1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This coordinates the per-module state used while generating code. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "CodeGenModule.h" 14 #include "CGBlocks.h" 15 #include "CGCUDARuntime.h" 16 #include "CGCXXABI.h" 17 #include "CGCall.h" 18 #include "CGDebugInfo.h" 19 #include "CGObjCRuntime.h" 20 #include "CGOpenCLRuntime.h" 21 #include "CGOpenMPRuntime.h" 22 #include "CGOpenMPRuntimeAMDGCN.h" 23 #include "CGOpenMPRuntimeNVPTX.h" 24 #include "CodeGenFunction.h" 25 #include "CodeGenPGO.h" 26 #include "ConstantEmitter.h" 27 #include "CoverageMappingGen.h" 28 #include "TargetInfo.h" 29 #include "clang/AST/ASTContext.h" 30 #include "clang/AST/CharUnits.h" 31 #include "clang/AST/DeclCXX.h" 32 #include "clang/AST/DeclObjC.h" 33 #include "clang/AST/DeclTemplate.h" 34 #include "clang/AST/Mangle.h" 35 #include "clang/AST/RecordLayout.h" 36 #include "clang/AST/RecursiveASTVisitor.h" 37 #include "clang/AST/StmtVisitor.h" 38 #include "clang/Basic/Builtins.h" 39 #include "clang/Basic/CharInfo.h" 40 #include "clang/Basic/CodeGenOptions.h" 41 #include "clang/Basic/Diagnostic.h" 42 #include "clang/Basic/FileManager.h" 43 #include "clang/Basic/Module.h" 44 #include "clang/Basic/SourceManager.h" 45 #include "clang/Basic/TargetInfo.h" 46 #include "clang/Basic/Version.h" 47 #include "clang/CodeGen/ConstantInitBuilder.h" 48 #include "clang/Frontend/FrontendDiagnostic.h" 49 #include "llvm/ADT/StringSwitch.h" 50 #include "llvm/ADT/Triple.h" 51 #include "llvm/Analysis/TargetLibraryInfo.h" 52 #include "llvm/Frontend/OpenMP/OMPIRBuilder.h" 53 #include "llvm/IR/CallingConv.h" 54 #include "llvm/IR/DataLayout.h" 55 #include "llvm/IR/Intrinsics.h" 56 #include "llvm/IR/LLVMContext.h" 57 #include "llvm/IR/Module.h" 58 #include "llvm/IR/ProfileSummary.h" 59 #include "llvm/ProfileData/InstrProfReader.h" 60 #include "llvm/Support/CodeGen.h" 61 #include "llvm/Support/CommandLine.h" 62 #include "llvm/Support/ConvertUTF.h" 63 #include "llvm/Support/ErrorHandling.h" 64 #include "llvm/Support/MD5.h" 65 #include "llvm/Support/TimeProfiler.h" 66 67 using namespace clang; 68 using namespace CodeGen; 69 70 static llvm::cl::opt<bool> LimitedCoverage( 71 "limited-coverage-experimental", llvm::cl::ZeroOrMore, llvm::cl::Hidden, 72 llvm::cl::desc("Emit limited coverage mapping information (experimental)"), 73 llvm::cl::init(false)); 74 75 static const char AnnotationSection[] = "llvm.metadata"; 76 77 static CGCXXABI *createCXXABI(CodeGenModule &CGM) { 78 switch (CGM.getTarget().getCXXABI().getKind()) { 79 case TargetCXXABI::AppleARM64: 80 case TargetCXXABI::Fuchsia: 81 case TargetCXXABI::GenericAArch64: 82 case TargetCXXABI::GenericARM: 83 case TargetCXXABI::iOS: 84 case TargetCXXABI::WatchOS: 85 case TargetCXXABI::GenericMIPS: 86 case TargetCXXABI::GenericItanium: 87 case TargetCXXABI::WebAssembly: 88 case TargetCXXABI::XL: 89 return CreateItaniumCXXABI(CGM); 90 case TargetCXXABI::Microsoft: 91 return CreateMicrosoftCXXABI(CGM); 92 } 93 94 llvm_unreachable("invalid C++ ABI kind"); 95 } 96 97 CodeGenModule::CodeGenModule(ASTContext &C, const HeaderSearchOptions &HSO, 98 const PreprocessorOptions &PPO, 99 const CodeGenOptions &CGO, llvm::Module &M, 100 DiagnosticsEngine &diags, 101 CoverageSourceInfo *CoverageInfo) 102 : Context(C), LangOpts(C.getLangOpts()), HeaderSearchOpts(HSO), 103 PreprocessorOpts(PPO), CodeGenOpts(CGO), TheModule(M), Diags(diags), 104 Target(C.getTargetInfo()), ABI(createCXXABI(*this)), 105 VMContext(M.getContext()), Types(*this), VTables(*this), 106 SanitizerMD(new SanitizerMetadata(*this)) { 107 108 // Initialize the type cache. 109 llvm::LLVMContext &LLVMContext = M.getContext(); 110 VoidTy = llvm::Type::getVoidTy(LLVMContext); 111 Int8Ty = llvm::Type::getInt8Ty(LLVMContext); 112 Int16Ty = llvm::Type::getInt16Ty(LLVMContext); 113 Int32Ty = llvm::Type::getInt32Ty(LLVMContext); 114 Int64Ty = llvm::Type::getInt64Ty(LLVMContext); 115 HalfTy = llvm::Type::getHalfTy(LLVMContext); 116 BFloatTy = llvm::Type::getBFloatTy(LLVMContext); 117 FloatTy = llvm::Type::getFloatTy(LLVMContext); 118 DoubleTy = llvm::Type::getDoubleTy(LLVMContext); 119 PointerWidthInBits = C.getTargetInfo().getPointerWidth(0); 120 PointerAlignInBytes = 121 C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(0)).getQuantity(); 122 SizeSizeInBytes = 123 C.toCharUnitsFromBits(C.getTargetInfo().getMaxPointerWidth()).getQuantity(); 124 IntAlignInBytes = 125 C.toCharUnitsFromBits(C.getTargetInfo().getIntAlign()).getQuantity(); 126 CharTy = 127 llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getCharWidth()); 128 IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth()); 129 IntPtrTy = llvm::IntegerType::get(LLVMContext, 130 C.getTargetInfo().getMaxPointerWidth()); 131 Int8PtrTy = Int8Ty->getPointerTo(0); 132 Int8PtrPtrTy = Int8PtrTy->getPointerTo(0); 133 AllocaInt8PtrTy = Int8Ty->getPointerTo( 134 M.getDataLayout().getAllocaAddrSpace()); 135 ASTAllocaAddressSpace = getTargetCodeGenInfo().getASTAllocaAddressSpace(); 136 137 RuntimeCC = getTargetCodeGenInfo().getABIInfo().getRuntimeCC(); 138 139 if (LangOpts.ObjC) 140 createObjCRuntime(); 141 if (LangOpts.OpenCL) 142 createOpenCLRuntime(); 143 if (LangOpts.OpenMP) 144 createOpenMPRuntime(); 145 if (LangOpts.CUDA) 146 createCUDARuntime(); 147 148 // Enable TBAA unless it's suppressed. ThreadSanitizer needs TBAA even at O0. 149 if (LangOpts.Sanitize.has(SanitizerKind::Thread) || 150 (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0)) 151 TBAA.reset(new CodeGenTBAA(Context, TheModule, CodeGenOpts, getLangOpts(), 152 getCXXABI().getMangleContext())); 153 154 // If debug info or coverage generation is enabled, create the CGDebugInfo 155 // object. 156 if (CodeGenOpts.getDebugInfo() != codegenoptions::NoDebugInfo || 157 CodeGenOpts.EmitGcovArcs || CodeGenOpts.EmitGcovNotes) 158 DebugInfo.reset(new CGDebugInfo(*this)); 159 160 Block.GlobalUniqueCount = 0; 161 162 if (C.getLangOpts().ObjC) 163 ObjCData.reset(new ObjCEntrypoints()); 164 165 if (CodeGenOpts.hasProfileClangUse()) { 166 auto ReaderOrErr = llvm::IndexedInstrProfReader::create( 167 CodeGenOpts.ProfileInstrumentUsePath, CodeGenOpts.ProfileRemappingFile); 168 if (auto E = ReaderOrErr.takeError()) { 169 unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error, 170 "Could not read profile %0: %1"); 171 llvm::handleAllErrors(std::move(E), [&](const llvm::ErrorInfoBase &EI) { 172 getDiags().Report(DiagID) << CodeGenOpts.ProfileInstrumentUsePath 173 << EI.message(); 174 }); 175 } else 176 PGOReader = std::move(ReaderOrErr.get()); 177 } 178 179 // If coverage mapping generation is enabled, create the 180 // CoverageMappingModuleGen object. 181 if (CodeGenOpts.CoverageMapping) 182 CoverageMapping.reset(new CoverageMappingModuleGen(*this, *CoverageInfo)); 183 } 184 185 CodeGenModule::~CodeGenModule() {} 186 187 void CodeGenModule::createObjCRuntime() { 188 // This is just isGNUFamily(), but we want to force implementors of 189 // new ABIs to decide how best to do this. 190 switch (LangOpts.ObjCRuntime.getKind()) { 191 case ObjCRuntime::GNUstep: 192 case ObjCRuntime::GCC: 193 case ObjCRuntime::ObjFW: 194 ObjCRuntime.reset(CreateGNUObjCRuntime(*this)); 195 return; 196 197 case ObjCRuntime::FragileMacOSX: 198 case ObjCRuntime::MacOSX: 199 case ObjCRuntime::iOS: 200 case ObjCRuntime::WatchOS: 201 ObjCRuntime.reset(CreateMacObjCRuntime(*this)); 202 return; 203 } 204 llvm_unreachable("bad runtime kind"); 205 } 206 207 void CodeGenModule::createOpenCLRuntime() { 208 OpenCLRuntime.reset(new CGOpenCLRuntime(*this)); 209 } 210 211 void CodeGenModule::createOpenMPRuntime() { 212 // Select a specialized code generation class based on the target, if any. 213 // If it does not exist use the default implementation. 214 switch (getTriple().getArch()) { 215 case llvm::Triple::nvptx: 216 case llvm::Triple::nvptx64: 217 assert(getLangOpts().OpenMPIsDevice && 218 "OpenMP NVPTX is only prepared to deal with device code."); 219 OpenMPRuntime.reset(new CGOpenMPRuntimeNVPTX(*this)); 220 break; 221 case llvm::Triple::amdgcn: 222 assert(getLangOpts().OpenMPIsDevice && 223 "OpenMP AMDGCN is only prepared to deal with device code."); 224 OpenMPRuntime.reset(new CGOpenMPRuntimeAMDGCN(*this)); 225 break; 226 default: 227 if (LangOpts.OpenMPSimd) 228 OpenMPRuntime.reset(new CGOpenMPSIMDRuntime(*this)); 229 else 230 OpenMPRuntime.reset(new CGOpenMPRuntime(*this)); 231 break; 232 } 233 } 234 235 void CodeGenModule::createCUDARuntime() { 236 CUDARuntime.reset(CreateNVCUDARuntime(*this)); 237 } 238 239 void CodeGenModule::addReplacement(StringRef Name, llvm::Constant *C) { 240 Replacements[Name] = C; 241 } 242 243 void CodeGenModule::applyReplacements() { 244 for (auto &I : Replacements) { 245 StringRef MangledName = I.first(); 246 llvm::Constant *Replacement = I.second; 247 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 248 if (!Entry) 249 continue; 250 auto *OldF = cast<llvm::Function>(Entry); 251 auto *NewF = dyn_cast<llvm::Function>(Replacement); 252 if (!NewF) { 253 if (auto *Alias = dyn_cast<llvm::GlobalAlias>(Replacement)) { 254 NewF = dyn_cast<llvm::Function>(Alias->getAliasee()); 255 } else { 256 auto *CE = cast<llvm::ConstantExpr>(Replacement); 257 assert(CE->getOpcode() == llvm::Instruction::BitCast || 258 CE->getOpcode() == llvm::Instruction::GetElementPtr); 259 NewF = dyn_cast<llvm::Function>(CE->getOperand(0)); 260 } 261 } 262 263 // Replace old with new, but keep the old order. 264 OldF->replaceAllUsesWith(Replacement); 265 if (NewF) { 266 NewF->removeFromParent(); 267 OldF->getParent()->getFunctionList().insertAfter(OldF->getIterator(), 268 NewF); 269 } 270 OldF->eraseFromParent(); 271 } 272 } 273 274 void CodeGenModule::addGlobalValReplacement(llvm::GlobalValue *GV, llvm::Constant *C) { 275 GlobalValReplacements.push_back(std::make_pair(GV, C)); 276 } 277 278 void CodeGenModule::applyGlobalValReplacements() { 279 for (auto &I : GlobalValReplacements) { 280 llvm::GlobalValue *GV = I.first; 281 llvm::Constant *C = I.second; 282 283 GV->replaceAllUsesWith(C); 284 GV->eraseFromParent(); 285 } 286 } 287 288 // This is only used in aliases that we created and we know they have a 289 // linear structure. 290 static const llvm::GlobalObject *getAliasedGlobal( 291 const llvm::GlobalIndirectSymbol &GIS) { 292 llvm::SmallPtrSet<const llvm::GlobalIndirectSymbol*, 4> Visited; 293 const llvm::Constant *C = &GIS; 294 for (;;) { 295 C = C->stripPointerCasts(); 296 if (auto *GO = dyn_cast<llvm::GlobalObject>(C)) 297 return GO; 298 // stripPointerCasts will not walk over weak aliases. 299 auto *GIS2 = dyn_cast<llvm::GlobalIndirectSymbol>(C); 300 if (!GIS2) 301 return nullptr; 302 if (!Visited.insert(GIS2).second) 303 return nullptr; 304 C = GIS2->getIndirectSymbol(); 305 } 306 } 307 308 void CodeGenModule::checkAliases() { 309 // Check if the constructed aliases are well formed. It is really unfortunate 310 // that we have to do this in CodeGen, but we only construct mangled names 311 // and aliases during codegen. 312 bool Error = false; 313 DiagnosticsEngine &Diags = getDiags(); 314 for (const GlobalDecl &GD : Aliases) { 315 const auto *D = cast<ValueDecl>(GD.getDecl()); 316 SourceLocation Location; 317 bool IsIFunc = D->hasAttr<IFuncAttr>(); 318 if (const Attr *A = D->getDefiningAttr()) 319 Location = A->getLocation(); 320 else 321 llvm_unreachable("Not an alias or ifunc?"); 322 StringRef MangledName = getMangledName(GD); 323 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 324 auto *Alias = cast<llvm::GlobalIndirectSymbol>(Entry); 325 const llvm::GlobalValue *GV = getAliasedGlobal(*Alias); 326 if (!GV) { 327 Error = true; 328 Diags.Report(Location, diag::err_cyclic_alias) << IsIFunc; 329 } else if (GV->isDeclaration()) { 330 Error = true; 331 Diags.Report(Location, diag::err_alias_to_undefined) 332 << IsIFunc << IsIFunc; 333 } else if (IsIFunc) { 334 // Check resolver function type. 335 llvm::FunctionType *FTy = dyn_cast<llvm::FunctionType>( 336 GV->getType()->getPointerElementType()); 337 assert(FTy); 338 if (!FTy->getReturnType()->isPointerTy()) 339 Diags.Report(Location, diag::err_ifunc_resolver_return); 340 } 341 342 llvm::Constant *Aliasee = Alias->getIndirectSymbol(); 343 llvm::GlobalValue *AliaseeGV; 344 if (auto CE = dyn_cast<llvm::ConstantExpr>(Aliasee)) 345 AliaseeGV = cast<llvm::GlobalValue>(CE->getOperand(0)); 346 else 347 AliaseeGV = cast<llvm::GlobalValue>(Aliasee); 348 349 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) { 350 StringRef AliasSection = SA->getName(); 351 if (AliasSection != AliaseeGV->getSection()) 352 Diags.Report(SA->getLocation(), diag::warn_alias_with_section) 353 << AliasSection << IsIFunc << IsIFunc; 354 } 355 356 // We have to handle alias to weak aliases in here. LLVM itself disallows 357 // this since the object semantics would not match the IL one. For 358 // compatibility with gcc we implement it by just pointing the alias 359 // to its aliasee's aliasee. We also warn, since the user is probably 360 // expecting the link to be weak. 361 if (auto GA = dyn_cast<llvm::GlobalIndirectSymbol>(AliaseeGV)) { 362 if (GA->isInterposable()) { 363 Diags.Report(Location, diag::warn_alias_to_weak_alias) 364 << GV->getName() << GA->getName() << IsIFunc; 365 Aliasee = llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast( 366 GA->getIndirectSymbol(), Alias->getType()); 367 Alias->setIndirectSymbol(Aliasee); 368 } 369 } 370 } 371 if (!Error) 372 return; 373 374 for (const GlobalDecl &GD : Aliases) { 375 StringRef MangledName = getMangledName(GD); 376 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 377 auto *Alias = cast<llvm::GlobalIndirectSymbol>(Entry); 378 Alias->replaceAllUsesWith(llvm::UndefValue::get(Alias->getType())); 379 Alias->eraseFromParent(); 380 } 381 } 382 383 void CodeGenModule::clear() { 384 DeferredDeclsToEmit.clear(); 385 if (OpenMPRuntime) 386 OpenMPRuntime->clear(); 387 } 388 389 void InstrProfStats::reportDiagnostics(DiagnosticsEngine &Diags, 390 StringRef MainFile) { 391 if (!hasDiagnostics()) 392 return; 393 if (VisitedInMainFile > 0 && VisitedInMainFile == MissingInMainFile) { 394 if (MainFile.empty()) 395 MainFile = "<stdin>"; 396 Diags.Report(diag::warn_profile_data_unprofiled) << MainFile; 397 } else { 398 if (Mismatched > 0) 399 Diags.Report(diag::warn_profile_data_out_of_date) << Visited << Mismatched; 400 401 if (Missing > 0) 402 Diags.Report(diag::warn_profile_data_missing) << Visited << Missing; 403 } 404 } 405 406 static void setVisibilityFromDLLStorageClass(const clang::LangOptions &LO, 407 llvm::Module &M) { 408 if (!LO.VisibilityFromDLLStorageClass) 409 return; 410 411 llvm::GlobalValue::VisibilityTypes DLLExportVisibility = 412 CodeGenModule::GetLLVMVisibility(LO.getDLLExportVisibility()); 413 llvm::GlobalValue::VisibilityTypes NoDLLStorageClassVisibility = 414 CodeGenModule::GetLLVMVisibility(LO.getNoDLLStorageClassVisibility()); 415 llvm::GlobalValue::VisibilityTypes ExternDeclDLLImportVisibility = 416 CodeGenModule::GetLLVMVisibility(LO.getExternDeclDLLImportVisibility()); 417 llvm::GlobalValue::VisibilityTypes ExternDeclNoDLLStorageClassVisibility = 418 CodeGenModule::GetLLVMVisibility( 419 LO.getExternDeclNoDLLStorageClassVisibility()); 420 421 for (llvm::GlobalValue &GV : M.global_values()) { 422 if (GV.hasAppendingLinkage() || GV.hasLocalLinkage()) 423 continue; 424 425 // Reset DSO locality before setting the visibility. This removes 426 // any effects that visibility options and annotations may have 427 // had on the DSO locality. Setting the visibility will implicitly set 428 // appropriate globals to DSO Local; however, this will be pessimistic 429 // w.r.t. to the normal compiler IRGen. 430 GV.setDSOLocal(false); 431 432 if (GV.isDeclarationForLinker()) { 433 GV.setVisibility(GV.getDLLStorageClass() == 434 llvm::GlobalValue::DLLImportStorageClass 435 ? ExternDeclDLLImportVisibility 436 : ExternDeclNoDLLStorageClassVisibility); 437 } else { 438 GV.setVisibility(GV.getDLLStorageClass() == 439 llvm::GlobalValue::DLLExportStorageClass 440 ? DLLExportVisibility 441 : NoDLLStorageClassVisibility); 442 } 443 444 GV.setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 445 } 446 } 447 448 void CodeGenModule::Release() { 449 EmitDeferred(); 450 EmitVTablesOpportunistically(); 451 applyGlobalValReplacements(); 452 applyReplacements(); 453 checkAliases(); 454 emitMultiVersionFunctions(); 455 EmitCXXGlobalInitFunc(); 456 EmitCXXGlobalCleanUpFunc(); 457 registerGlobalDtorsWithAtExit(); 458 EmitCXXThreadLocalInitFunc(); 459 if (ObjCRuntime) 460 if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction()) 461 AddGlobalCtor(ObjCInitFunction); 462 if (Context.getLangOpts().CUDA && !Context.getLangOpts().CUDAIsDevice && 463 CUDARuntime) { 464 if (llvm::Function *CudaCtorFunction = 465 CUDARuntime->makeModuleCtorFunction()) 466 AddGlobalCtor(CudaCtorFunction); 467 } 468 if (OpenMPRuntime) { 469 if (llvm::Function *OpenMPRequiresDirectiveRegFun = 470 OpenMPRuntime->emitRequiresDirectiveRegFun()) { 471 AddGlobalCtor(OpenMPRequiresDirectiveRegFun, 0); 472 } 473 OpenMPRuntime->createOffloadEntriesAndInfoMetadata(); 474 OpenMPRuntime->clear(); 475 } 476 if (PGOReader) { 477 getModule().setProfileSummary( 478 PGOReader->getSummary(/* UseCS */ false).getMD(VMContext), 479 llvm::ProfileSummary::PSK_Instr); 480 if (PGOStats.hasDiagnostics()) 481 PGOStats.reportDiagnostics(getDiags(), getCodeGenOpts().MainFileName); 482 } 483 EmitCtorList(GlobalCtors, "llvm.global_ctors"); 484 EmitCtorList(GlobalDtors, "llvm.global_dtors"); 485 EmitGlobalAnnotations(); 486 EmitStaticExternCAliases(); 487 EmitDeferredUnusedCoverageMappings(); 488 if (CoverageMapping) 489 CoverageMapping->emit(); 490 if (CodeGenOpts.SanitizeCfiCrossDso) { 491 CodeGenFunction(*this).EmitCfiCheckFail(); 492 CodeGenFunction(*this).EmitCfiCheckStub(); 493 } 494 emitAtAvailableLinkGuard(); 495 if (Context.getTargetInfo().getTriple().isWasm() && 496 !Context.getTargetInfo().getTriple().isOSEmscripten()) { 497 EmitMainVoidAlias(); 498 } 499 emitLLVMUsed(); 500 if (SanStats) 501 SanStats->finish(); 502 503 if (CodeGenOpts.Autolink && 504 (Context.getLangOpts().Modules || !LinkerOptionsMetadata.empty())) { 505 EmitModuleLinkOptions(); 506 } 507 508 // On ELF we pass the dependent library specifiers directly to the linker 509 // without manipulating them. This is in contrast to other platforms where 510 // they are mapped to a specific linker option by the compiler. This 511 // difference is a result of the greater variety of ELF linkers and the fact 512 // that ELF linkers tend to handle libraries in a more complicated fashion 513 // than on other platforms. This forces us to defer handling the dependent 514 // libs to the linker. 515 // 516 // CUDA/HIP device and host libraries are different. Currently there is no 517 // way to differentiate dependent libraries for host or device. Existing 518 // usage of #pragma comment(lib, *) is intended for host libraries on 519 // Windows. Therefore emit llvm.dependent-libraries only for host. 520 if (!ELFDependentLibraries.empty() && !Context.getLangOpts().CUDAIsDevice) { 521 auto *NMD = getModule().getOrInsertNamedMetadata("llvm.dependent-libraries"); 522 for (auto *MD : ELFDependentLibraries) 523 NMD->addOperand(MD); 524 } 525 526 // Record mregparm value now so it is visible through rest of codegen. 527 if (Context.getTargetInfo().getTriple().getArch() == llvm::Triple::x86) 528 getModule().addModuleFlag(llvm::Module::Error, "NumRegisterParameters", 529 CodeGenOpts.NumRegisterParameters); 530 531 if (CodeGenOpts.DwarfVersion) { 532 getModule().addModuleFlag(llvm::Module::Max, "Dwarf Version", 533 CodeGenOpts.DwarfVersion); 534 } 535 536 if (Context.getLangOpts().SemanticInterposition) 537 // Require various optimization to respect semantic interposition. 538 getModule().setSemanticInterposition(1); 539 540 if (CodeGenOpts.EmitCodeView) { 541 // Indicate that we want CodeView in the metadata. 542 getModule().addModuleFlag(llvm::Module::Warning, "CodeView", 1); 543 } 544 if (CodeGenOpts.CodeViewGHash) { 545 getModule().addModuleFlag(llvm::Module::Warning, "CodeViewGHash", 1); 546 } 547 if (CodeGenOpts.ControlFlowGuard) { 548 // Function ID tables and checks for Control Flow Guard (cfguard=2). 549 getModule().addModuleFlag(llvm::Module::Warning, "cfguard", 2); 550 } else if (CodeGenOpts.ControlFlowGuardNoChecks) { 551 // Function ID tables for Control Flow Guard (cfguard=1). 552 getModule().addModuleFlag(llvm::Module::Warning, "cfguard", 1); 553 } 554 if (CodeGenOpts.OptimizationLevel > 0 && CodeGenOpts.StrictVTablePointers) { 555 // We don't support LTO with 2 with different StrictVTablePointers 556 // FIXME: we could support it by stripping all the information introduced 557 // by StrictVTablePointers. 558 559 getModule().addModuleFlag(llvm::Module::Error, "StrictVTablePointers",1); 560 561 llvm::Metadata *Ops[2] = { 562 llvm::MDString::get(VMContext, "StrictVTablePointers"), 563 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 564 llvm::Type::getInt32Ty(VMContext), 1))}; 565 566 getModule().addModuleFlag(llvm::Module::Require, 567 "StrictVTablePointersRequirement", 568 llvm::MDNode::get(VMContext, Ops)); 569 } 570 if (getModuleDebugInfo()) 571 // We support a single version in the linked module. The LLVM 572 // parser will drop debug info with a different version number 573 // (and warn about it, too). 574 getModule().addModuleFlag(llvm::Module::Warning, "Debug Info Version", 575 llvm::DEBUG_METADATA_VERSION); 576 577 // We need to record the widths of enums and wchar_t, so that we can generate 578 // the correct build attributes in the ARM backend. wchar_size is also used by 579 // TargetLibraryInfo. 580 uint64_t WCharWidth = 581 Context.getTypeSizeInChars(Context.getWideCharType()).getQuantity(); 582 getModule().addModuleFlag(llvm::Module::Error, "wchar_size", WCharWidth); 583 584 llvm::Triple::ArchType Arch = Context.getTargetInfo().getTriple().getArch(); 585 if ( Arch == llvm::Triple::arm 586 || Arch == llvm::Triple::armeb 587 || Arch == llvm::Triple::thumb 588 || Arch == llvm::Triple::thumbeb) { 589 // The minimum width of an enum in bytes 590 uint64_t EnumWidth = Context.getLangOpts().ShortEnums ? 1 : 4; 591 getModule().addModuleFlag(llvm::Module::Error, "min_enum_size", EnumWidth); 592 } 593 594 if (Arch == llvm::Triple::riscv32 || Arch == llvm::Triple::riscv64) { 595 StringRef ABIStr = Target.getABI(); 596 llvm::LLVMContext &Ctx = TheModule.getContext(); 597 getModule().addModuleFlag(llvm::Module::Error, "target-abi", 598 llvm::MDString::get(Ctx, ABIStr)); 599 } 600 601 if (CodeGenOpts.SanitizeCfiCrossDso) { 602 // Indicate that we want cross-DSO control flow integrity checks. 603 getModule().addModuleFlag(llvm::Module::Override, "Cross-DSO CFI", 1); 604 } 605 606 if (CodeGenOpts.WholeProgramVTables) { 607 // Indicate whether VFE was enabled for this module, so that the 608 // vcall_visibility metadata added under whole program vtables is handled 609 // appropriately in the optimizer. 610 getModule().addModuleFlag(llvm::Module::Error, "Virtual Function Elim", 611 CodeGenOpts.VirtualFunctionElimination); 612 } 613 614 if (LangOpts.Sanitize.has(SanitizerKind::CFIICall)) { 615 getModule().addModuleFlag(llvm::Module::Override, 616 "CFI Canonical Jump Tables", 617 CodeGenOpts.SanitizeCfiCanonicalJumpTables); 618 } 619 620 if (CodeGenOpts.CFProtectionReturn && 621 Target.checkCFProtectionReturnSupported(getDiags())) { 622 // Indicate that we want to instrument return control flow protection. 623 getModule().addModuleFlag(llvm::Module::Override, "cf-protection-return", 624 1); 625 } 626 627 if (CodeGenOpts.CFProtectionBranch && 628 Target.checkCFProtectionBranchSupported(getDiags())) { 629 // Indicate that we want to instrument branch control flow protection. 630 getModule().addModuleFlag(llvm::Module::Override, "cf-protection-branch", 631 1); 632 } 633 634 if (Arch == llvm::Triple::aarch64 || Arch == llvm::Triple::aarch64_32 || 635 Arch == llvm::Triple::aarch64_be) { 636 getModule().addModuleFlag(llvm::Module::Error, 637 "branch-target-enforcement", 638 LangOpts.BranchTargetEnforcement); 639 640 getModule().addModuleFlag(llvm::Module::Error, "sign-return-address", 641 LangOpts.hasSignReturnAddress()); 642 643 getModule().addModuleFlag(llvm::Module::Error, "sign-return-address-all", 644 LangOpts.isSignReturnAddressScopeAll()); 645 646 getModule().addModuleFlag(llvm::Module::Error, 647 "sign-return-address-with-bkey", 648 !LangOpts.isSignReturnAddressWithAKey()); 649 } 650 651 if (!CodeGenOpts.MemoryProfileOutput.empty()) { 652 llvm::LLVMContext &Ctx = TheModule.getContext(); 653 getModule().addModuleFlag( 654 llvm::Module::Error, "MemProfProfileFilename", 655 llvm::MDString::get(Ctx, CodeGenOpts.MemoryProfileOutput)); 656 } 657 658 if (LangOpts.CUDAIsDevice && getTriple().isNVPTX()) { 659 // Indicate whether __nvvm_reflect should be configured to flush denormal 660 // floating point values to 0. (This corresponds to its "__CUDA_FTZ" 661 // property.) 662 getModule().addModuleFlag(llvm::Module::Override, "nvvm-reflect-ftz", 663 CodeGenOpts.FP32DenormalMode.Output != 664 llvm::DenormalMode::IEEE); 665 } 666 667 // Emit OpenCL specific module metadata: OpenCL/SPIR version. 668 if (LangOpts.OpenCL) { 669 EmitOpenCLMetadata(); 670 // Emit SPIR version. 671 if (getTriple().isSPIR()) { 672 // SPIR v2.0 s2.12 - The SPIR version used by the module is stored in the 673 // opencl.spir.version named metadata. 674 // C++ is backwards compatible with OpenCL v2.0. 675 auto Version = LangOpts.OpenCLCPlusPlus ? 200 : LangOpts.OpenCLVersion; 676 llvm::Metadata *SPIRVerElts[] = { 677 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 678 Int32Ty, Version / 100)), 679 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 680 Int32Ty, (Version / 100 > 1) ? 0 : 2))}; 681 llvm::NamedMDNode *SPIRVerMD = 682 TheModule.getOrInsertNamedMetadata("opencl.spir.version"); 683 llvm::LLVMContext &Ctx = TheModule.getContext(); 684 SPIRVerMD->addOperand(llvm::MDNode::get(Ctx, SPIRVerElts)); 685 } 686 } 687 688 if (uint32_t PLevel = Context.getLangOpts().PICLevel) { 689 assert(PLevel < 3 && "Invalid PIC Level"); 690 getModule().setPICLevel(static_cast<llvm::PICLevel::Level>(PLevel)); 691 if (Context.getLangOpts().PIE) 692 getModule().setPIELevel(static_cast<llvm::PIELevel::Level>(PLevel)); 693 } 694 695 if (getCodeGenOpts().CodeModel.size() > 0) { 696 unsigned CM = llvm::StringSwitch<unsigned>(getCodeGenOpts().CodeModel) 697 .Case("tiny", llvm::CodeModel::Tiny) 698 .Case("small", llvm::CodeModel::Small) 699 .Case("kernel", llvm::CodeModel::Kernel) 700 .Case("medium", llvm::CodeModel::Medium) 701 .Case("large", llvm::CodeModel::Large) 702 .Default(~0u); 703 if (CM != ~0u) { 704 llvm::CodeModel::Model codeModel = static_cast<llvm::CodeModel::Model>(CM); 705 getModule().setCodeModel(codeModel); 706 } 707 } 708 709 if (CodeGenOpts.NoPLT) 710 getModule().setRtLibUseGOT(); 711 712 SimplifyPersonality(); 713 714 if (getCodeGenOpts().EmitDeclMetadata) 715 EmitDeclMetadata(); 716 717 if (getCodeGenOpts().EmitGcovArcs || getCodeGenOpts().EmitGcovNotes) 718 EmitCoverageFile(); 719 720 if (CGDebugInfo *DI = getModuleDebugInfo()) 721 DI->finalize(); 722 723 if (getCodeGenOpts().EmitVersionIdentMetadata) 724 EmitVersionIdentMetadata(); 725 726 if (!getCodeGenOpts().RecordCommandLine.empty()) 727 EmitCommandLineMetadata(); 728 729 getTargetCodeGenInfo().emitTargetMetadata(*this, MangledDeclNames); 730 731 EmitBackendOptionsMetadata(getCodeGenOpts()); 732 733 // Set visibility from DLL storage class 734 // We do this at the end of LLVM IR generation; after any operation 735 // that might affect the DLL storage class or the visibility, and 736 // before anything that might act on these. 737 setVisibilityFromDLLStorageClass(LangOpts, getModule()); 738 } 739 740 void CodeGenModule::EmitOpenCLMetadata() { 741 // SPIR v2.0 s2.13 - The OpenCL version used by the module is stored in the 742 // opencl.ocl.version named metadata node. 743 // C++ is backwards compatible with OpenCL v2.0. 744 // FIXME: We might need to add CXX version at some point too? 745 auto Version = LangOpts.OpenCLCPlusPlus ? 200 : LangOpts.OpenCLVersion; 746 llvm::Metadata *OCLVerElts[] = { 747 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 748 Int32Ty, Version / 100)), 749 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 750 Int32Ty, (Version % 100) / 10))}; 751 llvm::NamedMDNode *OCLVerMD = 752 TheModule.getOrInsertNamedMetadata("opencl.ocl.version"); 753 llvm::LLVMContext &Ctx = TheModule.getContext(); 754 OCLVerMD->addOperand(llvm::MDNode::get(Ctx, OCLVerElts)); 755 } 756 757 void CodeGenModule::EmitBackendOptionsMetadata( 758 const CodeGenOptions CodeGenOpts) { 759 switch (getTriple().getArch()) { 760 default: 761 break; 762 case llvm::Triple::riscv32: 763 case llvm::Triple::riscv64: 764 getModule().addModuleFlag(llvm::Module::Error, "SmallDataLimit", 765 CodeGenOpts.SmallDataLimit); 766 break; 767 } 768 } 769 770 void CodeGenModule::UpdateCompletedType(const TagDecl *TD) { 771 // Make sure that this type is translated. 772 Types.UpdateCompletedType(TD); 773 } 774 775 void CodeGenModule::RefreshTypeCacheForClass(const CXXRecordDecl *RD) { 776 // Make sure that this type is translated. 777 Types.RefreshTypeCacheForClass(RD); 778 } 779 780 llvm::MDNode *CodeGenModule::getTBAATypeInfo(QualType QTy) { 781 if (!TBAA) 782 return nullptr; 783 return TBAA->getTypeInfo(QTy); 784 } 785 786 TBAAAccessInfo CodeGenModule::getTBAAAccessInfo(QualType AccessType) { 787 if (!TBAA) 788 return TBAAAccessInfo(); 789 if (getLangOpts().CUDAIsDevice) { 790 // As CUDA builtin surface/texture types are replaced, skip generating TBAA 791 // access info. 792 if (AccessType->isCUDADeviceBuiltinSurfaceType()) { 793 if (getTargetCodeGenInfo().getCUDADeviceBuiltinSurfaceDeviceType() != 794 nullptr) 795 return TBAAAccessInfo(); 796 } else if (AccessType->isCUDADeviceBuiltinTextureType()) { 797 if (getTargetCodeGenInfo().getCUDADeviceBuiltinTextureDeviceType() != 798 nullptr) 799 return TBAAAccessInfo(); 800 } 801 } 802 return TBAA->getAccessInfo(AccessType); 803 } 804 805 TBAAAccessInfo 806 CodeGenModule::getTBAAVTablePtrAccessInfo(llvm::Type *VTablePtrType) { 807 if (!TBAA) 808 return TBAAAccessInfo(); 809 return TBAA->getVTablePtrAccessInfo(VTablePtrType); 810 } 811 812 llvm::MDNode *CodeGenModule::getTBAAStructInfo(QualType QTy) { 813 if (!TBAA) 814 return nullptr; 815 return TBAA->getTBAAStructInfo(QTy); 816 } 817 818 llvm::MDNode *CodeGenModule::getTBAABaseTypeInfo(QualType QTy) { 819 if (!TBAA) 820 return nullptr; 821 return TBAA->getBaseTypeInfo(QTy); 822 } 823 824 llvm::MDNode *CodeGenModule::getTBAAAccessTagInfo(TBAAAccessInfo Info) { 825 if (!TBAA) 826 return nullptr; 827 return TBAA->getAccessTagInfo(Info); 828 } 829 830 TBAAAccessInfo CodeGenModule::mergeTBAAInfoForCast(TBAAAccessInfo SourceInfo, 831 TBAAAccessInfo TargetInfo) { 832 if (!TBAA) 833 return TBAAAccessInfo(); 834 return TBAA->mergeTBAAInfoForCast(SourceInfo, TargetInfo); 835 } 836 837 TBAAAccessInfo 838 CodeGenModule::mergeTBAAInfoForConditionalOperator(TBAAAccessInfo InfoA, 839 TBAAAccessInfo InfoB) { 840 if (!TBAA) 841 return TBAAAccessInfo(); 842 return TBAA->mergeTBAAInfoForConditionalOperator(InfoA, InfoB); 843 } 844 845 TBAAAccessInfo 846 CodeGenModule::mergeTBAAInfoForMemoryTransfer(TBAAAccessInfo DestInfo, 847 TBAAAccessInfo SrcInfo) { 848 if (!TBAA) 849 return TBAAAccessInfo(); 850 return TBAA->mergeTBAAInfoForConditionalOperator(DestInfo, SrcInfo); 851 } 852 853 void CodeGenModule::DecorateInstructionWithTBAA(llvm::Instruction *Inst, 854 TBAAAccessInfo TBAAInfo) { 855 if (llvm::MDNode *Tag = getTBAAAccessTagInfo(TBAAInfo)) 856 Inst->setMetadata(llvm::LLVMContext::MD_tbaa, Tag); 857 } 858 859 void CodeGenModule::DecorateInstructionWithInvariantGroup( 860 llvm::Instruction *I, const CXXRecordDecl *RD) { 861 I->setMetadata(llvm::LLVMContext::MD_invariant_group, 862 llvm::MDNode::get(getLLVMContext(), {})); 863 } 864 865 void CodeGenModule::Error(SourceLocation loc, StringRef message) { 866 unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, "%0"); 867 getDiags().Report(Context.getFullLoc(loc), diagID) << message; 868 } 869 870 /// ErrorUnsupported - Print out an error that codegen doesn't support the 871 /// specified stmt yet. 872 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type) { 873 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, 874 "cannot compile this %0 yet"); 875 std::string Msg = Type; 876 getDiags().Report(Context.getFullLoc(S->getBeginLoc()), DiagID) 877 << Msg << S->getSourceRange(); 878 } 879 880 /// ErrorUnsupported - Print out an error that codegen doesn't support the 881 /// specified decl yet. 882 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type) { 883 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, 884 "cannot compile this %0 yet"); 885 std::string Msg = Type; 886 getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg; 887 } 888 889 llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) { 890 return llvm::ConstantInt::get(SizeTy, size.getQuantity()); 891 } 892 893 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV, 894 const NamedDecl *D) const { 895 if (GV->hasDLLImportStorageClass()) 896 return; 897 // Internal definitions always have default visibility. 898 if (GV->hasLocalLinkage()) { 899 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 900 return; 901 } 902 if (!D) 903 return; 904 // Set visibility for definitions, and for declarations if requested globally 905 // or set explicitly. 906 LinkageInfo LV = D->getLinkageAndVisibility(); 907 if (LV.isVisibilityExplicit() || getLangOpts().SetVisibilityForExternDecls || 908 !GV->isDeclarationForLinker()) 909 GV->setVisibility(GetLLVMVisibility(LV.getVisibility())); 910 } 911 912 static bool shouldAssumeDSOLocal(const CodeGenModule &CGM, 913 llvm::GlobalValue *GV) { 914 if (GV->hasLocalLinkage()) 915 return true; 916 917 if (!GV->hasDefaultVisibility() && !GV->hasExternalWeakLinkage()) 918 return true; 919 920 // DLLImport explicitly marks the GV as external. 921 if (GV->hasDLLImportStorageClass()) 922 return false; 923 924 const llvm::Triple &TT = CGM.getTriple(); 925 if (TT.isWindowsGNUEnvironment()) { 926 // In MinGW, variables without DLLImport can still be automatically 927 // imported from a DLL by the linker; don't mark variables that 928 // potentially could come from another DLL as DSO local. 929 if (GV->isDeclarationForLinker() && isa<llvm::GlobalVariable>(GV) && 930 !GV->isThreadLocal()) 931 return false; 932 } 933 934 // On COFF, don't mark 'extern_weak' symbols as DSO local. If these symbols 935 // remain unresolved in the link, they can be resolved to zero, which is 936 // outside the current DSO. 937 if (TT.isOSBinFormatCOFF() && GV->hasExternalWeakLinkage()) 938 return false; 939 940 // Every other GV is local on COFF. 941 // Make an exception for windows OS in the triple: Some firmware builds use 942 // *-win32-macho triples. This (accidentally?) produced windows relocations 943 // without GOT tables in older clang versions; Keep this behaviour. 944 // FIXME: even thread local variables? 945 if (TT.isOSBinFormatCOFF() || (TT.isOSWindows() && TT.isOSBinFormatMachO())) 946 return true; 947 948 const auto &CGOpts = CGM.getCodeGenOpts(); 949 llvm::Reloc::Model RM = CGOpts.RelocationModel; 950 const auto &LOpts = CGM.getLangOpts(); 951 952 if (TT.isOSBinFormatMachO()) { 953 if (RM == llvm::Reloc::Static) 954 return true; 955 return GV->isStrongDefinitionForLinker(); 956 } 957 958 // Only handle COFF and ELF for now. 959 if (!TT.isOSBinFormatELF()) 960 return false; 961 962 if (RM != llvm::Reloc::Static && !LOpts.PIE) { 963 // On ELF, if -fno-semantic-interposition is specified and the target 964 // supports local aliases, there will be neither CC1 965 // -fsemantic-interposition nor -fhalf-no-semantic-interposition. Set 966 // dso_local if using a local alias is preferable (can avoid GOT 967 // indirection). 968 if (!GV->canBenefitFromLocalAlias()) 969 return false; 970 return !(CGM.getLangOpts().SemanticInterposition || 971 CGM.getLangOpts().HalfNoSemanticInterposition); 972 } 973 974 // A definition cannot be preempted from an executable. 975 if (!GV->isDeclarationForLinker()) 976 return true; 977 978 // Most PIC code sequences that assume that a symbol is local cannot produce a 979 // 0 if it turns out the symbol is undefined. While this is ABI and relocation 980 // depended, it seems worth it to handle it here. 981 if (RM == llvm::Reloc::PIC_ && GV->hasExternalWeakLinkage()) 982 return false; 983 984 // PowerPC64 prefers TOC indirection to avoid copy relocations. 985 if (TT.isPPC64()) 986 return false; 987 988 if (CGOpts.DirectAccessExternalData) { 989 // If -fdirect-access-external-data (default for -fno-pic), set dso_local 990 // for non-thread-local variables. If the symbol is not defined in the 991 // executable, a copy relocation will be needed at link time. dso_local is 992 // excluded for thread-local variables because they generally don't support 993 // copy relocations. 994 if (auto *Var = dyn_cast<llvm::GlobalVariable>(GV)) 995 if (!Var->isThreadLocal()) 996 return true; 997 998 // -fno-pic sets dso_local on a function declaration to allow direct 999 // accesses when taking its address (similar to a data symbol). If the 1000 // function is not defined in the executable, a canonical PLT entry will be 1001 // needed at link time. -fno-direct-access-external-data can avoid the 1002 // canonical PLT entry. We don't generalize this condition to -fpie/-fpic as 1003 // it could just cause trouble without providing perceptible benefits. 1004 if (isa<llvm::Function>(GV) && !CGOpts.NoPLT && RM == llvm::Reloc::Static) 1005 return true; 1006 } 1007 1008 // If we can use copy relocations we can assume it is local. 1009 1010 // Otherwise don't assume it is local. 1011 return false; 1012 } 1013 1014 void CodeGenModule::setDSOLocal(llvm::GlobalValue *GV) const { 1015 GV->setDSOLocal(shouldAssumeDSOLocal(*this, GV)); 1016 } 1017 1018 void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV, 1019 GlobalDecl GD) const { 1020 const auto *D = dyn_cast<NamedDecl>(GD.getDecl()); 1021 // C++ destructors have a few C++ ABI specific special cases. 1022 if (const auto *Dtor = dyn_cast_or_null<CXXDestructorDecl>(D)) { 1023 getCXXABI().setCXXDestructorDLLStorage(GV, Dtor, GD.getDtorType()); 1024 return; 1025 } 1026 setDLLImportDLLExport(GV, D); 1027 } 1028 1029 void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV, 1030 const NamedDecl *D) const { 1031 if (D && D->isExternallyVisible()) { 1032 if (D->hasAttr<DLLImportAttr>()) 1033 GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass); 1034 else if (D->hasAttr<DLLExportAttr>() && !GV->isDeclarationForLinker()) 1035 GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass); 1036 } 1037 } 1038 1039 void CodeGenModule::setGVProperties(llvm::GlobalValue *GV, 1040 GlobalDecl GD) const { 1041 setDLLImportDLLExport(GV, GD); 1042 setGVPropertiesAux(GV, dyn_cast<NamedDecl>(GD.getDecl())); 1043 } 1044 1045 void CodeGenModule::setGVProperties(llvm::GlobalValue *GV, 1046 const NamedDecl *D) const { 1047 setDLLImportDLLExport(GV, D); 1048 setGVPropertiesAux(GV, D); 1049 } 1050 1051 void CodeGenModule::setGVPropertiesAux(llvm::GlobalValue *GV, 1052 const NamedDecl *D) const { 1053 setGlobalVisibility(GV, D); 1054 setDSOLocal(GV); 1055 GV->setPartition(CodeGenOpts.SymbolPartition); 1056 } 1057 1058 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(StringRef S) { 1059 return llvm::StringSwitch<llvm::GlobalVariable::ThreadLocalMode>(S) 1060 .Case("global-dynamic", llvm::GlobalVariable::GeneralDynamicTLSModel) 1061 .Case("local-dynamic", llvm::GlobalVariable::LocalDynamicTLSModel) 1062 .Case("initial-exec", llvm::GlobalVariable::InitialExecTLSModel) 1063 .Case("local-exec", llvm::GlobalVariable::LocalExecTLSModel); 1064 } 1065 1066 llvm::GlobalVariable::ThreadLocalMode 1067 CodeGenModule::GetDefaultLLVMTLSModel() const { 1068 switch (CodeGenOpts.getDefaultTLSModel()) { 1069 case CodeGenOptions::GeneralDynamicTLSModel: 1070 return llvm::GlobalVariable::GeneralDynamicTLSModel; 1071 case CodeGenOptions::LocalDynamicTLSModel: 1072 return llvm::GlobalVariable::LocalDynamicTLSModel; 1073 case CodeGenOptions::InitialExecTLSModel: 1074 return llvm::GlobalVariable::InitialExecTLSModel; 1075 case CodeGenOptions::LocalExecTLSModel: 1076 return llvm::GlobalVariable::LocalExecTLSModel; 1077 } 1078 llvm_unreachable("Invalid TLS model!"); 1079 } 1080 1081 void CodeGenModule::setTLSMode(llvm::GlobalValue *GV, const VarDecl &D) const { 1082 assert(D.getTLSKind() && "setting TLS mode on non-TLS var!"); 1083 1084 llvm::GlobalValue::ThreadLocalMode TLM; 1085 TLM = GetDefaultLLVMTLSModel(); 1086 1087 // Override the TLS model if it is explicitly specified. 1088 if (const TLSModelAttr *Attr = D.getAttr<TLSModelAttr>()) { 1089 TLM = GetLLVMTLSModel(Attr->getModel()); 1090 } 1091 1092 GV->setThreadLocalMode(TLM); 1093 } 1094 1095 static std::string getCPUSpecificMangling(const CodeGenModule &CGM, 1096 StringRef Name) { 1097 const TargetInfo &Target = CGM.getTarget(); 1098 return (Twine('.') + Twine(Target.CPUSpecificManglingCharacter(Name))).str(); 1099 } 1100 1101 static void AppendCPUSpecificCPUDispatchMangling(const CodeGenModule &CGM, 1102 const CPUSpecificAttr *Attr, 1103 unsigned CPUIndex, 1104 raw_ostream &Out) { 1105 // cpu_specific gets the current name, dispatch gets the resolver if IFunc is 1106 // supported. 1107 if (Attr) 1108 Out << getCPUSpecificMangling(CGM, Attr->getCPUName(CPUIndex)->getName()); 1109 else if (CGM.getTarget().supportsIFunc()) 1110 Out << ".resolver"; 1111 } 1112 1113 static void AppendTargetMangling(const CodeGenModule &CGM, 1114 const TargetAttr *Attr, raw_ostream &Out) { 1115 if (Attr->isDefaultVersion()) 1116 return; 1117 1118 Out << '.'; 1119 const TargetInfo &Target = CGM.getTarget(); 1120 ParsedTargetAttr Info = 1121 Attr->parse([&Target](StringRef LHS, StringRef RHS) { 1122 // Multiversioning doesn't allow "no-${feature}", so we can 1123 // only have "+" prefixes here. 1124 assert(LHS.startswith("+") && RHS.startswith("+") && 1125 "Features should always have a prefix."); 1126 return Target.multiVersionSortPriority(LHS.substr(1)) > 1127 Target.multiVersionSortPriority(RHS.substr(1)); 1128 }); 1129 1130 bool IsFirst = true; 1131 1132 if (!Info.Architecture.empty()) { 1133 IsFirst = false; 1134 Out << "arch_" << Info.Architecture; 1135 } 1136 1137 for (StringRef Feat : Info.Features) { 1138 if (!IsFirst) 1139 Out << '_'; 1140 IsFirst = false; 1141 Out << Feat.substr(1); 1142 } 1143 } 1144 1145 static std::string getMangledNameImpl(const CodeGenModule &CGM, GlobalDecl GD, 1146 const NamedDecl *ND, 1147 bool OmitMultiVersionMangling = false) { 1148 SmallString<256> Buffer; 1149 llvm::raw_svector_ostream Out(Buffer); 1150 MangleContext &MC = CGM.getCXXABI().getMangleContext(); 1151 if (MC.shouldMangleDeclName(ND)) 1152 MC.mangleName(GD.getWithDecl(ND), Out); 1153 else { 1154 IdentifierInfo *II = ND->getIdentifier(); 1155 assert(II && "Attempt to mangle unnamed decl."); 1156 const auto *FD = dyn_cast<FunctionDecl>(ND); 1157 1158 if (FD && 1159 FD->getType()->castAs<FunctionType>()->getCallConv() == CC_X86RegCall) { 1160 Out << "__regcall3__" << II->getName(); 1161 } else if (FD && FD->hasAttr<CUDAGlobalAttr>() && 1162 GD.getKernelReferenceKind() == KernelReferenceKind::Stub) { 1163 Out << "__device_stub__" << II->getName(); 1164 } else { 1165 Out << II->getName(); 1166 } 1167 } 1168 1169 if (const auto *FD = dyn_cast<FunctionDecl>(ND)) 1170 if (FD->isMultiVersion() && !OmitMultiVersionMangling) { 1171 switch (FD->getMultiVersionKind()) { 1172 case MultiVersionKind::CPUDispatch: 1173 case MultiVersionKind::CPUSpecific: 1174 AppendCPUSpecificCPUDispatchMangling(CGM, 1175 FD->getAttr<CPUSpecificAttr>(), 1176 GD.getMultiVersionIndex(), Out); 1177 break; 1178 case MultiVersionKind::Target: 1179 AppendTargetMangling(CGM, FD->getAttr<TargetAttr>(), Out); 1180 break; 1181 case MultiVersionKind::None: 1182 llvm_unreachable("None multiversion type isn't valid here"); 1183 } 1184 } 1185 1186 return std::string(Out.str()); 1187 } 1188 1189 void CodeGenModule::UpdateMultiVersionNames(GlobalDecl GD, 1190 const FunctionDecl *FD) { 1191 if (!FD->isMultiVersion()) 1192 return; 1193 1194 // Get the name of what this would be without the 'target' attribute. This 1195 // allows us to lookup the version that was emitted when this wasn't a 1196 // multiversion function. 1197 std::string NonTargetName = 1198 getMangledNameImpl(*this, GD, FD, /*OmitMultiVersionMangling=*/true); 1199 GlobalDecl OtherGD; 1200 if (lookupRepresentativeDecl(NonTargetName, OtherGD)) { 1201 assert(OtherGD.getCanonicalDecl() 1202 .getDecl() 1203 ->getAsFunction() 1204 ->isMultiVersion() && 1205 "Other GD should now be a multiversioned function"); 1206 // OtherFD is the version of this function that was mangled BEFORE 1207 // becoming a MultiVersion function. It potentially needs to be updated. 1208 const FunctionDecl *OtherFD = OtherGD.getCanonicalDecl() 1209 .getDecl() 1210 ->getAsFunction() 1211 ->getMostRecentDecl(); 1212 std::string OtherName = getMangledNameImpl(*this, OtherGD, OtherFD); 1213 // This is so that if the initial version was already the 'default' 1214 // version, we don't try to update it. 1215 if (OtherName != NonTargetName) { 1216 // Remove instead of erase, since others may have stored the StringRef 1217 // to this. 1218 const auto ExistingRecord = Manglings.find(NonTargetName); 1219 if (ExistingRecord != std::end(Manglings)) 1220 Manglings.remove(&(*ExistingRecord)); 1221 auto Result = Manglings.insert(std::make_pair(OtherName, OtherGD)); 1222 MangledDeclNames[OtherGD.getCanonicalDecl()] = Result.first->first(); 1223 if (llvm::GlobalValue *Entry = GetGlobalValue(NonTargetName)) 1224 Entry->setName(OtherName); 1225 } 1226 } 1227 } 1228 1229 StringRef CodeGenModule::getMangledName(GlobalDecl GD) { 1230 GlobalDecl CanonicalGD = GD.getCanonicalDecl(); 1231 1232 // Some ABIs don't have constructor variants. Make sure that base and 1233 // complete constructors get mangled the same. 1234 if (const auto *CD = dyn_cast<CXXConstructorDecl>(CanonicalGD.getDecl())) { 1235 if (!getTarget().getCXXABI().hasConstructorVariants()) { 1236 CXXCtorType OrigCtorType = GD.getCtorType(); 1237 assert(OrigCtorType == Ctor_Base || OrigCtorType == Ctor_Complete); 1238 if (OrigCtorType == Ctor_Base) 1239 CanonicalGD = GlobalDecl(CD, Ctor_Complete); 1240 } 1241 } 1242 1243 auto FoundName = MangledDeclNames.find(CanonicalGD); 1244 if (FoundName != MangledDeclNames.end()) 1245 return FoundName->second; 1246 1247 // Keep the first result in the case of a mangling collision. 1248 const auto *ND = cast<NamedDecl>(GD.getDecl()); 1249 std::string MangledName = getMangledNameImpl(*this, GD, ND); 1250 1251 // Ensure either we have different ABIs between host and device compilations, 1252 // says host compilation following MSVC ABI but device compilation follows 1253 // Itanium C++ ABI or, if they follow the same ABI, kernel names after 1254 // mangling should be the same after name stubbing. The later checking is 1255 // very important as the device kernel name being mangled in host-compilation 1256 // is used to resolve the device binaries to be executed. Inconsistent naming 1257 // result in undefined behavior. Even though we cannot check that naming 1258 // directly between host- and device-compilations, the host- and 1259 // device-mangling in host compilation could help catching certain ones. 1260 assert(!isa<FunctionDecl>(ND) || !ND->hasAttr<CUDAGlobalAttr>() || 1261 getLangOpts().CUDAIsDevice || 1262 (getContext().getAuxTargetInfo() && 1263 (getContext().getAuxTargetInfo()->getCXXABI() != 1264 getContext().getTargetInfo().getCXXABI())) || 1265 getCUDARuntime().getDeviceSideName(ND) == 1266 getMangledNameImpl( 1267 *this, 1268 GD.getWithKernelReferenceKind(KernelReferenceKind::Kernel), 1269 ND)); 1270 1271 auto Result = Manglings.insert(std::make_pair(MangledName, GD)); 1272 return MangledDeclNames[CanonicalGD] = Result.first->first(); 1273 } 1274 1275 StringRef CodeGenModule::getBlockMangledName(GlobalDecl GD, 1276 const BlockDecl *BD) { 1277 MangleContext &MangleCtx = getCXXABI().getMangleContext(); 1278 const Decl *D = GD.getDecl(); 1279 1280 SmallString<256> Buffer; 1281 llvm::raw_svector_ostream Out(Buffer); 1282 if (!D) 1283 MangleCtx.mangleGlobalBlock(BD, 1284 dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()), Out); 1285 else if (const auto *CD = dyn_cast<CXXConstructorDecl>(D)) 1286 MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out); 1287 else if (const auto *DD = dyn_cast<CXXDestructorDecl>(D)) 1288 MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out); 1289 else 1290 MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out); 1291 1292 auto Result = Manglings.insert(std::make_pair(Out.str(), BD)); 1293 return Result.first->first(); 1294 } 1295 1296 llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) { 1297 return getModule().getNamedValue(Name); 1298 } 1299 1300 /// AddGlobalCtor - Add a function to the list that will be called before 1301 /// main() runs. 1302 void CodeGenModule::AddGlobalCtor(llvm::Function *Ctor, int Priority, 1303 llvm::Constant *AssociatedData) { 1304 // FIXME: Type coercion of void()* types. 1305 GlobalCtors.push_back(Structor(Priority, Ctor, AssociatedData)); 1306 } 1307 1308 /// AddGlobalDtor - Add a function to the list that will be called 1309 /// when the module is unloaded. 1310 void CodeGenModule::AddGlobalDtor(llvm::Function *Dtor, int Priority, 1311 bool IsDtorAttrFunc) { 1312 if (CodeGenOpts.RegisterGlobalDtorsWithAtExit && 1313 (!getContext().getTargetInfo().getTriple().isOSAIX() || IsDtorAttrFunc)) { 1314 DtorsUsingAtExit[Priority].push_back(Dtor); 1315 return; 1316 } 1317 1318 // FIXME: Type coercion of void()* types. 1319 GlobalDtors.push_back(Structor(Priority, Dtor, nullptr)); 1320 } 1321 1322 void CodeGenModule::EmitCtorList(CtorList &Fns, const char *GlobalName) { 1323 if (Fns.empty()) return; 1324 1325 // Ctor function type is void()*. 1326 llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false); 1327 llvm::Type *CtorPFTy = llvm::PointerType::get(CtorFTy, 1328 TheModule.getDataLayout().getProgramAddressSpace()); 1329 1330 // Get the type of a ctor entry, { i32, void ()*, i8* }. 1331 llvm::StructType *CtorStructTy = llvm::StructType::get( 1332 Int32Ty, CtorPFTy, VoidPtrTy); 1333 1334 // Construct the constructor and destructor arrays. 1335 ConstantInitBuilder builder(*this); 1336 auto ctors = builder.beginArray(CtorStructTy); 1337 for (const auto &I : Fns) { 1338 auto ctor = ctors.beginStruct(CtorStructTy); 1339 ctor.addInt(Int32Ty, I.Priority); 1340 ctor.add(llvm::ConstantExpr::getBitCast(I.Initializer, CtorPFTy)); 1341 if (I.AssociatedData) 1342 ctor.add(llvm::ConstantExpr::getBitCast(I.AssociatedData, VoidPtrTy)); 1343 else 1344 ctor.addNullPointer(VoidPtrTy); 1345 ctor.finishAndAddTo(ctors); 1346 } 1347 1348 auto list = 1349 ctors.finishAndCreateGlobal(GlobalName, getPointerAlign(), 1350 /*constant*/ false, 1351 llvm::GlobalValue::AppendingLinkage); 1352 1353 // The LTO linker doesn't seem to like it when we set an alignment 1354 // on appending variables. Take it off as a workaround. 1355 list->setAlignment(llvm::None); 1356 1357 Fns.clear(); 1358 } 1359 1360 llvm::GlobalValue::LinkageTypes 1361 CodeGenModule::getFunctionLinkage(GlobalDecl GD) { 1362 const auto *D = cast<FunctionDecl>(GD.getDecl()); 1363 1364 GVALinkage Linkage = getContext().GetGVALinkageForFunction(D); 1365 1366 if (const auto *Dtor = dyn_cast<CXXDestructorDecl>(D)) 1367 return getCXXABI().getCXXDestructorLinkage(Linkage, Dtor, GD.getDtorType()); 1368 1369 if (isa<CXXConstructorDecl>(D) && 1370 cast<CXXConstructorDecl>(D)->isInheritingConstructor() && 1371 Context.getTargetInfo().getCXXABI().isMicrosoft()) { 1372 // Our approach to inheriting constructors is fundamentally different from 1373 // that used by the MS ABI, so keep our inheriting constructor thunks 1374 // internal rather than trying to pick an unambiguous mangling for them. 1375 return llvm::GlobalValue::InternalLinkage; 1376 } 1377 1378 return getLLVMLinkageForDeclarator(D, Linkage, /*IsConstantVariable=*/false); 1379 } 1380 1381 llvm::ConstantInt *CodeGenModule::CreateCrossDsoCfiTypeId(llvm::Metadata *MD) { 1382 llvm::MDString *MDS = dyn_cast<llvm::MDString>(MD); 1383 if (!MDS) return nullptr; 1384 1385 return llvm::ConstantInt::get(Int64Ty, llvm::MD5Hash(MDS->getString())); 1386 } 1387 1388 void CodeGenModule::SetLLVMFunctionAttributes(GlobalDecl GD, 1389 const CGFunctionInfo &Info, 1390 llvm::Function *F) { 1391 unsigned CallingConv; 1392 llvm::AttributeList PAL; 1393 ConstructAttributeList(F->getName(), Info, GD, PAL, CallingConv, false); 1394 F->setAttributes(PAL); 1395 F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv)); 1396 } 1397 1398 static void removeImageAccessQualifier(std::string& TyName) { 1399 std::string ReadOnlyQual("__read_only"); 1400 std::string::size_type ReadOnlyPos = TyName.find(ReadOnlyQual); 1401 if (ReadOnlyPos != std::string::npos) 1402 // "+ 1" for the space after access qualifier. 1403 TyName.erase(ReadOnlyPos, ReadOnlyQual.size() + 1); 1404 else { 1405 std::string WriteOnlyQual("__write_only"); 1406 std::string::size_type WriteOnlyPos = TyName.find(WriteOnlyQual); 1407 if (WriteOnlyPos != std::string::npos) 1408 TyName.erase(WriteOnlyPos, WriteOnlyQual.size() + 1); 1409 else { 1410 std::string ReadWriteQual("__read_write"); 1411 std::string::size_type ReadWritePos = TyName.find(ReadWriteQual); 1412 if (ReadWritePos != std::string::npos) 1413 TyName.erase(ReadWritePos, ReadWriteQual.size() + 1); 1414 } 1415 } 1416 } 1417 1418 // Returns the address space id that should be produced to the 1419 // kernel_arg_addr_space metadata. This is always fixed to the ids 1420 // as specified in the SPIR 2.0 specification in order to differentiate 1421 // for example in clGetKernelArgInfo() implementation between the address 1422 // spaces with targets without unique mapping to the OpenCL address spaces 1423 // (basically all single AS CPUs). 1424 static unsigned ArgInfoAddressSpace(LangAS AS) { 1425 switch (AS) { 1426 case LangAS::opencl_global: 1427 return 1; 1428 case LangAS::opencl_constant: 1429 return 2; 1430 case LangAS::opencl_local: 1431 return 3; 1432 case LangAS::opencl_generic: 1433 return 4; // Not in SPIR 2.0 specs. 1434 case LangAS::opencl_global_device: 1435 return 5; 1436 case LangAS::opencl_global_host: 1437 return 6; 1438 default: 1439 return 0; // Assume private. 1440 } 1441 } 1442 1443 void CodeGenModule::GenOpenCLArgMetadata(llvm::Function *Fn, 1444 const FunctionDecl *FD, 1445 CodeGenFunction *CGF) { 1446 assert(((FD && CGF) || (!FD && !CGF)) && 1447 "Incorrect use - FD and CGF should either be both null or not!"); 1448 // Create MDNodes that represent the kernel arg metadata. 1449 // Each MDNode is a list in the form of "key", N number of values which is 1450 // the same number of values as their are kernel arguments. 1451 1452 const PrintingPolicy &Policy = Context.getPrintingPolicy(); 1453 1454 // MDNode for the kernel argument address space qualifiers. 1455 SmallVector<llvm::Metadata *, 8> addressQuals; 1456 1457 // MDNode for the kernel argument access qualifiers (images only). 1458 SmallVector<llvm::Metadata *, 8> accessQuals; 1459 1460 // MDNode for the kernel argument type names. 1461 SmallVector<llvm::Metadata *, 8> argTypeNames; 1462 1463 // MDNode for the kernel argument base type names. 1464 SmallVector<llvm::Metadata *, 8> argBaseTypeNames; 1465 1466 // MDNode for the kernel argument type qualifiers. 1467 SmallVector<llvm::Metadata *, 8> argTypeQuals; 1468 1469 // MDNode for the kernel argument names. 1470 SmallVector<llvm::Metadata *, 8> argNames; 1471 1472 if (FD && CGF) 1473 for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i) { 1474 const ParmVarDecl *parm = FD->getParamDecl(i); 1475 QualType ty = parm->getType(); 1476 std::string typeQuals; 1477 1478 // Get image and pipe access qualifier: 1479 if (ty->isImageType() || ty->isPipeType()) { 1480 const Decl *PDecl = parm; 1481 if (auto *TD = dyn_cast<TypedefType>(ty)) 1482 PDecl = TD->getDecl(); 1483 const OpenCLAccessAttr *A = PDecl->getAttr<OpenCLAccessAttr>(); 1484 if (A && A->isWriteOnly()) 1485 accessQuals.push_back(llvm::MDString::get(VMContext, "write_only")); 1486 else if (A && A->isReadWrite()) 1487 accessQuals.push_back(llvm::MDString::get(VMContext, "read_write")); 1488 else 1489 accessQuals.push_back(llvm::MDString::get(VMContext, "read_only")); 1490 } else 1491 accessQuals.push_back(llvm::MDString::get(VMContext, "none")); 1492 1493 // Get argument name. 1494 argNames.push_back(llvm::MDString::get(VMContext, parm->getName())); 1495 1496 auto getTypeSpelling = [&](QualType Ty) { 1497 auto typeName = Ty.getUnqualifiedType().getAsString(Policy); 1498 1499 if (Ty.isCanonical()) { 1500 StringRef typeNameRef = typeName; 1501 // Turn "unsigned type" to "utype" 1502 if (typeNameRef.consume_front("unsigned ")) 1503 return std::string("u") + typeNameRef.str(); 1504 if (typeNameRef.consume_front("signed ")) 1505 return typeNameRef.str(); 1506 } 1507 1508 return typeName; 1509 }; 1510 1511 if (ty->isPointerType()) { 1512 QualType pointeeTy = ty->getPointeeType(); 1513 1514 // Get address qualifier. 1515 addressQuals.push_back( 1516 llvm::ConstantAsMetadata::get(CGF->Builder.getInt32( 1517 ArgInfoAddressSpace(pointeeTy.getAddressSpace())))); 1518 1519 // Get argument type name. 1520 std::string typeName = getTypeSpelling(pointeeTy) + "*"; 1521 std::string baseTypeName = 1522 getTypeSpelling(pointeeTy.getCanonicalType()) + "*"; 1523 argTypeNames.push_back(llvm::MDString::get(VMContext, typeName)); 1524 argBaseTypeNames.push_back( 1525 llvm::MDString::get(VMContext, baseTypeName)); 1526 1527 // Get argument type qualifiers: 1528 if (ty.isRestrictQualified()) 1529 typeQuals = "restrict"; 1530 if (pointeeTy.isConstQualified() || 1531 (pointeeTy.getAddressSpace() == LangAS::opencl_constant)) 1532 typeQuals += typeQuals.empty() ? "const" : " const"; 1533 if (pointeeTy.isVolatileQualified()) 1534 typeQuals += typeQuals.empty() ? "volatile" : " volatile"; 1535 } else { 1536 uint32_t AddrSpc = 0; 1537 bool isPipe = ty->isPipeType(); 1538 if (ty->isImageType() || isPipe) 1539 AddrSpc = ArgInfoAddressSpace(LangAS::opencl_global); 1540 1541 addressQuals.push_back( 1542 llvm::ConstantAsMetadata::get(CGF->Builder.getInt32(AddrSpc))); 1543 1544 // Get argument type name. 1545 ty = isPipe ? ty->castAs<PipeType>()->getElementType() : ty; 1546 std::string typeName = getTypeSpelling(ty); 1547 std::string baseTypeName = getTypeSpelling(ty.getCanonicalType()); 1548 1549 // Remove access qualifiers on images 1550 // (as they are inseparable from type in clang implementation, 1551 // but OpenCL spec provides a special query to get access qualifier 1552 // via clGetKernelArgInfo with CL_KERNEL_ARG_ACCESS_QUALIFIER): 1553 if (ty->isImageType()) { 1554 removeImageAccessQualifier(typeName); 1555 removeImageAccessQualifier(baseTypeName); 1556 } 1557 1558 argTypeNames.push_back(llvm::MDString::get(VMContext, typeName)); 1559 argBaseTypeNames.push_back( 1560 llvm::MDString::get(VMContext, baseTypeName)); 1561 1562 if (isPipe) 1563 typeQuals = "pipe"; 1564 } 1565 argTypeQuals.push_back(llvm::MDString::get(VMContext, typeQuals)); 1566 } 1567 1568 Fn->setMetadata("kernel_arg_addr_space", 1569 llvm::MDNode::get(VMContext, addressQuals)); 1570 Fn->setMetadata("kernel_arg_access_qual", 1571 llvm::MDNode::get(VMContext, accessQuals)); 1572 Fn->setMetadata("kernel_arg_type", 1573 llvm::MDNode::get(VMContext, argTypeNames)); 1574 Fn->setMetadata("kernel_arg_base_type", 1575 llvm::MDNode::get(VMContext, argBaseTypeNames)); 1576 Fn->setMetadata("kernel_arg_type_qual", 1577 llvm::MDNode::get(VMContext, argTypeQuals)); 1578 if (getCodeGenOpts().EmitOpenCLArgMetadata) 1579 Fn->setMetadata("kernel_arg_name", 1580 llvm::MDNode::get(VMContext, argNames)); 1581 } 1582 1583 /// Determines whether the language options require us to model 1584 /// unwind exceptions. We treat -fexceptions as mandating this 1585 /// except under the fragile ObjC ABI with only ObjC exceptions 1586 /// enabled. This means, for example, that C with -fexceptions 1587 /// enables this. 1588 static bool hasUnwindExceptions(const LangOptions &LangOpts) { 1589 // If exceptions are completely disabled, obviously this is false. 1590 if (!LangOpts.Exceptions) return false; 1591 1592 // If C++ exceptions are enabled, this is true. 1593 if (LangOpts.CXXExceptions) return true; 1594 1595 // If ObjC exceptions are enabled, this depends on the ABI. 1596 if (LangOpts.ObjCExceptions) { 1597 return LangOpts.ObjCRuntime.hasUnwindExceptions(); 1598 } 1599 1600 return true; 1601 } 1602 1603 static bool requiresMemberFunctionPointerTypeMetadata(CodeGenModule &CGM, 1604 const CXXMethodDecl *MD) { 1605 // Check that the type metadata can ever actually be used by a call. 1606 if (!CGM.getCodeGenOpts().LTOUnit || 1607 !CGM.HasHiddenLTOVisibility(MD->getParent())) 1608 return false; 1609 1610 // Only functions whose address can be taken with a member function pointer 1611 // need this sort of type metadata. 1612 return !MD->isStatic() && !MD->isVirtual() && !isa<CXXConstructorDecl>(MD) && 1613 !isa<CXXDestructorDecl>(MD); 1614 } 1615 1616 std::vector<const CXXRecordDecl *> 1617 CodeGenModule::getMostBaseClasses(const CXXRecordDecl *RD) { 1618 llvm::SetVector<const CXXRecordDecl *> MostBases; 1619 1620 std::function<void (const CXXRecordDecl *)> CollectMostBases; 1621 CollectMostBases = [&](const CXXRecordDecl *RD) { 1622 if (RD->getNumBases() == 0) 1623 MostBases.insert(RD); 1624 for (const CXXBaseSpecifier &B : RD->bases()) 1625 CollectMostBases(B.getType()->getAsCXXRecordDecl()); 1626 }; 1627 CollectMostBases(RD); 1628 return MostBases.takeVector(); 1629 } 1630 1631 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D, 1632 llvm::Function *F) { 1633 llvm::AttrBuilder B; 1634 1635 if (CodeGenOpts.UnwindTables) 1636 B.addAttribute(llvm::Attribute::UWTable); 1637 1638 if (CodeGenOpts.StackClashProtector) 1639 B.addAttribute("probe-stack", "inline-asm"); 1640 1641 if (!hasUnwindExceptions(LangOpts)) 1642 B.addAttribute(llvm::Attribute::NoUnwind); 1643 1644 if (!D || !D->hasAttr<NoStackProtectorAttr>()) { 1645 if (LangOpts.getStackProtector() == LangOptions::SSPOn) 1646 B.addAttribute(llvm::Attribute::StackProtect); 1647 else if (LangOpts.getStackProtector() == LangOptions::SSPStrong) 1648 B.addAttribute(llvm::Attribute::StackProtectStrong); 1649 else if (LangOpts.getStackProtector() == LangOptions::SSPReq) 1650 B.addAttribute(llvm::Attribute::StackProtectReq); 1651 } 1652 1653 if (!D) { 1654 // If we don't have a declaration to control inlining, the function isn't 1655 // explicitly marked as alwaysinline for semantic reasons, and inlining is 1656 // disabled, mark the function as noinline. 1657 if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline) && 1658 CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining) 1659 B.addAttribute(llvm::Attribute::NoInline); 1660 1661 F->addAttributes(llvm::AttributeList::FunctionIndex, B); 1662 return; 1663 } 1664 1665 // Track whether we need to add the optnone LLVM attribute, 1666 // starting with the default for this optimization level. 1667 bool ShouldAddOptNone = 1668 !CodeGenOpts.DisableO0ImplyOptNone && CodeGenOpts.OptimizationLevel == 0; 1669 // We can't add optnone in the following cases, it won't pass the verifier. 1670 ShouldAddOptNone &= !D->hasAttr<MinSizeAttr>(); 1671 ShouldAddOptNone &= !D->hasAttr<AlwaysInlineAttr>(); 1672 1673 // Add optnone, but do so only if the function isn't always_inline. 1674 if ((ShouldAddOptNone || D->hasAttr<OptimizeNoneAttr>()) && 1675 !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) { 1676 B.addAttribute(llvm::Attribute::OptimizeNone); 1677 1678 // OptimizeNone implies noinline; we should not be inlining such functions. 1679 B.addAttribute(llvm::Attribute::NoInline); 1680 1681 // We still need to handle naked functions even though optnone subsumes 1682 // much of their semantics. 1683 if (D->hasAttr<NakedAttr>()) 1684 B.addAttribute(llvm::Attribute::Naked); 1685 1686 // OptimizeNone wins over OptimizeForSize and MinSize. 1687 F->removeFnAttr(llvm::Attribute::OptimizeForSize); 1688 F->removeFnAttr(llvm::Attribute::MinSize); 1689 } else if (D->hasAttr<NakedAttr>()) { 1690 // Naked implies noinline: we should not be inlining such functions. 1691 B.addAttribute(llvm::Attribute::Naked); 1692 B.addAttribute(llvm::Attribute::NoInline); 1693 } else if (D->hasAttr<NoDuplicateAttr>()) { 1694 B.addAttribute(llvm::Attribute::NoDuplicate); 1695 } else if (D->hasAttr<NoInlineAttr>() && !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) { 1696 // Add noinline if the function isn't always_inline. 1697 B.addAttribute(llvm::Attribute::NoInline); 1698 } else if (D->hasAttr<AlwaysInlineAttr>() && 1699 !F->hasFnAttribute(llvm::Attribute::NoInline)) { 1700 // (noinline wins over always_inline, and we can't specify both in IR) 1701 B.addAttribute(llvm::Attribute::AlwaysInline); 1702 } else if (CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining) { 1703 // If we're not inlining, then force everything that isn't always_inline to 1704 // carry an explicit noinline attribute. 1705 if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline)) 1706 B.addAttribute(llvm::Attribute::NoInline); 1707 } else { 1708 // Otherwise, propagate the inline hint attribute and potentially use its 1709 // absence to mark things as noinline. 1710 if (auto *FD = dyn_cast<FunctionDecl>(D)) { 1711 // Search function and template pattern redeclarations for inline. 1712 auto CheckForInline = [](const FunctionDecl *FD) { 1713 auto CheckRedeclForInline = [](const FunctionDecl *Redecl) { 1714 return Redecl->isInlineSpecified(); 1715 }; 1716 if (any_of(FD->redecls(), CheckRedeclForInline)) 1717 return true; 1718 const FunctionDecl *Pattern = FD->getTemplateInstantiationPattern(); 1719 if (!Pattern) 1720 return false; 1721 return any_of(Pattern->redecls(), CheckRedeclForInline); 1722 }; 1723 if (CheckForInline(FD)) { 1724 B.addAttribute(llvm::Attribute::InlineHint); 1725 } else if (CodeGenOpts.getInlining() == 1726 CodeGenOptions::OnlyHintInlining && 1727 !FD->isInlined() && 1728 !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) { 1729 B.addAttribute(llvm::Attribute::NoInline); 1730 } 1731 } 1732 } 1733 1734 // Add other optimization related attributes if we are optimizing this 1735 // function. 1736 if (!D->hasAttr<OptimizeNoneAttr>()) { 1737 if (D->hasAttr<ColdAttr>()) { 1738 if (!ShouldAddOptNone) 1739 B.addAttribute(llvm::Attribute::OptimizeForSize); 1740 B.addAttribute(llvm::Attribute::Cold); 1741 } 1742 if (D->hasAttr<HotAttr>()) 1743 B.addAttribute(llvm::Attribute::Hot); 1744 if (D->hasAttr<MinSizeAttr>()) 1745 B.addAttribute(llvm::Attribute::MinSize); 1746 } 1747 1748 F->addAttributes(llvm::AttributeList::FunctionIndex, B); 1749 1750 unsigned alignment = D->getMaxAlignment() / Context.getCharWidth(); 1751 if (alignment) 1752 F->setAlignment(llvm::Align(alignment)); 1753 1754 if (!D->hasAttr<AlignedAttr>()) 1755 if (LangOpts.FunctionAlignment) 1756 F->setAlignment(llvm::Align(1ull << LangOpts.FunctionAlignment)); 1757 1758 // Some C++ ABIs require 2-byte alignment for member functions, in order to 1759 // reserve a bit for differentiating between virtual and non-virtual member 1760 // functions. If the current target's C++ ABI requires this and this is a 1761 // member function, set its alignment accordingly. 1762 if (getTarget().getCXXABI().areMemberFunctionsAligned()) { 1763 if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D)) 1764 F->setAlignment(llvm::Align(2)); 1765 } 1766 1767 // In the cross-dso CFI mode with canonical jump tables, we want !type 1768 // attributes on definitions only. 1769 if (CodeGenOpts.SanitizeCfiCrossDso && 1770 CodeGenOpts.SanitizeCfiCanonicalJumpTables) { 1771 if (auto *FD = dyn_cast<FunctionDecl>(D)) { 1772 // Skip available_externally functions. They won't be codegen'ed in the 1773 // current module anyway. 1774 if (getContext().GetGVALinkageForFunction(FD) != GVA_AvailableExternally) 1775 CreateFunctionTypeMetadataForIcall(FD, F); 1776 } 1777 } 1778 1779 // Emit type metadata on member functions for member function pointer checks. 1780 // These are only ever necessary on definitions; we're guaranteed that the 1781 // definition will be present in the LTO unit as a result of LTO visibility. 1782 auto *MD = dyn_cast<CXXMethodDecl>(D); 1783 if (MD && requiresMemberFunctionPointerTypeMetadata(*this, MD)) { 1784 for (const CXXRecordDecl *Base : getMostBaseClasses(MD->getParent())) { 1785 llvm::Metadata *Id = 1786 CreateMetadataIdentifierForType(Context.getMemberPointerType( 1787 MD->getType(), Context.getRecordType(Base).getTypePtr())); 1788 F->addTypeMetadata(0, Id); 1789 } 1790 } 1791 } 1792 1793 void CodeGenModule::setLLVMFunctionFEnvAttributes(const FunctionDecl *D, 1794 llvm::Function *F) { 1795 if (D->hasAttr<StrictFPAttr>()) { 1796 llvm::AttrBuilder FuncAttrs; 1797 FuncAttrs.addAttribute("strictfp"); 1798 F->addAttributes(llvm::AttributeList::FunctionIndex, FuncAttrs); 1799 } 1800 } 1801 1802 void CodeGenModule::SetCommonAttributes(GlobalDecl GD, llvm::GlobalValue *GV) { 1803 const Decl *D = GD.getDecl(); 1804 if (dyn_cast_or_null<NamedDecl>(D)) 1805 setGVProperties(GV, GD); 1806 else 1807 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 1808 1809 if (D && D->hasAttr<UsedAttr>()) 1810 addUsedGlobal(GV); 1811 1812 if (CodeGenOpts.KeepStaticConsts && D && isa<VarDecl>(D)) { 1813 const auto *VD = cast<VarDecl>(D); 1814 if (VD->getType().isConstQualified() && 1815 VD->getStorageDuration() == SD_Static) 1816 addUsedGlobal(GV); 1817 } 1818 } 1819 1820 bool CodeGenModule::GetCPUAndFeaturesAttributes(GlobalDecl GD, 1821 llvm::AttrBuilder &Attrs) { 1822 // Add target-cpu and target-features attributes to functions. If 1823 // we have a decl for the function and it has a target attribute then 1824 // parse that and add it to the feature set. 1825 StringRef TargetCPU = getTarget().getTargetOpts().CPU; 1826 StringRef TuneCPU = getTarget().getTargetOpts().TuneCPU; 1827 std::vector<std::string> Features; 1828 const auto *FD = dyn_cast_or_null<FunctionDecl>(GD.getDecl()); 1829 FD = FD ? FD->getMostRecentDecl() : FD; 1830 const auto *TD = FD ? FD->getAttr<TargetAttr>() : nullptr; 1831 const auto *SD = FD ? FD->getAttr<CPUSpecificAttr>() : nullptr; 1832 bool AddedAttr = false; 1833 if (TD || SD) { 1834 llvm::StringMap<bool> FeatureMap; 1835 getContext().getFunctionFeatureMap(FeatureMap, GD); 1836 1837 // Produce the canonical string for this set of features. 1838 for (const llvm::StringMap<bool>::value_type &Entry : FeatureMap) 1839 Features.push_back((Entry.getValue() ? "+" : "-") + Entry.getKey().str()); 1840 1841 // Now add the target-cpu and target-features to the function. 1842 // While we populated the feature map above, we still need to 1843 // get and parse the target attribute so we can get the cpu for 1844 // the function. 1845 if (TD) { 1846 ParsedTargetAttr ParsedAttr = TD->parse(); 1847 if (!ParsedAttr.Architecture.empty() && 1848 getTarget().isValidCPUName(ParsedAttr.Architecture)) { 1849 TargetCPU = ParsedAttr.Architecture; 1850 TuneCPU = ""; // Clear the tune CPU. 1851 } 1852 if (!ParsedAttr.Tune.empty() && 1853 getTarget().isValidCPUName(ParsedAttr.Tune)) 1854 TuneCPU = ParsedAttr.Tune; 1855 } 1856 } else { 1857 // Otherwise just add the existing target cpu and target features to the 1858 // function. 1859 Features = getTarget().getTargetOpts().Features; 1860 } 1861 1862 if (!TargetCPU.empty()) { 1863 Attrs.addAttribute("target-cpu", TargetCPU); 1864 AddedAttr = true; 1865 } 1866 if (!TuneCPU.empty()) { 1867 Attrs.addAttribute("tune-cpu", TuneCPU); 1868 AddedAttr = true; 1869 } 1870 if (!Features.empty()) { 1871 llvm::sort(Features); 1872 Attrs.addAttribute("target-features", llvm::join(Features, ",")); 1873 AddedAttr = true; 1874 } 1875 1876 return AddedAttr; 1877 } 1878 1879 void CodeGenModule::setNonAliasAttributes(GlobalDecl GD, 1880 llvm::GlobalObject *GO) { 1881 const Decl *D = GD.getDecl(); 1882 SetCommonAttributes(GD, GO); 1883 1884 if (D) { 1885 if (auto *GV = dyn_cast<llvm::GlobalVariable>(GO)) { 1886 if (auto *SA = D->getAttr<PragmaClangBSSSectionAttr>()) 1887 GV->addAttribute("bss-section", SA->getName()); 1888 if (auto *SA = D->getAttr<PragmaClangDataSectionAttr>()) 1889 GV->addAttribute("data-section", SA->getName()); 1890 if (auto *SA = D->getAttr<PragmaClangRodataSectionAttr>()) 1891 GV->addAttribute("rodata-section", SA->getName()); 1892 if (auto *SA = D->getAttr<PragmaClangRelroSectionAttr>()) 1893 GV->addAttribute("relro-section", SA->getName()); 1894 } 1895 1896 if (auto *F = dyn_cast<llvm::Function>(GO)) { 1897 if (auto *SA = D->getAttr<PragmaClangTextSectionAttr>()) 1898 if (!D->getAttr<SectionAttr>()) 1899 F->addFnAttr("implicit-section-name", SA->getName()); 1900 1901 llvm::AttrBuilder Attrs; 1902 if (GetCPUAndFeaturesAttributes(GD, Attrs)) { 1903 // We know that GetCPUAndFeaturesAttributes will always have the 1904 // newest set, since it has the newest possible FunctionDecl, so the 1905 // new ones should replace the old. 1906 llvm::AttrBuilder RemoveAttrs; 1907 RemoveAttrs.addAttribute("target-cpu"); 1908 RemoveAttrs.addAttribute("target-features"); 1909 RemoveAttrs.addAttribute("tune-cpu"); 1910 F->removeAttributes(llvm::AttributeList::FunctionIndex, RemoveAttrs); 1911 F->addAttributes(llvm::AttributeList::FunctionIndex, Attrs); 1912 } 1913 } 1914 1915 if (const auto *CSA = D->getAttr<CodeSegAttr>()) 1916 GO->setSection(CSA->getName()); 1917 else if (const auto *SA = D->getAttr<SectionAttr>()) 1918 GO->setSection(SA->getName()); 1919 } 1920 1921 getTargetCodeGenInfo().setTargetAttributes(D, GO, *this); 1922 } 1923 1924 void CodeGenModule::SetInternalFunctionAttributes(GlobalDecl GD, 1925 llvm::Function *F, 1926 const CGFunctionInfo &FI) { 1927 const Decl *D = GD.getDecl(); 1928 SetLLVMFunctionAttributes(GD, FI, F); 1929 SetLLVMFunctionAttributesForDefinition(D, F); 1930 1931 F->setLinkage(llvm::Function::InternalLinkage); 1932 1933 setNonAliasAttributes(GD, F); 1934 } 1935 1936 static void setLinkageForGV(llvm::GlobalValue *GV, const NamedDecl *ND) { 1937 // Set linkage and visibility in case we never see a definition. 1938 LinkageInfo LV = ND->getLinkageAndVisibility(); 1939 // Don't set internal linkage on declarations. 1940 // "extern_weak" is overloaded in LLVM; we probably should have 1941 // separate linkage types for this. 1942 if (isExternallyVisible(LV.getLinkage()) && 1943 (ND->hasAttr<WeakAttr>() || ND->isWeakImported())) 1944 GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage); 1945 } 1946 1947 void CodeGenModule::CreateFunctionTypeMetadataForIcall(const FunctionDecl *FD, 1948 llvm::Function *F) { 1949 // Only if we are checking indirect calls. 1950 if (!LangOpts.Sanitize.has(SanitizerKind::CFIICall)) 1951 return; 1952 1953 // Non-static class methods are handled via vtable or member function pointer 1954 // checks elsewhere. 1955 if (isa<CXXMethodDecl>(FD) && !cast<CXXMethodDecl>(FD)->isStatic()) 1956 return; 1957 1958 llvm::Metadata *MD = CreateMetadataIdentifierForType(FD->getType()); 1959 F->addTypeMetadata(0, MD); 1960 F->addTypeMetadata(0, CreateMetadataIdentifierGeneralized(FD->getType())); 1961 1962 // Emit a hash-based bit set entry for cross-DSO calls. 1963 if (CodeGenOpts.SanitizeCfiCrossDso) 1964 if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD)) 1965 F->addTypeMetadata(0, llvm::ConstantAsMetadata::get(CrossDsoTypeId)); 1966 } 1967 1968 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD, llvm::Function *F, 1969 bool IsIncompleteFunction, 1970 bool IsThunk) { 1971 1972 if (llvm::Intrinsic::ID IID = F->getIntrinsicID()) { 1973 // If this is an intrinsic function, set the function's attributes 1974 // to the intrinsic's attributes. 1975 F->setAttributes(llvm::Intrinsic::getAttributes(getLLVMContext(), IID)); 1976 return; 1977 } 1978 1979 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 1980 1981 if (!IsIncompleteFunction) 1982 SetLLVMFunctionAttributes(GD, getTypes().arrangeGlobalDeclaration(GD), F); 1983 1984 // Add the Returned attribute for "this", except for iOS 5 and earlier 1985 // where substantial code, including the libstdc++ dylib, was compiled with 1986 // GCC and does not actually return "this". 1987 if (!IsThunk && getCXXABI().HasThisReturn(GD) && 1988 !(getTriple().isiOS() && getTriple().isOSVersionLT(6))) { 1989 assert(!F->arg_empty() && 1990 F->arg_begin()->getType() 1991 ->canLosslesslyBitCastTo(F->getReturnType()) && 1992 "unexpected this return"); 1993 F->addAttribute(1, llvm::Attribute::Returned); 1994 } 1995 1996 // Only a few attributes are set on declarations; these may later be 1997 // overridden by a definition. 1998 1999 setLinkageForGV(F, FD); 2000 setGVProperties(F, FD); 2001 2002 // Setup target-specific attributes. 2003 if (!IsIncompleteFunction && F->isDeclaration()) 2004 getTargetCodeGenInfo().setTargetAttributes(FD, F, *this); 2005 2006 if (const auto *CSA = FD->getAttr<CodeSegAttr>()) 2007 F->setSection(CSA->getName()); 2008 else if (const auto *SA = FD->getAttr<SectionAttr>()) 2009 F->setSection(SA->getName()); 2010 2011 // If we plan on emitting this inline builtin, we can't treat it as a builtin. 2012 if (FD->isInlineBuiltinDeclaration()) { 2013 const FunctionDecl *FDBody; 2014 bool HasBody = FD->hasBody(FDBody); 2015 (void)HasBody; 2016 assert(HasBody && "Inline builtin declarations should always have an " 2017 "available body!"); 2018 if (shouldEmitFunction(FDBody)) 2019 F->addAttribute(llvm::AttributeList::FunctionIndex, 2020 llvm::Attribute::NoBuiltin); 2021 } 2022 2023 if (FD->isReplaceableGlobalAllocationFunction()) { 2024 // A replaceable global allocation function does not act like a builtin by 2025 // default, only if it is invoked by a new-expression or delete-expression. 2026 F->addAttribute(llvm::AttributeList::FunctionIndex, 2027 llvm::Attribute::NoBuiltin); 2028 } 2029 2030 if (isa<CXXConstructorDecl>(FD) || isa<CXXDestructorDecl>(FD)) 2031 F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 2032 else if (const auto *MD = dyn_cast<CXXMethodDecl>(FD)) 2033 if (MD->isVirtual()) 2034 F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 2035 2036 // Don't emit entries for function declarations in the cross-DSO mode. This 2037 // is handled with better precision by the receiving DSO. But if jump tables 2038 // are non-canonical then we need type metadata in order to produce the local 2039 // jump table. 2040 if (!CodeGenOpts.SanitizeCfiCrossDso || 2041 !CodeGenOpts.SanitizeCfiCanonicalJumpTables) 2042 CreateFunctionTypeMetadataForIcall(FD, F); 2043 2044 if (getLangOpts().OpenMP && FD->hasAttr<OMPDeclareSimdDeclAttr>()) 2045 getOpenMPRuntime().emitDeclareSimdFunction(FD, F); 2046 2047 if (const auto *CB = FD->getAttr<CallbackAttr>()) { 2048 // Annotate the callback behavior as metadata: 2049 // - The callback callee (as argument number). 2050 // - The callback payloads (as argument numbers). 2051 llvm::LLVMContext &Ctx = F->getContext(); 2052 llvm::MDBuilder MDB(Ctx); 2053 2054 // The payload indices are all but the first one in the encoding. The first 2055 // identifies the callback callee. 2056 int CalleeIdx = *CB->encoding_begin(); 2057 ArrayRef<int> PayloadIndices(CB->encoding_begin() + 1, CB->encoding_end()); 2058 F->addMetadata(llvm::LLVMContext::MD_callback, 2059 *llvm::MDNode::get(Ctx, {MDB.createCallbackEncoding( 2060 CalleeIdx, PayloadIndices, 2061 /* VarArgsArePassed */ false)})); 2062 } 2063 } 2064 2065 void CodeGenModule::addUsedGlobal(llvm::GlobalValue *GV) { 2066 assert((isa<llvm::Function>(GV) || !GV->isDeclaration()) && 2067 "Only globals with definition can force usage."); 2068 LLVMUsed.emplace_back(GV); 2069 } 2070 2071 void CodeGenModule::addCompilerUsedGlobal(llvm::GlobalValue *GV) { 2072 assert(!GV->isDeclaration() && 2073 "Only globals with definition can force usage."); 2074 LLVMCompilerUsed.emplace_back(GV); 2075 } 2076 2077 static void emitUsed(CodeGenModule &CGM, StringRef Name, 2078 std::vector<llvm::WeakTrackingVH> &List) { 2079 // Don't create llvm.used if there is no need. 2080 if (List.empty()) 2081 return; 2082 2083 // Convert List to what ConstantArray needs. 2084 SmallVector<llvm::Constant*, 8> UsedArray; 2085 UsedArray.resize(List.size()); 2086 for (unsigned i = 0, e = List.size(); i != e; ++i) { 2087 UsedArray[i] = 2088 llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast( 2089 cast<llvm::Constant>(&*List[i]), CGM.Int8PtrTy); 2090 } 2091 2092 if (UsedArray.empty()) 2093 return; 2094 llvm::ArrayType *ATy = llvm::ArrayType::get(CGM.Int8PtrTy, UsedArray.size()); 2095 2096 auto *GV = new llvm::GlobalVariable( 2097 CGM.getModule(), ATy, false, llvm::GlobalValue::AppendingLinkage, 2098 llvm::ConstantArray::get(ATy, UsedArray), Name); 2099 2100 GV->setSection("llvm.metadata"); 2101 } 2102 2103 void CodeGenModule::emitLLVMUsed() { 2104 emitUsed(*this, "llvm.used", LLVMUsed); 2105 emitUsed(*this, "llvm.compiler.used", LLVMCompilerUsed); 2106 } 2107 2108 void CodeGenModule::AppendLinkerOptions(StringRef Opts) { 2109 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opts); 2110 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 2111 } 2112 2113 void CodeGenModule::AddDetectMismatch(StringRef Name, StringRef Value) { 2114 llvm::SmallString<32> Opt; 2115 getTargetCodeGenInfo().getDetectMismatchOption(Name, Value, Opt); 2116 if (Opt.empty()) 2117 return; 2118 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt); 2119 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 2120 } 2121 2122 void CodeGenModule::AddDependentLib(StringRef Lib) { 2123 auto &C = getLLVMContext(); 2124 if (getTarget().getTriple().isOSBinFormatELF()) { 2125 ELFDependentLibraries.push_back( 2126 llvm::MDNode::get(C, llvm::MDString::get(C, Lib))); 2127 return; 2128 } 2129 2130 llvm::SmallString<24> Opt; 2131 getTargetCodeGenInfo().getDependentLibraryOption(Lib, Opt); 2132 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt); 2133 LinkerOptionsMetadata.push_back(llvm::MDNode::get(C, MDOpts)); 2134 } 2135 2136 /// Add link options implied by the given module, including modules 2137 /// it depends on, using a postorder walk. 2138 static void addLinkOptionsPostorder(CodeGenModule &CGM, Module *Mod, 2139 SmallVectorImpl<llvm::MDNode *> &Metadata, 2140 llvm::SmallPtrSet<Module *, 16> &Visited) { 2141 // Import this module's parent. 2142 if (Mod->Parent && Visited.insert(Mod->Parent).second) { 2143 addLinkOptionsPostorder(CGM, Mod->Parent, Metadata, Visited); 2144 } 2145 2146 // Import this module's dependencies. 2147 for (unsigned I = Mod->Imports.size(); I > 0; --I) { 2148 if (Visited.insert(Mod->Imports[I - 1]).second) 2149 addLinkOptionsPostorder(CGM, Mod->Imports[I-1], Metadata, Visited); 2150 } 2151 2152 // Add linker options to link against the libraries/frameworks 2153 // described by this module. 2154 llvm::LLVMContext &Context = CGM.getLLVMContext(); 2155 bool IsELF = CGM.getTarget().getTriple().isOSBinFormatELF(); 2156 2157 // For modules that use export_as for linking, use that module 2158 // name instead. 2159 if (Mod->UseExportAsModuleLinkName) 2160 return; 2161 2162 for (unsigned I = Mod->LinkLibraries.size(); I > 0; --I) { 2163 // Link against a framework. Frameworks are currently Darwin only, so we 2164 // don't to ask TargetCodeGenInfo for the spelling of the linker option. 2165 if (Mod->LinkLibraries[I-1].IsFramework) { 2166 llvm::Metadata *Args[2] = { 2167 llvm::MDString::get(Context, "-framework"), 2168 llvm::MDString::get(Context, Mod->LinkLibraries[I - 1].Library)}; 2169 2170 Metadata.push_back(llvm::MDNode::get(Context, Args)); 2171 continue; 2172 } 2173 2174 // Link against a library. 2175 if (IsELF) { 2176 llvm::Metadata *Args[2] = { 2177 llvm::MDString::get(Context, "lib"), 2178 llvm::MDString::get(Context, Mod->LinkLibraries[I - 1].Library), 2179 }; 2180 Metadata.push_back(llvm::MDNode::get(Context, Args)); 2181 } else { 2182 llvm::SmallString<24> Opt; 2183 CGM.getTargetCodeGenInfo().getDependentLibraryOption( 2184 Mod->LinkLibraries[I - 1].Library, Opt); 2185 auto *OptString = llvm::MDString::get(Context, Opt); 2186 Metadata.push_back(llvm::MDNode::get(Context, OptString)); 2187 } 2188 } 2189 } 2190 2191 void CodeGenModule::EmitModuleLinkOptions() { 2192 // Collect the set of all of the modules we want to visit to emit link 2193 // options, which is essentially the imported modules and all of their 2194 // non-explicit child modules. 2195 llvm::SetVector<clang::Module *> LinkModules; 2196 llvm::SmallPtrSet<clang::Module *, 16> Visited; 2197 SmallVector<clang::Module *, 16> Stack; 2198 2199 // Seed the stack with imported modules. 2200 for (Module *M : ImportedModules) { 2201 // Do not add any link flags when an implementation TU of a module imports 2202 // a header of that same module. 2203 if (M->getTopLevelModuleName() == getLangOpts().CurrentModule && 2204 !getLangOpts().isCompilingModule()) 2205 continue; 2206 if (Visited.insert(M).second) 2207 Stack.push_back(M); 2208 } 2209 2210 // Find all of the modules to import, making a little effort to prune 2211 // non-leaf modules. 2212 while (!Stack.empty()) { 2213 clang::Module *Mod = Stack.pop_back_val(); 2214 2215 bool AnyChildren = false; 2216 2217 // Visit the submodules of this module. 2218 for (const auto &SM : Mod->submodules()) { 2219 // Skip explicit children; they need to be explicitly imported to be 2220 // linked against. 2221 if (SM->IsExplicit) 2222 continue; 2223 2224 if (Visited.insert(SM).second) { 2225 Stack.push_back(SM); 2226 AnyChildren = true; 2227 } 2228 } 2229 2230 // We didn't find any children, so add this module to the list of 2231 // modules to link against. 2232 if (!AnyChildren) { 2233 LinkModules.insert(Mod); 2234 } 2235 } 2236 2237 // Add link options for all of the imported modules in reverse topological 2238 // order. We don't do anything to try to order import link flags with respect 2239 // to linker options inserted by things like #pragma comment(). 2240 SmallVector<llvm::MDNode *, 16> MetadataArgs; 2241 Visited.clear(); 2242 for (Module *M : LinkModules) 2243 if (Visited.insert(M).second) 2244 addLinkOptionsPostorder(*this, M, MetadataArgs, Visited); 2245 std::reverse(MetadataArgs.begin(), MetadataArgs.end()); 2246 LinkerOptionsMetadata.append(MetadataArgs.begin(), MetadataArgs.end()); 2247 2248 // Add the linker options metadata flag. 2249 auto *NMD = getModule().getOrInsertNamedMetadata("llvm.linker.options"); 2250 for (auto *MD : LinkerOptionsMetadata) 2251 NMD->addOperand(MD); 2252 } 2253 2254 void CodeGenModule::EmitDeferred() { 2255 // Emit deferred declare target declarations. 2256 if (getLangOpts().OpenMP && !getLangOpts().OpenMPSimd) 2257 getOpenMPRuntime().emitDeferredTargetDecls(); 2258 2259 // Emit code for any potentially referenced deferred decls. Since a 2260 // previously unused static decl may become used during the generation of code 2261 // for a static function, iterate until no changes are made. 2262 2263 if (!DeferredVTables.empty()) { 2264 EmitDeferredVTables(); 2265 2266 // Emitting a vtable doesn't directly cause more vtables to 2267 // become deferred, although it can cause functions to be 2268 // emitted that then need those vtables. 2269 assert(DeferredVTables.empty()); 2270 } 2271 2272 // Emit CUDA/HIP static device variables referenced by host code only. 2273 if (getLangOpts().CUDA) 2274 for (auto V : getContext().CUDAStaticDeviceVarReferencedByHost) 2275 DeferredDeclsToEmit.push_back(V); 2276 2277 // Stop if we're out of both deferred vtables and deferred declarations. 2278 if (DeferredDeclsToEmit.empty()) 2279 return; 2280 2281 // Grab the list of decls to emit. If EmitGlobalDefinition schedules more 2282 // work, it will not interfere with this. 2283 std::vector<GlobalDecl> CurDeclsToEmit; 2284 CurDeclsToEmit.swap(DeferredDeclsToEmit); 2285 2286 for (GlobalDecl &D : CurDeclsToEmit) { 2287 // We should call GetAddrOfGlobal with IsForDefinition set to true in order 2288 // to get GlobalValue with exactly the type we need, not something that 2289 // might had been created for another decl with the same mangled name but 2290 // different type. 2291 llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>( 2292 GetAddrOfGlobal(D, ForDefinition)); 2293 2294 // In case of different address spaces, we may still get a cast, even with 2295 // IsForDefinition equal to true. Query mangled names table to get 2296 // GlobalValue. 2297 if (!GV) 2298 GV = GetGlobalValue(getMangledName(D)); 2299 2300 // Make sure GetGlobalValue returned non-null. 2301 assert(GV); 2302 2303 // Check to see if we've already emitted this. This is necessary 2304 // for a couple of reasons: first, decls can end up in the 2305 // deferred-decls queue multiple times, and second, decls can end 2306 // up with definitions in unusual ways (e.g. by an extern inline 2307 // function acquiring a strong function redefinition). Just 2308 // ignore these cases. 2309 if (!GV->isDeclaration()) 2310 continue; 2311 2312 // If this is OpenMP, check if it is legal to emit this global normally. 2313 if (LangOpts.OpenMP && OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(D)) 2314 continue; 2315 2316 // Otherwise, emit the definition and move on to the next one. 2317 EmitGlobalDefinition(D, GV); 2318 2319 // If we found out that we need to emit more decls, do that recursively. 2320 // This has the advantage that the decls are emitted in a DFS and related 2321 // ones are close together, which is convenient for testing. 2322 if (!DeferredVTables.empty() || !DeferredDeclsToEmit.empty()) { 2323 EmitDeferred(); 2324 assert(DeferredVTables.empty() && DeferredDeclsToEmit.empty()); 2325 } 2326 } 2327 } 2328 2329 void CodeGenModule::EmitVTablesOpportunistically() { 2330 // Try to emit external vtables as available_externally if they have emitted 2331 // all inlined virtual functions. It runs after EmitDeferred() and therefore 2332 // is not allowed to create new references to things that need to be emitted 2333 // lazily. Note that it also uses fact that we eagerly emitting RTTI. 2334 2335 assert((OpportunisticVTables.empty() || shouldOpportunisticallyEmitVTables()) 2336 && "Only emit opportunistic vtables with optimizations"); 2337 2338 for (const CXXRecordDecl *RD : OpportunisticVTables) { 2339 assert(getVTables().isVTableExternal(RD) && 2340 "This queue should only contain external vtables"); 2341 if (getCXXABI().canSpeculativelyEmitVTable(RD)) 2342 VTables.GenerateClassData(RD); 2343 } 2344 OpportunisticVTables.clear(); 2345 } 2346 2347 void CodeGenModule::EmitGlobalAnnotations() { 2348 if (Annotations.empty()) 2349 return; 2350 2351 // Create a new global variable for the ConstantStruct in the Module. 2352 llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get( 2353 Annotations[0]->getType(), Annotations.size()), Annotations); 2354 auto *gv = new llvm::GlobalVariable(getModule(), Array->getType(), false, 2355 llvm::GlobalValue::AppendingLinkage, 2356 Array, "llvm.global.annotations"); 2357 gv->setSection(AnnotationSection); 2358 } 2359 2360 llvm::Constant *CodeGenModule::EmitAnnotationString(StringRef Str) { 2361 llvm::Constant *&AStr = AnnotationStrings[Str]; 2362 if (AStr) 2363 return AStr; 2364 2365 // Not found yet, create a new global. 2366 llvm::Constant *s = llvm::ConstantDataArray::getString(getLLVMContext(), Str); 2367 auto *gv = 2368 new llvm::GlobalVariable(getModule(), s->getType(), true, 2369 llvm::GlobalValue::PrivateLinkage, s, ".str"); 2370 gv->setSection(AnnotationSection); 2371 gv->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 2372 AStr = gv; 2373 return gv; 2374 } 2375 2376 llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) { 2377 SourceManager &SM = getContext().getSourceManager(); 2378 PresumedLoc PLoc = SM.getPresumedLoc(Loc); 2379 if (PLoc.isValid()) 2380 return EmitAnnotationString(PLoc.getFilename()); 2381 return EmitAnnotationString(SM.getBufferName(Loc)); 2382 } 2383 2384 llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) { 2385 SourceManager &SM = getContext().getSourceManager(); 2386 PresumedLoc PLoc = SM.getPresumedLoc(L); 2387 unsigned LineNo = PLoc.isValid() ? PLoc.getLine() : 2388 SM.getExpansionLineNumber(L); 2389 return llvm::ConstantInt::get(Int32Ty, LineNo); 2390 } 2391 2392 llvm::Constant *CodeGenModule::EmitAnnotationArgs(const AnnotateAttr *Attr) { 2393 ArrayRef<Expr *> Exprs = {Attr->args_begin(), Attr->args_size()}; 2394 if (Exprs.empty()) 2395 return llvm::ConstantPointerNull::get(Int8PtrTy); 2396 2397 llvm::FoldingSetNodeID ID; 2398 for (Expr *E : Exprs) { 2399 ID.Add(cast<clang::ConstantExpr>(E)->getAPValueResult()); 2400 } 2401 llvm::Constant *&Lookup = AnnotationArgs[ID.ComputeHash()]; 2402 if (Lookup) 2403 return Lookup; 2404 2405 llvm::SmallVector<llvm::Constant *, 4> LLVMArgs; 2406 LLVMArgs.reserve(Exprs.size()); 2407 ConstantEmitter ConstEmiter(*this); 2408 llvm::transform(Exprs, std::back_inserter(LLVMArgs), [&](const Expr *E) { 2409 const auto *CE = cast<clang::ConstantExpr>(E); 2410 return ConstEmiter.emitAbstract(CE->getBeginLoc(), CE->getAPValueResult(), 2411 CE->getType()); 2412 }); 2413 auto *Struct = llvm::ConstantStruct::getAnon(LLVMArgs); 2414 auto *GV = new llvm::GlobalVariable(getModule(), Struct->getType(), true, 2415 llvm::GlobalValue::PrivateLinkage, Struct, 2416 ".args"); 2417 GV->setSection(AnnotationSection); 2418 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 2419 auto *Bitcasted = llvm::ConstantExpr::getBitCast(GV, Int8PtrTy); 2420 2421 Lookup = Bitcasted; 2422 return Bitcasted; 2423 } 2424 2425 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV, 2426 const AnnotateAttr *AA, 2427 SourceLocation L) { 2428 // Get the globals for file name, annotation, and the line number. 2429 llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()), 2430 *UnitGV = EmitAnnotationUnit(L), 2431 *LineNoCst = EmitAnnotationLineNo(L), 2432 *Args = EmitAnnotationArgs(AA); 2433 2434 llvm::Constant *ASZeroGV = GV; 2435 if (GV->getAddressSpace() != 0) { 2436 ASZeroGV = llvm::ConstantExpr::getAddrSpaceCast( 2437 GV, GV->getValueType()->getPointerTo(0)); 2438 } 2439 2440 // Create the ConstantStruct for the global annotation. 2441 llvm::Constant *Fields[] = { 2442 llvm::ConstantExpr::getBitCast(ASZeroGV, Int8PtrTy), 2443 llvm::ConstantExpr::getBitCast(AnnoGV, Int8PtrTy), 2444 llvm::ConstantExpr::getBitCast(UnitGV, Int8PtrTy), 2445 LineNoCst, 2446 Args, 2447 }; 2448 return llvm::ConstantStruct::getAnon(Fields); 2449 } 2450 2451 void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D, 2452 llvm::GlobalValue *GV) { 2453 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 2454 // Get the struct elements for these annotations. 2455 for (const auto *I : D->specific_attrs<AnnotateAttr>()) 2456 Annotations.push_back(EmitAnnotateAttr(GV, I, D->getLocation())); 2457 } 2458 2459 bool CodeGenModule::isInSanitizerBlacklist(SanitizerMask Kind, 2460 llvm::Function *Fn, 2461 SourceLocation Loc) const { 2462 const auto &SanitizerBL = getContext().getSanitizerBlacklist(); 2463 // Blacklist by function name. 2464 if (SanitizerBL.isBlacklistedFunction(Kind, Fn->getName())) 2465 return true; 2466 // Blacklist by location. 2467 if (Loc.isValid()) 2468 return SanitizerBL.isBlacklistedLocation(Kind, Loc); 2469 // If location is unknown, this may be a compiler-generated function. Assume 2470 // it's located in the main file. 2471 auto &SM = Context.getSourceManager(); 2472 if (const auto *MainFile = SM.getFileEntryForID(SM.getMainFileID())) { 2473 return SanitizerBL.isBlacklistedFile(Kind, MainFile->getName()); 2474 } 2475 return false; 2476 } 2477 2478 bool CodeGenModule::isInSanitizerBlacklist(llvm::GlobalVariable *GV, 2479 SourceLocation Loc, QualType Ty, 2480 StringRef Category) const { 2481 // For now globals can be blacklisted only in ASan and KASan. 2482 const SanitizerMask EnabledAsanMask = 2483 LangOpts.Sanitize.Mask & 2484 (SanitizerKind::Address | SanitizerKind::KernelAddress | 2485 SanitizerKind::HWAddress | SanitizerKind::KernelHWAddress | 2486 SanitizerKind::MemTag); 2487 if (!EnabledAsanMask) 2488 return false; 2489 const auto &SanitizerBL = getContext().getSanitizerBlacklist(); 2490 if (SanitizerBL.isBlacklistedGlobal(EnabledAsanMask, GV->getName(), Category)) 2491 return true; 2492 if (SanitizerBL.isBlacklistedLocation(EnabledAsanMask, Loc, Category)) 2493 return true; 2494 // Check global type. 2495 if (!Ty.isNull()) { 2496 // Drill down the array types: if global variable of a fixed type is 2497 // blacklisted, we also don't instrument arrays of them. 2498 while (auto AT = dyn_cast<ArrayType>(Ty.getTypePtr())) 2499 Ty = AT->getElementType(); 2500 Ty = Ty.getCanonicalType().getUnqualifiedType(); 2501 // We allow to blacklist only record types (classes, structs etc.) 2502 if (Ty->isRecordType()) { 2503 std::string TypeStr = Ty.getAsString(getContext().getPrintingPolicy()); 2504 if (SanitizerBL.isBlacklistedType(EnabledAsanMask, TypeStr, Category)) 2505 return true; 2506 } 2507 } 2508 return false; 2509 } 2510 2511 bool CodeGenModule::imbueXRayAttrs(llvm::Function *Fn, SourceLocation Loc, 2512 StringRef Category) const { 2513 const auto &XRayFilter = getContext().getXRayFilter(); 2514 using ImbueAttr = XRayFunctionFilter::ImbueAttribute; 2515 auto Attr = ImbueAttr::NONE; 2516 if (Loc.isValid()) 2517 Attr = XRayFilter.shouldImbueLocation(Loc, Category); 2518 if (Attr == ImbueAttr::NONE) 2519 Attr = XRayFilter.shouldImbueFunction(Fn->getName()); 2520 switch (Attr) { 2521 case ImbueAttr::NONE: 2522 return false; 2523 case ImbueAttr::ALWAYS: 2524 Fn->addFnAttr("function-instrument", "xray-always"); 2525 break; 2526 case ImbueAttr::ALWAYS_ARG1: 2527 Fn->addFnAttr("function-instrument", "xray-always"); 2528 Fn->addFnAttr("xray-log-args", "1"); 2529 break; 2530 case ImbueAttr::NEVER: 2531 Fn->addFnAttr("function-instrument", "xray-never"); 2532 break; 2533 } 2534 return true; 2535 } 2536 2537 bool CodeGenModule::isProfileInstrExcluded(llvm::Function *Fn, 2538 SourceLocation Loc) const { 2539 const auto &ProfileList = getContext().getProfileList(); 2540 // If the profile list is empty, then instrument everything. 2541 if (ProfileList.isEmpty()) 2542 return false; 2543 CodeGenOptions::ProfileInstrKind Kind = getCodeGenOpts().getProfileInstr(); 2544 // First, check the function name. 2545 Optional<bool> V = ProfileList.isFunctionExcluded(Fn->getName(), Kind); 2546 if (V.hasValue()) 2547 return *V; 2548 // Next, check the source location. 2549 if (Loc.isValid()) { 2550 Optional<bool> V = ProfileList.isLocationExcluded(Loc, Kind); 2551 if (V.hasValue()) 2552 return *V; 2553 } 2554 // If location is unknown, this may be a compiler-generated function. Assume 2555 // it's located in the main file. 2556 auto &SM = Context.getSourceManager(); 2557 if (const auto *MainFile = SM.getFileEntryForID(SM.getMainFileID())) { 2558 Optional<bool> V = ProfileList.isFileExcluded(MainFile->getName(), Kind); 2559 if (V.hasValue()) 2560 return *V; 2561 } 2562 return ProfileList.getDefault(); 2563 } 2564 2565 bool CodeGenModule::MustBeEmitted(const ValueDecl *Global) { 2566 // Never defer when EmitAllDecls is specified. 2567 if (LangOpts.EmitAllDecls) 2568 return true; 2569 2570 if (CodeGenOpts.KeepStaticConsts) { 2571 const auto *VD = dyn_cast<VarDecl>(Global); 2572 if (VD && VD->getType().isConstQualified() && 2573 VD->getStorageDuration() == SD_Static) 2574 return true; 2575 } 2576 2577 return getContext().DeclMustBeEmitted(Global); 2578 } 2579 2580 bool CodeGenModule::MayBeEmittedEagerly(const ValueDecl *Global) { 2581 if (const auto *FD = dyn_cast<FunctionDecl>(Global)) { 2582 if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation) 2583 // Implicit template instantiations may change linkage if they are later 2584 // explicitly instantiated, so they should not be emitted eagerly. 2585 return false; 2586 // In OpenMP 5.0 function may be marked as device_type(nohost) and we should 2587 // not emit them eagerly unless we sure that the function must be emitted on 2588 // the host. 2589 if (LangOpts.OpenMP >= 50 && !LangOpts.OpenMPSimd && 2590 !LangOpts.OpenMPIsDevice && 2591 !OMPDeclareTargetDeclAttr::getDeviceType(FD) && 2592 !FD->isUsed(/*CheckUsedAttr=*/false) && !FD->isReferenced()) 2593 return false; 2594 } 2595 if (const auto *VD = dyn_cast<VarDecl>(Global)) 2596 if (Context.getInlineVariableDefinitionKind(VD) == 2597 ASTContext::InlineVariableDefinitionKind::WeakUnknown) 2598 // A definition of an inline constexpr static data member may change 2599 // linkage later if it's redeclared outside the class. 2600 return false; 2601 // If OpenMP is enabled and threadprivates must be generated like TLS, delay 2602 // codegen for global variables, because they may be marked as threadprivate. 2603 if (LangOpts.OpenMP && LangOpts.OpenMPUseTLS && 2604 getContext().getTargetInfo().isTLSSupported() && isa<VarDecl>(Global) && 2605 !isTypeConstant(Global->getType(), false) && 2606 !OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(Global)) 2607 return false; 2608 2609 return true; 2610 } 2611 2612 ConstantAddress CodeGenModule::GetAddrOfMSGuidDecl(const MSGuidDecl *GD) { 2613 StringRef Name = getMangledName(GD); 2614 2615 // The UUID descriptor should be pointer aligned. 2616 CharUnits Alignment = CharUnits::fromQuantity(PointerAlignInBytes); 2617 2618 // Look for an existing global. 2619 if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name)) 2620 return ConstantAddress(GV, Alignment); 2621 2622 ConstantEmitter Emitter(*this); 2623 llvm::Constant *Init; 2624 2625 APValue &V = GD->getAsAPValue(); 2626 if (!V.isAbsent()) { 2627 // If possible, emit the APValue version of the initializer. In particular, 2628 // this gets the type of the constant right. 2629 Init = Emitter.emitForInitializer( 2630 GD->getAsAPValue(), GD->getType().getAddressSpace(), GD->getType()); 2631 } else { 2632 // As a fallback, directly construct the constant. 2633 // FIXME: This may get padding wrong under esoteric struct layout rules. 2634 // MSVC appears to create a complete type 'struct __s_GUID' that it 2635 // presumably uses to represent these constants. 2636 MSGuidDecl::Parts Parts = GD->getParts(); 2637 llvm::Constant *Fields[4] = { 2638 llvm::ConstantInt::get(Int32Ty, Parts.Part1), 2639 llvm::ConstantInt::get(Int16Ty, Parts.Part2), 2640 llvm::ConstantInt::get(Int16Ty, Parts.Part3), 2641 llvm::ConstantDataArray::getRaw( 2642 StringRef(reinterpret_cast<char *>(Parts.Part4And5), 8), 8, 2643 Int8Ty)}; 2644 Init = llvm::ConstantStruct::getAnon(Fields); 2645 } 2646 2647 auto *GV = new llvm::GlobalVariable( 2648 getModule(), Init->getType(), 2649 /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name); 2650 if (supportsCOMDAT()) 2651 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 2652 setDSOLocal(GV); 2653 2654 llvm::Constant *Addr = GV; 2655 if (!V.isAbsent()) { 2656 Emitter.finalize(GV); 2657 } else { 2658 llvm::Type *Ty = getTypes().ConvertTypeForMem(GD->getType()); 2659 Addr = llvm::ConstantExpr::getBitCast( 2660 GV, Ty->getPointerTo(GV->getAddressSpace())); 2661 } 2662 return ConstantAddress(Addr, Alignment); 2663 } 2664 2665 ConstantAddress CodeGenModule::GetAddrOfTemplateParamObject( 2666 const TemplateParamObjectDecl *TPO) { 2667 StringRef Name = getMangledName(TPO); 2668 CharUnits Alignment = getNaturalTypeAlignment(TPO->getType()); 2669 2670 if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name)) 2671 return ConstantAddress(GV, Alignment); 2672 2673 ConstantEmitter Emitter(*this); 2674 llvm::Constant *Init = Emitter.emitForInitializer( 2675 TPO->getValue(), TPO->getType().getAddressSpace(), TPO->getType()); 2676 2677 if (!Init) { 2678 ErrorUnsupported(TPO, "template parameter object"); 2679 return ConstantAddress::invalid(); 2680 } 2681 2682 auto *GV = new llvm::GlobalVariable( 2683 getModule(), Init->getType(), 2684 /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name); 2685 if (supportsCOMDAT()) 2686 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 2687 Emitter.finalize(GV); 2688 2689 return ConstantAddress(GV, Alignment); 2690 } 2691 2692 ConstantAddress CodeGenModule::GetWeakRefReference(const ValueDecl *VD) { 2693 const AliasAttr *AA = VD->getAttr<AliasAttr>(); 2694 assert(AA && "No alias?"); 2695 2696 CharUnits Alignment = getContext().getDeclAlign(VD); 2697 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType()); 2698 2699 // See if there is already something with the target's name in the module. 2700 llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee()); 2701 if (Entry) { 2702 unsigned AS = getContext().getTargetAddressSpace(VD->getType()); 2703 auto Ptr = llvm::ConstantExpr::getBitCast(Entry, DeclTy->getPointerTo(AS)); 2704 return ConstantAddress(Ptr, Alignment); 2705 } 2706 2707 llvm::Constant *Aliasee; 2708 if (isa<llvm::FunctionType>(DeclTy)) 2709 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, 2710 GlobalDecl(cast<FunctionDecl>(VD)), 2711 /*ForVTable=*/false); 2712 else 2713 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), 2714 llvm::PointerType::getUnqual(DeclTy), 2715 nullptr); 2716 2717 auto *F = cast<llvm::GlobalValue>(Aliasee); 2718 F->setLinkage(llvm::Function::ExternalWeakLinkage); 2719 WeakRefReferences.insert(F); 2720 2721 return ConstantAddress(Aliasee, Alignment); 2722 } 2723 2724 void CodeGenModule::EmitGlobal(GlobalDecl GD) { 2725 const auto *Global = cast<ValueDecl>(GD.getDecl()); 2726 2727 // Weak references don't produce any output by themselves. 2728 if (Global->hasAttr<WeakRefAttr>()) 2729 return; 2730 2731 // If this is an alias definition (which otherwise looks like a declaration) 2732 // emit it now. 2733 if (Global->hasAttr<AliasAttr>()) 2734 return EmitAliasDefinition(GD); 2735 2736 // IFunc like an alias whose value is resolved at runtime by calling resolver. 2737 if (Global->hasAttr<IFuncAttr>()) 2738 return emitIFuncDefinition(GD); 2739 2740 // If this is a cpu_dispatch multiversion function, emit the resolver. 2741 if (Global->hasAttr<CPUDispatchAttr>()) 2742 return emitCPUDispatchDefinition(GD); 2743 2744 // If this is CUDA, be selective about which declarations we emit. 2745 if (LangOpts.CUDA) { 2746 if (LangOpts.CUDAIsDevice) { 2747 if (!Global->hasAttr<CUDADeviceAttr>() && 2748 !Global->hasAttr<CUDAGlobalAttr>() && 2749 !Global->hasAttr<CUDAConstantAttr>() && 2750 !Global->hasAttr<CUDASharedAttr>() && 2751 !Global->getType()->isCUDADeviceBuiltinSurfaceType() && 2752 !Global->getType()->isCUDADeviceBuiltinTextureType()) 2753 return; 2754 } else { 2755 // We need to emit host-side 'shadows' for all global 2756 // device-side variables because the CUDA runtime needs their 2757 // size and host-side address in order to provide access to 2758 // their device-side incarnations. 2759 2760 // So device-only functions are the only things we skip. 2761 if (isa<FunctionDecl>(Global) && !Global->hasAttr<CUDAHostAttr>() && 2762 Global->hasAttr<CUDADeviceAttr>()) 2763 return; 2764 2765 assert((isa<FunctionDecl>(Global) || isa<VarDecl>(Global)) && 2766 "Expected Variable or Function"); 2767 } 2768 } 2769 2770 if (LangOpts.OpenMP) { 2771 // If this is OpenMP, check if it is legal to emit this global normally. 2772 if (OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(GD)) 2773 return; 2774 if (auto *DRD = dyn_cast<OMPDeclareReductionDecl>(Global)) { 2775 if (MustBeEmitted(Global)) 2776 EmitOMPDeclareReduction(DRD); 2777 return; 2778 } else if (auto *DMD = dyn_cast<OMPDeclareMapperDecl>(Global)) { 2779 if (MustBeEmitted(Global)) 2780 EmitOMPDeclareMapper(DMD); 2781 return; 2782 } 2783 } 2784 2785 // Ignore declarations, they will be emitted on their first use. 2786 if (const auto *FD = dyn_cast<FunctionDecl>(Global)) { 2787 // Forward declarations are emitted lazily on first use. 2788 if (!FD->doesThisDeclarationHaveABody()) { 2789 if (!FD->doesDeclarationForceExternallyVisibleDefinition()) 2790 return; 2791 2792 StringRef MangledName = getMangledName(GD); 2793 2794 // Compute the function info and LLVM type. 2795 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 2796 llvm::Type *Ty = getTypes().GetFunctionType(FI); 2797 2798 GetOrCreateLLVMFunction(MangledName, Ty, GD, /*ForVTable=*/false, 2799 /*DontDefer=*/false); 2800 return; 2801 } 2802 } else { 2803 const auto *VD = cast<VarDecl>(Global); 2804 assert(VD->isFileVarDecl() && "Cannot emit local var decl as global."); 2805 if (VD->isThisDeclarationADefinition() != VarDecl::Definition && 2806 !Context.isMSStaticDataMemberInlineDefinition(VD)) { 2807 if (LangOpts.OpenMP) { 2808 // Emit declaration of the must-be-emitted declare target variable. 2809 if (llvm::Optional<OMPDeclareTargetDeclAttr::MapTypeTy> Res = 2810 OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD)) { 2811 bool UnifiedMemoryEnabled = 2812 getOpenMPRuntime().hasRequiresUnifiedSharedMemory(); 2813 if (*Res == OMPDeclareTargetDeclAttr::MT_To && 2814 !UnifiedMemoryEnabled) { 2815 (void)GetAddrOfGlobalVar(VD); 2816 } else { 2817 assert(((*Res == OMPDeclareTargetDeclAttr::MT_Link) || 2818 (*Res == OMPDeclareTargetDeclAttr::MT_To && 2819 UnifiedMemoryEnabled)) && 2820 "Link clause or to clause with unified memory expected."); 2821 (void)getOpenMPRuntime().getAddrOfDeclareTargetVar(VD); 2822 } 2823 2824 return; 2825 } 2826 } 2827 // If this declaration may have caused an inline variable definition to 2828 // change linkage, make sure that it's emitted. 2829 if (Context.getInlineVariableDefinitionKind(VD) == 2830 ASTContext::InlineVariableDefinitionKind::Strong) 2831 GetAddrOfGlobalVar(VD); 2832 return; 2833 } 2834 } 2835 2836 // Defer code generation to first use when possible, e.g. if this is an inline 2837 // function. If the global must always be emitted, do it eagerly if possible 2838 // to benefit from cache locality. 2839 if (MustBeEmitted(Global) && MayBeEmittedEagerly(Global)) { 2840 // Emit the definition if it can't be deferred. 2841 EmitGlobalDefinition(GD); 2842 return; 2843 } 2844 2845 // If we're deferring emission of a C++ variable with an 2846 // initializer, remember the order in which it appeared in the file. 2847 if (getLangOpts().CPlusPlus && isa<VarDecl>(Global) && 2848 cast<VarDecl>(Global)->hasInit()) { 2849 DelayedCXXInitPosition[Global] = CXXGlobalInits.size(); 2850 CXXGlobalInits.push_back(nullptr); 2851 } 2852 2853 StringRef MangledName = getMangledName(GD); 2854 if (GetGlobalValue(MangledName) != nullptr) { 2855 // The value has already been used and should therefore be emitted. 2856 addDeferredDeclToEmit(GD); 2857 } else if (MustBeEmitted(Global)) { 2858 // The value must be emitted, but cannot be emitted eagerly. 2859 assert(!MayBeEmittedEagerly(Global)); 2860 addDeferredDeclToEmit(GD); 2861 } else { 2862 // Otherwise, remember that we saw a deferred decl with this name. The 2863 // first use of the mangled name will cause it to move into 2864 // DeferredDeclsToEmit. 2865 DeferredDecls[MangledName] = GD; 2866 } 2867 } 2868 2869 // Check if T is a class type with a destructor that's not dllimport. 2870 static bool HasNonDllImportDtor(QualType T) { 2871 if (const auto *RT = T->getBaseElementTypeUnsafe()->getAs<RecordType>()) 2872 if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl())) 2873 if (RD->getDestructor() && !RD->getDestructor()->hasAttr<DLLImportAttr>()) 2874 return true; 2875 2876 return false; 2877 } 2878 2879 namespace { 2880 struct FunctionIsDirectlyRecursive 2881 : public ConstStmtVisitor<FunctionIsDirectlyRecursive, bool> { 2882 const StringRef Name; 2883 const Builtin::Context &BI; 2884 FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C) 2885 : Name(N), BI(C) {} 2886 2887 bool VisitCallExpr(const CallExpr *E) { 2888 const FunctionDecl *FD = E->getDirectCallee(); 2889 if (!FD) 2890 return false; 2891 AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>(); 2892 if (Attr && Name == Attr->getLabel()) 2893 return true; 2894 unsigned BuiltinID = FD->getBuiltinID(); 2895 if (!BuiltinID || !BI.isLibFunction(BuiltinID)) 2896 return false; 2897 StringRef BuiltinName = BI.getName(BuiltinID); 2898 if (BuiltinName.startswith("__builtin_") && 2899 Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) { 2900 return true; 2901 } 2902 return false; 2903 } 2904 2905 bool VisitStmt(const Stmt *S) { 2906 for (const Stmt *Child : S->children()) 2907 if (Child && this->Visit(Child)) 2908 return true; 2909 return false; 2910 } 2911 }; 2912 2913 // Make sure we're not referencing non-imported vars or functions. 2914 struct DLLImportFunctionVisitor 2915 : public RecursiveASTVisitor<DLLImportFunctionVisitor> { 2916 bool SafeToInline = true; 2917 2918 bool shouldVisitImplicitCode() const { return true; } 2919 2920 bool VisitVarDecl(VarDecl *VD) { 2921 if (VD->getTLSKind()) { 2922 // A thread-local variable cannot be imported. 2923 SafeToInline = false; 2924 return SafeToInline; 2925 } 2926 2927 // A variable definition might imply a destructor call. 2928 if (VD->isThisDeclarationADefinition()) 2929 SafeToInline = !HasNonDllImportDtor(VD->getType()); 2930 2931 return SafeToInline; 2932 } 2933 2934 bool VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) { 2935 if (const auto *D = E->getTemporary()->getDestructor()) 2936 SafeToInline = D->hasAttr<DLLImportAttr>(); 2937 return SafeToInline; 2938 } 2939 2940 bool VisitDeclRefExpr(DeclRefExpr *E) { 2941 ValueDecl *VD = E->getDecl(); 2942 if (isa<FunctionDecl>(VD)) 2943 SafeToInline = VD->hasAttr<DLLImportAttr>(); 2944 else if (VarDecl *V = dyn_cast<VarDecl>(VD)) 2945 SafeToInline = !V->hasGlobalStorage() || V->hasAttr<DLLImportAttr>(); 2946 return SafeToInline; 2947 } 2948 2949 bool VisitCXXConstructExpr(CXXConstructExpr *E) { 2950 SafeToInline = E->getConstructor()->hasAttr<DLLImportAttr>(); 2951 return SafeToInline; 2952 } 2953 2954 bool VisitCXXMemberCallExpr(CXXMemberCallExpr *E) { 2955 CXXMethodDecl *M = E->getMethodDecl(); 2956 if (!M) { 2957 // Call through a pointer to member function. This is safe to inline. 2958 SafeToInline = true; 2959 } else { 2960 SafeToInline = M->hasAttr<DLLImportAttr>(); 2961 } 2962 return SafeToInline; 2963 } 2964 2965 bool VisitCXXDeleteExpr(CXXDeleteExpr *E) { 2966 SafeToInline = E->getOperatorDelete()->hasAttr<DLLImportAttr>(); 2967 return SafeToInline; 2968 } 2969 2970 bool VisitCXXNewExpr(CXXNewExpr *E) { 2971 SafeToInline = E->getOperatorNew()->hasAttr<DLLImportAttr>(); 2972 return SafeToInline; 2973 } 2974 }; 2975 } 2976 2977 // isTriviallyRecursive - Check if this function calls another 2978 // decl that, because of the asm attribute or the other decl being a builtin, 2979 // ends up pointing to itself. 2980 bool 2981 CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) { 2982 StringRef Name; 2983 if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) { 2984 // asm labels are a special kind of mangling we have to support. 2985 AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>(); 2986 if (!Attr) 2987 return false; 2988 Name = Attr->getLabel(); 2989 } else { 2990 Name = FD->getName(); 2991 } 2992 2993 FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo); 2994 const Stmt *Body = FD->getBody(); 2995 return Body ? Walker.Visit(Body) : false; 2996 } 2997 2998 bool CodeGenModule::shouldEmitFunction(GlobalDecl GD) { 2999 if (getFunctionLinkage(GD) != llvm::Function::AvailableExternallyLinkage) 3000 return true; 3001 const auto *F = cast<FunctionDecl>(GD.getDecl()); 3002 if (CodeGenOpts.OptimizationLevel == 0 && !F->hasAttr<AlwaysInlineAttr>()) 3003 return false; 3004 3005 if (F->hasAttr<DLLImportAttr>() && !F->hasAttr<AlwaysInlineAttr>()) { 3006 // Check whether it would be safe to inline this dllimport function. 3007 DLLImportFunctionVisitor Visitor; 3008 Visitor.TraverseFunctionDecl(const_cast<FunctionDecl*>(F)); 3009 if (!Visitor.SafeToInline) 3010 return false; 3011 3012 if (const CXXDestructorDecl *Dtor = dyn_cast<CXXDestructorDecl>(F)) { 3013 // Implicit destructor invocations aren't captured in the AST, so the 3014 // check above can't see them. Check for them manually here. 3015 for (const Decl *Member : Dtor->getParent()->decls()) 3016 if (isa<FieldDecl>(Member)) 3017 if (HasNonDllImportDtor(cast<FieldDecl>(Member)->getType())) 3018 return false; 3019 for (const CXXBaseSpecifier &B : Dtor->getParent()->bases()) 3020 if (HasNonDllImportDtor(B.getType())) 3021 return false; 3022 } 3023 } 3024 3025 // PR9614. Avoid cases where the source code is lying to us. An available 3026 // externally function should have an equivalent function somewhere else, 3027 // but a function that calls itself through asm label/`__builtin_` trickery is 3028 // clearly not equivalent to the real implementation. 3029 // This happens in glibc's btowc and in some configure checks. 3030 return !isTriviallyRecursive(F); 3031 } 3032 3033 bool CodeGenModule::shouldOpportunisticallyEmitVTables() { 3034 return CodeGenOpts.OptimizationLevel > 0; 3035 } 3036 3037 void CodeGenModule::EmitMultiVersionFunctionDefinition(GlobalDecl GD, 3038 llvm::GlobalValue *GV) { 3039 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 3040 3041 if (FD->isCPUSpecificMultiVersion()) { 3042 auto *Spec = FD->getAttr<CPUSpecificAttr>(); 3043 for (unsigned I = 0; I < Spec->cpus_size(); ++I) 3044 EmitGlobalFunctionDefinition(GD.getWithMultiVersionIndex(I), nullptr); 3045 // Requires multiple emits. 3046 } else 3047 EmitGlobalFunctionDefinition(GD, GV); 3048 } 3049 3050 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD, llvm::GlobalValue *GV) { 3051 const auto *D = cast<ValueDecl>(GD.getDecl()); 3052 3053 PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(), 3054 Context.getSourceManager(), 3055 "Generating code for declaration"); 3056 3057 if (const auto *FD = dyn_cast<FunctionDecl>(D)) { 3058 // At -O0, don't generate IR for functions with available_externally 3059 // linkage. 3060 if (!shouldEmitFunction(GD)) 3061 return; 3062 3063 llvm::TimeTraceScope TimeScope("CodeGen Function", [&]() { 3064 std::string Name; 3065 llvm::raw_string_ostream OS(Name); 3066 FD->getNameForDiagnostic(OS, getContext().getPrintingPolicy(), 3067 /*Qualified=*/true); 3068 return Name; 3069 }); 3070 3071 if (const auto *Method = dyn_cast<CXXMethodDecl>(D)) { 3072 // Make sure to emit the definition(s) before we emit the thunks. 3073 // This is necessary for the generation of certain thunks. 3074 if (isa<CXXConstructorDecl>(Method) || isa<CXXDestructorDecl>(Method)) 3075 ABI->emitCXXStructor(GD); 3076 else if (FD->isMultiVersion()) 3077 EmitMultiVersionFunctionDefinition(GD, GV); 3078 else 3079 EmitGlobalFunctionDefinition(GD, GV); 3080 3081 if (Method->isVirtual()) 3082 getVTables().EmitThunks(GD); 3083 3084 return; 3085 } 3086 3087 if (FD->isMultiVersion()) 3088 return EmitMultiVersionFunctionDefinition(GD, GV); 3089 return EmitGlobalFunctionDefinition(GD, GV); 3090 } 3091 3092 if (const auto *VD = dyn_cast<VarDecl>(D)) 3093 return EmitGlobalVarDefinition(VD, !VD->hasDefinition()); 3094 3095 llvm_unreachable("Invalid argument to EmitGlobalDefinition()"); 3096 } 3097 3098 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old, 3099 llvm::Function *NewFn); 3100 3101 static unsigned 3102 TargetMVPriority(const TargetInfo &TI, 3103 const CodeGenFunction::MultiVersionResolverOption &RO) { 3104 unsigned Priority = 0; 3105 for (StringRef Feat : RO.Conditions.Features) 3106 Priority = std::max(Priority, TI.multiVersionSortPriority(Feat)); 3107 3108 if (!RO.Conditions.Architecture.empty()) 3109 Priority = std::max( 3110 Priority, TI.multiVersionSortPriority(RO.Conditions.Architecture)); 3111 return Priority; 3112 } 3113 3114 void CodeGenModule::emitMultiVersionFunctions() { 3115 for (GlobalDecl GD : MultiVersionFuncs) { 3116 SmallVector<CodeGenFunction::MultiVersionResolverOption, 10> Options; 3117 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 3118 getContext().forEachMultiversionedFunctionVersion( 3119 FD, [this, &GD, &Options](const FunctionDecl *CurFD) { 3120 GlobalDecl CurGD{ 3121 (CurFD->isDefined() ? CurFD->getDefinition() : CurFD)}; 3122 StringRef MangledName = getMangledName(CurGD); 3123 llvm::Constant *Func = GetGlobalValue(MangledName); 3124 if (!Func) { 3125 if (CurFD->isDefined()) { 3126 EmitGlobalFunctionDefinition(CurGD, nullptr); 3127 Func = GetGlobalValue(MangledName); 3128 } else { 3129 const CGFunctionInfo &FI = 3130 getTypes().arrangeGlobalDeclaration(GD); 3131 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 3132 Func = GetAddrOfFunction(CurGD, Ty, /*ForVTable=*/false, 3133 /*DontDefer=*/false, ForDefinition); 3134 } 3135 assert(Func && "This should have just been created"); 3136 } 3137 3138 const auto *TA = CurFD->getAttr<TargetAttr>(); 3139 llvm::SmallVector<StringRef, 8> Feats; 3140 TA->getAddedFeatures(Feats); 3141 3142 Options.emplace_back(cast<llvm::Function>(Func), 3143 TA->getArchitecture(), Feats); 3144 }); 3145 3146 llvm::Function *ResolverFunc; 3147 const TargetInfo &TI = getTarget(); 3148 3149 if (TI.supportsIFunc() || FD->isTargetMultiVersion()) { 3150 ResolverFunc = cast<llvm::Function>( 3151 GetGlobalValue((getMangledName(GD) + ".resolver").str())); 3152 ResolverFunc->setLinkage(llvm::Function::WeakODRLinkage); 3153 } else { 3154 ResolverFunc = cast<llvm::Function>(GetGlobalValue(getMangledName(GD))); 3155 } 3156 3157 if (supportsCOMDAT()) 3158 ResolverFunc->setComdat( 3159 getModule().getOrInsertComdat(ResolverFunc->getName())); 3160 3161 llvm::stable_sort( 3162 Options, [&TI](const CodeGenFunction::MultiVersionResolverOption &LHS, 3163 const CodeGenFunction::MultiVersionResolverOption &RHS) { 3164 return TargetMVPriority(TI, LHS) > TargetMVPriority(TI, RHS); 3165 }); 3166 CodeGenFunction CGF(*this); 3167 CGF.EmitMultiVersionResolver(ResolverFunc, Options); 3168 } 3169 } 3170 3171 void CodeGenModule::emitCPUDispatchDefinition(GlobalDecl GD) { 3172 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 3173 assert(FD && "Not a FunctionDecl?"); 3174 const auto *DD = FD->getAttr<CPUDispatchAttr>(); 3175 assert(DD && "Not a cpu_dispatch Function?"); 3176 llvm::Type *DeclTy = getTypes().ConvertType(FD->getType()); 3177 3178 if (const auto *CXXFD = dyn_cast<CXXMethodDecl>(FD)) { 3179 const CGFunctionInfo &FInfo = getTypes().arrangeCXXMethodDeclaration(CXXFD); 3180 DeclTy = getTypes().GetFunctionType(FInfo); 3181 } 3182 3183 StringRef ResolverName = getMangledName(GD); 3184 3185 llvm::Type *ResolverType; 3186 GlobalDecl ResolverGD; 3187 if (getTarget().supportsIFunc()) 3188 ResolverType = llvm::FunctionType::get( 3189 llvm::PointerType::get(DeclTy, 3190 Context.getTargetAddressSpace(FD->getType())), 3191 false); 3192 else { 3193 ResolverType = DeclTy; 3194 ResolverGD = GD; 3195 } 3196 3197 auto *ResolverFunc = cast<llvm::Function>(GetOrCreateLLVMFunction( 3198 ResolverName, ResolverType, ResolverGD, /*ForVTable=*/false)); 3199 ResolverFunc->setLinkage(llvm::Function::WeakODRLinkage); 3200 if (supportsCOMDAT()) 3201 ResolverFunc->setComdat( 3202 getModule().getOrInsertComdat(ResolverFunc->getName())); 3203 3204 SmallVector<CodeGenFunction::MultiVersionResolverOption, 10> Options; 3205 const TargetInfo &Target = getTarget(); 3206 unsigned Index = 0; 3207 for (const IdentifierInfo *II : DD->cpus()) { 3208 // Get the name of the target function so we can look it up/create it. 3209 std::string MangledName = getMangledNameImpl(*this, GD, FD, true) + 3210 getCPUSpecificMangling(*this, II->getName()); 3211 3212 llvm::Constant *Func = GetGlobalValue(MangledName); 3213 3214 if (!Func) { 3215 GlobalDecl ExistingDecl = Manglings.lookup(MangledName); 3216 if (ExistingDecl.getDecl() && 3217 ExistingDecl.getDecl()->getAsFunction()->isDefined()) { 3218 EmitGlobalFunctionDefinition(ExistingDecl, nullptr); 3219 Func = GetGlobalValue(MangledName); 3220 } else { 3221 if (!ExistingDecl.getDecl()) 3222 ExistingDecl = GD.getWithMultiVersionIndex(Index); 3223 3224 Func = GetOrCreateLLVMFunction( 3225 MangledName, DeclTy, ExistingDecl, 3226 /*ForVTable=*/false, /*DontDefer=*/true, 3227 /*IsThunk=*/false, llvm::AttributeList(), ForDefinition); 3228 } 3229 } 3230 3231 llvm::SmallVector<StringRef, 32> Features; 3232 Target.getCPUSpecificCPUDispatchFeatures(II->getName(), Features); 3233 llvm::transform(Features, Features.begin(), 3234 [](StringRef Str) { return Str.substr(1); }); 3235 Features.erase(std::remove_if( 3236 Features.begin(), Features.end(), [&Target](StringRef Feat) { 3237 return !Target.validateCpuSupports(Feat); 3238 }), Features.end()); 3239 Options.emplace_back(cast<llvm::Function>(Func), StringRef{}, Features); 3240 ++Index; 3241 } 3242 3243 llvm::sort( 3244 Options, [](const CodeGenFunction::MultiVersionResolverOption &LHS, 3245 const CodeGenFunction::MultiVersionResolverOption &RHS) { 3246 return CodeGenFunction::GetX86CpuSupportsMask(LHS.Conditions.Features) > 3247 CodeGenFunction::GetX86CpuSupportsMask(RHS.Conditions.Features); 3248 }); 3249 3250 // If the list contains multiple 'default' versions, such as when it contains 3251 // 'pentium' and 'generic', don't emit the call to the generic one (since we 3252 // always run on at least a 'pentium'). We do this by deleting the 'least 3253 // advanced' (read, lowest mangling letter). 3254 while (Options.size() > 1 && 3255 CodeGenFunction::GetX86CpuSupportsMask( 3256 (Options.end() - 2)->Conditions.Features) == 0) { 3257 StringRef LHSName = (Options.end() - 2)->Function->getName(); 3258 StringRef RHSName = (Options.end() - 1)->Function->getName(); 3259 if (LHSName.compare(RHSName) < 0) 3260 Options.erase(Options.end() - 2); 3261 else 3262 Options.erase(Options.end() - 1); 3263 } 3264 3265 CodeGenFunction CGF(*this); 3266 CGF.EmitMultiVersionResolver(ResolverFunc, Options); 3267 3268 if (getTarget().supportsIFunc()) { 3269 std::string AliasName = getMangledNameImpl( 3270 *this, GD, FD, /*OmitMultiVersionMangling=*/true); 3271 llvm::Constant *AliasFunc = GetGlobalValue(AliasName); 3272 if (!AliasFunc) { 3273 auto *IFunc = cast<llvm::GlobalIFunc>(GetOrCreateLLVMFunction( 3274 AliasName, DeclTy, GD, /*ForVTable=*/false, /*DontDefer=*/true, 3275 /*IsThunk=*/false, llvm::AttributeList(), NotForDefinition)); 3276 auto *GA = llvm::GlobalAlias::create( 3277 DeclTy, 0, getFunctionLinkage(GD), AliasName, IFunc, &getModule()); 3278 GA->setLinkage(llvm::Function::WeakODRLinkage); 3279 SetCommonAttributes(GD, GA); 3280 } 3281 } 3282 } 3283 3284 /// If a dispatcher for the specified mangled name is not in the module, create 3285 /// and return an llvm Function with the specified type. 3286 llvm::Constant *CodeGenModule::GetOrCreateMultiVersionResolver( 3287 GlobalDecl GD, llvm::Type *DeclTy, const FunctionDecl *FD) { 3288 std::string MangledName = 3289 getMangledNameImpl(*this, GD, FD, /*OmitMultiVersionMangling=*/true); 3290 3291 // Holds the name of the resolver, in ifunc mode this is the ifunc (which has 3292 // a separate resolver). 3293 std::string ResolverName = MangledName; 3294 if (getTarget().supportsIFunc()) 3295 ResolverName += ".ifunc"; 3296 else if (FD->isTargetMultiVersion()) 3297 ResolverName += ".resolver"; 3298 3299 // If this already exists, just return that one. 3300 if (llvm::GlobalValue *ResolverGV = GetGlobalValue(ResolverName)) 3301 return ResolverGV; 3302 3303 // Since this is the first time we've created this IFunc, make sure 3304 // that we put this multiversioned function into the list to be 3305 // replaced later if necessary (target multiversioning only). 3306 if (!FD->isCPUDispatchMultiVersion() && !FD->isCPUSpecificMultiVersion()) 3307 MultiVersionFuncs.push_back(GD); 3308 3309 if (getTarget().supportsIFunc()) { 3310 llvm::Type *ResolverType = llvm::FunctionType::get( 3311 llvm::PointerType::get( 3312 DeclTy, getContext().getTargetAddressSpace(FD->getType())), 3313 false); 3314 llvm::Constant *Resolver = GetOrCreateLLVMFunction( 3315 MangledName + ".resolver", ResolverType, GlobalDecl{}, 3316 /*ForVTable=*/false); 3317 llvm::GlobalIFunc *GIF = llvm::GlobalIFunc::create( 3318 DeclTy, 0, llvm::Function::WeakODRLinkage, "", Resolver, &getModule()); 3319 GIF->setName(ResolverName); 3320 SetCommonAttributes(FD, GIF); 3321 3322 return GIF; 3323 } 3324 3325 llvm::Constant *Resolver = GetOrCreateLLVMFunction( 3326 ResolverName, DeclTy, GlobalDecl{}, /*ForVTable=*/false); 3327 assert(isa<llvm::GlobalValue>(Resolver) && 3328 "Resolver should be created for the first time"); 3329 SetCommonAttributes(FD, cast<llvm::GlobalValue>(Resolver)); 3330 return Resolver; 3331 } 3332 3333 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the 3334 /// module, create and return an llvm Function with the specified type. If there 3335 /// is something in the module with the specified name, return it potentially 3336 /// bitcasted to the right type. 3337 /// 3338 /// If D is non-null, it specifies a decl that correspond to this. This is used 3339 /// to set the attributes on the function when it is first created. 3340 llvm::Constant *CodeGenModule::GetOrCreateLLVMFunction( 3341 StringRef MangledName, llvm::Type *Ty, GlobalDecl GD, bool ForVTable, 3342 bool DontDefer, bool IsThunk, llvm::AttributeList ExtraAttrs, 3343 ForDefinition_t IsForDefinition) { 3344 const Decl *D = GD.getDecl(); 3345 3346 // Any attempts to use a MultiVersion function should result in retrieving 3347 // the iFunc instead. Name Mangling will handle the rest of the changes. 3348 if (const FunctionDecl *FD = cast_or_null<FunctionDecl>(D)) { 3349 // For the device mark the function as one that should be emitted. 3350 if (getLangOpts().OpenMPIsDevice && OpenMPRuntime && 3351 !OpenMPRuntime->markAsGlobalTarget(GD) && FD->isDefined() && 3352 !DontDefer && !IsForDefinition) { 3353 if (const FunctionDecl *FDDef = FD->getDefinition()) { 3354 GlobalDecl GDDef; 3355 if (const auto *CD = dyn_cast<CXXConstructorDecl>(FDDef)) 3356 GDDef = GlobalDecl(CD, GD.getCtorType()); 3357 else if (const auto *DD = dyn_cast<CXXDestructorDecl>(FDDef)) 3358 GDDef = GlobalDecl(DD, GD.getDtorType()); 3359 else 3360 GDDef = GlobalDecl(FDDef); 3361 EmitGlobal(GDDef); 3362 } 3363 } 3364 3365 if (FD->isMultiVersion()) { 3366 if (FD->hasAttr<TargetAttr>()) 3367 UpdateMultiVersionNames(GD, FD); 3368 if (!IsForDefinition) 3369 return GetOrCreateMultiVersionResolver(GD, Ty, FD); 3370 } 3371 } 3372 3373 // Lookup the entry, lazily creating it if necessary. 3374 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 3375 if (Entry) { 3376 if (WeakRefReferences.erase(Entry)) { 3377 const FunctionDecl *FD = cast_or_null<FunctionDecl>(D); 3378 if (FD && !FD->hasAttr<WeakAttr>()) 3379 Entry->setLinkage(llvm::Function::ExternalLinkage); 3380 } 3381 3382 // Handle dropped DLL attributes. 3383 if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>()) { 3384 Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 3385 setDSOLocal(Entry); 3386 } 3387 3388 // If there are two attempts to define the same mangled name, issue an 3389 // error. 3390 if (IsForDefinition && !Entry->isDeclaration()) { 3391 GlobalDecl OtherGD; 3392 // Check that GD is not yet in DiagnosedConflictingDefinitions is required 3393 // to make sure that we issue an error only once. 3394 if (lookupRepresentativeDecl(MangledName, OtherGD) && 3395 (GD.getCanonicalDecl().getDecl() != 3396 OtherGD.getCanonicalDecl().getDecl()) && 3397 DiagnosedConflictingDefinitions.insert(GD).second) { 3398 getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name) 3399 << MangledName; 3400 getDiags().Report(OtherGD.getDecl()->getLocation(), 3401 diag::note_previous_definition); 3402 } 3403 } 3404 3405 if ((isa<llvm::Function>(Entry) || isa<llvm::GlobalAlias>(Entry)) && 3406 (Entry->getValueType() == Ty)) { 3407 return Entry; 3408 } 3409 3410 // Make sure the result is of the correct type. 3411 // (If function is requested for a definition, we always need to create a new 3412 // function, not just return a bitcast.) 3413 if (!IsForDefinition) 3414 return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo()); 3415 } 3416 3417 // This function doesn't have a complete type (for example, the return 3418 // type is an incomplete struct). Use a fake type instead, and make 3419 // sure not to try to set attributes. 3420 bool IsIncompleteFunction = false; 3421 3422 llvm::FunctionType *FTy; 3423 if (isa<llvm::FunctionType>(Ty)) { 3424 FTy = cast<llvm::FunctionType>(Ty); 3425 } else { 3426 FTy = llvm::FunctionType::get(VoidTy, false); 3427 IsIncompleteFunction = true; 3428 } 3429 3430 llvm::Function *F = 3431 llvm::Function::Create(FTy, llvm::Function::ExternalLinkage, 3432 Entry ? StringRef() : MangledName, &getModule()); 3433 3434 // If we already created a function with the same mangled name (but different 3435 // type) before, take its name and add it to the list of functions to be 3436 // replaced with F at the end of CodeGen. 3437 // 3438 // This happens if there is a prototype for a function (e.g. "int f()") and 3439 // then a definition of a different type (e.g. "int f(int x)"). 3440 if (Entry) { 3441 F->takeName(Entry); 3442 3443 // This might be an implementation of a function without a prototype, in 3444 // which case, try to do special replacement of calls which match the new 3445 // prototype. The really key thing here is that we also potentially drop 3446 // arguments from the call site so as to make a direct call, which makes the 3447 // inliner happier and suppresses a number of optimizer warnings (!) about 3448 // dropping arguments. 3449 if (!Entry->use_empty()) { 3450 ReplaceUsesOfNonProtoTypeWithRealFunction(Entry, F); 3451 Entry->removeDeadConstantUsers(); 3452 } 3453 3454 llvm::Constant *BC = llvm::ConstantExpr::getBitCast( 3455 F, Entry->getValueType()->getPointerTo()); 3456 addGlobalValReplacement(Entry, BC); 3457 } 3458 3459 assert(F->getName() == MangledName && "name was uniqued!"); 3460 if (D) 3461 SetFunctionAttributes(GD, F, IsIncompleteFunction, IsThunk); 3462 if (ExtraAttrs.hasAttributes(llvm::AttributeList::FunctionIndex)) { 3463 llvm::AttrBuilder B(ExtraAttrs, llvm::AttributeList::FunctionIndex); 3464 F->addAttributes(llvm::AttributeList::FunctionIndex, B); 3465 } 3466 3467 if (!DontDefer) { 3468 // All MSVC dtors other than the base dtor are linkonce_odr and delegate to 3469 // each other bottoming out with the base dtor. Therefore we emit non-base 3470 // dtors on usage, even if there is no dtor definition in the TU. 3471 if (D && isa<CXXDestructorDecl>(D) && 3472 getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D), 3473 GD.getDtorType())) 3474 addDeferredDeclToEmit(GD); 3475 3476 // This is the first use or definition of a mangled name. If there is a 3477 // deferred decl with this name, remember that we need to emit it at the end 3478 // of the file. 3479 auto DDI = DeferredDecls.find(MangledName); 3480 if (DDI != DeferredDecls.end()) { 3481 // Move the potentially referenced deferred decl to the 3482 // DeferredDeclsToEmit list, and remove it from DeferredDecls (since we 3483 // don't need it anymore). 3484 addDeferredDeclToEmit(DDI->second); 3485 DeferredDecls.erase(DDI); 3486 3487 // Otherwise, there are cases we have to worry about where we're 3488 // using a declaration for which we must emit a definition but where 3489 // we might not find a top-level definition: 3490 // - member functions defined inline in their classes 3491 // - friend functions defined inline in some class 3492 // - special member functions with implicit definitions 3493 // If we ever change our AST traversal to walk into class methods, 3494 // this will be unnecessary. 3495 // 3496 // We also don't emit a definition for a function if it's going to be an 3497 // entry in a vtable, unless it's already marked as used. 3498 } else if (getLangOpts().CPlusPlus && D) { 3499 // Look for a declaration that's lexically in a record. 3500 for (const auto *FD = cast<FunctionDecl>(D)->getMostRecentDecl(); FD; 3501 FD = FD->getPreviousDecl()) { 3502 if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) { 3503 if (FD->doesThisDeclarationHaveABody()) { 3504 addDeferredDeclToEmit(GD.getWithDecl(FD)); 3505 break; 3506 } 3507 } 3508 } 3509 } 3510 } 3511 3512 // Make sure the result is of the requested type. 3513 if (!IsIncompleteFunction) { 3514 assert(F->getFunctionType() == Ty); 3515 return F; 3516 } 3517 3518 llvm::Type *PTy = llvm::PointerType::getUnqual(Ty); 3519 return llvm::ConstantExpr::getBitCast(F, PTy); 3520 } 3521 3522 /// GetAddrOfFunction - Return the address of the given function. If Ty is 3523 /// non-null, then this function will use the specified type if it has to 3524 /// create it (this occurs when we see a definition of the function). 3525 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD, 3526 llvm::Type *Ty, 3527 bool ForVTable, 3528 bool DontDefer, 3529 ForDefinition_t IsForDefinition) { 3530 assert(!cast<FunctionDecl>(GD.getDecl())->isConsteval() && 3531 "consteval function should never be emitted"); 3532 // If there was no specific requested type, just convert it now. 3533 if (!Ty) { 3534 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 3535 Ty = getTypes().ConvertType(FD->getType()); 3536 } 3537 3538 // Devirtualized destructor calls may come through here instead of via 3539 // getAddrOfCXXStructor. Make sure we use the MS ABI base destructor instead 3540 // of the complete destructor when necessary. 3541 if (const auto *DD = dyn_cast<CXXDestructorDecl>(GD.getDecl())) { 3542 if (getTarget().getCXXABI().isMicrosoft() && 3543 GD.getDtorType() == Dtor_Complete && 3544 DD->getParent()->getNumVBases() == 0) 3545 GD = GlobalDecl(DD, Dtor_Base); 3546 } 3547 3548 StringRef MangledName = getMangledName(GD); 3549 return GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable, DontDefer, 3550 /*IsThunk=*/false, llvm::AttributeList(), 3551 IsForDefinition); 3552 } 3553 3554 static const FunctionDecl * 3555 GetRuntimeFunctionDecl(ASTContext &C, StringRef Name) { 3556 TranslationUnitDecl *TUDecl = C.getTranslationUnitDecl(); 3557 DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl); 3558 3559 IdentifierInfo &CII = C.Idents.get(Name); 3560 for (const auto &Result : DC->lookup(&CII)) 3561 if (const auto FD = dyn_cast<FunctionDecl>(Result)) 3562 return FD; 3563 3564 if (!C.getLangOpts().CPlusPlus) 3565 return nullptr; 3566 3567 // Demangle the premangled name from getTerminateFn() 3568 IdentifierInfo &CXXII = 3569 (Name == "_ZSt9terminatev" || Name == "?terminate@@YAXXZ") 3570 ? C.Idents.get("terminate") 3571 : C.Idents.get(Name); 3572 3573 for (const auto &N : {"__cxxabiv1", "std"}) { 3574 IdentifierInfo &NS = C.Idents.get(N); 3575 for (const auto &Result : DC->lookup(&NS)) { 3576 NamespaceDecl *ND = dyn_cast<NamespaceDecl>(Result); 3577 if (auto LSD = dyn_cast<LinkageSpecDecl>(Result)) 3578 for (const auto &Result : LSD->lookup(&NS)) 3579 if ((ND = dyn_cast<NamespaceDecl>(Result))) 3580 break; 3581 3582 if (ND) 3583 for (const auto &Result : ND->lookup(&CXXII)) 3584 if (const auto *FD = dyn_cast<FunctionDecl>(Result)) 3585 return FD; 3586 } 3587 } 3588 3589 return nullptr; 3590 } 3591 3592 /// CreateRuntimeFunction - Create a new runtime function with the specified 3593 /// type and name. 3594 llvm::FunctionCallee 3595 CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy, StringRef Name, 3596 llvm::AttributeList ExtraAttrs, bool Local, 3597 bool AssumeConvergent) { 3598 if (AssumeConvergent) { 3599 ExtraAttrs = 3600 ExtraAttrs.addAttribute(VMContext, llvm::AttributeList::FunctionIndex, 3601 llvm::Attribute::Convergent); 3602 } 3603 3604 llvm::Constant *C = 3605 GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false, 3606 /*DontDefer=*/false, /*IsThunk=*/false, 3607 ExtraAttrs); 3608 3609 if (auto *F = dyn_cast<llvm::Function>(C)) { 3610 if (F->empty()) { 3611 F->setCallingConv(getRuntimeCC()); 3612 3613 // In Windows Itanium environments, try to mark runtime functions 3614 // dllimport. For Mingw and MSVC, don't. We don't really know if the user 3615 // will link their standard library statically or dynamically. Marking 3616 // functions imported when they are not imported can cause linker errors 3617 // and warnings. 3618 if (!Local && getTriple().isWindowsItaniumEnvironment() && 3619 !getCodeGenOpts().LTOVisibilityPublicStd) { 3620 const FunctionDecl *FD = GetRuntimeFunctionDecl(Context, Name); 3621 if (!FD || FD->hasAttr<DLLImportAttr>()) { 3622 F->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass); 3623 F->setLinkage(llvm::GlobalValue::ExternalLinkage); 3624 } 3625 } 3626 setDSOLocal(F); 3627 } 3628 } 3629 3630 return {FTy, C}; 3631 } 3632 3633 /// isTypeConstant - Determine whether an object of this type can be emitted 3634 /// as a constant. 3635 /// 3636 /// If ExcludeCtor is true, the duration when the object's constructor runs 3637 /// will not be considered. The caller will need to verify that the object is 3638 /// not written to during its construction. 3639 bool CodeGenModule::isTypeConstant(QualType Ty, bool ExcludeCtor) { 3640 if (!Ty.isConstant(Context) && !Ty->isReferenceType()) 3641 return false; 3642 3643 if (Context.getLangOpts().CPlusPlus) { 3644 if (const CXXRecordDecl *Record 3645 = Context.getBaseElementType(Ty)->getAsCXXRecordDecl()) 3646 return ExcludeCtor && !Record->hasMutableFields() && 3647 Record->hasTrivialDestructor(); 3648 } 3649 3650 return true; 3651 } 3652 3653 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module, 3654 /// create and return an llvm GlobalVariable with the specified type. If there 3655 /// is something in the module with the specified name, return it potentially 3656 /// bitcasted to the right type. 3657 /// 3658 /// If D is non-null, it specifies a decl that correspond to this. This is used 3659 /// to set the attributes on the global when it is first created. 3660 /// 3661 /// If IsForDefinition is true, it is guaranteed that an actual global with 3662 /// type Ty will be returned, not conversion of a variable with the same 3663 /// mangled name but some other type. 3664 llvm::Constant * 3665 CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName, 3666 llvm::PointerType *Ty, 3667 const VarDecl *D, 3668 ForDefinition_t IsForDefinition) { 3669 // Lookup the entry, lazily creating it if necessary. 3670 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 3671 if (Entry) { 3672 if (WeakRefReferences.erase(Entry)) { 3673 if (D && !D->hasAttr<WeakAttr>()) 3674 Entry->setLinkage(llvm::Function::ExternalLinkage); 3675 } 3676 3677 // Handle dropped DLL attributes. 3678 if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>()) 3679 Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 3680 3681 if (LangOpts.OpenMP && !LangOpts.OpenMPSimd && D) 3682 getOpenMPRuntime().registerTargetGlobalVariable(D, Entry); 3683 3684 if (Entry->getType() == Ty) 3685 return Entry; 3686 3687 // If there are two attempts to define the same mangled name, issue an 3688 // error. 3689 if (IsForDefinition && !Entry->isDeclaration()) { 3690 GlobalDecl OtherGD; 3691 const VarDecl *OtherD; 3692 3693 // Check that D is not yet in DiagnosedConflictingDefinitions is required 3694 // to make sure that we issue an error only once. 3695 if (D && lookupRepresentativeDecl(MangledName, OtherGD) && 3696 (D->getCanonicalDecl() != OtherGD.getCanonicalDecl().getDecl()) && 3697 (OtherD = dyn_cast<VarDecl>(OtherGD.getDecl())) && 3698 OtherD->hasInit() && 3699 DiagnosedConflictingDefinitions.insert(D).second) { 3700 getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name) 3701 << MangledName; 3702 getDiags().Report(OtherGD.getDecl()->getLocation(), 3703 diag::note_previous_definition); 3704 } 3705 } 3706 3707 // Make sure the result is of the correct type. 3708 if (Entry->getType()->getAddressSpace() != Ty->getAddressSpace()) 3709 return llvm::ConstantExpr::getAddrSpaceCast(Entry, Ty); 3710 3711 // (If global is requested for a definition, we always need to create a new 3712 // global, not just return a bitcast.) 3713 if (!IsForDefinition) 3714 return llvm::ConstantExpr::getBitCast(Entry, Ty); 3715 } 3716 3717 auto AddrSpace = GetGlobalVarAddressSpace(D); 3718 auto TargetAddrSpace = getContext().getTargetAddressSpace(AddrSpace); 3719 3720 auto *GV = new llvm::GlobalVariable( 3721 getModule(), Ty->getElementType(), false, 3722 llvm::GlobalValue::ExternalLinkage, nullptr, MangledName, nullptr, 3723 llvm::GlobalVariable::NotThreadLocal, TargetAddrSpace); 3724 3725 // If we already created a global with the same mangled name (but different 3726 // type) before, take its name and remove it from its parent. 3727 if (Entry) { 3728 GV->takeName(Entry); 3729 3730 if (!Entry->use_empty()) { 3731 llvm::Constant *NewPtrForOldDecl = 3732 llvm::ConstantExpr::getBitCast(GV, Entry->getType()); 3733 Entry->replaceAllUsesWith(NewPtrForOldDecl); 3734 } 3735 3736 Entry->eraseFromParent(); 3737 } 3738 3739 // This is the first use or definition of a mangled name. If there is a 3740 // deferred decl with this name, remember that we need to emit it at the end 3741 // of the file. 3742 auto DDI = DeferredDecls.find(MangledName); 3743 if (DDI != DeferredDecls.end()) { 3744 // Move the potentially referenced deferred decl to the DeferredDeclsToEmit 3745 // list, and remove it from DeferredDecls (since we don't need it anymore). 3746 addDeferredDeclToEmit(DDI->second); 3747 DeferredDecls.erase(DDI); 3748 } 3749 3750 // Handle things which are present even on external declarations. 3751 if (D) { 3752 if (LangOpts.OpenMP && !LangOpts.OpenMPSimd) 3753 getOpenMPRuntime().registerTargetGlobalVariable(D, GV); 3754 3755 // FIXME: This code is overly simple and should be merged with other global 3756 // handling. 3757 GV->setConstant(isTypeConstant(D->getType(), false)); 3758 3759 GV->setAlignment(getContext().getDeclAlign(D).getAsAlign()); 3760 3761 setLinkageForGV(GV, D); 3762 3763 if (D->getTLSKind()) { 3764 if (D->getTLSKind() == VarDecl::TLS_Dynamic) 3765 CXXThreadLocals.push_back(D); 3766 setTLSMode(GV, *D); 3767 } 3768 3769 setGVProperties(GV, D); 3770 3771 // If required by the ABI, treat declarations of static data members with 3772 // inline initializers as definitions. 3773 if (getContext().isMSStaticDataMemberInlineDefinition(D)) { 3774 EmitGlobalVarDefinition(D); 3775 } 3776 3777 // Emit section information for extern variables. 3778 if (D->hasExternalStorage()) { 3779 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) 3780 GV->setSection(SA->getName()); 3781 } 3782 3783 // Handle XCore specific ABI requirements. 3784 if (getTriple().getArch() == llvm::Triple::xcore && 3785 D->getLanguageLinkage() == CLanguageLinkage && 3786 D->getType().isConstant(Context) && 3787 isExternallyVisible(D->getLinkageAndVisibility().getLinkage())) 3788 GV->setSection(".cp.rodata"); 3789 3790 // Check if we a have a const declaration with an initializer, we may be 3791 // able to emit it as available_externally to expose it's value to the 3792 // optimizer. 3793 if (Context.getLangOpts().CPlusPlus && GV->hasExternalLinkage() && 3794 D->getType().isConstQualified() && !GV->hasInitializer() && 3795 !D->hasDefinition() && D->hasInit() && !D->hasAttr<DLLImportAttr>()) { 3796 const auto *Record = 3797 Context.getBaseElementType(D->getType())->getAsCXXRecordDecl(); 3798 bool HasMutableFields = Record && Record->hasMutableFields(); 3799 if (!HasMutableFields) { 3800 const VarDecl *InitDecl; 3801 const Expr *InitExpr = D->getAnyInitializer(InitDecl); 3802 if (InitExpr) { 3803 ConstantEmitter emitter(*this); 3804 llvm::Constant *Init = emitter.tryEmitForInitializer(*InitDecl); 3805 if (Init) { 3806 auto *InitType = Init->getType(); 3807 if (GV->getValueType() != InitType) { 3808 // The type of the initializer does not match the definition. 3809 // This happens when an initializer has a different type from 3810 // the type of the global (because of padding at the end of a 3811 // structure for instance). 3812 GV->setName(StringRef()); 3813 // Make a new global with the correct type, this is now guaranteed 3814 // to work. 3815 auto *NewGV = cast<llvm::GlobalVariable>( 3816 GetAddrOfGlobalVar(D, InitType, IsForDefinition) 3817 ->stripPointerCasts()); 3818 3819 // Erase the old global, since it is no longer used. 3820 GV->eraseFromParent(); 3821 GV = NewGV; 3822 } else { 3823 GV->setInitializer(Init); 3824 GV->setConstant(true); 3825 GV->setLinkage(llvm::GlobalValue::AvailableExternallyLinkage); 3826 } 3827 emitter.finalize(GV); 3828 } 3829 } 3830 } 3831 } 3832 } 3833 3834 if (GV->isDeclaration()) 3835 getTargetCodeGenInfo().setTargetAttributes(D, GV, *this); 3836 3837 LangAS ExpectedAS = 3838 D ? D->getType().getAddressSpace() 3839 : (LangOpts.OpenCL ? LangAS::opencl_global : LangAS::Default); 3840 assert(getContext().getTargetAddressSpace(ExpectedAS) == 3841 Ty->getPointerAddressSpace()); 3842 if (AddrSpace != ExpectedAS) 3843 return getTargetCodeGenInfo().performAddrSpaceCast(*this, GV, AddrSpace, 3844 ExpectedAS, Ty); 3845 3846 return GV; 3847 } 3848 3849 llvm::Constant * 3850 CodeGenModule::GetAddrOfGlobal(GlobalDecl GD, ForDefinition_t IsForDefinition) { 3851 const Decl *D = GD.getDecl(); 3852 3853 if (isa<CXXConstructorDecl>(D) || isa<CXXDestructorDecl>(D)) 3854 return getAddrOfCXXStructor(GD, /*FnInfo=*/nullptr, /*FnType=*/nullptr, 3855 /*DontDefer=*/false, IsForDefinition); 3856 3857 if (isa<CXXMethodDecl>(D)) { 3858 auto FInfo = 3859 &getTypes().arrangeCXXMethodDeclaration(cast<CXXMethodDecl>(D)); 3860 auto Ty = getTypes().GetFunctionType(*FInfo); 3861 return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false, 3862 IsForDefinition); 3863 } 3864 3865 if (isa<FunctionDecl>(D)) { 3866 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 3867 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 3868 return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false, 3869 IsForDefinition); 3870 } 3871 3872 return GetAddrOfGlobalVar(cast<VarDecl>(D), /*Ty=*/nullptr, IsForDefinition); 3873 } 3874 3875 llvm::GlobalVariable *CodeGenModule::CreateOrReplaceCXXRuntimeVariable( 3876 StringRef Name, llvm::Type *Ty, llvm::GlobalValue::LinkageTypes Linkage, 3877 unsigned Alignment) { 3878 llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name); 3879 llvm::GlobalVariable *OldGV = nullptr; 3880 3881 if (GV) { 3882 // Check if the variable has the right type. 3883 if (GV->getValueType() == Ty) 3884 return GV; 3885 3886 // Because C++ name mangling, the only way we can end up with an already 3887 // existing global with the same name is if it has been declared extern "C". 3888 assert(GV->isDeclaration() && "Declaration has wrong type!"); 3889 OldGV = GV; 3890 } 3891 3892 // Create a new variable. 3893 GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true, 3894 Linkage, nullptr, Name); 3895 3896 if (OldGV) { 3897 // Replace occurrences of the old variable if needed. 3898 GV->takeName(OldGV); 3899 3900 if (!OldGV->use_empty()) { 3901 llvm::Constant *NewPtrForOldDecl = 3902 llvm::ConstantExpr::getBitCast(GV, OldGV->getType()); 3903 OldGV->replaceAllUsesWith(NewPtrForOldDecl); 3904 } 3905 3906 OldGV->eraseFromParent(); 3907 } 3908 3909 if (supportsCOMDAT() && GV->isWeakForLinker() && 3910 !GV->hasAvailableExternallyLinkage()) 3911 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 3912 3913 GV->setAlignment(llvm::MaybeAlign(Alignment)); 3914 3915 return GV; 3916 } 3917 3918 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the 3919 /// given global variable. If Ty is non-null and if the global doesn't exist, 3920 /// then it will be created with the specified type instead of whatever the 3921 /// normal requested type would be. If IsForDefinition is true, it is guaranteed 3922 /// that an actual global with type Ty will be returned, not conversion of a 3923 /// variable with the same mangled name but some other type. 3924 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D, 3925 llvm::Type *Ty, 3926 ForDefinition_t IsForDefinition) { 3927 assert(D->hasGlobalStorage() && "Not a global variable"); 3928 QualType ASTTy = D->getType(); 3929 if (!Ty) 3930 Ty = getTypes().ConvertTypeForMem(ASTTy); 3931 3932 llvm::PointerType *PTy = 3933 llvm::PointerType::get(Ty, getContext().getTargetAddressSpace(ASTTy)); 3934 3935 StringRef MangledName = getMangledName(D); 3936 return GetOrCreateLLVMGlobal(MangledName, PTy, D, IsForDefinition); 3937 } 3938 3939 /// CreateRuntimeVariable - Create a new runtime global variable with the 3940 /// specified type and name. 3941 llvm::Constant * 3942 CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty, 3943 StringRef Name) { 3944 auto PtrTy = 3945 getContext().getLangOpts().OpenCL 3946 ? llvm::PointerType::get( 3947 Ty, getContext().getTargetAddressSpace(LangAS::opencl_global)) 3948 : llvm::PointerType::getUnqual(Ty); 3949 auto *Ret = GetOrCreateLLVMGlobal(Name, PtrTy, nullptr); 3950 setDSOLocal(cast<llvm::GlobalValue>(Ret->stripPointerCasts())); 3951 return Ret; 3952 } 3953 3954 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) { 3955 assert(!D->getInit() && "Cannot emit definite definitions here!"); 3956 3957 StringRef MangledName = getMangledName(D); 3958 llvm::GlobalValue *GV = GetGlobalValue(MangledName); 3959 3960 // We already have a definition, not declaration, with the same mangled name. 3961 // Emitting of declaration is not required (and actually overwrites emitted 3962 // definition). 3963 if (GV && !GV->isDeclaration()) 3964 return; 3965 3966 // If we have not seen a reference to this variable yet, place it into the 3967 // deferred declarations table to be emitted if needed later. 3968 if (!MustBeEmitted(D) && !GV) { 3969 DeferredDecls[MangledName] = D; 3970 return; 3971 } 3972 3973 // The tentative definition is the only definition. 3974 EmitGlobalVarDefinition(D); 3975 } 3976 3977 void CodeGenModule::EmitExternalDeclaration(const VarDecl *D) { 3978 EmitExternalVarDeclaration(D); 3979 } 3980 3981 CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const { 3982 return Context.toCharUnitsFromBits( 3983 getDataLayout().getTypeStoreSizeInBits(Ty)); 3984 } 3985 3986 LangAS CodeGenModule::GetGlobalVarAddressSpace(const VarDecl *D) { 3987 LangAS AddrSpace = LangAS::Default; 3988 if (LangOpts.OpenCL) { 3989 AddrSpace = D ? D->getType().getAddressSpace() : LangAS::opencl_global; 3990 assert(AddrSpace == LangAS::opencl_global || 3991 AddrSpace == LangAS::opencl_global_device || 3992 AddrSpace == LangAS::opencl_global_host || 3993 AddrSpace == LangAS::opencl_constant || 3994 AddrSpace == LangAS::opencl_local || 3995 AddrSpace >= LangAS::FirstTargetAddressSpace); 3996 return AddrSpace; 3997 } 3998 3999 if (LangOpts.CUDA && LangOpts.CUDAIsDevice) { 4000 if (D && D->hasAttr<CUDAConstantAttr>()) 4001 return LangAS::cuda_constant; 4002 else if (D && D->hasAttr<CUDASharedAttr>()) 4003 return LangAS::cuda_shared; 4004 else if (D && D->hasAttr<CUDADeviceAttr>()) 4005 return LangAS::cuda_device; 4006 else if (D && D->getType().isConstQualified()) 4007 return LangAS::cuda_constant; 4008 else 4009 return LangAS::cuda_device; 4010 } 4011 4012 if (LangOpts.OpenMP) { 4013 LangAS AS; 4014 if (OpenMPRuntime->hasAllocateAttributeForGlobalVar(D, AS)) 4015 return AS; 4016 } 4017 return getTargetCodeGenInfo().getGlobalVarAddressSpace(*this, D); 4018 } 4019 4020 LangAS CodeGenModule::getStringLiteralAddressSpace() const { 4021 // OpenCL v1.2 s6.5.3: a string literal is in the constant address space. 4022 if (LangOpts.OpenCL) 4023 return LangAS::opencl_constant; 4024 if (auto AS = getTarget().getConstantAddressSpace()) 4025 return AS.getValue(); 4026 return LangAS::Default; 4027 } 4028 4029 // In address space agnostic languages, string literals are in default address 4030 // space in AST. However, certain targets (e.g. amdgcn) request them to be 4031 // emitted in constant address space in LLVM IR. To be consistent with other 4032 // parts of AST, string literal global variables in constant address space 4033 // need to be casted to default address space before being put into address 4034 // map and referenced by other part of CodeGen. 4035 // In OpenCL, string literals are in constant address space in AST, therefore 4036 // they should not be casted to default address space. 4037 static llvm::Constant * 4038 castStringLiteralToDefaultAddressSpace(CodeGenModule &CGM, 4039 llvm::GlobalVariable *GV) { 4040 llvm::Constant *Cast = GV; 4041 if (!CGM.getLangOpts().OpenCL) { 4042 if (auto AS = CGM.getTarget().getConstantAddressSpace()) { 4043 if (AS != LangAS::Default) 4044 Cast = CGM.getTargetCodeGenInfo().performAddrSpaceCast( 4045 CGM, GV, AS.getValue(), LangAS::Default, 4046 GV->getValueType()->getPointerTo( 4047 CGM.getContext().getTargetAddressSpace(LangAS::Default))); 4048 } 4049 } 4050 return Cast; 4051 } 4052 4053 template<typename SomeDecl> 4054 void CodeGenModule::MaybeHandleStaticInExternC(const SomeDecl *D, 4055 llvm::GlobalValue *GV) { 4056 if (!getLangOpts().CPlusPlus) 4057 return; 4058 4059 // Must have 'used' attribute, or else inline assembly can't rely on 4060 // the name existing. 4061 if (!D->template hasAttr<UsedAttr>()) 4062 return; 4063 4064 // Must have internal linkage and an ordinary name. 4065 if (!D->getIdentifier() || D->getFormalLinkage() != InternalLinkage) 4066 return; 4067 4068 // Must be in an extern "C" context. Entities declared directly within 4069 // a record are not extern "C" even if the record is in such a context. 4070 const SomeDecl *First = D->getFirstDecl(); 4071 if (First->getDeclContext()->isRecord() || !First->isInExternCContext()) 4072 return; 4073 4074 // OK, this is an internal linkage entity inside an extern "C" linkage 4075 // specification. Make a note of that so we can give it the "expected" 4076 // mangled name if nothing else is using that name. 4077 std::pair<StaticExternCMap::iterator, bool> R = 4078 StaticExternCValues.insert(std::make_pair(D->getIdentifier(), GV)); 4079 4080 // If we have multiple internal linkage entities with the same name 4081 // in extern "C" regions, none of them gets that name. 4082 if (!R.second) 4083 R.first->second = nullptr; 4084 } 4085 4086 static bool shouldBeInCOMDAT(CodeGenModule &CGM, const Decl &D) { 4087 if (!CGM.supportsCOMDAT()) 4088 return false; 4089 4090 // Do not set COMDAT attribute for CUDA/HIP stub functions to prevent 4091 // them being "merged" by the COMDAT Folding linker optimization. 4092 if (D.hasAttr<CUDAGlobalAttr>()) 4093 return false; 4094 4095 if (D.hasAttr<SelectAnyAttr>()) 4096 return true; 4097 4098 GVALinkage Linkage; 4099 if (auto *VD = dyn_cast<VarDecl>(&D)) 4100 Linkage = CGM.getContext().GetGVALinkageForVariable(VD); 4101 else 4102 Linkage = CGM.getContext().GetGVALinkageForFunction(cast<FunctionDecl>(&D)); 4103 4104 switch (Linkage) { 4105 case GVA_Internal: 4106 case GVA_AvailableExternally: 4107 case GVA_StrongExternal: 4108 return false; 4109 case GVA_DiscardableODR: 4110 case GVA_StrongODR: 4111 return true; 4112 } 4113 llvm_unreachable("No such linkage"); 4114 } 4115 4116 void CodeGenModule::maybeSetTrivialComdat(const Decl &D, 4117 llvm::GlobalObject &GO) { 4118 if (!shouldBeInCOMDAT(*this, D)) 4119 return; 4120 GO.setComdat(TheModule.getOrInsertComdat(GO.getName())); 4121 } 4122 4123 /// Pass IsTentative as true if you want to create a tentative definition. 4124 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D, 4125 bool IsTentative) { 4126 // OpenCL global variables of sampler type are translated to function calls, 4127 // therefore no need to be translated. 4128 QualType ASTTy = D->getType(); 4129 if (getLangOpts().OpenCL && ASTTy->isSamplerT()) 4130 return; 4131 4132 // If this is OpenMP device, check if it is legal to emit this global 4133 // normally. 4134 if (LangOpts.OpenMPIsDevice && OpenMPRuntime && 4135 OpenMPRuntime->emitTargetGlobalVariable(D)) 4136 return; 4137 4138 llvm::Constant *Init = nullptr; 4139 bool NeedsGlobalCtor = false; 4140 bool NeedsGlobalDtor = 4141 D->needsDestruction(getContext()) == QualType::DK_cxx_destructor; 4142 4143 bool IsHIPManagedVarOnDevice = 4144 getLangOpts().CUDAIsDevice && D->hasAttr<HIPManagedAttr>(); 4145 4146 const VarDecl *InitDecl; 4147 const Expr *InitExpr = 4148 IsHIPManagedVarOnDevice ? nullptr : D->getAnyInitializer(InitDecl); 4149 4150 Optional<ConstantEmitter> emitter; 4151 4152 // CUDA E.2.4.1 "__shared__ variables cannot have an initialization 4153 // as part of their declaration." Sema has already checked for 4154 // error cases, so we just need to set Init to UndefValue. 4155 bool IsCUDASharedVar = 4156 getLangOpts().CUDAIsDevice && D->hasAttr<CUDASharedAttr>(); 4157 // Shadows of initialized device-side global variables are also left 4158 // undefined. 4159 bool IsCUDAShadowVar = 4160 !getLangOpts().CUDAIsDevice && !D->hasAttr<HIPManagedAttr>() && 4161 (D->hasAttr<CUDAConstantAttr>() || D->hasAttr<CUDADeviceAttr>() || 4162 D->hasAttr<CUDASharedAttr>()); 4163 bool IsCUDADeviceShadowVar = 4164 getLangOpts().CUDAIsDevice && 4165 (D->getType()->isCUDADeviceBuiltinSurfaceType() || 4166 D->getType()->isCUDADeviceBuiltinTextureType() || 4167 D->hasAttr<HIPManagedAttr>()); 4168 if (getLangOpts().CUDA && 4169 (IsCUDASharedVar || IsCUDAShadowVar || IsCUDADeviceShadowVar)) 4170 Init = llvm::UndefValue::get(getTypes().ConvertType(ASTTy)); 4171 else if (D->hasAttr<LoaderUninitializedAttr>()) 4172 Init = llvm::UndefValue::get(getTypes().ConvertType(ASTTy)); 4173 else if (!InitExpr) { 4174 // This is a tentative definition; tentative definitions are 4175 // implicitly initialized with { 0 }. 4176 // 4177 // Note that tentative definitions are only emitted at the end of 4178 // a translation unit, so they should never have incomplete 4179 // type. In addition, EmitTentativeDefinition makes sure that we 4180 // never attempt to emit a tentative definition if a real one 4181 // exists. A use may still exists, however, so we still may need 4182 // to do a RAUW. 4183 assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type"); 4184 Init = EmitNullConstant(D->getType()); 4185 } else { 4186 initializedGlobalDecl = GlobalDecl(D); 4187 emitter.emplace(*this); 4188 Init = emitter->tryEmitForInitializer(*InitDecl); 4189 4190 if (!Init) { 4191 QualType T = InitExpr->getType(); 4192 if (D->getType()->isReferenceType()) 4193 T = D->getType(); 4194 4195 if (getLangOpts().CPlusPlus) { 4196 Init = EmitNullConstant(T); 4197 NeedsGlobalCtor = true; 4198 } else { 4199 ErrorUnsupported(D, "static initializer"); 4200 Init = llvm::UndefValue::get(getTypes().ConvertType(T)); 4201 } 4202 } else { 4203 // We don't need an initializer, so remove the entry for the delayed 4204 // initializer position (just in case this entry was delayed) if we 4205 // also don't need to register a destructor. 4206 if (getLangOpts().CPlusPlus && !NeedsGlobalDtor) 4207 DelayedCXXInitPosition.erase(D); 4208 } 4209 } 4210 4211 llvm::Type* InitType = Init->getType(); 4212 llvm::Constant *Entry = 4213 GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative)); 4214 4215 // Strip off pointer casts if we got them. 4216 Entry = Entry->stripPointerCasts(); 4217 4218 // Entry is now either a Function or GlobalVariable. 4219 auto *GV = dyn_cast<llvm::GlobalVariable>(Entry); 4220 4221 // We have a definition after a declaration with the wrong type. 4222 // We must make a new GlobalVariable* and update everything that used OldGV 4223 // (a declaration or tentative definition) with the new GlobalVariable* 4224 // (which will be a definition). 4225 // 4226 // This happens if there is a prototype for a global (e.g. 4227 // "extern int x[];") and then a definition of a different type (e.g. 4228 // "int x[10];"). This also happens when an initializer has a different type 4229 // from the type of the global (this happens with unions). 4230 if (!GV || GV->getValueType() != InitType || 4231 GV->getType()->getAddressSpace() != 4232 getContext().getTargetAddressSpace(GetGlobalVarAddressSpace(D))) { 4233 4234 // Move the old entry aside so that we'll create a new one. 4235 Entry->setName(StringRef()); 4236 4237 // Make a new global with the correct type, this is now guaranteed to work. 4238 GV = cast<llvm::GlobalVariable>( 4239 GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative)) 4240 ->stripPointerCasts()); 4241 4242 // Replace all uses of the old global with the new global 4243 llvm::Constant *NewPtrForOldDecl = 4244 llvm::ConstantExpr::getBitCast(GV, Entry->getType()); 4245 Entry->replaceAllUsesWith(NewPtrForOldDecl); 4246 4247 // Erase the old global, since it is no longer used. 4248 cast<llvm::GlobalValue>(Entry)->eraseFromParent(); 4249 } 4250 4251 MaybeHandleStaticInExternC(D, GV); 4252 4253 if (D->hasAttr<AnnotateAttr>()) 4254 AddGlobalAnnotations(D, GV); 4255 4256 // Set the llvm linkage type as appropriate. 4257 llvm::GlobalValue::LinkageTypes Linkage = 4258 getLLVMLinkageVarDefinition(D, GV->isConstant()); 4259 4260 // CUDA B.2.1 "The __device__ qualifier declares a variable that resides on 4261 // the device. [...]" 4262 // CUDA B.2.2 "The __constant__ qualifier, optionally used together with 4263 // __device__, declares a variable that: [...] 4264 // Is accessible from all the threads within the grid and from the host 4265 // through the runtime library (cudaGetSymbolAddress() / cudaGetSymbolSize() 4266 // / cudaMemcpyToSymbol() / cudaMemcpyFromSymbol())." 4267 if (GV && LangOpts.CUDA) { 4268 if (LangOpts.CUDAIsDevice) { 4269 if (Linkage != llvm::GlobalValue::InternalLinkage && 4270 (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>())) 4271 GV->setExternallyInitialized(true); 4272 } else { 4273 getCUDARuntime().internalizeDeviceSideVar(D, Linkage); 4274 getCUDARuntime().handleVarRegistration(D, *GV); 4275 } 4276 } 4277 4278 // HIP managed variables need to be emitted as declarations in device 4279 // compilation. 4280 if (!IsHIPManagedVarOnDevice) 4281 GV->setInitializer(Init); 4282 if (emitter) 4283 emitter->finalize(GV); 4284 4285 // If it is safe to mark the global 'constant', do so now. 4286 GV->setConstant(!NeedsGlobalCtor && !NeedsGlobalDtor && 4287 isTypeConstant(D->getType(), true)); 4288 4289 // If it is in a read-only section, mark it 'constant'. 4290 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) { 4291 const ASTContext::SectionInfo &SI = Context.SectionInfos[SA->getName()]; 4292 if ((SI.SectionFlags & ASTContext::PSF_Write) == 0) 4293 GV->setConstant(true); 4294 } 4295 4296 GV->setAlignment(getContext().getDeclAlign(D).getAsAlign()); 4297 4298 // On Darwin, unlike other Itanium C++ ABI platforms, the thread-wrapper 4299 // function is only defined alongside the variable, not also alongside 4300 // callers. Normally, all accesses to a thread_local go through the 4301 // thread-wrapper in order to ensure initialization has occurred, underlying 4302 // variable will never be used other than the thread-wrapper, so it can be 4303 // converted to internal linkage. 4304 // 4305 // However, if the variable has the 'constinit' attribute, it _can_ be 4306 // referenced directly, without calling the thread-wrapper, so the linkage 4307 // must not be changed. 4308 // 4309 // Additionally, if the variable isn't plain external linkage, e.g. if it's 4310 // weak or linkonce, the de-duplication semantics are important to preserve, 4311 // so we don't change the linkage. 4312 if (D->getTLSKind() == VarDecl::TLS_Dynamic && 4313 Linkage == llvm::GlobalValue::ExternalLinkage && 4314 Context.getTargetInfo().getTriple().isOSDarwin() && 4315 !D->hasAttr<ConstInitAttr>()) 4316 Linkage = llvm::GlobalValue::InternalLinkage; 4317 4318 GV->setLinkage(Linkage); 4319 if (D->hasAttr<DLLImportAttr>()) 4320 GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass); 4321 else if (D->hasAttr<DLLExportAttr>()) 4322 GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass); 4323 else 4324 GV->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass); 4325 4326 if (Linkage == llvm::GlobalVariable::CommonLinkage) { 4327 // common vars aren't constant even if declared const. 4328 GV->setConstant(false); 4329 // Tentative definition of global variables may be initialized with 4330 // non-zero null pointers. In this case they should have weak linkage 4331 // since common linkage must have zero initializer and must not have 4332 // explicit section therefore cannot have non-zero initial value. 4333 if (!GV->getInitializer()->isNullValue()) 4334 GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage); 4335 } 4336 4337 setNonAliasAttributes(D, GV); 4338 4339 if (D->getTLSKind() && !GV->isThreadLocal()) { 4340 if (D->getTLSKind() == VarDecl::TLS_Dynamic) 4341 CXXThreadLocals.push_back(D); 4342 setTLSMode(GV, *D); 4343 } 4344 4345 maybeSetTrivialComdat(*D, *GV); 4346 4347 // Emit the initializer function if necessary. 4348 if (NeedsGlobalCtor || NeedsGlobalDtor) 4349 EmitCXXGlobalVarDeclInitFunc(D, GV, NeedsGlobalCtor); 4350 4351 SanitizerMD->reportGlobalToASan(GV, *D, NeedsGlobalCtor); 4352 4353 // Emit global variable debug information. 4354 if (CGDebugInfo *DI = getModuleDebugInfo()) 4355 if (getCodeGenOpts().hasReducedDebugInfo()) 4356 DI->EmitGlobalVariable(GV, D); 4357 } 4358 4359 void CodeGenModule::EmitExternalVarDeclaration(const VarDecl *D) { 4360 if (CGDebugInfo *DI = getModuleDebugInfo()) 4361 if (getCodeGenOpts().hasReducedDebugInfo()) { 4362 QualType ASTTy = D->getType(); 4363 llvm::Type *Ty = getTypes().ConvertTypeForMem(D->getType()); 4364 llvm::PointerType *PTy = 4365 llvm::PointerType::get(Ty, getContext().getTargetAddressSpace(ASTTy)); 4366 llvm::Constant *GV = GetOrCreateLLVMGlobal(D->getName(), PTy, D); 4367 DI->EmitExternalVariable( 4368 cast<llvm::GlobalVariable>(GV->stripPointerCasts()), D); 4369 } 4370 } 4371 4372 static bool isVarDeclStrongDefinition(const ASTContext &Context, 4373 CodeGenModule &CGM, const VarDecl *D, 4374 bool NoCommon) { 4375 // Don't give variables common linkage if -fno-common was specified unless it 4376 // was overridden by a NoCommon attribute. 4377 if ((NoCommon || D->hasAttr<NoCommonAttr>()) && !D->hasAttr<CommonAttr>()) 4378 return true; 4379 4380 // C11 6.9.2/2: 4381 // A declaration of an identifier for an object that has file scope without 4382 // an initializer, and without a storage-class specifier or with the 4383 // storage-class specifier static, constitutes a tentative definition. 4384 if (D->getInit() || D->hasExternalStorage()) 4385 return true; 4386 4387 // A variable cannot be both common and exist in a section. 4388 if (D->hasAttr<SectionAttr>()) 4389 return true; 4390 4391 // A variable cannot be both common and exist in a section. 4392 // We don't try to determine which is the right section in the front-end. 4393 // If no specialized section name is applicable, it will resort to default. 4394 if (D->hasAttr<PragmaClangBSSSectionAttr>() || 4395 D->hasAttr<PragmaClangDataSectionAttr>() || 4396 D->hasAttr<PragmaClangRelroSectionAttr>() || 4397 D->hasAttr<PragmaClangRodataSectionAttr>()) 4398 return true; 4399 4400 // Thread local vars aren't considered common linkage. 4401 if (D->getTLSKind()) 4402 return true; 4403 4404 // Tentative definitions marked with WeakImportAttr are true definitions. 4405 if (D->hasAttr<WeakImportAttr>()) 4406 return true; 4407 4408 // A variable cannot be both common and exist in a comdat. 4409 if (shouldBeInCOMDAT(CGM, *D)) 4410 return true; 4411 4412 // Declarations with a required alignment do not have common linkage in MSVC 4413 // mode. 4414 if (Context.getTargetInfo().getCXXABI().isMicrosoft()) { 4415 if (D->hasAttr<AlignedAttr>()) 4416 return true; 4417 QualType VarType = D->getType(); 4418 if (Context.isAlignmentRequired(VarType)) 4419 return true; 4420 4421 if (const auto *RT = VarType->getAs<RecordType>()) { 4422 const RecordDecl *RD = RT->getDecl(); 4423 for (const FieldDecl *FD : RD->fields()) { 4424 if (FD->isBitField()) 4425 continue; 4426 if (FD->hasAttr<AlignedAttr>()) 4427 return true; 4428 if (Context.isAlignmentRequired(FD->getType())) 4429 return true; 4430 } 4431 } 4432 } 4433 4434 // Microsoft's link.exe doesn't support alignments greater than 32 bytes for 4435 // common symbols, so symbols with greater alignment requirements cannot be 4436 // common. 4437 // Other COFF linkers (ld.bfd and LLD) support arbitrary power-of-two 4438 // alignments for common symbols via the aligncomm directive, so this 4439 // restriction only applies to MSVC environments. 4440 if (Context.getTargetInfo().getTriple().isKnownWindowsMSVCEnvironment() && 4441 Context.getTypeAlignIfKnown(D->getType()) > 4442 Context.toBits(CharUnits::fromQuantity(32))) 4443 return true; 4444 4445 return false; 4446 } 4447 4448 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageForDeclarator( 4449 const DeclaratorDecl *D, GVALinkage Linkage, bool IsConstantVariable) { 4450 if (Linkage == GVA_Internal) 4451 return llvm::Function::InternalLinkage; 4452 4453 if (D->hasAttr<WeakAttr>()) { 4454 if (IsConstantVariable) 4455 return llvm::GlobalVariable::WeakODRLinkage; 4456 else 4457 return llvm::GlobalVariable::WeakAnyLinkage; 4458 } 4459 4460 if (const auto *FD = D->getAsFunction()) 4461 if (FD->isMultiVersion() && Linkage == GVA_AvailableExternally) 4462 return llvm::GlobalVariable::LinkOnceAnyLinkage; 4463 4464 // We are guaranteed to have a strong definition somewhere else, 4465 // so we can use available_externally linkage. 4466 if (Linkage == GVA_AvailableExternally) 4467 return llvm::GlobalValue::AvailableExternallyLinkage; 4468 4469 // Note that Apple's kernel linker doesn't support symbol 4470 // coalescing, so we need to avoid linkonce and weak linkages there. 4471 // Normally, this means we just map to internal, but for explicit 4472 // instantiations we'll map to external. 4473 4474 // In C++, the compiler has to emit a definition in every translation unit 4475 // that references the function. We should use linkonce_odr because 4476 // a) if all references in this translation unit are optimized away, we 4477 // don't need to codegen it. b) if the function persists, it needs to be 4478 // merged with other definitions. c) C++ has the ODR, so we know the 4479 // definition is dependable. 4480 if (Linkage == GVA_DiscardableODR) 4481 return !Context.getLangOpts().AppleKext ? llvm::Function::LinkOnceODRLinkage 4482 : llvm::Function::InternalLinkage; 4483 4484 // An explicit instantiation of a template has weak linkage, since 4485 // explicit instantiations can occur in multiple translation units 4486 // and must all be equivalent. However, we are not allowed to 4487 // throw away these explicit instantiations. 4488 // 4489 // CUDA/HIP: For -fno-gpu-rdc case, device code is limited to one TU, 4490 // so say that CUDA templates are either external (for kernels) or internal. 4491 // This lets llvm perform aggressive inter-procedural optimizations. For 4492 // -fgpu-rdc case, device function calls across multiple TU's are allowed, 4493 // therefore we need to follow the normal linkage paradigm. 4494 if (Linkage == GVA_StrongODR) { 4495 if (getLangOpts().AppleKext) 4496 return llvm::Function::ExternalLinkage; 4497 if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice && 4498 !getLangOpts().GPURelocatableDeviceCode) 4499 return D->hasAttr<CUDAGlobalAttr>() ? llvm::Function::ExternalLinkage 4500 : llvm::Function::InternalLinkage; 4501 return llvm::Function::WeakODRLinkage; 4502 } 4503 4504 // C++ doesn't have tentative definitions and thus cannot have common 4505 // linkage. 4506 if (!getLangOpts().CPlusPlus && isa<VarDecl>(D) && 4507 !isVarDeclStrongDefinition(Context, *this, cast<VarDecl>(D), 4508 CodeGenOpts.NoCommon)) 4509 return llvm::GlobalVariable::CommonLinkage; 4510 4511 // selectany symbols are externally visible, so use weak instead of 4512 // linkonce. MSVC optimizes away references to const selectany globals, so 4513 // all definitions should be the same and ODR linkage should be used. 4514 // http://msdn.microsoft.com/en-us/library/5tkz6s71.aspx 4515 if (D->hasAttr<SelectAnyAttr>()) 4516 return llvm::GlobalVariable::WeakODRLinkage; 4517 4518 // Otherwise, we have strong external linkage. 4519 assert(Linkage == GVA_StrongExternal); 4520 return llvm::GlobalVariable::ExternalLinkage; 4521 } 4522 4523 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageVarDefinition( 4524 const VarDecl *VD, bool IsConstant) { 4525 GVALinkage Linkage = getContext().GetGVALinkageForVariable(VD); 4526 return getLLVMLinkageForDeclarator(VD, Linkage, IsConstant); 4527 } 4528 4529 /// Replace the uses of a function that was declared with a non-proto type. 4530 /// We want to silently drop extra arguments from call sites 4531 static void replaceUsesOfNonProtoConstant(llvm::Constant *old, 4532 llvm::Function *newFn) { 4533 // Fast path. 4534 if (old->use_empty()) return; 4535 4536 llvm::Type *newRetTy = newFn->getReturnType(); 4537 SmallVector<llvm::Value*, 4> newArgs; 4538 SmallVector<llvm::OperandBundleDef, 1> newBundles; 4539 4540 for (llvm::Value::use_iterator ui = old->use_begin(), ue = old->use_end(); 4541 ui != ue; ) { 4542 llvm::Value::use_iterator use = ui++; // Increment before the use is erased. 4543 llvm::User *user = use->getUser(); 4544 4545 // Recognize and replace uses of bitcasts. Most calls to 4546 // unprototyped functions will use bitcasts. 4547 if (auto *bitcast = dyn_cast<llvm::ConstantExpr>(user)) { 4548 if (bitcast->getOpcode() == llvm::Instruction::BitCast) 4549 replaceUsesOfNonProtoConstant(bitcast, newFn); 4550 continue; 4551 } 4552 4553 // Recognize calls to the function. 4554 llvm::CallBase *callSite = dyn_cast<llvm::CallBase>(user); 4555 if (!callSite) continue; 4556 if (!callSite->isCallee(&*use)) 4557 continue; 4558 4559 // If the return types don't match exactly, then we can't 4560 // transform this call unless it's dead. 4561 if (callSite->getType() != newRetTy && !callSite->use_empty()) 4562 continue; 4563 4564 // Get the call site's attribute list. 4565 SmallVector<llvm::AttributeSet, 8> newArgAttrs; 4566 llvm::AttributeList oldAttrs = callSite->getAttributes(); 4567 4568 // If the function was passed too few arguments, don't transform. 4569 unsigned newNumArgs = newFn->arg_size(); 4570 if (callSite->arg_size() < newNumArgs) 4571 continue; 4572 4573 // If extra arguments were passed, we silently drop them. 4574 // If any of the types mismatch, we don't transform. 4575 unsigned argNo = 0; 4576 bool dontTransform = false; 4577 for (llvm::Argument &A : newFn->args()) { 4578 if (callSite->getArgOperand(argNo)->getType() != A.getType()) { 4579 dontTransform = true; 4580 break; 4581 } 4582 4583 // Add any parameter attributes. 4584 newArgAttrs.push_back(oldAttrs.getParamAttributes(argNo)); 4585 argNo++; 4586 } 4587 if (dontTransform) 4588 continue; 4589 4590 // Okay, we can transform this. Create the new call instruction and copy 4591 // over the required information. 4592 newArgs.append(callSite->arg_begin(), callSite->arg_begin() + argNo); 4593 4594 // Copy over any operand bundles. 4595 callSite->getOperandBundlesAsDefs(newBundles); 4596 4597 llvm::CallBase *newCall; 4598 if (dyn_cast<llvm::CallInst>(callSite)) { 4599 newCall = 4600 llvm::CallInst::Create(newFn, newArgs, newBundles, "", callSite); 4601 } else { 4602 auto *oldInvoke = cast<llvm::InvokeInst>(callSite); 4603 newCall = llvm::InvokeInst::Create(newFn, oldInvoke->getNormalDest(), 4604 oldInvoke->getUnwindDest(), newArgs, 4605 newBundles, "", callSite); 4606 } 4607 newArgs.clear(); // for the next iteration 4608 4609 if (!newCall->getType()->isVoidTy()) 4610 newCall->takeName(callSite); 4611 newCall->setAttributes(llvm::AttributeList::get( 4612 newFn->getContext(), oldAttrs.getFnAttributes(), 4613 oldAttrs.getRetAttributes(), newArgAttrs)); 4614 newCall->setCallingConv(callSite->getCallingConv()); 4615 4616 // Finally, remove the old call, replacing any uses with the new one. 4617 if (!callSite->use_empty()) 4618 callSite->replaceAllUsesWith(newCall); 4619 4620 // Copy debug location attached to CI. 4621 if (callSite->getDebugLoc()) 4622 newCall->setDebugLoc(callSite->getDebugLoc()); 4623 4624 callSite->eraseFromParent(); 4625 } 4626 } 4627 4628 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we 4629 /// implement a function with no prototype, e.g. "int foo() {}". If there are 4630 /// existing call uses of the old function in the module, this adjusts them to 4631 /// call the new function directly. 4632 /// 4633 /// This is not just a cleanup: the always_inline pass requires direct calls to 4634 /// functions to be able to inline them. If there is a bitcast in the way, it 4635 /// won't inline them. Instcombine normally deletes these calls, but it isn't 4636 /// run at -O0. 4637 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old, 4638 llvm::Function *NewFn) { 4639 // If we're redefining a global as a function, don't transform it. 4640 if (!isa<llvm::Function>(Old)) return; 4641 4642 replaceUsesOfNonProtoConstant(Old, NewFn); 4643 } 4644 4645 void CodeGenModule::HandleCXXStaticMemberVarInstantiation(VarDecl *VD) { 4646 auto DK = VD->isThisDeclarationADefinition(); 4647 if (DK == VarDecl::Definition && VD->hasAttr<DLLImportAttr>()) 4648 return; 4649 4650 TemplateSpecializationKind TSK = VD->getTemplateSpecializationKind(); 4651 // If we have a definition, this might be a deferred decl. If the 4652 // instantiation is explicit, make sure we emit it at the end. 4653 if (VD->getDefinition() && TSK == TSK_ExplicitInstantiationDefinition) 4654 GetAddrOfGlobalVar(VD); 4655 4656 EmitTopLevelDecl(VD); 4657 } 4658 4659 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD, 4660 llvm::GlobalValue *GV) { 4661 const auto *D = cast<FunctionDecl>(GD.getDecl()); 4662 4663 // Compute the function info and LLVM type. 4664 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 4665 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 4666 4667 // Get or create the prototype for the function. 4668 if (!GV || (GV->getValueType() != Ty)) 4669 GV = cast<llvm::GlobalValue>(GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, 4670 /*DontDefer=*/true, 4671 ForDefinition)); 4672 4673 // Already emitted. 4674 if (!GV->isDeclaration()) 4675 return; 4676 4677 // We need to set linkage and visibility on the function before 4678 // generating code for it because various parts of IR generation 4679 // want to propagate this information down (e.g. to local static 4680 // declarations). 4681 auto *Fn = cast<llvm::Function>(GV); 4682 setFunctionLinkage(GD, Fn); 4683 4684 // FIXME: this is redundant with part of setFunctionDefinitionAttributes 4685 setGVProperties(Fn, GD); 4686 4687 MaybeHandleStaticInExternC(D, Fn); 4688 4689 maybeSetTrivialComdat(*D, *Fn); 4690 4691 // Set CodeGen attributes that represent floating point environment. 4692 setLLVMFunctionFEnvAttributes(D, Fn); 4693 4694 CodeGenFunction(*this).GenerateCode(GD, Fn, FI); 4695 4696 setNonAliasAttributes(GD, Fn); 4697 SetLLVMFunctionAttributesForDefinition(D, Fn); 4698 4699 if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>()) 4700 AddGlobalCtor(Fn, CA->getPriority()); 4701 if (const DestructorAttr *DA = D->getAttr<DestructorAttr>()) 4702 AddGlobalDtor(Fn, DA->getPriority(), true); 4703 if (D->hasAttr<AnnotateAttr>()) 4704 AddGlobalAnnotations(D, Fn); 4705 } 4706 4707 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) { 4708 const auto *D = cast<ValueDecl>(GD.getDecl()); 4709 const AliasAttr *AA = D->getAttr<AliasAttr>(); 4710 assert(AA && "Not an alias?"); 4711 4712 StringRef MangledName = getMangledName(GD); 4713 4714 if (AA->getAliasee() == MangledName) { 4715 Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0; 4716 return; 4717 } 4718 4719 // If there is a definition in the module, then it wins over the alias. 4720 // This is dubious, but allow it to be safe. Just ignore the alias. 4721 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 4722 if (Entry && !Entry->isDeclaration()) 4723 return; 4724 4725 Aliases.push_back(GD); 4726 4727 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType()); 4728 4729 // Create a reference to the named value. This ensures that it is emitted 4730 // if a deferred decl. 4731 llvm::Constant *Aliasee; 4732 llvm::GlobalValue::LinkageTypes LT; 4733 if (isa<llvm::FunctionType>(DeclTy)) { 4734 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GD, 4735 /*ForVTable=*/false); 4736 LT = getFunctionLinkage(GD); 4737 } else { 4738 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), 4739 llvm::PointerType::getUnqual(DeclTy), 4740 /*D=*/nullptr); 4741 if (const auto *VD = dyn_cast<VarDecl>(GD.getDecl())) 4742 LT = getLLVMLinkageVarDefinition(VD, D->getType().isConstQualified()); 4743 else 4744 LT = getFunctionLinkage(GD); 4745 } 4746 4747 // Create the new alias itself, but don't set a name yet. 4748 unsigned AS = Aliasee->getType()->getPointerAddressSpace(); 4749 auto *GA = 4750 llvm::GlobalAlias::create(DeclTy, AS, LT, "", Aliasee, &getModule()); 4751 4752 if (Entry) { 4753 if (GA->getAliasee() == Entry) { 4754 Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0; 4755 return; 4756 } 4757 4758 assert(Entry->isDeclaration()); 4759 4760 // If there is a declaration in the module, then we had an extern followed 4761 // by the alias, as in: 4762 // extern int test6(); 4763 // ... 4764 // int test6() __attribute__((alias("test7"))); 4765 // 4766 // Remove it and replace uses of it with the alias. 4767 GA->takeName(Entry); 4768 4769 Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA, 4770 Entry->getType())); 4771 Entry->eraseFromParent(); 4772 } else { 4773 GA->setName(MangledName); 4774 } 4775 4776 // Set attributes which are particular to an alias; this is a 4777 // specialization of the attributes which may be set on a global 4778 // variable/function. 4779 if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakRefAttr>() || 4780 D->isWeakImported()) { 4781 GA->setLinkage(llvm::Function::WeakAnyLinkage); 4782 } 4783 4784 if (const auto *VD = dyn_cast<VarDecl>(D)) 4785 if (VD->getTLSKind()) 4786 setTLSMode(GA, *VD); 4787 4788 SetCommonAttributes(GD, GA); 4789 } 4790 4791 void CodeGenModule::emitIFuncDefinition(GlobalDecl GD) { 4792 const auto *D = cast<ValueDecl>(GD.getDecl()); 4793 const IFuncAttr *IFA = D->getAttr<IFuncAttr>(); 4794 assert(IFA && "Not an ifunc?"); 4795 4796 StringRef MangledName = getMangledName(GD); 4797 4798 if (IFA->getResolver() == MangledName) { 4799 Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1; 4800 return; 4801 } 4802 4803 // Report an error if some definition overrides ifunc. 4804 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 4805 if (Entry && !Entry->isDeclaration()) { 4806 GlobalDecl OtherGD; 4807 if (lookupRepresentativeDecl(MangledName, OtherGD) && 4808 DiagnosedConflictingDefinitions.insert(GD).second) { 4809 Diags.Report(D->getLocation(), diag::err_duplicate_mangled_name) 4810 << MangledName; 4811 Diags.Report(OtherGD.getDecl()->getLocation(), 4812 diag::note_previous_definition); 4813 } 4814 return; 4815 } 4816 4817 Aliases.push_back(GD); 4818 4819 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType()); 4820 llvm::Constant *Resolver = 4821 GetOrCreateLLVMFunction(IFA->getResolver(), DeclTy, GD, 4822 /*ForVTable=*/false); 4823 llvm::GlobalIFunc *GIF = 4824 llvm::GlobalIFunc::create(DeclTy, 0, llvm::Function::ExternalLinkage, 4825 "", Resolver, &getModule()); 4826 if (Entry) { 4827 if (GIF->getResolver() == Entry) { 4828 Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1; 4829 return; 4830 } 4831 assert(Entry->isDeclaration()); 4832 4833 // If there is a declaration in the module, then we had an extern followed 4834 // by the ifunc, as in: 4835 // extern int test(); 4836 // ... 4837 // int test() __attribute__((ifunc("resolver"))); 4838 // 4839 // Remove it and replace uses of it with the ifunc. 4840 GIF->takeName(Entry); 4841 4842 Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GIF, 4843 Entry->getType())); 4844 Entry->eraseFromParent(); 4845 } else 4846 GIF->setName(MangledName); 4847 4848 SetCommonAttributes(GD, GIF); 4849 } 4850 4851 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID, 4852 ArrayRef<llvm::Type*> Tys) { 4853 return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID, 4854 Tys); 4855 } 4856 4857 static llvm::StringMapEntry<llvm::GlobalVariable *> & 4858 GetConstantCFStringEntry(llvm::StringMap<llvm::GlobalVariable *> &Map, 4859 const StringLiteral *Literal, bool TargetIsLSB, 4860 bool &IsUTF16, unsigned &StringLength) { 4861 StringRef String = Literal->getString(); 4862 unsigned NumBytes = String.size(); 4863 4864 // Check for simple case. 4865 if (!Literal->containsNonAsciiOrNull()) { 4866 StringLength = NumBytes; 4867 return *Map.insert(std::make_pair(String, nullptr)).first; 4868 } 4869 4870 // Otherwise, convert the UTF8 literals into a string of shorts. 4871 IsUTF16 = true; 4872 4873 SmallVector<llvm::UTF16, 128> ToBuf(NumBytes + 1); // +1 for ending nulls. 4874 const llvm::UTF8 *FromPtr = (const llvm::UTF8 *)String.data(); 4875 llvm::UTF16 *ToPtr = &ToBuf[0]; 4876 4877 (void)llvm::ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, &ToPtr, 4878 ToPtr + NumBytes, llvm::strictConversion); 4879 4880 // ConvertUTF8toUTF16 returns the length in ToPtr. 4881 StringLength = ToPtr - &ToBuf[0]; 4882 4883 // Add an explicit null. 4884 *ToPtr = 0; 4885 return *Map.insert(std::make_pair( 4886 StringRef(reinterpret_cast<const char *>(ToBuf.data()), 4887 (StringLength + 1) * 2), 4888 nullptr)).first; 4889 } 4890 4891 ConstantAddress 4892 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) { 4893 unsigned StringLength = 0; 4894 bool isUTF16 = false; 4895 llvm::StringMapEntry<llvm::GlobalVariable *> &Entry = 4896 GetConstantCFStringEntry(CFConstantStringMap, Literal, 4897 getDataLayout().isLittleEndian(), isUTF16, 4898 StringLength); 4899 4900 if (auto *C = Entry.second) 4901 return ConstantAddress(C, CharUnits::fromQuantity(C->getAlignment())); 4902 4903 llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty); 4904 llvm::Constant *Zeros[] = { Zero, Zero }; 4905 4906 const ASTContext &Context = getContext(); 4907 const llvm::Triple &Triple = getTriple(); 4908 4909 const auto CFRuntime = getLangOpts().CFRuntime; 4910 const bool IsSwiftABI = 4911 static_cast<unsigned>(CFRuntime) >= 4912 static_cast<unsigned>(LangOptions::CoreFoundationABI::Swift); 4913 const bool IsSwift4_1 = CFRuntime == LangOptions::CoreFoundationABI::Swift4_1; 4914 4915 // If we don't already have it, get __CFConstantStringClassReference. 4916 if (!CFConstantStringClassRef) { 4917 const char *CFConstantStringClassName = "__CFConstantStringClassReference"; 4918 llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy); 4919 Ty = llvm::ArrayType::get(Ty, 0); 4920 4921 switch (CFRuntime) { 4922 default: break; 4923 case LangOptions::CoreFoundationABI::Swift: LLVM_FALLTHROUGH; 4924 case LangOptions::CoreFoundationABI::Swift5_0: 4925 CFConstantStringClassName = 4926 Triple.isOSDarwin() ? "$s15SwiftFoundation19_NSCFConstantStringCN" 4927 : "$s10Foundation19_NSCFConstantStringCN"; 4928 Ty = IntPtrTy; 4929 break; 4930 case LangOptions::CoreFoundationABI::Swift4_2: 4931 CFConstantStringClassName = 4932 Triple.isOSDarwin() ? "$S15SwiftFoundation19_NSCFConstantStringCN" 4933 : "$S10Foundation19_NSCFConstantStringCN"; 4934 Ty = IntPtrTy; 4935 break; 4936 case LangOptions::CoreFoundationABI::Swift4_1: 4937 CFConstantStringClassName = 4938 Triple.isOSDarwin() ? "__T015SwiftFoundation19_NSCFConstantStringCN" 4939 : "__T010Foundation19_NSCFConstantStringCN"; 4940 Ty = IntPtrTy; 4941 break; 4942 } 4943 4944 llvm::Constant *C = CreateRuntimeVariable(Ty, CFConstantStringClassName); 4945 4946 if (Triple.isOSBinFormatELF() || Triple.isOSBinFormatCOFF()) { 4947 llvm::GlobalValue *GV = nullptr; 4948 4949 if ((GV = dyn_cast<llvm::GlobalValue>(C))) { 4950 IdentifierInfo &II = Context.Idents.get(GV->getName()); 4951 TranslationUnitDecl *TUDecl = Context.getTranslationUnitDecl(); 4952 DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl); 4953 4954 const VarDecl *VD = nullptr; 4955 for (const auto &Result : DC->lookup(&II)) 4956 if ((VD = dyn_cast<VarDecl>(Result))) 4957 break; 4958 4959 if (Triple.isOSBinFormatELF()) { 4960 if (!VD) 4961 GV->setLinkage(llvm::GlobalValue::ExternalLinkage); 4962 } else { 4963 GV->setLinkage(llvm::GlobalValue::ExternalLinkage); 4964 if (!VD || !VD->hasAttr<DLLExportAttr>()) 4965 GV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass); 4966 else 4967 GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass); 4968 } 4969 4970 setDSOLocal(GV); 4971 } 4972 } 4973 4974 // Decay array -> ptr 4975 CFConstantStringClassRef = 4976 IsSwiftABI ? llvm::ConstantExpr::getPtrToInt(C, Ty) 4977 : llvm::ConstantExpr::getGetElementPtr(Ty, C, Zeros); 4978 } 4979 4980 QualType CFTy = Context.getCFConstantStringType(); 4981 4982 auto *STy = cast<llvm::StructType>(getTypes().ConvertType(CFTy)); 4983 4984 ConstantInitBuilder Builder(*this); 4985 auto Fields = Builder.beginStruct(STy); 4986 4987 // Class pointer. 4988 Fields.add(cast<llvm::ConstantExpr>(CFConstantStringClassRef)); 4989 4990 // Flags. 4991 if (IsSwiftABI) { 4992 Fields.addInt(IntPtrTy, IsSwift4_1 ? 0x05 : 0x01); 4993 Fields.addInt(Int64Ty, isUTF16 ? 0x07d0 : 0x07c8); 4994 } else { 4995 Fields.addInt(IntTy, isUTF16 ? 0x07d0 : 0x07C8); 4996 } 4997 4998 // String pointer. 4999 llvm::Constant *C = nullptr; 5000 if (isUTF16) { 5001 auto Arr = llvm::makeArrayRef( 5002 reinterpret_cast<uint16_t *>(const_cast<char *>(Entry.first().data())), 5003 Entry.first().size() / 2); 5004 C = llvm::ConstantDataArray::get(VMContext, Arr); 5005 } else { 5006 C = llvm::ConstantDataArray::getString(VMContext, Entry.first()); 5007 } 5008 5009 // Note: -fwritable-strings doesn't make the backing store strings of 5010 // CFStrings writable. (See <rdar://problem/10657500>) 5011 auto *GV = 5012 new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true, 5013 llvm::GlobalValue::PrivateLinkage, C, ".str"); 5014 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 5015 // Don't enforce the target's minimum global alignment, since the only use 5016 // of the string is via this class initializer. 5017 CharUnits Align = isUTF16 ? Context.getTypeAlignInChars(Context.ShortTy) 5018 : Context.getTypeAlignInChars(Context.CharTy); 5019 GV->setAlignment(Align.getAsAlign()); 5020 5021 // FIXME: We set the section explicitly to avoid a bug in ld64 224.1. 5022 // Without it LLVM can merge the string with a non unnamed_addr one during 5023 // LTO. Doing that changes the section it ends in, which surprises ld64. 5024 if (Triple.isOSBinFormatMachO()) 5025 GV->setSection(isUTF16 ? "__TEXT,__ustring" 5026 : "__TEXT,__cstring,cstring_literals"); 5027 // Make sure the literal ends up in .rodata to allow for safe ICF and for 5028 // the static linker to adjust permissions to read-only later on. 5029 else if (Triple.isOSBinFormatELF()) 5030 GV->setSection(".rodata"); 5031 5032 // String. 5033 llvm::Constant *Str = 5034 llvm::ConstantExpr::getGetElementPtr(GV->getValueType(), GV, Zeros); 5035 5036 if (isUTF16) 5037 // Cast the UTF16 string to the correct type. 5038 Str = llvm::ConstantExpr::getBitCast(Str, Int8PtrTy); 5039 Fields.add(Str); 5040 5041 // String length. 5042 llvm::IntegerType *LengthTy = 5043 llvm::IntegerType::get(getModule().getContext(), 5044 Context.getTargetInfo().getLongWidth()); 5045 if (IsSwiftABI) { 5046 if (CFRuntime == LangOptions::CoreFoundationABI::Swift4_1 || 5047 CFRuntime == LangOptions::CoreFoundationABI::Swift4_2) 5048 LengthTy = Int32Ty; 5049 else 5050 LengthTy = IntPtrTy; 5051 } 5052 Fields.addInt(LengthTy, StringLength); 5053 5054 // Swift ABI requires 8-byte alignment to ensure that the _Atomic(uint64_t) is 5055 // properly aligned on 32-bit platforms. 5056 CharUnits Alignment = 5057 IsSwiftABI ? Context.toCharUnitsFromBits(64) : getPointerAlign(); 5058 5059 // The struct. 5060 GV = Fields.finishAndCreateGlobal("_unnamed_cfstring_", Alignment, 5061 /*isConstant=*/false, 5062 llvm::GlobalVariable::PrivateLinkage); 5063 GV->addAttribute("objc_arc_inert"); 5064 switch (Triple.getObjectFormat()) { 5065 case llvm::Triple::UnknownObjectFormat: 5066 llvm_unreachable("unknown file format"); 5067 case llvm::Triple::GOFF: 5068 llvm_unreachable("GOFF is not yet implemented"); 5069 case llvm::Triple::XCOFF: 5070 llvm_unreachable("XCOFF is not yet implemented"); 5071 case llvm::Triple::COFF: 5072 case llvm::Triple::ELF: 5073 case llvm::Triple::Wasm: 5074 GV->setSection("cfstring"); 5075 break; 5076 case llvm::Triple::MachO: 5077 GV->setSection("__DATA,__cfstring"); 5078 break; 5079 } 5080 Entry.second = GV; 5081 5082 return ConstantAddress(GV, Alignment); 5083 } 5084 5085 bool CodeGenModule::getExpressionLocationsEnabled() const { 5086 return !CodeGenOpts.EmitCodeView || CodeGenOpts.DebugColumnInfo; 5087 } 5088 5089 QualType CodeGenModule::getObjCFastEnumerationStateType() { 5090 if (ObjCFastEnumerationStateType.isNull()) { 5091 RecordDecl *D = Context.buildImplicitRecord("__objcFastEnumerationState"); 5092 D->startDefinition(); 5093 5094 QualType FieldTypes[] = { 5095 Context.UnsignedLongTy, 5096 Context.getPointerType(Context.getObjCIdType()), 5097 Context.getPointerType(Context.UnsignedLongTy), 5098 Context.getConstantArrayType(Context.UnsignedLongTy, 5099 llvm::APInt(32, 5), nullptr, ArrayType::Normal, 0) 5100 }; 5101 5102 for (size_t i = 0; i < 4; ++i) { 5103 FieldDecl *Field = FieldDecl::Create(Context, 5104 D, 5105 SourceLocation(), 5106 SourceLocation(), nullptr, 5107 FieldTypes[i], /*TInfo=*/nullptr, 5108 /*BitWidth=*/nullptr, 5109 /*Mutable=*/false, 5110 ICIS_NoInit); 5111 Field->setAccess(AS_public); 5112 D->addDecl(Field); 5113 } 5114 5115 D->completeDefinition(); 5116 ObjCFastEnumerationStateType = Context.getTagDeclType(D); 5117 } 5118 5119 return ObjCFastEnumerationStateType; 5120 } 5121 5122 llvm::Constant * 5123 CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) { 5124 assert(!E->getType()->isPointerType() && "Strings are always arrays"); 5125 5126 // Don't emit it as the address of the string, emit the string data itself 5127 // as an inline array. 5128 if (E->getCharByteWidth() == 1) { 5129 SmallString<64> Str(E->getString()); 5130 5131 // Resize the string to the right size, which is indicated by its type. 5132 const ConstantArrayType *CAT = Context.getAsConstantArrayType(E->getType()); 5133 Str.resize(CAT->getSize().getZExtValue()); 5134 return llvm::ConstantDataArray::getString(VMContext, Str, false); 5135 } 5136 5137 auto *AType = cast<llvm::ArrayType>(getTypes().ConvertType(E->getType())); 5138 llvm::Type *ElemTy = AType->getElementType(); 5139 unsigned NumElements = AType->getNumElements(); 5140 5141 // Wide strings have either 2-byte or 4-byte elements. 5142 if (ElemTy->getPrimitiveSizeInBits() == 16) { 5143 SmallVector<uint16_t, 32> Elements; 5144 Elements.reserve(NumElements); 5145 5146 for(unsigned i = 0, e = E->getLength(); i != e; ++i) 5147 Elements.push_back(E->getCodeUnit(i)); 5148 Elements.resize(NumElements); 5149 return llvm::ConstantDataArray::get(VMContext, Elements); 5150 } 5151 5152 assert(ElemTy->getPrimitiveSizeInBits() == 32); 5153 SmallVector<uint32_t, 32> Elements; 5154 Elements.reserve(NumElements); 5155 5156 for(unsigned i = 0, e = E->getLength(); i != e; ++i) 5157 Elements.push_back(E->getCodeUnit(i)); 5158 Elements.resize(NumElements); 5159 return llvm::ConstantDataArray::get(VMContext, Elements); 5160 } 5161 5162 static llvm::GlobalVariable * 5163 GenerateStringLiteral(llvm::Constant *C, llvm::GlobalValue::LinkageTypes LT, 5164 CodeGenModule &CGM, StringRef GlobalName, 5165 CharUnits Alignment) { 5166 unsigned AddrSpace = CGM.getContext().getTargetAddressSpace( 5167 CGM.getStringLiteralAddressSpace()); 5168 5169 llvm::Module &M = CGM.getModule(); 5170 // Create a global variable for this string 5171 auto *GV = new llvm::GlobalVariable( 5172 M, C->getType(), !CGM.getLangOpts().WritableStrings, LT, C, GlobalName, 5173 nullptr, llvm::GlobalVariable::NotThreadLocal, AddrSpace); 5174 GV->setAlignment(Alignment.getAsAlign()); 5175 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 5176 if (GV->isWeakForLinker()) { 5177 assert(CGM.supportsCOMDAT() && "Only COFF uses weak string literals"); 5178 GV->setComdat(M.getOrInsertComdat(GV->getName())); 5179 } 5180 CGM.setDSOLocal(GV); 5181 5182 return GV; 5183 } 5184 5185 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a 5186 /// constant array for the given string literal. 5187 ConstantAddress 5188 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S, 5189 StringRef Name) { 5190 CharUnits Alignment = getContext().getAlignOfGlobalVarInChars(S->getType()); 5191 5192 llvm::Constant *C = GetConstantArrayFromStringLiteral(S); 5193 llvm::GlobalVariable **Entry = nullptr; 5194 if (!LangOpts.WritableStrings) { 5195 Entry = &ConstantStringMap[C]; 5196 if (auto GV = *Entry) { 5197 if (Alignment.getQuantity() > GV->getAlignment()) 5198 GV->setAlignment(Alignment.getAsAlign()); 5199 return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV), 5200 Alignment); 5201 } 5202 } 5203 5204 SmallString<256> MangledNameBuffer; 5205 StringRef GlobalVariableName; 5206 llvm::GlobalValue::LinkageTypes LT; 5207 5208 // Mangle the string literal if that's how the ABI merges duplicate strings. 5209 // Don't do it if they are writable, since we don't want writes in one TU to 5210 // affect strings in another. 5211 if (getCXXABI().getMangleContext().shouldMangleStringLiteral(S) && 5212 !LangOpts.WritableStrings) { 5213 llvm::raw_svector_ostream Out(MangledNameBuffer); 5214 getCXXABI().getMangleContext().mangleStringLiteral(S, Out); 5215 LT = llvm::GlobalValue::LinkOnceODRLinkage; 5216 GlobalVariableName = MangledNameBuffer; 5217 } else { 5218 LT = llvm::GlobalValue::PrivateLinkage; 5219 GlobalVariableName = Name; 5220 } 5221 5222 auto GV = GenerateStringLiteral(C, LT, *this, GlobalVariableName, Alignment); 5223 if (Entry) 5224 *Entry = GV; 5225 5226 SanitizerMD->reportGlobalToASan(GV, S->getStrTokenLoc(0), "<string literal>", 5227 QualType()); 5228 5229 return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV), 5230 Alignment); 5231 } 5232 5233 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant 5234 /// array for the given ObjCEncodeExpr node. 5235 ConstantAddress 5236 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) { 5237 std::string Str; 5238 getContext().getObjCEncodingForType(E->getEncodedType(), Str); 5239 5240 return GetAddrOfConstantCString(Str); 5241 } 5242 5243 /// GetAddrOfConstantCString - Returns a pointer to a character array containing 5244 /// the literal and a terminating '\0' character. 5245 /// The result has pointer to array type. 5246 ConstantAddress CodeGenModule::GetAddrOfConstantCString( 5247 const std::string &Str, const char *GlobalName) { 5248 StringRef StrWithNull(Str.c_str(), Str.size() + 1); 5249 CharUnits Alignment = 5250 getContext().getAlignOfGlobalVarInChars(getContext().CharTy); 5251 5252 llvm::Constant *C = 5253 llvm::ConstantDataArray::getString(getLLVMContext(), StrWithNull, false); 5254 5255 // Don't share any string literals if strings aren't constant. 5256 llvm::GlobalVariable **Entry = nullptr; 5257 if (!LangOpts.WritableStrings) { 5258 Entry = &ConstantStringMap[C]; 5259 if (auto GV = *Entry) { 5260 if (Alignment.getQuantity() > GV->getAlignment()) 5261 GV->setAlignment(Alignment.getAsAlign()); 5262 return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV), 5263 Alignment); 5264 } 5265 } 5266 5267 // Get the default prefix if a name wasn't specified. 5268 if (!GlobalName) 5269 GlobalName = ".str"; 5270 // Create a global variable for this. 5271 auto GV = GenerateStringLiteral(C, llvm::GlobalValue::PrivateLinkage, *this, 5272 GlobalName, Alignment); 5273 if (Entry) 5274 *Entry = GV; 5275 5276 return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV), 5277 Alignment); 5278 } 5279 5280 ConstantAddress CodeGenModule::GetAddrOfGlobalTemporary( 5281 const MaterializeTemporaryExpr *E, const Expr *Init) { 5282 assert((E->getStorageDuration() == SD_Static || 5283 E->getStorageDuration() == SD_Thread) && "not a global temporary"); 5284 const auto *VD = cast<VarDecl>(E->getExtendingDecl()); 5285 5286 // If we're not materializing a subobject of the temporary, keep the 5287 // cv-qualifiers from the type of the MaterializeTemporaryExpr. 5288 QualType MaterializedType = Init->getType(); 5289 if (Init == E->getSubExpr()) 5290 MaterializedType = E->getType(); 5291 5292 CharUnits Align = getContext().getTypeAlignInChars(MaterializedType); 5293 5294 if (llvm::Constant *Slot = MaterializedGlobalTemporaryMap[E]) 5295 return ConstantAddress(Slot, Align); 5296 5297 // FIXME: If an externally-visible declaration extends multiple temporaries, 5298 // we need to give each temporary the same name in every translation unit (and 5299 // we also need to make the temporaries externally-visible). 5300 SmallString<256> Name; 5301 llvm::raw_svector_ostream Out(Name); 5302 getCXXABI().getMangleContext().mangleReferenceTemporary( 5303 VD, E->getManglingNumber(), Out); 5304 5305 APValue *Value = nullptr; 5306 if (E->getStorageDuration() == SD_Static && VD && VD->evaluateValue()) { 5307 // If the initializer of the extending declaration is a constant 5308 // initializer, we should have a cached constant initializer for this 5309 // temporary. Note that this might have a different value from the value 5310 // computed by evaluating the initializer if the surrounding constant 5311 // expression modifies the temporary. 5312 Value = E->getOrCreateValue(false); 5313 } 5314 5315 // Try evaluating it now, it might have a constant initializer. 5316 Expr::EvalResult EvalResult; 5317 if (!Value && Init->EvaluateAsRValue(EvalResult, getContext()) && 5318 !EvalResult.hasSideEffects()) 5319 Value = &EvalResult.Val; 5320 5321 LangAS AddrSpace = 5322 VD ? GetGlobalVarAddressSpace(VD) : MaterializedType.getAddressSpace(); 5323 5324 Optional<ConstantEmitter> emitter; 5325 llvm::Constant *InitialValue = nullptr; 5326 bool Constant = false; 5327 llvm::Type *Type; 5328 if (Value) { 5329 // The temporary has a constant initializer, use it. 5330 emitter.emplace(*this); 5331 InitialValue = emitter->emitForInitializer(*Value, AddrSpace, 5332 MaterializedType); 5333 Constant = isTypeConstant(MaterializedType, /*ExcludeCtor*/Value); 5334 Type = InitialValue->getType(); 5335 } else { 5336 // No initializer, the initialization will be provided when we 5337 // initialize the declaration which performed lifetime extension. 5338 Type = getTypes().ConvertTypeForMem(MaterializedType); 5339 } 5340 5341 // Create a global variable for this lifetime-extended temporary. 5342 llvm::GlobalValue::LinkageTypes Linkage = 5343 getLLVMLinkageVarDefinition(VD, Constant); 5344 if (Linkage == llvm::GlobalVariable::ExternalLinkage) { 5345 const VarDecl *InitVD; 5346 if (VD->isStaticDataMember() && VD->getAnyInitializer(InitVD) && 5347 isa<CXXRecordDecl>(InitVD->getLexicalDeclContext())) { 5348 // Temporaries defined inside a class get linkonce_odr linkage because the 5349 // class can be defined in multiple translation units. 5350 Linkage = llvm::GlobalVariable::LinkOnceODRLinkage; 5351 } else { 5352 // There is no need for this temporary to have external linkage if the 5353 // VarDecl has external linkage. 5354 Linkage = llvm::GlobalVariable::InternalLinkage; 5355 } 5356 } 5357 auto TargetAS = getContext().getTargetAddressSpace(AddrSpace); 5358 auto *GV = new llvm::GlobalVariable( 5359 getModule(), Type, Constant, Linkage, InitialValue, Name.c_str(), 5360 /*InsertBefore=*/nullptr, llvm::GlobalVariable::NotThreadLocal, TargetAS); 5361 if (emitter) emitter->finalize(GV); 5362 setGVProperties(GV, VD); 5363 GV->setAlignment(Align.getAsAlign()); 5364 if (supportsCOMDAT() && GV->isWeakForLinker()) 5365 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 5366 if (VD->getTLSKind()) 5367 setTLSMode(GV, *VD); 5368 llvm::Constant *CV = GV; 5369 if (AddrSpace != LangAS::Default) 5370 CV = getTargetCodeGenInfo().performAddrSpaceCast( 5371 *this, GV, AddrSpace, LangAS::Default, 5372 Type->getPointerTo( 5373 getContext().getTargetAddressSpace(LangAS::Default))); 5374 MaterializedGlobalTemporaryMap[E] = CV; 5375 return ConstantAddress(CV, Align); 5376 } 5377 5378 /// EmitObjCPropertyImplementations - Emit information for synthesized 5379 /// properties for an implementation. 5380 void CodeGenModule::EmitObjCPropertyImplementations(const 5381 ObjCImplementationDecl *D) { 5382 for (const auto *PID : D->property_impls()) { 5383 // Dynamic is just for type-checking. 5384 if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) { 5385 ObjCPropertyDecl *PD = PID->getPropertyDecl(); 5386 5387 // Determine which methods need to be implemented, some may have 5388 // been overridden. Note that ::isPropertyAccessor is not the method 5389 // we want, that just indicates if the decl came from a 5390 // property. What we want to know is if the method is defined in 5391 // this implementation. 5392 auto *Getter = PID->getGetterMethodDecl(); 5393 if (!Getter || Getter->isSynthesizedAccessorStub()) 5394 CodeGenFunction(*this).GenerateObjCGetter( 5395 const_cast<ObjCImplementationDecl *>(D), PID); 5396 auto *Setter = PID->getSetterMethodDecl(); 5397 if (!PD->isReadOnly() && (!Setter || Setter->isSynthesizedAccessorStub())) 5398 CodeGenFunction(*this).GenerateObjCSetter( 5399 const_cast<ObjCImplementationDecl *>(D), PID); 5400 } 5401 } 5402 } 5403 5404 static bool needsDestructMethod(ObjCImplementationDecl *impl) { 5405 const ObjCInterfaceDecl *iface = impl->getClassInterface(); 5406 for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin(); 5407 ivar; ivar = ivar->getNextIvar()) 5408 if (ivar->getType().isDestructedType()) 5409 return true; 5410 5411 return false; 5412 } 5413 5414 static bool AllTrivialInitializers(CodeGenModule &CGM, 5415 ObjCImplementationDecl *D) { 5416 CodeGenFunction CGF(CGM); 5417 for (ObjCImplementationDecl::init_iterator B = D->init_begin(), 5418 E = D->init_end(); B != E; ++B) { 5419 CXXCtorInitializer *CtorInitExp = *B; 5420 Expr *Init = CtorInitExp->getInit(); 5421 if (!CGF.isTrivialInitializer(Init)) 5422 return false; 5423 } 5424 return true; 5425 } 5426 5427 /// EmitObjCIvarInitializations - Emit information for ivar initialization 5428 /// for an implementation. 5429 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) { 5430 // We might need a .cxx_destruct even if we don't have any ivar initializers. 5431 if (needsDestructMethod(D)) { 5432 IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct"); 5433 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 5434 ObjCMethodDecl *DTORMethod = ObjCMethodDecl::Create( 5435 getContext(), D->getLocation(), D->getLocation(), cxxSelector, 5436 getContext().VoidTy, nullptr, D, 5437 /*isInstance=*/true, /*isVariadic=*/false, 5438 /*isPropertyAccessor=*/true, /*isSynthesizedAccessorStub=*/false, 5439 /*isImplicitlyDeclared=*/true, 5440 /*isDefined=*/false, ObjCMethodDecl::Required); 5441 D->addInstanceMethod(DTORMethod); 5442 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false); 5443 D->setHasDestructors(true); 5444 } 5445 5446 // If the implementation doesn't have any ivar initializers, we don't need 5447 // a .cxx_construct. 5448 if (D->getNumIvarInitializers() == 0 || 5449 AllTrivialInitializers(*this, D)) 5450 return; 5451 5452 IdentifierInfo *II = &getContext().Idents.get(".cxx_construct"); 5453 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 5454 // The constructor returns 'self'. 5455 ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create( 5456 getContext(), D->getLocation(), D->getLocation(), cxxSelector, 5457 getContext().getObjCIdType(), nullptr, D, /*isInstance=*/true, 5458 /*isVariadic=*/false, 5459 /*isPropertyAccessor=*/true, /*isSynthesizedAccessorStub=*/false, 5460 /*isImplicitlyDeclared=*/true, 5461 /*isDefined=*/false, ObjCMethodDecl::Required); 5462 D->addInstanceMethod(CTORMethod); 5463 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true); 5464 D->setHasNonZeroConstructors(true); 5465 } 5466 5467 // EmitLinkageSpec - Emit all declarations in a linkage spec. 5468 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) { 5469 if (LSD->getLanguage() != LinkageSpecDecl::lang_c && 5470 LSD->getLanguage() != LinkageSpecDecl::lang_cxx) { 5471 ErrorUnsupported(LSD, "linkage spec"); 5472 return; 5473 } 5474 5475 EmitDeclContext(LSD); 5476 } 5477 5478 void CodeGenModule::EmitDeclContext(const DeclContext *DC) { 5479 for (auto *I : DC->decls()) { 5480 // Unlike other DeclContexts, the contents of an ObjCImplDecl at TU scope 5481 // are themselves considered "top-level", so EmitTopLevelDecl on an 5482 // ObjCImplDecl does not recursively visit them. We need to do that in 5483 // case they're nested inside another construct (LinkageSpecDecl / 5484 // ExportDecl) that does stop them from being considered "top-level". 5485 if (auto *OID = dyn_cast<ObjCImplDecl>(I)) { 5486 for (auto *M : OID->methods()) 5487 EmitTopLevelDecl(M); 5488 } 5489 5490 EmitTopLevelDecl(I); 5491 } 5492 } 5493 5494 /// EmitTopLevelDecl - Emit code for a single top level declaration. 5495 void CodeGenModule::EmitTopLevelDecl(Decl *D) { 5496 // Ignore dependent declarations. 5497 if (D->isTemplated()) 5498 return; 5499 5500 // Consteval function shouldn't be emitted. 5501 if (auto *FD = dyn_cast<FunctionDecl>(D)) 5502 if (FD->isConsteval()) 5503 return; 5504 5505 switch (D->getKind()) { 5506 case Decl::CXXConversion: 5507 case Decl::CXXMethod: 5508 case Decl::Function: 5509 EmitGlobal(cast<FunctionDecl>(D)); 5510 // Always provide some coverage mapping 5511 // even for the functions that aren't emitted. 5512 AddDeferredUnusedCoverageMapping(D); 5513 break; 5514 5515 case Decl::CXXDeductionGuide: 5516 // Function-like, but does not result in code emission. 5517 break; 5518 5519 case Decl::Var: 5520 case Decl::Decomposition: 5521 case Decl::VarTemplateSpecialization: 5522 EmitGlobal(cast<VarDecl>(D)); 5523 if (auto *DD = dyn_cast<DecompositionDecl>(D)) 5524 for (auto *B : DD->bindings()) 5525 if (auto *HD = B->getHoldingVar()) 5526 EmitGlobal(HD); 5527 break; 5528 5529 // Indirect fields from global anonymous structs and unions can be 5530 // ignored; only the actual variable requires IR gen support. 5531 case Decl::IndirectField: 5532 break; 5533 5534 // C++ Decls 5535 case Decl::Namespace: 5536 EmitDeclContext(cast<NamespaceDecl>(D)); 5537 break; 5538 case Decl::ClassTemplateSpecialization: { 5539 const auto *Spec = cast<ClassTemplateSpecializationDecl>(D); 5540 if (CGDebugInfo *DI = getModuleDebugInfo()) 5541 if (Spec->getSpecializationKind() == 5542 TSK_ExplicitInstantiationDefinition && 5543 Spec->hasDefinition()) 5544 DI->completeTemplateDefinition(*Spec); 5545 } LLVM_FALLTHROUGH; 5546 case Decl::CXXRecord: { 5547 CXXRecordDecl *CRD = cast<CXXRecordDecl>(D); 5548 if (CGDebugInfo *DI = getModuleDebugInfo()) { 5549 if (CRD->hasDefinition()) 5550 DI->EmitAndRetainType(getContext().getRecordType(cast<RecordDecl>(D))); 5551 if (auto *ES = D->getASTContext().getExternalSource()) 5552 if (ES->hasExternalDefinitions(D) == ExternalASTSource::EK_Never) 5553 DI->completeUnusedClass(*CRD); 5554 } 5555 // Emit any static data members, they may be definitions. 5556 for (auto *I : CRD->decls()) 5557 if (isa<VarDecl>(I) || isa<CXXRecordDecl>(I)) 5558 EmitTopLevelDecl(I); 5559 break; 5560 } 5561 // No code generation needed. 5562 case Decl::UsingShadow: 5563 case Decl::ClassTemplate: 5564 case Decl::VarTemplate: 5565 case Decl::Concept: 5566 case Decl::VarTemplatePartialSpecialization: 5567 case Decl::FunctionTemplate: 5568 case Decl::TypeAliasTemplate: 5569 case Decl::Block: 5570 case Decl::Empty: 5571 case Decl::Binding: 5572 break; 5573 case Decl::Using: // using X; [C++] 5574 if (CGDebugInfo *DI = getModuleDebugInfo()) 5575 DI->EmitUsingDecl(cast<UsingDecl>(*D)); 5576 break; 5577 case Decl::NamespaceAlias: 5578 if (CGDebugInfo *DI = getModuleDebugInfo()) 5579 DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(*D)); 5580 break; 5581 case Decl::UsingDirective: // using namespace X; [C++] 5582 if (CGDebugInfo *DI = getModuleDebugInfo()) 5583 DI->EmitUsingDirective(cast<UsingDirectiveDecl>(*D)); 5584 break; 5585 case Decl::CXXConstructor: 5586 getCXXABI().EmitCXXConstructors(cast<CXXConstructorDecl>(D)); 5587 break; 5588 case Decl::CXXDestructor: 5589 getCXXABI().EmitCXXDestructors(cast<CXXDestructorDecl>(D)); 5590 break; 5591 5592 case Decl::StaticAssert: 5593 // Nothing to do. 5594 break; 5595 5596 // Objective-C Decls 5597 5598 // Forward declarations, no (immediate) code generation. 5599 case Decl::ObjCInterface: 5600 case Decl::ObjCCategory: 5601 break; 5602 5603 case Decl::ObjCProtocol: { 5604 auto *Proto = cast<ObjCProtocolDecl>(D); 5605 if (Proto->isThisDeclarationADefinition()) 5606 ObjCRuntime->GenerateProtocol(Proto); 5607 break; 5608 } 5609 5610 case Decl::ObjCCategoryImpl: 5611 // Categories have properties but don't support synthesize so we 5612 // can ignore them here. 5613 ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D)); 5614 break; 5615 5616 case Decl::ObjCImplementation: { 5617 auto *OMD = cast<ObjCImplementationDecl>(D); 5618 EmitObjCPropertyImplementations(OMD); 5619 EmitObjCIvarInitializations(OMD); 5620 ObjCRuntime->GenerateClass(OMD); 5621 // Emit global variable debug information. 5622 if (CGDebugInfo *DI = getModuleDebugInfo()) 5623 if (getCodeGenOpts().hasReducedDebugInfo()) 5624 DI->getOrCreateInterfaceType(getContext().getObjCInterfaceType( 5625 OMD->getClassInterface()), OMD->getLocation()); 5626 break; 5627 } 5628 case Decl::ObjCMethod: { 5629 auto *OMD = cast<ObjCMethodDecl>(D); 5630 // If this is not a prototype, emit the body. 5631 if (OMD->getBody()) 5632 CodeGenFunction(*this).GenerateObjCMethod(OMD); 5633 break; 5634 } 5635 case Decl::ObjCCompatibleAlias: 5636 ObjCRuntime->RegisterAlias(cast<ObjCCompatibleAliasDecl>(D)); 5637 break; 5638 5639 case Decl::PragmaComment: { 5640 const auto *PCD = cast<PragmaCommentDecl>(D); 5641 switch (PCD->getCommentKind()) { 5642 case PCK_Unknown: 5643 llvm_unreachable("unexpected pragma comment kind"); 5644 case PCK_Linker: 5645 AppendLinkerOptions(PCD->getArg()); 5646 break; 5647 case PCK_Lib: 5648 AddDependentLib(PCD->getArg()); 5649 break; 5650 case PCK_Compiler: 5651 case PCK_ExeStr: 5652 case PCK_User: 5653 break; // We ignore all of these. 5654 } 5655 break; 5656 } 5657 5658 case Decl::PragmaDetectMismatch: { 5659 const auto *PDMD = cast<PragmaDetectMismatchDecl>(D); 5660 AddDetectMismatch(PDMD->getName(), PDMD->getValue()); 5661 break; 5662 } 5663 5664 case Decl::LinkageSpec: 5665 EmitLinkageSpec(cast<LinkageSpecDecl>(D)); 5666 break; 5667 5668 case Decl::FileScopeAsm: { 5669 // File-scope asm is ignored during device-side CUDA compilation. 5670 if (LangOpts.CUDA && LangOpts.CUDAIsDevice) 5671 break; 5672 // File-scope asm is ignored during device-side OpenMP compilation. 5673 if (LangOpts.OpenMPIsDevice) 5674 break; 5675 auto *AD = cast<FileScopeAsmDecl>(D); 5676 getModule().appendModuleInlineAsm(AD->getAsmString()->getString()); 5677 break; 5678 } 5679 5680 case Decl::Import: { 5681 auto *Import = cast<ImportDecl>(D); 5682 5683 // If we've already imported this module, we're done. 5684 if (!ImportedModules.insert(Import->getImportedModule())) 5685 break; 5686 5687 // Emit debug information for direct imports. 5688 if (!Import->getImportedOwningModule()) { 5689 if (CGDebugInfo *DI = getModuleDebugInfo()) 5690 DI->EmitImportDecl(*Import); 5691 } 5692 5693 // Find all of the submodules and emit the module initializers. 5694 llvm::SmallPtrSet<clang::Module *, 16> Visited; 5695 SmallVector<clang::Module *, 16> Stack; 5696 Visited.insert(Import->getImportedModule()); 5697 Stack.push_back(Import->getImportedModule()); 5698 5699 while (!Stack.empty()) { 5700 clang::Module *Mod = Stack.pop_back_val(); 5701 if (!EmittedModuleInitializers.insert(Mod).second) 5702 continue; 5703 5704 for (auto *D : Context.getModuleInitializers(Mod)) 5705 EmitTopLevelDecl(D); 5706 5707 // Visit the submodules of this module. 5708 for (clang::Module::submodule_iterator Sub = Mod->submodule_begin(), 5709 SubEnd = Mod->submodule_end(); 5710 Sub != SubEnd; ++Sub) { 5711 // Skip explicit children; they need to be explicitly imported to emit 5712 // the initializers. 5713 if ((*Sub)->IsExplicit) 5714 continue; 5715 5716 if (Visited.insert(*Sub).second) 5717 Stack.push_back(*Sub); 5718 } 5719 } 5720 break; 5721 } 5722 5723 case Decl::Export: 5724 EmitDeclContext(cast<ExportDecl>(D)); 5725 break; 5726 5727 case Decl::OMPThreadPrivate: 5728 EmitOMPThreadPrivateDecl(cast<OMPThreadPrivateDecl>(D)); 5729 break; 5730 5731 case Decl::OMPAllocate: 5732 break; 5733 5734 case Decl::OMPDeclareReduction: 5735 EmitOMPDeclareReduction(cast<OMPDeclareReductionDecl>(D)); 5736 break; 5737 5738 case Decl::OMPDeclareMapper: 5739 EmitOMPDeclareMapper(cast<OMPDeclareMapperDecl>(D)); 5740 break; 5741 5742 case Decl::OMPRequires: 5743 EmitOMPRequiresDecl(cast<OMPRequiresDecl>(D)); 5744 break; 5745 5746 case Decl::Typedef: 5747 case Decl::TypeAlias: // using foo = bar; [C++11] 5748 if (CGDebugInfo *DI = getModuleDebugInfo()) 5749 DI->EmitAndRetainType( 5750 getContext().getTypedefType(cast<TypedefNameDecl>(D))); 5751 break; 5752 5753 case Decl::Record: 5754 if (CGDebugInfo *DI = getModuleDebugInfo()) 5755 if (cast<RecordDecl>(D)->getDefinition()) 5756 DI->EmitAndRetainType(getContext().getRecordType(cast<RecordDecl>(D))); 5757 break; 5758 5759 case Decl::Enum: 5760 if (CGDebugInfo *DI = getModuleDebugInfo()) 5761 if (cast<EnumDecl>(D)->getDefinition()) 5762 DI->EmitAndRetainType(getContext().getEnumType(cast<EnumDecl>(D))); 5763 break; 5764 5765 default: 5766 // Make sure we handled everything we should, every other kind is a 5767 // non-top-level decl. FIXME: Would be nice to have an isTopLevelDeclKind 5768 // function. Need to recode Decl::Kind to do that easily. 5769 assert(isa<TypeDecl>(D) && "Unsupported decl kind"); 5770 break; 5771 } 5772 } 5773 5774 void CodeGenModule::AddDeferredUnusedCoverageMapping(Decl *D) { 5775 // Do we need to generate coverage mapping? 5776 if (!CodeGenOpts.CoverageMapping) 5777 return; 5778 switch (D->getKind()) { 5779 case Decl::CXXConversion: 5780 case Decl::CXXMethod: 5781 case Decl::Function: 5782 case Decl::ObjCMethod: 5783 case Decl::CXXConstructor: 5784 case Decl::CXXDestructor: { 5785 if (!cast<FunctionDecl>(D)->doesThisDeclarationHaveABody()) 5786 break; 5787 SourceManager &SM = getContext().getSourceManager(); 5788 if (LimitedCoverage && SM.getMainFileID() != SM.getFileID(D->getBeginLoc())) 5789 break; 5790 auto I = DeferredEmptyCoverageMappingDecls.find(D); 5791 if (I == DeferredEmptyCoverageMappingDecls.end()) 5792 DeferredEmptyCoverageMappingDecls[D] = true; 5793 break; 5794 } 5795 default: 5796 break; 5797 }; 5798 } 5799 5800 void CodeGenModule::ClearUnusedCoverageMapping(const Decl *D) { 5801 // Do we need to generate coverage mapping? 5802 if (!CodeGenOpts.CoverageMapping) 5803 return; 5804 if (const auto *Fn = dyn_cast<FunctionDecl>(D)) { 5805 if (Fn->isTemplateInstantiation()) 5806 ClearUnusedCoverageMapping(Fn->getTemplateInstantiationPattern()); 5807 } 5808 auto I = DeferredEmptyCoverageMappingDecls.find(D); 5809 if (I == DeferredEmptyCoverageMappingDecls.end()) 5810 DeferredEmptyCoverageMappingDecls[D] = false; 5811 else 5812 I->second = false; 5813 } 5814 5815 void CodeGenModule::EmitDeferredUnusedCoverageMappings() { 5816 // We call takeVector() here to avoid use-after-free. 5817 // FIXME: DeferredEmptyCoverageMappingDecls is getting mutated because 5818 // we deserialize function bodies to emit coverage info for them, and that 5819 // deserializes more declarations. How should we handle that case? 5820 for (const auto &Entry : DeferredEmptyCoverageMappingDecls.takeVector()) { 5821 if (!Entry.second) 5822 continue; 5823 const Decl *D = Entry.first; 5824 switch (D->getKind()) { 5825 case Decl::CXXConversion: 5826 case Decl::CXXMethod: 5827 case Decl::Function: 5828 case Decl::ObjCMethod: { 5829 CodeGenPGO PGO(*this); 5830 GlobalDecl GD(cast<FunctionDecl>(D)); 5831 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 5832 getFunctionLinkage(GD)); 5833 break; 5834 } 5835 case Decl::CXXConstructor: { 5836 CodeGenPGO PGO(*this); 5837 GlobalDecl GD(cast<CXXConstructorDecl>(D), Ctor_Base); 5838 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 5839 getFunctionLinkage(GD)); 5840 break; 5841 } 5842 case Decl::CXXDestructor: { 5843 CodeGenPGO PGO(*this); 5844 GlobalDecl GD(cast<CXXDestructorDecl>(D), Dtor_Base); 5845 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 5846 getFunctionLinkage(GD)); 5847 break; 5848 } 5849 default: 5850 break; 5851 }; 5852 } 5853 } 5854 5855 void CodeGenModule::EmitMainVoidAlias() { 5856 // In order to transition away from "__original_main" gracefully, emit an 5857 // alias for "main" in the no-argument case so that libc can detect when 5858 // new-style no-argument main is in used. 5859 if (llvm::Function *F = getModule().getFunction("main")) { 5860 if (!F->isDeclaration() && F->arg_size() == 0 && !F->isVarArg() && 5861 F->getReturnType()->isIntegerTy(Context.getTargetInfo().getIntWidth())) 5862 addUsedGlobal(llvm::GlobalAlias::create("__main_void", F)); 5863 } 5864 } 5865 5866 /// Turns the given pointer into a constant. 5867 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context, 5868 const void *Ptr) { 5869 uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr); 5870 llvm::Type *i64 = llvm::Type::getInt64Ty(Context); 5871 return llvm::ConstantInt::get(i64, PtrInt); 5872 } 5873 5874 static void EmitGlobalDeclMetadata(CodeGenModule &CGM, 5875 llvm::NamedMDNode *&GlobalMetadata, 5876 GlobalDecl D, 5877 llvm::GlobalValue *Addr) { 5878 if (!GlobalMetadata) 5879 GlobalMetadata = 5880 CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs"); 5881 5882 // TODO: should we report variant information for ctors/dtors? 5883 llvm::Metadata *Ops[] = {llvm::ConstantAsMetadata::get(Addr), 5884 llvm::ConstantAsMetadata::get(GetPointerConstant( 5885 CGM.getLLVMContext(), D.getDecl()))}; 5886 GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops)); 5887 } 5888 5889 /// For each function which is declared within an extern "C" region and marked 5890 /// as 'used', but has internal linkage, create an alias from the unmangled 5891 /// name to the mangled name if possible. People expect to be able to refer 5892 /// to such functions with an unmangled name from inline assembly within the 5893 /// same translation unit. 5894 void CodeGenModule::EmitStaticExternCAliases() { 5895 if (!getTargetCodeGenInfo().shouldEmitStaticExternCAliases()) 5896 return; 5897 for (auto &I : StaticExternCValues) { 5898 IdentifierInfo *Name = I.first; 5899 llvm::GlobalValue *Val = I.second; 5900 if (Val && !getModule().getNamedValue(Name->getName())) 5901 addUsedGlobal(llvm::GlobalAlias::create(Name->getName(), Val)); 5902 } 5903 } 5904 5905 bool CodeGenModule::lookupRepresentativeDecl(StringRef MangledName, 5906 GlobalDecl &Result) const { 5907 auto Res = Manglings.find(MangledName); 5908 if (Res == Manglings.end()) 5909 return false; 5910 Result = Res->getValue(); 5911 return true; 5912 } 5913 5914 /// Emits metadata nodes associating all the global values in the 5915 /// current module with the Decls they came from. This is useful for 5916 /// projects using IR gen as a subroutine. 5917 /// 5918 /// Since there's currently no way to associate an MDNode directly 5919 /// with an llvm::GlobalValue, we create a global named metadata 5920 /// with the name 'clang.global.decl.ptrs'. 5921 void CodeGenModule::EmitDeclMetadata() { 5922 llvm::NamedMDNode *GlobalMetadata = nullptr; 5923 5924 for (auto &I : MangledDeclNames) { 5925 llvm::GlobalValue *Addr = getModule().getNamedValue(I.second); 5926 // Some mangled names don't necessarily have an associated GlobalValue 5927 // in this module, e.g. if we mangled it for DebugInfo. 5928 if (Addr) 5929 EmitGlobalDeclMetadata(*this, GlobalMetadata, I.first, Addr); 5930 } 5931 } 5932 5933 /// Emits metadata nodes for all the local variables in the current 5934 /// function. 5935 void CodeGenFunction::EmitDeclMetadata() { 5936 if (LocalDeclMap.empty()) return; 5937 5938 llvm::LLVMContext &Context = getLLVMContext(); 5939 5940 // Find the unique metadata ID for this name. 5941 unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr"); 5942 5943 llvm::NamedMDNode *GlobalMetadata = nullptr; 5944 5945 for (auto &I : LocalDeclMap) { 5946 const Decl *D = I.first; 5947 llvm::Value *Addr = I.second.getPointer(); 5948 if (auto *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) { 5949 llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D); 5950 Alloca->setMetadata( 5951 DeclPtrKind, llvm::MDNode::get( 5952 Context, llvm::ValueAsMetadata::getConstant(DAddr))); 5953 } else if (auto *GV = dyn_cast<llvm::GlobalValue>(Addr)) { 5954 GlobalDecl GD = GlobalDecl(cast<VarDecl>(D)); 5955 EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV); 5956 } 5957 } 5958 } 5959 5960 void CodeGenModule::EmitVersionIdentMetadata() { 5961 llvm::NamedMDNode *IdentMetadata = 5962 TheModule.getOrInsertNamedMetadata("llvm.ident"); 5963 std::string Version = getClangFullVersion(); 5964 llvm::LLVMContext &Ctx = TheModule.getContext(); 5965 5966 llvm::Metadata *IdentNode[] = {llvm::MDString::get(Ctx, Version)}; 5967 IdentMetadata->addOperand(llvm::MDNode::get(Ctx, IdentNode)); 5968 } 5969 5970 void CodeGenModule::EmitCommandLineMetadata() { 5971 llvm::NamedMDNode *CommandLineMetadata = 5972 TheModule.getOrInsertNamedMetadata("llvm.commandline"); 5973 std::string CommandLine = getCodeGenOpts().RecordCommandLine; 5974 llvm::LLVMContext &Ctx = TheModule.getContext(); 5975 5976 llvm::Metadata *CommandLineNode[] = {llvm::MDString::get(Ctx, CommandLine)}; 5977 CommandLineMetadata->addOperand(llvm::MDNode::get(Ctx, CommandLineNode)); 5978 } 5979 5980 void CodeGenModule::EmitCoverageFile() { 5981 if (getCodeGenOpts().CoverageDataFile.empty() && 5982 getCodeGenOpts().CoverageNotesFile.empty()) 5983 return; 5984 5985 llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu"); 5986 if (!CUNode) 5987 return; 5988 5989 llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov"); 5990 llvm::LLVMContext &Ctx = TheModule.getContext(); 5991 auto *CoverageDataFile = 5992 llvm::MDString::get(Ctx, getCodeGenOpts().CoverageDataFile); 5993 auto *CoverageNotesFile = 5994 llvm::MDString::get(Ctx, getCodeGenOpts().CoverageNotesFile); 5995 for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) { 5996 llvm::MDNode *CU = CUNode->getOperand(i); 5997 llvm::Metadata *Elts[] = {CoverageNotesFile, CoverageDataFile, CU}; 5998 GCov->addOperand(llvm::MDNode::get(Ctx, Elts)); 5999 } 6000 } 6001 6002 llvm::Constant *CodeGenModule::GetAddrOfRTTIDescriptor(QualType Ty, 6003 bool ForEH) { 6004 // Return a bogus pointer if RTTI is disabled, unless it's for EH. 6005 // FIXME: should we even be calling this method if RTTI is disabled 6006 // and it's not for EH? 6007 if ((!ForEH && !getLangOpts().RTTI) || getLangOpts().CUDAIsDevice || 6008 (getLangOpts().OpenMP && getLangOpts().OpenMPIsDevice && 6009 getTriple().isNVPTX())) 6010 return llvm::Constant::getNullValue(Int8PtrTy); 6011 6012 if (ForEH && Ty->isObjCObjectPointerType() && 6013 LangOpts.ObjCRuntime.isGNUFamily()) 6014 return ObjCRuntime->GetEHType(Ty); 6015 6016 return getCXXABI().getAddrOfRTTIDescriptor(Ty); 6017 } 6018 6019 void CodeGenModule::EmitOMPThreadPrivateDecl(const OMPThreadPrivateDecl *D) { 6020 // Do not emit threadprivates in simd-only mode. 6021 if (LangOpts.OpenMP && LangOpts.OpenMPSimd) 6022 return; 6023 for (auto RefExpr : D->varlists()) { 6024 auto *VD = cast<VarDecl>(cast<DeclRefExpr>(RefExpr)->getDecl()); 6025 bool PerformInit = 6026 VD->getAnyInitializer() && 6027 !VD->getAnyInitializer()->isConstantInitializer(getContext(), 6028 /*ForRef=*/false); 6029 6030 Address Addr(GetAddrOfGlobalVar(VD), getContext().getDeclAlign(VD)); 6031 if (auto InitFunction = getOpenMPRuntime().emitThreadPrivateVarDefinition( 6032 VD, Addr, RefExpr->getBeginLoc(), PerformInit)) 6033 CXXGlobalInits.push_back(InitFunction); 6034 } 6035 } 6036 6037 llvm::Metadata * 6038 CodeGenModule::CreateMetadataIdentifierImpl(QualType T, MetadataTypeMap &Map, 6039 StringRef Suffix) { 6040 llvm::Metadata *&InternalId = Map[T.getCanonicalType()]; 6041 if (InternalId) 6042 return InternalId; 6043 6044 if (isExternallyVisible(T->getLinkage())) { 6045 std::string OutName; 6046 llvm::raw_string_ostream Out(OutName); 6047 getCXXABI().getMangleContext().mangleTypeName(T, Out); 6048 Out << Suffix; 6049 6050 InternalId = llvm::MDString::get(getLLVMContext(), Out.str()); 6051 } else { 6052 InternalId = llvm::MDNode::getDistinct(getLLVMContext(), 6053 llvm::ArrayRef<llvm::Metadata *>()); 6054 } 6055 6056 return InternalId; 6057 } 6058 6059 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierForType(QualType T) { 6060 return CreateMetadataIdentifierImpl(T, MetadataIdMap, ""); 6061 } 6062 6063 llvm::Metadata * 6064 CodeGenModule::CreateMetadataIdentifierForVirtualMemPtrType(QualType T) { 6065 return CreateMetadataIdentifierImpl(T, VirtualMetadataIdMap, ".virtual"); 6066 } 6067 6068 // Generalize pointer types to a void pointer with the qualifiers of the 6069 // originally pointed-to type, e.g. 'const char *' and 'char * const *' 6070 // generalize to 'const void *' while 'char *' and 'const char **' generalize to 6071 // 'void *'. 6072 static QualType GeneralizeType(ASTContext &Ctx, QualType Ty) { 6073 if (!Ty->isPointerType()) 6074 return Ty; 6075 6076 return Ctx.getPointerType( 6077 QualType(Ctx.VoidTy).withCVRQualifiers( 6078 Ty->getPointeeType().getCVRQualifiers())); 6079 } 6080 6081 // Apply type generalization to a FunctionType's return and argument types 6082 static QualType GeneralizeFunctionType(ASTContext &Ctx, QualType Ty) { 6083 if (auto *FnType = Ty->getAs<FunctionProtoType>()) { 6084 SmallVector<QualType, 8> GeneralizedParams; 6085 for (auto &Param : FnType->param_types()) 6086 GeneralizedParams.push_back(GeneralizeType(Ctx, Param)); 6087 6088 return Ctx.getFunctionType( 6089 GeneralizeType(Ctx, FnType->getReturnType()), 6090 GeneralizedParams, FnType->getExtProtoInfo()); 6091 } 6092 6093 if (auto *FnType = Ty->getAs<FunctionNoProtoType>()) 6094 return Ctx.getFunctionNoProtoType( 6095 GeneralizeType(Ctx, FnType->getReturnType())); 6096 6097 llvm_unreachable("Encountered unknown FunctionType"); 6098 } 6099 6100 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierGeneralized(QualType T) { 6101 return CreateMetadataIdentifierImpl(GeneralizeFunctionType(getContext(), T), 6102 GeneralizedMetadataIdMap, ".generalized"); 6103 } 6104 6105 /// Returns whether this module needs the "all-vtables" type identifier. 6106 bool CodeGenModule::NeedAllVtablesTypeId() const { 6107 // Returns true if at least one of vtable-based CFI checkers is enabled and 6108 // is not in the trapping mode. 6109 return ((LangOpts.Sanitize.has(SanitizerKind::CFIVCall) && 6110 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIVCall)) || 6111 (LangOpts.Sanitize.has(SanitizerKind::CFINVCall) && 6112 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFINVCall)) || 6113 (LangOpts.Sanitize.has(SanitizerKind::CFIDerivedCast) && 6114 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIDerivedCast)) || 6115 (LangOpts.Sanitize.has(SanitizerKind::CFIUnrelatedCast) && 6116 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIUnrelatedCast))); 6117 } 6118 6119 void CodeGenModule::AddVTableTypeMetadata(llvm::GlobalVariable *VTable, 6120 CharUnits Offset, 6121 const CXXRecordDecl *RD) { 6122 llvm::Metadata *MD = 6123 CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0)); 6124 VTable->addTypeMetadata(Offset.getQuantity(), MD); 6125 6126 if (CodeGenOpts.SanitizeCfiCrossDso) 6127 if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD)) 6128 VTable->addTypeMetadata(Offset.getQuantity(), 6129 llvm::ConstantAsMetadata::get(CrossDsoTypeId)); 6130 6131 if (NeedAllVtablesTypeId()) { 6132 llvm::Metadata *MD = llvm::MDString::get(getLLVMContext(), "all-vtables"); 6133 VTable->addTypeMetadata(Offset.getQuantity(), MD); 6134 } 6135 } 6136 6137 llvm::SanitizerStatReport &CodeGenModule::getSanStats() { 6138 if (!SanStats) 6139 SanStats = std::make_unique<llvm::SanitizerStatReport>(&getModule()); 6140 6141 return *SanStats; 6142 } 6143 llvm::Value * 6144 CodeGenModule::createOpenCLIntToSamplerConversion(const Expr *E, 6145 CodeGenFunction &CGF) { 6146 llvm::Constant *C = ConstantEmitter(CGF).emitAbstract(E, E->getType()); 6147 auto SamplerT = getOpenCLRuntime().getSamplerType(E->getType().getTypePtr()); 6148 auto FTy = llvm::FunctionType::get(SamplerT, {C->getType()}, false); 6149 return CGF.Builder.CreateCall(CreateRuntimeFunction(FTy, 6150 "__translate_sampler_initializer"), 6151 {C}); 6152 } 6153 6154 CharUnits CodeGenModule::getNaturalPointeeTypeAlignment( 6155 QualType T, LValueBaseInfo *BaseInfo, TBAAAccessInfo *TBAAInfo) { 6156 return getNaturalTypeAlignment(T->getPointeeType(), BaseInfo, TBAAInfo, 6157 /* forPointeeType= */ true); 6158 } 6159 6160 CharUnits CodeGenModule::getNaturalTypeAlignment(QualType T, 6161 LValueBaseInfo *BaseInfo, 6162 TBAAAccessInfo *TBAAInfo, 6163 bool forPointeeType) { 6164 if (TBAAInfo) 6165 *TBAAInfo = getTBAAAccessInfo(T); 6166 6167 // FIXME: This duplicates logic in ASTContext::getTypeAlignIfKnown. But 6168 // that doesn't return the information we need to compute BaseInfo. 6169 6170 // Honor alignment typedef attributes even on incomplete types. 6171 // We also honor them straight for C++ class types, even as pointees; 6172 // there's an expressivity gap here. 6173 if (auto TT = T->getAs<TypedefType>()) { 6174 if (auto Align = TT->getDecl()->getMaxAlignment()) { 6175 if (BaseInfo) 6176 *BaseInfo = LValueBaseInfo(AlignmentSource::AttributedType); 6177 return getContext().toCharUnitsFromBits(Align); 6178 } 6179 } 6180 6181 bool AlignForArray = T->isArrayType(); 6182 6183 // Analyze the base element type, so we don't get confused by incomplete 6184 // array types. 6185 T = getContext().getBaseElementType(T); 6186 6187 if (T->isIncompleteType()) { 6188 // We could try to replicate the logic from 6189 // ASTContext::getTypeAlignIfKnown, but nothing uses the alignment if the 6190 // type is incomplete, so it's impossible to test. We could try to reuse 6191 // getTypeAlignIfKnown, but that doesn't return the information we need 6192 // to set BaseInfo. So just ignore the possibility that the alignment is 6193 // greater than one. 6194 if (BaseInfo) 6195 *BaseInfo = LValueBaseInfo(AlignmentSource::Type); 6196 return CharUnits::One(); 6197 } 6198 6199 if (BaseInfo) 6200 *BaseInfo = LValueBaseInfo(AlignmentSource::Type); 6201 6202 CharUnits Alignment; 6203 const CXXRecordDecl *RD; 6204 if (T.getQualifiers().hasUnaligned()) { 6205 Alignment = CharUnits::One(); 6206 } else if (forPointeeType && !AlignForArray && 6207 (RD = T->getAsCXXRecordDecl())) { 6208 // For C++ class pointees, we don't know whether we're pointing at a 6209 // base or a complete object, so we generally need to use the 6210 // non-virtual alignment. 6211 Alignment = getClassPointerAlignment(RD); 6212 } else { 6213 Alignment = getContext().getTypeAlignInChars(T); 6214 } 6215 6216 // Cap to the global maximum type alignment unless the alignment 6217 // was somehow explicit on the type. 6218 if (unsigned MaxAlign = getLangOpts().MaxTypeAlign) { 6219 if (Alignment.getQuantity() > MaxAlign && 6220 !getContext().isAlignmentRequired(T)) 6221 Alignment = CharUnits::fromQuantity(MaxAlign); 6222 } 6223 return Alignment; 6224 } 6225 6226 bool CodeGenModule::stopAutoInit() { 6227 unsigned StopAfter = getContext().getLangOpts().TrivialAutoVarInitStopAfter; 6228 if (StopAfter) { 6229 // This number is positive only when -ftrivial-auto-var-init-stop-after=* is 6230 // used 6231 if (NumAutoVarInit >= StopAfter) { 6232 return true; 6233 } 6234 if (!NumAutoVarInit) { 6235 unsigned DiagID = getDiags().getCustomDiagID( 6236 DiagnosticsEngine::Warning, 6237 "-ftrivial-auto-var-init-stop-after=%0 has been enabled to limit the " 6238 "number of times ftrivial-auto-var-init=%1 gets applied."); 6239 getDiags().Report(DiagID) 6240 << StopAfter 6241 << (getContext().getLangOpts().getTrivialAutoVarInit() == 6242 LangOptions::TrivialAutoVarInitKind::Zero 6243 ? "zero" 6244 : "pattern"); 6245 } 6246 ++NumAutoVarInit; 6247 } 6248 return false; 6249 } 6250