xref: /llvm-project/clang/lib/CodeGen/CodeGenModule.cpp (revision 7aa88ce70c95d4dd27e7245cb624a46835b9fe0c)
1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This coordinates the per-module state used while generating code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenModule.h"
15 #include "CGBlocks.h"
16 #include "CGCUDARuntime.h"
17 #include "CGCXXABI.h"
18 #include "CGCall.h"
19 #include "CGDebugInfo.h"
20 #include "CGObjCRuntime.h"
21 #include "CGOpenCLRuntime.h"
22 #include "CGOpenMPRuntime.h"
23 #include "CodeGenFunction.h"
24 #include "CodeGenPGO.h"
25 #include "CodeGenTBAA.h"
26 #include "CoverageMappingGen.h"
27 #include "TargetInfo.h"
28 #include "clang/AST/ASTContext.h"
29 #include "clang/AST/CharUnits.h"
30 #include "clang/AST/DeclCXX.h"
31 #include "clang/AST/DeclObjC.h"
32 #include "clang/AST/DeclTemplate.h"
33 #include "clang/AST/Mangle.h"
34 #include "clang/AST/RecordLayout.h"
35 #include "clang/AST/RecursiveASTVisitor.h"
36 #include "clang/Basic/Builtins.h"
37 #include "clang/Basic/CharInfo.h"
38 #include "clang/Basic/Diagnostic.h"
39 #include "clang/Basic/Module.h"
40 #include "clang/Basic/SourceManager.h"
41 #include "clang/Basic/TargetInfo.h"
42 #include "clang/Basic/Version.h"
43 #include "clang/Frontend/CodeGenOptions.h"
44 #include "clang/Sema/SemaDiagnostic.h"
45 #include "llvm/ADT/APSInt.h"
46 #include "llvm/ADT/Triple.h"
47 #include "llvm/IR/CallSite.h"
48 #include "llvm/IR/CallingConv.h"
49 #include "llvm/IR/DataLayout.h"
50 #include "llvm/IR/Intrinsics.h"
51 #include "llvm/IR/LLVMContext.h"
52 #include "llvm/IR/Module.h"
53 #include "llvm/ProfileData/InstrProfReader.h"
54 #include "llvm/Support/ConvertUTF.h"
55 #include "llvm/Support/ErrorHandling.h"
56 #include "llvm/Support/MD5.h"
57 
58 using namespace clang;
59 using namespace CodeGen;
60 
61 static const char AnnotationSection[] = "llvm.metadata";
62 
63 static CGCXXABI *createCXXABI(CodeGenModule &CGM) {
64   switch (CGM.getTarget().getCXXABI().getKind()) {
65   case TargetCXXABI::GenericAArch64:
66   case TargetCXXABI::GenericARM:
67   case TargetCXXABI::iOS:
68   case TargetCXXABI::iOS64:
69   case TargetCXXABI::WatchOS:
70   case TargetCXXABI::GenericMIPS:
71   case TargetCXXABI::GenericItanium:
72   case TargetCXXABI::WebAssembly:
73     return CreateItaniumCXXABI(CGM);
74   case TargetCXXABI::Microsoft:
75     return CreateMicrosoftCXXABI(CGM);
76   }
77 
78   llvm_unreachable("invalid C++ ABI kind");
79 }
80 
81 CodeGenModule::CodeGenModule(ASTContext &C, const HeaderSearchOptions &HSO,
82                              const PreprocessorOptions &PPO,
83                              const CodeGenOptions &CGO, llvm::Module &M,
84                              DiagnosticsEngine &diags,
85                              CoverageSourceInfo *CoverageInfo)
86     : Context(C), LangOpts(C.getLangOpts()), HeaderSearchOpts(HSO),
87       PreprocessorOpts(PPO), CodeGenOpts(CGO), TheModule(M), Diags(diags),
88       Target(C.getTargetInfo()), ABI(createCXXABI(*this)),
89       VMContext(M.getContext()), TBAA(nullptr), TheTargetCodeGenInfo(nullptr),
90       Types(*this), VTables(*this), ObjCRuntime(nullptr),
91       OpenCLRuntime(nullptr), OpenMPRuntime(nullptr), CUDARuntime(nullptr),
92       DebugInfo(nullptr), ObjCData(nullptr),
93       NoObjCARCExceptionsMetadata(nullptr), PGOReader(nullptr),
94       CFConstantStringClassRef(nullptr), ConstantStringClassRef(nullptr),
95       NSConstantStringType(nullptr), NSConcreteGlobalBlock(nullptr),
96       NSConcreteStackBlock(nullptr), BlockObjectAssign(nullptr),
97       BlockObjectDispose(nullptr), BlockDescriptorType(nullptr),
98       GenericBlockLiteralType(nullptr), LifetimeStartFn(nullptr),
99       LifetimeEndFn(nullptr), SanitizerMD(new SanitizerMetadata(*this)) {
100 
101   // Initialize the type cache.
102   llvm::LLVMContext &LLVMContext = M.getContext();
103   VoidTy = llvm::Type::getVoidTy(LLVMContext);
104   Int8Ty = llvm::Type::getInt8Ty(LLVMContext);
105   Int16Ty = llvm::Type::getInt16Ty(LLVMContext);
106   Int32Ty = llvm::Type::getInt32Ty(LLVMContext);
107   Int64Ty = llvm::Type::getInt64Ty(LLVMContext);
108   FloatTy = llvm::Type::getFloatTy(LLVMContext);
109   DoubleTy = llvm::Type::getDoubleTy(LLVMContext);
110   PointerWidthInBits = C.getTargetInfo().getPointerWidth(0);
111   PointerAlignInBytes =
112     C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(0)).getQuantity();
113   IntAlignInBytes =
114     C.toCharUnitsFromBits(C.getTargetInfo().getIntAlign()).getQuantity();
115   IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth());
116   IntPtrTy = llvm::IntegerType::get(LLVMContext, PointerWidthInBits);
117   Int8PtrTy = Int8Ty->getPointerTo(0);
118   Int8PtrPtrTy = Int8PtrTy->getPointerTo(0);
119 
120   RuntimeCC = getTargetCodeGenInfo().getABIInfo().getRuntimeCC();
121   BuiltinCC = getTargetCodeGenInfo().getABIInfo().getBuiltinCC();
122 
123   if (LangOpts.ObjC1)
124     createObjCRuntime();
125   if (LangOpts.OpenCL)
126     createOpenCLRuntime();
127   if (LangOpts.OpenMP)
128     createOpenMPRuntime();
129   if (LangOpts.CUDA)
130     createCUDARuntime();
131 
132   // Enable TBAA unless it's suppressed. ThreadSanitizer needs TBAA even at O0.
133   if (LangOpts.Sanitize.has(SanitizerKind::Thread) ||
134       (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0))
135     TBAA = new CodeGenTBAA(Context, VMContext, CodeGenOpts, getLangOpts(),
136                            getCXXABI().getMangleContext());
137 
138   // If debug info or coverage generation is enabled, create the CGDebugInfo
139   // object.
140   if (CodeGenOpts.getDebugInfo() != CodeGenOptions::NoDebugInfo ||
141       CodeGenOpts.EmitGcovArcs ||
142       CodeGenOpts.EmitGcovNotes)
143     DebugInfo = new CGDebugInfo(*this);
144 
145   Block.GlobalUniqueCount = 0;
146 
147   if (C.getLangOpts().ObjC1)
148     ObjCData = new ObjCEntrypoints();
149 
150   if (!CodeGenOpts.InstrProfileInput.empty()) {
151     auto ReaderOrErr =
152         llvm::IndexedInstrProfReader::create(CodeGenOpts.InstrProfileInput);
153     if (std::error_code EC = ReaderOrErr.getError()) {
154       unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
155                                               "Could not read profile %0: %1");
156       getDiags().Report(DiagID) << CodeGenOpts.InstrProfileInput
157                                 << EC.message();
158     } else
159       PGOReader = std::move(ReaderOrErr.get());
160   }
161 
162   // If coverage mapping generation is enabled, create the
163   // CoverageMappingModuleGen object.
164   if (CodeGenOpts.CoverageMapping)
165     CoverageMapping.reset(new CoverageMappingModuleGen(*this, *CoverageInfo));
166 }
167 
168 CodeGenModule::~CodeGenModule() {
169   delete ObjCRuntime;
170   delete OpenCLRuntime;
171   delete OpenMPRuntime;
172   delete CUDARuntime;
173   delete TheTargetCodeGenInfo;
174   delete TBAA;
175   delete DebugInfo;
176   delete ObjCData;
177 }
178 
179 void CodeGenModule::createObjCRuntime() {
180   // This is just isGNUFamily(), but we want to force implementors of
181   // new ABIs to decide how best to do this.
182   switch (LangOpts.ObjCRuntime.getKind()) {
183   case ObjCRuntime::GNUstep:
184   case ObjCRuntime::GCC:
185   case ObjCRuntime::ObjFW:
186     ObjCRuntime = CreateGNUObjCRuntime(*this);
187     return;
188 
189   case ObjCRuntime::FragileMacOSX:
190   case ObjCRuntime::MacOSX:
191   case ObjCRuntime::iOS:
192   case ObjCRuntime::WatchOS:
193     ObjCRuntime = CreateMacObjCRuntime(*this);
194     return;
195   }
196   llvm_unreachable("bad runtime kind");
197 }
198 
199 void CodeGenModule::createOpenCLRuntime() {
200   OpenCLRuntime = new CGOpenCLRuntime(*this);
201 }
202 
203 void CodeGenModule::createOpenMPRuntime() {
204   OpenMPRuntime = new CGOpenMPRuntime(*this);
205 }
206 
207 void CodeGenModule::createCUDARuntime() {
208   CUDARuntime = CreateNVCUDARuntime(*this);
209 }
210 
211 void CodeGenModule::addReplacement(StringRef Name, llvm::Constant *C) {
212   Replacements[Name] = C;
213 }
214 
215 void CodeGenModule::applyReplacements() {
216   for (auto &I : Replacements) {
217     StringRef MangledName = I.first();
218     llvm::Constant *Replacement = I.second;
219     llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
220     if (!Entry)
221       continue;
222     auto *OldF = cast<llvm::Function>(Entry);
223     auto *NewF = dyn_cast<llvm::Function>(Replacement);
224     if (!NewF) {
225       if (auto *Alias = dyn_cast<llvm::GlobalAlias>(Replacement)) {
226         NewF = dyn_cast<llvm::Function>(Alias->getAliasee());
227       } else {
228         auto *CE = cast<llvm::ConstantExpr>(Replacement);
229         assert(CE->getOpcode() == llvm::Instruction::BitCast ||
230                CE->getOpcode() == llvm::Instruction::GetElementPtr);
231         NewF = dyn_cast<llvm::Function>(CE->getOperand(0));
232       }
233     }
234 
235     // Replace old with new, but keep the old order.
236     OldF->replaceAllUsesWith(Replacement);
237     if (NewF) {
238       NewF->removeFromParent();
239       OldF->getParent()->getFunctionList().insertAfter(OldF->getIterator(),
240                                                        NewF);
241     }
242     OldF->eraseFromParent();
243   }
244 }
245 
246 void CodeGenModule::addGlobalValReplacement(llvm::GlobalValue *GV, llvm::Constant *C) {
247   GlobalValReplacements.push_back(std::make_pair(GV, C));
248 }
249 
250 void CodeGenModule::applyGlobalValReplacements() {
251   for (auto &I : GlobalValReplacements) {
252     llvm::GlobalValue *GV = I.first;
253     llvm::Constant *C = I.second;
254 
255     GV->replaceAllUsesWith(C);
256     GV->eraseFromParent();
257   }
258 }
259 
260 // This is only used in aliases that we created and we know they have a
261 // linear structure.
262 static const llvm::GlobalObject *getAliasedGlobal(const llvm::GlobalAlias &GA) {
263   llvm::SmallPtrSet<const llvm::GlobalAlias*, 4> Visited;
264   const llvm::Constant *C = &GA;
265   for (;;) {
266     C = C->stripPointerCasts();
267     if (auto *GO = dyn_cast<llvm::GlobalObject>(C))
268       return GO;
269     // stripPointerCasts will not walk over weak aliases.
270     auto *GA2 = dyn_cast<llvm::GlobalAlias>(C);
271     if (!GA2)
272       return nullptr;
273     if (!Visited.insert(GA2).second)
274       return nullptr;
275     C = GA2->getAliasee();
276   }
277 }
278 
279 void CodeGenModule::checkAliases() {
280   // Check if the constructed aliases are well formed. It is really unfortunate
281   // that we have to do this in CodeGen, but we only construct mangled names
282   // and aliases during codegen.
283   bool Error = false;
284   DiagnosticsEngine &Diags = getDiags();
285   for (const GlobalDecl &GD : Aliases) {
286     const auto *D = cast<ValueDecl>(GD.getDecl());
287     const AliasAttr *AA = D->getAttr<AliasAttr>();
288     StringRef MangledName = getMangledName(GD);
289     llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
290     auto *Alias = cast<llvm::GlobalAlias>(Entry);
291     const llvm::GlobalValue *GV = getAliasedGlobal(*Alias);
292     if (!GV) {
293       Error = true;
294       Diags.Report(AA->getLocation(), diag::err_cyclic_alias);
295     } else if (GV->isDeclaration()) {
296       Error = true;
297       Diags.Report(AA->getLocation(), diag::err_alias_to_undefined);
298     }
299 
300     llvm::Constant *Aliasee = Alias->getAliasee();
301     llvm::GlobalValue *AliaseeGV;
302     if (auto CE = dyn_cast<llvm::ConstantExpr>(Aliasee))
303       AliaseeGV = cast<llvm::GlobalValue>(CE->getOperand(0));
304     else
305       AliaseeGV = cast<llvm::GlobalValue>(Aliasee);
306 
307     if (const SectionAttr *SA = D->getAttr<SectionAttr>()) {
308       StringRef AliasSection = SA->getName();
309       if (AliasSection != AliaseeGV->getSection())
310         Diags.Report(SA->getLocation(), diag::warn_alias_with_section)
311             << AliasSection;
312     }
313 
314     // We have to handle alias to weak aliases in here. LLVM itself disallows
315     // this since the object semantics would not match the IL one. For
316     // compatibility with gcc we implement it by just pointing the alias
317     // to its aliasee's aliasee. We also warn, since the user is probably
318     // expecting the link to be weak.
319     if (auto GA = dyn_cast<llvm::GlobalAlias>(AliaseeGV)) {
320       if (GA->mayBeOverridden()) {
321         Diags.Report(AA->getLocation(), diag::warn_alias_to_weak_alias)
322             << GV->getName() << GA->getName();
323         Aliasee = llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(
324             GA->getAliasee(), Alias->getType());
325         Alias->setAliasee(Aliasee);
326       }
327     }
328   }
329   if (!Error)
330     return;
331 
332   for (const GlobalDecl &GD : Aliases) {
333     StringRef MangledName = getMangledName(GD);
334     llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
335     auto *Alias = cast<llvm::GlobalAlias>(Entry);
336     Alias->replaceAllUsesWith(llvm::UndefValue::get(Alias->getType()));
337     Alias->eraseFromParent();
338   }
339 }
340 
341 void CodeGenModule::clear() {
342   DeferredDeclsToEmit.clear();
343   if (OpenMPRuntime)
344     OpenMPRuntime->clear();
345 }
346 
347 void InstrProfStats::reportDiagnostics(DiagnosticsEngine &Diags,
348                                        StringRef MainFile) {
349   if (!hasDiagnostics())
350     return;
351   if (VisitedInMainFile > 0 && VisitedInMainFile == MissingInMainFile) {
352     if (MainFile.empty())
353       MainFile = "<stdin>";
354     Diags.Report(diag::warn_profile_data_unprofiled) << MainFile;
355   } else
356     Diags.Report(diag::warn_profile_data_out_of_date) << Visited << Missing
357                                                       << Mismatched;
358 }
359 
360 void CodeGenModule::Release() {
361   EmitDeferred();
362   applyGlobalValReplacements();
363   applyReplacements();
364   checkAliases();
365   EmitCXXGlobalInitFunc();
366   EmitCXXGlobalDtorFunc();
367   EmitCXXThreadLocalInitFunc();
368   if (ObjCRuntime)
369     if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction())
370       AddGlobalCtor(ObjCInitFunction);
371   if (Context.getLangOpts().CUDA && !Context.getLangOpts().CUDAIsDevice &&
372       CUDARuntime) {
373     if (llvm::Function *CudaCtorFunction = CUDARuntime->makeModuleCtorFunction())
374       AddGlobalCtor(CudaCtorFunction);
375     if (llvm::Function *CudaDtorFunction = CUDARuntime->makeModuleDtorFunction())
376       AddGlobalDtor(CudaDtorFunction);
377   }
378   if (OpenMPRuntime)
379     if (llvm::Function *OpenMPRegistrationFunction =
380             OpenMPRuntime->emitRegistrationFunction())
381       AddGlobalCtor(OpenMPRegistrationFunction, 0);
382   if (PGOReader) {
383     getModule().setMaximumFunctionCount(PGOReader->getMaximumFunctionCount());
384     if (PGOStats.hasDiagnostics())
385       PGOStats.reportDiagnostics(getDiags(), getCodeGenOpts().MainFileName);
386   }
387   EmitCtorList(GlobalCtors, "llvm.global_ctors");
388   EmitCtorList(GlobalDtors, "llvm.global_dtors");
389   EmitGlobalAnnotations();
390   EmitStaticExternCAliases();
391   EmitDeferredUnusedCoverageMappings();
392   if (CoverageMapping)
393     CoverageMapping->emit();
394   emitLLVMUsed();
395 
396   if (CodeGenOpts.Autolink &&
397       (Context.getLangOpts().Modules || !LinkerOptionsMetadata.empty())) {
398     EmitModuleLinkOptions();
399   }
400   if (CodeGenOpts.DwarfVersion) {
401     // We actually want the latest version when there are conflicts.
402     // We can change from Warning to Latest if such mode is supported.
403     getModule().addModuleFlag(llvm::Module::Warning, "Dwarf Version",
404                               CodeGenOpts.DwarfVersion);
405   }
406   if (CodeGenOpts.EmitCodeView) {
407     // Indicate that we want CodeView in the metadata.
408     getModule().addModuleFlag(llvm::Module::Warning, "CodeView", 1);
409   }
410   if (CodeGenOpts.OptimizationLevel > 0 && CodeGenOpts.StrictVTablePointers) {
411     // We don't support LTO with 2 with different StrictVTablePointers
412     // FIXME: we could support it by stripping all the information introduced
413     // by StrictVTablePointers.
414 
415     getModule().addModuleFlag(llvm::Module::Error, "StrictVTablePointers",1);
416 
417     llvm::Metadata *Ops[2] = {
418               llvm::MDString::get(VMContext, "StrictVTablePointers"),
419               llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
420                   llvm::Type::getInt32Ty(VMContext), 1))};
421 
422     getModule().addModuleFlag(llvm::Module::Require,
423                               "StrictVTablePointersRequirement",
424                               llvm::MDNode::get(VMContext, Ops));
425   }
426   if (DebugInfo)
427     // We support a single version in the linked module. The LLVM
428     // parser will drop debug info with a different version number
429     // (and warn about it, too).
430     getModule().addModuleFlag(llvm::Module::Warning, "Debug Info Version",
431                               llvm::DEBUG_METADATA_VERSION);
432 
433   // We need to record the widths of enums and wchar_t, so that we can generate
434   // the correct build attributes in the ARM backend.
435   llvm::Triple::ArchType Arch = Context.getTargetInfo().getTriple().getArch();
436   if (   Arch == llvm::Triple::arm
437       || Arch == llvm::Triple::armeb
438       || Arch == llvm::Triple::thumb
439       || Arch == llvm::Triple::thumbeb) {
440     // Width of wchar_t in bytes
441     uint64_t WCharWidth =
442         Context.getTypeSizeInChars(Context.getWideCharType()).getQuantity();
443     getModule().addModuleFlag(llvm::Module::Error, "wchar_size", WCharWidth);
444 
445     // The minimum width of an enum in bytes
446     uint64_t EnumWidth = Context.getLangOpts().ShortEnums ? 1 : 4;
447     getModule().addModuleFlag(llvm::Module::Error, "min_enum_size", EnumWidth);
448   }
449 
450   if (CodeGenOpts.SanitizeCfiCrossDso) {
451     // Indicate that we want cross-DSO control flow integrity checks.
452     getModule().addModuleFlag(llvm::Module::Override, "Cross-DSO CFI", 1);
453   }
454 
455   if (uint32_t PLevel = Context.getLangOpts().PICLevel) {
456     llvm::PICLevel::Level PL = llvm::PICLevel::Default;
457     switch (PLevel) {
458     case 0: break;
459     case 1: PL = llvm::PICLevel::Small; break;
460     case 2: PL = llvm::PICLevel::Large; break;
461     default: llvm_unreachable("Invalid PIC Level");
462     }
463 
464     getModule().setPICLevel(PL);
465   }
466 
467   SimplifyPersonality();
468 
469   if (getCodeGenOpts().EmitDeclMetadata)
470     EmitDeclMetadata();
471 
472   if (getCodeGenOpts().EmitGcovArcs || getCodeGenOpts().EmitGcovNotes)
473     EmitCoverageFile();
474 
475   if (DebugInfo)
476     DebugInfo->finalize();
477 
478   EmitVersionIdentMetadata();
479 
480   EmitTargetMetadata();
481 }
482 
483 void CodeGenModule::UpdateCompletedType(const TagDecl *TD) {
484   // Make sure that this type is translated.
485   Types.UpdateCompletedType(TD);
486 }
487 
488 llvm::MDNode *CodeGenModule::getTBAAInfo(QualType QTy) {
489   if (!TBAA)
490     return nullptr;
491   return TBAA->getTBAAInfo(QTy);
492 }
493 
494 llvm::MDNode *CodeGenModule::getTBAAInfoForVTablePtr() {
495   if (!TBAA)
496     return nullptr;
497   return TBAA->getTBAAInfoForVTablePtr();
498 }
499 
500 llvm::MDNode *CodeGenModule::getTBAAStructInfo(QualType QTy) {
501   if (!TBAA)
502     return nullptr;
503   return TBAA->getTBAAStructInfo(QTy);
504 }
505 
506 llvm::MDNode *CodeGenModule::getTBAAStructTagInfo(QualType BaseTy,
507                                                   llvm::MDNode *AccessN,
508                                                   uint64_t O) {
509   if (!TBAA)
510     return nullptr;
511   return TBAA->getTBAAStructTagInfo(BaseTy, AccessN, O);
512 }
513 
514 /// Decorate the instruction with a TBAA tag. For both scalar TBAA
515 /// and struct-path aware TBAA, the tag has the same format:
516 /// base type, access type and offset.
517 /// When ConvertTypeToTag is true, we create a tag based on the scalar type.
518 void CodeGenModule::DecorateInstructionWithTBAA(llvm::Instruction *Inst,
519                                                 llvm::MDNode *TBAAInfo,
520                                                 bool ConvertTypeToTag) {
521   if (ConvertTypeToTag && TBAA)
522     Inst->setMetadata(llvm::LLVMContext::MD_tbaa,
523                       TBAA->getTBAAScalarTagInfo(TBAAInfo));
524   else
525     Inst->setMetadata(llvm::LLVMContext::MD_tbaa, TBAAInfo);
526 }
527 
528 void CodeGenModule::DecorateInstructionWithInvariantGroup(
529     llvm::Instruction *I, const CXXRecordDecl *RD) {
530   llvm::Metadata *MD = CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0));
531   auto *MetaDataNode = dyn_cast<llvm::MDNode>(MD);
532   // Check if we have to wrap MDString in MDNode.
533   if (!MetaDataNode)
534     MetaDataNode = llvm::MDNode::get(getLLVMContext(), MD);
535   I->setMetadata(llvm::LLVMContext::MD_invariant_group, MetaDataNode);
536 }
537 
538 void CodeGenModule::Error(SourceLocation loc, StringRef message) {
539   unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, "%0");
540   getDiags().Report(Context.getFullLoc(loc), diagID) << message;
541 }
542 
543 /// ErrorUnsupported - Print out an error that codegen doesn't support the
544 /// specified stmt yet.
545 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type) {
546   unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
547                                                "cannot compile this %0 yet");
548   std::string Msg = Type;
549   getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID)
550     << Msg << S->getSourceRange();
551 }
552 
553 /// ErrorUnsupported - Print out an error that codegen doesn't support the
554 /// specified decl yet.
555 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type) {
556   unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
557                                                "cannot compile this %0 yet");
558   std::string Msg = Type;
559   getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg;
560 }
561 
562 llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) {
563   return llvm::ConstantInt::get(SizeTy, size.getQuantity());
564 }
565 
566 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV,
567                                         const NamedDecl *D) const {
568   // Internal definitions always have default visibility.
569   if (GV->hasLocalLinkage()) {
570     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
571     return;
572   }
573 
574   // Set visibility for definitions.
575   LinkageInfo LV = D->getLinkageAndVisibility();
576   if (LV.isVisibilityExplicit() || !GV->hasAvailableExternallyLinkage())
577     GV->setVisibility(GetLLVMVisibility(LV.getVisibility()));
578 }
579 
580 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(StringRef S) {
581   return llvm::StringSwitch<llvm::GlobalVariable::ThreadLocalMode>(S)
582       .Case("global-dynamic", llvm::GlobalVariable::GeneralDynamicTLSModel)
583       .Case("local-dynamic", llvm::GlobalVariable::LocalDynamicTLSModel)
584       .Case("initial-exec", llvm::GlobalVariable::InitialExecTLSModel)
585       .Case("local-exec", llvm::GlobalVariable::LocalExecTLSModel);
586 }
587 
588 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(
589     CodeGenOptions::TLSModel M) {
590   switch (M) {
591   case CodeGenOptions::GeneralDynamicTLSModel:
592     return llvm::GlobalVariable::GeneralDynamicTLSModel;
593   case CodeGenOptions::LocalDynamicTLSModel:
594     return llvm::GlobalVariable::LocalDynamicTLSModel;
595   case CodeGenOptions::InitialExecTLSModel:
596     return llvm::GlobalVariable::InitialExecTLSModel;
597   case CodeGenOptions::LocalExecTLSModel:
598     return llvm::GlobalVariable::LocalExecTLSModel;
599   }
600   llvm_unreachable("Invalid TLS model!");
601 }
602 
603 void CodeGenModule::setTLSMode(llvm::GlobalValue *GV, const VarDecl &D) const {
604   assert(D.getTLSKind() && "setting TLS mode on non-TLS var!");
605 
606   llvm::GlobalValue::ThreadLocalMode TLM;
607   TLM = GetLLVMTLSModel(CodeGenOpts.getDefaultTLSModel());
608 
609   // Override the TLS model if it is explicitly specified.
610   if (const TLSModelAttr *Attr = D.getAttr<TLSModelAttr>()) {
611     TLM = GetLLVMTLSModel(Attr->getModel());
612   }
613 
614   GV->setThreadLocalMode(TLM);
615 }
616 
617 StringRef CodeGenModule::getMangledName(GlobalDecl GD) {
618   GlobalDecl CanonicalGD = GD.getCanonicalDecl();
619 
620   // Some ABIs don't have constructor variants.  Make sure that base and
621   // complete constructors get mangled the same.
622   if (const auto *CD = dyn_cast<CXXConstructorDecl>(CanonicalGD.getDecl())) {
623     if (!getTarget().getCXXABI().hasConstructorVariants()) {
624       CXXCtorType OrigCtorType = GD.getCtorType();
625       assert(OrigCtorType == Ctor_Base || OrigCtorType == Ctor_Complete);
626       if (OrigCtorType == Ctor_Base)
627         CanonicalGD = GlobalDecl(CD, Ctor_Complete);
628     }
629   }
630 
631   StringRef &FoundStr = MangledDeclNames[CanonicalGD];
632   if (!FoundStr.empty())
633     return FoundStr;
634 
635   const auto *ND = cast<NamedDecl>(GD.getDecl());
636   SmallString<256> Buffer;
637   StringRef Str;
638   if (getCXXABI().getMangleContext().shouldMangleDeclName(ND)) {
639     llvm::raw_svector_ostream Out(Buffer);
640     if (const auto *D = dyn_cast<CXXConstructorDecl>(ND))
641       getCXXABI().getMangleContext().mangleCXXCtor(D, GD.getCtorType(), Out);
642     else if (const auto *D = dyn_cast<CXXDestructorDecl>(ND))
643       getCXXABI().getMangleContext().mangleCXXDtor(D, GD.getDtorType(), Out);
644     else
645       getCXXABI().getMangleContext().mangleName(ND, Out);
646     Str = Out.str();
647   } else {
648     IdentifierInfo *II = ND->getIdentifier();
649     assert(II && "Attempt to mangle unnamed decl.");
650     Str = II->getName();
651   }
652 
653   // Keep the first result in the case of a mangling collision.
654   auto Result = Manglings.insert(std::make_pair(Str, GD));
655   return FoundStr = Result.first->first();
656 }
657 
658 StringRef CodeGenModule::getBlockMangledName(GlobalDecl GD,
659                                              const BlockDecl *BD) {
660   MangleContext &MangleCtx = getCXXABI().getMangleContext();
661   const Decl *D = GD.getDecl();
662 
663   SmallString<256> Buffer;
664   llvm::raw_svector_ostream Out(Buffer);
665   if (!D)
666     MangleCtx.mangleGlobalBlock(BD,
667       dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()), Out);
668   else if (const auto *CD = dyn_cast<CXXConstructorDecl>(D))
669     MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out);
670   else if (const auto *DD = dyn_cast<CXXDestructorDecl>(D))
671     MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out);
672   else
673     MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out);
674 
675   auto Result = Manglings.insert(std::make_pair(Out.str(), BD));
676   return Result.first->first();
677 }
678 
679 llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) {
680   return getModule().getNamedValue(Name);
681 }
682 
683 /// AddGlobalCtor - Add a function to the list that will be called before
684 /// main() runs.
685 void CodeGenModule::AddGlobalCtor(llvm::Function *Ctor, int Priority,
686                                   llvm::Constant *AssociatedData) {
687   // FIXME: Type coercion of void()* types.
688   GlobalCtors.push_back(Structor(Priority, Ctor, AssociatedData));
689 }
690 
691 /// AddGlobalDtor - Add a function to the list that will be called
692 /// when the module is unloaded.
693 void CodeGenModule::AddGlobalDtor(llvm::Function *Dtor, int Priority) {
694   // FIXME: Type coercion of void()* types.
695   GlobalDtors.push_back(Structor(Priority, Dtor, nullptr));
696 }
697 
698 void CodeGenModule::EmitCtorList(const CtorList &Fns, const char *GlobalName) {
699   // Ctor function type is void()*.
700   llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false);
701   llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy);
702 
703   // Get the type of a ctor entry, { i32, void ()*, i8* }.
704   llvm::StructType *CtorStructTy = llvm::StructType::get(
705       Int32Ty, llvm::PointerType::getUnqual(CtorFTy), VoidPtrTy, nullptr);
706 
707   // Construct the constructor and destructor arrays.
708   SmallVector<llvm::Constant *, 8> Ctors;
709   for (const auto &I : Fns) {
710     llvm::Constant *S[] = {
711         llvm::ConstantInt::get(Int32Ty, I.Priority, false),
712         llvm::ConstantExpr::getBitCast(I.Initializer, CtorPFTy),
713         (I.AssociatedData
714              ? llvm::ConstantExpr::getBitCast(I.AssociatedData, VoidPtrTy)
715              : llvm::Constant::getNullValue(VoidPtrTy))};
716     Ctors.push_back(llvm::ConstantStruct::get(CtorStructTy, S));
717   }
718 
719   if (!Ctors.empty()) {
720     llvm::ArrayType *AT = llvm::ArrayType::get(CtorStructTy, Ctors.size());
721     new llvm::GlobalVariable(TheModule, AT, false,
722                              llvm::GlobalValue::AppendingLinkage,
723                              llvm::ConstantArray::get(AT, Ctors),
724                              GlobalName);
725   }
726 }
727 
728 llvm::GlobalValue::LinkageTypes
729 CodeGenModule::getFunctionLinkage(GlobalDecl GD) {
730   const auto *D = cast<FunctionDecl>(GD.getDecl());
731 
732   GVALinkage Linkage = getContext().GetGVALinkageForFunction(D);
733 
734   if (isa<CXXDestructorDecl>(D) &&
735       getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D),
736                                          GD.getDtorType())) {
737     // Destructor variants in the Microsoft C++ ABI are always internal or
738     // linkonce_odr thunks emitted on an as-needed basis.
739     return Linkage == GVA_Internal ? llvm::GlobalValue::InternalLinkage
740                                    : llvm::GlobalValue::LinkOnceODRLinkage;
741   }
742 
743   return getLLVMLinkageForDeclarator(D, Linkage, /*isConstantVariable=*/false);
744 }
745 
746 void CodeGenModule::setFunctionDLLStorageClass(GlobalDecl GD, llvm::Function *F) {
747   const auto *FD = cast<FunctionDecl>(GD.getDecl());
748 
749   if (const auto *Dtor = dyn_cast_or_null<CXXDestructorDecl>(FD)) {
750     if (getCXXABI().useThunkForDtorVariant(Dtor, GD.getDtorType())) {
751       // Don't dllexport/import destructor thunks.
752       F->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
753       return;
754     }
755   }
756 
757   if (FD->hasAttr<DLLImportAttr>())
758     F->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass);
759   else if (FD->hasAttr<DLLExportAttr>())
760     F->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass);
761   else
762     F->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass);
763 }
764 
765 llvm::ConstantInt *
766 CodeGenModule::CreateCfiIdForTypeMetadata(llvm::Metadata *MD) {
767   llvm::MDString *MDS = dyn_cast<llvm::MDString>(MD);
768   if (!MDS) return nullptr;
769 
770   llvm::MD5 md5;
771   llvm::MD5::MD5Result result;
772   md5.update(MDS->getString());
773   md5.final(result);
774   uint64_t id = 0;
775   for (int i = 0; i < 8; ++i)
776     id |= static_cast<uint64_t>(result[i]) << (i * 8);
777   return llvm::ConstantInt::get(Int64Ty, id);
778 }
779 
780 void CodeGenModule::setFunctionDefinitionAttributes(const FunctionDecl *D,
781                                                     llvm::Function *F) {
782   setNonAliasAttributes(D, F);
783 }
784 
785 void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D,
786                                               const CGFunctionInfo &Info,
787                                               llvm::Function *F) {
788   unsigned CallingConv;
789   AttributeListType AttributeList;
790   ConstructAttributeList(F->getName(), Info, D, AttributeList, CallingConv,
791                          false);
792   F->setAttributes(llvm::AttributeSet::get(getLLVMContext(), AttributeList));
793   F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv));
794 }
795 
796 /// Determines whether the language options require us to model
797 /// unwind exceptions.  We treat -fexceptions as mandating this
798 /// except under the fragile ObjC ABI with only ObjC exceptions
799 /// enabled.  This means, for example, that C with -fexceptions
800 /// enables this.
801 static bool hasUnwindExceptions(const LangOptions &LangOpts) {
802   // If exceptions are completely disabled, obviously this is false.
803   if (!LangOpts.Exceptions) return false;
804 
805   // If C++ exceptions are enabled, this is true.
806   if (LangOpts.CXXExceptions) return true;
807 
808   // If ObjC exceptions are enabled, this depends on the ABI.
809   if (LangOpts.ObjCExceptions) {
810     return LangOpts.ObjCRuntime.hasUnwindExceptions();
811   }
812 
813   return true;
814 }
815 
816 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D,
817                                                            llvm::Function *F) {
818   llvm::AttrBuilder B;
819 
820   if (CodeGenOpts.UnwindTables)
821     B.addAttribute(llvm::Attribute::UWTable);
822 
823   if (!hasUnwindExceptions(LangOpts))
824     B.addAttribute(llvm::Attribute::NoUnwind);
825 
826   if (LangOpts.getStackProtector() == LangOptions::SSPOn)
827     B.addAttribute(llvm::Attribute::StackProtect);
828   else if (LangOpts.getStackProtector() == LangOptions::SSPStrong)
829     B.addAttribute(llvm::Attribute::StackProtectStrong);
830   else if (LangOpts.getStackProtector() == LangOptions::SSPReq)
831     B.addAttribute(llvm::Attribute::StackProtectReq);
832 
833   if (!D) {
834     F->addAttributes(llvm::AttributeSet::FunctionIndex,
835                      llvm::AttributeSet::get(
836                          F->getContext(),
837                          llvm::AttributeSet::FunctionIndex, B));
838     return;
839   }
840 
841   if (D->hasAttr<NakedAttr>()) {
842     // Naked implies noinline: we should not be inlining such functions.
843     B.addAttribute(llvm::Attribute::Naked);
844     B.addAttribute(llvm::Attribute::NoInline);
845   } else if (D->hasAttr<NoDuplicateAttr>()) {
846     B.addAttribute(llvm::Attribute::NoDuplicate);
847   } else if (D->hasAttr<NoInlineAttr>()) {
848     B.addAttribute(llvm::Attribute::NoInline);
849   } else if (D->hasAttr<AlwaysInlineAttr>() &&
850              !F->getAttributes().hasAttribute(llvm::AttributeSet::FunctionIndex,
851                                               llvm::Attribute::NoInline)) {
852     // (noinline wins over always_inline, and we can't specify both in IR)
853     B.addAttribute(llvm::Attribute::AlwaysInline);
854   }
855 
856   if (D->hasAttr<ColdAttr>()) {
857     if (!D->hasAttr<OptimizeNoneAttr>())
858       B.addAttribute(llvm::Attribute::OptimizeForSize);
859     B.addAttribute(llvm::Attribute::Cold);
860   }
861 
862   if (D->hasAttr<MinSizeAttr>())
863     B.addAttribute(llvm::Attribute::MinSize);
864 
865   F->addAttributes(llvm::AttributeSet::FunctionIndex,
866                    llvm::AttributeSet::get(
867                        F->getContext(), llvm::AttributeSet::FunctionIndex, B));
868 
869   if (D->hasAttr<OptimizeNoneAttr>()) {
870     // OptimizeNone implies noinline; we should not be inlining such functions.
871     F->addFnAttr(llvm::Attribute::OptimizeNone);
872     F->addFnAttr(llvm::Attribute::NoInline);
873 
874     // OptimizeNone wins over OptimizeForSize, MinSize, AlwaysInline.
875     F->removeFnAttr(llvm::Attribute::OptimizeForSize);
876     F->removeFnAttr(llvm::Attribute::MinSize);
877     assert(!F->hasFnAttribute(llvm::Attribute::AlwaysInline) &&
878            "OptimizeNone and AlwaysInline on same function!");
879 
880     // Attribute 'inlinehint' has no effect on 'optnone' functions.
881     // Explicitly remove it from the set of function attributes.
882     F->removeFnAttr(llvm::Attribute::InlineHint);
883   }
884 
885   if (isa<CXXConstructorDecl>(D) || isa<CXXDestructorDecl>(D))
886     F->setUnnamedAddr(true);
887   else if (const auto *MD = dyn_cast<CXXMethodDecl>(D))
888     if (MD->isVirtual())
889       F->setUnnamedAddr(true);
890 
891   unsigned alignment = D->getMaxAlignment() / Context.getCharWidth();
892   if (alignment)
893     F->setAlignment(alignment);
894 
895   // Some C++ ABIs require 2-byte alignment for member functions, in order to
896   // reserve a bit for differentiating between virtual and non-virtual member
897   // functions. If the current target's C++ ABI requires this and this is a
898   // member function, set its alignment accordingly.
899   if (getTarget().getCXXABI().areMemberFunctionsAligned()) {
900     if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D))
901       F->setAlignment(2);
902   }
903 }
904 
905 void CodeGenModule::SetCommonAttributes(const Decl *D,
906                                         llvm::GlobalValue *GV) {
907   if (const auto *ND = dyn_cast_or_null<NamedDecl>(D))
908     setGlobalVisibility(GV, ND);
909   else
910     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
911 
912   if (D && D->hasAttr<UsedAttr>())
913     addUsedGlobal(GV);
914 }
915 
916 void CodeGenModule::setAliasAttributes(const Decl *D,
917                                        llvm::GlobalValue *GV) {
918   SetCommonAttributes(D, GV);
919 
920   // Process the dllexport attribute based on whether the original definition
921   // (not necessarily the aliasee) was exported.
922   if (D->hasAttr<DLLExportAttr>())
923     GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass);
924 }
925 
926 void CodeGenModule::setNonAliasAttributes(const Decl *D,
927                                           llvm::GlobalObject *GO) {
928   SetCommonAttributes(D, GO);
929 
930   if (D)
931     if (const SectionAttr *SA = D->getAttr<SectionAttr>())
932       GO->setSection(SA->getName());
933 
934   getTargetCodeGenInfo().setTargetAttributes(D, GO, *this);
935 }
936 
937 void CodeGenModule::SetInternalFunctionAttributes(const Decl *D,
938                                                   llvm::Function *F,
939                                                   const CGFunctionInfo &FI) {
940   SetLLVMFunctionAttributes(D, FI, F);
941   SetLLVMFunctionAttributesForDefinition(D, F);
942 
943   F->setLinkage(llvm::Function::InternalLinkage);
944 
945   setNonAliasAttributes(D, F);
946 }
947 
948 static void setLinkageAndVisibilityForGV(llvm::GlobalValue *GV,
949                                          const NamedDecl *ND) {
950   // Set linkage and visibility in case we never see a definition.
951   LinkageInfo LV = ND->getLinkageAndVisibility();
952   if (LV.getLinkage() != ExternalLinkage) {
953     // Don't set internal linkage on declarations.
954   } else {
955     if (ND->hasAttr<DLLImportAttr>()) {
956       GV->setLinkage(llvm::GlobalValue::ExternalLinkage);
957       GV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass);
958     } else if (ND->hasAttr<DLLExportAttr>()) {
959       GV->setLinkage(llvm::GlobalValue::ExternalLinkage);
960       GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass);
961     } else if (ND->hasAttr<WeakAttr>() || ND->isWeakImported()) {
962       // "extern_weak" is overloaded in LLVM; we probably should have
963       // separate linkage types for this.
964       GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage);
965     }
966 
967     // Set visibility on a declaration only if it's explicit.
968     if (LV.isVisibilityExplicit())
969       GV->setVisibility(CodeGenModule::GetLLVMVisibility(LV.getVisibility()));
970   }
971 }
972 
973 void CodeGenModule::CreateFunctionBitSetEntry(const FunctionDecl *FD,
974                                               llvm::Function *F) {
975   // Only if we are checking indirect calls.
976   if (!LangOpts.Sanitize.has(SanitizerKind::CFIICall))
977     return;
978 
979   // Non-static class methods are handled via vtable pointer checks elsewhere.
980   if (isa<CXXMethodDecl>(FD) && !cast<CXXMethodDecl>(FD)->isStatic())
981     return;
982 
983   // Additionally, if building with cross-DSO support...
984   if (CodeGenOpts.SanitizeCfiCrossDso) {
985     // Don't emit entries for function declarations. In cross-DSO mode these are
986     // handled with better precision at run time.
987     if (!FD->hasBody())
988       return;
989     // Skip available_externally functions. They won't be codegen'ed in the
990     // current module anyway.
991     if (getContext().GetGVALinkageForFunction(FD) == GVA_AvailableExternally)
992       return;
993   }
994 
995   llvm::NamedMDNode *BitsetsMD =
996       getModule().getOrInsertNamedMetadata("llvm.bitsets");
997 
998   llvm::Metadata *MD = CreateMetadataIdentifierForType(FD->getType());
999   llvm::Metadata *BitsetOps[] = {
1000       MD, llvm::ConstantAsMetadata::get(F),
1001       llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(Int64Ty, 0))};
1002   BitsetsMD->addOperand(llvm::MDTuple::get(getLLVMContext(), BitsetOps));
1003 
1004   // Emit a hash-based bit set entry for cross-DSO calls.
1005   if (CodeGenOpts.SanitizeCfiCrossDso) {
1006     if (auto TypeId = CreateCfiIdForTypeMetadata(MD)) {
1007       llvm::Metadata *BitsetOps2[] = {
1008           llvm::ConstantAsMetadata::get(TypeId),
1009           llvm::ConstantAsMetadata::get(F),
1010           llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(Int64Ty, 0))};
1011       BitsetsMD->addOperand(llvm::MDTuple::get(getLLVMContext(), BitsetOps2));
1012     }
1013   }
1014 }
1015 
1016 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD, llvm::Function *F,
1017                                           bool IsIncompleteFunction,
1018                                           bool IsThunk) {
1019   if (llvm::Intrinsic::ID IID = F->getIntrinsicID()) {
1020     // If this is an intrinsic function, set the function's attributes
1021     // to the intrinsic's attributes.
1022     F->setAttributes(llvm::Intrinsic::getAttributes(getLLVMContext(), IID));
1023     return;
1024   }
1025 
1026   const auto *FD = cast<FunctionDecl>(GD.getDecl());
1027 
1028   if (!IsIncompleteFunction)
1029     SetLLVMFunctionAttributes(FD, getTypes().arrangeGlobalDeclaration(GD), F);
1030 
1031   // Add the Returned attribute for "this", except for iOS 5 and earlier
1032   // where substantial code, including the libstdc++ dylib, was compiled with
1033   // GCC and does not actually return "this".
1034   if (!IsThunk && getCXXABI().HasThisReturn(GD) &&
1035       !(getTarget().getTriple().isiOS() &&
1036         getTarget().getTriple().isOSVersionLT(6))) {
1037     assert(!F->arg_empty() &&
1038            F->arg_begin()->getType()
1039              ->canLosslesslyBitCastTo(F->getReturnType()) &&
1040            "unexpected this return");
1041     F->addAttribute(1, llvm::Attribute::Returned);
1042   }
1043 
1044   // Only a few attributes are set on declarations; these may later be
1045   // overridden by a definition.
1046 
1047   setLinkageAndVisibilityForGV(F, FD);
1048 
1049   if (const SectionAttr *SA = FD->getAttr<SectionAttr>())
1050     F->setSection(SA->getName());
1051 
1052   // A replaceable global allocation function does not act like a builtin by
1053   // default, only if it is invoked by a new-expression or delete-expression.
1054   if (FD->isReplaceableGlobalAllocationFunction())
1055     F->addAttribute(llvm::AttributeSet::FunctionIndex,
1056                     llvm::Attribute::NoBuiltin);
1057 
1058   CreateFunctionBitSetEntry(FD, F);
1059 }
1060 
1061 void CodeGenModule::addUsedGlobal(llvm::GlobalValue *GV) {
1062   assert(!GV->isDeclaration() &&
1063          "Only globals with definition can force usage.");
1064   LLVMUsed.emplace_back(GV);
1065 }
1066 
1067 void CodeGenModule::addCompilerUsedGlobal(llvm::GlobalValue *GV) {
1068   assert(!GV->isDeclaration() &&
1069          "Only globals with definition can force usage.");
1070   LLVMCompilerUsed.emplace_back(GV);
1071 }
1072 
1073 static void emitUsed(CodeGenModule &CGM, StringRef Name,
1074                      std::vector<llvm::WeakVH> &List) {
1075   // Don't create llvm.used if there is no need.
1076   if (List.empty())
1077     return;
1078 
1079   // Convert List to what ConstantArray needs.
1080   SmallVector<llvm::Constant*, 8> UsedArray;
1081   UsedArray.resize(List.size());
1082   for (unsigned i = 0, e = List.size(); i != e; ++i) {
1083     UsedArray[i] =
1084         llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(
1085             cast<llvm::Constant>(&*List[i]), CGM.Int8PtrTy);
1086   }
1087 
1088   if (UsedArray.empty())
1089     return;
1090   llvm::ArrayType *ATy = llvm::ArrayType::get(CGM.Int8PtrTy, UsedArray.size());
1091 
1092   auto *GV = new llvm::GlobalVariable(
1093       CGM.getModule(), ATy, false, llvm::GlobalValue::AppendingLinkage,
1094       llvm::ConstantArray::get(ATy, UsedArray), Name);
1095 
1096   GV->setSection("llvm.metadata");
1097 }
1098 
1099 void CodeGenModule::emitLLVMUsed() {
1100   emitUsed(*this, "llvm.used", LLVMUsed);
1101   emitUsed(*this, "llvm.compiler.used", LLVMCompilerUsed);
1102 }
1103 
1104 void CodeGenModule::AppendLinkerOptions(StringRef Opts) {
1105   auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opts);
1106   LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
1107 }
1108 
1109 void CodeGenModule::AddDetectMismatch(StringRef Name, StringRef Value) {
1110   llvm::SmallString<32> Opt;
1111   getTargetCodeGenInfo().getDetectMismatchOption(Name, Value, Opt);
1112   auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt);
1113   LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
1114 }
1115 
1116 void CodeGenModule::AddDependentLib(StringRef Lib) {
1117   llvm::SmallString<24> Opt;
1118   getTargetCodeGenInfo().getDependentLibraryOption(Lib, Opt);
1119   auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt);
1120   LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
1121 }
1122 
1123 /// \brief Add link options implied by the given module, including modules
1124 /// it depends on, using a postorder walk.
1125 static void addLinkOptionsPostorder(CodeGenModule &CGM, Module *Mod,
1126                                     SmallVectorImpl<llvm::Metadata *> &Metadata,
1127                                     llvm::SmallPtrSet<Module *, 16> &Visited) {
1128   // Import this module's parent.
1129   if (Mod->Parent && Visited.insert(Mod->Parent).second) {
1130     addLinkOptionsPostorder(CGM, Mod->Parent, Metadata, Visited);
1131   }
1132 
1133   // Import this module's dependencies.
1134   for (unsigned I = Mod->Imports.size(); I > 0; --I) {
1135     if (Visited.insert(Mod->Imports[I - 1]).second)
1136       addLinkOptionsPostorder(CGM, Mod->Imports[I-1], Metadata, Visited);
1137   }
1138 
1139   // Add linker options to link against the libraries/frameworks
1140   // described by this module.
1141   llvm::LLVMContext &Context = CGM.getLLVMContext();
1142   for (unsigned I = Mod->LinkLibraries.size(); I > 0; --I) {
1143     // Link against a framework.  Frameworks are currently Darwin only, so we
1144     // don't to ask TargetCodeGenInfo for the spelling of the linker option.
1145     if (Mod->LinkLibraries[I-1].IsFramework) {
1146       llvm::Metadata *Args[2] = {
1147           llvm::MDString::get(Context, "-framework"),
1148           llvm::MDString::get(Context, Mod->LinkLibraries[I - 1].Library)};
1149 
1150       Metadata.push_back(llvm::MDNode::get(Context, Args));
1151       continue;
1152     }
1153 
1154     // Link against a library.
1155     llvm::SmallString<24> Opt;
1156     CGM.getTargetCodeGenInfo().getDependentLibraryOption(
1157       Mod->LinkLibraries[I-1].Library, Opt);
1158     auto *OptString = llvm::MDString::get(Context, Opt);
1159     Metadata.push_back(llvm::MDNode::get(Context, OptString));
1160   }
1161 }
1162 
1163 void CodeGenModule::EmitModuleLinkOptions() {
1164   // Collect the set of all of the modules we want to visit to emit link
1165   // options, which is essentially the imported modules and all of their
1166   // non-explicit child modules.
1167   llvm::SetVector<clang::Module *> LinkModules;
1168   llvm::SmallPtrSet<clang::Module *, 16> Visited;
1169   SmallVector<clang::Module *, 16> Stack;
1170 
1171   // Seed the stack with imported modules.
1172   for (Module *M : ImportedModules)
1173     if (Visited.insert(M).second)
1174       Stack.push_back(M);
1175 
1176   // Find all of the modules to import, making a little effort to prune
1177   // non-leaf modules.
1178   while (!Stack.empty()) {
1179     clang::Module *Mod = Stack.pop_back_val();
1180 
1181     bool AnyChildren = false;
1182 
1183     // Visit the submodules of this module.
1184     for (clang::Module::submodule_iterator Sub = Mod->submodule_begin(),
1185                                         SubEnd = Mod->submodule_end();
1186          Sub != SubEnd; ++Sub) {
1187       // Skip explicit children; they need to be explicitly imported to be
1188       // linked against.
1189       if ((*Sub)->IsExplicit)
1190         continue;
1191 
1192       if (Visited.insert(*Sub).second) {
1193         Stack.push_back(*Sub);
1194         AnyChildren = true;
1195       }
1196     }
1197 
1198     // We didn't find any children, so add this module to the list of
1199     // modules to link against.
1200     if (!AnyChildren) {
1201       LinkModules.insert(Mod);
1202     }
1203   }
1204 
1205   // Add link options for all of the imported modules in reverse topological
1206   // order.  We don't do anything to try to order import link flags with respect
1207   // to linker options inserted by things like #pragma comment().
1208   SmallVector<llvm::Metadata *, 16> MetadataArgs;
1209   Visited.clear();
1210   for (Module *M : LinkModules)
1211     if (Visited.insert(M).second)
1212       addLinkOptionsPostorder(*this, M, MetadataArgs, Visited);
1213   std::reverse(MetadataArgs.begin(), MetadataArgs.end());
1214   LinkerOptionsMetadata.append(MetadataArgs.begin(), MetadataArgs.end());
1215 
1216   // Add the linker options metadata flag.
1217   getModule().addModuleFlag(llvm::Module::AppendUnique, "Linker Options",
1218                             llvm::MDNode::get(getLLVMContext(),
1219                                               LinkerOptionsMetadata));
1220 }
1221 
1222 void CodeGenModule::EmitDeferred() {
1223   // Emit code for any potentially referenced deferred decls.  Since a
1224   // previously unused static decl may become used during the generation of code
1225   // for a static function, iterate until no changes are made.
1226 
1227   if (!DeferredVTables.empty()) {
1228     EmitDeferredVTables();
1229 
1230     // Emitting a v-table doesn't directly cause more v-tables to
1231     // become deferred, although it can cause functions to be
1232     // emitted that then need those v-tables.
1233     assert(DeferredVTables.empty());
1234   }
1235 
1236   // Stop if we're out of both deferred v-tables and deferred declarations.
1237   if (DeferredDeclsToEmit.empty())
1238     return;
1239 
1240   // Grab the list of decls to emit. If EmitGlobalDefinition schedules more
1241   // work, it will not interfere with this.
1242   std::vector<DeferredGlobal> CurDeclsToEmit;
1243   CurDeclsToEmit.swap(DeferredDeclsToEmit);
1244 
1245   for (DeferredGlobal &G : CurDeclsToEmit) {
1246     GlobalDecl D = G.GD;
1247     G.GV = nullptr;
1248 
1249     // We should call GetAddrOfGlobal with IsForDefinition set to true in order
1250     // to get GlobalValue with exactly the type we need, not something that
1251     // might had been created for another decl with the same mangled name but
1252     // different type.
1253     llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>(
1254         GetAddrOfGlobal(D, /*IsForDefinition=*/true));
1255 
1256     // In case of different address spaces, we may still get a cast, even with
1257     // IsForDefinition equal to true. Query mangled names table to get
1258     // GlobalValue.
1259     if (!GV)
1260       GV = GetGlobalValue(getMangledName(D));
1261 
1262     // Make sure GetGlobalValue returned non-null.
1263     assert(GV);
1264 
1265     // Check to see if we've already emitted this.  This is necessary
1266     // for a couple of reasons: first, decls can end up in the
1267     // deferred-decls queue multiple times, and second, decls can end
1268     // up with definitions in unusual ways (e.g. by an extern inline
1269     // function acquiring a strong function redefinition).  Just
1270     // ignore these cases.
1271     if (!GV->isDeclaration())
1272       continue;
1273 
1274     // Otherwise, emit the definition and move on to the next one.
1275     EmitGlobalDefinition(D, GV);
1276 
1277     // If we found out that we need to emit more decls, do that recursively.
1278     // This has the advantage that the decls are emitted in a DFS and related
1279     // ones are close together, which is convenient for testing.
1280     if (!DeferredVTables.empty() || !DeferredDeclsToEmit.empty()) {
1281       EmitDeferred();
1282       assert(DeferredVTables.empty() && DeferredDeclsToEmit.empty());
1283     }
1284   }
1285 }
1286 
1287 void CodeGenModule::EmitGlobalAnnotations() {
1288   if (Annotations.empty())
1289     return;
1290 
1291   // Create a new global variable for the ConstantStruct in the Module.
1292   llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get(
1293     Annotations[0]->getType(), Annotations.size()), Annotations);
1294   auto *gv = new llvm::GlobalVariable(getModule(), Array->getType(), false,
1295                                       llvm::GlobalValue::AppendingLinkage,
1296                                       Array, "llvm.global.annotations");
1297   gv->setSection(AnnotationSection);
1298 }
1299 
1300 llvm::Constant *CodeGenModule::EmitAnnotationString(StringRef Str) {
1301   llvm::Constant *&AStr = AnnotationStrings[Str];
1302   if (AStr)
1303     return AStr;
1304 
1305   // Not found yet, create a new global.
1306   llvm::Constant *s = llvm::ConstantDataArray::getString(getLLVMContext(), Str);
1307   auto *gv =
1308       new llvm::GlobalVariable(getModule(), s->getType(), true,
1309                                llvm::GlobalValue::PrivateLinkage, s, ".str");
1310   gv->setSection(AnnotationSection);
1311   gv->setUnnamedAddr(true);
1312   AStr = gv;
1313   return gv;
1314 }
1315 
1316 llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) {
1317   SourceManager &SM = getContext().getSourceManager();
1318   PresumedLoc PLoc = SM.getPresumedLoc(Loc);
1319   if (PLoc.isValid())
1320     return EmitAnnotationString(PLoc.getFilename());
1321   return EmitAnnotationString(SM.getBufferName(Loc));
1322 }
1323 
1324 llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) {
1325   SourceManager &SM = getContext().getSourceManager();
1326   PresumedLoc PLoc = SM.getPresumedLoc(L);
1327   unsigned LineNo = PLoc.isValid() ? PLoc.getLine() :
1328     SM.getExpansionLineNumber(L);
1329   return llvm::ConstantInt::get(Int32Ty, LineNo);
1330 }
1331 
1332 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV,
1333                                                 const AnnotateAttr *AA,
1334                                                 SourceLocation L) {
1335   // Get the globals for file name, annotation, and the line number.
1336   llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()),
1337                  *UnitGV = EmitAnnotationUnit(L),
1338                  *LineNoCst = EmitAnnotationLineNo(L);
1339 
1340   // Create the ConstantStruct for the global annotation.
1341   llvm::Constant *Fields[4] = {
1342     llvm::ConstantExpr::getBitCast(GV, Int8PtrTy),
1343     llvm::ConstantExpr::getBitCast(AnnoGV, Int8PtrTy),
1344     llvm::ConstantExpr::getBitCast(UnitGV, Int8PtrTy),
1345     LineNoCst
1346   };
1347   return llvm::ConstantStruct::getAnon(Fields);
1348 }
1349 
1350 void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D,
1351                                          llvm::GlobalValue *GV) {
1352   assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
1353   // Get the struct elements for these annotations.
1354   for (const auto *I : D->specific_attrs<AnnotateAttr>())
1355     Annotations.push_back(EmitAnnotateAttr(GV, I, D->getLocation()));
1356 }
1357 
1358 bool CodeGenModule::isInSanitizerBlacklist(llvm::Function *Fn,
1359                                            SourceLocation Loc) const {
1360   const auto &SanitizerBL = getContext().getSanitizerBlacklist();
1361   // Blacklist by function name.
1362   if (SanitizerBL.isBlacklistedFunction(Fn->getName()))
1363     return true;
1364   // Blacklist by location.
1365   if (Loc.isValid())
1366     return SanitizerBL.isBlacklistedLocation(Loc);
1367   // If location is unknown, this may be a compiler-generated function. Assume
1368   // it's located in the main file.
1369   auto &SM = Context.getSourceManager();
1370   if (const auto *MainFile = SM.getFileEntryForID(SM.getMainFileID())) {
1371     return SanitizerBL.isBlacklistedFile(MainFile->getName());
1372   }
1373   return false;
1374 }
1375 
1376 bool CodeGenModule::isInSanitizerBlacklist(llvm::GlobalVariable *GV,
1377                                            SourceLocation Loc, QualType Ty,
1378                                            StringRef Category) const {
1379   // For now globals can be blacklisted only in ASan and KASan.
1380   if (!LangOpts.Sanitize.hasOneOf(
1381           SanitizerKind::Address | SanitizerKind::KernelAddress))
1382     return false;
1383   const auto &SanitizerBL = getContext().getSanitizerBlacklist();
1384   if (SanitizerBL.isBlacklistedGlobal(GV->getName(), Category))
1385     return true;
1386   if (SanitizerBL.isBlacklistedLocation(Loc, Category))
1387     return true;
1388   // Check global type.
1389   if (!Ty.isNull()) {
1390     // Drill down the array types: if global variable of a fixed type is
1391     // blacklisted, we also don't instrument arrays of them.
1392     while (auto AT = dyn_cast<ArrayType>(Ty.getTypePtr()))
1393       Ty = AT->getElementType();
1394     Ty = Ty.getCanonicalType().getUnqualifiedType();
1395     // We allow to blacklist only record types (classes, structs etc.)
1396     if (Ty->isRecordType()) {
1397       std::string TypeStr = Ty.getAsString(getContext().getPrintingPolicy());
1398       if (SanitizerBL.isBlacklistedType(TypeStr, Category))
1399         return true;
1400     }
1401   }
1402   return false;
1403 }
1404 
1405 bool CodeGenModule::MustBeEmitted(const ValueDecl *Global) {
1406   // Never defer when EmitAllDecls is specified.
1407   if (LangOpts.EmitAllDecls)
1408     return true;
1409 
1410   return getContext().DeclMustBeEmitted(Global);
1411 }
1412 
1413 bool CodeGenModule::MayBeEmittedEagerly(const ValueDecl *Global) {
1414   if (const auto *FD = dyn_cast<FunctionDecl>(Global))
1415     if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
1416       // Implicit template instantiations may change linkage if they are later
1417       // explicitly instantiated, so they should not be emitted eagerly.
1418       return false;
1419   // If OpenMP is enabled and threadprivates must be generated like TLS, delay
1420   // codegen for global variables, because they may be marked as threadprivate.
1421   if (LangOpts.OpenMP && LangOpts.OpenMPUseTLS &&
1422       getContext().getTargetInfo().isTLSSupported() && isa<VarDecl>(Global))
1423     return false;
1424 
1425   return true;
1426 }
1427 
1428 ConstantAddress CodeGenModule::GetAddrOfUuidDescriptor(
1429     const CXXUuidofExpr* E) {
1430   // Sema has verified that IIDSource has a __declspec(uuid()), and that its
1431   // well-formed.
1432   StringRef Uuid = E->getUuidAsStringRef(Context);
1433   std::string Name = "_GUID_" + Uuid.lower();
1434   std::replace(Name.begin(), Name.end(), '-', '_');
1435 
1436   // Contains a 32-bit field.
1437   CharUnits Alignment = CharUnits::fromQuantity(4);
1438 
1439   // Look for an existing global.
1440   if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name))
1441     return ConstantAddress(GV, Alignment);
1442 
1443   llvm::Constant *Init = EmitUuidofInitializer(Uuid);
1444   assert(Init && "failed to initialize as constant");
1445 
1446   auto *GV = new llvm::GlobalVariable(
1447       getModule(), Init->getType(),
1448       /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name);
1449   if (supportsCOMDAT())
1450     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
1451   return ConstantAddress(GV, Alignment);
1452 }
1453 
1454 ConstantAddress CodeGenModule::GetWeakRefReference(const ValueDecl *VD) {
1455   const AliasAttr *AA = VD->getAttr<AliasAttr>();
1456   assert(AA && "No alias?");
1457 
1458   CharUnits Alignment = getContext().getDeclAlign(VD);
1459   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType());
1460 
1461   // See if there is already something with the target's name in the module.
1462   llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee());
1463   if (Entry) {
1464     unsigned AS = getContext().getTargetAddressSpace(VD->getType());
1465     auto Ptr = llvm::ConstantExpr::getBitCast(Entry, DeclTy->getPointerTo(AS));
1466     return ConstantAddress(Ptr, Alignment);
1467   }
1468 
1469   llvm::Constant *Aliasee;
1470   if (isa<llvm::FunctionType>(DeclTy))
1471     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy,
1472                                       GlobalDecl(cast<FunctionDecl>(VD)),
1473                                       /*ForVTable=*/false);
1474   else
1475     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
1476                                     llvm::PointerType::getUnqual(DeclTy),
1477                                     nullptr);
1478 
1479   auto *F = cast<llvm::GlobalValue>(Aliasee);
1480   F->setLinkage(llvm::Function::ExternalWeakLinkage);
1481   WeakRefReferences.insert(F);
1482 
1483   return ConstantAddress(Aliasee, Alignment);
1484 }
1485 
1486 void CodeGenModule::EmitGlobal(GlobalDecl GD) {
1487   const auto *Global = cast<ValueDecl>(GD.getDecl());
1488 
1489   // Weak references don't produce any output by themselves.
1490   if (Global->hasAttr<WeakRefAttr>())
1491     return;
1492 
1493   // If this is an alias definition (which otherwise looks like a declaration)
1494   // emit it now.
1495   if (Global->hasAttr<AliasAttr>())
1496     return EmitAliasDefinition(GD);
1497 
1498   // If this is CUDA, be selective about which declarations we emit.
1499   if (LangOpts.CUDA) {
1500     if (LangOpts.CUDAIsDevice) {
1501       if (!Global->hasAttr<CUDADeviceAttr>() &&
1502           !Global->hasAttr<CUDAGlobalAttr>() &&
1503           !Global->hasAttr<CUDAConstantAttr>() &&
1504           !Global->hasAttr<CUDASharedAttr>())
1505         return;
1506     } else {
1507       if (!Global->hasAttr<CUDAHostAttr>() && (
1508             Global->hasAttr<CUDADeviceAttr>() ||
1509             Global->hasAttr<CUDAConstantAttr>() ||
1510             Global->hasAttr<CUDASharedAttr>()))
1511         return;
1512     }
1513   }
1514 
1515   // If this is OpenMP device, check if it is legal to emit this global
1516   // normally.
1517   if (OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(GD))
1518     return;
1519 
1520   // Ignore declarations, they will be emitted on their first use.
1521   if (const auto *FD = dyn_cast<FunctionDecl>(Global)) {
1522     // Forward declarations are emitted lazily on first use.
1523     if (!FD->doesThisDeclarationHaveABody()) {
1524       if (!FD->doesDeclarationForceExternallyVisibleDefinition())
1525         return;
1526 
1527       StringRef MangledName = getMangledName(GD);
1528 
1529       // Compute the function info and LLVM type.
1530       const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
1531       llvm::Type *Ty = getTypes().GetFunctionType(FI);
1532 
1533       GetOrCreateLLVMFunction(MangledName, Ty, GD, /*ForVTable=*/false,
1534                               /*DontDefer=*/false);
1535       return;
1536     }
1537   } else {
1538     const auto *VD = cast<VarDecl>(Global);
1539     assert(VD->isFileVarDecl() && "Cannot emit local var decl as global.");
1540 
1541     if (VD->isThisDeclarationADefinition() != VarDecl::Definition &&
1542         !Context.isMSStaticDataMemberInlineDefinition(VD))
1543       return;
1544   }
1545 
1546   // Defer code generation to first use when possible, e.g. if this is an inline
1547   // function. If the global must always be emitted, do it eagerly if possible
1548   // to benefit from cache locality.
1549   if (MustBeEmitted(Global) && MayBeEmittedEagerly(Global)) {
1550     // Emit the definition if it can't be deferred.
1551     EmitGlobalDefinition(GD);
1552     return;
1553   }
1554 
1555   // If we're deferring emission of a C++ variable with an
1556   // initializer, remember the order in which it appeared in the file.
1557   if (getLangOpts().CPlusPlus && isa<VarDecl>(Global) &&
1558       cast<VarDecl>(Global)->hasInit()) {
1559     DelayedCXXInitPosition[Global] = CXXGlobalInits.size();
1560     CXXGlobalInits.push_back(nullptr);
1561   }
1562 
1563   StringRef MangledName = getMangledName(GD);
1564   if (llvm::GlobalValue *GV = GetGlobalValue(MangledName)) {
1565     // The value has already been used and should therefore be emitted.
1566     addDeferredDeclToEmit(GV, GD);
1567   } else if (MustBeEmitted(Global)) {
1568     // The value must be emitted, but cannot be emitted eagerly.
1569     assert(!MayBeEmittedEagerly(Global));
1570     addDeferredDeclToEmit(/*GV=*/nullptr, GD);
1571   } else {
1572     // Otherwise, remember that we saw a deferred decl with this name.  The
1573     // first use of the mangled name will cause it to move into
1574     // DeferredDeclsToEmit.
1575     DeferredDecls[MangledName] = GD;
1576   }
1577 }
1578 
1579 namespace {
1580   struct FunctionIsDirectlyRecursive :
1581     public RecursiveASTVisitor<FunctionIsDirectlyRecursive> {
1582     const StringRef Name;
1583     const Builtin::Context &BI;
1584     bool Result;
1585     FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C) :
1586       Name(N), BI(C), Result(false) {
1587     }
1588     typedef RecursiveASTVisitor<FunctionIsDirectlyRecursive> Base;
1589 
1590     bool TraverseCallExpr(CallExpr *E) {
1591       const FunctionDecl *FD = E->getDirectCallee();
1592       if (!FD)
1593         return true;
1594       AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
1595       if (Attr && Name == Attr->getLabel()) {
1596         Result = true;
1597         return false;
1598       }
1599       unsigned BuiltinID = FD->getBuiltinID();
1600       if (!BuiltinID || !BI.isLibFunction(BuiltinID))
1601         return true;
1602       StringRef BuiltinName = BI.getName(BuiltinID);
1603       if (BuiltinName.startswith("__builtin_") &&
1604           Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) {
1605         Result = true;
1606         return false;
1607       }
1608       return true;
1609     }
1610   };
1611 
1612   struct DLLImportFunctionVisitor
1613       : public RecursiveASTVisitor<DLLImportFunctionVisitor> {
1614     bool SafeToInline = true;
1615 
1616     bool VisitVarDecl(VarDecl *VD) {
1617       // A thread-local variable cannot be imported.
1618       SafeToInline = !VD->getTLSKind();
1619       return SafeToInline;
1620     }
1621 
1622     // Make sure we're not referencing non-imported vars or functions.
1623     bool VisitDeclRefExpr(DeclRefExpr *E) {
1624       ValueDecl *VD = E->getDecl();
1625       if (isa<FunctionDecl>(VD))
1626         SafeToInline = VD->hasAttr<DLLImportAttr>();
1627       else if (VarDecl *V = dyn_cast<VarDecl>(VD))
1628         SafeToInline = !V->hasGlobalStorage() || V->hasAttr<DLLImportAttr>();
1629       return SafeToInline;
1630     }
1631     bool VisitCXXDeleteExpr(CXXDeleteExpr *E) {
1632       SafeToInline = E->getOperatorDelete()->hasAttr<DLLImportAttr>();
1633       return SafeToInline;
1634     }
1635     bool VisitCXXNewExpr(CXXNewExpr *E) {
1636       SafeToInline = E->getOperatorNew()->hasAttr<DLLImportAttr>();
1637       return SafeToInline;
1638     }
1639   };
1640 }
1641 
1642 // isTriviallyRecursive - Check if this function calls another
1643 // decl that, because of the asm attribute or the other decl being a builtin,
1644 // ends up pointing to itself.
1645 bool
1646 CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) {
1647   StringRef Name;
1648   if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) {
1649     // asm labels are a special kind of mangling we have to support.
1650     AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
1651     if (!Attr)
1652       return false;
1653     Name = Attr->getLabel();
1654   } else {
1655     Name = FD->getName();
1656   }
1657 
1658   FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo);
1659   Walker.TraverseFunctionDecl(const_cast<FunctionDecl*>(FD));
1660   return Walker.Result;
1661 }
1662 
1663 bool
1664 CodeGenModule::shouldEmitFunction(GlobalDecl GD) {
1665   if (getFunctionLinkage(GD) != llvm::Function::AvailableExternallyLinkage)
1666     return true;
1667   const auto *F = cast<FunctionDecl>(GD.getDecl());
1668   if (CodeGenOpts.OptimizationLevel == 0 && !F->hasAttr<AlwaysInlineAttr>())
1669     return false;
1670 
1671   if (F->hasAttr<DLLImportAttr>()) {
1672     // Check whether it would be safe to inline this dllimport function.
1673     DLLImportFunctionVisitor Visitor;
1674     Visitor.TraverseFunctionDecl(const_cast<FunctionDecl*>(F));
1675     if (!Visitor.SafeToInline)
1676       return false;
1677   }
1678 
1679   // PR9614. Avoid cases where the source code is lying to us. An available
1680   // externally function should have an equivalent function somewhere else,
1681   // but a function that calls itself is clearly not equivalent to the real
1682   // implementation.
1683   // This happens in glibc's btowc and in some configure checks.
1684   return !isTriviallyRecursive(F);
1685 }
1686 
1687 /// If the type for the method's class was generated by
1688 /// CGDebugInfo::createContextChain(), the cache contains only a
1689 /// limited DIType without any declarations. Since EmitFunctionStart()
1690 /// needs to find the canonical declaration for each method, we need
1691 /// to construct the complete type prior to emitting the method.
1692 void CodeGenModule::CompleteDIClassType(const CXXMethodDecl* D) {
1693   if (!D->isInstance())
1694     return;
1695 
1696   if (CGDebugInfo *DI = getModuleDebugInfo())
1697     if (getCodeGenOpts().getDebugInfo() >= CodeGenOptions::LimitedDebugInfo) {
1698       const auto *ThisPtr = cast<PointerType>(D->getThisType(getContext()));
1699       DI->getOrCreateRecordType(ThisPtr->getPointeeType(), D->getLocation());
1700     }
1701 }
1702 
1703 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD, llvm::GlobalValue *GV) {
1704   const auto *D = cast<ValueDecl>(GD.getDecl());
1705 
1706   PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(),
1707                                  Context.getSourceManager(),
1708                                  "Generating code for declaration");
1709 
1710   if (isa<FunctionDecl>(D)) {
1711     // At -O0, don't generate IR for functions with available_externally
1712     // linkage.
1713     if (!shouldEmitFunction(GD))
1714       return;
1715 
1716     if (const auto *Method = dyn_cast<CXXMethodDecl>(D)) {
1717       CompleteDIClassType(Method);
1718       // Make sure to emit the definition(s) before we emit the thunks.
1719       // This is necessary for the generation of certain thunks.
1720       if (const auto *CD = dyn_cast<CXXConstructorDecl>(Method))
1721         ABI->emitCXXStructor(CD, getFromCtorType(GD.getCtorType()));
1722       else if (const auto *DD = dyn_cast<CXXDestructorDecl>(Method))
1723         ABI->emitCXXStructor(DD, getFromDtorType(GD.getDtorType()));
1724       else
1725         EmitGlobalFunctionDefinition(GD, GV);
1726 
1727       if (Method->isVirtual())
1728         getVTables().EmitThunks(GD);
1729 
1730       return;
1731     }
1732 
1733     return EmitGlobalFunctionDefinition(GD, GV);
1734   }
1735 
1736   if (const auto *VD = dyn_cast<VarDecl>(D))
1737     return EmitGlobalVarDefinition(VD, !VD->hasDefinition());
1738 
1739   llvm_unreachable("Invalid argument to EmitGlobalDefinition()");
1740 }
1741 
1742 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
1743                                                       llvm::Function *NewFn);
1744 
1745 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the
1746 /// module, create and return an llvm Function with the specified type. If there
1747 /// is something in the module with the specified name, return it potentially
1748 /// bitcasted to the right type.
1749 ///
1750 /// If D is non-null, it specifies a decl that correspond to this.  This is used
1751 /// to set the attributes on the function when it is first created.
1752 llvm::Constant *
1753 CodeGenModule::GetOrCreateLLVMFunction(StringRef MangledName,
1754                                        llvm::Type *Ty,
1755                                        GlobalDecl GD, bool ForVTable,
1756                                        bool DontDefer, bool IsThunk,
1757                                        llvm::AttributeSet ExtraAttrs,
1758                                        bool IsForDefinition) {
1759   const Decl *D = GD.getDecl();
1760 
1761   // Lookup the entry, lazily creating it if necessary.
1762   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
1763   if (Entry) {
1764     if (WeakRefReferences.erase(Entry)) {
1765       const FunctionDecl *FD = cast_or_null<FunctionDecl>(D);
1766       if (FD && !FD->hasAttr<WeakAttr>())
1767         Entry->setLinkage(llvm::Function::ExternalLinkage);
1768     }
1769 
1770     // Handle dropped DLL attributes.
1771     if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>())
1772       Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
1773 
1774     // If there are two attempts to define the same mangled name, issue an
1775     // error.
1776     if (IsForDefinition && !Entry->isDeclaration()) {
1777       GlobalDecl OtherGD;
1778       // Check that GD is not yet in DiagnosedConflictingDefinitions is required
1779       // to make sure that we issue an error only once.
1780       if (lookupRepresentativeDecl(MangledName, OtherGD) &&
1781           (GD.getCanonicalDecl().getDecl() !=
1782            OtherGD.getCanonicalDecl().getDecl()) &&
1783           DiagnosedConflictingDefinitions.insert(GD).second) {
1784         getDiags().Report(D->getLocation(),
1785                           diag::err_duplicate_mangled_name);
1786         getDiags().Report(OtherGD.getDecl()->getLocation(),
1787                           diag::note_previous_definition);
1788       }
1789     }
1790 
1791     if ((isa<llvm::Function>(Entry) || isa<llvm::GlobalAlias>(Entry)) &&
1792         (Entry->getType()->getElementType() == Ty)) {
1793       return Entry;
1794     }
1795 
1796     // Make sure the result is of the correct type.
1797     // (If function is requested for a definition, we always need to create a new
1798     // function, not just return a bitcast.)
1799     if (!IsForDefinition)
1800       return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo());
1801   }
1802 
1803   // This function doesn't have a complete type (for example, the return
1804   // type is an incomplete struct). Use a fake type instead, and make
1805   // sure not to try to set attributes.
1806   bool IsIncompleteFunction = false;
1807 
1808   llvm::FunctionType *FTy;
1809   if (isa<llvm::FunctionType>(Ty)) {
1810     FTy = cast<llvm::FunctionType>(Ty);
1811   } else {
1812     FTy = llvm::FunctionType::get(VoidTy, false);
1813     IsIncompleteFunction = true;
1814   }
1815 
1816   llvm::Function *F =
1817       llvm::Function::Create(FTy, llvm::Function::ExternalLinkage,
1818                              Entry ? StringRef() : MangledName, &getModule());
1819 
1820   // If we already created a function with the same mangled name (but different
1821   // type) before, take its name and add it to the list of functions to be
1822   // replaced with F at the end of CodeGen.
1823   //
1824   // This happens if there is a prototype for a function (e.g. "int f()") and
1825   // then a definition of a different type (e.g. "int f(int x)").
1826   if (Entry) {
1827     F->takeName(Entry);
1828 
1829     // This might be an implementation of a function without a prototype, in
1830     // which case, try to do special replacement of calls which match the new
1831     // prototype.  The really key thing here is that we also potentially drop
1832     // arguments from the call site so as to make a direct call, which makes the
1833     // inliner happier and suppresses a number of optimizer warnings (!) about
1834     // dropping arguments.
1835     if (!Entry->use_empty()) {
1836       ReplaceUsesOfNonProtoTypeWithRealFunction(Entry, F);
1837       Entry->removeDeadConstantUsers();
1838     }
1839 
1840     llvm::Constant *BC = llvm::ConstantExpr::getBitCast(
1841         F, Entry->getType()->getElementType()->getPointerTo());
1842     addGlobalValReplacement(Entry, BC);
1843   }
1844 
1845   assert(F->getName() == MangledName && "name was uniqued!");
1846   if (D)
1847     SetFunctionAttributes(GD, F, IsIncompleteFunction, IsThunk);
1848   if (ExtraAttrs.hasAttributes(llvm::AttributeSet::FunctionIndex)) {
1849     llvm::AttrBuilder B(ExtraAttrs, llvm::AttributeSet::FunctionIndex);
1850     F->addAttributes(llvm::AttributeSet::FunctionIndex,
1851                      llvm::AttributeSet::get(VMContext,
1852                                              llvm::AttributeSet::FunctionIndex,
1853                                              B));
1854   }
1855 
1856   if (!DontDefer) {
1857     // All MSVC dtors other than the base dtor are linkonce_odr and delegate to
1858     // each other bottoming out with the base dtor.  Therefore we emit non-base
1859     // dtors on usage, even if there is no dtor definition in the TU.
1860     if (D && isa<CXXDestructorDecl>(D) &&
1861         getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D),
1862                                            GD.getDtorType()))
1863       addDeferredDeclToEmit(F, GD);
1864 
1865     // This is the first use or definition of a mangled name.  If there is a
1866     // deferred decl with this name, remember that we need to emit it at the end
1867     // of the file.
1868     auto DDI = DeferredDecls.find(MangledName);
1869     if (DDI != DeferredDecls.end()) {
1870       // Move the potentially referenced deferred decl to the
1871       // DeferredDeclsToEmit list, and remove it from DeferredDecls (since we
1872       // don't need it anymore).
1873       addDeferredDeclToEmit(F, DDI->second);
1874       DeferredDecls.erase(DDI);
1875 
1876       // Otherwise, there are cases we have to worry about where we're
1877       // using a declaration for which we must emit a definition but where
1878       // we might not find a top-level definition:
1879       //   - member functions defined inline in their classes
1880       //   - friend functions defined inline in some class
1881       //   - special member functions with implicit definitions
1882       // If we ever change our AST traversal to walk into class methods,
1883       // this will be unnecessary.
1884       //
1885       // We also don't emit a definition for a function if it's going to be an
1886       // entry in a vtable, unless it's already marked as used.
1887     } else if (getLangOpts().CPlusPlus && D) {
1888       // Look for a declaration that's lexically in a record.
1889       for (const auto *FD = cast<FunctionDecl>(D)->getMostRecentDecl(); FD;
1890            FD = FD->getPreviousDecl()) {
1891         if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) {
1892           if (FD->doesThisDeclarationHaveABody()) {
1893             addDeferredDeclToEmit(F, GD.getWithDecl(FD));
1894             break;
1895           }
1896         }
1897       }
1898     }
1899   }
1900 
1901   // Make sure the result is of the requested type.
1902   if (!IsIncompleteFunction) {
1903     assert(F->getType()->getElementType() == Ty);
1904     return F;
1905   }
1906 
1907   llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
1908   return llvm::ConstantExpr::getBitCast(F, PTy);
1909 }
1910 
1911 /// GetAddrOfFunction - Return the address of the given function.  If Ty is
1912 /// non-null, then this function will use the specified type if it has to
1913 /// create it (this occurs when we see a definition of the function).
1914 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD,
1915                                                  llvm::Type *Ty,
1916                                                  bool ForVTable,
1917                                                  bool DontDefer,
1918                                                  bool IsForDefinition) {
1919   // If there was no specific requested type, just convert it now.
1920   if (!Ty) {
1921     const auto *FD = cast<FunctionDecl>(GD.getDecl());
1922     auto CanonTy = Context.getCanonicalType(FD->getType());
1923     Ty = getTypes().ConvertFunctionType(CanonTy, FD);
1924   }
1925 
1926   StringRef MangledName = getMangledName(GD);
1927   return GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable, DontDefer,
1928                                  /*IsThunk=*/false, llvm::AttributeSet(),
1929                                  IsForDefinition);
1930 }
1931 
1932 /// CreateRuntimeFunction - Create a new runtime function with the specified
1933 /// type and name.
1934 llvm::Constant *
1935 CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy,
1936                                      StringRef Name,
1937                                      llvm::AttributeSet ExtraAttrs) {
1938   llvm::Constant *C =
1939       GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false,
1940                               /*DontDefer=*/false, /*IsThunk=*/false, ExtraAttrs);
1941   if (auto *F = dyn_cast<llvm::Function>(C))
1942     if (F->empty())
1943       F->setCallingConv(getRuntimeCC());
1944   return C;
1945 }
1946 
1947 /// CreateBuiltinFunction - Create a new builtin function with the specified
1948 /// type and name.
1949 llvm::Constant *
1950 CodeGenModule::CreateBuiltinFunction(llvm::FunctionType *FTy,
1951                                      StringRef Name,
1952                                      llvm::AttributeSet ExtraAttrs) {
1953   llvm::Constant *C =
1954       GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false,
1955                               /*DontDefer=*/false, /*IsThunk=*/false, ExtraAttrs);
1956   if (auto *F = dyn_cast<llvm::Function>(C))
1957     if (F->empty())
1958       F->setCallingConv(getBuiltinCC());
1959   return C;
1960 }
1961 
1962 /// isTypeConstant - Determine whether an object of this type can be emitted
1963 /// as a constant.
1964 ///
1965 /// If ExcludeCtor is true, the duration when the object's constructor runs
1966 /// will not be considered. The caller will need to verify that the object is
1967 /// not written to during its construction.
1968 bool CodeGenModule::isTypeConstant(QualType Ty, bool ExcludeCtor) {
1969   if (!Ty.isConstant(Context) && !Ty->isReferenceType())
1970     return false;
1971 
1972   if (Context.getLangOpts().CPlusPlus) {
1973     if (const CXXRecordDecl *Record
1974           = Context.getBaseElementType(Ty)->getAsCXXRecordDecl())
1975       return ExcludeCtor && !Record->hasMutableFields() &&
1976              Record->hasTrivialDestructor();
1977   }
1978 
1979   return true;
1980 }
1981 
1982 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module,
1983 /// create and return an llvm GlobalVariable with the specified type.  If there
1984 /// is something in the module with the specified name, return it potentially
1985 /// bitcasted to the right type.
1986 ///
1987 /// If D is non-null, it specifies a decl that correspond to this.  This is used
1988 /// to set the attributes on the global when it is first created.
1989 ///
1990 /// If IsForDefinition is true, it is guranteed that an actual global with
1991 /// type Ty will be returned, not conversion of a variable with the same
1992 /// mangled name but some other type.
1993 llvm::Constant *
1994 CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName,
1995                                      llvm::PointerType *Ty,
1996                                      const VarDecl *D,
1997                                      bool IsForDefinition) {
1998   // Lookup the entry, lazily creating it if necessary.
1999   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
2000   if (Entry) {
2001     if (WeakRefReferences.erase(Entry)) {
2002       if (D && !D->hasAttr<WeakAttr>())
2003         Entry->setLinkage(llvm::Function::ExternalLinkage);
2004     }
2005 
2006     // Handle dropped DLL attributes.
2007     if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>())
2008       Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
2009 
2010     if (Entry->getType() == Ty)
2011       return Entry;
2012 
2013     // If there are two attempts to define the same mangled name, issue an
2014     // error.
2015     if (IsForDefinition && !Entry->isDeclaration()) {
2016       GlobalDecl OtherGD;
2017       const VarDecl *OtherD;
2018 
2019       // Check that D is not yet in DiagnosedConflictingDefinitions is required
2020       // to make sure that we issue an error only once.
2021       if (lookupRepresentativeDecl(MangledName, OtherGD) &&
2022           (D->getCanonicalDecl() != OtherGD.getCanonicalDecl().getDecl()) &&
2023           (OtherD = dyn_cast<VarDecl>(OtherGD.getDecl())) &&
2024           OtherD->hasInit() &&
2025           DiagnosedConflictingDefinitions.insert(D).second) {
2026         getDiags().Report(D->getLocation(),
2027                           diag::err_duplicate_mangled_name);
2028         getDiags().Report(OtherGD.getDecl()->getLocation(),
2029                           diag::note_previous_definition);
2030       }
2031     }
2032 
2033     // Make sure the result is of the correct type.
2034     if (Entry->getType()->getAddressSpace() != Ty->getAddressSpace())
2035       return llvm::ConstantExpr::getAddrSpaceCast(Entry, Ty);
2036 
2037     // (If global is requested for a definition, we always need to create a new
2038     // global, not just return a bitcast.)
2039     if (!IsForDefinition)
2040       return llvm::ConstantExpr::getBitCast(Entry, Ty);
2041   }
2042 
2043   unsigned AddrSpace = GetGlobalVarAddressSpace(D, Ty->getAddressSpace());
2044   auto *GV = new llvm::GlobalVariable(
2045       getModule(), Ty->getElementType(), false,
2046       llvm::GlobalValue::ExternalLinkage, nullptr, MangledName, nullptr,
2047       llvm::GlobalVariable::NotThreadLocal, AddrSpace);
2048 
2049   // If we already created a global with the same mangled name (but different
2050   // type) before, take its name and remove it from its parent.
2051   if (Entry) {
2052     GV->takeName(Entry);
2053 
2054     if (!Entry->use_empty()) {
2055       llvm::Constant *NewPtrForOldDecl =
2056           llvm::ConstantExpr::getBitCast(GV, Entry->getType());
2057       Entry->replaceAllUsesWith(NewPtrForOldDecl);
2058     }
2059 
2060     Entry->eraseFromParent();
2061   }
2062 
2063   // This is the first use or definition of a mangled name.  If there is a
2064   // deferred decl with this name, remember that we need to emit it at the end
2065   // of the file.
2066   auto DDI = DeferredDecls.find(MangledName);
2067   if (DDI != DeferredDecls.end()) {
2068     // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
2069     // list, and remove it from DeferredDecls (since we don't need it anymore).
2070     addDeferredDeclToEmit(GV, DDI->second);
2071     DeferredDecls.erase(DDI);
2072   }
2073 
2074   // Handle things which are present even on external declarations.
2075   if (D) {
2076     // FIXME: This code is overly simple and should be merged with other global
2077     // handling.
2078     GV->setConstant(isTypeConstant(D->getType(), false));
2079 
2080     GV->setAlignment(getContext().getDeclAlign(D).getQuantity());
2081 
2082     setLinkageAndVisibilityForGV(GV, D);
2083 
2084     if (D->getTLSKind()) {
2085       if (D->getTLSKind() == VarDecl::TLS_Dynamic)
2086         CXXThreadLocals.push_back(D);
2087       setTLSMode(GV, *D);
2088     }
2089 
2090     // If required by the ABI, treat declarations of static data members with
2091     // inline initializers as definitions.
2092     if (getContext().isMSStaticDataMemberInlineDefinition(D)) {
2093       EmitGlobalVarDefinition(D);
2094     }
2095 
2096     // Handle XCore specific ABI requirements.
2097     if (getTarget().getTriple().getArch() == llvm::Triple::xcore &&
2098         D->getLanguageLinkage() == CLanguageLinkage &&
2099         D->getType().isConstant(Context) &&
2100         isExternallyVisible(D->getLinkageAndVisibility().getLinkage()))
2101       GV->setSection(".cp.rodata");
2102   }
2103 
2104   if (AddrSpace != Ty->getAddressSpace())
2105     return llvm::ConstantExpr::getAddrSpaceCast(GV, Ty);
2106 
2107   return GV;
2108 }
2109 
2110 llvm::Constant *
2111 CodeGenModule::GetAddrOfGlobal(GlobalDecl GD,
2112                                bool IsForDefinition) {
2113   if (isa<CXXConstructorDecl>(GD.getDecl()))
2114     return getAddrOfCXXStructor(cast<CXXConstructorDecl>(GD.getDecl()),
2115                                 getFromCtorType(GD.getCtorType()),
2116                                 /*FnInfo=*/nullptr, /*FnType=*/nullptr,
2117                                 /*DontDefer=*/false, IsForDefinition);
2118   else if (isa<CXXDestructorDecl>(GD.getDecl()))
2119     return getAddrOfCXXStructor(cast<CXXDestructorDecl>(GD.getDecl()),
2120                                 getFromDtorType(GD.getDtorType()),
2121                                 /*FnInfo=*/nullptr, /*FnType=*/nullptr,
2122                                 /*DontDefer=*/false, IsForDefinition);
2123   else if (isa<CXXMethodDecl>(GD.getDecl())) {
2124     auto FInfo = &getTypes().arrangeCXXMethodDeclaration(
2125         cast<CXXMethodDecl>(GD.getDecl()));
2126     auto Ty = getTypes().GetFunctionType(*FInfo);
2127     return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false,
2128                              IsForDefinition);
2129   } else if (isa<FunctionDecl>(GD.getDecl())) {
2130     const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
2131     llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
2132     return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false,
2133                              IsForDefinition);
2134   } else
2135     return GetAddrOfGlobalVar(cast<VarDecl>(GD.getDecl()), /*Ty=*/nullptr,
2136                               IsForDefinition);
2137 }
2138 
2139 llvm::GlobalVariable *
2140 CodeGenModule::CreateOrReplaceCXXRuntimeVariable(StringRef Name,
2141                                       llvm::Type *Ty,
2142                                       llvm::GlobalValue::LinkageTypes Linkage) {
2143   llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name);
2144   llvm::GlobalVariable *OldGV = nullptr;
2145 
2146   if (GV) {
2147     // Check if the variable has the right type.
2148     if (GV->getType()->getElementType() == Ty)
2149       return GV;
2150 
2151     // Because C++ name mangling, the only way we can end up with an already
2152     // existing global with the same name is if it has been declared extern "C".
2153     assert(GV->isDeclaration() && "Declaration has wrong type!");
2154     OldGV = GV;
2155   }
2156 
2157   // Create a new variable.
2158   GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true,
2159                                 Linkage, nullptr, Name);
2160 
2161   if (OldGV) {
2162     // Replace occurrences of the old variable if needed.
2163     GV->takeName(OldGV);
2164 
2165     if (!OldGV->use_empty()) {
2166       llvm::Constant *NewPtrForOldDecl =
2167       llvm::ConstantExpr::getBitCast(GV, OldGV->getType());
2168       OldGV->replaceAllUsesWith(NewPtrForOldDecl);
2169     }
2170 
2171     OldGV->eraseFromParent();
2172   }
2173 
2174   if (supportsCOMDAT() && GV->isWeakForLinker() &&
2175       !GV->hasAvailableExternallyLinkage())
2176     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
2177 
2178   return GV;
2179 }
2180 
2181 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the
2182 /// given global variable.  If Ty is non-null and if the global doesn't exist,
2183 /// then it will be created with the specified type instead of whatever the
2184 /// normal requested type would be. If IsForDefinition is true, it is guranteed
2185 /// that an actual global with type Ty will be returned, not conversion of a
2186 /// variable with the same mangled name but some other type.
2187 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D,
2188                                                   llvm::Type *Ty,
2189                                                   bool IsForDefinition) {
2190   assert(D->hasGlobalStorage() && "Not a global variable");
2191   QualType ASTTy = D->getType();
2192   if (!Ty)
2193     Ty = getTypes().ConvertTypeForMem(ASTTy);
2194 
2195   llvm::PointerType *PTy =
2196     llvm::PointerType::get(Ty, getContext().getTargetAddressSpace(ASTTy));
2197 
2198   StringRef MangledName = getMangledName(D);
2199   return GetOrCreateLLVMGlobal(MangledName, PTy, D, IsForDefinition);
2200 }
2201 
2202 /// CreateRuntimeVariable - Create a new runtime global variable with the
2203 /// specified type and name.
2204 llvm::Constant *
2205 CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty,
2206                                      StringRef Name) {
2207   return GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), nullptr);
2208 }
2209 
2210 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) {
2211   assert(!D->getInit() && "Cannot emit definite definitions here!");
2212 
2213   StringRef MangledName = getMangledName(D);
2214   llvm::GlobalValue *GV = GetGlobalValue(MangledName);
2215 
2216   // We already have a definition, not declaration, with the same mangled name.
2217   // Emitting of declaration is not required (and actually overwrites emitted
2218   // definition).
2219   if (GV && !GV->isDeclaration())
2220     return;
2221 
2222   // If we have not seen a reference to this variable yet, place it into the
2223   // deferred declarations table to be emitted if needed later.
2224   if (!MustBeEmitted(D) && !GV) {
2225       DeferredDecls[MangledName] = D;
2226       return;
2227   }
2228 
2229   // The tentative definition is the only definition.
2230   EmitGlobalVarDefinition(D);
2231 }
2232 
2233 CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const {
2234   return Context.toCharUnitsFromBits(
2235       getDataLayout().getTypeStoreSizeInBits(Ty));
2236 }
2237 
2238 unsigned CodeGenModule::GetGlobalVarAddressSpace(const VarDecl *D,
2239                                                  unsigned AddrSpace) {
2240   if (LangOpts.CUDA && LangOpts.CUDAIsDevice) {
2241     if (D->hasAttr<CUDAConstantAttr>())
2242       AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_constant);
2243     else if (D->hasAttr<CUDASharedAttr>())
2244       AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_shared);
2245     else
2246       AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_device);
2247   }
2248 
2249   return AddrSpace;
2250 }
2251 
2252 template<typename SomeDecl>
2253 void CodeGenModule::MaybeHandleStaticInExternC(const SomeDecl *D,
2254                                                llvm::GlobalValue *GV) {
2255   if (!getLangOpts().CPlusPlus)
2256     return;
2257 
2258   // Must have 'used' attribute, or else inline assembly can't rely on
2259   // the name existing.
2260   if (!D->template hasAttr<UsedAttr>())
2261     return;
2262 
2263   // Must have internal linkage and an ordinary name.
2264   if (!D->getIdentifier() || D->getFormalLinkage() != InternalLinkage)
2265     return;
2266 
2267   // Must be in an extern "C" context. Entities declared directly within
2268   // a record are not extern "C" even if the record is in such a context.
2269   const SomeDecl *First = D->getFirstDecl();
2270   if (First->getDeclContext()->isRecord() || !First->isInExternCContext())
2271     return;
2272 
2273   // OK, this is an internal linkage entity inside an extern "C" linkage
2274   // specification. Make a note of that so we can give it the "expected"
2275   // mangled name if nothing else is using that name.
2276   std::pair<StaticExternCMap::iterator, bool> R =
2277       StaticExternCValues.insert(std::make_pair(D->getIdentifier(), GV));
2278 
2279   // If we have multiple internal linkage entities with the same name
2280   // in extern "C" regions, none of them gets that name.
2281   if (!R.second)
2282     R.first->second = nullptr;
2283 }
2284 
2285 static bool shouldBeInCOMDAT(CodeGenModule &CGM, const Decl &D) {
2286   if (!CGM.supportsCOMDAT())
2287     return false;
2288 
2289   if (D.hasAttr<SelectAnyAttr>())
2290     return true;
2291 
2292   GVALinkage Linkage;
2293   if (auto *VD = dyn_cast<VarDecl>(&D))
2294     Linkage = CGM.getContext().GetGVALinkageForVariable(VD);
2295   else
2296     Linkage = CGM.getContext().GetGVALinkageForFunction(cast<FunctionDecl>(&D));
2297 
2298   switch (Linkage) {
2299   case GVA_Internal:
2300   case GVA_AvailableExternally:
2301   case GVA_StrongExternal:
2302     return false;
2303   case GVA_DiscardableODR:
2304   case GVA_StrongODR:
2305     return true;
2306   }
2307   llvm_unreachable("No such linkage");
2308 }
2309 
2310 void CodeGenModule::maybeSetTrivialComdat(const Decl &D,
2311                                           llvm::GlobalObject &GO) {
2312   if (!shouldBeInCOMDAT(*this, D))
2313     return;
2314   GO.setComdat(TheModule.getOrInsertComdat(GO.getName()));
2315 }
2316 
2317 /// Pass IsTentative as true if you want to create a tentative definition.
2318 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D,
2319                                             bool IsTentative) {
2320   llvm::Constant *Init = nullptr;
2321   QualType ASTTy = D->getType();
2322   CXXRecordDecl *RD = ASTTy->getBaseElementTypeUnsafe()->getAsCXXRecordDecl();
2323   bool NeedsGlobalCtor = false;
2324   bool NeedsGlobalDtor = RD && !RD->hasTrivialDestructor();
2325 
2326   const VarDecl *InitDecl;
2327   const Expr *InitExpr = D->getAnyInitializer(InitDecl);
2328 
2329   // CUDA E.2.4.1 "__shared__ variables cannot have an initialization as part
2330   // of their declaration."
2331   if (getLangOpts().CPlusPlus && getLangOpts().CUDAIsDevice
2332       && D->hasAttr<CUDASharedAttr>()) {
2333     if (InitExpr) {
2334       const auto *C = dyn_cast<CXXConstructExpr>(InitExpr);
2335       if (C == nullptr || !C->getConstructor()->hasTrivialBody())
2336         Error(D->getLocation(),
2337               "__shared__ variable cannot have an initialization.");
2338     }
2339     Init = llvm::UndefValue::get(getTypes().ConvertType(ASTTy));
2340   } else if (!InitExpr) {
2341     // This is a tentative definition; tentative definitions are
2342     // implicitly initialized with { 0 }.
2343     //
2344     // Note that tentative definitions are only emitted at the end of
2345     // a translation unit, so they should never have incomplete
2346     // type. In addition, EmitTentativeDefinition makes sure that we
2347     // never attempt to emit a tentative definition if a real one
2348     // exists. A use may still exists, however, so we still may need
2349     // to do a RAUW.
2350     assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type");
2351     Init = EmitNullConstant(D->getType());
2352   } else {
2353     initializedGlobalDecl = GlobalDecl(D);
2354     Init = EmitConstantInit(*InitDecl);
2355 
2356     if (!Init) {
2357       QualType T = InitExpr->getType();
2358       if (D->getType()->isReferenceType())
2359         T = D->getType();
2360 
2361       if (getLangOpts().CPlusPlus) {
2362         Init = EmitNullConstant(T);
2363         NeedsGlobalCtor = true;
2364       } else {
2365         ErrorUnsupported(D, "static initializer");
2366         Init = llvm::UndefValue::get(getTypes().ConvertType(T));
2367       }
2368     } else {
2369       // We don't need an initializer, so remove the entry for the delayed
2370       // initializer position (just in case this entry was delayed) if we
2371       // also don't need to register a destructor.
2372       if (getLangOpts().CPlusPlus && !NeedsGlobalDtor)
2373         DelayedCXXInitPosition.erase(D);
2374     }
2375   }
2376 
2377   llvm::Type* InitType = Init->getType();
2378   llvm::Constant *Entry =
2379       GetAddrOfGlobalVar(D, InitType, /*IsForDefinition=*/!IsTentative);
2380 
2381   // Strip off a bitcast if we got one back.
2382   if (auto *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
2383     assert(CE->getOpcode() == llvm::Instruction::BitCast ||
2384            CE->getOpcode() == llvm::Instruction::AddrSpaceCast ||
2385            // All zero index gep.
2386            CE->getOpcode() == llvm::Instruction::GetElementPtr);
2387     Entry = CE->getOperand(0);
2388   }
2389 
2390   // Entry is now either a Function or GlobalVariable.
2391   auto *GV = dyn_cast<llvm::GlobalVariable>(Entry);
2392 
2393   // We have a definition after a declaration with the wrong type.
2394   // We must make a new GlobalVariable* and update everything that used OldGV
2395   // (a declaration or tentative definition) with the new GlobalVariable*
2396   // (which will be a definition).
2397   //
2398   // This happens if there is a prototype for a global (e.g.
2399   // "extern int x[];") and then a definition of a different type (e.g.
2400   // "int x[10];"). This also happens when an initializer has a different type
2401   // from the type of the global (this happens with unions).
2402   if (!GV ||
2403       GV->getType()->getElementType() != InitType ||
2404       GV->getType()->getAddressSpace() !=
2405        GetGlobalVarAddressSpace(D, getContext().getTargetAddressSpace(ASTTy))) {
2406 
2407     // Move the old entry aside so that we'll create a new one.
2408     Entry->setName(StringRef());
2409 
2410     // Make a new global with the correct type, this is now guaranteed to work.
2411     GV = cast<llvm::GlobalVariable>(
2412         GetAddrOfGlobalVar(D, InitType, /*IsForDefinition=*/!IsTentative));
2413 
2414     // Replace all uses of the old global with the new global
2415     llvm::Constant *NewPtrForOldDecl =
2416         llvm::ConstantExpr::getBitCast(GV, Entry->getType());
2417     Entry->replaceAllUsesWith(NewPtrForOldDecl);
2418 
2419     // Erase the old global, since it is no longer used.
2420     cast<llvm::GlobalValue>(Entry)->eraseFromParent();
2421   }
2422 
2423   MaybeHandleStaticInExternC(D, GV);
2424 
2425   if (D->hasAttr<AnnotateAttr>())
2426     AddGlobalAnnotations(D, GV);
2427 
2428   // CUDA B.2.1 "The __device__ qualifier declares a variable that resides on
2429   // the device. [...]"
2430   // CUDA B.2.2 "The __constant__ qualifier, optionally used together with
2431   // __device__, declares a variable that: [...]
2432   // Is accessible from all the threads within the grid and from the host
2433   // through the runtime library (cudaGetSymbolAddress() / cudaGetSymbolSize()
2434   // / cudaMemcpyToSymbol() / cudaMemcpyFromSymbol())."
2435   if (GV && LangOpts.CUDA && LangOpts.CUDAIsDevice &&
2436       (D->hasAttr<CUDAConstantAttr>() || D->hasAttr<CUDADeviceAttr>())) {
2437     GV->setExternallyInitialized(true);
2438   }
2439   GV->setInitializer(Init);
2440 
2441   // If it is safe to mark the global 'constant', do so now.
2442   GV->setConstant(!NeedsGlobalCtor && !NeedsGlobalDtor &&
2443                   isTypeConstant(D->getType(), true));
2444 
2445   // If it is in a read-only section, mark it 'constant'.
2446   if (const SectionAttr *SA = D->getAttr<SectionAttr>()) {
2447     const ASTContext::SectionInfo &SI = Context.SectionInfos[SA->getName()];
2448     if ((SI.SectionFlags & ASTContext::PSF_Write) == 0)
2449       GV->setConstant(true);
2450   }
2451 
2452   GV->setAlignment(getContext().getDeclAlign(D).getQuantity());
2453 
2454   // Set the llvm linkage type as appropriate.
2455   llvm::GlobalValue::LinkageTypes Linkage =
2456       getLLVMLinkageVarDefinition(D, GV->isConstant());
2457 
2458   // On Darwin, if the normal linkage of a C++ thread_local variable is
2459   // LinkOnce or Weak, we keep the normal linkage to prevent multiple
2460   // copies within a linkage unit; otherwise, the backing variable has
2461   // internal linkage and all accesses should just be calls to the
2462   // Itanium-specified entry point, which has the normal linkage of the
2463   // variable. This is to preserve the ability to change the implementation
2464   // behind the scenes.
2465   if (!D->isStaticLocal() && D->getTLSKind() == VarDecl::TLS_Dynamic &&
2466       Context.getTargetInfo().getTriple().isOSDarwin() &&
2467       !llvm::GlobalVariable::isLinkOnceLinkage(Linkage) &&
2468       !llvm::GlobalVariable::isWeakLinkage(Linkage))
2469     Linkage = llvm::GlobalValue::InternalLinkage;
2470 
2471   GV->setLinkage(Linkage);
2472   if (D->hasAttr<DLLImportAttr>())
2473     GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass);
2474   else if (D->hasAttr<DLLExportAttr>())
2475     GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass);
2476   else
2477     GV->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass);
2478 
2479   if (Linkage == llvm::GlobalVariable::CommonLinkage)
2480     // common vars aren't constant even if declared const.
2481     GV->setConstant(false);
2482 
2483   setNonAliasAttributes(D, GV);
2484 
2485   if (D->getTLSKind() && !GV->isThreadLocal()) {
2486     if (D->getTLSKind() == VarDecl::TLS_Dynamic)
2487       CXXThreadLocals.push_back(D);
2488     setTLSMode(GV, *D);
2489   }
2490 
2491   maybeSetTrivialComdat(*D, *GV);
2492 
2493   // Emit the initializer function if necessary.
2494   if (NeedsGlobalCtor || NeedsGlobalDtor)
2495     EmitCXXGlobalVarDeclInitFunc(D, GV, NeedsGlobalCtor);
2496 
2497   SanitizerMD->reportGlobalToASan(GV, *D, NeedsGlobalCtor);
2498 
2499   // Emit global variable debug information.
2500   if (CGDebugInfo *DI = getModuleDebugInfo())
2501     if (getCodeGenOpts().getDebugInfo() >= CodeGenOptions::LimitedDebugInfo)
2502       DI->EmitGlobalVariable(GV, D);
2503 }
2504 
2505 static bool isVarDeclStrongDefinition(const ASTContext &Context,
2506                                       CodeGenModule &CGM, const VarDecl *D,
2507                                       bool NoCommon) {
2508   // Don't give variables common linkage if -fno-common was specified unless it
2509   // was overridden by a NoCommon attribute.
2510   if ((NoCommon || D->hasAttr<NoCommonAttr>()) && !D->hasAttr<CommonAttr>())
2511     return true;
2512 
2513   // C11 6.9.2/2:
2514   //   A declaration of an identifier for an object that has file scope without
2515   //   an initializer, and without a storage-class specifier or with the
2516   //   storage-class specifier static, constitutes a tentative definition.
2517   if (D->getInit() || D->hasExternalStorage())
2518     return true;
2519 
2520   // A variable cannot be both common and exist in a section.
2521   if (D->hasAttr<SectionAttr>())
2522     return true;
2523 
2524   // Thread local vars aren't considered common linkage.
2525   if (D->getTLSKind())
2526     return true;
2527 
2528   // Tentative definitions marked with WeakImportAttr are true definitions.
2529   if (D->hasAttr<WeakImportAttr>())
2530     return true;
2531 
2532   // A variable cannot be both common and exist in a comdat.
2533   if (shouldBeInCOMDAT(CGM, *D))
2534     return true;
2535 
2536   // Declarations with a required alignment do not have common linakge in MSVC
2537   // mode.
2538   if (Context.getTargetInfo().getCXXABI().isMicrosoft()) {
2539     if (D->hasAttr<AlignedAttr>())
2540       return true;
2541     QualType VarType = D->getType();
2542     if (Context.isAlignmentRequired(VarType))
2543       return true;
2544 
2545     if (const auto *RT = VarType->getAs<RecordType>()) {
2546       const RecordDecl *RD = RT->getDecl();
2547       for (const FieldDecl *FD : RD->fields()) {
2548         if (FD->isBitField())
2549           continue;
2550         if (FD->hasAttr<AlignedAttr>())
2551           return true;
2552         if (Context.isAlignmentRequired(FD->getType()))
2553           return true;
2554       }
2555     }
2556   }
2557 
2558   return false;
2559 }
2560 
2561 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageForDeclarator(
2562     const DeclaratorDecl *D, GVALinkage Linkage, bool IsConstantVariable) {
2563   if (Linkage == GVA_Internal)
2564     return llvm::Function::InternalLinkage;
2565 
2566   if (D->hasAttr<WeakAttr>()) {
2567     if (IsConstantVariable)
2568       return llvm::GlobalVariable::WeakODRLinkage;
2569     else
2570       return llvm::GlobalVariable::WeakAnyLinkage;
2571   }
2572 
2573   // We are guaranteed to have a strong definition somewhere else,
2574   // so we can use available_externally linkage.
2575   if (Linkage == GVA_AvailableExternally)
2576     return llvm::Function::AvailableExternallyLinkage;
2577 
2578   // Note that Apple's kernel linker doesn't support symbol
2579   // coalescing, so we need to avoid linkonce and weak linkages there.
2580   // Normally, this means we just map to internal, but for explicit
2581   // instantiations we'll map to external.
2582 
2583   // In C++, the compiler has to emit a definition in every translation unit
2584   // that references the function.  We should use linkonce_odr because
2585   // a) if all references in this translation unit are optimized away, we
2586   // don't need to codegen it.  b) if the function persists, it needs to be
2587   // merged with other definitions. c) C++ has the ODR, so we know the
2588   // definition is dependable.
2589   if (Linkage == GVA_DiscardableODR)
2590     return !Context.getLangOpts().AppleKext ? llvm::Function::LinkOnceODRLinkage
2591                                             : llvm::Function::InternalLinkage;
2592 
2593   // An explicit instantiation of a template has weak linkage, since
2594   // explicit instantiations can occur in multiple translation units
2595   // and must all be equivalent. However, we are not allowed to
2596   // throw away these explicit instantiations.
2597   if (Linkage == GVA_StrongODR)
2598     return !Context.getLangOpts().AppleKext ? llvm::Function::WeakODRLinkage
2599                                             : llvm::Function::ExternalLinkage;
2600 
2601   // C++ doesn't have tentative definitions and thus cannot have common
2602   // linkage.
2603   if (!getLangOpts().CPlusPlus && isa<VarDecl>(D) &&
2604       !isVarDeclStrongDefinition(Context, *this, cast<VarDecl>(D),
2605                                  CodeGenOpts.NoCommon))
2606     return llvm::GlobalVariable::CommonLinkage;
2607 
2608   // selectany symbols are externally visible, so use weak instead of
2609   // linkonce.  MSVC optimizes away references to const selectany globals, so
2610   // all definitions should be the same and ODR linkage should be used.
2611   // http://msdn.microsoft.com/en-us/library/5tkz6s71.aspx
2612   if (D->hasAttr<SelectAnyAttr>())
2613     return llvm::GlobalVariable::WeakODRLinkage;
2614 
2615   // Otherwise, we have strong external linkage.
2616   assert(Linkage == GVA_StrongExternal);
2617   return llvm::GlobalVariable::ExternalLinkage;
2618 }
2619 
2620 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageVarDefinition(
2621     const VarDecl *VD, bool IsConstant) {
2622   GVALinkage Linkage = getContext().GetGVALinkageForVariable(VD);
2623   return getLLVMLinkageForDeclarator(VD, Linkage, IsConstant);
2624 }
2625 
2626 /// Replace the uses of a function that was declared with a non-proto type.
2627 /// We want to silently drop extra arguments from call sites
2628 static void replaceUsesOfNonProtoConstant(llvm::Constant *old,
2629                                           llvm::Function *newFn) {
2630   // Fast path.
2631   if (old->use_empty()) return;
2632 
2633   llvm::Type *newRetTy = newFn->getReturnType();
2634   SmallVector<llvm::Value*, 4> newArgs;
2635   SmallVector<llvm::OperandBundleDef, 1> newBundles;
2636 
2637   for (llvm::Value::use_iterator ui = old->use_begin(), ue = old->use_end();
2638          ui != ue; ) {
2639     llvm::Value::use_iterator use = ui++; // Increment before the use is erased.
2640     llvm::User *user = use->getUser();
2641 
2642     // Recognize and replace uses of bitcasts.  Most calls to
2643     // unprototyped functions will use bitcasts.
2644     if (auto *bitcast = dyn_cast<llvm::ConstantExpr>(user)) {
2645       if (bitcast->getOpcode() == llvm::Instruction::BitCast)
2646         replaceUsesOfNonProtoConstant(bitcast, newFn);
2647       continue;
2648     }
2649 
2650     // Recognize calls to the function.
2651     llvm::CallSite callSite(user);
2652     if (!callSite) continue;
2653     if (!callSite.isCallee(&*use)) continue;
2654 
2655     // If the return types don't match exactly, then we can't
2656     // transform this call unless it's dead.
2657     if (callSite->getType() != newRetTy && !callSite->use_empty())
2658       continue;
2659 
2660     // Get the call site's attribute list.
2661     SmallVector<llvm::AttributeSet, 8> newAttrs;
2662     llvm::AttributeSet oldAttrs = callSite.getAttributes();
2663 
2664     // Collect any return attributes from the call.
2665     if (oldAttrs.hasAttributes(llvm::AttributeSet::ReturnIndex))
2666       newAttrs.push_back(
2667         llvm::AttributeSet::get(newFn->getContext(),
2668                                 oldAttrs.getRetAttributes()));
2669 
2670     // If the function was passed too few arguments, don't transform.
2671     unsigned newNumArgs = newFn->arg_size();
2672     if (callSite.arg_size() < newNumArgs) continue;
2673 
2674     // If extra arguments were passed, we silently drop them.
2675     // If any of the types mismatch, we don't transform.
2676     unsigned argNo = 0;
2677     bool dontTransform = false;
2678     for (llvm::Function::arg_iterator ai = newFn->arg_begin(),
2679            ae = newFn->arg_end(); ai != ae; ++ai, ++argNo) {
2680       if (callSite.getArgument(argNo)->getType() != ai->getType()) {
2681         dontTransform = true;
2682         break;
2683       }
2684 
2685       // Add any parameter attributes.
2686       if (oldAttrs.hasAttributes(argNo + 1))
2687         newAttrs.
2688           push_back(llvm::
2689                     AttributeSet::get(newFn->getContext(),
2690                                       oldAttrs.getParamAttributes(argNo + 1)));
2691     }
2692     if (dontTransform)
2693       continue;
2694 
2695     if (oldAttrs.hasAttributes(llvm::AttributeSet::FunctionIndex))
2696       newAttrs.push_back(llvm::AttributeSet::get(newFn->getContext(),
2697                                                  oldAttrs.getFnAttributes()));
2698 
2699     // Okay, we can transform this.  Create the new call instruction and copy
2700     // over the required information.
2701     newArgs.append(callSite.arg_begin(), callSite.arg_begin() + argNo);
2702 
2703     // Copy over any operand bundles.
2704     callSite.getOperandBundlesAsDefs(newBundles);
2705 
2706     llvm::CallSite newCall;
2707     if (callSite.isCall()) {
2708       newCall = llvm::CallInst::Create(newFn, newArgs, newBundles, "",
2709                                        callSite.getInstruction());
2710     } else {
2711       auto *oldInvoke = cast<llvm::InvokeInst>(callSite.getInstruction());
2712       newCall = llvm::InvokeInst::Create(newFn,
2713                                          oldInvoke->getNormalDest(),
2714                                          oldInvoke->getUnwindDest(),
2715                                          newArgs, newBundles, "",
2716                                          callSite.getInstruction());
2717     }
2718     newArgs.clear(); // for the next iteration
2719 
2720     if (!newCall->getType()->isVoidTy())
2721       newCall->takeName(callSite.getInstruction());
2722     newCall.setAttributes(
2723                      llvm::AttributeSet::get(newFn->getContext(), newAttrs));
2724     newCall.setCallingConv(callSite.getCallingConv());
2725 
2726     // Finally, remove the old call, replacing any uses with the new one.
2727     if (!callSite->use_empty())
2728       callSite->replaceAllUsesWith(newCall.getInstruction());
2729 
2730     // Copy debug location attached to CI.
2731     if (callSite->getDebugLoc())
2732       newCall->setDebugLoc(callSite->getDebugLoc());
2733 
2734     callSite->eraseFromParent();
2735   }
2736 }
2737 
2738 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we
2739 /// implement a function with no prototype, e.g. "int foo() {}".  If there are
2740 /// existing call uses of the old function in the module, this adjusts them to
2741 /// call the new function directly.
2742 ///
2743 /// This is not just a cleanup: the always_inline pass requires direct calls to
2744 /// functions to be able to inline them.  If there is a bitcast in the way, it
2745 /// won't inline them.  Instcombine normally deletes these calls, but it isn't
2746 /// run at -O0.
2747 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
2748                                                       llvm::Function *NewFn) {
2749   // If we're redefining a global as a function, don't transform it.
2750   if (!isa<llvm::Function>(Old)) return;
2751 
2752   replaceUsesOfNonProtoConstant(Old, NewFn);
2753 }
2754 
2755 void CodeGenModule::HandleCXXStaticMemberVarInstantiation(VarDecl *VD) {
2756   TemplateSpecializationKind TSK = VD->getTemplateSpecializationKind();
2757   // If we have a definition, this might be a deferred decl. If the
2758   // instantiation is explicit, make sure we emit it at the end.
2759   if (VD->getDefinition() && TSK == TSK_ExplicitInstantiationDefinition)
2760     GetAddrOfGlobalVar(VD);
2761 
2762   EmitTopLevelDecl(VD);
2763 }
2764 
2765 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD,
2766                                                  llvm::GlobalValue *GV) {
2767   const auto *D = cast<FunctionDecl>(GD.getDecl());
2768 
2769   // Compute the function info and LLVM type.
2770   const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
2771   llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
2772 
2773   // Get or create the prototype for the function.
2774   if (!GV || (GV->getType()->getElementType() != Ty))
2775     GV = cast<llvm::GlobalValue>(GetAddrOfFunction(GD, Ty, /*ForVTable=*/false,
2776                                                    /*DontDefer=*/true,
2777                                                    /*IsForDefinition=*/true));
2778 
2779   // Already emitted.
2780   if (!GV->isDeclaration())
2781     return;
2782 
2783   // We need to set linkage and visibility on the function before
2784   // generating code for it because various parts of IR generation
2785   // want to propagate this information down (e.g. to local static
2786   // declarations).
2787   auto *Fn = cast<llvm::Function>(GV);
2788   setFunctionLinkage(GD, Fn);
2789   setFunctionDLLStorageClass(GD, Fn);
2790 
2791   // FIXME: this is redundant with part of setFunctionDefinitionAttributes
2792   setGlobalVisibility(Fn, D);
2793 
2794   MaybeHandleStaticInExternC(D, Fn);
2795 
2796   maybeSetTrivialComdat(*D, *Fn);
2797 
2798   CodeGenFunction(*this).GenerateCode(D, Fn, FI);
2799 
2800   setFunctionDefinitionAttributes(D, Fn);
2801   SetLLVMFunctionAttributesForDefinition(D, Fn);
2802 
2803   if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>())
2804     AddGlobalCtor(Fn, CA->getPriority());
2805   if (const DestructorAttr *DA = D->getAttr<DestructorAttr>())
2806     AddGlobalDtor(Fn, DA->getPriority());
2807   if (D->hasAttr<AnnotateAttr>())
2808     AddGlobalAnnotations(D, Fn);
2809 }
2810 
2811 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) {
2812   const auto *D = cast<ValueDecl>(GD.getDecl());
2813   const AliasAttr *AA = D->getAttr<AliasAttr>();
2814   assert(AA && "Not an alias?");
2815 
2816   StringRef MangledName = getMangledName(GD);
2817 
2818   if (AA->getAliasee() == MangledName) {
2819     Diags.Report(AA->getLocation(), diag::err_cyclic_alias);
2820     return;
2821   }
2822 
2823   // If there is a definition in the module, then it wins over the alias.
2824   // This is dubious, but allow it to be safe.  Just ignore the alias.
2825   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
2826   if (Entry && !Entry->isDeclaration())
2827     return;
2828 
2829   Aliases.push_back(GD);
2830 
2831   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
2832 
2833   // Create a reference to the named value.  This ensures that it is emitted
2834   // if a deferred decl.
2835   llvm::Constant *Aliasee;
2836   if (isa<llvm::FunctionType>(DeclTy))
2837     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GD,
2838                                       /*ForVTable=*/false);
2839   else
2840     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
2841                                     llvm::PointerType::getUnqual(DeclTy),
2842                                     /*D=*/nullptr);
2843 
2844   // Create the new alias itself, but don't set a name yet.
2845   auto *GA = llvm::GlobalAlias::create(
2846       DeclTy, 0, llvm::Function::ExternalLinkage, "", Aliasee, &getModule());
2847 
2848   if (Entry) {
2849     if (GA->getAliasee() == Entry) {
2850       Diags.Report(AA->getLocation(), diag::err_cyclic_alias);
2851       return;
2852     }
2853 
2854     assert(Entry->isDeclaration());
2855 
2856     // If there is a declaration in the module, then we had an extern followed
2857     // by the alias, as in:
2858     //   extern int test6();
2859     //   ...
2860     //   int test6() __attribute__((alias("test7")));
2861     //
2862     // Remove it and replace uses of it with the alias.
2863     GA->takeName(Entry);
2864 
2865     Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA,
2866                                                           Entry->getType()));
2867     Entry->eraseFromParent();
2868   } else {
2869     GA->setName(MangledName);
2870   }
2871 
2872   // Set attributes which are particular to an alias; this is a
2873   // specialization of the attributes which may be set on a global
2874   // variable/function.
2875   if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakRefAttr>() ||
2876       D->isWeakImported()) {
2877     GA->setLinkage(llvm::Function::WeakAnyLinkage);
2878   }
2879 
2880   if (const auto *VD = dyn_cast<VarDecl>(D))
2881     if (VD->getTLSKind())
2882       setTLSMode(GA, *VD);
2883 
2884   setAliasAttributes(D, GA);
2885 }
2886 
2887 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,
2888                                             ArrayRef<llvm::Type*> Tys) {
2889   return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID,
2890                                          Tys);
2891 }
2892 
2893 static llvm::StringMapEntry<llvm::GlobalVariable *> &
2894 GetConstantCFStringEntry(llvm::StringMap<llvm::GlobalVariable *> &Map,
2895                          const StringLiteral *Literal, bool TargetIsLSB,
2896                          bool &IsUTF16, unsigned &StringLength) {
2897   StringRef String = Literal->getString();
2898   unsigned NumBytes = String.size();
2899 
2900   // Check for simple case.
2901   if (!Literal->containsNonAsciiOrNull()) {
2902     StringLength = NumBytes;
2903     return *Map.insert(std::make_pair(String, nullptr)).first;
2904   }
2905 
2906   // Otherwise, convert the UTF8 literals into a string of shorts.
2907   IsUTF16 = true;
2908 
2909   SmallVector<UTF16, 128> ToBuf(NumBytes + 1); // +1 for ending nulls.
2910   const UTF8 *FromPtr = (const UTF8 *)String.data();
2911   UTF16 *ToPtr = &ToBuf[0];
2912 
2913   (void)ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes,
2914                            &ToPtr, ToPtr + NumBytes,
2915                            strictConversion);
2916 
2917   // ConvertUTF8toUTF16 returns the length in ToPtr.
2918   StringLength = ToPtr - &ToBuf[0];
2919 
2920   // Add an explicit null.
2921   *ToPtr = 0;
2922   return *Map.insert(std::make_pair(
2923                          StringRef(reinterpret_cast<const char *>(ToBuf.data()),
2924                                    (StringLength + 1) * 2),
2925                          nullptr)).first;
2926 }
2927 
2928 static llvm::StringMapEntry<llvm::GlobalVariable *> &
2929 GetConstantStringEntry(llvm::StringMap<llvm::GlobalVariable *> &Map,
2930                        const StringLiteral *Literal, unsigned &StringLength) {
2931   StringRef String = Literal->getString();
2932   StringLength = String.size();
2933   return *Map.insert(std::make_pair(String, nullptr)).first;
2934 }
2935 
2936 ConstantAddress
2937 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) {
2938   unsigned StringLength = 0;
2939   bool isUTF16 = false;
2940   llvm::StringMapEntry<llvm::GlobalVariable *> &Entry =
2941       GetConstantCFStringEntry(CFConstantStringMap, Literal,
2942                                getDataLayout().isLittleEndian(), isUTF16,
2943                                StringLength);
2944 
2945   if (auto *C = Entry.second)
2946     return ConstantAddress(C, CharUnits::fromQuantity(C->getAlignment()));
2947 
2948   llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty);
2949   llvm::Constant *Zeros[] = { Zero, Zero };
2950   llvm::Value *V;
2951 
2952   // If we don't already have it, get __CFConstantStringClassReference.
2953   if (!CFConstantStringClassRef) {
2954     llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
2955     Ty = llvm::ArrayType::get(Ty, 0);
2956     llvm::Constant *GV = CreateRuntimeVariable(Ty,
2957                                            "__CFConstantStringClassReference");
2958     // Decay array -> ptr
2959     V = llvm::ConstantExpr::getGetElementPtr(Ty, GV, Zeros);
2960     CFConstantStringClassRef = V;
2961   }
2962   else
2963     V = CFConstantStringClassRef;
2964 
2965   QualType CFTy = getContext().getCFConstantStringType();
2966 
2967   auto *STy = cast<llvm::StructType>(getTypes().ConvertType(CFTy));
2968 
2969   llvm::Constant *Fields[4];
2970 
2971   // Class pointer.
2972   Fields[0] = cast<llvm::ConstantExpr>(V);
2973 
2974   // Flags.
2975   llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy);
2976   Fields[1] = isUTF16 ? llvm::ConstantInt::get(Ty, 0x07d0) :
2977     llvm::ConstantInt::get(Ty, 0x07C8);
2978 
2979   // String pointer.
2980   llvm::Constant *C = nullptr;
2981   if (isUTF16) {
2982     auto Arr = llvm::makeArrayRef(
2983         reinterpret_cast<uint16_t *>(const_cast<char *>(Entry.first().data())),
2984         Entry.first().size() / 2);
2985     C = llvm::ConstantDataArray::get(VMContext, Arr);
2986   } else {
2987     C = llvm::ConstantDataArray::getString(VMContext, Entry.first());
2988   }
2989 
2990   // Note: -fwritable-strings doesn't make the backing store strings of
2991   // CFStrings writable. (See <rdar://problem/10657500>)
2992   auto *GV =
2993       new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true,
2994                                llvm::GlobalValue::PrivateLinkage, C, ".str");
2995   GV->setUnnamedAddr(true);
2996   // Don't enforce the target's minimum global alignment, since the only use
2997   // of the string is via this class initializer.
2998   // FIXME: We set the section explicitly to avoid a bug in ld64 224.1. Without
2999   // it LLVM can merge the string with a non unnamed_addr one during LTO. Doing
3000   // that changes the section it ends in, which surprises ld64.
3001   if (isUTF16) {
3002     CharUnits Align = getContext().getTypeAlignInChars(getContext().ShortTy);
3003     GV->setAlignment(Align.getQuantity());
3004     GV->setSection("__TEXT,__ustring");
3005   } else {
3006     CharUnits Align = getContext().getTypeAlignInChars(getContext().CharTy);
3007     GV->setAlignment(Align.getQuantity());
3008     GV->setSection("__TEXT,__cstring,cstring_literals");
3009   }
3010 
3011   // String.
3012   Fields[2] =
3013       llvm::ConstantExpr::getGetElementPtr(GV->getValueType(), GV, Zeros);
3014 
3015   if (isUTF16)
3016     // Cast the UTF16 string to the correct type.
3017     Fields[2] = llvm::ConstantExpr::getBitCast(Fields[2], Int8PtrTy);
3018 
3019   // String length.
3020   Ty = getTypes().ConvertType(getContext().LongTy);
3021   Fields[3] = llvm::ConstantInt::get(Ty, StringLength);
3022 
3023   CharUnits Alignment = getPointerAlign();
3024 
3025   // The struct.
3026   C = llvm::ConstantStruct::get(STy, Fields);
3027   GV = new llvm::GlobalVariable(getModule(), C->getType(), true,
3028                                 llvm::GlobalVariable::PrivateLinkage, C,
3029                                 "_unnamed_cfstring_");
3030   GV->setSection("__DATA,__cfstring");
3031   GV->setAlignment(Alignment.getQuantity());
3032   Entry.second = GV;
3033 
3034   return ConstantAddress(GV, Alignment);
3035 }
3036 
3037 ConstantAddress
3038 CodeGenModule::GetAddrOfConstantString(const StringLiteral *Literal) {
3039   unsigned StringLength = 0;
3040   llvm::StringMapEntry<llvm::GlobalVariable *> &Entry =
3041       GetConstantStringEntry(CFConstantStringMap, Literal, StringLength);
3042 
3043   if (auto *C = Entry.second)
3044     return ConstantAddress(C, CharUnits::fromQuantity(C->getAlignment()));
3045 
3046   llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty);
3047   llvm::Constant *Zeros[] = { Zero, Zero };
3048   llvm::Value *V;
3049   // If we don't already have it, get _NSConstantStringClassReference.
3050   if (!ConstantStringClassRef) {
3051     std::string StringClass(getLangOpts().ObjCConstantStringClass);
3052     llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
3053     llvm::Constant *GV;
3054     if (LangOpts.ObjCRuntime.isNonFragile()) {
3055       std::string str =
3056         StringClass.empty() ? "OBJC_CLASS_$_NSConstantString"
3057                             : "OBJC_CLASS_$_" + StringClass;
3058       GV = getObjCRuntime().GetClassGlobal(str);
3059       // Make sure the result is of the correct type.
3060       llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
3061       V = llvm::ConstantExpr::getBitCast(GV, PTy);
3062       ConstantStringClassRef = V;
3063     } else {
3064       std::string str =
3065         StringClass.empty() ? "_NSConstantStringClassReference"
3066                             : "_" + StringClass + "ClassReference";
3067       llvm::Type *PTy = llvm::ArrayType::get(Ty, 0);
3068       GV = CreateRuntimeVariable(PTy, str);
3069       // Decay array -> ptr
3070       V = llvm::ConstantExpr::getGetElementPtr(PTy, GV, Zeros);
3071       ConstantStringClassRef = V;
3072     }
3073   } else
3074     V = ConstantStringClassRef;
3075 
3076   if (!NSConstantStringType) {
3077     // Construct the type for a constant NSString.
3078     RecordDecl *D = Context.buildImplicitRecord("__builtin_NSString");
3079     D->startDefinition();
3080 
3081     QualType FieldTypes[3];
3082 
3083     // const int *isa;
3084     FieldTypes[0] = Context.getPointerType(Context.IntTy.withConst());
3085     // const char *str;
3086     FieldTypes[1] = Context.getPointerType(Context.CharTy.withConst());
3087     // unsigned int length;
3088     FieldTypes[2] = Context.UnsignedIntTy;
3089 
3090     // Create fields
3091     for (unsigned i = 0; i < 3; ++i) {
3092       FieldDecl *Field = FieldDecl::Create(Context, D,
3093                                            SourceLocation(),
3094                                            SourceLocation(), nullptr,
3095                                            FieldTypes[i], /*TInfo=*/nullptr,
3096                                            /*BitWidth=*/nullptr,
3097                                            /*Mutable=*/false,
3098                                            ICIS_NoInit);
3099       Field->setAccess(AS_public);
3100       D->addDecl(Field);
3101     }
3102 
3103     D->completeDefinition();
3104     QualType NSTy = Context.getTagDeclType(D);
3105     NSConstantStringType = cast<llvm::StructType>(getTypes().ConvertType(NSTy));
3106   }
3107 
3108   llvm::Constant *Fields[3];
3109 
3110   // Class pointer.
3111   Fields[0] = cast<llvm::ConstantExpr>(V);
3112 
3113   // String pointer.
3114   llvm::Constant *C =
3115       llvm::ConstantDataArray::getString(VMContext, Entry.first());
3116 
3117   llvm::GlobalValue::LinkageTypes Linkage;
3118   bool isConstant;
3119   Linkage = llvm::GlobalValue::PrivateLinkage;
3120   isConstant = !LangOpts.WritableStrings;
3121 
3122   auto *GV = new llvm::GlobalVariable(getModule(), C->getType(), isConstant,
3123                                       Linkage, C, ".str");
3124   GV->setUnnamedAddr(true);
3125   // Don't enforce the target's minimum global alignment, since the only use
3126   // of the string is via this class initializer.
3127   CharUnits Align = getContext().getTypeAlignInChars(getContext().CharTy);
3128   GV->setAlignment(Align.getQuantity());
3129   Fields[1] =
3130       llvm::ConstantExpr::getGetElementPtr(GV->getValueType(), GV, Zeros);
3131 
3132   // String length.
3133   llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy);
3134   Fields[2] = llvm::ConstantInt::get(Ty, StringLength);
3135 
3136   // The struct.
3137   CharUnits Alignment = getPointerAlign();
3138   C = llvm::ConstantStruct::get(NSConstantStringType, Fields);
3139   GV = new llvm::GlobalVariable(getModule(), C->getType(), true,
3140                                 llvm::GlobalVariable::PrivateLinkage, C,
3141                                 "_unnamed_nsstring_");
3142   GV->setAlignment(Alignment.getQuantity());
3143   const char *NSStringSection = "__OBJC,__cstring_object,regular,no_dead_strip";
3144   const char *NSStringNonFragileABISection =
3145       "__DATA,__objc_stringobj,regular,no_dead_strip";
3146   // FIXME. Fix section.
3147   GV->setSection(LangOpts.ObjCRuntime.isNonFragile()
3148                      ? NSStringNonFragileABISection
3149                      : NSStringSection);
3150   Entry.second = GV;
3151 
3152   return ConstantAddress(GV, Alignment);
3153 }
3154 
3155 QualType CodeGenModule::getObjCFastEnumerationStateType() {
3156   if (ObjCFastEnumerationStateType.isNull()) {
3157     RecordDecl *D = Context.buildImplicitRecord("__objcFastEnumerationState");
3158     D->startDefinition();
3159 
3160     QualType FieldTypes[] = {
3161       Context.UnsignedLongTy,
3162       Context.getPointerType(Context.getObjCIdType()),
3163       Context.getPointerType(Context.UnsignedLongTy),
3164       Context.getConstantArrayType(Context.UnsignedLongTy,
3165                            llvm::APInt(32, 5), ArrayType::Normal, 0)
3166     };
3167 
3168     for (size_t i = 0; i < 4; ++i) {
3169       FieldDecl *Field = FieldDecl::Create(Context,
3170                                            D,
3171                                            SourceLocation(),
3172                                            SourceLocation(), nullptr,
3173                                            FieldTypes[i], /*TInfo=*/nullptr,
3174                                            /*BitWidth=*/nullptr,
3175                                            /*Mutable=*/false,
3176                                            ICIS_NoInit);
3177       Field->setAccess(AS_public);
3178       D->addDecl(Field);
3179     }
3180 
3181     D->completeDefinition();
3182     ObjCFastEnumerationStateType = Context.getTagDeclType(D);
3183   }
3184 
3185   return ObjCFastEnumerationStateType;
3186 }
3187 
3188 llvm::Constant *
3189 CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) {
3190   assert(!E->getType()->isPointerType() && "Strings are always arrays");
3191 
3192   // Don't emit it as the address of the string, emit the string data itself
3193   // as an inline array.
3194   if (E->getCharByteWidth() == 1) {
3195     SmallString<64> Str(E->getString());
3196 
3197     // Resize the string to the right size, which is indicated by its type.
3198     const ConstantArrayType *CAT = Context.getAsConstantArrayType(E->getType());
3199     Str.resize(CAT->getSize().getZExtValue());
3200     return llvm::ConstantDataArray::getString(VMContext, Str, false);
3201   }
3202 
3203   auto *AType = cast<llvm::ArrayType>(getTypes().ConvertType(E->getType()));
3204   llvm::Type *ElemTy = AType->getElementType();
3205   unsigned NumElements = AType->getNumElements();
3206 
3207   // Wide strings have either 2-byte or 4-byte elements.
3208   if (ElemTy->getPrimitiveSizeInBits() == 16) {
3209     SmallVector<uint16_t, 32> Elements;
3210     Elements.reserve(NumElements);
3211 
3212     for(unsigned i = 0, e = E->getLength(); i != e; ++i)
3213       Elements.push_back(E->getCodeUnit(i));
3214     Elements.resize(NumElements);
3215     return llvm::ConstantDataArray::get(VMContext, Elements);
3216   }
3217 
3218   assert(ElemTy->getPrimitiveSizeInBits() == 32);
3219   SmallVector<uint32_t, 32> Elements;
3220   Elements.reserve(NumElements);
3221 
3222   for(unsigned i = 0, e = E->getLength(); i != e; ++i)
3223     Elements.push_back(E->getCodeUnit(i));
3224   Elements.resize(NumElements);
3225   return llvm::ConstantDataArray::get(VMContext, Elements);
3226 }
3227 
3228 static llvm::GlobalVariable *
3229 GenerateStringLiteral(llvm::Constant *C, llvm::GlobalValue::LinkageTypes LT,
3230                       CodeGenModule &CGM, StringRef GlobalName,
3231                       CharUnits Alignment) {
3232   // OpenCL v1.2 s6.5.3: a string literal is in the constant address space.
3233   unsigned AddrSpace = 0;
3234   if (CGM.getLangOpts().OpenCL)
3235     AddrSpace = CGM.getContext().getTargetAddressSpace(LangAS::opencl_constant);
3236 
3237   llvm::Module &M = CGM.getModule();
3238   // Create a global variable for this string
3239   auto *GV = new llvm::GlobalVariable(
3240       M, C->getType(), !CGM.getLangOpts().WritableStrings, LT, C, GlobalName,
3241       nullptr, llvm::GlobalVariable::NotThreadLocal, AddrSpace);
3242   GV->setAlignment(Alignment.getQuantity());
3243   GV->setUnnamedAddr(true);
3244   if (GV->isWeakForLinker()) {
3245     assert(CGM.supportsCOMDAT() && "Only COFF uses weak string literals");
3246     GV->setComdat(M.getOrInsertComdat(GV->getName()));
3247   }
3248 
3249   return GV;
3250 }
3251 
3252 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a
3253 /// constant array for the given string literal.
3254 ConstantAddress
3255 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S,
3256                                                   StringRef Name) {
3257   CharUnits Alignment = getContext().getAlignOfGlobalVarInChars(S->getType());
3258 
3259   llvm::Constant *C = GetConstantArrayFromStringLiteral(S);
3260   llvm::GlobalVariable **Entry = nullptr;
3261   if (!LangOpts.WritableStrings) {
3262     Entry = &ConstantStringMap[C];
3263     if (auto GV = *Entry) {
3264       if (Alignment.getQuantity() > GV->getAlignment())
3265         GV->setAlignment(Alignment.getQuantity());
3266       return ConstantAddress(GV, Alignment);
3267     }
3268   }
3269 
3270   SmallString<256> MangledNameBuffer;
3271   StringRef GlobalVariableName;
3272   llvm::GlobalValue::LinkageTypes LT;
3273 
3274   // Mangle the string literal if the ABI allows for it.  However, we cannot
3275   // do this if  we are compiling with ASan or -fwritable-strings because they
3276   // rely on strings having normal linkage.
3277   if (!LangOpts.WritableStrings &&
3278       !LangOpts.Sanitize.has(SanitizerKind::Address) &&
3279       getCXXABI().getMangleContext().shouldMangleStringLiteral(S)) {
3280     llvm::raw_svector_ostream Out(MangledNameBuffer);
3281     getCXXABI().getMangleContext().mangleStringLiteral(S, Out);
3282 
3283     LT = llvm::GlobalValue::LinkOnceODRLinkage;
3284     GlobalVariableName = MangledNameBuffer;
3285   } else {
3286     LT = llvm::GlobalValue::PrivateLinkage;
3287     GlobalVariableName = Name;
3288   }
3289 
3290   auto GV = GenerateStringLiteral(C, LT, *this, GlobalVariableName, Alignment);
3291   if (Entry)
3292     *Entry = GV;
3293 
3294   SanitizerMD->reportGlobalToASan(GV, S->getStrTokenLoc(0), "<string literal>",
3295                                   QualType());
3296   return ConstantAddress(GV, Alignment);
3297 }
3298 
3299 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant
3300 /// array for the given ObjCEncodeExpr node.
3301 ConstantAddress
3302 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) {
3303   std::string Str;
3304   getContext().getObjCEncodingForType(E->getEncodedType(), Str);
3305 
3306   return GetAddrOfConstantCString(Str);
3307 }
3308 
3309 /// GetAddrOfConstantCString - Returns a pointer to a character array containing
3310 /// the literal and a terminating '\0' character.
3311 /// The result has pointer to array type.
3312 ConstantAddress CodeGenModule::GetAddrOfConstantCString(
3313     const std::string &Str, const char *GlobalName) {
3314   StringRef StrWithNull(Str.c_str(), Str.size() + 1);
3315   CharUnits Alignment =
3316     getContext().getAlignOfGlobalVarInChars(getContext().CharTy);
3317 
3318   llvm::Constant *C =
3319       llvm::ConstantDataArray::getString(getLLVMContext(), StrWithNull, false);
3320 
3321   // Don't share any string literals if strings aren't constant.
3322   llvm::GlobalVariable **Entry = nullptr;
3323   if (!LangOpts.WritableStrings) {
3324     Entry = &ConstantStringMap[C];
3325     if (auto GV = *Entry) {
3326       if (Alignment.getQuantity() > GV->getAlignment())
3327         GV->setAlignment(Alignment.getQuantity());
3328       return ConstantAddress(GV, Alignment);
3329     }
3330   }
3331 
3332   // Get the default prefix if a name wasn't specified.
3333   if (!GlobalName)
3334     GlobalName = ".str";
3335   // Create a global variable for this.
3336   auto GV = GenerateStringLiteral(C, llvm::GlobalValue::PrivateLinkage, *this,
3337                                   GlobalName, Alignment);
3338   if (Entry)
3339     *Entry = GV;
3340   return ConstantAddress(GV, Alignment);
3341 }
3342 
3343 ConstantAddress CodeGenModule::GetAddrOfGlobalTemporary(
3344     const MaterializeTemporaryExpr *E, const Expr *Init) {
3345   assert((E->getStorageDuration() == SD_Static ||
3346           E->getStorageDuration() == SD_Thread) && "not a global temporary");
3347   const auto *VD = cast<VarDecl>(E->getExtendingDecl());
3348 
3349   // If we're not materializing a subobject of the temporary, keep the
3350   // cv-qualifiers from the type of the MaterializeTemporaryExpr.
3351   QualType MaterializedType = Init->getType();
3352   if (Init == E->GetTemporaryExpr())
3353     MaterializedType = E->getType();
3354 
3355   CharUnits Align = getContext().getTypeAlignInChars(MaterializedType);
3356 
3357   if (llvm::Constant *Slot = MaterializedGlobalTemporaryMap[E])
3358     return ConstantAddress(Slot, Align);
3359 
3360   // FIXME: If an externally-visible declaration extends multiple temporaries,
3361   // we need to give each temporary the same name in every translation unit (and
3362   // we also need to make the temporaries externally-visible).
3363   SmallString<256> Name;
3364   llvm::raw_svector_ostream Out(Name);
3365   getCXXABI().getMangleContext().mangleReferenceTemporary(
3366       VD, E->getManglingNumber(), Out);
3367 
3368   APValue *Value = nullptr;
3369   if (E->getStorageDuration() == SD_Static) {
3370     // We might have a cached constant initializer for this temporary. Note
3371     // that this might have a different value from the value computed by
3372     // evaluating the initializer if the surrounding constant expression
3373     // modifies the temporary.
3374     Value = getContext().getMaterializedTemporaryValue(E, false);
3375     if (Value && Value->isUninit())
3376       Value = nullptr;
3377   }
3378 
3379   // Try evaluating it now, it might have a constant initializer.
3380   Expr::EvalResult EvalResult;
3381   if (!Value && Init->EvaluateAsRValue(EvalResult, getContext()) &&
3382       !EvalResult.hasSideEffects())
3383     Value = &EvalResult.Val;
3384 
3385   llvm::Constant *InitialValue = nullptr;
3386   bool Constant = false;
3387   llvm::Type *Type;
3388   if (Value) {
3389     // The temporary has a constant initializer, use it.
3390     InitialValue = EmitConstantValue(*Value, MaterializedType, nullptr);
3391     Constant = isTypeConstant(MaterializedType, /*ExcludeCtor*/Value);
3392     Type = InitialValue->getType();
3393   } else {
3394     // No initializer, the initialization will be provided when we
3395     // initialize the declaration which performed lifetime extension.
3396     Type = getTypes().ConvertTypeForMem(MaterializedType);
3397   }
3398 
3399   // Create a global variable for this lifetime-extended temporary.
3400   llvm::GlobalValue::LinkageTypes Linkage =
3401       getLLVMLinkageVarDefinition(VD, Constant);
3402   if (Linkage == llvm::GlobalVariable::ExternalLinkage) {
3403     const VarDecl *InitVD;
3404     if (VD->isStaticDataMember() && VD->getAnyInitializer(InitVD) &&
3405         isa<CXXRecordDecl>(InitVD->getLexicalDeclContext())) {
3406       // Temporaries defined inside a class get linkonce_odr linkage because the
3407       // class can be defined in multipe translation units.
3408       Linkage = llvm::GlobalVariable::LinkOnceODRLinkage;
3409     } else {
3410       // There is no need for this temporary to have external linkage if the
3411       // VarDecl has external linkage.
3412       Linkage = llvm::GlobalVariable::InternalLinkage;
3413     }
3414   }
3415   unsigned AddrSpace = GetGlobalVarAddressSpace(
3416       VD, getContext().getTargetAddressSpace(MaterializedType));
3417   auto *GV = new llvm::GlobalVariable(
3418       getModule(), Type, Constant, Linkage, InitialValue, Name.c_str(),
3419       /*InsertBefore=*/nullptr, llvm::GlobalVariable::NotThreadLocal,
3420       AddrSpace);
3421   setGlobalVisibility(GV, VD);
3422   GV->setAlignment(Align.getQuantity());
3423   if (supportsCOMDAT() && GV->isWeakForLinker())
3424     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
3425   if (VD->getTLSKind())
3426     setTLSMode(GV, *VD);
3427   MaterializedGlobalTemporaryMap[E] = GV;
3428   return ConstantAddress(GV, Align);
3429 }
3430 
3431 /// EmitObjCPropertyImplementations - Emit information for synthesized
3432 /// properties for an implementation.
3433 void CodeGenModule::EmitObjCPropertyImplementations(const
3434                                                     ObjCImplementationDecl *D) {
3435   for (const auto *PID : D->property_impls()) {
3436     // Dynamic is just for type-checking.
3437     if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) {
3438       ObjCPropertyDecl *PD = PID->getPropertyDecl();
3439 
3440       // Determine which methods need to be implemented, some may have
3441       // been overridden. Note that ::isPropertyAccessor is not the method
3442       // we want, that just indicates if the decl came from a
3443       // property. What we want to know is if the method is defined in
3444       // this implementation.
3445       if (!D->getInstanceMethod(PD->getGetterName()))
3446         CodeGenFunction(*this).GenerateObjCGetter(
3447                                  const_cast<ObjCImplementationDecl *>(D), PID);
3448       if (!PD->isReadOnly() &&
3449           !D->getInstanceMethod(PD->getSetterName()))
3450         CodeGenFunction(*this).GenerateObjCSetter(
3451                                  const_cast<ObjCImplementationDecl *>(D), PID);
3452     }
3453   }
3454 }
3455 
3456 static bool needsDestructMethod(ObjCImplementationDecl *impl) {
3457   const ObjCInterfaceDecl *iface = impl->getClassInterface();
3458   for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin();
3459        ivar; ivar = ivar->getNextIvar())
3460     if (ivar->getType().isDestructedType())
3461       return true;
3462 
3463   return false;
3464 }
3465 
3466 static bool AllTrivialInitializers(CodeGenModule &CGM,
3467                                    ObjCImplementationDecl *D) {
3468   CodeGenFunction CGF(CGM);
3469   for (ObjCImplementationDecl::init_iterator B = D->init_begin(),
3470        E = D->init_end(); B != E; ++B) {
3471     CXXCtorInitializer *CtorInitExp = *B;
3472     Expr *Init = CtorInitExp->getInit();
3473     if (!CGF.isTrivialInitializer(Init))
3474       return false;
3475   }
3476   return true;
3477 }
3478 
3479 /// EmitObjCIvarInitializations - Emit information for ivar initialization
3480 /// for an implementation.
3481 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) {
3482   // We might need a .cxx_destruct even if we don't have any ivar initializers.
3483   if (needsDestructMethod(D)) {
3484     IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct");
3485     Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
3486     ObjCMethodDecl *DTORMethod =
3487       ObjCMethodDecl::Create(getContext(), D->getLocation(), D->getLocation(),
3488                              cxxSelector, getContext().VoidTy, nullptr, D,
3489                              /*isInstance=*/true, /*isVariadic=*/false,
3490                           /*isPropertyAccessor=*/true, /*isImplicitlyDeclared=*/true,
3491                              /*isDefined=*/false, ObjCMethodDecl::Required);
3492     D->addInstanceMethod(DTORMethod);
3493     CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false);
3494     D->setHasDestructors(true);
3495   }
3496 
3497   // If the implementation doesn't have any ivar initializers, we don't need
3498   // a .cxx_construct.
3499   if (D->getNumIvarInitializers() == 0 ||
3500       AllTrivialInitializers(*this, D))
3501     return;
3502 
3503   IdentifierInfo *II = &getContext().Idents.get(".cxx_construct");
3504   Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
3505   // The constructor returns 'self'.
3506   ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(getContext(),
3507                                                 D->getLocation(),
3508                                                 D->getLocation(),
3509                                                 cxxSelector,
3510                                                 getContext().getObjCIdType(),
3511                                                 nullptr, D, /*isInstance=*/true,
3512                                                 /*isVariadic=*/false,
3513                                                 /*isPropertyAccessor=*/true,
3514                                                 /*isImplicitlyDeclared=*/true,
3515                                                 /*isDefined=*/false,
3516                                                 ObjCMethodDecl::Required);
3517   D->addInstanceMethod(CTORMethod);
3518   CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true);
3519   D->setHasNonZeroConstructors(true);
3520 }
3521 
3522 /// EmitNamespace - Emit all declarations in a namespace.
3523 void CodeGenModule::EmitNamespace(const NamespaceDecl *ND) {
3524   for (auto *I : ND->decls()) {
3525     if (const auto *VD = dyn_cast<VarDecl>(I))
3526       if (VD->getTemplateSpecializationKind() != TSK_ExplicitSpecialization &&
3527           VD->getTemplateSpecializationKind() != TSK_Undeclared)
3528         continue;
3529     EmitTopLevelDecl(I);
3530   }
3531 }
3532 
3533 // EmitLinkageSpec - Emit all declarations in a linkage spec.
3534 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) {
3535   if (LSD->getLanguage() != LinkageSpecDecl::lang_c &&
3536       LSD->getLanguage() != LinkageSpecDecl::lang_cxx) {
3537     ErrorUnsupported(LSD, "linkage spec");
3538     return;
3539   }
3540 
3541   for (auto *I : LSD->decls()) {
3542     // Meta-data for ObjC class includes references to implemented methods.
3543     // Generate class's method definitions first.
3544     if (auto *OID = dyn_cast<ObjCImplDecl>(I)) {
3545       for (auto *M : OID->methods())
3546         EmitTopLevelDecl(M);
3547     }
3548     EmitTopLevelDecl(I);
3549   }
3550 }
3551 
3552 /// EmitTopLevelDecl - Emit code for a single top level declaration.
3553 void CodeGenModule::EmitTopLevelDecl(Decl *D) {
3554   // Ignore dependent declarations.
3555   if (D->getDeclContext() && D->getDeclContext()->isDependentContext())
3556     return;
3557 
3558   switch (D->getKind()) {
3559   case Decl::CXXConversion:
3560   case Decl::CXXMethod:
3561   case Decl::Function:
3562     // Skip function templates
3563     if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() ||
3564         cast<FunctionDecl>(D)->isLateTemplateParsed())
3565       return;
3566 
3567     EmitGlobal(cast<FunctionDecl>(D));
3568     // Always provide some coverage mapping
3569     // even for the functions that aren't emitted.
3570     AddDeferredUnusedCoverageMapping(D);
3571     break;
3572 
3573   case Decl::Var:
3574     // Skip variable templates
3575     if (cast<VarDecl>(D)->getDescribedVarTemplate())
3576       return;
3577   case Decl::VarTemplateSpecialization:
3578     EmitGlobal(cast<VarDecl>(D));
3579     break;
3580 
3581   // Indirect fields from global anonymous structs and unions can be
3582   // ignored; only the actual variable requires IR gen support.
3583   case Decl::IndirectField:
3584     break;
3585 
3586   // C++ Decls
3587   case Decl::Namespace:
3588     EmitNamespace(cast<NamespaceDecl>(D));
3589     break;
3590     // No code generation needed.
3591   case Decl::UsingShadow:
3592   case Decl::ClassTemplate:
3593   case Decl::VarTemplate:
3594   case Decl::VarTemplatePartialSpecialization:
3595   case Decl::FunctionTemplate:
3596   case Decl::TypeAliasTemplate:
3597   case Decl::Block:
3598   case Decl::Empty:
3599     break;
3600   case Decl::Using:          // using X; [C++]
3601     if (CGDebugInfo *DI = getModuleDebugInfo())
3602         DI->EmitUsingDecl(cast<UsingDecl>(*D));
3603     return;
3604   case Decl::NamespaceAlias:
3605     if (CGDebugInfo *DI = getModuleDebugInfo())
3606         DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(*D));
3607     return;
3608   case Decl::UsingDirective: // using namespace X; [C++]
3609     if (CGDebugInfo *DI = getModuleDebugInfo())
3610       DI->EmitUsingDirective(cast<UsingDirectiveDecl>(*D));
3611     return;
3612   case Decl::CXXConstructor:
3613     // Skip function templates
3614     if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() ||
3615         cast<FunctionDecl>(D)->isLateTemplateParsed())
3616       return;
3617 
3618     getCXXABI().EmitCXXConstructors(cast<CXXConstructorDecl>(D));
3619     break;
3620   case Decl::CXXDestructor:
3621     if (cast<FunctionDecl>(D)->isLateTemplateParsed())
3622       return;
3623     getCXXABI().EmitCXXDestructors(cast<CXXDestructorDecl>(D));
3624     break;
3625 
3626   case Decl::StaticAssert:
3627     // Nothing to do.
3628     break;
3629 
3630   // Objective-C Decls
3631 
3632   // Forward declarations, no (immediate) code generation.
3633   case Decl::ObjCInterface:
3634   case Decl::ObjCCategory:
3635     break;
3636 
3637   case Decl::ObjCProtocol: {
3638     auto *Proto = cast<ObjCProtocolDecl>(D);
3639     if (Proto->isThisDeclarationADefinition())
3640       ObjCRuntime->GenerateProtocol(Proto);
3641     break;
3642   }
3643 
3644   case Decl::ObjCCategoryImpl:
3645     // Categories have properties but don't support synthesize so we
3646     // can ignore them here.
3647     ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D));
3648     break;
3649 
3650   case Decl::ObjCImplementation: {
3651     auto *OMD = cast<ObjCImplementationDecl>(D);
3652     EmitObjCPropertyImplementations(OMD);
3653     EmitObjCIvarInitializations(OMD);
3654     ObjCRuntime->GenerateClass(OMD);
3655     // Emit global variable debug information.
3656     if (CGDebugInfo *DI = getModuleDebugInfo())
3657       if (getCodeGenOpts().getDebugInfo() >= CodeGenOptions::LimitedDebugInfo)
3658         DI->getOrCreateInterfaceType(getContext().getObjCInterfaceType(
3659             OMD->getClassInterface()), OMD->getLocation());
3660     break;
3661   }
3662   case Decl::ObjCMethod: {
3663     auto *OMD = cast<ObjCMethodDecl>(D);
3664     // If this is not a prototype, emit the body.
3665     if (OMD->getBody())
3666       CodeGenFunction(*this).GenerateObjCMethod(OMD);
3667     break;
3668   }
3669   case Decl::ObjCCompatibleAlias:
3670     ObjCRuntime->RegisterAlias(cast<ObjCCompatibleAliasDecl>(D));
3671     break;
3672 
3673   case Decl::LinkageSpec:
3674     EmitLinkageSpec(cast<LinkageSpecDecl>(D));
3675     break;
3676 
3677   case Decl::FileScopeAsm: {
3678     // File-scope asm is ignored during device-side CUDA compilation.
3679     if (LangOpts.CUDA && LangOpts.CUDAIsDevice)
3680       break;
3681     // File-scope asm is ignored during device-side OpenMP compilation.
3682     if (LangOpts.OpenMPIsDevice)
3683       break;
3684     auto *AD = cast<FileScopeAsmDecl>(D);
3685     getModule().appendModuleInlineAsm(AD->getAsmString()->getString());
3686     break;
3687   }
3688 
3689   case Decl::Import: {
3690     auto *Import = cast<ImportDecl>(D);
3691 
3692     // Ignore import declarations that come from imported modules.
3693     if (Import->getImportedOwningModule())
3694       break;
3695     if (CGDebugInfo *DI = getModuleDebugInfo())
3696       DI->EmitImportDecl(*Import);
3697 
3698     ImportedModules.insert(Import->getImportedModule());
3699     break;
3700   }
3701 
3702   case Decl::OMPThreadPrivate:
3703     EmitOMPThreadPrivateDecl(cast<OMPThreadPrivateDecl>(D));
3704     break;
3705 
3706   case Decl::ClassTemplateSpecialization: {
3707     const auto *Spec = cast<ClassTemplateSpecializationDecl>(D);
3708     if (DebugInfo &&
3709         Spec->getSpecializationKind() == TSK_ExplicitInstantiationDefinition &&
3710         Spec->hasDefinition())
3711       DebugInfo->completeTemplateDefinition(*Spec);
3712     break;
3713   }
3714 
3715   default:
3716     // Make sure we handled everything we should, every other kind is a
3717     // non-top-level decl.  FIXME: Would be nice to have an isTopLevelDeclKind
3718     // function. Need to recode Decl::Kind to do that easily.
3719     assert(isa<TypeDecl>(D) && "Unsupported decl kind");
3720     break;
3721   }
3722 }
3723 
3724 void CodeGenModule::AddDeferredUnusedCoverageMapping(Decl *D) {
3725   // Do we need to generate coverage mapping?
3726   if (!CodeGenOpts.CoverageMapping)
3727     return;
3728   switch (D->getKind()) {
3729   case Decl::CXXConversion:
3730   case Decl::CXXMethod:
3731   case Decl::Function:
3732   case Decl::ObjCMethod:
3733   case Decl::CXXConstructor:
3734   case Decl::CXXDestructor: {
3735     if (!cast<FunctionDecl>(D)->doesThisDeclarationHaveABody())
3736       return;
3737     auto I = DeferredEmptyCoverageMappingDecls.find(D);
3738     if (I == DeferredEmptyCoverageMappingDecls.end())
3739       DeferredEmptyCoverageMappingDecls[D] = true;
3740     break;
3741   }
3742   default:
3743     break;
3744   };
3745 }
3746 
3747 void CodeGenModule::ClearUnusedCoverageMapping(const Decl *D) {
3748   // Do we need to generate coverage mapping?
3749   if (!CodeGenOpts.CoverageMapping)
3750     return;
3751   if (const auto *Fn = dyn_cast<FunctionDecl>(D)) {
3752     if (Fn->isTemplateInstantiation())
3753       ClearUnusedCoverageMapping(Fn->getTemplateInstantiationPattern());
3754   }
3755   auto I = DeferredEmptyCoverageMappingDecls.find(D);
3756   if (I == DeferredEmptyCoverageMappingDecls.end())
3757     DeferredEmptyCoverageMappingDecls[D] = false;
3758   else
3759     I->second = false;
3760 }
3761 
3762 void CodeGenModule::EmitDeferredUnusedCoverageMappings() {
3763   std::vector<const Decl *> DeferredDecls;
3764   for (const auto &I : DeferredEmptyCoverageMappingDecls) {
3765     if (!I.second)
3766       continue;
3767     DeferredDecls.push_back(I.first);
3768   }
3769   // Sort the declarations by their location to make sure that the tests get a
3770   // predictable order for the coverage mapping for the unused declarations.
3771   if (CodeGenOpts.DumpCoverageMapping)
3772     std::sort(DeferredDecls.begin(), DeferredDecls.end(),
3773               [] (const Decl *LHS, const Decl *RHS) {
3774       return LHS->getLocStart() < RHS->getLocStart();
3775     });
3776   for (const auto *D : DeferredDecls) {
3777     switch (D->getKind()) {
3778     case Decl::CXXConversion:
3779     case Decl::CXXMethod:
3780     case Decl::Function:
3781     case Decl::ObjCMethod: {
3782       CodeGenPGO PGO(*this);
3783       GlobalDecl GD(cast<FunctionDecl>(D));
3784       PGO.emitEmptyCounterMapping(D, getMangledName(GD),
3785                                   getFunctionLinkage(GD));
3786       break;
3787     }
3788     case Decl::CXXConstructor: {
3789       CodeGenPGO PGO(*this);
3790       GlobalDecl GD(cast<CXXConstructorDecl>(D), Ctor_Base);
3791       PGO.emitEmptyCounterMapping(D, getMangledName(GD),
3792                                   getFunctionLinkage(GD));
3793       break;
3794     }
3795     case Decl::CXXDestructor: {
3796       CodeGenPGO PGO(*this);
3797       GlobalDecl GD(cast<CXXDestructorDecl>(D), Dtor_Base);
3798       PGO.emitEmptyCounterMapping(D, getMangledName(GD),
3799                                   getFunctionLinkage(GD));
3800       break;
3801     }
3802     default:
3803       break;
3804     };
3805   }
3806 }
3807 
3808 /// Turns the given pointer into a constant.
3809 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context,
3810                                           const void *Ptr) {
3811   uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr);
3812   llvm::Type *i64 = llvm::Type::getInt64Ty(Context);
3813   return llvm::ConstantInt::get(i64, PtrInt);
3814 }
3815 
3816 static void EmitGlobalDeclMetadata(CodeGenModule &CGM,
3817                                    llvm::NamedMDNode *&GlobalMetadata,
3818                                    GlobalDecl D,
3819                                    llvm::GlobalValue *Addr) {
3820   if (!GlobalMetadata)
3821     GlobalMetadata =
3822       CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs");
3823 
3824   // TODO: should we report variant information for ctors/dtors?
3825   llvm::Metadata *Ops[] = {llvm::ConstantAsMetadata::get(Addr),
3826                            llvm::ConstantAsMetadata::get(GetPointerConstant(
3827                                CGM.getLLVMContext(), D.getDecl()))};
3828   GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops));
3829 }
3830 
3831 /// For each function which is declared within an extern "C" region and marked
3832 /// as 'used', but has internal linkage, create an alias from the unmangled
3833 /// name to the mangled name if possible. People expect to be able to refer
3834 /// to such functions with an unmangled name from inline assembly within the
3835 /// same translation unit.
3836 void CodeGenModule::EmitStaticExternCAliases() {
3837   for (auto &I : StaticExternCValues) {
3838     IdentifierInfo *Name = I.first;
3839     llvm::GlobalValue *Val = I.second;
3840     if (Val && !getModule().getNamedValue(Name->getName()))
3841       addUsedGlobal(llvm::GlobalAlias::create(Name->getName(), Val));
3842   }
3843 }
3844 
3845 bool CodeGenModule::lookupRepresentativeDecl(StringRef MangledName,
3846                                              GlobalDecl &Result) const {
3847   auto Res = Manglings.find(MangledName);
3848   if (Res == Manglings.end())
3849     return false;
3850   Result = Res->getValue();
3851   return true;
3852 }
3853 
3854 /// Emits metadata nodes associating all the global values in the
3855 /// current module with the Decls they came from.  This is useful for
3856 /// projects using IR gen as a subroutine.
3857 ///
3858 /// Since there's currently no way to associate an MDNode directly
3859 /// with an llvm::GlobalValue, we create a global named metadata
3860 /// with the name 'clang.global.decl.ptrs'.
3861 void CodeGenModule::EmitDeclMetadata() {
3862   llvm::NamedMDNode *GlobalMetadata = nullptr;
3863 
3864   for (auto &I : MangledDeclNames) {
3865     llvm::GlobalValue *Addr = getModule().getNamedValue(I.second);
3866     // Some mangled names don't necessarily have an associated GlobalValue
3867     // in this module, e.g. if we mangled it for DebugInfo.
3868     if (Addr)
3869       EmitGlobalDeclMetadata(*this, GlobalMetadata, I.first, Addr);
3870   }
3871 }
3872 
3873 /// Emits metadata nodes for all the local variables in the current
3874 /// function.
3875 void CodeGenFunction::EmitDeclMetadata() {
3876   if (LocalDeclMap.empty()) return;
3877 
3878   llvm::LLVMContext &Context = getLLVMContext();
3879 
3880   // Find the unique metadata ID for this name.
3881   unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr");
3882 
3883   llvm::NamedMDNode *GlobalMetadata = nullptr;
3884 
3885   for (auto &I : LocalDeclMap) {
3886     const Decl *D = I.first;
3887     llvm::Value *Addr = I.second.getPointer();
3888     if (auto *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) {
3889       llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D);
3890       Alloca->setMetadata(
3891           DeclPtrKind, llvm::MDNode::get(
3892                            Context, llvm::ValueAsMetadata::getConstant(DAddr)));
3893     } else if (auto *GV = dyn_cast<llvm::GlobalValue>(Addr)) {
3894       GlobalDecl GD = GlobalDecl(cast<VarDecl>(D));
3895       EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV);
3896     }
3897   }
3898 }
3899 
3900 void CodeGenModule::EmitVersionIdentMetadata() {
3901   llvm::NamedMDNode *IdentMetadata =
3902     TheModule.getOrInsertNamedMetadata("llvm.ident");
3903   std::string Version = getClangFullVersion();
3904   llvm::LLVMContext &Ctx = TheModule.getContext();
3905 
3906   llvm::Metadata *IdentNode[] = {llvm::MDString::get(Ctx, Version)};
3907   IdentMetadata->addOperand(llvm::MDNode::get(Ctx, IdentNode));
3908 }
3909 
3910 void CodeGenModule::EmitTargetMetadata() {
3911   // Warning, new MangledDeclNames may be appended within this loop.
3912   // We rely on MapVector insertions adding new elements to the end
3913   // of the container.
3914   // FIXME: Move this loop into the one target that needs it, and only
3915   // loop over those declarations for which we couldn't emit the target
3916   // metadata when we emitted the declaration.
3917   for (unsigned I = 0; I != MangledDeclNames.size(); ++I) {
3918     auto Val = *(MangledDeclNames.begin() + I);
3919     const Decl *D = Val.first.getDecl()->getMostRecentDecl();
3920     llvm::GlobalValue *GV = GetGlobalValue(Val.second);
3921     getTargetCodeGenInfo().emitTargetMD(D, GV, *this);
3922   }
3923 }
3924 
3925 void CodeGenModule::EmitCoverageFile() {
3926   if (!getCodeGenOpts().CoverageFile.empty()) {
3927     if (llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu")) {
3928       llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov");
3929       llvm::LLVMContext &Ctx = TheModule.getContext();
3930       llvm::MDString *CoverageFile =
3931           llvm::MDString::get(Ctx, getCodeGenOpts().CoverageFile);
3932       for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) {
3933         llvm::MDNode *CU = CUNode->getOperand(i);
3934         llvm::Metadata *Elts[] = {CoverageFile, CU};
3935         GCov->addOperand(llvm::MDNode::get(Ctx, Elts));
3936       }
3937     }
3938   }
3939 }
3940 
3941 llvm::Constant *CodeGenModule::EmitUuidofInitializer(StringRef Uuid) {
3942   // Sema has checked that all uuid strings are of the form
3943   // "12345678-1234-1234-1234-1234567890ab".
3944   assert(Uuid.size() == 36);
3945   for (unsigned i = 0; i < 36; ++i) {
3946     if (i == 8 || i == 13 || i == 18 || i == 23) assert(Uuid[i] == '-');
3947     else                                         assert(isHexDigit(Uuid[i]));
3948   }
3949 
3950   // The starts of all bytes of Field3 in Uuid. Field 3 is "1234-1234567890ab".
3951   const unsigned Field3ValueOffsets[8] = { 19, 21, 24, 26, 28, 30, 32, 34 };
3952 
3953   llvm::Constant *Field3[8];
3954   for (unsigned Idx = 0; Idx < 8; ++Idx)
3955     Field3[Idx] = llvm::ConstantInt::get(
3956         Int8Ty, Uuid.substr(Field3ValueOffsets[Idx], 2), 16);
3957 
3958   llvm::Constant *Fields[4] = {
3959     llvm::ConstantInt::get(Int32Ty, Uuid.substr(0,  8), 16),
3960     llvm::ConstantInt::get(Int16Ty, Uuid.substr(9,  4), 16),
3961     llvm::ConstantInt::get(Int16Ty, Uuid.substr(14, 4), 16),
3962     llvm::ConstantArray::get(llvm::ArrayType::get(Int8Ty, 8), Field3)
3963   };
3964 
3965   return llvm::ConstantStruct::getAnon(Fields);
3966 }
3967 
3968 llvm::Constant *CodeGenModule::GetAddrOfRTTIDescriptor(QualType Ty,
3969                                                        bool ForEH) {
3970   // Return a bogus pointer if RTTI is disabled, unless it's for EH.
3971   // FIXME: should we even be calling this method if RTTI is disabled
3972   // and it's not for EH?
3973   if (!ForEH && !getLangOpts().RTTI)
3974     return llvm::Constant::getNullValue(Int8PtrTy);
3975 
3976   if (ForEH && Ty->isObjCObjectPointerType() &&
3977       LangOpts.ObjCRuntime.isGNUFamily())
3978     return ObjCRuntime->GetEHType(Ty);
3979 
3980   return getCXXABI().getAddrOfRTTIDescriptor(Ty);
3981 }
3982 
3983 void CodeGenModule::EmitOMPThreadPrivateDecl(const OMPThreadPrivateDecl *D) {
3984   for (auto RefExpr : D->varlists()) {
3985     auto *VD = cast<VarDecl>(cast<DeclRefExpr>(RefExpr)->getDecl());
3986     bool PerformInit =
3987         VD->getAnyInitializer() &&
3988         !VD->getAnyInitializer()->isConstantInitializer(getContext(),
3989                                                         /*ForRef=*/false);
3990 
3991     Address Addr(GetAddrOfGlobalVar(VD), getContext().getDeclAlign(VD));
3992     if (auto InitFunction = getOpenMPRuntime().emitThreadPrivateVarDefinition(
3993             VD, Addr, RefExpr->getLocStart(), PerformInit))
3994       CXXGlobalInits.push_back(InitFunction);
3995   }
3996 }
3997 
3998 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierForType(QualType T) {
3999   llvm::Metadata *&InternalId = MetadataIdMap[T.getCanonicalType()];
4000   if (InternalId)
4001     return InternalId;
4002 
4003   if (isExternallyVisible(T->getLinkage())) {
4004     std::string OutName;
4005     llvm::raw_string_ostream Out(OutName);
4006     getCXXABI().getMangleContext().mangleTypeName(T, Out);
4007 
4008     InternalId = llvm::MDString::get(getLLVMContext(), Out.str());
4009   } else {
4010     InternalId = llvm::MDNode::getDistinct(getLLVMContext(),
4011                                            llvm::ArrayRef<llvm::Metadata *>());
4012   }
4013 
4014   return InternalId;
4015 }
4016 
4017 void CodeGenModule::CreateVTableBitSetEntry(llvm::NamedMDNode *BitsetsMD,
4018                                             llvm::GlobalVariable *VTable,
4019                                             CharUnits Offset,
4020                                             const CXXRecordDecl *RD) {
4021   llvm::Metadata *MD =
4022       CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0));
4023   llvm::Metadata *BitsetOps[] = {
4024       MD, llvm::ConstantAsMetadata::get(VTable),
4025       llvm::ConstantAsMetadata::get(
4026           llvm::ConstantInt::get(Int64Ty, Offset.getQuantity()))};
4027   BitsetsMD->addOperand(llvm::MDTuple::get(getLLVMContext(), BitsetOps));
4028 
4029   if (CodeGenOpts.SanitizeCfiCrossDso) {
4030     if (auto TypeId = CreateCfiIdForTypeMetadata(MD)) {
4031       llvm::Metadata *BitsetOps2[] = {
4032           llvm::ConstantAsMetadata::get(TypeId),
4033           llvm::ConstantAsMetadata::get(VTable),
4034           llvm::ConstantAsMetadata::get(
4035               llvm::ConstantInt::get(Int64Ty, Offset.getQuantity()))};
4036       BitsetsMD->addOperand(llvm::MDTuple::get(getLLVMContext(), BitsetOps2));
4037     }
4038   }
4039 }
4040 
4041 // Fills in the supplied string map with the set of target features for the
4042 // passed in function.
4043 void CodeGenModule::getFunctionFeatureMap(llvm::StringMap<bool> &FeatureMap,
4044                                           const FunctionDecl *FD) {
4045   StringRef TargetCPU = Target.getTargetOpts().CPU;
4046   if (const auto *TD = FD->getAttr<TargetAttr>()) {
4047     // If we have a TargetAttr build up the feature map based on that.
4048     TargetAttr::ParsedTargetAttr ParsedAttr = TD->parse();
4049 
4050     // Make a copy of the features as passed on the command line into the
4051     // beginning of the additional features from the function to override.
4052     ParsedAttr.first.insert(ParsedAttr.first.begin(),
4053                             Target.getTargetOpts().FeaturesAsWritten.begin(),
4054                             Target.getTargetOpts().FeaturesAsWritten.end());
4055 
4056     if (ParsedAttr.second != "")
4057       TargetCPU = ParsedAttr.second;
4058 
4059     // Now populate the feature map, first with the TargetCPU which is either
4060     // the default or a new one from the target attribute string. Then we'll use
4061     // the passed in features (FeaturesAsWritten) along with the new ones from
4062     // the attribute.
4063     Target.initFeatureMap(FeatureMap, getDiags(), TargetCPU, ParsedAttr.first);
4064   } else {
4065     Target.initFeatureMap(FeatureMap, getDiags(), TargetCPU,
4066                           Target.getTargetOpts().Features);
4067   }
4068 }
4069