1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This coordinates the per-module state used while generating code. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "CodeGenModule.h" 14 #include "CGBlocks.h" 15 #include "CGCUDARuntime.h" 16 #include "CGCXXABI.h" 17 #include "CGCall.h" 18 #include "CGDebugInfo.h" 19 #include "CGHLSLRuntime.h" 20 #include "CGObjCRuntime.h" 21 #include "CGOpenCLRuntime.h" 22 #include "CGOpenMPRuntime.h" 23 #include "CGOpenMPRuntimeGPU.h" 24 #include "CodeGenFunction.h" 25 #include "CodeGenPGO.h" 26 #include "ConstantEmitter.h" 27 #include "CoverageMappingGen.h" 28 #include "TargetInfo.h" 29 #include "clang/AST/ASTContext.h" 30 #include "clang/AST/CharUnits.h" 31 #include "clang/AST/DeclCXX.h" 32 #include "clang/AST/DeclObjC.h" 33 #include "clang/AST/DeclTemplate.h" 34 #include "clang/AST/Mangle.h" 35 #include "clang/AST/RecordLayout.h" 36 #include "clang/AST/RecursiveASTVisitor.h" 37 #include "clang/AST/StmtVisitor.h" 38 #include "clang/Basic/Builtins.h" 39 #include "clang/Basic/CharInfo.h" 40 #include "clang/Basic/CodeGenOptions.h" 41 #include "clang/Basic/Diagnostic.h" 42 #include "clang/Basic/FileManager.h" 43 #include "clang/Basic/Module.h" 44 #include "clang/Basic/SourceManager.h" 45 #include "clang/Basic/TargetInfo.h" 46 #include "clang/Basic/Version.h" 47 #include "clang/CodeGen/BackendUtil.h" 48 #include "clang/CodeGen/ConstantInitBuilder.h" 49 #include "clang/Frontend/FrontendDiagnostic.h" 50 #include "llvm/ADT/StringSwitch.h" 51 #include "llvm/ADT/Triple.h" 52 #include "llvm/Analysis/TargetLibraryInfo.h" 53 #include "llvm/Frontend/OpenMP/OMPIRBuilder.h" 54 #include "llvm/IR/CallingConv.h" 55 #include "llvm/IR/DataLayout.h" 56 #include "llvm/IR/Intrinsics.h" 57 #include "llvm/IR/LLVMContext.h" 58 #include "llvm/IR/Module.h" 59 #include "llvm/IR/ProfileSummary.h" 60 #include "llvm/ProfileData/InstrProfReader.h" 61 #include "llvm/Support/CRC.h" 62 #include "llvm/Support/CodeGen.h" 63 #include "llvm/Support/CommandLine.h" 64 #include "llvm/Support/ConvertUTF.h" 65 #include "llvm/Support/ErrorHandling.h" 66 #include "llvm/Support/MD5.h" 67 #include "llvm/Support/TimeProfiler.h" 68 #include "llvm/Support/X86TargetParser.h" 69 70 using namespace clang; 71 using namespace CodeGen; 72 73 static llvm::cl::opt<bool> LimitedCoverage( 74 "limited-coverage-experimental", llvm::cl::Hidden, 75 llvm::cl::desc("Emit limited coverage mapping information (experimental)")); 76 77 static const char AnnotationSection[] = "llvm.metadata"; 78 79 static CGCXXABI *createCXXABI(CodeGenModule &CGM) { 80 switch (CGM.getContext().getCXXABIKind()) { 81 case TargetCXXABI::AppleARM64: 82 case TargetCXXABI::Fuchsia: 83 case TargetCXXABI::GenericAArch64: 84 case TargetCXXABI::GenericARM: 85 case TargetCXXABI::iOS: 86 case TargetCXXABI::WatchOS: 87 case TargetCXXABI::GenericMIPS: 88 case TargetCXXABI::GenericItanium: 89 case TargetCXXABI::WebAssembly: 90 case TargetCXXABI::XL: 91 return CreateItaniumCXXABI(CGM); 92 case TargetCXXABI::Microsoft: 93 return CreateMicrosoftCXXABI(CGM); 94 } 95 96 llvm_unreachable("invalid C++ ABI kind"); 97 } 98 99 CodeGenModule::CodeGenModule(ASTContext &C, const HeaderSearchOptions &HSO, 100 const PreprocessorOptions &PPO, 101 const CodeGenOptions &CGO, llvm::Module &M, 102 DiagnosticsEngine &diags, 103 CoverageSourceInfo *CoverageInfo) 104 : Context(C), LangOpts(C.getLangOpts()), HeaderSearchOpts(HSO), 105 PreprocessorOpts(PPO), CodeGenOpts(CGO), TheModule(M), Diags(diags), 106 Target(C.getTargetInfo()), ABI(createCXXABI(*this)), 107 VMContext(M.getContext()), Types(*this), VTables(*this), 108 SanitizerMD(new SanitizerMetadata(*this)) { 109 110 // Initialize the type cache. 111 llvm::LLVMContext &LLVMContext = M.getContext(); 112 VoidTy = llvm::Type::getVoidTy(LLVMContext); 113 Int8Ty = llvm::Type::getInt8Ty(LLVMContext); 114 Int16Ty = llvm::Type::getInt16Ty(LLVMContext); 115 Int32Ty = llvm::Type::getInt32Ty(LLVMContext); 116 Int64Ty = llvm::Type::getInt64Ty(LLVMContext); 117 HalfTy = llvm::Type::getHalfTy(LLVMContext); 118 BFloatTy = llvm::Type::getBFloatTy(LLVMContext); 119 FloatTy = llvm::Type::getFloatTy(LLVMContext); 120 DoubleTy = llvm::Type::getDoubleTy(LLVMContext); 121 PointerWidthInBits = C.getTargetInfo().getPointerWidth(0); 122 PointerAlignInBytes = 123 C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(0)).getQuantity(); 124 SizeSizeInBytes = 125 C.toCharUnitsFromBits(C.getTargetInfo().getMaxPointerWidth()).getQuantity(); 126 IntAlignInBytes = 127 C.toCharUnitsFromBits(C.getTargetInfo().getIntAlign()).getQuantity(); 128 CharTy = 129 llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getCharWidth()); 130 IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth()); 131 IntPtrTy = llvm::IntegerType::get(LLVMContext, 132 C.getTargetInfo().getMaxPointerWidth()); 133 Int8PtrTy = Int8Ty->getPointerTo(0); 134 Int8PtrPtrTy = Int8PtrTy->getPointerTo(0); 135 const llvm::DataLayout &DL = M.getDataLayout(); 136 AllocaInt8PtrTy = Int8Ty->getPointerTo(DL.getAllocaAddrSpace()); 137 GlobalsInt8PtrTy = Int8Ty->getPointerTo(DL.getDefaultGlobalsAddressSpace()); 138 ASTAllocaAddressSpace = getTargetCodeGenInfo().getASTAllocaAddressSpace(); 139 140 RuntimeCC = getTargetCodeGenInfo().getABIInfo().getRuntimeCC(); 141 142 if (LangOpts.ObjC) 143 createObjCRuntime(); 144 if (LangOpts.OpenCL) 145 createOpenCLRuntime(); 146 if (LangOpts.OpenMP) 147 createOpenMPRuntime(); 148 if (LangOpts.CUDA) 149 createCUDARuntime(); 150 if (LangOpts.HLSL) 151 createHLSLRuntime(); 152 153 // Enable TBAA unless it's suppressed. ThreadSanitizer needs TBAA even at O0. 154 if (LangOpts.Sanitize.has(SanitizerKind::Thread) || 155 (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0)) 156 TBAA.reset(new CodeGenTBAA(Context, TheModule, CodeGenOpts, getLangOpts(), 157 getCXXABI().getMangleContext())); 158 159 // If debug info or coverage generation is enabled, create the CGDebugInfo 160 // object. 161 if (CodeGenOpts.getDebugInfo() != codegenoptions::NoDebugInfo || 162 CodeGenOpts.EmitGcovArcs || CodeGenOpts.EmitGcovNotes) 163 DebugInfo.reset(new CGDebugInfo(*this)); 164 165 Block.GlobalUniqueCount = 0; 166 167 if (C.getLangOpts().ObjC) 168 ObjCData.reset(new ObjCEntrypoints()); 169 170 if (CodeGenOpts.hasProfileClangUse()) { 171 auto ReaderOrErr = llvm::IndexedInstrProfReader::create( 172 CodeGenOpts.ProfileInstrumentUsePath, CodeGenOpts.ProfileRemappingFile); 173 if (auto E = ReaderOrErr.takeError()) { 174 unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error, 175 "Could not read profile %0: %1"); 176 llvm::handleAllErrors(std::move(E), [&](const llvm::ErrorInfoBase &EI) { 177 getDiags().Report(DiagID) << CodeGenOpts.ProfileInstrumentUsePath 178 << EI.message(); 179 }); 180 } else 181 PGOReader = std::move(ReaderOrErr.get()); 182 } 183 184 // If coverage mapping generation is enabled, create the 185 // CoverageMappingModuleGen object. 186 if (CodeGenOpts.CoverageMapping) 187 CoverageMapping.reset(new CoverageMappingModuleGen(*this, *CoverageInfo)); 188 189 // Generate the module name hash here if needed. 190 if (CodeGenOpts.UniqueInternalLinkageNames && 191 !getModule().getSourceFileName().empty()) { 192 std::string Path = getModule().getSourceFileName(); 193 // Check if a path substitution is needed from the MacroPrefixMap. 194 for (const auto &Entry : LangOpts.MacroPrefixMap) 195 if (Path.rfind(Entry.first, 0) != std::string::npos) { 196 Path = Entry.second + Path.substr(Entry.first.size()); 197 break; 198 } 199 llvm::MD5 Md5; 200 Md5.update(Path); 201 llvm::MD5::MD5Result R; 202 Md5.final(R); 203 SmallString<32> Str; 204 llvm::MD5::stringifyResult(R, Str); 205 // Convert MD5hash to Decimal. Demangler suffixes can either contain 206 // numbers or characters but not both. 207 llvm::APInt IntHash(128, Str.str(), 16); 208 // Prepend "__uniq" before the hash for tools like profilers to understand 209 // that this symbol is of internal linkage type. The "__uniq" is the 210 // pre-determined prefix that is used to tell tools that this symbol was 211 // created with -funique-internal-linakge-symbols and the tools can strip or 212 // keep the prefix as needed. 213 ModuleNameHash = (Twine(".__uniq.") + 214 Twine(toString(IntHash, /* Radix = */ 10, /* Signed = */false))).str(); 215 } 216 } 217 218 CodeGenModule::~CodeGenModule() {} 219 220 void CodeGenModule::createObjCRuntime() { 221 // This is just isGNUFamily(), but we want to force implementors of 222 // new ABIs to decide how best to do this. 223 switch (LangOpts.ObjCRuntime.getKind()) { 224 case ObjCRuntime::GNUstep: 225 case ObjCRuntime::GCC: 226 case ObjCRuntime::ObjFW: 227 ObjCRuntime.reset(CreateGNUObjCRuntime(*this)); 228 return; 229 230 case ObjCRuntime::FragileMacOSX: 231 case ObjCRuntime::MacOSX: 232 case ObjCRuntime::iOS: 233 case ObjCRuntime::WatchOS: 234 ObjCRuntime.reset(CreateMacObjCRuntime(*this)); 235 return; 236 } 237 llvm_unreachable("bad runtime kind"); 238 } 239 240 void CodeGenModule::createOpenCLRuntime() { 241 OpenCLRuntime.reset(new CGOpenCLRuntime(*this)); 242 } 243 244 void CodeGenModule::createOpenMPRuntime() { 245 // Select a specialized code generation class based on the target, if any. 246 // If it does not exist use the default implementation. 247 switch (getTriple().getArch()) { 248 case llvm::Triple::nvptx: 249 case llvm::Triple::nvptx64: 250 case llvm::Triple::amdgcn: 251 assert(getLangOpts().OpenMPIsDevice && 252 "OpenMP AMDGPU/NVPTX is only prepared to deal with device code."); 253 OpenMPRuntime.reset(new CGOpenMPRuntimeGPU(*this)); 254 break; 255 default: 256 if (LangOpts.OpenMPSimd) 257 OpenMPRuntime.reset(new CGOpenMPSIMDRuntime(*this)); 258 else 259 OpenMPRuntime.reset(new CGOpenMPRuntime(*this)); 260 break; 261 } 262 } 263 264 void CodeGenModule::createCUDARuntime() { 265 CUDARuntime.reset(CreateNVCUDARuntime(*this)); 266 } 267 268 void CodeGenModule::createHLSLRuntime() { 269 HLSLRuntime.reset(new CGHLSLRuntime(*this)); 270 } 271 272 void CodeGenModule::addReplacement(StringRef Name, llvm::Constant *C) { 273 Replacements[Name] = C; 274 } 275 276 void CodeGenModule::applyReplacements() { 277 for (auto &I : Replacements) { 278 StringRef MangledName = I.first(); 279 llvm::Constant *Replacement = I.second; 280 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 281 if (!Entry) 282 continue; 283 auto *OldF = cast<llvm::Function>(Entry); 284 auto *NewF = dyn_cast<llvm::Function>(Replacement); 285 if (!NewF) { 286 if (auto *Alias = dyn_cast<llvm::GlobalAlias>(Replacement)) { 287 NewF = dyn_cast<llvm::Function>(Alias->getAliasee()); 288 } else { 289 auto *CE = cast<llvm::ConstantExpr>(Replacement); 290 assert(CE->getOpcode() == llvm::Instruction::BitCast || 291 CE->getOpcode() == llvm::Instruction::GetElementPtr); 292 NewF = dyn_cast<llvm::Function>(CE->getOperand(0)); 293 } 294 } 295 296 // Replace old with new, but keep the old order. 297 OldF->replaceAllUsesWith(Replacement); 298 if (NewF) { 299 NewF->removeFromParent(); 300 OldF->getParent()->getFunctionList().insertAfter(OldF->getIterator(), 301 NewF); 302 } 303 OldF->eraseFromParent(); 304 } 305 } 306 307 void CodeGenModule::addGlobalValReplacement(llvm::GlobalValue *GV, llvm::Constant *C) { 308 GlobalValReplacements.push_back(std::make_pair(GV, C)); 309 } 310 311 void CodeGenModule::applyGlobalValReplacements() { 312 for (auto &I : GlobalValReplacements) { 313 llvm::GlobalValue *GV = I.first; 314 llvm::Constant *C = I.second; 315 316 GV->replaceAllUsesWith(C); 317 GV->eraseFromParent(); 318 } 319 } 320 321 // This is only used in aliases that we created and we know they have a 322 // linear structure. 323 static const llvm::GlobalValue *getAliasedGlobal(const llvm::GlobalValue *GV) { 324 const llvm::Constant *C; 325 if (auto *GA = dyn_cast<llvm::GlobalAlias>(GV)) 326 C = GA->getAliasee(); 327 else if (auto *GI = dyn_cast<llvm::GlobalIFunc>(GV)) 328 C = GI->getResolver(); 329 else 330 return GV; 331 332 const auto *AliaseeGV = dyn_cast<llvm::GlobalValue>(C->stripPointerCasts()); 333 if (!AliaseeGV) 334 return nullptr; 335 336 const llvm::GlobalValue *FinalGV = AliaseeGV->getAliaseeObject(); 337 if (FinalGV == GV) 338 return nullptr; 339 340 return FinalGV; 341 } 342 343 static bool checkAliasedGlobal(DiagnosticsEngine &Diags, 344 SourceLocation Location, bool IsIFunc, 345 const llvm::GlobalValue *Alias, 346 const llvm::GlobalValue *&GV) { 347 GV = getAliasedGlobal(Alias); 348 if (!GV) { 349 Diags.Report(Location, diag::err_cyclic_alias) << IsIFunc; 350 return false; 351 } 352 353 if (GV->isDeclaration()) { 354 Diags.Report(Location, diag::err_alias_to_undefined) << IsIFunc << IsIFunc; 355 return false; 356 } 357 358 if (IsIFunc) { 359 // Check resolver function type. 360 const auto *F = dyn_cast<llvm::Function>(GV); 361 if (!F) { 362 Diags.Report(Location, diag::err_alias_to_undefined) 363 << IsIFunc << IsIFunc; 364 return false; 365 } 366 367 llvm::FunctionType *FTy = F->getFunctionType(); 368 if (!FTy->getReturnType()->isPointerTy()) { 369 Diags.Report(Location, diag::err_ifunc_resolver_return); 370 return false; 371 } 372 } 373 374 return true; 375 } 376 377 void CodeGenModule::checkAliases() { 378 // Check if the constructed aliases are well formed. It is really unfortunate 379 // that we have to do this in CodeGen, but we only construct mangled names 380 // and aliases during codegen. 381 bool Error = false; 382 DiagnosticsEngine &Diags = getDiags(); 383 for (const GlobalDecl &GD : Aliases) { 384 const auto *D = cast<ValueDecl>(GD.getDecl()); 385 SourceLocation Location; 386 bool IsIFunc = D->hasAttr<IFuncAttr>(); 387 if (const Attr *A = D->getDefiningAttr()) 388 Location = A->getLocation(); 389 else 390 llvm_unreachable("Not an alias or ifunc?"); 391 392 StringRef MangledName = getMangledName(GD); 393 llvm::GlobalValue *Alias = GetGlobalValue(MangledName); 394 const llvm::GlobalValue *GV = nullptr; 395 if (!checkAliasedGlobal(Diags, Location, IsIFunc, Alias, GV)) { 396 Error = true; 397 continue; 398 } 399 400 llvm::Constant *Aliasee = 401 IsIFunc ? cast<llvm::GlobalIFunc>(Alias)->getResolver() 402 : cast<llvm::GlobalAlias>(Alias)->getAliasee(); 403 404 llvm::GlobalValue *AliaseeGV; 405 if (auto CE = dyn_cast<llvm::ConstantExpr>(Aliasee)) 406 AliaseeGV = cast<llvm::GlobalValue>(CE->getOperand(0)); 407 else 408 AliaseeGV = cast<llvm::GlobalValue>(Aliasee); 409 410 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) { 411 StringRef AliasSection = SA->getName(); 412 if (AliasSection != AliaseeGV->getSection()) 413 Diags.Report(SA->getLocation(), diag::warn_alias_with_section) 414 << AliasSection << IsIFunc << IsIFunc; 415 } 416 417 // We have to handle alias to weak aliases in here. LLVM itself disallows 418 // this since the object semantics would not match the IL one. For 419 // compatibility with gcc we implement it by just pointing the alias 420 // to its aliasee's aliasee. We also warn, since the user is probably 421 // expecting the link to be weak. 422 if (auto *GA = dyn_cast<llvm::GlobalAlias>(AliaseeGV)) { 423 if (GA->isInterposable()) { 424 Diags.Report(Location, diag::warn_alias_to_weak_alias) 425 << GV->getName() << GA->getName() << IsIFunc; 426 Aliasee = llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast( 427 GA->getAliasee(), Alias->getType()); 428 429 if (IsIFunc) 430 cast<llvm::GlobalIFunc>(Alias)->setResolver(Aliasee); 431 else 432 cast<llvm::GlobalAlias>(Alias)->setAliasee(Aliasee); 433 } 434 } 435 } 436 if (!Error) 437 return; 438 439 for (const GlobalDecl &GD : Aliases) { 440 StringRef MangledName = getMangledName(GD); 441 llvm::GlobalValue *Alias = GetGlobalValue(MangledName); 442 Alias->replaceAllUsesWith(llvm::UndefValue::get(Alias->getType())); 443 Alias->eraseFromParent(); 444 } 445 } 446 447 void CodeGenModule::clear() { 448 DeferredDeclsToEmit.clear(); 449 EmittedDeferredDecls.clear(); 450 if (OpenMPRuntime) 451 OpenMPRuntime->clear(); 452 } 453 454 void InstrProfStats::reportDiagnostics(DiagnosticsEngine &Diags, 455 StringRef MainFile) { 456 if (!hasDiagnostics()) 457 return; 458 if (VisitedInMainFile > 0 && VisitedInMainFile == MissingInMainFile) { 459 if (MainFile.empty()) 460 MainFile = "<stdin>"; 461 Diags.Report(diag::warn_profile_data_unprofiled) << MainFile; 462 } else { 463 if (Mismatched > 0) 464 Diags.Report(diag::warn_profile_data_out_of_date) << Visited << Mismatched; 465 466 if (Missing > 0) 467 Diags.Report(diag::warn_profile_data_missing) << Visited << Missing; 468 } 469 } 470 471 static void setVisibilityFromDLLStorageClass(const clang::LangOptions &LO, 472 llvm::Module &M) { 473 if (!LO.VisibilityFromDLLStorageClass) 474 return; 475 476 llvm::GlobalValue::VisibilityTypes DLLExportVisibility = 477 CodeGenModule::GetLLVMVisibility(LO.getDLLExportVisibility()); 478 llvm::GlobalValue::VisibilityTypes NoDLLStorageClassVisibility = 479 CodeGenModule::GetLLVMVisibility(LO.getNoDLLStorageClassVisibility()); 480 llvm::GlobalValue::VisibilityTypes ExternDeclDLLImportVisibility = 481 CodeGenModule::GetLLVMVisibility(LO.getExternDeclDLLImportVisibility()); 482 llvm::GlobalValue::VisibilityTypes ExternDeclNoDLLStorageClassVisibility = 483 CodeGenModule::GetLLVMVisibility( 484 LO.getExternDeclNoDLLStorageClassVisibility()); 485 486 for (llvm::GlobalValue &GV : M.global_values()) { 487 if (GV.hasAppendingLinkage() || GV.hasLocalLinkage()) 488 continue; 489 490 // Reset DSO locality before setting the visibility. This removes 491 // any effects that visibility options and annotations may have 492 // had on the DSO locality. Setting the visibility will implicitly set 493 // appropriate globals to DSO Local; however, this will be pessimistic 494 // w.r.t. to the normal compiler IRGen. 495 GV.setDSOLocal(false); 496 497 if (GV.isDeclarationForLinker()) { 498 GV.setVisibility(GV.getDLLStorageClass() == 499 llvm::GlobalValue::DLLImportStorageClass 500 ? ExternDeclDLLImportVisibility 501 : ExternDeclNoDLLStorageClassVisibility); 502 } else { 503 GV.setVisibility(GV.getDLLStorageClass() == 504 llvm::GlobalValue::DLLExportStorageClass 505 ? DLLExportVisibility 506 : NoDLLStorageClassVisibility); 507 } 508 509 GV.setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 510 } 511 } 512 513 void CodeGenModule::Release() { 514 EmitDeferred(); 515 DeferredDecls.insert(EmittedDeferredDecls.begin(), 516 EmittedDeferredDecls.end()); 517 EmittedDeferredDecls.clear(); 518 EmitVTablesOpportunistically(); 519 applyGlobalValReplacements(); 520 applyReplacements(); 521 emitMultiVersionFunctions(); 522 EmitCXXGlobalInitFunc(); 523 EmitCXXGlobalCleanUpFunc(); 524 registerGlobalDtorsWithAtExit(); 525 EmitCXXThreadLocalInitFunc(); 526 if (ObjCRuntime) 527 if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction()) 528 AddGlobalCtor(ObjCInitFunction); 529 if (Context.getLangOpts().CUDA && CUDARuntime) { 530 if (llvm::Function *CudaCtorFunction = CUDARuntime->finalizeModule()) 531 AddGlobalCtor(CudaCtorFunction); 532 } 533 if (OpenMPRuntime) { 534 if (llvm::Function *OpenMPRequiresDirectiveRegFun = 535 OpenMPRuntime->emitRequiresDirectiveRegFun()) { 536 AddGlobalCtor(OpenMPRequiresDirectiveRegFun, 0); 537 } 538 OpenMPRuntime->createOffloadEntriesAndInfoMetadata(); 539 OpenMPRuntime->clear(); 540 } 541 if (PGOReader) { 542 getModule().setProfileSummary( 543 PGOReader->getSummary(/* UseCS */ false).getMD(VMContext), 544 llvm::ProfileSummary::PSK_Instr); 545 if (PGOStats.hasDiagnostics()) 546 PGOStats.reportDiagnostics(getDiags(), getCodeGenOpts().MainFileName); 547 } 548 EmitCtorList(GlobalCtors, "llvm.global_ctors"); 549 EmitCtorList(GlobalDtors, "llvm.global_dtors"); 550 EmitGlobalAnnotations(); 551 EmitStaticExternCAliases(); 552 checkAliases(); 553 EmitDeferredUnusedCoverageMappings(); 554 CodeGenPGO(*this).setValueProfilingFlag(getModule()); 555 if (CoverageMapping) 556 CoverageMapping->emit(); 557 if (CodeGenOpts.SanitizeCfiCrossDso) { 558 CodeGenFunction(*this).EmitCfiCheckFail(); 559 CodeGenFunction(*this).EmitCfiCheckStub(); 560 } 561 emitAtAvailableLinkGuard(); 562 if (Context.getTargetInfo().getTriple().isWasm()) 563 EmitMainVoidAlias(); 564 565 if (getTriple().isAMDGPU()) { 566 // Emit reference of __amdgpu_device_library_preserve_asan_functions to 567 // preserve ASAN functions in bitcode libraries. 568 if (LangOpts.Sanitize.has(SanitizerKind::Address)) { 569 auto *FT = llvm::FunctionType::get(VoidTy, {}); 570 auto *F = llvm::Function::Create( 571 FT, llvm::GlobalValue::ExternalLinkage, 572 "__amdgpu_device_library_preserve_asan_functions", &getModule()); 573 auto *Var = new llvm::GlobalVariable( 574 getModule(), FT->getPointerTo(), 575 /*isConstant=*/true, llvm::GlobalValue::WeakAnyLinkage, F, 576 "__amdgpu_device_library_preserve_asan_functions_ptr", nullptr, 577 llvm::GlobalVariable::NotThreadLocal); 578 addCompilerUsedGlobal(Var); 579 } 580 // Emit amdgpu_code_object_version module flag, which is code object version 581 // times 100. 582 // ToDo: Enable module flag for all code object version when ROCm device 583 // library is ready. 584 if (getTarget().getTargetOpts().CodeObjectVersion == TargetOptions::COV_5) { 585 getModule().addModuleFlag(llvm::Module::Error, 586 "amdgpu_code_object_version", 587 getTarget().getTargetOpts().CodeObjectVersion); 588 } 589 } 590 591 // Emit a global array containing all external kernels or device variables 592 // used by host functions and mark it as used for CUDA/HIP. This is necessary 593 // to get kernels or device variables in archives linked in even if these 594 // kernels or device variables are only used in host functions. 595 if (!Context.CUDAExternalDeviceDeclODRUsedByHost.empty()) { 596 SmallVector<llvm::Constant *, 8> UsedArray; 597 for (auto D : Context.CUDAExternalDeviceDeclODRUsedByHost) { 598 GlobalDecl GD; 599 if (auto *FD = dyn_cast<FunctionDecl>(D)) 600 GD = GlobalDecl(FD, KernelReferenceKind::Kernel); 601 else 602 GD = GlobalDecl(D); 603 UsedArray.push_back(llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast( 604 GetAddrOfGlobal(GD), Int8PtrTy)); 605 } 606 607 llvm::ArrayType *ATy = llvm::ArrayType::get(Int8PtrTy, UsedArray.size()); 608 609 auto *GV = new llvm::GlobalVariable( 610 getModule(), ATy, false, llvm::GlobalValue::InternalLinkage, 611 llvm::ConstantArray::get(ATy, UsedArray), "__clang_gpu_used_external"); 612 addCompilerUsedGlobal(GV); 613 } 614 615 emitLLVMUsed(); 616 if (SanStats) 617 SanStats->finish(); 618 619 if (CodeGenOpts.Autolink && 620 (Context.getLangOpts().Modules || !LinkerOptionsMetadata.empty())) { 621 EmitModuleLinkOptions(); 622 } 623 624 // On ELF we pass the dependent library specifiers directly to the linker 625 // without manipulating them. This is in contrast to other platforms where 626 // they are mapped to a specific linker option by the compiler. This 627 // difference is a result of the greater variety of ELF linkers and the fact 628 // that ELF linkers tend to handle libraries in a more complicated fashion 629 // than on other platforms. This forces us to defer handling the dependent 630 // libs to the linker. 631 // 632 // CUDA/HIP device and host libraries are different. Currently there is no 633 // way to differentiate dependent libraries for host or device. Existing 634 // usage of #pragma comment(lib, *) is intended for host libraries on 635 // Windows. Therefore emit llvm.dependent-libraries only for host. 636 if (!ELFDependentLibraries.empty() && !Context.getLangOpts().CUDAIsDevice) { 637 auto *NMD = getModule().getOrInsertNamedMetadata("llvm.dependent-libraries"); 638 for (auto *MD : ELFDependentLibraries) 639 NMD->addOperand(MD); 640 } 641 642 // Record mregparm value now so it is visible through rest of codegen. 643 if (Context.getTargetInfo().getTriple().getArch() == llvm::Triple::x86) 644 getModule().addModuleFlag(llvm::Module::Error, "NumRegisterParameters", 645 CodeGenOpts.NumRegisterParameters); 646 647 if (CodeGenOpts.DwarfVersion) { 648 getModule().addModuleFlag(llvm::Module::Max, "Dwarf Version", 649 CodeGenOpts.DwarfVersion); 650 } 651 652 if (CodeGenOpts.Dwarf64) 653 getModule().addModuleFlag(llvm::Module::Max, "DWARF64", 1); 654 655 if (Context.getLangOpts().SemanticInterposition) 656 // Require various optimization to respect semantic interposition. 657 getModule().setSemanticInterposition(true); 658 659 if (CodeGenOpts.EmitCodeView) { 660 // Indicate that we want CodeView in the metadata. 661 getModule().addModuleFlag(llvm::Module::Warning, "CodeView", 1); 662 } 663 if (CodeGenOpts.CodeViewGHash) { 664 getModule().addModuleFlag(llvm::Module::Warning, "CodeViewGHash", 1); 665 } 666 if (CodeGenOpts.ControlFlowGuard) { 667 // Function ID tables and checks for Control Flow Guard (cfguard=2). 668 getModule().addModuleFlag(llvm::Module::Warning, "cfguard", 2); 669 } else if (CodeGenOpts.ControlFlowGuardNoChecks) { 670 // Function ID tables for Control Flow Guard (cfguard=1). 671 getModule().addModuleFlag(llvm::Module::Warning, "cfguard", 1); 672 } 673 if (CodeGenOpts.EHContGuard) { 674 // Function ID tables for EH Continuation Guard. 675 getModule().addModuleFlag(llvm::Module::Warning, "ehcontguard", 1); 676 } 677 if (CodeGenOpts.OptimizationLevel > 0 && CodeGenOpts.StrictVTablePointers) { 678 // We don't support LTO with 2 with different StrictVTablePointers 679 // FIXME: we could support it by stripping all the information introduced 680 // by StrictVTablePointers. 681 682 getModule().addModuleFlag(llvm::Module::Error, "StrictVTablePointers",1); 683 684 llvm::Metadata *Ops[2] = { 685 llvm::MDString::get(VMContext, "StrictVTablePointers"), 686 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 687 llvm::Type::getInt32Ty(VMContext), 1))}; 688 689 getModule().addModuleFlag(llvm::Module::Require, 690 "StrictVTablePointersRequirement", 691 llvm::MDNode::get(VMContext, Ops)); 692 } 693 if (getModuleDebugInfo()) 694 // We support a single version in the linked module. The LLVM 695 // parser will drop debug info with a different version number 696 // (and warn about it, too). 697 getModule().addModuleFlag(llvm::Module::Warning, "Debug Info Version", 698 llvm::DEBUG_METADATA_VERSION); 699 700 // We need to record the widths of enums and wchar_t, so that we can generate 701 // the correct build attributes in the ARM backend. wchar_size is also used by 702 // TargetLibraryInfo. 703 uint64_t WCharWidth = 704 Context.getTypeSizeInChars(Context.getWideCharType()).getQuantity(); 705 getModule().addModuleFlag(llvm::Module::Error, "wchar_size", WCharWidth); 706 707 llvm::Triple::ArchType Arch = Context.getTargetInfo().getTriple().getArch(); 708 if ( Arch == llvm::Triple::arm 709 || Arch == llvm::Triple::armeb 710 || Arch == llvm::Triple::thumb 711 || Arch == llvm::Triple::thumbeb) { 712 // The minimum width of an enum in bytes 713 uint64_t EnumWidth = Context.getLangOpts().ShortEnums ? 1 : 4; 714 getModule().addModuleFlag(llvm::Module::Error, "min_enum_size", EnumWidth); 715 } 716 717 if (Arch == llvm::Triple::riscv32 || Arch == llvm::Triple::riscv64) { 718 StringRef ABIStr = Target.getABI(); 719 llvm::LLVMContext &Ctx = TheModule.getContext(); 720 getModule().addModuleFlag(llvm::Module::Error, "target-abi", 721 llvm::MDString::get(Ctx, ABIStr)); 722 } 723 724 if (CodeGenOpts.SanitizeCfiCrossDso) { 725 // Indicate that we want cross-DSO control flow integrity checks. 726 getModule().addModuleFlag(llvm::Module::Override, "Cross-DSO CFI", 1); 727 } 728 729 if (CodeGenOpts.WholeProgramVTables) { 730 // Indicate whether VFE was enabled for this module, so that the 731 // vcall_visibility metadata added under whole program vtables is handled 732 // appropriately in the optimizer. 733 getModule().addModuleFlag(llvm::Module::Error, "Virtual Function Elim", 734 CodeGenOpts.VirtualFunctionElimination); 735 } 736 737 if (LangOpts.Sanitize.has(SanitizerKind::CFIICall)) { 738 getModule().addModuleFlag(llvm::Module::Override, 739 "CFI Canonical Jump Tables", 740 CodeGenOpts.SanitizeCfiCanonicalJumpTables); 741 } 742 743 if (CodeGenOpts.CFProtectionReturn && 744 Target.checkCFProtectionReturnSupported(getDiags())) { 745 // Indicate that we want to instrument return control flow protection. 746 getModule().addModuleFlag(llvm::Module::Override, "cf-protection-return", 747 1); 748 } 749 750 if (CodeGenOpts.CFProtectionBranch && 751 Target.checkCFProtectionBranchSupported(getDiags())) { 752 // Indicate that we want to instrument branch control flow protection. 753 getModule().addModuleFlag(llvm::Module::Override, "cf-protection-branch", 754 1); 755 } 756 757 if (CodeGenOpts.IBTSeal) 758 getModule().addModuleFlag(llvm::Module::Override, "ibt-seal", 1); 759 760 if (CodeGenOpts.FunctionReturnThunks) 761 getModule().addModuleFlag(llvm::Module::Override, "function_return_thunk_extern", 1); 762 763 // Add module metadata for return address signing (ignoring 764 // non-leaf/all) and stack tagging. These are actually turned on by function 765 // attributes, but we use module metadata to emit build attributes. This is 766 // needed for LTO, where the function attributes are inside bitcode 767 // serialised into a global variable by the time build attributes are 768 // emitted, so we can't access them. LTO objects could be compiled with 769 // different flags therefore module flags are set to "Min" behavior to achieve 770 // the same end result of the normal build where e.g BTI is off if any object 771 // doesn't support it. 772 if (Context.getTargetInfo().hasFeature("ptrauth") && 773 LangOpts.getSignReturnAddressScope() != 774 LangOptions::SignReturnAddressScopeKind::None) 775 getModule().addModuleFlag(llvm::Module::Override, 776 "sign-return-address-buildattr", 1); 777 if (LangOpts.Sanitize.has(SanitizerKind::MemtagStack)) 778 getModule().addModuleFlag(llvm::Module::Override, 779 "tag-stack-memory-buildattr", 1); 780 781 if (Arch == llvm::Triple::thumb || Arch == llvm::Triple::thumbeb || 782 Arch == llvm::Triple::arm || Arch == llvm::Triple::armeb || 783 Arch == llvm::Triple::aarch64 || Arch == llvm::Triple::aarch64_32 || 784 Arch == llvm::Triple::aarch64_be) { 785 getModule().addModuleFlag(llvm::Module::Min, "branch-target-enforcement", 786 LangOpts.BranchTargetEnforcement); 787 788 getModule().addModuleFlag(llvm::Module::Min, "sign-return-address", 789 LangOpts.hasSignReturnAddress()); 790 791 getModule().addModuleFlag(llvm::Module::Min, "sign-return-address-all", 792 LangOpts.isSignReturnAddressScopeAll()); 793 794 getModule().addModuleFlag(llvm::Module::Min, 795 "sign-return-address-with-bkey", 796 !LangOpts.isSignReturnAddressWithAKey()); 797 } 798 799 if (!CodeGenOpts.MemoryProfileOutput.empty()) { 800 llvm::LLVMContext &Ctx = TheModule.getContext(); 801 getModule().addModuleFlag( 802 llvm::Module::Error, "MemProfProfileFilename", 803 llvm::MDString::get(Ctx, CodeGenOpts.MemoryProfileOutput)); 804 } 805 806 if (LangOpts.CUDAIsDevice && getTriple().isNVPTX()) { 807 // Indicate whether __nvvm_reflect should be configured to flush denormal 808 // floating point values to 0. (This corresponds to its "__CUDA_FTZ" 809 // property.) 810 getModule().addModuleFlag(llvm::Module::Override, "nvvm-reflect-ftz", 811 CodeGenOpts.FP32DenormalMode.Output != 812 llvm::DenormalMode::IEEE); 813 } 814 815 if (LangOpts.EHAsynch) 816 getModule().addModuleFlag(llvm::Module::Warning, "eh-asynch", 1); 817 818 // Indicate whether this Module was compiled with -fopenmp 819 if (getLangOpts().OpenMP && !getLangOpts().OpenMPSimd) 820 getModule().addModuleFlag(llvm::Module::Max, "openmp", LangOpts.OpenMP); 821 if (getLangOpts().OpenMPIsDevice) 822 getModule().addModuleFlag(llvm::Module::Max, "openmp-device", 823 LangOpts.OpenMP); 824 825 // Emit OpenCL specific module metadata: OpenCL/SPIR version. 826 if (LangOpts.OpenCL || (LangOpts.CUDAIsDevice && getTriple().isSPIRV())) { 827 EmitOpenCLMetadata(); 828 // Emit SPIR version. 829 if (getTriple().isSPIR()) { 830 // SPIR v2.0 s2.12 - The SPIR version used by the module is stored in the 831 // opencl.spir.version named metadata. 832 // C++ for OpenCL has a distinct mapping for version compatibility with 833 // OpenCL. 834 auto Version = LangOpts.getOpenCLCompatibleVersion(); 835 llvm::Metadata *SPIRVerElts[] = { 836 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 837 Int32Ty, Version / 100)), 838 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 839 Int32Ty, (Version / 100 > 1) ? 0 : 2))}; 840 llvm::NamedMDNode *SPIRVerMD = 841 TheModule.getOrInsertNamedMetadata("opencl.spir.version"); 842 llvm::LLVMContext &Ctx = TheModule.getContext(); 843 SPIRVerMD->addOperand(llvm::MDNode::get(Ctx, SPIRVerElts)); 844 } 845 } 846 847 // HLSL related end of code gen work items. 848 if (LangOpts.HLSL) 849 getHLSLRuntime().finishCodeGen(); 850 851 if (uint32_t PLevel = Context.getLangOpts().PICLevel) { 852 assert(PLevel < 3 && "Invalid PIC Level"); 853 getModule().setPICLevel(static_cast<llvm::PICLevel::Level>(PLevel)); 854 if (Context.getLangOpts().PIE) 855 getModule().setPIELevel(static_cast<llvm::PIELevel::Level>(PLevel)); 856 } 857 858 if (getCodeGenOpts().CodeModel.size() > 0) { 859 unsigned CM = llvm::StringSwitch<unsigned>(getCodeGenOpts().CodeModel) 860 .Case("tiny", llvm::CodeModel::Tiny) 861 .Case("small", llvm::CodeModel::Small) 862 .Case("kernel", llvm::CodeModel::Kernel) 863 .Case("medium", llvm::CodeModel::Medium) 864 .Case("large", llvm::CodeModel::Large) 865 .Default(~0u); 866 if (CM != ~0u) { 867 llvm::CodeModel::Model codeModel = static_cast<llvm::CodeModel::Model>(CM); 868 getModule().setCodeModel(codeModel); 869 } 870 } 871 872 if (CodeGenOpts.NoPLT) 873 getModule().setRtLibUseGOT(); 874 if (CodeGenOpts.UnwindTables) 875 getModule().setUwtable(llvm::UWTableKind(CodeGenOpts.UnwindTables)); 876 877 switch (CodeGenOpts.getFramePointer()) { 878 case CodeGenOptions::FramePointerKind::None: 879 // 0 ("none") is the default. 880 break; 881 case CodeGenOptions::FramePointerKind::NonLeaf: 882 getModule().setFramePointer(llvm::FramePointerKind::NonLeaf); 883 break; 884 case CodeGenOptions::FramePointerKind::All: 885 getModule().setFramePointer(llvm::FramePointerKind::All); 886 break; 887 } 888 889 SimplifyPersonality(); 890 891 if (getCodeGenOpts().EmitDeclMetadata) 892 EmitDeclMetadata(); 893 894 if (getCodeGenOpts().EmitGcovArcs || getCodeGenOpts().EmitGcovNotes) 895 EmitCoverageFile(); 896 897 if (CGDebugInfo *DI = getModuleDebugInfo()) 898 DI->finalize(); 899 900 if (getCodeGenOpts().EmitVersionIdentMetadata) 901 EmitVersionIdentMetadata(); 902 903 if (!getCodeGenOpts().RecordCommandLine.empty()) 904 EmitCommandLineMetadata(); 905 906 if (!getCodeGenOpts().StackProtectorGuard.empty()) 907 getModule().setStackProtectorGuard(getCodeGenOpts().StackProtectorGuard); 908 if (!getCodeGenOpts().StackProtectorGuardReg.empty()) 909 getModule().setStackProtectorGuardReg( 910 getCodeGenOpts().StackProtectorGuardReg); 911 if (!getCodeGenOpts().StackProtectorGuardSymbol.empty()) 912 getModule().setStackProtectorGuardSymbol( 913 getCodeGenOpts().StackProtectorGuardSymbol); 914 if (getCodeGenOpts().StackProtectorGuardOffset != INT_MAX) 915 getModule().setStackProtectorGuardOffset( 916 getCodeGenOpts().StackProtectorGuardOffset); 917 if (getCodeGenOpts().StackAlignment) 918 getModule().setOverrideStackAlignment(getCodeGenOpts().StackAlignment); 919 if (getCodeGenOpts().SkipRaxSetup) 920 getModule().addModuleFlag(llvm::Module::Override, "SkipRaxSetup", 1); 921 922 getTargetCodeGenInfo().emitTargetMetadata(*this, MangledDeclNames); 923 924 EmitBackendOptionsMetadata(getCodeGenOpts()); 925 926 // If there is device offloading code embed it in the host now. 927 EmbedObject(&getModule(), CodeGenOpts, getDiags()); 928 929 // Set visibility from DLL storage class 930 // We do this at the end of LLVM IR generation; after any operation 931 // that might affect the DLL storage class or the visibility, and 932 // before anything that might act on these. 933 setVisibilityFromDLLStorageClass(LangOpts, getModule()); 934 } 935 936 void CodeGenModule::EmitOpenCLMetadata() { 937 // SPIR v2.0 s2.13 - The OpenCL version used by the module is stored in the 938 // opencl.ocl.version named metadata node. 939 // C++ for OpenCL has a distinct mapping for versions compatibile with OpenCL. 940 auto Version = LangOpts.getOpenCLCompatibleVersion(); 941 llvm::Metadata *OCLVerElts[] = { 942 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 943 Int32Ty, Version / 100)), 944 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 945 Int32Ty, (Version % 100) / 10))}; 946 llvm::NamedMDNode *OCLVerMD = 947 TheModule.getOrInsertNamedMetadata("opencl.ocl.version"); 948 llvm::LLVMContext &Ctx = TheModule.getContext(); 949 OCLVerMD->addOperand(llvm::MDNode::get(Ctx, OCLVerElts)); 950 } 951 952 void CodeGenModule::EmitBackendOptionsMetadata( 953 const CodeGenOptions CodeGenOpts) { 954 switch (getTriple().getArch()) { 955 default: 956 break; 957 case llvm::Triple::riscv32: 958 case llvm::Triple::riscv64: 959 getModule().addModuleFlag(llvm::Module::Error, "SmallDataLimit", 960 CodeGenOpts.SmallDataLimit); 961 break; 962 } 963 } 964 965 void CodeGenModule::UpdateCompletedType(const TagDecl *TD) { 966 // Make sure that this type is translated. 967 Types.UpdateCompletedType(TD); 968 } 969 970 void CodeGenModule::RefreshTypeCacheForClass(const CXXRecordDecl *RD) { 971 // Make sure that this type is translated. 972 Types.RefreshTypeCacheForClass(RD); 973 } 974 975 llvm::MDNode *CodeGenModule::getTBAATypeInfo(QualType QTy) { 976 if (!TBAA) 977 return nullptr; 978 return TBAA->getTypeInfo(QTy); 979 } 980 981 TBAAAccessInfo CodeGenModule::getTBAAAccessInfo(QualType AccessType) { 982 if (!TBAA) 983 return TBAAAccessInfo(); 984 if (getLangOpts().CUDAIsDevice) { 985 // As CUDA builtin surface/texture types are replaced, skip generating TBAA 986 // access info. 987 if (AccessType->isCUDADeviceBuiltinSurfaceType()) { 988 if (getTargetCodeGenInfo().getCUDADeviceBuiltinSurfaceDeviceType() != 989 nullptr) 990 return TBAAAccessInfo(); 991 } else if (AccessType->isCUDADeviceBuiltinTextureType()) { 992 if (getTargetCodeGenInfo().getCUDADeviceBuiltinTextureDeviceType() != 993 nullptr) 994 return TBAAAccessInfo(); 995 } 996 } 997 return TBAA->getAccessInfo(AccessType); 998 } 999 1000 TBAAAccessInfo 1001 CodeGenModule::getTBAAVTablePtrAccessInfo(llvm::Type *VTablePtrType) { 1002 if (!TBAA) 1003 return TBAAAccessInfo(); 1004 return TBAA->getVTablePtrAccessInfo(VTablePtrType); 1005 } 1006 1007 llvm::MDNode *CodeGenModule::getTBAAStructInfo(QualType QTy) { 1008 if (!TBAA) 1009 return nullptr; 1010 return TBAA->getTBAAStructInfo(QTy); 1011 } 1012 1013 llvm::MDNode *CodeGenModule::getTBAABaseTypeInfo(QualType QTy) { 1014 if (!TBAA) 1015 return nullptr; 1016 return TBAA->getBaseTypeInfo(QTy); 1017 } 1018 1019 llvm::MDNode *CodeGenModule::getTBAAAccessTagInfo(TBAAAccessInfo Info) { 1020 if (!TBAA) 1021 return nullptr; 1022 return TBAA->getAccessTagInfo(Info); 1023 } 1024 1025 TBAAAccessInfo CodeGenModule::mergeTBAAInfoForCast(TBAAAccessInfo SourceInfo, 1026 TBAAAccessInfo TargetInfo) { 1027 if (!TBAA) 1028 return TBAAAccessInfo(); 1029 return TBAA->mergeTBAAInfoForCast(SourceInfo, TargetInfo); 1030 } 1031 1032 TBAAAccessInfo 1033 CodeGenModule::mergeTBAAInfoForConditionalOperator(TBAAAccessInfo InfoA, 1034 TBAAAccessInfo InfoB) { 1035 if (!TBAA) 1036 return TBAAAccessInfo(); 1037 return TBAA->mergeTBAAInfoForConditionalOperator(InfoA, InfoB); 1038 } 1039 1040 TBAAAccessInfo 1041 CodeGenModule::mergeTBAAInfoForMemoryTransfer(TBAAAccessInfo DestInfo, 1042 TBAAAccessInfo SrcInfo) { 1043 if (!TBAA) 1044 return TBAAAccessInfo(); 1045 return TBAA->mergeTBAAInfoForConditionalOperator(DestInfo, SrcInfo); 1046 } 1047 1048 void CodeGenModule::DecorateInstructionWithTBAA(llvm::Instruction *Inst, 1049 TBAAAccessInfo TBAAInfo) { 1050 if (llvm::MDNode *Tag = getTBAAAccessTagInfo(TBAAInfo)) 1051 Inst->setMetadata(llvm::LLVMContext::MD_tbaa, Tag); 1052 } 1053 1054 void CodeGenModule::DecorateInstructionWithInvariantGroup( 1055 llvm::Instruction *I, const CXXRecordDecl *RD) { 1056 I->setMetadata(llvm::LLVMContext::MD_invariant_group, 1057 llvm::MDNode::get(getLLVMContext(), {})); 1058 } 1059 1060 void CodeGenModule::Error(SourceLocation loc, StringRef message) { 1061 unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, "%0"); 1062 getDiags().Report(Context.getFullLoc(loc), diagID) << message; 1063 } 1064 1065 /// ErrorUnsupported - Print out an error that codegen doesn't support the 1066 /// specified stmt yet. 1067 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type) { 1068 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, 1069 "cannot compile this %0 yet"); 1070 std::string Msg = Type; 1071 getDiags().Report(Context.getFullLoc(S->getBeginLoc()), DiagID) 1072 << Msg << S->getSourceRange(); 1073 } 1074 1075 /// ErrorUnsupported - Print out an error that codegen doesn't support the 1076 /// specified decl yet. 1077 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type) { 1078 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, 1079 "cannot compile this %0 yet"); 1080 std::string Msg = Type; 1081 getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg; 1082 } 1083 1084 llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) { 1085 return llvm::ConstantInt::get(SizeTy, size.getQuantity()); 1086 } 1087 1088 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV, 1089 const NamedDecl *D) const { 1090 if (GV->hasDLLImportStorageClass()) 1091 return; 1092 // Internal definitions always have default visibility. 1093 if (GV->hasLocalLinkage()) { 1094 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 1095 return; 1096 } 1097 if (!D) 1098 return; 1099 // Set visibility for definitions, and for declarations if requested globally 1100 // or set explicitly. 1101 LinkageInfo LV = D->getLinkageAndVisibility(); 1102 if (LV.isVisibilityExplicit() || getLangOpts().SetVisibilityForExternDecls || 1103 !GV->isDeclarationForLinker()) 1104 GV->setVisibility(GetLLVMVisibility(LV.getVisibility())); 1105 } 1106 1107 static bool shouldAssumeDSOLocal(const CodeGenModule &CGM, 1108 llvm::GlobalValue *GV) { 1109 if (GV->hasLocalLinkage()) 1110 return true; 1111 1112 if (!GV->hasDefaultVisibility() && !GV->hasExternalWeakLinkage()) 1113 return true; 1114 1115 // DLLImport explicitly marks the GV as external. 1116 if (GV->hasDLLImportStorageClass()) 1117 return false; 1118 1119 const llvm::Triple &TT = CGM.getTriple(); 1120 if (TT.isWindowsGNUEnvironment()) { 1121 // In MinGW, variables without DLLImport can still be automatically 1122 // imported from a DLL by the linker; don't mark variables that 1123 // potentially could come from another DLL as DSO local. 1124 1125 // With EmulatedTLS, TLS variables can be autoimported from other DLLs 1126 // (and this actually happens in the public interface of libstdc++), so 1127 // such variables can't be marked as DSO local. (Native TLS variables 1128 // can't be dllimported at all, though.) 1129 if (GV->isDeclarationForLinker() && isa<llvm::GlobalVariable>(GV) && 1130 (!GV->isThreadLocal() || CGM.getCodeGenOpts().EmulatedTLS)) 1131 return false; 1132 } 1133 1134 // On COFF, don't mark 'extern_weak' symbols as DSO local. If these symbols 1135 // remain unresolved in the link, they can be resolved to zero, which is 1136 // outside the current DSO. 1137 if (TT.isOSBinFormatCOFF() && GV->hasExternalWeakLinkage()) 1138 return false; 1139 1140 // Every other GV is local on COFF. 1141 // Make an exception for windows OS in the triple: Some firmware builds use 1142 // *-win32-macho triples. This (accidentally?) produced windows relocations 1143 // without GOT tables in older clang versions; Keep this behaviour. 1144 // FIXME: even thread local variables? 1145 if (TT.isOSBinFormatCOFF() || (TT.isOSWindows() && TT.isOSBinFormatMachO())) 1146 return true; 1147 1148 // Only handle COFF and ELF for now. 1149 if (!TT.isOSBinFormatELF()) 1150 return false; 1151 1152 // If this is not an executable, don't assume anything is local. 1153 const auto &CGOpts = CGM.getCodeGenOpts(); 1154 llvm::Reloc::Model RM = CGOpts.RelocationModel; 1155 const auto &LOpts = CGM.getLangOpts(); 1156 if (RM != llvm::Reloc::Static && !LOpts.PIE) { 1157 // On ELF, if -fno-semantic-interposition is specified and the target 1158 // supports local aliases, there will be neither CC1 1159 // -fsemantic-interposition nor -fhalf-no-semantic-interposition. Set 1160 // dso_local on the function if using a local alias is preferable (can avoid 1161 // PLT indirection). 1162 if (!(isa<llvm::Function>(GV) && GV->canBenefitFromLocalAlias())) 1163 return false; 1164 return !(CGM.getLangOpts().SemanticInterposition || 1165 CGM.getLangOpts().HalfNoSemanticInterposition); 1166 } 1167 1168 // A definition cannot be preempted from an executable. 1169 if (!GV->isDeclarationForLinker()) 1170 return true; 1171 1172 // Most PIC code sequences that assume that a symbol is local cannot produce a 1173 // 0 if it turns out the symbol is undefined. While this is ABI and relocation 1174 // depended, it seems worth it to handle it here. 1175 if (RM == llvm::Reloc::PIC_ && GV->hasExternalWeakLinkage()) 1176 return false; 1177 1178 // PowerPC64 prefers TOC indirection to avoid copy relocations. 1179 if (TT.isPPC64()) 1180 return false; 1181 1182 if (CGOpts.DirectAccessExternalData) { 1183 // If -fdirect-access-external-data (default for -fno-pic), set dso_local 1184 // for non-thread-local variables. If the symbol is not defined in the 1185 // executable, a copy relocation will be needed at link time. dso_local is 1186 // excluded for thread-local variables because they generally don't support 1187 // copy relocations. 1188 if (auto *Var = dyn_cast<llvm::GlobalVariable>(GV)) 1189 if (!Var->isThreadLocal()) 1190 return true; 1191 1192 // -fno-pic sets dso_local on a function declaration to allow direct 1193 // accesses when taking its address (similar to a data symbol). If the 1194 // function is not defined in the executable, a canonical PLT entry will be 1195 // needed at link time. -fno-direct-access-external-data can avoid the 1196 // canonical PLT entry. We don't generalize this condition to -fpie/-fpic as 1197 // it could just cause trouble without providing perceptible benefits. 1198 if (isa<llvm::Function>(GV) && !CGOpts.NoPLT && RM == llvm::Reloc::Static) 1199 return true; 1200 } 1201 1202 // If we can use copy relocations we can assume it is local. 1203 1204 // Otherwise don't assume it is local. 1205 return false; 1206 } 1207 1208 void CodeGenModule::setDSOLocal(llvm::GlobalValue *GV) const { 1209 GV->setDSOLocal(shouldAssumeDSOLocal(*this, GV)); 1210 } 1211 1212 void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV, 1213 GlobalDecl GD) const { 1214 const auto *D = dyn_cast<NamedDecl>(GD.getDecl()); 1215 // C++ destructors have a few C++ ABI specific special cases. 1216 if (const auto *Dtor = dyn_cast_or_null<CXXDestructorDecl>(D)) { 1217 getCXXABI().setCXXDestructorDLLStorage(GV, Dtor, GD.getDtorType()); 1218 return; 1219 } 1220 setDLLImportDLLExport(GV, D); 1221 } 1222 1223 void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV, 1224 const NamedDecl *D) const { 1225 if (D && D->isExternallyVisible()) { 1226 if (D->hasAttr<DLLImportAttr>()) 1227 GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass); 1228 else if ((D->hasAttr<DLLExportAttr>() || 1229 shouldMapVisibilityToDLLExport(D)) && 1230 !GV->isDeclarationForLinker()) 1231 GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass); 1232 } 1233 } 1234 1235 void CodeGenModule::setGVProperties(llvm::GlobalValue *GV, 1236 GlobalDecl GD) const { 1237 setDLLImportDLLExport(GV, GD); 1238 setGVPropertiesAux(GV, dyn_cast<NamedDecl>(GD.getDecl())); 1239 } 1240 1241 void CodeGenModule::setGVProperties(llvm::GlobalValue *GV, 1242 const NamedDecl *D) const { 1243 setDLLImportDLLExport(GV, D); 1244 setGVPropertiesAux(GV, D); 1245 } 1246 1247 void CodeGenModule::setGVPropertiesAux(llvm::GlobalValue *GV, 1248 const NamedDecl *D) const { 1249 setGlobalVisibility(GV, D); 1250 setDSOLocal(GV); 1251 GV->setPartition(CodeGenOpts.SymbolPartition); 1252 } 1253 1254 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(StringRef S) { 1255 return llvm::StringSwitch<llvm::GlobalVariable::ThreadLocalMode>(S) 1256 .Case("global-dynamic", llvm::GlobalVariable::GeneralDynamicTLSModel) 1257 .Case("local-dynamic", llvm::GlobalVariable::LocalDynamicTLSModel) 1258 .Case("initial-exec", llvm::GlobalVariable::InitialExecTLSModel) 1259 .Case("local-exec", llvm::GlobalVariable::LocalExecTLSModel); 1260 } 1261 1262 llvm::GlobalVariable::ThreadLocalMode 1263 CodeGenModule::GetDefaultLLVMTLSModel() const { 1264 switch (CodeGenOpts.getDefaultTLSModel()) { 1265 case CodeGenOptions::GeneralDynamicTLSModel: 1266 return llvm::GlobalVariable::GeneralDynamicTLSModel; 1267 case CodeGenOptions::LocalDynamicTLSModel: 1268 return llvm::GlobalVariable::LocalDynamicTLSModel; 1269 case CodeGenOptions::InitialExecTLSModel: 1270 return llvm::GlobalVariable::InitialExecTLSModel; 1271 case CodeGenOptions::LocalExecTLSModel: 1272 return llvm::GlobalVariable::LocalExecTLSModel; 1273 } 1274 llvm_unreachable("Invalid TLS model!"); 1275 } 1276 1277 void CodeGenModule::setTLSMode(llvm::GlobalValue *GV, const VarDecl &D) const { 1278 assert(D.getTLSKind() && "setting TLS mode on non-TLS var!"); 1279 1280 llvm::GlobalValue::ThreadLocalMode TLM; 1281 TLM = GetDefaultLLVMTLSModel(); 1282 1283 // Override the TLS model if it is explicitly specified. 1284 if (const TLSModelAttr *Attr = D.getAttr<TLSModelAttr>()) { 1285 TLM = GetLLVMTLSModel(Attr->getModel()); 1286 } 1287 1288 GV->setThreadLocalMode(TLM); 1289 } 1290 1291 static std::string getCPUSpecificMangling(const CodeGenModule &CGM, 1292 StringRef Name) { 1293 const TargetInfo &Target = CGM.getTarget(); 1294 return (Twine('.') + Twine(Target.CPUSpecificManglingCharacter(Name))).str(); 1295 } 1296 1297 static void AppendCPUSpecificCPUDispatchMangling(const CodeGenModule &CGM, 1298 const CPUSpecificAttr *Attr, 1299 unsigned CPUIndex, 1300 raw_ostream &Out) { 1301 // cpu_specific gets the current name, dispatch gets the resolver if IFunc is 1302 // supported. 1303 if (Attr) 1304 Out << getCPUSpecificMangling(CGM, Attr->getCPUName(CPUIndex)->getName()); 1305 else if (CGM.getTarget().supportsIFunc()) 1306 Out << ".resolver"; 1307 } 1308 1309 static void AppendTargetMangling(const CodeGenModule &CGM, 1310 const TargetAttr *Attr, raw_ostream &Out) { 1311 if (Attr->isDefaultVersion()) 1312 return; 1313 1314 Out << '.'; 1315 const TargetInfo &Target = CGM.getTarget(); 1316 ParsedTargetAttr Info = 1317 Attr->parse([&Target](StringRef LHS, StringRef RHS) { 1318 // Multiversioning doesn't allow "no-${feature}", so we can 1319 // only have "+" prefixes here. 1320 assert(LHS.startswith("+") && RHS.startswith("+") && 1321 "Features should always have a prefix."); 1322 return Target.multiVersionSortPriority(LHS.substr(1)) > 1323 Target.multiVersionSortPriority(RHS.substr(1)); 1324 }); 1325 1326 bool IsFirst = true; 1327 1328 if (!Info.Architecture.empty()) { 1329 IsFirst = false; 1330 Out << "arch_" << Info.Architecture; 1331 } 1332 1333 for (StringRef Feat : Info.Features) { 1334 if (!IsFirst) 1335 Out << '_'; 1336 IsFirst = false; 1337 Out << Feat.substr(1); 1338 } 1339 } 1340 1341 // Returns true if GD is a function decl with internal linkage and 1342 // needs a unique suffix after the mangled name. 1343 static bool isUniqueInternalLinkageDecl(GlobalDecl GD, 1344 CodeGenModule &CGM) { 1345 const Decl *D = GD.getDecl(); 1346 return !CGM.getModuleNameHash().empty() && isa<FunctionDecl>(D) && 1347 (CGM.getFunctionLinkage(GD) == llvm::GlobalValue::InternalLinkage); 1348 } 1349 1350 static void AppendTargetClonesMangling(const CodeGenModule &CGM, 1351 const TargetClonesAttr *Attr, 1352 unsigned VersionIndex, 1353 raw_ostream &Out) { 1354 Out << '.'; 1355 StringRef FeatureStr = Attr->getFeatureStr(VersionIndex); 1356 if (FeatureStr.startswith("arch=")) 1357 Out << "arch_" << FeatureStr.substr(sizeof("arch=") - 1); 1358 else 1359 Out << FeatureStr; 1360 1361 Out << '.' << Attr->getMangledIndex(VersionIndex); 1362 } 1363 1364 static std::string getMangledNameImpl(CodeGenModule &CGM, GlobalDecl GD, 1365 const NamedDecl *ND, 1366 bool OmitMultiVersionMangling = false) { 1367 SmallString<256> Buffer; 1368 llvm::raw_svector_ostream Out(Buffer); 1369 MangleContext &MC = CGM.getCXXABI().getMangleContext(); 1370 if (!CGM.getModuleNameHash().empty()) 1371 MC.needsUniqueInternalLinkageNames(); 1372 bool ShouldMangle = MC.shouldMangleDeclName(ND); 1373 if (ShouldMangle) 1374 MC.mangleName(GD.getWithDecl(ND), Out); 1375 else { 1376 IdentifierInfo *II = ND->getIdentifier(); 1377 assert(II && "Attempt to mangle unnamed decl."); 1378 const auto *FD = dyn_cast<FunctionDecl>(ND); 1379 1380 if (FD && 1381 FD->getType()->castAs<FunctionType>()->getCallConv() == CC_X86RegCall) { 1382 Out << "__regcall3__" << II->getName(); 1383 } else if (FD && FD->hasAttr<CUDAGlobalAttr>() && 1384 GD.getKernelReferenceKind() == KernelReferenceKind::Stub) { 1385 Out << "__device_stub__" << II->getName(); 1386 } else { 1387 Out << II->getName(); 1388 } 1389 } 1390 1391 // Check if the module name hash should be appended for internal linkage 1392 // symbols. This should come before multi-version target suffixes are 1393 // appended. This is to keep the name and module hash suffix of the 1394 // internal linkage function together. The unique suffix should only be 1395 // added when name mangling is done to make sure that the final name can 1396 // be properly demangled. For example, for C functions without prototypes, 1397 // name mangling is not done and the unique suffix should not be appeneded 1398 // then. 1399 if (ShouldMangle && isUniqueInternalLinkageDecl(GD, CGM)) { 1400 assert(CGM.getCodeGenOpts().UniqueInternalLinkageNames && 1401 "Hash computed when not explicitly requested"); 1402 Out << CGM.getModuleNameHash(); 1403 } 1404 1405 if (const auto *FD = dyn_cast<FunctionDecl>(ND)) 1406 if (FD->isMultiVersion() && !OmitMultiVersionMangling) { 1407 switch (FD->getMultiVersionKind()) { 1408 case MultiVersionKind::CPUDispatch: 1409 case MultiVersionKind::CPUSpecific: 1410 AppendCPUSpecificCPUDispatchMangling(CGM, 1411 FD->getAttr<CPUSpecificAttr>(), 1412 GD.getMultiVersionIndex(), Out); 1413 break; 1414 case MultiVersionKind::Target: 1415 AppendTargetMangling(CGM, FD->getAttr<TargetAttr>(), Out); 1416 break; 1417 case MultiVersionKind::TargetClones: 1418 AppendTargetClonesMangling(CGM, FD->getAttr<TargetClonesAttr>(), 1419 GD.getMultiVersionIndex(), Out); 1420 break; 1421 case MultiVersionKind::None: 1422 llvm_unreachable("None multiversion type isn't valid here"); 1423 } 1424 } 1425 1426 // Make unique name for device side static file-scope variable for HIP. 1427 if (CGM.getContext().shouldExternalize(ND) && 1428 CGM.getLangOpts().GPURelocatableDeviceCode && 1429 CGM.getLangOpts().CUDAIsDevice) 1430 CGM.printPostfixForExternalizedDecl(Out, ND); 1431 1432 return std::string(Out.str()); 1433 } 1434 1435 void CodeGenModule::UpdateMultiVersionNames(GlobalDecl GD, 1436 const FunctionDecl *FD, 1437 StringRef &CurName) { 1438 if (!FD->isMultiVersion()) 1439 return; 1440 1441 // Get the name of what this would be without the 'target' attribute. This 1442 // allows us to lookup the version that was emitted when this wasn't a 1443 // multiversion function. 1444 std::string NonTargetName = 1445 getMangledNameImpl(*this, GD, FD, /*OmitMultiVersionMangling=*/true); 1446 GlobalDecl OtherGD; 1447 if (lookupRepresentativeDecl(NonTargetName, OtherGD)) { 1448 assert(OtherGD.getCanonicalDecl() 1449 .getDecl() 1450 ->getAsFunction() 1451 ->isMultiVersion() && 1452 "Other GD should now be a multiversioned function"); 1453 // OtherFD is the version of this function that was mangled BEFORE 1454 // becoming a MultiVersion function. It potentially needs to be updated. 1455 const FunctionDecl *OtherFD = OtherGD.getCanonicalDecl() 1456 .getDecl() 1457 ->getAsFunction() 1458 ->getMostRecentDecl(); 1459 std::string OtherName = getMangledNameImpl(*this, OtherGD, OtherFD); 1460 // This is so that if the initial version was already the 'default' 1461 // version, we don't try to update it. 1462 if (OtherName != NonTargetName) { 1463 // Remove instead of erase, since others may have stored the StringRef 1464 // to this. 1465 const auto ExistingRecord = Manglings.find(NonTargetName); 1466 if (ExistingRecord != std::end(Manglings)) 1467 Manglings.remove(&(*ExistingRecord)); 1468 auto Result = Manglings.insert(std::make_pair(OtherName, OtherGD)); 1469 StringRef OtherNameRef = MangledDeclNames[OtherGD.getCanonicalDecl()] = 1470 Result.first->first(); 1471 // If this is the current decl is being created, make sure we update the name. 1472 if (GD.getCanonicalDecl() == OtherGD.getCanonicalDecl()) 1473 CurName = OtherNameRef; 1474 if (llvm::GlobalValue *Entry = GetGlobalValue(NonTargetName)) 1475 Entry->setName(OtherName); 1476 } 1477 } 1478 } 1479 1480 StringRef CodeGenModule::getMangledName(GlobalDecl GD) { 1481 GlobalDecl CanonicalGD = GD.getCanonicalDecl(); 1482 1483 // Some ABIs don't have constructor variants. Make sure that base and 1484 // complete constructors get mangled the same. 1485 if (const auto *CD = dyn_cast<CXXConstructorDecl>(CanonicalGD.getDecl())) { 1486 if (!getTarget().getCXXABI().hasConstructorVariants()) { 1487 CXXCtorType OrigCtorType = GD.getCtorType(); 1488 assert(OrigCtorType == Ctor_Base || OrigCtorType == Ctor_Complete); 1489 if (OrigCtorType == Ctor_Base) 1490 CanonicalGD = GlobalDecl(CD, Ctor_Complete); 1491 } 1492 } 1493 1494 // In CUDA/HIP device compilation with -fgpu-rdc, the mangled name of a 1495 // static device variable depends on whether the variable is referenced by 1496 // a host or device host function. Therefore the mangled name cannot be 1497 // cached. 1498 if (!LangOpts.CUDAIsDevice || !getContext().mayExternalize(GD.getDecl())) { 1499 auto FoundName = MangledDeclNames.find(CanonicalGD); 1500 if (FoundName != MangledDeclNames.end()) 1501 return FoundName->second; 1502 } 1503 1504 // Keep the first result in the case of a mangling collision. 1505 const auto *ND = cast<NamedDecl>(GD.getDecl()); 1506 std::string MangledName = getMangledNameImpl(*this, GD, ND); 1507 1508 // Ensure either we have different ABIs between host and device compilations, 1509 // says host compilation following MSVC ABI but device compilation follows 1510 // Itanium C++ ABI or, if they follow the same ABI, kernel names after 1511 // mangling should be the same after name stubbing. The later checking is 1512 // very important as the device kernel name being mangled in host-compilation 1513 // is used to resolve the device binaries to be executed. Inconsistent naming 1514 // result in undefined behavior. Even though we cannot check that naming 1515 // directly between host- and device-compilations, the host- and 1516 // device-mangling in host compilation could help catching certain ones. 1517 assert(!isa<FunctionDecl>(ND) || !ND->hasAttr<CUDAGlobalAttr>() || 1518 getContext().shouldExternalize(ND) || getLangOpts().CUDAIsDevice || 1519 (getContext().getAuxTargetInfo() && 1520 (getContext().getAuxTargetInfo()->getCXXABI() != 1521 getContext().getTargetInfo().getCXXABI())) || 1522 getCUDARuntime().getDeviceSideName(ND) == 1523 getMangledNameImpl( 1524 *this, 1525 GD.getWithKernelReferenceKind(KernelReferenceKind::Kernel), 1526 ND)); 1527 1528 auto Result = Manglings.insert(std::make_pair(MangledName, GD)); 1529 return MangledDeclNames[CanonicalGD] = Result.first->first(); 1530 } 1531 1532 StringRef CodeGenModule::getBlockMangledName(GlobalDecl GD, 1533 const BlockDecl *BD) { 1534 MangleContext &MangleCtx = getCXXABI().getMangleContext(); 1535 const Decl *D = GD.getDecl(); 1536 1537 SmallString<256> Buffer; 1538 llvm::raw_svector_ostream Out(Buffer); 1539 if (!D) 1540 MangleCtx.mangleGlobalBlock(BD, 1541 dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()), Out); 1542 else if (const auto *CD = dyn_cast<CXXConstructorDecl>(D)) 1543 MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out); 1544 else if (const auto *DD = dyn_cast<CXXDestructorDecl>(D)) 1545 MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out); 1546 else 1547 MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out); 1548 1549 auto Result = Manglings.insert(std::make_pair(Out.str(), BD)); 1550 return Result.first->first(); 1551 } 1552 1553 const GlobalDecl CodeGenModule::getMangledNameDecl(StringRef Name) { 1554 auto it = MangledDeclNames.begin(); 1555 while (it != MangledDeclNames.end()) { 1556 if (it->second == Name) 1557 return it->first; 1558 it++; 1559 } 1560 return GlobalDecl(); 1561 } 1562 1563 llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) { 1564 return getModule().getNamedValue(Name); 1565 } 1566 1567 /// AddGlobalCtor - Add a function to the list that will be called before 1568 /// main() runs. 1569 void CodeGenModule::AddGlobalCtor(llvm::Function *Ctor, int Priority, 1570 llvm::Constant *AssociatedData) { 1571 // FIXME: Type coercion of void()* types. 1572 GlobalCtors.push_back(Structor(Priority, Ctor, AssociatedData)); 1573 } 1574 1575 /// AddGlobalDtor - Add a function to the list that will be called 1576 /// when the module is unloaded. 1577 void CodeGenModule::AddGlobalDtor(llvm::Function *Dtor, int Priority, 1578 bool IsDtorAttrFunc) { 1579 if (CodeGenOpts.RegisterGlobalDtorsWithAtExit && 1580 (!getContext().getTargetInfo().getTriple().isOSAIX() || IsDtorAttrFunc)) { 1581 DtorsUsingAtExit[Priority].push_back(Dtor); 1582 return; 1583 } 1584 1585 // FIXME: Type coercion of void()* types. 1586 GlobalDtors.push_back(Structor(Priority, Dtor, nullptr)); 1587 } 1588 1589 void CodeGenModule::EmitCtorList(CtorList &Fns, const char *GlobalName) { 1590 if (Fns.empty()) return; 1591 1592 // Ctor function type is void()*. 1593 llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false); 1594 llvm::Type *CtorPFTy = llvm::PointerType::get(CtorFTy, 1595 TheModule.getDataLayout().getProgramAddressSpace()); 1596 1597 // Get the type of a ctor entry, { i32, void ()*, i8* }. 1598 llvm::StructType *CtorStructTy = llvm::StructType::get( 1599 Int32Ty, CtorPFTy, VoidPtrTy); 1600 1601 // Construct the constructor and destructor arrays. 1602 ConstantInitBuilder builder(*this); 1603 auto ctors = builder.beginArray(CtorStructTy); 1604 for (const auto &I : Fns) { 1605 auto ctor = ctors.beginStruct(CtorStructTy); 1606 ctor.addInt(Int32Ty, I.Priority); 1607 ctor.add(llvm::ConstantExpr::getBitCast(I.Initializer, CtorPFTy)); 1608 if (I.AssociatedData) 1609 ctor.add(llvm::ConstantExpr::getBitCast(I.AssociatedData, VoidPtrTy)); 1610 else 1611 ctor.addNullPointer(VoidPtrTy); 1612 ctor.finishAndAddTo(ctors); 1613 } 1614 1615 auto list = 1616 ctors.finishAndCreateGlobal(GlobalName, getPointerAlign(), 1617 /*constant*/ false, 1618 llvm::GlobalValue::AppendingLinkage); 1619 1620 // The LTO linker doesn't seem to like it when we set an alignment 1621 // on appending variables. Take it off as a workaround. 1622 list->setAlignment(llvm::None); 1623 1624 Fns.clear(); 1625 } 1626 1627 llvm::GlobalValue::LinkageTypes 1628 CodeGenModule::getFunctionLinkage(GlobalDecl GD) { 1629 const auto *D = cast<FunctionDecl>(GD.getDecl()); 1630 1631 GVALinkage Linkage = getContext().GetGVALinkageForFunction(D); 1632 1633 if (const auto *Dtor = dyn_cast<CXXDestructorDecl>(D)) 1634 return getCXXABI().getCXXDestructorLinkage(Linkage, Dtor, GD.getDtorType()); 1635 1636 if (isa<CXXConstructorDecl>(D) && 1637 cast<CXXConstructorDecl>(D)->isInheritingConstructor() && 1638 Context.getTargetInfo().getCXXABI().isMicrosoft()) { 1639 // Our approach to inheriting constructors is fundamentally different from 1640 // that used by the MS ABI, so keep our inheriting constructor thunks 1641 // internal rather than trying to pick an unambiguous mangling for them. 1642 return llvm::GlobalValue::InternalLinkage; 1643 } 1644 1645 return getLLVMLinkageForDeclarator(D, Linkage, /*IsConstantVariable=*/false); 1646 } 1647 1648 llvm::ConstantInt *CodeGenModule::CreateCrossDsoCfiTypeId(llvm::Metadata *MD) { 1649 llvm::MDString *MDS = dyn_cast<llvm::MDString>(MD); 1650 if (!MDS) return nullptr; 1651 1652 return llvm::ConstantInt::get(Int64Ty, llvm::MD5Hash(MDS->getString())); 1653 } 1654 1655 void CodeGenModule::SetLLVMFunctionAttributes(GlobalDecl GD, 1656 const CGFunctionInfo &Info, 1657 llvm::Function *F, bool IsThunk) { 1658 unsigned CallingConv; 1659 llvm::AttributeList PAL; 1660 ConstructAttributeList(F->getName(), Info, GD, PAL, CallingConv, 1661 /*AttrOnCallSite=*/false, IsThunk); 1662 F->setAttributes(PAL); 1663 F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv)); 1664 } 1665 1666 static void removeImageAccessQualifier(std::string& TyName) { 1667 std::string ReadOnlyQual("__read_only"); 1668 std::string::size_type ReadOnlyPos = TyName.find(ReadOnlyQual); 1669 if (ReadOnlyPos != std::string::npos) 1670 // "+ 1" for the space after access qualifier. 1671 TyName.erase(ReadOnlyPos, ReadOnlyQual.size() + 1); 1672 else { 1673 std::string WriteOnlyQual("__write_only"); 1674 std::string::size_type WriteOnlyPos = TyName.find(WriteOnlyQual); 1675 if (WriteOnlyPos != std::string::npos) 1676 TyName.erase(WriteOnlyPos, WriteOnlyQual.size() + 1); 1677 else { 1678 std::string ReadWriteQual("__read_write"); 1679 std::string::size_type ReadWritePos = TyName.find(ReadWriteQual); 1680 if (ReadWritePos != std::string::npos) 1681 TyName.erase(ReadWritePos, ReadWriteQual.size() + 1); 1682 } 1683 } 1684 } 1685 1686 // Returns the address space id that should be produced to the 1687 // kernel_arg_addr_space metadata. This is always fixed to the ids 1688 // as specified in the SPIR 2.0 specification in order to differentiate 1689 // for example in clGetKernelArgInfo() implementation between the address 1690 // spaces with targets without unique mapping to the OpenCL address spaces 1691 // (basically all single AS CPUs). 1692 static unsigned ArgInfoAddressSpace(LangAS AS) { 1693 switch (AS) { 1694 case LangAS::opencl_global: 1695 return 1; 1696 case LangAS::opencl_constant: 1697 return 2; 1698 case LangAS::opencl_local: 1699 return 3; 1700 case LangAS::opencl_generic: 1701 return 4; // Not in SPIR 2.0 specs. 1702 case LangAS::opencl_global_device: 1703 return 5; 1704 case LangAS::opencl_global_host: 1705 return 6; 1706 default: 1707 return 0; // Assume private. 1708 } 1709 } 1710 1711 void CodeGenModule::GenKernelArgMetadata(llvm::Function *Fn, 1712 const FunctionDecl *FD, 1713 CodeGenFunction *CGF) { 1714 assert(((FD && CGF) || (!FD && !CGF)) && 1715 "Incorrect use - FD and CGF should either be both null or not!"); 1716 // Create MDNodes that represent the kernel arg metadata. 1717 // Each MDNode is a list in the form of "key", N number of values which is 1718 // the same number of values as their are kernel arguments. 1719 1720 const PrintingPolicy &Policy = Context.getPrintingPolicy(); 1721 1722 // MDNode for the kernel argument address space qualifiers. 1723 SmallVector<llvm::Metadata *, 8> addressQuals; 1724 1725 // MDNode for the kernel argument access qualifiers (images only). 1726 SmallVector<llvm::Metadata *, 8> accessQuals; 1727 1728 // MDNode for the kernel argument type names. 1729 SmallVector<llvm::Metadata *, 8> argTypeNames; 1730 1731 // MDNode for the kernel argument base type names. 1732 SmallVector<llvm::Metadata *, 8> argBaseTypeNames; 1733 1734 // MDNode for the kernel argument type qualifiers. 1735 SmallVector<llvm::Metadata *, 8> argTypeQuals; 1736 1737 // MDNode for the kernel argument names. 1738 SmallVector<llvm::Metadata *, 8> argNames; 1739 1740 if (FD && CGF) 1741 for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i) { 1742 const ParmVarDecl *parm = FD->getParamDecl(i); 1743 // Get argument name. 1744 argNames.push_back(llvm::MDString::get(VMContext, parm->getName())); 1745 1746 if (!getLangOpts().OpenCL) 1747 continue; 1748 QualType ty = parm->getType(); 1749 std::string typeQuals; 1750 1751 // Get image and pipe access qualifier: 1752 if (ty->isImageType() || ty->isPipeType()) { 1753 const Decl *PDecl = parm; 1754 if (const auto *TD = ty->getAs<TypedefType>()) 1755 PDecl = TD->getDecl(); 1756 const OpenCLAccessAttr *A = PDecl->getAttr<OpenCLAccessAttr>(); 1757 if (A && A->isWriteOnly()) 1758 accessQuals.push_back(llvm::MDString::get(VMContext, "write_only")); 1759 else if (A && A->isReadWrite()) 1760 accessQuals.push_back(llvm::MDString::get(VMContext, "read_write")); 1761 else 1762 accessQuals.push_back(llvm::MDString::get(VMContext, "read_only")); 1763 } else 1764 accessQuals.push_back(llvm::MDString::get(VMContext, "none")); 1765 1766 auto getTypeSpelling = [&](QualType Ty) { 1767 auto typeName = Ty.getUnqualifiedType().getAsString(Policy); 1768 1769 if (Ty.isCanonical()) { 1770 StringRef typeNameRef = typeName; 1771 // Turn "unsigned type" to "utype" 1772 if (typeNameRef.consume_front("unsigned ")) 1773 return std::string("u") + typeNameRef.str(); 1774 if (typeNameRef.consume_front("signed ")) 1775 return typeNameRef.str(); 1776 } 1777 1778 return typeName; 1779 }; 1780 1781 if (ty->isPointerType()) { 1782 QualType pointeeTy = ty->getPointeeType(); 1783 1784 // Get address qualifier. 1785 addressQuals.push_back( 1786 llvm::ConstantAsMetadata::get(CGF->Builder.getInt32( 1787 ArgInfoAddressSpace(pointeeTy.getAddressSpace())))); 1788 1789 // Get argument type name. 1790 std::string typeName = getTypeSpelling(pointeeTy) + "*"; 1791 std::string baseTypeName = 1792 getTypeSpelling(pointeeTy.getCanonicalType()) + "*"; 1793 argTypeNames.push_back(llvm::MDString::get(VMContext, typeName)); 1794 argBaseTypeNames.push_back( 1795 llvm::MDString::get(VMContext, baseTypeName)); 1796 1797 // Get argument type qualifiers: 1798 if (ty.isRestrictQualified()) 1799 typeQuals = "restrict"; 1800 if (pointeeTy.isConstQualified() || 1801 (pointeeTy.getAddressSpace() == LangAS::opencl_constant)) 1802 typeQuals += typeQuals.empty() ? "const" : " const"; 1803 if (pointeeTy.isVolatileQualified()) 1804 typeQuals += typeQuals.empty() ? "volatile" : " volatile"; 1805 } else { 1806 uint32_t AddrSpc = 0; 1807 bool isPipe = ty->isPipeType(); 1808 if (ty->isImageType() || isPipe) 1809 AddrSpc = ArgInfoAddressSpace(LangAS::opencl_global); 1810 1811 addressQuals.push_back( 1812 llvm::ConstantAsMetadata::get(CGF->Builder.getInt32(AddrSpc))); 1813 1814 // Get argument type name. 1815 ty = isPipe ? ty->castAs<PipeType>()->getElementType() : ty; 1816 std::string typeName = getTypeSpelling(ty); 1817 std::string baseTypeName = getTypeSpelling(ty.getCanonicalType()); 1818 1819 // Remove access qualifiers on images 1820 // (as they are inseparable from type in clang implementation, 1821 // but OpenCL spec provides a special query to get access qualifier 1822 // via clGetKernelArgInfo with CL_KERNEL_ARG_ACCESS_QUALIFIER): 1823 if (ty->isImageType()) { 1824 removeImageAccessQualifier(typeName); 1825 removeImageAccessQualifier(baseTypeName); 1826 } 1827 1828 argTypeNames.push_back(llvm::MDString::get(VMContext, typeName)); 1829 argBaseTypeNames.push_back( 1830 llvm::MDString::get(VMContext, baseTypeName)); 1831 1832 if (isPipe) 1833 typeQuals = "pipe"; 1834 } 1835 argTypeQuals.push_back(llvm::MDString::get(VMContext, typeQuals)); 1836 } 1837 1838 if (getLangOpts().OpenCL) { 1839 Fn->setMetadata("kernel_arg_addr_space", 1840 llvm::MDNode::get(VMContext, addressQuals)); 1841 Fn->setMetadata("kernel_arg_access_qual", 1842 llvm::MDNode::get(VMContext, accessQuals)); 1843 Fn->setMetadata("kernel_arg_type", 1844 llvm::MDNode::get(VMContext, argTypeNames)); 1845 Fn->setMetadata("kernel_arg_base_type", 1846 llvm::MDNode::get(VMContext, argBaseTypeNames)); 1847 Fn->setMetadata("kernel_arg_type_qual", 1848 llvm::MDNode::get(VMContext, argTypeQuals)); 1849 } 1850 if (getCodeGenOpts().EmitOpenCLArgMetadata || 1851 getCodeGenOpts().HIPSaveKernelArgName) 1852 Fn->setMetadata("kernel_arg_name", 1853 llvm::MDNode::get(VMContext, argNames)); 1854 } 1855 1856 /// Determines whether the language options require us to model 1857 /// unwind exceptions. We treat -fexceptions as mandating this 1858 /// except under the fragile ObjC ABI with only ObjC exceptions 1859 /// enabled. This means, for example, that C with -fexceptions 1860 /// enables this. 1861 static bool hasUnwindExceptions(const LangOptions &LangOpts) { 1862 // If exceptions are completely disabled, obviously this is false. 1863 if (!LangOpts.Exceptions) return false; 1864 1865 // If C++ exceptions are enabled, this is true. 1866 if (LangOpts.CXXExceptions) return true; 1867 1868 // If ObjC exceptions are enabled, this depends on the ABI. 1869 if (LangOpts.ObjCExceptions) { 1870 return LangOpts.ObjCRuntime.hasUnwindExceptions(); 1871 } 1872 1873 return true; 1874 } 1875 1876 static bool requiresMemberFunctionPointerTypeMetadata(CodeGenModule &CGM, 1877 const CXXMethodDecl *MD) { 1878 // Check that the type metadata can ever actually be used by a call. 1879 if (!CGM.getCodeGenOpts().LTOUnit || 1880 !CGM.HasHiddenLTOVisibility(MD->getParent())) 1881 return false; 1882 1883 // Only functions whose address can be taken with a member function pointer 1884 // need this sort of type metadata. 1885 return !MD->isStatic() && !MD->isVirtual() && !isa<CXXConstructorDecl>(MD) && 1886 !isa<CXXDestructorDecl>(MD); 1887 } 1888 1889 std::vector<const CXXRecordDecl *> 1890 CodeGenModule::getMostBaseClasses(const CXXRecordDecl *RD) { 1891 llvm::SetVector<const CXXRecordDecl *> MostBases; 1892 1893 std::function<void (const CXXRecordDecl *)> CollectMostBases; 1894 CollectMostBases = [&](const CXXRecordDecl *RD) { 1895 if (RD->getNumBases() == 0) 1896 MostBases.insert(RD); 1897 for (const CXXBaseSpecifier &B : RD->bases()) 1898 CollectMostBases(B.getType()->getAsCXXRecordDecl()); 1899 }; 1900 CollectMostBases(RD); 1901 return MostBases.takeVector(); 1902 } 1903 1904 llvm::GlobalVariable * 1905 CodeGenModule::GetOrCreateRTTIProxyGlobalVariable(llvm::Constant *Addr) { 1906 auto It = RTTIProxyMap.find(Addr); 1907 if (It != RTTIProxyMap.end()) 1908 return It->second; 1909 1910 auto *FTRTTIProxy = new llvm::GlobalVariable( 1911 TheModule, Addr->getType(), 1912 /*isConstant=*/true, llvm::GlobalValue::PrivateLinkage, Addr, 1913 "__llvm_rtti_proxy"); 1914 FTRTTIProxy->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 1915 1916 RTTIProxyMap[Addr] = FTRTTIProxy; 1917 return FTRTTIProxy; 1918 } 1919 1920 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D, 1921 llvm::Function *F) { 1922 llvm::AttrBuilder B(F->getContext()); 1923 1924 if (CodeGenOpts.UnwindTables) 1925 B.addUWTableAttr(llvm::UWTableKind(CodeGenOpts.UnwindTables)); 1926 1927 if (CodeGenOpts.StackClashProtector) 1928 B.addAttribute("probe-stack", "inline-asm"); 1929 1930 if (!hasUnwindExceptions(LangOpts)) 1931 B.addAttribute(llvm::Attribute::NoUnwind); 1932 1933 if (!D || !D->hasAttr<NoStackProtectorAttr>()) { 1934 if (LangOpts.getStackProtector() == LangOptions::SSPOn) 1935 B.addAttribute(llvm::Attribute::StackProtect); 1936 else if (LangOpts.getStackProtector() == LangOptions::SSPStrong) 1937 B.addAttribute(llvm::Attribute::StackProtectStrong); 1938 else if (LangOpts.getStackProtector() == LangOptions::SSPReq) 1939 B.addAttribute(llvm::Attribute::StackProtectReq); 1940 } 1941 1942 if (!D) { 1943 // If we don't have a declaration to control inlining, the function isn't 1944 // explicitly marked as alwaysinline for semantic reasons, and inlining is 1945 // disabled, mark the function as noinline. 1946 if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline) && 1947 CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining) 1948 B.addAttribute(llvm::Attribute::NoInline); 1949 1950 F->addFnAttrs(B); 1951 return; 1952 } 1953 1954 // Track whether we need to add the optnone LLVM attribute, 1955 // starting with the default for this optimization level. 1956 bool ShouldAddOptNone = 1957 !CodeGenOpts.DisableO0ImplyOptNone && CodeGenOpts.OptimizationLevel == 0; 1958 // We can't add optnone in the following cases, it won't pass the verifier. 1959 ShouldAddOptNone &= !D->hasAttr<MinSizeAttr>(); 1960 ShouldAddOptNone &= !D->hasAttr<AlwaysInlineAttr>(); 1961 1962 // Add optnone, but do so only if the function isn't always_inline. 1963 if ((ShouldAddOptNone || D->hasAttr<OptimizeNoneAttr>()) && 1964 !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) { 1965 B.addAttribute(llvm::Attribute::OptimizeNone); 1966 1967 // OptimizeNone implies noinline; we should not be inlining such functions. 1968 B.addAttribute(llvm::Attribute::NoInline); 1969 1970 // We still need to handle naked functions even though optnone subsumes 1971 // much of their semantics. 1972 if (D->hasAttr<NakedAttr>()) 1973 B.addAttribute(llvm::Attribute::Naked); 1974 1975 // OptimizeNone wins over OptimizeForSize and MinSize. 1976 F->removeFnAttr(llvm::Attribute::OptimizeForSize); 1977 F->removeFnAttr(llvm::Attribute::MinSize); 1978 } else if (D->hasAttr<NakedAttr>()) { 1979 // Naked implies noinline: we should not be inlining such functions. 1980 B.addAttribute(llvm::Attribute::Naked); 1981 B.addAttribute(llvm::Attribute::NoInline); 1982 } else if (D->hasAttr<NoDuplicateAttr>()) { 1983 B.addAttribute(llvm::Attribute::NoDuplicate); 1984 } else if (D->hasAttr<NoInlineAttr>() && !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) { 1985 // Add noinline if the function isn't always_inline. 1986 B.addAttribute(llvm::Attribute::NoInline); 1987 } else if (D->hasAttr<AlwaysInlineAttr>() && 1988 !F->hasFnAttribute(llvm::Attribute::NoInline)) { 1989 // (noinline wins over always_inline, and we can't specify both in IR) 1990 B.addAttribute(llvm::Attribute::AlwaysInline); 1991 } else if (CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining) { 1992 // If we're not inlining, then force everything that isn't always_inline to 1993 // carry an explicit noinline attribute. 1994 if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline)) 1995 B.addAttribute(llvm::Attribute::NoInline); 1996 } else { 1997 // Otherwise, propagate the inline hint attribute and potentially use its 1998 // absence to mark things as noinline. 1999 if (auto *FD = dyn_cast<FunctionDecl>(D)) { 2000 // Search function and template pattern redeclarations for inline. 2001 auto CheckForInline = [](const FunctionDecl *FD) { 2002 auto CheckRedeclForInline = [](const FunctionDecl *Redecl) { 2003 return Redecl->isInlineSpecified(); 2004 }; 2005 if (any_of(FD->redecls(), CheckRedeclForInline)) 2006 return true; 2007 const FunctionDecl *Pattern = FD->getTemplateInstantiationPattern(); 2008 if (!Pattern) 2009 return false; 2010 return any_of(Pattern->redecls(), CheckRedeclForInline); 2011 }; 2012 if (CheckForInline(FD)) { 2013 B.addAttribute(llvm::Attribute::InlineHint); 2014 } else if (CodeGenOpts.getInlining() == 2015 CodeGenOptions::OnlyHintInlining && 2016 !FD->isInlined() && 2017 !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) { 2018 B.addAttribute(llvm::Attribute::NoInline); 2019 } 2020 } 2021 } 2022 2023 // Add other optimization related attributes if we are optimizing this 2024 // function. 2025 if (!D->hasAttr<OptimizeNoneAttr>()) { 2026 if (D->hasAttr<ColdAttr>()) { 2027 if (!ShouldAddOptNone) 2028 B.addAttribute(llvm::Attribute::OptimizeForSize); 2029 B.addAttribute(llvm::Attribute::Cold); 2030 } 2031 if (D->hasAttr<HotAttr>()) 2032 B.addAttribute(llvm::Attribute::Hot); 2033 if (D->hasAttr<MinSizeAttr>()) 2034 B.addAttribute(llvm::Attribute::MinSize); 2035 } 2036 2037 F->addFnAttrs(B); 2038 2039 unsigned alignment = D->getMaxAlignment() / Context.getCharWidth(); 2040 if (alignment) 2041 F->setAlignment(llvm::Align(alignment)); 2042 2043 if (!D->hasAttr<AlignedAttr>()) 2044 if (LangOpts.FunctionAlignment) 2045 F->setAlignment(llvm::Align(1ull << LangOpts.FunctionAlignment)); 2046 2047 // Some C++ ABIs require 2-byte alignment for member functions, in order to 2048 // reserve a bit for differentiating between virtual and non-virtual member 2049 // functions. If the current target's C++ ABI requires this and this is a 2050 // member function, set its alignment accordingly. 2051 if (getTarget().getCXXABI().areMemberFunctionsAligned()) { 2052 if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D)) 2053 F->setAlignment(llvm::Align(2)); 2054 } 2055 2056 // In the cross-dso CFI mode with canonical jump tables, we want !type 2057 // attributes on definitions only. 2058 if (CodeGenOpts.SanitizeCfiCrossDso && 2059 CodeGenOpts.SanitizeCfiCanonicalJumpTables) { 2060 if (auto *FD = dyn_cast<FunctionDecl>(D)) { 2061 // Skip available_externally functions. They won't be codegen'ed in the 2062 // current module anyway. 2063 if (getContext().GetGVALinkageForFunction(FD) != GVA_AvailableExternally) 2064 CreateFunctionTypeMetadataForIcall(FD, F); 2065 } 2066 } 2067 2068 // Emit type metadata on member functions for member function pointer checks. 2069 // These are only ever necessary on definitions; we're guaranteed that the 2070 // definition will be present in the LTO unit as a result of LTO visibility. 2071 auto *MD = dyn_cast<CXXMethodDecl>(D); 2072 if (MD && requiresMemberFunctionPointerTypeMetadata(*this, MD)) { 2073 for (const CXXRecordDecl *Base : getMostBaseClasses(MD->getParent())) { 2074 llvm::Metadata *Id = 2075 CreateMetadataIdentifierForType(Context.getMemberPointerType( 2076 MD->getType(), Context.getRecordType(Base).getTypePtr())); 2077 F->addTypeMetadata(0, Id); 2078 } 2079 } 2080 } 2081 2082 void CodeGenModule::setLLVMFunctionFEnvAttributes(const FunctionDecl *D, 2083 llvm::Function *F) { 2084 if (D->hasAttr<StrictFPAttr>()) { 2085 llvm::AttrBuilder FuncAttrs(F->getContext()); 2086 FuncAttrs.addAttribute("strictfp"); 2087 F->addFnAttrs(FuncAttrs); 2088 } 2089 } 2090 2091 void CodeGenModule::SetCommonAttributes(GlobalDecl GD, llvm::GlobalValue *GV) { 2092 const Decl *D = GD.getDecl(); 2093 if (isa_and_nonnull<NamedDecl>(D)) 2094 setGVProperties(GV, GD); 2095 else 2096 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 2097 2098 if (D && D->hasAttr<UsedAttr>()) 2099 addUsedOrCompilerUsedGlobal(GV); 2100 2101 if (CodeGenOpts.KeepStaticConsts && D && isa<VarDecl>(D)) { 2102 const auto *VD = cast<VarDecl>(D); 2103 if (VD->getType().isConstQualified() && 2104 VD->getStorageDuration() == SD_Static) 2105 addUsedOrCompilerUsedGlobal(GV); 2106 } 2107 } 2108 2109 bool CodeGenModule::GetCPUAndFeaturesAttributes(GlobalDecl GD, 2110 llvm::AttrBuilder &Attrs) { 2111 // Add target-cpu and target-features attributes to functions. If 2112 // we have a decl for the function and it has a target attribute then 2113 // parse that and add it to the feature set. 2114 StringRef TargetCPU = getTarget().getTargetOpts().CPU; 2115 StringRef TuneCPU = getTarget().getTargetOpts().TuneCPU; 2116 std::vector<std::string> Features; 2117 const auto *FD = dyn_cast_or_null<FunctionDecl>(GD.getDecl()); 2118 FD = FD ? FD->getMostRecentDecl() : FD; 2119 const auto *TD = FD ? FD->getAttr<TargetAttr>() : nullptr; 2120 const auto *SD = FD ? FD->getAttr<CPUSpecificAttr>() : nullptr; 2121 const auto *TC = FD ? FD->getAttr<TargetClonesAttr>() : nullptr; 2122 bool AddedAttr = false; 2123 if (TD || SD || TC) { 2124 llvm::StringMap<bool> FeatureMap; 2125 getContext().getFunctionFeatureMap(FeatureMap, GD); 2126 2127 // Produce the canonical string for this set of features. 2128 for (const llvm::StringMap<bool>::value_type &Entry : FeatureMap) 2129 Features.push_back((Entry.getValue() ? "+" : "-") + Entry.getKey().str()); 2130 2131 // Now add the target-cpu and target-features to the function. 2132 // While we populated the feature map above, we still need to 2133 // get and parse the target attribute so we can get the cpu for 2134 // the function. 2135 if (TD) { 2136 ParsedTargetAttr ParsedAttr = TD->parse(); 2137 if (!ParsedAttr.Architecture.empty() && 2138 getTarget().isValidCPUName(ParsedAttr.Architecture)) { 2139 TargetCPU = ParsedAttr.Architecture; 2140 TuneCPU = ""; // Clear the tune CPU. 2141 } 2142 if (!ParsedAttr.Tune.empty() && 2143 getTarget().isValidCPUName(ParsedAttr.Tune)) 2144 TuneCPU = ParsedAttr.Tune; 2145 } 2146 2147 if (SD) { 2148 // Apply the given CPU name as the 'tune-cpu' so that the optimizer can 2149 // favor this processor. 2150 TuneCPU = getTarget().getCPUSpecificTuneName( 2151 SD->getCPUName(GD.getMultiVersionIndex())->getName()); 2152 } 2153 } else { 2154 // Otherwise just add the existing target cpu and target features to the 2155 // function. 2156 Features = getTarget().getTargetOpts().Features; 2157 } 2158 2159 if (!TargetCPU.empty()) { 2160 Attrs.addAttribute("target-cpu", TargetCPU); 2161 AddedAttr = true; 2162 } 2163 if (!TuneCPU.empty()) { 2164 Attrs.addAttribute("tune-cpu", TuneCPU); 2165 AddedAttr = true; 2166 } 2167 if (!Features.empty()) { 2168 llvm::sort(Features); 2169 Attrs.addAttribute("target-features", llvm::join(Features, ",")); 2170 AddedAttr = true; 2171 } 2172 2173 return AddedAttr; 2174 } 2175 2176 void CodeGenModule::setNonAliasAttributes(GlobalDecl GD, 2177 llvm::GlobalObject *GO) { 2178 const Decl *D = GD.getDecl(); 2179 SetCommonAttributes(GD, GO); 2180 2181 if (D) { 2182 if (auto *GV = dyn_cast<llvm::GlobalVariable>(GO)) { 2183 if (D->hasAttr<RetainAttr>()) 2184 addUsedGlobal(GV); 2185 if (auto *SA = D->getAttr<PragmaClangBSSSectionAttr>()) 2186 GV->addAttribute("bss-section", SA->getName()); 2187 if (auto *SA = D->getAttr<PragmaClangDataSectionAttr>()) 2188 GV->addAttribute("data-section", SA->getName()); 2189 if (auto *SA = D->getAttr<PragmaClangRodataSectionAttr>()) 2190 GV->addAttribute("rodata-section", SA->getName()); 2191 if (auto *SA = D->getAttr<PragmaClangRelroSectionAttr>()) 2192 GV->addAttribute("relro-section", SA->getName()); 2193 } 2194 2195 if (auto *F = dyn_cast<llvm::Function>(GO)) { 2196 if (D->hasAttr<RetainAttr>()) 2197 addUsedGlobal(F); 2198 if (auto *SA = D->getAttr<PragmaClangTextSectionAttr>()) 2199 if (!D->getAttr<SectionAttr>()) 2200 F->addFnAttr("implicit-section-name", SA->getName()); 2201 2202 llvm::AttrBuilder Attrs(F->getContext()); 2203 if (GetCPUAndFeaturesAttributes(GD, Attrs)) { 2204 // We know that GetCPUAndFeaturesAttributes will always have the 2205 // newest set, since it has the newest possible FunctionDecl, so the 2206 // new ones should replace the old. 2207 llvm::AttributeMask RemoveAttrs; 2208 RemoveAttrs.addAttribute("target-cpu"); 2209 RemoveAttrs.addAttribute("target-features"); 2210 RemoveAttrs.addAttribute("tune-cpu"); 2211 F->removeFnAttrs(RemoveAttrs); 2212 F->addFnAttrs(Attrs); 2213 } 2214 } 2215 2216 if (const auto *CSA = D->getAttr<CodeSegAttr>()) 2217 GO->setSection(CSA->getName()); 2218 else if (const auto *SA = D->getAttr<SectionAttr>()) 2219 GO->setSection(SA->getName()); 2220 } 2221 2222 getTargetCodeGenInfo().setTargetAttributes(D, GO, *this); 2223 } 2224 2225 void CodeGenModule::SetInternalFunctionAttributes(GlobalDecl GD, 2226 llvm::Function *F, 2227 const CGFunctionInfo &FI) { 2228 const Decl *D = GD.getDecl(); 2229 SetLLVMFunctionAttributes(GD, FI, F, /*IsThunk=*/false); 2230 SetLLVMFunctionAttributesForDefinition(D, F); 2231 2232 F->setLinkage(llvm::Function::InternalLinkage); 2233 2234 setNonAliasAttributes(GD, F); 2235 } 2236 2237 static void setLinkageForGV(llvm::GlobalValue *GV, const NamedDecl *ND) { 2238 // Set linkage and visibility in case we never see a definition. 2239 LinkageInfo LV = ND->getLinkageAndVisibility(); 2240 // Don't set internal linkage on declarations. 2241 // "extern_weak" is overloaded in LLVM; we probably should have 2242 // separate linkage types for this. 2243 if (isExternallyVisible(LV.getLinkage()) && 2244 (ND->hasAttr<WeakAttr>() || ND->isWeakImported())) 2245 GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage); 2246 } 2247 2248 void CodeGenModule::CreateFunctionTypeMetadataForIcall(const FunctionDecl *FD, 2249 llvm::Function *F) { 2250 // Only if we are checking indirect calls. 2251 if (!LangOpts.Sanitize.has(SanitizerKind::CFIICall)) 2252 return; 2253 2254 // Non-static class methods are handled via vtable or member function pointer 2255 // checks elsewhere. 2256 if (isa<CXXMethodDecl>(FD) && !cast<CXXMethodDecl>(FD)->isStatic()) 2257 return; 2258 2259 llvm::Metadata *MD = CreateMetadataIdentifierForType(FD->getType()); 2260 F->addTypeMetadata(0, MD); 2261 F->addTypeMetadata(0, CreateMetadataIdentifierGeneralized(FD->getType())); 2262 2263 // Emit a hash-based bit set entry for cross-DSO calls. 2264 if (CodeGenOpts.SanitizeCfiCrossDso) 2265 if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD)) 2266 F->addTypeMetadata(0, llvm::ConstantAsMetadata::get(CrossDsoTypeId)); 2267 } 2268 2269 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD, llvm::Function *F, 2270 bool IsIncompleteFunction, 2271 bool IsThunk) { 2272 2273 if (llvm::Intrinsic::ID IID = F->getIntrinsicID()) { 2274 // If this is an intrinsic function, set the function's attributes 2275 // to the intrinsic's attributes. 2276 F->setAttributes(llvm::Intrinsic::getAttributes(getLLVMContext(), IID)); 2277 return; 2278 } 2279 2280 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 2281 2282 if (!IsIncompleteFunction) 2283 SetLLVMFunctionAttributes(GD, getTypes().arrangeGlobalDeclaration(GD), F, 2284 IsThunk); 2285 2286 // Add the Returned attribute for "this", except for iOS 5 and earlier 2287 // where substantial code, including the libstdc++ dylib, was compiled with 2288 // GCC and does not actually return "this". 2289 if (!IsThunk && getCXXABI().HasThisReturn(GD) && 2290 !(getTriple().isiOS() && getTriple().isOSVersionLT(6))) { 2291 assert(!F->arg_empty() && 2292 F->arg_begin()->getType() 2293 ->canLosslesslyBitCastTo(F->getReturnType()) && 2294 "unexpected this return"); 2295 F->addParamAttr(0, llvm::Attribute::Returned); 2296 } 2297 2298 // Only a few attributes are set on declarations; these may later be 2299 // overridden by a definition. 2300 2301 setLinkageForGV(F, FD); 2302 setGVProperties(F, FD); 2303 2304 // Setup target-specific attributes. 2305 if (!IsIncompleteFunction && F->isDeclaration()) 2306 getTargetCodeGenInfo().setTargetAttributes(FD, F, *this); 2307 2308 if (const auto *CSA = FD->getAttr<CodeSegAttr>()) 2309 F->setSection(CSA->getName()); 2310 else if (const auto *SA = FD->getAttr<SectionAttr>()) 2311 F->setSection(SA->getName()); 2312 2313 if (const auto *EA = FD->getAttr<ErrorAttr>()) { 2314 if (EA->isError()) 2315 F->addFnAttr("dontcall-error", EA->getUserDiagnostic()); 2316 else if (EA->isWarning()) 2317 F->addFnAttr("dontcall-warn", EA->getUserDiagnostic()); 2318 } 2319 2320 // If we plan on emitting this inline builtin, we can't treat it as a builtin. 2321 if (FD->isInlineBuiltinDeclaration()) { 2322 const FunctionDecl *FDBody; 2323 bool HasBody = FD->hasBody(FDBody); 2324 (void)HasBody; 2325 assert(HasBody && "Inline builtin declarations should always have an " 2326 "available body!"); 2327 if (shouldEmitFunction(FDBody)) 2328 F->addFnAttr(llvm::Attribute::NoBuiltin); 2329 } 2330 2331 if (FD->isReplaceableGlobalAllocationFunction()) { 2332 // A replaceable global allocation function does not act like a builtin by 2333 // default, only if it is invoked by a new-expression or delete-expression. 2334 F->addFnAttr(llvm::Attribute::NoBuiltin); 2335 } 2336 2337 if (isa<CXXConstructorDecl>(FD) || isa<CXXDestructorDecl>(FD)) 2338 F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 2339 else if (const auto *MD = dyn_cast<CXXMethodDecl>(FD)) 2340 if (MD->isVirtual()) 2341 F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 2342 2343 // Don't emit entries for function declarations in the cross-DSO mode. This 2344 // is handled with better precision by the receiving DSO. But if jump tables 2345 // are non-canonical then we need type metadata in order to produce the local 2346 // jump table. 2347 if (!CodeGenOpts.SanitizeCfiCrossDso || 2348 !CodeGenOpts.SanitizeCfiCanonicalJumpTables) 2349 CreateFunctionTypeMetadataForIcall(FD, F); 2350 2351 if (getLangOpts().OpenMP && FD->hasAttr<OMPDeclareSimdDeclAttr>()) 2352 getOpenMPRuntime().emitDeclareSimdFunction(FD, F); 2353 2354 if (const auto *CB = FD->getAttr<CallbackAttr>()) { 2355 // Annotate the callback behavior as metadata: 2356 // - The callback callee (as argument number). 2357 // - The callback payloads (as argument numbers). 2358 llvm::LLVMContext &Ctx = F->getContext(); 2359 llvm::MDBuilder MDB(Ctx); 2360 2361 // The payload indices are all but the first one in the encoding. The first 2362 // identifies the callback callee. 2363 int CalleeIdx = *CB->encoding_begin(); 2364 ArrayRef<int> PayloadIndices(CB->encoding_begin() + 1, CB->encoding_end()); 2365 F->addMetadata(llvm::LLVMContext::MD_callback, 2366 *llvm::MDNode::get(Ctx, {MDB.createCallbackEncoding( 2367 CalleeIdx, PayloadIndices, 2368 /* VarArgsArePassed */ false)})); 2369 } 2370 } 2371 2372 void CodeGenModule::addUsedGlobal(llvm::GlobalValue *GV) { 2373 assert((isa<llvm::Function>(GV) || !GV->isDeclaration()) && 2374 "Only globals with definition can force usage."); 2375 LLVMUsed.emplace_back(GV); 2376 } 2377 2378 void CodeGenModule::addCompilerUsedGlobal(llvm::GlobalValue *GV) { 2379 assert(!GV->isDeclaration() && 2380 "Only globals with definition can force usage."); 2381 LLVMCompilerUsed.emplace_back(GV); 2382 } 2383 2384 void CodeGenModule::addUsedOrCompilerUsedGlobal(llvm::GlobalValue *GV) { 2385 assert((isa<llvm::Function>(GV) || !GV->isDeclaration()) && 2386 "Only globals with definition can force usage."); 2387 if (getTriple().isOSBinFormatELF()) 2388 LLVMCompilerUsed.emplace_back(GV); 2389 else 2390 LLVMUsed.emplace_back(GV); 2391 } 2392 2393 static void emitUsed(CodeGenModule &CGM, StringRef Name, 2394 std::vector<llvm::WeakTrackingVH> &List) { 2395 // Don't create llvm.used if there is no need. 2396 if (List.empty()) 2397 return; 2398 2399 // Convert List to what ConstantArray needs. 2400 SmallVector<llvm::Constant*, 8> UsedArray; 2401 UsedArray.resize(List.size()); 2402 for (unsigned i = 0, e = List.size(); i != e; ++i) { 2403 UsedArray[i] = 2404 llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast( 2405 cast<llvm::Constant>(&*List[i]), CGM.Int8PtrTy); 2406 } 2407 2408 if (UsedArray.empty()) 2409 return; 2410 llvm::ArrayType *ATy = llvm::ArrayType::get(CGM.Int8PtrTy, UsedArray.size()); 2411 2412 auto *GV = new llvm::GlobalVariable( 2413 CGM.getModule(), ATy, false, llvm::GlobalValue::AppendingLinkage, 2414 llvm::ConstantArray::get(ATy, UsedArray), Name); 2415 2416 GV->setSection("llvm.metadata"); 2417 } 2418 2419 void CodeGenModule::emitLLVMUsed() { 2420 emitUsed(*this, "llvm.used", LLVMUsed); 2421 emitUsed(*this, "llvm.compiler.used", LLVMCompilerUsed); 2422 } 2423 2424 void CodeGenModule::AppendLinkerOptions(StringRef Opts) { 2425 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opts); 2426 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 2427 } 2428 2429 void CodeGenModule::AddDetectMismatch(StringRef Name, StringRef Value) { 2430 llvm::SmallString<32> Opt; 2431 getTargetCodeGenInfo().getDetectMismatchOption(Name, Value, Opt); 2432 if (Opt.empty()) 2433 return; 2434 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt); 2435 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 2436 } 2437 2438 void CodeGenModule::AddDependentLib(StringRef Lib) { 2439 auto &C = getLLVMContext(); 2440 if (getTarget().getTriple().isOSBinFormatELF()) { 2441 ELFDependentLibraries.push_back( 2442 llvm::MDNode::get(C, llvm::MDString::get(C, Lib))); 2443 return; 2444 } 2445 2446 llvm::SmallString<24> Opt; 2447 getTargetCodeGenInfo().getDependentLibraryOption(Lib, Opt); 2448 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt); 2449 LinkerOptionsMetadata.push_back(llvm::MDNode::get(C, MDOpts)); 2450 } 2451 2452 /// Add link options implied by the given module, including modules 2453 /// it depends on, using a postorder walk. 2454 static void addLinkOptionsPostorder(CodeGenModule &CGM, Module *Mod, 2455 SmallVectorImpl<llvm::MDNode *> &Metadata, 2456 llvm::SmallPtrSet<Module *, 16> &Visited) { 2457 // Import this module's parent. 2458 if (Mod->Parent && Visited.insert(Mod->Parent).second) { 2459 addLinkOptionsPostorder(CGM, Mod->Parent, Metadata, Visited); 2460 } 2461 2462 // Import this module's dependencies. 2463 for (Module *Import : llvm::reverse(Mod->Imports)) { 2464 if (Visited.insert(Import).second) 2465 addLinkOptionsPostorder(CGM, Import, Metadata, Visited); 2466 } 2467 2468 // Add linker options to link against the libraries/frameworks 2469 // described by this module. 2470 llvm::LLVMContext &Context = CGM.getLLVMContext(); 2471 bool IsELF = CGM.getTarget().getTriple().isOSBinFormatELF(); 2472 2473 // For modules that use export_as for linking, use that module 2474 // name instead. 2475 if (Mod->UseExportAsModuleLinkName) 2476 return; 2477 2478 for (const Module::LinkLibrary &LL : llvm::reverse(Mod->LinkLibraries)) { 2479 // Link against a framework. Frameworks are currently Darwin only, so we 2480 // don't to ask TargetCodeGenInfo for the spelling of the linker option. 2481 if (LL.IsFramework) { 2482 llvm::Metadata *Args[2] = {llvm::MDString::get(Context, "-framework"), 2483 llvm::MDString::get(Context, LL.Library)}; 2484 2485 Metadata.push_back(llvm::MDNode::get(Context, Args)); 2486 continue; 2487 } 2488 2489 // Link against a library. 2490 if (IsELF) { 2491 llvm::Metadata *Args[2] = { 2492 llvm::MDString::get(Context, "lib"), 2493 llvm::MDString::get(Context, LL.Library), 2494 }; 2495 Metadata.push_back(llvm::MDNode::get(Context, Args)); 2496 } else { 2497 llvm::SmallString<24> Opt; 2498 CGM.getTargetCodeGenInfo().getDependentLibraryOption(LL.Library, Opt); 2499 auto *OptString = llvm::MDString::get(Context, Opt); 2500 Metadata.push_back(llvm::MDNode::get(Context, OptString)); 2501 } 2502 } 2503 } 2504 2505 void CodeGenModule::EmitModuleLinkOptions() { 2506 // Collect the set of all of the modules we want to visit to emit link 2507 // options, which is essentially the imported modules and all of their 2508 // non-explicit child modules. 2509 llvm::SetVector<clang::Module *> LinkModules; 2510 llvm::SmallPtrSet<clang::Module *, 16> Visited; 2511 SmallVector<clang::Module *, 16> Stack; 2512 2513 // Seed the stack with imported modules. 2514 for (Module *M : ImportedModules) { 2515 // Do not add any link flags when an implementation TU of a module imports 2516 // a header of that same module. 2517 if (M->getTopLevelModuleName() == getLangOpts().CurrentModule && 2518 !getLangOpts().isCompilingModule()) 2519 continue; 2520 if (Visited.insert(M).second) 2521 Stack.push_back(M); 2522 } 2523 2524 // Find all of the modules to import, making a little effort to prune 2525 // non-leaf modules. 2526 while (!Stack.empty()) { 2527 clang::Module *Mod = Stack.pop_back_val(); 2528 2529 bool AnyChildren = false; 2530 2531 // Visit the submodules of this module. 2532 for (const auto &SM : Mod->submodules()) { 2533 // Skip explicit children; they need to be explicitly imported to be 2534 // linked against. 2535 if (SM->IsExplicit) 2536 continue; 2537 2538 if (Visited.insert(SM).second) { 2539 Stack.push_back(SM); 2540 AnyChildren = true; 2541 } 2542 } 2543 2544 // We didn't find any children, so add this module to the list of 2545 // modules to link against. 2546 if (!AnyChildren) { 2547 LinkModules.insert(Mod); 2548 } 2549 } 2550 2551 // Add link options for all of the imported modules in reverse topological 2552 // order. We don't do anything to try to order import link flags with respect 2553 // to linker options inserted by things like #pragma comment(). 2554 SmallVector<llvm::MDNode *, 16> MetadataArgs; 2555 Visited.clear(); 2556 for (Module *M : LinkModules) 2557 if (Visited.insert(M).second) 2558 addLinkOptionsPostorder(*this, M, MetadataArgs, Visited); 2559 std::reverse(MetadataArgs.begin(), MetadataArgs.end()); 2560 LinkerOptionsMetadata.append(MetadataArgs.begin(), MetadataArgs.end()); 2561 2562 // Add the linker options metadata flag. 2563 auto *NMD = getModule().getOrInsertNamedMetadata("llvm.linker.options"); 2564 for (auto *MD : LinkerOptionsMetadata) 2565 NMD->addOperand(MD); 2566 } 2567 2568 void CodeGenModule::EmitDeferred() { 2569 // Emit deferred declare target declarations. 2570 if (getLangOpts().OpenMP && !getLangOpts().OpenMPSimd) 2571 getOpenMPRuntime().emitDeferredTargetDecls(); 2572 2573 // Emit code for any potentially referenced deferred decls. Since a 2574 // previously unused static decl may become used during the generation of code 2575 // for a static function, iterate until no changes are made. 2576 2577 if (!DeferredVTables.empty()) { 2578 EmitDeferredVTables(); 2579 2580 // Emitting a vtable doesn't directly cause more vtables to 2581 // become deferred, although it can cause functions to be 2582 // emitted that then need those vtables. 2583 assert(DeferredVTables.empty()); 2584 } 2585 2586 // Emit CUDA/HIP static device variables referenced by host code only. 2587 // Note we should not clear CUDADeviceVarODRUsedByHost since it is still 2588 // needed for further handling. 2589 if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice) 2590 llvm::append_range(DeferredDeclsToEmit, 2591 getContext().CUDADeviceVarODRUsedByHost); 2592 2593 // Stop if we're out of both deferred vtables and deferred declarations. 2594 if (DeferredDeclsToEmit.empty()) 2595 return; 2596 2597 // Grab the list of decls to emit. If EmitGlobalDefinition schedules more 2598 // work, it will not interfere with this. 2599 std::vector<GlobalDecl> CurDeclsToEmit; 2600 CurDeclsToEmit.swap(DeferredDeclsToEmit); 2601 2602 for (GlobalDecl &D : CurDeclsToEmit) { 2603 // We should call GetAddrOfGlobal with IsForDefinition set to true in order 2604 // to get GlobalValue with exactly the type we need, not something that 2605 // might had been created for another decl with the same mangled name but 2606 // different type. 2607 llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>( 2608 GetAddrOfGlobal(D, ForDefinition)); 2609 2610 // In case of different address spaces, we may still get a cast, even with 2611 // IsForDefinition equal to true. Query mangled names table to get 2612 // GlobalValue. 2613 if (!GV) 2614 GV = GetGlobalValue(getMangledName(D)); 2615 2616 // Make sure GetGlobalValue returned non-null. 2617 assert(GV); 2618 2619 // Check to see if we've already emitted this. This is necessary 2620 // for a couple of reasons: first, decls can end up in the 2621 // deferred-decls queue multiple times, and second, decls can end 2622 // up with definitions in unusual ways (e.g. by an extern inline 2623 // function acquiring a strong function redefinition). Just 2624 // ignore these cases. 2625 if (!GV->isDeclaration()) 2626 continue; 2627 2628 // If this is OpenMP, check if it is legal to emit this global normally. 2629 if (LangOpts.OpenMP && OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(D)) 2630 continue; 2631 2632 // Otherwise, emit the definition and move on to the next one. 2633 EmitGlobalDefinition(D, GV); 2634 2635 // If we found out that we need to emit more decls, do that recursively. 2636 // This has the advantage that the decls are emitted in a DFS and related 2637 // ones are close together, which is convenient for testing. 2638 if (!DeferredVTables.empty() || !DeferredDeclsToEmit.empty()) { 2639 EmitDeferred(); 2640 assert(DeferredVTables.empty() && DeferredDeclsToEmit.empty()); 2641 } 2642 } 2643 } 2644 2645 void CodeGenModule::EmitVTablesOpportunistically() { 2646 // Try to emit external vtables as available_externally if they have emitted 2647 // all inlined virtual functions. It runs after EmitDeferred() and therefore 2648 // is not allowed to create new references to things that need to be emitted 2649 // lazily. Note that it also uses fact that we eagerly emitting RTTI. 2650 2651 assert((OpportunisticVTables.empty() || shouldOpportunisticallyEmitVTables()) 2652 && "Only emit opportunistic vtables with optimizations"); 2653 2654 for (const CXXRecordDecl *RD : OpportunisticVTables) { 2655 assert(getVTables().isVTableExternal(RD) && 2656 "This queue should only contain external vtables"); 2657 if (getCXXABI().canSpeculativelyEmitVTable(RD)) 2658 VTables.GenerateClassData(RD); 2659 } 2660 OpportunisticVTables.clear(); 2661 } 2662 2663 void CodeGenModule::EmitGlobalAnnotations() { 2664 if (Annotations.empty()) 2665 return; 2666 2667 // Create a new global variable for the ConstantStruct in the Module. 2668 llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get( 2669 Annotations[0]->getType(), Annotations.size()), Annotations); 2670 auto *gv = new llvm::GlobalVariable(getModule(), Array->getType(), false, 2671 llvm::GlobalValue::AppendingLinkage, 2672 Array, "llvm.global.annotations"); 2673 gv->setSection(AnnotationSection); 2674 } 2675 2676 llvm::Constant *CodeGenModule::EmitAnnotationString(StringRef Str) { 2677 llvm::Constant *&AStr = AnnotationStrings[Str]; 2678 if (AStr) 2679 return AStr; 2680 2681 // Not found yet, create a new global. 2682 llvm::Constant *s = llvm::ConstantDataArray::getString(getLLVMContext(), Str); 2683 auto *gv = 2684 new llvm::GlobalVariable(getModule(), s->getType(), true, 2685 llvm::GlobalValue::PrivateLinkage, s, ".str"); 2686 gv->setSection(AnnotationSection); 2687 gv->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 2688 AStr = gv; 2689 return gv; 2690 } 2691 2692 llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) { 2693 SourceManager &SM = getContext().getSourceManager(); 2694 PresumedLoc PLoc = SM.getPresumedLoc(Loc); 2695 if (PLoc.isValid()) 2696 return EmitAnnotationString(PLoc.getFilename()); 2697 return EmitAnnotationString(SM.getBufferName(Loc)); 2698 } 2699 2700 llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) { 2701 SourceManager &SM = getContext().getSourceManager(); 2702 PresumedLoc PLoc = SM.getPresumedLoc(L); 2703 unsigned LineNo = PLoc.isValid() ? PLoc.getLine() : 2704 SM.getExpansionLineNumber(L); 2705 return llvm::ConstantInt::get(Int32Ty, LineNo); 2706 } 2707 2708 llvm::Constant *CodeGenModule::EmitAnnotationArgs(const AnnotateAttr *Attr) { 2709 ArrayRef<Expr *> Exprs = {Attr->args_begin(), Attr->args_size()}; 2710 if (Exprs.empty()) 2711 return llvm::ConstantPointerNull::get(GlobalsInt8PtrTy); 2712 2713 llvm::FoldingSetNodeID ID; 2714 for (Expr *E : Exprs) { 2715 ID.Add(cast<clang::ConstantExpr>(E)->getAPValueResult()); 2716 } 2717 llvm::Constant *&Lookup = AnnotationArgs[ID.ComputeHash()]; 2718 if (Lookup) 2719 return Lookup; 2720 2721 llvm::SmallVector<llvm::Constant *, 4> LLVMArgs; 2722 LLVMArgs.reserve(Exprs.size()); 2723 ConstantEmitter ConstEmiter(*this); 2724 llvm::transform(Exprs, std::back_inserter(LLVMArgs), [&](const Expr *E) { 2725 const auto *CE = cast<clang::ConstantExpr>(E); 2726 return ConstEmiter.emitAbstract(CE->getBeginLoc(), CE->getAPValueResult(), 2727 CE->getType()); 2728 }); 2729 auto *Struct = llvm::ConstantStruct::getAnon(LLVMArgs); 2730 auto *GV = new llvm::GlobalVariable(getModule(), Struct->getType(), true, 2731 llvm::GlobalValue::PrivateLinkage, Struct, 2732 ".args"); 2733 GV->setSection(AnnotationSection); 2734 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 2735 auto *Bitcasted = llvm::ConstantExpr::getBitCast(GV, GlobalsInt8PtrTy); 2736 2737 Lookup = Bitcasted; 2738 return Bitcasted; 2739 } 2740 2741 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV, 2742 const AnnotateAttr *AA, 2743 SourceLocation L) { 2744 // Get the globals for file name, annotation, and the line number. 2745 llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()), 2746 *UnitGV = EmitAnnotationUnit(L), 2747 *LineNoCst = EmitAnnotationLineNo(L), 2748 *Args = EmitAnnotationArgs(AA); 2749 2750 llvm::Constant *GVInGlobalsAS = GV; 2751 if (GV->getAddressSpace() != 2752 getDataLayout().getDefaultGlobalsAddressSpace()) { 2753 GVInGlobalsAS = llvm::ConstantExpr::getAddrSpaceCast( 2754 GV, GV->getValueType()->getPointerTo( 2755 getDataLayout().getDefaultGlobalsAddressSpace())); 2756 } 2757 2758 // Create the ConstantStruct for the global annotation. 2759 llvm::Constant *Fields[] = { 2760 llvm::ConstantExpr::getBitCast(GVInGlobalsAS, GlobalsInt8PtrTy), 2761 llvm::ConstantExpr::getBitCast(AnnoGV, GlobalsInt8PtrTy), 2762 llvm::ConstantExpr::getBitCast(UnitGV, GlobalsInt8PtrTy), 2763 LineNoCst, 2764 Args, 2765 }; 2766 return llvm::ConstantStruct::getAnon(Fields); 2767 } 2768 2769 void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D, 2770 llvm::GlobalValue *GV) { 2771 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 2772 // Get the struct elements for these annotations. 2773 for (const auto *I : D->specific_attrs<AnnotateAttr>()) 2774 Annotations.push_back(EmitAnnotateAttr(GV, I, D->getLocation())); 2775 } 2776 2777 bool CodeGenModule::isInNoSanitizeList(SanitizerMask Kind, llvm::Function *Fn, 2778 SourceLocation Loc) const { 2779 const auto &NoSanitizeL = getContext().getNoSanitizeList(); 2780 // NoSanitize by function name. 2781 if (NoSanitizeL.containsFunction(Kind, Fn->getName())) 2782 return true; 2783 // NoSanitize by location. 2784 if (Loc.isValid()) 2785 return NoSanitizeL.containsLocation(Kind, Loc); 2786 // If location is unknown, this may be a compiler-generated function. Assume 2787 // it's located in the main file. 2788 auto &SM = Context.getSourceManager(); 2789 if (const auto *MainFile = SM.getFileEntryForID(SM.getMainFileID())) { 2790 return NoSanitizeL.containsFile(Kind, MainFile->getName()); 2791 } 2792 return false; 2793 } 2794 2795 bool CodeGenModule::isInNoSanitizeList(SanitizerMask Kind, 2796 llvm::GlobalVariable *GV, 2797 SourceLocation Loc, QualType Ty, 2798 StringRef Category) const { 2799 const auto &NoSanitizeL = getContext().getNoSanitizeList(); 2800 if (NoSanitizeL.containsGlobal(Kind, GV->getName(), Category)) 2801 return true; 2802 if (NoSanitizeL.containsLocation(Kind, Loc, Category)) 2803 return true; 2804 // Check global type. 2805 if (!Ty.isNull()) { 2806 // Drill down the array types: if global variable of a fixed type is 2807 // not sanitized, we also don't instrument arrays of them. 2808 while (auto AT = dyn_cast<ArrayType>(Ty.getTypePtr())) 2809 Ty = AT->getElementType(); 2810 Ty = Ty.getCanonicalType().getUnqualifiedType(); 2811 // Only record types (classes, structs etc.) are ignored. 2812 if (Ty->isRecordType()) { 2813 std::string TypeStr = Ty.getAsString(getContext().getPrintingPolicy()); 2814 if (NoSanitizeL.containsType(Kind, TypeStr, Category)) 2815 return true; 2816 } 2817 } 2818 return false; 2819 } 2820 2821 bool CodeGenModule::imbueXRayAttrs(llvm::Function *Fn, SourceLocation Loc, 2822 StringRef Category) const { 2823 const auto &XRayFilter = getContext().getXRayFilter(); 2824 using ImbueAttr = XRayFunctionFilter::ImbueAttribute; 2825 auto Attr = ImbueAttr::NONE; 2826 if (Loc.isValid()) 2827 Attr = XRayFilter.shouldImbueLocation(Loc, Category); 2828 if (Attr == ImbueAttr::NONE) 2829 Attr = XRayFilter.shouldImbueFunction(Fn->getName()); 2830 switch (Attr) { 2831 case ImbueAttr::NONE: 2832 return false; 2833 case ImbueAttr::ALWAYS: 2834 Fn->addFnAttr("function-instrument", "xray-always"); 2835 break; 2836 case ImbueAttr::ALWAYS_ARG1: 2837 Fn->addFnAttr("function-instrument", "xray-always"); 2838 Fn->addFnAttr("xray-log-args", "1"); 2839 break; 2840 case ImbueAttr::NEVER: 2841 Fn->addFnAttr("function-instrument", "xray-never"); 2842 break; 2843 } 2844 return true; 2845 } 2846 2847 bool CodeGenModule::isFunctionBlockedByProfileList(llvm::Function *Fn, 2848 SourceLocation Loc) const { 2849 const auto &ProfileList = getContext().getProfileList(); 2850 // If the profile list is empty, then instrument everything. 2851 if (ProfileList.isEmpty()) 2852 return false; 2853 CodeGenOptions::ProfileInstrKind Kind = getCodeGenOpts().getProfileInstr(); 2854 // First, check the function name. 2855 Optional<bool> V = ProfileList.isFunctionExcluded(Fn->getName(), Kind); 2856 if (V) 2857 return *V; 2858 // Next, check the source location. 2859 if (Loc.isValid()) { 2860 Optional<bool> V = ProfileList.isLocationExcluded(Loc, Kind); 2861 if (V) 2862 return *V; 2863 } 2864 // If location is unknown, this may be a compiler-generated function. Assume 2865 // it's located in the main file. 2866 auto &SM = Context.getSourceManager(); 2867 if (const auto *MainFile = SM.getFileEntryForID(SM.getMainFileID())) { 2868 Optional<bool> V = ProfileList.isFileExcluded(MainFile->getName(), Kind); 2869 if (V) 2870 return *V; 2871 } 2872 return ProfileList.getDefault(); 2873 } 2874 2875 bool CodeGenModule::isFunctionBlockedFromProfileInstr( 2876 llvm::Function *Fn, SourceLocation Loc) const { 2877 if (isFunctionBlockedByProfileList(Fn, Loc)) 2878 return true; 2879 2880 auto NumGroups = getCodeGenOpts().ProfileTotalFunctionGroups; 2881 if (NumGroups > 1) { 2882 auto Group = llvm::crc32(arrayRefFromStringRef(Fn->getName())) % NumGroups; 2883 if (Group != getCodeGenOpts().ProfileSelectedFunctionGroup) 2884 return true; 2885 } 2886 return false; 2887 } 2888 2889 bool CodeGenModule::MustBeEmitted(const ValueDecl *Global) { 2890 // Never defer when EmitAllDecls is specified. 2891 if (LangOpts.EmitAllDecls) 2892 return true; 2893 2894 if (CodeGenOpts.KeepStaticConsts) { 2895 const auto *VD = dyn_cast<VarDecl>(Global); 2896 if (VD && VD->getType().isConstQualified() && 2897 VD->getStorageDuration() == SD_Static) 2898 return true; 2899 } 2900 2901 return getContext().DeclMustBeEmitted(Global); 2902 } 2903 2904 bool CodeGenModule::MayBeEmittedEagerly(const ValueDecl *Global) { 2905 // In OpenMP 5.0 variables and function may be marked as 2906 // device_type(host/nohost) and we should not emit them eagerly unless we sure 2907 // that they must be emitted on the host/device. To be sure we need to have 2908 // seen a declare target with an explicit mentioning of the function, we know 2909 // we have if the level of the declare target attribute is -1. Note that we 2910 // check somewhere else if we should emit this at all. 2911 if (LangOpts.OpenMP >= 50 && !LangOpts.OpenMPSimd) { 2912 llvm::Optional<OMPDeclareTargetDeclAttr *> ActiveAttr = 2913 OMPDeclareTargetDeclAttr::getActiveAttr(Global); 2914 if (!ActiveAttr || (*ActiveAttr)->getLevel() != (unsigned)-1) 2915 return false; 2916 } 2917 2918 if (const auto *FD = dyn_cast<FunctionDecl>(Global)) { 2919 if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation) 2920 // Implicit template instantiations may change linkage if they are later 2921 // explicitly instantiated, so they should not be emitted eagerly. 2922 return false; 2923 } 2924 if (const auto *VD = dyn_cast<VarDecl>(Global)) 2925 if (Context.getInlineVariableDefinitionKind(VD) == 2926 ASTContext::InlineVariableDefinitionKind::WeakUnknown) 2927 // A definition of an inline constexpr static data member may change 2928 // linkage later if it's redeclared outside the class. 2929 return false; 2930 // If OpenMP is enabled and threadprivates must be generated like TLS, delay 2931 // codegen for global variables, because they may be marked as threadprivate. 2932 if (LangOpts.OpenMP && LangOpts.OpenMPUseTLS && 2933 getContext().getTargetInfo().isTLSSupported() && isa<VarDecl>(Global) && 2934 !isTypeConstant(Global->getType(), false) && 2935 !OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(Global)) 2936 return false; 2937 2938 return true; 2939 } 2940 2941 ConstantAddress CodeGenModule::GetAddrOfMSGuidDecl(const MSGuidDecl *GD) { 2942 StringRef Name = getMangledName(GD); 2943 2944 // The UUID descriptor should be pointer aligned. 2945 CharUnits Alignment = CharUnits::fromQuantity(PointerAlignInBytes); 2946 2947 // Look for an existing global. 2948 if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name)) 2949 return ConstantAddress(GV, GV->getValueType(), Alignment); 2950 2951 ConstantEmitter Emitter(*this); 2952 llvm::Constant *Init; 2953 2954 APValue &V = GD->getAsAPValue(); 2955 if (!V.isAbsent()) { 2956 // If possible, emit the APValue version of the initializer. In particular, 2957 // this gets the type of the constant right. 2958 Init = Emitter.emitForInitializer( 2959 GD->getAsAPValue(), GD->getType().getAddressSpace(), GD->getType()); 2960 } else { 2961 // As a fallback, directly construct the constant. 2962 // FIXME: This may get padding wrong under esoteric struct layout rules. 2963 // MSVC appears to create a complete type 'struct __s_GUID' that it 2964 // presumably uses to represent these constants. 2965 MSGuidDecl::Parts Parts = GD->getParts(); 2966 llvm::Constant *Fields[4] = { 2967 llvm::ConstantInt::get(Int32Ty, Parts.Part1), 2968 llvm::ConstantInt::get(Int16Ty, Parts.Part2), 2969 llvm::ConstantInt::get(Int16Ty, Parts.Part3), 2970 llvm::ConstantDataArray::getRaw( 2971 StringRef(reinterpret_cast<char *>(Parts.Part4And5), 8), 8, 2972 Int8Ty)}; 2973 Init = llvm::ConstantStruct::getAnon(Fields); 2974 } 2975 2976 auto *GV = new llvm::GlobalVariable( 2977 getModule(), Init->getType(), 2978 /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name); 2979 if (supportsCOMDAT()) 2980 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 2981 setDSOLocal(GV); 2982 2983 if (!V.isAbsent()) { 2984 Emitter.finalize(GV); 2985 return ConstantAddress(GV, GV->getValueType(), Alignment); 2986 } 2987 2988 llvm::Type *Ty = getTypes().ConvertTypeForMem(GD->getType()); 2989 llvm::Constant *Addr = llvm::ConstantExpr::getBitCast( 2990 GV, Ty->getPointerTo(GV->getAddressSpace())); 2991 return ConstantAddress(Addr, Ty, Alignment); 2992 } 2993 2994 ConstantAddress CodeGenModule::GetAddrOfUnnamedGlobalConstantDecl( 2995 const UnnamedGlobalConstantDecl *GCD) { 2996 CharUnits Alignment = getContext().getTypeAlignInChars(GCD->getType()); 2997 2998 llvm::GlobalVariable **Entry = nullptr; 2999 Entry = &UnnamedGlobalConstantDeclMap[GCD]; 3000 if (*Entry) 3001 return ConstantAddress(*Entry, (*Entry)->getValueType(), Alignment); 3002 3003 ConstantEmitter Emitter(*this); 3004 llvm::Constant *Init; 3005 3006 const APValue &V = GCD->getValue(); 3007 3008 assert(!V.isAbsent()); 3009 Init = Emitter.emitForInitializer(V, GCD->getType().getAddressSpace(), 3010 GCD->getType()); 3011 3012 auto *GV = new llvm::GlobalVariable(getModule(), Init->getType(), 3013 /*isConstant=*/true, 3014 llvm::GlobalValue::PrivateLinkage, Init, 3015 ".constant"); 3016 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 3017 GV->setAlignment(Alignment.getAsAlign()); 3018 3019 Emitter.finalize(GV); 3020 3021 *Entry = GV; 3022 return ConstantAddress(GV, GV->getValueType(), Alignment); 3023 } 3024 3025 ConstantAddress CodeGenModule::GetAddrOfTemplateParamObject( 3026 const TemplateParamObjectDecl *TPO) { 3027 StringRef Name = getMangledName(TPO); 3028 CharUnits Alignment = getNaturalTypeAlignment(TPO->getType()); 3029 3030 if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name)) 3031 return ConstantAddress(GV, GV->getValueType(), Alignment); 3032 3033 ConstantEmitter Emitter(*this); 3034 llvm::Constant *Init = Emitter.emitForInitializer( 3035 TPO->getValue(), TPO->getType().getAddressSpace(), TPO->getType()); 3036 3037 if (!Init) { 3038 ErrorUnsupported(TPO, "template parameter object"); 3039 return ConstantAddress::invalid(); 3040 } 3041 3042 auto *GV = new llvm::GlobalVariable( 3043 getModule(), Init->getType(), 3044 /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name); 3045 if (supportsCOMDAT()) 3046 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 3047 Emitter.finalize(GV); 3048 3049 return ConstantAddress(GV, GV->getValueType(), Alignment); 3050 } 3051 3052 ConstantAddress CodeGenModule::GetWeakRefReference(const ValueDecl *VD) { 3053 const AliasAttr *AA = VD->getAttr<AliasAttr>(); 3054 assert(AA && "No alias?"); 3055 3056 CharUnits Alignment = getContext().getDeclAlign(VD); 3057 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType()); 3058 3059 // See if there is already something with the target's name in the module. 3060 llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee()); 3061 if (Entry) { 3062 unsigned AS = getContext().getTargetAddressSpace(VD->getType()); 3063 auto Ptr = llvm::ConstantExpr::getBitCast(Entry, DeclTy->getPointerTo(AS)); 3064 return ConstantAddress(Ptr, DeclTy, Alignment); 3065 } 3066 3067 llvm::Constant *Aliasee; 3068 if (isa<llvm::FunctionType>(DeclTy)) 3069 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, 3070 GlobalDecl(cast<FunctionDecl>(VD)), 3071 /*ForVTable=*/false); 3072 else 3073 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), DeclTy, LangAS::Default, 3074 nullptr); 3075 3076 auto *F = cast<llvm::GlobalValue>(Aliasee); 3077 F->setLinkage(llvm::Function::ExternalWeakLinkage); 3078 WeakRefReferences.insert(F); 3079 3080 return ConstantAddress(Aliasee, DeclTy, Alignment); 3081 } 3082 3083 void CodeGenModule::EmitGlobal(GlobalDecl GD) { 3084 const auto *Global = cast<ValueDecl>(GD.getDecl()); 3085 3086 // Weak references don't produce any output by themselves. 3087 if (Global->hasAttr<WeakRefAttr>()) 3088 return; 3089 3090 // If this is an alias definition (which otherwise looks like a declaration) 3091 // emit it now. 3092 if (Global->hasAttr<AliasAttr>()) 3093 return EmitAliasDefinition(GD); 3094 3095 // IFunc like an alias whose value is resolved at runtime by calling resolver. 3096 if (Global->hasAttr<IFuncAttr>()) 3097 return emitIFuncDefinition(GD); 3098 3099 // If this is a cpu_dispatch multiversion function, emit the resolver. 3100 if (Global->hasAttr<CPUDispatchAttr>()) 3101 return emitCPUDispatchDefinition(GD); 3102 3103 // If this is CUDA, be selective about which declarations we emit. 3104 if (LangOpts.CUDA) { 3105 if (LangOpts.CUDAIsDevice) { 3106 if (!Global->hasAttr<CUDADeviceAttr>() && 3107 !Global->hasAttr<CUDAGlobalAttr>() && 3108 !Global->hasAttr<CUDAConstantAttr>() && 3109 !Global->hasAttr<CUDASharedAttr>() && 3110 !Global->getType()->isCUDADeviceBuiltinSurfaceType() && 3111 !Global->getType()->isCUDADeviceBuiltinTextureType()) 3112 return; 3113 } else { 3114 // We need to emit host-side 'shadows' for all global 3115 // device-side variables because the CUDA runtime needs their 3116 // size and host-side address in order to provide access to 3117 // their device-side incarnations. 3118 3119 // So device-only functions are the only things we skip. 3120 if (isa<FunctionDecl>(Global) && !Global->hasAttr<CUDAHostAttr>() && 3121 Global->hasAttr<CUDADeviceAttr>()) 3122 return; 3123 3124 assert((isa<FunctionDecl>(Global) || isa<VarDecl>(Global)) && 3125 "Expected Variable or Function"); 3126 } 3127 } 3128 3129 if (LangOpts.OpenMP) { 3130 // If this is OpenMP, check if it is legal to emit this global normally. 3131 if (OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(GD)) 3132 return; 3133 if (auto *DRD = dyn_cast<OMPDeclareReductionDecl>(Global)) { 3134 if (MustBeEmitted(Global)) 3135 EmitOMPDeclareReduction(DRD); 3136 return; 3137 } else if (auto *DMD = dyn_cast<OMPDeclareMapperDecl>(Global)) { 3138 if (MustBeEmitted(Global)) 3139 EmitOMPDeclareMapper(DMD); 3140 return; 3141 } 3142 } 3143 3144 // Ignore declarations, they will be emitted on their first use. 3145 if (const auto *FD = dyn_cast<FunctionDecl>(Global)) { 3146 // Forward declarations are emitted lazily on first use. 3147 if (!FD->doesThisDeclarationHaveABody()) { 3148 if (!FD->doesDeclarationForceExternallyVisibleDefinition()) 3149 return; 3150 3151 StringRef MangledName = getMangledName(GD); 3152 3153 // Compute the function info and LLVM type. 3154 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 3155 llvm::Type *Ty = getTypes().GetFunctionType(FI); 3156 3157 GetOrCreateLLVMFunction(MangledName, Ty, GD, /*ForVTable=*/false, 3158 /*DontDefer=*/false); 3159 return; 3160 } 3161 } else { 3162 const auto *VD = cast<VarDecl>(Global); 3163 assert(VD->isFileVarDecl() && "Cannot emit local var decl as global."); 3164 if (VD->isThisDeclarationADefinition() != VarDecl::Definition && 3165 !Context.isMSStaticDataMemberInlineDefinition(VD)) { 3166 if (LangOpts.OpenMP) { 3167 // Emit declaration of the must-be-emitted declare target variable. 3168 if (llvm::Optional<OMPDeclareTargetDeclAttr::MapTypeTy> Res = 3169 OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD)) { 3170 bool UnifiedMemoryEnabled = 3171 getOpenMPRuntime().hasRequiresUnifiedSharedMemory(); 3172 if (*Res == OMPDeclareTargetDeclAttr::MT_To && 3173 !UnifiedMemoryEnabled) { 3174 (void)GetAddrOfGlobalVar(VD); 3175 } else { 3176 assert(((*Res == OMPDeclareTargetDeclAttr::MT_Link) || 3177 (*Res == OMPDeclareTargetDeclAttr::MT_To && 3178 UnifiedMemoryEnabled)) && 3179 "Link clause or to clause with unified memory expected."); 3180 (void)getOpenMPRuntime().getAddrOfDeclareTargetVar(VD); 3181 } 3182 3183 return; 3184 } 3185 } 3186 // If this declaration may have caused an inline variable definition to 3187 // change linkage, make sure that it's emitted. 3188 if (Context.getInlineVariableDefinitionKind(VD) == 3189 ASTContext::InlineVariableDefinitionKind::Strong) 3190 GetAddrOfGlobalVar(VD); 3191 return; 3192 } 3193 } 3194 3195 // Defer code generation to first use when possible, e.g. if this is an inline 3196 // function. If the global must always be emitted, do it eagerly if possible 3197 // to benefit from cache locality. 3198 if (MustBeEmitted(Global) && MayBeEmittedEagerly(Global)) { 3199 // Emit the definition if it can't be deferred. 3200 EmitGlobalDefinition(GD); 3201 return; 3202 } 3203 3204 // If we're deferring emission of a C++ variable with an 3205 // initializer, remember the order in which it appeared in the file. 3206 if (getLangOpts().CPlusPlus && isa<VarDecl>(Global) && 3207 cast<VarDecl>(Global)->hasInit()) { 3208 DelayedCXXInitPosition[Global] = CXXGlobalInits.size(); 3209 CXXGlobalInits.push_back(nullptr); 3210 } 3211 3212 StringRef MangledName = getMangledName(GD); 3213 if (GetGlobalValue(MangledName) != nullptr) { 3214 // The value has already been used and should therefore be emitted. 3215 addDeferredDeclToEmit(GD); 3216 } else if (MustBeEmitted(Global)) { 3217 // The value must be emitted, but cannot be emitted eagerly. 3218 assert(!MayBeEmittedEagerly(Global)); 3219 addDeferredDeclToEmit(GD); 3220 } else { 3221 // Otherwise, remember that we saw a deferred decl with this name. The 3222 // first use of the mangled name will cause it to move into 3223 // DeferredDeclsToEmit. 3224 DeferredDecls[MangledName] = GD; 3225 } 3226 } 3227 3228 // Check if T is a class type with a destructor that's not dllimport. 3229 static bool HasNonDllImportDtor(QualType T) { 3230 if (const auto *RT = T->getBaseElementTypeUnsafe()->getAs<RecordType>()) 3231 if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl())) 3232 if (RD->getDestructor() && !RD->getDestructor()->hasAttr<DLLImportAttr>()) 3233 return true; 3234 3235 return false; 3236 } 3237 3238 namespace { 3239 struct FunctionIsDirectlyRecursive 3240 : public ConstStmtVisitor<FunctionIsDirectlyRecursive, bool> { 3241 const StringRef Name; 3242 const Builtin::Context &BI; 3243 FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C) 3244 : Name(N), BI(C) {} 3245 3246 bool VisitCallExpr(const CallExpr *E) { 3247 const FunctionDecl *FD = E->getDirectCallee(); 3248 if (!FD) 3249 return false; 3250 AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>(); 3251 if (Attr && Name == Attr->getLabel()) 3252 return true; 3253 unsigned BuiltinID = FD->getBuiltinID(); 3254 if (!BuiltinID || !BI.isLibFunction(BuiltinID)) 3255 return false; 3256 StringRef BuiltinName = BI.getName(BuiltinID); 3257 if (BuiltinName.startswith("__builtin_") && 3258 Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) { 3259 return true; 3260 } 3261 return false; 3262 } 3263 3264 bool VisitStmt(const Stmt *S) { 3265 for (const Stmt *Child : S->children()) 3266 if (Child && this->Visit(Child)) 3267 return true; 3268 return false; 3269 } 3270 }; 3271 3272 // Make sure we're not referencing non-imported vars or functions. 3273 struct DLLImportFunctionVisitor 3274 : public RecursiveASTVisitor<DLLImportFunctionVisitor> { 3275 bool SafeToInline = true; 3276 3277 bool shouldVisitImplicitCode() const { return true; } 3278 3279 bool VisitVarDecl(VarDecl *VD) { 3280 if (VD->getTLSKind()) { 3281 // A thread-local variable cannot be imported. 3282 SafeToInline = false; 3283 return SafeToInline; 3284 } 3285 3286 // A variable definition might imply a destructor call. 3287 if (VD->isThisDeclarationADefinition()) 3288 SafeToInline = !HasNonDllImportDtor(VD->getType()); 3289 3290 return SafeToInline; 3291 } 3292 3293 bool VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) { 3294 if (const auto *D = E->getTemporary()->getDestructor()) 3295 SafeToInline = D->hasAttr<DLLImportAttr>(); 3296 return SafeToInline; 3297 } 3298 3299 bool VisitDeclRefExpr(DeclRefExpr *E) { 3300 ValueDecl *VD = E->getDecl(); 3301 if (isa<FunctionDecl>(VD)) 3302 SafeToInline = VD->hasAttr<DLLImportAttr>(); 3303 else if (VarDecl *V = dyn_cast<VarDecl>(VD)) 3304 SafeToInline = !V->hasGlobalStorage() || V->hasAttr<DLLImportAttr>(); 3305 return SafeToInline; 3306 } 3307 3308 bool VisitCXXConstructExpr(CXXConstructExpr *E) { 3309 SafeToInline = E->getConstructor()->hasAttr<DLLImportAttr>(); 3310 return SafeToInline; 3311 } 3312 3313 bool VisitCXXMemberCallExpr(CXXMemberCallExpr *E) { 3314 CXXMethodDecl *M = E->getMethodDecl(); 3315 if (!M) { 3316 // Call through a pointer to member function. This is safe to inline. 3317 SafeToInline = true; 3318 } else { 3319 SafeToInline = M->hasAttr<DLLImportAttr>(); 3320 } 3321 return SafeToInline; 3322 } 3323 3324 bool VisitCXXDeleteExpr(CXXDeleteExpr *E) { 3325 SafeToInline = E->getOperatorDelete()->hasAttr<DLLImportAttr>(); 3326 return SafeToInline; 3327 } 3328 3329 bool VisitCXXNewExpr(CXXNewExpr *E) { 3330 SafeToInline = E->getOperatorNew()->hasAttr<DLLImportAttr>(); 3331 return SafeToInline; 3332 } 3333 }; 3334 } 3335 3336 // isTriviallyRecursive - Check if this function calls another 3337 // decl that, because of the asm attribute or the other decl being a builtin, 3338 // ends up pointing to itself. 3339 bool 3340 CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) { 3341 StringRef Name; 3342 if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) { 3343 // asm labels are a special kind of mangling we have to support. 3344 AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>(); 3345 if (!Attr) 3346 return false; 3347 Name = Attr->getLabel(); 3348 } else { 3349 Name = FD->getName(); 3350 } 3351 3352 FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo); 3353 const Stmt *Body = FD->getBody(); 3354 return Body ? Walker.Visit(Body) : false; 3355 } 3356 3357 bool CodeGenModule::shouldEmitFunction(GlobalDecl GD) { 3358 if (getFunctionLinkage(GD) != llvm::Function::AvailableExternallyLinkage) 3359 return true; 3360 const auto *F = cast<FunctionDecl>(GD.getDecl()); 3361 if (CodeGenOpts.OptimizationLevel == 0 && !F->hasAttr<AlwaysInlineAttr>()) 3362 return false; 3363 3364 if (F->hasAttr<DLLImportAttr>() && !F->hasAttr<AlwaysInlineAttr>()) { 3365 // Check whether it would be safe to inline this dllimport function. 3366 DLLImportFunctionVisitor Visitor; 3367 Visitor.TraverseFunctionDecl(const_cast<FunctionDecl*>(F)); 3368 if (!Visitor.SafeToInline) 3369 return false; 3370 3371 if (const CXXDestructorDecl *Dtor = dyn_cast<CXXDestructorDecl>(F)) { 3372 // Implicit destructor invocations aren't captured in the AST, so the 3373 // check above can't see them. Check for them manually here. 3374 for (const Decl *Member : Dtor->getParent()->decls()) 3375 if (isa<FieldDecl>(Member)) 3376 if (HasNonDllImportDtor(cast<FieldDecl>(Member)->getType())) 3377 return false; 3378 for (const CXXBaseSpecifier &B : Dtor->getParent()->bases()) 3379 if (HasNonDllImportDtor(B.getType())) 3380 return false; 3381 } 3382 } 3383 3384 // Inline builtins declaration must be emitted. They often are fortified 3385 // functions. 3386 if (F->isInlineBuiltinDeclaration()) 3387 return true; 3388 3389 // PR9614. Avoid cases where the source code is lying to us. An available 3390 // externally function should have an equivalent function somewhere else, 3391 // but a function that calls itself through asm label/`__builtin_` trickery is 3392 // clearly not equivalent to the real implementation. 3393 // This happens in glibc's btowc and in some configure checks. 3394 return !isTriviallyRecursive(F); 3395 } 3396 3397 bool CodeGenModule::shouldOpportunisticallyEmitVTables() { 3398 return CodeGenOpts.OptimizationLevel > 0; 3399 } 3400 3401 void CodeGenModule::EmitMultiVersionFunctionDefinition(GlobalDecl GD, 3402 llvm::GlobalValue *GV) { 3403 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 3404 3405 if (FD->isCPUSpecificMultiVersion()) { 3406 auto *Spec = FD->getAttr<CPUSpecificAttr>(); 3407 for (unsigned I = 0; I < Spec->cpus_size(); ++I) 3408 EmitGlobalFunctionDefinition(GD.getWithMultiVersionIndex(I), nullptr); 3409 } else if (FD->isTargetClonesMultiVersion()) { 3410 auto *Clone = FD->getAttr<TargetClonesAttr>(); 3411 for (unsigned I = 0; I < Clone->featuresStrs_size(); ++I) 3412 if (Clone->isFirstOfVersion(I)) 3413 EmitGlobalFunctionDefinition(GD.getWithMultiVersionIndex(I), nullptr); 3414 // Ensure that the resolver function is also emitted. 3415 GetOrCreateMultiVersionResolver(GD); 3416 } else 3417 EmitGlobalFunctionDefinition(GD, GV); 3418 } 3419 3420 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD, llvm::GlobalValue *GV) { 3421 const auto *D = cast<ValueDecl>(GD.getDecl()); 3422 3423 PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(), 3424 Context.getSourceManager(), 3425 "Generating code for declaration"); 3426 3427 if (const auto *FD = dyn_cast<FunctionDecl>(D)) { 3428 // At -O0, don't generate IR for functions with available_externally 3429 // linkage. 3430 if (!shouldEmitFunction(GD)) 3431 return; 3432 3433 llvm::TimeTraceScope TimeScope("CodeGen Function", [&]() { 3434 std::string Name; 3435 llvm::raw_string_ostream OS(Name); 3436 FD->getNameForDiagnostic(OS, getContext().getPrintingPolicy(), 3437 /*Qualified=*/true); 3438 return Name; 3439 }); 3440 3441 if (const auto *Method = dyn_cast<CXXMethodDecl>(D)) { 3442 // Make sure to emit the definition(s) before we emit the thunks. 3443 // This is necessary for the generation of certain thunks. 3444 if (isa<CXXConstructorDecl>(Method) || isa<CXXDestructorDecl>(Method)) 3445 ABI->emitCXXStructor(GD); 3446 else if (FD->isMultiVersion()) 3447 EmitMultiVersionFunctionDefinition(GD, GV); 3448 else 3449 EmitGlobalFunctionDefinition(GD, GV); 3450 3451 if (Method->isVirtual()) 3452 getVTables().EmitThunks(GD); 3453 3454 return; 3455 } 3456 3457 if (FD->isMultiVersion()) 3458 return EmitMultiVersionFunctionDefinition(GD, GV); 3459 return EmitGlobalFunctionDefinition(GD, GV); 3460 } 3461 3462 if (const auto *VD = dyn_cast<VarDecl>(D)) 3463 return EmitGlobalVarDefinition(VD, !VD->hasDefinition()); 3464 3465 llvm_unreachable("Invalid argument to EmitGlobalDefinition()"); 3466 } 3467 3468 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old, 3469 llvm::Function *NewFn); 3470 3471 static unsigned 3472 TargetMVPriority(const TargetInfo &TI, 3473 const CodeGenFunction::MultiVersionResolverOption &RO) { 3474 unsigned Priority = 0; 3475 for (StringRef Feat : RO.Conditions.Features) 3476 Priority = std::max(Priority, TI.multiVersionSortPriority(Feat)); 3477 3478 if (!RO.Conditions.Architecture.empty()) 3479 Priority = std::max( 3480 Priority, TI.multiVersionSortPriority(RO.Conditions.Architecture)); 3481 return Priority; 3482 } 3483 3484 // Multiversion functions should be at most 'WeakODRLinkage' so that a different 3485 // TU can forward declare the function without causing problems. Particularly 3486 // in the cases of CPUDispatch, this causes issues. This also makes sure we 3487 // work with internal linkage functions, so that the same function name can be 3488 // used with internal linkage in multiple TUs. 3489 llvm::GlobalValue::LinkageTypes getMultiversionLinkage(CodeGenModule &CGM, 3490 GlobalDecl GD) { 3491 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 3492 if (FD->getFormalLinkage() == InternalLinkage) 3493 return llvm::GlobalValue::InternalLinkage; 3494 return llvm::GlobalValue::WeakODRLinkage; 3495 } 3496 3497 void CodeGenModule::emitMultiVersionFunctions() { 3498 std::vector<GlobalDecl> MVFuncsToEmit; 3499 MultiVersionFuncs.swap(MVFuncsToEmit); 3500 for (GlobalDecl GD : MVFuncsToEmit) { 3501 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 3502 assert(FD && "Expected a FunctionDecl"); 3503 3504 SmallVector<CodeGenFunction::MultiVersionResolverOption, 10> Options; 3505 if (FD->isTargetMultiVersion()) { 3506 getContext().forEachMultiversionedFunctionVersion( 3507 FD, [this, &GD, &Options](const FunctionDecl *CurFD) { 3508 GlobalDecl CurGD{ 3509 (CurFD->isDefined() ? CurFD->getDefinition() : CurFD)}; 3510 StringRef MangledName = getMangledName(CurGD); 3511 llvm::Constant *Func = GetGlobalValue(MangledName); 3512 if (!Func) { 3513 if (CurFD->isDefined()) { 3514 EmitGlobalFunctionDefinition(CurGD, nullptr); 3515 Func = GetGlobalValue(MangledName); 3516 } else { 3517 const CGFunctionInfo &FI = 3518 getTypes().arrangeGlobalDeclaration(GD); 3519 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 3520 Func = GetAddrOfFunction(CurGD, Ty, /*ForVTable=*/false, 3521 /*DontDefer=*/false, ForDefinition); 3522 } 3523 assert(Func && "This should have just been created"); 3524 } 3525 3526 const auto *TA = CurFD->getAttr<TargetAttr>(); 3527 llvm::SmallVector<StringRef, 8> Feats; 3528 TA->getAddedFeatures(Feats); 3529 3530 Options.emplace_back(cast<llvm::Function>(Func), 3531 TA->getArchitecture(), Feats); 3532 }); 3533 } else if (FD->isTargetClonesMultiVersion()) { 3534 const auto *TC = FD->getAttr<TargetClonesAttr>(); 3535 for (unsigned VersionIndex = 0; VersionIndex < TC->featuresStrs_size(); 3536 ++VersionIndex) { 3537 if (!TC->isFirstOfVersion(VersionIndex)) 3538 continue; 3539 GlobalDecl CurGD{(FD->isDefined() ? FD->getDefinition() : FD), 3540 VersionIndex}; 3541 StringRef Version = TC->getFeatureStr(VersionIndex); 3542 StringRef MangledName = getMangledName(CurGD); 3543 llvm::Constant *Func = GetGlobalValue(MangledName); 3544 if (!Func) { 3545 if (FD->isDefined()) { 3546 EmitGlobalFunctionDefinition(CurGD, nullptr); 3547 Func = GetGlobalValue(MangledName); 3548 } else { 3549 const CGFunctionInfo &FI = 3550 getTypes().arrangeGlobalDeclaration(CurGD); 3551 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 3552 Func = GetAddrOfFunction(CurGD, Ty, /*ForVTable=*/false, 3553 /*DontDefer=*/false, ForDefinition); 3554 } 3555 assert(Func && "This should have just been created"); 3556 } 3557 3558 StringRef Architecture; 3559 llvm::SmallVector<StringRef, 1> Feature; 3560 3561 if (Version.startswith("arch=")) 3562 Architecture = Version.drop_front(sizeof("arch=") - 1); 3563 else if (Version != "default") 3564 Feature.push_back(Version); 3565 3566 Options.emplace_back(cast<llvm::Function>(Func), Architecture, Feature); 3567 } 3568 } else { 3569 assert(0 && "Expected a target or target_clones multiversion function"); 3570 continue; 3571 } 3572 3573 llvm::Constant *ResolverConstant = GetOrCreateMultiVersionResolver(GD); 3574 if (auto *IFunc = dyn_cast<llvm::GlobalIFunc>(ResolverConstant)) 3575 ResolverConstant = IFunc->getResolver(); 3576 llvm::Function *ResolverFunc = cast<llvm::Function>(ResolverConstant); 3577 3578 ResolverFunc->setLinkage(getMultiversionLinkage(*this, GD)); 3579 3580 if (supportsCOMDAT()) 3581 ResolverFunc->setComdat( 3582 getModule().getOrInsertComdat(ResolverFunc->getName())); 3583 3584 const TargetInfo &TI = getTarget(); 3585 llvm::stable_sort( 3586 Options, [&TI](const CodeGenFunction::MultiVersionResolverOption &LHS, 3587 const CodeGenFunction::MultiVersionResolverOption &RHS) { 3588 return TargetMVPriority(TI, LHS) > TargetMVPriority(TI, RHS); 3589 }); 3590 CodeGenFunction CGF(*this); 3591 CGF.EmitMultiVersionResolver(ResolverFunc, Options); 3592 } 3593 3594 // Ensure that any additions to the deferred decls list caused by emitting a 3595 // variant are emitted. This can happen when the variant itself is inline and 3596 // calls a function without linkage. 3597 if (!MVFuncsToEmit.empty()) 3598 EmitDeferred(); 3599 3600 // Ensure that any additions to the multiversion funcs list from either the 3601 // deferred decls or the multiversion functions themselves are emitted. 3602 if (!MultiVersionFuncs.empty()) 3603 emitMultiVersionFunctions(); 3604 } 3605 3606 void CodeGenModule::emitCPUDispatchDefinition(GlobalDecl GD) { 3607 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 3608 assert(FD && "Not a FunctionDecl?"); 3609 assert(FD->isCPUDispatchMultiVersion() && "Not a multiversion function?"); 3610 const auto *DD = FD->getAttr<CPUDispatchAttr>(); 3611 assert(DD && "Not a cpu_dispatch Function?"); 3612 3613 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 3614 llvm::FunctionType *DeclTy = getTypes().GetFunctionType(FI); 3615 3616 StringRef ResolverName = getMangledName(GD); 3617 UpdateMultiVersionNames(GD, FD, ResolverName); 3618 3619 llvm::Type *ResolverType; 3620 GlobalDecl ResolverGD; 3621 if (getTarget().supportsIFunc()) { 3622 ResolverType = llvm::FunctionType::get( 3623 llvm::PointerType::get(DeclTy, 3624 Context.getTargetAddressSpace(FD->getType())), 3625 false); 3626 } 3627 else { 3628 ResolverType = DeclTy; 3629 ResolverGD = GD; 3630 } 3631 3632 auto *ResolverFunc = cast<llvm::Function>(GetOrCreateLLVMFunction( 3633 ResolverName, ResolverType, ResolverGD, /*ForVTable=*/false)); 3634 ResolverFunc->setLinkage(getMultiversionLinkage(*this, GD)); 3635 if (supportsCOMDAT()) 3636 ResolverFunc->setComdat( 3637 getModule().getOrInsertComdat(ResolverFunc->getName())); 3638 3639 SmallVector<CodeGenFunction::MultiVersionResolverOption, 10> Options; 3640 const TargetInfo &Target = getTarget(); 3641 unsigned Index = 0; 3642 for (const IdentifierInfo *II : DD->cpus()) { 3643 // Get the name of the target function so we can look it up/create it. 3644 std::string MangledName = getMangledNameImpl(*this, GD, FD, true) + 3645 getCPUSpecificMangling(*this, II->getName()); 3646 3647 llvm::Constant *Func = GetGlobalValue(MangledName); 3648 3649 if (!Func) { 3650 GlobalDecl ExistingDecl = Manglings.lookup(MangledName); 3651 if (ExistingDecl.getDecl() && 3652 ExistingDecl.getDecl()->getAsFunction()->isDefined()) { 3653 EmitGlobalFunctionDefinition(ExistingDecl, nullptr); 3654 Func = GetGlobalValue(MangledName); 3655 } else { 3656 if (!ExistingDecl.getDecl()) 3657 ExistingDecl = GD.getWithMultiVersionIndex(Index); 3658 3659 Func = GetOrCreateLLVMFunction( 3660 MangledName, DeclTy, ExistingDecl, 3661 /*ForVTable=*/false, /*DontDefer=*/true, 3662 /*IsThunk=*/false, llvm::AttributeList(), ForDefinition); 3663 } 3664 } 3665 3666 llvm::SmallVector<StringRef, 32> Features; 3667 Target.getCPUSpecificCPUDispatchFeatures(II->getName(), Features); 3668 llvm::transform(Features, Features.begin(), 3669 [](StringRef Str) { return Str.substr(1); }); 3670 llvm::erase_if(Features, [&Target](StringRef Feat) { 3671 return !Target.validateCpuSupports(Feat); 3672 }); 3673 Options.emplace_back(cast<llvm::Function>(Func), StringRef{}, Features); 3674 ++Index; 3675 } 3676 3677 llvm::stable_sort( 3678 Options, [](const CodeGenFunction::MultiVersionResolverOption &LHS, 3679 const CodeGenFunction::MultiVersionResolverOption &RHS) { 3680 return llvm::X86::getCpuSupportsMask(LHS.Conditions.Features) > 3681 llvm::X86::getCpuSupportsMask(RHS.Conditions.Features); 3682 }); 3683 3684 // If the list contains multiple 'default' versions, such as when it contains 3685 // 'pentium' and 'generic', don't emit the call to the generic one (since we 3686 // always run on at least a 'pentium'). We do this by deleting the 'least 3687 // advanced' (read, lowest mangling letter). 3688 while (Options.size() > 1 && 3689 llvm::X86::getCpuSupportsMask( 3690 (Options.end() - 2)->Conditions.Features) == 0) { 3691 StringRef LHSName = (Options.end() - 2)->Function->getName(); 3692 StringRef RHSName = (Options.end() - 1)->Function->getName(); 3693 if (LHSName.compare(RHSName) < 0) 3694 Options.erase(Options.end() - 2); 3695 else 3696 Options.erase(Options.end() - 1); 3697 } 3698 3699 CodeGenFunction CGF(*this); 3700 CGF.EmitMultiVersionResolver(ResolverFunc, Options); 3701 3702 if (getTarget().supportsIFunc()) { 3703 llvm::GlobalValue::LinkageTypes Linkage = getMultiversionLinkage(*this, GD); 3704 auto *IFunc = cast<llvm::GlobalValue>(GetOrCreateMultiVersionResolver(GD)); 3705 3706 // Fix up function declarations that were created for cpu_specific before 3707 // cpu_dispatch was known 3708 if (!isa<llvm::GlobalIFunc>(IFunc)) { 3709 assert(cast<llvm::Function>(IFunc)->isDeclaration()); 3710 auto *GI = llvm::GlobalIFunc::create(DeclTy, 0, Linkage, "", ResolverFunc, 3711 &getModule()); 3712 GI->takeName(IFunc); 3713 IFunc->replaceAllUsesWith(GI); 3714 IFunc->eraseFromParent(); 3715 IFunc = GI; 3716 } 3717 3718 std::string AliasName = getMangledNameImpl( 3719 *this, GD, FD, /*OmitMultiVersionMangling=*/true); 3720 llvm::Constant *AliasFunc = GetGlobalValue(AliasName); 3721 if (!AliasFunc) { 3722 auto *GA = llvm::GlobalAlias::create(DeclTy, 0, Linkage, AliasName, IFunc, 3723 &getModule()); 3724 SetCommonAttributes(GD, GA); 3725 } 3726 } 3727 } 3728 3729 /// If a dispatcher for the specified mangled name is not in the module, create 3730 /// and return an llvm Function with the specified type. 3731 llvm::Constant *CodeGenModule::GetOrCreateMultiVersionResolver(GlobalDecl GD) { 3732 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 3733 assert(FD && "Not a FunctionDecl?"); 3734 3735 std::string MangledName = 3736 getMangledNameImpl(*this, GD, FD, /*OmitMultiVersionMangling=*/true); 3737 3738 // Holds the name of the resolver, in ifunc mode this is the ifunc (which has 3739 // a separate resolver). 3740 std::string ResolverName = MangledName; 3741 if (getTarget().supportsIFunc()) 3742 ResolverName += ".ifunc"; 3743 else if (FD->isTargetMultiVersion()) 3744 ResolverName += ".resolver"; 3745 3746 // If the resolver has already been created, just return it. 3747 if (llvm::GlobalValue *ResolverGV = GetGlobalValue(ResolverName)) 3748 return ResolverGV; 3749 3750 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 3751 llvm::FunctionType *DeclTy = getTypes().GetFunctionType(FI); 3752 3753 // The resolver needs to be created. For target and target_clones, defer 3754 // creation until the end of the TU. 3755 if (FD->isTargetMultiVersion() || FD->isTargetClonesMultiVersion()) 3756 MultiVersionFuncs.push_back(GD); 3757 3758 // For cpu_specific, don't create an ifunc yet because we don't know if the 3759 // cpu_dispatch will be emitted in this translation unit. 3760 if (getTarget().supportsIFunc() && !FD->isCPUSpecificMultiVersion()) { 3761 llvm::Type *ResolverType = llvm::FunctionType::get( 3762 llvm::PointerType::get( 3763 DeclTy, getContext().getTargetAddressSpace(FD->getType())), 3764 false); 3765 llvm::Constant *Resolver = GetOrCreateLLVMFunction( 3766 MangledName + ".resolver", ResolverType, GlobalDecl{}, 3767 /*ForVTable=*/false); 3768 llvm::GlobalIFunc *GIF = 3769 llvm::GlobalIFunc::create(DeclTy, 0, getMultiversionLinkage(*this, GD), 3770 "", Resolver, &getModule()); 3771 GIF->setName(ResolverName); 3772 SetCommonAttributes(FD, GIF); 3773 3774 return GIF; 3775 } 3776 3777 llvm::Constant *Resolver = GetOrCreateLLVMFunction( 3778 ResolverName, DeclTy, GlobalDecl{}, /*ForVTable=*/false); 3779 assert(isa<llvm::GlobalValue>(Resolver) && 3780 "Resolver should be created for the first time"); 3781 SetCommonAttributes(FD, cast<llvm::GlobalValue>(Resolver)); 3782 return Resolver; 3783 } 3784 3785 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the 3786 /// module, create and return an llvm Function with the specified type. If there 3787 /// is something in the module with the specified name, return it potentially 3788 /// bitcasted to the right type. 3789 /// 3790 /// If D is non-null, it specifies a decl that correspond to this. This is used 3791 /// to set the attributes on the function when it is first created. 3792 llvm::Constant *CodeGenModule::GetOrCreateLLVMFunction( 3793 StringRef MangledName, llvm::Type *Ty, GlobalDecl GD, bool ForVTable, 3794 bool DontDefer, bool IsThunk, llvm::AttributeList ExtraAttrs, 3795 ForDefinition_t IsForDefinition) { 3796 const Decl *D = GD.getDecl(); 3797 3798 // Any attempts to use a MultiVersion function should result in retrieving 3799 // the iFunc instead. Name Mangling will handle the rest of the changes. 3800 if (const FunctionDecl *FD = cast_or_null<FunctionDecl>(D)) { 3801 // For the device mark the function as one that should be emitted. 3802 if (getLangOpts().OpenMPIsDevice && OpenMPRuntime && 3803 !OpenMPRuntime->markAsGlobalTarget(GD) && FD->isDefined() && 3804 !DontDefer && !IsForDefinition) { 3805 if (const FunctionDecl *FDDef = FD->getDefinition()) { 3806 GlobalDecl GDDef; 3807 if (const auto *CD = dyn_cast<CXXConstructorDecl>(FDDef)) 3808 GDDef = GlobalDecl(CD, GD.getCtorType()); 3809 else if (const auto *DD = dyn_cast<CXXDestructorDecl>(FDDef)) 3810 GDDef = GlobalDecl(DD, GD.getDtorType()); 3811 else 3812 GDDef = GlobalDecl(FDDef); 3813 EmitGlobal(GDDef); 3814 } 3815 } 3816 3817 if (FD->isMultiVersion()) { 3818 UpdateMultiVersionNames(GD, FD, MangledName); 3819 if (!IsForDefinition) 3820 return GetOrCreateMultiVersionResolver(GD); 3821 } 3822 } 3823 3824 // Lookup the entry, lazily creating it if necessary. 3825 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 3826 if (Entry) { 3827 if (WeakRefReferences.erase(Entry)) { 3828 const FunctionDecl *FD = cast_or_null<FunctionDecl>(D); 3829 if (FD && !FD->hasAttr<WeakAttr>()) 3830 Entry->setLinkage(llvm::Function::ExternalLinkage); 3831 } 3832 3833 // Handle dropped DLL attributes. 3834 if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>() && 3835 !shouldMapVisibilityToDLLExport(cast_or_null<NamedDecl>(D))) { 3836 Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 3837 setDSOLocal(Entry); 3838 } 3839 3840 // If there are two attempts to define the same mangled name, issue an 3841 // error. 3842 if (IsForDefinition && !Entry->isDeclaration()) { 3843 GlobalDecl OtherGD; 3844 // Check that GD is not yet in DiagnosedConflictingDefinitions is required 3845 // to make sure that we issue an error only once. 3846 if (lookupRepresentativeDecl(MangledName, OtherGD) && 3847 (GD.getCanonicalDecl().getDecl() != 3848 OtherGD.getCanonicalDecl().getDecl()) && 3849 DiagnosedConflictingDefinitions.insert(GD).second) { 3850 getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name) 3851 << MangledName; 3852 getDiags().Report(OtherGD.getDecl()->getLocation(), 3853 diag::note_previous_definition); 3854 } 3855 } 3856 3857 if ((isa<llvm::Function>(Entry) || isa<llvm::GlobalAlias>(Entry)) && 3858 (Entry->getValueType() == Ty)) { 3859 return Entry; 3860 } 3861 3862 // Make sure the result is of the correct type. 3863 // (If function is requested for a definition, we always need to create a new 3864 // function, not just return a bitcast.) 3865 if (!IsForDefinition) 3866 return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo()); 3867 } 3868 3869 // This function doesn't have a complete type (for example, the return 3870 // type is an incomplete struct). Use a fake type instead, and make 3871 // sure not to try to set attributes. 3872 bool IsIncompleteFunction = false; 3873 3874 llvm::FunctionType *FTy; 3875 if (isa<llvm::FunctionType>(Ty)) { 3876 FTy = cast<llvm::FunctionType>(Ty); 3877 } else { 3878 FTy = llvm::FunctionType::get(VoidTy, false); 3879 IsIncompleteFunction = true; 3880 } 3881 3882 llvm::Function *F = 3883 llvm::Function::Create(FTy, llvm::Function::ExternalLinkage, 3884 Entry ? StringRef() : MangledName, &getModule()); 3885 3886 // If we already created a function with the same mangled name (but different 3887 // type) before, take its name and add it to the list of functions to be 3888 // replaced with F at the end of CodeGen. 3889 // 3890 // This happens if there is a prototype for a function (e.g. "int f()") and 3891 // then a definition of a different type (e.g. "int f(int x)"). 3892 if (Entry) { 3893 F->takeName(Entry); 3894 3895 // This might be an implementation of a function without a prototype, in 3896 // which case, try to do special replacement of calls which match the new 3897 // prototype. The really key thing here is that we also potentially drop 3898 // arguments from the call site so as to make a direct call, which makes the 3899 // inliner happier and suppresses a number of optimizer warnings (!) about 3900 // dropping arguments. 3901 if (!Entry->use_empty()) { 3902 ReplaceUsesOfNonProtoTypeWithRealFunction(Entry, F); 3903 Entry->removeDeadConstantUsers(); 3904 } 3905 3906 llvm::Constant *BC = llvm::ConstantExpr::getBitCast( 3907 F, Entry->getValueType()->getPointerTo()); 3908 addGlobalValReplacement(Entry, BC); 3909 } 3910 3911 assert(F->getName() == MangledName && "name was uniqued!"); 3912 if (D) 3913 SetFunctionAttributes(GD, F, IsIncompleteFunction, IsThunk); 3914 if (ExtraAttrs.hasFnAttrs()) { 3915 llvm::AttrBuilder B(F->getContext(), ExtraAttrs.getFnAttrs()); 3916 F->addFnAttrs(B); 3917 } 3918 3919 if (!DontDefer) { 3920 // All MSVC dtors other than the base dtor are linkonce_odr and delegate to 3921 // each other bottoming out with the base dtor. Therefore we emit non-base 3922 // dtors on usage, even if there is no dtor definition in the TU. 3923 if (D && isa<CXXDestructorDecl>(D) && 3924 getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D), 3925 GD.getDtorType())) 3926 addDeferredDeclToEmit(GD); 3927 3928 // This is the first use or definition of a mangled name. If there is a 3929 // deferred decl with this name, remember that we need to emit it at the end 3930 // of the file. 3931 auto DDI = DeferredDecls.find(MangledName); 3932 if (DDI != DeferredDecls.end()) { 3933 // Move the potentially referenced deferred decl to the 3934 // DeferredDeclsToEmit list, and remove it from DeferredDecls (since we 3935 // don't need it anymore). 3936 addDeferredDeclToEmit(DDI->second); 3937 DeferredDecls.erase(DDI); 3938 3939 // Otherwise, there are cases we have to worry about where we're 3940 // using a declaration for which we must emit a definition but where 3941 // we might not find a top-level definition: 3942 // - member functions defined inline in their classes 3943 // - friend functions defined inline in some class 3944 // - special member functions with implicit definitions 3945 // If we ever change our AST traversal to walk into class methods, 3946 // this will be unnecessary. 3947 // 3948 // We also don't emit a definition for a function if it's going to be an 3949 // entry in a vtable, unless it's already marked as used. 3950 } else if (getLangOpts().CPlusPlus && D) { 3951 // Look for a declaration that's lexically in a record. 3952 for (const auto *FD = cast<FunctionDecl>(D)->getMostRecentDecl(); FD; 3953 FD = FD->getPreviousDecl()) { 3954 if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) { 3955 if (FD->doesThisDeclarationHaveABody()) { 3956 addDeferredDeclToEmit(GD.getWithDecl(FD)); 3957 break; 3958 } 3959 } 3960 } 3961 } 3962 } 3963 3964 // Make sure the result is of the requested type. 3965 if (!IsIncompleteFunction) { 3966 assert(F->getFunctionType() == Ty); 3967 return F; 3968 } 3969 3970 llvm::Type *PTy = llvm::PointerType::getUnqual(Ty); 3971 return llvm::ConstantExpr::getBitCast(F, PTy); 3972 } 3973 3974 /// GetAddrOfFunction - Return the address of the given function. If Ty is 3975 /// non-null, then this function will use the specified type if it has to 3976 /// create it (this occurs when we see a definition of the function). 3977 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD, 3978 llvm::Type *Ty, 3979 bool ForVTable, 3980 bool DontDefer, 3981 ForDefinition_t IsForDefinition) { 3982 assert(!cast<FunctionDecl>(GD.getDecl())->isConsteval() && 3983 "consteval function should never be emitted"); 3984 // If there was no specific requested type, just convert it now. 3985 if (!Ty) { 3986 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 3987 Ty = getTypes().ConvertType(FD->getType()); 3988 } 3989 3990 // Devirtualized destructor calls may come through here instead of via 3991 // getAddrOfCXXStructor. Make sure we use the MS ABI base destructor instead 3992 // of the complete destructor when necessary. 3993 if (const auto *DD = dyn_cast<CXXDestructorDecl>(GD.getDecl())) { 3994 if (getTarget().getCXXABI().isMicrosoft() && 3995 GD.getDtorType() == Dtor_Complete && 3996 DD->getParent()->getNumVBases() == 0) 3997 GD = GlobalDecl(DD, Dtor_Base); 3998 } 3999 4000 StringRef MangledName = getMangledName(GD); 4001 auto *F = GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable, DontDefer, 4002 /*IsThunk=*/false, llvm::AttributeList(), 4003 IsForDefinition); 4004 // Returns kernel handle for HIP kernel stub function. 4005 if (LangOpts.CUDA && !LangOpts.CUDAIsDevice && 4006 cast<FunctionDecl>(GD.getDecl())->hasAttr<CUDAGlobalAttr>()) { 4007 auto *Handle = getCUDARuntime().getKernelHandle( 4008 cast<llvm::Function>(F->stripPointerCasts()), GD); 4009 if (IsForDefinition) 4010 return F; 4011 return llvm::ConstantExpr::getBitCast(Handle, Ty->getPointerTo()); 4012 } 4013 return F; 4014 } 4015 4016 llvm::Constant *CodeGenModule::GetFunctionStart(const ValueDecl *Decl) { 4017 llvm::GlobalValue *F = 4018 cast<llvm::GlobalValue>(GetAddrOfFunction(Decl)->stripPointerCasts()); 4019 4020 return llvm::ConstantExpr::getBitCast(llvm::NoCFIValue::get(F), 4021 llvm::Type::getInt8PtrTy(VMContext)); 4022 } 4023 4024 static const FunctionDecl * 4025 GetRuntimeFunctionDecl(ASTContext &C, StringRef Name) { 4026 TranslationUnitDecl *TUDecl = C.getTranslationUnitDecl(); 4027 DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl); 4028 4029 IdentifierInfo &CII = C.Idents.get(Name); 4030 for (const auto *Result : DC->lookup(&CII)) 4031 if (const auto *FD = dyn_cast<FunctionDecl>(Result)) 4032 return FD; 4033 4034 if (!C.getLangOpts().CPlusPlus) 4035 return nullptr; 4036 4037 // Demangle the premangled name from getTerminateFn() 4038 IdentifierInfo &CXXII = 4039 (Name == "_ZSt9terminatev" || Name == "?terminate@@YAXXZ") 4040 ? C.Idents.get("terminate") 4041 : C.Idents.get(Name); 4042 4043 for (const auto &N : {"__cxxabiv1", "std"}) { 4044 IdentifierInfo &NS = C.Idents.get(N); 4045 for (const auto *Result : DC->lookup(&NS)) { 4046 const NamespaceDecl *ND = dyn_cast<NamespaceDecl>(Result); 4047 if (auto *LSD = dyn_cast<LinkageSpecDecl>(Result)) 4048 for (const auto *Result : LSD->lookup(&NS)) 4049 if ((ND = dyn_cast<NamespaceDecl>(Result))) 4050 break; 4051 4052 if (ND) 4053 for (const auto *Result : ND->lookup(&CXXII)) 4054 if (const auto *FD = dyn_cast<FunctionDecl>(Result)) 4055 return FD; 4056 } 4057 } 4058 4059 return nullptr; 4060 } 4061 4062 /// CreateRuntimeFunction - Create a new runtime function with the specified 4063 /// type and name. 4064 llvm::FunctionCallee 4065 CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy, StringRef Name, 4066 llvm::AttributeList ExtraAttrs, bool Local, 4067 bool AssumeConvergent) { 4068 if (AssumeConvergent) { 4069 ExtraAttrs = 4070 ExtraAttrs.addFnAttribute(VMContext, llvm::Attribute::Convergent); 4071 } 4072 4073 llvm::Constant *C = 4074 GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false, 4075 /*DontDefer=*/false, /*IsThunk=*/false, 4076 ExtraAttrs); 4077 4078 if (auto *F = dyn_cast<llvm::Function>(C)) { 4079 if (F->empty()) { 4080 F->setCallingConv(getRuntimeCC()); 4081 4082 // In Windows Itanium environments, try to mark runtime functions 4083 // dllimport. For Mingw and MSVC, don't. We don't really know if the user 4084 // will link their standard library statically or dynamically. Marking 4085 // functions imported when they are not imported can cause linker errors 4086 // and warnings. 4087 if (!Local && getTriple().isWindowsItaniumEnvironment() && 4088 !getCodeGenOpts().LTOVisibilityPublicStd) { 4089 const FunctionDecl *FD = GetRuntimeFunctionDecl(Context, Name); 4090 if (!FD || FD->hasAttr<DLLImportAttr>()) { 4091 F->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass); 4092 F->setLinkage(llvm::GlobalValue::ExternalLinkage); 4093 } 4094 } 4095 setDSOLocal(F); 4096 } 4097 } 4098 4099 return {FTy, C}; 4100 } 4101 4102 /// isTypeConstant - Determine whether an object of this type can be emitted 4103 /// as a constant. 4104 /// 4105 /// If ExcludeCtor is true, the duration when the object's constructor runs 4106 /// will not be considered. The caller will need to verify that the object is 4107 /// not written to during its construction. 4108 bool CodeGenModule::isTypeConstant(QualType Ty, bool ExcludeCtor) { 4109 if (!Ty.isConstant(Context) && !Ty->isReferenceType()) 4110 return false; 4111 4112 if (Context.getLangOpts().CPlusPlus) { 4113 if (const CXXRecordDecl *Record 4114 = Context.getBaseElementType(Ty)->getAsCXXRecordDecl()) 4115 return ExcludeCtor && !Record->hasMutableFields() && 4116 Record->hasTrivialDestructor(); 4117 } 4118 4119 return true; 4120 } 4121 4122 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module, 4123 /// create and return an llvm GlobalVariable with the specified type and address 4124 /// space. If there is something in the module with the specified name, return 4125 /// it potentially bitcasted to the right type. 4126 /// 4127 /// If D is non-null, it specifies a decl that correspond to this. This is used 4128 /// to set the attributes on the global when it is first created. 4129 /// 4130 /// If IsForDefinition is true, it is guaranteed that an actual global with 4131 /// type Ty will be returned, not conversion of a variable with the same 4132 /// mangled name but some other type. 4133 llvm::Constant * 4134 CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName, llvm::Type *Ty, 4135 LangAS AddrSpace, const VarDecl *D, 4136 ForDefinition_t IsForDefinition) { 4137 // Lookup the entry, lazily creating it if necessary. 4138 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 4139 unsigned TargetAS = getContext().getTargetAddressSpace(AddrSpace); 4140 if (Entry) { 4141 if (WeakRefReferences.erase(Entry)) { 4142 if (D && !D->hasAttr<WeakAttr>()) 4143 Entry->setLinkage(llvm::Function::ExternalLinkage); 4144 } 4145 4146 // Handle dropped DLL attributes. 4147 if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>() && 4148 !shouldMapVisibilityToDLLExport(D)) 4149 Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 4150 4151 if (LangOpts.OpenMP && !LangOpts.OpenMPSimd && D) 4152 getOpenMPRuntime().registerTargetGlobalVariable(D, Entry); 4153 4154 if (Entry->getValueType() == Ty && Entry->getAddressSpace() == TargetAS) 4155 return Entry; 4156 4157 // If there are two attempts to define the same mangled name, issue an 4158 // error. 4159 if (IsForDefinition && !Entry->isDeclaration()) { 4160 GlobalDecl OtherGD; 4161 const VarDecl *OtherD; 4162 4163 // Check that D is not yet in DiagnosedConflictingDefinitions is required 4164 // to make sure that we issue an error only once. 4165 if (D && lookupRepresentativeDecl(MangledName, OtherGD) && 4166 (D->getCanonicalDecl() != OtherGD.getCanonicalDecl().getDecl()) && 4167 (OtherD = dyn_cast<VarDecl>(OtherGD.getDecl())) && 4168 OtherD->hasInit() && 4169 DiagnosedConflictingDefinitions.insert(D).second) { 4170 getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name) 4171 << MangledName; 4172 getDiags().Report(OtherGD.getDecl()->getLocation(), 4173 diag::note_previous_definition); 4174 } 4175 } 4176 4177 // Make sure the result is of the correct type. 4178 if (Entry->getType()->getAddressSpace() != TargetAS) { 4179 return llvm::ConstantExpr::getAddrSpaceCast(Entry, 4180 Ty->getPointerTo(TargetAS)); 4181 } 4182 4183 // (If global is requested for a definition, we always need to create a new 4184 // global, not just return a bitcast.) 4185 if (!IsForDefinition) 4186 return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo(TargetAS)); 4187 } 4188 4189 auto DAddrSpace = GetGlobalVarAddressSpace(D); 4190 4191 auto *GV = new llvm::GlobalVariable( 4192 getModule(), Ty, false, llvm::GlobalValue::ExternalLinkage, nullptr, 4193 MangledName, nullptr, llvm::GlobalVariable::NotThreadLocal, 4194 getContext().getTargetAddressSpace(DAddrSpace)); 4195 4196 // If we already created a global with the same mangled name (but different 4197 // type) before, take its name and remove it from its parent. 4198 if (Entry) { 4199 GV->takeName(Entry); 4200 4201 if (!Entry->use_empty()) { 4202 llvm::Constant *NewPtrForOldDecl = 4203 llvm::ConstantExpr::getBitCast(GV, Entry->getType()); 4204 Entry->replaceAllUsesWith(NewPtrForOldDecl); 4205 } 4206 4207 Entry->eraseFromParent(); 4208 } 4209 4210 // This is the first use or definition of a mangled name. If there is a 4211 // deferred decl with this name, remember that we need to emit it at the end 4212 // of the file. 4213 auto DDI = DeferredDecls.find(MangledName); 4214 if (DDI != DeferredDecls.end()) { 4215 // Move the potentially referenced deferred decl to the DeferredDeclsToEmit 4216 // list, and remove it from DeferredDecls (since we don't need it anymore). 4217 addDeferredDeclToEmit(DDI->second); 4218 DeferredDecls.erase(DDI); 4219 } 4220 4221 // Handle things which are present even on external declarations. 4222 if (D) { 4223 if (LangOpts.OpenMP && !LangOpts.OpenMPSimd) 4224 getOpenMPRuntime().registerTargetGlobalVariable(D, GV); 4225 4226 // FIXME: This code is overly simple and should be merged with other global 4227 // handling. 4228 GV->setConstant(isTypeConstant(D->getType(), false)); 4229 4230 GV->setAlignment(getContext().getDeclAlign(D).getAsAlign()); 4231 4232 setLinkageForGV(GV, D); 4233 4234 if (D->getTLSKind()) { 4235 if (D->getTLSKind() == VarDecl::TLS_Dynamic) 4236 CXXThreadLocals.push_back(D); 4237 setTLSMode(GV, *D); 4238 } 4239 4240 setGVProperties(GV, D); 4241 4242 // If required by the ABI, treat declarations of static data members with 4243 // inline initializers as definitions. 4244 if (getContext().isMSStaticDataMemberInlineDefinition(D)) { 4245 EmitGlobalVarDefinition(D); 4246 } 4247 4248 // Emit section information for extern variables. 4249 if (D->hasExternalStorage()) { 4250 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) 4251 GV->setSection(SA->getName()); 4252 } 4253 4254 // Handle XCore specific ABI requirements. 4255 if (getTriple().getArch() == llvm::Triple::xcore && 4256 D->getLanguageLinkage() == CLanguageLinkage && 4257 D->getType().isConstant(Context) && 4258 isExternallyVisible(D->getLinkageAndVisibility().getLinkage())) 4259 GV->setSection(".cp.rodata"); 4260 4261 // Check if we a have a const declaration with an initializer, we may be 4262 // able to emit it as available_externally to expose it's value to the 4263 // optimizer. 4264 if (Context.getLangOpts().CPlusPlus && GV->hasExternalLinkage() && 4265 D->getType().isConstQualified() && !GV->hasInitializer() && 4266 !D->hasDefinition() && D->hasInit() && !D->hasAttr<DLLImportAttr>()) { 4267 const auto *Record = 4268 Context.getBaseElementType(D->getType())->getAsCXXRecordDecl(); 4269 bool HasMutableFields = Record && Record->hasMutableFields(); 4270 if (!HasMutableFields) { 4271 const VarDecl *InitDecl; 4272 const Expr *InitExpr = D->getAnyInitializer(InitDecl); 4273 if (InitExpr) { 4274 ConstantEmitter emitter(*this); 4275 llvm::Constant *Init = emitter.tryEmitForInitializer(*InitDecl); 4276 if (Init) { 4277 auto *InitType = Init->getType(); 4278 if (GV->getValueType() != InitType) { 4279 // The type of the initializer does not match the definition. 4280 // This happens when an initializer has a different type from 4281 // the type of the global (because of padding at the end of a 4282 // structure for instance). 4283 GV->setName(StringRef()); 4284 // Make a new global with the correct type, this is now guaranteed 4285 // to work. 4286 auto *NewGV = cast<llvm::GlobalVariable>( 4287 GetAddrOfGlobalVar(D, InitType, IsForDefinition) 4288 ->stripPointerCasts()); 4289 4290 // Erase the old global, since it is no longer used. 4291 GV->eraseFromParent(); 4292 GV = NewGV; 4293 } else { 4294 GV->setInitializer(Init); 4295 GV->setConstant(true); 4296 GV->setLinkage(llvm::GlobalValue::AvailableExternallyLinkage); 4297 } 4298 emitter.finalize(GV); 4299 } 4300 } 4301 } 4302 } 4303 } 4304 4305 if (GV->isDeclaration()) { 4306 getTargetCodeGenInfo().setTargetAttributes(D, GV, *this); 4307 // External HIP managed variables needed to be recorded for transformation 4308 // in both device and host compilations. 4309 if (getLangOpts().CUDA && D && D->hasAttr<HIPManagedAttr>() && 4310 D->hasExternalStorage()) 4311 getCUDARuntime().handleVarRegistration(D, *GV); 4312 } 4313 4314 if (D) 4315 SanitizerMD->reportGlobal(GV, *D); 4316 4317 LangAS ExpectedAS = 4318 D ? D->getType().getAddressSpace() 4319 : (LangOpts.OpenCL ? LangAS::opencl_global : LangAS::Default); 4320 assert(getContext().getTargetAddressSpace(ExpectedAS) == TargetAS); 4321 if (DAddrSpace != ExpectedAS) { 4322 return getTargetCodeGenInfo().performAddrSpaceCast( 4323 *this, GV, DAddrSpace, ExpectedAS, Ty->getPointerTo(TargetAS)); 4324 } 4325 4326 return GV; 4327 } 4328 4329 llvm::Constant * 4330 CodeGenModule::GetAddrOfGlobal(GlobalDecl GD, ForDefinition_t IsForDefinition) { 4331 const Decl *D = GD.getDecl(); 4332 4333 if (isa<CXXConstructorDecl>(D) || isa<CXXDestructorDecl>(D)) 4334 return getAddrOfCXXStructor(GD, /*FnInfo=*/nullptr, /*FnType=*/nullptr, 4335 /*DontDefer=*/false, IsForDefinition); 4336 4337 if (isa<CXXMethodDecl>(D)) { 4338 auto FInfo = 4339 &getTypes().arrangeCXXMethodDeclaration(cast<CXXMethodDecl>(D)); 4340 auto Ty = getTypes().GetFunctionType(*FInfo); 4341 return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false, 4342 IsForDefinition); 4343 } 4344 4345 if (isa<FunctionDecl>(D)) { 4346 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 4347 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 4348 return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false, 4349 IsForDefinition); 4350 } 4351 4352 return GetAddrOfGlobalVar(cast<VarDecl>(D), /*Ty=*/nullptr, IsForDefinition); 4353 } 4354 4355 llvm::GlobalVariable *CodeGenModule::CreateOrReplaceCXXRuntimeVariable( 4356 StringRef Name, llvm::Type *Ty, llvm::GlobalValue::LinkageTypes Linkage, 4357 unsigned Alignment) { 4358 llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name); 4359 llvm::GlobalVariable *OldGV = nullptr; 4360 4361 if (GV) { 4362 // Check if the variable has the right type. 4363 if (GV->getValueType() == Ty) 4364 return GV; 4365 4366 // Because C++ name mangling, the only way we can end up with an already 4367 // existing global with the same name is if it has been declared extern "C". 4368 assert(GV->isDeclaration() && "Declaration has wrong type!"); 4369 OldGV = GV; 4370 } 4371 4372 // Create a new variable. 4373 GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true, 4374 Linkage, nullptr, Name); 4375 4376 if (OldGV) { 4377 // Replace occurrences of the old variable if needed. 4378 GV->takeName(OldGV); 4379 4380 if (!OldGV->use_empty()) { 4381 llvm::Constant *NewPtrForOldDecl = 4382 llvm::ConstantExpr::getBitCast(GV, OldGV->getType()); 4383 OldGV->replaceAllUsesWith(NewPtrForOldDecl); 4384 } 4385 4386 OldGV->eraseFromParent(); 4387 } 4388 4389 if (supportsCOMDAT() && GV->isWeakForLinker() && 4390 !GV->hasAvailableExternallyLinkage()) 4391 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 4392 4393 GV->setAlignment(llvm::MaybeAlign(Alignment)); 4394 4395 return GV; 4396 } 4397 4398 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the 4399 /// given global variable. If Ty is non-null and if the global doesn't exist, 4400 /// then it will be created with the specified type instead of whatever the 4401 /// normal requested type would be. If IsForDefinition is true, it is guaranteed 4402 /// that an actual global with type Ty will be returned, not conversion of a 4403 /// variable with the same mangled name but some other type. 4404 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D, 4405 llvm::Type *Ty, 4406 ForDefinition_t IsForDefinition) { 4407 assert(D->hasGlobalStorage() && "Not a global variable"); 4408 QualType ASTTy = D->getType(); 4409 if (!Ty) 4410 Ty = getTypes().ConvertTypeForMem(ASTTy); 4411 4412 StringRef MangledName = getMangledName(D); 4413 return GetOrCreateLLVMGlobal(MangledName, Ty, ASTTy.getAddressSpace(), D, 4414 IsForDefinition); 4415 } 4416 4417 /// CreateRuntimeVariable - Create a new runtime global variable with the 4418 /// specified type and name. 4419 llvm::Constant * 4420 CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty, 4421 StringRef Name) { 4422 LangAS AddrSpace = getContext().getLangOpts().OpenCL ? LangAS::opencl_global 4423 : LangAS::Default; 4424 auto *Ret = GetOrCreateLLVMGlobal(Name, Ty, AddrSpace, nullptr); 4425 setDSOLocal(cast<llvm::GlobalValue>(Ret->stripPointerCasts())); 4426 return Ret; 4427 } 4428 4429 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) { 4430 assert(!D->getInit() && "Cannot emit definite definitions here!"); 4431 4432 StringRef MangledName = getMangledName(D); 4433 llvm::GlobalValue *GV = GetGlobalValue(MangledName); 4434 4435 // We already have a definition, not declaration, with the same mangled name. 4436 // Emitting of declaration is not required (and actually overwrites emitted 4437 // definition). 4438 if (GV && !GV->isDeclaration()) 4439 return; 4440 4441 // If we have not seen a reference to this variable yet, place it into the 4442 // deferred declarations table to be emitted if needed later. 4443 if (!MustBeEmitted(D) && !GV) { 4444 DeferredDecls[MangledName] = D; 4445 return; 4446 } 4447 4448 // The tentative definition is the only definition. 4449 EmitGlobalVarDefinition(D); 4450 } 4451 4452 void CodeGenModule::EmitExternalDeclaration(const VarDecl *D) { 4453 EmitExternalVarDeclaration(D); 4454 } 4455 4456 CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const { 4457 return Context.toCharUnitsFromBits( 4458 getDataLayout().getTypeStoreSizeInBits(Ty)); 4459 } 4460 4461 LangAS CodeGenModule::GetGlobalVarAddressSpace(const VarDecl *D) { 4462 if (LangOpts.OpenCL) { 4463 LangAS AS = D ? D->getType().getAddressSpace() : LangAS::opencl_global; 4464 assert(AS == LangAS::opencl_global || 4465 AS == LangAS::opencl_global_device || 4466 AS == LangAS::opencl_global_host || 4467 AS == LangAS::opencl_constant || 4468 AS == LangAS::opencl_local || 4469 AS >= LangAS::FirstTargetAddressSpace); 4470 return AS; 4471 } 4472 4473 if (LangOpts.SYCLIsDevice && 4474 (!D || D->getType().getAddressSpace() == LangAS::Default)) 4475 return LangAS::sycl_global; 4476 4477 if (LangOpts.CUDA && LangOpts.CUDAIsDevice) { 4478 if (D && D->hasAttr<CUDAConstantAttr>()) 4479 return LangAS::cuda_constant; 4480 else if (D && D->hasAttr<CUDASharedAttr>()) 4481 return LangAS::cuda_shared; 4482 else if (D && D->hasAttr<CUDADeviceAttr>()) 4483 return LangAS::cuda_device; 4484 else if (D && D->getType().isConstQualified()) 4485 return LangAS::cuda_constant; 4486 else 4487 return LangAS::cuda_device; 4488 } 4489 4490 if (LangOpts.OpenMP) { 4491 LangAS AS; 4492 if (OpenMPRuntime->hasAllocateAttributeForGlobalVar(D, AS)) 4493 return AS; 4494 } 4495 return getTargetCodeGenInfo().getGlobalVarAddressSpace(*this, D); 4496 } 4497 4498 LangAS CodeGenModule::GetGlobalConstantAddressSpace() const { 4499 // OpenCL v1.2 s6.5.3: a string literal is in the constant address space. 4500 if (LangOpts.OpenCL) 4501 return LangAS::opencl_constant; 4502 if (LangOpts.SYCLIsDevice) 4503 return LangAS::sycl_global; 4504 if (LangOpts.HIP && LangOpts.CUDAIsDevice && getTriple().isSPIRV()) 4505 // For HIPSPV map literals to cuda_device (maps to CrossWorkGroup in SPIR-V) 4506 // instead of default AS (maps to Generic in SPIR-V). Otherwise, we end up 4507 // with OpVariable instructions with Generic storage class which is not 4508 // allowed (SPIR-V V1.6 s3.42.8). Also, mapping literals to SPIR-V 4509 // UniformConstant storage class is not viable as pointers to it may not be 4510 // casted to Generic pointers which are used to model HIP's "flat" pointers. 4511 return LangAS::cuda_device; 4512 if (auto AS = getTarget().getConstantAddressSpace()) 4513 return *AS; 4514 return LangAS::Default; 4515 } 4516 4517 // In address space agnostic languages, string literals are in default address 4518 // space in AST. However, certain targets (e.g. amdgcn) request them to be 4519 // emitted in constant address space in LLVM IR. To be consistent with other 4520 // parts of AST, string literal global variables in constant address space 4521 // need to be casted to default address space before being put into address 4522 // map and referenced by other part of CodeGen. 4523 // In OpenCL, string literals are in constant address space in AST, therefore 4524 // they should not be casted to default address space. 4525 static llvm::Constant * 4526 castStringLiteralToDefaultAddressSpace(CodeGenModule &CGM, 4527 llvm::GlobalVariable *GV) { 4528 llvm::Constant *Cast = GV; 4529 if (!CGM.getLangOpts().OpenCL) { 4530 auto AS = CGM.GetGlobalConstantAddressSpace(); 4531 if (AS != LangAS::Default) 4532 Cast = CGM.getTargetCodeGenInfo().performAddrSpaceCast( 4533 CGM, GV, AS, LangAS::Default, 4534 GV->getValueType()->getPointerTo( 4535 CGM.getContext().getTargetAddressSpace(LangAS::Default))); 4536 } 4537 return Cast; 4538 } 4539 4540 template<typename SomeDecl> 4541 void CodeGenModule::MaybeHandleStaticInExternC(const SomeDecl *D, 4542 llvm::GlobalValue *GV) { 4543 if (!getLangOpts().CPlusPlus) 4544 return; 4545 4546 // Must have 'used' attribute, or else inline assembly can't rely on 4547 // the name existing. 4548 if (!D->template hasAttr<UsedAttr>()) 4549 return; 4550 4551 // Must have internal linkage and an ordinary name. 4552 if (!D->getIdentifier() || D->getFormalLinkage() != InternalLinkage) 4553 return; 4554 4555 // Must be in an extern "C" context. Entities declared directly within 4556 // a record are not extern "C" even if the record is in such a context. 4557 const SomeDecl *First = D->getFirstDecl(); 4558 if (First->getDeclContext()->isRecord() || !First->isInExternCContext()) 4559 return; 4560 4561 // OK, this is an internal linkage entity inside an extern "C" linkage 4562 // specification. Make a note of that so we can give it the "expected" 4563 // mangled name if nothing else is using that name. 4564 std::pair<StaticExternCMap::iterator, bool> R = 4565 StaticExternCValues.insert(std::make_pair(D->getIdentifier(), GV)); 4566 4567 // If we have multiple internal linkage entities with the same name 4568 // in extern "C" regions, none of them gets that name. 4569 if (!R.second) 4570 R.first->second = nullptr; 4571 } 4572 4573 static bool shouldBeInCOMDAT(CodeGenModule &CGM, const Decl &D) { 4574 if (!CGM.supportsCOMDAT()) 4575 return false; 4576 4577 if (D.hasAttr<SelectAnyAttr>()) 4578 return true; 4579 4580 GVALinkage Linkage; 4581 if (auto *VD = dyn_cast<VarDecl>(&D)) 4582 Linkage = CGM.getContext().GetGVALinkageForVariable(VD); 4583 else 4584 Linkage = CGM.getContext().GetGVALinkageForFunction(cast<FunctionDecl>(&D)); 4585 4586 switch (Linkage) { 4587 case GVA_Internal: 4588 case GVA_AvailableExternally: 4589 case GVA_StrongExternal: 4590 return false; 4591 case GVA_DiscardableODR: 4592 case GVA_StrongODR: 4593 return true; 4594 } 4595 llvm_unreachable("No such linkage"); 4596 } 4597 4598 void CodeGenModule::maybeSetTrivialComdat(const Decl &D, 4599 llvm::GlobalObject &GO) { 4600 if (!shouldBeInCOMDAT(*this, D)) 4601 return; 4602 GO.setComdat(TheModule.getOrInsertComdat(GO.getName())); 4603 } 4604 4605 /// Pass IsTentative as true if you want to create a tentative definition. 4606 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D, 4607 bool IsTentative) { 4608 // OpenCL global variables of sampler type are translated to function calls, 4609 // therefore no need to be translated. 4610 QualType ASTTy = D->getType(); 4611 if (getLangOpts().OpenCL && ASTTy->isSamplerT()) 4612 return; 4613 4614 // If this is OpenMP device, check if it is legal to emit this global 4615 // normally. 4616 if (LangOpts.OpenMPIsDevice && OpenMPRuntime && 4617 OpenMPRuntime->emitTargetGlobalVariable(D)) 4618 return; 4619 4620 llvm::TrackingVH<llvm::Constant> Init; 4621 bool NeedsGlobalCtor = false; 4622 bool NeedsGlobalDtor = 4623 D->needsDestruction(getContext()) == QualType::DK_cxx_destructor; 4624 4625 const VarDecl *InitDecl; 4626 const Expr *InitExpr = D->getAnyInitializer(InitDecl); 4627 4628 Optional<ConstantEmitter> emitter; 4629 4630 // CUDA E.2.4.1 "__shared__ variables cannot have an initialization 4631 // as part of their declaration." Sema has already checked for 4632 // error cases, so we just need to set Init to UndefValue. 4633 bool IsCUDASharedVar = 4634 getLangOpts().CUDAIsDevice && D->hasAttr<CUDASharedAttr>(); 4635 // Shadows of initialized device-side global variables are also left 4636 // undefined. 4637 // Managed Variables should be initialized on both host side and device side. 4638 bool IsCUDAShadowVar = 4639 !getLangOpts().CUDAIsDevice && !D->hasAttr<HIPManagedAttr>() && 4640 (D->hasAttr<CUDAConstantAttr>() || D->hasAttr<CUDADeviceAttr>() || 4641 D->hasAttr<CUDASharedAttr>()); 4642 bool IsCUDADeviceShadowVar = 4643 getLangOpts().CUDAIsDevice && !D->hasAttr<HIPManagedAttr>() && 4644 (D->getType()->isCUDADeviceBuiltinSurfaceType() || 4645 D->getType()->isCUDADeviceBuiltinTextureType()); 4646 if (getLangOpts().CUDA && 4647 (IsCUDASharedVar || IsCUDAShadowVar || IsCUDADeviceShadowVar)) 4648 Init = llvm::UndefValue::get(getTypes().ConvertTypeForMem(ASTTy)); 4649 else if (D->hasAttr<LoaderUninitializedAttr>()) 4650 Init = llvm::UndefValue::get(getTypes().ConvertTypeForMem(ASTTy)); 4651 else if (!InitExpr) { 4652 // This is a tentative definition; tentative definitions are 4653 // implicitly initialized with { 0 }. 4654 // 4655 // Note that tentative definitions are only emitted at the end of 4656 // a translation unit, so they should never have incomplete 4657 // type. In addition, EmitTentativeDefinition makes sure that we 4658 // never attempt to emit a tentative definition if a real one 4659 // exists. A use may still exists, however, so we still may need 4660 // to do a RAUW. 4661 assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type"); 4662 Init = EmitNullConstant(D->getType()); 4663 } else { 4664 initializedGlobalDecl = GlobalDecl(D); 4665 emitter.emplace(*this); 4666 llvm::Constant *Initializer = emitter->tryEmitForInitializer(*InitDecl); 4667 if (!Initializer) { 4668 QualType T = InitExpr->getType(); 4669 if (D->getType()->isReferenceType()) 4670 T = D->getType(); 4671 4672 if (getLangOpts().CPlusPlus) { 4673 if (InitDecl->hasFlexibleArrayInit(getContext())) 4674 ErrorUnsupported(D, "flexible array initializer"); 4675 Init = EmitNullConstant(T); 4676 NeedsGlobalCtor = true; 4677 } else { 4678 ErrorUnsupported(D, "static initializer"); 4679 Init = llvm::UndefValue::get(getTypes().ConvertType(T)); 4680 } 4681 } else { 4682 Init = Initializer; 4683 // We don't need an initializer, so remove the entry for the delayed 4684 // initializer position (just in case this entry was delayed) if we 4685 // also don't need to register a destructor. 4686 if (getLangOpts().CPlusPlus && !NeedsGlobalDtor) 4687 DelayedCXXInitPosition.erase(D); 4688 4689 #ifndef NDEBUG 4690 CharUnits VarSize = getContext().getTypeSizeInChars(ASTTy) + 4691 InitDecl->getFlexibleArrayInitChars(getContext()); 4692 CharUnits CstSize = CharUnits::fromQuantity( 4693 getDataLayout().getTypeAllocSize(Init->getType())); 4694 assert(VarSize == CstSize && "Emitted constant has unexpected size"); 4695 #endif 4696 } 4697 } 4698 4699 llvm::Type* InitType = Init->getType(); 4700 llvm::Constant *Entry = 4701 GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative)); 4702 4703 // Strip off pointer casts if we got them. 4704 Entry = Entry->stripPointerCasts(); 4705 4706 // Entry is now either a Function or GlobalVariable. 4707 auto *GV = dyn_cast<llvm::GlobalVariable>(Entry); 4708 4709 // We have a definition after a declaration with the wrong type. 4710 // We must make a new GlobalVariable* and update everything that used OldGV 4711 // (a declaration or tentative definition) with the new GlobalVariable* 4712 // (which will be a definition). 4713 // 4714 // This happens if there is a prototype for a global (e.g. 4715 // "extern int x[];") and then a definition of a different type (e.g. 4716 // "int x[10];"). This also happens when an initializer has a different type 4717 // from the type of the global (this happens with unions). 4718 if (!GV || GV->getValueType() != InitType || 4719 GV->getType()->getAddressSpace() != 4720 getContext().getTargetAddressSpace(GetGlobalVarAddressSpace(D))) { 4721 4722 // Move the old entry aside so that we'll create a new one. 4723 Entry->setName(StringRef()); 4724 4725 // Make a new global with the correct type, this is now guaranteed to work. 4726 GV = cast<llvm::GlobalVariable>( 4727 GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative)) 4728 ->stripPointerCasts()); 4729 4730 // Replace all uses of the old global with the new global 4731 llvm::Constant *NewPtrForOldDecl = 4732 llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, 4733 Entry->getType()); 4734 Entry->replaceAllUsesWith(NewPtrForOldDecl); 4735 4736 // Erase the old global, since it is no longer used. 4737 cast<llvm::GlobalValue>(Entry)->eraseFromParent(); 4738 } 4739 4740 MaybeHandleStaticInExternC(D, GV); 4741 4742 if (D->hasAttr<AnnotateAttr>()) 4743 AddGlobalAnnotations(D, GV); 4744 4745 // Set the llvm linkage type as appropriate. 4746 llvm::GlobalValue::LinkageTypes Linkage = 4747 getLLVMLinkageVarDefinition(D, GV->isConstant()); 4748 4749 // CUDA B.2.1 "The __device__ qualifier declares a variable that resides on 4750 // the device. [...]" 4751 // CUDA B.2.2 "The __constant__ qualifier, optionally used together with 4752 // __device__, declares a variable that: [...] 4753 // Is accessible from all the threads within the grid and from the host 4754 // through the runtime library (cudaGetSymbolAddress() / cudaGetSymbolSize() 4755 // / cudaMemcpyToSymbol() / cudaMemcpyFromSymbol())." 4756 if (GV && LangOpts.CUDA) { 4757 if (LangOpts.CUDAIsDevice) { 4758 if (Linkage != llvm::GlobalValue::InternalLinkage && 4759 (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>() || 4760 D->getType()->isCUDADeviceBuiltinSurfaceType() || 4761 D->getType()->isCUDADeviceBuiltinTextureType())) 4762 GV->setExternallyInitialized(true); 4763 } else { 4764 getCUDARuntime().internalizeDeviceSideVar(D, Linkage); 4765 } 4766 getCUDARuntime().handleVarRegistration(D, *GV); 4767 } 4768 4769 GV->setInitializer(Init); 4770 if (emitter) 4771 emitter->finalize(GV); 4772 4773 // If it is safe to mark the global 'constant', do so now. 4774 GV->setConstant(!NeedsGlobalCtor && !NeedsGlobalDtor && 4775 isTypeConstant(D->getType(), true)); 4776 4777 // If it is in a read-only section, mark it 'constant'. 4778 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) { 4779 const ASTContext::SectionInfo &SI = Context.SectionInfos[SA->getName()]; 4780 if ((SI.SectionFlags & ASTContext::PSF_Write) == 0) 4781 GV->setConstant(true); 4782 } 4783 4784 CharUnits AlignVal = getContext().getDeclAlign(D); 4785 // Check for alignment specifed in an 'omp allocate' directive. 4786 if (llvm::Optional<CharUnits> AlignValFromAllocate = 4787 getOMPAllocateAlignment(D)) 4788 AlignVal = *AlignValFromAllocate; 4789 GV->setAlignment(AlignVal.getAsAlign()); 4790 4791 // On Darwin, unlike other Itanium C++ ABI platforms, the thread-wrapper 4792 // function is only defined alongside the variable, not also alongside 4793 // callers. Normally, all accesses to a thread_local go through the 4794 // thread-wrapper in order to ensure initialization has occurred, underlying 4795 // variable will never be used other than the thread-wrapper, so it can be 4796 // converted to internal linkage. 4797 // 4798 // However, if the variable has the 'constinit' attribute, it _can_ be 4799 // referenced directly, without calling the thread-wrapper, so the linkage 4800 // must not be changed. 4801 // 4802 // Additionally, if the variable isn't plain external linkage, e.g. if it's 4803 // weak or linkonce, the de-duplication semantics are important to preserve, 4804 // so we don't change the linkage. 4805 if (D->getTLSKind() == VarDecl::TLS_Dynamic && 4806 Linkage == llvm::GlobalValue::ExternalLinkage && 4807 Context.getTargetInfo().getTriple().isOSDarwin() && 4808 !D->hasAttr<ConstInitAttr>()) 4809 Linkage = llvm::GlobalValue::InternalLinkage; 4810 4811 GV->setLinkage(Linkage); 4812 if (D->hasAttr<DLLImportAttr>()) 4813 GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass); 4814 else if (D->hasAttr<DLLExportAttr>()) 4815 GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass); 4816 else 4817 GV->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass); 4818 4819 if (Linkage == llvm::GlobalVariable::CommonLinkage) { 4820 // common vars aren't constant even if declared const. 4821 GV->setConstant(false); 4822 // Tentative definition of global variables may be initialized with 4823 // non-zero null pointers. In this case they should have weak linkage 4824 // since common linkage must have zero initializer and must not have 4825 // explicit section therefore cannot have non-zero initial value. 4826 if (!GV->getInitializer()->isNullValue()) 4827 GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage); 4828 } 4829 4830 setNonAliasAttributes(D, GV); 4831 4832 if (D->getTLSKind() && !GV->isThreadLocal()) { 4833 if (D->getTLSKind() == VarDecl::TLS_Dynamic) 4834 CXXThreadLocals.push_back(D); 4835 setTLSMode(GV, *D); 4836 } 4837 4838 maybeSetTrivialComdat(*D, *GV); 4839 4840 // Emit the initializer function if necessary. 4841 if (NeedsGlobalCtor || NeedsGlobalDtor) 4842 EmitCXXGlobalVarDeclInitFunc(D, GV, NeedsGlobalCtor); 4843 4844 SanitizerMD->reportGlobal(GV, *D, NeedsGlobalCtor); 4845 4846 // Emit global variable debug information. 4847 if (CGDebugInfo *DI = getModuleDebugInfo()) 4848 if (getCodeGenOpts().hasReducedDebugInfo()) 4849 DI->EmitGlobalVariable(GV, D); 4850 } 4851 4852 void CodeGenModule::EmitExternalVarDeclaration(const VarDecl *D) { 4853 if (CGDebugInfo *DI = getModuleDebugInfo()) 4854 if (getCodeGenOpts().hasReducedDebugInfo()) { 4855 QualType ASTTy = D->getType(); 4856 llvm::Type *Ty = getTypes().ConvertTypeForMem(D->getType()); 4857 llvm::Constant *GV = 4858 GetOrCreateLLVMGlobal(D->getName(), Ty, ASTTy.getAddressSpace(), D); 4859 DI->EmitExternalVariable( 4860 cast<llvm::GlobalVariable>(GV->stripPointerCasts()), D); 4861 } 4862 } 4863 4864 static bool isVarDeclStrongDefinition(const ASTContext &Context, 4865 CodeGenModule &CGM, const VarDecl *D, 4866 bool NoCommon) { 4867 // Don't give variables common linkage if -fno-common was specified unless it 4868 // was overridden by a NoCommon attribute. 4869 if ((NoCommon || D->hasAttr<NoCommonAttr>()) && !D->hasAttr<CommonAttr>()) 4870 return true; 4871 4872 // C11 6.9.2/2: 4873 // A declaration of an identifier for an object that has file scope without 4874 // an initializer, and without a storage-class specifier or with the 4875 // storage-class specifier static, constitutes a tentative definition. 4876 if (D->getInit() || D->hasExternalStorage()) 4877 return true; 4878 4879 // A variable cannot be both common and exist in a section. 4880 if (D->hasAttr<SectionAttr>()) 4881 return true; 4882 4883 // A variable cannot be both common and exist in a section. 4884 // We don't try to determine which is the right section in the front-end. 4885 // If no specialized section name is applicable, it will resort to default. 4886 if (D->hasAttr<PragmaClangBSSSectionAttr>() || 4887 D->hasAttr<PragmaClangDataSectionAttr>() || 4888 D->hasAttr<PragmaClangRelroSectionAttr>() || 4889 D->hasAttr<PragmaClangRodataSectionAttr>()) 4890 return true; 4891 4892 // Thread local vars aren't considered common linkage. 4893 if (D->getTLSKind()) 4894 return true; 4895 4896 // Tentative definitions marked with WeakImportAttr are true definitions. 4897 if (D->hasAttr<WeakImportAttr>()) 4898 return true; 4899 4900 // A variable cannot be both common and exist in a comdat. 4901 if (shouldBeInCOMDAT(CGM, *D)) 4902 return true; 4903 4904 // Declarations with a required alignment do not have common linkage in MSVC 4905 // mode. 4906 if (Context.getTargetInfo().getCXXABI().isMicrosoft()) { 4907 if (D->hasAttr<AlignedAttr>()) 4908 return true; 4909 QualType VarType = D->getType(); 4910 if (Context.isAlignmentRequired(VarType)) 4911 return true; 4912 4913 if (const auto *RT = VarType->getAs<RecordType>()) { 4914 const RecordDecl *RD = RT->getDecl(); 4915 for (const FieldDecl *FD : RD->fields()) { 4916 if (FD->isBitField()) 4917 continue; 4918 if (FD->hasAttr<AlignedAttr>()) 4919 return true; 4920 if (Context.isAlignmentRequired(FD->getType())) 4921 return true; 4922 } 4923 } 4924 } 4925 4926 // Microsoft's link.exe doesn't support alignments greater than 32 bytes for 4927 // common symbols, so symbols with greater alignment requirements cannot be 4928 // common. 4929 // Other COFF linkers (ld.bfd and LLD) support arbitrary power-of-two 4930 // alignments for common symbols via the aligncomm directive, so this 4931 // restriction only applies to MSVC environments. 4932 if (Context.getTargetInfo().getTriple().isKnownWindowsMSVCEnvironment() && 4933 Context.getTypeAlignIfKnown(D->getType()) > 4934 Context.toBits(CharUnits::fromQuantity(32))) 4935 return true; 4936 4937 return false; 4938 } 4939 4940 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageForDeclarator( 4941 const DeclaratorDecl *D, GVALinkage Linkage, bool IsConstantVariable) { 4942 if (Linkage == GVA_Internal) 4943 return llvm::Function::InternalLinkage; 4944 4945 if (D->hasAttr<WeakAttr>()) 4946 return llvm::GlobalVariable::WeakAnyLinkage; 4947 4948 if (const auto *FD = D->getAsFunction()) 4949 if (FD->isMultiVersion() && Linkage == GVA_AvailableExternally) 4950 return llvm::GlobalVariable::LinkOnceAnyLinkage; 4951 4952 // We are guaranteed to have a strong definition somewhere else, 4953 // so we can use available_externally linkage. 4954 if (Linkage == GVA_AvailableExternally) 4955 return llvm::GlobalValue::AvailableExternallyLinkage; 4956 4957 // Note that Apple's kernel linker doesn't support symbol 4958 // coalescing, so we need to avoid linkonce and weak linkages there. 4959 // Normally, this means we just map to internal, but for explicit 4960 // instantiations we'll map to external. 4961 4962 // In C++, the compiler has to emit a definition in every translation unit 4963 // that references the function. We should use linkonce_odr because 4964 // a) if all references in this translation unit are optimized away, we 4965 // don't need to codegen it. b) if the function persists, it needs to be 4966 // merged with other definitions. c) C++ has the ODR, so we know the 4967 // definition is dependable. 4968 if (Linkage == GVA_DiscardableODR) 4969 return !Context.getLangOpts().AppleKext ? llvm::Function::LinkOnceODRLinkage 4970 : llvm::Function::InternalLinkage; 4971 4972 // An explicit instantiation of a template has weak linkage, since 4973 // explicit instantiations can occur in multiple translation units 4974 // and must all be equivalent. However, we are not allowed to 4975 // throw away these explicit instantiations. 4976 // 4977 // CUDA/HIP: For -fno-gpu-rdc case, device code is limited to one TU, 4978 // so say that CUDA templates are either external (for kernels) or internal. 4979 // This lets llvm perform aggressive inter-procedural optimizations. For 4980 // -fgpu-rdc case, device function calls across multiple TU's are allowed, 4981 // therefore we need to follow the normal linkage paradigm. 4982 if (Linkage == GVA_StrongODR) { 4983 if (getLangOpts().AppleKext) 4984 return llvm::Function::ExternalLinkage; 4985 if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice && 4986 !getLangOpts().GPURelocatableDeviceCode) 4987 return D->hasAttr<CUDAGlobalAttr>() ? llvm::Function::ExternalLinkage 4988 : llvm::Function::InternalLinkage; 4989 return llvm::Function::WeakODRLinkage; 4990 } 4991 4992 // C++ doesn't have tentative definitions and thus cannot have common 4993 // linkage. 4994 if (!getLangOpts().CPlusPlus && isa<VarDecl>(D) && 4995 !isVarDeclStrongDefinition(Context, *this, cast<VarDecl>(D), 4996 CodeGenOpts.NoCommon)) 4997 return llvm::GlobalVariable::CommonLinkage; 4998 4999 // selectany symbols are externally visible, so use weak instead of 5000 // linkonce. MSVC optimizes away references to const selectany globals, so 5001 // all definitions should be the same and ODR linkage should be used. 5002 // http://msdn.microsoft.com/en-us/library/5tkz6s71.aspx 5003 if (D->hasAttr<SelectAnyAttr>()) 5004 return llvm::GlobalVariable::WeakODRLinkage; 5005 5006 // Otherwise, we have strong external linkage. 5007 assert(Linkage == GVA_StrongExternal); 5008 return llvm::GlobalVariable::ExternalLinkage; 5009 } 5010 5011 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageVarDefinition( 5012 const VarDecl *VD, bool IsConstant) { 5013 GVALinkage Linkage = getContext().GetGVALinkageForVariable(VD); 5014 return getLLVMLinkageForDeclarator(VD, Linkage, IsConstant); 5015 } 5016 5017 /// Replace the uses of a function that was declared with a non-proto type. 5018 /// We want to silently drop extra arguments from call sites 5019 static void replaceUsesOfNonProtoConstant(llvm::Constant *old, 5020 llvm::Function *newFn) { 5021 // Fast path. 5022 if (old->use_empty()) return; 5023 5024 llvm::Type *newRetTy = newFn->getReturnType(); 5025 SmallVector<llvm::Value*, 4> newArgs; 5026 5027 for (llvm::Value::use_iterator ui = old->use_begin(), ue = old->use_end(); 5028 ui != ue; ) { 5029 llvm::Value::use_iterator use = ui++; // Increment before the use is erased. 5030 llvm::User *user = use->getUser(); 5031 5032 // Recognize and replace uses of bitcasts. Most calls to 5033 // unprototyped functions will use bitcasts. 5034 if (auto *bitcast = dyn_cast<llvm::ConstantExpr>(user)) { 5035 if (bitcast->getOpcode() == llvm::Instruction::BitCast) 5036 replaceUsesOfNonProtoConstant(bitcast, newFn); 5037 continue; 5038 } 5039 5040 // Recognize calls to the function. 5041 llvm::CallBase *callSite = dyn_cast<llvm::CallBase>(user); 5042 if (!callSite) continue; 5043 if (!callSite->isCallee(&*use)) 5044 continue; 5045 5046 // If the return types don't match exactly, then we can't 5047 // transform this call unless it's dead. 5048 if (callSite->getType() != newRetTy && !callSite->use_empty()) 5049 continue; 5050 5051 // Get the call site's attribute list. 5052 SmallVector<llvm::AttributeSet, 8> newArgAttrs; 5053 llvm::AttributeList oldAttrs = callSite->getAttributes(); 5054 5055 // If the function was passed too few arguments, don't transform. 5056 unsigned newNumArgs = newFn->arg_size(); 5057 if (callSite->arg_size() < newNumArgs) 5058 continue; 5059 5060 // If extra arguments were passed, we silently drop them. 5061 // If any of the types mismatch, we don't transform. 5062 unsigned argNo = 0; 5063 bool dontTransform = false; 5064 for (llvm::Argument &A : newFn->args()) { 5065 if (callSite->getArgOperand(argNo)->getType() != A.getType()) { 5066 dontTransform = true; 5067 break; 5068 } 5069 5070 // Add any parameter attributes. 5071 newArgAttrs.push_back(oldAttrs.getParamAttrs(argNo)); 5072 argNo++; 5073 } 5074 if (dontTransform) 5075 continue; 5076 5077 // Okay, we can transform this. Create the new call instruction and copy 5078 // over the required information. 5079 newArgs.append(callSite->arg_begin(), callSite->arg_begin() + argNo); 5080 5081 // Copy over any operand bundles. 5082 SmallVector<llvm::OperandBundleDef, 1> newBundles; 5083 callSite->getOperandBundlesAsDefs(newBundles); 5084 5085 llvm::CallBase *newCall; 5086 if (isa<llvm::CallInst>(callSite)) { 5087 newCall = 5088 llvm::CallInst::Create(newFn, newArgs, newBundles, "", callSite); 5089 } else { 5090 auto *oldInvoke = cast<llvm::InvokeInst>(callSite); 5091 newCall = llvm::InvokeInst::Create(newFn, oldInvoke->getNormalDest(), 5092 oldInvoke->getUnwindDest(), newArgs, 5093 newBundles, "", callSite); 5094 } 5095 newArgs.clear(); // for the next iteration 5096 5097 if (!newCall->getType()->isVoidTy()) 5098 newCall->takeName(callSite); 5099 newCall->setAttributes( 5100 llvm::AttributeList::get(newFn->getContext(), oldAttrs.getFnAttrs(), 5101 oldAttrs.getRetAttrs(), newArgAttrs)); 5102 newCall->setCallingConv(callSite->getCallingConv()); 5103 5104 // Finally, remove the old call, replacing any uses with the new one. 5105 if (!callSite->use_empty()) 5106 callSite->replaceAllUsesWith(newCall); 5107 5108 // Copy debug location attached to CI. 5109 if (callSite->getDebugLoc()) 5110 newCall->setDebugLoc(callSite->getDebugLoc()); 5111 5112 callSite->eraseFromParent(); 5113 } 5114 } 5115 5116 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we 5117 /// implement a function with no prototype, e.g. "int foo() {}". If there are 5118 /// existing call uses of the old function in the module, this adjusts them to 5119 /// call the new function directly. 5120 /// 5121 /// This is not just a cleanup: the always_inline pass requires direct calls to 5122 /// functions to be able to inline them. If there is a bitcast in the way, it 5123 /// won't inline them. Instcombine normally deletes these calls, but it isn't 5124 /// run at -O0. 5125 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old, 5126 llvm::Function *NewFn) { 5127 // If we're redefining a global as a function, don't transform it. 5128 if (!isa<llvm::Function>(Old)) return; 5129 5130 replaceUsesOfNonProtoConstant(Old, NewFn); 5131 } 5132 5133 void CodeGenModule::HandleCXXStaticMemberVarInstantiation(VarDecl *VD) { 5134 auto DK = VD->isThisDeclarationADefinition(); 5135 if (DK == VarDecl::Definition && VD->hasAttr<DLLImportAttr>()) 5136 return; 5137 5138 TemplateSpecializationKind TSK = VD->getTemplateSpecializationKind(); 5139 // If we have a definition, this might be a deferred decl. If the 5140 // instantiation is explicit, make sure we emit it at the end. 5141 if (VD->getDefinition() && TSK == TSK_ExplicitInstantiationDefinition) 5142 GetAddrOfGlobalVar(VD); 5143 5144 EmitTopLevelDecl(VD); 5145 } 5146 5147 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD, 5148 llvm::GlobalValue *GV) { 5149 const auto *D = cast<FunctionDecl>(GD.getDecl()); 5150 5151 // Compute the function info and LLVM type. 5152 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 5153 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 5154 5155 // Get or create the prototype for the function. 5156 if (!GV || (GV->getValueType() != Ty)) 5157 GV = cast<llvm::GlobalValue>(GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, 5158 /*DontDefer=*/true, 5159 ForDefinition)); 5160 5161 // Already emitted. 5162 if (!GV->isDeclaration()) 5163 return; 5164 5165 // We need to set linkage and visibility on the function before 5166 // generating code for it because various parts of IR generation 5167 // want to propagate this information down (e.g. to local static 5168 // declarations). 5169 auto *Fn = cast<llvm::Function>(GV); 5170 setFunctionLinkage(GD, Fn); 5171 5172 // FIXME: this is redundant with part of setFunctionDefinitionAttributes 5173 setGVProperties(Fn, GD); 5174 5175 MaybeHandleStaticInExternC(D, Fn); 5176 5177 maybeSetTrivialComdat(*D, *Fn); 5178 5179 // Set CodeGen attributes that represent floating point environment. 5180 setLLVMFunctionFEnvAttributes(D, Fn); 5181 5182 CodeGenFunction(*this).GenerateCode(GD, Fn, FI); 5183 5184 setNonAliasAttributes(GD, Fn); 5185 SetLLVMFunctionAttributesForDefinition(D, Fn); 5186 5187 if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>()) 5188 AddGlobalCtor(Fn, CA->getPriority()); 5189 if (const DestructorAttr *DA = D->getAttr<DestructorAttr>()) 5190 AddGlobalDtor(Fn, DA->getPriority(), true); 5191 if (D->hasAttr<AnnotateAttr>()) 5192 AddGlobalAnnotations(D, Fn); 5193 } 5194 5195 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) { 5196 const auto *D = cast<ValueDecl>(GD.getDecl()); 5197 const AliasAttr *AA = D->getAttr<AliasAttr>(); 5198 assert(AA && "Not an alias?"); 5199 5200 StringRef MangledName = getMangledName(GD); 5201 5202 if (AA->getAliasee() == MangledName) { 5203 Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0; 5204 return; 5205 } 5206 5207 // If there is a definition in the module, then it wins over the alias. 5208 // This is dubious, but allow it to be safe. Just ignore the alias. 5209 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 5210 if (Entry && !Entry->isDeclaration()) 5211 return; 5212 5213 Aliases.push_back(GD); 5214 5215 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType()); 5216 5217 // Create a reference to the named value. This ensures that it is emitted 5218 // if a deferred decl. 5219 llvm::Constant *Aliasee; 5220 llvm::GlobalValue::LinkageTypes LT; 5221 if (isa<llvm::FunctionType>(DeclTy)) { 5222 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GD, 5223 /*ForVTable=*/false); 5224 LT = getFunctionLinkage(GD); 5225 } else { 5226 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), DeclTy, LangAS::Default, 5227 /*D=*/nullptr); 5228 if (const auto *VD = dyn_cast<VarDecl>(GD.getDecl())) 5229 LT = getLLVMLinkageVarDefinition(VD, D->getType().isConstQualified()); 5230 else 5231 LT = getFunctionLinkage(GD); 5232 } 5233 5234 // Create the new alias itself, but don't set a name yet. 5235 unsigned AS = Aliasee->getType()->getPointerAddressSpace(); 5236 auto *GA = 5237 llvm::GlobalAlias::create(DeclTy, AS, LT, "", Aliasee, &getModule()); 5238 5239 if (Entry) { 5240 if (GA->getAliasee() == Entry) { 5241 Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0; 5242 return; 5243 } 5244 5245 assert(Entry->isDeclaration()); 5246 5247 // If there is a declaration in the module, then we had an extern followed 5248 // by the alias, as in: 5249 // extern int test6(); 5250 // ... 5251 // int test6() __attribute__((alias("test7"))); 5252 // 5253 // Remove it and replace uses of it with the alias. 5254 GA->takeName(Entry); 5255 5256 Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA, 5257 Entry->getType())); 5258 Entry->eraseFromParent(); 5259 } else { 5260 GA->setName(MangledName); 5261 } 5262 5263 // Set attributes which are particular to an alias; this is a 5264 // specialization of the attributes which may be set on a global 5265 // variable/function. 5266 if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakRefAttr>() || 5267 D->isWeakImported()) { 5268 GA->setLinkage(llvm::Function::WeakAnyLinkage); 5269 } 5270 5271 if (const auto *VD = dyn_cast<VarDecl>(D)) 5272 if (VD->getTLSKind()) 5273 setTLSMode(GA, *VD); 5274 5275 SetCommonAttributes(GD, GA); 5276 5277 // Emit global alias debug information. 5278 if (isa<VarDecl>(D)) 5279 if (CGDebugInfo *DI = getModuleDebugInfo()) 5280 DI->EmitGlobalAlias(cast<llvm::GlobalValue>(GA->getAliasee()), GD); 5281 } 5282 5283 void CodeGenModule::emitIFuncDefinition(GlobalDecl GD) { 5284 const auto *D = cast<ValueDecl>(GD.getDecl()); 5285 const IFuncAttr *IFA = D->getAttr<IFuncAttr>(); 5286 assert(IFA && "Not an ifunc?"); 5287 5288 StringRef MangledName = getMangledName(GD); 5289 5290 if (IFA->getResolver() == MangledName) { 5291 Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1; 5292 return; 5293 } 5294 5295 // Report an error if some definition overrides ifunc. 5296 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 5297 if (Entry && !Entry->isDeclaration()) { 5298 GlobalDecl OtherGD; 5299 if (lookupRepresentativeDecl(MangledName, OtherGD) && 5300 DiagnosedConflictingDefinitions.insert(GD).second) { 5301 Diags.Report(D->getLocation(), diag::err_duplicate_mangled_name) 5302 << MangledName; 5303 Diags.Report(OtherGD.getDecl()->getLocation(), 5304 diag::note_previous_definition); 5305 } 5306 return; 5307 } 5308 5309 Aliases.push_back(GD); 5310 5311 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType()); 5312 llvm::Type *ResolverTy = llvm::GlobalIFunc::getResolverFunctionType(DeclTy); 5313 llvm::Constant *Resolver = 5314 GetOrCreateLLVMFunction(IFA->getResolver(), ResolverTy, {}, 5315 /*ForVTable=*/false); 5316 llvm::GlobalIFunc *GIF = 5317 llvm::GlobalIFunc::create(DeclTy, 0, llvm::Function::ExternalLinkage, 5318 "", Resolver, &getModule()); 5319 if (Entry) { 5320 if (GIF->getResolver() == Entry) { 5321 Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1; 5322 return; 5323 } 5324 assert(Entry->isDeclaration()); 5325 5326 // If there is a declaration in the module, then we had an extern followed 5327 // by the ifunc, as in: 5328 // extern int test(); 5329 // ... 5330 // int test() __attribute__((ifunc("resolver"))); 5331 // 5332 // Remove it and replace uses of it with the ifunc. 5333 GIF->takeName(Entry); 5334 5335 Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GIF, 5336 Entry->getType())); 5337 Entry->eraseFromParent(); 5338 } else 5339 GIF->setName(MangledName); 5340 5341 SetCommonAttributes(GD, GIF); 5342 } 5343 5344 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID, 5345 ArrayRef<llvm::Type*> Tys) { 5346 return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID, 5347 Tys); 5348 } 5349 5350 static llvm::StringMapEntry<llvm::GlobalVariable *> & 5351 GetConstantCFStringEntry(llvm::StringMap<llvm::GlobalVariable *> &Map, 5352 const StringLiteral *Literal, bool TargetIsLSB, 5353 bool &IsUTF16, unsigned &StringLength) { 5354 StringRef String = Literal->getString(); 5355 unsigned NumBytes = String.size(); 5356 5357 // Check for simple case. 5358 if (!Literal->containsNonAsciiOrNull()) { 5359 StringLength = NumBytes; 5360 return *Map.insert(std::make_pair(String, nullptr)).first; 5361 } 5362 5363 // Otherwise, convert the UTF8 literals into a string of shorts. 5364 IsUTF16 = true; 5365 5366 SmallVector<llvm::UTF16, 128> ToBuf(NumBytes + 1); // +1 for ending nulls. 5367 const llvm::UTF8 *FromPtr = (const llvm::UTF8 *)String.data(); 5368 llvm::UTF16 *ToPtr = &ToBuf[0]; 5369 5370 (void)llvm::ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, &ToPtr, 5371 ToPtr + NumBytes, llvm::strictConversion); 5372 5373 // ConvertUTF8toUTF16 returns the length in ToPtr. 5374 StringLength = ToPtr - &ToBuf[0]; 5375 5376 // Add an explicit null. 5377 *ToPtr = 0; 5378 return *Map.insert(std::make_pair( 5379 StringRef(reinterpret_cast<const char *>(ToBuf.data()), 5380 (StringLength + 1) * 2), 5381 nullptr)).first; 5382 } 5383 5384 ConstantAddress 5385 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) { 5386 unsigned StringLength = 0; 5387 bool isUTF16 = false; 5388 llvm::StringMapEntry<llvm::GlobalVariable *> &Entry = 5389 GetConstantCFStringEntry(CFConstantStringMap, Literal, 5390 getDataLayout().isLittleEndian(), isUTF16, 5391 StringLength); 5392 5393 if (auto *C = Entry.second) 5394 return ConstantAddress( 5395 C, C->getValueType(), CharUnits::fromQuantity(C->getAlignment())); 5396 5397 llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty); 5398 llvm::Constant *Zeros[] = { Zero, Zero }; 5399 5400 const ASTContext &Context = getContext(); 5401 const llvm::Triple &Triple = getTriple(); 5402 5403 const auto CFRuntime = getLangOpts().CFRuntime; 5404 const bool IsSwiftABI = 5405 static_cast<unsigned>(CFRuntime) >= 5406 static_cast<unsigned>(LangOptions::CoreFoundationABI::Swift); 5407 const bool IsSwift4_1 = CFRuntime == LangOptions::CoreFoundationABI::Swift4_1; 5408 5409 // If we don't already have it, get __CFConstantStringClassReference. 5410 if (!CFConstantStringClassRef) { 5411 const char *CFConstantStringClassName = "__CFConstantStringClassReference"; 5412 llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy); 5413 Ty = llvm::ArrayType::get(Ty, 0); 5414 5415 switch (CFRuntime) { 5416 default: break; 5417 case LangOptions::CoreFoundationABI::Swift: LLVM_FALLTHROUGH; 5418 case LangOptions::CoreFoundationABI::Swift5_0: 5419 CFConstantStringClassName = 5420 Triple.isOSDarwin() ? "$s15SwiftFoundation19_NSCFConstantStringCN" 5421 : "$s10Foundation19_NSCFConstantStringCN"; 5422 Ty = IntPtrTy; 5423 break; 5424 case LangOptions::CoreFoundationABI::Swift4_2: 5425 CFConstantStringClassName = 5426 Triple.isOSDarwin() ? "$S15SwiftFoundation19_NSCFConstantStringCN" 5427 : "$S10Foundation19_NSCFConstantStringCN"; 5428 Ty = IntPtrTy; 5429 break; 5430 case LangOptions::CoreFoundationABI::Swift4_1: 5431 CFConstantStringClassName = 5432 Triple.isOSDarwin() ? "__T015SwiftFoundation19_NSCFConstantStringCN" 5433 : "__T010Foundation19_NSCFConstantStringCN"; 5434 Ty = IntPtrTy; 5435 break; 5436 } 5437 5438 llvm::Constant *C = CreateRuntimeVariable(Ty, CFConstantStringClassName); 5439 5440 if (Triple.isOSBinFormatELF() || Triple.isOSBinFormatCOFF()) { 5441 llvm::GlobalValue *GV = nullptr; 5442 5443 if ((GV = dyn_cast<llvm::GlobalValue>(C))) { 5444 IdentifierInfo &II = Context.Idents.get(GV->getName()); 5445 TranslationUnitDecl *TUDecl = Context.getTranslationUnitDecl(); 5446 DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl); 5447 5448 const VarDecl *VD = nullptr; 5449 for (const auto *Result : DC->lookup(&II)) 5450 if ((VD = dyn_cast<VarDecl>(Result))) 5451 break; 5452 5453 if (Triple.isOSBinFormatELF()) { 5454 if (!VD) 5455 GV->setLinkage(llvm::GlobalValue::ExternalLinkage); 5456 } else { 5457 GV->setLinkage(llvm::GlobalValue::ExternalLinkage); 5458 if (!VD || !VD->hasAttr<DLLExportAttr>()) 5459 GV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass); 5460 else 5461 GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass); 5462 } 5463 5464 setDSOLocal(GV); 5465 } 5466 } 5467 5468 // Decay array -> ptr 5469 CFConstantStringClassRef = 5470 IsSwiftABI ? llvm::ConstantExpr::getPtrToInt(C, Ty) 5471 : llvm::ConstantExpr::getGetElementPtr(Ty, C, Zeros); 5472 } 5473 5474 QualType CFTy = Context.getCFConstantStringType(); 5475 5476 auto *STy = cast<llvm::StructType>(getTypes().ConvertType(CFTy)); 5477 5478 ConstantInitBuilder Builder(*this); 5479 auto Fields = Builder.beginStruct(STy); 5480 5481 // Class pointer. 5482 Fields.add(cast<llvm::Constant>(CFConstantStringClassRef)); 5483 5484 // Flags. 5485 if (IsSwiftABI) { 5486 Fields.addInt(IntPtrTy, IsSwift4_1 ? 0x05 : 0x01); 5487 Fields.addInt(Int64Ty, isUTF16 ? 0x07d0 : 0x07c8); 5488 } else { 5489 Fields.addInt(IntTy, isUTF16 ? 0x07d0 : 0x07C8); 5490 } 5491 5492 // String pointer. 5493 llvm::Constant *C = nullptr; 5494 if (isUTF16) { 5495 auto Arr = llvm::makeArrayRef( 5496 reinterpret_cast<uint16_t *>(const_cast<char *>(Entry.first().data())), 5497 Entry.first().size() / 2); 5498 C = llvm::ConstantDataArray::get(VMContext, Arr); 5499 } else { 5500 C = llvm::ConstantDataArray::getString(VMContext, Entry.first()); 5501 } 5502 5503 // Note: -fwritable-strings doesn't make the backing store strings of 5504 // CFStrings writable. (See <rdar://problem/10657500>) 5505 auto *GV = 5506 new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true, 5507 llvm::GlobalValue::PrivateLinkage, C, ".str"); 5508 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 5509 // Don't enforce the target's minimum global alignment, since the only use 5510 // of the string is via this class initializer. 5511 CharUnits Align = isUTF16 ? Context.getTypeAlignInChars(Context.ShortTy) 5512 : Context.getTypeAlignInChars(Context.CharTy); 5513 GV->setAlignment(Align.getAsAlign()); 5514 5515 // FIXME: We set the section explicitly to avoid a bug in ld64 224.1. 5516 // Without it LLVM can merge the string with a non unnamed_addr one during 5517 // LTO. Doing that changes the section it ends in, which surprises ld64. 5518 if (Triple.isOSBinFormatMachO()) 5519 GV->setSection(isUTF16 ? "__TEXT,__ustring" 5520 : "__TEXT,__cstring,cstring_literals"); 5521 // Make sure the literal ends up in .rodata to allow for safe ICF and for 5522 // the static linker to adjust permissions to read-only later on. 5523 else if (Triple.isOSBinFormatELF()) 5524 GV->setSection(".rodata"); 5525 5526 // String. 5527 llvm::Constant *Str = 5528 llvm::ConstantExpr::getGetElementPtr(GV->getValueType(), GV, Zeros); 5529 5530 if (isUTF16) 5531 // Cast the UTF16 string to the correct type. 5532 Str = llvm::ConstantExpr::getBitCast(Str, Int8PtrTy); 5533 Fields.add(Str); 5534 5535 // String length. 5536 llvm::IntegerType *LengthTy = 5537 llvm::IntegerType::get(getModule().getContext(), 5538 Context.getTargetInfo().getLongWidth()); 5539 if (IsSwiftABI) { 5540 if (CFRuntime == LangOptions::CoreFoundationABI::Swift4_1 || 5541 CFRuntime == LangOptions::CoreFoundationABI::Swift4_2) 5542 LengthTy = Int32Ty; 5543 else 5544 LengthTy = IntPtrTy; 5545 } 5546 Fields.addInt(LengthTy, StringLength); 5547 5548 // Swift ABI requires 8-byte alignment to ensure that the _Atomic(uint64_t) is 5549 // properly aligned on 32-bit platforms. 5550 CharUnits Alignment = 5551 IsSwiftABI ? Context.toCharUnitsFromBits(64) : getPointerAlign(); 5552 5553 // The struct. 5554 GV = Fields.finishAndCreateGlobal("_unnamed_cfstring_", Alignment, 5555 /*isConstant=*/false, 5556 llvm::GlobalVariable::PrivateLinkage); 5557 GV->addAttribute("objc_arc_inert"); 5558 switch (Triple.getObjectFormat()) { 5559 case llvm::Triple::UnknownObjectFormat: 5560 llvm_unreachable("unknown file format"); 5561 case llvm::Triple::DXContainer: 5562 case llvm::Triple::GOFF: 5563 case llvm::Triple::SPIRV: 5564 case llvm::Triple::XCOFF: 5565 llvm_unreachable("unimplemented"); 5566 case llvm::Triple::COFF: 5567 case llvm::Triple::ELF: 5568 case llvm::Triple::Wasm: 5569 GV->setSection("cfstring"); 5570 break; 5571 case llvm::Triple::MachO: 5572 GV->setSection("__DATA,__cfstring"); 5573 break; 5574 } 5575 Entry.second = GV; 5576 5577 return ConstantAddress(GV, GV->getValueType(), Alignment); 5578 } 5579 5580 bool CodeGenModule::getExpressionLocationsEnabled() const { 5581 return !CodeGenOpts.EmitCodeView || CodeGenOpts.DebugColumnInfo; 5582 } 5583 5584 QualType CodeGenModule::getObjCFastEnumerationStateType() { 5585 if (ObjCFastEnumerationStateType.isNull()) { 5586 RecordDecl *D = Context.buildImplicitRecord("__objcFastEnumerationState"); 5587 D->startDefinition(); 5588 5589 QualType FieldTypes[] = { 5590 Context.UnsignedLongTy, 5591 Context.getPointerType(Context.getObjCIdType()), 5592 Context.getPointerType(Context.UnsignedLongTy), 5593 Context.getConstantArrayType(Context.UnsignedLongTy, 5594 llvm::APInt(32, 5), nullptr, ArrayType::Normal, 0) 5595 }; 5596 5597 for (size_t i = 0; i < 4; ++i) { 5598 FieldDecl *Field = FieldDecl::Create(Context, 5599 D, 5600 SourceLocation(), 5601 SourceLocation(), nullptr, 5602 FieldTypes[i], /*TInfo=*/nullptr, 5603 /*BitWidth=*/nullptr, 5604 /*Mutable=*/false, 5605 ICIS_NoInit); 5606 Field->setAccess(AS_public); 5607 D->addDecl(Field); 5608 } 5609 5610 D->completeDefinition(); 5611 ObjCFastEnumerationStateType = Context.getTagDeclType(D); 5612 } 5613 5614 return ObjCFastEnumerationStateType; 5615 } 5616 5617 llvm::Constant * 5618 CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) { 5619 assert(!E->getType()->isPointerType() && "Strings are always arrays"); 5620 5621 // Don't emit it as the address of the string, emit the string data itself 5622 // as an inline array. 5623 if (E->getCharByteWidth() == 1) { 5624 SmallString<64> Str(E->getString()); 5625 5626 // Resize the string to the right size, which is indicated by its type. 5627 const ConstantArrayType *CAT = Context.getAsConstantArrayType(E->getType()); 5628 Str.resize(CAT->getSize().getZExtValue()); 5629 return llvm::ConstantDataArray::getString(VMContext, Str, false); 5630 } 5631 5632 auto *AType = cast<llvm::ArrayType>(getTypes().ConvertType(E->getType())); 5633 llvm::Type *ElemTy = AType->getElementType(); 5634 unsigned NumElements = AType->getNumElements(); 5635 5636 // Wide strings have either 2-byte or 4-byte elements. 5637 if (ElemTy->getPrimitiveSizeInBits() == 16) { 5638 SmallVector<uint16_t, 32> Elements; 5639 Elements.reserve(NumElements); 5640 5641 for(unsigned i = 0, e = E->getLength(); i != e; ++i) 5642 Elements.push_back(E->getCodeUnit(i)); 5643 Elements.resize(NumElements); 5644 return llvm::ConstantDataArray::get(VMContext, Elements); 5645 } 5646 5647 assert(ElemTy->getPrimitiveSizeInBits() == 32); 5648 SmallVector<uint32_t, 32> Elements; 5649 Elements.reserve(NumElements); 5650 5651 for(unsigned i = 0, e = E->getLength(); i != e; ++i) 5652 Elements.push_back(E->getCodeUnit(i)); 5653 Elements.resize(NumElements); 5654 return llvm::ConstantDataArray::get(VMContext, Elements); 5655 } 5656 5657 static llvm::GlobalVariable * 5658 GenerateStringLiteral(llvm::Constant *C, llvm::GlobalValue::LinkageTypes LT, 5659 CodeGenModule &CGM, StringRef GlobalName, 5660 CharUnits Alignment) { 5661 unsigned AddrSpace = CGM.getContext().getTargetAddressSpace( 5662 CGM.GetGlobalConstantAddressSpace()); 5663 5664 llvm::Module &M = CGM.getModule(); 5665 // Create a global variable for this string 5666 auto *GV = new llvm::GlobalVariable( 5667 M, C->getType(), !CGM.getLangOpts().WritableStrings, LT, C, GlobalName, 5668 nullptr, llvm::GlobalVariable::NotThreadLocal, AddrSpace); 5669 GV->setAlignment(Alignment.getAsAlign()); 5670 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 5671 if (GV->isWeakForLinker()) { 5672 assert(CGM.supportsCOMDAT() && "Only COFF uses weak string literals"); 5673 GV->setComdat(M.getOrInsertComdat(GV->getName())); 5674 } 5675 CGM.setDSOLocal(GV); 5676 5677 return GV; 5678 } 5679 5680 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a 5681 /// constant array for the given string literal. 5682 ConstantAddress 5683 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S, 5684 StringRef Name) { 5685 CharUnits Alignment = getContext().getAlignOfGlobalVarInChars(S->getType()); 5686 5687 llvm::Constant *C = GetConstantArrayFromStringLiteral(S); 5688 llvm::GlobalVariable **Entry = nullptr; 5689 if (!LangOpts.WritableStrings) { 5690 Entry = &ConstantStringMap[C]; 5691 if (auto GV = *Entry) { 5692 if (uint64_t(Alignment.getQuantity()) > GV->getAlignment()) 5693 GV->setAlignment(Alignment.getAsAlign()); 5694 return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV), 5695 GV->getValueType(), Alignment); 5696 } 5697 } 5698 5699 SmallString<256> MangledNameBuffer; 5700 StringRef GlobalVariableName; 5701 llvm::GlobalValue::LinkageTypes LT; 5702 5703 // Mangle the string literal if that's how the ABI merges duplicate strings. 5704 // Don't do it if they are writable, since we don't want writes in one TU to 5705 // affect strings in another. 5706 if (getCXXABI().getMangleContext().shouldMangleStringLiteral(S) && 5707 !LangOpts.WritableStrings) { 5708 llvm::raw_svector_ostream Out(MangledNameBuffer); 5709 getCXXABI().getMangleContext().mangleStringLiteral(S, Out); 5710 LT = llvm::GlobalValue::LinkOnceODRLinkage; 5711 GlobalVariableName = MangledNameBuffer; 5712 } else { 5713 LT = llvm::GlobalValue::PrivateLinkage; 5714 GlobalVariableName = Name; 5715 } 5716 5717 auto GV = GenerateStringLiteral(C, LT, *this, GlobalVariableName, Alignment); 5718 5719 CGDebugInfo *DI = getModuleDebugInfo(); 5720 if (DI && getCodeGenOpts().hasReducedDebugInfo()) 5721 DI->AddStringLiteralDebugInfo(GV, S); 5722 5723 if (Entry) 5724 *Entry = GV; 5725 5726 SanitizerMD->reportGlobal(GV, S->getStrTokenLoc(0), "<string literal>"); 5727 5728 return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV), 5729 GV->getValueType(), Alignment); 5730 } 5731 5732 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant 5733 /// array for the given ObjCEncodeExpr node. 5734 ConstantAddress 5735 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) { 5736 std::string Str; 5737 getContext().getObjCEncodingForType(E->getEncodedType(), Str); 5738 5739 return GetAddrOfConstantCString(Str); 5740 } 5741 5742 /// GetAddrOfConstantCString - Returns a pointer to a character array containing 5743 /// the literal and a terminating '\0' character. 5744 /// The result has pointer to array type. 5745 ConstantAddress CodeGenModule::GetAddrOfConstantCString( 5746 const std::string &Str, const char *GlobalName) { 5747 StringRef StrWithNull(Str.c_str(), Str.size() + 1); 5748 CharUnits Alignment = 5749 getContext().getAlignOfGlobalVarInChars(getContext().CharTy); 5750 5751 llvm::Constant *C = 5752 llvm::ConstantDataArray::getString(getLLVMContext(), StrWithNull, false); 5753 5754 // Don't share any string literals if strings aren't constant. 5755 llvm::GlobalVariable **Entry = nullptr; 5756 if (!LangOpts.WritableStrings) { 5757 Entry = &ConstantStringMap[C]; 5758 if (auto GV = *Entry) { 5759 if (uint64_t(Alignment.getQuantity()) > GV->getAlignment()) 5760 GV->setAlignment(Alignment.getAsAlign()); 5761 return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV), 5762 GV->getValueType(), Alignment); 5763 } 5764 } 5765 5766 // Get the default prefix if a name wasn't specified. 5767 if (!GlobalName) 5768 GlobalName = ".str"; 5769 // Create a global variable for this. 5770 auto GV = GenerateStringLiteral(C, llvm::GlobalValue::PrivateLinkage, *this, 5771 GlobalName, Alignment); 5772 if (Entry) 5773 *Entry = GV; 5774 5775 return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV), 5776 GV->getValueType(), Alignment); 5777 } 5778 5779 ConstantAddress CodeGenModule::GetAddrOfGlobalTemporary( 5780 const MaterializeTemporaryExpr *E, const Expr *Init) { 5781 assert((E->getStorageDuration() == SD_Static || 5782 E->getStorageDuration() == SD_Thread) && "not a global temporary"); 5783 const auto *VD = cast<VarDecl>(E->getExtendingDecl()); 5784 5785 // If we're not materializing a subobject of the temporary, keep the 5786 // cv-qualifiers from the type of the MaterializeTemporaryExpr. 5787 QualType MaterializedType = Init->getType(); 5788 if (Init == E->getSubExpr()) 5789 MaterializedType = E->getType(); 5790 5791 CharUnits Align = getContext().getTypeAlignInChars(MaterializedType); 5792 5793 auto InsertResult = MaterializedGlobalTemporaryMap.insert({E, nullptr}); 5794 if (!InsertResult.second) { 5795 // We've seen this before: either we already created it or we're in the 5796 // process of doing so. 5797 if (!InsertResult.first->second) { 5798 // We recursively re-entered this function, probably during emission of 5799 // the initializer. Create a placeholder. We'll clean this up in the 5800 // outer call, at the end of this function. 5801 llvm::Type *Type = getTypes().ConvertTypeForMem(MaterializedType); 5802 InsertResult.first->second = new llvm::GlobalVariable( 5803 getModule(), Type, false, llvm::GlobalVariable::InternalLinkage, 5804 nullptr); 5805 } 5806 return ConstantAddress(InsertResult.first->second, 5807 llvm::cast<llvm::GlobalVariable>( 5808 InsertResult.first->second->stripPointerCasts()) 5809 ->getValueType(), 5810 Align); 5811 } 5812 5813 // FIXME: If an externally-visible declaration extends multiple temporaries, 5814 // we need to give each temporary the same name in every translation unit (and 5815 // we also need to make the temporaries externally-visible). 5816 SmallString<256> Name; 5817 llvm::raw_svector_ostream Out(Name); 5818 getCXXABI().getMangleContext().mangleReferenceTemporary( 5819 VD, E->getManglingNumber(), Out); 5820 5821 APValue *Value = nullptr; 5822 if (E->getStorageDuration() == SD_Static && VD && VD->evaluateValue()) { 5823 // If the initializer of the extending declaration is a constant 5824 // initializer, we should have a cached constant initializer for this 5825 // temporary. Note that this might have a different value from the value 5826 // computed by evaluating the initializer if the surrounding constant 5827 // expression modifies the temporary. 5828 Value = E->getOrCreateValue(false); 5829 } 5830 5831 // Try evaluating it now, it might have a constant initializer. 5832 Expr::EvalResult EvalResult; 5833 if (!Value && Init->EvaluateAsRValue(EvalResult, getContext()) && 5834 !EvalResult.hasSideEffects()) 5835 Value = &EvalResult.Val; 5836 5837 LangAS AddrSpace = 5838 VD ? GetGlobalVarAddressSpace(VD) : MaterializedType.getAddressSpace(); 5839 5840 Optional<ConstantEmitter> emitter; 5841 llvm::Constant *InitialValue = nullptr; 5842 bool Constant = false; 5843 llvm::Type *Type; 5844 if (Value) { 5845 // The temporary has a constant initializer, use it. 5846 emitter.emplace(*this); 5847 InitialValue = emitter->emitForInitializer(*Value, AddrSpace, 5848 MaterializedType); 5849 Constant = isTypeConstant(MaterializedType, /*ExcludeCtor*/Value); 5850 Type = InitialValue->getType(); 5851 } else { 5852 // No initializer, the initialization will be provided when we 5853 // initialize the declaration which performed lifetime extension. 5854 Type = getTypes().ConvertTypeForMem(MaterializedType); 5855 } 5856 5857 // Create a global variable for this lifetime-extended temporary. 5858 llvm::GlobalValue::LinkageTypes Linkage = 5859 getLLVMLinkageVarDefinition(VD, Constant); 5860 if (Linkage == llvm::GlobalVariable::ExternalLinkage) { 5861 const VarDecl *InitVD; 5862 if (VD->isStaticDataMember() && VD->getAnyInitializer(InitVD) && 5863 isa<CXXRecordDecl>(InitVD->getLexicalDeclContext())) { 5864 // Temporaries defined inside a class get linkonce_odr linkage because the 5865 // class can be defined in multiple translation units. 5866 Linkage = llvm::GlobalVariable::LinkOnceODRLinkage; 5867 } else { 5868 // There is no need for this temporary to have external linkage if the 5869 // VarDecl has external linkage. 5870 Linkage = llvm::GlobalVariable::InternalLinkage; 5871 } 5872 } 5873 auto TargetAS = getContext().getTargetAddressSpace(AddrSpace); 5874 auto *GV = new llvm::GlobalVariable( 5875 getModule(), Type, Constant, Linkage, InitialValue, Name.c_str(), 5876 /*InsertBefore=*/nullptr, llvm::GlobalVariable::NotThreadLocal, TargetAS); 5877 if (emitter) emitter->finalize(GV); 5878 setGVProperties(GV, VD); 5879 if (GV->getDLLStorageClass() == llvm::GlobalVariable::DLLExportStorageClass) 5880 // The reference temporary should never be dllexport. 5881 GV->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass); 5882 GV->setAlignment(Align.getAsAlign()); 5883 if (supportsCOMDAT() && GV->isWeakForLinker()) 5884 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 5885 if (VD->getTLSKind()) 5886 setTLSMode(GV, *VD); 5887 llvm::Constant *CV = GV; 5888 if (AddrSpace != LangAS::Default) 5889 CV = getTargetCodeGenInfo().performAddrSpaceCast( 5890 *this, GV, AddrSpace, LangAS::Default, 5891 Type->getPointerTo( 5892 getContext().getTargetAddressSpace(LangAS::Default))); 5893 5894 // Update the map with the new temporary. If we created a placeholder above, 5895 // replace it with the new global now. 5896 llvm::Constant *&Entry = MaterializedGlobalTemporaryMap[E]; 5897 if (Entry) { 5898 Entry->replaceAllUsesWith( 5899 llvm::ConstantExpr::getBitCast(CV, Entry->getType())); 5900 llvm::cast<llvm::GlobalVariable>(Entry)->eraseFromParent(); 5901 } 5902 Entry = CV; 5903 5904 return ConstantAddress(CV, Type, Align); 5905 } 5906 5907 /// EmitObjCPropertyImplementations - Emit information for synthesized 5908 /// properties for an implementation. 5909 void CodeGenModule::EmitObjCPropertyImplementations(const 5910 ObjCImplementationDecl *D) { 5911 for (const auto *PID : D->property_impls()) { 5912 // Dynamic is just for type-checking. 5913 if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) { 5914 ObjCPropertyDecl *PD = PID->getPropertyDecl(); 5915 5916 // Determine which methods need to be implemented, some may have 5917 // been overridden. Note that ::isPropertyAccessor is not the method 5918 // we want, that just indicates if the decl came from a 5919 // property. What we want to know is if the method is defined in 5920 // this implementation. 5921 auto *Getter = PID->getGetterMethodDecl(); 5922 if (!Getter || Getter->isSynthesizedAccessorStub()) 5923 CodeGenFunction(*this).GenerateObjCGetter( 5924 const_cast<ObjCImplementationDecl *>(D), PID); 5925 auto *Setter = PID->getSetterMethodDecl(); 5926 if (!PD->isReadOnly() && (!Setter || Setter->isSynthesizedAccessorStub())) 5927 CodeGenFunction(*this).GenerateObjCSetter( 5928 const_cast<ObjCImplementationDecl *>(D), PID); 5929 } 5930 } 5931 } 5932 5933 static bool needsDestructMethod(ObjCImplementationDecl *impl) { 5934 const ObjCInterfaceDecl *iface = impl->getClassInterface(); 5935 for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin(); 5936 ivar; ivar = ivar->getNextIvar()) 5937 if (ivar->getType().isDestructedType()) 5938 return true; 5939 5940 return false; 5941 } 5942 5943 static bool AllTrivialInitializers(CodeGenModule &CGM, 5944 ObjCImplementationDecl *D) { 5945 CodeGenFunction CGF(CGM); 5946 for (ObjCImplementationDecl::init_iterator B = D->init_begin(), 5947 E = D->init_end(); B != E; ++B) { 5948 CXXCtorInitializer *CtorInitExp = *B; 5949 Expr *Init = CtorInitExp->getInit(); 5950 if (!CGF.isTrivialInitializer(Init)) 5951 return false; 5952 } 5953 return true; 5954 } 5955 5956 /// EmitObjCIvarInitializations - Emit information for ivar initialization 5957 /// for an implementation. 5958 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) { 5959 // We might need a .cxx_destruct even if we don't have any ivar initializers. 5960 if (needsDestructMethod(D)) { 5961 IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct"); 5962 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 5963 ObjCMethodDecl *DTORMethod = ObjCMethodDecl::Create( 5964 getContext(), D->getLocation(), D->getLocation(), cxxSelector, 5965 getContext().VoidTy, nullptr, D, 5966 /*isInstance=*/true, /*isVariadic=*/false, 5967 /*isPropertyAccessor=*/true, /*isSynthesizedAccessorStub=*/false, 5968 /*isImplicitlyDeclared=*/true, 5969 /*isDefined=*/false, ObjCMethodDecl::Required); 5970 D->addInstanceMethod(DTORMethod); 5971 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false); 5972 D->setHasDestructors(true); 5973 } 5974 5975 // If the implementation doesn't have any ivar initializers, we don't need 5976 // a .cxx_construct. 5977 if (D->getNumIvarInitializers() == 0 || 5978 AllTrivialInitializers(*this, D)) 5979 return; 5980 5981 IdentifierInfo *II = &getContext().Idents.get(".cxx_construct"); 5982 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 5983 // The constructor returns 'self'. 5984 ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create( 5985 getContext(), D->getLocation(), D->getLocation(), cxxSelector, 5986 getContext().getObjCIdType(), nullptr, D, /*isInstance=*/true, 5987 /*isVariadic=*/false, 5988 /*isPropertyAccessor=*/true, /*isSynthesizedAccessorStub=*/false, 5989 /*isImplicitlyDeclared=*/true, 5990 /*isDefined=*/false, ObjCMethodDecl::Required); 5991 D->addInstanceMethod(CTORMethod); 5992 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true); 5993 D->setHasNonZeroConstructors(true); 5994 } 5995 5996 // EmitLinkageSpec - Emit all declarations in a linkage spec. 5997 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) { 5998 if (LSD->getLanguage() != LinkageSpecDecl::lang_c && 5999 LSD->getLanguage() != LinkageSpecDecl::lang_cxx) { 6000 ErrorUnsupported(LSD, "linkage spec"); 6001 return; 6002 } 6003 6004 EmitDeclContext(LSD); 6005 } 6006 6007 void CodeGenModule::EmitDeclContext(const DeclContext *DC) { 6008 for (auto *I : DC->decls()) { 6009 // Unlike other DeclContexts, the contents of an ObjCImplDecl at TU scope 6010 // are themselves considered "top-level", so EmitTopLevelDecl on an 6011 // ObjCImplDecl does not recursively visit them. We need to do that in 6012 // case they're nested inside another construct (LinkageSpecDecl / 6013 // ExportDecl) that does stop them from being considered "top-level". 6014 if (auto *OID = dyn_cast<ObjCImplDecl>(I)) { 6015 for (auto *M : OID->methods()) 6016 EmitTopLevelDecl(M); 6017 } 6018 6019 EmitTopLevelDecl(I); 6020 } 6021 } 6022 6023 /// EmitTopLevelDecl - Emit code for a single top level declaration. 6024 void CodeGenModule::EmitTopLevelDecl(Decl *D) { 6025 // Ignore dependent declarations. 6026 if (D->isTemplated()) 6027 return; 6028 6029 // Consteval function shouldn't be emitted. 6030 if (auto *FD = dyn_cast<FunctionDecl>(D)) 6031 if (FD->isConsteval()) 6032 return; 6033 6034 switch (D->getKind()) { 6035 case Decl::CXXConversion: 6036 case Decl::CXXMethod: 6037 case Decl::Function: 6038 EmitGlobal(cast<FunctionDecl>(D)); 6039 // Always provide some coverage mapping 6040 // even for the functions that aren't emitted. 6041 AddDeferredUnusedCoverageMapping(D); 6042 break; 6043 6044 case Decl::CXXDeductionGuide: 6045 // Function-like, but does not result in code emission. 6046 break; 6047 6048 case Decl::Var: 6049 case Decl::Decomposition: 6050 case Decl::VarTemplateSpecialization: 6051 EmitGlobal(cast<VarDecl>(D)); 6052 if (auto *DD = dyn_cast<DecompositionDecl>(D)) 6053 for (auto *B : DD->bindings()) 6054 if (auto *HD = B->getHoldingVar()) 6055 EmitGlobal(HD); 6056 break; 6057 6058 // Indirect fields from global anonymous structs and unions can be 6059 // ignored; only the actual variable requires IR gen support. 6060 case Decl::IndirectField: 6061 break; 6062 6063 // C++ Decls 6064 case Decl::Namespace: 6065 EmitDeclContext(cast<NamespaceDecl>(D)); 6066 break; 6067 case Decl::ClassTemplateSpecialization: { 6068 const auto *Spec = cast<ClassTemplateSpecializationDecl>(D); 6069 if (CGDebugInfo *DI = getModuleDebugInfo()) 6070 if (Spec->getSpecializationKind() == 6071 TSK_ExplicitInstantiationDefinition && 6072 Spec->hasDefinition()) 6073 DI->completeTemplateDefinition(*Spec); 6074 } LLVM_FALLTHROUGH; 6075 case Decl::CXXRecord: { 6076 CXXRecordDecl *CRD = cast<CXXRecordDecl>(D); 6077 if (CGDebugInfo *DI = getModuleDebugInfo()) { 6078 if (CRD->hasDefinition()) 6079 DI->EmitAndRetainType(getContext().getRecordType(cast<RecordDecl>(D))); 6080 if (auto *ES = D->getASTContext().getExternalSource()) 6081 if (ES->hasExternalDefinitions(D) == ExternalASTSource::EK_Never) 6082 DI->completeUnusedClass(*CRD); 6083 } 6084 // Emit any static data members, they may be definitions. 6085 for (auto *I : CRD->decls()) 6086 if (isa<VarDecl>(I) || isa<CXXRecordDecl>(I)) 6087 EmitTopLevelDecl(I); 6088 break; 6089 } 6090 // No code generation needed. 6091 case Decl::UsingShadow: 6092 case Decl::ClassTemplate: 6093 case Decl::VarTemplate: 6094 case Decl::Concept: 6095 case Decl::VarTemplatePartialSpecialization: 6096 case Decl::FunctionTemplate: 6097 case Decl::TypeAliasTemplate: 6098 case Decl::Block: 6099 case Decl::Empty: 6100 case Decl::Binding: 6101 break; 6102 case Decl::Using: // using X; [C++] 6103 if (CGDebugInfo *DI = getModuleDebugInfo()) 6104 DI->EmitUsingDecl(cast<UsingDecl>(*D)); 6105 break; 6106 case Decl::UsingEnum: // using enum X; [C++] 6107 if (CGDebugInfo *DI = getModuleDebugInfo()) 6108 DI->EmitUsingEnumDecl(cast<UsingEnumDecl>(*D)); 6109 break; 6110 case Decl::NamespaceAlias: 6111 if (CGDebugInfo *DI = getModuleDebugInfo()) 6112 DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(*D)); 6113 break; 6114 case Decl::UsingDirective: // using namespace X; [C++] 6115 if (CGDebugInfo *DI = getModuleDebugInfo()) 6116 DI->EmitUsingDirective(cast<UsingDirectiveDecl>(*D)); 6117 break; 6118 case Decl::CXXConstructor: 6119 getCXXABI().EmitCXXConstructors(cast<CXXConstructorDecl>(D)); 6120 break; 6121 case Decl::CXXDestructor: 6122 getCXXABI().EmitCXXDestructors(cast<CXXDestructorDecl>(D)); 6123 break; 6124 6125 case Decl::StaticAssert: 6126 // Nothing to do. 6127 break; 6128 6129 // Objective-C Decls 6130 6131 // Forward declarations, no (immediate) code generation. 6132 case Decl::ObjCInterface: 6133 case Decl::ObjCCategory: 6134 break; 6135 6136 case Decl::ObjCProtocol: { 6137 auto *Proto = cast<ObjCProtocolDecl>(D); 6138 if (Proto->isThisDeclarationADefinition()) 6139 ObjCRuntime->GenerateProtocol(Proto); 6140 break; 6141 } 6142 6143 case Decl::ObjCCategoryImpl: 6144 // Categories have properties but don't support synthesize so we 6145 // can ignore them here. 6146 ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D)); 6147 break; 6148 6149 case Decl::ObjCImplementation: { 6150 auto *OMD = cast<ObjCImplementationDecl>(D); 6151 EmitObjCPropertyImplementations(OMD); 6152 EmitObjCIvarInitializations(OMD); 6153 ObjCRuntime->GenerateClass(OMD); 6154 // Emit global variable debug information. 6155 if (CGDebugInfo *DI = getModuleDebugInfo()) 6156 if (getCodeGenOpts().hasReducedDebugInfo()) 6157 DI->getOrCreateInterfaceType(getContext().getObjCInterfaceType( 6158 OMD->getClassInterface()), OMD->getLocation()); 6159 break; 6160 } 6161 case Decl::ObjCMethod: { 6162 auto *OMD = cast<ObjCMethodDecl>(D); 6163 // If this is not a prototype, emit the body. 6164 if (OMD->getBody()) 6165 CodeGenFunction(*this).GenerateObjCMethod(OMD); 6166 break; 6167 } 6168 case Decl::ObjCCompatibleAlias: 6169 ObjCRuntime->RegisterAlias(cast<ObjCCompatibleAliasDecl>(D)); 6170 break; 6171 6172 case Decl::PragmaComment: { 6173 const auto *PCD = cast<PragmaCommentDecl>(D); 6174 switch (PCD->getCommentKind()) { 6175 case PCK_Unknown: 6176 llvm_unreachable("unexpected pragma comment kind"); 6177 case PCK_Linker: 6178 AppendLinkerOptions(PCD->getArg()); 6179 break; 6180 case PCK_Lib: 6181 AddDependentLib(PCD->getArg()); 6182 break; 6183 case PCK_Compiler: 6184 case PCK_ExeStr: 6185 case PCK_User: 6186 break; // We ignore all of these. 6187 } 6188 break; 6189 } 6190 6191 case Decl::PragmaDetectMismatch: { 6192 const auto *PDMD = cast<PragmaDetectMismatchDecl>(D); 6193 AddDetectMismatch(PDMD->getName(), PDMD->getValue()); 6194 break; 6195 } 6196 6197 case Decl::LinkageSpec: 6198 EmitLinkageSpec(cast<LinkageSpecDecl>(D)); 6199 break; 6200 6201 case Decl::FileScopeAsm: { 6202 // File-scope asm is ignored during device-side CUDA compilation. 6203 if (LangOpts.CUDA && LangOpts.CUDAIsDevice) 6204 break; 6205 // File-scope asm is ignored during device-side OpenMP compilation. 6206 if (LangOpts.OpenMPIsDevice) 6207 break; 6208 // File-scope asm is ignored during device-side SYCL compilation. 6209 if (LangOpts.SYCLIsDevice) 6210 break; 6211 auto *AD = cast<FileScopeAsmDecl>(D); 6212 getModule().appendModuleInlineAsm(AD->getAsmString()->getString()); 6213 break; 6214 } 6215 6216 case Decl::Import: { 6217 auto *Import = cast<ImportDecl>(D); 6218 6219 // If we've already imported this module, we're done. 6220 if (!ImportedModules.insert(Import->getImportedModule())) 6221 break; 6222 6223 // Emit debug information for direct imports. 6224 if (!Import->getImportedOwningModule()) { 6225 if (CGDebugInfo *DI = getModuleDebugInfo()) 6226 DI->EmitImportDecl(*Import); 6227 } 6228 6229 // Find all of the submodules and emit the module initializers. 6230 llvm::SmallPtrSet<clang::Module *, 16> Visited; 6231 SmallVector<clang::Module *, 16> Stack; 6232 Visited.insert(Import->getImportedModule()); 6233 Stack.push_back(Import->getImportedModule()); 6234 6235 while (!Stack.empty()) { 6236 clang::Module *Mod = Stack.pop_back_val(); 6237 if (!EmittedModuleInitializers.insert(Mod).second) 6238 continue; 6239 6240 for (auto *D : Context.getModuleInitializers(Mod)) 6241 EmitTopLevelDecl(D); 6242 6243 // Visit the submodules of this module. 6244 for (clang::Module::submodule_iterator Sub = Mod->submodule_begin(), 6245 SubEnd = Mod->submodule_end(); 6246 Sub != SubEnd; ++Sub) { 6247 // Skip explicit children; they need to be explicitly imported to emit 6248 // the initializers. 6249 if ((*Sub)->IsExplicit) 6250 continue; 6251 6252 if (Visited.insert(*Sub).second) 6253 Stack.push_back(*Sub); 6254 } 6255 } 6256 break; 6257 } 6258 6259 case Decl::Export: 6260 EmitDeclContext(cast<ExportDecl>(D)); 6261 break; 6262 6263 case Decl::OMPThreadPrivate: 6264 EmitOMPThreadPrivateDecl(cast<OMPThreadPrivateDecl>(D)); 6265 break; 6266 6267 case Decl::OMPAllocate: 6268 EmitOMPAllocateDecl(cast<OMPAllocateDecl>(D)); 6269 break; 6270 6271 case Decl::OMPDeclareReduction: 6272 EmitOMPDeclareReduction(cast<OMPDeclareReductionDecl>(D)); 6273 break; 6274 6275 case Decl::OMPDeclareMapper: 6276 EmitOMPDeclareMapper(cast<OMPDeclareMapperDecl>(D)); 6277 break; 6278 6279 case Decl::OMPRequires: 6280 EmitOMPRequiresDecl(cast<OMPRequiresDecl>(D)); 6281 break; 6282 6283 case Decl::Typedef: 6284 case Decl::TypeAlias: // using foo = bar; [C++11] 6285 if (CGDebugInfo *DI = getModuleDebugInfo()) 6286 DI->EmitAndRetainType( 6287 getContext().getTypedefType(cast<TypedefNameDecl>(D))); 6288 break; 6289 6290 case Decl::Record: 6291 if (CGDebugInfo *DI = getModuleDebugInfo()) 6292 if (cast<RecordDecl>(D)->getDefinition()) 6293 DI->EmitAndRetainType(getContext().getRecordType(cast<RecordDecl>(D))); 6294 break; 6295 6296 case Decl::Enum: 6297 if (CGDebugInfo *DI = getModuleDebugInfo()) 6298 if (cast<EnumDecl>(D)->getDefinition()) 6299 DI->EmitAndRetainType(getContext().getEnumType(cast<EnumDecl>(D))); 6300 break; 6301 6302 default: 6303 // Make sure we handled everything we should, every other kind is a 6304 // non-top-level decl. FIXME: Would be nice to have an isTopLevelDeclKind 6305 // function. Need to recode Decl::Kind to do that easily. 6306 assert(isa<TypeDecl>(D) && "Unsupported decl kind"); 6307 break; 6308 } 6309 } 6310 6311 void CodeGenModule::AddDeferredUnusedCoverageMapping(Decl *D) { 6312 // Do we need to generate coverage mapping? 6313 if (!CodeGenOpts.CoverageMapping) 6314 return; 6315 switch (D->getKind()) { 6316 case Decl::CXXConversion: 6317 case Decl::CXXMethod: 6318 case Decl::Function: 6319 case Decl::ObjCMethod: 6320 case Decl::CXXConstructor: 6321 case Decl::CXXDestructor: { 6322 if (!cast<FunctionDecl>(D)->doesThisDeclarationHaveABody()) 6323 break; 6324 SourceManager &SM = getContext().getSourceManager(); 6325 if (LimitedCoverage && SM.getMainFileID() != SM.getFileID(D->getBeginLoc())) 6326 break; 6327 auto I = DeferredEmptyCoverageMappingDecls.find(D); 6328 if (I == DeferredEmptyCoverageMappingDecls.end()) 6329 DeferredEmptyCoverageMappingDecls[D] = true; 6330 break; 6331 } 6332 default: 6333 break; 6334 }; 6335 } 6336 6337 void CodeGenModule::ClearUnusedCoverageMapping(const Decl *D) { 6338 // Do we need to generate coverage mapping? 6339 if (!CodeGenOpts.CoverageMapping) 6340 return; 6341 if (const auto *Fn = dyn_cast<FunctionDecl>(D)) { 6342 if (Fn->isTemplateInstantiation()) 6343 ClearUnusedCoverageMapping(Fn->getTemplateInstantiationPattern()); 6344 } 6345 auto I = DeferredEmptyCoverageMappingDecls.find(D); 6346 if (I == DeferredEmptyCoverageMappingDecls.end()) 6347 DeferredEmptyCoverageMappingDecls[D] = false; 6348 else 6349 I->second = false; 6350 } 6351 6352 void CodeGenModule::EmitDeferredUnusedCoverageMappings() { 6353 // We call takeVector() here to avoid use-after-free. 6354 // FIXME: DeferredEmptyCoverageMappingDecls is getting mutated because 6355 // we deserialize function bodies to emit coverage info for them, and that 6356 // deserializes more declarations. How should we handle that case? 6357 for (const auto &Entry : DeferredEmptyCoverageMappingDecls.takeVector()) { 6358 if (!Entry.second) 6359 continue; 6360 const Decl *D = Entry.first; 6361 switch (D->getKind()) { 6362 case Decl::CXXConversion: 6363 case Decl::CXXMethod: 6364 case Decl::Function: 6365 case Decl::ObjCMethod: { 6366 CodeGenPGO PGO(*this); 6367 GlobalDecl GD(cast<FunctionDecl>(D)); 6368 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 6369 getFunctionLinkage(GD)); 6370 break; 6371 } 6372 case Decl::CXXConstructor: { 6373 CodeGenPGO PGO(*this); 6374 GlobalDecl GD(cast<CXXConstructorDecl>(D), Ctor_Base); 6375 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 6376 getFunctionLinkage(GD)); 6377 break; 6378 } 6379 case Decl::CXXDestructor: { 6380 CodeGenPGO PGO(*this); 6381 GlobalDecl GD(cast<CXXDestructorDecl>(D), Dtor_Base); 6382 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 6383 getFunctionLinkage(GD)); 6384 break; 6385 } 6386 default: 6387 break; 6388 }; 6389 } 6390 } 6391 6392 void CodeGenModule::EmitMainVoidAlias() { 6393 // In order to transition away from "__original_main" gracefully, emit an 6394 // alias for "main" in the no-argument case so that libc can detect when 6395 // new-style no-argument main is in used. 6396 if (llvm::Function *F = getModule().getFunction("main")) { 6397 if (!F->isDeclaration() && F->arg_size() == 0 && !F->isVarArg() && 6398 F->getReturnType()->isIntegerTy(Context.getTargetInfo().getIntWidth())) { 6399 auto *GA = llvm::GlobalAlias::create("__main_void", F); 6400 GA->setVisibility(llvm::GlobalValue::HiddenVisibility); 6401 } 6402 } 6403 } 6404 6405 /// Turns the given pointer into a constant. 6406 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context, 6407 const void *Ptr) { 6408 uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr); 6409 llvm::Type *i64 = llvm::Type::getInt64Ty(Context); 6410 return llvm::ConstantInt::get(i64, PtrInt); 6411 } 6412 6413 static void EmitGlobalDeclMetadata(CodeGenModule &CGM, 6414 llvm::NamedMDNode *&GlobalMetadata, 6415 GlobalDecl D, 6416 llvm::GlobalValue *Addr) { 6417 if (!GlobalMetadata) 6418 GlobalMetadata = 6419 CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs"); 6420 6421 // TODO: should we report variant information for ctors/dtors? 6422 llvm::Metadata *Ops[] = {llvm::ConstantAsMetadata::get(Addr), 6423 llvm::ConstantAsMetadata::get(GetPointerConstant( 6424 CGM.getLLVMContext(), D.getDecl()))}; 6425 GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops)); 6426 } 6427 6428 bool CodeGenModule::CheckAndReplaceExternCIFuncs(llvm::GlobalValue *Elem, 6429 llvm::GlobalValue *CppFunc) { 6430 // Store the list of ifuncs we need to replace uses in. 6431 llvm::SmallVector<llvm::GlobalIFunc *> IFuncs; 6432 // List of ConstantExprs that we should be able to delete when we're done 6433 // here. 6434 llvm::SmallVector<llvm::ConstantExpr *> CEs; 6435 6436 // It isn't valid to replace the extern-C ifuncs if all we find is itself! 6437 if (Elem == CppFunc) 6438 return false; 6439 6440 // First make sure that all users of this are ifuncs (or ifuncs via a 6441 // bitcast), and collect the list of ifuncs and CEs so we can work on them 6442 // later. 6443 for (llvm::User *User : Elem->users()) { 6444 // Users can either be a bitcast ConstExpr that is used by the ifuncs, OR an 6445 // ifunc directly. In any other case, just give up, as we don't know what we 6446 // could break by changing those. 6447 if (auto *ConstExpr = dyn_cast<llvm::ConstantExpr>(User)) { 6448 if (ConstExpr->getOpcode() != llvm::Instruction::BitCast) 6449 return false; 6450 6451 for (llvm::User *CEUser : ConstExpr->users()) { 6452 if (auto *IFunc = dyn_cast<llvm::GlobalIFunc>(CEUser)) { 6453 IFuncs.push_back(IFunc); 6454 } else { 6455 return false; 6456 } 6457 } 6458 CEs.push_back(ConstExpr); 6459 } else if (auto *IFunc = dyn_cast<llvm::GlobalIFunc>(User)) { 6460 IFuncs.push_back(IFunc); 6461 } else { 6462 // This user is one we don't know how to handle, so fail redirection. This 6463 // will result in an ifunc retaining a resolver name that will ultimately 6464 // fail to be resolved to a defined function. 6465 return false; 6466 } 6467 } 6468 6469 // Now we know this is a valid case where we can do this alias replacement, we 6470 // need to remove all of the references to Elem (and the bitcasts!) so we can 6471 // delete it. 6472 for (llvm::GlobalIFunc *IFunc : IFuncs) 6473 IFunc->setResolver(nullptr); 6474 for (llvm::ConstantExpr *ConstExpr : CEs) 6475 ConstExpr->destroyConstant(); 6476 6477 // We should now be out of uses for the 'old' version of this function, so we 6478 // can erase it as well. 6479 Elem->eraseFromParent(); 6480 6481 for (llvm::GlobalIFunc *IFunc : IFuncs) { 6482 // The type of the resolver is always just a function-type that returns the 6483 // type of the IFunc, so create that here. If the type of the actual 6484 // resolver doesn't match, it just gets bitcast to the right thing. 6485 auto *ResolverTy = 6486 llvm::FunctionType::get(IFunc->getType(), /*isVarArg*/ false); 6487 llvm::Constant *Resolver = GetOrCreateLLVMFunction( 6488 CppFunc->getName(), ResolverTy, {}, /*ForVTable*/ false); 6489 IFunc->setResolver(Resolver); 6490 } 6491 return true; 6492 } 6493 6494 /// For each function which is declared within an extern "C" region and marked 6495 /// as 'used', but has internal linkage, create an alias from the unmangled 6496 /// name to the mangled name if possible. People expect to be able to refer 6497 /// to such functions with an unmangled name from inline assembly within the 6498 /// same translation unit. 6499 void CodeGenModule::EmitStaticExternCAliases() { 6500 if (!getTargetCodeGenInfo().shouldEmitStaticExternCAliases()) 6501 return; 6502 for (auto &I : StaticExternCValues) { 6503 IdentifierInfo *Name = I.first; 6504 llvm::GlobalValue *Val = I.second; 6505 6506 // If Val is null, that implies there were multiple declarations that each 6507 // had a claim to the unmangled name. In this case, generation of the alias 6508 // is suppressed. See CodeGenModule::MaybeHandleStaticInExternC. 6509 if (!Val) 6510 break; 6511 6512 llvm::GlobalValue *ExistingElem = 6513 getModule().getNamedValue(Name->getName()); 6514 6515 // If there is either not something already by this name, or we were able to 6516 // replace all uses from IFuncs, create the alias. 6517 if (!ExistingElem || CheckAndReplaceExternCIFuncs(ExistingElem, Val)) 6518 addCompilerUsedGlobal(llvm::GlobalAlias::create(Name->getName(), Val)); 6519 } 6520 } 6521 6522 bool CodeGenModule::lookupRepresentativeDecl(StringRef MangledName, 6523 GlobalDecl &Result) const { 6524 auto Res = Manglings.find(MangledName); 6525 if (Res == Manglings.end()) 6526 return false; 6527 Result = Res->getValue(); 6528 return true; 6529 } 6530 6531 /// Emits metadata nodes associating all the global values in the 6532 /// current module with the Decls they came from. This is useful for 6533 /// projects using IR gen as a subroutine. 6534 /// 6535 /// Since there's currently no way to associate an MDNode directly 6536 /// with an llvm::GlobalValue, we create a global named metadata 6537 /// with the name 'clang.global.decl.ptrs'. 6538 void CodeGenModule::EmitDeclMetadata() { 6539 llvm::NamedMDNode *GlobalMetadata = nullptr; 6540 6541 for (auto &I : MangledDeclNames) { 6542 llvm::GlobalValue *Addr = getModule().getNamedValue(I.second); 6543 // Some mangled names don't necessarily have an associated GlobalValue 6544 // in this module, e.g. if we mangled it for DebugInfo. 6545 if (Addr) 6546 EmitGlobalDeclMetadata(*this, GlobalMetadata, I.first, Addr); 6547 } 6548 } 6549 6550 /// Emits metadata nodes for all the local variables in the current 6551 /// function. 6552 void CodeGenFunction::EmitDeclMetadata() { 6553 if (LocalDeclMap.empty()) return; 6554 6555 llvm::LLVMContext &Context = getLLVMContext(); 6556 6557 // Find the unique metadata ID for this name. 6558 unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr"); 6559 6560 llvm::NamedMDNode *GlobalMetadata = nullptr; 6561 6562 for (auto &I : LocalDeclMap) { 6563 const Decl *D = I.first; 6564 llvm::Value *Addr = I.second.getPointer(); 6565 if (auto *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) { 6566 llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D); 6567 Alloca->setMetadata( 6568 DeclPtrKind, llvm::MDNode::get( 6569 Context, llvm::ValueAsMetadata::getConstant(DAddr))); 6570 } else if (auto *GV = dyn_cast<llvm::GlobalValue>(Addr)) { 6571 GlobalDecl GD = GlobalDecl(cast<VarDecl>(D)); 6572 EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV); 6573 } 6574 } 6575 } 6576 6577 void CodeGenModule::EmitVersionIdentMetadata() { 6578 llvm::NamedMDNode *IdentMetadata = 6579 TheModule.getOrInsertNamedMetadata("llvm.ident"); 6580 std::string Version = getClangFullVersion(); 6581 llvm::LLVMContext &Ctx = TheModule.getContext(); 6582 6583 llvm::Metadata *IdentNode[] = {llvm::MDString::get(Ctx, Version)}; 6584 IdentMetadata->addOperand(llvm::MDNode::get(Ctx, IdentNode)); 6585 } 6586 6587 void CodeGenModule::EmitCommandLineMetadata() { 6588 llvm::NamedMDNode *CommandLineMetadata = 6589 TheModule.getOrInsertNamedMetadata("llvm.commandline"); 6590 std::string CommandLine = getCodeGenOpts().RecordCommandLine; 6591 llvm::LLVMContext &Ctx = TheModule.getContext(); 6592 6593 llvm::Metadata *CommandLineNode[] = {llvm::MDString::get(Ctx, CommandLine)}; 6594 CommandLineMetadata->addOperand(llvm::MDNode::get(Ctx, CommandLineNode)); 6595 } 6596 6597 void CodeGenModule::EmitCoverageFile() { 6598 if (getCodeGenOpts().CoverageDataFile.empty() && 6599 getCodeGenOpts().CoverageNotesFile.empty()) 6600 return; 6601 6602 llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu"); 6603 if (!CUNode) 6604 return; 6605 6606 llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov"); 6607 llvm::LLVMContext &Ctx = TheModule.getContext(); 6608 auto *CoverageDataFile = 6609 llvm::MDString::get(Ctx, getCodeGenOpts().CoverageDataFile); 6610 auto *CoverageNotesFile = 6611 llvm::MDString::get(Ctx, getCodeGenOpts().CoverageNotesFile); 6612 for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) { 6613 llvm::MDNode *CU = CUNode->getOperand(i); 6614 llvm::Metadata *Elts[] = {CoverageNotesFile, CoverageDataFile, CU}; 6615 GCov->addOperand(llvm::MDNode::get(Ctx, Elts)); 6616 } 6617 } 6618 6619 llvm::Constant *CodeGenModule::GetAddrOfRTTIDescriptor(QualType Ty, 6620 bool ForEH) { 6621 // Return a bogus pointer if RTTI is disabled, unless it's for EH. 6622 // FIXME: should we even be calling this method if RTTI is disabled 6623 // and it's not for EH? 6624 if ((!ForEH && !getLangOpts().RTTI) || getLangOpts().CUDAIsDevice || 6625 (getLangOpts().OpenMP && getLangOpts().OpenMPIsDevice && 6626 getTriple().isNVPTX())) 6627 return llvm::Constant::getNullValue(Int8PtrTy); 6628 6629 if (ForEH && Ty->isObjCObjectPointerType() && 6630 LangOpts.ObjCRuntime.isGNUFamily()) 6631 return ObjCRuntime->GetEHType(Ty); 6632 6633 return getCXXABI().getAddrOfRTTIDescriptor(Ty); 6634 } 6635 6636 void CodeGenModule::EmitOMPThreadPrivateDecl(const OMPThreadPrivateDecl *D) { 6637 // Do not emit threadprivates in simd-only mode. 6638 if (LangOpts.OpenMP && LangOpts.OpenMPSimd) 6639 return; 6640 for (auto RefExpr : D->varlists()) { 6641 auto *VD = cast<VarDecl>(cast<DeclRefExpr>(RefExpr)->getDecl()); 6642 bool PerformInit = 6643 VD->getAnyInitializer() && 6644 !VD->getAnyInitializer()->isConstantInitializer(getContext(), 6645 /*ForRef=*/false); 6646 6647 Address Addr(GetAddrOfGlobalVar(VD), 6648 getTypes().ConvertTypeForMem(VD->getType()), 6649 getContext().getDeclAlign(VD)); 6650 if (auto InitFunction = getOpenMPRuntime().emitThreadPrivateVarDefinition( 6651 VD, Addr, RefExpr->getBeginLoc(), PerformInit)) 6652 CXXGlobalInits.push_back(InitFunction); 6653 } 6654 } 6655 6656 llvm::Metadata * 6657 CodeGenModule::CreateMetadataIdentifierImpl(QualType T, MetadataTypeMap &Map, 6658 StringRef Suffix) { 6659 if (auto *FnType = T->getAs<FunctionProtoType>()) 6660 T = getContext().getFunctionType( 6661 FnType->getReturnType(), FnType->getParamTypes(), 6662 FnType->getExtProtoInfo().withExceptionSpec(EST_None)); 6663 6664 llvm::Metadata *&InternalId = Map[T.getCanonicalType()]; 6665 if (InternalId) 6666 return InternalId; 6667 6668 if (isExternallyVisible(T->getLinkage())) { 6669 std::string OutName; 6670 llvm::raw_string_ostream Out(OutName); 6671 getCXXABI().getMangleContext().mangleTypeName(T, Out); 6672 Out << Suffix; 6673 6674 InternalId = llvm::MDString::get(getLLVMContext(), Out.str()); 6675 } else { 6676 InternalId = llvm::MDNode::getDistinct(getLLVMContext(), 6677 llvm::ArrayRef<llvm::Metadata *>()); 6678 } 6679 6680 return InternalId; 6681 } 6682 6683 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierForType(QualType T) { 6684 return CreateMetadataIdentifierImpl(T, MetadataIdMap, ""); 6685 } 6686 6687 llvm::Metadata * 6688 CodeGenModule::CreateMetadataIdentifierForVirtualMemPtrType(QualType T) { 6689 return CreateMetadataIdentifierImpl(T, VirtualMetadataIdMap, ".virtual"); 6690 } 6691 6692 // Generalize pointer types to a void pointer with the qualifiers of the 6693 // originally pointed-to type, e.g. 'const char *' and 'char * const *' 6694 // generalize to 'const void *' while 'char *' and 'const char **' generalize to 6695 // 'void *'. 6696 static QualType GeneralizeType(ASTContext &Ctx, QualType Ty) { 6697 if (!Ty->isPointerType()) 6698 return Ty; 6699 6700 return Ctx.getPointerType( 6701 QualType(Ctx.VoidTy).withCVRQualifiers( 6702 Ty->getPointeeType().getCVRQualifiers())); 6703 } 6704 6705 // Apply type generalization to a FunctionType's return and argument types 6706 static QualType GeneralizeFunctionType(ASTContext &Ctx, QualType Ty) { 6707 if (auto *FnType = Ty->getAs<FunctionProtoType>()) { 6708 SmallVector<QualType, 8> GeneralizedParams; 6709 for (auto &Param : FnType->param_types()) 6710 GeneralizedParams.push_back(GeneralizeType(Ctx, Param)); 6711 6712 return Ctx.getFunctionType( 6713 GeneralizeType(Ctx, FnType->getReturnType()), 6714 GeneralizedParams, FnType->getExtProtoInfo()); 6715 } 6716 6717 if (auto *FnType = Ty->getAs<FunctionNoProtoType>()) 6718 return Ctx.getFunctionNoProtoType( 6719 GeneralizeType(Ctx, FnType->getReturnType())); 6720 6721 llvm_unreachable("Encountered unknown FunctionType"); 6722 } 6723 6724 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierGeneralized(QualType T) { 6725 return CreateMetadataIdentifierImpl(GeneralizeFunctionType(getContext(), T), 6726 GeneralizedMetadataIdMap, ".generalized"); 6727 } 6728 6729 /// Returns whether this module needs the "all-vtables" type identifier. 6730 bool CodeGenModule::NeedAllVtablesTypeId() const { 6731 // Returns true if at least one of vtable-based CFI checkers is enabled and 6732 // is not in the trapping mode. 6733 return ((LangOpts.Sanitize.has(SanitizerKind::CFIVCall) && 6734 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIVCall)) || 6735 (LangOpts.Sanitize.has(SanitizerKind::CFINVCall) && 6736 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFINVCall)) || 6737 (LangOpts.Sanitize.has(SanitizerKind::CFIDerivedCast) && 6738 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIDerivedCast)) || 6739 (LangOpts.Sanitize.has(SanitizerKind::CFIUnrelatedCast) && 6740 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIUnrelatedCast))); 6741 } 6742 6743 void CodeGenModule::AddVTableTypeMetadata(llvm::GlobalVariable *VTable, 6744 CharUnits Offset, 6745 const CXXRecordDecl *RD) { 6746 llvm::Metadata *MD = 6747 CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0)); 6748 VTable->addTypeMetadata(Offset.getQuantity(), MD); 6749 6750 if (CodeGenOpts.SanitizeCfiCrossDso) 6751 if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD)) 6752 VTable->addTypeMetadata(Offset.getQuantity(), 6753 llvm::ConstantAsMetadata::get(CrossDsoTypeId)); 6754 6755 if (NeedAllVtablesTypeId()) { 6756 llvm::Metadata *MD = llvm::MDString::get(getLLVMContext(), "all-vtables"); 6757 VTable->addTypeMetadata(Offset.getQuantity(), MD); 6758 } 6759 } 6760 6761 llvm::SanitizerStatReport &CodeGenModule::getSanStats() { 6762 if (!SanStats) 6763 SanStats = std::make_unique<llvm::SanitizerStatReport>(&getModule()); 6764 6765 return *SanStats; 6766 } 6767 6768 llvm::Value * 6769 CodeGenModule::createOpenCLIntToSamplerConversion(const Expr *E, 6770 CodeGenFunction &CGF) { 6771 llvm::Constant *C = ConstantEmitter(CGF).emitAbstract(E, E->getType()); 6772 auto *SamplerT = getOpenCLRuntime().getSamplerType(E->getType().getTypePtr()); 6773 auto *FTy = llvm::FunctionType::get(SamplerT, {C->getType()}, false); 6774 auto *Call = CGF.EmitRuntimeCall( 6775 CreateRuntimeFunction(FTy, "__translate_sampler_initializer"), {C}); 6776 return Call; 6777 } 6778 6779 CharUnits CodeGenModule::getNaturalPointeeTypeAlignment( 6780 QualType T, LValueBaseInfo *BaseInfo, TBAAAccessInfo *TBAAInfo) { 6781 return getNaturalTypeAlignment(T->getPointeeType(), BaseInfo, TBAAInfo, 6782 /* forPointeeType= */ true); 6783 } 6784 6785 CharUnits CodeGenModule::getNaturalTypeAlignment(QualType T, 6786 LValueBaseInfo *BaseInfo, 6787 TBAAAccessInfo *TBAAInfo, 6788 bool forPointeeType) { 6789 if (TBAAInfo) 6790 *TBAAInfo = getTBAAAccessInfo(T); 6791 6792 // FIXME: This duplicates logic in ASTContext::getTypeAlignIfKnown. But 6793 // that doesn't return the information we need to compute BaseInfo. 6794 6795 // Honor alignment typedef attributes even on incomplete types. 6796 // We also honor them straight for C++ class types, even as pointees; 6797 // there's an expressivity gap here. 6798 if (auto TT = T->getAs<TypedefType>()) { 6799 if (auto Align = TT->getDecl()->getMaxAlignment()) { 6800 if (BaseInfo) 6801 *BaseInfo = LValueBaseInfo(AlignmentSource::AttributedType); 6802 return getContext().toCharUnitsFromBits(Align); 6803 } 6804 } 6805 6806 bool AlignForArray = T->isArrayType(); 6807 6808 // Analyze the base element type, so we don't get confused by incomplete 6809 // array types. 6810 T = getContext().getBaseElementType(T); 6811 6812 if (T->isIncompleteType()) { 6813 // We could try to replicate the logic from 6814 // ASTContext::getTypeAlignIfKnown, but nothing uses the alignment if the 6815 // type is incomplete, so it's impossible to test. We could try to reuse 6816 // getTypeAlignIfKnown, but that doesn't return the information we need 6817 // to set BaseInfo. So just ignore the possibility that the alignment is 6818 // greater than one. 6819 if (BaseInfo) 6820 *BaseInfo = LValueBaseInfo(AlignmentSource::Type); 6821 return CharUnits::One(); 6822 } 6823 6824 if (BaseInfo) 6825 *BaseInfo = LValueBaseInfo(AlignmentSource::Type); 6826 6827 CharUnits Alignment; 6828 const CXXRecordDecl *RD; 6829 if (T.getQualifiers().hasUnaligned()) { 6830 Alignment = CharUnits::One(); 6831 } else if (forPointeeType && !AlignForArray && 6832 (RD = T->getAsCXXRecordDecl())) { 6833 // For C++ class pointees, we don't know whether we're pointing at a 6834 // base or a complete object, so we generally need to use the 6835 // non-virtual alignment. 6836 Alignment = getClassPointerAlignment(RD); 6837 } else { 6838 Alignment = getContext().getTypeAlignInChars(T); 6839 } 6840 6841 // Cap to the global maximum type alignment unless the alignment 6842 // was somehow explicit on the type. 6843 if (unsigned MaxAlign = getLangOpts().MaxTypeAlign) { 6844 if (Alignment.getQuantity() > MaxAlign && 6845 !getContext().isAlignmentRequired(T)) 6846 Alignment = CharUnits::fromQuantity(MaxAlign); 6847 } 6848 return Alignment; 6849 } 6850 6851 bool CodeGenModule::stopAutoInit() { 6852 unsigned StopAfter = getContext().getLangOpts().TrivialAutoVarInitStopAfter; 6853 if (StopAfter) { 6854 // This number is positive only when -ftrivial-auto-var-init-stop-after=* is 6855 // used 6856 if (NumAutoVarInit >= StopAfter) { 6857 return true; 6858 } 6859 if (!NumAutoVarInit) { 6860 unsigned DiagID = getDiags().getCustomDiagID( 6861 DiagnosticsEngine::Warning, 6862 "-ftrivial-auto-var-init-stop-after=%0 has been enabled to limit the " 6863 "number of times ftrivial-auto-var-init=%1 gets applied."); 6864 getDiags().Report(DiagID) 6865 << StopAfter 6866 << (getContext().getLangOpts().getTrivialAutoVarInit() == 6867 LangOptions::TrivialAutoVarInitKind::Zero 6868 ? "zero" 6869 : "pattern"); 6870 } 6871 ++NumAutoVarInit; 6872 } 6873 return false; 6874 } 6875 6876 void CodeGenModule::printPostfixForExternalizedDecl(llvm::raw_ostream &OS, 6877 const Decl *D) const { 6878 // ptxas does not allow '.' in symbol names. On the other hand, HIP prefers 6879 // postfix beginning with '.' since the symbol name can be demangled. 6880 if (LangOpts.HIP) 6881 OS << (isa<VarDecl>(D) ? ".static." : ".intern."); 6882 else 6883 OS << (isa<VarDecl>(D) ? "__static__" : "__intern__"); 6884 6885 // If the CUID is not specified we try to generate a unique postfix. 6886 if (getLangOpts().CUID.empty()) { 6887 SourceManager &SM = getContext().getSourceManager(); 6888 PresumedLoc PLoc = SM.getPresumedLoc(D->getLocation()); 6889 assert(PLoc.isValid() && "Source location is expected to be valid."); 6890 6891 // Get the hash of the user defined macros. 6892 llvm::MD5 Hash; 6893 llvm::MD5::MD5Result Result; 6894 for (const auto &Arg : PreprocessorOpts.Macros) 6895 Hash.update(Arg.first); 6896 Hash.final(Result); 6897 6898 // Get the UniqueID for the file containing the decl. 6899 llvm::sys::fs::UniqueID ID; 6900 if (auto EC = llvm::sys::fs::getUniqueID(PLoc.getFilename(), ID)) { 6901 PLoc = SM.getPresumedLoc(D->getLocation(), /*UseLineDirectives=*/false); 6902 assert(PLoc.isValid() && "Source location is expected to be valid."); 6903 if (auto EC = llvm::sys::fs::getUniqueID(PLoc.getFilename(), ID)) 6904 SM.getDiagnostics().Report(diag::err_cannot_open_file) 6905 << PLoc.getFilename() << EC.message(); 6906 } 6907 OS << llvm::format("%x", ID.getFile()) << llvm::format("%x", ID.getDevice()) 6908 << "_" << llvm::utohexstr(Result.low(), /*LowerCase=*/true, /*Width=*/8); 6909 } else { 6910 OS << getContext().getCUIDHash(); 6911 } 6912 } 6913