttr<NakedAttr>())
1158       B.addAttribute(llvm::Attribute::Naked);
1159 
1160     // OptimizeNone wins over OptimizeForSize and MinSize.
1161     F->removeFnAttr(llvm::Attribute::OptimizeForSize);
1162     F->removeFnAttr(llvm::Attribute::MinSize);
1163   } else if (D->hasAttr<NakedAttr>()) {
1164     // Naked implies noinline: we should not be inlining such functions.
1165     B.addAttribute(llvm::Attribute::Naked);
1166     B.addAttribute(llvm::Attribute::NoInline);
1167   } else if (D->hasAttr<NoDuplicateAttr>()) {
1168     B.addAttribute(llvm::Attribute::NoDuplicate);
1169   } else if (D->hasAttr<NoInlineAttr>()) {
1170     B.addAttribute(llvm::Attribute::NoInline);
1171   } else if (D->hasAttr<AlwaysInlineAttr>() &&
1172              !F->hasFnAttribute(llvm::Attribute::NoInline)) {
1173     // (noinline wins over always_inline, and we can't specify both in IR)
1174     B.addAttribute(llvm::Attribute::AlwaysInline);
1175   } else if (CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining) {
1176     // If we're not inlining, then force everything that isn't always_inline to
1177     // carry an explicit noinline attribute.
1178     if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline))
1179       B.addAttribute(llvm::Attribute::NoInline);
1180   } else {
1181     // Otherwise, propagate the inline hint attribute and potentially use its
1182     // absence to mark things as noinline.
1183     if (auto *FD = dyn_cast<FunctionDecl>(D)) {
1184       if (any_of(FD->redecls(), [&](const FunctionDecl *Redecl) {
1185             return Redecl->isInlineSpecified();
1186           })) {
1187         B.addAttribute(llvm::Attribute::InlineHint);
1188       } else if (CodeGenOpts.getInlining() ==
1189                      CodeGenOptions::OnlyHintInlining &&
1190                  !FD->isInlined() &&
1191                  !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) {
1192         B.addAttribute(llvm::Attribute::NoInline);
1193       }
1194     }
1195   }
1196 
1197   // Add other optimization related attributes if we are optimizing this
1198   // function.
1199   if (!D->hasAttr<OptimizeNoneAttr>()) {
1200     if (D->hasAttr<ColdAttr>()) {
1201       if (!ShouldAddOptNone)
1202         B.addAttribute(llvm::Attribute::OptimizeForSize);
1203       B.addAttribute(llvm::Attribute::Cold);
1204     }
1205 
1206     if (D->hasAttr<MinSizeAttr>())
1207       B.addAttribute(llvm::Attribute::MinSize);
1208   }
1209 
1210   F->addAttributes(llvm::AttributeList::FunctionIndex, B);
1211 
1212   unsigned alignment = D->getMaxAlignment() / Context.getCharWidth();
1213   if (alignment)
1214     F->setAlignment(alignment);
1215 
1216   // Some C++ ABIs require 2-byte alignment for member functions, in order to
1217   // reserve a bit for differentiating between virtual and non-virtual member
1218   // functions. If the current target's C++ ABI requires this and this is a
1219   // member function, set its alignment accordingly.
1220   if (getTarget().getCXXABI().areMemberFunctionsAligned()) {
1221     if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D))
1222       F->setAlignment(2);
1223   }
1224 
1225   // In the cross-dso CFI mode, we want !type attributes on definitions only.
1226   if (CodeGenOpts.SanitizeCfiCrossDso)
1227     if (auto *FD = dyn_cast<FunctionDecl>(D))
1228       CreateFunctionTypeMetadata(FD, F);
1229 }
1230 
1231 void CodeGenModule::SetCommonAttributes(const Decl *D,
1232                                         llvm::GlobalValue *GV) {
1233   if (const auto *ND = dyn_cast_or_null<NamedDecl>(D))
1234     setGVProperties(GV, ND, ForDefinition);
1235   else
1236     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
1237 
1238   if (D && D->hasAttr<UsedAttr>())
1239     addUsedGlobal(GV);
1240 }
1241 
1242 void CodeGenModule::setAliasAttributes(const Decl *D,
1243                                        llvm::GlobalValue *GV) {
1244   SetCommonAttributes(D, GV);
1245 
1246   // Process the dllexport attribute based on whether the original definition
1247   // (not necessarily the aliasee) was exported.
1248   if (D->hasAttr<DLLExportAttr>())
1249     GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass);
1250 }
1251 
1252 void CodeGenModule::setNonAliasAttributes(const Decl *D,
1253                                           llvm::GlobalObject *GO) {
1254   SetCommonAttributes(D, GO);
1255 
1256   if (D) {
1257     if (auto *GV = dyn_cast<llvm::GlobalVariable>(GO)) {
1258       if (auto *SA = D->getAttr<PragmaClangBSSSectionAttr>())
1259         GV->addAttribute("bss-section", SA->getName());
1260       if (auto *SA = D->getAttr<PragmaClangDataSectionAttr>())
1261         GV->addAttribute("data-section", SA->getName());
1262       if (auto *SA = D->getAttr<PragmaClangRodataSectionAttr>())
1263         GV->addAttribute("rodata-section", SA->getName());
1264     }
1265 
1266     if (auto *F = dyn_cast<llvm::Function>(GO)) {
1267       if (auto *SA = D->getAttr<PragmaClangTextSectionAttr>())
1268        if (!D->getAttr<SectionAttr>())
1269          F->addFnAttr("implicit-section-name", SA->getName());
1270     }
1271 
1272     if (const SectionAttr *SA = D->getAttr<SectionAttr>())
1273       GO->setSection(SA->getName());
1274   }
1275 
1276   getTargetCodeGenInfo().setTargetAttributes(D, GO, *this, ForDefinition);
1277 }
1278 
1279 void CodeGenModule::SetInternalFunctionAttributes(const Decl *D,
1280                                                   llvm::Function *F,
1281                                                   const CGFunctionInfo &FI) {
1282   SetLLVMFunctionAttributes(D, FI, F);
1283   SetLLVMFunctionAttributesForDefinition(D, F);
1284 
1285   F->setLinkage(llvm::Function::InternalLinkage);
1286 
1287   setNonAliasAttributes(D, F);
1288 }
1289 
1290 static void setLinkageForGV(llvm::GlobalValue *GV,
1291                             const NamedDecl *ND) {
1292   // Set linkage and visibility in case we never see a definition.
1293   LinkageInfo LV = ND->getLinkageAndVisibility();
1294   if (!isExternallyVisible(LV.getLinkage())) {
1295     // Don't set internal linkage on declarations.
1296   } else {
1297     if (ND->hasAttr<DLLImportAttr>()) {
1298       GV->setLinkage(llvm::GlobalValue::ExternalLinkage);
1299       GV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass);
1300     } else if (ND->hasAttr<DLLExportAttr>()) {
1301       GV->setLinkage(llvm::GlobalValue::ExternalLinkage);
1302     } else if (ND->hasAttr<WeakAttr>() || ND->isWeakImported()) {
1303       // "extern_weak" is overloaded in LLVM; we probably should have
1304       // separate linkage types for this.
1305       GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage);
1306     }
1307   }
1308 }
1309 
1310 void CodeGenModule::CreateFunctionTypeMetadata(const FunctionDecl *FD,
1311                                                llvm::Function *F) {
1312   // Only if we are checking indirect calls.
1313   if (!LangOpts.Sanitize.has(SanitizerKind::CFIICall))
1314     return;
1315 
1316   // Non-static class methods are handled via vtable pointer checks elsewhere.
1317   if (isa<CXXMethodDecl>(FD) && !cast<CXXMethodDecl>(FD)->isStatic())
1318     return;
1319 
1320   // Additionally, if building with cross-DSO support...
1321   if (CodeGenOpts.SanitizeCfiCrossDso) {
1322     // Skip available_externally functions. They won't be codegen'ed in the
1323     // current module anyway.
1324     if (getContext().GetGVALinkageForFunction(FD) == GVA_AvailableExternally)
1325       return;
1326   }
1327 
1328   llvm::Metadata *MD = CreateMetadataIdentifierForType(FD->getType());
1329   F->addTypeMetadata(0, MD);
1330   F->addTypeMetadata(0, CreateMetadataIdentifierGeneralized(FD->getType()));
1331 
1332   // Emit a hash-based bit set entry for cross-DSO calls.
1333   if (CodeGenOpts.SanitizeCfiCrossDso)
1334     if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD))
1335       F->addTypeMetadata(0, llvm::ConstantAsMetadata::get(CrossDsoTypeId));
1336 }
1337 
1338 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD, llvm::Function *F,
1339                                           bool IsIncompleteFunction,
1340                                           bool IsThunk,
1341                                           ForDefinition_t IsForDefinition) {
1342 
1343   if (llvm::Intrinsic::ID IID = F->getIntrinsicID()) {
1344     // If this is an intrinsic function, set the function's attributes
1345     // to the intrinsic's attributes.
1346     F->setAttributes(llvm::Intrinsic::getAttributes(getLLVMContext(), IID));
1347     return;
1348   }
1349 
1350   const auto *FD = cast<FunctionDecl>(GD.getDecl());
1351 
1352   if (!IsIncompleteFunction) {
1353     SetLLVMFunctionAttributes(FD, getTypes().arrangeGlobalDeclaration(GD), F);
1354     // Setup target-specific attributes.
1355     if (!IsForDefinition)
1356       getTargetCodeGenInfo().setTargetAttributes(FD, F, *this,
1357                                                  NotForDefinition);
1358   }
1359 
1360   // Add the Returned attribute for "this", except for iOS 5 and earlier
1361   // where substantial code, including the libstdc++ dylib, was compiled with
1362   // GCC and does not actually return "this".
1363   if (!IsThunk && getCXXABI().HasThisReturn(GD) &&
1364       !(getTriple().isiOS() && getTriple().isOSVersionLT(6))) {
1365     assert(!F->arg_empty() &&
1366            F->arg_begin()->getType()
1367              ->canLosslesslyBitCastTo(F->getReturnType()) &&
1368            "unexpected this return");
1369     F->addAttribute(1, llvm::Attribute::Returned);
1370   }
1371 
1372   // Only a few attributes are set on declarations; these may later be
1373   // overridden by a definition.
1374 
1375   setLinkageForGV(F, FD);
1376   setGVProperties(F, FD, NotForDefinition);
1377 
1378   if (FD->getAttr<PragmaClangTextSectionAttr>()) {
1379     F->addFnAttr("implicit-section-name");
1380   }
1381 
1382   if (const SectionAttr *SA = FD->getAttr<SectionAttr>())
1383     F->setSection(SA->getName());
1384 
1385   if (FD->isReplaceableGlobalAllocationFunction()) {
1386     // A replaceable global allocation function does not act like a builtin by
1387     // default, only if it is invoked by a new-expression or delete-expression.
1388     F->addAttribute(llvm::AttributeList::FunctionIndex,
1389                     llvm::Attribute::NoBuiltin);
1390 
1391     // A sane operator new returns a non-aliasing pointer.
1392     // FIXME: Also add NonNull attribute to the return value
1393     // for the non-nothrow forms?
1394     auto Kind = FD->getDeclName().getCXXOverloadedOperator();
1395     if (getCodeGenOpts().AssumeSaneOperatorNew &&
1396         (Kind == OO_New || Kind == OO_Array_New))
1397       F->addAttribute(llvm::AttributeList::ReturnIndex,
1398                       llvm::Attribute::NoAlias);
1399   }
1400 
1401   if (isa<CXXConstructorDecl>(FD) || isa<CXXDestructorDecl>(FD))
1402     F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
1403   else if (const auto *MD = dyn_cast<CXXMethodDecl>(FD))
1404     if (MD->isVirtual())
1405       F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
1406 
1407   // Don't emit entries for function declarations in the cross-DSO mode. This
1408   // is handled with better precision by the receiving DSO.
1409   if (!CodeGenOpts.SanitizeCfiCrossDso)
1410     CreateFunctionTypeMetadata(FD, F);
1411 
1412   if (getLangOpts().OpenMP && FD->hasAttr<OMPDeclareSimdDeclAttr>())
1413     getOpenMPRuntime().emitDeclareSimdFunction(FD, F);
1414 }
1415 
1416 void CodeGenModule::addUsedGlobal(llvm::GlobalValue *GV) {
1417   assert(!GV->isDeclaration() &&
1418          "Only globals with definition can force usage.");
1419   LLVMUsed.emplace_back(GV);
1420 }
1421 
1422 void CodeGenModule::addCompilerUsedGlobal(llvm::GlobalValue *GV) {
1423   assert(!GV->isDeclaration() &&
1424          "Only globals with definition can force usage.");
1425   LLVMCompilerUsed.emplace_back(GV);
1426 }
1427 
1428 static void emitUsed(CodeGenModule &CGM, StringRef Name,
1429                      std::vector<llvm::WeakTrackingVH> &List) {
1430   // Don't create llvm.used if there is no need.
1431   if (List.empty())
1432     return;
1433 
1434   // Convert List to what ConstantArray needs.
1435   SmallVector<llvm::Constant*, 8> UsedArray;
1436   UsedArray.resize(List.size());
1437   for (unsigned i = 0, e = List.size(); i != e; ++i) {
1438     UsedArray[i] =
1439         llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(
1440             cast<llvm::Constant>(&*List[i]), CGM.Int8PtrTy);
1441   }
1442 
1443   if (UsedArray.empty())
1444     return;
1445   llvm::ArrayType *ATy = llvm::ArrayType::get(CGM.Int8PtrTy, UsedArray.size());
1446 
1447   auto *GV = new llvm::GlobalVariable(
1448       CGM.getModule(), ATy, false, llvm::GlobalValue::AppendingLinkage,
1449       llvm::ConstantArray::get(ATy, UsedArray), Name);
1450 
1451   GV->setSection("llvm.metadata");
1452 }
1453 
1454 void CodeGenModule::emitLLVMUsed() {
1455   emitUsed(*this, "llvm.used", LLVMUsed);
1456   emitUsed(*this, "llvm.compiler.used", LLVMCompilerUsed);
1457 }
1458 
1459 void CodeGenModule::AppendLinkerOptions(StringRef Opts) {
1460   auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opts);
1461   LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
1462 }
1463 
1464 void CodeGenModule::AddDetectMismatch(StringRef Name, StringRef Value) {
1465   llvm::SmallString<32> Opt;
1466   getTargetCodeGenInfo().getDetectMismatchOption(Name, Value, Opt);
1467   auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt);
1468   LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
1469 }
1470 
1471 void CodeGenModule::AddDependentLib(StringRef Lib) {
1472   llvm::SmallString<24> Opt;
1473   getTargetCodeGenInfo().getDependentLibraryOption(Lib, Opt);
1474   auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt);
1475   LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
1476 }
1477 
1478 /// \brief Add link options implied by the given module, including modules
1479 /// it depends on, using a postorder walk.
1480 static void addLinkOptionsPostorder(CodeGenModule &CGM, Module *Mod,
1481                                     SmallVectorImpl<llvm::MDNode *> &Metadata,
1482                                     llvm::SmallPtrSet<Module *, 16> &Visited) {
1483   // Import this module's parent.
1484   if (Mod->Parent && Visited.insert(Mod->Parent).second) {
1485     addLinkOptionsPostorder(CGM, Mod->Parent, Metadata, Visited);
1486   }
1487 
1488   // Import this module's dependencies.
1489   for (unsigned I = Mod->Imports.size(); I > 0; --I) {
1490     if (Visited.insert(Mod->Imports[I - 1]).second)
1491       addLinkOptionsPostorder(CGM, Mod->Imports[I-1], Metadata, Visited);
1492   }
1493 
1494   // Add linker options to link against the libraries/frameworks
1495   // described by this module.
1496   llvm::LLVMContext &Context = CGM.getLLVMContext();
1497   for (unsigned I = Mod->LinkLibraries.size(); I > 0; --I) {
1498     // Link against a framework.  Frameworks are currently Darwin only, so we
1499     // don't to ask TargetCodeGenInfo for the spelling of the linker option.
1500     if (Mod->LinkLibraries[I-1].IsFramework) {
1501       llvm::Metadata *Args[2] = {
1502           llvm::MDString::get(Context, "-framework"),
1503           llvm::MDString::get(Context, Mod->LinkLibraries[I - 1].Library)};
1504 
1505       Metadata.push_back(llvm::MDNode::get(Context, Args));
1506       continue;
1507     }
1508 
1509     // Link against a library.
1510     llvm::SmallString<24> Opt;
1511     CGM.getTargetCodeGenInfo().getDependentLibraryOption(
1512       Mod->LinkLibraries[I-1].Library, Opt);
1513     auto *OptString = llvm::MDString::get(Context, Opt);
1514     Metadata.push_back(llvm::MDNode::get(Context, OptString));
1515   }
1516 }
1517 
1518 void CodeGenModule::EmitModuleLinkOptions() {
1519   // Collect the set of all of the modules we want to visit to emit link
1520   // options, which is essentially the imported modules and all of their
1521   // non-explicit child modules.
1522   llvm::SetVector<clang::Module *> LinkModules;
1523   llvm::SmallPtrSet<clang::Module *, 16> Visited;
1524   SmallVector<clang::Module *, 16> Stack;
1525 
1526   // Seed the stack with imported modules.
1527   for (Module *M : ImportedModules) {
1528     // Do not add any link flags when an implementation TU of a module imports
1529     // a header of that same module.
1530     if (M->getTopLevelModuleName() == getLangOpts().CurrentModule &&
1531         !getLangOpts().isCompilingModule())
1532       continue;
1533     if (Visited.insert(M).second)
1534       Stack.push_back(M);
1535   }
1536 
1537   // Find all of the modules to import, making a little effort to prune
1538   // non-leaf modules.
1539   while (!Stack.empty()) {
1540     clang::Module *Mod = Stack.pop_back_val();
1541 
1542     bool AnyChildren = false;
1543 
1544     // Visit the submodules of this module.
1545     for (clang::Module::submodule_iterator Sub = Mod->submodule_begin(),
1546                                         SubEnd = Mod->submodule_end();
1547          Sub != SubEnd; ++Sub) {
1548       // Skip explicit children; they need to be explicitly imported to be
1549       // linked against.
1550       if ((*Sub)->IsExplicit)
1551         continue;
1552 
1553       if (Visited.insert(*Sub).second) {
1554         Stack.push_back(*Sub);
1555         AnyChildren = true;
1556       }
1557     }
1558 
1559     // We didn't find any children, so add this module to the list of
1560     // modules to link against.
1561     if (!AnyChildren) {
1562       LinkModules.insert(Mod);
1563     }
1564   }
1565 
1566   // Add link options for all of the imported modules in reverse topological
1567   // order.  We don't do anything to try to order import link flags with respect
1568   // to linker options inserted by things like #pragma comment().
1569   SmallVector<llvm::MDNode *, 16> MetadataArgs;
1570   Visited.clear();
1571   for (Module *M : LinkModules)
1572     if (Visited.insert(M).second)
1573       addLinkOptionsPostorder(*this, M, MetadataArgs, Visited);
1574   std::reverse(MetadataArgs.begin(), MetadataArgs.end());
1575   LinkerOptionsMetadata.append(MetadataArgs.begin(), MetadataArgs.end());
1576 
1577   // Add the linker options metadata flag.
1578   auto *NMD = getModule().getOrInsertNamedMetadata("llvm.linker.options");
1579   for (auto *MD : LinkerOptionsMetadata)
1580     NMD->addOperand(MD);
1581 }
1582 
1583 void CodeGenModule::EmitDeferred() {
1584   // Emit code for any potentially referenced deferred decls.  Since a
1585   // previously unused static decl may become used during the generation of code
1586   // for a static function, iterate until no changes are made.
1587 
1588   if (!DeferredVTables.empty()) {
1589     EmitDeferredVTables();
1590 
1591     // Emitting a vtable doesn't directly cause more vtables to
1592     // become deferred, although it can cause functions to be
1593     // emitted that then need those vtables.
1594     assert(DeferredVTables.empty());
1595   }
1596 
1597   // Stop if we're out of both deferred vtables and deferred declarations.
1598   if (DeferredDeclsToEmit.empty())
1599     return;
1600 
1601   // Grab the list of decls to emit. If EmitGlobalDefinition schedules more
1602   // work, it will not interfere with this.
1603   std::vector<GlobalDecl> CurDeclsToEmit;
1604   CurDeclsToEmit.swap(DeferredDeclsToEmit);
1605 
1606   for (GlobalDecl &D : CurDeclsToEmit) {
1607     // We should call GetAddrOfGlobal with IsForDefinition set to true in order
1608     // to get GlobalValue with exactly the type we need, not something that
1609     // might had been created for another decl with the same mangled name but
1610     // different type.
1611     llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>(
1612         GetAddrOfGlobal(D, ForDefinition));
1613 
1614     // In case of different address spaces, we may still get a cast, even with
1615     // IsForDefinition equal to true. Query mangled names table to get
1616     // GlobalValue.
1617     if (!GV)
1618       GV = GetGlobalValue(getMangledName(D));
1619 
1620     // Make sure GetGlobalValue returned non-null.
1621     assert(GV);
1622 
1623     // Check to see if we've already emitted this.  This is necessary
1624     // for a couple of reasons: first, decls can end up in the
1625     // deferred-decls queue multiple times, and second, decls can end
1626     // up with definitions in unusual ways (e.g. by an extern inline
1627     // function acquiring a strong function redefinition).  Just
1628     // ignore these cases.
1629     if (!GV->isDeclaration())
1630       continue;
1631 
1632     // Otherwise, emit the definition and move on to the next one.
1633     EmitGlobalDefinition(D, GV);
1634 
1635     // If we found out that we need to emit more decls, do that recursively.
1636     // This has the advantage that the decls are emitted in a DFS and related
1637     // ones are close together, which is convenient for testing.
1638     if (!DeferredVTables.empty() || !DeferredDeclsToEmit.empty()) {
1639       EmitDeferred();
1640       assert(DeferredVTables.empty() && DeferredDeclsToEmit.empty());
1641     }
1642   }
1643 }
1644 
1645 void CodeGenModule::EmitVTablesOpportunistically() {
1646   // Try to emit external vtables as available_externally if they have emitted
1647   // all inlined virtual functions.  It runs after EmitDeferred() and therefore
1648   // is not allowed to create new references to things that need to be emitted
1649   // lazily. Note that it also uses fact that we eagerly emitting RTTI.
1650 
1651   assert((OpportunisticVTables.empty() || shouldOpportunisticallyEmitVTables())
1652          && "Only emit opportunistic vtables with optimizations");
1653 
1654   for (const CXXRecordDecl *RD : OpportunisticVTables) {
1655     assert(getVTables().isVTableExternal(RD) &&
1656            "This queue should only contain external vtables");
1657     if (getCXXABI().canSpeculativelyEmitVTable(RD))
1658       VTables.GenerateClassData(RD);
1659   }
1660   OpportunisticVTables.clear();
1661 }
1662 
1663 void CodeGenModule::EmitGlobalAnnotations() {
1664   if (Annotations.empty())
1665     return;
1666 
1667   // Create a new global variable for the ConstantStruct in the Module.
1668   llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get(
1669     Annotations[0]->getType(), Annotations.size()), Annotations);
1670   auto *gv = new llvm::GlobalVariable(getModule(), Array->getType(), false,
1671                                       llvm::GlobalValue::AppendingLinkage,
1672                                       Array, "llvm.global.annotations");
1673   gv->setSection(AnnotationSection);
1674 }
1675 
1676 llvm::Constant *CodeGenModule::EmitAnnotationString(StringRef Str) {
1677   llvm::Constant *&AStr = AnnotationStrings[Str];
1678   if (AStr)
1679     return AStr;
1680 
1681   // Not found yet, create a new global.
1682   llvm::Constant *s = llvm::ConstantDataArray::getString(getLLVMContext(), Str);
1683   auto *gv =
1684       new llvm::GlobalVariable(getModule(), s->getType(), true,
1685                                llvm::GlobalValue::PrivateLinkage, s, ".str");
1686   gv->setSection(AnnotationSection);
1687   gv->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
1688   AStr = gv;
1689   return gv;
1690 }
1691 
1692 llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) {
1693   SourceManager &SM = getContext().getSourceManager();
1694   PresumedLoc PLoc = SM.getPresumedLoc(Loc);
1695   if (PLoc.isValid())
1696     return EmitAnnotationString(PLoc.getFilename());
1697   return EmitAnnotationString(SM.getBufferName(Loc));
1698 }
1699 
1700 llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) {
1701   SourceManager &SM = getContext().getSourceManager();
1702   PresumedLoc PLoc = SM.getPresumedLoc(L);
1703   unsigned LineNo = PLoc.isValid() ? PLoc.getLine() :
1704     SM.getExpansionLineNumber(L);
1705   return llvm::ConstantInt::get(Int32Ty, LineNo);
1706 }
1707 
1708 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV,
1709                                                 const AnnotateAttr *AA,
1710                                                 SourceLocation L) {
1711   // Get the globals for file name, annotation, and the line number.
1712   llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()),
1713                  *UnitGV = EmitAnnotationUnit(L),
1714                  *LineNoCst = EmitAnnotationLineNo(L);
1715 
1716   // Create the ConstantStruct for the global annotation.
1717   llvm::Constant *Fields[4] = {
1718     llvm::ConstantExpr::getBitCast(GV, Int8PtrTy),
1719     llvm::ConstantExpr::getBitCast(AnnoGV, Int8PtrTy),
1720     llvm::ConstantExpr::getBitCast(UnitGV, Int8PtrTy),
1721     LineNoCst
1722   };
1723   return llvm::ConstantStruct::getAnon(Fields);
1724 }
1725 
1726 void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D,
1727                                          llvm::GlobalValue *GV) {
1728   assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
1729   // Get the struct elements for these annotations.
1730   for (const auto *I : D->specific_attrs<AnnotateAttr>())
1731     Annotations.push_back(EmitAnnotateAttr(GV, I, D->getLocation()));
1732 }
1733 
1734 bool CodeGenModule::isInSanitizerBlacklist(SanitizerMask Kind,
1735                                            llvm::Function *Fn,
1736                                            SourceLocation Loc) const {
1737   const auto &SanitizerBL = getContext().getSanitizerBlacklist();
1738   // Blacklist by function name.
1739   if (SanitizerBL.isBlacklistedFunction(Kind, Fn->getName()))
1740     return true;
1741   // Blacklist by location.
1742   if (Loc.isValid())
1743     return SanitizerBL.isBlacklistedLocation(Kind, Loc);
1744   // If location is unknown, this may be a compiler-generated function. Assume
1745   // it's located in the main file.
1746   auto &SM = Context.getSourceManager();
1747   if (const auto *MainFile = SM.getFileEntryForID(SM.getMainFileID())) {
1748     return SanitizerBL.isBlacklistedFile(Kind, MainFile->getName());
1749   }
1750   return false;
1751 }
1752 
1753 bool CodeGenModule::isInSanitizerBlacklist(llvm::GlobalVariable *GV,
1754                                            SourceLocation Loc, QualType Ty,
1755                                            StringRef Category) const {
1756   // For now globals can be blacklisted only in ASan and KASan.
1757   const SanitizerMask EnabledAsanMask = LangOpts.Sanitize.Mask &
1758       (SanitizerKind::Address | SanitizerKind::KernelAddress | SanitizerKind::HWAddress);
1759   if (!EnabledAsanMask)
1760     return false;
1761   const auto &SanitizerBL = getContext().getSanitizerBlacklist();
1762   if (SanitizerBL.isBlacklistedGlobal(EnabledAsanMask, GV->getName(), Category))
1763     return true;
1764   if (SanitizerBL.isBlacklistedLocation(EnabledAsanMask, Loc, Category))
1765     return true;
1766   // Check global type.
1767   if (!Ty.isNull()) {
1768     // Drill down the array types: if global variable of a fixed type is
1769     // blacklisted, we also don't instrument arrays of them.
1770     while (auto AT = dyn_cast<ArrayType>(Ty.getTypePtr()))
1771       Ty = AT->getElementType();
1772     Ty = Ty.getCanonicalType().getUnqualifiedType();
1773     // We allow to blacklist only record types (classes, structs etc.)
1774     if (Ty->isRecordType()) {
1775       std::string TypeStr = Ty.getAsString(getContext().getPrintingPolicy());
1776       if (SanitizerBL.isBlacklistedType(EnabledAsanMask, TypeStr, Category))
1777         return true;
1778     }
1779   }
1780   return false;
1781 }
1782 
1783 bool CodeGenModule::imbueXRayAttrs(llvm::Function *Fn, SourceLocation Loc,
1784                                    StringRef Category) const {
1785   if (!LangOpts.XRayInstrument)
1786     return false;
1787   const auto &XRayFilter = getContext().getXRayFilter();
1788   using ImbueAttr = XRayFunctionFilter::ImbueAttribute;
1789   auto Attr = XRayFunctionFilter::ImbueAttribute::NONE;
1790   if (Loc.isValid())
1791     Attr = XRayFilter.shouldImbueLocation(Loc, Category);
1792   if (Attr == ImbueAttr::NONE)
1793     Attr = XRayFilter.shouldImbueFunction(Fn->getName());
1794   switch (Attr) {
1795   case ImbueAttr::NONE:
1796     return false;
1797   case ImbueAttr::ALWAYS:
1798     Fn->addFnAttr("function-instrument", "xray-always");
1799     break;
1800   case ImbueAttr::ALWAYS_ARG1:
1801     Fn->addFnAttr("function-instrument", "xray-always");
1802     Fn->addFnAttr("xray-log-args", "1");
1803     break;
1804   case ImbueAttr::NEVER:
1805     Fn->addFnAttr("function-instrument", "xray-never");
1806     break;
1807   }
1808   return true;
1809 }
1810 
1811 bool CodeGenModule::MustBeEmitted(const ValueDecl *Global) {
1812   // Never defer when EmitAllDecls is specified.
1813   if (LangOpts.EmitAllDecls)
1814     return true;
1815 
1816   return getContext().DeclMustBeEmitted(Global);
1817 }
1818 
1819 bool CodeGenModule::MayBeEmittedEagerly(const ValueDecl *Global) {
1820   if (const auto *FD = dyn_cast<FunctionDecl>(Global))
1821     if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
1822       // Implicit template instantiations may change linkage if they are later
1823       // explicitly instantiated, so they should not be emitted eagerly.
1824       return false;
1825   if (const auto *VD = dyn_cast<VarDecl>(Global))
1826     if (Context.getInlineVariableDefinitionKind(VD) ==
1827         ASTContext::InlineVariableDefinitionKind::WeakUnknown)
1828       // A definition of an inline constexpr static data member may change
1829       // linkage later if it's redeclared outside the class.
1830       return false;
1831   // If OpenMP is enabled and threadprivates must be generated like TLS, delay
1832   // codegen for global variables, because they may be marked as threadprivate.
1833   if (LangOpts.OpenMP && LangOpts.OpenMPUseTLS &&
1834       getContext().getTargetInfo().isTLSSupported() && isa<VarDecl>(Global))
1835     return false;
1836 
1837   return true;
1838 }
1839 
1840 ConstantAddress CodeGenModule::GetAddrOfUuidDescriptor(
1841     const CXXUuidofExpr* E) {
1842   // Sema has verified that IIDSource has a __declspec(uuid()), and that its
1843   // well-formed.
1844   StringRef Uuid = E->getUuidStr();
1845   std::string Name = "_GUID_" + Uuid.lower();
1846   std::replace(Name.begin(), Name.end(), '-', '_');
1847 
1848   // The UUID descriptor should be pointer aligned.
1849   CharUnits Alignment = CharUnits::fromQuantity(PointerAlignInBytes);
1850 
1851   // Look for an existing global.
1852   if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name))
1853     return ConstantAddress(GV, Alignment);
1854 
1855   llvm::Constant *Init = EmitUuidofInitializer(Uuid);
1856   assert(Init && "failed to initialize as constant");
1857 
1858   auto *GV = new llvm::GlobalVariable(
1859       getModule(), Init->getType(),
1860       /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name);
1861   if (supportsCOMDAT())
1862     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
1863   return ConstantAddress(GV, Alignment);
1864 }
1865 
1866 ConstantAddress CodeGenModule::GetWeakRefReference(const ValueDecl *VD) {
1867   const AliasAttr *AA = VD->getAttr<AliasAttr>();
1868   assert(AA && "No alias?");
1869 
1870   CharUnits Alignment = getContext().getDeclAlign(VD);
1871   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType());
1872 
1873   // See if there is already something with the target's name in the module.
1874   llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee());
1875   if (Entry) {
1876     unsigned AS = getContext().getTargetAddressSpace(VD->getType());
1877     auto Ptr = llvm::ConstantExpr::getBitCast(Entry, DeclTy->getPointerTo(AS));
1878     return ConstantAddress(Ptr, Alignment);
1879   }
1880 
1881   llvm::Constant *Aliasee;
1882   if (isa<llvm::FunctionType>(DeclTy))
1883     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy,
1884                                       GlobalDecl(cast<FunctionDecl>(VD)),
1885                                       /*ForVTable=*/false);
1886   else
1887     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
1888                                     llvm::PointerType::getUnqual(DeclTy),
1889                                     nullptr);
1890 
1891   auto *F = cast<llvm::GlobalValue>(Aliasee);
1892   F->setLinkage(llvm::Function::ExternalWeakLinkage);
1893   WeakRefReferences.insert(F);
1894 
1895   return ConstantAddress(Aliasee, Alignment);
1896 }
1897 
1898 void CodeGenModule::EmitGlobal(GlobalDecl GD) {
1899   const auto *Global = cast<ValueDecl>(GD.getDecl());
1900 
1901   // Weak references don't produce any output by themselves.
1902   if (Global->hasAttr<WeakRefAttr>())
1903     return;
1904 
1905   // If this is an alias definition (which otherwise looks like a declaration)
1906   // emit it now.
1907   if (Global->hasAttr<AliasAttr>())
1908     return EmitAliasDefinition(GD);
1909 
1910   // IFunc like an alias whose value is resolved at runtime by calling resolver.
1911   if (Global->hasAttr<IFuncAttr>())
1912     return emitIFuncDefinition(GD);
1913 
1914   // If this is CUDA, be selective about which declarations we emit.
1915   if (LangOpts.CUDA) {
1916     if (LangOpts.CUDAIsDevice) {
1917       if (!Global->hasAttr<CUDADeviceAttr>() &&
1918           !Global->hasAttr<CUDAGlobalAttr>() &&
1919           !Global->hasAttr<CUDAConstantAttr>() &&
1920           !Global->hasAttr<CUDASharedAttr>())
1921         return;
1922     } else {
1923       // We need to emit host-side 'shadows' for all global
1924       // device-side variables because the CUDA runtime needs their
1925       // size and host-side address in order to provide access to
1926       // their device-side incarnations.
1927 
1928       // So device-only functions are the only things we skip.
1929       if (isa<FunctionDecl>(Global) && !Global->hasAttr<CUDAHostAttr>() &&
1930           Global->hasAttr<CUDADeviceAttr>())
1931         return;
1932 
1933       assert((isa<FunctionDecl>(Global) || isa<VarDecl>(Global)) &&
1934              "Expected Variable or Function");
1935     }
1936   }
1937 
1938   if (LangOpts.OpenMP) {
1939     // If this is OpenMP device, check if it is legal to emit this global
1940     // normally.
1941     if (OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(GD))
1942       return;
1943     if (auto *DRD = dyn_cast<OMPDeclareReductionDecl>(Global)) {
1944       if (MustBeEmitted(Global))
1945         EmitOMPDeclareReduction(DRD);
1946       return;
1947     }
1948   }
1949 
1950   // Ignore declarations, they will be emitted on their first use.
1951   if (const auto *FD = dyn_cast<FunctionDecl>(Global)) {
1952     // Forward declarations are emitted lazily on first use.
1953     if (!FD->doesThisDeclarationHaveABody()) {
1954       if (!FD->doesDeclarationForceExternallyVisibleDefinition())
1955         return;
1956 
1957       StringRef MangledName = getMangledName(GD);
1958 
1959       // Compute the function info and LLVM type.
1960       const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
1961       llvm::Type *Ty = getTypes().GetFunctionType(FI);
1962 
1963       GetOrCreateLLVMFunction(MangledName, Ty, GD, /*ForVTable=*/false,
1964                               /*DontDefer=*/false);
1965       return;
1966     }
1967   } else {
1968     const auto *VD = cast<VarDecl>(Global);
1969     assert(VD->isFileVarDecl() && "Cannot emit local var decl as global.");
1970     // We need to emit device-side global CUDA variables even if a
1971     // variable does not have a definition -- we still need to define
1972     // host-side shadow for it.
1973     bool MustEmitForCuda = LangOpts.CUDA && !LangOpts.CUDAIsDevice &&
1974                            !VD->hasDefinition() &&
1975                            (VD->hasAttr<CUDAConstantAttr>() ||
1976                             VD->hasAttr<CUDADeviceAttr>());
1977     if (!MustEmitForCuda &&
1978         VD->isThisDeclarationADefinition() != VarDecl::Definition &&
1979         !Context.isMSStaticDataMemberInlineDefinition(VD)) {
1980       // If this declaration may have caused an inline variable definition to
1981       // change linkage, make sure that it's emitted.
1982       if (Context.getInlineVariableDefinitionKind(VD) ==
1983           ASTContext::InlineVariableDefinitionKind::Strong)
1984         GetAddrOfGlobalVar(VD);
1985       return;
1986     }
1987   }
1988 
1989   // Defer code generation to first use when possible, e.g. if this is an inline
1990   // function. If the global must always be emitted, do it eagerly if possible
1991   // to benefit from cache locality.
1992   if (MustBeEmitted(Global) && MayBeEmittedEagerly(Global)) {
1993     // Emit the definition if it can't be deferred.
1994     EmitGlobalDefinition(GD);
1995     return;
1996   }
1997 
1998   // If we're deferring emission of a C++ variable with an
1999   // initializer, remember the order in which it appeared in the file.
2000   if (getLangOpts().CPlusPlus && isa<VarDecl>(Global) &&
2001       cast<VarDecl>(Global)->hasInit()) {
2002     DelayedCXXInitPosition[Global] = CXXGlobalInits.size();
2003     CXXGlobalInits.push_back(nullptr);
2004   }
2005 
2006   StringRef MangledName = getMangledName(GD);
2007   if (GetGlobalValue(MangledName) != nullptr) {
2008     // The value has already been used and should therefore be emitted.
2009     addDeferredDeclToEmit(GD);
2010   } else if (MustBeEmitted(Global)) {
2011     // The value must be emitted, but cannot be emitted eagerly.
2012     assert(!MayBeEmittedEagerly(Global));
2013     addDeferredDeclToEmit(GD);
2014   } else {
2015     // Otherwise, remember that we saw a deferred decl with this name.  The
2016     // first use of the mangled name will cause it to move into
2017     // DeferredDeclsToEmit.
2018     DeferredDecls[MangledName] = GD;
2019   }
2020 }
2021 
2022 // Check if T is a class type with a destructor that's not dllimport.
2023 static bool HasNonDllImportDtor(QualType T) {
2024   if (const auto *RT = T->getBaseElementTypeUnsafe()->getAs<RecordType>())
2025     if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl()))
2026       if (RD->getDestructor() && !RD->getDestructor()->hasAttr<DLLImportAttr>())
2027         return true;
2028 
2029   return false;
2030 }
2031 
2032 namespace {
2033   struct FunctionIsDirectlyRecursive :
2034     public RecursiveASTVisitor<FunctionIsDirectlyRecursive> {
2035     const StringRef Name;
2036     const Builtin::Context &BI;
2037     bool Result;
2038     FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C) :
2039       Name(N), BI(C), Result(false) {
2040     }
2041     typedef RecursiveASTVisitor<FunctionIsDirectlyRecursive> Base;
2042 
2043     bool TraverseCallExpr(CallExpr *E) {
2044       const FunctionDecl *FD = E->getDirectCallee();
2045       if (!FD)
2046         return true;
2047       AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
2048       if (Attr && Name == Attr->getLabel()) {
2049         Result = true;
2050         return false;
2051       }
2052       unsigned BuiltinID = FD->getBuiltinID();
2053       if (!BuiltinID || !BI.isLibFunction(BuiltinID))
2054         return true;
2055       StringRef BuiltinName = BI.getName(BuiltinID);
2056       if (BuiltinName.startswith("__builtin_") &&
2057           Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) {
2058         Result = true;
2059         return false;
2060       }
2061       return true;
2062     }
2063   };
2064 
2065   // Make sure we're not referencing non-imported vars or functions.
2066   struct DLLImportFunctionVisitor
2067       : public RecursiveASTVisitor<DLLImportFunctionVisitor> {
2068     bool SafeToInline = true;
2069 
2070     bool shouldVisitImplicitCode() const { return true; }
2071 
2072     bool VisitVarDecl(VarDecl *VD) {
2073       if (VD->getTLSKind()) {
2074         // A thread-local variable cannot be imported.
2075         SafeToInline = false;
2076         return SafeToInline;
2077       }
2078 
2079       // A variable definition might imply a destructor call.
2080       if (VD->isThisDeclarationADefinition())
2081         SafeToInline = !HasNonDllImportDtor(VD->getType());
2082 
2083       return SafeToInline;
2084     }
2085 
2086     bool VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) {
2087       if (const auto *D = E->getTemporary()->getDestructor())
2088         SafeToInline = D->hasAttr<DLLImportAttr>();
2089       return SafeToInline;
2090     }
2091 
2092     bool VisitDeclRefExpr(DeclRefExpr *E) {
2093       ValueDecl *VD = E->getDecl();
2094       if (isa<FunctionDecl>(VD))
2095         SafeToInline = VD->hasAttr<DLLImportAttr>();
2096       else if (VarDecl *V = dyn_cast<VarDecl>(VD))
2097         SafeToInline = !V->hasGlobalStorage() || V->hasAttr<DLLImportAttr>();
2098       return SafeToInline;
2099     }
2100 
2101     bool VisitCXXConstructExpr(CXXConstructExpr *E) {
2102       SafeToInline = E->getConstructor()->hasAttr<DLLImportAttr>();
2103       return SafeToInline;
2104     }
2105 
2106     bool VisitCXXMemberCallExpr(CXXMemberCallExpr *E) {
2107       CXXMethodDecl *M = E->getMethodDecl();
2108       if (!M) {
2109         // Call through a pointer to member function. This is safe to inline.
2110         SafeToInline = true;
2111       } else {
2112         SafeToInline = M->hasAttr<DLLImportAttr>();
2113       }
2114       return SafeToInline;
2115     }
2116 
2117     bool VisitCXXDeleteExpr(CXXDeleteExpr *E) {
2118       SafeToInline = E->getOperatorDelete()->hasAttr<DLLImportAttr>();
2119       return SafeToInline;
2120     }
2121 
2122     bool VisitCXXNewExpr(CXXNewExpr *E) {
2123       SafeToInline = E->getOperatorNew()->hasAttr<DLLImportAttr>();
2124       return SafeToInline;
2125     }
2126   };
2127 }
2128 
2129 // isTriviallyRecursive - Check if this function calls another
2130 // decl that, because of the asm attribute or the other decl being a builtin,
2131 // ends up pointing to itself.
2132 bool
2133 CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) {
2134   StringRef Name;
2135   if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) {
2136     // asm labels are a special kind of mangling we have to support.
2137     AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
2138     if (!Attr)
2139       return false;
2140     Name = Attr->getLabel();
2141   } else {
2142     Name = FD->getName();
2143   }
2144 
2145   FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo);
2146   Walker.TraverseFunctionDecl(const_cast<FunctionDecl*>(FD));
2147   return Walker.Result;
2148 }
2149 
2150 bool CodeGenModule::shouldEmitFunction(GlobalDecl GD) {
2151   if (getFunctionLinkage(GD) != llvm::Function::AvailableExternallyLinkage)
2152     return true;
2153   const auto *F = cast<FunctionDecl>(GD.getDecl());
2154   if (CodeGenOpts.OptimizationLevel == 0 && !F->hasAttr<AlwaysInlineAttr>())
2155     return false;
2156 
2157   if (F->hasAttr<DLLImportAttr>()) {
2158     // Check whether it would be safe to inline this dllimport function.
2159     DLLImportFunctionVisitor Visitor;
2160     Visitor.TraverseFunctionDecl(const_cast<FunctionDecl*>(F));
2161     if (!Visitor.SafeToInline)
2162       return false;
2163 
2164     if (const CXXDestructorDecl *Dtor = dyn_cast<CXXDestructorDecl>(F)) {
2165       // Implicit destructor invocations aren't captured in the AST, so the
2166       // check above can't see them. Check for them manually here.
2167       for (const Decl *Member : Dtor->getParent()->decls())
2168         if (isa<FieldDecl>(Member))
2169           if (HasNonDllImportDtor(cast<FieldDecl>(Member)->getType()))
2170             return false;
2171       for (const CXXBaseSpecifier &B : Dtor->getParent()->bases())
2172         if (HasNonDllImportDtor(B.getType()))
2173           return false;
2174     }
2175   }
2176 
2177   // PR9614. Avoid cases where the source code is lying to us. An available
2178   // externally function should have an equivalent function somewhere else,
2179   // but a function that calls itself is clearly not equivalent to the real
2180   // implementation.
2181   // This happens in glibc's btowc and in some configure checks.
2182   return !isTriviallyRecursive(F);
2183 }
2184 
2185 bool CodeGenModule::shouldOpportunisticallyEmitVTables() {
2186   return CodeGenOpts.OptimizationLevel > 0;
2187 }
2188 
2189 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD, llvm::GlobalValue *GV) {
2190   const auto *D = cast<ValueDecl>(GD.getDecl());
2191 
2192   PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(),
2193                                  Context.getSourceManager(),
2194                                  "Generating code for declaration");
2195 
2196   if (isa<FunctionDecl>(D)) {
2197     // At -O0, don't generate IR for functions with available_externally
2198     // linkage.
2199     if (!shouldEmitFunction(GD))
2200       return;
2201 
2202     if (const auto *Method = dyn_cast<CXXMethodDecl>(D)) {
2203       // Make sure to emit the definition(s) before we emit the thunks.
2204       // This is necessary for the generation of certain thunks.
2205       if (const auto *CD = dyn_cast<CXXConstructorDecl>(Method))
2206         ABI->emitCXXStructor(CD, getFromCtorType(GD.getCtorType()));
2207       else if (const auto *DD = dyn_cast<CXXDestructorDecl>(Method))
2208         ABI->emitCXXStructor(DD, getFromDtorType(GD.getDtorType()));
2209       else
2210         EmitGlobalFunctionDefinition(GD, GV);
2211 
2212       if (Method->isVirtual())
2213         getVTables().EmitThunks(GD);
2214 
2215       return;
2216     }
2217 
2218     return EmitGlobalFunctionDefinition(GD, GV);
2219   }
2220 
2221   if (const auto *VD = dyn_cast<VarDecl>(D))
2222     return EmitGlobalVarDefinition(VD, !VD->hasDefinition());
2223 
2224   llvm_unreachable("Invalid argument to EmitGlobalDefinition()");
2225 }
2226 
2227 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
2228                                                       llvm::Function *NewFn);
2229 
2230 void CodeGenModule::emitMultiVersionFunctions() {
2231   for (GlobalDecl GD : MultiVersionFuncs) {
2232     SmallVector<CodeGenFunction::MultiVersionResolverOption, 10> Options;
2233     const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
2234     getContext().forEachMultiversionedFunctionVersion(
2235         FD, [this, &GD, &Options](const FunctionDecl *CurFD) {
2236           GlobalDecl CurGD{
2237               (CurFD->isDefined() ? CurFD->getDefinition() : CurFD)};
2238           StringRef MangledName = getMangledName(CurGD);
2239           llvm::Constant *Func = GetGlobalValue(MangledName);
2240           if (!Func) {
2241             if (CurFD->isDefined()) {
2242               EmitGlobalFunctionDefinition(CurGD, nullptr);
2243               Func = GetGlobalValue(MangledName);
2244             } else {
2245               const CGFunctionInfo &FI =
2246                   getTypes().arrangeGlobalDeclaration(GD);
2247               llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
2248               Func = GetAddrOfFunction(CurGD, Ty, /*ForVTable=*/false,
2249                                        /*DontDefer=*/false, ForDefinition);
2250             }
2251             assert(Func && "This should have just been created");
2252           }
2253           Options.emplace_back(getTarget(), cast<llvm::Function>(Func),
2254                                CurFD->getAttr<TargetAttr>()->parse());
2255         });
2256 
2257     llvm::Function *ResolverFunc = cast<llvm::Function>(
2258         GetGlobalValue((getMangledName(GD) + ".resolver").str()));
2259     if (supportsCOMDAT())
2260       ResolverFunc->setComdat(
2261           getModule().getOrInsertComdat(ResolverFunc->getName()));
2262     std::stable_sort(
2263         Options.begin(), Options.end(),
2264         std::greater<CodeGenFunction::MultiVersionResolverOption>());
2265     CodeGenFunction CGF(*this);
2266     CGF.EmitMultiVersionResolver(ResolverFunc, Options);
2267   }
2268 }
2269 
2270 /// If an ifunc for the specified mangled name is not in the module, create and
2271 /// return an llvm IFunc Function with the specified type.
2272 llvm::Constant *
2273 CodeGenModule::GetOrCreateMultiVersionIFunc(GlobalDecl GD, llvm::Type *DeclTy,
2274                                             StringRef MangledName,
2275                                             const FunctionDecl *FD) {
2276   std::string IFuncName = (MangledName + ".ifunc").str();
2277   if (llvm::GlobalValue *IFuncGV = GetGlobalValue(IFuncName))
2278     return IFuncGV;
2279 
2280   // Since this is the first time we've created this IFunc, make sure
2281   // that we put this multiversioned function into the list to be
2282   // replaced later.
2283   MultiVersionFuncs.push_back(GD);
2284 
2285   std::string ResolverName = (MangledName + ".resolver").str();
2286   llvm::Type *ResolverType = llvm::FunctionType::get(
2287       llvm::PointerType::get(DeclTy,
2288                              Context.getTargetAddressSpace(FD->getType())),
2289       false);
2290   llvm::Constant *Resolver =
2291       GetOrCreateLLVMFunction(ResolverName, ResolverType, GlobalDecl{},
2292                               /*ForVTable=*/false);
2293   llvm::GlobalIFunc *GIF = llvm::GlobalIFunc::create(
2294       DeclTy, 0, llvm::Function::ExternalLinkage, "", Resolver, &getModule());
2295   GIF->setName(IFuncName);
2296   SetCommonAttributes(FD, GIF);
2297 
2298   return GIF;
2299 }
2300 
2301 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the
2302 /// module, create and return an llvm Function with the specified type. If there
2303 /// is something in the module with the specified name, return it potentially
2304 /// bitcasted to the right type.
2305 ///
2306 /// If D is non-null, it specifies a decl that correspond to this.  This is used
2307 /// to set the attributes on the function when it is first created.
2308 llvm::Constant *CodeGenModule::GetOrCreateLLVMFunction(
2309     StringRef MangledName, llvm::Type *Ty, GlobalDecl GD, bool ForVTable,
2310     bool DontDefer, bool IsThunk, llvm::AttributeList ExtraAttrs,
2311     ForDefinition_t IsForDefinition) {
2312   const Decl *D = GD.getDecl();
2313 
2314   // Any attempts to use a MultiVersion function should result in retrieving
2315   // the iFunc instead. Name Mangling will handle the rest of the changes.
2316   if (const FunctionDecl *FD = cast_or_null<FunctionDecl>(D)) {
2317     if (FD->isMultiVersion() && FD->getAttr<TargetAttr>()->isDefaultVersion()) {
2318       UpdateMultiVersionNames(GD, FD);
2319       if (!IsForDefinition)
2320         return GetOrCreateMultiVersionIFunc(GD, Ty, MangledName, FD);
2321     }
2322   }
2323 
2324   // Lookup the entry, lazily creating it if necessary.
2325   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
2326   if (Entry) {
2327     if (WeakRefReferences.erase(Entry)) {
2328       const FunctionDecl *FD = cast_or_null<FunctionDecl>(D);
2329       if (FD && !FD->hasAttr<WeakAttr>())
2330         Entry->setLinkage(llvm::Function::ExternalLinkage);
2331     }
2332 
2333     // Handle dropped DLL attributes.
2334     if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>())
2335       Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
2336 
2337     // If there are two attempts to define the same mangled name, issue an
2338     // error.
2339     if (IsForDefinition && !Entry->isDeclaration()) {
2340       GlobalDecl OtherGD;
2341       // Check that GD is not yet in DiagnosedConflictingDefinitions is required
2342       // to make sure that we issue an error only once.
2343       if (lookupRepresentativeDecl(MangledName, OtherGD) &&
2344           (GD.getCanonicalDecl().getDecl() !=
2345            OtherGD.getCanonicalDecl().getDecl()) &&
2346           DiagnosedConflictingDefinitions.insert(GD).second) {
2347         getDiags().Report(D->getLocation(),
2348                           diag::err_duplicate_mangled_name);
2349         getDiags().Report(OtherGD.getDecl()->getLocation(),
2350                           diag::note_previous_definition);
2351       }
2352     }
2353 
2354     if ((isa<llvm::Function>(Entry) || isa<llvm::GlobalAlias>(Entry)) &&
2355         (Entry->getType()->getElementType() == Ty)) {
2356       return Entry;
2357     }
2358 
2359     // Make sure the result is of the correct type.
2360     // (If function is requested for a definition, we always need to create a new
2361     // function, not just return a bitcast.)
2362     if (!IsForDefinition)
2363       return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo());
2364   }
2365 
2366   // This function doesn't have a complete type (for example, the return
2367   // type is an incomplete struct). Use a fake type instead, and make
2368   // sure not to try to set attributes.
2369   bool IsIncompleteFunction = false;
2370 
2371   llvm::FunctionType *FTy;
2372   if (isa<llvm::FunctionType>(Ty)) {
2373     FTy = cast<llvm::FunctionType>(Ty);
2374   } else {
2375     FTy = llvm::FunctionType::get(VoidTy, false);
2376     IsIncompleteFunction = true;
2377   }
2378 
2379   llvm::Function *F =
2380       llvm::Function::Create(FTy, llvm::Function::ExternalLinkage,
2381                              Entry ? StringRef() : MangledName, &getModule());
2382 
2383   // If we already created a function with the same mangled name (but different
2384   // type) before, take its name and add it to the list of functions to be
2385   // replaced with F at the end of CodeGen.
2386   //
2387   // This happens if there is a prototype for a function (e.g. "int f()") and
2388   // then a definition of a different type (e.g. "int f(int x)").
2389   if (Entry) {
2390     F->takeName(Entry);
2391 
2392     // This might be an implementation of a function without a prototype, in
2393     // which case, try to do special replacement of calls which match the new
2394     // prototype.  The really key thing here is that we also potentially drop
2395     // arguments from the call site so as to make a direct call, which makes the
2396     // inliner happier and suppresses a number of optimizer warnings (!) about
2397     // dropping arguments.
2398     if (!Entry->use_empty()) {
2399       ReplaceUsesOfNonProtoTypeWithRealFunction(Entry, F);
2400       Entry->removeDeadConstantUsers();
2401     }
2402 
2403     llvm::Constant *BC = llvm::ConstantExpr::getBitCast(
2404         F, Entry->getType()->getElementType()->getPointerTo());
2405     addGlobalValReplacement(Entry, BC);
2406   }
2407 
2408   assert(F->getName() == MangledName && "name was uniqued!");
2409   if (D)
2410     SetFunctionAttributes(GD, F, IsIncompleteFunction, IsThunk,
2411                           IsForDefinition);
2412   if (ExtraAttrs.hasAttributes(llvm::AttributeList::FunctionIndex)) {
2413     llvm::AttrBuilder B(ExtraAttrs, llvm::AttributeList::FunctionIndex);
2414     F->addAttributes(llvm::AttributeList::FunctionIndex, B);
2415   }
2416 
2417   if (!DontDefer) {
2418     // All MSVC dtors other than the base dtor are linkonce_odr and delegate to
2419     // each other bottoming out with the base dtor.  Therefore we emit non-base
2420     // dtors on usage, even if there is no dtor definition in the TU.
2421     if (D && isa<CXXDestructorDecl>(D) &&
2422         getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D),
2423                                            GD.getDtorType()))
2424       addDeferredDeclToEmit(GD);
2425 
2426     // This is the first use or definition of a mangled name.  If there is a
2427     // deferred decl with this name, remember that we need to emit it at the end
2428     // of the file.
2429     auto DDI = DeferredDecls.find(MangledName);
2430     if (DDI != DeferredDecls.end()) {
2431       // Move the potentially referenced deferred decl to the
2432       // DeferredDeclsToEmit list, and remove it from DeferredDecls (since we
2433       // don't need it anymore).
2434       addDeferredDeclToEmit(DDI->second);
2435       DeferredDecls.erase(DDI);
2436 
2437       // Otherwise, there are cases we have to worry about where we're
2438       // using a declaration for which we must emit a definition but where
2439       // we might not find a top-level definition:
2440       //   - member functions defined inline in their classes
2441       //   - friend functions defined inline in some class
2442       //   - special member functions with implicit definitions
2443       // If we ever change our AST traversal to walk into class methods,
2444       // this will be unnecessary.
2445       //
2446       // We also don't emit a definition for a function if it's going to be an
2447       // entry in a vtable, unless it's already marked as used.
2448     } else if (getLangOpts().CPlusPlus && D) {
2449       // Look for a declaration that's lexically in a record.
2450       for (const auto *FD = cast<FunctionDecl>(D)->getMostRecentDecl(); FD;
2451            FD = FD->getPreviousDecl()) {
2452         if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) {
2453           if (FD->doesThisDeclarationHaveABody()) {
2454             addDeferredDeclToEmit(GD.getWithDecl(FD));
2455             break;
2456           }
2457         }
2458       }
2459     }
2460   }
2461 
2462   // Make sure the result is of the requested type.
2463   if (!IsIncompleteFunction) {
2464     assert(F->getType()->getElementType() == Ty);
2465     return F;
2466   }
2467 
2468   llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
2469   return llvm::ConstantExpr::getBitCast(F, PTy);
2470 }
2471 
2472 /// GetAddrOfFunction - Return the address of the given function.  If Ty is
2473 /// non-null, then this function will use the specified type if it has to
2474 /// create it (this occurs when we see a definition of the function).
2475 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD,
2476                                                  llvm::Type *Ty,
2477                                                  bool ForVTable,
2478                                                  bool DontDefer,
2479                                               ForDefinition_t IsForDefinition) {
2480   // If there was no specific requested type, just convert it now.
2481   if (!Ty) {
2482     const auto *FD = cast<FunctionDecl>(GD.getDecl());
2483     auto CanonTy = Context.getCanonicalType(FD->getType());
2484     Ty = getTypes().ConvertFunctionType(CanonTy, FD);
2485   }
2486 
2487   StringRef MangledName = getMangledName(GD);
2488   return GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable, DontDefer,
2489                                  /*IsThunk=*/false, llvm::AttributeList(),
2490                                  IsForDefinition);
2491 }
2492 
2493 static const FunctionDecl *
2494 GetRuntimeFunctionDecl(ASTContext &C, StringRef Name) {
2495   TranslationUnitDecl *TUDecl = C.getTranslationUnitDecl();
2496   DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl);
2497 
2498   IdentifierInfo &CII = C.Idents.get(Name);
2499   for (const auto &Result : DC->lookup(&CII))
2500     if (const auto FD = dyn_cast<FunctionDecl>(Result))
2501       return FD;
2502 
2503   if (!C.getLangOpts().CPlusPlus)
2504     return nullptr;
2505 
2506   // Demangle the premangled name from getTerminateFn()
2507   IdentifierInfo &CXXII =
2508       (Name == "_ZSt9terminatev" || Name == "\01?terminate@@YAXXZ")
2509           ? C.Idents.get("terminate")
2510           : C.Idents.get(Name);
2511 
2512   for (const auto &N : {"__cxxabiv1", "std"}) {
2513     IdentifierInfo &NS = C.Idents.get(N);
2514     for (const auto &Result : DC->lookup(&NS)) {
2515       NamespaceDecl *ND = dyn_cast<NamespaceDecl>(Result);
2516       if (auto LSD = dyn_cast<LinkageSpecDecl>(Result))
2517         for (const auto &Result : LSD->lookup(&NS))
2518           if ((ND = dyn_cast<NamespaceDecl>(Result)))
2519             break;
2520 
2521       if (ND)
2522         for (const auto &Result : ND->lookup(&CXXII))
2523           if (const auto *FD = dyn_cast<FunctionDecl>(Result))
2524             return FD;
2525     }
2526   }
2527 
2528   return nullptr;
2529 }
2530 
2531 /// CreateRuntimeFunction - Create a new runtime function with the specified
2532 /// type and name.
2533 llvm::Constant *
2534 CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy, StringRef Name,
2535                                      llvm::AttributeList ExtraAttrs,
2536                                      bool Local) {
2537   llvm::Constant *C =
2538       GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false,
2539                               /*DontDefer=*/false, /*IsThunk=*/false,
2540                               ExtraAttrs);
2541 
2542   if (auto *F = dyn_cast<llvm::Function>(C)) {
2543     if (F->empty()) {
2544       F->setCallingConv(getRuntimeCC());
2545 
2546       if (!Local && getTriple().isOSBinFormatCOFF() &&
2547           !getCodeGenOpts().LTOVisibilityPublicStd &&
2548           !getTriple().isWindowsGNUEnvironment()) {
2549         const FunctionDecl *FD = GetRuntimeFunctionDecl(Context, Name);
2550         if (!FD || FD->hasAttr<DLLImportAttr>()) {
2551           F->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass);
2552           F->setLinkage(llvm::GlobalValue::ExternalLinkage);
2553         }
2554       }
2555     }
2556   }
2557 
2558   return C;
2559 }
2560 
2561 /// CreateBuiltinFunction - Create a new builtin function with the specified
2562 /// type and name.
2563 llvm::Constant *
2564 CodeGenModule::CreateBuiltinFunction(llvm::FunctionType *FTy, StringRef Name,
2565                                      llvm::AttributeList ExtraAttrs) {
2566   llvm::Constant *C =
2567       GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false,
2568                               /*DontDefer=*/false, /*IsThunk=*/false, ExtraAttrs);
2569   if (auto *F = dyn_cast<llvm::Function>(C))
2570     if (F->empty())
2571       F->setCallingConv(getBuiltinCC());
2572   return C;
2573 }
2574 
2575 /// isTypeConstant - Determine whether an object of this type can be emitted
2576 /// as a constant.
2577 ///
2578 /// If ExcludeCtor is true, the duration when the object's constructor runs
2579 /// will not be considered. The caller will need to verify that the object is
2580 /// not written to during its construction.
2581 bool CodeGenModule::isTypeConstant(QualType Ty, bool ExcludeCtor) {
2582   if (!Ty.isConstant(Context) && !Ty->isReferenceType())
2583     return false;
2584 
2585   if (Context.getLangOpts().CPlusPlus) {
2586     if (const CXXRecordDecl *Record
2587           = Context.getBaseElementType(Ty)->getAsCXXRecordDecl())
2588       return ExcludeCtor && !Record->hasMutableFields() &&
2589              Record->hasTrivialDestructor();
2590   }
2591 
2592   return true;
2593 }
2594 
2595 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module,
2596 /// create and return an llvm GlobalVariable with the specified type.  If there
2597 /// is something in the module with the specified name, return it potentially
2598 /// bitcasted to the right type.
2599 ///
2600 /// If D is non-null, it specifies a decl that correspond to this.  This is used
2601 /// to set the attributes on the global when it is first created.
2602 ///
2603 /// If IsForDefinition is true, it is guranteed that an actual global with
2604 /// type Ty will be returned, not conversion of a variable with the same
2605 /// mangled name but some other type.
2606 llvm::Constant *
2607 CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName,
2608                                      llvm::PointerType *Ty,
2609                                      const VarDecl *D,
2610                                      ForDefinition_t IsForDefinition) {
2611   // Lookup the entry, lazily creating it if necessary.
2612   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
2613   if (Entry) {
2614     if (WeakRefReferences.erase(Entry)) {
2615       if (D && !D->hasAttr<WeakAttr>())
2616         Entry->setLinkage(llvm::Function::ExternalLinkage);
2617     }
2618 
2619     // Handle dropped DLL attributes.
2620     if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>())
2621       Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
2622 
2623     if (Entry->getType() == Ty)
2624       return Entry;
2625 
2626     // If there are two attempts to define the same mangled name, issue an
2627     // error.
2628     if (IsForDefinition && !Entry->isDeclaration()) {
2629       GlobalDecl OtherGD;
2630       const VarDecl *OtherD;
2631 
2632       // Check that D is not yet in DiagnosedConflictingDefinitions is required
2633       // to make sure that we issue an error only once.
2634       if (D && lookupRepresentativeDecl(MangledName, OtherGD) &&
2635           (D->getCanonicalDecl() != OtherGD.getCanonicalDecl().getDecl()) &&
2636           (OtherD = dyn_cast<VarDecl>(OtherGD.getDecl())) &&
2637           OtherD->hasInit() &&
2638           DiagnosedConflictingDefinitions.insert(D).second) {
2639         getDiags().Report(D->getLocation(),
2640                           diag::err_duplicate_mangled_name);
2641         getDiags().Report(OtherGD.getDecl()->getLocation(),
2642                           diag::note_previous_definition);
2643       }
2644     }
2645 
2646     // Make sure the result is of the correct type.
2647     if (Entry->getType()->getAddressSpace() != Ty->getAddressSpace())
2648       return llvm::ConstantExpr::getAddrSpaceCast(Entry, Ty);
2649 
2650     // (If global is requested for a definition, we always need to create a new
2651     // global, not just return a bitcast.)
2652     if (!IsForDefinition)
2653       return llvm::ConstantExpr::getBitCast(Entry, Ty);
2654   }
2655 
2656   auto AddrSpace = GetGlobalVarAddressSpace(D);
2657   auto TargetAddrSpace = getContext().getTargetAddressSpace(AddrSpace);
2658 
2659   auto *GV = new llvm::GlobalVariable(
2660       getModule(), Ty->getElementType(), false,
2661       llvm::GlobalValue::ExternalLinkage, nullptr, MangledName, nullptr,
2662       llvm::GlobalVariable::NotThreadLocal, TargetAddrSpace);
2663 
2664   // If we already created a global with the same mangled name (but different
2665   // type) before, take its name and remove it from its parent.
2666   if (Entry) {
2667     GV->takeName(Entry);
2668 
2669     if (!Entry->use_empty()) {
2670       llvm::Constant *NewPtrForOldDecl =
2671           llvm::ConstantExpr::getBitCast(GV, Entry->getType());
2672       Entry->replaceAllUsesWith(NewPtrForOldDecl);
2673     }
2674 
2675     Entry->eraseFromParent();
2676   }
2677 
2678   // This is the first use or definition of a mangled name.  If there is a
2679   // deferred decl with this name, remember that we need to emit it at the end
2680   // of the file.
2681   auto DDI = DeferredDecls.find(MangledName);
2682   if (DDI != DeferredDecls.end()) {
2683     // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
2684     // list, and remove it from DeferredDecls (since we don't need it anymore).
2685     addDeferredDeclToEmit(DDI->second);
2686     DeferredDecls.erase(DDI);
2687   }
2688 
2689   // Handle things which are present even on external declarations.
2690   if (D) {
2691     // FIXME: This code is overly simple and should be merged with other global
2692     // handling.
2693     GV->setConstant(isTypeConstant(D->getType(), false));
2694 
2695     GV->setAlignment(getContext().getDeclAlign(D).getQuantity());
2696 
2697     setLinkageForGV(GV, D);
2698     setGVProperties(GV, D, NotForDefinition);
2699 
2700     if (D->getTLSKind()) {
2701       if (D->getTLSKind() == VarDecl::TLS_Dynamic)
2702         CXXThreadLocals.push_back(D);
2703       setTLSMode(GV, *D);
2704     }
2705 
2706     // If required by the ABI, treat declarations of static data members with
2707     // inline initializers as definitions.
2708     if (getContext().isMSStaticDataMemberInlineDefinition(D)) {
2709       EmitGlobalVarDefinition(D);
2710     }
2711 
2712     // Emit section information for extern variables.
2713     if (D->hasExternalStorage()) {
2714       if (const SectionAttr *SA = D->getAttr<SectionAttr>())
2715         GV->setSection(SA->getName());
2716     }
2717 
2718     // Handle XCore specific ABI requirements.
2719     if (getTriple().getArch() == llvm::Triple::xcore &&
2720         D->getLanguageLinkage() == CLanguageLinkage &&
2721         D->getType().isConstant(Context) &&
2722         isExternallyVisible(D->getLinkageAndVisibility().getLinkage()))
2723       GV->setSection(".cp.rodata");
2724 
2725     // Check if we a have a const declaration with an initializer, we may be
2726     // able to emit it as available_externally to expose it's value to the
2727     // optimizer.
2728     if (Context.getLangOpts().CPlusPlus && GV->hasExternalLinkage() &&
2729         D->getType().isConstQualified() && !GV->hasInitializer() &&
2730         !D->hasDefinition() && D->hasInit() && !D->hasAttr<DLLImportAttr>()) {
2731       const auto *Record =
2732           Context.getBaseElementType(D->getType())->getAsCXXRecordDecl();
2733       bool HasMutableFields = Record && Record->hasMutableFields();
2734       if (!HasMutableFields) {
2735         const VarDecl *InitDecl;
2736         const Expr *InitExpr = D->getAnyInitializer(InitDecl);
2737         if (InitExpr) {
2738           ConstantEmitter emitter(*this);
2739           llvm::Constant *Init = emitter.tryEmitForInitializer(*InitDecl);
2740           if (Init) {
2741             auto *InitType = Init->getType();
2742             if (GV->getType()->getElementType() != InitType) {
2743               // The type of the initializer does not match the definition.
2744               // This happens when an initializer has a different type from
2745               // the type of the global (because of padding at the end of a
2746               // structure for instance).
2747               GV->setName(StringRef());
2748               // Make a new global with the correct type, this is now guaranteed
2749               // to work.
2750               auto *NewGV = cast<llvm::GlobalVariable>(
2751                   GetAddrOfGlobalVar(D, InitType, IsForDefinition));
2752 
2753               // Erase the old global, since it is no longer used.
2754               cast<llvm::GlobalValue>(GV)->eraseFromParent();
2755               GV = NewGV;
2756             } else {
2757               GV->setInitializer(Init);
2758               GV->setConstant(true);
2759               GV->setLinkage(llvm::GlobalValue::AvailableExternallyLinkage);
2760             }
2761             emitter.finalize(GV);
2762           }
2763         }
2764       }
2765     }
2766   }
2767 
2768   LangAS ExpectedAS =
2769       D ? D->getType().getAddressSpace()
2770         : (LangOpts.OpenCL ? LangAS::opencl_global : LangAS::Default);
2771   assert(getContext().getTargetAddressSpace(ExpectedAS) ==
2772          Ty->getPointerAddressSpace());
2773   if (AddrSpace != ExpectedAS)
2774     return getTargetCodeGenInfo().performAddrSpaceCast(*this, GV, AddrSpace,
2775                                                        ExpectedAS, Ty);
2776 
2777   return GV;
2778 }
2779 
2780 llvm::Constant *
2781 CodeGenModule::GetAddrOfGlobal(GlobalDecl GD,
2782                                ForDefinition_t IsForDefinition) {
2783   const Decl *D = GD.getDecl();
2784   if (isa<CXXConstructorDecl>(D))
2785     return getAddrOfCXXStructor(cast<CXXConstructorDecl>(D),
2786                                 getFromCtorType(GD.getCtorType()),
2787                                 /*FnInfo=*/nullptr, /*FnType=*/nullptr,
2788                                 /*DontDefer=*/false, IsForDefinition);
2789   else if (isa<CXXDestructorDecl>(D))
2790     return getAddrOfCXXStructor(cast<CXXDestructorDecl>(D),
2791                                 getFromDtorType(GD.getDtorType()),
2792                                 /*FnInfo=*/nullptr, /*FnType=*/nullptr,
2793                                 /*DontDefer=*/false, IsForDefinition);
2794   else if (isa<CXXMethodDecl>(D)) {
2795     auto FInfo = &getTypes().arrangeCXXMethodDeclaration(
2796         cast<CXXMethodDecl>(D));
2797     auto Ty = getTypes().GetFunctionType(*FInfo);
2798     return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false,
2799                              IsForDefinition);
2800   } else if (isa<FunctionDecl>(D)) {
2801     const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
2802     llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
2803     return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false,
2804                              IsForDefinition);
2805   } else
2806     return GetAddrOfGlobalVar(cast<VarDecl>(D), /*Ty=*/nullptr,
2807                               IsForDefinition);
2808 }
2809 
2810 llvm::GlobalVariable *
2811 CodeGenModule::CreateOrReplaceCXXRuntimeVariable(StringRef Name,
2812                                       llvm::Type *Ty,
2813                                       llvm::GlobalValue::LinkageTypes Linkage) {
2814   llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name);
2815   llvm::GlobalVariable *OldGV = nullptr;
2816 
2817   if (GV) {
2818     // Check if the variable has the right type.
2819     if (GV->getType()->getElementType() == Ty)
2820       return GV;
2821 
2822     // Because C++ name mangling, the only way we can end up with an already
2823     // existing global with the same name is if it has been declared extern "C".
2824     assert(GV->isDeclaration() && "Declaration has wrong type!");
2825     OldGV = GV;
2826   }
2827 
2828   // Create a new variable.
2829   GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true,
2830                                 Linkage, nullptr, Name);
2831 
2832   if (OldGV) {
2833     // Replace occurrences of the old variable if needed.
2834     GV->takeName(OldGV);
2835 
2836     if (!OldGV->use_empty()) {
2837       llvm::Constant *NewPtrForOldDecl =
2838       llvm::ConstantExpr::getBitCast(GV, OldGV->getType());
2839       OldGV->replaceAllUsesWith(NewPtrForOldDecl);
2840     }
2841 
2842     OldGV->eraseFromParent();
2843   }
2844 
2845   if (supportsCOMDAT() && GV->isWeakForLinker() &&
2846       !GV->hasAvailableExternallyLinkage())
2847     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
2848 
2849   return GV;
2850 }
2851 
2852 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the
2853 /// given global variable.  If Ty is non-null and if the global doesn't exist,
2854 /// then it will be created with the specified type instead of whatever the
2855 /// normal requested type would be. If IsForDefinition is true, it is guranteed
2856 /// that an actual global with type Ty will be returned, not conversion of a
2857 /// variable with the same mangled name but some other type.
2858 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D,
2859                                                   llvm::Type *Ty,
2860                                            ForDefinition_t IsForDefinition) {
2861   assert(D->hasGlobalStorage() && "Not a global variable");
2862   QualType ASTTy = D->getType();
2863   if (!Ty)
2864     Ty = getTypes().ConvertTypeForMem(ASTTy);
2865 
2866   llvm::PointerType *PTy =
2867     llvm::PointerType::get(Ty, getContext().getTargetAddressSpace(ASTTy));
2868 
2869   StringRef MangledName = getMangledName(D);
2870   return GetOrCreateLLVMGlobal(MangledName, PTy, D, IsForDefinition);
2871 }
2872 
2873 /// CreateRuntimeVariable - Create a new runtime global variable with the
2874 /// specified type and name.
2875 llvm::Constant *
2876 CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty,
2877                                      StringRef Name) {
2878   return GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), nullptr);
2879 }
2880 
2881 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) {
2882   assert(!D->getInit() && "Cannot emit definite definitions here!");
2883 
2884   StringRef MangledName = getMangledName(D);
2885   llvm::GlobalValue *GV = GetGlobalValue(MangledName);
2886 
2887   // We already have a definition, not declaration, with the same mangled name.
2888   // Emitting of declaration is not required (and actually overwrites emitted
2889   // definition).
2890   if (GV && !GV->isDeclaration())
2891     return;
2892 
2893   // If we have not seen a reference to this variable yet, place it into the
2894   // deferred declarations table to be emitted if needed later.
2895   if (!MustBeEmitted(D) && !GV) {
2896       DeferredDecls[MangledName] = D;
2897       return;
2898   }
2899 
2900   // The tentative definition is the only definition.
2901   EmitGlobalVarDefinition(D);
2902 }
2903 
2904 CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const {
2905   return Context.toCharUnitsFromBits(
2906       getDataLayout().getTypeStoreSizeInBits(Ty));
2907 }
2908 
2909 LangAS CodeGenModule::GetGlobalVarAddressSpace(const VarDecl *D) {
2910   LangAS AddrSpace = LangAS::Default;
2911   if (LangOpts.OpenCL) {
2912     AddrSpace = D ? D->getType().getAddressSpace() : LangAS::opencl_global;
2913     assert(AddrSpace == LangAS::opencl_global ||
2914            AddrSpace == LangAS::opencl_constant ||
2915            AddrSpace == LangAS::opencl_local ||
2916            AddrSpace >= LangAS::FirstTargetAddressSpace);
2917     return AddrSpace;
2918   }
2919 
2920   if (LangOpts.CUDA && LangOpts.CUDAIsDevice) {
2921     if (D && D->hasAttr<CUDAConstantAttr>())
2922       return LangAS::cuda_constant;
2923     else if (D && D->hasAttr<CUDASharedAttr>())
2924       return LangAS::cuda_shared;
2925     else
2926       return LangAS::cuda_device;
2927   }
2928 
2929   return getTargetCodeGenInfo().getGlobalVarAddressSpace(*this, D);
2930 }
2931 
2932 template<typename SomeDecl>
2933 void CodeGenModule::MaybeHandleStaticInExternC(const SomeDecl *D,
2934                                                llvm::GlobalValue *GV) {
2935   if (!getLangOpts().CPlusPlus)
2936     return;
2937 
2938   // Must have 'used' attribute, or else inline assembly can't rely on
2939   // the name existing.
2940   if (!D->template hasAttr<UsedAttr>())
2941     return;
2942 
2943   // Must have internal linkage and an ordinary name.
2944   if (!D->getIdentifier() || D->getFormalLinkage() != InternalLinkage)
2945     return;
2946 
2947   // Must be in an extern "C" context. Entities declared directly within
2948   // a record are not extern "C" even if the record is in such a context.
2949   const SomeDecl *First = D->getFirstDecl();
2950   if (First->getDeclContext()->isRecord() || !First->isInExternCContext())
2951     return;
2952 
2953   // OK, this is an internal linkage entity inside an extern "C" linkage
2954   // specification. Make a note of that so we can give it the "expected"
2955   // mangled name if nothing else is using that name.
2956   std::pair<StaticExternCMap::iterator, bool> R =
2957       StaticExternCValues.insert(std::make_pair(D->getIdentifier(), GV));
2958 
2959   // If we have multiple internal linkage entities with the same name
2960   // in extern "C" regions, none of them gets that name.
2961   if (!R.second)
2962     R.first->second = nullptr;
2963 }
2964 
2965 static bool shouldBeInCOMDAT(CodeGenModule &CGM, const Decl &D) {
2966   if (!CGM.supportsCOMDAT())
2967     return false;
2968 
2969   if (D.hasAttr<SelectAnyAttr>())
2970     return true;
2971 
2972   GVALinkage Linkage;
2973   if (auto *VD = dyn_cast<VarDecl>(&D))
2974     Linkage = CGM.getContext().GetGVALinkageForVariable(VD);
2975   else
2976     Linkage = CGM.getContext().GetGVALinkageForFunction(cast<FunctionDecl>(&D));
2977 
2978   switch (Linkage) {
2979   case GVA_Internal:
2980   case GVA_AvailableExternally:
2981   case GVA_StrongExternal:
2982     return false;
2983   case GVA_DiscardableODR:
2984   case GVA_StrongODR:
2985     return true;
2986   }
2987   llvm_unreachable("No such linkage");
2988 }
2989 
2990 void CodeGenModule::maybeSetTrivialComdat(const Decl &D,
2991                                           llvm::GlobalObject &GO) {
2992   if (!shouldBeInCOMDAT(*this, D))
2993     return;
2994   GO.setComdat(TheModule.getOrInsertComdat(GO.getName()));
2995 }
2996 
2997 /// Pass IsTentative as true if you want to create a tentative definition.
2998 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D,
2999                                             bool IsTentative) {
3000   // OpenCL global variables of sampler type are translated to function calls,
3001   // therefore no need to be translated.
3002   QualType ASTTy = D->getType();
3003   if (getLangOpts().OpenCL && ASTTy->isSamplerT())
3004     return;
3005 
3006   llvm::Constant *Init = nullptr;
3007   CXXRecordDecl *RD = ASTTy->getBaseElementTypeUnsafe()->getAsCXXRecordDecl();
3008   bool NeedsGlobalCtor = false;
3009   bool NeedsGlobalDtor = RD && !RD->hasTrivialDestructor();
3010 
3011   const VarDecl *InitDecl;
3012   const Expr *InitExpr = D->getAnyInitializer(InitDecl);
3013 
3014   Optional<ConstantEmitter> emitter;
3015 
3016   // CUDA E.2.4.1 "__shared__ variables cannot have an initialization
3017   // as part of their declaration."  Sema has already checked for
3018   // error cases, so we just need to set Init to UndefValue.
3019   if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice &&
3020       D->hasAttr<CUDASharedAttr>())
3021     Init = llvm::UndefValue::get(getTypes().ConvertType(ASTTy));
3022   else if (!InitExpr) {
3023     // This is a tentative definition; tentative definitions are
3024     // implicitly initialized with { 0 }.
3025     //
3026     // Note that tentative definitions are only emitted at the end of
3027     // a translation unit, so they should never have incomplete
3028     // type. In addition, EmitTentativeDefinition makes sure that we
3029     // never attempt to emit a tentative definition if a real one
3030     // exists. A use may still exists, however, so we still may need
3031     // to do a RAUW.
3032     assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type");
3033     Init = EmitNullConstant(D->getType());
3034   } else {
3035     initializedGlobalDecl = GlobalDecl(D);
3036     emitter.emplace(*this);
3037     Init = emitter->tryEmitForInitializer(*InitDecl);
3038 
3039     if (!Init) {
3040       QualType T = InitExpr->getType();
3041       if (D->getType()->isReferenceType())
3042         T = D->getType();
3043 
3044       if (getLangOpts().CPlusPlus) {
3045         Init = EmitNullConstant(T);
3046         NeedsGlobalCtor = true;
3047       } else {
3048         ErrorUnsupported(D, "static initializer");
3049         Init = llvm::UndefValue::get(getTypes().ConvertType(T));
3050       }
3051     } else {
3052       // We don't need an initializer, so remove the entry for the delayed
3053       // initializer position (just in case this entry was delayed) if we
3054       // also don't need to register a destructor.
3055       if (getLangOpts().CPlusPlus && !NeedsGlobalDtor)
3056         DelayedCXXInitPosition.erase(D);
3057     }
3058   }
3059 
3060   llvm::Type* InitType = Init->getType();
3061   llvm::Constant *Entry =
3062       GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative));
3063 
3064   // Strip off a bitcast if we got one back.
3065   if (auto *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
3066     assert(CE->getOpcode() == llvm::Instruction::BitCast ||
3067            CE->getOpcode() == llvm::Instruction::AddrSpaceCast ||
3068            // All zero index gep.
3069            CE->getOpcode() == llvm::Instruction::GetElementPtr);
3070     Entry = CE->getOperand(0);
3071   }
3072 
3073   // Entry is now either a Function or GlobalVariable.
3074   auto *GV = dyn_cast<llvm::GlobalVariable>(Entry);
3075 
3076   // We have a definition after a declaration with the wrong type.
3077   // We must make a new GlobalVariable* and update everything that used OldGV
3078   // (a declaration or tentative definition) with the new GlobalVariable*
3079   // (which will be a definition).
3080   //
3081   // This happens if there is a prototype for a global (e.g.
3082   // "extern int x[];") and then a definition of a different type (e.g.
3083   // "int x[10];"). This also happens when an initializer has a different type
3084   // from the type of the global (this happens with unions).
3085   if (!GV || GV->getType()->getElementType() != InitType ||
3086       GV->getType()->getAddressSpace() !=
3087           getContext().getTargetAddressSpace(GetGlobalVarAddressSpace(D))) {
3088 
3089     // Move the old entry aside so that we'll create a new one.
3090     Entry->setName(StringRef());
3091 
3092     // Make a new global with the correct type, this is now guaranteed to work.
3093     GV = cast<llvm::GlobalVariable>(
3094         GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative)));
3095 
3096     // Replace all uses of the old global with the new global
3097     llvm::Constant *NewPtrForOldDecl =
3098         llvm::ConstantExpr::getBitCast(GV, Entry->getType());
3099     Entry->replaceAllUsesWith(NewPtrForOldDecl);
3100 
3101     // Erase the old global, since it is no longer used.
3102     cast<llvm::GlobalValue>(Entry)->eraseFromParent();
3103   }
3104 
3105   MaybeHandleStaticInExternC(D, GV);
3106 
3107   if (D->hasAttr<AnnotateAttr>())
3108     AddGlobalAnnotations(D, GV);
3109 
3110   // Set the llvm linkage type as appropriate.
3111   llvm::GlobalValue::LinkageTypes Linkage =
3112       getLLVMLinkageVarDefinition(D, GV->isConstant());
3113 
3114   // CUDA B.2.1 "The __device__ qualifier declares a variable that resides on
3115   // the device. [...]"
3116   // CUDA B.2.2 "The __constant__ qualifier, optionally used together with
3117   // __device__, declares a variable that: [...]
3118   // Is accessible from all the threads within the grid and from the host
3119   // through the runtime library (cudaGetSymbolAddress() / cudaGetSymbolSize()
3120   // / cudaMemcpyToSymbol() / cudaMemcpyFromSymbol())."
3121   if (GV && LangOpts.CUDA) {
3122     if (LangOpts.CUDAIsDevice) {
3123       if (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>())
3124         GV->setExternallyInitialized(true);
3125     } else {
3126       // Host-side shadows of external declarations of device-side
3127       // global variables become internal definitions. These have to
3128       // be internal in order to prevent name conflicts with global
3129       // host variables with the same name in a different TUs.
3130       if (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>()) {
3131         Linkage = llvm::GlobalValue::InternalLinkage;
3132 
3133         // Shadow variables and their properties must be registered
3134         // with CUDA runtime.
3135         unsigned Flags = 0;
3136         if (!D->hasDefinition())
3137           Flags |= CGCUDARuntime::ExternDeviceVar;
3138         if (D->hasAttr<CUDAConstantAttr>())
3139           Flags |= CGCUDARuntime::ConstantDeviceVar;
3140         getCUDARuntime().registerDeviceVar(*GV, Flags);
3141       } else if (D->hasAttr<CUDASharedAttr>())
3142         // __shared__ variables are odd. Shadows do get created, but
3143         // they are not registered with the CUDA runtime, so they
3144         // can't really be used to access their device-side
3145         // counterparts. It's not clear yet whether it's nvcc's bug or
3146         // a feature, but we've got to do the same for compatibility.
3147         Linkage = llvm::GlobalValue::InternalLinkage;
3148     }
3149   }
3150 
3151   GV->setInitializer(Init);
3152   if (emitter) emitter->finalize(GV);
3153 
3154   // If it is safe to mark the global 'constant', do so now.
3155   GV->setConstant(!NeedsGlobalCtor && !NeedsGlobalDtor &&
3156                   isTypeConstant(D->getType(), true));
3157 
3158   // If it is in a read-only section, mark it 'constant'.
3159   if (const SectionAttr *SA = D->getAttr<SectionAttr>()) {
3160     const ASTContext::SectionInfo &SI = Context.SectionInfos[SA->getName()];
3161     if ((SI.SectionFlags & ASTContext::PSF_Write) == 0)
3162       GV->setConstant(true);
3163   }
3164 
3165   GV->setAlignment(getContext().getDeclAlign(D).getQuantity());
3166 
3167 
3168   // On Darwin, if the normal linkage of a C++ thread_local variable is
3169   // LinkOnce or Weak, we keep the normal linkage to prevent multiple
3170   // copies within a linkage unit; otherwise, the backing variable has
3171   // internal linkage and all accesses should just be calls to the
3172   // Itanium-specified entry point, which has the normal linkage of the
3173   // variable. This is to preserve the ability to change the implementation
3174   // behind the scenes.
3175   if (!D->isStaticLocal() && D->getTLSKind() == VarDecl::TLS_Dynamic &&
3176       Context.getTargetInfo().getTriple().isOSDarwin() &&
3177       !llvm::GlobalVariable::isLinkOnceLinkage(Linkage) &&
3178       !llvm::GlobalVariable::isWeakLinkage(Linkage))
3179     Linkage = llvm::GlobalValue::InternalLinkage;
3180 
3181   GV->setLinkage(Linkage);
3182   if (D->hasAttr<DLLImportAttr>())
3183     GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass);
3184   else if (D->hasAttr<DLLExportAttr>())
3185     GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass);
3186   else
3187     GV->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass);
3188 
3189   if (Linkage == llvm::GlobalVariable::CommonLinkage) {
3190     // common vars aren't constant even if declared const.
3191     GV->setConstant(false);
3192     // Tentative definition of global variables may be initialized with
3193     // non-zero null pointers. In this case they should have weak linkage
3194     // since common linkage must have zero initializer and must not have
3195     // explicit section therefore cannot have non-zero initial value.
3196     if (!GV->getInitializer()->isNullValue())
3197       GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage);
3198   }
3199 
3200   setNonAliasAttributes(D, GV);
3201 
3202   if (D->getTLSKind() && !GV->isThreadLocal()) {
3203     if (D->getTLSKind() == VarDecl::TLS_Dynamic)
3204       CXXThreadLocals.push_back(D);
3205     setTLSMode(GV, *D);
3206   }
3207 
3208   maybeSetTrivialComdat(*D, *GV);
3209 
3210   // Emit the initializer function if necessary.
3211   if (NeedsGlobalCtor || NeedsGlobalDtor)
3212     EmitCXXGlobalVarDeclInitFunc(D, GV, NeedsGlobalCtor);
3213 
3214   SanitizerMD->reportGlobalToASan(GV, *D, NeedsGlobalCtor);
3215 
3216   // Emit global variable debug information.
3217   if (CGDebugInfo *DI = getModuleDebugInfo())
3218     if (getCodeGenOpts().getDebugInfo() >= codegenoptions::LimitedDebugInfo)
3219       DI->EmitGlobalVariable(GV, D);
3220 }
3221 
3222 static bool isVarDeclStrongDefinition(const ASTContext &Context,
3223                                       CodeGenModule &CGM, const VarDecl *D,
3224                                       bool NoCommon) {
3225   // Don't give variables common linkage if -fno-common was specified unless it
3226   // was overridden by a NoCommon attribute.
3227   if ((NoCommon || D->hasAttr<NoCommonAttr>()) && !D->hasAttr<CommonAttr>())
3228     return true;
3229 
3230   // C11 6.9.2/2:
3231   //   A declaration of an identifier for an object that has file scope without
3232   //   an initializer, and without a storage-class specifier or with the
3233   //   storage-class specifier static, constitutes a tentative definition.
3234   if (D->getInit() || D->hasExternalStorage())
3235     return true;
3236 
3237   // A variable cannot be both common and exist in a section.
3238   if (D->hasAttr<SectionAttr>())
3239     return true;
3240 
3241   // A variable cannot be both common and exist in a section.
3242   // We dont try to determine which is the right section in the front-end.
3243   // If no specialized section name is applicable, it will resort to default.
3244   if (D->hasAttr<PragmaClangBSSSectionAttr>() ||
3245       D->hasAttr<PragmaClangDataSectionAttr>() ||
3246       D->hasAttr<PragmaClangRodataSectionAttr>())
3247     return true;
3248 
3249   // Thread local vars aren't considered common linkage.
3250   if (D->getTLSKind())
3251     return true;
3252 
3253   // Tentative definitions marked with WeakImportAttr are true definitions.
3254   if (D->hasAttr<WeakImportAttr>())
3255     return true;
3256 
3257   // A variable cannot be both common and exist in a comdat.
3258   if (shouldBeInCOMDAT(CGM, *D))
3259     return true;
3260 
3261   // Declarations with a required alignment do not have common linkage in MSVC
3262   // mode.
3263   if (Context.getTargetInfo().getCXXABI().isMicrosoft()) {
3264     if (D->hasAttr<AlignedAttr>())
3265       return true;
3266     QualType VarType = D->getType();
3267     if (Context.isAlignmentRequired(VarType))
3268       return true;
3269 
3270     if (const auto *RT = VarType->getAs<RecordType>()) {
3271       const RecordDecl *RD = RT->getDecl();
3272       for (const FieldDecl *FD : RD->fields()) {
3273         if (FD->isBitField())
3274           continue;
3275         if (FD->hasAttr<AlignedAttr>())
3276           return true;
3277         if (Context.isAlignmentRequired(FD->getType()))
3278           return true;
3279       }
3280     }
3281   }
3282 
3283   return false;
3284 }
3285 
3286 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageForDeclarator(
3287     const DeclaratorDecl *D, GVALinkage Linkage, bool IsConstantVariable) {
3288   if (Linkage == GVA_Internal)
3289     return llvm::Function::InternalLinkage;
3290 
3291   if (D->hasAttr<WeakAttr>()) {
3292     if (IsConstantVariable)
3293       return llvm::GlobalVariable::WeakODRLinkage;
3294     else
3295       return llvm::GlobalVariable::WeakAnyLinkage;
3296   }
3297 
3298   // We are guaranteed to have a strong definition somewhere else,
3299   // so we can use available_externally linkage.
3300   if (Linkage == GVA_AvailableExternally)
3301     return llvm::GlobalValue::AvailableExternallyLinkage;
3302 
3303   // Note that Apple's kernel linker doesn't support symbol
3304   // coalescing, so we need to avoid linkonce and weak linkages there.
3305   // Normally, this means we just map to internal, but for explicit
3306   // instantiations we'll map to external.
3307 
3308   // In C++, the compiler has to emit a definition in every translation unit
3309   // that references the function.  We should use linkonce_odr because
3310   // a) if all references in this translation unit are optimized away, we
3311   // don't need to codegen it.  b) if the function persists, it needs to be
3312   // merged with other definitions. c) C++ has the ODR, so we know the
3313   // definition is dependable.
3314   if (Linkage == GVA_DiscardableODR)
3315     return !Context.getLangOpts().AppleKext ? llvm::Function::LinkOnceODRLinkage
3316                                             : llvm::Function::InternalLinkage;
3317 
3318   // An explicit instantiation of a template has weak linkage, since
3319   // explicit instantiations can occur in multiple translation units
3320   // and must all be equivalent. However, we are not allowed to
3321   // throw away these explicit instantiations.
3322   //
3323   // We don't currently support CUDA device code spread out across multiple TUs,
3324   // so say that CUDA templates are either external (for kernels) or internal.
3325   // This lets llvm perform aggressive inter-procedural optimizations.
3326   if (Linkage == GVA_StrongODR) {
3327     if (Context.getLangOpts().AppleKext)
3328       return llvm::Function::ExternalLinkage;
3329     if (Context.getLangOpts().CUDA && Context.getLangOpts().CUDAIsDevice)
3330       return D->hasAttr<CUDAGlobalAttr>() ? llvm::Function::ExternalLinkage
3331                                           : llvm::Function::InternalLinkage;
3332     return llvm::Function::WeakODRLinkage;
3333   }
3334 
3335   // C++ doesn't have tentative definitions and thus cannot have common
3336   // linkage.
3337   if (!getLangOpts().CPlusPlus && isa<VarDecl>(D) &&
3338       !isVarDeclStrongDefinition(Context, *this, cast<VarDecl>(D),
3339                                  CodeGenOpts.NoCommon))
3340     return llvm::GlobalVariable::CommonLinkage;
3341 
3342   // selectany symbols are externally visible, so use weak instead of
3343   // linkonce.  MSVC optimizes away references to const selectany globals, so
3344   // all definitions should be the same and ODR linkage should be used.
3345   // http://msdn.microsoft.com/en-us/library/5tkz6s71.aspx
3346   if (D->hasAttr<SelectAnyAttr>())
3347     return llvm::GlobalVariable::WeakODRLinkage;
3348 
3349   // Otherwise, we have strong external linkage.
3350   assert(Linkage == GVA_StrongExternal);
3351   return llvm::GlobalVariable::ExternalLinkage;
3352 }
3353 
3354 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageVarDefinition(
3355     const VarDecl *VD, bool IsConstant) {
3356   GVALinkage Linkage = getContext().GetGVALinkageForVariable(VD);
3357   return getLLVMLinkageForDeclarator(VD, Linkage, IsConstant);
3358 }
3359 
3360 /// Replace the uses of a function that was declared with a non-proto type.
3361 /// We want to silently drop extra arguments from call sites
3362 static void replaceUsesOfNonProtoConstant(llvm::Constant *old,
3363                                           llvm::Function *newFn) {
3364   // Fast path.
3365   if (old->use_empty()) return;
3366 
3367   llvm::Type *newRetTy = newFn->getReturnType();
3368   SmallVector<llvm::Value*, 4> newArgs;
3369   SmallVector<llvm::OperandBundleDef, 1> newBundles;
3370 
3371   for (llvm::Value::use_iterator ui = old->use_begin(), ue = old->use_end();
3372          ui != ue; ) {
3373     llvm::Value::use_iterator use = ui++; // Increment before the use is erased.
3374     llvm::User *user = use->getUser();
3375 
3376     // Recognize and replace uses of bitcasts.  Most calls to
3377     // unprototyped functions will use bitcasts.
3378     if (auto *bitcast = dyn_cast<llvm::ConstantExpr>(user)) {
3379       if (bitcast->getOpcode() == llvm::Instruction::BitCast)
3380         replaceUsesOfNonProtoConstant(bitcast, newFn);
3381       continue;
3382     }
3383 
3384     // Recognize calls to the function.
3385     llvm::CallSite callSite(user);
3386     if (!callSite) continue;
3387     if (!callSite.isCallee(&*use)) continue;
3388 
3389     // If the return types don't match exactly, then we can't
3390     // transform this call unless it's dead.
3391     if (callSite->getType() != newRetTy && !callSite->use_empty())
3392       continue;
3393 
3394     // Get the call site's attribute list.
3395     SmallVector<llvm::AttributeSet, 8> newArgAttrs;
3396     llvm::AttributeList oldAttrs = callSite.getAttributes();
3397 
3398     // If the function was passed too few arguments, don't transform.
3399     unsigned newNumArgs = newFn->arg_size();
3400     if (callSite.arg_size() < newNumArgs) continue;
3401 
3402     // If extra arguments were passed, we silently drop them.
3403     // If any of the types mismatch, we don't transform.
3404     unsigned argNo = 0;
3405     bool dontTransform = false;
3406     for (llvm::Argument &A : newFn->args()) {
3407       if (callSite.getArgument(argNo)->getType() != A.getType()) {
3408         dontTransform = true;
3409         break;
3410       }
3411 
3412       // Add any parameter attributes.
3413       newArgAttrs.push_back(oldAttrs.getParamAttributes(argNo));
3414       argNo++;
3415     }
3416     if (dontTransform)
3417       continue;
3418 
3419     // Okay, we can transform this.  Create the new call instruction and copy
3420     // over the required information.
3421     newArgs.append(callSite.arg_begin(), callSite.arg_begin() + argNo);
3422 
3423     // Copy over any operand bundles.
3424     callSite.getOperandBundlesAsDefs(newBundles);
3425 
3426     llvm::CallSite newCall;
3427     if (callSite.isCall()) {
3428       newCall = llvm::CallInst::Create(newFn, newArgs, newBundles, "",
3429                                        callSite.getInstruction());
3430     } else {
3431       auto *oldInvoke = cast<llvm::InvokeInst>(callSite.getInstruction());
3432       newCall = llvm::InvokeInst::Create(newFn,
3433                                          oldInvoke->getNormalDest(),
3434                                          oldInvoke->getUnwindDest(),
3435                                          newArgs, newBundles, "",
3436                                          callSite.getInstruction());
3437     }
3438     newArgs.clear(); // for the next iteration
3439 
3440     if (!newCall->getType()->isVoidTy())
3441       newCall->takeName(callSite.getInstruction());
3442     newCall.setAttributes(llvm::AttributeList::get(
3443         newFn->getContext(), oldAttrs.getFnAttributes(),
3444         oldAttrs.getRetAttributes(), newArgAttrs));
3445     newCall.setCallingConv(callSite.getCallingConv());
3446 
3447     // Finally, remove the old call, replacing any uses with the new one.
3448     if (!callSite->use_empty())
3449       callSite->replaceAllUsesWith(newCall.getInstruction());
3450 
3451     // Copy debug location attached to CI.
3452     if (callSite->getDebugLoc())
3453       newCall->setDebugLoc(callSite->getDebugLoc());
3454 
3455     callSite->eraseFromParent();
3456   }
3457 }
3458 
3459 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we
3460 /// implement a function with no prototype, e.g. "int foo() {}".  If there are
3461 /// existing call uses of the old function in the module, this adjusts them to
3462 /// call the new function directly.
3463 ///
3464 /// This is not just a cleanup: the always_inline pass requires direct calls to
3465 /// functions to be able to inline them.  If there is a bitcast in the way, it
3466 /// won't inline them.  Instcombine normally deletes these calls, but it isn't
3467 /// run at -O0.
3468 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
3469                                                       llvm::Function *NewFn) {
3470   // If we're redefining a global as a function, don't transform it.
3471   if (!isa<llvm::Function>(Old)) return;
3472 
3473   replaceUsesOfNonProtoConstant(Old, NewFn);
3474 }
3475 
3476 void CodeGenModule::HandleCXXStaticMemberVarInstantiation(VarDecl *VD) {
3477   auto DK = VD->isThisDeclarationADefinition();
3478   if (DK == VarDecl::Definition && VD->hasAttr<DLLImportAttr>())
3479     return;
3480 
3481   TemplateSpecializationKind TSK = VD->getTemplateSpecializationKind();
3482   // If we have a definition, this might be a deferred decl. If the
3483   // instantiation is explicit, make sure we emit it at the end.
3484   if (VD->getDefinition() && TSK == TSK_ExplicitInstantiationDefinition)
3485     GetAddrOfGlobalVar(VD);
3486 
3487   EmitTopLevelDecl(VD);
3488 }
3489 
3490 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD,
3491                                                  llvm::GlobalValue *GV) {
3492   const auto *D = cast<FunctionDecl>(GD.getDecl());
3493 
3494   // Compute the function info and LLVM type.
3495   const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
3496   llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
3497 
3498   // Get or create the prototype for the function.
3499   if (!GV || (GV->getType()->getElementType() != Ty))
3500     GV = cast<llvm::GlobalValue>(GetAddrOfFunction(GD, Ty, /*ForVTable=*/false,
3501                                                    /*DontDefer=*/true,
3502                                                    ForDefinition));
3503 
3504   // Already emitted.
3505   if (!GV->isDeclaration())
3506     return;
3507 
3508   // We need to set linkage and visibility on the function before
3509   // generating code for it because various parts of IR generation
3510   // want to propagate this information down (e.g. to local static
3511   // declarations).
3512   auto *Fn = cast<llvm::Function>(GV);
3513   setFunctionLinkage(GD, Fn);
3514   setFunctionDLLStorageClass(GD, Fn);
3515 
3516   // FIXME: this is redundant with part of setFunctionDefinitionAttributes
3517   setGVProperties(Fn, D, ForDefinition);
3518 
3519   MaybeHandleStaticInExternC(D, Fn);
3520 
3521   maybeSetTrivialComdat(*D, *Fn);
3522 
3523   CodeGenFunction(*this).GenerateCode(D, Fn, FI);
3524 
3525   setFunctionDefinitionAttributes(D, Fn);
3526   SetLLVMFunctionAttributesForDefinition(D, Fn);
3527 
3528   if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>())
3529     AddGlobalCtor(Fn, CA->getPriority());
3530   if (const DestructorAttr *DA = D->getAttr<DestructorAttr>())
3531     AddGlobalDtor(Fn, DA->getPriority());
3532   if (D->hasAttr<AnnotateAttr>())
3533     AddGlobalAnnotations(D, Fn);
3534 }
3535 
3536 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) {
3537   const auto *D = cast<ValueDecl>(GD.getDecl());
3538   const AliasAttr *AA = D->getAttr<AliasAttr>();
3539   assert(AA && "Not an alias?");
3540 
3541   StringRef MangledName = getMangledName(GD);
3542 
3543   if (AA->getAliasee() == MangledName) {
3544     Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0;
3545     return;
3546   }
3547 
3548   // If there is a definition in the module, then it wins over the alias.
3549   // This is dubious, but allow it to be safe.  Just ignore the alias.
3550   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
3551   if (Entry && !Entry->isDeclaration())
3552     return;
3553 
3554   Aliases.push_back(GD);
3555 
3556   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
3557 
3558   // Create a reference to the named value.  This ensures that it is emitted
3559   // if a deferred decl.
3560   llvm::Constant *Aliasee;
3561   if (isa<llvm::FunctionType>(DeclTy))
3562     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GD,
3563                                       /*ForVTable=*/false);
3564   else
3565     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
3566                                     llvm::PointerType::getUnqual(DeclTy),
3567                                     /*D=*/nullptr);
3568 
3569   // Create the new alias itself, but don't set a name yet.
3570   auto *GA = llvm::GlobalAlias::create(
3571       DeclTy, 0, llvm::Function::ExternalLinkage, "", Aliasee, &getModule());
3572 
3573   if (Entry) {
3574     if (GA->getAliasee() == Entry) {
3575       Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0;
3576       return;
3577     }
3578 
3579     assert(Entry->isDeclaration());
3580 
3581     // If there is a declaration in the module, then we had an extern followed
3582     // by the alias, as in:
3583     //   extern int test6();
3584     //   ...
3585     //   int test6() __attribute__((alias("test7")));
3586     //
3587     // Remove it and replace uses of it with the alias.
3588     GA->takeName(Entry);
3589 
3590     Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA,
3591                                                           Entry->getType()));
3592     Entry->eraseFromParent();
3593   } else {
3594     GA->setName(MangledName);
3595   }
3596 
3597   // Set attributes which are particular to an alias; this is a
3598   // specialization of the attributes which may be set on a global
3599   // variable/function.
3600   if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakRefAttr>() ||
3601       D->isWeakImported()) {
3602     GA->setLinkage(llvm::Function::WeakAnyLinkage);
3603   }
3604 
3605   if (const auto *VD = dyn_cast<VarDecl>(D))
3606     if (VD->getTLSKind())
3607       setTLSMode(GA, *VD);
3608 
3609   setAliasAttributes(D, GA);
3610 }
3611 
3612 void CodeGenModule::emitIFuncDefinition(GlobalDecl GD) {
3613   const auto *D = cast<ValueDecl>(GD.getDecl());
3614   const IFuncAttr *IFA = D->getAttr<IFuncAttr>();
3615   assert(IFA && "Not an ifunc?");
3616 
3617   StringRef MangledName = getMangledName(GD);
3618 
3619   if (IFA->getResolver() == MangledName) {
3620     Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1;
3621     return;
3622   }
3623 
3624   // Report an error if some definition overrides ifunc.
3625   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
3626   if (Entry && !Entry->isDeclaration()) {
3627     GlobalDecl OtherGD;
3628     if (lookupRepresentativeDecl(MangledName, OtherGD) &&
3629         DiagnosedConflictingDefinitions.insert(GD).second) {
3630       Diags.Report(D->getLocation(), diag::err_duplicate_mangled_name);
3631       Diags.Report(OtherGD.getDecl()->getLocation(),
3632                    diag::note_previous_definition);
3633     }
3634     return;
3635   }
3636 
3637   Aliases.push_back(GD);
3638 
3639   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
3640   llvm::Constant *Resolver =
3641       GetOrCreateLLVMFunction(IFA->getResolver(), DeclTy, GD,
3642                               /*ForVTable=*/false);
3643   llvm::GlobalIFunc *GIF =
3644       llvm::GlobalIFunc::create(DeclTy, 0, llvm::Function::ExternalLinkage,
3645                                 "", Resolver, &getModule());
3646   if (Entry) {
3647     if (GIF->getResolver() == Entry) {
3648       Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1;
3649       return;
3650     }
3651     assert(Entry->isDeclaration());
3652 
3653     // If there is a declaration in the module, then we had an extern followed
3654     // by the ifunc, as in:
3655     //   extern int test();
3656     //   ...
3657     //   int test() __attribute__((ifunc("resolver")));
3658     //
3659     // Remove it and replace uses of it with the ifunc.
3660     GIF->takeName(Entry);
3661 
3662     Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GIF,
3663                                                           Entry->getType()));
3664     Entry->eraseFromParent();
3665   } else
3666     GIF->setName(MangledName);
3667 
3668   SetCommonAttributes(D, GIF);
3669 }
3670 
3671 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,
3672                                             ArrayRef<llvm::Type*> Tys) {
3673   return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID,
3674                                          Tys);
3675 }
3676 
3677 static llvm::StringMapEntry<llvm::GlobalVariable *> &
3678 GetConstantCFStringEntry(llvm::StringMap<llvm::GlobalVariable *> &Map,
3679                          const StringLiteral *Literal, bool TargetIsLSB,
3680                          bool &IsUTF16, unsigned &StringLength) {
3681   StringRef String = Literal->getString();
3682   unsigned NumBytes = String.size();
3683 
3684   // Check for simple case.
3685   if (!Literal->containsNonAsciiOrNull()) {
3686     StringLength = NumBytes;
3687     return *Map.insert(std::make_pair(String, nullptr)).first;
3688   }
3689 
3690   // Otherwise, convert the UTF8 literals into a string of shorts.
3691   IsUTF16 = true;
3692 
3693   SmallVector<llvm::UTF16, 128> ToBuf(NumBytes + 1); // +1 for ending nulls.
3694   const llvm::UTF8 *FromPtr = (const llvm::UTF8 *)String.data();
3695   llvm::UTF16 *ToPtr = &ToBuf[0];
3696 
3697   (void)llvm::ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, &ToPtr,
3698                                  ToPtr + NumBytes, llvm::strictConversion);
3699 
3700   // ConvertUTF8toUTF16 returns the length in ToPtr.
3701   StringLength = ToPtr - &ToBuf[0];
3702 
3703   // Add an explicit null.
3704   *ToPtr = 0;
3705   return *Map.insert(std::make_pair(
3706                          StringRef(reinterpret_cast<const char *>(ToBuf.data()),
3707                                    (StringLength + 1) * 2),
3708                          nullptr)).first;
3709 }
3710 
3711 ConstantAddress
3712 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) {
3713   unsigned StringLength = 0;
3714   bool isUTF16 = false;
3715   llvm::StringMapEntry<llvm::GlobalVariable *> &Entry =
3716       GetConstantCFStringEntry(CFConstantStringMap, Literal,
3717                                getDataLayout().isLittleEndian(), isUTF16,
3718                                StringLength);
3719 
3720   if (auto *C = Entry.second)
3721     return ConstantAddress(C, CharUnits::fromQuantity(C->getAlignment()));
3722 
3723   llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty);
3724   llvm::Constant *Zeros[] = { Zero, Zero };
3725 
3726   // If we don't already have it, get __CFConstantStringClassReference.
3727   if (!CFConstantStringClassRef) {
3728     llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
3729     Ty = llvm::ArrayType::get(Ty, 0);
3730     llvm::Constant *GV =
3731         CreateRuntimeVariable(Ty, "__CFConstantStringClassReference");
3732 
3733     if (getTriple().isOSBinFormatCOFF()) {
3734       IdentifierInfo &II = getContext().Idents.get(GV->getName());
3735       TranslationUnitDecl *TUDecl = getContext().getTranslationUnitDecl();
3736       DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl);
3737       llvm::GlobalValue *CGV = cast<llvm::GlobalValue>(GV);
3738 
3739       const VarDecl *VD = nullptr;
3740       for (const auto &Result : DC->lookup(&II))
3741         if ((VD = dyn_cast<VarDecl>(Result)))
3742           break;
3743 
3744       if (!VD || !VD->hasAttr<DLLExportAttr>()) {
3745         CGV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass);
3746         CGV->setLinkage(llvm::GlobalValue::ExternalLinkage);
3747       } else {
3748         CGV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass);
3749         CGV->setLinkage(llvm::GlobalValue::ExternalLinkage);
3750       }
3751     }
3752 
3753     // Decay array -> ptr
3754     CFConstantStringClassRef =
3755         llvm::ConstantExpr::getGetElementPtr(Ty, GV, Zeros);
3756   }
3757 
3758   QualType CFTy = getContext().getCFConstantStringType();
3759 
3760   auto *STy = cast<llvm::StructType>(getTypes().ConvertType(CFTy));
3761 
3762   ConstantInitBuilder Builder(*this);
3763   auto Fields = Builder.beginStruct(STy);
3764 
3765   // Class pointer.
3766   Fields.add(cast<llvm::ConstantExpr>(CFConstantStringClassRef));
3767 
3768   // Flags.
3769   Fields.addInt(IntTy, isUTF16 ? 0x07d0 : 0x07C8);
3770 
3771   // String pointer.
3772   llvm::Constant *C = nullptr;
3773   if (isUTF16) {
3774     auto Arr = llvm::makeArrayRef(
3775         reinterpret_cast<uint16_t *>(const_cast<char *>(Entry.first().data())),
3776         Entry.first().size() / 2);
3777     C = llvm::ConstantDataArray::get(VMContext, Arr);
3778   } else {
3779     C = llvm::ConstantDataArray::getString(VMContext, Entry.first());
3780   }
3781 
3782   // Note: -fwritable-strings doesn't make the backing store strings of
3783   // CFStrings writable. (See <rdar://problem/10657500>)
3784   auto *GV =
3785       new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true,
3786                                llvm::GlobalValue::PrivateLinkage, C, ".str");
3787   GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
3788   // Don't enforce the target's minimum global alignment, since the only use
3789   // of the string is via this class initializer.
3790   CharUnits Align = isUTF16
3791                         ? getContext().getTypeAlignInChars(getContext().ShortTy)
3792                         : getContext().getTypeAlignInChars(getContext().CharTy);
3793   GV->setAlignment(Align.getQuantity());
3794 
3795   // FIXME: We set the section explicitly to avoid a bug in ld64 224.1.
3796   // Without it LLVM can merge the string with a non unnamed_addr one during
3797   // LTO.  Doing that changes the section it ends in, which surprises ld64.
3798   if (getTriple().isOSBinFormatMachO())
3799     GV->setSection(isUTF16 ? "__TEXT,__ustring"
3800                            : "__TEXT,__cstring,cstring_literals");
3801 
3802   // String.
3803   llvm::Constant *Str =
3804       llvm::ConstantExpr::getGetElementPtr(GV->getValueType(), GV, Zeros);
3805 
3806   if (isUTF16)
3807     // Cast the UTF16 string to the correct type.
3808     Str = llvm::ConstantExpr::getBitCast(Str, Int8PtrTy);
3809   Fields.add(Str);
3810 
3811   // String length.
3812   auto Ty = getTypes().ConvertType(getContext().LongTy);
3813   Fields.addInt(cast<llvm::IntegerType>(Ty), StringLength);
3814 
3815   CharUnits Alignment = getPointerAlign();
3816 
3817   // The struct.
3818   GV = Fields.finishAndCreateGlobal("_unnamed_cfstring_", Alignment,
3819                                     /*isConstant=*/false,
3820                                     llvm::GlobalVariable::PrivateLinkage);
3821   switch (getTriple().getObjectFormat()) {
3822   case llvm::Triple::UnknownObjectFormat:
3823     llvm_unreachable("unknown file format");
3824   case llvm::Triple::COFF:
3825   case llvm::Triple::ELF:
3826   case llvm::Triple::Wasm:
3827     GV->setSection("cfstring");
3828     break;
3829   case llvm::Triple::MachO:
3830     GV->setSection("__DATA,__cfstring");
3831     break;
3832   }
3833   Entry.second = GV;
3834 
3835   return ConstantAddress(GV, Alignment);
3836 }
3837 
3838 bool CodeGenModule::getExpressionLocationsEnabled() const {
3839   return !CodeGenOpts.EmitCodeView || CodeGenOpts.DebugColumnInfo;
3840 }
3841 
3842 QualType CodeGenModule::getObjCFastEnumerationStateType() {
3843   if (ObjCFastEnumerationStateType.isNull()) {
3844     RecordDecl *D = Context.buildImplicitRecord("__objcFastEnumerationState");
3845     D->startDefinition();
3846 
3847     QualType FieldTypes[] = {
3848       Context.UnsignedLongTy,
3849       Context.getPointerType(Context.getObjCIdType()),
3850       Context.getPointerType(Context.UnsignedLongTy),
3851       Context.getConstantArrayType(Context.UnsignedLongTy,
3852                            llvm::APInt(32, 5), ArrayType::Normal, 0)
3853     };
3854 
3855     for (size_t i = 0; i < 4; ++i) {
3856       FieldDecl *Field = FieldDecl::Create(Context,
3857                                            D,
3858                                            SourceLocation(),
3859                                            SourceLocation(), nullptr,
3860                                            FieldTypes[i], /*TInfo=*/nullptr,
3861                                            /*BitWidth=*/nullptr,
3862                                            /*Mutable=*/false,
3863                                            ICIS_NoInit);
3864       Field->setAccess(AS_public);
3865       D->addDecl(Field);
3866     }
3867 
3868     D->completeDefinition();
3869     ObjCFastEnumerationStateType = Context.getTagDeclType(D);
3870   }
3871 
3872   return ObjCFastEnumerationStateType;
3873 }
3874 
3875 llvm::Constant *
3876 CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) {
3877   assert(!E->getType()->isPointerType() && "Strings are always arrays");
3878 
3879   // Don't emit it as the address of the string, emit the string data itself
3880   // as an inline array.
3881   if (E->getCharByteWidth() == 1) {
3882     SmallString<64> Str(E->getString());
3883 
3884     // Resize the string to the right size, which is indicated by its type.
3885     const ConstantArrayType *CAT = Context.getAsConstantArrayType(E->getType());
3886     Str.resize(CAT->getSize().getZExtValue());
3887     return llvm::ConstantDataArray::getString(VMContext, Str, false);
3888   }
3889 
3890   auto *AType = cast<llvm::ArrayType>(getTypes().ConvertType(E->getType()));
3891   llvm::Type *ElemTy = AType->getElementType();
3892   unsigned NumElements = AType->getNumElements();
3893 
3894   // Wide strings have either 2-byte or 4-byte elements.
3895   if (ElemTy->getPrimitiveSizeInBits() == 16) {
3896     SmallVector<uint16_t, 32> Elements;
3897     Elements.reserve(NumElements);
3898 
3899     for(unsigned i = 0, e = E->getLength(); i != e; ++i)
3900       Elements.push_back(E->getCodeUnit(i));
3901     Elements.resize(NumElements);
3902     return llvm::ConstantDataArray::get(VMContext, Elements);
3903   }
3904 
3905   assert(ElemTy->getPrimitiveSizeInBits() == 32);
3906   SmallVector<uint32_t, 32> Elements;
3907   Elements.reserve(NumElements);
3908 
3909   for(unsigned i = 0, e = E->getLength(); i != e; ++i)
3910     Elements.push_back(E->getCodeUnit(i));
3911   Elements.resize(NumElements);
3912   return llvm::ConstantDataArray::get(VMContext, Elements);
3913 }
3914 
3915 static llvm::GlobalVariable *
3916 GenerateStringLiteral(llvm::Constant *C, llvm::GlobalValue::LinkageTypes LT,
3917                       CodeGenModule &CGM, StringRef GlobalName,
3918                       CharUnits Alignment) {
3919   // OpenCL v1.2 s6.5.3: a string literal is in the constant address space.
3920   unsigned AddrSpace = 0;
3921   if (CGM.getLangOpts().OpenCL)
3922     AddrSpace = CGM.getContext().getTargetAddressSpace(LangAS::opencl_constant);
3923 
3924   llvm::Module &M = CGM.getModule();
3925   // Create a global variable for this string
3926   auto *GV = new llvm::GlobalVariable(
3927       M, C->getType(), !CGM.getLangOpts().WritableStrings, LT, C, GlobalName,
3928       nullptr, llvm::GlobalVariable::NotThreadLocal, AddrSpace);
3929   GV->setAlignment(Alignment.getQuantity());
3930   GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
3931   if (GV->isWeakForLinker()) {
3932     assert(CGM.supportsCOMDAT() && "Only COFF uses weak string literals");
3933     GV->setComdat(M.getOrInsertComdat(GV->getName()));
3934   }
3935 
3936   return GV;
3937 }
3938 
3939 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a
3940 /// constant array for the given string literal.
3941 ConstantAddress
3942 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S,
3943                                                   StringRef Name) {
3944   CharUnits Alignment = getContext().getAlignOfGlobalVarInChars(S->getType());
3945 
3946   llvm::Constant *C = GetConstantArrayFromStringLiteral(S);
3947   llvm::GlobalVariable **Entry = nullptr;
3948   if (!LangOpts.WritableStrings) {
3949     Entry = &ConstantStringMap[C];
3950     if (auto GV = *Entry) {
3951       if (Alignment.getQuantity() > GV->getAlignment())
3952         GV->setAlignment(Alignment.getQuantity());
3953       return ConstantAddress(GV, Alignment);
3954     }
3955   }
3956 
3957   SmallString<256> MangledNameBuffer;
3958   StringRef GlobalVariableName;
3959   llvm::GlobalValue::LinkageTypes LT;
3960 
3961   // Mangle the string literal if the ABI allows for it.  However, we cannot
3962   // do this if  we are compiling with ASan or -fwritable-strings because they
3963   // rely on strings having normal linkage.
3964   if (!LangOpts.WritableStrings &&
3965       !LangOpts.Sanitize.has(SanitizerKind::Address) &&
3966       getCXXABI().getMangleContext().shouldMangleStringLiteral(S)) {
3967     llvm::raw_svector_ostream Out(MangledNameBuffer);
3968     getCXXABI().getMangleContext().mangleStringLiteral(S, Out);
3969 
3970     LT = llvm::GlobalValue::LinkOnceODRLinkage;
3971     GlobalVariableName = MangledNameBuffer;
3972   } else {
3973     LT = llvm::GlobalValue::PrivateLinkage;
3974     GlobalVariableName = Name;
3975   }
3976 
3977   auto GV = GenerateStringLiteral(C, LT, *this, GlobalVariableName, Alignment);
3978   if (Entry)
3979     *Entry = GV;
3980 
3981   SanitizerMD->reportGlobalToASan(GV, S->getStrTokenLoc(0), "<string literal>",
3982                                   QualType());
3983   return ConstantAddress(GV, Alignment);
3984 }
3985 
3986 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant
3987 /// array for the given ObjCEncodeExpr node.
3988 ConstantAddress
3989 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) {
3990   std::string Str;
3991   getContext().getObjCEncodingForType(E->getEncodedType(), Str);
3992 
3993   return GetAddrOfConstantCString(Str);
3994 }
3995 
3996 /// GetAddrOfConstantCString - Returns a pointer to a character array containing
3997 /// the literal and a terminating '\0' character.
3998 /// The result has pointer to array type.
3999 ConstantAddress CodeGenModule::GetAddrOfConstantCString(
4000     const std::string &Str, const char *GlobalName) {
4001   StringRef StrWithNull(Str.c_str(), Str.size() + 1);
4002   CharUnits Alignment =
4003     getContext().getAlignOfGlobalVarInChars(getContext().CharTy);
4004 
4005   llvm::Constant *C =
4006       llvm::ConstantDataArray::getString(getLLVMContext(), StrWithNull, false);
4007 
4008   // Don't share any string literals if strings aren't constant.
4009   llvm::GlobalVariable **Entry = nullptr;
4010   if (!LangOpts.WritableStrings) {
4011     Entry = &ConstantStringMap[C];
4012     if (auto GV = *Entry) {
4013       if (Alignment.getQuantity() > GV->getAlignment())
4014         GV->setAlignment(Alignment.getQuantity());
4015       return ConstantAddress(GV, Alignment);
4016     }
4017   }
4018 
4019   // Get the default prefix if a name wasn't specified.
4020   if (!GlobalName)
4021     GlobalName = ".str";
4022   // Create a global variable for this.
4023   auto GV = GenerateStringLiteral(C, llvm::GlobalValue::PrivateLinkage, *this,
4024                                   GlobalName, Alignment);
4025   if (Entry)
4026     *Entry = GV;
4027   return ConstantAddress(GV, Alignment);
4028 }
4029 
4030 ConstantAddress CodeGenModule::GetAddrOfGlobalTemporary(
4031     const MaterializeTemporaryExpr *E, const Expr *Init) {
4032   assert((E->getStorageDuration() == SD_Static ||
4033           E->getStorageDuration() == SD_Thread) && "not a global temporary");
4034   const auto *VD = cast<VarDecl>(E->getExtendingDecl());
4035 
4036   // If we're not materializing a subobject of the temporary, keep the
4037   // cv-qualifiers from the type of the MaterializeTemporaryExpr.
4038   QualType MaterializedType = Init->getType();
4039   if (Init == E->GetTemporaryExpr())
4040     MaterializedType = E->getType();
4041 
4042   CharUnits Align = getContext().getTypeAlignInChars(MaterializedType);
4043 
4044   if (llvm::Constant *Slot = MaterializedGlobalTemporaryMap[E])
4045     return ConstantAddress(Slot, Align);
4046 
4047   // FIXME: If an externally-visible declaration extends multiple temporaries,
4048   // we need to give each temporary the same name in every translation unit (and
4049   // we also need to make the temporaries externally-visible).
4050   SmallString<256> Name;
4051   llvm::raw_svector_ostream Out(Name);
4052   getCXXABI().getMangleContext().mangleReferenceTemporary(
4053       VD, E->getManglingNumber(), Out);
4054 
4055   APValue *Value = nullptr;
4056   if (E->getStorageDuration() == SD_Static) {
4057     // We might have a cached constant initializer for this temporary. Note
4058     // that this might have a different value from the value computed by
4059     // evaluating the initializer if the surrounding constant expression
4060     // modifies the temporary.
4061     Value = getContext().getMaterializedTemporaryValue(E, false);
4062     if (Value && Value->isUninit())
4063       Value = nullptr;
4064   }
4065 
4066   // Try evaluating it now, it might have a constant initializer.
4067   Expr::EvalResult EvalResult;
4068   if (!Value && Init->EvaluateAsRValue(EvalResult, getContext()) &&
4069       !EvalResult.hasSideEffects())
4070     Value = &EvalResult.Val;
4071 
4072   LangAS AddrSpace =
4073       VD ? GetGlobalVarAddressSpace(VD) : MaterializedType.getAddressSpace();
4074 
4075   Optional<ConstantEmitter> emitter;
4076   llvm::Constant *InitialValue = nullptr;
4077   bool Constant = false;
4078   llvm::Type *Type;
4079   if (Value) {
4080     // The temporary has a constant initializer, use it.
4081     emitter.emplace(*this);
4082     InitialValue = emitter->emitForInitializer(*Value, AddrSpace,
4083                                                MaterializedType);
4084     Constant = isTypeConstant(MaterializedType, /*ExcludeCtor*/Value);
4085     Type = InitialValue->getType();
4086   } else {
4087     // No initializer, the initialization will be provided when we
4088     // initialize the declaration which performed lifetime extension.
4089     Type = getTypes().ConvertTypeForMem(MaterializedType);
4090   }
4091 
4092   // Create a global variable for this lifetime-extended temporary.
4093   llvm::GlobalValue::LinkageTypes Linkage =
4094       getLLVMLinkageVarDefinition(VD, Constant);
4095   if (Linkage == llvm::GlobalVariable::ExternalLinkage) {
4096     const VarDecl *InitVD;
4097     if (VD->isStaticDataMember() && VD->getAnyInitializer(InitVD) &&
4098         isa<CXXRecordDecl>(InitVD->getLexicalDeclContext())) {
4099       // Temporaries defined inside a class get linkonce_odr linkage because the
4100       // class can be defined in multipe translation units.
4101       Linkage = llvm::GlobalVariable::LinkOnceODRLinkage;
4102     } else {
4103       // There is no need for this temporary to have external linkage if the
4104       // VarDecl has external linkage.
4105       Linkage = llvm::GlobalVariable::InternalLinkage;
4106     }
4107   }
4108   auto TargetAS = getContext().getTargetAddressSpace(AddrSpace);
4109   auto *GV = new llvm::GlobalVariable(
4110       getModule(), Type, Constant, Linkage, InitialValue, Name.c_str(),
4111       /*InsertBefore=*/nullptr, llvm::GlobalVariable::NotThreadLocal, TargetAS);
4112   if (emitter) emitter->finalize(GV);
4113   setGVProperties(GV, VD, ForDefinition);
4114   GV->setAlignment(Align.getQuantity());
4115   if (supportsCOMDAT() && GV->isWeakForLinker())
4116     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
4117   if (VD->getTLSKind())
4118     setTLSMode(GV, *VD);
4119   llvm::Constant *CV = GV;
4120   if (AddrSpace != LangAS::Default)
4121     CV = getTargetCodeGenInfo().performAddrSpaceCast(
4122         *this, GV, AddrSpace, LangAS::Default,
4123         Type->getPointerTo(
4124             getContext().getTargetAddressSpace(LangAS::Default)));
4125   MaterializedGlobalTemporaryMap[E] = CV;
4126   return ConstantAddress(CV, Align);
4127 }
4128 
4129 /// EmitObjCPropertyImplementations - Emit information for synthesized
4130 /// properties for an implementation.
4131 void CodeGenModule::EmitObjCPropertyImplementations(const
4132                                                     ObjCImplementationDecl *D) {
4133   for (const auto *PID : D->property_impls()) {
4134     // Dynamic is just for type-checking.
4135     if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) {
4136       ObjCPropertyDecl *PD = PID->getPropertyDecl();
4137 
4138       // Determine which methods need to be implemented, some may have
4139       // been overridden. Note that ::isPropertyAccessor is not the method
4140       // we want, that just indicates if the decl came from a
4141       // property. What we want to know is if the method is defined in
4142       // this implementation.
4143       if (!D->getInstanceMethod(PD->getGetterName()))
4144         CodeGenFunction(*this).GenerateObjCGetter(
4145                                  const_cast<ObjCImplementationDecl *>(D), PID);
4146       if (!PD->isReadOnly() &&
4147           !D->getInstanceMethod(PD->getSetterName()))
4148         CodeGenFunction(*this).GenerateObjCSetter(
4149                                  const_cast<ObjCImplementationDecl *>(D), PID);
4150     }
4151   }
4152 }
4153 
4154 static bool needsDestructMethod(ObjCImplementationDecl *impl) {
4155   const ObjCInterfaceDecl *iface = impl->getClassInterface();
4156   for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin();
4157        ivar; ivar = ivar->getNextIvar())
4158     if (ivar->getType().isDestructedType())
4159       return true;
4160 
4161   return false;
4162 }
4163 
4164 static bool AllTrivialInitializers(CodeGenModule &CGM,
4165                                    ObjCImplementationDecl *D) {
4166   CodeGenFunction CGF(CGM);
4167   for (ObjCImplementationDecl::init_iterator B = D->init_begin(),
4168        E = D->init_end(); B != E; ++B) {
4169     CXXCtorInitializer *CtorInitExp = *B;
4170     Expr *Init = CtorInitExp->getInit();
4171     if (!CGF.isTrivialInitializer(Init))
4172       return false;
4173   }
4174   return true;
4175 }
4176 
4177 /// EmitObjCIvarInitializations - Emit information for ivar initialization
4178 /// for an implementation.
4179 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) {
4180   // We might need a .cxx_destruct even if we don't have any ivar initializers.
4181   if (needsDestructMethod(D)) {
4182     IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct");
4183     Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
4184     ObjCMethodDecl *DTORMethod =
4185       ObjCMethodDecl::Create(getContext(), D->getLocation(), D->getLocation(),
4186                              cxxSelector, getContext().VoidTy, nullptr, D,
4187                              /*isInstance=*/true, /*isVariadic=*/false,
4188                           /*isPropertyAccessor=*/true, /*isImplicitlyDeclared=*/true,
4189                              /*isDefined=*/false, ObjCMethodDecl::Required);
4190     D->addInstanceMethod(DTORMethod);
4191     CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false);
4192     D->setHasDestructors(true);
4193   }
4194 
4195   // If the implementation doesn't have any ivar initializers, we don't need
4196   // a .cxx_construct.
4197   if (D->getNumIvarInitializers() == 0 ||
4198       AllTrivialInitializers(*this, D))
4199     return;
4200 
4201   IdentifierInfo *II = &getContext().Idents.get(".cxx_construct");
4202   Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
4203   // The constructor returns 'self'.
4204   ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(getContext(),
4205                                                 D->getLocation(),
4206                                                 D->getLocation(),
4207                                                 cxxSelector,
4208                                                 getContext().getObjCIdType(),
4209                                                 nullptr, D, /*isInstance=*/true,
4210                                                 /*isVariadic=*/false,
4211                                                 /*isPropertyAccessor=*/true,
4212                                                 /*isImplicitlyDeclared=*/true,
4213                                                 /*isDefined=*/false,
4214                                                 ObjCMethodDecl::Required);
4215   D->addInstanceMethod(CTORMethod);
4216   CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true);
4217   D->setHasNonZeroConstructors(true);
4218 }
4219 
4220 // EmitLinkageSpec - Emit all declarations in a linkage spec.
4221 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) {
4222   if (LSD->getLanguage() != LinkageSpecDecl::lang_c &&
4223       LSD->getLanguage() != LinkageSpecDecl::lang_cxx) {
4224     ErrorUnsupported(LSD, "linkage spec");
4225     return;
4226   }
4227 
4228   EmitDeclContext(LSD);
4229 }
4230 
4231 void CodeGenModule::EmitDeclContext(const DeclContext *DC) {
4232   for (auto *I : DC->decls()) {
4233     // Unlike other DeclContexts, the contents of an ObjCImplDecl at TU scope
4234     // are themselves considered "top-level", so EmitTopLevelDecl on an
4235     // ObjCImplDecl does not recursively visit them. We need to do that in
4236     // case they're nested inside another construct (LinkageSpecDecl /
4237     // ExportDecl) that does stop them from being considered "top-level".
4238     if (auto *OID = dyn_cast<ObjCImplDecl>(I)) {
4239       for (auto *M : OID->methods())
4240         EmitTopLevelDecl(M);
4241     }
4242 
4243     EmitTopLevelDecl(I);
4244   }
4245 }
4246 
4247 /// EmitTopLevelDecl - Emit code for a single top level declaration.
4248 void CodeGenModule::EmitTopLevelDecl(Decl *D) {
4249   // Ignore dependent declarations.
4250   if (D->isTemplated())
4251     return;
4252 
4253   switch (D->getKind()) {
4254   case Decl::CXXConversion:
4255   case Decl::CXXMethod:
4256   case Decl::Function:
4257     EmitGlobal(cast<FunctionDecl>(D));
4258     // Always provide some coverage mapping
4259     // even for the functions that aren't emitted.
4260     AddDeferredUnusedCoverageMapping(D);
4261     break;
4262 
4263   case Decl::CXXDeductionGuide:
4264     // Function-like, but does not result in code emission.
4265     break;
4266 
4267   case Decl::Var:
4268   case Decl::Decomposition:
4269   case Decl::VarTemplateSpecialization:
4270     EmitGlobal(cast<VarDecl>(D));
4271     if (auto *DD = dyn_cast<DecompositionDecl>(D))
4272       for (auto *B : DD->bindings())
4273         if (auto *HD = B->getHoldingVar())
4274           EmitGlobal(HD);
4275     break;
4276 
4277   // Indirect fields from global anonymous structs and unions can be
4278   // ignored; only the actual variable requires IR gen support.
4279   case Decl::IndirectField:
4280     break;
4281 
4282   // C++ Decls
4283   case Decl::Namespace:
4284     EmitDeclContext(cast<NamespaceDecl>(D));
4285     break;
4286   case Decl::ClassTemplateSpecialization: {
4287     const auto *Spec = cast<ClassTemplateSpecializationDecl>(D);
4288     if (DebugInfo &&
4289         Spec->getSpecializationKind() == TSK_ExplicitInstantiationDefinition &&
4290         Spec->hasDefinition())
4291       DebugInfo->completeTemplateDefinition(*Spec);
4292   } LLVM_FALLTHROUGH;
4293   case Decl::CXXRecord:
4294     if (DebugInfo) {
4295       if (auto *ES = D->getASTContext().getExternalSource())
4296         if (ES->hasExternalDefinitions(D) == ExternalASTSource::EK_Never)
4297           DebugInfo->completeUnusedClass(cast<CXXRecordDecl>(*D));
4298     }
4299     // Emit any static data members, they may be definitions.
4300     for (auto *I : cast<CXXRecordDecl>(D)->decls())
4301       if (isa<VarDecl>(I) || isa<CXXRecordDecl>(I))
4302         EmitTopLevelDecl(I);
4303     break;
4304     // No code generation needed.
4305   case Decl::UsingShadow:
4306   case Decl::ClassTemplate:
4307   case Decl::VarTemplate:
4308   case Decl::VarTemplatePartialSpecialization:
4309   case Decl::FunctionTemplate:
4310   case Decl::TypeAliasTemplate:
4311   case Decl::Block:
4312   case Decl::Empty:
4313     break;
4314   case Decl::Using:          // using X; [C++]
4315     if (CGDebugInfo *DI = getModuleDebugInfo())
4316         DI->EmitUsingDecl(cast<UsingDecl>(*D));
4317     return;
4318   case Decl::NamespaceAlias:
4319     if (CGDebugInfo *DI = getModuleDebugInfo())
4320         DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(*D));
4321     return;
4322   case Decl::UsingDirective: // using namespace X; [C++]
4323     if (CGDebugInfo *DI = getModuleDebugInfo())
4324       DI->EmitUsingDirective(cast<UsingDirectiveDecl>(*D));
4325     return;
4326   case Decl::CXXConstructor:
4327     getCXXABI().EmitCXXConstructors(cast<CXXConstructorDecl>(D));
4328     break;
4329   case Decl::CXXDestructor:
4330     getCXXABI().EmitCXXDestructors(cast<CXXDestructorDecl>(D));
4331     break;
4332 
4333   case Decl::StaticAssert:
4334     // Nothing to do.
4335     break;
4336 
4337   // Objective-C Decls
4338 
4339   // Forward declarations, no (immediate) code generation.
4340   case Decl::ObjCInterface:
4341   case Decl::ObjCCategory:
4342     break;
4343 
4344   case Decl::ObjCProtocol: {
4345     auto *Proto = cast<ObjCProtocolDecl>(D);
4346     if (Proto->isThisDeclarationADefinition())
4347       ObjCRuntime->GenerateProtocol(Proto);
4348     break;
4349   }
4350 
4351   case Decl::ObjCCategoryImpl:
4352     // Categories have properties but don't support synthesize so we
4353     // can ignore them here.
4354     ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D));
4355     break;
4356 
4357   case Decl::ObjCImplementation: {
4358     auto *OMD = cast<ObjCImplementationDecl>(D);
4359     EmitObjCPropertyImplementations(OMD);
4360     EmitObjCIvarInitializations(OMD);
4361     ObjCRuntime->GenerateClass(OMD);
4362     // Emit global variable debug information.
4363     if (CGDebugInfo *DI = getModuleDebugInfo())
4364       if (getCodeGenOpts().getDebugInfo() >= codegenoptions::LimitedDebugInfo)
4365         DI->getOrCreateInterfaceType(getContext().getObjCInterfaceType(
4366             OMD->getClassInterface()), OMD->getLocation());
4367     break;
4368   }
4369   case Decl::ObjCMethod: {
4370     auto *OMD = cast<ObjCMethodDecl>(D);
4371     // If this is not a prototype, emit the body.
4372     if (OMD->getBody())
4373       CodeGenFunction(*this).GenerateObjCMethod(OMD);
4374     break;
4375   }
4376   case Decl::ObjCCompatibleAlias:
4377     ObjCRuntime->RegisterAlias(cast<ObjCCompatibleAliasDecl>(D));
4378     break;
4379 
4380   case Decl::PragmaComment: {
4381     const auto *PCD = cast<PragmaCommentDecl>(D);
4382     switch (PCD->getCommentKind()) {
4383     case PCK_Unknown:
4384       llvm_unreachable("unexpected pragma comment kind");
4385     case PCK_Linker:
4386       AppendLinkerOptions(PCD->getArg());
4387       break;
4388     case PCK_Lib:
4389       AddDependentLib(PCD->getArg());
4390       break;
4391     case PCK_Compiler:
4392     case PCK_ExeStr:
4393     case PCK_User:
4394       break; // We ignore all of these.
4395     }
4396     break;
4397   }
4398 
4399   case Decl::PragmaDetectMismatch: {
4400     const auto *PDMD = cast<PragmaDetectMismatchDecl>(D);
4401     AddDetectMismatch(PDMD->getName(), PDMD->getValue());
4402     break;
4403   }
4404 
4405   case Decl::LinkageSpec:
4406     EmitLinkageSpec(cast<LinkageSpecDecl>(D));
4407     break;
4408 
4409   case Decl::FileScopeAsm: {
4410     // File-scope asm is ignored during device-side CUDA compilation.
4411     if (LangOpts.CUDA && LangOpts.CUDAIsDevice)
4412       break;
4413     // File-scope asm is ignored during device-side OpenMP compilation.
4414     if (LangOpts.OpenMPIsDevice)
4415       break;
4416     auto *AD = cast<FileScopeAsmDecl>(D);
4417     getModule().appendModuleInlineAsm(AD->getAsmString()->getString());
4418     break;
4419   }
4420 
4421   case Decl::Import: {
4422     auto *Import = cast<ImportDecl>(D);
4423 
4424     // If we've already imported this module, we're done.
4425     if (!ImportedModules.insert(Import->getImportedModule()))
4426       break;
4427 
4428     // Emit debug information for direct imports.
4429     if (!Import->getImportedOwningModule()) {
4430       if (CGDebugInfo *DI = getModuleDebugInfo())
4431         DI->EmitImportDecl(*Import);
4432     }
4433 
4434     // Find all of the submodules and emit the module initializers.
4435     llvm::SmallPtrSet<clang::Module *, 16> Visited;
4436     SmallVector<clang::Module *, 16> Stack;
4437     Visited.insert(Import->getImportedModule());
4438     Stack.push_back(Import->getImportedModule());
4439 
4440     while (!Stack.empty()) {
4441       clang::Module *Mod = Stack.pop_back_val();
4442       if (!EmittedModuleInitializers.insert(Mod).second)
4443         continue;
4444 
4445       for (auto *D : Context.getModuleInitializers(Mod))
4446         EmitTopLevelDecl(D);
4447 
4448       // Visit the submodules of this module.
4449       for (clang::Module::submodule_iterator Sub = Mod->submodule_begin(),
4450                                              SubEnd = Mod->submodule_end();
4451            Sub != SubEnd; ++Sub) {
4452         // Skip explicit children; they need to be explicitly imported to emit
4453         // the initializers.
4454         if ((*Sub)->IsExplicit)
4455           continue;
4456 
4457         if (Visited.insert(*Sub).second)
4458           Stack.push_back(*Sub);
4459       }
4460     }
4461     break;
4462   }
4463 
4464   case Decl::Export:
4465     EmitDeclContext(cast<ExportDecl>(D));
4466     break;
4467 
4468   case Decl::OMPThreadPrivate:
4469     EmitOMPThreadPrivateDecl(cast<OMPThreadPrivateDecl>(D));
4470     break;
4471 
4472   case Decl::OMPDeclareReduction:
4473     EmitOMPDeclareReduction(cast<OMPDeclareReductionDecl>(D));
4474     break;
4475 
4476   default:
4477     // Make sure we handled everything we should, every other kind is a
4478     // non-top-level decl.  FIXME: Would be nice to have an isTopLevelDeclKind
4479     // function. Need to recode Decl::Kind to do that easily.
4480     assert(isa<TypeDecl>(D) && "Unsupported decl kind");
4481     break;
4482   }
4483 }
4484 
4485 void CodeGenModule::AddDeferredUnusedCoverageMapping(Decl *D) {
4486   // Do we need to generate coverage mapping?
4487   if (!CodeGenOpts.CoverageMapping)
4488     return;
4489   switch (D->getKind()) {
4490   case Decl::CXXConversion:
4491   case Decl::CXXMethod:
4492   case Decl::Function:
4493   case Decl::ObjCMethod:
4494   case Decl::CXXConstructor:
4495   case Decl::CXXDestructor: {
4496     if (!cast<FunctionDecl>(D)->doesThisDeclarationHaveABody())
4497       return;
4498     SourceManager &SM = getContext().getSourceManager();
4499     if (LimitedCoverage && SM.getMainFileID() != SM.getFileID(D->getLocStart()))
4500       return;
4501     auto I = DeferredEmptyCoverageMappingDecls.find(D);
4502     if (I == DeferredEmptyCoverageMappingDecls.end())
4503       DeferredEmptyCoverageMappingDecls[D] = true;
4504     break;
4505   }
4506   default:
4507     break;
4508   };
4509 }
4510 
4511 void CodeGenModule::ClearUnusedCoverageMapping(const Decl *D) {
4512   // Do we need to generate coverage mapping?
4513   if (!CodeGenOpts.CoverageMapping)
4514     return;
4515   if (const auto *Fn = dyn_cast<FunctionDecl>(D)) {
4516     if (Fn->isTemplateInstantiation())
4517       ClearUnusedCoverageMapping(Fn->getTemplateInstantiationPattern());
4518   }
4519   auto I = DeferredEmptyCoverageMappingDecls.find(D);
4520   if (I == DeferredEmptyCoverageMappingDecls.end())
4521     DeferredEmptyCoverageMappingDecls[D] = false;
4522   else
4523     I->second = false;
4524 }
4525 
4526 void CodeGenModule::EmitDeferredUnusedCoverageMappings() {
4527   // We call takeVector() here to avoid use-after-free.
4528   // FIXME: DeferredEmptyCoverageMappingDecls is getting mutated because
4529   // we deserialize function bodies to emit coverage info for them, and that
4530   // deserializes more declarations. How should we handle that case?
4531   for (const auto &Entry : DeferredEmptyCoverageMappingDecls.takeVector()) {
4532     if (!Entry.second)
4533       continue;
4534     const Decl *D = Entry.first;
4535     switch (D->getKind()) {
4536     case Decl::CXXConversion:
4537     case Decl::CXXMethod:
4538     case Decl::Function:
4539     case Decl::ObjCMethod: {
4540       CodeGenPGO PGO(*this);
4541       GlobalDecl GD(cast<FunctionDecl>(D));
4542       PGO.emitEmptyCounterMapping(D, getMangledName(GD),
4543                                   getFunctionLinkage(GD));
4544       break;
4545     }
4546     case Decl::CXXConstructor: {
4547       CodeGenPGO PGO(*this);
4548       GlobalDecl GD(cast<CXXConstructorDecl>(D), Ctor_Base);
4549       PGO.emitEmptyCounterMapping(D, getMangledName(GD),
4550                                   getFunctionLinkage(GD));
4551       break;
4552     }
4553     case Decl::CXXDestructor: {
4554       CodeGenPGO PGO(*this);
4555       GlobalDecl GD(cast<CXXDestructorDecl>(D), Dtor_Base);
4556       PGO.emitEmptyCounterMapping(D, getMangledName(GD),
4557                                   getFunctionLinkage(GD));
4558       break;
4559     }
4560     default:
4561       break;
4562     };
4563   }
4564 }
4565 
4566 /// Turns the given pointer into a constant.
4567 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context,
4568                                           const void *Ptr) {
4569   uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr);
4570   llvm::Type *i64 = llvm::Type::getInt64Ty(Context);
4571   return llvm::ConstantInt::get(i64, PtrInt);
4572 }
4573 
4574 static void EmitGlobalDeclMetadata(CodeGenModule &CGM,
4575                                    llvm::NamedMDNode *&GlobalMetadata,
4576                                    GlobalDecl D,
4577                                    llvm::GlobalValue *Addr) {
4578   if (!GlobalMetadata)
4579     GlobalMetadata =
4580       CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs");
4581 
4582   // TODO: should we report variant information for ctors/dtors?
4583   llvm::Metadata *Ops[] = {llvm::ConstantAsMetadata::get(Addr),
4584                            llvm::ConstantAsMetadata::get(GetPointerConstant(
4585                                CGM.getLLVMContext(), D.getDecl()))};
4586   GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops));
4587 }
4588 
4589 /// For each function which is declared within an extern "C" region and marked
4590 /// as 'used', but has internal linkage, create an alias from the unmangled
4591 /// name to the mangled name if possible. People expect to be able to refer
4592 /// to such functions with an unmangled name from inline assembly within the
4593 /// same translation unit.
4594 void CodeGenModule::EmitStaticExternCAliases() {
4595   // Don't do anything if we're generating CUDA device code -- the NVPTX
4596   // assembly target doesn't support aliases.
4597   if (Context.getTargetInfo().getTriple().isNVPTX())
4598     return;
4599   for (auto &I : StaticExternCValues) {
4600     IdentifierInfo *Name = I.first;
4601     llvm::GlobalValue *Val = I.second;
4602     if (Val && !getModule().getNamedValue(Name->getName()))
4603       addUsedGlobal(llvm::GlobalAlias::create(Name->getName(), Val));
4604   }
4605 }
4606 
4607 bool CodeGenModule::lookupRepresentativeDecl(StringRef MangledName,
4608                                              GlobalDecl &Result) const {
4609   auto Res = Manglings.find(MangledName);
4610   if (Res == Manglings.end())
4611     return false;
4612   Result = Res->getValue();
4613   return true;
4614 }
4615 
4616 /// Emits metadata nodes associating all the global values in the
4617 /// current module with the Decls they came from.  This is useful for
4618 /// projects using IR gen as a subroutine.
4619 ///
4620 /// Since there's currently no way to associate an MDNode directly
4621 /// with an llvm::GlobalValue, we create a global named metadata
4622 /// with the name 'clang.global.decl.ptrs'.
4623 void CodeGenModule::EmitDeclMetadata() {
4624   llvm::NamedMDNode *GlobalMetadata = nullptr;
4625 
4626   for (auto &I : MangledDeclNames) {
4627     llvm::GlobalValue *Addr = getModule().getNamedValue(I.second);
4628     // Some mangled names don't necessarily have an associated GlobalValue
4629     // in this module, e.g. if we mangled it for DebugInfo.
4630     if (Addr)
4631       EmitGlobalDeclMetadata(*this, GlobalMetadata, I.first, Addr);
4632   }
4633 }
4634 
4635 /// Emits metadata nodes for all the local variables in the current
4636 /// function.
4637 void CodeGenFunction::EmitDeclMetadata() {
4638   if (LocalDeclMap.empty()) return;
4639 
4640   llvm::LLVMContext &Context = getLLVMContext();
4641 
4642   // Find the unique metadata ID for this name.
4643   unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr");
4644 
4645   llvm::NamedMDNode *GlobalMetadata = nullptr;
4646 
4647   for (auto &I : LocalDeclMap) {
4648     const Decl *D = I.first;
4649     llvm::Value *Addr = I.second.getPointer();
4650     if (auto *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) {
4651       llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D);
4652       Alloca->setMetadata(
4653           DeclPtrKind, llvm::MDNode::get(
4654                            Context, llvm::ValueAsMetadata::getConstant(DAddr)));
4655     } else if (auto *GV = dyn_cast<llvm::GlobalValue>(Addr)) {
4656       GlobalDecl GD = GlobalDecl(cast<VarDecl>(D));
4657       EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV);
4658     }
4659   }
4660 }
4661 
4662 void CodeGenModule::EmitVersionIdentMetadata() {
4663   llvm::NamedMDNode *IdentMetadata =
4664     TheModule.getOrInsertNamedMetadata("llvm.ident");
4665   std::string Version = getClangFullVersion();
4666   llvm::LLVMContext &Ctx = TheModule.getContext();
4667 
4668   llvm::Metadata *IdentNode[] = {llvm::MDString::get(Ctx, Version)};
4669   IdentMetadata->addOperand(llvm::MDNode::get(Ctx, IdentNode));
4670 }
4671 
4672 void CodeGenModule::EmitTargetMetadata() {
4673   // Warning, new MangledDeclNames may be appended within this loop.
4674   // We rely on MapVector insertions adding new elements to the end
4675   // of the container.
4676   // FIXME: Move this loop into the one target that needs it, and only
4677   // loop over those declarations for which we couldn't emit the target
4678   // metadata when we emitted the declaration.
4679   for (unsigned I = 0; I != MangledDeclNames.size(); ++I) {
4680     auto Val = *(MangledDeclNames.begin() + I);
4681     const Decl *D = Val.first.getDecl()->getMostRecentDecl();
4682     llvm::GlobalValue *GV = GetGlobalValue(Val.second);
4683     getTargetCodeGenInfo().emitTargetMD(D, GV, *this);
4684   }
4685 }
4686 
4687 void CodeGenModule::EmitCoverageFile() {
4688   if (getCodeGenOpts().CoverageDataFile.empty() &&
4689       getCodeGenOpts().CoverageNotesFile.empty())
4690     return;
4691 
4692   llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu");
4693   if (!CUNode)
4694     return;
4695 
4696   llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov");
4697   llvm::LLVMContext &Ctx = TheModule.getContext();
4698   auto *CoverageDataFile =
4699       llvm::MDString::get(Ctx, getCodeGenOpts().CoverageDataFile);
4700   auto *CoverageNotesFile =
4701       llvm::MDString::get(Ctx, getCodeGenOpts().CoverageNotesFile);
4702   for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) {
4703     llvm::MDNode *CU = CUNode->getOperand(i);
4704     llvm::Metadata *Elts[] = {CoverageNotesFile, CoverageDataFile, CU};
4705     GCov->addOperand(llvm::MDNode::get(Ctx, Elts));
4706   }
4707 }
4708 
4709 llvm::Constant *CodeGenModule::EmitUuidofInitializer(StringRef Uuid) {
4710   // Sema has checked that all uuid strings are of the form
4711   // "12345678-1234-1234-1234-1234567890ab".
4712   assert(Uuid.size() == 36);
4713   for (unsigned i = 0; i < 36; ++i) {
4714     if (i == 8 || i == 13 || i == 18 || i == 23) assert(Uuid[i] == '-');
4715     else                                         assert(isHexDigit(Uuid[i]));
4716   }
4717 
4718   // The starts of all bytes of Field3 in Uuid. Field 3 is "1234-1234567890ab".
4719   const unsigned Field3ValueOffsets[8] = { 19, 21, 24, 26, 28, 30, 32, 34 };
4720 
4721   llvm::Constant *Field3[8];
4722   for (unsigned Idx = 0; Idx < 8; ++Idx)
4723     Field3[Idx] = llvm::ConstantInt::get(
4724         Int8Ty, Uuid.substr(Field3ValueOffsets[Idx], 2), 16);
4725 
4726   llvm::Constant *Fields[4] = {
4727     llvm::ConstantInt::get(Int32Ty, Uuid.substr(0,  8), 16),
4728     llvm::ConstantInt::get(Int16Ty, Uuid.substr(9,  4), 16),
4729     llvm::ConstantInt::get(Int16Ty, Uuid.substr(14, 4), 16),
4730     llvm::ConstantArray::get(llvm::ArrayType::get(Int8Ty, 8), Field3)
4731   };
4732 
4733   return llvm::ConstantStruct::getAnon(Fields);
4734 }
4735 
4736 llvm::Constant *CodeGenModule::GetAddrOfRTTIDescriptor(QualType Ty,
4737                                                        bool ForEH) {
4738   // Return a bogus pointer if RTTI is disabled, unless it's for EH.
4739   // FIXME: should we even be calling this method if RTTI is disabled
4740   // and it's not for EH?
4741   if (!ForEH && !getLangOpts().RTTI)
4742     return llvm::Constant::getNullValue(Int8PtrTy);
4743 
4744   if (ForEH && Ty->isObjCObjectPointerType() &&
4745       LangOpts.ObjCRuntime.isGNUFamily())
4746     return ObjCRuntime->GetEHType(Ty);
4747 
4748   return getCXXABI().getAddrOfRTTIDescriptor(Ty);
4749 }
4750 
4751 void CodeGenModule::EmitOMPThreadPrivateDecl(const OMPThreadPrivateDecl *D) {
4752   // Do not emit threadprivates in simd-only mode.
4753   if (LangOpts.OpenMP && LangOpts.OpenMPSimd)
4754     return;
4755   for (auto RefExpr : D->varlists()) {
4756     auto *VD = cast<VarDecl>(cast<DeclRefExpr>(RefExpr)->getDecl());
4757     bool PerformInit =
4758         VD->getAnyInitializer() &&
4759         !VD->getAnyInitializer()->isConstantInitializer(getContext(),
4760                                                         /*ForRef=*/false);
4761 
4762     Address Addr(GetAddrOfGlobalVar(VD), getContext().getDeclAlign(VD));
4763     if (auto InitFunction = getOpenMPRuntime().emitThreadPrivateVarDefinition(
4764             VD, Addr, RefExpr->getLocStart(), PerformInit))
4765       CXXGlobalInits.push_back(InitFunction);
4766   }
4767 }
4768 
4769 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierForType(QualType T) {
4770   llvm::Metadata *&InternalId = MetadataIdMap[T.getCanonicalType()];
4771   if (InternalId)
4772     return InternalId;
4773 
4774   if (isExternallyVisible(T->getLinkage())) {
4775     std::string OutName;
4776     llvm::raw_string_ostream Out(OutName);
4777     getCXXABI().getMangleContext().mangleTypeName(T, Out);
4778 
4779     InternalId = llvm::MDString::get(getLLVMContext(), Out.str());
4780   } else {
4781     InternalId = llvm::MDNode::getDistinct(getLLVMContext(),
4782                                            llvm::ArrayRef<llvm::Metadata *>());
4783   }
4784 
4785   return InternalId;
4786 }
4787 
4788 // Generalize pointer types to a void pointer with the qualifiers of the
4789 // originally pointed-to type, e.g. 'const char *' and 'char * const *'
4790 // generalize to 'const void *' while 'char *' and 'const char **' generalize to
4791 // 'void *'.
4792 static QualType GeneralizeType(ASTContext &Ctx, QualType Ty) {
4793   if (!Ty->isPointerType())
4794     return Ty;
4795 
4796   return Ctx.getPointerType(
4797       QualType(Ctx.VoidTy).withCVRQualifiers(
4798           Ty->getPointeeType().getCVRQualifiers()));
4799 }
4800 
4801 // Apply type generalization to a FunctionType's return and argument types
4802 static QualType GeneralizeFunctionType(ASTContext &Ctx, QualType Ty) {
4803   if (auto *FnType = Ty->getAs<FunctionProtoType>()) {
4804     SmallVector<QualType, 8> GeneralizedParams;
4805     for (auto &Param : FnType->param_types())
4806       GeneralizedParams.push_back(GeneralizeType(Ctx, Param));
4807 
4808     return Ctx.getFunctionType(
4809         GeneralizeType(Ctx, FnType->getReturnType()),
4810         GeneralizedParams, FnType->getExtProtoInfo());
4811   }
4812 
4813   if (auto *FnType = Ty->getAs<FunctionNoProtoType>())
4814     return Ctx.getFunctionNoProtoType(
4815         GeneralizeType(Ctx, FnType->getReturnType()));
4816 
4817   llvm_unreachable("Encountered unknown FunctionType");
4818 }
4819 
4820 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierGeneralized(QualType T) {
4821   T = GeneralizeFunctionType(getContext(), T);
4822 
4823   llvm::Metadata *&InternalId = GeneralizedMetadataIdMap[T.getCanonicalType()];
4824   if (InternalId)
4825     return InternalId;
4826 
4827   if (isExternallyVisible(T->getLinkage())) {
4828     std::string OutName;
4829     llvm::raw_string_ostream Out(OutName);
4830     getCXXABI().getMangleContext().mangleTypeName(T, Out);
4831     Out << ".generalized";
4832 
4833     InternalId = llvm::MDString::get(getLLVMContext(), Out.str());
4834   } else {
4835     InternalId = llvm::MDNode::getDistinct(getLLVMContext(),
4836                                            llvm::ArrayRef<llvm::Metadata *>());
4837   }
4838 
4839   return InternalId;
4840 }
4841 
4842 /// Returns whether this module needs the "all-vtables" type identifier.
4843 bool CodeGenModule::NeedAllVtablesTypeId() const {
4844   // Returns true if at least one of vtable-based CFI checkers is enabled and
4845   // is not in the trapping mode.
4846   return ((LangOpts.Sanitize.has(SanitizerKind::CFIVCall) &&
4847            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIVCall)) ||
4848           (LangOpts.Sanitize.has(SanitizerKind::CFINVCall) &&
4849            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFINVCall)) ||
4850           (LangOpts.Sanitize.has(SanitizerKind::CFIDerivedCast) &&
4851            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIDerivedCast)) ||
4852           (LangOpts.Sanitize.has(SanitizerKind::CFIUnrelatedCast) &&
4853            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIUnrelatedCast)));
4854 }
4855 
4856 void CodeGenModule::AddVTableTypeMetadata(llvm::GlobalVariable *VTable,
4857                                           CharUnits Offset,
4858                                           const CXXRecordDecl *RD) {
4859   llvm::Metadata *MD =
4860       CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0));
4861   VTable->addTypeMetadata(Offset.getQuantity(), MD);
4862 
4863   if (CodeGenOpts.SanitizeCfiCrossDso)
4864     if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD))
4865       VTable->addTypeMetadata(Offset.getQuantity(),
4866                               llvm::ConstantAsMetadata::get(CrossDsoTypeId));
4867 
4868   if (NeedAllVtablesTypeId()) {
4869     llvm::Metadata *MD = llvm::MDString::get(getLLVMContext(), "all-vtables");
4870     VTable->addTypeMetadata(Offset.getQuantity(), MD);
4871   }
4872 }
4873 
4874 // Fills in the supplied string map with the set of target features for the
4875 // passed in function.
4876 void CodeGenModule::getFunctionFeatureMap(llvm::StringMap<bool> &FeatureMap,
4877                                           const FunctionDecl *FD) {
4878   StringRef TargetCPU = Target.getTargetOpts().CPU;
4879   if (const auto *TD = FD->getAttr<TargetAttr>()) {
4880     // If we have a TargetAttr build up the feature map based on that.
4881     TargetAttr::ParsedTargetAttr ParsedAttr = TD->parse();
4882 
4883     ParsedAttr.Features.erase(
4884         llvm::remove_if(ParsedAttr.Features,
4885                         [&](const std::string &Feat) {
4886                           return !Target.isValidFeatureName(
4887                               StringRef{Feat}.substr(1));
4888                         }),
4889         ParsedAttr.Features.end());
4890 
4891     // Make a copy of the features as passed on the command line into the
4892     // beginning of the additional features from the function to override.
4893     ParsedAttr.Features.insert(ParsedAttr.Features.begin(),
4894                             Target.getTargetOpts().FeaturesAsWritten.begin(),
4895                             Target.getTargetOpts().FeaturesAsWritten.end());
4896 
4897     if (ParsedAttr.Architecture != "" &&
4898         Target.isValidCPUName(ParsedAttr.Architecture))
4899       TargetCPU = ParsedAttr.Architecture;
4900 
4901     // Now populate the feature map, first with the TargetCPU which is either
4902     // the default or a new one from the target attribute string. Then we'll use
4903     // the passed in features (FeaturesAsWritten) along with the new ones from
4904     // the attribute.
4905     Target.initFeatureMap(FeatureMap, getDiags(), TargetCPU,
4906                           ParsedAttr.Features);
4907   } else {
4908     Target.initFeatureMap(FeatureMap, getDiags(), TargetCPU,
4909                           Target.getTargetOpts().Features);
4910   }
4911 }
4912 
4913 llvm::SanitizerStatReport &CodeGenModule::getSanStats() {
4914   if (!SanStats)
4915     SanStats = llvm::make_unique<llvm::SanitizerStatReport>(&getModule());
4916 
4917   return *SanStats;
4918 }
4919 llvm::Value *
4920 CodeGenModule::createOpenCLIntToSamplerConversion(const Expr *E,
4921                                                   CodeGenFunction &CGF) {
4922   llvm::Constant *C = ConstantEmitter(CGF).emitAbstract(E, E->getType());
4923   auto SamplerT = getOpenCLRuntime().getSamplerType(E->getType().getTypePtr());
4924   auto FTy = llvm::FunctionType::get(SamplerT, {C->getType()}, false);
4925   return CGF.Builder.CreateCall(CreateRuntimeFunction(FTy,
4926                                 "__translate_sampler_initializer"),
4927                                 {C});
4928 }
4929