1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This coordinates the per-module state used while generating code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenModule.h" 15 #include "CGBlocks.h" 16 #include "CGCUDARuntime.h" 17 #include "CGCXXABI.h" 18 #include "CGCall.h" 19 #include "CGDebugInfo.h" 20 #include "CGObjCRuntime.h" 21 #include "CGOpenCLRuntime.h" 22 #include "CGOpenMPRuntime.h" 23 #include "CGOpenMPRuntimeNVPTX.h" 24 #include "CodeGenFunction.h" 25 #include "CodeGenPGO.h" 26 #include "ConstantEmitter.h" 27 #include "CoverageMappingGen.h" 28 #include "TargetInfo.h" 29 #include "clang/AST/ASTContext.h" 30 #include "clang/AST/CharUnits.h" 31 #include "clang/AST/DeclCXX.h" 32 #include "clang/AST/DeclObjC.h" 33 #include "clang/AST/DeclTemplate.h" 34 #include "clang/AST/Mangle.h" 35 #include "clang/AST/RecordLayout.h" 36 #include "clang/AST/RecursiveASTVisitor.h" 37 #include "clang/Basic/Builtins.h" 38 #include "clang/Basic/CharInfo.h" 39 #include "clang/Basic/Diagnostic.h" 40 #include "clang/Basic/Module.h" 41 #include "clang/Basic/SourceManager.h" 42 #include "clang/Basic/TargetInfo.h" 43 #include "clang/Basic/Version.h" 44 #include "clang/CodeGen/ConstantInitBuilder.h" 45 #include "clang/Frontend/CodeGenOptions.h" 46 #include "clang/Sema/SemaDiagnostic.h" 47 #include "llvm/ADT/Triple.h" 48 #include "llvm/Analysis/TargetLibraryInfo.h" 49 #include "llvm/IR/CallSite.h" 50 #include "llvm/IR/CallingConv.h" 51 #include "llvm/IR/DataLayout.h" 52 #include "llvm/IR/Intrinsics.h" 53 #include "llvm/IR/LLVMContext.h" 54 #include "llvm/IR/Module.h" 55 #include "llvm/ProfileData/InstrProfReader.h" 56 #include "llvm/Support/ConvertUTF.h" 57 #include "llvm/Support/ErrorHandling.h" 58 #include "llvm/Support/MD5.h" 59 60 using namespace clang; 61 using namespace CodeGen; 62 63 static llvm::cl::opt<bool> LimitedCoverage( 64 "limited-coverage-experimental", llvm::cl::ZeroOrMore, llvm::cl::Hidden, 65 llvm::cl::desc("Emit limited coverage mapping information (experimental)"), 66 llvm::cl::init(false)); 67 68 static const char AnnotationSection[] = "llvm.metadata"; 69 70 static CGCXXABI *createCXXABI(CodeGenModule &CGM) { 71 switch (CGM.getTarget().getCXXABI().getKind()) { 72 case TargetCXXABI::GenericAArch64: 73 case TargetCXXABI::GenericARM: 74 case TargetCXXABI::iOS: 75 case TargetCXXABI::iOS64: 76 case TargetCXXABI::WatchOS: 77 case TargetCXXABI::GenericMIPS: 78 case TargetCXXABI::GenericItanium: 79 case TargetCXXABI::WebAssembly: 80 return CreateItaniumCXXABI(CGM); 81 case TargetCXXABI::Microsoft: 82 return CreateMicrosoftCXXABI(CGM); 83 } 84 85 llvm_unreachable("invalid C++ ABI kind"); 86 } 87 88 CodeGenModule::CodeGenModule(ASTContext &C, const HeaderSearchOptions &HSO, 89 const PreprocessorOptions &PPO, 90 const CodeGenOptions &CGO, llvm::Module &M, 91 DiagnosticsEngine &diags, 92 CoverageSourceInfo *CoverageInfo) 93 : Context(C), LangOpts(C.getLangOpts()), HeaderSearchOpts(HSO), 94 PreprocessorOpts(PPO), CodeGenOpts(CGO), TheModule(M), Diags(diags), 95 Target(C.getTargetInfo()), ABI(createCXXABI(*this)), 96 VMContext(M.getContext()), Types(*this), VTables(*this), 97 SanitizerMD(new SanitizerMetadata(*this)) { 98 99 // Initialize the type cache. 100 llvm::LLVMContext &LLVMContext = M.getContext(); 101 VoidTy = llvm::Type::getVoidTy(LLVMContext); 102 Int8Ty = llvm::Type::getInt8Ty(LLVMContext); 103 Int16Ty = llvm::Type::getInt16Ty(LLVMContext); 104 Int32Ty = llvm::Type::getInt32Ty(LLVMContext); 105 Int64Ty = llvm::Type::getInt64Ty(LLVMContext); 106 HalfTy = llvm::Type::getHalfTy(LLVMContext); 107 FloatTy = llvm::Type::getFloatTy(LLVMContext); 108 DoubleTy = llvm::Type::getDoubleTy(LLVMContext); 109 PointerWidthInBits = C.getTargetInfo().getPointerWidth(0); 110 PointerAlignInBytes = 111 C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(0)).getQuantity(); 112 SizeSizeInBytes = 113 C.toCharUnitsFromBits(C.getTargetInfo().getMaxPointerWidth()).getQuantity(); 114 IntAlignInBytes = 115 C.toCharUnitsFromBits(C.getTargetInfo().getIntAlign()).getQuantity(); 116 IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth()); 117 IntPtrTy = llvm::IntegerType::get(LLVMContext, 118 C.getTargetInfo().getMaxPointerWidth()); 119 Int8PtrTy = Int8Ty->getPointerTo(0); 120 Int8PtrPtrTy = Int8PtrTy->getPointerTo(0); 121 AllocaInt8PtrTy = Int8Ty->getPointerTo( 122 M.getDataLayout().getAllocaAddrSpace()); 123 ASTAllocaAddressSpace = getTargetCodeGenInfo().getASTAllocaAddressSpace(); 124 125 RuntimeCC = getTargetCodeGenInfo().getABIInfo().getRuntimeCC(); 126 BuiltinCC = getTargetCodeGenInfo().getABIInfo().getBuiltinCC(); 127 128 if (LangOpts.ObjC1) 129 createObjCRuntime(); 130 if (LangOpts.OpenCL) 131 createOpenCLRuntime(); 132 if (LangOpts.OpenMP) 133 createOpenMPRuntime(); 134 if (LangOpts.CUDA) 135 createCUDARuntime(); 136 137 // Enable TBAA unless it's suppressed. ThreadSanitizer needs TBAA even at O0. 138 if (LangOpts.Sanitize.has(SanitizerKind::Thread) || 139 (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0)) 140 TBAA.reset(new CodeGenTBAA(Context, TheModule, CodeGenOpts, getLangOpts(), 141 getCXXABI().getMangleContext())); 142 143 // If debug info or coverage generation is enabled, create the CGDebugInfo 144 // object. 145 if (CodeGenOpts.getDebugInfo() != codegenoptions::NoDebugInfo || 146 CodeGenOpts.EmitGcovArcs || CodeGenOpts.EmitGcovNotes) 147 DebugInfo.reset(new CGDebugInfo(*this)); 148 149 Block.GlobalUniqueCount = 0; 150 151 if (C.getLangOpts().ObjC1) 152 ObjCData.reset(new ObjCEntrypoints()); 153 154 if (CodeGenOpts.hasProfileClangUse()) { 155 auto ReaderOrErr = llvm::IndexedInstrProfReader::create( 156 CodeGenOpts.ProfileInstrumentUsePath); 157 if (auto E = ReaderOrErr.takeError()) { 158 unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error, 159 "Could not read profile %0: %1"); 160 llvm::handleAllErrors(std::move(E), [&](const llvm::ErrorInfoBase &EI) { 161 getDiags().Report(DiagID) << CodeGenOpts.ProfileInstrumentUsePath 162 << EI.message(); 163 }); 164 } else 165 PGOReader = std::move(ReaderOrErr.get()); 166 } 167 168 // If coverage mapping generation is enabled, create the 169 // CoverageMappingModuleGen object. 170 if (CodeGenOpts.CoverageMapping) 171 CoverageMapping.reset(new CoverageMappingModuleGen(*this, *CoverageInfo)); 172 } 173 174 CodeGenModule::~CodeGenModule() {} 175 176 void CodeGenModule::createObjCRuntime() { 177 // This is just isGNUFamily(), but we want to force implementors of 178 // new ABIs to decide how best to do this. 179 switch (LangOpts.ObjCRuntime.getKind()) { 180 case ObjCRuntime::GNUstep: 181 case ObjCRuntime::GCC: 182 case ObjCRuntime::ObjFW: 183 ObjCRuntime.reset(CreateGNUObjCRuntime(*this)); 184 return; 185 186 case ObjCRuntime::FragileMacOSX: 187 case ObjCRuntime::MacOSX: 188 case ObjCRuntime::iOS: 189 case ObjCRuntime::WatchOS: 190 ObjCRuntime.reset(CreateMacObjCRuntime(*this)); 191 return; 192 } 193 llvm_unreachable("bad runtime kind"); 194 } 195 196 void CodeGenModule::createOpenCLRuntime() { 197 OpenCLRuntime.reset(new CGOpenCLRuntime(*this)); 198 } 199 200 void CodeGenModule::createOpenMPRuntime() { 201 // Select a specialized code generation class based on the target, if any. 202 // If it does not exist use the default implementation. 203 switch (getTriple().getArch()) { 204 case llvm::Triple::nvptx: 205 case llvm::Triple::nvptx64: 206 assert(getLangOpts().OpenMPIsDevice && 207 "OpenMP NVPTX is only prepared to deal with device code."); 208 OpenMPRuntime.reset(new CGOpenMPRuntimeNVPTX(*this)); 209 break; 210 default: 211 if (LangOpts.OpenMPSimd) 212 OpenMPRuntime.reset(new CGOpenMPSIMDRuntime(*this)); 213 else 214 OpenMPRuntime.reset(new CGOpenMPRuntime(*this)); 215 break; 216 } 217 } 218 219 void CodeGenModule::createCUDARuntime() { 220 CUDARuntime.reset(CreateNVCUDARuntime(*this)); 221 } 222 223 void CodeGenModule::addReplacement(StringRef Name, llvm::Constant *C) { 224 Replacements[Name] = C; 225 } 226 227 void CodeGenModule::applyReplacements() { 228 for (auto &I : Replacements) { 229 StringRef MangledName = I.first(); 230 llvm::Constant *Replacement = I.second; 231 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 232 if (!Entry) 233 continue; 234 auto *OldF = cast<llvm::Function>(Entry); 235 auto *NewF = dyn_cast<llvm::Function>(Replacement); 236 if (!NewF) { 237 if (auto *Alias = dyn_cast<llvm::GlobalAlias>(Replacement)) { 238 NewF = dyn_cast<llvm::Function>(Alias->getAliasee()); 239 } else { 240 auto *CE = cast<llvm::ConstantExpr>(Replacement); 241 assert(CE->getOpcode() == llvm::Instruction::BitCast || 242 CE->getOpcode() == llvm::Instruction::GetElementPtr); 243 NewF = dyn_cast<llvm::Function>(CE->getOperand(0)); 244 } 245 } 246 247 // Replace old with new, but keep the old order. 248 OldF->replaceAllUsesWith(Replacement); 249 if (NewF) { 250 NewF->removeFromParent(); 251 OldF->getParent()->getFunctionList().insertAfter(OldF->getIterator(), 252 NewF); 253 } 254 OldF->eraseFromParent(); 255 } 256 } 257 258 void CodeGenModule::addGlobalValReplacement(llvm::GlobalValue *GV, llvm::Constant *C) { 259 GlobalValReplacements.push_back(std::make_pair(GV, C)); 260 } 261 262 void CodeGenModule::applyGlobalValReplacements() { 263 for (auto &I : GlobalValReplacements) { 264 llvm::GlobalValue *GV = I.first; 265 llvm::Constant *C = I.second; 266 267 GV->replaceAllUsesWith(C); 268 GV->eraseFromParent(); 269 } 270 } 271 272 // This is only used in aliases that we created and we know they have a 273 // linear structure. 274 static const llvm::GlobalObject *getAliasedGlobal( 275 const llvm::GlobalIndirectSymbol &GIS) { 276 llvm::SmallPtrSet<const llvm::GlobalIndirectSymbol*, 4> Visited; 277 const llvm::Constant *C = &GIS; 278 for (;;) { 279 C = C->stripPointerCasts(); 280 if (auto *GO = dyn_cast<llvm::GlobalObject>(C)) 281 return GO; 282 // stripPointerCasts will not walk over weak aliases. 283 auto *GIS2 = dyn_cast<llvm::GlobalIndirectSymbol>(C); 284 if (!GIS2) 285 return nullptr; 286 if (!Visited.insert(GIS2).second) 287 return nullptr; 288 C = GIS2->getIndirectSymbol(); 289 } 290 } 291 292 void CodeGenModule::checkAliases() { 293 // Check if the constructed aliases are well formed. It is really unfortunate 294 // that we have to do this in CodeGen, but we only construct mangled names 295 // and aliases during codegen. 296 bool Error = false; 297 DiagnosticsEngine &Diags = getDiags(); 298 for (const GlobalDecl &GD : Aliases) { 299 const auto *D = cast<ValueDecl>(GD.getDecl()); 300 SourceLocation Location; 301 bool IsIFunc = D->hasAttr<IFuncAttr>(); 302 if (const Attr *A = D->getDefiningAttr()) 303 Location = A->getLocation(); 304 else 305 llvm_unreachable("Not an alias or ifunc?"); 306 StringRef MangledName = getMangledName(GD); 307 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 308 auto *Alias = cast<llvm::GlobalIndirectSymbol>(Entry); 309 const llvm::GlobalValue *GV = getAliasedGlobal(*Alias); 310 if (!GV) { 311 Error = true; 312 Diags.Report(Location, diag::err_cyclic_alias) << IsIFunc; 313 } else if (GV->isDeclaration()) { 314 Error = true; 315 Diags.Report(Location, diag::err_alias_to_undefined) 316 << IsIFunc << IsIFunc; 317 } else if (IsIFunc) { 318 // Check resolver function type. 319 llvm::FunctionType *FTy = dyn_cast<llvm::FunctionType>( 320 GV->getType()->getPointerElementType()); 321 assert(FTy); 322 if (!FTy->getReturnType()->isPointerTy()) 323 Diags.Report(Location, diag::err_ifunc_resolver_return); 324 if (FTy->getNumParams()) 325 Diags.Report(Location, diag::err_ifunc_resolver_params); 326 } 327 328 llvm::Constant *Aliasee = Alias->getIndirectSymbol(); 329 llvm::GlobalValue *AliaseeGV; 330 if (auto CE = dyn_cast<llvm::ConstantExpr>(Aliasee)) 331 AliaseeGV = cast<llvm::GlobalValue>(CE->getOperand(0)); 332 else 333 AliaseeGV = cast<llvm::GlobalValue>(Aliasee); 334 335 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) { 336 StringRef AliasSection = SA->getName(); 337 if (AliasSection != AliaseeGV->getSection()) 338 Diags.Report(SA->getLocation(), diag::warn_alias_with_section) 339 << AliasSection << IsIFunc << IsIFunc; 340 } 341 342 // We have to handle alias to weak aliases in here. LLVM itself disallows 343 // this since the object semantics would not match the IL one. For 344 // compatibility with gcc we implement it by just pointing the alias 345 // to its aliasee's aliasee. We also warn, since the user is probably 346 // expecting the link to be weak. 347 if (auto GA = dyn_cast<llvm::GlobalIndirectSymbol>(AliaseeGV)) { 348 if (GA->isInterposable()) { 349 Diags.Report(Location, diag::warn_alias_to_weak_alias) 350 << GV->getName() << GA->getName() << IsIFunc; 351 Aliasee = llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast( 352 GA->getIndirectSymbol(), Alias->getType()); 353 Alias->setIndirectSymbol(Aliasee); 354 } 355 } 356 } 357 if (!Error) 358 return; 359 360 for (const GlobalDecl &GD : Aliases) { 361 StringRef MangledName = getMangledName(GD); 362 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 363 auto *Alias = dyn_cast<llvm::GlobalIndirectSymbol>(Entry); 364 Alias->replaceAllUsesWith(llvm::UndefValue::get(Alias->getType())); 365 Alias->eraseFromParent(); 366 } 367 } 368 369 void CodeGenModule::clear() { 370 DeferredDeclsToEmit.clear(); 371 if (OpenMPRuntime) 372 OpenMPRuntime->clear(); 373 } 374 375 void InstrProfStats::reportDiagnostics(DiagnosticsEngine &Diags, 376 StringRef MainFile) { 377 if (!hasDiagnostics()) 378 return; 379 if (VisitedInMainFile > 0 && VisitedInMainFile == MissingInMainFile) { 380 if (MainFile.empty()) 381 MainFile = "<stdin>"; 382 Diags.Report(diag::warn_profile_data_unprofiled) << MainFile; 383 } else { 384 if (Mismatched > 0) 385 Diags.Report(diag::warn_profile_data_out_of_date) << Visited << Mismatched; 386 387 if (Missing > 0) 388 Diags.Report(diag::warn_profile_data_missing) << Visited << Missing; 389 } 390 } 391 392 void CodeGenModule::Release() { 393 EmitDeferred(); 394 EmitVTablesOpportunistically(); 395 applyGlobalValReplacements(); 396 applyReplacements(); 397 checkAliases(); 398 emitMultiVersionFunctions(); 399 EmitCXXGlobalInitFunc(); 400 EmitCXXGlobalDtorFunc(); 401 EmitCXXThreadLocalInitFunc(); 402 if (ObjCRuntime) 403 if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction()) 404 AddGlobalCtor(ObjCInitFunction); 405 if (Context.getLangOpts().CUDA && !Context.getLangOpts().CUDAIsDevice && 406 CUDARuntime) { 407 if (llvm::Function *CudaCtorFunction = CUDARuntime->makeModuleCtorFunction()) 408 AddGlobalCtor(CudaCtorFunction); 409 if (llvm::Function *CudaDtorFunction = CUDARuntime->makeModuleDtorFunction()) 410 AddGlobalDtor(CudaDtorFunction); 411 } 412 if (OpenMPRuntime) 413 if (llvm::Function *OpenMPRegistrationFunction = 414 OpenMPRuntime->emitRegistrationFunction()) { 415 auto ComdatKey = OpenMPRegistrationFunction->hasComdat() ? 416 OpenMPRegistrationFunction : nullptr; 417 AddGlobalCtor(OpenMPRegistrationFunction, 0, ComdatKey); 418 } 419 if (PGOReader) { 420 getModule().setProfileSummary(PGOReader->getSummary().getMD(VMContext)); 421 if (PGOStats.hasDiagnostics()) 422 PGOStats.reportDiagnostics(getDiags(), getCodeGenOpts().MainFileName); 423 } 424 EmitCtorList(GlobalCtors, "llvm.global_ctors"); 425 EmitCtorList(GlobalDtors, "llvm.global_dtors"); 426 EmitGlobalAnnotations(); 427 EmitStaticExternCAliases(); 428 EmitDeferredUnusedCoverageMappings(); 429 if (CoverageMapping) 430 CoverageMapping->emit(); 431 if (CodeGenOpts.SanitizeCfiCrossDso) { 432 CodeGenFunction(*this).EmitCfiCheckFail(); 433 CodeGenFunction(*this).EmitCfiCheckStub(); 434 } 435 emitAtAvailableLinkGuard(); 436 emitLLVMUsed(); 437 if (SanStats) 438 SanStats->finish(); 439 440 if (CodeGenOpts.Autolink && 441 (Context.getLangOpts().Modules || !LinkerOptionsMetadata.empty())) { 442 EmitModuleLinkOptions(); 443 } 444 445 // Record mregparm value now so it is visible through rest of codegen. 446 if (Context.getTargetInfo().getTriple().getArch() == llvm::Triple::x86) 447 getModule().addModuleFlag(llvm::Module::Error, "NumRegisterParameters", 448 CodeGenOpts.NumRegisterParameters); 449 450 if (CodeGenOpts.DwarfVersion) { 451 // We actually want the latest version when there are conflicts. 452 // We can change from Warning to Latest if such mode is supported. 453 getModule().addModuleFlag(llvm::Module::Warning, "Dwarf Version", 454 CodeGenOpts.DwarfVersion); 455 } 456 if (CodeGenOpts.EmitCodeView) { 457 // Indicate that we want CodeView in the metadata. 458 getModule().addModuleFlag(llvm::Module::Warning, "CodeView", 1); 459 } 460 if (CodeGenOpts.ControlFlowGuard) { 461 // We want function ID tables for Control Flow Guard. 462 getModule().addModuleFlag(llvm::Module::Warning, "cfguard", 1); 463 } 464 if (CodeGenOpts.OptimizationLevel > 0 && CodeGenOpts.StrictVTablePointers) { 465 // We don't support LTO with 2 with different StrictVTablePointers 466 // FIXME: we could support it by stripping all the information introduced 467 // by StrictVTablePointers. 468 469 getModule().addModuleFlag(llvm::Module::Error, "StrictVTablePointers",1); 470 471 llvm::Metadata *Ops[2] = { 472 llvm::MDString::get(VMContext, "StrictVTablePointers"), 473 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 474 llvm::Type::getInt32Ty(VMContext), 1))}; 475 476 getModule().addModuleFlag(llvm::Module::Require, 477 "StrictVTablePointersRequirement", 478 llvm::MDNode::get(VMContext, Ops)); 479 } 480 if (DebugInfo) 481 // We support a single version in the linked module. The LLVM 482 // parser will drop debug info with a different version number 483 // (and warn about it, too). 484 getModule().addModuleFlag(llvm::Module::Warning, "Debug Info Version", 485 llvm::DEBUG_METADATA_VERSION); 486 487 // We need to record the widths of enums and wchar_t, so that we can generate 488 // the correct build attributes in the ARM backend. wchar_size is also used by 489 // TargetLibraryInfo. 490 uint64_t WCharWidth = 491 Context.getTypeSizeInChars(Context.getWideCharType()).getQuantity(); 492 getModule().addModuleFlag(llvm::Module::Error, "wchar_size", WCharWidth); 493 494 llvm::Triple::ArchType Arch = Context.getTargetInfo().getTriple().getArch(); 495 if ( Arch == llvm::Triple::arm 496 || Arch == llvm::Triple::armeb 497 || Arch == llvm::Triple::thumb 498 || Arch == llvm::Triple::thumbeb) { 499 // The minimum width of an enum in bytes 500 uint64_t EnumWidth = Context.getLangOpts().ShortEnums ? 1 : 4; 501 getModule().addModuleFlag(llvm::Module::Error, "min_enum_size", EnumWidth); 502 } 503 504 if (CodeGenOpts.SanitizeCfiCrossDso) { 505 // Indicate that we want cross-DSO control flow integrity checks. 506 getModule().addModuleFlag(llvm::Module::Override, "Cross-DSO CFI", 1); 507 } 508 509 if (CodeGenOpts.CFProtectionReturn && 510 Target.checkCFProtectionReturnSupported(getDiags())) { 511 // Indicate that we want to instrument return control flow protection. 512 getModule().addModuleFlag(llvm::Module::Override, "cf-protection-return", 513 1); 514 } 515 516 if (CodeGenOpts.CFProtectionBranch && 517 Target.checkCFProtectionBranchSupported(getDiags())) { 518 // Indicate that we want to instrument branch control flow protection. 519 getModule().addModuleFlag(llvm::Module::Override, "cf-protection-branch", 520 1); 521 } 522 523 if (LangOpts.CUDAIsDevice && getTriple().isNVPTX()) { 524 // Indicate whether __nvvm_reflect should be configured to flush denormal 525 // floating point values to 0. (This corresponds to its "__CUDA_FTZ" 526 // property.) 527 getModule().addModuleFlag(llvm::Module::Override, "nvvm-reflect-ftz", 528 LangOpts.CUDADeviceFlushDenormalsToZero ? 1 : 0); 529 } 530 531 // Emit OpenCL specific module metadata: OpenCL/SPIR version. 532 if (LangOpts.OpenCL) { 533 EmitOpenCLMetadata(); 534 // Emit SPIR version. 535 if (getTriple().getArch() == llvm::Triple::spir || 536 getTriple().getArch() == llvm::Triple::spir64) { 537 // SPIR v2.0 s2.12 - The SPIR version used by the module is stored in the 538 // opencl.spir.version named metadata. 539 llvm::Metadata *SPIRVerElts[] = { 540 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 541 Int32Ty, LangOpts.OpenCLVersion / 100)), 542 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 543 Int32Ty, (LangOpts.OpenCLVersion / 100 > 1) ? 0 : 2))}; 544 llvm::NamedMDNode *SPIRVerMD = 545 TheModule.getOrInsertNamedMetadata("opencl.spir.version"); 546 llvm::LLVMContext &Ctx = TheModule.getContext(); 547 SPIRVerMD->addOperand(llvm::MDNode::get(Ctx, SPIRVerElts)); 548 } 549 } 550 551 if (uint32_t PLevel = Context.getLangOpts().PICLevel) { 552 assert(PLevel < 3 && "Invalid PIC Level"); 553 getModule().setPICLevel(static_cast<llvm::PICLevel::Level>(PLevel)); 554 if (Context.getLangOpts().PIE) 555 getModule().setPIELevel(static_cast<llvm::PIELevel::Level>(PLevel)); 556 } 557 558 if (CodeGenOpts.NoPLT) 559 getModule().setRtLibUseGOT(); 560 561 SimplifyPersonality(); 562 563 if (getCodeGenOpts().EmitDeclMetadata) 564 EmitDeclMetadata(); 565 566 if (getCodeGenOpts().EmitGcovArcs || getCodeGenOpts().EmitGcovNotes) 567 EmitCoverageFile(); 568 569 if (DebugInfo) 570 DebugInfo->finalize(); 571 572 EmitVersionIdentMetadata(); 573 574 EmitTargetMetadata(); 575 } 576 577 void CodeGenModule::EmitOpenCLMetadata() { 578 // SPIR v2.0 s2.13 - The OpenCL version used by the module is stored in the 579 // opencl.ocl.version named metadata node. 580 llvm::Metadata *OCLVerElts[] = { 581 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 582 Int32Ty, LangOpts.OpenCLVersion / 100)), 583 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 584 Int32Ty, (LangOpts.OpenCLVersion % 100) / 10))}; 585 llvm::NamedMDNode *OCLVerMD = 586 TheModule.getOrInsertNamedMetadata("opencl.ocl.version"); 587 llvm::LLVMContext &Ctx = TheModule.getContext(); 588 OCLVerMD->addOperand(llvm::MDNode::get(Ctx, OCLVerElts)); 589 } 590 591 void CodeGenModule::UpdateCompletedType(const TagDecl *TD) { 592 // Make sure that this type is translated. 593 Types.UpdateCompletedType(TD); 594 } 595 596 void CodeGenModule::RefreshTypeCacheForClass(const CXXRecordDecl *RD) { 597 // Make sure that this type is translated. 598 Types.RefreshTypeCacheForClass(RD); 599 } 600 601 llvm::MDNode *CodeGenModule::getTBAATypeInfo(QualType QTy) { 602 if (!TBAA) 603 return nullptr; 604 return TBAA->getTypeInfo(QTy); 605 } 606 607 TBAAAccessInfo CodeGenModule::getTBAAAccessInfo(QualType AccessType) { 608 if (!TBAA) 609 return TBAAAccessInfo(); 610 return TBAA->getAccessInfo(AccessType); 611 } 612 613 TBAAAccessInfo 614 CodeGenModule::getTBAAVTablePtrAccessInfo(llvm::Type *VTablePtrType) { 615 if (!TBAA) 616 return TBAAAccessInfo(); 617 return TBAA->getVTablePtrAccessInfo(VTablePtrType); 618 } 619 620 llvm::MDNode *CodeGenModule::getTBAAStructInfo(QualType QTy) { 621 if (!TBAA) 622 return nullptr; 623 return TBAA->getTBAAStructInfo(QTy); 624 } 625 626 llvm::MDNode *CodeGenModule::getTBAABaseTypeInfo(QualType QTy) { 627 if (!TBAA) 628 return nullptr; 629 return TBAA->getBaseTypeInfo(QTy); 630 } 631 632 llvm::MDNode *CodeGenModule::getTBAAAccessTagInfo(TBAAAccessInfo Info) { 633 if (!TBAA) 634 return nullptr; 635 return TBAA->getAccessTagInfo(Info); 636 } 637 638 TBAAAccessInfo CodeGenModule::mergeTBAAInfoForCast(TBAAAccessInfo SourceInfo, 639 TBAAAccessInfo TargetInfo) { 640 if (!TBAA) 641 return TBAAAccessInfo(); 642 return TBAA->mergeTBAAInfoForCast(SourceInfo, TargetInfo); 643 } 644 645 TBAAAccessInfo 646 CodeGenModule::mergeTBAAInfoForConditionalOperator(TBAAAccessInfo InfoA, 647 TBAAAccessInfo InfoB) { 648 if (!TBAA) 649 return TBAAAccessInfo(); 650 return TBAA->mergeTBAAInfoForConditionalOperator(InfoA, InfoB); 651 } 652 653 TBAAAccessInfo 654 CodeGenModule::mergeTBAAInfoForMemoryTransfer(TBAAAccessInfo DestInfo, 655 TBAAAccessInfo SrcInfo) { 656 if (!TBAA) 657 return TBAAAccessInfo(); 658 return TBAA->mergeTBAAInfoForConditionalOperator(DestInfo, SrcInfo); 659 } 660 661 void CodeGenModule::DecorateInstructionWithTBAA(llvm::Instruction *Inst, 662 TBAAAccessInfo TBAAInfo) { 663 if (llvm::MDNode *Tag = getTBAAAccessTagInfo(TBAAInfo)) 664 Inst->setMetadata(llvm::LLVMContext::MD_tbaa, Tag); 665 } 666 667 void CodeGenModule::DecorateInstructionWithInvariantGroup( 668 llvm::Instruction *I, const CXXRecordDecl *RD) { 669 I->setMetadata(llvm::LLVMContext::MD_invariant_group, 670 llvm::MDNode::get(getLLVMContext(), {})); 671 } 672 673 void CodeGenModule::Error(SourceLocation loc, StringRef message) { 674 unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, "%0"); 675 getDiags().Report(Context.getFullLoc(loc), diagID) << message; 676 } 677 678 /// ErrorUnsupported - Print out an error that codegen doesn't support the 679 /// specified stmt yet. 680 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type) { 681 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, 682 "cannot compile this %0 yet"); 683 std::string Msg = Type; 684 getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID) 685 << Msg << S->getSourceRange(); 686 } 687 688 /// ErrorUnsupported - Print out an error that codegen doesn't support the 689 /// specified decl yet. 690 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type) { 691 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, 692 "cannot compile this %0 yet"); 693 std::string Msg = Type; 694 getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg; 695 } 696 697 llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) { 698 return llvm::ConstantInt::get(SizeTy, size.getQuantity()); 699 } 700 701 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV, 702 const NamedDecl *D) const { 703 if (GV->hasDLLImportStorageClass()) 704 return; 705 // Internal definitions always have default visibility. 706 if (GV->hasLocalLinkage()) { 707 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 708 return; 709 } 710 711 // Set visibility for definitions. 712 LinkageInfo LV = D->getLinkageAndVisibility(); 713 if (LV.isVisibilityExplicit() || !GV->isDeclarationForLinker()) 714 GV->setVisibility(GetLLVMVisibility(LV.getVisibility())); 715 } 716 717 static bool shouldAssumeDSOLocal(const CodeGenModule &CGM, 718 llvm::GlobalValue *GV) { 719 if (GV->hasLocalLinkage()) 720 return true; 721 722 if (!GV->hasDefaultVisibility() && !GV->hasExternalWeakLinkage()) 723 return true; 724 725 // DLLImport explicitly marks the GV as external. 726 if (GV->hasDLLImportStorageClass()) 727 return false; 728 729 const llvm::Triple &TT = CGM.getTriple(); 730 // Every other GV is local on COFF. 731 // Make an exception for windows OS in the triple: Some firmware builds use 732 // *-win32-macho triples. This (accidentally?) produced windows relocations 733 // without GOT tables in older clang versions; Keep this behaviour. 734 // FIXME: even thread local variables? 735 if (TT.isOSBinFormatCOFF() || (TT.isOSWindows() && TT.isOSBinFormatMachO())) 736 return true; 737 738 // Only handle COFF and ELF for now. 739 if (!TT.isOSBinFormatELF()) 740 return false; 741 742 // If this is not an executable, don't assume anything is local. 743 const auto &CGOpts = CGM.getCodeGenOpts(); 744 llvm::Reloc::Model RM = CGOpts.RelocationModel; 745 const auto &LOpts = CGM.getLangOpts(); 746 if (RM != llvm::Reloc::Static && !LOpts.PIE) 747 return false; 748 749 // A definition cannot be preempted from an executable. 750 if (!GV->isDeclarationForLinker()) 751 return true; 752 753 // Most PIC code sequences that assume that a symbol is local cannot produce a 754 // 0 if it turns out the symbol is undefined. While this is ABI and relocation 755 // depended, it seems worth it to handle it here. 756 if (RM == llvm::Reloc::PIC_ && GV->hasExternalWeakLinkage()) 757 return false; 758 759 // PPC has no copy relocations and cannot use a plt entry as a symbol address. 760 llvm::Triple::ArchType Arch = TT.getArch(); 761 if (Arch == llvm::Triple::ppc || Arch == llvm::Triple::ppc64 || 762 Arch == llvm::Triple::ppc64le) 763 return false; 764 765 // If we can use copy relocations we can assume it is local. 766 if (auto *Var = dyn_cast<llvm::GlobalVariable>(GV)) 767 if (!Var->isThreadLocal() && 768 (RM == llvm::Reloc::Static || CGOpts.PIECopyRelocations)) 769 return true; 770 771 // If we can use a plt entry as the symbol address we can assume it 772 // is local. 773 // FIXME: This should work for PIE, but the gold linker doesn't support it. 774 if (isa<llvm::Function>(GV) && !CGOpts.NoPLT && RM == llvm::Reloc::Static) 775 return true; 776 777 // Otherwise don't assue it is local. 778 return false; 779 } 780 781 void CodeGenModule::setDSOLocal(llvm::GlobalValue *GV) const { 782 GV->setDSOLocal(shouldAssumeDSOLocal(*this, GV)); 783 } 784 785 void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV, 786 GlobalDecl GD) const { 787 const auto *D = dyn_cast<NamedDecl>(GD.getDecl()); 788 if (const auto *Dtor = dyn_cast_or_null<CXXDestructorDecl>(D)) { 789 if (getCXXABI().useThunkForDtorVariant(Dtor, GD.getDtorType())) { 790 // Don't dllexport/import destructor thunks. 791 GV->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 792 return; 793 } 794 } 795 setDLLImportDLLExport(GV, D); 796 } 797 798 void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV, 799 const NamedDecl *D) const { 800 if (D->isExternallyVisible()) { 801 if (D->hasAttr<DLLImportAttr>()) 802 GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass); 803 else if (D->hasAttr<DLLExportAttr>() && !GV->isDeclarationForLinker()) 804 GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass); 805 } 806 } 807 808 void CodeGenModule::setGVProperties(llvm::GlobalValue *GV, 809 GlobalDecl GD) const { 810 setDLLImportDLLExport(GV, GD); 811 setGlobalVisibilityAndLocal(GV, dyn_cast<NamedDecl>(GD.getDecl())); 812 } 813 814 void CodeGenModule::setGVProperties(llvm::GlobalValue *GV, 815 const NamedDecl *D) const { 816 setDLLImportDLLExport(GV, D); 817 setGlobalVisibilityAndLocal(GV, D); 818 } 819 820 void CodeGenModule::setGlobalVisibilityAndLocal(llvm::GlobalValue *GV, 821 const NamedDecl *D) const { 822 setGlobalVisibility(GV, D); 823 setDSOLocal(GV); 824 } 825 826 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(StringRef S) { 827 return llvm::StringSwitch<llvm::GlobalVariable::ThreadLocalMode>(S) 828 .Case("global-dynamic", llvm::GlobalVariable::GeneralDynamicTLSModel) 829 .Case("local-dynamic", llvm::GlobalVariable::LocalDynamicTLSModel) 830 .Case("initial-exec", llvm::GlobalVariable::InitialExecTLSModel) 831 .Case("local-exec", llvm::GlobalVariable::LocalExecTLSModel); 832 } 833 834 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel( 835 CodeGenOptions::TLSModel M) { 836 switch (M) { 837 case CodeGenOptions::GeneralDynamicTLSModel: 838 return llvm::GlobalVariable::GeneralDynamicTLSModel; 839 case CodeGenOptions::LocalDynamicTLSModel: 840 return llvm::GlobalVariable::LocalDynamicTLSModel; 841 case CodeGenOptions::InitialExecTLSModel: 842 return llvm::GlobalVariable::InitialExecTLSModel; 843 case CodeGenOptions::LocalExecTLSModel: 844 return llvm::GlobalVariable::LocalExecTLSModel; 845 } 846 llvm_unreachable("Invalid TLS model!"); 847 } 848 849 void CodeGenModule::setTLSMode(llvm::GlobalValue *GV, const VarDecl &D) const { 850 assert(D.getTLSKind() && "setting TLS mode on non-TLS var!"); 851 852 llvm::GlobalValue::ThreadLocalMode TLM; 853 TLM = GetLLVMTLSModel(CodeGenOpts.getDefaultTLSModel()); 854 855 // Override the TLS model if it is explicitly specified. 856 if (const TLSModelAttr *Attr = D.getAttr<TLSModelAttr>()) { 857 TLM = GetLLVMTLSModel(Attr->getModel()); 858 } 859 860 GV->setThreadLocalMode(TLM); 861 } 862 863 static void AppendTargetMangling(const CodeGenModule &CGM, 864 const TargetAttr *Attr, raw_ostream &Out) { 865 if (Attr->isDefaultVersion()) 866 return; 867 868 Out << '.'; 869 const auto &Target = CGM.getTarget(); 870 TargetAttr::ParsedTargetAttr Info = 871 Attr->parse([&Target](StringRef LHS, StringRef RHS) { 872 // Multiversioning doesn't allow "no-${feature}", so we can 873 // only have "+" prefixes here. 874 assert(LHS.startswith("+") && RHS.startswith("+") && 875 "Features should always have a prefix."); 876 return Target.multiVersionSortPriority(LHS.substr(1)) > 877 Target.multiVersionSortPriority(RHS.substr(1)); 878 }); 879 880 bool IsFirst = true; 881 882 if (!Info.Architecture.empty()) { 883 IsFirst = false; 884 Out << "arch_" << Info.Architecture; 885 } 886 887 for (StringRef Feat : Info.Features) { 888 if (!IsFirst) 889 Out << '_'; 890 IsFirst = false; 891 Out << Feat.substr(1); 892 } 893 } 894 895 static std::string getMangledNameImpl(const CodeGenModule &CGM, GlobalDecl GD, 896 const NamedDecl *ND, 897 bool OmitTargetMangling = false) { 898 SmallString<256> Buffer; 899 llvm::raw_svector_ostream Out(Buffer); 900 MangleContext &MC = CGM.getCXXABI().getMangleContext(); 901 if (MC.shouldMangleDeclName(ND)) { 902 llvm::raw_svector_ostream Out(Buffer); 903 if (const auto *D = dyn_cast<CXXConstructorDecl>(ND)) 904 MC.mangleCXXCtor(D, GD.getCtorType(), Out); 905 else if (const auto *D = dyn_cast<CXXDestructorDecl>(ND)) 906 MC.mangleCXXDtor(D, GD.getDtorType(), Out); 907 else 908 MC.mangleName(ND, Out); 909 } else { 910 IdentifierInfo *II = ND->getIdentifier(); 911 assert(II && "Attempt to mangle unnamed decl."); 912 const auto *FD = dyn_cast<FunctionDecl>(ND); 913 914 if (FD && 915 FD->getType()->castAs<FunctionType>()->getCallConv() == CC_X86RegCall) { 916 llvm::raw_svector_ostream Out(Buffer); 917 Out << "__regcall3__" << II->getName(); 918 } else { 919 Out << II->getName(); 920 } 921 } 922 923 if (const auto *FD = dyn_cast<FunctionDecl>(ND)) 924 if (FD->isMultiVersion() && !OmitTargetMangling) 925 AppendTargetMangling(CGM, FD->getAttr<TargetAttr>(), Out); 926 return Out.str(); 927 } 928 929 void CodeGenModule::UpdateMultiVersionNames(GlobalDecl GD, 930 const FunctionDecl *FD) { 931 if (!FD->isMultiVersion()) 932 return; 933 934 // Get the name of what this would be without the 'target' attribute. This 935 // allows us to lookup the version that was emitted when this wasn't a 936 // multiversion function. 937 std::string NonTargetName = 938 getMangledNameImpl(*this, GD, FD, /*OmitTargetMangling=*/true); 939 GlobalDecl OtherGD; 940 if (lookupRepresentativeDecl(NonTargetName, OtherGD)) { 941 assert(OtherGD.getCanonicalDecl() 942 .getDecl() 943 ->getAsFunction() 944 ->isMultiVersion() && 945 "Other GD should now be a multiversioned function"); 946 // OtherFD is the version of this function that was mangled BEFORE 947 // becoming a MultiVersion function. It potentially needs to be updated. 948 const FunctionDecl *OtherFD = 949 OtherGD.getCanonicalDecl().getDecl()->getAsFunction(); 950 std::string OtherName = getMangledNameImpl(*this, OtherGD, OtherFD); 951 // This is so that if the initial version was already the 'default' 952 // version, we don't try to update it. 953 if (OtherName != NonTargetName) { 954 // Remove instead of erase, since others may have stored the StringRef 955 // to this. 956 const auto ExistingRecord = Manglings.find(NonTargetName); 957 if (ExistingRecord != std::end(Manglings)) 958 Manglings.remove(&(*ExistingRecord)); 959 auto Result = Manglings.insert(std::make_pair(OtherName, OtherGD)); 960 MangledDeclNames[OtherGD.getCanonicalDecl()] = Result.first->first(); 961 if (llvm::GlobalValue *Entry = GetGlobalValue(NonTargetName)) 962 Entry->setName(OtherName); 963 } 964 } 965 } 966 967 StringRef CodeGenModule::getMangledName(GlobalDecl GD) { 968 GlobalDecl CanonicalGD = GD.getCanonicalDecl(); 969 970 // Some ABIs don't have constructor variants. Make sure that base and 971 // complete constructors get mangled the same. 972 if (const auto *CD = dyn_cast<CXXConstructorDecl>(CanonicalGD.getDecl())) { 973 if (!getTarget().getCXXABI().hasConstructorVariants()) { 974 CXXCtorType OrigCtorType = GD.getCtorType(); 975 assert(OrigCtorType == Ctor_Base || OrigCtorType == Ctor_Complete); 976 if (OrigCtorType == Ctor_Base) 977 CanonicalGD = GlobalDecl(CD, Ctor_Complete); 978 } 979 } 980 981 auto FoundName = MangledDeclNames.find(CanonicalGD); 982 if (FoundName != MangledDeclNames.end()) 983 return FoundName->second; 984 985 986 // Keep the first result in the case of a mangling collision. 987 const auto *ND = cast<NamedDecl>(GD.getDecl()); 988 auto Result = 989 Manglings.insert(std::make_pair(getMangledNameImpl(*this, GD, ND), GD)); 990 return MangledDeclNames[CanonicalGD] = Result.first->first(); 991 } 992 993 StringRef CodeGenModule::getBlockMangledName(GlobalDecl GD, 994 const BlockDecl *BD) { 995 MangleContext &MangleCtx = getCXXABI().getMangleContext(); 996 const Decl *D = GD.getDecl(); 997 998 SmallString<256> Buffer; 999 llvm::raw_svector_ostream Out(Buffer); 1000 if (!D) 1001 MangleCtx.mangleGlobalBlock(BD, 1002 dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()), Out); 1003 else if (const auto *CD = dyn_cast<CXXConstructorDecl>(D)) 1004 MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out); 1005 else if (const auto *DD = dyn_cast<CXXDestructorDecl>(D)) 1006 MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out); 1007 else 1008 MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out); 1009 1010 auto Result = Manglings.insert(std::make_pair(Out.str(), BD)); 1011 return Result.first->first(); 1012 } 1013 1014 llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) { 1015 return getModule().getNamedValue(Name); 1016 } 1017 1018 /// AddGlobalCtor - Add a function to the list that will be called before 1019 /// main() runs. 1020 void CodeGenModule::AddGlobalCtor(llvm::Function *Ctor, int Priority, 1021 llvm::Constant *AssociatedData) { 1022 // FIXME: Type coercion of void()* types. 1023 GlobalCtors.push_back(Structor(Priority, Ctor, AssociatedData)); 1024 } 1025 1026 /// AddGlobalDtor - Add a function to the list that will be called 1027 /// when the module is unloaded. 1028 void CodeGenModule::AddGlobalDtor(llvm::Function *Dtor, int Priority) { 1029 // FIXME: Type coercion of void()* types. 1030 GlobalDtors.push_back(Structor(Priority, Dtor, nullptr)); 1031 } 1032 1033 void CodeGenModule::EmitCtorList(CtorList &Fns, const char *GlobalName) { 1034 if (Fns.empty()) return; 1035 1036 // Ctor function type is void()*. 1037 llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false); 1038 llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy); 1039 1040 // Get the type of a ctor entry, { i32, void ()*, i8* }. 1041 llvm::StructType *CtorStructTy = llvm::StructType::get( 1042 Int32Ty, llvm::PointerType::getUnqual(CtorFTy), VoidPtrTy); 1043 1044 // Construct the constructor and destructor arrays. 1045 ConstantInitBuilder builder(*this); 1046 auto ctors = builder.beginArray(CtorStructTy); 1047 for (const auto &I : Fns) { 1048 auto ctor = ctors.beginStruct(CtorStructTy); 1049 ctor.addInt(Int32Ty, I.Priority); 1050 ctor.add(llvm::ConstantExpr::getBitCast(I.Initializer, CtorPFTy)); 1051 if (I.AssociatedData) 1052 ctor.add(llvm::ConstantExpr::getBitCast(I.AssociatedData, VoidPtrTy)); 1053 else 1054 ctor.addNullPointer(VoidPtrTy); 1055 ctor.finishAndAddTo(ctors); 1056 } 1057 1058 auto list = 1059 ctors.finishAndCreateGlobal(GlobalName, getPointerAlign(), 1060 /*constant*/ false, 1061 llvm::GlobalValue::AppendingLinkage); 1062 1063 // The LTO linker doesn't seem to like it when we set an alignment 1064 // on appending variables. Take it off as a workaround. 1065 list->setAlignment(0); 1066 1067 Fns.clear(); 1068 } 1069 1070 llvm::GlobalValue::LinkageTypes 1071 CodeGenModule::getFunctionLinkage(GlobalDecl GD) { 1072 const auto *D = cast<FunctionDecl>(GD.getDecl()); 1073 1074 GVALinkage Linkage = getContext().GetGVALinkageForFunction(D); 1075 1076 if (isa<CXXDestructorDecl>(D) && 1077 getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D), 1078 GD.getDtorType())) { 1079 // Destructor variants in the Microsoft C++ ABI are always internal or 1080 // linkonce_odr thunks emitted on an as-needed basis. 1081 return Linkage == GVA_Internal ? llvm::GlobalValue::InternalLinkage 1082 : llvm::GlobalValue::LinkOnceODRLinkage; 1083 } 1084 1085 if (isa<CXXConstructorDecl>(D) && 1086 cast<CXXConstructorDecl>(D)->isInheritingConstructor() && 1087 Context.getTargetInfo().getCXXABI().isMicrosoft()) { 1088 // Our approach to inheriting constructors is fundamentally different from 1089 // that used by the MS ABI, so keep our inheriting constructor thunks 1090 // internal rather than trying to pick an unambiguous mangling for them. 1091 return llvm::GlobalValue::InternalLinkage; 1092 } 1093 1094 return getLLVMLinkageForDeclarator(D, Linkage, /*isConstantVariable=*/false); 1095 } 1096 1097 llvm::ConstantInt *CodeGenModule::CreateCrossDsoCfiTypeId(llvm::Metadata *MD) { 1098 llvm::MDString *MDS = dyn_cast<llvm::MDString>(MD); 1099 if (!MDS) return nullptr; 1100 1101 return llvm::ConstantInt::get(Int64Ty, llvm::MD5Hash(MDS->getString())); 1102 } 1103 1104 void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D, 1105 const CGFunctionInfo &Info, 1106 llvm::Function *F) { 1107 unsigned CallingConv; 1108 llvm::AttributeList PAL; 1109 ConstructAttributeList(F->getName(), Info, D, PAL, CallingConv, false); 1110 F->setAttributes(PAL); 1111 F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv)); 1112 } 1113 1114 /// Determines whether the language options require us to model 1115 /// unwind exceptions. We treat -fexceptions as mandating this 1116 /// except under the fragile ObjC ABI with only ObjC exceptions 1117 /// enabled. This means, for example, that C with -fexceptions 1118 /// enables this. 1119 static bool hasUnwindExceptions(const LangOptions &LangOpts) { 1120 // If exceptions are completely disabled, obviously this is false. 1121 if (!LangOpts.Exceptions) return false; 1122 1123 // If C++ exceptions are enabled, this is true. 1124 if (LangOpts.CXXExceptions) return true; 1125 1126 // If ObjC exceptions are enabled, this depends on the ABI. 1127 if (LangOpts.ObjCExceptions) { 1128 return LangOpts.ObjCRuntime.hasUnwindExceptions(); 1129 } 1130 1131 return true; 1132 } 1133 1134 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D, 1135 llvm::Function *F) { 1136 llvm::AttrBuilder B; 1137 1138 if (CodeGenOpts.UnwindTables) 1139 B.addAttribute(llvm::Attribute::UWTable); 1140 1141 if (!hasUnwindExceptions(LangOpts)) 1142 B.addAttribute(llvm::Attribute::NoUnwind); 1143 1144 if (LangOpts.getStackProtector() == LangOptions::SSPOn) 1145 B.addAttribute(llvm::Attribute::StackProtect); 1146 else if (LangOpts.getStackProtector() == LangOptions::SSPStrong) 1147 B.addAttribute(llvm::Attribute::StackProtectStrong); 1148 else if (LangOpts.getStackProtector() == LangOptions::SSPReq) 1149 B.addAttribute(llvm::Attribute::StackProtectReq); 1150 1151 if (!D) { 1152 // If we don't have a declaration to control inlining, the function isn't 1153 // explicitly marked as alwaysinline for semantic reasons, and inlining is 1154 // disabled, mark the function as noinline. 1155 if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline) && 1156 CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining) 1157 B.addAttribute(llvm::Attribute::NoInline); 1158 1159 F->addAttributes(llvm::AttributeList::FunctionIndex, B); 1160 return; 1161 } 1162 1163 // Track whether we need to add the optnone LLVM attribute, 1164 // starting with the default for this optimization level. 1165 bool ShouldAddOptNone = 1166 !CodeGenOpts.DisableO0ImplyOptNone && CodeGenOpts.OptimizationLevel == 0; 1167 // We can't add optnone in the following cases, it won't pass the verifier. 1168 ShouldAddOptNone &= !D->hasAttr<MinSizeAttr>(); 1169 ShouldAddOptNone &= !F->hasFnAttribute(llvm::Attribute::AlwaysInline); 1170 ShouldAddOptNone &= !D->hasAttr<AlwaysInlineAttr>(); 1171 1172 if (ShouldAddOptNone || D->hasAttr<OptimizeNoneAttr>()) { 1173 B.addAttribute(llvm::Attribute::OptimizeNone); 1174 1175 // OptimizeNone implies noinline; we should not be inlining such functions. 1176 B.addAttribute(llvm::Attribute::NoInline); 1177 assert(!F->hasFnAttribute(llvm::Attribute::AlwaysInline) && 1178 "OptimizeNone and AlwaysInline on same function!"); 1179 1180 // We still need to handle naked functions even though optnone subsumes 1181 // much of their semantics. 1182 if (D->hasAttr<NakedAttr>()) 1183 B.addAttribute(llvm::Attribute::Naked); 1184 1185 // OptimizeNone wins over OptimizeForSize and MinSize. 1186 F->removeFnAttr(llvm::Attribute::OptimizeForSize); 1187 F->removeFnAttr(llvm::Attribute::MinSize); 1188 } else if (D->hasAttr<NakedAttr>()) { 1189 // Naked implies noinline: we should not be inlining such functions. 1190 B.addAttribute(llvm::Attribute::Naked); 1191 B.addAttribute(llvm::Attribute::NoInline); 1192 } else if (D->hasAttr<NoDuplicateAttr>()) { 1193 B.addAttribute(llvm::Attribute::NoDuplicate); 1194 } else if (D->hasAttr<NoInlineAttr>()) { 1195 B.addAttribute(llvm::Attribute::NoInline); 1196 } else if (D->hasAttr<AlwaysInlineAttr>() && 1197 !F->hasFnAttribute(llvm::Attribute::NoInline)) { 1198 // (noinline wins over always_inline, and we can't specify both in IR) 1199 B.addAttribute(llvm::Attribute::AlwaysInline); 1200 } else if (CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining) { 1201 // If we're not inlining, then force everything that isn't always_inline to 1202 // carry an explicit noinline attribute. 1203 if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline)) 1204 B.addAttribute(llvm::Attribute::NoInline); 1205 } else { 1206 // Otherwise, propagate the inline hint attribute and potentially use its 1207 // absence to mark things as noinline. 1208 if (auto *FD = dyn_cast<FunctionDecl>(D)) { 1209 if (any_of(FD->redecls(), [&](const FunctionDecl *Redecl) { 1210 return Redecl->isInlineSpecified(); 1211 })) { 1212 B.addAttribute(llvm::Attribute::InlineHint); 1213 } else if (CodeGenOpts.getInlining() == 1214 CodeGenOptions::OnlyHintInlining && 1215 !FD->isInlined() && 1216 !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) { 1217 B.addAttribute(llvm::Attribute::NoInline); 1218 } 1219 } 1220 } 1221 1222 // Add other optimization related attributes if we are optimizing this 1223 // function. 1224 if (!D->hasAttr<OptimizeNoneAttr>()) { 1225 if (D->hasAttr<ColdAttr>()) { 1226 if (!ShouldAddOptNone) 1227 B.addAttribute(llvm::Attribute::OptimizeForSize); 1228 B.addAttribute(llvm::Attribute::Cold); 1229 } 1230 1231 if (D->hasAttr<MinSizeAttr>()) 1232 B.addAttribute(llvm::Attribute::MinSize); 1233 } 1234 1235 F->addAttributes(llvm::AttributeList::FunctionIndex, B); 1236 1237 unsigned alignment = D->getMaxAlignment() / Context.getCharWidth(); 1238 if (alignment) 1239 F->setAlignment(alignment); 1240 1241 // Some C++ ABIs require 2-byte alignment for member functions, in order to 1242 // reserve a bit for differentiating between virtual and non-virtual member 1243 // functions. If the current target's C++ ABI requires this and this is a 1244 // member function, set its alignment accordingly. 1245 if (getTarget().getCXXABI().areMemberFunctionsAligned()) { 1246 if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D)) 1247 F->setAlignment(2); 1248 } 1249 1250 // In the cross-dso CFI mode, we want !type attributes on definitions only. 1251 if (CodeGenOpts.SanitizeCfiCrossDso) 1252 if (auto *FD = dyn_cast<FunctionDecl>(D)) 1253 CreateFunctionTypeMetadata(FD, F); 1254 } 1255 1256 void CodeGenModule::SetCommonAttributes(GlobalDecl GD, llvm::GlobalValue *GV) { 1257 const Decl *D = GD.getDecl(); 1258 if (dyn_cast_or_null<NamedDecl>(D)) 1259 setGVProperties(GV, GD); 1260 else 1261 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 1262 1263 if (D && D->hasAttr<UsedAttr>()) 1264 addUsedGlobal(GV); 1265 } 1266 1267 bool CodeGenModule::GetCPUAndFeaturesAttributes(const Decl *D, 1268 llvm::AttrBuilder &Attrs) { 1269 // Add target-cpu and target-features attributes to functions. If 1270 // we have a decl for the function and it has a target attribute then 1271 // parse that and add it to the feature set. 1272 StringRef TargetCPU = getTarget().getTargetOpts().CPU; 1273 std::vector<std::string> Features; 1274 const auto *FD = dyn_cast_or_null<FunctionDecl>(D); 1275 FD = FD ? FD->getMostRecentDecl() : FD; 1276 const auto *TD = FD ? FD->getAttr<TargetAttr>() : nullptr; 1277 bool AddedAttr = false; 1278 if (TD) { 1279 llvm::StringMap<bool> FeatureMap; 1280 getFunctionFeatureMap(FeatureMap, FD); 1281 1282 // Produce the canonical string for this set of features. 1283 for (const llvm::StringMap<bool>::value_type &Entry : FeatureMap) 1284 Features.push_back((Entry.getValue() ? "+" : "-") + Entry.getKey().str()); 1285 1286 // Now add the target-cpu and target-features to the function. 1287 // While we populated the feature map above, we still need to 1288 // get and parse the target attribute so we can get the cpu for 1289 // the function. 1290 TargetAttr::ParsedTargetAttr ParsedAttr = TD->parse(); 1291 if (ParsedAttr.Architecture != "" && 1292 getTarget().isValidCPUName(ParsedAttr.Architecture)) 1293 TargetCPU = ParsedAttr.Architecture; 1294 } else { 1295 // Otherwise just add the existing target cpu and target features to the 1296 // function. 1297 Features = getTarget().getTargetOpts().Features; 1298 } 1299 1300 if (TargetCPU != "") { 1301 Attrs.addAttribute("target-cpu", TargetCPU); 1302 AddedAttr = true; 1303 } 1304 if (!Features.empty()) { 1305 std::sort(Features.begin(), Features.end()); 1306 Attrs.addAttribute("target-features", llvm::join(Features, ",")); 1307 AddedAttr = true; 1308 } 1309 1310 return AddedAttr; 1311 } 1312 1313 void CodeGenModule::setNonAliasAttributes(GlobalDecl GD, 1314 llvm::GlobalObject *GO) { 1315 const Decl *D = GD.getDecl(); 1316 SetCommonAttributes(GD, GO); 1317 1318 if (D) { 1319 if (auto *GV = dyn_cast<llvm::GlobalVariable>(GO)) { 1320 if (auto *SA = D->getAttr<PragmaClangBSSSectionAttr>()) 1321 GV->addAttribute("bss-section", SA->getName()); 1322 if (auto *SA = D->getAttr<PragmaClangDataSectionAttr>()) 1323 GV->addAttribute("data-section", SA->getName()); 1324 if (auto *SA = D->getAttr<PragmaClangRodataSectionAttr>()) 1325 GV->addAttribute("rodata-section", SA->getName()); 1326 } 1327 1328 if (auto *F = dyn_cast<llvm::Function>(GO)) { 1329 if (auto *SA = D->getAttr<PragmaClangTextSectionAttr>()) 1330 if (!D->getAttr<SectionAttr>()) 1331 F->addFnAttr("implicit-section-name", SA->getName()); 1332 1333 llvm::AttrBuilder Attrs; 1334 if (GetCPUAndFeaturesAttributes(D, Attrs)) { 1335 // We know that GetCPUAndFeaturesAttributes will always have the 1336 // newest set, since it has the newest possible FunctionDecl, so the 1337 // new ones should replace the old. 1338 F->removeFnAttr("target-cpu"); 1339 F->removeFnAttr("target-features"); 1340 F->addAttributes(llvm::AttributeList::FunctionIndex, Attrs); 1341 } 1342 } 1343 1344 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) 1345 GO->setSection(SA->getName()); 1346 } 1347 1348 getTargetCodeGenInfo().setTargetAttributes(D, GO, *this); 1349 } 1350 1351 void CodeGenModule::SetInternalFunctionAttributes(GlobalDecl GD, 1352 llvm::Function *F, 1353 const CGFunctionInfo &FI) { 1354 const Decl *D = GD.getDecl(); 1355 SetLLVMFunctionAttributes(D, FI, F); 1356 SetLLVMFunctionAttributesForDefinition(D, F); 1357 1358 F->setLinkage(llvm::Function::InternalLinkage); 1359 1360 setNonAliasAttributes(GD, F); 1361 } 1362 1363 static void setLinkageForGV(llvm::GlobalValue *GV, const NamedDecl *ND) { 1364 // Set linkage and visibility in case we never see a definition. 1365 LinkageInfo LV = ND->getLinkageAndVisibility(); 1366 // Don't set internal linkage on declarations. 1367 // "extern_weak" is overloaded in LLVM; we probably should have 1368 // separate linkage types for this. 1369 if (isExternallyVisible(LV.getLinkage()) && 1370 (ND->hasAttr<WeakAttr>() || ND->isWeakImported())) 1371 GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage); 1372 } 1373 1374 void CodeGenModule::CreateFunctionTypeMetadata(const FunctionDecl *FD, 1375 llvm::Function *F) { 1376 // Only if we are checking indirect calls. 1377 if (!LangOpts.Sanitize.has(SanitizerKind::CFIICall)) 1378 return; 1379 1380 // Non-static class methods are handled via vtable pointer checks elsewhere. 1381 if (isa<CXXMethodDecl>(FD) && !cast<CXXMethodDecl>(FD)->isStatic()) 1382 return; 1383 1384 // Additionally, if building with cross-DSO support... 1385 if (CodeGenOpts.SanitizeCfiCrossDso) { 1386 // Skip available_externally functions. They won't be codegen'ed in the 1387 // current module anyway. 1388 if (getContext().GetGVALinkageForFunction(FD) == GVA_AvailableExternally) 1389 return; 1390 } 1391 1392 llvm::Metadata *MD = CreateMetadataIdentifierForType(FD->getType()); 1393 F->addTypeMetadata(0, MD); 1394 F->addTypeMetadata(0, CreateMetadataIdentifierGeneralized(FD->getType())); 1395 1396 // Emit a hash-based bit set entry for cross-DSO calls. 1397 if (CodeGenOpts.SanitizeCfiCrossDso) 1398 if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD)) 1399 F->addTypeMetadata(0, llvm::ConstantAsMetadata::get(CrossDsoTypeId)); 1400 } 1401 1402 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD, llvm::Function *F, 1403 bool IsIncompleteFunction, 1404 bool IsThunk) { 1405 1406 if (llvm::Intrinsic::ID IID = F->getIntrinsicID()) { 1407 // If this is an intrinsic function, set the function's attributes 1408 // to the intrinsic's attributes. 1409 F->setAttributes(llvm::Intrinsic::getAttributes(getLLVMContext(), IID)); 1410 return; 1411 } 1412 1413 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 1414 1415 if (!IsIncompleteFunction) { 1416 SetLLVMFunctionAttributes(FD, getTypes().arrangeGlobalDeclaration(GD), F); 1417 // Setup target-specific attributes. 1418 if (F->isDeclaration()) 1419 getTargetCodeGenInfo().setTargetAttributes(FD, F, *this); 1420 } 1421 1422 // Add the Returned attribute for "this", except for iOS 5 and earlier 1423 // where substantial code, including the libstdc++ dylib, was compiled with 1424 // GCC and does not actually return "this". 1425 if (!IsThunk && getCXXABI().HasThisReturn(GD) && 1426 !(getTriple().isiOS() && getTriple().isOSVersionLT(6))) { 1427 assert(!F->arg_empty() && 1428 F->arg_begin()->getType() 1429 ->canLosslesslyBitCastTo(F->getReturnType()) && 1430 "unexpected this return"); 1431 F->addAttribute(1, llvm::Attribute::Returned); 1432 } 1433 1434 // Only a few attributes are set on declarations; these may later be 1435 // overridden by a definition. 1436 1437 setLinkageForGV(F, FD); 1438 setGVProperties(F, FD); 1439 1440 if (FD->getAttr<PragmaClangTextSectionAttr>()) { 1441 F->addFnAttr("implicit-section-name"); 1442 } 1443 1444 if (const SectionAttr *SA = FD->getAttr<SectionAttr>()) 1445 F->setSection(SA->getName()); 1446 1447 if (FD->isReplaceableGlobalAllocationFunction()) { 1448 // A replaceable global allocation function does not act like a builtin by 1449 // default, only if it is invoked by a new-expression or delete-expression. 1450 F->addAttribute(llvm::AttributeList::FunctionIndex, 1451 llvm::Attribute::NoBuiltin); 1452 1453 // A sane operator new returns a non-aliasing pointer. 1454 // FIXME: Also add NonNull attribute to the return value 1455 // for the non-nothrow forms? 1456 auto Kind = FD->getDeclName().getCXXOverloadedOperator(); 1457 if (getCodeGenOpts().AssumeSaneOperatorNew && 1458 (Kind == OO_New || Kind == OO_Array_New)) 1459 F->addAttribute(llvm::AttributeList::ReturnIndex, 1460 llvm::Attribute::NoAlias); 1461 } 1462 1463 if (isa<CXXConstructorDecl>(FD) || isa<CXXDestructorDecl>(FD)) 1464 F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 1465 else if (const auto *MD = dyn_cast<CXXMethodDecl>(FD)) 1466 if (MD->isVirtual()) 1467 F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 1468 1469 // Don't emit entries for function declarations in the cross-DSO mode. This 1470 // is handled with better precision by the receiving DSO. 1471 if (!CodeGenOpts.SanitizeCfiCrossDso) 1472 CreateFunctionTypeMetadata(FD, F); 1473 1474 if (getLangOpts().OpenMP && FD->hasAttr<OMPDeclareSimdDeclAttr>()) 1475 getOpenMPRuntime().emitDeclareSimdFunction(FD, F); 1476 } 1477 1478 void CodeGenModule::addUsedGlobal(llvm::GlobalValue *GV) { 1479 assert(!GV->isDeclaration() && 1480 "Only globals with definition can force usage."); 1481 LLVMUsed.emplace_back(GV); 1482 } 1483 1484 void CodeGenModule::addCompilerUsedGlobal(llvm::GlobalValue *GV) { 1485 assert(!GV->isDeclaration() && 1486 "Only globals with definition can force usage."); 1487 LLVMCompilerUsed.emplace_back(GV); 1488 } 1489 1490 static void emitUsed(CodeGenModule &CGM, StringRef Name, 1491 std::vector<llvm::WeakTrackingVH> &List) { 1492 // Don't create llvm.used if there is no need. 1493 if (List.empty()) 1494 return; 1495 1496 // Convert List to what ConstantArray needs. 1497 SmallVector<llvm::Constant*, 8> UsedArray; 1498 UsedArray.resize(List.size()); 1499 for (unsigned i = 0, e = List.size(); i != e; ++i) { 1500 UsedArray[i] = 1501 llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast( 1502 cast<llvm::Constant>(&*List[i]), CGM.Int8PtrTy); 1503 } 1504 1505 if (UsedArray.empty()) 1506 return; 1507 llvm::ArrayType *ATy = llvm::ArrayType::get(CGM.Int8PtrTy, UsedArray.size()); 1508 1509 auto *GV = new llvm::GlobalVariable( 1510 CGM.getModule(), ATy, false, llvm::GlobalValue::AppendingLinkage, 1511 llvm::ConstantArray::get(ATy, UsedArray), Name); 1512 1513 GV->setSection("llvm.metadata"); 1514 } 1515 1516 void CodeGenModule::emitLLVMUsed() { 1517 emitUsed(*this, "llvm.used", LLVMUsed); 1518 emitUsed(*this, "llvm.compiler.used", LLVMCompilerUsed); 1519 } 1520 1521 void CodeGenModule::AppendLinkerOptions(StringRef Opts) { 1522 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opts); 1523 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 1524 } 1525 1526 void CodeGenModule::AddDetectMismatch(StringRef Name, StringRef Value) { 1527 llvm::SmallString<32> Opt; 1528 getTargetCodeGenInfo().getDetectMismatchOption(Name, Value, Opt); 1529 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt); 1530 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 1531 } 1532 1533 void CodeGenModule::AddELFLibDirective(StringRef Lib) { 1534 auto &C = getLLVMContext(); 1535 LinkerOptionsMetadata.push_back(llvm::MDNode::get( 1536 C, {llvm::MDString::get(C, "lib"), llvm::MDString::get(C, Lib)})); 1537 } 1538 1539 void CodeGenModule::AddDependentLib(StringRef Lib) { 1540 llvm::SmallString<24> Opt; 1541 getTargetCodeGenInfo().getDependentLibraryOption(Lib, Opt); 1542 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt); 1543 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 1544 } 1545 1546 /// \brief Add link options implied by the given module, including modules 1547 /// it depends on, using a postorder walk. 1548 static void addLinkOptionsPostorder(CodeGenModule &CGM, Module *Mod, 1549 SmallVectorImpl<llvm::MDNode *> &Metadata, 1550 llvm::SmallPtrSet<Module *, 16> &Visited) { 1551 // Import this module's parent. 1552 if (Mod->Parent && Visited.insert(Mod->Parent).second) { 1553 addLinkOptionsPostorder(CGM, Mod->Parent, Metadata, Visited); 1554 } 1555 1556 // Import this module's dependencies. 1557 for (unsigned I = Mod->Imports.size(); I > 0; --I) { 1558 if (Visited.insert(Mod->Imports[I - 1]).second) 1559 addLinkOptionsPostorder(CGM, Mod->Imports[I-1], Metadata, Visited); 1560 } 1561 1562 // Add linker options to link against the libraries/frameworks 1563 // described by this module. 1564 llvm::LLVMContext &Context = CGM.getLLVMContext(); 1565 for (unsigned I = Mod->LinkLibraries.size(); I > 0; --I) { 1566 // Link against a framework. Frameworks are currently Darwin only, so we 1567 // don't to ask TargetCodeGenInfo for the spelling of the linker option. 1568 if (Mod->LinkLibraries[I-1].IsFramework) { 1569 llvm::Metadata *Args[2] = { 1570 llvm::MDString::get(Context, "-framework"), 1571 llvm::MDString::get(Context, Mod->LinkLibraries[I - 1].Library)}; 1572 1573 Metadata.push_back(llvm::MDNode::get(Context, Args)); 1574 continue; 1575 } 1576 1577 // Link against a library. 1578 llvm::SmallString<24> Opt; 1579 CGM.getTargetCodeGenInfo().getDependentLibraryOption( 1580 Mod->LinkLibraries[I-1].Library, Opt); 1581 auto *OptString = llvm::MDString::get(Context, Opt); 1582 Metadata.push_back(llvm::MDNode::get(Context, OptString)); 1583 } 1584 } 1585 1586 void CodeGenModule::EmitModuleLinkOptions() { 1587 // Collect the set of all of the modules we want to visit to emit link 1588 // options, which is essentially the imported modules and all of their 1589 // non-explicit child modules. 1590 llvm::SetVector<clang::Module *> LinkModules; 1591 llvm::SmallPtrSet<clang::Module *, 16> Visited; 1592 SmallVector<clang::Module *, 16> Stack; 1593 1594 // Seed the stack with imported modules. 1595 for (Module *M : ImportedModules) { 1596 // Do not add any link flags when an implementation TU of a module imports 1597 // a header of that same module. 1598 if (M->getTopLevelModuleName() == getLangOpts().CurrentModule && 1599 !getLangOpts().isCompilingModule()) 1600 continue; 1601 if (Visited.insert(M).second) 1602 Stack.push_back(M); 1603 } 1604 1605 // Find all of the modules to import, making a little effort to prune 1606 // non-leaf modules. 1607 while (!Stack.empty()) { 1608 clang::Module *Mod = Stack.pop_back_val(); 1609 1610 bool AnyChildren = false; 1611 1612 // Visit the submodules of this module. 1613 for (clang::Module::submodule_iterator Sub = Mod->submodule_begin(), 1614 SubEnd = Mod->submodule_end(); 1615 Sub != SubEnd; ++Sub) { 1616 // Skip explicit children; they need to be explicitly imported to be 1617 // linked against. 1618 if ((*Sub)->IsExplicit) 1619 continue; 1620 1621 if (Visited.insert(*Sub).second) { 1622 Stack.push_back(*Sub); 1623 AnyChildren = true; 1624 } 1625 } 1626 1627 // We didn't find any children, so add this module to the list of 1628 // modules to link against. 1629 if (!AnyChildren) { 1630 LinkModules.insert(Mod); 1631 } 1632 } 1633 1634 // Add link options for all of the imported modules in reverse topological 1635 // order. We don't do anything to try to order import link flags with respect 1636 // to linker options inserted by things like #pragma comment(). 1637 SmallVector<llvm::MDNode *, 16> MetadataArgs; 1638 Visited.clear(); 1639 for (Module *M : LinkModules) 1640 if (Visited.insert(M).second) 1641 addLinkOptionsPostorder(*this, M, MetadataArgs, Visited); 1642 std::reverse(MetadataArgs.begin(), MetadataArgs.end()); 1643 LinkerOptionsMetadata.append(MetadataArgs.begin(), MetadataArgs.end()); 1644 1645 // Add the linker options metadata flag. 1646 auto *NMD = getModule().getOrInsertNamedMetadata("llvm.linker.options"); 1647 for (auto *MD : LinkerOptionsMetadata) 1648 NMD->addOperand(MD); 1649 } 1650 1651 void CodeGenModule::EmitDeferred() { 1652 // Emit code for any potentially referenced deferred decls. Since a 1653 // previously unused static decl may become used during the generation of code 1654 // for a static function, iterate until no changes are made. 1655 1656 if (!DeferredVTables.empty()) { 1657 EmitDeferredVTables(); 1658 1659 // Emitting a vtable doesn't directly cause more vtables to 1660 // become deferred, although it can cause functions to be 1661 // emitted that then need those vtables. 1662 assert(DeferredVTables.empty()); 1663 } 1664 1665 // Stop if we're out of both deferred vtables and deferred declarations. 1666 if (DeferredDeclsToEmit.empty()) 1667 return; 1668 1669 // Grab the list of decls to emit. If EmitGlobalDefinition schedules more 1670 // work, it will not interfere with this. 1671 std::vector<GlobalDecl> CurDeclsToEmit; 1672 CurDeclsToEmit.swap(DeferredDeclsToEmit); 1673 1674 for (GlobalDecl &D : CurDeclsToEmit) { 1675 // We should call GetAddrOfGlobal with IsForDefinition set to true in order 1676 // to get GlobalValue with exactly the type we need, not something that 1677 // might had been created for another decl with the same mangled name but 1678 // different type. 1679 llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>( 1680 GetAddrOfGlobal(D, ForDefinition)); 1681 1682 // In case of different address spaces, we may still get a cast, even with 1683 // IsForDefinition equal to true. Query mangled names table to get 1684 // GlobalValue. 1685 if (!GV) 1686 GV = GetGlobalValue(getMangledName(D)); 1687 1688 // Make sure GetGlobalValue returned non-null. 1689 assert(GV); 1690 1691 // Check to see if we've already emitted this. This is necessary 1692 // for a couple of reasons: first, decls can end up in the 1693 // deferred-decls queue multiple times, and second, decls can end 1694 // up with definitions in unusual ways (e.g. by an extern inline 1695 // function acquiring a strong function redefinition). Just 1696 // ignore these cases. 1697 if (!GV->isDeclaration()) 1698 continue; 1699 1700 // Otherwise, emit the definition and move on to the next one. 1701 EmitGlobalDefinition(D, GV); 1702 1703 // If we found out that we need to emit more decls, do that recursively. 1704 // This has the advantage that the decls are emitted in a DFS and related 1705 // ones are close together, which is convenient for testing. 1706 if (!DeferredVTables.empty() || !DeferredDeclsToEmit.empty()) { 1707 EmitDeferred(); 1708 assert(DeferredVTables.empty() && DeferredDeclsToEmit.empty()); 1709 } 1710 } 1711 } 1712 1713 void CodeGenModule::EmitVTablesOpportunistically() { 1714 // Try to emit external vtables as available_externally if they have emitted 1715 // all inlined virtual functions. It runs after EmitDeferred() and therefore 1716 // is not allowed to create new references to things that need to be emitted 1717 // lazily. Note that it also uses fact that we eagerly emitting RTTI. 1718 1719 assert((OpportunisticVTables.empty() || shouldOpportunisticallyEmitVTables()) 1720 && "Only emit opportunistic vtables with optimizations"); 1721 1722 for (const CXXRecordDecl *RD : OpportunisticVTables) { 1723 assert(getVTables().isVTableExternal(RD) && 1724 "This queue should only contain external vtables"); 1725 if (getCXXABI().canSpeculativelyEmitVTable(RD)) 1726 VTables.GenerateClassData(RD); 1727 } 1728 OpportunisticVTables.clear(); 1729 } 1730 1731 void CodeGenModule::EmitGlobalAnnotations() { 1732 if (Annotations.empty()) 1733 return; 1734 1735 // Create a new global variable for the ConstantStruct in the Module. 1736 llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get( 1737 Annotations[0]->getType(), Annotations.size()), Annotations); 1738 auto *gv = new llvm::GlobalVariable(getModule(), Array->getType(), false, 1739 llvm::GlobalValue::AppendingLinkage, 1740 Array, "llvm.global.annotations"); 1741 gv->setSection(AnnotationSection); 1742 } 1743 1744 llvm::Constant *CodeGenModule::EmitAnnotationString(StringRef Str) { 1745 llvm::Constant *&AStr = AnnotationStrings[Str]; 1746 if (AStr) 1747 return AStr; 1748 1749 // Not found yet, create a new global. 1750 llvm::Constant *s = llvm::ConstantDataArray::getString(getLLVMContext(), Str); 1751 auto *gv = 1752 new llvm::GlobalVariable(getModule(), s->getType(), true, 1753 llvm::GlobalValue::PrivateLinkage, s, ".str"); 1754 gv->setSection(AnnotationSection); 1755 gv->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 1756 AStr = gv; 1757 return gv; 1758 } 1759 1760 llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) { 1761 SourceManager &SM = getContext().getSourceManager(); 1762 PresumedLoc PLoc = SM.getPresumedLoc(Loc); 1763 if (PLoc.isValid()) 1764 return EmitAnnotationString(PLoc.getFilename()); 1765 return EmitAnnotationString(SM.getBufferName(Loc)); 1766 } 1767 1768 llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) { 1769 SourceManager &SM = getContext().getSourceManager(); 1770 PresumedLoc PLoc = SM.getPresumedLoc(L); 1771 unsigned LineNo = PLoc.isValid() ? PLoc.getLine() : 1772 SM.getExpansionLineNumber(L); 1773 return llvm::ConstantInt::get(Int32Ty, LineNo); 1774 } 1775 1776 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV, 1777 const AnnotateAttr *AA, 1778 SourceLocation L) { 1779 // Get the globals for file name, annotation, and the line number. 1780 llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()), 1781 *UnitGV = EmitAnnotationUnit(L), 1782 *LineNoCst = EmitAnnotationLineNo(L); 1783 1784 // Create the ConstantStruct for the global annotation. 1785 llvm::Constant *Fields[4] = { 1786 llvm::ConstantExpr::getBitCast(GV, Int8PtrTy), 1787 llvm::ConstantExpr::getBitCast(AnnoGV, Int8PtrTy), 1788 llvm::ConstantExpr::getBitCast(UnitGV, Int8PtrTy), 1789 LineNoCst 1790 }; 1791 return llvm::ConstantStruct::getAnon(Fields); 1792 } 1793 1794 void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D, 1795 llvm::GlobalValue *GV) { 1796 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 1797 // Get the struct elements for these annotations. 1798 for (const auto *I : D->specific_attrs<AnnotateAttr>()) 1799 Annotations.push_back(EmitAnnotateAttr(GV, I, D->getLocation())); 1800 } 1801 1802 bool CodeGenModule::isInSanitizerBlacklist(SanitizerMask Kind, 1803 llvm::Function *Fn, 1804 SourceLocation Loc) const { 1805 const auto &SanitizerBL = getContext().getSanitizerBlacklist(); 1806 // Blacklist by function name. 1807 if (SanitizerBL.isBlacklistedFunction(Kind, Fn->getName())) 1808 return true; 1809 // Blacklist by location. 1810 if (Loc.isValid()) 1811 return SanitizerBL.isBlacklistedLocation(Kind, Loc); 1812 // If location is unknown, this may be a compiler-generated function. Assume 1813 // it's located in the main file. 1814 auto &SM = Context.getSourceManager(); 1815 if (const auto *MainFile = SM.getFileEntryForID(SM.getMainFileID())) { 1816 return SanitizerBL.isBlacklistedFile(Kind, MainFile->getName()); 1817 } 1818 return false; 1819 } 1820 1821 bool CodeGenModule::isInSanitizerBlacklist(llvm::GlobalVariable *GV, 1822 SourceLocation Loc, QualType Ty, 1823 StringRef Category) const { 1824 // For now globals can be blacklisted only in ASan and KASan. 1825 const SanitizerMask EnabledAsanMask = LangOpts.Sanitize.Mask & 1826 (SanitizerKind::Address | SanitizerKind::KernelAddress | SanitizerKind::HWAddress); 1827 if (!EnabledAsanMask) 1828 return false; 1829 const auto &SanitizerBL = getContext().getSanitizerBlacklist(); 1830 if (SanitizerBL.isBlacklistedGlobal(EnabledAsanMask, GV->getName(), Category)) 1831 return true; 1832 if (SanitizerBL.isBlacklistedLocation(EnabledAsanMask, Loc, Category)) 1833 return true; 1834 // Check global type. 1835 if (!Ty.isNull()) { 1836 // Drill down the array types: if global variable of a fixed type is 1837 // blacklisted, we also don't instrument arrays of them. 1838 while (auto AT = dyn_cast<ArrayType>(Ty.getTypePtr())) 1839 Ty = AT->getElementType(); 1840 Ty = Ty.getCanonicalType().getUnqualifiedType(); 1841 // We allow to blacklist only record types (classes, structs etc.) 1842 if (Ty->isRecordType()) { 1843 std::string TypeStr = Ty.getAsString(getContext().getPrintingPolicy()); 1844 if (SanitizerBL.isBlacklistedType(EnabledAsanMask, TypeStr, Category)) 1845 return true; 1846 } 1847 } 1848 return false; 1849 } 1850 1851 bool CodeGenModule::imbueXRayAttrs(llvm::Function *Fn, SourceLocation Loc, 1852 StringRef Category) const { 1853 if (!LangOpts.XRayInstrument) 1854 return false; 1855 const auto &XRayFilter = getContext().getXRayFilter(); 1856 using ImbueAttr = XRayFunctionFilter::ImbueAttribute; 1857 auto Attr = XRayFunctionFilter::ImbueAttribute::NONE; 1858 if (Loc.isValid()) 1859 Attr = XRayFilter.shouldImbueLocation(Loc, Category); 1860 if (Attr == ImbueAttr::NONE) 1861 Attr = XRayFilter.shouldImbueFunction(Fn->getName()); 1862 switch (Attr) { 1863 case ImbueAttr::NONE: 1864 return false; 1865 case ImbueAttr::ALWAYS: 1866 Fn->addFnAttr("function-instrument", "xray-always"); 1867 break; 1868 case ImbueAttr::ALWAYS_ARG1: 1869 Fn->addFnAttr("function-instrument", "xray-always"); 1870 Fn->addFnAttr("xray-log-args", "1"); 1871 break; 1872 case ImbueAttr::NEVER: 1873 Fn->addFnAttr("function-instrument", "xray-never"); 1874 break; 1875 } 1876 return true; 1877 } 1878 1879 bool CodeGenModule::MustBeEmitted(const ValueDecl *Global) { 1880 // Never defer when EmitAllDecls is specified. 1881 if (LangOpts.EmitAllDecls) 1882 return true; 1883 1884 return getContext().DeclMustBeEmitted(Global); 1885 } 1886 1887 bool CodeGenModule::MayBeEmittedEagerly(const ValueDecl *Global) { 1888 if (const auto *FD = dyn_cast<FunctionDecl>(Global)) 1889 if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation) 1890 // Implicit template instantiations may change linkage if they are later 1891 // explicitly instantiated, so they should not be emitted eagerly. 1892 return false; 1893 if (const auto *VD = dyn_cast<VarDecl>(Global)) 1894 if (Context.getInlineVariableDefinitionKind(VD) == 1895 ASTContext::InlineVariableDefinitionKind::WeakUnknown) 1896 // A definition of an inline constexpr static data member may change 1897 // linkage later if it's redeclared outside the class. 1898 return false; 1899 // If OpenMP is enabled and threadprivates must be generated like TLS, delay 1900 // codegen for global variables, because they may be marked as threadprivate. 1901 if (LangOpts.OpenMP && LangOpts.OpenMPUseTLS && 1902 getContext().getTargetInfo().isTLSSupported() && isa<VarDecl>(Global)) 1903 return false; 1904 1905 return true; 1906 } 1907 1908 ConstantAddress CodeGenModule::GetAddrOfUuidDescriptor( 1909 const CXXUuidofExpr* E) { 1910 // Sema has verified that IIDSource has a __declspec(uuid()), and that its 1911 // well-formed. 1912 StringRef Uuid = E->getUuidStr(); 1913 std::string Name = "_GUID_" + Uuid.lower(); 1914 std::replace(Name.begin(), Name.end(), '-', '_'); 1915 1916 // The UUID descriptor should be pointer aligned. 1917 CharUnits Alignment = CharUnits::fromQuantity(PointerAlignInBytes); 1918 1919 // Look for an existing global. 1920 if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name)) 1921 return ConstantAddress(GV, Alignment); 1922 1923 llvm::Constant *Init = EmitUuidofInitializer(Uuid); 1924 assert(Init && "failed to initialize as constant"); 1925 1926 auto *GV = new llvm::GlobalVariable( 1927 getModule(), Init->getType(), 1928 /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name); 1929 if (supportsCOMDAT()) 1930 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 1931 return ConstantAddress(GV, Alignment); 1932 } 1933 1934 ConstantAddress CodeGenModule::GetWeakRefReference(const ValueDecl *VD) { 1935 const AliasAttr *AA = VD->getAttr<AliasAttr>(); 1936 assert(AA && "No alias?"); 1937 1938 CharUnits Alignment = getContext().getDeclAlign(VD); 1939 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType()); 1940 1941 // See if there is already something with the target's name in the module. 1942 llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee()); 1943 if (Entry) { 1944 unsigned AS = getContext().getTargetAddressSpace(VD->getType()); 1945 auto Ptr = llvm::ConstantExpr::getBitCast(Entry, DeclTy->getPointerTo(AS)); 1946 return ConstantAddress(Ptr, Alignment); 1947 } 1948 1949 llvm::Constant *Aliasee; 1950 if (isa<llvm::FunctionType>(DeclTy)) 1951 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, 1952 GlobalDecl(cast<FunctionDecl>(VD)), 1953 /*ForVTable=*/false); 1954 else 1955 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), 1956 llvm::PointerType::getUnqual(DeclTy), 1957 nullptr); 1958 1959 auto *F = cast<llvm::GlobalValue>(Aliasee); 1960 F->setLinkage(llvm::Function::ExternalWeakLinkage); 1961 WeakRefReferences.insert(F); 1962 1963 return ConstantAddress(Aliasee, Alignment); 1964 } 1965 1966 void CodeGenModule::EmitGlobal(GlobalDecl GD) { 1967 const auto *Global = cast<ValueDecl>(GD.getDecl()); 1968 1969 // Weak references don't produce any output by themselves. 1970 if (Global->hasAttr<WeakRefAttr>()) 1971 return; 1972 1973 // If this is an alias definition (which otherwise looks like a declaration) 1974 // emit it now. 1975 if (Global->hasAttr<AliasAttr>()) 1976 return EmitAliasDefinition(GD); 1977 1978 // IFunc like an alias whose value is resolved at runtime by calling resolver. 1979 if (Global->hasAttr<IFuncAttr>()) 1980 return emitIFuncDefinition(GD); 1981 1982 // If this is CUDA, be selective about which declarations we emit. 1983 if (LangOpts.CUDA) { 1984 if (LangOpts.CUDAIsDevice) { 1985 if (!Global->hasAttr<CUDADeviceAttr>() && 1986 !Global->hasAttr<CUDAGlobalAttr>() && 1987 !Global->hasAttr<CUDAConstantAttr>() && 1988 !Global->hasAttr<CUDASharedAttr>()) 1989 return; 1990 } else { 1991 // We need to emit host-side 'shadows' for all global 1992 // device-side variables because the CUDA runtime needs their 1993 // size and host-side address in order to provide access to 1994 // their device-side incarnations. 1995 1996 // So device-only functions are the only things we skip. 1997 if (isa<FunctionDecl>(Global) && !Global->hasAttr<CUDAHostAttr>() && 1998 Global->hasAttr<CUDADeviceAttr>()) 1999 return; 2000 2001 assert((isa<FunctionDecl>(Global) || isa<VarDecl>(Global)) && 2002 "Expected Variable or Function"); 2003 } 2004 } 2005 2006 if (LangOpts.OpenMP) { 2007 // If this is OpenMP device, check if it is legal to emit this global 2008 // normally. 2009 if (OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(GD)) 2010 return; 2011 if (auto *DRD = dyn_cast<OMPDeclareReductionDecl>(Global)) { 2012 if (MustBeEmitted(Global)) 2013 EmitOMPDeclareReduction(DRD); 2014 return; 2015 } 2016 } 2017 2018 // Ignore declarations, they will be emitted on their first use. 2019 if (const auto *FD = dyn_cast<FunctionDecl>(Global)) { 2020 // Forward declarations are emitted lazily on first use. 2021 if (!FD->doesThisDeclarationHaveABody()) { 2022 if (!FD->doesDeclarationForceExternallyVisibleDefinition()) 2023 return; 2024 2025 StringRef MangledName = getMangledName(GD); 2026 2027 // Compute the function info and LLVM type. 2028 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 2029 llvm::Type *Ty = getTypes().GetFunctionType(FI); 2030 2031 GetOrCreateLLVMFunction(MangledName, Ty, GD, /*ForVTable=*/false, 2032 /*DontDefer=*/false); 2033 return; 2034 } 2035 } else { 2036 const auto *VD = cast<VarDecl>(Global); 2037 assert(VD->isFileVarDecl() && "Cannot emit local var decl as global."); 2038 // We need to emit device-side global CUDA variables even if a 2039 // variable does not have a definition -- we still need to define 2040 // host-side shadow for it. 2041 bool MustEmitForCuda = LangOpts.CUDA && !LangOpts.CUDAIsDevice && 2042 !VD->hasDefinition() && 2043 (VD->hasAttr<CUDAConstantAttr>() || 2044 VD->hasAttr<CUDADeviceAttr>()); 2045 if (!MustEmitForCuda && 2046 VD->isThisDeclarationADefinition() != VarDecl::Definition && 2047 !Context.isMSStaticDataMemberInlineDefinition(VD)) { 2048 // If this declaration may have caused an inline variable definition to 2049 // change linkage, make sure that it's emitted. 2050 if (Context.getInlineVariableDefinitionKind(VD) == 2051 ASTContext::InlineVariableDefinitionKind::Strong) 2052 GetAddrOfGlobalVar(VD); 2053 return; 2054 } 2055 } 2056 2057 // Defer code generation to first use when possible, e.g. if this is an inline 2058 // function. If the global must always be emitted, do it eagerly if possible 2059 // to benefit from cache locality. 2060 if (MustBeEmitted(Global) && MayBeEmittedEagerly(Global)) { 2061 // Emit the definition if it can't be deferred. 2062 EmitGlobalDefinition(GD); 2063 return; 2064 } 2065 2066 // If we're deferring emission of a C++ variable with an 2067 // initializer, remember the order in which it appeared in the file. 2068 if (getLangOpts().CPlusPlus && isa<VarDecl>(Global) && 2069 cast<VarDecl>(Global)->hasInit()) { 2070 DelayedCXXInitPosition[Global] = CXXGlobalInits.size(); 2071 CXXGlobalInits.push_back(nullptr); 2072 } 2073 2074 StringRef MangledName = getMangledName(GD); 2075 if (GetGlobalValue(MangledName) != nullptr) { 2076 // The value has already been used and should therefore be emitted. 2077 addDeferredDeclToEmit(GD); 2078 } else if (MustBeEmitted(Global)) { 2079 // The value must be emitted, but cannot be emitted eagerly. 2080 assert(!MayBeEmittedEagerly(Global)); 2081 addDeferredDeclToEmit(GD); 2082 } else { 2083 // Otherwise, remember that we saw a deferred decl with this name. The 2084 // first use of the mangled name will cause it to move into 2085 // DeferredDeclsToEmit. 2086 DeferredDecls[MangledName] = GD; 2087 } 2088 } 2089 2090 // Check if T is a class type with a destructor that's not dllimport. 2091 static bool HasNonDllImportDtor(QualType T) { 2092 if (const auto *RT = T->getBaseElementTypeUnsafe()->getAs<RecordType>()) 2093 if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl())) 2094 if (RD->getDestructor() && !RD->getDestructor()->hasAttr<DLLImportAttr>()) 2095 return true; 2096 2097 return false; 2098 } 2099 2100 namespace { 2101 struct FunctionIsDirectlyRecursive : 2102 public RecursiveASTVisitor<FunctionIsDirectlyRecursive> { 2103 const StringRef Name; 2104 const Builtin::Context &BI; 2105 bool Result; 2106 FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C) : 2107 Name(N), BI(C), Result(false) { 2108 } 2109 typedef RecursiveASTVisitor<FunctionIsDirectlyRecursive> Base; 2110 2111 bool TraverseCallExpr(CallExpr *E) { 2112 const FunctionDecl *FD = E->getDirectCallee(); 2113 if (!FD) 2114 return true; 2115 AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>(); 2116 if (Attr && Name == Attr->getLabel()) { 2117 Result = true; 2118 return false; 2119 } 2120 unsigned BuiltinID = FD->getBuiltinID(); 2121 if (!BuiltinID || !BI.isLibFunction(BuiltinID)) 2122 return true; 2123 StringRef BuiltinName = BI.getName(BuiltinID); 2124 if (BuiltinName.startswith("__builtin_") && 2125 Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) { 2126 Result = true; 2127 return false; 2128 } 2129 return true; 2130 } 2131 }; 2132 2133 // Make sure we're not referencing non-imported vars or functions. 2134 struct DLLImportFunctionVisitor 2135 : public RecursiveASTVisitor<DLLImportFunctionVisitor> { 2136 bool SafeToInline = true; 2137 2138 bool shouldVisitImplicitCode() const { return true; } 2139 2140 bool VisitVarDecl(VarDecl *VD) { 2141 if (VD->getTLSKind()) { 2142 // A thread-local variable cannot be imported. 2143 SafeToInline = false; 2144 return SafeToInline; 2145 } 2146 2147 // A variable definition might imply a destructor call. 2148 if (VD->isThisDeclarationADefinition()) 2149 SafeToInline = !HasNonDllImportDtor(VD->getType()); 2150 2151 return SafeToInline; 2152 } 2153 2154 bool VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) { 2155 if (const auto *D = E->getTemporary()->getDestructor()) 2156 SafeToInline = D->hasAttr<DLLImportAttr>(); 2157 return SafeToInline; 2158 } 2159 2160 bool VisitDeclRefExpr(DeclRefExpr *E) { 2161 ValueDecl *VD = E->getDecl(); 2162 if (isa<FunctionDecl>(VD)) 2163 SafeToInline = VD->hasAttr<DLLImportAttr>(); 2164 else if (VarDecl *V = dyn_cast<VarDecl>(VD)) 2165 SafeToInline = !V->hasGlobalStorage() || V->hasAttr<DLLImportAttr>(); 2166 return SafeToInline; 2167 } 2168 2169 bool VisitCXXConstructExpr(CXXConstructExpr *E) { 2170 SafeToInline = E->getConstructor()->hasAttr<DLLImportAttr>(); 2171 return SafeToInline; 2172 } 2173 2174 bool VisitCXXMemberCallExpr(CXXMemberCallExpr *E) { 2175 CXXMethodDecl *M = E->getMethodDecl(); 2176 if (!M) { 2177 // Call through a pointer to member function. This is safe to inline. 2178 SafeToInline = true; 2179 } else { 2180 SafeToInline = M->hasAttr<DLLImportAttr>(); 2181 } 2182 return SafeToInline; 2183 } 2184 2185 bool VisitCXXDeleteExpr(CXXDeleteExpr *E) { 2186 SafeToInline = E->getOperatorDelete()->hasAttr<DLLImportAttr>(); 2187 return SafeToInline; 2188 } 2189 2190 bool VisitCXXNewExpr(CXXNewExpr *E) { 2191 SafeToInline = E->getOperatorNew()->hasAttr<DLLImportAttr>(); 2192 return SafeToInline; 2193 } 2194 }; 2195 } 2196 2197 // isTriviallyRecursive - Check if this function calls another 2198 // decl that, because of the asm attribute or the other decl being a builtin, 2199 // ends up pointing to itself. 2200 bool 2201 CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) { 2202 StringRef Name; 2203 if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) { 2204 // asm labels are a special kind of mangling we have to support. 2205 AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>(); 2206 if (!Attr) 2207 return false; 2208 Name = Attr->getLabel(); 2209 } else { 2210 Name = FD->getName(); 2211 } 2212 2213 FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo); 2214 Walker.TraverseFunctionDecl(const_cast<FunctionDecl*>(FD)); 2215 return Walker.Result; 2216 } 2217 2218 bool CodeGenModule::shouldEmitFunction(GlobalDecl GD) { 2219 if (getFunctionLinkage(GD) != llvm::Function::AvailableExternallyLinkage) 2220 return true; 2221 const auto *F = cast<FunctionDecl>(GD.getDecl()); 2222 if (CodeGenOpts.OptimizationLevel == 0 && !F->hasAttr<AlwaysInlineAttr>()) 2223 return false; 2224 2225 if (F->hasAttr<DLLImportAttr>()) { 2226 // Check whether it would be safe to inline this dllimport function. 2227 DLLImportFunctionVisitor Visitor; 2228 Visitor.TraverseFunctionDecl(const_cast<FunctionDecl*>(F)); 2229 if (!Visitor.SafeToInline) 2230 return false; 2231 2232 if (const CXXDestructorDecl *Dtor = dyn_cast<CXXDestructorDecl>(F)) { 2233 // Implicit destructor invocations aren't captured in the AST, so the 2234 // check above can't see them. Check for them manually here. 2235 for (const Decl *Member : Dtor->getParent()->decls()) 2236 if (isa<FieldDecl>(Member)) 2237 if (HasNonDllImportDtor(cast<FieldDecl>(Member)->getType())) 2238 return false; 2239 for (const CXXBaseSpecifier &B : Dtor->getParent()->bases()) 2240 if (HasNonDllImportDtor(B.getType())) 2241 return false; 2242 } 2243 } 2244 2245 // PR9614. Avoid cases where the source code is lying to us. An available 2246 // externally function should have an equivalent function somewhere else, 2247 // but a function that calls itself is clearly not equivalent to the real 2248 // implementation. 2249 // This happens in glibc's btowc and in some configure checks. 2250 return !isTriviallyRecursive(F); 2251 } 2252 2253 bool CodeGenModule::shouldOpportunisticallyEmitVTables() { 2254 return CodeGenOpts.OptimizationLevel > 0; 2255 } 2256 2257 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD, llvm::GlobalValue *GV) { 2258 const auto *D = cast<ValueDecl>(GD.getDecl()); 2259 2260 PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(), 2261 Context.getSourceManager(), 2262 "Generating code for declaration"); 2263 2264 if (isa<FunctionDecl>(D)) { 2265 // At -O0, don't generate IR for functions with available_externally 2266 // linkage. 2267 if (!shouldEmitFunction(GD)) 2268 return; 2269 2270 if (const auto *Method = dyn_cast<CXXMethodDecl>(D)) { 2271 // Make sure to emit the definition(s) before we emit the thunks. 2272 // This is necessary for the generation of certain thunks. 2273 if (const auto *CD = dyn_cast<CXXConstructorDecl>(Method)) 2274 ABI->emitCXXStructor(CD, getFromCtorType(GD.getCtorType())); 2275 else if (const auto *DD = dyn_cast<CXXDestructorDecl>(Method)) 2276 ABI->emitCXXStructor(DD, getFromDtorType(GD.getDtorType())); 2277 else 2278 EmitGlobalFunctionDefinition(GD, GV); 2279 2280 if (Method->isVirtual()) 2281 getVTables().EmitThunks(GD); 2282 2283 return; 2284 } 2285 2286 return EmitGlobalFunctionDefinition(GD, GV); 2287 } 2288 2289 if (const auto *VD = dyn_cast<VarDecl>(D)) 2290 return EmitGlobalVarDefinition(VD, !VD->hasDefinition()); 2291 2292 llvm_unreachable("Invalid argument to EmitGlobalDefinition()"); 2293 } 2294 2295 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old, 2296 llvm::Function *NewFn); 2297 2298 void CodeGenModule::emitMultiVersionFunctions() { 2299 for (GlobalDecl GD : MultiVersionFuncs) { 2300 SmallVector<CodeGenFunction::MultiVersionResolverOption, 10> Options; 2301 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 2302 getContext().forEachMultiversionedFunctionVersion( 2303 FD, [this, &GD, &Options](const FunctionDecl *CurFD) { 2304 GlobalDecl CurGD{ 2305 (CurFD->isDefined() ? CurFD->getDefinition() : CurFD)}; 2306 StringRef MangledName = getMangledName(CurGD); 2307 llvm::Constant *Func = GetGlobalValue(MangledName); 2308 if (!Func) { 2309 if (CurFD->isDefined()) { 2310 EmitGlobalFunctionDefinition(CurGD, nullptr); 2311 Func = GetGlobalValue(MangledName); 2312 } else { 2313 const CGFunctionInfo &FI = 2314 getTypes().arrangeGlobalDeclaration(GD); 2315 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 2316 Func = GetAddrOfFunction(CurGD, Ty, /*ForVTable=*/false, 2317 /*DontDefer=*/false, ForDefinition); 2318 } 2319 assert(Func && "This should have just been created"); 2320 } 2321 Options.emplace_back(getTarget(), cast<llvm::Function>(Func), 2322 CurFD->getAttr<TargetAttr>()->parse()); 2323 }); 2324 2325 llvm::Function *ResolverFunc = cast<llvm::Function>( 2326 GetGlobalValue((getMangledName(GD) + ".resolver").str())); 2327 if (supportsCOMDAT()) 2328 ResolverFunc->setComdat( 2329 getModule().getOrInsertComdat(ResolverFunc->getName())); 2330 std::stable_sort( 2331 Options.begin(), Options.end(), 2332 std::greater<CodeGenFunction::MultiVersionResolverOption>()); 2333 CodeGenFunction CGF(*this); 2334 CGF.EmitMultiVersionResolver(ResolverFunc, Options); 2335 } 2336 } 2337 2338 /// If an ifunc for the specified mangled name is not in the module, create and 2339 /// return an llvm IFunc Function with the specified type. 2340 llvm::Constant * 2341 CodeGenModule::GetOrCreateMultiVersionIFunc(GlobalDecl GD, llvm::Type *DeclTy, 2342 StringRef MangledName, 2343 const FunctionDecl *FD) { 2344 std::string IFuncName = (MangledName + ".ifunc").str(); 2345 if (llvm::GlobalValue *IFuncGV = GetGlobalValue(IFuncName)) 2346 return IFuncGV; 2347 2348 // Since this is the first time we've created this IFunc, make sure 2349 // that we put this multiversioned function into the list to be 2350 // replaced later. 2351 MultiVersionFuncs.push_back(GD); 2352 2353 std::string ResolverName = (MangledName + ".resolver").str(); 2354 llvm::Type *ResolverType = llvm::FunctionType::get( 2355 llvm::PointerType::get(DeclTy, 2356 Context.getTargetAddressSpace(FD->getType())), 2357 false); 2358 llvm::Constant *Resolver = 2359 GetOrCreateLLVMFunction(ResolverName, ResolverType, GlobalDecl{}, 2360 /*ForVTable=*/false); 2361 llvm::GlobalIFunc *GIF = llvm::GlobalIFunc::create( 2362 DeclTy, 0, llvm::Function::ExternalLinkage, "", Resolver, &getModule()); 2363 GIF->setName(IFuncName); 2364 SetCommonAttributes(FD, GIF); 2365 2366 return GIF; 2367 } 2368 2369 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the 2370 /// module, create and return an llvm Function with the specified type. If there 2371 /// is something in the module with the specified name, return it potentially 2372 /// bitcasted to the right type. 2373 /// 2374 /// If D is non-null, it specifies a decl that correspond to this. This is used 2375 /// to set the attributes on the function when it is first created. 2376 llvm::Constant *CodeGenModule::GetOrCreateLLVMFunction( 2377 StringRef MangledName, llvm::Type *Ty, GlobalDecl GD, bool ForVTable, 2378 bool DontDefer, bool IsThunk, llvm::AttributeList ExtraAttrs, 2379 ForDefinition_t IsForDefinition) { 2380 const Decl *D = GD.getDecl(); 2381 2382 // Any attempts to use a MultiVersion function should result in retrieving 2383 // the iFunc instead. Name Mangling will handle the rest of the changes. 2384 if (const FunctionDecl *FD = cast_or_null<FunctionDecl>(D)) { 2385 if (FD->isMultiVersion() && FD->getAttr<TargetAttr>()->isDefaultVersion()) { 2386 UpdateMultiVersionNames(GD, FD); 2387 if (!IsForDefinition) 2388 return GetOrCreateMultiVersionIFunc(GD, Ty, MangledName, FD); 2389 } 2390 } 2391 2392 // Lookup the entry, lazily creating it if necessary. 2393 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 2394 if (Entry) { 2395 if (WeakRefReferences.erase(Entry)) { 2396 const FunctionDecl *FD = cast_or_null<FunctionDecl>(D); 2397 if (FD && !FD->hasAttr<WeakAttr>()) 2398 Entry->setLinkage(llvm::Function::ExternalLinkage); 2399 } 2400 2401 // Handle dropped DLL attributes. 2402 if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>()) 2403 Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 2404 2405 // If there are two attempts to define the same mangled name, issue an 2406 // error. 2407 if (IsForDefinition && !Entry->isDeclaration()) { 2408 GlobalDecl OtherGD; 2409 // Check that GD is not yet in DiagnosedConflictingDefinitions is required 2410 // to make sure that we issue an error only once. 2411 if (lookupRepresentativeDecl(MangledName, OtherGD) && 2412 (GD.getCanonicalDecl().getDecl() != 2413 OtherGD.getCanonicalDecl().getDecl()) && 2414 DiagnosedConflictingDefinitions.insert(GD).second) { 2415 getDiags().Report(D->getLocation(), 2416 diag::err_duplicate_mangled_name); 2417 getDiags().Report(OtherGD.getDecl()->getLocation(), 2418 diag::note_previous_definition); 2419 } 2420 } 2421 2422 if ((isa<llvm::Function>(Entry) || isa<llvm::GlobalAlias>(Entry)) && 2423 (Entry->getType()->getElementType() == Ty)) { 2424 return Entry; 2425 } 2426 2427 // Make sure the result is of the correct type. 2428 // (If function is requested for a definition, we always need to create a new 2429 // function, not just return a bitcast.) 2430 if (!IsForDefinition) 2431 return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo()); 2432 } 2433 2434 // This function doesn't have a complete type (for example, the return 2435 // type is an incomplete struct). Use a fake type instead, and make 2436 // sure not to try to set attributes. 2437 bool IsIncompleteFunction = false; 2438 2439 llvm::FunctionType *FTy; 2440 if (isa<llvm::FunctionType>(Ty)) { 2441 FTy = cast<llvm::FunctionType>(Ty); 2442 } else { 2443 FTy = llvm::FunctionType::get(VoidTy, false); 2444 IsIncompleteFunction = true; 2445 } 2446 2447 llvm::Function *F = 2448 llvm::Function::Create(FTy, llvm::Function::ExternalLinkage, 2449 Entry ? StringRef() : MangledName, &getModule()); 2450 2451 // If we already created a function with the same mangled name (but different 2452 // type) before, take its name and add it to the list of functions to be 2453 // replaced with F at the end of CodeGen. 2454 // 2455 // This happens if there is a prototype for a function (e.g. "int f()") and 2456 // then a definition of a different type (e.g. "int f(int x)"). 2457 if (Entry) { 2458 F->takeName(Entry); 2459 2460 // This might be an implementation of a function without a prototype, in 2461 // which case, try to do special replacement of calls which match the new 2462 // prototype. The really key thing here is that we also potentially drop 2463 // arguments from the call site so as to make a direct call, which makes the 2464 // inliner happier and suppresses a number of optimizer warnings (!) about 2465 // dropping arguments. 2466 if (!Entry->use_empty()) { 2467 ReplaceUsesOfNonProtoTypeWithRealFunction(Entry, F); 2468 Entry->removeDeadConstantUsers(); 2469 } 2470 2471 llvm::Constant *BC = llvm::ConstantExpr::getBitCast( 2472 F, Entry->getType()->getElementType()->getPointerTo()); 2473 addGlobalValReplacement(Entry, BC); 2474 } 2475 2476 assert(F->getName() == MangledName && "name was uniqued!"); 2477 if (D) 2478 SetFunctionAttributes(GD, F, IsIncompleteFunction, IsThunk); 2479 if (ExtraAttrs.hasAttributes(llvm::AttributeList::FunctionIndex)) { 2480 llvm::AttrBuilder B(ExtraAttrs, llvm::AttributeList::FunctionIndex); 2481 F->addAttributes(llvm::AttributeList::FunctionIndex, B); 2482 } 2483 2484 if (!DontDefer) { 2485 // All MSVC dtors other than the base dtor are linkonce_odr and delegate to 2486 // each other bottoming out with the base dtor. Therefore we emit non-base 2487 // dtors on usage, even if there is no dtor definition in the TU. 2488 if (D && isa<CXXDestructorDecl>(D) && 2489 getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D), 2490 GD.getDtorType())) 2491 addDeferredDeclToEmit(GD); 2492 2493 // This is the first use or definition of a mangled name. If there is a 2494 // deferred decl with this name, remember that we need to emit it at the end 2495 // of the file. 2496 auto DDI = DeferredDecls.find(MangledName); 2497 if (DDI != DeferredDecls.end()) { 2498 // Move the potentially referenced deferred decl to the 2499 // DeferredDeclsToEmit list, and remove it from DeferredDecls (since we 2500 // don't need it anymore). 2501 addDeferredDeclToEmit(DDI->second); 2502 DeferredDecls.erase(DDI); 2503 2504 // Otherwise, there are cases we have to worry about where we're 2505 // using a declaration for which we must emit a definition but where 2506 // we might not find a top-level definition: 2507 // - member functions defined inline in their classes 2508 // - friend functions defined inline in some class 2509 // - special member functions with implicit definitions 2510 // If we ever change our AST traversal to walk into class methods, 2511 // this will be unnecessary. 2512 // 2513 // We also don't emit a definition for a function if it's going to be an 2514 // entry in a vtable, unless it's already marked as used. 2515 } else if (getLangOpts().CPlusPlus && D) { 2516 // Look for a declaration that's lexically in a record. 2517 for (const auto *FD = cast<FunctionDecl>(D)->getMostRecentDecl(); FD; 2518 FD = FD->getPreviousDecl()) { 2519 if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) { 2520 if (FD->doesThisDeclarationHaveABody()) { 2521 addDeferredDeclToEmit(GD.getWithDecl(FD)); 2522 break; 2523 } 2524 } 2525 } 2526 } 2527 } 2528 2529 // Make sure the result is of the requested type. 2530 if (!IsIncompleteFunction) { 2531 assert(F->getType()->getElementType() == Ty); 2532 return F; 2533 } 2534 2535 llvm::Type *PTy = llvm::PointerType::getUnqual(Ty); 2536 return llvm::ConstantExpr::getBitCast(F, PTy); 2537 } 2538 2539 /// GetAddrOfFunction - Return the address of the given function. If Ty is 2540 /// non-null, then this function will use the specified type if it has to 2541 /// create it (this occurs when we see a definition of the function). 2542 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD, 2543 llvm::Type *Ty, 2544 bool ForVTable, 2545 bool DontDefer, 2546 ForDefinition_t IsForDefinition) { 2547 // If there was no specific requested type, just convert it now. 2548 if (!Ty) { 2549 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 2550 auto CanonTy = Context.getCanonicalType(FD->getType()); 2551 Ty = getTypes().ConvertFunctionType(CanonTy, FD); 2552 } 2553 2554 StringRef MangledName = getMangledName(GD); 2555 return GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable, DontDefer, 2556 /*IsThunk=*/false, llvm::AttributeList(), 2557 IsForDefinition); 2558 } 2559 2560 static const FunctionDecl * 2561 GetRuntimeFunctionDecl(ASTContext &C, StringRef Name) { 2562 TranslationUnitDecl *TUDecl = C.getTranslationUnitDecl(); 2563 DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl); 2564 2565 IdentifierInfo &CII = C.Idents.get(Name); 2566 for (const auto &Result : DC->lookup(&CII)) 2567 if (const auto FD = dyn_cast<FunctionDecl>(Result)) 2568 return FD; 2569 2570 if (!C.getLangOpts().CPlusPlus) 2571 return nullptr; 2572 2573 // Demangle the premangled name from getTerminateFn() 2574 IdentifierInfo &CXXII = 2575 (Name == "_ZSt9terminatev" || Name == "\01?terminate@@YAXXZ") 2576 ? C.Idents.get("terminate") 2577 : C.Idents.get(Name); 2578 2579 for (const auto &N : {"__cxxabiv1", "std"}) { 2580 IdentifierInfo &NS = C.Idents.get(N); 2581 for (const auto &Result : DC->lookup(&NS)) { 2582 NamespaceDecl *ND = dyn_cast<NamespaceDecl>(Result); 2583 if (auto LSD = dyn_cast<LinkageSpecDecl>(Result)) 2584 for (const auto &Result : LSD->lookup(&NS)) 2585 if ((ND = dyn_cast<NamespaceDecl>(Result))) 2586 break; 2587 2588 if (ND) 2589 for (const auto &Result : ND->lookup(&CXXII)) 2590 if (const auto *FD = dyn_cast<FunctionDecl>(Result)) 2591 return FD; 2592 } 2593 } 2594 2595 return nullptr; 2596 } 2597 2598 /// CreateRuntimeFunction - Create a new runtime function with the specified 2599 /// type and name. 2600 llvm::Constant * 2601 CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy, StringRef Name, 2602 llvm::AttributeList ExtraAttrs, 2603 bool Local) { 2604 llvm::Constant *C = 2605 GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false, 2606 /*DontDefer=*/false, /*IsThunk=*/false, 2607 ExtraAttrs); 2608 2609 if (auto *F = dyn_cast<llvm::Function>(C)) { 2610 if (F->empty()) { 2611 F->setCallingConv(getRuntimeCC()); 2612 2613 if (!Local && getTriple().isOSBinFormatCOFF() && 2614 !getCodeGenOpts().LTOVisibilityPublicStd && 2615 !getTriple().isWindowsGNUEnvironment()) { 2616 const FunctionDecl *FD = GetRuntimeFunctionDecl(Context, Name); 2617 if (!FD || FD->hasAttr<DLLImportAttr>()) { 2618 F->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass); 2619 F->setLinkage(llvm::GlobalValue::ExternalLinkage); 2620 } 2621 } 2622 } 2623 } 2624 2625 return C; 2626 } 2627 2628 /// CreateBuiltinFunction - Create a new builtin function with the specified 2629 /// type and name. 2630 llvm::Constant * 2631 CodeGenModule::CreateBuiltinFunction(llvm::FunctionType *FTy, StringRef Name, 2632 llvm::AttributeList ExtraAttrs) { 2633 llvm::Constant *C = 2634 GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false, 2635 /*DontDefer=*/false, /*IsThunk=*/false, ExtraAttrs); 2636 if (auto *F = dyn_cast<llvm::Function>(C)) 2637 if (F->empty()) 2638 F->setCallingConv(getBuiltinCC()); 2639 return C; 2640 } 2641 2642 /// isTypeConstant - Determine whether an object of this type can be emitted 2643 /// as a constant. 2644 /// 2645 /// If ExcludeCtor is true, the duration when the object's constructor runs 2646 /// will not be considered. The caller will need to verify that the object is 2647 /// not written to during its construction. 2648 bool CodeGenModule::isTypeConstant(QualType Ty, bool ExcludeCtor) { 2649 if (!Ty.isConstant(Context) && !Ty->isReferenceType()) 2650 return false; 2651 2652 if (Context.getLangOpts().CPlusPlus) { 2653 if (const CXXRecordDecl *Record 2654 = Context.getBaseElementType(Ty)->getAsCXXRecordDecl()) 2655 return ExcludeCtor && !Record->hasMutableFields() && 2656 Record->hasTrivialDestructor(); 2657 } 2658 2659 return true; 2660 } 2661 2662 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module, 2663 /// create and return an llvm GlobalVariable with the specified type. If there 2664 /// is something in the module with the specified name, return it potentially 2665 /// bitcasted to the right type. 2666 /// 2667 /// If D is non-null, it specifies a decl that correspond to this. This is used 2668 /// to set the attributes on the global when it is first created. 2669 /// 2670 /// If IsForDefinition is true, it is guranteed that an actual global with 2671 /// type Ty will be returned, not conversion of a variable with the same 2672 /// mangled name but some other type. 2673 llvm::Constant * 2674 CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName, 2675 llvm::PointerType *Ty, 2676 const VarDecl *D, 2677 ForDefinition_t IsForDefinition) { 2678 // Lookup the entry, lazily creating it if necessary. 2679 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 2680 if (Entry) { 2681 if (WeakRefReferences.erase(Entry)) { 2682 if (D && !D->hasAttr<WeakAttr>()) 2683 Entry->setLinkage(llvm::Function::ExternalLinkage); 2684 } 2685 2686 // Handle dropped DLL attributes. 2687 if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>()) 2688 Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 2689 2690 if (Entry->getType() == Ty) 2691 return Entry; 2692 2693 // If there are two attempts to define the same mangled name, issue an 2694 // error. 2695 if (IsForDefinition && !Entry->isDeclaration()) { 2696 GlobalDecl OtherGD; 2697 const VarDecl *OtherD; 2698 2699 // Check that D is not yet in DiagnosedConflictingDefinitions is required 2700 // to make sure that we issue an error only once. 2701 if (D && lookupRepresentativeDecl(MangledName, OtherGD) && 2702 (D->getCanonicalDecl() != OtherGD.getCanonicalDecl().getDecl()) && 2703 (OtherD = dyn_cast<VarDecl>(OtherGD.getDecl())) && 2704 OtherD->hasInit() && 2705 DiagnosedConflictingDefinitions.insert(D).second) { 2706 getDiags().Report(D->getLocation(), 2707 diag::err_duplicate_mangled_name); 2708 getDiags().Report(OtherGD.getDecl()->getLocation(), 2709 diag::note_previous_definition); 2710 } 2711 } 2712 2713 // Make sure the result is of the correct type. 2714 if (Entry->getType()->getAddressSpace() != Ty->getAddressSpace()) 2715 return llvm::ConstantExpr::getAddrSpaceCast(Entry, Ty); 2716 2717 // (If global is requested for a definition, we always need to create a new 2718 // global, not just return a bitcast.) 2719 if (!IsForDefinition) 2720 return llvm::ConstantExpr::getBitCast(Entry, Ty); 2721 } 2722 2723 auto AddrSpace = GetGlobalVarAddressSpace(D); 2724 auto TargetAddrSpace = getContext().getTargetAddressSpace(AddrSpace); 2725 2726 auto *GV = new llvm::GlobalVariable( 2727 getModule(), Ty->getElementType(), false, 2728 llvm::GlobalValue::ExternalLinkage, nullptr, MangledName, nullptr, 2729 llvm::GlobalVariable::NotThreadLocal, TargetAddrSpace); 2730 2731 // If we already created a global with the same mangled name (but different 2732 // type) before, take its name and remove it from its parent. 2733 if (Entry) { 2734 GV->takeName(Entry); 2735 2736 if (!Entry->use_empty()) { 2737 llvm::Constant *NewPtrForOldDecl = 2738 llvm::ConstantExpr::getBitCast(GV, Entry->getType()); 2739 Entry->replaceAllUsesWith(NewPtrForOldDecl); 2740 } 2741 2742 Entry->eraseFromParent(); 2743 } 2744 2745 // This is the first use or definition of a mangled name. If there is a 2746 // deferred decl with this name, remember that we need to emit it at the end 2747 // of the file. 2748 auto DDI = DeferredDecls.find(MangledName); 2749 if (DDI != DeferredDecls.end()) { 2750 // Move the potentially referenced deferred decl to the DeferredDeclsToEmit 2751 // list, and remove it from DeferredDecls (since we don't need it anymore). 2752 addDeferredDeclToEmit(DDI->second); 2753 DeferredDecls.erase(DDI); 2754 } 2755 2756 // Handle things which are present even on external declarations. 2757 if (D) { 2758 // FIXME: This code is overly simple and should be merged with other global 2759 // handling. 2760 GV->setConstant(isTypeConstant(D->getType(), false)); 2761 2762 GV->setAlignment(getContext().getDeclAlign(D).getQuantity()); 2763 2764 setLinkageForGV(GV, D); 2765 2766 if (D->getTLSKind()) { 2767 if (D->getTLSKind() == VarDecl::TLS_Dynamic) 2768 CXXThreadLocals.push_back(D); 2769 setTLSMode(GV, *D); 2770 } 2771 2772 setGVProperties(GV, D); 2773 2774 // If required by the ABI, treat declarations of static data members with 2775 // inline initializers as definitions. 2776 if (getContext().isMSStaticDataMemberInlineDefinition(D)) { 2777 EmitGlobalVarDefinition(D); 2778 } 2779 2780 // Emit section information for extern variables. 2781 if (D->hasExternalStorage()) { 2782 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) 2783 GV->setSection(SA->getName()); 2784 } 2785 2786 // Handle XCore specific ABI requirements. 2787 if (getTriple().getArch() == llvm::Triple::xcore && 2788 D->getLanguageLinkage() == CLanguageLinkage && 2789 D->getType().isConstant(Context) && 2790 isExternallyVisible(D->getLinkageAndVisibility().getLinkage())) 2791 GV->setSection(".cp.rodata"); 2792 2793 // Check if we a have a const declaration with an initializer, we may be 2794 // able to emit it as available_externally to expose it's value to the 2795 // optimizer. 2796 if (Context.getLangOpts().CPlusPlus && GV->hasExternalLinkage() && 2797 D->getType().isConstQualified() && !GV->hasInitializer() && 2798 !D->hasDefinition() && D->hasInit() && !D->hasAttr<DLLImportAttr>()) { 2799 const auto *Record = 2800 Context.getBaseElementType(D->getType())->getAsCXXRecordDecl(); 2801 bool HasMutableFields = Record && Record->hasMutableFields(); 2802 if (!HasMutableFields) { 2803 const VarDecl *InitDecl; 2804 const Expr *InitExpr = D->getAnyInitializer(InitDecl); 2805 if (InitExpr) { 2806 ConstantEmitter emitter(*this); 2807 llvm::Constant *Init = emitter.tryEmitForInitializer(*InitDecl); 2808 if (Init) { 2809 auto *InitType = Init->getType(); 2810 if (GV->getType()->getElementType() != InitType) { 2811 // The type of the initializer does not match the definition. 2812 // This happens when an initializer has a different type from 2813 // the type of the global (because of padding at the end of a 2814 // structure for instance). 2815 GV->setName(StringRef()); 2816 // Make a new global with the correct type, this is now guaranteed 2817 // to work. 2818 auto *NewGV = cast<llvm::GlobalVariable>( 2819 GetAddrOfGlobalVar(D, InitType, IsForDefinition)); 2820 2821 // Erase the old global, since it is no longer used. 2822 GV->eraseFromParent(); 2823 GV = NewGV; 2824 } else { 2825 GV->setInitializer(Init); 2826 GV->setConstant(true); 2827 GV->setLinkage(llvm::GlobalValue::AvailableExternallyLinkage); 2828 } 2829 emitter.finalize(GV); 2830 } 2831 } 2832 } 2833 } 2834 } 2835 2836 LangAS ExpectedAS = 2837 D ? D->getType().getAddressSpace() 2838 : (LangOpts.OpenCL ? LangAS::opencl_global : LangAS::Default); 2839 assert(getContext().getTargetAddressSpace(ExpectedAS) == 2840 Ty->getPointerAddressSpace()); 2841 if (AddrSpace != ExpectedAS) 2842 return getTargetCodeGenInfo().performAddrSpaceCast(*this, GV, AddrSpace, 2843 ExpectedAS, Ty); 2844 2845 return GV; 2846 } 2847 2848 llvm::Constant * 2849 CodeGenModule::GetAddrOfGlobal(GlobalDecl GD, 2850 ForDefinition_t IsForDefinition) { 2851 const Decl *D = GD.getDecl(); 2852 if (isa<CXXConstructorDecl>(D)) 2853 return getAddrOfCXXStructor(cast<CXXConstructorDecl>(D), 2854 getFromCtorType(GD.getCtorType()), 2855 /*FnInfo=*/nullptr, /*FnType=*/nullptr, 2856 /*DontDefer=*/false, IsForDefinition); 2857 else if (isa<CXXDestructorDecl>(D)) 2858 return getAddrOfCXXStructor(cast<CXXDestructorDecl>(D), 2859 getFromDtorType(GD.getDtorType()), 2860 /*FnInfo=*/nullptr, /*FnType=*/nullptr, 2861 /*DontDefer=*/false, IsForDefinition); 2862 else if (isa<CXXMethodDecl>(D)) { 2863 auto FInfo = &getTypes().arrangeCXXMethodDeclaration( 2864 cast<CXXMethodDecl>(D)); 2865 auto Ty = getTypes().GetFunctionType(*FInfo); 2866 return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false, 2867 IsForDefinition); 2868 } else if (isa<FunctionDecl>(D)) { 2869 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 2870 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 2871 return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false, 2872 IsForDefinition); 2873 } else 2874 return GetAddrOfGlobalVar(cast<VarDecl>(D), /*Ty=*/nullptr, 2875 IsForDefinition); 2876 } 2877 2878 llvm::GlobalVariable * 2879 CodeGenModule::CreateOrReplaceCXXRuntimeVariable(StringRef Name, 2880 llvm::Type *Ty, 2881 llvm::GlobalValue::LinkageTypes Linkage) { 2882 llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name); 2883 llvm::GlobalVariable *OldGV = nullptr; 2884 2885 if (GV) { 2886 // Check if the variable has the right type. 2887 if (GV->getType()->getElementType() == Ty) 2888 return GV; 2889 2890 // Because C++ name mangling, the only way we can end up with an already 2891 // existing global with the same name is if it has been declared extern "C". 2892 assert(GV->isDeclaration() && "Declaration has wrong type!"); 2893 OldGV = GV; 2894 } 2895 2896 // Create a new variable. 2897 GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true, 2898 Linkage, nullptr, Name); 2899 2900 if (OldGV) { 2901 // Replace occurrences of the old variable if needed. 2902 GV->takeName(OldGV); 2903 2904 if (!OldGV->use_empty()) { 2905 llvm::Constant *NewPtrForOldDecl = 2906 llvm::ConstantExpr::getBitCast(GV, OldGV->getType()); 2907 OldGV->replaceAllUsesWith(NewPtrForOldDecl); 2908 } 2909 2910 OldGV->eraseFromParent(); 2911 } 2912 2913 if (supportsCOMDAT() && GV->isWeakForLinker() && 2914 !GV->hasAvailableExternallyLinkage()) 2915 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 2916 2917 return GV; 2918 } 2919 2920 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the 2921 /// given global variable. If Ty is non-null and if the global doesn't exist, 2922 /// then it will be created with the specified type instead of whatever the 2923 /// normal requested type would be. If IsForDefinition is true, it is guranteed 2924 /// that an actual global with type Ty will be returned, not conversion of a 2925 /// variable with the same mangled name but some other type. 2926 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D, 2927 llvm::Type *Ty, 2928 ForDefinition_t IsForDefinition) { 2929 assert(D->hasGlobalStorage() && "Not a global variable"); 2930 QualType ASTTy = D->getType(); 2931 if (!Ty) 2932 Ty = getTypes().ConvertTypeForMem(ASTTy); 2933 2934 llvm::PointerType *PTy = 2935 llvm::PointerType::get(Ty, getContext().getTargetAddressSpace(ASTTy)); 2936 2937 StringRef MangledName = getMangledName(D); 2938 return GetOrCreateLLVMGlobal(MangledName, PTy, D, IsForDefinition); 2939 } 2940 2941 /// CreateRuntimeVariable - Create a new runtime global variable with the 2942 /// specified type and name. 2943 llvm::Constant * 2944 CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty, 2945 StringRef Name) { 2946 return GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), nullptr); 2947 } 2948 2949 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) { 2950 assert(!D->getInit() && "Cannot emit definite definitions here!"); 2951 2952 StringRef MangledName = getMangledName(D); 2953 llvm::GlobalValue *GV = GetGlobalValue(MangledName); 2954 2955 // We already have a definition, not declaration, with the same mangled name. 2956 // Emitting of declaration is not required (and actually overwrites emitted 2957 // definition). 2958 if (GV && !GV->isDeclaration()) 2959 return; 2960 2961 // If we have not seen a reference to this variable yet, place it into the 2962 // deferred declarations table to be emitted if needed later. 2963 if (!MustBeEmitted(D) && !GV) { 2964 DeferredDecls[MangledName] = D; 2965 return; 2966 } 2967 2968 // The tentative definition is the only definition. 2969 EmitGlobalVarDefinition(D); 2970 } 2971 2972 CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const { 2973 return Context.toCharUnitsFromBits( 2974 getDataLayout().getTypeStoreSizeInBits(Ty)); 2975 } 2976 2977 LangAS CodeGenModule::GetGlobalVarAddressSpace(const VarDecl *D) { 2978 LangAS AddrSpace = LangAS::Default; 2979 if (LangOpts.OpenCL) { 2980 AddrSpace = D ? D->getType().getAddressSpace() : LangAS::opencl_global; 2981 assert(AddrSpace == LangAS::opencl_global || 2982 AddrSpace == LangAS::opencl_constant || 2983 AddrSpace == LangAS::opencl_local || 2984 AddrSpace >= LangAS::FirstTargetAddressSpace); 2985 return AddrSpace; 2986 } 2987 2988 if (LangOpts.CUDA && LangOpts.CUDAIsDevice) { 2989 if (D && D->hasAttr<CUDAConstantAttr>()) 2990 return LangAS::cuda_constant; 2991 else if (D && D->hasAttr<CUDASharedAttr>()) 2992 return LangAS::cuda_shared; 2993 else 2994 return LangAS::cuda_device; 2995 } 2996 2997 return getTargetCodeGenInfo().getGlobalVarAddressSpace(*this, D); 2998 } 2999 3000 template<typename SomeDecl> 3001 void CodeGenModule::MaybeHandleStaticInExternC(const SomeDecl *D, 3002 llvm::GlobalValue *GV) { 3003 if (!getLangOpts().CPlusPlus) 3004 return; 3005 3006 // Must have 'used' attribute, or else inline assembly can't rely on 3007 // the name existing. 3008 if (!D->template hasAttr<UsedAttr>()) 3009 return; 3010 3011 // Must have internal linkage and an ordinary name. 3012 if (!D->getIdentifier() || D->getFormalLinkage() != InternalLinkage) 3013 return; 3014 3015 // Must be in an extern "C" context. Entities declared directly within 3016 // a record are not extern "C" even if the record is in such a context. 3017 const SomeDecl *First = D->getFirstDecl(); 3018 if (First->getDeclContext()->isRecord() || !First->isInExternCContext()) 3019 return; 3020 3021 // OK, this is an internal linkage entity inside an extern "C" linkage 3022 // specification. Make a note of that so we can give it the "expected" 3023 // mangled name if nothing else is using that name. 3024 std::pair<StaticExternCMap::iterator, bool> R = 3025 StaticExternCValues.insert(std::make_pair(D->getIdentifier(), GV)); 3026 3027 // If we have multiple internal linkage entities with the same name 3028 // in extern "C" regions, none of them gets that name. 3029 if (!R.second) 3030 R.first->second = nullptr; 3031 } 3032 3033 static bool shouldBeInCOMDAT(CodeGenModule &CGM, const Decl &D) { 3034 if (!CGM.supportsCOMDAT()) 3035 return false; 3036 3037 if (D.hasAttr<SelectAnyAttr>()) 3038 return true; 3039 3040 GVALinkage Linkage; 3041 if (auto *VD = dyn_cast<VarDecl>(&D)) 3042 Linkage = CGM.getContext().GetGVALinkageForVariable(VD); 3043 else 3044 Linkage = CGM.getContext().GetGVALinkageForFunction(cast<FunctionDecl>(&D)); 3045 3046 switch (Linkage) { 3047 case GVA_Internal: 3048 case GVA_AvailableExternally: 3049 case GVA_StrongExternal: 3050 return false; 3051 case GVA_DiscardableODR: 3052 case GVA_StrongODR: 3053 return true; 3054 } 3055 llvm_unreachable("No such linkage"); 3056 } 3057 3058 void CodeGenModule::maybeSetTrivialComdat(const Decl &D, 3059 llvm::GlobalObject &GO) { 3060 if (!shouldBeInCOMDAT(*this, D)) 3061 return; 3062 GO.setComdat(TheModule.getOrInsertComdat(GO.getName())); 3063 } 3064 3065 /// Pass IsTentative as true if you want to create a tentative definition. 3066 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D, 3067 bool IsTentative) { 3068 // OpenCL global variables of sampler type are translated to function calls, 3069 // therefore no need to be translated. 3070 QualType ASTTy = D->getType(); 3071 if (getLangOpts().OpenCL && ASTTy->isSamplerT()) 3072 return; 3073 3074 llvm::Constant *Init = nullptr; 3075 CXXRecordDecl *RD = ASTTy->getBaseElementTypeUnsafe()->getAsCXXRecordDecl(); 3076 bool NeedsGlobalCtor = false; 3077 bool NeedsGlobalDtor = RD && !RD->hasTrivialDestructor(); 3078 3079 const VarDecl *InitDecl; 3080 const Expr *InitExpr = D->getAnyInitializer(InitDecl); 3081 3082 Optional<ConstantEmitter> emitter; 3083 3084 // CUDA E.2.4.1 "__shared__ variables cannot have an initialization 3085 // as part of their declaration." Sema has already checked for 3086 // error cases, so we just need to set Init to UndefValue. 3087 if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice && 3088 D->hasAttr<CUDASharedAttr>()) 3089 Init = llvm::UndefValue::get(getTypes().ConvertType(ASTTy)); 3090 else if (!InitExpr) { 3091 // This is a tentative definition; tentative definitions are 3092 // implicitly initialized with { 0 }. 3093 // 3094 // Note that tentative definitions are only emitted at the end of 3095 // a translation unit, so they should never have incomplete 3096 // type. In addition, EmitTentativeDefinition makes sure that we 3097 // never attempt to emit a tentative definition if a real one 3098 // exists. A use may still exists, however, so we still may need 3099 // to do a RAUW. 3100 assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type"); 3101 Init = EmitNullConstant(D->getType()); 3102 } else { 3103 initializedGlobalDecl = GlobalDecl(D); 3104 emitter.emplace(*this); 3105 Init = emitter->tryEmitForInitializer(*InitDecl); 3106 3107 if (!Init) { 3108 QualType T = InitExpr->getType(); 3109 if (D->getType()->isReferenceType()) 3110 T = D->getType(); 3111 3112 if (getLangOpts().CPlusPlus) { 3113 Init = EmitNullConstant(T); 3114 NeedsGlobalCtor = true; 3115 } else { 3116 ErrorUnsupported(D, "static initializer"); 3117 Init = llvm::UndefValue::get(getTypes().ConvertType(T)); 3118 } 3119 } else { 3120 // We don't need an initializer, so remove the entry for the delayed 3121 // initializer position (just in case this entry was delayed) if we 3122 // also don't need to register a destructor. 3123 if (getLangOpts().CPlusPlus && !NeedsGlobalDtor) 3124 DelayedCXXInitPosition.erase(D); 3125 } 3126 } 3127 3128 llvm::Type* InitType = Init->getType(); 3129 llvm::Constant *Entry = 3130 GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative)); 3131 3132 // Strip off a bitcast if we got one back. 3133 if (auto *CE = dyn_cast<llvm::ConstantExpr>(Entry)) { 3134 assert(CE->getOpcode() == llvm::Instruction::BitCast || 3135 CE->getOpcode() == llvm::Instruction::AddrSpaceCast || 3136 // All zero index gep. 3137 CE->getOpcode() == llvm::Instruction::GetElementPtr); 3138 Entry = CE->getOperand(0); 3139 } 3140 3141 // Entry is now either a Function or GlobalVariable. 3142 auto *GV = dyn_cast<llvm::GlobalVariable>(Entry); 3143 3144 // We have a definition after a declaration with the wrong type. 3145 // We must make a new GlobalVariable* and update everything that used OldGV 3146 // (a declaration or tentative definition) with the new GlobalVariable* 3147 // (which will be a definition). 3148 // 3149 // This happens if there is a prototype for a global (e.g. 3150 // "extern int x[];") and then a definition of a different type (e.g. 3151 // "int x[10];"). This also happens when an initializer has a different type 3152 // from the type of the global (this happens with unions). 3153 if (!GV || GV->getType()->getElementType() != InitType || 3154 GV->getType()->getAddressSpace() != 3155 getContext().getTargetAddressSpace(GetGlobalVarAddressSpace(D))) { 3156 3157 // Move the old entry aside so that we'll create a new one. 3158 Entry->setName(StringRef()); 3159 3160 // Make a new global with the correct type, this is now guaranteed to work. 3161 GV = cast<llvm::GlobalVariable>( 3162 GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative))); 3163 3164 // Replace all uses of the old global with the new global 3165 llvm::Constant *NewPtrForOldDecl = 3166 llvm::ConstantExpr::getBitCast(GV, Entry->getType()); 3167 Entry->replaceAllUsesWith(NewPtrForOldDecl); 3168 3169 // Erase the old global, since it is no longer used. 3170 cast<llvm::GlobalValue>(Entry)->eraseFromParent(); 3171 } 3172 3173 MaybeHandleStaticInExternC(D, GV); 3174 3175 if (D->hasAttr<AnnotateAttr>()) 3176 AddGlobalAnnotations(D, GV); 3177 3178 // Set the llvm linkage type as appropriate. 3179 llvm::GlobalValue::LinkageTypes Linkage = 3180 getLLVMLinkageVarDefinition(D, GV->isConstant()); 3181 3182 // CUDA B.2.1 "The __device__ qualifier declares a variable that resides on 3183 // the device. [...]" 3184 // CUDA B.2.2 "The __constant__ qualifier, optionally used together with 3185 // __device__, declares a variable that: [...] 3186 // Is accessible from all the threads within the grid and from the host 3187 // through the runtime library (cudaGetSymbolAddress() / cudaGetSymbolSize() 3188 // / cudaMemcpyToSymbol() / cudaMemcpyFromSymbol())." 3189 if (GV && LangOpts.CUDA) { 3190 if (LangOpts.CUDAIsDevice) { 3191 if (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>()) 3192 GV->setExternallyInitialized(true); 3193 } else { 3194 // Host-side shadows of external declarations of device-side 3195 // global variables become internal definitions. These have to 3196 // be internal in order to prevent name conflicts with global 3197 // host variables with the same name in a different TUs. 3198 if (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>()) { 3199 Linkage = llvm::GlobalValue::InternalLinkage; 3200 3201 // Shadow variables and their properties must be registered 3202 // with CUDA runtime. 3203 unsigned Flags = 0; 3204 if (!D->hasDefinition()) 3205 Flags |= CGCUDARuntime::ExternDeviceVar; 3206 if (D->hasAttr<CUDAConstantAttr>()) 3207 Flags |= CGCUDARuntime::ConstantDeviceVar; 3208 getCUDARuntime().registerDeviceVar(*GV, Flags); 3209 } else if (D->hasAttr<CUDASharedAttr>()) 3210 // __shared__ variables are odd. Shadows do get created, but 3211 // they are not registered with the CUDA runtime, so they 3212 // can't really be used to access their device-side 3213 // counterparts. It's not clear yet whether it's nvcc's bug or 3214 // a feature, but we've got to do the same for compatibility. 3215 Linkage = llvm::GlobalValue::InternalLinkage; 3216 } 3217 } 3218 3219 GV->setInitializer(Init); 3220 if (emitter) emitter->finalize(GV); 3221 3222 // If it is safe to mark the global 'constant', do so now. 3223 GV->setConstant(!NeedsGlobalCtor && !NeedsGlobalDtor && 3224 isTypeConstant(D->getType(), true)); 3225 3226 // If it is in a read-only section, mark it 'constant'. 3227 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) { 3228 const ASTContext::SectionInfo &SI = Context.SectionInfos[SA->getName()]; 3229 if ((SI.SectionFlags & ASTContext::PSF_Write) == 0) 3230 GV->setConstant(true); 3231 } 3232 3233 GV->setAlignment(getContext().getDeclAlign(D).getQuantity()); 3234 3235 3236 // On Darwin, if the normal linkage of a C++ thread_local variable is 3237 // LinkOnce or Weak, we keep the normal linkage to prevent multiple 3238 // copies within a linkage unit; otherwise, the backing variable has 3239 // internal linkage and all accesses should just be calls to the 3240 // Itanium-specified entry point, which has the normal linkage of the 3241 // variable. This is to preserve the ability to change the implementation 3242 // behind the scenes. 3243 if (!D->isStaticLocal() && D->getTLSKind() == VarDecl::TLS_Dynamic && 3244 Context.getTargetInfo().getTriple().isOSDarwin() && 3245 !llvm::GlobalVariable::isLinkOnceLinkage(Linkage) && 3246 !llvm::GlobalVariable::isWeakLinkage(Linkage)) 3247 Linkage = llvm::GlobalValue::InternalLinkage; 3248 3249 GV->setLinkage(Linkage); 3250 if (D->hasAttr<DLLImportAttr>()) 3251 GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass); 3252 else if (D->hasAttr<DLLExportAttr>()) 3253 GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass); 3254 else 3255 GV->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass); 3256 3257 if (Linkage == llvm::GlobalVariable::CommonLinkage) { 3258 // common vars aren't constant even if declared const. 3259 GV->setConstant(false); 3260 // Tentative definition of global variables may be initialized with 3261 // non-zero null pointers. In this case they should have weak linkage 3262 // since common linkage must have zero initializer and must not have 3263 // explicit section therefore cannot have non-zero initial value. 3264 if (!GV->getInitializer()->isNullValue()) 3265 GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage); 3266 } 3267 3268 setNonAliasAttributes(D, GV); 3269 3270 if (D->getTLSKind() && !GV->isThreadLocal()) { 3271 if (D->getTLSKind() == VarDecl::TLS_Dynamic) 3272 CXXThreadLocals.push_back(D); 3273 setTLSMode(GV, *D); 3274 } 3275 3276 maybeSetTrivialComdat(*D, *GV); 3277 3278 // Emit the initializer function if necessary. 3279 if (NeedsGlobalCtor || NeedsGlobalDtor) 3280 EmitCXXGlobalVarDeclInitFunc(D, GV, NeedsGlobalCtor); 3281 3282 SanitizerMD->reportGlobalToASan(GV, *D, NeedsGlobalCtor); 3283 3284 // Emit global variable debug information. 3285 if (CGDebugInfo *DI = getModuleDebugInfo()) 3286 if (getCodeGenOpts().getDebugInfo() >= codegenoptions::LimitedDebugInfo) 3287 DI->EmitGlobalVariable(GV, D); 3288 } 3289 3290 static bool isVarDeclStrongDefinition(const ASTContext &Context, 3291 CodeGenModule &CGM, const VarDecl *D, 3292 bool NoCommon) { 3293 // Don't give variables common linkage if -fno-common was specified unless it 3294 // was overridden by a NoCommon attribute. 3295 if ((NoCommon || D->hasAttr<NoCommonAttr>()) && !D->hasAttr<CommonAttr>()) 3296 return true; 3297 3298 // C11 6.9.2/2: 3299 // A declaration of an identifier for an object that has file scope without 3300 // an initializer, and without a storage-class specifier or with the 3301 // storage-class specifier static, constitutes a tentative definition. 3302 if (D->getInit() || D->hasExternalStorage()) 3303 return true; 3304 3305 // A variable cannot be both common and exist in a section. 3306 if (D->hasAttr<SectionAttr>()) 3307 return true; 3308 3309 // A variable cannot be both common and exist in a section. 3310 // We dont try to determine which is the right section in the front-end. 3311 // If no specialized section name is applicable, it will resort to default. 3312 if (D->hasAttr<PragmaClangBSSSectionAttr>() || 3313 D->hasAttr<PragmaClangDataSectionAttr>() || 3314 D->hasAttr<PragmaClangRodataSectionAttr>()) 3315 return true; 3316 3317 // Thread local vars aren't considered common linkage. 3318 if (D->getTLSKind()) 3319 return true; 3320 3321 // Tentative definitions marked with WeakImportAttr are true definitions. 3322 if (D->hasAttr<WeakImportAttr>()) 3323 return true; 3324 3325 // A variable cannot be both common and exist in a comdat. 3326 if (shouldBeInCOMDAT(CGM, *D)) 3327 return true; 3328 3329 // Declarations with a required alignment do not have common linkage in MSVC 3330 // mode. 3331 if (Context.getTargetInfo().getCXXABI().isMicrosoft()) { 3332 if (D->hasAttr<AlignedAttr>()) 3333 return true; 3334 QualType VarType = D->getType(); 3335 if (Context.isAlignmentRequired(VarType)) 3336 return true; 3337 3338 if (const auto *RT = VarType->getAs<RecordType>()) { 3339 const RecordDecl *RD = RT->getDecl(); 3340 for (const FieldDecl *FD : RD->fields()) { 3341 if (FD->isBitField()) 3342 continue; 3343 if (FD->hasAttr<AlignedAttr>()) 3344 return true; 3345 if (Context.isAlignmentRequired(FD->getType())) 3346 return true; 3347 } 3348 } 3349 } 3350 3351 return false; 3352 } 3353 3354 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageForDeclarator( 3355 const DeclaratorDecl *D, GVALinkage Linkage, bool IsConstantVariable) { 3356 if (Linkage == GVA_Internal) 3357 return llvm::Function::InternalLinkage; 3358 3359 if (D->hasAttr<WeakAttr>()) { 3360 if (IsConstantVariable) 3361 return llvm::GlobalVariable::WeakODRLinkage; 3362 else 3363 return llvm::GlobalVariable::WeakAnyLinkage; 3364 } 3365 3366 // We are guaranteed to have a strong definition somewhere else, 3367 // so we can use available_externally linkage. 3368 if (Linkage == GVA_AvailableExternally) 3369 return llvm::GlobalValue::AvailableExternallyLinkage; 3370 3371 // Note that Apple's kernel linker doesn't support symbol 3372 // coalescing, so we need to avoid linkonce and weak linkages there. 3373 // Normally, this means we just map to internal, but for explicit 3374 // instantiations we'll map to external. 3375 3376 // In C++, the compiler has to emit a definition in every translation unit 3377 // that references the function. We should use linkonce_odr because 3378 // a) if all references in this translation unit are optimized away, we 3379 // don't need to codegen it. b) if the function persists, it needs to be 3380 // merged with other definitions. c) C++ has the ODR, so we know the 3381 // definition is dependable. 3382 if (Linkage == GVA_DiscardableODR) 3383 return !Context.getLangOpts().AppleKext ? llvm::Function::LinkOnceODRLinkage 3384 : llvm::Function::InternalLinkage; 3385 3386 // An explicit instantiation of a template has weak linkage, since 3387 // explicit instantiations can occur in multiple translation units 3388 // and must all be equivalent. However, we are not allowed to 3389 // throw away these explicit instantiations. 3390 // 3391 // We don't currently support CUDA device code spread out across multiple TUs, 3392 // so say that CUDA templates are either external (for kernels) or internal. 3393 // This lets llvm perform aggressive inter-procedural optimizations. 3394 if (Linkage == GVA_StrongODR) { 3395 if (Context.getLangOpts().AppleKext) 3396 return llvm::Function::ExternalLinkage; 3397 if (Context.getLangOpts().CUDA && Context.getLangOpts().CUDAIsDevice) 3398 return D->hasAttr<CUDAGlobalAttr>() ? llvm::Function::ExternalLinkage 3399 : llvm::Function::InternalLinkage; 3400 return llvm::Function::WeakODRLinkage; 3401 } 3402 3403 // C++ doesn't have tentative definitions and thus cannot have common 3404 // linkage. 3405 if (!getLangOpts().CPlusPlus && isa<VarDecl>(D) && 3406 !isVarDeclStrongDefinition(Context, *this, cast<VarDecl>(D), 3407 CodeGenOpts.NoCommon)) 3408 return llvm::GlobalVariable::CommonLinkage; 3409 3410 // selectany symbols are externally visible, so use weak instead of 3411 // linkonce. MSVC optimizes away references to const selectany globals, so 3412 // all definitions should be the same and ODR linkage should be used. 3413 // http://msdn.microsoft.com/en-us/library/5tkz6s71.aspx 3414 if (D->hasAttr<SelectAnyAttr>()) 3415 return llvm::GlobalVariable::WeakODRLinkage; 3416 3417 // Otherwise, we have strong external linkage. 3418 assert(Linkage == GVA_StrongExternal); 3419 return llvm::GlobalVariable::ExternalLinkage; 3420 } 3421 3422 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageVarDefinition( 3423 const VarDecl *VD, bool IsConstant) { 3424 GVALinkage Linkage = getContext().GetGVALinkageForVariable(VD); 3425 return getLLVMLinkageForDeclarator(VD, Linkage, IsConstant); 3426 } 3427 3428 /// Replace the uses of a function that was declared with a non-proto type. 3429 /// We want to silently drop extra arguments from call sites 3430 static void replaceUsesOfNonProtoConstant(llvm::Constant *old, 3431 llvm::Function *newFn) { 3432 // Fast path. 3433 if (old->use_empty()) return; 3434 3435 llvm::Type *newRetTy = newFn->getReturnType(); 3436 SmallVector<llvm::Value*, 4> newArgs; 3437 SmallVector<llvm::OperandBundleDef, 1> newBundles; 3438 3439 for (llvm::Value::use_iterator ui = old->use_begin(), ue = old->use_end(); 3440 ui != ue; ) { 3441 llvm::Value::use_iterator use = ui++; // Increment before the use is erased. 3442 llvm::User *user = use->getUser(); 3443 3444 // Recognize and replace uses of bitcasts. Most calls to 3445 // unprototyped functions will use bitcasts. 3446 if (auto *bitcast = dyn_cast<llvm::ConstantExpr>(user)) { 3447 if (bitcast->getOpcode() == llvm::Instruction::BitCast) 3448 replaceUsesOfNonProtoConstant(bitcast, newFn); 3449 continue; 3450 } 3451 3452 // Recognize calls to the function. 3453 llvm::CallSite callSite(user); 3454 if (!callSite) continue; 3455 if (!callSite.isCallee(&*use)) continue; 3456 3457 // If the return types don't match exactly, then we can't 3458 // transform this call unless it's dead. 3459 if (callSite->getType() != newRetTy && !callSite->use_empty()) 3460 continue; 3461 3462 // Get the call site's attribute list. 3463 SmallVector<llvm::AttributeSet, 8> newArgAttrs; 3464 llvm::AttributeList oldAttrs = callSite.getAttributes(); 3465 3466 // If the function was passed too few arguments, don't transform. 3467 unsigned newNumArgs = newFn->arg_size(); 3468 if (callSite.arg_size() < newNumArgs) continue; 3469 3470 // If extra arguments were passed, we silently drop them. 3471 // If any of the types mismatch, we don't transform. 3472 unsigned argNo = 0; 3473 bool dontTransform = false; 3474 for (llvm::Argument &A : newFn->args()) { 3475 if (callSite.getArgument(argNo)->getType() != A.getType()) { 3476 dontTransform = true; 3477 break; 3478 } 3479 3480 // Add any parameter attributes. 3481 newArgAttrs.push_back(oldAttrs.getParamAttributes(argNo)); 3482 argNo++; 3483 } 3484 if (dontTransform) 3485 continue; 3486 3487 // Okay, we can transform this. Create the new call instruction and copy 3488 // over the required information. 3489 newArgs.append(callSite.arg_begin(), callSite.arg_begin() + argNo); 3490 3491 // Copy over any operand bundles. 3492 callSite.getOperandBundlesAsDefs(newBundles); 3493 3494 llvm::CallSite newCall; 3495 if (callSite.isCall()) { 3496 newCall = llvm::CallInst::Create(newFn, newArgs, newBundles, "", 3497 callSite.getInstruction()); 3498 } else { 3499 auto *oldInvoke = cast<llvm::InvokeInst>(callSite.getInstruction()); 3500 newCall = llvm::InvokeInst::Create(newFn, 3501 oldInvoke->getNormalDest(), 3502 oldInvoke->getUnwindDest(), 3503 newArgs, newBundles, "", 3504 callSite.getInstruction()); 3505 } 3506 newArgs.clear(); // for the next iteration 3507 3508 if (!newCall->getType()->isVoidTy()) 3509 newCall->takeName(callSite.getInstruction()); 3510 newCall.setAttributes(llvm::AttributeList::get( 3511 newFn->getContext(), oldAttrs.getFnAttributes(), 3512 oldAttrs.getRetAttributes(), newArgAttrs)); 3513 newCall.setCallingConv(callSite.getCallingConv()); 3514 3515 // Finally, remove the old call, replacing any uses with the new one. 3516 if (!callSite->use_empty()) 3517 callSite->replaceAllUsesWith(newCall.getInstruction()); 3518 3519 // Copy debug location attached to CI. 3520 if (callSite->getDebugLoc()) 3521 newCall->setDebugLoc(callSite->getDebugLoc()); 3522 3523 callSite->eraseFromParent(); 3524 } 3525 } 3526 3527 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we 3528 /// implement a function with no prototype, e.g. "int foo() {}". If there are 3529 /// existing call uses of the old function in the module, this adjusts them to 3530 /// call the new function directly. 3531 /// 3532 /// This is not just a cleanup: the always_inline pass requires direct calls to 3533 /// functions to be able to inline them. If there is a bitcast in the way, it 3534 /// won't inline them. Instcombine normally deletes these calls, but it isn't 3535 /// run at -O0. 3536 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old, 3537 llvm::Function *NewFn) { 3538 // If we're redefining a global as a function, don't transform it. 3539 if (!isa<llvm::Function>(Old)) return; 3540 3541 replaceUsesOfNonProtoConstant(Old, NewFn); 3542 } 3543 3544 void CodeGenModule::HandleCXXStaticMemberVarInstantiation(VarDecl *VD) { 3545 auto DK = VD->isThisDeclarationADefinition(); 3546 if (DK == VarDecl::Definition && VD->hasAttr<DLLImportAttr>()) 3547 return; 3548 3549 TemplateSpecializationKind TSK = VD->getTemplateSpecializationKind(); 3550 // If we have a definition, this might be a deferred decl. If the 3551 // instantiation is explicit, make sure we emit it at the end. 3552 if (VD->getDefinition() && TSK == TSK_ExplicitInstantiationDefinition) 3553 GetAddrOfGlobalVar(VD); 3554 3555 EmitTopLevelDecl(VD); 3556 } 3557 3558 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD, 3559 llvm::GlobalValue *GV) { 3560 const auto *D = cast<FunctionDecl>(GD.getDecl()); 3561 3562 // Compute the function info and LLVM type. 3563 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 3564 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 3565 3566 // Get or create the prototype for the function. 3567 if (!GV || (GV->getType()->getElementType() != Ty)) 3568 GV = cast<llvm::GlobalValue>(GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, 3569 /*DontDefer=*/true, 3570 ForDefinition)); 3571 3572 // Already emitted. 3573 if (!GV->isDeclaration()) 3574 return; 3575 3576 // We need to set linkage and visibility on the function before 3577 // generating code for it because various parts of IR generation 3578 // want to propagate this information down (e.g. to local static 3579 // declarations). 3580 auto *Fn = cast<llvm::Function>(GV); 3581 setFunctionLinkage(GD, Fn); 3582 3583 // FIXME: this is redundant with part of setFunctionDefinitionAttributes 3584 setGVProperties(Fn, GD); 3585 3586 MaybeHandleStaticInExternC(D, Fn); 3587 3588 maybeSetTrivialComdat(*D, *Fn); 3589 3590 CodeGenFunction(*this).GenerateCode(D, Fn, FI); 3591 3592 setNonAliasAttributes(GD, Fn); 3593 SetLLVMFunctionAttributesForDefinition(D, Fn); 3594 3595 if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>()) 3596 AddGlobalCtor(Fn, CA->getPriority()); 3597 if (const DestructorAttr *DA = D->getAttr<DestructorAttr>()) 3598 AddGlobalDtor(Fn, DA->getPriority()); 3599 if (D->hasAttr<AnnotateAttr>()) 3600 AddGlobalAnnotations(D, Fn); 3601 } 3602 3603 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) { 3604 const auto *D = cast<ValueDecl>(GD.getDecl()); 3605 const AliasAttr *AA = D->getAttr<AliasAttr>(); 3606 assert(AA && "Not an alias?"); 3607 3608 StringRef MangledName = getMangledName(GD); 3609 3610 if (AA->getAliasee() == MangledName) { 3611 Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0; 3612 return; 3613 } 3614 3615 // If there is a definition in the module, then it wins over the alias. 3616 // This is dubious, but allow it to be safe. Just ignore the alias. 3617 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 3618 if (Entry && !Entry->isDeclaration()) 3619 return; 3620 3621 Aliases.push_back(GD); 3622 3623 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType()); 3624 3625 // Create a reference to the named value. This ensures that it is emitted 3626 // if a deferred decl. 3627 llvm::Constant *Aliasee; 3628 if (isa<llvm::FunctionType>(DeclTy)) 3629 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GD, 3630 /*ForVTable=*/false); 3631 else 3632 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), 3633 llvm::PointerType::getUnqual(DeclTy), 3634 /*D=*/nullptr); 3635 3636 // Create the new alias itself, but don't set a name yet. 3637 auto *GA = llvm::GlobalAlias::create( 3638 DeclTy, 0, llvm::Function::ExternalLinkage, "", Aliasee, &getModule()); 3639 3640 if (Entry) { 3641 if (GA->getAliasee() == Entry) { 3642 Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0; 3643 return; 3644 } 3645 3646 assert(Entry->isDeclaration()); 3647 3648 // If there is a declaration in the module, then we had an extern followed 3649 // by the alias, as in: 3650 // extern int test6(); 3651 // ... 3652 // int test6() __attribute__((alias("test7"))); 3653 // 3654 // Remove it and replace uses of it with the alias. 3655 GA->takeName(Entry); 3656 3657 Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA, 3658 Entry->getType())); 3659 Entry->eraseFromParent(); 3660 } else { 3661 GA->setName(MangledName); 3662 } 3663 3664 // Set attributes which are particular to an alias; this is a 3665 // specialization of the attributes which may be set on a global 3666 // variable/function. 3667 if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakRefAttr>() || 3668 D->isWeakImported()) { 3669 GA->setLinkage(llvm::Function::WeakAnyLinkage); 3670 } 3671 3672 if (const auto *VD = dyn_cast<VarDecl>(D)) 3673 if (VD->getTLSKind()) 3674 setTLSMode(GA, *VD); 3675 3676 SetCommonAttributes(GD, GA); 3677 } 3678 3679 void CodeGenModule::emitIFuncDefinition(GlobalDecl GD) { 3680 const auto *D = cast<ValueDecl>(GD.getDecl()); 3681 const IFuncAttr *IFA = D->getAttr<IFuncAttr>(); 3682 assert(IFA && "Not an ifunc?"); 3683 3684 StringRef MangledName = getMangledName(GD); 3685 3686 if (IFA->getResolver() == MangledName) { 3687 Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1; 3688 return; 3689 } 3690 3691 // Report an error if some definition overrides ifunc. 3692 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 3693 if (Entry && !Entry->isDeclaration()) { 3694 GlobalDecl OtherGD; 3695 if (lookupRepresentativeDecl(MangledName, OtherGD) && 3696 DiagnosedConflictingDefinitions.insert(GD).second) { 3697 Diags.Report(D->getLocation(), diag::err_duplicate_mangled_name); 3698 Diags.Report(OtherGD.getDecl()->getLocation(), 3699 diag::note_previous_definition); 3700 } 3701 return; 3702 } 3703 3704 Aliases.push_back(GD); 3705 3706 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType()); 3707 llvm::Constant *Resolver = 3708 GetOrCreateLLVMFunction(IFA->getResolver(), DeclTy, GD, 3709 /*ForVTable=*/false); 3710 llvm::GlobalIFunc *GIF = 3711 llvm::GlobalIFunc::create(DeclTy, 0, llvm::Function::ExternalLinkage, 3712 "", Resolver, &getModule()); 3713 if (Entry) { 3714 if (GIF->getResolver() == Entry) { 3715 Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1; 3716 return; 3717 } 3718 assert(Entry->isDeclaration()); 3719 3720 // If there is a declaration in the module, then we had an extern followed 3721 // by the ifunc, as in: 3722 // extern int test(); 3723 // ... 3724 // int test() __attribute__((ifunc("resolver"))); 3725 // 3726 // Remove it and replace uses of it with the ifunc. 3727 GIF->takeName(Entry); 3728 3729 Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GIF, 3730 Entry->getType())); 3731 Entry->eraseFromParent(); 3732 } else 3733 GIF->setName(MangledName); 3734 3735 SetCommonAttributes(GD, GIF); 3736 } 3737 3738 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID, 3739 ArrayRef<llvm::Type*> Tys) { 3740 return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID, 3741 Tys); 3742 } 3743 3744 static llvm::StringMapEntry<llvm::GlobalVariable *> & 3745 GetConstantCFStringEntry(llvm::StringMap<llvm::GlobalVariable *> &Map, 3746 const StringLiteral *Literal, bool TargetIsLSB, 3747 bool &IsUTF16, unsigned &StringLength) { 3748 StringRef String = Literal->getString(); 3749 unsigned NumBytes = String.size(); 3750 3751 // Check for simple case. 3752 if (!Literal->containsNonAsciiOrNull()) { 3753 StringLength = NumBytes; 3754 return *Map.insert(std::make_pair(String, nullptr)).first; 3755 } 3756 3757 // Otherwise, convert the UTF8 literals into a string of shorts. 3758 IsUTF16 = true; 3759 3760 SmallVector<llvm::UTF16, 128> ToBuf(NumBytes + 1); // +1 for ending nulls. 3761 const llvm::UTF8 *FromPtr = (const llvm::UTF8 *)String.data(); 3762 llvm::UTF16 *ToPtr = &ToBuf[0]; 3763 3764 (void)llvm::ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, &ToPtr, 3765 ToPtr + NumBytes, llvm::strictConversion); 3766 3767 // ConvertUTF8toUTF16 returns the length in ToPtr. 3768 StringLength = ToPtr - &ToBuf[0]; 3769 3770 // Add an explicit null. 3771 *ToPtr = 0; 3772 return *Map.insert(std::make_pair( 3773 StringRef(reinterpret_cast<const char *>(ToBuf.data()), 3774 (StringLength + 1) * 2), 3775 nullptr)).first; 3776 } 3777 3778 ConstantAddress 3779 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) { 3780 unsigned StringLength = 0; 3781 bool isUTF16 = false; 3782 llvm::StringMapEntry<llvm::GlobalVariable *> &Entry = 3783 GetConstantCFStringEntry(CFConstantStringMap, Literal, 3784 getDataLayout().isLittleEndian(), isUTF16, 3785 StringLength); 3786 3787 if (auto *C = Entry.second) 3788 return ConstantAddress(C, CharUnits::fromQuantity(C->getAlignment())); 3789 3790 llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty); 3791 llvm::Constant *Zeros[] = { Zero, Zero }; 3792 3793 // If we don't already have it, get __CFConstantStringClassReference. 3794 if (!CFConstantStringClassRef) { 3795 llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy); 3796 Ty = llvm::ArrayType::get(Ty, 0); 3797 llvm::Constant *GV = 3798 CreateRuntimeVariable(Ty, "__CFConstantStringClassReference"); 3799 3800 if (getTriple().isOSBinFormatCOFF()) { 3801 IdentifierInfo &II = getContext().Idents.get(GV->getName()); 3802 TranslationUnitDecl *TUDecl = getContext().getTranslationUnitDecl(); 3803 DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl); 3804 llvm::GlobalValue *CGV = cast<llvm::GlobalValue>(GV); 3805 3806 const VarDecl *VD = nullptr; 3807 for (const auto &Result : DC->lookup(&II)) 3808 if ((VD = dyn_cast<VarDecl>(Result))) 3809 break; 3810 3811 if (!VD || !VD->hasAttr<DLLExportAttr>()) { 3812 CGV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass); 3813 CGV->setLinkage(llvm::GlobalValue::ExternalLinkage); 3814 } else { 3815 CGV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass); 3816 CGV->setLinkage(llvm::GlobalValue::ExternalLinkage); 3817 } 3818 } 3819 3820 // Decay array -> ptr 3821 CFConstantStringClassRef = 3822 llvm::ConstantExpr::getGetElementPtr(Ty, GV, Zeros); 3823 } 3824 3825 QualType CFTy = getContext().getCFConstantStringType(); 3826 3827 auto *STy = cast<llvm::StructType>(getTypes().ConvertType(CFTy)); 3828 3829 ConstantInitBuilder Builder(*this); 3830 auto Fields = Builder.beginStruct(STy); 3831 3832 // Class pointer. 3833 Fields.add(cast<llvm::ConstantExpr>(CFConstantStringClassRef)); 3834 3835 // Flags. 3836 Fields.addInt(IntTy, isUTF16 ? 0x07d0 : 0x07C8); 3837 3838 // String pointer. 3839 llvm::Constant *C = nullptr; 3840 if (isUTF16) { 3841 auto Arr = llvm::makeArrayRef( 3842 reinterpret_cast<uint16_t *>(const_cast<char *>(Entry.first().data())), 3843 Entry.first().size() / 2); 3844 C = llvm::ConstantDataArray::get(VMContext, Arr); 3845 } else { 3846 C = llvm::ConstantDataArray::getString(VMContext, Entry.first()); 3847 } 3848 3849 // Note: -fwritable-strings doesn't make the backing store strings of 3850 // CFStrings writable. (See <rdar://problem/10657500>) 3851 auto *GV = 3852 new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true, 3853 llvm::GlobalValue::PrivateLinkage, C, ".str"); 3854 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 3855 // Don't enforce the target's minimum global alignment, since the only use 3856 // of the string is via this class initializer. 3857 CharUnits Align = isUTF16 3858 ? getContext().getTypeAlignInChars(getContext().ShortTy) 3859 : getContext().getTypeAlignInChars(getContext().CharTy); 3860 GV->setAlignment(Align.getQuantity()); 3861 3862 // FIXME: We set the section explicitly to avoid a bug in ld64 224.1. 3863 // Without it LLVM can merge the string with a non unnamed_addr one during 3864 // LTO. Doing that changes the section it ends in, which surprises ld64. 3865 if (getTriple().isOSBinFormatMachO()) 3866 GV->setSection(isUTF16 ? "__TEXT,__ustring" 3867 : "__TEXT,__cstring,cstring_literals"); 3868 3869 // String. 3870 llvm::Constant *Str = 3871 llvm::ConstantExpr::getGetElementPtr(GV->getValueType(), GV, Zeros); 3872 3873 if (isUTF16) 3874 // Cast the UTF16 string to the correct type. 3875 Str = llvm::ConstantExpr::getBitCast(Str, Int8PtrTy); 3876 Fields.add(Str); 3877 3878 // String length. 3879 auto Ty = getTypes().ConvertType(getContext().LongTy); 3880 Fields.addInt(cast<llvm::IntegerType>(Ty), StringLength); 3881 3882 CharUnits Alignment = getPointerAlign(); 3883 3884 // The struct. 3885 GV = Fields.finishAndCreateGlobal("_unnamed_cfstring_", Alignment, 3886 /*isConstant=*/false, 3887 llvm::GlobalVariable::PrivateLinkage); 3888 switch (getTriple().getObjectFormat()) { 3889 case llvm::Triple::UnknownObjectFormat: 3890 llvm_unreachable("unknown file format"); 3891 case llvm::Triple::COFF: 3892 case llvm::Triple::ELF: 3893 case llvm::Triple::Wasm: 3894 GV->setSection("cfstring"); 3895 break; 3896 case llvm::Triple::MachO: 3897 GV->setSection("__DATA,__cfstring"); 3898 break; 3899 } 3900 Entry.second = GV; 3901 3902 return ConstantAddress(GV, Alignment); 3903 } 3904 3905 bool CodeGenModule::getExpressionLocationsEnabled() const { 3906 return !CodeGenOpts.EmitCodeView || CodeGenOpts.DebugColumnInfo; 3907 } 3908 3909 QualType CodeGenModule::getObjCFastEnumerationStateType() { 3910 if (ObjCFastEnumerationStateType.isNull()) { 3911 RecordDecl *D = Context.buildImplicitRecord("__objcFastEnumerationState"); 3912 D->startDefinition(); 3913 3914 QualType FieldTypes[] = { 3915 Context.UnsignedLongTy, 3916 Context.getPointerType(Context.getObjCIdType()), 3917 Context.getPointerType(Context.UnsignedLongTy), 3918 Context.getConstantArrayType(Context.UnsignedLongTy, 3919 llvm::APInt(32, 5), ArrayType::Normal, 0) 3920 }; 3921 3922 for (size_t i = 0; i < 4; ++i) { 3923 FieldDecl *Field = FieldDecl::Create(Context, 3924 D, 3925 SourceLocation(), 3926 SourceLocation(), nullptr, 3927 FieldTypes[i], /*TInfo=*/nullptr, 3928 /*BitWidth=*/nullptr, 3929 /*Mutable=*/false, 3930 ICIS_NoInit); 3931 Field->setAccess(AS_public); 3932 D->addDecl(Field); 3933 } 3934 3935 D->completeDefinition(); 3936 ObjCFastEnumerationStateType = Context.getTagDeclType(D); 3937 } 3938 3939 return ObjCFastEnumerationStateType; 3940 } 3941 3942 llvm::Constant * 3943 CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) { 3944 assert(!E->getType()->isPointerType() && "Strings are always arrays"); 3945 3946 // Don't emit it as the address of the string, emit the string data itself 3947 // as an inline array. 3948 if (E->getCharByteWidth() == 1) { 3949 SmallString<64> Str(E->getString()); 3950 3951 // Resize the string to the right size, which is indicated by its type. 3952 const ConstantArrayType *CAT = Context.getAsConstantArrayType(E->getType()); 3953 Str.resize(CAT->getSize().getZExtValue()); 3954 return llvm::ConstantDataArray::getString(VMContext, Str, false); 3955 } 3956 3957 auto *AType = cast<llvm::ArrayType>(getTypes().ConvertType(E->getType())); 3958 llvm::Type *ElemTy = AType->getElementType(); 3959 unsigned NumElements = AType->getNumElements(); 3960 3961 // Wide strings have either 2-byte or 4-byte elements. 3962 if (ElemTy->getPrimitiveSizeInBits() == 16) { 3963 SmallVector<uint16_t, 32> Elements; 3964 Elements.reserve(NumElements); 3965 3966 for(unsigned i = 0, e = E->getLength(); i != e; ++i) 3967 Elements.push_back(E->getCodeUnit(i)); 3968 Elements.resize(NumElements); 3969 return llvm::ConstantDataArray::get(VMContext, Elements); 3970 } 3971 3972 assert(ElemTy->getPrimitiveSizeInBits() == 32); 3973 SmallVector<uint32_t, 32> Elements; 3974 Elements.reserve(NumElements); 3975 3976 for(unsigned i = 0, e = E->getLength(); i != e; ++i) 3977 Elements.push_back(E->getCodeUnit(i)); 3978 Elements.resize(NumElements); 3979 return llvm::ConstantDataArray::get(VMContext, Elements); 3980 } 3981 3982 static llvm::GlobalVariable * 3983 GenerateStringLiteral(llvm::Constant *C, llvm::GlobalValue::LinkageTypes LT, 3984 CodeGenModule &CGM, StringRef GlobalName, 3985 CharUnits Alignment) { 3986 // OpenCL v1.2 s6.5.3: a string literal is in the constant address space. 3987 unsigned AddrSpace = 0; 3988 if (CGM.getLangOpts().OpenCL) 3989 AddrSpace = CGM.getContext().getTargetAddressSpace(LangAS::opencl_constant); 3990 3991 llvm::Module &M = CGM.getModule(); 3992 // Create a global variable for this string 3993 auto *GV = new llvm::GlobalVariable( 3994 M, C->getType(), !CGM.getLangOpts().WritableStrings, LT, C, GlobalName, 3995 nullptr, llvm::GlobalVariable::NotThreadLocal, AddrSpace); 3996 GV->setAlignment(Alignment.getQuantity()); 3997 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 3998 if (GV->isWeakForLinker()) { 3999 assert(CGM.supportsCOMDAT() && "Only COFF uses weak string literals"); 4000 GV->setComdat(M.getOrInsertComdat(GV->getName())); 4001 } 4002 4003 return GV; 4004 } 4005 4006 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a 4007 /// constant array for the given string literal. 4008 ConstantAddress 4009 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S, 4010 StringRef Name) { 4011 CharUnits Alignment = getContext().getAlignOfGlobalVarInChars(S->getType()); 4012 4013 llvm::Constant *C = GetConstantArrayFromStringLiteral(S); 4014 llvm::GlobalVariable **Entry = nullptr; 4015 if (!LangOpts.WritableStrings) { 4016 Entry = &ConstantStringMap[C]; 4017 if (auto GV = *Entry) { 4018 if (Alignment.getQuantity() > GV->getAlignment()) 4019 GV->setAlignment(Alignment.getQuantity()); 4020 return ConstantAddress(GV, Alignment); 4021 } 4022 } 4023 4024 SmallString<256> MangledNameBuffer; 4025 StringRef GlobalVariableName; 4026 llvm::GlobalValue::LinkageTypes LT; 4027 4028 // Mangle the string literal if the ABI allows for it. However, we cannot 4029 // do this if we are compiling with ASan or -fwritable-strings because they 4030 // rely on strings having normal linkage. 4031 if (!LangOpts.WritableStrings && 4032 !LangOpts.Sanitize.has(SanitizerKind::Address) && 4033 getCXXABI().getMangleContext().shouldMangleStringLiteral(S)) { 4034 llvm::raw_svector_ostream Out(MangledNameBuffer); 4035 getCXXABI().getMangleContext().mangleStringLiteral(S, Out); 4036 4037 LT = llvm::GlobalValue::LinkOnceODRLinkage; 4038 GlobalVariableName = MangledNameBuffer; 4039 } else { 4040 LT = llvm::GlobalValue::PrivateLinkage; 4041 GlobalVariableName = Name; 4042 } 4043 4044 auto GV = GenerateStringLiteral(C, LT, *this, GlobalVariableName, Alignment); 4045 if (Entry) 4046 *Entry = GV; 4047 4048 SanitizerMD->reportGlobalToASan(GV, S->getStrTokenLoc(0), "<string literal>", 4049 QualType()); 4050 return ConstantAddress(GV, Alignment); 4051 } 4052 4053 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant 4054 /// array for the given ObjCEncodeExpr node. 4055 ConstantAddress 4056 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) { 4057 std::string Str; 4058 getContext().getObjCEncodingForType(E->getEncodedType(), Str); 4059 4060 return GetAddrOfConstantCString(Str); 4061 } 4062 4063 /// GetAddrOfConstantCString - Returns a pointer to a character array containing 4064 /// the literal and a terminating '\0' character. 4065 /// The result has pointer to array type. 4066 ConstantAddress CodeGenModule::GetAddrOfConstantCString( 4067 const std::string &Str, const char *GlobalName) { 4068 StringRef StrWithNull(Str.c_str(), Str.size() + 1); 4069 CharUnits Alignment = 4070 getContext().getAlignOfGlobalVarInChars(getContext().CharTy); 4071 4072 llvm::Constant *C = 4073 llvm::ConstantDataArray::getString(getLLVMContext(), StrWithNull, false); 4074 4075 // Don't share any string literals if strings aren't constant. 4076 llvm::GlobalVariable **Entry = nullptr; 4077 if (!LangOpts.WritableStrings) { 4078 Entry = &ConstantStringMap[C]; 4079 if (auto GV = *Entry) { 4080 if (Alignment.getQuantity() > GV->getAlignment()) 4081 GV->setAlignment(Alignment.getQuantity()); 4082 return ConstantAddress(GV, Alignment); 4083 } 4084 } 4085 4086 // Get the default prefix if a name wasn't specified. 4087 if (!GlobalName) 4088 GlobalName = ".str"; 4089 // Create a global variable for this. 4090 auto GV = GenerateStringLiteral(C, llvm::GlobalValue::PrivateLinkage, *this, 4091 GlobalName, Alignment); 4092 if (Entry) 4093 *Entry = GV; 4094 return ConstantAddress(GV, Alignment); 4095 } 4096 4097 ConstantAddress CodeGenModule::GetAddrOfGlobalTemporary( 4098 const MaterializeTemporaryExpr *E, const Expr *Init) { 4099 assert((E->getStorageDuration() == SD_Static || 4100 E->getStorageDuration() == SD_Thread) && "not a global temporary"); 4101 const auto *VD = cast<VarDecl>(E->getExtendingDecl()); 4102 4103 // If we're not materializing a subobject of the temporary, keep the 4104 // cv-qualifiers from the type of the MaterializeTemporaryExpr. 4105 QualType MaterializedType = Init->getType(); 4106 if (Init == E->GetTemporaryExpr()) 4107 MaterializedType = E->getType(); 4108 4109 CharUnits Align = getContext().getTypeAlignInChars(MaterializedType); 4110 4111 if (llvm::Constant *Slot = MaterializedGlobalTemporaryMap[E]) 4112 return ConstantAddress(Slot, Align); 4113 4114 // FIXME: If an externally-visible declaration extends multiple temporaries, 4115 // we need to give each temporary the same name in every translation unit (and 4116 // we also need to make the temporaries externally-visible). 4117 SmallString<256> Name; 4118 llvm::raw_svector_ostream Out(Name); 4119 getCXXABI().getMangleContext().mangleReferenceTemporary( 4120 VD, E->getManglingNumber(), Out); 4121 4122 APValue *Value = nullptr; 4123 if (E->getStorageDuration() == SD_Static) { 4124 // We might have a cached constant initializer for this temporary. Note 4125 // that this might have a different value from the value computed by 4126 // evaluating the initializer if the surrounding constant expression 4127 // modifies the temporary. 4128 Value = getContext().getMaterializedTemporaryValue(E, false); 4129 if (Value && Value->isUninit()) 4130 Value = nullptr; 4131 } 4132 4133 // Try evaluating it now, it might have a constant initializer. 4134 Expr::EvalResult EvalResult; 4135 if (!Value && Init->EvaluateAsRValue(EvalResult, getContext()) && 4136 !EvalResult.hasSideEffects()) 4137 Value = &EvalResult.Val; 4138 4139 LangAS AddrSpace = 4140 VD ? GetGlobalVarAddressSpace(VD) : MaterializedType.getAddressSpace(); 4141 4142 Optional<ConstantEmitter> emitter; 4143 llvm::Constant *InitialValue = nullptr; 4144 bool Constant = false; 4145 llvm::Type *Type; 4146 if (Value) { 4147 // The temporary has a constant initializer, use it. 4148 emitter.emplace(*this); 4149 InitialValue = emitter->emitForInitializer(*Value, AddrSpace, 4150 MaterializedType); 4151 Constant = isTypeConstant(MaterializedType, /*ExcludeCtor*/Value); 4152 Type = InitialValue->getType(); 4153 } else { 4154 // No initializer, the initialization will be provided when we 4155 // initialize the declaration which performed lifetime extension. 4156 Type = getTypes().ConvertTypeForMem(MaterializedType); 4157 } 4158 4159 // Create a global variable for this lifetime-extended temporary. 4160 llvm::GlobalValue::LinkageTypes Linkage = 4161 getLLVMLinkageVarDefinition(VD, Constant); 4162 if (Linkage == llvm::GlobalVariable::ExternalLinkage) { 4163 const VarDecl *InitVD; 4164 if (VD->isStaticDataMember() && VD->getAnyInitializer(InitVD) && 4165 isa<CXXRecordDecl>(InitVD->getLexicalDeclContext())) { 4166 // Temporaries defined inside a class get linkonce_odr linkage because the 4167 // class can be defined in multipe translation units. 4168 Linkage = llvm::GlobalVariable::LinkOnceODRLinkage; 4169 } else { 4170 // There is no need for this temporary to have external linkage if the 4171 // VarDecl has external linkage. 4172 Linkage = llvm::GlobalVariable::InternalLinkage; 4173 } 4174 } 4175 auto TargetAS = getContext().getTargetAddressSpace(AddrSpace); 4176 auto *GV = new llvm::GlobalVariable( 4177 getModule(), Type, Constant, Linkage, InitialValue, Name.c_str(), 4178 /*InsertBefore=*/nullptr, llvm::GlobalVariable::NotThreadLocal, TargetAS); 4179 if (emitter) emitter->finalize(GV); 4180 setGVProperties(GV, VD); 4181 GV->setAlignment(Align.getQuantity()); 4182 if (supportsCOMDAT() && GV->isWeakForLinker()) 4183 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 4184 if (VD->getTLSKind()) 4185 setTLSMode(GV, *VD); 4186 llvm::Constant *CV = GV; 4187 if (AddrSpace != LangAS::Default) 4188 CV = getTargetCodeGenInfo().performAddrSpaceCast( 4189 *this, GV, AddrSpace, LangAS::Default, 4190 Type->getPointerTo( 4191 getContext().getTargetAddressSpace(LangAS::Default))); 4192 MaterializedGlobalTemporaryMap[E] = CV; 4193 return ConstantAddress(CV, Align); 4194 } 4195 4196 /// EmitObjCPropertyImplementations - Emit information for synthesized 4197 /// properties for an implementation. 4198 void CodeGenModule::EmitObjCPropertyImplementations(const 4199 ObjCImplementationDecl *D) { 4200 for (const auto *PID : D->property_impls()) { 4201 // Dynamic is just for type-checking. 4202 if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) { 4203 ObjCPropertyDecl *PD = PID->getPropertyDecl(); 4204 4205 // Determine which methods need to be implemented, some may have 4206 // been overridden. Note that ::isPropertyAccessor is not the method 4207 // we want, that just indicates if the decl came from a 4208 // property. What we want to know is if the method is defined in 4209 // this implementation. 4210 if (!D->getInstanceMethod(PD->getGetterName())) 4211 CodeGenFunction(*this).GenerateObjCGetter( 4212 const_cast<ObjCImplementationDecl *>(D), PID); 4213 if (!PD->isReadOnly() && 4214 !D->getInstanceMethod(PD->getSetterName())) 4215 CodeGenFunction(*this).GenerateObjCSetter( 4216 const_cast<ObjCImplementationDecl *>(D), PID); 4217 } 4218 } 4219 } 4220 4221 static bool needsDestructMethod(ObjCImplementationDecl *impl) { 4222 const ObjCInterfaceDecl *iface = impl->getClassInterface(); 4223 for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin(); 4224 ivar; ivar = ivar->getNextIvar()) 4225 if (ivar->getType().isDestructedType()) 4226 return true; 4227 4228 return false; 4229 } 4230 4231 static bool AllTrivialInitializers(CodeGenModule &CGM, 4232 ObjCImplementationDecl *D) { 4233 CodeGenFunction CGF(CGM); 4234 for (ObjCImplementationDecl::init_iterator B = D->init_begin(), 4235 E = D->init_end(); B != E; ++B) { 4236 CXXCtorInitializer *CtorInitExp = *B; 4237 Expr *Init = CtorInitExp->getInit(); 4238 if (!CGF.isTrivialInitializer(Init)) 4239 return false; 4240 } 4241 return true; 4242 } 4243 4244 /// EmitObjCIvarInitializations - Emit information for ivar initialization 4245 /// for an implementation. 4246 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) { 4247 // We might need a .cxx_destruct even if we don't have any ivar initializers. 4248 if (needsDestructMethod(D)) { 4249 IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct"); 4250 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 4251 ObjCMethodDecl *DTORMethod = 4252 ObjCMethodDecl::Create(getContext(), D->getLocation(), D->getLocation(), 4253 cxxSelector, getContext().VoidTy, nullptr, D, 4254 /*isInstance=*/true, /*isVariadic=*/false, 4255 /*isPropertyAccessor=*/true, /*isImplicitlyDeclared=*/true, 4256 /*isDefined=*/false, ObjCMethodDecl::Required); 4257 D->addInstanceMethod(DTORMethod); 4258 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false); 4259 D->setHasDestructors(true); 4260 } 4261 4262 // If the implementation doesn't have any ivar initializers, we don't need 4263 // a .cxx_construct. 4264 if (D->getNumIvarInitializers() == 0 || 4265 AllTrivialInitializers(*this, D)) 4266 return; 4267 4268 IdentifierInfo *II = &getContext().Idents.get(".cxx_construct"); 4269 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 4270 // The constructor returns 'self'. 4271 ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(getContext(), 4272 D->getLocation(), 4273 D->getLocation(), 4274 cxxSelector, 4275 getContext().getObjCIdType(), 4276 nullptr, D, /*isInstance=*/true, 4277 /*isVariadic=*/false, 4278 /*isPropertyAccessor=*/true, 4279 /*isImplicitlyDeclared=*/true, 4280 /*isDefined=*/false, 4281 ObjCMethodDecl::Required); 4282 D->addInstanceMethod(CTORMethod); 4283 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true); 4284 D->setHasNonZeroConstructors(true); 4285 } 4286 4287 // EmitLinkageSpec - Emit all declarations in a linkage spec. 4288 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) { 4289 if (LSD->getLanguage() != LinkageSpecDecl::lang_c && 4290 LSD->getLanguage() != LinkageSpecDecl::lang_cxx) { 4291 ErrorUnsupported(LSD, "linkage spec"); 4292 return; 4293 } 4294 4295 EmitDeclContext(LSD); 4296 } 4297 4298 void CodeGenModule::EmitDeclContext(const DeclContext *DC) { 4299 for (auto *I : DC->decls()) { 4300 // Unlike other DeclContexts, the contents of an ObjCImplDecl at TU scope 4301 // are themselves considered "top-level", so EmitTopLevelDecl on an 4302 // ObjCImplDecl does not recursively visit them. We need to do that in 4303 // case they're nested inside another construct (LinkageSpecDecl / 4304 // ExportDecl) that does stop them from being considered "top-level". 4305 if (auto *OID = dyn_cast<ObjCImplDecl>(I)) { 4306 for (auto *M : OID->methods()) 4307 EmitTopLevelDecl(M); 4308 } 4309 4310 EmitTopLevelDecl(I); 4311 } 4312 } 4313 4314 /// EmitTopLevelDecl - Emit code for a single top level declaration. 4315 void CodeGenModule::EmitTopLevelDecl(Decl *D) { 4316 // Ignore dependent declarations. 4317 if (D->isTemplated()) 4318 return; 4319 4320 switch (D->getKind()) { 4321 case Decl::CXXConversion: 4322 case Decl::CXXMethod: 4323 case Decl::Function: 4324 EmitGlobal(cast<FunctionDecl>(D)); 4325 // Always provide some coverage mapping 4326 // even for the functions that aren't emitted. 4327 AddDeferredUnusedCoverageMapping(D); 4328 break; 4329 4330 case Decl::CXXDeductionGuide: 4331 // Function-like, but does not result in code emission. 4332 break; 4333 4334 case Decl::Var: 4335 case Decl::Decomposition: 4336 case Decl::VarTemplateSpecialization: 4337 EmitGlobal(cast<VarDecl>(D)); 4338 if (auto *DD = dyn_cast<DecompositionDecl>(D)) 4339 for (auto *B : DD->bindings()) 4340 if (auto *HD = B->getHoldingVar()) 4341 EmitGlobal(HD); 4342 break; 4343 4344 // Indirect fields from global anonymous structs and unions can be 4345 // ignored; only the actual variable requires IR gen support. 4346 case Decl::IndirectField: 4347 break; 4348 4349 // C++ Decls 4350 case Decl::Namespace: 4351 EmitDeclContext(cast<NamespaceDecl>(D)); 4352 break; 4353 case Decl::ClassTemplateSpecialization: { 4354 const auto *Spec = cast<ClassTemplateSpecializationDecl>(D); 4355 if (DebugInfo && 4356 Spec->getSpecializationKind() == TSK_ExplicitInstantiationDefinition && 4357 Spec->hasDefinition()) 4358 DebugInfo->completeTemplateDefinition(*Spec); 4359 } LLVM_FALLTHROUGH; 4360 case Decl::CXXRecord: 4361 if (DebugInfo) { 4362 if (auto *ES = D->getASTContext().getExternalSource()) 4363 if (ES->hasExternalDefinitions(D) == ExternalASTSource::EK_Never) 4364 DebugInfo->completeUnusedClass(cast<CXXRecordDecl>(*D)); 4365 } 4366 // Emit any static data members, they may be definitions. 4367 for (auto *I : cast<CXXRecordDecl>(D)->decls()) 4368 if (isa<VarDecl>(I) || isa<CXXRecordDecl>(I)) 4369 EmitTopLevelDecl(I); 4370 break; 4371 // No code generation needed. 4372 case Decl::UsingShadow: 4373 case Decl::ClassTemplate: 4374 case Decl::VarTemplate: 4375 case Decl::VarTemplatePartialSpecialization: 4376 case Decl::FunctionTemplate: 4377 case Decl::TypeAliasTemplate: 4378 case Decl::Block: 4379 case Decl::Empty: 4380 break; 4381 case Decl::Using: // using X; [C++] 4382 if (CGDebugInfo *DI = getModuleDebugInfo()) 4383 DI->EmitUsingDecl(cast<UsingDecl>(*D)); 4384 return; 4385 case Decl::NamespaceAlias: 4386 if (CGDebugInfo *DI = getModuleDebugInfo()) 4387 DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(*D)); 4388 return; 4389 case Decl::UsingDirective: // using namespace X; [C++] 4390 if (CGDebugInfo *DI = getModuleDebugInfo()) 4391 DI->EmitUsingDirective(cast<UsingDirectiveDecl>(*D)); 4392 return; 4393 case Decl::CXXConstructor: 4394 getCXXABI().EmitCXXConstructors(cast<CXXConstructorDecl>(D)); 4395 break; 4396 case Decl::CXXDestructor: 4397 getCXXABI().EmitCXXDestructors(cast<CXXDestructorDecl>(D)); 4398 break; 4399 4400 case Decl::StaticAssert: 4401 // Nothing to do. 4402 break; 4403 4404 // Objective-C Decls 4405 4406 // Forward declarations, no (immediate) code generation. 4407 case Decl::ObjCInterface: 4408 case Decl::ObjCCategory: 4409 break; 4410 4411 case Decl::ObjCProtocol: { 4412 auto *Proto = cast<ObjCProtocolDecl>(D); 4413 if (Proto->isThisDeclarationADefinition()) 4414 ObjCRuntime->GenerateProtocol(Proto); 4415 break; 4416 } 4417 4418 case Decl::ObjCCategoryImpl: 4419 // Categories have properties but don't support synthesize so we 4420 // can ignore them here. 4421 ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D)); 4422 break; 4423 4424 case Decl::ObjCImplementation: { 4425 auto *OMD = cast<ObjCImplementationDecl>(D); 4426 EmitObjCPropertyImplementations(OMD); 4427 EmitObjCIvarInitializations(OMD); 4428 ObjCRuntime->GenerateClass(OMD); 4429 // Emit global variable debug information. 4430 if (CGDebugInfo *DI = getModuleDebugInfo()) 4431 if (getCodeGenOpts().getDebugInfo() >= codegenoptions::LimitedDebugInfo) 4432 DI->getOrCreateInterfaceType(getContext().getObjCInterfaceType( 4433 OMD->getClassInterface()), OMD->getLocation()); 4434 break; 4435 } 4436 case Decl::ObjCMethod: { 4437 auto *OMD = cast<ObjCMethodDecl>(D); 4438 // If this is not a prototype, emit the body. 4439 if (OMD->getBody()) 4440 CodeGenFunction(*this).GenerateObjCMethod(OMD); 4441 break; 4442 } 4443 case Decl::ObjCCompatibleAlias: 4444 ObjCRuntime->RegisterAlias(cast<ObjCCompatibleAliasDecl>(D)); 4445 break; 4446 4447 case Decl::PragmaComment: { 4448 const auto *PCD = cast<PragmaCommentDecl>(D); 4449 switch (PCD->getCommentKind()) { 4450 case PCK_Unknown: 4451 llvm_unreachable("unexpected pragma comment kind"); 4452 case PCK_Linker: 4453 AppendLinkerOptions(PCD->getArg()); 4454 break; 4455 case PCK_Lib: 4456 if (getTarget().getTriple().isOSBinFormatELF() && 4457 !getTarget().getTriple().isPS4()) 4458 AddELFLibDirective(PCD->getArg()); 4459 else 4460 AddDependentLib(PCD->getArg()); 4461 break; 4462 case PCK_Compiler: 4463 case PCK_ExeStr: 4464 case PCK_User: 4465 break; // We ignore all of these. 4466 } 4467 break; 4468 } 4469 4470 case Decl::PragmaDetectMismatch: { 4471 const auto *PDMD = cast<PragmaDetectMismatchDecl>(D); 4472 AddDetectMismatch(PDMD->getName(), PDMD->getValue()); 4473 break; 4474 } 4475 4476 case Decl::LinkageSpec: 4477 EmitLinkageSpec(cast<LinkageSpecDecl>(D)); 4478 break; 4479 4480 case Decl::FileScopeAsm: { 4481 // File-scope asm is ignored during device-side CUDA compilation. 4482 if (LangOpts.CUDA && LangOpts.CUDAIsDevice) 4483 break; 4484 // File-scope asm is ignored during device-side OpenMP compilation. 4485 if (LangOpts.OpenMPIsDevice) 4486 break; 4487 auto *AD = cast<FileScopeAsmDecl>(D); 4488 getModule().appendModuleInlineAsm(AD->getAsmString()->getString()); 4489 break; 4490 } 4491 4492 case Decl::Import: { 4493 auto *Import = cast<ImportDecl>(D); 4494 4495 // If we've already imported this module, we're done. 4496 if (!ImportedModules.insert(Import->getImportedModule())) 4497 break; 4498 4499 // Emit debug information for direct imports. 4500 if (!Import->getImportedOwningModule()) { 4501 if (CGDebugInfo *DI = getModuleDebugInfo()) 4502 DI->EmitImportDecl(*Import); 4503 } 4504 4505 // Find all of the submodules and emit the module initializers. 4506 llvm::SmallPtrSet<clang::Module *, 16> Visited; 4507 SmallVector<clang::Module *, 16> Stack; 4508 Visited.insert(Import->getImportedModule()); 4509 Stack.push_back(Import->getImportedModule()); 4510 4511 while (!Stack.empty()) { 4512 clang::Module *Mod = Stack.pop_back_val(); 4513 if (!EmittedModuleInitializers.insert(Mod).second) 4514 continue; 4515 4516 for (auto *D : Context.getModuleInitializers(Mod)) 4517 EmitTopLevelDecl(D); 4518 4519 // Visit the submodules of this module. 4520 for (clang::Module::submodule_iterator Sub = Mod->submodule_begin(), 4521 SubEnd = Mod->submodule_end(); 4522 Sub != SubEnd; ++Sub) { 4523 // Skip explicit children; they need to be explicitly imported to emit 4524 // the initializers. 4525 if ((*Sub)->IsExplicit) 4526 continue; 4527 4528 if (Visited.insert(*Sub).second) 4529 Stack.push_back(*Sub); 4530 } 4531 } 4532 break; 4533 } 4534 4535 case Decl::Export: 4536 EmitDeclContext(cast<ExportDecl>(D)); 4537 break; 4538 4539 case Decl::OMPThreadPrivate: 4540 EmitOMPThreadPrivateDecl(cast<OMPThreadPrivateDecl>(D)); 4541 break; 4542 4543 case Decl::OMPDeclareReduction: 4544 EmitOMPDeclareReduction(cast<OMPDeclareReductionDecl>(D)); 4545 break; 4546 4547 default: 4548 // Make sure we handled everything we should, every other kind is a 4549 // non-top-level decl. FIXME: Would be nice to have an isTopLevelDeclKind 4550 // function. Need to recode Decl::Kind to do that easily. 4551 assert(isa<TypeDecl>(D) && "Unsupported decl kind"); 4552 break; 4553 } 4554 } 4555 4556 void CodeGenModule::AddDeferredUnusedCoverageMapping(Decl *D) { 4557 // Do we need to generate coverage mapping? 4558 if (!CodeGenOpts.CoverageMapping) 4559 return; 4560 switch (D->getKind()) { 4561 case Decl::CXXConversion: 4562 case Decl::CXXMethod: 4563 case Decl::Function: 4564 case Decl::ObjCMethod: 4565 case Decl::CXXConstructor: 4566 case Decl::CXXDestructor: { 4567 if (!cast<FunctionDecl>(D)->doesThisDeclarationHaveABody()) 4568 return; 4569 SourceManager &SM = getContext().getSourceManager(); 4570 if (LimitedCoverage && SM.getMainFileID() != SM.getFileID(D->getLocStart())) 4571 return; 4572 auto I = DeferredEmptyCoverageMappingDecls.find(D); 4573 if (I == DeferredEmptyCoverageMappingDecls.end()) 4574 DeferredEmptyCoverageMappingDecls[D] = true; 4575 break; 4576 } 4577 default: 4578 break; 4579 }; 4580 } 4581 4582 void CodeGenModule::ClearUnusedCoverageMapping(const Decl *D) { 4583 // Do we need to generate coverage mapping? 4584 if (!CodeGenOpts.CoverageMapping) 4585 return; 4586 if (const auto *Fn = dyn_cast<FunctionDecl>(D)) { 4587 if (Fn->isTemplateInstantiation()) 4588 ClearUnusedCoverageMapping(Fn->getTemplateInstantiationPattern()); 4589 } 4590 auto I = DeferredEmptyCoverageMappingDecls.find(D); 4591 if (I == DeferredEmptyCoverageMappingDecls.end()) 4592 DeferredEmptyCoverageMappingDecls[D] = false; 4593 else 4594 I->second = false; 4595 } 4596 4597 void CodeGenModule::EmitDeferredUnusedCoverageMappings() { 4598 // We call takeVector() here to avoid use-after-free. 4599 // FIXME: DeferredEmptyCoverageMappingDecls is getting mutated because 4600 // we deserialize function bodies to emit coverage info for them, and that 4601 // deserializes more declarations. How should we handle that case? 4602 for (const auto &Entry : DeferredEmptyCoverageMappingDecls.takeVector()) { 4603 if (!Entry.second) 4604 continue; 4605 const Decl *D = Entry.first; 4606 switch (D->getKind()) { 4607 case Decl::CXXConversion: 4608 case Decl::CXXMethod: 4609 case Decl::Function: 4610 case Decl::ObjCMethod: { 4611 CodeGenPGO PGO(*this); 4612 GlobalDecl GD(cast<FunctionDecl>(D)); 4613 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 4614 getFunctionLinkage(GD)); 4615 break; 4616 } 4617 case Decl::CXXConstructor: { 4618 CodeGenPGO PGO(*this); 4619 GlobalDecl GD(cast<CXXConstructorDecl>(D), Ctor_Base); 4620 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 4621 getFunctionLinkage(GD)); 4622 break; 4623 } 4624 case Decl::CXXDestructor: { 4625 CodeGenPGO PGO(*this); 4626 GlobalDecl GD(cast<CXXDestructorDecl>(D), Dtor_Base); 4627 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 4628 getFunctionLinkage(GD)); 4629 break; 4630 } 4631 default: 4632 break; 4633 }; 4634 } 4635 } 4636 4637 /// Turns the given pointer into a constant. 4638 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context, 4639 const void *Ptr) { 4640 uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr); 4641 llvm::Type *i64 = llvm::Type::getInt64Ty(Context); 4642 return llvm::ConstantInt::get(i64, PtrInt); 4643 } 4644 4645 static void EmitGlobalDeclMetadata(CodeGenModule &CGM, 4646 llvm::NamedMDNode *&GlobalMetadata, 4647 GlobalDecl D, 4648 llvm::GlobalValue *Addr) { 4649 if (!GlobalMetadata) 4650 GlobalMetadata = 4651 CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs"); 4652 4653 // TODO: should we report variant information for ctors/dtors? 4654 llvm::Metadata *Ops[] = {llvm::ConstantAsMetadata::get(Addr), 4655 llvm::ConstantAsMetadata::get(GetPointerConstant( 4656 CGM.getLLVMContext(), D.getDecl()))}; 4657 GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops)); 4658 } 4659 4660 /// For each function which is declared within an extern "C" region and marked 4661 /// as 'used', but has internal linkage, create an alias from the unmangled 4662 /// name to the mangled name if possible. People expect to be able to refer 4663 /// to such functions with an unmangled name from inline assembly within the 4664 /// same translation unit. 4665 void CodeGenModule::EmitStaticExternCAliases() { 4666 // Don't do anything if we're generating CUDA device code -- the NVPTX 4667 // assembly target doesn't support aliases. 4668 if (Context.getTargetInfo().getTriple().isNVPTX()) 4669 return; 4670 for (auto &I : StaticExternCValues) { 4671 IdentifierInfo *Name = I.first; 4672 llvm::GlobalValue *Val = I.second; 4673 if (Val && !getModule().getNamedValue(Name->getName())) 4674 addUsedGlobal(llvm::GlobalAlias::create(Name->getName(), Val)); 4675 } 4676 } 4677 4678 bool CodeGenModule::lookupRepresentativeDecl(StringRef MangledName, 4679 GlobalDecl &Result) const { 4680 auto Res = Manglings.find(MangledName); 4681 if (Res == Manglings.end()) 4682 return false; 4683 Result = Res->getValue(); 4684 return true; 4685 } 4686 4687 /// Emits metadata nodes associating all the global values in the 4688 /// current module with the Decls they came from. This is useful for 4689 /// projects using IR gen as a subroutine. 4690 /// 4691 /// Since there's currently no way to associate an MDNode directly 4692 /// with an llvm::GlobalValue, we create a global named metadata 4693 /// with the name 'clang.global.decl.ptrs'. 4694 void CodeGenModule::EmitDeclMetadata() { 4695 llvm::NamedMDNode *GlobalMetadata = nullptr; 4696 4697 for (auto &I : MangledDeclNames) { 4698 llvm::GlobalValue *Addr = getModule().getNamedValue(I.second); 4699 // Some mangled names don't necessarily have an associated GlobalValue 4700 // in this module, e.g. if we mangled it for DebugInfo. 4701 if (Addr) 4702 EmitGlobalDeclMetadata(*this, GlobalMetadata, I.first, Addr); 4703 } 4704 } 4705 4706 /// Emits metadata nodes for all the local variables in the current 4707 /// function. 4708 void CodeGenFunction::EmitDeclMetadata() { 4709 if (LocalDeclMap.empty()) return; 4710 4711 llvm::LLVMContext &Context = getLLVMContext(); 4712 4713 // Find the unique metadata ID for this name. 4714 unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr"); 4715 4716 llvm::NamedMDNode *GlobalMetadata = nullptr; 4717 4718 for (auto &I : LocalDeclMap) { 4719 const Decl *D = I.first; 4720 llvm::Value *Addr = I.second.getPointer(); 4721 if (auto *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) { 4722 llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D); 4723 Alloca->setMetadata( 4724 DeclPtrKind, llvm::MDNode::get( 4725 Context, llvm::ValueAsMetadata::getConstant(DAddr))); 4726 } else if (auto *GV = dyn_cast<llvm::GlobalValue>(Addr)) { 4727 GlobalDecl GD = GlobalDecl(cast<VarDecl>(D)); 4728 EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV); 4729 } 4730 } 4731 } 4732 4733 void CodeGenModule::EmitVersionIdentMetadata() { 4734 llvm::NamedMDNode *IdentMetadata = 4735 TheModule.getOrInsertNamedMetadata("llvm.ident"); 4736 std::string Version = getClangFullVersion(); 4737 llvm::LLVMContext &Ctx = TheModule.getContext(); 4738 4739 llvm::Metadata *IdentNode[] = {llvm::MDString::get(Ctx, Version)}; 4740 IdentMetadata->addOperand(llvm::MDNode::get(Ctx, IdentNode)); 4741 } 4742 4743 void CodeGenModule::EmitTargetMetadata() { 4744 // Warning, new MangledDeclNames may be appended within this loop. 4745 // We rely on MapVector insertions adding new elements to the end 4746 // of the container. 4747 // FIXME: Move this loop into the one target that needs it, and only 4748 // loop over those declarations for which we couldn't emit the target 4749 // metadata when we emitted the declaration. 4750 for (unsigned I = 0; I != MangledDeclNames.size(); ++I) { 4751 auto Val = *(MangledDeclNames.begin() + I); 4752 const Decl *D = Val.first.getDecl()->getMostRecentDecl(); 4753 llvm::GlobalValue *GV = GetGlobalValue(Val.second); 4754 getTargetCodeGenInfo().emitTargetMD(D, GV, *this); 4755 } 4756 } 4757 4758 void CodeGenModule::EmitCoverageFile() { 4759 if (getCodeGenOpts().CoverageDataFile.empty() && 4760 getCodeGenOpts().CoverageNotesFile.empty()) 4761 return; 4762 4763 llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu"); 4764 if (!CUNode) 4765 return; 4766 4767 llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov"); 4768 llvm::LLVMContext &Ctx = TheModule.getContext(); 4769 auto *CoverageDataFile = 4770 llvm::MDString::get(Ctx, getCodeGenOpts().CoverageDataFile); 4771 auto *CoverageNotesFile = 4772 llvm::MDString::get(Ctx, getCodeGenOpts().CoverageNotesFile); 4773 for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) { 4774 llvm::MDNode *CU = CUNode->getOperand(i); 4775 llvm::Metadata *Elts[] = {CoverageNotesFile, CoverageDataFile, CU}; 4776 GCov->addOperand(llvm::MDNode::get(Ctx, Elts)); 4777 } 4778 } 4779 4780 llvm::Constant *CodeGenModule::EmitUuidofInitializer(StringRef Uuid) { 4781 // Sema has checked that all uuid strings are of the form 4782 // "12345678-1234-1234-1234-1234567890ab". 4783 assert(Uuid.size() == 36); 4784 for (unsigned i = 0; i < 36; ++i) { 4785 if (i == 8 || i == 13 || i == 18 || i == 23) assert(Uuid[i] == '-'); 4786 else assert(isHexDigit(Uuid[i])); 4787 } 4788 4789 // The starts of all bytes of Field3 in Uuid. Field 3 is "1234-1234567890ab". 4790 const unsigned Field3ValueOffsets[8] = { 19, 21, 24, 26, 28, 30, 32, 34 }; 4791 4792 llvm::Constant *Field3[8]; 4793 for (unsigned Idx = 0; Idx < 8; ++Idx) 4794 Field3[Idx] = llvm::ConstantInt::get( 4795 Int8Ty, Uuid.substr(Field3ValueOffsets[Idx], 2), 16); 4796 4797 llvm::Constant *Fields[4] = { 4798 llvm::ConstantInt::get(Int32Ty, Uuid.substr(0, 8), 16), 4799 llvm::ConstantInt::get(Int16Ty, Uuid.substr(9, 4), 16), 4800 llvm::ConstantInt::get(Int16Ty, Uuid.substr(14, 4), 16), 4801 llvm::ConstantArray::get(llvm::ArrayType::get(Int8Ty, 8), Field3) 4802 }; 4803 4804 return llvm::ConstantStruct::getAnon(Fields); 4805 } 4806 4807 llvm::Constant *CodeGenModule::GetAddrOfRTTIDescriptor(QualType Ty, 4808 bool ForEH) { 4809 // Return a bogus pointer if RTTI is disabled, unless it's for EH. 4810 // FIXME: should we even be calling this method if RTTI is disabled 4811 // and it's not for EH? 4812 if (!ForEH && !getLangOpts().RTTI) 4813 return llvm::Constant::getNullValue(Int8PtrTy); 4814 4815 if (ForEH && Ty->isObjCObjectPointerType() && 4816 LangOpts.ObjCRuntime.isGNUFamily()) 4817 return ObjCRuntime->GetEHType(Ty); 4818 4819 return getCXXABI().getAddrOfRTTIDescriptor(Ty); 4820 } 4821 4822 void CodeGenModule::EmitOMPThreadPrivateDecl(const OMPThreadPrivateDecl *D) { 4823 // Do not emit threadprivates in simd-only mode. 4824 if (LangOpts.OpenMP && LangOpts.OpenMPSimd) 4825 return; 4826 for (auto RefExpr : D->varlists()) { 4827 auto *VD = cast<VarDecl>(cast<DeclRefExpr>(RefExpr)->getDecl()); 4828 bool PerformInit = 4829 VD->getAnyInitializer() && 4830 !VD->getAnyInitializer()->isConstantInitializer(getContext(), 4831 /*ForRef=*/false); 4832 4833 Address Addr(GetAddrOfGlobalVar(VD), getContext().getDeclAlign(VD)); 4834 if (auto InitFunction = getOpenMPRuntime().emitThreadPrivateVarDefinition( 4835 VD, Addr, RefExpr->getLocStart(), PerformInit)) 4836 CXXGlobalInits.push_back(InitFunction); 4837 } 4838 } 4839 4840 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierForType(QualType T) { 4841 llvm::Metadata *&InternalId = MetadataIdMap[T.getCanonicalType()]; 4842 if (InternalId) 4843 return InternalId; 4844 4845 if (isExternallyVisible(T->getLinkage())) { 4846 std::string OutName; 4847 llvm::raw_string_ostream Out(OutName); 4848 getCXXABI().getMangleContext().mangleTypeName(T, Out); 4849 4850 InternalId = llvm::MDString::get(getLLVMContext(), Out.str()); 4851 } else { 4852 InternalId = llvm::MDNode::getDistinct(getLLVMContext(), 4853 llvm::ArrayRef<llvm::Metadata *>()); 4854 } 4855 4856 return InternalId; 4857 } 4858 4859 // Generalize pointer types to a void pointer with the qualifiers of the 4860 // originally pointed-to type, e.g. 'const char *' and 'char * const *' 4861 // generalize to 'const void *' while 'char *' and 'const char **' generalize to 4862 // 'void *'. 4863 static QualType GeneralizeType(ASTContext &Ctx, QualType Ty) { 4864 if (!Ty->isPointerType()) 4865 return Ty; 4866 4867 return Ctx.getPointerType( 4868 QualType(Ctx.VoidTy).withCVRQualifiers( 4869 Ty->getPointeeType().getCVRQualifiers())); 4870 } 4871 4872 // Apply type generalization to a FunctionType's return and argument types 4873 static QualType GeneralizeFunctionType(ASTContext &Ctx, QualType Ty) { 4874 if (auto *FnType = Ty->getAs<FunctionProtoType>()) { 4875 SmallVector<QualType, 8> GeneralizedParams; 4876 for (auto &Param : FnType->param_types()) 4877 GeneralizedParams.push_back(GeneralizeType(Ctx, Param)); 4878 4879 return Ctx.getFunctionType( 4880 GeneralizeType(Ctx, FnType->getReturnType()), 4881 GeneralizedParams, FnType->getExtProtoInfo()); 4882 } 4883 4884 if (auto *FnType = Ty->getAs<FunctionNoProtoType>()) 4885 return Ctx.getFunctionNoProtoType( 4886 GeneralizeType(Ctx, FnType->getReturnType())); 4887 4888 llvm_unreachable("Encountered unknown FunctionType"); 4889 } 4890 4891 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierGeneralized(QualType T) { 4892 T = GeneralizeFunctionType(getContext(), T); 4893 4894 llvm::Metadata *&InternalId = GeneralizedMetadataIdMap[T.getCanonicalType()]; 4895 if (InternalId) 4896 return InternalId; 4897 4898 if (isExternallyVisible(T->getLinkage())) { 4899 std::string OutName; 4900 llvm::raw_string_ostream Out(OutName); 4901 getCXXABI().getMangleContext().mangleTypeName(T, Out); 4902 Out << ".generalized"; 4903 4904 InternalId = llvm::MDString::get(getLLVMContext(), Out.str()); 4905 } else { 4906 InternalId = llvm::MDNode::getDistinct(getLLVMContext(), 4907 llvm::ArrayRef<llvm::Metadata *>()); 4908 } 4909 4910 return InternalId; 4911 } 4912 4913 /// Returns whether this module needs the "all-vtables" type identifier. 4914 bool CodeGenModule::NeedAllVtablesTypeId() const { 4915 // Returns true if at least one of vtable-based CFI checkers is enabled and 4916 // is not in the trapping mode. 4917 return ((LangOpts.Sanitize.has(SanitizerKind::CFIVCall) && 4918 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIVCall)) || 4919 (LangOpts.Sanitize.has(SanitizerKind::CFINVCall) && 4920 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFINVCall)) || 4921 (LangOpts.Sanitize.has(SanitizerKind::CFIDerivedCast) && 4922 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIDerivedCast)) || 4923 (LangOpts.Sanitize.has(SanitizerKind::CFIUnrelatedCast) && 4924 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIUnrelatedCast))); 4925 } 4926 4927 void CodeGenModule::AddVTableTypeMetadata(llvm::GlobalVariable *VTable, 4928 CharUnits Offset, 4929 const CXXRecordDecl *RD) { 4930 llvm::Metadata *MD = 4931 CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0)); 4932 VTable->addTypeMetadata(Offset.getQuantity(), MD); 4933 4934 if (CodeGenOpts.SanitizeCfiCrossDso) 4935 if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD)) 4936 VTable->addTypeMetadata(Offset.getQuantity(), 4937 llvm::ConstantAsMetadata::get(CrossDsoTypeId)); 4938 4939 if (NeedAllVtablesTypeId()) { 4940 llvm::Metadata *MD = llvm::MDString::get(getLLVMContext(), "all-vtables"); 4941 VTable->addTypeMetadata(Offset.getQuantity(), MD); 4942 } 4943 } 4944 4945 // Fills in the supplied string map with the set of target features for the 4946 // passed in function. 4947 void CodeGenModule::getFunctionFeatureMap(llvm::StringMap<bool> &FeatureMap, 4948 const FunctionDecl *FD) { 4949 StringRef TargetCPU = Target.getTargetOpts().CPU; 4950 if (const auto *TD = FD->getAttr<TargetAttr>()) { 4951 // If we have a TargetAttr build up the feature map based on that. 4952 TargetAttr::ParsedTargetAttr ParsedAttr = TD->parse(); 4953 4954 ParsedAttr.Features.erase( 4955 llvm::remove_if(ParsedAttr.Features, 4956 [&](const std::string &Feat) { 4957 return !Target.isValidFeatureName( 4958 StringRef{Feat}.substr(1)); 4959 }), 4960 ParsedAttr.Features.end()); 4961 4962 // Make a copy of the features as passed on the command line into the 4963 // beginning of the additional features from the function to override. 4964 ParsedAttr.Features.insert(ParsedAttr.Features.begin(), 4965 Target.getTargetOpts().FeaturesAsWritten.begin(), 4966 Target.getTargetOpts().FeaturesAsWritten.end()); 4967 4968 if (ParsedAttr.Architecture != "" && 4969 Target.isValidCPUName(ParsedAttr.Architecture)) 4970 TargetCPU = ParsedAttr.Architecture; 4971 4972 // Now populate the feature map, first with the TargetCPU which is either 4973 // the default or a new one from the target attribute string. Then we'll use 4974 // the passed in features (FeaturesAsWritten) along with the new ones from 4975 // the attribute. 4976 Target.initFeatureMap(FeatureMap, getDiags(), TargetCPU, 4977 ParsedAttr.Features); 4978 } else { 4979 Target.initFeatureMap(FeatureMap, getDiags(), TargetCPU, 4980 Target.getTargetOpts().Features); 4981 } 4982 } 4983 4984 llvm::SanitizerStatReport &CodeGenModule::getSanStats() { 4985 if (!SanStats) 4986 SanStats = llvm::make_unique<llvm::SanitizerStatReport>(&getModule()); 4987 4988 return *SanStats; 4989 } 4990 llvm::Value * 4991 CodeGenModule::createOpenCLIntToSamplerConversion(const Expr *E, 4992 CodeGenFunction &CGF) { 4993 llvm::Constant *C = ConstantEmitter(CGF).emitAbstract(E, E->getType()); 4994 auto SamplerT = getOpenCLRuntime().getSamplerType(E->getType().getTypePtr()); 4995 auto FTy = llvm::FunctionType::get(SamplerT, {C->getType()}, false); 4996 return CGF.Builder.CreateCall(CreateRuntimeFunction(FTy, 4997 "__translate_sampler_initializer"), 4998 {C}); 4999 } 5000