1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This coordinates the per-module state used while generating code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenModule.h" 15 #include "CGBlocks.h" 16 #include "CGCUDARuntime.h" 17 #include "CGCXXABI.h" 18 #include "CGCall.h" 19 #include "CGDebugInfo.h" 20 #include "CGObjCRuntime.h" 21 #include "CGOpenCLRuntime.h" 22 #include "CGOpenMPRuntime.h" 23 #include "CGOpenMPRuntimeNVPTX.h" 24 #include "CodeGenFunction.h" 25 #include "CodeGenPGO.h" 26 #include "ConstantEmitter.h" 27 #include "CoverageMappingGen.h" 28 #include "TargetInfo.h" 29 #include "clang/AST/ASTContext.h" 30 #include "clang/AST/CharUnits.h" 31 #include "clang/AST/DeclCXX.h" 32 #include "clang/AST/DeclObjC.h" 33 #include "clang/AST/DeclTemplate.h" 34 #include "clang/AST/Mangle.h" 35 #include "clang/AST/RecordLayout.h" 36 #include "clang/AST/RecursiveASTVisitor.h" 37 #include "clang/Basic/Builtins.h" 38 #include "clang/Basic/CharInfo.h" 39 #include "clang/Basic/Diagnostic.h" 40 #include "clang/Basic/Module.h" 41 #include "clang/Basic/SourceManager.h" 42 #include "clang/Basic/TargetInfo.h" 43 #include "clang/Basic/Version.h" 44 #include "clang/CodeGen/ConstantInitBuilder.h" 45 #include "clang/Frontend/CodeGenOptions.h" 46 #include "clang/Sema/SemaDiagnostic.h" 47 #include "llvm/ADT/Triple.h" 48 #include "llvm/Analysis/TargetLibraryInfo.h" 49 #include "llvm/IR/CallSite.h" 50 #include "llvm/IR/CallingConv.h" 51 #include "llvm/IR/DataLayout.h" 52 #include "llvm/IR/Intrinsics.h" 53 #include "llvm/IR/LLVMContext.h" 54 #include "llvm/IR/Module.h" 55 #include "llvm/ProfileData/InstrProfReader.h" 56 #include "llvm/Support/ConvertUTF.h" 57 #include "llvm/Support/ErrorHandling.h" 58 #include "llvm/Support/MD5.h" 59 60 using namespace clang; 61 using namespace CodeGen; 62 63 static llvm::cl::opt<bool> LimitedCoverage( 64 "limited-coverage-experimental", llvm::cl::ZeroOrMore, llvm::cl::Hidden, 65 llvm::cl::desc("Emit limited coverage mapping information (experimental)"), 66 llvm::cl::init(false)); 67 68 static const char AnnotationSection[] = "llvm.metadata"; 69 70 static CGCXXABI *createCXXABI(CodeGenModule &CGM) { 71 switch (CGM.getTarget().getCXXABI().getKind()) { 72 case TargetCXXABI::GenericAArch64: 73 case TargetCXXABI::GenericARM: 74 case TargetCXXABI::iOS: 75 case TargetCXXABI::iOS64: 76 case TargetCXXABI::WatchOS: 77 case TargetCXXABI::GenericMIPS: 78 case TargetCXXABI::GenericItanium: 79 case TargetCXXABI::WebAssembly: 80 return CreateItaniumCXXABI(CGM); 81 case TargetCXXABI::Microsoft: 82 return CreateMicrosoftCXXABI(CGM); 83 } 84 85 llvm_unreachable("invalid C++ ABI kind"); 86 } 87 88 CodeGenModule::CodeGenModule(ASTContext &C, const HeaderSearchOptions &HSO, 89 const PreprocessorOptions &PPO, 90 const CodeGenOptions &CGO, llvm::Module &M, 91 DiagnosticsEngine &diags, 92 CoverageSourceInfo *CoverageInfo) 93 : Context(C), LangOpts(C.getLangOpts()), HeaderSearchOpts(HSO), 94 PreprocessorOpts(PPO), CodeGenOpts(CGO), TheModule(M), Diags(diags), 95 Target(C.getTargetInfo()), ABI(createCXXABI(*this)), 96 VMContext(M.getContext()), Types(*this), VTables(*this), 97 SanitizerMD(new SanitizerMetadata(*this)) { 98 99 // Initialize the type cache. 100 llvm::LLVMContext &LLVMContext = M.getContext(); 101 VoidTy = llvm::Type::getVoidTy(LLVMContext); 102 Int8Ty = llvm::Type::getInt8Ty(LLVMContext); 103 Int16Ty = llvm::Type::getInt16Ty(LLVMContext); 104 Int32Ty = llvm::Type::getInt32Ty(LLVMContext); 105 Int64Ty = llvm::Type::getInt64Ty(LLVMContext); 106 HalfTy = llvm::Type::getHalfTy(LLVMContext); 107 FloatTy = llvm::Type::getFloatTy(LLVMContext); 108 DoubleTy = llvm::Type::getDoubleTy(LLVMContext); 109 PointerWidthInBits = C.getTargetInfo().getPointerWidth(0); 110 PointerAlignInBytes = 111 C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(0)).getQuantity(); 112 SizeSizeInBytes = 113 C.toCharUnitsFromBits(C.getTargetInfo().getMaxPointerWidth()).getQuantity(); 114 IntAlignInBytes = 115 C.toCharUnitsFromBits(C.getTargetInfo().getIntAlign()).getQuantity(); 116 IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth()); 117 IntPtrTy = llvm::IntegerType::get(LLVMContext, 118 C.getTargetInfo().getMaxPointerWidth()); 119 Int8PtrTy = Int8Ty->getPointerTo(0); 120 Int8PtrPtrTy = Int8PtrTy->getPointerTo(0); 121 AllocaInt8PtrTy = Int8Ty->getPointerTo( 122 M.getDataLayout().getAllocaAddrSpace()); 123 ASTAllocaAddressSpace = getTargetCodeGenInfo().getASTAllocaAddressSpace(); 124 125 RuntimeCC = getTargetCodeGenInfo().getABIInfo().getRuntimeCC(); 126 127 if (LangOpts.ObjC1) 128 createObjCRuntime(); 129 if (LangOpts.OpenCL) 130 createOpenCLRuntime(); 131 if (LangOpts.OpenMP) 132 createOpenMPRuntime(); 133 if (LangOpts.CUDA) 134 createCUDARuntime(); 135 136 // Enable TBAA unless it's suppressed. ThreadSanitizer needs TBAA even at O0. 137 if (LangOpts.Sanitize.has(SanitizerKind::Thread) || 138 (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0)) 139 TBAA.reset(new CodeGenTBAA(Context, TheModule, CodeGenOpts, getLangOpts(), 140 getCXXABI().getMangleContext())); 141 142 // If debug info or coverage generation is enabled, create the CGDebugInfo 143 // object. 144 if (CodeGenOpts.getDebugInfo() != codegenoptions::NoDebugInfo || 145 CodeGenOpts.EmitGcovArcs || CodeGenOpts.EmitGcovNotes) 146 DebugInfo.reset(new CGDebugInfo(*this)); 147 148 Block.GlobalUniqueCount = 0; 149 150 if (C.getLangOpts().ObjC1) 151 ObjCData.reset(new ObjCEntrypoints()); 152 153 if (CodeGenOpts.hasProfileClangUse()) { 154 auto ReaderOrErr = llvm::IndexedInstrProfReader::create( 155 CodeGenOpts.ProfileInstrumentUsePath); 156 if (auto E = ReaderOrErr.takeError()) { 157 unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error, 158 "Could not read profile %0: %1"); 159 llvm::handleAllErrors(std::move(E), [&](const llvm::ErrorInfoBase &EI) { 160 getDiags().Report(DiagID) << CodeGenOpts.ProfileInstrumentUsePath 161 << EI.message(); 162 }); 163 } else 164 PGOReader = std::move(ReaderOrErr.get()); 165 } 166 167 // If coverage mapping generation is enabled, create the 168 // CoverageMappingModuleGen object. 169 if (CodeGenOpts.CoverageMapping) 170 CoverageMapping.reset(new CoverageMappingModuleGen(*this, *CoverageInfo)); 171 } 172 173 CodeGenModule::~CodeGenModule() {} 174 175 void CodeGenModule::createObjCRuntime() { 176 // This is just isGNUFamily(), but we want to force implementors of 177 // new ABIs to decide how best to do this. 178 switch (LangOpts.ObjCRuntime.getKind()) { 179 case ObjCRuntime::GNUstep: 180 case ObjCRuntime::GCC: 181 case ObjCRuntime::ObjFW: 182 ObjCRuntime.reset(CreateGNUObjCRuntime(*this)); 183 return; 184 185 case ObjCRuntime::FragileMacOSX: 186 case ObjCRuntime::MacOSX: 187 case ObjCRuntime::iOS: 188 case ObjCRuntime::WatchOS: 189 ObjCRuntime.reset(CreateMacObjCRuntime(*this)); 190 return; 191 } 192 llvm_unreachable("bad runtime kind"); 193 } 194 195 void CodeGenModule::createOpenCLRuntime() { 196 OpenCLRuntime.reset(new CGOpenCLRuntime(*this)); 197 } 198 199 void CodeGenModule::createOpenMPRuntime() { 200 // Select a specialized code generation class based on the target, if any. 201 // If it does not exist use the default implementation. 202 switch (getTriple().getArch()) { 203 case llvm::Triple::nvptx: 204 case llvm::Triple::nvptx64: 205 assert(getLangOpts().OpenMPIsDevice && 206 "OpenMP NVPTX is only prepared to deal with device code."); 207 OpenMPRuntime.reset(new CGOpenMPRuntimeNVPTX(*this)); 208 break; 209 default: 210 if (LangOpts.OpenMPSimd) 211 OpenMPRuntime.reset(new CGOpenMPSIMDRuntime(*this)); 212 else 213 OpenMPRuntime.reset(new CGOpenMPRuntime(*this)); 214 break; 215 } 216 } 217 218 void CodeGenModule::createCUDARuntime() { 219 CUDARuntime.reset(CreateNVCUDARuntime(*this)); 220 } 221 222 void CodeGenModule::addReplacement(StringRef Name, llvm::Constant *C) { 223 Replacements[Name] = C; 224 } 225 226 void CodeGenModule::applyReplacements() { 227 for (auto &I : Replacements) { 228 StringRef MangledName = I.first(); 229 llvm::Constant *Replacement = I.second; 230 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 231 if (!Entry) 232 continue; 233 auto *OldF = cast<llvm::Function>(Entry); 234 auto *NewF = dyn_cast<llvm::Function>(Replacement); 235 if (!NewF) { 236 if (auto *Alias = dyn_cast<llvm::GlobalAlias>(Replacement)) { 237 NewF = dyn_cast<llvm::Function>(Alias->getAliasee()); 238 } else { 239 auto *CE = cast<llvm::ConstantExpr>(Replacement); 240 assert(CE->getOpcode() == llvm::Instruction::BitCast || 241 CE->getOpcode() == llvm::Instruction::GetElementPtr); 242 NewF = dyn_cast<llvm::Function>(CE->getOperand(0)); 243 } 244 } 245 246 // Replace old with new, but keep the old order. 247 OldF->replaceAllUsesWith(Replacement); 248 if (NewF) { 249 NewF->removeFromParent(); 250 OldF->getParent()->getFunctionList().insertAfter(OldF->getIterator(), 251 NewF); 252 } 253 OldF->eraseFromParent(); 254 } 255 } 256 257 void CodeGenModule::addGlobalValReplacement(llvm::GlobalValue *GV, llvm::Constant *C) { 258 GlobalValReplacements.push_back(std::make_pair(GV, C)); 259 } 260 261 void CodeGenModule::applyGlobalValReplacements() { 262 for (auto &I : GlobalValReplacements) { 263 llvm::GlobalValue *GV = I.first; 264 llvm::Constant *C = I.second; 265 266 GV->replaceAllUsesWith(C); 267 GV->eraseFromParent(); 268 } 269 } 270 271 // This is only used in aliases that we created and we know they have a 272 // linear structure. 273 static const llvm::GlobalObject *getAliasedGlobal( 274 const llvm::GlobalIndirectSymbol &GIS) { 275 llvm::SmallPtrSet<const llvm::GlobalIndirectSymbol*, 4> Visited; 276 const llvm::Constant *C = &GIS; 277 for (;;) { 278 C = C->stripPointerCasts(); 279 if (auto *GO = dyn_cast<llvm::GlobalObject>(C)) 280 return GO; 281 // stripPointerCasts will not walk over weak aliases. 282 auto *GIS2 = dyn_cast<llvm::GlobalIndirectSymbol>(C); 283 if (!GIS2) 284 return nullptr; 285 if (!Visited.insert(GIS2).second) 286 return nullptr; 287 C = GIS2->getIndirectSymbol(); 288 } 289 } 290 291 void CodeGenModule::checkAliases() { 292 // Check if the constructed aliases are well formed. It is really unfortunate 293 // that we have to do this in CodeGen, but we only construct mangled names 294 // and aliases during codegen. 295 bool Error = false; 296 DiagnosticsEngine &Diags = getDiags(); 297 for (const GlobalDecl &GD : Aliases) { 298 const auto *D = cast<ValueDecl>(GD.getDecl()); 299 SourceLocation Location; 300 bool IsIFunc = D->hasAttr<IFuncAttr>(); 301 if (const Attr *A = D->getDefiningAttr()) 302 Location = A->getLocation(); 303 else 304 llvm_unreachable("Not an alias or ifunc?"); 305 StringRef MangledName = getMangledName(GD); 306 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 307 auto *Alias = cast<llvm::GlobalIndirectSymbol>(Entry); 308 const llvm::GlobalValue *GV = getAliasedGlobal(*Alias); 309 if (!GV) { 310 Error = true; 311 Diags.Report(Location, diag::err_cyclic_alias) << IsIFunc; 312 } else if (GV->isDeclaration()) { 313 Error = true; 314 Diags.Report(Location, diag::err_alias_to_undefined) 315 << IsIFunc << IsIFunc; 316 } else if (IsIFunc) { 317 // Check resolver function type. 318 llvm::FunctionType *FTy = dyn_cast<llvm::FunctionType>( 319 GV->getType()->getPointerElementType()); 320 assert(FTy); 321 if (!FTy->getReturnType()->isPointerTy()) 322 Diags.Report(Location, diag::err_ifunc_resolver_return); 323 if (FTy->getNumParams()) 324 Diags.Report(Location, diag::err_ifunc_resolver_params); 325 } 326 327 llvm::Constant *Aliasee = Alias->getIndirectSymbol(); 328 llvm::GlobalValue *AliaseeGV; 329 if (auto CE = dyn_cast<llvm::ConstantExpr>(Aliasee)) 330 AliaseeGV = cast<llvm::GlobalValue>(CE->getOperand(0)); 331 else 332 AliaseeGV = cast<llvm::GlobalValue>(Aliasee); 333 334 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) { 335 StringRef AliasSection = SA->getName(); 336 if (AliasSection != AliaseeGV->getSection()) 337 Diags.Report(SA->getLocation(), diag::warn_alias_with_section) 338 << AliasSection << IsIFunc << IsIFunc; 339 } 340 341 // We have to handle alias to weak aliases in here. LLVM itself disallows 342 // this since the object semantics would not match the IL one. For 343 // compatibility with gcc we implement it by just pointing the alias 344 // to its aliasee's aliasee. We also warn, since the user is probably 345 // expecting the link to be weak. 346 if (auto GA = dyn_cast<llvm::GlobalIndirectSymbol>(AliaseeGV)) { 347 if (GA->isInterposable()) { 348 Diags.Report(Location, diag::warn_alias_to_weak_alias) 349 << GV->getName() << GA->getName() << IsIFunc; 350 Aliasee = llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast( 351 GA->getIndirectSymbol(), Alias->getType()); 352 Alias->setIndirectSymbol(Aliasee); 353 } 354 } 355 } 356 if (!Error) 357 return; 358 359 for (const GlobalDecl &GD : Aliases) { 360 StringRef MangledName = getMangledName(GD); 361 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 362 auto *Alias = dyn_cast<llvm::GlobalIndirectSymbol>(Entry); 363 Alias->replaceAllUsesWith(llvm::UndefValue::get(Alias->getType())); 364 Alias->eraseFromParent(); 365 } 366 } 367 368 void CodeGenModule::clear() { 369 DeferredDeclsToEmit.clear(); 370 if (OpenMPRuntime) 371 OpenMPRuntime->clear(); 372 } 373 374 void InstrProfStats::reportDiagnostics(DiagnosticsEngine &Diags, 375 StringRef MainFile) { 376 if (!hasDiagnostics()) 377 return; 378 if (VisitedInMainFile > 0 && VisitedInMainFile == MissingInMainFile) { 379 if (MainFile.empty()) 380 MainFile = "<stdin>"; 381 Diags.Report(diag::warn_profile_data_unprofiled) << MainFile; 382 } else { 383 if (Mismatched > 0) 384 Diags.Report(diag::warn_profile_data_out_of_date) << Visited << Mismatched; 385 386 if (Missing > 0) 387 Diags.Report(diag::warn_profile_data_missing) << Visited << Missing; 388 } 389 } 390 391 void CodeGenModule::Release() { 392 EmitDeferred(); 393 EmitVTablesOpportunistically(); 394 applyGlobalValReplacements(); 395 applyReplacements(); 396 checkAliases(); 397 emitMultiVersionFunctions(); 398 EmitCXXGlobalInitFunc(); 399 EmitCXXGlobalDtorFunc(); 400 registerGlobalDtorsWithAtExit(); 401 EmitCXXThreadLocalInitFunc(); 402 if (ObjCRuntime) 403 if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction()) 404 AddGlobalCtor(ObjCInitFunction); 405 if (Context.getLangOpts().CUDA && !Context.getLangOpts().CUDAIsDevice && 406 CUDARuntime) { 407 if (llvm::Function *CudaCtorFunction = 408 CUDARuntime->makeModuleCtorFunction()) 409 AddGlobalCtor(CudaCtorFunction); 410 } 411 if (OpenMPRuntime) { 412 if (llvm::Function *OpenMPRegistrationFunction = 413 OpenMPRuntime->emitRegistrationFunction()) { 414 auto ComdatKey = OpenMPRegistrationFunction->hasComdat() ? 415 OpenMPRegistrationFunction : nullptr; 416 AddGlobalCtor(OpenMPRegistrationFunction, 0, ComdatKey); 417 } 418 OpenMPRuntime->clear(); 419 } 420 if (PGOReader) { 421 getModule().setProfileSummary(PGOReader->getSummary().getMD(VMContext)); 422 if (PGOStats.hasDiagnostics()) 423 PGOStats.reportDiagnostics(getDiags(), getCodeGenOpts().MainFileName); 424 } 425 EmitCtorList(GlobalCtors, "llvm.global_ctors"); 426 EmitCtorList(GlobalDtors, "llvm.global_dtors"); 427 EmitGlobalAnnotations(); 428 EmitStaticExternCAliases(); 429 EmitDeferredUnusedCoverageMappings(); 430 if (CoverageMapping) 431 CoverageMapping->emit(); 432 if (CodeGenOpts.SanitizeCfiCrossDso) { 433 CodeGenFunction(*this).EmitCfiCheckFail(); 434 CodeGenFunction(*this).EmitCfiCheckStub(); 435 } 436 emitAtAvailableLinkGuard(); 437 emitLLVMUsed(); 438 if (SanStats) 439 SanStats->finish(); 440 441 if (CodeGenOpts.Autolink && 442 (Context.getLangOpts().Modules || !LinkerOptionsMetadata.empty())) { 443 EmitModuleLinkOptions(); 444 } 445 446 // Record mregparm value now so it is visible through rest of codegen. 447 if (Context.getTargetInfo().getTriple().getArch() == llvm::Triple::x86) 448 getModule().addModuleFlag(llvm::Module::Error, "NumRegisterParameters", 449 CodeGenOpts.NumRegisterParameters); 450 451 if (CodeGenOpts.DwarfVersion) { 452 // We actually want the latest version when there are conflicts. 453 // We can change from Warning to Latest if such mode is supported. 454 getModule().addModuleFlag(llvm::Module::Warning, "Dwarf Version", 455 CodeGenOpts.DwarfVersion); 456 } 457 if (CodeGenOpts.EmitCodeView) { 458 // Indicate that we want CodeView in the metadata. 459 getModule().addModuleFlag(llvm::Module::Warning, "CodeView", 1); 460 } 461 if (CodeGenOpts.ControlFlowGuard) { 462 // We want function ID tables for Control Flow Guard. 463 getModule().addModuleFlag(llvm::Module::Warning, "cfguard", 1); 464 } 465 if (CodeGenOpts.OptimizationLevel > 0 && CodeGenOpts.StrictVTablePointers) { 466 // We don't support LTO with 2 with different StrictVTablePointers 467 // FIXME: we could support it by stripping all the information introduced 468 // by StrictVTablePointers. 469 470 getModule().addModuleFlag(llvm::Module::Error, "StrictVTablePointers",1); 471 472 llvm::Metadata *Ops[2] = { 473 llvm::MDString::get(VMContext, "StrictVTablePointers"), 474 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 475 llvm::Type::getInt32Ty(VMContext), 1))}; 476 477 getModule().addModuleFlag(llvm::Module::Require, 478 "StrictVTablePointersRequirement", 479 llvm::MDNode::get(VMContext, Ops)); 480 } 481 if (DebugInfo) 482 // We support a single version in the linked module. The LLVM 483 // parser will drop debug info with a different version number 484 // (and warn about it, too). 485 getModule().addModuleFlag(llvm::Module::Warning, "Debug Info Version", 486 llvm::DEBUG_METADATA_VERSION); 487 488 // We need to record the widths of enums and wchar_t, so that we can generate 489 // the correct build attributes in the ARM backend. wchar_size is also used by 490 // TargetLibraryInfo. 491 uint64_t WCharWidth = 492 Context.getTypeSizeInChars(Context.getWideCharType()).getQuantity(); 493 getModule().addModuleFlag(llvm::Module::Error, "wchar_size", WCharWidth); 494 495 llvm::Triple::ArchType Arch = Context.getTargetInfo().getTriple().getArch(); 496 if ( Arch == llvm::Triple::arm 497 || Arch == llvm::Triple::armeb 498 || Arch == llvm::Triple::thumb 499 || Arch == llvm::Triple::thumbeb) { 500 // The minimum width of an enum in bytes 501 uint64_t EnumWidth = Context.getLangOpts().ShortEnums ? 1 : 4; 502 getModule().addModuleFlag(llvm::Module::Error, "min_enum_size", EnumWidth); 503 } 504 505 if (CodeGenOpts.SanitizeCfiCrossDso) { 506 // Indicate that we want cross-DSO control flow integrity checks. 507 getModule().addModuleFlag(llvm::Module::Override, "Cross-DSO CFI", 1); 508 } 509 510 if (CodeGenOpts.CFProtectionReturn && 511 Target.checkCFProtectionReturnSupported(getDiags())) { 512 // Indicate that we want to instrument return control flow protection. 513 getModule().addModuleFlag(llvm::Module::Override, "cf-protection-return", 514 1); 515 } 516 517 if (CodeGenOpts.CFProtectionBranch && 518 Target.checkCFProtectionBranchSupported(getDiags())) { 519 // Indicate that we want to instrument branch control flow protection. 520 getModule().addModuleFlag(llvm::Module::Override, "cf-protection-branch", 521 1); 522 } 523 524 if (LangOpts.CUDAIsDevice && getTriple().isNVPTX()) { 525 // Indicate whether __nvvm_reflect should be configured to flush denormal 526 // floating point values to 0. (This corresponds to its "__CUDA_FTZ" 527 // property.) 528 getModule().addModuleFlag(llvm::Module::Override, "nvvm-reflect-ftz", 529 LangOpts.CUDADeviceFlushDenormalsToZero ? 1 : 0); 530 } 531 532 // Emit OpenCL specific module metadata: OpenCL/SPIR version. 533 if (LangOpts.OpenCL) { 534 EmitOpenCLMetadata(); 535 // Emit SPIR version. 536 if (getTriple().getArch() == llvm::Triple::spir || 537 getTriple().getArch() == llvm::Triple::spir64) { 538 // SPIR v2.0 s2.12 - The SPIR version used by the module is stored in the 539 // opencl.spir.version named metadata. 540 llvm::Metadata *SPIRVerElts[] = { 541 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 542 Int32Ty, LangOpts.OpenCLVersion / 100)), 543 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 544 Int32Ty, (LangOpts.OpenCLVersion / 100 > 1) ? 0 : 2))}; 545 llvm::NamedMDNode *SPIRVerMD = 546 TheModule.getOrInsertNamedMetadata("opencl.spir.version"); 547 llvm::LLVMContext &Ctx = TheModule.getContext(); 548 SPIRVerMD->addOperand(llvm::MDNode::get(Ctx, SPIRVerElts)); 549 } 550 } 551 552 if (uint32_t PLevel = Context.getLangOpts().PICLevel) { 553 assert(PLevel < 3 && "Invalid PIC Level"); 554 getModule().setPICLevel(static_cast<llvm::PICLevel::Level>(PLevel)); 555 if (Context.getLangOpts().PIE) 556 getModule().setPIELevel(static_cast<llvm::PIELevel::Level>(PLevel)); 557 } 558 559 if (CodeGenOpts.NoPLT) 560 getModule().setRtLibUseGOT(); 561 562 SimplifyPersonality(); 563 564 if (getCodeGenOpts().EmitDeclMetadata) 565 EmitDeclMetadata(); 566 567 if (getCodeGenOpts().EmitGcovArcs || getCodeGenOpts().EmitGcovNotes) 568 EmitCoverageFile(); 569 570 if (DebugInfo) 571 DebugInfo->finalize(); 572 573 if (getCodeGenOpts().EmitVersionIdentMetadata) 574 EmitVersionIdentMetadata(); 575 576 EmitTargetMetadata(); 577 } 578 579 void CodeGenModule::EmitOpenCLMetadata() { 580 // SPIR v2.0 s2.13 - The OpenCL version used by the module is stored in the 581 // opencl.ocl.version named metadata node. 582 llvm::Metadata *OCLVerElts[] = { 583 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 584 Int32Ty, LangOpts.OpenCLVersion / 100)), 585 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 586 Int32Ty, (LangOpts.OpenCLVersion % 100) / 10))}; 587 llvm::NamedMDNode *OCLVerMD = 588 TheModule.getOrInsertNamedMetadata("opencl.ocl.version"); 589 llvm::LLVMContext &Ctx = TheModule.getContext(); 590 OCLVerMD->addOperand(llvm::MDNode::get(Ctx, OCLVerElts)); 591 } 592 593 void CodeGenModule::UpdateCompletedType(const TagDecl *TD) { 594 // Make sure that this type is translated. 595 Types.UpdateCompletedType(TD); 596 } 597 598 void CodeGenModule::RefreshTypeCacheForClass(const CXXRecordDecl *RD) { 599 // Make sure that this type is translated. 600 Types.RefreshTypeCacheForClass(RD); 601 } 602 603 llvm::MDNode *CodeGenModule::getTBAATypeInfo(QualType QTy) { 604 if (!TBAA) 605 return nullptr; 606 return TBAA->getTypeInfo(QTy); 607 } 608 609 TBAAAccessInfo CodeGenModule::getTBAAAccessInfo(QualType AccessType) { 610 if (!TBAA) 611 return TBAAAccessInfo(); 612 return TBAA->getAccessInfo(AccessType); 613 } 614 615 TBAAAccessInfo 616 CodeGenModule::getTBAAVTablePtrAccessInfo(llvm::Type *VTablePtrType) { 617 if (!TBAA) 618 return TBAAAccessInfo(); 619 return TBAA->getVTablePtrAccessInfo(VTablePtrType); 620 } 621 622 llvm::MDNode *CodeGenModule::getTBAAStructInfo(QualType QTy) { 623 if (!TBAA) 624 return nullptr; 625 return TBAA->getTBAAStructInfo(QTy); 626 } 627 628 llvm::MDNode *CodeGenModule::getTBAABaseTypeInfo(QualType QTy) { 629 if (!TBAA) 630 return nullptr; 631 return TBAA->getBaseTypeInfo(QTy); 632 } 633 634 llvm::MDNode *CodeGenModule::getTBAAAccessTagInfo(TBAAAccessInfo Info) { 635 if (!TBAA) 636 return nullptr; 637 return TBAA->getAccessTagInfo(Info); 638 } 639 640 TBAAAccessInfo CodeGenModule::mergeTBAAInfoForCast(TBAAAccessInfo SourceInfo, 641 TBAAAccessInfo TargetInfo) { 642 if (!TBAA) 643 return TBAAAccessInfo(); 644 return TBAA->mergeTBAAInfoForCast(SourceInfo, TargetInfo); 645 } 646 647 TBAAAccessInfo 648 CodeGenModule::mergeTBAAInfoForConditionalOperator(TBAAAccessInfo InfoA, 649 TBAAAccessInfo InfoB) { 650 if (!TBAA) 651 return TBAAAccessInfo(); 652 return TBAA->mergeTBAAInfoForConditionalOperator(InfoA, InfoB); 653 } 654 655 TBAAAccessInfo 656 CodeGenModule::mergeTBAAInfoForMemoryTransfer(TBAAAccessInfo DestInfo, 657 TBAAAccessInfo SrcInfo) { 658 if (!TBAA) 659 return TBAAAccessInfo(); 660 return TBAA->mergeTBAAInfoForConditionalOperator(DestInfo, SrcInfo); 661 } 662 663 void CodeGenModule::DecorateInstructionWithTBAA(llvm::Instruction *Inst, 664 TBAAAccessInfo TBAAInfo) { 665 if (llvm::MDNode *Tag = getTBAAAccessTagInfo(TBAAInfo)) 666 Inst->setMetadata(llvm::LLVMContext::MD_tbaa, Tag); 667 } 668 669 void CodeGenModule::DecorateInstructionWithInvariantGroup( 670 llvm::Instruction *I, const CXXRecordDecl *RD) { 671 I->setMetadata(llvm::LLVMContext::MD_invariant_group, 672 llvm::MDNode::get(getLLVMContext(), {})); 673 } 674 675 void CodeGenModule::Error(SourceLocation loc, StringRef message) { 676 unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, "%0"); 677 getDiags().Report(Context.getFullLoc(loc), diagID) << message; 678 } 679 680 /// ErrorUnsupported - Print out an error that codegen doesn't support the 681 /// specified stmt yet. 682 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type) { 683 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, 684 "cannot compile this %0 yet"); 685 std::string Msg = Type; 686 getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID) 687 << Msg << S->getSourceRange(); 688 } 689 690 /// ErrorUnsupported - Print out an error that codegen doesn't support the 691 /// specified decl yet. 692 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type) { 693 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, 694 "cannot compile this %0 yet"); 695 std::string Msg = Type; 696 getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg; 697 } 698 699 llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) { 700 return llvm::ConstantInt::get(SizeTy, size.getQuantity()); 701 } 702 703 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV, 704 const NamedDecl *D) const { 705 if (GV->hasDLLImportStorageClass()) 706 return; 707 // Internal definitions always have default visibility. 708 if (GV->hasLocalLinkage()) { 709 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 710 return; 711 } 712 if (!D) 713 return; 714 // Set visibility for definitions. 715 LinkageInfo LV = D->getLinkageAndVisibility(); 716 if (LV.isVisibilityExplicit() || !GV->isDeclarationForLinker()) 717 GV->setVisibility(GetLLVMVisibility(LV.getVisibility())); 718 } 719 720 static bool shouldAssumeDSOLocal(const CodeGenModule &CGM, 721 llvm::GlobalValue *GV) { 722 if (GV->hasLocalLinkage()) 723 return true; 724 725 if (!GV->hasDefaultVisibility() && !GV->hasExternalWeakLinkage()) 726 return true; 727 728 // DLLImport explicitly marks the GV as external. 729 if (GV->hasDLLImportStorageClass()) 730 return false; 731 732 const llvm::Triple &TT = CGM.getTriple(); 733 // Every other GV is local on COFF. 734 // Make an exception for windows OS in the triple: Some firmware builds use 735 // *-win32-macho triples. This (accidentally?) produced windows relocations 736 // without GOT tables in older clang versions; Keep this behaviour. 737 // FIXME: even thread local variables? 738 if (TT.isOSBinFormatCOFF() || (TT.isOSWindows() && TT.isOSBinFormatMachO())) 739 return true; 740 741 // Only handle COFF and ELF for now. 742 if (!TT.isOSBinFormatELF()) 743 return false; 744 745 // If this is not an executable, don't assume anything is local. 746 const auto &CGOpts = CGM.getCodeGenOpts(); 747 llvm::Reloc::Model RM = CGOpts.RelocationModel; 748 const auto &LOpts = CGM.getLangOpts(); 749 if (RM != llvm::Reloc::Static && !LOpts.PIE) 750 return false; 751 752 // A definition cannot be preempted from an executable. 753 if (!GV->isDeclarationForLinker()) 754 return true; 755 756 // Most PIC code sequences that assume that a symbol is local cannot produce a 757 // 0 if it turns out the symbol is undefined. While this is ABI and relocation 758 // depended, it seems worth it to handle it here. 759 if (RM == llvm::Reloc::PIC_ && GV->hasExternalWeakLinkage()) 760 return false; 761 762 // PPC has no copy relocations and cannot use a plt entry as a symbol address. 763 llvm::Triple::ArchType Arch = TT.getArch(); 764 if (Arch == llvm::Triple::ppc || Arch == llvm::Triple::ppc64 || 765 Arch == llvm::Triple::ppc64le) 766 return false; 767 768 // If we can use copy relocations we can assume it is local. 769 if (auto *Var = dyn_cast<llvm::GlobalVariable>(GV)) 770 if (!Var->isThreadLocal() && 771 (RM == llvm::Reloc::Static || CGOpts.PIECopyRelocations)) 772 return true; 773 774 // If we can use a plt entry as the symbol address we can assume it 775 // is local. 776 // FIXME: This should work for PIE, but the gold linker doesn't support it. 777 if (isa<llvm::Function>(GV) && !CGOpts.NoPLT && RM == llvm::Reloc::Static) 778 return true; 779 780 // Otherwise don't assue it is local. 781 return false; 782 } 783 784 void CodeGenModule::setDSOLocal(llvm::GlobalValue *GV) const { 785 GV->setDSOLocal(shouldAssumeDSOLocal(*this, GV)); 786 } 787 788 void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV, 789 GlobalDecl GD) const { 790 const auto *D = dyn_cast<NamedDecl>(GD.getDecl()); 791 // C++ destructors have a few C++ ABI specific special cases. 792 if (const auto *Dtor = dyn_cast_or_null<CXXDestructorDecl>(D)) { 793 getCXXABI().setCXXDestructorDLLStorage(GV, Dtor, GD.getDtorType()); 794 return; 795 } 796 setDLLImportDLLExport(GV, D); 797 } 798 799 void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV, 800 const NamedDecl *D) const { 801 if (D && D->isExternallyVisible()) { 802 if (D->hasAttr<DLLImportAttr>()) 803 GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass); 804 else if (D->hasAttr<DLLExportAttr>() && !GV->isDeclarationForLinker()) 805 GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass); 806 } 807 } 808 809 void CodeGenModule::setGVProperties(llvm::GlobalValue *GV, 810 GlobalDecl GD) const { 811 setDLLImportDLLExport(GV, GD); 812 setGlobalVisibilityAndLocal(GV, dyn_cast<NamedDecl>(GD.getDecl())); 813 } 814 815 void CodeGenModule::setGVProperties(llvm::GlobalValue *GV, 816 const NamedDecl *D) const { 817 setDLLImportDLLExport(GV, D); 818 setGlobalVisibilityAndLocal(GV, D); 819 } 820 821 void CodeGenModule::setGlobalVisibilityAndLocal(llvm::GlobalValue *GV, 822 const NamedDecl *D) const { 823 setGlobalVisibility(GV, D); 824 setDSOLocal(GV); 825 } 826 827 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(StringRef S) { 828 return llvm::StringSwitch<llvm::GlobalVariable::ThreadLocalMode>(S) 829 .Case("global-dynamic", llvm::GlobalVariable::GeneralDynamicTLSModel) 830 .Case("local-dynamic", llvm::GlobalVariable::LocalDynamicTLSModel) 831 .Case("initial-exec", llvm::GlobalVariable::InitialExecTLSModel) 832 .Case("local-exec", llvm::GlobalVariable::LocalExecTLSModel); 833 } 834 835 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel( 836 CodeGenOptions::TLSModel M) { 837 switch (M) { 838 case CodeGenOptions::GeneralDynamicTLSModel: 839 return llvm::GlobalVariable::GeneralDynamicTLSModel; 840 case CodeGenOptions::LocalDynamicTLSModel: 841 return llvm::GlobalVariable::LocalDynamicTLSModel; 842 case CodeGenOptions::InitialExecTLSModel: 843 return llvm::GlobalVariable::InitialExecTLSModel; 844 case CodeGenOptions::LocalExecTLSModel: 845 return llvm::GlobalVariable::LocalExecTLSModel; 846 } 847 llvm_unreachable("Invalid TLS model!"); 848 } 849 850 void CodeGenModule::setTLSMode(llvm::GlobalValue *GV, const VarDecl &D) const { 851 assert(D.getTLSKind() && "setting TLS mode on non-TLS var!"); 852 853 llvm::GlobalValue::ThreadLocalMode TLM; 854 TLM = GetLLVMTLSModel(CodeGenOpts.getDefaultTLSModel()); 855 856 // Override the TLS model if it is explicitly specified. 857 if (const TLSModelAttr *Attr = D.getAttr<TLSModelAttr>()) { 858 TLM = GetLLVMTLSModel(Attr->getModel()); 859 } 860 861 GV->setThreadLocalMode(TLM); 862 } 863 864 static void AppendTargetMangling(const CodeGenModule &CGM, 865 const TargetAttr *Attr, raw_ostream &Out) { 866 if (Attr->isDefaultVersion()) 867 return; 868 869 Out << '.'; 870 const auto &Target = CGM.getTarget(); 871 TargetAttr::ParsedTargetAttr Info = 872 Attr->parse([&Target](StringRef LHS, StringRef RHS) { 873 // Multiversioning doesn't allow "no-${feature}", so we can 874 // only have "+" prefixes here. 875 assert(LHS.startswith("+") && RHS.startswith("+") && 876 "Features should always have a prefix."); 877 return Target.multiVersionSortPriority(LHS.substr(1)) > 878 Target.multiVersionSortPriority(RHS.substr(1)); 879 }); 880 881 bool IsFirst = true; 882 883 if (!Info.Architecture.empty()) { 884 IsFirst = false; 885 Out << "arch_" << Info.Architecture; 886 } 887 888 for (StringRef Feat : Info.Features) { 889 if (!IsFirst) 890 Out << '_'; 891 IsFirst = false; 892 Out << Feat.substr(1); 893 } 894 } 895 896 static std::string getMangledNameImpl(const CodeGenModule &CGM, GlobalDecl GD, 897 const NamedDecl *ND, 898 bool OmitTargetMangling = false) { 899 SmallString<256> Buffer; 900 llvm::raw_svector_ostream Out(Buffer); 901 MangleContext &MC = CGM.getCXXABI().getMangleContext(); 902 if (MC.shouldMangleDeclName(ND)) { 903 llvm::raw_svector_ostream Out(Buffer); 904 if (const auto *D = dyn_cast<CXXConstructorDecl>(ND)) 905 MC.mangleCXXCtor(D, GD.getCtorType(), Out); 906 else if (const auto *D = dyn_cast<CXXDestructorDecl>(ND)) 907 MC.mangleCXXDtor(D, GD.getDtorType(), Out); 908 else 909 MC.mangleName(ND, Out); 910 } else { 911 IdentifierInfo *II = ND->getIdentifier(); 912 assert(II && "Attempt to mangle unnamed decl."); 913 const auto *FD = dyn_cast<FunctionDecl>(ND); 914 915 if (FD && 916 FD->getType()->castAs<FunctionType>()->getCallConv() == CC_X86RegCall) { 917 llvm::raw_svector_ostream Out(Buffer); 918 Out << "__regcall3__" << II->getName(); 919 } else { 920 Out << II->getName(); 921 } 922 } 923 924 if (const auto *FD = dyn_cast<FunctionDecl>(ND)) 925 if (FD->isMultiVersion() && !OmitTargetMangling) 926 AppendTargetMangling(CGM, FD->getAttr<TargetAttr>(), Out); 927 return Out.str(); 928 } 929 930 void CodeGenModule::UpdateMultiVersionNames(GlobalDecl GD, 931 const FunctionDecl *FD) { 932 if (!FD->isMultiVersion()) 933 return; 934 935 // Get the name of what this would be without the 'target' attribute. This 936 // allows us to lookup the version that was emitted when this wasn't a 937 // multiversion function. 938 std::string NonTargetName = 939 getMangledNameImpl(*this, GD, FD, /*OmitTargetMangling=*/true); 940 GlobalDecl OtherGD; 941 if (lookupRepresentativeDecl(NonTargetName, OtherGD)) { 942 assert(OtherGD.getCanonicalDecl() 943 .getDecl() 944 ->getAsFunction() 945 ->isMultiVersion() && 946 "Other GD should now be a multiversioned function"); 947 // OtherFD is the version of this function that was mangled BEFORE 948 // becoming a MultiVersion function. It potentially needs to be updated. 949 const FunctionDecl *OtherFD = 950 OtherGD.getCanonicalDecl().getDecl()->getAsFunction(); 951 std::string OtherName = getMangledNameImpl(*this, OtherGD, OtherFD); 952 // This is so that if the initial version was already the 'default' 953 // version, we don't try to update it. 954 if (OtherName != NonTargetName) { 955 // Remove instead of erase, since others may have stored the StringRef 956 // to this. 957 const auto ExistingRecord = Manglings.find(NonTargetName); 958 if (ExistingRecord != std::end(Manglings)) 959 Manglings.remove(&(*ExistingRecord)); 960 auto Result = Manglings.insert(std::make_pair(OtherName, OtherGD)); 961 MangledDeclNames[OtherGD.getCanonicalDecl()] = Result.first->first(); 962 if (llvm::GlobalValue *Entry = GetGlobalValue(NonTargetName)) 963 Entry->setName(OtherName); 964 } 965 } 966 } 967 968 StringRef CodeGenModule::getMangledName(GlobalDecl GD) { 969 GlobalDecl CanonicalGD = GD.getCanonicalDecl(); 970 971 // Some ABIs don't have constructor variants. Make sure that base and 972 // complete constructors get mangled the same. 973 if (const auto *CD = dyn_cast<CXXConstructorDecl>(CanonicalGD.getDecl())) { 974 if (!getTarget().getCXXABI().hasConstructorVariants()) { 975 CXXCtorType OrigCtorType = GD.getCtorType(); 976 assert(OrigCtorType == Ctor_Base || OrigCtorType == Ctor_Complete); 977 if (OrigCtorType == Ctor_Base) 978 CanonicalGD = GlobalDecl(CD, Ctor_Complete); 979 } 980 } 981 982 auto FoundName = MangledDeclNames.find(CanonicalGD); 983 if (FoundName != MangledDeclNames.end()) 984 return FoundName->second; 985 986 987 // Keep the first result in the case of a mangling collision. 988 const auto *ND = cast<NamedDecl>(GD.getDecl()); 989 auto Result = 990 Manglings.insert(std::make_pair(getMangledNameImpl(*this, GD, ND), GD)); 991 return MangledDeclNames[CanonicalGD] = Result.first->first(); 992 } 993 994 StringRef CodeGenModule::getBlockMangledName(GlobalDecl GD, 995 const BlockDecl *BD) { 996 MangleContext &MangleCtx = getCXXABI().getMangleContext(); 997 const Decl *D = GD.getDecl(); 998 999 SmallString<256> Buffer; 1000 llvm::raw_svector_ostream Out(Buffer); 1001 if (!D) 1002 MangleCtx.mangleGlobalBlock(BD, 1003 dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()), Out); 1004 else if (const auto *CD = dyn_cast<CXXConstructorDecl>(D)) 1005 MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out); 1006 else if (const auto *DD = dyn_cast<CXXDestructorDecl>(D)) 1007 MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out); 1008 else 1009 MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out); 1010 1011 auto Result = Manglings.insert(std::make_pair(Out.str(), BD)); 1012 return Result.first->first(); 1013 } 1014 1015 llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) { 1016 return getModule().getNamedValue(Name); 1017 } 1018 1019 /// AddGlobalCtor - Add a function to the list that will be called before 1020 /// main() runs. 1021 void CodeGenModule::AddGlobalCtor(llvm::Function *Ctor, int Priority, 1022 llvm::Constant *AssociatedData) { 1023 // FIXME: Type coercion of void()* types. 1024 GlobalCtors.push_back(Structor(Priority, Ctor, AssociatedData)); 1025 } 1026 1027 /// AddGlobalDtor - Add a function to the list that will be called 1028 /// when the module is unloaded. 1029 void CodeGenModule::AddGlobalDtor(llvm::Function *Dtor, int Priority) { 1030 if (CodeGenOpts.RegisterGlobalDtorsWithAtExit) { 1031 DtorsUsingAtExit[Priority].push_back(Dtor); 1032 return; 1033 } 1034 1035 // FIXME: Type coercion of void()* types. 1036 GlobalDtors.push_back(Structor(Priority, Dtor, nullptr)); 1037 } 1038 1039 void CodeGenModule::EmitCtorList(CtorList &Fns, const char *GlobalName) { 1040 if (Fns.empty()) return; 1041 1042 // Ctor function type is void()*. 1043 llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false); 1044 llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy); 1045 1046 // Get the type of a ctor entry, { i32, void ()*, i8* }. 1047 llvm::StructType *CtorStructTy = llvm::StructType::get( 1048 Int32Ty, llvm::PointerType::getUnqual(CtorFTy), VoidPtrTy); 1049 1050 // Construct the constructor and destructor arrays. 1051 ConstantInitBuilder builder(*this); 1052 auto ctors = builder.beginArray(CtorStructTy); 1053 for (const auto &I : Fns) { 1054 auto ctor = ctors.beginStruct(CtorStructTy); 1055 ctor.addInt(Int32Ty, I.Priority); 1056 ctor.add(llvm::ConstantExpr::getBitCast(I.Initializer, CtorPFTy)); 1057 if (I.AssociatedData) 1058 ctor.add(llvm::ConstantExpr::getBitCast(I.AssociatedData, VoidPtrTy)); 1059 else 1060 ctor.addNullPointer(VoidPtrTy); 1061 ctor.finishAndAddTo(ctors); 1062 } 1063 1064 auto list = 1065 ctors.finishAndCreateGlobal(GlobalName, getPointerAlign(), 1066 /*constant*/ false, 1067 llvm::GlobalValue::AppendingLinkage); 1068 1069 // The LTO linker doesn't seem to like it when we set an alignment 1070 // on appending variables. Take it off as a workaround. 1071 list->setAlignment(0); 1072 1073 Fns.clear(); 1074 } 1075 1076 llvm::GlobalValue::LinkageTypes 1077 CodeGenModule::getFunctionLinkage(GlobalDecl GD) { 1078 const auto *D = cast<FunctionDecl>(GD.getDecl()); 1079 1080 GVALinkage Linkage = getContext().GetGVALinkageForFunction(D); 1081 1082 if (const auto *Dtor = dyn_cast<CXXDestructorDecl>(D)) 1083 return getCXXABI().getCXXDestructorLinkage(Linkage, Dtor, GD.getDtorType()); 1084 1085 if (isa<CXXConstructorDecl>(D) && 1086 cast<CXXConstructorDecl>(D)->isInheritingConstructor() && 1087 Context.getTargetInfo().getCXXABI().isMicrosoft()) { 1088 // Our approach to inheriting constructors is fundamentally different from 1089 // that used by the MS ABI, so keep our inheriting constructor thunks 1090 // internal rather than trying to pick an unambiguous mangling for them. 1091 return llvm::GlobalValue::InternalLinkage; 1092 } 1093 1094 return getLLVMLinkageForDeclarator(D, Linkage, /*isConstantVariable=*/false); 1095 } 1096 1097 llvm::ConstantInt *CodeGenModule::CreateCrossDsoCfiTypeId(llvm::Metadata *MD) { 1098 llvm::MDString *MDS = dyn_cast<llvm::MDString>(MD); 1099 if (!MDS) return nullptr; 1100 1101 return llvm::ConstantInt::get(Int64Ty, llvm::MD5Hash(MDS->getString())); 1102 } 1103 1104 void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D, 1105 const CGFunctionInfo &Info, 1106 llvm::Function *F) { 1107 unsigned CallingConv; 1108 llvm::AttributeList PAL; 1109 ConstructAttributeList(F->getName(), Info, D, PAL, CallingConv, false); 1110 F->setAttributes(PAL); 1111 F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv)); 1112 } 1113 1114 /// Determines whether the language options require us to model 1115 /// unwind exceptions. We treat -fexceptions as mandating this 1116 /// except under the fragile ObjC ABI with only ObjC exceptions 1117 /// enabled. This means, for example, that C with -fexceptions 1118 /// enables this. 1119 static bool hasUnwindExceptions(const LangOptions &LangOpts) { 1120 // If exceptions are completely disabled, obviously this is false. 1121 if (!LangOpts.Exceptions) return false; 1122 1123 // If C++ exceptions are enabled, this is true. 1124 if (LangOpts.CXXExceptions) return true; 1125 1126 // If ObjC exceptions are enabled, this depends on the ABI. 1127 if (LangOpts.ObjCExceptions) { 1128 return LangOpts.ObjCRuntime.hasUnwindExceptions(); 1129 } 1130 1131 return true; 1132 } 1133 1134 static bool requiresMemberFunctionPointerTypeMetadata(CodeGenModule &CGM, 1135 const CXXMethodDecl *MD) { 1136 // Check that the type metadata can ever actually be used by a call. 1137 if (!CGM.getCodeGenOpts().LTOUnit || 1138 !CGM.HasHiddenLTOVisibility(MD->getParent())) 1139 return false; 1140 1141 // Only functions whose address can be taken with a member function pointer 1142 // need this sort of type metadata. 1143 return !MD->isStatic() && !MD->isVirtual() && !isa<CXXConstructorDecl>(MD) && 1144 !isa<CXXDestructorDecl>(MD); 1145 } 1146 1147 std::vector<const CXXRecordDecl *> 1148 CodeGenModule::getMostBaseClasses(const CXXRecordDecl *RD) { 1149 llvm::SetVector<const CXXRecordDecl *> MostBases; 1150 1151 std::function<void (const CXXRecordDecl *)> CollectMostBases; 1152 CollectMostBases = [&](const CXXRecordDecl *RD) { 1153 if (RD->getNumBases() == 0) 1154 MostBases.insert(RD); 1155 for (const CXXBaseSpecifier &B : RD->bases()) 1156 CollectMostBases(B.getType()->getAsCXXRecordDecl()); 1157 }; 1158 CollectMostBases(RD); 1159 return MostBases.takeVector(); 1160 } 1161 1162 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D, 1163 llvm::Function *F) { 1164 llvm::AttrBuilder B; 1165 1166 if (CodeGenOpts.UnwindTables) 1167 B.addAttribute(llvm::Attribute::UWTable); 1168 1169 if (!hasUnwindExceptions(LangOpts)) 1170 B.addAttribute(llvm::Attribute::NoUnwind); 1171 1172 if (!D || !D->hasAttr<NoStackProtectorAttr>()) { 1173 if (LangOpts.getStackProtector() == LangOptions::SSPOn) 1174 B.addAttribute(llvm::Attribute::StackProtect); 1175 else if (LangOpts.getStackProtector() == LangOptions::SSPStrong) 1176 B.addAttribute(llvm::Attribute::StackProtectStrong); 1177 else if (LangOpts.getStackProtector() == LangOptions::SSPReq) 1178 B.addAttribute(llvm::Attribute::StackProtectReq); 1179 } 1180 1181 if (!D) { 1182 // If we don't have a declaration to control inlining, the function isn't 1183 // explicitly marked as alwaysinline for semantic reasons, and inlining is 1184 // disabled, mark the function as noinline. 1185 if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline) && 1186 CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining) 1187 B.addAttribute(llvm::Attribute::NoInline); 1188 1189 F->addAttributes(llvm::AttributeList::FunctionIndex, B); 1190 return; 1191 } 1192 1193 // Track whether we need to add the optnone LLVM attribute, 1194 // starting with the default for this optimization level. 1195 bool ShouldAddOptNone = 1196 !CodeGenOpts.DisableO0ImplyOptNone && CodeGenOpts.OptimizationLevel == 0; 1197 // We can't add optnone in the following cases, it won't pass the verifier. 1198 ShouldAddOptNone &= !D->hasAttr<MinSizeAttr>(); 1199 ShouldAddOptNone &= !F->hasFnAttribute(llvm::Attribute::AlwaysInline); 1200 ShouldAddOptNone &= !D->hasAttr<AlwaysInlineAttr>(); 1201 1202 if (ShouldAddOptNone || D->hasAttr<OptimizeNoneAttr>()) { 1203 B.addAttribute(llvm::Attribute::OptimizeNone); 1204 1205 // OptimizeNone implies noinline; we should not be inlining such functions. 1206 B.addAttribute(llvm::Attribute::NoInline); 1207 assert(!F->hasFnAttribute(llvm::Attribute::AlwaysInline) && 1208 "OptimizeNone and AlwaysInline on same function!"); 1209 1210 // We still need to handle naked functions even though optnone subsumes 1211 // much of their semantics. 1212 if (D->hasAttr<NakedAttr>()) 1213 B.addAttribute(llvm::Attribute::Naked); 1214 1215 // OptimizeNone wins over OptimizeForSize and MinSize. 1216 F->removeFnAttr(llvm::Attribute::OptimizeForSize); 1217 F->removeFnAttr(llvm::Attribute::MinSize); 1218 } else if (D->hasAttr<NakedAttr>()) { 1219 // Naked implies noinline: we should not be inlining such functions. 1220 B.addAttribute(llvm::Attribute::Naked); 1221 B.addAttribute(llvm::Attribute::NoInline); 1222 } else if (D->hasAttr<NoDuplicateAttr>()) { 1223 B.addAttribute(llvm::Attribute::NoDuplicate); 1224 } else if (D->hasAttr<NoInlineAttr>()) { 1225 B.addAttribute(llvm::Attribute::NoInline); 1226 } else if (D->hasAttr<AlwaysInlineAttr>() && 1227 !F->hasFnAttribute(llvm::Attribute::NoInline)) { 1228 // (noinline wins over always_inline, and we can't specify both in IR) 1229 B.addAttribute(llvm::Attribute::AlwaysInline); 1230 } else if (CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining) { 1231 // If we're not inlining, then force everything that isn't always_inline to 1232 // carry an explicit noinline attribute. 1233 if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline)) 1234 B.addAttribute(llvm::Attribute::NoInline); 1235 } else { 1236 // Otherwise, propagate the inline hint attribute and potentially use its 1237 // absence to mark things as noinline. 1238 if (auto *FD = dyn_cast<FunctionDecl>(D)) { 1239 if (any_of(FD->redecls(), [&](const FunctionDecl *Redecl) { 1240 return Redecl->isInlineSpecified(); 1241 })) { 1242 B.addAttribute(llvm::Attribute::InlineHint); 1243 } else if (CodeGenOpts.getInlining() == 1244 CodeGenOptions::OnlyHintInlining && 1245 !FD->isInlined() && 1246 !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) { 1247 B.addAttribute(llvm::Attribute::NoInline); 1248 } 1249 } 1250 } 1251 1252 // Add other optimization related attributes if we are optimizing this 1253 // function. 1254 if (!D->hasAttr<OptimizeNoneAttr>()) { 1255 if (D->hasAttr<ColdAttr>()) { 1256 if (!ShouldAddOptNone) 1257 B.addAttribute(llvm::Attribute::OptimizeForSize); 1258 B.addAttribute(llvm::Attribute::Cold); 1259 } 1260 1261 if (D->hasAttr<MinSizeAttr>()) 1262 B.addAttribute(llvm::Attribute::MinSize); 1263 } 1264 1265 F->addAttributes(llvm::AttributeList::FunctionIndex, B); 1266 1267 unsigned alignment = D->getMaxAlignment() / Context.getCharWidth(); 1268 if (alignment) 1269 F->setAlignment(alignment); 1270 1271 if (!D->hasAttr<AlignedAttr>()) 1272 if (LangOpts.FunctionAlignment) 1273 F->setAlignment(1 << LangOpts.FunctionAlignment); 1274 1275 // Some C++ ABIs require 2-byte alignment for member functions, in order to 1276 // reserve a bit for differentiating between virtual and non-virtual member 1277 // functions. If the current target's C++ ABI requires this and this is a 1278 // member function, set its alignment accordingly. 1279 if (getTarget().getCXXABI().areMemberFunctionsAligned()) { 1280 if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D)) 1281 F->setAlignment(2); 1282 } 1283 1284 // In the cross-dso CFI mode, we want !type attributes on definitions only. 1285 if (CodeGenOpts.SanitizeCfiCrossDso) 1286 if (auto *FD = dyn_cast<FunctionDecl>(D)) 1287 CreateFunctionTypeMetadataForIcall(FD, F); 1288 1289 // Emit type metadata on member functions for member function pointer checks. 1290 // These are only ever necessary on definitions; we're guaranteed that the 1291 // definition will be present in the LTO unit as a result of LTO visibility. 1292 auto *MD = dyn_cast<CXXMethodDecl>(D); 1293 if (MD && requiresMemberFunctionPointerTypeMetadata(*this, MD)) { 1294 for (const CXXRecordDecl *Base : getMostBaseClasses(MD->getParent())) { 1295 llvm::Metadata *Id = 1296 CreateMetadataIdentifierForType(Context.getMemberPointerType( 1297 MD->getType(), Context.getRecordType(Base).getTypePtr())); 1298 F->addTypeMetadata(0, Id); 1299 } 1300 } 1301 } 1302 1303 void CodeGenModule::SetCommonAttributes(GlobalDecl GD, llvm::GlobalValue *GV) { 1304 const Decl *D = GD.getDecl(); 1305 if (dyn_cast_or_null<NamedDecl>(D)) 1306 setGVProperties(GV, GD); 1307 else 1308 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 1309 1310 if (D && D->hasAttr<UsedAttr>()) 1311 addUsedGlobal(GV); 1312 } 1313 1314 bool CodeGenModule::GetCPUAndFeaturesAttributes(const Decl *D, 1315 llvm::AttrBuilder &Attrs) { 1316 // Add target-cpu and target-features attributes to functions. If 1317 // we have a decl for the function and it has a target attribute then 1318 // parse that and add it to the feature set. 1319 StringRef TargetCPU = getTarget().getTargetOpts().CPU; 1320 std::vector<std::string> Features; 1321 const auto *FD = dyn_cast_or_null<FunctionDecl>(D); 1322 FD = FD ? FD->getMostRecentDecl() : FD; 1323 const auto *TD = FD ? FD->getAttr<TargetAttr>() : nullptr; 1324 bool AddedAttr = false; 1325 if (TD) { 1326 llvm::StringMap<bool> FeatureMap; 1327 getFunctionFeatureMap(FeatureMap, FD); 1328 1329 // Produce the canonical string for this set of features. 1330 for (const llvm::StringMap<bool>::value_type &Entry : FeatureMap) 1331 Features.push_back((Entry.getValue() ? "+" : "-") + Entry.getKey().str()); 1332 1333 // Now add the target-cpu and target-features to the function. 1334 // While we populated the feature map above, we still need to 1335 // get and parse the target attribute so we can get the cpu for 1336 // the function. 1337 TargetAttr::ParsedTargetAttr ParsedAttr = TD->parse(); 1338 if (ParsedAttr.Architecture != "" && 1339 getTarget().isValidCPUName(ParsedAttr.Architecture)) 1340 TargetCPU = ParsedAttr.Architecture; 1341 } else { 1342 // Otherwise just add the existing target cpu and target features to the 1343 // function. 1344 Features = getTarget().getTargetOpts().Features; 1345 } 1346 1347 if (TargetCPU != "") { 1348 Attrs.addAttribute("target-cpu", TargetCPU); 1349 AddedAttr = true; 1350 } 1351 if (!Features.empty()) { 1352 llvm::sort(Features.begin(), Features.end()); 1353 Attrs.addAttribute("target-features", llvm::join(Features, ",")); 1354 AddedAttr = true; 1355 } 1356 1357 return AddedAttr; 1358 } 1359 1360 void CodeGenModule::setNonAliasAttributes(GlobalDecl GD, 1361 llvm::GlobalObject *GO) { 1362 const Decl *D = GD.getDecl(); 1363 SetCommonAttributes(GD, GO); 1364 1365 if (D) { 1366 if (auto *GV = dyn_cast<llvm::GlobalVariable>(GO)) { 1367 if (auto *SA = D->getAttr<PragmaClangBSSSectionAttr>()) 1368 GV->addAttribute("bss-section", SA->getName()); 1369 if (auto *SA = D->getAttr<PragmaClangDataSectionAttr>()) 1370 GV->addAttribute("data-section", SA->getName()); 1371 if (auto *SA = D->getAttr<PragmaClangRodataSectionAttr>()) 1372 GV->addAttribute("rodata-section", SA->getName()); 1373 } 1374 1375 if (auto *F = dyn_cast<llvm::Function>(GO)) { 1376 if (auto *SA = D->getAttr<PragmaClangTextSectionAttr>()) 1377 if (!D->getAttr<SectionAttr>()) 1378 F->addFnAttr("implicit-section-name", SA->getName()); 1379 1380 llvm::AttrBuilder Attrs; 1381 if (GetCPUAndFeaturesAttributes(D, Attrs)) { 1382 // We know that GetCPUAndFeaturesAttributes will always have the 1383 // newest set, since it has the newest possible FunctionDecl, so the 1384 // new ones should replace the old. 1385 F->removeFnAttr("target-cpu"); 1386 F->removeFnAttr("target-features"); 1387 F->addAttributes(llvm::AttributeList::FunctionIndex, Attrs); 1388 } 1389 } 1390 1391 if (const auto *CSA = D->getAttr<CodeSegAttr>()) 1392 GO->setSection(CSA->getName()); 1393 else if (const auto *SA = D->getAttr<SectionAttr>()) 1394 GO->setSection(SA->getName()); 1395 } 1396 1397 getTargetCodeGenInfo().setTargetAttributes(D, GO, *this); 1398 } 1399 1400 void CodeGenModule::SetInternalFunctionAttributes(GlobalDecl GD, 1401 llvm::Function *F, 1402 const CGFunctionInfo &FI) { 1403 const Decl *D = GD.getDecl(); 1404 SetLLVMFunctionAttributes(D, FI, F); 1405 SetLLVMFunctionAttributesForDefinition(D, F); 1406 1407 F->setLinkage(llvm::Function::InternalLinkage); 1408 1409 setNonAliasAttributes(GD, F); 1410 } 1411 1412 static void setLinkageForGV(llvm::GlobalValue *GV, const NamedDecl *ND) { 1413 // Set linkage and visibility in case we never see a definition. 1414 LinkageInfo LV = ND->getLinkageAndVisibility(); 1415 // Don't set internal linkage on declarations. 1416 // "extern_weak" is overloaded in LLVM; we probably should have 1417 // separate linkage types for this. 1418 if (isExternallyVisible(LV.getLinkage()) && 1419 (ND->hasAttr<WeakAttr>() || ND->isWeakImported())) 1420 GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage); 1421 } 1422 1423 void CodeGenModule::CreateFunctionTypeMetadataForIcall(const FunctionDecl *FD, 1424 llvm::Function *F) { 1425 // Only if we are checking indirect calls. 1426 if (!LangOpts.Sanitize.has(SanitizerKind::CFIICall)) 1427 return; 1428 1429 // Non-static class methods are handled via vtable or member function pointer 1430 // checks elsewhere. 1431 if (isa<CXXMethodDecl>(FD) && !cast<CXXMethodDecl>(FD)->isStatic()) 1432 return; 1433 1434 // Additionally, if building with cross-DSO support... 1435 if (CodeGenOpts.SanitizeCfiCrossDso) { 1436 // Skip available_externally functions. They won't be codegen'ed in the 1437 // current module anyway. 1438 if (getContext().GetGVALinkageForFunction(FD) == GVA_AvailableExternally) 1439 return; 1440 } 1441 1442 llvm::Metadata *MD = CreateMetadataIdentifierForType(FD->getType()); 1443 F->addTypeMetadata(0, MD); 1444 F->addTypeMetadata(0, CreateMetadataIdentifierGeneralized(FD->getType())); 1445 1446 // Emit a hash-based bit set entry for cross-DSO calls. 1447 if (CodeGenOpts.SanitizeCfiCrossDso) 1448 if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD)) 1449 F->addTypeMetadata(0, llvm::ConstantAsMetadata::get(CrossDsoTypeId)); 1450 } 1451 1452 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD, llvm::Function *F, 1453 bool IsIncompleteFunction, 1454 bool IsThunk) { 1455 1456 if (llvm::Intrinsic::ID IID = F->getIntrinsicID()) { 1457 // If this is an intrinsic function, set the function's attributes 1458 // to the intrinsic's attributes. 1459 F->setAttributes(llvm::Intrinsic::getAttributes(getLLVMContext(), IID)); 1460 return; 1461 } 1462 1463 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 1464 1465 if (!IsIncompleteFunction) { 1466 SetLLVMFunctionAttributes(FD, getTypes().arrangeGlobalDeclaration(GD), F); 1467 // Setup target-specific attributes. 1468 if (F->isDeclaration()) 1469 getTargetCodeGenInfo().setTargetAttributes(FD, F, *this); 1470 } 1471 1472 // Add the Returned attribute for "this", except for iOS 5 and earlier 1473 // where substantial code, including the libstdc++ dylib, was compiled with 1474 // GCC and does not actually return "this". 1475 if (!IsThunk && getCXXABI().HasThisReturn(GD) && 1476 !(getTriple().isiOS() && getTriple().isOSVersionLT(6))) { 1477 assert(!F->arg_empty() && 1478 F->arg_begin()->getType() 1479 ->canLosslesslyBitCastTo(F->getReturnType()) && 1480 "unexpected this return"); 1481 F->addAttribute(1, llvm::Attribute::Returned); 1482 } 1483 1484 // Only a few attributes are set on declarations; these may later be 1485 // overridden by a definition. 1486 1487 setLinkageForGV(F, FD); 1488 setGVProperties(F, FD); 1489 1490 if (const auto *CSA = FD->getAttr<CodeSegAttr>()) 1491 F->setSection(CSA->getName()); 1492 else if (const auto *SA = FD->getAttr<SectionAttr>()) 1493 F->setSection(SA->getName()); 1494 1495 if (FD->isReplaceableGlobalAllocationFunction()) { 1496 // A replaceable global allocation function does not act like a builtin by 1497 // default, only if it is invoked by a new-expression or delete-expression. 1498 F->addAttribute(llvm::AttributeList::FunctionIndex, 1499 llvm::Attribute::NoBuiltin); 1500 1501 // A sane operator new returns a non-aliasing pointer. 1502 // FIXME: Also add NonNull attribute to the return value 1503 // for the non-nothrow forms? 1504 auto Kind = FD->getDeclName().getCXXOverloadedOperator(); 1505 if (getCodeGenOpts().AssumeSaneOperatorNew && 1506 (Kind == OO_New || Kind == OO_Array_New)) 1507 F->addAttribute(llvm::AttributeList::ReturnIndex, 1508 llvm::Attribute::NoAlias); 1509 } 1510 1511 if (isa<CXXConstructorDecl>(FD) || isa<CXXDestructorDecl>(FD)) 1512 F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 1513 else if (const auto *MD = dyn_cast<CXXMethodDecl>(FD)) 1514 if (MD->isVirtual()) 1515 F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 1516 1517 // Don't emit entries for function declarations in the cross-DSO mode. This 1518 // is handled with better precision by the receiving DSO. 1519 if (!CodeGenOpts.SanitizeCfiCrossDso) 1520 CreateFunctionTypeMetadataForIcall(FD, F); 1521 1522 if (getLangOpts().OpenMP && FD->hasAttr<OMPDeclareSimdDeclAttr>()) 1523 getOpenMPRuntime().emitDeclareSimdFunction(FD, F); 1524 } 1525 1526 void CodeGenModule::addUsedGlobal(llvm::GlobalValue *GV) { 1527 assert(!GV->isDeclaration() && 1528 "Only globals with definition can force usage."); 1529 LLVMUsed.emplace_back(GV); 1530 } 1531 1532 void CodeGenModule::addCompilerUsedGlobal(llvm::GlobalValue *GV) { 1533 assert(!GV->isDeclaration() && 1534 "Only globals with definition can force usage."); 1535 LLVMCompilerUsed.emplace_back(GV); 1536 } 1537 1538 static void emitUsed(CodeGenModule &CGM, StringRef Name, 1539 std::vector<llvm::WeakTrackingVH> &List) { 1540 // Don't create llvm.used if there is no need. 1541 if (List.empty()) 1542 return; 1543 1544 // Convert List to what ConstantArray needs. 1545 SmallVector<llvm::Constant*, 8> UsedArray; 1546 UsedArray.resize(List.size()); 1547 for (unsigned i = 0, e = List.size(); i != e; ++i) { 1548 UsedArray[i] = 1549 llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast( 1550 cast<llvm::Constant>(&*List[i]), CGM.Int8PtrTy); 1551 } 1552 1553 if (UsedArray.empty()) 1554 return; 1555 llvm::ArrayType *ATy = llvm::ArrayType::get(CGM.Int8PtrTy, UsedArray.size()); 1556 1557 auto *GV = new llvm::GlobalVariable( 1558 CGM.getModule(), ATy, false, llvm::GlobalValue::AppendingLinkage, 1559 llvm::ConstantArray::get(ATy, UsedArray), Name); 1560 1561 GV->setSection("llvm.metadata"); 1562 } 1563 1564 void CodeGenModule::emitLLVMUsed() { 1565 emitUsed(*this, "llvm.used", LLVMUsed); 1566 emitUsed(*this, "llvm.compiler.used", LLVMCompilerUsed); 1567 } 1568 1569 void CodeGenModule::AppendLinkerOptions(StringRef Opts) { 1570 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opts); 1571 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 1572 } 1573 1574 void CodeGenModule::AddDetectMismatch(StringRef Name, StringRef Value) { 1575 llvm::SmallString<32> Opt; 1576 getTargetCodeGenInfo().getDetectMismatchOption(Name, Value, Opt); 1577 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt); 1578 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 1579 } 1580 1581 void CodeGenModule::AddELFLibDirective(StringRef Lib) { 1582 auto &C = getLLVMContext(); 1583 LinkerOptionsMetadata.push_back(llvm::MDNode::get( 1584 C, {llvm::MDString::get(C, "lib"), llvm::MDString::get(C, Lib)})); 1585 } 1586 1587 void CodeGenModule::AddDependentLib(StringRef Lib) { 1588 llvm::SmallString<24> Opt; 1589 getTargetCodeGenInfo().getDependentLibraryOption(Lib, Opt); 1590 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt); 1591 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 1592 } 1593 1594 /// Add link options implied by the given module, including modules 1595 /// it depends on, using a postorder walk. 1596 static void addLinkOptionsPostorder(CodeGenModule &CGM, Module *Mod, 1597 SmallVectorImpl<llvm::MDNode *> &Metadata, 1598 llvm::SmallPtrSet<Module *, 16> &Visited) { 1599 // Import this module's parent. 1600 if (Mod->Parent && Visited.insert(Mod->Parent).second) { 1601 addLinkOptionsPostorder(CGM, Mod->Parent, Metadata, Visited); 1602 } 1603 1604 // Import this module's dependencies. 1605 for (unsigned I = Mod->Imports.size(); I > 0; --I) { 1606 if (Visited.insert(Mod->Imports[I - 1]).second) 1607 addLinkOptionsPostorder(CGM, Mod->Imports[I-1], Metadata, Visited); 1608 } 1609 1610 // Add linker options to link against the libraries/frameworks 1611 // described by this module. 1612 llvm::LLVMContext &Context = CGM.getLLVMContext(); 1613 1614 // For modules that use export_as for linking, use that module 1615 // name instead. 1616 if (Mod->UseExportAsModuleLinkName) 1617 return; 1618 1619 for (unsigned I = Mod->LinkLibraries.size(); I > 0; --I) { 1620 // Link against a framework. Frameworks are currently Darwin only, so we 1621 // don't to ask TargetCodeGenInfo for the spelling of the linker option. 1622 if (Mod->LinkLibraries[I-1].IsFramework) { 1623 llvm::Metadata *Args[2] = { 1624 llvm::MDString::get(Context, "-framework"), 1625 llvm::MDString::get(Context, Mod->LinkLibraries[I - 1].Library)}; 1626 1627 Metadata.push_back(llvm::MDNode::get(Context, Args)); 1628 continue; 1629 } 1630 1631 // Link against a library. 1632 llvm::SmallString<24> Opt; 1633 CGM.getTargetCodeGenInfo().getDependentLibraryOption( 1634 Mod->LinkLibraries[I-1].Library, Opt); 1635 auto *OptString = llvm::MDString::get(Context, Opt); 1636 Metadata.push_back(llvm::MDNode::get(Context, OptString)); 1637 } 1638 } 1639 1640 void CodeGenModule::EmitModuleLinkOptions() { 1641 // Collect the set of all of the modules we want to visit to emit link 1642 // options, which is essentially the imported modules and all of their 1643 // non-explicit child modules. 1644 llvm::SetVector<clang::Module *> LinkModules; 1645 llvm::SmallPtrSet<clang::Module *, 16> Visited; 1646 SmallVector<clang::Module *, 16> Stack; 1647 1648 // Seed the stack with imported modules. 1649 for (Module *M : ImportedModules) { 1650 // Do not add any link flags when an implementation TU of a module imports 1651 // a header of that same module. 1652 if (M->getTopLevelModuleName() == getLangOpts().CurrentModule && 1653 !getLangOpts().isCompilingModule()) 1654 continue; 1655 if (Visited.insert(M).second) 1656 Stack.push_back(M); 1657 } 1658 1659 // Find all of the modules to import, making a little effort to prune 1660 // non-leaf modules. 1661 while (!Stack.empty()) { 1662 clang::Module *Mod = Stack.pop_back_val(); 1663 1664 bool AnyChildren = false; 1665 1666 // Visit the submodules of this module. 1667 for (clang::Module::submodule_iterator Sub = Mod->submodule_begin(), 1668 SubEnd = Mod->submodule_end(); 1669 Sub != SubEnd; ++Sub) { 1670 // Skip explicit children; they need to be explicitly imported to be 1671 // linked against. 1672 if ((*Sub)->IsExplicit) 1673 continue; 1674 1675 if (Visited.insert(*Sub).second) { 1676 Stack.push_back(*Sub); 1677 AnyChildren = true; 1678 } 1679 } 1680 1681 // We didn't find any children, so add this module to the list of 1682 // modules to link against. 1683 if (!AnyChildren) { 1684 LinkModules.insert(Mod); 1685 } 1686 } 1687 1688 // Add link options for all of the imported modules in reverse topological 1689 // order. We don't do anything to try to order import link flags with respect 1690 // to linker options inserted by things like #pragma comment(). 1691 SmallVector<llvm::MDNode *, 16> MetadataArgs; 1692 Visited.clear(); 1693 for (Module *M : LinkModules) 1694 if (Visited.insert(M).second) 1695 addLinkOptionsPostorder(*this, M, MetadataArgs, Visited); 1696 std::reverse(MetadataArgs.begin(), MetadataArgs.end()); 1697 LinkerOptionsMetadata.append(MetadataArgs.begin(), MetadataArgs.end()); 1698 1699 // Add the linker options metadata flag. 1700 auto *NMD = getModule().getOrInsertNamedMetadata("llvm.linker.options"); 1701 for (auto *MD : LinkerOptionsMetadata) 1702 NMD->addOperand(MD); 1703 } 1704 1705 void CodeGenModule::EmitDeferred() { 1706 // Emit code for any potentially referenced deferred decls. Since a 1707 // previously unused static decl may become used during the generation of code 1708 // for a static function, iterate until no changes are made. 1709 1710 if (!DeferredVTables.empty()) { 1711 EmitDeferredVTables(); 1712 1713 // Emitting a vtable doesn't directly cause more vtables to 1714 // become deferred, although it can cause functions to be 1715 // emitted that then need those vtables. 1716 assert(DeferredVTables.empty()); 1717 } 1718 1719 // Stop if we're out of both deferred vtables and deferred declarations. 1720 if (DeferredDeclsToEmit.empty()) 1721 return; 1722 1723 // Grab the list of decls to emit. If EmitGlobalDefinition schedules more 1724 // work, it will not interfere with this. 1725 std::vector<GlobalDecl> CurDeclsToEmit; 1726 CurDeclsToEmit.swap(DeferredDeclsToEmit); 1727 1728 for (GlobalDecl &D : CurDeclsToEmit) { 1729 // We should call GetAddrOfGlobal with IsForDefinition set to true in order 1730 // to get GlobalValue with exactly the type we need, not something that 1731 // might had been created for another decl with the same mangled name but 1732 // different type. 1733 llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>( 1734 GetAddrOfGlobal(D, ForDefinition)); 1735 1736 // In case of different address spaces, we may still get a cast, even with 1737 // IsForDefinition equal to true. Query mangled names table to get 1738 // GlobalValue. 1739 if (!GV) 1740 GV = GetGlobalValue(getMangledName(D)); 1741 1742 // Make sure GetGlobalValue returned non-null. 1743 assert(GV); 1744 1745 // Check to see if we've already emitted this. This is necessary 1746 // for a couple of reasons: first, decls can end up in the 1747 // deferred-decls queue multiple times, and second, decls can end 1748 // up with definitions in unusual ways (e.g. by an extern inline 1749 // function acquiring a strong function redefinition). Just 1750 // ignore these cases. 1751 if (!GV->isDeclaration()) 1752 continue; 1753 1754 // Otherwise, emit the definition and move on to the next one. 1755 EmitGlobalDefinition(D, GV); 1756 1757 // If we found out that we need to emit more decls, do that recursively. 1758 // This has the advantage that the decls are emitted in a DFS and related 1759 // ones are close together, which is convenient for testing. 1760 if (!DeferredVTables.empty() || !DeferredDeclsToEmit.empty()) { 1761 EmitDeferred(); 1762 assert(DeferredVTables.empty() && DeferredDeclsToEmit.empty()); 1763 } 1764 } 1765 } 1766 1767 void CodeGenModule::EmitVTablesOpportunistically() { 1768 // Try to emit external vtables as available_externally if they have emitted 1769 // all inlined virtual functions. It runs after EmitDeferred() and therefore 1770 // is not allowed to create new references to things that need to be emitted 1771 // lazily. Note that it also uses fact that we eagerly emitting RTTI. 1772 1773 assert((OpportunisticVTables.empty() || shouldOpportunisticallyEmitVTables()) 1774 && "Only emit opportunistic vtables with optimizations"); 1775 1776 for (const CXXRecordDecl *RD : OpportunisticVTables) { 1777 assert(getVTables().isVTableExternal(RD) && 1778 "This queue should only contain external vtables"); 1779 if (getCXXABI().canSpeculativelyEmitVTable(RD)) 1780 VTables.GenerateClassData(RD); 1781 } 1782 OpportunisticVTables.clear(); 1783 } 1784 1785 void CodeGenModule::EmitGlobalAnnotations() { 1786 if (Annotations.empty()) 1787 return; 1788 1789 // Create a new global variable for the ConstantStruct in the Module. 1790 llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get( 1791 Annotations[0]->getType(), Annotations.size()), Annotations); 1792 auto *gv = new llvm::GlobalVariable(getModule(), Array->getType(), false, 1793 llvm::GlobalValue::AppendingLinkage, 1794 Array, "llvm.global.annotations"); 1795 gv->setSection(AnnotationSection); 1796 } 1797 1798 llvm::Constant *CodeGenModule::EmitAnnotationString(StringRef Str) { 1799 llvm::Constant *&AStr = AnnotationStrings[Str]; 1800 if (AStr) 1801 return AStr; 1802 1803 // Not found yet, create a new global. 1804 llvm::Constant *s = llvm::ConstantDataArray::getString(getLLVMContext(), Str); 1805 auto *gv = 1806 new llvm::GlobalVariable(getModule(), s->getType(), true, 1807 llvm::GlobalValue::PrivateLinkage, s, ".str"); 1808 gv->setSection(AnnotationSection); 1809 gv->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 1810 AStr = gv; 1811 return gv; 1812 } 1813 1814 llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) { 1815 SourceManager &SM = getContext().getSourceManager(); 1816 PresumedLoc PLoc = SM.getPresumedLoc(Loc); 1817 if (PLoc.isValid()) 1818 return EmitAnnotationString(PLoc.getFilename()); 1819 return EmitAnnotationString(SM.getBufferName(Loc)); 1820 } 1821 1822 llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) { 1823 SourceManager &SM = getContext().getSourceManager(); 1824 PresumedLoc PLoc = SM.getPresumedLoc(L); 1825 unsigned LineNo = PLoc.isValid() ? PLoc.getLine() : 1826 SM.getExpansionLineNumber(L); 1827 return llvm::ConstantInt::get(Int32Ty, LineNo); 1828 } 1829 1830 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV, 1831 const AnnotateAttr *AA, 1832 SourceLocation L) { 1833 // Get the globals for file name, annotation, and the line number. 1834 llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()), 1835 *UnitGV = EmitAnnotationUnit(L), 1836 *LineNoCst = EmitAnnotationLineNo(L); 1837 1838 // Create the ConstantStruct for the global annotation. 1839 llvm::Constant *Fields[4] = { 1840 llvm::ConstantExpr::getBitCast(GV, Int8PtrTy), 1841 llvm::ConstantExpr::getBitCast(AnnoGV, Int8PtrTy), 1842 llvm::ConstantExpr::getBitCast(UnitGV, Int8PtrTy), 1843 LineNoCst 1844 }; 1845 return llvm::ConstantStruct::getAnon(Fields); 1846 } 1847 1848 void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D, 1849 llvm::GlobalValue *GV) { 1850 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 1851 // Get the struct elements for these annotations. 1852 for (const auto *I : D->specific_attrs<AnnotateAttr>()) 1853 Annotations.push_back(EmitAnnotateAttr(GV, I, D->getLocation())); 1854 } 1855 1856 bool CodeGenModule::isInSanitizerBlacklist(SanitizerMask Kind, 1857 llvm::Function *Fn, 1858 SourceLocation Loc) const { 1859 const auto &SanitizerBL = getContext().getSanitizerBlacklist(); 1860 // Blacklist by function name. 1861 if (SanitizerBL.isBlacklistedFunction(Kind, Fn->getName())) 1862 return true; 1863 // Blacklist by location. 1864 if (Loc.isValid()) 1865 return SanitizerBL.isBlacklistedLocation(Kind, Loc); 1866 // If location is unknown, this may be a compiler-generated function. Assume 1867 // it's located in the main file. 1868 auto &SM = Context.getSourceManager(); 1869 if (const auto *MainFile = SM.getFileEntryForID(SM.getMainFileID())) { 1870 return SanitizerBL.isBlacklistedFile(Kind, MainFile->getName()); 1871 } 1872 return false; 1873 } 1874 1875 bool CodeGenModule::isInSanitizerBlacklist(llvm::GlobalVariable *GV, 1876 SourceLocation Loc, QualType Ty, 1877 StringRef Category) const { 1878 // For now globals can be blacklisted only in ASan and KASan. 1879 const SanitizerMask EnabledAsanMask = LangOpts.Sanitize.Mask & 1880 (SanitizerKind::Address | SanitizerKind::KernelAddress | 1881 SanitizerKind::HWAddress | SanitizerKind::KernelHWAddress); 1882 if (!EnabledAsanMask) 1883 return false; 1884 const auto &SanitizerBL = getContext().getSanitizerBlacklist(); 1885 if (SanitizerBL.isBlacklistedGlobal(EnabledAsanMask, GV->getName(), Category)) 1886 return true; 1887 if (SanitizerBL.isBlacklistedLocation(EnabledAsanMask, Loc, Category)) 1888 return true; 1889 // Check global type. 1890 if (!Ty.isNull()) { 1891 // Drill down the array types: if global variable of a fixed type is 1892 // blacklisted, we also don't instrument arrays of them. 1893 while (auto AT = dyn_cast<ArrayType>(Ty.getTypePtr())) 1894 Ty = AT->getElementType(); 1895 Ty = Ty.getCanonicalType().getUnqualifiedType(); 1896 // We allow to blacklist only record types (classes, structs etc.) 1897 if (Ty->isRecordType()) { 1898 std::string TypeStr = Ty.getAsString(getContext().getPrintingPolicy()); 1899 if (SanitizerBL.isBlacklistedType(EnabledAsanMask, TypeStr, Category)) 1900 return true; 1901 } 1902 } 1903 return false; 1904 } 1905 1906 bool CodeGenModule::imbueXRayAttrs(llvm::Function *Fn, SourceLocation Loc, 1907 StringRef Category) const { 1908 if (!LangOpts.XRayInstrument) 1909 return false; 1910 1911 const auto &XRayFilter = getContext().getXRayFilter(); 1912 using ImbueAttr = XRayFunctionFilter::ImbueAttribute; 1913 auto Attr = ImbueAttr::NONE; 1914 if (Loc.isValid()) 1915 Attr = XRayFilter.shouldImbueLocation(Loc, Category); 1916 if (Attr == ImbueAttr::NONE) 1917 Attr = XRayFilter.shouldImbueFunction(Fn->getName()); 1918 switch (Attr) { 1919 case ImbueAttr::NONE: 1920 return false; 1921 case ImbueAttr::ALWAYS: 1922 Fn->addFnAttr("function-instrument", "xray-always"); 1923 break; 1924 case ImbueAttr::ALWAYS_ARG1: 1925 Fn->addFnAttr("function-instrument", "xray-always"); 1926 Fn->addFnAttr("xray-log-args", "1"); 1927 break; 1928 case ImbueAttr::NEVER: 1929 Fn->addFnAttr("function-instrument", "xray-never"); 1930 break; 1931 } 1932 return true; 1933 } 1934 1935 bool CodeGenModule::MustBeEmitted(const ValueDecl *Global) { 1936 // Never defer when EmitAllDecls is specified. 1937 if (LangOpts.EmitAllDecls) 1938 return true; 1939 1940 return getContext().DeclMustBeEmitted(Global); 1941 } 1942 1943 bool CodeGenModule::MayBeEmittedEagerly(const ValueDecl *Global) { 1944 if (const auto *FD = dyn_cast<FunctionDecl>(Global)) 1945 if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation) 1946 // Implicit template instantiations may change linkage if they are later 1947 // explicitly instantiated, so they should not be emitted eagerly. 1948 return false; 1949 if (const auto *VD = dyn_cast<VarDecl>(Global)) 1950 if (Context.getInlineVariableDefinitionKind(VD) == 1951 ASTContext::InlineVariableDefinitionKind::WeakUnknown) 1952 // A definition of an inline constexpr static data member may change 1953 // linkage later if it's redeclared outside the class. 1954 return false; 1955 // If OpenMP is enabled and threadprivates must be generated like TLS, delay 1956 // codegen for global variables, because they may be marked as threadprivate. 1957 if (LangOpts.OpenMP && LangOpts.OpenMPUseTLS && 1958 getContext().getTargetInfo().isTLSSupported() && isa<VarDecl>(Global) && 1959 !isTypeConstant(Global->getType(), false)) 1960 return false; 1961 1962 return true; 1963 } 1964 1965 ConstantAddress CodeGenModule::GetAddrOfUuidDescriptor( 1966 const CXXUuidofExpr* E) { 1967 // Sema has verified that IIDSource has a __declspec(uuid()), and that its 1968 // well-formed. 1969 StringRef Uuid = E->getUuidStr(); 1970 std::string Name = "_GUID_" + Uuid.lower(); 1971 std::replace(Name.begin(), Name.end(), '-', '_'); 1972 1973 // The UUID descriptor should be pointer aligned. 1974 CharUnits Alignment = CharUnits::fromQuantity(PointerAlignInBytes); 1975 1976 // Look for an existing global. 1977 if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name)) 1978 return ConstantAddress(GV, Alignment); 1979 1980 llvm::Constant *Init = EmitUuidofInitializer(Uuid); 1981 assert(Init && "failed to initialize as constant"); 1982 1983 auto *GV = new llvm::GlobalVariable( 1984 getModule(), Init->getType(), 1985 /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name); 1986 if (supportsCOMDAT()) 1987 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 1988 setDSOLocal(GV); 1989 return ConstantAddress(GV, Alignment); 1990 } 1991 1992 ConstantAddress CodeGenModule::GetWeakRefReference(const ValueDecl *VD) { 1993 const AliasAttr *AA = VD->getAttr<AliasAttr>(); 1994 assert(AA && "No alias?"); 1995 1996 CharUnits Alignment = getContext().getDeclAlign(VD); 1997 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType()); 1998 1999 // See if there is already something with the target's name in the module. 2000 llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee()); 2001 if (Entry) { 2002 unsigned AS = getContext().getTargetAddressSpace(VD->getType()); 2003 auto Ptr = llvm::ConstantExpr::getBitCast(Entry, DeclTy->getPointerTo(AS)); 2004 return ConstantAddress(Ptr, Alignment); 2005 } 2006 2007 llvm::Constant *Aliasee; 2008 if (isa<llvm::FunctionType>(DeclTy)) 2009 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, 2010 GlobalDecl(cast<FunctionDecl>(VD)), 2011 /*ForVTable=*/false); 2012 else 2013 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), 2014 llvm::PointerType::getUnqual(DeclTy), 2015 nullptr); 2016 2017 auto *F = cast<llvm::GlobalValue>(Aliasee); 2018 F->setLinkage(llvm::Function::ExternalWeakLinkage); 2019 WeakRefReferences.insert(F); 2020 2021 return ConstantAddress(Aliasee, Alignment); 2022 } 2023 2024 void CodeGenModule::EmitGlobal(GlobalDecl GD) { 2025 const auto *Global = cast<ValueDecl>(GD.getDecl()); 2026 2027 // Weak references don't produce any output by themselves. 2028 if (Global->hasAttr<WeakRefAttr>()) 2029 return; 2030 2031 // If this is an alias definition (which otherwise looks like a declaration) 2032 // emit it now. 2033 if (Global->hasAttr<AliasAttr>()) 2034 return EmitAliasDefinition(GD); 2035 2036 // IFunc like an alias whose value is resolved at runtime by calling resolver. 2037 if (Global->hasAttr<IFuncAttr>()) 2038 return emitIFuncDefinition(GD); 2039 2040 // If this is CUDA, be selective about which declarations we emit. 2041 if (LangOpts.CUDA) { 2042 if (LangOpts.CUDAIsDevice) { 2043 if (!Global->hasAttr<CUDADeviceAttr>() && 2044 !Global->hasAttr<CUDAGlobalAttr>() && 2045 !Global->hasAttr<CUDAConstantAttr>() && 2046 !Global->hasAttr<CUDASharedAttr>()) 2047 return; 2048 } else { 2049 // We need to emit host-side 'shadows' for all global 2050 // device-side variables because the CUDA runtime needs their 2051 // size and host-side address in order to provide access to 2052 // their device-side incarnations. 2053 2054 // So device-only functions are the only things we skip. 2055 if (isa<FunctionDecl>(Global) && !Global->hasAttr<CUDAHostAttr>() && 2056 Global->hasAttr<CUDADeviceAttr>()) 2057 return; 2058 2059 assert((isa<FunctionDecl>(Global) || isa<VarDecl>(Global)) && 2060 "Expected Variable or Function"); 2061 } 2062 } 2063 2064 if (LangOpts.OpenMP) { 2065 // If this is OpenMP device, check if it is legal to emit this global 2066 // normally. 2067 if (OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(GD)) 2068 return; 2069 if (auto *DRD = dyn_cast<OMPDeclareReductionDecl>(Global)) { 2070 if (MustBeEmitted(Global)) 2071 EmitOMPDeclareReduction(DRD); 2072 return; 2073 } 2074 } 2075 2076 // Ignore declarations, they will be emitted on their first use. 2077 if (const auto *FD = dyn_cast<FunctionDecl>(Global)) { 2078 // Forward declarations are emitted lazily on first use. 2079 if (!FD->doesThisDeclarationHaveABody()) { 2080 if (!FD->doesDeclarationForceExternallyVisibleDefinition()) 2081 return; 2082 2083 StringRef MangledName = getMangledName(GD); 2084 2085 // Compute the function info and LLVM type. 2086 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 2087 llvm::Type *Ty = getTypes().GetFunctionType(FI); 2088 2089 GetOrCreateLLVMFunction(MangledName, Ty, GD, /*ForVTable=*/false, 2090 /*DontDefer=*/false); 2091 return; 2092 } 2093 } else { 2094 const auto *VD = cast<VarDecl>(Global); 2095 assert(VD->isFileVarDecl() && "Cannot emit local var decl as global."); 2096 // We need to emit device-side global CUDA variables even if a 2097 // variable does not have a definition -- we still need to define 2098 // host-side shadow for it. 2099 bool MustEmitForCuda = LangOpts.CUDA && !LangOpts.CUDAIsDevice && 2100 !VD->hasDefinition() && 2101 (VD->hasAttr<CUDAConstantAttr>() || 2102 VD->hasAttr<CUDADeviceAttr>()); 2103 if (!MustEmitForCuda && 2104 VD->isThisDeclarationADefinition() != VarDecl::Definition && 2105 !Context.isMSStaticDataMemberInlineDefinition(VD)) { 2106 // If this declaration may have caused an inline variable definition to 2107 // change linkage, make sure that it's emitted. 2108 if (Context.getInlineVariableDefinitionKind(VD) == 2109 ASTContext::InlineVariableDefinitionKind::Strong) 2110 GetAddrOfGlobalVar(VD); 2111 return; 2112 } 2113 } 2114 2115 // Defer code generation to first use when possible, e.g. if this is an inline 2116 // function. If the global must always be emitted, do it eagerly if possible 2117 // to benefit from cache locality. 2118 if (MustBeEmitted(Global) && MayBeEmittedEagerly(Global)) { 2119 // Emit the definition if it can't be deferred. 2120 EmitGlobalDefinition(GD); 2121 return; 2122 } 2123 2124 // If we're deferring emission of a C++ variable with an 2125 // initializer, remember the order in which it appeared in the file. 2126 if (getLangOpts().CPlusPlus && isa<VarDecl>(Global) && 2127 cast<VarDecl>(Global)->hasInit()) { 2128 DelayedCXXInitPosition[Global] = CXXGlobalInits.size(); 2129 CXXGlobalInits.push_back(nullptr); 2130 } 2131 2132 StringRef MangledName = getMangledName(GD); 2133 if (GetGlobalValue(MangledName) != nullptr) { 2134 // The value has already been used and should therefore be emitted. 2135 addDeferredDeclToEmit(GD); 2136 } else if (MustBeEmitted(Global)) { 2137 // The value must be emitted, but cannot be emitted eagerly. 2138 assert(!MayBeEmittedEagerly(Global)); 2139 addDeferredDeclToEmit(GD); 2140 } else { 2141 // Otherwise, remember that we saw a deferred decl with this name. The 2142 // first use of the mangled name will cause it to move into 2143 // DeferredDeclsToEmit. 2144 DeferredDecls[MangledName] = GD; 2145 } 2146 } 2147 2148 // Check if T is a class type with a destructor that's not dllimport. 2149 static bool HasNonDllImportDtor(QualType T) { 2150 if (const auto *RT = T->getBaseElementTypeUnsafe()->getAs<RecordType>()) 2151 if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl())) 2152 if (RD->getDestructor() && !RD->getDestructor()->hasAttr<DLLImportAttr>()) 2153 return true; 2154 2155 return false; 2156 } 2157 2158 namespace { 2159 struct FunctionIsDirectlyRecursive : 2160 public RecursiveASTVisitor<FunctionIsDirectlyRecursive> { 2161 const StringRef Name; 2162 const Builtin::Context &BI; 2163 bool Result; 2164 FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C) : 2165 Name(N), BI(C), Result(false) { 2166 } 2167 typedef RecursiveASTVisitor<FunctionIsDirectlyRecursive> Base; 2168 2169 bool TraverseCallExpr(CallExpr *E) { 2170 const FunctionDecl *FD = E->getDirectCallee(); 2171 if (!FD) 2172 return true; 2173 AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>(); 2174 if (Attr && Name == Attr->getLabel()) { 2175 Result = true; 2176 return false; 2177 } 2178 unsigned BuiltinID = FD->getBuiltinID(); 2179 if (!BuiltinID || !BI.isLibFunction(BuiltinID)) 2180 return true; 2181 StringRef BuiltinName = BI.getName(BuiltinID); 2182 if (BuiltinName.startswith("__builtin_") && 2183 Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) { 2184 Result = true; 2185 return false; 2186 } 2187 return true; 2188 } 2189 }; 2190 2191 // Make sure we're not referencing non-imported vars or functions. 2192 struct DLLImportFunctionVisitor 2193 : public RecursiveASTVisitor<DLLImportFunctionVisitor> { 2194 bool SafeToInline = true; 2195 2196 bool shouldVisitImplicitCode() const { return true; } 2197 2198 bool VisitVarDecl(VarDecl *VD) { 2199 if (VD->getTLSKind()) { 2200 // A thread-local variable cannot be imported. 2201 SafeToInline = false; 2202 return SafeToInline; 2203 } 2204 2205 // A variable definition might imply a destructor call. 2206 if (VD->isThisDeclarationADefinition()) 2207 SafeToInline = !HasNonDllImportDtor(VD->getType()); 2208 2209 return SafeToInline; 2210 } 2211 2212 bool VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) { 2213 if (const auto *D = E->getTemporary()->getDestructor()) 2214 SafeToInline = D->hasAttr<DLLImportAttr>(); 2215 return SafeToInline; 2216 } 2217 2218 bool VisitDeclRefExpr(DeclRefExpr *E) { 2219 ValueDecl *VD = E->getDecl(); 2220 if (isa<FunctionDecl>(VD)) 2221 SafeToInline = VD->hasAttr<DLLImportAttr>(); 2222 else if (VarDecl *V = dyn_cast<VarDecl>(VD)) 2223 SafeToInline = !V->hasGlobalStorage() || V->hasAttr<DLLImportAttr>(); 2224 return SafeToInline; 2225 } 2226 2227 bool VisitCXXConstructExpr(CXXConstructExpr *E) { 2228 SafeToInline = E->getConstructor()->hasAttr<DLLImportAttr>(); 2229 return SafeToInline; 2230 } 2231 2232 bool VisitCXXMemberCallExpr(CXXMemberCallExpr *E) { 2233 CXXMethodDecl *M = E->getMethodDecl(); 2234 if (!M) { 2235 // Call through a pointer to member function. This is safe to inline. 2236 SafeToInline = true; 2237 } else { 2238 SafeToInline = M->hasAttr<DLLImportAttr>(); 2239 } 2240 return SafeToInline; 2241 } 2242 2243 bool VisitCXXDeleteExpr(CXXDeleteExpr *E) { 2244 SafeToInline = E->getOperatorDelete()->hasAttr<DLLImportAttr>(); 2245 return SafeToInline; 2246 } 2247 2248 bool VisitCXXNewExpr(CXXNewExpr *E) { 2249 SafeToInline = E->getOperatorNew()->hasAttr<DLLImportAttr>(); 2250 return SafeToInline; 2251 } 2252 }; 2253 } 2254 2255 // isTriviallyRecursive - Check if this function calls another 2256 // decl that, because of the asm attribute or the other decl being a builtin, 2257 // ends up pointing to itself. 2258 bool 2259 CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) { 2260 StringRef Name; 2261 if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) { 2262 // asm labels are a special kind of mangling we have to support. 2263 AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>(); 2264 if (!Attr) 2265 return false; 2266 Name = Attr->getLabel(); 2267 } else { 2268 Name = FD->getName(); 2269 } 2270 2271 FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo); 2272 Walker.TraverseFunctionDecl(const_cast<FunctionDecl*>(FD)); 2273 return Walker.Result; 2274 } 2275 2276 bool CodeGenModule::shouldEmitFunction(GlobalDecl GD) { 2277 if (getFunctionLinkage(GD) != llvm::Function::AvailableExternallyLinkage) 2278 return true; 2279 const auto *F = cast<FunctionDecl>(GD.getDecl()); 2280 if (CodeGenOpts.OptimizationLevel == 0 && !F->hasAttr<AlwaysInlineAttr>()) 2281 return false; 2282 2283 if (F->hasAttr<DLLImportAttr>()) { 2284 // Check whether it would be safe to inline this dllimport function. 2285 DLLImportFunctionVisitor Visitor; 2286 Visitor.TraverseFunctionDecl(const_cast<FunctionDecl*>(F)); 2287 if (!Visitor.SafeToInline) 2288 return false; 2289 2290 if (const CXXDestructorDecl *Dtor = dyn_cast<CXXDestructorDecl>(F)) { 2291 // Implicit destructor invocations aren't captured in the AST, so the 2292 // check above can't see them. Check for them manually here. 2293 for (const Decl *Member : Dtor->getParent()->decls()) 2294 if (isa<FieldDecl>(Member)) 2295 if (HasNonDllImportDtor(cast<FieldDecl>(Member)->getType())) 2296 return false; 2297 for (const CXXBaseSpecifier &B : Dtor->getParent()->bases()) 2298 if (HasNonDllImportDtor(B.getType())) 2299 return false; 2300 } 2301 } 2302 2303 // PR9614. Avoid cases where the source code is lying to us. An available 2304 // externally function should have an equivalent function somewhere else, 2305 // but a function that calls itself is clearly not equivalent to the real 2306 // implementation. 2307 // This happens in glibc's btowc and in some configure checks. 2308 return !isTriviallyRecursive(F); 2309 } 2310 2311 bool CodeGenModule::shouldOpportunisticallyEmitVTables() { 2312 return CodeGenOpts.OptimizationLevel > 0; 2313 } 2314 2315 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD, llvm::GlobalValue *GV) { 2316 const auto *D = cast<ValueDecl>(GD.getDecl()); 2317 2318 PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(), 2319 Context.getSourceManager(), 2320 "Generating code for declaration"); 2321 2322 if (isa<FunctionDecl>(D)) { 2323 // At -O0, don't generate IR for functions with available_externally 2324 // linkage. 2325 if (!shouldEmitFunction(GD)) 2326 return; 2327 2328 if (const auto *Method = dyn_cast<CXXMethodDecl>(D)) { 2329 // Make sure to emit the definition(s) before we emit the thunks. 2330 // This is necessary for the generation of certain thunks. 2331 if (const auto *CD = dyn_cast<CXXConstructorDecl>(Method)) 2332 ABI->emitCXXStructor(CD, getFromCtorType(GD.getCtorType())); 2333 else if (const auto *DD = dyn_cast<CXXDestructorDecl>(Method)) 2334 ABI->emitCXXStructor(DD, getFromDtorType(GD.getDtorType())); 2335 else 2336 EmitGlobalFunctionDefinition(GD, GV); 2337 2338 if (Method->isVirtual()) 2339 getVTables().EmitThunks(GD); 2340 2341 return; 2342 } 2343 2344 return EmitGlobalFunctionDefinition(GD, GV); 2345 } 2346 2347 if (const auto *VD = dyn_cast<VarDecl>(D)) 2348 return EmitGlobalVarDefinition(VD, !VD->hasDefinition()); 2349 2350 llvm_unreachable("Invalid argument to EmitGlobalDefinition()"); 2351 } 2352 2353 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old, 2354 llvm::Function *NewFn); 2355 2356 void CodeGenModule::emitMultiVersionFunctions() { 2357 for (GlobalDecl GD : MultiVersionFuncs) { 2358 SmallVector<CodeGenFunction::MultiVersionResolverOption, 10> Options; 2359 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 2360 getContext().forEachMultiversionedFunctionVersion( 2361 FD, [this, &GD, &Options](const FunctionDecl *CurFD) { 2362 GlobalDecl CurGD{ 2363 (CurFD->isDefined() ? CurFD->getDefinition() : CurFD)}; 2364 StringRef MangledName = getMangledName(CurGD); 2365 llvm::Constant *Func = GetGlobalValue(MangledName); 2366 if (!Func) { 2367 if (CurFD->isDefined()) { 2368 EmitGlobalFunctionDefinition(CurGD, nullptr); 2369 Func = GetGlobalValue(MangledName); 2370 } else { 2371 const CGFunctionInfo &FI = 2372 getTypes().arrangeGlobalDeclaration(GD); 2373 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 2374 Func = GetAddrOfFunction(CurGD, Ty, /*ForVTable=*/false, 2375 /*DontDefer=*/false, ForDefinition); 2376 } 2377 assert(Func && "This should have just been created"); 2378 } 2379 Options.emplace_back(getTarget(), cast<llvm::Function>(Func), 2380 CurFD->getAttr<TargetAttr>()->parse()); 2381 }); 2382 2383 llvm::Function *ResolverFunc = cast<llvm::Function>( 2384 GetGlobalValue((getMangledName(GD) + ".resolver").str())); 2385 if (supportsCOMDAT()) 2386 ResolverFunc->setComdat( 2387 getModule().getOrInsertComdat(ResolverFunc->getName())); 2388 std::stable_sort( 2389 Options.begin(), Options.end(), 2390 std::greater<CodeGenFunction::MultiVersionResolverOption>()); 2391 CodeGenFunction CGF(*this); 2392 CGF.EmitMultiVersionResolver(ResolverFunc, Options); 2393 } 2394 } 2395 2396 /// If an ifunc for the specified mangled name is not in the module, create and 2397 /// return an llvm IFunc Function with the specified type. 2398 llvm::Constant * 2399 CodeGenModule::GetOrCreateMultiVersionIFunc(GlobalDecl GD, llvm::Type *DeclTy, 2400 StringRef MangledName, 2401 const FunctionDecl *FD) { 2402 std::string IFuncName = (MangledName + ".ifunc").str(); 2403 if (llvm::GlobalValue *IFuncGV = GetGlobalValue(IFuncName)) 2404 return IFuncGV; 2405 2406 // Since this is the first time we've created this IFunc, make sure 2407 // that we put this multiversioned function into the list to be 2408 // replaced later. 2409 MultiVersionFuncs.push_back(GD); 2410 2411 std::string ResolverName = (MangledName + ".resolver").str(); 2412 llvm::Type *ResolverType = llvm::FunctionType::get( 2413 llvm::PointerType::get(DeclTy, 2414 Context.getTargetAddressSpace(FD->getType())), 2415 false); 2416 llvm::Constant *Resolver = 2417 GetOrCreateLLVMFunction(ResolverName, ResolverType, GlobalDecl{}, 2418 /*ForVTable=*/false); 2419 llvm::GlobalIFunc *GIF = llvm::GlobalIFunc::create( 2420 DeclTy, 0, llvm::Function::ExternalLinkage, "", Resolver, &getModule()); 2421 GIF->setName(IFuncName); 2422 SetCommonAttributes(FD, GIF); 2423 2424 return GIF; 2425 } 2426 2427 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the 2428 /// module, create and return an llvm Function with the specified type. If there 2429 /// is something in the module with the specified name, return it potentially 2430 /// bitcasted to the right type. 2431 /// 2432 /// If D is non-null, it specifies a decl that correspond to this. This is used 2433 /// to set the attributes on the function when it is first created. 2434 llvm::Constant *CodeGenModule::GetOrCreateLLVMFunction( 2435 StringRef MangledName, llvm::Type *Ty, GlobalDecl GD, bool ForVTable, 2436 bool DontDefer, bool IsThunk, llvm::AttributeList ExtraAttrs, 2437 ForDefinition_t IsForDefinition) { 2438 const Decl *D = GD.getDecl(); 2439 2440 // Any attempts to use a MultiVersion function should result in retrieving 2441 // the iFunc instead. Name Mangling will handle the rest of the changes. 2442 if (const FunctionDecl *FD = cast_or_null<FunctionDecl>(D)) { 2443 // For the device mark the function as one that should be emitted. 2444 if (getLangOpts().OpenMPIsDevice && OpenMPRuntime && 2445 !OpenMPRuntime->markAsGlobalTarget(GD) && FD->isDefined() && 2446 !DontDefer && !IsForDefinition) { 2447 const FunctionDecl *FDDef = FD->getDefinition(); 2448 GlobalDecl GDDef; 2449 if (const auto *CD = dyn_cast<CXXConstructorDecl>(FDDef)) 2450 GDDef = GlobalDecl(CD, GD.getCtorType()); 2451 else if (const auto *DD = dyn_cast<CXXDestructorDecl>(FDDef)) 2452 GDDef = GlobalDecl(DD, GD.getDtorType()); 2453 else 2454 GDDef = GlobalDecl(FDDef); 2455 addDeferredDeclToEmit(GDDef); 2456 } 2457 2458 if (FD->isMultiVersion() && FD->getAttr<TargetAttr>()->isDefaultVersion()) { 2459 UpdateMultiVersionNames(GD, FD); 2460 if (!IsForDefinition) 2461 return GetOrCreateMultiVersionIFunc(GD, Ty, MangledName, FD); 2462 } 2463 } 2464 2465 // Lookup the entry, lazily creating it if necessary. 2466 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 2467 if (Entry) { 2468 if (WeakRefReferences.erase(Entry)) { 2469 const FunctionDecl *FD = cast_or_null<FunctionDecl>(D); 2470 if (FD && !FD->hasAttr<WeakAttr>()) 2471 Entry->setLinkage(llvm::Function::ExternalLinkage); 2472 } 2473 2474 // Handle dropped DLL attributes. 2475 if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>()) { 2476 Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 2477 setDSOLocal(Entry); 2478 } 2479 2480 // If there are two attempts to define the same mangled name, issue an 2481 // error. 2482 if (IsForDefinition && !Entry->isDeclaration()) { 2483 GlobalDecl OtherGD; 2484 // Check that GD is not yet in DiagnosedConflictingDefinitions is required 2485 // to make sure that we issue an error only once. 2486 if (lookupRepresentativeDecl(MangledName, OtherGD) && 2487 (GD.getCanonicalDecl().getDecl() != 2488 OtherGD.getCanonicalDecl().getDecl()) && 2489 DiagnosedConflictingDefinitions.insert(GD).second) { 2490 getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name) 2491 << MangledName; 2492 getDiags().Report(OtherGD.getDecl()->getLocation(), 2493 diag::note_previous_definition); 2494 } 2495 } 2496 2497 if ((isa<llvm::Function>(Entry) || isa<llvm::GlobalAlias>(Entry)) && 2498 (Entry->getType()->getElementType() == Ty)) { 2499 return Entry; 2500 } 2501 2502 // Make sure the result is of the correct type. 2503 // (If function is requested for a definition, we always need to create a new 2504 // function, not just return a bitcast.) 2505 if (!IsForDefinition) 2506 return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo()); 2507 } 2508 2509 // This function doesn't have a complete type (for example, the return 2510 // type is an incomplete struct). Use a fake type instead, and make 2511 // sure not to try to set attributes. 2512 bool IsIncompleteFunction = false; 2513 2514 llvm::FunctionType *FTy; 2515 if (isa<llvm::FunctionType>(Ty)) { 2516 FTy = cast<llvm::FunctionType>(Ty); 2517 } else { 2518 FTy = llvm::FunctionType::get(VoidTy, false); 2519 IsIncompleteFunction = true; 2520 } 2521 2522 llvm::Function *F = 2523 llvm::Function::Create(FTy, llvm::Function::ExternalLinkage, 2524 Entry ? StringRef() : MangledName, &getModule()); 2525 2526 // If we already created a function with the same mangled name (but different 2527 // type) before, take its name and add it to the list of functions to be 2528 // replaced with F at the end of CodeGen. 2529 // 2530 // This happens if there is a prototype for a function (e.g. "int f()") and 2531 // then a definition of a different type (e.g. "int f(int x)"). 2532 if (Entry) { 2533 F->takeName(Entry); 2534 2535 // This might be an implementation of a function without a prototype, in 2536 // which case, try to do special replacement of calls which match the new 2537 // prototype. The really key thing here is that we also potentially drop 2538 // arguments from the call site so as to make a direct call, which makes the 2539 // inliner happier and suppresses a number of optimizer warnings (!) about 2540 // dropping arguments. 2541 if (!Entry->use_empty()) { 2542 ReplaceUsesOfNonProtoTypeWithRealFunction(Entry, F); 2543 Entry->removeDeadConstantUsers(); 2544 } 2545 2546 llvm::Constant *BC = llvm::ConstantExpr::getBitCast( 2547 F, Entry->getType()->getElementType()->getPointerTo()); 2548 addGlobalValReplacement(Entry, BC); 2549 } 2550 2551 assert(F->getName() == MangledName && "name was uniqued!"); 2552 if (D) 2553 SetFunctionAttributes(GD, F, IsIncompleteFunction, IsThunk); 2554 if (ExtraAttrs.hasAttributes(llvm::AttributeList::FunctionIndex)) { 2555 llvm::AttrBuilder B(ExtraAttrs, llvm::AttributeList::FunctionIndex); 2556 F->addAttributes(llvm::AttributeList::FunctionIndex, B); 2557 } 2558 2559 if (!DontDefer) { 2560 // All MSVC dtors other than the base dtor are linkonce_odr and delegate to 2561 // each other bottoming out with the base dtor. Therefore we emit non-base 2562 // dtors on usage, even if there is no dtor definition in the TU. 2563 if (D && isa<CXXDestructorDecl>(D) && 2564 getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D), 2565 GD.getDtorType())) 2566 addDeferredDeclToEmit(GD); 2567 2568 // This is the first use or definition of a mangled name. If there is a 2569 // deferred decl with this name, remember that we need to emit it at the end 2570 // of the file. 2571 auto DDI = DeferredDecls.find(MangledName); 2572 if (DDI != DeferredDecls.end()) { 2573 // Move the potentially referenced deferred decl to the 2574 // DeferredDeclsToEmit list, and remove it from DeferredDecls (since we 2575 // don't need it anymore). 2576 addDeferredDeclToEmit(DDI->second); 2577 DeferredDecls.erase(DDI); 2578 2579 // Otherwise, there are cases we have to worry about where we're 2580 // using a declaration for which we must emit a definition but where 2581 // we might not find a top-level definition: 2582 // - member functions defined inline in their classes 2583 // - friend functions defined inline in some class 2584 // - special member functions with implicit definitions 2585 // If we ever change our AST traversal to walk into class methods, 2586 // this will be unnecessary. 2587 // 2588 // We also don't emit a definition for a function if it's going to be an 2589 // entry in a vtable, unless it's already marked as used. 2590 } else if (getLangOpts().CPlusPlus && D) { 2591 // Look for a declaration that's lexically in a record. 2592 for (const auto *FD = cast<FunctionDecl>(D)->getMostRecentDecl(); FD; 2593 FD = FD->getPreviousDecl()) { 2594 if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) { 2595 if (FD->doesThisDeclarationHaveABody()) { 2596 addDeferredDeclToEmit(GD.getWithDecl(FD)); 2597 break; 2598 } 2599 } 2600 } 2601 } 2602 } 2603 2604 // Make sure the result is of the requested type. 2605 if (!IsIncompleteFunction) { 2606 assert(F->getType()->getElementType() == Ty); 2607 return F; 2608 } 2609 2610 llvm::Type *PTy = llvm::PointerType::getUnqual(Ty); 2611 return llvm::ConstantExpr::getBitCast(F, PTy); 2612 } 2613 2614 /// GetAddrOfFunction - Return the address of the given function. If Ty is 2615 /// non-null, then this function will use the specified type if it has to 2616 /// create it (this occurs when we see a definition of the function). 2617 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD, 2618 llvm::Type *Ty, 2619 bool ForVTable, 2620 bool DontDefer, 2621 ForDefinition_t IsForDefinition) { 2622 // If there was no specific requested type, just convert it now. 2623 if (!Ty) { 2624 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 2625 auto CanonTy = Context.getCanonicalType(FD->getType()); 2626 Ty = getTypes().ConvertFunctionType(CanonTy, FD); 2627 } 2628 2629 // Devirtualized destructor calls may come through here instead of via 2630 // getAddrOfCXXStructor. Make sure we use the MS ABI base destructor instead 2631 // of the complete destructor when necessary. 2632 if (const auto *DD = dyn_cast<CXXDestructorDecl>(GD.getDecl())) { 2633 if (getTarget().getCXXABI().isMicrosoft() && 2634 GD.getDtorType() == Dtor_Complete && 2635 DD->getParent()->getNumVBases() == 0) 2636 GD = GlobalDecl(DD, Dtor_Base); 2637 } 2638 2639 StringRef MangledName = getMangledName(GD); 2640 return GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable, DontDefer, 2641 /*IsThunk=*/false, llvm::AttributeList(), 2642 IsForDefinition); 2643 } 2644 2645 static const FunctionDecl * 2646 GetRuntimeFunctionDecl(ASTContext &C, StringRef Name) { 2647 TranslationUnitDecl *TUDecl = C.getTranslationUnitDecl(); 2648 DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl); 2649 2650 IdentifierInfo &CII = C.Idents.get(Name); 2651 for (const auto &Result : DC->lookup(&CII)) 2652 if (const auto FD = dyn_cast<FunctionDecl>(Result)) 2653 return FD; 2654 2655 if (!C.getLangOpts().CPlusPlus) 2656 return nullptr; 2657 2658 // Demangle the premangled name from getTerminateFn() 2659 IdentifierInfo &CXXII = 2660 (Name == "_ZSt9terminatev" || Name == "?terminate@@YAXXZ") 2661 ? C.Idents.get("terminate") 2662 : C.Idents.get(Name); 2663 2664 for (const auto &N : {"__cxxabiv1", "std"}) { 2665 IdentifierInfo &NS = C.Idents.get(N); 2666 for (const auto &Result : DC->lookup(&NS)) { 2667 NamespaceDecl *ND = dyn_cast<NamespaceDecl>(Result); 2668 if (auto LSD = dyn_cast<LinkageSpecDecl>(Result)) 2669 for (const auto &Result : LSD->lookup(&NS)) 2670 if ((ND = dyn_cast<NamespaceDecl>(Result))) 2671 break; 2672 2673 if (ND) 2674 for (const auto &Result : ND->lookup(&CXXII)) 2675 if (const auto *FD = dyn_cast<FunctionDecl>(Result)) 2676 return FD; 2677 } 2678 } 2679 2680 return nullptr; 2681 } 2682 2683 /// CreateRuntimeFunction - Create a new runtime function with the specified 2684 /// type and name. 2685 llvm::Constant * 2686 CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy, StringRef Name, 2687 llvm::AttributeList ExtraAttrs, 2688 bool Local) { 2689 llvm::Constant *C = 2690 GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false, 2691 /*DontDefer=*/false, /*IsThunk=*/false, 2692 ExtraAttrs); 2693 2694 if (auto *F = dyn_cast<llvm::Function>(C)) { 2695 if (F->empty()) { 2696 F->setCallingConv(getRuntimeCC()); 2697 2698 if (!Local && getTriple().isOSBinFormatCOFF() && 2699 !getCodeGenOpts().LTOVisibilityPublicStd && 2700 !getTriple().isWindowsGNUEnvironment()) { 2701 const FunctionDecl *FD = GetRuntimeFunctionDecl(Context, Name); 2702 if (!FD || FD->hasAttr<DLLImportAttr>()) { 2703 F->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass); 2704 F->setLinkage(llvm::GlobalValue::ExternalLinkage); 2705 } 2706 } 2707 setDSOLocal(F); 2708 } 2709 } 2710 2711 return C; 2712 } 2713 2714 /// CreateBuiltinFunction - Create a new builtin function with the specified 2715 /// type and name. 2716 llvm::Constant * 2717 CodeGenModule::CreateBuiltinFunction(llvm::FunctionType *FTy, StringRef Name, 2718 llvm::AttributeList ExtraAttrs) { 2719 return CreateRuntimeFunction(FTy, Name, ExtraAttrs, true); 2720 } 2721 2722 /// isTypeConstant - Determine whether an object of this type can be emitted 2723 /// as a constant. 2724 /// 2725 /// If ExcludeCtor is true, the duration when the object's constructor runs 2726 /// will not be considered. The caller will need to verify that the object is 2727 /// not written to during its construction. 2728 bool CodeGenModule::isTypeConstant(QualType Ty, bool ExcludeCtor) { 2729 if (!Ty.isConstant(Context) && !Ty->isReferenceType()) 2730 return false; 2731 2732 if (Context.getLangOpts().CPlusPlus) { 2733 if (const CXXRecordDecl *Record 2734 = Context.getBaseElementType(Ty)->getAsCXXRecordDecl()) 2735 return ExcludeCtor && !Record->hasMutableFields() && 2736 Record->hasTrivialDestructor(); 2737 } 2738 2739 return true; 2740 } 2741 2742 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module, 2743 /// create and return an llvm GlobalVariable with the specified type. If there 2744 /// is something in the module with the specified name, return it potentially 2745 /// bitcasted to the right type. 2746 /// 2747 /// If D is non-null, it specifies a decl that correspond to this. This is used 2748 /// to set the attributes on the global when it is first created. 2749 /// 2750 /// If IsForDefinition is true, it is guaranteed that an actual global with 2751 /// type Ty will be returned, not conversion of a variable with the same 2752 /// mangled name but some other type. 2753 llvm::Constant * 2754 CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName, 2755 llvm::PointerType *Ty, 2756 const VarDecl *D, 2757 ForDefinition_t IsForDefinition) { 2758 // Lookup the entry, lazily creating it if necessary. 2759 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 2760 if (Entry) { 2761 if (WeakRefReferences.erase(Entry)) { 2762 if (D && !D->hasAttr<WeakAttr>()) 2763 Entry->setLinkage(llvm::Function::ExternalLinkage); 2764 } 2765 2766 // Handle dropped DLL attributes. 2767 if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>()) 2768 Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 2769 2770 if (LangOpts.OpenMP && !LangOpts.OpenMPSimd && D) 2771 getOpenMPRuntime().registerTargetGlobalVariable(D, Entry); 2772 2773 if (Entry->getType() == Ty) 2774 return Entry; 2775 2776 // If there are two attempts to define the same mangled name, issue an 2777 // error. 2778 if (IsForDefinition && !Entry->isDeclaration()) { 2779 GlobalDecl OtherGD; 2780 const VarDecl *OtherD; 2781 2782 // Check that D is not yet in DiagnosedConflictingDefinitions is required 2783 // to make sure that we issue an error only once. 2784 if (D && lookupRepresentativeDecl(MangledName, OtherGD) && 2785 (D->getCanonicalDecl() != OtherGD.getCanonicalDecl().getDecl()) && 2786 (OtherD = dyn_cast<VarDecl>(OtherGD.getDecl())) && 2787 OtherD->hasInit() && 2788 DiagnosedConflictingDefinitions.insert(D).second) { 2789 getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name) 2790 << MangledName; 2791 getDiags().Report(OtherGD.getDecl()->getLocation(), 2792 diag::note_previous_definition); 2793 } 2794 } 2795 2796 // Make sure the result is of the correct type. 2797 if (Entry->getType()->getAddressSpace() != Ty->getAddressSpace()) 2798 return llvm::ConstantExpr::getAddrSpaceCast(Entry, Ty); 2799 2800 // (If global is requested for a definition, we always need to create a new 2801 // global, not just return a bitcast.) 2802 if (!IsForDefinition) 2803 return llvm::ConstantExpr::getBitCast(Entry, Ty); 2804 } 2805 2806 auto AddrSpace = GetGlobalVarAddressSpace(D); 2807 auto TargetAddrSpace = getContext().getTargetAddressSpace(AddrSpace); 2808 2809 auto *GV = new llvm::GlobalVariable( 2810 getModule(), Ty->getElementType(), false, 2811 llvm::GlobalValue::ExternalLinkage, nullptr, MangledName, nullptr, 2812 llvm::GlobalVariable::NotThreadLocal, TargetAddrSpace); 2813 2814 // If we already created a global with the same mangled name (but different 2815 // type) before, take its name and remove it from its parent. 2816 if (Entry) { 2817 GV->takeName(Entry); 2818 2819 if (!Entry->use_empty()) { 2820 llvm::Constant *NewPtrForOldDecl = 2821 llvm::ConstantExpr::getBitCast(GV, Entry->getType()); 2822 Entry->replaceAllUsesWith(NewPtrForOldDecl); 2823 } 2824 2825 Entry->eraseFromParent(); 2826 } 2827 2828 // This is the first use or definition of a mangled name. If there is a 2829 // deferred decl with this name, remember that we need to emit it at the end 2830 // of the file. 2831 auto DDI = DeferredDecls.find(MangledName); 2832 if (DDI != DeferredDecls.end()) { 2833 // Move the potentially referenced deferred decl to the DeferredDeclsToEmit 2834 // list, and remove it from DeferredDecls (since we don't need it anymore). 2835 addDeferredDeclToEmit(DDI->second); 2836 DeferredDecls.erase(DDI); 2837 } 2838 2839 // Handle things which are present even on external declarations. 2840 if (D) { 2841 if (LangOpts.OpenMP && !LangOpts.OpenMPSimd) 2842 getOpenMPRuntime().registerTargetGlobalVariable(D, GV); 2843 2844 // FIXME: This code is overly simple and should be merged with other global 2845 // handling. 2846 GV->setConstant(isTypeConstant(D->getType(), false)); 2847 2848 GV->setAlignment(getContext().getDeclAlign(D).getQuantity()); 2849 2850 setLinkageForGV(GV, D); 2851 2852 if (D->getTLSKind()) { 2853 if (D->getTLSKind() == VarDecl::TLS_Dynamic) 2854 CXXThreadLocals.push_back(D); 2855 setTLSMode(GV, *D); 2856 } 2857 2858 setGVProperties(GV, D); 2859 2860 // If required by the ABI, treat declarations of static data members with 2861 // inline initializers as definitions. 2862 if (getContext().isMSStaticDataMemberInlineDefinition(D)) { 2863 EmitGlobalVarDefinition(D); 2864 } 2865 2866 // Emit section information for extern variables. 2867 if (D->hasExternalStorage()) { 2868 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) 2869 GV->setSection(SA->getName()); 2870 } 2871 2872 // Handle XCore specific ABI requirements. 2873 if (getTriple().getArch() == llvm::Triple::xcore && 2874 D->getLanguageLinkage() == CLanguageLinkage && 2875 D->getType().isConstant(Context) && 2876 isExternallyVisible(D->getLinkageAndVisibility().getLinkage())) 2877 GV->setSection(".cp.rodata"); 2878 2879 // Check if we a have a const declaration with an initializer, we may be 2880 // able to emit it as available_externally to expose it's value to the 2881 // optimizer. 2882 if (Context.getLangOpts().CPlusPlus && GV->hasExternalLinkage() && 2883 D->getType().isConstQualified() && !GV->hasInitializer() && 2884 !D->hasDefinition() && D->hasInit() && !D->hasAttr<DLLImportAttr>()) { 2885 const auto *Record = 2886 Context.getBaseElementType(D->getType())->getAsCXXRecordDecl(); 2887 bool HasMutableFields = Record && Record->hasMutableFields(); 2888 if (!HasMutableFields) { 2889 const VarDecl *InitDecl; 2890 const Expr *InitExpr = D->getAnyInitializer(InitDecl); 2891 if (InitExpr) { 2892 ConstantEmitter emitter(*this); 2893 llvm::Constant *Init = emitter.tryEmitForInitializer(*InitDecl); 2894 if (Init) { 2895 auto *InitType = Init->getType(); 2896 if (GV->getType()->getElementType() != InitType) { 2897 // The type of the initializer does not match the definition. 2898 // This happens when an initializer has a different type from 2899 // the type of the global (because of padding at the end of a 2900 // structure for instance). 2901 GV->setName(StringRef()); 2902 // Make a new global with the correct type, this is now guaranteed 2903 // to work. 2904 auto *NewGV = cast<llvm::GlobalVariable>( 2905 GetAddrOfGlobalVar(D, InitType, IsForDefinition)); 2906 2907 // Erase the old global, since it is no longer used. 2908 GV->eraseFromParent(); 2909 GV = NewGV; 2910 } else { 2911 GV->setInitializer(Init); 2912 GV->setConstant(true); 2913 GV->setLinkage(llvm::GlobalValue::AvailableExternallyLinkage); 2914 } 2915 emitter.finalize(GV); 2916 } 2917 } 2918 } 2919 } 2920 } 2921 2922 LangAS ExpectedAS = 2923 D ? D->getType().getAddressSpace() 2924 : (LangOpts.OpenCL ? LangAS::opencl_global : LangAS::Default); 2925 assert(getContext().getTargetAddressSpace(ExpectedAS) == 2926 Ty->getPointerAddressSpace()); 2927 if (AddrSpace != ExpectedAS) 2928 return getTargetCodeGenInfo().performAddrSpaceCast(*this, GV, AddrSpace, 2929 ExpectedAS, Ty); 2930 2931 return GV; 2932 } 2933 2934 llvm::Constant * 2935 CodeGenModule::GetAddrOfGlobal(GlobalDecl GD, 2936 ForDefinition_t IsForDefinition) { 2937 const Decl *D = GD.getDecl(); 2938 if (isa<CXXConstructorDecl>(D)) 2939 return getAddrOfCXXStructor(cast<CXXConstructorDecl>(D), 2940 getFromCtorType(GD.getCtorType()), 2941 /*FnInfo=*/nullptr, /*FnType=*/nullptr, 2942 /*DontDefer=*/false, IsForDefinition); 2943 else if (isa<CXXDestructorDecl>(D)) 2944 return getAddrOfCXXStructor(cast<CXXDestructorDecl>(D), 2945 getFromDtorType(GD.getDtorType()), 2946 /*FnInfo=*/nullptr, /*FnType=*/nullptr, 2947 /*DontDefer=*/false, IsForDefinition); 2948 else if (isa<CXXMethodDecl>(D)) { 2949 auto FInfo = &getTypes().arrangeCXXMethodDeclaration( 2950 cast<CXXMethodDecl>(D)); 2951 auto Ty = getTypes().GetFunctionType(*FInfo); 2952 return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false, 2953 IsForDefinition); 2954 } else if (isa<FunctionDecl>(D)) { 2955 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 2956 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 2957 return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false, 2958 IsForDefinition); 2959 } else 2960 return GetAddrOfGlobalVar(cast<VarDecl>(D), /*Ty=*/nullptr, 2961 IsForDefinition); 2962 } 2963 2964 llvm::GlobalVariable * 2965 CodeGenModule::CreateOrReplaceCXXRuntimeVariable(StringRef Name, 2966 llvm::Type *Ty, 2967 llvm::GlobalValue::LinkageTypes Linkage) { 2968 llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name); 2969 llvm::GlobalVariable *OldGV = nullptr; 2970 2971 if (GV) { 2972 // Check if the variable has the right type. 2973 if (GV->getType()->getElementType() == Ty) 2974 return GV; 2975 2976 // Because C++ name mangling, the only way we can end up with an already 2977 // existing global with the same name is if it has been declared extern "C". 2978 assert(GV->isDeclaration() && "Declaration has wrong type!"); 2979 OldGV = GV; 2980 } 2981 2982 // Create a new variable. 2983 GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true, 2984 Linkage, nullptr, Name); 2985 2986 if (OldGV) { 2987 // Replace occurrences of the old variable if needed. 2988 GV->takeName(OldGV); 2989 2990 if (!OldGV->use_empty()) { 2991 llvm::Constant *NewPtrForOldDecl = 2992 llvm::ConstantExpr::getBitCast(GV, OldGV->getType()); 2993 OldGV->replaceAllUsesWith(NewPtrForOldDecl); 2994 } 2995 2996 OldGV->eraseFromParent(); 2997 } 2998 2999 if (supportsCOMDAT() && GV->isWeakForLinker() && 3000 !GV->hasAvailableExternallyLinkage()) 3001 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 3002 3003 return GV; 3004 } 3005 3006 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the 3007 /// given global variable. If Ty is non-null and if the global doesn't exist, 3008 /// then it will be created with the specified type instead of whatever the 3009 /// normal requested type would be. If IsForDefinition is true, it is guaranteed 3010 /// that an actual global with type Ty will be returned, not conversion of a 3011 /// variable with the same mangled name but some other type. 3012 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D, 3013 llvm::Type *Ty, 3014 ForDefinition_t IsForDefinition) { 3015 assert(D->hasGlobalStorage() && "Not a global variable"); 3016 QualType ASTTy = D->getType(); 3017 if (!Ty) 3018 Ty = getTypes().ConvertTypeForMem(ASTTy); 3019 3020 llvm::PointerType *PTy = 3021 llvm::PointerType::get(Ty, getContext().getTargetAddressSpace(ASTTy)); 3022 3023 StringRef MangledName = getMangledName(D); 3024 return GetOrCreateLLVMGlobal(MangledName, PTy, D, IsForDefinition); 3025 } 3026 3027 /// CreateRuntimeVariable - Create a new runtime global variable with the 3028 /// specified type and name. 3029 llvm::Constant * 3030 CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty, 3031 StringRef Name) { 3032 auto *Ret = 3033 GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), nullptr); 3034 setDSOLocal(cast<llvm::GlobalValue>(Ret->stripPointerCasts())); 3035 return Ret; 3036 } 3037 3038 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) { 3039 assert(!D->getInit() && "Cannot emit definite definitions here!"); 3040 3041 StringRef MangledName = getMangledName(D); 3042 llvm::GlobalValue *GV = GetGlobalValue(MangledName); 3043 3044 // We already have a definition, not declaration, with the same mangled name. 3045 // Emitting of declaration is not required (and actually overwrites emitted 3046 // definition). 3047 if (GV && !GV->isDeclaration()) 3048 return; 3049 3050 // If we have not seen a reference to this variable yet, place it into the 3051 // deferred declarations table to be emitted if needed later. 3052 if (!MustBeEmitted(D) && !GV) { 3053 DeferredDecls[MangledName] = D; 3054 return; 3055 } 3056 3057 // The tentative definition is the only definition. 3058 EmitGlobalVarDefinition(D); 3059 } 3060 3061 CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const { 3062 return Context.toCharUnitsFromBits( 3063 getDataLayout().getTypeStoreSizeInBits(Ty)); 3064 } 3065 3066 LangAS CodeGenModule::GetGlobalVarAddressSpace(const VarDecl *D) { 3067 LangAS AddrSpace = LangAS::Default; 3068 if (LangOpts.OpenCL) { 3069 AddrSpace = D ? D->getType().getAddressSpace() : LangAS::opencl_global; 3070 assert(AddrSpace == LangAS::opencl_global || 3071 AddrSpace == LangAS::opencl_constant || 3072 AddrSpace == LangAS::opencl_local || 3073 AddrSpace >= LangAS::FirstTargetAddressSpace); 3074 return AddrSpace; 3075 } 3076 3077 if (LangOpts.CUDA && LangOpts.CUDAIsDevice) { 3078 if (D && D->hasAttr<CUDAConstantAttr>()) 3079 return LangAS::cuda_constant; 3080 else if (D && D->hasAttr<CUDASharedAttr>()) 3081 return LangAS::cuda_shared; 3082 else 3083 return LangAS::cuda_device; 3084 } 3085 3086 return getTargetCodeGenInfo().getGlobalVarAddressSpace(*this, D); 3087 } 3088 3089 LangAS CodeGenModule::getStringLiteralAddressSpace() const { 3090 // OpenCL v1.2 s6.5.3: a string literal is in the constant address space. 3091 if (LangOpts.OpenCL) 3092 return LangAS::opencl_constant; 3093 if (auto AS = getTarget().getConstantAddressSpace()) 3094 return AS.getValue(); 3095 return LangAS::Default; 3096 } 3097 3098 // In address space agnostic languages, string literals are in default address 3099 // space in AST. However, certain targets (e.g. amdgcn) request them to be 3100 // emitted in constant address space in LLVM IR. To be consistent with other 3101 // parts of AST, string literal global variables in constant address space 3102 // need to be casted to default address space before being put into address 3103 // map and referenced by other part of CodeGen. 3104 // In OpenCL, string literals are in constant address space in AST, therefore 3105 // they should not be casted to default address space. 3106 static llvm::Constant * 3107 castStringLiteralToDefaultAddressSpace(CodeGenModule &CGM, 3108 llvm::GlobalVariable *GV) { 3109 llvm::Constant *Cast = GV; 3110 if (!CGM.getLangOpts().OpenCL) { 3111 if (auto AS = CGM.getTarget().getConstantAddressSpace()) { 3112 if (AS != LangAS::Default) 3113 Cast = CGM.getTargetCodeGenInfo().performAddrSpaceCast( 3114 CGM, GV, AS.getValue(), LangAS::Default, 3115 GV->getValueType()->getPointerTo( 3116 CGM.getContext().getTargetAddressSpace(LangAS::Default))); 3117 } 3118 } 3119 return Cast; 3120 } 3121 3122 template<typename SomeDecl> 3123 void CodeGenModule::MaybeHandleStaticInExternC(const SomeDecl *D, 3124 llvm::GlobalValue *GV) { 3125 if (!getLangOpts().CPlusPlus) 3126 return; 3127 3128 // Must have 'used' attribute, or else inline assembly can't rely on 3129 // the name existing. 3130 if (!D->template hasAttr<UsedAttr>()) 3131 return; 3132 3133 // Must have internal linkage and an ordinary name. 3134 if (!D->getIdentifier() || D->getFormalLinkage() != InternalLinkage) 3135 return; 3136 3137 // Must be in an extern "C" context. Entities declared directly within 3138 // a record are not extern "C" even if the record is in such a context. 3139 const SomeDecl *First = D->getFirstDecl(); 3140 if (First->getDeclContext()->isRecord() || !First->isInExternCContext()) 3141 return; 3142 3143 // OK, this is an internal linkage entity inside an extern "C" linkage 3144 // specification. Make a note of that so we can give it the "expected" 3145 // mangled name if nothing else is using that name. 3146 std::pair<StaticExternCMap::iterator, bool> R = 3147 StaticExternCValues.insert(std::make_pair(D->getIdentifier(), GV)); 3148 3149 // If we have multiple internal linkage entities with the same name 3150 // in extern "C" regions, none of them gets that name. 3151 if (!R.second) 3152 R.first->second = nullptr; 3153 } 3154 3155 static bool shouldBeInCOMDAT(CodeGenModule &CGM, const Decl &D) { 3156 if (!CGM.supportsCOMDAT()) 3157 return false; 3158 3159 if (D.hasAttr<SelectAnyAttr>()) 3160 return true; 3161 3162 GVALinkage Linkage; 3163 if (auto *VD = dyn_cast<VarDecl>(&D)) 3164 Linkage = CGM.getContext().GetGVALinkageForVariable(VD); 3165 else 3166 Linkage = CGM.getContext().GetGVALinkageForFunction(cast<FunctionDecl>(&D)); 3167 3168 switch (Linkage) { 3169 case GVA_Internal: 3170 case GVA_AvailableExternally: 3171 case GVA_StrongExternal: 3172 return false; 3173 case GVA_DiscardableODR: 3174 case GVA_StrongODR: 3175 return true; 3176 } 3177 llvm_unreachable("No such linkage"); 3178 } 3179 3180 void CodeGenModule::maybeSetTrivialComdat(const Decl &D, 3181 llvm::GlobalObject &GO) { 3182 if (!shouldBeInCOMDAT(*this, D)) 3183 return; 3184 GO.setComdat(TheModule.getOrInsertComdat(GO.getName())); 3185 } 3186 3187 /// Pass IsTentative as true if you want to create a tentative definition. 3188 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D, 3189 bool IsTentative) { 3190 // OpenCL global variables of sampler type are translated to function calls, 3191 // therefore no need to be translated. 3192 QualType ASTTy = D->getType(); 3193 if (getLangOpts().OpenCL && ASTTy->isSamplerT()) 3194 return; 3195 3196 // If this is OpenMP device, check if it is legal to emit this global 3197 // normally. 3198 if (LangOpts.OpenMPIsDevice && OpenMPRuntime && 3199 OpenMPRuntime->emitTargetGlobalVariable(D)) 3200 return; 3201 3202 llvm::Constant *Init = nullptr; 3203 CXXRecordDecl *RD = ASTTy->getBaseElementTypeUnsafe()->getAsCXXRecordDecl(); 3204 bool NeedsGlobalCtor = false; 3205 bool NeedsGlobalDtor = RD && !RD->hasTrivialDestructor(); 3206 3207 const VarDecl *InitDecl; 3208 const Expr *InitExpr = D->getAnyInitializer(InitDecl); 3209 3210 Optional<ConstantEmitter> emitter; 3211 3212 // CUDA E.2.4.1 "__shared__ variables cannot have an initialization 3213 // as part of their declaration." Sema has already checked for 3214 // error cases, so we just need to set Init to UndefValue. 3215 if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice && 3216 D->hasAttr<CUDASharedAttr>()) 3217 Init = llvm::UndefValue::get(getTypes().ConvertType(ASTTy)); 3218 else if (!InitExpr) { 3219 // This is a tentative definition; tentative definitions are 3220 // implicitly initialized with { 0 }. 3221 // 3222 // Note that tentative definitions are only emitted at the end of 3223 // a translation unit, so they should never have incomplete 3224 // type. In addition, EmitTentativeDefinition makes sure that we 3225 // never attempt to emit a tentative definition if a real one 3226 // exists. A use may still exists, however, so we still may need 3227 // to do a RAUW. 3228 assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type"); 3229 Init = EmitNullConstant(D->getType()); 3230 } else { 3231 initializedGlobalDecl = GlobalDecl(D); 3232 emitter.emplace(*this); 3233 Init = emitter->tryEmitForInitializer(*InitDecl); 3234 3235 if (!Init) { 3236 QualType T = InitExpr->getType(); 3237 if (D->getType()->isReferenceType()) 3238 T = D->getType(); 3239 3240 if (getLangOpts().CPlusPlus) { 3241 Init = EmitNullConstant(T); 3242 NeedsGlobalCtor = true; 3243 } else { 3244 ErrorUnsupported(D, "static initializer"); 3245 Init = llvm::UndefValue::get(getTypes().ConvertType(T)); 3246 } 3247 } else { 3248 // We don't need an initializer, so remove the entry for the delayed 3249 // initializer position (just in case this entry was delayed) if we 3250 // also don't need to register a destructor. 3251 if (getLangOpts().CPlusPlus && !NeedsGlobalDtor) 3252 DelayedCXXInitPosition.erase(D); 3253 } 3254 } 3255 3256 llvm::Type* InitType = Init->getType(); 3257 llvm::Constant *Entry = 3258 GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative)); 3259 3260 // Strip off a bitcast if we got one back. 3261 if (auto *CE = dyn_cast<llvm::ConstantExpr>(Entry)) { 3262 assert(CE->getOpcode() == llvm::Instruction::BitCast || 3263 CE->getOpcode() == llvm::Instruction::AddrSpaceCast || 3264 // All zero index gep. 3265 CE->getOpcode() == llvm::Instruction::GetElementPtr); 3266 Entry = CE->getOperand(0); 3267 } 3268 3269 // Entry is now either a Function or GlobalVariable. 3270 auto *GV = dyn_cast<llvm::GlobalVariable>(Entry); 3271 3272 // We have a definition after a declaration with the wrong type. 3273 // We must make a new GlobalVariable* and update everything that used OldGV 3274 // (a declaration or tentative definition) with the new GlobalVariable* 3275 // (which will be a definition). 3276 // 3277 // This happens if there is a prototype for a global (e.g. 3278 // "extern int x[];") and then a definition of a different type (e.g. 3279 // "int x[10];"). This also happens when an initializer has a different type 3280 // from the type of the global (this happens with unions). 3281 if (!GV || GV->getType()->getElementType() != InitType || 3282 GV->getType()->getAddressSpace() != 3283 getContext().getTargetAddressSpace(GetGlobalVarAddressSpace(D))) { 3284 3285 // Move the old entry aside so that we'll create a new one. 3286 Entry->setName(StringRef()); 3287 3288 // Make a new global with the correct type, this is now guaranteed to work. 3289 GV = cast<llvm::GlobalVariable>( 3290 GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative))); 3291 3292 // Replace all uses of the old global with the new global 3293 llvm::Constant *NewPtrForOldDecl = 3294 llvm::ConstantExpr::getBitCast(GV, Entry->getType()); 3295 Entry->replaceAllUsesWith(NewPtrForOldDecl); 3296 3297 // Erase the old global, since it is no longer used. 3298 cast<llvm::GlobalValue>(Entry)->eraseFromParent(); 3299 } 3300 3301 MaybeHandleStaticInExternC(D, GV); 3302 3303 if (D->hasAttr<AnnotateAttr>()) 3304 AddGlobalAnnotations(D, GV); 3305 3306 // Set the llvm linkage type as appropriate. 3307 llvm::GlobalValue::LinkageTypes Linkage = 3308 getLLVMLinkageVarDefinition(D, GV->isConstant()); 3309 3310 // CUDA B.2.1 "The __device__ qualifier declares a variable that resides on 3311 // the device. [...]" 3312 // CUDA B.2.2 "The __constant__ qualifier, optionally used together with 3313 // __device__, declares a variable that: [...] 3314 // Is accessible from all the threads within the grid and from the host 3315 // through the runtime library (cudaGetSymbolAddress() / cudaGetSymbolSize() 3316 // / cudaMemcpyToSymbol() / cudaMemcpyFromSymbol())." 3317 if (GV && LangOpts.CUDA) { 3318 if (LangOpts.CUDAIsDevice) { 3319 if (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>()) 3320 GV->setExternallyInitialized(true); 3321 } else { 3322 // Host-side shadows of external declarations of device-side 3323 // global variables become internal definitions. These have to 3324 // be internal in order to prevent name conflicts with global 3325 // host variables with the same name in a different TUs. 3326 if (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>()) { 3327 Linkage = llvm::GlobalValue::InternalLinkage; 3328 3329 // Shadow variables and their properties must be registered 3330 // with CUDA runtime. 3331 unsigned Flags = 0; 3332 if (!D->hasDefinition()) 3333 Flags |= CGCUDARuntime::ExternDeviceVar; 3334 if (D->hasAttr<CUDAConstantAttr>()) 3335 Flags |= CGCUDARuntime::ConstantDeviceVar; 3336 getCUDARuntime().registerDeviceVar(*GV, Flags); 3337 } else if (D->hasAttr<CUDASharedAttr>()) 3338 // __shared__ variables are odd. Shadows do get created, but 3339 // they are not registered with the CUDA runtime, so they 3340 // can't really be used to access their device-side 3341 // counterparts. It's not clear yet whether it's nvcc's bug or 3342 // a feature, but we've got to do the same for compatibility. 3343 Linkage = llvm::GlobalValue::InternalLinkage; 3344 } 3345 } 3346 3347 GV->setInitializer(Init); 3348 if (emitter) emitter->finalize(GV); 3349 3350 // If it is safe to mark the global 'constant', do so now. 3351 GV->setConstant(!NeedsGlobalCtor && !NeedsGlobalDtor && 3352 isTypeConstant(D->getType(), true)); 3353 3354 // If it is in a read-only section, mark it 'constant'. 3355 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) { 3356 const ASTContext::SectionInfo &SI = Context.SectionInfos[SA->getName()]; 3357 if ((SI.SectionFlags & ASTContext::PSF_Write) == 0) 3358 GV->setConstant(true); 3359 } 3360 3361 GV->setAlignment(getContext().getDeclAlign(D).getQuantity()); 3362 3363 3364 // On Darwin, if the normal linkage of a C++ thread_local variable is 3365 // LinkOnce or Weak, we keep the normal linkage to prevent multiple 3366 // copies within a linkage unit; otherwise, the backing variable has 3367 // internal linkage and all accesses should just be calls to the 3368 // Itanium-specified entry point, which has the normal linkage of the 3369 // variable. This is to preserve the ability to change the implementation 3370 // behind the scenes. 3371 if (!D->isStaticLocal() && D->getTLSKind() == VarDecl::TLS_Dynamic && 3372 Context.getTargetInfo().getTriple().isOSDarwin() && 3373 !llvm::GlobalVariable::isLinkOnceLinkage(Linkage) && 3374 !llvm::GlobalVariable::isWeakLinkage(Linkage)) 3375 Linkage = llvm::GlobalValue::InternalLinkage; 3376 3377 GV->setLinkage(Linkage); 3378 if (D->hasAttr<DLLImportAttr>()) 3379 GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass); 3380 else if (D->hasAttr<DLLExportAttr>()) 3381 GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass); 3382 else 3383 GV->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass); 3384 3385 if (Linkage == llvm::GlobalVariable::CommonLinkage) { 3386 // common vars aren't constant even if declared const. 3387 GV->setConstant(false); 3388 // Tentative definition of global variables may be initialized with 3389 // non-zero null pointers. In this case they should have weak linkage 3390 // since common linkage must have zero initializer and must not have 3391 // explicit section therefore cannot have non-zero initial value. 3392 if (!GV->getInitializer()->isNullValue()) 3393 GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage); 3394 } 3395 3396 setNonAliasAttributes(D, GV); 3397 3398 if (D->getTLSKind() && !GV->isThreadLocal()) { 3399 if (D->getTLSKind() == VarDecl::TLS_Dynamic) 3400 CXXThreadLocals.push_back(D); 3401 setTLSMode(GV, *D); 3402 } 3403 3404 maybeSetTrivialComdat(*D, *GV); 3405 3406 // Emit the initializer function if necessary. 3407 if (NeedsGlobalCtor || NeedsGlobalDtor) 3408 EmitCXXGlobalVarDeclInitFunc(D, GV, NeedsGlobalCtor); 3409 3410 SanitizerMD->reportGlobalToASan(GV, *D, NeedsGlobalCtor); 3411 3412 // Emit global variable debug information. 3413 if (CGDebugInfo *DI = getModuleDebugInfo()) 3414 if (getCodeGenOpts().getDebugInfo() >= codegenoptions::LimitedDebugInfo) 3415 DI->EmitGlobalVariable(GV, D); 3416 } 3417 3418 static bool isVarDeclStrongDefinition(const ASTContext &Context, 3419 CodeGenModule &CGM, const VarDecl *D, 3420 bool NoCommon) { 3421 // Don't give variables common linkage if -fno-common was specified unless it 3422 // was overridden by a NoCommon attribute. 3423 if ((NoCommon || D->hasAttr<NoCommonAttr>()) && !D->hasAttr<CommonAttr>()) 3424 return true; 3425 3426 // C11 6.9.2/2: 3427 // A declaration of an identifier for an object that has file scope without 3428 // an initializer, and without a storage-class specifier or with the 3429 // storage-class specifier static, constitutes a tentative definition. 3430 if (D->getInit() || D->hasExternalStorage()) 3431 return true; 3432 3433 // A variable cannot be both common and exist in a section. 3434 if (D->hasAttr<SectionAttr>()) 3435 return true; 3436 3437 // A variable cannot be both common and exist in a section. 3438 // We don't try to determine which is the right section in the front-end. 3439 // If no specialized section name is applicable, it will resort to default. 3440 if (D->hasAttr<PragmaClangBSSSectionAttr>() || 3441 D->hasAttr<PragmaClangDataSectionAttr>() || 3442 D->hasAttr<PragmaClangRodataSectionAttr>()) 3443 return true; 3444 3445 // Thread local vars aren't considered common linkage. 3446 if (D->getTLSKind()) 3447 return true; 3448 3449 // Tentative definitions marked with WeakImportAttr are true definitions. 3450 if (D->hasAttr<WeakImportAttr>()) 3451 return true; 3452 3453 // A variable cannot be both common and exist in a comdat. 3454 if (shouldBeInCOMDAT(CGM, *D)) 3455 return true; 3456 3457 // Declarations with a required alignment do not have common linkage in MSVC 3458 // mode. 3459 if (Context.getTargetInfo().getCXXABI().isMicrosoft()) { 3460 if (D->hasAttr<AlignedAttr>()) 3461 return true; 3462 QualType VarType = D->getType(); 3463 if (Context.isAlignmentRequired(VarType)) 3464 return true; 3465 3466 if (const auto *RT = VarType->getAs<RecordType>()) { 3467 const RecordDecl *RD = RT->getDecl(); 3468 for (const FieldDecl *FD : RD->fields()) { 3469 if (FD->isBitField()) 3470 continue; 3471 if (FD->hasAttr<AlignedAttr>()) 3472 return true; 3473 if (Context.isAlignmentRequired(FD->getType())) 3474 return true; 3475 } 3476 } 3477 } 3478 3479 return false; 3480 } 3481 3482 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageForDeclarator( 3483 const DeclaratorDecl *D, GVALinkage Linkage, bool IsConstantVariable) { 3484 if (Linkage == GVA_Internal) 3485 return llvm::Function::InternalLinkage; 3486 3487 if (D->hasAttr<WeakAttr>()) { 3488 if (IsConstantVariable) 3489 return llvm::GlobalVariable::WeakODRLinkage; 3490 else 3491 return llvm::GlobalVariable::WeakAnyLinkage; 3492 } 3493 3494 // We are guaranteed to have a strong definition somewhere else, 3495 // so we can use available_externally linkage. 3496 if (Linkage == GVA_AvailableExternally) 3497 return llvm::GlobalValue::AvailableExternallyLinkage; 3498 3499 // Note that Apple's kernel linker doesn't support symbol 3500 // coalescing, so we need to avoid linkonce and weak linkages there. 3501 // Normally, this means we just map to internal, but for explicit 3502 // instantiations we'll map to external. 3503 3504 // In C++, the compiler has to emit a definition in every translation unit 3505 // that references the function. We should use linkonce_odr because 3506 // a) if all references in this translation unit are optimized away, we 3507 // don't need to codegen it. b) if the function persists, it needs to be 3508 // merged with other definitions. c) C++ has the ODR, so we know the 3509 // definition is dependable. 3510 if (Linkage == GVA_DiscardableODR) 3511 return !Context.getLangOpts().AppleKext ? llvm::Function::LinkOnceODRLinkage 3512 : llvm::Function::InternalLinkage; 3513 3514 // An explicit instantiation of a template has weak linkage, since 3515 // explicit instantiations can occur in multiple translation units 3516 // and must all be equivalent. However, we are not allowed to 3517 // throw away these explicit instantiations. 3518 // 3519 // We don't currently support CUDA device code spread out across multiple TUs, 3520 // so say that CUDA templates are either external (for kernels) or internal. 3521 // This lets llvm perform aggressive inter-procedural optimizations. 3522 if (Linkage == GVA_StrongODR) { 3523 if (Context.getLangOpts().AppleKext) 3524 return llvm::Function::ExternalLinkage; 3525 if (Context.getLangOpts().CUDA && Context.getLangOpts().CUDAIsDevice) 3526 return D->hasAttr<CUDAGlobalAttr>() ? llvm::Function::ExternalLinkage 3527 : llvm::Function::InternalLinkage; 3528 return llvm::Function::WeakODRLinkage; 3529 } 3530 3531 // C++ doesn't have tentative definitions and thus cannot have common 3532 // linkage. 3533 if (!getLangOpts().CPlusPlus && isa<VarDecl>(D) && 3534 !isVarDeclStrongDefinition(Context, *this, cast<VarDecl>(D), 3535 CodeGenOpts.NoCommon)) 3536 return llvm::GlobalVariable::CommonLinkage; 3537 3538 // selectany symbols are externally visible, so use weak instead of 3539 // linkonce. MSVC optimizes away references to const selectany globals, so 3540 // all definitions should be the same and ODR linkage should be used. 3541 // http://msdn.microsoft.com/en-us/library/5tkz6s71.aspx 3542 if (D->hasAttr<SelectAnyAttr>()) 3543 return llvm::GlobalVariable::WeakODRLinkage; 3544 3545 // Otherwise, we have strong external linkage. 3546 assert(Linkage == GVA_StrongExternal); 3547 return llvm::GlobalVariable::ExternalLinkage; 3548 } 3549 3550 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageVarDefinition( 3551 const VarDecl *VD, bool IsConstant) { 3552 GVALinkage Linkage = getContext().GetGVALinkageForVariable(VD); 3553 return getLLVMLinkageForDeclarator(VD, Linkage, IsConstant); 3554 } 3555 3556 /// Replace the uses of a function that was declared with a non-proto type. 3557 /// We want to silently drop extra arguments from call sites 3558 static void replaceUsesOfNonProtoConstant(llvm::Constant *old, 3559 llvm::Function *newFn) { 3560 // Fast path. 3561 if (old->use_empty()) return; 3562 3563 llvm::Type *newRetTy = newFn->getReturnType(); 3564 SmallVector<llvm::Value*, 4> newArgs; 3565 SmallVector<llvm::OperandBundleDef, 1> newBundles; 3566 3567 for (llvm::Value::use_iterator ui = old->use_begin(), ue = old->use_end(); 3568 ui != ue; ) { 3569 llvm::Value::use_iterator use = ui++; // Increment before the use is erased. 3570 llvm::User *user = use->getUser(); 3571 3572 // Recognize and replace uses of bitcasts. Most calls to 3573 // unprototyped functions will use bitcasts. 3574 if (auto *bitcast = dyn_cast<llvm::ConstantExpr>(user)) { 3575 if (bitcast->getOpcode() == llvm::Instruction::BitCast) 3576 replaceUsesOfNonProtoConstant(bitcast, newFn); 3577 continue; 3578 } 3579 3580 // Recognize calls to the function. 3581 llvm::CallSite callSite(user); 3582 if (!callSite) continue; 3583 if (!callSite.isCallee(&*use)) continue; 3584 3585 // If the return types don't match exactly, then we can't 3586 // transform this call unless it's dead. 3587 if (callSite->getType() != newRetTy && !callSite->use_empty()) 3588 continue; 3589 3590 // Get the call site's attribute list. 3591 SmallVector<llvm::AttributeSet, 8> newArgAttrs; 3592 llvm::AttributeList oldAttrs = callSite.getAttributes(); 3593 3594 // If the function was passed too few arguments, don't transform. 3595 unsigned newNumArgs = newFn->arg_size(); 3596 if (callSite.arg_size() < newNumArgs) continue; 3597 3598 // If extra arguments were passed, we silently drop them. 3599 // If any of the types mismatch, we don't transform. 3600 unsigned argNo = 0; 3601 bool dontTransform = false; 3602 for (llvm::Argument &A : newFn->args()) { 3603 if (callSite.getArgument(argNo)->getType() != A.getType()) { 3604 dontTransform = true; 3605 break; 3606 } 3607 3608 // Add any parameter attributes. 3609 newArgAttrs.push_back(oldAttrs.getParamAttributes(argNo)); 3610 argNo++; 3611 } 3612 if (dontTransform) 3613 continue; 3614 3615 // Okay, we can transform this. Create the new call instruction and copy 3616 // over the required information. 3617 newArgs.append(callSite.arg_begin(), callSite.arg_begin() + argNo); 3618 3619 // Copy over any operand bundles. 3620 callSite.getOperandBundlesAsDefs(newBundles); 3621 3622 llvm::CallSite newCall; 3623 if (callSite.isCall()) { 3624 newCall = llvm::CallInst::Create(newFn, newArgs, newBundles, "", 3625 callSite.getInstruction()); 3626 } else { 3627 auto *oldInvoke = cast<llvm::InvokeInst>(callSite.getInstruction()); 3628 newCall = llvm::InvokeInst::Create(newFn, 3629 oldInvoke->getNormalDest(), 3630 oldInvoke->getUnwindDest(), 3631 newArgs, newBundles, "", 3632 callSite.getInstruction()); 3633 } 3634 newArgs.clear(); // for the next iteration 3635 3636 if (!newCall->getType()->isVoidTy()) 3637 newCall->takeName(callSite.getInstruction()); 3638 newCall.setAttributes(llvm::AttributeList::get( 3639 newFn->getContext(), oldAttrs.getFnAttributes(), 3640 oldAttrs.getRetAttributes(), newArgAttrs)); 3641 newCall.setCallingConv(callSite.getCallingConv()); 3642 3643 // Finally, remove the old call, replacing any uses with the new one. 3644 if (!callSite->use_empty()) 3645 callSite->replaceAllUsesWith(newCall.getInstruction()); 3646 3647 // Copy debug location attached to CI. 3648 if (callSite->getDebugLoc()) 3649 newCall->setDebugLoc(callSite->getDebugLoc()); 3650 3651 callSite->eraseFromParent(); 3652 } 3653 } 3654 3655 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we 3656 /// implement a function with no prototype, e.g. "int foo() {}". If there are 3657 /// existing call uses of the old function in the module, this adjusts them to 3658 /// call the new function directly. 3659 /// 3660 /// This is not just a cleanup: the always_inline pass requires direct calls to 3661 /// functions to be able to inline them. If there is a bitcast in the way, it 3662 /// won't inline them. Instcombine normally deletes these calls, but it isn't 3663 /// run at -O0. 3664 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old, 3665 llvm::Function *NewFn) { 3666 // If we're redefining a global as a function, don't transform it. 3667 if (!isa<llvm::Function>(Old)) return; 3668 3669 replaceUsesOfNonProtoConstant(Old, NewFn); 3670 } 3671 3672 void CodeGenModule::HandleCXXStaticMemberVarInstantiation(VarDecl *VD) { 3673 auto DK = VD->isThisDeclarationADefinition(); 3674 if (DK == VarDecl::Definition && VD->hasAttr<DLLImportAttr>()) 3675 return; 3676 3677 TemplateSpecializationKind TSK = VD->getTemplateSpecializationKind(); 3678 // If we have a definition, this might be a deferred decl. If the 3679 // instantiation is explicit, make sure we emit it at the end. 3680 if (VD->getDefinition() && TSK == TSK_ExplicitInstantiationDefinition) 3681 GetAddrOfGlobalVar(VD); 3682 3683 EmitTopLevelDecl(VD); 3684 } 3685 3686 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD, 3687 llvm::GlobalValue *GV) { 3688 const auto *D = cast<FunctionDecl>(GD.getDecl()); 3689 3690 // Compute the function info and LLVM type. 3691 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 3692 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 3693 3694 // Get or create the prototype for the function. 3695 if (!GV || (GV->getType()->getElementType() != Ty)) 3696 GV = cast<llvm::GlobalValue>(GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, 3697 /*DontDefer=*/true, 3698 ForDefinition)); 3699 3700 // Already emitted. 3701 if (!GV->isDeclaration()) 3702 return; 3703 3704 // We need to set linkage and visibility on the function before 3705 // generating code for it because various parts of IR generation 3706 // want to propagate this information down (e.g. to local static 3707 // declarations). 3708 auto *Fn = cast<llvm::Function>(GV); 3709 setFunctionLinkage(GD, Fn); 3710 3711 // FIXME: this is redundant with part of setFunctionDefinitionAttributes 3712 setGVProperties(Fn, GD); 3713 3714 MaybeHandleStaticInExternC(D, Fn); 3715 3716 3717 maybeSetTrivialComdat(*D, *Fn); 3718 3719 CodeGenFunction(*this).GenerateCode(D, Fn, FI); 3720 3721 setNonAliasAttributes(GD, Fn); 3722 SetLLVMFunctionAttributesForDefinition(D, Fn); 3723 3724 if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>()) 3725 AddGlobalCtor(Fn, CA->getPriority()); 3726 if (const DestructorAttr *DA = D->getAttr<DestructorAttr>()) 3727 AddGlobalDtor(Fn, DA->getPriority()); 3728 if (D->hasAttr<AnnotateAttr>()) 3729 AddGlobalAnnotations(D, Fn); 3730 } 3731 3732 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) { 3733 const auto *D = cast<ValueDecl>(GD.getDecl()); 3734 const AliasAttr *AA = D->getAttr<AliasAttr>(); 3735 assert(AA && "Not an alias?"); 3736 3737 StringRef MangledName = getMangledName(GD); 3738 3739 if (AA->getAliasee() == MangledName) { 3740 Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0; 3741 return; 3742 } 3743 3744 // If there is a definition in the module, then it wins over the alias. 3745 // This is dubious, but allow it to be safe. Just ignore the alias. 3746 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 3747 if (Entry && !Entry->isDeclaration()) 3748 return; 3749 3750 Aliases.push_back(GD); 3751 3752 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType()); 3753 3754 // Create a reference to the named value. This ensures that it is emitted 3755 // if a deferred decl. 3756 llvm::Constant *Aliasee; 3757 if (isa<llvm::FunctionType>(DeclTy)) 3758 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GD, 3759 /*ForVTable=*/false); 3760 else 3761 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), 3762 llvm::PointerType::getUnqual(DeclTy), 3763 /*D=*/nullptr); 3764 3765 // Create the new alias itself, but don't set a name yet. 3766 auto *GA = llvm::GlobalAlias::create( 3767 DeclTy, 0, llvm::Function::ExternalLinkage, "", Aliasee, &getModule()); 3768 3769 if (Entry) { 3770 if (GA->getAliasee() == Entry) { 3771 Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0; 3772 return; 3773 } 3774 3775 assert(Entry->isDeclaration()); 3776 3777 // If there is a declaration in the module, then we had an extern followed 3778 // by the alias, as in: 3779 // extern int test6(); 3780 // ... 3781 // int test6() __attribute__((alias("test7"))); 3782 // 3783 // Remove it and replace uses of it with the alias. 3784 GA->takeName(Entry); 3785 3786 Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA, 3787 Entry->getType())); 3788 Entry->eraseFromParent(); 3789 } else { 3790 GA->setName(MangledName); 3791 } 3792 3793 // Set attributes which are particular to an alias; this is a 3794 // specialization of the attributes which may be set on a global 3795 // variable/function. 3796 if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakRefAttr>() || 3797 D->isWeakImported()) { 3798 GA->setLinkage(llvm::Function::WeakAnyLinkage); 3799 } 3800 3801 if (const auto *VD = dyn_cast<VarDecl>(D)) 3802 if (VD->getTLSKind()) 3803 setTLSMode(GA, *VD); 3804 3805 SetCommonAttributes(GD, GA); 3806 } 3807 3808 void CodeGenModule::emitIFuncDefinition(GlobalDecl GD) { 3809 const auto *D = cast<ValueDecl>(GD.getDecl()); 3810 const IFuncAttr *IFA = D->getAttr<IFuncAttr>(); 3811 assert(IFA && "Not an ifunc?"); 3812 3813 StringRef MangledName = getMangledName(GD); 3814 3815 if (IFA->getResolver() == MangledName) { 3816 Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1; 3817 return; 3818 } 3819 3820 // Report an error if some definition overrides ifunc. 3821 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 3822 if (Entry && !Entry->isDeclaration()) { 3823 GlobalDecl OtherGD; 3824 if (lookupRepresentativeDecl(MangledName, OtherGD) && 3825 DiagnosedConflictingDefinitions.insert(GD).second) { 3826 Diags.Report(D->getLocation(), diag::err_duplicate_mangled_name) 3827 << MangledName; 3828 Diags.Report(OtherGD.getDecl()->getLocation(), 3829 diag::note_previous_definition); 3830 } 3831 return; 3832 } 3833 3834 Aliases.push_back(GD); 3835 3836 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType()); 3837 llvm::Constant *Resolver = 3838 GetOrCreateLLVMFunction(IFA->getResolver(), DeclTy, GD, 3839 /*ForVTable=*/false); 3840 llvm::GlobalIFunc *GIF = 3841 llvm::GlobalIFunc::create(DeclTy, 0, llvm::Function::ExternalLinkage, 3842 "", Resolver, &getModule()); 3843 if (Entry) { 3844 if (GIF->getResolver() == Entry) { 3845 Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1; 3846 return; 3847 } 3848 assert(Entry->isDeclaration()); 3849 3850 // If there is a declaration in the module, then we had an extern followed 3851 // by the ifunc, as in: 3852 // extern int test(); 3853 // ... 3854 // int test() __attribute__((ifunc("resolver"))); 3855 // 3856 // Remove it and replace uses of it with the ifunc. 3857 GIF->takeName(Entry); 3858 3859 Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GIF, 3860 Entry->getType())); 3861 Entry->eraseFromParent(); 3862 } else 3863 GIF->setName(MangledName); 3864 3865 SetCommonAttributes(GD, GIF); 3866 } 3867 3868 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID, 3869 ArrayRef<llvm::Type*> Tys) { 3870 return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID, 3871 Tys); 3872 } 3873 3874 static llvm::StringMapEntry<llvm::GlobalVariable *> & 3875 GetConstantCFStringEntry(llvm::StringMap<llvm::GlobalVariable *> &Map, 3876 const StringLiteral *Literal, bool TargetIsLSB, 3877 bool &IsUTF16, unsigned &StringLength) { 3878 StringRef String = Literal->getString(); 3879 unsigned NumBytes = String.size(); 3880 3881 // Check for simple case. 3882 if (!Literal->containsNonAsciiOrNull()) { 3883 StringLength = NumBytes; 3884 return *Map.insert(std::make_pair(String, nullptr)).first; 3885 } 3886 3887 // Otherwise, convert the UTF8 literals into a string of shorts. 3888 IsUTF16 = true; 3889 3890 SmallVector<llvm::UTF16, 128> ToBuf(NumBytes + 1); // +1 for ending nulls. 3891 const llvm::UTF8 *FromPtr = (const llvm::UTF8 *)String.data(); 3892 llvm::UTF16 *ToPtr = &ToBuf[0]; 3893 3894 (void)llvm::ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, &ToPtr, 3895 ToPtr + NumBytes, llvm::strictConversion); 3896 3897 // ConvertUTF8toUTF16 returns the length in ToPtr. 3898 StringLength = ToPtr - &ToBuf[0]; 3899 3900 // Add an explicit null. 3901 *ToPtr = 0; 3902 return *Map.insert(std::make_pair( 3903 StringRef(reinterpret_cast<const char *>(ToBuf.data()), 3904 (StringLength + 1) * 2), 3905 nullptr)).first; 3906 } 3907 3908 ConstantAddress 3909 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) { 3910 unsigned StringLength = 0; 3911 bool isUTF16 = false; 3912 llvm::StringMapEntry<llvm::GlobalVariable *> &Entry = 3913 GetConstantCFStringEntry(CFConstantStringMap, Literal, 3914 getDataLayout().isLittleEndian(), isUTF16, 3915 StringLength); 3916 3917 if (auto *C = Entry.second) 3918 return ConstantAddress(C, CharUnits::fromQuantity(C->getAlignment())); 3919 3920 llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty); 3921 llvm::Constant *Zeros[] = { Zero, Zero }; 3922 3923 // If we don't already have it, get __CFConstantStringClassReference. 3924 if (!CFConstantStringClassRef) { 3925 llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy); 3926 Ty = llvm::ArrayType::get(Ty, 0); 3927 llvm::GlobalValue *GV = cast<llvm::GlobalValue>( 3928 CreateRuntimeVariable(Ty, "__CFConstantStringClassReference")); 3929 3930 if (getTriple().isOSBinFormatCOFF()) { 3931 IdentifierInfo &II = getContext().Idents.get(GV->getName()); 3932 TranslationUnitDecl *TUDecl = getContext().getTranslationUnitDecl(); 3933 DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl); 3934 3935 const VarDecl *VD = nullptr; 3936 for (const auto &Result : DC->lookup(&II)) 3937 if ((VD = dyn_cast<VarDecl>(Result))) 3938 break; 3939 3940 if (!VD || !VD->hasAttr<DLLExportAttr>()) { 3941 GV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass); 3942 GV->setLinkage(llvm::GlobalValue::ExternalLinkage); 3943 } else { 3944 GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass); 3945 GV->setLinkage(llvm::GlobalValue::ExternalLinkage); 3946 } 3947 } 3948 setDSOLocal(GV); 3949 3950 // Decay array -> ptr 3951 CFConstantStringClassRef = 3952 llvm::ConstantExpr::getGetElementPtr(Ty, GV, Zeros); 3953 } 3954 3955 QualType CFTy = getContext().getCFConstantStringType(); 3956 3957 auto *STy = cast<llvm::StructType>(getTypes().ConvertType(CFTy)); 3958 3959 ConstantInitBuilder Builder(*this); 3960 auto Fields = Builder.beginStruct(STy); 3961 3962 // Class pointer. 3963 Fields.add(cast<llvm::ConstantExpr>(CFConstantStringClassRef)); 3964 3965 // Flags. 3966 Fields.addInt(IntTy, isUTF16 ? 0x07d0 : 0x07C8); 3967 3968 // String pointer. 3969 llvm::Constant *C = nullptr; 3970 if (isUTF16) { 3971 auto Arr = llvm::makeArrayRef( 3972 reinterpret_cast<uint16_t *>(const_cast<char *>(Entry.first().data())), 3973 Entry.first().size() / 2); 3974 C = llvm::ConstantDataArray::get(VMContext, Arr); 3975 } else { 3976 C = llvm::ConstantDataArray::getString(VMContext, Entry.first()); 3977 } 3978 3979 // Note: -fwritable-strings doesn't make the backing store strings of 3980 // CFStrings writable. (See <rdar://problem/10657500>) 3981 auto *GV = 3982 new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true, 3983 llvm::GlobalValue::PrivateLinkage, C, ".str"); 3984 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 3985 // Don't enforce the target's minimum global alignment, since the only use 3986 // of the string is via this class initializer. 3987 CharUnits Align = isUTF16 3988 ? getContext().getTypeAlignInChars(getContext().ShortTy) 3989 : getContext().getTypeAlignInChars(getContext().CharTy); 3990 GV->setAlignment(Align.getQuantity()); 3991 3992 // FIXME: We set the section explicitly to avoid a bug in ld64 224.1. 3993 // Without it LLVM can merge the string with a non unnamed_addr one during 3994 // LTO. Doing that changes the section it ends in, which surprises ld64. 3995 if (getTriple().isOSBinFormatMachO()) 3996 GV->setSection(isUTF16 ? "__TEXT,__ustring" 3997 : "__TEXT,__cstring,cstring_literals"); 3998 3999 // String. 4000 llvm::Constant *Str = 4001 llvm::ConstantExpr::getGetElementPtr(GV->getValueType(), GV, Zeros); 4002 4003 if (isUTF16) 4004 // Cast the UTF16 string to the correct type. 4005 Str = llvm::ConstantExpr::getBitCast(Str, Int8PtrTy); 4006 Fields.add(Str); 4007 4008 // String length. 4009 auto Ty = getTypes().ConvertType(getContext().LongTy); 4010 Fields.addInt(cast<llvm::IntegerType>(Ty), StringLength); 4011 4012 CharUnits Alignment = getPointerAlign(); 4013 4014 // The struct. 4015 GV = Fields.finishAndCreateGlobal("_unnamed_cfstring_", Alignment, 4016 /*isConstant=*/false, 4017 llvm::GlobalVariable::PrivateLinkage); 4018 switch (getTriple().getObjectFormat()) { 4019 case llvm::Triple::UnknownObjectFormat: 4020 llvm_unreachable("unknown file format"); 4021 case llvm::Triple::COFF: 4022 case llvm::Triple::ELF: 4023 case llvm::Triple::Wasm: 4024 GV->setSection("cfstring"); 4025 break; 4026 case llvm::Triple::MachO: 4027 GV->setSection("__DATA,__cfstring"); 4028 break; 4029 } 4030 Entry.second = GV; 4031 4032 return ConstantAddress(GV, Alignment); 4033 } 4034 4035 bool CodeGenModule::getExpressionLocationsEnabled() const { 4036 return !CodeGenOpts.EmitCodeView || CodeGenOpts.DebugColumnInfo; 4037 } 4038 4039 QualType CodeGenModule::getObjCFastEnumerationStateType() { 4040 if (ObjCFastEnumerationStateType.isNull()) { 4041 RecordDecl *D = Context.buildImplicitRecord("__objcFastEnumerationState"); 4042 D->startDefinition(); 4043 4044 QualType FieldTypes[] = { 4045 Context.UnsignedLongTy, 4046 Context.getPointerType(Context.getObjCIdType()), 4047 Context.getPointerType(Context.UnsignedLongTy), 4048 Context.getConstantArrayType(Context.UnsignedLongTy, 4049 llvm::APInt(32, 5), ArrayType::Normal, 0) 4050 }; 4051 4052 for (size_t i = 0; i < 4; ++i) { 4053 FieldDecl *Field = FieldDecl::Create(Context, 4054 D, 4055 SourceLocation(), 4056 SourceLocation(), nullptr, 4057 FieldTypes[i], /*TInfo=*/nullptr, 4058 /*BitWidth=*/nullptr, 4059 /*Mutable=*/false, 4060 ICIS_NoInit); 4061 Field->setAccess(AS_public); 4062 D->addDecl(Field); 4063 } 4064 4065 D->completeDefinition(); 4066 ObjCFastEnumerationStateType = Context.getTagDeclType(D); 4067 } 4068 4069 return ObjCFastEnumerationStateType; 4070 } 4071 4072 llvm::Constant * 4073 CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) { 4074 assert(!E->getType()->isPointerType() && "Strings are always arrays"); 4075 4076 // Don't emit it as the address of the string, emit the string data itself 4077 // as an inline array. 4078 if (E->getCharByteWidth() == 1) { 4079 SmallString<64> Str(E->getString()); 4080 4081 // Resize the string to the right size, which is indicated by its type. 4082 const ConstantArrayType *CAT = Context.getAsConstantArrayType(E->getType()); 4083 Str.resize(CAT->getSize().getZExtValue()); 4084 return llvm::ConstantDataArray::getString(VMContext, Str, false); 4085 } 4086 4087 auto *AType = cast<llvm::ArrayType>(getTypes().ConvertType(E->getType())); 4088 llvm::Type *ElemTy = AType->getElementType(); 4089 unsigned NumElements = AType->getNumElements(); 4090 4091 // Wide strings have either 2-byte or 4-byte elements. 4092 if (ElemTy->getPrimitiveSizeInBits() == 16) { 4093 SmallVector<uint16_t, 32> Elements; 4094 Elements.reserve(NumElements); 4095 4096 for(unsigned i = 0, e = E->getLength(); i != e; ++i) 4097 Elements.push_back(E->getCodeUnit(i)); 4098 Elements.resize(NumElements); 4099 return llvm::ConstantDataArray::get(VMContext, Elements); 4100 } 4101 4102 assert(ElemTy->getPrimitiveSizeInBits() == 32); 4103 SmallVector<uint32_t, 32> Elements; 4104 Elements.reserve(NumElements); 4105 4106 for(unsigned i = 0, e = E->getLength(); i != e; ++i) 4107 Elements.push_back(E->getCodeUnit(i)); 4108 Elements.resize(NumElements); 4109 return llvm::ConstantDataArray::get(VMContext, Elements); 4110 } 4111 4112 static llvm::GlobalVariable * 4113 GenerateStringLiteral(llvm::Constant *C, llvm::GlobalValue::LinkageTypes LT, 4114 CodeGenModule &CGM, StringRef GlobalName, 4115 CharUnits Alignment) { 4116 unsigned AddrSpace = CGM.getContext().getTargetAddressSpace( 4117 CGM.getStringLiteralAddressSpace()); 4118 4119 llvm::Module &M = CGM.getModule(); 4120 // Create a global variable for this string 4121 auto *GV = new llvm::GlobalVariable( 4122 M, C->getType(), !CGM.getLangOpts().WritableStrings, LT, C, GlobalName, 4123 nullptr, llvm::GlobalVariable::NotThreadLocal, AddrSpace); 4124 GV->setAlignment(Alignment.getQuantity()); 4125 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 4126 if (GV->isWeakForLinker()) { 4127 assert(CGM.supportsCOMDAT() && "Only COFF uses weak string literals"); 4128 GV->setComdat(M.getOrInsertComdat(GV->getName())); 4129 } 4130 CGM.setDSOLocal(GV); 4131 4132 return GV; 4133 } 4134 4135 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a 4136 /// constant array for the given string literal. 4137 ConstantAddress 4138 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S, 4139 StringRef Name) { 4140 CharUnits Alignment = getContext().getAlignOfGlobalVarInChars(S->getType()); 4141 4142 llvm::Constant *C = GetConstantArrayFromStringLiteral(S); 4143 llvm::GlobalVariable **Entry = nullptr; 4144 if (!LangOpts.WritableStrings) { 4145 Entry = &ConstantStringMap[C]; 4146 if (auto GV = *Entry) { 4147 if (Alignment.getQuantity() > GV->getAlignment()) 4148 GV->setAlignment(Alignment.getQuantity()); 4149 return ConstantAddress(GV, Alignment); 4150 } 4151 } 4152 4153 SmallString<256> MangledNameBuffer; 4154 StringRef GlobalVariableName; 4155 llvm::GlobalValue::LinkageTypes LT; 4156 4157 // Mangle the string literal if the ABI allows for it. However, we cannot 4158 // do this if we are compiling with ASan or -fwritable-strings because they 4159 // rely on strings having normal linkage. 4160 if (!LangOpts.WritableStrings && 4161 !LangOpts.Sanitize.has(SanitizerKind::Address) && 4162 getCXXABI().getMangleContext().shouldMangleStringLiteral(S)) { 4163 llvm::raw_svector_ostream Out(MangledNameBuffer); 4164 getCXXABI().getMangleContext().mangleStringLiteral(S, Out); 4165 4166 LT = llvm::GlobalValue::LinkOnceODRLinkage; 4167 GlobalVariableName = MangledNameBuffer; 4168 } else { 4169 LT = llvm::GlobalValue::PrivateLinkage; 4170 GlobalVariableName = Name; 4171 } 4172 4173 auto GV = GenerateStringLiteral(C, LT, *this, GlobalVariableName, Alignment); 4174 if (Entry) 4175 *Entry = GV; 4176 4177 SanitizerMD->reportGlobalToASan(GV, S->getStrTokenLoc(0), "<string literal>", 4178 QualType()); 4179 4180 return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV), 4181 Alignment); 4182 } 4183 4184 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant 4185 /// array for the given ObjCEncodeExpr node. 4186 ConstantAddress 4187 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) { 4188 std::string Str; 4189 getContext().getObjCEncodingForType(E->getEncodedType(), Str); 4190 4191 return GetAddrOfConstantCString(Str); 4192 } 4193 4194 /// GetAddrOfConstantCString - Returns a pointer to a character array containing 4195 /// the literal and a terminating '\0' character. 4196 /// The result has pointer to array type. 4197 ConstantAddress CodeGenModule::GetAddrOfConstantCString( 4198 const std::string &Str, const char *GlobalName) { 4199 StringRef StrWithNull(Str.c_str(), Str.size() + 1); 4200 CharUnits Alignment = 4201 getContext().getAlignOfGlobalVarInChars(getContext().CharTy); 4202 4203 llvm::Constant *C = 4204 llvm::ConstantDataArray::getString(getLLVMContext(), StrWithNull, false); 4205 4206 // Don't share any string literals if strings aren't constant. 4207 llvm::GlobalVariable **Entry = nullptr; 4208 if (!LangOpts.WritableStrings) { 4209 Entry = &ConstantStringMap[C]; 4210 if (auto GV = *Entry) { 4211 if (Alignment.getQuantity() > GV->getAlignment()) 4212 GV->setAlignment(Alignment.getQuantity()); 4213 return ConstantAddress(GV, Alignment); 4214 } 4215 } 4216 4217 // Get the default prefix if a name wasn't specified. 4218 if (!GlobalName) 4219 GlobalName = ".str"; 4220 // Create a global variable for this. 4221 auto GV = GenerateStringLiteral(C, llvm::GlobalValue::PrivateLinkage, *this, 4222 GlobalName, Alignment); 4223 if (Entry) 4224 *Entry = GV; 4225 4226 return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV), 4227 Alignment); 4228 } 4229 4230 ConstantAddress CodeGenModule::GetAddrOfGlobalTemporary( 4231 const MaterializeTemporaryExpr *E, const Expr *Init) { 4232 assert((E->getStorageDuration() == SD_Static || 4233 E->getStorageDuration() == SD_Thread) && "not a global temporary"); 4234 const auto *VD = cast<VarDecl>(E->getExtendingDecl()); 4235 4236 // If we're not materializing a subobject of the temporary, keep the 4237 // cv-qualifiers from the type of the MaterializeTemporaryExpr. 4238 QualType MaterializedType = Init->getType(); 4239 if (Init == E->GetTemporaryExpr()) 4240 MaterializedType = E->getType(); 4241 4242 CharUnits Align = getContext().getTypeAlignInChars(MaterializedType); 4243 4244 if (llvm::Constant *Slot = MaterializedGlobalTemporaryMap[E]) 4245 return ConstantAddress(Slot, Align); 4246 4247 // FIXME: If an externally-visible declaration extends multiple temporaries, 4248 // we need to give each temporary the same name in every translation unit (and 4249 // we also need to make the temporaries externally-visible). 4250 SmallString<256> Name; 4251 llvm::raw_svector_ostream Out(Name); 4252 getCXXABI().getMangleContext().mangleReferenceTemporary( 4253 VD, E->getManglingNumber(), Out); 4254 4255 APValue *Value = nullptr; 4256 if (E->getStorageDuration() == SD_Static) { 4257 // We might have a cached constant initializer for this temporary. Note 4258 // that this might have a different value from the value computed by 4259 // evaluating the initializer if the surrounding constant expression 4260 // modifies the temporary. 4261 Value = getContext().getMaterializedTemporaryValue(E, false); 4262 if (Value && Value->isUninit()) 4263 Value = nullptr; 4264 } 4265 4266 // Try evaluating it now, it might have a constant initializer. 4267 Expr::EvalResult EvalResult; 4268 if (!Value && Init->EvaluateAsRValue(EvalResult, getContext()) && 4269 !EvalResult.hasSideEffects()) 4270 Value = &EvalResult.Val; 4271 4272 LangAS AddrSpace = 4273 VD ? GetGlobalVarAddressSpace(VD) : MaterializedType.getAddressSpace(); 4274 4275 Optional<ConstantEmitter> emitter; 4276 llvm::Constant *InitialValue = nullptr; 4277 bool Constant = false; 4278 llvm::Type *Type; 4279 if (Value) { 4280 // The temporary has a constant initializer, use it. 4281 emitter.emplace(*this); 4282 InitialValue = emitter->emitForInitializer(*Value, AddrSpace, 4283 MaterializedType); 4284 Constant = isTypeConstant(MaterializedType, /*ExcludeCtor*/Value); 4285 Type = InitialValue->getType(); 4286 } else { 4287 // No initializer, the initialization will be provided when we 4288 // initialize the declaration which performed lifetime extension. 4289 Type = getTypes().ConvertTypeForMem(MaterializedType); 4290 } 4291 4292 // Create a global variable for this lifetime-extended temporary. 4293 llvm::GlobalValue::LinkageTypes Linkage = 4294 getLLVMLinkageVarDefinition(VD, Constant); 4295 if (Linkage == llvm::GlobalVariable::ExternalLinkage) { 4296 const VarDecl *InitVD; 4297 if (VD->isStaticDataMember() && VD->getAnyInitializer(InitVD) && 4298 isa<CXXRecordDecl>(InitVD->getLexicalDeclContext())) { 4299 // Temporaries defined inside a class get linkonce_odr linkage because the 4300 // class can be defined in multiple translation units. 4301 Linkage = llvm::GlobalVariable::LinkOnceODRLinkage; 4302 } else { 4303 // There is no need for this temporary to have external linkage if the 4304 // VarDecl has external linkage. 4305 Linkage = llvm::GlobalVariable::InternalLinkage; 4306 } 4307 } 4308 auto TargetAS = getContext().getTargetAddressSpace(AddrSpace); 4309 auto *GV = new llvm::GlobalVariable( 4310 getModule(), Type, Constant, Linkage, InitialValue, Name.c_str(), 4311 /*InsertBefore=*/nullptr, llvm::GlobalVariable::NotThreadLocal, TargetAS); 4312 if (emitter) emitter->finalize(GV); 4313 setGVProperties(GV, VD); 4314 GV->setAlignment(Align.getQuantity()); 4315 if (supportsCOMDAT() && GV->isWeakForLinker()) 4316 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 4317 if (VD->getTLSKind()) 4318 setTLSMode(GV, *VD); 4319 llvm::Constant *CV = GV; 4320 if (AddrSpace != LangAS::Default) 4321 CV = getTargetCodeGenInfo().performAddrSpaceCast( 4322 *this, GV, AddrSpace, LangAS::Default, 4323 Type->getPointerTo( 4324 getContext().getTargetAddressSpace(LangAS::Default))); 4325 MaterializedGlobalTemporaryMap[E] = CV; 4326 return ConstantAddress(CV, Align); 4327 } 4328 4329 /// EmitObjCPropertyImplementations - Emit information for synthesized 4330 /// properties for an implementation. 4331 void CodeGenModule::EmitObjCPropertyImplementations(const 4332 ObjCImplementationDecl *D) { 4333 for (const auto *PID : D->property_impls()) { 4334 // Dynamic is just for type-checking. 4335 if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) { 4336 ObjCPropertyDecl *PD = PID->getPropertyDecl(); 4337 4338 // Determine which methods need to be implemented, some may have 4339 // been overridden. Note that ::isPropertyAccessor is not the method 4340 // we want, that just indicates if the decl came from a 4341 // property. What we want to know is if the method is defined in 4342 // this implementation. 4343 if (!D->getInstanceMethod(PD->getGetterName())) 4344 CodeGenFunction(*this).GenerateObjCGetter( 4345 const_cast<ObjCImplementationDecl *>(D), PID); 4346 if (!PD->isReadOnly() && 4347 !D->getInstanceMethod(PD->getSetterName())) 4348 CodeGenFunction(*this).GenerateObjCSetter( 4349 const_cast<ObjCImplementationDecl *>(D), PID); 4350 } 4351 } 4352 } 4353 4354 static bool needsDestructMethod(ObjCImplementationDecl *impl) { 4355 const ObjCInterfaceDecl *iface = impl->getClassInterface(); 4356 for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin(); 4357 ivar; ivar = ivar->getNextIvar()) 4358 if (ivar->getType().isDestructedType()) 4359 return true; 4360 4361 return false; 4362 } 4363 4364 static bool AllTrivialInitializers(CodeGenModule &CGM, 4365 ObjCImplementationDecl *D) { 4366 CodeGenFunction CGF(CGM); 4367 for (ObjCImplementationDecl::init_iterator B = D->init_begin(), 4368 E = D->init_end(); B != E; ++B) { 4369 CXXCtorInitializer *CtorInitExp = *B; 4370 Expr *Init = CtorInitExp->getInit(); 4371 if (!CGF.isTrivialInitializer(Init)) 4372 return false; 4373 } 4374 return true; 4375 } 4376 4377 /// EmitObjCIvarInitializations - Emit information for ivar initialization 4378 /// for an implementation. 4379 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) { 4380 // We might need a .cxx_destruct even if we don't have any ivar initializers. 4381 if (needsDestructMethod(D)) { 4382 IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct"); 4383 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 4384 ObjCMethodDecl *DTORMethod = 4385 ObjCMethodDecl::Create(getContext(), D->getLocation(), D->getLocation(), 4386 cxxSelector, getContext().VoidTy, nullptr, D, 4387 /*isInstance=*/true, /*isVariadic=*/false, 4388 /*isPropertyAccessor=*/true, /*isImplicitlyDeclared=*/true, 4389 /*isDefined=*/false, ObjCMethodDecl::Required); 4390 D->addInstanceMethod(DTORMethod); 4391 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false); 4392 D->setHasDestructors(true); 4393 } 4394 4395 // If the implementation doesn't have any ivar initializers, we don't need 4396 // a .cxx_construct. 4397 if (D->getNumIvarInitializers() == 0 || 4398 AllTrivialInitializers(*this, D)) 4399 return; 4400 4401 IdentifierInfo *II = &getContext().Idents.get(".cxx_construct"); 4402 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 4403 // The constructor returns 'self'. 4404 ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(getContext(), 4405 D->getLocation(), 4406 D->getLocation(), 4407 cxxSelector, 4408 getContext().getObjCIdType(), 4409 nullptr, D, /*isInstance=*/true, 4410 /*isVariadic=*/false, 4411 /*isPropertyAccessor=*/true, 4412 /*isImplicitlyDeclared=*/true, 4413 /*isDefined=*/false, 4414 ObjCMethodDecl::Required); 4415 D->addInstanceMethod(CTORMethod); 4416 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true); 4417 D->setHasNonZeroConstructors(true); 4418 } 4419 4420 // EmitLinkageSpec - Emit all declarations in a linkage spec. 4421 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) { 4422 if (LSD->getLanguage() != LinkageSpecDecl::lang_c && 4423 LSD->getLanguage() != LinkageSpecDecl::lang_cxx) { 4424 ErrorUnsupported(LSD, "linkage spec"); 4425 return; 4426 } 4427 4428 EmitDeclContext(LSD); 4429 } 4430 4431 void CodeGenModule::EmitDeclContext(const DeclContext *DC) { 4432 for (auto *I : DC->decls()) { 4433 // Unlike other DeclContexts, the contents of an ObjCImplDecl at TU scope 4434 // are themselves considered "top-level", so EmitTopLevelDecl on an 4435 // ObjCImplDecl does not recursively visit them. We need to do that in 4436 // case they're nested inside another construct (LinkageSpecDecl / 4437 // ExportDecl) that does stop them from being considered "top-level". 4438 if (auto *OID = dyn_cast<ObjCImplDecl>(I)) { 4439 for (auto *M : OID->methods()) 4440 EmitTopLevelDecl(M); 4441 } 4442 4443 EmitTopLevelDecl(I); 4444 } 4445 } 4446 4447 /// EmitTopLevelDecl - Emit code for a single top level declaration. 4448 void CodeGenModule::EmitTopLevelDecl(Decl *D) { 4449 // Ignore dependent declarations. 4450 if (D->isTemplated()) 4451 return; 4452 4453 switch (D->getKind()) { 4454 case Decl::CXXConversion: 4455 case Decl::CXXMethod: 4456 case Decl::Function: 4457 EmitGlobal(cast<FunctionDecl>(D)); 4458 // Always provide some coverage mapping 4459 // even for the functions that aren't emitted. 4460 AddDeferredUnusedCoverageMapping(D); 4461 break; 4462 4463 case Decl::CXXDeductionGuide: 4464 // Function-like, but does not result in code emission. 4465 break; 4466 4467 case Decl::Var: 4468 case Decl::Decomposition: 4469 case Decl::VarTemplateSpecialization: 4470 EmitGlobal(cast<VarDecl>(D)); 4471 if (auto *DD = dyn_cast<DecompositionDecl>(D)) 4472 for (auto *B : DD->bindings()) 4473 if (auto *HD = B->getHoldingVar()) 4474 EmitGlobal(HD); 4475 break; 4476 4477 // Indirect fields from global anonymous structs and unions can be 4478 // ignored; only the actual variable requires IR gen support. 4479 case Decl::IndirectField: 4480 break; 4481 4482 // C++ Decls 4483 case Decl::Namespace: 4484 EmitDeclContext(cast<NamespaceDecl>(D)); 4485 break; 4486 case Decl::ClassTemplateSpecialization: { 4487 const auto *Spec = cast<ClassTemplateSpecializationDecl>(D); 4488 if (DebugInfo && 4489 Spec->getSpecializationKind() == TSK_ExplicitInstantiationDefinition && 4490 Spec->hasDefinition()) 4491 DebugInfo->completeTemplateDefinition(*Spec); 4492 } LLVM_FALLTHROUGH; 4493 case Decl::CXXRecord: 4494 if (DebugInfo) { 4495 if (auto *ES = D->getASTContext().getExternalSource()) 4496 if (ES->hasExternalDefinitions(D) == ExternalASTSource::EK_Never) 4497 DebugInfo->completeUnusedClass(cast<CXXRecordDecl>(*D)); 4498 } 4499 // Emit any static data members, they may be definitions. 4500 for (auto *I : cast<CXXRecordDecl>(D)->decls()) 4501 if (isa<VarDecl>(I) || isa<CXXRecordDecl>(I)) 4502 EmitTopLevelDecl(I); 4503 break; 4504 // No code generation needed. 4505 case Decl::UsingShadow: 4506 case Decl::ClassTemplate: 4507 case Decl::VarTemplate: 4508 case Decl::VarTemplatePartialSpecialization: 4509 case Decl::FunctionTemplate: 4510 case Decl::TypeAliasTemplate: 4511 case Decl::Block: 4512 case Decl::Empty: 4513 break; 4514 case Decl::Using: // using X; [C++] 4515 if (CGDebugInfo *DI = getModuleDebugInfo()) 4516 DI->EmitUsingDecl(cast<UsingDecl>(*D)); 4517 return; 4518 case Decl::NamespaceAlias: 4519 if (CGDebugInfo *DI = getModuleDebugInfo()) 4520 DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(*D)); 4521 return; 4522 case Decl::UsingDirective: // using namespace X; [C++] 4523 if (CGDebugInfo *DI = getModuleDebugInfo()) 4524 DI->EmitUsingDirective(cast<UsingDirectiveDecl>(*D)); 4525 return; 4526 case Decl::CXXConstructor: 4527 getCXXABI().EmitCXXConstructors(cast<CXXConstructorDecl>(D)); 4528 break; 4529 case Decl::CXXDestructor: 4530 getCXXABI().EmitCXXDestructors(cast<CXXDestructorDecl>(D)); 4531 break; 4532 4533 case Decl::StaticAssert: 4534 // Nothing to do. 4535 break; 4536 4537 // Objective-C Decls 4538 4539 // Forward declarations, no (immediate) code generation. 4540 case Decl::ObjCInterface: 4541 case Decl::ObjCCategory: 4542 break; 4543 4544 case Decl::ObjCProtocol: { 4545 auto *Proto = cast<ObjCProtocolDecl>(D); 4546 if (Proto->isThisDeclarationADefinition()) 4547 ObjCRuntime->GenerateProtocol(Proto); 4548 break; 4549 } 4550 4551 case Decl::ObjCCategoryImpl: 4552 // Categories have properties but don't support synthesize so we 4553 // can ignore them here. 4554 ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D)); 4555 break; 4556 4557 case Decl::ObjCImplementation: { 4558 auto *OMD = cast<ObjCImplementationDecl>(D); 4559 EmitObjCPropertyImplementations(OMD); 4560 EmitObjCIvarInitializations(OMD); 4561 ObjCRuntime->GenerateClass(OMD); 4562 // Emit global variable debug information. 4563 if (CGDebugInfo *DI = getModuleDebugInfo()) 4564 if (getCodeGenOpts().getDebugInfo() >= codegenoptions::LimitedDebugInfo) 4565 DI->getOrCreateInterfaceType(getContext().getObjCInterfaceType( 4566 OMD->getClassInterface()), OMD->getLocation()); 4567 break; 4568 } 4569 case Decl::ObjCMethod: { 4570 auto *OMD = cast<ObjCMethodDecl>(D); 4571 // If this is not a prototype, emit the body. 4572 if (OMD->getBody()) 4573 CodeGenFunction(*this).GenerateObjCMethod(OMD); 4574 break; 4575 } 4576 case Decl::ObjCCompatibleAlias: 4577 ObjCRuntime->RegisterAlias(cast<ObjCCompatibleAliasDecl>(D)); 4578 break; 4579 4580 case Decl::PragmaComment: { 4581 const auto *PCD = cast<PragmaCommentDecl>(D); 4582 switch (PCD->getCommentKind()) { 4583 case PCK_Unknown: 4584 llvm_unreachable("unexpected pragma comment kind"); 4585 case PCK_Linker: 4586 AppendLinkerOptions(PCD->getArg()); 4587 break; 4588 case PCK_Lib: 4589 if (getTarget().getTriple().isOSBinFormatELF() && 4590 !getTarget().getTriple().isPS4()) 4591 AddELFLibDirective(PCD->getArg()); 4592 else 4593 AddDependentLib(PCD->getArg()); 4594 break; 4595 case PCK_Compiler: 4596 case PCK_ExeStr: 4597 case PCK_User: 4598 break; // We ignore all of these. 4599 } 4600 break; 4601 } 4602 4603 case Decl::PragmaDetectMismatch: { 4604 const auto *PDMD = cast<PragmaDetectMismatchDecl>(D); 4605 AddDetectMismatch(PDMD->getName(), PDMD->getValue()); 4606 break; 4607 } 4608 4609 case Decl::LinkageSpec: 4610 EmitLinkageSpec(cast<LinkageSpecDecl>(D)); 4611 break; 4612 4613 case Decl::FileScopeAsm: { 4614 // File-scope asm is ignored during device-side CUDA compilation. 4615 if (LangOpts.CUDA && LangOpts.CUDAIsDevice) 4616 break; 4617 // File-scope asm is ignored during device-side OpenMP compilation. 4618 if (LangOpts.OpenMPIsDevice) 4619 break; 4620 auto *AD = cast<FileScopeAsmDecl>(D); 4621 getModule().appendModuleInlineAsm(AD->getAsmString()->getString()); 4622 break; 4623 } 4624 4625 case Decl::Import: { 4626 auto *Import = cast<ImportDecl>(D); 4627 4628 // If we've already imported this module, we're done. 4629 if (!ImportedModules.insert(Import->getImportedModule())) 4630 break; 4631 4632 // Emit debug information for direct imports. 4633 if (!Import->getImportedOwningModule()) { 4634 if (CGDebugInfo *DI = getModuleDebugInfo()) 4635 DI->EmitImportDecl(*Import); 4636 } 4637 4638 // Find all of the submodules and emit the module initializers. 4639 llvm::SmallPtrSet<clang::Module *, 16> Visited; 4640 SmallVector<clang::Module *, 16> Stack; 4641 Visited.insert(Import->getImportedModule()); 4642 Stack.push_back(Import->getImportedModule()); 4643 4644 while (!Stack.empty()) { 4645 clang::Module *Mod = Stack.pop_back_val(); 4646 if (!EmittedModuleInitializers.insert(Mod).second) 4647 continue; 4648 4649 for (auto *D : Context.getModuleInitializers(Mod)) 4650 EmitTopLevelDecl(D); 4651 4652 // Visit the submodules of this module. 4653 for (clang::Module::submodule_iterator Sub = Mod->submodule_begin(), 4654 SubEnd = Mod->submodule_end(); 4655 Sub != SubEnd; ++Sub) { 4656 // Skip explicit children; they need to be explicitly imported to emit 4657 // the initializers. 4658 if ((*Sub)->IsExplicit) 4659 continue; 4660 4661 if (Visited.insert(*Sub).second) 4662 Stack.push_back(*Sub); 4663 } 4664 } 4665 break; 4666 } 4667 4668 case Decl::Export: 4669 EmitDeclContext(cast<ExportDecl>(D)); 4670 break; 4671 4672 case Decl::OMPThreadPrivate: 4673 EmitOMPThreadPrivateDecl(cast<OMPThreadPrivateDecl>(D)); 4674 break; 4675 4676 case Decl::OMPDeclareReduction: 4677 EmitOMPDeclareReduction(cast<OMPDeclareReductionDecl>(D)); 4678 break; 4679 4680 default: 4681 // Make sure we handled everything we should, every other kind is a 4682 // non-top-level decl. FIXME: Would be nice to have an isTopLevelDeclKind 4683 // function. Need to recode Decl::Kind to do that easily. 4684 assert(isa<TypeDecl>(D) && "Unsupported decl kind"); 4685 break; 4686 } 4687 } 4688 4689 void CodeGenModule::AddDeferredUnusedCoverageMapping(Decl *D) { 4690 // Do we need to generate coverage mapping? 4691 if (!CodeGenOpts.CoverageMapping) 4692 return; 4693 switch (D->getKind()) { 4694 case Decl::CXXConversion: 4695 case Decl::CXXMethod: 4696 case Decl::Function: 4697 case Decl::ObjCMethod: 4698 case Decl::CXXConstructor: 4699 case Decl::CXXDestructor: { 4700 if (!cast<FunctionDecl>(D)->doesThisDeclarationHaveABody()) 4701 return; 4702 SourceManager &SM = getContext().getSourceManager(); 4703 if (LimitedCoverage && SM.getMainFileID() != SM.getFileID(D->getLocStart())) 4704 return; 4705 auto I = DeferredEmptyCoverageMappingDecls.find(D); 4706 if (I == DeferredEmptyCoverageMappingDecls.end()) 4707 DeferredEmptyCoverageMappingDecls[D] = true; 4708 break; 4709 } 4710 default: 4711 break; 4712 }; 4713 } 4714 4715 void CodeGenModule::ClearUnusedCoverageMapping(const Decl *D) { 4716 // Do we need to generate coverage mapping? 4717 if (!CodeGenOpts.CoverageMapping) 4718 return; 4719 if (const auto *Fn = dyn_cast<FunctionDecl>(D)) { 4720 if (Fn->isTemplateInstantiation()) 4721 ClearUnusedCoverageMapping(Fn->getTemplateInstantiationPattern()); 4722 } 4723 auto I = DeferredEmptyCoverageMappingDecls.find(D); 4724 if (I == DeferredEmptyCoverageMappingDecls.end()) 4725 DeferredEmptyCoverageMappingDecls[D] = false; 4726 else 4727 I->second = false; 4728 } 4729 4730 void CodeGenModule::EmitDeferredUnusedCoverageMappings() { 4731 // We call takeVector() here to avoid use-after-free. 4732 // FIXME: DeferredEmptyCoverageMappingDecls is getting mutated because 4733 // we deserialize function bodies to emit coverage info for them, and that 4734 // deserializes more declarations. How should we handle that case? 4735 for (const auto &Entry : DeferredEmptyCoverageMappingDecls.takeVector()) { 4736 if (!Entry.second) 4737 continue; 4738 const Decl *D = Entry.first; 4739 switch (D->getKind()) { 4740 case Decl::CXXConversion: 4741 case Decl::CXXMethod: 4742 case Decl::Function: 4743 case Decl::ObjCMethod: { 4744 CodeGenPGO PGO(*this); 4745 GlobalDecl GD(cast<FunctionDecl>(D)); 4746 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 4747 getFunctionLinkage(GD)); 4748 break; 4749 } 4750 case Decl::CXXConstructor: { 4751 CodeGenPGO PGO(*this); 4752 GlobalDecl GD(cast<CXXConstructorDecl>(D), Ctor_Base); 4753 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 4754 getFunctionLinkage(GD)); 4755 break; 4756 } 4757 case Decl::CXXDestructor: { 4758 CodeGenPGO PGO(*this); 4759 GlobalDecl GD(cast<CXXDestructorDecl>(D), Dtor_Base); 4760 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 4761 getFunctionLinkage(GD)); 4762 break; 4763 } 4764 default: 4765 break; 4766 }; 4767 } 4768 } 4769 4770 /// Turns the given pointer into a constant. 4771 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context, 4772 const void *Ptr) { 4773 uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr); 4774 llvm::Type *i64 = llvm::Type::getInt64Ty(Context); 4775 return llvm::ConstantInt::get(i64, PtrInt); 4776 } 4777 4778 static void EmitGlobalDeclMetadata(CodeGenModule &CGM, 4779 llvm::NamedMDNode *&GlobalMetadata, 4780 GlobalDecl D, 4781 llvm::GlobalValue *Addr) { 4782 if (!GlobalMetadata) 4783 GlobalMetadata = 4784 CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs"); 4785 4786 // TODO: should we report variant information for ctors/dtors? 4787 llvm::Metadata *Ops[] = {llvm::ConstantAsMetadata::get(Addr), 4788 llvm::ConstantAsMetadata::get(GetPointerConstant( 4789 CGM.getLLVMContext(), D.getDecl()))}; 4790 GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops)); 4791 } 4792 4793 /// For each function which is declared within an extern "C" region and marked 4794 /// as 'used', but has internal linkage, create an alias from the unmangled 4795 /// name to the mangled name if possible. People expect to be able to refer 4796 /// to such functions with an unmangled name from inline assembly within the 4797 /// same translation unit. 4798 void CodeGenModule::EmitStaticExternCAliases() { 4799 if (!getTargetCodeGenInfo().shouldEmitStaticExternCAliases()) 4800 return; 4801 for (auto &I : StaticExternCValues) { 4802 IdentifierInfo *Name = I.first; 4803 llvm::GlobalValue *Val = I.second; 4804 if (Val && !getModule().getNamedValue(Name->getName())) 4805 addUsedGlobal(llvm::GlobalAlias::create(Name->getName(), Val)); 4806 } 4807 } 4808 4809 bool CodeGenModule::lookupRepresentativeDecl(StringRef MangledName, 4810 GlobalDecl &Result) const { 4811 auto Res = Manglings.find(MangledName); 4812 if (Res == Manglings.end()) 4813 return false; 4814 Result = Res->getValue(); 4815 return true; 4816 } 4817 4818 /// Emits metadata nodes associating all the global values in the 4819 /// current module with the Decls they came from. This is useful for 4820 /// projects using IR gen as a subroutine. 4821 /// 4822 /// Since there's currently no way to associate an MDNode directly 4823 /// with an llvm::GlobalValue, we create a global named metadata 4824 /// with the name 'clang.global.decl.ptrs'. 4825 void CodeGenModule::EmitDeclMetadata() { 4826 llvm::NamedMDNode *GlobalMetadata = nullptr; 4827 4828 for (auto &I : MangledDeclNames) { 4829 llvm::GlobalValue *Addr = getModule().getNamedValue(I.second); 4830 // Some mangled names don't necessarily have an associated GlobalValue 4831 // in this module, e.g. if we mangled it for DebugInfo. 4832 if (Addr) 4833 EmitGlobalDeclMetadata(*this, GlobalMetadata, I.first, Addr); 4834 } 4835 } 4836 4837 /// Emits metadata nodes for all the local variables in the current 4838 /// function. 4839 void CodeGenFunction::EmitDeclMetadata() { 4840 if (LocalDeclMap.empty()) return; 4841 4842 llvm::LLVMContext &Context = getLLVMContext(); 4843 4844 // Find the unique metadata ID for this name. 4845 unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr"); 4846 4847 llvm::NamedMDNode *GlobalMetadata = nullptr; 4848 4849 for (auto &I : LocalDeclMap) { 4850 const Decl *D = I.first; 4851 llvm::Value *Addr = I.second.getPointer(); 4852 if (auto *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) { 4853 llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D); 4854 Alloca->setMetadata( 4855 DeclPtrKind, llvm::MDNode::get( 4856 Context, llvm::ValueAsMetadata::getConstant(DAddr))); 4857 } else if (auto *GV = dyn_cast<llvm::GlobalValue>(Addr)) { 4858 GlobalDecl GD = GlobalDecl(cast<VarDecl>(D)); 4859 EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV); 4860 } 4861 } 4862 } 4863 4864 void CodeGenModule::EmitVersionIdentMetadata() { 4865 llvm::NamedMDNode *IdentMetadata = 4866 TheModule.getOrInsertNamedMetadata("llvm.ident"); 4867 std::string Version = getClangFullVersion(); 4868 llvm::LLVMContext &Ctx = TheModule.getContext(); 4869 4870 llvm::Metadata *IdentNode[] = {llvm::MDString::get(Ctx, Version)}; 4871 IdentMetadata->addOperand(llvm::MDNode::get(Ctx, IdentNode)); 4872 } 4873 4874 void CodeGenModule::EmitTargetMetadata() { 4875 // Warning, new MangledDeclNames may be appended within this loop. 4876 // We rely on MapVector insertions adding new elements to the end 4877 // of the container. 4878 // FIXME: Move this loop into the one target that needs it, and only 4879 // loop over those declarations for which we couldn't emit the target 4880 // metadata when we emitted the declaration. 4881 for (unsigned I = 0; I != MangledDeclNames.size(); ++I) { 4882 auto Val = *(MangledDeclNames.begin() + I); 4883 const Decl *D = Val.first.getDecl()->getMostRecentDecl(); 4884 llvm::GlobalValue *GV = GetGlobalValue(Val.second); 4885 getTargetCodeGenInfo().emitTargetMD(D, GV, *this); 4886 } 4887 } 4888 4889 void CodeGenModule::EmitCoverageFile() { 4890 if (getCodeGenOpts().CoverageDataFile.empty() && 4891 getCodeGenOpts().CoverageNotesFile.empty()) 4892 return; 4893 4894 llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu"); 4895 if (!CUNode) 4896 return; 4897 4898 llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov"); 4899 llvm::LLVMContext &Ctx = TheModule.getContext(); 4900 auto *CoverageDataFile = 4901 llvm::MDString::get(Ctx, getCodeGenOpts().CoverageDataFile); 4902 auto *CoverageNotesFile = 4903 llvm::MDString::get(Ctx, getCodeGenOpts().CoverageNotesFile); 4904 for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) { 4905 llvm::MDNode *CU = CUNode->getOperand(i); 4906 llvm::Metadata *Elts[] = {CoverageNotesFile, CoverageDataFile, CU}; 4907 GCov->addOperand(llvm::MDNode::get(Ctx, Elts)); 4908 } 4909 } 4910 4911 llvm::Constant *CodeGenModule::EmitUuidofInitializer(StringRef Uuid) { 4912 // Sema has checked that all uuid strings are of the form 4913 // "12345678-1234-1234-1234-1234567890ab". 4914 assert(Uuid.size() == 36); 4915 for (unsigned i = 0; i < 36; ++i) { 4916 if (i == 8 || i == 13 || i == 18 || i == 23) assert(Uuid[i] == '-'); 4917 else assert(isHexDigit(Uuid[i])); 4918 } 4919 4920 // The starts of all bytes of Field3 in Uuid. Field 3 is "1234-1234567890ab". 4921 const unsigned Field3ValueOffsets[8] = { 19, 21, 24, 26, 28, 30, 32, 34 }; 4922 4923 llvm::Constant *Field3[8]; 4924 for (unsigned Idx = 0; Idx < 8; ++Idx) 4925 Field3[Idx] = llvm::ConstantInt::get( 4926 Int8Ty, Uuid.substr(Field3ValueOffsets[Idx], 2), 16); 4927 4928 llvm::Constant *Fields[4] = { 4929 llvm::ConstantInt::get(Int32Ty, Uuid.substr(0, 8), 16), 4930 llvm::ConstantInt::get(Int16Ty, Uuid.substr(9, 4), 16), 4931 llvm::ConstantInt::get(Int16Ty, Uuid.substr(14, 4), 16), 4932 llvm::ConstantArray::get(llvm::ArrayType::get(Int8Ty, 8), Field3) 4933 }; 4934 4935 return llvm::ConstantStruct::getAnon(Fields); 4936 } 4937 4938 llvm::Constant *CodeGenModule::GetAddrOfRTTIDescriptor(QualType Ty, 4939 bool ForEH) { 4940 // Return a bogus pointer if RTTI is disabled, unless it's for EH. 4941 // FIXME: should we even be calling this method if RTTI is disabled 4942 // and it's not for EH? 4943 if ((!ForEH && !getLangOpts().RTTI) || getLangOpts().CUDAIsDevice) 4944 return llvm::Constant::getNullValue(Int8PtrTy); 4945 4946 if (ForEH && Ty->isObjCObjectPointerType() && 4947 LangOpts.ObjCRuntime.isGNUFamily()) 4948 return ObjCRuntime->GetEHType(Ty); 4949 4950 return getCXXABI().getAddrOfRTTIDescriptor(Ty); 4951 } 4952 4953 void CodeGenModule::EmitOMPThreadPrivateDecl(const OMPThreadPrivateDecl *D) { 4954 // Do not emit threadprivates in simd-only mode. 4955 if (LangOpts.OpenMP && LangOpts.OpenMPSimd) 4956 return; 4957 for (auto RefExpr : D->varlists()) { 4958 auto *VD = cast<VarDecl>(cast<DeclRefExpr>(RefExpr)->getDecl()); 4959 bool PerformInit = 4960 VD->getAnyInitializer() && 4961 !VD->getAnyInitializer()->isConstantInitializer(getContext(), 4962 /*ForRef=*/false); 4963 4964 Address Addr(GetAddrOfGlobalVar(VD), getContext().getDeclAlign(VD)); 4965 if (auto InitFunction = getOpenMPRuntime().emitThreadPrivateVarDefinition( 4966 VD, Addr, RefExpr->getLocStart(), PerformInit)) 4967 CXXGlobalInits.push_back(InitFunction); 4968 } 4969 } 4970 4971 llvm::Metadata * 4972 CodeGenModule::CreateMetadataIdentifierImpl(QualType T, MetadataTypeMap &Map, 4973 StringRef Suffix) { 4974 llvm::Metadata *&InternalId = Map[T.getCanonicalType()]; 4975 if (InternalId) 4976 return InternalId; 4977 4978 if (isExternallyVisible(T->getLinkage())) { 4979 std::string OutName; 4980 llvm::raw_string_ostream Out(OutName); 4981 getCXXABI().getMangleContext().mangleTypeName(T, Out); 4982 Out << Suffix; 4983 4984 InternalId = llvm::MDString::get(getLLVMContext(), Out.str()); 4985 } else { 4986 InternalId = llvm::MDNode::getDistinct(getLLVMContext(), 4987 llvm::ArrayRef<llvm::Metadata *>()); 4988 } 4989 4990 return InternalId; 4991 } 4992 4993 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierForType(QualType T) { 4994 return CreateMetadataIdentifierImpl(T, MetadataIdMap, ""); 4995 } 4996 4997 llvm::Metadata * 4998 CodeGenModule::CreateMetadataIdentifierForVirtualMemPtrType(QualType T) { 4999 return CreateMetadataIdentifierImpl(T, VirtualMetadataIdMap, ".virtual"); 5000 } 5001 5002 // Generalize pointer types to a void pointer with the qualifiers of the 5003 // originally pointed-to type, e.g. 'const char *' and 'char * const *' 5004 // generalize to 'const void *' while 'char *' and 'const char **' generalize to 5005 // 'void *'. 5006 static QualType GeneralizeType(ASTContext &Ctx, QualType Ty) { 5007 if (!Ty->isPointerType()) 5008 return Ty; 5009 5010 return Ctx.getPointerType( 5011 QualType(Ctx.VoidTy).withCVRQualifiers( 5012 Ty->getPointeeType().getCVRQualifiers())); 5013 } 5014 5015 // Apply type generalization to a FunctionType's return and argument types 5016 static QualType GeneralizeFunctionType(ASTContext &Ctx, QualType Ty) { 5017 if (auto *FnType = Ty->getAs<FunctionProtoType>()) { 5018 SmallVector<QualType, 8> GeneralizedParams; 5019 for (auto &Param : FnType->param_types()) 5020 GeneralizedParams.push_back(GeneralizeType(Ctx, Param)); 5021 5022 return Ctx.getFunctionType( 5023 GeneralizeType(Ctx, FnType->getReturnType()), 5024 GeneralizedParams, FnType->getExtProtoInfo()); 5025 } 5026 5027 if (auto *FnType = Ty->getAs<FunctionNoProtoType>()) 5028 return Ctx.getFunctionNoProtoType( 5029 GeneralizeType(Ctx, FnType->getReturnType())); 5030 5031 llvm_unreachable("Encountered unknown FunctionType"); 5032 } 5033 5034 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierGeneralized(QualType T) { 5035 return CreateMetadataIdentifierImpl(GeneralizeFunctionType(getContext(), T), 5036 GeneralizedMetadataIdMap, ".generalized"); 5037 } 5038 5039 /// Returns whether this module needs the "all-vtables" type identifier. 5040 bool CodeGenModule::NeedAllVtablesTypeId() const { 5041 // Returns true if at least one of vtable-based CFI checkers is enabled and 5042 // is not in the trapping mode. 5043 return ((LangOpts.Sanitize.has(SanitizerKind::CFIVCall) && 5044 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIVCall)) || 5045 (LangOpts.Sanitize.has(SanitizerKind::CFINVCall) && 5046 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFINVCall)) || 5047 (LangOpts.Sanitize.has(SanitizerKind::CFIDerivedCast) && 5048 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIDerivedCast)) || 5049 (LangOpts.Sanitize.has(SanitizerKind::CFIUnrelatedCast) && 5050 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIUnrelatedCast))); 5051 } 5052 5053 void CodeGenModule::AddVTableTypeMetadata(llvm::GlobalVariable *VTable, 5054 CharUnits Offset, 5055 const CXXRecordDecl *RD) { 5056 llvm::Metadata *MD = 5057 CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0)); 5058 VTable->addTypeMetadata(Offset.getQuantity(), MD); 5059 5060 if (CodeGenOpts.SanitizeCfiCrossDso) 5061 if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD)) 5062 VTable->addTypeMetadata(Offset.getQuantity(), 5063 llvm::ConstantAsMetadata::get(CrossDsoTypeId)); 5064 5065 if (NeedAllVtablesTypeId()) { 5066 llvm::Metadata *MD = llvm::MDString::get(getLLVMContext(), "all-vtables"); 5067 VTable->addTypeMetadata(Offset.getQuantity(), MD); 5068 } 5069 } 5070 5071 TargetAttr::ParsedTargetAttr CodeGenModule::filterFunctionTargetAttrs(const TargetAttr *TD) { 5072 assert(TD != nullptr); 5073 TargetAttr::ParsedTargetAttr ParsedAttr = TD->parse(); 5074 5075 ParsedAttr.Features.erase( 5076 llvm::remove_if(ParsedAttr.Features, 5077 [&](const std::string &Feat) { 5078 return !Target.isValidFeatureName( 5079 StringRef{Feat}.substr(1)); 5080 }), 5081 ParsedAttr.Features.end()); 5082 return ParsedAttr; 5083 } 5084 5085 5086 // Fills in the supplied string map with the set of target features for the 5087 // passed in function. 5088 void CodeGenModule::getFunctionFeatureMap(llvm::StringMap<bool> &FeatureMap, 5089 const FunctionDecl *FD) { 5090 StringRef TargetCPU = Target.getTargetOpts().CPU; 5091 if (const auto *TD = FD->getAttr<TargetAttr>()) { 5092 TargetAttr::ParsedTargetAttr ParsedAttr = filterFunctionTargetAttrs(TD); 5093 5094 // Make a copy of the features as passed on the command line into the 5095 // beginning of the additional features from the function to override. 5096 ParsedAttr.Features.insert(ParsedAttr.Features.begin(), 5097 Target.getTargetOpts().FeaturesAsWritten.begin(), 5098 Target.getTargetOpts().FeaturesAsWritten.end()); 5099 5100 if (ParsedAttr.Architecture != "" && 5101 Target.isValidCPUName(ParsedAttr.Architecture)) 5102 TargetCPU = ParsedAttr.Architecture; 5103 5104 // Now populate the feature map, first with the TargetCPU which is either 5105 // the default or a new one from the target attribute string. Then we'll use 5106 // the passed in features (FeaturesAsWritten) along with the new ones from 5107 // the attribute. 5108 Target.initFeatureMap(FeatureMap, getDiags(), TargetCPU, 5109 ParsedAttr.Features); 5110 } else { 5111 Target.initFeatureMap(FeatureMap, getDiags(), TargetCPU, 5112 Target.getTargetOpts().Features); 5113 } 5114 } 5115 5116 llvm::SanitizerStatReport &CodeGenModule::getSanStats() { 5117 if (!SanStats) 5118 SanStats = llvm::make_unique<llvm::SanitizerStatReport>(&getModule()); 5119 5120 return *SanStats; 5121 } 5122 llvm::Value * 5123 CodeGenModule::createOpenCLIntToSamplerConversion(const Expr *E, 5124 CodeGenFunction &CGF) { 5125 llvm::Constant *C = ConstantEmitter(CGF).emitAbstract(E, E->getType()); 5126 auto SamplerT = getOpenCLRuntime().getSamplerType(E->getType().getTypePtr()); 5127 auto FTy = llvm::FunctionType::get(SamplerT, {C->getType()}, false); 5128 return CGF.Builder.CreateCall(CreateRuntimeFunction(FTy, 5129 "__translate_sampler_initializer"), 5130 {C}); 5131 } 5132