xref: /llvm-project/clang/lib/CodeGen/CodeGenModule.cpp (revision 7c19ab17c722288f47dfc887dec0405814bf304d)
1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This coordinates the per-module state used while generating code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenModule.h"
15 #include "CGCUDARuntime.h"
16 #include "CGCXXABI.h"
17 #include "CGCall.h"
18 #include "CGDebugInfo.h"
19 #include "CGObjCRuntime.h"
20 #include "CGOpenCLRuntime.h"
21 #include "CodeGenFunction.h"
22 #include "CodeGenPGO.h"
23 #include "CodeGenTBAA.h"
24 #include "TargetInfo.h"
25 #include "clang/AST/ASTContext.h"
26 #include "clang/AST/CharUnits.h"
27 #include "clang/AST/DeclCXX.h"
28 #include "clang/AST/DeclObjC.h"
29 #include "clang/AST/DeclTemplate.h"
30 #include "clang/AST/Mangle.h"
31 #include "clang/AST/RecordLayout.h"
32 #include "clang/AST/RecursiveASTVisitor.h"
33 #include "clang/Basic/Builtins.h"
34 #include "clang/Basic/CharInfo.h"
35 #include "clang/Basic/Diagnostic.h"
36 #include "clang/Basic/Module.h"
37 #include "clang/Basic/SourceManager.h"
38 #include "clang/Basic/TargetInfo.h"
39 #include "clang/Basic/Version.h"
40 #include "clang/Frontend/CodeGenOptions.h"
41 #include "clang/Sema/SemaDiagnostic.h"
42 #include "llvm/ADT/APSInt.h"
43 #include "llvm/ADT/Triple.h"
44 #include "llvm/IR/CallingConv.h"
45 #include "llvm/IR/DataLayout.h"
46 #include "llvm/IR/Intrinsics.h"
47 #include "llvm/IR/LLVMContext.h"
48 #include "llvm/IR/Module.h"
49 #include "llvm/Support/CallSite.h"
50 #include "llvm/Support/ConvertUTF.h"
51 #include "llvm/Support/ErrorHandling.h"
52 
53 using namespace clang;
54 using namespace CodeGen;
55 
56 static const char AnnotationSection[] = "llvm.metadata";
57 
58 static CGCXXABI *createCXXABI(CodeGenModule &CGM) {
59   switch (CGM.getTarget().getCXXABI().getKind()) {
60   case TargetCXXABI::GenericAArch64:
61   case TargetCXXABI::GenericARM:
62   case TargetCXXABI::iOS:
63   case TargetCXXABI::GenericItanium:
64     return CreateItaniumCXXABI(CGM);
65   case TargetCXXABI::Microsoft:
66     return CreateMicrosoftCXXABI(CGM);
67   }
68 
69   llvm_unreachable("invalid C++ ABI kind");
70 }
71 
72 CodeGenModule::CodeGenModule(ASTContext &C, const CodeGenOptions &CGO,
73                              llvm::Module &M, const llvm::DataLayout &TD,
74                              DiagnosticsEngine &diags)
75     : Context(C), LangOpts(C.getLangOpts()), CodeGenOpts(CGO), TheModule(M),
76       Diags(diags), TheDataLayout(TD), Target(C.getTargetInfo()),
77       ABI(createCXXABI(*this)), VMContext(M.getContext()), TBAA(0),
78       TheTargetCodeGenInfo(0), Types(*this), VTables(*this), ObjCRuntime(0),
79       OpenCLRuntime(0), CUDARuntime(0), DebugInfo(0), ARCData(0),
80       NoObjCARCExceptionsMetadata(0), RRData(0), PGOData(0),
81       CFConstantStringClassRef(0),
82       ConstantStringClassRef(0), NSConstantStringType(0),
83       NSConcreteGlobalBlock(0), NSConcreteStackBlock(0), BlockObjectAssign(0),
84       BlockObjectDispose(0), BlockDescriptorType(0), GenericBlockLiteralType(0),
85       LifetimeStartFn(0), LifetimeEndFn(0),
86       SanitizerBlacklist(
87           llvm::SpecialCaseList::createOrDie(CGO.SanitizerBlacklistFile)),
88       SanOpts(SanitizerBlacklist->isIn(M) ? SanitizerOptions::Disabled
89                                           : LangOpts.Sanitize) {
90 
91   // Initialize the type cache.
92   llvm::LLVMContext &LLVMContext = M.getContext();
93   VoidTy = llvm::Type::getVoidTy(LLVMContext);
94   Int8Ty = llvm::Type::getInt8Ty(LLVMContext);
95   Int16Ty = llvm::Type::getInt16Ty(LLVMContext);
96   Int32Ty = llvm::Type::getInt32Ty(LLVMContext);
97   Int64Ty = llvm::Type::getInt64Ty(LLVMContext);
98   FloatTy = llvm::Type::getFloatTy(LLVMContext);
99   DoubleTy = llvm::Type::getDoubleTy(LLVMContext);
100   PointerWidthInBits = C.getTargetInfo().getPointerWidth(0);
101   PointerAlignInBytes =
102   C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(0)).getQuantity();
103   IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth());
104   IntPtrTy = llvm::IntegerType::get(LLVMContext, PointerWidthInBits);
105   Int8PtrTy = Int8Ty->getPointerTo(0);
106   Int8PtrPtrTy = Int8PtrTy->getPointerTo(0);
107 
108   RuntimeCC = getTargetCodeGenInfo().getABIInfo().getRuntimeCC();
109 
110   if (LangOpts.ObjC1)
111     createObjCRuntime();
112   if (LangOpts.OpenCL)
113     createOpenCLRuntime();
114   if (LangOpts.CUDA)
115     createCUDARuntime();
116 
117   // Enable TBAA unless it's suppressed. ThreadSanitizer needs TBAA even at O0.
118   if (SanOpts.Thread ||
119       (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0))
120     TBAA = new CodeGenTBAA(Context, VMContext, CodeGenOpts, getLangOpts(),
121                            getCXXABI().getMangleContext());
122 
123   // If debug info or coverage generation is enabled, create the CGDebugInfo
124   // object.
125   if (CodeGenOpts.getDebugInfo() != CodeGenOptions::NoDebugInfo ||
126       CodeGenOpts.EmitGcovArcs ||
127       CodeGenOpts.EmitGcovNotes)
128     DebugInfo = new CGDebugInfo(*this);
129 
130   Block.GlobalUniqueCount = 0;
131 
132   if (C.getLangOpts().ObjCAutoRefCount)
133     ARCData = new ARCEntrypoints();
134   RRData = new RREntrypoints();
135 
136   if (!CodeGenOpts.InstrProfileInput.empty())
137     PGOData = new PGOProfileData(*this, CodeGenOpts.InstrProfileInput);
138 }
139 
140 CodeGenModule::~CodeGenModule() {
141   delete ObjCRuntime;
142   delete OpenCLRuntime;
143   delete CUDARuntime;
144   delete TheTargetCodeGenInfo;
145   delete TBAA;
146   delete DebugInfo;
147   delete ARCData;
148   delete RRData;
149 }
150 
151 void CodeGenModule::createObjCRuntime() {
152   // This is just isGNUFamily(), but we want to force implementors of
153   // new ABIs to decide how best to do this.
154   switch (LangOpts.ObjCRuntime.getKind()) {
155   case ObjCRuntime::GNUstep:
156   case ObjCRuntime::GCC:
157   case ObjCRuntime::ObjFW:
158     ObjCRuntime = CreateGNUObjCRuntime(*this);
159     return;
160 
161   case ObjCRuntime::FragileMacOSX:
162   case ObjCRuntime::MacOSX:
163   case ObjCRuntime::iOS:
164     ObjCRuntime = CreateMacObjCRuntime(*this);
165     return;
166   }
167   llvm_unreachable("bad runtime kind");
168 }
169 
170 void CodeGenModule::createOpenCLRuntime() {
171   OpenCLRuntime = new CGOpenCLRuntime(*this);
172 }
173 
174 void CodeGenModule::createCUDARuntime() {
175   CUDARuntime = CreateNVCUDARuntime(*this);
176 }
177 
178 void CodeGenModule::applyReplacements() {
179   for (ReplacementsTy::iterator I = Replacements.begin(),
180                                 E = Replacements.end();
181        I != E; ++I) {
182     StringRef MangledName = I->first();
183     llvm::Constant *Replacement = I->second;
184     llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
185     if (!Entry)
186       continue;
187     llvm::Function *OldF = cast<llvm::Function>(Entry);
188     llvm::Function *NewF = dyn_cast<llvm::Function>(Replacement);
189     if (!NewF) {
190       if (llvm::GlobalAlias *Alias = dyn_cast<llvm::GlobalAlias>(Replacement)) {
191         NewF = dyn_cast<llvm::Function>(Alias->getAliasedGlobal());
192       } else {
193         llvm::ConstantExpr *CE = cast<llvm::ConstantExpr>(Replacement);
194         assert(CE->getOpcode() == llvm::Instruction::BitCast ||
195                CE->getOpcode() == llvm::Instruction::GetElementPtr);
196         NewF = dyn_cast<llvm::Function>(CE->getOperand(0));
197       }
198     }
199 
200     // Replace old with new, but keep the old order.
201     OldF->replaceAllUsesWith(Replacement);
202     if (NewF) {
203       NewF->removeFromParent();
204       OldF->getParent()->getFunctionList().insertAfter(OldF, NewF);
205     }
206     OldF->eraseFromParent();
207   }
208 }
209 
210 void CodeGenModule::checkAliases() {
211   bool Error = false;
212   for (std::vector<GlobalDecl>::iterator I = Aliases.begin(),
213          E = Aliases.end(); I != E; ++I) {
214     const GlobalDecl &GD = *I;
215     const ValueDecl *D = cast<ValueDecl>(GD.getDecl());
216     const AliasAttr *AA = D->getAttr<AliasAttr>();
217     StringRef MangledName = getMangledName(GD);
218     llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
219     llvm::GlobalAlias *Alias = cast<llvm::GlobalAlias>(Entry);
220     llvm::GlobalValue *GV = Alias->getAliasedGlobal();
221     if (GV->isDeclaration()) {
222       Error = true;
223       getDiags().Report(AA->getLocation(), diag::err_alias_to_undefined);
224     } else if (!Alias->resolveAliasedGlobal(/*stopOnWeak*/ false)) {
225       Error = true;
226       getDiags().Report(AA->getLocation(), diag::err_cyclic_alias);
227     }
228   }
229   if (!Error)
230     return;
231 
232   for (std::vector<GlobalDecl>::iterator I = Aliases.begin(),
233          E = Aliases.end(); I != E; ++I) {
234     const GlobalDecl &GD = *I;
235     StringRef MangledName = getMangledName(GD);
236     llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
237     llvm::GlobalAlias *Alias = cast<llvm::GlobalAlias>(Entry);
238     Alias->replaceAllUsesWith(llvm::UndefValue::get(Alias->getType()));
239     Alias->eraseFromParent();
240   }
241 }
242 
243 void CodeGenModule::clear() {
244   DeferredDeclsToEmit.clear();
245 }
246 
247 void CodeGenModule::Release() {
248   EmitDeferred();
249   applyReplacements();
250   checkAliases();
251   EmitCXXGlobalInitFunc();
252   EmitCXXGlobalDtorFunc();
253   EmitCXXThreadLocalInitFunc();
254   if (ObjCRuntime)
255     if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction())
256       AddGlobalCtor(ObjCInitFunction);
257   EmitCtorList(GlobalCtors, "llvm.global_ctors");
258   EmitCtorList(GlobalDtors, "llvm.global_dtors");
259   EmitGlobalAnnotations();
260   EmitStaticExternCAliases();
261   EmitLLVMUsed();
262 
263   if (CodeGenOpts.Autolink &&
264       (Context.getLangOpts().Modules || !LinkerOptionsMetadata.empty())) {
265     EmitModuleLinkOptions();
266   }
267   if (CodeGenOpts.DwarfVersion)
268     // We actually want the latest version when there are conflicts.
269     // We can change from Warning to Latest if such mode is supported.
270     getModule().addModuleFlag(llvm::Module::Warning, "Dwarf Version",
271                               CodeGenOpts.DwarfVersion);
272   if (DebugInfo)
273     // We support a single version in the linked module: error out when
274     // modules do not have the same version. We are going to implement dropping
275     // debug info when the version number is not up-to-date. Once that is
276     // done, the bitcode linker is not going to see modules with different
277     // version numbers.
278     getModule().addModuleFlag(llvm::Module::Error, "Debug Info Version",
279                               llvm::DEBUG_METADATA_VERSION);
280 
281   SimplifyPersonality();
282 
283   if (getCodeGenOpts().EmitDeclMetadata)
284     EmitDeclMetadata();
285 
286   if (getCodeGenOpts().EmitGcovArcs || getCodeGenOpts().EmitGcovNotes)
287     EmitCoverageFile();
288 
289   if (DebugInfo)
290     DebugInfo->finalize();
291 
292   EmitVersionIdentMetadata();
293 }
294 
295 void CodeGenModule::UpdateCompletedType(const TagDecl *TD) {
296   // Make sure that this type is translated.
297   Types.UpdateCompletedType(TD);
298 }
299 
300 llvm::MDNode *CodeGenModule::getTBAAInfo(QualType QTy) {
301   if (!TBAA)
302     return 0;
303   return TBAA->getTBAAInfo(QTy);
304 }
305 
306 llvm::MDNode *CodeGenModule::getTBAAInfoForVTablePtr() {
307   if (!TBAA)
308     return 0;
309   return TBAA->getTBAAInfoForVTablePtr();
310 }
311 
312 llvm::MDNode *CodeGenModule::getTBAAStructInfo(QualType QTy) {
313   if (!TBAA)
314     return 0;
315   return TBAA->getTBAAStructInfo(QTy);
316 }
317 
318 llvm::MDNode *CodeGenModule::getTBAAStructTypeInfo(QualType QTy) {
319   if (!TBAA)
320     return 0;
321   return TBAA->getTBAAStructTypeInfo(QTy);
322 }
323 
324 llvm::MDNode *CodeGenModule::getTBAAStructTagInfo(QualType BaseTy,
325                                                   llvm::MDNode *AccessN,
326                                                   uint64_t O) {
327   if (!TBAA)
328     return 0;
329   return TBAA->getTBAAStructTagInfo(BaseTy, AccessN, O);
330 }
331 
332 /// Decorate the instruction with a TBAA tag. For both scalar TBAA
333 /// and struct-path aware TBAA, the tag has the same format:
334 /// base type, access type and offset.
335 /// When ConvertTypeToTag is true, we create a tag based on the scalar type.
336 void CodeGenModule::DecorateInstruction(llvm::Instruction *Inst,
337                                         llvm::MDNode *TBAAInfo,
338                                         bool ConvertTypeToTag) {
339   if (ConvertTypeToTag && TBAA)
340     Inst->setMetadata(llvm::LLVMContext::MD_tbaa,
341                       TBAA->getTBAAScalarTagInfo(TBAAInfo));
342   else
343     Inst->setMetadata(llvm::LLVMContext::MD_tbaa, TBAAInfo);
344 }
345 
346 void CodeGenModule::Error(SourceLocation loc, StringRef message) {
347   unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, "%0");
348   getDiags().Report(Context.getFullLoc(loc), diagID) << message;
349 }
350 
351 /// ErrorUnsupported - Print out an error that codegen doesn't support the
352 /// specified stmt yet.
353 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type) {
354   unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
355                                                "cannot compile this %0 yet");
356   std::string Msg = Type;
357   getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID)
358     << Msg << S->getSourceRange();
359 }
360 
361 /// ErrorUnsupported - Print out an error that codegen doesn't support the
362 /// specified decl yet.
363 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type) {
364   unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
365                                                "cannot compile this %0 yet");
366   std::string Msg = Type;
367   getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg;
368 }
369 
370 llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) {
371   return llvm::ConstantInt::get(SizeTy, size.getQuantity());
372 }
373 
374 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV,
375                                         const NamedDecl *D) const {
376   // Internal definitions always have default visibility.
377   if (GV->hasLocalLinkage()) {
378     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
379     return;
380   }
381 
382   // Set visibility for definitions.
383   LinkageInfo LV = D->getLinkageAndVisibility();
384   if (LV.isVisibilityExplicit() || !GV->hasAvailableExternallyLinkage())
385     GV->setVisibility(GetLLVMVisibility(LV.getVisibility()));
386 }
387 
388 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(StringRef S) {
389   return llvm::StringSwitch<llvm::GlobalVariable::ThreadLocalMode>(S)
390       .Case("global-dynamic", llvm::GlobalVariable::GeneralDynamicTLSModel)
391       .Case("local-dynamic", llvm::GlobalVariable::LocalDynamicTLSModel)
392       .Case("initial-exec", llvm::GlobalVariable::InitialExecTLSModel)
393       .Case("local-exec", llvm::GlobalVariable::LocalExecTLSModel);
394 }
395 
396 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(
397     CodeGenOptions::TLSModel M) {
398   switch (M) {
399   case CodeGenOptions::GeneralDynamicTLSModel:
400     return llvm::GlobalVariable::GeneralDynamicTLSModel;
401   case CodeGenOptions::LocalDynamicTLSModel:
402     return llvm::GlobalVariable::LocalDynamicTLSModel;
403   case CodeGenOptions::InitialExecTLSModel:
404     return llvm::GlobalVariable::InitialExecTLSModel;
405   case CodeGenOptions::LocalExecTLSModel:
406     return llvm::GlobalVariable::LocalExecTLSModel;
407   }
408   llvm_unreachable("Invalid TLS model!");
409 }
410 
411 void CodeGenModule::setTLSMode(llvm::GlobalVariable *GV,
412                                const VarDecl &D) const {
413   assert(D.getTLSKind() && "setting TLS mode on non-TLS var!");
414 
415   llvm::GlobalVariable::ThreadLocalMode TLM;
416   TLM = GetLLVMTLSModel(CodeGenOpts.getDefaultTLSModel());
417 
418   // Override the TLS model if it is explicitly specified.
419   if (const TLSModelAttr *Attr = D.getAttr<TLSModelAttr>()) {
420     TLM = GetLLVMTLSModel(Attr->getModel());
421   }
422 
423   GV->setThreadLocalMode(TLM);
424 }
425 
426 StringRef CodeGenModule::getMangledName(GlobalDecl GD) {
427   const NamedDecl *ND = cast<NamedDecl>(GD.getDecl());
428 
429   StringRef &Str = MangledDeclNames[GD.getCanonicalDecl()];
430   if (!Str.empty())
431     return Str;
432 
433   if (!getCXXABI().getMangleContext().shouldMangleDeclName(ND)) {
434     IdentifierInfo *II = ND->getIdentifier();
435     assert(II && "Attempt to mangle unnamed decl.");
436 
437     Str = II->getName();
438     return Str;
439   }
440 
441   SmallString<256> Buffer;
442   llvm::raw_svector_ostream Out(Buffer);
443   if (const CXXConstructorDecl *D = dyn_cast<CXXConstructorDecl>(ND))
444     getCXXABI().getMangleContext().mangleCXXCtor(D, GD.getCtorType(), Out);
445   else if (const CXXDestructorDecl *D = dyn_cast<CXXDestructorDecl>(ND))
446     getCXXABI().getMangleContext().mangleCXXDtor(D, GD.getDtorType(), Out);
447   else
448     getCXXABI().getMangleContext().mangleName(ND, Out);
449 
450   // Allocate space for the mangled name.
451   Out.flush();
452   size_t Length = Buffer.size();
453   char *Name = MangledNamesAllocator.Allocate<char>(Length);
454   std::copy(Buffer.begin(), Buffer.end(), Name);
455 
456   Str = StringRef(Name, Length);
457 
458   return Str;
459 }
460 
461 void CodeGenModule::getBlockMangledName(GlobalDecl GD, MangleBuffer &Buffer,
462                                         const BlockDecl *BD) {
463   MangleContext &MangleCtx = getCXXABI().getMangleContext();
464   const Decl *D = GD.getDecl();
465   llvm::raw_svector_ostream Out(Buffer.getBuffer());
466   if (D == 0)
467     MangleCtx.mangleGlobalBlock(BD,
468       dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()), Out);
469   else if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(D))
470     MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out);
471   else if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(D))
472     MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out);
473   else
474     MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out);
475 }
476 
477 llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) {
478   return getModule().getNamedValue(Name);
479 }
480 
481 /// AddGlobalCtor - Add a function to the list that will be called before
482 /// main() runs.
483 void CodeGenModule::AddGlobalCtor(llvm::Function * Ctor, int Priority) {
484   // FIXME: Type coercion of void()* types.
485   GlobalCtors.push_back(std::make_pair(Ctor, Priority));
486 }
487 
488 /// AddGlobalDtor - Add a function to the list that will be called
489 /// when the module is unloaded.
490 void CodeGenModule::AddGlobalDtor(llvm::Function * Dtor, int Priority) {
491   // FIXME: Type coercion of void()* types.
492   GlobalDtors.push_back(std::make_pair(Dtor, Priority));
493 }
494 
495 void CodeGenModule::EmitCtorList(const CtorList &Fns, const char *GlobalName) {
496   // Ctor function type is void()*.
497   llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false);
498   llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy);
499 
500   // Get the type of a ctor entry, { i32, void ()* }.
501   llvm::StructType *CtorStructTy =
502     llvm::StructType::get(Int32Ty, llvm::PointerType::getUnqual(CtorFTy), NULL);
503 
504   // Construct the constructor and destructor arrays.
505   SmallVector<llvm::Constant*, 8> Ctors;
506   for (CtorList::const_iterator I = Fns.begin(), E = Fns.end(); I != E; ++I) {
507     llvm::Constant *S[] = {
508       llvm::ConstantInt::get(Int32Ty, I->second, false),
509       llvm::ConstantExpr::getBitCast(I->first, CtorPFTy)
510     };
511     Ctors.push_back(llvm::ConstantStruct::get(CtorStructTy, S));
512   }
513 
514   if (!Ctors.empty()) {
515     llvm::ArrayType *AT = llvm::ArrayType::get(CtorStructTy, Ctors.size());
516     new llvm::GlobalVariable(TheModule, AT, false,
517                              llvm::GlobalValue::AppendingLinkage,
518                              llvm::ConstantArray::get(AT, Ctors),
519                              GlobalName);
520   }
521 }
522 
523 llvm::GlobalValue::LinkageTypes
524 CodeGenModule::getFunctionLinkage(GlobalDecl GD) {
525   const FunctionDecl *D = cast<FunctionDecl>(GD.getDecl());
526 
527   GVALinkage Linkage = getContext().GetGVALinkageForFunction(D);
528 
529   if (Linkage == GVA_Internal)
530     return llvm::Function::InternalLinkage;
531 
532   if (D->hasAttr<DLLExportAttr>())
533     return llvm::Function::ExternalLinkage;
534 
535   if (D->hasAttr<WeakAttr>())
536     return llvm::Function::WeakAnyLinkage;
537 
538   // In C99 mode, 'inline' functions are guaranteed to have a strong
539   // definition somewhere else, so we can use available_externally linkage.
540   if (Linkage == GVA_C99Inline)
541     return llvm::Function::AvailableExternallyLinkage;
542 
543   // Note that Apple's kernel linker doesn't support symbol
544   // coalescing, so we need to avoid linkonce and weak linkages there.
545   // Normally, this means we just map to internal, but for explicit
546   // instantiations we'll map to external.
547 
548   // In C++, the compiler has to emit a definition in every translation unit
549   // that references the function.  We should use linkonce_odr because
550   // a) if all references in this translation unit are optimized away, we
551   // don't need to codegen it.  b) if the function persists, it needs to be
552   // merged with other definitions. c) C++ has the ODR, so we know the
553   // definition is dependable.
554   if (Linkage == GVA_CXXInline || Linkage == GVA_TemplateInstantiation)
555     return !Context.getLangOpts().AppleKext
556              ? llvm::Function::LinkOnceODRLinkage
557              : llvm::Function::InternalLinkage;
558 
559   // An explicit instantiation of a template has weak linkage, since
560   // explicit instantiations can occur in multiple translation units
561   // and must all be equivalent. However, we are not allowed to
562   // throw away these explicit instantiations.
563   if (Linkage == GVA_ExplicitTemplateInstantiation)
564     return !Context.getLangOpts().AppleKext
565              ? llvm::Function::WeakODRLinkage
566              : llvm::Function::ExternalLinkage;
567 
568   // Destructor variants in the Microsoft C++ ABI are always linkonce_odr thunks
569   // emitted on an as-needed basis.
570   if (isa<CXXDestructorDecl>(D) &&
571       getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D),
572                                          GD.getDtorType()))
573     return llvm::Function::LinkOnceODRLinkage;
574 
575   // Otherwise, we have strong external linkage.
576   assert(Linkage == GVA_StrongExternal);
577   return llvm::Function::ExternalLinkage;
578 }
579 
580 
581 /// SetFunctionDefinitionAttributes - Set attributes for a global.
582 ///
583 /// FIXME: This is currently only done for aliases and functions, but not for
584 /// variables (these details are set in EmitGlobalVarDefinition for variables).
585 void CodeGenModule::SetFunctionDefinitionAttributes(const FunctionDecl *D,
586                                                     llvm::GlobalValue *GV) {
587   SetCommonAttributes(D, GV);
588 }
589 
590 void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D,
591                                               const CGFunctionInfo &Info,
592                                               llvm::Function *F) {
593   unsigned CallingConv;
594   AttributeListType AttributeList;
595   ConstructAttributeList(Info, D, AttributeList, CallingConv, false);
596   F->setAttributes(llvm::AttributeSet::get(getLLVMContext(), AttributeList));
597   F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv));
598 }
599 
600 /// Determines whether the language options require us to model
601 /// unwind exceptions.  We treat -fexceptions as mandating this
602 /// except under the fragile ObjC ABI with only ObjC exceptions
603 /// enabled.  This means, for example, that C with -fexceptions
604 /// enables this.
605 static bool hasUnwindExceptions(const LangOptions &LangOpts) {
606   // If exceptions are completely disabled, obviously this is false.
607   if (!LangOpts.Exceptions) return false;
608 
609   // If C++ exceptions are enabled, this is true.
610   if (LangOpts.CXXExceptions) return true;
611 
612   // If ObjC exceptions are enabled, this depends on the ABI.
613   if (LangOpts.ObjCExceptions) {
614     return LangOpts.ObjCRuntime.hasUnwindExceptions();
615   }
616 
617   return true;
618 }
619 
620 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D,
621                                                            llvm::Function *F) {
622   llvm::AttrBuilder B;
623 
624   if (CodeGenOpts.UnwindTables)
625     B.addAttribute(llvm::Attribute::UWTable);
626 
627   if (!hasUnwindExceptions(LangOpts))
628     B.addAttribute(llvm::Attribute::NoUnwind);
629 
630   if (D->hasAttr<NakedAttr>()) {
631     // Naked implies noinline: we should not be inlining such functions.
632     B.addAttribute(llvm::Attribute::Naked);
633     B.addAttribute(llvm::Attribute::NoInline);
634   } else if (D->hasAttr<NoDuplicateAttr>()) {
635     B.addAttribute(llvm::Attribute::NoDuplicate);
636   } else if (D->hasAttr<NoInlineAttr>()) {
637     B.addAttribute(llvm::Attribute::NoInline);
638   } else if ((D->hasAttr<AlwaysInlineAttr>() ||
639               D->hasAttr<ForceInlineAttr>()) &&
640              !F->getAttributes().hasAttribute(llvm::AttributeSet::FunctionIndex,
641                                               llvm::Attribute::NoInline)) {
642     // (noinline wins over always_inline, and we can't specify both in IR)
643     B.addAttribute(llvm::Attribute::AlwaysInline);
644   }
645 
646   if (D->hasAttr<ColdAttr>()) {
647     B.addAttribute(llvm::Attribute::OptimizeForSize);
648     B.addAttribute(llvm::Attribute::Cold);
649   }
650 
651   if (D->hasAttr<MinSizeAttr>())
652     B.addAttribute(llvm::Attribute::MinSize);
653 
654   if (LangOpts.getStackProtector() == LangOptions::SSPOn)
655     B.addAttribute(llvm::Attribute::StackProtect);
656   else if (LangOpts.getStackProtector() == LangOptions::SSPStrong)
657     B.addAttribute(llvm::Attribute::StackProtectStrong);
658   else if (LangOpts.getStackProtector() == LangOptions::SSPReq)
659     B.addAttribute(llvm::Attribute::StackProtectReq);
660 
661   // Add sanitizer attributes if function is not blacklisted.
662   if (!SanitizerBlacklist->isIn(*F)) {
663     // When AddressSanitizer is enabled, set SanitizeAddress attribute
664     // unless __attribute__((no_sanitize_address)) is used.
665     if (SanOpts.Address && !D->hasAttr<NoSanitizeAddressAttr>())
666       B.addAttribute(llvm::Attribute::SanitizeAddress);
667     // Same for ThreadSanitizer and __attribute__((no_sanitize_thread))
668     if (SanOpts.Thread && !D->hasAttr<NoSanitizeThreadAttr>()) {
669       B.addAttribute(llvm::Attribute::SanitizeThread);
670     }
671     // Same for MemorySanitizer and __attribute__((no_sanitize_memory))
672     if (SanOpts.Memory && !D->hasAttr<NoSanitizeMemoryAttr>())
673       B.addAttribute(llvm::Attribute::SanitizeMemory);
674   }
675 
676   F->addAttributes(llvm::AttributeSet::FunctionIndex,
677                    llvm::AttributeSet::get(
678                        F->getContext(), llvm::AttributeSet::FunctionIndex, B));
679 
680   if (isa<CXXConstructorDecl>(D) || isa<CXXDestructorDecl>(D))
681     F->setUnnamedAddr(true);
682   else if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D))
683     if (MD->isVirtual())
684       F->setUnnamedAddr(true);
685 
686   unsigned alignment = D->getMaxAlignment() / Context.getCharWidth();
687   if (alignment)
688     F->setAlignment(alignment);
689 
690   // C++ ABI requires 2-byte alignment for member functions.
691   if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D))
692     F->setAlignment(2);
693 }
694 
695 void CodeGenModule::SetCommonAttributes(const Decl *D,
696                                         llvm::GlobalValue *GV) {
697   if (const NamedDecl *ND = dyn_cast<NamedDecl>(D))
698     setGlobalVisibility(GV, ND);
699   else
700     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
701 
702   if (D->hasAttr<UsedAttr>())
703     AddUsedGlobal(GV);
704 
705   if (const SectionAttr *SA = D->getAttr<SectionAttr>())
706     GV->setSection(SA->getName());
707 
708   // Alias cannot have attributes. Filter them here.
709   if (!isa<llvm::GlobalAlias>(GV))
710     getTargetCodeGenInfo().SetTargetAttributes(D, GV, *this);
711 }
712 
713 void CodeGenModule::SetInternalFunctionAttributes(const Decl *D,
714                                                   llvm::Function *F,
715                                                   const CGFunctionInfo &FI) {
716   SetLLVMFunctionAttributes(D, FI, F);
717   SetLLVMFunctionAttributesForDefinition(D, F);
718 
719   F->setLinkage(llvm::Function::InternalLinkage);
720 
721   SetCommonAttributes(D, F);
722 }
723 
724 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD,
725                                           llvm::Function *F,
726                                           bool IsIncompleteFunction) {
727   if (unsigned IID = F->getIntrinsicID()) {
728     // If this is an intrinsic function, set the function's attributes
729     // to the intrinsic's attributes.
730     F->setAttributes(llvm::Intrinsic::getAttributes(getLLVMContext(),
731                                                     (llvm::Intrinsic::ID)IID));
732     return;
733   }
734 
735   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
736 
737   if (!IsIncompleteFunction)
738     SetLLVMFunctionAttributes(FD, getTypes().arrangeGlobalDeclaration(GD), F);
739 
740   if (getCXXABI().HasThisReturn(GD)) {
741     assert(!F->arg_empty() &&
742            F->arg_begin()->getType()
743              ->canLosslesslyBitCastTo(F->getReturnType()) &&
744            "unexpected this return");
745     F->addAttribute(1, llvm::Attribute::Returned);
746   }
747 
748   // Only a few attributes are set on declarations; these may later be
749   // overridden by a definition.
750 
751   if (FD->hasAttr<DLLImportAttr>()) {
752     F->setLinkage(llvm::Function::ExternalLinkage);
753     F->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass);
754   } else if (FD->hasAttr<WeakAttr>() ||
755              FD->isWeakImported()) {
756     // "extern_weak" is overloaded in LLVM; we probably should have
757     // separate linkage types for this.
758     F->setLinkage(llvm::Function::ExternalWeakLinkage);
759   } else {
760     F->setLinkage(llvm::Function::ExternalLinkage);
761     if (FD->hasAttr<DLLExportAttr>())
762       F->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass);
763 
764     LinkageInfo LV = FD->getLinkageAndVisibility();
765     if (LV.getLinkage() == ExternalLinkage && LV.isVisibilityExplicit()) {
766       F->setVisibility(GetLLVMVisibility(LV.getVisibility()));
767     }
768   }
769 
770   if (const SectionAttr *SA = FD->getAttr<SectionAttr>())
771     F->setSection(SA->getName());
772 
773   // A replaceable global allocation function does not act like a builtin by
774   // default, only if it is invoked by a new-expression or delete-expression.
775   if (FD->isReplaceableGlobalAllocationFunction())
776     F->addAttribute(llvm::AttributeSet::FunctionIndex,
777                     llvm::Attribute::NoBuiltin);
778 }
779 
780 void CodeGenModule::AddUsedGlobal(llvm::GlobalValue *GV) {
781   assert(!GV->isDeclaration() &&
782          "Only globals with definition can force usage.");
783   LLVMUsed.push_back(GV);
784 }
785 
786 void CodeGenModule::EmitLLVMUsed() {
787   // Don't create llvm.used if there is no need.
788   if (LLVMUsed.empty())
789     return;
790 
791   // Convert LLVMUsed to what ConstantArray needs.
792   SmallVector<llvm::Constant*, 8> UsedArray;
793   UsedArray.resize(LLVMUsed.size());
794   for (unsigned i = 0, e = LLVMUsed.size(); i != e; ++i) {
795     UsedArray[i] =
796      llvm::ConstantExpr::getBitCast(cast<llvm::Constant>(&*LLVMUsed[i]),
797                                     Int8PtrTy);
798   }
799 
800   if (UsedArray.empty())
801     return;
802   llvm::ArrayType *ATy = llvm::ArrayType::get(Int8PtrTy, UsedArray.size());
803 
804   llvm::GlobalVariable *GV =
805     new llvm::GlobalVariable(getModule(), ATy, false,
806                              llvm::GlobalValue::AppendingLinkage,
807                              llvm::ConstantArray::get(ATy, UsedArray),
808                              "llvm.used");
809 
810   GV->setSection("llvm.metadata");
811 }
812 
813 void CodeGenModule::AppendLinkerOptions(StringRef Opts) {
814   llvm::Value *MDOpts = llvm::MDString::get(getLLVMContext(), Opts);
815   LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
816 }
817 
818 void CodeGenModule::AddDetectMismatch(StringRef Name, StringRef Value) {
819   llvm::SmallString<32> Opt;
820   getTargetCodeGenInfo().getDetectMismatchOption(Name, Value, Opt);
821   llvm::Value *MDOpts = llvm::MDString::get(getLLVMContext(), Opt);
822   LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
823 }
824 
825 void CodeGenModule::AddDependentLib(StringRef Lib) {
826   llvm::SmallString<24> Opt;
827   getTargetCodeGenInfo().getDependentLibraryOption(Lib, Opt);
828   llvm::Value *MDOpts = llvm::MDString::get(getLLVMContext(), Opt);
829   LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
830 }
831 
832 /// \brief Add link options implied by the given module, including modules
833 /// it depends on, using a postorder walk.
834 static void addLinkOptionsPostorder(CodeGenModule &CGM,
835                                     Module *Mod,
836                                     SmallVectorImpl<llvm::Value *> &Metadata,
837                                     llvm::SmallPtrSet<Module *, 16> &Visited) {
838   // Import this module's parent.
839   if (Mod->Parent && Visited.insert(Mod->Parent)) {
840     addLinkOptionsPostorder(CGM, Mod->Parent, Metadata, Visited);
841   }
842 
843   // Import this module's dependencies.
844   for (unsigned I = Mod->Imports.size(); I > 0; --I) {
845     if (Visited.insert(Mod->Imports[I-1]))
846       addLinkOptionsPostorder(CGM, Mod->Imports[I-1], Metadata, Visited);
847   }
848 
849   // Add linker options to link against the libraries/frameworks
850   // described by this module.
851   llvm::LLVMContext &Context = CGM.getLLVMContext();
852   for (unsigned I = Mod->LinkLibraries.size(); I > 0; --I) {
853     // Link against a framework.  Frameworks are currently Darwin only, so we
854     // don't to ask TargetCodeGenInfo for the spelling of the linker option.
855     if (Mod->LinkLibraries[I-1].IsFramework) {
856       llvm::Value *Args[2] = {
857         llvm::MDString::get(Context, "-framework"),
858         llvm::MDString::get(Context, Mod->LinkLibraries[I-1].Library)
859       };
860 
861       Metadata.push_back(llvm::MDNode::get(Context, Args));
862       continue;
863     }
864 
865     // Link against a library.
866     llvm::SmallString<24> Opt;
867     CGM.getTargetCodeGenInfo().getDependentLibraryOption(
868       Mod->LinkLibraries[I-1].Library, Opt);
869     llvm::Value *OptString = llvm::MDString::get(Context, Opt);
870     Metadata.push_back(llvm::MDNode::get(Context, OptString));
871   }
872 }
873 
874 void CodeGenModule::EmitModuleLinkOptions() {
875   // Collect the set of all of the modules we want to visit to emit link
876   // options, which is essentially the imported modules and all of their
877   // non-explicit child modules.
878   llvm::SetVector<clang::Module *> LinkModules;
879   llvm::SmallPtrSet<clang::Module *, 16> Visited;
880   SmallVector<clang::Module *, 16> Stack;
881 
882   // Seed the stack with imported modules.
883   for (llvm::SetVector<clang::Module *>::iterator M = ImportedModules.begin(),
884                                                MEnd = ImportedModules.end();
885        M != MEnd; ++M) {
886     if (Visited.insert(*M))
887       Stack.push_back(*M);
888   }
889 
890   // Find all of the modules to import, making a little effort to prune
891   // non-leaf modules.
892   while (!Stack.empty()) {
893     clang::Module *Mod = Stack.pop_back_val();
894 
895     bool AnyChildren = false;
896 
897     // Visit the submodules of this module.
898     for (clang::Module::submodule_iterator Sub = Mod->submodule_begin(),
899                                         SubEnd = Mod->submodule_end();
900          Sub != SubEnd; ++Sub) {
901       // Skip explicit children; they need to be explicitly imported to be
902       // linked against.
903       if ((*Sub)->IsExplicit)
904         continue;
905 
906       if (Visited.insert(*Sub)) {
907         Stack.push_back(*Sub);
908         AnyChildren = true;
909       }
910     }
911 
912     // We didn't find any children, so add this module to the list of
913     // modules to link against.
914     if (!AnyChildren) {
915       LinkModules.insert(Mod);
916     }
917   }
918 
919   // Add link options for all of the imported modules in reverse topological
920   // order.  We don't do anything to try to order import link flags with respect
921   // to linker options inserted by things like #pragma comment().
922   SmallVector<llvm::Value *, 16> MetadataArgs;
923   Visited.clear();
924   for (llvm::SetVector<clang::Module *>::iterator M = LinkModules.begin(),
925                                                MEnd = LinkModules.end();
926        M != MEnd; ++M) {
927     if (Visited.insert(*M))
928       addLinkOptionsPostorder(*this, *M, MetadataArgs, Visited);
929   }
930   std::reverse(MetadataArgs.begin(), MetadataArgs.end());
931   LinkerOptionsMetadata.append(MetadataArgs.begin(), MetadataArgs.end());
932 
933   // Add the linker options metadata flag.
934   getModule().addModuleFlag(llvm::Module::AppendUnique, "Linker Options",
935                             llvm::MDNode::get(getLLVMContext(),
936                                               LinkerOptionsMetadata));
937 }
938 
939 void CodeGenModule::EmitDeferred() {
940   // Emit code for any potentially referenced deferred decls.  Since a
941   // previously unused static decl may become used during the generation of code
942   // for a static function, iterate until no changes are made.
943 
944   while (true) {
945     if (!DeferredVTables.empty()) {
946       EmitDeferredVTables();
947 
948       // Emitting a v-table doesn't directly cause more v-tables to
949       // become deferred, although it can cause functions to be
950       // emitted that then need those v-tables.
951       assert(DeferredVTables.empty());
952     }
953 
954     // Stop if we're out of both deferred v-tables and deferred declarations.
955     if (DeferredDeclsToEmit.empty()) break;
956 
957     DeferredGlobal &G = DeferredDeclsToEmit.back();
958     GlobalDecl D = G.GD;
959     llvm::GlobalValue *GV = G.GV;
960     DeferredDeclsToEmit.pop_back();
961 
962     assert(GV == GetGlobalValue(getMangledName(D)));
963     // Check to see if we've already emitted this.  This is necessary
964     // for a couple of reasons: first, decls can end up in the
965     // deferred-decls queue multiple times, and second, decls can end
966     // up with definitions in unusual ways (e.g. by an extern inline
967     // function acquiring a strong function redefinition).  Just
968     // ignore these cases.
969     if(!GV->isDeclaration())
970       continue;
971 
972     // Otherwise, emit the definition and move on to the next one.
973     EmitGlobalDefinition(D, GV);
974   }
975 }
976 
977 void CodeGenModule::EmitGlobalAnnotations() {
978   if (Annotations.empty())
979     return;
980 
981   // Create a new global variable for the ConstantStruct in the Module.
982   llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get(
983     Annotations[0]->getType(), Annotations.size()), Annotations);
984   llvm::GlobalValue *gv = new llvm::GlobalVariable(getModule(),
985     Array->getType(), false, llvm::GlobalValue::AppendingLinkage, Array,
986     "llvm.global.annotations");
987   gv->setSection(AnnotationSection);
988 }
989 
990 llvm::Constant *CodeGenModule::EmitAnnotationString(StringRef Str) {
991   llvm::Constant *&AStr = AnnotationStrings[Str];
992   if (AStr)
993     return AStr;
994 
995   // Not found yet, create a new global.
996   llvm::Constant *s = llvm::ConstantDataArray::getString(getLLVMContext(), Str);
997   llvm::GlobalValue *gv = new llvm::GlobalVariable(getModule(), s->getType(),
998     true, llvm::GlobalValue::PrivateLinkage, s, ".str");
999   gv->setSection(AnnotationSection);
1000   gv->setUnnamedAddr(true);
1001   AStr = gv;
1002   return gv;
1003 }
1004 
1005 llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) {
1006   SourceManager &SM = getContext().getSourceManager();
1007   PresumedLoc PLoc = SM.getPresumedLoc(Loc);
1008   if (PLoc.isValid())
1009     return EmitAnnotationString(PLoc.getFilename());
1010   return EmitAnnotationString(SM.getBufferName(Loc));
1011 }
1012 
1013 llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) {
1014   SourceManager &SM = getContext().getSourceManager();
1015   PresumedLoc PLoc = SM.getPresumedLoc(L);
1016   unsigned LineNo = PLoc.isValid() ? PLoc.getLine() :
1017     SM.getExpansionLineNumber(L);
1018   return llvm::ConstantInt::get(Int32Ty, LineNo);
1019 }
1020 
1021 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV,
1022                                                 const AnnotateAttr *AA,
1023                                                 SourceLocation L) {
1024   // Get the globals for file name, annotation, and the line number.
1025   llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()),
1026                  *UnitGV = EmitAnnotationUnit(L),
1027                  *LineNoCst = EmitAnnotationLineNo(L);
1028 
1029   // Create the ConstantStruct for the global annotation.
1030   llvm::Constant *Fields[4] = {
1031     llvm::ConstantExpr::getBitCast(GV, Int8PtrTy),
1032     llvm::ConstantExpr::getBitCast(AnnoGV, Int8PtrTy),
1033     llvm::ConstantExpr::getBitCast(UnitGV, Int8PtrTy),
1034     LineNoCst
1035   };
1036   return llvm::ConstantStruct::getAnon(Fields);
1037 }
1038 
1039 void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D,
1040                                          llvm::GlobalValue *GV) {
1041   assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
1042   // Get the struct elements for these annotations.
1043   for (specific_attr_iterator<AnnotateAttr>
1044        ai = D->specific_attr_begin<AnnotateAttr>(),
1045        ae = D->specific_attr_end<AnnotateAttr>(); ai != ae; ++ai)
1046     Annotations.push_back(EmitAnnotateAttr(GV, *ai, D->getLocation()));
1047 }
1048 
1049 bool CodeGenModule::MayDeferGeneration(const ValueDecl *Global) {
1050   // Never defer when EmitAllDecls is specified.
1051   if (LangOpts.EmitAllDecls)
1052     return false;
1053 
1054   return !getContext().DeclMustBeEmitted(Global);
1055 }
1056 
1057 llvm::Constant *CodeGenModule::GetAddrOfUuidDescriptor(
1058     const CXXUuidofExpr* E) {
1059   // Sema has verified that IIDSource has a __declspec(uuid()), and that its
1060   // well-formed.
1061   StringRef Uuid = E->getUuidAsStringRef(Context);
1062   std::string Name = "_GUID_" + Uuid.lower();
1063   std::replace(Name.begin(), Name.end(), '-', '_');
1064 
1065   // Look for an existing global.
1066   if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name))
1067     return GV;
1068 
1069   llvm::Constant *Init = EmitUuidofInitializer(Uuid, E->getType());
1070   assert(Init && "failed to initialize as constant");
1071 
1072   llvm::GlobalVariable *GV = new llvm::GlobalVariable(
1073       getModule(), Init->getType(),
1074       /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name);
1075   return GV;
1076 }
1077 
1078 llvm::Constant *CodeGenModule::GetWeakRefReference(const ValueDecl *VD) {
1079   const AliasAttr *AA = VD->getAttr<AliasAttr>();
1080   assert(AA && "No alias?");
1081 
1082   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType());
1083 
1084   // See if there is already something with the target's name in the module.
1085   llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee());
1086   if (Entry) {
1087     unsigned AS = getContext().getTargetAddressSpace(VD->getType());
1088     return llvm::ConstantExpr::getBitCast(Entry, DeclTy->getPointerTo(AS));
1089   }
1090 
1091   llvm::Constant *Aliasee;
1092   if (isa<llvm::FunctionType>(DeclTy))
1093     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy,
1094                                       GlobalDecl(cast<FunctionDecl>(VD)),
1095                                       /*ForVTable=*/false);
1096   else
1097     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
1098                                     llvm::PointerType::getUnqual(DeclTy), 0);
1099 
1100   llvm::GlobalValue* F = cast<llvm::GlobalValue>(Aliasee);
1101   F->setLinkage(llvm::Function::ExternalWeakLinkage);
1102   WeakRefReferences.insert(F);
1103 
1104   return Aliasee;
1105 }
1106 
1107 void CodeGenModule::EmitGlobal(GlobalDecl GD) {
1108   const ValueDecl *Global = cast<ValueDecl>(GD.getDecl());
1109 
1110   // Weak references don't produce any output by themselves.
1111   if (Global->hasAttr<WeakRefAttr>())
1112     return;
1113 
1114   // If this is an alias definition (which otherwise looks like a declaration)
1115   // emit it now.
1116   if (Global->hasAttr<AliasAttr>())
1117     return EmitAliasDefinition(GD);
1118 
1119   // If this is CUDA, be selective about which declarations we emit.
1120   if (LangOpts.CUDA) {
1121     if (CodeGenOpts.CUDAIsDevice) {
1122       if (!Global->hasAttr<CUDADeviceAttr>() &&
1123           !Global->hasAttr<CUDAGlobalAttr>() &&
1124           !Global->hasAttr<CUDAConstantAttr>() &&
1125           !Global->hasAttr<CUDASharedAttr>())
1126         return;
1127     } else {
1128       if (!Global->hasAttr<CUDAHostAttr>() && (
1129             Global->hasAttr<CUDADeviceAttr>() ||
1130             Global->hasAttr<CUDAConstantAttr>() ||
1131             Global->hasAttr<CUDASharedAttr>()))
1132         return;
1133     }
1134   }
1135 
1136   // Ignore declarations, they will be emitted on their first use.
1137   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) {
1138     // Forward declarations are emitted lazily on first use.
1139     if (!FD->doesThisDeclarationHaveABody()) {
1140       if (!FD->doesDeclarationForceExternallyVisibleDefinition())
1141         return;
1142 
1143       const FunctionDecl *InlineDefinition = 0;
1144       FD->getBody(InlineDefinition);
1145 
1146       StringRef MangledName = getMangledName(GD);
1147       DeferredDecls.erase(MangledName);
1148       EmitGlobalDefinition(InlineDefinition);
1149       return;
1150     }
1151   } else {
1152     const VarDecl *VD = cast<VarDecl>(Global);
1153     assert(VD->isFileVarDecl() && "Cannot emit local var decl as global.");
1154 
1155     if (VD->isThisDeclarationADefinition() != VarDecl::Definition)
1156       return;
1157   }
1158 
1159   // Defer code generation when possible if this is a static definition, inline
1160   // function etc.  These we only want to emit if they are used.
1161   if (!MayDeferGeneration(Global)) {
1162     // Emit the definition if it can't be deferred.
1163     EmitGlobalDefinition(GD);
1164     return;
1165   }
1166 
1167   // If we're deferring emission of a C++ variable with an
1168   // initializer, remember the order in which it appeared in the file.
1169   if (getLangOpts().CPlusPlus && isa<VarDecl>(Global) &&
1170       cast<VarDecl>(Global)->hasInit()) {
1171     DelayedCXXInitPosition[Global] = CXXGlobalInits.size();
1172     CXXGlobalInits.push_back(0);
1173   }
1174 
1175   // If the value has already been used, add it directly to the
1176   // DeferredDeclsToEmit list.
1177   StringRef MangledName = getMangledName(GD);
1178   if (llvm::GlobalValue *GV = GetGlobalValue(MangledName))
1179     addDeferredDeclToEmit(GV, GD);
1180   else {
1181     // Otherwise, remember that we saw a deferred decl with this name.  The
1182     // first use of the mangled name will cause it to move into
1183     // DeferredDeclsToEmit.
1184     DeferredDecls[MangledName] = GD;
1185   }
1186 }
1187 
1188 namespace {
1189   struct FunctionIsDirectlyRecursive :
1190     public RecursiveASTVisitor<FunctionIsDirectlyRecursive> {
1191     const StringRef Name;
1192     const Builtin::Context &BI;
1193     bool Result;
1194     FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C) :
1195       Name(N), BI(C), Result(false) {
1196     }
1197     typedef RecursiveASTVisitor<FunctionIsDirectlyRecursive> Base;
1198 
1199     bool TraverseCallExpr(CallExpr *E) {
1200       const FunctionDecl *FD = E->getDirectCallee();
1201       if (!FD)
1202         return true;
1203       AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
1204       if (Attr && Name == Attr->getLabel()) {
1205         Result = true;
1206         return false;
1207       }
1208       unsigned BuiltinID = FD->getBuiltinID();
1209       if (!BuiltinID)
1210         return true;
1211       StringRef BuiltinName = BI.GetName(BuiltinID);
1212       if (BuiltinName.startswith("__builtin_") &&
1213           Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) {
1214         Result = true;
1215         return false;
1216       }
1217       return true;
1218     }
1219   };
1220 }
1221 
1222 // isTriviallyRecursive - Check if this function calls another
1223 // decl that, because of the asm attribute or the other decl being a builtin,
1224 // ends up pointing to itself.
1225 bool
1226 CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) {
1227   StringRef Name;
1228   if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) {
1229     // asm labels are a special kind of mangling we have to support.
1230     AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
1231     if (!Attr)
1232       return false;
1233     Name = Attr->getLabel();
1234   } else {
1235     Name = FD->getName();
1236   }
1237 
1238   FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo);
1239   Walker.TraverseFunctionDecl(const_cast<FunctionDecl*>(FD));
1240   return Walker.Result;
1241 }
1242 
1243 bool
1244 CodeGenModule::shouldEmitFunction(GlobalDecl GD) {
1245   if (getFunctionLinkage(GD) != llvm::Function::AvailableExternallyLinkage)
1246     return true;
1247   const FunctionDecl *F = cast<FunctionDecl>(GD.getDecl());
1248   if (CodeGenOpts.OptimizationLevel == 0 &&
1249       !F->hasAttr<AlwaysInlineAttr>() && !F->hasAttr<ForceInlineAttr>())
1250     return false;
1251   // PR9614. Avoid cases where the source code is lying to us. An available
1252   // externally function should have an equivalent function somewhere else,
1253   // but a function that calls itself is clearly not equivalent to the real
1254   // implementation.
1255   // This happens in glibc's btowc and in some configure checks.
1256   return !isTriviallyRecursive(F);
1257 }
1258 
1259 /// If the type for the method's class was generated by
1260 /// CGDebugInfo::createContextChain(), the cache contains only a
1261 /// limited DIType without any declarations. Since EmitFunctionStart()
1262 /// needs to find the canonical declaration for each method, we need
1263 /// to construct the complete type prior to emitting the method.
1264 void CodeGenModule::CompleteDIClassType(const CXXMethodDecl* D) {
1265   if (!D->isInstance())
1266     return;
1267 
1268   if (CGDebugInfo *DI = getModuleDebugInfo())
1269     if (getCodeGenOpts().getDebugInfo() >= CodeGenOptions::LimitedDebugInfo) {
1270       const PointerType *ThisPtr =
1271         cast<PointerType>(D->getThisType(getContext()));
1272       DI->getOrCreateRecordType(ThisPtr->getPointeeType(), D->getLocation());
1273     }
1274 }
1275 
1276 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD, llvm::GlobalValue *GV) {
1277   const ValueDecl *D = cast<ValueDecl>(GD.getDecl());
1278 
1279   PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(),
1280                                  Context.getSourceManager(),
1281                                  "Generating code for declaration");
1282 
1283   if (isa<FunctionDecl>(D)) {
1284     // At -O0, don't generate IR for functions with available_externally
1285     // linkage.
1286     if (!shouldEmitFunction(GD))
1287       return;
1288 
1289     if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) {
1290       CompleteDIClassType(Method);
1291       // Make sure to emit the definition(s) before we emit the thunks.
1292       // This is necessary for the generation of certain thunks.
1293       if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(Method))
1294         EmitCXXConstructor(CD, GD.getCtorType());
1295       else if (const CXXDestructorDecl *DD =dyn_cast<CXXDestructorDecl>(Method))
1296         EmitCXXDestructor(DD, GD.getDtorType());
1297       else
1298         EmitGlobalFunctionDefinition(GD, GV);
1299 
1300       if (Method->isVirtual())
1301         getVTables().EmitThunks(GD);
1302 
1303       return;
1304     }
1305 
1306     return EmitGlobalFunctionDefinition(GD, GV);
1307   }
1308 
1309   if (const VarDecl *VD = dyn_cast<VarDecl>(D))
1310     return EmitGlobalVarDefinition(VD);
1311 
1312   llvm_unreachable("Invalid argument to EmitGlobalDefinition()");
1313 }
1314 
1315 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the
1316 /// module, create and return an llvm Function with the specified type. If there
1317 /// is something in the module with the specified name, return it potentially
1318 /// bitcasted to the right type.
1319 ///
1320 /// If D is non-null, it specifies a decl that correspond to this.  This is used
1321 /// to set the attributes on the function when it is first created.
1322 llvm::Constant *
1323 CodeGenModule::GetOrCreateLLVMFunction(StringRef MangledName,
1324                                        llvm::Type *Ty,
1325                                        GlobalDecl GD, bool ForVTable,
1326                                        bool DontDefer,
1327                                        llvm::AttributeSet ExtraAttrs) {
1328   const Decl *D = GD.getDecl();
1329 
1330   // Lookup the entry, lazily creating it if necessary.
1331   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
1332   if (Entry) {
1333     if (WeakRefReferences.erase(Entry)) {
1334       const FunctionDecl *FD = cast_or_null<FunctionDecl>(D);
1335       if (FD && !FD->hasAttr<WeakAttr>())
1336         Entry->setLinkage(llvm::Function::ExternalLinkage);
1337     }
1338 
1339     if (Entry->getType()->getElementType() == Ty)
1340       return Entry;
1341 
1342     // Make sure the result is of the correct type.
1343     return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo());
1344   }
1345 
1346   // This function doesn't have a complete type (for example, the return
1347   // type is an incomplete struct). Use a fake type instead, and make
1348   // sure not to try to set attributes.
1349   bool IsIncompleteFunction = false;
1350 
1351   llvm::FunctionType *FTy;
1352   if (isa<llvm::FunctionType>(Ty)) {
1353     FTy = cast<llvm::FunctionType>(Ty);
1354   } else {
1355     FTy = llvm::FunctionType::get(VoidTy, false);
1356     IsIncompleteFunction = true;
1357   }
1358 
1359   llvm::Function *F = llvm::Function::Create(FTy,
1360                                              llvm::Function::ExternalLinkage,
1361                                              MangledName, &getModule());
1362   assert(F->getName() == MangledName && "name was uniqued!");
1363   if (D)
1364     SetFunctionAttributes(GD, F, IsIncompleteFunction);
1365   if (ExtraAttrs.hasAttributes(llvm::AttributeSet::FunctionIndex)) {
1366     llvm::AttrBuilder B(ExtraAttrs, llvm::AttributeSet::FunctionIndex);
1367     F->addAttributes(llvm::AttributeSet::FunctionIndex,
1368                      llvm::AttributeSet::get(VMContext,
1369                                              llvm::AttributeSet::FunctionIndex,
1370                                              B));
1371   }
1372 
1373   if (!DontDefer) {
1374     // All MSVC dtors other than the base dtor are linkonce_odr and delegate to
1375     // each other bottoming out with the base dtor.  Therefore we emit non-base
1376     // dtors on usage, even if there is no dtor definition in the TU.
1377     if (D && isa<CXXDestructorDecl>(D) &&
1378         getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D),
1379                                            GD.getDtorType()))
1380       addDeferredDeclToEmit(F, GD);
1381 
1382     // This is the first use or definition of a mangled name.  If there is a
1383     // deferred decl with this name, remember that we need to emit it at the end
1384     // of the file.
1385     llvm::StringMap<GlobalDecl>::iterator DDI = DeferredDecls.find(MangledName);
1386     if (DDI != DeferredDecls.end()) {
1387       // Move the potentially referenced deferred decl to the
1388       // DeferredDeclsToEmit list, and remove it from DeferredDecls (since we
1389       // don't need it anymore).
1390       addDeferredDeclToEmit(F, DDI->second);
1391       DeferredDecls.erase(DDI);
1392 
1393       // Otherwise, if this is a sized deallocation function, emit a weak
1394       // definition
1395       // for it at the end of the translation unit.
1396     } else if (D && cast<FunctionDecl>(D)
1397                         ->getCorrespondingUnsizedGlobalDeallocationFunction()) {
1398       addDeferredDeclToEmit(F, GD);
1399 
1400       // Otherwise, there are cases we have to worry about where we're
1401       // using a declaration for which we must emit a definition but where
1402       // we might not find a top-level definition:
1403       //   - member functions defined inline in their classes
1404       //   - friend functions defined inline in some class
1405       //   - special member functions with implicit definitions
1406       // If we ever change our AST traversal to walk into class methods,
1407       // this will be unnecessary.
1408       //
1409       // We also don't emit a definition for a function if it's going to be an
1410       // entry
1411       // in a vtable, unless it's already marked as used.
1412     } else if (getLangOpts().CPlusPlus && D) {
1413       // Look for a declaration that's lexically in a record.
1414       const FunctionDecl *FD = cast<FunctionDecl>(D);
1415       FD = FD->getMostRecentDecl();
1416       do {
1417         if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) {
1418           if (FD->isImplicit() && !ForVTable) {
1419             assert(FD->isUsed() &&
1420                    "Sema didn't mark implicit function as used!");
1421             addDeferredDeclToEmit(F, GD.getWithDecl(FD));
1422             break;
1423           } else if (FD->doesThisDeclarationHaveABody()) {
1424             addDeferredDeclToEmit(F, GD.getWithDecl(FD));
1425             break;
1426           }
1427         }
1428         FD = FD->getPreviousDecl();
1429       } while (FD);
1430     }
1431   }
1432 
1433   // Make sure the result is of the requested type.
1434   if (!IsIncompleteFunction) {
1435     assert(F->getType()->getElementType() == Ty);
1436     return F;
1437   }
1438 
1439   llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
1440   return llvm::ConstantExpr::getBitCast(F, PTy);
1441 }
1442 
1443 /// GetAddrOfFunction - Return the address of the given function.  If Ty is
1444 /// non-null, then this function will use the specified type if it has to
1445 /// create it (this occurs when we see a definition of the function).
1446 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD,
1447                                                  llvm::Type *Ty,
1448                                                  bool ForVTable,
1449                                                  bool DontDefer) {
1450   // If there was no specific requested type, just convert it now.
1451   if (!Ty)
1452     Ty = getTypes().ConvertType(cast<ValueDecl>(GD.getDecl())->getType());
1453 
1454   StringRef MangledName = getMangledName(GD);
1455   return GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable, DontDefer);
1456 }
1457 
1458 /// CreateRuntimeFunction - Create a new runtime function with the specified
1459 /// type and name.
1460 llvm::Constant *
1461 CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy,
1462                                      StringRef Name,
1463                                      llvm::AttributeSet ExtraAttrs) {
1464   llvm::Constant *C =
1465       GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false,
1466                               /*DontDefer=*/false, ExtraAttrs);
1467   if (llvm::Function *F = dyn_cast<llvm::Function>(C))
1468     if (F->empty())
1469       F->setCallingConv(getRuntimeCC());
1470   return C;
1471 }
1472 
1473 /// isTypeConstant - Determine whether an object of this type can be emitted
1474 /// as a constant.
1475 ///
1476 /// If ExcludeCtor is true, the duration when the object's constructor runs
1477 /// will not be considered. The caller will need to verify that the object is
1478 /// not written to during its construction.
1479 bool CodeGenModule::isTypeConstant(QualType Ty, bool ExcludeCtor) {
1480   if (!Ty.isConstant(Context) && !Ty->isReferenceType())
1481     return false;
1482 
1483   if (Context.getLangOpts().CPlusPlus) {
1484     if (const CXXRecordDecl *Record
1485           = Context.getBaseElementType(Ty)->getAsCXXRecordDecl())
1486       return ExcludeCtor && !Record->hasMutableFields() &&
1487              Record->hasTrivialDestructor();
1488   }
1489 
1490   return true;
1491 }
1492 
1493 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module,
1494 /// create and return an llvm GlobalVariable with the specified type.  If there
1495 /// is something in the module with the specified name, return it potentially
1496 /// bitcasted to the right type.
1497 ///
1498 /// If D is non-null, it specifies a decl that correspond to this.  This is used
1499 /// to set the attributes on the global when it is first created.
1500 llvm::Constant *
1501 CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName,
1502                                      llvm::PointerType *Ty,
1503                                      const VarDecl *D,
1504                                      bool UnnamedAddr) {
1505   // Lookup the entry, lazily creating it if necessary.
1506   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
1507   if (Entry) {
1508     if (WeakRefReferences.erase(Entry)) {
1509       if (D && !D->hasAttr<WeakAttr>())
1510         Entry->setLinkage(llvm::Function::ExternalLinkage);
1511     }
1512 
1513     if (UnnamedAddr)
1514       Entry->setUnnamedAddr(true);
1515 
1516     if (Entry->getType() == Ty)
1517       return Entry;
1518 
1519     // Make sure the result is of the correct type.
1520     if (Entry->getType()->getAddressSpace() != Ty->getAddressSpace())
1521       return llvm::ConstantExpr::getAddrSpaceCast(Entry, Ty);
1522 
1523     return llvm::ConstantExpr::getBitCast(Entry, Ty);
1524   }
1525 
1526   unsigned AddrSpace = GetGlobalVarAddressSpace(D, Ty->getAddressSpace());
1527   llvm::GlobalVariable *GV =
1528     new llvm::GlobalVariable(getModule(), Ty->getElementType(), false,
1529                              llvm::GlobalValue::ExternalLinkage,
1530                              0, MangledName, 0,
1531                              llvm::GlobalVariable::NotThreadLocal, AddrSpace);
1532 
1533   // This is the first use or definition of a mangled name.  If there is a
1534   // deferred decl with this name, remember that we need to emit it at the end
1535   // of the file.
1536   llvm::StringMap<GlobalDecl>::iterator DDI = DeferredDecls.find(MangledName);
1537   if (DDI != DeferredDecls.end()) {
1538     // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
1539     // list, and remove it from DeferredDecls (since we don't need it anymore).
1540     addDeferredDeclToEmit(GV, DDI->second);
1541     DeferredDecls.erase(DDI);
1542   }
1543 
1544   // Handle things which are present even on external declarations.
1545   if (D) {
1546     // FIXME: This code is overly simple and should be merged with other global
1547     // handling.
1548     GV->setConstant(isTypeConstant(D->getType(), false));
1549 
1550     // Set linkage and visibility in case we never see a definition.
1551     LinkageInfo LV = D->getLinkageAndVisibility();
1552     if (LV.getLinkage() != ExternalLinkage) {
1553       // Don't set internal linkage on declarations.
1554     } else {
1555       if (D->hasAttr<DLLImportAttr>()) {
1556         GV->setLinkage(llvm::GlobalValue::ExternalLinkage);
1557         GV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass);
1558       } else if (D->hasAttr<WeakAttr>() || D->isWeakImported())
1559         GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage);
1560 
1561       // Set visibility on a declaration only if it's explicit.
1562       if (LV.isVisibilityExplicit())
1563         GV->setVisibility(GetLLVMVisibility(LV.getVisibility()));
1564     }
1565 
1566     if (D->getTLSKind()) {
1567       if (D->getTLSKind() == VarDecl::TLS_Dynamic)
1568         CXXThreadLocals.push_back(std::make_pair(D, GV));
1569       setTLSMode(GV, *D);
1570     }
1571 
1572     // If required by the ABI, treat declarations of static data members with
1573     // inline initializers as definitions.
1574     if (getCXXABI().isInlineInitializedStaticDataMemberLinkOnce() &&
1575         D->isStaticDataMember() && D->hasInit() &&
1576         !D->isThisDeclarationADefinition())
1577       EmitGlobalVarDefinition(D);
1578   }
1579 
1580   if (AddrSpace != Ty->getAddressSpace())
1581     return llvm::ConstantExpr::getAddrSpaceCast(GV, Ty);
1582 
1583   if (getTarget().getTriple().getArch() == llvm::Triple::xcore &&
1584       D->getLanguageLinkage() == CLanguageLinkage &&
1585       D->getType().isConstant(Context) &&
1586       isExternallyVisible(D->getLinkageAndVisibility().getLinkage()))
1587     GV->setSection(".cp.rodata");
1588 
1589   return GV;
1590 }
1591 
1592 
1593 llvm::GlobalVariable *
1594 CodeGenModule::CreateOrReplaceCXXRuntimeVariable(StringRef Name,
1595                                       llvm::Type *Ty,
1596                                       llvm::GlobalValue::LinkageTypes Linkage) {
1597   llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name);
1598   llvm::GlobalVariable *OldGV = 0;
1599 
1600 
1601   if (GV) {
1602     // Check if the variable has the right type.
1603     if (GV->getType()->getElementType() == Ty)
1604       return GV;
1605 
1606     // Because C++ name mangling, the only way we can end up with an already
1607     // existing global with the same name is if it has been declared extern "C".
1608     assert(GV->isDeclaration() && "Declaration has wrong type!");
1609     OldGV = GV;
1610   }
1611 
1612   // Create a new variable.
1613   GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true,
1614                                 Linkage, 0, Name);
1615 
1616   if (OldGV) {
1617     // Replace occurrences of the old variable if needed.
1618     GV->takeName(OldGV);
1619 
1620     if (!OldGV->use_empty()) {
1621       llvm::Constant *NewPtrForOldDecl =
1622       llvm::ConstantExpr::getBitCast(GV, OldGV->getType());
1623       OldGV->replaceAllUsesWith(NewPtrForOldDecl);
1624     }
1625 
1626     OldGV->eraseFromParent();
1627   }
1628 
1629   return GV;
1630 }
1631 
1632 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the
1633 /// given global variable.  If Ty is non-null and if the global doesn't exist,
1634 /// then it will be created with the specified type instead of whatever the
1635 /// normal requested type would be.
1636 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D,
1637                                                   llvm::Type *Ty) {
1638   assert(D->hasGlobalStorage() && "Not a global variable");
1639   QualType ASTTy = D->getType();
1640   if (Ty == 0)
1641     Ty = getTypes().ConvertTypeForMem(ASTTy);
1642 
1643   llvm::PointerType *PTy =
1644     llvm::PointerType::get(Ty, getContext().getTargetAddressSpace(ASTTy));
1645 
1646   StringRef MangledName = getMangledName(D);
1647   return GetOrCreateLLVMGlobal(MangledName, PTy, D);
1648 }
1649 
1650 /// CreateRuntimeVariable - Create a new runtime global variable with the
1651 /// specified type and name.
1652 llvm::Constant *
1653 CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty,
1654                                      StringRef Name) {
1655   return GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), 0,
1656                                true);
1657 }
1658 
1659 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) {
1660   assert(!D->getInit() && "Cannot emit definite definitions here!");
1661 
1662   if (MayDeferGeneration(D)) {
1663     // If we have not seen a reference to this variable yet, place it
1664     // into the deferred declarations table to be emitted if needed
1665     // later.
1666     StringRef MangledName = getMangledName(D);
1667     if (!GetGlobalValue(MangledName)) {
1668       DeferredDecls[MangledName] = D;
1669       return;
1670     }
1671   }
1672 
1673   // The tentative definition is the only definition.
1674   EmitGlobalVarDefinition(D);
1675 }
1676 
1677 CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const {
1678     return Context.toCharUnitsFromBits(
1679       TheDataLayout.getTypeStoreSizeInBits(Ty));
1680 }
1681 
1682 unsigned CodeGenModule::GetGlobalVarAddressSpace(const VarDecl *D,
1683                                                  unsigned AddrSpace) {
1684   if (LangOpts.CUDA && CodeGenOpts.CUDAIsDevice) {
1685     if (D->hasAttr<CUDAConstantAttr>())
1686       AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_constant);
1687     else if (D->hasAttr<CUDASharedAttr>())
1688       AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_shared);
1689     else
1690       AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_device);
1691   }
1692 
1693   return AddrSpace;
1694 }
1695 
1696 template<typename SomeDecl>
1697 void CodeGenModule::MaybeHandleStaticInExternC(const SomeDecl *D,
1698                                                llvm::GlobalValue *GV) {
1699   if (!getLangOpts().CPlusPlus)
1700     return;
1701 
1702   // Must have 'used' attribute, or else inline assembly can't rely on
1703   // the name existing.
1704   if (!D->template hasAttr<UsedAttr>())
1705     return;
1706 
1707   // Must have internal linkage and an ordinary name.
1708   if (!D->getIdentifier() || D->getFormalLinkage() != InternalLinkage)
1709     return;
1710 
1711   // Must be in an extern "C" context. Entities declared directly within
1712   // a record are not extern "C" even if the record is in such a context.
1713   const SomeDecl *First = D->getFirstDecl();
1714   if (First->getDeclContext()->isRecord() || !First->isInExternCContext())
1715     return;
1716 
1717   // OK, this is an internal linkage entity inside an extern "C" linkage
1718   // specification. Make a note of that so we can give it the "expected"
1719   // mangled name if nothing else is using that name.
1720   std::pair<StaticExternCMap::iterator, bool> R =
1721       StaticExternCValues.insert(std::make_pair(D->getIdentifier(), GV));
1722 
1723   // If we have multiple internal linkage entities with the same name
1724   // in extern "C" regions, none of them gets that name.
1725   if (!R.second)
1726     R.first->second = 0;
1727 }
1728 
1729 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D) {
1730   llvm::Constant *Init = 0;
1731   QualType ASTTy = D->getType();
1732   CXXRecordDecl *RD = ASTTy->getBaseElementTypeUnsafe()->getAsCXXRecordDecl();
1733   bool NeedsGlobalCtor = false;
1734   bool NeedsGlobalDtor = RD && !RD->hasTrivialDestructor();
1735 
1736   const VarDecl *InitDecl;
1737   const Expr *InitExpr = D->getAnyInitializer(InitDecl);
1738 
1739   if (!InitExpr) {
1740     // This is a tentative definition; tentative definitions are
1741     // implicitly initialized with { 0 }.
1742     //
1743     // Note that tentative definitions are only emitted at the end of
1744     // a translation unit, so they should never have incomplete
1745     // type. In addition, EmitTentativeDefinition makes sure that we
1746     // never attempt to emit a tentative definition if a real one
1747     // exists. A use may still exists, however, so we still may need
1748     // to do a RAUW.
1749     assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type");
1750     Init = EmitNullConstant(D->getType());
1751   } else {
1752     initializedGlobalDecl = GlobalDecl(D);
1753     Init = EmitConstantInit(*InitDecl);
1754 
1755     if (!Init) {
1756       QualType T = InitExpr->getType();
1757       if (D->getType()->isReferenceType())
1758         T = D->getType();
1759 
1760       if (getLangOpts().CPlusPlus) {
1761         Init = EmitNullConstant(T);
1762         NeedsGlobalCtor = true;
1763       } else {
1764         ErrorUnsupported(D, "static initializer");
1765         Init = llvm::UndefValue::get(getTypes().ConvertType(T));
1766       }
1767     } else {
1768       // We don't need an initializer, so remove the entry for the delayed
1769       // initializer position (just in case this entry was delayed) if we
1770       // also don't need to register a destructor.
1771       if (getLangOpts().CPlusPlus && !NeedsGlobalDtor)
1772         DelayedCXXInitPosition.erase(D);
1773     }
1774   }
1775 
1776   llvm::Type* InitType = Init->getType();
1777   llvm::Constant *Entry = GetAddrOfGlobalVar(D, InitType);
1778 
1779   // Strip off a bitcast if we got one back.
1780   if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
1781     assert(CE->getOpcode() == llvm::Instruction::BitCast ||
1782            CE->getOpcode() == llvm::Instruction::AddrSpaceCast ||
1783            // All zero index gep.
1784            CE->getOpcode() == llvm::Instruction::GetElementPtr);
1785     Entry = CE->getOperand(0);
1786   }
1787 
1788   // Entry is now either a Function or GlobalVariable.
1789   llvm::GlobalVariable *GV = dyn_cast<llvm::GlobalVariable>(Entry);
1790 
1791   // We have a definition after a declaration with the wrong type.
1792   // We must make a new GlobalVariable* and update everything that used OldGV
1793   // (a declaration or tentative definition) with the new GlobalVariable*
1794   // (which will be a definition).
1795   //
1796   // This happens if there is a prototype for a global (e.g.
1797   // "extern int x[];") and then a definition of a different type (e.g.
1798   // "int x[10];"). This also happens when an initializer has a different type
1799   // from the type of the global (this happens with unions).
1800   if (GV == 0 ||
1801       GV->getType()->getElementType() != InitType ||
1802       GV->getType()->getAddressSpace() !=
1803        GetGlobalVarAddressSpace(D, getContext().getTargetAddressSpace(ASTTy))) {
1804 
1805     // Move the old entry aside so that we'll create a new one.
1806     Entry->setName(StringRef());
1807 
1808     // Make a new global with the correct type, this is now guaranteed to work.
1809     GV = cast<llvm::GlobalVariable>(GetAddrOfGlobalVar(D, InitType));
1810 
1811     // Replace all uses of the old global with the new global
1812     llvm::Constant *NewPtrForOldDecl =
1813         llvm::ConstantExpr::getBitCast(GV, Entry->getType());
1814     Entry->replaceAllUsesWith(NewPtrForOldDecl);
1815 
1816     // Erase the old global, since it is no longer used.
1817     cast<llvm::GlobalValue>(Entry)->eraseFromParent();
1818   }
1819 
1820   MaybeHandleStaticInExternC(D, GV);
1821 
1822   if (D->hasAttr<AnnotateAttr>())
1823     AddGlobalAnnotations(D, GV);
1824 
1825   GV->setInitializer(Init);
1826 
1827   // If it is safe to mark the global 'constant', do so now.
1828   GV->setConstant(!NeedsGlobalCtor && !NeedsGlobalDtor &&
1829                   isTypeConstant(D->getType(), true));
1830 
1831   GV->setAlignment(getContext().getDeclAlign(D).getQuantity());
1832 
1833   // Set the llvm linkage type as appropriate.
1834   llvm::GlobalValue::LinkageTypes Linkage =
1835     GetLLVMLinkageVarDefinition(D, GV->isConstant());
1836   GV->setLinkage(Linkage);
1837   if (D->hasAttr<DLLImportAttr>())
1838     GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass);
1839   else if (D->hasAttr<DLLExportAttr>())
1840     GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass);
1841 
1842   // If required by the ABI, give definitions of static data members with inline
1843   // initializers linkonce_odr linkage.
1844   if (getCXXABI().isInlineInitializedStaticDataMemberLinkOnce() &&
1845       D->isStaticDataMember() && InitExpr &&
1846       !InitDecl->isThisDeclarationADefinition())
1847     GV->setLinkage(llvm::GlobalVariable::LinkOnceODRLinkage);
1848 
1849   if (Linkage == llvm::GlobalVariable::CommonLinkage)
1850     // common vars aren't constant even if declared const.
1851     GV->setConstant(false);
1852 
1853   SetCommonAttributes(D, GV);
1854 
1855   // Emit the initializer function if necessary.
1856   if (NeedsGlobalCtor || NeedsGlobalDtor)
1857     EmitCXXGlobalVarDeclInitFunc(D, GV, NeedsGlobalCtor);
1858 
1859   // If we are compiling with ASan, add metadata indicating dynamically
1860   // initialized globals.
1861   if (SanOpts.Address && NeedsGlobalCtor) {
1862     llvm::Module &M = getModule();
1863 
1864     llvm::NamedMDNode *DynamicInitializers =
1865         M.getOrInsertNamedMetadata("llvm.asan.dynamically_initialized_globals");
1866     llvm::Value *GlobalToAdd[] = { GV };
1867     llvm::MDNode *ThisGlobal = llvm::MDNode::get(VMContext, GlobalToAdd);
1868     DynamicInitializers->addOperand(ThisGlobal);
1869   }
1870 
1871   // Emit global variable debug information.
1872   if (CGDebugInfo *DI = getModuleDebugInfo())
1873     if (getCodeGenOpts().getDebugInfo() >= CodeGenOptions::LimitedDebugInfo)
1874       DI->EmitGlobalVariable(GV, D);
1875 }
1876 
1877 llvm::GlobalValue::LinkageTypes
1878 CodeGenModule::GetLLVMLinkageVarDefinition(const VarDecl *D, bool isConstant) {
1879   GVALinkage Linkage = getContext().GetGVALinkageForVariable(D);
1880   if (Linkage == GVA_Internal)
1881     return llvm::Function::InternalLinkage;
1882   else if (D->hasAttr<DLLImportAttr>())
1883     return llvm::Function::ExternalLinkage;
1884   else if (D->hasAttr<DLLExportAttr>())
1885     return llvm::Function::ExternalLinkage;
1886   else if (D->hasAttr<SelectAnyAttr>()) {
1887     // selectany symbols are externally visible, so use weak instead of
1888     // linkonce.  MSVC optimizes away references to const selectany globals, so
1889     // all definitions should be the same and ODR linkage should be used.
1890     // http://msdn.microsoft.com/en-us/library/5tkz6s71.aspx
1891     return llvm::GlobalVariable::WeakODRLinkage;
1892   } else if (D->hasAttr<WeakAttr>()) {
1893     if (isConstant)
1894       return llvm::GlobalVariable::WeakODRLinkage;
1895     else
1896       return llvm::GlobalVariable::WeakAnyLinkage;
1897   } else if (Linkage == GVA_TemplateInstantiation ||
1898              Linkage == GVA_ExplicitTemplateInstantiation)
1899     return llvm::GlobalVariable::WeakODRLinkage;
1900   else if (!getLangOpts().CPlusPlus &&
1901            ((!CodeGenOpts.NoCommon && !D->hasAttr<NoCommonAttr>()) ||
1902              D->hasAttr<CommonAttr>()) &&
1903            !D->hasExternalStorage() && !D->getInit() &&
1904            !D->hasAttr<SectionAttr>() && !D->getTLSKind() &&
1905            !D->hasAttr<WeakImportAttr>()) {
1906     // Thread local vars aren't considered common linkage.
1907     return llvm::GlobalVariable::CommonLinkage;
1908   } else if (D->getTLSKind() == VarDecl::TLS_Dynamic &&
1909              getTarget().getTriple().isMacOSX())
1910     // On Darwin, the backing variable for a C++11 thread_local variable always
1911     // has internal linkage; all accesses should just be calls to the
1912     // Itanium-specified entry point, which has the normal linkage of the
1913     // variable.
1914     return llvm::GlobalValue::InternalLinkage;
1915   return llvm::GlobalVariable::ExternalLinkage;
1916 }
1917 
1918 /// Replace the uses of a function that was declared with a non-proto type.
1919 /// We want to silently drop extra arguments from call sites
1920 static void replaceUsesOfNonProtoConstant(llvm::Constant *old,
1921                                           llvm::Function *newFn) {
1922   // Fast path.
1923   if (old->use_empty()) return;
1924 
1925   llvm::Type *newRetTy = newFn->getReturnType();
1926   SmallVector<llvm::Value*, 4> newArgs;
1927 
1928   for (llvm::Value::use_iterator ui = old->use_begin(), ue = old->use_end();
1929          ui != ue; ) {
1930     llvm::Value::use_iterator use = ui++; // Increment before the use is erased.
1931     llvm::User *user = *use;
1932 
1933     // Recognize and replace uses of bitcasts.  Most calls to
1934     // unprototyped functions will use bitcasts.
1935     if (llvm::ConstantExpr *bitcast = dyn_cast<llvm::ConstantExpr>(user)) {
1936       if (bitcast->getOpcode() == llvm::Instruction::BitCast)
1937         replaceUsesOfNonProtoConstant(bitcast, newFn);
1938       continue;
1939     }
1940 
1941     // Recognize calls to the function.
1942     llvm::CallSite callSite(user);
1943     if (!callSite) continue;
1944     if (!callSite.isCallee(use)) continue;
1945 
1946     // If the return types don't match exactly, then we can't
1947     // transform this call unless it's dead.
1948     if (callSite->getType() != newRetTy && !callSite->use_empty())
1949       continue;
1950 
1951     // Get the call site's attribute list.
1952     SmallVector<llvm::AttributeSet, 8> newAttrs;
1953     llvm::AttributeSet oldAttrs = callSite.getAttributes();
1954 
1955     // Collect any return attributes from the call.
1956     if (oldAttrs.hasAttributes(llvm::AttributeSet::ReturnIndex))
1957       newAttrs.push_back(
1958         llvm::AttributeSet::get(newFn->getContext(),
1959                                 oldAttrs.getRetAttributes()));
1960 
1961     // If the function was passed too few arguments, don't transform.
1962     unsigned newNumArgs = newFn->arg_size();
1963     if (callSite.arg_size() < newNumArgs) continue;
1964 
1965     // If extra arguments were passed, we silently drop them.
1966     // If any of the types mismatch, we don't transform.
1967     unsigned argNo = 0;
1968     bool dontTransform = false;
1969     for (llvm::Function::arg_iterator ai = newFn->arg_begin(),
1970            ae = newFn->arg_end(); ai != ae; ++ai, ++argNo) {
1971       if (callSite.getArgument(argNo)->getType() != ai->getType()) {
1972         dontTransform = true;
1973         break;
1974       }
1975 
1976       // Add any parameter attributes.
1977       if (oldAttrs.hasAttributes(argNo + 1))
1978         newAttrs.
1979           push_back(llvm::
1980                     AttributeSet::get(newFn->getContext(),
1981                                       oldAttrs.getParamAttributes(argNo + 1)));
1982     }
1983     if (dontTransform)
1984       continue;
1985 
1986     if (oldAttrs.hasAttributes(llvm::AttributeSet::FunctionIndex))
1987       newAttrs.push_back(llvm::AttributeSet::get(newFn->getContext(),
1988                                                  oldAttrs.getFnAttributes()));
1989 
1990     // Okay, we can transform this.  Create the new call instruction and copy
1991     // over the required information.
1992     newArgs.append(callSite.arg_begin(), callSite.arg_begin() + argNo);
1993 
1994     llvm::CallSite newCall;
1995     if (callSite.isCall()) {
1996       newCall = llvm::CallInst::Create(newFn, newArgs, "",
1997                                        callSite.getInstruction());
1998     } else {
1999       llvm::InvokeInst *oldInvoke =
2000         cast<llvm::InvokeInst>(callSite.getInstruction());
2001       newCall = llvm::InvokeInst::Create(newFn,
2002                                          oldInvoke->getNormalDest(),
2003                                          oldInvoke->getUnwindDest(),
2004                                          newArgs, "",
2005                                          callSite.getInstruction());
2006     }
2007     newArgs.clear(); // for the next iteration
2008 
2009     if (!newCall->getType()->isVoidTy())
2010       newCall->takeName(callSite.getInstruction());
2011     newCall.setAttributes(
2012                      llvm::AttributeSet::get(newFn->getContext(), newAttrs));
2013     newCall.setCallingConv(callSite.getCallingConv());
2014 
2015     // Finally, remove the old call, replacing any uses with the new one.
2016     if (!callSite->use_empty())
2017       callSite->replaceAllUsesWith(newCall.getInstruction());
2018 
2019     // Copy debug location attached to CI.
2020     if (!callSite->getDebugLoc().isUnknown())
2021       newCall->setDebugLoc(callSite->getDebugLoc());
2022     callSite->eraseFromParent();
2023   }
2024 }
2025 
2026 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we
2027 /// implement a function with no prototype, e.g. "int foo() {}".  If there are
2028 /// existing call uses of the old function in the module, this adjusts them to
2029 /// call the new function directly.
2030 ///
2031 /// This is not just a cleanup: the always_inline pass requires direct calls to
2032 /// functions to be able to inline them.  If there is a bitcast in the way, it
2033 /// won't inline them.  Instcombine normally deletes these calls, but it isn't
2034 /// run at -O0.
2035 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
2036                                                       llvm::Function *NewFn) {
2037   // If we're redefining a global as a function, don't transform it.
2038   if (!isa<llvm::Function>(Old)) return;
2039 
2040   replaceUsesOfNonProtoConstant(Old, NewFn);
2041 }
2042 
2043 void CodeGenModule::HandleCXXStaticMemberVarInstantiation(VarDecl *VD) {
2044   TemplateSpecializationKind TSK = VD->getTemplateSpecializationKind();
2045   // If we have a definition, this might be a deferred decl. If the
2046   // instantiation is explicit, make sure we emit it at the end.
2047   if (VD->getDefinition() && TSK == TSK_ExplicitInstantiationDefinition)
2048     GetAddrOfGlobalVar(VD);
2049 
2050   EmitTopLevelDecl(VD);
2051 }
2052 
2053 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD,
2054                                                  llvm::GlobalValue *GV) {
2055   const FunctionDecl *D = cast<FunctionDecl>(GD.getDecl());
2056 
2057   // Compute the function info and LLVM type.
2058   const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
2059   llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
2060 
2061   // Get or create the prototype for the function.
2062   llvm::Constant *Entry =
2063       GV ? GV
2064          : GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer*/ true);
2065 
2066   // Strip off a bitcast if we got one back.
2067   if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
2068     assert(CE->getOpcode() == llvm::Instruction::BitCast);
2069     Entry = CE->getOperand(0);
2070   }
2071 
2072   if (!cast<llvm::GlobalValue>(Entry)->isDeclaration()) {
2073     getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name);
2074     return;
2075   }
2076 
2077   if (cast<llvm::GlobalValue>(Entry)->getType()->getElementType() != Ty) {
2078     llvm::GlobalValue *OldFn = cast<llvm::GlobalValue>(Entry);
2079 
2080     // If the types mismatch then we have to rewrite the definition.
2081     assert(OldFn->isDeclaration() &&
2082            "Shouldn't replace non-declaration");
2083 
2084     // F is the Function* for the one with the wrong type, we must make a new
2085     // Function* and update everything that used F (a declaration) with the new
2086     // Function* (which will be a definition).
2087     //
2088     // This happens if there is a prototype for a function
2089     // (e.g. "int f()") and then a definition of a different type
2090     // (e.g. "int f(int x)").  Move the old function aside so that it
2091     // doesn't interfere with GetAddrOfFunction.
2092     OldFn->setName(StringRef());
2093     llvm::Function *NewFn = cast<llvm::Function>(GetAddrOfFunction(GD, Ty));
2094 
2095     // This might be an implementation of a function without a
2096     // prototype, in which case, try to do special replacement of
2097     // calls which match the new prototype.  The really key thing here
2098     // is that we also potentially drop arguments from the call site
2099     // so as to make a direct call, which makes the inliner happier
2100     // and suppresses a number of optimizer warnings (!) about
2101     // dropping arguments.
2102     if (!OldFn->use_empty()) {
2103       ReplaceUsesOfNonProtoTypeWithRealFunction(OldFn, NewFn);
2104       OldFn->removeDeadConstantUsers();
2105     }
2106 
2107     // Replace uses of F with the Function we will endow with a body.
2108     if (!Entry->use_empty()) {
2109       llvm::Constant *NewPtrForOldDecl =
2110         llvm::ConstantExpr::getBitCast(NewFn, Entry->getType());
2111       Entry->replaceAllUsesWith(NewPtrForOldDecl);
2112     }
2113 
2114     // Ok, delete the old function now, which is dead.
2115     OldFn->eraseFromParent();
2116 
2117     Entry = NewFn;
2118   }
2119 
2120   // We need to set linkage and visibility on the function before
2121   // generating code for it because various parts of IR generation
2122   // want to propagate this information down (e.g. to local static
2123   // declarations).
2124   llvm::Function *Fn = cast<llvm::Function>(Entry);
2125   setFunctionLinkage(GD, Fn);
2126 
2127   // FIXME: this is redundant with part of SetFunctionDefinitionAttributes
2128   setGlobalVisibility(Fn, D);
2129 
2130   MaybeHandleStaticInExternC(D, Fn);
2131 
2132   CodeGenFunction(*this).GenerateCode(D, Fn, FI);
2133 
2134   SetFunctionDefinitionAttributes(D, Fn);
2135   SetLLVMFunctionAttributesForDefinition(D, Fn);
2136 
2137   if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>())
2138     AddGlobalCtor(Fn, CA->getPriority());
2139   if (const DestructorAttr *DA = D->getAttr<DestructorAttr>())
2140     AddGlobalDtor(Fn, DA->getPriority());
2141   if (D->hasAttr<AnnotateAttr>())
2142     AddGlobalAnnotations(D, Fn);
2143 
2144   llvm::Function *PGOInit = CodeGenPGO::emitInitialization(*this);
2145   if (PGOInit)
2146     AddGlobalCtor(PGOInit, 0);
2147 }
2148 
2149 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) {
2150   const ValueDecl *D = cast<ValueDecl>(GD.getDecl());
2151   const AliasAttr *AA = D->getAttr<AliasAttr>();
2152   assert(AA && "Not an alias?");
2153 
2154   StringRef MangledName = getMangledName(GD);
2155 
2156   // If there is a definition in the module, then it wins over the alias.
2157   // This is dubious, but allow it to be safe.  Just ignore the alias.
2158   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
2159   if (Entry && !Entry->isDeclaration())
2160     return;
2161 
2162   Aliases.push_back(GD);
2163 
2164   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
2165 
2166   // Create a reference to the named value.  This ensures that it is emitted
2167   // if a deferred decl.
2168   llvm::Constant *Aliasee;
2169   if (isa<llvm::FunctionType>(DeclTy))
2170     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GD,
2171                                       /*ForVTable=*/false);
2172   else
2173     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
2174                                     llvm::PointerType::getUnqual(DeclTy), 0);
2175 
2176   // Create the new alias itself, but don't set a name yet.
2177   llvm::GlobalValue *GA =
2178     new llvm::GlobalAlias(Aliasee->getType(),
2179                           llvm::Function::ExternalLinkage,
2180                           "", Aliasee, &getModule());
2181 
2182   if (Entry) {
2183     assert(Entry->isDeclaration());
2184 
2185     // If there is a declaration in the module, then we had an extern followed
2186     // by the alias, as in:
2187     //   extern int test6();
2188     //   ...
2189     //   int test6() __attribute__((alias("test7")));
2190     //
2191     // Remove it and replace uses of it with the alias.
2192     GA->takeName(Entry);
2193 
2194     Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA,
2195                                                           Entry->getType()));
2196     Entry->eraseFromParent();
2197   } else {
2198     GA->setName(MangledName);
2199   }
2200 
2201   // Set attributes which are particular to an alias; this is a
2202   // specialization of the attributes which may be set on a global
2203   // variable/function.
2204   if (D->hasAttr<DLLExportAttr>()) {
2205     if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
2206       // The dllexport attribute is ignored for undefined symbols.
2207       if (FD->hasBody())
2208         GA->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass);
2209     } else {
2210       GA->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass);
2211     }
2212   } else if (D->hasAttr<WeakAttr>() ||
2213              D->hasAttr<WeakRefAttr>() ||
2214              D->isWeakImported()) {
2215     GA->setLinkage(llvm::Function::WeakAnyLinkage);
2216   }
2217 
2218   SetCommonAttributes(D, GA);
2219 }
2220 
2221 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,
2222                                             ArrayRef<llvm::Type*> Tys) {
2223   return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID,
2224                                          Tys);
2225 }
2226 
2227 static llvm::StringMapEntry<llvm::Constant*> &
2228 GetConstantCFStringEntry(llvm::StringMap<llvm::Constant*> &Map,
2229                          const StringLiteral *Literal,
2230                          bool TargetIsLSB,
2231                          bool &IsUTF16,
2232                          unsigned &StringLength) {
2233   StringRef String = Literal->getString();
2234   unsigned NumBytes = String.size();
2235 
2236   // Check for simple case.
2237   if (!Literal->containsNonAsciiOrNull()) {
2238     StringLength = NumBytes;
2239     return Map.GetOrCreateValue(String);
2240   }
2241 
2242   // Otherwise, convert the UTF8 literals into a string of shorts.
2243   IsUTF16 = true;
2244 
2245   SmallVector<UTF16, 128> ToBuf(NumBytes + 1); // +1 for ending nulls.
2246   const UTF8 *FromPtr = (const UTF8 *)String.data();
2247   UTF16 *ToPtr = &ToBuf[0];
2248 
2249   (void)ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes,
2250                            &ToPtr, ToPtr + NumBytes,
2251                            strictConversion);
2252 
2253   // ConvertUTF8toUTF16 returns the length in ToPtr.
2254   StringLength = ToPtr - &ToBuf[0];
2255 
2256   // Add an explicit null.
2257   *ToPtr = 0;
2258   return Map.
2259     GetOrCreateValue(StringRef(reinterpret_cast<const char *>(ToBuf.data()),
2260                                (StringLength + 1) * 2));
2261 }
2262 
2263 static llvm::StringMapEntry<llvm::Constant*> &
2264 GetConstantStringEntry(llvm::StringMap<llvm::Constant*> &Map,
2265                        const StringLiteral *Literal,
2266                        unsigned &StringLength) {
2267   StringRef String = Literal->getString();
2268   StringLength = String.size();
2269   return Map.GetOrCreateValue(String);
2270 }
2271 
2272 llvm::Constant *
2273 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) {
2274   unsigned StringLength = 0;
2275   bool isUTF16 = false;
2276   llvm::StringMapEntry<llvm::Constant*> &Entry =
2277     GetConstantCFStringEntry(CFConstantStringMap, Literal,
2278                              getDataLayout().isLittleEndian(),
2279                              isUTF16, StringLength);
2280 
2281   if (llvm::Constant *C = Entry.getValue())
2282     return C;
2283 
2284   llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty);
2285   llvm::Constant *Zeros[] = { Zero, Zero };
2286   llvm::Value *V;
2287 
2288   // If we don't already have it, get __CFConstantStringClassReference.
2289   if (!CFConstantStringClassRef) {
2290     llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
2291     Ty = llvm::ArrayType::get(Ty, 0);
2292     llvm::Constant *GV = CreateRuntimeVariable(Ty,
2293                                            "__CFConstantStringClassReference");
2294     // Decay array -> ptr
2295     V = llvm::ConstantExpr::getGetElementPtr(GV, Zeros);
2296     CFConstantStringClassRef = V;
2297   }
2298   else
2299     V = CFConstantStringClassRef;
2300 
2301   QualType CFTy = getContext().getCFConstantStringType();
2302 
2303   llvm::StructType *STy =
2304     cast<llvm::StructType>(getTypes().ConvertType(CFTy));
2305 
2306   llvm::Constant *Fields[4];
2307 
2308   // Class pointer.
2309   Fields[0] = cast<llvm::ConstantExpr>(V);
2310 
2311   // Flags.
2312   llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy);
2313   Fields[1] = isUTF16 ? llvm::ConstantInt::get(Ty, 0x07d0) :
2314     llvm::ConstantInt::get(Ty, 0x07C8);
2315 
2316   // String pointer.
2317   llvm::Constant *C = 0;
2318   if (isUTF16) {
2319     ArrayRef<uint16_t> Arr =
2320       llvm::makeArrayRef<uint16_t>(reinterpret_cast<uint16_t*>(
2321                                      const_cast<char *>(Entry.getKey().data())),
2322                                    Entry.getKey().size() / 2);
2323     C = llvm::ConstantDataArray::get(VMContext, Arr);
2324   } else {
2325     C = llvm::ConstantDataArray::getString(VMContext, Entry.getKey());
2326   }
2327 
2328   // Note: -fwritable-strings doesn't make the backing store strings of
2329   // CFStrings writable. (See <rdar://problem/10657500>)
2330   llvm::GlobalVariable *GV =
2331       new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true,
2332                                llvm::GlobalValue::PrivateLinkage, C, ".str");
2333   GV->setUnnamedAddr(true);
2334   // Don't enforce the target's minimum global alignment, since the only use
2335   // of the string is via this class initializer.
2336   // FIXME: We set the section explicitly to avoid a bug in ld64 224.1. Without
2337   // it LLVM can merge the string with a non unnamed_addr one during LTO. Doing
2338   // that changes the section it ends in, which surprises ld64.
2339   if (isUTF16) {
2340     CharUnits Align = getContext().getTypeAlignInChars(getContext().ShortTy);
2341     GV->setAlignment(Align.getQuantity());
2342     GV->setSection("__TEXT,__ustring");
2343   } else {
2344     CharUnits Align = getContext().getTypeAlignInChars(getContext().CharTy);
2345     GV->setAlignment(Align.getQuantity());
2346     GV->setSection("__TEXT,__cstring,cstring_literals");
2347   }
2348 
2349   // String.
2350   Fields[2] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros);
2351 
2352   if (isUTF16)
2353     // Cast the UTF16 string to the correct type.
2354     Fields[2] = llvm::ConstantExpr::getBitCast(Fields[2], Int8PtrTy);
2355 
2356   // String length.
2357   Ty = getTypes().ConvertType(getContext().LongTy);
2358   Fields[3] = llvm::ConstantInt::get(Ty, StringLength);
2359 
2360   // The struct.
2361   C = llvm::ConstantStruct::get(STy, Fields);
2362   GV = new llvm::GlobalVariable(getModule(), C->getType(), true,
2363                                 llvm::GlobalVariable::PrivateLinkage, C,
2364                                 "_unnamed_cfstring_");
2365   GV->setSection("__DATA,__cfstring");
2366   Entry.setValue(GV);
2367 
2368   return GV;
2369 }
2370 
2371 llvm::Constant *
2372 CodeGenModule::GetAddrOfConstantString(const StringLiteral *Literal) {
2373   unsigned StringLength = 0;
2374   llvm::StringMapEntry<llvm::Constant*> &Entry =
2375     GetConstantStringEntry(CFConstantStringMap, Literal, StringLength);
2376 
2377   if (llvm::Constant *C = Entry.getValue())
2378     return C;
2379 
2380   llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty);
2381   llvm::Constant *Zeros[] = { Zero, Zero };
2382   llvm::Value *V;
2383   // If we don't already have it, get _NSConstantStringClassReference.
2384   if (!ConstantStringClassRef) {
2385     std::string StringClass(getLangOpts().ObjCConstantStringClass);
2386     llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
2387     llvm::Constant *GV;
2388     if (LangOpts.ObjCRuntime.isNonFragile()) {
2389       std::string str =
2390         StringClass.empty() ? "OBJC_CLASS_$_NSConstantString"
2391                             : "OBJC_CLASS_$_" + StringClass;
2392       GV = getObjCRuntime().GetClassGlobal(str);
2393       // Make sure the result is of the correct type.
2394       llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
2395       V = llvm::ConstantExpr::getBitCast(GV, PTy);
2396       ConstantStringClassRef = V;
2397     } else {
2398       std::string str =
2399         StringClass.empty() ? "_NSConstantStringClassReference"
2400                             : "_" + StringClass + "ClassReference";
2401       llvm::Type *PTy = llvm::ArrayType::get(Ty, 0);
2402       GV = CreateRuntimeVariable(PTy, str);
2403       // Decay array -> ptr
2404       V = llvm::ConstantExpr::getGetElementPtr(GV, Zeros);
2405       ConstantStringClassRef = V;
2406     }
2407   }
2408   else
2409     V = ConstantStringClassRef;
2410 
2411   if (!NSConstantStringType) {
2412     // Construct the type for a constant NSString.
2413     RecordDecl *D = Context.buildImplicitRecord("__builtin_NSString");
2414     D->startDefinition();
2415 
2416     QualType FieldTypes[3];
2417 
2418     // const int *isa;
2419     FieldTypes[0] = Context.getPointerType(Context.IntTy.withConst());
2420     // const char *str;
2421     FieldTypes[1] = Context.getPointerType(Context.CharTy.withConst());
2422     // unsigned int length;
2423     FieldTypes[2] = Context.UnsignedIntTy;
2424 
2425     // Create fields
2426     for (unsigned i = 0; i < 3; ++i) {
2427       FieldDecl *Field = FieldDecl::Create(Context, D,
2428                                            SourceLocation(),
2429                                            SourceLocation(), 0,
2430                                            FieldTypes[i], /*TInfo=*/0,
2431                                            /*BitWidth=*/0,
2432                                            /*Mutable=*/false,
2433                                            ICIS_NoInit);
2434       Field->setAccess(AS_public);
2435       D->addDecl(Field);
2436     }
2437 
2438     D->completeDefinition();
2439     QualType NSTy = Context.getTagDeclType(D);
2440     NSConstantStringType = cast<llvm::StructType>(getTypes().ConvertType(NSTy));
2441   }
2442 
2443   llvm::Constant *Fields[3];
2444 
2445   // Class pointer.
2446   Fields[0] = cast<llvm::ConstantExpr>(V);
2447 
2448   // String pointer.
2449   llvm::Constant *C =
2450     llvm::ConstantDataArray::getString(VMContext, Entry.getKey());
2451 
2452   llvm::GlobalValue::LinkageTypes Linkage;
2453   bool isConstant;
2454   Linkage = llvm::GlobalValue::PrivateLinkage;
2455   isConstant = !LangOpts.WritableStrings;
2456 
2457   llvm::GlobalVariable *GV =
2458   new llvm::GlobalVariable(getModule(), C->getType(), isConstant, Linkage, C,
2459                            ".str");
2460   GV->setUnnamedAddr(true);
2461   // Don't enforce the target's minimum global alignment, since the only use
2462   // of the string is via this class initializer.
2463   CharUnits Align = getContext().getTypeAlignInChars(getContext().CharTy);
2464   GV->setAlignment(Align.getQuantity());
2465   Fields[1] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros);
2466 
2467   // String length.
2468   llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy);
2469   Fields[2] = llvm::ConstantInt::get(Ty, StringLength);
2470 
2471   // The struct.
2472   C = llvm::ConstantStruct::get(NSConstantStringType, Fields);
2473   GV = new llvm::GlobalVariable(getModule(), C->getType(), true,
2474                                 llvm::GlobalVariable::PrivateLinkage, C,
2475                                 "_unnamed_nsstring_");
2476   const char *NSStringSection = "__OBJC,__cstring_object,regular,no_dead_strip";
2477   const char *NSStringNonFragileABISection =
2478       "__DATA,__objc_stringobj,regular,no_dead_strip";
2479   // FIXME. Fix section.
2480   GV->setSection(LangOpts.ObjCRuntime.isNonFragile()
2481                      ? NSStringNonFragileABISection
2482                      : NSStringSection);
2483   Entry.setValue(GV);
2484 
2485   return GV;
2486 }
2487 
2488 QualType CodeGenModule::getObjCFastEnumerationStateType() {
2489   if (ObjCFastEnumerationStateType.isNull()) {
2490     RecordDecl *D = Context.buildImplicitRecord("__objcFastEnumerationState");
2491     D->startDefinition();
2492 
2493     QualType FieldTypes[] = {
2494       Context.UnsignedLongTy,
2495       Context.getPointerType(Context.getObjCIdType()),
2496       Context.getPointerType(Context.UnsignedLongTy),
2497       Context.getConstantArrayType(Context.UnsignedLongTy,
2498                            llvm::APInt(32, 5), ArrayType::Normal, 0)
2499     };
2500 
2501     for (size_t i = 0; i < 4; ++i) {
2502       FieldDecl *Field = FieldDecl::Create(Context,
2503                                            D,
2504                                            SourceLocation(),
2505                                            SourceLocation(), 0,
2506                                            FieldTypes[i], /*TInfo=*/0,
2507                                            /*BitWidth=*/0,
2508                                            /*Mutable=*/false,
2509                                            ICIS_NoInit);
2510       Field->setAccess(AS_public);
2511       D->addDecl(Field);
2512     }
2513 
2514     D->completeDefinition();
2515     ObjCFastEnumerationStateType = Context.getTagDeclType(D);
2516   }
2517 
2518   return ObjCFastEnumerationStateType;
2519 }
2520 
2521 llvm::Constant *
2522 CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) {
2523   assert(!E->getType()->isPointerType() && "Strings are always arrays");
2524 
2525   // Don't emit it as the address of the string, emit the string data itself
2526   // as an inline array.
2527   if (E->getCharByteWidth() == 1) {
2528     SmallString<64> Str(E->getString());
2529 
2530     // Resize the string to the right size, which is indicated by its type.
2531     const ConstantArrayType *CAT = Context.getAsConstantArrayType(E->getType());
2532     Str.resize(CAT->getSize().getZExtValue());
2533     return llvm::ConstantDataArray::getString(VMContext, Str, false);
2534   }
2535 
2536   llvm::ArrayType *AType =
2537     cast<llvm::ArrayType>(getTypes().ConvertType(E->getType()));
2538   llvm::Type *ElemTy = AType->getElementType();
2539   unsigned NumElements = AType->getNumElements();
2540 
2541   // Wide strings have either 2-byte or 4-byte elements.
2542   if (ElemTy->getPrimitiveSizeInBits() == 16) {
2543     SmallVector<uint16_t, 32> Elements;
2544     Elements.reserve(NumElements);
2545 
2546     for(unsigned i = 0, e = E->getLength(); i != e; ++i)
2547       Elements.push_back(E->getCodeUnit(i));
2548     Elements.resize(NumElements);
2549     return llvm::ConstantDataArray::get(VMContext, Elements);
2550   }
2551 
2552   assert(ElemTy->getPrimitiveSizeInBits() == 32);
2553   SmallVector<uint32_t, 32> Elements;
2554   Elements.reserve(NumElements);
2555 
2556   for(unsigned i = 0, e = E->getLength(); i != e; ++i)
2557     Elements.push_back(E->getCodeUnit(i));
2558   Elements.resize(NumElements);
2559   return llvm::ConstantDataArray::get(VMContext, Elements);
2560 }
2561 
2562 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a
2563 /// constant array for the given string literal.
2564 llvm::Constant *
2565 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S) {
2566   CharUnits Align = getContext().getAlignOfGlobalVarInChars(S->getType());
2567   if (S->isAscii() || S->isUTF8()) {
2568     SmallString<64> Str(S->getString());
2569 
2570     // Resize the string to the right size, which is indicated by its type.
2571     const ConstantArrayType *CAT = Context.getAsConstantArrayType(S->getType());
2572     Str.resize(CAT->getSize().getZExtValue());
2573     return GetAddrOfConstantString(Str, /*GlobalName*/ 0, Align.getQuantity());
2574   }
2575 
2576   // FIXME: the following does not memoize wide strings.
2577   llvm::Constant *C = GetConstantArrayFromStringLiteral(S);
2578   llvm::GlobalVariable *GV =
2579     new llvm::GlobalVariable(getModule(),C->getType(),
2580                              !LangOpts.WritableStrings,
2581                              llvm::GlobalValue::PrivateLinkage,
2582                              C,".str");
2583 
2584   GV->setAlignment(Align.getQuantity());
2585   GV->setUnnamedAddr(true);
2586   return GV;
2587 }
2588 
2589 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant
2590 /// array for the given ObjCEncodeExpr node.
2591 llvm::Constant *
2592 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) {
2593   std::string Str;
2594   getContext().getObjCEncodingForType(E->getEncodedType(), Str);
2595 
2596   return GetAddrOfConstantCString(Str);
2597 }
2598 
2599 
2600 /// GenerateWritableString -- Creates storage for a string literal.
2601 static llvm::GlobalVariable *GenerateStringLiteral(StringRef str,
2602                                              bool constant,
2603                                              CodeGenModule &CGM,
2604                                              const char *GlobalName,
2605                                              unsigned Alignment) {
2606   // Create Constant for this string literal. Don't add a '\0'.
2607   llvm::Constant *C =
2608       llvm::ConstantDataArray::getString(CGM.getLLVMContext(), str, false);
2609 
2610   // OpenCL v1.1 s6.5.3: a string literal is in the constant address space.
2611   unsigned AddrSpace = 0;
2612   if (CGM.getLangOpts().OpenCL)
2613     AddrSpace = CGM.getContext().getTargetAddressSpace(LangAS::opencl_constant);
2614 
2615   // Create a global variable for this string
2616   llvm::GlobalVariable *GV = new llvm::GlobalVariable(
2617       CGM.getModule(), C->getType(), constant,
2618       llvm::GlobalValue::PrivateLinkage, C, GlobalName, 0,
2619       llvm::GlobalVariable::NotThreadLocal, AddrSpace);
2620   GV->setAlignment(Alignment);
2621   GV->setUnnamedAddr(true);
2622   return GV;
2623 }
2624 
2625 /// GetAddrOfConstantString - Returns a pointer to a character array
2626 /// containing the literal. This contents are exactly that of the
2627 /// given string, i.e. it will not be null terminated automatically;
2628 /// see GetAddrOfConstantCString. Note that whether the result is
2629 /// actually a pointer to an LLVM constant depends on
2630 /// Feature.WriteableStrings.
2631 ///
2632 /// The result has pointer to array type.
2633 llvm::Constant *CodeGenModule::GetAddrOfConstantString(StringRef Str,
2634                                                        const char *GlobalName,
2635                                                        unsigned Alignment) {
2636   // Get the default prefix if a name wasn't specified.
2637   if (!GlobalName)
2638     GlobalName = ".str";
2639 
2640   if (Alignment == 0)
2641     Alignment = getContext().getAlignOfGlobalVarInChars(getContext().CharTy)
2642       .getQuantity();
2643 
2644   // Don't share any string literals if strings aren't constant.
2645   if (LangOpts.WritableStrings)
2646     return GenerateStringLiteral(Str, false, *this, GlobalName, Alignment);
2647 
2648   llvm::StringMapEntry<llvm::GlobalVariable *> &Entry =
2649     ConstantStringMap.GetOrCreateValue(Str);
2650 
2651   if (llvm::GlobalVariable *GV = Entry.getValue()) {
2652     if (Alignment > GV->getAlignment()) {
2653       GV->setAlignment(Alignment);
2654     }
2655     return GV;
2656   }
2657 
2658   // Create a global variable for this.
2659   llvm::GlobalVariable *GV = GenerateStringLiteral(Str, true, *this, GlobalName,
2660                                                    Alignment);
2661   Entry.setValue(GV);
2662   return GV;
2663 }
2664 
2665 /// GetAddrOfConstantCString - Returns a pointer to a character
2666 /// array containing the literal and a terminating '\0'
2667 /// character. The result has pointer to array type.
2668 llvm::Constant *CodeGenModule::GetAddrOfConstantCString(const std::string &Str,
2669                                                         const char *GlobalName,
2670                                                         unsigned Alignment) {
2671   StringRef StrWithNull(Str.c_str(), Str.size() + 1);
2672   return GetAddrOfConstantString(StrWithNull, GlobalName, Alignment);
2673 }
2674 
2675 llvm::Constant *CodeGenModule::GetAddrOfGlobalTemporary(
2676     const MaterializeTemporaryExpr *E, const Expr *Init) {
2677   assert((E->getStorageDuration() == SD_Static ||
2678           E->getStorageDuration() == SD_Thread) && "not a global temporary");
2679   const VarDecl *VD = cast<VarDecl>(E->getExtendingDecl());
2680 
2681   // If we're not materializing a subobject of the temporary, keep the
2682   // cv-qualifiers from the type of the MaterializeTemporaryExpr.
2683   QualType MaterializedType = Init->getType();
2684   if (Init == E->GetTemporaryExpr())
2685     MaterializedType = E->getType();
2686 
2687   llvm::Constant *&Slot = MaterializedGlobalTemporaryMap[E];
2688   if (Slot)
2689     return Slot;
2690 
2691   // FIXME: If an externally-visible declaration extends multiple temporaries,
2692   // we need to give each temporary the same name in every translation unit (and
2693   // we also need to make the temporaries externally-visible).
2694   SmallString<256> Name;
2695   llvm::raw_svector_ostream Out(Name);
2696   getCXXABI().getMangleContext().mangleReferenceTemporary(VD, Out);
2697   Out.flush();
2698 
2699   APValue *Value = 0;
2700   if (E->getStorageDuration() == SD_Static) {
2701     // We might have a cached constant initializer for this temporary. Note
2702     // that this might have a different value from the value computed by
2703     // evaluating the initializer if the surrounding constant expression
2704     // modifies the temporary.
2705     Value = getContext().getMaterializedTemporaryValue(E, false);
2706     if (Value && Value->isUninit())
2707       Value = 0;
2708   }
2709 
2710   // Try evaluating it now, it might have a constant initializer.
2711   Expr::EvalResult EvalResult;
2712   if (!Value && Init->EvaluateAsRValue(EvalResult, getContext()) &&
2713       !EvalResult.hasSideEffects())
2714     Value = &EvalResult.Val;
2715 
2716   llvm::Constant *InitialValue = 0;
2717   bool Constant = false;
2718   llvm::Type *Type;
2719   if (Value) {
2720     // The temporary has a constant initializer, use it.
2721     InitialValue = EmitConstantValue(*Value, MaterializedType, 0);
2722     Constant = isTypeConstant(MaterializedType, /*ExcludeCtor*/Value);
2723     Type = InitialValue->getType();
2724   } else {
2725     // No initializer, the initialization will be provided when we
2726     // initialize the declaration which performed lifetime extension.
2727     Type = getTypes().ConvertTypeForMem(MaterializedType);
2728   }
2729 
2730   // Create a global variable for this lifetime-extended temporary.
2731   llvm::GlobalVariable *GV =
2732     new llvm::GlobalVariable(getModule(), Type, Constant,
2733                              llvm::GlobalValue::PrivateLinkage,
2734                              InitialValue, Name.c_str());
2735   GV->setAlignment(
2736       getContext().getTypeAlignInChars(MaterializedType).getQuantity());
2737   if (VD->getTLSKind())
2738     setTLSMode(GV, *VD);
2739   Slot = GV;
2740   return GV;
2741 }
2742 
2743 /// EmitObjCPropertyImplementations - Emit information for synthesized
2744 /// properties for an implementation.
2745 void CodeGenModule::EmitObjCPropertyImplementations(const
2746                                                     ObjCImplementationDecl *D) {
2747   for (ObjCImplementationDecl::propimpl_iterator
2748          i = D->propimpl_begin(), e = D->propimpl_end(); i != e; ++i) {
2749     ObjCPropertyImplDecl *PID = *i;
2750 
2751     // Dynamic is just for type-checking.
2752     if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) {
2753       ObjCPropertyDecl *PD = PID->getPropertyDecl();
2754 
2755       // Determine which methods need to be implemented, some may have
2756       // been overridden. Note that ::isPropertyAccessor is not the method
2757       // we want, that just indicates if the decl came from a
2758       // property. What we want to know is if the method is defined in
2759       // this implementation.
2760       if (!D->getInstanceMethod(PD->getGetterName()))
2761         CodeGenFunction(*this).GenerateObjCGetter(
2762                                  const_cast<ObjCImplementationDecl *>(D), PID);
2763       if (!PD->isReadOnly() &&
2764           !D->getInstanceMethod(PD->getSetterName()))
2765         CodeGenFunction(*this).GenerateObjCSetter(
2766                                  const_cast<ObjCImplementationDecl *>(D), PID);
2767     }
2768   }
2769 }
2770 
2771 static bool needsDestructMethod(ObjCImplementationDecl *impl) {
2772   const ObjCInterfaceDecl *iface = impl->getClassInterface();
2773   for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin();
2774        ivar; ivar = ivar->getNextIvar())
2775     if (ivar->getType().isDestructedType())
2776       return true;
2777 
2778   return false;
2779 }
2780 
2781 /// EmitObjCIvarInitializations - Emit information for ivar initialization
2782 /// for an implementation.
2783 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) {
2784   // We might need a .cxx_destruct even if we don't have any ivar initializers.
2785   if (needsDestructMethod(D)) {
2786     IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct");
2787     Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
2788     ObjCMethodDecl *DTORMethod =
2789       ObjCMethodDecl::Create(getContext(), D->getLocation(), D->getLocation(),
2790                              cxxSelector, getContext().VoidTy, 0, D,
2791                              /*isInstance=*/true, /*isVariadic=*/false,
2792                           /*isPropertyAccessor=*/true, /*isImplicitlyDeclared=*/true,
2793                              /*isDefined=*/false, ObjCMethodDecl::Required);
2794     D->addInstanceMethod(DTORMethod);
2795     CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false);
2796     D->setHasDestructors(true);
2797   }
2798 
2799   // If the implementation doesn't have any ivar initializers, we don't need
2800   // a .cxx_construct.
2801   if (D->getNumIvarInitializers() == 0)
2802     return;
2803 
2804   IdentifierInfo *II = &getContext().Idents.get(".cxx_construct");
2805   Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
2806   // The constructor returns 'self'.
2807   ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(getContext(),
2808                                                 D->getLocation(),
2809                                                 D->getLocation(),
2810                                                 cxxSelector,
2811                                                 getContext().getObjCIdType(), 0,
2812                                                 D, /*isInstance=*/true,
2813                                                 /*isVariadic=*/false,
2814                                                 /*isPropertyAccessor=*/true,
2815                                                 /*isImplicitlyDeclared=*/true,
2816                                                 /*isDefined=*/false,
2817                                                 ObjCMethodDecl::Required);
2818   D->addInstanceMethod(CTORMethod);
2819   CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true);
2820   D->setHasNonZeroConstructors(true);
2821 }
2822 
2823 /// EmitNamespace - Emit all declarations in a namespace.
2824 void CodeGenModule::EmitNamespace(const NamespaceDecl *ND) {
2825   for (RecordDecl::decl_iterator I = ND->decls_begin(), E = ND->decls_end();
2826        I != E; ++I) {
2827     if (const VarDecl *VD = dyn_cast<VarDecl>(*I))
2828       if (VD->getTemplateSpecializationKind() != TSK_ExplicitSpecialization &&
2829           VD->getTemplateSpecializationKind() != TSK_Undeclared)
2830         continue;
2831     EmitTopLevelDecl(*I);
2832   }
2833 }
2834 
2835 // EmitLinkageSpec - Emit all declarations in a linkage spec.
2836 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) {
2837   if (LSD->getLanguage() != LinkageSpecDecl::lang_c &&
2838       LSD->getLanguage() != LinkageSpecDecl::lang_cxx) {
2839     ErrorUnsupported(LSD, "linkage spec");
2840     return;
2841   }
2842 
2843   for (RecordDecl::decl_iterator I = LSD->decls_begin(), E = LSD->decls_end();
2844        I != E; ++I) {
2845     // Meta-data for ObjC class includes references to implemented methods.
2846     // Generate class's method definitions first.
2847     if (ObjCImplDecl *OID = dyn_cast<ObjCImplDecl>(*I)) {
2848       for (ObjCContainerDecl::method_iterator M = OID->meth_begin(),
2849            MEnd = OID->meth_end();
2850            M != MEnd; ++M)
2851         EmitTopLevelDecl(*M);
2852     }
2853     EmitTopLevelDecl(*I);
2854   }
2855 }
2856 
2857 /// EmitTopLevelDecl - Emit code for a single top level declaration.
2858 void CodeGenModule::EmitTopLevelDecl(Decl *D) {
2859   // Ignore dependent declarations.
2860   if (D->getDeclContext() && D->getDeclContext()->isDependentContext())
2861     return;
2862 
2863   switch (D->getKind()) {
2864   case Decl::CXXConversion:
2865   case Decl::CXXMethod:
2866   case Decl::Function:
2867     // Skip function templates
2868     if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() ||
2869         cast<FunctionDecl>(D)->isLateTemplateParsed())
2870       return;
2871 
2872     EmitGlobal(cast<FunctionDecl>(D));
2873     break;
2874 
2875   case Decl::Var:
2876     // Skip variable templates
2877     if (cast<VarDecl>(D)->getDescribedVarTemplate())
2878       return;
2879   case Decl::VarTemplateSpecialization:
2880     EmitGlobal(cast<VarDecl>(D));
2881     break;
2882 
2883   // Indirect fields from global anonymous structs and unions can be
2884   // ignored; only the actual variable requires IR gen support.
2885   case Decl::IndirectField:
2886     break;
2887 
2888   // C++ Decls
2889   case Decl::Namespace:
2890     EmitNamespace(cast<NamespaceDecl>(D));
2891     break;
2892     // No code generation needed.
2893   case Decl::UsingShadow:
2894   case Decl::ClassTemplate:
2895   case Decl::VarTemplate:
2896   case Decl::VarTemplatePartialSpecialization:
2897   case Decl::FunctionTemplate:
2898   case Decl::TypeAliasTemplate:
2899   case Decl::Block:
2900   case Decl::Empty:
2901     break;
2902   case Decl::Using:          // using X; [C++]
2903     if (CGDebugInfo *DI = getModuleDebugInfo())
2904         DI->EmitUsingDecl(cast<UsingDecl>(*D));
2905     return;
2906   case Decl::NamespaceAlias:
2907     if (CGDebugInfo *DI = getModuleDebugInfo())
2908         DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(*D));
2909     return;
2910   case Decl::UsingDirective: // using namespace X; [C++]
2911     if (CGDebugInfo *DI = getModuleDebugInfo())
2912       DI->EmitUsingDirective(cast<UsingDirectiveDecl>(*D));
2913     return;
2914   case Decl::CXXConstructor:
2915     // Skip function templates
2916     if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() ||
2917         cast<FunctionDecl>(D)->isLateTemplateParsed())
2918       return;
2919 
2920     getCXXABI().EmitCXXConstructors(cast<CXXConstructorDecl>(D));
2921     break;
2922   case Decl::CXXDestructor:
2923     if (cast<FunctionDecl>(D)->isLateTemplateParsed())
2924       return;
2925     getCXXABI().EmitCXXDestructors(cast<CXXDestructorDecl>(D));
2926     break;
2927 
2928   case Decl::StaticAssert:
2929     // Nothing to do.
2930     break;
2931 
2932   // Objective-C Decls
2933 
2934   // Forward declarations, no (immediate) code generation.
2935   case Decl::ObjCInterface:
2936   case Decl::ObjCCategory:
2937     break;
2938 
2939   case Decl::ObjCProtocol: {
2940     ObjCProtocolDecl *Proto = cast<ObjCProtocolDecl>(D);
2941     if (Proto->isThisDeclarationADefinition())
2942       ObjCRuntime->GenerateProtocol(Proto);
2943     break;
2944   }
2945 
2946   case Decl::ObjCCategoryImpl:
2947     // Categories have properties but don't support synthesize so we
2948     // can ignore them here.
2949     ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D));
2950     break;
2951 
2952   case Decl::ObjCImplementation: {
2953     ObjCImplementationDecl *OMD = cast<ObjCImplementationDecl>(D);
2954     EmitObjCPropertyImplementations(OMD);
2955     EmitObjCIvarInitializations(OMD);
2956     ObjCRuntime->GenerateClass(OMD);
2957     // Emit global variable debug information.
2958     if (CGDebugInfo *DI = getModuleDebugInfo())
2959       if (getCodeGenOpts().getDebugInfo() >= CodeGenOptions::LimitedDebugInfo)
2960         DI->getOrCreateInterfaceType(getContext().getObjCInterfaceType(
2961             OMD->getClassInterface()), OMD->getLocation());
2962     break;
2963   }
2964   case Decl::ObjCMethod: {
2965     ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(D);
2966     // If this is not a prototype, emit the body.
2967     if (OMD->getBody())
2968       CodeGenFunction(*this).GenerateObjCMethod(OMD);
2969     break;
2970   }
2971   case Decl::ObjCCompatibleAlias:
2972     ObjCRuntime->RegisterAlias(cast<ObjCCompatibleAliasDecl>(D));
2973     break;
2974 
2975   case Decl::LinkageSpec:
2976     EmitLinkageSpec(cast<LinkageSpecDecl>(D));
2977     break;
2978 
2979   case Decl::FileScopeAsm: {
2980     FileScopeAsmDecl *AD = cast<FileScopeAsmDecl>(D);
2981     StringRef AsmString = AD->getAsmString()->getString();
2982 
2983     const std::string &S = getModule().getModuleInlineAsm();
2984     if (S.empty())
2985       getModule().setModuleInlineAsm(AsmString);
2986     else if (S.end()[-1] == '\n')
2987       getModule().setModuleInlineAsm(S + AsmString.str());
2988     else
2989       getModule().setModuleInlineAsm(S + '\n' + AsmString.str());
2990     break;
2991   }
2992 
2993   case Decl::Import: {
2994     ImportDecl *Import = cast<ImportDecl>(D);
2995 
2996     // Ignore import declarations that come from imported modules.
2997     if (clang::Module *Owner = Import->getOwningModule()) {
2998       if (getLangOpts().CurrentModule.empty() ||
2999           Owner->getTopLevelModule()->Name == getLangOpts().CurrentModule)
3000         break;
3001     }
3002 
3003     ImportedModules.insert(Import->getImportedModule());
3004     break;
3005  }
3006 
3007   default:
3008     // Make sure we handled everything we should, every other kind is a
3009     // non-top-level decl.  FIXME: Would be nice to have an isTopLevelDeclKind
3010     // function. Need to recode Decl::Kind to do that easily.
3011     assert(isa<TypeDecl>(D) && "Unsupported decl kind");
3012   }
3013 }
3014 
3015 /// Turns the given pointer into a constant.
3016 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context,
3017                                           const void *Ptr) {
3018   uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr);
3019   llvm::Type *i64 = llvm::Type::getInt64Ty(Context);
3020   return llvm::ConstantInt::get(i64, PtrInt);
3021 }
3022 
3023 static void EmitGlobalDeclMetadata(CodeGenModule &CGM,
3024                                    llvm::NamedMDNode *&GlobalMetadata,
3025                                    GlobalDecl D,
3026                                    llvm::GlobalValue *Addr) {
3027   if (!GlobalMetadata)
3028     GlobalMetadata =
3029       CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs");
3030 
3031   // TODO: should we report variant information for ctors/dtors?
3032   llvm::Value *Ops[] = {
3033     Addr,
3034     GetPointerConstant(CGM.getLLVMContext(), D.getDecl())
3035   };
3036   GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops));
3037 }
3038 
3039 /// For each function which is declared within an extern "C" region and marked
3040 /// as 'used', but has internal linkage, create an alias from the unmangled
3041 /// name to the mangled name if possible. People expect to be able to refer
3042 /// to such functions with an unmangled name from inline assembly within the
3043 /// same translation unit.
3044 void CodeGenModule::EmitStaticExternCAliases() {
3045   for (StaticExternCMap::iterator I = StaticExternCValues.begin(),
3046                                   E = StaticExternCValues.end();
3047        I != E; ++I) {
3048     IdentifierInfo *Name = I->first;
3049     llvm::GlobalValue *Val = I->second;
3050     if (Val && !getModule().getNamedValue(Name->getName()))
3051       AddUsedGlobal(new llvm::GlobalAlias(Val->getType(), Val->getLinkage(),
3052                                           Name->getName(), Val, &getModule()));
3053   }
3054 }
3055 
3056 /// Emits metadata nodes associating all the global values in the
3057 /// current module with the Decls they came from.  This is useful for
3058 /// projects using IR gen as a subroutine.
3059 ///
3060 /// Since there's currently no way to associate an MDNode directly
3061 /// with an llvm::GlobalValue, we create a global named metadata
3062 /// with the name 'clang.global.decl.ptrs'.
3063 void CodeGenModule::EmitDeclMetadata() {
3064   llvm::NamedMDNode *GlobalMetadata = 0;
3065 
3066   // StaticLocalDeclMap
3067   for (llvm::DenseMap<GlobalDecl,StringRef>::iterator
3068          I = MangledDeclNames.begin(), E = MangledDeclNames.end();
3069        I != E; ++I) {
3070     llvm::GlobalValue *Addr = getModule().getNamedValue(I->second);
3071     EmitGlobalDeclMetadata(*this, GlobalMetadata, I->first, Addr);
3072   }
3073 }
3074 
3075 /// Emits metadata nodes for all the local variables in the current
3076 /// function.
3077 void CodeGenFunction::EmitDeclMetadata() {
3078   if (LocalDeclMap.empty()) return;
3079 
3080   llvm::LLVMContext &Context = getLLVMContext();
3081 
3082   // Find the unique metadata ID for this name.
3083   unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr");
3084 
3085   llvm::NamedMDNode *GlobalMetadata = 0;
3086 
3087   for (llvm::DenseMap<const Decl*, llvm::Value*>::iterator
3088          I = LocalDeclMap.begin(), E = LocalDeclMap.end(); I != E; ++I) {
3089     const Decl *D = I->first;
3090     llvm::Value *Addr = I->second;
3091 
3092     if (llvm::AllocaInst *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) {
3093       llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D);
3094       Alloca->setMetadata(DeclPtrKind, llvm::MDNode::get(Context, DAddr));
3095     } else if (llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>(Addr)) {
3096       GlobalDecl GD = GlobalDecl(cast<VarDecl>(D));
3097       EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV);
3098     }
3099   }
3100 }
3101 
3102 void CodeGenModule::EmitVersionIdentMetadata() {
3103   llvm::NamedMDNode *IdentMetadata =
3104     TheModule.getOrInsertNamedMetadata("llvm.ident");
3105   std::string Version = getClangFullVersion();
3106   llvm::LLVMContext &Ctx = TheModule.getContext();
3107 
3108   llvm::Value *IdentNode[] = {
3109     llvm::MDString::get(Ctx, Version)
3110   };
3111   IdentMetadata->addOperand(llvm::MDNode::get(Ctx, IdentNode));
3112 }
3113 
3114 void CodeGenModule::EmitCoverageFile() {
3115   if (!getCodeGenOpts().CoverageFile.empty()) {
3116     if (llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu")) {
3117       llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov");
3118       llvm::LLVMContext &Ctx = TheModule.getContext();
3119       llvm::MDString *CoverageFile =
3120           llvm::MDString::get(Ctx, getCodeGenOpts().CoverageFile);
3121       for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) {
3122         llvm::MDNode *CU = CUNode->getOperand(i);
3123         llvm::Value *node[] = { CoverageFile, CU };
3124         llvm::MDNode *N = llvm::MDNode::get(Ctx, node);
3125         GCov->addOperand(N);
3126       }
3127     }
3128   }
3129 }
3130 
3131 llvm::Constant *CodeGenModule::EmitUuidofInitializer(StringRef Uuid,
3132                                                      QualType GuidType) {
3133   // Sema has checked that all uuid strings are of the form
3134   // "12345678-1234-1234-1234-1234567890ab".
3135   assert(Uuid.size() == 36);
3136   for (unsigned i = 0; i < 36; ++i) {
3137     if (i == 8 || i == 13 || i == 18 || i == 23) assert(Uuid[i] == '-');
3138     else                                         assert(isHexDigit(Uuid[i]));
3139   }
3140 
3141   const unsigned Field3ValueOffsets[8] = { 19, 21, 24, 26, 28, 30, 32, 34 };
3142 
3143   llvm::Constant *Field3[8];
3144   for (unsigned Idx = 0; Idx < 8; ++Idx)
3145     Field3[Idx] = llvm::ConstantInt::get(
3146         Int8Ty, Uuid.substr(Field3ValueOffsets[Idx], 2), 16);
3147 
3148   llvm::Constant *Fields[4] = {
3149     llvm::ConstantInt::get(Int32Ty, Uuid.substr(0,  8), 16),
3150     llvm::ConstantInt::get(Int16Ty, Uuid.substr(9,  4), 16),
3151     llvm::ConstantInt::get(Int16Ty, Uuid.substr(14, 4), 16),
3152     llvm::ConstantArray::get(llvm::ArrayType::get(Int8Ty, 8), Field3)
3153   };
3154 
3155   return llvm::ConstantStruct::getAnon(Fields);
3156 }
3157