1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This coordinates the per-module state used while generating code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenModule.h" 15 #include "CGDebugInfo.h" 16 #include "CodeGenFunction.h" 17 #include "CodeGenTBAA.h" 18 #include "CGCall.h" 19 #include "CGCXXABI.h" 20 #include "CGObjCRuntime.h" 21 #include "TargetInfo.h" 22 #include "clang/Frontend/CodeGenOptions.h" 23 #include "clang/AST/ASTContext.h" 24 #include "clang/AST/CharUnits.h" 25 #include "clang/AST/DeclObjC.h" 26 #include "clang/AST/DeclCXX.h" 27 #include "clang/AST/DeclTemplate.h" 28 #include "clang/AST/Mangle.h" 29 #include "clang/AST/RecordLayout.h" 30 #include "clang/Basic/Builtins.h" 31 #include "clang/Basic/Diagnostic.h" 32 #include "clang/Basic/SourceManager.h" 33 #include "clang/Basic/TargetInfo.h" 34 #include "clang/Basic/ConvertUTF.h" 35 #include "llvm/CallingConv.h" 36 #include "llvm/Module.h" 37 #include "llvm/Intrinsics.h" 38 #include "llvm/LLVMContext.h" 39 #include "llvm/ADT/Triple.h" 40 #include "llvm/Target/TargetData.h" 41 #include "llvm/Support/CallSite.h" 42 #include "llvm/Support/ErrorHandling.h" 43 using namespace clang; 44 using namespace CodeGen; 45 46 static CGCXXABI &createCXXABI(CodeGenModule &CGM) { 47 switch (CGM.getContext().Target.getCXXABI()) { 48 case CXXABI_ARM: return *CreateARMCXXABI(CGM); 49 case CXXABI_Itanium: return *CreateItaniumCXXABI(CGM); 50 case CXXABI_Microsoft: return *CreateMicrosoftCXXABI(CGM); 51 } 52 53 llvm_unreachable("invalid C++ ABI kind"); 54 return *CreateItaniumCXXABI(CGM); 55 } 56 57 58 CodeGenModule::CodeGenModule(ASTContext &C, const CodeGenOptions &CGO, 59 llvm::Module &M, const llvm::TargetData &TD, 60 Diagnostic &diags) 61 : BlockModule(C, M, TD, Types, *this), Context(C), 62 Features(C.getLangOptions()), CodeGenOpts(CGO), TheModule(M), 63 TheTargetData(TD), TheTargetCodeGenInfo(0), Diags(diags), 64 ABI(createCXXABI(*this)), 65 Types(C, M, TD, getTargetCodeGenInfo().getABIInfo(), ABI), 66 TBAA(0), 67 VTables(*this), Runtime(0), 68 CFConstantStringClassRef(0), ConstantStringClassRef(0), 69 VMContext(M.getContext()), 70 NSConcreteGlobalBlockDecl(0), NSConcreteStackBlockDecl(0), 71 NSConcreteGlobalBlock(0), NSConcreteStackBlock(0), 72 BlockObjectAssignDecl(0), BlockObjectDisposeDecl(0), 73 BlockObjectAssign(0), BlockObjectDispose(0){ 74 75 if (!Features.ObjC1) 76 Runtime = 0; 77 else if (!Features.NeXTRuntime) 78 Runtime = CreateGNUObjCRuntime(*this); 79 else if (Features.ObjCNonFragileABI) 80 Runtime = CreateMacNonFragileABIObjCRuntime(*this); 81 else 82 Runtime = CreateMacObjCRuntime(*this); 83 84 // Enable TBAA unless it's suppressed. 85 if (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0) 86 TBAA = new CodeGenTBAA(Context, VMContext, getLangOptions(), 87 ABI.getMangleContext()); 88 89 // If debug info generation is enabled, create the CGDebugInfo object. 90 DebugInfo = CodeGenOpts.DebugInfo ? new CGDebugInfo(*this) : 0; 91 } 92 93 CodeGenModule::~CodeGenModule() { 94 delete Runtime; 95 delete &ABI; 96 delete TBAA; 97 delete DebugInfo; 98 } 99 100 void CodeGenModule::createObjCRuntime() { 101 if (!Features.NeXTRuntime) 102 Runtime = CreateGNUObjCRuntime(*this); 103 else if (Features.ObjCNonFragileABI) 104 Runtime = CreateMacNonFragileABIObjCRuntime(*this); 105 else 106 Runtime = CreateMacObjCRuntime(*this); 107 } 108 109 void CodeGenModule::Release() { 110 EmitDeferred(); 111 EmitCXXGlobalInitFunc(); 112 EmitCXXGlobalDtorFunc(); 113 if (Runtime) 114 if (llvm::Function *ObjCInitFunction = Runtime->ModuleInitFunction()) 115 AddGlobalCtor(ObjCInitFunction); 116 EmitCtorList(GlobalCtors, "llvm.global_ctors"); 117 EmitCtorList(GlobalDtors, "llvm.global_dtors"); 118 EmitAnnotations(); 119 EmitLLVMUsed(); 120 121 SimplifyPersonality(); 122 123 if (getCodeGenOpts().EmitDeclMetadata) 124 EmitDeclMetadata(); 125 } 126 127 llvm::MDNode *CodeGenModule::getTBAAInfo(QualType QTy) { 128 if (!TBAA) 129 return 0; 130 return TBAA->getTBAAInfo(QTy); 131 } 132 133 void CodeGenModule::DecorateInstruction(llvm::Instruction *Inst, 134 llvm::MDNode *TBAAInfo) { 135 Inst->setMetadata(llvm::LLVMContext::MD_tbaa, TBAAInfo); 136 } 137 138 bool CodeGenModule::isTargetDarwin() const { 139 return getContext().Target.getTriple().getOS() == llvm::Triple::Darwin; 140 } 141 142 /// ErrorUnsupported - Print out an error that codegen doesn't support the 143 /// specified stmt yet. 144 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type, 145 bool OmitOnError) { 146 if (OmitOnError && getDiags().hasErrorOccurred()) 147 return; 148 unsigned DiagID = getDiags().getCustomDiagID(Diagnostic::Error, 149 "cannot compile this %0 yet"); 150 std::string Msg = Type; 151 getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID) 152 << Msg << S->getSourceRange(); 153 } 154 155 /// ErrorUnsupported - Print out an error that codegen doesn't support the 156 /// specified decl yet. 157 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type, 158 bool OmitOnError) { 159 if (OmitOnError && getDiags().hasErrorOccurred()) 160 return; 161 unsigned DiagID = getDiags().getCustomDiagID(Diagnostic::Error, 162 "cannot compile this %0 yet"); 163 std::string Msg = Type; 164 getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg; 165 } 166 167 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV, 168 const NamedDecl *D) const { 169 // Internal definitions always have default visibility. 170 if (GV->hasLocalLinkage()) { 171 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 172 return; 173 } 174 175 // Set visibility for definitions. 176 NamedDecl::LinkageInfo LV = D->getLinkageAndVisibility(); 177 if (LV.visibilityExplicit() || !GV->hasAvailableExternallyLinkage()) 178 GV->setVisibility(GetLLVMVisibility(LV.visibility())); 179 } 180 181 /// Set the symbol visibility of type information (vtable and RTTI) 182 /// associated with the given type. 183 void CodeGenModule::setTypeVisibility(llvm::GlobalValue *GV, 184 const CXXRecordDecl *RD, 185 TypeVisibilityKind TVK) const { 186 setGlobalVisibility(GV, RD); 187 188 if (!CodeGenOpts.HiddenWeakVTables) 189 return; 190 191 // We never want to drop the visibility for RTTI names. 192 if (TVK == TVK_ForRTTIName) 193 return; 194 195 // We want to drop the visibility to hidden for weak type symbols. 196 // This isn't possible if there might be unresolved references 197 // elsewhere that rely on this symbol being visible. 198 199 // This should be kept roughly in sync with setThunkVisibility 200 // in CGVTables.cpp. 201 202 // Preconditions. 203 if (GV->getLinkage() != llvm::GlobalVariable::LinkOnceODRLinkage || 204 GV->getVisibility() != llvm::GlobalVariable::DefaultVisibility) 205 return; 206 207 // Don't override an explicit visibility attribute. 208 if (RD->hasAttr<VisibilityAttr>()) 209 return; 210 211 switch (RD->getTemplateSpecializationKind()) { 212 // We have to disable the optimization if this is an EI definition 213 // because there might be EI declarations in other shared objects. 214 case TSK_ExplicitInstantiationDefinition: 215 case TSK_ExplicitInstantiationDeclaration: 216 return; 217 218 // Every use of a non-template class's type information has to emit it. 219 case TSK_Undeclared: 220 break; 221 222 // In theory, implicit instantiations can ignore the possibility of 223 // an explicit instantiation declaration because there necessarily 224 // must be an EI definition somewhere with default visibility. In 225 // practice, it's possible to have an explicit instantiation for 226 // an arbitrary template class, and linkers aren't necessarily able 227 // to deal with mixed-visibility symbols. 228 case TSK_ExplicitSpecialization: 229 case TSK_ImplicitInstantiation: 230 if (!CodeGenOpts.HiddenWeakTemplateVTables) 231 return; 232 break; 233 } 234 235 // If there's a key function, there may be translation units 236 // that don't have the key function's definition. But ignore 237 // this if we're emitting RTTI under -fno-rtti. 238 if (!(TVK != TVK_ForRTTI) || Features.RTTI) { 239 if (Context.getKeyFunction(RD)) 240 return; 241 } 242 243 // Otherwise, drop the visibility to hidden. 244 GV->setVisibility(llvm::GlobalValue::HiddenVisibility); 245 GV->setUnnamedAddr(true); 246 } 247 248 llvm::StringRef CodeGenModule::getMangledName(GlobalDecl GD) { 249 const NamedDecl *ND = cast<NamedDecl>(GD.getDecl()); 250 251 llvm::StringRef &Str = MangledDeclNames[GD.getCanonicalDecl()]; 252 if (!Str.empty()) 253 return Str; 254 255 if (!getCXXABI().getMangleContext().shouldMangleDeclName(ND)) { 256 IdentifierInfo *II = ND->getIdentifier(); 257 assert(II && "Attempt to mangle unnamed decl."); 258 259 Str = II->getName(); 260 return Str; 261 } 262 263 llvm::SmallString<256> Buffer; 264 if (const CXXConstructorDecl *D = dyn_cast<CXXConstructorDecl>(ND)) 265 getCXXABI().getMangleContext().mangleCXXCtor(D, GD.getCtorType(), Buffer); 266 else if (const CXXDestructorDecl *D = dyn_cast<CXXDestructorDecl>(ND)) 267 getCXXABI().getMangleContext().mangleCXXDtor(D, GD.getDtorType(), Buffer); 268 else if (const BlockDecl *BD = dyn_cast<BlockDecl>(ND)) 269 getCXXABI().getMangleContext().mangleBlock(BD, Buffer); 270 else 271 getCXXABI().getMangleContext().mangleName(ND, Buffer); 272 273 // Allocate space for the mangled name. 274 size_t Length = Buffer.size(); 275 char *Name = MangledNamesAllocator.Allocate<char>(Length); 276 std::copy(Buffer.begin(), Buffer.end(), Name); 277 278 Str = llvm::StringRef(Name, Length); 279 280 return Str; 281 } 282 283 void CodeGenModule::getBlockMangledName(GlobalDecl GD, MangleBuffer &Buffer, 284 const BlockDecl *BD) { 285 MangleContext &MangleCtx = getCXXABI().getMangleContext(); 286 const Decl *D = GD.getDecl(); 287 if (D == 0) 288 MangleCtx.mangleGlobalBlock(BD, Buffer.getBuffer()); 289 else if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(D)) 290 MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Buffer.getBuffer()); 291 else if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(D)) 292 MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Buffer.getBuffer()); 293 else 294 MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Buffer.getBuffer()); 295 } 296 297 llvm::GlobalValue *CodeGenModule::GetGlobalValue(llvm::StringRef Name) { 298 return getModule().getNamedValue(Name); 299 } 300 301 /// AddGlobalCtor - Add a function to the list that will be called before 302 /// main() runs. 303 void CodeGenModule::AddGlobalCtor(llvm::Function * Ctor, int Priority) { 304 // FIXME: Type coercion of void()* types. 305 GlobalCtors.push_back(std::make_pair(Ctor, Priority)); 306 } 307 308 /// AddGlobalDtor - Add a function to the list that will be called 309 /// when the module is unloaded. 310 void CodeGenModule::AddGlobalDtor(llvm::Function * Dtor, int Priority) { 311 // FIXME: Type coercion of void()* types. 312 GlobalDtors.push_back(std::make_pair(Dtor, Priority)); 313 } 314 315 void CodeGenModule::EmitCtorList(const CtorList &Fns, const char *GlobalName) { 316 // Ctor function type is void()*. 317 llvm::FunctionType* CtorFTy = 318 llvm::FunctionType::get(llvm::Type::getVoidTy(VMContext), false); 319 llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy); 320 321 // Get the type of a ctor entry, { i32, void ()* }. 322 llvm::StructType* CtorStructTy = 323 llvm::StructType::get(VMContext, llvm::Type::getInt32Ty(VMContext), 324 llvm::PointerType::getUnqual(CtorFTy), NULL); 325 326 // Construct the constructor and destructor arrays. 327 std::vector<llvm::Constant*> Ctors; 328 for (CtorList::const_iterator I = Fns.begin(), E = Fns.end(); I != E; ++I) { 329 std::vector<llvm::Constant*> S; 330 S.push_back(llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext), 331 I->second, false)); 332 S.push_back(llvm::ConstantExpr::getBitCast(I->first, CtorPFTy)); 333 Ctors.push_back(llvm::ConstantStruct::get(CtorStructTy, S)); 334 } 335 336 if (!Ctors.empty()) { 337 llvm::ArrayType *AT = llvm::ArrayType::get(CtorStructTy, Ctors.size()); 338 new llvm::GlobalVariable(TheModule, AT, false, 339 llvm::GlobalValue::AppendingLinkage, 340 llvm::ConstantArray::get(AT, Ctors), 341 GlobalName); 342 } 343 } 344 345 void CodeGenModule::EmitAnnotations() { 346 if (Annotations.empty()) 347 return; 348 349 // Create a new global variable for the ConstantStruct in the Module. 350 llvm::Constant *Array = 351 llvm::ConstantArray::get(llvm::ArrayType::get(Annotations[0]->getType(), 352 Annotations.size()), 353 Annotations); 354 llvm::GlobalValue *gv = 355 new llvm::GlobalVariable(TheModule, Array->getType(), false, 356 llvm::GlobalValue::AppendingLinkage, Array, 357 "llvm.global.annotations"); 358 gv->setSection("llvm.metadata"); 359 } 360 361 llvm::GlobalValue::LinkageTypes 362 CodeGenModule::getFunctionLinkage(const FunctionDecl *D) { 363 GVALinkage Linkage = getContext().GetGVALinkageForFunction(D); 364 365 if (Linkage == GVA_Internal) 366 return llvm::Function::InternalLinkage; 367 368 if (D->hasAttr<DLLExportAttr>()) 369 return llvm::Function::DLLExportLinkage; 370 371 if (D->hasAttr<WeakAttr>()) 372 return llvm::Function::WeakAnyLinkage; 373 374 // In C99 mode, 'inline' functions are guaranteed to have a strong 375 // definition somewhere else, so we can use available_externally linkage. 376 if (Linkage == GVA_C99Inline) 377 return llvm::Function::AvailableExternallyLinkage; 378 379 // In C++, the compiler has to emit a definition in every translation unit 380 // that references the function. We should use linkonce_odr because 381 // a) if all references in this translation unit are optimized away, we 382 // don't need to codegen it. b) if the function persists, it needs to be 383 // merged with other definitions. c) C++ has the ODR, so we know the 384 // definition is dependable. 385 if (Linkage == GVA_CXXInline || Linkage == GVA_TemplateInstantiation) 386 return !Context.getLangOptions().AppleKext 387 ? llvm::Function::LinkOnceODRLinkage 388 : llvm::Function::InternalLinkage; 389 390 // An explicit instantiation of a template has weak linkage, since 391 // explicit instantiations can occur in multiple translation units 392 // and must all be equivalent. However, we are not allowed to 393 // throw away these explicit instantiations. 394 if (Linkage == GVA_ExplicitTemplateInstantiation) 395 return !Context.getLangOptions().AppleKext 396 ? llvm::Function::WeakODRLinkage 397 : llvm::Function::InternalLinkage; 398 399 // Otherwise, we have strong external linkage. 400 assert(Linkage == GVA_StrongExternal); 401 return llvm::Function::ExternalLinkage; 402 } 403 404 405 /// SetFunctionDefinitionAttributes - Set attributes for a global. 406 /// 407 /// FIXME: This is currently only done for aliases and functions, but not for 408 /// variables (these details are set in EmitGlobalVarDefinition for variables). 409 void CodeGenModule::SetFunctionDefinitionAttributes(const FunctionDecl *D, 410 llvm::GlobalValue *GV) { 411 SetCommonAttributes(D, GV); 412 } 413 414 void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D, 415 const CGFunctionInfo &Info, 416 llvm::Function *F) { 417 unsigned CallingConv; 418 AttributeListType AttributeList; 419 ConstructAttributeList(Info, D, AttributeList, CallingConv); 420 F->setAttributes(llvm::AttrListPtr::get(AttributeList.begin(), 421 AttributeList.size())); 422 F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv)); 423 } 424 425 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D, 426 llvm::Function *F) { 427 if (!Features.Exceptions && !Features.ObjCNonFragileABI) 428 F->addFnAttr(llvm::Attribute::NoUnwind); 429 430 if (D->hasAttr<AlwaysInlineAttr>()) 431 F->addFnAttr(llvm::Attribute::AlwaysInline); 432 433 if (D->hasAttr<NakedAttr>()) 434 F->addFnAttr(llvm::Attribute::Naked); 435 436 if (D->hasAttr<NoInlineAttr>()) 437 F->addFnAttr(llvm::Attribute::NoInline); 438 439 if (isa<CXXConstructorDecl>(D) || isa<CXXDestructorDecl>(D)) 440 F->setUnnamedAddr(true); 441 442 if (Features.getStackProtectorMode() == LangOptions::SSPOn) 443 F->addFnAttr(llvm::Attribute::StackProtect); 444 else if (Features.getStackProtectorMode() == LangOptions::SSPReq) 445 F->addFnAttr(llvm::Attribute::StackProtectReq); 446 447 unsigned alignment = D->getMaxAlignment() / Context.getCharWidth(); 448 if (alignment) 449 F->setAlignment(alignment); 450 451 // C++ ABI requires 2-byte alignment for member functions. 452 if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D)) 453 F->setAlignment(2); 454 } 455 456 void CodeGenModule::SetCommonAttributes(const Decl *D, 457 llvm::GlobalValue *GV) { 458 if (const NamedDecl *ND = dyn_cast<NamedDecl>(D)) 459 setGlobalVisibility(GV, ND); 460 else 461 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 462 463 if (D->hasAttr<UsedAttr>()) 464 AddUsedGlobal(GV); 465 466 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) 467 GV->setSection(SA->getName()); 468 469 getTargetCodeGenInfo().SetTargetAttributes(D, GV, *this); 470 } 471 472 void CodeGenModule::SetInternalFunctionAttributes(const Decl *D, 473 llvm::Function *F, 474 const CGFunctionInfo &FI) { 475 SetLLVMFunctionAttributes(D, FI, F); 476 SetLLVMFunctionAttributesForDefinition(D, F); 477 478 F->setLinkage(llvm::Function::InternalLinkage); 479 480 SetCommonAttributes(D, F); 481 } 482 483 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD, 484 llvm::Function *F, 485 bool IsIncompleteFunction) { 486 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 487 488 if (!IsIncompleteFunction) 489 SetLLVMFunctionAttributes(FD, getTypes().getFunctionInfo(GD), F); 490 491 // Only a few attributes are set on declarations; these may later be 492 // overridden by a definition. 493 494 if (FD->hasAttr<DLLImportAttr>()) { 495 F->setLinkage(llvm::Function::DLLImportLinkage); 496 } else if (FD->hasAttr<WeakAttr>() || 497 FD->hasAttr<WeakImportAttr>()) { 498 // "extern_weak" is overloaded in LLVM; we probably should have 499 // separate linkage types for this. 500 F->setLinkage(llvm::Function::ExternalWeakLinkage); 501 } else { 502 F->setLinkage(llvm::Function::ExternalLinkage); 503 504 NamedDecl::LinkageInfo LV = FD->getLinkageAndVisibility(); 505 if (LV.linkage() == ExternalLinkage && LV.visibilityExplicit()) { 506 F->setVisibility(GetLLVMVisibility(LV.visibility())); 507 } 508 } 509 510 if (const SectionAttr *SA = FD->getAttr<SectionAttr>()) 511 F->setSection(SA->getName()); 512 } 513 514 void CodeGenModule::AddUsedGlobal(llvm::GlobalValue *GV) { 515 assert(!GV->isDeclaration() && 516 "Only globals with definition can force usage."); 517 LLVMUsed.push_back(GV); 518 } 519 520 void CodeGenModule::EmitLLVMUsed() { 521 // Don't create llvm.used if there is no need. 522 if (LLVMUsed.empty()) 523 return; 524 525 const llvm::Type *i8PTy = llvm::Type::getInt8PtrTy(VMContext); 526 527 // Convert LLVMUsed to what ConstantArray needs. 528 std::vector<llvm::Constant*> UsedArray; 529 UsedArray.resize(LLVMUsed.size()); 530 for (unsigned i = 0, e = LLVMUsed.size(); i != e; ++i) { 531 UsedArray[i] = 532 llvm::ConstantExpr::getBitCast(cast<llvm::Constant>(&*LLVMUsed[i]), 533 i8PTy); 534 } 535 536 if (UsedArray.empty()) 537 return; 538 llvm::ArrayType *ATy = llvm::ArrayType::get(i8PTy, UsedArray.size()); 539 540 llvm::GlobalVariable *GV = 541 new llvm::GlobalVariable(getModule(), ATy, false, 542 llvm::GlobalValue::AppendingLinkage, 543 llvm::ConstantArray::get(ATy, UsedArray), 544 "llvm.used"); 545 546 GV->setSection("llvm.metadata"); 547 } 548 549 void CodeGenModule::EmitDeferred() { 550 // Emit code for any potentially referenced deferred decls. Since a 551 // previously unused static decl may become used during the generation of code 552 // for a static function, iterate until no changes are made. 553 554 while (!DeferredDeclsToEmit.empty() || !DeferredVTables.empty()) { 555 if (!DeferredVTables.empty()) { 556 const CXXRecordDecl *RD = DeferredVTables.back(); 557 DeferredVTables.pop_back(); 558 getVTables().GenerateClassData(getVTableLinkage(RD), RD); 559 continue; 560 } 561 562 GlobalDecl D = DeferredDeclsToEmit.back(); 563 DeferredDeclsToEmit.pop_back(); 564 565 // Check to see if we've already emitted this. This is necessary 566 // for a couple of reasons: first, decls can end up in the 567 // deferred-decls queue multiple times, and second, decls can end 568 // up with definitions in unusual ways (e.g. by an extern inline 569 // function acquiring a strong function redefinition). Just 570 // ignore these cases. 571 // 572 // TODO: That said, looking this up multiple times is very wasteful. 573 llvm::StringRef Name = getMangledName(D); 574 llvm::GlobalValue *CGRef = GetGlobalValue(Name); 575 assert(CGRef && "Deferred decl wasn't referenced?"); 576 577 if (!CGRef->isDeclaration()) 578 continue; 579 580 // GlobalAlias::isDeclaration() defers to the aliasee, but for our 581 // purposes an alias counts as a definition. 582 if (isa<llvm::GlobalAlias>(CGRef)) 583 continue; 584 585 // Otherwise, emit the definition and move on to the next one. 586 EmitGlobalDefinition(D); 587 } 588 } 589 590 /// EmitAnnotateAttr - Generate the llvm::ConstantStruct which contains the 591 /// annotation information for a given GlobalValue. The annotation struct is 592 /// {i8 *, i8 *, i8 *, i32}. The first field is a constant expression, the 593 /// GlobalValue being annotated. The second field is the constant string 594 /// created from the AnnotateAttr's annotation. The third field is a constant 595 /// string containing the name of the translation unit. The fourth field is 596 /// the line number in the file of the annotated value declaration. 597 /// 598 /// FIXME: this does not unique the annotation string constants, as llvm-gcc 599 /// appears to. 600 /// 601 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV, 602 const AnnotateAttr *AA, 603 unsigned LineNo) { 604 llvm::Module *M = &getModule(); 605 606 // get [N x i8] constants for the annotation string, and the filename string 607 // which are the 2nd and 3rd elements of the global annotation structure. 608 const llvm::Type *SBP = llvm::Type::getInt8PtrTy(VMContext); 609 llvm::Constant *anno = llvm::ConstantArray::get(VMContext, 610 AA->getAnnotation(), true); 611 llvm::Constant *unit = llvm::ConstantArray::get(VMContext, 612 M->getModuleIdentifier(), 613 true); 614 615 // Get the two global values corresponding to the ConstantArrays we just 616 // created to hold the bytes of the strings. 617 llvm::GlobalValue *annoGV = 618 new llvm::GlobalVariable(*M, anno->getType(), false, 619 llvm::GlobalValue::PrivateLinkage, anno, 620 GV->getName()); 621 // translation unit name string, emitted into the llvm.metadata section. 622 llvm::GlobalValue *unitGV = 623 new llvm::GlobalVariable(*M, unit->getType(), false, 624 llvm::GlobalValue::PrivateLinkage, unit, 625 ".str"); 626 unitGV->setUnnamedAddr(true); 627 628 // Create the ConstantStruct for the global annotation. 629 llvm::Constant *Fields[4] = { 630 llvm::ConstantExpr::getBitCast(GV, SBP), 631 llvm::ConstantExpr::getBitCast(annoGV, SBP), 632 llvm::ConstantExpr::getBitCast(unitGV, SBP), 633 llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext), LineNo) 634 }; 635 return llvm::ConstantStruct::get(VMContext, Fields, 4, false); 636 } 637 638 bool CodeGenModule::MayDeferGeneration(const ValueDecl *Global) { 639 // Never defer when EmitAllDecls is specified. 640 if (Features.EmitAllDecls) 641 return false; 642 643 return !getContext().DeclMustBeEmitted(Global); 644 } 645 646 llvm::Constant *CodeGenModule::GetWeakRefReference(const ValueDecl *VD) { 647 const AliasAttr *AA = VD->getAttr<AliasAttr>(); 648 assert(AA && "No alias?"); 649 650 const llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType()); 651 652 // See if there is already something with the target's name in the module. 653 llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee()); 654 655 llvm::Constant *Aliasee; 656 if (isa<llvm::FunctionType>(DeclTy)) 657 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GlobalDecl()); 658 else 659 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), 660 llvm::PointerType::getUnqual(DeclTy), 0); 661 if (!Entry) { 662 llvm::GlobalValue* F = cast<llvm::GlobalValue>(Aliasee); 663 F->setLinkage(llvm::Function::ExternalWeakLinkage); 664 WeakRefReferences.insert(F); 665 } 666 667 return Aliasee; 668 } 669 670 void CodeGenModule::EmitGlobal(GlobalDecl GD) { 671 const ValueDecl *Global = cast<ValueDecl>(GD.getDecl()); 672 673 // Weak references don't produce any output by themselves. 674 if (Global->hasAttr<WeakRefAttr>()) 675 return; 676 677 // If this is an alias definition (which otherwise looks like a declaration) 678 // emit it now. 679 if (Global->hasAttr<AliasAttr>()) 680 return EmitAliasDefinition(GD); 681 682 // Ignore declarations, they will be emitted on their first use. 683 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) { 684 if (FD->getIdentifier()) { 685 llvm::StringRef Name = FD->getName(); 686 if (Name == "_Block_object_assign") { 687 BlockObjectAssignDecl = FD; 688 } else if (Name == "_Block_object_dispose") { 689 BlockObjectDisposeDecl = FD; 690 } 691 } 692 693 // Forward declarations are emitted lazily on first use. 694 if (!FD->isThisDeclarationADefinition()) 695 return; 696 } else { 697 const VarDecl *VD = cast<VarDecl>(Global); 698 assert(VD->isFileVarDecl() && "Cannot emit local var decl as global."); 699 700 if (VD->getIdentifier()) { 701 llvm::StringRef Name = VD->getName(); 702 if (Name == "_NSConcreteGlobalBlock") { 703 NSConcreteGlobalBlockDecl = VD; 704 } else if (Name == "_NSConcreteStackBlock") { 705 NSConcreteStackBlockDecl = VD; 706 } 707 } 708 709 710 if (VD->isThisDeclarationADefinition() != VarDecl::Definition) 711 return; 712 } 713 714 // Defer code generation when possible if this is a static definition, inline 715 // function etc. These we only want to emit if they are used. 716 if (!MayDeferGeneration(Global)) { 717 // Emit the definition if it can't be deferred. 718 EmitGlobalDefinition(GD); 719 return; 720 } 721 722 // If we're deferring emission of a C++ variable with an 723 // initializer, remember the order in which it appeared in the file. 724 if (getLangOptions().CPlusPlus && isa<VarDecl>(Global) && 725 cast<VarDecl>(Global)->hasInit()) { 726 DelayedCXXInitPosition[Global] = CXXGlobalInits.size(); 727 CXXGlobalInits.push_back(0); 728 } 729 730 // If the value has already been used, add it directly to the 731 // DeferredDeclsToEmit list. 732 llvm::StringRef MangledName = getMangledName(GD); 733 if (GetGlobalValue(MangledName)) 734 DeferredDeclsToEmit.push_back(GD); 735 else { 736 // Otherwise, remember that we saw a deferred decl with this name. The 737 // first use of the mangled name will cause it to move into 738 // DeferredDeclsToEmit. 739 DeferredDecls[MangledName] = GD; 740 } 741 } 742 743 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD) { 744 const ValueDecl *D = cast<ValueDecl>(GD.getDecl()); 745 746 PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(), 747 Context.getSourceManager(), 748 "Generating code for declaration"); 749 750 if (const FunctionDecl *Function = dyn_cast<FunctionDecl>(D)) { 751 // At -O0, don't generate IR for functions with available_externally 752 // linkage. 753 if (CodeGenOpts.OptimizationLevel == 0 && 754 !Function->hasAttr<AlwaysInlineAttr>() && 755 getFunctionLinkage(Function) 756 == llvm::Function::AvailableExternallyLinkage) 757 return; 758 759 if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) { 760 if (Method->isVirtual()) 761 getVTables().EmitThunks(GD); 762 763 if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(Method)) 764 return EmitCXXConstructor(CD, GD.getCtorType()); 765 766 if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(Method)) 767 return EmitCXXDestructor(DD, GD.getDtorType()); 768 } 769 770 return EmitGlobalFunctionDefinition(GD); 771 } 772 773 if (const VarDecl *VD = dyn_cast<VarDecl>(D)) 774 return EmitGlobalVarDefinition(VD); 775 776 assert(0 && "Invalid argument to EmitGlobalDefinition()"); 777 } 778 779 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the 780 /// module, create and return an llvm Function with the specified type. If there 781 /// is something in the module with the specified name, return it potentially 782 /// bitcasted to the right type. 783 /// 784 /// If D is non-null, it specifies a decl that correspond to this. This is used 785 /// to set the attributes on the function when it is first created. 786 llvm::Constant * 787 CodeGenModule::GetOrCreateLLVMFunction(llvm::StringRef MangledName, 788 const llvm::Type *Ty, 789 GlobalDecl D) { 790 // Lookup the entry, lazily creating it if necessary. 791 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 792 if (Entry) { 793 if (WeakRefReferences.count(Entry)) { 794 const FunctionDecl *FD = cast_or_null<FunctionDecl>(D.getDecl()); 795 if (FD && !FD->hasAttr<WeakAttr>()) 796 Entry->setLinkage(llvm::Function::ExternalLinkage); 797 798 WeakRefReferences.erase(Entry); 799 } 800 801 if (Entry->getType()->getElementType() == Ty) 802 return Entry; 803 804 // Make sure the result is of the correct type. 805 const llvm::Type *PTy = llvm::PointerType::getUnqual(Ty); 806 return llvm::ConstantExpr::getBitCast(Entry, PTy); 807 } 808 809 // This function doesn't have a complete type (for example, the return 810 // type is an incomplete struct). Use a fake type instead, and make 811 // sure not to try to set attributes. 812 bool IsIncompleteFunction = false; 813 814 const llvm::FunctionType *FTy; 815 if (isa<llvm::FunctionType>(Ty)) { 816 FTy = cast<llvm::FunctionType>(Ty); 817 } else { 818 FTy = llvm::FunctionType::get(llvm::Type::getVoidTy(VMContext), false); 819 IsIncompleteFunction = true; 820 } 821 822 llvm::Function *F = llvm::Function::Create(FTy, 823 llvm::Function::ExternalLinkage, 824 MangledName, &getModule()); 825 assert(F->getName() == MangledName && "name was uniqued!"); 826 if (D.getDecl()) 827 SetFunctionAttributes(D, F, IsIncompleteFunction); 828 829 // This is the first use or definition of a mangled name. If there is a 830 // deferred decl with this name, remember that we need to emit it at the end 831 // of the file. 832 llvm::StringMap<GlobalDecl>::iterator DDI = DeferredDecls.find(MangledName); 833 if (DDI != DeferredDecls.end()) { 834 // Move the potentially referenced deferred decl to the DeferredDeclsToEmit 835 // list, and remove it from DeferredDecls (since we don't need it anymore). 836 DeferredDeclsToEmit.push_back(DDI->second); 837 DeferredDecls.erase(DDI); 838 839 // Otherwise, there are cases we have to worry about where we're 840 // using a declaration for which we must emit a definition but where 841 // we might not find a top-level definition: 842 // - member functions defined inline in their classes 843 // - friend functions defined inline in some class 844 // - special member functions with implicit definitions 845 // If we ever change our AST traversal to walk into class methods, 846 // this will be unnecessary. 847 } else if (getLangOptions().CPlusPlus && D.getDecl()) { 848 // Look for a declaration that's lexically in a record. 849 const FunctionDecl *FD = cast<FunctionDecl>(D.getDecl()); 850 do { 851 if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) { 852 if (FD->isImplicit()) { 853 assert(FD->isUsed() && "Sema didn't mark implicit function as used!"); 854 DeferredDeclsToEmit.push_back(D); 855 break; 856 } else if (FD->isThisDeclarationADefinition()) { 857 DeferredDeclsToEmit.push_back(D); 858 break; 859 } 860 } 861 FD = FD->getPreviousDeclaration(); 862 } while (FD); 863 } 864 865 // Make sure the result is of the requested type. 866 if (!IsIncompleteFunction) { 867 assert(F->getType()->getElementType() == Ty); 868 return F; 869 } 870 871 const llvm::Type *PTy = llvm::PointerType::getUnqual(Ty); 872 return llvm::ConstantExpr::getBitCast(F, PTy); 873 } 874 875 /// GetAddrOfFunction - Return the address of the given function. If Ty is 876 /// non-null, then this function will use the specified type if it has to 877 /// create it (this occurs when we see a definition of the function). 878 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD, 879 const llvm::Type *Ty) { 880 // If there was no specific requested type, just convert it now. 881 if (!Ty) 882 Ty = getTypes().ConvertType(cast<ValueDecl>(GD.getDecl())->getType()); 883 884 llvm::StringRef MangledName = getMangledName(GD); 885 return GetOrCreateLLVMFunction(MangledName, Ty, GD); 886 } 887 888 /// CreateRuntimeFunction - Create a new runtime function with the specified 889 /// type and name. 890 llvm::Constant * 891 CodeGenModule::CreateRuntimeFunction(const llvm::FunctionType *FTy, 892 llvm::StringRef Name) { 893 return GetOrCreateLLVMFunction(Name, FTy, GlobalDecl()); 894 } 895 896 static bool DeclIsConstantGlobal(ASTContext &Context, const VarDecl *D) { 897 if (!D->getType().isConstant(Context) && !D->getType()->isReferenceType()) 898 return false; 899 if (Context.getLangOptions().CPlusPlus && 900 Context.getBaseElementType(D->getType())->getAs<RecordType>()) { 901 // FIXME: We should do something fancier here! 902 return false; 903 } 904 return true; 905 } 906 907 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module, 908 /// create and return an llvm GlobalVariable with the specified type. If there 909 /// is something in the module with the specified name, return it potentially 910 /// bitcasted to the right type. 911 /// 912 /// If D is non-null, it specifies a decl that correspond to this. This is used 913 /// to set the attributes on the global when it is first created. 914 llvm::Constant * 915 CodeGenModule::GetOrCreateLLVMGlobal(llvm::StringRef MangledName, 916 const llvm::PointerType *Ty, 917 const VarDecl *D, 918 bool UnnamedAddr) { 919 // Lookup the entry, lazily creating it if necessary. 920 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 921 if (Entry) { 922 if (WeakRefReferences.count(Entry)) { 923 if (D && !D->hasAttr<WeakAttr>()) 924 Entry->setLinkage(llvm::Function::ExternalLinkage); 925 926 WeakRefReferences.erase(Entry); 927 } 928 929 if (UnnamedAddr) 930 Entry->setUnnamedAddr(true); 931 932 if (Entry->getType() == Ty) 933 return Entry; 934 935 // Make sure the result is of the correct type. 936 return llvm::ConstantExpr::getBitCast(Entry, Ty); 937 } 938 939 // This is the first use or definition of a mangled name. If there is a 940 // deferred decl with this name, remember that we need to emit it at the end 941 // of the file. 942 llvm::StringMap<GlobalDecl>::iterator DDI = DeferredDecls.find(MangledName); 943 if (DDI != DeferredDecls.end()) { 944 // Move the potentially referenced deferred decl to the DeferredDeclsToEmit 945 // list, and remove it from DeferredDecls (since we don't need it anymore). 946 DeferredDeclsToEmit.push_back(DDI->second); 947 DeferredDecls.erase(DDI); 948 } 949 950 llvm::GlobalVariable *GV = 951 new llvm::GlobalVariable(getModule(), Ty->getElementType(), false, 952 llvm::GlobalValue::ExternalLinkage, 953 0, MangledName, 0, 954 false, Ty->getAddressSpace()); 955 956 // Handle things which are present even on external declarations. 957 if (D) { 958 // FIXME: This code is overly simple and should be merged with other global 959 // handling. 960 GV->setConstant(DeclIsConstantGlobal(Context, D)); 961 962 // Set linkage and visibility in case we never see a definition. 963 NamedDecl::LinkageInfo LV = D->getLinkageAndVisibility(); 964 if (LV.linkage() != ExternalLinkage) { 965 GV->setLinkage(llvm::GlobalValue::InternalLinkage); 966 } else { 967 if (D->hasAttr<DLLImportAttr>()) 968 GV->setLinkage(llvm::GlobalValue::DLLImportLinkage); 969 else if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakImportAttr>()) 970 GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage); 971 972 // Set visibility on a declaration only if it's explicit. 973 if (LV.visibilityExplicit()) 974 GV->setVisibility(GetLLVMVisibility(LV.visibility())); 975 } 976 977 GV->setThreadLocal(D->isThreadSpecified()); 978 } 979 980 return GV; 981 } 982 983 984 llvm::GlobalVariable * 985 CodeGenModule::CreateOrReplaceCXXRuntimeVariable(llvm::StringRef Name, 986 const llvm::Type *Ty, 987 llvm::GlobalValue::LinkageTypes Linkage) { 988 llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name); 989 llvm::GlobalVariable *OldGV = 0; 990 991 992 if (GV) { 993 // Check if the variable has the right type. 994 if (GV->getType()->getElementType() == Ty) 995 return GV; 996 997 // Because C++ name mangling, the only way we can end up with an already 998 // existing global with the same name is if it has been declared extern "C". 999 assert(GV->isDeclaration() && "Declaration has wrong type!"); 1000 OldGV = GV; 1001 } 1002 1003 // Create a new variable. 1004 GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true, 1005 Linkage, 0, Name); 1006 1007 if (OldGV) { 1008 // Replace occurrences of the old variable if needed. 1009 GV->takeName(OldGV); 1010 1011 if (!OldGV->use_empty()) { 1012 llvm::Constant *NewPtrForOldDecl = 1013 llvm::ConstantExpr::getBitCast(GV, OldGV->getType()); 1014 OldGV->replaceAllUsesWith(NewPtrForOldDecl); 1015 } 1016 1017 OldGV->eraseFromParent(); 1018 } 1019 1020 return GV; 1021 } 1022 1023 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the 1024 /// given global variable. If Ty is non-null and if the global doesn't exist, 1025 /// then it will be greated with the specified type instead of whatever the 1026 /// normal requested type would be. 1027 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D, 1028 const llvm::Type *Ty) { 1029 assert(D->hasGlobalStorage() && "Not a global variable"); 1030 QualType ASTTy = D->getType(); 1031 if (Ty == 0) 1032 Ty = getTypes().ConvertTypeForMem(ASTTy); 1033 1034 const llvm::PointerType *PTy = 1035 llvm::PointerType::get(Ty, ASTTy.getAddressSpace()); 1036 1037 llvm::StringRef MangledName = getMangledName(D); 1038 return GetOrCreateLLVMGlobal(MangledName, PTy, D); 1039 } 1040 1041 /// CreateRuntimeVariable - Create a new runtime global variable with the 1042 /// specified type and name. 1043 llvm::Constant * 1044 CodeGenModule::CreateRuntimeVariable(const llvm::Type *Ty, 1045 llvm::StringRef Name) { 1046 return GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), 0, 1047 true); 1048 } 1049 1050 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) { 1051 assert(!D->getInit() && "Cannot emit definite definitions here!"); 1052 1053 if (MayDeferGeneration(D)) { 1054 // If we have not seen a reference to this variable yet, place it 1055 // into the deferred declarations table to be emitted if needed 1056 // later. 1057 llvm::StringRef MangledName = getMangledName(D); 1058 if (!GetGlobalValue(MangledName)) { 1059 DeferredDecls[MangledName] = D; 1060 return; 1061 } 1062 } 1063 1064 // The tentative definition is the only definition. 1065 EmitGlobalVarDefinition(D); 1066 } 1067 1068 void CodeGenModule::EmitVTable(CXXRecordDecl *Class, bool DefinitionRequired) { 1069 if (DefinitionRequired) 1070 getVTables().GenerateClassData(getVTableLinkage(Class), Class); 1071 } 1072 1073 llvm::GlobalVariable::LinkageTypes 1074 CodeGenModule::getVTableLinkage(const CXXRecordDecl *RD) { 1075 if (RD->isInAnonymousNamespace() || !RD->hasLinkage()) 1076 return llvm::GlobalVariable::InternalLinkage; 1077 1078 if (const CXXMethodDecl *KeyFunction 1079 = RD->getASTContext().getKeyFunction(RD)) { 1080 // If this class has a key function, use that to determine the linkage of 1081 // the vtable. 1082 const FunctionDecl *Def = 0; 1083 if (KeyFunction->hasBody(Def)) 1084 KeyFunction = cast<CXXMethodDecl>(Def); 1085 1086 switch (KeyFunction->getTemplateSpecializationKind()) { 1087 case TSK_Undeclared: 1088 case TSK_ExplicitSpecialization: 1089 // When compiling with optimizations turned on, we emit all vtables, 1090 // even if the key function is not defined in the current translation 1091 // unit. If this is the case, use available_externally linkage. 1092 if (!Def && CodeGenOpts.OptimizationLevel) 1093 return llvm::GlobalVariable::AvailableExternallyLinkage; 1094 1095 if (KeyFunction->isInlined()) 1096 return !Context.getLangOptions().AppleKext ? 1097 llvm::GlobalVariable::LinkOnceODRLinkage : 1098 llvm::Function::InternalLinkage; 1099 1100 return llvm::GlobalVariable::ExternalLinkage; 1101 1102 case TSK_ImplicitInstantiation: 1103 return !Context.getLangOptions().AppleKext ? 1104 llvm::GlobalVariable::LinkOnceODRLinkage : 1105 llvm::Function::InternalLinkage; 1106 1107 case TSK_ExplicitInstantiationDefinition: 1108 return !Context.getLangOptions().AppleKext ? 1109 llvm::GlobalVariable::WeakODRLinkage : 1110 llvm::Function::InternalLinkage; 1111 1112 case TSK_ExplicitInstantiationDeclaration: 1113 // FIXME: Use available_externally linkage. However, this currently 1114 // breaks LLVM's build due to undefined symbols. 1115 // return llvm::GlobalVariable::AvailableExternallyLinkage; 1116 return !Context.getLangOptions().AppleKext ? 1117 llvm::GlobalVariable::LinkOnceODRLinkage : 1118 llvm::Function::InternalLinkage; 1119 } 1120 } 1121 1122 switch (RD->getTemplateSpecializationKind()) { 1123 case TSK_Undeclared: 1124 case TSK_ExplicitSpecialization: 1125 case TSK_ImplicitInstantiation: 1126 // FIXME: Use available_externally linkage. However, this currently 1127 // breaks LLVM's build due to undefined symbols. 1128 // return llvm::GlobalVariable::AvailableExternallyLinkage; 1129 case TSK_ExplicitInstantiationDeclaration: 1130 break; 1131 1132 case TSK_ExplicitInstantiationDefinition: 1133 return !Context.getLangOptions().AppleKext ? 1134 llvm::GlobalVariable::WeakODRLinkage : 1135 llvm::Function::InternalLinkage; 1136 1137 } 1138 1139 // Silence GCC warning. 1140 return !Context.getLangOptions().AppleKext ? 1141 llvm::GlobalVariable::LinkOnceODRLinkage : 1142 llvm::Function::InternalLinkage; 1143 } 1144 1145 CharUnits CodeGenModule::GetTargetTypeStoreSize(const llvm::Type *Ty) const { 1146 return Context.toCharUnitsFromBits( 1147 TheTargetData.getTypeStoreSizeInBits(Ty)); 1148 } 1149 1150 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D) { 1151 llvm::Constant *Init = 0; 1152 QualType ASTTy = D->getType(); 1153 bool NonConstInit = false; 1154 1155 const Expr *InitExpr = D->getAnyInitializer(); 1156 1157 if (!InitExpr) { 1158 // This is a tentative definition; tentative definitions are 1159 // implicitly initialized with { 0 }. 1160 // 1161 // Note that tentative definitions are only emitted at the end of 1162 // a translation unit, so they should never have incomplete 1163 // type. In addition, EmitTentativeDefinition makes sure that we 1164 // never attempt to emit a tentative definition if a real one 1165 // exists. A use may still exists, however, so we still may need 1166 // to do a RAUW. 1167 assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type"); 1168 Init = EmitNullConstant(D->getType()); 1169 } else { 1170 Init = EmitConstantExpr(InitExpr, D->getType()); 1171 if (!Init) { 1172 QualType T = InitExpr->getType(); 1173 if (D->getType()->isReferenceType()) 1174 T = D->getType(); 1175 1176 if (getLangOptions().CPlusPlus) { 1177 Init = EmitNullConstant(T); 1178 NonConstInit = true; 1179 } else { 1180 ErrorUnsupported(D, "static initializer"); 1181 Init = llvm::UndefValue::get(getTypes().ConvertType(T)); 1182 } 1183 } else { 1184 // We don't need an initializer, so remove the entry for the delayed 1185 // initializer position (just in case this entry was delayed). 1186 if (getLangOptions().CPlusPlus) 1187 DelayedCXXInitPosition.erase(D); 1188 } 1189 } 1190 1191 const llvm::Type* InitType = Init->getType(); 1192 llvm::Constant *Entry = GetAddrOfGlobalVar(D, InitType); 1193 1194 // Strip off a bitcast if we got one back. 1195 if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) { 1196 assert(CE->getOpcode() == llvm::Instruction::BitCast || 1197 // all zero index gep. 1198 CE->getOpcode() == llvm::Instruction::GetElementPtr); 1199 Entry = CE->getOperand(0); 1200 } 1201 1202 // Entry is now either a Function or GlobalVariable. 1203 llvm::GlobalVariable *GV = dyn_cast<llvm::GlobalVariable>(Entry); 1204 1205 // We have a definition after a declaration with the wrong type. 1206 // We must make a new GlobalVariable* and update everything that used OldGV 1207 // (a declaration or tentative definition) with the new GlobalVariable* 1208 // (which will be a definition). 1209 // 1210 // This happens if there is a prototype for a global (e.g. 1211 // "extern int x[];") and then a definition of a different type (e.g. 1212 // "int x[10];"). This also happens when an initializer has a different type 1213 // from the type of the global (this happens with unions). 1214 if (GV == 0 || 1215 GV->getType()->getElementType() != InitType || 1216 GV->getType()->getAddressSpace() != ASTTy.getAddressSpace()) { 1217 1218 // Move the old entry aside so that we'll create a new one. 1219 Entry->setName(llvm::StringRef()); 1220 1221 // Make a new global with the correct type, this is now guaranteed to work. 1222 GV = cast<llvm::GlobalVariable>(GetAddrOfGlobalVar(D, InitType)); 1223 1224 // Replace all uses of the old global with the new global 1225 llvm::Constant *NewPtrForOldDecl = 1226 llvm::ConstantExpr::getBitCast(GV, Entry->getType()); 1227 Entry->replaceAllUsesWith(NewPtrForOldDecl); 1228 1229 // Erase the old global, since it is no longer used. 1230 cast<llvm::GlobalValue>(Entry)->eraseFromParent(); 1231 } 1232 1233 if (const AnnotateAttr *AA = D->getAttr<AnnotateAttr>()) { 1234 SourceManager &SM = Context.getSourceManager(); 1235 AddAnnotation(EmitAnnotateAttr(GV, AA, 1236 SM.getInstantiationLineNumber(D->getLocation()))); 1237 } 1238 1239 GV->setInitializer(Init); 1240 1241 // If it is safe to mark the global 'constant', do so now. 1242 GV->setConstant(false); 1243 if (!NonConstInit && DeclIsConstantGlobal(Context, D)) 1244 GV->setConstant(true); 1245 1246 GV->setAlignment(getContext().getDeclAlign(D).getQuantity()); 1247 1248 // Set the llvm linkage type as appropriate. 1249 llvm::GlobalValue::LinkageTypes Linkage = 1250 GetLLVMLinkageVarDefinition(D, GV); 1251 GV->setLinkage(Linkage); 1252 if (Linkage == llvm::GlobalVariable::CommonLinkage) 1253 // common vars aren't constant even if declared const. 1254 GV->setConstant(false); 1255 1256 SetCommonAttributes(D, GV); 1257 1258 // Emit the initializer function if necessary. 1259 if (NonConstInit) 1260 EmitCXXGlobalVarDeclInitFunc(D, GV); 1261 1262 // Emit global variable debug information. 1263 if (CGDebugInfo *DI = getDebugInfo()) { 1264 DI->setLocation(D->getLocation()); 1265 DI->EmitGlobalVariable(GV, D); 1266 } 1267 } 1268 1269 llvm::GlobalValue::LinkageTypes 1270 CodeGenModule::GetLLVMLinkageVarDefinition(const VarDecl *D, 1271 llvm::GlobalVariable *GV) { 1272 GVALinkage Linkage = getContext().GetGVALinkageForVariable(D); 1273 if (Linkage == GVA_Internal) 1274 return llvm::Function::InternalLinkage; 1275 else if (D->hasAttr<DLLImportAttr>()) 1276 return llvm::Function::DLLImportLinkage; 1277 else if (D->hasAttr<DLLExportAttr>()) 1278 return llvm::Function::DLLExportLinkage; 1279 else if (D->hasAttr<WeakAttr>()) { 1280 if (GV->isConstant()) 1281 return llvm::GlobalVariable::WeakODRLinkage; 1282 else 1283 return llvm::GlobalVariable::WeakAnyLinkage; 1284 } else if (Linkage == GVA_TemplateInstantiation || 1285 Linkage == GVA_ExplicitTemplateInstantiation) 1286 // FIXME: It seems like we can provide more specific linkage here 1287 // (LinkOnceODR, WeakODR). 1288 return llvm::GlobalVariable::WeakAnyLinkage; 1289 else if (!getLangOptions().CPlusPlus && 1290 ((!CodeGenOpts.NoCommon && !D->getAttr<NoCommonAttr>()) || 1291 D->getAttr<CommonAttr>()) && 1292 !D->hasExternalStorage() && !D->getInit() && 1293 !D->getAttr<SectionAttr>() && !D->isThreadSpecified()) { 1294 // Thread local vars aren't considered common linkage. 1295 return llvm::GlobalVariable::CommonLinkage; 1296 } 1297 return llvm::GlobalVariable::ExternalLinkage; 1298 } 1299 1300 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we 1301 /// implement a function with no prototype, e.g. "int foo() {}". If there are 1302 /// existing call uses of the old function in the module, this adjusts them to 1303 /// call the new function directly. 1304 /// 1305 /// This is not just a cleanup: the always_inline pass requires direct calls to 1306 /// functions to be able to inline them. If there is a bitcast in the way, it 1307 /// won't inline them. Instcombine normally deletes these calls, but it isn't 1308 /// run at -O0. 1309 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old, 1310 llvm::Function *NewFn) { 1311 // If we're redefining a global as a function, don't transform it. 1312 llvm::Function *OldFn = dyn_cast<llvm::Function>(Old); 1313 if (OldFn == 0) return; 1314 1315 const llvm::Type *NewRetTy = NewFn->getReturnType(); 1316 llvm::SmallVector<llvm::Value*, 4> ArgList; 1317 1318 for (llvm::Value::use_iterator UI = OldFn->use_begin(), E = OldFn->use_end(); 1319 UI != E; ) { 1320 // TODO: Do invokes ever occur in C code? If so, we should handle them too. 1321 llvm::Value::use_iterator I = UI++; // Increment before the CI is erased. 1322 llvm::CallInst *CI = dyn_cast<llvm::CallInst>(*I); 1323 if (!CI) continue; // FIXME: when we allow Invoke, just do CallSite CS(*I) 1324 llvm::CallSite CS(CI); 1325 if (!CI || !CS.isCallee(I)) continue; 1326 1327 // If the return types don't match exactly, and if the call isn't dead, then 1328 // we can't transform this call. 1329 if (CI->getType() != NewRetTy && !CI->use_empty()) 1330 continue; 1331 1332 // If the function was passed too few arguments, don't transform. If extra 1333 // arguments were passed, we silently drop them. If any of the types 1334 // mismatch, we don't transform. 1335 unsigned ArgNo = 0; 1336 bool DontTransform = false; 1337 for (llvm::Function::arg_iterator AI = NewFn->arg_begin(), 1338 E = NewFn->arg_end(); AI != E; ++AI, ++ArgNo) { 1339 if (CS.arg_size() == ArgNo || 1340 CS.getArgument(ArgNo)->getType() != AI->getType()) { 1341 DontTransform = true; 1342 break; 1343 } 1344 } 1345 if (DontTransform) 1346 continue; 1347 1348 // Okay, we can transform this. Create the new call instruction and copy 1349 // over the required information. 1350 ArgList.append(CS.arg_begin(), CS.arg_begin() + ArgNo); 1351 llvm::CallInst *NewCall = llvm::CallInst::Create(NewFn, ArgList.begin(), 1352 ArgList.end(), "", CI); 1353 ArgList.clear(); 1354 if (!NewCall->getType()->isVoidTy()) 1355 NewCall->takeName(CI); 1356 NewCall->setAttributes(CI->getAttributes()); 1357 NewCall->setCallingConv(CI->getCallingConv()); 1358 1359 // Finally, remove the old call, replacing any uses with the new one. 1360 if (!CI->use_empty()) 1361 CI->replaceAllUsesWith(NewCall); 1362 1363 // Copy debug location attached to CI. 1364 if (!CI->getDebugLoc().isUnknown()) 1365 NewCall->setDebugLoc(CI->getDebugLoc()); 1366 CI->eraseFromParent(); 1367 } 1368 } 1369 1370 1371 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD) { 1372 const FunctionDecl *D = cast<FunctionDecl>(GD.getDecl()); 1373 const llvm::FunctionType *Ty = getTypes().GetFunctionType(GD); 1374 // Get or create the prototype for the function. 1375 llvm::Constant *Entry = GetAddrOfFunction(GD, Ty); 1376 1377 // Strip off a bitcast if we got one back. 1378 if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) { 1379 assert(CE->getOpcode() == llvm::Instruction::BitCast); 1380 Entry = CE->getOperand(0); 1381 } 1382 1383 1384 if (cast<llvm::GlobalValue>(Entry)->getType()->getElementType() != Ty) { 1385 llvm::GlobalValue *OldFn = cast<llvm::GlobalValue>(Entry); 1386 1387 // If the types mismatch then we have to rewrite the definition. 1388 assert(OldFn->isDeclaration() && 1389 "Shouldn't replace non-declaration"); 1390 1391 // F is the Function* for the one with the wrong type, we must make a new 1392 // Function* and update everything that used F (a declaration) with the new 1393 // Function* (which will be a definition). 1394 // 1395 // This happens if there is a prototype for a function 1396 // (e.g. "int f()") and then a definition of a different type 1397 // (e.g. "int f(int x)"). Move the old function aside so that it 1398 // doesn't interfere with GetAddrOfFunction. 1399 OldFn->setName(llvm::StringRef()); 1400 llvm::Function *NewFn = cast<llvm::Function>(GetAddrOfFunction(GD, Ty)); 1401 1402 // If this is an implementation of a function without a prototype, try to 1403 // replace any existing uses of the function (which may be calls) with uses 1404 // of the new function 1405 if (D->getType()->isFunctionNoProtoType()) { 1406 ReplaceUsesOfNonProtoTypeWithRealFunction(OldFn, NewFn); 1407 OldFn->removeDeadConstantUsers(); 1408 } 1409 1410 // Replace uses of F with the Function we will endow with a body. 1411 if (!Entry->use_empty()) { 1412 llvm::Constant *NewPtrForOldDecl = 1413 llvm::ConstantExpr::getBitCast(NewFn, Entry->getType()); 1414 Entry->replaceAllUsesWith(NewPtrForOldDecl); 1415 } 1416 1417 // Ok, delete the old function now, which is dead. 1418 OldFn->eraseFromParent(); 1419 1420 Entry = NewFn; 1421 } 1422 1423 // We need to set linkage and visibility on the function before 1424 // generating code for it because various parts of IR generation 1425 // want to propagate this information down (e.g. to local static 1426 // declarations). 1427 llvm::Function *Fn = cast<llvm::Function>(Entry); 1428 setFunctionLinkage(D, Fn); 1429 1430 // FIXME: this is redundant with part of SetFunctionDefinitionAttributes 1431 setGlobalVisibility(Fn, D); 1432 1433 CodeGenFunction(*this).GenerateCode(D, Fn); 1434 1435 SetFunctionDefinitionAttributes(D, Fn); 1436 SetLLVMFunctionAttributesForDefinition(D, Fn); 1437 1438 if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>()) 1439 AddGlobalCtor(Fn, CA->getPriority()); 1440 if (const DestructorAttr *DA = D->getAttr<DestructorAttr>()) 1441 AddGlobalDtor(Fn, DA->getPriority()); 1442 } 1443 1444 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) { 1445 const ValueDecl *D = cast<ValueDecl>(GD.getDecl()); 1446 const AliasAttr *AA = D->getAttr<AliasAttr>(); 1447 assert(AA && "Not an alias?"); 1448 1449 llvm::StringRef MangledName = getMangledName(GD); 1450 1451 // If there is a definition in the module, then it wins over the alias. 1452 // This is dubious, but allow it to be safe. Just ignore the alias. 1453 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 1454 if (Entry && !Entry->isDeclaration()) 1455 return; 1456 1457 const llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType()); 1458 1459 // Create a reference to the named value. This ensures that it is emitted 1460 // if a deferred decl. 1461 llvm::Constant *Aliasee; 1462 if (isa<llvm::FunctionType>(DeclTy)) 1463 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GlobalDecl()); 1464 else 1465 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), 1466 llvm::PointerType::getUnqual(DeclTy), 0); 1467 1468 // Create the new alias itself, but don't set a name yet. 1469 llvm::GlobalValue *GA = 1470 new llvm::GlobalAlias(Aliasee->getType(), 1471 llvm::Function::ExternalLinkage, 1472 "", Aliasee, &getModule()); 1473 1474 if (Entry) { 1475 assert(Entry->isDeclaration()); 1476 1477 // If there is a declaration in the module, then we had an extern followed 1478 // by the alias, as in: 1479 // extern int test6(); 1480 // ... 1481 // int test6() __attribute__((alias("test7"))); 1482 // 1483 // Remove it and replace uses of it with the alias. 1484 GA->takeName(Entry); 1485 1486 Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA, 1487 Entry->getType())); 1488 Entry->eraseFromParent(); 1489 } else { 1490 GA->setName(MangledName); 1491 } 1492 1493 // Set attributes which are particular to an alias; this is a 1494 // specialization of the attributes which may be set on a global 1495 // variable/function. 1496 if (D->hasAttr<DLLExportAttr>()) { 1497 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { 1498 // The dllexport attribute is ignored for undefined symbols. 1499 if (FD->hasBody()) 1500 GA->setLinkage(llvm::Function::DLLExportLinkage); 1501 } else { 1502 GA->setLinkage(llvm::Function::DLLExportLinkage); 1503 } 1504 } else if (D->hasAttr<WeakAttr>() || 1505 D->hasAttr<WeakRefAttr>() || 1506 D->hasAttr<WeakImportAttr>()) { 1507 GA->setLinkage(llvm::Function::WeakAnyLinkage); 1508 } 1509 1510 SetCommonAttributes(D, GA); 1511 } 1512 1513 /// getBuiltinLibFunction - Given a builtin id for a function like 1514 /// "__builtin_fabsf", return a Function* for "fabsf". 1515 llvm::Value *CodeGenModule::getBuiltinLibFunction(const FunctionDecl *FD, 1516 unsigned BuiltinID) { 1517 assert((Context.BuiltinInfo.isLibFunction(BuiltinID) || 1518 Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) && 1519 "isn't a lib fn"); 1520 1521 // Get the name, skip over the __builtin_ prefix (if necessary). 1522 const char *Name = Context.BuiltinInfo.GetName(BuiltinID); 1523 if (Context.BuiltinInfo.isLibFunction(BuiltinID)) 1524 Name += 10; 1525 1526 const llvm::FunctionType *Ty = 1527 cast<llvm::FunctionType>(getTypes().ConvertType(FD->getType())); 1528 1529 return GetOrCreateLLVMFunction(Name, Ty, GlobalDecl(FD)); 1530 } 1531 1532 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,const llvm::Type **Tys, 1533 unsigned NumTys) { 1534 return llvm::Intrinsic::getDeclaration(&getModule(), 1535 (llvm::Intrinsic::ID)IID, Tys, NumTys); 1536 } 1537 1538 static llvm::StringMapEntry<llvm::Constant*> & 1539 GetConstantCFStringEntry(llvm::StringMap<llvm::Constant*> &Map, 1540 const StringLiteral *Literal, 1541 bool TargetIsLSB, 1542 bool &IsUTF16, 1543 unsigned &StringLength) { 1544 llvm::StringRef String = Literal->getString(); 1545 unsigned NumBytes = String.size(); 1546 1547 // Check for simple case. 1548 if (!Literal->containsNonAsciiOrNull()) { 1549 StringLength = NumBytes; 1550 return Map.GetOrCreateValue(String); 1551 } 1552 1553 // Otherwise, convert the UTF8 literals into a byte string. 1554 llvm::SmallVector<UTF16, 128> ToBuf(NumBytes); 1555 const UTF8 *FromPtr = (UTF8 *)String.data(); 1556 UTF16 *ToPtr = &ToBuf[0]; 1557 1558 (void)ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, 1559 &ToPtr, ToPtr + NumBytes, 1560 strictConversion); 1561 1562 // ConvertUTF8toUTF16 returns the length in ToPtr. 1563 StringLength = ToPtr - &ToBuf[0]; 1564 1565 // Render the UTF-16 string into a byte array and convert to the target byte 1566 // order. 1567 // 1568 // FIXME: This isn't something we should need to do here. 1569 llvm::SmallString<128> AsBytes; 1570 AsBytes.reserve(StringLength * 2); 1571 for (unsigned i = 0; i != StringLength; ++i) { 1572 unsigned short Val = ToBuf[i]; 1573 if (TargetIsLSB) { 1574 AsBytes.push_back(Val & 0xFF); 1575 AsBytes.push_back(Val >> 8); 1576 } else { 1577 AsBytes.push_back(Val >> 8); 1578 AsBytes.push_back(Val & 0xFF); 1579 } 1580 } 1581 // Append one extra null character, the second is automatically added by our 1582 // caller. 1583 AsBytes.push_back(0); 1584 1585 IsUTF16 = true; 1586 return Map.GetOrCreateValue(llvm::StringRef(AsBytes.data(), AsBytes.size())); 1587 } 1588 1589 llvm::Constant * 1590 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) { 1591 unsigned StringLength = 0; 1592 bool isUTF16 = false; 1593 llvm::StringMapEntry<llvm::Constant*> &Entry = 1594 GetConstantCFStringEntry(CFConstantStringMap, Literal, 1595 getTargetData().isLittleEndian(), 1596 isUTF16, StringLength); 1597 1598 if (llvm::Constant *C = Entry.getValue()) 1599 return C; 1600 1601 llvm::Constant *Zero = 1602 llvm::Constant::getNullValue(llvm::Type::getInt32Ty(VMContext)); 1603 llvm::Constant *Zeros[] = { Zero, Zero }; 1604 1605 // If we don't already have it, get __CFConstantStringClassReference. 1606 if (!CFConstantStringClassRef) { 1607 const llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy); 1608 Ty = llvm::ArrayType::get(Ty, 0); 1609 llvm::Constant *GV = CreateRuntimeVariable(Ty, 1610 "__CFConstantStringClassReference"); 1611 // Decay array -> ptr 1612 CFConstantStringClassRef = 1613 llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2); 1614 } 1615 1616 QualType CFTy = getContext().getCFConstantStringType(); 1617 1618 const llvm::StructType *STy = 1619 cast<llvm::StructType>(getTypes().ConvertType(CFTy)); 1620 1621 std::vector<llvm::Constant*> Fields(4); 1622 1623 // Class pointer. 1624 Fields[0] = CFConstantStringClassRef; 1625 1626 // Flags. 1627 const llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy); 1628 Fields[1] = isUTF16 ? llvm::ConstantInt::get(Ty, 0x07d0) : 1629 llvm::ConstantInt::get(Ty, 0x07C8); 1630 1631 // String pointer. 1632 llvm::Constant *C = llvm::ConstantArray::get(VMContext, Entry.getKey().str()); 1633 1634 llvm::GlobalValue::LinkageTypes Linkage; 1635 bool isConstant; 1636 if (isUTF16) { 1637 // FIXME: why do utf strings get "_" labels instead of "L" labels? 1638 Linkage = llvm::GlobalValue::InternalLinkage; 1639 // Note: -fwritable-strings doesn't make unicode CFStrings writable, but 1640 // does make plain ascii ones writable. 1641 isConstant = true; 1642 } else { 1643 Linkage = llvm::GlobalValue::PrivateLinkage; 1644 isConstant = !Features.WritableStrings; 1645 } 1646 1647 llvm::GlobalVariable *GV = 1648 new llvm::GlobalVariable(getModule(), C->getType(), isConstant, Linkage, C, 1649 ".str"); 1650 GV->setUnnamedAddr(true); 1651 if (isUTF16) { 1652 CharUnits Align = getContext().getTypeAlignInChars(getContext().ShortTy); 1653 GV->setAlignment(Align.getQuantity()); 1654 } 1655 Fields[2] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2); 1656 1657 // String length. 1658 Ty = getTypes().ConvertType(getContext().LongTy); 1659 Fields[3] = llvm::ConstantInt::get(Ty, StringLength); 1660 1661 // The struct. 1662 C = llvm::ConstantStruct::get(STy, Fields); 1663 GV = new llvm::GlobalVariable(getModule(), C->getType(), true, 1664 llvm::GlobalVariable::PrivateLinkage, C, 1665 "_unnamed_cfstring_"); 1666 if (const char *Sect = getContext().Target.getCFStringSection()) 1667 GV->setSection(Sect); 1668 Entry.setValue(GV); 1669 1670 return GV; 1671 } 1672 1673 llvm::Constant * 1674 CodeGenModule::GetAddrOfConstantString(const StringLiteral *Literal) { 1675 unsigned StringLength = 0; 1676 bool isUTF16 = false; 1677 llvm::StringMapEntry<llvm::Constant*> &Entry = 1678 GetConstantCFStringEntry(CFConstantStringMap, Literal, 1679 getTargetData().isLittleEndian(), 1680 isUTF16, StringLength); 1681 1682 if (llvm::Constant *C = Entry.getValue()) 1683 return C; 1684 1685 llvm::Constant *Zero = 1686 llvm::Constant::getNullValue(llvm::Type::getInt32Ty(VMContext)); 1687 llvm::Constant *Zeros[] = { Zero, Zero }; 1688 1689 // If we don't already have it, get _NSConstantStringClassReference. 1690 if (!ConstantStringClassRef) { 1691 std::string StringClass(getLangOptions().ObjCConstantStringClass); 1692 const llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy); 1693 Ty = llvm::ArrayType::get(Ty, 0); 1694 llvm::Constant *GV; 1695 if (StringClass.empty()) 1696 GV = CreateRuntimeVariable(Ty, 1697 Features.ObjCNonFragileABI ? 1698 "OBJC_CLASS_$_NSConstantString" : 1699 "_NSConstantStringClassReference"); 1700 else { 1701 std::string str; 1702 if (Features.ObjCNonFragileABI) 1703 str = "OBJC_CLASS_$_" + StringClass; 1704 else 1705 str = "_" + StringClass + "ClassReference"; 1706 GV = CreateRuntimeVariable(Ty, str); 1707 } 1708 // Decay array -> ptr 1709 ConstantStringClassRef = 1710 llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2); 1711 } 1712 1713 QualType NSTy = getContext().getNSConstantStringType(); 1714 1715 const llvm::StructType *STy = 1716 cast<llvm::StructType>(getTypes().ConvertType(NSTy)); 1717 1718 std::vector<llvm::Constant*> Fields(3); 1719 1720 // Class pointer. 1721 Fields[0] = ConstantStringClassRef; 1722 1723 // String pointer. 1724 llvm::Constant *C = llvm::ConstantArray::get(VMContext, Entry.getKey().str()); 1725 1726 llvm::GlobalValue::LinkageTypes Linkage; 1727 bool isConstant; 1728 if (isUTF16) { 1729 // FIXME: why do utf strings get "_" labels instead of "L" labels? 1730 Linkage = llvm::GlobalValue::InternalLinkage; 1731 // Note: -fwritable-strings doesn't make unicode NSStrings writable, but 1732 // does make plain ascii ones writable. 1733 isConstant = true; 1734 } else { 1735 Linkage = llvm::GlobalValue::PrivateLinkage; 1736 isConstant = !Features.WritableStrings; 1737 } 1738 1739 llvm::GlobalVariable *GV = 1740 new llvm::GlobalVariable(getModule(), C->getType(), isConstant, Linkage, C, 1741 ".str"); 1742 GV->setUnnamedAddr(true); 1743 if (isUTF16) { 1744 CharUnits Align = getContext().getTypeAlignInChars(getContext().ShortTy); 1745 GV->setAlignment(Align.getQuantity()); 1746 } 1747 Fields[1] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2); 1748 1749 // String length. 1750 const llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy); 1751 Fields[2] = llvm::ConstantInt::get(Ty, StringLength); 1752 1753 // The struct. 1754 C = llvm::ConstantStruct::get(STy, Fields); 1755 GV = new llvm::GlobalVariable(getModule(), C->getType(), true, 1756 llvm::GlobalVariable::PrivateLinkage, C, 1757 "_unnamed_nsstring_"); 1758 // FIXME. Fix section. 1759 if (const char *Sect = 1760 Features.ObjCNonFragileABI 1761 ? getContext().Target.getNSStringNonFragileABISection() 1762 : getContext().Target.getNSStringSection()) 1763 GV->setSection(Sect); 1764 Entry.setValue(GV); 1765 1766 return GV; 1767 } 1768 1769 /// GetStringForStringLiteral - Return the appropriate bytes for a 1770 /// string literal, properly padded to match the literal type. 1771 std::string CodeGenModule::GetStringForStringLiteral(const StringLiteral *E) { 1772 const ASTContext &Context = getContext(); 1773 const ConstantArrayType *CAT = 1774 Context.getAsConstantArrayType(E->getType()); 1775 assert(CAT && "String isn't pointer or array!"); 1776 1777 // Resize the string to the right size. 1778 uint64_t RealLen = CAT->getSize().getZExtValue(); 1779 1780 if (E->isWide()) 1781 RealLen *= Context.Target.getWCharWidth() / Context.getCharWidth(); 1782 1783 std::string Str = E->getString().str(); 1784 Str.resize(RealLen, '\0'); 1785 1786 return Str; 1787 } 1788 1789 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a 1790 /// constant array for the given string literal. 1791 llvm::Constant * 1792 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S) { 1793 // FIXME: This can be more efficient. 1794 // FIXME: We shouldn't need to bitcast the constant in the wide string case. 1795 llvm::Constant *C = GetAddrOfConstantString(GetStringForStringLiteral(S)); 1796 if (S->isWide()) { 1797 llvm::Type *DestTy = 1798 llvm::PointerType::getUnqual(getTypes().ConvertType(S->getType())); 1799 C = llvm::ConstantExpr::getBitCast(C, DestTy); 1800 } 1801 return C; 1802 } 1803 1804 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant 1805 /// array for the given ObjCEncodeExpr node. 1806 llvm::Constant * 1807 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) { 1808 std::string Str; 1809 getContext().getObjCEncodingForType(E->getEncodedType(), Str); 1810 1811 return GetAddrOfConstantCString(Str); 1812 } 1813 1814 1815 /// GenerateWritableString -- Creates storage for a string literal. 1816 static llvm::Constant *GenerateStringLiteral(const std::string &str, 1817 bool constant, 1818 CodeGenModule &CGM, 1819 const char *GlobalName) { 1820 // Create Constant for this string literal. Don't add a '\0'. 1821 llvm::Constant *C = 1822 llvm::ConstantArray::get(CGM.getLLVMContext(), str, false); 1823 1824 // Create a global variable for this string 1825 llvm::GlobalVariable *GV = 1826 new llvm::GlobalVariable(CGM.getModule(), C->getType(), constant, 1827 llvm::GlobalValue::PrivateLinkage, 1828 C, GlobalName); 1829 GV->setUnnamedAddr(true); 1830 return GV; 1831 } 1832 1833 /// GetAddrOfConstantString - Returns a pointer to a character array 1834 /// containing the literal. This contents are exactly that of the 1835 /// given string, i.e. it will not be null terminated automatically; 1836 /// see GetAddrOfConstantCString. Note that whether the result is 1837 /// actually a pointer to an LLVM constant depends on 1838 /// Feature.WriteableStrings. 1839 /// 1840 /// The result has pointer to array type. 1841 llvm::Constant *CodeGenModule::GetAddrOfConstantString(const std::string &str, 1842 const char *GlobalName) { 1843 bool IsConstant = !Features.WritableStrings; 1844 1845 // Get the default prefix if a name wasn't specified. 1846 if (!GlobalName) 1847 GlobalName = ".str"; 1848 1849 // Don't share any string literals if strings aren't constant. 1850 if (!IsConstant) 1851 return GenerateStringLiteral(str, false, *this, GlobalName); 1852 1853 llvm::StringMapEntry<llvm::Constant *> &Entry = 1854 ConstantStringMap.GetOrCreateValue(&str[0], &str[str.length()]); 1855 1856 if (Entry.getValue()) 1857 return Entry.getValue(); 1858 1859 // Create a global variable for this. 1860 llvm::Constant *C = GenerateStringLiteral(str, true, *this, GlobalName); 1861 Entry.setValue(C); 1862 return C; 1863 } 1864 1865 /// GetAddrOfConstantCString - Returns a pointer to a character 1866 /// array containing the literal and a terminating '\-' 1867 /// character. The result has pointer to array type. 1868 llvm::Constant *CodeGenModule::GetAddrOfConstantCString(const std::string &str, 1869 const char *GlobalName){ 1870 return GetAddrOfConstantString(str + '\0', GlobalName); 1871 } 1872 1873 /// EmitObjCPropertyImplementations - Emit information for synthesized 1874 /// properties for an implementation. 1875 void CodeGenModule::EmitObjCPropertyImplementations(const 1876 ObjCImplementationDecl *D) { 1877 for (ObjCImplementationDecl::propimpl_iterator 1878 i = D->propimpl_begin(), e = D->propimpl_end(); i != e; ++i) { 1879 ObjCPropertyImplDecl *PID = *i; 1880 1881 // Dynamic is just for type-checking. 1882 if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) { 1883 ObjCPropertyDecl *PD = PID->getPropertyDecl(); 1884 1885 // Determine which methods need to be implemented, some may have 1886 // been overridden. Note that ::isSynthesized is not the method 1887 // we want, that just indicates if the decl came from a 1888 // property. What we want to know is if the method is defined in 1889 // this implementation. 1890 if (!D->getInstanceMethod(PD->getGetterName())) 1891 CodeGenFunction(*this).GenerateObjCGetter( 1892 const_cast<ObjCImplementationDecl *>(D), PID); 1893 if (!PD->isReadOnly() && 1894 !D->getInstanceMethod(PD->getSetterName())) 1895 CodeGenFunction(*this).GenerateObjCSetter( 1896 const_cast<ObjCImplementationDecl *>(D), PID); 1897 } 1898 } 1899 } 1900 1901 /// EmitObjCIvarInitializations - Emit information for ivar initialization 1902 /// for an implementation. 1903 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) { 1904 if (!Features.NeXTRuntime || D->getNumIvarInitializers() == 0) 1905 return; 1906 DeclContext* DC = const_cast<DeclContext*>(dyn_cast<DeclContext>(D)); 1907 assert(DC && "EmitObjCIvarInitializations - null DeclContext"); 1908 IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct"); 1909 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 1910 ObjCMethodDecl *DTORMethod = ObjCMethodDecl::Create(getContext(), 1911 D->getLocation(), 1912 D->getLocation(), cxxSelector, 1913 getContext().VoidTy, 0, 1914 DC, true, false, true, false, 1915 ObjCMethodDecl::Required); 1916 D->addInstanceMethod(DTORMethod); 1917 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false); 1918 1919 II = &getContext().Idents.get(".cxx_construct"); 1920 cxxSelector = getContext().Selectors.getSelector(0, &II); 1921 // The constructor returns 'self'. 1922 ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(getContext(), 1923 D->getLocation(), 1924 D->getLocation(), cxxSelector, 1925 getContext().getObjCIdType(), 0, 1926 DC, true, false, true, false, 1927 ObjCMethodDecl::Required); 1928 D->addInstanceMethod(CTORMethod); 1929 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true); 1930 1931 1932 } 1933 1934 /// EmitNamespace - Emit all declarations in a namespace. 1935 void CodeGenModule::EmitNamespace(const NamespaceDecl *ND) { 1936 for (RecordDecl::decl_iterator I = ND->decls_begin(), E = ND->decls_end(); 1937 I != E; ++I) 1938 EmitTopLevelDecl(*I); 1939 } 1940 1941 // EmitLinkageSpec - Emit all declarations in a linkage spec. 1942 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) { 1943 if (LSD->getLanguage() != LinkageSpecDecl::lang_c && 1944 LSD->getLanguage() != LinkageSpecDecl::lang_cxx) { 1945 ErrorUnsupported(LSD, "linkage spec"); 1946 return; 1947 } 1948 1949 for (RecordDecl::decl_iterator I = LSD->decls_begin(), E = LSD->decls_end(); 1950 I != E; ++I) 1951 EmitTopLevelDecl(*I); 1952 } 1953 1954 /// EmitTopLevelDecl - Emit code for a single top level declaration. 1955 void CodeGenModule::EmitTopLevelDecl(Decl *D) { 1956 // If an error has occurred, stop code generation, but continue 1957 // parsing and semantic analysis (to ensure all warnings and errors 1958 // are emitted). 1959 if (Diags.hasErrorOccurred()) 1960 return; 1961 1962 // Ignore dependent declarations. 1963 if (D->getDeclContext() && D->getDeclContext()->isDependentContext()) 1964 return; 1965 1966 switch (D->getKind()) { 1967 case Decl::CXXConversion: 1968 case Decl::CXXMethod: 1969 case Decl::Function: 1970 // Skip function templates 1971 if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate()) 1972 return; 1973 1974 EmitGlobal(cast<FunctionDecl>(D)); 1975 break; 1976 1977 case Decl::Var: 1978 EmitGlobal(cast<VarDecl>(D)); 1979 break; 1980 1981 // C++ Decls 1982 case Decl::Namespace: 1983 EmitNamespace(cast<NamespaceDecl>(D)); 1984 break; 1985 // No code generation needed. 1986 case Decl::UsingShadow: 1987 case Decl::Using: 1988 case Decl::UsingDirective: 1989 case Decl::ClassTemplate: 1990 case Decl::FunctionTemplate: 1991 case Decl::NamespaceAlias: 1992 break; 1993 case Decl::CXXConstructor: 1994 // Skip function templates 1995 if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate()) 1996 return; 1997 1998 EmitCXXConstructors(cast<CXXConstructorDecl>(D)); 1999 break; 2000 case Decl::CXXDestructor: 2001 EmitCXXDestructors(cast<CXXDestructorDecl>(D)); 2002 break; 2003 2004 case Decl::StaticAssert: 2005 // Nothing to do. 2006 break; 2007 2008 // Objective-C Decls 2009 2010 // Forward declarations, no (immediate) code generation. 2011 case Decl::ObjCClass: 2012 case Decl::ObjCForwardProtocol: 2013 case Decl::ObjCInterface: 2014 break; 2015 2016 case Decl::ObjCCategory: { 2017 ObjCCategoryDecl *CD = cast<ObjCCategoryDecl>(D); 2018 if (CD->IsClassExtension() && CD->hasSynthBitfield()) 2019 Context.ResetObjCLayout(CD->getClassInterface()); 2020 break; 2021 } 2022 2023 2024 case Decl::ObjCProtocol: 2025 Runtime->GenerateProtocol(cast<ObjCProtocolDecl>(D)); 2026 break; 2027 2028 case Decl::ObjCCategoryImpl: 2029 // Categories have properties but don't support synthesize so we 2030 // can ignore them here. 2031 Runtime->GenerateCategory(cast<ObjCCategoryImplDecl>(D)); 2032 break; 2033 2034 case Decl::ObjCImplementation: { 2035 ObjCImplementationDecl *OMD = cast<ObjCImplementationDecl>(D); 2036 if (Features.ObjCNonFragileABI2 && OMD->hasSynthBitfield()) 2037 Context.ResetObjCLayout(OMD->getClassInterface()); 2038 EmitObjCPropertyImplementations(OMD); 2039 EmitObjCIvarInitializations(OMD); 2040 Runtime->GenerateClass(OMD); 2041 break; 2042 } 2043 case Decl::ObjCMethod: { 2044 ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(D); 2045 // If this is not a prototype, emit the body. 2046 if (OMD->getBody()) 2047 CodeGenFunction(*this).GenerateObjCMethod(OMD); 2048 break; 2049 } 2050 case Decl::ObjCCompatibleAlias: 2051 // compatibility-alias is a directive and has no code gen. 2052 break; 2053 2054 case Decl::LinkageSpec: 2055 EmitLinkageSpec(cast<LinkageSpecDecl>(D)); 2056 break; 2057 2058 case Decl::FileScopeAsm: { 2059 FileScopeAsmDecl *AD = cast<FileScopeAsmDecl>(D); 2060 llvm::StringRef AsmString = AD->getAsmString()->getString(); 2061 2062 const std::string &S = getModule().getModuleInlineAsm(); 2063 if (S.empty()) 2064 getModule().setModuleInlineAsm(AsmString); 2065 else 2066 getModule().setModuleInlineAsm(S + '\n' + AsmString.str()); 2067 break; 2068 } 2069 2070 default: 2071 // Make sure we handled everything we should, every other kind is a 2072 // non-top-level decl. FIXME: Would be nice to have an isTopLevelDeclKind 2073 // function. Need to recode Decl::Kind to do that easily. 2074 assert(isa<TypeDecl>(D) && "Unsupported decl kind"); 2075 } 2076 } 2077 2078 /// Turns the given pointer into a constant. 2079 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context, 2080 const void *Ptr) { 2081 uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr); 2082 const llvm::Type *i64 = llvm::Type::getInt64Ty(Context); 2083 return llvm::ConstantInt::get(i64, PtrInt); 2084 } 2085 2086 static void EmitGlobalDeclMetadata(CodeGenModule &CGM, 2087 llvm::NamedMDNode *&GlobalMetadata, 2088 GlobalDecl D, 2089 llvm::GlobalValue *Addr) { 2090 if (!GlobalMetadata) 2091 GlobalMetadata = 2092 CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs"); 2093 2094 // TODO: should we report variant information for ctors/dtors? 2095 llvm::Value *Ops[] = { 2096 Addr, 2097 GetPointerConstant(CGM.getLLVMContext(), D.getDecl()) 2098 }; 2099 GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops, 2)); 2100 } 2101 2102 /// Emits metadata nodes associating all the global values in the 2103 /// current module with the Decls they came from. This is useful for 2104 /// projects using IR gen as a subroutine. 2105 /// 2106 /// Since there's currently no way to associate an MDNode directly 2107 /// with an llvm::GlobalValue, we create a global named metadata 2108 /// with the name 'clang.global.decl.ptrs'. 2109 void CodeGenModule::EmitDeclMetadata() { 2110 llvm::NamedMDNode *GlobalMetadata = 0; 2111 2112 // StaticLocalDeclMap 2113 for (llvm::DenseMap<GlobalDecl,llvm::StringRef>::iterator 2114 I = MangledDeclNames.begin(), E = MangledDeclNames.end(); 2115 I != E; ++I) { 2116 llvm::GlobalValue *Addr = getModule().getNamedValue(I->second); 2117 EmitGlobalDeclMetadata(*this, GlobalMetadata, I->first, Addr); 2118 } 2119 } 2120 2121 /// Emits metadata nodes for all the local variables in the current 2122 /// function. 2123 void CodeGenFunction::EmitDeclMetadata() { 2124 if (LocalDeclMap.empty()) return; 2125 2126 llvm::LLVMContext &Context = getLLVMContext(); 2127 2128 // Find the unique metadata ID for this name. 2129 unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr"); 2130 2131 llvm::NamedMDNode *GlobalMetadata = 0; 2132 2133 for (llvm::DenseMap<const Decl*, llvm::Value*>::iterator 2134 I = LocalDeclMap.begin(), E = LocalDeclMap.end(); I != E; ++I) { 2135 const Decl *D = I->first; 2136 llvm::Value *Addr = I->second; 2137 2138 if (llvm::AllocaInst *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) { 2139 llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D); 2140 Alloca->setMetadata(DeclPtrKind, llvm::MDNode::get(Context, &DAddr, 1)); 2141 } else if (llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>(Addr)) { 2142 GlobalDecl GD = GlobalDecl(cast<VarDecl>(D)); 2143 EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV); 2144 } 2145 } 2146 } 2147 2148 ///@name Custom Runtime Function Interfaces 2149 ///@{ 2150 // 2151 // FIXME: These can be eliminated once we can have clients just get the required 2152 // AST nodes from the builtin tables. 2153 2154 llvm::Constant *CodeGenModule::getBlockObjectDispose() { 2155 if (BlockObjectDispose) 2156 return BlockObjectDispose; 2157 2158 // If we saw an explicit decl, use that. 2159 if (BlockObjectDisposeDecl) { 2160 return BlockObjectDispose = GetAddrOfFunction( 2161 BlockObjectDisposeDecl, 2162 getTypes().GetFunctionType(BlockObjectDisposeDecl)); 2163 } 2164 2165 // Otherwise construct the function by hand. 2166 const llvm::FunctionType *FTy; 2167 std::vector<const llvm::Type*> ArgTys; 2168 const llvm::Type *ResultType = llvm::Type::getVoidTy(VMContext); 2169 ArgTys.push_back(PtrToInt8Ty); 2170 ArgTys.push_back(llvm::Type::getInt32Ty(VMContext)); 2171 FTy = llvm::FunctionType::get(ResultType, ArgTys, false); 2172 return BlockObjectDispose = 2173 CreateRuntimeFunction(FTy, "_Block_object_dispose"); 2174 } 2175 2176 llvm::Constant *CodeGenModule::getBlockObjectAssign() { 2177 if (BlockObjectAssign) 2178 return BlockObjectAssign; 2179 2180 // If we saw an explicit decl, use that. 2181 if (BlockObjectAssignDecl) { 2182 return BlockObjectAssign = GetAddrOfFunction( 2183 BlockObjectAssignDecl, 2184 getTypes().GetFunctionType(BlockObjectAssignDecl)); 2185 } 2186 2187 // Otherwise construct the function by hand. 2188 const llvm::FunctionType *FTy; 2189 std::vector<const llvm::Type*> ArgTys; 2190 const llvm::Type *ResultType = llvm::Type::getVoidTy(VMContext); 2191 ArgTys.push_back(PtrToInt8Ty); 2192 ArgTys.push_back(PtrToInt8Ty); 2193 ArgTys.push_back(llvm::Type::getInt32Ty(VMContext)); 2194 FTy = llvm::FunctionType::get(ResultType, ArgTys, false); 2195 return BlockObjectAssign = 2196 CreateRuntimeFunction(FTy, "_Block_object_assign"); 2197 } 2198 2199 llvm::Constant *CodeGenModule::getNSConcreteGlobalBlock() { 2200 if (NSConcreteGlobalBlock) 2201 return NSConcreteGlobalBlock; 2202 2203 // If we saw an explicit decl, use that. 2204 if (NSConcreteGlobalBlockDecl) { 2205 return NSConcreteGlobalBlock = GetAddrOfGlobalVar( 2206 NSConcreteGlobalBlockDecl, 2207 getTypes().ConvertType(NSConcreteGlobalBlockDecl->getType())); 2208 } 2209 2210 // Otherwise construct the variable by hand. 2211 return NSConcreteGlobalBlock = CreateRuntimeVariable( 2212 PtrToInt8Ty, "_NSConcreteGlobalBlock"); 2213 } 2214 2215 llvm::Constant *CodeGenModule::getNSConcreteStackBlock() { 2216 if (NSConcreteStackBlock) 2217 return NSConcreteStackBlock; 2218 2219 // If we saw an explicit decl, use that. 2220 if (NSConcreteStackBlockDecl) { 2221 return NSConcreteStackBlock = GetAddrOfGlobalVar( 2222 NSConcreteStackBlockDecl, 2223 getTypes().ConvertType(NSConcreteStackBlockDecl->getType())); 2224 } 2225 2226 // Otherwise construct the variable by hand. 2227 return NSConcreteStackBlock = CreateRuntimeVariable( 2228 PtrToInt8Ty, "_NSConcreteStackBlock"); 2229 } 2230 2231 ///@} 2232