xref: /llvm-project/clang/lib/CodeGen/CodeGenModule.cpp (revision 7cab90a7b1c47780bbf7cfbfda4a1cbab24f0e5b)
1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This coordinates the per-module state used while generating code.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "CodeGenModule.h"
14 #include "CGBlocks.h"
15 #include "CGCUDARuntime.h"
16 #include "CGCXXABI.h"
17 #include "CGCall.h"
18 #include "CGDebugInfo.h"
19 #include "CGObjCRuntime.h"
20 #include "CGOpenCLRuntime.h"
21 #include "CGOpenMPRuntime.h"
22 #include "CGOpenMPRuntimeAMDGCN.h"
23 #include "CGOpenMPRuntimeNVPTX.h"
24 #include "CodeGenFunction.h"
25 #include "CodeGenPGO.h"
26 #include "ConstantEmitter.h"
27 #include "CoverageMappingGen.h"
28 #include "TargetInfo.h"
29 #include "clang/AST/ASTContext.h"
30 #include "clang/AST/CharUnits.h"
31 #include "clang/AST/DeclCXX.h"
32 #include "clang/AST/DeclObjC.h"
33 #include "clang/AST/DeclTemplate.h"
34 #include "clang/AST/Mangle.h"
35 #include "clang/AST/RecordLayout.h"
36 #include "clang/AST/RecursiveASTVisitor.h"
37 #include "clang/AST/StmtVisitor.h"
38 #include "clang/Basic/Builtins.h"
39 #include "clang/Basic/CharInfo.h"
40 #include "clang/Basic/CodeGenOptions.h"
41 #include "clang/Basic/Diagnostic.h"
42 #include "clang/Basic/FileManager.h"
43 #include "clang/Basic/Module.h"
44 #include "clang/Basic/SourceManager.h"
45 #include "clang/Basic/TargetInfo.h"
46 #include "clang/Basic/Version.h"
47 #include "clang/CodeGen/ConstantInitBuilder.h"
48 #include "clang/Frontend/FrontendDiagnostic.h"
49 #include "llvm/ADT/StringSwitch.h"
50 #include "llvm/ADT/Triple.h"
51 #include "llvm/Analysis/TargetLibraryInfo.h"
52 #include "llvm/Frontend/OpenMP/OMPIRBuilder.h"
53 #include "llvm/IR/CallingConv.h"
54 #include "llvm/IR/DataLayout.h"
55 #include "llvm/IR/Intrinsics.h"
56 #include "llvm/IR/LLVMContext.h"
57 #include "llvm/IR/Module.h"
58 #include "llvm/IR/ProfileSummary.h"
59 #include "llvm/ProfileData/InstrProfReader.h"
60 #include "llvm/Support/CodeGen.h"
61 #include "llvm/Support/CommandLine.h"
62 #include "llvm/Support/ConvertUTF.h"
63 #include "llvm/Support/ErrorHandling.h"
64 #include "llvm/Support/MD5.h"
65 #include "llvm/Support/TimeProfiler.h"
66 
67 using namespace clang;
68 using namespace CodeGen;
69 
70 static llvm::cl::opt<bool> LimitedCoverage(
71     "limited-coverage-experimental", llvm::cl::ZeroOrMore, llvm::cl::Hidden,
72     llvm::cl::desc("Emit limited coverage mapping information (experimental)"),
73     llvm::cl::init(false));
74 
75 static const char AnnotationSection[] = "llvm.metadata";
76 
77 static CGCXXABI *createCXXABI(CodeGenModule &CGM) {
78   switch (CGM.getContext().getCXXABIKind()) {
79   case TargetCXXABI::AppleARM64:
80   case TargetCXXABI::Fuchsia:
81   case TargetCXXABI::GenericAArch64:
82   case TargetCXXABI::GenericARM:
83   case TargetCXXABI::iOS:
84   case TargetCXXABI::WatchOS:
85   case TargetCXXABI::GenericMIPS:
86   case TargetCXXABI::GenericItanium:
87   case TargetCXXABI::WebAssembly:
88   case TargetCXXABI::XL:
89     return CreateItaniumCXXABI(CGM);
90   case TargetCXXABI::Microsoft:
91     return CreateMicrosoftCXXABI(CGM);
92   }
93 
94   llvm_unreachable("invalid C++ ABI kind");
95 }
96 
97 CodeGenModule::CodeGenModule(ASTContext &C, const HeaderSearchOptions &HSO,
98                              const PreprocessorOptions &PPO,
99                              const CodeGenOptions &CGO, llvm::Module &M,
100                              DiagnosticsEngine &diags,
101                              CoverageSourceInfo *CoverageInfo)
102     : Context(C), LangOpts(C.getLangOpts()), HeaderSearchOpts(HSO),
103       PreprocessorOpts(PPO), CodeGenOpts(CGO), TheModule(M), Diags(diags),
104       Target(C.getTargetInfo()), ABI(createCXXABI(*this)),
105       VMContext(M.getContext()), Types(*this), VTables(*this),
106       SanitizerMD(new SanitizerMetadata(*this)) {
107 
108   // Initialize the type cache.
109   llvm::LLVMContext &LLVMContext = M.getContext();
110   VoidTy = llvm::Type::getVoidTy(LLVMContext);
111   Int8Ty = llvm::Type::getInt8Ty(LLVMContext);
112   Int16Ty = llvm::Type::getInt16Ty(LLVMContext);
113   Int32Ty = llvm::Type::getInt32Ty(LLVMContext);
114   Int64Ty = llvm::Type::getInt64Ty(LLVMContext);
115   HalfTy = llvm::Type::getHalfTy(LLVMContext);
116   BFloatTy = llvm::Type::getBFloatTy(LLVMContext);
117   FloatTy = llvm::Type::getFloatTy(LLVMContext);
118   DoubleTy = llvm::Type::getDoubleTy(LLVMContext);
119   PointerWidthInBits = C.getTargetInfo().getPointerWidth(0);
120   PointerAlignInBytes =
121     C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(0)).getQuantity();
122   SizeSizeInBytes =
123     C.toCharUnitsFromBits(C.getTargetInfo().getMaxPointerWidth()).getQuantity();
124   IntAlignInBytes =
125     C.toCharUnitsFromBits(C.getTargetInfo().getIntAlign()).getQuantity();
126   CharTy =
127     llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getCharWidth());
128   IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth());
129   IntPtrTy = llvm::IntegerType::get(LLVMContext,
130     C.getTargetInfo().getMaxPointerWidth());
131   Int8PtrTy = Int8Ty->getPointerTo(0);
132   Int8PtrPtrTy = Int8PtrTy->getPointerTo(0);
133   const llvm::DataLayout &DL = M.getDataLayout();
134   AllocaInt8PtrTy = Int8Ty->getPointerTo(DL.getAllocaAddrSpace());
135   GlobalsInt8PtrTy = Int8Ty->getPointerTo(DL.getDefaultGlobalsAddressSpace());
136   ASTAllocaAddressSpace = getTargetCodeGenInfo().getASTAllocaAddressSpace();
137 
138   RuntimeCC = getTargetCodeGenInfo().getABIInfo().getRuntimeCC();
139 
140   if (LangOpts.ObjC)
141     createObjCRuntime();
142   if (LangOpts.OpenCL)
143     createOpenCLRuntime();
144   if (LangOpts.OpenMP)
145     createOpenMPRuntime();
146   if (LangOpts.CUDA)
147     createCUDARuntime();
148 
149   // Enable TBAA unless it's suppressed. ThreadSanitizer needs TBAA even at O0.
150   if (LangOpts.Sanitize.has(SanitizerKind::Thread) ||
151       (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0))
152     TBAA.reset(new CodeGenTBAA(Context, TheModule, CodeGenOpts, getLangOpts(),
153                                getCXXABI().getMangleContext()));
154 
155   // If debug info or coverage generation is enabled, create the CGDebugInfo
156   // object.
157   if (CodeGenOpts.getDebugInfo() != codegenoptions::NoDebugInfo ||
158       CodeGenOpts.EmitGcovArcs || CodeGenOpts.EmitGcovNotes)
159     DebugInfo.reset(new CGDebugInfo(*this));
160 
161   Block.GlobalUniqueCount = 0;
162 
163   if (C.getLangOpts().ObjC)
164     ObjCData.reset(new ObjCEntrypoints());
165 
166   if (CodeGenOpts.hasProfileClangUse()) {
167     auto ReaderOrErr = llvm::IndexedInstrProfReader::create(
168         CodeGenOpts.ProfileInstrumentUsePath, CodeGenOpts.ProfileRemappingFile);
169     if (auto E = ReaderOrErr.takeError()) {
170       unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
171                                               "Could not read profile %0: %1");
172       llvm::handleAllErrors(std::move(E), [&](const llvm::ErrorInfoBase &EI) {
173         getDiags().Report(DiagID) << CodeGenOpts.ProfileInstrumentUsePath
174                                   << EI.message();
175       });
176     } else
177       PGOReader = std::move(ReaderOrErr.get());
178   }
179 
180   // If coverage mapping generation is enabled, create the
181   // CoverageMappingModuleGen object.
182   if (CodeGenOpts.CoverageMapping)
183     CoverageMapping.reset(new CoverageMappingModuleGen(*this, *CoverageInfo));
184 
185   // Generate the module name hash here if needed.
186   if (CodeGenOpts.UniqueInternalLinkageNames &&
187       !getModule().getSourceFileName().empty()) {
188     std::string Path = getModule().getSourceFileName();
189     // Check if a path substitution is needed from the MacroPrefixMap.
190     for (const auto &Entry : LangOpts.MacroPrefixMap)
191       if (Path.rfind(Entry.first, 0) != std::string::npos) {
192         Path = Entry.second + Path.substr(Entry.first.size());
193         break;
194       }
195     llvm::MD5 Md5;
196     Md5.update(Path);
197     llvm::MD5::MD5Result R;
198     Md5.final(R);
199     SmallString<32> Str;
200     llvm::MD5::stringifyResult(R, Str);
201     // Convert MD5hash to Decimal. Demangler suffixes can either contain
202     // numbers or characters but not both.
203     llvm::APInt IntHash(128, Str.str(), 16);
204     // Prepend "__uniq" before the hash for tools like profilers to understand
205     // that this symbol is of internal linkage type.  The "__uniq" is the
206     // pre-determined prefix that is used to tell tools that this symbol was
207     // created with -funique-internal-linakge-symbols and the tools can strip or
208     // keep the prefix as needed.
209     ModuleNameHash = (Twine(".__uniq.") +
210         Twine(toString(IntHash, /* Radix = */ 10, /* Signed = */false))).str();
211   }
212 }
213 
214 CodeGenModule::~CodeGenModule() {}
215 
216 void CodeGenModule::createObjCRuntime() {
217   // This is just isGNUFamily(), but we want to force implementors of
218   // new ABIs to decide how best to do this.
219   switch (LangOpts.ObjCRuntime.getKind()) {
220   case ObjCRuntime::GNUstep:
221   case ObjCRuntime::GCC:
222   case ObjCRuntime::ObjFW:
223     ObjCRuntime.reset(CreateGNUObjCRuntime(*this));
224     return;
225 
226   case ObjCRuntime::FragileMacOSX:
227   case ObjCRuntime::MacOSX:
228   case ObjCRuntime::iOS:
229   case ObjCRuntime::WatchOS:
230     ObjCRuntime.reset(CreateMacObjCRuntime(*this));
231     return;
232   }
233   llvm_unreachable("bad runtime kind");
234 }
235 
236 void CodeGenModule::createOpenCLRuntime() {
237   OpenCLRuntime.reset(new CGOpenCLRuntime(*this));
238 }
239 
240 void CodeGenModule::createOpenMPRuntime() {
241   // Select a specialized code generation class based on the target, if any.
242   // If it does not exist use the default implementation.
243   switch (getTriple().getArch()) {
244   case llvm::Triple::nvptx:
245   case llvm::Triple::nvptx64:
246     assert(getLangOpts().OpenMPIsDevice &&
247            "OpenMP NVPTX is only prepared to deal with device code.");
248     OpenMPRuntime.reset(new CGOpenMPRuntimeNVPTX(*this));
249     break;
250   case llvm::Triple::amdgcn:
251     assert(getLangOpts().OpenMPIsDevice &&
252            "OpenMP AMDGCN is only prepared to deal with device code.");
253     OpenMPRuntime.reset(new CGOpenMPRuntimeAMDGCN(*this));
254     break;
255   default:
256     if (LangOpts.OpenMPSimd)
257       OpenMPRuntime.reset(new CGOpenMPSIMDRuntime(*this));
258     else
259       OpenMPRuntime.reset(new CGOpenMPRuntime(*this));
260     break;
261   }
262 }
263 
264 void CodeGenModule::createCUDARuntime() {
265   CUDARuntime.reset(CreateNVCUDARuntime(*this));
266 }
267 
268 void CodeGenModule::addReplacement(StringRef Name, llvm::Constant *C) {
269   Replacements[Name] = C;
270 }
271 
272 void CodeGenModule::applyReplacements() {
273   for (auto &I : Replacements) {
274     StringRef MangledName = I.first();
275     llvm::Constant *Replacement = I.second;
276     llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
277     if (!Entry)
278       continue;
279     auto *OldF = cast<llvm::Function>(Entry);
280     auto *NewF = dyn_cast<llvm::Function>(Replacement);
281     if (!NewF) {
282       if (auto *Alias = dyn_cast<llvm::GlobalAlias>(Replacement)) {
283         NewF = dyn_cast<llvm::Function>(Alias->getAliasee());
284       } else {
285         auto *CE = cast<llvm::ConstantExpr>(Replacement);
286         assert(CE->getOpcode() == llvm::Instruction::BitCast ||
287                CE->getOpcode() == llvm::Instruction::GetElementPtr);
288         NewF = dyn_cast<llvm::Function>(CE->getOperand(0));
289       }
290     }
291 
292     // Replace old with new, but keep the old order.
293     OldF->replaceAllUsesWith(Replacement);
294     if (NewF) {
295       NewF->removeFromParent();
296       OldF->getParent()->getFunctionList().insertAfter(OldF->getIterator(),
297                                                        NewF);
298     }
299     OldF->eraseFromParent();
300   }
301 }
302 
303 void CodeGenModule::addGlobalValReplacement(llvm::GlobalValue *GV, llvm::Constant *C) {
304   GlobalValReplacements.push_back(std::make_pair(GV, C));
305 }
306 
307 void CodeGenModule::applyGlobalValReplacements() {
308   for (auto &I : GlobalValReplacements) {
309     llvm::GlobalValue *GV = I.first;
310     llvm::Constant *C = I.second;
311 
312     GV->replaceAllUsesWith(C);
313     GV->eraseFromParent();
314   }
315 }
316 
317 // This is only used in aliases that we created and we know they have a
318 // linear structure.
319 static const llvm::GlobalObject *getAliasedGlobal(
320     const llvm::GlobalIndirectSymbol &GIS) {
321   llvm::SmallPtrSet<const llvm::GlobalIndirectSymbol*, 4> Visited;
322   const llvm::Constant *C = &GIS;
323   for (;;) {
324     C = C->stripPointerCasts();
325     if (auto *GO = dyn_cast<llvm::GlobalObject>(C))
326       return GO;
327     // stripPointerCasts will not walk over weak aliases.
328     auto *GIS2 = dyn_cast<llvm::GlobalIndirectSymbol>(C);
329     if (!GIS2)
330       return nullptr;
331     if (!Visited.insert(GIS2).second)
332       return nullptr;
333     C = GIS2->getIndirectSymbol();
334   }
335 }
336 
337 void CodeGenModule::checkAliases() {
338   // Check if the constructed aliases are well formed. It is really unfortunate
339   // that we have to do this in CodeGen, but we only construct mangled names
340   // and aliases during codegen.
341   bool Error = false;
342   DiagnosticsEngine &Diags = getDiags();
343   for (const GlobalDecl &GD : Aliases) {
344     const auto *D = cast<ValueDecl>(GD.getDecl());
345     SourceLocation Location;
346     bool IsIFunc = D->hasAttr<IFuncAttr>();
347     if (const Attr *A = D->getDefiningAttr())
348       Location = A->getLocation();
349     else
350       llvm_unreachable("Not an alias or ifunc?");
351     StringRef MangledName = getMangledName(GD);
352     llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
353     auto *Alias  = cast<llvm::GlobalIndirectSymbol>(Entry);
354     const llvm::GlobalValue *GV = getAliasedGlobal(*Alias);
355     if (!GV) {
356       Error = true;
357       Diags.Report(Location, diag::err_cyclic_alias) << IsIFunc;
358     } else if (GV->isDeclaration()) {
359       Error = true;
360       Diags.Report(Location, diag::err_alias_to_undefined)
361           << IsIFunc << IsIFunc;
362     } else if (IsIFunc) {
363       // Check resolver function type.
364       llvm::FunctionType *FTy = dyn_cast<llvm::FunctionType>(
365           GV->getType()->getPointerElementType());
366       assert(FTy);
367       if (!FTy->getReturnType()->isPointerTy())
368         Diags.Report(Location, diag::err_ifunc_resolver_return);
369     }
370 
371     llvm::Constant *Aliasee = Alias->getIndirectSymbol();
372     llvm::GlobalValue *AliaseeGV;
373     if (auto CE = dyn_cast<llvm::ConstantExpr>(Aliasee))
374       AliaseeGV = cast<llvm::GlobalValue>(CE->getOperand(0));
375     else
376       AliaseeGV = cast<llvm::GlobalValue>(Aliasee);
377 
378     if (const SectionAttr *SA = D->getAttr<SectionAttr>()) {
379       StringRef AliasSection = SA->getName();
380       if (AliasSection != AliaseeGV->getSection())
381         Diags.Report(SA->getLocation(), diag::warn_alias_with_section)
382             << AliasSection << IsIFunc << IsIFunc;
383     }
384 
385     // We have to handle alias to weak aliases in here. LLVM itself disallows
386     // this since the object semantics would not match the IL one. For
387     // compatibility with gcc we implement it by just pointing the alias
388     // to its aliasee's aliasee. We also warn, since the user is probably
389     // expecting the link to be weak.
390     if (auto GA = dyn_cast<llvm::GlobalIndirectSymbol>(AliaseeGV)) {
391       if (GA->isInterposable()) {
392         Diags.Report(Location, diag::warn_alias_to_weak_alias)
393             << GV->getName() << GA->getName() << IsIFunc;
394         Aliasee = llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(
395             GA->getIndirectSymbol(), Alias->getType());
396         Alias->setIndirectSymbol(Aliasee);
397       }
398     }
399   }
400   if (!Error)
401     return;
402 
403   for (const GlobalDecl &GD : Aliases) {
404     StringRef MangledName = getMangledName(GD);
405     llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
406     auto *Alias = cast<llvm::GlobalIndirectSymbol>(Entry);
407     Alias->replaceAllUsesWith(llvm::UndefValue::get(Alias->getType()));
408     Alias->eraseFromParent();
409   }
410 }
411 
412 void CodeGenModule::clear() {
413   DeferredDeclsToEmit.clear();
414   if (OpenMPRuntime)
415     OpenMPRuntime->clear();
416 }
417 
418 void InstrProfStats::reportDiagnostics(DiagnosticsEngine &Diags,
419                                        StringRef MainFile) {
420   if (!hasDiagnostics())
421     return;
422   if (VisitedInMainFile > 0 && VisitedInMainFile == MissingInMainFile) {
423     if (MainFile.empty())
424       MainFile = "<stdin>";
425     Diags.Report(diag::warn_profile_data_unprofiled) << MainFile;
426   } else {
427     if (Mismatched > 0)
428       Diags.Report(diag::warn_profile_data_out_of_date) << Visited << Mismatched;
429 
430     if (Missing > 0)
431       Diags.Report(diag::warn_profile_data_missing) << Visited << Missing;
432   }
433 }
434 
435 static void setVisibilityFromDLLStorageClass(const clang::LangOptions &LO,
436                                              llvm::Module &M) {
437   if (!LO.VisibilityFromDLLStorageClass)
438     return;
439 
440   llvm::GlobalValue::VisibilityTypes DLLExportVisibility =
441       CodeGenModule::GetLLVMVisibility(LO.getDLLExportVisibility());
442   llvm::GlobalValue::VisibilityTypes NoDLLStorageClassVisibility =
443       CodeGenModule::GetLLVMVisibility(LO.getNoDLLStorageClassVisibility());
444   llvm::GlobalValue::VisibilityTypes ExternDeclDLLImportVisibility =
445       CodeGenModule::GetLLVMVisibility(LO.getExternDeclDLLImportVisibility());
446   llvm::GlobalValue::VisibilityTypes ExternDeclNoDLLStorageClassVisibility =
447       CodeGenModule::GetLLVMVisibility(
448           LO.getExternDeclNoDLLStorageClassVisibility());
449 
450   for (llvm::GlobalValue &GV : M.global_values()) {
451     if (GV.hasAppendingLinkage() || GV.hasLocalLinkage())
452       continue;
453 
454     // Reset DSO locality before setting the visibility. This removes
455     // any effects that visibility options and annotations may have
456     // had on the DSO locality. Setting the visibility will implicitly set
457     // appropriate globals to DSO Local; however, this will be pessimistic
458     // w.r.t. to the normal compiler IRGen.
459     GV.setDSOLocal(false);
460 
461     if (GV.isDeclarationForLinker()) {
462       GV.setVisibility(GV.getDLLStorageClass() ==
463                                llvm::GlobalValue::DLLImportStorageClass
464                            ? ExternDeclDLLImportVisibility
465                            : ExternDeclNoDLLStorageClassVisibility);
466     } else {
467       GV.setVisibility(GV.getDLLStorageClass() ==
468                                llvm::GlobalValue::DLLExportStorageClass
469                            ? DLLExportVisibility
470                            : NoDLLStorageClassVisibility);
471     }
472 
473     GV.setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
474   }
475 }
476 
477 void CodeGenModule::Release() {
478   EmitDeferred();
479   EmitVTablesOpportunistically();
480   applyGlobalValReplacements();
481   applyReplacements();
482   checkAliases();
483   emitMultiVersionFunctions();
484   EmitCXXGlobalInitFunc();
485   EmitCXXGlobalCleanUpFunc();
486   registerGlobalDtorsWithAtExit();
487   EmitCXXThreadLocalInitFunc();
488   if (ObjCRuntime)
489     if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction())
490       AddGlobalCtor(ObjCInitFunction);
491   if (Context.getLangOpts().CUDA && CUDARuntime) {
492     if (llvm::Function *CudaCtorFunction = CUDARuntime->finalizeModule())
493       AddGlobalCtor(CudaCtorFunction);
494   }
495   if (OpenMPRuntime) {
496     if (llvm::Function *OpenMPRequiresDirectiveRegFun =
497             OpenMPRuntime->emitRequiresDirectiveRegFun()) {
498       AddGlobalCtor(OpenMPRequiresDirectiveRegFun, 0);
499     }
500     OpenMPRuntime->createOffloadEntriesAndInfoMetadata();
501     OpenMPRuntime->clear();
502   }
503   if (PGOReader) {
504     getModule().setProfileSummary(
505         PGOReader->getSummary(/* UseCS */ false).getMD(VMContext),
506         llvm::ProfileSummary::PSK_Instr);
507     if (PGOStats.hasDiagnostics())
508       PGOStats.reportDiagnostics(getDiags(), getCodeGenOpts().MainFileName);
509   }
510   EmitCtorList(GlobalCtors, "llvm.global_ctors");
511   EmitCtorList(GlobalDtors, "llvm.global_dtors");
512   EmitGlobalAnnotations();
513   EmitStaticExternCAliases();
514   EmitDeferredUnusedCoverageMappings();
515   CodeGenPGO(*this).setValueProfilingFlag(getModule());
516   if (CoverageMapping)
517     CoverageMapping->emit();
518   if (CodeGenOpts.SanitizeCfiCrossDso) {
519     CodeGenFunction(*this).EmitCfiCheckFail();
520     CodeGenFunction(*this).EmitCfiCheckStub();
521   }
522   emitAtAvailableLinkGuard();
523   if (Context.getTargetInfo().getTriple().isWasm() &&
524       !Context.getTargetInfo().getTriple().isOSEmscripten()) {
525     EmitMainVoidAlias();
526   }
527 
528   // Emit reference of __amdgpu_device_library_preserve_asan_functions to
529   // preserve ASAN functions in bitcode libraries.
530   if (LangOpts.Sanitize.has(SanitizerKind::Address) && getTriple().isAMDGPU()) {
531     auto *FT = llvm::FunctionType::get(VoidTy, {});
532     auto *F = llvm::Function::Create(
533         FT, llvm::GlobalValue::ExternalLinkage,
534         "__amdgpu_device_library_preserve_asan_functions", &getModule());
535     auto *Var = new llvm::GlobalVariable(
536         getModule(), FT->getPointerTo(),
537         /*isConstant=*/true, llvm::GlobalValue::WeakAnyLinkage, F,
538         "__amdgpu_device_library_preserve_asan_functions_ptr", nullptr,
539         llvm::GlobalVariable::NotThreadLocal);
540     addCompilerUsedGlobal(Var);
541   }
542 
543   emitLLVMUsed();
544   if (SanStats)
545     SanStats->finish();
546 
547   if (CodeGenOpts.Autolink &&
548       (Context.getLangOpts().Modules || !LinkerOptionsMetadata.empty())) {
549     EmitModuleLinkOptions();
550   }
551 
552   // On ELF we pass the dependent library specifiers directly to the linker
553   // without manipulating them. This is in contrast to other platforms where
554   // they are mapped to a specific linker option by the compiler. This
555   // difference is a result of the greater variety of ELF linkers and the fact
556   // that ELF linkers tend to handle libraries in a more complicated fashion
557   // than on other platforms. This forces us to defer handling the dependent
558   // libs to the linker.
559   //
560   // CUDA/HIP device and host libraries are different. Currently there is no
561   // way to differentiate dependent libraries for host or device. Existing
562   // usage of #pragma comment(lib, *) is intended for host libraries on
563   // Windows. Therefore emit llvm.dependent-libraries only for host.
564   if (!ELFDependentLibraries.empty() && !Context.getLangOpts().CUDAIsDevice) {
565     auto *NMD = getModule().getOrInsertNamedMetadata("llvm.dependent-libraries");
566     for (auto *MD : ELFDependentLibraries)
567       NMD->addOperand(MD);
568   }
569 
570   // Record mregparm value now so it is visible through rest of codegen.
571   if (Context.getTargetInfo().getTriple().getArch() == llvm::Triple::x86)
572     getModule().addModuleFlag(llvm::Module::Error, "NumRegisterParameters",
573                               CodeGenOpts.NumRegisterParameters);
574 
575   if (CodeGenOpts.DwarfVersion) {
576     getModule().addModuleFlag(llvm::Module::Max, "Dwarf Version",
577                               CodeGenOpts.DwarfVersion);
578   }
579 
580   if (CodeGenOpts.Dwarf64)
581     getModule().addModuleFlag(llvm::Module::Max, "DWARF64", 1);
582 
583   if (Context.getLangOpts().SemanticInterposition)
584     // Require various optimization to respect semantic interposition.
585     getModule().setSemanticInterposition(1);
586 
587   if (CodeGenOpts.EmitCodeView) {
588     // Indicate that we want CodeView in the metadata.
589     getModule().addModuleFlag(llvm::Module::Warning, "CodeView", 1);
590   }
591   if (CodeGenOpts.CodeViewGHash) {
592     getModule().addModuleFlag(llvm::Module::Warning, "CodeViewGHash", 1);
593   }
594   if (CodeGenOpts.ControlFlowGuard) {
595     // Function ID tables and checks for Control Flow Guard (cfguard=2).
596     getModule().addModuleFlag(llvm::Module::Warning, "cfguard", 2);
597   } else if (CodeGenOpts.ControlFlowGuardNoChecks) {
598     // Function ID tables for Control Flow Guard (cfguard=1).
599     getModule().addModuleFlag(llvm::Module::Warning, "cfguard", 1);
600   }
601   if (CodeGenOpts.EHContGuard) {
602     // Function ID tables for EH Continuation Guard.
603     getModule().addModuleFlag(llvm::Module::Warning, "ehcontguard", 1);
604   }
605   if (CodeGenOpts.OptimizationLevel > 0 && CodeGenOpts.StrictVTablePointers) {
606     // We don't support LTO with 2 with different StrictVTablePointers
607     // FIXME: we could support it by stripping all the information introduced
608     // by StrictVTablePointers.
609 
610     getModule().addModuleFlag(llvm::Module::Error, "StrictVTablePointers",1);
611 
612     llvm::Metadata *Ops[2] = {
613               llvm::MDString::get(VMContext, "StrictVTablePointers"),
614               llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
615                   llvm::Type::getInt32Ty(VMContext), 1))};
616 
617     getModule().addModuleFlag(llvm::Module::Require,
618                               "StrictVTablePointersRequirement",
619                               llvm::MDNode::get(VMContext, Ops));
620   }
621   if (getModuleDebugInfo())
622     // We support a single version in the linked module. The LLVM
623     // parser will drop debug info with a different version number
624     // (and warn about it, too).
625     getModule().addModuleFlag(llvm::Module::Warning, "Debug Info Version",
626                               llvm::DEBUG_METADATA_VERSION);
627 
628   // We need to record the widths of enums and wchar_t, so that we can generate
629   // the correct build attributes in the ARM backend. wchar_size is also used by
630   // TargetLibraryInfo.
631   uint64_t WCharWidth =
632       Context.getTypeSizeInChars(Context.getWideCharType()).getQuantity();
633   getModule().addModuleFlag(llvm::Module::Error, "wchar_size", WCharWidth);
634 
635   llvm::Triple::ArchType Arch = Context.getTargetInfo().getTriple().getArch();
636   if (   Arch == llvm::Triple::arm
637       || Arch == llvm::Triple::armeb
638       || Arch == llvm::Triple::thumb
639       || Arch == llvm::Triple::thumbeb) {
640     // The minimum width of an enum in bytes
641     uint64_t EnumWidth = Context.getLangOpts().ShortEnums ? 1 : 4;
642     getModule().addModuleFlag(llvm::Module::Error, "min_enum_size", EnumWidth);
643   }
644 
645   if (Arch == llvm::Triple::riscv32 || Arch == llvm::Triple::riscv64) {
646     StringRef ABIStr = Target.getABI();
647     llvm::LLVMContext &Ctx = TheModule.getContext();
648     getModule().addModuleFlag(llvm::Module::Error, "target-abi",
649                               llvm::MDString::get(Ctx, ABIStr));
650   }
651 
652   if (CodeGenOpts.SanitizeCfiCrossDso) {
653     // Indicate that we want cross-DSO control flow integrity checks.
654     getModule().addModuleFlag(llvm::Module::Override, "Cross-DSO CFI", 1);
655   }
656 
657   if (CodeGenOpts.WholeProgramVTables) {
658     // Indicate whether VFE was enabled for this module, so that the
659     // vcall_visibility metadata added under whole program vtables is handled
660     // appropriately in the optimizer.
661     getModule().addModuleFlag(llvm::Module::Error, "Virtual Function Elim",
662                               CodeGenOpts.VirtualFunctionElimination);
663   }
664 
665   if (LangOpts.Sanitize.has(SanitizerKind::CFIICall)) {
666     getModule().addModuleFlag(llvm::Module::Override,
667                               "CFI Canonical Jump Tables",
668                               CodeGenOpts.SanitizeCfiCanonicalJumpTables);
669   }
670 
671   if (CodeGenOpts.CFProtectionReturn &&
672       Target.checkCFProtectionReturnSupported(getDiags())) {
673     // Indicate that we want to instrument return control flow protection.
674     getModule().addModuleFlag(llvm::Module::Override, "cf-protection-return",
675                               1);
676   }
677 
678   if (CodeGenOpts.CFProtectionBranch &&
679       Target.checkCFProtectionBranchSupported(getDiags())) {
680     // Indicate that we want to instrument branch control flow protection.
681     getModule().addModuleFlag(llvm::Module::Override, "cf-protection-branch",
682                               1);
683   }
684 
685   if (Arch == llvm::Triple::aarch64 || Arch == llvm::Triple::aarch64_32 ||
686       Arch == llvm::Triple::aarch64_be) {
687     getModule().addModuleFlag(llvm::Module::Error,
688                               "branch-target-enforcement",
689                               LangOpts.BranchTargetEnforcement);
690 
691     getModule().addModuleFlag(llvm::Module::Error, "sign-return-address",
692                               LangOpts.hasSignReturnAddress());
693 
694     getModule().addModuleFlag(llvm::Module::Error, "sign-return-address-all",
695                               LangOpts.isSignReturnAddressScopeAll());
696 
697     getModule().addModuleFlag(llvm::Module::Error,
698                               "sign-return-address-with-bkey",
699                               !LangOpts.isSignReturnAddressWithAKey());
700   }
701 
702   if (!CodeGenOpts.MemoryProfileOutput.empty()) {
703     llvm::LLVMContext &Ctx = TheModule.getContext();
704     getModule().addModuleFlag(
705         llvm::Module::Error, "MemProfProfileFilename",
706         llvm::MDString::get(Ctx, CodeGenOpts.MemoryProfileOutput));
707   }
708 
709   if (LangOpts.CUDAIsDevice && getTriple().isNVPTX()) {
710     // Indicate whether __nvvm_reflect should be configured to flush denormal
711     // floating point values to 0.  (This corresponds to its "__CUDA_FTZ"
712     // property.)
713     getModule().addModuleFlag(llvm::Module::Override, "nvvm-reflect-ftz",
714                               CodeGenOpts.FP32DenormalMode.Output !=
715                                   llvm::DenormalMode::IEEE);
716   }
717 
718   if (LangOpts.EHAsynch)
719     getModule().addModuleFlag(llvm::Module::Warning, "eh-asynch", 1);
720 
721   // Indicate whether this Module was compiled with -fopenmp
722   if (getLangOpts().OpenMP && !getLangOpts().OpenMPSimd)
723     getModule().addModuleFlag(llvm::Module::Max, "openmp", LangOpts.OpenMP);
724   if (getLangOpts().OpenMPIsDevice)
725     getModule().addModuleFlag(llvm::Module::Max, "openmp-device",
726                               LangOpts.OpenMP);
727 
728   // Emit OpenCL specific module metadata: OpenCL/SPIR version.
729   if (LangOpts.OpenCL) {
730     EmitOpenCLMetadata();
731     // Emit SPIR version.
732     if (getTriple().isSPIR()) {
733       // SPIR v2.0 s2.12 - The SPIR version used by the module is stored in the
734       // opencl.spir.version named metadata.
735       // C++ is backwards compatible with OpenCL v2.0.
736       auto Version = LangOpts.OpenCLCPlusPlus ? 200 : LangOpts.OpenCLVersion;
737       llvm::Metadata *SPIRVerElts[] = {
738           llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
739               Int32Ty, Version / 100)),
740           llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
741               Int32Ty, (Version / 100 > 1) ? 0 : 2))};
742       llvm::NamedMDNode *SPIRVerMD =
743           TheModule.getOrInsertNamedMetadata("opencl.spir.version");
744       llvm::LLVMContext &Ctx = TheModule.getContext();
745       SPIRVerMD->addOperand(llvm::MDNode::get(Ctx, SPIRVerElts));
746     }
747   }
748 
749   if (uint32_t PLevel = Context.getLangOpts().PICLevel) {
750     assert(PLevel < 3 && "Invalid PIC Level");
751     getModule().setPICLevel(static_cast<llvm::PICLevel::Level>(PLevel));
752     if (Context.getLangOpts().PIE)
753       getModule().setPIELevel(static_cast<llvm::PIELevel::Level>(PLevel));
754   }
755 
756   if (getCodeGenOpts().CodeModel.size() > 0) {
757     unsigned CM = llvm::StringSwitch<unsigned>(getCodeGenOpts().CodeModel)
758                   .Case("tiny", llvm::CodeModel::Tiny)
759                   .Case("small", llvm::CodeModel::Small)
760                   .Case("kernel", llvm::CodeModel::Kernel)
761                   .Case("medium", llvm::CodeModel::Medium)
762                   .Case("large", llvm::CodeModel::Large)
763                   .Default(~0u);
764     if (CM != ~0u) {
765       llvm::CodeModel::Model codeModel = static_cast<llvm::CodeModel::Model>(CM);
766       getModule().setCodeModel(codeModel);
767     }
768   }
769 
770   if (CodeGenOpts.NoPLT)
771     getModule().setRtLibUseGOT();
772   if (CodeGenOpts.UnwindTables)
773     getModule().setUwtable();
774 
775   switch (CodeGenOpts.getFramePointer()) {
776   case CodeGenOptions::FramePointerKind::None:
777     // 0 ("none") is the default.
778     break;
779   case CodeGenOptions::FramePointerKind::NonLeaf:
780     getModule().setFramePointer(llvm::FramePointerKind::NonLeaf);
781     break;
782   case CodeGenOptions::FramePointerKind::All:
783     getModule().setFramePointer(llvm::FramePointerKind::All);
784     break;
785   }
786 
787   SimplifyPersonality();
788 
789   if (getCodeGenOpts().EmitDeclMetadata)
790     EmitDeclMetadata();
791 
792   if (getCodeGenOpts().EmitGcovArcs || getCodeGenOpts().EmitGcovNotes)
793     EmitCoverageFile();
794 
795   if (CGDebugInfo *DI = getModuleDebugInfo())
796     DI->finalize();
797 
798   if (getCodeGenOpts().EmitVersionIdentMetadata)
799     EmitVersionIdentMetadata();
800 
801   if (!getCodeGenOpts().RecordCommandLine.empty())
802     EmitCommandLineMetadata();
803 
804   if (!getCodeGenOpts().StackProtectorGuard.empty())
805     getModule().setStackProtectorGuard(getCodeGenOpts().StackProtectorGuard);
806   if (!getCodeGenOpts().StackProtectorGuardReg.empty())
807     getModule().setStackProtectorGuardReg(
808         getCodeGenOpts().StackProtectorGuardReg);
809   if (getCodeGenOpts().StackProtectorGuardOffset != INT_MAX)
810     getModule().setStackProtectorGuardOffset(
811         getCodeGenOpts().StackProtectorGuardOffset);
812   if (getCodeGenOpts().StackAlignment)
813     getModule().setOverrideStackAlignment(getCodeGenOpts().StackAlignment);
814 
815   getTargetCodeGenInfo().emitTargetMetadata(*this, MangledDeclNames);
816 
817   EmitBackendOptionsMetadata(getCodeGenOpts());
818 
819   // Set visibility from DLL storage class
820   // We do this at the end of LLVM IR generation; after any operation
821   // that might affect the DLL storage class or the visibility, and
822   // before anything that might act on these.
823   setVisibilityFromDLLStorageClass(LangOpts, getModule());
824 }
825 
826 void CodeGenModule::EmitOpenCLMetadata() {
827   // SPIR v2.0 s2.13 - The OpenCL version used by the module is stored in the
828   // opencl.ocl.version named metadata node.
829   // C++ is backwards compatible with OpenCL v2.0.
830   // FIXME: We might need to add CXX version at some point too?
831   auto Version = LangOpts.OpenCLCPlusPlus ? 200 : LangOpts.OpenCLVersion;
832   llvm::Metadata *OCLVerElts[] = {
833       llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
834           Int32Ty, Version / 100)),
835       llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
836           Int32Ty, (Version % 100) / 10))};
837   llvm::NamedMDNode *OCLVerMD =
838       TheModule.getOrInsertNamedMetadata("opencl.ocl.version");
839   llvm::LLVMContext &Ctx = TheModule.getContext();
840   OCLVerMD->addOperand(llvm::MDNode::get(Ctx, OCLVerElts));
841 }
842 
843 void CodeGenModule::EmitBackendOptionsMetadata(
844     const CodeGenOptions CodeGenOpts) {
845   switch (getTriple().getArch()) {
846   default:
847     break;
848   case llvm::Triple::riscv32:
849   case llvm::Triple::riscv64:
850     getModule().addModuleFlag(llvm::Module::Error, "SmallDataLimit",
851                               CodeGenOpts.SmallDataLimit);
852     break;
853   }
854 }
855 
856 void CodeGenModule::UpdateCompletedType(const TagDecl *TD) {
857   // Make sure that this type is translated.
858   Types.UpdateCompletedType(TD);
859 }
860 
861 void CodeGenModule::RefreshTypeCacheForClass(const CXXRecordDecl *RD) {
862   // Make sure that this type is translated.
863   Types.RefreshTypeCacheForClass(RD);
864 }
865 
866 llvm::MDNode *CodeGenModule::getTBAATypeInfo(QualType QTy) {
867   if (!TBAA)
868     return nullptr;
869   return TBAA->getTypeInfo(QTy);
870 }
871 
872 TBAAAccessInfo CodeGenModule::getTBAAAccessInfo(QualType AccessType) {
873   if (!TBAA)
874     return TBAAAccessInfo();
875   if (getLangOpts().CUDAIsDevice) {
876     // As CUDA builtin surface/texture types are replaced, skip generating TBAA
877     // access info.
878     if (AccessType->isCUDADeviceBuiltinSurfaceType()) {
879       if (getTargetCodeGenInfo().getCUDADeviceBuiltinSurfaceDeviceType() !=
880           nullptr)
881         return TBAAAccessInfo();
882     } else if (AccessType->isCUDADeviceBuiltinTextureType()) {
883       if (getTargetCodeGenInfo().getCUDADeviceBuiltinTextureDeviceType() !=
884           nullptr)
885         return TBAAAccessInfo();
886     }
887   }
888   return TBAA->getAccessInfo(AccessType);
889 }
890 
891 TBAAAccessInfo
892 CodeGenModule::getTBAAVTablePtrAccessInfo(llvm::Type *VTablePtrType) {
893   if (!TBAA)
894     return TBAAAccessInfo();
895   return TBAA->getVTablePtrAccessInfo(VTablePtrType);
896 }
897 
898 llvm::MDNode *CodeGenModule::getTBAAStructInfo(QualType QTy) {
899   if (!TBAA)
900     return nullptr;
901   return TBAA->getTBAAStructInfo(QTy);
902 }
903 
904 llvm::MDNode *CodeGenModule::getTBAABaseTypeInfo(QualType QTy) {
905   if (!TBAA)
906     return nullptr;
907   return TBAA->getBaseTypeInfo(QTy);
908 }
909 
910 llvm::MDNode *CodeGenModule::getTBAAAccessTagInfo(TBAAAccessInfo Info) {
911   if (!TBAA)
912     return nullptr;
913   return TBAA->getAccessTagInfo(Info);
914 }
915 
916 TBAAAccessInfo CodeGenModule::mergeTBAAInfoForCast(TBAAAccessInfo SourceInfo,
917                                                    TBAAAccessInfo TargetInfo) {
918   if (!TBAA)
919     return TBAAAccessInfo();
920   return TBAA->mergeTBAAInfoForCast(SourceInfo, TargetInfo);
921 }
922 
923 TBAAAccessInfo
924 CodeGenModule::mergeTBAAInfoForConditionalOperator(TBAAAccessInfo InfoA,
925                                                    TBAAAccessInfo InfoB) {
926   if (!TBAA)
927     return TBAAAccessInfo();
928   return TBAA->mergeTBAAInfoForConditionalOperator(InfoA, InfoB);
929 }
930 
931 TBAAAccessInfo
932 CodeGenModule::mergeTBAAInfoForMemoryTransfer(TBAAAccessInfo DestInfo,
933                                               TBAAAccessInfo SrcInfo) {
934   if (!TBAA)
935     return TBAAAccessInfo();
936   return TBAA->mergeTBAAInfoForConditionalOperator(DestInfo, SrcInfo);
937 }
938 
939 void CodeGenModule::DecorateInstructionWithTBAA(llvm::Instruction *Inst,
940                                                 TBAAAccessInfo TBAAInfo) {
941   if (llvm::MDNode *Tag = getTBAAAccessTagInfo(TBAAInfo))
942     Inst->setMetadata(llvm::LLVMContext::MD_tbaa, Tag);
943 }
944 
945 void CodeGenModule::DecorateInstructionWithInvariantGroup(
946     llvm::Instruction *I, const CXXRecordDecl *RD) {
947   I->setMetadata(llvm::LLVMContext::MD_invariant_group,
948                  llvm::MDNode::get(getLLVMContext(), {}));
949 }
950 
951 void CodeGenModule::Error(SourceLocation loc, StringRef message) {
952   unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, "%0");
953   getDiags().Report(Context.getFullLoc(loc), diagID) << message;
954 }
955 
956 /// ErrorUnsupported - Print out an error that codegen doesn't support the
957 /// specified stmt yet.
958 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type) {
959   unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
960                                                "cannot compile this %0 yet");
961   std::string Msg = Type;
962   getDiags().Report(Context.getFullLoc(S->getBeginLoc()), DiagID)
963       << Msg << S->getSourceRange();
964 }
965 
966 /// ErrorUnsupported - Print out an error that codegen doesn't support the
967 /// specified decl yet.
968 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type) {
969   unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
970                                                "cannot compile this %0 yet");
971   std::string Msg = Type;
972   getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg;
973 }
974 
975 llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) {
976   return llvm::ConstantInt::get(SizeTy, size.getQuantity());
977 }
978 
979 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV,
980                                         const NamedDecl *D) const {
981   if (GV->hasDLLImportStorageClass())
982     return;
983   // Internal definitions always have default visibility.
984   if (GV->hasLocalLinkage()) {
985     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
986     return;
987   }
988   if (!D)
989     return;
990   // Set visibility for definitions, and for declarations if requested globally
991   // or set explicitly.
992   LinkageInfo LV = D->getLinkageAndVisibility();
993   if (LV.isVisibilityExplicit() || getLangOpts().SetVisibilityForExternDecls ||
994       !GV->isDeclarationForLinker())
995     GV->setVisibility(GetLLVMVisibility(LV.getVisibility()));
996 }
997 
998 static bool shouldAssumeDSOLocal(const CodeGenModule &CGM,
999                                  llvm::GlobalValue *GV) {
1000   if (GV->hasLocalLinkage())
1001     return true;
1002 
1003   if (!GV->hasDefaultVisibility() && !GV->hasExternalWeakLinkage())
1004     return true;
1005 
1006   // DLLImport explicitly marks the GV as external.
1007   if (GV->hasDLLImportStorageClass())
1008     return false;
1009 
1010   const llvm::Triple &TT = CGM.getTriple();
1011   if (TT.isWindowsGNUEnvironment()) {
1012     // In MinGW, variables without DLLImport can still be automatically
1013     // imported from a DLL by the linker; don't mark variables that
1014     // potentially could come from another DLL as DSO local.
1015 
1016     // With EmulatedTLS, TLS variables can be autoimported from other DLLs
1017     // (and this actually happens in the public interface of libstdc++), so
1018     // such variables can't be marked as DSO local. (Native TLS variables
1019     // can't be dllimported at all, though.)
1020     if (GV->isDeclarationForLinker() && isa<llvm::GlobalVariable>(GV) &&
1021         (!GV->isThreadLocal() || CGM.getCodeGenOpts().EmulatedTLS))
1022       return false;
1023   }
1024 
1025   // On COFF, don't mark 'extern_weak' symbols as DSO local. If these symbols
1026   // remain unresolved in the link, they can be resolved to zero, which is
1027   // outside the current DSO.
1028   if (TT.isOSBinFormatCOFF() && GV->hasExternalWeakLinkage())
1029     return false;
1030 
1031   // Every other GV is local on COFF.
1032   // Make an exception for windows OS in the triple: Some firmware builds use
1033   // *-win32-macho triples. This (accidentally?) produced windows relocations
1034   // without GOT tables in older clang versions; Keep this behaviour.
1035   // FIXME: even thread local variables?
1036   if (TT.isOSBinFormatCOFF() || (TT.isOSWindows() && TT.isOSBinFormatMachO()))
1037     return true;
1038 
1039   // Only handle COFF and ELF for now.
1040   if (!TT.isOSBinFormatELF())
1041     return false;
1042 
1043   // If this is not an executable, don't assume anything is local.
1044   const auto &CGOpts = CGM.getCodeGenOpts();
1045   llvm::Reloc::Model RM = CGOpts.RelocationModel;
1046   const auto &LOpts = CGM.getLangOpts();
1047   if (RM != llvm::Reloc::Static && !LOpts.PIE) {
1048     // On ELF, if -fno-semantic-interposition is specified and the target
1049     // supports local aliases, there will be neither CC1
1050     // -fsemantic-interposition nor -fhalf-no-semantic-interposition. Set
1051     // dso_local on the function if using a local alias is preferable (can avoid
1052     // PLT indirection).
1053     if (!(isa<llvm::Function>(GV) && GV->canBenefitFromLocalAlias()))
1054       return false;
1055     return !(CGM.getLangOpts().SemanticInterposition ||
1056              CGM.getLangOpts().HalfNoSemanticInterposition);
1057   }
1058 
1059   // A definition cannot be preempted from an executable.
1060   if (!GV->isDeclarationForLinker())
1061     return true;
1062 
1063   // Most PIC code sequences that assume that a symbol is local cannot produce a
1064   // 0 if it turns out the symbol is undefined. While this is ABI and relocation
1065   // depended, it seems worth it to handle it here.
1066   if (RM == llvm::Reloc::PIC_ && GV->hasExternalWeakLinkage())
1067     return false;
1068 
1069   // PowerPC64 prefers TOC indirection to avoid copy relocations.
1070   if (TT.isPPC64())
1071     return false;
1072 
1073   if (CGOpts.DirectAccessExternalData) {
1074     // If -fdirect-access-external-data (default for -fno-pic), set dso_local
1075     // for non-thread-local variables. If the symbol is not defined in the
1076     // executable, a copy relocation will be needed at link time. dso_local is
1077     // excluded for thread-local variables because they generally don't support
1078     // copy relocations.
1079     if (auto *Var = dyn_cast<llvm::GlobalVariable>(GV))
1080       if (!Var->isThreadLocal())
1081         return true;
1082 
1083     // -fno-pic sets dso_local on a function declaration to allow direct
1084     // accesses when taking its address (similar to a data symbol). If the
1085     // function is not defined in the executable, a canonical PLT entry will be
1086     // needed at link time. -fno-direct-access-external-data can avoid the
1087     // canonical PLT entry. We don't generalize this condition to -fpie/-fpic as
1088     // it could just cause trouble without providing perceptible benefits.
1089     if (isa<llvm::Function>(GV) && !CGOpts.NoPLT && RM == llvm::Reloc::Static)
1090       return true;
1091   }
1092 
1093   // If we can use copy relocations we can assume it is local.
1094 
1095   // Otherwise don't assume it is local.
1096   return false;
1097 }
1098 
1099 void CodeGenModule::setDSOLocal(llvm::GlobalValue *GV) const {
1100   GV->setDSOLocal(shouldAssumeDSOLocal(*this, GV));
1101 }
1102 
1103 void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV,
1104                                           GlobalDecl GD) const {
1105   const auto *D = dyn_cast<NamedDecl>(GD.getDecl());
1106   // C++ destructors have a few C++ ABI specific special cases.
1107   if (const auto *Dtor = dyn_cast_or_null<CXXDestructorDecl>(D)) {
1108     getCXXABI().setCXXDestructorDLLStorage(GV, Dtor, GD.getDtorType());
1109     return;
1110   }
1111   setDLLImportDLLExport(GV, D);
1112 }
1113 
1114 void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV,
1115                                           const NamedDecl *D) const {
1116   if (D && D->isExternallyVisible()) {
1117     if (D->hasAttr<DLLImportAttr>())
1118       GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass);
1119     else if (D->hasAttr<DLLExportAttr>() && !GV->isDeclarationForLinker())
1120       GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass);
1121   }
1122 }
1123 
1124 void CodeGenModule::setGVProperties(llvm::GlobalValue *GV,
1125                                     GlobalDecl GD) const {
1126   setDLLImportDLLExport(GV, GD);
1127   setGVPropertiesAux(GV, dyn_cast<NamedDecl>(GD.getDecl()));
1128 }
1129 
1130 void CodeGenModule::setGVProperties(llvm::GlobalValue *GV,
1131                                     const NamedDecl *D) const {
1132   setDLLImportDLLExport(GV, D);
1133   setGVPropertiesAux(GV, D);
1134 }
1135 
1136 void CodeGenModule::setGVPropertiesAux(llvm::GlobalValue *GV,
1137                                        const NamedDecl *D) const {
1138   setGlobalVisibility(GV, D);
1139   setDSOLocal(GV);
1140   GV->setPartition(CodeGenOpts.SymbolPartition);
1141 }
1142 
1143 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(StringRef S) {
1144   return llvm::StringSwitch<llvm::GlobalVariable::ThreadLocalMode>(S)
1145       .Case("global-dynamic", llvm::GlobalVariable::GeneralDynamicTLSModel)
1146       .Case("local-dynamic", llvm::GlobalVariable::LocalDynamicTLSModel)
1147       .Case("initial-exec", llvm::GlobalVariable::InitialExecTLSModel)
1148       .Case("local-exec", llvm::GlobalVariable::LocalExecTLSModel);
1149 }
1150 
1151 llvm::GlobalVariable::ThreadLocalMode
1152 CodeGenModule::GetDefaultLLVMTLSModel() const {
1153   switch (CodeGenOpts.getDefaultTLSModel()) {
1154   case CodeGenOptions::GeneralDynamicTLSModel:
1155     return llvm::GlobalVariable::GeneralDynamicTLSModel;
1156   case CodeGenOptions::LocalDynamicTLSModel:
1157     return llvm::GlobalVariable::LocalDynamicTLSModel;
1158   case CodeGenOptions::InitialExecTLSModel:
1159     return llvm::GlobalVariable::InitialExecTLSModel;
1160   case CodeGenOptions::LocalExecTLSModel:
1161     return llvm::GlobalVariable::LocalExecTLSModel;
1162   }
1163   llvm_unreachable("Invalid TLS model!");
1164 }
1165 
1166 void CodeGenModule::setTLSMode(llvm::GlobalValue *GV, const VarDecl &D) const {
1167   assert(D.getTLSKind() && "setting TLS mode on non-TLS var!");
1168 
1169   llvm::GlobalValue::ThreadLocalMode TLM;
1170   TLM = GetDefaultLLVMTLSModel();
1171 
1172   // Override the TLS model if it is explicitly specified.
1173   if (const TLSModelAttr *Attr = D.getAttr<TLSModelAttr>()) {
1174     TLM = GetLLVMTLSModel(Attr->getModel());
1175   }
1176 
1177   GV->setThreadLocalMode(TLM);
1178 }
1179 
1180 static std::string getCPUSpecificMangling(const CodeGenModule &CGM,
1181                                           StringRef Name) {
1182   const TargetInfo &Target = CGM.getTarget();
1183   return (Twine('.') + Twine(Target.CPUSpecificManglingCharacter(Name))).str();
1184 }
1185 
1186 static void AppendCPUSpecificCPUDispatchMangling(const CodeGenModule &CGM,
1187                                                  const CPUSpecificAttr *Attr,
1188                                                  unsigned CPUIndex,
1189                                                  raw_ostream &Out) {
1190   // cpu_specific gets the current name, dispatch gets the resolver if IFunc is
1191   // supported.
1192   if (Attr)
1193     Out << getCPUSpecificMangling(CGM, Attr->getCPUName(CPUIndex)->getName());
1194   else if (CGM.getTarget().supportsIFunc())
1195     Out << ".resolver";
1196 }
1197 
1198 static void AppendTargetMangling(const CodeGenModule &CGM,
1199                                  const TargetAttr *Attr, raw_ostream &Out) {
1200   if (Attr->isDefaultVersion())
1201     return;
1202 
1203   Out << '.';
1204   const TargetInfo &Target = CGM.getTarget();
1205   ParsedTargetAttr Info =
1206       Attr->parse([&Target](StringRef LHS, StringRef RHS) {
1207         // Multiversioning doesn't allow "no-${feature}", so we can
1208         // only have "+" prefixes here.
1209         assert(LHS.startswith("+") && RHS.startswith("+") &&
1210                "Features should always have a prefix.");
1211         return Target.multiVersionSortPriority(LHS.substr(1)) >
1212                Target.multiVersionSortPriority(RHS.substr(1));
1213       });
1214 
1215   bool IsFirst = true;
1216 
1217   if (!Info.Architecture.empty()) {
1218     IsFirst = false;
1219     Out << "arch_" << Info.Architecture;
1220   }
1221 
1222   for (StringRef Feat : Info.Features) {
1223     if (!IsFirst)
1224       Out << '_';
1225     IsFirst = false;
1226     Out << Feat.substr(1);
1227   }
1228 }
1229 
1230 // Returns true if GD is a function decl with internal linkage and
1231 // needs a unique suffix after the mangled name.
1232 static bool isUniqueInternalLinkageDecl(GlobalDecl GD,
1233                                         CodeGenModule &CGM) {
1234   const Decl *D = GD.getDecl();
1235   return !CGM.getModuleNameHash().empty() && isa<FunctionDecl>(D) &&
1236          (CGM.getFunctionLinkage(GD) == llvm::GlobalValue::InternalLinkage);
1237 }
1238 
1239 static std::string getMangledNameImpl(CodeGenModule &CGM, GlobalDecl GD,
1240                                       const NamedDecl *ND,
1241                                       bool OmitMultiVersionMangling = false) {
1242   SmallString<256> Buffer;
1243   llvm::raw_svector_ostream Out(Buffer);
1244   MangleContext &MC = CGM.getCXXABI().getMangleContext();
1245   if (!CGM.getModuleNameHash().empty())
1246     MC.needsUniqueInternalLinkageNames();
1247   bool ShouldMangle = MC.shouldMangleDeclName(ND);
1248   if (ShouldMangle)
1249     MC.mangleName(GD.getWithDecl(ND), Out);
1250   else {
1251     IdentifierInfo *II = ND->getIdentifier();
1252     assert(II && "Attempt to mangle unnamed decl.");
1253     const auto *FD = dyn_cast<FunctionDecl>(ND);
1254 
1255     if (FD &&
1256         FD->getType()->castAs<FunctionType>()->getCallConv() == CC_X86RegCall) {
1257       Out << "__regcall3__" << II->getName();
1258     } else if (FD && FD->hasAttr<CUDAGlobalAttr>() &&
1259                GD.getKernelReferenceKind() == KernelReferenceKind::Stub) {
1260       Out << "__device_stub__" << II->getName();
1261     } else {
1262       Out << II->getName();
1263     }
1264   }
1265 
1266   // Check if the module name hash should be appended for internal linkage
1267   // symbols.   This should come before multi-version target suffixes are
1268   // appended. This is to keep the name and module hash suffix of the
1269   // internal linkage function together.  The unique suffix should only be
1270   // added when name mangling is done to make sure that the final name can
1271   // be properly demangled.  For example, for C functions without prototypes,
1272   // name mangling is not done and the unique suffix should not be appeneded
1273   // then.
1274   if (ShouldMangle && isUniqueInternalLinkageDecl(GD, CGM)) {
1275     assert(CGM.getCodeGenOpts().UniqueInternalLinkageNames &&
1276            "Hash computed when not explicitly requested");
1277     Out << CGM.getModuleNameHash();
1278   }
1279 
1280   if (const auto *FD = dyn_cast<FunctionDecl>(ND))
1281     if (FD->isMultiVersion() && !OmitMultiVersionMangling) {
1282       switch (FD->getMultiVersionKind()) {
1283       case MultiVersionKind::CPUDispatch:
1284       case MultiVersionKind::CPUSpecific:
1285         AppendCPUSpecificCPUDispatchMangling(CGM,
1286                                              FD->getAttr<CPUSpecificAttr>(),
1287                                              GD.getMultiVersionIndex(), Out);
1288         break;
1289       case MultiVersionKind::Target:
1290         AppendTargetMangling(CGM, FD->getAttr<TargetAttr>(), Out);
1291         break;
1292       case MultiVersionKind::None:
1293         llvm_unreachable("None multiversion type isn't valid here");
1294       }
1295     }
1296 
1297   // Make unique name for device side static file-scope variable for HIP.
1298   if (CGM.getContext().shouldExternalizeStaticVar(ND) &&
1299       CGM.getLangOpts().GPURelocatableDeviceCode &&
1300       CGM.getLangOpts().CUDAIsDevice && !CGM.getLangOpts().CUID.empty())
1301     CGM.printPostfixForExternalizedStaticVar(Out);
1302   return std::string(Out.str());
1303 }
1304 
1305 void CodeGenModule::UpdateMultiVersionNames(GlobalDecl GD,
1306                                             const FunctionDecl *FD) {
1307   if (!FD->isMultiVersion())
1308     return;
1309 
1310   // Get the name of what this would be without the 'target' attribute.  This
1311   // allows us to lookup the version that was emitted when this wasn't a
1312   // multiversion function.
1313   std::string NonTargetName =
1314       getMangledNameImpl(*this, GD, FD, /*OmitMultiVersionMangling=*/true);
1315   GlobalDecl OtherGD;
1316   if (lookupRepresentativeDecl(NonTargetName, OtherGD)) {
1317     assert(OtherGD.getCanonicalDecl()
1318                .getDecl()
1319                ->getAsFunction()
1320                ->isMultiVersion() &&
1321            "Other GD should now be a multiversioned function");
1322     // OtherFD is the version of this function that was mangled BEFORE
1323     // becoming a MultiVersion function.  It potentially needs to be updated.
1324     const FunctionDecl *OtherFD = OtherGD.getCanonicalDecl()
1325                                       .getDecl()
1326                                       ->getAsFunction()
1327                                       ->getMostRecentDecl();
1328     std::string OtherName = getMangledNameImpl(*this, OtherGD, OtherFD);
1329     // This is so that if the initial version was already the 'default'
1330     // version, we don't try to update it.
1331     if (OtherName != NonTargetName) {
1332       // Remove instead of erase, since others may have stored the StringRef
1333       // to this.
1334       const auto ExistingRecord = Manglings.find(NonTargetName);
1335       if (ExistingRecord != std::end(Manglings))
1336         Manglings.remove(&(*ExistingRecord));
1337       auto Result = Manglings.insert(std::make_pair(OtherName, OtherGD));
1338       MangledDeclNames[OtherGD.getCanonicalDecl()] = Result.first->first();
1339       if (llvm::GlobalValue *Entry = GetGlobalValue(NonTargetName))
1340         Entry->setName(OtherName);
1341     }
1342   }
1343 }
1344 
1345 StringRef CodeGenModule::getMangledName(GlobalDecl GD) {
1346   GlobalDecl CanonicalGD = GD.getCanonicalDecl();
1347 
1348   // Some ABIs don't have constructor variants.  Make sure that base and
1349   // complete constructors get mangled the same.
1350   if (const auto *CD = dyn_cast<CXXConstructorDecl>(CanonicalGD.getDecl())) {
1351     if (!getTarget().getCXXABI().hasConstructorVariants()) {
1352       CXXCtorType OrigCtorType = GD.getCtorType();
1353       assert(OrigCtorType == Ctor_Base || OrigCtorType == Ctor_Complete);
1354       if (OrigCtorType == Ctor_Base)
1355         CanonicalGD = GlobalDecl(CD, Ctor_Complete);
1356     }
1357   }
1358 
1359   // In CUDA/HIP device compilation with -fgpu-rdc, the mangled name of a
1360   // static device variable depends on whether the variable is referenced by
1361   // a host or device host function. Therefore the mangled name cannot be
1362   // cached.
1363   if (!LangOpts.CUDAIsDevice ||
1364       !getContext().mayExternalizeStaticVar(GD.getDecl())) {
1365     auto FoundName = MangledDeclNames.find(CanonicalGD);
1366     if (FoundName != MangledDeclNames.end())
1367       return FoundName->second;
1368   }
1369 
1370   // Keep the first result in the case of a mangling collision.
1371   const auto *ND = cast<NamedDecl>(GD.getDecl());
1372   std::string MangledName = getMangledNameImpl(*this, GD, ND);
1373 
1374   // Ensure either we have different ABIs between host and device compilations,
1375   // says host compilation following MSVC ABI but device compilation follows
1376   // Itanium C++ ABI or, if they follow the same ABI, kernel names after
1377   // mangling should be the same after name stubbing. The later checking is
1378   // very important as the device kernel name being mangled in host-compilation
1379   // is used to resolve the device binaries to be executed. Inconsistent naming
1380   // result in undefined behavior. Even though we cannot check that naming
1381   // directly between host- and device-compilations, the host- and
1382   // device-mangling in host compilation could help catching certain ones.
1383   assert(!isa<FunctionDecl>(ND) || !ND->hasAttr<CUDAGlobalAttr>() ||
1384          getLangOpts().CUDAIsDevice ||
1385          (getContext().getAuxTargetInfo() &&
1386           (getContext().getAuxTargetInfo()->getCXXABI() !=
1387            getContext().getTargetInfo().getCXXABI())) ||
1388          getCUDARuntime().getDeviceSideName(ND) ==
1389              getMangledNameImpl(
1390                  *this,
1391                  GD.getWithKernelReferenceKind(KernelReferenceKind::Kernel),
1392                  ND));
1393 
1394   auto Result = Manglings.insert(std::make_pair(MangledName, GD));
1395   return MangledDeclNames[CanonicalGD] = Result.first->first();
1396 }
1397 
1398 StringRef CodeGenModule::getBlockMangledName(GlobalDecl GD,
1399                                              const BlockDecl *BD) {
1400   MangleContext &MangleCtx = getCXXABI().getMangleContext();
1401   const Decl *D = GD.getDecl();
1402 
1403   SmallString<256> Buffer;
1404   llvm::raw_svector_ostream Out(Buffer);
1405   if (!D)
1406     MangleCtx.mangleGlobalBlock(BD,
1407       dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()), Out);
1408   else if (const auto *CD = dyn_cast<CXXConstructorDecl>(D))
1409     MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out);
1410   else if (const auto *DD = dyn_cast<CXXDestructorDecl>(D))
1411     MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out);
1412   else
1413     MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out);
1414 
1415   auto Result = Manglings.insert(std::make_pair(Out.str(), BD));
1416   return Result.first->first();
1417 }
1418 
1419 llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) {
1420   return getModule().getNamedValue(Name);
1421 }
1422 
1423 /// AddGlobalCtor - Add a function to the list that will be called before
1424 /// main() runs.
1425 void CodeGenModule::AddGlobalCtor(llvm::Function *Ctor, int Priority,
1426                                   llvm::Constant *AssociatedData) {
1427   // FIXME: Type coercion of void()* types.
1428   GlobalCtors.push_back(Structor(Priority, Ctor, AssociatedData));
1429 }
1430 
1431 /// AddGlobalDtor - Add a function to the list that will be called
1432 /// when the module is unloaded.
1433 void CodeGenModule::AddGlobalDtor(llvm::Function *Dtor, int Priority,
1434                                   bool IsDtorAttrFunc) {
1435   if (CodeGenOpts.RegisterGlobalDtorsWithAtExit &&
1436       (!getContext().getTargetInfo().getTriple().isOSAIX() || IsDtorAttrFunc)) {
1437     DtorsUsingAtExit[Priority].push_back(Dtor);
1438     return;
1439   }
1440 
1441   // FIXME: Type coercion of void()* types.
1442   GlobalDtors.push_back(Structor(Priority, Dtor, nullptr));
1443 }
1444 
1445 void CodeGenModule::EmitCtorList(CtorList &Fns, const char *GlobalName) {
1446   if (Fns.empty()) return;
1447 
1448   // Ctor function type is void()*.
1449   llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false);
1450   llvm::Type *CtorPFTy = llvm::PointerType::get(CtorFTy,
1451       TheModule.getDataLayout().getProgramAddressSpace());
1452 
1453   // Get the type of a ctor entry, { i32, void ()*, i8* }.
1454   llvm::StructType *CtorStructTy = llvm::StructType::get(
1455       Int32Ty, CtorPFTy, VoidPtrTy);
1456 
1457   // Construct the constructor and destructor arrays.
1458   ConstantInitBuilder builder(*this);
1459   auto ctors = builder.beginArray(CtorStructTy);
1460   for (const auto &I : Fns) {
1461     auto ctor = ctors.beginStruct(CtorStructTy);
1462     ctor.addInt(Int32Ty, I.Priority);
1463     ctor.add(llvm::ConstantExpr::getBitCast(I.Initializer, CtorPFTy));
1464     if (I.AssociatedData)
1465       ctor.add(llvm::ConstantExpr::getBitCast(I.AssociatedData, VoidPtrTy));
1466     else
1467       ctor.addNullPointer(VoidPtrTy);
1468     ctor.finishAndAddTo(ctors);
1469   }
1470 
1471   auto list =
1472     ctors.finishAndCreateGlobal(GlobalName, getPointerAlign(),
1473                                 /*constant*/ false,
1474                                 llvm::GlobalValue::AppendingLinkage);
1475 
1476   // The LTO linker doesn't seem to like it when we set an alignment
1477   // on appending variables.  Take it off as a workaround.
1478   list->setAlignment(llvm::None);
1479 
1480   Fns.clear();
1481 }
1482 
1483 llvm::GlobalValue::LinkageTypes
1484 CodeGenModule::getFunctionLinkage(GlobalDecl GD) {
1485   const auto *D = cast<FunctionDecl>(GD.getDecl());
1486 
1487   GVALinkage Linkage = getContext().GetGVALinkageForFunction(D);
1488 
1489   if (const auto *Dtor = dyn_cast<CXXDestructorDecl>(D))
1490     return getCXXABI().getCXXDestructorLinkage(Linkage, Dtor, GD.getDtorType());
1491 
1492   if (isa<CXXConstructorDecl>(D) &&
1493       cast<CXXConstructorDecl>(D)->isInheritingConstructor() &&
1494       Context.getTargetInfo().getCXXABI().isMicrosoft()) {
1495     // Our approach to inheriting constructors is fundamentally different from
1496     // that used by the MS ABI, so keep our inheriting constructor thunks
1497     // internal rather than trying to pick an unambiguous mangling for them.
1498     return llvm::GlobalValue::InternalLinkage;
1499   }
1500 
1501   return getLLVMLinkageForDeclarator(D, Linkage, /*IsConstantVariable=*/false);
1502 }
1503 
1504 llvm::ConstantInt *CodeGenModule::CreateCrossDsoCfiTypeId(llvm::Metadata *MD) {
1505   llvm::MDString *MDS = dyn_cast<llvm::MDString>(MD);
1506   if (!MDS) return nullptr;
1507 
1508   return llvm::ConstantInt::get(Int64Ty, llvm::MD5Hash(MDS->getString()));
1509 }
1510 
1511 void CodeGenModule::SetLLVMFunctionAttributes(GlobalDecl GD,
1512                                               const CGFunctionInfo &Info,
1513                                               llvm::Function *F, bool IsThunk) {
1514   unsigned CallingConv;
1515   llvm::AttributeList PAL;
1516   ConstructAttributeList(F->getName(), Info, GD, PAL, CallingConv,
1517                          /*AttrOnCallSite=*/false, IsThunk);
1518   F->setAttributes(PAL);
1519   F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv));
1520 }
1521 
1522 static void removeImageAccessQualifier(std::string& TyName) {
1523   std::string ReadOnlyQual("__read_only");
1524   std::string::size_type ReadOnlyPos = TyName.find(ReadOnlyQual);
1525   if (ReadOnlyPos != std::string::npos)
1526     // "+ 1" for the space after access qualifier.
1527     TyName.erase(ReadOnlyPos, ReadOnlyQual.size() + 1);
1528   else {
1529     std::string WriteOnlyQual("__write_only");
1530     std::string::size_type WriteOnlyPos = TyName.find(WriteOnlyQual);
1531     if (WriteOnlyPos != std::string::npos)
1532       TyName.erase(WriteOnlyPos, WriteOnlyQual.size() + 1);
1533     else {
1534       std::string ReadWriteQual("__read_write");
1535       std::string::size_type ReadWritePos = TyName.find(ReadWriteQual);
1536       if (ReadWritePos != std::string::npos)
1537         TyName.erase(ReadWritePos, ReadWriteQual.size() + 1);
1538     }
1539   }
1540 }
1541 
1542 // Returns the address space id that should be produced to the
1543 // kernel_arg_addr_space metadata. This is always fixed to the ids
1544 // as specified in the SPIR 2.0 specification in order to differentiate
1545 // for example in clGetKernelArgInfo() implementation between the address
1546 // spaces with targets without unique mapping to the OpenCL address spaces
1547 // (basically all single AS CPUs).
1548 static unsigned ArgInfoAddressSpace(LangAS AS) {
1549   switch (AS) {
1550   case LangAS::opencl_global:
1551     return 1;
1552   case LangAS::opencl_constant:
1553     return 2;
1554   case LangAS::opencl_local:
1555     return 3;
1556   case LangAS::opencl_generic:
1557     return 4; // Not in SPIR 2.0 specs.
1558   case LangAS::opencl_global_device:
1559     return 5;
1560   case LangAS::opencl_global_host:
1561     return 6;
1562   default:
1563     return 0; // Assume private.
1564   }
1565 }
1566 
1567 void CodeGenModule::GenOpenCLArgMetadata(llvm::Function *Fn,
1568                                          const FunctionDecl *FD,
1569                                          CodeGenFunction *CGF) {
1570   assert(((FD && CGF) || (!FD && !CGF)) &&
1571          "Incorrect use - FD and CGF should either be both null or not!");
1572   // Create MDNodes that represent the kernel arg metadata.
1573   // Each MDNode is a list in the form of "key", N number of values which is
1574   // the same number of values as their are kernel arguments.
1575 
1576   const PrintingPolicy &Policy = Context.getPrintingPolicy();
1577 
1578   // MDNode for the kernel argument address space qualifiers.
1579   SmallVector<llvm::Metadata *, 8> addressQuals;
1580 
1581   // MDNode for the kernel argument access qualifiers (images only).
1582   SmallVector<llvm::Metadata *, 8> accessQuals;
1583 
1584   // MDNode for the kernel argument type names.
1585   SmallVector<llvm::Metadata *, 8> argTypeNames;
1586 
1587   // MDNode for the kernel argument base type names.
1588   SmallVector<llvm::Metadata *, 8> argBaseTypeNames;
1589 
1590   // MDNode for the kernel argument type qualifiers.
1591   SmallVector<llvm::Metadata *, 8> argTypeQuals;
1592 
1593   // MDNode for the kernel argument names.
1594   SmallVector<llvm::Metadata *, 8> argNames;
1595 
1596   if (FD && CGF)
1597     for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i) {
1598       const ParmVarDecl *parm = FD->getParamDecl(i);
1599       QualType ty = parm->getType();
1600       std::string typeQuals;
1601 
1602       // Get image and pipe access qualifier:
1603       if (ty->isImageType() || ty->isPipeType()) {
1604         const Decl *PDecl = parm;
1605         if (auto *TD = dyn_cast<TypedefType>(ty))
1606           PDecl = TD->getDecl();
1607         const OpenCLAccessAttr *A = PDecl->getAttr<OpenCLAccessAttr>();
1608         if (A && A->isWriteOnly())
1609           accessQuals.push_back(llvm::MDString::get(VMContext, "write_only"));
1610         else if (A && A->isReadWrite())
1611           accessQuals.push_back(llvm::MDString::get(VMContext, "read_write"));
1612         else
1613           accessQuals.push_back(llvm::MDString::get(VMContext, "read_only"));
1614       } else
1615         accessQuals.push_back(llvm::MDString::get(VMContext, "none"));
1616 
1617       // Get argument name.
1618       argNames.push_back(llvm::MDString::get(VMContext, parm->getName()));
1619 
1620       auto getTypeSpelling = [&](QualType Ty) {
1621         auto typeName = Ty.getUnqualifiedType().getAsString(Policy);
1622 
1623         if (Ty.isCanonical()) {
1624           StringRef typeNameRef = typeName;
1625           // Turn "unsigned type" to "utype"
1626           if (typeNameRef.consume_front("unsigned "))
1627             return std::string("u") + typeNameRef.str();
1628           if (typeNameRef.consume_front("signed "))
1629             return typeNameRef.str();
1630         }
1631 
1632         return typeName;
1633       };
1634 
1635       if (ty->isPointerType()) {
1636         QualType pointeeTy = ty->getPointeeType();
1637 
1638         // Get address qualifier.
1639         addressQuals.push_back(
1640             llvm::ConstantAsMetadata::get(CGF->Builder.getInt32(
1641                 ArgInfoAddressSpace(pointeeTy.getAddressSpace()))));
1642 
1643         // Get argument type name.
1644         std::string typeName = getTypeSpelling(pointeeTy) + "*";
1645         std::string baseTypeName =
1646             getTypeSpelling(pointeeTy.getCanonicalType()) + "*";
1647         argTypeNames.push_back(llvm::MDString::get(VMContext, typeName));
1648         argBaseTypeNames.push_back(
1649             llvm::MDString::get(VMContext, baseTypeName));
1650 
1651         // Get argument type qualifiers:
1652         if (ty.isRestrictQualified())
1653           typeQuals = "restrict";
1654         if (pointeeTy.isConstQualified() ||
1655             (pointeeTy.getAddressSpace() == LangAS::opencl_constant))
1656           typeQuals += typeQuals.empty() ? "const" : " const";
1657         if (pointeeTy.isVolatileQualified())
1658           typeQuals += typeQuals.empty() ? "volatile" : " volatile";
1659       } else {
1660         uint32_t AddrSpc = 0;
1661         bool isPipe = ty->isPipeType();
1662         if (ty->isImageType() || isPipe)
1663           AddrSpc = ArgInfoAddressSpace(LangAS::opencl_global);
1664 
1665         addressQuals.push_back(
1666             llvm::ConstantAsMetadata::get(CGF->Builder.getInt32(AddrSpc)));
1667 
1668         // Get argument type name.
1669         ty = isPipe ? ty->castAs<PipeType>()->getElementType() : ty;
1670         std::string typeName = getTypeSpelling(ty);
1671         std::string baseTypeName = getTypeSpelling(ty.getCanonicalType());
1672 
1673         // Remove access qualifiers on images
1674         // (as they are inseparable from type in clang implementation,
1675         // but OpenCL spec provides a special query to get access qualifier
1676         // via clGetKernelArgInfo with CL_KERNEL_ARG_ACCESS_QUALIFIER):
1677         if (ty->isImageType()) {
1678           removeImageAccessQualifier(typeName);
1679           removeImageAccessQualifier(baseTypeName);
1680         }
1681 
1682         argTypeNames.push_back(llvm::MDString::get(VMContext, typeName));
1683         argBaseTypeNames.push_back(
1684             llvm::MDString::get(VMContext, baseTypeName));
1685 
1686         if (isPipe)
1687           typeQuals = "pipe";
1688       }
1689       argTypeQuals.push_back(llvm::MDString::get(VMContext, typeQuals));
1690     }
1691 
1692   Fn->setMetadata("kernel_arg_addr_space",
1693                   llvm::MDNode::get(VMContext, addressQuals));
1694   Fn->setMetadata("kernel_arg_access_qual",
1695                   llvm::MDNode::get(VMContext, accessQuals));
1696   Fn->setMetadata("kernel_arg_type",
1697                   llvm::MDNode::get(VMContext, argTypeNames));
1698   Fn->setMetadata("kernel_arg_base_type",
1699                   llvm::MDNode::get(VMContext, argBaseTypeNames));
1700   Fn->setMetadata("kernel_arg_type_qual",
1701                   llvm::MDNode::get(VMContext, argTypeQuals));
1702   if (getCodeGenOpts().EmitOpenCLArgMetadata)
1703     Fn->setMetadata("kernel_arg_name",
1704                     llvm::MDNode::get(VMContext, argNames));
1705 }
1706 
1707 /// Determines whether the language options require us to model
1708 /// unwind exceptions.  We treat -fexceptions as mandating this
1709 /// except under the fragile ObjC ABI with only ObjC exceptions
1710 /// enabled.  This means, for example, that C with -fexceptions
1711 /// enables this.
1712 static bool hasUnwindExceptions(const LangOptions &LangOpts) {
1713   // If exceptions are completely disabled, obviously this is false.
1714   if (!LangOpts.Exceptions) return false;
1715 
1716   // If C++ exceptions are enabled, this is true.
1717   if (LangOpts.CXXExceptions) return true;
1718 
1719   // If ObjC exceptions are enabled, this depends on the ABI.
1720   if (LangOpts.ObjCExceptions) {
1721     return LangOpts.ObjCRuntime.hasUnwindExceptions();
1722   }
1723 
1724   return true;
1725 }
1726 
1727 static bool requiresMemberFunctionPointerTypeMetadata(CodeGenModule &CGM,
1728                                                       const CXXMethodDecl *MD) {
1729   // Check that the type metadata can ever actually be used by a call.
1730   if (!CGM.getCodeGenOpts().LTOUnit ||
1731       !CGM.HasHiddenLTOVisibility(MD->getParent()))
1732     return false;
1733 
1734   // Only functions whose address can be taken with a member function pointer
1735   // need this sort of type metadata.
1736   return !MD->isStatic() && !MD->isVirtual() && !isa<CXXConstructorDecl>(MD) &&
1737          !isa<CXXDestructorDecl>(MD);
1738 }
1739 
1740 std::vector<const CXXRecordDecl *>
1741 CodeGenModule::getMostBaseClasses(const CXXRecordDecl *RD) {
1742   llvm::SetVector<const CXXRecordDecl *> MostBases;
1743 
1744   std::function<void (const CXXRecordDecl *)> CollectMostBases;
1745   CollectMostBases = [&](const CXXRecordDecl *RD) {
1746     if (RD->getNumBases() == 0)
1747       MostBases.insert(RD);
1748     for (const CXXBaseSpecifier &B : RD->bases())
1749       CollectMostBases(B.getType()->getAsCXXRecordDecl());
1750   };
1751   CollectMostBases(RD);
1752   return MostBases.takeVector();
1753 }
1754 
1755 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D,
1756                                                            llvm::Function *F) {
1757   llvm::AttrBuilder B;
1758 
1759   if (CodeGenOpts.UnwindTables)
1760     B.addAttribute(llvm::Attribute::UWTable);
1761 
1762   if (CodeGenOpts.StackClashProtector)
1763     B.addAttribute("probe-stack", "inline-asm");
1764 
1765   if (!hasUnwindExceptions(LangOpts))
1766     B.addAttribute(llvm::Attribute::NoUnwind);
1767 
1768   if (!D || !D->hasAttr<NoStackProtectorAttr>()) {
1769     if (LangOpts.getStackProtector() == LangOptions::SSPOn)
1770       B.addAttribute(llvm::Attribute::StackProtect);
1771     else if (LangOpts.getStackProtector() == LangOptions::SSPStrong)
1772       B.addAttribute(llvm::Attribute::StackProtectStrong);
1773     else if (LangOpts.getStackProtector() == LangOptions::SSPReq)
1774       B.addAttribute(llvm::Attribute::StackProtectReq);
1775   }
1776 
1777   if (!D) {
1778     // If we don't have a declaration to control inlining, the function isn't
1779     // explicitly marked as alwaysinline for semantic reasons, and inlining is
1780     // disabled, mark the function as noinline.
1781     if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline) &&
1782         CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining)
1783       B.addAttribute(llvm::Attribute::NoInline);
1784 
1785     F->addFnAttrs(B);
1786     return;
1787   }
1788 
1789   // Track whether we need to add the optnone LLVM attribute,
1790   // starting with the default for this optimization level.
1791   bool ShouldAddOptNone =
1792       !CodeGenOpts.DisableO0ImplyOptNone && CodeGenOpts.OptimizationLevel == 0;
1793   // We can't add optnone in the following cases, it won't pass the verifier.
1794   ShouldAddOptNone &= !D->hasAttr<MinSizeAttr>();
1795   ShouldAddOptNone &= !D->hasAttr<AlwaysInlineAttr>();
1796 
1797   // Add optnone, but do so only if the function isn't always_inline.
1798   if ((ShouldAddOptNone || D->hasAttr<OptimizeNoneAttr>()) &&
1799       !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) {
1800     B.addAttribute(llvm::Attribute::OptimizeNone);
1801 
1802     // OptimizeNone implies noinline; we should not be inlining such functions.
1803     B.addAttribute(llvm::Attribute::NoInline);
1804 
1805     // We still need to handle naked functions even though optnone subsumes
1806     // much of their semantics.
1807     if (D->hasAttr<NakedAttr>())
1808       B.addAttribute(llvm::Attribute::Naked);
1809 
1810     // OptimizeNone wins over OptimizeForSize and MinSize.
1811     F->removeFnAttr(llvm::Attribute::OptimizeForSize);
1812     F->removeFnAttr(llvm::Attribute::MinSize);
1813   } else if (D->hasAttr<NakedAttr>()) {
1814     // Naked implies noinline: we should not be inlining such functions.
1815     B.addAttribute(llvm::Attribute::Naked);
1816     B.addAttribute(llvm::Attribute::NoInline);
1817   } else if (D->hasAttr<NoDuplicateAttr>()) {
1818     B.addAttribute(llvm::Attribute::NoDuplicate);
1819   } else if (D->hasAttr<NoInlineAttr>() && !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) {
1820     // Add noinline if the function isn't always_inline.
1821     B.addAttribute(llvm::Attribute::NoInline);
1822   } else if (D->hasAttr<AlwaysInlineAttr>() &&
1823              !F->hasFnAttribute(llvm::Attribute::NoInline)) {
1824     // (noinline wins over always_inline, and we can't specify both in IR)
1825     B.addAttribute(llvm::Attribute::AlwaysInline);
1826   } else if (CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining) {
1827     // If we're not inlining, then force everything that isn't always_inline to
1828     // carry an explicit noinline attribute.
1829     if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline))
1830       B.addAttribute(llvm::Attribute::NoInline);
1831   } else {
1832     // Otherwise, propagate the inline hint attribute and potentially use its
1833     // absence to mark things as noinline.
1834     if (auto *FD = dyn_cast<FunctionDecl>(D)) {
1835       // Search function and template pattern redeclarations for inline.
1836       auto CheckForInline = [](const FunctionDecl *FD) {
1837         auto CheckRedeclForInline = [](const FunctionDecl *Redecl) {
1838           return Redecl->isInlineSpecified();
1839         };
1840         if (any_of(FD->redecls(), CheckRedeclForInline))
1841           return true;
1842         const FunctionDecl *Pattern = FD->getTemplateInstantiationPattern();
1843         if (!Pattern)
1844           return false;
1845         return any_of(Pattern->redecls(), CheckRedeclForInline);
1846       };
1847       if (CheckForInline(FD)) {
1848         B.addAttribute(llvm::Attribute::InlineHint);
1849       } else if (CodeGenOpts.getInlining() ==
1850                      CodeGenOptions::OnlyHintInlining &&
1851                  !FD->isInlined() &&
1852                  !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) {
1853         B.addAttribute(llvm::Attribute::NoInline);
1854       }
1855     }
1856   }
1857 
1858   // Add other optimization related attributes if we are optimizing this
1859   // function.
1860   if (!D->hasAttr<OptimizeNoneAttr>()) {
1861     if (D->hasAttr<ColdAttr>()) {
1862       if (!ShouldAddOptNone)
1863         B.addAttribute(llvm::Attribute::OptimizeForSize);
1864       B.addAttribute(llvm::Attribute::Cold);
1865     }
1866     if (D->hasAttr<HotAttr>())
1867       B.addAttribute(llvm::Attribute::Hot);
1868     if (D->hasAttr<MinSizeAttr>())
1869       B.addAttribute(llvm::Attribute::MinSize);
1870   }
1871 
1872   F->addFnAttrs(B);
1873 
1874   unsigned alignment = D->getMaxAlignment() / Context.getCharWidth();
1875   if (alignment)
1876     F->setAlignment(llvm::Align(alignment));
1877 
1878   if (!D->hasAttr<AlignedAttr>())
1879     if (LangOpts.FunctionAlignment)
1880       F->setAlignment(llvm::Align(1ull << LangOpts.FunctionAlignment));
1881 
1882   // Some C++ ABIs require 2-byte alignment for member functions, in order to
1883   // reserve a bit for differentiating between virtual and non-virtual member
1884   // functions. If the current target's C++ ABI requires this and this is a
1885   // member function, set its alignment accordingly.
1886   if (getTarget().getCXXABI().areMemberFunctionsAligned()) {
1887     if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D))
1888       F->setAlignment(llvm::Align(2));
1889   }
1890 
1891   // In the cross-dso CFI mode with canonical jump tables, we want !type
1892   // attributes on definitions only.
1893   if (CodeGenOpts.SanitizeCfiCrossDso &&
1894       CodeGenOpts.SanitizeCfiCanonicalJumpTables) {
1895     if (auto *FD = dyn_cast<FunctionDecl>(D)) {
1896       // Skip available_externally functions. They won't be codegen'ed in the
1897       // current module anyway.
1898       if (getContext().GetGVALinkageForFunction(FD) != GVA_AvailableExternally)
1899         CreateFunctionTypeMetadataForIcall(FD, F);
1900     }
1901   }
1902 
1903   // Emit type metadata on member functions for member function pointer checks.
1904   // These are only ever necessary on definitions; we're guaranteed that the
1905   // definition will be present in the LTO unit as a result of LTO visibility.
1906   auto *MD = dyn_cast<CXXMethodDecl>(D);
1907   if (MD && requiresMemberFunctionPointerTypeMetadata(*this, MD)) {
1908     for (const CXXRecordDecl *Base : getMostBaseClasses(MD->getParent())) {
1909       llvm::Metadata *Id =
1910           CreateMetadataIdentifierForType(Context.getMemberPointerType(
1911               MD->getType(), Context.getRecordType(Base).getTypePtr()));
1912       F->addTypeMetadata(0, Id);
1913     }
1914   }
1915 }
1916 
1917 void CodeGenModule::setLLVMFunctionFEnvAttributes(const FunctionDecl *D,
1918                                                   llvm::Function *F) {
1919   if (D->hasAttr<StrictFPAttr>()) {
1920     llvm::AttrBuilder FuncAttrs;
1921     FuncAttrs.addAttribute("strictfp");
1922     F->addFnAttrs(FuncAttrs);
1923   }
1924 }
1925 
1926 void CodeGenModule::SetCommonAttributes(GlobalDecl GD, llvm::GlobalValue *GV) {
1927   const Decl *D = GD.getDecl();
1928   if (dyn_cast_or_null<NamedDecl>(D))
1929     setGVProperties(GV, GD);
1930   else
1931     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
1932 
1933   if (D && D->hasAttr<UsedAttr>())
1934     addUsedOrCompilerUsedGlobal(GV);
1935 
1936   if (CodeGenOpts.KeepStaticConsts && D && isa<VarDecl>(D)) {
1937     const auto *VD = cast<VarDecl>(D);
1938     if (VD->getType().isConstQualified() &&
1939         VD->getStorageDuration() == SD_Static)
1940       addUsedOrCompilerUsedGlobal(GV);
1941   }
1942 }
1943 
1944 bool CodeGenModule::GetCPUAndFeaturesAttributes(GlobalDecl GD,
1945                                                 llvm::AttrBuilder &Attrs) {
1946   // Add target-cpu and target-features attributes to functions. If
1947   // we have a decl for the function and it has a target attribute then
1948   // parse that and add it to the feature set.
1949   StringRef TargetCPU = getTarget().getTargetOpts().CPU;
1950   StringRef TuneCPU = getTarget().getTargetOpts().TuneCPU;
1951   std::vector<std::string> Features;
1952   const auto *FD = dyn_cast_or_null<FunctionDecl>(GD.getDecl());
1953   FD = FD ? FD->getMostRecentDecl() : FD;
1954   const auto *TD = FD ? FD->getAttr<TargetAttr>() : nullptr;
1955   const auto *SD = FD ? FD->getAttr<CPUSpecificAttr>() : nullptr;
1956   bool AddedAttr = false;
1957   if (TD || SD) {
1958     llvm::StringMap<bool> FeatureMap;
1959     getContext().getFunctionFeatureMap(FeatureMap, GD);
1960 
1961     // Produce the canonical string for this set of features.
1962     for (const llvm::StringMap<bool>::value_type &Entry : FeatureMap)
1963       Features.push_back((Entry.getValue() ? "+" : "-") + Entry.getKey().str());
1964 
1965     // Now add the target-cpu and target-features to the function.
1966     // While we populated the feature map above, we still need to
1967     // get and parse the target attribute so we can get the cpu for
1968     // the function.
1969     if (TD) {
1970       ParsedTargetAttr ParsedAttr = TD->parse();
1971       if (!ParsedAttr.Architecture.empty() &&
1972           getTarget().isValidCPUName(ParsedAttr.Architecture)) {
1973         TargetCPU = ParsedAttr.Architecture;
1974         TuneCPU = ""; // Clear the tune CPU.
1975       }
1976       if (!ParsedAttr.Tune.empty() &&
1977           getTarget().isValidCPUName(ParsedAttr.Tune))
1978         TuneCPU = ParsedAttr.Tune;
1979     }
1980   } else {
1981     // Otherwise just add the existing target cpu and target features to the
1982     // function.
1983     Features = getTarget().getTargetOpts().Features;
1984   }
1985 
1986   if (!TargetCPU.empty()) {
1987     Attrs.addAttribute("target-cpu", TargetCPU);
1988     AddedAttr = true;
1989   }
1990   if (!TuneCPU.empty()) {
1991     Attrs.addAttribute("tune-cpu", TuneCPU);
1992     AddedAttr = true;
1993   }
1994   if (!Features.empty()) {
1995     llvm::sort(Features);
1996     Attrs.addAttribute("target-features", llvm::join(Features, ","));
1997     AddedAttr = true;
1998   }
1999 
2000   return AddedAttr;
2001 }
2002 
2003 void CodeGenModule::setNonAliasAttributes(GlobalDecl GD,
2004                                           llvm::GlobalObject *GO) {
2005   const Decl *D = GD.getDecl();
2006   SetCommonAttributes(GD, GO);
2007 
2008   if (D) {
2009     if (auto *GV = dyn_cast<llvm::GlobalVariable>(GO)) {
2010       if (D->hasAttr<RetainAttr>())
2011         addUsedGlobal(GV);
2012       if (auto *SA = D->getAttr<PragmaClangBSSSectionAttr>())
2013         GV->addAttribute("bss-section", SA->getName());
2014       if (auto *SA = D->getAttr<PragmaClangDataSectionAttr>())
2015         GV->addAttribute("data-section", SA->getName());
2016       if (auto *SA = D->getAttr<PragmaClangRodataSectionAttr>())
2017         GV->addAttribute("rodata-section", SA->getName());
2018       if (auto *SA = D->getAttr<PragmaClangRelroSectionAttr>())
2019         GV->addAttribute("relro-section", SA->getName());
2020     }
2021 
2022     if (auto *F = dyn_cast<llvm::Function>(GO)) {
2023       if (D->hasAttr<RetainAttr>())
2024         addUsedGlobal(F);
2025       if (auto *SA = D->getAttr<PragmaClangTextSectionAttr>())
2026         if (!D->getAttr<SectionAttr>())
2027           F->addFnAttr("implicit-section-name", SA->getName());
2028 
2029       llvm::AttrBuilder Attrs;
2030       if (GetCPUAndFeaturesAttributes(GD, Attrs)) {
2031         // We know that GetCPUAndFeaturesAttributes will always have the
2032         // newest set, since it has the newest possible FunctionDecl, so the
2033         // new ones should replace the old.
2034         llvm::AttrBuilder RemoveAttrs;
2035         RemoveAttrs.addAttribute("target-cpu");
2036         RemoveAttrs.addAttribute("target-features");
2037         RemoveAttrs.addAttribute("tune-cpu");
2038         F->removeFnAttrs(RemoveAttrs);
2039         F->addFnAttrs(Attrs);
2040       }
2041     }
2042 
2043     if (const auto *CSA = D->getAttr<CodeSegAttr>())
2044       GO->setSection(CSA->getName());
2045     else if (const auto *SA = D->getAttr<SectionAttr>())
2046       GO->setSection(SA->getName());
2047   }
2048 
2049   getTargetCodeGenInfo().setTargetAttributes(D, GO, *this);
2050 }
2051 
2052 void CodeGenModule::SetInternalFunctionAttributes(GlobalDecl GD,
2053                                                   llvm::Function *F,
2054                                                   const CGFunctionInfo &FI) {
2055   const Decl *D = GD.getDecl();
2056   SetLLVMFunctionAttributes(GD, FI, F, /*IsThunk=*/false);
2057   SetLLVMFunctionAttributesForDefinition(D, F);
2058 
2059   F->setLinkage(llvm::Function::InternalLinkage);
2060 
2061   setNonAliasAttributes(GD, F);
2062 }
2063 
2064 static void setLinkageForGV(llvm::GlobalValue *GV, const NamedDecl *ND) {
2065   // Set linkage and visibility in case we never see a definition.
2066   LinkageInfo LV = ND->getLinkageAndVisibility();
2067   // Don't set internal linkage on declarations.
2068   // "extern_weak" is overloaded in LLVM; we probably should have
2069   // separate linkage types for this.
2070   if (isExternallyVisible(LV.getLinkage()) &&
2071       (ND->hasAttr<WeakAttr>() || ND->isWeakImported()))
2072     GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage);
2073 }
2074 
2075 void CodeGenModule::CreateFunctionTypeMetadataForIcall(const FunctionDecl *FD,
2076                                                        llvm::Function *F) {
2077   // Only if we are checking indirect calls.
2078   if (!LangOpts.Sanitize.has(SanitizerKind::CFIICall))
2079     return;
2080 
2081   // Non-static class methods are handled via vtable or member function pointer
2082   // checks elsewhere.
2083   if (isa<CXXMethodDecl>(FD) && !cast<CXXMethodDecl>(FD)->isStatic())
2084     return;
2085 
2086   llvm::Metadata *MD = CreateMetadataIdentifierForType(FD->getType());
2087   F->addTypeMetadata(0, MD);
2088   F->addTypeMetadata(0, CreateMetadataIdentifierGeneralized(FD->getType()));
2089 
2090   // Emit a hash-based bit set entry for cross-DSO calls.
2091   if (CodeGenOpts.SanitizeCfiCrossDso)
2092     if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD))
2093       F->addTypeMetadata(0, llvm::ConstantAsMetadata::get(CrossDsoTypeId));
2094 }
2095 
2096 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD, llvm::Function *F,
2097                                           bool IsIncompleteFunction,
2098                                           bool IsThunk) {
2099 
2100   if (llvm::Intrinsic::ID IID = F->getIntrinsicID()) {
2101     // If this is an intrinsic function, set the function's attributes
2102     // to the intrinsic's attributes.
2103     F->setAttributes(llvm::Intrinsic::getAttributes(getLLVMContext(), IID));
2104     return;
2105   }
2106 
2107   const auto *FD = cast<FunctionDecl>(GD.getDecl());
2108 
2109   if (!IsIncompleteFunction)
2110     SetLLVMFunctionAttributes(GD, getTypes().arrangeGlobalDeclaration(GD), F,
2111                               IsThunk);
2112 
2113   // Add the Returned attribute for "this", except for iOS 5 and earlier
2114   // where substantial code, including the libstdc++ dylib, was compiled with
2115   // GCC and does not actually return "this".
2116   if (!IsThunk && getCXXABI().HasThisReturn(GD) &&
2117       !(getTriple().isiOS() && getTriple().isOSVersionLT(6))) {
2118     assert(!F->arg_empty() &&
2119            F->arg_begin()->getType()
2120              ->canLosslesslyBitCastTo(F->getReturnType()) &&
2121            "unexpected this return");
2122     F->addParamAttr(0, llvm::Attribute::Returned);
2123   }
2124 
2125   // Only a few attributes are set on declarations; these may later be
2126   // overridden by a definition.
2127 
2128   setLinkageForGV(F, FD);
2129   setGVProperties(F, FD);
2130 
2131   // Setup target-specific attributes.
2132   if (!IsIncompleteFunction && F->isDeclaration())
2133     getTargetCodeGenInfo().setTargetAttributes(FD, F, *this);
2134 
2135   if (const auto *CSA = FD->getAttr<CodeSegAttr>())
2136     F->setSection(CSA->getName());
2137   else if (const auto *SA = FD->getAttr<SectionAttr>())
2138      F->setSection(SA->getName());
2139 
2140   if (FD->hasAttr<ErrorAttr>())
2141     F->addFnAttr("dontcall");
2142 
2143   // If we plan on emitting this inline builtin, we can't treat it as a builtin.
2144   if (FD->isInlineBuiltinDeclaration()) {
2145     const FunctionDecl *FDBody;
2146     bool HasBody = FD->hasBody(FDBody);
2147     (void)HasBody;
2148     assert(HasBody && "Inline builtin declarations should always have an "
2149                       "available body!");
2150     if (shouldEmitFunction(FDBody))
2151       F->addFnAttr(llvm::Attribute::NoBuiltin);
2152   }
2153 
2154   if (FD->isReplaceableGlobalAllocationFunction()) {
2155     // A replaceable global allocation function does not act like a builtin by
2156     // default, only if it is invoked by a new-expression or delete-expression.
2157     F->addFnAttr(llvm::Attribute::NoBuiltin);
2158   }
2159 
2160   if (isa<CXXConstructorDecl>(FD) || isa<CXXDestructorDecl>(FD))
2161     F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
2162   else if (const auto *MD = dyn_cast<CXXMethodDecl>(FD))
2163     if (MD->isVirtual())
2164       F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
2165 
2166   // Don't emit entries for function declarations in the cross-DSO mode. This
2167   // is handled with better precision by the receiving DSO. But if jump tables
2168   // are non-canonical then we need type metadata in order to produce the local
2169   // jump table.
2170   if (!CodeGenOpts.SanitizeCfiCrossDso ||
2171       !CodeGenOpts.SanitizeCfiCanonicalJumpTables)
2172     CreateFunctionTypeMetadataForIcall(FD, F);
2173 
2174   if (getLangOpts().OpenMP && FD->hasAttr<OMPDeclareSimdDeclAttr>())
2175     getOpenMPRuntime().emitDeclareSimdFunction(FD, F);
2176 
2177   if (const auto *CB = FD->getAttr<CallbackAttr>()) {
2178     // Annotate the callback behavior as metadata:
2179     //  - The callback callee (as argument number).
2180     //  - The callback payloads (as argument numbers).
2181     llvm::LLVMContext &Ctx = F->getContext();
2182     llvm::MDBuilder MDB(Ctx);
2183 
2184     // The payload indices are all but the first one in the encoding. The first
2185     // identifies the callback callee.
2186     int CalleeIdx = *CB->encoding_begin();
2187     ArrayRef<int> PayloadIndices(CB->encoding_begin() + 1, CB->encoding_end());
2188     F->addMetadata(llvm::LLVMContext::MD_callback,
2189                    *llvm::MDNode::get(Ctx, {MDB.createCallbackEncoding(
2190                                                CalleeIdx, PayloadIndices,
2191                                                /* VarArgsArePassed */ false)}));
2192   }
2193 }
2194 
2195 void CodeGenModule::addUsedGlobal(llvm::GlobalValue *GV) {
2196   assert((isa<llvm::Function>(GV) || !GV->isDeclaration()) &&
2197          "Only globals with definition can force usage.");
2198   LLVMUsed.emplace_back(GV);
2199 }
2200 
2201 void CodeGenModule::addCompilerUsedGlobal(llvm::GlobalValue *GV) {
2202   assert(!GV->isDeclaration() &&
2203          "Only globals with definition can force usage.");
2204   LLVMCompilerUsed.emplace_back(GV);
2205 }
2206 
2207 void CodeGenModule::addUsedOrCompilerUsedGlobal(llvm::GlobalValue *GV) {
2208   assert((isa<llvm::Function>(GV) || !GV->isDeclaration()) &&
2209          "Only globals with definition can force usage.");
2210   if (getTriple().isOSBinFormatELF())
2211     LLVMCompilerUsed.emplace_back(GV);
2212   else
2213     LLVMUsed.emplace_back(GV);
2214 }
2215 
2216 static void emitUsed(CodeGenModule &CGM, StringRef Name,
2217                      std::vector<llvm::WeakTrackingVH> &List) {
2218   // Don't create llvm.used if there is no need.
2219   if (List.empty())
2220     return;
2221 
2222   // Convert List to what ConstantArray needs.
2223   SmallVector<llvm::Constant*, 8> UsedArray;
2224   UsedArray.resize(List.size());
2225   for (unsigned i = 0, e = List.size(); i != e; ++i) {
2226     UsedArray[i] =
2227         llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(
2228             cast<llvm::Constant>(&*List[i]), CGM.Int8PtrTy);
2229   }
2230 
2231   if (UsedArray.empty())
2232     return;
2233   llvm::ArrayType *ATy = llvm::ArrayType::get(CGM.Int8PtrTy, UsedArray.size());
2234 
2235   auto *GV = new llvm::GlobalVariable(
2236       CGM.getModule(), ATy, false, llvm::GlobalValue::AppendingLinkage,
2237       llvm::ConstantArray::get(ATy, UsedArray), Name);
2238 
2239   GV->setSection("llvm.metadata");
2240 }
2241 
2242 void CodeGenModule::emitLLVMUsed() {
2243   emitUsed(*this, "llvm.used", LLVMUsed);
2244   emitUsed(*this, "llvm.compiler.used", LLVMCompilerUsed);
2245 }
2246 
2247 void CodeGenModule::AppendLinkerOptions(StringRef Opts) {
2248   auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opts);
2249   LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
2250 }
2251 
2252 void CodeGenModule::AddDetectMismatch(StringRef Name, StringRef Value) {
2253   llvm::SmallString<32> Opt;
2254   getTargetCodeGenInfo().getDetectMismatchOption(Name, Value, Opt);
2255   if (Opt.empty())
2256     return;
2257   auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt);
2258   LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
2259 }
2260 
2261 void CodeGenModule::AddDependentLib(StringRef Lib) {
2262   auto &C = getLLVMContext();
2263   if (getTarget().getTriple().isOSBinFormatELF()) {
2264       ELFDependentLibraries.push_back(
2265         llvm::MDNode::get(C, llvm::MDString::get(C, Lib)));
2266     return;
2267   }
2268 
2269   llvm::SmallString<24> Opt;
2270   getTargetCodeGenInfo().getDependentLibraryOption(Lib, Opt);
2271   auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt);
2272   LinkerOptionsMetadata.push_back(llvm::MDNode::get(C, MDOpts));
2273 }
2274 
2275 /// Add link options implied by the given module, including modules
2276 /// it depends on, using a postorder walk.
2277 static void addLinkOptionsPostorder(CodeGenModule &CGM, Module *Mod,
2278                                     SmallVectorImpl<llvm::MDNode *> &Metadata,
2279                                     llvm::SmallPtrSet<Module *, 16> &Visited) {
2280   // Import this module's parent.
2281   if (Mod->Parent && Visited.insert(Mod->Parent).second) {
2282     addLinkOptionsPostorder(CGM, Mod->Parent, Metadata, Visited);
2283   }
2284 
2285   // Import this module's dependencies.
2286   for (unsigned I = Mod->Imports.size(); I > 0; --I) {
2287     if (Visited.insert(Mod->Imports[I - 1]).second)
2288       addLinkOptionsPostorder(CGM, Mod->Imports[I-1], Metadata, Visited);
2289   }
2290 
2291   // Add linker options to link against the libraries/frameworks
2292   // described by this module.
2293   llvm::LLVMContext &Context = CGM.getLLVMContext();
2294   bool IsELF = CGM.getTarget().getTriple().isOSBinFormatELF();
2295 
2296   // For modules that use export_as for linking, use that module
2297   // name instead.
2298   if (Mod->UseExportAsModuleLinkName)
2299     return;
2300 
2301   for (unsigned I = Mod->LinkLibraries.size(); I > 0; --I) {
2302     // Link against a framework.  Frameworks are currently Darwin only, so we
2303     // don't to ask TargetCodeGenInfo for the spelling of the linker option.
2304     if (Mod->LinkLibraries[I-1].IsFramework) {
2305       llvm::Metadata *Args[2] = {
2306           llvm::MDString::get(Context, "-framework"),
2307           llvm::MDString::get(Context, Mod->LinkLibraries[I - 1].Library)};
2308 
2309       Metadata.push_back(llvm::MDNode::get(Context, Args));
2310       continue;
2311     }
2312 
2313     // Link against a library.
2314     if (IsELF) {
2315       llvm::Metadata *Args[2] = {
2316           llvm::MDString::get(Context, "lib"),
2317           llvm::MDString::get(Context, Mod->LinkLibraries[I - 1].Library),
2318       };
2319       Metadata.push_back(llvm::MDNode::get(Context, Args));
2320     } else {
2321       llvm::SmallString<24> Opt;
2322       CGM.getTargetCodeGenInfo().getDependentLibraryOption(
2323           Mod->LinkLibraries[I - 1].Library, Opt);
2324       auto *OptString = llvm::MDString::get(Context, Opt);
2325       Metadata.push_back(llvm::MDNode::get(Context, OptString));
2326     }
2327   }
2328 }
2329 
2330 void CodeGenModule::EmitModuleLinkOptions() {
2331   // Collect the set of all of the modules we want to visit to emit link
2332   // options, which is essentially the imported modules and all of their
2333   // non-explicit child modules.
2334   llvm::SetVector<clang::Module *> LinkModules;
2335   llvm::SmallPtrSet<clang::Module *, 16> Visited;
2336   SmallVector<clang::Module *, 16> Stack;
2337 
2338   // Seed the stack with imported modules.
2339   for (Module *M : ImportedModules) {
2340     // Do not add any link flags when an implementation TU of a module imports
2341     // a header of that same module.
2342     if (M->getTopLevelModuleName() == getLangOpts().CurrentModule &&
2343         !getLangOpts().isCompilingModule())
2344       continue;
2345     if (Visited.insert(M).second)
2346       Stack.push_back(M);
2347   }
2348 
2349   // Find all of the modules to import, making a little effort to prune
2350   // non-leaf modules.
2351   while (!Stack.empty()) {
2352     clang::Module *Mod = Stack.pop_back_val();
2353 
2354     bool AnyChildren = false;
2355 
2356     // Visit the submodules of this module.
2357     for (const auto &SM : Mod->submodules()) {
2358       // Skip explicit children; they need to be explicitly imported to be
2359       // linked against.
2360       if (SM->IsExplicit)
2361         continue;
2362 
2363       if (Visited.insert(SM).second) {
2364         Stack.push_back(SM);
2365         AnyChildren = true;
2366       }
2367     }
2368 
2369     // We didn't find any children, so add this module to the list of
2370     // modules to link against.
2371     if (!AnyChildren) {
2372       LinkModules.insert(Mod);
2373     }
2374   }
2375 
2376   // Add link options for all of the imported modules in reverse topological
2377   // order.  We don't do anything to try to order import link flags with respect
2378   // to linker options inserted by things like #pragma comment().
2379   SmallVector<llvm::MDNode *, 16> MetadataArgs;
2380   Visited.clear();
2381   for (Module *M : LinkModules)
2382     if (Visited.insert(M).second)
2383       addLinkOptionsPostorder(*this, M, MetadataArgs, Visited);
2384   std::reverse(MetadataArgs.begin(), MetadataArgs.end());
2385   LinkerOptionsMetadata.append(MetadataArgs.begin(), MetadataArgs.end());
2386 
2387   // Add the linker options metadata flag.
2388   auto *NMD = getModule().getOrInsertNamedMetadata("llvm.linker.options");
2389   for (auto *MD : LinkerOptionsMetadata)
2390     NMD->addOperand(MD);
2391 }
2392 
2393 void CodeGenModule::EmitDeferred() {
2394   // Emit deferred declare target declarations.
2395   if (getLangOpts().OpenMP && !getLangOpts().OpenMPSimd)
2396     getOpenMPRuntime().emitDeferredTargetDecls();
2397 
2398   // Emit code for any potentially referenced deferred decls.  Since a
2399   // previously unused static decl may become used during the generation of code
2400   // for a static function, iterate until no changes are made.
2401 
2402   if (!DeferredVTables.empty()) {
2403     EmitDeferredVTables();
2404 
2405     // Emitting a vtable doesn't directly cause more vtables to
2406     // become deferred, although it can cause functions to be
2407     // emitted that then need those vtables.
2408     assert(DeferredVTables.empty());
2409   }
2410 
2411   // Emit CUDA/HIP static device variables referenced by host code only.
2412   // Note we should not clear CUDADeviceVarODRUsedByHost since it is still
2413   // needed for further handling.
2414   if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice)
2415     for (const auto *V : getContext().CUDADeviceVarODRUsedByHost)
2416       DeferredDeclsToEmit.push_back(V);
2417 
2418   // Stop if we're out of both deferred vtables and deferred declarations.
2419   if (DeferredDeclsToEmit.empty())
2420     return;
2421 
2422   // Grab the list of decls to emit. If EmitGlobalDefinition schedules more
2423   // work, it will not interfere with this.
2424   std::vector<GlobalDecl> CurDeclsToEmit;
2425   CurDeclsToEmit.swap(DeferredDeclsToEmit);
2426 
2427   for (GlobalDecl &D : CurDeclsToEmit) {
2428     // We should call GetAddrOfGlobal with IsForDefinition set to true in order
2429     // to get GlobalValue with exactly the type we need, not something that
2430     // might had been created for another decl with the same mangled name but
2431     // different type.
2432     llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>(
2433         GetAddrOfGlobal(D, ForDefinition));
2434 
2435     // In case of different address spaces, we may still get a cast, even with
2436     // IsForDefinition equal to true. Query mangled names table to get
2437     // GlobalValue.
2438     if (!GV)
2439       GV = GetGlobalValue(getMangledName(D));
2440 
2441     // Make sure GetGlobalValue returned non-null.
2442     assert(GV);
2443 
2444     // Check to see if we've already emitted this.  This is necessary
2445     // for a couple of reasons: first, decls can end up in the
2446     // deferred-decls queue multiple times, and second, decls can end
2447     // up with definitions in unusual ways (e.g. by an extern inline
2448     // function acquiring a strong function redefinition).  Just
2449     // ignore these cases.
2450     if (!GV->isDeclaration())
2451       continue;
2452 
2453     // If this is OpenMP, check if it is legal to emit this global normally.
2454     if (LangOpts.OpenMP && OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(D))
2455       continue;
2456 
2457     // Otherwise, emit the definition and move on to the next one.
2458     EmitGlobalDefinition(D, GV);
2459 
2460     // If we found out that we need to emit more decls, do that recursively.
2461     // This has the advantage that the decls are emitted in a DFS and related
2462     // ones are close together, which is convenient for testing.
2463     if (!DeferredVTables.empty() || !DeferredDeclsToEmit.empty()) {
2464       EmitDeferred();
2465       assert(DeferredVTables.empty() && DeferredDeclsToEmit.empty());
2466     }
2467   }
2468 }
2469 
2470 void CodeGenModule::EmitVTablesOpportunistically() {
2471   // Try to emit external vtables as available_externally if they have emitted
2472   // all inlined virtual functions.  It runs after EmitDeferred() and therefore
2473   // is not allowed to create new references to things that need to be emitted
2474   // lazily. Note that it also uses fact that we eagerly emitting RTTI.
2475 
2476   assert((OpportunisticVTables.empty() || shouldOpportunisticallyEmitVTables())
2477          && "Only emit opportunistic vtables with optimizations");
2478 
2479   for (const CXXRecordDecl *RD : OpportunisticVTables) {
2480     assert(getVTables().isVTableExternal(RD) &&
2481            "This queue should only contain external vtables");
2482     if (getCXXABI().canSpeculativelyEmitVTable(RD))
2483       VTables.GenerateClassData(RD);
2484   }
2485   OpportunisticVTables.clear();
2486 }
2487 
2488 void CodeGenModule::EmitGlobalAnnotations() {
2489   if (Annotations.empty())
2490     return;
2491 
2492   // Create a new global variable for the ConstantStruct in the Module.
2493   llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get(
2494     Annotations[0]->getType(), Annotations.size()), Annotations);
2495   auto *gv = new llvm::GlobalVariable(getModule(), Array->getType(), false,
2496                                       llvm::GlobalValue::AppendingLinkage,
2497                                       Array, "llvm.global.annotations");
2498   gv->setSection(AnnotationSection);
2499 }
2500 
2501 llvm::Constant *CodeGenModule::EmitAnnotationString(StringRef Str) {
2502   llvm::Constant *&AStr = AnnotationStrings[Str];
2503   if (AStr)
2504     return AStr;
2505 
2506   // Not found yet, create a new global.
2507   llvm::Constant *s = llvm::ConstantDataArray::getString(getLLVMContext(), Str);
2508   auto *gv =
2509       new llvm::GlobalVariable(getModule(), s->getType(), true,
2510                                llvm::GlobalValue::PrivateLinkage, s, ".str");
2511   gv->setSection(AnnotationSection);
2512   gv->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
2513   AStr = gv;
2514   return gv;
2515 }
2516 
2517 llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) {
2518   SourceManager &SM = getContext().getSourceManager();
2519   PresumedLoc PLoc = SM.getPresumedLoc(Loc);
2520   if (PLoc.isValid())
2521     return EmitAnnotationString(PLoc.getFilename());
2522   return EmitAnnotationString(SM.getBufferName(Loc));
2523 }
2524 
2525 llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) {
2526   SourceManager &SM = getContext().getSourceManager();
2527   PresumedLoc PLoc = SM.getPresumedLoc(L);
2528   unsigned LineNo = PLoc.isValid() ? PLoc.getLine() :
2529     SM.getExpansionLineNumber(L);
2530   return llvm::ConstantInt::get(Int32Ty, LineNo);
2531 }
2532 
2533 llvm::Constant *CodeGenModule::EmitAnnotationArgs(const AnnotateAttr *Attr) {
2534   ArrayRef<Expr *> Exprs = {Attr->args_begin(), Attr->args_size()};
2535   if (Exprs.empty())
2536     return llvm::ConstantPointerNull::get(GlobalsInt8PtrTy);
2537 
2538   llvm::FoldingSetNodeID ID;
2539   for (Expr *E : Exprs) {
2540     ID.Add(cast<clang::ConstantExpr>(E)->getAPValueResult());
2541   }
2542   llvm::Constant *&Lookup = AnnotationArgs[ID.ComputeHash()];
2543   if (Lookup)
2544     return Lookup;
2545 
2546   llvm::SmallVector<llvm::Constant *, 4> LLVMArgs;
2547   LLVMArgs.reserve(Exprs.size());
2548   ConstantEmitter ConstEmiter(*this);
2549   llvm::transform(Exprs, std::back_inserter(LLVMArgs), [&](const Expr *E) {
2550     const auto *CE = cast<clang::ConstantExpr>(E);
2551     return ConstEmiter.emitAbstract(CE->getBeginLoc(), CE->getAPValueResult(),
2552                                     CE->getType());
2553   });
2554   auto *Struct = llvm::ConstantStruct::getAnon(LLVMArgs);
2555   auto *GV = new llvm::GlobalVariable(getModule(), Struct->getType(), true,
2556                                       llvm::GlobalValue::PrivateLinkage, Struct,
2557                                       ".args");
2558   GV->setSection(AnnotationSection);
2559   GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
2560   auto *Bitcasted = llvm::ConstantExpr::getBitCast(GV, GlobalsInt8PtrTy);
2561 
2562   Lookup = Bitcasted;
2563   return Bitcasted;
2564 }
2565 
2566 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV,
2567                                                 const AnnotateAttr *AA,
2568                                                 SourceLocation L) {
2569   // Get the globals for file name, annotation, and the line number.
2570   llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()),
2571                  *UnitGV = EmitAnnotationUnit(L),
2572                  *LineNoCst = EmitAnnotationLineNo(L),
2573                  *Args = EmitAnnotationArgs(AA);
2574 
2575   llvm::Constant *GVInGlobalsAS = GV;
2576   if (GV->getAddressSpace() !=
2577       getDataLayout().getDefaultGlobalsAddressSpace()) {
2578     GVInGlobalsAS = llvm::ConstantExpr::getAddrSpaceCast(
2579         GV, GV->getValueType()->getPointerTo(
2580                 getDataLayout().getDefaultGlobalsAddressSpace()));
2581   }
2582 
2583   // Create the ConstantStruct for the global annotation.
2584   llvm::Constant *Fields[] = {
2585       llvm::ConstantExpr::getBitCast(GVInGlobalsAS, GlobalsInt8PtrTy),
2586       llvm::ConstantExpr::getBitCast(AnnoGV, GlobalsInt8PtrTy),
2587       llvm::ConstantExpr::getBitCast(UnitGV, GlobalsInt8PtrTy),
2588       LineNoCst,
2589       Args,
2590   };
2591   return llvm::ConstantStruct::getAnon(Fields);
2592 }
2593 
2594 void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D,
2595                                          llvm::GlobalValue *GV) {
2596   assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
2597   // Get the struct elements for these annotations.
2598   for (const auto *I : D->specific_attrs<AnnotateAttr>())
2599     Annotations.push_back(EmitAnnotateAttr(GV, I, D->getLocation()));
2600 }
2601 
2602 bool CodeGenModule::isInNoSanitizeList(SanitizerMask Kind, llvm::Function *Fn,
2603                                        SourceLocation Loc) const {
2604   const auto &NoSanitizeL = getContext().getNoSanitizeList();
2605   // NoSanitize by function name.
2606   if (NoSanitizeL.containsFunction(Kind, Fn->getName()))
2607     return true;
2608   // NoSanitize by location.
2609   if (Loc.isValid())
2610     return NoSanitizeL.containsLocation(Kind, Loc);
2611   // If location is unknown, this may be a compiler-generated function. Assume
2612   // it's located in the main file.
2613   auto &SM = Context.getSourceManager();
2614   if (const auto *MainFile = SM.getFileEntryForID(SM.getMainFileID())) {
2615     return NoSanitizeL.containsFile(Kind, MainFile->getName());
2616   }
2617   return false;
2618 }
2619 
2620 bool CodeGenModule::isInNoSanitizeList(llvm::GlobalVariable *GV,
2621                                        SourceLocation Loc, QualType Ty,
2622                                        StringRef Category) const {
2623   // For now globals can be ignored only in ASan and KASan.
2624   const SanitizerMask EnabledAsanMask =
2625       LangOpts.Sanitize.Mask &
2626       (SanitizerKind::Address | SanitizerKind::KernelAddress |
2627        SanitizerKind::HWAddress | SanitizerKind::KernelHWAddress |
2628        SanitizerKind::MemTag);
2629   if (!EnabledAsanMask)
2630     return false;
2631   const auto &NoSanitizeL = getContext().getNoSanitizeList();
2632   if (NoSanitizeL.containsGlobal(EnabledAsanMask, GV->getName(), Category))
2633     return true;
2634   if (NoSanitizeL.containsLocation(EnabledAsanMask, Loc, Category))
2635     return true;
2636   // Check global type.
2637   if (!Ty.isNull()) {
2638     // Drill down the array types: if global variable of a fixed type is
2639     // not sanitized, we also don't instrument arrays of them.
2640     while (auto AT = dyn_cast<ArrayType>(Ty.getTypePtr()))
2641       Ty = AT->getElementType();
2642     Ty = Ty.getCanonicalType().getUnqualifiedType();
2643     // Only record types (classes, structs etc.) are ignored.
2644     if (Ty->isRecordType()) {
2645       std::string TypeStr = Ty.getAsString(getContext().getPrintingPolicy());
2646       if (NoSanitizeL.containsType(EnabledAsanMask, TypeStr, Category))
2647         return true;
2648     }
2649   }
2650   return false;
2651 }
2652 
2653 bool CodeGenModule::imbueXRayAttrs(llvm::Function *Fn, SourceLocation Loc,
2654                                    StringRef Category) const {
2655   const auto &XRayFilter = getContext().getXRayFilter();
2656   using ImbueAttr = XRayFunctionFilter::ImbueAttribute;
2657   auto Attr = ImbueAttr::NONE;
2658   if (Loc.isValid())
2659     Attr = XRayFilter.shouldImbueLocation(Loc, Category);
2660   if (Attr == ImbueAttr::NONE)
2661     Attr = XRayFilter.shouldImbueFunction(Fn->getName());
2662   switch (Attr) {
2663   case ImbueAttr::NONE:
2664     return false;
2665   case ImbueAttr::ALWAYS:
2666     Fn->addFnAttr("function-instrument", "xray-always");
2667     break;
2668   case ImbueAttr::ALWAYS_ARG1:
2669     Fn->addFnAttr("function-instrument", "xray-always");
2670     Fn->addFnAttr("xray-log-args", "1");
2671     break;
2672   case ImbueAttr::NEVER:
2673     Fn->addFnAttr("function-instrument", "xray-never");
2674     break;
2675   }
2676   return true;
2677 }
2678 
2679 bool CodeGenModule::isProfileInstrExcluded(llvm::Function *Fn,
2680                                            SourceLocation Loc) const {
2681   const auto &ProfileList = getContext().getProfileList();
2682   // If the profile list is empty, then instrument everything.
2683   if (ProfileList.isEmpty())
2684     return false;
2685   CodeGenOptions::ProfileInstrKind Kind = getCodeGenOpts().getProfileInstr();
2686   // First, check the function name.
2687   Optional<bool> V = ProfileList.isFunctionExcluded(Fn->getName(), Kind);
2688   if (V.hasValue())
2689     return *V;
2690   // Next, check the source location.
2691   if (Loc.isValid()) {
2692     Optional<bool> V = ProfileList.isLocationExcluded(Loc, Kind);
2693     if (V.hasValue())
2694       return *V;
2695   }
2696   // If location is unknown, this may be a compiler-generated function. Assume
2697   // it's located in the main file.
2698   auto &SM = Context.getSourceManager();
2699   if (const auto *MainFile = SM.getFileEntryForID(SM.getMainFileID())) {
2700     Optional<bool> V = ProfileList.isFileExcluded(MainFile->getName(), Kind);
2701     if (V.hasValue())
2702       return *V;
2703   }
2704   return ProfileList.getDefault();
2705 }
2706 
2707 bool CodeGenModule::MustBeEmitted(const ValueDecl *Global) {
2708   // Never defer when EmitAllDecls is specified.
2709   if (LangOpts.EmitAllDecls)
2710     return true;
2711 
2712   if (CodeGenOpts.KeepStaticConsts) {
2713     const auto *VD = dyn_cast<VarDecl>(Global);
2714     if (VD && VD->getType().isConstQualified() &&
2715         VD->getStorageDuration() == SD_Static)
2716       return true;
2717   }
2718 
2719   return getContext().DeclMustBeEmitted(Global);
2720 }
2721 
2722 bool CodeGenModule::MayBeEmittedEagerly(const ValueDecl *Global) {
2723   // In OpenMP 5.0 variables and function may be marked as
2724   // device_type(host/nohost) and we should not emit them eagerly unless we sure
2725   // that they must be emitted on the host/device. To be sure we need to have
2726   // seen a declare target with an explicit mentioning of the function, we know
2727   // we have if the level of the declare target attribute is -1. Note that we
2728   // check somewhere else if we should emit this at all.
2729   if (LangOpts.OpenMP >= 50 && !LangOpts.OpenMPSimd) {
2730     llvm::Optional<OMPDeclareTargetDeclAttr *> ActiveAttr =
2731         OMPDeclareTargetDeclAttr::getActiveAttr(Global);
2732     if (!ActiveAttr || (*ActiveAttr)->getLevel() != (unsigned)-1)
2733       return false;
2734   }
2735 
2736   if (const auto *FD = dyn_cast<FunctionDecl>(Global)) {
2737     if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
2738       // Implicit template instantiations may change linkage if they are later
2739       // explicitly instantiated, so they should not be emitted eagerly.
2740       return false;
2741   }
2742   if (const auto *VD = dyn_cast<VarDecl>(Global))
2743     if (Context.getInlineVariableDefinitionKind(VD) ==
2744         ASTContext::InlineVariableDefinitionKind::WeakUnknown)
2745       // A definition of an inline constexpr static data member may change
2746       // linkage later if it's redeclared outside the class.
2747       return false;
2748   // If OpenMP is enabled and threadprivates must be generated like TLS, delay
2749   // codegen for global variables, because they may be marked as threadprivate.
2750   if (LangOpts.OpenMP && LangOpts.OpenMPUseTLS &&
2751       getContext().getTargetInfo().isTLSSupported() && isa<VarDecl>(Global) &&
2752       !isTypeConstant(Global->getType(), false) &&
2753       !OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(Global))
2754     return false;
2755 
2756   return true;
2757 }
2758 
2759 ConstantAddress CodeGenModule::GetAddrOfMSGuidDecl(const MSGuidDecl *GD) {
2760   StringRef Name = getMangledName(GD);
2761 
2762   // The UUID descriptor should be pointer aligned.
2763   CharUnits Alignment = CharUnits::fromQuantity(PointerAlignInBytes);
2764 
2765   // Look for an existing global.
2766   if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name))
2767     return ConstantAddress(GV, Alignment);
2768 
2769   ConstantEmitter Emitter(*this);
2770   llvm::Constant *Init;
2771 
2772   APValue &V = GD->getAsAPValue();
2773   if (!V.isAbsent()) {
2774     // If possible, emit the APValue version of the initializer. In particular,
2775     // this gets the type of the constant right.
2776     Init = Emitter.emitForInitializer(
2777         GD->getAsAPValue(), GD->getType().getAddressSpace(), GD->getType());
2778   } else {
2779     // As a fallback, directly construct the constant.
2780     // FIXME: This may get padding wrong under esoteric struct layout rules.
2781     // MSVC appears to create a complete type 'struct __s_GUID' that it
2782     // presumably uses to represent these constants.
2783     MSGuidDecl::Parts Parts = GD->getParts();
2784     llvm::Constant *Fields[4] = {
2785         llvm::ConstantInt::get(Int32Ty, Parts.Part1),
2786         llvm::ConstantInt::get(Int16Ty, Parts.Part2),
2787         llvm::ConstantInt::get(Int16Ty, Parts.Part3),
2788         llvm::ConstantDataArray::getRaw(
2789             StringRef(reinterpret_cast<char *>(Parts.Part4And5), 8), 8,
2790             Int8Ty)};
2791     Init = llvm::ConstantStruct::getAnon(Fields);
2792   }
2793 
2794   auto *GV = new llvm::GlobalVariable(
2795       getModule(), Init->getType(),
2796       /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name);
2797   if (supportsCOMDAT())
2798     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
2799   setDSOLocal(GV);
2800 
2801   llvm::Constant *Addr = GV;
2802   if (!V.isAbsent()) {
2803     Emitter.finalize(GV);
2804   } else {
2805     llvm::Type *Ty = getTypes().ConvertTypeForMem(GD->getType());
2806     Addr = llvm::ConstantExpr::getBitCast(
2807         GV, Ty->getPointerTo(GV->getAddressSpace()));
2808   }
2809   return ConstantAddress(Addr, Alignment);
2810 }
2811 
2812 ConstantAddress CodeGenModule::GetAddrOfTemplateParamObject(
2813     const TemplateParamObjectDecl *TPO) {
2814   StringRef Name = getMangledName(TPO);
2815   CharUnits Alignment = getNaturalTypeAlignment(TPO->getType());
2816 
2817   if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name))
2818     return ConstantAddress(GV, Alignment);
2819 
2820   ConstantEmitter Emitter(*this);
2821   llvm::Constant *Init = Emitter.emitForInitializer(
2822         TPO->getValue(), TPO->getType().getAddressSpace(), TPO->getType());
2823 
2824   if (!Init) {
2825     ErrorUnsupported(TPO, "template parameter object");
2826     return ConstantAddress::invalid();
2827   }
2828 
2829   auto *GV = new llvm::GlobalVariable(
2830       getModule(), Init->getType(),
2831       /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name);
2832   if (supportsCOMDAT())
2833     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
2834   Emitter.finalize(GV);
2835 
2836   return ConstantAddress(GV, Alignment);
2837 }
2838 
2839 ConstantAddress CodeGenModule::GetWeakRefReference(const ValueDecl *VD) {
2840   const AliasAttr *AA = VD->getAttr<AliasAttr>();
2841   assert(AA && "No alias?");
2842 
2843   CharUnits Alignment = getContext().getDeclAlign(VD);
2844   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType());
2845 
2846   // See if there is already something with the target's name in the module.
2847   llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee());
2848   if (Entry) {
2849     unsigned AS = getContext().getTargetAddressSpace(VD->getType());
2850     auto Ptr = llvm::ConstantExpr::getBitCast(Entry, DeclTy->getPointerTo(AS));
2851     return ConstantAddress(Ptr, Alignment);
2852   }
2853 
2854   llvm::Constant *Aliasee;
2855   if (isa<llvm::FunctionType>(DeclTy))
2856     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy,
2857                                       GlobalDecl(cast<FunctionDecl>(VD)),
2858                                       /*ForVTable=*/false);
2859   else
2860     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), DeclTy, LangAS::Default,
2861                                     nullptr);
2862 
2863   auto *F = cast<llvm::GlobalValue>(Aliasee);
2864   F->setLinkage(llvm::Function::ExternalWeakLinkage);
2865   WeakRefReferences.insert(F);
2866 
2867   return ConstantAddress(Aliasee, Alignment);
2868 }
2869 
2870 void CodeGenModule::EmitGlobal(GlobalDecl GD) {
2871   const auto *Global = cast<ValueDecl>(GD.getDecl());
2872 
2873   // Weak references don't produce any output by themselves.
2874   if (Global->hasAttr<WeakRefAttr>())
2875     return;
2876 
2877   // If this is an alias definition (which otherwise looks like a declaration)
2878   // emit it now.
2879   if (Global->hasAttr<AliasAttr>())
2880     return EmitAliasDefinition(GD);
2881 
2882   // IFunc like an alias whose value is resolved at runtime by calling resolver.
2883   if (Global->hasAttr<IFuncAttr>())
2884     return emitIFuncDefinition(GD);
2885 
2886   // If this is a cpu_dispatch multiversion function, emit the resolver.
2887   if (Global->hasAttr<CPUDispatchAttr>())
2888     return emitCPUDispatchDefinition(GD);
2889 
2890   // If this is CUDA, be selective about which declarations we emit.
2891   if (LangOpts.CUDA) {
2892     if (LangOpts.CUDAIsDevice) {
2893       if (!Global->hasAttr<CUDADeviceAttr>() &&
2894           !Global->hasAttr<CUDAGlobalAttr>() &&
2895           !Global->hasAttr<CUDAConstantAttr>() &&
2896           !Global->hasAttr<CUDASharedAttr>() &&
2897           !Global->getType()->isCUDADeviceBuiltinSurfaceType() &&
2898           !Global->getType()->isCUDADeviceBuiltinTextureType())
2899         return;
2900     } else {
2901       // We need to emit host-side 'shadows' for all global
2902       // device-side variables because the CUDA runtime needs their
2903       // size and host-side address in order to provide access to
2904       // their device-side incarnations.
2905 
2906       // So device-only functions are the only things we skip.
2907       if (isa<FunctionDecl>(Global) && !Global->hasAttr<CUDAHostAttr>() &&
2908           Global->hasAttr<CUDADeviceAttr>())
2909         return;
2910 
2911       assert((isa<FunctionDecl>(Global) || isa<VarDecl>(Global)) &&
2912              "Expected Variable or Function");
2913     }
2914   }
2915 
2916   if (LangOpts.OpenMP) {
2917     // If this is OpenMP, check if it is legal to emit this global normally.
2918     if (OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(GD))
2919       return;
2920     if (auto *DRD = dyn_cast<OMPDeclareReductionDecl>(Global)) {
2921       if (MustBeEmitted(Global))
2922         EmitOMPDeclareReduction(DRD);
2923       return;
2924     } else if (auto *DMD = dyn_cast<OMPDeclareMapperDecl>(Global)) {
2925       if (MustBeEmitted(Global))
2926         EmitOMPDeclareMapper(DMD);
2927       return;
2928     }
2929   }
2930 
2931   // Ignore declarations, they will be emitted on their first use.
2932   if (const auto *FD = dyn_cast<FunctionDecl>(Global)) {
2933     // Forward declarations are emitted lazily on first use.
2934     if (!FD->doesThisDeclarationHaveABody()) {
2935       if (!FD->doesDeclarationForceExternallyVisibleDefinition())
2936         return;
2937 
2938       StringRef MangledName = getMangledName(GD);
2939 
2940       // Compute the function info and LLVM type.
2941       const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
2942       llvm::Type *Ty = getTypes().GetFunctionType(FI);
2943 
2944       GetOrCreateLLVMFunction(MangledName, Ty, GD, /*ForVTable=*/false,
2945                               /*DontDefer=*/false);
2946       return;
2947     }
2948   } else {
2949     const auto *VD = cast<VarDecl>(Global);
2950     assert(VD->isFileVarDecl() && "Cannot emit local var decl as global.");
2951     if (VD->isThisDeclarationADefinition() != VarDecl::Definition &&
2952         !Context.isMSStaticDataMemberInlineDefinition(VD)) {
2953       if (LangOpts.OpenMP) {
2954         // Emit declaration of the must-be-emitted declare target variable.
2955         if (llvm::Optional<OMPDeclareTargetDeclAttr::MapTypeTy> Res =
2956                 OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD)) {
2957           bool UnifiedMemoryEnabled =
2958               getOpenMPRuntime().hasRequiresUnifiedSharedMemory();
2959           if (*Res == OMPDeclareTargetDeclAttr::MT_To &&
2960               !UnifiedMemoryEnabled) {
2961             (void)GetAddrOfGlobalVar(VD);
2962           } else {
2963             assert(((*Res == OMPDeclareTargetDeclAttr::MT_Link) ||
2964                     (*Res == OMPDeclareTargetDeclAttr::MT_To &&
2965                      UnifiedMemoryEnabled)) &&
2966                    "Link clause or to clause with unified memory expected.");
2967             (void)getOpenMPRuntime().getAddrOfDeclareTargetVar(VD);
2968           }
2969 
2970           return;
2971         }
2972       }
2973       // If this declaration may have caused an inline variable definition to
2974       // change linkage, make sure that it's emitted.
2975       if (Context.getInlineVariableDefinitionKind(VD) ==
2976           ASTContext::InlineVariableDefinitionKind::Strong)
2977         GetAddrOfGlobalVar(VD);
2978       return;
2979     }
2980   }
2981 
2982   // Defer code generation to first use when possible, e.g. if this is an inline
2983   // function. If the global must always be emitted, do it eagerly if possible
2984   // to benefit from cache locality.
2985   if (MustBeEmitted(Global) && MayBeEmittedEagerly(Global)) {
2986     // Emit the definition if it can't be deferred.
2987     EmitGlobalDefinition(GD);
2988     return;
2989   }
2990 
2991   // If we're deferring emission of a C++ variable with an
2992   // initializer, remember the order in which it appeared in the file.
2993   if (getLangOpts().CPlusPlus && isa<VarDecl>(Global) &&
2994       cast<VarDecl>(Global)->hasInit()) {
2995     DelayedCXXInitPosition[Global] = CXXGlobalInits.size();
2996     CXXGlobalInits.push_back(nullptr);
2997   }
2998 
2999   StringRef MangledName = getMangledName(GD);
3000   if (GetGlobalValue(MangledName) != nullptr) {
3001     // The value has already been used and should therefore be emitted.
3002     addDeferredDeclToEmit(GD);
3003   } else if (MustBeEmitted(Global)) {
3004     // The value must be emitted, but cannot be emitted eagerly.
3005     assert(!MayBeEmittedEagerly(Global));
3006     addDeferredDeclToEmit(GD);
3007   } else {
3008     // Otherwise, remember that we saw a deferred decl with this name.  The
3009     // first use of the mangled name will cause it to move into
3010     // DeferredDeclsToEmit.
3011     DeferredDecls[MangledName] = GD;
3012   }
3013 }
3014 
3015 // Check if T is a class type with a destructor that's not dllimport.
3016 static bool HasNonDllImportDtor(QualType T) {
3017   if (const auto *RT = T->getBaseElementTypeUnsafe()->getAs<RecordType>())
3018     if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl()))
3019       if (RD->getDestructor() && !RD->getDestructor()->hasAttr<DLLImportAttr>())
3020         return true;
3021 
3022   return false;
3023 }
3024 
3025 namespace {
3026   struct FunctionIsDirectlyRecursive
3027       : public ConstStmtVisitor<FunctionIsDirectlyRecursive, bool> {
3028     const StringRef Name;
3029     const Builtin::Context &BI;
3030     FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C)
3031         : Name(N), BI(C) {}
3032 
3033     bool VisitCallExpr(const CallExpr *E) {
3034       const FunctionDecl *FD = E->getDirectCallee();
3035       if (!FD)
3036         return false;
3037       AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
3038       if (Attr && Name == Attr->getLabel())
3039         return true;
3040       unsigned BuiltinID = FD->getBuiltinID();
3041       if (!BuiltinID || !BI.isLibFunction(BuiltinID))
3042         return false;
3043       StringRef BuiltinName = BI.getName(BuiltinID);
3044       if (BuiltinName.startswith("__builtin_") &&
3045           Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) {
3046         return true;
3047       }
3048       return false;
3049     }
3050 
3051     bool VisitStmt(const Stmt *S) {
3052       for (const Stmt *Child : S->children())
3053         if (Child && this->Visit(Child))
3054           return true;
3055       return false;
3056     }
3057   };
3058 
3059   // Make sure we're not referencing non-imported vars or functions.
3060   struct DLLImportFunctionVisitor
3061       : public RecursiveASTVisitor<DLLImportFunctionVisitor> {
3062     bool SafeToInline = true;
3063 
3064     bool shouldVisitImplicitCode() const { return true; }
3065 
3066     bool VisitVarDecl(VarDecl *VD) {
3067       if (VD->getTLSKind()) {
3068         // A thread-local variable cannot be imported.
3069         SafeToInline = false;
3070         return SafeToInline;
3071       }
3072 
3073       // A variable definition might imply a destructor call.
3074       if (VD->isThisDeclarationADefinition())
3075         SafeToInline = !HasNonDllImportDtor(VD->getType());
3076 
3077       return SafeToInline;
3078     }
3079 
3080     bool VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) {
3081       if (const auto *D = E->getTemporary()->getDestructor())
3082         SafeToInline = D->hasAttr<DLLImportAttr>();
3083       return SafeToInline;
3084     }
3085 
3086     bool VisitDeclRefExpr(DeclRefExpr *E) {
3087       ValueDecl *VD = E->getDecl();
3088       if (isa<FunctionDecl>(VD))
3089         SafeToInline = VD->hasAttr<DLLImportAttr>();
3090       else if (VarDecl *V = dyn_cast<VarDecl>(VD))
3091         SafeToInline = !V->hasGlobalStorage() || V->hasAttr<DLLImportAttr>();
3092       return SafeToInline;
3093     }
3094 
3095     bool VisitCXXConstructExpr(CXXConstructExpr *E) {
3096       SafeToInline = E->getConstructor()->hasAttr<DLLImportAttr>();
3097       return SafeToInline;
3098     }
3099 
3100     bool VisitCXXMemberCallExpr(CXXMemberCallExpr *E) {
3101       CXXMethodDecl *M = E->getMethodDecl();
3102       if (!M) {
3103         // Call through a pointer to member function. This is safe to inline.
3104         SafeToInline = true;
3105       } else {
3106         SafeToInline = M->hasAttr<DLLImportAttr>();
3107       }
3108       return SafeToInline;
3109     }
3110 
3111     bool VisitCXXDeleteExpr(CXXDeleteExpr *E) {
3112       SafeToInline = E->getOperatorDelete()->hasAttr<DLLImportAttr>();
3113       return SafeToInline;
3114     }
3115 
3116     bool VisitCXXNewExpr(CXXNewExpr *E) {
3117       SafeToInline = E->getOperatorNew()->hasAttr<DLLImportAttr>();
3118       return SafeToInline;
3119     }
3120   };
3121 }
3122 
3123 // isTriviallyRecursive - Check if this function calls another
3124 // decl that, because of the asm attribute or the other decl being a builtin,
3125 // ends up pointing to itself.
3126 bool
3127 CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) {
3128   StringRef Name;
3129   if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) {
3130     // asm labels are a special kind of mangling we have to support.
3131     AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
3132     if (!Attr)
3133       return false;
3134     Name = Attr->getLabel();
3135   } else {
3136     Name = FD->getName();
3137   }
3138 
3139   FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo);
3140   const Stmt *Body = FD->getBody();
3141   return Body ? Walker.Visit(Body) : false;
3142 }
3143 
3144 bool CodeGenModule::shouldEmitFunction(GlobalDecl GD) {
3145   if (getFunctionLinkage(GD) != llvm::Function::AvailableExternallyLinkage)
3146     return true;
3147   const auto *F = cast<FunctionDecl>(GD.getDecl());
3148   if (CodeGenOpts.OptimizationLevel == 0 && !F->hasAttr<AlwaysInlineAttr>())
3149     return false;
3150 
3151   if (F->hasAttr<DLLImportAttr>() && !F->hasAttr<AlwaysInlineAttr>()) {
3152     // Check whether it would be safe to inline this dllimport function.
3153     DLLImportFunctionVisitor Visitor;
3154     Visitor.TraverseFunctionDecl(const_cast<FunctionDecl*>(F));
3155     if (!Visitor.SafeToInline)
3156       return false;
3157 
3158     if (const CXXDestructorDecl *Dtor = dyn_cast<CXXDestructorDecl>(F)) {
3159       // Implicit destructor invocations aren't captured in the AST, so the
3160       // check above can't see them. Check for them manually here.
3161       for (const Decl *Member : Dtor->getParent()->decls())
3162         if (isa<FieldDecl>(Member))
3163           if (HasNonDllImportDtor(cast<FieldDecl>(Member)->getType()))
3164             return false;
3165       for (const CXXBaseSpecifier &B : Dtor->getParent()->bases())
3166         if (HasNonDllImportDtor(B.getType()))
3167           return false;
3168     }
3169   }
3170 
3171   // PR9614. Avoid cases where the source code is lying to us. An available
3172   // externally function should have an equivalent function somewhere else,
3173   // but a function that calls itself through asm label/`__builtin_` trickery is
3174   // clearly not equivalent to the real implementation.
3175   // This happens in glibc's btowc and in some configure checks.
3176   return !isTriviallyRecursive(F);
3177 }
3178 
3179 bool CodeGenModule::shouldOpportunisticallyEmitVTables() {
3180   return CodeGenOpts.OptimizationLevel > 0;
3181 }
3182 
3183 void CodeGenModule::EmitMultiVersionFunctionDefinition(GlobalDecl GD,
3184                                                        llvm::GlobalValue *GV) {
3185   const auto *FD = cast<FunctionDecl>(GD.getDecl());
3186 
3187   if (FD->isCPUSpecificMultiVersion()) {
3188     auto *Spec = FD->getAttr<CPUSpecificAttr>();
3189     for (unsigned I = 0; I < Spec->cpus_size(); ++I)
3190       EmitGlobalFunctionDefinition(GD.getWithMultiVersionIndex(I), nullptr);
3191     // Requires multiple emits.
3192   } else
3193     EmitGlobalFunctionDefinition(GD, GV);
3194 }
3195 
3196 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD, llvm::GlobalValue *GV) {
3197   const auto *D = cast<ValueDecl>(GD.getDecl());
3198 
3199   PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(),
3200                                  Context.getSourceManager(),
3201                                  "Generating code for declaration");
3202 
3203   if (const auto *FD = dyn_cast<FunctionDecl>(D)) {
3204     // At -O0, don't generate IR for functions with available_externally
3205     // linkage.
3206     if (!shouldEmitFunction(GD))
3207       return;
3208 
3209     llvm::TimeTraceScope TimeScope("CodeGen Function", [&]() {
3210       std::string Name;
3211       llvm::raw_string_ostream OS(Name);
3212       FD->getNameForDiagnostic(OS, getContext().getPrintingPolicy(),
3213                                /*Qualified=*/true);
3214       return Name;
3215     });
3216 
3217     if (const auto *Method = dyn_cast<CXXMethodDecl>(D)) {
3218       // Make sure to emit the definition(s) before we emit the thunks.
3219       // This is necessary for the generation of certain thunks.
3220       if (isa<CXXConstructorDecl>(Method) || isa<CXXDestructorDecl>(Method))
3221         ABI->emitCXXStructor(GD);
3222       else if (FD->isMultiVersion())
3223         EmitMultiVersionFunctionDefinition(GD, GV);
3224       else
3225         EmitGlobalFunctionDefinition(GD, GV);
3226 
3227       if (Method->isVirtual())
3228         getVTables().EmitThunks(GD);
3229 
3230       return;
3231     }
3232 
3233     if (FD->isMultiVersion())
3234       return EmitMultiVersionFunctionDefinition(GD, GV);
3235     return EmitGlobalFunctionDefinition(GD, GV);
3236   }
3237 
3238   if (const auto *VD = dyn_cast<VarDecl>(D))
3239     return EmitGlobalVarDefinition(VD, !VD->hasDefinition());
3240 
3241   llvm_unreachable("Invalid argument to EmitGlobalDefinition()");
3242 }
3243 
3244 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
3245                                                       llvm::Function *NewFn);
3246 
3247 static unsigned
3248 TargetMVPriority(const TargetInfo &TI,
3249                  const CodeGenFunction::MultiVersionResolverOption &RO) {
3250   unsigned Priority = 0;
3251   for (StringRef Feat : RO.Conditions.Features)
3252     Priority = std::max(Priority, TI.multiVersionSortPriority(Feat));
3253 
3254   if (!RO.Conditions.Architecture.empty())
3255     Priority = std::max(
3256         Priority, TI.multiVersionSortPriority(RO.Conditions.Architecture));
3257   return Priority;
3258 }
3259 
3260 void CodeGenModule::emitMultiVersionFunctions() {
3261   std::vector<GlobalDecl> MVFuncsToEmit;
3262   MultiVersionFuncs.swap(MVFuncsToEmit);
3263   for (GlobalDecl GD : MVFuncsToEmit) {
3264     SmallVector<CodeGenFunction::MultiVersionResolverOption, 10> Options;
3265     const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
3266     getContext().forEachMultiversionedFunctionVersion(
3267         FD, [this, &GD, &Options](const FunctionDecl *CurFD) {
3268           GlobalDecl CurGD{
3269               (CurFD->isDefined() ? CurFD->getDefinition() : CurFD)};
3270           StringRef MangledName = getMangledName(CurGD);
3271           llvm::Constant *Func = GetGlobalValue(MangledName);
3272           if (!Func) {
3273             if (CurFD->isDefined()) {
3274               EmitGlobalFunctionDefinition(CurGD, nullptr);
3275               Func = GetGlobalValue(MangledName);
3276             } else {
3277               const CGFunctionInfo &FI =
3278                   getTypes().arrangeGlobalDeclaration(GD);
3279               llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
3280               Func = GetAddrOfFunction(CurGD, Ty, /*ForVTable=*/false,
3281                                        /*DontDefer=*/false, ForDefinition);
3282             }
3283             assert(Func && "This should have just been created");
3284           }
3285 
3286           const auto *TA = CurFD->getAttr<TargetAttr>();
3287           llvm::SmallVector<StringRef, 8> Feats;
3288           TA->getAddedFeatures(Feats);
3289 
3290           Options.emplace_back(cast<llvm::Function>(Func),
3291                                TA->getArchitecture(), Feats);
3292         });
3293 
3294     llvm::Function *ResolverFunc;
3295     const TargetInfo &TI = getTarget();
3296 
3297     if (TI.supportsIFunc() || FD->isTargetMultiVersion()) {
3298       ResolverFunc = cast<llvm::Function>(
3299           GetGlobalValue((getMangledName(GD) + ".resolver").str()));
3300       ResolverFunc->setLinkage(llvm::Function::WeakODRLinkage);
3301     } else {
3302       ResolverFunc = cast<llvm::Function>(GetGlobalValue(getMangledName(GD)));
3303     }
3304 
3305     if (supportsCOMDAT())
3306       ResolverFunc->setComdat(
3307           getModule().getOrInsertComdat(ResolverFunc->getName()));
3308 
3309     llvm::stable_sort(
3310         Options, [&TI](const CodeGenFunction::MultiVersionResolverOption &LHS,
3311                        const CodeGenFunction::MultiVersionResolverOption &RHS) {
3312           return TargetMVPriority(TI, LHS) > TargetMVPriority(TI, RHS);
3313         });
3314     CodeGenFunction CGF(*this);
3315     CGF.EmitMultiVersionResolver(ResolverFunc, Options);
3316   }
3317 
3318   // Ensure that any additions to the deferred decls list caused by emitting a
3319   // variant are emitted.  This can happen when the variant itself is inline and
3320   // calls a function without linkage.
3321   if (!MVFuncsToEmit.empty())
3322     EmitDeferred();
3323 
3324   // Ensure that any additions to the multiversion funcs list from either the
3325   // deferred decls or the multiversion functions themselves are emitted.
3326   if (!MultiVersionFuncs.empty())
3327     emitMultiVersionFunctions();
3328 }
3329 
3330 void CodeGenModule::emitCPUDispatchDefinition(GlobalDecl GD) {
3331   const auto *FD = cast<FunctionDecl>(GD.getDecl());
3332   assert(FD && "Not a FunctionDecl?");
3333   const auto *DD = FD->getAttr<CPUDispatchAttr>();
3334   assert(DD && "Not a cpu_dispatch Function?");
3335   llvm::Type *DeclTy = getTypes().ConvertType(FD->getType());
3336 
3337   if (const auto *CXXFD = dyn_cast<CXXMethodDecl>(FD)) {
3338     const CGFunctionInfo &FInfo = getTypes().arrangeCXXMethodDeclaration(CXXFD);
3339     DeclTy = getTypes().GetFunctionType(FInfo);
3340   }
3341 
3342   StringRef ResolverName = getMangledName(GD);
3343 
3344   llvm::Type *ResolverType;
3345   GlobalDecl ResolverGD;
3346   if (getTarget().supportsIFunc())
3347     ResolverType = llvm::FunctionType::get(
3348         llvm::PointerType::get(DeclTy,
3349                                Context.getTargetAddressSpace(FD->getType())),
3350         false);
3351   else {
3352     ResolverType = DeclTy;
3353     ResolverGD = GD;
3354   }
3355 
3356   auto *ResolverFunc = cast<llvm::Function>(GetOrCreateLLVMFunction(
3357       ResolverName, ResolverType, ResolverGD, /*ForVTable=*/false));
3358   ResolverFunc->setLinkage(llvm::Function::WeakODRLinkage);
3359   if (supportsCOMDAT())
3360     ResolverFunc->setComdat(
3361         getModule().getOrInsertComdat(ResolverFunc->getName()));
3362 
3363   SmallVector<CodeGenFunction::MultiVersionResolverOption, 10> Options;
3364   const TargetInfo &Target = getTarget();
3365   unsigned Index = 0;
3366   for (const IdentifierInfo *II : DD->cpus()) {
3367     // Get the name of the target function so we can look it up/create it.
3368     std::string MangledName = getMangledNameImpl(*this, GD, FD, true) +
3369                               getCPUSpecificMangling(*this, II->getName());
3370 
3371     llvm::Constant *Func = GetGlobalValue(MangledName);
3372 
3373     if (!Func) {
3374       GlobalDecl ExistingDecl = Manglings.lookup(MangledName);
3375       if (ExistingDecl.getDecl() &&
3376           ExistingDecl.getDecl()->getAsFunction()->isDefined()) {
3377         EmitGlobalFunctionDefinition(ExistingDecl, nullptr);
3378         Func = GetGlobalValue(MangledName);
3379       } else {
3380         if (!ExistingDecl.getDecl())
3381           ExistingDecl = GD.getWithMultiVersionIndex(Index);
3382 
3383       Func = GetOrCreateLLVMFunction(
3384           MangledName, DeclTy, ExistingDecl,
3385           /*ForVTable=*/false, /*DontDefer=*/true,
3386           /*IsThunk=*/false, llvm::AttributeList(), ForDefinition);
3387       }
3388     }
3389 
3390     llvm::SmallVector<StringRef, 32> Features;
3391     Target.getCPUSpecificCPUDispatchFeatures(II->getName(), Features);
3392     llvm::transform(Features, Features.begin(),
3393                     [](StringRef Str) { return Str.substr(1); });
3394     Features.erase(std::remove_if(
3395         Features.begin(), Features.end(), [&Target](StringRef Feat) {
3396           return !Target.validateCpuSupports(Feat);
3397         }), Features.end());
3398     Options.emplace_back(cast<llvm::Function>(Func), StringRef{}, Features);
3399     ++Index;
3400   }
3401 
3402   llvm::stable_sort(
3403       Options, [](const CodeGenFunction::MultiVersionResolverOption &LHS,
3404                   const CodeGenFunction::MultiVersionResolverOption &RHS) {
3405         return CodeGenFunction::GetX86CpuSupportsMask(LHS.Conditions.Features) >
3406                CodeGenFunction::GetX86CpuSupportsMask(RHS.Conditions.Features);
3407       });
3408 
3409   // If the list contains multiple 'default' versions, such as when it contains
3410   // 'pentium' and 'generic', don't emit the call to the generic one (since we
3411   // always run on at least a 'pentium'). We do this by deleting the 'least
3412   // advanced' (read, lowest mangling letter).
3413   while (Options.size() > 1 &&
3414          CodeGenFunction::GetX86CpuSupportsMask(
3415              (Options.end() - 2)->Conditions.Features) == 0) {
3416     StringRef LHSName = (Options.end() - 2)->Function->getName();
3417     StringRef RHSName = (Options.end() - 1)->Function->getName();
3418     if (LHSName.compare(RHSName) < 0)
3419       Options.erase(Options.end() - 2);
3420     else
3421       Options.erase(Options.end() - 1);
3422   }
3423 
3424   CodeGenFunction CGF(*this);
3425   CGF.EmitMultiVersionResolver(ResolverFunc, Options);
3426 
3427   if (getTarget().supportsIFunc()) {
3428     std::string AliasName = getMangledNameImpl(
3429         *this, GD, FD, /*OmitMultiVersionMangling=*/true);
3430     llvm::Constant *AliasFunc = GetGlobalValue(AliasName);
3431     if (!AliasFunc) {
3432       auto *IFunc = cast<llvm::GlobalIFunc>(GetOrCreateLLVMFunction(
3433           AliasName, DeclTy, GD, /*ForVTable=*/false, /*DontDefer=*/true,
3434           /*IsThunk=*/false, llvm::AttributeList(), NotForDefinition));
3435       auto *GA = llvm::GlobalAlias::create(
3436          DeclTy, 0, getFunctionLinkage(GD), AliasName, IFunc, &getModule());
3437       GA->setLinkage(llvm::Function::WeakODRLinkage);
3438       SetCommonAttributes(GD, GA);
3439     }
3440   }
3441 }
3442 
3443 /// If a dispatcher for the specified mangled name is not in the module, create
3444 /// and return an llvm Function with the specified type.
3445 llvm::Constant *CodeGenModule::GetOrCreateMultiVersionResolver(
3446     GlobalDecl GD, llvm::Type *DeclTy, const FunctionDecl *FD) {
3447   std::string MangledName =
3448       getMangledNameImpl(*this, GD, FD, /*OmitMultiVersionMangling=*/true);
3449 
3450   // Holds the name of the resolver, in ifunc mode this is the ifunc (which has
3451   // a separate resolver).
3452   std::string ResolverName = MangledName;
3453   if (getTarget().supportsIFunc())
3454     ResolverName += ".ifunc";
3455   else if (FD->isTargetMultiVersion())
3456     ResolverName += ".resolver";
3457 
3458   // If this already exists, just return that one.
3459   if (llvm::GlobalValue *ResolverGV = GetGlobalValue(ResolverName))
3460     return ResolverGV;
3461 
3462   // Since this is the first time we've created this IFunc, make sure
3463   // that we put this multiversioned function into the list to be
3464   // replaced later if necessary (target multiversioning only).
3465   if (!FD->isCPUDispatchMultiVersion() && !FD->isCPUSpecificMultiVersion())
3466     MultiVersionFuncs.push_back(GD);
3467 
3468   if (getTarget().supportsIFunc()) {
3469     llvm::Type *ResolverType = llvm::FunctionType::get(
3470         llvm::PointerType::get(
3471             DeclTy, getContext().getTargetAddressSpace(FD->getType())),
3472         false);
3473     llvm::Constant *Resolver = GetOrCreateLLVMFunction(
3474         MangledName + ".resolver", ResolverType, GlobalDecl{},
3475         /*ForVTable=*/false);
3476     llvm::GlobalIFunc *GIF = llvm::GlobalIFunc::create(
3477         DeclTy, 0, llvm::Function::WeakODRLinkage, "", Resolver, &getModule());
3478     GIF->setName(ResolverName);
3479     SetCommonAttributes(FD, GIF);
3480 
3481     return GIF;
3482   }
3483 
3484   llvm::Constant *Resolver = GetOrCreateLLVMFunction(
3485       ResolverName, DeclTy, GlobalDecl{}, /*ForVTable=*/false);
3486   assert(isa<llvm::GlobalValue>(Resolver) &&
3487          "Resolver should be created for the first time");
3488   SetCommonAttributes(FD, cast<llvm::GlobalValue>(Resolver));
3489   return Resolver;
3490 }
3491 
3492 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the
3493 /// module, create and return an llvm Function with the specified type. If there
3494 /// is something in the module with the specified name, return it potentially
3495 /// bitcasted to the right type.
3496 ///
3497 /// If D is non-null, it specifies a decl that correspond to this.  This is used
3498 /// to set the attributes on the function when it is first created.
3499 llvm::Constant *CodeGenModule::GetOrCreateLLVMFunction(
3500     StringRef MangledName, llvm::Type *Ty, GlobalDecl GD, bool ForVTable,
3501     bool DontDefer, bool IsThunk, llvm::AttributeList ExtraAttrs,
3502     ForDefinition_t IsForDefinition) {
3503   const Decl *D = GD.getDecl();
3504 
3505   // Any attempts to use a MultiVersion function should result in retrieving
3506   // the iFunc instead. Name Mangling will handle the rest of the changes.
3507   if (const FunctionDecl *FD = cast_or_null<FunctionDecl>(D)) {
3508     // For the device mark the function as one that should be emitted.
3509     if (getLangOpts().OpenMPIsDevice && OpenMPRuntime &&
3510         !OpenMPRuntime->markAsGlobalTarget(GD) && FD->isDefined() &&
3511         !DontDefer && !IsForDefinition) {
3512       if (const FunctionDecl *FDDef = FD->getDefinition()) {
3513         GlobalDecl GDDef;
3514         if (const auto *CD = dyn_cast<CXXConstructorDecl>(FDDef))
3515           GDDef = GlobalDecl(CD, GD.getCtorType());
3516         else if (const auto *DD = dyn_cast<CXXDestructorDecl>(FDDef))
3517           GDDef = GlobalDecl(DD, GD.getDtorType());
3518         else
3519           GDDef = GlobalDecl(FDDef);
3520         EmitGlobal(GDDef);
3521       }
3522     }
3523 
3524     if (FD->isMultiVersion()) {
3525       if (FD->hasAttr<TargetAttr>())
3526         UpdateMultiVersionNames(GD, FD);
3527       if (!IsForDefinition)
3528         return GetOrCreateMultiVersionResolver(GD, Ty, FD);
3529     }
3530   }
3531 
3532   // Lookup the entry, lazily creating it if necessary.
3533   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
3534   if (Entry) {
3535     if (WeakRefReferences.erase(Entry)) {
3536       const FunctionDecl *FD = cast_or_null<FunctionDecl>(D);
3537       if (FD && !FD->hasAttr<WeakAttr>())
3538         Entry->setLinkage(llvm::Function::ExternalLinkage);
3539     }
3540 
3541     // Handle dropped DLL attributes.
3542     if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>()) {
3543       Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
3544       setDSOLocal(Entry);
3545     }
3546 
3547     // If there are two attempts to define the same mangled name, issue an
3548     // error.
3549     if (IsForDefinition && !Entry->isDeclaration()) {
3550       GlobalDecl OtherGD;
3551       // Check that GD is not yet in DiagnosedConflictingDefinitions is required
3552       // to make sure that we issue an error only once.
3553       if (lookupRepresentativeDecl(MangledName, OtherGD) &&
3554           (GD.getCanonicalDecl().getDecl() !=
3555            OtherGD.getCanonicalDecl().getDecl()) &&
3556           DiagnosedConflictingDefinitions.insert(GD).second) {
3557         getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name)
3558             << MangledName;
3559         getDiags().Report(OtherGD.getDecl()->getLocation(),
3560                           diag::note_previous_definition);
3561       }
3562     }
3563 
3564     if ((isa<llvm::Function>(Entry) || isa<llvm::GlobalAlias>(Entry)) &&
3565         (Entry->getValueType() == Ty)) {
3566       return Entry;
3567     }
3568 
3569     // Make sure the result is of the correct type.
3570     // (If function is requested for a definition, we always need to create a new
3571     // function, not just return a bitcast.)
3572     if (!IsForDefinition)
3573       return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo());
3574   }
3575 
3576   // This function doesn't have a complete type (for example, the return
3577   // type is an incomplete struct). Use a fake type instead, and make
3578   // sure not to try to set attributes.
3579   bool IsIncompleteFunction = false;
3580 
3581   llvm::FunctionType *FTy;
3582   if (isa<llvm::FunctionType>(Ty)) {
3583     FTy = cast<llvm::FunctionType>(Ty);
3584   } else {
3585     FTy = llvm::FunctionType::get(VoidTy, false);
3586     IsIncompleteFunction = true;
3587   }
3588 
3589   llvm::Function *F =
3590       llvm::Function::Create(FTy, llvm::Function::ExternalLinkage,
3591                              Entry ? StringRef() : MangledName, &getModule());
3592 
3593   // If we already created a function with the same mangled name (but different
3594   // type) before, take its name and add it to the list of functions to be
3595   // replaced with F at the end of CodeGen.
3596   //
3597   // This happens if there is a prototype for a function (e.g. "int f()") and
3598   // then a definition of a different type (e.g. "int f(int x)").
3599   if (Entry) {
3600     F->takeName(Entry);
3601 
3602     // This might be an implementation of a function without a prototype, in
3603     // which case, try to do special replacement of calls which match the new
3604     // prototype.  The really key thing here is that we also potentially drop
3605     // arguments from the call site so as to make a direct call, which makes the
3606     // inliner happier and suppresses a number of optimizer warnings (!) about
3607     // dropping arguments.
3608     if (!Entry->use_empty()) {
3609       ReplaceUsesOfNonProtoTypeWithRealFunction(Entry, F);
3610       Entry->removeDeadConstantUsers();
3611     }
3612 
3613     llvm::Constant *BC = llvm::ConstantExpr::getBitCast(
3614         F, Entry->getValueType()->getPointerTo());
3615     addGlobalValReplacement(Entry, BC);
3616   }
3617 
3618   assert(F->getName() == MangledName && "name was uniqued!");
3619   if (D)
3620     SetFunctionAttributes(GD, F, IsIncompleteFunction, IsThunk);
3621   if (ExtraAttrs.hasFnAttrs()) {
3622     llvm::AttrBuilder B(ExtraAttrs, llvm::AttributeList::FunctionIndex);
3623     F->addFnAttrs(B);
3624   }
3625 
3626   if (!DontDefer) {
3627     // All MSVC dtors other than the base dtor are linkonce_odr and delegate to
3628     // each other bottoming out with the base dtor.  Therefore we emit non-base
3629     // dtors on usage, even if there is no dtor definition in the TU.
3630     if (D && isa<CXXDestructorDecl>(D) &&
3631         getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D),
3632                                            GD.getDtorType()))
3633       addDeferredDeclToEmit(GD);
3634 
3635     // This is the first use or definition of a mangled name.  If there is a
3636     // deferred decl with this name, remember that we need to emit it at the end
3637     // of the file.
3638     auto DDI = DeferredDecls.find(MangledName);
3639     if (DDI != DeferredDecls.end()) {
3640       // Move the potentially referenced deferred decl to the
3641       // DeferredDeclsToEmit list, and remove it from DeferredDecls (since we
3642       // don't need it anymore).
3643       addDeferredDeclToEmit(DDI->second);
3644       DeferredDecls.erase(DDI);
3645 
3646       // Otherwise, there are cases we have to worry about where we're
3647       // using a declaration for which we must emit a definition but where
3648       // we might not find a top-level definition:
3649       //   - member functions defined inline in their classes
3650       //   - friend functions defined inline in some class
3651       //   - special member functions with implicit definitions
3652       // If we ever change our AST traversal to walk into class methods,
3653       // this will be unnecessary.
3654       //
3655       // We also don't emit a definition for a function if it's going to be an
3656       // entry in a vtable, unless it's already marked as used.
3657     } else if (getLangOpts().CPlusPlus && D) {
3658       // Look for a declaration that's lexically in a record.
3659       for (const auto *FD = cast<FunctionDecl>(D)->getMostRecentDecl(); FD;
3660            FD = FD->getPreviousDecl()) {
3661         if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) {
3662           if (FD->doesThisDeclarationHaveABody()) {
3663             addDeferredDeclToEmit(GD.getWithDecl(FD));
3664             break;
3665           }
3666         }
3667       }
3668     }
3669   }
3670 
3671   // Make sure the result is of the requested type.
3672   if (!IsIncompleteFunction) {
3673     assert(F->getFunctionType() == Ty);
3674     return F;
3675   }
3676 
3677   llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
3678   return llvm::ConstantExpr::getBitCast(F, PTy);
3679 }
3680 
3681 /// GetAddrOfFunction - Return the address of the given function.  If Ty is
3682 /// non-null, then this function will use the specified type if it has to
3683 /// create it (this occurs when we see a definition of the function).
3684 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD,
3685                                                  llvm::Type *Ty,
3686                                                  bool ForVTable,
3687                                                  bool DontDefer,
3688                                               ForDefinition_t IsForDefinition) {
3689   assert(!cast<FunctionDecl>(GD.getDecl())->isConsteval() &&
3690          "consteval function should never be emitted");
3691   // If there was no specific requested type, just convert it now.
3692   if (!Ty) {
3693     const auto *FD = cast<FunctionDecl>(GD.getDecl());
3694     Ty = getTypes().ConvertType(FD->getType());
3695   }
3696 
3697   // Devirtualized destructor calls may come through here instead of via
3698   // getAddrOfCXXStructor. Make sure we use the MS ABI base destructor instead
3699   // of the complete destructor when necessary.
3700   if (const auto *DD = dyn_cast<CXXDestructorDecl>(GD.getDecl())) {
3701     if (getTarget().getCXXABI().isMicrosoft() &&
3702         GD.getDtorType() == Dtor_Complete &&
3703         DD->getParent()->getNumVBases() == 0)
3704       GD = GlobalDecl(DD, Dtor_Base);
3705   }
3706 
3707   StringRef MangledName = getMangledName(GD);
3708   auto *F = GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable, DontDefer,
3709                                     /*IsThunk=*/false, llvm::AttributeList(),
3710                                     IsForDefinition);
3711   // Returns kernel handle for HIP kernel stub function.
3712   if (LangOpts.CUDA && !LangOpts.CUDAIsDevice &&
3713       cast<FunctionDecl>(GD.getDecl())->hasAttr<CUDAGlobalAttr>()) {
3714     auto *Handle = getCUDARuntime().getKernelHandle(
3715         cast<llvm::Function>(F->stripPointerCasts()), GD);
3716     if (IsForDefinition)
3717       return F;
3718     return llvm::ConstantExpr::getBitCast(Handle, Ty->getPointerTo());
3719   }
3720   return F;
3721 }
3722 
3723 static const FunctionDecl *
3724 GetRuntimeFunctionDecl(ASTContext &C, StringRef Name) {
3725   TranslationUnitDecl *TUDecl = C.getTranslationUnitDecl();
3726   DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl);
3727 
3728   IdentifierInfo &CII = C.Idents.get(Name);
3729   for (const auto *Result : DC->lookup(&CII))
3730     if (const auto *FD = dyn_cast<FunctionDecl>(Result))
3731       return FD;
3732 
3733   if (!C.getLangOpts().CPlusPlus)
3734     return nullptr;
3735 
3736   // Demangle the premangled name from getTerminateFn()
3737   IdentifierInfo &CXXII =
3738       (Name == "_ZSt9terminatev" || Name == "?terminate@@YAXXZ")
3739           ? C.Idents.get("terminate")
3740           : C.Idents.get(Name);
3741 
3742   for (const auto &N : {"__cxxabiv1", "std"}) {
3743     IdentifierInfo &NS = C.Idents.get(N);
3744     for (const auto *Result : DC->lookup(&NS)) {
3745       const NamespaceDecl *ND = dyn_cast<NamespaceDecl>(Result);
3746       if (auto *LSD = dyn_cast<LinkageSpecDecl>(Result))
3747         for (const auto *Result : LSD->lookup(&NS))
3748           if ((ND = dyn_cast<NamespaceDecl>(Result)))
3749             break;
3750 
3751       if (ND)
3752         for (const auto *Result : ND->lookup(&CXXII))
3753           if (const auto *FD = dyn_cast<FunctionDecl>(Result))
3754             return FD;
3755     }
3756   }
3757 
3758   return nullptr;
3759 }
3760 
3761 /// CreateRuntimeFunction - Create a new runtime function with the specified
3762 /// type and name.
3763 llvm::FunctionCallee
3764 CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy, StringRef Name,
3765                                      llvm::AttributeList ExtraAttrs, bool Local,
3766                                      bool AssumeConvergent) {
3767   if (AssumeConvergent) {
3768     ExtraAttrs =
3769         ExtraAttrs.addFnAttribute(VMContext, llvm::Attribute::Convergent);
3770   }
3771 
3772   llvm::Constant *C =
3773       GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false,
3774                               /*DontDefer=*/false, /*IsThunk=*/false,
3775                               ExtraAttrs);
3776 
3777   if (auto *F = dyn_cast<llvm::Function>(C)) {
3778     if (F->empty()) {
3779       F->setCallingConv(getRuntimeCC());
3780 
3781       // In Windows Itanium environments, try to mark runtime functions
3782       // dllimport. For Mingw and MSVC, don't. We don't really know if the user
3783       // will link their standard library statically or dynamically. Marking
3784       // functions imported when they are not imported can cause linker errors
3785       // and warnings.
3786       if (!Local && getTriple().isWindowsItaniumEnvironment() &&
3787           !getCodeGenOpts().LTOVisibilityPublicStd) {
3788         const FunctionDecl *FD = GetRuntimeFunctionDecl(Context, Name);
3789         if (!FD || FD->hasAttr<DLLImportAttr>()) {
3790           F->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass);
3791           F->setLinkage(llvm::GlobalValue::ExternalLinkage);
3792         }
3793       }
3794       setDSOLocal(F);
3795     }
3796   }
3797 
3798   return {FTy, C};
3799 }
3800 
3801 /// isTypeConstant - Determine whether an object of this type can be emitted
3802 /// as a constant.
3803 ///
3804 /// If ExcludeCtor is true, the duration when the object's constructor runs
3805 /// will not be considered. The caller will need to verify that the object is
3806 /// not written to during its construction.
3807 bool CodeGenModule::isTypeConstant(QualType Ty, bool ExcludeCtor) {
3808   if (!Ty.isConstant(Context) && !Ty->isReferenceType())
3809     return false;
3810 
3811   if (Context.getLangOpts().CPlusPlus) {
3812     if (const CXXRecordDecl *Record
3813           = Context.getBaseElementType(Ty)->getAsCXXRecordDecl())
3814       return ExcludeCtor && !Record->hasMutableFields() &&
3815              Record->hasTrivialDestructor();
3816   }
3817 
3818   return true;
3819 }
3820 
3821 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module,
3822 /// create and return an llvm GlobalVariable with the specified type and address
3823 /// space. If there is something in the module with the specified name, return
3824 /// it potentially bitcasted to the right type.
3825 ///
3826 /// If D is non-null, it specifies a decl that correspond to this.  This is used
3827 /// to set the attributes on the global when it is first created.
3828 ///
3829 /// If IsForDefinition is true, it is guaranteed that an actual global with
3830 /// type Ty will be returned, not conversion of a variable with the same
3831 /// mangled name but some other type.
3832 llvm::Constant *
3833 CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName, llvm::Type *Ty,
3834                                      LangAS AddrSpace, const VarDecl *D,
3835                                      ForDefinition_t IsForDefinition) {
3836   // Lookup the entry, lazily creating it if necessary.
3837   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
3838   unsigned TargetAS = getContext().getTargetAddressSpace(AddrSpace);
3839   if (Entry) {
3840     if (WeakRefReferences.erase(Entry)) {
3841       if (D && !D->hasAttr<WeakAttr>())
3842         Entry->setLinkage(llvm::Function::ExternalLinkage);
3843     }
3844 
3845     // Handle dropped DLL attributes.
3846     if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>())
3847       Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
3848 
3849     if (LangOpts.OpenMP && !LangOpts.OpenMPSimd && D)
3850       getOpenMPRuntime().registerTargetGlobalVariable(D, Entry);
3851 
3852     if (Entry->getValueType() == Ty && Entry->getAddressSpace() == TargetAS)
3853       return Entry;
3854 
3855     // If there are two attempts to define the same mangled name, issue an
3856     // error.
3857     if (IsForDefinition && !Entry->isDeclaration()) {
3858       GlobalDecl OtherGD;
3859       const VarDecl *OtherD;
3860 
3861       // Check that D is not yet in DiagnosedConflictingDefinitions is required
3862       // to make sure that we issue an error only once.
3863       if (D && lookupRepresentativeDecl(MangledName, OtherGD) &&
3864           (D->getCanonicalDecl() != OtherGD.getCanonicalDecl().getDecl()) &&
3865           (OtherD = dyn_cast<VarDecl>(OtherGD.getDecl())) &&
3866           OtherD->hasInit() &&
3867           DiagnosedConflictingDefinitions.insert(D).second) {
3868         getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name)
3869             << MangledName;
3870         getDiags().Report(OtherGD.getDecl()->getLocation(),
3871                           diag::note_previous_definition);
3872       }
3873     }
3874 
3875     // Make sure the result is of the correct type.
3876     if (Entry->getType()->getAddressSpace() != TargetAS) {
3877       return llvm::ConstantExpr::getAddrSpaceCast(Entry,
3878                                                   Ty->getPointerTo(TargetAS));
3879     }
3880 
3881     // (If global is requested for a definition, we always need to create a new
3882     // global, not just return a bitcast.)
3883     if (!IsForDefinition)
3884       return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo(TargetAS));
3885   }
3886 
3887   auto DAddrSpace = GetGlobalVarAddressSpace(D);
3888 
3889   auto *GV = new llvm::GlobalVariable(
3890       getModule(), Ty, false, llvm::GlobalValue::ExternalLinkage, nullptr,
3891       MangledName, nullptr, llvm::GlobalVariable::NotThreadLocal,
3892       getContext().getTargetAddressSpace(DAddrSpace));
3893 
3894   // If we already created a global with the same mangled name (but different
3895   // type) before, take its name and remove it from its parent.
3896   if (Entry) {
3897     GV->takeName(Entry);
3898 
3899     if (!Entry->use_empty()) {
3900       llvm::Constant *NewPtrForOldDecl =
3901           llvm::ConstantExpr::getBitCast(GV, Entry->getType());
3902       Entry->replaceAllUsesWith(NewPtrForOldDecl);
3903     }
3904 
3905     Entry->eraseFromParent();
3906   }
3907 
3908   // This is the first use or definition of a mangled name.  If there is a
3909   // deferred decl with this name, remember that we need to emit it at the end
3910   // of the file.
3911   auto DDI = DeferredDecls.find(MangledName);
3912   if (DDI != DeferredDecls.end()) {
3913     // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
3914     // list, and remove it from DeferredDecls (since we don't need it anymore).
3915     addDeferredDeclToEmit(DDI->second);
3916     DeferredDecls.erase(DDI);
3917   }
3918 
3919   // Handle things which are present even on external declarations.
3920   if (D) {
3921     if (LangOpts.OpenMP && !LangOpts.OpenMPSimd)
3922       getOpenMPRuntime().registerTargetGlobalVariable(D, GV);
3923 
3924     // FIXME: This code is overly simple and should be merged with other global
3925     // handling.
3926     GV->setConstant(isTypeConstant(D->getType(), false));
3927 
3928     GV->setAlignment(getContext().getDeclAlign(D).getAsAlign());
3929 
3930     setLinkageForGV(GV, D);
3931 
3932     if (D->getTLSKind()) {
3933       if (D->getTLSKind() == VarDecl::TLS_Dynamic)
3934         CXXThreadLocals.push_back(D);
3935       setTLSMode(GV, *D);
3936     }
3937 
3938     setGVProperties(GV, D);
3939 
3940     // If required by the ABI, treat declarations of static data members with
3941     // inline initializers as definitions.
3942     if (getContext().isMSStaticDataMemberInlineDefinition(D)) {
3943       EmitGlobalVarDefinition(D);
3944     }
3945 
3946     // Emit section information for extern variables.
3947     if (D->hasExternalStorage()) {
3948       if (const SectionAttr *SA = D->getAttr<SectionAttr>())
3949         GV->setSection(SA->getName());
3950     }
3951 
3952     // Handle XCore specific ABI requirements.
3953     if (getTriple().getArch() == llvm::Triple::xcore &&
3954         D->getLanguageLinkage() == CLanguageLinkage &&
3955         D->getType().isConstant(Context) &&
3956         isExternallyVisible(D->getLinkageAndVisibility().getLinkage()))
3957       GV->setSection(".cp.rodata");
3958 
3959     // Check if we a have a const declaration with an initializer, we may be
3960     // able to emit it as available_externally to expose it's value to the
3961     // optimizer.
3962     if (Context.getLangOpts().CPlusPlus && GV->hasExternalLinkage() &&
3963         D->getType().isConstQualified() && !GV->hasInitializer() &&
3964         !D->hasDefinition() && D->hasInit() && !D->hasAttr<DLLImportAttr>()) {
3965       const auto *Record =
3966           Context.getBaseElementType(D->getType())->getAsCXXRecordDecl();
3967       bool HasMutableFields = Record && Record->hasMutableFields();
3968       if (!HasMutableFields) {
3969         const VarDecl *InitDecl;
3970         const Expr *InitExpr = D->getAnyInitializer(InitDecl);
3971         if (InitExpr) {
3972           ConstantEmitter emitter(*this);
3973           llvm::Constant *Init = emitter.tryEmitForInitializer(*InitDecl);
3974           if (Init) {
3975             auto *InitType = Init->getType();
3976             if (GV->getValueType() != InitType) {
3977               // The type of the initializer does not match the definition.
3978               // This happens when an initializer has a different type from
3979               // the type of the global (because of padding at the end of a
3980               // structure for instance).
3981               GV->setName(StringRef());
3982               // Make a new global with the correct type, this is now guaranteed
3983               // to work.
3984               auto *NewGV = cast<llvm::GlobalVariable>(
3985                   GetAddrOfGlobalVar(D, InitType, IsForDefinition)
3986                       ->stripPointerCasts());
3987 
3988               // Erase the old global, since it is no longer used.
3989               GV->eraseFromParent();
3990               GV = NewGV;
3991             } else {
3992               GV->setInitializer(Init);
3993               GV->setConstant(true);
3994               GV->setLinkage(llvm::GlobalValue::AvailableExternallyLinkage);
3995             }
3996             emitter.finalize(GV);
3997           }
3998         }
3999       }
4000     }
4001   }
4002 
4003   if (GV->isDeclaration()) {
4004     getTargetCodeGenInfo().setTargetAttributes(D, GV, *this);
4005     // External HIP managed variables needed to be recorded for transformation
4006     // in both device and host compilations.
4007     if (getLangOpts().CUDA && D && D->hasAttr<HIPManagedAttr>() &&
4008         D->hasExternalStorage())
4009       getCUDARuntime().handleVarRegistration(D, *GV);
4010   }
4011 
4012   LangAS ExpectedAS =
4013       D ? D->getType().getAddressSpace()
4014         : (LangOpts.OpenCL ? LangAS::opencl_global : LangAS::Default);
4015   assert(getContext().getTargetAddressSpace(ExpectedAS) == TargetAS);
4016   if (DAddrSpace != ExpectedAS) {
4017     return getTargetCodeGenInfo().performAddrSpaceCast(
4018         *this, GV, DAddrSpace, ExpectedAS, Ty->getPointerTo(TargetAS));
4019   }
4020 
4021   return GV;
4022 }
4023 
4024 llvm::Constant *
4025 CodeGenModule::GetAddrOfGlobal(GlobalDecl GD, ForDefinition_t IsForDefinition) {
4026   const Decl *D = GD.getDecl();
4027 
4028   if (isa<CXXConstructorDecl>(D) || isa<CXXDestructorDecl>(D))
4029     return getAddrOfCXXStructor(GD, /*FnInfo=*/nullptr, /*FnType=*/nullptr,
4030                                 /*DontDefer=*/false, IsForDefinition);
4031 
4032   if (isa<CXXMethodDecl>(D)) {
4033     auto FInfo =
4034         &getTypes().arrangeCXXMethodDeclaration(cast<CXXMethodDecl>(D));
4035     auto Ty = getTypes().GetFunctionType(*FInfo);
4036     return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false,
4037                              IsForDefinition);
4038   }
4039 
4040   if (isa<FunctionDecl>(D)) {
4041     const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
4042     llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
4043     return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false,
4044                              IsForDefinition);
4045   }
4046 
4047   return GetAddrOfGlobalVar(cast<VarDecl>(D), /*Ty=*/nullptr, IsForDefinition);
4048 }
4049 
4050 llvm::GlobalVariable *CodeGenModule::CreateOrReplaceCXXRuntimeVariable(
4051     StringRef Name, llvm::Type *Ty, llvm::GlobalValue::LinkageTypes Linkage,
4052     unsigned Alignment) {
4053   llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name);
4054   llvm::GlobalVariable *OldGV = nullptr;
4055 
4056   if (GV) {
4057     // Check if the variable has the right type.
4058     if (GV->getValueType() == Ty)
4059       return GV;
4060 
4061     // Because C++ name mangling, the only way we can end up with an already
4062     // existing global with the same name is if it has been declared extern "C".
4063     assert(GV->isDeclaration() && "Declaration has wrong type!");
4064     OldGV = GV;
4065   }
4066 
4067   // Create a new variable.
4068   GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true,
4069                                 Linkage, nullptr, Name);
4070 
4071   if (OldGV) {
4072     // Replace occurrences of the old variable if needed.
4073     GV->takeName(OldGV);
4074 
4075     if (!OldGV->use_empty()) {
4076       llvm::Constant *NewPtrForOldDecl =
4077       llvm::ConstantExpr::getBitCast(GV, OldGV->getType());
4078       OldGV->replaceAllUsesWith(NewPtrForOldDecl);
4079     }
4080 
4081     OldGV->eraseFromParent();
4082   }
4083 
4084   if (supportsCOMDAT() && GV->isWeakForLinker() &&
4085       !GV->hasAvailableExternallyLinkage())
4086     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
4087 
4088   GV->setAlignment(llvm::MaybeAlign(Alignment));
4089 
4090   return GV;
4091 }
4092 
4093 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the
4094 /// given global variable.  If Ty is non-null and if the global doesn't exist,
4095 /// then it will be created with the specified type instead of whatever the
4096 /// normal requested type would be. If IsForDefinition is true, it is guaranteed
4097 /// that an actual global with type Ty will be returned, not conversion of a
4098 /// variable with the same mangled name but some other type.
4099 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D,
4100                                                   llvm::Type *Ty,
4101                                            ForDefinition_t IsForDefinition) {
4102   assert(D->hasGlobalStorage() && "Not a global variable");
4103   QualType ASTTy = D->getType();
4104   if (!Ty)
4105     Ty = getTypes().ConvertTypeForMem(ASTTy);
4106 
4107   StringRef MangledName = getMangledName(D);
4108   return GetOrCreateLLVMGlobal(MangledName, Ty, ASTTy.getAddressSpace(), D,
4109                                IsForDefinition);
4110 }
4111 
4112 /// CreateRuntimeVariable - Create a new runtime global variable with the
4113 /// specified type and name.
4114 llvm::Constant *
4115 CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty,
4116                                      StringRef Name) {
4117   LangAS AddrSpace = getContext().getLangOpts().OpenCL ? LangAS::opencl_global
4118                                                        : LangAS::Default;
4119   auto *Ret = GetOrCreateLLVMGlobal(Name, Ty, AddrSpace, nullptr);
4120   setDSOLocal(cast<llvm::GlobalValue>(Ret->stripPointerCasts()));
4121   return Ret;
4122 }
4123 
4124 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) {
4125   assert(!D->getInit() && "Cannot emit definite definitions here!");
4126 
4127   StringRef MangledName = getMangledName(D);
4128   llvm::GlobalValue *GV = GetGlobalValue(MangledName);
4129 
4130   // We already have a definition, not declaration, with the same mangled name.
4131   // Emitting of declaration is not required (and actually overwrites emitted
4132   // definition).
4133   if (GV && !GV->isDeclaration())
4134     return;
4135 
4136   // If we have not seen a reference to this variable yet, place it into the
4137   // deferred declarations table to be emitted if needed later.
4138   if (!MustBeEmitted(D) && !GV) {
4139       DeferredDecls[MangledName] = D;
4140       return;
4141   }
4142 
4143   // The tentative definition is the only definition.
4144   EmitGlobalVarDefinition(D);
4145 }
4146 
4147 void CodeGenModule::EmitExternalDeclaration(const VarDecl *D) {
4148   EmitExternalVarDeclaration(D);
4149 }
4150 
4151 CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const {
4152   return Context.toCharUnitsFromBits(
4153       getDataLayout().getTypeStoreSizeInBits(Ty));
4154 }
4155 
4156 LangAS CodeGenModule::GetGlobalVarAddressSpace(const VarDecl *D) {
4157   if (LangOpts.OpenCL) {
4158     LangAS AS = D ? D->getType().getAddressSpace() : LangAS::opencl_global;
4159     assert(AS == LangAS::opencl_global ||
4160            AS == LangAS::opencl_global_device ||
4161            AS == LangAS::opencl_global_host ||
4162            AS == LangAS::opencl_constant ||
4163            AS == LangAS::opencl_local ||
4164            AS >= LangAS::FirstTargetAddressSpace);
4165     return AS;
4166   }
4167 
4168   if (LangOpts.SYCLIsDevice &&
4169       (!D || D->getType().getAddressSpace() == LangAS::Default))
4170     return LangAS::sycl_global;
4171 
4172   if (LangOpts.CUDA && LangOpts.CUDAIsDevice) {
4173     if (D && D->hasAttr<CUDAConstantAttr>())
4174       return LangAS::cuda_constant;
4175     else if (D && D->hasAttr<CUDASharedAttr>())
4176       return LangAS::cuda_shared;
4177     else if (D && D->hasAttr<CUDADeviceAttr>())
4178       return LangAS::cuda_device;
4179     else if (D && D->getType().isConstQualified())
4180       return LangAS::cuda_constant;
4181     else
4182       return LangAS::cuda_device;
4183   }
4184 
4185   if (LangOpts.OpenMP) {
4186     LangAS AS;
4187     if (OpenMPRuntime->hasAllocateAttributeForGlobalVar(D, AS))
4188       return AS;
4189   }
4190   return getTargetCodeGenInfo().getGlobalVarAddressSpace(*this, D);
4191 }
4192 
4193 LangAS CodeGenModule::GetGlobalConstantAddressSpace() const {
4194   // OpenCL v1.2 s6.5.3: a string literal is in the constant address space.
4195   if (LangOpts.OpenCL)
4196     return LangAS::opencl_constant;
4197   if (LangOpts.SYCLIsDevice)
4198     return LangAS::sycl_global;
4199   if (auto AS = getTarget().getConstantAddressSpace())
4200     return AS.getValue();
4201   return LangAS::Default;
4202 }
4203 
4204 // In address space agnostic languages, string literals are in default address
4205 // space in AST. However, certain targets (e.g. amdgcn) request them to be
4206 // emitted in constant address space in LLVM IR. To be consistent with other
4207 // parts of AST, string literal global variables in constant address space
4208 // need to be casted to default address space before being put into address
4209 // map and referenced by other part of CodeGen.
4210 // In OpenCL, string literals are in constant address space in AST, therefore
4211 // they should not be casted to default address space.
4212 static llvm::Constant *
4213 castStringLiteralToDefaultAddressSpace(CodeGenModule &CGM,
4214                                        llvm::GlobalVariable *GV) {
4215   llvm::Constant *Cast = GV;
4216   if (!CGM.getLangOpts().OpenCL) {
4217     auto AS = CGM.GetGlobalConstantAddressSpace();
4218     if (AS != LangAS::Default)
4219       Cast = CGM.getTargetCodeGenInfo().performAddrSpaceCast(
4220           CGM, GV, AS, LangAS::Default,
4221           GV->getValueType()->getPointerTo(
4222               CGM.getContext().getTargetAddressSpace(LangAS::Default)));
4223   }
4224   return Cast;
4225 }
4226 
4227 template<typename SomeDecl>
4228 void CodeGenModule::MaybeHandleStaticInExternC(const SomeDecl *D,
4229                                                llvm::GlobalValue *GV) {
4230   if (!getLangOpts().CPlusPlus)
4231     return;
4232 
4233   // Must have 'used' attribute, or else inline assembly can't rely on
4234   // the name existing.
4235   if (!D->template hasAttr<UsedAttr>())
4236     return;
4237 
4238   // Must have internal linkage and an ordinary name.
4239   if (!D->getIdentifier() || D->getFormalLinkage() != InternalLinkage)
4240     return;
4241 
4242   // Must be in an extern "C" context. Entities declared directly within
4243   // a record are not extern "C" even if the record is in such a context.
4244   const SomeDecl *First = D->getFirstDecl();
4245   if (First->getDeclContext()->isRecord() || !First->isInExternCContext())
4246     return;
4247 
4248   // OK, this is an internal linkage entity inside an extern "C" linkage
4249   // specification. Make a note of that so we can give it the "expected"
4250   // mangled name if nothing else is using that name.
4251   std::pair<StaticExternCMap::iterator, bool> R =
4252       StaticExternCValues.insert(std::make_pair(D->getIdentifier(), GV));
4253 
4254   // If we have multiple internal linkage entities with the same name
4255   // in extern "C" regions, none of them gets that name.
4256   if (!R.second)
4257     R.first->second = nullptr;
4258 }
4259 
4260 static bool shouldBeInCOMDAT(CodeGenModule &CGM, const Decl &D) {
4261   if (!CGM.supportsCOMDAT())
4262     return false;
4263 
4264   // Do not set COMDAT attribute for CUDA/HIP stub functions to prevent
4265   // them being "merged" by the COMDAT Folding linker optimization.
4266   if (D.hasAttr<CUDAGlobalAttr>())
4267     return false;
4268 
4269   if (D.hasAttr<SelectAnyAttr>())
4270     return true;
4271 
4272   GVALinkage Linkage;
4273   if (auto *VD = dyn_cast<VarDecl>(&D))
4274     Linkage = CGM.getContext().GetGVALinkageForVariable(VD);
4275   else
4276     Linkage = CGM.getContext().GetGVALinkageForFunction(cast<FunctionDecl>(&D));
4277 
4278   switch (Linkage) {
4279   case GVA_Internal:
4280   case GVA_AvailableExternally:
4281   case GVA_StrongExternal:
4282     return false;
4283   case GVA_DiscardableODR:
4284   case GVA_StrongODR:
4285     return true;
4286   }
4287   llvm_unreachable("No such linkage");
4288 }
4289 
4290 void CodeGenModule::maybeSetTrivialComdat(const Decl &D,
4291                                           llvm::GlobalObject &GO) {
4292   if (!shouldBeInCOMDAT(*this, D))
4293     return;
4294   GO.setComdat(TheModule.getOrInsertComdat(GO.getName()));
4295 }
4296 
4297 /// Pass IsTentative as true if you want to create a tentative definition.
4298 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D,
4299                                             bool IsTentative) {
4300   // OpenCL global variables of sampler type are translated to function calls,
4301   // therefore no need to be translated.
4302   QualType ASTTy = D->getType();
4303   if (getLangOpts().OpenCL && ASTTy->isSamplerT())
4304     return;
4305 
4306   // If this is OpenMP device, check if it is legal to emit this global
4307   // normally.
4308   if (LangOpts.OpenMPIsDevice && OpenMPRuntime &&
4309       OpenMPRuntime->emitTargetGlobalVariable(D))
4310     return;
4311 
4312   llvm::TrackingVH<llvm::Constant> Init;
4313   bool NeedsGlobalCtor = false;
4314   bool NeedsGlobalDtor =
4315       D->needsDestruction(getContext()) == QualType::DK_cxx_destructor;
4316 
4317   const VarDecl *InitDecl;
4318   const Expr *InitExpr = D->getAnyInitializer(InitDecl);
4319 
4320   Optional<ConstantEmitter> emitter;
4321 
4322   // CUDA E.2.4.1 "__shared__ variables cannot have an initialization
4323   // as part of their declaration."  Sema has already checked for
4324   // error cases, so we just need to set Init to UndefValue.
4325   bool IsCUDASharedVar =
4326       getLangOpts().CUDAIsDevice && D->hasAttr<CUDASharedAttr>();
4327   // Shadows of initialized device-side global variables are also left
4328   // undefined.
4329   // Managed Variables should be initialized on both host side and device side.
4330   bool IsCUDAShadowVar =
4331       !getLangOpts().CUDAIsDevice && !D->hasAttr<HIPManagedAttr>() &&
4332       (D->hasAttr<CUDAConstantAttr>() || D->hasAttr<CUDADeviceAttr>() ||
4333        D->hasAttr<CUDASharedAttr>());
4334   bool IsCUDADeviceShadowVar =
4335       getLangOpts().CUDAIsDevice && !D->hasAttr<HIPManagedAttr>() &&
4336       (D->getType()->isCUDADeviceBuiltinSurfaceType() ||
4337        D->getType()->isCUDADeviceBuiltinTextureType());
4338   if (getLangOpts().CUDA &&
4339       (IsCUDASharedVar || IsCUDAShadowVar || IsCUDADeviceShadowVar))
4340     Init = llvm::UndefValue::get(getTypes().ConvertTypeForMem(ASTTy));
4341   else if (D->hasAttr<LoaderUninitializedAttr>())
4342     Init = llvm::UndefValue::get(getTypes().ConvertTypeForMem(ASTTy));
4343   else if (!InitExpr) {
4344     // This is a tentative definition; tentative definitions are
4345     // implicitly initialized with { 0 }.
4346     //
4347     // Note that tentative definitions are only emitted at the end of
4348     // a translation unit, so they should never have incomplete
4349     // type. In addition, EmitTentativeDefinition makes sure that we
4350     // never attempt to emit a tentative definition if a real one
4351     // exists. A use may still exists, however, so we still may need
4352     // to do a RAUW.
4353     assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type");
4354     Init = EmitNullConstant(D->getType());
4355   } else {
4356     initializedGlobalDecl = GlobalDecl(D);
4357     emitter.emplace(*this);
4358     llvm::Constant *Initializer = emitter->tryEmitForInitializer(*InitDecl);
4359     if (!Initializer) {
4360       QualType T = InitExpr->getType();
4361       if (D->getType()->isReferenceType())
4362         T = D->getType();
4363 
4364       if (getLangOpts().CPlusPlus) {
4365         Init = EmitNullConstant(T);
4366         NeedsGlobalCtor = true;
4367       } else {
4368         ErrorUnsupported(D, "static initializer");
4369         Init = llvm::UndefValue::get(getTypes().ConvertType(T));
4370       }
4371     } else {
4372       Init = Initializer;
4373       // We don't need an initializer, so remove the entry for the delayed
4374       // initializer position (just in case this entry was delayed) if we
4375       // also don't need to register a destructor.
4376       if (getLangOpts().CPlusPlus && !NeedsGlobalDtor)
4377         DelayedCXXInitPosition.erase(D);
4378     }
4379   }
4380 
4381   llvm::Type* InitType = Init->getType();
4382   llvm::Constant *Entry =
4383       GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative));
4384 
4385   // Strip off pointer casts if we got them.
4386   Entry = Entry->stripPointerCasts();
4387 
4388   // Entry is now either a Function or GlobalVariable.
4389   auto *GV = dyn_cast<llvm::GlobalVariable>(Entry);
4390 
4391   // We have a definition after a declaration with the wrong type.
4392   // We must make a new GlobalVariable* and update everything that used OldGV
4393   // (a declaration or tentative definition) with the new GlobalVariable*
4394   // (which will be a definition).
4395   //
4396   // This happens if there is a prototype for a global (e.g.
4397   // "extern int x[];") and then a definition of a different type (e.g.
4398   // "int x[10];"). This also happens when an initializer has a different type
4399   // from the type of the global (this happens with unions).
4400   if (!GV || GV->getValueType() != InitType ||
4401       GV->getType()->getAddressSpace() !=
4402           getContext().getTargetAddressSpace(GetGlobalVarAddressSpace(D))) {
4403 
4404     // Move the old entry aside so that we'll create a new one.
4405     Entry->setName(StringRef());
4406 
4407     // Make a new global with the correct type, this is now guaranteed to work.
4408     GV = cast<llvm::GlobalVariable>(
4409         GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative))
4410             ->stripPointerCasts());
4411 
4412     // Replace all uses of the old global with the new global
4413     llvm::Constant *NewPtrForOldDecl =
4414         llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV,
4415                                                              Entry->getType());
4416     Entry->replaceAllUsesWith(NewPtrForOldDecl);
4417 
4418     // Erase the old global, since it is no longer used.
4419     cast<llvm::GlobalValue>(Entry)->eraseFromParent();
4420   }
4421 
4422   MaybeHandleStaticInExternC(D, GV);
4423 
4424   if (D->hasAttr<AnnotateAttr>())
4425     AddGlobalAnnotations(D, GV);
4426 
4427   // Set the llvm linkage type as appropriate.
4428   llvm::GlobalValue::LinkageTypes Linkage =
4429       getLLVMLinkageVarDefinition(D, GV->isConstant());
4430 
4431   // CUDA B.2.1 "The __device__ qualifier declares a variable that resides on
4432   // the device. [...]"
4433   // CUDA B.2.2 "The __constant__ qualifier, optionally used together with
4434   // __device__, declares a variable that: [...]
4435   // Is accessible from all the threads within the grid and from the host
4436   // through the runtime library (cudaGetSymbolAddress() / cudaGetSymbolSize()
4437   // / cudaMemcpyToSymbol() / cudaMemcpyFromSymbol())."
4438   if (GV && LangOpts.CUDA) {
4439     if (LangOpts.CUDAIsDevice) {
4440       if (Linkage != llvm::GlobalValue::InternalLinkage &&
4441           (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>() ||
4442            D->getType()->isCUDADeviceBuiltinSurfaceType() ||
4443            D->getType()->isCUDADeviceBuiltinTextureType()))
4444         GV->setExternallyInitialized(true);
4445     } else {
4446       getCUDARuntime().internalizeDeviceSideVar(D, Linkage);
4447     }
4448     getCUDARuntime().handleVarRegistration(D, *GV);
4449   }
4450 
4451   GV->setInitializer(Init);
4452   if (emitter)
4453     emitter->finalize(GV);
4454 
4455   // If it is safe to mark the global 'constant', do so now.
4456   GV->setConstant(!NeedsGlobalCtor && !NeedsGlobalDtor &&
4457                   isTypeConstant(D->getType(), true));
4458 
4459   // If it is in a read-only section, mark it 'constant'.
4460   if (const SectionAttr *SA = D->getAttr<SectionAttr>()) {
4461     const ASTContext::SectionInfo &SI = Context.SectionInfos[SA->getName()];
4462     if ((SI.SectionFlags & ASTContext::PSF_Write) == 0)
4463       GV->setConstant(true);
4464   }
4465 
4466   GV->setAlignment(getContext().getDeclAlign(D).getAsAlign());
4467 
4468   // On Darwin, unlike other Itanium C++ ABI platforms, the thread-wrapper
4469   // function is only defined alongside the variable, not also alongside
4470   // callers. Normally, all accesses to a thread_local go through the
4471   // thread-wrapper in order to ensure initialization has occurred, underlying
4472   // variable will never be used other than the thread-wrapper, so it can be
4473   // converted to internal linkage.
4474   //
4475   // However, if the variable has the 'constinit' attribute, it _can_ be
4476   // referenced directly, without calling the thread-wrapper, so the linkage
4477   // must not be changed.
4478   //
4479   // Additionally, if the variable isn't plain external linkage, e.g. if it's
4480   // weak or linkonce, the de-duplication semantics are important to preserve,
4481   // so we don't change the linkage.
4482   if (D->getTLSKind() == VarDecl::TLS_Dynamic &&
4483       Linkage == llvm::GlobalValue::ExternalLinkage &&
4484       Context.getTargetInfo().getTriple().isOSDarwin() &&
4485       !D->hasAttr<ConstInitAttr>())
4486     Linkage = llvm::GlobalValue::InternalLinkage;
4487 
4488   GV->setLinkage(Linkage);
4489   if (D->hasAttr<DLLImportAttr>())
4490     GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass);
4491   else if (D->hasAttr<DLLExportAttr>())
4492     GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass);
4493   else
4494     GV->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass);
4495 
4496   if (Linkage == llvm::GlobalVariable::CommonLinkage) {
4497     // common vars aren't constant even if declared const.
4498     GV->setConstant(false);
4499     // Tentative definition of global variables may be initialized with
4500     // non-zero null pointers. In this case they should have weak linkage
4501     // since common linkage must have zero initializer and must not have
4502     // explicit section therefore cannot have non-zero initial value.
4503     if (!GV->getInitializer()->isNullValue())
4504       GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage);
4505   }
4506 
4507   setNonAliasAttributes(D, GV);
4508 
4509   if (D->getTLSKind() && !GV->isThreadLocal()) {
4510     if (D->getTLSKind() == VarDecl::TLS_Dynamic)
4511       CXXThreadLocals.push_back(D);
4512     setTLSMode(GV, *D);
4513   }
4514 
4515   maybeSetTrivialComdat(*D, *GV);
4516 
4517   // Emit the initializer function if necessary.
4518   if (NeedsGlobalCtor || NeedsGlobalDtor)
4519     EmitCXXGlobalVarDeclInitFunc(D, GV, NeedsGlobalCtor);
4520 
4521   SanitizerMD->reportGlobalToASan(GV, *D, NeedsGlobalCtor);
4522 
4523   // Emit global variable debug information.
4524   if (CGDebugInfo *DI = getModuleDebugInfo())
4525     if (getCodeGenOpts().hasReducedDebugInfo())
4526       DI->EmitGlobalVariable(GV, D);
4527 }
4528 
4529 void CodeGenModule::EmitExternalVarDeclaration(const VarDecl *D) {
4530   if (CGDebugInfo *DI = getModuleDebugInfo())
4531     if (getCodeGenOpts().hasReducedDebugInfo()) {
4532       QualType ASTTy = D->getType();
4533       llvm::Type *Ty = getTypes().ConvertTypeForMem(D->getType());
4534       llvm::Constant *GV =
4535           GetOrCreateLLVMGlobal(D->getName(), Ty, ASTTy.getAddressSpace(), D);
4536       DI->EmitExternalVariable(
4537           cast<llvm::GlobalVariable>(GV->stripPointerCasts()), D);
4538     }
4539 }
4540 
4541 static bool isVarDeclStrongDefinition(const ASTContext &Context,
4542                                       CodeGenModule &CGM, const VarDecl *D,
4543                                       bool NoCommon) {
4544   // Don't give variables common linkage if -fno-common was specified unless it
4545   // was overridden by a NoCommon attribute.
4546   if ((NoCommon || D->hasAttr<NoCommonAttr>()) && !D->hasAttr<CommonAttr>())
4547     return true;
4548 
4549   // C11 6.9.2/2:
4550   //   A declaration of an identifier for an object that has file scope without
4551   //   an initializer, and without a storage-class specifier or with the
4552   //   storage-class specifier static, constitutes a tentative definition.
4553   if (D->getInit() || D->hasExternalStorage())
4554     return true;
4555 
4556   // A variable cannot be both common and exist in a section.
4557   if (D->hasAttr<SectionAttr>())
4558     return true;
4559 
4560   // A variable cannot be both common and exist in a section.
4561   // We don't try to determine which is the right section in the front-end.
4562   // If no specialized section name is applicable, it will resort to default.
4563   if (D->hasAttr<PragmaClangBSSSectionAttr>() ||
4564       D->hasAttr<PragmaClangDataSectionAttr>() ||
4565       D->hasAttr<PragmaClangRelroSectionAttr>() ||
4566       D->hasAttr<PragmaClangRodataSectionAttr>())
4567     return true;
4568 
4569   // Thread local vars aren't considered common linkage.
4570   if (D->getTLSKind())
4571     return true;
4572 
4573   // Tentative definitions marked with WeakImportAttr are true definitions.
4574   if (D->hasAttr<WeakImportAttr>())
4575     return true;
4576 
4577   // A variable cannot be both common and exist in a comdat.
4578   if (shouldBeInCOMDAT(CGM, *D))
4579     return true;
4580 
4581   // Declarations with a required alignment do not have common linkage in MSVC
4582   // mode.
4583   if (Context.getTargetInfo().getCXXABI().isMicrosoft()) {
4584     if (D->hasAttr<AlignedAttr>())
4585       return true;
4586     QualType VarType = D->getType();
4587     if (Context.isAlignmentRequired(VarType))
4588       return true;
4589 
4590     if (const auto *RT = VarType->getAs<RecordType>()) {
4591       const RecordDecl *RD = RT->getDecl();
4592       for (const FieldDecl *FD : RD->fields()) {
4593         if (FD->isBitField())
4594           continue;
4595         if (FD->hasAttr<AlignedAttr>())
4596           return true;
4597         if (Context.isAlignmentRequired(FD->getType()))
4598           return true;
4599       }
4600     }
4601   }
4602 
4603   // Microsoft's link.exe doesn't support alignments greater than 32 bytes for
4604   // common symbols, so symbols with greater alignment requirements cannot be
4605   // common.
4606   // Other COFF linkers (ld.bfd and LLD) support arbitrary power-of-two
4607   // alignments for common symbols via the aligncomm directive, so this
4608   // restriction only applies to MSVC environments.
4609   if (Context.getTargetInfo().getTriple().isKnownWindowsMSVCEnvironment() &&
4610       Context.getTypeAlignIfKnown(D->getType()) >
4611           Context.toBits(CharUnits::fromQuantity(32)))
4612     return true;
4613 
4614   return false;
4615 }
4616 
4617 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageForDeclarator(
4618     const DeclaratorDecl *D, GVALinkage Linkage, bool IsConstantVariable) {
4619   if (Linkage == GVA_Internal)
4620     return llvm::Function::InternalLinkage;
4621 
4622   if (D->hasAttr<WeakAttr>()) {
4623     if (IsConstantVariable)
4624       return llvm::GlobalVariable::WeakODRLinkage;
4625     else
4626       return llvm::GlobalVariable::WeakAnyLinkage;
4627   }
4628 
4629   if (const auto *FD = D->getAsFunction())
4630     if (FD->isMultiVersion() && Linkage == GVA_AvailableExternally)
4631       return llvm::GlobalVariable::LinkOnceAnyLinkage;
4632 
4633   // We are guaranteed to have a strong definition somewhere else,
4634   // so we can use available_externally linkage.
4635   if (Linkage == GVA_AvailableExternally)
4636     return llvm::GlobalValue::AvailableExternallyLinkage;
4637 
4638   // Note that Apple's kernel linker doesn't support symbol
4639   // coalescing, so we need to avoid linkonce and weak linkages there.
4640   // Normally, this means we just map to internal, but for explicit
4641   // instantiations we'll map to external.
4642 
4643   // In C++, the compiler has to emit a definition in every translation unit
4644   // that references the function.  We should use linkonce_odr because
4645   // a) if all references in this translation unit are optimized away, we
4646   // don't need to codegen it.  b) if the function persists, it needs to be
4647   // merged with other definitions. c) C++ has the ODR, so we know the
4648   // definition is dependable.
4649   if (Linkage == GVA_DiscardableODR)
4650     return !Context.getLangOpts().AppleKext ? llvm::Function::LinkOnceODRLinkage
4651                                             : llvm::Function::InternalLinkage;
4652 
4653   // An explicit instantiation of a template has weak linkage, since
4654   // explicit instantiations can occur in multiple translation units
4655   // and must all be equivalent. However, we are not allowed to
4656   // throw away these explicit instantiations.
4657   //
4658   // CUDA/HIP: For -fno-gpu-rdc case, device code is limited to one TU,
4659   // so say that CUDA templates are either external (for kernels) or internal.
4660   // This lets llvm perform aggressive inter-procedural optimizations. For
4661   // -fgpu-rdc case, device function calls across multiple TU's are allowed,
4662   // therefore we need to follow the normal linkage paradigm.
4663   if (Linkage == GVA_StrongODR) {
4664     if (getLangOpts().AppleKext)
4665       return llvm::Function::ExternalLinkage;
4666     if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice &&
4667         !getLangOpts().GPURelocatableDeviceCode)
4668       return D->hasAttr<CUDAGlobalAttr>() ? llvm::Function::ExternalLinkage
4669                                           : llvm::Function::InternalLinkage;
4670     return llvm::Function::WeakODRLinkage;
4671   }
4672 
4673   // C++ doesn't have tentative definitions and thus cannot have common
4674   // linkage.
4675   if (!getLangOpts().CPlusPlus && isa<VarDecl>(D) &&
4676       !isVarDeclStrongDefinition(Context, *this, cast<VarDecl>(D),
4677                                  CodeGenOpts.NoCommon))
4678     return llvm::GlobalVariable::CommonLinkage;
4679 
4680   // selectany symbols are externally visible, so use weak instead of
4681   // linkonce.  MSVC optimizes away references to const selectany globals, so
4682   // all definitions should be the same and ODR linkage should be used.
4683   // http://msdn.microsoft.com/en-us/library/5tkz6s71.aspx
4684   if (D->hasAttr<SelectAnyAttr>())
4685     return llvm::GlobalVariable::WeakODRLinkage;
4686 
4687   // Otherwise, we have strong external linkage.
4688   assert(Linkage == GVA_StrongExternal);
4689   return llvm::GlobalVariable::ExternalLinkage;
4690 }
4691 
4692 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageVarDefinition(
4693     const VarDecl *VD, bool IsConstant) {
4694   GVALinkage Linkage = getContext().GetGVALinkageForVariable(VD);
4695   return getLLVMLinkageForDeclarator(VD, Linkage, IsConstant);
4696 }
4697 
4698 /// Replace the uses of a function that was declared with a non-proto type.
4699 /// We want to silently drop extra arguments from call sites
4700 static void replaceUsesOfNonProtoConstant(llvm::Constant *old,
4701                                           llvm::Function *newFn) {
4702   // Fast path.
4703   if (old->use_empty()) return;
4704 
4705   llvm::Type *newRetTy = newFn->getReturnType();
4706   SmallVector<llvm::Value*, 4> newArgs;
4707 
4708   for (llvm::Value::use_iterator ui = old->use_begin(), ue = old->use_end();
4709          ui != ue; ) {
4710     llvm::Value::use_iterator use = ui++; // Increment before the use is erased.
4711     llvm::User *user = use->getUser();
4712 
4713     // Recognize and replace uses of bitcasts.  Most calls to
4714     // unprototyped functions will use bitcasts.
4715     if (auto *bitcast = dyn_cast<llvm::ConstantExpr>(user)) {
4716       if (bitcast->getOpcode() == llvm::Instruction::BitCast)
4717         replaceUsesOfNonProtoConstant(bitcast, newFn);
4718       continue;
4719     }
4720 
4721     // Recognize calls to the function.
4722     llvm::CallBase *callSite = dyn_cast<llvm::CallBase>(user);
4723     if (!callSite) continue;
4724     if (!callSite->isCallee(&*use))
4725       continue;
4726 
4727     // If the return types don't match exactly, then we can't
4728     // transform this call unless it's dead.
4729     if (callSite->getType() != newRetTy && !callSite->use_empty())
4730       continue;
4731 
4732     // Get the call site's attribute list.
4733     SmallVector<llvm::AttributeSet, 8> newArgAttrs;
4734     llvm::AttributeList oldAttrs = callSite->getAttributes();
4735 
4736     // If the function was passed too few arguments, don't transform.
4737     unsigned newNumArgs = newFn->arg_size();
4738     if (callSite->arg_size() < newNumArgs)
4739       continue;
4740 
4741     // If extra arguments were passed, we silently drop them.
4742     // If any of the types mismatch, we don't transform.
4743     unsigned argNo = 0;
4744     bool dontTransform = false;
4745     for (llvm::Argument &A : newFn->args()) {
4746       if (callSite->getArgOperand(argNo)->getType() != A.getType()) {
4747         dontTransform = true;
4748         break;
4749       }
4750 
4751       // Add any parameter attributes.
4752       newArgAttrs.push_back(oldAttrs.getParamAttrs(argNo));
4753       argNo++;
4754     }
4755     if (dontTransform)
4756       continue;
4757 
4758     // Okay, we can transform this.  Create the new call instruction and copy
4759     // over the required information.
4760     newArgs.append(callSite->arg_begin(), callSite->arg_begin() + argNo);
4761 
4762     // Copy over any operand bundles.
4763     SmallVector<llvm::OperandBundleDef, 1> newBundles;
4764     callSite->getOperandBundlesAsDefs(newBundles);
4765 
4766     llvm::CallBase *newCall;
4767     if (dyn_cast<llvm::CallInst>(callSite)) {
4768       newCall =
4769           llvm::CallInst::Create(newFn, newArgs, newBundles, "", callSite);
4770     } else {
4771       auto *oldInvoke = cast<llvm::InvokeInst>(callSite);
4772       newCall = llvm::InvokeInst::Create(newFn, oldInvoke->getNormalDest(),
4773                                          oldInvoke->getUnwindDest(), newArgs,
4774                                          newBundles, "", callSite);
4775     }
4776     newArgs.clear(); // for the next iteration
4777 
4778     if (!newCall->getType()->isVoidTy())
4779       newCall->takeName(callSite);
4780     newCall->setAttributes(
4781         llvm::AttributeList::get(newFn->getContext(), oldAttrs.getFnAttrs(),
4782                                  oldAttrs.getRetAttrs(), newArgAttrs));
4783     newCall->setCallingConv(callSite->getCallingConv());
4784 
4785     // Finally, remove the old call, replacing any uses with the new one.
4786     if (!callSite->use_empty())
4787       callSite->replaceAllUsesWith(newCall);
4788 
4789     // Copy debug location attached to CI.
4790     if (callSite->getDebugLoc())
4791       newCall->setDebugLoc(callSite->getDebugLoc());
4792 
4793     callSite->eraseFromParent();
4794   }
4795 }
4796 
4797 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we
4798 /// implement a function with no prototype, e.g. "int foo() {}".  If there are
4799 /// existing call uses of the old function in the module, this adjusts them to
4800 /// call the new function directly.
4801 ///
4802 /// This is not just a cleanup: the always_inline pass requires direct calls to
4803 /// functions to be able to inline them.  If there is a bitcast in the way, it
4804 /// won't inline them.  Instcombine normally deletes these calls, but it isn't
4805 /// run at -O0.
4806 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
4807                                                       llvm::Function *NewFn) {
4808   // If we're redefining a global as a function, don't transform it.
4809   if (!isa<llvm::Function>(Old)) return;
4810 
4811   replaceUsesOfNonProtoConstant(Old, NewFn);
4812 }
4813 
4814 void CodeGenModule::HandleCXXStaticMemberVarInstantiation(VarDecl *VD) {
4815   auto DK = VD->isThisDeclarationADefinition();
4816   if (DK == VarDecl::Definition && VD->hasAttr<DLLImportAttr>())
4817     return;
4818 
4819   TemplateSpecializationKind TSK = VD->getTemplateSpecializationKind();
4820   // If we have a definition, this might be a deferred decl. If the
4821   // instantiation is explicit, make sure we emit it at the end.
4822   if (VD->getDefinition() && TSK == TSK_ExplicitInstantiationDefinition)
4823     GetAddrOfGlobalVar(VD);
4824 
4825   EmitTopLevelDecl(VD);
4826 }
4827 
4828 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD,
4829                                                  llvm::GlobalValue *GV) {
4830   const auto *D = cast<FunctionDecl>(GD.getDecl());
4831 
4832   // Compute the function info and LLVM type.
4833   const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
4834   llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
4835 
4836   // Get or create the prototype for the function.
4837   if (!GV || (GV->getValueType() != Ty))
4838     GV = cast<llvm::GlobalValue>(GetAddrOfFunction(GD, Ty, /*ForVTable=*/false,
4839                                                    /*DontDefer=*/true,
4840                                                    ForDefinition));
4841 
4842   // Already emitted.
4843   if (!GV->isDeclaration())
4844     return;
4845 
4846   // We need to set linkage and visibility on the function before
4847   // generating code for it because various parts of IR generation
4848   // want to propagate this information down (e.g. to local static
4849   // declarations).
4850   auto *Fn = cast<llvm::Function>(GV);
4851   setFunctionLinkage(GD, Fn);
4852 
4853   // FIXME: this is redundant with part of setFunctionDefinitionAttributes
4854   setGVProperties(Fn, GD);
4855 
4856   MaybeHandleStaticInExternC(D, Fn);
4857 
4858   maybeSetTrivialComdat(*D, *Fn);
4859 
4860   // Set CodeGen attributes that represent floating point environment.
4861   setLLVMFunctionFEnvAttributes(D, Fn);
4862 
4863   CodeGenFunction(*this).GenerateCode(GD, Fn, FI);
4864 
4865   setNonAliasAttributes(GD, Fn);
4866   SetLLVMFunctionAttributesForDefinition(D, Fn);
4867 
4868   if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>())
4869     AddGlobalCtor(Fn, CA->getPriority());
4870   if (const DestructorAttr *DA = D->getAttr<DestructorAttr>())
4871     AddGlobalDtor(Fn, DA->getPriority(), true);
4872   if (D->hasAttr<AnnotateAttr>())
4873     AddGlobalAnnotations(D, Fn);
4874 }
4875 
4876 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) {
4877   const auto *D = cast<ValueDecl>(GD.getDecl());
4878   const AliasAttr *AA = D->getAttr<AliasAttr>();
4879   assert(AA && "Not an alias?");
4880 
4881   StringRef MangledName = getMangledName(GD);
4882 
4883   if (AA->getAliasee() == MangledName) {
4884     Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0;
4885     return;
4886   }
4887 
4888   // If there is a definition in the module, then it wins over the alias.
4889   // This is dubious, but allow it to be safe.  Just ignore the alias.
4890   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
4891   if (Entry && !Entry->isDeclaration())
4892     return;
4893 
4894   Aliases.push_back(GD);
4895 
4896   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
4897 
4898   // Create a reference to the named value.  This ensures that it is emitted
4899   // if a deferred decl.
4900   llvm::Constant *Aliasee;
4901   llvm::GlobalValue::LinkageTypes LT;
4902   if (isa<llvm::FunctionType>(DeclTy)) {
4903     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GD,
4904                                       /*ForVTable=*/false);
4905     LT = getFunctionLinkage(GD);
4906   } else {
4907     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), DeclTy, LangAS::Default,
4908                                     /*D=*/nullptr);
4909     if (const auto *VD = dyn_cast<VarDecl>(GD.getDecl()))
4910       LT = getLLVMLinkageVarDefinition(VD, D->getType().isConstQualified());
4911     else
4912       LT = getFunctionLinkage(GD);
4913   }
4914 
4915   // Create the new alias itself, but don't set a name yet.
4916   unsigned AS = Aliasee->getType()->getPointerAddressSpace();
4917   auto *GA =
4918       llvm::GlobalAlias::create(DeclTy, AS, LT, "", Aliasee, &getModule());
4919 
4920   if (Entry) {
4921     if (GA->getAliasee() == Entry) {
4922       Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0;
4923       return;
4924     }
4925 
4926     assert(Entry->isDeclaration());
4927 
4928     // If there is a declaration in the module, then we had an extern followed
4929     // by the alias, as in:
4930     //   extern int test6();
4931     //   ...
4932     //   int test6() __attribute__((alias("test7")));
4933     //
4934     // Remove it and replace uses of it with the alias.
4935     GA->takeName(Entry);
4936 
4937     Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA,
4938                                                           Entry->getType()));
4939     Entry->eraseFromParent();
4940   } else {
4941     GA->setName(MangledName);
4942   }
4943 
4944   // Set attributes which are particular to an alias; this is a
4945   // specialization of the attributes which may be set on a global
4946   // variable/function.
4947   if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakRefAttr>() ||
4948       D->isWeakImported()) {
4949     GA->setLinkage(llvm::Function::WeakAnyLinkage);
4950   }
4951 
4952   if (const auto *VD = dyn_cast<VarDecl>(D))
4953     if (VD->getTLSKind())
4954       setTLSMode(GA, *VD);
4955 
4956   SetCommonAttributes(GD, GA);
4957 }
4958 
4959 void CodeGenModule::emitIFuncDefinition(GlobalDecl GD) {
4960   const auto *D = cast<ValueDecl>(GD.getDecl());
4961   const IFuncAttr *IFA = D->getAttr<IFuncAttr>();
4962   assert(IFA && "Not an ifunc?");
4963 
4964   StringRef MangledName = getMangledName(GD);
4965 
4966   if (IFA->getResolver() == MangledName) {
4967     Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1;
4968     return;
4969   }
4970 
4971   // Report an error if some definition overrides ifunc.
4972   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
4973   if (Entry && !Entry->isDeclaration()) {
4974     GlobalDecl OtherGD;
4975     if (lookupRepresentativeDecl(MangledName, OtherGD) &&
4976         DiagnosedConflictingDefinitions.insert(GD).second) {
4977       Diags.Report(D->getLocation(), diag::err_duplicate_mangled_name)
4978           << MangledName;
4979       Diags.Report(OtherGD.getDecl()->getLocation(),
4980                    diag::note_previous_definition);
4981     }
4982     return;
4983   }
4984 
4985   Aliases.push_back(GD);
4986 
4987   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
4988   llvm::Constant *Resolver =
4989       GetOrCreateLLVMFunction(IFA->getResolver(), DeclTy, GD,
4990                               /*ForVTable=*/false);
4991   llvm::GlobalIFunc *GIF =
4992       llvm::GlobalIFunc::create(DeclTy, 0, llvm::Function::ExternalLinkage,
4993                                 "", Resolver, &getModule());
4994   if (Entry) {
4995     if (GIF->getResolver() == Entry) {
4996       Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1;
4997       return;
4998     }
4999     assert(Entry->isDeclaration());
5000 
5001     // If there is a declaration in the module, then we had an extern followed
5002     // by the ifunc, as in:
5003     //   extern int test();
5004     //   ...
5005     //   int test() __attribute__((ifunc("resolver")));
5006     //
5007     // Remove it and replace uses of it with the ifunc.
5008     GIF->takeName(Entry);
5009 
5010     Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GIF,
5011                                                           Entry->getType()));
5012     Entry->eraseFromParent();
5013   } else
5014     GIF->setName(MangledName);
5015 
5016   SetCommonAttributes(GD, GIF);
5017 }
5018 
5019 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,
5020                                             ArrayRef<llvm::Type*> Tys) {
5021   return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID,
5022                                          Tys);
5023 }
5024 
5025 static llvm::StringMapEntry<llvm::GlobalVariable *> &
5026 GetConstantCFStringEntry(llvm::StringMap<llvm::GlobalVariable *> &Map,
5027                          const StringLiteral *Literal, bool TargetIsLSB,
5028                          bool &IsUTF16, unsigned &StringLength) {
5029   StringRef String = Literal->getString();
5030   unsigned NumBytes = String.size();
5031 
5032   // Check for simple case.
5033   if (!Literal->containsNonAsciiOrNull()) {
5034     StringLength = NumBytes;
5035     return *Map.insert(std::make_pair(String, nullptr)).first;
5036   }
5037 
5038   // Otherwise, convert the UTF8 literals into a string of shorts.
5039   IsUTF16 = true;
5040 
5041   SmallVector<llvm::UTF16, 128> ToBuf(NumBytes + 1); // +1 for ending nulls.
5042   const llvm::UTF8 *FromPtr = (const llvm::UTF8 *)String.data();
5043   llvm::UTF16 *ToPtr = &ToBuf[0];
5044 
5045   (void)llvm::ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, &ToPtr,
5046                                  ToPtr + NumBytes, llvm::strictConversion);
5047 
5048   // ConvertUTF8toUTF16 returns the length in ToPtr.
5049   StringLength = ToPtr - &ToBuf[0];
5050 
5051   // Add an explicit null.
5052   *ToPtr = 0;
5053   return *Map.insert(std::make_pair(
5054                          StringRef(reinterpret_cast<const char *>(ToBuf.data()),
5055                                    (StringLength + 1) * 2),
5056                          nullptr)).first;
5057 }
5058 
5059 ConstantAddress
5060 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) {
5061   unsigned StringLength = 0;
5062   bool isUTF16 = false;
5063   llvm::StringMapEntry<llvm::GlobalVariable *> &Entry =
5064       GetConstantCFStringEntry(CFConstantStringMap, Literal,
5065                                getDataLayout().isLittleEndian(), isUTF16,
5066                                StringLength);
5067 
5068   if (auto *C = Entry.second)
5069     return ConstantAddress(C, CharUnits::fromQuantity(C->getAlignment()));
5070 
5071   llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty);
5072   llvm::Constant *Zeros[] = { Zero, Zero };
5073 
5074   const ASTContext &Context = getContext();
5075   const llvm::Triple &Triple = getTriple();
5076 
5077   const auto CFRuntime = getLangOpts().CFRuntime;
5078   const bool IsSwiftABI =
5079       static_cast<unsigned>(CFRuntime) >=
5080       static_cast<unsigned>(LangOptions::CoreFoundationABI::Swift);
5081   const bool IsSwift4_1 = CFRuntime == LangOptions::CoreFoundationABI::Swift4_1;
5082 
5083   // If we don't already have it, get __CFConstantStringClassReference.
5084   if (!CFConstantStringClassRef) {
5085     const char *CFConstantStringClassName = "__CFConstantStringClassReference";
5086     llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
5087     Ty = llvm::ArrayType::get(Ty, 0);
5088 
5089     switch (CFRuntime) {
5090     default: break;
5091     case LangOptions::CoreFoundationABI::Swift: LLVM_FALLTHROUGH;
5092     case LangOptions::CoreFoundationABI::Swift5_0:
5093       CFConstantStringClassName =
5094           Triple.isOSDarwin() ? "$s15SwiftFoundation19_NSCFConstantStringCN"
5095                               : "$s10Foundation19_NSCFConstantStringCN";
5096       Ty = IntPtrTy;
5097       break;
5098     case LangOptions::CoreFoundationABI::Swift4_2:
5099       CFConstantStringClassName =
5100           Triple.isOSDarwin() ? "$S15SwiftFoundation19_NSCFConstantStringCN"
5101                               : "$S10Foundation19_NSCFConstantStringCN";
5102       Ty = IntPtrTy;
5103       break;
5104     case LangOptions::CoreFoundationABI::Swift4_1:
5105       CFConstantStringClassName =
5106           Triple.isOSDarwin() ? "__T015SwiftFoundation19_NSCFConstantStringCN"
5107                               : "__T010Foundation19_NSCFConstantStringCN";
5108       Ty = IntPtrTy;
5109       break;
5110     }
5111 
5112     llvm::Constant *C = CreateRuntimeVariable(Ty, CFConstantStringClassName);
5113 
5114     if (Triple.isOSBinFormatELF() || Triple.isOSBinFormatCOFF()) {
5115       llvm::GlobalValue *GV = nullptr;
5116 
5117       if ((GV = dyn_cast<llvm::GlobalValue>(C))) {
5118         IdentifierInfo &II = Context.Idents.get(GV->getName());
5119         TranslationUnitDecl *TUDecl = Context.getTranslationUnitDecl();
5120         DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl);
5121 
5122         const VarDecl *VD = nullptr;
5123         for (const auto *Result : DC->lookup(&II))
5124           if ((VD = dyn_cast<VarDecl>(Result)))
5125             break;
5126 
5127         if (Triple.isOSBinFormatELF()) {
5128           if (!VD)
5129             GV->setLinkage(llvm::GlobalValue::ExternalLinkage);
5130         } else {
5131           GV->setLinkage(llvm::GlobalValue::ExternalLinkage);
5132           if (!VD || !VD->hasAttr<DLLExportAttr>())
5133             GV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass);
5134           else
5135             GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass);
5136         }
5137 
5138         setDSOLocal(GV);
5139       }
5140     }
5141 
5142     // Decay array -> ptr
5143     CFConstantStringClassRef =
5144         IsSwiftABI ? llvm::ConstantExpr::getPtrToInt(C, Ty)
5145                    : llvm::ConstantExpr::getGetElementPtr(Ty, C, Zeros);
5146   }
5147 
5148   QualType CFTy = Context.getCFConstantStringType();
5149 
5150   auto *STy = cast<llvm::StructType>(getTypes().ConvertType(CFTy));
5151 
5152   ConstantInitBuilder Builder(*this);
5153   auto Fields = Builder.beginStruct(STy);
5154 
5155   // Class pointer.
5156   Fields.add(cast<llvm::ConstantExpr>(CFConstantStringClassRef));
5157 
5158   // Flags.
5159   if (IsSwiftABI) {
5160     Fields.addInt(IntPtrTy, IsSwift4_1 ? 0x05 : 0x01);
5161     Fields.addInt(Int64Ty, isUTF16 ? 0x07d0 : 0x07c8);
5162   } else {
5163     Fields.addInt(IntTy, isUTF16 ? 0x07d0 : 0x07C8);
5164   }
5165 
5166   // String pointer.
5167   llvm::Constant *C = nullptr;
5168   if (isUTF16) {
5169     auto Arr = llvm::makeArrayRef(
5170         reinterpret_cast<uint16_t *>(const_cast<char *>(Entry.first().data())),
5171         Entry.first().size() / 2);
5172     C = llvm::ConstantDataArray::get(VMContext, Arr);
5173   } else {
5174     C = llvm::ConstantDataArray::getString(VMContext, Entry.first());
5175   }
5176 
5177   // Note: -fwritable-strings doesn't make the backing store strings of
5178   // CFStrings writable. (See <rdar://problem/10657500>)
5179   auto *GV =
5180       new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true,
5181                                llvm::GlobalValue::PrivateLinkage, C, ".str");
5182   GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
5183   // Don't enforce the target's minimum global alignment, since the only use
5184   // of the string is via this class initializer.
5185   CharUnits Align = isUTF16 ? Context.getTypeAlignInChars(Context.ShortTy)
5186                             : Context.getTypeAlignInChars(Context.CharTy);
5187   GV->setAlignment(Align.getAsAlign());
5188 
5189   // FIXME: We set the section explicitly to avoid a bug in ld64 224.1.
5190   // Without it LLVM can merge the string with a non unnamed_addr one during
5191   // LTO.  Doing that changes the section it ends in, which surprises ld64.
5192   if (Triple.isOSBinFormatMachO())
5193     GV->setSection(isUTF16 ? "__TEXT,__ustring"
5194                            : "__TEXT,__cstring,cstring_literals");
5195   // Make sure the literal ends up in .rodata to allow for safe ICF and for
5196   // the static linker to adjust permissions to read-only later on.
5197   else if (Triple.isOSBinFormatELF())
5198     GV->setSection(".rodata");
5199 
5200   // String.
5201   llvm::Constant *Str =
5202       llvm::ConstantExpr::getGetElementPtr(GV->getValueType(), GV, Zeros);
5203 
5204   if (isUTF16)
5205     // Cast the UTF16 string to the correct type.
5206     Str = llvm::ConstantExpr::getBitCast(Str, Int8PtrTy);
5207   Fields.add(Str);
5208 
5209   // String length.
5210   llvm::IntegerType *LengthTy =
5211       llvm::IntegerType::get(getModule().getContext(),
5212                              Context.getTargetInfo().getLongWidth());
5213   if (IsSwiftABI) {
5214     if (CFRuntime == LangOptions::CoreFoundationABI::Swift4_1 ||
5215         CFRuntime == LangOptions::CoreFoundationABI::Swift4_2)
5216       LengthTy = Int32Ty;
5217     else
5218       LengthTy = IntPtrTy;
5219   }
5220   Fields.addInt(LengthTy, StringLength);
5221 
5222   // Swift ABI requires 8-byte alignment to ensure that the _Atomic(uint64_t) is
5223   // properly aligned on 32-bit platforms.
5224   CharUnits Alignment =
5225       IsSwiftABI ? Context.toCharUnitsFromBits(64) : getPointerAlign();
5226 
5227   // The struct.
5228   GV = Fields.finishAndCreateGlobal("_unnamed_cfstring_", Alignment,
5229                                     /*isConstant=*/false,
5230                                     llvm::GlobalVariable::PrivateLinkage);
5231   GV->addAttribute("objc_arc_inert");
5232   switch (Triple.getObjectFormat()) {
5233   case llvm::Triple::UnknownObjectFormat:
5234     llvm_unreachable("unknown file format");
5235   case llvm::Triple::GOFF:
5236     llvm_unreachable("GOFF is not yet implemented");
5237   case llvm::Triple::XCOFF:
5238     llvm_unreachable("XCOFF is not yet implemented");
5239   case llvm::Triple::COFF:
5240   case llvm::Triple::ELF:
5241   case llvm::Triple::Wasm:
5242     GV->setSection("cfstring");
5243     break;
5244   case llvm::Triple::MachO:
5245     GV->setSection("__DATA,__cfstring");
5246     break;
5247   }
5248   Entry.second = GV;
5249 
5250   return ConstantAddress(GV, Alignment);
5251 }
5252 
5253 bool CodeGenModule::getExpressionLocationsEnabled() const {
5254   return !CodeGenOpts.EmitCodeView || CodeGenOpts.DebugColumnInfo;
5255 }
5256 
5257 QualType CodeGenModule::getObjCFastEnumerationStateType() {
5258   if (ObjCFastEnumerationStateType.isNull()) {
5259     RecordDecl *D = Context.buildImplicitRecord("__objcFastEnumerationState");
5260     D->startDefinition();
5261 
5262     QualType FieldTypes[] = {
5263       Context.UnsignedLongTy,
5264       Context.getPointerType(Context.getObjCIdType()),
5265       Context.getPointerType(Context.UnsignedLongTy),
5266       Context.getConstantArrayType(Context.UnsignedLongTy,
5267                            llvm::APInt(32, 5), nullptr, ArrayType::Normal, 0)
5268     };
5269 
5270     for (size_t i = 0; i < 4; ++i) {
5271       FieldDecl *Field = FieldDecl::Create(Context,
5272                                            D,
5273                                            SourceLocation(),
5274                                            SourceLocation(), nullptr,
5275                                            FieldTypes[i], /*TInfo=*/nullptr,
5276                                            /*BitWidth=*/nullptr,
5277                                            /*Mutable=*/false,
5278                                            ICIS_NoInit);
5279       Field->setAccess(AS_public);
5280       D->addDecl(Field);
5281     }
5282 
5283     D->completeDefinition();
5284     ObjCFastEnumerationStateType = Context.getTagDeclType(D);
5285   }
5286 
5287   return ObjCFastEnumerationStateType;
5288 }
5289 
5290 llvm::Constant *
5291 CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) {
5292   assert(!E->getType()->isPointerType() && "Strings are always arrays");
5293 
5294   // Don't emit it as the address of the string, emit the string data itself
5295   // as an inline array.
5296   if (E->getCharByteWidth() == 1) {
5297     SmallString<64> Str(E->getString());
5298 
5299     // Resize the string to the right size, which is indicated by its type.
5300     const ConstantArrayType *CAT = Context.getAsConstantArrayType(E->getType());
5301     Str.resize(CAT->getSize().getZExtValue());
5302     return llvm::ConstantDataArray::getString(VMContext, Str, false);
5303   }
5304 
5305   auto *AType = cast<llvm::ArrayType>(getTypes().ConvertType(E->getType()));
5306   llvm::Type *ElemTy = AType->getElementType();
5307   unsigned NumElements = AType->getNumElements();
5308 
5309   // Wide strings have either 2-byte or 4-byte elements.
5310   if (ElemTy->getPrimitiveSizeInBits() == 16) {
5311     SmallVector<uint16_t, 32> Elements;
5312     Elements.reserve(NumElements);
5313 
5314     for(unsigned i = 0, e = E->getLength(); i != e; ++i)
5315       Elements.push_back(E->getCodeUnit(i));
5316     Elements.resize(NumElements);
5317     return llvm::ConstantDataArray::get(VMContext, Elements);
5318   }
5319 
5320   assert(ElemTy->getPrimitiveSizeInBits() == 32);
5321   SmallVector<uint32_t, 32> Elements;
5322   Elements.reserve(NumElements);
5323 
5324   for(unsigned i = 0, e = E->getLength(); i != e; ++i)
5325     Elements.push_back(E->getCodeUnit(i));
5326   Elements.resize(NumElements);
5327   return llvm::ConstantDataArray::get(VMContext, Elements);
5328 }
5329 
5330 static llvm::GlobalVariable *
5331 GenerateStringLiteral(llvm::Constant *C, llvm::GlobalValue::LinkageTypes LT,
5332                       CodeGenModule &CGM, StringRef GlobalName,
5333                       CharUnits Alignment) {
5334   unsigned AddrSpace = CGM.getContext().getTargetAddressSpace(
5335       CGM.GetGlobalConstantAddressSpace());
5336 
5337   llvm::Module &M = CGM.getModule();
5338   // Create a global variable for this string
5339   auto *GV = new llvm::GlobalVariable(
5340       M, C->getType(), !CGM.getLangOpts().WritableStrings, LT, C, GlobalName,
5341       nullptr, llvm::GlobalVariable::NotThreadLocal, AddrSpace);
5342   GV->setAlignment(Alignment.getAsAlign());
5343   GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
5344   if (GV->isWeakForLinker()) {
5345     assert(CGM.supportsCOMDAT() && "Only COFF uses weak string literals");
5346     GV->setComdat(M.getOrInsertComdat(GV->getName()));
5347   }
5348   CGM.setDSOLocal(GV);
5349 
5350   return GV;
5351 }
5352 
5353 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a
5354 /// constant array for the given string literal.
5355 ConstantAddress
5356 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S,
5357                                                   StringRef Name) {
5358   CharUnits Alignment = getContext().getAlignOfGlobalVarInChars(S->getType());
5359 
5360   llvm::Constant *C = GetConstantArrayFromStringLiteral(S);
5361   llvm::GlobalVariable **Entry = nullptr;
5362   if (!LangOpts.WritableStrings) {
5363     Entry = &ConstantStringMap[C];
5364     if (auto GV = *Entry) {
5365       if (Alignment.getQuantity() > GV->getAlignment())
5366         GV->setAlignment(Alignment.getAsAlign());
5367       return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV),
5368                              Alignment);
5369     }
5370   }
5371 
5372   SmallString<256> MangledNameBuffer;
5373   StringRef GlobalVariableName;
5374   llvm::GlobalValue::LinkageTypes LT;
5375 
5376   // Mangle the string literal if that's how the ABI merges duplicate strings.
5377   // Don't do it if they are writable, since we don't want writes in one TU to
5378   // affect strings in another.
5379   if (getCXXABI().getMangleContext().shouldMangleStringLiteral(S) &&
5380       !LangOpts.WritableStrings) {
5381     llvm::raw_svector_ostream Out(MangledNameBuffer);
5382     getCXXABI().getMangleContext().mangleStringLiteral(S, Out);
5383     LT = llvm::GlobalValue::LinkOnceODRLinkage;
5384     GlobalVariableName = MangledNameBuffer;
5385   } else {
5386     LT = llvm::GlobalValue::PrivateLinkage;
5387     GlobalVariableName = Name;
5388   }
5389 
5390   auto GV = GenerateStringLiteral(C, LT, *this, GlobalVariableName, Alignment);
5391   if (Entry)
5392     *Entry = GV;
5393 
5394   SanitizerMD->reportGlobalToASan(GV, S->getStrTokenLoc(0), "<string literal>",
5395                                   QualType());
5396 
5397   return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV),
5398                          Alignment);
5399 }
5400 
5401 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant
5402 /// array for the given ObjCEncodeExpr node.
5403 ConstantAddress
5404 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) {
5405   std::string Str;
5406   getContext().getObjCEncodingForType(E->getEncodedType(), Str);
5407 
5408   return GetAddrOfConstantCString(Str);
5409 }
5410 
5411 /// GetAddrOfConstantCString - Returns a pointer to a character array containing
5412 /// the literal and a terminating '\0' character.
5413 /// The result has pointer to array type.
5414 ConstantAddress CodeGenModule::GetAddrOfConstantCString(
5415     const std::string &Str, const char *GlobalName) {
5416   StringRef StrWithNull(Str.c_str(), Str.size() + 1);
5417   CharUnits Alignment =
5418     getContext().getAlignOfGlobalVarInChars(getContext().CharTy);
5419 
5420   llvm::Constant *C =
5421       llvm::ConstantDataArray::getString(getLLVMContext(), StrWithNull, false);
5422 
5423   // Don't share any string literals if strings aren't constant.
5424   llvm::GlobalVariable **Entry = nullptr;
5425   if (!LangOpts.WritableStrings) {
5426     Entry = &ConstantStringMap[C];
5427     if (auto GV = *Entry) {
5428       if (Alignment.getQuantity() > GV->getAlignment())
5429         GV->setAlignment(Alignment.getAsAlign());
5430       return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV),
5431                              Alignment);
5432     }
5433   }
5434 
5435   // Get the default prefix if a name wasn't specified.
5436   if (!GlobalName)
5437     GlobalName = ".str";
5438   // Create a global variable for this.
5439   auto GV = GenerateStringLiteral(C, llvm::GlobalValue::PrivateLinkage, *this,
5440                                   GlobalName, Alignment);
5441   if (Entry)
5442     *Entry = GV;
5443 
5444   return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV),
5445                          Alignment);
5446 }
5447 
5448 ConstantAddress CodeGenModule::GetAddrOfGlobalTemporary(
5449     const MaterializeTemporaryExpr *E, const Expr *Init) {
5450   assert((E->getStorageDuration() == SD_Static ||
5451           E->getStorageDuration() == SD_Thread) && "not a global temporary");
5452   const auto *VD = cast<VarDecl>(E->getExtendingDecl());
5453 
5454   // If we're not materializing a subobject of the temporary, keep the
5455   // cv-qualifiers from the type of the MaterializeTemporaryExpr.
5456   QualType MaterializedType = Init->getType();
5457   if (Init == E->getSubExpr())
5458     MaterializedType = E->getType();
5459 
5460   CharUnits Align = getContext().getTypeAlignInChars(MaterializedType);
5461 
5462   auto InsertResult = MaterializedGlobalTemporaryMap.insert({E, nullptr});
5463   if (!InsertResult.second) {
5464     // We've seen this before: either we already created it or we're in the
5465     // process of doing so.
5466     if (!InsertResult.first->second) {
5467       // We recursively re-entered this function, probably during emission of
5468       // the initializer. Create a placeholder. We'll clean this up in the
5469       // outer call, at the end of this function.
5470       llvm::Type *Type = getTypes().ConvertTypeForMem(MaterializedType);
5471       InsertResult.first->second = new llvm::GlobalVariable(
5472           getModule(), Type, false, llvm::GlobalVariable::InternalLinkage,
5473           nullptr);
5474     }
5475     return ConstantAddress(InsertResult.first->second, Align);
5476   }
5477 
5478   // FIXME: If an externally-visible declaration extends multiple temporaries,
5479   // we need to give each temporary the same name in every translation unit (and
5480   // we also need to make the temporaries externally-visible).
5481   SmallString<256> Name;
5482   llvm::raw_svector_ostream Out(Name);
5483   getCXXABI().getMangleContext().mangleReferenceTemporary(
5484       VD, E->getManglingNumber(), Out);
5485 
5486   APValue *Value = nullptr;
5487   if (E->getStorageDuration() == SD_Static && VD && VD->evaluateValue()) {
5488     // If the initializer of the extending declaration is a constant
5489     // initializer, we should have a cached constant initializer for this
5490     // temporary. Note that this might have a different value from the value
5491     // computed by evaluating the initializer if the surrounding constant
5492     // expression modifies the temporary.
5493     Value = E->getOrCreateValue(false);
5494   }
5495 
5496   // Try evaluating it now, it might have a constant initializer.
5497   Expr::EvalResult EvalResult;
5498   if (!Value && Init->EvaluateAsRValue(EvalResult, getContext()) &&
5499       !EvalResult.hasSideEffects())
5500     Value = &EvalResult.Val;
5501 
5502   LangAS AddrSpace =
5503       VD ? GetGlobalVarAddressSpace(VD) : MaterializedType.getAddressSpace();
5504 
5505   Optional<ConstantEmitter> emitter;
5506   llvm::Constant *InitialValue = nullptr;
5507   bool Constant = false;
5508   llvm::Type *Type;
5509   if (Value) {
5510     // The temporary has a constant initializer, use it.
5511     emitter.emplace(*this);
5512     InitialValue = emitter->emitForInitializer(*Value, AddrSpace,
5513                                                MaterializedType);
5514     Constant = isTypeConstant(MaterializedType, /*ExcludeCtor*/Value);
5515     Type = InitialValue->getType();
5516   } else {
5517     // No initializer, the initialization will be provided when we
5518     // initialize the declaration which performed lifetime extension.
5519     Type = getTypes().ConvertTypeForMem(MaterializedType);
5520   }
5521 
5522   // Create a global variable for this lifetime-extended temporary.
5523   llvm::GlobalValue::LinkageTypes Linkage =
5524       getLLVMLinkageVarDefinition(VD, Constant);
5525   if (Linkage == llvm::GlobalVariable::ExternalLinkage) {
5526     const VarDecl *InitVD;
5527     if (VD->isStaticDataMember() && VD->getAnyInitializer(InitVD) &&
5528         isa<CXXRecordDecl>(InitVD->getLexicalDeclContext())) {
5529       // Temporaries defined inside a class get linkonce_odr linkage because the
5530       // class can be defined in multiple translation units.
5531       Linkage = llvm::GlobalVariable::LinkOnceODRLinkage;
5532     } else {
5533       // There is no need for this temporary to have external linkage if the
5534       // VarDecl has external linkage.
5535       Linkage = llvm::GlobalVariable::InternalLinkage;
5536     }
5537   }
5538   auto TargetAS = getContext().getTargetAddressSpace(AddrSpace);
5539   auto *GV = new llvm::GlobalVariable(
5540       getModule(), Type, Constant, Linkage, InitialValue, Name.c_str(),
5541       /*InsertBefore=*/nullptr, llvm::GlobalVariable::NotThreadLocal, TargetAS);
5542   if (emitter) emitter->finalize(GV);
5543   setGVProperties(GV, VD);
5544   GV->setAlignment(Align.getAsAlign());
5545   if (supportsCOMDAT() && GV->isWeakForLinker())
5546     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
5547   if (VD->getTLSKind())
5548     setTLSMode(GV, *VD);
5549   llvm::Constant *CV = GV;
5550   if (AddrSpace != LangAS::Default)
5551     CV = getTargetCodeGenInfo().performAddrSpaceCast(
5552         *this, GV, AddrSpace, LangAS::Default,
5553         Type->getPointerTo(
5554             getContext().getTargetAddressSpace(LangAS::Default)));
5555 
5556   // Update the map with the new temporary. If we created a placeholder above,
5557   // replace it with the new global now.
5558   llvm::Constant *&Entry = MaterializedGlobalTemporaryMap[E];
5559   if (Entry) {
5560     Entry->replaceAllUsesWith(
5561         llvm::ConstantExpr::getBitCast(CV, Entry->getType()));
5562     llvm::cast<llvm::GlobalVariable>(Entry)->eraseFromParent();
5563   }
5564   Entry = CV;
5565 
5566   return ConstantAddress(CV, Align);
5567 }
5568 
5569 /// EmitObjCPropertyImplementations - Emit information for synthesized
5570 /// properties for an implementation.
5571 void CodeGenModule::EmitObjCPropertyImplementations(const
5572                                                     ObjCImplementationDecl *D) {
5573   for (const auto *PID : D->property_impls()) {
5574     // Dynamic is just for type-checking.
5575     if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) {
5576       ObjCPropertyDecl *PD = PID->getPropertyDecl();
5577 
5578       // Determine which methods need to be implemented, some may have
5579       // been overridden. Note that ::isPropertyAccessor is not the method
5580       // we want, that just indicates if the decl came from a
5581       // property. What we want to know is if the method is defined in
5582       // this implementation.
5583       auto *Getter = PID->getGetterMethodDecl();
5584       if (!Getter || Getter->isSynthesizedAccessorStub())
5585         CodeGenFunction(*this).GenerateObjCGetter(
5586             const_cast<ObjCImplementationDecl *>(D), PID);
5587       auto *Setter = PID->getSetterMethodDecl();
5588       if (!PD->isReadOnly() && (!Setter || Setter->isSynthesizedAccessorStub()))
5589         CodeGenFunction(*this).GenerateObjCSetter(
5590                                  const_cast<ObjCImplementationDecl *>(D), PID);
5591     }
5592   }
5593 }
5594 
5595 static bool needsDestructMethod(ObjCImplementationDecl *impl) {
5596   const ObjCInterfaceDecl *iface = impl->getClassInterface();
5597   for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin();
5598        ivar; ivar = ivar->getNextIvar())
5599     if (ivar->getType().isDestructedType())
5600       return true;
5601 
5602   return false;
5603 }
5604 
5605 static bool AllTrivialInitializers(CodeGenModule &CGM,
5606                                    ObjCImplementationDecl *D) {
5607   CodeGenFunction CGF(CGM);
5608   for (ObjCImplementationDecl::init_iterator B = D->init_begin(),
5609        E = D->init_end(); B != E; ++B) {
5610     CXXCtorInitializer *CtorInitExp = *B;
5611     Expr *Init = CtorInitExp->getInit();
5612     if (!CGF.isTrivialInitializer(Init))
5613       return false;
5614   }
5615   return true;
5616 }
5617 
5618 /// EmitObjCIvarInitializations - Emit information for ivar initialization
5619 /// for an implementation.
5620 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) {
5621   // We might need a .cxx_destruct even if we don't have any ivar initializers.
5622   if (needsDestructMethod(D)) {
5623     IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct");
5624     Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
5625     ObjCMethodDecl *DTORMethod = ObjCMethodDecl::Create(
5626         getContext(), D->getLocation(), D->getLocation(), cxxSelector,
5627         getContext().VoidTy, nullptr, D,
5628         /*isInstance=*/true, /*isVariadic=*/false,
5629         /*isPropertyAccessor=*/true, /*isSynthesizedAccessorStub=*/false,
5630         /*isImplicitlyDeclared=*/true,
5631         /*isDefined=*/false, ObjCMethodDecl::Required);
5632     D->addInstanceMethod(DTORMethod);
5633     CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false);
5634     D->setHasDestructors(true);
5635   }
5636 
5637   // If the implementation doesn't have any ivar initializers, we don't need
5638   // a .cxx_construct.
5639   if (D->getNumIvarInitializers() == 0 ||
5640       AllTrivialInitializers(*this, D))
5641     return;
5642 
5643   IdentifierInfo *II = &getContext().Idents.get(".cxx_construct");
5644   Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
5645   // The constructor returns 'self'.
5646   ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(
5647       getContext(), D->getLocation(), D->getLocation(), cxxSelector,
5648       getContext().getObjCIdType(), nullptr, D, /*isInstance=*/true,
5649       /*isVariadic=*/false,
5650       /*isPropertyAccessor=*/true, /*isSynthesizedAccessorStub=*/false,
5651       /*isImplicitlyDeclared=*/true,
5652       /*isDefined=*/false, ObjCMethodDecl::Required);
5653   D->addInstanceMethod(CTORMethod);
5654   CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true);
5655   D->setHasNonZeroConstructors(true);
5656 }
5657 
5658 // EmitLinkageSpec - Emit all declarations in a linkage spec.
5659 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) {
5660   if (LSD->getLanguage() != LinkageSpecDecl::lang_c &&
5661       LSD->getLanguage() != LinkageSpecDecl::lang_cxx) {
5662     ErrorUnsupported(LSD, "linkage spec");
5663     return;
5664   }
5665 
5666   EmitDeclContext(LSD);
5667 }
5668 
5669 void CodeGenModule::EmitDeclContext(const DeclContext *DC) {
5670   for (auto *I : DC->decls()) {
5671     // Unlike other DeclContexts, the contents of an ObjCImplDecl at TU scope
5672     // are themselves considered "top-level", so EmitTopLevelDecl on an
5673     // ObjCImplDecl does not recursively visit them. We need to do that in
5674     // case they're nested inside another construct (LinkageSpecDecl /
5675     // ExportDecl) that does stop them from being considered "top-level".
5676     if (auto *OID = dyn_cast<ObjCImplDecl>(I)) {
5677       for (auto *M : OID->methods())
5678         EmitTopLevelDecl(M);
5679     }
5680 
5681     EmitTopLevelDecl(I);
5682   }
5683 }
5684 
5685 /// EmitTopLevelDecl - Emit code for a single top level declaration.
5686 void CodeGenModule::EmitTopLevelDecl(Decl *D) {
5687   // Ignore dependent declarations.
5688   if (D->isTemplated())
5689     return;
5690 
5691   // Consteval function shouldn't be emitted.
5692   if (auto *FD = dyn_cast<FunctionDecl>(D))
5693     if (FD->isConsteval())
5694       return;
5695 
5696   switch (D->getKind()) {
5697   case Decl::CXXConversion:
5698   case Decl::CXXMethod:
5699   case Decl::Function:
5700     EmitGlobal(cast<FunctionDecl>(D));
5701     // Always provide some coverage mapping
5702     // even for the functions that aren't emitted.
5703     AddDeferredUnusedCoverageMapping(D);
5704     break;
5705 
5706   case Decl::CXXDeductionGuide:
5707     // Function-like, but does not result in code emission.
5708     break;
5709 
5710   case Decl::Var:
5711   case Decl::Decomposition:
5712   case Decl::VarTemplateSpecialization:
5713     EmitGlobal(cast<VarDecl>(D));
5714     if (auto *DD = dyn_cast<DecompositionDecl>(D))
5715       for (auto *B : DD->bindings())
5716         if (auto *HD = B->getHoldingVar())
5717           EmitGlobal(HD);
5718     break;
5719 
5720   // Indirect fields from global anonymous structs and unions can be
5721   // ignored; only the actual variable requires IR gen support.
5722   case Decl::IndirectField:
5723     break;
5724 
5725   // C++ Decls
5726   case Decl::Namespace:
5727     EmitDeclContext(cast<NamespaceDecl>(D));
5728     break;
5729   case Decl::ClassTemplateSpecialization: {
5730     const auto *Spec = cast<ClassTemplateSpecializationDecl>(D);
5731     if (CGDebugInfo *DI = getModuleDebugInfo())
5732       if (Spec->getSpecializationKind() ==
5733               TSK_ExplicitInstantiationDefinition &&
5734           Spec->hasDefinition())
5735         DI->completeTemplateDefinition(*Spec);
5736   } LLVM_FALLTHROUGH;
5737   case Decl::CXXRecord: {
5738     CXXRecordDecl *CRD = cast<CXXRecordDecl>(D);
5739     if (CGDebugInfo *DI = getModuleDebugInfo()) {
5740       if (CRD->hasDefinition())
5741         DI->EmitAndRetainType(getContext().getRecordType(cast<RecordDecl>(D)));
5742       if (auto *ES = D->getASTContext().getExternalSource())
5743         if (ES->hasExternalDefinitions(D) == ExternalASTSource::EK_Never)
5744           DI->completeUnusedClass(*CRD);
5745     }
5746     // Emit any static data members, they may be definitions.
5747     for (auto *I : CRD->decls())
5748       if (isa<VarDecl>(I) || isa<CXXRecordDecl>(I))
5749         EmitTopLevelDecl(I);
5750     break;
5751   }
5752     // No code generation needed.
5753   case Decl::UsingShadow:
5754   case Decl::ClassTemplate:
5755   case Decl::VarTemplate:
5756   case Decl::Concept:
5757   case Decl::VarTemplatePartialSpecialization:
5758   case Decl::FunctionTemplate:
5759   case Decl::TypeAliasTemplate:
5760   case Decl::Block:
5761   case Decl::Empty:
5762   case Decl::Binding:
5763     break;
5764   case Decl::Using:          // using X; [C++]
5765     if (CGDebugInfo *DI = getModuleDebugInfo())
5766         DI->EmitUsingDecl(cast<UsingDecl>(*D));
5767     break;
5768   case Decl::UsingEnum: // using enum X; [C++]
5769     if (CGDebugInfo *DI = getModuleDebugInfo())
5770       DI->EmitUsingEnumDecl(cast<UsingEnumDecl>(*D));
5771     break;
5772   case Decl::NamespaceAlias:
5773     if (CGDebugInfo *DI = getModuleDebugInfo())
5774         DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(*D));
5775     break;
5776   case Decl::UsingDirective: // using namespace X; [C++]
5777     if (CGDebugInfo *DI = getModuleDebugInfo())
5778       DI->EmitUsingDirective(cast<UsingDirectiveDecl>(*D));
5779     break;
5780   case Decl::CXXConstructor:
5781     getCXXABI().EmitCXXConstructors(cast<CXXConstructorDecl>(D));
5782     break;
5783   case Decl::CXXDestructor:
5784     getCXXABI().EmitCXXDestructors(cast<CXXDestructorDecl>(D));
5785     break;
5786 
5787   case Decl::StaticAssert:
5788     // Nothing to do.
5789     break;
5790 
5791   // Objective-C Decls
5792 
5793   // Forward declarations, no (immediate) code generation.
5794   case Decl::ObjCInterface:
5795   case Decl::ObjCCategory:
5796     break;
5797 
5798   case Decl::ObjCProtocol: {
5799     auto *Proto = cast<ObjCProtocolDecl>(D);
5800     if (Proto->isThisDeclarationADefinition())
5801       ObjCRuntime->GenerateProtocol(Proto);
5802     break;
5803   }
5804 
5805   case Decl::ObjCCategoryImpl:
5806     // Categories have properties but don't support synthesize so we
5807     // can ignore them here.
5808     ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D));
5809     break;
5810 
5811   case Decl::ObjCImplementation: {
5812     auto *OMD = cast<ObjCImplementationDecl>(D);
5813     EmitObjCPropertyImplementations(OMD);
5814     EmitObjCIvarInitializations(OMD);
5815     ObjCRuntime->GenerateClass(OMD);
5816     // Emit global variable debug information.
5817     if (CGDebugInfo *DI = getModuleDebugInfo())
5818       if (getCodeGenOpts().hasReducedDebugInfo())
5819         DI->getOrCreateInterfaceType(getContext().getObjCInterfaceType(
5820             OMD->getClassInterface()), OMD->getLocation());
5821     break;
5822   }
5823   case Decl::ObjCMethod: {
5824     auto *OMD = cast<ObjCMethodDecl>(D);
5825     // If this is not a prototype, emit the body.
5826     if (OMD->getBody())
5827       CodeGenFunction(*this).GenerateObjCMethod(OMD);
5828     break;
5829   }
5830   case Decl::ObjCCompatibleAlias:
5831     ObjCRuntime->RegisterAlias(cast<ObjCCompatibleAliasDecl>(D));
5832     break;
5833 
5834   case Decl::PragmaComment: {
5835     const auto *PCD = cast<PragmaCommentDecl>(D);
5836     switch (PCD->getCommentKind()) {
5837     case PCK_Unknown:
5838       llvm_unreachable("unexpected pragma comment kind");
5839     case PCK_Linker:
5840       AppendLinkerOptions(PCD->getArg());
5841       break;
5842     case PCK_Lib:
5843         AddDependentLib(PCD->getArg());
5844       break;
5845     case PCK_Compiler:
5846     case PCK_ExeStr:
5847     case PCK_User:
5848       break; // We ignore all of these.
5849     }
5850     break;
5851   }
5852 
5853   case Decl::PragmaDetectMismatch: {
5854     const auto *PDMD = cast<PragmaDetectMismatchDecl>(D);
5855     AddDetectMismatch(PDMD->getName(), PDMD->getValue());
5856     break;
5857   }
5858 
5859   case Decl::LinkageSpec:
5860     EmitLinkageSpec(cast<LinkageSpecDecl>(D));
5861     break;
5862 
5863   case Decl::FileScopeAsm: {
5864     // File-scope asm is ignored during device-side CUDA compilation.
5865     if (LangOpts.CUDA && LangOpts.CUDAIsDevice)
5866       break;
5867     // File-scope asm is ignored during device-side OpenMP compilation.
5868     if (LangOpts.OpenMPIsDevice)
5869       break;
5870     // File-scope asm is ignored during device-side SYCL compilation.
5871     if (LangOpts.SYCLIsDevice)
5872       break;
5873     auto *AD = cast<FileScopeAsmDecl>(D);
5874     getModule().appendModuleInlineAsm(AD->getAsmString()->getString());
5875     break;
5876   }
5877 
5878   case Decl::Import: {
5879     auto *Import = cast<ImportDecl>(D);
5880 
5881     // If we've already imported this module, we're done.
5882     if (!ImportedModules.insert(Import->getImportedModule()))
5883       break;
5884 
5885     // Emit debug information for direct imports.
5886     if (!Import->getImportedOwningModule()) {
5887       if (CGDebugInfo *DI = getModuleDebugInfo())
5888         DI->EmitImportDecl(*Import);
5889     }
5890 
5891     // Find all of the submodules and emit the module initializers.
5892     llvm::SmallPtrSet<clang::Module *, 16> Visited;
5893     SmallVector<clang::Module *, 16> Stack;
5894     Visited.insert(Import->getImportedModule());
5895     Stack.push_back(Import->getImportedModule());
5896 
5897     while (!Stack.empty()) {
5898       clang::Module *Mod = Stack.pop_back_val();
5899       if (!EmittedModuleInitializers.insert(Mod).second)
5900         continue;
5901 
5902       for (auto *D : Context.getModuleInitializers(Mod))
5903         EmitTopLevelDecl(D);
5904 
5905       // Visit the submodules of this module.
5906       for (clang::Module::submodule_iterator Sub = Mod->submodule_begin(),
5907                                              SubEnd = Mod->submodule_end();
5908            Sub != SubEnd; ++Sub) {
5909         // Skip explicit children; they need to be explicitly imported to emit
5910         // the initializers.
5911         if ((*Sub)->IsExplicit)
5912           continue;
5913 
5914         if (Visited.insert(*Sub).second)
5915           Stack.push_back(*Sub);
5916       }
5917     }
5918     break;
5919   }
5920 
5921   case Decl::Export:
5922     EmitDeclContext(cast<ExportDecl>(D));
5923     break;
5924 
5925   case Decl::OMPThreadPrivate:
5926     EmitOMPThreadPrivateDecl(cast<OMPThreadPrivateDecl>(D));
5927     break;
5928 
5929   case Decl::OMPAllocate:
5930     EmitOMPAllocateDecl(cast<OMPAllocateDecl>(D));
5931     break;
5932 
5933   case Decl::OMPDeclareReduction:
5934     EmitOMPDeclareReduction(cast<OMPDeclareReductionDecl>(D));
5935     break;
5936 
5937   case Decl::OMPDeclareMapper:
5938     EmitOMPDeclareMapper(cast<OMPDeclareMapperDecl>(D));
5939     break;
5940 
5941   case Decl::OMPRequires:
5942     EmitOMPRequiresDecl(cast<OMPRequiresDecl>(D));
5943     break;
5944 
5945   case Decl::Typedef:
5946   case Decl::TypeAlias: // using foo = bar; [C++11]
5947     if (CGDebugInfo *DI = getModuleDebugInfo())
5948       DI->EmitAndRetainType(
5949           getContext().getTypedefType(cast<TypedefNameDecl>(D)));
5950     break;
5951 
5952   case Decl::Record:
5953     if (CGDebugInfo *DI = getModuleDebugInfo())
5954       if (cast<RecordDecl>(D)->getDefinition())
5955         DI->EmitAndRetainType(getContext().getRecordType(cast<RecordDecl>(D)));
5956     break;
5957 
5958   case Decl::Enum:
5959     if (CGDebugInfo *DI = getModuleDebugInfo())
5960       if (cast<EnumDecl>(D)->getDefinition())
5961         DI->EmitAndRetainType(getContext().getEnumType(cast<EnumDecl>(D)));
5962     break;
5963 
5964   default:
5965     // Make sure we handled everything we should, every other kind is a
5966     // non-top-level decl.  FIXME: Would be nice to have an isTopLevelDeclKind
5967     // function. Need to recode Decl::Kind to do that easily.
5968     assert(isa<TypeDecl>(D) && "Unsupported decl kind");
5969     break;
5970   }
5971 }
5972 
5973 void CodeGenModule::AddDeferredUnusedCoverageMapping(Decl *D) {
5974   // Do we need to generate coverage mapping?
5975   if (!CodeGenOpts.CoverageMapping)
5976     return;
5977   switch (D->getKind()) {
5978   case Decl::CXXConversion:
5979   case Decl::CXXMethod:
5980   case Decl::Function:
5981   case Decl::ObjCMethod:
5982   case Decl::CXXConstructor:
5983   case Decl::CXXDestructor: {
5984     if (!cast<FunctionDecl>(D)->doesThisDeclarationHaveABody())
5985       break;
5986     SourceManager &SM = getContext().getSourceManager();
5987     if (LimitedCoverage && SM.getMainFileID() != SM.getFileID(D->getBeginLoc()))
5988       break;
5989     auto I = DeferredEmptyCoverageMappingDecls.find(D);
5990     if (I == DeferredEmptyCoverageMappingDecls.end())
5991       DeferredEmptyCoverageMappingDecls[D] = true;
5992     break;
5993   }
5994   default:
5995     break;
5996   };
5997 }
5998 
5999 void CodeGenModule::ClearUnusedCoverageMapping(const Decl *D) {
6000   // Do we need to generate coverage mapping?
6001   if (!CodeGenOpts.CoverageMapping)
6002     return;
6003   if (const auto *Fn = dyn_cast<FunctionDecl>(D)) {
6004     if (Fn->isTemplateInstantiation())
6005       ClearUnusedCoverageMapping(Fn->getTemplateInstantiationPattern());
6006   }
6007   auto I = DeferredEmptyCoverageMappingDecls.find(D);
6008   if (I == DeferredEmptyCoverageMappingDecls.end())
6009     DeferredEmptyCoverageMappingDecls[D] = false;
6010   else
6011     I->second = false;
6012 }
6013 
6014 void CodeGenModule::EmitDeferredUnusedCoverageMappings() {
6015   // We call takeVector() here to avoid use-after-free.
6016   // FIXME: DeferredEmptyCoverageMappingDecls is getting mutated because
6017   // we deserialize function bodies to emit coverage info for them, and that
6018   // deserializes more declarations. How should we handle that case?
6019   for (const auto &Entry : DeferredEmptyCoverageMappingDecls.takeVector()) {
6020     if (!Entry.second)
6021       continue;
6022     const Decl *D = Entry.first;
6023     switch (D->getKind()) {
6024     case Decl::CXXConversion:
6025     case Decl::CXXMethod:
6026     case Decl::Function:
6027     case Decl::ObjCMethod: {
6028       CodeGenPGO PGO(*this);
6029       GlobalDecl GD(cast<FunctionDecl>(D));
6030       PGO.emitEmptyCounterMapping(D, getMangledName(GD),
6031                                   getFunctionLinkage(GD));
6032       break;
6033     }
6034     case Decl::CXXConstructor: {
6035       CodeGenPGO PGO(*this);
6036       GlobalDecl GD(cast<CXXConstructorDecl>(D), Ctor_Base);
6037       PGO.emitEmptyCounterMapping(D, getMangledName(GD),
6038                                   getFunctionLinkage(GD));
6039       break;
6040     }
6041     case Decl::CXXDestructor: {
6042       CodeGenPGO PGO(*this);
6043       GlobalDecl GD(cast<CXXDestructorDecl>(D), Dtor_Base);
6044       PGO.emitEmptyCounterMapping(D, getMangledName(GD),
6045                                   getFunctionLinkage(GD));
6046       break;
6047     }
6048     default:
6049       break;
6050     };
6051   }
6052 }
6053 
6054 void CodeGenModule::EmitMainVoidAlias() {
6055   // In order to transition away from "__original_main" gracefully, emit an
6056   // alias for "main" in the no-argument case so that libc can detect when
6057   // new-style no-argument main is in used.
6058   if (llvm::Function *F = getModule().getFunction("main")) {
6059     if (!F->isDeclaration() && F->arg_size() == 0 && !F->isVarArg() &&
6060         F->getReturnType()->isIntegerTy(Context.getTargetInfo().getIntWidth()))
6061       addUsedGlobal(llvm::GlobalAlias::create("__main_void", F));
6062   }
6063 }
6064 
6065 /// Turns the given pointer into a constant.
6066 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context,
6067                                           const void *Ptr) {
6068   uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr);
6069   llvm::Type *i64 = llvm::Type::getInt64Ty(Context);
6070   return llvm::ConstantInt::get(i64, PtrInt);
6071 }
6072 
6073 static void EmitGlobalDeclMetadata(CodeGenModule &CGM,
6074                                    llvm::NamedMDNode *&GlobalMetadata,
6075                                    GlobalDecl D,
6076                                    llvm::GlobalValue *Addr) {
6077   if (!GlobalMetadata)
6078     GlobalMetadata =
6079       CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs");
6080 
6081   // TODO: should we report variant information for ctors/dtors?
6082   llvm::Metadata *Ops[] = {llvm::ConstantAsMetadata::get(Addr),
6083                            llvm::ConstantAsMetadata::get(GetPointerConstant(
6084                                CGM.getLLVMContext(), D.getDecl()))};
6085   GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops));
6086 }
6087 
6088 /// For each function which is declared within an extern "C" region and marked
6089 /// as 'used', but has internal linkage, create an alias from the unmangled
6090 /// name to the mangled name if possible. People expect to be able to refer
6091 /// to such functions with an unmangled name from inline assembly within the
6092 /// same translation unit.
6093 void CodeGenModule::EmitStaticExternCAliases() {
6094   if (!getTargetCodeGenInfo().shouldEmitStaticExternCAliases())
6095     return;
6096   for (auto &I : StaticExternCValues) {
6097     IdentifierInfo *Name = I.first;
6098     llvm::GlobalValue *Val = I.second;
6099     if (Val && !getModule().getNamedValue(Name->getName()))
6100       addCompilerUsedGlobal(llvm::GlobalAlias::create(Name->getName(), Val));
6101   }
6102 }
6103 
6104 bool CodeGenModule::lookupRepresentativeDecl(StringRef MangledName,
6105                                              GlobalDecl &Result) const {
6106   auto Res = Manglings.find(MangledName);
6107   if (Res == Manglings.end())
6108     return false;
6109   Result = Res->getValue();
6110   return true;
6111 }
6112 
6113 /// Emits metadata nodes associating all the global values in the
6114 /// current module with the Decls they came from.  This is useful for
6115 /// projects using IR gen as a subroutine.
6116 ///
6117 /// Since there's currently no way to associate an MDNode directly
6118 /// with an llvm::GlobalValue, we create a global named metadata
6119 /// with the name 'clang.global.decl.ptrs'.
6120 void CodeGenModule::EmitDeclMetadata() {
6121   llvm::NamedMDNode *GlobalMetadata = nullptr;
6122 
6123   for (auto &I : MangledDeclNames) {
6124     llvm::GlobalValue *Addr = getModule().getNamedValue(I.second);
6125     // Some mangled names don't necessarily have an associated GlobalValue
6126     // in this module, e.g. if we mangled it for DebugInfo.
6127     if (Addr)
6128       EmitGlobalDeclMetadata(*this, GlobalMetadata, I.first, Addr);
6129   }
6130 }
6131 
6132 /// Emits metadata nodes for all the local variables in the current
6133 /// function.
6134 void CodeGenFunction::EmitDeclMetadata() {
6135   if (LocalDeclMap.empty()) return;
6136 
6137   llvm::LLVMContext &Context = getLLVMContext();
6138 
6139   // Find the unique metadata ID for this name.
6140   unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr");
6141 
6142   llvm::NamedMDNode *GlobalMetadata = nullptr;
6143 
6144   for (auto &I : LocalDeclMap) {
6145     const Decl *D = I.first;
6146     llvm::Value *Addr = I.second.getPointer();
6147     if (auto *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) {
6148       llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D);
6149       Alloca->setMetadata(
6150           DeclPtrKind, llvm::MDNode::get(
6151                            Context, llvm::ValueAsMetadata::getConstant(DAddr)));
6152     } else if (auto *GV = dyn_cast<llvm::GlobalValue>(Addr)) {
6153       GlobalDecl GD = GlobalDecl(cast<VarDecl>(D));
6154       EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV);
6155     }
6156   }
6157 }
6158 
6159 void CodeGenModule::EmitVersionIdentMetadata() {
6160   llvm::NamedMDNode *IdentMetadata =
6161     TheModule.getOrInsertNamedMetadata("llvm.ident");
6162   std::string Version = getClangFullVersion();
6163   llvm::LLVMContext &Ctx = TheModule.getContext();
6164 
6165   llvm::Metadata *IdentNode[] = {llvm::MDString::get(Ctx, Version)};
6166   IdentMetadata->addOperand(llvm::MDNode::get(Ctx, IdentNode));
6167 }
6168 
6169 void CodeGenModule::EmitCommandLineMetadata() {
6170   llvm::NamedMDNode *CommandLineMetadata =
6171     TheModule.getOrInsertNamedMetadata("llvm.commandline");
6172   std::string CommandLine = getCodeGenOpts().RecordCommandLine;
6173   llvm::LLVMContext &Ctx = TheModule.getContext();
6174 
6175   llvm::Metadata *CommandLineNode[] = {llvm::MDString::get(Ctx, CommandLine)};
6176   CommandLineMetadata->addOperand(llvm::MDNode::get(Ctx, CommandLineNode));
6177 }
6178 
6179 void CodeGenModule::EmitCoverageFile() {
6180   if (getCodeGenOpts().CoverageDataFile.empty() &&
6181       getCodeGenOpts().CoverageNotesFile.empty())
6182     return;
6183 
6184   llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu");
6185   if (!CUNode)
6186     return;
6187 
6188   llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov");
6189   llvm::LLVMContext &Ctx = TheModule.getContext();
6190   auto *CoverageDataFile =
6191       llvm::MDString::get(Ctx, getCodeGenOpts().CoverageDataFile);
6192   auto *CoverageNotesFile =
6193       llvm::MDString::get(Ctx, getCodeGenOpts().CoverageNotesFile);
6194   for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) {
6195     llvm::MDNode *CU = CUNode->getOperand(i);
6196     llvm::Metadata *Elts[] = {CoverageNotesFile, CoverageDataFile, CU};
6197     GCov->addOperand(llvm::MDNode::get(Ctx, Elts));
6198   }
6199 }
6200 
6201 llvm::Constant *CodeGenModule::GetAddrOfRTTIDescriptor(QualType Ty,
6202                                                        bool ForEH) {
6203   // Return a bogus pointer if RTTI is disabled, unless it's for EH.
6204   // FIXME: should we even be calling this method if RTTI is disabled
6205   // and it's not for EH?
6206   if ((!ForEH && !getLangOpts().RTTI) || getLangOpts().CUDAIsDevice ||
6207       (getLangOpts().OpenMP && getLangOpts().OpenMPIsDevice &&
6208        getTriple().isNVPTX()))
6209     return llvm::Constant::getNullValue(Int8PtrTy);
6210 
6211   if (ForEH && Ty->isObjCObjectPointerType() &&
6212       LangOpts.ObjCRuntime.isGNUFamily())
6213     return ObjCRuntime->GetEHType(Ty);
6214 
6215   return getCXXABI().getAddrOfRTTIDescriptor(Ty);
6216 }
6217 
6218 void CodeGenModule::EmitOMPThreadPrivateDecl(const OMPThreadPrivateDecl *D) {
6219   // Do not emit threadprivates in simd-only mode.
6220   if (LangOpts.OpenMP && LangOpts.OpenMPSimd)
6221     return;
6222   for (auto RefExpr : D->varlists()) {
6223     auto *VD = cast<VarDecl>(cast<DeclRefExpr>(RefExpr)->getDecl());
6224     bool PerformInit =
6225         VD->getAnyInitializer() &&
6226         !VD->getAnyInitializer()->isConstantInitializer(getContext(),
6227                                                         /*ForRef=*/false);
6228 
6229     Address Addr(GetAddrOfGlobalVar(VD), getContext().getDeclAlign(VD));
6230     if (auto InitFunction = getOpenMPRuntime().emitThreadPrivateVarDefinition(
6231             VD, Addr, RefExpr->getBeginLoc(), PerformInit))
6232       CXXGlobalInits.push_back(InitFunction);
6233   }
6234 }
6235 
6236 llvm::Metadata *
6237 CodeGenModule::CreateMetadataIdentifierImpl(QualType T, MetadataTypeMap &Map,
6238                                             StringRef Suffix) {
6239   llvm::Metadata *&InternalId = Map[T.getCanonicalType()];
6240   if (InternalId)
6241     return InternalId;
6242 
6243   if (isExternallyVisible(T->getLinkage())) {
6244     std::string OutName;
6245     llvm::raw_string_ostream Out(OutName);
6246     getCXXABI().getMangleContext().mangleTypeName(T, Out);
6247     Out << Suffix;
6248 
6249     InternalId = llvm::MDString::get(getLLVMContext(), Out.str());
6250   } else {
6251     InternalId = llvm::MDNode::getDistinct(getLLVMContext(),
6252                                            llvm::ArrayRef<llvm::Metadata *>());
6253   }
6254 
6255   return InternalId;
6256 }
6257 
6258 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierForType(QualType T) {
6259   return CreateMetadataIdentifierImpl(T, MetadataIdMap, "");
6260 }
6261 
6262 llvm::Metadata *
6263 CodeGenModule::CreateMetadataIdentifierForVirtualMemPtrType(QualType T) {
6264   return CreateMetadataIdentifierImpl(T, VirtualMetadataIdMap, ".virtual");
6265 }
6266 
6267 // Generalize pointer types to a void pointer with the qualifiers of the
6268 // originally pointed-to type, e.g. 'const char *' and 'char * const *'
6269 // generalize to 'const void *' while 'char *' and 'const char **' generalize to
6270 // 'void *'.
6271 static QualType GeneralizeType(ASTContext &Ctx, QualType Ty) {
6272   if (!Ty->isPointerType())
6273     return Ty;
6274 
6275   return Ctx.getPointerType(
6276       QualType(Ctx.VoidTy).withCVRQualifiers(
6277           Ty->getPointeeType().getCVRQualifiers()));
6278 }
6279 
6280 // Apply type generalization to a FunctionType's return and argument types
6281 static QualType GeneralizeFunctionType(ASTContext &Ctx, QualType Ty) {
6282   if (auto *FnType = Ty->getAs<FunctionProtoType>()) {
6283     SmallVector<QualType, 8> GeneralizedParams;
6284     for (auto &Param : FnType->param_types())
6285       GeneralizedParams.push_back(GeneralizeType(Ctx, Param));
6286 
6287     return Ctx.getFunctionType(
6288         GeneralizeType(Ctx, FnType->getReturnType()),
6289         GeneralizedParams, FnType->getExtProtoInfo());
6290   }
6291 
6292   if (auto *FnType = Ty->getAs<FunctionNoProtoType>())
6293     return Ctx.getFunctionNoProtoType(
6294         GeneralizeType(Ctx, FnType->getReturnType()));
6295 
6296   llvm_unreachable("Encountered unknown FunctionType");
6297 }
6298 
6299 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierGeneralized(QualType T) {
6300   return CreateMetadataIdentifierImpl(GeneralizeFunctionType(getContext(), T),
6301                                       GeneralizedMetadataIdMap, ".generalized");
6302 }
6303 
6304 /// Returns whether this module needs the "all-vtables" type identifier.
6305 bool CodeGenModule::NeedAllVtablesTypeId() const {
6306   // Returns true if at least one of vtable-based CFI checkers is enabled and
6307   // is not in the trapping mode.
6308   return ((LangOpts.Sanitize.has(SanitizerKind::CFIVCall) &&
6309            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIVCall)) ||
6310           (LangOpts.Sanitize.has(SanitizerKind::CFINVCall) &&
6311            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFINVCall)) ||
6312           (LangOpts.Sanitize.has(SanitizerKind::CFIDerivedCast) &&
6313            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIDerivedCast)) ||
6314           (LangOpts.Sanitize.has(SanitizerKind::CFIUnrelatedCast) &&
6315            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIUnrelatedCast)));
6316 }
6317 
6318 void CodeGenModule::AddVTableTypeMetadata(llvm::GlobalVariable *VTable,
6319                                           CharUnits Offset,
6320                                           const CXXRecordDecl *RD) {
6321   llvm::Metadata *MD =
6322       CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0));
6323   VTable->addTypeMetadata(Offset.getQuantity(), MD);
6324 
6325   if (CodeGenOpts.SanitizeCfiCrossDso)
6326     if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD))
6327       VTable->addTypeMetadata(Offset.getQuantity(),
6328                               llvm::ConstantAsMetadata::get(CrossDsoTypeId));
6329 
6330   if (NeedAllVtablesTypeId()) {
6331     llvm::Metadata *MD = llvm::MDString::get(getLLVMContext(), "all-vtables");
6332     VTable->addTypeMetadata(Offset.getQuantity(), MD);
6333   }
6334 }
6335 
6336 llvm::SanitizerStatReport &CodeGenModule::getSanStats() {
6337   if (!SanStats)
6338     SanStats = std::make_unique<llvm::SanitizerStatReport>(&getModule());
6339 
6340   return *SanStats;
6341 }
6342 
6343 llvm::Value *
6344 CodeGenModule::createOpenCLIntToSamplerConversion(const Expr *E,
6345                                                   CodeGenFunction &CGF) {
6346   llvm::Constant *C = ConstantEmitter(CGF).emitAbstract(E, E->getType());
6347   auto *SamplerT = getOpenCLRuntime().getSamplerType(E->getType().getTypePtr());
6348   auto *FTy = llvm::FunctionType::get(SamplerT, {C->getType()}, false);
6349   auto *Call = CGF.EmitRuntimeCall(
6350       CreateRuntimeFunction(FTy, "__translate_sampler_initializer"), {C});
6351   return Call;
6352 }
6353 
6354 CharUnits CodeGenModule::getNaturalPointeeTypeAlignment(
6355     QualType T, LValueBaseInfo *BaseInfo, TBAAAccessInfo *TBAAInfo) {
6356   return getNaturalTypeAlignment(T->getPointeeType(), BaseInfo, TBAAInfo,
6357                                  /* forPointeeType= */ true);
6358 }
6359 
6360 CharUnits CodeGenModule::getNaturalTypeAlignment(QualType T,
6361                                                  LValueBaseInfo *BaseInfo,
6362                                                  TBAAAccessInfo *TBAAInfo,
6363                                                  bool forPointeeType) {
6364   if (TBAAInfo)
6365     *TBAAInfo = getTBAAAccessInfo(T);
6366 
6367   // FIXME: This duplicates logic in ASTContext::getTypeAlignIfKnown. But
6368   // that doesn't return the information we need to compute BaseInfo.
6369 
6370   // Honor alignment typedef attributes even on incomplete types.
6371   // We also honor them straight for C++ class types, even as pointees;
6372   // there's an expressivity gap here.
6373   if (auto TT = T->getAs<TypedefType>()) {
6374     if (auto Align = TT->getDecl()->getMaxAlignment()) {
6375       if (BaseInfo)
6376         *BaseInfo = LValueBaseInfo(AlignmentSource::AttributedType);
6377       return getContext().toCharUnitsFromBits(Align);
6378     }
6379   }
6380 
6381   bool AlignForArray = T->isArrayType();
6382 
6383   // Analyze the base element type, so we don't get confused by incomplete
6384   // array types.
6385   T = getContext().getBaseElementType(T);
6386 
6387   if (T->isIncompleteType()) {
6388     // We could try to replicate the logic from
6389     // ASTContext::getTypeAlignIfKnown, but nothing uses the alignment if the
6390     // type is incomplete, so it's impossible to test. We could try to reuse
6391     // getTypeAlignIfKnown, but that doesn't return the information we need
6392     // to set BaseInfo.  So just ignore the possibility that the alignment is
6393     // greater than one.
6394     if (BaseInfo)
6395       *BaseInfo = LValueBaseInfo(AlignmentSource::Type);
6396     return CharUnits::One();
6397   }
6398 
6399   if (BaseInfo)
6400     *BaseInfo = LValueBaseInfo(AlignmentSource::Type);
6401 
6402   CharUnits Alignment;
6403   const CXXRecordDecl *RD;
6404   if (T.getQualifiers().hasUnaligned()) {
6405     Alignment = CharUnits::One();
6406   } else if (forPointeeType && !AlignForArray &&
6407              (RD = T->getAsCXXRecordDecl())) {
6408     // For C++ class pointees, we don't know whether we're pointing at a
6409     // base or a complete object, so we generally need to use the
6410     // non-virtual alignment.
6411     Alignment = getClassPointerAlignment(RD);
6412   } else {
6413     Alignment = getContext().getTypeAlignInChars(T);
6414   }
6415 
6416   // Cap to the global maximum type alignment unless the alignment
6417   // was somehow explicit on the type.
6418   if (unsigned MaxAlign = getLangOpts().MaxTypeAlign) {
6419     if (Alignment.getQuantity() > MaxAlign &&
6420         !getContext().isAlignmentRequired(T))
6421       Alignment = CharUnits::fromQuantity(MaxAlign);
6422   }
6423   return Alignment;
6424 }
6425 
6426 bool CodeGenModule::stopAutoInit() {
6427   unsigned StopAfter = getContext().getLangOpts().TrivialAutoVarInitStopAfter;
6428   if (StopAfter) {
6429     // This number is positive only when -ftrivial-auto-var-init-stop-after=* is
6430     // used
6431     if (NumAutoVarInit >= StopAfter) {
6432       return true;
6433     }
6434     if (!NumAutoVarInit) {
6435       unsigned DiagID = getDiags().getCustomDiagID(
6436           DiagnosticsEngine::Warning,
6437           "-ftrivial-auto-var-init-stop-after=%0 has been enabled to limit the "
6438           "number of times ftrivial-auto-var-init=%1 gets applied.");
6439       getDiags().Report(DiagID)
6440           << StopAfter
6441           << (getContext().getLangOpts().getTrivialAutoVarInit() ==
6442                       LangOptions::TrivialAutoVarInitKind::Zero
6443                   ? "zero"
6444                   : "pattern");
6445     }
6446     ++NumAutoVarInit;
6447   }
6448   return false;
6449 }
6450 
6451 void CodeGenModule::printPostfixForExternalizedStaticVar(
6452     llvm::raw_ostream &OS) const {
6453   OS << "__static__" << getContext().getCUIDHash();
6454 }
6455