xref: /llvm-project/clang/lib/CodeGen/CodeGenModule.cpp (revision 7cb0220e535958756f0c36788b370aebc07aea1f)
1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This coordinates the per-module state used while generating code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenModule.h"
15 #include "CGDebugInfo.h"
16 #include "CodeGenFunction.h"
17 #include "CGCall.h"
18 #include "CGObjCRuntime.h"
19 #include "Mangle.h"
20 #include "TargetInfo.h"
21 #include "clang/CodeGen/CodeGenOptions.h"
22 #include "clang/AST/ASTContext.h"
23 #include "clang/AST/CharUnits.h"
24 #include "clang/AST/DeclObjC.h"
25 #include "clang/AST/DeclCXX.h"
26 #include "clang/AST/RecordLayout.h"
27 #include "clang/Basic/Builtins.h"
28 #include "clang/Basic/Diagnostic.h"
29 #include "clang/Basic/SourceManager.h"
30 #include "clang/Basic/TargetInfo.h"
31 #include "clang/Basic/ConvertUTF.h"
32 #include "llvm/CallingConv.h"
33 #include "llvm/Module.h"
34 #include "llvm/Intrinsics.h"
35 #include "llvm/LLVMContext.h"
36 #include "llvm/ADT/Triple.h"
37 #include "llvm/Target/TargetData.h"
38 #include "llvm/Support/CallSite.h"
39 #include "llvm/Support/ErrorHandling.h"
40 using namespace clang;
41 using namespace CodeGen;
42 
43 
44 CodeGenModule::CodeGenModule(ASTContext &C, const CodeGenOptions &CGO,
45                              llvm::Module &M, const llvm::TargetData &TD,
46                              Diagnostic &diags)
47   : BlockModule(C, M, TD, Types, *this), Context(C),
48     Features(C.getLangOptions()), CodeGenOpts(CGO), TheModule(M),
49     TheTargetData(TD), TheTargetCodeGenInfo(0), Diags(diags),
50     Types(C, M, TD, getTargetCodeGenInfo().getABIInfo()),
51     MangleCtx(C, diags), VTables(*this), Runtime(0),
52     CFConstantStringClassRef(0),
53     NSConstantStringClassRef(0),
54     VMContext(M.getContext()) {
55 
56   if (!Features.ObjC1)
57     Runtime = 0;
58   else if (!Features.NeXTRuntime)
59     Runtime = CreateGNUObjCRuntime(*this);
60   else if (Features.ObjCNonFragileABI)
61     Runtime = CreateMacNonFragileABIObjCRuntime(*this);
62   else
63     Runtime = CreateMacObjCRuntime(*this);
64 
65   // If debug info generation is enabled, create the CGDebugInfo object.
66   DebugInfo = CodeGenOpts.DebugInfo ? new CGDebugInfo(*this) : 0;
67 }
68 
69 CodeGenModule::~CodeGenModule() {
70   delete Runtime;
71   delete DebugInfo;
72 }
73 
74 void CodeGenModule::createObjCRuntime() {
75   if (!Features.NeXTRuntime)
76     Runtime = CreateGNUObjCRuntime(*this);
77   else if (Features.ObjCNonFragileABI)
78     Runtime = CreateMacNonFragileABIObjCRuntime(*this);
79   else
80     Runtime = CreateMacObjCRuntime(*this);
81 }
82 
83 void CodeGenModule::Release() {
84   EmitDeferred();
85   EmitCXXGlobalInitFunc();
86   EmitCXXGlobalDtorFunc();
87   if (Runtime)
88     if (llvm::Function *ObjCInitFunction = Runtime->ModuleInitFunction())
89       AddGlobalCtor(ObjCInitFunction);
90   EmitCtorList(GlobalCtors, "llvm.global_ctors");
91   EmitCtorList(GlobalDtors, "llvm.global_dtors");
92   EmitAnnotations();
93   EmitLLVMUsed();
94 }
95 
96 bool CodeGenModule::isTargetDarwin() const {
97   return getContext().Target.getTriple().getOS() == llvm::Triple::Darwin;
98 }
99 
100 /// ErrorUnsupported - Print out an error that codegen doesn't support the
101 /// specified stmt yet.
102 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type,
103                                      bool OmitOnError) {
104   if (OmitOnError && getDiags().hasErrorOccurred())
105     return;
106   unsigned DiagID = getDiags().getCustomDiagID(Diagnostic::Error,
107                                                "cannot compile this %0 yet");
108   std::string Msg = Type;
109   getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID)
110     << Msg << S->getSourceRange();
111 }
112 
113 /// ErrorUnsupported - Print out an error that codegen doesn't support the
114 /// specified decl yet.
115 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type,
116                                      bool OmitOnError) {
117   if (OmitOnError && getDiags().hasErrorOccurred())
118     return;
119   unsigned DiagID = getDiags().getCustomDiagID(Diagnostic::Error,
120                                                "cannot compile this %0 yet");
121   std::string Msg = Type;
122   getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg;
123 }
124 
125 LangOptions::VisibilityMode
126 CodeGenModule::getDeclVisibilityMode(const Decl *D) const {
127   if (const VarDecl *VD = dyn_cast<VarDecl>(D))
128     if (VD->getStorageClass() == VarDecl::PrivateExtern)
129       return LangOptions::Hidden;
130 
131   if (const VisibilityAttr *attr = D->getAttr<VisibilityAttr>()) {
132     switch (attr->getVisibility()) {
133     default: assert(0 && "Unknown visibility!");
134     case VisibilityAttr::DefaultVisibility:
135       return LangOptions::Default;
136     case VisibilityAttr::HiddenVisibility:
137       return LangOptions::Hidden;
138     case VisibilityAttr::ProtectedVisibility:
139       return LangOptions::Protected;
140     }
141   }
142 
143   // This decl should have the same visibility as its parent.
144   if (const DeclContext *DC = D->getDeclContext())
145     return getDeclVisibilityMode(cast<Decl>(DC));
146 
147   return getLangOptions().getVisibilityMode();
148 }
149 
150 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV,
151                                         const Decl *D) const {
152   // Internal definitions always have default visibility.
153   if (GV->hasLocalLinkage()) {
154     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
155     return;
156   }
157 
158   switch (getDeclVisibilityMode(D)) {
159   default: assert(0 && "Unknown visibility!");
160   case LangOptions::Default:
161     return GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
162   case LangOptions::Hidden:
163     return GV->setVisibility(llvm::GlobalValue::HiddenVisibility);
164   case LangOptions::Protected:
165     return GV->setVisibility(llvm::GlobalValue::ProtectedVisibility);
166   }
167 }
168 
169 void CodeGenModule::getMangledName(MangleBuffer &Buffer, GlobalDecl GD) {
170   const NamedDecl *ND = cast<NamedDecl>(GD.getDecl());
171 
172   if (const CXXConstructorDecl *D = dyn_cast<CXXConstructorDecl>(ND))
173     return getMangledCXXCtorName(Buffer, D, GD.getCtorType());
174   if (const CXXDestructorDecl *D = dyn_cast<CXXDestructorDecl>(ND))
175     return getMangledCXXDtorName(Buffer, D, GD.getDtorType());
176 
177   return getMangledName(Buffer, ND);
178 }
179 
180 /// \brief Retrieves the mangled name for the given declaration.
181 ///
182 /// If the given declaration requires a mangled name, returns an
183 /// const char* containing the mangled name.  Otherwise, returns
184 /// the unmangled name.
185 ///
186 void CodeGenModule::getMangledName(MangleBuffer &Buffer,
187                                    const NamedDecl *ND) {
188   if (!getMangleContext().shouldMangleDeclName(ND)) {
189     assert(ND->getIdentifier() && "Attempt to mangle unnamed decl.");
190     Buffer.setString(ND->getNameAsCString());
191     return;
192   }
193 
194   getMangleContext().mangleName(ND, Buffer.getBuffer());
195 }
196 
197 llvm::GlobalValue *CodeGenModule::GetGlobalValue(llvm::StringRef Name) {
198   return getModule().getNamedValue(Name);
199 }
200 
201 /// AddGlobalCtor - Add a function to the list that will be called before
202 /// main() runs.
203 void CodeGenModule::AddGlobalCtor(llvm::Function * Ctor, int Priority) {
204   // FIXME: Type coercion of void()* types.
205   GlobalCtors.push_back(std::make_pair(Ctor, Priority));
206 }
207 
208 /// AddGlobalDtor - Add a function to the list that will be called
209 /// when the module is unloaded.
210 void CodeGenModule::AddGlobalDtor(llvm::Function * Dtor, int Priority) {
211   // FIXME: Type coercion of void()* types.
212   GlobalDtors.push_back(std::make_pair(Dtor, Priority));
213 }
214 
215 void CodeGenModule::EmitCtorList(const CtorList &Fns, const char *GlobalName) {
216   // Ctor function type is void()*.
217   llvm::FunctionType* CtorFTy =
218     llvm::FunctionType::get(llvm::Type::getVoidTy(VMContext),
219                             std::vector<const llvm::Type*>(),
220                             false);
221   llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy);
222 
223   // Get the type of a ctor entry, { i32, void ()* }.
224   llvm::StructType* CtorStructTy =
225     llvm::StructType::get(VMContext, llvm::Type::getInt32Ty(VMContext),
226                           llvm::PointerType::getUnqual(CtorFTy), NULL);
227 
228   // Construct the constructor and destructor arrays.
229   std::vector<llvm::Constant*> Ctors;
230   for (CtorList::const_iterator I = Fns.begin(), E = Fns.end(); I != E; ++I) {
231     std::vector<llvm::Constant*> S;
232     S.push_back(llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext),
233                 I->second, false));
234     S.push_back(llvm::ConstantExpr::getBitCast(I->first, CtorPFTy));
235     Ctors.push_back(llvm::ConstantStruct::get(CtorStructTy, S));
236   }
237 
238   if (!Ctors.empty()) {
239     llvm::ArrayType *AT = llvm::ArrayType::get(CtorStructTy, Ctors.size());
240     new llvm::GlobalVariable(TheModule, AT, false,
241                              llvm::GlobalValue::AppendingLinkage,
242                              llvm::ConstantArray::get(AT, Ctors),
243                              GlobalName);
244   }
245 }
246 
247 void CodeGenModule::EmitAnnotations() {
248   if (Annotations.empty())
249     return;
250 
251   // Create a new global variable for the ConstantStruct in the Module.
252   llvm::Constant *Array =
253   llvm::ConstantArray::get(llvm::ArrayType::get(Annotations[0]->getType(),
254                                                 Annotations.size()),
255                            Annotations);
256   llvm::GlobalValue *gv =
257   new llvm::GlobalVariable(TheModule, Array->getType(), false,
258                            llvm::GlobalValue::AppendingLinkage, Array,
259                            "llvm.global.annotations");
260   gv->setSection("llvm.metadata");
261 }
262 
263 static CodeGenModule::GVALinkage
264 GetLinkageForFunction(ASTContext &Context, const FunctionDecl *FD,
265                       const LangOptions &Features) {
266   CodeGenModule::GVALinkage External = CodeGenModule::GVA_StrongExternal;
267 
268   Linkage L = FD->getLinkage();
269   if (L == ExternalLinkage && Context.getLangOptions().CPlusPlus &&
270       FD->getType()->getLinkage() == UniqueExternalLinkage)
271     L = UniqueExternalLinkage;
272 
273   switch (L) {
274   case NoLinkage:
275   case InternalLinkage:
276   case UniqueExternalLinkage:
277     return CodeGenModule::GVA_Internal;
278 
279   case ExternalLinkage:
280     switch (FD->getTemplateSpecializationKind()) {
281     case TSK_Undeclared:
282     case TSK_ExplicitSpecialization:
283       External = CodeGenModule::GVA_StrongExternal;
284       break;
285 
286     case TSK_ExplicitInstantiationDefinition:
287       return CodeGenModule::GVA_ExplicitTemplateInstantiation;
288 
289     case TSK_ExplicitInstantiationDeclaration:
290     case TSK_ImplicitInstantiation:
291       External = CodeGenModule::GVA_TemplateInstantiation;
292       break;
293     }
294   }
295 
296   if (!FD->isInlined())
297     return External;
298 
299   if (!Features.CPlusPlus || FD->hasAttr<GNUInlineAttr>()) {
300     // GNU or C99 inline semantics. Determine whether this symbol should be
301     // externally visible.
302     if (FD->isInlineDefinitionExternallyVisible())
303       return External;
304 
305     // C99 inline semantics, where the symbol is not externally visible.
306     return CodeGenModule::GVA_C99Inline;
307   }
308 
309   // C++0x [temp.explicit]p9:
310   //   [ Note: The intent is that an inline function that is the subject of
311   //   an explicit instantiation declaration will still be implicitly
312   //   instantiated when used so that the body can be considered for
313   //   inlining, but that no out-of-line copy of the inline function would be
314   //   generated in the translation unit. -- end note ]
315   if (FD->getTemplateSpecializationKind()
316                                        == TSK_ExplicitInstantiationDeclaration)
317     return CodeGenModule::GVA_C99Inline;
318 
319   return CodeGenModule::GVA_CXXInline;
320 }
321 
322 llvm::GlobalValue::LinkageTypes
323 CodeGenModule::getFunctionLinkage(const FunctionDecl *D) {
324   GVALinkage Linkage = GetLinkageForFunction(getContext(), D, Features);
325 
326   if (Linkage == GVA_Internal) {
327     return llvm::Function::InternalLinkage;
328   } else if (D->hasAttr<DLLExportAttr>()) {
329     return llvm::Function::DLLExportLinkage;
330   } else if (D->hasAttr<WeakAttr>()) {
331     return llvm::Function::WeakAnyLinkage;
332   } else if (Linkage == GVA_C99Inline) {
333     // In C99 mode, 'inline' functions are guaranteed to have a strong
334     // definition somewhere else, so we can use available_externally linkage.
335     return llvm::Function::AvailableExternallyLinkage;
336   } else if (Linkage == GVA_CXXInline || Linkage == GVA_TemplateInstantiation) {
337     // In C++, the compiler has to emit a definition in every translation unit
338     // that references the function.  We should use linkonce_odr because
339     // a) if all references in this translation unit are optimized away, we
340     // don't need to codegen it.  b) if the function persists, it needs to be
341     // merged with other definitions. c) C++ has the ODR, so we know the
342     // definition is dependable.
343     return llvm::Function::LinkOnceODRLinkage;
344   } else if (Linkage == GVA_ExplicitTemplateInstantiation) {
345     // An explicit instantiation of a template has weak linkage, since
346     // explicit instantiations can occur in multiple translation units
347     // and must all be equivalent. However, we are not allowed to
348     // throw away these explicit instantiations.
349     return llvm::Function::WeakODRLinkage;
350   } else {
351     assert(Linkage == GVA_StrongExternal);
352     // Otherwise, we have strong external linkage.
353     return llvm::Function::ExternalLinkage;
354   }
355 }
356 
357 
358 /// SetFunctionDefinitionAttributes - Set attributes for a global.
359 ///
360 /// FIXME: This is currently only done for aliases and functions, but not for
361 /// variables (these details are set in EmitGlobalVarDefinition for variables).
362 void CodeGenModule::SetFunctionDefinitionAttributes(const FunctionDecl *D,
363                                                     llvm::GlobalValue *GV) {
364   SetCommonAttributes(D, GV);
365 }
366 
367 void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D,
368                                               const CGFunctionInfo &Info,
369                                               llvm::Function *F) {
370   unsigned CallingConv;
371   AttributeListType AttributeList;
372   ConstructAttributeList(Info, D, AttributeList, CallingConv);
373   F->setAttributes(llvm::AttrListPtr::get(AttributeList.begin(),
374                                           AttributeList.size()));
375   F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv));
376 }
377 
378 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D,
379                                                            llvm::Function *F) {
380   if (!Features.Exceptions && !Features.ObjCNonFragileABI)
381     F->addFnAttr(llvm::Attribute::NoUnwind);
382 
383   if (D->hasAttr<AlwaysInlineAttr>())
384     F->addFnAttr(llvm::Attribute::AlwaysInline);
385 
386   if (D->hasAttr<NoInlineAttr>())
387     F->addFnAttr(llvm::Attribute::NoInline);
388 
389   if (Features.getStackProtectorMode() == LangOptions::SSPOn)
390     F->addFnAttr(llvm::Attribute::StackProtect);
391   else if (Features.getStackProtectorMode() == LangOptions::SSPReq)
392     F->addFnAttr(llvm::Attribute::StackProtectReq);
393 
394   if (const AlignedAttr *AA = D->getAttr<AlignedAttr>()) {
395     unsigned width = Context.Target.getCharWidth();
396     F->setAlignment(AA->getAlignment() / width);
397     while ((AA = AA->getNext<AlignedAttr>()))
398       F->setAlignment(std::max(F->getAlignment(), AA->getAlignment() / width));
399   }
400   // C++ ABI requires 2-byte alignment for member functions.
401   if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D))
402     F->setAlignment(2);
403 }
404 
405 void CodeGenModule::SetCommonAttributes(const Decl *D,
406                                         llvm::GlobalValue *GV) {
407   setGlobalVisibility(GV, D);
408 
409   if (D->hasAttr<UsedAttr>())
410     AddUsedGlobal(GV);
411 
412   if (const SectionAttr *SA = D->getAttr<SectionAttr>())
413     GV->setSection(SA->getName());
414 
415   getTargetCodeGenInfo().SetTargetAttributes(D, GV, *this);
416 }
417 
418 void CodeGenModule::SetInternalFunctionAttributes(const Decl *D,
419                                                   llvm::Function *F,
420                                                   const CGFunctionInfo &FI) {
421   SetLLVMFunctionAttributes(D, FI, F);
422   SetLLVMFunctionAttributesForDefinition(D, F);
423 
424   F->setLinkage(llvm::Function::InternalLinkage);
425 
426   SetCommonAttributes(D, F);
427 }
428 
429 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD,
430                                           llvm::Function *F,
431                                           bool IsIncompleteFunction) {
432   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
433 
434   if (!IsIncompleteFunction)
435     SetLLVMFunctionAttributes(FD, getTypes().getFunctionInfo(GD), F);
436 
437   // Only a few attributes are set on declarations; these may later be
438   // overridden by a definition.
439 
440   if (FD->hasAttr<DLLImportAttr>()) {
441     F->setLinkage(llvm::Function::DLLImportLinkage);
442   } else if (FD->hasAttr<WeakAttr>() ||
443              FD->hasAttr<WeakImportAttr>()) {
444     // "extern_weak" is overloaded in LLVM; we probably should have
445     // separate linkage types for this.
446     F->setLinkage(llvm::Function::ExternalWeakLinkage);
447   } else {
448     F->setLinkage(llvm::Function::ExternalLinkage);
449   }
450 
451   if (const SectionAttr *SA = FD->getAttr<SectionAttr>())
452     F->setSection(SA->getName());
453 }
454 
455 void CodeGenModule::AddUsedGlobal(llvm::GlobalValue *GV) {
456   assert(!GV->isDeclaration() &&
457          "Only globals with definition can force usage.");
458   LLVMUsed.push_back(GV);
459 }
460 
461 void CodeGenModule::EmitLLVMUsed() {
462   // Don't create llvm.used if there is no need.
463   if (LLVMUsed.empty())
464     return;
465 
466   const llvm::Type *i8PTy = llvm::Type::getInt8PtrTy(VMContext);
467 
468   // Convert LLVMUsed to what ConstantArray needs.
469   std::vector<llvm::Constant*> UsedArray;
470   UsedArray.resize(LLVMUsed.size());
471   for (unsigned i = 0, e = LLVMUsed.size(); i != e; ++i) {
472     UsedArray[i] =
473      llvm::ConstantExpr::getBitCast(cast<llvm::Constant>(&*LLVMUsed[i]),
474                                       i8PTy);
475   }
476 
477   if (UsedArray.empty())
478     return;
479   llvm::ArrayType *ATy = llvm::ArrayType::get(i8PTy, UsedArray.size());
480 
481   llvm::GlobalVariable *GV =
482     new llvm::GlobalVariable(getModule(), ATy, false,
483                              llvm::GlobalValue::AppendingLinkage,
484                              llvm::ConstantArray::get(ATy, UsedArray),
485                              "llvm.used");
486 
487   GV->setSection("llvm.metadata");
488 }
489 
490 void CodeGenModule::EmitDeferred() {
491   // Emit code for any potentially referenced deferred decls.  Since a
492   // previously unused static decl may become used during the generation of code
493   // for a static function, iterate until no  changes are made.
494 
495   while (!DeferredDeclsToEmit.empty() || !DeferredVTables.empty()) {
496     if (!DeferredVTables.empty()) {
497       const CXXRecordDecl *RD = DeferredVTables.back();
498       DeferredVTables.pop_back();
499       getVTables().GenerateClassData(getVTableLinkage(RD), RD);
500       continue;
501     }
502 
503     GlobalDecl D = DeferredDeclsToEmit.back();
504     DeferredDeclsToEmit.pop_back();
505 
506     // Look it up to see if it was defined with a stronger definition (e.g. an
507     // extern inline function with a strong function redefinition).  If so,
508     // just ignore the deferred decl.
509     MangleBuffer Name;
510     getMangledName(Name, D);
511     llvm::GlobalValue *CGRef = GetGlobalValue(Name);
512     assert(CGRef && "Deferred decl wasn't referenced?");
513 
514     if (!CGRef->isDeclaration())
515       continue;
516 
517     // Otherwise, emit the definition and move on to the next one.
518     EmitGlobalDefinition(D);
519   }
520 }
521 
522 /// EmitAnnotateAttr - Generate the llvm::ConstantStruct which contains the
523 /// annotation information for a given GlobalValue.  The annotation struct is
524 /// {i8 *, i8 *, i8 *, i32}.  The first field is a constant expression, the
525 /// GlobalValue being annotated.  The second field is the constant string
526 /// created from the AnnotateAttr's annotation.  The third field is a constant
527 /// string containing the name of the translation unit.  The fourth field is
528 /// the line number in the file of the annotated value declaration.
529 ///
530 /// FIXME: this does not unique the annotation string constants, as llvm-gcc
531 ///        appears to.
532 ///
533 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV,
534                                                 const AnnotateAttr *AA,
535                                                 unsigned LineNo) {
536   llvm::Module *M = &getModule();
537 
538   // get [N x i8] constants for the annotation string, and the filename string
539   // which are the 2nd and 3rd elements of the global annotation structure.
540   const llvm::Type *SBP = llvm::Type::getInt8PtrTy(VMContext);
541   llvm::Constant *anno = llvm::ConstantArray::get(VMContext,
542                                                   AA->getAnnotation(), true);
543   llvm::Constant *unit = llvm::ConstantArray::get(VMContext,
544                                                   M->getModuleIdentifier(),
545                                                   true);
546 
547   // Get the two global values corresponding to the ConstantArrays we just
548   // created to hold the bytes of the strings.
549   llvm::GlobalValue *annoGV =
550     new llvm::GlobalVariable(*M, anno->getType(), false,
551                              llvm::GlobalValue::PrivateLinkage, anno,
552                              GV->getName());
553   // translation unit name string, emitted into the llvm.metadata section.
554   llvm::GlobalValue *unitGV =
555     new llvm::GlobalVariable(*M, unit->getType(), false,
556                              llvm::GlobalValue::PrivateLinkage, unit,
557                              ".str");
558 
559   // Create the ConstantStruct for the global annotation.
560   llvm::Constant *Fields[4] = {
561     llvm::ConstantExpr::getBitCast(GV, SBP),
562     llvm::ConstantExpr::getBitCast(annoGV, SBP),
563     llvm::ConstantExpr::getBitCast(unitGV, SBP),
564     llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext), LineNo)
565   };
566   return llvm::ConstantStruct::get(VMContext, Fields, 4, false);
567 }
568 
569 bool CodeGenModule::MayDeferGeneration(const ValueDecl *Global) {
570   // Never defer when EmitAllDecls is specified or the decl has
571   // attribute used.
572   if (Features.EmitAllDecls || Global->hasAttr<UsedAttr>())
573     return false;
574 
575   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) {
576     // Constructors and destructors should never be deferred.
577     if (FD->hasAttr<ConstructorAttr>() ||
578         FD->hasAttr<DestructorAttr>())
579       return false;
580 
581     // The key function for a class must never be deferred.
582     if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Global)) {
583       const CXXRecordDecl *RD = MD->getParent();
584       if (MD->isOutOfLine() && RD->isDynamicClass()) {
585         const CXXMethodDecl *KeyFunction = getContext().getKeyFunction(RD);
586         if (KeyFunction &&
587             KeyFunction->getCanonicalDecl() == MD->getCanonicalDecl())
588           return false;
589       }
590     }
591 
592     GVALinkage Linkage = GetLinkageForFunction(getContext(), FD, Features);
593 
594     // static, static inline, always_inline, and extern inline functions can
595     // always be deferred.  Normal inline functions can be deferred in C99/C++.
596     // Implicit template instantiations can also be deferred in C++.
597     if (Linkage == GVA_Internal || Linkage == GVA_C99Inline ||
598         Linkage == GVA_CXXInline || Linkage == GVA_TemplateInstantiation)
599       return true;
600     return false;
601   }
602 
603   const VarDecl *VD = cast<VarDecl>(Global);
604   assert(VD->isFileVarDecl() && "Invalid decl");
605 
606   // We never want to defer structs that have non-trivial constructors or
607   // destructors.
608 
609   // FIXME: Handle references.
610   if (const RecordType *RT = VD->getType()->getAs<RecordType>()) {
611     if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl())) {
612       if (!RD->hasTrivialConstructor() || !RD->hasTrivialDestructor())
613         return false;
614     }
615   }
616 
617   // Static data may be deferred, but out-of-line static data members
618   // cannot be.
619   Linkage L = VD->getLinkage();
620   if (L == ExternalLinkage && getContext().getLangOptions().CPlusPlus &&
621       VD->getType()->getLinkage() == UniqueExternalLinkage)
622     L = UniqueExternalLinkage;
623 
624   switch (L) {
625   case NoLinkage:
626   case InternalLinkage:
627   case UniqueExternalLinkage:
628     // Initializer has side effects?
629     if (VD->getInit() && VD->getInit()->HasSideEffects(Context))
630       return false;
631     return !(VD->isStaticDataMember() && VD->isOutOfLine());
632 
633   case ExternalLinkage:
634     break;
635   }
636 
637   return false;
638 }
639 
640 llvm::Constant *CodeGenModule::GetWeakRefReference(const ValueDecl *VD) {
641   const AliasAttr *AA = VD->getAttr<AliasAttr>();
642   assert(AA && "No alias?");
643 
644   const llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType());
645 
646   // See if there is already something with the target's name in the module.
647   llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee());
648 
649   llvm::Constant *Aliasee;
650   if (isa<llvm::FunctionType>(DeclTy))
651     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GlobalDecl());
652   else
653     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
654                                     llvm::PointerType::getUnqual(DeclTy), 0);
655   if (!Entry) {
656     llvm::GlobalValue* F = cast<llvm::GlobalValue>(Aliasee);
657     F->setLinkage(llvm::Function::ExternalWeakLinkage);
658     WeakRefReferences.insert(F);
659   }
660 
661   return Aliasee;
662 }
663 
664 void CodeGenModule::EmitGlobal(GlobalDecl GD) {
665   const ValueDecl *Global = cast<ValueDecl>(GD.getDecl());
666 
667   // Weak references don't produce any output by themselves.
668   if (Global->hasAttr<WeakRefAttr>())
669     return;
670 
671   // If this is an alias definition (which otherwise looks like a declaration)
672   // emit it now.
673   if (Global->hasAttr<AliasAttr>())
674     return EmitAliasDefinition(GD);
675 
676   // Ignore declarations, they will be emitted on their first use.
677   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) {
678     // Forward declarations are emitted lazily on first use.
679     if (!FD->isThisDeclarationADefinition())
680       return;
681   } else {
682     const VarDecl *VD = cast<VarDecl>(Global);
683     assert(VD->isFileVarDecl() && "Cannot emit local var decl as global.");
684 
685     if (VD->isThisDeclarationADefinition() != VarDecl::Definition)
686       return;
687   }
688 
689   // Defer code generation when possible if this is a static definition, inline
690   // function etc.  These we only want to emit if they are used.
691   if (!MayDeferGeneration(Global)) {
692     // Emit the definition if it can't be deferred.
693     EmitGlobalDefinition(GD);
694     return;
695   }
696 
697   // If the value has already been used, add it directly to the
698   // DeferredDeclsToEmit list.
699   MangleBuffer MangledName;
700   getMangledName(MangledName, GD);
701   if (GetGlobalValue(MangledName))
702     DeferredDeclsToEmit.push_back(GD);
703   else {
704     // Otherwise, remember that we saw a deferred decl with this name.  The
705     // first use of the mangled name will cause it to move into
706     // DeferredDeclsToEmit.
707     DeferredDecls[MangledName] = GD;
708   }
709 }
710 
711 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD) {
712   const ValueDecl *D = cast<ValueDecl>(GD.getDecl());
713 
714   PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(),
715                                  Context.getSourceManager(),
716                                  "Generating code for declaration");
717 
718   if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D))
719     if (Method->isVirtual())
720       getVTables().EmitThunks(GD);
721 
722   if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(D))
723     return EmitCXXConstructor(CD, GD.getCtorType());
724 
725   if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(D))
726     return EmitCXXDestructor(DD, GD.getDtorType());
727 
728   if (isa<FunctionDecl>(D))
729     return EmitGlobalFunctionDefinition(GD);
730 
731   if (const VarDecl *VD = dyn_cast<VarDecl>(D))
732     return EmitGlobalVarDefinition(VD);
733 
734   assert(0 && "Invalid argument to EmitGlobalDefinition()");
735 }
736 
737 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the
738 /// module, create and return an llvm Function with the specified type. If there
739 /// is something in the module with the specified name, return it potentially
740 /// bitcasted to the right type.
741 ///
742 /// If D is non-null, it specifies a decl that correspond to this.  This is used
743 /// to set the attributes on the function when it is first created.
744 llvm::Constant *
745 CodeGenModule::GetOrCreateLLVMFunction(llvm::StringRef MangledName,
746                                        const llvm::Type *Ty,
747                                        GlobalDecl D) {
748   // Lookup the entry, lazily creating it if necessary.
749   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
750   if (Entry) {
751     if (WeakRefReferences.count(Entry)) {
752       const FunctionDecl *FD = cast_or_null<FunctionDecl>(D.getDecl());
753       if (FD && !FD->hasAttr<WeakAttr>())
754         Entry->setLinkage(llvm::Function::ExternalLinkage);
755 
756       WeakRefReferences.erase(Entry);
757     }
758 
759     if (Entry->getType()->getElementType() == Ty)
760       return Entry;
761 
762     // Make sure the result is of the correct type.
763     const llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
764     return llvm::ConstantExpr::getBitCast(Entry, PTy);
765   }
766 
767   // This function doesn't have a complete type (for example, the return
768   // type is an incomplete struct). Use a fake type instead, and make
769   // sure not to try to set attributes.
770   bool IsIncompleteFunction = false;
771 
772   const llvm::FunctionType *FTy;
773   if (isa<llvm::FunctionType>(Ty)) {
774     FTy = cast<llvm::FunctionType>(Ty);
775   } else {
776     FTy = llvm::FunctionType::get(llvm::Type::getVoidTy(VMContext),
777                                   std::vector<const llvm::Type*>(), false);
778     IsIncompleteFunction = true;
779   }
780   llvm::Function *F = llvm::Function::Create(FTy,
781                                              llvm::Function::ExternalLinkage,
782                                              MangledName, &getModule());
783   assert(F->getName() == MangledName && "name was uniqued!");
784   if (D.getDecl())
785     SetFunctionAttributes(D, F, IsIncompleteFunction);
786 
787   // This is the first use or definition of a mangled name.  If there is a
788   // deferred decl with this name, remember that we need to emit it at the end
789   // of the file.
790   llvm::StringMap<GlobalDecl>::iterator DDI = DeferredDecls.find(MangledName);
791   if (DDI != DeferredDecls.end()) {
792     // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
793     // list, and remove it from DeferredDecls (since we don't need it anymore).
794     DeferredDeclsToEmit.push_back(DDI->second);
795     DeferredDecls.erase(DDI);
796   } else if (const FunctionDecl *FD = cast_or_null<FunctionDecl>(D.getDecl())) {
797     // If this the first reference to a C++ inline function in a class, queue up
798     // the deferred function body for emission.  These are not seen as
799     // top-level declarations.
800     if (FD->isThisDeclarationADefinition() && MayDeferGeneration(FD))
801       DeferredDeclsToEmit.push_back(D);
802     // A called constructor which has no definition or declaration need be
803     // synthesized.
804     else if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD)) {
805       if (CD->isImplicit()) {
806         assert(CD->isUsed() && "Sema doesn't consider constructor as used.");
807         DeferredDeclsToEmit.push_back(D);
808       }
809     } else if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(FD)) {
810       if (DD->isImplicit()) {
811         assert(DD->isUsed() && "Sema doesn't consider destructor as used.");
812         DeferredDeclsToEmit.push_back(D);
813       }
814     } else if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
815       if (MD->isCopyAssignment() && MD->isImplicit()) {
816         assert(MD->isUsed() && "Sema doesn't consider CopyAssignment as used.");
817         DeferredDeclsToEmit.push_back(D);
818       }
819     }
820   }
821 
822   // Make sure the result is of the requested type.
823   if (!IsIncompleteFunction) {
824     assert(F->getType()->getElementType() == Ty);
825     return F;
826   }
827 
828   const llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
829   return llvm::ConstantExpr::getBitCast(F, PTy);
830 }
831 
832 /// GetAddrOfFunction - Return the address of the given function.  If Ty is
833 /// non-null, then this function will use the specified type if it has to
834 /// create it (this occurs when we see a definition of the function).
835 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD,
836                                                  const llvm::Type *Ty) {
837   // If there was no specific requested type, just convert it now.
838   if (!Ty)
839     Ty = getTypes().ConvertType(cast<ValueDecl>(GD.getDecl())->getType());
840   MangleBuffer MangledName;
841   getMangledName(MangledName, GD);
842   return GetOrCreateLLVMFunction(MangledName, Ty, GD);
843 }
844 
845 /// CreateRuntimeFunction - Create a new runtime function with the specified
846 /// type and name.
847 llvm::Constant *
848 CodeGenModule::CreateRuntimeFunction(const llvm::FunctionType *FTy,
849                                      llvm::StringRef Name) {
850   return GetOrCreateLLVMFunction(Name, FTy, GlobalDecl());
851 }
852 
853 static bool DeclIsConstantGlobal(ASTContext &Context, const VarDecl *D) {
854   if (!D->getType().isConstant(Context) && !D->getType()->isReferenceType())
855     return false;
856   if (Context.getLangOptions().CPlusPlus &&
857       Context.getBaseElementType(D->getType())->getAs<RecordType>()) {
858     // FIXME: We should do something fancier here!
859     return false;
860   }
861   return true;
862 }
863 
864 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module,
865 /// create and return an llvm GlobalVariable with the specified type.  If there
866 /// is something in the module with the specified name, return it potentially
867 /// bitcasted to the right type.
868 ///
869 /// If D is non-null, it specifies a decl that correspond to this.  This is used
870 /// to set the attributes on the global when it is first created.
871 llvm::Constant *
872 CodeGenModule::GetOrCreateLLVMGlobal(llvm::StringRef MangledName,
873                                      const llvm::PointerType *Ty,
874                                      const VarDecl *D) {
875   // Lookup the entry, lazily creating it if necessary.
876   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
877   if (Entry) {
878     if (WeakRefReferences.count(Entry)) {
879       if (D && !D->hasAttr<WeakAttr>())
880         Entry->setLinkage(llvm::Function::ExternalLinkage);
881 
882       WeakRefReferences.erase(Entry);
883     }
884 
885     if (Entry->getType() == Ty)
886       return Entry;
887 
888     // Make sure the result is of the correct type.
889     return llvm::ConstantExpr::getBitCast(Entry, Ty);
890   }
891 
892   // This is the first use or definition of a mangled name.  If there is a
893   // deferred decl with this name, remember that we need to emit it at the end
894   // of the file.
895   llvm::StringMap<GlobalDecl>::iterator DDI = DeferredDecls.find(MangledName);
896   if (DDI != DeferredDecls.end()) {
897     // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
898     // list, and remove it from DeferredDecls (since we don't need it anymore).
899     DeferredDeclsToEmit.push_back(DDI->second);
900     DeferredDecls.erase(DDI);
901   }
902 
903   llvm::GlobalVariable *GV =
904     new llvm::GlobalVariable(getModule(), Ty->getElementType(), false,
905                              llvm::GlobalValue::ExternalLinkage,
906                              0, MangledName, 0,
907                              false, Ty->getAddressSpace());
908 
909   // Handle things which are present even on external declarations.
910   if (D) {
911     // FIXME: This code is overly simple and should be merged with other global
912     // handling.
913     GV->setConstant(DeclIsConstantGlobal(Context, D));
914 
915     // FIXME: Merge with other attribute handling code.
916     if (D->getStorageClass() == VarDecl::PrivateExtern)
917       GV->setVisibility(llvm::GlobalValue::HiddenVisibility);
918 
919     if (D->hasAttr<WeakAttr>() ||
920         D->hasAttr<WeakImportAttr>())
921       GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage);
922 
923     GV->setThreadLocal(D->isThreadSpecified());
924   }
925 
926   return GV;
927 }
928 
929 
930 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the
931 /// given global variable.  If Ty is non-null and if the global doesn't exist,
932 /// then it will be greated with the specified type instead of whatever the
933 /// normal requested type would be.
934 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D,
935                                                   const llvm::Type *Ty) {
936   assert(D->hasGlobalStorage() && "Not a global variable");
937   QualType ASTTy = D->getType();
938   if (Ty == 0)
939     Ty = getTypes().ConvertTypeForMem(ASTTy);
940 
941   const llvm::PointerType *PTy =
942     llvm::PointerType::get(Ty, ASTTy.getAddressSpace());
943 
944   MangleBuffer MangledName;
945   getMangledName(MangledName, D);
946   return GetOrCreateLLVMGlobal(MangledName, PTy, D);
947 }
948 
949 /// CreateRuntimeVariable - Create a new runtime global variable with the
950 /// specified type and name.
951 llvm::Constant *
952 CodeGenModule::CreateRuntimeVariable(const llvm::Type *Ty,
953                                      llvm::StringRef Name) {
954   return GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), 0);
955 }
956 
957 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) {
958   assert(!D->getInit() && "Cannot emit definite definitions here!");
959 
960   if (MayDeferGeneration(D)) {
961     // If we have not seen a reference to this variable yet, place it
962     // into the deferred declarations table to be emitted if needed
963     // later.
964     MangleBuffer MangledName;
965     getMangledName(MangledName, D);
966     if (!GetGlobalValue(MangledName)) {
967       DeferredDecls[MangledName] = D;
968       return;
969     }
970   }
971 
972   // The tentative definition is the only definition.
973   EmitGlobalVarDefinition(D);
974 }
975 
976 void CodeGenModule::EmitVTable(CXXRecordDecl *Class, bool DefinitionRequired) {
977   if (DefinitionRequired)
978     getVTables().GenerateClassData(getVTableLinkage(Class), Class);
979 }
980 
981 llvm::GlobalVariable::LinkageTypes
982 CodeGenModule::getVTableLinkage(const CXXRecordDecl *RD) {
983   if (RD->isInAnonymousNamespace() || !RD->hasLinkage())
984     return llvm::GlobalVariable::InternalLinkage;
985 
986   if (const CXXMethodDecl *KeyFunction
987                                     = RD->getASTContext().getKeyFunction(RD)) {
988     // If this class has a key function, use that to determine the linkage of
989     // the vtable.
990     const FunctionDecl *Def = 0;
991     if (KeyFunction->getBody(Def))
992       KeyFunction = cast<CXXMethodDecl>(Def);
993 
994     switch (KeyFunction->getTemplateSpecializationKind()) {
995       case TSK_Undeclared:
996       case TSK_ExplicitSpecialization:
997         if (KeyFunction->isInlined())
998           return llvm::GlobalVariable::WeakODRLinkage;
999 
1000         return llvm::GlobalVariable::ExternalLinkage;
1001 
1002       case TSK_ImplicitInstantiation:
1003       case TSK_ExplicitInstantiationDefinition:
1004         return llvm::GlobalVariable::WeakODRLinkage;
1005 
1006       case TSK_ExplicitInstantiationDeclaration:
1007         // FIXME: Use available_externally linkage. However, this currently
1008         // breaks LLVM's build due to undefined symbols.
1009         //      return llvm::GlobalVariable::AvailableExternallyLinkage;
1010         return llvm::GlobalVariable::WeakODRLinkage;
1011     }
1012   }
1013 
1014   switch (RD->getTemplateSpecializationKind()) {
1015   case TSK_Undeclared:
1016   case TSK_ExplicitSpecialization:
1017   case TSK_ImplicitInstantiation:
1018   case TSK_ExplicitInstantiationDefinition:
1019     return llvm::GlobalVariable::WeakODRLinkage;
1020 
1021   case TSK_ExplicitInstantiationDeclaration:
1022     // FIXME: Use available_externally linkage. However, this currently
1023     // breaks LLVM's build due to undefined symbols.
1024     //   return llvm::GlobalVariable::AvailableExternallyLinkage;
1025     return llvm::GlobalVariable::WeakODRLinkage;
1026   }
1027 
1028   // Silence GCC warning.
1029   return llvm::GlobalVariable::WeakODRLinkage;
1030 }
1031 
1032 static CodeGenModule::GVALinkage
1033 GetLinkageForVariable(ASTContext &Context, const VarDecl *VD) {
1034   // If this is a static data member, compute the kind of template
1035   // specialization. Otherwise, this variable is not part of a
1036   // template.
1037   TemplateSpecializationKind TSK = TSK_Undeclared;
1038   if (VD->isStaticDataMember())
1039     TSK = VD->getTemplateSpecializationKind();
1040 
1041   Linkage L = VD->getLinkage();
1042   if (L == ExternalLinkage && Context.getLangOptions().CPlusPlus &&
1043       VD->getType()->getLinkage() == UniqueExternalLinkage)
1044     L = UniqueExternalLinkage;
1045 
1046   switch (L) {
1047   case NoLinkage:
1048   case InternalLinkage:
1049   case UniqueExternalLinkage:
1050     return CodeGenModule::GVA_Internal;
1051 
1052   case ExternalLinkage:
1053     switch (TSK) {
1054     case TSK_Undeclared:
1055     case TSK_ExplicitSpecialization:
1056       return CodeGenModule::GVA_StrongExternal;
1057 
1058     case TSK_ExplicitInstantiationDeclaration:
1059       llvm_unreachable("Variable should not be instantiated");
1060       // Fall through to treat this like any other instantiation.
1061 
1062     case TSK_ExplicitInstantiationDefinition:
1063       return CodeGenModule::GVA_ExplicitTemplateInstantiation;
1064 
1065     case TSK_ImplicitInstantiation:
1066       return CodeGenModule::GVA_TemplateInstantiation;
1067     }
1068   }
1069 
1070   return CodeGenModule::GVA_StrongExternal;
1071 }
1072 
1073 CharUnits CodeGenModule::GetTargetTypeStoreSize(const llvm::Type *Ty) const {
1074     return CharUnits::fromQuantity(
1075       TheTargetData.getTypeStoreSizeInBits(Ty) / Context.getCharWidth());
1076 }
1077 
1078 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D) {
1079   llvm::Constant *Init = 0;
1080   QualType ASTTy = D->getType();
1081   bool NonConstInit = false;
1082 
1083   const Expr *InitExpr = D->getAnyInitializer();
1084 
1085   if (!InitExpr) {
1086     // This is a tentative definition; tentative definitions are
1087     // implicitly initialized with { 0 }.
1088     //
1089     // Note that tentative definitions are only emitted at the end of
1090     // a translation unit, so they should never have incomplete
1091     // type. In addition, EmitTentativeDefinition makes sure that we
1092     // never attempt to emit a tentative definition if a real one
1093     // exists. A use may still exists, however, so we still may need
1094     // to do a RAUW.
1095     assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type");
1096     Init = EmitNullConstant(D->getType());
1097   } else {
1098     Init = EmitConstantExpr(InitExpr, D->getType());
1099     if (!Init) {
1100       QualType T = InitExpr->getType();
1101       if (D->getType()->isReferenceType())
1102         T = D->getType();
1103 
1104       if (getLangOptions().CPlusPlus) {
1105         EmitCXXGlobalVarDeclInitFunc(D);
1106         Init = EmitNullConstant(T);
1107         NonConstInit = true;
1108       } else {
1109         ErrorUnsupported(D, "static initializer");
1110         Init = llvm::UndefValue::get(getTypes().ConvertType(T));
1111       }
1112     }
1113   }
1114 
1115   const llvm::Type* InitType = Init->getType();
1116   llvm::Constant *Entry = GetAddrOfGlobalVar(D, InitType);
1117 
1118   // Strip off a bitcast if we got one back.
1119   if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
1120     assert(CE->getOpcode() == llvm::Instruction::BitCast ||
1121            // all zero index gep.
1122            CE->getOpcode() == llvm::Instruction::GetElementPtr);
1123     Entry = CE->getOperand(0);
1124   }
1125 
1126   // Entry is now either a Function or GlobalVariable.
1127   llvm::GlobalVariable *GV = dyn_cast<llvm::GlobalVariable>(Entry);
1128 
1129   // We have a definition after a declaration with the wrong type.
1130   // We must make a new GlobalVariable* and update everything that used OldGV
1131   // (a declaration or tentative definition) with the new GlobalVariable*
1132   // (which will be a definition).
1133   //
1134   // This happens if there is a prototype for a global (e.g.
1135   // "extern int x[];") and then a definition of a different type (e.g.
1136   // "int x[10];"). This also happens when an initializer has a different type
1137   // from the type of the global (this happens with unions).
1138   if (GV == 0 ||
1139       GV->getType()->getElementType() != InitType ||
1140       GV->getType()->getAddressSpace() != ASTTy.getAddressSpace()) {
1141 
1142     // Move the old entry aside so that we'll create a new one.
1143     Entry->setName(llvm::StringRef());
1144 
1145     // Make a new global with the correct type, this is now guaranteed to work.
1146     GV = cast<llvm::GlobalVariable>(GetAddrOfGlobalVar(D, InitType));
1147 
1148     // Replace all uses of the old global with the new global
1149     llvm::Constant *NewPtrForOldDecl =
1150         llvm::ConstantExpr::getBitCast(GV, Entry->getType());
1151     Entry->replaceAllUsesWith(NewPtrForOldDecl);
1152 
1153     // Erase the old global, since it is no longer used.
1154     cast<llvm::GlobalValue>(Entry)->eraseFromParent();
1155   }
1156 
1157   if (const AnnotateAttr *AA = D->getAttr<AnnotateAttr>()) {
1158     SourceManager &SM = Context.getSourceManager();
1159     AddAnnotation(EmitAnnotateAttr(GV, AA,
1160                               SM.getInstantiationLineNumber(D->getLocation())));
1161   }
1162 
1163   GV->setInitializer(Init);
1164 
1165   // If it is safe to mark the global 'constant', do so now.
1166   GV->setConstant(false);
1167   if (!NonConstInit && DeclIsConstantGlobal(Context, D))
1168     GV->setConstant(true);
1169 
1170   GV->setAlignment(getContext().getDeclAlign(D).getQuantity());
1171 
1172   // Set the llvm linkage type as appropriate.
1173   GVALinkage Linkage = GetLinkageForVariable(getContext(), D);
1174   if (Linkage == GVA_Internal)
1175     GV->setLinkage(llvm::Function::InternalLinkage);
1176   else if (D->hasAttr<DLLImportAttr>())
1177     GV->setLinkage(llvm::Function::DLLImportLinkage);
1178   else if (D->hasAttr<DLLExportAttr>())
1179     GV->setLinkage(llvm::Function::DLLExportLinkage);
1180   else if (D->hasAttr<WeakAttr>()) {
1181     if (GV->isConstant())
1182       GV->setLinkage(llvm::GlobalVariable::WeakODRLinkage);
1183     else
1184       GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage);
1185   } else if (Linkage == GVA_TemplateInstantiation ||
1186              Linkage == GVA_ExplicitTemplateInstantiation)
1187     // FIXME: It seems like we can provide more specific linkage here
1188     // (LinkOnceODR, WeakODR).
1189     GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage);
1190   else if (!getLangOptions().CPlusPlus && !CodeGenOpts.NoCommon &&
1191            !D->hasExternalStorage() && !D->getInit() &&
1192            !D->getAttr<SectionAttr>()) {
1193     GV->setLinkage(llvm::GlobalVariable::CommonLinkage);
1194     // common vars aren't constant even if declared const.
1195     GV->setConstant(false);
1196   } else
1197     GV->setLinkage(llvm::GlobalVariable::ExternalLinkage);
1198 
1199   SetCommonAttributes(D, GV);
1200 
1201   // Emit global variable debug information.
1202   if (CGDebugInfo *DI = getDebugInfo()) {
1203     DI->setLocation(D->getLocation());
1204     DI->EmitGlobalVariable(GV, D);
1205   }
1206 }
1207 
1208 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we
1209 /// implement a function with no prototype, e.g. "int foo() {}".  If there are
1210 /// existing call uses of the old function in the module, this adjusts them to
1211 /// call the new function directly.
1212 ///
1213 /// This is not just a cleanup: the always_inline pass requires direct calls to
1214 /// functions to be able to inline them.  If there is a bitcast in the way, it
1215 /// won't inline them.  Instcombine normally deletes these calls, but it isn't
1216 /// run at -O0.
1217 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
1218                                                       llvm::Function *NewFn) {
1219   // If we're redefining a global as a function, don't transform it.
1220   llvm::Function *OldFn = dyn_cast<llvm::Function>(Old);
1221   if (OldFn == 0) return;
1222 
1223   const llvm::Type *NewRetTy = NewFn->getReturnType();
1224   llvm::SmallVector<llvm::Value*, 4> ArgList;
1225 
1226   for (llvm::Value::use_iterator UI = OldFn->use_begin(), E = OldFn->use_end();
1227        UI != E; ) {
1228     // TODO: Do invokes ever occur in C code?  If so, we should handle them too.
1229     llvm::Value::use_iterator I = UI++; // Increment before the CI is erased.
1230     llvm::CallInst *CI = dyn_cast<llvm::CallInst>(*I);
1231     llvm::CallSite CS(CI);
1232     if (!CI || !CS.isCallee(I)) continue;
1233 
1234     // If the return types don't match exactly, and if the call isn't dead, then
1235     // we can't transform this call.
1236     if (CI->getType() != NewRetTy && !CI->use_empty())
1237       continue;
1238 
1239     // If the function was passed too few arguments, don't transform.  If extra
1240     // arguments were passed, we silently drop them.  If any of the types
1241     // mismatch, we don't transform.
1242     unsigned ArgNo = 0;
1243     bool DontTransform = false;
1244     for (llvm::Function::arg_iterator AI = NewFn->arg_begin(),
1245          E = NewFn->arg_end(); AI != E; ++AI, ++ArgNo) {
1246       if (CS.arg_size() == ArgNo ||
1247           CS.getArgument(ArgNo)->getType() != AI->getType()) {
1248         DontTransform = true;
1249         break;
1250       }
1251     }
1252     if (DontTransform)
1253       continue;
1254 
1255     // Okay, we can transform this.  Create the new call instruction and copy
1256     // over the required information.
1257     ArgList.append(CS.arg_begin(), CS.arg_begin() + ArgNo);
1258     llvm::CallInst *NewCall = llvm::CallInst::Create(NewFn, ArgList.begin(),
1259                                                      ArgList.end(), "", CI);
1260     ArgList.clear();
1261     if (!NewCall->getType()->isVoidTy())
1262       NewCall->takeName(CI);
1263     NewCall->setAttributes(CI->getAttributes());
1264     NewCall->setCallingConv(CI->getCallingConv());
1265 
1266     // Finally, remove the old call, replacing any uses with the new one.
1267     if (!CI->use_empty())
1268       CI->replaceAllUsesWith(NewCall);
1269 
1270     // Copy debug location attached to CI.
1271     if (!CI->getDebugLoc().isUnknown())
1272       NewCall->setDebugLoc(CI->getDebugLoc());
1273     CI->eraseFromParent();
1274   }
1275 }
1276 
1277 
1278 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD) {
1279   const FunctionDecl *D = cast<FunctionDecl>(GD.getDecl());
1280   const llvm::FunctionType *Ty = getTypes().GetFunctionType(GD);
1281   getMangleContext().mangleInitDiscriminator();
1282   // Get or create the prototype for the function.
1283   llvm::Constant *Entry = GetAddrOfFunction(GD, Ty);
1284 
1285   // Strip off a bitcast if we got one back.
1286   if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
1287     assert(CE->getOpcode() == llvm::Instruction::BitCast);
1288     Entry = CE->getOperand(0);
1289   }
1290 
1291 
1292   if (cast<llvm::GlobalValue>(Entry)->getType()->getElementType() != Ty) {
1293     llvm::GlobalValue *OldFn = cast<llvm::GlobalValue>(Entry);
1294 
1295     // If the types mismatch then we have to rewrite the definition.
1296     assert(OldFn->isDeclaration() &&
1297            "Shouldn't replace non-declaration");
1298 
1299     // F is the Function* for the one with the wrong type, we must make a new
1300     // Function* and update everything that used F (a declaration) with the new
1301     // Function* (which will be a definition).
1302     //
1303     // This happens if there is a prototype for a function
1304     // (e.g. "int f()") and then a definition of a different type
1305     // (e.g. "int f(int x)").  Move the old function aside so that it
1306     // doesn't interfere with GetAddrOfFunction.
1307     OldFn->setName(llvm::StringRef());
1308     llvm::Function *NewFn = cast<llvm::Function>(GetAddrOfFunction(GD, Ty));
1309 
1310     // If this is an implementation of a function without a prototype, try to
1311     // replace any existing uses of the function (which may be calls) with uses
1312     // of the new function
1313     if (D->getType()->isFunctionNoProtoType()) {
1314       ReplaceUsesOfNonProtoTypeWithRealFunction(OldFn, NewFn);
1315       OldFn->removeDeadConstantUsers();
1316     }
1317 
1318     // Replace uses of F with the Function we will endow with a body.
1319     if (!Entry->use_empty()) {
1320       llvm::Constant *NewPtrForOldDecl =
1321         llvm::ConstantExpr::getBitCast(NewFn, Entry->getType());
1322       Entry->replaceAllUsesWith(NewPtrForOldDecl);
1323     }
1324 
1325     // Ok, delete the old function now, which is dead.
1326     OldFn->eraseFromParent();
1327 
1328     Entry = NewFn;
1329   }
1330 
1331   llvm::Function *Fn = cast<llvm::Function>(Entry);
1332   setFunctionLinkage(D, Fn);
1333 
1334   CodeGenFunction(*this).GenerateCode(D, Fn);
1335 
1336   SetFunctionDefinitionAttributes(D, Fn);
1337   SetLLVMFunctionAttributesForDefinition(D, Fn);
1338 
1339   if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>())
1340     AddGlobalCtor(Fn, CA->getPriority());
1341   if (const DestructorAttr *DA = D->getAttr<DestructorAttr>())
1342     AddGlobalDtor(Fn, DA->getPriority());
1343 }
1344 
1345 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) {
1346   const ValueDecl *D = cast<ValueDecl>(GD.getDecl());
1347   const AliasAttr *AA = D->getAttr<AliasAttr>();
1348   assert(AA && "Not an alias?");
1349 
1350   MangleBuffer MangledName;
1351   getMangledName(MangledName, GD);
1352 
1353   // If there is a definition in the module, then it wins over the alias.
1354   // This is dubious, but allow it to be safe.  Just ignore the alias.
1355   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
1356   if (Entry && !Entry->isDeclaration())
1357     return;
1358 
1359   const llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
1360 
1361   // Create a reference to the named value.  This ensures that it is emitted
1362   // if a deferred decl.
1363   llvm::Constant *Aliasee;
1364   if (isa<llvm::FunctionType>(DeclTy))
1365     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GlobalDecl());
1366   else
1367     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
1368                                     llvm::PointerType::getUnqual(DeclTy), 0);
1369 
1370   // Create the new alias itself, but don't set a name yet.
1371   llvm::GlobalValue *GA =
1372     new llvm::GlobalAlias(Aliasee->getType(),
1373                           llvm::Function::ExternalLinkage,
1374                           "", Aliasee, &getModule());
1375 
1376   if (Entry) {
1377     assert(Entry->isDeclaration());
1378 
1379     // If there is a declaration in the module, then we had an extern followed
1380     // by the alias, as in:
1381     //   extern int test6();
1382     //   ...
1383     //   int test6() __attribute__((alias("test7")));
1384     //
1385     // Remove it and replace uses of it with the alias.
1386     GA->takeName(Entry);
1387 
1388     Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA,
1389                                                           Entry->getType()));
1390     Entry->eraseFromParent();
1391   } else {
1392     GA->setName(MangledName.getString());
1393   }
1394 
1395   // Set attributes which are particular to an alias; this is a
1396   // specialization of the attributes which may be set on a global
1397   // variable/function.
1398   if (D->hasAttr<DLLExportAttr>()) {
1399     if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
1400       // The dllexport attribute is ignored for undefined symbols.
1401       if (FD->getBody())
1402         GA->setLinkage(llvm::Function::DLLExportLinkage);
1403     } else {
1404       GA->setLinkage(llvm::Function::DLLExportLinkage);
1405     }
1406   } else if (D->hasAttr<WeakAttr>() ||
1407              D->hasAttr<WeakRefAttr>() ||
1408              D->hasAttr<WeakImportAttr>()) {
1409     GA->setLinkage(llvm::Function::WeakAnyLinkage);
1410   }
1411 
1412   SetCommonAttributes(D, GA);
1413 }
1414 
1415 /// getBuiltinLibFunction - Given a builtin id for a function like
1416 /// "__builtin_fabsf", return a Function* for "fabsf".
1417 llvm::Value *CodeGenModule::getBuiltinLibFunction(const FunctionDecl *FD,
1418                                                   unsigned BuiltinID) {
1419   assert((Context.BuiltinInfo.isLibFunction(BuiltinID) ||
1420           Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) &&
1421          "isn't a lib fn");
1422 
1423   // Get the name, skip over the __builtin_ prefix (if necessary).
1424   const char *Name = Context.BuiltinInfo.GetName(BuiltinID);
1425   if (Context.BuiltinInfo.isLibFunction(BuiltinID))
1426     Name += 10;
1427 
1428   const llvm::FunctionType *Ty =
1429     cast<llvm::FunctionType>(getTypes().ConvertType(FD->getType()));
1430 
1431   return GetOrCreateLLVMFunction(Name, Ty, GlobalDecl(FD));
1432 }
1433 
1434 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,const llvm::Type **Tys,
1435                                             unsigned NumTys) {
1436   return llvm::Intrinsic::getDeclaration(&getModule(),
1437                                          (llvm::Intrinsic::ID)IID, Tys, NumTys);
1438 }
1439 
1440 
1441 llvm::Function *CodeGenModule::getMemCpyFn(const llvm::Type *DestType,
1442                                            const llvm::Type *SrcType,
1443                                            const llvm::Type *SizeType) {
1444   const llvm::Type *ArgTypes[3] = {DestType, SrcType, SizeType };
1445   return getIntrinsic(llvm::Intrinsic::memcpy, ArgTypes, 3);
1446 }
1447 
1448 llvm::Function *CodeGenModule::getMemMoveFn(const llvm::Type *DestType,
1449                                             const llvm::Type *SrcType,
1450                                             const llvm::Type *SizeType) {
1451   const llvm::Type *ArgTypes[3] = {DestType, SrcType, SizeType };
1452   return getIntrinsic(llvm::Intrinsic::memmove, ArgTypes, 3);
1453 }
1454 
1455 llvm::Function *CodeGenModule::getMemSetFn(const llvm::Type *DestType,
1456                                            const llvm::Type *SizeType) {
1457   const llvm::Type *ArgTypes[2] = { DestType, SizeType };
1458   return getIntrinsic(llvm::Intrinsic::memset, ArgTypes, 2);
1459 }
1460 
1461 static llvm::StringMapEntry<llvm::Constant*> &
1462 GetConstantCFStringEntry(llvm::StringMap<llvm::Constant*> &Map,
1463                          const StringLiteral *Literal,
1464                          bool TargetIsLSB,
1465                          bool &IsUTF16,
1466                          unsigned &StringLength) {
1467   unsigned NumBytes = Literal->getByteLength();
1468 
1469   // Check for simple case.
1470   if (!Literal->containsNonAsciiOrNull()) {
1471     StringLength = NumBytes;
1472     return Map.GetOrCreateValue(llvm::StringRef(Literal->getStrData(),
1473                                                 StringLength));
1474   }
1475 
1476   // Otherwise, convert the UTF8 literals into a byte string.
1477   llvm::SmallVector<UTF16, 128> ToBuf(NumBytes);
1478   const UTF8 *FromPtr = (UTF8 *)Literal->getStrData();
1479   UTF16 *ToPtr = &ToBuf[0];
1480 
1481   ConversionResult Result = ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes,
1482                                                &ToPtr, ToPtr + NumBytes,
1483                                                strictConversion);
1484 
1485   // Check for conversion failure.
1486   if (Result != conversionOK) {
1487     // FIXME: Have Sema::CheckObjCString() validate the UTF-8 string and remove
1488     // this duplicate code.
1489     assert(Result == sourceIllegal && "UTF-8 to UTF-16 conversion failed");
1490     StringLength = NumBytes;
1491     return Map.GetOrCreateValue(llvm::StringRef(Literal->getStrData(),
1492                                                 StringLength));
1493   }
1494 
1495   // ConvertUTF8toUTF16 returns the length in ToPtr.
1496   StringLength = ToPtr - &ToBuf[0];
1497 
1498   // Render the UTF-16 string into a byte array and convert to the target byte
1499   // order.
1500   //
1501   // FIXME: This isn't something we should need to do here.
1502   llvm::SmallString<128> AsBytes;
1503   AsBytes.reserve(StringLength * 2);
1504   for (unsigned i = 0; i != StringLength; ++i) {
1505     unsigned short Val = ToBuf[i];
1506     if (TargetIsLSB) {
1507       AsBytes.push_back(Val & 0xFF);
1508       AsBytes.push_back(Val >> 8);
1509     } else {
1510       AsBytes.push_back(Val >> 8);
1511       AsBytes.push_back(Val & 0xFF);
1512     }
1513   }
1514   // Append one extra null character, the second is automatically added by our
1515   // caller.
1516   AsBytes.push_back(0);
1517 
1518   IsUTF16 = true;
1519   return Map.GetOrCreateValue(llvm::StringRef(AsBytes.data(), AsBytes.size()));
1520 }
1521 
1522 llvm::Constant *
1523 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) {
1524   unsigned StringLength = 0;
1525   bool isUTF16 = false;
1526   llvm::StringMapEntry<llvm::Constant*> &Entry =
1527     GetConstantCFStringEntry(CFConstantStringMap, Literal,
1528                              getTargetData().isLittleEndian(),
1529                              isUTF16, StringLength);
1530 
1531   if (llvm::Constant *C = Entry.getValue())
1532     return C;
1533 
1534   llvm::Constant *Zero =
1535       llvm::Constant::getNullValue(llvm::Type::getInt32Ty(VMContext));
1536   llvm::Constant *Zeros[] = { Zero, Zero };
1537 
1538   // If we don't already have it, get __CFConstantStringClassReference.
1539   if (!CFConstantStringClassRef) {
1540     const llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
1541     Ty = llvm::ArrayType::get(Ty, 0);
1542     llvm::Constant *GV = CreateRuntimeVariable(Ty,
1543                                            "__CFConstantStringClassReference");
1544     // Decay array -> ptr
1545     CFConstantStringClassRef =
1546       llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2);
1547   }
1548 
1549   QualType CFTy = getContext().getCFConstantStringType();
1550 
1551   const llvm::StructType *STy =
1552     cast<llvm::StructType>(getTypes().ConvertType(CFTy));
1553 
1554   std::vector<llvm::Constant*> Fields(4);
1555 
1556   // Class pointer.
1557   Fields[0] = CFConstantStringClassRef;
1558 
1559   // Flags.
1560   const llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy);
1561   Fields[1] = isUTF16 ? llvm::ConstantInt::get(Ty, 0x07d0) :
1562     llvm::ConstantInt::get(Ty, 0x07C8);
1563 
1564   // String pointer.
1565   llvm::Constant *C = llvm::ConstantArray::get(VMContext, Entry.getKey().str());
1566 
1567   llvm::GlobalValue::LinkageTypes Linkage;
1568   bool isConstant;
1569   if (isUTF16) {
1570     // FIXME: why do utf strings get "_" labels instead of "L" labels?
1571     Linkage = llvm::GlobalValue::InternalLinkage;
1572     // Note: -fwritable-strings doesn't make unicode CFStrings writable, but
1573     // does make plain ascii ones writable.
1574     isConstant = true;
1575   } else {
1576     Linkage = llvm::GlobalValue::PrivateLinkage;
1577     isConstant = !Features.WritableStrings;
1578   }
1579 
1580   llvm::GlobalVariable *GV =
1581     new llvm::GlobalVariable(getModule(), C->getType(), isConstant, Linkage, C,
1582                              ".str");
1583   if (isUTF16) {
1584     CharUnits Align = getContext().getTypeAlignInChars(getContext().ShortTy);
1585     GV->setAlignment(Align.getQuantity());
1586   }
1587   Fields[2] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2);
1588 
1589   // String length.
1590   Ty = getTypes().ConvertType(getContext().LongTy);
1591   Fields[3] = llvm::ConstantInt::get(Ty, StringLength);
1592 
1593   // The struct.
1594   C = llvm::ConstantStruct::get(STy, Fields);
1595   GV = new llvm::GlobalVariable(getModule(), C->getType(), true,
1596                                 llvm::GlobalVariable::PrivateLinkage, C,
1597                                 "_unnamed_cfstring_");
1598   if (const char *Sect = getContext().Target.getCFStringSection())
1599     GV->setSection(Sect);
1600   Entry.setValue(GV);
1601 
1602   return GV;
1603 }
1604 
1605 llvm::Constant *
1606 CodeGenModule::GetAddrOfConstantNSString(const StringLiteral *Literal) {
1607   unsigned StringLength = 0;
1608   bool isUTF16 = false;
1609   llvm::StringMapEntry<llvm::Constant*> &Entry =
1610     GetConstantCFStringEntry(CFConstantStringMap, Literal,
1611                              getTargetData().isLittleEndian(),
1612                              isUTF16, StringLength);
1613 
1614   if (llvm::Constant *C = Entry.getValue())
1615     return C;
1616 
1617   llvm::Constant *Zero =
1618   llvm::Constant::getNullValue(llvm::Type::getInt32Ty(VMContext));
1619   llvm::Constant *Zeros[] = { Zero, Zero };
1620 
1621   // If we don't already have it, get _NSConstantStringClassReference.
1622   if (!NSConstantStringClassRef) {
1623     const llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
1624     Ty = llvm::ArrayType::get(Ty, 0);
1625     llvm::Constant *GV = CreateRuntimeVariable(Ty,
1626                                         Features.ObjCNonFragileABI ?
1627                                         "OBJC_CLASS_$_NSConstantString" :
1628                                         "_NSConstantStringClassReference");
1629     // Decay array -> ptr
1630     NSConstantStringClassRef =
1631       llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2);
1632   }
1633 
1634   QualType NSTy = getContext().getNSConstantStringType();
1635 
1636   const llvm::StructType *STy =
1637   cast<llvm::StructType>(getTypes().ConvertType(NSTy));
1638 
1639   std::vector<llvm::Constant*> Fields(3);
1640 
1641   // Class pointer.
1642   Fields[0] = NSConstantStringClassRef;
1643 
1644   // String pointer.
1645   llvm::Constant *C = llvm::ConstantArray::get(VMContext, Entry.getKey().str());
1646 
1647   llvm::GlobalValue::LinkageTypes Linkage;
1648   bool isConstant;
1649   if (isUTF16) {
1650     // FIXME: why do utf strings get "_" labels instead of "L" labels?
1651     Linkage = llvm::GlobalValue::InternalLinkage;
1652     // Note: -fwritable-strings doesn't make unicode NSStrings writable, but
1653     // does make plain ascii ones writable.
1654     isConstant = true;
1655   } else {
1656     Linkage = llvm::GlobalValue::PrivateLinkage;
1657     isConstant = !Features.WritableStrings;
1658   }
1659 
1660   llvm::GlobalVariable *GV =
1661   new llvm::GlobalVariable(getModule(), C->getType(), isConstant, Linkage, C,
1662                            ".str");
1663   if (isUTF16) {
1664     CharUnits Align = getContext().getTypeAlignInChars(getContext().ShortTy);
1665     GV->setAlignment(Align.getQuantity());
1666   }
1667   Fields[1] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2);
1668 
1669   // String length.
1670   const llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy);
1671   Fields[2] = llvm::ConstantInt::get(Ty, StringLength);
1672 
1673   // The struct.
1674   C = llvm::ConstantStruct::get(STy, Fields);
1675   GV = new llvm::GlobalVariable(getModule(), C->getType(), true,
1676                                 llvm::GlobalVariable::PrivateLinkage, C,
1677                                 "_unnamed_nsstring_");
1678   // FIXME. Fix section.
1679   if (const char *Sect =
1680         Features.ObjCNonFragileABI
1681           ? getContext().Target.getNSStringNonFragileABISection()
1682           : getContext().Target.getNSStringSection())
1683     GV->setSection(Sect);
1684   Entry.setValue(GV);
1685 
1686   return GV;
1687 }
1688 
1689 /// GetStringForStringLiteral - Return the appropriate bytes for a
1690 /// string literal, properly padded to match the literal type.
1691 std::string CodeGenModule::GetStringForStringLiteral(const StringLiteral *E) {
1692   const char *StrData = E->getStrData();
1693   unsigned Len = E->getByteLength();
1694 
1695   const ConstantArrayType *CAT =
1696     getContext().getAsConstantArrayType(E->getType());
1697   assert(CAT && "String isn't pointer or array!");
1698 
1699   // Resize the string to the right size.
1700   std::string Str(StrData, StrData+Len);
1701   uint64_t RealLen = CAT->getSize().getZExtValue();
1702 
1703   if (E->isWide())
1704     RealLen *= getContext().Target.getWCharWidth()/8;
1705 
1706   Str.resize(RealLen, '\0');
1707 
1708   return Str;
1709 }
1710 
1711 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a
1712 /// constant array for the given string literal.
1713 llvm::Constant *
1714 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S) {
1715   // FIXME: This can be more efficient.
1716   // FIXME: We shouldn't need to bitcast the constant in the wide string case.
1717   llvm::Constant *C = GetAddrOfConstantString(GetStringForStringLiteral(S));
1718   if (S->isWide()) {
1719     llvm::Type *DestTy =
1720         llvm::PointerType::getUnqual(getTypes().ConvertType(S->getType()));
1721     C = llvm::ConstantExpr::getBitCast(C, DestTy);
1722   }
1723   return C;
1724 }
1725 
1726 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant
1727 /// array for the given ObjCEncodeExpr node.
1728 llvm::Constant *
1729 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) {
1730   std::string Str;
1731   getContext().getObjCEncodingForType(E->getEncodedType(), Str);
1732 
1733   return GetAddrOfConstantCString(Str);
1734 }
1735 
1736 
1737 /// GenerateWritableString -- Creates storage for a string literal.
1738 static llvm::Constant *GenerateStringLiteral(const std::string &str,
1739                                              bool constant,
1740                                              CodeGenModule &CGM,
1741                                              const char *GlobalName) {
1742   // Create Constant for this string literal. Don't add a '\0'.
1743   llvm::Constant *C =
1744       llvm::ConstantArray::get(CGM.getLLVMContext(), str, false);
1745 
1746   // Create a global variable for this string
1747   return new llvm::GlobalVariable(CGM.getModule(), C->getType(), constant,
1748                                   llvm::GlobalValue::PrivateLinkage,
1749                                   C, GlobalName);
1750 }
1751 
1752 /// GetAddrOfConstantString - Returns a pointer to a character array
1753 /// containing the literal. This contents are exactly that of the
1754 /// given string, i.e. it will not be null terminated automatically;
1755 /// see GetAddrOfConstantCString. Note that whether the result is
1756 /// actually a pointer to an LLVM constant depends on
1757 /// Feature.WriteableStrings.
1758 ///
1759 /// The result has pointer to array type.
1760 llvm::Constant *CodeGenModule::GetAddrOfConstantString(const std::string &str,
1761                                                        const char *GlobalName) {
1762   bool IsConstant = !Features.WritableStrings;
1763 
1764   // Get the default prefix if a name wasn't specified.
1765   if (!GlobalName)
1766     GlobalName = ".str";
1767 
1768   // Don't share any string literals if strings aren't constant.
1769   if (!IsConstant)
1770     return GenerateStringLiteral(str, false, *this, GlobalName);
1771 
1772   llvm::StringMapEntry<llvm::Constant *> &Entry =
1773     ConstantStringMap.GetOrCreateValue(&str[0], &str[str.length()]);
1774 
1775   if (Entry.getValue())
1776     return Entry.getValue();
1777 
1778   // Create a global variable for this.
1779   llvm::Constant *C = GenerateStringLiteral(str, true, *this, GlobalName);
1780   Entry.setValue(C);
1781   return C;
1782 }
1783 
1784 /// GetAddrOfConstantCString - Returns a pointer to a character
1785 /// array containing the literal and a terminating '\-'
1786 /// character. The result has pointer to array type.
1787 llvm::Constant *CodeGenModule::GetAddrOfConstantCString(const std::string &str,
1788                                                         const char *GlobalName){
1789   return GetAddrOfConstantString(str + '\0', GlobalName);
1790 }
1791 
1792 /// EmitObjCPropertyImplementations - Emit information for synthesized
1793 /// properties for an implementation.
1794 void CodeGenModule::EmitObjCPropertyImplementations(const
1795                                                     ObjCImplementationDecl *D) {
1796   for (ObjCImplementationDecl::propimpl_iterator
1797          i = D->propimpl_begin(), e = D->propimpl_end(); i != e; ++i) {
1798     ObjCPropertyImplDecl *PID = *i;
1799 
1800     // Dynamic is just for type-checking.
1801     if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) {
1802       ObjCPropertyDecl *PD = PID->getPropertyDecl();
1803 
1804       // Determine which methods need to be implemented, some may have
1805       // been overridden. Note that ::isSynthesized is not the method
1806       // we want, that just indicates if the decl came from a
1807       // property. What we want to know is if the method is defined in
1808       // this implementation.
1809       if (!D->getInstanceMethod(PD->getGetterName()))
1810         CodeGenFunction(*this).GenerateObjCGetter(
1811                                  const_cast<ObjCImplementationDecl *>(D), PID);
1812       if (!PD->isReadOnly() &&
1813           !D->getInstanceMethod(PD->getSetterName()))
1814         CodeGenFunction(*this).GenerateObjCSetter(
1815                                  const_cast<ObjCImplementationDecl *>(D), PID);
1816     }
1817   }
1818 }
1819 
1820 /// EmitObjCIvarInitializations - Emit information for ivar initialization
1821 /// for an implementation.
1822 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) {
1823   if (!Features.NeXTRuntime || D->getNumIvarInitializers() == 0)
1824     return;
1825   DeclContext* DC = const_cast<DeclContext*>(dyn_cast<DeclContext>(D));
1826   assert(DC && "EmitObjCIvarInitializations - null DeclContext");
1827   IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct");
1828   Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
1829   ObjCMethodDecl *DTORMethod = ObjCMethodDecl::Create(getContext(),
1830                                                   D->getLocation(),
1831                                                   D->getLocation(), cxxSelector,
1832                                                   getContext().VoidTy, 0,
1833                                                   DC, true, false, true,
1834                                                   ObjCMethodDecl::Required);
1835   D->addInstanceMethod(DTORMethod);
1836   CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false);
1837 
1838   II = &getContext().Idents.get(".cxx_construct");
1839   cxxSelector = getContext().Selectors.getSelector(0, &II);
1840   // The constructor returns 'self'.
1841   ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(getContext(),
1842                                                 D->getLocation(),
1843                                                 D->getLocation(), cxxSelector,
1844                                                 getContext().getObjCIdType(), 0,
1845                                                 DC, true, false, true,
1846                                                 ObjCMethodDecl::Required);
1847   D->addInstanceMethod(CTORMethod);
1848   CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true);
1849 
1850 
1851 }
1852 
1853 /// EmitNamespace - Emit all declarations in a namespace.
1854 void CodeGenModule::EmitNamespace(const NamespaceDecl *ND) {
1855   for (RecordDecl::decl_iterator I = ND->decls_begin(), E = ND->decls_end();
1856        I != E; ++I)
1857     EmitTopLevelDecl(*I);
1858 }
1859 
1860 // EmitLinkageSpec - Emit all declarations in a linkage spec.
1861 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) {
1862   if (LSD->getLanguage() != LinkageSpecDecl::lang_c &&
1863       LSD->getLanguage() != LinkageSpecDecl::lang_cxx) {
1864     ErrorUnsupported(LSD, "linkage spec");
1865     return;
1866   }
1867 
1868   for (RecordDecl::decl_iterator I = LSD->decls_begin(), E = LSD->decls_end();
1869        I != E; ++I)
1870     EmitTopLevelDecl(*I);
1871 }
1872 
1873 /// EmitTopLevelDecl - Emit code for a single top level declaration.
1874 void CodeGenModule::EmitTopLevelDecl(Decl *D) {
1875   // If an error has occurred, stop code generation, but continue
1876   // parsing and semantic analysis (to ensure all warnings and errors
1877   // are emitted).
1878   if (Diags.hasErrorOccurred())
1879     return;
1880 
1881   // Ignore dependent declarations.
1882   if (D->getDeclContext() && D->getDeclContext()->isDependentContext())
1883     return;
1884 
1885   switch (D->getKind()) {
1886   case Decl::CXXConversion:
1887   case Decl::CXXMethod:
1888   case Decl::Function:
1889     // Skip function templates
1890     if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate())
1891       return;
1892 
1893     EmitGlobal(cast<FunctionDecl>(D));
1894     break;
1895 
1896   case Decl::Var:
1897     EmitGlobal(cast<VarDecl>(D));
1898     break;
1899 
1900   // C++ Decls
1901   case Decl::Namespace:
1902     EmitNamespace(cast<NamespaceDecl>(D));
1903     break;
1904     // No code generation needed.
1905   case Decl::UsingShadow:
1906   case Decl::Using:
1907   case Decl::UsingDirective:
1908   case Decl::ClassTemplate:
1909   case Decl::FunctionTemplate:
1910   case Decl::NamespaceAlias:
1911     break;
1912   case Decl::CXXConstructor:
1913     // Skip function templates
1914     if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate())
1915       return;
1916 
1917     EmitCXXConstructors(cast<CXXConstructorDecl>(D));
1918     break;
1919   case Decl::CXXDestructor:
1920     EmitCXXDestructors(cast<CXXDestructorDecl>(D));
1921     break;
1922 
1923   case Decl::StaticAssert:
1924     // Nothing to do.
1925     break;
1926 
1927   // Objective-C Decls
1928 
1929   // Forward declarations, no (immediate) code generation.
1930   case Decl::ObjCClass:
1931   case Decl::ObjCForwardProtocol:
1932   case Decl::ObjCCategory:
1933   case Decl::ObjCInterface:
1934     break;
1935 
1936   case Decl::ObjCProtocol:
1937     Runtime->GenerateProtocol(cast<ObjCProtocolDecl>(D));
1938     break;
1939 
1940   case Decl::ObjCCategoryImpl:
1941     // Categories have properties but don't support synthesize so we
1942     // can ignore them here.
1943     Runtime->GenerateCategory(cast<ObjCCategoryImplDecl>(D));
1944     break;
1945 
1946   case Decl::ObjCImplementation: {
1947     ObjCImplementationDecl *OMD = cast<ObjCImplementationDecl>(D);
1948     EmitObjCPropertyImplementations(OMD);
1949     EmitObjCIvarInitializations(OMD);
1950     Runtime->GenerateClass(OMD);
1951     break;
1952   }
1953   case Decl::ObjCMethod: {
1954     ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(D);
1955     // If this is not a prototype, emit the body.
1956     if (OMD->getBody())
1957       CodeGenFunction(*this).GenerateObjCMethod(OMD);
1958     break;
1959   }
1960   case Decl::ObjCCompatibleAlias:
1961     // compatibility-alias is a directive and has no code gen.
1962     break;
1963 
1964   case Decl::LinkageSpec:
1965     EmitLinkageSpec(cast<LinkageSpecDecl>(D));
1966     break;
1967 
1968   case Decl::FileScopeAsm: {
1969     FileScopeAsmDecl *AD = cast<FileScopeAsmDecl>(D);
1970     llvm::StringRef AsmString = AD->getAsmString()->getString();
1971 
1972     const std::string &S = getModule().getModuleInlineAsm();
1973     if (S.empty())
1974       getModule().setModuleInlineAsm(AsmString);
1975     else
1976       getModule().setModuleInlineAsm(S + '\n' + AsmString.str());
1977     break;
1978   }
1979 
1980   default:
1981     // Make sure we handled everything we should, every other kind is a
1982     // non-top-level decl.  FIXME: Would be nice to have an isTopLevelDeclKind
1983     // function. Need to recode Decl::Kind to do that easily.
1984     assert(isa<TypeDecl>(D) && "Unsupported decl kind");
1985   }
1986 }
1987