xref: /llvm-project/clang/lib/CodeGen/CodeGenModule.cpp (revision 797ad701522988e212495285dade8efac41a24d4)
1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This coordinates the per-module state used while generating code.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "CodeGenModule.h"
14 #include "CGBlocks.h"
15 #include "CGCUDARuntime.h"
16 #include "CGCXXABI.h"
17 #include "CGCall.h"
18 #include "CGDebugInfo.h"
19 #include "CGObjCRuntime.h"
20 #include "CGOpenCLRuntime.h"
21 #include "CGOpenMPRuntime.h"
22 #include "CGOpenMPRuntimeAMDGCN.h"
23 #include "CGOpenMPRuntimeNVPTX.h"
24 #include "CodeGenFunction.h"
25 #include "CodeGenPGO.h"
26 #include "ConstantEmitter.h"
27 #include "CoverageMappingGen.h"
28 #include "TargetInfo.h"
29 #include "clang/AST/ASTContext.h"
30 #include "clang/AST/CharUnits.h"
31 #include "clang/AST/DeclCXX.h"
32 #include "clang/AST/DeclObjC.h"
33 #include "clang/AST/DeclTemplate.h"
34 #include "clang/AST/Mangle.h"
35 #include "clang/AST/RecordLayout.h"
36 #include "clang/AST/RecursiveASTVisitor.h"
37 #include "clang/AST/StmtVisitor.h"
38 #include "clang/Basic/Builtins.h"
39 #include "clang/Basic/CharInfo.h"
40 #include "clang/Basic/CodeGenOptions.h"
41 #include "clang/Basic/Diagnostic.h"
42 #include "clang/Basic/FileManager.h"
43 #include "clang/Basic/Module.h"
44 #include "clang/Basic/SourceManager.h"
45 #include "clang/Basic/TargetInfo.h"
46 #include "clang/Basic/Version.h"
47 #include "clang/CodeGen/ConstantInitBuilder.h"
48 #include "clang/Frontend/FrontendDiagnostic.h"
49 #include "llvm/ADT/StringSwitch.h"
50 #include "llvm/ADT/Triple.h"
51 #include "llvm/Analysis/TargetLibraryInfo.h"
52 #include "llvm/Frontend/OpenMP/OMPIRBuilder.h"
53 #include "llvm/IR/CallingConv.h"
54 #include "llvm/IR/DataLayout.h"
55 #include "llvm/IR/Intrinsics.h"
56 #include "llvm/IR/LLVMContext.h"
57 #include "llvm/IR/Module.h"
58 #include "llvm/IR/ProfileSummary.h"
59 #include "llvm/ProfileData/InstrProfReader.h"
60 #include "llvm/Support/CodeGen.h"
61 #include "llvm/Support/CommandLine.h"
62 #include "llvm/Support/ConvertUTF.h"
63 #include "llvm/Support/ErrorHandling.h"
64 #include "llvm/Support/MD5.h"
65 #include "llvm/Support/TimeProfiler.h"
66 
67 using namespace clang;
68 using namespace CodeGen;
69 
70 static llvm::cl::opt<bool> LimitedCoverage(
71     "limited-coverage-experimental", llvm::cl::ZeroOrMore, llvm::cl::Hidden,
72     llvm::cl::desc("Emit limited coverage mapping information (experimental)"),
73     llvm::cl::init(false));
74 
75 static const char AnnotationSection[] = "llvm.metadata";
76 
77 static CGCXXABI *createCXXABI(CodeGenModule &CGM) {
78   switch (CGM.getContext().getCXXABIKind()) {
79   case TargetCXXABI::AppleARM64:
80   case TargetCXXABI::Fuchsia:
81   case TargetCXXABI::GenericAArch64:
82   case TargetCXXABI::GenericARM:
83   case TargetCXXABI::iOS:
84   case TargetCXXABI::WatchOS:
85   case TargetCXXABI::GenericMIPS:
86   case TargetCXXABI::GenericItanium:
87   case TargetCXXABI::WebAssembly:
88   case TargetCXXABI::XL:
89     return CreateItaniumCXXABI(CGM);
90   case TargetCXXABI::Microsoft:
91     return CreateMicrosoftCXXABI(CGM);
92   }
93 
94   llvm_unreachable("invalid C++ ABI kind");
95 }
96 
97 CodeGenModule::CodeGenModule(ASTContext &C, const HeaderSearchOptions &HSO,
98                              const PreprocessorOptions &PPO,
99                              const CodeGenOptions &CGO, llvm::Module &M,
100                              DiagnosticsEngine &diags,
101                              CoverageSourceInfo *CoverageInfo)
102     : Context(C), LangOpts(C.getLangOpts()), HeaderSearchOpts(HSO),
103       PreprocessorOpts(PPO), CodeGenOpts(CGO), TheModule(M), Diags(diags),
104       Target(C.getTargetInfo()), ABI(createCXXABI(*this)),
105       VMContext(M.getContext()), Types(*this), VTables(*this),
106       SanitizerMD(new SanitizerMetadata(*this)) {
107 
108   // Initialize the type cache.
109   llvm::LLVMContext &LLVMContext = M.getContext();
110   VoidTy = llvm::Type::getVoidTy(LLVMContext);
111   Int8Ty = llvm::Type::getInt8Ty(LLVMContext);
112   Int16Ty = llvm::Type::getInt16Ty(LLVMContext);
113   Int32Ty = llvm::Type::getInt32Ty(LLVMContext);
114   Int64Ty = llvm::Type::getInt64Ty(LLVMContext);
115   HalfTy = llvm::Type::getHalfTy(LLVMContext);
116   BFloatTy = llvm::Type::getBFloatTy(LLVMContext);
117   FloatTy = llvm::Type::getFloatTy(LLVMContext);
118   DoubleTy = llvm::Type::getDoubleTy(LLVMContext);
119   PointerWidthInBits = C.getTargetInfo().getPointerWidth(0);
120   PointerAlignInBytes =
121     C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(0)).getQuantity();
122   SizeSizeInBytes =
123     C.toCharUnitsFromBits(C.getTargetInfo().getMaxPointerWidth()).getQuantity();
124   IntAlignInBytes =
125     C.toCharUnitsFromBits(C.getTargetInfo().getIntAlign()).getQuantity();
126   CharTy =
127     llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getCharWidth());
128   IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth());
129   IntPtrTy = llvm::IntegerType::get(LLVMContext,
130     C.getTargetInfo().getMaxPointerWidth());
131   Int8PtrTy = Int8Ty->getPointerTo(0);
132   Int8PtrPtrTy = Int8PtrTy->getPointerTo(0);
133   AllocaInt8PtrTy = Int8Ty->getPointerTo(
134       M.getDataLayout().getAllocaAddrSpace());
135   ASTAllocaAddressSpace = getTargetCodeGenInfo().getASTAllocaAddressSpace();
136 
137   RuntimeCC = getTargetCodeGenInfo().getABIInfo().getRuntimeCC();
138 
139   if (LangOpts.ObjC)
140     createObjCRuntime();
141   if (LangOpts.OpenCL)
142     createOpenCLRuntime();
143   if (LangOpts.OpenMP)
144     createOpenMPRuntime();
145   if (LangOpts.CUDA)
146     createCUDARuntime();
147 
148   // Enable TBAA unless it's suppressed. ThreadSanitizer needs TBAA even at O0.
149   if (LangOpts.Sanitize.has(SanitizerKind::Thread) ||
150       (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0))
151     TBAA.reset(new CodeGenTBAA(Context, TheModule, CodeGenOpts, getLangOpts(),
152                                getCXXABI().getMangleContext()));
153 
154   // If debug info or coverage generation is enabled, create the CGDebugInfo
155   // object.
156   if (CodeGenOpts.getDebugInfo() != codegenoptions::NoDebugInfo ||
157       CodeGenOpts.EmitGcovArcs || CodeGenOpts.EmitGcovNotes)
158     DebugInfo.reset(new CGDebugInfo(*this));
159 
160   Block.GlobalUniqueCount = 0;
161 
162   if (C.getLangOpts().ObjC)
163     ObjCData.reset(new ObjCEntrypoints());
164 
165   if (CodeGenOpts.hasProfileClangUse()) {
166     auto ReaderOrErr = llvm::IndexedInstrProfReader::create(
167         CodeGenOpts.ProfileInstrumentUsePath, CodeGenOpts.ProfileRemappingFile);
168     if (auto E = ReaderOrErr.takeError()) {
169       unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
170                                               "Could not read profile %0: %1");
171       llvm::handleAllErrors(std::move(E), [&](const llvm::ErrorInfoBase &EI) {
172         getDiags().Report(DiagID) << CodeGenOpts.ProfileInstrumentUsePath
173                                   << EI.message();
174       });
175     } else
176       PGOReader = std::move(ReaderOrErr.get());
177   }
178 
179   // If coverage mapping generation is enabled, create the
180   // CoverageMappingModuleGen object.
181   if (CodeGenOpts.CoverageMapping)
182     CoverageMapping.reset(new CoverageMappingModuleGen(*this, *CoverageInfo));
183 
184   // Generate the module name hash here if needed.
185   if (CodeGenOpts.UniqueInternalLinkageNames &&
186       !getModule().getSourceFileName().empty()) {
187     std::string Path = getModule().getSourceFileName();
188     // Check if a path substitution is needed from the MacroPrefixMap.
189     for (const auto &Entry : PPO.MacroPrefixMap)
190       if (Path.rfind(Entry.first, 0) != std::string::npos) {
191         Path = Entry.second + Path.substr(Entry.first.size());
192         break;
193       }
194     llvm::MD5 Md5;
195     Md5.update(Path);
196     llvm::MD5::MD5Result R;
197     Md5.final(R);
198     SmallString<32> Str;
199     llvm::MD5::stringifyResult(R, Str);
200     // Convert MD5hash to Decimal. Demangler suffixes can either contain
201     // numbers or characters but not both.
202     llvm::APInt IntHash(128, Str.str(), 16);
203     // Prepend "__uniq" before the hash for tools like profilers to understand
204     // that this symbol is of internal linkage type.  The "__uniq" is the
205     // pre-determined prefix that is used to tell tools that this symbol was
206     // created with -funique-internal-linakge-symbols and the tools can strip or
207     // keep the prefix as needed.
208     ModuleNameHash = (Twine(".__uniq.") +
209         Twine(IntHash.toString(/* Radix = */ 10, /* Signed = */false))).str();
210   }
211 }
212 
213 CodeGenModule::~CodeGenModule() {}
214 
215 void CodeGenModule::createObjCRuntime() {
216   // This is just isGNUFamily(), but we want to force implementors of
217   // new ABIs to decide how best to do this.
218   switch (LangOpts.ObjCRuntime.getKind()) {
219   case ObjCRuntime::GNUstep:
220   case ObjCRuntime::GCC:
221   case ObjCRuntime::ObjFW:
222     ObjCRuntime.reset(CreateGNUObjCRuntime(*this));
223     return;
224 
225   case ObjCRuntime::FragileMacOSX:
226   case ObjCRuntime::MacOSX:
227   case ObjCRuntime::iOS:
228   case ObjCRuntime::WatchOS:
229     ObjCRuntime.reset(CreateMacObjCRuntime(*this));
230     return;
231   }
232   llvm_unreachable("bad runtime kind");
233 }
234 
235 void CodeGenModule::createOpenCLRuntime() {
236   OpenCLRuntime.reset(new CGOpenCLRuntime(*this));
237 }
238 
239 void CodeGenModule::createOpenMPRuntime() {
240   // Select a specialized code generation class based on the target, if any.
241   // If it does not exist use the default implementation.
242   switch (getTriple().getArch()) {
243   case llvm::Triple::nvptx:
244   case llvm::Triple::nvptx64:
245     assert(getLangOpts().OpenMPIsDevice &&
246            "OpenMP NVPTX is only prepared to deal with device code.");
247     OpenMPRuntime.reset(new CGOpenMPRuntimeNVPTX(*this));
248     break;
249   case llvm::Triple::amdgcn:
250     assert(getLangOpts().OpenMPIsDevice &&
251            "OpenMP AMDGCN is only prepared to deal with device code.");
252     OpenMPRuntime.reset(new CGOpenMPRuntimeAMDGCN(*this));
253     break;
254   default:
255     if (LangOpts.OpenMPSimd)
256       OpenMPRuntime.reset(new CGOpenMPSIMDRuntime(*this));
257     else
258       OpenMPRuntime.reset(new CGOpenMPRuntime(*this));
259     break;
260   }
261 }
262 
263 void CodeGenModule::createCUDARuntime() {
264   CUDARuntime.reset(CreateNVCUDARuntime(*this));
265 }
266 
267 void CodeGenModule::addReplacement(StringRef Name, llvm::Constant *C) {
268   Replacements[Name] = C;
269 }
270 
271 void CodeGenModule::applyReplacements() {
272   for (auto &I : Replacements) {
273     StringRef MangledName = I.first();
274     llvm::Constant *Replacement = I.second;
275     llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
276     if (!Entry)
277       continue;
278     auto *OldF = cast<llvm::Function>(Entry);
279     auto *NewF = dyn_cast<llvm::Function>(Replacement);
280     if (!NewF) {
281       if (auto *Alias = dyn_cast<llvm::GlobalAlias>(Replacement)) {
282         NewF = dyn_cast<llvm::Function>(Alias->getAliasee());
283       } else {
284         auto *CE = cast<llvm::ConstantExpr>(Replacement);
285         assert(CE->getOpcode() == llvm::Instruction::BitCast ||
286                CE->getOpcode() == llvm::Instruction::GetElementPtr);
287         NewF = dyn_cast<llvm::Function>(CE->getOperand(0));
288       }
289     }
290 
291     // Replace old with new, but keep the old order.
292     OldF->replaceAllUsesWith(Replacement);
293     if (NewF) {
294       NewF->removeFromParent();
295       OldF->getParent()->getFunctionList().insertAfter(OldF->getIterator(),
296                                                        NewF);
297     }
298     OldF->eraseFromParent();
299   }
300 }
301 
302 void CodeGenModule::addGlobalValReplacement(llvm::GlobalValue *GV, llvm::Constant *C) {
303   GlobalValReplacements.push_back(std::make_pair(GV, C));
304 }
305 
306 void CodeGenModule::applyGlobalValReplacements() {
307   for (auto &I : GlobalValReplacements) {
308     llvm::GlobalValue *GV = I.first;
309     llvm::Constant *C = I.second;
310 
311     GV->replaceAllUsesWith(C);
312     GV->eraseFromParent();
313   }
314 }
315 
316 // This is only used in aliases that we created and we know they have a
317 // linear structure.
318 static const llvm::GlobalObject *getAliasedGlobal(
319     const llvm::GlobalIndirectSymbol &GIS) {
320   llvm::SmallPtrSet<const llvm::GlobalIndirectSymbol*, 4> Visited;
321   const llvm::Constant *C = &GIS;
322   for (;;) {
323     C = C->stripPointerCasts();
324     if (auto *GO = dyn_cast<llvm::GlobalObject>(C))
325       return GO;
326     // stripPointerCasts will not walk over weak aliases.
327     auto *GIS2 = dyn_cast<llvm::GlobalIndirectSymbol>(C);
328     if (!GIS2)
329       return nullptr;
330     if (!Visited.insert(GIS2).second)
331       return nullptr;
332     C = GIS2->getIndirectSymbol();
333   }
334 }
335 
336 void CodeGenModule::checkAliases() {
337   // Check if the constructed aliases are well formed. It is really unfortunate
338   // that we have to do this in CodeGen, but we only construct mangled names
339   // and aliases during codegen.
340   bool Error = false;
341   DiagnosticsEngine &Diags = getDiags();
342   for (const GlobalDecl &GD : Aliases) {
343     const auto *D = cast<ValueDecl>(GD.getDecl());
344     SourceLocation Location;
345     bool IsIFunc = D->hasAttr<IFuncAttr>();
346     if (const Attr *A = D->getDefiningAttr())
347       Location = A->getLocation();
348     else
349       llvm_unreachable("Not an alias or ifunc?");
350     StringRef MangledName = getMangledName(GD);
351     llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
352     auto *Alias  = cast<llvm::GlobalIndirectSymbol>(Entry);
353     const llvm::GlobalValue *GV = getAliasedGlobal(*Alias);
354     if (!GV) {
355       Error = true;
356       Diags.Report(Location, diag::err_cyclic_alias) << IsIFunc;
357     } else if (GV->isDeclaration()) {
358       Error = true;
359       Diags.Report(Location, diag::err_alias_to_undefined)
360           << IsIFunc << IsIFunc;
361     } else if (IsIFunc) {
362       // Check resolver function type.
363       llvm::FunctionType *FTy = dyn_cast<llvm::FunctionType>(
364           GV->getType()->getPointerElementType());
365       assert(FTy);
366       if (!FTy->getReturnType()->isPointerTy())
367         Diags.Report(Location, diag::err_ifunc_resolver_return);
368     }
369 
370     llvm::Constant *Aliasee = Alias->getIndirectSymbol();
371     llvm::GlobalValue *AliaseeGV;
372     if (auto CE = dyn_cast<llvm::ConstantExpr>(Aliasee))
373       AliaseeGV = cast<llvm::GlobalValue>(CE->getOperand(0));
374     else
375       AliaseeGV = cast<llvm::GlobalValue>(Aliasee);
376 
377     if (const SectionAttr *SA = D->getAttr<SectionAttr>()) {
378       StringRef AliasSection = SA->getName();
379       if (AliasSection != AliaseeGV->getSection())
380         Diags.Report(SA->getLocation(), diag::warn_alias_with_section)
381             << AliasSection << IsIFunc << IsIFunc;
382     }
383 
384     // We have to handle alias to weak aliases in here. LLVM itself disallows
385     // this since the object semantics would not match the IL one. For
386     // compatibility with gcc we implement it by just pointing the alias
387     // to its aliasee's aliasee. We also warn, since the user is probably
388     // expecting the link to be weak.
389     if (auto GA = dyn_cast<llvm::GlobalIndirectSymbol>(AliaseeGV)) {
390       if (GA->isInterposable()) {
391         Diags.Report(Location, diag::warn_alias_to_weak_alias)
392             << GV->getName() << GA->getName() << IsIFunc;
393         Aliasee = llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(
394             GA->getIndirectSymbol(), Alias->getType());
395         Alias->setIndirectSymbol(Aliasee);
396       }
397     }
398   }
399   if (!Error)
400     return;
401 
402   for (const GlobalDecl &GD : Aliases) {
403     StringRef MangledName = getMangledName(GD);
404     llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
405     auto *Alias = cast<llvm::GlobalIndirectSymbol>(Entry);
406     Alias->replaceAllUsesWith(llvm::UndefValue::get(Alias->getType()));
407     Alias->eraseFromParent();
408   }
409 }
410 
411 void CodeGenModule::clear() {
412   DeferredDeclsToEmit.clear();
413   if (OpenMPRuntime)
414     OpenMPRuntime->clear();
415 }
416 
417 void InstrProfStats::reportDiagnostics(DiagnosticsEngine &Diags,
418                                        StringRef MainFile) {
419   if (!hasDiagnostics())
420     return;
421   if (VisitedInMainFile > 0 && VisitedInMainFile == MissingInMainFile) {
422     if (MainFile.empty())
423       MainFile = "<stdin>";
424     Diags.Report(diag::warn_profile_data_unprofiled) << MainFile;
425   } else {
426     if (Mismatched > 0)
427       Diags.Report(diag::warn_profile_data_out_of_date) << Visited << Mismatched;
428 
429     if (Missing > 0)
430       Diags.Report(diag::warn_profile_data_missing) << Visited << Missing;
431   }
432 }
433 
434 static void setVisibilityFromDLLStorageClass(const clang::LangOptions &LO,
435                                              llvm::Module &M) {
436   if (!LO.VisibilityFromDLLStorageClass)
437     return;
438 
439   llvm::GlobalValue::VisibilityTypes DLLExportVisibility =
440       CodeGenModule::GetLLVMVisibility(LO.getDLLExportVisibility());
441   llvm::GlobalValue::VisibilityTypes NoDLLStorageClassVisibility =
442       CodeGenModule::GetLLVMVisibility(LO.getNoDLLStorageClassVisibility());
443   llvm::GlobalValue::VisibilityTypes ExternDeclDLLImportVisibility =
444       CodeGenModule::GetLLVMVisibility(LO.getExternDeclDLLImportVisibility());
445   llvm::GlobalValue::VisibilityTypes ExternDeclNoDLLStorageClassVisibility =
446       CodeGenModule::GetLLVMVisibility(
447           LO.getExternDeclNoDLLStorageClassVisibility());
448 
449   for (llvm::GlobalValue &GV : M.global_values()) {
450     if (GV.hasAppendingLinkage() || GV.hasLocalLinkage())
451       continue;
452 
453     // Reset DSO locality before setting the visibility. This removes
454     // any effects that visibility options and annotations may have
455     // had on the DSO locality. Setting the visibility will implicitly set
456     // appropriate globals to DSO Local; however, this will be pessimistic
457     // w.r.t. to the normal compiler IRGen.
458     GV.setDSOLocal(false);
459 
460     if (GV.isDeclarationForLinker()) {
461       GV.setVisibility(GV.getDLLStorageClass() ==
462                                llvm::GlobalValue::DLLImportStorageClass
463                            ? ExternDeclDLLImportVisibility
464                            : ExternDeclNoDLLStorageClassVisibility);
465     } else {
466       GV.setVisibility(GV.getDLLStorageClass() ==
467                                llvm::GlobalValue::DLLExportStorageClass
468                            ? DLLExportVisibility
469                            : NoDLLStorageClassVisibility);
470     }
471 
472     GV.setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
473   }
474 }
475 
476 void CodeGenModule::Release() {
477   EmitDeferred();
478   EmitVTablesOpportunistically();
479   applyGlobalValReplacements();
480   applyReplacements();
481   checkAliases();
482   emitMultiVersionFunctions();
483   EmitCXXGlobalInitFunc();
484   EmitCXXGlobalCleanUpFunc();
485   registerGlobalDtorsWithAtExit();
486   EmitCXXThreadLocalInitFunc();
487   if (ObjCRuntime)
488     if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction())
489       AddGlobalCtor(ObjCInitFunction);
490   if (Context.getLangOpts().CUDA && CUDARuntime) {
491     if (llvm::Function *CudaCtorFunction = CUDARuntime->finalizeModule())
492       AddGlobalCtor(CudaCtorFunction);
493   }
494   if (OpenMPRuntime) {
495     if (llvm::Function *OpenMPRequiresDirectiveRegFun =
496             OpenMPRuntime->emitRequiresDirectiveRegFun()) {
497       AddGlobalCtor(OpenMPRequiresDirectiveRegFun, 0);
498     }
499     OpenMPRuntime->createOffloadEntriesAndInfoMetadata();
500     OpenMPRuntime->clear();
501   }
502   if (PGOReader) {
503     getModule().setProfileSummary(
504         PGOReader->getSummary(/* UseCS */ false).getMD(VMContext),
505         llvm::ProfileSummary::PSK_Instr);
506     if (PGOStats.hasDiagnostics())
507       PGOStats.reportDiagnostics(getDiags(), getCodeGenOpts().MainFileName);
508   }
509   EmitCtorList(GlobalCtors, "llvm.global_ctors");
510   EmitCtorList(GlobalDtors, "llvm.global_dtors");
511   EmitGlobalAnnotations();
512   EmitStaticExternCAliases();
513   EmitDeferredUnusedCoverageMappings();
514   if (CoverageMapping)
515     CoverageMapping->emit();
516   if (CodeGenOpts.SanitizeCfiCrossDso) {
517     CodeGenFunction(*this).EmitCfiCheckFail();
518     CodeGenFunction(*this).EmitCfiCheckStub();
519   }
520   emitAtAvailableLinkGuard();
521   if (Context.getTargetInfo().getTriple().isWasm() &&
522       !Context.getTargetInfo().getTriple().isOSEmscripten()) {
523     EmitMainVoidAlias();
524   }
525   emitLLVMUsed();
526   if (SanStats)
527     SanStats->finish();
528 
529   if (CodeGenOpts.Autolink &&
530       (Context.getLangOpts().Modules || !LinkerOptionsMetadata.empty())) {
531     EmitModuleLinkOptions();
532   }
533 
534   // On ELF we pass the dependent library specifiers directly to the linker
535   // without manipulating them. This is in contrast to other platforms where
536   // they are mapped to a specific linker option by the compiler. This
537   // difference is a result of the greater variety of ELF linkers and the fact
538   // that ELF linkers tend to handle libraries in a more complicated fashion
539   // than on other platforms. This forces us to defer handling the dependent
540   // libs to the linker.
541   //
542   // CUDA/HIP device and host libraries are different. Currently there is no
543   // way to differentiate dependent libraries for host or device. Existing
544   // usage of #pragma comment(lib, *) is intended for host libraries on
545   // Windows. Therefore emit llvm.dependent-libraries only for host.
546   if (!ELFDependentLibraries.empty() && !Context.getLangOpts().CUDAIsDevice) {
547     auto *NMD = getModule().getOrInsertNamedMetadata("llvm.dependent-libraries");
548     for (auto *MD : ELFDependentLibraries)
549       NMD->addOperand(MD);
550   }
551 
552   // Record mregparm value now so it is visible through rest of codegen.
553   if (Context.getTargetInfo().getTriple().getArch() == llvm::Triple::x86)
554     getModule().addModuleFlag(llvm::Module::Error, "NumRegisterParameters",
555                               CodeGenOpts.NumRegisterParameters);
556 
557   if (CodeGenOpts.DwarfVersion) {
558     getModule().addModuleFlag(llvm::Module::Max, "Dwarf Version",
559                               CodeGenOpts.DwarfVersion);
560   }
561 
562   if (CodeGenOpts.Dwarf64)
563     getModule().addModuleFlag(llvm::Module::Max, "DWARF64", 1);
564 
565   if (Context.getLangOpts().SemanticInterposition)
566     // Require various optimization to respect semantic interposition.
567     getModule().setSemanticInterposition(1);
568 
569   if (CodeGenOpts.EmitCodeView) {
570     // Indicate that we want CodeView in the metadata.
571     getModule().addModuleFlag(llvm::Module::Warning, "CodeView", 1);
572   }
573   if (CodeGenOpts.CodeViewGHash) {
574     getModule().addModuleFlag(llvm::Module::Warning, "CodeViewGHash", 1);
575   }
576   if (CodeGenOpts.ControlFlowGuard) {
577     // Function ID tables and checks for Control Flow Guard (cfguard=2).
578     getModule().addModuleFlag(llvm::Module::Warning, "cfguard", 2);
579   } else if (CodeGenOpts.ControlFlowGuardNoChecks) {
580     // Function ID tables for Control Flow Guard (cfguard=1).
581     getModule().addModuleFlag(llvm::Module::Warning, "cfguard", 1);
582   }
583   if (CodeGenOpts.EHContGuard) {
584     // Function ID tables for EH Continuation Guard.
585     getModule().addModuleFlag(llvm::Module::Warning, "ehcontguard", 1);
586   }
587   if (CodeGenOpts.OptimizationLevel > 0 && CodeGenOpts.StrictVTablePointers) {
588     // We don't support LTO with 2 with different StrictVTablePointers
589     // FIXME: we could support it by stripping all the information introduced
590     // by StrictVTablePointers.
591 
592     getModule().addModuleFlag(llvm::Module::Error, "StrictVTablePointers",1);
593 
594     llvm::Metadata *Ops[2] = {
595               llvm::MDString::get(VMContext, "StrictVTablePointers"),
596               llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
597                   llvm::Type::getInt32Ty(VMContext), 1))};
598 
599     getModule().addModuleFlag(llvm::Module::Require,
600                               "StrictVTablePointersRequirement",
601                               llvm::MDNode::get(VMContext, Ops));
602   }
603   if (getModuleDebugInfo())
604     // We support a single version in the linked module. The LLVM
605     // parser will drop debug info with a different version number
606     // (and warn about it, too).
607     getModule().addModuleFlag(llvm::Module::Warning, "Debug Info Version",
608                               llvm::DEBUG_METADATA_VERSION);
609 
610   // We need to record the widths of enums and wchar_t, so that we can generate
611   // the correct build attributes in the ARM backend. wchar_size is also used by
612   // TargetLibraryInfo.
613   uint64_t WCharWidth =
614       Context.getTypeSizeInChars(Context.getWideCharType()).getQuantity();
615   getModule().addModuleFlag(llvm::Module::Error, "wchar_size", WCharWidth);
616 
617   llvm::Triple::ArchType Arch = Context.getTargetInfo().getTriple().getArch();
618   if (   Arch == llvm::Triple::arm
619       || Arch == llvm::Triple::armeb
620       || Arch == llvm::Triple::thumb
621       || Arch == llvm::Triple::thumbeb) {
622     // The minimum width of an enum in bytes
623     uint64_t EnumWidth = Context.getLangOpts().ShortEnums ? 1 : 4;
624     getModule().addModuleFlag(llvm::Module::Error, "min_enum_size", EnumWidth);
625   }
626 
627   if (Arch == llvm::Triple::riscv32 || Arch == llvm::Triple::riscv64) {
628     StringRef ABIStr = Target.getABI();
629     llvm::LLVMContext &Ctx = TheModule.getContext();
630     getModule().addModuleFlag(llvm::Module::Error, "target-abi",
631                               llvm::MDString::get(Ctx, ABIStr));
632   }
633 
634   if (CodeGenOpts.SanitizeCfiCrossDso) {
635     // Indicate that we want cross-DSO control flow integrity checks.
636     getModule().addModuleFlag(llvm::Module::Override, "Cross-DSO CFI", 1);
637   }
638 
639   if (CodeGenOpts.WholeProgramVTables) {
640     // Indicate whether VFE was enabled for this module, so that the
641     // vcall_visibility metadata added under whole program vtables is handled
642     // appropriately in the optimizer.
643     getModule().addModuleFlag(llvm::Module::Error, "Virtual Function Elim",
644                               CodeGenOpts.VirtualFunctionElimination);
645   }
646 
647   if (LangOpts.Sanitize.has(SanitizerKind::CFIICall)) {
648     getModule().addModuleFlag(llvm::Module::Override,
649                               "CFI Canonical Jump Tables",
650                               CodeGenOpts.SanitizeCfiCanonicalJumpTables);
651   }
652 
653   if (CodeGenOpts.CFProtectionReturn &&
654       Target.checkCFProtectionReturnSupported(getDiags())) {
655     // Indicate that we want to instrument return control flow protection.
656     getModule().addModuleFlag(llvm::Module::Override, "cf-protection-return",
657                               1);
658   }
659 
660   if (CodeGenOpts.CFProtectionBranch &&
661       Target.checkCFProtectionBranchSupported(getDiags())) {
662     // Indicate that we want to instrument branch control flow protection.
663     getModule().addModuleFlag(llvm::Module::Override, "cf-protection-branch",
664                               1);
665   }
666 
667   if (Arch == llvm::Triple::aarch64 || Arch == llvm::Triple::aarch64_32 ||
668       Arch == llvm::Triple::aarch64_be) {
669     getModule().addModuleFlag(llvm::Module::Error,
670                               "branch-target-enforcement",
671                               LangOpts.BranchTargetEnforcement);
672 
673     getModule().addModuleFlag(llvm::Module::Error, "sign-return-address",
674                               LangOpts.hasSignReturnAddress());
675 
676     getModule().addModuleFlag(llvm::Module::Error, "sign-return-address-all",
677                               LangOpts.isSignReturnAddressScopeAll());
678 
679     getModule().addModuleFlag(llvm::Module::Error,
680                               "sign-return-address-with-bkey",
681                               !LangOpts.isSignReturnAddressWithAKey());
682   }
683 
684   if (!CodeGenOpts.MemoryProfileOutput.empty()) {
685     llvm::LLVMContext &Ctx = TheModule.getContext();
686     getModule().addModuleFlag(
687         llvm::Module::Error, "MemProfProfileFilename",
688         llvm::MDString::get(Ctx, CodeGenOpts.MemoryProfileOutput));
689   }
690 
691   if (LangOpts.CUDAIsDevice && getTriple().isNVPTX()) {
692     // Indicate whether __nvvm_reflect should be configured to flush denormal
693     // floating point values to 0.  (This corresponds to its "__CUDA_FTZ"
694     // property.)
695     getModule().addModuleFlag(llvm::Module::Override, "nvvm-reflect-ftz",
696                               CodeGenOpts.FP32DenormalMode.Output !=
697                                   llvm::DenormalMode::IEEE);
698   }
699 
700   if (LangOpts.EHAsynch)
701     getModule().addModuleFlag(llvm::Module::Warning, "eh-asynch", 1);
702 
703   // Emit OpenCL specific module metadata: OpenCL/SPIR version.
704   if (LangOpts.OpenCL) {
705     EmitOpenCLMetadata();
706     // Emit SPIR version.
707     if (getTriple().isSPIR()) {
708       // SPIR v2.0 s2.12 - The SPIR version used by the module is stored in the
709       // opencl.spir.version named metadata.
710       // C++ is backwards compatible with OpenCL v2.0.
711       auto Version = LangOpts.OpenCLCPlusPlus ? 200 : LangOpts.OpenCLVersion;
712       llvm::Metadata *SPIRVerElts[] = {
713           llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
714               Int32Ty, Version / 100)),
715           llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
716               Int32Ty, (Version / 100 > 1) ? 0 : 2))};
717       llvm::NamedMDNode *SPIRVerMD =
718           TheModule.getOrInsertNamedMetadata("opencl.spir.version");
719       llvm::LLVMContext &Ctx = TheModule.getContext();
720       SPIRVerMD->addOperand(llvm::MDNode::get(Ctx, SPIRVerElts));
721     }
722   }
723 
724   if (uint32_t PLevel = Context.getLangOpts().PICLevel) {
725     assert(PLevel < 3 && "Invalid PIC Level");
726     getModule().setPICLevel(static_cast<llvm::PICLevel::Level>(PLevel));
727     if (Context.getLangOpts().PIE)
728       getModule().setPIELevel(static_cast<llvm::PIELevel::Level>(PLevel));
729   }
730 
731   if (getCodeGenOpts().CodeModel.size() > 0) {
732     unsigned CM = llvm::StringSwitch<unsigned>(getCodeGenOpts().CodeModel)
733                   .Case("tiny", llvm::CodeModel::Tiny)
734                   .Case("small", llvm::CodeModel::Small)
735                   .Case("kernel", llvm::CodeModel::Kernel)
736                   .Case("medium", llvm::CodeModel::Medium)
737                   .Case("large", llvm::CodeModel::Large)
738                   .Default(~0u);
739     if (CM != ~0u) {
740       llvm::CodeModel::Model codeModel = static_cast<llvm::CodeModel::Model>(CM);
741       getModule().setCodeModel(codeModel);
742     }
743   }
744 
745   if (CodeGenOpts.NoPLT)
746     getModule().setRtLibUseGOT();
747   if (CodeGenOpts.UnwindTables)
748     getModule().setUwtable();
749 
750   switch (CodeGenOpts.getFramePointer()) {
751   case CodeGenOptions::FramePointerKind::None:
752     // 0 ("none") is the default.
753     break;
754   case CodeGenOptions::FramePointerKind::NonLeaf:
755     getModule().setFramePointer(llvm::FramePointerKind::NonLeaf);
756     break;
757   case CodeGenOptions::FramePointerKind::All:
758     getModule().setFramePointer(llvm::FramePointerKind::All);
759     break;
760   }
761 
762   SimplifyPersonality();
763 
764   if (getCodeGenOpts().EmitDeclMetadata)
765     EmitDeclMetadata();
766 
767   if (getCodeGenOpts().EmitGcovArcs || getCodeGenOpts().EmitGcovNotes)
768     EmitCoverageFile();
769 
770   if (CGDebugInfo *DI = getModuleDebugInfo())
771     DI->finalize();
772 
773   if (getCodeGenOpts().EmitVersionIdentMetadata)
774     EmitVersionIdentMetadata();
775 
776   if (!getCodeGenOpts().RecordCommandLine.empty())
777     EmitCommandLineMetadata();
778 
779   getTargetCodeGenInfo().emitTargetMetadata(*this, MangledDeclNames);
780 
781   EmitBackendOptionsMetadata(getCodeGenOpts());
782 
783   // Set visibility from DLL storage class
784   // We do this at the end of LLVM IR generation; after any operation
785   // that might affect the DLL storage class or the visibility, and
786   // before anything that might act on these.
787   setVisibilityFromDLLStorageClass(LangOpts, getModule());
788 }
789 
790 void CodeGenModule::EmitOpenCLMetadata() {
791   // SPIR v2.0 s2.13 - The OpenCL version used by the module is stored in the
792   // opencl.ocl.version named metadata node.
793   // C++ is backwards compatible with OpenCL v2.0.
794   // FIXME: We might need to add CXX version at some point too?
795   auto Version = LangOpts.OpenCLCPlusPlus ? 200 : LangOpts.OpenCLVersion;
796   llvm::Metadata *OCLVerElts[] = {
797       llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
798           Int32Ty, Version / 100)),
799       llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
800           Int32Ty, (Version % 100) / 10))};
801   llvm::NamedMDNode *OCLVerMD =
802       TheModule.getOrInsertNamedMetadata("opencl.ocl.version");
803   llvm::LLVMContext &Ctx = TheModule.getContext();
804   OCLVerMD->addOperand(llvm::MDNode::get(Ctx, OCLVerElts));
805 }
806 
807 void CodeGenModule::EmitBackendOptionsMetadata(
808     const CodeGenOptions CodeGenOpts) {
809   switch (getTriple().getArch()) {
810   default:
811     break;
812   case llvm::Triple::riscv32:
813   case llvm::Triple::riscv64:
814     getModule().addModuleFlag(llvm::Module::Error, "SmallDataLimit",
815                               CodeGenOpts.SmallDataLimit);
816     break;
817   }
818 }
819 
820 void CodeGenModule::UpdateCompletedType(const TagDecl *TD) {
821   // Make sure that this type is translated.
822   Types.UpdateCompletedType(TD);
823 }
824 
825 void CodeGenModule::RefreshTypeCacheForClass(const CXXRecordDecl *RD) {
826   // Make sure that this type is translated.
827   Types.RefreshTypeCacheForClass(RD);
828 }
829 
830 llvm::MDNode *CodeGenModule::getTBAATypeInfo(QualType QTy) {
831   if (!TBAA)
832     return nullptr;
833   return TBAA->getTypeInfo(QTy);
834 }
835 
836 TBAAAccessInfo CodeGenModule::getTBAAAccessInfo(QualType AccessType) {
837   if (!TBAA)
838     return TBAAAccessInfo();
839   if (getLangOpts().CUDAIsDevice) {
840     // As CUDA builtin surface/texture types are replaced, skip generating TBAA
841     // access info.
842     if (AccessType->isCUDADeviceBuiltinSurfaceType()) {
843       if (getTargetCodeGenInfo().getCUDADeviceBuiltinSurfaceDeviceType() !=
844           nullptr)
845         return TBAAAccessInfo();
846     } else if (AccessType->isCUDADeviceBuiltinTextureType()) {
847       if (getTargetCodeGenInfo().getCUDADeviceBuiltinTextureDeviceType() !=
848           nullptr)
849         return TBAAAccessInfo();
850     }
851   }
852   return TBAA->getAccessInfo(AccessType);
853 }
854 
855 TBAAAccessInfo
856 CodeGenModule::getTBAAVTablePtrAccessInfo(llvm::Type *VTablePtrType) {
857   if (!TBAA)
858     return TBAAAccessInfo();
859   return TBAA->getVTablePtrAccessInfo(VTablePtrType);
860 }
861 
862 llvm::MDNode *CodeGenModule::getTBAAStructInfo(QualType QTy) {
863   if (!TBAA)
864     return nullptr;
865   return TBAA->getTBAAStructInfo(QTy);
866 }
867 
868 llvm::MDNode *CodeGenModule::getTBAABaseTypeInfo(QualType QTy) {
869   if (!TBAA)
870     return nullptr;
871   return TBAA->getBaseTypeInfo(QTy);
872 }
873 
874 llvm::MDNode *CodeGenModule::getTBAAAccessTagInfo(TBAAAccessInfo Info) {
875   if (!TBAA)
876     return nullptr;
877   return TBAA->getAccessTagInfo(Info);
878 }
879 
880 TBAAAccessInfo CodeGenModule::mergeTBAAInfoForCast(TBAAAccessInfo SourceInfo,
881                                                    TBAAAccessInfo TargetInfo) {
882   if (!TBAA)
883     return TBAAAccessInfo();
884   return TBAA->mergeTBAAInfoForCast(SourceInfo, TargetInfo);
885 }
886 
887 TBAAAccessInfo
888 CodeGenModule::mergeTBAAInfoForConditionalOperator(TBAAAccessInfo InfoA,
889                                                    TBAAAccessInfo InfoB) {
890   if (!TBAA)
891     return TBAAAccessInfo();
892   return TBAA->mergeTBAAInfoForConditionalOperator(InfoA, InfoB);
893 }
894 
895 TBAAAccessInfo
896 CodeGenModule::mergeTBAAInfoForMemoryTransfer(TBAAAccessInfo DestInfo,
897                                               TBAAAccessInfo SrcInfo) {
898   if (!TBAA)
899     return TBAAAccessInfo();
900   return TBAA->mergeTBAAInfoForConditionalOperator(DestInfo, SrcInfo);
901 }
902 
903 void CodeGenModule::DecorateInstructionWithTBAA(llvm::Instruction *Inst,
904                                                 TBAAAccessInfo TBAAInfo) {
905   if (llvm::MDNode *Tag = getTBAAAccessTagInfo(TBAAInfo))
906     Inst->setMetadata(llvm::LLVMContext::MD_tbaa, Tag);
907 }
908 
909 void CodeGenModule::DecorateInstructionWithInvariantGroup(
910     llvm::Instruction *I, const CXXRecordDecl *RD) {
911   I->setMetadata(llvm::LLVMContext::MD_invariant_group,
912                  llvm::MDNode::get(getLLVMContext(), {}));
913 }
914 
915 void CodeGenModule::Error(SourceLocation loc, StringRef message) {
916   unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, "%0");
917   getDiags().Report(Context.getFullLoc(loc), diagID) << message;
918 }
919 
920 /// ErrorUnsupported - Print out an error that codegen doesn't support the
921 /// specified stmt yet.
922 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type) {
923   unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
924                                                "cannot compile this %0 yet");
925   std::string Msg = Type;
926   getDiags().Report(Context.getFullLoc(S->getBeginLoc()), DiagID)
927       << Msg << S->getSourceRange();
928 }
929 
930 /// ErrorUnsupported - Print out an error that codegen doesn't support the
931 /// specified decl yet.
932 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type) {
933   unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
934                                                "cannot compile this %0 yet");
935   std::string Msg = Type;
936   getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg;
937 }
938 
939 llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) {
940   return llvm::ConstantInt::get(SizeTy, size.getQuantity());
941 }
942 
943 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV,
944                                         const NamedDecl *D) const {
945   if (GV->hasDLLImportStorageClass())
946     return;
947   // Internal definitions always have default visibility.
948   if (GV->hasLocalLinkage()) {
949     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
950     return;
951   }
952   if (!D)
953     return;
954   // Set visibility for definitions, and for declarations if requested globally
955   // or set explicitly.
956   LinkageInfo LV = D->getLinkageAndVisibility();
957   if (LV.isVisibilityExplicit() || getLangOpts().SetVisibilityForExternDecls ||
958       !GV->isDeclarationForLinker())
959     GV->setVisibility(GetLLVMVisibility(LV.getVisibility()));
960 }
961 
962 static bool shouldAssumeDSOLocal(const CodeGenModule &CGM,
963                                  llvm::GlobalValue *GV) {
964   if (GV->hasLocalLinkage())
965     return true;
966 
967   if (!GV->hasDefaultVisibility() && !GV->hasExternalWeakLinkage())
968     return true;
969 
970   // DLLImport explicitly marks the GV as external.
971   if (GV->hasDLLImportStorageClass())
972     return false;
973 
974   const llvm::Triple &TT = CGM.getTriple();
975   if (TT.isWindowsGNUEnvironment()) {
976     // In MinGW, variables without DLLImport can still be automatically
977     // imported from a DLL by the linker; don't mark variables that
978     // potentially could come from another DLL as DSO local.
979     if (GV->isDeclarationForLinker() && isa<llvm::GlobalVariable>(GV) &&
980         !GV->isThreadLocal())
981       return false;
982   }
983 
984   // On COFF, don't mark 'extern_weak' symbols as DSO local. If these symbols
985   // remain unresolved in the link, they can be resolved to zero, which is
986   // outside the current DSO.
987   if (TT.isOSBinFormatCOFF() && GV->hasExternalWeakLinkage())
988     return false;
989 
990   // Every other GV is local on COFF.
991   // Make an exception for windows OS in the triple: Some firmware builds use
992   // *-win32-macho triples. This (accidentally?) produced windows relocations
993   // without GOT tables in older clang versions; Keep this behaviour.
994   // FIXME: even thread local variables?
995   if (TT.isOSBinFormatCOFF() || (TT.isOSWindows() && TT.isOSBinFormatMachO()))
996     return true;
997 
998   // Only handle COFF and ELF for now.
999   if (!TT.isOSBinFormatELF())
1000     return false;
1001 
1002   // If this is not an executable, don't assume anything is local.
1003   const auto &CGOpts = CGM.getCodeGenOpts();
1004   llvm::Reloc::Model RM = CGOpts.RelocationModel;
1005   const auto &LOpts = CGM.getLangOpts();
1006   if (RM != llvm::Reloc::Static && !LOpts.PIE) {
1007     // On ELF, if -fno-semantic-interposition is specified and the target
1008     // supports local aliases, there will be neither CC1
1009     // -fsemantic-interposition nor -fhalf-no-semantic-interposition. Set
1010     // dso_local if using a local alias is preferable (can avoid GOT
1011     // indirection).
1012     if (!GV->canBenefitFromLocalAlias())
1013       return false;
1014     return !(CGM.getLangOpts().SemanticInterposition ||
1015              CGM.getLangOpts().HalfNoSemanticInterposition);
1016   }
1017 
1018   // A definition cannot be preempted from an executable.
1019   if (!GV->isDeclarationForLinker())
1020     return true;
1021 
1022   // Most PIC code sequences that assume that a symbol is local cannot produce a
1023   // 0 if it turns out the symbol is undefined. While this is ABI and relocation
1024   // depended, it seems worth it to handle it here.
1025   if (RM == llvm::Reloc::PIC_ && GV->hasExternalWeakLinkage())
1026     return false;
1027 
1028   // PowerPC64 prefers TOC indirection to avoid copy relocations.
1029   if (TT.isPPC64())
1030     return false;
1031 
1032   if (CGOpts.DirectAccessExternalData) {
1033     // If -fdirect-access-external-data (default for -fno-pic), set dso_local
1034     // for non-thread-local variables. If the symbol is not defined in the
1035     // executable, a copy relocation will be needed at link time. dso_local is
1036     // excluded for thread-local variables because they generally don't support
1037     // copy relocations.
1038     if (auto *Var = dyn_cast<llvm::GlobalVariable>(GV))
1039       if (!Var->isThreadLocal())
1040         return true;
1041 
1042     // -fno-pic sets dso_local on a function declaration to allow direct
1043     // accesses when taking its address (similar to a data symbol). If the
1044     // function is not defined in the executable, a canonical PLT entry will be
1045     // needed at link time. -fno-direct-access-external-data can avoid the
1046     // canonical PLT entry. We don't generalize this condition to -fpie/-fpic as
1047     // it could just cause trouble without providing perceptible benefits.
1048     if (isa<llvm::Function>(GV) && !CGOpts.NoPLT && RM == llvm::Reloc::Static)
1049       return true;
1050   }
1051 
1052   // If we can use copy relocations we can assume it is local.
1053 
1054   // Otherwise don't assume it is local.
1055   return false;
1056 }
1057 
1058 void CodeGenModule::setDSOLocal(llvm::GlobalValue *GV) const {
1059   GV->setDSOLocal(shouldAssumeDSOLocal(*this, GV));
1060 }
1061 
1062 void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV,
1063                                           GlobalDecl GD) const {
1064   const auto *D = dyn_cast<NamedDecl>(GD.getDecl());
1065   // C++ destructors have a few C++ ABI specific special cases.
1066   if (const auto *Dtor = dyn_cast_or_null<CXXDestructorDecl>(D)) {
1067     getCXXABI().setCXXDestructorDLLStorage(GV, Dtor, GD.getDtorType());
1068     return;
1069   }
1070   setDLLImportDLLExport(GV, D);
1071 }
1072 
1073 void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV,
1074                                           const NamedDecl *D) const {
1075   if (D && D->isExternallyVisible()) {
1076     if (D->hasAttr<DLLImportAttr>())
1077       GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass);
1078     else if (D->hasAttr<DLLExportAttr>() && !GV->isDeclarationForLinker())
1079       GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass);
1080   }
1081 }
1082 
1083 void CodeGenModule::setGVProperties(llvm::GlobalValue *GV,
1084                                     GlobalDecl GD) const {
1085   setDLLImportDLLExport(GV, GD);
1086   setGVPropertiesAux(GV, dyn_cast<NamedDecl>(GD.getDecl()));
1087 }
1088 
1089 void CodeGenModule::setGVProperties(llvm::GlobalValue *GV,
1090                                     const NamedDecl *D) const {
1091   setDLLImportDLLExport(GV, D);
1092   setGVPropertiesAux(GV, D);
1093 }
1094 
1095 void CodeGenModule::setGVPropertiesAux(llvm::GlobalValue *GV,
1096                                        const NamedDecl *D) const {
1097   setGlobalVisibility(GV, D);
1098   setDSOLocal(GV);
1099   GV->setPartition(CodeGenOpts.SymbolPartition);
1100 }
1101 
1102 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(StringRef S) {
1103   return llvm::StringSwitch<llvm::GlobalVariable::ThreadLocalMode>(S)
1104       .Case("global-dynamic", llvm::GlobalVariable::GeneralDynamicTLSModel)
1105       .Case("local-dynamic", llvm::GlobalVariable::LocalDynamicTLSModel)
1106       .Case("initial-exec", llvm::GlobalVariable::InitialExecTLSModel)
1107       .Case("local-exec", llvm::GlobalVariable::LocalExecTLSModel);
1108 }
1109 
1110 llvm::GlobalVariable::ThreadLocalMode
1111 CodeGenModule::GetDefaultLLVMTLSModel() const {
1112   switch (CodeGenOpts.getDefaultTLSModel()) {
1113   case CodeGenOptions::GeneralDynamicTLSModel:
1114     return llvm::GlobalVariable::GeneralDynamicTLSModel;
1115   case CodeGenOptions::LocalDynamicTLSModel:
1116     return llvm::GlobalVariable::LocalDynamicTLSModel;
1117   case CodeGenOptions::InitialExecTLSModel:
1118     return llvm::GlobalVariable::InitialExecTLSModel;
1119   case CodeGenOptions::LocalExecTLSModel:
1120     return llvm::GlobalVariable::LocalExecTLSModel;
1121   }
1122   llvm_unreachable("Invalid TLS model!");
1123 }
1124 
1125 void CodeGenModule::setTLSMode(llvm::GlobalValue *GV, const VarDecl &D) const {
1126   assert(D.getTLSKind() && "setting TLS mode on non-TLS var!");
1127 
1128   llvm::GlobalValue::ThreadLocalMode TLM;
1129   TLM = GetDefaultLLVMTLSModel();
1130 
1131   // Override the TLS model if it is explicitly specified.
1132   if (const TLSModelAttr *Attr = D.getAttr<TLSModelAttr>()) {
1133     TLM = GetLLVMTLSModel(Attr->getModel());
1134   }
1135 
1136   GV->setThreadLocalMode(TLM);
1137 }
1138 
1139 static std::string getCPUSpecificMangling(const CodeGenModule &CGM,
1140                                           StringRef Name) {
1141   const TargetInfo &Target = CGM.getTarget();
1142   return (Twine('.') + Twine(Target.CPUSpecificManglingCharacter(Name))).str();
1143 }
1144 
1145 static void AppendCPUSpecificCPUDispatchMangling(const CodeGenModule &CGM,
1146                                                  const CPUSpecificAttr *Attr,
1147                                                  unsigned CPUIndex,
1148                                                  raw_ostream &Out) {
1149   // cpu_specific gets the current name, dispatch gets the resolver if IFunc is
1150   // supported.
1151   if (Attr)
1152     Out << getCPUSpecificMangling(CGM, Attr->getCPUName(CPUIndex)->getName());
1153   else if (CGM.getTarget().supportsIFunc())
1154     Out << ".resolver";
1155 }
1156 
1157 static void AppendTargetMangling(const CodeGenModule &CGM,
1158                                  const TargetAttr *Attr, raw_ostream &Out) {
1159   if (Attr->isDefaultVersion())
1160     return;
1161 
1162   Out << '.';
1163   const TargetInfo &Target = CGM.getTarget();
1164   ParsedTargetAttr Info =
1165       Attr->parse([&Target](StringRef LHS, StringRef RHS) {
1166         // Multiversioning doesn't allow "no-${feature}", so we can
1167         // only have "+" prefixes here.
1168         assert(LHS.startswith("+") && RHS.startswith("+") &&
1169                "Features should always have a prefix.");
1170         return Target.multiVersionSortPriority(LHS.substr(1)) >
1171                Target.multiVersionSortPriority(RHS.substr(1));
1172       });
1173 
1174   bool IsFirst = true;
1175 
1176   if (!Info.Architecture.empty()) {
1177     IsFirst = false;
1178     Out << "arch_" << Info.Architecture;
1179   }
1180 
1181   for (StringRef Feat : Info.Features) {
1182     if (!IsFirst)
1183       Out << '_';
1184     IsFirst = false;
1185     Out << Feat.substr(1);
1186   }
1187 }
1188 
1189 // Returns true if GD is a function decl with internal linkage and
1190 // needs a unique suffix after the mangled name.
1191 static bool isUniqueInternalLinkageDecl(GlobalDecl GD,
1192                                         CodeGenModule &CGM) {
1193   const Decl *D = GD.getDecl();
1194   return !CGM.getModuleNameHash().empty() && isa<FunctionDecl>(D) &&
1195          (CGM.getFunctionLinkage(GD) == llvm::GlobalValue::InternalLinkage);
1196 }
1197 
1198 static std::string getMangledNameImpl(CodeGenModule &CGM, GlobalDecl GD,
1199                                       const NamedDecl *ND,
1200                                       bool OmitMultiVersionMangling = false) {
1201   SmallString<256> Buffer;
1202   llvm::raw_svector_ostream Out(Buffer);
1203   MangleContext &MC = CGM.getCXXABI().getMangleContext();
1204   if (!CGM.getModuleNameHash().empty())
1205     MC.needsUniqueInternalLinkageNames();
1206   bool ShouldMangle = MC.shouldMangleDeclName(ND);
1207   if (ShouldMangle)
1208     MC.mangleName(GD.getWithDecl(ND), Out);
1209   else {
1210     IdentifierInfo *II = ND->getIdentifier();
1211     assert(II && "Attempt to mangle unnamed decl.");
1212     const auto *FD = dyn_cast<FunctionDecl>(ND);
1213 
1214     if (FD &&
1215         FD->getType()->castAs<FunctionType>()->getCallConv() == CC_X86RegCall) {
1216       Out << "__regcall3__" << II->getName();
1217     } else if (FD && FD->hasAttr<CUDAGlobalAttr>() &&
1218                GD.getKernelReferenceKind() == KernelReferenceKind::Stub) {
1219       Out << "__device_stub__" << II->getName();
1220     } else {
1221       Out << II->getName();
1222     }
1223   }
1224 
1225   // Check if the module name hash should be appended for internal linkage
1226   // symbols.   This should come before multi-version target suffixes are
1227   // appended. This is to keep the name and module hash suffix of the
1228   // internal linkage function together.  The unique suffix should only be
1229   // added when name mangling is done to make sure that the final name can
1230   // be properly demangled.  For example, for C functions without prototypes,
1231   // name mangling is not done and the unique suffix should not be appeneded
1232   // then.
1233   if (ShouldMangle && isUniqueInternalLinkageDecl(GD, CGM)) {
1234     assert(CGM.getCodeGenOpts().UniqueInternalLinkageNames &&
1235            "Hash computed when not explicitly requested");
1236     Out << CGM.getModuleNameHash();
1237   }
1238 
1239   if (const auto *FD = dyn_cast<FunctionDecl>(ND))
1240     if (FD->isMultiVersion() && !OmitMultiVersionMangling) {
1241       switch (FD->getMultiVersionKind()) {
1242       case MultiVersionKind::CPUDispatch:
1243       case MultiVersionKind::CPUSpecific:
1244         AppendCPUSpecificCPUDispatchMangling(CGM,
1245                                              FD->getAttr<CPUSpecificAttr>(),
1246                                              GD.getMultiVersionIndex(), Out);
1247         break;
1248       case MultiVersionKind::Target:
1249         AppendTargetMangling(CGM, FD->getAttr<TargetAttr>(), Out);
1250         break;
1251       case MultiVersionKind::None:
1252         llvm_unreachable("None multiversion type isn't valid here");
1253       }
1254     }
1255 
1256   // Make unique name for device side static file-scope variable for HIP.
1257   if (CGM.getContext().shouldExternalizeStaticVar(ND) &&
1258       CGM.getLangOpts().GPURelocatableDeviceCode &&
1259       CGM.getLangOpts().CUDAIsDevice && !CGM.getLangOpts().CUID.empty())
1260     CGM.printPostfixForExternalizedStaticVar(Out);
1261   return std::string(Out.str());
1262 }
1263 
1264 void CodeGenModule::UpdateMultiVersionNames(GlobalDecl GD,
1265                                             const FunctionDecl *FD) {
1266   if (!FD->isMultiVersion())
1267     return;
1268 
1269   // Get the name of what this would be without the 'target' attribute.  This
1270   // allows us to lookup the version that was emitted when this wasn't a
1271   // multiversion function.
1272   std::string NonTargetName =
1273       getMangledNameImpl(*this, GD, FD, /*OmitMultiVersionMangling=*/true);
1274   GlobalDecl OtherGD;
1275   if (lookupRepresentativeDecl(NonTargetName, OtherGD)) {
1276     assert(OtherGD.getCanonicalDecl()
1277                .getDecl()
1278                ->getAsFunction()
1279                ->isMultiVersion() &&
1280            "Other GD should now be a multiversioned function");
1281     // OtherFD is the version of this function that was mangled BEFORE
1282     // becoming a MultiVersion function.  It potentially needs to be updated.
1283     const FunctionDecl *OtherFD = OtherGD.getCanonicalDecl()
1284                                       .getDecl()
1285                                       ->getAsFunction()
1286                                       ->getMostRecentDecl();
1287     std::string OtherName = getMangledNameImpl(*this, OtherGD, OtherFD);
1288     // This is so that if the initial version was already the 'default'
1289     // version, we don't try to update it.
1290     if (OtherName != NonTargetName) {
1291       // Remove instead of erase, since others may have stored the StringRef
1292       // to this.
1293       const auto ExistingRecord = Manglings.find(NonTargetName);
1294       if (ExistingRecord != std::end(Manglings))
1295         Manglings.remove(&(*ExistingRecord));
1296       auto Result = Manglings.insert(std::make_pair(OtherName, OtherGD));
1297       MangledDeclNames[OtherGD.getCanonicalDecl()] = Result.first->first();
1298       if (llvm::GlobalValue *Entry = GetGlobalValue(NonTargetName))
1299         Entry->setName(OtherName);
1300     }
1301   }
1302 }
1303 
1304 StringRef CodeGenModule::getMangledName(GlobalDecl GD) {
1305   GlobalDecl CanonicalGD = GD.getCanonicalDecl();
1306 
1307   // Some ABIs don't have constructor variants.  Make sure that base and
1308   // complete constructors get mangled the same.
1309   if (const auto *CD = dyn_cast<CXXConstructorDecl>(CanonicalGD.getDecl())) {
1310     if (!getTarget().getCXXABI().hasConstructorVariants()) {
1311       CXXCtorType OrigCtorType = GD.getCtorType();
1312       assert(OrigCtorType == Ctor_Base || OrigCtorType == Ctor_Complete);
1313       if (OrigCtorType == Ctor_Base)
1314         CanonicalGD = GlobalDecl(CD, Ctor_Complete);
1315     }
1316   }
1317 
1318   // In CUDA/HIP device compilation with -fgpu-rdc, the mangled name of a
1319   // static device variable depends on whether the variable is referenced by
1320   // a host or device host function. Therefore the mangled name cannot be
1321   // cached.
1322   if (!LangOpts.CUDAIsDevice ||
1323       !getContext().mayExternalizeStaticVar(GD.getDecl())) {
1324     auto FoundName = MangledDeclNames.find(CanonicalGD);
1325     if (FoundName != MangledDeclNames.end())
1326       return FoundName->second;
1327   }
1328 
1329   // Keep the first result in the case of a mangling collision.
1330   const auto *ND = cast<NamedDecl>(GD.getDecl());
1331   std::string MangledName = getMangledNameImpl(*this, GD, ND);
1332 
1333   // Ensure either we have different ABIs between host and device compilations,
1334   // says host compilation following MSVC ABI but device compilation follows
1335   // Itanium C++ ABI or, if they follow the same ABI, kernel names after
1336   // mangling should be the same after name stubbing. The later checking is
1337   // very important as the device kernel name being mangled in host-compilation
1338   // is used to resolve the device binaries to be executed. Inconsistent naming
1339   // result in undefined behavior. Even though we cannot check that naming
1340   // directly between host- and device-compilations, the host- and
1341   // device-mangling in host compilation could help catching certain ones.
1342   assert(!isa<FunctionDecl>(ND) || !ND->hasAttr<CUDAGlobalAttr>() ||
1343          getLangOpts().CUDAIsDevice ||
1344          (getContext().getAuxTargetInfo() &&
1345           (getContext().getAuxTargetInfo()->getCXXABI() !=
1346            getContext().getTargetInfo().getCXXABI())) ||
1347          getCUDARuntime().getDeviceSideName(ND) ==
1348              getMangledNameImpl(
1349                  *this,
1350                  GD.getWithKernelReferenceKind(KernelReferenceKind::Kernel),
1351                  ND));
1352 
1353   auto Result = Manglings.insert(std::make_pair(MangledName, GD));
1354   return MangledDeclNames[CanonicalGD] = Result.first->first();
1355 }
1356 
1357 StringRef CodeGenModule::getBlockMangledName(GlobalDecl GD,
1358                                              const BlockDecl *BD) {
1359   MangleContext &MangleCtx = getCXXABI().getMangleContext();
1360   const Decl *D = GD.getDecl();
1361 
1362   SmallString<256> Buffer;
1363   llvm::raw_svector_ostream Out(Buffer);
1364   if (!D)
1365     MangleCtx.mangleGlobalBlock(BD,
1366       dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()), Out);
1367   else if (const auto *CD = dyn_cast<CXXConstructorDecl>(D))
1368     MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out);
1369   else if (const auto *DD = dyn_cast<CXXDestructorDecl>(D))
1370     MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out);
1371   else
1372     MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out);
1373 
1374   auto Result = Manglings.insert(std::make_pair(Out.str(), BD));
1375   return Result.first->first();
1376 }
1377 
1378 llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) {
1379   return getModule().getNamedValue(Name);
1380 }
1381 
1382 /// AddGlobalCtor - Add a function to the list that will be called before
1383 /// main() runs.
1384 void CodeGenModule::AddGlobalCtor(llvm::Function *Ctor, int Priority,
1385                                   llvm::Constant *AssociatedData) {
1386   // FIXME: Type coercion of void()* types.
1387   GlobalCtors.push_back(Structor(Priority, Ctor, AssociatedData));
1388 }
1389 
1390 /// AddGlobalDtor - Add a function to the list that will be called
1391 /// when the module is unloaded.
1392 void CodeGenModule::AddGlobalDtor(llvm::Function *Dtor, int Priority,
1393                                   bool IsDtorAttrFunc) {
1394   if (CodeGenOpts.RegisterGlobalDtorsWithAtExit &&
1395       (!getContext().getTargetInfo().getTriple().isOSAIX() || IsDtorAttrFunc)) {
1396     DtorsUsingAtExit[Priority].push_back(Dtor);
1397     return;
1398   }
1399 
1400   // FIXME: Type coercion of void()* types.
1401   GlobalDtors.push_back(Structor(Priority, Dtor, nullptr));
1402 }
1403 
1404 void CodeGenModule::EmitCtorList(CtorList &Fns, const char *GlobalName) {
1405   if (Fns.empty()) return;
1406 
1407   // Ctor function type is void()*.
1408   llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false);
1409   llvm::Type *CtorPFTy = llvm::PointerType::get(CtorFTy,
1410       TheModule.getDataLayout().getProgramAddressSpace());
1411 
1412   // Get the type of a ctor entry, { i32, void ()*, i8* }.
1413   llvm::StructType *CtorStructTy = llvm::StructType::get(
1414       Int32Ty, CtorPFTy, VoidPtrTy);
1415 
1416   // Construct the constructor and destructor arrays.
1417   ConstantInitBuilder builder(*this);
1418   auto ctors = builder.beginArray(CtorStructTy);
1419   for (const auto &I : Fns) {
1420     auto ctor = ctors.beginStruct(CtorStructTy);
1421     ctor.addInt(Int32Ty, I.Priority);
1422     ctor.add(llvm::ConstantExpr::getBitCast(I.Initializer, CtorPFTy));
1423     if (I.AssociatedData)
1424       ctor.add(llvm::ConstantExpr::getBitCast(I.AssociatedData, VoidPtrTy));
1425     else
1426       ctor.addNullPointer(VoidPtrTy);
1427     ctor.finishAndAddTo(ctors);
1428   }
1429 
1430   auto list =
1431     ctors.finishAndCreateGlobal(GlobalName, getPointerAlign(),
1432                                 /*constant*/ false,
1433                                 llvm::GlobalValue::AppendingLinkage);
1434 
1435   // The LTO linker doesn't seem to like it when we set an alignment
1436   // on appending variables.  Take it off as a workaround.
1437   list->setAlignment(llvm::None);
1438 
1439   Fns.clear();
1440 }
1441 
1442 llvm::GlobalValue::LinkageTypes
1443 CodeGenModule::getFunctionLinkage(GlobalDecl GD) {
1444   const auto *D = cast<FunctionDecl>(GD.getDecl());
1445 
1446   GVALinkage Linkage = getContext().GetGVALinkageForFunction(D);
1447 
1448   if (const auto *Dtor = dyn_cast<CXXDestructorDecl>(D))
1449     return getCXXABI().getCXXDestructorLinkage(Linkage, Dtor, GD.getDtorType());
1450 
1451   if (isa<CXXConstructorDecl>(D) &&
1452       cast<CXXConstructorDecl>(D)->isInheritingConstructor() &&
1453       Context.getTargetInfo().getCXXABI().isMicrosoft()) {
1454     // Our approach to inheriting constructors is fundamentally different from
1455     // that used by the MS ABI, so keep our inheriting constructor thunks
1456     // internal rather than trying to pick an unambiguous mangling for them.
1457     return llvm::GlobalValue::InternalLinkage;
1458   }
1459 
1460   return getLLVMLinkageForDeclarator(D, Linkage, /*IsConstantVariable=*/false);
1461 }
1462 
1463 llvm::ConstantInt *CodeGenModule::CreateCrossDsoCfiTypeId(llvm::Metadata *MD) {
1464   llvm::MDString *MDS = dyn_cast<llvm::MDString>(MD);
1465   if (!MDS) return nullptr;
1466 
1467   return llvm::ConstantInt::get(Int64Ty, llvm::MD5Hash(MDS->getString()));
1468 }
1469 
1470 void CodeGenModule::SetLLVMFunctionAttributes(GlobalDecl GD,
1471                                               const CGFunctionInfo &Info,
1472                                               llvm::Function *F, bool IsThunk) {
1473   unsigned CallingConv;
1474   llvm::AttributeList PAL;
1475   ConstructAttributeList(F->getName(), Info, GD, PAL, CallingConv,
1476                          /*AttrOnCallSite=*/false, IsThunk);
1477   F->setAttributes(PAL);
1478   F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv));
1479 }
1480 
1481 static void removeImageAccessQualifier(std::string& TyName) {
1482   std::string ReadOnlyQual("__read_only");
1483   std::string::size_type ReadOnlyPos = TyName.find(ReadOnlyQual);
1484   if (ReadOnlyPos != std::string::npos)
1485     // "+ 1" for the space after access qualifier.
1486     TyName.erase(ReadOnlyPos, ReadOnlyQual.size() + 1);
1487   else {
1488     std::string WriteOnlyQual("__write_only");
1489     std::string::size_type WriteOnlyPos = TyName.find(WriteOnlyQual);
1490     if (WriteOnlyPos != std::string::npos)
1491       TyName.erase(WriteOnlyPos, WriteOnlyQual.size() + 1);
1492     else {
1493       std::string ReadWriteQual("__read_write");
1494       std::string::size_type ReadWritePos = TyName.find(ReadWriteQual);
1495       if (ReadWritePos != std::string::npos)
1496         TyName.erase(ReadWritePos, ReadWriteQual.size() + 1);
1497     }
1498   }
1499 }
1500 
1501 // Returns the address space id that should be produced to the
1502 // kernel_arg_addr_space metadata. This is always fixed to the ids
1503 // as specified in the SPIR 2.0 specification in order to differentiate
1504 // for example in clGetKernelArgInfo() implementation between the address
1505 // spaces with targets without unique mapping to the OpenCL address spaces
1506 // (basically all single AS CPUs).
1507 static unsigned ArgInfoAddressSpace(LangAS AS) {
1508   switch (AS) {
1509   case LangAS::opencl_global:
1510     return 1;
1511   case LangAS::opencl_constant:
1512     return 2;
1513   case LangAS::opencl_local:
1514     return 3;
1515   case LangAS::opencl_generic:
1516     return 4; // Not in SPIR 2.0 specs.
1517   case LangAS::opencl_global_device:
1518     return 5;
1519   case LangAS::opencl_global_host:
1520     return 6;
1521   default:
1522     return 0; // Assume private.
1523   }
1524 }
1525 
1526 void CodeGenModule::GenOpenCLArgMetadata(llvm::Function *Fn,
1527                                          const FunctionDecl *FD,
1528                                          CodeGenFunction *CGF) {
1529   assert(((FD && CGF) || (!FD && !CGF)) &&
1530          "Incorrect use - FD and CGF should either be both null or not!");
1531   // Create MDNodes that represent the kernel arg metadata.
1532   // Each MDNode is a list in the form of "key", N number of values which is
1533   // the same number of values as their are kernel arguments.
1534 
1535   const PrintingPolicy &Policy = Context.getPrintingPolicy();
1536 
1537   // MDNode for the kernel argument address space qualifiers.
1538   SmallVector<llvm::Metadata *, 8> addressQuals;
1539 
1540   // MDNode for the kernel argument access qualifiers (images only).
1541   SmallVector<llvm::Metadata *, 8> accessQuals;
1542 
1543   // MDNode for the kernel argument type names.
1544   SmallVector<llvm::Metadata *, 8> argTypeNames;
1545 
1546   // MDNode for the kernel argument base type names.
1547   SmallVector<llvm::Metadata *, 8> argBaseTypeNames;
1548 
1549   // MDNode for the kernel argument type qualifiers.
1550   SmallVector<llvm::Metadata *, 8> argTypeQuals;
1551 
1552   // MDNode for the kernel argument names.
1553   SmallVector<llvm::Metadata *, 8> argNames;
1554 
1555   if (FD && CGF)
1556     for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i) {
1557       const ParmVarDecl *parm = FD->getParamDecl(i);
1558       QualType ty = parm->getType();
1559       std::string typeQuals;
1560 
1561       // Get image and pipe access qualifier:
1562       if (ty->isImageType() || ty->isPipeType()) {
1563         const Decl *PDecl = parm;
1564         if (auto *TD = dyn_cast<TypedefType>(ty))
1565           PDecl = TD->getDecl();
1566         const OpenCLAccessAttr *A = PDecl->getAttr<OpenCLAccessAttr>();
1567         if (A && A->isWriteOnly())
1568           accessQuals.push_back(llvm::MDString::get(VMContext, "write_only"));
1569         else if (A && A->isReadWrite())
1570           accessQuals.push_back(llvm::MDString::get(VMContext, "read_write"));
1571         else
1572           accessQuals.push_back(llvm::MDString::get(VMContext, "read_only"));
1573       } else
1574         accessQuals.push_back(llvm::MDString::get(VMContext, "none"));
1575 
1576       // Get argument name.
1577       argNames.push_back(llvm::MDString::get(VMContext, parm->getName()));
1578 
1579       auto getTypeSpelling = [&](QualType Ty) {
1580         auto typeName = Ty.getUnqualifiedType().getAsString(Policy);
1581 
1582         if (Ty.isCanonical()) {
1583           StringRef typeNameRef = typeName;
1584           // Turn "unsigned type" to "utype"
1585           if (typeNameRef.consume_front("unsigned "))
1586             return std::string("u") + typeNameRef.str();
1587           if (typeNameRef.consume_front("signed "))
1588             return typeNameRef.str();
1589         }
1590 
1591         return typeName;
1592       };
1593 
1594       if (ty->isPointerType()) {
1595         QualType pointeeTy = ty->getPointeeType();
1596 
1597         // Get address qualifier.
1598         addressQuals.push_back(
1599             llvm::ConstantAsMetadata::get(CGF->Builder.getInt32(
1600                 ArgInfoAddressSpace(pointeeTy.getAddressSpace()))));
1601 
1602         // Get argument type name.
1603         std::string typeName = getTypeSpelling(pointeeTy) + "*";
1604         std::string baseTypeName =
1605             getTypeSpelling(pointeeTy.getCanonicalType()) + "*";
1606         argTypeNames.push_back(llvm::MDString::get(VMContext, typeName));
1607         argBaseTypeNames.push_back(
1608             llvm::MDString::get(VMContext, baseTypeName));
1609 
1610         // Get argument type qualifiers:
1611         if (ty.isRestrictQualified())
1612           typeQuals = "restrict";
1613         if (pointeeTy.isConstQualified() ||
1614             (pointeeTy.getAddressSpace() == LangAS::opencl_constant))
1615           typeQuals += typeQuals.empty() ? "const" : " const";
1616         if (pointeeTy.isVolatileQualified())
1617           typeQuals += typeQuals.empty() ? "volatile" : " volatile";
1618       } else {
1619         uint32_t AddrSpc = 0;
1620         bool isPipe = ty->isPipeType();
1621         if (ty->isImageType() || isPipe)
1622           AddrSpc = ArgInfoAddressSpace(LangAS::opencl_global);
1623 
1624         addressQuals.push_back(
1625             llvm::ConstantAsMetadata::get(CGF->Builder.getInt32(AddrSpc)));
1626 
1627         // Get argument type name.
1628         ty = isPipe ? ty->castAs<PipeType>()->getElementType() : ty;
1629         std::string typeName = getTypeSpelling(ty);
1630         std::string baseTypeName = getTypeSpelling(ty.getCanonicalType());
1631 
1632         // Remove access qualifiers on images
1633         // (as they are inseparable from type in clang implementation,
1634         // but OpenCL spec provides a special query to get access qualifier
1635         // via clGetKernelArgInfo with CL_KERNEL_ARG_ACCESS_QUALIFIER):
1636         if (ty->isImageType()) {
1637           removeImageAccessQualifier(typeName);
1638           removeImageAccessQualifier(baseTypeName);
1639         }
1640 
1641         argTypeNames.push_back(llvm::MDString::get(VMContext, typeName));
1642         argBaseTypeNames.push_back(
1643             llvm::MDString::get(VMContext, baseTypeName));
1644 
1645         if (isPipe)
1646           typeQuals = "pipe";
1647       }
1648       argTypeQuals.push_back(llvm::MDString::get(VMContext, typeQuals));
1649     }
1650 
1651   Fn->setMetadata("kernel_arg_addr_space",
1652                   llvm::MDNode::get(VMContext, addressQuals));
1653   Fn->setMetadata("kernel_arg_access_qual",
1654                   llvm::MDNode::get(VMContext, accessQuals));
1655   Fn->setMetadata("kernel_arg_type",
1656                   llvm::MDNode::get(VMContext, argTypeNames));
1657   Fn->setMetadata("kernel_arg_base_type",
1658                   llvm::MDNode::get(VMContext, argBaseTypeNames));
1659   Fn->setMetadata("kernel_arg_type_qual",
1660                   llvm::MDNode::get(VMContext, argTypeQuals));
1661   if (getCodeGenOpts().EmitOpenCLArgMetadata)
1662     Fn->setMetadata("kernel_arg_name",
1663                     llvm::MDNode::get(VMContext, argNames));
1664 }
1665 
1666 /// Determines whether the language options require us to model
1667 /// unwind exceptions.  We treat -fexceptions as mandating this
1668 /// except under the fragile ObjC ABI with only ObjC exceptions
1669 /// enabled.  This means, for example, that C with -fexceptions
1670 /// enables this.
1671 static bool hasUnwindExceptions(const LangOptions &LangOpts) {
1672   // If exceptions are completely disabled, obviously this is false.
1673   if (!LangOpts.Exceptions) return false;
1674 
1675   // If C++ exceptions are enabled, this is true.
1676   if (LangOpts.CXXExceptions) return true;
1677 
1678   // If ObjC exceptions are enabled, this depends on the ABI.
1679   if (LangOpts.ObjCExceptions) {
1680     return LangOpts.ObjCRuntime.hasUnwindExceptions();
1681   }
1682 
1683   return true;
1684 }
1685 
1686 static bool requiresMemberFunctionPointerTypeMetadata(CodeGenModule &CGM,
1687                                                       const CXXMethodDecl *MD) {
1688   // Check that the type metadata can ever actually be used by a call.
1689   if (!CGM.getCodeGenOpts().LTOUnit ||
1690       !CGM.HasHiddenLTOVisibility(MD->getParent()))
1691     return false;
1692 
1693   // Only functions whose address can be taken with a member function pointer
1694   // need this sort of type metadata.
1695   return !MD->isStatic() && !MD->isVirtual() && !isa<CXXConstructorDecl>(MD) &&
1696          !isa<CXXDestructorDecl>(MD);
1697 }
1698 
1699 std::vector<const CXXRecordDecl *>
1700 CodeGenModule::getMostBaseClasses(const CXXRecordDecl *RD) {
1701   llvm::SetVector<const CXXRecordDecl *> MostBases;
1702 
1703   std::function<void (const CXXRecordDecl *)> CollectMostBases;
1704   CollectMostBases = [&](const CXXRecordDecl *RD) {
1705     if (RD->getNumBases() == 0)
1706       MostBases.insert(RD);
1707     for (const CXXBaseSpecifier &B : RD->bases())
1708       CollectMostBases(B.getType()->getAsCXXRecordDecl());
1709   };
1710   CollectMostBases(RD);
1711   return MostBases.takeVector();
1712 }
1713 
1714 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D,
1715                                                            llvm::Function *F) {
1716   llvm::AttrBuilder B;
1717 
1718   if (CodeGenOpts.UnwindTables)
1719     B.addAttribute(llvm::Attribute::UWTable);
1720 
1721   if (CodeGenOpts.StackClashProtector)
1722     B.addAttribute("probe-stack", "inline-asm");
1723 
1724   if (!hasUnwindExceptions(LangOpts))
1725     B.addAttribute(llvm::Attribute::NoUnwind);
1726 
1727   if (!D || !D->hasAttr<NoStackProtectorAttr>()) {
1728     if (LangOpts.getStackProtector() == LangOptions::SSPOn)
1729       B.addAttribute(llvm::Attribute::StackProtect);
1730     else if (LangOpts.getStackProtector() == LangOptions::SSPStrong)
1731       B.addAttribute(llvm::Attribute::StackProtectStrong);
1732     else if (LangOpts.getStackProtector() == LangOptions::SSPReq)
1733       B.addAttribute(llvm::Attribute::StackProtectReq);
1734   }
1735 
1736   if (!D) {
1737     // If we don't have a declaration to control inlining, the function isn't
1738     // explicitly marked as alwaysinline for semantic reasons, and inlining is
1739     // disabled, mark the function as noinline.
1740     if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline) &&
1741         CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining)
1742       B.addAttribute(llvm::Attribute::NoInline);
1743 
1744     F->addAttributes(llvm::AttributeList::FunctionIndex, B);
1745     return;
1746   }
1747 
1748   // Track whether we need to add the optnone LLVM attribute,
1749   // starting with the default for this optimization level.
1750   bool ShouldAddOptNone =
1751       !CodeGenOpts.DisableO0ImplyOptNone && CodeGenOpts.OptimizationLevel == 0;
1752   // We can't add optnone in the following cases, it won't pass the verifier.
1753   ShouldAddOptNone &= !D->hasAttr<MinSizeAttr>();
1754   ShouldAddOptNone &= !D->hasAttr<AlwaysInlineAttr>();
1755 
1756   // Add optnone, but do so only if the function isn't always_inline.
1757   if ((ShouldAddOptNone || D->hasAttr<OptimizeNoneAttr>()) &&
1758       !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) {
1759     B.addAttribute(llvm::Attribute::OptimizeNone);
1760 
1761     // OptimizeNone implies noinline; we should not be inlining such functions.
1762     B.addAttribute(llvm::Attribute::NoInline);
1763 
1764     // We still need to handle naked functions even though optnone subsumes
1765     // much of their semantics.
1766     if (D->hasAttr<NakedAttr>())
1767       B.addAttribute(llvm::Attribute::Naked);
1768 
1769     // OptimizeNone wins over OptimizeForSize and MinSize.
1770     F->removeFnAttr(llvm::Attribute::OptimizeForSize);
1771     F->removeFnAttr(llvm::Attribute::MinSize);
1772   } else if (D->hasAttr<NakedAttr>()) {
1773     // Naked implies noinline: we should not be inlining such functions.
1774     B.addAttribute(llvm::Attribute::Naked);
1775     B.addAttribute(llvm::Attribute::NoInline);
1776   } else if (D->hasAttr<NoDuplicateAttr>()) {
1777     B.addAttribute(llvm::Attribute::NoDuplicate);
1778   } else if (D->hasAttr<NoInlineAttr>() && !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) {
1779     // Add noinline if the function isn't always_inline.
1780     B.addAttribute(llvm::Attribute::NoInline);
1781   } else if (D->hasAttr<AlwaysInlineAttr>() &&
1782              !F->hasFnAttribute(llvm::Attribute::NoInline)) {
1783     // (noinline wins over always_inline, and we can't specify both in IR)
1784     B.addAttribute(llvm::Attribute::AlwaysInline);
1785   } else if (CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining) {
1786     // If we're not inlining, then force everything that isn't always_inline to
1787     // carry an explicit noinline attribute.
1788     if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline))
1789       B.addAttribute(llvm::Attribute::NoInline);
1790   } else {
1791     // Otherwise, propagate the inline hint attribute and potentially use its
1792     // absence to mark things as noinline.
1793     if (auto *FD = dyn_cast<FunctionDecl>(D)) {
1794       // Search function and template pattern redeclarations for inline.
1795       auto CheckForInline = [](const FunctionDecl *FD) {
1796         auto CheckRedeclForInline = [](const FunctionDecl *Redecl) {
1797           return Redecl->isInlineSpecified();
1798         };
1799         if (any_of(FD->redecls(), CheckRedeclForInline))
1800           return true;
1801         const FunctionDecl *Pattern = FD->getTemplateInstantiationPattern();
1802         if (!Pattern)
1803           return false;
1804         return any_of(Pattern->redecls(), CheckRedeclForInline);
1805       };
1806       if (CheckForInline(FD)) {
1807         B.addAttribute(llvm::Attribute::InlineHint);
1808       } else if (CodeGenOpts.getInlining() ==
1809                      CodeGenOptions::OnlyHintInlining &&
1810                  !FD->isInlined() &&
1811                  !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) {
1812         B.addAttribute(llvm::Attribute::NoInline);
1813       }
1814     }
1815   }
1816 
1817   // Add other optimization related attributes if we are optimizing this
1818   // function.
1819   if (!D->hasAttr<OptimizeNoneAttr>()) {
1820     if (D->hasAttr<ColdAttr>()) {
1821       if (!ShouldAddOptNone)
1822         B.addAttribute(llvm::Attribute::OptimizeForSize);
1823       B.addAttribute(llvm::Attribute::Cold);
1824     }
1825     if (D->hasAttr<HotAttr>())
1826       B.addAttribute(llvm::Attribute::Hot);
1827     if (D->hasAttr<MinSizeAttr>())
1828       B.addAttribute(llvm::Attribute::MinSize);
1829   }
1830 
1831   F->addAttributes(llvm::AttributeList::FunctionIndex, B);
1832 
1833   unsigned alignment = D->getMaxAlignment() / Context.getCharWidth();
1834   if (alignment)
1835     F->setAlignment(llvm::Align(alignment));
1836 
1837   if (!D->hasAttr<AlignedAttr>())
1838     if (LangOpts.FunctionAlignment)
1839       F->setAlignment(llvm::Align(1ull << LangOpts.FunctionAlignment));
1840 
1841   // Some C++ ABIs require 2-byte alignment for member functions, in order to
1842   // reserve a bit for differentiating between virtual and non-virtual member
1843   // functions. If the current target's C++ ABI requires this and this is a
1844   // member function, set its alignment accordingly.
1845   if (getTarget().getCXXABI().areMemberFunctionsAligned()) {
1846     if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D))
1847       F->setAlignment(llvm::Align(2));
1848   }
1849 
1850   // In the cross-dso CFI mode with canonical jump tables, we want !type
1851   // attributes on definitions only.
1852   if (CodeGenOpts.SanitizeCfiCrossDso &&
1853       CodeGenOpts.SanitizeCfiCanonicalJumpTables) {
1854     if (auto *FD = dyn_cast<FunctionDecl>(D)) {
1855       // Skip available_externally functions. They won't be codegen'ed in the
1856       // current module anyway.
1857       if (getContext().GetGVALinkageForFunction(FD) != GVA_AvailableExternally)
1858         CreateFunctionTypeMetadataForIcall(FD, F);
1859     }
1860   }
1861 
1862   // Emit type metadata on member functions for member function pointer checks.
1863   // These are only ever necessary on definitions; we're guaranteed that the
1864   // definition will be present in the LTO unit as a result of LTO visibility.
1865   auto *MD = dyn_cast<CXXMethodDecl>(D);
1866   if (MD && requiresMemberFunctionPointerTypeMetadata(*this, MD)) {
1867     for (const CXXRecordDecl *Base : getMostBaseClasses(MD->getParent())) {
1868       llvm::Metadata *Id =
1869           CreateMetadataIdentifierForType(Context.getMemberPointerType(
1870               MD->getType(), Context.getRecordType(Base).getTypePtr()));
1871       F->addTypeMetadata(0, Id);
1872     }
1873   }
1874 }
1875 
1876 void CodeGenModule::setLLVMFunctionFEnvAttributes(const FunctionDecl *D,
1877                                                   llvm::Function *F) {
1878   if (D->hasAttr<StrictFPAttr>()) {
1879     llvm::AttrBuilder FuncAttrs;
1880     FuncAttrs.addAttribute("strictfp");
1881     F->addAttributes(llvm::AttributeList::FunctionIndex, FuncAttrs);
1882   }
1883 }
1884 
1885 void CodeGenModule::SetCommonAttributes(GlobalDecl GD, llvm::GlobalValue *GV) {
1886   const Decl *D = GD.getDecl();
1887   if (dyn_cast_or_null<NamedDecl>(D))
1888     setGVProperties(GV, GD);
1889   else
1890     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
1891 
1892   if (D && D->hasAttr<UsedAttr>())
1893     addUsedOrCompilerUsedGlobal(GV);
1894 
1895   if (CodeGenOpts.KeepStaticConsts && D && isa<VarDecl>(D)) {
1896     const auto *VD = cast<VarDecl>(D);
1897     if (VD->getType().isConstQualified() &&
1898         VD->getStorageDuration() == SD_Static)
1899       addUsedOrCompilerUsedGlobal(GV);
1900   }
1901 }
1902 
1903 bool CodeGenModule::GetCPUAndFeaturesAttributes(GlobalDecl GD,
1904                                                 llvm::AttrBuilder &Attrs) {
1905   // Add target-cpu and target-features attributes to functions. If
1906   // we have a decl for the function and it has a target attribute then
1907   // parse that and add it to the feature set.
1908   StringRef TargetCPU = getTarget().getTargetOpts().CPU;
1909   StringRef TuneCPU = getTarget().getTargetOpts().TuneCPU;
1910   std::vector<std::string> Features;
1911   const auto *FD = dyn_cast_or_null<FunctionDecl>(GD.getDecl());
1912   FD = FD ? FD->getMostRecentDecl() : FD;
1913   const auto *TD = FD ? FD->getAttr<TargetAttr>() : nullptr;
1914   const auto *SD = FD ? FD->getAttr<CPUSpecificAttr>() : nullptr;
1915   bool AddedAttr = false;
1916   if (TD || SD) {
1917     llvm::StringMap<bool> FeatureMap;
1918     getContext().getFunctionFeatureMap(FeatureMap, GD);
1919 
1920     // Produce the canonical string for this set of features.
1921     for (const llvm::StringMap<bool>::value_type &Entry : FeatureMap)
1922       Features.push_back((Entry.getValue() ? "+" : "-") + Entry.getKey().str());
1923 
1924     // Now add the target-cpu and target-features to the function.
1925     // While we populated the feature map above, we still need to
1926     // get and parse the target attribute so we can get the cpu for
1927     // the function.
1928     if (TD) {
1929       ParsedTargetAttr ParsedAttr = TD->parse();
1930       if (!ParsedAttr.Architecture.empty() &&
1931           getTarget().isValidCPUName(ParsedAttr.Architecture)) {
1932         TargetCPU = ParsedAttr.Architecture;
1933         TuneCPU = ""; // Clear the tune CPU.
1934       }
1935       if (!ParsedAttr.Tune.empty() &&
1936           getTarget().isValidCPUName(ParsedAttr.Tune))
1937         TuneCPU = ParsedAttr.Tune;
1938     }
1939   } else {
1940     // Otherwise just add the existing target cpu and target features to the
1941     // function.
1942     Features = getTarget().getTargetOpts().Features;
1943   }
1944 
1945   if (!TargetCPU.empty()) {
1946     Attrs.addAttribute("target-cpu", TargetCPU);
1947     AddedAttr = true;
1948   }
1949   if (!TuneCPU.empty()) {
1950     Attrs.addAttribute("tune-cpu", TuneCPU);
1951     AddedAttr = true;
1952   }
1953   if (!Features.empty()) {
1954     llvm::sort(Features);
1955     Attrs.addAttribute("target-features", llvm::join(Features, ","));
1956     AddedAttr = true;
1957   }
1958 
1959   return AddedAttr;
1960 }
1961 
1962 void CodeGenModule::setNonAliasAttributes(GlobalDecl GD,
1963                                           llvm::GlobalObject *GO) {
1964   const Decl *D = GD.getDecl();
1965   SetCommonAttributes(GD, GO);
1966 
1967   if (D) {
1968     if (auto *GV = dyn_cast<llvm::GlobalVariable>(GO)) {
1969       if (D->hasAttr<RetainAttr>())
1970         addUsedGlobal(GV);
1971       if (auto *SA = D->getAttr<PragmaClangBSSSectionAttr>())
1972         GV->addAttribute("bss-section", SA->getName());
1973       if (auto *SA = D->getAttr<PragmaClangDataSectionAttr>())
1974         GV->addAttribute("data-section", SA->getName());
1975       if (auto *SA = D->getAttr<PragmaClangRodataSectionAttr>())
1976         GV->addAttribute("rodata-section", SA->getName());
1977       if (auto *SA = D->getAttr<PragmaClangRelroSectionAttr>())
1978         GV->addAttribute("relro-section", SA->getName());
1979     }
1980 
1981     if (auto *F = dyn_cast<llvm::Function>(GO)) {
1982       if (D->hasAttr<RetainAttr>())
1983         addUsedGlobal(F);
1984       if (auto *SA = D->getAttr<PragmaClangTextSectionAttr>())
1985         if (!D->getAttr<SectionAttr>())
1986           F->addFnAttr("implicit-section-name", SA->getName());
1987 
1988       llvm::AttrBuilder Attrs;
1989       if (GetCPUAndFeaturesAttributes(GD, Attrs)) {
1990         // We know that GetCPUAndFeaturesAttributes will always have the
1991         // newest set, since it has the newest possible FunctionDecl, so the
1992         // new ones should replace the old.
1993         llvm::AttrBuilder RemoveAttrs;
1994         RemoveAttrs.addAttribute("target-cpu");
1995         RemoveAttrs.addAttribute("target-features");
1996         RemoveAttrs.addAttribute("tune-cpu");
1997         F->removeAttributes(llvm::AttributeList::FunctionIndex, RemoveAttrs);
1998         F->addAttributes(llvm::AttributeList::FunctionIndex, Attrs);
1999       }
2000     }
2001 
2002     if (const auto *CSA = D->getAttr<CodeSegAttr>())
2003       GO->setSection(CSA->getName());
2004     else if (const auto *SA = D->getAttr<SectionAttr>())
2005       GO->setSection(SA->getName());
2006   }
2007 
2008   getTargetCodeGenInfo().setTargetAttributes(D, GO, *this);
2009 }
2010 
2011 void CodeGenModule::SetInternalFunctionAttributes(GlobalDecl GD,
2012                                                   llvm::Function *F,
2013                                                   const CGFunctionInfo &FI) {
2014   const Decl *D = GD.getDecl();
2015   SetLLVMFunctionAttributes(GD, FI, F, /*IsThunk=*/false);
2016   SetLLVMFunctionAttributesForDefinition(D, F);
2017 
2018   F->setLinkage(llvm::Function::InternalLinkage);
2019 
2020   setNonAliasAttributes(GD, F);
2021 }
2022 
2023 static void setLinkageForGV(llvm::GlobalValue *GV, const NamedDecl *ND) {
2024   // Set linkage and visibility in case we never see a definition.
2025   LinkageInfo LV = ND->getLinkageAndVisibility();
2026   // Don't set internal linkage on declarations.
2027   // "extern_weak" is overloaded in LLVM; we probably should have
2028   // separate linkage types for this.
2029   if (isExternallyVisible(LV.getLinkage()) &&
2030       (ND->hasAttr<WeakAttr>() || ND->isWeakImported()))
2031     GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage);
2032 }
2033 
2034 void CodeGenModule::CreateFunctionTypeMetadataForIcall(const FunctionDecl *FD,
2035                                                        llvm::Function *F) {
2036   // Only if we are checking indirect calls.
2037   if (!LangOpts.Sanitize.has(SanitizerKind::CFIICall))
2038     return;
2039 
2040   // Non-static class methods are handled via vtable or member function pointer
2041   // checks elsewhere.
2042   if (isa<CXXMethodDecl>(FD) && !cast<CXXMethodDecl>(FD)->isStatic())
2043     return;
2044 
2045   llvm::Metadata *MD = CreateMetadataIdentifierForType(FD->getType());
2046   F->addTypeMetadata(0, MD);
2047   F->addTypeMetadata(0, CreateMetadataIdentifierGeneralized(FD->getType()));
2048 
2049   // Emit a hash-based bit set entry for cross-DSO calls.
2050   if (CodeGenOpts.SanitizeCfiCrossDso)
2051     if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD))
2052       F->addTypeMetadata(0, llvm::ConstantAsMetadata::get(CrossDsoTypeId));
2053 }
2054 
2055 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD, llvm::Function *F,
2056                                           bool IsIncompleteFunction,
2057                                           bool IsThunk) {
2058 
2059   if (llvm::Intrinsic::ID IID = F->getIntrinsicID()) {
2060     // If this is an intrinsic function, set the function's attributes
2061     // to the intrinsic's attributes.
2062     F->setAttributes(llvm::Intrinsic::getAttributes(getLLVMContext(), IID));
2063     return;
2064   }
2065 
2066   const auto *FD = cast<FunctionDecl>(GD.getDecl());
2067 
2068   if (!IsIncompleteFunction)
2069     SetLLVMFunctionAttributes(GD, getTypes().arrangeGlobalDeclaration(GD), F,
2070                               IsThunk);
2071 
2072   // Add the Returned attribute for "this", except for iOS 5 and earlier
2073   // where substantial code, including the libstdc++ dylib, was compiled with
2074   // GCC and does not actually return "this".
2075   if (!IsThunk && getCXXABI().HasThisReturn(GD) &&
2076       !(getTriple().isiOS() && getTriple().isOSVersionLT(6))) {
2077     assert(!F->arg_empty() &&
2078            F->arg_begin()->getType()
2079              ->canLosslesslyBitCastTo(F->getReturnType()) &&
2080            "unexpected this return");
2081     F->addAttribute(1, llvm::Attribute::Returned);
2082   }
2083 
2084   // Only a few attributes are set on declarations; these may later be
2085   // overridden by a definition.
2086 
2087   setLinkageForGV(F, FD);
2088   setGVProperties(F, FD);
2089 
2090   // Setup target-specific attributes.
2091   if (!IsIncompleteFunction && F->isDeclaration())
2092     getTargetCodeGenInfo().setTargetAttributes(FD, F, *this);
2093 
2094   if (const auto *CSA = FD->getAttr<CodeSegAttr>())
2095     F->setSection(CSA->getName());
2096   else if (const auto *SA = FD->getAttr<SectionAttr>())
2097      F->setSection(SA->getName());
2098 
2099   // If we plan on emitting this inline builtin, we can't treat it as a builtin.
2100   if (FD->isInlineBuiltinDeclaration()) {
2101     const FunctionDecl *FDBody;
2102     bool HasBody = FD->hasBody(FDBody);
2103     (void)HasBody;
2104     assert(HasBody && "Inline builtin declarations should always have an "
2105                       "available body!");
2106     if (shouldEmitFunction(FDBody))
2107       F->addAttribute(llvm::AttributeList::FunctionIndex,
2108                       llvm::Attribute::NoBuiltin);
2109   }
2110 
2111   if (FD->isReplaceableGlobalAllocationFunction()) {
2112     // A replaceable global allocation function does not act like a builtin by
2113     // default, only if it is invoked by a new-expression or delete-expression.
2114     F->addAttribute(llvm::AttributeList::FunctionIndex,
2115                     llvm::Attribute::NoBuiltin);
2116   }
2117 
2118   if (isa<CXXConstructorDecl>(FD) || isa<CXXDestructorDecl>(FD))
2119     F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
2120   else if (const auto *MD = dyn_cast<CXXMethodDecl>(FD))
2121     if (MD->isVirtual())
2122       F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
2123 
2124   // Don't emit entries for function declarations in the cross-DSO mode. This
2125   // is handled with better precision by the receiving DSO. But if jump tables
2126   // are non-canonical then we need type metadata in order to produce the local
2127   // jump table.
2128   if (!CodeGenOpts.SanitizeCfiCrossDso ||
2129       !CodeGenOpts.SanitizeCfiCanonicalJumpTables)
2130     CreateFunctionTypeMetadataForIcall(FD, F);
2131 
2132   if (getLangOpts().OpenMP && FD->hasAttr<OMPDeclareSimdDeclAttr>())
2133     getOpenMPRuntime().emitDeclareSimdFunction(FD, F);
2134 
2135   if (const auto *CB = FD->getAttr<CallbackAttr>()) {
2136     // Annotate the callback behavior as metadata:
2137     //  - The callback callee (as argument number).
2138     //  - The callback payloads (as argument numbers).
2139     llvm::LLVMContext &Ctx = F->getContext();
2140     llvm::MDBuilder MDB(Ctx);
2141 
2142     // The payload indices are all but the first one in the encoding. The first
2143     // identifies the callback callee.
2144     int CalleeIdx = *CB->encoding_begin();
2145     ArrayRef<int> PayloadIndices(CB->encoding_begin() + 1, CB->encoding_end());
2146     F->addMetadata(llvm::LLVMContext::MD_callback,
2147                    *llvm::MDNode::get(Ctx, {MDB.createCallbackEncoding(
2148                                                CalleeIdx, PayloadIndices,
2149                                                /* VarArgsArePassed */ false)}));
2150   }
2151 }
2152 
2153 void CodeGenModule::addUsedGlobal(llvm::GlobalValue *GV) {
2154   assert((isa<llvm::Function>(GV) || !GV->isDeclaration()) &&
2155          "Only globals with definition can force usage.");
2156   LLVMUsed.emplace_back(GV);
2157 }
2158 
2159 void CodeGenModule::addCompilerUsedGlobal(llvm::GlobalValue *GV) {
2160   assert(!GV->isDeclaration() &&
2161          "Only globals with definition can force usage.");
2162   LLVMCompilerUsed.emplace_back(GV);
2163 }
2164 
2165 void CodeGenModule::addUsedOrCompilerUsedGlobal(llvm::GlobalValue *GV) {
2166   assert((isa<llvm::Function>(GV) || !GV->isDeclaration()) &&
2167          "Only globals with definition can force usage.");
2168   if (getTriple().isOSBinFormatELF())
2169     LLVMCompilerUsed.emplace_back(GV);
2170   else
2171     LLVMUsed.emplace_back(GV);
2172 }
2173 
2174 static void emitUsed(CodeGenModule &CGM, StringRef Name,
2175                      std::vector<llvm::WeakTrackingVH> &List) {
2176   // Don't create llvm.used if there is no need.
2177   if (List.empty())
2178     return;
2179 
2180   // Convert List to what ConstantArray needs.
2181   SmallVector<llvm::Constant*, 8> UsedArray;
2182   UsedArray.resize(List.size());
2183   for (unsigned i = 0, e = List.size(); i != e; ++i) {
2184     UsedArray[i] =
2185         llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(
2186             cast<llvm::Constant>(&*List[i]), CGM.Int8PtrTy);
2187   }
2188 
2189   if (UsedArray.empty())
2190     return;
2191   llvm::ArrayType *ATy = llvm::ArrayType::get(CGM.Int8PtrTy, UsedArray.size());
2192 
2193   auto *GV = new llvm::GlobalVariable(
2194       CGM.getModule(), ATy, false, llvm::GlobalValue::AppendingLinkage,
2195       llvm::ConstantArray::get(ATy, UsedArray), Name);
2196 
2197   GV->setSection("llvm.metadata");
2198 }
2199 
2200 void CodeGenModule::emitLLVMUsed() {
2201   emitUsed(*this, "llvm.used", LLVMUsed);
2202   emitUsed(*this, "llvm.compiler.used", LLVMCompilerUsed);
2203 }
2204 
2205 void CodeGenModule::AppendLinkerOptions(StringRef Opts) {
2206   auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opts);
2207   LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
2208 }
2209 
2210 void CodeGenModule::AddDetectMismatch(StringRef Name, StringRef Value) {
2211   llvm::SmallString<32> Opt;
2212   getTargetCodeGenInfo().getDetectMismatchOption(Name, Value, Opt);
2213   if (Opt.empty())
2214     return;
2215   auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt);
2216   LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
2217 }
2218 
2219 void CodeGenModule::AddDependentLib(StringRef Lib) {
2220   auto &C = getLLVMContext();
2221   if (getTarget().getTriple().isOSBinFormatELF()) {
2222       ELFDependentLibraries.push_back(
2223         llvm::MDNode::get(C, llvm::MDString::get(C, Lib)));
2224     return;
2225   }
2226 
2227   llvm::SmallString<24> Opt;
2228   getTargetCodeGenInfo().getDependentLibraryOption(Lib, Opt);
2229   auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt);
2230   LinkerOptionsMetadata.push_back(llvm::MDNode::get(C, MDOpts));
2231 }
2232 
2233 /// Add link options implied by the given module, including modules
2234 /// it depends on, using a postorder walk.
2235 static void addLinkOptionsPostorder(CodeGenModule &CGM, Module *Mod,
2236                                     SmallVectorImpl<llvm::MDNode *> &Metadata,
2237                                     llvm::SmallPtrSet<Module *, 16> &Visited) {
2238   // Import this module's parent.
2239   if (Mod->Parent && Visited.insert(Mod->Parent).second) {
2240     addLinkOptionsPostorder(CGM, Mod->Parent, Metadata, Visited);
2241   }
2242 
2243   // Import this module's dependencies.
2244   for (unsigned I = Mod->Imports.size(); I > 0; --I) {
2245     if (Visited.insert(Mod->Imports[I - 1]).second)
2246       addLinkOptionsPostorder(CGM, Mod->Imports[I-1], Metadata, Visited);
2247   }
2248 
2249   // Add linker options to link against the libraries/frameworks
2250   // described by this module.
2251   llvm::LLVMContext &Context = CGM.getLLVMContext();
2252   bool IsELF = CGM.getTarget().getTriple().isOSBinFormatELF();
2253 
2254   // For modules that use export_as for linking, use that module
2255   // name instead.
2256   if (Mod->UseExportAsModuleLinkName)
2257     return;
2258 
2259   for (unsigned I = Mod->LinkLibraries.size(); I > 0; --I) {
2260     // Link against a framework.  Frameworks are currently Darwin only, so we
2261     // don't to ask TargetCodeGenInfo for the spelling of the linker option.
2262     if (Mod->LinkLibraries[I-1].IsFramework) {
2263       llvm::Metadata *Args[2] = {
2264           llvm::MDString::get(Context, "-framework"),
2265           llvm::MDString::get(Context, Mod->LinkLibraries[I - 1].Library)};
2266 
2267       Metadata.push_back(llvm::MDNode::get(Context, Args));
2268       continue;
2269     }
2270 
2271     // Link against a library.
2272     if (IsELF) {
2273       llvm::Metadata *Args[2] = {
2274           llvm::MDString::get(Context, "lib"),
2275           llvm::MDString::get(Context, Mod->LinkLibraries[I - 1].Library),
2276       };
2277       Metadata.push_back(llvm::MDNode::get(Context, Args));
2278     } else {
2279       llvm::SmallString<24> Opt;
2280       CGM.getTargetCodeGenInfo().getDependentLibraryOption(
2281           Mod->LinkLibraries[I - 1].Library, Opt);
2282       auto *OptString = llvm::MDString::get(Context, Opt);
2283       Metadata.push_back(llvm::MDNode::get(Context, OptString));
2284     }
2285   }
2286 }
2287 
2288 void CodeGenModule::EmitModuleLinkOptions() {
2289   // Collect the set of all of the modules we want to visit to emit link
2290   // options, which is essentially the imported modules and all of their
2291   // non-explicit child modules.
2292   llvm::SetVector<clang::Module *> LinkModules;
2293   llvm::SmallPtrSet<clang::Module *, 16> Visited;
2294   SmallVector<clang::Module *, 16> Stack;
2295 
2296   // Seed the stack with imported modules.
2297   for (Module *M : ImportedModules) {
2298     // Do not add any link flags when an implementation TU of a module imports
2299     // a header of that same module.
2300     if (M->getTopLevelModuleName() == getLangOpts().CurrentModule &&
2301         !getLangOpts().isCompilingModule())
2302       continue;
2303     if (Visited.insert(M).second)
2304       Stack.push_back(M);
2305   }
2306 
2307   // Find all of the modules to import, making a little effort to prune
2308   // non-leaf modules.
2309   while (!Stack.empty()) {
2310     clang::Module *Mod = Stack.pop_back_val();
2311 
2312     bool AnyChildren = false;
2313 
2314     // Visit the submodules of this module.
2315     for (const auto &SM : Mod->submodules()) {
2316       // Skip explicit children; they need to be explicitly imported to be
2317       // linked against.
2318       if (SM->IsExplicit)
2319         continue;
2320 
2321       if (Visited.insert(SM).second) {
2322         Stack.push_back(SM);
2323         AnyChildren = true;
2324       }
2325     }
2326 
2327     // We didn't find any children, so add this module to the list of
2328     // modules to link against.
2329     if (!AnyChildren) {
2330       LinkModules.insert(Mod);
2331     }
2332   }
2333 
2334   // Add link options for all of the imported modules in reverse topological
2335   // order.  We don't do anything to try to order import link flags with respect
2336   // to linker options inserted by things like #pragma comment().
2337   SmallVector<llvm::MDNode *, 16> MetadataArgs;
2338   Visited.clear();
2339   for (Module *M : LinkModules)
2340     if (Visited.insert(M).second)
2341       addLinkOptionsPostorder(*this, M, MetadataArgs, Visited);
2342   std::reverse(MetadataArgs.begin(), MetadataArgs.end());
2343   LinkerOptionsMetadata.append(MetadataArgs.begin(), MetadataArgs.end());
2344 
2345   // Add the linker options metadata flag.
2346   auto *NMD = getModule().getOrInsertNamedMetadata("llvm.linker.options");
2347   for (auto *MD : LinkerOptionsMetadata)
2348     NMD->addOperand(MD);
2349 }
2350 
2351 void CodeGenModule::EmitDeferred() {
2352   // Emit deferred declare target declarations.
2353   if (getLangOpts().OpenMP && !getLangOpts().OpenMPSimd)
2354     getOpenMPRuntime().emitDeferredTargetDecls();
2355 
2356   // Emit code for any potentially referenced deferred decls.  Since a
2357   // previously unused static decl may become used during the generation of code
2358   // for a static function, iterate until no changes are made.
2359 
2360   if (!DeferredVTables.empty()) {
2361     EmitDeferredVTables();
2362 
2363     // Emitting a vtable doesn't directly cause more vtables to
2364     // become deferred, although it can cause functions to be
2365     // emitted that then need those vtables.
2366     assert(DeferredVTables.empty());
2367   }
2368 
2369   // Emit CUDA/HIP static device variables referenced by host code only.
2370   if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice)
2371     for (const auto *V : getContext().CUDADeviceVarODRUsedByHost)
2372       DeferredDeclsToEmit.push_back(V);
2373 
2374   // Stop if we're out of both deferred vtables and deferred declarations.
2375   if (DeferredDeclsToEmit.empty())
2376     return;
2377 
2378   // Grab the list of decls to emit. If EmitGlobalDefinition schedules more
2379   // work, it will not interfere with this.
2380   std::vector<GlobalDecl> CurDeclsToEmit;
2381   CurDeclsToEmit.swap(DeferredDeclsToEmit);
2382 
2383   for (GlobalDecl &D : CurDeclsToEmit) {
2384     // We should call GetAddrOfGlobal with IsForDefinition set to true in order
2385     // to get GlobalValue with exactly the type we need, not something that
2386     // might had been created for another decl with the same mangled name but
2387     // different type.
2388     llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>(
2389         GetAddrOfGlobal(D, ForDefinition));
2390 
2391     // In case of different address spaces, we may still get a cast, even with
2392     // IsForDefinition equal to true. Query mangled names table to get
2393     // GlobalValue.
2394     if (!GV)
2395       GV = GetGlobalValue(getMangledName(D));
2396 
2397     // Make sure GetGlobalValue returned non-null.
2398     assert(GV);
2399 
2400     // Check to see if we've already emitted this.  This is necessary
2401     // for a couple of reasons: first, decls can end up in the
2402     // deferred-decls queue multiple times, and second, decls can end
2403     // up with definitions in unusual ways (e.g. by an extern inline
2404     // function acquiring a strong function redefinition).  Just
2405     // ignore these cases.
2406     if (!GV->isDeclaration())
2407       continue;
2408 
2409     // If this is OpenMP, check if it is legal to emit this global normally.
2410     if (LangOpts.OpenMP && OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(D))
2411       continue;
2412 
2413     // Otherwise, emit the definition and move on to the next one.
2414     EmitGlobalDefinition(D, GV);
2415 
2416     // If we found out that we need to emit more decls, do that recursively.
2417     // This has the advantage that the decls are emitted in a DFS and related
2418     // ones are close together, which is convenient for testing.
2419     if (!DeferredVTables.empty() || !DeferredDeclsToEmit.empty()) {
2420       EmitDeferred();
2421       assert(DeferredVTables.empty() && DeferredDeclsToEmit.empty());
2422     }
2423   }
2424 }
2425 
2426 void CodeGenModule::EmitVTablesOpportunistically() {
2427   // Try to emit external vtables as available_externally if they have emitted
2428   // all inlined virtual functions.  It runs after EmitDeferred() and therefore
2429   // is not allowed to create new references to things that need to be emitted
2430   // lazily. Note that it also uses fact that we eagerly emitting RTTI.
2431 
2432   assert((OpportunisticVTables.empty() || shouldOpportunisticallyEmitVTables())
2433          && "Only emit opportunistic vtables with optimizations");
2434 
2435   for (const CXXRecordDecl *RD : OpportunisticVTables) {
2436     assert(getVTables().isVTableExternal(RD) &&
2437            "This queue should only contain external vtables");
2438     if (getCXXABI().canSpeculativelyEmitVTable(RD))
2439       VTables.GenerateClassData(RD);
2440   }
2441   OpportunisticVTables.clear();
2442 }
2443 
2444 void CodeGenModule::EmitGlobalAnnotations() {
2445   if (Annotations.empty())
2446     return;
2447 
2448   // Create a new global variable for the ConstantStruct in the Module.
2449   llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get(
2450     Annotations[0]->getType(), Annotations.size()), Annotations);
2451   auto *gv = new llvm::GlobalVariable(getModule(), Array->getType(), false,
2452                                       llvm::GlobalValue::AppendingLinkage,
2453                                       Array, "llvm.global.annotations");
2454   gv->setSection(AnnotationSection);
2455 }
2456 
2457 llvm::Constant *CodeGenModule::EmitAnnotationString(StringRef Str) {
2458   llvm::Constant *&AStr = AnnotationStrings[Str];
2459   if (AStr)
2460     return AStr;
2461 
2462   // Not found yet, create a new global.
2463   llvm::Constant *s = llvm::ConstantDataArray::getString(getLLVMContext(), Str);
2464   auto *gv =
2465       new llvm::GlobalVariable(getModule(), s->getType(), true,
2466                                llvm::GlobalValue::PrivateLinkage, s, ".str");
2467   gv->setSection(AnnotationSection);
2468   gv->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
2469   AStr = gv;
2470   return gv;
2471 }
2472 
2473 llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) {
2474   SourceManager &SM = getContext().getSourceManager();
2475   PresumedLoc PLoc = SM.getPresumedLoc(Loc);
2476   if (PLoc.isValid())
2477     return EmitAnnotationString(PLoc.getFilename());
2478   return EmitAnnotationString(SM.getBufferName(Loc));
2479 }
2480 
2481 llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) {
2482   SourceManager &SM = getContext().getSourceManager();
2483   PresumedLoc PLoc = SM.getPresumedLoc(L);
2484   unsigned LineNo = PLoc.isValid() ? PLoc.getLine() :
2485     SM.getExpansionLineNumber(L);
2486   return llvm::ConstantInt::get(Int32Ty, LineNo);
2487 }
2488 
2489 llvm::Constant *CodeGenModule::EmitAnnotationArgs(const AnnotateAttr *Attr) {
2490   ArrayRef<Expr *> Exprs = {Attr->args_begin(), Attr->args_size()};
2491   if (Exprs.empty())
2492     return llvm::ConstantPointerNull::get(Int8PtrTy);
2493 
2494   llvm::FoldingSetNodeID ID;
2495   for (Expr *E : Exprs) {
2496     ID.Add(cast<clang::ConstantExpr>(E)->getAPValueResult());
2497   }
2498   llvm::Constant *&Lookup = AnnotationArgs[ID.ComputeHash()];
2499   if (Lookup)
2500     return Lookup;
2501 
2502   llvm::SmallVector<llvm::Constant *, 4> LLVMArgs;
2503   LLVMArgs.reserve(Exprs.size());
2504   ConstantEmitter ConstEmiter(*this);
2505   llvm::transform(Exprs, std::back_inserter(LLVMArgs), [&](const Expr *E) {
2506     const auto *CE = cast<clang::ConstantExpr>(E);
2507     return ConstEmiter.emitAbstract(CE->getBeginLoc(), CE->getAPValueResult(),
2508                                     CE->getType());
2509   });
2510   auto *Struct = llvm::ConstantStruct::getAnon(LLVMArgs);
2511   auto *GV = new llvm::GlobalVariable(getModule(), Struct->getType(), true,
2512                                       llvm::GlobalValue::PrivateLinkage, Struct,
2513                                       ".args");
2514   GV->setSection(AnnotationSection);
2515   GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
2516   auto *Bitcasted = llvm::ConstantExpr::getBitCast(GV, Int8PtrTy);
2517 
2518   Lookup = Bitcasted;
2519   return Bitcasted;
2520 }
2521 
2522 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV,
2523                                                 const AnnotateAttr *AA,
2524                                                 SourceLocation L) {
2525   // Get the globals for file name, annotation, and the line number.
2526   llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()),
2527                  *UnitGV = EmitAnnotationUnit(L),
2528                  *LineNoCst = EmitAnnotationLineNo(L),
2529                  *Args = EmitAnnotationArgs(AA);
2530 
2531   llvm::Constant *ASZeroGV = GV;
2532   if (GV->getAddressSpace() != 0) {
2533     ASZeroGV = llvm::ConstantExpr::getAddrSpaceCast(
2534                    GV, GV->getValueType()->getPointerTo(0));
2535   }
2536 
2537   // Create the ConstantStruct for the global annotation.
2538   llvm::Constant *Fields[] = {
2539       llvm::ConstantExpr::getBitCast(ASZeroGV, Int8PtrTy),
2540       llvm::ConstantExpr::getBitCast(AnnoGV, Int8PtrTy),
2541       llvm::ConstantExpr::getBitCast(UnitGV, Int8PtrTy),
2542       LineNoCst,
2543       Args,
2544   };
2545   return llvm::ConstantStruct::getAnon(Fields);
2546 }
2547 
2548 void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D,
2549                                          llvm::GlobalValue *GV) {
2550   assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
2551   // Get the struct elements for these annotations.
2552   for (const auto *I : D->specific_attrs<AnnotateAttr>())
2553     Annotations.push_back(EmitAnnotateAttr(GV, I, D->getLocation()));
2554 }
2555 
2556 bool CodeGenModule::isInNoSanitizeList(SanitizerMask Kind, llvm::Function *Fn,
2557                                        SourceLocation Loc) const {
2558   const auto &NoSanitizeL = getContext().getNoSanitizeList();
2559   // NoSanitize by function name.
2560   if (NoSanitizeL.containsFunction(Kind, Fn->getName()))
2561     return true;
2562   // NoSanitize by location.
2563   if (Loc.isValid())
2564     return NoSanitizeL.containsLocation(Kind, Loc);
2565   // If location is unknown, this may be a compiler-generated function. Assume
2566   // it's located in the main file.
2567   auto &SM = Context.getSourceManager();
2568   if (const auto *MainFile = SM.getFileEntryForID(SM.getMainFileID())) {
2569     return NoSanitizeL.containsFile(Kind, MainFile->getName());
2570   }
2571   return false;
2572 }
2573 
2574 bool CodeGenModule::isInNoSanitizeList(llvm::GlobalVariable *GV,
2575                                        SourceLocation Loc, QualType Ty,
2576                                        StringRef Category) const {
2577   // For now globals can be ignored only in ASan and KASan.
2578   const SanitizerMask EnabledAsanMask =
2579       LangOpts.Sanitize.Mask &
2580       (SanitizerKind::Address | SanitizerKind::KernelAddress |
2581        SanitizerKind::HWAddress | SanitizerKind::KernelHWAddress |
2582        SanitizerKind::MemTag);
2583   if (!EnabledAsanMask)
2584     return false;
2585   const auto &NoSanitizeL = getContext().getNoSanitizeList();
2586   if (NoSanitizeL.containsGlobal(EnabledAsanMask, GV->getName(), Category))
2587     return true;
2588   if (NoSanitizeL.containsLocation(EnabledAsanMask, Loc, Category))
2589     return true;
2590   // Check global type.
2591   if (!Ty.isNull()) {
2592     // Drill down the array types: if global variable of a fixed type is
2593     // not sanitized, we also don't instrument arrays of them.
2594     while (auto AT = dyn_cast<ArrayType>(Ty.getTypePtr()))
2595       Ty = AT->getElementType();
2596     Ty = Ty.getCanonicalType().getUnqualifiedType();
2597     // Only record types (classes, structs etc.) are ignored.
2598     if (Ty->isRecordType()) {
2599       std::string TypeStr = Ty.getAsString(getContext().getPrintingPolicy());
2600       if (NoSanitizeL.containsType(EnabledAsanMask, TypeStr, Category))
2601         return true;
2602     }
2603   }
2604   return false;
2605 }
2606 
2607 bool CodeGenModule::imbueXRayAttrs(llvm::Function *Fn, SourceLocation Loc,
2608                                    StringRef Category) const {
2609   const auto &XRayFilter = getContext().getXRayFilter();
2610   using ImbueAttr = XRayFunctionFilter::ImbueAttribute;
2611   auto Attr = ImbueAttr::NONE;
2612   if (Loc.isValid())
2613     Attr = XRayFilter.shouldImbueLocation(Loc, Category);
2614   if (Attr == ImbueAttr::NONE)
2615     Attr = XRayFilter.shouldImbueFunction(Fn->getName());
2616   switch (Attr) {
2617   case ImbueAttr::NONE:
2618     return false;
2619   case ImbueAttr::ALWAYS:
2620     Fn->addFnAttr("function-instrument", "xray-always");
2621     break;
2622   case ImbueAttr::ALWAYS_ARG1:
2623     Fn->addFnAttr("function-instrument", "xray-always");
2624     Fn->addFnAttr("xray-log-args", "1");
2625     break;
2626   case ImbueAttr::NEVER:
2627     Fn->addFnAttr("function-instrument", "xray-never");
2628     break;
2629   }
2630   return true;
2631 }
2632 
2633 bool CodeGenModule::isProfileInstrExcluded(llvm::Function *Fn,
2634                                            SourceLocation Loc) const {
2635   const auto &ProfileList = getContext().getProfileList();
2636   // If the profile list is empty, then instrument everything.
2637   if (ProfileList.isEmpty())
2638     return false;
2639   CodeGenOptions::ProfileInstrKind Kind = getCodeGenOpts().getProfileInstr();
2640   // First, check the function name.
2641   Optional<bool> V = ProfileList.isFunctionExcluded(Fn->getName(), Kind);
2642   if (V.hasValue())
2643     return *V;
2644   // Next, check the source location.
2645   if (Loc.isValid()) {
2646     Optional<bool> V = ProfileList.isLocationExcluded(Loc, Kind);
2647     if (V.hasValue())
2648       return *V;
2649   }
2650   // If location is unknown, this may be a compiler-generated function. Assume
2651   // it's located in the main file.
2652   auto &SM = Context.getSourceManager();
2653   if (const auto *MainFile = SM.getFileEntryForID(SM.getMainFileID())) {
2654     Optional<bool> V = ProfileList.isFileExcluded(MainFile->getName(), Kind);
2655     if (V.hasValue())
2656       return *V;
2657   }
2658   return ProfileList.getDefault();
2659 }
2660 
2661 bool CodeGenModule::MustBeEmitted(const ValueDecl *Global) {
2662   // Never defer when EmitAllDecls is specified.
2663   if (LangOpts.EmitAllDecls)
2664     return true;
2665 
2666   if (CodeGenOpts.KeepStaticConsts) {
2667     const auto *VD = dyn_cast<VarDecl>(Global);
2668     if (VD && VD->getType().isConstQualified() &&
2669         VD->getStorageDuration() == SD_Static)
2670       return true;
2671   }
2672 
2673   return getContext().DeclMustBeEmitted(Global);
2674 }
2675 
2676 bool CodeGenModule::MayBeEmittedEagerly(const ValueDecl *Global) {
2677   // In OpenMP 5.0 variables and function may be marked as
2678   // device_type(host/nohost) and we should not emit them eagerly unless we sure
2679   // that they must be emitted on the host/device. To be sure we need to have
2680   // seen a declare target with an explicit mentioning of the function, we know
2681   // we have if the level of the declare target attribute is -1. Note that we
2682   // check somewhere else if we should emit this at all.
2683   if (LangOpts.OpenMP >= 50 && !LangOpts.OpenMPSimd) {
2684     llvm::Optional<OMPDeclareTargetDeclAttr *> ActiveAttr =
2685         OMPDeclareTargetDeclAttr::getActiveAttr(Global);
2686     if (!ActiveAttr || (*ActiveAttr)->getLevel() != (unsigned)-1)
2687       return false;
2688   }
2689 
2690   if (const auto *FD = dyn_cast<FunctionDecl>(Global)) {
2691     if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
2692       // Implicit template instantiations may change linkage if they are later
2693       // explicitly instantiated, so they should not be emitted eagerly.
2694       return false;
2695   }
2696   if (const auto *VD = dyn_cast<VarDecl>(Global))
2697     if (Context.getInlineVariableDefinitionKind(VD) ==
2698         ASTContext::InlineVariableDefinitionKind::WeakUnknown)
2699       // A definition of an inline constexpr static data member may change
2700       // linkage later if it's redeclared outside the class.
2701       return false;
2702   // If OpenMP is enabled and threadprivates must be generated like TLS, delay
2703   // codegen for global variables, because they may be marked as threadprivate.
2704   if (LangOpts.OpenMP && LangOpts.OpenMPUseTLS &&
2705       getContext().getTargetInfo().isTLSSupported() && isa<VarDecl>(Global) &&
2706       !isTypeConstant(Global->getType(), false) &&
2707       !OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(Global))
2708     return false;
2709 
2710   return true;
2711 }
2712 
2713 ConstantAddress CodeGenModule::GetAddrOfMSGuidDecl(const MSGuidDecl *GD) {
2714   StringRef Name = getMangledName(GD);
2715 
2716   // The UUID descriptor should be pointer aligned.
2717   CharUnits Alignment = CharUnits::fromQuantity(PointerAlignInBytes);
2718 
2719   // Look for an existing global.
2720   if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name))
2721     return ConstantAddress(GV, Alignment);
2722 
2723   ConstantEmitter Emitter(*this);
2724   llvm::Constant *Init;
2725 
2726   APValue &V = GD->getAsAPValue();
2727   if (!V.isAbsent()) {
2728     // If possible, emit the APValue version of the initializer. In particular,
2729     // this gets the type of the constant right.
2730     Init = Emitter.emitForInitializer(
2731         GD->getAsAPValue(), GD->getType().getAddressSpace(), GD->getType());
2732   } else {
2733     // As a fallback, directly construct the constant.
2734     // FIXME: This may get padding wrong under esoteric struct layout rules.
2735     // MSVC appears to create a complete type 'struct __s_GUID' that it
2736     // presumably uses to represent these constants.
2737     MSGuidDecl::Parts Parts = GD->getParts();
2738     llvm::Constant *Fields[4] = {
2739         llvm::ConstantInt::get(Int32Ty, Parts.Part1),
2740         llvm::ConstantInt::get(Int16Ty, Parts.Part2),
2741         llvm::ConstantInt::get(Int16Ty, Parts.Part3),
2742         llvm::ConstantDataArray::getRaw(
2743             StringRef(reinterpret_cast<char *>(Parts.Part4And5), 8), 8,
2744             Int8Ty)};
2745     Init = llvm::ConstantStruct::getAnon(Fields);
2746   }
2747 
2748   auto *GV = new llvm::GlobalVariable(
2749       getModule(), Init->getType(),
2750       /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name);
2751   if (supportsCOMDAT())
2752     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
2753   setDSOLocal(GV);
2754 
2755   llvm::Constant *Addr = GV;
2756   if (!V.isAbsent()) {
2757     Emitter.finalize(GV);
2758   } else {
2759     llvm::Type *Ty = getTypes().ConvertTypeForMem(GD->getType());
2760     Addr = llvm::ConstantExpr::getBitCast(
2761         GV, Ty->getPointerTo(GV->getAddressSpace()));
2762   }
2763   return ConstantAddress(Addr, Alignment);
2764 }
2765 
2766 ConstantAddress CodeGenModule::GetAddrOfTemplateParamObject(
2767     const TemplateParamObjectDecl *TPO) {
2768   StringRef Name = getMangledName(TPO);
2769   CharUnits Alignment = getNaturalTypeAlignment(TPO->getType());
2770 
2771   if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name))
2772     return ConstantAddress(GV, Alignment);
2773 
2774   ConstantEmitter Emitter(*this);
2775   llvm::Constant *Init = Emitter.emitForInitializer(
2776         TPO->getValue(), TPO->getType().getAddressSpace(), TPO->getType());
2777 
2778   if (!Init) {
2779     ErrorUnsupported(TPO, "template parameter object");
2780     return ConstantAddress::invalid();
2781   }
2782 
2783   auto *GV = new llvm::GlobalVariable(
2784       getModule(), Init->getType(),
2785       /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name);
2786   if (supportsCOMDAT())
2787     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
2788   Emitter.finalize(GV);
2789 
2790   return ConstantAddress(GV, Alignment);
2791 }
2792 
2793 ConstantAddress CodeGenModule::GetWeakRefReference(const ValueDecl *VD) {
2794   const AliasAttr *AA = VD->getAttr<AliasAttr>();
2795   assert(AA && "No alias?");
2796 
2797   CharUnits Alignment = getContext().getDeclAlign(VD);
2798   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType());
2799 
2800   // See if there is already something with the target's name in the module.
2801   llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee());
2802   if (Entry) {
2803     unsigned AS = getContext().getTargetAddressSpace(VD->getType());
2804     auto Ptr = llvm::ConstantExpr::getBitCast(Entry, DeclTy->getPointerTo(AS));
2805     return ConstantAddress(Ptr, Alignment);
2806   }
2807 
2808   llvm::Constant *Aliasee;
2809   if (isa<llvm::FunctionType>(DeclTy))
2810     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy,
2811                                       GlobalDecl(cast<FunctionDecl>(VD)),
2812                                       /*ForVTable=*/false);
2813   else
2814     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), DeclTy, 0, nullptr);
2815 
2816   auto *F = cast<llvm::GlobalValue>(Aliasee);
2817   F->setLinkage(llvm::Function::ExternalWeakLinkage);
2818   WeakRefReferences.insert(F);
2819 
2820   return ConstantAddress(Aliasee, Alignment);
2821 }
2822 
2823 void CodeGenModule::EmitGlobal(GlobalDecl GD) {
2824   const auto *Global = cast<ValueDecl>(GD.getDecl());
2825 
2826   // Weak references don't produce any output by themselves.
2827   if (Global->hasAttr<WeakRefAttr>())
2828     return;
2829 
2830   // If this is an alias definition (which otherwise looks like a declaration)
2831   // emit it now.
2832   if (Global->hasAttr<AliasAttr>())
2833     return EmitAliasDefinition(GD);
2834 
2835   // IFunc like an alias whose value is resolved at runtime by calling resolver.
2836   if (Global->hasAttr<IFuncAttr>())
2837     return emitIFuncDefinition(GD);
2838 
2839   // If this is a cpu_dispatch multiversion function, emit the resolver.
2840   if (Global->hasAttr<CPUDispatchAttr>())
2841     return emitCPUDispatchDefinition(GD);
2842 
2843   // If this is CUDA, be selective about which declarations we emit.
2844   if (LangOpts.CUDA) {
2845     if (LangOpts.CUDAIsDevice) {
2846       if (!Global->hasAttr<CUDADeviceAttr>() &&
2847           !Global->hasAttr<CUDAGlobalAttr>() &&
2848           !Global->hasAttr<CUDAConstantAttr>() &&
2849           !Global->hasAttr<CUDASharedAttr>() &&
2850           !Global->getType()->isCUDADeviceBuiltinSurfaceType() &&
2851           !Global->getType()->isCUDADeviceBuiltinTextureType())
2852         return;
2853     } else {
2854       // We need to emit host-side 'shadows' for all global
2855       // device-side variables because the CUDA runtime needs their
2856       // size and host-side address in order to provide access to
2857       // their device-side incarnations.
2858 
2859       // So device-only functions are the only things we skip.
2860       if (isa<FunctionDecl>(Global) && !Global->hasAttr<CUDAHostAttr>() &&
2861           Global->hasAttr<CUDADeviceAttr>())
2862         return;
2863 
2864       assert((isa<FunctionDecl>(Global) || isa<VarDecl>(Global)) &&
2865              "Expected Variable or Function");
2866     }
2867   }
2868 
2869   if (LangOpts.OpenMP) {
2870     // If this is OpenMP, check if it is legal to emit this global normally.
2871     if (OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(GD))
2872       return;
2873     if (auto *DRD = dyn_cast<OMPDeclareReductionDecl>(Global)) {
2874       if (MustBeEmitted(Global))
2875         EmitOMPDeclareReduction(DRD);
2876       return;
2877     } else if (auto *DMD = dyn_cast<OMPDeclareMapperDecl>(Global)) {
2878       if (MustBeEmitted(Global))
2879         EmitOMPDeclareMapper(DMD);
2880       return;
2881     }
2882   }
2883 
2884   // Ignore declarations, they will be emitted on their first use.
2885   if (const auto *FD = dyn_cast<FunctionDecl>(Global)) {
2886     // Forward declarations are emitted lazily on first use.
2887     if (!FD->doesThisDeclarationHaveABody()) {
2888       if (!FD->doesDeclarationForceExternallyVisibleDefinition())
2889         return;
2890 
2891       StringRef MangledName = getMangledName(GD);
2892 
2893       // Compute the function info and LLVM type.
2894       const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
2895       llvm::Type *Ty = getTypes().GetFunctionType(FI);
2896 
2897       GetOrCreateLLVMFunction(MangledName, Ty, GD, /*ForVTable=*/false,
2898                               /*DontDefer=*/false);
2899       return;
2900     }
2901   } else {
2902     const auto *VD = cast<VarDecl>(Global);
2903     assert(VD->isFileVarDecl() && "Cannot emit local var decl as global.");
2904     if (VD->isThisDeclarationADefinition() != VarDecl::Definition &&
2905         !Context.isMSStaticDataMemberInlineDefinition(VD)) {
2906       if (LangOpts.OpenMP) {
2907         // Emit declaration of the must-be-emitted declare target variable.
2908         if (llvm::Optional<OMPDeclareTargetDeclAttr::MapTypeTy> Res =
2909                 OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD)) {
2910           bool UnifiedMemoryEnabled =
2911               getOpenMPRuntime().hasRequiresUnifiedSharedMemory();
2912           if (*Res == OMPDeclareTargetDeclAttr::MT_To &&
2913               !UnifiedMemoryEnabled) {
2914             (void)GetAddrOfGlobalVar(VD);
2915           } else {
2916             assert(((*Res == OMPDeclareTargetDeclAttr::MT_Link) ||
2917                     (*Res == OMPDeclareTargetDeclAttr::MT_To &&
2918                      UnifiedMemoryEnabled)) &&
2919                    "Link clause or to clause with unified memory expected.");
2920             (void)getOpenMPRuntime().getAddrOfDeclareTargetVar(VD);
2921           }
2922 
2923           return;
2924         }
2925       }
2926       // If this declaration may have caused an inline variable definition to
2927       // change linkage, make sure that it's emitted.
2928       if (Context.getInlineVariableDefinitionKind(VD) ==
2929           ASTContext::InlineVariableDefinitionKind::Strong)
2930         GetAddrOfGlobalVar(VD);
2931       return;
2932     }
2933   }
2934 
2935   // Defer code generation to first use when possible, e.g. if this is an inline
2936   // function. If the global must always be emitted, do it eagerly if possible
2937   // to benefit from cache locality.
2938   if (MustBeEmitted(Global) && MayBeEmittedEagerly(Global)) {
2939     // Emit the definition if it can't be deferred.
2940     EmitGlobalDefinition(GD);
2941     return;
2942   }
2943 
2944   // If we're deferring emission of a C++ variable with an
2945   // initializer, remember the order in which it appeared in the file.
2946   if (getLangOpts().CPlusPlus && isa<VarDecl>(Global) &&
2947       cast<VarDecl>(Global)->hasInit()) {
2948     DelayedCXXInitPosition[Global] = CXXGlobalInits.size();
2949     CXXGlobalInits.push_back(nullptr);
2950   }
2951 
2952   StringRef MangledName = getMangledName(GD);
2953   if (GetGlobalValue(MangledName) != nullptr) {
2954     // The value has already been used and should therefore be emitted.
2955     addDeferredDeclToEmit(GD);
2956   } else if (MustBeEmitted(Global)) {
2957     // The value must be emitted, but cannot be emitted eagerly.
2958     assert(!MayBeEmittedEagerly(Global));
2959     addDeferredDeclToEmit(GD);
2960   } else {
2961     // Otherwise, remember that we saw a deferred decl with this name.  The
2962     // first use of the mangled name will cause it to move into
2963     // DeferredDeclsToEmit.
2964     DeferredDecls[MangledName] = GD;
2965   }
2966 }
2967 
2968 // Check if T is a class type with a destructor that's not dllimport.
2969 static bool HasNonDllImportDtor(QualType T) {
2970   if (const auto *RT = T->getBaseElementTypeUnsafe()->getAs<RecordType>())
2971     if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl()))
2972       if (RD->getDestructor() && !RD->getDestructor()->hasAttr<DLLImportAttr>())
2973         return true;
2974 
2975   return false;
2976 }
2977 
2978 namespace {
2979   struct FunctionIsDirectlyRecursive
2980       : public ConstStmtVisitor<FunctionIsDirectlyRecursive, bool> {
2981     const StringRef Name;
2982     const Builtin::Context &BI;
2983     FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C)
2984         : Name(N), BI(C) {}
2985 
2986     bool VisitCallExpr(const CallExpr *E) {
2987       const FunctionDecl *FD = E->getDirectCallee();
2988       if (!FD)
2989         return false;
2990       AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
2991       if (Attr && Name == Attr->getLabel())
2992         return true;
2993       unsigned BuiltinID = FD->getBuiltinID();
2994       if (!BuiltinID || !BI.isLibFunction(BuiltinID))
2995         return false;
2996       StringRef BuiltinName = BI.getName(BuiltinID);
2997       if (BuiltinName.startswith("__builtin_") &&
2998           Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) {
2999         return true;
3000       }
3001       return false;
3002     }
3003 
3004     bool VisitStmt(const Stmt *S) {
3005       for (const Stmt *Child : S->children())
3006         if (Child && this->Visit(Child))
3007           return true;
3008       return false;
3009     }
3010   };
3011 
3012   // Make sure we're not referencing non-imported vars or functions.
3013   struct DLLImportFunctionVisitor
3014       : public RecursiveASTVisitor<DLLImportFunctionVisitor> {
3015     bool SafeToInline = true;
3016 
3017     bool shouldVisitImplicitCode() const { return true; }
3018 
3019     bool VisitVarDecl(VarDecl *VD) {
3020       if (VD->getTLSKind()) {
3021         // A thread-local variable cannot be imported.
3022         SafeToInline = false;
3023         return SafeToInline;
3024       }
3025 
3026       // A variable definition might imply a destructor call.
3027       if (VD->isThisDeclarationADefinition())
3028         SafeToInline = !HasNonDllImportDtor(VD->getType());
3029 
3030       return SafeToInline;
3031     }
3032 
3033     bool VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) {
3034       if (const auto *D = E->getTemporary()->getDestructor())
3035         SafeToInline = D->hasAttr<DLLImportAttr>();
3036       return SafeToInline;
3037     }
3038 
3039     bool VisitDeclRefExpr(DeclRefExpr *E) {
3040       ValueDecl *VD = E->getDecl();
3041       if (isa<FunctionDecl>(VD))
3042         SafeToInline = VD->hasAttr<DLLImportAttr>();
3043       else if (VarDecl *V = dyn_cast<VarDecl>(VD))
3044         SafeToInline = !V->hasGlobalStorage() || V->hasAttr<DLLImportAttr>();
3045       return SafeToInline;
3046     }
3047 
3048     bool VisitCXXConstructExpr(CXXConstructExpr *E) {
3049       SafeToInline = E->getConstructor()->hasAttr<DLLImportAttr>();
3050       return SafeToInline;
3051     }
3052 
3053     bool VisitCXXMemberCallExpr(CXXMemberCallExpr *E) {
3054       CXXMethodDecl *M = E->getMethodDecl();
3055       if (!M) {
3056         // Call through a pointer to member function. This is safe to inline.
3057         SafeToInline = true;
3058       } else {
3059         SafeToInline = M->hasAttr<DLLImportAttr>();
3060       }
3061       return SafeToInline;
3062     }
3063 
3064     bool VisitCXXDeleteExpr(CXXDeleteExpr *E) {
3065       SafeToInline = E->getOperatorDelete()->hasAttr<DLLImportAttr>();
3066       return SafeToInline;
3067     }
3068 
3069     bool VisitCXXNewExpr(CXXNewExpr *E) {
3070       SafeToInline = E->getOperatorNew()->hasAttr<DLLImportAttr>();
3071       return SafeToInline;
3072     }
3073   };
3074 }
3075 
3076 // isTriviallyRecursive - Check if this function calls another
3077 // decl that, because of the asm attribute or the other decl being a builtin,
3078 // ends up pointing to itself.
3079 bool
3080 CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) {
3081   StringRef Name;
3082   if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) {
3083     // asm labels are a special kind of mangling we have to support.
3084     AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
3085     if (!Attr)
3086       return false;
3087     Name = Attr->getLabel();
3088   } else {
3089     Name = FD->getName();
3090   }
3091 
3092   FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo);
3093   const Stmt *Body = FD->getBody();
3094   return Body ? Walker.Visit(Body) : false;
3095 }
3096 
3097 bool CodeGenModule::shouldEmitFunction(GlobalDecl GD) {
3098   if (getFunctionLinkage(GD) != llvm::Function::AvailableExternallyLinkage)
3099     return true;
3100   const auto *F = cast<FunctionDecl>(GD.getDecl());
3101   if (CodeGenOpts.OptimizationLevel == 0 && !F->hasAttr<AlwaysInlineAttr>())
3102     return false;
3103 
3104   if (F->hasAttr<DLLImportAttr>() && !F->hasAttr<AlwaysInlineAttr>()) {
3105     // Check whether it would be safe to inline this dllimport function.
3106     DLLImportFunctionVisitor Visitor;
3107     Visitor.TraverseFunctionDecl(const_cast<FunctionDecl*>(F));
3108     if (!Visitor.SafeToInline)
3109       return false;
3110 
3111     if (const CXXDestructorDecl *Dtor = dyn_cast<CXXDestructorDecl>(F)) {
3112       // Implicit destructor invocations aren't captured in the AST, so the
3113       // check above can't see them. Check for them manually here.
3114       for (const Decl *Member : Dtor->getParent()->decls())
3115         if (isa<FieldDecl>(Member))
3116           if (HasNonDllImportDtor(cast<FieldDecl>(Member)->getType()))
3117             return false;
3118       for (const CXXBaseSpecifier &B : Dtor->getParent()->bases())
3119         if (HasNonDllImportDtor(B.getType()))
3120           return false;
3121     }
3122   }
3123 
3124   // PR9614. Avoid cases where the source code is lying to us. An available
3125   // externally function should have an equivalent function somewhere else,
3126   // but a function that calls itself through asm label/`__builtin_` trickery is
3127   // clearly not equivalent to the real implementation.
3128   // This happens in glibc's btowc and in some configure checks.
3129   return !isTriviallyRecursive(F);
3130 }
3131 
3132 bool CodeGenModule::shouldOpportunisticallyEmitVTables() {
3133   return CodeGenOpts.OptimizationLevel > 0;
3134 }
3135 
3136 void CodeGenModule::EmitMultiVersionFunctionDefinition(GlobalDecl GD,
3137                                                        llvm::GlobalValue *GV) {
3138   const auto *FD = cast<FunctionDecl>(GD.getDecl());
3139 
3140   if (FD->isCPUSpecificMultiVersion()) {
3141     auto *Spec = FD->getAttr<CPUSpecificAttr>();
3142     for (unsigned I = 0; I < Spec->cpus_size(); ++I)
3143       EmitGlobalFunctionDefinition(GD.getWithMultiVersionIndex(I), nullptr);
3144     // Requires multiple emits.
3145   } else
3146     EmitGlobalFunctionDefinition(GD, GV);
3147 }
3148 
3149 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD, llvm::GlobalValue *GV) {
3150   const auto *D = cast<ValueDecl>(GD.getDecl());
3151 
3152   PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(),
3153                                  Context.getSourceManager(),
3154                                  "Generating code for declaration");
3155 
3156   if (const auto *FD = dyn_cast<FunctionDecl>(D)) {
3157     // At -O0, don't generate IR for functions with available_externally
3158     // linkage.
3159     if (!shouldEmitFunction(GD))
3160       return;
3161 
3162     llvm::TimeTraceScope TimeScope("CodeGen Function", [&]() {
3163       std::string Name;
3164       llvm::raw_string_ostream OS(Name);
3165       FD->getNameForDiagnostic(OS, getContext().getPrintingPolicy(),
3166                                /*Qualified=*/true);
3167       return Name;
3168     });
3169 
3170     if (const auto *Method = dyn_cast<CXXMethodDecl>(D)) {
3171       // Make sure to emit the definition(s) before we emit the thunks.
3172       // This is necessary for the generation of certain thunks.
3173       if (isa<CXXConstructorDecl>(Method) || isa<CXXDestructorDecl>(Method))
3174         ABI->emitCXXStructor(GD);
3175       else if (FD->isMultiVersion())
3176         EmitMultiVersionFunctionDefinition(GD, GV);
3177       else
3178         EmitGlobalFunctionDefinition(GD, GV);
3179 
3180       if (Method->isVirtual())
3181         getVTables().EmitThunks(GD);
3182 
3183       return;
3184     }
3185 
3186     if (FD->isMultiVersion())
3187       return EmitMultiVersionFunctionDefinition(GD, GV);
3188     return EmitGlobalFunctionDefinition(GD, GV);
3189   }
3190 
3191   if (const auto *VD = dyn_cast<VarDecl>(D))
3192     return EmitGlobalVarDefinition(VD, !VD->hasDefinition());
3193 
3194   llvm_unreachable("Invalid argument to EmitGlobalDefinition()");
3195 }
3196 
3197 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
3198                                                       llvm::Function *NewFn);
3199 
3200 static unsigned
3201 TargetMVPriority(const TargetInfo &TI,
3202                  const CodeGenFunction::MultiVersionResolverOption &RO) {
3203   unsigned Priority = 0;
3204   for (StringRef Feat : RO.Conditions.Features)
3205     Priority = std::max(Priority, TI.multiVersionSortPriority(Feat));
3206 
3207   if (!RO.Conditions.Architecture.empty())
3208     Priority = std::max(
3209         Priority, TI.multiVersionSortPriority(RO.Conditions.Architecture));
3210   return Priority;
3211 }
3212 
3213 void CodeGenModule::emitMultiVersionFunctions() {
3214   std::vector<GlobalDecl> MVFuncsToEmit;
3215   MultiVersionFuncs.swap(MVFuncsToEmit);
3216   for (GlobalDecl GD : MVFuncsToEmit) {
3217     SmallVector<CodeGenFunction::MultiVersionResolverOption, 10> Options;
3218     const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
3219     getContext().forEachMultiversionedFunctionVersion(
3220         FD, [this, &GD, &Options](const FunctionDecl *CurFD) {
3221           GlobalDecl CurGD{
3222               (CurFD->isDefined() ? CurFD->getDefinition() : CurFD)};
3223           StringRef MangledName = getMangledName(CurGD);
3224           llvm::Constant *Func = GetGlobalValue(MangledName);
3225           if (!Func) {
3226             if (CurFD->isDefined()) {
3227               EmitGlobalFunctionDefinition(CurGD, nullptr);
3228               Func = GetGlobalValue(MangledName);
3229             } else {
3230               const CGFunctionInfo &FI =
3231                   getTypes().arrangeGlobalDeclaration(GD);
3232               llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
3233               Func = GetAddrOfFunction(CurGD, Ty, /*ForVTable=*/false,
3234                                        /*DontDefer=*/false, ForDefinition);
3235             }
3236             assert(Func && "This should have just been created");
3237           }
3238 
3239           const auto *TA = CurFD->getAttr<TargetAttr>();
3240           llvm::SmallVector<StringRef, 8> Feats;
3241           TA->getAddedFeatures(Feats);
3242 
3243           Options.emplace_back(cast<llvm::Function>(Func),
3244                                TA->getArchitecture(), Feats);
3245         });
3246 
3247     llvm::Function *ResolverFunc;
3248     const TargetInfo &TI = getTarget();
3249 
3250     if (TI.supportsIFunc() || FD->isTargetMultiVersion()) {
3251       ResolverFunc = cast<llvm::Function>(
3252           GetGlobalValue((getMangledName(GD) + ".resolver").str()));
3253       ResolverFunc->setLinkage(llvm::Function::WeakODRLinkage);
3254     } else {
3255       ResolverFunc = cast<llvm::Function>(GetGlobalValue(getMangledName(GD)));
3256     }
3257 
3258     if (supportsCOMDAT())
3259       ResolverFunc->setComdat(
3260           getModule().getOrInsertComdat(ResolverFunc->getName()));
3261 
3262     llvm::stable_sort(
3263         Options, [&TI](const CodeGenFunction::MultiVersionResolverOption &LHS,
3264                        const CodeGenFunction::MultiVersionResolverOption &RHS) {
3265           return TargetMVPriority(TI, LHS) > TargetMVPriority(TI, RHS);
3266         });
3267     CodeGenFunction CGF(*this);
3268     CGF.EmitMultiVersionResolver(ResolverFunc, Options);
3269   }
3270 
3271   // Ensure that any additions to the deferred decls list caused by emitting a
3272   // variant are emitted.  This can happen when the variant itself is inline and
3273   // calls a function without linkage.
3274   if (!MVFuncsToEmit.empty())
3275     EmitDeferred();
3276 
3277   // Ensure that any additions to the multiversion funcs list from either the
3278   // deferred decls or the multiversion functions themselves are emitted.
3279   if (!MultiVersionFuncs.empty())
3280     emitMultiVersionFunctions();
3281 }
3282 
3283 void CodeGenModule::emitCPUDispatchDefinition(GlobalDecl GD) {
3284   const auto *FD = cast<FunctionDecl>(GD.getDecl());
3285   assert(FD && "Not a FunctionDecl?");
3286   const auto *DD = FD->getAttr<CPUDispatchAttr>();
3287   assert(DD && "Not a cpu_dispatch Function?");
3288   llvm::Type *DeclTy = getTypes().ConvertType(FD->getType());
3289 
3290   if (const auto *CXXFD = dyn_cast<CXXMethodDecl>(FD)) {
3291     const CGFunctionInfo &FInfo = getTypes().arrangeCXXMethodDeclaration(CXXFD);
3292     DeclTy = getTypes().GetFunctionType(FInfo);
3293   }
3294 
3295   StringRef ResolverName = getMangledName(GD);
3296 
3297   llvm::Type *ResolverType;
3298   GlobalDecl ResolverGD;
3299   if (getTarget().supportsIFunc())
3300     ResolverType = llvm::FunctionType::get(
3301         llvm::PointerType::get(DeclTy,
3302                                Context.getTargetAddressSpace(FD->getType())),
3303         false);
3304   else {
3305     ResolverType = DeclTy;
3306     ResolverGD = GD;
3307   }
3308 
3309   auto *ResolverFunc = cast<llvm::Function>(GetOrCreateLLVMFunction(
3310       ResolverName, ResolverType, ResolverGD, /*ForVTable=*/false));
3311   ResolverFunc->setLinkage(llvm::Function::WeakODRLinkage);
3312   if (supportsCOMDAT())
3313     ResolverFunc->setComdat(
3314         getModule().getOrInsertComdat(ResolverFunc->getName()));
3315 
3316   SmallVector<CodeGenFunction::MultiVersionResolverOption, 10> Options;
3317   const TargetInfo &Target = getTarget();
3318   unsigned Index = 0;
3319   for (const IdentifierInfo *II : DD->cpus()) {
3320     // Get the name of the target function so we can look it up/create it.
3321     std::string MangledName = getMangledNameImpl(*this, GD, FD, true) +
3322                               getCPUSpecificMangling(*this, II->getName());
3323 
3324     llvm::Constant *Func = GetGlobalValue(MangledName);
3325 
3326     if (!Func) {
3327       GlobalDecl ExistingDecl = Manglings.lookup(MangledName);
3328       if (ExistingDecl.getDecl() &&
3329           ExistingDecl.getDecl()->getAsFunction()->isDefined()) {
3330         EmitGlobalFunctionDefinition(ExistingDecl, nullptr);
3331         Func = GetGlobalValue(MangledName);
3332       } else {
3333         if (!ExistingDecl.getDecl())
3334           ExistingDecl = GD.getWithMultiVersionIndex(Index);
3335 
3336       Func = GetOrCreateLLVMFunction(
3337           MangledName, DeclTy, ExistingDecl,
3338           /*ForVTable=*/false, /*DontDefer=*/true,
3339           /*IsThunk=*/false, llvm::AttributeList(), ForDefinition);
3340       }
3341     }
3342 
3343     llvm::SmallVector<StringRef, 32> Features;
3344     Target.getCPUSpecificCPUDispatchFeatures(II->getName(), Features);
3345     llvm::transform(Features, Features.begin(),
3346                     [](StringRef Str) { return Str.substr(1); });
3347     Features.erase(std::remove_if(
3348         Features.begin(), Features.end(), [&Target](StringRef Feat) {
3349           return !Target.validateCpuSupports(Feat);
3350         }), Features.end());
3351     Options.emplace_back(cast<llvm::Function>(Func), StringRef{}, Features);
3352     ++Index;
3353   }
3354 
3355   llvm::stable_sort(
3356       Options, [](const CodeGenFunction::MultiVersionResolverOption &LHS,
3357                   const CodeGenFunction::MultiVersionResolverOption &RHS) {
3358         return CodeGenFunction::GetX86CpuSupportsMask(LHS.Conditions.Features) >
3359                CodeGenFunction::GetX86CpuSupportsMask(RHS.Conditions.Features);
3360       });
3361 
3362   // If the list contains multiple 'default' versions, such as when it contains
3363   // 'pentium' and 'generic', don't emit the call to the generic one (since we
3364   // always run on at least a 'pentium'). We do this by deleting the 'least
3365   // advanced' (read, lowest mangling letter).
3366   while (Options.size() > 1 &&
3367          CodeGenFunction::GetX86CpuSupportsMask(
3368              (Options.end() - 2)->Conditions.Features) == 0) {
3369     StringRef LHSName = (Options.end() - 2)->Function->getName();
3370     StringRef RHSName = (Options.end() - 1)->Function->getName();
3371     if (LHSName.compare(RHSName) < 0)
3372       Options.erase(Options.end() - 2);
3373     else
3374       Options.erase(Options.end() - 1);
3375   }
3376 
3377   CodeGenFunction CGF(*this);
3378   CGF.EmitMultiVersionResolver(ResolverFunc, Options);
3379 
3380   if (getTarget().supportsIFunc()) {
3381     std::string AliasName = getMangledNameImpl(
3382         *this, GD, FD, /*OmitMultiVersionMangling=*/true);
3383     llvm::Constant *AliasFunc = GetGlobalValue(AliasName);
3384     if (!AliasFunc) {
3385       auto *IFunc = cast<llvm::GlobalIFunc>(GetOrCreateLLVMFunction(
3386           AliasName, DeclTy, GD, /*ForVTable=*/false, /*DontDefer=*/true,
3387           /*IsThunk=*/false, llvm::AttributeList(), NotForDefinition));
3388       auto *GA = llvm::GlobalAlias::create(
3389          DeclTy, 0, getFunctionLinkage(GD), AliasName, IFunc, &getModule());
3390       GA->setLinkage(llvm::Function::WeakODRLinkage);
3391       SetCommonAttributes(GD, GA);
3392     }
3393   }
3394 }
3395 
3396 /// If a dispatcher for the specified mangled name is not in the module, create
3397 /// and return an llvm Function with the specified type.
3398 llvm::Constant *CodeGenModule::GetOrCreateMultiVersionResolver(
3399     GlobalDecl GD, llvm::Type *DeclTy, const FunctionDecl *FD) {
3400   std::string MangledName =
3401       getMangledNameImpl(*this, GD, FD, /*OmitMultiVersionMangling=*/true);
3402 
3403   // Holds the name of the resolver, in ifunc mode this is the ifunc (which has
3404   // a separate resolver).
3405   std::string ResolverName = MangledName;
3406   if (getTarget().supportsIFunc())
3407     ResolverName += ".ifunc";
3408   else if (FD->isTargetMultiVersion())
3409     ResolverName += ".resolver";
3410 
3411   // If this already exists, just return that one.
3412   if (llvm::GlobalValue *ResolverGV = GetGlobalValue(ResolverName))
3413     return ResolverGV;
3414 
3415   // Since this is the first time we've created this IFunc, make sure
3416   // that we put this multiversioned function into the list to be
3417   // replaced later if necessary (target multiversioning only).
3418   if (!FD->isCPUDispatchMultiVersion() && !FD->isCPUSpecificMultiVersion())
3419     MultiVersionFuncs.push_back(GD);
3420 
3421   if (getTarget().supportsIFunc()) {
3422     llvm::Type *ResolverType = llvm::FunctionType::get(
3423         llvm::PointerType::get(
3424             DeclTy, getContext().getTargetAddressSpace(FD->getType())),
3425         false);
3426     llvm::Constant *Resolver = GetOrCreateLLVMFunction(
3427         MangledName + ".resolver", ResolverType, GlobalDecl{},
3428         /*ForVTable=*/false);
3429     llvm::GlobalIFunc *GIF = llvm::GlobalIFunc::create(
3430         DeclTy, 0, llvm::Function::WeakODRLinkage, "", Resolver, &getModule());
3431     GIF->setName(ResolverName);
3432     SetCommonAttributes(FD, GIF);
3433 
3434     return GIF;
3435   }
3436 
3437   llvm::Constant *Resolver = GetOrCreateLLVMFunction(
3438       ResolverName, DeclTy, GlobalDecl{}, /*ForVTable=*/false);
3439   assert(isa<llvm::GlobalValue>(Resolver) &&
3440          "Resolver should be created for the first time");
3441   SetCommonAttributes(FD, cast<llvm::GlobalValue>(Resolver));
3442   return Resolver;
3443 }
3444 
3445 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the
3446 /// module, create and return an llvm Function with the specified type. If there
3447 /// is something in the module with the specified name, return it potentially
3448 /// bitcasted to the right type.
3449 ///
3450 /// If D is non-null, it specifies a decl that correspond to this.  This is used
3451 /// to set the attributes on the function when it is first created.
3452 llvm::Constant *CodeGenModule::GetOrCreateLLVMFunction(
3453     StringRef MangledName, llvm::Type *Ty, GlobalDecl GD, bool ForVTable,
3454     bool DontDefer, bool IsThunk, llvm::AttributeList ExtraAttrs,
3455     ForDefinition_t IsForDefinition) {
3456   const Decl *D = GD.getDecl();
3457 
3458   // Any attempts to use a MultiVersion function should result in retrieving
3459   // the iFunc instead. Name Mangling will handle the rest of the changes.
3460   if (const FunctionDecl *FD = cast_or_null<FunctionDecl>(D)) {
3461     // For the device mark the function as one that should be emitted.
3462     if (getLangOpts().OpenMPIsDevice && OpenMPRuntime &&
3463         !OpenMPRuntime->markAsGlobalTarget(GD) && FD->isDefined() &&
3464         !DontDefer && !IsForDefinition) {
3465       if (const FunctionDecl *FDDef = FD->getDefinition()) {
3466         GlobalDecl GDDef;
3467         if (const auto *CD = dyn_cast<CXXConstructorDecl>(FDDef))
3468           GDDef = GlobalDecl(CD, GD.getCtorType());
3469         else if (const auto *DD = dyn_cast<CXXDestructorDecl>(FDDef))
3470           GDDef = GlobalDecl(DD, GD.getDtorType());
3471         else
3472           GDDef = GlobalDecl(FDDef);
3473         EmitGlobal(GDDef);
3474       }
3475     }
3476 
3477     if (FD->isMultiVersion()) {
3478       if (FD->hasAttr<TargetAttr>())
3479         UpdateMultiVersionNames(GD, FD);
3480       if (!IsForDefinition)
3481         return GetOrCreateMultiVersionResolver(GD, Ty, FD);
3482     }
3483   }
3484 
3485   // Lookup the entry, lazily creating it if necessary.
3486   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
3487   if (Entry) {
3488     if (WeakRefReferences.erase(Entry)) {
3489       const FunctionDecl *FD = cast_or_null<FunctionDecl>(D);
3490       if (FD && !FD->hasAttr<WeakAttr>())
3491         Entry->setLinkage(llvm::Function::ExternalLinkage);
3492     }
3493 
3494     // Handle dropped DLL attributes.
3495     if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>()) {
3496       Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
3497       setDSOLocal(Entry);
3498     }
3499 
3500     // If there are two attempts to define the same mangled name, issue an
3501     // error.
3502     if (IsForDefinition && !Entry->isDeclaration()) {
3503       GlobalDecl OtherGD;
3504       // Check that GD is not yet in DiagnosedConflictingDefinitions is required
3505       // to make sure that we issue an error only once.
3506       if (lookupRepresentativeDecl(MangledName, OtherGD) &&
3507           (GD.getCanonicalDecl().getDecl() !=
3508            OtherGD.getCanonicalDecl().getDecl()) &&
3509           DiagnosedConflictingDefinitions.insert(GD).second) {
3510         getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name)
3511             << MangledName;
3512         getDiags().Report(OtherGD.getDecl()->getLocation(),
3513                           diag::note_previous_definition);
3514       }
3515     }
3516 
3517     if ((isa<llvm::Function>(Entry) || isa<llvm::GlobalAlias>(Entry)) &&
3518         (Entry->getValueType() == Ty)) {
3519       return Entry;
3520     }
3521 
3522     // Make sure the result is of the correct type.
3523     // (If function is requested for a definition, we always need to create a new
3524     // function, not just return a bitcast.)
3525     if (!IsForDefinition)
3526       return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo());
3527   }
3528 
3529   // This function doesn't have a complete type (for example, the return
3530   // type is an incomplete struct). Use a fake type instead, and make
3531   // sure not to try to set attributes.
3532   bool IsIncompleteFunction = false;
3533 
3534   llvm::FunctionType *FTy;
3535   if (isa<llvm::FunctionType>(Ty)) {
3536     FTy = cast<llvm::FunctionType>(Ty);
3537   } else {
3538     FTy = llvm::FunctionType::get(VoidTy, false);
3539     IsIncompleteFunction = true;
3540   }
3541 
3542   llvm::Function *F =
3543       llvm::Function::Create(FTy, llvm::Function::ExternalLinkage,
3544                              Entry ? StringRef() : MangledName, &getModule());
3545 
3546   // If we already created a function with the same mangled name (but different
3547   // type) before, take its name and add it to the list of functions to be
3548   // replaced with F at the end of CodeGen.
3549   //
3550   // This happens if there is a prototype for a function (e.g. "int f()") and
3551   // then a definition of a different type (e.g. "int f(int x)").
3552   if (Entry) {
3553     F->takeName(Entry);
3554 
3555     // This might be an implementation of a function without a prototype, in
3556     // which case, try to do special replacement of calls which match the new
3557     // prototype.  The really key thing here is that we also potentially drop
3558     // arguments from the call site so as to make a direct call, which makes the
3559     // inliner happier and suppresses a number of optimizer warnings (!) about
3560     // dropping arguments.
3561     if (!Entry->use_empty()) {
3562       ReplaceUsesOfNonProtoTypeWithRealFunction(Entry, F);
3563       Entry->removeDeadConstantUsers();
3564     }
3565 
3566     llvm::Constant *BC = llvm::ConstantExpr::getBitCast(
3567         F, Entry->getValueType()->getPointerTo());
3568     addGlobalValReplacement(Entry, BC);
3569   }
3570 
3571   assert(F->getName() == MangledName && "name was uniqued!");
3572   if (D)
3573     SetFunctionAttributes(GD, F, IsIncompleteFunction, IsThunk);
3574   if (ExtraAttrs.hasAttributes(llvm::AttributeList::FunctionIndex)) {
3575     llvm::AttrBuilder B(ExtraAttrs, llvm::AttributeList::FunctionIndex);
3576     F->addAttributes(llvm::AttributeList::FunctionIndex, B);
3577   }
3578 
3579   if (!DontDefer) {
3580     // All MSVC dtors other than the base dtor are linkonce_odr and delegate to
3581     // each other bottoming out with the base dtor.  Therefore we emit non-base
3582     // dtors on usage, even if there is no dtor definition in the TU.
3583     if (D && isa<CXXDestructorDecl>(D) &&
3584         getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D),
3585                                            GD.getDtorType()))
3586       addDeferredDeclToEmit(GD);
3587 
3588     // This is the first use or definition of a mangled name.  If there is a
3589     // deferred decl with this name, remember that we need to emit it at the end
3590     // of the file.
3591     auto DDI = DeferredDecls.find(MangledName);
3592     if (DDI != DeferredDecls.end()) {
3593       // Move the potentially referenced deferred decl to the
3594       // DeferredDeclsToEmit list, and remove it from DeferredDecls (since we
3595       // don't need it anymore).
3596       addDeferredDeclToEmit(DDI->second);
3597       DeferredDecls.erase(DDI);
3598 
3599       // Otherwise, there are cases we have to worry about where we're
3600       // using a declaration for which we must emit a definition but where
3601       // we might not find a top-level definition:
3602       //   - member functions defined inline in their classes
3603       //   - friend functions defined inline in some class
3604       //   - special member functions with implicit definitions
3605       // If we ever change our AST traversal to walk into class methods,
3606       // this will be unnecessary.
3607       //
3608       // We also don't emit a definition for a function if it's going to be an
3609       // entry in a vtable, unless it's already marked as used.
3610     } else if (getLangOpts().CPlusPlus && D) {
3611       // Look for a declaration that's lexically in a record.
3612       for (const auto *FD = cast<FunctionDecl>(D)->getMostRecentDecl(); FD;
3613            FD = FD->getPreviousDecl()) {
3614         if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) {
3615           if (FD->doesThisDeclarationHaveABody()) {
3616             addDeferredDeclToEmit(GD.getWithDecl(FD));
3617             break;
3618           }
3619         }
3620       }
3621     }
3622   }
3623 
3624   // Make sure the result is of the requested type.
3625   if (!IsIncompleteFunction) {
3626     assert(F->getFunctionType() == Ty);
3627     return F;
3628   }
3629 
3630   llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
3631   return llvm::ConstantExpr::getBitCast(F, PTy);
3632 }
3633 
3634 /// GetAddrOfFunction - Return the address of the given function.  If Ty is
3635 /// non-null, then this function will use the specified type if it has to
3636 /// create it (this occurs when we see a definition of the function).
3637 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD,
3638                                                  llvm::Type *Ty,
3639                                                  bool ForVTable,
3640                                                  bool DontDefer,
3641                                               ForDefinition_t IsForDefinition) {
3642   assert(!cast<FunctionDecl>(GD.getDecl())->isConsteval() &&
3643          "consteval function should never be emitted");
3644   // If there was no specific requested type, just convert it now.
3645   if (!Ty) {
3646     const auto *FD = cast<FunctionDecl>(GD.getDecl());
3647     Ty = getTypes().ConvertType(FD->getType());
3648   }
3649 
3650   // Devirtualized destructor calls may come through here instead of via
3651   // getAddrOfCXXStructor. Make sure we use the MS ABI base destructor instead
3652   // of the complete destructor when necessary.
3653   if (const auto *DD = dyn_cast<CXXDestructorDecl>(GD.getDecl())) {
3654     if (getTarget().getCXXABI().isMicrosoft() &&
3655         GD.getDtorType() == Dtor_Complete &&
3656         DD->getParent()->getNumVBases() == 0)
3657       GD = GlobalDecl(DD, Dtor_Base);
3658   }
3659 
3660   StringRef MangledName = getMangledName(GD);
3661   auto *F = GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable, DontDefer,
3662                                     /*IsThunk=*/false, llvm::AttributeList(),
3663                                     IsForDefinition);
3664   // Returns kernel handle for HIP kernel stub function.
3665   if (LangOpts.CUDA && !LangOpts.CUDAIsDevice &&
3666       cast<FunctionDecl>(GD.getDecl())->hasAttr<CUDAGlobalAttr>()) {
3667     auto *Handle = getCUDARuntime().getKernelHandle(
3668         cast<llvm::Function>(F->stripPointerCasts()), GD);
3669     if (IsForDefinition)
3670       return F;
3671     return llvm::ConstantExpr::getBitCast(Handle, Ty->getPointerTo());
3672   }
3673   return F;
3674 }
3675 
3676 static const FunctionDecl *
3677 GetRuntimeFunctionDecl(ASTContext &C, StringRef Name) {
3678   TranslationUnitDecl *TUDecl = C.getTranslationUnitDecl();
3679   DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl);
3680 
3681   IdentifierInfo &CII = C.Idents.get(Name);
3682   for (const auto *Result : DC->lookup(&CII))
3683     if (const auto *FD = dyn_cast<FunctionDecl>(Result))
3684       return FD;
3685 
3686   if (!C.getLangOpts().CPlusPlus)
3687     return nullptr;
3688 
3689   // Demangle the premangled name from getTerminateFn()
3690   IdentifierInfo &CXXII =
3691       (Name == "_ZSt9terminatev" || Name == "?terminate@@YAXXZ")
3692           ? C.Idents.get("terminate")
3693           : C.Idents.get(Name);
3694 
3695   for (const auto &N : {"__cxxabiv1", "std"}) {
3696     IdentifierInfo &NS = C.Idents.get(N);
3697     for (const auto *Result : DC->lookup(&NS)) {
3698       const NamespaceDecl *ND = dyn_cast<NamespaceDecl>(Result);
3699       if (auto *LSD = dyn_cast<LinkageSpecDecl>(Result))
3700         for (const auto *Result : LSD->lookup(&NS))
3701           if ((ND = dyn_cast<NamespaceDecl>(Result)))
3702             break;
3703 
3704       if (ND)
3705         for (const auto *Result : ND->lookup(&CXXII))
3706           if (const auto *FD = dyn_cast<FunctionDecl>(Result))
3707             return FD;
3708     }
3709   }
3710 
3711   return nullptr;
3712 }
3713 
3714 /// CreateRuntimeFunction - Create a new runtime function with the specified
3715 /// type and name.
3716 llvm::FunctionCallee
3717 CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy, StringRef Name,
3718                                      llvm::AttributeList ExtraAttrs, bool Local,
3719                                      bool AssumeConvergent) {
3720   if (AssumeConvergent) {
3721     ExtraAttrs =
3722         ExtraAttrs.addAttribute(VMContext, llvm::AttributeList::FunctionIndex,
3723                                 llvm::Attribute::Convergent);
3724   }
3725 
3726   llvm::Constant *C =
3727       GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false,
3728                               /*DontDefer=*/false, /*IsThunk=*/false,
3729                               ExtraAttrs);
3730 
3731   if (auto *F = dyn_cast<llvm::Function>(C)) {
3732     if (F->empty()) {
3733       F->setCallingConv(getRuntimeCC());
3734 
3735       // In Windows Itanium environments, try to mark runtime functions
3736       // dllimport. For Mingw and MSVC, don't. We don't really know if the user
3737       // will link their standard library statically or dynamically. Marking
3738       // functions imported when they are not imported can cause linker errors
3739       // and warnings.
3740       if (!Local && getTriple().isWindowsItaniumEnvironment() &&
3741           !getCodeGenOpts().LTOVisibilityPublicStd) {
3742         const FunctionDecl *FD = GetRuntimeFunctionDecl(Context, Name);
3743         if (!FD || FD->hasAttr<DLLImportAttr>()) {
3744           F->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass);
3745           F->setLinkage(llvm::GlobalValue::ExternalLinkage);
3746         }
3747       }
3748       setDSOLocal(F);
3749     }
3750   }
3751 
3752   return {FTy, C};
3753 }
3754 
3755 /// isTypeConstant - Determine whether an object of this type can be emitted
3756 /// as a constant.
3757 ///
3758 /// If ExcludeCtor is true, the duration when the object's constructor runs
3759 /// will not be considered. The caller will need to verify that the object is
3760 /// not written to during its construction.
3761 bool CodeGenModule::isTypeConstant(QualType Ty, bool ExcludeCtor) {
3762   if (!Ty.isConstant(Context) && !Ty->isReferenceType())
3763     return false;
3764 
3765   if (Context.getLangOpts().CPlusPlus) {
3766     if (const CXXRecordDecl *Record
3767           = Context.getBaseElementType(Ty)->getAsCXXRecordDecl())
3768       return ExcludeCtor && !Record->hasMutableFields() &&
3769              Record->hasTrivialDestructor();
3770   }
3771 
3772   return true;
3773 }
3774 
3775 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module,
3776 /// create and return an llvm GlobalVariable with the specified type and address
3777 /// space. If there is something in the module with the specified name, return
3778 /// it potentially bitcasted to the right type.
3779 ///
3780 /// If D is non-null, it specifies a decl that correspond to this.  This is used
3781 /// to set the attributes on the global when it is first created.
3782 ///
3783 /// If IsForDefinition is true, it is guaranteed that an actual global with
3784 /// type Ty will be returned, not conversion of a variable with the same
3785 /// mangled name but some other type.
3786 llvm::Constant *
3787 CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName, llvm::Type *Ty,
3788                                      unsigned AddrSpace, const VarDecl *D,
3789                                      ForDefinition_t IsForDefinition) {
3790   // Lookup the entry, lazily creating it if necessary.
3791   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
3792   if (Entry) {
3793     if (WeakRefReferences.erase(Entry)) {
3794       if (D && !D->hasAttr<WeakAttr>())
3795         Entry->setLinkage(llvm::Function::ExternalLinkage);
3796     }
3797 
3798     // Handle dropped DLL attributes.
3799     if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>())
3800       Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
3801 
3802     if (LangOpts.OpenMP && !LangOpts.OpenMPSimd && D)
3803       getOpenMPRuntime().registerTargetGlobalVariable(D, Entry);
3804 
3805     if (Entry->getValueType() == Ty && Entry->getAddressSpace() == AddrSpace)
3806       return Entry;
3807 
3808     // If there are two attempts to define the same mangled name, issue an
3809     // error.
3810     if (IsForDefinition && !Entry->isDeclaration()) {
3811       GlobalDecl OtherGD;
3812       const VarDecl *OtherD;
3813 
3814       // Check that D is not yet in DiagnosedConflictingDefinitions is required
3815       // to make sure that we issue an error only once.
3816       if (D && lookupRepresentativeDecl(MangledName, OtherGD) &&
3817           (D->getCanonicalDecl() != OtherGD.getCanonicalDecl().getDecl()) &&
3818           (OtherD = dyn_cast<VarDecl>(OtherGD.getDecl())) &&
3819           OtherD->hasInit() &&
3820           DiagnosedConflictingDefinitions.insert(D).second) {
3821         getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name)
3822             << MangledName;
3823         getDiags().Report(OtherGD.getDecl()->getLocation(),
3824                           diag::note_previous_definition);
3825       }
3826     }
3827 
3828     // Make sure the result is of the correct type.
3829     if (Entry->getType()->getAddressSpace() != AddrSpace) {
3830       return llvm::ConstantExpr::getAddrSpaceCast(Entry,
3831                                                   Ty->getPointerTo(AddrSpace));
3832     }
3833 
3834     // (If global is requested for a definition, we always need to create a new
3835     // global, not just return a bitcast.)
3836     if (!IsForDefinition)
3837       return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo(AddrSpace));
3838   }
3839 
3840   auto DAddrSpace = GetGlobalVarAddressSpace(D);
3841   auto TargetAddrSpace = getContext().getTargetAddressSpace(DAddrSpace);
3842 
3843   auto *GV = new llvm::GlobalVariable(
3844       getModule(), Ty, false, llvm::GlobalValue::ExternalLinkage, nullptr,
3845       MangledName, nullptr, llvm::GlobalVariable::NotThreadLocal,
3846       TargetAddrSpace);
3847 
3848   // If we already created a global with the same mangled name (but different
3849   // type) before, take its name and remove it from its parent.
3850   if (Entry) {
3851     GV->takeName(Entry);
3852 
3853     if (!Entry->use_empty()) {
3854       llvm::Constant *NewPtrForOldDecl =
3855           llvm::ConstantExpr::getBitCast(GV, Entry->getType());
3856       Entry->replaceAllUsesWith(NewPtrForOldDecl);
3857     }
3858 
3859     Entry->eraseFromParent();
3860   }
3861 
3862   // This is the first use or definition of a mangled name.  If there is a
3863   // deferred decl with this name, remember that we need to emit it at the end
3864   // of the file.
3865   auto DDI = DeferredDecls.find(MangledName);
3866   if (DDI != DeferredDecls.end()) {
3867     // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
3868     // list, and remove it from DeferredDecls (since we don't need it anymore).
3869     addDeferredDeclToEmit(DDI->second);
3870     DeferredDecls.erase(DDI);
3871   }
3872 
3873   // Handle things which are present even on external declarations.
3874   if (D) {
3875     if (LangOpts.OpenMP && !LangOpts.OpenMPSimd)
3876       getOpenMPRuntime().registerTargetGlobalVariable(D, GV);
3877 
3878     // FIXME: This code is overly simple and should be merged with other global
3879     // handling.
3880     GV->setConstant(isTypeConstant(D->getType(), false));
3881 
3882     GV->setAlignment(getContext().getDeclAlign(D).getAsAlign());
3883 
3884     setLinkageForGV(GV, D);
3885 
3886     if (D->getTLSKind()) {
3887       if (D->getTLSKind() == VarDecl::TLS_Dynamic)
3888         CXXThreadLocals.push_back(D);
3889       setTLSMode(GV, *D);
3890     }
3891 
3892     setGVProperties(GV, D);
3893 
3894     // If required by the ABI, treat declarations of static data members with
3895     // inline initializers as definitions.
3896     if (getContext().isMSStaticDataMemberInlineDefinition(D)) {
3897       EmitGlobalVarDefinition(D);
3898     }
3899 
3900     // Emit section information for extern variables.
3901     if (D->hasExternalStorage()) {
3902       if (const SectionAttr *SA = D->getAttr<SectionAttr>())
3903         GV->setSection(SA->getName());
3904     }
3905 
3906     // Handle XCore specific ABI requirements.
3907     if (getTriple().getArch() == llvm::Triple::xcore &&
3908         D->getLanguageLinkage() == CLanguageLinkage &&
3909         D->getType().isConstant(Context) &&
3910         isExternallyVisible(D->getLinkageAndVisibility().getLinkage()))
3911       GV->setSection(".cp.rodata");
3912 
3913     // Check if we a have a const declaration with an initializer, we may be
3914     // able to emit it as available_externally to expose it's value to the
3915     // optimizer.
3916     if (Context.getLangOpts().CPlusPlus && GV->hasExternalLinkage() &&
3917         D->getType().isConstQualified() && !GV->hasInitializer() &&
3918         !D->hasDefinition() && D->hasInit() && !D->hasAttr<DLLImportAttr>()) {
3919       const auto *Record =
3920           Context.getBaseElementType(D->getType())->getAsCXXRecordDecl();
3921       bool HasMutableFields = Record && Record->hasMutableFields();
3922       if (!HasMutableFields) {
3923         const VarDecl *InitDecl;
3924         const Expr *InitExpr = D->getAnyInitializer(InitDecl);
3925         if (InitExpr) {
3926           ConstantEmitter emitter(*this);
3927           llvm::Constant *Init = emitter.tryEmitForInitializer(*InitDecl);
3928           if (Init) {
3929             auto *InitType = Init->getType();
3930             if (GV->getValueType() != InitType) {
3931               // The type of the initializer does not match the definition.
3932               // This happens when an initializer has a different type from
3933               // the type of the global (because of padding at the end of a
3934               // structure for instance).
3935               GV->setName(StringRef());
3936               // Make a new global with the correct type, this is now guaranteed
3937               // to work.
3938               auto *NewGV = cast<llvm::GlobalVariable>(
3939                   GetAddrOfGlobalVar(D, InitType, IsForDefinition)
3940                       ->stripPointerCasts());
3941 
3942               // Erase the old global, since it is no longer used.
3943               GV->eraseFromParent();
3944               GV = NewGV;
3945             } else {
3946               GV->setInitializer(Init);
3947               GV->setConstant(true);
3948               GV->setLinkage(llvm::GlobalValue::AvailableExternallyLinkage);
3949             }
3950             emitter.finalize(GV);
3951           }
3952         }
3953       }
3954     }
3955   }
3956 
3957   if (GV->isDeclaration()) {
3958     getTargetCodeGenInfo().setTargetAttributes(D, GV, *this);
3959     // External HIP managed variables needed to be recorded for transformation
3960     // in both device and host compilations.
3961     if (getLangOpts().CUDA && D && D->hasAttr<HIPManagedAttr>() &&
3962         D->hasExternalStorage())
3963       getCUDARuntime().handleVarRegistration(D, *GV);
3964   }
3965 
3966   LangAS ExpectedAS =
3967       D ? D->getType().getAddressSpace()
3968         : (LangOpts.OpenCL ? LangAS::opencl_global : LangAS::Default);
3969   assert(getContext().getTargetAddressSpace(ExpectedAS) == AddrSpace);
3970   if (DAddrSpace != ExpectedAS) {
3971     return getTargetCodeGenInfo().performAddrSpaceCast(
3972         *this, GV, DAddrSpace, ExpectedAS, Ty->getPointerTo(AddrSpace));
3973   }
3974 
3975   return GV;
3976 }
3977 
3978 llvm::Constant *
3979 CodeGenModule::GetAddrOfGlobal(GlobalDecl GD, ForDefinition_t IsForDefinition) {
3980   const Decl *D = GD.getDecl();
3981 
3982   if (isa<CXXConstructorDecl>(D) || isa<CXXDestructorDecl>(D))
3983     return getAddrOfCXXStructor(GD, /*FnInfo=*/nullptr, /*FnType=*/nullptr,
3984                                 /*DontDefer=*/false, IsForDefinition);
3985 
3986   if (isa<CXXMethodDecl>(D)) {
3987     auto FInfo =
3988         &getTypes().arrangeCXXMethodDeclaration(cast<CXXMethodDecl>(D));
3989     auto Ty = getTypes().GetFunctionType(*FInfo);
3990     return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false,
3991                              IsForDefinition);
3992   }
3993 
3994   if (isa<FunctionDecl>(D)) {
3995     const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
3996     llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
3997     return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false,
3998                              IsForDefinition);
3999   }
4000 
4001   return GetAddrOfGlobalVar(cast<VarDecl>(D), /*Ty=*/nullptr, IsForDefinition);
4002 }
4003 
4004 llvm::GlobalVariable *CodeGenModule::CreateOrReplaceCXXRuntimeVariable(
4005     StringRef Name, llvm::Type *Ty, llvm::GlobalValue::LinkageTypes Linkage,
4006     unsigned Alignment) {
4007   llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name);
4008   llvm::GlobalVariable *OldGV = nullptr;
4009 
4010   if (GV) {
4011     // Check if the variable has the right type.
4012     if (GV->getValueType() == Ty)
4013       return GV;
4014 
4015     // Because C++ name mangling, the only way we can end up with an already
4016     // existing global with the same name is if it has been declared extern "C".
4017     assert(GV->isDeclaration() && "Declaration has wrong type!");
4018     OldGV = GV;
4019   }
4020 
4021   // Create a new variable.
4022   GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true,
4023                                 Linkage, nullptr, Name);
4024 
4025   if (OldGV) {
4026     // Replace occurrences of the old variable if needed.
4027     GV->takeName(OldGV);
4028 
4029     if (!OldGV->use_empty()) {
4030       llvm::Constant *NewPtrForOldDecl =
4031       llvm::ConstantExpr::getBitCast(GV, OldGV->getType());
4032       OldGV->replaceAllUsesWith(NewPtrForOldDecl);
4033     }
4034 
4035     OldGV->eraseFromParent();
4036   }
4037 
4038   if (supportsCOMDAT() && GV->isWeakForLinker() &&
4039       !GV->hasAvailableExternallyLinkage())
4040     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
4041 
4042   GV->setAlignment(llvm::MaybeAlign(Alignment));
4043 
4044   return GV;
4045 }
4046 
4047 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the
4048 /// given global variable.  If Ty is non-null and if the global doesn't exist,
4049 /// then it will be created with the specified type instead of whatever the
4050 /// normal requested type would be. If IsForDefinition is true, it is guaranteed
4051 /// that an actual global with type Ty will be returned, not conversion of a
4052 /// variable with the same mangled name but some other type.
4053 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D,
4054                                                   llvm::Type *Ty,
4055                                            ForDefinition_t IsForDefinition) {
4056   assert(D->hasGlobalStorage() && "Not a global variable");
4057   QualType ASTTy = D->getType();
4058   if (!Ty)
4059     Ty = getTypes().ConvertTypeForMem(ASTTy);
4060 
4061   StringRef MangledName = getMangledName(D);
4062   return GetOrCreateLLVMGlobal(MangledName, Ty,
4063                                getContext().getTargetAddressSpace(ASTTy), D,
4064                                IsForDefinition);
4065 }
4066 
4067 /// CreateRuntimeVariable - Create a new runtime global variable with the
4068 /// specified type and name.
4069 llvm::Constant *
4070 CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty,
4071                                      StringRef Name) {
4072   auto AddrSpace =
4073       getContext().getLangOpts().OpenCL
4074           ? getContext().getTargetAddressSpace(LangAS::opencl_global)
4075           : 0;
4076   auto *Ret = GetOrCreateLLVMGlobal(Name, Ty, AddrSpace, nullptr);
4077   setDSOLocal(cast<llvm::GlobalValue>(Ret->stripPointerCasts()));
4078   return Ret;
4079 }
4080 
4081 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) {
4082   assert(!D->getInit() && "Cannot emit definite definitions here!");
4083 
4084   StringRef MangledName = getMangledName(D);
4085   llvm::GlobalValue *GV = GetGlobalValue(MangledName);
4086 
4087   // We already have a definition, not declaration, with the same mangled name.
4088   // Emitting of declaration is not required (and actually overwrites emitted
4089   // definition).
4090   if (GV && !GV->isDeclaration())
4091     return;
4092 
4093   // If we have not seen a reference to this variable yet, place it into the
4094   // deferred declarations table to be emitted if needed later.
4095   if (!MustBeEmitted(D) && !GV) {
4096       DeferredDecls[MangledName] = D;
4097       return;
4098   }
4099 
4100   // The tentative definition is the only definition.
4101   EmitGlobalVarDefinition(D);
4102 }
4103 
4104 void CodeGenModule::EmitExternalDeclaration(const VarDecl *D) {
4105   EmitExternalVarDeclaration(D);
4106 }
4107 
4108 CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const {
4109   return Context.toCharUnitsFromBits(
4110       getDataLayout().getTypeStoreSizeInBits(Ty));
4111 }
4112 
4113 LangAS CodeGenModule::GetGlobalVarAddressSpace(const VarDecl *D) {
4114   LangAS AddrSpace = LangAS::Default;
4115   if (LangOpts.OpenCL) {
4116     AddrSpace = D ? D->getType().getAddressSpace() : LangAS::opencl_global;
4117     assert(AddrSpace == LangAS::opencl_global ||
4118            AddrSpace == LangAS::opencl_global_device ||
4119            AddrSpace == LangAS::opencl_global_host ||
4120            AddrSpace == LangAS::opencl_constant ||
4121            AddrSpace == LangAS::opencl_local ||
4122            AddrSpace >= LangAS::FirstTargetAddressSpace);
4123     return AddrSpace;
4124   }
4125 
4126   if (LangOpts.SYCLIsDevice &&
4127       (!D || D->getType().getAddressSpace() == LangAS::Default))
4128     return LangAS::sycl_global;
4129 
4130   if (LangOpts.CUDA && LangOpts.CUDAIsDevice) {
4131     if (D && D->hasAttr<CUDAConstantAttr>())
4132       return LangAS::cuda_constant;
4133     else if (D && D->hasAttr<CUDASharedAttr>())
4134       return LangAS::cuda_shared;
4135     else if (D && D->hasAttr<CUDADeviceAttr>())
4136       return LangAS::cuda_device;
4137     else if (D && D->getType().isConstQualified())
4138       return LangAS::cuda_constant;
4139     else
4140       return LangAS::cuda_device;
4141   }
4142 
4143   if (LangOpts.OpenMP) {
4144     LangAS AS;
4145     if (OpenMPRuntime->hasAllocateAttributeForGlobalVar(D, AS))
4146       return AS;
4147   }
4148   return getTargetCodeGenInfo().getGlobalVarAddressSpace(*this, D);
4149 }
4150 
4151 LangAS CodeGenModule::GetGlobalConstantAddressSpace() const {
4152   // OpenCL v1.2 s6.5.3: a string literal is in the constant address space.
4153   if (LangOpts.OpenCL)
4154     return LangAS::opencl_constant;
4155   if (LangOpts.SYCLIsDevice)
4156     return LangAS::sycl_global;
4157   if (auto AS = getTarget().getConstantAddressSpace())
4158     return AS.getValue();
4159   return LangAS::Default;
4160 }
4161 
4162 // In address space agnostic languages, string literals are in default address
4163 // space in AST. However, certain targets (e.g. amdgcn) request them to be
4164 // emitted in constant address space in LLVM IR. To be consistent with other
4165 // parts of AST, string literal global variables in constant address space
4166 // need to be casted to default address space before being put into address
4167 // map and referenced by other part of CodeGen.
4168 // In OpenCL, string literals are in constant address space in AST, therefore
4169 // they should not be casted to default address space.
4170 static llvm::Constant *
4171 castStringLiteralToDefaultAddressSpace(CodeGenModule &CGM,
4172                                        llvm::GlobalVariable *GV) {
4173   llvm::Constant *Cast = GV;
4174   if (!CGM.getLangOpts().OpenCL) {
4175     auto AS = CGM.GetGlobalConstantAddressSpace();
4176     if (AS != LangAS::Default)
4177       Cast = CGM.getTargetCodeGenInfo().performAddrSpaceCast(
4178           CGM, GV, AS, LangAS::Default,
4179           GV->getValueType()->getPointerTo(
4180               CGM.getContext().getTargetAddressSpace(LangAS::Default)));
4181   }
4182   return Cast;
4183 }
4184 
4185 template<typename SomeDecl>
4186 void CodeGenModule::MaybeHandleStaticInExternC(const SomeDecl *D,
4187                                                llvm::GlobalValue *GV) {
4188   if (!getLangOpts().CPlusPlus)
4189     return;
4190 
4191   // Must have 'used' attribute, or else inline assembly can't rely on
4192   // the name existing.
4193   if (!D->template hasAttr<UsedAttr>())
4194     return;
4195 
4196   // Must have internal linkage and an ordinary name.
4197   if (!D->getIdentifier() || D->getFormalLinkage() != InternalLinkage)
4198     return;
4199 
4200   // Must be in an extern "C" context. Entities declared directly within
4201   // a record are not extern "C" even if the record is in such a context.
4202   const SomeDecl *First = D->getFirstDecl();
4203   if (First->getDeclContext()->isRecord() || !First->isInExternCContext())
4204     return;
4205 
4206   // OK, this is an internal linkage entity inside an extern "C" linkage
4207   // specification. Make a note of that so we can give it the "expected"
4208   // mangled name if nothing else is using that name.
4209   std::pair<StaticExternCMap::iterator, bool> R =
4210       StaticExternCValues.insert(std::make_pair(D->getIdentifier(), GV));
4211 
4212   // If we have multiple internal linkage entities with the same name
4213   // in extern "C" regions, none of them gets that name.
4214   if (!R.second)
4215     R.first->second = nullptr;
4216 }
4217 
4218 static bool shouldBeInCOMDAT(CodeGenModule &CGM, const Decl &D) {
4219   if (!CGM.supportsCOMDAT())
4220     return false;
4221 
4222   // Do not set COMDAT attribute for CUDA/HIP stub functions to prevent
4223   // them being "merged" by the COMDAT Folding linker optimization.
4224   if (D.hasAttr<CUDAGlobalAttr>())
4225     return false;
4226 
4227   if (D.hasAttr<SelectAnyAttr>())
4228     return true;
4229 
4230   GVALinkage Linkage;
4231   if (auto *VD = dyn_cast<VarDecl>(&D))
4232     Linkage = CGM.getContext().GetGVALinkageForVariable(VD);
4233   else
4234     Linkage = CGM.getContext().GetGVALinkageForFunction(cast<FunctionDecl>(&D));
4235 
4236   switch (Linkage) {
4237   case GVA_Internal:
4238   case GVA_AvailableExternally:
4239   case GVA_StrongExternal:
4240     return false;
4241   case GVA_DiscardableODR:
4242   case GVA_StrongODR:
4243     return true;
4244   }
4245   llvm_unreachable("No such linkage");
4246 }
4247 
4248 void CodeGenModule::maybeSetTrivialComdat(const Decl &D,
4249                                           llvm::GlobalObject &GO) {
4250   if (!shouldBeInCOMDAT(*this, D))
4251     return;
4252   GO.setComdat(TheModule.getOrInsertComdat(GO.getName()));
4253 }
4254 
4255 /// Pass IsTentative as true if you want to create a tentative definition.
4256 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D,
4257                                             bool IsTentative) {
4258   // OpenCL global variables of sampler type are translated to function calls,
4259   // therefore no need to be translated.
4260   QualType ASTTy = D->getType();
4261   if (getLangOpts().OpenCL && ASTTy->isSamplerT())
4262     return;
4263 
4264   // If this is OpenMP device, check if it is legal to emit this global
4265   // normally.
4266   if (LangOpts.OpenMPIsDevice && OpenMPRuntime &&
4267       OpenMPRuntime->emitTargetGlobalVariable(D))
4268     return;
4269 
4270   llvm::Constant *Init = nullptr;
4271   bool NeedsGlobalCtor = false;
4272   bool NeedsGlobalDtor =
4273       D->needsDestruction(getContext()) == QualType::DK_cxx_destructor;
4274 
4275   const VarDecl *InitDecl;
4276   const Expr *InitExpr = D->getAnyInitializer(InitDecl);
4277 
4278   Optional<ConstantEmitter> emitter;
4279 
4280   // CUDA E.2.4.1 "__shared__ variables cannot have an initialization
4281   // as part of their declaration."  Sema has already checked for
4282   // error cases, so we just need to set Init to UndefValue.
4283   bool IsCUDASharedVar =
4284       getLangOpts().CUDAIsDevice && D->hasAttr<CUDASharedAttr>();
4285   // Shadows of initialized device-side global variables are also left
4286   // undefined.
4287   // Managed Variables should be initialized on both host side and device side.
4288   bool IsCUDAShadowVar =
4289       !getLangOpts().CUDAIsDevice && !D->hasAttr<HIPManagedAttr>() &&
4290       (D->hasAttr<CUDAConstantAttr>() || D->hasAttr<CUDADeviceAttr>() ||
4291        D->hasAttr<CUDASharedAttr>());
4292   bool IsCUDADeviceShadowVar =
4293       getLangOpts().CUDAIsDevice && !D->hasAttr<HIPManagedAttr>() &&
4294       (D->getType()->isCUDADeviceBuiltinSurfaceType() ||
4295        D->getType()->isCUDADeviceBuiltinTextureType());
4296   if (getLangOpts().CUDA &&
4297       (IsCUDASharedVar || IsCUDAShadowVar || IsCUDADeviceShadowVar))
4298     Init = llvm::UndefValue::get(getTypes().ConvertTypeForMem(ASTTy));
4299   else if (D->hasAttr<LoaderUninitializedAttr>())
4300     Init = llvm::UndefValue::get(getTypes().ConvertTypeForMem(ASTTy));
4301   else if (!InitExpr) {
4302     // This is a tentative definition; tentative definitions are
4303     // implicitly initialized with { 0 }.
4304     //
4305     // Note that tentative definitions are only emitted at the end of
4306     // a translation unit, so they should never have incomplete
4307     // type. In addition, EmitTentativeDefinition makes sure that we
4308     // never attempt to emit a tentative definition if a real one
4309     // exists. A use may still exists, however, so we still may need
4310     // to do a RAUW.
4311     assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type");
4312     Init = EmitNullConstant(D->getType());
4313   } else {
4314     initializedGlobalDecl = GlobalDecl(D);
4315     emitter.emplace(*this);
4316     Init = emitter->tryEmitForInitializer(*InitDecl);
4317 
4318     if (!Init) {
4319       QualType T = InitExpr->getType();
4320       if (D->getType()->isReferenceType())
4321         T = D->getType();
4322 
4323       if (getLangOpts().CPlusPlus) {
4324         Init = EmitNullConstant(T);
4325         NeedsGlobalCtor = true;
4326       } else {
4327         ErrorUnsupported(D, "static initializer");
4328         Init = llvm::UndefValue::get(getTypes().ConvertType(T));
4329       }
4330     } else {
4331       // We don't need an initializer, so remove the entry for the delayed
4332       // initializer position (just in case this entry was delayed) if we
4333       // also don't need to register a destructor.
4334       if (getLangOpts().CPlusPlus && !NeedsGlobalDtor)
4335         DelayedCXXInitPosition.erase(D);
4336     }
4337   }
4338 
4339   llvm::Type* InitType = Init->getType();
4340   llvm::Constant *Entry =
4341       GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative));
4342 
4343   // Strip off pointer casts if we got them.
4344   Entry = Entry->stripPointerCasts();
4345 
4346   // Entry is now either a Function or GlobalVariable.
4347   auto *GV = dyn_cast<llvm::GlobalVariable>(Entry);
4348 
4349   // We have a definition after a declaration with the wrong type.
4350   // We must make a new GlobalVariable* and update everything that used OldGV
4351   // (a declaration or tentative definition) with the new GlobalVariable*
4352   // (which will be a definition).
4353   //
4354   // This happens if there is a prototype for a global (e.g.
4355   // "extern int x[];") and then a definition of a different type (e.g.
4356   // "int x[10];"). This also happens when an initializer has a different type
4357   // from the type of the global (this happens with unions).
4358   if (!GV || GV->getValueType() != InitType ||
4359       GV->getType()->getAddressSpace() !=
4360           getContext().getTargetAddressSpace(GetGlobalVarAddressSpace(D))) {
4361 
4362     // Move the old entry aside so that we'll create a new one.
4363     Entry->setName(StringRef());
4364 
4365     // Make a new global with the correct type, this is now guaranteed to work.
4366     GV = cast<llvm::GlobalVariable>(
4367         GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative))
4368             ->stripPointerCasts());
4369 
4370     // Replace all uses of the old global with the new global
4371     llvm::Constant *NewPtrForOldDecl =
4372         llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV,
4373                                                              Entry->getType());
4374     Entry->replaceAllUsesWith(NewPtrForOldDecl);
4375 
4376     // Erase the old global, since it is no longer used.
4377     cast<llvm::GlobalValue>(Entry)->eraseFromParent();
4378   }
4379 
4380   MaybeHandleStaticInExternC(D, GV);
4381 
4382   if (D->hasAttr<AnnotateAttr>())
4383     AddGlobalAnnotations(D, GV);
4384 
4385   // Set the llvm linkage type as appropriate.
4386   llvm::GlobalValue::LinkageTypes Linkage =
4387       getLLVMLinkageVarDefinition(D, GV->isConstant());
4388 
4389   // CUDA B.2.1 "The __device__ qualifier declares a variable that resides on
4390   // the device. [...]"
4391   // CUDA B.2.2 "The __constant__ qualifier, optionally used together with
4392   // __device__, declares a variable that: [...]
4393   // Is accessible from all the threads within the grid and from the host
4394   // through the runtime library (cudaGetSymbolAddress() / cudaGetSymbolSize()
4395   // / cudaMemcpyToSymbol() / cudaMemcpyFromSymbol())."
4396   if (GV && LangOpts.CUDA) {
4397     if (LangOpts.CUDAIsDevice) {
4398       if (Linkage != llvm::GlobalValue::InternalLinkage &&
4399           (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>()))
4400         GV->setExternallyInitialized(true);
4401     } else {
4402       getCUDARuntime().internalizeDeviceSideVar(D, Linkage);
4403     }
4404     getCUDARuntime().handleVarRegistration(D, *GV);
4405   }
4406 
4407   GV->setInitializer(Init);
4408   if (emitter)
4409     emitter->finalize(GV);
4410 
4411   // If it is safe to mark the global 'constant', do so now.
4412   GV->setConstant(!NeedsGlobalCtor && !NeedsGlobalDtor &&
4413                   isTypeConstant(D->getType(), true));
4414 
4415   // If it is in a read-only section, mark it 'constant'.
4416   if (const SectionAttr *SA = D->getAttr<SectionAttr>()) {
4417     const ASTContext::SectionInfo &SI = Context.SectionInfos[SA->getName()];
4418     if ((SI.SectionFlags & ASTContext::PSF_Write) == 0)
4419       GV->setConstant(true);
4420   }
4421 
4422   GV->setAlignment(getContext().getDeclAlign(D).getAsAlign());
4423 
4424   // On Darwin, unlike other Itanium C++ ABI platforms, the thread-wrapper
4425   // function is only defined alongside the variable, not also alongside
4426   // callers. Normally, all accesses to a thread_local go through the
4427   // thread-wrapper in order to ensure initialization has occurred, underlying
4428   // variable will never be used other than the thread-wrapper, so it can be
4429   // converted to internal linkage.
4430   //
4431   // However, if the variable has the 'constinit' attribute, it _can_ be
4432   // referenced directly, without calling the thread-wrapper, so the linkage
4433   // must not be changed.
4434   //
4435   // Additionally, if the variable isn't plain external linkage, e.g. if it's
4436   // weak or linkonce, the de-duplication semantics are important to preserve,
4437   // so we don't change the linkage.
4438   if (D->getTLSKind() == VarDecl::TLS_Dynamic &&
4439       Linkage == llvm::GlobalValue::ExternalLinkage &&
4440       Context.getTargetInfo().getTriple().isOSDarwin() &&
4441       !D->hasAttr<ConstInitAttr>())
4442     Linkage = llvm::GlobalValue::InternalLinkage;
4443 
4444   GV->setLinkage(Linkage);
4445   if (D->hasAttr<DLLImportAttr>())
4446     GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass);
4447   else if (D->hasAttr<DLLExportAttr>())
4448     GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass);
4449   else
4450     GV->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass);
4451 
4452   if (Linkage == llvm::GlobalVariable::CommonLinkage) {
4453     // common vars aren't constant even if declared const.
4454     GV->setConstant(false);
4455     // Tentative definition of global variables may be initialized with
4456     // non-zero null pointers. In this case they should have weak linkage
4457     // since common linkage must have zero initializer and must not have
4458     // explicit section therefore cannot have non-zero initial value.
4459     if (!GV->getInitializer()->isNullValue())
4460       GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage);
4461   }
4462 
4463   setNonAliasAttributes(D, GV);
4464 
4465   if (D->getTLSKind() && !GV->isThreadLocal()) {
4466     if (D->getTLSKind() == VarDecl::TLS_Dynamic)
4467       CXXThreadLocals.push_back(D);
4468     setTLSMode(GV, *D);
4469   }
4470 
4471   maybeSetTrivialComdat(*D, *GV);
4472 
4473   // Emit the initializer function if necessary.
4474   if (NeedsGlobalCtor || NeedsGlobalDtor)
4475     EmitCXXGlobalVarDeclInitFunc(D, GV, NeedsGlobalCtor);
4476 
4477   SanitizerMD->reportGlobalToASan(GV, *D, NeedsGlobalCtor);
4478 
4479   // Emit global variable debug information.
4480   if (CGDebugInfo *DI = getModuleDebugInfo())
4481     if (getCodeGenOpts().hasReducedDebugInfo())
4482       DI->EmitGlobalVariable(GV, D);
4483 }
4484 
4485 void CodeGenModule::EmitExternalVarDeclaration(const VarDecl *D) {
4486   if (CGDebugInfo *DI = getModuleDebugInfo())
4487     if (getCodeGenOpts().hasReducedDebugInfo()) {
4488       QualType ASTTy = D->getType();
4489       llvm::Type *Ty = getTypes().ConvertTypeForMem(D->getType());
4490       llvm::Constant *GV = GetOrCreateLLVMGlobal(
4491           D->getName(), Ty, getContext().getTargetAddressSpace(ASTTy), D);
4492       DI->EmitExternalVariable(
4493           cast<llvm::GlobalVariable>(GV->stripPointerCasts()), D);
4494     }
4495 }
4496 
4497 static bool isVarDeclStrongDefinition(const ASTContext &Context,
4498                                       CodeGenModule &CGM, const VarDecl *D,
4499                                       bool NoCommon) {
4500   // Don't give variables common linkage if -fno-common was specified unless it
4501   // was overridden by a NoCommon attribute.
4502   if ((NoCommon || D->hasAttr<NoCommonAttr>()) && !D->hasAttr<CommonAttr>())
4503     return true;
4504 
4505   // C11 6.9.2/2:
4506   //   A declaration of an identifier for an object that has file scope without
4507   //   an initializer, and without a storage-class specifier or with the
4508   //   storage-class specifier static, constitutes a tentative definition.
4509   if (D->getInit() || D->hasExternalStorage())
4510     return true;
4511 
4512   // A variable cannot be both common and exist in a section.
4513   if (D->hasAttr<SectionAttr>())
4514     return true;
4515 
4516   // A variable cannot be both common and exist in a section.
4517   // We don't try to determine which is the right section in the front-end.
4518   // If no specialized section name is applicable, it will resort to default.
4519   if (D->hasAttr<PragmaClangBSSSectionAttr>() ||
4520       D->hasAttr<PragmaClangDataSectionAttr>() ||
4521       D->hasAttr<PragmaClangRelroSectionAttr>() ||
4522       D->hasAttr<PragmaClangRodataSectionAttr>())
4523     return true;
4524 
4525   // Thread local vars aren't considered common linkage.
4526   if (D->getTLSKind())
4527     return true;
4528 
4529   // Tentative definitions marked with WeakImportAttr are true definitions.
4530   if (D->hasAttr<WeakImportAttr>())
4531     return true;
4532 
4533   // A variable cannot be both common and exist in a comdat.
4534   if (shouldBeInCOMDAT(CGM, *D))
4535     return true;
4536 
4537   // Declarations with a required alignment do not have common linkage in MSVC
4538   // mode.
4539   if (Context.getTargetInfo().getCXXABI().isMicrosoft()) {
4540     if (D->hasAttr<AlignedAttr>())
4541       return true;
4542     QualType VarType = D->getType();
4543     if (Context.isAlignmentRequired(VarType))
4544       return true;
4545 
4546     if (const auto *RT = VarType->getAs<RecordType>()) {
4547       const RecordDecl *RD = RT->getDecl();
4548       for (const FieldDecl *FD : RD->fields()) {
4549         if (FD->isBitField())
4550           continue;
4551         if (FD->hasAttr<AlignedAttr>())
4552           return true;
4553         if (Context.isAlignmentRequired(FD->getType()))
4554           return true;
4555       }
4556     }
4557   }
4558 
4559   // Microsoft's link.exe doesn't support alignments greater than 32 bytes for
4560   // common symbols, so symbols with greater alignment requirements cannot be
4561   // common.
4562   // Other COFF linkers (ld.bfd and LLD) support arbitrary power-of-two
4563   // alignments for common symbols via the aligncomm directive, so this
4564   // restriction only applies to MSVC environments.
4565   if (Context.getTargetInfo().getTriple().isKnownWindowsMSVCEnvironment() &&
4566       Context.getTypeAlignIfKnown(D->getType()) >
4567           Context.toBits(CharUnits::fromQuantity(32)))
4568     return true;
4569 
4570   return false;
4571 }
4572 
4573 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageForDeclarator(
4574     const DeclaratorDecl *D, GVALinkage Linkage, bool IsConstantVariable) {
4575   if (Linkage == GVA_Internal)
4576     return llvm::Function::InternalLinkage;
4577 
4578   if (D->hasAttr<WeakAttr>()) {
4579     if (IsConstantVariable)
4580       return llvm::GlobalVariable::WeakODRLinkage;
4581     else
4582       return llvm::GlobalVariable::WeakAnyLinkage;
4583   }
4584 
4585   if (const auto *FD = D->getAsFunction())
4586     if (FD->isMultiVersion() && Linkage == GVA_AvailableExternally)
4587       return llvm::GlobalVariable::LinkOnceAnyLinkage;
4588 
4589   // We are guaranteed to have a strong definition somewhere else,
4590   // so we can use available_externally linkage.
4591   if (Linkage == GVA_AvailableExternally)
4592     return llvm::GlobalValue::AvailableExternallyLinkage;
4593 
4594   // Note that Apple's kernel linker doesn't support symbol
4595   // coalescing, so we need to avoid linkonce and weak linkages there.
4596   // Normally, this means we just map to internal, but for explicit
4597   // instantiations we'll map to external.
4598 
4599   // In C++, the compiler has to emit a definition in every translation unit
4600   // that references the function.  We should use linkonce_odr because
4601   // a) if all references in this translation unit are optimized away, we
4602   // don't need to codegen it.  b) if the function persists, it needs to be
4603   // merged with other definitions. c) C++ has the ODR, so we know the
4604   // definition is dependable.
4605   if (Linkage == GVA_DiscardableODR)
4606     return !Context.getLangOpts().AppleKext ? llvm::Function::LinkOnceODRLinkage
4607                                             : llvm::Function::InternalLinkage;
4608 
4609   // An explicit instantiation of a template has weak linkage, since
4610   // explicit instantiations can occur in multiple translation units
4611   // and must all be equivalent. However, we are not allowed to
4612   // throw away these explicit instantiations.
4613   //
4614   // CUDA/HIP: For -fno-gpu-rdc case, device code is limited to one TU,
4615   // so say that CUDA templates are either external (for kernels) or internal.
4616   // This lets llvm perform aggressive inter-procedural optimizations. For
4617   // -fgpu-rdc case, device function calls across multiple TU's are allowed,
4618   // therefore we need to follow the normal linkage paradigm.
4619   if (Linkage == GVA_StrongODR) {
4620     if (getLangOpts().AppleKext)
4621       return llvm::Function::ExternalLinkage;
4622     if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice &&
4623         !getLangOpts().GPURelocatableDeviceCode)
4624       return D->hasAttr<CUDAGlobalAttr>() ? llvm::Function::ExternalLinkage
4625                                           : llvm::Function::InternalLinkage;
4626     return llvm::Function::WeakODRLinkage;
4627   }
4628 
4629   // C++ doesn't have tentative definitions and thus cannot have common
4630   // linkage.
4631   if (!getLangOpts().CPlusPlus && isa<VarDecl>(D) &&
4632       !isVarDeclStrongDefinition(Context, *this, cast<VarDecl>(D),
4633                                  CodeGenOpts.NoCommon))
4634     return llvm::GlobalVariable::CommonLinkage;
4635 
4636   // selectany symbols are externally visible, so use weak instead of
4637   // linkonce.  MSVC optimizes away references to const selectany globals, so
4638   // all definitions should be the same and ODR linkage should be used.
4639   // http://msdn.microsoft.com/en-us/library/5tkz6s71.aspx
4640   if (D->hasAttr<SelectAnyAttr>())
4641     return llvm::GlobalVariable::WeakODRLinkage;
4642 
4643   // Otherwise, we have strong external linkage.
4644   assert(Linkage == GVA_StrongExternal);
4645   return llvm::GlobalVariable::ExternalLinkage;
4646 }
4647 
4648 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageVarDefinition(
4649     const VarDecl *VD, bool IsConstant) {
4650   GVALinkage Linkage = getContext().GetGVALinkageForVariable(VD);
4651   return getLLVMLinkageForDeclarator(VD, Linkage, IsConstant);
4652 }
4653 
4654 /// Replace the uses of a function that was declared with a non-proto type.
4655 /// We want to silently drop extra arguments from call sites
4656 static void replaceUsesOfNonProtoConstant(llvm::Constant *old,
4657                                           llvm::Function *newFn) {
4658   // Fast path.
4659   if (old->use_empty()) return;
4660 
4661   llvm::Type *newRetTy = newFn->getReturnType();
4662   SmallVector<llvm::Value*, 4> newArgs;
4663 
4664   for (llvm::Value::use_iterator ui = old->use_begin(), ue = old->use_end();
4665          ui != ue; ) {
4666     llvm::Value::use_iterator use = ui++; // Increment before the use is erased.
4667     llvm::User *user = use->getUser();
4668 
4669     // Recognize and replace uses of bitcasts.  Most calls to
4670     // unprototyped functions will use bitcasts.
4671     if (auto *bitcast = dyn_cast<llvm::ConstantExpr>(user)) {
4672       if (bitcast->getOpcode() == llvm::Instruction::BitCast)
4673         replaceUsesOfNonProtoConstant(bitcast, newFn);
4674       continue;
4675     }
4676 
4677     // Recognize calls to the function.
4678     llvm::CallBase *callSite = dyn_cast<llvm::CallBase>(user);
4679     if (!callSite) continue;
4680     if (!callSite->isCallee(&*use))
4681       continue;
4682 
4683     // If the return types don't match exactly, then we can't
4684     // transform this call unless it's dead.
4685     if (callSite->getType() != newRetTy && !callSite->use_empty())
4686       continue;
4687 
4688     // Get the call site's attribute list.
4689     SmallVector<llvm::AttributeSet, 8> newArgAttrs;
4690     llvm::AttributeList oldAttrs = callSite->getAttributes();
4691 
4692     // If the function was passed too few arguments, don't transform.
4693     unsigned newNumArgs = newFn->arg_size();
4694     if (callSite->arg_size() < newNumArgs)
4695       continue;
4696 
4697     // If extra arguments were passed, we silently drop them.
4698     // If any of the types mismatch, we don't transform.
4699     unsigned argNo = 0;
4700     bool dontTransform = false;
4701     for (llvm::Argument &A : newFn->args()) {
4702       if (callSite->getArgOperand(argNo)->getType() != A.getType()) {
4703         dontTransform = true;
4704         break;
4705       }
4706 
4707       // Add any parameter attributes.
4708       newArgAttrs.push_back(oldAttrs.getParamAttributes(argNo));
4709       argNo++;
4710     }
4711     if (dontTransform)
4712       continue;
4713 
4714     // Okay, we can transform this.  Create the new call instruction and copy
4715     // over the required information.
4716     newArgs.append(callSite->arg_begin(), callSite->arg_begin() + argNo);
4717 
4718     // Copy over any operand bundles.
4719     SmallVector<llvm::OperandBundleDef, 1> newBundles;
4720     callSite->getOperandBundlesAsDefs(newBundles);
4721 
4722     llvm::CallBase *newCall;
4723     if (dyn_cast<llvm::CallInst>(callSite)) {
4724       newCall =
4725           llvm::CallInst::Create(newFn, newArgs, newBundles, "", callSite);
4726     } else {
4727       auto *oldInvoke = cast<llvm::InvokeInst>(callSite);
4728       newCall = llvm::InvokeInst::Create(newFn, oldInvoke->getNormalDest(),
4729                                          oldInvoke->getUnwindDest(), newArgs,
4730                                          newBundles, "", callSite);
4731     }
4732     newArgs.clear(); // for the next iteration
4733 
4734     if (!newCall->getType()->isVoidTy())
4735       newCall->takeName(callSite);
4736     newCall->setAttributes(llvm::AttributeList::get(
4737         newFn->getContext(), oldAttrs.getFnAttributes(),
4738         oldAttrs.getRetAttributes(), newArgAttrs));
4739     newCall->setCallingConv(callSite->getCallingConv());
4740 
4741     // Finally, remove the old call, replacing any uses with the new one.
4742     if (!callSite->use_empty())
4743       callSite->replaceAllUsesWith(newCall);
4744 
4745     // Copy debug location attached to CI.
4746     if (callSite->getDebugLoc())
4747       newCall->setDebugLoc(callSite->getDebugLoc());
4748 
4749     callSite->eraseFromParent();
4750   }
4751 }
4752 
4753 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we
4754 /// implement a function with no prototype, e.g. "int foo() {}".  If there are
4755 /// existing call uses of the old function in the module, this adjusts them to
4756 /// call the new function directly.
4757 ///
4758 /// This is not just a cleanup: the always_inline pass requires direct calls to
4759 /// functions to be able to inline them.  If there is a bitcast in the way, it
4760 /// won't inline them.  Instcombine normally deletes these calls, but it isn't
4761 /// run at -O0.
4762 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
4763                                                       llvm::Function *NewFn) {
4764   // If we're redefining a global as a function, don't transform it.
4765   if (!isa<llvm::Function>(Old)) return;
4766 
4767   replaceUsesOfNonProtoConstant(Old, NewFn);
4768 }
4769 
4770 void CodeGenModule::HandleCXXStaticMemberVarInstantiation(VarDecl *VD) {
4771   auto DK = VD->isThisDeclarationADefinition();
4772   if (DK == VarDecl::Definition && VD->hasAttr<DLLImportAttr>())
4773     return;
4774 
4775   TemplateSpecializationKind TSK = VD->getTemplateSpecializationKind();
4776   // If we have a definition, this might be a deferred decl. If the
4777   // instantiation is explicit, make sure we emit it at the end.
4778   if (VD->getDefinition() && TSK == TSK_ExplicitInstantiationDefinition)
4779     GetAddrOfGlobalVar(VD);
4780 
4781   EmitTopLevelDecl(VD);
4782 }
4783 
4784 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD,
4785                                                  llvm::GlobalValue *GV) {
4786   const auto *D = cast<FunctionDecl>(GD.getDecl());
4787 
4788   // Compute the function info and LLVM type.
4789   const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
4790   llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
4791 
4792   // Get or create the prototype for the function.
4793   if (!GV || (GV->getValueType() != Ty))
4794     GV = cast<llvm::GlobalValue>(GetAddrOfFunction(GD, Ty, /*ForVTable=*/false,
4795                                                    /*DontDefer=*/true,
4796                                                    ForDefinition));
4797 
4798   // Already emitted.
4799   if (!GV->isDeclaration())
4800     return;
4801 
4802   // We need to set linkage and visibility on the function before
4803   // generating code for it because various parts of IR generation
4804   // want to propagate this information down (e.g. to local static
4805   // declarations).
4806   auto *Fn = cast<llvm::Function>(GV);
4807   setFunctionLinkage(GD, Fn);
4808 
4809   // FIXME: this is redundant with part of setFunctionDefinitionAttributes
4810   setGVProperties(Fn, GD);
4811 
4812   MaybeHandleStaticInExternC(D, Fn);
4813 
4814   maybeSetTrivialComdat(*D, *Fn);
4815 
4816   // Set CodeGen attributes that represent floating point environment.
4817   setLLVMFunctionFEnvAttributes(D, Fn);
4818 
4819   CodeGenFunction(*this).GenerateCode(GD, Fn, FI);
4820 
4821   setNonAliasAttributes(GD, Fn);
4822   SetLLVMFunctionAttributesForDefinition(D, Fn);
4823 
4824   if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>())
4825     AddGlobalCtor(Fn, CA->getPriority());
4826   if (const DestructorAttr *DA = D->getAttr<DestructorAttr>())
4827     AddGlobalDtor(Fn, DA->getPriority(), true);
4828   if (D->hasAttr<AnnotateAttr>())
4829     AddGlobalAnnotations(D, Fn);
4830 }
4831 
4832 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) {
4833   const auto *D = cast<ValueDecl>(GD.getDecl());
4834   const AliasAttr *AA = D->getAttr<AliasAttr>();
4835   assert(AA && "Not an alias?");
4836 
4837   StringRef MangledName = getMangledName(GD);
4838 
4839   if (AA->getAliasee() == MangledName) {
4840     Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0;
4841     return;
4842   }
4843 
4844   // If there is a definition in the module, then it wins over the alias.
4845   // This is dubious, but allow it to be safe.  Just ignore the alias.
4846   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
4847   if (Entry && !Entry->isDeclaration())
4848     return;
4849 
4850   Aliases.push_back(GD);
4851 
4852   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
4853 
4854   // Create a reference to the named value.  This ensures that it is emitted
4855   // if a deferred decl.
4856   llvm::Constant *Aliasee;
4857   llvm::GlobalValue::LinkageTypes LT;
4858   if (isa<llvm::FunctionType>(DeclTy)) {
4859     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GD,
4860                                       /*ForVTable=*/false);
4861     LT = getFunctionLinkage(GD);
4862   } else {
4863     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), DeclTy, 0,
4864                                     /*D=*/nullptr);
4865     if (const auto *VD = dyn_cast<VarDecl>(GD.getDecl()))
4866       LT = getLLVMLinkageVarDefinition(VD, D->getType().isConstQualified());
4867     else
4868       LT = getFunctionLinkage(GD);
4869   }
4870 
4871   // Create the new alias itself, but don't set a name yet.
4872   unsigned AS = Aliasee->getType()->getPointerAddressSpace();
4873   auto *GA =
4874       llvm::GlobalAlias::create(DeclTy, AS, LT, "", Aliasee, &getModule());
4875 
4876   if (Entry) {
4877     if (GA->getAliasee() == Entry) {
4878       Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0;
4879       return;
4880     }
4881 
4882     assert(Entry->isDeclaration());
4883 
4884     // If there is a declaration in the module, then we had an extern followed
4885     // by the alias, as in:
4886     //   extern int test6();
4887     //   ...
4888     //   int test6() __attribute__((alias("test7")));
4889     //
4890     // Remove it and replace uses of it with the alias.
4891     GA->takeName(Entry);
4892 
4893     Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA,
4894                                                           Entry->getType()));
4895     Entry->eraseFromParent();
4896   } else {
4897     GA->setName(MangledName);
4898   }
4899 
4900   // Set attributes which are particular to an alias; this is a
4901   // specialization of the attributes which may be set on a global
4902   // variable/function.
4903   if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakRefAttr>() ||
4904       D->isWeakImported()) {
4905     GA->setLinkage(llvm::Function::WeakAnyLinkage);
4906   }
4907 
4908   if (const auto *VD = dyn_cast<VarDecl>(D))
4909     if (VD->getTLSKind())
4910       setTLSMode(GA, *VD);
4911 
4912   SetCommonAttributes(GD, GA);
4913 }
4914 
4915 void CodeGenModule::emitIFuncDefinition(GlobalDecl GD) {
4916   const auto *D = cast<ValueDecl>(GD.getDecl());
4917   const IFuncAttr *IFA = D->getAttr<IFuncAttr>();
4918   assert(IFA && "Not an ifunc?");
4919 
4920   StringRef MangledName = getMangledName(GD);
4921 
4922   if (IFA->getResolver() == MangledName) {
4923     Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1;
4924     return;
4925   }
4926 
4927   // Report an error if some definition overrides ifunc.
4928   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
4929   if (Entry && !Entry->isDeclaration()) {
4930     GlobalDecl OtherGD;
4931     if (lookupRepresentativeDecl(MangledName, OtherGD) &&
4932         DiagnosedConflictingDefinitions.insert(GD).second) {
4933       Diags.Report(D->getLocation(), diag::err_duplicate_mangled_name)
4934           << MangledName;
4935       Diags.Report(OtherGD.getDecl()->getLocation(),
4936                    diag::note_previous_definition);
4937     }
4938     return;
4939   }
4940 
4941   Aliases.push_back(GD);
4942 
4943   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
4944   llvm::Constant *Resolver =
4945       GetOrCreateLLVMFunction(IFA->getResolver(), DeclTy, GD,
4946                               /*ForVTable=*/false);
4947   llvm::GlobalIFunc *GIF =
4948       llvm::GlobalIFunc::create(DeclTy, 0, llvm::Function::ExternalLinkage,
4949                                 "", Resolver, &getModule());
4950   if (Entry) {
4951     if (GIF->getResolver() == Entry) {
4952       Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1;
4953       return;
4954     }
4955     assert(Entry->isDeclaration());
4956 
4957     // If there is a declaration in the module, then we had an extern followed
4958     // by the ifunc, as in:
4959     //   extern int test();
4960     //   ...
4961     //   int test() __attribute__((ifunc("resolver")));
4962     //
4963     // Remove it and replace uses of it with the ifunc.
4964     GIF->takeName(Entry);
4965 
4966     Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GIF,
4967                                                           Entry->getType()));
4968     Entry->eraseFromParent();
4969   } else
4970     GIF->setName(MangledName);
4971 
4972   SetCommonAttributes(GD, GIF);
4973 }
4974 
4975 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,
4976                                             ArrayRef<llvm::Type*> Tys) {
4977   return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID,
4978                                          Tys);
4979 }
4980 
4981 static llvm::StringMapEntry<llvm::GlobalVariable *> &
4982 GetConstantCFStringEntry(llvm::StringMap<llvm::GlobalVariable *> &Map,
4983                          const StringLiteral *Literal, bool TargetIsLSB,
4984                          bool &IsUTF16, unsigned &StringLength) {
4985   StringRef String = Literal->getString();
4986   unsigned NumBytes = String.size();
4987 
4988   // Check for simple case.
4989   if (!Literal->containsNonAsciiOrNull()) {
4990     StringLength = NumBytes;
4991     return *Map.insert(std::make_pair(String, nullptr)).first;
4992   }
4993 
4994   // Otherwise, convert the UTF8 literals into a string of shorts.
4995   IsUTF16 = true;
4996 
4997   SmallVector<llvm::UTF16, 128> ToBuf(NumBytes + 1); // +1 for ending nulls.
4998   const llvm::UTF8 *FromPtr = (const llvm::UTF8 *)String.data();
4999   llvm::UTF16 *ToPtr = &ToBuf[0];
5000 
5001   (void)llvm::ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, &ToPtr,
5002                                  ToPtr + NumBytes, llvm::strictConversion);
5003 
5004   // ConvertUTF8toUTF16 returns the length in ToPtr.
5005   StringLength = ToPtr - &ToBuf[0];
5006 
5007   // Add an explicit null.
5008   *ToPtr = 0;
5009   return *Map.insert(std::make_pair(
5010                          StringRef(reinterpret_cast<const char *>(ToBuf.data()),
5011                                    (StringLength + 1) * 2),
5012                          nullptr)).first;
5013 }
5014 
5015 ConstantAddress
5016 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) {
5017   unsigned StringLength = 0;
5018   bool isUTF16 = false;
5019   llvm::StringMapEntry<llvm::GlobalVariable *> &Entry =
5020       GetConstantCFStringEntry(CFConstantStringMap, Literal,
5021                                getDataLayout().isLittleEndian(), isUTF16,
5022                                StringLength);
5023 
5024   if (auto *C = Entry.second)
5025     return ConstantAddress(C, CharUnits::fromQuantity(C->getAlignment()));
5026 
5027   llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty);
5028   llvm::Constant *Zeros[] = { Zero, Zero };
5029 
5030   const ASTContext &Context = getContext();
5031   const llvm::Triple &Triple = getTriple();
5032 
5033   const auto CFRuntime = getLangOpts().CFRuntime;
5034   const bool IsSwiftABI =
5035       static_cast<unsigned>(CFRuntime) >=
5036       static_cast<unsigned>(LangOptions::CoreFoundationABI::Swift);
5037   const bool IsSwift4_1 = CFRuntime == LangOptions::CoreFoundationABI::Swift4_1;
5038 
5039   // If we don't already have it, get __CFConstantStringClassReference.
5040   if (!CFConstantStringClassRef) {
5041     const char *CFConstantStringClassName = "__CFConstantStringClassReference";
5042     llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
5043     Ty = llvm::ArrayType::get(Ty, 0);
5044 
5045     switch (CFRuntime) {
5046     default: break;
5047     case LangOptions::CoreFoundationABI::Swift: LLVM_FALLTHROUGH;
5048     case LangOptions::CoreFoundationABI::Swift5_0:
5049       CFConstantStringClassName =
5050           Triple.isOSDarwin() ? "$s15SwiftFoundation19_NSCFConstantStringCN"
5051                               : "$s10Foundation19_NSCFConstantStringCN";
5052       Ty = IntPtrTy;
5053       break;
5054     case LangOptions::CoreFoundationABI::Swift4_2:
5055       CFConstantStringClassName =
5056           Triple.isOSDarwin() ? "$S15SwiftFoundation19_NSCFConstantStringCN"
5057                               : "$S10Foundation19_NSCFConstantStringCN";
5058       Ty = IntPtrTy;
5059       break;
5060     case LangOptions::CoreFoundationABI::Swift4_1:
5061       CFConstantStringClassName =
5062           Triple.isOSDarwin() ? "__T015SwiftFoundation19_NSCFConstantStringCN"
5063                               : "__T010Foundation19_NSCFConstantStringCN";
5064       Ty = IntPtrTy;
5065       break;
5066     }
5067 
5068     llvm::Constant *C = CreateRuntimeVariable(Ty, CFConstantStringClassName);
5069 
5070     if (Triple.isOSBinFormatELF() || Triple.isOSBinFormatCOFF()) {
5071       llvm::GlobalValue *GV = nullptr;
5072 
5073       if ((GV = dyn_cast<llvm::GlobalValue>(C))) {
5074         IdentifierInfo &II = Context.Idents.get(GV->getName());
5075         TranslationUnitDecl *TUDecl = Context.getTranslationUnitDecl();
5076         DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl);
5077 
5078         const VarDecl *VD = nullptr;
5079         for (const auto *Result : DC->lookup(&II))
5080           if ((VD = dyn_cast<VarDecl>(Result)))
5081             break;
5082 
5083         if (Triple.isOSBinFormatELF()) {
5084           if (!VD)
5085             GV->setLinkage(llvm::GlobalValue::ExternalLinkage);
5086         } else {
5087           GV->setLinkage(llvm::GlobalValue::ExternalLinkage);
5088           if (!VD || !VD->hasAttr<DLLExportAttr>())
5089             GV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass);
5090           else
5091             GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass);
5092         }
5093 
5094         setDSOLocal(GV);
5095       }
5096     }
5097 
5098     // Decay array -> ptr
5099     CFConstantStringClassRef =
5100         IsSwiftABI ? llvm::ConstantExpr::getPtrToInt(C, Ty)
5101                    : llvm::ConstantExpr::getGetElementPtr(Ty, C, Zeros);
5102   }
5103 
5104   QualType CFTy = Context.getCFConstantStringType();
5105 
5106   auto *STy = cast<llvm::StructType>(getTypes().ConvertType(CFTy));
5107 
5108   ConstantInitBuilder Builder(*this);
5109   auto Fields = Builder.beginStruct(STy);
5110 
5111   // Class pointer.
5112   Fields.add(cast<llvm::ConstantExpr>(CFConstantStringClassRef));
5113 
5114   // Flags.
5115   if (IsSwiftABI) {
5116     Fields.addInt(IntPtrTy, IsSwift4_1 ? 0x05 : 0x01);
5117     Fields.addInt(Int64Ty, isUTF16 ? 0x07d0 : 0x07c8);
5118   } else {
5119     Fields.addInt(IntTy, isUTF16 ? 0x07d0 : 0x07C8);
5120   }
5121 
5122   // String pointer.
5123   llvm::Constant *C = nullptr;
5124   if (isUTF16) {
5125     auto Arr = llvm::makeArrayRef(
5126         reinterpret_cast<uint16_t *>(const_cast<char *>(Entry.first().data())),
5127         Entry.first().size() / 2);
5128     C = llvm::ConstantDataArray::get(VMContext, Arr);
5129   } else {
5130     C = llvm::ConstantDataArray::getString(VMContext, Entry.first());
5131   }
5132 
5133   // Note: -fwritable-strings doesn't make the backing store strings of
5134   // CFStrings writable. (See <rdar://problem/10657500>)
5135   auto *GV =
5136       new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true,
5137                                llvm::GlobalValue::PrivateLinkage, C, ".str");
5138   GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
5139   // Don't enforce the target's minimum global alignment, since the only use
5140   // of the string is via this class initializer.
5141   CharUnits Align = isUTF16 ? Context.getTypeAlignInChars(Context.ShortTy)
5142                             : Context.getTypeAlignInChars(Context.CharTy);
5143   GV->setAlignment(Align.getAsAlign());
5144 
5145   // FIXME: We set the section explicitly to avoid a bug in ld64 224.1.
5146   // Without it LLVM can merge the string with a non unnamed_addr one during
5147   // LTO.  Doing that changes the section it ends in, which surprises ld64.
5148   if (Triple.isOSBinFormatMachO())
5149     GV->setSection(isUTF16 ? "__TEXT,__ustring"
5150                            : "__TEXT,__cstring,cstring_literals");
5151   // Make sure the literal ends up in .rodata to allow for safe ICF and for
5152   // the static linker to adjust permissions to read-only later on.
5153   else if (Triple.isOSBinFormatELF())
5154     GV->setSection(".rodata");
5155 
5156   // String.
5157   llvm::Constant *Str =
5158       llvm::ConstantExpr::getGetElementPtr(GV->getValueType(), GV, Zeros);
5159 
5160   if (isUTF16)
5161     // Cast the UTF16 string to the correct type.
5162     Str = llvm::ConstantExpr::getBitCast(Str, Int8PtrTy);
5163   Fields.add(Str);
5164 
5165   // String length.
5166   llvm::IntegerType *LengthTy =
5167       llvm::IntegerType::get(getModule().getContext(),
5168                              Context.getTargetInfo().getLongWidth());
5169   if (IsSwiftABI) {
5170     if (CFRuntime == LangOptions::CoreFoundationABI::Swift4_1 ||
5171         CFRuntime == LangOptions::CoreFoundationABI::Swift4_2)
5172       LengthTy = Int32Ty;
5173     else
5174       LengthTy = IntPtrTy;
5175   }
5176   Fields.addInt(LengthTy, StringLength);
5177 
5178   // Swift ABI requires 8-byte alignment to ensure that the _Atomic(uint64_t) is
5179   // properly aligned on 32-bit platforms.
5180   CharUnits Alignment =
5181       IsSwiftABI ? Context.toCharUnitsFromBits(64) : getPointerAlign();
5182 
5183   // The struct.
5184   GV = Fields.finishAndCreateGlobal("_unnamed_cfstring_", Alignment,
5185                                     /*isConstant=*/false,
5186                                     llvm::GlobalVariable::PrivateLinkage);
5187   GV->addAttribute("objc_arc_inert");
5188   switch (Triple.getObjectFormat()) {
5189   case llvm::Triple::UnknownObjectFormat:
5190     llvm_unreachable("unknown file format");
5191   case llvm::Triple::GOFF:
5192     llvm_unreachable("GOFF is not yet implemented");
5193   case llvm::Triple::XCOFF:
5194     llvm_unreachable("XCOFF is not yet implemented");
5195   case llvm::Triple::COFF:
5196   case llvm::Triple::ELF:
5197   case llvm::Triple::Wasm:
5198     GV->setSection("cfstring");
5199     break;
5200   case llvm::Triple::MachO:
5201     GV->setSection("__DATA,__cfstring");
5202     break;
5203   }
5204   Entry.second = GV;
5205 
5206   return ConstantAddress(GV, Alignment);
5207 }
5208 
5209 bool CodeGenModule::getExpressionLocationsEnabled() const {
5210   return !CodeGenOpts.EmitCodeView || CodeGenOpts.DebugColumnInfo;
5211 }
5212 
5213 QualType CodeGenModule::getObjCFastEnumerationStateType() {
5214   if (ObjCFastEnumerationStateType.isNull()) {
5215     RecordDecl *D = Context.buildImplicitRecord("__objcFastEnumerationState");
5216     D->startDefinition();
5217 
5218     QualType FieldTypes[] = {
5219       Context.UnsignedLongTy,
5220       Context.getPointerType(Context.getObjCIdType()),
5221       Context.getPointerType(Context.UnsignedLongTy),
5222       Context.getConstantArrayType(Context.UnsignedLongTy,
5223                            llvm::APInt(32, 5), nullptr, ArrayType::Normal, 0)
5224     };
5225 
5226     for (size_t i = 0; i < 4; ++i) {
5227       FieldDecl *Field = FieldDecl::Create(Context,
5228                                            D,
5229                                            SourceLocation(),
5230                                            SourceLocation(), nullptr,
5231                                            FieldTypes[i], /*TInfo=*/nullptr,
5232                                            /*BitWidth=*/nullptr,
5233                                            /*Mutable=*/false,
5234                                            ICIS_NoInit);
5235       Field->setAccess(AS_public);
5236       D->addDecl(Field);
5237     }
5238 
5239     D->completeDefinition();
5240     ObjCFastEnumerationStateType = Context.getTagDeclType(D);
5241   }
5242 
5243   return ObjCFastEnumerationStateType;
5244 }
5245 
5246 llvm::Constant *
5247 CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) {
5248   assert(!E->getType()->isPointerType() && "Strings are always arrays");
5249 
5250   // Don't emit it as the address of the string, emit the string data itself
5251   // as an inline array.
5252   if (E->getCharByteWidth() == 1) {
5253     SmallString<64> Str(E->getString());
5254 
5255     // Resize the string to the right size, which is indicated by its type.
5256     const ConstantArrayType *CAT = Context.getAsConstantArrayType(E->getType());
5257     Str.resize(CAT->getSize().getZExtValue());
5258     return llvm::ConstantDataArray::getString(VMContext, Str, false);
5259   }
5260 
5261   auto *AType = cast<llvm::ArrayType>(getTypes().ConvertType(E->getType()));
5262   llvm::Type *ElemTy = AType->getElementType();
5263   unsigned NumElements = AType->getNumElements();
5264 
5265   // Wide strings have either 2-byte or 4-byte elements.
5266   if (ElemTy->getPrimitiveSizeInBits() == 16) {
5267     SmallVector<uint16_t, 32> Elements;
5268     Elements.reserve(NumElements);
5269 
5270     for(unsigned i = 0, e = E->getLength(); i != e; ++i)
5271       Elements.push_back(E->getCodeUnit(i));
5272     Elements.resize(NumElements);
5273     return llvm::ConstantDataArray::get(VMContext, Elements);
5274   }
5275 
5276   assert(ElemTy->getPrimitiveSizeInBits() == 32);
5277   SmallVector<uint32_t, 32> Elements;
5278   Elements.reserve(NumElements);
5279 
5280   for(unsigned i = 0, e = E->getLength(); i != e; ++i)
5281     Elements.push_back(E->getCodeUnit(i));
5282   Elements.resize(NumElements);
5283   return llvm::ConstantDataArray::get(VMContext, Elements);
5284 }
5285 
5286 static llvm::GlobalVariable *
5287 GenerateStringLiteral(llvm::Constant *C, llvm::GlobalValue::LinkageTypes LT,
5288                       CodeGenModule &CGM, StringRef GlobalName,
5289                       CharUnits Alignment) {
5290   unsigned AddrSpace = CGM.getContext().getTargetAddressSpace(
5291       CGM.GetGlobalConstantAddressSpace());
5292 
5293   llvm::Module &M = CGM.getModule();
5294   // Create a global variable for this string
5295   auto *GV = new llvm::GlobalVariable(
5296       M, C->getType(), !CGM.getLangOpts().WritableStrings, LT, C, GlobalName,
5297       nullptr, llvm::GlobalVariable::NotThreadLocal, AddrSpace);
5298   GV->setAlignment(Alignment.getAsAlign());
5299   GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
5300   if (GV->isWeakForLinker()) {
5301     assert(CGM.supportsCOMDAT() && "Only COFF uses weak string literals");
5302     GV->setComdat(M.getOrInsertComdat(GV->getName()));
5303   }
5304   CGM.setDSOLocal(GV);
5305 
5306   return GV;
5307 }
5308 
5309 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a
5310 /// constant array for the given string literal.
5311 ConstantAddress
5312 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S,
5313                                                   StringRef Name) {
5314   CharUnits Alignment = getContext().getAlignOfGlobalVarInChars(S->getType());
5315 
5316   llvm::Constant *C = GetConstantArrayFromStringLiteral(S);
5317   llvm::GlobalVariable **Entry = nullptr;
5318   if (!LangOpts.WritableStrings) {
5319     Entry = &ConstantStringMap[C];
5320     if (auto GV = *Entry) {
5321       if (Alignment.getQuantity() > GV->getAlignment())
5322         GV->setAlignment(Alignment.getAsAlign());
5323       return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV),
5324                              Alignment);
5325     }
5326   }
5327 
5328   SmallString<256> MangledNameBuffer;
5329   StringRef GlobalVariableName;
5330   llvm::GlobalValue::LinkageTypes LT;
5331 
5332   // Mangle the string literal if that's how the ABI merges duplicate strings.
5333   // Don't do it if they are writable, since we don't want writes in one TU to
5334   // affect strings in another.
5335   if (getCXXABI().getMangleContext().shouldMangleStringLiteral(S) &&
5336       !LangOpts.WritableStrings) {
5337     llvm::raw_svector_ostream Out(MangledNameBuffer);
5338     getCXXABI().getMangleContext().mangleStringLiteral(S, Out);
5339     LT = llvm::GlobalValue::LinkOnceODRLinkage;
5340     GlobalVariableName = MangledNameBuffer;
5341   } else {
5342     LT = llvm::GlobalValue::PrivateLinkage;
5343     GlobalVariableName = Name;
5344   }
5345 
5346   auto GV = GenerateStringLiteral(C, LT, *this, GlobalVariableName, Alignment);
5347   if (Entry)
5348     *Entry = GV;
5349 
5350   SanitizerMD->reportGlobalToASan(GV, S->getStrTokenLoc(0), "<string literal>",
5351                                   QualType());
5352 
5353   return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV),
5354                          Alignment);
5355 }
5356 
5357 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant
5358 /// array for the given ObjCEncodeExpr node.
5359 ConstantAddress
5360 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) {
5361   std::string Str;
5362   getContext().getObjCEncodingForType(E->getEncodedType(), Str);
5363 
5364   return GetAddrOfConstantCString(Str);
5365 }
5366 
5367 /// GetAddrOfConstantCString - Returns a pointer to a character array containing
5368 /// the literal and a terminating '\0' character.
5369 /// The result has pointer to array type.
5370 ConstantAddress CodeGenModule::GetAddrOfConstantCString(
5371     const std::string &Str, const char *GlobalName) {
5372   StringRef StrWithNull(Str.c_str(), Str.size() + 1);
5373   CharUnits Alignment =
5374     getContext().getAlignOfGlobalVarInChars(getContext().CharTy);
5375 
5376   llvm::Constant *C =
5377       llvm::ConstantDataArray::getString(getLLVMContext(), StrWithNull, false);
5378 
5379   // Don't share any string literals if strings aren't constant.
5380   llvm::GlobalVariable **Entry = nullptr;
5381   if (!LangOpts.WritableStrings) {
5382     Entry = &ConstantStringMap[C];
5383     if (auto GV = *Entry) {
5384       if (Alignment.getQuantity() > GV->getAlignment())
5385         GV->setAlignment(Alignment.getAsAlign());
5386       return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV),
5387                              Alignment);
5388     }
5389   }
5390 
5391   // Get the default prefix if a name wasn't specified.
5392   if (!GlobalName)
5393     GlobalName = ".str";
5394   // Create a global variable for this.
5395   auto GV = GenerateStringLiteral(C, llvm::GlobalValue::PrivateLinkage, *this,
5396                                   GlobalName, Alignment);
5397   if (Entry)
5398     *Entry = GV;
5399 
5400   return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV),
5401                          Alignment);
5402 }
5403 
5404 ConstantAddress CodeGenModule::GetAddrOfGlobalTemporary(
5405     const MaterializeTemporaryExpr *E, const Expr *Init) {
5406   assert((E->getStorageDuration() == SD_Static ||
5407           E->getStorageDuration() == SD_Thread) && "not a global temporary");
5408   const auto *VD = cast<VarDecl>(E->getExtendingDecl());
5409 
5410   // If we're not materializing a subobject of the temporary, keep the
5411   // cv-qualifiers from the type of the MaterializeTemporaryExpr.
5412   QualType MaterializedType = Init->getType();
5413   if (Init == E->getSubExpr())
5414     MaterializedType = E->getType();
5415 
5416   CharUnits Align = getContext().getTypeAlignInChars(MaterializedType);
5417 
5418   auto InsertResult = MaterializedGlobalTemporaryMap.insert({E, nullptr});
5419   if (!InsertResult.second) {
5420     // We've seen this before: either we already created it or we're in the
5421     // process of doing so.
5422     if (!InsertResult.first->second) {
5423       // We recursively re-entered this function, probably during emission of
5424       // the initializer. Create a placeholder. We'll clean this up in the
5425       // outer call, at the end of this function.
5426       llvm::Type *Type = getTypes().ConvertTypeForMem(MaterializedType);
5427       InsertResult.first->second = new llvm::GlobalVariable(
5428           getModule(), Type, false, llvm::GlobalVariable::InternalLinkage,
5429           nullptr);
5430     }
5431     return ConstantAddress(InsertResult.first->second, Align);
5432   }
5433 
5434   // FIXME: If an externally-visible declaration extends multiple temporaries,
5435   // we need to give each temporary the same name in every translation unit (and
5436   // we also need to make the temporaries externally-visible).
5437   SmallString<256> Name;
5438   llvm::raw_svector_ostream Out(Name);
5439   getCXXABI().getMangleContext().mangleReferenceTemporary(
5440       VD, E->getManglingNumber(), Out);
5441 
5442   APValue *Value = nullptr;
5443   if (E->getStorageDuration() == SD_Static && VD && VD->evaluateValue()) {
5444     // If the initializer of the extending declaration is a constant
5445     // initializer, we should have a cached constant initializer for this
5446     // temporary. Note that this might have a different value from the value
5447     // computed by evaluating the initializer if the surrounding constant
5448     // expression modifies the temporary.
5449     Value = E->getOrCreateValue(false);
5450   }
5451 
5452   // Try evaluating it now, it might have a constant initializer.
5453   Expr::EvalResult EvalResult;
5454   if (!Value && Init->EvaluateAsRValue(EvalResult, getContext()) &&
5455       !EvalResult.hasSideEffects())
5456     Value = &EvalResult.Val;
5457 
5458   LangAS AddrSpace =
5459       VD ? GetGlobalVarAddressSpace(VD) : MaterializedType.getAddressSpace();
5460 
5461   Optional<ConstantEmitter> emitter;
5462   llvm::Constant *InitialValue = nullptr;
5463   bool Constant = false;
5464   llvm::Type *Type;
5465   if (Value) {
5466     // The temporary has a constant initializer, use it.
5467     emitter.emplace(*this);
5468     InitialValue = emitter->emitForInitializer(*Value, AddrSpace,
5469                                                MaterializedType);
5470     Constant = isTypeConstant(MaterializedType, /*ExcludeCtor*/Value);
5471     Type = InitialValue->getType();
5472   } else {
5473     // No initializer, the initialization will be provided when we
5474     // initialize the declaration which performed lifetime extension.
5475     Type = getTypes().ConvertTypeForMem(MaterializedType);
5476   }
5477 
5478   // Create a global variable for this lifetime-extended temporary.
5479   llvm::GlobalValue::LinkageTypes Linkage =
5480       getLLVMLinkageVarDefinition(VD, Constant);
5481   if (Linkage == llvm::GlobalVariable::ExternalLinkage) {
5482     const VarDecl *InitVD;
5483     if (VD->isStaticDataMember() && VD->getAnyInitializer(InitVD) &&
5484         isa<CXXRecordDecl>(InitVD->getLexicalDeclContext())) {
5485       // Temporaries defined inside a class get linkonce_odr linkage because the
5486       // class can be defined in multiple translation units.
5487       Linkage = llvm::GlobalVariable::LinkOnceODRLinkage;
5488     } else {
5489       // There is no need for this temporary to have external linkage if the
5490       // VarDecl has external linkage.
5491       Linkage = llvm::GlobalVariable::InternalLinkage;
5492     }
5493   }
5494   auto TargetAS = getContext().getTargetAddressSpace(AddrSpace);
5495   auto *GV = new llvm::GlobalVariable(
5496       getModule(), Type, Constant, Linkage, InitialValue, Name.c_str(),
5497       /*InsertBefore=*/nullptr, llvm::GlobalVariable::NotThreadLocal, TargetAS);
5498   if (emitter) emitter->finalize(GV);
5499   setGVProperties(GV, VD);
5500   GV->setAlignment(Align.getAsAlign());
5501   if (supportsCOMDAT() && GV->isWeakForLinker())
5502     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
5503   if (VD->getTLSKind())
5504     setTLSMode(GV, *VD);
5505   llvm::Constant *CV = GV;
5506   if (AddrSpace != LangAS::Default)
5507     CV = getTargetCodeGenInfo().performAddrSpaceCast(
5508         *this, GV, AddrSpace, LangAS::Default,
5509         Type->getPointerTo(
5510             getContext().getTargetAddressSpace(LangAS::Default)));
5511 
5512   // Update the map with the new temporary. If we created a placeholder above,
5513   // replace it with the new global now.
5514   llvm::Constant *&Entry = MaterializedGlobalTemporaryMap[E];
5515   if (Entry) {
5516     Entry->replaceAllUsesWith(
5517         llvm::ConstantExpr::getBitCast(CV, Entry->getType()));
5518     llvm::cast<llvm::GlobalVariable>(Entry)->eraseFromParent();
5519   }
5520   Entry = CV;
5521 
5522   return ConstantAddress(CV, Align);
5523 }
5524 
5525 /// EmitObjCPropertyImplementations - Emit information for synthesized
5526 /// properties for an implementation.
5527 void CodeGenModule::EmitObjCPropertyImplementations(const
5528                                                     ObjCImplementationDecl *D) {
5529   for (const auto *PID : D->property_impls()) {
5530     // Dynamic is just for type-checking.
5531     if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) {
5532       ObjCPropertyDecl *PD = PID->getPropertyDecl();
5533 
5534       // Determine which methods need to be implemented, some may have
5535       // been overridden. Note that ::isPropertyAccessor is not the method
5536       // we want, that just indicates if the decl came from a
5537       // property. What we want to know is if the method is defined in
5538       // this implementation.
5539       auto *Getter = PID->getGetterMethodDecl();
5540       if (!Getter || Getter->isSynthesizedAccessorStub())
5541         CodeGenFunction(*this).GenerateObjCGetter(
5542             const_cast<ObjCImplementationDecl *>(D), PID);
5543       auto *Setter = PID->getSetterMethodDecl();
5544       if (!PD->isReadOnly() && (!Setter || Setter->isSynthesizedAccessorStub()))
5545         CodeGenFunction(*this).GenerateObjCSetter(
5546                                  const_cast<ObjCImplementationDecl *>(D), PID);
5547     }
5548   }
5549 }
5550 
5551 static bool needsDestructMethod(ObjCImplementationDecl *impl) {
5552   const ObjCInterfaceDecl *iface = impl->getClassInterface();
5553   for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin();
5554        ivar; ivar = ivar->getNextIvar())
5555     if (ivar->getType().isDestructedType())
5556       return true;
5557 
5558   return false;
5559 }
5560 
5561 static bool AllTrivialInitializers(CodeGenModule &CGM,
5562                                    ObjCImplementationDecl *D) {
5563   CodeGenFunction CGF(CGM);
5564   for (ObjCImplementationDecl::init_iterator B = D->init_begin(),
5565        E = D->init_end(); B != E; ++B) {
5566     CXXCtorInitializer *CtorInitExp = *B;
5567     Expr *Init = CtorInitExp->getInit();
5568     if (!CGF.isTrivialInitializer(Init))
5569       return false;
5570   }
5571   return true;
5572 }
5573 
5574 /// EmitObjCIvarInitializations - Emit information for ivar initialization
5575 /// for an implementation.
5576 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) {
5577   // We might need a .cxx_destruct even if we don't have any ivar initializers.
5578   if (needsDestructMethod(D)) {
5579     IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct");
5580     Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
5581     ObjCMethodDecl *DTORMethod = ObjCMethodDecl::Create(
5582         getContext(), D->getLocation(), D->getLocation(), cxxSelector,
5583         getContext().VoidTy, nullptr, D,
5584         /*isInstance=*/true, /*isVariadic=*/false,
5585         /*isPropertyAccessor=*/true, /*isSynthesizedAccessorStub=*/false,
5586         /*isImplicitlyDeclared=*/true,
5587         /*isDefined=*/false, ObjCMethodDecl::Required);
5588     D->addInstanceMethod(DTORMethod);
5589     CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false);
5590     D->setHasDestructors(true);
5591   }
5592 
5593   // If the implementation doesn't have any ivar initializers, we don't need
5594   // a .cxx_construct.
5595   if (D->getNumIvarInitializers() == 0 ||
5596       AllTrivialInitializers(*this, D))
5597     return;
5598 
5599   IdentifierInfo *II = &getContext().Idents.get(".cxx_construct");
5600   Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
5601   // The constructor returns 'self'.
5602   ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(
5603       getContext(), D->getLocation(), D->getLocation(), cxxSelector,
5604       getContext().getObjCIdType(), nullptr, D, /*isInstance=*/true,
5605       /*isVariadic=*/false,
5606       /*isPropertyAccessor=*/true, /*isSynthesizedAccessorStub=*/false,
5607       /*isImplicitlyDeclared=*/true,
5608       /*isDefined=*/false, ObjCMethodDecl::Required);
5609   D->addInstanceMethod(CTORMethod);
5610   CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true);
5611   D->setHasNonZeroConstructors(true);
5612 }
5613 
5614 // EmitLinkageSpec - Emit all declarations in a linkage spec.
5615 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) {
5616   if (LSD->getLanguage() != LinkageSpecDecl::lang_c &&
5617       LSD->getLanguage() != LinkageSpecDecl::lang_cxx) {
5618     ErrorUnsupported(LSD, "linkage spec");
5619     return;
5620   }
5621 
5622   EmitDeclContext(LSD);
5623 }
5624 
5625 void CodeGenModule::EmitDeclContext(const DeclContext *DC) {
5626   for (auto *I : DC->decls()) {
5627     // Unlike other DeclContexts, the contents of an ObjCImplDecl at TU scope
5628     // are themselves considered "top-level", so EmitTopLevelDecl on an
5629     // ObjCImplDecl does not recursively visit them. We need to do that in
5630     // case they're nested inside another construct (LinkageSpecDecl /
5631     // ExportDecl) that does stop them from being considered "top-level".
5632     if (auto *OID = dyn_cast<ObjCImplDecl>(I)) {
5633       for (auto *M : OID->methods())
5634         EmitTopLevelDecl(M);
5635     }
5636 
5637     EmitTopLevelDecl(I);
5638   }
5639 }
5640 
5641 /// EmitTopLevelDecl - Emit code for a single top level declaration.
5642 void CodeGenModule::EmitTopLevelDecl(Decl *D) {
5643   // Ignore dependent declarations.
5644   if (D->isTemplated())
5645     return;
5646 
5647   // Consteval function shouldn't be emitted.
5648   if (auto *FD = dyn_cast<FunctionDecl>(D))
5649     if (FD->isConsteval())
5650       return;
5651 
5652   switch (D->getKind()) {
5653   case Decl::CXXConversion:
5654   case Decl::CXXMethod:
5655   case Decl::Function:
5656     EmitGlobal(cast<FunctionDecl>(D));
5657     // Always provide some coverage mapping
5658     // even for the functions that aren't emitted.
5659     AddDeferredUnusedCoverageMapping(D);
5660     break;
5661 
5662   case Decl::CXXDeductionGuide:
5663     // Function-like, but does not result in code emission.
5664     break;
5665 
5666   case Decl::Var:
5667   case Decl::Decomposition:
5668   case Decl::VarTemplateSpecialization:
5669     EmitGlobal(cast<VarDecl>(D));
5670     if (auto *DD = dyn_cast<DecompositionDecl>(D))
5671       for (auto *B : DD->bindings())
5672         if (auto *HD = B->getHoldingVar())
5673           EmitGlobal(HD);
5674     break;
5675 
5676   // Indirect fields from global anonymous structs and unions can be
5677   // ignored; only the actual variable requires IR gen support.
5678   case Decl::IndirectField:
5679     break;
5680 
5681   // C++ Decls
5682   case Decl::Namespace:
5683     EmitDeclContext(cast<NamespaceDecl>(D));
5684     break;
5685   case Decl::ClassTemplateSpecialization: {
5686     const auto *Spec = cast<ClassTemplateSpecializationDecl>(D);
5687     if (CGDebugInfo *DI = getModuleDebugInfo())
5688       if (Spec->getSpecializationKind() ==
5689               TSK_ExplicitInstantiationDefinition &&
5690           Spec->hasDefinition())
5691         DI->completeTemplateDefinition(*Spec);
5692   } LLVM_FALLTHROUGH;
5693   case Decl::CXXRecord: {
5694     CXXRecordDecl *CRD = cast<CXXRecordDecl>(D);
5695     if (CGDebugInfo *DI = getModuleDebugInfo()) {
5696       if (CRD->hasDefinition())
5697         DI->EmitAndRetainType(getContext().getRecordType(cast<RecordDecl>(D)));
5698       if (auto *ES = D->getASTContext().getExternalSource())
5699         if (ES->hasExternalDefinitions(D) == ExternalASTSource::EK_Never)
5700           DI->completeUnusedClass(*CRD);
5701     }
5702     // Emit any static data members, they may be definitions.
5703     for (auto *I : CRD->decls())
5704       if (isa<VarDecl>(I) || isa<CXXRecordDecl>(I))
5705         EmitTopLevelDecl(I);
5706     break;
5707   }
5708     // No code generation needed.
5709   case Decl::UsingShadow:
5710   case Decl::ClassTemplate:
5711   case Decl::VarTemplate:
5712   case Decl::Concept:
5713   case Decl::VarTemplatePartialSpecialization:
5714   case Decl::FunctionTemplate:
5715   case Decl::TypeAliasTemplate:
5716   case Decl::Block:
5717   case Decl::Empty:
5718   case Decl::Binding:
5719     break;
5720   case Decl::Using:          // using X; [C++]
5721     if (CGDebugInfo *DI = getModuleDebugInfo())
5722         DI->EmitUsingDecl(cast<UsingDecl>(*D));
5723     break;
5724   case Decl::NamespaceAlias:
5725     if (CGDebugInfo *DI = getModuleDebugInfo())
5726         DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(*D));
5727     break;
5728   case Decl::UsingDirective: // using namespace X; [C++]
5729     if (CGDebugInfo *DI = getModuleDebugInfo())
5730       DI->EmitUsingDirective(cast<UsingDirectiveDecl>(*D));
5731     break;
5732   case Decl::CXXConstructor:
5733     getCXXABI().EmitCXXConstructors(cast<CXXConstructorDecl>(D));
5734     break;
5735   case Decl::CXXDestructor:
5736     getCXXABI().EmitCXXDestructors(cast<CXXDestructorDecl>(D));
5737     break;
5738 
5739   case Decl::StaticAssert:
5740     // Nothing to do.
5741     break;
5742 
5743   // Objective-C Decls
5744 
5745   // Forward declarations, no (immediate) code generation.
5746   case Decl::ObjCInterface:
5747   case Decl::ObjCCategory:
5748     break;
5749 
5750   case Decl::ObjCProtocol: {
5751     auto *Proto = cast<ObjCProtocolDecl>(D);
5752     if (Proto->isThisDeclarationADefinition())
5753       ObjCRuntime->GenerateProtocol(Proto);
5754     break;
5755   }
5756 
5757   case Decl::ObjCCategoryImpl:
5758     // Categories have properties but don't support synthesize so we
5759     // can ignore them here.
5760     ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D));
5761     break;
5762 
5763   case Decl::ObjCImplementation: {
5764     auto *OMD = cast<ObjCImplementationDecl>(D);
5765     EmitObjCPropertyImplementations(OMD);
5766     EmitObjCIvarInitializations(OMD);
5767     ObjCRuntime->GenerateClass(OMD);
5768     // Emit global variable debug information.
5769     if (CGDebugInfo *DI = getModuleDebugInfo())
5770       if (getCodeGenOpts().hasReducedDebugInfo())
5771         DI->getOrCreateInterfaceType(getContext().getObjCInterfaceType(
5772             OMD->getClassInterface()), OMD->getLocation());
5773     break;
5774   }
5775   case Decl::ObjCMethod: {
5776     auto *OMD = cast<ObjCMethodDecl>(D);
5777     // If this is not a prototype, emit the body.
5778     if (OMD->getBody())
5779       CodeGenFunction(*this).GenerateObjCMethod(OMD);
5780     break;
5781   }
5782   case Decl::ObjCCompatibleAlias:
5783     ObjCRuntime->RegisterAlias(cast<ObjCCompatibleAliasDecl>(D));
5784     break;
5785 
5786   case Decl::PragmaComment: {
5787     const auto *PCD = cast<PragmaCommentDecl>(D);
5788     switch (PCD->getCommentKind()) {
5789     case PCK_Unknown:
5790       llvm_unreachable("unexpected pragma comment kind");
5791     case PCK_Linker:
5792       AppendLinkerOptions(PCD->getArg());
5793       break;
5794     case PCK_Lib:
5795         AddDependentLib(PCD->getArg());
5796       break;
5797     case PCK_Compiler:
5798     case PCK_ExeStr:
5799     case PCK_User:
5800       break; // We ignore all of these.
5801     }
5802     break;
5803   }
5804 
5805   case Decl::PragmaDetectMismatch: {
5806     const auto *PDMD = cast<PragmaDetectMismatchDecl>(D);
5807     AddDetectMismatch(PDMD->getName(), PDMD->getValue());
5808     break;
5809   }
5810 
5811   case Decl::LinkageSpec:
5812     EmitLinkageSpec(cast<LinkageSpecDecl>(D));
5813     break;
5814 
5815   case Decl::FileScopeAsm: {
5816     // File-scope asm is ignored during device-side CUDA compilation.
5817     if (LangOpts.CUDA && LangOpts.CUDAIsDevice)
5818       break;
5819     // File-scope asm is ignored during device-side OpenMP compilation.
5820     if (LangOpts.OpenMPIsDevice)
5821       break;
5822     // File-scope asm is ignored during device-side SYCL compilation.
5823     if (LangOpts.SYCLIsDevice)
5824       break;
5825     auto *AD = cast<FileScopeAsmDecl>(D);
5826     getModule().appendModuleInlineAsm(AD->getAsmString()->getString());
5827     break;
5828   }
5829 
5830   case Decl::Import: {
5831     auto *Import = cast<ImportDecl>(D);
5832 
5833     // If we've already imported this module, we're done.
5834     if (!ImportedModules.insert(Import->getImportedModule()))
5835       break;
5836 
5837     // Emit debug information for direct imports.
5838     if (!Import->getImportedOwningModule()) {
5839       if (CGDebugInfo *DI = getModuleDebugInfo())
5840         DI->EmitImportDecl(*Import);
5841     }
5842 
5843     // Find all of the submodules and emit the module initializers.
5844     llvm::SmallPtrSet<clang::Module *, 16> Visited;
5845     SmallVector<clang::Module *, 16> Stack;
5846     Visited.insert(Import->getImportedModule());
5847     Stack.push_back(Import->getImportedModule());
5848 
5849     while (!Stack.empty()) {
5850       clang::Module *Mod = Stack.pop_back_val();
5851       if (!EmittedModuleInitializers.insert(Mod).second)
5852         continue;
5853 
5854       for (auto *D : Context.getModuleInitializers(Mod))
5855         EmitTopLevelDecl(D);
5856 
5857       // Visit the submodules of this module.
5858       for (clang::Module::submodule_iterator Sub = Mod->submodule_begin(),
5859                                              SubEnd = Mod->submodule_end();
5860            Sub != SubEnd; ++Sub) {
5861         // Skip explicit children; they need to be explicitly imported to emit
5862         // the initializers.
5863         if ((*Sub)->IsExplicit)
5864           continue;
5865 
5866         if (Visited.insert(*Sub).second)
5867           Stack.push_back(*Sub);
5868       }
5869     }
5870     break;
5871   }
5872 
5873   case Decl::Export:
5874     EmitDeclContext(cast<ExportDecl>(D));
5875     break;
5876 
5877   case Decl::OMPThreadPrivate:
5878     EmitOMPThreadPrivateDecl(cast<OMPThreadPrivateDecl>(D));
5879     break;
5880 
5881   case Decl::OMPAllocate:
5882     EmitOMPAllocateDecl(cast<OMPAllocateDecl>(D));
5883     break;
5884 
5885   case Decl::OMPDeclareReduction:
5886     EmitOMPDeclareReduction(cast<OMPDeclareReductionDecl>(D));
5887     break;
5888 
5889   case Decl::OMPDeclareMapper:
5890     EmitOMPDeclareMapper(cast<OMPDeclareMapperDecl>(D));
5891     break;
5892 
5893   case Decl::OMPRequires:
5894     EmitOMPRequiresDecl(cast<OMPRequiresDecl>(D));
5895     break;
5896 
5897   case Decl::Typedef:
5898   case Decl::TypeAlias: // using foo = bar; [C++11]
5899     if (CGDebugInfo *DI = getModuleDebugInfo())
5900       DI->EmitAndRetainType(
5901           getContext().getTypedefType(cast<TypedefNameDecl>(D)));
5902     break;
5903 
5904   case Decl::Record:
5905     if (CGDebugInfo *DI = getModuleDebugInfo())
5906       if (cast<RecordDecl>(D)->getDefinition())
5907         DI->EmitAndRetainType(getContext().getRecordType(cast<RecordDecl>(D)));
5908     break;
5909 
5910   case Decl::Enum:
5911     if (CGDebugInfo *DI = getModuleDebugInfo())
5912       if (cast<EnumDecl>(D)->getDefinition())
5913         DI->EmitAndRetainType(getContext().getEnumType(cast<EnumDecl>(D)));
5914     break;
5915 
5916   default:
5917     // Make sure we handled everything we should, every other kind is a
5918     // non-top-level decl.  FIXME: Would be nice to have an isTopLevelDeclKind
5919     // function. Need to recode Decl::Kind to do that easily.
5920     assert(isa<TypeDecl>(D) && "Unsupported decl kind");
5921     break;
5922   }
5923 }
5924 
5925 void CodeGenModule::AddDeferredUnusedCoverageMapping(Decl *D) {
5926   // Do we need to generate coverage mapping?
5927   if (!CodeGenOpts.CoverageMapping)
5928     return;
5929   switch (D->getKind()) {
5930   case Decl::CXXConversion:
5931   case Decl::CXXMethod:
5932   case Decl::Function:
5933   case Decl::ObjCMethod:
5934   case Decl::CXXConstructor:
5935   case Decl::CXXDestructor: {
5936     if (!cast<FunctionDecl>(D)->doesThisDeclarationHaveABody())
5937       break;
5938     SourceManager &SM = getContext().getSourceManager();
5939     if (LimitedCoverage && SM.getMainFileID() != SM.getFileID(D->getBeginLoc()))
5940       break;
5941     auto I = DeferredEmptyCoverageMappingDecls.find(D);
5942     if (I == DeferredEmptyCoverageMappingDecls.end())
5943       DeferredEmptyCoverageMappingDecls[D] = true;
5944     break;
5945   }
5946   default:
5947     break;
5948   };
5949 }
5950 
5951 void CodeGenModule::ClearUnusedCoverageMapping(const Decl *D) {
5952   // Do we need to generate coverage mapping?
5953   if (!CodeGenOpts.CoverageMapping)
5954     return;
5955   if (const auto *Fn = dyn_cast<FunctionDecl>(D)) {
5956     if (Fn->isTemplateInstantiation())
5957       ClearUnusedCoverageMapping(Fn->getTemplateInstantiationPattern());
5958   }
5959   auto I = DeferredEmptyCoverageMappingDecls.find(D);
5960   if (I == DeferredEmptyCoverageMappingDecls.end())
5961     DeferredEmptyCoverageMappingDecls[D] = false;
5962   else
5963     I->second = false;
5964 }
5965 
5966 void CodeGenModule::EmitDeferredUnusedCoverageMappings() {
5967   // We call takeVector() here to avoid use-after-free.
5968   // FIXME: DeferredEmptyCoverageMappingDecls is getting mutated because
5969   // we deserialize function bodies to emit coverage info for them, and that
5970   // deserializes more declarations. How should we handle that case?
5971   for (const auto &Entry : DeferredEmptyCoverageMappingDecls.takeVector()) {
5972     if (!Entry.second)
5973       continue;
5974     const Decl *D = Entry.first;
5975     switch (D->getKind()) {
5976     case Decl::CXXConversion:
5977     case Decl::CXXMethod:
5978     case Decl::Function:
5979     case Decl::ObjCMethod: {
5980       CodeGenPGO PGO(*this);
5981       GlobalDecl GD(cast<FunctionDecl>(D));
5982       PGO.emitEmptyCounterMapping(D, getMangledName(GD),
5983                                   getFunctionLinkage(GD));
5984       break;
5985     }
5986     case Decl::CXXConstructor: {
5987       CodeGenPGO PGO(*this);
5988       GlobalDecl GD(cast<CXXConstructorDecl>(D), Ctor_Base);
5989       PGO.emitEmptyCounterMapping(D, getMangledName(GD),
5990                                   getFunctionLinkage(GD));
5991       break;
5992     }
5993     case Decl::CXXDestructor: {
5994       CodeGenPGO PGO(*this);
5995       GlobalDecl GD(cast<CXXDestructorDecl>(D), Dtor_Base);
5996       PGO.emitEmptyCounterMapping(D, getMangledName(GD),
5997                                   getFunctionLinkage(GD));
5998       break;
5999     }
6000     default:
6001       break;
6002     };
6003   }
6004 }
6005 
6006 void CodeGenModule::EmitMainVoidAlias() {
6007   // In order to transition away from "__original_main" gracefully, emit an
6008   // alias for "main" in the no-argument case so that libc can detect when
6009   // new-style no-argument main is in used.
6010   if (llvm::Function *F = getModule().getFunction("main")) {
6011     if (!F->isDeclaration() && F->arg_size() == 0 && !F->isVarArg() &&
6012         F->getReturnType()->isIntegerTy(Context.getTargetInfo().getIntWidth()))
6013       addUsedGlobal(llvm::GlobalAlias::create("__main_void", F));
6014   }
6015 }
6016 
6017 /// Turns the given pointer into a constant.
6018 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context,
6019                                           const void *Ptr) {
6020   uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr);
6021   llvm::Type *i64 = llvm::Type::getInt64Ty(Context);
6022   return llvm::ConstantInt::get(i64, PtrInt);
6023 }
6024 
6025 static void EmitGlobalDeclMetadata(CodeGenModule &CGM,
6026                                    llvm::NamedMDNode *&GlobalMetadata,
6027                                    GlobalDecl D,
6028                                    llvm::GlobalValue *Addr) {
6029   if (!GlobalMetadata)
6030     GlobalMetadata =
6031       CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs");
6032 
6033   // TODO: should we report variant information for ctors/dtors?
6034   llvm::Metadata *Ops[] = {llvm::ConstantAsMetadata::get(Addr),
6035                            llvm::ConstantAsMetadata::get(GetPointerConstant(
6036                                CGM.getLLVMContext(), D.getDecl()))};
6037   GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops));
6038 }
6039 
6040 /// For each function which is declared within an extern "C" region and marked
6041 /// as 'used', but has internal linkage, create an alias from the unmangled
6042 /// name to the mangled name if possible. People expect to be able to refer
6043 /// to such functions with an unmangled name from inline assembly within the
6044 /// same translation unit.
6045 void CodeGenModule::EmitStaticExternCAliases() {
6046   if (!getTargetCodeGenInfo().shouldEmitStaticExternCAliases())
6047     return;
6048   for (auto &I : StaticExternCValues) {
6049     IdentifierInfo *Name = I.first;
6050     llvm::GlobalValue *Val = I.second;
6051     if (Val && !getModule().getNamedValue(Name->getName()))
6052       addCompilerUsedGlobal(llvm::GlobalAlias::create(Name->getName(), Val));
6053   }
6054 }
6055 
6056 bool CodeGenModule::lookupRepresentativeDecl(StringRef MangledName,
6057                                              GlobalDecl &Result) const {
6058   auto Res = Manglings.find(MangledName);
6059   if (Res == Manglings.end())
6060     return false;
6061   Result = Res->getValue();
6062   return true;
6063 }
6064 
6065 /// Emits metadata nodes associating all the global values in the
6066 /// current module with the Decls they came from.  This is useful for
6067 /// projects using IR gen as a subroutine.
6068 ///
6069 /// Since there's currently no way to associate an MDNode directly
6070 /// with an llvm::GlobalValue, we create a global named metadata
6071 /// with the name 'clang.global.decl.ptrs'.
6072 void CodeGenModule::EmitDeclMetadata() {
6073   llvm::NamedMDNode *GlobalMetadata = nullptr;
6074 
6075   for (auto &I : MangledDeclNames) {
6076     llvm::GlobalValue *Addr = getModule().getNamedValue(I.second);
6077     // Some mangled names don't necessarily have an associated GlobalValue
6078     // in this module, e.g. if we mangled it for DebugInfo.
6079     if (Addr)
6080       EmitGlobalDeclMetadata(*this, GlobalMetadata, I.first, Addr);
6081   }
6082 }
6083 
6084 /// Emits metadata nodes for all the local variables in the current
6085 /// function.
6086 void CodeGenFunction::EmitDeclMetadata() {
6087   if (LocalDeclMap.empty()) return;
6088 
6089   llvm::LLVMContext &Context = getLLVMContext();
6090 
6091   // Find the unique metadata ID for this name.
6092   unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr");
6093 
6094   llvm::NamedMDNode *GlobalMetadata = nullptr;
6095 
6096   for (auto &I : LocalDeclMap) {
6097     const Decl *D = I.first;
6098     llvm::Value *Addr = I.second.getPointer();
6099     if (auto *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) {
6100       llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D);
6101       Alloca->setMetadata(
6102           DeclPtrKind, llvm::MDNode::get(
6103                            Context, llvm::ValueAsMetadata::getConstant(DAddr)));
6104     } else if (auto *GV = dyn_cast<llvm::GlobalValue>(Addr)) {
6105       GlobalDecl GD = GlobalDecl(cast<VarDecl>(D));
6106       EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV);
6107     }
6108   }
6109 }
6110 
6111 void CodeGenModule::EmitVersionIdentMetadata() {
6112   llvm::NamedMDNode *IdentMetadata =
6113     TheModule.getOrInsertNamedMetadata("llvm.ident");
6114   std::string Version = getClangFullVersion();
6115   llvm::LLVMContext &Ctx = TheModule.getContext();
6116 
6117   llvm::Metadata *IdentNode[] = {llvm::MDString::get(Ctx, Version)};
6118   IdentMetadata->addOperand(llvm::MDNode::get(Ctx, IdentNode));
6119 }
6120 
6121 void CodeGenModule::EmitCommandLineMetadata() {
6122   llvm::NamedMDNode *CommandLineMetadata =
6123     TheModule.getOrInsertNamedMetadata("llvm.commandline");
6124   std::string CommandLine = getCodeGenOpts().RecordCommandLine;
6125   llvm::LLVMContext &Ctx = TheModule.getContext();
6126 
6127   llvm::Metadata *CommandLineNode[] = {llvm::MDString::get(Ctx, CommandLine)};
6128   CommandLineMetadata->addOperand(llvm::MDNode::get(Ctx, CommandLineNode));
6129 }
6130 
6131 void CodeGenModule::EmitCoverageFile() {
6132   if (getCodeGenOpts().CoverageDataFile.empty() &&
6133       getCodeGenOpts().CoverageNotesFile.empty())
6134     return;
6135 
6136   llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu");
6137   if (!CUNode)
6138     return;
6139 
6140   llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov");
6141   llvm::LLVMContext &Ctx = TheModule.getContext();
6142   auto *CoverageDataFile =
6143       llvm::MDString::get(Ctx, getCodeGenOpts().CoverageDataFile);
6144   auto *CoverageNotesFile =
6145       llvm::MDString::get(Ctx, getCodeGenOpts().CoverageNotesFile);
6146   for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) {
6147     llvm::MDNode *CU = CUNode->getOperand(i);
6148     llvm::Metadata *Elts[] = {CoverageNotesFile, CoverageDataFile, CU};
6149     GCov->addOperand(llvm::MDNode::get(Ctx, Elts));
6150   }
6151 }
6152 
6153 llvm::Constant *CodeGenModule::GetAddrOfRTTIDescriptor(QualType Ty,
6154                                                        bool ForEH) {
6155   // Return a bogus pointer if RTTI is disabled, unless it's for EH.
6156   // FIXME: should we even be calling this method if RTTI is disabled
6157   // and it's not for EH?
6158   if ((!ForEH && !getLangOpts().RTTI) || getLangOpts().CUDAIsDevice ||
6159       (getLangOpts().OpenMP && getLangOpts().OpenMPIsDevice &&
6160        getTriple().isNVPTX()))
6161     return llvm::Constant::getNullValue(Int8PtrTy);
6162 
6163   if (ForEH && Ty->isObjCObjectPointerType() &&
6164       LangOpts.ObjCRuntime.isGNUFamily())
6165     return ObjCRuntime->GetEHType(Ty);
6166 
6167   return getCXXABI().getAddrOfRTTIDescriptor(Ty);
6168 }
6169 
6170 void CodeGenModule::EmitOMPThreadPrivateDecl(const OMPThreadPrivateDecl *D) {
6171   // Do not emit threadprivates in simd-only mode.
6172   if (LangOpts.OpenMP && LangOpts.OpenMPSimd)
6173     return;
6174   for (auto RefExpr : D->varlists()) {
6175     auto *VD = cast<VarDecl>(cast<DeclRefExpr>(RefExpr)->getDecl());
6176     bool PerformInit =
6177         VD->getAnyInitializer() &&
6178         !VD->getAnyInitializer()->isConstantInitializer(getContext(),
6179                                                         /*ForRef=*/false);
6180 
6181     Address Addr(GetAddrOfGlobalVar(VD), getContext().getDeclAlign(VD));
6182     if (auto InitFunction = getOpenMPRuntime().emitThreadPrivateVarDefinition(
6183             VD, Addr, RefExpr->getBeginLoc(), PerformInit))
6184       CXXGlobalInits.push_back(InitFunction);
6185   }
6186 }
6187 
6188 llvm::Metadata *
6189 CodeGenModule::CreateMetadataIdentifierImpl(QualType T, MetadataTypeMap &Map,
6190                                             StringRef Suffix) {
6191   llvm::Metadata *&InternalId = Map[T.getCanonicalType()];
6192   if (InternalId)
6193     return InternalId;
6194 
6195   if (isExternallyVisible(T->getLinkage())) {
6196     std::string OutName;
6197     llvm::raw_string_ostream Out(OutName);
6198     getCXXABI().getMangleContext().mangleTypeName(T, Out);
6199     Out << Suffix;
6200 
6201     InternalId = llvm::MDString::get(getLLVMContext(), Out.str());
6202   } else {
6203     InternalId = llvm::MDNode::getDistinct(getLLVMContext(),
6204                                            llvm::ArrayRef<llvm::Metadata *>());
6205   }
6206 
6207   return InternalId;
6208 }
6209 
6210 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierForType(QualType T) {
6211   return CreateMetadataIdentifierImpl(T, MetadataIdMap, "");
6212 }
6213 
6214 llvm::Metadata *
6215 CodeGenModule::CreateMetadataIdentifierForVirtualMemPtrType(QualType T) {
6216   return CreateMetadataIdentifierImpl(T, VirtualMetadataIdMap, ".virtual");
6217 }
6218 
6219 // Generalize pointer types to a void pointer with the qualifiers of the
6220 // originally pointed-to type, e.g. 'const char *' and 'char * const *'
6221 // generalize to 'const void *' while 'char *' and 'const char **' generalize to
6222 // 'void *'.
6223 static QualType GeneralizeType(ASTContext &Ctx, QualType Ty) {
6224   if (!Ty->isPointerType())
6225     return Ty;
6226 
6227   return Ctx.getPointerType(
6228       QualType(Ctx.VoidTy).withCVRQualifiers(
6229           Ty->getPointeeType().getCVRQualifiers()));
6230 }
6231 
6232 // Apply type generalization to a FunctionType's return and argument types
6233 static QualType GeneralizeFunctionType(ASTContext &Ctx, QualType Ty) {
6234   if (auto *FnType = Ty->getAs<FunctionProtoType>()) {
6235     SmallVector<QualType, 8> GeneralizedParams;
6236     for (auto &Param : FnType->param_types())
6237       GeneralizedParams.push_back(GeneralizeType(Ctx, Param));
6238 
6239     return Ctx.getFunctionType(
6240         GeneralizeType(Ctx, FnType->getReturnType()),
6241         GeneralizedParams, FnType->getExtProtoInfo());
6242   }
6243 
6244   if (auto *FnType = Ty->getAs<FunctionNoProtoType>())
6245     return Ctx.getFunctionNoProtoType(
6246         GeneralizeType(Ctx, FnType->getReturnType()));
6247 
6248   llvm_unreachable("Encountered unknown FunctionType");
6249 }
6250 
6251 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierGeneralized(QualType T) {
6252   return CreateMetadataIdentifierImpl(GeneralizeFunctionType(getContext(), T),
6253                                       GeneralizedMetadataIdMap, ".generalized");
6254 }
6255 
6256 /// Returns whether this module needs the "all-vtables" type identifier.
6257 bool CodeGenModule::NeedAllVtablesTypeId() const {
6258   // Returns true if at least one of vtable-based CFI checkers is enabled and
6259   // is not in the trapping mode.
6260   return ((LangOpts.Sanitize.has(SanitizerKind::CFIVCall) &&
6261            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIVCall)) ||
6262           (LangOpts.Sanitize.has(SanitizerKind::CFINVCall) &&
6263            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFINVCall)) ||
6264           (LangOpts.Sanitize.has(SanitizerKind::CFIDerivedCast) &&
6265            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIDerivedCast)) ||
6266           (LangOpts.Sanitize.has(SanitizerKind::CFIUnrelatedCast) &&
6267            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIUnrelatedCast)));
6268 }
6269 
6270 void CodeGenModule::AddVTableTypeMetadata(llvm::GlobalVariable *VTable,
6271                                           CharUnits Offset,
6272                                           const CXXRecordDecl *RD) {
6273   llvm::Metadata *MD =
6274       CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0));
6275   VTable->addTypeMetadata(Offset.getQuantity(), MD);
6276 
6277   if (CodeGenOpts.SanitizeCfiCrossDso)
6278     if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD))
6279       VTable->addTypeMetadata(Offset.getQuantity(),
6280                               llvm::ConstantAsMetadata::get(CrossDsoTypeId));
6281 
6282   if (NeedAllVtablesTypeId()) {
6283     llvm::Metadata *MD = llvm::MDString::get(getLLVMContext(), "all-vtables");
6284     VTable->addTypeMetadata(Offset.getQuantity(), MD);
6285   }
6286 }
6287 
6288 llvm::SanitizerStatReport &CodeGenModule::getSanStats() {
6289   if (!SanStats)
6290     SanStats = std::make_unique<llvm::SanitizerStatReport>(&getModule());
6291 
6292   return *SanStats;
6293 }
6294 
6295 llvm::Value *
6296 CodeGenModule::createOpenCLIntToSamplerConversion(const Expr *E,
6297                                                   CodeGenFunction &CGF) {
6298   llvm::Constant *C = ConstantEmitter(CGF).emitAbstract(E, E->getType());
6299   auto *SamplerT = getOpenCLRuntime().getSamplerType(E->getType().getTypePtr());
6300   auto *FTy = llvm::FunctionType::get(SamplerT, {C->getType()}, false);
6301   auto *Call = CGF.EmitRuntimeCall(
6302       CreateRuntimeFunction(FTy, "__translate_sampler_initializer"), {C});
6303   return Call;
6304 }
6305 
6306 CharUnits CodeGenModule::getNaturalPointeeTypeAlignment(
6307     QualType T, LValueBaseInfo *BaseInfo, TBAAAccessInfo *TBAAInfo) {
6308   return getNaturalTypeAlignment(T->getPointeeType(), BaseInfo, TBAAInfo,
6309                                  /* forPointeeType= */ true);
6310 }
6311 
6312 CharUnits CodeGenModule::getNaturalTypeAlignment(QualType T,
6313                                                  LValueBaseInfo *BaseInfo,
6314                                                  TBAAAccessInfo *TBAAInfo,
6315                                                  bool forPointeeType) {
6316   if (TBAAInfo)
6317     *TBAAInfo = getTBAAAccessInfo(T);
6318 
6319   // FIXME: This duplicates logic in ASTContext::getTypeAlignIfKnown. But
6320   // that doesn't return the information we need to compute BaseInfo.
6321 
6322   // Honor alignment typedef attributes even on incomplete types.
6323   // We also honor them straight for C++ class types, even as pointees;
6324   // there's an expressivity gap here.
6325   if (auto TT = T->getAs<TypedefType>()) {
6326     if (auto Align = TT->getDecl()->getMaxAlignment()) {
6327       if (BaseInfo)
6328         *BaseInfo = LValueBaseInfo(AlignmentSource::AttributedType);
6329       return getContext().toCharUnitsFromBits(Align);
6330     }
6331   }
6332 
6333   bool AlignForArray = T->isArrayType();
6334 
6335   // Analyze the base element type, so we don't get confused by incomplete
6336   // array types.
6337   T = getContext().getBaseElementType(T);
6338 
6339   if (T->isIncompleteType()) {
6340     // We could try to replicate the logic from
6341     // ASTContext::getTypeAlignIfKnown, but nothing uses the alignment if the
6342     // type is incomplete, so it's impossible to test. We could try to reuse
6343     // getTypeAlignIfKnown, but that doesn't return the information we need
6344     // to set BaseInfo.  So just ignore the possibility that the alignment is
6345     // greater than one.
6346     if (BaseInfo)
6347       *BaseInfo = LValueBaseInfo(AlignmentSource::Type);
6348     return CharUnits::One();
6349   }
6350 
6351   if (BaseInfo)
6352     *BaseInfo = LValueBaseInfo(AlignmentSource::Type);
6353 
6354   CharUnits Alignment;
6355   const CXXRecordDecl *RD;
6356   if (T.getQualifiers().hasUnaligned()) {
6357     Alignment = CharUnits::One();
6358   } else if (forPointeeType && !AlignForArray &&
6359              (RD = T->getAsCXXRecordDecl())) {
6360     // For C++ class pointees, we don't know whether we're pointing at a
6361     // base or a complete object, so we generally need to use the
6362     // non-virtual alignment.
6363     Alignment = getClassPointerAlignment(RD);
6364   } else {
6365     Alignment = getContext().getTypeAlignInChars(T);
6366   }
6367 
6368   // Cap to the global maximum type alignment unless the alignment
6369   // was somehow explicit on the type.
6370   if (unsigned MaxAlign = getLangOpts().MaxTypeAlign) {
6371     if (Alignment.getQuantity() > MaxAlign &&
6372         !getContext().isAlignmentRequired(T))
6373       Alignment = CharUnits::fromQuantity(MaxAlign);
6374   }
6375   return Alignment;
6376 }
6377 
6378 bool CodeGenModule::stopAutoInit() {
6379   unsigned StopAfter = getContext().getLangOpts().TrivialAutoVarInitStopAfter;
6380   if (StopAfter) {
6381     // This number is positive only when -ftrivial-auto-var-init-stop-after=* is
6382     // used
6383     if (NumAutoVarInit >= StopAfter) {
6384       return true;
6385     }
6386     if (!NumAutoVarInit) {
6387       unsigned DiagID = getDiags().getCustomDiagID(
6388           DiagnosticsEngine::Warning,
6389           "-ftrivial-auto-var-init-stop-after=%0 has been enabled to limit the "
6390           "number of times ftrivial-auto-var-init=%1 gets applied.");
6391       getDiags().Report(DiagID)
6392           << StopAfter
6393           << (getContext().getLangOpts().getTrivialAutoVarInit() ==
6394                       LangOptions::TrivialAutoVarInitKind::Zero
6395                   ? "zero"
6396                   : "pattern");
6397     }
6398     ++NumAutoVarInit;
6399   }
6400   return false;
6401 }
6402 
6403 void CodeGenModule::printPostfixForExternalizedStaticVar(
6404     llvm::raw_ostream &OS) const {
6405   OS << ".static." << getContext().getCUIDHash();
6406 }
6407