xref: /llvm-project/clang/lib/CodeGen/CodeGenModule.cpp (revision 7dbc9cf8760e07f28cea29e337ff3666624dc91d)
1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This coordinates the per-module state used while generating code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenModule.h"
15 #include "CGBlocks.h"
16 #include "CGCUDARuntime.h"
17 #include "CGCXXABI.h"
18 #include "CGCall.h"
19 #include "CGDebugInfo.h"
20 #include "CGObjCRuntime.h"
21 #include "CGOpenCLRuntime.h"
22 #include "CGOpenMPRuntime.h"
23 #include "CodeGenFunction.h"
24 #include "CodeGenPGO.h"
25 #include "CodeGenTBAA.h"
26 #include "CoverageMappingGen.h"
27 #include "TargetInfo.h"
28 #include "clang/AST/ASTContext.h"
29 #include "clang/AST/CharUnits.h"
30 #include "clang/AST/DeclCXX.h"
31 #include "clang/AST/DeclObjC.h"
32 #include "clang/AST/DeclTemplate.h"
33 #include "clang/AST/Mangle.h"
34 #include "clang/AST/RecordLayout.h"
35 #include "clang/AST/RecursiveASTVisitor.h"
36 #include "clang/Basic/Builtins.h"
37 #include "clang/Basic/CharInfo.h"
38 #include "clang/Basic/Diagnostic.h"
39 #include "clang/Basic/Module.h"
40 #include "clang/Basic/SourceManager.h"
41 #include "clang/Basic/TargetInfo.h"
42 #include "clang/Basic/Version.h"
43 #include "clang/Frontend/CodeGenOptions.h"
44 #include "clang/Sema/SemaDiagnostic.h"
45 #include "llvm/ADT/APSInt.h"
46 #include "llvm/ADT/Triple.h"
47 #include "llvm/IR/CallSite.h"
48 #include "llvm/IR/CallingConv.h"
49 #include "llvm/IR/DataLayout.h"
50 #include "llvm/IR/Intrinsics.h"
51 #include "llvm/IR/LLVMContext.h"
52 #include "llvm/IR/Module.h"
53 #include "llvm/ProfileData/InstrProfReader.h"
54 #include "llvm/Support/ConvertUTF.h"
55 #include "llvm/Support/ErrorHandling.h"
56 #include "llvm/Support/MD5.h"
57 
58 using namespace clang;
59 using namespace CodeGen;
60 
61 static const char AnnotationSection[] = "llvm.metadata";
62 
63 static CGCXXABI *createCXXABI(CodeGenModule &CGM) {
64   switch (CGM.getTarget().getCXXABI().getKind()) {
65   case TargetCXXABI::GenericAArch64:
66   case TargetCXXABI::GenericARM:
67   case TargetCXXABI::iOS:
68   case TargetCXXABI::iOS64:
69   case TargetCXXABI::WatchOS:
70   case TargetCXXABI::GenericMIPS:
71   case TargetCXXABI::GenericItanium:
72   case TargetCXXABI::WebAssembly:
73     return CreateItaniumCXXABI(CGM);
74   case TargetCXXABI::Microsoft:
75     return CreateMicrosoftCXXABI(CGM);
76   }
77 
78   llvm_unreachable("invalid C++ ABI kind");
79 }
80 
81 CodeGenModule::CodeGenModule(ASTContext &C, const HeaderSearchOptions &HSO,
82                              const PreprocessorOptions &PPO,
83                              const CodeGenOptions &CGO, llvm::Module &M,
84                              DiagnosticsEngine &diags,
85                              CoverageSourceInfo *CoverageInfo)
86     : Context(C), LangOpts(C.getLangOpts()), HeaderSearchOpts(HSO),
87       PreprocessorOpts(PPO), CodeGenOpts(CGO), TheModule(M), Diags(diags),
88       Target(C.getTargetInfo()), ABI(createCXXABI(*this)),
89       VMContext(M.getContext()), TBAA(nullptr), TheTargetCodeGenInfo(nullptr),
90       Types(*this), VTables(*this), ObjCRuntime(nullptr),
91       OpenCLRuntime(nullptr), OpenMPRuntime(nullptr), CUDARuntime(nullptr),
92       DebugInfo(nullptr), ObjCData(nullptr),
93       NoObjCARCExceptionsMetadata(nullptr), PGOReader(nullptr),
94       CFConstantStringClassRef(nullptr), ConstantStringClassRef(nullptr),
95       NSConstantStringType(nullptr), NSConcreteGlobalBlock(nullptr),
96       NSConcreteStackBlock(nullptr), BlockObjectAssign(nullptr),
97       BlockObjectDispose(nullptr), BlockDescriptorType(nullptr),
98       GenericBlockLiteralType(nullptr), LifetimeStartFn(nullptr),
99       LifetimeEndFn(nullptr), SanitizerMD(new SanitizerMetadata(*this)) {
100 
101   // Initialize the type cache.
102   llvm::LLVMContext &LLVMContext = M.getContext();
103   VoidTy = llvm::Type::getVoidTy(LLVMContext);
104   Int8Ty = llvm::Type::getInt8Ty(LLVMContext);
105   Int16Ty = llvm::Type::getInt16Ty(LLVMContext);
106   Int32Ty = llvm::Type::getInt32Ty(LLVMContext);
107   Int64Ty = llvm::Type::getInt64Ty(LLVMContext);
108   FloatTy = llvm::Type::getFloatTy(LLVMContext);
109   DoubleTy = llvm::Type::getDoubleTy(LLVMContext);
110   PointerWidthInBits = C.getTargetInfo().getPointerWidth(0);
111   PointerAlignInBytes =
112     C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(0)).getQuantity();
113   IntAlignInBytes =
114     C.toCharUnitsFromBits(C.getTargetInfo().getIntAlign()).getQuantity();
115   IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth());
116   IntPtrTy = llvm::IntegerType::get(LLVMContext, PointerWidthInBits);
117   Int8PtrTy = Int8Ty->getPointerTo(0);
118   Int8PtrPtrTy = Int8PtrTy->getPointerTo(0);
119 
120   RuntimeCC = getTargetCodeGenInfo().getABIInfo().getRuntimeCC();
121   BuiltinCC = getTargetCodeGenInfo().getABIInfo().getBuiltinCC();
122 
123   if (LangOpts.ObjC1)
124     createObjCRuntime();
125   if (LangOpts.OpenCL)
126     createOpenCLRuntime();
127   if (LangOpts.OpenMP)
128     createOpenMPRuntime();
129   if (LangOpts.CUDA)
130     createCUDARuntime();
131 
132   // Enable TBAA unless it's suppressed. ThreadSanitizer needs TBAA even at O0.
133   if (LangOpts.Sanitize.has(SanitizerKind::Thread) ||
134       (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0))
135     TBAA = new CodeGenTBAA(Context, VMContext, CodeGenOpts, getLangOpts(),
136                            getCXXABI().getMangleContext());
137 
138   // If debug info or coverage generation is enabled, create the CGDebugInfo
139   // object.
140   if (CodeGenOpts.getDebugInfo() != CodeGenOptions::NoDebugInfo ||
141       CodeGenOpts.EmitGcovArcs ||
142       CodeGenOpts.EmitGcovNotes)
143     DebugInfo = new CGDebugInfo(*this);
144 
145   Block.GlobalUniqueCount = 0;
146 
147   if (C.getLangOpts().ObjC1)
148     ObjCData = new ObjCEntrypoints();
149 
150   if (!CodeGenOpts.InstrProfileInput.empty()) {
151     auto ReaderOrErr =
152         llvm::IndexedInstrProfReader::create(CodeGenOpts.InstrProfileInput);
153     if (std::error_code EC = ReaderOrErr.getError()) {
154       unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
155                                               "Could not read profile %0: %1");
156       getDiags().Report(DiagID) << CodeGenOpts.InstrProfileInput
157                                 << EC.message();
158     } else
159       PGOReader = std::move(ReaderOrErr.get());
160   }
161 
162   // If coverage mapping generation is enabled, create the
163   // CoverageMappingModuleGen object.
164   if (CodeGenOpts.CoverageMapping)
165     CoverageMapping.reset(new CoverageMappingModuleGen(*this, *CoverageInfo));
166 }
167 
168 CodeGenModule::~CodeGenModule() {
169   delete ObjCRuntime;
170   delete OpenCLRuntime;
171   delete OpenMPRuntime;
172   delete CUDARuntime;
173   delete TheTargetCodeGenInfo;
174   delete TBAA;
175   delete DebugInfo;
176   delete ObjCData;
177 }
178 
179 void CodeGenModule::createObjCRuntime() {
180   // This is just isGNUFamily(), but we want to force implementors of
181   // new ABIs to decide how best to do this.
182   switch (LangOpts.ObjCRuntime.getKind()) {
183   case ObjCRuntime::GNUstep:
184   case ObjCRuntime::GCC:
185   case ObjCRuntime::ObjFW:
186     ObjCRuntime = CreateGNUObjCRuntime(*this);
187     return;
188 
189   case ObjCRuntime::FragileMacOSX:
190   case ObjCRuntime::MacOSX:
191   case ObjCRuntime::iOS:
192   case ObjCRuntime::WatchOS:
193     ObjCRuntime = CreateMacObjCRuntime(*this);
194     return;
195   }
196   llvm_unreachable("bad runtime kind");
197 }
198 
199 void CodeGenModule::createOpenCLRuntime() {
200   OpenCLRuntime = new CGOpenCLRuntime(*this);
201 }
202 
203 void CodeGenModule::createOpenMPRuntime() {
204   OpenMPRuntime = new CGOpenMPRuntime(*this);
205 }
206 
207 void CodeGenModule::createCUDARuntime() {
208   CUDARuntime = CreateNVCUDARuntime(*this);
209 }
210 
211 void CodeGenModule::addReplacement(StringRef Name, llvm::Constant *C) {
212   Replacements[Name] = C;
213 }
214 
215 void CodeGenModule::applyReplacements() {
216   for (auto &I : Replacements) {
217     StringRef MangledName = I.first();
218     llvm::Constant *Replacement = I.second;
219     llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
220     if (!Entry)
221       continue;
222     auto *OldF = cast<llvm::Function>(Entry);
223     auto *NewF = dyn_cast<llvm::Function>(Replacement);
224     if (!NewF) {
225       if (auto *Alias = dyn_cast<llvm::GlobalAlias>(Replacement)) {
226         NewF = dyn_cast<llvm::Function>(Alias->getAliasee());
227       } else {
228         auto *CE = cast<llvm::ConstantExpr>(Replacement);
229         assert(CE->getOpcode() == llvm::Instruction::BitCast ||
230                CE->getOpcode() == llvm::Instruction::GetElementPtr);
231         NewF = dyn_cast<llvm::Function>(CE->getOperand(0));
232       }
233     }
234 
235     // Replace old with new, but keep the old order.
236     OldF->replaceAllUsesWith(Replacement);
237     if (NewF) {
238       NewF->removeFromParent();
239       OldF->getParent()->getFunctionList().insertAfter(OldF->getIterator(),
240                                                        NewF);
241     }
242     OldF->eraseFromParent();
243   }
244 }
245 
246 void CodeGenModule::addGlobalValReplacement(llvm::GlobalValue *GV, llvm::Constant *C) {
247   GlobalValReplacements.push_back(std::make_pair(GV, C));
248 }
249 
250 void CodeGenModule::applyGlobalValReplacements() {
251   for (auto &I : GlobalValReplacements) {
252     llvm::GlobalValue *GV = I.first;
253     llvm::Constant *C = I.second;
254 
255     GV->replaceAllUsesWith(C);
256     GV->eraseFromParent();
257   }
258 }
259 
260 // This is only used in aliases that we created and we know they have a
261 // linear structure.
262 static const llvm::GlobalObject *getAliasedGlobal(const llvm::GlobalAlias &GA) {
263   llvm::SmallPtrSet<const llvm::GlobalAlias*, 4> Visited;
264   const llvm::Constant *C = &GA;
265   for (;;) {
266     C = C->stripPointerCasts();
267     if (auto *GO = dyn_cast<llvm::GlobalObject>(C))
268       return GO;
269     // stripPointerCasts will not walk over weak aliases.
270     auto *GA2 = dyn_cast<llvm::GlobalAlias>(C);
271     if (!GA2)
272       return nullptr;
273     if (!Visited.insert(GA2).second)
274       return nullptr;
275     C = GA2->getAliasee();
276   }
277 }
278 
279 void CodeGenModule::checkAliases() {
280   // Check if the constructed aliases are well formed. It is really unfortunate
281   // that we have to do this in CodeGen, but we only construct mangled names
282   // and aliases during codegen.
283   bool Error = false;
284   DiagnosticsEngine &Diags = getDiags();
285   for (const GlobalDecl &GD : Aliases) {
286     const auto *D = cast<ValueDecl>(GD.getDecl());
287     const AliasAttr *AA = D->getAttr<AliasAttr>();
288     StringRef MangledName = getMangledName(GD);
289     llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
290     auto *Alias = cast<llvm::GlobalAlias>(Entry);
291     const llvm::GlobalValue *GV = getAliasedGlobal(*Alias);
292     if (!GV) {
293       Error = true;
294       Diags.Report(AA->getLocation(), diag::err_cyclic_alias);
295     } else if (GV->isDeclaration()) {
296       Error = true;
297       Diags.Report(AA->getLocation(), diag::err_alias_to_undefined);
298     }
299 
300     llvm::Constant *Aliasee = Alias->getAliasee();
301     llvm::GlobalValue *AliaseeGV;
302     if (auto CE = dyn_cast<llvm::ConstantExpr>(Aliasee))
303       AliaseeGV = cast<llvm::GlobalValue>(CE->getOperand(0));
304     else
305       AliaseeGV = cast<llvm::GlobalValue>(Aliasee);
306 
307     if (const SectionAttr *SA = D->getAttr<SectionAttr>()) {
308       StringRef AliasSection = SA->getName();
309       if (AliasSection != AliaseeGV->getSection())
310         Diags.Report(SA->getLocation(), diag::warn_alias_with_section)
311             << AliasSection;
312     }
313 
314     // We have to handle alias to weak aliases in here. LLVM itself disallows
315     // this since the object semantics would not match the IL one. For
316     // compatibility with gcc we implement it by just pointing the alias
317     // to its aliasee's aliasee. We also warn, since the user is probably
318     // expecting the link to be weak.
319     if (auto GA = dyn_cast<llvm::GlobalAlias>(AliaseeGV)) {
320       if (GA->mayBeOverridden()) {
321         Diags.Report(AA->getLocation(), diag::warn_alias_to_weak_alias)
322             << GV->getName() << GA->getName();
323         Aliasee = llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(
324             GA->getAliasee(), Alias->getType());
325         Alias->setAliasee(Aliasee);
326       }
327     }
328   }
329   if (!Error)
330     return;
331 
332   for (const GlobalDecl &GD : Aliases) {
333     StringRef MangledName = getMangledName(GD);
334     llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
335     auto *Alias = cast<llvm::GlobalAlias>(Entry);
336     Alias->replaceAllUsesWith(llvm::UndefValue::get(Alias->getType()));
337     Alias->eraseFromParent();
338   }
339 }
340 
341 void CodeGenModule::clear() {
342   DeferredDeclsToEmit.clear();
343   if (OpenMPRuntime)
344     OpenMPRuntime->clear();
345 }
346 
347 void InstrProfStats::reportDiagnostics(DiagnosticsEngine &Diags,
348                                        StringRef MainFile) {
349   if (!hasDiagnostics())
350     return;
351   if (VisitedInMainFile > 0 && VisitedInMainFile == MissingInMainFile) {
352     if (MainFile.empty())
353       MainFile = "<stdin>";
354     Diags.Report(diag::warn_profile_data_unprofiled) << MainFile;
355   } else
356     Diags.Report(diag::warn_profile_data_out_of_date) << Visited << Missing
357                                                       << Mismatched;
358 }
359 
360 void CodeGenModule::Release() {
361   EmitDeferred();
362   applyGlobalValReplacements();
363   applyReplacements();
364   checkAliases();
365   EmitCXXGlobalInitFunc();
366   EmitCXXGlobalDtorFunc();
367   EmitCXXThreadLocalInitFunc();
368   if (ObjCRuntime)
369     if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction())
370       AddGlobalCtor(ObjCInitFunction);
371   if (Context.getLangOpts().CUDA && !Context.getLangOpts().CUDAIsDevice &&
372       CUDARuntime) {
373     if (llvm::Function *CudaCtorFunction = CUDARuntime->makeModuleCtorFunction())
374       AddGlobalCtor(CudaCtorFunction);
375     if (llvm::Function *CudaDtorFunction = CUDARuntime->makeModuleDtorFunction())
376       AddGlobalDtor(CudaDtorFunction);
377   }
378   if (OpenMPRuntime)
379     if (llvm::Function *OpenMPRegistrationFunction =
380             OpenMPRuntime->emitRegistrationFunction())
381       AddGlobalCtor(OpenMPRegistrationFunction, 0);
382   if (PGOReader) {
383     getModule().setMaximumFunctionCount(PGOReader->getMaximumFunctionCount());
384     if (PGOStats.hasDiagnostics())
385       PGOStats.reportDiagnostics(getDiags(), getCodeGenOpts().MainFileName);
386   }
387   EmitCtorList(GlobalCtors, "llvm.global_ctors");
388   EmitCtorList(GlobalDtors, "llvm.global_dtors");
389   EmitGlobalAnnotations();
390   EmitStaticExternCAliases();
391   EmitDeferredUnusedCoverageMappings();
392   if (CoverageMapping)
393     CoverageMapping->emit();
394   emitLLVMUsed();
395 
396   if (CodeGenOpts.Autolink &&
397       (Context.getLangOpts().Modules || !LinkerOptionsMetadata.empty())) {
398     EmitModuleLinkOptions();
399   }
400   if (CodeGenOpts.DwarfVersion) {
401     // We actually want the latest version when there are conflicts.
402     // We can change from Warning to Latest if such mode is supported.
403     getModule().addModuleFlag(llvm::Module::Warning, "Dwarf Version",
404                               CodeGenOpts.DwarfVersion);
405   }
406   if (CodeGenOpts.EmitCodeView) {
407     // Indicate that we want CodeView in the metadata.
408     getModule().addModuleFlag(llvm::Module::Warning, "CodeView", 1);
409   }
410   if (CodeGenOpts.OptimizationLevel > 0 && CodeGenOpts.StrictVTablePointers) {
411     // We don't support LTO with 2 with different StrictVTablePointers
412     // FIXME: we could support it by stripping all the information introduced
413     // by StrictVTablePointers.
414 
415     getModule().addModuleFlag(llvm::Module::Error, "StrictVTablePointers",1);
416 
417     llvm::Metadata *Ops[2] = {
418               llvm::MDString::get(VMContext, "StrictVTablePointers"),
419               llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
420                   llvm::Type::getInt32Ty(VMContext), 1))};
421 
422     getModule().addModuleFlag(llvm::Module::Require,
423                               "StrictVTablePointersRequirement",
424                               llvm::MDNode::get(VMContext, Ops));
425   }
426   if (DebugInfo)
427     // We support a single version in the linked module. The LLVM
428     // parser will drop debug info with a different version number
429     // (and warn about it, too).
430     getModule().addModuleFlag(llvm::Module::Warning, "Debug Info Version",
431                               llvm::DEBUG_METADATA_VERSION);
432 
433   // We need to record the widths of enums and wchar_t, so that we can generate
434   // the correct build attributes in the ARM backend.
435   llvm::Triple::ArchType Arch = Context.getTargetInfo().getTriple().getArch();
436   if (   Arch == llvm::Triple::arm
437       || Arch == llvm::Triple::armeb
438       || Arch == llvm::Triple::thumb
439       || Arch == llvm::Triple::thumbeb) {
440     // Width of wchar_t in bytes
441     uint64_t WCharWidth =
442         Context.getTypeSizeInChars(Context.getWideCharType()).getQuantity();
443     getModule().addModuleFlag(llvm::Module::Error, "wchar_size", WCharWidth);
444 
445     // The minimum width of an enum in bytes
446     uint64_t EnumWidth = Context.getLangOpts().ShortEnums ? 1 : 4;
447     getModule().addModuleFlag(llvm::Module::Error, "min_enum_size", EnumWidth);
448   }
449 
450   if (CodeGenOpts.SanitizeCfiCrossDso) {
451     // Indicate that we want cross-DSO control flow integrity checks.
452     getModule().addModuleFlag(llvm::Module::Override, "Cross-DSO CFI", 1);
453   }
454 
455   if (uint32_t PLevel = Context.getLangOpts().PICLevel) {
456     llvm::PICLevel::Level PL = llvm::PICLevel::Default;
457     switch (PLevel) {
458     case 0: break;
459     case 1: PL = llvm::PICLevel::Small; break;
460     case 2: PL = llvm::PICLevel::Large; break;
461     default: llvm_unreachable("Invalid PIC Level");
462     }
463 
464     getModule().setPICLevel(PL);
465   }
466 
467   SimplifyPersonality();
468 
469   if (getCodeGenOpts().EmitDeclMetadata)
470     EmitDeclMetadata();
471 
472   if (getCodeGenOpts().EmitGcovArcs || getCodeGenOpts().EmitGcovNotes)
473     EmitCoverageFile();
474 
475   if (DebugInfo)
476     DebugInfo->finalize();
477 
478   EmitVersionIdentMetadata();
479 
480   EmitTargetMetadata();
481 }
482 
483 void CodeGenModule::UpdateCompletedType(const TagDecl *TD) {
484   // Make sure that this type is translated.
485   Types.UpdateCompletedType(TD);
486 }
487 
488 llvm::MDNode *CodeGenModule::getTBAAInfo(QualType QTy) {
489   if (!TBAA)
490     return nullptr;
491   return TBAA->getTBAAInfo(QTy);
492 }
493 
494 llvm::MDNode *CodeGenModule::getTBAAInfoForVTablePtr() {
495   if (!TBAA)
496     return nullptr;
497   return TBAA->getTBAAInfoForVTablePtr();
498 }
499 
500 llvm::MDNode *CodeGenModule::getTBAAStructInfo(QualType QTy) {
501   if (!TBAA)
502     return nullptr;
503   return TBAA->getTBAAStructInfo(QTy);
504 }
505 
506 llvm::MDNode *CodeGenModule::getTBAAStructTagInfo(QualType BaseTy,
507                                                   llvm::MDNode *AccessN,
508                                                   uint64_t O) {
509   if (!TBAA)
510     return nullptr;
511   return TBAA->getTBAAStructTagInfo(BaseTy, AccessN, O);
512 }
513 
514 /// Decorate the instruction with a TBAA tag. For both scalar TBAA
515 /// and struct-path aware TBAA, the tag has the same format:
516 /// base type, access type and offset.
517 /// When ConvertTypeToTag is true, we create a tag based on the scalar type.
518 void CodeGenModule::DecorateInstructionWithTBAA(llvm::Instruction *Inst,
519                                                 llvm::MDNode *TBAAInfo,
520                                                 bool ConvertTypeToTag) {
521   if (ConvertTypeToTag && TBAA)
522     Inst->setMetadata(llvm::LLVMContext::MD_tbaa,
523                       TBAA->getTBAAScalarTagInfo(TBAAInfo));
524   else
525     Inst->setMetadata(llvm::LLVMContext::MD_tbaa, TBAAInfo);
526 }
527 
528 void CodeGenModule::DecorateInstructionWithInvariantGroup(
529     llvm::Instruction *I, const CXXRecordDecl *RD) {
530   llvm::Metadata *MD = CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0));
531   auto *MetaDataNode = dyn_cast<llvm::MDNode>(MD);
532   // Check if we have to wrap MDString in MDNode.
533   if (!MetaDataNode)
534     MetaDataNode = llvm::MDNode::get(getLLVMContext(), MD);
535   I->setMetadata(llvm::LLVMContext::MD_invariant_group, MetaDataNode);
536 }
537 
538 void CodeGenModule::Error(SourceLocation loc, StringRef message) {
539   unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, "%0");
540   getDiags().Report(Context.getFullLoc(loc), diagID) << message;
541 }
542 
543 /// ErrorUnsupported - Print out an error that codegen doesn't support the
544 /// specified stmt yet.
545 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type) {
546   unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
547                                                "cannot compile this %0 yet");
548   std::string Msg = Type;
549   getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID)
550     << Msg << S->getSourceRange();
551 }
552 
553 /// ErrorUnsupported - Print out an error that codegen doesn't support the
554 /// specified decl yet.
555 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type) {
556   unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
557                                                "cannot compile this %0 yet");
558   std::string Msg = Type;
559   getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg;
560 }
561 
562 llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) {
563   return llvm::ConstantInt::get(SizeTy, size.getQuantity());
564 }
565 
566 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV,
567                                         const NamedDecl *D) const {
568   // Internal definitions always have default visibility.
569   if (GV->hasLocalLinkage()) {
570     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
571     return;
572   }
573 
574   // Set visibility for definitions.
575   LinkageInfo LV = D->getLinkageAndVisibility();
576   if (LV.isVisibilityExplicit() || !GV->hasAvailableExternallyLinkage())
577     GV->setVisibility(GetLLVMVisibility(LV.getVisibility()));
578 }
579 
580 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(StringRef S) {
581   return llvm::StringSwitch<llvm::GlobalVariable::ThreadLocalMode>(S)
582       .Case("global-dynamic", llvm::GlobalVariable::GeneralDynamicTLSModel)
583       .Case("local-dynamic", llvm::GlobalVariable::LocalDynamicTLSModel)
584       .Case("initial-exec", llvm::GlobalVariable::InitialExecTLSModel)
585       .Case("local-exec", llvm::GlobalVariable::LocalExecTLSModel);
586 }
587 
588 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(
589     CodeGenOptions::TLSModel M) {
590   switch (M) {
591   case CodeGenOptions::GeneralDynamicTLSModel:
592     return llvm::GlobalVariable::GeneralDynamicTLSModel;
593   case CodeGenOptions::LocalDynamicTLSModel:
594     return llvm::GlobalVariable::LocalDynamicTLSModel;
595   case CodeGenOptions::InitialExecTLSModel:
596     return llvm::GlobalVariable::InitialExecTLSModel;
597   case CodeGenOptions::LocalExecTLSModel:
598     return llvm::GlobalVariable::LocalExecTLSModel;
599   }
600   llvm_unreachable("Invalid TLS model!");
601 }
602 
603 void CodeGenModule::setTLSMode(llvm::GlobalValue *GV, const VarDecl &D) const {
604   assert(D.getTLSKind() && "setting TLS mode on non-TLS var!");
605 
606   llvm::GlobalValue::ThreadLocalMode TLM;
607   TLM = GetLLVMTLSModel(CodeGenOpts.getDefaultTLSModel());
608 
609   // Override the TLS model if it is explicitly specified.
610   if (const TLSModelAttr *Attr = D.getAttr<TLSModelAttr>()) {
611     TLM = GetLLVMTLSModel(Attr->getModel());
612   }
613 
614   GV->setThreadLocalMode(TLM);
615 }
616 
617 StringRef CodeGenModule::getMangledName(GlobalDecl GD) {
618   StringRef &FoundStr = MangledDeclNames[GD.getCanonicalDecl()];
619   if (!FoundStr.empty())
620     return FoundStr;
621 
622   const auto *ND = cast<NamedDecl>(GD.getDecl());
623   SmallString<256> Buffer;
624   StringRef Str;
625   if (getCXXABI().getMangleContext().shouldMangleDeclName(ND)) {
626     llvm::raw_svector_ostream Out(Buffer);
627     if (const auto *D = dyn_cast<CXXConstructorDecl>(ND))
628       getCXXABI().getMangleContext().mangleCXXCtor(D, GD.getCtorType(), Out);
629     else if (const auto *D = dyn_cast<CXXDestructorDecl>(ND))
630       getCXXABI().getMangleContext().mangleCXXDtor(D, GD.getDtorType(), Out);
631     else
632       getCXXABI().getMangleContext().mangleName(ND, Out);
633     Str = Out.str();
634   } else {
635     IdentifierInfo *II = ND->getIdentifier();
636     assert(II && "Attempt to mangle unnamed decl.");
637     Str = II->getName();
638   }
639 
640   // Keep the first result in the case of a mangling collision.
641   auto Result = Manglings.insert(std::make_pair(Str, GD));
642   return FoundStr = Result.first->first();
643 }
644 
645 StringRef CodeGenModule::getBlockMangledName(GlobalDecl GD,
646                                              const BlockDecl *BD) {
647   MangleContext &MangleCtx = getCXXABI().getMangleContext();
648   const Decl *D = GD.getDecl();
649 
650   SmallString<256> Buffer;
651   llvm::raw_svector_ostream Out(Buffer);
652   if (!D)
653     MangleCtx.mangleGlobalBlock(BD,
654       dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()), Out);
655   else if (const auto *CD = dyn_cast<CXXConstructorDecl>(D))
656     MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out);
657   else if (const auto *DD = dyn_cast<CXXDestructorDecl>(D))
658     MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out);
659   else
660     MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out);
661 
662   auto Result = Manglings.insert(std::make_pair(Out.str(), BD));
663   return Result.first->first();
664 }
665 
666 llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) {
667   return getModule().getNamedValue(Name);
668 }
669 
670 /// AddGlobalCtor - Add a function to the list that will be called before
671 /// main() runs.
672 void CodeGenModule::AddGlobalCtor(llvm::Function *Ctor, int Priority,
673                                   llvm::Constant *AssociatedData) {
674   // FIXME: Type coercion of void()* types.
675   GlobalCtors.push_back(Structor(Priority, Ctor, AssociatedData));
676 }
677 
678 /// AddGlobalDtor - Add a function to the list that will be called
679 /// when the module is unloaded.
680 void CodeGenModule::AddGlobalDtor(llvm::Function *Dtor, int Priority) {
681   // FIXME: Type coercion of void()* types.
682   GlobalDtors.push_back(Structor(Priority, Dtor, nullptr));
683 }
684 
685 void CodeGenModule::EmitCtorList(const CtorList &Fns, const char *GlobalName) {
686   // Ctor function type is void()*.
687   llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false);
688   llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy);
689 
690   // Get the type of a ctor entry, { i32, void ()*, i8* }.
691   llvm::StructType *CtorStructTy = llvm::StructType::get(
692       Int32Ty, llvm::PointerType::getUnqual(CtorFTy), VoidPtrTy, nullptr);
693 
694   // Construct the constructor and destructor arrays.
695   SmallVector<llvm::Constant *, 8> Ctors;
696   for (const auto &I : Fns) {
697     llvm::Constant *S[] = {
698         llvm::ConstantInt::get(Int32Ty, I.Priority, false),
699         llvm::ConstantExpr::getBitCast(I.Initializer, CtorPFTy),
700         (I.AssociatedData
701              ? llvm::ConstantExpr::getBitCast(I.AssociatedData, VoidPtrTy)
702              : llvm::Constant::getNullValue(VoidPtrTy))};
703     Ctors.push_back(llvm::ConstantStruct::get(CtorStructTy, S));
704   }
705 
706   if (!Ctors.empty()) {
707     llvm::ArrayType *AT = llvm::ArrayType::get(CtorStructTy, Ctors.size());
708     new llvm::GlobalVariable(TheModule, AT, false,
709                              llvm::GlobalValue::AppendingLinkage,
710                              llvm::ConstantArray::get(AT, Ctors),
711                              GlobalName);
712   }
713 }
714 
715 llvm::GlobalValue::LinkageTypes
716 CodeGenModule::getFunctionLinkage(GlobalDecl GD) {
717   const auto *D = cast<FunctionDecl>(GD.getDecl());
718 
719   GVALinkage Linkage = getContext().GetGVALinkageForFunction(D);
720 
721   if (isa<CXXDestructorDecl>(D) &&
722       getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D),
723                                          GD.getDtorType())) {
724     // Destructor variants in the Microsoft C++ ABI are always internal or
725     // linkonce_odr thunks emitted on an as-needed basis.
726     return Linkage == GVA_Internal ? llvm::GlobalValue::InternalLinkage
727                                    : llvm::GlobalValue::LinkOnceODRLinkage;
728   }
729 
730   return getLLVMLinkageForDeclarator(D, Linkage, /*isConstantVariable=*/false);
731 }
732 
733 void CodeGenModule::setFunctionDLLStorageClass(GlobalDecl GD, llvm::Function *F) {
734   const auto *FD = cast<FunctionDecl>(GD.getDecl());
735 
736   if (const auto *Dtor = dyn_cast_or_null<CXXDestructorDecl>(FD)) {
737     if (getCXXABI().useThunkForDtorVariant(Dtor, GD.getDtorType())) {
738       // Don't dllexport/import destructor thunks.
739       F->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
740       return;
741     }
742   }
743 
744   if (FD->hasAttr<DLLImportAttr>())
745     F->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass);
746   else if (FD->hasAttr<DLLExportAttr>())
747     F->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass);
748   else
749     F->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass);
750 }
751 
752 llvm::ConstantInt *
753 CodeGenModule::CreateCfiIdForTypeMetadata(llvm::Metadata *MD) {
754   llvm::MDString *MDS = dyn_cast<llvm::MDString>(MD);
755   if (!MDS) return nullptr;
756 
757   llvm::MD5 md5;
758   llvm::MD5::MD5Result result;
759   md5.update(MDS->getString());
760   md5.final(result);
761   uint64_t id = 0;
762   for (int i = 0; i < 8; ++i)
763     id |= static_cast<uint64_t>(result[i]) << (i * 8);
764   return llvm::ConstantInt::get(Int64Ty, id);
765 }
766 
767 void CodeGenModule::setFunctionDefinitionAttributes(const FunctionDecl *D,
768                                                     llvm::Function *F) {
769   setNonAliasAttributes(D, F);
770 }
771 
772 void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D,
773                                               const CGFunctionInfo &Info,
774                                               llvm::Function *F) {
775   unsigned CallingConv;
776   AttributeListType AttributeList;
777   ConstructAttributeList(F->getName(), Info, D, AttributeList, CallingConv,
778                          false);
779   F->setAttributes(llvm::AttributeSet::get(getLLVMContext(), AttributeList));
780   F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv));
781 }
782 
783 /// Determines whether the language options require us to model
784 /// unwind exceptions.  We treat -fexceptions as mandating this
785 /// except under the fragile ObjC ABI with only ObjC exceptions
786 /// enabled.  This means, for example, that C with -fexceptions
787 /// enables this.
788 static bool hasUnwindExceptions(const LangOptions &LangOpts) {
789   // If exceptions are completely disabled, obviously this is false.
790   if (!LangOpts.Exceptions) return false;
791 
792   // If C++ exceptions are enabled, this is true.
793   if (LangOpts.CXXExceptions) return true;
794 
795   // If ObjC exceptions are enabled, this depends on the ABI.
796   if (LangOpts.ObjCExceptions) {
797     return LangOpts.ObjCRuntime.hasUnwindExceptions();
798   }
799 
800   return true;
801 }
802 
803 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D,
804                                                            llvm::Function *F) {
805   llvm::AttrBuilder B;
806 
807   if (CodeGenOpts.UnwindTables)
808     B.addAttribute(llvm::Attribute::UWTable);
809 
810   if (!hasUnwindExceptions(LangOpts))
811     B.addAttribute(llvm::Attribute::NoUnwind);
812 
813   if (LangOpts.getStackProtector() == LangOptions::SSPOn)
814     B.addAttribute(llvm::Attribute::StackProtect);
815   else if (LangOpts.getStackProtector() == LangOptions::SSPStrong)
816     B.addAttribute(llvm::Attribute::StackProtectStrong);
817   else if (LangOpts.getStackProtector() == LangOptions::SSPReq)
818     B.addAttribute(llvm::Attribute::StackProtectReq);
819 
820   if (!D) {
821     F->addAttributes(llvm::AttributeSet::FunctionIndex,
822                      llvm::AttributeSet::get(
823                          F->getContext(),
824                          llvm::AttributeSet::FunctionIndex, B));
825     return;
826   }
827 
828   if (D->hasAttr<NakedAttr>()) {
829     // Naked implies noinline: we should not be inlining such functions.
830     B.addAttribute(llvm::Attribute::Naked);
831     B.addAttribute(llvm::Attribute::NoInline);
832   } else if (D->hasAttr<NoDuplicateAttr>()) {
833     B.addAttribute(llvm::Attribute::NoDuplicate);
834   } else if (D->hasAttr<NoInlineAttr>()) {
835     B.addAttribute(llvm::Attribute::NoInline);
836   } else if (D->hasAttr<AlwaysInlineAttr>() &&
837              !F->getAttributes().hasAttribute(llvm::AttributeSet::FunctionIndex,
838                                               llvm::Attribute::NoInline)) {
839     // (noinline wins over always_inline, and we can't specify both in IR)
840     B.addAttribute(llvm::Attribute::AlwaysInline);
841   }
842 
843   if (D->hasAttr<ColdAttr>()) {
844     if (!D->hasAttr<OptimizeNoneAttr>())
845       B.addAttribute(llvm::Attribute::OptimizeForSize);
846     B.addAttribute(llvm::Attribute::Cold);
847   }
848 
849   if (D->hasAttr<MinSizeAttr>())
850     B.addAttribute(llvm::Attribute::MinSize);
851 
852   F->addAttributes(llvm::AttributeSet::FunctionIndex,
853                    llvm::AttributeSet::get(
854                        F->getContext(), llvm::AttributeSet::FunctionIndex, B));
855 
856   if (D->hasAttr<OptimizeNoneAttr>()) {
857     // OptimizeNone implies noinline; we should not be inlining such functions.
858     F->addFnAttr(llvm::Attribute::OptimizeNone);
859     F->addFnAttr(llvm::Attribute::NoInline);
860 
861     // OptimizeNone wins over OptimizeForSize, MinSize, AlwaysInline.
862     F->removeFnAttr(llvm::Attribute::OptimizeForSize);
863     F->removeFnAttr(llvm::Attribute::MinSize);
864     assert(!F->hasFnAttribute(llvm::Attribute::AlwaysInline) &&
865            "OptimizeNone and AlwaysInline on same function!");
866 
867     // Attribute 'inlinehint' has no effect on 'optnone' functions.
868     // Explicitly remove it from the set of function attributes.
869     F->removeFnAttr(llvm::Attribute::InlineHint);
870   }
871 
872   if (isa<CXXConstructorDecl>(D) || isa<CXXDestructorDecl>(D))
873     F->setUnnamedAddr(true);
874   else if (const auto *MD = dyn_cast<CXXMethodDecl>(D))
875     if (MD->isVirtual())
876       F->setUnnamedAddr(true);
877 
878   unsigned alignment = D->getMaxAlignment() / Context.getCharWidth();
879   if (alignment)
880     F->setAlignment(alignment);
881 
882   // Some C++ ABIs require 2-byte alignment for member functions, in order to
883   // reserve a bit for differentiating between virtual and non-virtual member
884   // functions. If the current target's C++ ABI requires this and this is a
885   // member function, set its alignment accordingly.
886   if (getTarget().getCXXABI().areMemberFunctionsAligned()) {
887     if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D))
888       F->setAlignment(2);
889   }
890 }
891 
892 void CodeGenModule::SetCommonAttributes(const Decl *D,
893                                         llvm::GlobalValue *GV) {
894   if (const auto *ND = dyn_cast_or_null<NamedDecl>(D))
895     setGlobalVisibility(GV, ND);
896   else
897     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
898 
899   if (D && D->hasAttr<UsedAttr>())
900     addUsedGlobal(GV);
901 }
902 
903 void CodeGenModule::setAliasAttributes(const Decl *D,
904                                        llvm::GlobalValue *GV) {
905   SetCommonAttributes(D, GV);
906 
907   // Process the dllexport attribute based on whether the original definition
908   // (not necessarily the aliasee) was exported.
909   if (D->hasAttr<DLLExportAttr>())
910     GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass);
911 }
912 
913 void CodeGenModule::setNonAliasAttributes(const Decl *D,
914                                           llvm::GlobalObject *GO) {
915   SetCommonAttributes(D, GO);
916 
917   if (D)
918     if (const SectionAttr *SA = D->getAttr<SectionAttr>())
919       GO->setSection(SA->getName());
920 
921   getTargetCodeGenInfo().setTargetAttributes(D, GO, *this);
922 }
923 
924 void CodeGenModule::SetInternalFunctionAttributes(const Decl *D,
925                                                   llvm::Function *F,
926                                                   const CGFunctionInfo &FI) {
927   SetLLVMFunctionAttributes(D, FI, F);
928   SetLLVMFunctionAttributesForDefinition(D, F);
929 
930   F->setLinkage(llvm::Function::InternalLinkage);
931 
932   setNonAliasAttributes(D, F);
933 }
934 
935 static void setLinkageAndVisibilityForGV(llvm::GlobalValue *GV,
936                                          const NamedDecl *ND) {
937   // Set linkage and visibility in case we never see a definition.
938   LinkageInfo LV = ND->getLinkageAndVisibility();
939   if (LV.getLinkage() != ExternalLinkage) {
940     // Don't set internal linkage on declarations.
941   } else {
942     if (ND->hasAttr<DLLImportAttr>()) {
943       GV->setLinkage(llvm::GlobalValue::ExternalLinkage);
944       GV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass);
945     } else if (ND->hasAttr<DLLExportAttr>()) {
946       GV->setLinkage(llvm::GlobalValue::ExternalLinkage);
947       GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass);
948     } else if (ND->hasAttr<WeakAttr>() || ND->isWeakImported()) {
949       // "extern_weak" is overloaded in LLVM; we probably should have
950       // separate linkage types for this.
951       GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage);
952     }
953 
954     // Set visibility on a declaration only if it's explicit.
955     if (LV.isVisibilityExplicit())
956       GV->setVisibility(CodeGenModule::GetLLVMVisibility(LV.getVisibility()));
957   }
958 }
959 
960 void CodeGenModule::CreateFunctionBitSetEntry(const FunctionDecl *FD,
961                                               llvm::Function *F) {
962   // Only if we are checking indirect calls.
963   if (!LangOpts.Sanitize.has(SanitizerKind::CFIICall))
964     return;
965 
966   // Non-static class methods are handled via vtable pointer checks elsewhere.
967   if (isa<CXXMethodDecl>(FD) && !cast<CXXMethodDecl>(FD)->isStatic())
968     return;
969 
970   // Additionally, if building with cross-DSO support...
971   if (CodeGenOpts.SanitizeCfiCrossDso) {
972     // Don't emit entries for function declarations. In cross-DSO mode these are
973     // handled with better precision at run time.
974     if (!FD->hasBody())
975       return;
976     // Skip available_externally functions. They won't be codegen'ed in the
977     // current module anyway.
978     if (getContext().GetGVALinkageForFunction(FD) == GVA_AvailableExternally)
979       return;
980   }
981 
982   llvm::NamedMDNode *BitsetsMD =
983       getModule().getOrInsertNamedMetadata("llvm.bitsets");
984 
985   llvm::Metadata *MD = CreateMetadataIdentifierForType(FD->getType());
986   llvm::Metadata *BitsetOps[] = {
987       MD, llvm::ConstantAsMetadata::get(F),
988       llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(Int64Ty, 0))};
989   BitsetsMD->addOperand(llvm::MDTuple::get(getLLVMContext(), BitsetOps));
990 
991   // Emit a hash-based bit set entry for cross-DSO calls.
992   if (CodeGenOpts.SanitizeCfiCrossDso) {
993     if (auto TypeId = CreateCfiIdForTypeMetadata(MD)) {
994       llvm::Metadata *BitsetOps2[] = {
995           llvm::ConstantAsMetadata::get(TypeId),
996           llvm::ConstantAsMetadata::get(F),
997           llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(Int64Ty, 0))};
998       BitsetsMD->addOperand(llvm::MDTuple::get(getLLVMContext(), BitsetOps2));
999     }
1000   }
1001 }
1002 
1003 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD, llvm::Function *F,
1004                                           bool IsIncompleteFunction,
1005                                           bool IsThunk) {
1006   if (llvm::Intrinsic::ID IID = F->getIntrinsicID()) {
1007     // If this is an intrinsic function, set the function's attributes
1008     // to the intrinsic's attributes.
1009     F->setAttributes(llvm::Intrinsic::getAttributes(getLLVMContext(), IID));
1010     return;
1011   }
1012 
1013   const auto *FD = cast<FunctionDecl>(GD.getDecl());
1014 
1015   if (!IsIncompleteFunction)
1016     SetLLVMFunctionAttributes(FD, getTypes().arrangeGlobalDeclaration(GD), F);
1017 
1018   // Add the Returned attribute for "this", except for iOS 5 and earlier
1019   // where substantial code, including the libstdc++ dylib, was compiled with
1020   // GCC and does not actually return "this".
1021   if (!IsThunk && getCXXABI().HasThisReturn(GD) &&
1022       !(getTarget().getTriple().isiOS() &&
1023         getTarget().getTriple().isOSVersionLT(6))) {
1024     assert(!F->arg_empty() &&
1025            F->arg_begin()->getType()
1026              ->canLosslesslyBitCastTo(F->getReturnType()) &&
1027            "unexpected this return");
1028     F->addAttribute(1, llvm::Attribute::Returned);
1029   }
1030 
1031   // Only a few attributes are set on declarations; these may later be
1032   // overridden by a definition.
1033 
1034   setLinkageAndVisibilityForGV(F, FD);
1035 
1036   if (const SectionAttr *SA = FD->getAttr<SectionAttr>())
1037     F->setSection(SA->getName());
1038 
1039   // A replaceable global allocation function does not act like a builtin by
1040   // default, only if it is invoked by a new-expression or delete-expression.
1041   if (FD->isReplaceableGlobalAllocationFunction())
1042     F->addAttribute(llvm::AttributeSet::FunctionIndex,
1043                     llvm::Attribute::NoBuiltin);
1044 
1045   CreateFunctionBitSetEntry(FD, F);
1046 }
1047 
1048 void CodeGenModule::addUsedGlobal(llvm::GlobalValue *GV) {
1049   assert(!GV->isDeclaration() &&
1050          "Only globals with definition can force usage.");
1051   LLVMUsed.emplace_back(GV);
1052 }
1053 
1054 void CodeGenModule::addCompilerUsedGlobal(llvm::GlobalValue *GV) {
1055   assert(!GV->isDeclaration() &&
1056          "Only globals with definition can force usage.");
1057   LLVMCompilerUsed.emplace_back(GV);
1058 }
1059 
1060 static void emitUsed(CodeGenModule &CGM, StringRef Name,
1061                      std::vector<llvm::WeakVH> &List) {
1062   // Don't create llvm.used if there is no need.
1063   if (List.empty())
1064     return;
1065 
1066   // Convert List to what ConstantArray needs.
1067   SmallVector<llvm::Constant*, 8> UsedArray;
1068   UsedArray.resize(List.size());
1069   for (unsigned i = 0, e = List.size(); i != e; ++i) {
1070     UsedArray[i] =
1071         llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(
1072             cast<llvm::Constant>(&*List[i]), CGM.Int8PtrTy);
1073   }
1074 
1075   if (UsedArray.empty())
1076     return;
1077   llvm::ArrayType *ATy = llvm::ArrayType::get(CGM.Int8PtrTy, UsedArray.size());
1078 
1079   auto *GV = new llvm::GlobalVariable(
1080       CGM.getModule(), ATy, false, llvm::GlobalValue::AppendingLinkage,
1081       llvm::ConstantArray::get(ATy, UsedArray), Name);
1082 
1083   GV->setSection("llvm.metadata");
1084 }
1085 
1086 void CodeGenModule::emitLLVMUsed() {
1087   emitUsed(*this, "llvm.used", LLVMUsed);
1088   emitUsed(*this, "llvm.compiler.used", LLVMCompilerUsed);
1089 }
1090 
1091 void CodeGenModule::AppendLinkerOptions(StringRef Opts) {
1092   auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opts);
1093   LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
1094 }
1095 
1096 void CodeGenModule::AddDetectMismatch(StringRef Name, StringRef Value) {
1097   llvm::SmallString<32> Opt;
1098   getTargetCodeGenInfo().getDetectMismatchOption(Name, Value, Opt);
1099   auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt);
1100   LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
1101 }
1102 
1103 void CodeGenModule::AddDependentLib(StringRef Lib) {
1104   llvm::SmallString<24> Opt;
1105   getTargetCodeGenInfo().getDependentLibraryOption(Lib, Opt);
1106   auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt);
1107   LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
1108 }
1109 
1110 /// \brief Add link options implied by the given module, including modules
1111 /// it depends on, using a postorder walk.
1112 static void addLinkOptionsPostorder(CodeGenModule &CGM, Module *Mod,
1113                                     SmallVectorImpl<llvm::Metadata *> &Metadata,
1114                                     llvm::SmallPtrSet<Module *, 16> &Visited) {
1115   // Import this module's parent.
1116   if (Mod->Parent && Visited.insert(Mod->Parent).second) {
1117     addLinkOptionsPostorder(CGM, Mod->Parent, Metadata, Visited);
1118   }
1119 
1120   // Import this module's dependencies.
1121   for (unsigned I = Mod->Imports.size(); I > 0; --I) {
1122     if (Visited.insert(Mod->Imports[I - 1]).second)
1123       addLinkOptionsPostorder(CGM, Mod->Imports[I-1], Metadata, Visited);
1124   }
1125 
1126   // Add linker options to link against the libraries/frameworks
1127   // described by this module.
1128   llvm::LLVMContext &Context = CGM.getLLVMContext();
1129   for (unsigned I = Mod->LinkLibraries.size(); I > 0; --I) {
1130     // Link against a framework.  Frameworks are currently Darwin only, so we
1131     // don't to ask TargetCodeGenInfo for the spelling of the linker option.
1132     if (Mod->LinkLibraries[I-1].IsFramework) {
1133       llvm::Metadata *Args[2] = {
1134           llvm::MDString::get(Context, "-framework"),
1135           llvm::MDString::get(Context, Mod->LinkLibraries[I - 1].Library)};
1136 
1137       Metadata.push_back(llvm::MDNode::get(Context, Args));
1138       continue;
1139     }
1140 
1141     // Link against a library.
1142     llvm::SmallString<24> Opt;
1143     CGM.getTargetCodeGenInfo().getDependentLibraryOption(
1144       Mod->LinkLibraries[I-1].Library, Opt);
1145     auto *OptString = llvm::MDString::get(Context, Opt);
1146     Metadata.push_back(llvm::MDNode::get(Context, OptString));
1147   }
1148 }
1149 
1150 void CodeGenModule::EmitModuleLinkOptions() {
1151   // Collect the set of all of the modules we want to visit to emit link
1152   // options, which is essentially the imported modules and all of their
1153   // non-explicit child modules.
1154   llvm::SetVector<clang::Module *> LinkModules;
1155   llvm::SmallPtrSet<clang::Module *, 16> Visited;
1156   SmallVector<clang::Module *, 16> Stack;
1157 
1158   // Seed the stack with imported modules.
1159   for (Module *M : ImportedModules)
1160     if (Visited.insert(M).second)
1161       Stack.push_back(M);
1162 
1163   // Find all of the modules to import, making a little effort to prune
1164   // non-leaf modules.
1165   while (!Stack.empty()) {
1166     clang::Module *Mod = Stack.pop_back_val();
1167 
1168     bool AnyChildren = false;
1169 
1170     // Visit the submodules of this module.
1171     for (clang::Module::submodule_iterator Sub = Mod->submodule_begin(),
1172                                         SubEnd = Mod->submodule_end();
1173          Sub != SubEnd; ++Sub) {
1174       // Skip explicit children; they need to be explicitly imported to be
1175       // linked against.
1176       if ((*Sub)->IsExplicit)
1177         continue;
1178 
1179       if (Visited.insert(*Sub).second) {
1180         Stack.push_back(*Sub);
1181         AnyChildren = true;
1182       }
1183     }
1184 
1185     // We didn't find any children, so add this module to the list of
1186     // modules to link against.
1187     if (!AnyChildren) {
1188       LinkModules.insert(Mod);
1189     }
1190   }
1191 
1192   // Add link options for all of the imported modules in reverse topological
1193   // order.  We don't do anything to try to order import link flags with respect
1194   // to linker options inserted by things like #pragma comment().
1195   SmallVector<llvm::Metadata *, 16> MetadataArgs;
1196   Visited.clear();
1197   for (Module *M : LinkModules)
1198     if (Visited.insert(M).second)
1199       addLinkOptionsPostorder(*this, M, MetadataArgs, Visited);
1200   std::reverse(MetadataArgs.begin(), MetadataArgs.end());
1201   LinkerOptionsMetadata.append(MetadataArgs.begin(), MetadataArgs.end());
1202 
1203   // Add the linker options metadata flag.
1204   getModule().addModuleFlag(llvm::Module::AppendUnique, "Linker Options",
1205                             llvm::MDNode::get(getLLVMContext(),
1206                                               LinkerOptionsMetadata));
1207 }
1208 
1209 void CodeGenModule::EmitDeferred() {
1210   // Emit code for any potentially referenced deferred decls.  Since a
1211   // previously unused static decl may become used during the generation of code
1212   // for a static function, iterate until no changes are made.
1213 
1214   if (!DeferredVTables.empty()) {
1215     EmitDeferredVTables();
1216 
1217     // Emitting a v-table doesn't directly cause more v-tables to
1218     // become deferred, although it can cause functions to be
1219     // emitted that then need those v-tables.
1220     assert(DeferredVTables.empty());
1221   }
1222 
1223   // Stop if we're out of both deferred v-tables and deferred declarations.
1224   if (DeferredDeclsToEmit.empty())
1225     return;
1226 
1227   // Grab the list of decls to emit. If EmitGlobalDefinition schedules more
1228   // work, it will not interfere with this.
1229   std::vector<DeferredGlobal> CurDeclsToEmit;
1230   CurDeclsToEmit.swap(DeferredDeclsToEmit);
1231 
1232   for (DeferredGlobal &G : CurDeclsToEmit) {
1233     GlobalDecl D = G.GD;
1234     llvm::GlobalValue *GV = G.GV;
1235     G.GV = nullptr;
1236 
1237     // We should call GetAddrOfGlobal with IsForDefinition set to true in order
1238     // to get GlobalValue with exactly the type we need, not something that
1239     // might had been created for another decl with the same mangled name but
1240     // different type.
1241     // FIXME: Support for variables is not implemented yet.
1242     if (isa<FunctionDecl>(D.getDecl()))
1243       GV = cast<llvm::GlobalValue>(GetAddrOfGlobal(D, /*IsForDefinition=*/true));
1244     else
1245       if (!GV)
1246         GV = GetGlobalValue(getMangledName(D));
1247 
1248     // Check to see if we've already emitted this.  This is necessary
1249     // for a couple of reasons: first, decls can end up in the
1250     // deferred-decls queue multiple times, and second, decls can end
1251     // up with definitions in unusual ways (e.g. by an extern inline
1252     // function acquiring a strong function redefinition).  Just
1253     // ignore these cases.
1254     if (GV && !GV->isDeclaration())
1255       continue;
1256 
1257     // Otherwise, emit the definition and move on to the next one.
1258     EmitGlobalDefinition(D, GV);
1259 
1260     // If we found out that we need to emit more decls, do that recursively.
1261     // This has the advantage that the decls are emitted in a DFS and related
1262     // ones are close together, which is convenient for testing.
1263     if (!DeferredVTables.empty() || !DeferredDeclsToEmit.empty()) {
1264       EmitDeferred();
1265       assert(DeferredVTables.empty() && DeferredDeclsToEmit.empty());
1266     }
1267   }
1268 }
1269 
1270 void CodeGenModule::EmitGlobalAnnotations() {
1271   if (Annotations.empty())
1272     return;
1273 
1274   // Create a new global variable for the ConstantStruct in the Module.
1275   llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get(
1276     Annotations[0]->getType(), Annotations.size()), Annotations);
1277   auto *gv = new llvm::GlobalVariable(getModule(), Array->getType(), false,
1278                                       llvm::GlobalValue::AppendingLinkage,
1279                                       Array, "llvm.global.annotations");
1280   gv->setSection(AnnotationSection);
1281 }
1282 
1283 llvm::Constant *CodeGenModule::EmitAnnotationString(StringRef Str) {
1284   llvm::Constant *&AStr = AnnotationStrings[Str];
1285   if (AStr)
1286     return AStr;
1287 
1288   // Not found yet, create a new global.
1289   llvm::Constant *s = llvm::ConstantDataArray::getString(getLLVMContext(), Str);
1290   auto *gv =
1291       new llvm::GlobalVariable(getModule(), s->getType(), true,
1292                                llvm::GlobalValue::PrivateLinkage, s, ".str");
1293   gv->setSection(AnnotationSection);
1294   gv->setUnnamedAddr(true);
1295   AStr = gv;
1296   return gv;
1297 }
1298 
1299 llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) {
1300   SourceManager &SM = getContext().getSourceManager();
1301   PresumedLoc PLoc = SM.getPresumedLoc(Loc);
1302   if (PLoc.isValid())
1303     return EmitAnnotationString(PLoc.getFilename());
1304   return EmitAnnotationString(SM.getBufferName(Loc));
1305 }
1306 
1307 llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) {
1308   SourceManager &SM = getContext().getSourceManager();
1309   PresumedLoc PLoc = SM.getPresumedLoc(L);
1310   unsigned LineNo = PLoc.isValid() ? PLoc.getLine() :
1311     SM.getExpansionLineNumber(L);
1312   return llvm::ConstantInt::get(Int32Ty, LineNo);
1313 }
1314 
1315 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV,
1316                                                 const AnnotateAttr *AA,
1317                                                 SourceLocation L) {
1318   // Get the globals for file name, annotation, and the line number.
1319   llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()),
1320                  *UnitGV = EmitAnnotationUnit(L),
1321                  *LineNoCst = EmitAnnotationLineNo(L);
1322 
1323   // Create the ConstantStruct for the global annotation.
1324   llvm::Constant *Fields[4] = {
1325     llvm::ConstantExpr::getBitCast(GV, Int8PtrTy),
1326     llvm::ConstantExpr::getBitCast(AnnoGV, Int8PtrTy),
1327     llvm::ConstantExpr::getBitCast(UnitGV, Int8PtrTy),
1328     LineNoCst
1329   };
1330   return llvm::ConstantStruct::getAnon(Fields);
1331 }
1332 
1333 void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D,
1334                                          llvm::GlobalValue *GV) {
1335   assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
1336   // Get the struct elements for these annotations.
1337   for (const auto *I : D->specific_attrs<AnnotateAttr>())
1338     Annotations.push_back(EmitAnnotateAttr(GV, I, D->getLocation()));
1339 }
1340 
1341 bool CodeGenModule::isInSanitizerBlacklist(llvm::Function *Fn,
1342                                            SourceLocation Loc) const {
1343   const auto &SanitizerBL = getContext().getSanitizerBlacklist();
1344   // Blacklist by function name.
1345   if (SanitizerBL.isBlacklistedFunction(Fn->getName()))
1346     return true;
1347   // Blacklist by location.
1348   if (Loc.isValid())
1349     return SanitizerBL.isBlacklistedLocation(Loc);
1350   // If location is unknown, this may be a compiler-generated function. Assume
1351   // it's located in the main file.
1352   auto &SM = Context.getSourceManager();
1353   if (const auto *MainFile = SM.getFileEntryForID(SM.getMainFileID())) {
1354     return SanitizerBL.isBlacklistedFile(MainFile->getName());
1355   }
1356   return false;
1357 }
1358 
1359 bool CodeGenModule::isInSanitizerBlacklist(llvm::GlobalVariable *GV,
1360                                            SourceLocation Loc, QualType Ty,
1361                                            StringRef Category) const {
1362   // For now globals can be blacklisted only in ASan and KASan.
1363   if (!LangOpts.Sanitize.hasOneOf(
1364           SanitizerKind::Address | SanitizerKind::KernelAddress))
1365     return false;
1366   const auto &SanitizerBL = getContext().getSanitizerBlacklist();
1367   if (SanitizerBL.isBlacklistedGlobal(GV->getName(), Category))
1368     return true;
1369   if (SanitizerBL.isBlacklistedLocation(Loc, Category))
1370     return true;
1371   // Check global type.
1372   if (!Ty.isNull()) {
1373     // Drill down the array types: if global variable of a fixed type is
1374     // blacklisted, we also don't instrument arrays of them.
1375     while (auto AT = dyn_cast<ArrayType>(Ty.getTypePtr()))
1376       Ty = AT->getElementType();
1377     Ty = Ty.getCanonicalType().getUnqualifiedType();
1378     // We allow to blacklist only record types (classes, structs etc.)
1379     if (Ty->isRecordType()) {
1380       std::string TypeStr = Ty.getAsString(getContext().getPrintingPolicy());
1381       if (SanitizerBL.isBlacklistedType(TypeStr, Category))
1382         return true;
1383     }
1384   }
1385   return false;
1386 }
1387 
1388 bool CodeGenModule::MustBeEmitted(const ValueDecl *Global) {
1389   // Never defer when EmitAllDecls is specified.
1390   if (LangOpts.EmitAllDecls)
1391     return true;
1392 
1393   return getContext().DeclMustBeEmitted(Global);
1394 }
1395 
1396 bool CodeGenModule::MayBeEmittedEagerly(const ValueDecl *Global) {
1397   if (const auto *FD = dyn_cast<FunctionDecl>(Global))
1398     if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
1399       // Implicit template instantiations may change linkage if they are later
1400       // explicitly instantiated, so they should not be emitted eagerly.
1401       return false;
1402   // If OpenMP is enabled and threadprivates must be generated like TLS, delay
1403   // codegen for global variables, because they may be marked as threadprivate.
1404   if (LangOpts.OpenMP && LangOpts.OpenMPUseTLS &&
1405       getContext().getTargetInfo().isTLSSupported() && isa<VarDecl>(Global))
1406     return false;
1407 
1408   return true;
1409 }
1410 
1411 ConstantAddress CodeGenModule::GetAddrOfUuidDescriptor(
1412     const CXXUuidofExpr* E) {
1413   // Sema has verified that IIDSource has a __declspec(uuid()), and that its
1414   // well-formed.
1415   StringRef Uuid = E->getUuidAsStringRef(Context);
1416   std::string Name = "_GUID_" + Uuid.lower();
1417   std::replace(Name.begin(), Name.end(), '-', '_');
1418 
1419   // Contains a 32-bit field.
1420   CharUnits Alignment = CharUnits::fromQuantity(4);
1421 
1422   // Look for an existing global.
1423   if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name))
1424     return ConstantAddress(GV, Alignment);
1425 
1426   llvm::Constant *Init = EmitUuidofInitializer(Uuid);
1427   assert(Init && "failed to initialize as constant");
1428 
1429   auto *GV = new llvm::GlobalVariable(
1430       getModule(), Init->getType(),
1431       /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name);
1432   if (supportsCOMDAT())
1433     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
1434   return ConstantAddress(GV, Alignment);
1435 }
1436 
1437 ConstantAddress CodeGenModule::GetWeakRefReference(const ValueDecl *VD) {
1438   const AliasAttr *AA = VD->getAttr<AliasAttr>();
1439   assert(AA && "No alias?");
1440 
1441   CharUnits Alignment = getContext().getDeclAlign(VD);
1442   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType());
1443 
1444   // See if there is already something with the target's name in the module.
1445   llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee());
1446   if (Entry) {
1447     unsigned AS = getContext().getTargetAddressSpace(VD->getType());
1448     auto Ptr = llvm::ConstantExpr::getBitCast(Entry, DeclTy->getPointerTo(AS));
1449     return ConstantAddress(Ptr, Alignment);
1450   }
1451 
1452   llvm::Constant *Aliasee;
1453   if (isa<llvm::FunctionType>(DeclTy))
1454     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy,
1455                                       GlobalDecl(cast<FunctionDecl>(VD)),
1456                                       /*ForVTable=*/false);
1457   else
1458     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
1459                                     llvm::PointerType::getUnqual(DeclTy),
1460                                     nullptr);
1461 
1462   auto *F = cast<llvm::GlobalValue>(Aliasee);
1463   F->setLinkage(llvm::Function::ExternalWeakLinkage);
1464   WeakRefReferences.insert(F);
1465 
1466   return ConstantAddress(Aliasee, Alignment);
1467 }
1468 
1469 void CodeGenModule::EmitGlobal(GlobalDecl GD) {
1470   const auto *Global = cast<ValueDecl>(GD.getDecl());
1471 
1472   // Weak references don't produce any output by themselves.
1473   if (Global->hasAttr<WeakRefAttr>())
1474     return;
1475 
1476   // If this is an alias definition (which otherwise looks like a declaration)
1477   // emit it now.
1478   if (Global->hasAttr<AliasAttr>())
1479     return EmitAliasDefinition(GD);
1480 
1481   // If this is CUDA, be selective about which declarations we emit.
1482   if (LangOpts.CUDA) {
1483     if (LangOpts.CUDAIsDevice) {
1484       if (!Global->hasAttr<CUDADeviceAttr>() &&
1485           !Global->hasAttr<CUDAGlobalAttr>() &&
1486           !Global->hasAttr<CUDAConstantAttr>() &&
1487           !Global->hasAttr<CUDASharedAttr>())
1488         return;
1489     } else {
1490       if (!Global->hasAttr<CUDAHostAttr>() && (
1491             Global->hasAttr<CUDADeviceAttr>() ||
1492             Global->hasAttr<CUDAConstantAttr>() ||
1493             Global->hasAttr<CUDASharedAttr>()))
1494         return;
1495     }
1496   }
1497 
1498   // If this is OpenMP device, check if it is legal to emit this global
1499   // normally.
1500   if (OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(GD))
1501     return;
1502 
1503   // Ignore declarations, they will be emitted on their first use.
1504   if (const auto *FD = dyn_cast<FunctionDecl>(Global)) {
1505     // Forward declarations are emitted lazily on first use.
1506     if (!FD->doesThisDeclarationHaveABody()) {
1507       if (!FD->doesDeclarationForceExternallyVisibleDefinition())
1508         return;
1509 
1510       StringRef MangledName = getMangledName(GD);
1511 
1512       // Compute the function info and LLVM type.
1513       const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
1514       llvm::Type *Ty = getTypes().GetFunctionType(FI);
1515 
1516       GetOrCreateLLVMFunction(MangledName, Ty, GD, /*ForVTable=*/false,
1517                               /*DontDefer=*/false);
1518       return;
1519     }
1520   } else {
1521     const auto *VD = cast<VarDecl>(Global);
1522     assert(VD->isFileVarDecl() && "Cannot emit local var decl as global.");
1523 
1524     if (VD->isThisDeclarationADefinition() != VarDecl::Definition &&
1525         !Context.isMSStaticDataMemberInlineDefinition(VD))
1526       return;
1527   }
1528 
1529   // Defer code generation to first use when possible, e.g. if this is an inline
1530   // function. If the global must always be emitted, do it eagerly if possible
1531   // to benefit from cache locality.
1532   if (MustBeEmitted(Global) && MayBeEmittedEagerly(Global)) {
1533     // Emit the definition if it can't be deferred.
1534     EmitGlobalDefinition(GD);
1535     return;
1536   }
1537 
1538   // If we're deferring emission of a C++ variable with an
1539   // initializer, remember the order in which it appeared in the file.
1540   if (getLangOpts().CPlusPlus && isa<VarDecl>(Global) &&
1541       cast<VarDecl>(Global)->hasInit()) {
1542     DelayedCXXInitPosition[Global] = CXXGlobalInits.size();
1543     CXXGlobalInits.push_back(nullptr);
1544   }
1545 
1546   StringRef MangledName = getMangledName(GD);
1547   if (llvm::GlobalValue *GV = GetGlobalValue(MangledName)) {
1548     // The value has already been used and should therefore be emitted.
1549     addDeferredDeclToEmit(GV, GD);
1550   } else if (MustBeEmitted(Global)) {
1551     // The value must be emitted, but cannot be emitted eagerly.
1552     assert(!MayBeEmittedEagerly(Global));
1553     addDeferredDeclToEmit(/*GV=*/nullptr, GD);
1554   } else {
1555     // Otherwise, remember that we saw a deferred decl with this name.  The
1556     // first use of the mangled name will cause it to move into
1557     // DeferredDeclsToEmit.
1558     DeferredDecls[MangledName] = GD;
1559   }
1560 }
1561 
1562 namespace {
1563   struct FunctionIsDirectlyRecursive :
1564     public RecursiveASTVisitor<FunctionIsDirectlyRecursive> {
1565     const StringRef Name;
1566     const Builtin::Context &BI;
1567     bool Result;
1568     FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C) :
1569       Name(N), BI(C), Result(false) {
1570     }
1571     typedef RecursiveASTVisitor<FunctionIsDirectlyRecursive> Base;
1572 
1573     bool TraverseCallExpr(CallExpr *E) {
1574       const FunctionDecl *FD = E->getDirectCallee();
1575       if (!FD)
1576         return true;
1577       AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
1578       if (Attr && Name == Attr->getLabel()) {
1579         Result = true;
1580         return false;
1581       }
1582       unsigned BuiltinID = FD->getBuiltinID();
1583       if (!BuiltinID || !BI.isLibFunction(BuiltinID))
1584         return true;
1585       StringRef BuiltinName = BI.getName(BuiltinID);
1586       if (BuiltinName.startswith("__builtin_") &&
1587           Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) {
1588         Result = true;
1589         return false;
1590       }
1591       return true;
1592     }
1593   };
1594 
1595   struct DLLImportFunctionVisitor
1596       : public RecursiveASTVisitor<DLLImportFunctionVisitor> {
1597     bool SafeToInline = true;
1598 
1599     bool VisitVarDecl(VarDecl *VD) {
1600       // A thread-local variable cannot be imported.
1601       SafeToInline = !VD->getTLSKind();
1602       return SafeToInline;
1603     }
1604 
1605     // Make sure we're not referencing non-imported vars or functions.
1606     bool VisitDeclRefExpr(DeclRefExpr *E) {
1607       ValueDecl *VD = E->getDecl();
1608       if (isa<FunctionDecl>(VD))
1609         SafeToInline = VD->hasAttr<DLLImportAttr>();
1610       else if (VarDecl *V = dyn_cast<VarDecl>(VD))
1611         SafeToInline = !V->hasGlobalStorage() || V->hasAttr<DLLImportAttr>();
1612       return SafeToInline;
1613     }
1614     bool VisitCXXDeleteExpr(CXXDeleteExpr *E) {
1615       SafeToInline = E->getOperatorDelete()->hasAttr<DLLImportAttr>();
1616       return SafeToInline;
1617     }
1618     bool VisitCXXNewExpr(CXXNewExpr *E) {
1619       SafeToInline = E->getOperatorNew()->hasAttr<DLLImportAttr>();
1620       return SafeToInline;
1621     }
1622   };
1623 }
1624 
1625 // isTriviallyRecursive - Check if this function calls another
1626 // decl that, because of the asm attribute or the other decl being a builtin,
1627 // ends up pointing to itself.
1628 bool
1629 CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) {
1630   StringRef Name;
1631   if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) {
1632     // asm labels are a special kind of mangling we have to support.
1633     AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
1634     if (!Attr)
1635       return false;
1636     Name = Attr->getLabel();
1637   } else {
1638     Name = FD->getName();
1639   }
1640 
1641   FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo);
1642   Walker.TraverseFunctionDecl(const_cast<FunctionDecl*>(FD));
1643   return Walker.Result;
1644 }
1645 
1646 bool
1647 CodeGenModule::shouldEmitFunction(GlobalDecl GD) {
1648   if (getFunctionLinkage(GD) != llvm::Function::AvailableExternallyLinkage)
1649     return true;
1650   const auto *F = cast<FunctionDecl>(GD.getDecl());
1651   if (CodeGenOpts.OptimizationLevel == 0 && !F->hasAttr<AlwaysInlineAttr>())
1652     return false;
1653 
1654   if (F->hasAttr<DLLImportAttr>()) {
1655     // Check whether it would be safe to inline this dllimport function.
1656     DLLImportFunctionVisitor Visitor;
1657     Visitor.TraverseFunctionDecl(const_cast<FunctionDecl*>(F));
1658     if (!Visitor.SafeToInline)
1659       return false;
1660   }
1661 
1662   // PR9614. Avoid cases where the source code is lying to us. An available
1663   // externally function should have an equivalent function somewhere else,
1664   // but a function that calls itself is clearly not equivalent to the real
1665   // implementation.
1666   // This happens in glibc's btowc and in some configure checks.
1667   return !isTriviallyRecursive(F);
1668 }
1669 
1670 /// If the type for the method's class was generated by
1671 /// CGDebugInfo::createContextChain(), the cache contains only a
1672 /// limited DIType without any declarations. Since EmitFunctionStart()
1673 /// needs to find the canonical declaration for each method, we need
1674 /// to construct the complete type prior to emitting the method.
1675 void CodeGenModule::CompleteDIClassType(const CXXMethodDecl* D) {
1676   if (!D->isInstance())
1677     return;
1678 
1679   if (CGDebugInfo *DI = getModuleDebugInfo())
1680     if (getCodeGenOpts().getDebugInfo() >= CodeGenOptions::LimitedDebugInfo) {
1681       const auto *ThisPtr = cast<PointerType>(D->getThisType(getContext()));
1682       DI->getOrCreateRecordType(ThisPtr->getPointeeType(), D->getLocation());
1683     }
1684 }
1685 
1686 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD, llvm::GlobalValue *GV) {
1687   const auto *D = cast<ValueDecl>(GD.getDecl());
1688 
1689   PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(),
1690                                  Context.getSourceManager(),
1691                                  "Generating code for declaration");
1692 
1693   if (isa<FunctionDecl>(D)) {
1694     // At -O0, don't generate IR for functions with available_externally
1695     // linkage.
1696     if (!shouldEmitFunction(GD))
1697       return;
1698 
1699     if (const auto *Method = dyn_cast<CXXMethodDecl>(D)) {
1700       CompleteDIClassType(Method);
1701       // Make sure to emit the definition(s) before we emit the thunks.
1702       // This is necessary for the generation of certain thunks.
1703       if (const auto *CD = dyn_cast<CXXConstructorDecl>(Method))
1704         ABI->emitCXXStructor(CD, getFromCtorType(GD.getCtorType()));
1705       else if (const auto *DD = dyn_cast<CXXDestructorDecl>(Method))
1706         ABI->emitCXXStructor(DD, getFromDtorType(GD.getDtorType()));
1707       else
1708         EmitGlobalFunctionDefinition(GD, GV);
1709 
1710       if (Method->isVirtual())
1711         getVTables().EmitThunks(GD);
1712 
1713       return;
1714     }
1715 
1716     return EmitGlobalFunctionDefinition(GD, GV);
1717   }
1718 
1719   if (const auto *VD = dyn_cast<VarDecl>(D))
1720     return EmitGlobalVarDefinition(VD);
1721 
1722   llvm_unreachable("Invalid argument to EmitGlobalDefinition()");
1723 }
1724 
1725 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
1726                                                       llvm::Function *NewFn);
1727 
1728 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the
1729 /// module, create and return an llvm Function with the specified type. If there
1730 /// is something in the module with the specified name, return it potentially
1731 /// bitcasted to the right type.
1732 ///
1733 /// If D is non-null, it specifies a decl that correspond to this.  This is used
1734 /// to set the attributes on the function when it is first created.
1735 llvm::Constant *
1736 CodeGenModule::GetOrCreateLLVMFunction(StringRef MangledName,
1737                                        llvm::Type *Ty,
1738                                        GlobalDecl GD, bool ForVTable,
1739                                        bool DontDefer, bool IsThunk,
1740                                        llvm::AttributeSet ExtraAttrs,
1741                                        bool IsForDefinition) {
1742   const Decl *D = GD.getDecl();
1743 
1744   // Lookup the entry, lazily creating it if necessary.
1745   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
1746   if (Entry) {
1747     if (WeakRefReferences.erase(Entry)) {
1748       const FunctionDecl *FD = cast_or_null<FunctionDecl>(D);
1749       if (FD && !FD->hasAttr<WeakAttr>())
1750         Entry->setLinkage(llvm::Function::ExternalLinkage);
1751     }
1752 
1753     // Handle dropped DLL attributes.
1754     if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>())
1755       Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
1756 
1757     // If there are two attempts to define the same mangled name, issue an
1758     // error.
1759     if (IsForDefinition && !Entry->isDeclaration()) {
1760       GlobalDecl OtherGD;
1761       // Check that GD is not yet in ExplicitDefinitions is required to make
1762       // sure that we issue an error only once.
1763       if (lookupRepresentativeDecl(MangledName, OtherGD) &&
1764           (GD.getCanonicalDecl().getDecl() !=
1765            OtherGD.getCanonicalDecl().getDecl()) &&
1766           DiagnosedConflictingDefinitions.insert(GD).second) {
1767         getDiags().Report(D->getLocation(),
1768                           diag::err_duplicate_mangled_name);
1769         getDiags().Report(OtherGD.getDecl()->getLocation(),
1770                           diag::note_previous_definition);
1771       }
1772     }
1773 
1774     if ((isa<llvm::Function>(Entry) || isa<llvm::GlobalAlias>(Entry)) &&
1775         (Entry->getType()->getElementType() == Ty)) {
1776       return Entry;
1777     }
1778 
1779     // Make sure the result is of the correct type.
1780     // (If function is requested for a definition, we always need to create a new
1781     // function, not just return a bitcast.)
1782     if (!IsForDefinition)
1783       return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo());
1784   }
1785 
1786   // This function doesn't have a complete type (for example, the return
1787   // type is an incomplete struct). Use a fake type instead, and make
1788   // sure not to try to set attributes.
1789   bool IsIncompleteFunction = false;
1790 
1791   llvm::FunctionType *FTy;
1792   if (isa<llvm::FunctionType>(Ty)) {
1793     FTy = cast<llvm::FunctionType>(Ty);
1794   } else {
1795     FTy = llvm::FunctionType::get(VoidTy, false);
1796     IsIncompleteFunction = true;
1797   }
1798 
1799   llvm::Function *F =
1800       llvm::Function::Create(FTy, llvm::Function::ExternalLinkage,
1801                              Entry ? StringRef() : MangledName, &getModule());
1802 
1803   // If we already created a function with the same mangled name (but different
1804   // type) before, take its name and add it to the list of functions to be
1805   // replaced with F at the end of CodeGen.
1806   //
1807   // This happens if there is a prototype for a function (e.g. "int f()") and
1808   // then a definition of a different type (e.g. "int f(int x)").
1809   if (Entry) {
1810     F->takeName(Entry);
1811 
1812     // This might be an implementation of a function without a prototype, in
1813     // which case, try to do special replacement of calls which match the new
1814     // prototype.  The really key thing here is that we also potentially drop
1815     // arguments from the call site so as to make a direct call, which makes the
1816     // inliner happier and suppresses a number of optimizer warnings (!) about
1817     // dropping arguments.
1818     if (!Entry->use_empty()) {
1819       ReplaceUsesOfNonProtoTypeWithRealFunction(Entry, F);
1820       Entry->removeDeadConstantUsers();
1821     }
1822 
1823     llvm::Constant *BC = llvm::ConstantExpr::getBitCast(
1824         F, Entry->getType()->getElementType()->getPointerTo());
1825     addGlobalValReplacement(Entry, BC);
1826   }
1827 
1828   assert(F->getName() == MangledName && "name was uniqued!");
1829   if (D)
1830     SetFunctionAttributes(GD, F, IsIncompleteFunction, IsThunk);
1831   if (ExtraAttrs.hasAttributes(llvm::AttributeSet::FunctionIndex)) {
1832     llvm::AttrBuilder B(ExtraAttrs, llvm::AttributeSet::FunctionIndex);
1833     F->addAttributes(llvm::AttributeSet::FunctionIndex,
1834                      llvm::AttributeSet::get(VMContext,
1835                                              llvm::AttributeSet::FunctionIndex,
1836                                              B));
1837   }
1838 
1839   if (!DontDefer) {
1840     // All MSVC dtors other than the base dtor are linkonce_odr and delegate to
1841     // each other bottoming out with the base dtor.  Therefore we emit non-base
1842     // dtors on usage, even if there is no dtor definition in the TU.
1843     if (D && isa<CXXDestructorDecl>(D) &&
1844         getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D),
1845                                            GD.getDtorType()))
1846       addDeferredDeclToEmit(F, GD);
1847 
1848     // This is the first use or definition of a mangled name.  If there is a
1849     // deferred decl with this name, remember that we need to emit it at the end
1850     // of the file.
1851     auto DDI = DeferredDecls.find(MangledName);
1852     if (DDI != DeferredDecls.end()) {
1853       // Move the potentially referenced deferred decl to the
1854       // DeferredDeclsToEmit list, and remove it from DeferredDecls (since we
1855       // don't need it anymore).
1856       addDeferredDeclToEmit(F, DDI->second);
1857       DeferredDecls.erase(DDI);
1858 
1859       // Otherwise, there are cases we have to worry about where we're
1860       // using a declaration for which we must emit a definition but where
1861       // we might not find a top-level definition:
1862       //   - member functions defined inline in their classes
1863       //   - friend functions defined inline in some class
1864       //   - special member functions with implicit definitions
1865       // If we ever change our AST traversal to walk into class methods,
1866       // this will be unnecessary.
1867       //
1868       // We also don't emit a definition for a function if it's going to be an
1869       // entry in a vtable, unless it's already marked as used.
1870     } else if (getLangOpts().CPlusPlus && D) {
1871       // Look for a declaration that's lexically in a record.
1872       for (const auto *FD = cast<FunctionDecl>(D)->getMostRecentDecl(); FD;
1873            FD = FD->getPreviousDecl()) {
1874         if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) {
1875           if (FD->doesThisDeclarationHaveABody()) {
1876             addDeferredDeclToEmit(F, GD.getWithDecl(FD));
1877             break;
1878           }
1879         }
1880       }
1881     }
1882   }
1883 
1884   // Make sure the result is of the requested type.
1885   if (!IsIncompleteFunction) {
1886     assert(F->getType()->getElementType() == Ty);
1887     return F;
1888   }
1889 
1890   llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
1891   return llvm::ConstantExpr::getBitCast(F, PTy);
1892 }
1893 
1894 /// GetAddrOfFunction - Return the address of the given function.  If Ty is
1895 /// non-null, then this function will use the specified type if it has to
1896 /// create it (this occurs when we see a definition of the function).
1897 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD,
1898                                                  llvm::Type *Ty,
1899                                                  bool ForVTable,
1900                                                  bool DontDefer,
1901                                                  bool IsForDefinition) {
1902   // If there was no specific requested type, just convert it now.
1903   if (!Ty) {
1904     const auto *FD = cast<FunctionDecl>(GD.getDecl());
1905     auto CanonTy = Context.getCanonicalType(FD->getType());
1906     Ty = getTypes().ConvertFunctionType(CanonTy, FD);
1907   }
1908 
1909   StringRef MangledName = getMangledName(GD);
1910   return GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable, DontDefer,
1911                                  /*IsThunk=*/false, llvm::AttributeSet(),
1912                                  IsForDefinition);
1913 }
1914 
1915 /// CreateRuntimeFunction - Create a new runtime function with the specified
1916 /// type and name.
1917 llvm::Constant *
1918 CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy,
1919                                      StringRef Name,
1920                                      llvm::AttributeSet ExtraAttrs) {
1921   llvm::Constant *C =
1922       GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false,
1923                               /*DontDefer=*/false, /*IsThunk=*/false, ExtraAttrs);
1924   if (auto *F = dyn_cast<llvm::Function>(C))
1925     if (F->empty())
1926       F->setCallingConv(getRuntimeCC());
1927   return C;
1928 }
1929 
1930 /// CreateBuiltinFunction - Create a new builtin function with the specified
1931 /// type and name.
1932 llvm::Constant *
1933 CodeGenModule::CreateBuiltinFunction(llvm::FunctionType *FTy,
1934                                      StringRef Name,
1935                                      llvm::AttributeSet ExtraAttrs) {
1936   llvm::Constant *C =
1937       GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false,
1938                               /*DontDefer=*/false, /*IsThunk=*/false, ExtraAttrs);
1939   if (auto *F = dyn_cast<llvm::Function>(C))
1940     if (F->empty())
1941       F->setCallingConv(getBuiltinCC());
1942   return C;
1943 }
1944 
1945 /// isTypeConstant - Determine whether an object of this type can be emitted
1946 /// as a constant.
1947 ///
1948 /// If ExcludeCtor is true, the duration when the object's constructor runs
1949 /// will not be considered. The caller will need to verify that the object is
1950 /// not written to during its construction.
1951 bool CodeGenModule::isTypeConstant(QualType Ty, bool ExcludeCtor) {
1952   if (!Ty.isConstant(Context) && !Ty->isReferenceType())
1953     return false;
1954 
1955   if (Context.getLangOpts().CPlusPlus) {
1956     if (const CXXRecordDecl *Record
1957           = Context.getBaseElementType(Ty)->getAsCXXRecordDecl())
1958       return ExcludeCtor && !Record->hasMutableFields() &&
1959              Record->hasTrivialDestructor();
1960   }
1961 
1962   return true;
1963 }
1964 
1965 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module,
1966 /// create and return an llvm GlobalVariable with the specified type.  If there
1967 /// is something in the module with the specified name, return it potentially
1968 /// bitcasted to the right type.
1969 ///
1970 /// If D is non-null, it specifies a decl that correspond to this.  This is used
1971 /// to set the attributes on the global when it is first created.
1972 llvm::Constant *
1973 CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName,
1974                                      llvm::PointerType *Ty,
1975                                      const VarDecl *D) {
1976   // Lookup the entry, lazily creating it if necessary.
1977   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
1978   if (Entry) {
1979     if (WeakRefReferences.erase(Entry)) {
1980       if (D && !D->hasAttr<WeakAttr>())
1981         Entry->setLinkage(llvm::Function::ExternalLinkage);
1982     }
1983 
1984     // Handle dropped DLL attributes.
1985     if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>())
1986       Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
1987 
1988     if (Entry->getType() == Ty)
1989       return Entry;
1990 
1991     // Make sure the result is of the correct type.
1992     if (Entry->getType()->getAddressSpace() != Ty->getAddressSpace())
1993       return llvm::ConstantExpr::getAddrSpaceCast(Entry, Ty);
1994 
1995     return llvm::ConstantExpr::getBitCast(Entry, Ty);
1996   }
1997 
1998   unsigned AddrSpace = GetGlobalVarAddressSpace(D, Ty->getAddressSpace());
1999   auto *GV = new llvm::GlobalVariable(
2000       getModule(), Ty->getElementType(), false,
2001       llvm::GlobalValue::ExternalLinkage, nullptr, MangledName, nullptr,
2002       llvm::GlobalVariable::NotThreadLocal, AddrSpace);
2003 
2004   // This is the first use or definition of a mangled name.  If there is a
2005   // deferred decl with this name, remember that we need to emit it at the end
2006   // of the file.
2007   auto DDI = DeferredDecls.find(MangledName);
2008   if (DDI != DeferredDecls.end()) {
2009     // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
2010     // list, and remove it from DeferredDecls (since we don't need it anymore).
2011     addDeferredDeclToEmit(GV, DDI->second);
2012     DeferredDecls.erase(DDI);
2013   }
2014 
2015   // Handle things which are present even on external declarations.
2016   if (D) {
2017     // FIXME: This code is overly simple and should be merged with other global
2018     // handling.
2019     GV->setConstant(isTypeConstant(D->getType(), false));
2020 
2021     GV->setAlignment(getContext().getDeclAlign(D).getQuantity());
2022 
2023     setLinkageAndVisibilityForGV(GV, D);
2024 
2025     if (D->getTLSKind()) {
2026       if (D->getTLSKind() == VarDecl::TLS_Dynamic)
2027         CXXThreadLocals.push_back(D);
2028       setTLSMode(GV, *D);
2029     }
2030 
2031     // If required by the ABI, treat declarations of static data members with
2032     // inline initializers as definitions.
2033     if (getContext().isMSStaticDataMemberInlineDefinition(D)) {
2034       EmitGlobalVarDefinition(D);
2035     }
2036 
2037     // Handle XCore specific ABI requirements.
2038     if (getTarget().getTriple().getArch() == llvm::Triple::xcore &&
2039         D->getLanguageLinkage() == CLanguageLinkage &&
2040         D->getType().isConstant(Context) &&
2041         isExternallyVisible(D->getLinkageAndVisibility().getLinkage()))
2042       GV->setSection(".cp.rodata");
2043   }
2044 
2045   if (AddrSpace != Ty->getAddressSpace())
2046     return llvm::ConstantExpr::getAddrSpaceCast(GV, Ty);
2047 
2048   return GV;
2049 }
2050 
2051 llvm::Constant *
2052 CodeGenModule::GetAddrOfGlobal(GlobalDecl GD,
2053                                bool IsForDefinition) {
2054   if (isa<CXXConstructorDecl>(GD.getDecl()))
2055     return getAddrOfCXXStructor(cast<CXXConstructorDecl>(GD.getDecl()),
2056                                 getFromCtorType(GD.getCtorType()),
2057                                 /*FnInfo=*/nullptr, /*FnType=*/nullptr,
2058                                 /*DontDefer=*/false, IsForDefinition);
2059   else if (isa<CXXDestructorDecl>(GD.getDecl()))
2060     return getAddrOfCXXStructor(cast<CXXDestructorDecl>(GD.getDecl()),
2061                                 getFromDtorType(GD.getDtorType()),
2062                                 /*FnInfo=*/nullptr, /*FnType=*/nullptr,
2063                                 /*DontDefer=*/false, IsForDefinition);
2064   else if (isa<CXXMethodDecl>(GD.getDecl())) {
2065     auto FInfo = &getTypes().arrangeCXXMethodDeclaration(
2066         cast<CXXMethodDecl>(GD.getDecl()));
2067     auto Ty = getTypes().GetFunctionType(*FInfo);
2068     return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false,
2069                              IsForDefinition);
2070   } else if (isa<FunctionDecl>(GD.getDecl())) {
2071     const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
2072     llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
2073     return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false,
2074                              IsForDefinition);
2075   } else
2076     return GetAddrOfGlobalVar(cast<VarDecl>(GD.getDecl()));
2077 }
2078 
2079 llvm::GlobalVariable *
2080 CodeGenModule::CreateOrReplaceCXXRuntimeVariable(StringRef Name,
2081                                       llvm::Type *Ty,
2082                                       llvm::GlobalValue::LinkageTypes Linkage) {
2083   llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name);
2084   llvm::GlobalVariable *OldGV = nullptr;
2085 
2086   if (GV) {
2087     // Check if the variable has the right type.
2088     if (GV->getType()->getElementType() == Ty)
2089       return GV;
2090 
2091     // Because C++ name mangling, the only way we can end up with an already
2092     // existing global with the same name is if it has been declared extern "C".
2093     assert(GV->isDeclaration() && "Declaration has wrong type!");
2094     OldGV = GV;
2095   }
2096 
2097   // Create a new variable.
2098   GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true,
2099                                 Linkage, nullptr, Name);
2100 
2101   if (OldGV) {
2102     // Replace occurrences of the old variable if needed.
2103     GV->takeName(OldGV);
2104 
2105     if (!OldGV->use_empty()) {
2106       llvm::Constant *NewPtrForOldDecl =
2107       llvm::ConstantExpr::getBitCast(GV, OldGV->getType());
2108       OldGV->replaceAllUsesWith(NewPtrForOldDecl);
2109     }
2110 
2111     OldGV->eraseFromParent();
2112   }
2113 
2114   if (supportsCOMDAT() && GV->isWeakForLinker() &&
2115       !GV->hasAvailableExternallyLinkage())
2116     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
2117 
2118   return GV;
2119 }
2120 
2121 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the
2122 /// given global variable.  If Ty is non-null and if the global doesn't exist,
2123 /// then it will be created with the specified type instead of whatever the
2124 /// normal requested type would be.
2125 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D,
2126                                                   llvm::Type *Ty) {
2127   assert(D->hasGlobalStorage() && "Not a global variable");
2128   QualType ASTTy = D->getType();
2129   if (!Ty)
2130     Ty = getTypes().ConvertTypeForMem(ASTTy);
2131 
2132   llvm::PointerType *PTy =
2133     llvm::PointerType::get(Ty, getContext().getTargetAddressSpace(ASTTy));
2134 
2135   StringRef MangledName = getMangledName(D);
2136   return GetOrCreateLLVMGlobal(MangledName, PTy, D);
2137 }
2138 
2139 /// CreateRuntimeVariable - Create a new runtime global variable with the
2140 /// specified type and name.
2141 llvm::Constant *
2142 CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty,
2143                                      StringRef Name) {
2144   return GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), nullptr);
2145 }
2146 
2147 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) {
2148   assert(!D->getInit() && "Cannot emit definite definitions here!");
2149 
2150   if (!MustBeEmitted(D)) {
2151     // If we have not seen a reference to this variable yet, place it
2152     // into the deferred declarations table to be emitted if needed
2153     // later.
2154     StringRef MangledName = getMangledName(D);
2155     if (!GetGlobalValue(MangledName)) {
2156       DeferredDecls[MangledName] = D;
2157       return;
2158     }
2159   }
2160 
2161   // The tentative definition is the only definition.
2162   EmitGlobalVarDefinition(D);
2163 }
2164 
2165 CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const {
2166   return Context.toCharUnitsFromBits(
2167       getDataLayout().getTypeStoreSizeInBits(Ty));
2168 }
2169 
2170 unsigned CodeGenModule::GetGlobalVarAddressSpace(const VarDecl *D,
2171                                                  unsigned AddrSpace) {
2172   if (LangOpts.CUDA && LangOpts.CUDAIsDevice) {
2173     if (D->hasAttr<CUDAConstantAttr>())
2174       AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_constant);
2175     else if (D->hasAttr<CUDASharedAttr>())
2176       AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_shared);
2177     else
2178       AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_device);
2179   }
2180 
2181   return AddrSpace;
2182 }
2183 
2184 template<typename SomeDecl>
2185 void CodeGenModule::MaybeHandleStaticInExternC(const SomeDecl *D,
2186                                                llvm::GlobalValue *GV) {
2187   if (!getLangOpts().CPlusPlus)
2188     return;
2189 
2190   // Must have 'used' attribute, or else inline assembly can't rely on
2191   // the name existing.
2192   if (!D->template hasAttr<UsedAttr>())
2193     return;
2194 
2195   // Must have internal linkage and an ordinary name.
2196   if (!D->getIdentifier() || D->getFormalLinkage() != InternalLinkage)
2197     return;
2198 
2199   // Must be in an extern "C" context. Entities declared directly within
2200   // a record are not extern "C" even if the record is in such a context.
2201   const SomeDecl *First = D->getFirstDecl();
2202   if (First->getDeclContext()->isRecord() || !First->isInExternCContext())
2203     return;
2204 
2205   // OK, this is an internal linkage entity inside an extern "C" linkage
2206   // specification. Make a note of that so we can give it the "expected"
2207   // mangled name if nothing else is using that name.
2208   std::pair<StaticExternCMap::iterator, bool> R =
2209       StaticExternCValues.insert(std::make_pair(D->getIdentifier(), GV));
2210 
2211   // If we have multiple internal linkage entities with the same name
2212   // in extern "C" regions, none of them gets that name.
2213   if (!R.second)
2214     R.first->second = nullptr;
2215 }
2216 
2217 static bool shouldBeInCOMDAT(CodeGenModule &CGM, const Decl &D) {
2218   if (!CGM.supportsCOMDAT())
2219     return false;
2220 
2221   if (D.hasAttr<SelectAnyAttr>())
2222     return true;
2223 
2224   GVALinkage Linkage;
2225   if (auto *VD = dyn_cast<VarDecl>(&D))
2226     Linkage = CGM.getContext().GetGVALinkageForVariable(VD);
2227   else
2228     Linkage = CGM.getContext().GetGVALinkageForFunction(cast<FunctionDecl>(&D));
2229 
2230   switch (Linkage) {
2231   case GVA_Internal:
2232   case GVA_AvailableExternally:
2233   case GVA_StrongExternal:
2234     return false;
2235   case GVA_DiscardableODR:
2236   case GVA_StrongODR:
2237     return true;
2238   }
2239   llvm_unreachable("No such linkage");
2240 }
2241 
2242 void CodeGenModule::maybeSetTrivialComdat(const Decl &D,
2243                                           llvm::GlobalObject &GO) {
2244   if (!shouldBeInCOMDAT(*this, D))
2245     return;
2246   GO.setComdat(TheModule.getOrInsertComdat(GO.getName()));
2247 }
2248 
2249 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D) {
2250   llvm::Constant *Init = nullptr;
2251   QualType ASTTy = D->getType();
2252   CXXRecordDecl *RD = ASTTy->getBaseElementTypeUnsafe()->getAsCXXRecordDecl();
2253   bool NeedsGlobalCtor = false;
2254   bool NeedsGlobalDtor = RD && !RD->hasTrivialDestructor();
2255 
2256   const VarDecl *InitDecl;
2257   const Expr *InitExpr = D->getAnyInitializer(InitDecl);
2258 
2259   // CUDA E.2.4.1 "__shared__ variables cannot have an initialization as part
2260   // of their declaration."
2261   if (getLangOpts().CPlusPlus && getLangOpts().CUDAIsDevice
2262       && D->hasAttr<CUDASharedAttr>()) {
2263     if (InitExpr) {
2264       const auto *C = dyn_cast<CXXConstructExpr>(InitExpr);
2265       if (C == nullptr || !C->getConstructor()->hasTrivialBody())
2266         Error(D->getLocation(),
2267               "__shared__ variable cannot have an initialization.");
2268     }
2269     Init = llvm::UndefValue::get(getTypes().ConvertType(ASTTy));
2270   } else if (!InitExpr) {
2271     // This is a tentative definition; tentative definitions are
2272     // implicitly initialized with { 0 }.
2273     //
2274     // Note that tentative definitions are only emitted at the end of
2275     // a translation unit, so they should never have incomplete
2276     // type. In addition, EmitTentativeDefinition makes sure that we
2277     // never attempt to emit a tentative definition if a real one
2278     // exists. A use may still exists, however, so we still may need
2279     // to do a RAUW.
2280     assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type");
2281     Init = EmitNullConstant(D->getType());
2282   } else {
2283     initializedGlobalDecl = GlobalDecl(D);
2284     Init = EmitConstantInit(*InitDecl);
2285 
2286     if (!Init) {
2287       QualType T = InitExpr->getType();
2288       if (D->getType()->isReferenceType())
2289         T = D->getType();
2290 
2291       if (getLangOpts().CPlusPlus) {
2292         Init = EmitNullConstant(T);
2293         NeedsGlobalCtor = true;
2294       } else {
2295         ErrorUnsupported(D, "static initializer");
2296         Init = llvm::UndefValue::get(getTypes().ConvertType(T));
2297       }
2298     } else {
2299       // We don't need an initializer, so remove the entry for the delayed
2300       // initializer position (just in case this entry was delayed) if we
2301       // also don't need to register a destructor.
2302       if (getLangOpts().CPlusPlus && !NeedsGlobalDtor)
2303         DelayedCXXInitPosition.erase(D);
2304     }
2305   }
2306 
2307   llvm::Type* InitType = Init->getType();
2308   llvm::Constant *Entry = GetAddrOfGlobalVar(D, InitType);
2309 
2310   // Strip off a bitcast if we got one back.
2311   if (auto *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
2312     assert(CE->getOpcode() == llvm::Instruction::BitCast ||
2313            CE->getOpcode() == llvm::Instruction::AddrSpaceCast ||
2314            // All zero index gep.
2315            CE->getOpcode() == llvm::Instruction::GetElementPtr);
2316     Entry = CE->getOperand(0);
2317   }
2318 
2319   // Entry is now either a Function or GlobalVariable.
2320   auto *GV = dyn_cast<llvm::GlobalVariable>(Entry);
2321 
2322   // We have a definition after a declaration with the wrong type.
2323   // We must make a new GlobalVariable* and update everything that used OldGV
2324   // (a declaration or tentative definition) with the new GlobalVariable*
2325   // (which will be a definition).
2326   //
2327   // This happens if there is a prototype for a global (e.g.
2328   // "extern int x[];") and then a definition of a different type (e.g.
2329   // "int x[10];"). This also happens when an initializer has a different type
2330   // from the type of the global (this happens with unions).
2331   if (!GV ||
2332       GV->getType()->getElementType() != InitType ||
2333       GV->getType()->getAddressSpace() !=
2334        GetGlobalVarAddressSpace(D, getContext().getTargetAddressSpace(ASTTy))) {
2335 
2336     // Move the old entry aside so that we'll create a new one.
2337     Entry->setName(StringRef());
2338 
2339     // Make a new global with the correct type, this is now guaranteed to work.
2340     GV = cast<llvm::GlobalVariable>(GetAddrOfGlobalVar(D, InitType));
2341 
2342     // Replace all uses of the old global with the new global
2343     llvm::Constant *NewPtrForOldDecl =
2344         llvm::ConstantExpr::getBitCast(GV, Entry->getType());
2345     Entry->replaceAllUsesWith(NewPtrForOldDecl);
2346 
2347     // Erase the old global, since it is no longer used.
2348     cast<llvm::GlobalValue>(Entry)->eraseFromParent();
2349   }
2350 
2351   MaybeHandleStaticInExternC(D, GV);
2352 
2353   if (D->hasAttr<AnnotateAttr>())
2354     AddGlobalAnnotations(D, GV);
2355 
2356   // CUDA B.2.1 "The __device__ qualifier declares a variable that resides on
2357   // the device. [...]"
2358   // CUDA B.2.2 "The __constant__ qualifier, optionally used together with
2359   // __device__, declares a variable that: [...]
2360   // Is accessible from all the threads within the grid and from the host
2361   // through the runtime library (cudaGetSymbolAddress() / cudaGetSymbolSize()
2362   // / cudaMemcpyToSymbol() / cudaMemcpyFromSymbol())."
2363   if (GV && LangOpts.CUDA && LangOpts.CUDAIsDevice &&
2364       (D->hasAttr<CUDAConstantAttr>() || D->hasAttr<CUDADeviceAttr>())) {
2365     GV->setExternallyInitialized(true);
2366   }
2367   GV->setInitializer(Init);
2368 
2369   // If it is safe to mark the global 'constant', do so now.
2370   GV->setConstant(!NeedsGlobalCtor && !NeedsGlobalDtor &&
2371                   isTypeConstant(D->getType(), true));
2372 
2373   // If it is in a read-only section, mark it 'constant'.
2374   if (const SectionAttr *SA = D->getAttr<SectionAttr>()) {
2375     const ASTContext::SectionInfo &SI = Context.SectionInfos[SA->getName()];
2376     if ((SI.SectionFlags & ASTContext::PSF_Write) == 0)
2377       GV->setConstant(true);
2378   }
2379 
2380   GV->setAlignment(getContext().getDeclAlign(D).getQuantity());
2381 
2382   // Set the llvm linkage type as appropriate.
2383   llvm::GlobalValue::LinkageTypes Linkage =
2384       getLLVMLinkageVarDefinition(D, GV->isConstant());
2385 
2386   // On Darwin, if the normal linkage of a C++ thread_local variable is
2387   // LinkOnce or Weak, we keep the normal linkage to prevent multiple
2388   // copies within a linkage unit; otherwise, the backing variable has
2389   // internal linkage and all accesses should just be calls to the
2390   // Itanium-specified entry point, which has the normal linkage of the
2391   // variable. This is to preserve the ability to change the implementation
2392   // behind the scenes.
2393   if (!D->isStaticLocal() && D->getTLSKind() == VarDecl::TLS_Dynamic &&
2394       Context.getTargetInfo().getTriple().isOSDarwin() &&
2395       !llvm::GlobalVariable::isLinkOnceLinkage(Linkage) &&
2396       !llvm::GlobalVariable::isWeakLinkage(Linkage))
2397     Linkage = llvm::GlobalValue::InternalLinkage;
2398 
2399   GV->setLinkage(Linkage);
2400   if (D->hasAttr<DLLImportAttr>())
2401     GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass);
2402   else if (D->hasAttr<DLLExportAttr>())
2403     GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass);
2404   else
2405     GV->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass);
2406 
2407   if (Linkage == llvm::GlobalVariable::CommonLinkage)
2408     // common vars aren't constant even if declared const.
2409     GV->setConstant(false);
2410 
2411   setNonAliasAttributes(D, GV);
2412 
2413   if (D->getTLSKind() && !GV->isThreadLocal()) {
2414     if (D->getTLSKind() == VarDecl::TLS_Dynamic)
2415       CXXThreadLocals.push_back(D);
2416     setTLSMode(GV, *D);
2417   }
2418 
2419   maybeSetTrivialComdat(*D, *GV);
2420 
2421   // Emit the initializer function if necessary.
2422   if (NeedsGlobalCtor || NeedsGlobalDtor)
2423     EmitCXXGlobalVarDeclInitFunc(D, GV, NeedsGlobalCtor);
2424 
2425   SanitizerMD->reportGlobalToASan(GV, *D, NeedsGlobalCtor);
2426 
2427   // Emit global variable debug information.
2428   if (CGDebugInfo *DI = getModuleDebugInfo())
2429     if (getCodeGenOpts().getDebugInfo() >= CodeGenOptions::LimitedDebugInfo)
2430       DI->EmitGlobalVariable(GV, D);
2431 }
2432 
2433 static bool isVarDeclStrongDefinition(const ASTContext &Context,
2434                                       CodeGenModule &CGM, const VarDecl *D,
2435                                       bool NoCommon) {
2436   // Don't give variables common linkage if -fno-common was specified unless it
2437   // was overridden by a NoCommon attribute.
2438   if ((NoCommon || D->hasAttr<NoCommonAttr>()) && !D->hasAttr<CommonAttr>())
2439     return true;
2440 
2441   // C11 6.9.2/2:
2442   //   A declaration of an identifier for an object that has file scope without
2443   //   an initializer, and without a storage-class specifier or with the
2444   //   storage-class specifier static, constitutes a tentative definition.
2445   if (D->getInit() || D->hasExternalStorage())
2446     return true;
2447 
2448   // A variable cannot be both common and exist in a section.
2449   if (D->hasAttr<SectionAttr>())
2450     return true;
2451 
2452   // Thread local vars aren't considered common linkage.
2453   if (D->getTLSKind())
2454     return true;
2455 
2456   // Tentative definitions marked with WeakImportAttr are true definitions.
2457   if (D->hasAttr<WeakImportAttr>())
2458     return true;
2459 
2460   // A variable cannot be both common and exist in a comdat.
2461   if (shouldBeInCOMDAT(CGM, *D))
2462     return true;
2463 
2464   // Declarations with a required alignment do not have common linakge in MSVC
2465   // mode.
2466   if (Context.getTargetInfo().getCXXABI().isMicrosoft()) {
2467     if (D->hasAttr<AlignedAttr>())
2468       return true;
2469     QualType VarType = D->getType();
2470     if (Context.isAlignmentRequired(VarType))
2471       return true;
2472 
2473     if (const auto *RT = VarType->getAs<RecordType>()) {
2474       const RecordDecl *RD = RT->getDecl();
2475       for (const FieldDecl *FD : RD->fields()) {
2476         if (FD->isBitField())
2477           continue;
2478         if (FD->hasAttr<AlignedAttr>())
2479           return true;
2480         if (Context.isAlignmentRequired(FD->getType()))
2481           return true;
2482       }
2483     }
2484   }
2485 
2486   return false;
2487 }
2488 
2489 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageForDeclarator(
2490     const DeclaratorDecl *D, GVALinkage Linkage, bool IsConstantVariable) {
2491   if (Linkage == GVA_Internal)
2492     return llvm::Function::InternalLinkage;
2493 
2494   if (D->hasAttr<WeakAttr>()) {
2495     if (IsConstantVariable)
2496       return llvm::GlobalVariable::WeakODRLinkage;
2497     else
2498       return llvm::GlobalVariable::WeakAnyLinkage;
2499   }
2500 
2501   // We are guaranteed to have a strong definition somewhere else,
2502   // so we can use available_externally linkage.
2503   if (Linkage == GVA_AvailableExternally)
2504     return llvm::Function::AvailableExternallyLinkage;
2505 
2506   // Note that Apple's kernel linker doesn't support symbol
2507   // coalescing, so we need to avoid linkonce and weak linkages there.
2508   // Normally, this means we just map to internal, but for explicit
2509   // instantiations we'll map to external.
2510 
2511   // In C++, the compiler has to emit a definition in every translation unit
2512   // that references the function.  We should use linkonce_odr because
2513   // a) if all references in this translation unit are optimized away, we
2514   // don't need to codegen it.  b) if the function persists, it needs to be
2515   // merged with other definitions. c) C++ has the ODR, so we know the
2516   // definition is dependable.
2517   if (Linkage == GVA_DiscardableODR)
2518     return !Context.getLangOpts().AppleKext ? llvm::Function::LinkOnceODRLinkage
2519                                             : llvm::Function::InternalLinkage;
2520 
2521   // An explicit instantiation of a template has weak linkage, since
2522   // explicit instantiations can occur in multiple translation units
2523   // and must all be equivalent. However, we are not allowed to
2524   // throw away these explicit instantiations.
2525   if (Linkage == GVA_StrongODR)
2526     return !Context.getLangOpts().AppleKext ? llvm::Function::WeakODRLinkage
2527                                             : llvm::Function::ExternalLinkage;
2528 
2529   // C++ doesn't have tentative definitions and thus cannot have common
2530   // linkage.
2531   if (!getLangOpts().CPlusPlus && isa<VarDecl>(D) &&
2532       !isVarDeclStrongDefinition(Context, *this, cast<VarDecl>(D),
2533                                  CodeGenOpts.NoCommon))
2534     return llvm::GlobalVariable::CommonLinkage;
2535 
2536   // selectany symbols are externally visible, so use weak instead of
2537   // linkonce.  MSVC optimizes away references to const selectany globals, so
2538   // all definitions should be the same and ODR linkage should be used.
2539   // http://msdn.microsoft.com/en-us/library/5tkz6s71.aspx
2540   if (D->hasAttr<SelectAnyAttr>())
2541     return llvm::GlobalVariable::WeakODRLinkage;
2542 
2543   // Otherwise, we have strong external linkage.
2544   assert(Linkage == GVA_StrongExternal);
2545   return llvm::GlobalVariable::ExternalLinkage;
2546 }
2547 
2548 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageVarDefinition(
2549     const VarDecl *VD, bool IsConstant) {
2550   GVALinkage Linkage = getContext().GetGVALinkageForVariable(VD);
2551   return getLLVMLinkageForDeclarator(VD, Linkage, IsConstant);
2552 }
2553 
2554 /// Replace the uses of a function that was declared with a non-proto type.
2555 /// We want to silently drop extra arguments from call sites
2556 static void replaceUsesOfNonProtoConstant(llvm::Constant *old,
2557                                           llvm::Function *newFn) {
2558   // Fast path.
2559   if (old->use_empty()) return;
2560 
2561   llvm::Type *newRetTy = newFn->getReturnType();
2562   SmallVector<llvm::Value*, 4> newArgs;
2563   SmallVector<llvm::OperandBundleDef, 1> newBundles;
2564 
2565   for (llvm::Value::use_iterator ui = old->use_begin(), ue = old->use_end();
2566          ui != ue; ) {
2567     llvm::Value::use_iterator use = ui++; // Increment before the use is erased.
2568     llvm::User *user = use->getUser();
2569 
2570     // Recognize and replace uses of bitcasts.  Most calls to
2571     // unprototyped functions will use bitcasts.
2572     if (auto *bitcast = dyn_cast<llvm::ConstantExpr>(user)) {
2573       if (bitcast->getOpcode() == llvm::Instruction::BitCast)
2574         replaceUsesOfNonProtoConstant(bitcast, newFn);
2575       continue;
2576     }
2577 
2578     // Recognize calls to the function.
2579     llvm::CallSite callSite(user);
2580     if (!callSite) continue;
2581     if (!callSite.isCallee(&*use)) continue;
2582 
2583     // If the return types don't match exactly, then we can't
2584     // transform this call unless it's dead.
2585     if (callSite->getType() != newRetTy && !callSite->use_empty())
2586       continue;
2587 
2588     // Get the call site's attribute list.
2589     SmallVector<llvm::AttributeSet, 8> newAttrs;
2590     llvm::AttributeSet oldAttrs = callSite.getAttributes();
2591 
2592     // Collect any return attributes from the call.
2593     if (oldAttrs.hasAttributes(llvm::AttributeSet::ReturnIndex))
2594       newAttrs.push_back(
2595         llvm::AttributeSet::get(newFn->getContext(),
2596                                 oldAttrs.getRetAttributes()));
2597 
2598     // If the function was passed too few arguments, don't transform.
2599     unsigned newNumArgs = newFn->arg_size();
2600     if (callSite.arg_size() < newNumArgs) continue;
2601 
2602     // If extra arguments were passed, we silently drop them.
2603     // If any of the types mismatch, we don't transform.
2604     unsigned argNo = 0;
2605     bool dontTransform = false;
2606     for (llvm::Function::arg_iterator ai = newFn->arg_begin(),
2607            ae = newFn->arg_end(); ai != ae; ++ai, ++argNo) {
2608       if (callSite.getArgument(argNo)->getType() != ai->getType()) {
2609         dontTransform = true;
2610         break;
2611       }
2612 
2613       // Add any parameter attributes.
2614       if (oldAttrs.hasAttributes(argNo + 1))
2615         newAttrs.
2616           push_back(llvm::
2617                     AttributeSet::get(newFn->getContext(),
2618                                       oldAttrs.getParamAttributes(argNo + 1)));
2619     }
2620     if (dontTransform)
2621       continue;
2622 
2623     if (oldAttrs.hasAttributes(llvm::AttributeSet::FunctionIndex))
2624       newAttrs.push_back(llvm::AttributeSet::get(newFn->getContext(),
2625                                                  oldAttrs.getFnAttributes()));
2626 
2627     // Okay, we can transform this.  Create the new call instruction and copy
2628     // over the required information.
2629     newArgs.append(callSite.arg_begin(), callSite.arg_begin() + argNo);
2630 
2631     // Copy over any operand bundles.
2632     callSite.getOperandBundlesAsDefs(newBundles);
2633 
2634     llvm::CallSite newCall;
2635     if (callSite.isCall()) {
2636       newCall = llvm::CallInst::Create(newFn, newArgs, newBundles, "",
2637                                        callSite.getInstruction());
2638     } else {
2639       auto *oldInvoke = cast<llvm::InvokeInst>(callSite.getInstruction());
2640       newCall = llvm::InvokeInst::Create(newFn,
2641                                          oldInvoke->getNormalDest(),
2642                                          oldInvoke->getUnwindDest(),
2643                                          newArgs, newBundles, "",
2644                                          callSite.getInstruction());
2645     }
2646     newArgs.clear(); // for the next iteration
2647 
2648     if (!newCall->getType()->isVoidTy())
2649       newCall->takeName(callSite.getInstruction());
2650     newCall.setAttributes(
2651                      llvm::AttributeSet::get(newFn->getContext(), newAttrs));
2652     newCall.setCallingConv(callSite.getCallingConv());
2653 
2654     // Finally, remove the old call, replacing any uses with the new one.
2655     if (!callSite->use_empty())
2656       callSite->replaceAllUsesWith(newCall.getInstruction());
2657 
2658     // Copy debug location attached to CI.
2659     if (callSite->getDebugLoc())
2660       newCall->setDebugLoc(callSite->getDebugLoc());
2661 
2662     callSite->eraseFromParent();
2663   }
2664 }
2665 
2666 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we
2667 /// implement a function with no prototype, e.g. "int foo() {}".  If there are
2668 /// existing call uses of the old function in the module, this adjusts them to
2669 /// call the new function directly.
2670 ///
2671 /// This is not just a cleanup: the always_inline pass requires direct calls to
2672 /// functions to be able to inline them.  If there is a bitcast in the way, it
2673 /// won't inline them.  Instcombine normally deletes these calls, but it isn't
2674 /// run at -O0.
2675 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
2676                                                       llvm::Function *NewFn) {
2677   // If we're redefining a global as a function, don't transform it.
2678   if (!isa<llvm::Function>(Old)) return;
2679 
2680   replaceUsesOfNonProtoConstant(Old, NewFn);
2681 }
2682 
2683 void CodeGenModule::HandleCXXStaticMemberVarInstantiation(VarDecl *VD) {
2684   TemplateSpecializationKind TSK = VD->getTemplateSpecializationKind();
2685   // If we have a definition, this might be a deferred decl. If the
2686   // instantiation is explicit, make sure we emit it at the end.
2687   if (VD->getDefinition() && TSK == TSK_ExplicitInstantiationDefinition)
2688     GetAddrOfGlobalVar(VD);
2689 
2690   EmitTopLevelDecl(VD);
2691 }
2692 
2693 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD,
2694                                                  llvm::GlobalValue *GV) {
2695   const auto *D = cast<FunctionDecl>(GD.getDecl());
2696 
2697   // Compute the function info and LLVM type.
2698   const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
2699   llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
2700 
2701   // Get or create the prototype for the function.
2702   if (!GV || (GV->getType()->getElementType() != Ty))
2703     GV = cast<llvm::GlobalValue>(GetAddrOfFunction(GD, Ty, /*ForVTable=*/false,
2704                                                    /*DontDefer=*/true,
2705                                                    /*IsForDefinition=*/true));
2706 
2707   // Already emitted.
2708   if (!GV->isDeclaration())
2709     return;
2710 
2711   // We need to set linkage and visibility on the function before
2712   // generating code for it because various parts of IR generation
2713   // want to propagate this information down (e.g. to local static
2714   // declarations).
2715   auto *Fn = cast<llvm::Function>(GV);
2716   setFunctionLinkage(GD, Fn);
2717   setFunctionDLLStorageClass(GD, Fn);
2718 
2719   // FIXME: this is redundant with part of setFunctionDefinitionAttributes
2720   setGlobalVisibility(Fn, D);
2721 
2722   MaybeHandleStaticInExternC(D, Fn);
2723 
2724   maybeSetTrivialComdat(*D, *Fn);
2725 
2726   CodeGenFunction(*this).GenerateCode(D, Fn, FI);
2727 
2728   setFunctionDefinitionAttributes(D, Fn);
2729   SetLLVMFunctionAttributesForDefinition(D, Fn);
2730 
2731   if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>())
2732     AddGlobalCtor(Fn, CA->getPriority());
2733   if (const DestructorAttr *DA = D->getAttr<DestructorAttr>())
2734     AddGlobalDtor(Fn, DA->getPriority());
2735   if (D->hasAttr<AnnotateAttr>())
2736     AddGlobalAnnotations(D, Fn);
2737 }
2738 
2739 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) {
2740   const auto *D = cast<ValueDecl>(GD.getDecl());
2741   const AliasAttr *AA = D->getAttr<AliasAttr>();
2742   assert(AA && "Not an alias?");
2743 
2744   StringRef MangledName = getMangledName(GD);
2745 
2746   if (AA->getAliasee() == MangledName) {
2747     Diags.Report(AA->getLocation(), diag::err_cyclic_alias);
2748     return;
2749   }
2750 
2751   // If there is a definition in the module, then it wins over the alias.
2752   // This is dubious, but allow it to be safe.  Just ignore the alias.
2753   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
2754   if (Entry && !Entry->isDeclaration())
2755     return;
2756 
2757   Aliases.push_back(GD);
2758 
2759   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
2760 
2761   // Create a reference to the named value.  This ensures that it is emitted
2762   // if a deferred decl.
2763   llvm::Constant *Aliasee;
2764   if (isa<llvm::FunctionType>(DeclTy))
2765     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GD,
2766                                       /*ForVTable=*/false);
2767   else
2768     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
2769                                     llvm::PointerType::getUnqual(DeclTy),
2770                                     /*D=*/nullptr);
2771 
2772   // Create the new alias itself, but don't set a name yet.
2773   auto *GA = llvm::GlobalAlias::create(
2774       DeclTy, 0, llvm::Function::ExternalLinkage, "", Aliasee, &getModule());
2775 
2776   if (Entry) {
2777     if (GA->getAliasee() == Entry) {
2778       Diags.Report(AA->getLocation(), diag::err_cyclic_alias);
2779       return;
2780     }
2781 
2782     assert(Entry->isDeclaration());
2783 
2784     // If there is a declaration in the module, then we had an extern followed
2785     // by the alias, as in:
2786     //   extern int test6();
2787     //   ...
2788     //   int test6() __attribute__((alias("test7")));
2789     //
2790     // Remove it and replace uses of it with the alias.
2791     GA->takeName(Entry);
2792 
2793     Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA,
2794                                                           Entry->getType()));
2795     Entry->eraseFromParent();
2796   } else {
2797     GA->setName(MangledName);
2798   }
2799 
2800   // Set attributes which are particular to an alias; this is a
2801   // specialization of the attributes which may be set on a global
2802   // variable/function.
2803   if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakRefAttr>() ||
2804       D->isWeakImported()) {
2805     GA->setLinkage(llvm::Function::WeakAnyLinkage);
2806   }
2807 
2808   if (const auto *VD = dyn_cast<VarDecl>(D))
2809     if (VD->getTLSKind())
2810       setTLSMode(GA, *VD);
2811 
2812   setAliasAttributes(D, GA);
2813 }
2814 
2815 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,
2816                                             ArrayRef<llvm::Type*> Tys) {
2817   return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID,
2818                                          Tys);
2819 }
2820 
2821 static llvm::StringMapEntry<llvm::GlobalVariable *> &
2822 GetConstantCFStringEntry(llvm::StringMap<llvm::GlobalVariable *> &Map,
2823                          const StringLiteral *Literal, bool TargetIsLSB,
2824                          bool &IsUTF16, unsigned &StringLength) {
2825   StringRef String = Literal->getString();
2826   unsigned NumBytes = String.size();
2827 
2828   // Check for simple case.
2829   if (!Literal->containsNonAsciiOrNull()) {
2830     StringLength = NumBytes;
2831     return *Map.insert(std::make_pair(String, nullptr)).first;
2832   }
2833 
2834   // Otherwise, convert the UTF8 literals into a string of shorts.
2835   IsUTF16 = true;
2836 
2837   SmallVector<UTF16, 128> ToBuf(NumBytes + 1); // +1 for ending nulls.
2838   const UTF8 *FromPtr = (const UTF8 *)String.data();
2839   UTF16 *ToPtr = &ToBuf[0];
2840 
2841   (void)ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes,
2842                            &ToPtr, ToPtr + NumBytes,
2843                            strictConversion);
2844 
2845   // ConvertUTF8toUTF16 returns the length in ToPtr.
2846   StringLength = ToPtr - &ToBuf[0];
2847 
2848   // Add an explicit null.
2849   *ToPtr = 0;
2850   return *Map.insert(std::make_pair(
2851                          StringRef(reinterpret_cast<const char *>(ToBuf.data()),
2852                                    (StringLength + 1) * 2),
2853                          nullptr)).first;
2854 }
2855 
2856 static llvm::StringMapEntry<llvm::GlobalVariable *> &
2857 GetConstantStringEntry(llvm::StringMap<llvm::GlobalVariable *> &Map,
2858                        const StringLiteral *Literal, unsigned &StringLength) {
2859   StringRef String = Literal->getString();
2860   StringLength = String.size();
2861   return *Map.insert(std::make_pair(String, nullptr)).first;
2862 }
2863 
2864 ConstantAddress
2865 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) {
2866   unsigned StringLength = 0;
2867   bool isUTF16 = false;
2868   llvm::StringMapEntry<llvm::GlobalVariable *> &Entry =
2869       GetConstantCFStringEntry(CFConstantStringMap, Literal,
2870                                getDataLayout().isLittleEndian(), isUTF16,
2871                                StringLength);
2872 
2873   if (auto *C = Entry.second)
2874     return ConstantAddress(C, CharUnits::fromQuantity(C->getAlignment()));
2875 
2876   llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty);
2877   llvm::Constant *Zeros[] = { Zero, Zero };
2878   llvm::Value *V;
2879 
2880   // If we don't already have it, get __CFConstantStringClassReference.
2881   if (!CFConstantStringClassRef) {
2882     llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
2883     Ty = llvm::ArrayType::get(Ty, 0);
2884     llvm::Constant *GV = CreateRuntimeVariable(Ty,
2885                                            "__CFConstantStringClassReference");
2886     // Decay array -> ptr
2887     V = llvm::ConstantExpr::getGetElementPtr(Ty, GV, Zeros);
2888     CFConstantStringClassRef = V;
2889   }
2890   else
2891     V = CFConstantStringClassRef;
2892 
2893   QualType CFTy = getContext().getCFConstantStringType();
2894 
2895   auto *STy = cast<llvm::StructType>(getTypes().ConvertType(CFTy));
2896 
2897   llvm::Constant *Fields[4];
2898 
2899   // Class pointer.
2900   Fields[0] = cast<llvm::ConstantExpr>(V);
2901 
2902   // Flags.
2903   llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy);
2904   Fields[1] = isUTF16 ? llvm::ConstantInt::get(Ty, 0x07d0) :
2905     llvm::ConstantInt::get(Ty, 0x07C8);
2906 
2907   // String pointer.
2908   llvm::Constant *C = nullptr;
2909   if (isUTF16) {
2910     auto Arr = llvm::makeArrayRef(
2911         reinterpret_cast<uint16_t *>(const_cast<char *>(Entry.first().data())),
2912         Entry.first().size() / 2);
2913     C = llvm::ConstantDataArray::get(VMContext, Arr);
2914   } else {
2915     C = llvm::ConstantDataArray::getString(VMContext, Entry.first());
2916   }
2917 
2918   // Note: -fwritable-strings doesn't make the backing store strings of
2919   // CFStrings writable. (See <rdar://problem/10657500>)
2920   auto *GV =
2921       new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true,
2922                                llvm::GlobalValue::PrivateLinkage, C, ".str");
2923   GV->setUnnamedAddr(true);
2924   // Don't enforce the target's minimum global alignment, since the only use
2925   // of the string is via this class initializer.
2926   // FIXME: We set the section explicitly to avoid a bug in ld64 224.1. Without
2927   // it LLVM can merge the string with a non unnamed_addr one during LTO. Doing
2928   // that changes the section it ends in, which surprises ld64.
2929   if (isUTF16) {
2930     CharUnits Align = getContext().getTypeAlignInChars(getContext().ShortTy);
2931     GV->setAlignment(Align.getQuantity());
2932     GV->setSection("__TEXT,__ustring");
2933   } else {
2934     CharUnits Align = getContext().getTypeAlignInChars(getContext().CharTy);
2935     GV->setAlignment(Align.getQuantity());
2936     GV->setSection("__TEXT,__cstring,cstring_literals");
2937   }
2938 
2939   // String.
2940   Fields[2] =
2941       llvm::ConstantExpr::getGetElementPtr(GV->getValueType(), GV, Zeros);
2942 
2943   if (isUTF16)
2944     // Cast the UTF16 string to the correct type.
2945     Fields[2] = llvm::ConstantExpr::getBitCast(Fields[2], Int8PtrTy);
2946 
2947   // String length.
2948   Ty = getTypes().ConvertType(getContext().LongTy);
2949   Fields[3] = llvm::ConstantInt::get(Ty, StringLength);
2950 
2951   CharUnits Alignment = getPointerAlign();
2952 
2953   // The struct.
2954   C = llvm::ConstantStruct::get(STy, Fields);
2955   GV = new llvm::GlobalVariable(getModule(), C->getType(), true,
2956                                 llvm::GlobalVariable::PrivateLinkage, C,
2957                                 "_unnamed_cfstring_");
2958   GV->setSection("__DATA,__cfstring");
2959   GV->setAlignment(Alignment.getQuantity());
2960   Entry.second = GV;
2961 
2962   return ConstantAddress(GV, Alignment);
2963 }
2964 
2965 ConstantAddress
2966 CodeGenModule::GetAddrOfConstantString(const StringLiteral *Literal) {
2967   unsigned StringLength = 0;
2968   llvm::StringMapEntry<llvm::GlobalVariable *> &Entry =
2969       GetConstantStringEntry(CFConstantStringMap, Literal, StringLength);
2970 
2971   if (auto *C = Entry.second)
2972     return ConstantAddress(C, CharUnits::fromQuantity(C->getAlignment()));
2973 
2974   llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty);
2975   llvm::Constant *Zeros[] = { Zero, Zero };
2976   llvm::Value *V;
2977   // If we don't already have it, get _NSConstantStringClassReference.
2978   if (!ConstantStringClassRef) {
2979     std::string StringClass(getLangOpts().ObjCConstantStringClass);
2980     llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
2981     llvm::Constant *GV;
2982     if (LangOpts.ObjCRuntime.isNonFragile()) {
2983       std::string str =
2984         StringClass.empty() ? "OBJC_CLASS_$_NSConstantString"
2985                             : "OBJC_CLASS_$_" + StringClass;
2986       GV = getObjCRuntime().GetClassGlobal(str);
2987       // Make sure the result is of the correct type.
2988       llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
2989       V = llvm::ConstantExpr::getBitCast(GV, PTy);
2990       ConstantStringClassRef = V;
2991     } else {
2992       std::string str =
2993         StringClass.empty() ? "_NSConstantStringClassReference"
2994                             : "_" + StringClass + "ClassReference";
2995       llvm::Type *PTy = llvm::ArrayType::get(Ty, 0);
2996       GV = CreateRuntimeVariable(PTy, str);
2997       // Decay array -> ptr
2998       V = llvm::ConstantExpr::getGetElementPtr(PTy, GV, Zeros);
2999       ConstantStringClassRef = V;
3000     }
3001   } else
3002     V = ConstantStringClassRef;
3003 
3004   if (!NSConstantStringType) {
3005     // Construct the type for a constant NSString.
3006     RecordDecl *D = Context.buildImplicitRecord("__builtin_NSString");
3007     D->startDefinition();
3008 
3009     QualType FieldTypes[3];
3010 
3011     // const int *isa;
3012     FieldTypes[0] = Context.getPointerType(Context.IntTy.withConst());
3013     // const char *str;
3014     FieldTypes[1] = Context.getPointerType(Context.CharTy.withConst());
3015     // unsigned int length;
3016     FieldTypes[2] = Context.UnsignedIntTy;
3017 
3018     // Create fields
3019     for (unsigned i = 0; i < 3; ++i) {
3020       FieldDecl *Field = FieldDecl::Create(Context, D,
3021                                            SourceLocation(),
3022                                            SourceLocation(), nullptr,
3023                                            FieldTypes[i], /*TInfo=*/nullptr,
3024                                            /*BitWidth=*/nullptr,
3025                                            /*Mutable=*/false,
3026                                            ICIS_NoInit);
3027       Field->setAccess(AS_public);
3028       D->addDecl(Field);
3029     }
3030 
3031     D->completeDefinition();
3032     QualType NSTy = Context.getTagDeclType(D);
3033     NSConstantStringType = cast<llvm::StructType>(getTypes().ConvertType(NSTy));
3034   }
3035 
3036   llvm::Constant *Fields[3];
3037 
3038   // Class pointer.
3039   Fields[0] = cast<llvm::ConstantExpr>(V);
3040 
3041   // String pointer.
3042   llvm::Constant *C =
3043       llvm::ConstantDataArray::getString(VMContext, Entry.first());
3044 
3045   llvm::GlobalValue::LinkageTypes Linkage;
3046   bool isConstant;
3047   Linkage = llvm::GlobalValue::PrivateLinkage;
3048   isConstant = !LangOpts.WritableStrings;
3049 
3050   auto *GV = new llvm::GlobalVariable(getModule(), C->getType(), isConstant,
3051                                       Linkage, C, ".str");
3052   GV->setUnnamedAddr(true);
3053   // Don't enforce the target's minimum global alignment, since the only use
3054   // of the string is via this class initializer.
3055   CharUnits Align = getContext().getTypeAlignInChars(getContext().CharTy);
3056   GV->setAlignment(Align.getQuantity());
3057   Fields[1] =
3058       llvm::ConstantExpr::getGetElementPtr(GV->getValueType(), GV, Zeros);
3059 
3060   // String length.
3061   llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy);
3062   Fields[2] = llvm::ConstantInt::get(Ty, StringLength);
3063 
3064   // The struct.
3065   CharUnits Alignment = getPointerAlign();
3066   C = llvm::ConstantStruct::get(NSConstantStringType, Fields);
3067   GV = new llvm::GlobalVariable(getModule(), C->getType(), true,
3068                                 llvm::GlobalVariable::PrivateLinkage, C,
3069                                 "_unnamed_nsstring_");
3070   GV->setAlignment(Alignment.getQuantity());
3071   const char *NSStringSection = "__OBJC,__cstring_object,regular,no_dead_strip";
3072   const char *NSStringNonFragileABISection =
3073       "__DATA,__objc_stringobj,regular,no_dead_strip";
3074   // FIXME. Fix section.
3075   GV->setSection(LangOpts.ObjCRuntime.isNonFragile()
3076                      ? NSStringNonFragileABISection
3077                      : NSStringSection);
3078   Entry.second = GV;
3079 
3080   return ConstantAddress(GV, Alignment);
3081 }
3082 
3083 QualType CodeGenModule::getObjCFastEnumerationStateType() {
3084   if (ObjCFastEnumerationStateType.isNull()) {
3085     RecordDecl *D = Context.buildImplicitRecord("__objcFastEnumerationState");
3086     D->startDefinition();
3087 
3088     QualType FieldTypes[] = {
3089       Context.UnsignedLongTy,
3090       Context.getPointerType(Context.getObjCIdType()),
3091       Context.getPointerType(Context.UnsignedLongTy),
3092       Context.getConstantArrayType(Context.UnsignedLongTy,
3093                            llvm::APInt(32, 5), ArrayType::Normal, 0)
3094     };
3095 
3096     for (size_t i = 0; i < 4; ++i) {
3097       FieldDecl *Field = FieldDecl::Create(Context,
3098                                            D,
3099                                            SourceLocation(),
3100                                            SourceLocation(), nullptr,
3101                                            FieldTypes[i], /*TInfo=*/nullptr,
3102                                            /*BitWidth=*/nullptr,
3103                                            /*Mutable=*/false,
3104                                            ICIS_NoInit);
3105       Field->setAccess(AS_public);
3106       D->addDecl(Field);
3107     }
3108 
3109     D->completeDefinition();
3110     ObjCFastEnumerationStateType = Context.getTagDeclType(D);
3111   }
3112 
3113   return ObjCFastEnumerationStateType;
3114 }
3115 
3116 llvm::Constant *
3117 CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) {
3118   assert(!E->getType()->isPointerType() && "Strings are always arrays");
3119 
3120   // Don't emit it as the address of the string, emit the string data itself
3121   // as an inline array.
3122   if (E->getCharByteWidth() == 1) {
3123     SmallString<64> Str(E->getString());
3124 
3125     // Resize the string to the right size, which is indicated by its type.
3126     const ConstantArrayType *CAT = Context.getAsConstantArrayType(E->getType());
3127     Str.resize(CAT->getSize().getZExtValue());
3128     return llvm::ConstantDataArray::getString(VMContext, Str, false);
3129   }
3130 
3131   auto *AType = cast<llvm::ArrayType>(getTypes().ConvertType(E->getType()));
3132   llvm::Type *ElemTy = AType->getElementType();
3133   unsigned NumElements = AType->getNumElements();
3134 
3135   // Wide strings have either 2-byte or 4-byte elements.
3136   if (ElemTy->getPrimitiveSizeInBits() == 16) {
3137     SmallVector<uint16_t, 32> Elements;
3138     Elements.reserve(NumElements);
3139 
3140     for(unsigned i = 0, e = E->getLength(); i != e; ++i)
3141       Elements.push_back(E->getCodeUnit(i));
3142     Elements.resize(NumElements);
3143     return llvm::ConstantDataArray::get(VMContext, Elements);
3144   }
3145 
3146   assert(ElemTy->getPrimitiveSizeInBits() == 32);
3147   SmallVector<uint32_t, 32> Elements;
3148   Elements.reserve(NumElements);
3149 
3150   for(unsigned i = 0, e = E->getLength(); i != e; ++i)
3151     Elements.push_back(E->getCodeUnit(i));
3152   Elements.resize(NumElements);
3153   return llvm::ConstantDataArray::get(VMContext, Elements);
3154 }
3155 
3156 static llvm::GlobalVariable *
3157 GenerateStringLiteral(llvm::Constant *C, llvm::GlobalValue::LinkageTypes LT,
3158                       CodeGenModule &CGM, StringRef GlobalName,
3159                       CharUnits Alignment) {
3160   // OpenCL v1.2 s6.5.3: a string literal is in the constant address space.
3161   unsigned AddrSpace = 0;
3162   if (CGM.getLangOpts().OpenCL)
3163     AddrSpace = CGM.getContext().getTargetAddressSpace(LangAS::opencl_constant);
3164 
3165   llvm::Module &M = CGM.getModule();
3166   // Create a global variable for this string
3167   auto *GV = new llvm::GlobalVariable(
3168       M, C->getType(), !CGM.getLangOpts().WritableStrings, LT, C, GlobalName,
3169       nullptr, llvm::GlobalVariable::NotThreadLocal, AddrSpace);
3170   GV->setAlignment(Alignment.getQuantity());
3171   GV->setUnnamedAddr(true);
3172   if (GV->isWeakForLinker()) {
3173     assert(CGM.supportsCOMDAT() && "Only COFF uses weak string literals");
3174     GV->setComdat(M.getOrInsertComdat(GV->getName()));
3175   }
3176 
3177   return GV;
3178 }
3179 
3180 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a
3181 /// constant array for the given string literal.
3182 ConstantAddress
3183 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S,
3184                                                   StringRef Name) {
3185   CharUnits Alignment = getContext().getAlignOfGlobalVarInChars(S->getType());
3186 
3187   llvm::Constant *C = GetConstantArrayFromStringLiteral(S);
3188   llvm::GlobalVariable **Entry = nullptr;
3189   if (!LangOpts.WritableStrings) {
3190     Entry = &ConstantStringMap[C];
3191     if (auto GV = *Entry) {
3192       if (Alignment.getQuantity() > GV->getAlignment())
3193         GV->setAlignment(Alignment.getQuantity());
3194       return ConstantAddress(GV, Alignment);
3195     }
3196   }
3197 
3198   SmallString<256> MangledNameBuffer;
3199   StringRef GlobalVariableName;
3200   llvm::GlobalValue::LinkageTypes LT;
3201 
3202   // Mangle the string literal if the ABI allows for it.  However, we cannot
3203   // do this if  we are compiling with ASan or -fwritable-strings because they
3204   // rely on strings having normal linkage.
3205   if (!LangOpts.WritableStrings &&
3206       !LangOpts.Sanitize.has(SanitizerKind::Address) &&
3207       getCXXABI().getMangleContext().shouldMangleStringLiteral(S)) {
3208     llvm::raw_svector_ostream Out(MangledNameBuffer);
3209     getCXXABI().getMangleContext().mangleStringLiteral(S, Out);
3210 
3211     LT = llvm::GlobalValue::LinkOnceODRLinkage;
3212     GlobalVariableName = MangledNameBuffer;
3213   } else {
3214     LT = llvm::GlobalValue::PrivateLinkage;
3215     GlobalVariableName = Name;
3216   }
3217 
3218   auto GV = GenerateStringLiteral(C, LT, *this, GlobalVariableName, Alignment);
3219   if (Entry)
3220     *Entry = GV;
3221 
3222   SanitizerMD->reportGlobalToASan(GV, S->getStrTokenLoc(0), "<string literal>",
3223                                   QualType());
3224   return ConstantAddress(GV, Alignment);
3225 }
3226 
3227 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant
3228 /// array for the given ObjCEncodeExpr node.
3229 ConstantAddress
3230 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) {
3231   std::string Str;
3232   getContext().getObjCEncodingForType(E->getEncodedType(), Str);
3233 
3234   return GetAddrOfConstantCString(Str);
3235 }
3236 
3237 /// GetAddrOfConstantCString - Returns a pointer to a character array containing
3238 /// the literal and a terminating '\0' character.
3239 /// The result has pointer to array type.
3240 ConstantAddress CodeGenModule::GetAddrOfConstantCString(
3241     const std::string &Str, const char *GlobalName) {
3242   StringRef StrWithNull(Str.c_str(), Str.size() + 1);
3243   CharUnits Alignment =
3244     getContext().getAlignOfGlobalVarInChars(getContext().CharTy);
3245 
3246   llvm::Constant *C =
3247       llvm::ConstantDataArray::getString(getLLVMContext(), StrWithNull, false);
3248 
3249   // Don't share any string literals if strings aren't constant.
3250   llvm::GlobalVariable **Entry = nullptr;
3251   if (!LangOpts.WritableStrings) {
3252     Entry = &ConstantStringMap[C];
3253     if (auto GV = *Entry) {
3254       if (Alignment.getQuantity() > GV->getAlignment())
3255         GV->setAlignment(Alignment.getQuantity());
3256       return ConstantAddress(GV, Alignment);
3257     }
3258   }
3259 
3260   // Get the default prefix if a name wasn't specified.
3261   if (!GlobalName)
3262     GlobalName = ".str";
3263   // Create a global variable for this.
3264   auto GV = GenerateStringLiteral(C, llvm::GlobalValue::PrivateLinkage, *this,
3265                                   GlobalName, Alignment);
3266   if (Entry)
3267     *Entry = GV;
3268   return ConstantAddress(GV, Alignment);
3269 }
3270 
3271 ConstantAddress CodeGenModule::GetAddrOfGlobalTemporary(
3272     const MaterializeTemporaryExpr *E, const Expr *Init) {
3273   assert((E->getStorageDuration() == SD_Static ||
3274           E->getStorageDuration() == SD_Thread) && "not a global temporary");
3275   const auto *VD = cast<VarDecl>(E->getExtendingDecl());
3276 
3277   // If we're not materializing a subobject of the temporary, keep the
3278   // cv-qualifiers from the type of the MaterializeTemporaryExpr.
3279   QualType MaterializedType = Init->getType();
3280   if (Init == E->GetTemporaryExpr())
3281     MaterializedType = E->getType();
3282 
3283   CharUnits Align = getContext().getTypeAlignInChars(MaterializedType);
3284 
3285   if (llvm::Constant *Slot = MaterializedGlobalTemporaryMap[E])
3286     return ConstantAddress(Slot, Align);
3287 
3288   // FIXME: If an externally-visible declaration extends multiple temporaries,
3289   // we need to give each temporary the same name in every translation unit (and
3290   // we also need to make the temporaries externally-visible).
3291   SmallString<256> Name;
3292   llvm::raw_svector_ostream Out(Name);
3293   getCXXABI().getMangleContext().mangleReferenceTemporary(
3294       VD, E->getManglingNumber(), Out);
3295 
3296   APValue *Value = nullptr;
3297   if (E->getStorageDuration() == SD_Static) {
3298     // We might have a cached constant initializer for this temporary. Note
3299     // that this might have a different value from the value computed by
3300     // evaluating the initializer if the surrounding constant expression
3301     // modifies the temporary.
3302     Value = getContext().getMaterializedTemporaryValue(E, false);
3303     if (Value && Value->isUninit())
3304       Value = nullptr;
3305   }
3306 
3307   // Try evaluating it now, it might have a constant initializer.
3308   Expr::EvalResult EvalResult;
3309   if (!Value && Init->EvaluateAsRValue(EvalResult, getContext()) &&
3310       !EvalResult.hasSideEffects())
3311     Value = &EvalResult.Val;
3312 
3313   llvm::Constant *InitialValue = nullptr;
3314   bool Constant = false;
3315   llvm::Type *Type;
3316   if (Value) {
3317     // The temporary has a constant initializer, use it.
3318     InitialValue = EmitConstantValue(*Value, MaterializedType, nullptr);
3319     Constant = isTypeConstant(MaterializedType, /*ExcludeCtor*/Value);
3320     Type = InitialValue->getType();
3321   } else {
3322     // No initializer, the initialization will be provided when we
3323     // initialize the declaration which performed lifetime extension.
3324     Type = getTypes().ConvertTypeForMem(MaterializedType);
3325   }
3326 
3327   // Create a global variable for this lifetime-extended temporary.
3328   llvm::GlobalValue::LinkageTypes Linkage =
3329       getLLVMLinkageVarDefinition(VD, Constant);
3330   if (Linkage == llvm::GlobalVariable::ExternalLinkage) {
3331     const VarDecl *InitVD;
3332     if (VD->isStaticDataMember() && VD->getAnyInitializer(InitVD) &&
3333         isa<CXXRecordDecl>(InitVD->getLexicalDeclContext())) {
3334       // Temporaries defined inside a class get linkonce_odr linkage because the
3335       // class can be defined in multipe translation units.
3336       Linkage = llvm::GlobalVariable::LinkOnceODRLinkage;
3337     } else {
3338       // There is no need for this temporary to have external linkage if the
3339       // VarDecl has external linkage.
3340       Linkage = llvm::GlobalVariable::InternalLinkage;
3341     }
3342   }
3343   unsigned AddrSpace = GetGlobalVarAddressSpace(
3344       VD, getContext().getTargetAddressSpace(MaterializedType));
3345   auto *GV = new llvm::GlobalVariable(
3346       getModule(), Type, Constant, Linkage, InitialValue, Name.c_str(),
3347       /*InsertBefore=*/nullptr, llvm::GlobalVariable::NotThreadLocal,
3348       AddrSpace);
3349   setGlobalVisibility(GV, VD);
3350   GV->setAlignment(Align.getQuantity());
3351   if (supportsCOMDAT() && GV->isWeakForLinker())
3352     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
3353   if (VD->getTLSKind())
3354     setTLSMode(GV, *VD);
3355   MaterializedGlobalTemporaryMap[E] = GV;
3356   return ConstantAddress(GV, Align);
3357 }
3358 
3359 /// EmitObjCPropertyImplementations - Emit information for synthesized
3360 /// properties for an implementation.
3361 void CodeGenModule::EmitObjCPropertyImplementations(const
3362                                                     ObjCImplementationDecl *D) {
3363   for (const auto *PID : D->property_impls()) {
3364     // Dynamic is just for type-checking.
3365     if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) {
3366       ObjCPropertyDecl *PD = PID->getPropertyDecl();
3367 
3368       // Determine which methods need to be implemented, some may have
3369       // been overridden. Note that ::isPropertyAccessor is not the method
3370       // we want, that just indicates if the decl came from a
3371       // property. What we want to know is if the method is defined in
3372       // this implementation.
3373       if (!D->getInstanceMethod(PD->getGetterName()))
3374         CodeGenFunction(*this).GenerateObjCGetter(
3375                                  const_cast<ObjCImplementationDecl *>(D), PID);
3376       if (!PD->isReadOnly() &&
3377           !D->getInstanceMethod(PD->getSetterName()))
3378         CodeGenFunction(*this).GenerateObjCSetter(
3379                                  const_cast<ObjCImplementationDecl *>(D), PID);
3380     }
3381   }
3382 }
3383 
3384 static bool needsDestructMethod(ObjCImplementationDecl *impl) {
3385   const ObjCInterfaceDecl *iface = impl->getClassInterface();
3386   for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin();
3387        ivar; ivar = ivar->getNextIvar())
3388     if (ivar->getType().isDestructedType())
3389       return true;
3390 
3391   return false;
3392 }
3393 
3394 static bool AllTrivialInitializers(CodeGenModule &CGM,
3395                                    ObjCImplementationDecl *D) {
3396   CodeGenFunction CGF(CGM);
3397   for (ObjCImplementationDecl::init_iterator B = D->init_begin(),
3398        E = D->init_end(); B != E; ++B) {
3399     CXXCtorInitializer *CtorInitExp = *B;
3400     Expr *Init = CtorInitExp->getInit();
3401     if (!CGF.isTrivialInitializer(Init))
3402       return false;
3403   }
3404   return true;
3405 }
3406 
3407 /// EmitObjCIvarInitializations - Emit information for ivar initialization
3408 /// for an implementation.
3409 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) {
3410   // We might need a .cxx_destruct even if we don't have any ivar initializers.
3411   if (needsDestructMethod(D)) {
3412     IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct");
3413     Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
3414     ObjCMethodDecl *DTORMethod =
3415       ObjCMethodDecl::Create(getContext(), D->getLocation(), D->getLocation(),
3416                              cxxSelector, getContext().VoidTy, nullptr, D,
3417                              /*isInstance=*/true, /*isVariadic=*/false,
3418                           /*isPropertyAccessor=*/true, /*isImplicitlyDeclared=*/true,
3419                              /*isDefined=*/false, ObjCMethodDecl::Required);
3420     D->addInstanceMethod(DTORMethod);
3421     CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false);
3422     D->setHasDestructors(true);
3423   }
3424 
3425   // If the implementation doesn't have any ivar initializers, we don't need
3426   // a .cxx_construct.
3427   if (D->getNumIvarInitializers() == 0 ||
3428       AllTrivialInitializers(*this, D))
3429     return;
3430 
3431   IdentifierInfo *II = &getContext().Idents.get(".cxx_construct");
3432   Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
3433   // The constructor returns 'self'.
3434   ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(getContext(),
3435                                                 D->getLocation(),
3436                                                 D->getLocation(),
3437                                                 cxxSelector,
3438                                                 getContext().getObjCIdType(),
3439                                                 nullptr, D, /*isInstance=*/true,
3440                                                 /*isVariadic=*/false,
3441                                                 /*isPropertyAccessor=*/true,
3442                                                 /*isImplicitlyDeclared=*/true,
3443                                                 /*isDefined=*/false,
3444                                                 ObjCMethodDecl::Required);
3445   D->addInstanceMethod(CTORMethod);
3446   CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true);
3447   D->setHasNonZeroConstructors(true);
3448 }
3449 
3450 /// EmitNamespace - Emit all declarations in a namespace.
3451 void CodeGenModule::EmitNamespace(const NamespaceDecl *ND) {
3452   for (auto *I : ND->decls()) {
3453     if (const auto *VD = dyn_cast<VarDecl>(I))
3454       if (VD->getTemplateSpecializationKind() != TSK_ExplicitSpecialization &&
3455           VD->getTemplateSpecializationKind() != TSK_Undeclared)
3456         continue;
3457     EmitTopLevelDecl(I);
3458   }
3459 }
3460 
3461 // EmitLinkageSpec - Emit all declarations in a linkage spec.
3462 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) {
3463   if (LSD->getLanguage() != LinkageSpecDecl::lang_c &&
3464       LSD->getLanguage() != LinkageSpecDecl::lang_cxx) {
3465     ErrorUnsupported(LSD, "linkage spec");
3466     return;
3467   }
3468 
3469   for (auto *I : LSD->decls()) {
3470     // Meta-data for ObjC class includes references to implemented methods.
3471     // Generate class's method definitions first.
3472     if (auto *OID = dyn_cast<ObjCImplDecl>(I)) {
3473       for (auto *M : OID->methods())
3474         EmitTopLevelDecl(M);
3475     }
3476     EmitTopLevelDecl(I);
3477   }
3478 }
3479 
3480 /// EmitTopLevelDecl - Emit code for a single top level declaration.
3481 void CodeGenModule::EmitTopLevelDecl(Decl *D) {
3482   // Ignore dependent declarations.
3483   if (D->getDeclContext() && D->getDeclContext()->isDependentContext())
3484     return;
3485 
3486   switch (D->getKind()) {
3487   case Decl::CXXConversion:
3488   case Decl::CXXMethod:
3489   case Decl::Function:
3490     // Skip function templates
3491     if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() ||
3492         cast<FunctionDecl>(D)->isLateTemplateParsed())
3493       return;
3494 
3495     EmitGlobal(cast<FunctionDecl>(D));
3496     // Always provide some coverage mapping
3497     // even for the functions that aren't emitted.
3498     AddDeferredUnusedCoverageMapping(D);
3499     break;
3500 
3501   case Decl::Var:
3502     // Skip variable templates
3503     if (cast<VarDecl>(D)->getDescribedVarTemplate())
3504       return;
3505   case Decl::VarTemplateSpecialization:
3506     EmitGlobal(cast<VarDecl>(D));
3507     break;
3508 
3509   // Indirect fields from global anonymous structs and unions can be
3510   // ignored; only the actual variable requires IR gen support.
3511   case Decl::IndirectField:
3512     break;
3513 
3514   // C++ Decls
3515   case Decl::Namespace:
3516     EmitNamespace(cast<NamespaceDecl>(D));
3517     break;
3518     // No code generation needed.
3519   case Decl::UsingShadow:
3520   case Decl::ClassTemplate:
3521   case Decl::VarTemplate:
3522   case Decl::VarTemplatePartialSpecialization:
3523   case Decl::FunctionTemplate:
3524   case Decl::TypeAliasTemplate:
3525   case Decl::Block:
3526   case Decl::Empty:
3527     break;
3528   case Decl::Using:          // using X; [C++]
3529     if (CGDebugInfo *DI = getModuleDebugInfo())
3530         DI->EmitUsingDecl(cast<UsingDecl>(*D));
3531     return;
3532   case Decl::NamespaceAlias:
3533     if (CGDebugInfo *DI = getModuleDebugInfo())
3534         DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(*D));
3535     return;
3536   case Decl::UsingDirective: // using namespace X; [C++]
3537     if (CGDebugInfo *DI = getModuleDebugInfo())
3538       DI->EmitUsingDirective(cast<UsingDirectiveDecl>(*D));
3539     return;
3540   case Decl::CXXConstructor:
3541     // Skip function templates
3542     if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() ||
3543         cast<FunctionDecl>(D)->isLateTemplateParsed())
3544       return;
3545 
3546     getCXXABI().EmitCXXConstructors(cast<CXXConstructorDecl>(D));
3547     break;
3548   case Decl::CXXDestructor:
3549     if (cast<FunctionDecl>(D)->isLateTemplateParsed())
3550       return;
3551     getCXXABI().EmitCXXDestructors(cast<CXXDestructorDecl>(D));
3552     break;
3553 
3554   case Decl::StaticAssert:
3555     // Nothing to do.
3556     break;
3557 
3558   // Objective-C Decls
3559 
3560   // Forward declarations, no (immediate) code generation.
3561   case Decl::ObjCInterface:
3562   case Decl::ObjCCategory:
3563     break;
3564 
3565   case Decl::ObjCProtocol: {
3566     auto *Proto = cast<ObjCProtocolDecl>(D);
3567     if (Proto->isThisDeclarationADefinition())
3568       ObjCRuntime->GenerateProtocol(Proto);
3569     break;
3570   }
3571 
3572   case Decl::ObjCCategoryImpl:
3573     // Categories have properties but don't support synthesize so we
3574     // can ignore them here.
3575     ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D));
3576     break;
3577 
3578   case Decl::ObjCImplementation: {
3579     auto *OMD = cast<ObjCImplementationDecl>(D);
3580     EmitObjCPropertyImplementations(OMD);
3581     EmitObjCIvarInitializations(OMD);
3582     ObjCRuntime->GenerateClass(OMD);
3583     // Emit global variable debug information.
3584     if (CGDebugInfo *DI = getModuleDebugInfo())
3585       if (getCodeGenOpts().getDebugInfo() >= CodeGenOptions::LimitedDebugInfo)
3586         DI->getOrCreateInterfaceType(getContext().getObjCInterfaceType(
3587             OMD->getClassInterface()), OMD->getLocation());
3588     break;
3589   }
3590   case Decl::ObjCMethod: {
3591     auto *OMD = cast<ObjCMethodDecl>(D);
3592     // If this is not a prototype, emit the body.
3593     if (OMD->getBody())
3594       CodeGenFunction(*this).GenerateObjCMethod(OMD);
3595     break;
3596   }
3597   case Decl::ObjCCompatibleAlias:
3598     ObjCRuntime->RegisterAlias(cast<ObjCCompatibleAliasDecl>(D));
3599     break;
3600 
3601   case Decl::LinkageSpec:
3602     EmitLinkageSpec(cast<LinkageSpecDecl>(D));
3603     break;
3604 
3605   case Decl::FileScopeAsm: {
3606     // File-scope asm is ignored during device-side CUDA compilation.
3607     if (LangOpts.CUDA && LangOpts.CUDAIsDevice)
3608       break;
3609     // File-scope asm is ignored during device-side OpenMP compilation.
3610     if (LangOpts.OpenMPIsDevice)
3611       break;
3612     auto *AD = cast<FileScopeAsmDecl>(D);
3613     getModule().appendModuleInlineAsm(AD->getAsmString()->getString());
3614     break;
3615   }
3616 
3617   case Decl::Import: {
3618     auto *Import = cast<ImportDecl>(D);
3619 
3620     // Ignore import declarations that come from imported modules.
3621     if (Import->getImportedOwningModule())
3622       break;
3623     if (CGDebugInfo *DI = getModuleDebugInfo())
3624       DI->EmitImportDecl(*Import);
3625 
3626     ImportedModules.insert(Import->getImportedModule());
3627     break;
3628   }
3629 
3630   case Decl::OMPThreadPrivate:
3631     EmitOMPThreadPrivateDecl(cast<OMPThreadPrivateDecl>(D));
3632     break;
3633 
3634   case Decl::ClassTemplateSpecialization: {
3635     const auto *Spec = cast<ClassTemplateSpecializationDecl>(D);
3636     if (DebugInfo &&
3637         Spec->getSpecializationKind() == TSK_ExplicitInstantiationDefinition &&
3638         Spec->hasDefinition())
3639       DebugInfo->completeTemplateDefinition(*Spec);
3640     break;
3641   }
3642 
3643   default:
3644     // Make sure we handled everything we should, every other kind is a
3645     // non-top-level decl.  FIXME: Would be nice to have an isTopLevelDeclKind
3646     // function. Need to recode Decl::Kind to do that easily.
3647     assert(isa<TypeDecl>(D) && "Unsupported decl kind");
3648     break;
3649   }
3650 }
3651 
3652 void CodeGenModule::AddDeferredUnusedCoverageMapping(Decl *D) {
3653   // Do we need to generate coverage mapping?
3654   if (!CodeGenOpts.CoverageMapping)
3655     return;
3656   switch (D->getKind()) {
3657   case Decl::CXXConversion:
3658   case Decl::CXXMethod:
3659   case Decl::Function:
3660   case Decl::ObjCMethod:
3661   case Decl::CXXConstructor:
3662   case Decl::CXXDestructor: {
3663     if (!cast<FunctionDecl>(D)->doesThisDeclarationHaveABody())
3664       return;
3665     auto I = DeferredEmptyCoverageMappingDecls.find(D);
3666     if (I == DeferredEmptyCoverageMappingDecls.end())
3667       DeferredEmptyCoverageMappingDecls[D] = true;
3668     break;
3669   }
3670   default:
3671     break;
3672   };
3673 }
3674 
3675 void CodeGenModule::ClearUnusedCoverageMapping(const Decl *D) {
3676   // Do we need to generate coverage mapping?
3677   if (!CodeGenOpts.CoverageMapping)
3678     return;
3679   if (const auto *Fn = dyn_cast<FunctionDecl>(D)) {
3680     if (Fn->isTemplateInstantiation())
3681       ClearUnusedCoverageMapping(Fn->getTemplateInstantiationPattern());
3682   }
3683   auto I = DeferredEmptyCoverageMappingDecls.find(D);
3684   if (I == DeferredEmptyCoverageMappingDecls.end())
3685     DeferredEmptyCoverageMappingDecls[D] = false;
3686   else
3687     I->second = false;
3688 }
3689 
3690 void CodeGenModule::EmitDeferredUnusedCoverageMappings() {
3691   std::vector<const Decl *> DeferredDecls;
3692   for (const auto &I : DeferredEmptyCoverageMappingDecls) {
3693     if (!I.second)
3694       continue;
3695     DeferredDecls.push_back(I.first);
3696   }
3697   // Sort the declarations by their location to make sure that the tests get a
3698   // predictable order for the coverage mapping for the unused declarations.
3699   if (CodeGenOpts.DumpCoverageMapping)
3700     std::sort(DeferredDecls.begin(), DeferredDecls.end(),
3701               [] (const Decl *LHS, const Decl *RHS) {
3702       return LHS->getLocStart() < RHS->getLocStart();
3703     });
3704   for (const auto *D : DeferredDecls) {
3705     switch (D->getKind()) {
3706     case Decl::CXXConversion:
3707     case Decl::CXXMethod:
3708     case Decl::Function:
3709     case Decl::ObjCMethod: {
3710       CodeGenPGO PGO(*this);
3711       GlobalDecl GD(cast<FunctionDecl>(D));
3712       PGO.emitEmptyCounterMapping(D, getMangledName(GD),
3713                                   getFunctionLinkage(GD));
3714       break;
3715     }
3716     case Decl::CXXConstructor: {
3717       CodeGenPGO PGO(*this);
3718       GlobalDecl GD(cast<CXXConstructorDecl>(D), Ctor_Base);
3719       PGO.emitEmptyCounterMapping(D, getMangledName(GD),
3720                                   getFunctionLinkage(GD));
3721       break;
3722     }
3723     case Decl::CXXDestructor: {
3724       CodeGenPGO PGO(*this);
3725       GlobalDecl GD(cast<CXXDestructorDecl>(D), Dtor_Base);
3726       PGO.emitEmptyCounterMapping(D, getMangledName(GD),
3727                                   getFunctionLinkage(GD));
3728       break;
3729     }
3730     default:
3731       break;
3732     };
3733   }
3734 }
3735 
3736 /// Turns the given pointer into a constant.
3737 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context,
3738                                           const void *Ptr) {
3739   uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr);
3740   llvm::Type *i64 = llvm::Type::getInt64Ty(Context);
3741   return llvm::ConstantInt::get(i64, PtrInt);
3742 }
3743 
3744 static void EmitGlobalDeclMetadata(CodeGenModule &CGM,
3745                                    llvm::NamedMDNode *&GlobalMetadata,
3746                                    GlobalDecl D,
3747                                    llvm::GlobalValue *Addr) {
3748   if (!GlobalMetadata)
3749     GlobalMetadata =
3750       CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs");
3751 
3752   // TODO: should we report variant information for ctors/dtors?
3753   llvm::Metadata *Ops[] = {llvm::ConstantAsMetadata::get(Addr),
3754                            llvm::ConstantAsMetadata::get(GetPointerConstant(
3755                                CGM.getLLVMContext(), D.getDecl()))};
3756   GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops));
3757 }
3758 
3759 /// For each function which is declared within an extern "C" region and marked
3760 /// as 'used', but has internal linkage, create an alias from the unmangled
3761 /// name to the mangled name if possible. People expect to be able to refer
3762 /// to such functions with an unmangled name from inline assembly within the
3763 /// same translation unit.
3764 void CodeGenModule::EmitStaticExternCAliases() {
3765   for (auto &I : StaticExternCValues) {
3766     IdentifierInfo *Name = I.first;
3767     llvm::GlobalValue *Val = I.second;
3768     if (Val && !getModule().getNamedValue(Name->getName()))
3769       addUsedGlobal(llvm::GlobalAlias::create(Name->getName(), Val));
3770   }
3771 }
3772 
3773 bool CodeGenModule::lookupRepresentativeDecl(StringRef MangledName,
3774                                              GlobalDecl &Result) const {
3775   auto Res = Manglings.find(MangledName);
3776   if (Res == Manglings.end())
3777     return false;
3778   Result = Res->getValue();
3779   return true;
3780 }
3781 
3782 /// Emits metadata nodes associating all the global values in the
3783 /// current module with the Decls they came from.  This is useful for
3784 /// projects using IR gen as a subroutine.
3785 ///
3786 /// Since there's currently no way to associate an MDNode directly
3787 /// with an llvm::GlobalValue, we create a global named metadata
3788 /// with the name 'clang.global.decl.ptrs'.
3789 void CodeGenModule::EmitDeclMetadata() {
3790   llvm::NamedMDNode *GlobalMetadata = nullptr;
3791 
3792   for (auto &I : MangledDeclNames) {
3793     llvm::GlobalValue *Addr = getModule().getNamedValue(I.second);
3794     // Some mangled names don't necessarily have an associated GlobalValue
3795     // in this module, e.g. if we mangled it for DebugInfo.
3796     if (Addr)
3797       EmitGlobalDeclMetadata(*this, GlobalMetadata, I.first, Addr);
3798   }
3799 }
3800 
3801 /// Emits metadata nodes for all the local variables in the current
3802 /// function.
3803 void CodeGenFunction::EmitDeclMetadata() {
3804   if (LocalDeclMap.empty()) return;
3805 
3806   llvm::LLVMContext &Context = getLLVMContext();
3807 
3808   // Find the unique metadata ID for this name.
3809   unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr");
3810 
3811   llvm::NamedMDNode *GlobalMetadata = nullptr;
3812 
3813   for (auto &I : LocalDeclMap) {
3814     const Decl *D = I.first;
3815     llvm::Value *Addr = I.second.getPointer();
3816     if (auto *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) {
3817       llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D);
3818       Alloca->setMetadata(
3819           DeclPtrKind, llvm::MDNode::get(
3820                            Context, llvm::ValueAsMetadata::getConstant(DAddr)));
3821     } else if (auto *GV = dyn_cast<llvm::GlobalValue>(Addr)) {
3822       GlobalDecl GD = GlobalDecl(cast<VarDecl>(D));
3823       EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV);
3824     }
3825   }
3826 }
3827 
3828 void CodeGenModule::EmitVersionIdentMetadata() {
3829   llvm::NamedMDNode *IdentMetadata =
3830     TheModule.getOrInsertNamedMetadata("llvm.ident");
3831   std::string Version = getClangFullVersion();
3832   llvm::LLVMContext &Ctx = TheModule.getContext();
3833 
3834   llvm::Metadata *IdentNode[] = {llvm::MDString::get(Ctx, Version)};
3835   IdentMetadata->addOperand(llvm::MDNode::get(Ctx, IdentNode));
3836 }
3837 
3838 void CodeGenModule::EmitTargetMetadata() {
3839   // Warning, new MangledDeclNames may be appended within this loop.
3840   // We rely on MapVector insertions adding new elements to the end
3841   // of the container.
3842   // FIXME: Move this loop into the one target that needs it, and only
3843   // loop over those declarations for which we couldn't emit the target
3844   // metadata when we emitted the declaration.
3845   for (unsigned I = 0; I != MangledDeclNames.size(); ++I) {
3846     auto Val = *(MangledDeclNames.begin() + I);
3847     const Decl *D = Val.first.getDecl()->getMostRecentDecl();
3848     llvm::GlobalValue *GV = GetGlobalValue(Val.second);
3849     getTargetCodeGenInfo().emitTargetMD(D, GV, *this);
3850   }
3851 }
3852 
3853 void CodeGenModule::EmitCoverageFile() {
3854   if (!getCodeGenOpts().CoverageFile.empty()) {
3855     if (llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu")) {
3856       llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov");
3857       llvm::LLVMContext &Ctx = TheModule.getContext();
3858       llvm::MDString *CoverageFile =
3859           llvm::MDString::get(Ctx, getCodeGenOpts().CoverageFile);
3860       for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) {
3861         llvm::MDNode *CU = CUNode->getOperand(i);
3862         llvm::Metadata *Elts[] = {CoverageFile, CU};
3863         GCov->addOperand(llvm::MDNode::get(Ctx, Elts));
3864       }
3865     }
3866   }
3867 }
3868 
3869 llvm::Constant *CodeGenModule::EmitUuidofInitializer(StringRef Uuid) {
3870   // Sema has checked that all uuid strings are of the form
3871   // "12345678-1234-1234-1234-1234567890ab".
3872   assert(Uuid.size() == 36);
3873   for (unsigned i = 0; i < 36; ++i) {
3874     if (i == 8 || i == 13 || i == 18 || i == 23) assert(Uuid[i] == '-');
3875     else                                         assert(isHexDigit(Uuid[i]));
3876   }
3877 
3878   // The starts of all bytes of Field3 in Uuid. Field 3 is "1234-1234567890ab".
3879   const unsigned Field3ValueOffsets[8] = { 19, 21, 24, 26, 28, 30, 32, 34 };
3880 
3881   llvm::Constant *Field3[8];
3882   for (unsigned Idx = 0; Idx < 8; ++Idx)
3883     Field3[Idx] = llvm::ConstantInt::get(
3884         Int8Ty, Uuid.substr(Field3ValueOffsets[Idx], 2), 16);
3885 
3886   llvm::Constant *Fields[4] = {
3887     llvm::ConstantInt::get(Int32Ty, Uuid.substr(0,  8), 16),
3888     llvm::ConstantInt::get(Int16Ty, Uuid.substr(9,  4), 16),
3889     llvm::ConstantInt::get(Int16Ty, Uuid.substr(14, 4), 16),
3890     llvm::ConstantArray::get(llvm::ArrayType::get(Int8Ty, 8), Field3)
3891   };
3892 
3893   return llvm::ConstantStruct::getAnon(Fields);
3894 }
3895 
3896 llvm::Constant *CodeGenModule::GetAddrOfRTTIDescriptor(QualType Ty,
3897                                                        bool ForEH) {
3898   // Return a bogus pointer if RTTI is disabled, unless it's for EH.
3899   // FIXME: should we even be calling this method if RTTI is disabled
3900   // and it's not for EH?
3901   if (!ForEH && !getLangOpts().RTTI)
3902     return llvm::Constant::getNullValue(Int8PtrTy);
3903 
3904   if (ForEH && Ty->isObjCObjectPointerType() &&
3905       LangOpts.ObjCRuntime.isGNUFamily())
3906     return ObjCRuntime->GetEHType(Ty);
3907 
3908   return getCXXABI().getAddrOfRTTIDescriptor(Ty);
3909 }
3910 
3911 void CodeGenModule::EmitOMPThreadPrivateDecl(const OMPThreadPrivateDecl *D) {
3912   for (auto RefExpr : D->varlists()) {
3913     auto *VD = cast<VarDecl>(cast<DeclRefExpr>(RefExpr)->getDecl());
3914     bool PerformInit =
3915         VD->getAnyInitializer() &&
3916         !VD->getAnyInitializer()->isConstantInitializer(getContext(),
3917                                                         /*ForRef=*/false);
3918 
3919     Address Addr(GetAddrOfGlobalVar(VD), getContext().getDeclAlign(VD));
3920     if (auto InitFunction = getOpenMPRuntime().emitThreadPrivateVarDefinition(
3921             VD, Addr, RefExpr->getLocStart(), PerformInit))
3922       CXXGlobalInits.push_back(InitFunction);
3923   }
3924 }
3925 
3926 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierForType(QualType T) {
3927   llvm::Metadata *&InternalId = MetadataIdMap[T.getCanonicalType()];
3928   if (InternalId)
3929     return InternalId;
3930 
3931   if (isExternallyVisible(T->getLinkage())) {
3932     std::string OutName;
3933     llvm::raw_string_ostream Out(OutName);
3934     getCXXABI().getMangleContext().mangleTypeName(T, Out);
3935 
3936     InternalId = llvm::MDString::get(getLLVMContext(), Out.str());
3937   } else {
3938     InternalId = llvm::MDNode::getDistinct(getLLVMContext(),
3939                                            llvm::ArrayRef<llvm::Metadata *>());
3940   }
3941 
3942   return InternalId;
3943 }
3944 
3945 void CodeGenModule::CreateVTableBitSetEntry(llvm::NamedMDNode *BitsetsMD,
3946                                             llvm::GlobalVariable *VTable,
3947                                             CharUnits Offset,
3948                                             const CXXRecordDecl *RD) {
3949   llvm::Metadata *MD =
3950       CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0));
3951   llvm::Metadata *BitsetOps[] = {
3952       MD, llvm::ConstantAsMetadata::get(VTable),
3953       llvm::ConstantAsMetadata::get(
3954           llvm::ConstantInt::get(Int64Ty, Offset.getQuantity()))};
3955   BitsetsMD->addOperand(llvm::MDTuple::get(getLLVMContext(), BitsetOps));
3956 
3957   if (CodeGenOpts.SanitizeCfiCrossDso) {
3958     if (auto TypeId = CreateCfiIdForTypeMetadata(MD)) {
3959       llvm::Metadata *BitsetOps2[] = {
3960           llvm::ConstantAsMetadata::get(TypeId),
3961           llvm::ConstantAsMetadata::get(VTable),
3962           llvm::ConstantAsMetadata::get(
3963               llvm::ConstantInt::get(Int64Ty, Offset.getQuantity()))};
3964       BitsetsMD->addOperand(llvm::MDTuple::get(getLLVMContext(), BitsetOps2));
3965     }
3966   }
3967 }
3968 
3969 // Fills in the supplied string map with the set of target features for the
3970 // passed in function.
3971 void CodeGenModule::getFunctionFeatureMap(llvm::StringMap<bool> &FeatureMap,
3972                                           const FunctionDecl *FD) {
3973   StringRef TargetCPU = Target.getTargetOpts().CPU;
3974   if (const auto *TD = FD->getAttr<TargetAttr>()) {
3975     // If we have a TargetAttr build up the feature map based on that.
3976     TargetAttr::ParsedTargetAttr ParsedAttr = TD->parse();
3977 
3978     // Make a copy of the features as passed on the command line into the
3979     // beginning of the additional features from the function to override.
3980     ParsedAttr.first.insert(ParsedAttr.first.begin(),
3981                             Target.getTargetOpts().FeaturesAsWritten.begin(),
3982                             Target.getTargetOpts().FeaturesAsWritten.end());
3983 
3984     if (ParsedAttr.second != "")
3985       TargetCPU = ParsedAttr.second;
3986 
3987     // Now populate the feature map, first with the TargetCPU which is either
3988     // the default or a new one from the target attribute string. Then we'll use
3989     // the passed in features (FeaturesAsWritten) along with the new ones from
3990     // the attribute.
3991     Target.initFeatureMap(FeatureMap, getDiags(), TargetCPU, ParsedAttr.first);
3992   } else {
3993     Target.initFeatureMap(FeatureMap, getDiags(), TargetCPU,
3994                           Target.getTargetOpts().Features);
3995   }
3996 }
3997