xref: /llvm-project/clang/lib/CodeGen/CodeGenModule.cpp (revision 7e346a81272224048620c7a8b06f9cdb69ae5f7d)
1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This coordinates the per-module state used while generating code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenModule.h"
15 #include "CGCUDARuntime.h"
16 #include "CGCXXABI.h"
17 #include "CGCall.h"
18 #include "CGDebugInfo.h"
19 #include "CGObjCRuntime.h"
20 #include "CGOpenCLRuntime.h"
21 #include "CodeGenFunction.h"
22 #include "CodeGenTBAA.h"
23 #include "TargetInfo.h"
24 #include "clang/AST/ASTContext.h"
25 #include "clang/AST/CharUnits.h"
26 #include "clang/AST/DeclCXX.h"
27 #include "clang/AST/DeclObjC.h"
28 #include "clang/AST/DeclTemplate.h"
29 #include "clang/AST/Mangle.h"
30 #include "clang/AST/RecordLayout.h"
31 #include "clang/AST/RecursiveASTVisitor.h"
32 #include "clang/Basic/Builtins.h"
33 #include "clang/Basic/CharInfo.h"
34 #include "clang/Basic/Diagnostic.h"
35 #include "clang/Basic/Module.h"
36 #include "clang/Basic/SourceManager.h"
37 #include "clang/Basic/TargetInfo.h"
38 #include "clang/Frontend/CodeGenOptions.h"
39 #include "llvm/ADT/APSInt.h"
40 #include "llvm/ADT/Triple.h"
41 #include "llvm/IR/CallingConv.h"
42 #include "llvm/IR/DataLayout.h"
43 #include "llvm/IR/Intrinsics.h"
44 #include "llvm/IR/LLVMContext.h"
45 #include "llvm/IR/Module.h"
46 #include "llvm/Support/CallSite.h"
47 #include "llvm/Support/ConvertUTF.h"
48 #include "llvm/Support/ErrorHandling.h"
49 #include "llvm/Target/Mangler.h"
50 
51 using namespace clang;
52 using namespace CodeGen;
53 
54 static const char AnnotationSection[] = "llvm.metadata";
55 
56 static CGCXXABI &createCXXABI(CodeGenModule &CGM) {
57   switch (CGM.getTarget().getCXXABI().getKind()) {
58   case TargetCXXABI::GenericAArch64:
59   case TargetCXXABI::GenericARM:
60   case TargetCXXABI::iOS:
61   case TargetCXXABI::GenericItanium:
62     return *CreateItaniumCXXABI(CGM);
63   case TargetCXXABI::Microsoft:
64     return *CreateMicrosoftCXXABI(CGM);
65   }
66 
67   llvm_unreachable("invalid C++ ABI kind");
68 }
69 
70 
71 CodeGenModule::CodeGenModule(ASTContext &C, const CodeGenOptions &CGO,
72                              llvm::Module &M, const llvm::DataLayout &TD,
73                              DiagnosticsEngine &diags)
74   : Context(C), LangOpts(C.getLangOpts()), CodeGenOpts(CGO), TheModule(M),
75     Diags(diags), TheDataLayout(TD), Target(C.getTargetInfo()),
76     ABI(createCXXABI(*this)), VMContext(M.getContext()), TBAA(0),
77     TheTargetCodeGenInfo(0), Types(*this), VTables(*this),
78     ObjCRuntime(0), OpenCLRuntime(0), CUDARuntime(0),
79     DebugInfo(0), ARCData(0), NoObjCARCExceptionsMetadata(0),
80     RRData(0), CFConstantStringClassRef(0),
81     ConstantStringClassRef(0), NSConstantStringType(0),
82     NSConcreteGlobalBlock(0), NSConcreteStackBlock(0),
83     BlockObjectAssign(0), BlockObjectDispose(0),
84     BlockDescriptorType(0), GenericBlockLiteralType(0),
85     LifetimeStartFn(0), LifetimeEndFn(0),
86     SanitizerBlacklist(CGO.SanitizerBlacklistFile),
87     SanOpts(SanitizerBlacklist.isIn(M) ?
88             SanitizerOptions::Disabled : LangOpts.Sanitize) {
89 
90   // Initialize the type cache.
91   llvm::LLVMContext &LLVMContext = M.getContext();
92   VoidTy = llvm::Type::getVoidTy(LLVMContext);
93   Int8Ty = llvm::Type::getInt8Ty(LLVMContext);
94   Int16Ty = llvm::Type::getInt16Ty(LLVMContext);
95   Int32Ty = llvm::Type::getInt32Ty(LLVMContext);
96   Int64Ty = llvm::Type::getInt64Ty(LLVMContext);
97   FloatTy = llvm::Type::getFloatTy(LLVMContext);
98   DoubleTy = llvm::Type::getDoubleTy(LLVMContext);
99   PointerWidthInBits = C.getTargetInfo().getPointerWidth(0);
100   PointerAlignInBytes =
101   C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(0)).getQuantity();
102   IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth());
103   IntPtrTy = llvm::IntegerType::get(LLVMContext, PointerWidthInBits);
104   Int8PtrTy = Int8Ty->getPointerTo(0);
105   Int8PtrPtrTy = Int8PtrTy->getPointerTo(0);
106 
107   RuntimeCC = getTargetCodeGenInfo().getABIInfo().getRuntimeCC();
108 
109   if (LangOpts.ObjC1)
110     createObjCRuntime();
111   if (LangOpts.OpenCL)
112     createOpenCLRuntime();
113   if (LangOpts.CUDA)
114     createCUDARuntime();
115 
116   // Enable TBAA unless it's suppressed. ThreadSanitizer needs TBAA even at O0.
117   if (SanOpts.Thread ||
118       (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0))
119     TBAA = new CodeGenTBAA(Context, VMContext, CodeGenOpts, getLangOpts(),
120                            ABI.getMangleContext());
121 
122   // If debug info or coverage generation is enabled, create the CGDebugInfo
123   // object.
124   if (CodeGenOpts.getDebugInfo() != CodeGenOptions::NoDebugInfo ||
125       CodeGenOpts.EmitGcovArcs ||
126       CodeGenOpts.EmitGcovNotes)
127     DebugInfo = new CGDebugInfo(*this);
128 
129   Block.GlobalUniqueCount = 0;
130 
131   if (C.getLangOpts().ObjCAutoRefCount)
132     ARCData = new ARCEntrypoints();
133   RRData = new RREntrypoints();
134 }
135 
136 CodeGenModule::~CodeGenModule() {
137   delete ObjCRuntime;
138   delete OpenCLRuntime;
139   delete CUDARuntime;
140   delete TheTargetCodeGenInfo;
141   delete &ABI;
142   delete TBAA;
143   delete DebugInfo;
144   delete ARCData;
145   delete RRData;
146 }
147 
148 void CodeGenModule::createObjCRuntime() {
149   // This is just isGNUFamily(), but we want to force implementors of
150   // new ABIs to decide how best to do this.
151   switch (LangOpts.ObjCRuntime.getKind()) {
152   case ObjCRuntime::GNUstep:
153   case ObjCRuntime::GCC:
154   case ObjCRuntime::ObjFW:
155     ObjCRuntime = CreateGNUObjCRuntime(*this);
156     return;
157 
158   case ObjCRuntime::FragileMacOSX:
159   case ObjCRuntime::MacOSX:
160   case ObjCRuntime::iOS:
161     ObjCRuntime = CreateMacObjCRuntime(*this);
162     return;
163   }
164   llvm_unreachable("bad runtime kind");
165 }
166 
167 void CodeGenModule::createOpenCLRuntime() {
168   OpenCLRuntime = new CGOpenCLRuntime(*this);
169 }
170 
171 void CodeGenModule::createCUDARuntime() {
172   CUDARuntime = CreateNVCUDARuntime(*this);
173 }
174 
175 void CodeGenModule::Release() {
176   EmitDeferred();
177   EmitCXXGlobalInitFunc();
178   EmitCXXGlobalDtorFunc();
179   EmitCXXThreadLocalInitFunc();
180   if (ObjCRuntime)
181     if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction())
182       AddGlobalCtor(ObjCInitFunction);
183   EmitCtorList(GlobalCtors, "llvm.global_ctors");
184   EmitCtorList(GlobalDtors, "llvm.global_dtors");
185   EmitGlobalAnnotations();
186   EmitStaticExternCAliases();
187   EmitLLVMUsed();
188 
189   if (CodeGenOpts.Autolink &&
190       (Context.getLangOpts().Modules || !LinkerOptionsMetadata.empty())) {
191     EmitModuleLinkOptions();
192   }
193   if (CodeGenOpts.DwarfVersion)
194     // We actually want the latest version when there are conflicts.
195     // We can change from Warning to Latest if such mode is supported.
196     getModule().addModuleFlag(llvm::Module::Warning, "Dwarf Version",
197                               CodeGenOpts.DwarfVersion);
198 
199   SimplifyPersonality();
200 
201   if (getCodeGenOpts().EmitDeclMetadata)
202     EmitDeclMetadata();
203 
204   if (getCodeGenOpts().EmitGcovArcs || getCodeGenOpts().EmitGcovNotes)
205     EmitCoverageFile();
206 
207   if (DebugInfo)
208     DebugInfo->finalize();
209 }
210 
211 void CodeGenModule::UpdateCompletedType(const TagDecl *TD) {
212   // Make sure that this type is translated.
213   Types.UpdateCompletedType(TD);
214 }
215 
216 llvm::MDNode *CodeGenModule::getTBAAInfo(QualType QTy) {
217   if (!TBAA)
218     return 0;
219   return TBAA->getTBAAInfo(QTy);
220 }
221 
222 llvm::MDNode *CodeGenModule::getTBAAInfoForVTablePtr() {
223   if (!TBAA)
224     return 0;
225   return TBAA->getTBAAInfoForVTablePtr();
226 }
227 
228 llvm::MDNode *CodeGenModule::getTBAAStructInfo(QualType QTy) {
229   if (!TBAA)
230     return 0;
231   return TBAA->getTBAAStructInfo(QTy);
232 }
233 
234 llvm::MDNode *CodeGenModule::getTBAAStructTypeInfo(QualType QTy) {
235   if (!TBAA)
236     return 0;
237   return TBAA->getTBAAStructTypeInfo(QTy);
238 }
239 
240 llvm::MDNode *CodeGenModule::getTBAAStructTagInfo(QualType BaseTy,
241                                                   llvm::MDNode *AccessN,
242                                                   uint64_t O) {
243   if (!TBAA)
244     return 0;
245   return TBAA->getTBAAStructTagInfo(BaseTy, AccessN, O);
246 }
247 
248 /// Decorate the instruction with a TBAA tag. For scalar TBAA, the tag
249 /// is the same as the type. For struct-path aware TBAA, the tag
250 /// is different from the type: base type, access type and offset.
251 /// When ConvertTypeToTag is true, we create a tag based on the scalar type.
252 void CodeGenModule::DecorateInstruction(llvm::Instruction *Inst,
253                                         llvm::MDNode *TBAAInfo,
254                                         bool ConvertTypeToTag) {
255   if (ConvertTypeToTag && TBAA && CodeGenOpts.StructPathTBAA)
256     Inst->setMetadata(llvm::LLVMContext::MD_tbaa,
257                       TBAA->getTBAAScalarTagInfo(TBAAInfo));
258   else
259     Inst->setMetadata(llvm::LLVMContext::MD_tbaa, TBAAInfo);
260 }
261 
262 void CodeGenModule::Error(SourceLocation loc, StringRef error) {
263   unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, error);
264   getDiags().Report(Context.getFullLoc(loc), diagID);
265 }
266 
267 /// ErrorUnsupported - Print out an error that codegen doesn't support the
268 /// specified stmt yet.
269 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type,
270                                      bool OmitOnError) {
271   if (OmitOnError && getDiags().hasErrorOccurred())
272     return;
273   unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
274                                                "cannot compile this %0 yet");
275   std::string Msg = Type;
276   getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID)
277     << Msg << S->getSourceRange();
278 }
279 
280 /// ErrorUnsupported - Print out an error that codegen doesn't support the
281 /// specified decl yet.
282 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type,
283                                      bool OmitOnError) {
284   if (OmitOnError && getDiags().hasErrorOccurred())
285     return;
286   unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
287                                                "cannot compile this %0 yet");
288   std::string Msg = Type;
289   getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg;
290 }
291 
292 llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) {
293   return llvm::ConstantInt::get(SizeTy, size.getQuantity());
294 }
295 
296 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV,
297                                         const NamedDecl *D) const {
298   // Internal definitions always have default visibility.
299   if (GV->hasLocalLinkage()) {
300     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
301     return;
302   }
303 
304   // Set visibility for definitions.
305   LinkageInfo LV = D->getLinkageAndVisibility();
306   if (LV.isVisibilityExplicit() || !GV->hasAvailableExternallyLinkage())
307     GV->setVisibility(GetLLVMVisibility(LV.getVisibility()));
308 }
309 
310 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(StringRef S) {
311   return llvm::StringSwitch<llvm::GlobalVariable::ThreadLocalMode>(S)
312       .Case("global-dynamic", llvm::GlobalVariable::GeneralDynamicTLSModel)
313       .Case("local-dynamic", llvm::GlobalVariable::LocalDynamicTLSModel)
314       .Case("initial-exec", llvm::GlobalVariable::InitialExecTLSModel)
315       .Case("local-exec", llvm::GlobalVariable::LocalExecTLSModel);
316 }
317 
318 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(
319     CodeGenOptions::TLSModel M) {
320   switch (M) {
321   case CodeGenOptions::GeneralDynamicTLSModel:
322     return llvm::GlobalVariable::GeneralDynamicTLSModel;
323   case CodeGenOptions::LocalDynamicTLSModel:
324     return llvm::GlobalVariable::LocalDynamicTLSModel;
325   case CodeGenOptions::InitialExecTLSModel:
326     return llvm::GlobalVariable::InitialExecTLSModel;
327   case CodeGenOptions::LocalExecTLSModel:
328     return llvm::GlobalVariable::LocalExecTLSModel;
329   }
330   llvm_unreachable("Invalid TLS model!");
331 }
332 
333 void CodeGenModule::setTLSMode(llvm::GlobalVariable *GV,
334                                const VarDecl &D) const {
335   assert(D.getTLSKind() && "setting TLS mode on non-TLS var!");
336 
337   llvm::GlobalVariable::ThreadLocalMode TLM;
338   TLM = GetLLVMTLSModel(CodeGenOpts.getDefaultTLSModel());
339 
340   // Override the TLS model if it is explicitly specified.
341   if (D.hasAttr<TLSModelAttr>()) {
342     const TLSModelAttr *Attr = D.getAttr<TLSModelAttr>();
343     TLM = GetLLVMTLSModel(Attr->getModel());
344   }
345 
346   GV->setThreadLocalMode(TLM);
347 }
348 
349 /// Set the symbol visibility of type information (vtable and RTTI)
350 /// associated with the given type.
351 void CodeGenModule::setTypeVisibility(llvm::GlobalValue *GV,
352                                       const CXXRecordDecl *RD,
353                                       TypeVisibilityKind TVK) const {
354   setGlobalVisibility(GV, RD);
355 
356   if (!CodeGenOpts.HiddenWeakVTables)
357     return;
358 
359   // We never want to drop the visibility for RTTI names.
360   if (TVK == TVK_ForRTTIName)
361     return;
362 
363   // We want to drop the visibility to hidden for weak type symbols.
364   // This isn't possible if there might be unresolved references
365   // elsewhere that rely on this symbol being visible.
366 
367   // This should be kept roughly in sync with setThunkVisibility
368   // in CGVTables.cpp.
369 
370   // Preconditions.
371   if (GV->getLinkage() != llvm::GlobalVariable::LinkOnceODRLinkage ||
372       GV->getVisibility() != llvm::GlobalVariable::DefaultVisibility)
373     return;
374 
375   // Don't override an explicit visibility attribute.
376   if (RD->getExplicitVisibility(NamedDecl::VisibilityForType))
377     return;
378 
379   switch (RD->getTemplateSpecializationKind()) {
380   // We have to disable the optimization if this is an EI definition
381   // because there might be EI declarations in other shared objects.
382   case TSK_ExplicitInstantiationDefinition:
383   case TSK_ExplicitInstantiationDeclaration:
384     return;
385 
386   // Every use of a non-template class's type information has to emit it.
387   case TSK_Undeclared:
388     break;
389 
390   // In theory, implicit instantiations can ignore the possibility of
391   // an explicit instantiation declaration because there necessarily
392   // must be an EI definition somewhere with default visibility.  In
393   // practice, it's possible to have an explicit instantiation for
394   // an arbitrary template class, and linkers aren't necessarily able
395   // to deal with mixed-visibility symbols.
396   case TSK_ExplicitSpecialization:
397   case TSK_ImplicitInstantiation:
398     return;
399   }
400 
401   // If there's a key function, there may be translation units
402   // that don't have the key function's definition.  But ignore
403   // this if we're emitting RTTI under -fno-rtti.
404   if (!(TVK != TVK_ForRTTI) || LangOpts.RTTI) {
405     // FIXME: what should we do if we "lose" the key function during
406     // the emission of the file?
407     if (Context.getCurrentKeyFunction(RD))
408       return;
409   }
410 
411   // Otherwise, drop the visibility to hidden.
412   GV->setVisibility(llvm::GlobalValue::HiddenVisibility);
413   GV->setUnnamedAddr(true);
414 }
415 
416 StringRef CodeGenModule::getMangledName(GlobalDecl GD) {
417   const NamedDecl *ND = cast<NamedDecl>(GD.getDecl());
418 
419   StringRef &Str = MangledDeclNames[GD.getCanonicalDecl()];
420   if (!Str.empty())
421     return Str;
422 
423   if (!getCXXABI().getMangleContext().shouldMangleDeclName(ND)) {
424     IdentifierInfo *II = ND->getIdentifier();
425     assert(II && "Attempt to mangle unnamed decl.");
426 
427     Str = II->getName();
428     return Str;
429   }
430 
431   SmallString<256> Buffer;
432   llvm::raw_svector_ostream Out(Buffer);
433   if (const CXXConstructorDecl *D = dyn_cast<CXXConstructorDecl>(ND))
434     getCXXABI().getMangleContext().mangleCXXCtor(D, GD.getCtorType(), Out);
435   else if (const CXXDestructorDecl *D = dyn_cast<CXXDestructorDecl>(ND))
436     getCXXABI().getMangleContext().mangleCXXDtor(D, GD.getDtorType(), Out);
437   else if (const BlockDecl *BD = dyn_cast<BlockDecl>(ND))
438     getCXXABI().getMangleContext().mangleBlock(BD, Out,
439       dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()));
440   else
441     getCXXABI().getMangleContext().mangleName(ND, Out);
442 
443   // Allocate space for the mangled name.
444   Out.flush();
445   size_t Length = Buffer.size();
446   char *Name = MangledNamesAllocator.Allocate<char>(Length);
447   std::copy(Buffer.begin(), Buffer.end(), Name);
448 
449   Str = StringRef(Name, Length);
450 
451   return Str;
452 }
453 
454 void CodeGenModule::getBlockMangledName(GlobalDecl GD, MangleBuffer &Buffer,
455                                         const BlockDecl *BD) {
456   MangleContext &MangleCtx = getCXXABI().getMangleContext();
457   const Decl *D = GD.getDecl();
458   llvm::raw_svector_ostream Out(Buffer.getBuffer());
459   if (D == 0)
460     MangleCtx.mangleGlobalBlock(BD,
461       dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()), Out);
462   else if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(D))
463     MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out);
464   else if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(D))
465     MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out);
466   else
467     MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out);
468 }
469 
470 llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) {
471   return getModule().getNamedValue(Name);
472 }
473 
474 /// AddGlobalCtor - Add a function to the list that will be called before
475 /// main() runs.
476 void CodeGenModule::AddGlobalCtor(llvm::Function * Ctor, int Priority) {
477   // FIXME: Type coercion of void()* types.
478   GlobalCtors.push_back(std::make_pair(Ctor, Priority));
479 }
480 
481 /// AddGlobalDtor - Add a function to the list that will be called
482 /// when the module is unloaded.
483 void CodeGenModule::AddGlobalDtor(llvm::Function * Dtor, int Priority) {
484   // FIXME: Type coercion of void()* types.
485   GlobalDtors.push_back(std::make_pair(Dtor, Priority));
486 }
487 
488 void CodeGenModule::EmitCtorList(const CtorList &Fns, const char *GlobalName) {
489   // Ctor function type is void()*.
490   llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false);
491   llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy);
492 
493   // Get the type of a ctor entry, { i32, void ()* }.
494   llvm::StructType *CtorStructTy =
495     llvm::StructType::get(Int32Ty, llvm::PointerType::getUnqual(CtorFTy), NULL);
496 
497   // Construct the constructor and destructor arrays.
498   SmallVector<llvm::Constant*, 8> Ctors;
499   for (CtorList::const_iterator I = Fns.begin(), E = Fns.end(); I != E; ++I) {
500     llvm::Constant *S[] = {
501       llvm::ConstantInt::get(Int32Ty, I->second, false),
502       llvm::ConstantExpr::getBitCast(I->first, CtorPFTy)
503     };
504     Ctors.push_back(llvm::ConstantStruct::get(CtorStructTy, S));
505   }
506 
507   if (!Ctors.empty()) {
508     llvm::ArrayType *AT = llvm::ArrayType::get(CtorStructTy, Ctors.size());
509     new llvm::GlobalVariable(TheModule, AT, false,
510                              llvm::GlobalValue::AppendingLinkage,
511                              llvm::ConstantArray::get(AT, Ctors),
512                              GlobalName);
513   }
514 }
515 
516 llvm::GlobalValue::LinkageTypes
517 CodeGenModule::getFunctionLinkage(GlobalDecl GD) {
518   return getFunctionLinkage(cast<FunctionDecl>(GD.getDecl()));
519 }
520 
521 llvm::GlobalValue::LinkageTypes
522 CodeGenModule::getFunctionLinkage(const FunctionDecl *D) {
523   GVALinkage Linkage = getContext().GetGVALinkageForFunction(D);
524 
525   if (Linkage == GVA_Internal)
526     return llvm::Function::InternalLinkage;
527 
528   if (D->hasAttr<DLLExportAttr>())
529     return llvm::Function::DLLExportLinkage;
530 
531   if (D->hasAttr<WeakAttr>())
532     return llvm::Function::WeakAnyLinkage;
533 
534   // In C99 mode, 'inline' functions are guaranteed to have a strong
535   // definition somewhere else, so we can use available_externally linkage.
536   if (Linkage == GVA_C99Inline)
537     return llvm::Function::AvailableExternallyLinkage;
538 
539   // Note that Apple's kernel linker doesn't support symbol
540   // coalescing, so we need to avoid linkonce and weak linkages there.
541   // Normally, this means we just map to internal, but for explicit
542   // instantiations we'll map to external.
543 
544   // In C++, the compiler has to emit a definition in every translation unit
545   // that references the function.  We should use linkonce_odr because
546   // a) if all references in this translation unit are optimized away, we
547   // don't need to codegen it.  b) if the function persists, it needs to be
548   // merged with other definitions. c) C++ has the ODR, so we know the
549   // definition is dependable.
550   if (Linkage == GVA_CXXInline || Linkage == GVA_TemplateInstantiation)
551     return !Context.getLangOpts().AppleKext
552              ? llvm::Function::LinkOnceODRLinkage
553              : llvm::Function::InternalLinkage;
554 
555   // An explicit instantiation of a template has weak linkage, since
556   // explicit instantiations can occur in multiple translation units
557   // and must all be equivalent. However, we are not allowed to
558   // throw away these explicit instantiations.
559   if (Linkage == GVA_ExplicitTemplateInstantiation)
560     return !Context.getLangOpts().AppleKext
561              ? llvm::Function::WeakODRLinkage
562              : llvm::Function::ExternalLinkage;
563 
564   // Otherwise, we have strong external linkage.
565   assert(Linkage == GVA_StrongExternal);
566   return llvm::Function::ExternalLinkage;
567 }
568 
569 
570 /// SetFunctionDefinitionAttributes - Set attributes for a global.
571 ///
572 /// FIXME: This is currently only done for aliases and functions, but not for
573 /// variables (these details are set in EmitGlobalVarDefinition for variables).
574 void CodeGenModule::SetFunctionDefinitionAttributes(const FunctionDecl *D,
575                                                     llvm::GlobalValue *GV) {
576   SetCommonAttributes(D, GV);
577 }
578 
579 void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D,
580                                               const CGFunctionInfo &Info,
581                                               llvm::Function *F) {
582   unsigned CallingConv;
583   AttributeListType AttributeList;
584   ConstructAttributeList(Info, D, AttributeList, CallingConv, false);
585   F->setAttributes(llvm::AttributeSet::get(getLLVMContext(), AttributeList));
586   F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv));
587 }
588 
589 /// Determines whether the language options require us to model
590 /// unwind exceptions.  We treat -fexceptions as mandating this
591 /// except under the fragile ObjC ABI with only ObjC exceptions
592 /// enabled.  This means, for example, that C with -fexceptions
593 /// enables this.
594 static bool hasUnwindExceptions(const LangOptions &LangOpts) {
595   // If exceptions are completely disabled, obviously this is false.
596   if (!LangOpts.Exceptions) return false;
597 
598   // If C++ exceptions are enabled, this is true.
599   if (LangOpts.CXXExceptions) return true;
600 
601   // If ObjC exceptions are enabled, this depends on the ABI.
602   if (LangOpts.ObjCExceptions) {
603     return LangOpts.ObjCRuntime.hasUnwindExceptions();
604   }
605 
606   return true;
607 }
608 
609 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D,
610                                                            llvm::Function *F) {
611   llvm::AttrBuilder B;
612 
613   if (CodeGenOpts.UnwindTables)
614     B.addAttribute(llvm::Attribute::UWTable);
615 
616   if (!hasUnwindExceptions(LangOpts))
617     B.addAttribute(llvm::Attribute::NoUnwind);
618 
619   if (D->hasAttr<NakedAttr>()) {
620     // Naked implies noinline: we should not be inlining such functions.
621     B.addAttribute(llvm::Attribute::Naked);
622     B.addAttribute(llvm::Attribute::NoInline);
623   } else if (D->hasAttr<NoInlineAttr>()) {
624     B.addAttribute(llvm::Attribute::NoInline);
625   } else if ((D->hasAttr<AlwaysInlineAttr>() ||
626               D->hasAttr<ForceInlineAttr>()) &&
627              !F->getAttributes().hasAttribute(llvm::AttributeSet::FunctionIndex,
628                                               llvm::Attribute::NoInline)) {
629     // (noinline wins over always_inline, and we can't specify both in IR)
630     B.addAttribute(llvm::Attribute::AlwaysInline);
631   }
632 
633   if (D->hasAttr<ColdAttr>()) {
634     B.addAttribute(llvm::Attribute::OptimizeForSize);
635     B.addAttribute(llvm::Attribute::Cold);
636   }
637 
638   if (D->hasAttr<MinSizeAttr>())
639     B.addAttribute(llvm::Attribute::MinSize);
640 
641   if (LangOpts.getStackProtector() == LangOptions::SSPOn)
642     B.addAttribute(llvm::Attribute::StackProtect);
643   else if (LangOpts.getStackProtector() == LangOptions::SSPReq)
644     B.addAttribute(llvm::Attribute::StackProtectReq);
645 
646   // Add sanitizer attributes if function is not blacklisted.
647   if (!SanitizerBlacklist.isIn(*F)) {
648     // When AddressSanitizer is enabled, set SanitizeAddress attribute
649     // unless __attribute__((no_sanitize_address)) is used.
650     if (SanOpts.Address && !D->hasAttr<NoSanitizeAddressAttr>())
651       B.addAttribute(llvm::Attribute::SanitizeAddress);
652     // Same for ThreadSanitizer and __attribute__((no_sanitize_thread))
653     if (SanOpts.Thread && !D->hasAttr<NoSanitizeThreadAttr>()) {
654       B.addAttribute(llvm::Attribute::SanitizeThread);
655     }
656     // Same for MemorySanitizer and __attribute__((no_sanitize_memory))
657     if (SanOpts.Memory && !D->hasAttr<NoSanitizeMemoryAttr>())
658       B.addAttribute(llvm::Attribute::SanitizeMemory);
659   }
660 
661   F->addAttributes(llvm::AttributeSet::FunctionIndex,
662                    llvm::AttributeSet::get(
663                        F->getContext(), llvm::AttributeSet::FunctionIndex, B));
664 
665   if (isa<CXXConstructorDecl>(D) || isa<CXXDestructorDecl>(D))
666     F->setUnnamedAddr(true);
667   else if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D))
668     if (MD->isVirtual())
669       F->setUnnamedAddr(true);
670 
671   unsigned alignment = D->getMaxAlignment() / Context.getCharWidth();
672   if (alignment)
673     F->setAlignment(alignment);
674 
675   // C++ ABI requires 2-byte alignment for member functions.
676   if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D))
677     F->setAlignment(2);
678 }
679 
680 void CodeGenModule::SetCommonAttributes(const Decl *D,
681                                         llvm::GlobalValue *GV) {
682   if (const NamedDecl *ND = dyn_cast<NamedDecl>(D))
683     setGlobalVisibility(GV, ND);
684   else
685     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
686 
687   if (D->hasAttr<UsedAttr>())
688     AddUsedGlobal(GV);
689 
690   if (const SectionAttr *SA = D->getAttr<SectionAttr>())
691     GV->setSection(SA->getName());
692 
693   // Alias cannot have attributes. Filter them here.
694   if (!isa<llvm::GlobalAlias>(GV))
695     getTargetCodeGenInfo().SetTargetAttributes(D, GV, *this);
696 }
697 
698 void CodeGenModule::SetInternalFunctionAttributes(const Decl *D,
699                                                   llvm::Function *F,
700                                                   const CGFunctionInfo &FI) {
701   SetLLVMFunctionAttributes(D, FI, F);
702   SetLLVMFunctionAttributesForDefinition(D, F);
703 
704   F->setLinkage(llvm::Function::InternalLinkage);
705 
706   SetCommonAttributes(D, F);
707 }
708 
709 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD,
710                                           llvm::Function *F,
711                                           bool IsIncompleteFunction) {
712   if (unsigned IID = F->getIntrinsicID()) {
713     // If this is an intrinsic function, set the function's attributes
714     // to the intrinsic's attributes.
715     F->setAttributes(llvm::Intrinsic::getAttributes(getLLVMContext(),
716                                                     (llvm::Intrinsic::ID)IID));
717     return;
718   }
719 
720   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
721 
722   if (!IsIncompleteFunction)
723     SetLLVMFunctionAttributes(FD, getTypes().arrangeGlobalDeclaration(GD), F);
724 
725   if (getCXXABI().HasThisReturn(GD)) {
726     assert(!F->arg_empty() &&
727            F->arg_begin()->getType()
728              ->canLosslesslyBitCastTo(F->getReturnType()) &&
729            "unexpected this return");
730     F->addAttribute(1, llvm::Attribute::Returned);
731   }
732 
733   // Only a few attributes are set on declarations; these may later be
734   // overridden by a definition.
735 
736   if (FD->hasAttr<DLLImportAttr>()) {
737     F->setLinkage(llvm::Function::DLLImportLinkage);
738   } else if (FD->hasAttr<WeakAttr>() ||
739              FD->isWeakImported()) {
740     // "extern_weak" is overloaded in LLVM; we probably should have
741     // separate linkage types for this.
742     F->setLinkage(llvm::Function::ExternalWeakLinkage);
743   } else {
744     F->setLinkage(llvm::Function::ExternalLinkage);
745 
746     LinkageInfo LV = FD->getLinkageAndVisibility();
747     if (LV.getLinkage() == ExternalLinkage && LV.isVisibilityExplicit()) {
748       F->setVisibility(GetLLVMVisibility(LV.getVisibility()));
749     }
750   }
751 
752   if (const SectionAttr *SA = FD->getAttr<SectionAttr>())
753     F->setSection(SA->getName());
754 }
755 
756 void CodeGenModule::AddUsedGlobal(llvm::GlobalValue *GV) {
757   assert(!GV->isDeclaration() &&
758          "Only globals with definition can force usage.");
759   LLVMUsed.push_back(GV);
760 }
761 
762 void CodeGenModule::EmitLLVMUsed() {
763   // Don't create llvm.used if there is no need.
764   if (LLVMUsed.empty())
765     return;
766 
767   // Convert LLVMUsed to what ConstantArray needs.
768   SmallVector<llvm::Constant*, 8> UsedArray;
769   UsedArray.resize(LLVMUsed.size());
770   for (unsigned i = 0, e = LLVMUsed.size(); i != e; ++i) {
771     UsedArray[i] =
772      llvm::ConstantExpr::getBitCast(cast<llvm::Constant>(&*LLVMUsed[i]),
773                                     Int8PtrTy);
774   }
775 
776   if (UsedArray.empty())
777     return;
778   llvm::ArrayType *ATy = llvm::ArrayType::get(Int8PtrTy, UsedArray.size());
779 
780   llvm::GlobalVariable *GV =
781     new llvm::GlobalVariable(getModule(), ATy, false,
782                              llvm::GlobalValue::AppendingLinkage,
783                              llvm::ConstantArray::get(ATy, UsedArray),
784                              "llvm.used");
785 
786   GV->setSection("llvm.metadata");
787 }
788 
789 void CodeGenModule::AppendLinkerOptions(StringRef Opts) {
790   llvm::Value *MDOpts = llvm::MDString::get(getLLVMContext(), Opts);
791   LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
792 }
793 
794 void CodeGenModule::AddDetectMismatch(StringRef Name, StringRef Value) {
795   llvm::SmallString<32> Opt;
796   getTargetCodeGenInfo().getDetectMismatchOption(Name, Value, Opt);
797   llvm::Value *MDOpts = llvm::MDString::get(getLLVMContext(), Opt);
798   LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
799 }
800 
801 void CodeGenModule::AddDependentLib(StringRef Lib) {
802   llvm::SmallString<24> Opt;
803   getTargetCodeGenInfo().getDependentLibraryOption(Lib, Opt);
804   llvm::Value *MDOpts = llvm::MDString::get(getLLVMContext(), Opt);
805   LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
806 }
807 
808 /// \brief Add link options implied by the given module, including modules
809 /// it depends on, using a postorder walk.
810 static void addLinkOptionsPostorder(CodeGenModule &CGM,
811                                     Module *Mod,
812                                     SmallVectorImpl<llvm::Value *> &Metadata,
813                                     llvm::SmallPtrSet<Module *, 16> &Visited) {
814   // Import this module's parent.
815   if (Mod->Parent && Visited.insert(Mod->Parent)) {
816     addLinkOptionsPostorder(CGM, Mod->Parent, Metadata, Visited);
817   }
818 
819   // Import this module's dependencies.
820   for (unsigned I = Mod->Imports.size(); I > 0; --I) {
821     if (Visited.insert(Mod->Imports[I-1]))
822       addLinkOptionsPostorder(CGM, Mod->Imports[I-1], Metadata, Visited);
823   }
824 
825   // Add linker options to link against the libraries/frameworks
826   // described by this module.
827   llvm::LLVMContext &Context = CGM.getLLVMContext();
828   for (unsigned I = Mod->LinkLibraries.size(); I > 0; --I) {
829     // Link against a framework.  Frameworks are currently Darwin only, so we
830     // don't to ask TargetCodeGenInfo for the spelling of the linker option.
831     if (Mod->LinkLibraries[I-1].IsFramework) {
832       llvm::Value *Args[2] = {
833         llvm::MDString::get(Context, "-framework"),
834         llvm::MDString::get(Context, Mod->LinkLibraries[I-1].Library)
835       };
836 
837       Metadata.push_back(llvm::MDNode::get(Context, Args));
838       continue;
839     }
840 
841     // Link against a library.
842     llvm::SmallString<24> Opt;
843     CGM.getTargetCodeGenInfo().getDependentLibraryOption(
844       Mod->LinkLibraries[I-1].Library, Opt);
845     llvm::Value *OptString = llvm::MDString::get(Context, Opt);
846     Metadata.push_back(llvm::MDNode::get(Context, OptString));
847   }
848 }
849 
850 void CodeGenModule::EmitModuleLinkOptions() {
851   // Collect the set of all of the modules we want to visit to emit link
852   // options, which is essentially the imported modules and all of their
853   // non-explicit child modules.
854   llvm::SetVector<clang::Module *> LinkModules;
855   llvm::SmallPtrSet<clang::Module *, 16> Visited;
856   SmallVector<clang::Module *, 16> Stack;
857 
858   // Seed the stack with imported modules.
859   for (llvm::SetVector<clang::Module *>::iterator M = ImportedModules.begin(),
860                                                MEnd = ImportedModules.end();
861        M != MEnd; ++M) {
862     if (Visited.insert(*M))
863       Stack.push_back(*M);
864   }
865 
866   // Find all of the modules to import, making a little effort to prune
867   // non-leaf modules.
868   while (!Stack.empty()) {
869     clang::Module *Mod = Stack.back();
870     Stack.pop_back();
871 
872     bool AnyChildren = false;
873 
874     // Visit the submodules of this module.
875     for (clang::Module::submodule_iterator Sub = Mod->submodule_begin(),
876                                         SubEnd = Mod->submodule_end();
877          Sub != SubEnd; ++Sub) {
878       // Skip explicit children; they need to be explicitly imported to be
879       // linked against.
880       if ((*Sub)->IsExplicit)
881         continue;
882 
883       if (Visited.insert(*Sub)) {
884         Stack.push_back(*Sub);
885         AnyChildren = true;
886       }
887     }
888 
889     // We didn't find any children, so add this module to the list of
890     // modules to link against.
891     if (!AnyChildren) {
892       LinkModules.insert(Mod);
893     }
894   }
895 
896   // Add link options for all of the imported modules in reverse topological
897   // order.  We don't do anything to try to order import link flags with respect
898   // to linker options inserted by things like #pragma comment().
899   SmallVector<llvm::Value *, 16> MetadataArgs;
900   Visited.clear();
901   for (llvm::SetVector<clang::Module *>::iterator M = LinkModules.begin(),
902                                                MEnd = LinkModules.end();
903        M != MEnd; ++M) {
904     if (Visited.insert(*M))
905       addLinkOptionsPostorder(*this, *M, MetadataArgs, Visited);
906   }
907   std::reverse(MetadataArgs.begin(), MetadataArgs.end());
908   LinkerOptionsMetadata.append(MetadataArgs.begin(), MetadataArgs.end());
909 
910   // Add the linker options metadata flag.
911   getModule().addModuleFlag(llvm::Module::AppendUnique, "Linker Options",
912                             llvm::MDNode::get(getLLVMContext(),
913                                               LinkerOptionsMetadata));
914 }
915 
916 void CodeGenModule::EmitDeferred() {
917   // Emit code for any potentially referenced deferred decls.  Since a
918   // previously unused static decl may become used during the generation of code
919   // for a static function, iterate until no changes are made.
920 
921   while (true) {
922     if (!DeferredVTables.empty()) {
923       EmitDeferredVTables();
924 
925       // Emitting a v-table doesn't directly cause more v-tables to
926       // become deferred, although it can cause functions to be
927       // emitted that then need those v-tables.
928       assert(DeferredVTables.empty());
929     }
930 
931     // Stop if we're out of both deferred v-tables and deferred declarations.
932     if (DeferredDeclsToEmit.empty()) break;
933 
934     GlobalDecl D = DeferredDeclsToEmit.back();
935     DeferredDeclsToEmit.pop_back();
936 
937     // Check to see if we've already emitted this.  This is necessary
938     // for a couple of reasons: first, decls can end up in the
939     // deferred-decls queue multiple times, and second, decls can end
940     // up with definitions in unusual ways (e.g. by an extern inline
941     // function acquiring a strong function redefinition).  Just
942     // ignore these cases.
943     //
944     // TODO: That said, looking this up multiple times is very wasteful.
945     StringRef Name = getMangledName(D);
946     llvm::GlobalValue *CGRef = GetGlobalValue(Name);
947     assert(CGRef && "Deferred decl wasn't referenced?");
948 
949     if (!CGRef->isDeclaration())
950       continue;
951 
952     // GlobalAlias::isDeclaration() defers to the aliasee, but for our
953     // purposes an alias counts as a definition.
954     if (isa<llvm::GlobalAlias>(CGRef))
955       continue;
956 
957     // Otherwise, emit the definition and move on to the next one.
958     EmitGlobalDefinition(D);
959   }
960 }
961 
962 void CodeGenModule::EmitGlobalAnnotations() {
963   if (Annotations.empty())
964     return;
965 
966   // Create a new global variable for the ConstantStruct in the Module.
967   llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get(
968     Annotations[0]->getType(), Annotations.size()), Annotations);
969   llvm::GlobalValue *gv = new llvm::GlobalVariable(getModule(),
970     Array->getType(), false, llvm::GlobalValue::AppendingLinkage, Array,
971     "llvm.global.annotations");
972   gv->setSection(AnnotationSection);
973 }
974 
975 llvm::Constant *CodeGenModule::EmitAnnotationString(StringRef Str) {
976   llvm::StringMap<llvm::Constant*>::iterator i = AnnotationStrings.find(Str);
977   if (i != AnnotationStrings.end())
978     return i->second;
979 
980   // Not found yet, create a new global.
981   llvm::Constant *s = llvm::ConstantDataArray::getString(getLLVMContext(), Str);
982   llvm::GlobalValue *gv = new llvm::GlobalVariable(getModule(), s->getType(),
983     true, llvm::GlobalValue::PrivateLinkage, s, ".str");
984   gv->setSection(AnnotationSection);
985   gv->setUnnamedAddr(true);
986   AnnotationStrings[Str] = gv;
987   return gv;
988 }
989 
990 llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) {
991   SourceManager &SM = getContext().getSourceManager();
992   PresumedLoc PLoc = SM.getPresumedLoc(Loc);
993   if (PLoc.isValid())
994     return EmitAnnotationString(PLoc.getFilename());
995   return EmitAnnotationString(SM.getBufferName(Loc));
996 }
997 
998 llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) {
999   SourceManager &SM = getContext().getSourceManager();
1000   PresumedLoc PLoc = SM.getPresumedLoc(L);
1001   unsigned LineNo = PLoc.isValid() ? PLoc.getLine() :
1002     SM.getExpansionLineNumber(L);
1003   return llvm::ConstantInt::get(Int32Ty, LineNo);
1004 }
1005 
1006 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV,
1007                                                 const AnnotateAttr *AA,
1008                                                 SourceLocation L) {
1009   // Get the globals for file name, annotation, and the line number.
1010   llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()),
1011                  *UnitGV = EmitAnnotationUnit(L),
1012                  *LineNoCst = EmitAnnotationLineNo(L);
1013 
1014   // Create the ConstantStruct for the global annotation.
1015   llvm::Constant *Fields[4] = {
1016     llvm::ConstantExpr::getBitCast(GV, Int8PtrTy),
1017     llvm::ConstantExpr::getBitCast(AnnoGV, Int8PtrTy),
1018     llvm::ConstantExpr::getBitCast(UnitGV, Int8PtrTy),
1019     LineNoCst
1020   };
1021   return llvm::ConstantStruct::getAnon(Fields);
1022 }
1023 
1024 void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D,
1025                                          llvm::GlobalValue *GV) {
1026   assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
1027   // Get the struct elements for these annotations.
1028   for (specific_attr_iterator<AnnotateAttr>
1029        ai = D->specific_attr_begin<AnnotateAttr>(),
1030        ae = D->specific_attr_end<AnnotateAttr>(); ai != ae; ++ai)
1031     Annotations.push_back(EmitAnnotateAttr(GV, *ai, D->getLocation()));
1032 }
1033 
1034 bool CodeGenModule::MayDeferGeneration(const ValueDecl *Global) {
1035   // Never defer when EmitAllDecls is specified.
1036   if (LangOpts.EmitAllDecls)
1037     return false;
1038 
1039   return !getContext().DeclMustBeEmitted(Global);
1040 }
1041 
1042 llvm::Constant *CodeGenModule::GetAddrOfUuidDescriptor(
1043     const CXXUuidofExpr* E) {
1044   // Sema has verified that IIDSource has a __declspec(uuid()), and that its
1045   // well-formed.
1046   StringRef Uuid;
1047   if (E->isTypeOperand())
1048     Uuid = CXXUuidofExpr::GetUuidAttrOfType(E->getTypeOperand())->getGuid();
1049   else {
1050     // Special case: __uuidof(0) means an all-zero GUID.
1051     Expr *Op = E->getExprOperand();
1052     if (!Op->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull))
1053       Uuid = CXXUuidofExpr::GetUuidAttrOfType(Op->getType())->getGuid();
1054     else
1055       Uuid = "00000000-0000-0000-0000-000000000000";
1056   }
1057   std::string Name = "__uuid_" + Uuid.str();
1058 
1059   // Look for an existing global.
1060   if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name))
1061     return GV;
1062 
1063   llvm::Constant *Init = EmitUuidofInitializer(Uuid, E->getType());
1064   assert(Init && "failed to initialize as constant");
1065 
1066   // GUIDs are assumed to be 16 bytes, spread over 4-2-2-8 bytes. However, the
1067   // first field is declared as "long", which for many targets is 8 bytes.
1068   // Those architectures are not supported. (With the MS abi, long is always 4
1069   // bytes.)
1070   llvm::Type *GuidType = getTypes().ConvertType(E->getType());
1071   if (Init->getType() != GuidType) {
1072     DiagnosticsEngine &Diags = getDiags();
1073     unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
1074         "__uuidof codegen is not supported on this architecture");
1075     Diags.Report(E->getExprLoc(), DiagID) << E->getSourceRange();
1076     Init = llvm::UndefValue::get(GuidType);
1077   }
1078 
1079   llvm::GlobalVariable *GV = new llvm::GlobalVariable(getModule(), GuidType,
1080       /*isConstant=*/true, llvm::GlobalValue::PrivateLinkage, Init, Name);
1081   GV->setUnnamedAddr(true);
1082   return GV;
1083 }
1084 
1085 llvm::Constant *CodeGenModule::GetWeakRefReference(const ValueDecl *VD) {
1086   const AliasAttr *AA = VD->getAttr<AliasAttr>();
1087   assert(AA && "No alias?");
1088 
1089   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType());
1090 
1091   // See if there is already something with the target's name in the module.
1092   llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee());
1093   if (Entry) {
1094     unsigned AS = getContext().getTargetAddressSpace(VD->getType());
1095     return llvm::ConstantExpr::getBitCast(Entry, DeclTy->getPointerTo(AS));
1096   }
1097 
1098   llvm::Constant *Aliasee;
1099   if (isa<llvm::FunctionType>(DeclTy))
1100     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy,
1101                                       GlobalDecl(cast<FunctionDecl>(VD)),
1102                                       /*ForVTable=*/false);
1103   else
1104     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
1105                                     llvm::PointerType::getUnqual(DeclTy), 0);
1106 
1107   llvm::GlobalValue* F = cast<llvm::GlobalValue>(Aliasee);
1108   F->setLinkage(llvm::Function::ExternalWeakLinkage);
1109   WeakRefReferences.insert(F);
1110 
1111   return Aliasee;
1112 }
1113 
1114 void CodeGenModule::EmitGlobal(GlobalDecl GD) {
1115   const ValueDecl *Global = cast<ValueDecl>(GD.getDecl());
1116 
1117   // Weak references don't produce any output by themselves.
1118   if (Global->hasAttr<WeakRefAttr>())
1119     return;
1120 
1121   // If this is an alias definition (which otherwise looks like a declaration)
1122   // emit it now.
1123   if (Global->hasAttr<AliasAttr>())
1124     return EmitAliasDefinition(GD);
1125 
1126   // If this is CUDA, be selective about which declarations we emit.
1127   if (LangOpts.CUDA) {
1128     if (CodeGenOpts.CUDAIsDevice) {
1129       if (!Global->hasAttr<CUDADeviceAttr>() &&
1130           !Global->hasAttr<CUDAGlobalAttr>() &&
1131           !Global->hasAttr<CUDAConstantAttr>() &&
1132           !Global->hasAttr<CUDASharedAttr>())
1133         return;
1134     } else {
1135       if (!Global->hasAttr<CUDAHostAttr>() && (
1136             Global->hasAttr<CUDADeviceAttr>() ||
1137             Global->hasAttr<CUDAConstantAttr>() ||
1138             Global->hasAttr<CUDASharedAttr>()))
1139         return;
1140     }
1141   }
1142 
1143   // Ignore declarations, they will be emitted on their first use.
1144   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) {
1145     // Forward declarations are emitted lazily on first use.
1146     if (!FD->doesThisDeclarationHaveABody()) {
1147       if (!FD->doesDeclarationForceExternallyVisibleDefinition())
1148         return;
1149 
1150       const FunctionDecl *InlineDefinition = 0;
1151       FD->getBody(InlineDefinition);
1152 
1153       StringRef MangledName = getMangledName(GD);
1154       DeferredDecls.erase(MangledName);
1155       EmitGlobalDefinition(InlineDefinition);
1156       return;
1157     }
1158   } else {
1159     const VarDecl *VD = cast<VarDecl>(Global);
1160     assert(VD->isFileVarDecl() && "Cannot emit local var decl as global.");
1161 
1162     if (VD->isThisDeclarationADefinition() != VarDecl::Definition)
1163       return;
1164   }
1165 
1166   // Defer code generation when possible if this is a static definition, inline
1167   // function etc.  These we only want to emit if they are used.
1168   if (!MayDeferGeneration(Global)) {
1169     // Emit the definition if it can't be deferred.
1170     EmitGlobalDefinition(GD);
1171     return;
1172   }
1173 
1174   // If we're deferring emission of a C++ variable with an
1175   // initializer, remember the order in which it appeared in the file.
1176   if (getLangOpts().CPlusPlus && isa<VarDecl>(Global) &&
1177       cast<VarDecl>(Global)->hasInit()) {
1178     DelayedCXXInitPosition[Global] = CXXGlobalInits.size();
1179     CXXGlobalInits.push_back(0);
1180   }
1181 
1182   // If the value has already been used, add it directly to the
1183   // DeferredDeclsToEmit list.
1184   StringRef MangledName = getMangledName(GD);
1185   if (GetGlobalValue(MangledName))
1186     DeferredDeclsToEmit.push_back(GD);
1187   else {
1188     // Otherwise, remember that we saw a deferred decl with this name.  The
1189     // first use of the mangled name will cause it to move into
1190     // DeferredDeclsToEmit.
1191     DeferredDecls[MangledName] = GD;
1192   }
1193 }
1194 
1195 namespace {
1196   struct FunctionIsDirectlyRecursive :
1197     public RecursiveASTVisitor<FunctionIsDirectlyRecursive> {
1198     const StringRef Name;
1199     const Builtin::Context &BI;
1200     bool Result;
1201     FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C) :
1202       Name(N), BI(C), Result(false) {
1203     }
1204     typedef RecursiveASTVisitor<FunctionIsDirectlyRecursive> Base;
1205 
1206     bool TraverseCallExpr(CallExpr *E) {
1207       const FunctionDecl *FD = E->getDirectCallee();
1208       if (!FD)
1209         return true;
1210       AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
1211       if (Attr && Name == Attr->getLabel()) {
1212         Result = true;
1213         return false;
1214       }
1215       unsigned BuiltinID = FD->getBuiltinID();
1216       if (!BuiltinID)
1217         return true;
1218       StringRef BuiltinName = BI.GetName(BuiltinID);
1219       if (BuiltinName.startswith("__builtin_") &&
1220           Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) {
1221         Result = true;
1222         return false;
1223       }
1224       return true;
1225     }
1226   };
1227 }
1228 
1229 // isTriviallyRecursive - Check if this function calls another
1230 // decl that, because of the asm attribute or the other decl being a builtin,
1231 // ends up pointing to itself.
1232 bool
1233 CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) {
1234   StringRef Name;
1235   if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) {
1236     // asm labels are a special kind of mangling we have to support.
1237     AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
1238     if (!Attr)
1239       return false;
1240     Name = Attr->getLabel();
1241   } else {
1242     Name = FD->getName();
1243   }
1244 
1245   FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo);
1246   Walker.TraverseFunctionDecl(const_cast<FunctionDecl*>(FD));
1247   return Walker.Result;
1248 }
1249 
1250 bool
1251 CodeGenModule::shouldEmitFunction(GlobalDecl GD) {
1252   if (getFunctionLinkage(GD) != llvm::Function::AvailableExternallyLinkage)
1253     return true;
1254   const FunctionDecl *F = cast<FunctionDecl>(GD.getDecl());
1255   if (CodeGenOpts.OptimizationLevel == 0 &&
1256       !F->hasAttr<AlwaysInlineAttr>() && !F->hasAttr<ForceInlineAttr>())
1257     return false;
1258   // PR9614. Avoid cases where the source code is lying to us. An available
1259   // externally function should have an equivalent function somewhere else,
1260   // but a function that calls itself is clearly not equivalent to the real
1261   // implementation.
1262   // This happens in glibc's btowc and in some configure checks.
1263   return !isTriviallyRecursive(F);
1264 }
1265 
1266 /// If the type for the method's class was generated by
1267 /// CGDebugInfo::createContextChain(), the cache contains only a
1268 /// limited DIType without any declarations. Since EmitFunctionStart()
1269 /// needs to find the canonical declaration for each method, we need
1270 /// to construct the complete type prior to emitting the method.
1271 void CodeGenModule::CompleteDIClassType(const CXXMethodDecl* D) {
1272   if (!D->isInstance())
1273     return;
1274 
1275   if (CGDebugInfo *DI = getModuleDebugInfo())
1276     if (getCodeGenOpts().getDebugInfo() >= CodeGenOptions::LimitedDebugInfo) {
1277       const PointerType *ThisPtr =
1278         cast<PointerType>(D->getThisType(getContext()));
1279       DI->getOrCreateRecordType(ThisPtr->getPointeeType(), D->getLocation());
1280     }
1281 }
1282 
1283 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD) {
1284   const ValueDecl *D = cast<ValueDecl>(GD.getDecl());
1285 
1286   PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(),
1287                                  Context.getSourceManager(),
1288                                  "Generating code for declaration");
1289 
1290   if (isa<FunctionDecl>(D)) {
1291     // At -O0, don't generate IR for functions with available_externally
1292     // linkage.
1293     if (!shouldEmitFunction(GD))
1294       return;
1295 
1296     if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) {
1297       CompleteDIClassType(Method);
1298       // Make sure to emit the definition(s) before we emit the thunks.
1299       // This is necessary for the generation of certain thunks.
1300       if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(Method))
1301         EmitCXXConstructor(CD, GD.getCtorType());
1302       else if (const CXXDestructorDecl *DD =dyn_cast<CXXDestructorDecl>(Method))
1303         EmitCXXDestructor(DD, GD.getDtorType());
1304       else
1305         EmitGlobalFunctionDefinition(GD);
1306 
1307       if (Method->isVirtual())
1308         getVTables().EmitThunks(GD);
1309 
1310       return;
1311     }
1312 
1313     return EmitGlobalFunctionDefinition(GD);
1314   }
1315 
1316   if (const VarDecl *VD = dyn_cast<VarDecl>(D))
1317     return EmitGlobalVarDefinition(VD);
1318 
1319   llvm_unreachable("Invalid argument to EmitGlobalDefinition()");
1320 }
1321 
1322 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the
1323 /// module, create and return an llvm Function with the specified type. If there
1324 /// is something in the module with the specified name, return it potentially
1325 /// bitcasted to the right type.
1326 ///
1327 /// If D is non-null, it specifies a decl that correspond to this.  This is used
1328 /// to set the attributes on the function when it is first created.
1329 llvm::Constant *
1330 CodeGenModule::GetOrCreateLLVMFunction(StringRef MangledName,
1331                                        llvm::Type *Ty,
1332                                        GlobalDecl D, bool ForVTable,
1333                                        llvm::AttributeSet ExtraAttrs) {
1334   // Lookup the entry, lazily creating it if necessary.
1335   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
1336   if (Entry) {
1337     if (WeakRefReferences.erase(Entry)) {
1338       const FunctionDecl *FD = cast_or_null<FunctionDecl>(D.getDecl());
1339       if (FD && !FD->hasAttr<WeakAttr>())
1340         Entry->setLinkage(llvm::Function::ExternalLinkage);
1341     }
1342 
1343     if (Entry->getType()->getElementType() == Ty)
1344       return Entry;
1345 
1346     // Make sure the result is of the correct type.
1347     return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo());
1348   }
1349 
1350   // This function doesn't have a complete type (for example, the return
1351   // type is an incomplete struct). Use a fake type instead, and make
1352   // sure not to try to set attributes.
1353   bool IsIncompleteFunction = false;
1354 
1355   llvm::FunctionType *FTy;
1356   if (isa<llvm::FunctionType>(Ty)) {
1357     FTy = cast<llvm::FunctionType>(Ty);
1358   } else {
1359     FTy = llvm::FunctionType::get(VoidTy, false);
1360     IsIncompleteFunction = true;
1361   }
1362 
1363   llvm::Function *F = llvm::Function::Create(FTy,
1364                                              llvm::Function::ExternalLinkage,
1365                                              MangledName, &getModule());
1366   assert(F->getName() == MangledName && "name was uniqued!");
1367   if (D.getDecl())
1368     SetFunctionAttributes(D, F, IsIncompleteFunction);
1369   if (ExtraAttrs.hasAttributes(llvm::AttributeSet::FunctionIndex)) {
1370     llvm::AttrBuilder B(ExtraAttrs, llvm::AttributeSet::FunctionIndex);
1371     F->addAttributes(llvm::AttributeSet::FunctionIndex,
1372                      llvm::AttributeSet::get(VMContext,
1373                                              llvm::AttributeSet::FunctionIndex,
1374                                              B));
1375   }
1376 
1377   // This is the first use or definition of a mangled name.  If there is a
1378   // deferred decl with this name, remember that we need to emit it at the end
1379   // of the file.
1380   llvm::StringMap<GlobalDecl>::iterator DDI = DeferredDecls.find(MangledName);
1381   if (DDI != DeferredDecls.end()) {
1382     // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
1383     // list, and remove it from DeferredDecls (since we don't need it anymore).
1384     DeferredDeclsToEmit.push_back(DDI->second);
1385     DeferredDecls.erase(DDI);
1386 
1387   // Otherwise, there are cases we have to worry about where we're
1388   // using a declaration for which we must emit a definition but where
1389   // we might not find a top-level definition:
1390   //   - member functions defined inline in their classes
1391   //   - friend functions defined inline in some class
1392   //   - special member functions with implicit definitions
1393   // If we ever change our AST traversal to walk into class methods,
1394   // this will be unnecessary.
1395   //
1396   // We also don't emit a definition for a function if it's going to be an entry
1397   // in a vtable, unless it's already marked as used.
1398   } else if (getLangOpts().CPlusPlus && D.getDecl()) {
1399     // Look for a declaration that's lexically in a record.
1400     const FunctionDecl *FD = cast<FunctionDecl>(D.getDecl());
1401     FD = FD->getMostRecentDecl();
1402     do {
1403       if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) {
1404         if (FD->isImplicit() && !ForVTable) {
1405           assert(FD->isUsed() && "Sema didn't mark implicit function as used!");
1406           DeferredDeclsToEmit.push_back(D.getWithDecl(FD));
1407           break;
1408         } else if (FD->doesThisDeclarationHaveABody()) {
1409           DeferredDeclsToEmit.push_back(D.getWithDecl(FD));
1410           break;
1411         }
1412       }
1413       FD = FD->getPreviousDecl();
1414     } while (FD);
1415   }
1416 
1417   // Make sure the result is of the requested type.
1418   if (!IsIncompleteFunction) {
1419     assert(F->getType()->getElementType() == Ty);
1420     return F;
1421   }
1422 
1423   llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
1424   return llvm::ConstantExpr::getBitCast(F, PTy);
1425 }
1426 
1427 /// GetAddrOfFunction - Return the address of the given function.  If Ty is
1428 /// non-null, then this function will use the specified type if it has to
1429 /// create it (this occurs when we see a definition of the function).
1430 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD,
1431                                                  llvm::Type *Ty,
1432                                                  bool ForVTable) {
1433   // If there was no specific requested type, just convert it now.
1434   if (!Ty)
1435     Ty = getTypes().ConvertType(cast<ValueDecl>(GD.getDecl())->getType());
1436 
1437   StringRef MangledName = getMangledName(GD);
1438   return GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable);
1439 }
1440 
1441 /// CreateRuntimeFunction - Create a new runtime function with the specified
1442 /// type and name.
1443 llvm::Constant *
1444 CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy,
1445                                      StringRef Name,
1446                                      llvm::AttributeSet ExtraAttrs) {
1447   llvm::Constant *C
1448     = GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false,
1449                               ExtraAttrs);
1450   if (llvm::Function *F = dyn_cast<llvm::Function>(C))
1451     if (F->empty())
1452       F->setCallingConv(getRuntimeCC());
1453   return C;
1454 }
1455 
1456 /// isTypeConstant - Determine whether an object of this type can be emitted
1457 /// as a constant.
1458 ///
1459 /// If ExcludeCtor is true, the duration when the object's constructor runs
1460 /// will not be considered. The caller will need to verify that the object is
1461 /// not written to during its construction.
1462 bool CodeGenModule::isTypeConstant(QualType Ty, bool ExcludeCtor) {
1463   if (!Ty.isConstant(Context) && !Ty->isReferenceType())
1464     return false;
1465 
1466   if (Context.getLangOpts().CPlusPlus) {
1467     if (const CXXRecordDecl *Record
1468           = Context.getBaseElementType(Ty)->getAsCXXRecordDecl())
1469       return ExcludeCtor && !Record->hasMutableFields() &&
1470              Record->hasTrivialDestructor();
1471   }
1472 
1473   return true;
1474 }
1475 
1476 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module,
1477 /// create and return an llvm GlobalVariable with the specified type.  If there
1478 /// is something in the module with the specified name, return it potentially
1479 /// bitcasted to the right type.
1480 ///
1481 /// If D is non-null, it specifies a decl that correspond to this.  This is used
1482 /// to set the attributes on the global when it is first created.
1483 llvm::Constant *
1484 CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName,
1485                                      llvm::PointerType *Ty,
1486                                      const VarDecl *D,
1487                                      bool UnnamedAddr) {
1488   // Lookup the entry, lazily creating it if necessary.
1489   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
1490   if (Entry) {
1491     if (WeakRefReferences.erase(Entry)) {
1492       if (D && !D->hasAttr<WeakAttr>())
1493         Entry->setLinkage(llvm::Function::ExternalLinkage);
1494     }
1495 
1496     if (UnnamedAddr)
1497       Entry->setUnnamedAddr(true);
1498 
1499     if (Entry->getType() == Ty)
1500       return Entry;
1501 
1502     // Make sure the result is of the correct type.
1503     return llvm::ConstantExpr::getBitCast(Entry, Ty);
1504   }
1505 
1506   // This is the first use or definition of a mangled name.  If there is a
1507   // deferred decl with this name, remember that we need to emit it at the end
1508   // of the file.
1509   llvm::StringMap<GlobalDecl>::iterator DDI = DeferredDecls.find(MangledName);
1510   if (DDI != DeferredDecls.end()) {
1511     // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
1512     // list, and remove it from DeferredDecls (since we don't need it anymore).
1513     DeferredDeclsToEmit.push_back(DDI->second);
1514     DeferredDecls.erase(DDI);
1515   }
1516 
1517   unsigned AddrSpace = GetGlobalVarAddressSpace(D, Ty->getAddressSpace());
1518   llvm::GlobalVariable *GV =
1519     new llvm::GlobalVariable(getModule(), Ty->getElementType(), false,
1520                              llvm::GlobalValue::ExternalLinkage,
1521                              0, MangledName, 0,
1522                              llvm::GlobalVariable::NotThreadLocal, AddrSpace);
1523 
1524   // Handle things which are present even on external declarations.
1525   if (D) {
1526     // FIXME: This code is overly simple and should be merged with other global
1527     // handling.
1528     GV->setConstant(isTypeConstant(D->getType(), false));
1529 
1530     // Set linkage and visibility in case we never see a definition.
1531     LinkageInfo LV = D->getLinkageAndVisibility();
1532     if (LV.getLinkage() != ExternalLinkage) {
1533       // Don't set internal linkage on declarations.
1534     } else {
1535       if (D->hasAttr<DLLImportAttr>())
1536         GV->setLinkage(llvm::GlobalValue::DLLImportLinkage);
1537       else if (D->hasAttr<WeakAttr>() || D->isWeakImported())
1538         GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage);
1539 
1540       // Set visibility on a declaration only if it's explicit.
1541       if (LV.isVisibilityExplicit())
1542         GV->setVisibility(GetLLVMVisibility(LV.getVisibility()));
1543     }
1544 
1545     if (D->getTLSKind()) {
1546       if (D->getTLSKind() == VarDecl::TLS_Dynamic)
1547         CXXThreadLocals.push_back(std::make_pair(D, GV));
1548       setTLSMode(GV, *D);
1549     }
1550   }
1551 
1552   if (AddrSpace != Ty->getAddressSpace())
1553     return llvm::ConstantExpr::getBitCast(GV, Ty);
1554   else
1555     return GV;
1556 }
1557 
1558 
1559 llvm::GlobalVariable *
1560 CodeGenModule::CreateOrReplaceCXXRuntimeVariable(StringRef Name,
1561                                       llvm::Type *Ty,
1562                                       llvm::GlobalValue::LinkageTypes Linkage) {
1563   llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name);
1564   llvm::GlobalVariable *OldGV = 0;
1565 
1566 
1567   if (GV) {
1568     // Check if the variable has the right type.
1569     if (GV->getType()->getElementType() == Ty)
1570       return GV;
1571 
1572     // Because C++ name mangling, the only way we can end up with an already
1573     // existing global with the same name is if it has been declared extern "C".
1574     assert(GV->isDeclaration() && "Declaration has wrong type!");
1575     OldGV = GV;
1576   }
1577 
1578   // Create a new variable.
1579   GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true,
1580                                 Linkage, 0, Name);
1581 
1582   if (OldGV) {
1583     // Replace occurrences of the old variable if needed.
1584     GV->takeName(OldGV);
1585 
1586     if (!OldGV->use_empty()) {
1587       llvm::Constant *NewPtrForOldDecl =
1588       llvm::ConstantExpr::getBitCast(GV, OldGV->getType());
1589       OldGV->replaceAllUsesWith(NewPtrForOldDecl);
1590     }
1591 
1592     OldGV->eraseFromParent();
1593   }
1594 
1595   return GV;
1596 }
1597 
1598 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the
1599 /// given global variable.  If Ty is non-null and if the global doesn't exist,
1600 /// then it will be created with the specified type instead of whatever the
1601 /// normal requested type would be.
1602 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D,
1603                                                   llvm::Type *Ty) {
1604   assert(D->hasGlobalStorage() && "Not a global variable");
1605   QualType ASTTy = D->getType();
1606   if (Ty == 0)
1607     Ty = getTypes().ConvertTypeForMem(ASTTy);
1608 
1609   llvm::PointerType *PTy =
1610     llvm::PointerType::get(Ty, getContext().getTargetAddressSpace(ASTTy));
1611 
1612   StringRef MangledName = getMangledName(D);
1613   return GetOrCreateLLVMGlobal(MangledName, PTy, D);
1614 }
1615 
1616 /// CreateRuntimeVariable - Create a new runtime global variable with the
1617 /// specified type and name.
1618 llvm::Constant *
1619 CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty,
1620                                      StringRef Name) {
1621   return GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), 0,
1622                                true);
1623 }
1624 
1625 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) {
1626   assert(!D->getInit() && "Cannot emit definite definitions here!");
1627 
1628   if (MayDeferGeneration(D)) {
1629     // If we have not seen a reference to this variable yet, place it
1630     // into the deferred declarations table to be emitted if needed
1631     // later.
1632     StringRef MangledName = getMangledName(D);
1633     if (!GetGlobalValue(MangledName)) {
1634       DeferredDecls[MangledName] = D;
1635       return;
1636     }
1637   }
1638 
1639   // The tentative definition is the only definition.
1640   EmitGlobalVarDefinition(D);
1641 }
1642 
1643 CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const {
1644     return Context.toCharUnitsFromBits(
1645       TheDataLayout.getTypeStoreSizeInBits(Ty));
1646 }
1647 
1648 unsigned CodeGenModule::GetGlobalVarAddressSpace(const VarDecl *D,
1649                                                  unsigned AddrSpace) {
1650   if (LangOpts.CUDA && CodeGenOpts.CUDAIsDevice) {
1651     if (D->hasAttr<CUDAConstantAttr>())
1652       AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_constant);
1653     else if (D->hasAttr<CUDASharedAttr>())
1654       AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_shared);
1655     else
1656       AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_device);
1657   }
1658 
1659   return AddrSpace;
1660 }
1661 
1662 template<typename SomeDecl>
1663 void CodeGenModule::MaybeHandleStaticInExternC(const SomeDecl *D,
1664                                                llvm::GlobalValue *GV) {
1665   if (!getLangOpts().CPlusPlus)
1666     return;
1667 
1668   // Must have 'used' attribute, or else inline assembly can't rely on
1669   // the name existing.
1670   if (!D->template hasAttr<UsedAttr>())
1671     return;
1672 
1673   // Must have internal linkage and an ordinary name.
1674   if (!D->getIdentifier() || D->getFormalLinkage() != InternalLinkage)
1675     return;
1676 
1677   // Must be in an extern "C" context. Entities declared directly within
1678   // a record are not extern "C" even if the record is in such a context.
1679   const SomeDecl *First = D->getFirstDeclaration();
1680   if (First->getDeclContext()->isRecord() || !First->isInExternCContext())
1681     return;
1682 
1683   // OK, this is an internal linkage entity inside an extern "C" linkage
1684   // specification. Make a note of that so we can give it the "expected"
1685   // mangled name if nothing else is using that name.
1686   std::pair<StaticExternCMap::iterator, bool> R =
1687       StaticExternCValues.insert(std::make_pair(D->getIdentifier(), GV));
1688 
1689   // If we have multiple internal linkage entities with the same name
1690   // in extern "C" regions, none of them gets that name.
1691   if (!R.second)
1692     R.first->second = 0;
1693 }
1694 
1695 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D) {
1696   llvm::Constant *Init = 0;
1697   QualType ASTTy = D->getType();
1698   CXXRecordDecl *RD = ASTTy->getBaseElementTypeUnsafe()->getAsCXXRecordDecl();
1699   bool NeedsGlobalCtor = false;
1700   bool NeedsGlobalDtor = RD && !RD->hasTrivialDestructor();
1701 
1702   const VarDecl *InitDecl;
1703   const Expr *InitExpr = D->getAnyInitializer(InitDecl);
1704 
1705   if (!InitExpr) {
1706     // This is a tentative definition; tentative definitions are
1707     // implicitly initialized with { 0 }.
1708     //
1709     // Note that tentative definitions are only emitted at the end of
1710     // a translation unit, so they should never have incomplete
1711     // type. In addition, EmitTentativeDefinition makes sure that we
1712     // never attempt to emit a tentative definition if a real one
1713     // exists. A use may still exists, however, so we still may need
1714     // to do a RAUW.
1715     assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type");
1716     Init = EmitNullConstant(D->getType());
1717   } else {
1718     initializedGlobalDecl = GlobalDecl(D);
1719     Init = EmitConstantInit(*InitDecl);
1720 
1721     if (!Init) {
1722       QualType T = InitExpr->getType();
1723       if (D->getType()->isReferenceType())
1724         T = D->getType();
1725 
1726       if (getLangOpts().CPlusPlus) {
1727         Init = EmitNullConstant(T);
1728         NeedsGlobalCtor = true;
1729       } else {
1730         ErrorUnsupported(D, "static initializer");
1731         Init = llvm::UndefValue::get(getTypes().ConvertType(T));
1732       }
1733     } else {
1734       // We don't need an initializer, so remove the entry for the delayed
1735       // initializer position (just in case this entry was delayed) if we
1736       // also don't need to register a destructor.
1737       if (getLangOpts().CPlusPlus && !NeedsGlobalDtor)
1738         DelayedCXXInitPosition.erase(D);
1739     }
1740   }
1741 
1742   llvm::Type* InitType = Init->getType();
1743   llvm::Constant *Entry = GetAddrOfGlobalVar(D, InitType);
1744 
1745   // Strip off a bitcast if we got one back.
1746   if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
1747     assert(CE->getOpcode() == llvm::Instruction::BitCast ||
1748            // all zero index gep.
1749            CE->getOpcode() == llvm::Instruction::GetElementPtr);
1750     Entry = CE->getOperand(0);
1751   }
1752 
1753   // Entry is now either a Function or GlobalVariable.
1754   llvm::GlobalVariable *GV = dyn_cast<llvm::GlobalVariable>(Entry);
1755 
1756   // We have a definition after a declaration with the wrong type.
1757   // We must make a new GlobalVariable* and update everything that used OldGV
1758   // (a declaration or tentative definition) with the new GlobalVariable*
1759   // (which will be a definition).
1760   //
1761   // This happens if there is a prototype for a global (e.g.
1762   // "extern int x[];") and then a definition of a different type (e.g.
1763   // "int x[10];"). This also happens when an initializer has a different type
1764   // from the type of the global (this happens with unions).
1765   if (GV == 0 ||
1766       GV->getType()->getElementType() != InitType ||
1767       GV->getType()->getAddressSpace() !=
1768        GetGlobalVarAddressSpace(D, getContext().getTargetAddressSpace(ASTTy))) {
1769 
1770     // Move the old entry aside so that we'll create a new one.
1771     Entry->setName(StringRef());
1772 
1773     // Make a new global with the correct type, this is now guaranteed to work.
1774     GV = cast<llvm::GlobalVariable>(GetAddrOfGlobalVar(D, InitType));
1775 
1776     // Replace all uses of the old global with the new global
1777     llvm::Constant *NewPtrForOldDecl =
1778         llvm::ConstantExpr::getBitCast(GV, Entry->getType());
1779     Entry->replaceAllUsesWith(NewPtrForOldDecl);
1780 
1781     // Erase the old global, since it is no longer used.
1782     cast<llvm::GlobalValue>(Entry)->eraseFromParent();
1783   }
1784 
1785   MaybeHandleStaticInExternC(D, GV);
1786 
1787   if (D->hasAttr<AnnotateAttr>())
1788     AddGlobalAnnotations(D, GV);
1789 
1790   GV->setInitializer(Init);
1791 
1792   // If it is safe to mark the global 'constant', do so now.
1793   GV->setConstant(!NeedsGlobalCtor && !NeedsGlobalDtor &&
1794                   isTypeConstant(D->getType(), true));
1795 
1796   GV->setAlignment(getContext().getDeclAlign(D).getQuantity());
1797 
1798   // Set the llvm linkage type as appropriate.
1799   llvm::GlobalValue::LinkageTypes Linkage =
1800     GetLLVMLinkageVarDefinition(D, GV->isConstant());
1801   GV->setLinkage(Linkage);
1802   if (Linkage == llvm::GlobalVariable::CommonLinkage)
1803     // common vars aren't constant even if declared const.
1804     GV->setConstant(false);
1805 
1806   SetCommonAttributes(D, GV);
1807 
1808   // Emit the initializer function if necessary.
1809   if (NeedsGlobalCtor || NeedsGlobalDtor)
1810     EmitCXXGlobalVarDeclInitFunc(D, GV, NeedsGlobalCtor);
1811 
1812   // If we are compiling with ASan, add metadata indicating dynamically
1813   // initialized globals.
1814   if (SanOpts.Address && NeedsGlobalCtor) {
1815     llvm::Module &M = getModule();
1816 
1817     llvm::NamedMDNode *DynamicInitializers =
1818         M.getOrInsertNamedMetadata("llvm.asan.dynamically_initialized_globals");
1819     llvm::Value *GlobalToAdd[] = { GV };
1820     llvm::MDNode *ThisGlobal = llvm::MDNode::get(VMContext, GlobalToAdd);
1821     DynamicInitializers->addOperand(ThisGlobal);
1822   }
1823 
1824   // Emit global variable debug information.
1825   if (CGDebugInfo *DI = getModuleDebugInfo())
1826     if (getCodeGenOpts().getDebugInfo() >= CodeGenOptions::LimitedDebugInfo)
1827       DI->EmitGlobalVariable(GV, D);
1828 }
1829 
1830 llvm::GlobalValue::LinkageTypes
1831 CodeGenModule::GetLLVMLinkageVarDefinition(const VarDecl *D, bool isConstant) {
1832   GVALinkage Linkage = getContext().GetGVALinkageForVariable(D);
1833   if (Linkage == GVA_Internal)
1834     return llvm::Function::InternalLinkage;
1835   else if (D->hasAttr<DLLImportAttr>())
1836     return llvm::Function::DLLImportLinkage;
1837   else if (D->hasAttr<DLLExportAttr>())
1838     return llvm::Function::DLLExportLinkage;
1839   else if (D->hasAttr<SelectAnyAttr>()) {
1840     // selectany symbols are externally visible, so use weak instead of
1841     // linkonce.  MSVC optimizes away references to const selectany globals, so
1842     // all definitions should be the same and ODR linkage should be used.
1843     // http://msdn.microsoft.com/en-us/library/5tkz6s71.aspx
1844     return llvm::GlobalVariable::WeakODRLinkage;
1845   } else if (D->hasAttr<WeakAttr>()) {
1846     if (isConstant)
1847       return llvm::GlobalVariable::WeakODRLinkage;
1848     else
1849       return llvm::GlobalVariable::WeakAnyLinkage;
1850   } else if (Linkage == GVA_TemplateInstantiation ||
1851              Linkage == GVA_ExplicitTemplateInstantiation)
1852     return llvm::GlobalVariable::WeakODRLinkage;
1853   else if (!getLangOpts().CPlusPlus &&
1854            ((!CodeGenOpts.NoCommon && !D->getAttr<NoCommonAttr>()) ||
1855              D->getAttr<CommonAttr>()) &&
1856            !D->hasExternalStorage() && !D->getInit() &&
1857            !D->getAttr<SectionAttr>() && !D->getTLSKind() &&
1858            !D->getAttr<WeakImportAttr>()) {
1859     // Thread local vars aren't considered common linkage.
1860     return llvm::GlobalVariable::CommonLinkage;
1861   } else if (D->getTLSKind() == VarDecl::TLS_Dynamic &&
1862              getTarget().getTriple().isMacOSX())
1863     // On Darwin, the backing variable for a C++11 thread_local variable always
1864     // has internal linkage; all accesses should just be calls to the
1865     // Itanium-specified entry point, which has the normal linkage of the
1866     // variable.
1867     return llvm::GlobalValue::InternalLinkage;
1868   return llvm::GlobalVariable::ExternalLinkage;
1869 }
1870 
1871 /// Replace the uses of a function that was declared with a non-proto type.
1872 /// We want to silently drop extra arguments from call sites
1873 static void replaceUsesOfNonProtoConstant(llvm::Constant *old,
1874                                           llvm::Function *newFn) {
1875   // Fast path.
1876   if (old->use_empty()) return;
1877 
1878   llvm::Type *newRetTy = newFn->getReturnType();
1879   SmallVector<llvm::Value*, 4> newArgs;
1880 
1881   for (llvm::Value::use_iterator ui = old->use_begin(), ue = old->use_end();
1882          ui != ue; ) {
1883     llvm::Value::use_iterator use = ui++; // Increment before the use is erased.
1884     llvm::User *user = *use;
1885 
1886     // Recognize and replace uses of bitcasts.  Most calls to
1887     // unprototyped functions will use bitcasts.
1888     if (llvm::ConstantExpr *bitcast = dyn_cast<llvm::ConstantExpr>(user)) {
1889       if (bitcast->getOpcode() == llvm::Instruction::BitCast)
1890         replaceUsesOfNonProtoConstant(bitcast, newFn);
1891       continue;
1892     }
1893 
1894     // Recognize calls to the function.
1895     llvm::CallSite callSite(user);
1896     if (!callSite) continue;
1897     if (!callSite.isCallee(use)) continue;
1898 
1899     // If the return types don't match exactly, then we can't
1900     // transform this call unless it's dead.
1901     if (callSite->getType() != newRetTy && !callSite->use_empty())
1902       continue;
1903 
1904     // Get the call site's attribute list.
1905     SmallVector<llvm::AttributeSet, 8> newAttrs;
1906     llvm::AttributeSet oldAttrs = callSite.getAttributes();
1907 
1908     // Collect any return attributes from the call.
1909     if (oldAttrs.hasAttributes(llvm::AttributeSet::ReturnIndex))
1910       newAttrs.push_back(
1911         llvm::AttributeSet::get(newFn->getContext(),
1912                                 oldAttrs.getRetAttributes()));
1913 
1914     // If the function was passed too few arguments, don't transform.
1915     unsigned newNumArgs = newFn->arg_size();
1916     if (callSite.arg_size() < newNumArgs) continue;
1917 
1918     // If extra arguments were passed, we silently drop them.
1919     // If any of the types mismatch, we don't transform.
1920     unsigned argNo = 0;
1921     bool dontTransform = false;
1922     for (llvm::Function::arg_iterator ai = newFn->arg_begin(),
1923            ae = newFn->arg_end(); ai != ae; ++ai, ++argNo) {
1924       if (callSite.getArgument(argNo)->getType() != ai->getType()) {
1925         dontTransform = true;
1926         break;
1927       }
1928 
1929       // Add any parameter attributes.
1930       if (oldAttrs.hasAttributes(argNo + 1))
1931         newAttrs.
1932           push_back(llvm::
1933                     AttributeSet::get(newFn->getContext(),
1934                                       oldAttrs.getParamAttributes(argNo + 1)));
1935     }
1936     if (dontTransform)
1937       continue;
1938 
1939     if (oldAttrs.hasAttributes(llvm::AttributeSet::FunctionIndex))
1940       newAttrs.push_back(llvm::AttributeSet::get(newFn->getContext(),
1941                                                  oldAttrs.getFnAttributes()));
1942 
1943     // Okay, we can transform this.  Create the new call instruction and copy
1944     // over the required information.
1945     newArgs.append(callSite.arg_begin(), callSite.arg_begin() + argNo);
1946 
1947     llvm::CallSite newCall;
1948     if (callSite.isCall()) {
1949       newCall = llvm::CallInst::Create(newFn, newArgs, "",
1950                                        callSite.getInstruction());
1951     } else {
1952       llvm::InvokeInst *oldInvoke =
1953         cast<llvm::InvokeInst>(callSite.getInstruction());
1954       newCall = llvm::InvokeInst::Create(newFn,
1955                                          oldInvoke->getNormalDest(),
1956                                          oldInvoke->getUnwindDest(),
1957                                          newArgs, "",
1958                                          callSite.getInstruction());
1959     }
1960     newArgs.clear(); // for the next iteration
1961 
1962     if (!newCall->getType()->isVoidTy())
1963       newCall->takeName(callSite.getInstruction());
1964     newCall.setAttributes(
1965                      llvm::AttributeSet::get(newFn->getContext(), newAttrs));
1966     newCall.setCallingConv(callSite.getCallingConv());
1967 
1968     // Finally, remove the old call, replacing any uses with the new one.
1969     if (!callSite->use_empty())
1970       callSite->replaceAllUsesWith(newCall.getInstruction());
1971 
1972     // Copy debug location attached to CI.
1973     if (!callSite->getDebugLoc().isUnknown())
1974       newCall->setDebugLoc(callSite->getDebugLoc());
1975     callSite->eraseFromParent();
1976   }
1977 }
1978 
1979 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we
1980 /// implement a function with no prototype, e.g. "int foo() {}".  If there are
1981 /// existing call uses of the old function in the module, this adjusts them to
1982 /// call the new function directly.
1983 ///
1984 /// This is not just a cleanup: the always_inline pass requires direct calls to
1985 /// functions to be able to inline them.  If there is a bitcast in the way, it
1986 /// won't inline them.  Instcombine normally deletes these calls, but it isn't
1987 /// run at -O0.
1988 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
1989                                                       llvm::Function *NewFn) {
1990   // If we're redefining a global as a function, don't transform it.
1991   if (!isa<llvm::Function>(Old)) return;
1992 
1993   replaceUsesOfNonProtoConstant(Old, NewFn);
1994 }
1995 
1996 void CodeGenModule::HandleCXXStaticMemberVarInstantiation(VarDecl *VD) {
1997   TemplateSpecializationKind TSK = VD->getTemplateSpecializationKind();
1998   // If we have a definition, this might be a deferred decl. If the
1999   // instantiation is explicit, make sure we emit it at the end.
2000   if (VD->getDefinition() && TSK == TSK_ExplicitInstantiationDefinition)
2001     GetAddrOfGlobalVar(VD);
2002 
2003   EmitTopLevelDecl(VD);
2004 }
2005 
2006 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD) {
2007   const FunctionDecl *D = cast<FunctionDecl>(GD.getDecl());
2008 
2009   // Compute the function info and LLVM type.
2010   const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
2011   llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
2012 
2013   // Get or create the prototype for the function.
2014   llvm::Constant *Entry = GetAddrOfFunction(GD, Ty);
2015 
2016   // Strip off a bitcast if we got one back.
2017   if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
2018     assert(CE->getOpcode() == llvm::Instruction::BitCast);
2019     Entry = CE->getOperand(0);
2020   }
2021 
2022 
2023   if (cast<llvm::GlobalValue>(Entry)->getType()->getElementType() != Ty) {
2024     llvm::GlobalValue *OldFn = cast<llvm::GlobalValue>(Entry);
2025 
2026     // If the types mismatch then we have to rewrite the definition.
2027     assert(OldFn->isDeclaration() &&
2028            "Shouldn't replace non-declaration");
2029 
2030     // F is the Function* for the one with the wrong type, we must make a new
2031     // Function* and update everything that used F (a declaration) with the new
2032     // Function* (which will be a definition).
2033     //
2034     // This happens if there is a prototype for a function
2035     // (e.g. "int f()") and then a definition of a different type
2036     // (e.g. "int f(int x)").  Move the old function aside so that it
2037     // doesn't interfere with GetAddrOfFunction.
2038     OldFn->setName(StringRef());
2039     llvm::Function *NewFn = cast<llvm::Function>(GetAddrOfFunction(GD, Ty));
2040 
2041     // This might be an implementation of a function without a
2042     // prototype, in which case, try to do special replacement of
2043     // calls which match the new prototype.  The really key thing here
2044     // is that we also potentially drop arguments from the call site
2045     // so as to make a direct call, which makes the inliner happier
2046     // and suppresses a number of optimizer warnings (!) about
2047     // dropping arguments.
2048     if (!OldFn->use_empty()) {
2049       ReplaceUsesOfNonProtoTypeWithRealFunction(OldFn, NewFn);
2050       OldFn->removeDeadConstantUsers();
2051     }
2052 
2053     // Replace uses of F with the Function we will endow with a body.
2054     if (!Entry->use_empty()) {
2055       llvm::Constant *NewPtrForOldDecl =
2056         llvm::ConstantExpr::getBitCast(NewFn, Entry->getType());
2057       Entry->replaceAllUsesWith(NewPtrForOldDecl);
2058     }
2059 
2060     // Ok, delete the old function now, which is dead.
2061     OldFn->eraseFromParent();
2062 
2063     Entry = NewFn;
2064   }
2065 
2066   // We need to set linkage and visibility on the function before
2067   // generating code for it because various parts of IR generation
2068   // want to propagate this information down (e.g. to local static
2069   // declarations).
2070   llvm::Function *Fn = cast<llvm::Function>(Entry);
2071   setFunctionLinkage(GD, Fn);
2072 
2073   // FIXME: this is redundant with part of SetFunctionDefinitionAttributes
2074   setGlobalVisibility(Fn, D);
2075 
2076   MaybeHandleStaticInExternC(D, Fn);
2077 
2078   CodeGenFunction(*this).GenerateCode(D, Fn, FI);
2079 
2080   SetFunctionDefinitionAttributes(D, Fn);
2081   SetLLVMFunctionAttributesForDefinition(D, Fn);
2082 
2083   if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>())
2084     AddGlobalCtor(Fn, CA->getPriority());
2085   if (const DestructorAttr *DA = D->getAttr<DestructorAttr>())
2086     AddGlobalDtor(Fn, DA->getPriority());
2087   if (D->hasAttr<AnnotateAttr>())
2088     AddGlobalAnnotations(D, Fn);
2089 }
2090 
2091 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) {
2092   const ValueDecl *D = cast<ValueDecl>(GD.getDecl());
2093   const AliasAttr *AA = D->getAttr<AliasAttr>();
2094   assert(AA && "Not an alias?");
2095 
2096   StringRef MangledName = getMangledName(GD);
2097 
2098   // If there is a definition in the module, then it wins over the alias.
2099   // This is dubious, but allow it to be safe.  Just ignore the alias.
2100   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
2101   if (Entry && !Entry->isDeclaration())
2102     return;
2103 
2104   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
2105 
2106   // Create a reference to the named value.  This ensures that it is emitted
2107   // if a deferred decl.
2108   llvm::Constant *Aliasee;
2109   if (isa<llvm::FunctionType>(DeclTy))
2110     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GD,
2111                                       /*ForVTable=*/false);
2112   else
2113     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
2114                                     llvm::PointerType::getUnqual(DeclTy), 0);
2115 
2116   // Create the new alias itself, but don't set a name yet.
2117   llvm::GlobalValue *GA =
2118     new llvm::GlobalAlias(Aliasee->getType(),
2119                           llvm::Function::ExternalLinkage,
2120                           "", Aliasee, &getModule());
2121 
2122   if (Entry) {
2123     assert(Entry->isDeclaration());
2124 
2125     // If there is a declaration in the module, then we had an extern followed
2126     // by the alias, as in:
2127     //   extern int test6();
2128     //   ...
2129     //   int test6() __attribute__((alias("test7")));
2130     //
2131     // Remove it and replace uses of it with the alias.
2132     GA->takeName(Entry);
2133 
2134     Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA,
2135                                                           Entry->getType()));
2136     Entry->eraseFromParent();
2137   } else {
2138     GA->setName(MangledName);
2139   }
2140 
2141   // Set attributes which are particular to an alias; this is a
2142   // specialization of the attributes which may be set on a global
2143   // variable/function.
2144   if (D->hasAttr<DLLExportAttr>()) {
2145     if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
2146       // The dllexport attribute is ignored for undefined symbols.
2147       if (FD->hasBody())
2148         GA->setLinkage(llvm::Function::DLLExportLinkage);
2149     } else {
2150       GA->setLinkage(llvm::Function::DLLExportLinkage);
2151     }
2152   } else if (D->hasAttr<WeakAttr>() ||
2153              D->hasAttr<WeakRefAttr>() ||
2154              D->isWeakImported()) {
2155     GA->setLinkage(llvm::Function::WeakAnyLinkage);
2156   }
2157 
2158   SetCommonAttributes(D, GA);
2159 }
2160 
2161 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,
2162                                             ArrayRef<llvm::Type*> Tys) {
2163   return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID,
2164                                          Tys);
2165 }
2166 
2167 static llvm::StringMapEntry<llvm::Constant*> &
2168 GetConstantCFStringEntry(llvm::StringMap<llvm::Constant*> &Map,
2169                          const StringLiteral *Literal,
2170                          bool TargetIsLSB,
2171                          bool &IsUTF16,
2172                          unsigned &StringLength) {
2173   StringRef String = Literal->getString();
2174   unsigned NumBytes = String.size();
2175 
2176   // Check for simple case.
2177   if (!Literal->containsNonAsciiOrNull()) {
2178     StringLength = NumBytes;
2179     return Map.GetOrCreateValue(String);
2180   }
2181 
2182   // Otherwise, convert the UTF8 literals into a string of shorts.
2183   IsUTF16 = true;
2184 
2185   SmallVector<UTF16, 128> ToBuf(NumBytes + 1); // +1 for ending nulls.
2186   const UTF8 *FromPtr = (const UTF8 *)String.data();
2187   UTF16 *ToPtr = &ToBuf[0];
2188 
2189   (void)ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes,
2190                            &ToPtr, ToPtr + NumBytes,
2191                            strictConversion);
2192 
2193   // ConvertUTF8toUTF16 returns the length in ToPtr.
2194   StringLength = ToPtr - &ToBuf[0];
2195 
2196   // Add an explicit null.
2197   *ToPtr = 0;
2198   return Map.
2199     GetOrCreateValue(StringRef(reinterpret_cast<const char *>(ToBuf.data()),
2200                                (StringLength + 1) * 2));
2201 }
2202 
2203 static llvm::StringMapEntry<llvm::Constant*> &
2204 GetConstantStringEntry(llvm::StringMap<llvm::Constant*> &Map,
2205                        const StringLiteral *Literal,
2206                        unsigned &StringLength) {
2207   StringRef String = Literal->getString();
2208   StringLength = String.size();
2209   return Map.GetOrCreateValue(String);
2210 }
2211 
2212 llvm::Constant *
2213 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) {
2214   unsigned StringLength = 0;
2215   bool isUTF16 = false;
2216   llvm::StringMapEntry<llvm::Constant*> &Entry =
2217     GetConstantCFStringEntry(CFConstantStringMap, Literal,
2218                              getDataLayout().isLittleEndian(),
2219                              isUTF16, StringLength);
2220 
2221   if (llvm::Constant *C = Entry.getValue())
2222     return C;
2223 
2224   llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty);
2225   llvm::Constant *Zeros[] = { Zero, Zero };
2226   llvm::Value *V;
2227 
2228   // If we don't already have it, get __CFConstantStringClassReference.
2229   if (!CFConstantStringClassRef) {
2230     llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
2231     Ty = llvm::ArrayType::get(Ty, 0);
2232     llvm::Constant *GV = CreateRuntimeVariable(Ty,
2233                                            "__CFConstantStringClassReference");
2234     // Decay array -> ptr
2235     V = llvm::ConstantExpr::getGetElementPtr(GV, Zeros);
2236     CFConstantStringClassRef = V;
2237   }
2238   else
2239     V = CFConstantStringClassRef;
2240 
2241   QualType CFTy = getContext().getCFConstantStringType();
2242 
2243   llvm::StructType *STy =
2244     cast<llvm::StructType>(getTypes().ConvertType(CFTy));
2245 
2246   llvm::Constant *Fields[4];
2247 
2248   // Class pointer.
2249   Fields[0] = cast<llvm::ConstantExpr>(V);
2250 
2251   // Flags.
2252   llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy);
2253   Fields[1] = isUTF16 ? llvm::ConstantInt::get(Ty, 0x07d0) :
2254     llvm::ConstantInt::get(Ty, 0x07C8);
2255 
2256   // String pointer.
2257   llvm::Constant *C = 0;
2258   if (isUTF16) {
2259     ArrayRef<uint16_t> Arr =
2260       llvm::makeArrayRef<uint16_t>(reinterpret_cast<uint16_t*>(
2261                                      const_cast<char *>(Entry.getKey().data())),
2262                                    Entry.getKey().size() / 2);
2263     C = llvm::ConstantDataArray::get(VMContext, Arr);
2264   } else {
2265     C = llvm::ConstantDataArray::getString(VMContext, Entry.getKey());
2266   }
2267 
2268   llvm::GlobalValue::LinkageTypes Linkage;
2269   if (isUTF16)
2270     // FIXME: why do utf strings get "_" labels instead of "L" labels?
2271     Linkage = llvm::GlobalValue::InternalLinkage;
2272   else
2273     // FIXME: With OS X ld 123.2 (xcode 4) and LTO we would get a linker error
2274     // when using private linkage. It is not clear if this is a bug in ld
2275     // or a reasonable new restriction.
2276     Linkage = llvm::GlobalValue::LinkerPrivateLinkage;
2277 
2278   // Note: -fwritable-strings doesn't make the backing store strings of
2279   // CFStrings writable. (See <rdar://problem/10657500>)
2280   llvm::GlobalVariable *GV =
2281     new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true,
2282                              Linkage, C, ".str");
2283   GV->setUnnamedAddr(true);
2284   // Don't enforce the target's minimum global alignment, since the only use
2285   // of the string is via this class initializer.
2286   if (isUTF16) {
2287     CharUnits Align = getContext().getTypeAlignInChars(getContext().ShortTy);
2288     GV->setAlignment(Align.getQuantity());
2289   } else {
2290     CharUnits Align = getContext().getTypeAlignInChars(getContext().CharTy);
2291     GV->setAlignment(Align.getQuantity());
2292   }
2293 
2294   // String.
2295   Fields[2] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros);
2296 
2297   if (isUTF16)
2298     // Cast the UTF16 string to the correct type.
2299     Fields[2] = llvm::ConstantExpr::getBitCast(Fields[2], Int8PtrTy);
2300 
2301   // String length.
2302   Ty = getTypes().ConvertType(getContext().LongTy);
2303   Fields[3] = llvm::ConstantInt::get(Ty, StringLength);
2304 
2305   // The struct.
2306   C = llvm::ConstantStruct::get(STy, Fields);
2307   GV = new llvm::GlobalVariable(getModule(), C->getType(), true,
2308                                 llvm::GlobalVariable::PrivateLinkage, C,
2309                                 "_unnamed_cfstring_");
2310   if (const char *Sect = getTarget().getCFStringSection())
2311     GV->setSection(Sect);
2312   Entry.setValue(GV);
2313 
2314   return GV;
2315 }
2316 
2317 static RecordDecl *
2318 CreateRecordDecl(const ASTContext &Ctx, RecordDecl::TagKind TK,
2319                  DeclContext *DC, IdentifierInfo *Id) {
2320   SourceLocation Loc;
2321   if (Ctx.getLangOpts().CPlusPlus)
2322     return CXXRecordDecl::Create(Ctx, TK, DC, Loc, Loc, Id);
2323   else
2324     return RecordDecl::Create(Ctx, TK, DC, Loc, Loc, Id);
2325 }
2326 
2327 llvm::Constant *
2328 CodeGenModule::GetAddrOfConstantString(const StringLiteral *Literal) {
2329   unsigned StringLength = 0;
2330   llvm::StringMapEntry<llvm::Constant*> &Entry =
2331     GetConstantStringEntry(CFConstantStringMap, Literal, StringLength);
2332 
2333   if (llvm::Constant *C = Entry.getValue())
2334     return C;
2335 
2336   llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty);
2337   llvm::Constant *Zeros[] = { Zero, Zero };
2338   llvm::Value *V;
2339   // If we don't already have it, get _NSConstantStringClassReference.
2340   if (!ConstantStringClassRef) {
2341     std::string StringClass(getLangOpts().ObjCConstantStringClass);
2342     llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
2343     llvm::Constant *GV;
2344     if (LangOpts.ObjCRuntime.isNonFragile()) {
2345       std::string str =
2346         StringClass.empty() ? "OBJC_CLASS_$_NSConstantString"
2347                             : "OBJC_CLASS_$_" + StringClass;
2348       GV = getObjCRuntime().GetClassGlobal(str);
2349       // Make sure the result is of the correct type.
2350       llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
2351       V = llvm::ConstantExpr::getBitCast(GV, PTy);
2352       ConstantStringClassRef = V;
2353     } else {
2354       std::string str =
2355         StringClass.empty() ? "_NSConstantStringClassReference"
2356                             : "_" + StringClass + "ClassReference";
2357       llvm::Type *PTy = llvm::ArrayType::get(Ty, 0);
2358       GV = CreateRuntimeVariable(PTy, str);
2359       // Decay array -> ptr
2360       V = llvm::ConstantExpr::getGetElementPtr(GV, Zeros);
2361       ConstantStringClassRef = V;
2362     }
2363   }
2364   else
2365     V = ConstantStringClassRef;
2366 
2367   if (!NSConstantStringType) {
2368     // Construct the type for a constant NSString.
2369     RecordDecl *D = CreateRecordDecl(Context, TTK_Struct,
2370                                      Context.getTranslationUnitDecl(),
2371                                    &Context.Idents.get("__builtin_NSString"));
2372     D->startDefinition();
2373 
2374     QualType FieldTypes[3];
2375 
2376     // const int *isa;
2377     FieldTypes[0] = Context.getPointerType(Context.IntTy.withConst());
2378     // const char *str;
2379     FieldTypes[1] = Context.getPointerType(Context.CharTy.withConst());
2380     // unsigned int length;
2381     FieldTypes[2] = Context.UnsignedIntTy;
2382 
2383     // Create fields
2384     for (unsigned i = 0; i < 3; ++i) {
2385       FieldDecl *Field = FieldDecl::Create(Context, D,
2386                                            SourceLocation(),
2387                                            SourceLocation(), 0,
2388                                            FieldTypes[i], /*TInfo=*/0,
2389                                            /*BitWidth=*/0,
2390                                            /*Mutable=*/false,
2391                                            ICIS_NoInit);
2392       Field->setAccess(AS_public);
2393       D->addDecl(Field);
2394     }
2395 
2396     D->completeDefinition();
2397     QualType NSTy = Context.getTagDeclType(D);
2398     NSConstantStringType = cast<llvm::StructType>(getTypes().ConvertType(NSTy));
2399   }
2400 
2401   llvm::Constant *Fields[3];
2402 
2403   // Class pointer.
2404   Fields[0] = cast<llvm::ConstantExpr>(V);
2405 
2406   // String pointer.
2407   llvm::Constant *C =
2408     llvm::ConstantDataArray::getString(VMContext, Entry.getKey());
2409 
2410   llvm::GlobalValue::LinkageTypes Linkage;
2411   bool isConstant;
2412   Linkage = llvm::GlobalValue::PrivateLinkage;
2413   isConstant = !LangOpts.WritableStrings;
2414 
2415   llvm::GlobalVariable *GV =
2416   new llvm::GlobalVariable(getModule(), C->getType(), isConstant, Linkage, C,
2417                            ".str");
2418   GV->setUnnamedAddr(true);
2419   // Don't enforce the target's minimum global alignment, since the only use
2420   // of the string is via this class initializer.
2421   CharUnits Align = getContext().getTypeAlignInChars(getContext().CharTy);
2422   GV->setAlignment(Align.getQuantity());
2423   Fields[1] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros);
2424 
2425   // String length.
2426   llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy);
2427   Fields[2] = llvm::ConstantInt::get(Ty, StringLength);
2428 
2429   // The struct.
2430   C = llvm::ConstantStruct::get(NSConstantStringType, Fields);
2431   GV = new llvm::GlobalVariable(getModule(), C->getType(), true,
2432                                 llvm::GlobalVariable::PrivateLinkage, C,
2433                                 "_unnamed_nsstring_");
2434   // FIXME. Fix section.
2435   if (const char *Sect =
2436         LangOpts.ObjCRuntime.isNonFragile()
2437           ? getTarget().getNSStringNonFragileABISection()
2438           : getTarget().getNSStringSection())
2439     GV->setSection(Sect);
2440   Entry.setValue(GV);
2441 
2442   return GV;
2443 }
2444 
2445 QualType CodeGenModule::getObjCFastEnumerationStateType() {
2446   if (ObjCFastEnumerationStateType.isNull()) {
2447     RecordDecl *D = CreateRecordDecl(Context, TTK_Struct,
2448                                      Context.getTranslationUnitDecl(),
2449                       &Context.Idents.get("__objcFastEnumerationState"));
2450     D->startDefinition();
2451 
2452     QualType FieldTypes[] = {
2453       Context.UnsignedLongTy,
2454       Context.getPointerType(Context.getObjCIdType()),
2455       Context.getPointerType(Context.UnsignedLongTy),
2456       Context.getConstantArrayType(Context.UnsignedLongTy,
2457                            llvm::APInt(32, 5), ArrayType::Normal, 0)
2458     };
2459 
2460     for (size_t i = 0; i < 4; ++i) {
2461       FieldDecl *Field = FieldDecl::Create(Context,
2462                                            D,
2463                                            SourceLocation(),
2464                                            SourceLocation(), 0,
2465                                            FieldTypes[i], /*TInfo=*/0,
2466                                            /*BitWidth=*/0,
2467                                            /*Mutable=*/false,
2468                                            ICIS_NoInit);
2469       Field->setAccess(AS_public);
2470       D->addDecl(Field);
2471     }
2472 
2473     D->completeDefinition();
2474     ObjCFastEnumerationStateType = Context.getTagDeclType(D);
2475   }
2476 
2477   return ObjCFastEnumerationStateType;
2478 }
2479 
2480 llvm::Constant *
2481 CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) {
2482   assert(!E->getType()->isPointerType() && "Strings are always arrays");
2483 
2484   // Don't emit it as the address of the string, emit the string data itself
2485   // as an inline array.
2486   if (E->getCharByteWidth() == 1) {
2487     SmallString<64> Str(E->getString());
2488 
2489     // Resize the string to the right size, which is indicated by its type.
2490     const ConstantArrayType *CAT = Context.getAsConstantArrayType(E->getType());
2491     Str.resize(CAT->getSize().getZExtValue());
2492     return llvm::ConstantDataArray::getString(VMContext, Str, false);
2493   }
2494 
2495   llvm::ArrayType *AType =
2496     cast<llvm::ArrayType>(getTypes().ConvertType(E->getType()));
2497   llvm::Type *ElemTy = AType->getElementType();
2498   unsigned NumElements = AType->getNumElements();
2499 
2500   // Wide strings have either 2-byte or 4-byte elements.
2501   if (ElemTy->getPrimitiveSizeInBits() == 16) {
2502     SmallVector<uint16_t, 32> Elements;
2503     Elements.reserve(NumElements);
2504 
2505     for(unsigned i = 0, e = E->getLength(); i != e; ++i)
2506       Elements.push_back(E->getCodeUnit(i));
2507     Elements.resize(NumElements);
2508     return llvm::ConstantDataArray::get(VMContext, Elements);
2509   }
2510 
2511   assert(ElemTy->getPrimitiveSizeInBits() == 32);
2512   SmallVector<uint32_t, 32> Elements;
2513   Elements.reserve(NumElements);
2514 
2515   for(unsigned i = 0, e = E->getLength(); i != e; ++i)
2516     Elements.push_back(E->getCodeUnit(i));
2517   Elements.resize(NumElements);
2518   return llvm::ConstantDataArray::get(VMContext, Elements);
2519 }
2520 
2521 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a
2522 /// constant array for the given string literal.
2523 llvm::Constant *
2524 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S) {
2525   CharUnits Align = getContext().getAlignOfGlobalVarInChars(S->getType());
2526   if (S->isAscii() || S->isUTF8()) {
2527     SmallString<64> Str(S->getString());
2528 
2529     // Resize the string to the right size, which is indicated by its type.
2530     const ConstantArrayType *CAT = Context.getAsConstantArrayType(S->getType());
2531     Str.resize(CAT->getSize().getZExtValue());
2532     return GetAddrOfConstantString(Str, /*GlobalName*/ 0, Align.getQuantity());
2533   }
2534 
2535   // FIXME: the following does not memoize wide strings.
2536   llvm::Constant *C = GetConstantArrayFromStringLiteral(S);
2537   llvm::GlobalVariable *GV =
2538     new llvm::GlobalVariable(getModule(),C->getType(),
2539                              !LangOpts.WritableStrings,
2540                              llvm::GlobalValue::PrivateLinkage,
2541                              C,".str");
2542 
2543   GV->setAlignment(Align.getQuantity());
2544   GV->setUnnamedAddr(true);
2545   return GV;
2546 }
2547 
2548 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant
2549 /// array for the given ObjCEncodeExpr node.
2550 llvm::Constant *
2551 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) {
2552   std::string Str;
2553   getContext().getObjCEncodingForType(E->getEncodedType(), Str);
2554 
2555   return GetAddrOfConstantCString(Str);
2556 }
2557 
2558 
2559 /// GenerateWritableString -- Creates storage for a string literal.
2560 static llvm::GlobalVariable *GenerateStringLiteral(StringRef str,
2561                                              bool constant,
2562                                              CodeGenModule &CGM,
2563                                              const char *GlobalName,
2564                                              unsigned Alignment) {
2565   // Create Constant for this string literal. Don't add a '\0'.
2566   llvm::Constant *C =
2567       llvm::ConstantDataArray::getString(CGM.getLLVMContext(), str, false);
2568 
2569   // Create a global variable for this string
2570   llvm::GlobalVariable *GV =
2571     new llvm::GlobalVariable(CGM.getModule(), C->getType(), constant,
2572                              llvm::GlobalValue::PrivateLinkage,
2573                              C, GlobalName);
2574   GV->setAlignment(Alignment);
2575   GV->setUnnamedAddr(true);
2576   return GV;
2577 }
2578 
2579 /// GetAddrOfConstantString - Returns a pointer to a character array
2580 /// containing the literal. This contents are exactly that of the
2581 /// given string, i.e. it will not be null terminated automatically;
2582 /// see GetAddrOfConstantCString. Note that whether the result is
2583 /// actually a pointer to an LLVM constant depends on
2584 /// Feature.WriteableStrings.
2585 ///
2586 /// The result has pointer to array type.
2587 llvm::Constant *CodeGenModule::GetAddrOfConstantString(StringRef Str,
2588                                                        const char *GlobalName,
2589                                                        unsigned Alignment) {
2590   // Get the default prefix if a name wasn't specified.
2591   if (!GlobalName)
2592     GlobalName = ".str";
2593 
2594   if (Alignment == 0)
2595     Alignment = getContext().getAlignOfGlobalVarInChars(getContext().CharTy)
2596       .getQuantity();
2597 
2598   // Don't share any string literals if strings aren't constant.
2599   if (LangOpts.WritableStrings)
2600     return GenerateStringLiteral(Str, false, *this, GlobalName, Alignment);
2601 
2602   llvm::StringMapEntry<llvm::GlobalVariable *> &Entry =
2603     ConstantStringMap.GetOrCreateValue(Str);
2604 
2605   if (llvm::GlobalVariable *GV = Entry.getValue()) {
2606     if (Alignment > GV->getAlignment()) {
2607       GV->setAlignment(Alignment);
2608     }
2609     return GV;
2610   }
2611 
2612   // Create a global variable for this.
2613   llvm::GlobalVariable *GV = GenerateStringLiteral(Str, true, *this, GlobalName,
2614                                                    Alignment);
2615   Entry.setValue(GV);
2616   return GV;
2617 }
2618 
2619 /// GetAddrOfConstantCString - Returns a pointer to a character
2620 /// array containing the literal and a terminating '\0'
2621 /// character. The result has pointer to array type.
2622 llvm::Constant *CodeGenModule::GetAddrOfConstantCString(const std::string &Str,
2623                                                         const char *GlobalName,
2624                                                         unsigned Alignment) {
2625   StringRef StrWithNull(Str.c_str(), Str.size() + 1);
2626   return GetAddrOfConstantString(StrWithNull, GlobalName, Alignment);
2627 }
2628 
2629 llvm::Constant *CodeGenModule::GetAddrOfGlobalTemporary(
2630     const MaterializeTemporaryExpr *E, const Expr *Init) {
2631   assert((E->getStorageDuration() == SD_Static ||
2632           E->getStorageDuration() == SD_Thread) && "not a global temporary");
2633   const VarDecl *VD = cast<VarDecl>(E->getExtendingDecl());
2634 
2635   // If we're not materializing a subobject of the temporary, keep the
2636   // cv-qualifiers from the type of the MaterializeTemporaryExpr.
2637   QualType MaterializedType = Init->getType();
2638   if (Init == E->GetTemporaryExpr())
2639     MaterializedType = E->getType();
2640 
2641   llvm::Constant *&Slot = MaterializedGlobalTemporaryMap[E];
2642   if (Slot)
2643     return Slot;
2644 
2645   // FIXME: If an externally-visible declaration extends multiple temporaries,
2646   // we need to give each temporary the same name in every translation unit (and
2647   // we also need to make the temporaries externally-visible).
2648   SmallString<256> Name;
2649   llvm::raw_svector_ostream Out(Name);
2650   getCXXABI().getMangleContext().mangleReferenceTemporary(VD, Out);
2651   Out.flush();
2652 
2653   APValue *Value = 0;
2654   if (E->getStorageDuration() == SD_Static) {
2655     // We might have a cached constant initializer for this temporary. Note
2656     // that this might have a different value from the value computed by
2657     // evaluating the initializer if the surrounding constant expression
2658     // modifies the temporary.
2659     Value = getContext().getMaterializedTemporaryValue(E, false);
2660     if (Value && Value->isUninit())
2661       Value = 0;
2662   }
2663 
2664   // Try evaluating it now, it might have a constant initializer.
2665   Expr::EvalResult EvalResult;
2666   if (!Value && Init->EvaluateAsRValue(EvalResult, getContext()) &&
2667       !EvalResult.hasSideEffects())
2668     Value = &EvalResult.Val;
2669 
2670   llvm::Constant *InitialValue = 0;
2671   bool Constant = false;
2672   llvm::Type *Type;
2673   if (Value) {
2674     // The temporary has a constant initializer, use it.
2675     InitialValue = EmitConstantValue(*Value, MaterializedType, 0);
2676     Constant = isTypeConstant(MaterializedType, /*ExcludeCtor*/Value);
2677     Type = InitialValue->getType();
2678   } else {
2679     // No initializer, the initialization will be provided when we
2680     // initialize the declaration which performed lifetime extension.
2681     Type = getTypes().ConvertTypeForMem(MaterializedType);
2682   }
2683 
2684   // Create a global variable for this lifetime-extended temporary.
2685   llvm::GlobalVariable *GV =
2686     new llvm::GlobalVariable(getModule(), Type, Constant,
2687                              llvm::GlobalValue::PrivateLinkage,
2688                              InitialValue, Name.c_str());
2689   GV->setAlignment(
2690       getContext().getTypeAlignInChars(MaterializedType).getQuantity());
2691   if (VD->getTLSKind())
2692     setTLSMode(GV, *VD);
2693   Slot = GV;
2694   return GV;
2695 }
2696 
2697 /// EmitObjCPropertyImplementations - Emit information for synthesized
2698 /// properties for an implementation.
2699 void CodeGenModule::EmitObjCPropertyImplementations(const
2700                                                     ObjCImplementationDecl *D) {
2701   for (ObjCImplementationDecl::propimpl_iterator
2702          i = D->propimpl_begin(), e = D->propimpl_end(); i != e; ++i) {
2703     ObjCPropertyImplDecl *PID = *i;
2704 
2705     // Dynamic is just for type-checking.
2706     if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) {
2707       ObjCPropertyDecl *PD = PID->getPropertyDecl();
2708 
2709       // Determine which methods need to be implemented, some may have
2710       // been overridden. Note that ::isPropertyAccessor is not the method
2711       // we want, that just indicates if the decl came from a
2712       // property. What we want to know is if the method is defined in
2713       // this implementation.
2714       if (!D->getInstanceMethod(PD->getGetterName()))
2715         CodeGenFunction(*this).GenerateObjCGetter(
2716                                  const_cast<ObjCImplementationDecl *>(D), PID);
2717       if (!PD->isReadOnly() &&
2718           !D->getInstanceMethod(PD->getSetterName()))
2719         CodeGenFunction(*this).GenerateObjCSetter(
2720                                  const_cast<ObjCImplementationDecl *>(D), PID);
2721     }
2722   }
2723 }
2724 
2725 static bool needsDestructMethod(ObjCImplementationDecl *impl) {
2726   const ObjCInterfaceDecl *iface = impl->getClassInterface();
2727   for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin();
2728        ivar; ivar = ivar->getNextIvar())
2729     if (ivar->getType().isDestructedType())
2730       return true;
2731 
2732   return false;
2733 }
2734 
2735 /// EmitObjCIvarInitializations - Emit information for ivar initialization
2736 /// for an implementation.
2737 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) {
2738   // We might need a .cxx_destruct even if we don't have any ivar initializers.
2739   if (needsDestructMethod(D)) {
2740     IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct");
2741     Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
2742     ObjCMethodDecl *DTORMethod =
2743       ObjCMethodDecl::Create(getContext(), D->getLocation(), D->getLocation(),
2744                              cxxSelector, getContext().VoidTy, 0, D,
2745                              /*isInstance=*/true, /*isVariadic=*/false,
2746                           /*isPropertyAccessor=*/true, /*isImplicitlyDeclared=*/true,
2747                              /*isDefined=*/false, ObjCMethodDecl::Required);
2748     D->addInstanceMethod(DTORMethod);
2749     CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false);
2750     D->setHasDestructors(true);
2751   }
2752 
2753   // If the implementation doesn't have any ivar initializers, we don't need
2754   // a .cxx_construct.
2755   if (D->getNumIvarInitializers() == 0)
2756     return;
2757 
2758   IdentifierInfo *II = &getContext().Idents.get(".cxx_construct");
2759   Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
2760   // The constructor returns 'self'.
2761   ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(getContext(),
2762                                                 D->getLocation(),
2763                                                 D->getLocation(),
2764                                                 cxxSelector,
2765                                                 getContext().getObjCIdType(), 0,
2766                                                 D, /*isInstance=*/true,
2767                                                 /*isVariadic=*/false,
2768                                                 /*isPropertyAccessor=*/true,
2769                                                 /*isImplicitlyDeclared=*/true,
2770                                                 /*isDefined=*/false,
2771                                                 ObjCMethodDecl::Required);
2772   D->addInstanceMethod(CTORMethod);
2773   CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true);
2774   D->setHasNonZeroConstructors(true);
2775 }
2776 
2777 /// EmitNamespace - Emit all declarations in a namespace.
2778 void CodeGenModule::EmitNamespace(const NamespaceDecl *ND) {
2779   for (RecordDecl::decl_iterator I = ND->decls_begin(), E = ND->decls_end();
2780        I != E; ++I)
2781     EmitTopLevelDecl(*I);
2782 }
2783 
2784 // EmitLinkageSpec - Emit all declarations in a linkage spec.
2785 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) {
2786   if (LSD->getLanguage() != LinkageSpecDecl::lang_c &&
2787       LSD->getLanguage() != LinkageSpecDecl::lang_cxx) {
2788     ErrorUnsupported(LSD, "linkage spec");
2789     return;
2790   }
2791 
2792   for (RecordDecl::decl_iterator I = LSD->decls_begin(), E = LSD->decls_end();
2793        I != E; ++I) {
2794     // Meta-data for ObjC class includes references to implemented methods.
2795     // Generate class's method definitions first.
2796     if (ObjCImplDecl *OID = dyn_cast<ObjCImplDecl>(*I)) {
2797       for (ObjCContainerDecl::method_iterator M = OID->meth_begin(),
2798            MEnd = OID->meth_end();
2799            M != MEnd; ++M)
2800         EmitTopLevelDecl(*M);
2801     }
2802     EmitTopLevelDecl(*I);
2803   }
2804 }
2805 
2806 /// EmitTopLevelDecl - Emit code for a single top level declaration.
2807 void CodeGenModule::EmitTopLevelDecl(Decl *D) {
2808   // If an error has occurred, stop code generation, but continue
2809   // parsing and semantic analysis (to ensure all warnings and errors
2810   // are emitted).
2811   if (Diags.hasErrorOccurred())
2812     return;
2813 
2814   // Ignore dependent declarations.
2815   if (D->getDeclContext() && D->getDeclContext()->isDependentContext())
2816     return;
2817 
2818   switch (D->getKind()) {
2819   case Decl::CXXConversion:
2820   case Decl::CXXMethod:
2821   case Decl::Function:
2822     // Skip function templates
2823     if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() ||
2824         cast<FunctionDecl>(D)->isLateTemplateParsed())
2825       return;
2826 
2827     EmitGlobal(cast<FunctionDecl>(D));
2828     break;
2829 
2830   case Decl::Var:
2831     EmitGlobal(cast<VarDecl>(D));
2832     break;
2833 
2834   // Indirect fields from global anonymous structs and unions can be
2835   // ignored; only the actual variable requires IR gen support.
2836   case Decl::IndirectField:
2837     break;
2838 
2839   // C++ Decls
2840   case Decl::Namespace:
2841     EmitNamespace(cast<NamespaceDecl>(D));
2842     break;
2843     // No code generation needed.
2844   case Decl::UsingShadow:
2845   case Decl::Using:
2846   case Decl::ClassTemplate:
2847   case Decl::FunctionTemplate:
2848   case Decl::TypeAliasTemplate:
2849   case Decl::Block:
2850   case Decl::Empty:
2851     break;
2852   case Decl::NamespaceAlias:
2853     if (CGDebugInfo *DI = getModuleDebugInfo())
2854         DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(*D));
2855     return;
2856   case Decl::UsingDirective: // using namespace X; [C++]
2857     if (CGDebugInfo *DI = getModuleDebugInfo())
2858       DI->EmitUsingDirective(cast<UsingDirectiveDecl>(*D));
2859     return;
2860   case Decl::CXXConstructor:
2861     // Skip function templates
2862     if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() ||
2863         cast<FunctionDecl>(D)->isLateTemplateParsed())
2864       return;
2865 
2866     EmitCXXConstructors(cast<CXXConstructorDecl>(D));
2867     break;
2868   case Decl::CXXDestructor:
2869     if (cast<FunctionDecl>(D)->isLateTemplateParsed())
2870       return;
2871     EmitCXXDestructors(cast<CXXDestructorDecl>(D));
2872     break;
2873 
2874   case Decl::StaticAssert:
2875     // Nothing to do.
2876     break;
2877 
2878   // Objective-C Decls
2879 
2880   // Forward declarations, no (immediate) code generation.
2881   case Decl::ObjCInterface:
2882   case Decl::ObjCCategory:
2883     break;
2884 
2885   case Decl::ObjCProtocol: {
2886     ObjCProtocolDecl *Proto = cast<ObjCProtocolDecl>(D);
2887     if (Proto->isThisDeclarationADefinition())
2888       ObjCRuntime->GenerateProtocol(Proto);
2889     break;
2890   }
2891 
2892   case Decl::ObjCCategoryImpl:
2893     // Categories have properties but don't support synthesize so we
2894     // can ignore them here.
2895     ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D));
2896     break;
2897 
2898   case Decl::ObjCImplementation: {
2899     ObjCImplementationDecl *OMD = cast<ObjCImplementationDecl>(D);
2900     EmitObjCPropertyImplementations(OMD);
2901     EmitObjCIvarInitializations(OMD);
2902     ObjCRuntime->GenerateClass(OMD);
2903     // Emit global variable debug information.
2904     if (CGDebugInfo *DI = getModuleDebugInfo())
2905       if (getCodeGenOpts().getDebugInfo() >= CodeGenOptions::LimitedDebugInfo)
2906         DI->getOrCreateInterfaceType(getContext().getObjCInterfaceType(
2907             OMD->getClassInterface()), OMD->getLocation());
2908     break;
2909   }
2910   case Decl::ObjCMethod: {
2911     ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(D);
2912     // If this is not a prototype, emit the body.
2913     if (OMD->getBody())
2914       CodeGenFunction(*this).GenerateObjCMethod(OMD);
2915     break;
2916   }
2917   case Decl::ObjCCompatibleAlias:
2918     ObjCRuntime->RegisterAlias(cast<ObjCCompatibleAliasDecl>(D));
2919     break;
2920 
2921   case Decl::LinkageSpec:
2922     EmitLinkageSpec(cast<LinkageSpecDecl>(D));
2923     break;
2924 
2925   case Decl::FileScopeAsm: {
2926     FileScopeAsmDecl *AD = cast<FileScopeAsmDecl>(D);
2927     StringRef AsmString = AD->getAsmString()->getString();
2928 
2929     const std::string &S = getModule().getModuleInlineAsm();
2930     if (S.empty())
2931       getModule().setModuleInlineAsm(AsmString);
2932     else if (S.end()[-1] == '\n')
2933       getModule().setModuleInlineAsm(S + AsmString.str());
2934     else
2935       getModule().setModuleInlineAsm(S + '\n' + AsmString.str());
2936     break;
2937   }
2938 
2939   case Decl::Import: {
2940     ImportDecl *Import = cast<ImportDecl>(D);
2941 
2942     // Ignore import declarations that come from imported modules.
2943     if (clang::Module *Owner = Import->getOwningModule()) {
2944       if (getLangOpts().CurrentModule.empty() ||
2945           Owner->getTopLevelModule()->Name == getLangOpts().CurrentModule)
2946         break;
2947     }
2948 
2949     ImportedModules.insert(Import->getImportedModule());
2950     break;
2951  }
2952 
2953   default:
2954     // Make sure we handled everything we should, every other kind is a
2955     // non-top-level decl.  FIXME: Would be nice to have an isTopLevelDeclKind
2956     // function. Need to recode Decl::Kind to do that easily.
2957     assert(isa<TypeDecl>(D) && "Unsupported decl kind");
2958   }
2959 }
2960 
2961 /// Turns the given pointer into a constant.
2962 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context,
2963                                           const void *Ptr) {
2964   uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr);
2965   llvm::Type *i64 = llvm::Type::getInt64Ty(Context);
2966   return llvm::ConstantInt::get(i64, PtrInt);
2967 }
2968 
2969 static void EmitGlobalDeclMetadata(CodeGenModule &CGM,
2970                                    llvm::NamedMDNode *&GlobalMetadata,
2971                                    GlobalDecl D,
2972                                    llvm::GlobalValue *Addr) {
2973   if (!GlobalMetadata)
2974     GlobalMetadata =
2975       CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs");
2976 
2977   // TODO: should we report variant information for ctors/dtors?
2978   llvm::Value *Ops[] = {
2979     Addr,
2980     GetPointerConstant(CGM.getLLVMContext(), D.getDecl())
2981   };
2982   GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops));
2983 }
2984 
2985 /// For each function which is declared within an extern "C" region and marked
2986 /// as 'used', but has internal linkage, create an alias from the unmangled
2987 /// name to the mangled name if possible. People expect to be able to refer
2988 /// to such functions with an unmangled name from inline assembly within the
2989 /// same translation unit.
2990 void CodeGenModule::EmitStaticExternCAliases() {
2991   for (StaticExternCMap::iterator I = StaticExternCValues.begin(),
2992                                   E = StaticExternCValues.end();
2993        I != E; ++I) {
2994     IdentifierInfo *Name = I->first;
2995     llvm::GlobalValue *Val = I->second;
2996     if (Val && !getModule().getNamedValue(Name->getName()))
2997       AddUsedGlobal(new llvm::GlobalAlias(Val->getType(), Val->getLinkage(),
2998                                           Name->getName(), Val, &getModule()));
2999   }
3000 }
3001 
3002 /// Emits metadata nodes associating all the global values in the
3003 /// current module with the Decls they came from.  This is useful for
3004 /// projects using IR gen as a subroutine.
3005 ///
3006 /// Since there's currently no way to associate an MDNode directly
3007 /// with an llvm::GlobalValue, we create a global named metadata
3008 /// with the name 'clang.global.decl.ptrs'.
3009 void CodeGenModule::EmitDeclMetadata() {
3010   llvm::NamedMDNode *GlobalMetadata = 0;
3011 
3012   // StaticLocalDeclMap
3013   for (llvm::DenseMap<GlobalDecl,StringRef>::iterator
3014          I = MangledDeclNames.begin(), E = MangledDeclNames.end();
3015        I != E; ++I) {
3016     llvm::GlobalValue *Addr = getModule().getNamedValue(I->second);
3017     EmitGlobalDeclMetadata(*this, GlobalMetadata, I->first, Addr);
3018   }
3019 }
3020 
3021 /// Emits metadata nodes for all the local variables in the current
3022 /// function.
3023 void CodeGenFunction::EmitDeclMetadata() {
3024   if (LocalDeclMap.empty()) return;
3025 
3026   llvm::LLVMContext &Context = getLLVMContext();
3027 
3028   // Find the unique metadata ID for this name.
3029   unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr");
3030 
3031   llvm::NamedMDNode *GlobalMetadata = 0;
3032 
3033   for (llvm::DenseMap<const Decl*, llvm::Value*>::iterator
3034          I = LocalDeclMap.begin(), E = LocalDeclMap.end(); I != E; ++I) {
3035     const Decl *D = I->first;
3036     llvm::Value *Addr = I->second;
3037 
3038     if (llvm::AllocaInst *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) {
3039       llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D);
3040       Alloca->setMetadata(DeclPtrKind, llvm::MDNode::get(Context, DAddr));
3041     } else if (llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>(Addr)) {
3042       GlobalDecl GD = GlobalDecl(cast<VarDecl>(D));
3043       EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV);
3044     }
3045   }
3046 }
3047 
3048 void CodeGenModule::EmitCoverageFile() {
3049   if (!getCodeGenOpts().CoverageFile.empty()) {
3050     if (llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu")) {
3051       llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov");
3052       llvm::LLVMContext &Ctx = TheModule.getContext();
3053       llvm::MDString *CoverageFile =
3054           llvm::MDString::get(Ctx, getCodeGenOpts().CoverageFile);
3055       for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) {
3056         llvm::MDNode *CU = CUNode->getOperand(i);
3057         llvm::Value *node[] = { CoverageFile, CU };
3058         llvm::MDNode *N = llvm::MDNode::get(Ctx, node);
3059         GCov->addOperand(N);
3060       }
3061     }
3062   }
3063 }
3064 
3065 llvm::Constant *CodeGenModule::EmitUuidofInitializer(StringRef Uuid,
3066                                                      QualType GuidType) {
3067   // Sema has checked that all uuid strings are of the form
3068   // "12345678-1234-1234-1234-1234567890ab".
3069   assert(Uuid.size() == 36);
3070   const char *Uuidstr = Uuid.data();
3071   for (int i = 0; i < 36; ++i) {
3072     if (i == 8 || i == 13 || i == 18 || i == 23) assert(Uuidstr[i] == '-');
3073     else                                         assert(isHexDigit(Uuidstr[i]));
3074   }
3075 
3076   llvm::APInt Field0(32, StringRef(Uuidstr     , 8), 16);
3077   llvm::APInt Field1(16, StringRef(Uuidstr +  9, 4), 16);
3078   llvm::APInt Field2(16, StringRef(Uuidstr + 14, 4), 16);
3079   static const int Field3ValueOffsets[] = { 19, 21, 24, 26, 28, 30, 32, 34 };
3080 
3081   APValue InitStruct(APValue::UninitStruct(), /*NumBases=*/0, /*NumFields=*/4);
3082   InitStruct.getStructField(0) = APValue(llvm::APSInt(Field0));
3083   InitStruct.getStructField(1) = APValue(llvm::APSInt(Field1));
3084   InitStruct.getStructField(2) = APValue(llvm::APSInt(Field2));
3085   APValue& Arr = InitStruct.getStructField(3);
3086   Arr = APValue(APValue::UninitArray(), 8, 8);
3087   for (int t = 0; t < 8; ++t)
3088     Arr.getArrayInitializedElt(t) = APValue(llvm::APSInt(
3089           llvm::APInt(8, StringRef(Uuidstr + Field3ValueOffsets[t], 2), 16)));
3090 
3091   return EmitConstantValue(InitStruct, GuidType);
3092 }
3093