1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This coordinates the per-module state used while generating code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenModule.h" 15 #include "CGDebugInfo.h" 16 #include "CodeGenFunction.h" 17 #include "CGCall.h" 18 #include "CGObjCRuntime.h" 19 #include "Mangle.h" 20 #include "TargetInfo.h" 21 #include "clang/CodeGen/CodeGenOptions.h" 22 #include "clang/AST/ASTContext.h" 23 #include "clang/AST/CharUnits.h" 24 #include "clang/AST/DeclObjC.h" 25 #include "clang/AST/DeclCXX.h" 26 #include "clang/AST/RecordLayout.h" 27 #include "clang/Basic/Builtins.h" 28 #include "clang/Basic/Diagnostic.h" 29 #include "clang/Basic/SourceManager.h" 30 #include "clang/Basic/TargetInfo.h" 31 #include "clang/Basic/ConvertUTF.h" 32 #include "llvm/CallingConv.h" 33 #include "llvm/Module.h" 34 #include "llvm/Intrinsics.h" 35 #include "llvm/LLVMContext.h" 36 #include "llvm/Target/TargetData.h" 37 #include "llvm/Support/ErrorHandling.h" 38 using namespace clang; 39 using namespace CodeGen; 40 41 42 CodeGenModule::CodeGenModule(ASTContext &C, const CodeGenOptions &CGO, 43 llvm::Module &M, const llvm::TargetData &TD, 44 Diagnostic &diags) 45 : BlockModule(C, M, TD, Types, *this), Context(C), 46 Features(C.getLangOptions()), CodeGenOpts(CGO), TheModule(M), 47 TheTargetData(TD), TheTargetCodeGenInfo(0), Diags(diags), 48 Types(C, M, TD, getTargetCodeGenInfo().getABIInfo()), 49 MangleCtx(C), VtableInfo(*this), Runtime(0), 50 MemCpyFn(0), MemMoveFn(0), MemSetFn(0), CFConstantStringClassRef(0), 51 VMContext(M.getContext()) { 52 53 if (!Features.ObjC1) 54 Runtime = 0; 55 else if (!Features.NeXTRuntime) 56 Runtime = CreateGNUObjCRuntime(*this); 57 else if (Features.ObjCNonFragileABI) 58 Runtime = CreateMacNonFragileABIObjCRuntime(*this); 59 else 60 Runtime = CreateMacObjCRuntime(*this); 61 62 // If debug info generation is enabled, create the CGDebugInfo object. 63 DebugInfo = CodeGenOpts.DebugInfo ? new CGDebugInfo(*this) : 0; 64 } 65 66 CodeGenModule::~CodeGenModule() { 67 delete Runtime; 68 delete DebugInfo; 69 } 70 71 void CodeGenModule::createObjCRuntime() { 72 if (!Features.NeXTRuntime) 73 Runtime = CreateGNUObjCRuntime(*this); 74 else if (Features.ObjCNonFragileABI) 75 Runtime = CreateMacNonFragileABIObjCRuntime(*this); 76 else 77 Runtime = CreateMacObjCRuntime(*this); 78 } 79 80 void CodeGenModule::Release() { 81 EmitDeferred(); 82 EmitCXXGlobalInitFunc(); 83 if (Runtime) 84 if (llvm::Function *ObjCInitFunction = Runtime->ModuleInitFunction()) 85 AddGlobalCtor(ObjCInitFunction); 86 EmitCtorList(GlobalCtors, "llvm.global_ctors"); 87 EmitCtorList(GlobalDtors, "llvm.global_dtors"); 88 EmitAnnotations(); 89 EmitLLVMUsed(); 90 } 91 92 /// ErrorUnsupported - Print out an error that codegen doesn't support the 93 /// specified stmt yet. 94 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type, 95 bool OmitOnError) { 96 if (OmitOnError && getDiags().hasErrorOccurred()) 97 return; 98 unsigned DiagID = getDiags().getCustomDiagID(Diagnostic::Error, 99 "cannot compile this %0 yet"); 100 std::string Msg = Type; 101 getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID) 102 << Msg << S->getSourceRange(); 103 } 104 105 /// ErrorUnsupported - Print out an error that codegen doesn't support the 106 /// specified decl yet. 107 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type, 108 bool OmitOnError) { 109 if (OmitOnError && getDiags().hasErrorOccurred()) 110 return; 111 unsigned DiagID = getDiags().getCustomDiagID(Diagnostic::Error, 112 "cannot compile this %0 yet"); 113 std::string Msg = Type; 114 getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg; 115 } 116 117 LangOptions::VisibilityMode 118 CodeGenModule::getDeclVisibilityMode(const Decl *D) const { 119 if (const VarDecl *VD = dyn_cast<VarDecl>(D)) 120 if (VD->getStorageClass() == VarDecl::PrivateExtern) 121 return LangOptions::Hidden; 122 123 if (const VisibilityAttr *attr = D->getAttr<VisibilityAttr>()) { 124 switch (attr->getVisibility()) { 125 default: assert(0 && "Unknown visibility!"); 126 case VisibilityAttr::DefaultVisibility: 127 return LangOptions::Default; 128 case VisibilityAttr::HiddenVisibility: 129 return LangOptions::Hidden; 130 case VisibilityAttr::ProtectedVisibility: 131 return LangOptions::Protected; 132 } 133 } 134 135 return getLangOptions().getVisibilityMode(); 136 } 137 138 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV, 139 const Decl *D) const { 140 // Internal definitions always have default visibility. 141 if (GV->hasLocalLinkage()) { 142 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 143 return; 144 } 145 146 switch (getDeclVisibilityMode(D)) { 147 default: assert(0 && "Unknown visibility!"); 148 case LangOptions::Default: 149 return GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 150 case LangOptions::Hidden: 151 return GV->setVisibility(llvm::GlobalValue::HiddenVisibility); 152 case LangOptions::Protected: 153 return GV->setVisibility(llvm::GlobalValue::ProtectedVisibility); 154 } 155 } 156 157 const char *CodeGenModule::getMangledName(const GlobalDecl &GD) { 158 const NamedDecl *ND = cast<NamedDecl>(GD.getDecl()); 159 160 if (const CXXConstructorDecl *D = dyn_cast<CXXConstructorDecl>(ND)) 161 return getMangledCXXCtorName(D, GD.getCtorType()); 162 if (const CXXDestructorDecl *D = dyn_cast<CXXDestructorDecl>(ND)) 163 return getMangledCXXDtorName(D, GD.getDtorType()); 164 165 return getMangledName(ND); 166 } 167 168 /// \brief Retrieves the mangled name for the given declaration. 169 /// 170 /// If the given declaration requires a mangled name, returns an 171 /// const char* containing the mangled name. Otherwise, returns 172 /// the unmangled name. 173 /// 174 const char *CodeGenModule::getMangledName(const NamedDecl *ND) { 175 if (!getMangleContext().shouldMangleDeclName(ND)) { 176 assert(ND->getIdentifier() && "Attempt to mangle unnamed decl."); 177 return ND->getNameAsCString(); 178 } 179 180 llvm::SmallString<256> Name; 181 getMangleContext().mangleName(ND, Name); 182 Name += '\0'; 183 return UniqueMangledName(Name.begin(), Name.end()); 184 } 185 186 const char *CodeGenModule::UniqueMangledName(const char *NameStart, 187 const char *NameEnd) { 188 assert(*(NameEnd - 1) == '\0' && "Mangled name must be null terminated!"); 189 190 return MangledNames.GetOrCreateValue(NameStart, NameEnd).getKeyData(); 191 } 192 193 /// AddGlobalCtor - Add a function to the list that will be called before 194 /// main() runs. 195 void CodeGenModule::AddGlobalCtor(llvm::Function * Ctor, int Priority) { 196 // FIXME: Type coercion of void()* types. 197 GlobalCtors.push_back(std::make_pair(Ctor, Priority)); 198 } 199 200 /// AddGlobalDtor - Add a function to the list that will be called 201 /// when the module is unloaded. 202 void CodeGenModule::AddGlobalDtor(llvm::Function * Dtor, int Priority) { 203 // FIXME: Type coercion of void()* types. 204 GlobalDtors.push_back(std::make_pair(Dtor, Priority)); 205 } 206 207 void CodeGenModule::EmitCtorList(const CtorList &Fns, const char *GlobalName) { 208 // Ctor function type is void()*. 209 llvm::FunctionType* CtorFTy = 210 llvm::FunctionType::get(llvm::Type::getVoidTy(VMContext), 211 std::vector<const llvm::Type*>(), 212 false); 213 llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy); 214 215 // Get the type of a ctor entry, { i32, void ()* }. 216 llvm::StructType* CtorStructTy = 217 llvm::StructType::get(VMContext, llvm::Type::getInt32Ty(VMContext), 218 llvm::PointerType::getUnqual(CtorFTy), NULL); 219 220 // Construct the constructor and destructor arrays. 221 std::vector<llvm::Constant*> Ctors; 222 for (CtorList::const_iterator I = Fns.begin(), E = Fns.end(); I != E; ++I) { 223 std::vector<llvm::Constant*> S; 224 S.push_back(llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext), 225 I->second, false)); 226 S.push_back(llvm::ConstantExpr::getBitCast(I->first, CtorPFTy)); 227 Ctors.push_back(llvm::ConstantStruct::get(CtorStructTy, S)); 228 } 229 230 if (!Ctors.empty()) { 231 llvm::ArrayType *AT = llvm::ArrayType::get(CtorStructTy, Ctors.size()); 232 new llvm::GlobalVariable(TheModule, AT, false, 233 llvm::GlobalValue::AppendingLinkage, 234 llvm::ConstantArray::get(AT, Ctors), 235 GlobalName); 236 } 237 } 238 239 void CodeGenModule::EmitAnnotations() { 240 if (Annotations.empty()) 241 return; 242 243 // Create a new global variable for the ConstantStruct in the Module. 244 llvm::Constant *Array = 245 llvm::ConstantArray::get(llvm::ArrayType::get(Annotations[0]->getType(), 246 Annotations.size()), 247 Annotations); 248 llvm::GlobalValue *gv = 249 new llvm::GlobalVariable(TheModule, Array->getType(), false, 250 llvm::GlobalValue::AppendingLinkage, Array, 251 "llvm.global.annotations"); 252 gv->setSection("llvm.metadata"); 253 } 254 255 static CodeGenModule::GVALinkage 256 GetLinkageForFunction(ASTContext &Context, const FunctionDecl *FD, 257 const LangOptions &Features) { 258 CodeGenModule::GVALinkage External = CodeGenModule::GVA_StrongExternal; 259 260 Linkage L = FD->getLinkage(); 261 if (L == ExternalLinkage && Context.getLangOptions().CPlusPlus && 262 FD->getType()->getLinkage() == UniqueExternalLinkage) 263 L = UniqueExternalLinkage; 264 265 switch (L) { 266 case NoLinkage: 267 case InternalLinkage: 268 case UniqueExternalLinkage: 269 return CodeGenModule::GVA_Internal; 270 271 case ExternalLinkage: 272 switch (FD->getTemplateSpecializationKind()) { 273 case TSK_Undeclared: 274 case TSK_ExplicitSpecialization: 275 External = CodeGenModule::GVA_StrongExternal; 276 break; 277 278 case TSK_ExplicitInstantiationDefinition: 279 // FIXME: explicit instantiation definitions should use weak linkage 280 return CodeGenModule::GVA_StrongExternal; 281 282 case TSK_ExplicitInstantiationDeclaration: 283 case TSK_ImplicitInstantiation: 284 External = CodeGenModule::GVA_TemplateInstantiation; 285 break; 286 } 287 } 288 289 if (!FD->isInlined()) 290 return External; 291 292 if (!Features.CPlusPlus || FD->hasAttr<GNUInlineAttr>()) { 293 // GNU or C99 inline semantics. Determine whether this symbol should be 294 // externally visible. 295 if (FD->isInlineDefinitionExternallyVisible()) 296 return External; 297 298 // C99 inline semantics, where the symbol is not externally visible. 299 return CodeGenModule::GVA_C99Inline; 300 } 301 302 // C++0x [temp.explicit]p9: 303 // [ Note: The intent is that an inline function that is the subject of 304 // an explicit instantiation declaration will still be implicitly 305 // instantiated when used so that the body can be considered for 306 // inlining, but that no out-of-line copy of the inline function would be 307 // generated in the translation unit. -- end note ] 308 if (FD->getTemplateSpecializationKind() 309 == TSK_ExplicitInstantiationDeclaration) 310 return CodeGenModule::GVA_C99Inline; 311 312 return CodeGenModule::GVA_CXXInline; 313 } 314 315 /// SetFunctionDefinitionAttributes - Set attributes for a global. 316 /// 317 /// FIXME: This is currently only done for aliases and functions, but not for 318 /// variables (these details are set in EmitGlobalVarDefinition for variables). 319 void CodeGenModule::SetFunctionDefinitionAttributes(const FunctionDecl *D, 320 llvm::GlobalValue *GV) { 321 GVALinkage Linkage = GetLinkageForFunction(getContext(), D, Features); 322 323 if (Linkage == GVA_Internal) { 324 GV->setLinkage(llvm::Function::InternalLinkage); 325 } else if (D->hasAttr<DLLExportAttr>()) { 326 GV->setLinkage(llvm::Function::DLLExportLinkage); 327 } else if (D->hasAttr<WeakAttr>()) { 328 GV->setLinkage(llvm::Function::WeakAnyLinkage); 329 } else if (Linkage == GVA_C99Inline) { 330 // In C99 mode, 'inline' functions are guaranteed to have a strong 331 // definition somewhere else, so we can use available_externally linkage. 332 GV->setLinkage(llvm::Function::AvailableExternallyLinkage); 333 } else if (Linkage == GVA_CXXInline || Linkage == GVA_TemplateInstantiation) { 334 // In C++, the compiler has to emit a definition in every translation unit 335 // that references the function. We should use linkonce_odr because 336 // a) if all references in this translation unit are optimized away, we 337 // don't need to codegen it. b) if the function persists, it needs to be 338 // merged with other definitions. c) C++ has the ODR, so we know the 339 // definition is dependable. 340 GV->setLinkage(llvm::Function::LinkOnceODRLinkage); 341 } else { 342 assert(Linkage == GVA_StrongExternal); 343 // Otherwise, we have strong external linkage. 344 GV->setLinkage(llvm::Function::ExternalLinkage); 345 } 346 347 SetCommonAttributes(D, GV); 348 } 349 350 void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D, 351 const CGFunctionInfo &Info, 352 llvm::Function *F) { 353 unsigned CallingConv; 354 AttributeListType AttributeList; 355 ConstructAttributeList(Info, D, AttributeList, CallingConv); 356 F->setAttributes(llvm::AttrListPtr::get(AttributeList.begin(), 357 AttributeList.size())); 358 F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv)); 359 } 360 361 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D, 362 llvm::Function *F) { 363 if (!Features.Exceptions && !Features.ObjCNonFragileABI) 364 F->addFnAttr(llvm::Attribute::NoUnwind); 365 366 if (D->hasAttr<AlwaysInlineAttr>()) 367 F->addFnAttr(llvm::Attribute::AlwaysInline); 368 369 if (D->hasAttr<NoInlineAttr>()) 370 F->addFnAttr(llvm::Attribute::NoInline); 371 372 if (Features.getStackProtectorMode() == LangOptions::SSPOn) 373 F->addFnAttr(llvm::Attribute::StackProtect); 374 else if (Features.getStackProtectorMode() == LangOptions::SSPReq) 375 F->addFnAttr(llvm::Attribute::StackProtectReq); 376 377 if (const AlignedAttr *AA = D->getAttr<AlignedAttr>()) { 378 unsigned width = Context.Target.getCharWidth(); 379 F->setAlignment(AA->getAlignment() / width); 380 while ((AA = AA->getNext<AlignedAttr>())) 381 F->setAlignment(std::max(F->getAlignment(), AA->getAlignment() / width)); 382 } 383 // C++ ABI requires 2-byte alignment for member functions. 384 if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D)) 385 F->setAlignment(2); 386 } 387 388 void CodeGenModule::SetCommonAttributes(const Decl *D, 389 llvm::GlobalValue *GV) { 390 setGlobalVisibility(GV, D); 391 392 if (D->hasAttr<UsedAttr>()) 393 AddUsedGlobal(GV); 394 395 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) 396 GV->setSection(SA->getName()); 397 398 getTargetCodeGenInfo().SetTargetAttributes(D, GV, *this); 399 } 400 401 void CodeGenModule::SetInternalFunctionAttributes(const Decl *D, 402 llvm::Function *F, 403 const CGFunctionInfo &FI) { 404 SetLLVMFunctionAttributes(D, FI, F); 405 SetLLVMFunctionAttributesForDefinition(D, F); 406 407 F->setLinkage(llvm::Function::InternalLinkage); 408 409 SetCommonAttributes(D, F); 410 } 411 412 void CodeGenModule::SetFunctionAttributes(const FunctionDecl *FD, 413 llvm::Function *F, 414 bool IsIncompleteFunction) { 415 if (!IsIncompleteFunction) 416 SetLLVMFunctionAttributes(FD, getTypes().getFunctionInfo(FD), F); 417 418 // Only a few attributes are set on declarations; these may later be 419 // overridden by a definition. 420 421 if (FD->hasAttr<DLLImportAttr>()) { 422 F->setLinkage(llvm::Function::DLLImportLinkage); 423 } else if (FD->hasAttr<WeakAttr>() || 424 FD->hasAttr<WeakImportAttr>()) { 425 // "extern_weak" is overloaded in LLVM; we probably should have 426 // separate linkage types for this. 427 F->setLinkage(llvm::Function::ExternalWeakLinkage); 428 } else { 429 F->setLinkage(llvm::Function::ExternalLinkage); 430 } 431 432 if (const SectionAttr *SA = FD->getAttr<SectionAttr>()) 433 F->setSection(SA->getName()); 434 } 435 436 void CodeGenModule::AddUsedGlobal(llvm::GlobalValue *GV) { 437 assert(!GV->isDeclaration() && 438 "Only globals with definition can force usage."); 439 LLVMUsed.push_back(GV); 440 } 441 442 void CodeGenModule::EmitLLVMUsed() { 443 // Don't create llvm.used if there is no need. 444 if (LLVMUsed.empty()) 445 return; 446 447 const llvm::Type *i8PTy = llvm::Type::getInt8PtrTy(VMContext); 448 449 // Convert LLVMUsed to what ConstantArray needs. 450 std::vector<llvm::Constant*> UsedArray; 451 UsedArray.resize(LLVMUsed.size()); 452 for (unsigned i = 0, e = LLVMUsed.size(); i != e; ++i) { 453 UsedArray[i] = 454 llvm::ConstantExpr::getBitCast(cast<llvm::Constant>(&*LLVMUsed[i]), 455 i8PTy); 456 } 457 458 if (UsedArray.empty()) 459 return; 460 llvm::ArrayType *ATy = llvm::ArrayType::get(i8PTy, UsedArray.size()); 461 462 llvm::GlobalVariable *GV = 463 new llvm::GlobalVariable(getModule(), ATy, false, 464 llvm::GlobalValue::AppendingLinkage, 465 llvm::ConstantArray::get(ATy, UsedArray), 466 "llvm.used"); 467 468 GV->setSection("llvm.metadata"); 469 } 470 471 void CodeGenModule::EmitDeferred() { 472 // Emit code for any potentially referenced deferred decls. Since a 473 // previously unused static decl may become used during the generation of code 474 // for a static function, iterate until no changes are made. 475 while (!DeferredDeclsToEmit.empty()) { 476 GlobalDecl D = DeferredDeclsToEmit.back(); 477 DeferredDeclsToEmit.pop_back(); 478 479 // The mangled name for the decl must have been emitted in GlobalDeclMap. 480 // Look it up to see if it was defined with a stronger definition (e.g. an 481 // extern inline function with a strong function redefinition). If so, 482 // just ignore the deferred decl. 483 llvm::GlobalValue *CGRef = GlobalDeclMap[getMangledName(D)]; 484 assert(CGRef && "Deferred decl wasn't referenced?"); 485 486 if (!CGRef->isDeclaration()) 487 continue; 488 489 // Otherwise, emit the definition and move on to the next one. 490 EmitGlobalDefinition(D); 491 } 492 } 493 494 /// EmitAnnotateAttr - Generate the llvm::ConstantStruct which contains the 495 /// annotation information for a given GlobalValue. The annotation struct is 496 /// {i8 *, i8 *, i8 *, i32}. The first field is a constant expression, the 497 /// GlobalValue being annotated. The second field is the constant string 498 /// created from the AnnotateAttr's annotation. The third field is a constant 499 /// string containing the name of the translation unit. The fourth field is 500 /// the line number in the file of the annotated value declaration. 501 /// 502 /// FIXME: this does not unique the annotation string constants, as llvm-gcc 503 /// appears to. 504 /// 505 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV, 506 const AnnotateAttr *AA, 507 unsigned LineNo) { 508 llvm::Module *M = &getModule(); 509 510 // get [N x i8] constants for the annotation string, and the filename string 511 // which are the 2nd and 3rd elements of the global annotation structure. 512 const llvm::Type *SBP = llvm::Type::getInt8PtrTy(VMContext); 513 llvm::Constant *anno = llvm::ConstantArray::get(VMContext, 514 AA->getAnnotation(), true); 515 llvm::Constant *unit = llvm::ConstantArray::get(VMContext, 516 M->getModuleIdentifier(), 517 true); 518 519 // Get the two global values corresponding to the ConstantArrays we just 520 // created to hold the bytes of the strings. 521 llvm::GlobalValue *annoGV = 522 new llvm::GlobalVariable(*M, anno->getType(), false, 523 llvm::GlobalValue::PrivateLinkage, anno, 524 GV->getName()); 525 // translation unit name string, emitted into the llvm.metadata section. 526 llvm::GlobalValue *unitGV = 527 new llvm::GlobalVariable(*M, unit->getType(), false, 528 llvm::GlobalValue::PrivateLinkage, unit, 529 ".str"); 530 531 // Create the ConstantStruct for the global annotation. 532 llvm::Constant *Fields[4] = { 533 llvm::ConstantExpr::getBitCast(GV, SBP), 534 llvm::ConstantExpr::getBitCast(annoGV, SBP), 535 llvm::ConstantExpr::getBitCast(unitGV, SBP), 536 llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext), LineNo) 537 }; 538 return llvm::ConstantStruct::get(VMContext, Fields, 4, false); 539 } 540 541 bool CodeGenModule::MayDeferGeneration(const ValueDecl *Global) { 542 // Never defer when EmitAllDecls is specified or the decl has 543 // attribute used. 544 if (Features.EmitAllDecls || Global->hasAttr<UsedAttr>()) 545 return false; 546 547 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) { 548 // Constructors and destructors should never be deferred. 549 if (FD->hasAttr<ConstructorAttr>() || 550 FD->hasAttr<DestructorAttr>()) 551 return false; 552 553 // The key function for a class must never be deferred. 554 if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Global)) { 555 const CXXRecordDecl *RD = MD->getParent(); 556 if (MD->isOutOfLine() && RD->isDynamicClass()) { 557 const CXXMethodDecl *KeyFunction = getContext().getKeyFunction(RD); 558 if (KeyFunction && 559 KeyFunction->getCanonicalDecl() == MD->getCanonicalDecl()) 560 return false; 561 } 562 } 563 564 GVALinkage Linkage = GetLinkageForFunction(getContext(), FD, Features); 565 566 // static, static inline, always_inline, and extern inline functions can 567 // always be deferred. Normal inline functions can be deferred in C99/C++. 568 if (Linkage == GVA_Internal || Linkage == GVA_C99Inline || 569 Linkage == GVA_CXXInline || Linkage == GVA_TemplateInstantiation) 570 return true; 571 return false; 572 } 573 574 const VarDecl *VD = cast<VarDecl>(Global); 575 assert(VD->isFileVarDecl() && "Invalid decl"); 576 577 // We never want to defer structs that have non-trivial constructors or 578 // destructors. 579 580 // FIXME: Handle references. 581 if (const RecordType *RT = VD->getType()->getAs<RecordType>()) { 582 if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl())) { 583 if (!RD->hasTrivialConstructor() || !RD->hasTrivialDestructor()) 584 return false; 585 } 586 } 587 588 // Static data may be deferred, but out-of-line static data members 589 // cannot be. 590 Linkage L = VD->getLinkage(); 591 if (L == ExternalLinkage && getContext().getLangOptions().CPlusPlus && 592 VD->getType()->getLinkage() == UniqueExternalLinkage) 593 L = UniqueExternalLinkage; 594 595 switch (L) { 596 case NoLinkage: 597 case InternalLinkage: 598 case UniqueExternalLinkage: 599 // Initializer has side effects? 600 if (VD->getInit() && VD->getInit()->HasSideEffects(Context)) 601 return false; 602 return !(VD->isStaticDataMember() && VD->isOutOfLine()); 603 604 case ExternalLinkage: 605 break; 606 } 607 608 return false; 609 } 610 611 void CodeGenModule::EmitGlobal(GlobalDecl GD) { 612 const ValueDecl *Global = cast<ValueDecl>(GD.getDecl()); 613 614 // If this is an alias definition (which otherwise looks like a declaration) 615 // emit it now. 616 if (Global->hasAttr<AliasAttr>()) 617 return EmitAliasDefinition(Global); 618 619 // Ignore declarations, they will be emitted on their first use. 620 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) { 621 // Forward declarations are emitted lazily on first use. 622 if (!FD->isThisDeclarationADefinition()) 623 return; 624 } else { 625 const VarDecl *VD = cast<VarDecl>(Global); 626 assert(VD->isFileVarDecl() && "Cannot emit local var decl as global."); 627 628 if (getLangOptions().CPlusPlus && !VD->getInit()) { 629 // In C++, if this is marked "extern", defer code generation. 630 if (VD->getStorageClass() == VarDecl::Extern || VD->isExternC()) 631 return; 632 633 // If this is a declaration of an explicit specialization of a static 634 // data member in a class template, don't emit it. 635 if (VD->isStaticDataMember() && 636 VD->getTemplateSpecializationKind() == TSK_ExplicitSpecialization) 637 return; 638 } 639 640 // In C, if this isn't a definition, defer code generation. 641 if (!getLangOptions().CPlusPlus && !VD->getInit()) 642 return; 643 } 644 645 // Defer code generation when possible if this is a static definition, inline 646 // function etc. These we only want to emit if they are used. 647 if (MayDeferGeneration(Global)) { 648 // If the value has already been used, add it directly to the 649 // DeferredDeclsToEmit list. 650 const char *MangledName = getMangledName(GD); 651 if (GlobalDeclMap.count(MangledName)) 652 DeferredDeclsToEmit.push_back(GD); 653 else { 654 // Otherwise, remember that we saw a deferred decl with this name. The 655 // first use of the mangled name will cause it to move into 656 // DeferredDeclsToEmit. 657 DeferredDecls[MangledName] = GD; 658 } 659 return; 660 } 661 662 // Otherwise emit the definition. 663 EmitGlobalDefinition(GD); 664 } 665 666 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD) { 667 const ValueDecl *D = cast<ValueDecl>(GD.getDecl()); 668 669 PrettyStackTraceDecl CrashInfo((ValueDecl *)D, D->getLocation(), 670 Context.getSourceManager(), 671 "Generating code for declaration"); 672 673 if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) { 674 getVtableInfo().MaybeEmitVtable(GD); 675 if (MD->isVirtual() && MD->isOutOfLine() && 676 (!isa<CXXDestructorDecl>(D) || GD.getDtorType() != Dtor_Base)) { 677 if (isa<CXXDestructorDecl>(D)) { 678 GlobalDecl CanonGD(cast<CXXDestructorDecl>(D->getCanonicalDecl()), 679 GD.getDtorType()); 680 BuildThunksForVirtual(CanonGD); 681 } else { 682 BuildThunksForVirtual(MD->getCanonicalDecl()); 683 } 684 } 685 } 686 687 if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(D)) 688 EmitCXXConstructor(CD, GD.getCtorType()); 689 else if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(D)) 690 EmitCXXDestructor(DD, GD.getDtorType()); 691 else if (isa<FunctionDecl>(D)) 692 EmitGlobalFunctionDefinition(GD); 693 else if (const VarDecl *VD = dyn_cast<VarDecl>(D)) 694 EmitGlobalVarDefinition(VD); 695 else { 696 assert(0 && "Invalid argument to EmitGlobalDefinition()"); 697 } 698 } 699 700 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the 701 /// module, create and return an llvm Function with the specified type. If there 702 /// is something in the module with the specified name, return it potentially 703 /// bitcasted to the right type. 704 /// 705 /// If D is non-null, it specifies a decl that correspond to this. This is used 706 /// to set the attributes on the function when it is first created. 707 llvm::Constant *CodeGenModule::GetOrCreateLLVMFunction(const char *MangledName, 708 const llvm::Type *Ty, 709 GlobalDecl D) { 710 // Lookup the entry, lazily creating it if necessary. 711 llvm::GlobalValue *&Entry = GlobalDeclMap[MangledName]; 712 if (Entry) { 713 if (Entry->getType()->getElementType() == Ty) 714 return Entry; 715 716 // Make sure the result is of the correct type. 717 const llvm::Type *PTy = llvm::PointerType::getUnqual(Ty); 718 return llvm::ConstantExpr::getBitCast(Entry, PTy); 719 } 720 721 // This function doesn't have a complete type (for example, the return 722 // type is an incomplete struct). Use a fake type instead, and make 723 // sure not to try to set attributes. 724 bool IsIncompleteFunction = false; 725 if (!isa<llvm::FunctionType>(Ty)) { 726 Ty = llvm::FunctionType::get(llvm::Type::getVoidTy(VMContext), 727 std::vector<const llvm::Type*>(), false); 728 IsIncompleteFunction = true; 729 } 730 llvm::Function *F = llvm::Function::Create(cast<llvm::FunctionType>(Ty), 731 llvm::Function::ExternalLinkage, 732 "", &getModule()); 733 F->setName(MangledName); 734 if (D.getDecl()) 735 SetFunctionAttributes(cast<FunctionDecl>(D.getDecl()), F, 736 IsIncompleteFunction); 737 Entry = F; 738 739 // This is the first use or definition of a mangled name. If there is a 740 // deferred decl with this name, remember that we need to emit it at the end 741 // of the file. 742 llvm::DenseMap<const char*, GlobalDecl>::iterator DDI = 743 DeferredDecls.find(MangledName); 744 if (DDI != DeferredDecls.end()) { 745 // Move the potentially referenced deferred decl to the DeferredDeclsToEmit 746 // list, and remove it from DeferredDecls (since we don't need it anymore). 747 DeferredDeclsToEmit.push_back(DDI->second); 748 DeferredDecls.erase(DDI); 749 } else if (const FunctionDecl *FD = cast_or_null<FunctionDecl>(D.getDecl())) { 750 // If this the first reference to a C++ inline function in a class, queue up 751 // the deferred function body for emission. These are not seen as 752 // top-level declarations. 753 if (FD->isThisDeclarationADefinition() && MayDeferGeneration(FD)) 754 DeferredDeclsToEmit.push_back(D); 755 // A called constructor which has no definition or declaration need be 756 // synthesized. 757 else if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD)) { 758 if (CD->isImplicit()) 759 DeferredDeclsToEmit.push_back(D); 760 } else if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(FD)) { 761 if (DD->isImplicit()) 762 DeferredDeclsToEmit.push_back(D); 763 } else if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) { 764 if (MD->isCopyAssignment() && MD->isImplicit()) 765 DeferredDeclsToEmit.push_back(D); 766 } 767 } 768 769 return F; 770 } 771 772 /// GetAddrOfFunction - Return the address of the given function. If Ty is 773 /// non-null, then this function will use the specified type if it has to 774 /// create it (this occurs when we see a definition of the function). 775 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD, 776 const llvm::Type *Ty) { 777 // If there was no specific requested type, just convert it now. 778 if (!Ty) 779 Ty = getTypes().ConvertType(cast<ValueDecl>(GD.getDecl())->getType()); 780 return GetOrCreateLLVMFunction(getMangledName(GD), Ty, GD); 781 } 782 783 /// CreateRuntimeFunction - Create a new runtime function with the specified 784 /// type and name. 785 llvm::Constant * 786 CodeGenModule::CreateRuntimeFunction(const llvm::FunctionType *FTy, 787 const char *Name) { 788 // Convert Name to be a uniqued string from the IdentifierInfo table. 789 Name = getContext().Idents.get(Name).getNameStart(); 790 return GetOrCreateLLVMFunction(Name, FTy, GlobalDecl()); 791 } 792 793 static bool DeclIsConstantGlobal(ASTContext &Context, const VarDecl *D) { 794 if (!D->getType().isConstant(Context)) 795 return false; 796 if (Context.getLangOptions().CPlusPlus && 797 Context.getBaseElementType(D->getType())->getAs<RecordType>()) { 798 // FIXME: We should do something fancier here! 799 return false; 800 } 801 return true; 802 } 803 804 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module, 805 /// create and return an llvm GlobalVariable with the specified type. If there 806 /// is something in the module with the specified name, return it potentially 807 /// bitcasted to the right type. 808 /// 809 /// If D is non-null, it specifies a decl that correspond to this. This is used 810 /// to set the attributes on the global when it is first created. 811 llvm::Constant *CodeGenModule::GetOrCreateLLVMGlobal(const char *MangledName, 812 const llvm::PointerType*Ty, 813 const VarDecl *D) { 814 // Lookup the entry, lazily creating it if necessary. 815 llvm::GlobalValue *&Entry = GlobalDeclMap[MangledName]; 816 if (Entry) { 817 if (Entry->getType() == Ty) 818 return Entry; 819 820 // Make sure the result is of the correct type. 821 return llvm::ConstantExpr::getBitCast(Entry, Ty); 822 } 823 824 // This is the first use or definition of a mangled name. If there is a 825 // deferred decl with this name, remember that we need to emit it at the end 826 // of the file. 827 llvm::DenseMap<const char*, GlobalDecl>::iterator DDI = 828 DeferredDecls.find(MangledName); 829 if (DDI != DeferredDecls.end()) { 830 // Move the potentially referenced deferred decl to the DeferredDeclsToEmit 831 // list, and remove it from DeferredDecls (since we don't need it anymore). 832 DeferredDeclsToEmit.push_back(DDI->second); 833 DeferredDecls.erase(DDI); 834 } 835 836 llvm::GlobalVariable *GV = 837 new llvm::GlobalVariable(getModule(), Ty->getElementType(), false, 838 llvm::GlobalValue::ExternalLinkage, 839 0, "", 0, 840 false, Ty->getAddressSpace()); 841 GV->setName(MangledName); 842 843 // Handle things which are present even on external declarations. 844 if (D) { 845 // FIXME: This code is overly simple and should be merged with other global 846 // handling. 847 GV->setConstant(DeclIsConstantGlobal(Context, D)); 848 849 // FIXME: Merge with other attribute handling code. 850 if (D->getStorageClass() == VarDecl::PrivateExtern) 851 GV->setVisibility(llvm::GlobalValue::HiddenVisibility); 852 853 if (D->hasAttr<WeakAttr>() || 854 D->hasAttr<WeakImportAttr>()) 855 GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage); 856 857 GV->setThreadLocal(D->isThreadSpecified()); 858 } 859 860 return Entry = GV; 861 } 862 863 864 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the 865 /// given global variable. If Ty is non-null and if the global doesn't exist, 866 /// then it will be greated with the specified type instead of whatever the 867 /// normal requested type would be. 868 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D, 869 const llvm::Type *Ty) { 870 assert(D->hasGlobalStorage() && "Not a global variable"); 871 QualType ASTTy = D->getType(); 872 if (Ty == 0) 873 Ty = getTypes().ConvertTypeForMem(ASTTy); 874 875 const llvm::PointerType *PTy = 876 llvm::PointerType::get(Ty, ASTTy.getAddressSpace()); 877 return GetOrCreateLLVMGlobal(getMangledName(D), PTy, D); 878 } 879 880 /// CreateRuntimeVariable - Create a new runtime global variable with the 881 /// specified type and name. 882 llvm::Constant * 883 CodeGenModule::CreateRuntimeVariable(const llvm::Type *Ty, 884 const char *Name) { 885 // Convert Name to be a uniqued string from the IdentifierInfo table. 886 Name = getContext().Idents.get(Name).getNameStart(); 887 return GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), 0); 888 } 889 890 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) { 891 assert(!D->getInit() && "Cannot emit definite definitions here!"); 892 893 if (MayDeferGeneration(D)) { 894 // If we have not seen a reference to this variable yet, place it 895 // into the deferred declarations table to be emitted if needed 896 // later. 897 const char *MangledName = getMangledName(D); 898 if (GlobalDeclMap.count(MangledName) == 0) { 899 DeferredDecls[MangledName] = D; 900 return; 901 } 902 } 903 904 // The tentative definition is the only definition. 905 EmitGlobalVarDefinition(D); 906 } 907 908 llvm::GlobalVariable::LinkageTypes 909 CodeGenModule::getVtableLinkage(const CXXRecordDecl *RD) { 910 if (RD->isInAnonymousNamespace() || !RD->hasLinkage()) 911 return llvm::GlobalVariable::InternalLinkage; 912 913 if (const CXXMethodDecl *KeyFunction 914 = RD->getASTContext().getKeyFunction(RD)) { 915 // If this class has a key function, use that to determine the linkage of 916 // the vtable. 917 const FunctionDecl *Def = 0; 918 if (KeyFunction->getBody(Def)) 919 KeyFunction = cast<CXXMethodDecl>(Def); 920 921 switch (KeyFunction->getTemplateSpecializationKind()) { 922 case TSK_Undeclared: 923 case TSK_ExplicitSpecialization: 924 if (KeyFunction->isInlined()) 925 return llvm::GlobalVariable::WeakODRLinkage; 926 927 return llvm::GlobalVariable::ExternalLinkage; 928 929 case TSK_ImplicitInstantiation: 930 case TSK_ExplicitInstantiationDefinition: 931 return llvm::GlobalVariable::WeakODRLinkage; 932 933 case TSK_ExplicitInstantiationDeclaration: 934 // FIXME: Use available_externally linkage. However, this currently 935 // breaks LLVM's build due to undefined symbols. 936 // return llvm::GlobalVariable::AvailableExternallyLinkage; 937 return llvm::GlobalVariable::WeakODRLinkage; 938 } 939 } 940 941 switch (RD->getTemplateSpecializationKind()) { 942 case TSK_Undeclared: 943 case TSK_ExplicitSpecialization: 944 case TSK_ImplicitInstantiation: 945 case TSK_ExplicitInstantiationDefinition: 946 return llvm::GlobalVariable::WeakODRLinkage; 947 948 case TSK_ExplicitInstantiationDeclaration: 949 // FIXME: Use available_externally linkage. However, this currently 950 // breaks LLVM's build due to undefined symbols. 951 // return llvm::GlobalVariable::AvailableExternallyLinkage; 952 return llvm::GlobalVariable::WeakODRLinkage; 953 } 954 955 // Silence GCC warning. 956 return llvm::GlobalVariable::WeakODRLinkage; 957 } 958 959 static CodeGenModule::GVALinkage 960 GetLinkageForVariable(ASTContext &Context, const VarDecl *VD) { 961 // If this is a static data member, compute the kind of template 962 // specialization. Otherwise, this variable is not part of a 963 // template. 964 TemplateSpecializationKind TSK = TSK_Undeclared; 965 if (VD->isStaticDataMember()) 966 TSK = VD->getTemplateSpecializationKind(); 967 968 Linkage L = VD->getLinkage(); 969 if (L == ExternalLinkage && Context.getLangOptions().CPlusPlus && 970 VD->getType()->getLinkage() == UniqueExternalLinkage) 971 L = UniqueExternalLinkage; 972 973 switch (L) { 974 case NoLinkage: 975 case InternalLinkage: 976 case UniqueExternalLinkage: 977 return CodeGenModule::GVA_Internal; 978 979 case ExternalLinkage: 980 switch (TSK) { 981 case TSK_Undeclared: 982 case TSK_ExplicitSpecialization: 983 984 // FIXME: ExplicitInstantiationDefinition should be weak! 985 case TSK_ExplicitInstantiationDefinition: 986 return CodeGenModule::GVA_StrongExternal; 987 988 case TSK_ExplicitInstantiationDeclaration: 989 llvm_unreachable("Variable should not be instantiated"); 990 // Fall through to treat this like any other instantiation. 991 992 case TSK_ImplicitInstantiation: 993 return CodeGenModule::GVA_TemplateInstantiation; 994 } 995 } 996 997 return CodeGenModule::GVA_StrongExternal; 998 } 999 1000 CharUnits CodeGenModule::GetTargetTypeStoreSize(const llvm::Type *Ty) const { 1001 return CharUnits::fromQuantity( 1002 TheTargetData.getTypeStoreSizeInBits(Ty) / Context.getCharWidth()); 1003 } 1004 1005 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D) { 1006 llvm::Constant *Init = 0; 1007 QualType ASTTy = D->getType(); 1008 bool NonConstInit = false; 1009 1010 const Expr *InitExpr = D->getAnyInitializer(); 1011 1012 if (!InitExpr) { 1013 // This is a tentative definition; tentative definitions are 1014 // implicitly initialized with { 0 }. 1015 // 1016 // Note that tentative definitions are only emitted at the end of 1017 // a translation unit, so they should never have incomplete 1018 // type. In addition, EmitTentativeDefinition makes sure that we 1019 // never attempt to emit a tentative definition if a real one 1020 // exists. A use may still exists, however, so we still may need 1021 // to do a RAUW. 1022 assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type"); 1023 Init = EmitNullConstant(D->getType()); 1024 } else { 1025 Init = EmitConstantExpr(InitExpr, D->getType()); 1026 1027 if (!Init) { 1028 QualType T = InitExpr->getType(); 1029 if (getLangOptions().CPlusPlus) { 1030 EmitCXXGlobalVarDeclInitFunc(D); 1031 Init = EmitNullConstant(T); 1032 NonConstInit = true; 1033 } else { 1034 ErrorUnsupported(D, "static initializer"); 1035 Init = llvm::UndefValue::get(getTypes().ConvertType(T)); 1036 } 1037 } 1038 } 1039 1040 const llvm::Type* InitType = Init->getType(); 1041 llvm::Constant *Entry = GetAddrOfGlobalVar(D, InitType); 1042 1043 // Strip off a bitcast if we got one back. 1044 if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) { 1045 assert(CE->getOpcode() == llvm::Instruction::BitCast || 1046 // all zero index gep. 1047 CE->getOpcode() == llvm::Instruction::GetElementPtr); 1048 Entry = CE->getOperand(0); 1049 } 1050 1051 // Entry is now either a Function or GlobalVariable. 1052 llvm::GlobalVariable *GV = dyn_cast<llvm::GlobalVariable>(Entry); 1053 1054 // We have a definition after a declaration with the wrong type. 1055 // We must make a new GlobalVariable* and update everything that used OldGV 1056 // (a declaration or tentative definition) with the new GlobalVariable* 1057 // (which will be a definition). 1058 // 1059 // This happens if there is a prototype for a global (e.g. 1060 // "extern int x[];") and then a definition of a different type (e.g. 1061 // "int x[10];"). This also happens when an initializer has a different type 1062 // from the type of the global (this happens with unions). 1063 if (GV == 0 || 1064 GV->getType()->getElementType() != InitType || 1065 GV->getType()->getAddressSpace() != ASTTy.getAddressSpace()) { 1066 1067 // Remove the old entry from GlobalDeclMap so that we'll create a new one. 1068 GlobalDeclMap.erase(getMangledName(D)); 1069 1070 // Make a new global with the correct type, this is now guaranteed to work. 1071 GV = cast<llvm::GlobalVariable>(GetAddrOfGlobalVar(D, InitType)); 1072 GV->takeName(cast<llvm::GlobalValue>(Entry)); 1073 1074 // Replace all uses of the old global with the new global 1075 llvm::Constant *NewPtrForOldDecl = 1076 llvm::ConstantExpr::getBitCast(GV, Entry->getType()); 1077 Entry->replaceAllUsesWith(NewPtrForOldDecl); 1078 1079 // Erase the old global, since it is no longer used. 1080 cast<llvm::GlobalValue>(Entry)->eraseFromParent(); 1081 } 1082 1083 if (const AnnotateAttr *AA = D->getAttr<AnnotateAttr>()) { 1084 SourceManager &SM = Context.getSourceManager(); 1085 AddAnnotation(EmitAnnotateAttr(GV, AA, 1086 SM.getInstantiationLineNumber(D->getLocation()))); 1087 } 1088 1089 GV->setInitializer(Init); 1090 1091 // If it is safe to mark the global 'constant', do so now. 1092 GV->setConstant(false); 1093 if (!NonConstInit && DeclIsConstantGlobal(Context, D)) 1094 GV->setConstant(true); 1095 1096 GV->setAlignment(getContext().getDeclAlign(D).getQuantity()); 1097 1098 // Set the llvm linkage type as appropriate. 1099 GVALinkage Linkage = GetLinkageForVariable(getContext(), D); 1100 if (Linkage == GVA_Internal) 1101 GV->setLinkage(llvm::Function::InternalLinkage); 1102 else if (D->hasAttr<DLLImportAttr>()) 1103 GV->setLinkage(llvm::Function::DLLImportLinkage); 1104 else if (D->hasAttr<DLLExportAttr>()) 1105 GV->setLinkage(llvm::Function::DLLExportLinkage); 1106 else if (D->hasAttr<WeakAttr>()) { 1107 if (GV->isConstant()) 1108 GV->setLinkage(llvm::GlobalVariable::WeakODRLinkage); 1109 else 1110 GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage); 1111 } else if (Linkage == GVA_TemplateInstantiation) 1112 GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage); 1113 else if (!getLangOptions().CPlusPlus && !CodeGenOpts.NoCommon && 1114 !D->hasExternalStorage() && !D->getInit() && 1115 !D->getAttr<SectionAttr>()) { 1116 GV->setLinkage(llvm::GlobalVariable::CommonLinkage); 1117 // common vars aren't constant even if declared const. 1118 GV->setConstant(false); 1119 } else 1120 GV->setLinkage(llvm::GlobalVariable::ExternalLinkage); 1121 1122 SetCommonAttributes(D, GV); 1123 1124 // Emit global variable debug information. 1125 if (CGDebugInfo *DI = getDebugInfo()) { 1126 DI->setLocation(D->getLocation()); 1127 DI->EmitGlobalVariable(GV, D); 1128 } 1129 } 1130 1131 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we 1132 /// implement a function with no prototype, e.g. "int foo() {}". If there are 1133 /// existing call uses of the old function in the module, this adjusts them to 1134 /// call the new function directly. 1135 /// 1136 /// This is not just a cleanup: the always_inline pass requires direct calls to 1137 /// functions to be able to inline them. If there is a bitcast in the way, it 1138 /// won't inline them. Instcombine normally deletes these calls, but it isn't 1139 /// run at -O0. 1140 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old, 1141 llvm::Function *NewFn) { 1142 // If we're redefining a global as a function, don't transform it. 1143 llvm::Function *OldFn = dyn_cast<llvm::Function>(Old); 1144 if (OldFn == 0) return; 1145 1146 const llvm::Type *NewRetTy = NewFn->getReturnType(); 1147 llvm::SmallVector<llvm::Value*, 4> ArgList; 1148 1149 for (llvm::Value::use_iterator UI = OldFn->use_begin(), E = OldFn->use_end(); 1150 UI != E; ) { 1151 // TODO: Do invokes ever occur in C code? If so, we should handle them too. 1152 unsigned OpNo = UI.getOperandNo(); 1153 llvm::CallInst *CI = dyn_cast<llvm::CallInst>(*UI++); 1154 if (!CI || OpNo != 0) continue; 1155 1156 // If the return types don't match exactly, and if the call isn't dead, then 1157 // we can't transform this call. 1158 if (CI->getType() != NewRetTy && !CI->use_empty()) 1159 continue; 1160 1161 // If the function was passed too few arguments, don't transform. If extra 1162 // arguments were passed, we silently drop them. If any of the types 1163 // mismatch, we don't transform. 1164 unsigned ArgNo = 0; 1165 bool DontTransform = false; 1166 for (llvm::Function::arg_iterator AI = NewFn->arg_begin(), 1167 E = NewFn->arg_end(); AI != E; ++AI, ++ArgNo) { 1168 if (CI->getNumOperands()-1 == ArgNo || 1169 CI->getOperand(ArgNo+1)->getType() != AI->getType()) { 1170 DontTransform = true; 1171 break; 1172 } 1173 } 1174 if (DontTransform) 1175 continue; 1176 1177 // Okay, we can transform this. Create the new call instruction and copy 1178 // over the required information. 1179 ArgList.append(CI->op_begin()+1, CI->op_begin()+1+ArgNo); 1180 llvm::CallInst *NewCall = llvm::CallInst::Create(NewFn, ArgList.begin(), 1181 ArgList.end(), "", CI); 1182 ArgList.clear(); 1183 if (!NewCall->getType()->isVoidTy()) 1184 NewCall->takeName(CI); 1185 NewCall->setAttributes(CI->getAttributes()); 1186 NewCall->setCallingConv(CI->getCallingConv()); 1187 1188 // Finally, remove the old call, replacing any uses with the new one. 1189 if (!CI->use_empty()) 1190 CI->replaceAllUsesWith(NewCall); 1191 1192 // Copy any custom metadata attached with CI. 1193 if (llvm::MDNode *DbgNode = CI->getMetadata("dbg")) 1194 NewCall->setMetadata("dbg", DbgNode); 1195 CI->eraseFromParent(); 1196 } 1197 } 1198 1199 1200 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD) { 1201 const llvm::FunctionType *Ty; 1202 const FunctionDecl *D = cast<FunctionDecl>(GD.getDecl()); 1203 1204 if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) { 1205 bool isVariadic = D->getType()->getAs<FunctionProtoType>()->isVariadic(); 1206 1207 Ty = getTypes().GetFunctionType(getTypes().getFunctionInfo(MD), isVariadic); 1208 } else { 1209 Ty = cast<llvm::FunctionType>(getTypes().ConvertType(D->getType())); 1210 1211 // As a special case, make sure that definitions of K&R function 1212 // "type foo()" aren't declared as varargs (which forces the backend 1213 // to do unnecessary work). 1214 if (D->getType()->isFunctionNoProtoType()) { 1215 assert(Ty->isVarArg() && "Didn't lower type as expected"); 1216 // Due to stret, the lowered function could have arguments. 1217 // Just create the same type as was lowered by ConvertType 1218 // but strip off the varargs bit. 1219 std::vector<const llvm::Type*> Args(Ty->param_begin(), Ty->param_end()); 1220 Ty = llvm::FunctionType::get(Ty->getReturnType(), Args, false); 1221 } 1222 } 1223 1224 // Get or create the prototype for the function. 1225 llvm::Constant *Entry = GetAddrOfFunction(GD, Ty); 1226 1227 // Strip off a bitcast if we got one back. 1228 if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) { 1229 assert(CE->getOpcode() == llvm::Instruction::BitCast); 1230 Entry = CE->getOperand(0); 1231 } 1232 1233 1234 if (cast<llvm::GlobalValue>(Entry)->getType()->getElementType() != Ty) { 1235 llvm::GlobalValue *OldFn = cast<llvm::GlobalValue>(Entry); 1236 1237 // If the types mismatch then we have to rewrite the definition. 1238 assert(OldFn->isDeclaration() && 1239 "Shouldn't replace non-declaration"); 1240 1241 // F is the Function* for the one with the wrong type, we must make a new 1242 // Function* and update everything that used F (a declaration) with the new 1243 // Function* (which will be a definition). 1244 // 1245 // This happens if there is a prototype for a function 1246 // (e.g. "int f()") and then a definition of a different type 1247 // (e.g. "int f(int x)"). Start by making a new function of the 1248 // correct type, RAUW, then steal the name. 1249 GlobalDeclMap.erase(getMangledName(D)); 1250 llvm::Function *NewFn = cast<llvm::Function>(GetAddrOfFunction(GD, Ty)); 1251 NewFn->takeName(OldFn); 1252 1253 // If this is an implementation of a function without a prototype, try to 1254 // replace any existing uses of the function (which may be calls) with uses 1255 // of the new function 1256 if (D->getType()->isFunctionNoProtoType()) { 1257 ReplaceUsesOfNonProtoTypeWithRealFunction(OldFn, NewFn); 1258 OldFn->removeDeadConstantUsers(); 1259 } 1260 1261 // Replace uses of F with the Function we will endow with a body. 1262 if (!Entry->use_empty()) { 1263 llvm::Constant *NewPtrForOldDecl = 1264 llvm::ConstantExpr::getBitCast(NewFn, Entry->getType()); 1265 Entry->replaceAllUsesWith(NewPtrForOldDecl); 1266 } 1267 1268 // Ok, delete the old function now, which is dead. 1269 OldFn->eraseFromParent(); 1270 1271 Entry = NewFn; 1272 } 1273 1274 llvm::Function *Fn = cast<llvm::Function>(Entry); 1275 1276 CodeGenFunction(*this).GenerateCode(D, Fn); 1277 1278 SetFunctionDefinitionAttributes(D, Fn); 1279 SetLLVMFunctionAttributesForDefinition(D, Fn); 1280 1281 if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>()) 1282 AddGlobalCtor(Fn, CA->getPriority()); 1283 if (const DestructorAttr *DA = D->getAttr<DestructorAttr>()) 1284 AddGlobalDtor(Fn, DA->getPriority()); 1285 } 1286 1287 void CodeGenModule::EmitAliasDefinition(const ValueDecl *D) { 1288 const AliasAttr *AA = D->getAttr<AliasAttr>(); 1289 assert(AA && "Not an alias?"); 1290 1291 const llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType()); 1292 1293 // Unique the name through the identifier table. 1294 const char *AliaseeName = AA->getAliasee().c_str(); 1295 AliaseeName = getContext().Idents.get(AliaseeName).getNameStart(); 1296 1297 // Create a reference to the named value. This ensures that it is emitted 1298 // if a deferred decl. 1299 llvm::Constant *Aliasee; 1300 if (isa<llvm::FunctionType>(DeclTy)) 1301 Aliasee = GetOrCreateLLVMFunction(AliaseeName, DeclTy, GlobalDecl()); 1302 else 1303 Aliasee = GetOrCreateLLVMGlobal(AliaseeName, 1304 llvm::PointerType::getUnqual(DeclTy), 0); 1305 1306 // Create the new alias itself, but don't set a name yet. 1307 llvm::GlobalValue *GA = 1308 new llvm::GlobalAlias(Aliasee->getType(), 1309 llvm::Function::ExternalLinkage, 1310 "", Aliasee, &getModule()); 1311 1312 // See if there is already something with the alias' name in the module. 1313 const char *MangledName = getMangledName(D); 1314 llvm::GlobalValue *&Entry = GlobalDeclMap[MangledName]; 1315 1316 if (Entry && !Entry->isDeclaration()) { 1317 // If there is a definition in the module, then it wins over the alias. 1318 // This is dubious, but allow it to be safe. Just ignore the alias. 1319 GA->eraseFromParent(); 1320 return; 1321 } 1322 1323 if (Entry) { 1324 // If there is a declaration in the module, then we had an extern followed 1325 // by the alias, as in: 1326 // extern int test6(); 1327 // ... 1328 // int test6() __attribute__((alias("test7"))); 1329 // 1330 // Remove it and replace uses of it with the alias. 1331 1332 Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA, 1333 Entry->getType())); 1334 Entry->eraseFromParent(); 1335 } 1336 1337 // Now we know that there is no conflict, set the name. 1338 Entry = GA; 1339 GA->setName(MangledName); 1340 1341 // Set attributes which are particular to an alias; this is a 1342 // specialization of the attributes which may be set on a global 1343 // variable/function. 1344 if (D->hasAttr<DLLExportAttr>()) { 1345 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { 1346 // The dllexport attribute is ignored for undefined symbols. 1347 if (FD->getBody()) 1348 GA->setLinkage(llvm::Function::DLLExportLinkage); 1349 } else { 1350 GA->setLinkage(llvm::Function::DLLExportLinkage); 1351 } 1352 } else if (D->hasAttr<WeakAttr>() || 1353 D->hasAttr<WeakImportAttr>()) { 1354 GA->setLinkage(llvm::Function::WeakAnyLinkage); 1355 } 1356 1357 SetCommonAttributes(D, GA); 1358 } 1359 1360 /// getBuiltinLibFunction - Given a builtin id for a function like 1361 /// "__builtin_fabsf", return a Function* for "fabsf". 1362 llvm::Value *CodeGenModule::getBuiltinLibFunction(const FunctionDecl *FD, 1363 unsigned BuiltinID) { 1364 assert((Context.BuiltinInfo.isLibFunction(BuiltinID) || 1365 Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) && 1366 "isn't a lib fn"); 1367 1368 // Get the name, skip over the __builtin_ prefix (if necessary). 1369 const char *Name = Context.BuiltinInfo.GetName(BuiltinID); 1370 if (Context.BuiltinInfo.isLibFunction(BuiltinID)) 1371 Name += 10; 1372 1373 const llvm::FunctionType *Ty = 1374 cast<llvm::FunctionType>(getTypes().ConvertType(FD->getType())); 1375 1376 // Unique the name through the identifier table. 1377 Name = getContext().Idents.get(Name).getNameStart(); 1378 return GetOrCreateLLVMFunction(Name, Ty, GlobalDecl(FD)); 1379 } 1380 1381 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,const llvm::Type **Tys, 1382 unsigned NumTys) { 1383 return llvm::Intrinsic::getDeclaration(&getModule(), 1384 (llvm::Intrinsic::ID)IID, Tys, NumTys); 1385 } 1386 1387 llvm::Function *CodeGenModule::getMemCpyFn() { 1388 if (MemCpyFn) return MemCpyFn; 1389 const llvm::Type *IntPtr = TheTargetData.getIntPtrType(VMContext); 1390 return MemCpyFn = getIntrinsic(llvm::Intrinsic::memcpy, &IntPtr, 1); 1391 } 1392 1393 llvm::Function *CodeGenModule::getMemMoveFn() { 1394 if (MemMoveFn) return MemMoveFn; 1395 const llvm::Type *IntPtr = TheTargetData.getIntPtrType(VMContext); 1396 return MemMoveFn = getIntrinsic(llvm::Intrinsic::memmove, &IntPtr, 1); 1397 } 1398 1399 llvm::Function *CodeGenModule::getMemSetFn() { 1400 if (MemSetFn) return MemSetFn; 1401 const llvm::Type *IntPtr = TheTargetData.getIntPtrType(VMContext); 1402 return MemSetFn = getIntrinsic(llvm::Intrinsic::memset, &IntPtr, 1); 1403 } 1404 1405 static llvm::StringMapEntry<llvm::Constant*> & 1406 GetConstantCFStringEntry(llvm::StringMap<llvm::Constant*> &Map, 1407 const StringLiteral *Literal, 1408 bool TargetIsLSB, 1409 bool &IsUTF16, 1410 unsigned &StringLength) { 1411 unsigned NumBytes = Literal->getByteLength(); 1412 1413 // Check for simple case. 1414 if (!Literal->containsNonAsciiOrNull()) { 1415 StringLength = NumBytes; 1416 return Map.GetOrCreateValue(llvm::StringRef(Literal->getStrData(), 1417 StringLength)); 1418 } 1419 1420 // Otherwise, convert the UTF8 literals into a byte string. 1421 llvm::SmallVector<UTF16, 128> ToBuf(NumBytes); 1422 const UTF8 *FromPtr = (UTF8 *)Literal->getStrData(); 1423 UTF16 *ToPtr = &ToBuf[0]; 1424 1425 ConversionResult Result = ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, 1426 &ToPtr, ToPtr + NumBytes, 1427 strictConversion); 1428 1429 // Check for conversion failure. 1430 if (Result != conversionOK) { 1431 // FIXME: Have Sema::CheckObjCString() validate the UTF-8 string and remove 1432 // this duplicate code. 1433 assert(Result == sourceIllegal && "UTF-8 to UTF-16 conversion failed"); 1434 StringLength = NumBytes; 1435 return Map.GetOrCreateValue(llvm::StringRef(Literal->getStrData(), 1436 StringLength)); 1437 } 1438 1439 // ConvertUTF8toUTF16 returns the length in ToPtr. 1440 StringLength = ToPtr - &ToBuf[0]; 1441 1442 // Render the UTF-16 string into a byte array and convert to the target byte 1443 // order. 1444 // 1445 // FIXME: This isn't something we should need to do here. 1446 llvm::SmallString<128> AsBytes; 1447 AsBytes.reserve(StringLength * 2); 1448 for (unsigned i = 0; i != StringLength; ++i) { 1449 unsigned short Val = ToBuf[i]; 1450 if (TargetIsLSB) { 1451 AsBytes.push_back(Val & 0xFF); 1452 AsBytes.push_back(Val >> 8); 1453 } else { 1454 AsBytes.push_back(Val >> 8); 1455 AsBytes.push_back(Val & 0xFF); 1456 } 1457 } 1458 // Append one extra null character, the second is automatically added by our 1459 // caller. 1460 AsBytes.push_back(0); 1461 1462 IsUTF16 = true; 1463 return Map.GetOrCreateValue(llvm::StringRef(AsBytes.data(), AsBytes.size())); 1464 } 1465 1466 llvm::Constant * 1467 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) { 1468 unsigned StringLength = 0; 1469 bool isUTF16 = false; 1470 llvm::StringMapEntry<llvm::Constant*> &Entry = 1471 GetConstantCFStringEntry(CFConstantStringMap, Literal, 1472 getTargetData().isLittleEndian(), 1473 isUTF16, StringLength); 1474 1475 if (llvm::Constant *C = Entry.getValue()) 1476 return C; 1477 1478 llvm::Constant *Zero = 1479 llvm::Constant::getNullValue(llvm::Type::getInt32Ty(VMContext)); 1480 llvm::Constant *Zeros[] = { Zero, Zero }; 1481 1482 // If we don't already have it, get __CFConstantStringClassReference. 1483 if (!CFConstantStringClassRef) { 1484 const llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy); 1485 Ty = llvm::ArrayType::get(Ty, 0); 1486 llvm::Constant *GV = CreateRuntimeVariable(Ty, 1487 "__CFConstantStringClassReference"); 1488 // Decay array -> ptr 1489 CFConstantStringClassRef = 1490 llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2); 1491 } 1492 1493 QualType CFTy = getContext().getCFConstantStringType(); 1494 1495 const llvm::StructType *STy = 1496 cast<llvm::StructType>(getTypes().ConvertType(CFTy)); 1497 1498 std::vector<llvm::Constant*> Fields(4); 1499 1500 // Class pointer. 1501 Fields[0] = CFConstantStringClassRef; 1502 1503 // Flags. 1504 const llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy); 1505 Fields[1] = isUTF16 ? llvm::ConstantInt::get(Ty, 0x07d0) : 1506 llvm::ConstantInt::get(Ty, 0x07C8); 1507 1508 // String pointer. 1509 llvm::Constant *C = llvm::ConstantArray::get(VMContext, Entry.getKey().str()); 1510 1511 llvm::GlobalValue::LinkageTypes Linkage; 1512 bool isConstant; 1513 if (isUTF16) { 1514 // FIXME: why do utf strings get "_" labels instead of "L" labels? 1515 Linkage = llvm::GlobalValue::InternalLinkage; 1516 // Note: -fwritable-strings doesn't make unicode CFStrings writable, but 1517 // does make plain ascii ones writable. 1518 isConstant = true; 1519 } else { 1520 Linkage = llvm::GlobalValue::PrivateLinkage; 1521 isConstant = !Features.WritableStrings; 1522 } 1523 1524 llvm::GlobalVariable *GV = 1525 new llvm::GlobalVariable(getModule(), C->getType(), isConstant, Linkage, C, 1526 ".str"); 1527 if (isUTF16) { 1528 CharUnits Align = getContext().getTypeAlignInChars(getContext().ShortTy); 1529 GV->setAlignment(Align.getQuantity()); 1530 } 1531 Fields[2] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2); 1532 1533 // String length. 1534 Ty = getTypes().ConvertType(getContext().LongTy); 1535 Fields[3] = llvm::ConstantInt::get(Ty, StringLength); 1536 1537 // The struct. 1538 C = llvm::ConstantStruct::get(STy, Fields); 1539 GV = new llvm::GlobalVariable(getModule(), C->getType(), true, 1540 llvm::GlobalVariable::PrivateLinkage, C, 1541 "_unnamed_cfstring_"); 1542 if (const char *Sect = getContext().Target.getCFStringSection()) 1543 GV->setSection(Sect); 1544 Entry.setValue(GV); 1545 1546 return GV; 1547 } 1548 1549 /// GetStringForStringLiteral - Return the appropriate bytes for a 1550 /// string literal, properly padded to match the literal type. 1551 std::string CodeGenModule::GetStringForStringLiteral(const StringLiteral *E) { 1552 const char *StrData = E->getStrData(); 1553 unsigned Len = E->getByteLength(); 1554 1555 const ConstantArrayType *CAT = 1556 getContext().getAsConstantArrayType(E->getType()); 1557 assert(CAT && "String isn't pointer or array!"); 1558 1559 // Resize the string to the right size. 1560 std::string Str(StrData, StrData+Len); 1561 uint64_t RealLen = CAT->getSize().getZExtValue(); 1562 1563 if (E->isWide()) 1564 RealLen *= getContext().Target.getWCharWidth()/8; 1565 1566 Str.resize(RealLen, '\0'); 1567 1568 return Str; 1569 } 1570 1571 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a 1572 /// constant array for the given string literal. 1573 llvm::Constant * 1574 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S) { 1575 // FIXME: This can be more efficient. 1576 // FIXME: We shouldn't need to bitcast the constant in the wide string case. 1577 llvm::Constant *C = GetAddrOfConstantString(GetStringForStringLiteral(S)); 1578 if (S->isWide()) { 1579 llvm::Type *DestTy = 1580 llvm::PointerType::getUnqual(getTypes().ConvertType(S->getType())); 1581 C = llvm::ConstantExpr::getBitCast(C, DestTy); 1582 } 1583 return C; 1584 } 1585 1586 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant 1587 /// array for the given ObjCEncodeExpr node. 1588 llvm::Constant * 1589 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) { 1590 std::string Str; 1591 getContext().getObjCEncodingForType(E->getEncodedType(), Str); 1592 1593 return GetAddrOfConstantCString(Str); 1594 } 1595 1596 1597 /// GenerateWritableString -- Creates storage for a string literal. 1598 static llvm::Constant *GenerateStringLiteral(const std::string &str, 1599 bool constant, 1600 CodeGenModule &CGM, 1601 const char *GlobalName) { 1602 // Create Constant for this string literal. Don't add a '\0'. 1603 llvm::Constant *C = 1604 llvm::ConstantArray::get(CGM.getLLVMContext(), str, false); 1605 1606 // Create a global variable for this string 1607 return new llvm::GlobalVariable(CGM.getModule(), C->getType(), constant, 1608 llvm::GlobalValue::PrivateLinkage, 1609 C, GlobalName); 1610 } 1611 1612 /// GetAddrOfConstantString - Returns a pointer to a character array 1613 /// containing the literal. This contents are exactly that of the 1614 /// given string, i.e. it will not be null terminated automatically; 1615 /// see GetAddrOfConstantCString. Note that whether the result is 1616 /// actually a pointer to an LLVM constant depends on 1617 /// Feature.WriteableStrings. 1618 /// 1619 /// The result has pointer to array type. 1620 llvm::Constant *CodeGenModule::GetAddrOfConstantString(const std::string &str, 1621 const char *GlobalName) { 1622 bool IsConstant = !Features.WritableStrings; 1623 1624 // Get the default prefix if a name wasn't specified. 1625 if (!GlobalName) 1626 GlobalName = ".str"; 1627 1628 // Don't share any string literals if strings aren't constant. 1629 if (!IsConstant) 1630 return GenerateStringLiteral(str, false, *this, GlobalName); 1631 1632 llvm::StringMapEntry<llvm::Constant *> &Entry = 1633 ConstantStringMap.GetOrCreateValue(&str[0], &str[str.length()]); 1634 1635 if (Entry.getValue()) 1636 return Entry.getValue(); 1637 1638 // Create a global variable for this. 1639 llvm::Constant *C = GenerateStringLiteral(str, true, *this, GlobalName); 1640 Entry.setValue(C); 1641 return C; 1642 } 1643 1644 /// GetAddrOfConstantCString - Returns a pointer to a character 1645 /// array containing the literal and a terminating '\-' 1646 /// character. The result has pointer to array type. 1647 llvm::Constant *CodeGenModule::GetAddrOfConstantCString(const std::string &str, 1648 const char *GlobalName){ 1649 return GetAddrOfConstantString(str + '\0', GlobalName); 1650 } 1651 1652 /// EmitObjCPropertyImplementations - Emit information for synthesized 1653 /// properties for an implementation. 1654 void CodeGenModule::EmitObjCPropertyImplementations(const 1655 ObjCImplementationDecl *D) { 1656 for (ObjCImplementationDecl::propimpl_iterator 1657 i = D->propimpl_begin(), e = D->propimpl_end(); i != e; ++i) { 1658 ObjCPropertyImplDecl *PID = *i; 1659 1660 // Dynamic is just for type-checking. 1661 if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) { 1662 ObjCPropertyDecl *PD = PID->getPropertyDecl(); 1663 1664 // Determine which methods need to be implemented, some may have 1665 // been overridden. Note that ::isSynthesized is not the method 1666 // we want, that just indicates if the decl came from a 1667 // property. What we want to know is if the method is defined in 1668 // this implementation. 1669 if (!D->getInstanceMethod(PD->getGetterName())) 1670 CodeGenFunction(*this).GenerateObjCGetter( 1671 const_cast<ObjCImplementationDecl *>(D), PID); 1672 if (!PD->isReadOnly() && 1673 !D->getInstanceMethod(PD->getSetterName())) 1674 CodeGenFunction(*this).GenerateObjCSetter( 1675 const_cast<ObjCImplementationDecl *>(D), PID); 1676 } 1677 } 1678 } 1679 1680 /// EmitNamespace - Emit all declarations in a namespace. 1681 void CodeGenModule::EmitNamespace(const NamespaceDecl *ND) { 1682 for (RecordDecl::decl_iterator I = ND->decls_begin(), E = ND->decls_end(); 1683 I != E; ++I) 1684 EmitTopLevelDecl(*I); 1685 } 1686 1687 // EmitLinkageSpec - Emit all declarations in a linkage spec. 1688 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) { 1689 if (LSD->getLanguage() != LinkageSpecDecl::lang_c && 1690 LSD->getLanguage() != LinkageSpecDecl::lang_cxx) { 1691 ErrorUnsupported(LSD, "linkage spec"); 1692 return; 1693 } 1694 1695 for (RecordDecl::decl_iterator I = LSD->decls_begin(), E = LSD->decls_end(); 1696 I != E; ++I) 1697 EmitTopLevelDecl(*I); 1698 } 1699 1700 /// EmitTopLevelDecl - Emit code for a single top level declaration. 1701 void CodeGenModule::EmitTopLevelDecl(Decl *D) { 1702 // If an error has occurred, stop code generation, but continue 1703 // parsing and semantic analysis (to ensure all warnings and errors 1704 // are emitted). 1705 if (Diags.hasErrorOccurred()) 1706 return; 1707 1708 // Ignore dependent declarations. 1709 if (D->getDeclContext() && D->getDeclContext()->isDependentContext()) 1710 return; 1711 1712 switch (D->getKind()) { 1713 case Decl::CXXConversion: 1714 case Decl::CXXMethod: 1715 case Decl::Function: 1716 // Skip function templates 1717 if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate()) 1718 return; 1719 1720 EmitGlobal(cast<FunctionDecl>(D)); 1721 break; 1722 1723 case Decl::Var: 1724 EmitGlobal(cast<VarDecl>(D)); 1725 break; 1726 1727 // C++ Decls 1728 case Decl::Namespace: 1729 EmitNamespace(cast<NamespaceDecl>(D)); 1730 break; 1731 // No code generation needed. 1732 case Decl::UsingShadow: 1733 case Decl::Using: 1734 case Decl::UsingDirective: 1735 case Decl::ClassTemplate: 1736 case Decl::FunctionTemplate: 1737 case Decl::NamespaceAlias: 1738 break; 1739 case Decl::CXXConstructor: 1740 // Skip function templates 1741 if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate()) 1742 return; 1743 1744 EmitCXXConstructors(cast<CXXConstructorDecl>(D)); 1745 break; 1746 case Decl::CXXDestructor: 1747 EmitCXXDestructors(cast<CXXDestructorDecl>(D)); 1748 break; 1749 1750 case Decl::StaticAssert: 1751 // Nothing to do. 1752 break; 1753 1754 // Objective-C Decls 1755 1756 // Forward declarations, no (immediate) code generation. 1757 case Decl::ObjCClass: 1758 case Decl::ObjCForwardProtocol: 1759 case Decl::ObjCCategory: 1760 case Decl::ObjCInterface: 1761 break; 1762 1763 case Decl::ObjCProtocol: 1764 Runtime->GenerateProtocol(cast<ObjCProtocolDecl>(D)); 1765 break; 1766 1767 case Decl::ObjCCategoryImpl: 1768 // Categories have properties but don't support synthesize so we 1769 // can ignore them here. 1770 Runtime->GenerateCategory(cast<ObjCCategoryImplDecl>(D)); 1771 break; 1772 1773 case Decl::ObjCImplementation: { 1774 ObjCImplementationDecl *OMD = cast<ObjCImplementationDecl>(D); 1775 EmitObjCPropertyImplementations(OMD); 1776 Runtime->GenerateClass(OMD); 1777 break; 1778 } 1779 case Decl::ObjCMethod: { 1780 ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(D); 1781 // If this is not a prototype, emit the body. 1782 if (OMD->getBody()) 1783 CodeGenFunction(*this).GenerateObjCMethod(OMD); 1784 break; 1785 } 1786 case Decl::ObjCCompatibleAlias: 1787 // compatibility-alias is a directive and has no code gen. 1788 break; 1789 1790 case Decl::LinkageSpec: 1791 EmitLinkageSpec(cast<LinkageSpecDecl>(D)); 1792 break; 1793 1794 case Decl::FileScopeAsm: { 1795 FileScopeAsmDecl *AD = cast<FileScopeAsmDecl>(D); 1796 llvm::StringRef AsmString = AD->getAsmString()->getString(); 1797 1798 const std::string &S = getModule().getModuleInlineAsm(); 1799 if (S.empty()) 1800 getModule().setModuleInlineAsm(AsmString); 1801 else 1802 getModule().setModuleInlineAsm(S + '\n' + AsmString.str()); 1803 break; 1804 } 1805 1806 default: 1807 // Make sure we handled everything we should, every other kind is a 1808 // non-top-level decl. FIXME: Would be nice to have an isTopLevelDeclKind 1809 // function. Need to recode Decl::Kind to do that easily. 1810 assert(isa<TypeDecl>(D) && "Unsupported decl kind"); 1811 } 1812 } 1813