1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This coordinates the per-module state used while generating code. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "CodeGenModule.h" 14 #include "CGBlocks.h" 15 #include "CGCUDARuntime.h" 16 #include "CGCXXABI.h" 17 #include "CGCall.h" 18 #include "CGDebugInfo.h" 19 #include "CGObjCRuntime.h" 20 #include "CGOpenCLRuntime.h" 21 #include "CGOpenMPRuntime.h" 22 #include "CGOpenMPRuntimeAMDGCN.h" 23 #include "CGOpenMPRuntimeNVPTX.h" 24 #include "CodeGenFunction.h" 25 #include "CodeGenPGO.h" 26 #include "ConstantEmitter.h" 27 #include "CoverageMappingGen.h" 28 #include "TargetInfo.h" 29 #include "clang/AST/ASTContext.h" 30 #include "clang/AST/CharUnits.h" 31 #include "clang/AST/DeclCXX.h" 32 #include "clang/AST/DeclObjC.h" 33 #include "clang/AST/DeclTemplate.h" 34 #include "clang/AST/Mangle.h" 35 #include "clang/AST/RecordLayout.h" 36 #include "clang/AST/RecursiveASTVisitor.h" 37 #include "clang/AST/StmtVisitor.h" 38 #include "clang/Basic/Builtins.h" 39 #include "clang/Basic/CharInfo.h" 40 #include "clang/Basic/CodeGenOptions.h" 41 #include "clang/Basic/Diagnostic.h" 42 #include "clang/Basic/FileManager.h" 43 #include "clang/Basic/Module.h" 44 #include "clang/Basic/SourceManager.h" 45 #include "clang/Basic/TargetInfo.h" 46 #include "clang/Basic/Version.h" 47 #include "clang/CodeGen/ConstantInitBuilder.h" 48 #include "clang/Frontend/FrontendDiagnostic.h" 49 #include "llvm/ADT/StringSwitch.h" 50 #include "llvm/ADT/Triple.h" 51 #include "llvm/Analysis/TargetLibraryInfo.h" 52 #include "llvm/Frontend/OpenMP/OMPIRBuilder.h" 53 #include "llvm/IR/CallingConv.h" 54 #include "llvm/IR/DataLayout.h" 55 #include "llvm/IR/Intrinsics.h" 56 #include "llvm/IR/LLVMContext.h" 57 #include "llvm/IR/Module.h" 58 #include "llvm/IR/ProfileSummary.h" 59 #include "llvm/ProfileData/InstrProfReader.h" 60 #include "llvm/Support/CodeGen.h" 61 #include "llvm/Support/CommandLine.h" 62 #include "llvm/Support/ConvertUTF.h" 63 #include "llvm/Support/ErrorHandling.h" 64 #include "llvm/Support/MD5.h" 65 #include "llvm/Support/TimeProfiler.h" 66 67 using namespace clang; 68 using namespace CodeGen; 69 70 static llvm::cl::opt<bool> LimitedCoverage( 71 "limited-coverage-experimental", llvm::cl::ZeroOrMore, llvm::cl::Hidden, 72 llvm::cl::desc("Emit limited coverage mapping information (experimental)"), 73 llvm::cl::init(false)); 74 75 static const char AnnotationSection[] = "llvm.metadata"; 76 77 static CGCXXABI *createCXXABI(CodeGenModule &CGM) { 78 switch (CGM.getTarget().getCXXABI().getKind()) { 79 case TargetCXXABI::AppleARM64: 80 case TargetCXXABI::Fuchsia: 81 case TargetCXXABI::GenericAArch64: 82 case TargetCXXABI::GenericARM: 83 case TargetCXXABI::iOS: 84 case TargetCXXABI::WatchOS: 85 case TargetCXXABI::GenericMIPS: 86 case TargetCXXABI::GenericItanium: 87 case TargetCXXABI::WebAssembly: 88 case TargetCXXABI::XL: 89 return CreateItaniumCXXABI(CGM); 90 case TargetCXXABI::Microsoft: 91 return CreateMicrosoftCXXABI(CGM); 92 } 93 94 llvm_unreachable("invalid C++ ABI kind"); 95 } 96 97 CodeGenModule::CodeGenModule(ASTContext &C, const HeaderSearchOptions &HSO, 98 const PreprocessorOptions &PPO, 99 const CodeGenOptions &CGO, llvm::Module &M, 100 DiagnosticsEngine &diags, 101 CoverageSourceInfo *CoverageInfo) 102 : Context(C), LangOpts(C.getLangOpts()), HeaderSearchOpts(HSO), 103 PreprocessorOpts(PPO), CodeGenOpts(CGO), TheModule(M), Diags(diags), 104 Target(C.getTargetInfo()), ABI(createCXXABI(*this)), 105 VMContext(M.getContext()), Types(*this), VTables(*this), 106 SanitizerMD(new SanitizerMetadata(*this)) { 107 108 // Initialize the type cache. 109 llvm::LLVMContext &LLVMContext = M.getContext(); 110 VoidTy = llvm::Type::getVoidTy(LLVMContext); 111 Int8Ty = llvm::Type::getInt8Ty(LLVMContext); 112 Int16Ty = llvm::Type::getInt16Ty(LLVMContext); 113 Int32Ty = llvm::Type::getInt32Ty(LLVMContext); 114 Int64Ty = llvm::Type::getInt64Ty(LLVMContext); 115 HalfTy = llvm::Type::getHalfTy(LLVMContext); 116 BFloatTy = llvm::Type::getBFloatTy(LLVMContext); 117 FloatTy = llvm::Type::getFloatTy(LLVMContext); 118 DoubleTy = llvm::Type::getDoubleTy(LLVMContext); 119 PointerWidthInBits = C.getTargetInfo().getPointerWidth(0); 120 PointerAlignInBytes = 121 C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(0)).getQuantity(); 122 SizeSizeInBytes = 123 C.toCharUnitsFromBits(C.getTargetInfo().getMaxPointerWidth()).getQuantity(); 124 IntAlignInBytes = 125 C.toCharUnitsFromBits(C.getTargetInfo().getIntAlign()).getQuantity(); 126 CharTy = 127 llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getCharWidth()); 128 IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth()); 129 IntPtrTy = llvm::IntegerType::get(LLVMContext, 130 C.getTargetInfo().getMaxPointerWidth()); 131 Int8PtrTy = Int8Ty->getPointerTo(0); 132 Int8PtrPtrTy = Int8PtrTy->getPointerTo(0); 133 AllocaInt8PtrTy = Int8Ty->getPointerTo( 134 M.getDataLayout().getAllocaAddrSpace()); 135 ASTAllocaAddressSpace = getTargetCodeGenInfo().getASTAllocaAddressSpace(); 136 137 RuntimeCC = getTargetCodeGenInfo().getABIInfo().getRuntimeCC(); 138 139 if (LangOpts.ObjC) 140 createObjCRuntime(); 141 if (LangOpts.OpenCL) 142 createOpenCLRuntime(); 143 if (LangOpts.OpenMP) 144 createOpenMPRuntime(); 145 if (LangOpts.CUDA) 146 createCUDARuntime(); 147 148 // Enable TBAA unless it's suppressed. ThreadSanitizer needs TBAA even at O0. 149 if (LangOpts.Sanitize.has(SanitizerKind::Thread) || 150 (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0)) 151 TBAA.reset(new CodeGenTBAA(Context, TheModule, CodeGenOpts, getLangOpts(), 152 getCXXABI().getMangleContext())); 153 154 // If debug info or coverage generation is enabled, create the CGDebugInfo 155 // object. 156 if (CodeGenOpts.getDebugInfo() != codegenoptions::NoDebugInfo || 157 CodeGenOpts.EmitGcovArcs || CodeGenOpts.EmitGcovNotes) 158 DebugInfo.reset(new CGDebugInfo(*this)); 159 160 Block.GlobalUniqueCount = 0; 161 162 if (C.getLangOpts().ObjC) 163 ObjCData.reset(new ObjCEntrypoints()); 164 165 if (CodeGenOpts.hasProfileClangUse()) { 166 auto ReaderOrErr = llvm::IndexedInstrProfReader::create( 167 CodeGenOpts.ProfileInstrumentUsePath, CodeGenOpts.ProfileRemappingFile); 168 if (auto E = ReaderOrErr.takeError()) { 169 unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error, 170 "Could not read profile %0: %1"); 171 llvm::handleAllErrors(std::move(E), [&](const llvm::ErrorInfoBase &EI) { 172 getDiags().Report(DiagID) << CodeGenOpts.ProfileInstrumentUsePath 173 << EI.message(); 174 }); 175 } else 176 PGOReader = std::move(ReaderOrErr.get()); 177 } 178 179 // If coverage mapping generation is enabled, create the 180 // CoverageMappingModuleGen object. 181 if (CodeGenOpts.CoverageMapping) 182 CoverageMapping.reset(new CoverageMappingModuleGen(*this, *CoverageInfo)); 183 184 // Generate the module name hash here if needed. 185 if (CodeGenOpts.UniqueInternalLinkageNames && 186 !getModule().getSourceFileName().empty()) { 187 std::string Path = getModule().getSourceFileName(); 188 // Check if a path substitution is needed from the MacroPrefixMap. 189 for (const auto &Entry : PPO.MacroPrefixMap) 190 if (Path.rfind(Entry.first, 0) != std::string::npos) { 191 Path = Entry.second + Path.substr(Entry.first.size()); 192 break; 193 } 194 llvm::MD5 Md5; 195 Md5.update(Path); 196 llvm::MD5::MD5Result R; 197 Md5.final(R); 198 SmallString<32> Str; 199 llvm::MD5::stringifyResult(R, Str); 200 // Convert MD5hash to Decimal. Demangler suffixes can either contain 201 // numbers or characters but not both. 202 llvm::APInt IntHash(128, Str.str(), 16); 203 // Prepend "__uniq" before the hash for tools like profilers to understand 204 // that this symbol is of internal linkage type. The "__uniq" is the 205 // pre-determined prefix that is used to tell tools that this symbol was 206 // created with -funique-internal-linakge-symbols and the tools can strip or 207 // keep the prefix as needed. 208 ModuleNameHash = (Twine(".__uniq.") + 209 Twine(IntHash.toString(/* Radix = */ 10, /* Signed = */false))).str(); 210 } 211 } 212 213 CodeGenModule::~CodeGenModule() {} 214 215 void CodeGenModule::createObjCRuntime() { 216 // This is just isGNUFamily(), but we want to force implementors of 217 // new ABIs to decide how best to do this. 218 switch (LangOpts.ObjCRuntime.getKind()) { 219 case ObjCRuntime::GNUstep: 220 case ObjCRuntime::GCC: 221 case ObjCRuntime::ObjFW: 222 ObjCRuntime.reset(CreateGNUObjCRuntime(*this)); 223 return; 224 225 case ObjCRuntime::FragileMacOSX: 226 case ObjCRuntime::MacOSX: 227 case ObjCRuntime::iOS: 228 case ObjCRuntime::WatchOS: 229 ObjCRuntime.reset(CreateMacObjCRuntime(*this)); 230 return; 231 } 232 llvm_unreachable("bad runtime kind"); 233 } 234 235 void CodeGenModule::createOpenCLRuntime() { 236 OpenCLRuntime.reset(new CGOpenCLRuntime(*this)); 237 } 238 239 void CodeGenModule::createOpenMPRuntime() { 240 // Select a specialized code generation class based on the target, if any. 241 // If it does not exist use the default implementation. 242 switch (getTriple().getArch()) { 243 case llvm::Triple::nvptx: 244 case llvm::Triple::nvptx64: 245 assert(getLangOpts().OpenMPIsDevice && 246 "OpenMP NVPTX is only prepared to deal with device code."); 247 OpenMPRuntime.reset(new CGOpenMPRuntimeNVPTX(*this)); 248 break; 249 case llvm::Triple::amdgcn: 250 assert(getLangOpts().OpenMPIsDevice && 251 "OpenMP AMDGCN is only prepared to deal with device code."); 252 OpenMPRuntime.reset(new CGOpenMPRuntimeAMDGCN(*this)); 253 break; 254 default: 255 if (LangOpts.OpenMPSimd) 256 OpenMPRuntime.reset(new CGOpenMPSIMDRuntime(*this)); 257 else 258 OpenMPRuntime.reset(new CGOpenMPRuntime(*this)); 259 break; 260 } 261 } 262 263 void CodeGenModule::createCUDARuntime() { 264 CUDARuntime.reset(CreateNVCUDARuntime(*this)); 265 } 266 267 void CodeGenModule::addReplacement(StringRef Name, llvm::Constant *C) { 268 Replacements[Name] = C; 269 } 270 271 void CodeGenModule::applyReplacements() { 272 for (auto &I : Replacements) { 273 StringRef MangledName = I.first(); 274 llvm::Constant *Replacement = I.second; 275 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 276 if (!Entry) 277 continue; 278 auto *OldF = cast<llvm::Function>(Entry); 279 auto *NewF = dyn_cast<llvm::Function>(Replacement); 280 if (!NewF) { 281 if (auto *Alias = dyn_cast<llvm::GlobalAlias>(Replacement)) { 282 NewF = dyn_cast<llvm::Function>(Alias->getAliasee()); 283 } else { 284 auto *CE = cast<llvm::ConstantExpr>(Replacement); 285 assert(CE->getOpcode() == llvm::Instruction::BitCast || 286 CE->getOpcode() == llvm::Instruction::GetElementPtr); 287 NewF = dyn_cast<llvm::Function>(CE->getOperand(0)); 288 } 289 } 290 291 // Replace old with new, but keep the old order. 292 OldF->replaceAllUsesWith(Replacement); 293 if (NewF) { 294 NewF->removeFromParent(); 295 OldF->getParent()->getFunctionList().insertAfter(OldF->getIterator(), 296 NewF); 297 } 298 OldF->eraseFromParent(); 299 } 300 } 301 302 void CodeGenModule::addGlobalValReplacement(llvm::GlobalValue *GV, llvm::Constant *C) { 303 GlobalValReplacements.push_back(std::make_pair(GV, C)); 304 } 305 306 void CodeGenModule::applyGlobalValReplacements() { 307 for (auto &I : GlobalValReplacements) { 308 llvm::GlobalValue *GV = I.first; 309 llvm::Constant *C = I.second; 310 311 GV->replaceAllUsesWith(C); 312 GV->eraseFromParent(); 313 } 314 } 315 316 // This is only used in aliases that we created and we know they have a 317 // linear structure. 318 static const llvm::GlobalObject *getAliasedGlobal( 319 const llvm::GlobalIndirectSymbol &GIS) { 320 llvm::SmallPtrSet<const llvm::GlobalIndirectSymbol*, 4> Visited; 321 const llvm::Constant *C = &GIS; 322 for (;;) { 323 C = C->stripPointerCasts(); 324 if (auto *GO = dyn_cast<llvm::GlobalObject>(C)) 325 return GO; 326 // stripPointerCasts will not walk over weak aliases. 327 auto *GIS2 = dyn_cast<llvm::GlobalIndirectSymbol>(C); 328 if (!GIS2) 329 return nullptr; 330 if (!Visited.insert(GIS2).second) 331 return nullptr; 332 C = GIS2->getIndirectSymbol(); 333 } 334 } 335 336 void CodeGenModule::checkAliases() { 337 // Check if the constructed aliases are well formed. It is really unfortunate 338 // that we have to do this in CodeGen, but we only construct mangled names 339 // and aliases during codegen. 340 bool Error = false; 341 DiagnosticsEngine &Diags = getDiags(); 342 for (const GlobalDecl &GD : Aliases) { 343 const auto *D = cast<ValueDecl>(GD.getDecl()); 344 SourceLocation Location; 345 bool IsIFunc = D->hasAttr<IFuncAttr>(); 346 if (const Attr *A = D->getDefiningAttr()) 347 Location = A->getLocation(); 348 else 349 llvm_unreachable("Not an alias or ifunc?"); 350 StringRef MangledName = getMangledName(GD); 351 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 352 auto *Alias = cast<llvm::GlobalIndirectSymbol>(Entry); 353 const llvm::GlobalValue *GV = getAliasedGlobal(*Alias); 354 if (!GV) { 355 Error = true; 356 Diags.Report(Location, diag::err_cyclic_alias) << IsIFunc; 357 } else if (GV->isDeclaration()) { 358 Error = true; 359 Diags.Report(Location, diag::err_alias_to_undefined) 360 << IsIFunc << IsIFunc; 361 } else if (IsIFunc) { 362 // Check resolver function type. 363 llvm::FunctionType *FTy = dyn_cast<llvm::FunctionType>( 364 GV->getType()->getPointerElementType()); 365 assert(FTy); 366 if (!FTy->getReturnType()->isPointerTy()) 367 Diags.Report(Location, diag::err_ifunc_resolver_return); 368 } 369 370 llvm::Constant *Aliasee = Alias->getIndirectSymbol(); 371 llvm::GlobalValue *AliaseeGV; 372 if (auto CE = dyn_cast<llvm::ConstantExpr>(Aliasee)) 373 AliaseeGV = cast<llvm::GlobalValue>(CE->getOperand(0)); 374 else 375 AliaseeGV = cast<llvm::GlobalValue>(Aliasee); 376 377 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) { 378 StringRef AliasSection = SA->getName(); 379 if (AliasSection != AliaseeGV->getSection()) 380 Diags.Report(SA->getLocation(), diag::warn_alias_with_section) 381 << AliasSection << IsIFunc << IsIFunc; 382 } 383 384 // We have to handle alias to weak aliases in here. LLVM itself disallows 385 // this since the object semantics would not match the IL one. For 386 // compatibility with gcc we implement it by just pointing the alias 387 // to its aliasee's aliasee. We also warn, since the user is probably 388 // expecting the link to be weak. 389 if (auto GA = dyn_cast<llvm::GlobalIndirectSymbol>(AliaseeGV)) { 390 if (GA->isInterposable()) { 391 Diags.Report(Location, diag::warn_alias_to_weak_alias) 392 << GV->getName() << GA->getName() << IsIFunc; 393 Aliasee = llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast( 394 GA->getIndirectSymbol(), Alias->getType()); 395 Alias->setIndirectSymbol(Aliasee); 396 } 397 } 398 } 399 if (!Error) 400 return; 401 402 for (const GlobalDecl &GD : Aliases) { 403 StringRef MangledName = getMangledName(GD); 404 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 405 auto *Alias = cast<llvm::GlobalIndirectSymbol>(Entry); 406 Alias->replaceAllUsesWith(llvm::UndefValue::get(Alias->getType())); 407 Alias->eraseFromParent(); 408 } 409 } 410 411 void CodeGenModule::clear() { 412 DeferredDeclsToEmit.clear(); 413 if (OpenMPRuntime) 414 OpenMPRuntime->clear(); 415 } 416 417 void InstrProfStats::reportDiagnostics(DiagnosticsEngine &Diags, 418 StringRef MainFile) { 419 if (!hasDiagnostics()) 420 return; 421 if (VisitedInMainFile > 0 && VisitedInMainFile == MissingInMainFile) { 422 if (MainFile.empty()) 423 MainFile = "<stdin>"; 424 Diags.Report(diag::warn_profile_data_unprofiled) << MainFile; 425 } else { 426 if (Mismatched > 0) 427 Diags.Report(diag::warn_profile_data_out_of_date) << Visited << Mismatched; 428 429 if (Missing > 0) 430 Diags.Report(diag::warn_profile_data_missing) << Visited << Missing; 431 } 432 } 433 434 static void setVisibilityFromDLLStorageClass(const clang::LangOptions &LO, 435 llvm::Module &M) { 436 if (!LO.VisibilityFromDLLStorageClass) 437 return; 438 439 llvm::GlobalValue::VisibilityTypes DLLExportVisibility = 440 CodeGenModule::GetLLVMVisibility(LO.getDLLExportVisibility()); 441 llvm::GlobalValue::VisibilityTypes NoDLLStorageClassVisibility = 442 CodeGenModule::GetLLVMVisibility(LO.getNoDLLStorageClassVisibility()); 443 llvm::GlobalValue::VisibilityTypes ExternDeclDLLImportVisibility = 444 CodeGenModule::GetLLVMVisibility(LO.getExternDeclDLLImportVisibility()); 445 llvm::GlobalValue::VisibilityTypes ExternDeclNoDLLStorageClassVisibility = 446 CodeGenModule::GetLLVMVisibility( 447 LO.getExternDeclNoDLLStorageClassVisibility()); 448 449 for (llvm::GlobalValue &GV : M.global_values()) { 450 if (GV.hasAppendingLinkage() || GV.hasLocalLinkage()) 451 continue; 452 453 // Reset DSO locality before setting the visibility. This removes 454 // any effects that visibility options and annotations may have 455 // had on the DSO locality. Setting the visibility will implicitly set 456 // appropriate globals to DSO Local; however, this will be pessimistic 457 // w.r.t. to the normal compiler IRGen. 458 GV.setDSOLocal(false); 459 460 if (GV.isDeclarationForLinker()) { 461 GV.setVisibility(GV.getDLLStorageClass() == 462 llvm::GlobalValue::DLLImportStorageClass 463 ? ExternDeclDLLImportVisibility 464 : ExternDeclNoDLLStorageClassVisibility); 465 } else { 466 GV.setVisibility(GV.getDLLStorageClass() == 467 llvm::GlobalValue::DLLExportStorageClass 468 ? DLLExportVisibility 469 : NoDLLStorageClassVisibility); 470 } 471 472 GV.setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 473 } 474 } 475 476 void CodeGenModule::Release() { 477 EmitDeferred(); 478 EmitVTablesOpportunistically(); 479 applyGlobalValReplacements(); 480 applyReplacements(); 481 checkAliases(); 482 emitMultiVersionFunctions(); 483 EmitCXXGlobalInitFunc(); 484 EmitCXXGlobalCleanUpFunc(); 485 registerGlobalDtorsWithAtExit(); 486 EmitCXXThreadLocalInitFunc(); 487 if (ObjCRuntime) 488 if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction()) 489 AddGlobalCtor(ObjCInitFunction); 490 if (Context.getLangOpts().CUDA && CUDARuntime) { 491 if (llvm::Function *CudaCtorFunction = CUDARuntime->finalizeModule()) 492 AddGlobalCtor(CudaCtorFunction); 493 } 494 if (OpenMPRuntime) { 495 if (llvm::Function *OpenMPRequiresDirectiveRegFun = 496 OpenMPRuntime->emitRequiresDirectiveRegFun()) { 497 AddGlobalCtor(OpenMPRequiresDirectiveRegFun, 0); 498 } 499 OpenMPRuntime->createOffloadEntriesAndInfoMetadata(); 500 OpenMPRuntime->clear(); 501 } 502 if (PGOReader) { 503 getModule().setProfileSummary( 504 PGOReader->getSummary(/* UseCS */ false).getMD(VMContext), 505 llvm::ProfileSummary::PSK_Instr); 506 if (PGOStats.hasDiagnostics()) 507 PGOStats.reportDiagnostics(getDiags(), getCodeGenOpts().MainFileName); 508 } 509 EmitCtorList(GlobalCtors, "llvm.global_ctors"); 510 EmitCtorList(GlobalDtors, "llvm.global_dtors"); 511 EmitGlobalAnnotations(); 512 EmitStaticExternCAliases(); 513 EmitDeferredUnusedCoverageMappings(); 514 if (CoverageMapping) 515 CoverageMapping->emit(); 516 if (CodeGenOpts.SanitizeCfiCrossDso) { 517 CodeGenFunction(*this).EmitCfiCheckFail(); 518 CodeGenFunction(*this).EmitCfiCheckStub(); 519 } 520 emitAtAvailableLinkGuard(); 521 if (Context.getTargetInfo().getTriple().isWasm() && 522 !Context.getTargetInfo().getTriple().isOSEmscripten()) { 523 EmitMainVoidAlias(); 524 } 525 emitLLVMUsed(); 526 if (SanStats) 527 SanStats->finish(); 528 529 if (CodeGenOpts.Autolink && 530 (Context.getLangOpts().Modules || !LinkerOptionsMetadata.empty())) { 531 EmitModuleLinkOptions(); 532 } 533 534 // On ELF we pass the dependent library specifiers directly to the linker 535 // without manipulating them. This is in contrast to other platforms where 536 // they are mapped to a specific linker option by the compiler. This 537 // difference is a result of the greater variety of ELF linkers and the fact 538 // that ELF linkers tend to handle libraries in a more complicated fashion 539 // than on other platforms. This forces us to defer handling the dependent 540 // libs to the linker. 541 // 542 // CUDA/HIP device and host libraries are different. Currently there is no 543 // way to differentiate dependent libraries for host or device. Existing 544 // usage of #pragma comment(lib, *) is intended for host libraries on 545 // Windows. Therefore emit llvm.dependent-libraries only for host. 546 if (!ELFDependentLibraries.empty() && !Context.getLangOpts().CUDAIsDevice) { 547 auto *NMD = getModule().getOrInsertNamedMetadata("llvm.dependent-libraries"); 548 for (auto *MD : ELFDependentLibraries) 549 NMD->addOperand(MD); 550 } 551 552 // Record mregparm value now so it is visible through rest of codegen. 553 if (Context.getTargetInfo().getTriple().getArch() == llvm::Triple::x86) 554 getModule().addModuleFlag(llvm::Module::Error, "NumRegisterParameters", 555 CodeGenOpts.NumRegisterParameters); 556 557 if (CodeGenOpts.DwarfVersion) { 558 getModule().addModuleFlag(llvm::Module::Max, "Dwarf Version", 559 CodeGenOpts.DwarfVersion); 560 } 561 562 if (CodeGenOpts.Dwarf64) 563 getModule().addModuleFlag(llvm::Module::Max, "DWARF64", 1); 564 565 if (Context.getLangOpts().SemanticInterposition) 566 // Require various optimization to respect semantic interposition. 567 getModule().setSemanticInterposition(1); 568 569 if (CodeGenOpts.EmitCodeView) { 570 // Indicate that we want CodeView in the metadata. 571 getModule().addModuleFlag(llvm::Module::Warning, "CodeView", 1); 572 } 573 if (CodeGenOpts.CodeViewGHash) { 574 getModule().addModuleFlag(llvm::Module::Warning, "CodeViewGHash", 1); 575 } 576 if (CodeGenOpts.ControlFlowGuard) { 577 // Function ID tables and checks for Control Flow Guard (cfguard=2). 578 getModule().addModuleFlag(llvm::Module::Warning, "cfguard", 2); 579 } else if (CodeGenOpts.ControlFlowGuardNoChecks) { 580 // Function ID tables for Control Flow Guard (cfguard=1). 581 getModule().addModuleFlag(llvm::Module::Warning, "cfguard", 1); 582 } 583 if (CodeGenOpts.EHContGuard) { 584 // Function ID tables for EH Continuation Guard. 585 getModule().addModuleFlag(llvm::Module::Warning, "ehcontguard", 1); 586 } 587 if (CodeGenOpts.OptimizationLevel > 0 && CodeGenOpts.StrictVTablePointers) { 588 // We don't support LTO with 2 with different StrictVTablePointers 589 // FIXME: we could support it by stripping all the information introduced 590 // by StrictVTablePointers. 591 592 getModule().addModuleFlag(llvm::Module::Error, "StrictVTablePointers",1); 593 594 llvm::Metadata *Ops[2] = { 595 llvm::MDString::get(VMContext, "StrictVTablePointers"), 596 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 597 llvm::Type::getInt32Ty(VMContext), 1))}; 598 599 getModule().addModuleFlag(llvm::Module::Require, 600 "StrictVTablePointersRequirement", 601 llvm::MDNode::get(VMContext, Ops)); 602 } 603 if (getModuleDebugInfo()) 604 // We support a single version in the linked module. The LLVM 605 // parser will drop debug info with a different version number 606 // (and warn about it, too). 607 getModule().addModuleFlag(llvm::Module::Warning, "Debug Info Version", 608 llvm::DEBUG_METADATA_VERSION); 609 610 // We need to record the widths of enums and wchar_t, so that we can generate 611 // the correct build attributes in the ARM backend. wchar_size is also used by 612 // TargetLibraryInfo. 613 uint64_t WCharWidth = 614 Context.getTypeSizeInChars(Context.getWideCharType()).getQuantity(); 615 getModule().addModuleFlag(llvm::Module::Error, "wchar_size", WCharWidth); 616 617 llvm::Triple::ArchType Arch = Context.getTargetInfo().getTriple().getArch(); 618 if ( Arch == llvm::Triple::arm 619 || Arch == llvm::Triple::armeb 620 || Arch == llvm::Triple::thumb 621 || Arch == llvm::Triple::thumbeb) { 622 // The minimum width of an enum in bytes 623 uint64_t EnumWidth = Context.getLangOpts().ShortEnums ? 1 : 4; 624 getModule().addModuleFlag(llvm::Module::Error, "min_enum_size", EnumWidth); 625 } 626 627 if (Arch == llvm::Triple::riscv32 || Arch == llvm::Triple::riscv64) { 628 StringRef ABIStr = Target.getABI(); 629 llvm::LLVMContext &Ctx = TheModule.getContext(); 630 getModule().addModuleFlag(llvm::Module::Error, "target-abi", 631 llvm::MDString::get(Ctx, ABIStr)); 632 } 633 634 if (CodeGenOpts.SanitizeCfiCrossDso) { 635 // Indicate that we want cross-DSO control flow integrity checks. 636 getModule().addModuleFlag(llvm::Module::Override, "Cross-DSO CFI", 1); 637 } 638 639 if (CodeGenOpts.WholeProgramVTables) { 640 // Indicate whether VFE was enabled for this module, so that the 641 // vcall_visibility metadata added under whole program vtables is handled 642 // appropriately in the optimizer. 643 getModule().addModuleFlag(llvm::Module::Error, "Virtual Function Elim", 644 CodeGenOpts.VirtualFunctionElimination); 645 } 646 647 if (LangOpts.Sanitize.has(SanitizerKind::CFIICall)) { 648 getModule().addModuleFlag(llvm::Module::Override, 649 "CFI Canonical Jump Tables", 650 CodeGenOpts.SanitizeCfiCanonicalJumpTables); 651 } 652 653 if (CodeGenOpts.CFProtectionReturn && 654 Target.checkCFProtectionReturnSupported(getDiags())) { 655 // Indicate that we want to instrument return control flow protection. 656 getModule().addModuleFlag(llvm::Module::Override, "cf-protection-return", 657 1); 658 } 659 660 if (CodeGenOpts.CFProtectionBranch && 661 Target.checkCFProtectionBranchSupported(getDiags())) { 662 // Indicate that we want to instrument branch control flow protection. 663 getModule().addModuleFlag(llvm::Module::Override, "cf-protection-branch", 664 1); 665 } 666 667 if (Arch == llvm::Triple::aarch64 || Arch == llvm::Triple::aarch64_32 || 668 Arch == llvm::Triple::aarch64_be) { 669 getModule().addModuleFlag(llvm::Module::Error, 670 "branch-target-enforcement", 671 LangOpts.BranchTargetEnforcement); 672 673 getModule().addModuleFlag(llvm::Module::Error, "sign-return-address", 674 LangOpts.hasSignReturnAddress()); 675 676 getModule().addModuleFlag(llvm::Module::Error, "sign-return-address-all", 677 LangOpts.isSignReturnAddressScopeAll()); 678 679 getModule().addModuleFlag(llvm::Module::Error, 680 "sign-return-address-with-bkey", 681 !LangOpts.isSignReturnAddressWithAKey()); 682 } 683 684 if (!CodeGenOpts.MemoryProfileOutput.empty()) { 685 llvm::LLVMContext &Ctx = TheModule.getContext(); 686 getModule().addModuleFlag( 687 llvm::Module::Error, "MemProfProfileFilename", 688 llvm::MDString::get(Ctx, CodeGenOpts.MemoryProfileOutput)); 689 } 690 691 if (LangOpts.CUDAIsDevice && getTriple().isNVPTX()) { 692 // Indicate whether __nvvm_reflect should be configured to flush denormal 693 // floating point values to 0. (This corresponds to its "__CUDA_FTZ" 694 // property.) 695 getModule().addModuleFlag(llvm::Module::Override, "nvvm-reflect-ftz", 696 CodeGenOpts.FP32DenormalMode.Output != 697 llvm::DenormalMode::IEEE); 698 } 699 700 // Emit OpenCL specific module metadata: OpenCL/SPIR version. 701 if (LangOpts.OpenCL) { 702 EmitOpenCLMetadata(); 703 // Emit SPIR version. 704 if (getTriple().isSPIR()) { 705 // SPIR v2.0 s2.12 - The SPIR version used by the module is stored in the 706 // opencl.spir.version named metadata. 707 // C++ is backwards compatible with OpenCL v2.0. 708 auto Version = LangOpts.OpenCLCPlusPlus ? 200 : LangOpts.OpenCLVersion; 709 llvm::Metadata *SPIRVerElts[] = { 710 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 711 Int32Ty, Version / 100)), 712 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 713 Int32Ty, (Version / 100 > 1) ? 0 : 2))}; 714 llvm::NamedMDNode *SPIRVerMD = 715 TheModule.getOrInsertNamedMetadata("opencl.spir.version"); 716 llvm::LLVMContext &Ctx = TheModule.getContext(); 717 SPIRVerMD->addOperand(llvm::MDNode::get(Ctx, SPIRVerElts)); 718 } 719 } 720 721 if (uint32_t PLevel = Context.getLangOpts().PICLevel) { 722 assert(PLevel < 3 && "Invalid PIC Level"); 723 getModule().setPICLevel(static_cast<llvm::PICLevel::Level>(PLevel)); 724 if (Context.getLangOpts().PIE) 725 getModule().setPIELevel(static_cast<llvm::PIELevel::Level>(PLevel)); 726 } 727 728 if (getCodeGenOpts().CodeModel.size() > 0) { 729 unsigned CM = llvm::StringSwitch<unsigned>(getCodeGenOpts().CodeModel) 730 .Case("tiny", llvm::CodeModel::Tiny) 731 .Case("small", llvm::CodeModel::Small) 732 .Case("kernel", llvm::CodeModel::Kernel) 733 .Case("medium", llvm::CodeModel::Medium) 734 .Case("large", llvm::CodeModel::Large) 735 .Default(~0u); 736 if (CM != ~0u) { 737 llvm::CodeModel::Model codeModel = static_cast<llvm::CodeModel::Model>(CM); 738 getModule().setCodeModel(codeModel); 739 } 740 } 741 742 if (CodeGenOpts.NoPLT) 743 getModule().setRtLibUseGOT(); 744 745 SimplifyPersonality(); 746 747 if (getCodeGenOpts().EmitDeclMetadata) 748 EmitDeclMetadata(); 749 750 if (getCodeGenOpts().EmitGcovArcs || getCodeGenOpts().EmitGcovNotes) 751 EmitCoverageFile(); 752 753 if (CGDebugInfo *DI = getModuleDebugInfo()) 754 DI->finalize(); 755 756 if (getCodeGenOpts().EmitVersionIdentMetadata) 757 EmitVersionIdentMetadata(); 758 759 if (!getCodeGenOpts().RecordCommandLine.empty()) 760 EmitCommandLineMetadata(); 761 762 getTargetCodeGenInfo().emitTargetMetadata(*this, MangledDeclNames); 763 764 EmitBackendOptionsMetadata(getCodeGenOpts()); 765 766 // Set visibility from DLL storage class 767 // We do this at the end of LLVM IR generation; after any operation 768 // that might affect the DLL storage class or the visibility, and 769 // before anything that might act on these. 770 setVisibilityFromDLLStorageClass(LangOpts, getModule()); 771 } 772 773 void CodeGenModule::EmitOpenCLMetadata() { 774 // SPIR v2.0 s2.13 - The OpenCL version used by the module is stored in the 775 // opencl.ocl.version named metadata node. 776 // C++ is backwards compatible with OpenCL v2.0. 777 // FIXME: We might need to add CXX version at some point too? 778 auto Version = LangOpts.OpenCLCPlusPlus ? 200 : LangOpts.OpenCLVersion; 779 llvm::Metadata *OCLVerElts[] = { 780 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 781 Int32Ty, Version / 100)), 782 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 783 Int32Ty, (Version % 100) / 10))}; 784 llvm::NamedMDNode *OCLVerMD = 785 TheModule.getOrInsertNamedMetadata("opencl.ocl.version"); 786 llvm::LLVMContext &Ctx = TheModule.getContext(); 787 OCLVerMD->addOperand(llvm::MDNode::get(Ctx, OCLVerElts)); 788 } 789 790 void CodeGenModule::EmitBackendOptionsMetadata( 791 const CodeGenOptions CodeGenOpts) { 792 switch (getTriple().getArch()) { 793 default: 794 break; 795 case llvm::Triple::riscv32: 796 case llvm::Triple::riscv64: 797 getModule().addModuleFlag(llvm::Module::Error, "SmallDataLimit", 798 CodeGenOpts.SmallDataLimit); 799 break; 800 } 801 } 802 803 void CodeGenModule::UpdateCompletedType(const TagDecl *TD) { 804 // Make sure that this type is translated. 805 Types.UpdateCompletedType(TD); 806 } 807 808 void CodeGenModule::RefreshTypeCacheForClass(const CXXRecordDecl *RD) { 809 // Make sure that this type is translated. 810 Types.RefreshTypeCacheForClass(RD); 811 } 812 813 llvm::MDNode *CodeGenModule::getTBAATypeInfo(QualType QTy) { 814 if (!TBAA) 815 return nullptr; 816 return TBAA->getTypeInfo(QTy); 817 } 818 819 TBAAAccessInfo CodeGenModule::getTBAAAccessInfo(QualType AccessType) { 820 if (!TBAA) 821 return TBAAAccessInfo(); 822 if (getLangOpts().CUDAIsDevice) { 823 // As CUDA builtin surface/texture types are replaced, skip generating TBAA 824 // access info. 825 if (AccessType->isCUDADeviceBuiltinSurfaceType()) { 826 if (getTargetCodeGenInfo().getCUDADeviceBuiltinSurfaceDeviceType() != 827 nullptr) 828 return TBAAAccessInfo(); 829 } else if (AccessType->isCUDADeviceBuiltinTextureType()) { 830 if (getTargetCodeGenInfo().getCUDADeviceBuiltinTextureDeviceType() != 831 nullptr) 832 return TBAAAccessInfo(); 833 } 834 } 835 return TBAA->getAccessInfo(AccessType); 836 } 837 838 TBAAAccessInfo 839 CodeGenModule::getTBAAVTablePtrAccessInfo(llvm::Type *VTablePtrType) { 840 if (!TBAA) 841 return TBAAAccessInfo(); 842 return TBAA->getVTablePtrAccessInfo(VTablePtrType); 843 } 844 845 llvm::MDNode *CodeGenModule::getTBAAStructInfo(QualType QTy) { 846 if (!TBAA) 847 return nullptr; 848 return TBAA->getTBAAStructInfo(QTy); 849 } 850 851 llvm::MDNode *CodeGenModule::getTBAABaseTypeInfo(QualType QTy) { 852 if (!TBAA) 853 return nullptr; 854 return TBAA->getBaseTypeInfo(QTy); 855 } 856 857 llvm::MDNode *CodeGenModule::getTBAAAccessTagInfo(TBAAAccessInfo Info) { 858 if (!TBAA) 859 return nullptr; 860 return TBAA->getAccessTagInfo(Info); 861 } 862 863 TBAAAccessInfo CodeGenModule::mergeTBAAInfoForCast(TBAAAccessInfo SourceInfo, 864 TBAAAccessInfo TargetInfo) { 865 if (!TBAA) 866 return TBAAAccessInfo(); 867 return TBAA->mergeTBAAInfoForCast(SourceInfo, TargetInfo); 868 } 869 870 TBAAAccessInfo 871 CodeGenModule::mergeTBAAInfoForConditionalOperator(TBAAAccessInfo InfoA, 872 TBAAAccessInfo InfoB) { 873 if (!TBAA) 874 return TBAAAccessInfo(); 875 return TBAA->mergeTBAAInfoForConditionalOperator(InfoA, InfoB); 876 } 877 878 TBAAAccessInfo 879 CodeGenModule::mergeTBAAInfoForMemoryTransfer(TBAAAccessInfo DestInfo, 880 TBAAAccessInfo SrcInfo) { 881 if (!TBAA) 882 return TBAAAccessInfo(); 883 return TBAA->mergeTBAAInfoForConditionalOperator(DestInfo, SrcInfo); 884 } 885 886 void CodeGenModule::DecorateInstructionWithTBAA(llvm::Instruction *Inst, 887 TBAAAccessInfo TBAAInfo) { 888 if (llvm::MDNode *Tag = getTBAAAccessTagInfo(TBAAInfo)) 889 Inst->setMetadata(llvm::LLVMContext::MD_tbaa, Tag); 890 } 891 892 void CodeGenModule::DecorateInstructionWithInvariantGroup( 893 llvm::Instruction *I, const CXXRecordDecl *RD) { 894 I->setMetadata(llvm::LLVMContext::MD_invariant_group, 895 llvm::MDNode::get(getLLVMContext(), {})); 896 } 897 898 void CodeGenModule::Error(SourceLocation loc, StringRef message) { 899 unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, "%0"); 900 getDiags().Report(Context.getFullLoc(loc), diagID) << message; 901 } 902 903 /// ErrorUnsupported - Print out an error that codegen doesn't support the 904 /// specified stmt yet. 905 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type) { 906 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, 907 "cannot compile this %0 yet"); 908 std::string Msg = Type; 909 getDiags().Report(Context.getFullLoc(S->getBeginLoc()), DiagID) 910 << Msg << S->getSourceRange(); 911 } 912 913 /// ErrorUnsupported - Print out an error that codegen doesn't support the 914 /// specified decl yet. 915 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type) { 916 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, 917 "cannot compile this %0 yet"); 918 std::string Msg = Type; 919 getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg; 920 } 921 922 llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) { 923 return llvm::ConstantInt::get(SizeTy, size.getQuantity()); 924 } 925 926 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV, 927 const NamedDecl *D) const { 928 if (GV->hasDLLImportStorageClass()) 929 return; 930 // Internal definitions always have default visibility. 931 if (GV->hasLocalLinkage()) { 932 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 933 return; 934 } 935 if (!D) 936 return; 937 // Set visibility for definitions, and for declarations if requested globally 938 // or set explicitly. 939 LinkageInfo LV = D->getLinkageAndVisibility(); 940 if (LV.isVisibilityExplicit() || getLangOpts().SetVisibilityForExternDecls || 941 !GV->isDeclarationForLinker()) 942 GV->setVisibility(GetLLVMVisibility(LV.getVisibility())); 943 } 944 945 static bool shouldAssumeDSOLocal(const CodeGenModule &CGM, 946 llvm::GlobalValue *GV) { 947 if (GV->hasLocalLinkage()) 948 return true; 949 950 if (!GV->hasDefaultVisibility() && !GV->hasExternalWeakLinkage()) 951 return true; 952 953 // DLLImport explicitly marks the GV as external. 954 if (GV->hasDLLImportStorageClass()) 955 return false; 956 957 const llvm::Triple &TT = CGM.getTriple(); 958 if (TT.isWindowsGNUEnvironment()) { 959 // In MinGW, variables without DLLImport can still be automatically 960 // imported from a DLL by the linker; don't mark variables that 961 // potentially could come from another DLL as DSO local. 962 if (GV->isDeclarationForLinker() && isa<llvm::GlobalVariable>(GV) && 963 !GV->isThreadLocal()) 964 return false; 965 } 966 967 // On COFF, don't mark 'extern_weak' symbols as DSO local. If these symbols 968 // remain unresolved in the link, they can be resolved to zero, which is 969 // outside the current DSO. 970 if (TT.isOSBinFormatCOFF() && GV->hasExternalWeakLinkage()) 971 return false; 972 973 // Every other GV is local on COFF. 974 // Make an exception for windows OS in the triple: Some firmware builds use 975 // *-win32-macho triples. This (accidentally?) produced windows relocations 976 // without GOT tables in older clang versions; Keep this behaviour. 977 // FIXME: even thread local variables? 978 if (TT.isOSBinFormatCOFF() || (TT.isOSWindows() && TT.isOSBinFormatMachO())) 979 return true; 980 981 const auto &CGOpts = CGM.getCodeGenOpts(); 982 llvm::Reloc::Model RM = CGOpts.RelocationModel; 983 const auto &LOpts = CGM.getLangOpts(); 984 985 if (TT.isOSBinFormatMachO()) { 986 if (RM == llvm::Reloc::Static) 987 return true; 988 return GV->isStrongDefinitionForLinker(); 989 } 990 991 // Only handle COFF and ELF for now. 992 if (!TT.isOSBinFormatELF()) 993 return false; 994 995 if (RM != llvm::Reloc::Static && !LOpts.PIE) { 996 // On ELF, if -fno-semantic-interposition is specified and the target 997 // supports local aliases, there will be neither CC1 998 // -fsemantic-interposition nor -fhalf-no-semantic-interposition. Set 999 // dso_local if using a local alias is preferable (can avoid GOT 1000 // indirection). 1001 if (!GV->canBenefitFromLocalAlias()) 1002 return false; 1003 return !(CGM.getLangOpts().SemanticInterposition || 1004 CGM.getLangOpts().HalfNoSemanticInterposition); 1005 } 1006 1007 // A definition cannot be preempted from an executable. 1008 if (!GV->isDeclarationForLinker()) 1009 return true; 1010 1011 // Most PIC code sequences that assume that a symbol is local cannot produce a 1012 // 0 if it turns out the symbol is undefined. While this is ABI and relocation 1013 // depended, it seems worth it to handle it here. 1014 if (RM == llvm::Reloc::PIC_ && GV->hasExternalWeakLinkage()) 1015 return false; 1016 1017 // PowerPC64 prefers TOC indirection to avoid copy relocations. 1018 if (TT.isPPC64()) 1019 return false; 1020 1021 if (CGOpts.DirectAccessExternalData) { 1022 // If -fdirect-access-external-data (default for -fno-pic), set dso_local 1023 // for non-thread-local variables. If the symbol is not defined in the 1024 // executable, a copy relocation will be needed at link time. dso_local is 1025 // excluded for thread-local variables because they generally don't support 1026 // copy relocations. 1027 if (auto *Var = dyn_cast<llvm::GlobalVariable>(GV)) 1028 if (!Var->isThreadLocal()) 1029 return true; 1030 1031 // -fno-pic sets dso_local on a function declaration to allow direct 1032 // accesses when taking its address (similar to a data symbol). If the 1033 // function is not defined in the executable, a canonical PLT entry will be 1034 // needed at link time. -fno-direct-access-external-data can avoid the 1035 // canonical PLT entry. We don't generalize this condition to -fpie/-fpic as 1036 // it could just cause trouble without providing perceptible benefits. 1037 if (isa<llvm::Function>(GV) && !CGOpts.NoPLT && RM == llvm::Reloc::Static) 1038 return true; 1039 } 1040 1041 // If we can use copy relocations we can assume it is local. 1042 1043 // Otherwise don't assume it is local. 1044 return false; 1045 } 1046 1047 void CodeGenModule::setDSOLocal(llvm::GlobalValue *GV) const { 1048 GV->setDSOLocal(shouldAssumeDSOLocal(*this, GV)); 1049 } 1050 1051 void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV, 1052 GlobalDecl GD) const { 1053 const auto *D = dyn_cast<NamedDecl>(GD.getDecl()); 1054 // C++ destructors have a few C++ ABI specific special cases. 1055 if (const auto *Dtor = dyn_cast_or_null<CXXDestructorDecl>(D)) { 1056 getCXXABI().setCXXDestructorDLLStorage(GV, Dtor, GD.getDtorType()); 1057 return; 1058 } 1059 setDLLImportDLLExport(GV, D); 1060 } 1061 1062 void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV, 1063 const NamedDecl *D) const { 1064 if (D && D->isExternallyVisible()) { 1065 if (D->hasAttr<DLLImportAttr>()) 1066 GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass); 1067 else if (D->hasAttr<DLLExportAttr>() && !GV->isDeclarationForLinker()) 1068 GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass); 1069 } 1070 } 1071 1072 void CodeGenModule::setGVProperties(llvm::GlobalValue *GV, 1073 GlobalDecl GD) const { 1074 setDLLImportDLLExport(GV, GD); 1075 setGVPropertiesAux(GV, dyn_cast<NamedDecl>(GD.getDecl())); 1076 } 1077 1078 void CodeGenModule::setGVProperties(llvm::GlobalValue *GV, 1079 const NamedDecl *D) const { 1080 setDLLImportDLLExport(GV, D); 1081 setGVPropertiesAux(GV, D); 1082 } 1083 1084 void CodeGenModule::setGVPropertiesAux(llvm::GlobalValue *GV, 1085 const NamedDecl *D) const { 1086 setGlobalVisibility(GV, D); 1087 setDSOLocal(GV); 1088 GV->setPartition(CodeGenOpts.SymbolPartition); 1089 } 1090 1091 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(StringRef S) { 1092 return llvm::StringSwitch<llvm::GlobalVariable::ThreadLocalMode>(S) 1093 .Case("global-dynamic", llvm::GlobalVariable::GeneralDynamicTLSModel) 1094 .Case("local-dynamic", llvm::GlobalVariable::LocalDynamicTLSModel) 1095 .Case("initial-exec", llvm::GlobalVariable::InitialExecTLSModel) 1096 .Case("local-exec", llvm::GlobalVariable::LocalExecTLSModel); 1097 } 1098 1099 llvm::GlobalVariable::ThreadLocalMode 1100 CodeGenModule::GetDefaultLLVMTLSModel() const { 1101 switch (CodeGenOpts.getDefaultTLSModel()) { 1102 case CodeGenOptions::GeneralDynamicTLSModel: 1103 return llvm::GlobalVariable::GeneralDynamicTLSModel; 1104 case CodeGenOptions::LocalDynamicTLSModel: 1105 return llvm::GlobalVariable::LocalDynamicTLSModel; 1106 case CodeGenOptions::InitialExecTLSModel: 1107 return llvm::GlobalVariable::InitialExecTLSModel; 1108 case CodeGenOptions::LocalExecTLSModel: 1109 return llvm::GlobalVariable::LocalExecTLSModel; 1110 } 1111 llvm_unreachable("Invalid TLS model!"); 1112 } 1113 1114 void CodeGenModule::setTLSMode(llvm::GlobalValue *GV, const VarDecl &D) const { 1115 assert(D.getTLSKind() && "setting TLS mode on non-TLS var!"); 1116 1117 llvm::GlobalValue::ThreadLocalMode TLM; 1118 TLM = GetDefaultLLVMTLSModel(); 1119 1120 // Override the TLS model if it is explicitly specified. 1121 if (const TLSModelAttr *Attr = D.getAttr<TLSModelAttr>()) { 1122 TLM = GetLLVMTLSModel(Attr->getModel()); 1123 } 1124 1125 GV->setThreadLocalMode(TLM); 1126 } 1127 1128 static std::string getCPUSpecificMangling(const CodeGenModule &CGM, 1129 StringRef Name) { 1130 const TargetInfo &Target = CGM.getTarget(); 1131 return (Twine('.') + Twine(Target.CPUSpecificManglingCharacter(Name))).str(); 1132 } 1133 1134 static void AppendCPUSpecificCPUDispatchMangling(const CodeGenModule &CGM, 1135 const CPUSpecificAttr *Attr, 1136 unsigned CPUIndex, 1137 raw_ostream &Out) { 1138 // cpu_specific gets the current name, dispatch gets the resolver if IFunc is 1139 // supported. 1140 if (Attr) 1141 Out << getCPUSpecificMangling(CGM, Attr->getCPUName(CPUIndex)->getName()); 1142 else if (CGM.getTarget().supportsIFunc()) 1143 Out << ".resolver"; 1144 } 1145 1146 static void AppendTargetMangling(const CodeGenModule &CGM, 1147 const TargetAttr *Attr, raw_ostream &Out) { 1148 if (Attr->isDefaultVersion()) 1149 return; 1150 1151 Out << '.'; 1152 const TargetInfo &Target = CGM.getTarget(); 1153 ParsedTargetAttr Info = 1154 Attr->parse([&Target](StringRef LHS, StringRef RHS) { 1155 // Multiversioning doesn't allow "no-${feature}", so we can 1156 // only have "+" prefixes here. 1157 assert(LHS.startswith("+") && RHS.startswith("+") && 1158 "Features should always have a prefix."); 1159 return Target.multiVersionSortPriority(LHS.substr(1)) > 1160 Target.multiVersionSortPriority(RHS.substr(1)); 1161 }); 1162 1163 bool IsFirst = true; 1164 1165 if (!Info.Architecture.empty()) { 1166 IsFirst = false; 1167 Out << "arch_" << Info.Architecture; 1168 } 1169 1170 for (StringRef Feat : Info.Features) { 1171 if (!IsFirst) 1172 Out << '_'; 1173 IsFirst = false; 1174 Out << Feat.substr(1); 1175 } 1176 } 1177 1178 // Returns true if GD is a function/var decl with internal linkage and 1179 // needs a unique suffix after the mangled name. 1180 static bool isUniqueInternalLinkageDecl(GlobalDecl GD, 1181 CodeGenModule &CGM) { 1182 const Decl *D = GD.getDecl(); 1183 if (!CGM.getModuleNameHash().empty() && 1184 ((isa<FunctionDecl>(D) && 1185 CGM.getFunctionLinkage(GD) == llvm::GlobalValue::InternalLinkage) || 1186 (isa<VarDecl>(D) && CGM.getContext().GetGVALinkageForVariable( 1187 cast<VarDecl>(D)) == GVA_Internal))) 1188 return true; 1189 return false; 1190 } 1191 1192 static std::string getMangledNameImpl(CodeGenModule &CGM, GlobalDecl GD, 1193 const NamedDecl *ND, 1194 bool OmitMultiVersionMangling = false) { 1195 SmallString<256> Buffer; 1196 llvm::raw_svector_ostream Out(Buffer); 1197 MangleContext &MC = CGM.getCXXABI().getMangleContext(); 1198 if (!CGM.getModuleNameHash().empty()) 1199 MC.needsUniqueInternalLinkageNames(); 1200 bool ShouldMangle = MC.shouldMangleDeclName(ND); 1201 if (ShouldMangle) 1202 MC.mangleName(GD.getWithDecl(ND), Out); 1203 else { 1204 IdentifierInfo *II = ND->getIdentifier(); 1205 assert(II && "Attempt to mangle unnamed decl."); 1206 const auto *FD = dyn_cast<FunctionDecl>(ND); 1207 1208 if (FD && 1209 FD->getType()->castAs<FunctionType>()->getCallConv() == CC_X86RegCall) { 1210 Out << "__regcall3__" << II->getName(); 1211 } else if (FD && FD->hasAttr<CUDAGlobalAttr>() && 1212 GD.getKernelReferenceKind() == KernelReferenceKind::Stub) { 1213 Out << "__device_stub__" << II->getName(); 1214 } else { 1215 Out << II->getName(); 1216 } 1217 } 1218 1219 // Check if the module name hash should be appended for internal linkage 1220 // symbols. This should come before multi-version target suffixes are 1221 // appended. This is to keep the name and module hash suffix of the 1222 // internal linkage function together. The unique suffix should only be 1223 // added when name mangling is done to make sure that the final name can 1224 // be properly demangled. For example, for C functions without prototypes, 1225 // name mangling is not done and the unique suffix should not be appeneded 1226 // then. 1227 if (ShouldMangle && isUniqueInternalLinkageDecl(GD, CGM)) { 1228 assert(CGM.getCodeGenOpts().UniqueInternalLinkageNames && 1229 "Hash computed when not explicitly requested"); 1230 Out << CGM.getModuleNameHash(); 1231 } 1232 1233 if (const auto *FD = dyn_cast<FunctionDecl>(ND)) 1234 if (FD->isMultiVersion() && !OmitMultiVersionMangling) { 1235 switch (FD->getMultiVersionKind()) { 1236 case MultiVersionKind::CPUDispatch: 1237 case MultiVersionKind::CPUSpecific: 1238 AppendCPUSpecificCPUDispatchMangling(CGM, 1239 FD->getAttr<CPUSpecificAttr>(), 1240 GD.getMultiVersionIndex(), Out); 1241 break; 1242 case MultiVersionKind::Target: 1243 AppendTargetMangling(CGM, FD->getAttr<TargetAttr>(), Out); 1244 break; 1245 case MultiVersionKind::None: 1246 llvm_unreachable("None multiversion type isn't valid here"); 1247 } 1248 } 1249 1250 // Make unique name for device side static file-scope variable for HIP. 1251 if (CGM.getContext().shouldExternalizeStaticVar(ND) && 1252 CGM.getLangOpts().GPURelocatableDeviceCode && 1253 CGM.getLangOpts().CUDAIsDevice && !CGM.getLangOpts().CUID.empty()) 1254 CGM.printPostfixForExternalizedStaticVar(Out); 1255 return std::string(Out.str()); 1256 } 1257 1258 void CodeGenModule::UpdateMultiVersionNames(GlobalDecl GD, 1259 const FunctionDecl *FD) { 1260 if (!FD->isMultiVersion()) 1261 return; 1262 1263 // Get the name of what this would be without the 'target' attribute. This 1264 // allows us to lookup the version that was emitted when this wasn't a 1265 // multiversion function. 1266 std::string NonTargetName = 1267 getMangledNameImpl(*this, GD, FD, /*OmitMultiVersionMangling=*/true); 1268 GlobalDecl OtherGD; 1269 if (lookupRepresentativeDecl(NonTargetName, OtherGD)) { 1270 assert(OtherGD.getCanonicalDecl() 1271 .getDecl() 1272 ->getAsFunction() 1273 ->isMultiVersion() && 1274 "Other GD should now be a multiversioned function"); 1275 // OtherFD is the version of this function that was mangled BEFORE 1276 // becoming a MultiVersion function. It potentially needs to be updated. 1277 const FunctionDecl *OtherFD = OtherGD.getCanonicalDecl() 1278 .getDecl() 1279 ->getAsFunction() 1280 ->getMostRecentDecl(); 1281 std::string OtherName = getMangledNameImpl(*this, OtherGD, OtherFD); 1282 // This is so that if the initial version was already the 'default' 1283 // version, we don't try to update it. 1284 if (OtherName != NonTargetName) { 1285 // Remove instead of erase, since others may have stored the StringRef 1286 // to this. 1287 const auto ExistingRecord = Manglings.find(NonTargetName); 1288 if (ExistingRecord != std::end(Manglings)) 1289 Manglings.remove(&(*ExistingRecord)); 1290 auto Result = Manglings.insert(std::make_pair(OtherName, OtherGD)); 1291 MangledDeclNames[OtherGD.getCanonicalDecl()] = Result.first->first(); 1292 if (llvm::GlobalValue *Entry = GetGlobalValue(NonTargetName)) 1293 Entry->setName(OtherName); 1294 } 1295 } 1296 } 1297 1298 StringRef CodeGenModule::getMangledName(GlobalDecl GD) { 1299 GlobalDecl CanonicalGD = GD.getCanonicalDecl(); 1300 1301 // Some ABIs don't have constructor variants. Make sure that base and 1302 // complete constructors get mangled the same. 1303 if (const auto *CD = dyn_cast<CXXConstructorDecl>(CanonicalGD.getDecl())) { 1304 if (!getTarget().getCXXABI().hasConstructorVariants()) { 1305 CXXCtorType OrigCtorType = GD.getCtorType(); 1306 assert(OrigCtorType == Ctor_Base || OrigCtorType == Ctor_Complete); 1307 if (OrigCtorType == Ctor_Base) 1308 CanonicalGD = GlobalDecl(CD, Ctor_Complete); 1309 } 1310 } 1311 1312 // In CUDA/HIP device compilation with -fgpu-rdc, the mangled name of a 1313 // static device variable depends on whether the variable is referenced by 1314 // a host or device host function. Therefore the mangled name cannot be 1315 // cached. 1316 if (!LangOpts.CUDAIsDevice || 1317 !getContext().mayExternalizeStaticVar(GD.getDecl())) { 1318 auto FoundName = MangledDeclNames.find(CanonicalGD); 1319 if (FoundName != MangledDeclNames.end()) 1320 return FoundName->second; 1321 } 1322 1323 // Keep the first result in the case of a mangling collision. 1324 const auto *ND = cast<NamedDecl>(GD.getDecl()); 1325 std::string MangledName = getMangledNameImpl(*this, GD, ND); 1326 1327 // Ensure either we have different ABIs between host and device compilations, 1328 // says host compilation following MSVC ABI but device compilation follows 1329 // Itanium C++ ABI or, if they follow the same ABI, kernel names after 1330 // mangling should be the same after name stubbing. The later checking is 1331 // very important as the device kernel name being mangled in host-compilation 1332 // is used to resolve the device binaries to be executed. Inconsistent naming 1333 // result in undefined behavior. Even though we cannot check that naming 1334 // directly between host- and device-compilations, the host- and 1335 // device-mangling in host compilation could help catching certain ones. 1336 assert(!isa<FunctionDecl>(ND) || !ND->hasAttr<CUDAGlobalAttr>() || 1337 getLangOpts().CUDAIsDevice || 1338 (getContext().getAuxTargetInfo() && 1339 (getContext().getAuxTargetInfo()->getCXXABI() != 1340 getContext().getTargetInfo().getCXXABI())) || 1341 getCUDARuntime().getDeviceSideName(ND) == 1342 getMangledNameImpl( 1343 *this, 1344 GD.getWithKernelReferenceKind(KernelReferenceKind::Kernel), 1345 ND)); 1346 1347 auto Result = Manglings.insert(std::make_pair(MangledName, GD)); 1348 return MangledDeclNames[CanonicalGD] = Result.first->first(); 1349 } 1350 1351 StringRef CodeGenModule::getBlockMangledName(GlobalDecl GD, 1352 const BlockDecl *BD) { 1353 MangleContext &MangleCtx = getCXXABI().getMangleContext(); 1354 const Decl *D = GD.getDecl(); 1355 1356 SmallString<256> Buffer; 1357 llvm::raw_svector_ostream Out(Buffer); 1358 if (!D) 1359 MangleCtx.mangleGlobalBlock(BD, 1360 dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()), Out); 1361 else if (const auto *CD = dyn_cast<CXXConstructorDecl>(D)) 1362 MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out); 1363 else if (const auto *DD = dyn_cast<CXXDestructorDecl>(D)) 1364 MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out); 1365 else 1366 MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out); 1367 1368 auto Result = Manglings.insert(std::make_pair(Out.str(), BD)); 1369 return Result.first->first(); 1370 } 1371 1372 llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) { 1373 return getModule().getNamedValue(Name); 1374 } 1375 1376 /// AddGlobalCtor - Add a function to the list that will be called before 1377 /// main() runs. 1378 void CodeGenModule::AddGlobalCtor(llvm::Function *Ctor, int Priority, 1379 llvm::Constant *AssociatedData) { 1380 // FIXME: Type coercion of void()* types. 1381 GlobalCtors.push_back(Structor(Priority, Ctor, AssociatedData)); 1382 } 1383 1384 /// AddGlobalDtor - Add a function to the list that will be called 1385 /// when the module is unloaded. 1386 void CodeGenModule::AddGlobalDtor(llvm::Function *Dtor, int Priority, 1387 bool IsDtorAttrFunc) { 1388 if (CodeGenOpts.RegisterGlobalDtorsWithAtExit && 1389 (!getContext().getTargetInfo().getTriple().isOSAIX() || IsDtorAttrFunc)) { 1390 DtorsUsingAtExit[Priority].push_back(Dtor); 1391 return; 1392 } 1393 1394 // FIXME: Type coercion of void()* types. 1395 GlobalDtors.push_back(Structor(Priority, Dtor, nullptr)); 1396 } 1397 1398 void CodeGenModule::EmitCtorList(CtorList &Fns, const char *GlobalName) { 1399 if (Fns.empty()) return; 1400 1401 // Ctor function type is void()*. 1402 llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false); 1403 llvm::Type *CtorPFTy = llvm::PointerType::get(CtorFTy, 1404 TheModule.getDataLayout().getProgramAddressSpace()); 1405 1406 // Get the type of a ctor entry, { i32, void ()*, i8* }. 1407 llvm::StructType *CtorStructTy = llvm::StructType::get( 1408 Int32Ty, CtorPFTy, VoidPtrTy); 1409 1410 // Construct the constructor and destructor arrays. 1411 ConstantInitBuilder builder(*this); 1412 auto ctors = builder.beginArray(CtorStructTy); 1413 for (const auto &I : Fns) { 1414 auto ctor = ctors.beginStruct(CtorStructTy); 1415 ctor.addInt(Int32Ty, I.Priority); 1416 ctor.add(llvm::ConstantExpr::getBitCast(I.Initializer, CtorPFTy)); 1417 if (I.AssociatedData) 1418 ctor.add(llvm::ConstantExpr::getBitCast(I.AssociatedData, VoidPtrTy)); 1419 else 1420 ctor.addNullPointer(VoidPtrTy); 1421 ctor.finishAndAddTo(ctors); 1422 } 1423 1424 auto list = 1425 ctors.finishAndCreateGlobal(GlobalName, getPointerAlign(), 1426 /*constant*/ false, 1427 llvm::GlobalValue::AppendingLinkage); 1428 1429 // The LTO linker doesn't seem to like it when we set an alignment 1430 // on appending variables. Take it off as a workaround. 1431 list->setAlignment(llvm::None); 1432 1433 Fns.clear(); 1434 } 1435 1436 llvm::GlobalValue::LinkageTypes 1437 CodeGenModule::getFunctionLinkage(GlobalDecl GD) { 1438 const auto *D = cast<FunctionDecl>(GD.getDecl()); 1439 1440 GVALinkage Linkage = getContext().GetGVALinkageForFunction(D); 1441 1442 if (const auto *Dtor = dyn_cast<CXXDestructorDecl>(D)) 1443 return getCXXABI().getCXXDestructorLinkage(Linkage, Dtor, GD.getDtorType()); 1444 1445 if (isa<CXXConstructorDecl>(D) && 1446 cast<CXXConstructorDecl>(D)->isInheritingConstructor() && 1447 Context.getTargetInfo().getCXXABI().isMicrosoft()) { 1448 // Our approach to inheriting constructors is fundamentally different from 1449 // that used by the MS ABI, so keep our inheriting constructor thunks 1450 // internal rather than trying to pick an unambiguous mangling for them. 1451 return llvm::GlobalValue::InternalLinkage; 1452 } 1453 1454 return getLLVMLinkageForDeclarator(D, Linkage, /*IsConstantVariable=*/false); 1455 } 1456 1457 llvm::ConstantInt *CodeGenModule::CreateCrossDsoCfiTypeId(llvm::Metadata *MD) { 1458 llvm::MDString *MDS = dyn_cast<llvm::MDString>(MD); 1459 if (!MDS) return nullptr; 1460 1461 return llvm::ConstantInt::get(Int64Ty, llvm::MD5Hash(MDS->getString())); 1462 } 1463 1464 void CodeGenModule::SetLLVMFunctionAttributes(GlobalDecl GD, 1465 const CGFunctionInfo &Info, 1466 llvm::Function *F) { 1467 unsigned CallingConv; 1468 llvm::AttributeList PAL; 1469 ConstructAttributeList(F->getName(), Info, GD, PAL, CallingConv, false); 1470 F->setAttributes(PAL); 1471 F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv)); 1472 } 1473 1474 static void removeImageAccessQualifier(std::string& TyName) { 1475 std::string ReadOnlyQual("__read_only"); 1476 std::string::size_type ReadOnlyPos = TyName.find(ReadOnlyQual); 1477 if (ReadOnlyPos != std::string::npos) 1478 // "+ 1" for the space after access qualifier. 1479 TyName.erase(ReadOnlyPos, ReadOnlyQual.size() + 1); 1480 else { 1481 std::string WriteOnlyQual("__write_only"); 1482 std::string::size_type WriteOnlyPos = TyName.find(WriteOnlyQual); 1483 if (WriteOnlyPos != std::string::npos) 1484 TyName.erase(WriteOnlyPos, WriteOnlyQual.size() + 1); 1485 else { 1486 std::string ReadWriteQual("__read_write"); 1487 std::string::size_type ReadWritePos = TyName.find(ReadWriteQual); 1488 if (ReadWritePos != std::string::npos) 1489 TyName.erase(ReadWritePos, ReadWriteQual.size() + 1); 1490 } 1491 } 1492 } 1493 1494 // Returns the address space id that should be produced to the 1495 // kernel_arg_addr_space metadata. This is always fixed to the ids 1496 // as specified in the SPIR 2.0 specification in order to differentiate 1497 // for example in clGetKernelArgInfo() implementation between the address 1498 // spaces with targets without unique mapping to the OpenCL address spaces 1499 // (basically all single AS CPUs). 1500 static unsigned ArgInfoAddressSpace(LangAS AS) { 1501 switch (AS) { 1502 case LangAS::opencl_global: 1503 return 1; 1504 case LangAS::opencl_constant: 1505 return 2; 1506 case LangAS::opencl_local: 1507 return 3; 1508 case LangAS::opencl_generic: 1509 return 4; // Not in SPIR 2.0 specs. 1510 case LangAS::opencl_global_device: 1511 return 5; 1512 case LangAS::opencl_global_host: 1513 return 6; 1514 default: 1515 return 0; // Assume private. 1516 } 1517 } 1518 1519 void CodeGenModule::GenOpenCLArgMetadata(llvm::Function *Fn, 1520 const FunctionDecl *FD, 1521 CodeGenFunction *CGF) { 1522 assert(((FD && CGF) || (!FD && !CGF)) && 1523 "Incorrect use - FD and CGF should either be both null or not!"); 1524 // Create MDNodes that represent the kernel arg metadata. 1525 // Each MDNode is a list in the form of "key", N number of values which is 1526 // the same number of values as their are kernel arguments. 1527 1528 const PrintingPolicy &Policy = Context.getPrintingPolicy(); 1529 1530 // MDNode for the kernel argument address space qualifiers. 1531 SmallVector<llvm::Metadata *, 8> addressQuals; 1532 1533 // MDNode for the kernel argument access qualifiers (images only). 1534 SmallVector<llvm::Metadata *, 8> accessQuals; 1535 1536 // MDNode for the kernel argument type names. 1537 SmallVector<llvm::Metadata *, 8> argTypeNames; 1538 1539 // MDNode for the kernel argument base type names. 1540 SmallVector<llvm::Metadata *, 8> argBaseTypeNames; 1541 1542 // MDNode for the kernel argument type qualifiers. 1543 SmallVector<llvm::Metadata *, 8> argTypeQuals; 1544 1545 // MDNode for the kernel argument names. 1546 SmallVector<llvm::Metadata *, 8> argNames; 1547 1548 if (FD && CGF) 1549 for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i) { 1550 const ParmVarDecl *parm = FD->getParamDecl(i); 1551 QualType ty = parm->getType(); 1552 std::string typeQuals; 1553 1554 // Get image and pipe access qualifier: 1555 if (ty->isImageType() || ty->isPipeType()) { 1556 const Decl *PDecl = parm; 1557 if (auto *TD = dyn_cast<TypedefType>(ty)) 1558 PDecl = TD->getDecl(); 1559 const OpenCLAccessAttr *A = PDecl->getAttr<OpenCLAccessAttr>(); 1560 if (A && A->isWriteOnly()) 1561 accessQuals.push_back(llvm::MDString::get(VMContext, "write_only")); 1562 else if (A && A->isReadWrite()) 1563 accessQuals.push_back(llvm::MDString::get(VMContext, "read_write")); 1564 else 1565 accessQuals.push_back(llvm::MDString::get(VMContext, "read_only")); 1566 } else 1567 accessQuals.push_back(llvm::MDString::get(VMContext, "none")); 1568 1569 // Get argument name. 1570 argNames.push_back(llvm::MDString::get(VMContext, parm->getName())); 1571 1572 auto getTypeSpelling = [&](QualType Ty) { 1573 auto typeName = Ty.getUnqualifiedType().getAsString(Policy); 1574 1575 if (Ty.isCanonical()) { 1576 StringRef typeNameRef = typeName; 1577 // Turn "unsigned type" to "utype" 1578 if (typeNameRef.consume_front("unsigned ")) 1579 return std::string("u") + typeNameRef.str(); 1580 if (typeNameRef.consume_front("signed ")) 1581 return typeNameRef.str(); 1582 } 1583 1584 return typeName; 1585 }; 1586 1587 if (ty->isPointerType()) { 1588 QualType pointeeTy = ty->getPointeeType(); 1589 1590 // Get address qualifier. 1591 addressQuals.push_back( 1592 llvm::ConstantAsMetadata::get(CGF->Builder.getInt32( 1593 ArgInfoAddressSpace(pointeeTy.getAddressSpace())))); 1594 1595 // Get argument type name. 1596 std::string typeName = getTypeSpelling(pointeeTy) + "*"; 1597 std::string baseTypeName = 1598 getTypeSpelling(pointeeTy.getCanonicalType()) + "*"; 1599 argTypeNames.push_back(llvm::MDString::get(VMContext, typeName)); 1600 argBaseTypeNames.push_back( 1601 llvm::MDString::get(VMContext, baseTypeName)); 1602 1603 // Get argument type qualifiers: 1604 if (ty.isRestrictQualified()) 1605 typeQuals = "restrict"; 1606 if (pointeeTy.isConstQualified() || 1607 (pointeeTy.getAddressSpace() == LangAS::opencl_constant)) 1608 typeQuals += typeQuals.empty() ? "const" : " const"; 1609 if (pointeeTy.isVolatileQualified()) 1610 typeQuals += typeQuals.empty() ? "volatile" : " volatile"; 1611 } else { 1612 uint32_t AddrSpc = 0; 1613 bool isPipe = ty->isPipeType(); 1614 if (ty->isImageType() || isPipe) 1615 AddrSpc = ArgInfoAddressSpace(LangAS::opencl_global); 1616 1617 addressQuals.push_back( 1618 llvm::ConstantAsMetadata::get(CGF->Builder.getInt32(AddrSpc))); 1619 1620 // Get argument type name. 1621 ty = isPipe ? ty->castAs<PipeType>()->getElementType() : ty; 1622 std::string typeName = getTypeSpelling(ty); 1623 std::string baseTypeName = getTypeSpelling(ty.getCanonicalType()); 1624 1625 // Remove access qualifiers on images 1626 // (as they are inseparable from type in clang implementation, 1627 // but OpenCL spec provides a special query to get access qualifier 1628 // via clGetKernelArgInfo with CL_KERNEL_ARG_ACCESS_QUALIFIER): 1629 if (ty->isImageType()) { 1630 removeImageAccessQualifier(typeName); 1631 removeImageAccessQualifier(baseTypeName); 1632 } 1633 1634 argTypeNames.push_back(llvm::MDString::get(VMContext, typeName)); 1635 argBaseTypeNames.push_back( 1636 llvm::MDString::get(VMContext, baseTypeName)); 1637 1638 if (isPipe) 1639 typeQuals = "pipe"; 1640 } 1641 argTypeQuals.push_back(llvm::MDString::get(VMContext, typeQuals)); 1642 } 1643 1644 Fn->setMetadata("kernel_arg_addr_space", 1645 llvm::MDNode::get(VMContext, addressQuals)); 1646 Fn->setMetadata("kernel_arg_access_qual", 1647 llvm::MDNode::get(VMContext, accessQuals)); 1648 Fn->setMetadata("kernel_arg_type", 1649 llvm::MDNode::get(VMContext, argTypeNames)); 1650 Fn->setMetadata("kernel_arg_base_type", 1651 llvm::MDNode::get(VMContext, argBaseTypeNames)); 1652 Fn->setMetadata("kernel_arg_type_qual", 1653 llvm::MDNode::get(VMContext, argTypeQuals)); 1654 if (getCodeGenOpts().EmitOpenCLArgMetadata) 1655 Fn->setMetadata("kernel_arg_name", 1656 llvm::MDNode::get(VMContext, argNames)); 1657 } 1658 1659 /// Determines whether the language options require us to model 1660 /// unwind exceptions. We treat -fexceptions as mandating this 1661 /// except under the fragile ObjC ABI with only ObjC exceptions 1662 /// enabled. This means, for example, that C with -fexceptions 1663 /// enables this. 1664 static bool hasUnwindExceptions(const LangOptions &LangOpts) { 1665 // If exceptions are completely disabled, obviously this is false. 1666 if (!LangOpts.Exceptions) return false; 1667 1668 // If C++ exceptions are enabled, this is true. 1669 if (LangOpts.CXXExceptions) return true; 1670 1671 // If ObjC exceptions are enabled, this depends on the ABI. 1672 if (LangOpts.ObjCExceptions) { 1673 return LangOpts.ObjCRuntime.hasUnwindExceptions(); 1674 } 1675 1676 return true; 1677 } 1678 1679 static bool requiresMemberFunctionPointerTypeMetadata(CodeGenModule &CGM, 1680 const CXXMethodDecl *MD) { 1681 // Check that the type metadata can ever actually be used by a call. 1682 if (!CGM.getCodeGenOpts().LTOUnit || 1683 !CGM.HasHiddenLTOVisibility(MD->getParent())) 1684 return false; 1685 1686 // Only functions whose address can be taken with a member function pointer 1687 // need this sort of type metadata. 1688 return !MD->isStatic() && !MD->isVirtual() && !isa<CXXConstructorDecl>(MD) && 1689 !isa<CXXDestructorDecl>(MD); 1690 } 1691 1692 std::vector<const CXXRecordDecl *> 1693 CodeGenModule::getMostBaseClasses(const CXXRecordDecl *RD) { 1694 llvm::SetVector<const CXXRecordDecl *> MostBases; 1695 1696 std::function<void (const CXXRecordDecl *)> CollectMostBases; 1697 CollectMostBases = [&](const CXXRecordDecl *RD) { 1698 if (RD->getNumBases() == 0) 1699 MostBases.insert(RD); 1700 for (const CXXBaseSpecifier &B : RD->bases()) 1701 CollectMostBases(B.getType()->getAsCXXRecordDecl()); 1702 }; 1703 CollectMostBases(RD); 1704 return MostBases.takeVector(); 1705 } 1706 1707 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D, 1708 llvm::Function *F) { 1709 llvm::AttrBuilder B; 1710 1711 if (CodeGenOpts.UnwindTables) 1712 B.addAttribute(llvm::Attribute::UWTable); 1713 1714 if (CodeGenOpts.StackClashProtector) 1715 B.addAttribute("probe-stack", "inline-asm"); 1716 1717 if (!hasUnwindExceptions(LangOpts)) 1718 B.addAttribute(llvm::Attribute::NoUnwind); 1719 1720 if (!D || !D->hasAttr<NoStackProtectorAttr>()) { 1721 if (LangOpts.getStackProtector() == LangOptions::SSPOn) 1722 B.addAttribute(llvm::Attribute::StackProtect); 1723 else if (LangOpts.getStackProtector() == LangOptions::SSPStrong) 1724 B.addAttribute(llvm::Attribute::StackProtectStrong); 1725 else if (LangOpts.getStackProtector() == LangOptions::SSPReq) 1726 B.addAttribute(llvm::Attribute::StackProtectReq); 1727 } 1728 1729 if (!D) { 1730 // If we don't have a declaration to control inlining, the function isn't 1731 // explicitly marked as alwaysinline for semantic reasons, and inlining is 1732 // disabled, mark the function as noinline. 1733 if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline) && 1734 CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining) 1735 B.addAttribute(llvm::Attribute::NoInline); 1736 1737 F->addAttributes(llvm::AttributeList::FunctionIndex, B); 1738 return; 1739 } 1740 1741 // Track whether we need to add the optnone LLVM attribute, 1742 // starting with the default for this optimization level. 1743 bool ShouldAddOptNone = 1744 !CodeGenOpts.DisableO0ImplyOptNone && CodeGenOpts.OptimizationLevel == 0; 1745 // We can't add optnone in the following cases, it won't pass the verifier. 1746 ShouldAddOptNone &= !D->hasAttr<MinSizeAttr>(); 1747 ShouldAddOptNone &= !D->hasAttr<AlwaysInlineAttr>(); 1748 1749 // Add optnone, but do so only if the function isn't always_inline. 1750 if ((ShouldAddOptNone || D->hasAttr<OptimizeNoneAttr>()) && 1751 !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) { 1752 B.addAttribute(llvm::Attribute::OptimizeNone); 1753 1754 // OptimizeNone implies noinline; we should not be inlining such functions. 1755 B.addAttribute(llvm::Attribute::NoInline); 1756 1757 // We still need to handle naked functions even though optnone subsumes 1758 // much of their semantics. 1759 if (D->hasAttr<NakedAttr>()) 1760 B.addAttribute(llvm::Attribute::Naked); 1761 1762 // OptimizeNone wins over OptimizeForSize and MinSize. 1763 F->removeFnAttr(llvm::Attribute::OptimizeForSize); 1764 F->removeFnAttr(llvm::Attribute::MinSize); 1765 } else if (D->hasAttr<NakedAttr>()) { 1766 // Naked implies noinline: we should not be inlining such functions. 1767 B.addAttribute(llvm::Attribute::Naked); 1768 B.addAttribute(llvm::Attribute::NoInline); 1769 } else if (D->hasAttr<NoDuplicateAttr>()) { 1770 B.addAttribute(llvm::Attribute::NoDuplicate); 1771 } else if (D->hasAttr<NoInlineAttr>() && !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) { 1772 // Add noinline if the function isn't always_inline. 1773 B.addAttribute(llvm::Attribute::NoInline); 1774 } else if (D->hasAttr<AlwaysInlineAttr>() && 1775 !F->hasFnAttribute(llvm::Attribute::NoInline)) { 1776 // (noinline wins over always_inline, and we can't specify both in IR) 1777 B.addAttribute(llvm::Attribute::AlwaysInline); 1778 } else if (CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining) { 1779 // If we're not inlining, then force everything that isn't always_inline to 1780 // carry an explicit noinline attribute. 1781 if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline)) 1782 B.addAttribute(llvm::Attribute::NoInline); 1783 } else { 1784 // Otherwise, propagate the inline hint attribute and potentially use its 1785 // absence to mark things as noinline. 1786 if (auto *FD = dyn_cast<FunctionDecl>(D)) { 1787 // Search function and template pattern redeclarations for inline. 1788 auto CheckForInline = [](const FunctionDecl *FD) { 1789 auto CheckRedeclForInline = [](const FunctionDecl *Redecl) { 1790 return Redecl->isInlineSpecified(); 1791 }; 1792 if (any_of(FD->redecls(), CheckRedeclForInline)) 1793 return true; 1794 const FunctionDecl *Pattern = FD->getTemplateInstantiationPattern(); 1795 if (!Pattern) 1796 return false; 1797 return any_of(Pattern->redecls(), CheckRedeclForInline); 1798 }; 1799 if (CheckForInline(FD)) { 1800 B.addAttribute(llvm::Attribute::InlineHint); 1801 } else if (CodeGenOpts.getInlining() == 1802 CodeGenOptions::OnlyHintInlining && 1803 !FD->isInlined() && 1804 !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) { 1805 B.addAttribute(llvm::Attribute::NoInline); 1806 } 1807 } 1808 } 1809 1810 // Add other optimization related attributes if we are optimizing this 1811 // function. 1812 if (!D->hasAttr<OptimizeNoneAttr>()) { 1813 if (D->hasAttr<ColdAttr>()) { 1814 if (!ShouldAddOptNone) 1815 B.addAttribute(llvm::Attribute::OptimizeForSize); 1816 B.addAttribute(llvm::Attribute::Cold); 1817 } 1818 if (D->hasAttr<HotAttr>()) 1819 B.addAttribute(llvm::Attribute::Hot); 1820 if (D->hasAttr<MinSizeAttr>()) 1821 B.addAttribute(llvm::Attribute::MinSize); 1822 } 1823 1824 F->addAttributes(llvm::AttributeList::FunctionIndex, B); 1825 1826 unsigned alignment = D->getMaxAlignment() / Context.getCharWidth(); 1827 if (alignment) 1828 F->setAlignment(llvm::Align(alignment)); 1829 1830 if (!D->hasAttr<AlignedAttr>()) 1831 if (LangOpts.FunctionAlignment) 1832 F->setAlignment(llvm::Align(1ull << LangOpts.FunctionAlignment)); 1833 1834 // Some C++ ABIs require 2-byte alignment for member functions, in order to 1835 // reserve a bit for differentiating between virtual and non-virtual member 1836 // functions. If the current target's C++ ABI requires this and this is a 1837 // member function, set its alignment accordingly. 1838 if (getTarget().getCXXABI().areMemberFunctionsAligned()) { 1839 if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D)) 1840 F->setAlignment(llvm::Align(2)); 1841 } 1842 1843 // In the cross-dso CFI mode with canonical jump tables, we want !type 1844 // attributes on definitions only. 1845 if (CodeGenOpts.SanitizeCfiCrossDso && 1846 CodeGenOpts.SanitizeCfiCanonicalJumpTables) { 1847 if (auto *FD = dyn_cast<FunctionDecl>(D)) { 1848 // Skip available_externally functions. They won't be codegen'ed in the 1849 // current module anyway. 1850 if (getContext().GetGVALinkageForFunction(FD) != GVA_AvailableExternally) 1851 CreateFunctionTypeMetadataForIcall(FD, F); 1852 } 1853 } 1854 1855 // Emit type metadata on member functions for member function pointer checks. 1856 // These are only ever necessary on definitions; we're guaranteed that the 1857 // definition will be present in the LTO unit as a result of LTO visibility. 1858 auto *MD = dyn_cast<CXXMethodDecl>(D); 1859 if (MD && requiresMemberFunctionPointerTypeMetadata(*this, MD)) { 1860 for (const CXXRecordDecl *Base : getMostBaseClasses(MD->getParent())) { 1861 llvm::Metadata *Id = 1862 CreateMetadataIdentifierForType(Context.getMemberPointerType( 1863 MD->getType(), Context.getRecordType(Base).getTypePtr())); 1864 F->addTypeMetadata(0, Id); 1865 } 1866 } 1867 } 1868 1869 void CodeGenModule::setLLVMFunctionFEnvAttributes(const FunctionDecl *D, 1870 llvm::Function *F) { 1871 if (D->hasAttr<StrictFPAttr>()) { 1872 llvm::AttrBuilder FuncAttrs; 1873 FuncAttrs.addAttribute("strictfp"); 1874 F->addAttributes(llvm::AttributeList::FunctionIndex, FuncAttrs); 1875 } 1876 } 1877 1878 void CodeGenModule::SetCommonAttributes(GlobalDecl GD, llvm::GlobalValue *GV) { 1879 const Decl *D = GD.getDecl(); 1880 if (dyn_cast_or_null<NamedDecl>(D)) 1881 setGVProperties(GV, GD); 1882 else 1883 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 1884 1885 if (D && D->hasAttr<UsedAttr>()) 1886 addUsedOrCompilerUsedGlobal(GV); 1887 1888 if (CodeGenOpts.KeepStaticConsts && D && isa<VarDecl>(D)) { 1889 const auto *VD = cast<VarDecl>(D); 1890 if (VD->getType().isConstQualified() && 1891 VD->getStorageDuration() == SD_Static) 1892 addUsedOrCompilerUsedGlobal(GV); 1893 } 1894 } 1895 1896 bool CodeGenModule::GetCPUAndFeaturesAttributes(GlobalDecl GD, 1897 llvm::AttrBuilder &Attrs) { 1898 // Add target-cpu and target-features attributes to functions. If 1899 // we have a decl for the function and it has a target attribute then 1900 // parse that and add it to the feature set. 1901 StringRef TargetCPU = getTarget().getTargetOpts().CPU; 1902 StringRef TuneCPU = getTarget().getTargetOpts().TuneCPU; 1903 std::vector<std::string> Features; 1904 const auto *FD = dyn_cast_or_null<FunctionDecl>(GD.getDecl()); 1905 FD = FD ? FD->getMostRecentDecl() : FD; 1906 const auto *TD = FD ? FD->getAttr<TargetAttr>() : nullptr; 1907 const auto *SD = FD ? FD->getAttr<CPUSpecificAttr>() : nullptr; 1908 bool AddedAttr = false; 1909 if (TD || SD) { 1910 llvm::StringMap<bool> FeatureMap; 1911 getContext().getFunctionFeatureMap(FeatureMap, GD); 1912 1913 // Produce the canonical string for this set of features. 1914 for (const llvm::StringMap<bool>::value_type &Entry : FeatureMap) 1915 Features.push_back((Entry.getValue() ? "+" : "-") + Entry.getKey().str()); 1916 1917 // Now add the target-cpu and target-features to the function. 1918 // While we populated the feature map above, we still need to 1919 // get and parse the target attribute so we can get the cpu for 1920 // the function. 1921 if (TD) { 1922 ParsedTargetAttr ParsedAttr = TD->parse(); 1923 if (!ParsedAttr.Architecture.empty() && 1924 getTarget().isValidCPUName(ParsedAttr.Architecture)) { 1925 TargetCPU = ParsedAttr.Architecture; 1926 TuneCPU = ""; // Clear the tune CPU. 1927 } 1928 if (!ParsedAttr.Tune.empty() && 1929 getTarget().isValidCPUName(ParsedAttr.Tune)) 1930 TuneCPU = ParsedAttr.Tune; 1931 } 1932 } else { 1933 // Otherwise just add the existing target cpu and target features to the 1934 // function. 1935 Features = getTarget().getTargetOpts().Features; 1936 } 1937 1938 if (!TargetCPU.empty()) { 1939 Attrs.addAttribute("target-cpu", TargetCPU); 1940 AddedAttr = true; 1941 } 1942 if (!TuneCPU.empty()) { 1943 Attrs.addAttribute("tune-cpu", TuneCPU); 1944 AddedAttr = true; 1945 } 1946 if (!Features.empty()) { 1947 llvm::sort(Features); 1948 Attrs.addAttribute("target-features", llvm::join(Features, ",")); 1949 AddedAttr = true; 1950 } 1951 1952 return AddedAttr; 1953 } 1954 1955 void CodeGenModule::setNonAliasAttributes(GlobalDecl GD, 1956 llvm::GlobalObject *GO) { 1957 const Decl *D = GD.getDecl(); 1958 SetCommonAttributes(GD, GO); 1959 1960 if (D) { 1961 if (auto *GV = dyn_cast<llvm::GlobalVariable>(GO)) { 1962 if (D->hasAttr<RetainAttr>()) 1963 addUsedGlobal(GV); 1964 if (auto *SA = D->getAttr<PragmaClangBSSSectionAttr>()) 1965 GV->addAttribute("bss-section", SA->getName()); 1966 if (auto *SA = D->getAttr<PragmaClangDataSectionAttr>()) 1967 GV->addAttribute("data-section", SA->getName()); 1968 if (auto *SA = D->getAttr<PragmaClangRodataSectionAttr>()) 1969 GV->addAttribute("rodata-section", SA->getName()); 1970 if (auto *SA = D->getAttr<PragmaClangRelroSectionAttr>()) 1971 GV->addAttribute("relro-section", SA->getName()); 1972 } 1973 1974 if (auto *F = dyn_cast<llvm::Function>(GO)) { 1975 if (D->hasAttr<RetainAttr>()) 1976 addUsedGlobal(F); 1977 if (auto *SA = D->getAttr<PragmaClangTextSectionAttr>()) 1978 if (!D->getAttr<SectionAttr>()) 1979 F->addFnAttr("implicit-section-name", SA->getName()); 1980 1981 llvm::AttrBuilder Attrs; 1982 if (GetCPUAndFeaturesAttributes(GD, Attrs)) { 1983 // We know that GetCPUAndFeaturesAttributes will always have the 1984 // newest set, since it has the newest possible FunctionDecl, so the 1985 // new ones should replace the old. 1986 llvm::AttrBuilder RemoveAttrs; 1987 RemoveAttrs.addAttribute("target-cpu"); 1988 RemoveAttrs.addAttribute("target-features"); 1989 RemoveAttrs.addAttribute("tune-cpu"); 1990 F->removeAttributes(llvm::AttributeList::FunctionIndex, RemoveAttrs); 1991 F->addAttributes(llvm::AttributeList::FunctionIndex, Attrs); 1992 } 1993 } 1994 1995 if (const auto *CSA = D->getAttr<CodeSegAttr>()) 1996 GO->setSection(CSA->getName()); 1997 else if (const auto *SA = D->getAttr<SectionAttr>()) 1998 GO->setSection(SA->getName()); 1999 } 2000 2001 getTargetCodeGenInfo().setTargetAttributes(D, GO, *this); 2002 } 2003 2004 void CodeGenModule::SetInternalFunctionAttributes(GlobalDecl GD, 2005 llvm::Function *F, 2006 const CGFunctionInfo &FI) { 2007 const Decl *D = GD.getDecl(); 2008 SetLLVMFunctionAttributes(GD, FI, F); 2009 SetLLVMFunctionAttributesForDefinition(D, F); 2010 2011 F->setLinkage(llvm::Function::InternalLinkage); 2012 2013 setNonAliasAttributes(GD, F); 2014 } 2015 2016 static void setLinkageForGV(llvm::GlobalValue *GV, const NamedDecl *ND) { 2017 // Set linkage and visibility in case we never see a definition. 2018 LinkageInfo LV = ND->getLinkageAndVisibility(); 2019 // Don't set internal linkage on declarations. 2020 // "extern_weak" is overloaded in LLVM; we probably should have 2021 // separate linkage types for this. 2022 if (isExternallyVisible(LV.getLinkage()) && 2023 (ND->hasAttr<WeakAttr>() || ND->isWeakImported())) 2024 GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage); 2025 } 2026 2027 void CodeGenModule::CreateFunctionTypeMetadataForIcall(const FunctionDecl *FD, 2028 llvm::Function *F) { 2029 // Only if we are checking indirect calls. 2030 if (!LangOpts.Sanitize.has(SanitizerKind::CFIICall)) 2031 return; 2032 2033 // Non-static class methods are handled via vtable or member function pointer 2034 // checks elsewhere. 2035 if (isa<CXXMethodDecl>(FD) && !cast<CXXMethodDecl>(FD)->isStatic()) 2036 return; 2037 2038 llvm::Metadata *MD = CreateMetadataIdentifierForType(FD->getType()); 2039 F->addTypeMetadata(0, MD); 2040 F->addTypeMetadata(0, CreateMetadataIdentifierGeneralized(FD->getType())); 2041 2042 // Emit a hash-based bit set entry for cross-DSO calls. 2043 if (CodeGenOpts.SanitizeCfiCrossDso) 2044 if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD)) 2045 F->addTypeMetadata(0, llvm::ConstantAsMetadata::get(CrossDsoTypeId)); 2046 } 2047 2048 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD, llvm::Function *F, 2049 bool IsIncompleteFunction, 2050 bool IsThunk) { 2051 2052 if (llvm::Intrinsic::ID IID = F->getIntrinsicID()) { 2053 // If this is an intrinsic function, set the function's attributes 2054 // to the intrinsic's attributes. 2055 F->setAttributes(llvm::Intrinsic::getAttributes(getLLVMContext(), IID)); 2056 return; 2057 } 2058 2059 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 2060 2061 if (!IsIncompleteFunction) 2062 SetLLVMFunctionAttributes(GD, getTypes().arrangeGlobalDeclaration(GD), F); 2063 2064 // Add the Returned attribute for "this", except for iOS 5 and earlier 2065 // where substantial code, including the libstdc++ dylib, was compiled with 2066 // GCC and does not actually return "this". 2067 if (!IsThunk && getCXXABI().HasThisReturn(GD) && 2068 !(getTriple().isiOS() && getTriple().isOSVersionLT(6))) { 2069 assert(!F->arg_empty() && 2070 F->arg_begin()->getType() 2071 ->canLosslesslyBitCastTo(F->getReturnType()) && 2072 "unexpected this return"); 2073 F->addAttribute(1, llvm::Attribute::Returned); 2074 } 2075 2076 // Only a few attributes are set on declarations; these may later be 2077 // overridden by a definition. 2078 2079 setLinkageForGV(F, FD); 2080 setGVProperties(F, FD); 2081 2082 // Setup target-specific attributes. 2083 if (!IsIncompleteFunction && F->isDeclaration()) 2084 getTargetCodeGenInfo().setTargetAttributes(FD, F, *this); 2085 2086 if (const auto *CSA = FD->getAttr<CodeSegAttr>()) 2087 F->setSection(CSA->getName()); 2088 else if (const auto *SA = FD->getAttr<SectionAttr>()) 2089 F->setSection(SA->getName()); 2090 2091 // If we plan on emitting this inline builtin, we can't treat it as a builtin. 2092 if (FD->isInlineBuiltinDeclaration()) { 2093 const FunctionDecl *FDBody; 2094 bool HasBody = FD->hasBody(FDBody); 2095 (void)HasBody; 2096 assert(HasBody && "Inline builtin declarations should always have an " 2097 "available body!"); 2098 if (shouldEmitFunction(FDBody)) 2099 F->addAttribute(llvm::AttributeList::FunctionIndex, 2100 llvm::Attribute::NoBuiltin); 2101 } 2102 2103 if (FD->isReplaceableGlobalAllocationFunction()) { 2104 // A replaceable global allocation function does not act like a builtin by 2105 // default, only if it is invoked by a new-expression or delete-expression. 2106 F->addAttribute(llvm::AttributeList::FunctionIndex, 2107 llvm::Attribute::NoBuiltin); 2108 } 2109 2110 if (isa<CXXConstructorDecl>(FD) || isa<CXXDestructorDecl>(FD)) 2111 F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 2112 else if (const auto *MD = dyn_cast<CXXMethodDecl>(FD)) 2113 if (MD->isVirtual()) 2114 F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 2115 2116 // Don't emit entries for function declarations in the cross-DSO mode. This 2117 // is handled with better precision by the receiving DSO. But if jump tables 2118 // are non-canonical then we need type metadata in order to produce the local 2119 // jump table. 2120 if (!CodeGenOpts.SanitizeCfiCrossDso || 2121 !CodeGenOpts.SanitizeCfiCanonicalJumpTables) 2122 CreateFunctionTypeMetadataForIcall(FD, F); 2123 2124 if (getLangOpts().OpenMP && FD->hasAttr<OMPDeclareSimdDeclAttr>()) 2125 getOpenMPRuntime().emitDeclareSimdFunction(FD, F); 2126 2127 if (const auto *CB = FD->getAttr<CallbackAttr>()) { 2128 // Annotate the callback behavior as metadata: 2129 // - The callback callee (as argument number). 2130 // - The callback payloads (as argument numbers). 2131 llvm::LLVMContext &Ctx = F->getContext(); 2132 llvm::MDBuilder MDB(Ctx); 2133 2134 // The payload indices are all but the first one in the encoding. The first 2135 // identifies the callback callee. 2136 int CalleeIdx = *CB->encoding_begin(); 2137 ArrayRef<int> PayloadIndices(CB->encoding_begin() + 1, CB->encoding_end()); 2138 F->addMetadata(llvm::LLVMContext::MD_callback, 2139 *llvm::MDNode::get(Ctx, {MDB.createCallbackEncoding( 2140 CalleeIdx, PayloadIndices, 2141 /* VarArgsArePassed */ false)})); 2142 } 2143 } 2144 2145 void CodeGenModule::addUsedGlobal(llvm::GlobalValue *GV) { 2146 assert((isa<llvm::Function>(GV) || !GV->isDeclaration()) && 2147 "Only globals with definition can force usage."); 2148 LLVMUsed.emplace_back(GV); 2149 } 2150 2151 void CodeGenModule::addCompilerUsedGlobal(llvm::GlobalValue *GV) { 2152 assert(!GV->isDeclaration() && 2153 "Only globals with definition can force usage."); 2154 LLVMCompilerUsed.emplace_back(GV); 2155 } 2156 2157 void CodeGenModule::addUsedOrCompilerUsedGlobal(llvm::GlobalValue *GV) { 2158 assert((isa<llvm::Function>(GV) || !GV->isDeclaration()) && 2159 "Only globals with definition can force usage."); 2160 if (getTriple().isOSBinFormatELF()) 2161 LLVMCompilerUsed.emplace_back(GV); 2162 else 2163 LLVMUsed.emplace_back(GV); 2164 } 2165 2166 static void emitUsed(CodeGenModule &CGM, StringRef Name, 2167 std::vector<llvm::WeakTrackingVH> &List) { 2168 // Don't create llvm.used if there is no need. 2169 if (List.empty()) 2170 return; 2171 2172 // Convert List to what ConstantArray needs. 2173 SmallVector<llvm::Constant*, 8> UsedArray; 2174 UsedArray.resize(List.size()); 2175 for (unsigned i = 0, e = List.size(); i != e; ++i) { 2176 UsedArray[i] = 2177 llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast( 2178 cast<llvm::Constant>(&*List[i]), CGM.Int8PtrTy); 2179 } 2180 2181 if (UsedArray.empty()) 2182 return; 2183 llvm::ArrayType *ATy = llvm::ArrayType::get(CGM.Int8PtrTy, UsedArray.size()); 2184 2185 auto *GV = new llvm::GlobalVariable( 2186 CGM.getModule(), ATy, false, llvm::GlobalValue::AppendingLinkage, 2187 llvm::ConstantArray::get(ATy, UsedArray), Name); 2188 2189 GV->setSection("llvm.metadata"); 2190 } 2191 2192 void CodeGenModule::emitLLVMUsed() { 2193 emitUsed(*this, "llvm.used", LLVMUsed); 2194 emitUsed(*this, "llvm.compiler.used", LLVMCompilerUsed); 2195 } 2196 2197 void CodeGenModule::AppendLinkerOptions(StringRef Opts) { 2198 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opts); 2199 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 2200 } 2201 2202 void CodeGenModule::AddDetectMismatch(StringRef Name, StringRef Value) { 2203 llvm::SmallString<32> Opt; 2204 getTargetCodeGenInfo().getDetectMismatchOption(Name, Value, Opt); 2205 if (Opt.empty()) 2206 return; 2207 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt); 2208 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 2209 } 2210 2211 void CodeGenModule::AddDependentLib(StringRef Lib) { 2212 auto &C = getLLVMContext(); 2213 if (getTarget().getTriple().isOSBinFormatELF()) { 2214 ELFDependentLibraries.push_back( 2215 llvm::MDNode::get(C, llvm::MDString::get(C, Lib))); 2216 return; 2217 } 2218 2219 llvm::SmallString<24> Opt; 2220 getTargetCodeGenInfo().getDependentLibraryOption(Lib, Opt); 2221 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt); 2222 LinkerOptionsMetadata.push_back(llvm::MDNode::get(C, MDOpts)); 2223 } 2224 2225 /// Add link options implied by the given module, including modules 2226 /// it depends on, using a postorder walk. 2227 static void addLinkOptionsPostorder(CodeGenModule &CGM, Module *Mod, 2228 SmallVectorImpl<llvm::MDNode *> &Metadata, 2229 llvm::SmallPtrSet<Module *, 16> &Visited) { 2230 // Import this module's parent. 2231 if (Mod->Parent && Visited.insert(Mod->Parent).second) { 2232 addLinkOptionsPostorder(CGM, Mod->Parent, Metadata, Visited); 2233 } 2234 2235 // Import this module's dependencies. 2236 for (unsigned I = Mod->Imports.size(); I > 0; --I) { 2237 if (Visited.insert(Mod->Imports[I - 1]).second) 2238 addLinkOptionsPostorder(CGM, Mod->Imports[I-1], Metadata, Visited); 2239 } 2240 2241 // Add linker options to link against the libraries/frameworks 2242 // described by this module. 2243 llvm::LLVMContext &Context = CGM.getLLVMContext(); 2244 bool IsELF = CGM.getTarget().getTriple().isOSBinFormatELF(); 2245 2246 // For modules that use export_as for linking, use that module 2247 // name instead. 2248 if (Mod->UseExportAsModuleLinkName) 2249 return; 2250 2251 for (unsigned I = Mod->LinkLibraries.size(); I > 0; --I) { 2252 // Link against a framework. Frameworks are currently Darwin only, so we 2253 // don't to ask TargetCodeGenInfo for the spelling of the linker option. 2254 if (Mod->LinkLibraries[I-1].IsFramework) { 2255 llvm::Metadata *Args[2] = { 2256 llvm::MDString::get(Context, "-framework"), 2257 llvm::MDString::get(Context, Mod->LinkLibraries[I - 1].Library)}; 2258 2259 Metadata.push_back(llvm::MDNode::get(Context, Args)); 2260 continue; 2261 } 2262 2263 // Link against a library. 2264 if (IsELF) { 2265 llvm::Metadata *Args[2] = { 2266 llvm::MDString::get(Context, "lib"), 2267 llvm::MDString::get(Context, Mod->LinkLibraries[I - 1].Library), 2268 }; 2269 Metadata.push_back(llvm::MDNode::get(Context, Args)); 2270 } else { 2271 llvm::SmallString<24> Opt; 2272 CGM.getTargetCodeGenInfo().getDependentLibraryOption( 2273 Mod->LinkLibraries[I - 1].Library, Opt); 2274 auto *OptString = llvm::MDString::get(Context, Opt); 2275 Metadata.push_back(llvm::MDNode::get(Context, OptString)); 2276 } 2277 } 2278 } 2279 2280 void CodeGenModule::EmitModuleLinkOptions() { 2281 // Collect the set of all of the modules we want to visit to emit link 2282 // options, which is essentially the imported modules and all of their 2283 // non-explicit child modules. 2284 llvm::SetVector<clang::Module *> LinkModules; 2285 llvm::SmallPtrSet<clang::Module *, 16> Visited; 2286 SmallVector<clang::Module *, 16> Stack; 2287 2288 // Seed the stack with imported modules. 2289 for (Module *M : ImportedModules) { 2290 // Do not add any link flags when an implementation TU of a module imports 2291 // a header of that same module. 2292 if (M->getTopLevelModuleName() == getLangOpts().CurrentModule && 2293 !getLangOpts().isCompilingModule()) 2294 continue; 2295 if (Visited.insert(M).second) 2296 Stack.push_back(M); 2297 } 2298 2299 // Find all of the modules to import, making a little effort to prune 2300 // non-leaf modules. 2301 while (!Stack.empty()) { 2302 clang::Module *Mod = Stack.pop_back_val(); 2303 2304 bool AnyChildren = false; 2305 2306 // Visit the submodules of this module. 2307 for (const auto &SM : Mod->submodules()) { 2308 // Skip explicit children; they need to be explicitly imported to be 2309 // linked against. 2310 if (SM->IsExplicit) 2311 continue; 2312 2313 if (Visited.insert(SM).second) { 2314 Stack.push_back(SM); 2315 AnyChildren = true; 2316 } 2317 } 2318 2319 // We didn't find any children, so add this module to the list of 2320 // modules to link against. 2321 if (!AnyChildren) { 2322 LinkModules.insert(Mod); 2323 } 2324 } 2325 2326 // Add link options for all of the imported modules in reverse topological 2327 // order. We don't do anything to try to order import link flags with respect 2328 // to linker options inserted by things like #pragma comment(). 2329 SmallVector<llvm::MDNode *, 16> MetadataArgs; 2330 Visited.clear(); 2331 for (Module *M : LinkModules) 2332 if (Visited.insert(M).second) 2333 addLinkOptionsPostorder(*this, M, MetadataArgs, Visited); 2334 std::reverse(MetadataArgs.begin(), MetadataArgs.end()); 2335 LinkerOptionsMetadata.append(MetadataArgs.begin(), MetadataArgs.end()); 2336 2337 // Add the linker options metadata flag. 2338 auto *NMD = getModule().getOrInsertNamedMetadata("llvm.linker.options"); 2339 for (auto *MD : LinkerOptionsMetadata) 2340 NMD->addOperand(MD); 2341 } 2342 2343 void CodeGenModule::EmitDeferred() { 2344 // Emit deferred declare target declarations. 2345 if (getLangOpts().OpenMP && !getLangOpts().OpenMPSimd) 2346 getOpenMPRuntime().emitDeferredTargetDecls(); 2347 2348 // Emit code for any potentially referenced deferred decls. Since a 2349 // previously unused static decl may become used during the generation of code 2350 // for a static function, iterate until no changes are made. 2351 2352 if (!DeferredVTables.empty()) { 2353 EmitDeferredVTables(); 2354 2355 // Emitting a vtable doesn't directly cause more vtables to 2356 // become deferred, although it can cause functions to be 2357 // emitted that then need those vtables. 2358 assert(DeferredVTables.empty()); 2359 } 2360 2361 // Emit CUDA/HIP static device variables referenced by host code only. 2362 if (getLangOpts().CUDA) 2363 for (auto V : getContext().CUDAStaticDeviceVarReferencedByHost) 2364 DeferredDeclsToEmit.push_back(V); 2365 2366 // Stop if we're out of both deferred vtables and deferred declarations. 2367 if (DeferredDeclsToEmit.empty()) 2368 return; 2369 2370 // Grab the list of decls to emit. If EmitGlobalDefinition schedules more 2371 // work, it will not interfere with this. 2372 std::vector<GlobalDecl> CurDeclsToEmit; 2373 CurDeclsToEmit.swap(DeferredDeclsToEmit); 2374 2375 for (GlobalDecl &D : CurDeclsToEmit) { 2376 // We should call GetAddrOfGlobal with IsForDefinition set to true in order 2377 // to get GlobalValue with exactly the type we need, not something that 2378 // might had been created for another decl with the same mangled name but 2379 // different type. 2380 llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>( 2381 GetAddrOfGlobal(D, ForDefinition)); 2382 2383 // In case of different address spaces, we may still get a cast, even with 2384 // IsForDefinition equal to true. Query mangled names table to get 2385 // GlobalValue. 2386 if (!GV) 2387 GV = GetGlobalValue(getMangledName(D)); 2388 2389 // Make sure GetGlobalValue returned non-null. 2390 assert(GV); 2391 2392 // Check to see if we've already emitted this. This is necessary 2393 // for a couple of reasons: first, decls can end up in the 2394 // deferred-decls queue multiple times, and second, decls can end 2395 // up with definitions in unusual ways (e.g. by an extern inline 2396 // function acquiring a strong function redefinition). Just 2397 // ignore these cases. 2398 if (!GV->isDeclaration()) 2399 continue; 2400 2401 // If this is OpenMP, check if it is legal to emit this global normally. 2402 if (LangOpts.OpenMP && OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(D)) 2403 continue; 2404 2405 // Otherwise, emit the definition and move on to the next one. 2406 EmitGlobalDefinition(D, GV); 2407 2408 // If we found out that we need to emit more decls, do that recursively. 2409 // This has the advantage that the decls are emitted in a DFS and related 2410 // ones are close together, which is convenient for testing. 2411 if (!DeferredVTables.empty() || !DeferredDeclsToEmit.empty()) { 2412 EmitDeferred(); 2413 assert(DeferredVTables.empty() && DeferredDeclsToEmit.empty()); 2414 } 2415 } 2416 } 2417 2418 void CodeGenModule::EmitVTablesOpportunistically() { 2419 // Try to emit external vtables as available_externally if they have emitted 2420 // all inlined virtual functions. It runs after EmitDeferred() and therefore 2421 // is not allowed to create new references to things that need to be emitted 2422 // lazily. Note that it also uses fact that we eagerly emitting RTTI. 2423 2424 assert((OpportunisticVTables.empty() || shouldOpportunisticallyEmitVTables()) 2425 && "Only emit opportunistic vtables with optimizations"); 2426 2427 for (const CXXRecordDecl *RD : OpportunisticVTables) { 2428 assert(getVTables().isVTableExternal(RD) && 2429 "This queue should only contain external vtables"); 2430 if (getCXXABI().canSpeculativelyEmitVTable(RD)) 2431 VTables.GenerateClassData(RD); 2432 } 2433 OpportunisticVTables.clear(); 2434 } 2435 2436 void CodeGenModule::EmitGlobalAnnotations() { 2437 if (Annotations.empty()) 2438 return; 2439 2440 // Create a new global variable for the ConstantStruct in the Module. 2441 llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get( 2442 Annotations[0]->getType(), Annotations.size()), Annotations); 2443 auto *gv = new llvm::GlobalVariable(getModule(), Array->getType(), false, 2444 llvm::GlobalValue::AppendingLinkage, 2445 Array, "llvm.global.annotations"); 2446 gv->setSection(AnnotationSection); 2447 } 2448 2449 llvm::Constant *CodeGenModule::EmitAnnotationString(StringRef Str) { 2450 llvm::Constant *&AStr = AnnotationStrings[Str]; 2451 if (AStr) 2452 return AStr; 2453 2454 // Not found yet, create a new global. 2455 llvm::Constant *s = llvm::ConstantDataArray::getString(getLLVMContext(), Str); 2456 auto *gv = 2457 new llvm::GlobalVariable(getModule(), s->getType(), true, 2458 llvm::GlobalValue::PrivateLinkage, s, ".str"); 2459 gv->setSection(AnnotationSection); 2460 gv->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 2461 AStr = gv; 2462 return gv; 2463 } 2464 2465 llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) { 2466 SourceManager &SM = getContext().getSourceManager(); 2467 PresumedLoc PLoc = SM.getPresumedLoc(Loc); 2468 if (PLoc.isValid()) 2469 return EmitAnnotationString(PLoc.getFilename()); 2470 return EmitAnnotationString(SM.getBufferName(Loc)); 2471 } 2472 2473 llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) { 2474 SourceManager &SM = getContext().getSourceManager(); 2475 PresumedLoc PLoc = SM.getPresumedLoc(L); 2476 unsigned LineNo = PLoc.isValid() ? PLoc.getLine() : 2477 SM.getExpansionLineNumber(L); 2478 return llvm::ConstantInt::get(Int32Ty, LineNo); 2479 } 2480 2481 llvm::Constant *CodeGenModule::EmitAnnotationArgs(const AnnotateAttr *Attr) { 2482 ArrayRef<Expr *> Exprs = {Attr->args_begin(), Attr->args_size()}; 2483 if (Exprs.empty()) 2484 return llvm::ConstantPointerNull::get(Int8PtrTy); 2485 2486 llvm::FoldingSetNodeID ID; 2487 for (Expr *E : Exprs) { 2488 ID.Add(cast<clang::ConstantExpr>(E)->getAPValueResult()); 2489 } 2490 llvm::Constant *&Lookup = AnnotationArgs[ID.ComputeHash()]; 2491 if (Lookup) 2492 return Lookup; 2493 2494 llvm::SmallVector<llvm::Constant *, 4> LLVMArgs; 2495 LLVMArgs.reserve(Exprs.size()); 2496 ConstantEmitter ConstEmiter(*this); 2497 llvm::transform(Exprs, std::back_inserter(LLVMArgs), [&](const Expr *E) { 2498 const auto *CE = cast<clang::ConstantExpr>(E); 2499 return ConstEmiter.emitAbstract(CE->getBeginLoc(), CE->getAPValueResult(), 2500 CE->getType()); 2501 }); 2502 auto *Struct = llvm::ConstantStruct::getAnon(LLVMArgs); 2503 auto *GV = new llvm::GlobalVariable(getModule(), Struct->getType(), true, 2504 llvm::GlobalValue::PrivateLinkage, Struct, 2505 ".args"); 2506 GV->setSection(AnnotationSection); 2507 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 2508 auto *Bitcasted = llvm::ConstantExpr::getBitCast(GV, Int8PtrTy); 2509 2510 Lookup = Bitcasted; 2511 return Bitcasted; 2512 } 2513 2514 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV, 2515 const AnnotateAttr *AA, 2516 SourceLocation L) { 2517 // Get the globals for file name, annotation, and the line number. 2518 llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()), 2519 *UnitGV = EmitAnnotationUnit(L), 2520 *LineNoCst = EmitAnnotationLineNo(L), 2521 *Args = EmitAnnotationArgs(AA); 2522 2523 llvm::Constant *ASZeroGV = GV; 2524 if (GV->getAddressSpace() != 0) { 2525 ASZeroGV = llvm::ConstantExpr::getAddrSpaceCast( 2526 GV, GV->getValueType()->getPointerTo(0)); 2527 } 2528 2529 // Create the ConstantStruct for the global annotation. 2530 llvm::Constant *Fields[] = { 2531 llvm::ConstantExpr::getBitCast(ASZeroGV, Int8PtrTy), 2532 llvm::ConstantExpr::getBitCast(AnnoGV, Int8PtrTy), 2533 llvm::ConstantExpr::getBitCast(UnitGV, Int8PtrTy), 2534 LineNoCst, 2535 Args, 2536 }; 2537 return llvm::ConstantStruct::getAnon(Fields); 2538 } 2539 2540 void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D, 2541 llvm::GlobalValue *GV) { 2542 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 2543 // Get the struct elements for these annotations. 2544 for (const auto *I : D->specific_attrs<AnnotateAttr>()) 2545 Annotations.push_back(EmitAnnotateAttr(GV, I, D->getLocation())); 2546 } 2547 2548 bool CodeGenModule::isInNoSanitizeList(SanitizerMask Kind, llvm::Function *Fn, 2549 SourceLocation Loc) const { 2550 const auto &NoSanitizeL = getContext().getNoSanitizeList(); 2551 // NoSanitize by function name. 2552 if (NoSanitizeL.containsFunction(Kind, Fn->getName())) 2553 return true; 2554 // NoSanitize by location. 2555 if (Loc.isValid()) 2556 return NoSanitizeL.containsLocation(Kind, Loc); 2557 // If location is unknown, this may be a compiler-generated function. Assume 2558 // it's located in the main file. 2559 auto &SM = Context.getSourceManager(); 2560 if (const auto *MainFile = SM.getFileEntryForID(SM.getMainFileID())) { 2561 return NoSanitizeL.containsFile(Kind, MainFile->getName()); 2562 } 2563 return false; 2564 } 2565 2566 bool CodeGenModule::isInNoSanitizeList(llvm::GlobalVariable *GV, 2567 SourceLocation Loc, QualType Ty, 2568 StringRef Category) const { 2569 // For now globals can be ignored only in ASan and KASan. 2570 const SanitizerMask EnabledAsanMask = 2571 LangOpts.Sanitize.Mask & 2572 (SanitizerKind::Address | SanitizerKind::KernelAddress | 2573 SanitizerKind::HWAddress | SanitizerKind::KernelHWAddress | 2574 SanitizerKind::MemTag); 2575 if (!EnabledAsanMask) 2576 return false; 2577 const auto &NoSanitizeL = getContext().getNoSanitizeList(); 2578 if (NoSanitizeL.containsGlobal(EnabledAsanMask, GV->getName(), Category)) 2579 return true; 2580 if (NoSanitizeL.containsLocation(EnabledAsanMask, Loc, Category)) 2581 return true; 2582 // Check global type. 2583 if (!Ty.isNull()) { 2584 // Drill down the array types: if global variable of a fixed type is 2585 // not sanitized, we also don't instrument arrays of them. 2586 while (auto AT = dyn_cast<ArrayType>(Ty.getTypePtr())) 2587 Ty = AT->getElementType(); 2588 Ty = Ty.getCanonicalType().getUnqualifiedType(); 2589 // Only record types (classes, structs etc.) are ignored. 2590 if (Ty->isRecordType()) { 2591 std::string TypeStr = Ty.getAsString(getContext().getPrintingPolicy()); 2592 if (NoSanitizeL.containsType(EnabledAsanMask, TypeStr, Category)) 2593 return true; 2594 } 2595 } 2596 return false; 2597 } 2598 2599 bool CodeGenModule::imbueXRayAttrs(llvm::Function *Fn, SourceLocation Loc, 2600 StringRef Category) const { 2601 const auto &XRayFilter = getContext().getXRayFilter(); 2602 using ImbueAttr = XRayFunctionFilter::ImbueAttribute; 2603 auto Attr = ImbueAttr::NONE; 2604 if (Loc.isValid()) 2605 Attr = XRayFilter.shouldImbueLocation(Loc, Category); 2606 if (Attr == ImbueAttr::NONE) 2607 Attr = XRayFilter.shouldImbueFunction(Fn->getName()); 2608 switch (Attr) { 2609 case ImbueAttr::NONE: 2610 return false; 2611 case ImbueAttr::ALWAYS: 2612 Fn->addFnAttr("function-instrument", "xray-always"); 2613 break; 2614 case ImbueAttr::ALWAYS_ARG1: 2615 Fn->addFnAttr("function-instrument", "xray-always"); 2616 Fn->addFnAttr("xray-log-args", "1"); 2617 break; 2618 case ImbueAttr::NEVER: 2619 Fn->addFnAttr("function-instrument", "xray-never"); 2620 break; 2621 } 2622 return true; 2623 } 2624 2625 bool CodeGenModule::isProfileInstrExcluded(llvm::Function *Fn, 2626 SourceLocation Loc) const { 2627 const auto &ProfileList = getContext().getProfileList(); 2628 // If the profile list is empty, then instrument everything. 2629 if (ProfileList.isEmpty()) 2630 return false; 2631 CodeGenOptions::ProfileInstrKind Kind = getCodeGenOpts().getProfileInstr(); 2632 // First, check the function name. 2633 Optional<bool> V = ProfileList.isFunctionExcluded(Fn->getName(), Kind); 2634 if (V.hasValue()) 2635 return *V; 2636 // Next, check the source location. 2637 if (Loc.isValid()) { 2638 Optional<bool> V = ProfileList.isLocationExcluded(Loc, Kind); 2639 if (V.hasValue()) 2640 return *V; 2641 } 2642 // If location is unknown, this may be a compiler-generated function. Assume 2643 // it's located in the main file. 2644 auto &SM = Context.getSourceManager(); 2645 if (const auto *MainFile = SM.getFileEntryForID(SM.getMainFileID())) { 2646 Optional<bool> V = ProfileList.isFileExcluded(MainFile->getName(), Kind); 2647 if (V.hasValue()) 2648 return *V; 2649 } 2650 return ProfileList.getDefault(); 2651 } 2652 2653 bool CodeGenModule::MustBeEmitted(const ValueDecl *Global) { 2654 // Never defer when EmitAllDecls is specified. 2655 if (LangOpts.EmitAllDecls) 2656 return true; 2657 2658 if (CodeGenOpts.KeepStaticConsts) { 2659 const auto *VD = dyn_cast<VarDecl>(Global); 2660 if (VD && VD->getType().isConstQualified() && 2661 VD->getStorageDuration() == SD_Static) 2662 return true; 2663 } 2664 2665 return getContext().DeclMustBeEmitted(Global); 2666 } 2667 2668 bool CodeGenModule::MayBeEmittedEagerly(const ValueDecl *Global) { 2669 if (const auto *FD = dyn_cast<FunctionDecl>(Global)) { 2670 if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation) 2671 // Implicit template instantiations may change linkage if they are later 2672 // explicitly instantiated, so they should not be emitted eagerly. 2673 return false; 2674 // In OpenMP 5.0 function may be marked as device_type(nohost) and we should 2675 // not emit them eagerly unless we sure that the function must be emitted on 2676 // the host. 2677 if (LangOpts.OpenMP >= 50 && !LangOpts.OpenMPSimd && 2678 !LangOpts.OpenMPIsDevice && 2679 !OMPDeclareTargetDeclAttr::getDeviceType(FD) && 2680 !FD->isUsed(/*CheckUsedAttr=*/false) && !FD->isReferenced()) 2681 return false; 2682 } 2683 if (const auto *VD = dyn_cast<VarDecl>(Global)) 2684 if (Context.getInlineVariableDefinitionKind(VD) == 2685 ASTContext::InlineVariableDefinitionKind::WeakUnknown) 2686 // A definition of an inline constexpr static data member may change 2687 // linkage later if it's redeclared outside the class. 2688 return false; 2689 // If OpenMP is enabled and threadprivates must be generated like TLS, delay 2690 // codegen for global variables, because they may be marked as threadprivate. 2691 if (LangOpts.OpenMP && LangOpts.OpenMPUseTLS && 2692 getContext().getTargetInfo().isTLSSupported() && isa<VarDecl>(Global) && 2693 !isTypeConstant(Global->getType(), false) && 2694 !OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(Global)) 2695 return false; 2696 2697 return true; 2698 } 2699 2700 ConstantAddress CodeGenModule::GetAddrOfMSGuidDecl(const MSGuidDecl *GD) { 2701 StringRef Name = getMangledName(GD); 2702 2703 // The UUID descriptor should be pointer aligned. 2704 CharUnits Alignment = CharUnits::fromQuantity(PointerAlignInBytes); 2705 2706 // Look for an existing global. 2707 if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name)) 2708 return ConstantAddress(GV, Alignment); 2709 2710 ConstantEmitter Emitter(*this); 2711 llvm::Constant *Init; 2712 2713 APValue &V = GD->getAsAPValue(); 2714 if (!V.isAbsent()) { 2715 // If possible, emit the APValue version of the initializer. In particular, 2716 // this gets the type of the constant right. 2717 Init = Emitter.emitForInitializer( 2718 GD->getAsAPValue(), GD->getType().getAddressSpace(), GD->getType()); 2719 } else { 2720 // As a fallback, directly construct the constant. 2721 // FIXME: This may get padding wrong under esoteric struct layout rules. 2722 // MSVC appears to create a complete type 'struct __s_GUID' that it 2723 // presumably uses to represent these constants. 2724 MSGuidDecl::Parts Parts = GD->getParts(); 2725 llvm::Constant *Fields[4] = { 2726 llvm::ConstantInt::get(Int32Ty, Parts.Part1), 2727 llvm::ConstantInt::get(Int16Ty, Parts.Part2), 2728 llvm::ConstantInt::get(Int16Ty, Parts.Part3), 2729 llvm::ConstantDataArray::getRaw( 2730 StringRef(reinterpret_cast<char *>(Parts.Part4And5), 8), 8, 2731 Int8Ty)}; 2732 Init = llvm::ConstantStruct::getAnon(Fields); 2733 } 2734 2735 auto *GV = new llvm::GlobalVariable( 2736 getModule(), Init->getType(), 2737 /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name); 2738 if (supportsCOMDAT()) 2739 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 2740 setDSOLocal(GV); 2741 2742 llvm::Constant *Addr = GV; 2743 if (!V.isAbsent()) { 2744 Emitter.finalize(GV); 2745 } else { 2746 llvm::Type *Ty = getTypes().ConvertTypeForMem(GD->getType()); 2747 Addr = llvm::ConstantExpr::getBitCast( 2748 GV, Ty->getPointerTo(GV->getAddressSpace())); 2749 } 2750 return ConstantAddress(Addr, Alignment); 2751 } 2752 2753 ConstantAddress CodeGenModule::GetAddrOfTemplateParamObject( 2754 const TemplateParamObjectDecl *TPO) { 2755 StringRef Name = getMangledName(TPO); 2756 CharUnits Alignment = getNaturalTypeAlignment(TPO->getType()); 2757 2758 if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name)) 2759 return ConstantAddress(GV, Alignment); 2760 2761 ConstantEmitter Emitter(*this); 2762 llvm::Constant *Init = Emitter.emitForInitializer( 2763 TPO->getValue(), TPO->getType().getAddressSpace(), TPO->getType()); 2764 2765 if (!Init) { 2766 ErrorUnsupported(TPO, "template parameter object"); 2767 return ConstantAddress::invalid(); 2768 } 2769 2770 auto *GV = new llvm::GlobalVariable( 2771 getModule(), Init->getType(), 2772 /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name); 2773 if (supportsCOMDAT()) 2774 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 2775 Emitter.finalize(GV); 2776 2777 return ConstantAddress(GV, Alignment); 2778 } 2779 2780 ConstantAddress CodeGenModule::GetWeakRefReference(const ValueDecl *VD) { 2781 const AliasAttr *AA = VD->getAttr<AliasAttr>(); 2782 assert(AA && "No alias?"); 2783 2784 CharUnits Alignment = getContext().getDeclAlign(VD); 2785 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType()); 2786 2787 // See if there is already something with the target's name in the module. 2788 llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee()); 2789 if (Entry) { 2790 unsigned AS = getContext().getTargetAddressSpace(VD->getType()); 2791 auto Ptr = llvm::ConstantExpr::getBitCast(Entry, DeclTy->getPointerTo(AS)); 2792 return ConstantAddress(Ptr, Alignment); 2793 } 2794 2795 llvm::Constant *Aliasee; 2796 if (isa<llvm::FunctionType>(DeclTy)) 2797 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, 2798 GlobalDecl(cast<FunctionDecl>(VD)), 2799 /*ForVTable=*/false); 2800 else 2801 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), 2802 llvm::PointerType::getUnqual(DeclTy), 2803 nullptr); 2804 2805 auto *F = cast<llvm::GlobalValue>(Aliasee); 2806 F->setLinkage(llvm::Function::ExternalWeakLinkage); 2807 WeakRefReferences.insert(F); 2808 2809 return ConstantAddress(Aliasee, Alignment); 2810 } 2811 2812 void CodeGenModule::EmitGlobal(GlobalDecl GD) { 2813 const auto *Global = cast<ValueDecl>(GD.getDecl()); 2814 2815 // Weak references don't produce any output by themselves. 2816 if (Global->hasAttr<WeakRefAttr>()) 2817 return; 2818 2819 // If this is an alias definition (which otherwise looks like a declaration) 2820 // emit it now. 2821 if (Global->hasAttr<AliasAttr>()) 2822 return EmitAliasDefinition(GD); 2823 2824 // IFunc like an alias whose value is resolved at runtime by calling resolver. 2825 if (Global->hasAttr<IFuncAttr>()) 2826 return emitIFuncDefinition(GD); 2827 2828 // If this is a cpu_dispatch multiversion function, emit the resolver. 2829 if (Global->hasAttr<CPUDispatchAttr>()) 2830 return emitCPUDispatchDefinition(GD); 2831 2832 // If this is CUDA, be selective about which declarations we emit. 2833 if (LangOpts.CUDA) { 2834 if (LangOpts.CUDAIsDevice) { 2835 if (!Global->hasAttr<CUDADeviceAttr>() && 2836 !Global->hasAttr<CUDAGlobalAttr>() && 2837 !Global->hasAttr<CUDAConstantAttr>() && 2838 !Global->hasAttr<CUDASharedAttr>() && 2839 !Global->getType()->isCUDADeviceBuiltinSurfaceType() && 2840 !Global->getType()->isCUDADeviceBuiltinTextureType()) 2841 return; 2842 } else { 2843 // We need to emit host-side 'shadows' for all global 2844 // device-side variables because the CUDA runtime needs their 2845 // size and host-side address in order to provide access to 2846 // their device-side incarnations. 2847 2848 // So device-only functions are the only things we skip. 2849 if (isa<FunctionDecl>(Global) && !Global->hasAttr<CUDAHostAttr>() && 2850 Global->hasAttr<CUDADeviceAttr>()) 2851 return; 2852 2853 assert((isa<FunctionDecl>(Global) || isa<VarDecl>(Global)) && 2854 "Expected Variable or Function"); 2855 } 2856 } 2857 2858 if (LangOpts.OpenMP) { 2859 // If this is OpenMP, check if it is legal to emit this global normally. 2860 if (OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(GD)) 2861 return; 2862 if (auto *DRD = dyn_cast<OMPDeclareReductionDecl>(Global)) { 2863 if (MustBeEmitted(Global)) 2864 EmitOMPDeclareReduction(DRD); 2865 return; 2866 } else if (auto *DMD = dyn_cast<OMPDeclareMapperDecl>(Global)) { 2867 if (MustBeEmitted(Global)) 2868 EmitOMPDeclareMapper(DMD); 2869 return; 2870 } 2871 } 2872 2873 // Ignore declarations, they will be emitted on their first use. 2874 if (const auto *FD = dyn_cast<FunctionDecl>(Global)) { 2875 // Forward declarations are emitted lazily on first use. 2876 if (!FD->doesThisDeclarationHaveABody()) { 2877 if (!FD->doesDeclarationForceExternallyVisibleDefinition()) 2878 return; 2879 2880 StringRef MangledName = getMangledName(GD); 2881 2882 // Compute the function info and LLVM type. 2883 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 2884 llvm::Type *Ty = getTypes().GetFunctionType(FI); 2885 2886 GetOrCreateLLVMFunction(MangledName, Ty, GD, /*ForVTable=*/false, 2887 /*DontDefer=*/false); 2888 return; 2889 } 2890 } else { 2891 const auto *VD = cast<VarDecl>(Global); 2892 assert(VD->isFileVarDecl() && "Cannot emit local var decl as global."); 2893 if (VD->isThisDeclarationADefinition() != VarDecl::Definition && 2894 !Context.isMSStaticDataMemberInlineDefinition(VD)) { 2895 if (LangOpts.OpenMP) { 2896 // Emit declaration of the must-be-emitted declare target variable. 2897 if (llvm::Optional<OMPDeclareTargetDeclAttr::MapTypeTy> Res = 2898 OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD)) { 2899 bool UnifiedMemoryEnabled = 2900 getOpenMPRuntime().hasRequiresUnifiedSharedMemory(); 2901 if (*Res == OMPDeclareTargetDeclAttr::MT_To && 2902 !UnifiedMemoryEnabled) { 2903 (void)GetAddrOfGlobalVar(VD); 2904 } else { 2905 assert(((*Res == OMPDeclareTargetDeclAttr::MT_Link) || 2906 (*Res == OMPDeclareTargetDeclAttr::MT_To && 2907 UnifiedMemoryEnabled)) && 2908 "Link clause or to clause with unified memory expected."); 2909 (void)getOpenMPRuntime().getAddrOfDeclareTargetVar(VD); 2910 } 2911 2912 return; 2913 } 2914 } 2915 // If this declaration may have caused an inline variable definition to 2916 // change linkage, make sure that it's emitted. 2917 if (Context.getInlineVariableDefinitionKind(VD) == 2918 ASTContext::InlineVariableDefinitionKind::Strong) 2919 GetAddrOfGlobalVar(VD); 2920 return; 2921 } 2922 } 2923 2924 // Defer code generation to first use when possible, e.g. if this is an inline 2925 // function. If the global must always be emitted, do it eagerly if possible 2926 // to benefit from cache locality. 2927 if (MustBeEmitted(Global) && MayBeEmittedEagerly(Global)) { 2928 // Emit the definition if it can't be deferred. 2929 EmitGlobalDefinition(GD); 2930 return; 2931 } 2932 2933 // If we're deferring emission of a C++ variable with an 2934 // initializer, remember the order in which it appeared in the file. 2935 if (getLangOpts().CPlusPlus && isa<VarDecl>(Global) && 2936 cast<VarDecl>(Global)->hasInit()) { 2937 DelayedCXXInitPosition[Global] = CXXGlobalInits.size(); 2938 CXXGlobalInits.push_back(nullptr); 2939 } 2940 2941 StringRef MangledName = getMangledName(GD); 2942 if (GetGlobalValue(MangledName) != nullptr) { 2943 // The value has already been used and should therefore be emitted. 2944 addDeferredDeclToEmit(GD); 2945 } else if (MustBeEmitted(Global)) { 2946 // The value must be emitted, but cannot be emitted eagerly. 2947 assert(!MayBeEmittedEagerly(Global)); 2948 addDeferredDeclToEmit(GD); 2949 } else { 2950 // Otherwise, remember that we saw a deferred decl with this name. The 2951 // first use of the mangled name will cause it to move into 2952 // DeferredDeclsToEmit. 2953 DeferredDecls[MangledName] = GD; 2954 } 2955 } 2956 2957 // Check if T is a class type with a destructor that's not dllimport. 2958 static bool HasNonDllImportDtor(QualType T) { 2959 if (const auto *RT = T->getBaseElementTypeUnsafe()->getAs<RecordType>()) 2960 if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl())) 2961 if (RD->getDestructor() && !RD->getDestructor()->hasAttr<DLLImportAttr>()) 2962 return true; 2963 2964 return false; 2965 } 2966 2967 namespace { 2968 struct FunctionIsDirectlyRecursive 2969 : public ConstStmtVisitor<FunctionIsDirectlyRecursive, bool> { 2970 const StringRef Name; 2971 const Builtin::Context &BI; 2972 FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C) 2973 : Name(N), BI(C) {} 2974 2975 bool VisitCallExpr(const CallExpr *E) { 2976 const FunctionDecl *FD = E->getDirectCallee(); 2977 if (!FD) 2978 return false; 2979 AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>(); 2980 if (Attr && Name == Attr->getLabel()) 2981 return true; 2982 unsigned BuiltinID = FD->getBuiltinID(); 2983 if (!BuiltinID || !BI.isLibFunction(BuiltinID)) 2984 return false; 2985 StringRef BuiltinName = BI.getName(BuiltinID); 2986 if (BuiltinName.startswith("__builtin_") && 2987 Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) { 2988 return true; 2989 } 2990 return false; 2991 } 2992 2993 bool VisitStmt(const Stmt *S) { 2994 for (const Stmt *Child : S->children()) 2995 if (Child && this->Visit(Child)) 2996 return true; 2997 return false; 2998 } 2999 }; 3000 3001 // Make sure we're not referencing non-imported vars or functions. 3002 struct DLLImportFunctionVisitor 3003 : public RecursiveASTVisitor<DLLImportFunctionVisitor> { 3004 bool SafeToInline = true; 3005 3006 bool shouldVisitImplicitCode() const { return true; } 3007 3008 bool VisitVarDecl(VarDecl *VD) { 3009 if (VD->getTLSKind()) { 3010 // A thread-local variable cannot be imported. 3011 SafeToInline = false; 3012 return SafeToInline; 3013 } 3014 3015 // A variable definition might imply a destructor call. 3016 if (VD->isThisDeclarationADefinition()) 3017 SafeToInline = !HasNonDllImportDtor(VD->getType()); 3018 3019 return SafeToInline; 3020 } 3021 3022 bool VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) { 3023 if (const auto *D = E->getTemporary()->getDestructor()) 3024 SafeToInline = D->hasAttr<DLLImportAttr>(); 3025 return SafeToInline; 3026 } 3027 3028 bool VisitDeclRefExpr(DeclRefExpr *E) { 3029 ValueDecl *VD = E->getDecl(); 3030 if (isa<FunctionDecl>(VD)) 3031 SafeToInline = VD->hasAttr<DLLImportAttr>(); 3032 else if (VarDecl *V = dyn_cast<VarDecl>(VD)) 3033 SafeToInline = !V->hasGlobalStorage() || V->hasAttr<DLLImportAttr>(); 3034 return SafeToInline; 3035 } 3036 3037 bool VisitCXXConstructExpr(CXXConstructExpr *E) { 3038 SafeToInline = E->getConstructor()->hasAttr<DLLImportAttr>(); 3039 return SafeToInline; 3040 } 3041 3042 bool VisitCXXMemberCallExpr(CXXMemberCallExpr *E) { 3043 CXXMethodDecl *M = E->getMethodDecl(); 3044 if (!M) { 3045 // Call through a pointer to member function. This is safe to inline. 3046 SafeToInline = true; 3047 } else { 3048 SafeToInline = M->hasAttr<DLLImportAttr>(); 3049 } 3050 return SafeToInline; 3051 } 3052 3053 bool VisitCXXDeleteExpr(CXXDeleteExpr *E) { 3054 SafeToInline = E->getOperatorDelete()->hasAttr<DLLImportAttr>(); 3055 return SafeToInline; 3056 } 3057 3058 bool VisitCXXNewExpr(CXXNewExpr *E) { 3059 SafeToInline = E->getOperatorNew()->hasAttr<DLLImportAttr>(); 3060 return SafeToInline; 3061 } 3062 }; 3063 } 3064 3065 // isTriviallyRecursive - Check if this function calls another 3066 // decl that, because of the asm attribute or the other decl being a builtin, 3067 // ends up pointing to itself. 3068 bool 3069 CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) { 3070 StringRef Name; 3071 if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) { 3072 // asm labels are a special kind of mangling we have to support. 3073 AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>(); 3074 if (!Attr) 3075 return false; 3076 Name = Attr->getLabel(); 3077 } else { 3078 Name = FD->getName(); 3079 } 3080 3081 FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo); 3082 const Stmt *Body = FD->getBody(); 3083 return Body ? Walker.Visit(Body) : false; 3084 } 3085 3086 bool CodeGenModule::shouldEmitFunction(GlobalDecl GD) { 3087 if (getFunctionLinkage(GD) != llvm::Function::AvailableExternallyLinkage) 3088 return true; 3089 const auto *F = cast<FunctionDecl>(GD.getDecl()); 3090 if (CodeGenOpts.OptimizationLevel == 0 && !F->hasAttr<AlwaysInlineAttr>()) 3091 return false; 3092 3093 if (F->hasAttr<DLLImportAttr>() && !F->hasAttr<AlwaysInlineAttr>()) { 3094 // Check whether it would be safe to inline this dllimport function. 3095 DLLImportFunctionVisitor Visitor; 3096 Visitor.TraverseFunctionDecl(const_cast<FunctionDecl*>(F)); 3097 if (!Visitor.SafeToInline) 3098 return false; 3099 3100 if (const CXXDestructorDecl *Dtor = dyn_cast<CXXDestructorDecl>(F)) { 3101 // Implicit destructor invocations aren't captured in the AST, so the 3102 // check above can't see them. Check for them manually here. 3103 for (const Decl *Member : Dtor->getParent()->decls()) 3104 if (isa<FieldDecl>(Member)) 3105 if (HasNonDllImportDtor(cast<FieldDecl>(Member)->getType())) 3106 return false; 3107 for (const CXXBaseSpecifier &B : Dtor->getParent()->bases()) 3108 if (HasNonDllImportDtor(B.getType())) 3109 return false; 3110 } 3111 } 3112 3113 // PR9614. Avoid cases where the source code is lying to us. An available 3114 // externally function should have an equivalent function somewhere else, 3115 // but a function that calls itself through asm label/`__builtin_` trickery is 3116 // clearly not equivalent to the real implementation. 3117 // This happens in glibc's btowc and in some configure checks. 3118 return !isTriviallyRecursive(F); 3119 } 3120 3121 bool CodeGenModule::shouldOpportunisticallyEmitVTables() { 3122 return CodeGenOpts.OptimizationLevel > 0; 3123 } 3124 3125 void CodeGenModule::EmitMultiVersionFunctionDefinition(GlobalDecl GD, 3126 llvm::GlobalValue *GV) { 3127 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 3128 3129 if (FD->isCPUSpecificMultiVersion()) { 3130 auto *Spec = FD->getAttr<CPUSpecificAttr>(); 3131 for (unsigned I = 0; I < Spec->cpus_size(); ++I) 3132 EmitGlobalFunctionDefinition(GD.getWithMultiVersionIndex(I), nullptr); 3133 // Requires multiple emits. 3134 } else 3135 EmitGlobalFunctionDefinition(GD, GV); 3136 } 3137 3138 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD, llvm::GlobalValue *GV) { 3139 const auto *D = cast<ValueDecl>(GD.getDecl()); 3140 3141 PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(), 3142 Context.getSourceManager(), 3143 "Generating code for declaration"); 3144 3145 if (const auto *FD = dyn_cast<FunctionDecl>(D)) { 3146 // At -O0, don't generate IR for functions with available_externally 3147 // linkage. 3148 if (!shouldEmitFunction(GD)) 3149 return; 3150 3151 llvm::TimeTraceScope TimeScope("CodeGen Function", [&]() { 3152 std::string Name; 3153 llvm::raw_string_ostream OS(Name); 3154 FD->getNameForDiagnostic(OS, getContext().getPrintingPolicy(), 3155 /*Qualified=*/true); 3156 return Name; 3157 }); 3158 3159 if (const auto *Method = dyn_cast<CXXMethodDecl>(D)) { 3160 // Make sure to emit the definition(s) before we emit the thunks. 3161 // This is necessary for the generation of certain thunks. 3162 if (isa<CXXConstructorDecl>(Method) || isa<CXXDestructorDecl>(Method)) 3163 ABI->emitCXXStructor(GD); 3164 else if (FD->isMultiVersion()) 3165 EmitMultiVersionFunctionDefinition(GD, GV); 3166 else 3167 EmitGlobalFunctionDefinition(GD, GV); 3168 3169 if (Method->isVirtual()) 3170 getVTables().EmitThunks(GD); 3171 3172 return; 3173 } 3174 3175 if (FD->isMultiVersion()) 3176 return EmitMultiVersionFunctionDefinition(GD, GV); 3177 return EmitGlobalFunctionDefinition(GD, GV); 3178 } 3179 3180 if (const auto *VD = dyn_cast<VarDecl>(D)) 3181 return EmitGlobalVarDefinition(VD, !VD->hasDefinition()); 3182 3183 llvm_unreachable("Invalid argument to EmitGlobalDefinition()"); 3184 } 3185 3186 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old, 3187 llvm::Function *NewFn); 3188 3189 static unsigned 3190 TargetMVPriority(const TargetInfo &TI, 3191 const CodeGenFunction::MultiVersionResolverOption &RO) { 3192 unsigned Priority = 0; 3193 for (StringRef Feat : RO.Conditions.Features) 3194 Priority = std::max(Priority, TI.multiVersionSortPriority(Feat)); 3195 3196 if (!RO.Conditions.Architecture.empty()) 3197 Priority = std::max( 3198 Priority, TI.multiVersionSortPriority(RO.Conditions.Architecture)); 3199 return Priority; 3200 } 3201 3202 void CodeGenModule::emitMultiVersionFunctions() { 3203 for (GlobalDecl GD : MultiVersionFuncs) { 3204 SmallVector<CodeGenFunction::MultiVersionResolverOption, 10> Options; 3205 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 3206 getContext().forEachMultiversionedFunctionVersion( 3207 FD, [this, &GD, &Options](const FunctionDecl *CurFD) { 3208 GlobalDecl CurGD{ 3209 (CurFD->isDefined() ? CurFD->getDefinition() : CurFD)}; 3210 StringRef MangledName = getMangledName(CurGD); 3211 llvm::Constant *Func = GetGlobalValue(MangledName); 3212 if (!Func) { 3213 if (CurFD->isDefined()) { 3214 EmitGlobalFunctionDefinition(CurGD, nullptr); 3215 Func = GetGlobalValue(MangledName); 3216 } else { 3217 const CGFunctionInfo &FI = 3218 getTypes().arrangeGlobalDeclaration(GD); 3219 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 3220 Func = GetAddrOfFunction(CurGD, Ty, /*ForVTable=*/false, 3221 /*DontDefer=*/false, ForDefinition); 3222 } 3223 assert(Func && "This should have just been created"); 3224 } 3225 3226 const auto *TA = CurFD->getAttr<TargetAttr>(); 3227 llvm::SmallVector<StringRef, 8> Feats; 3228 TA->getAddedFeatures(Feats); 3229 3230 Options.emplace_back(cast<llvm::Function>(Func), 3231 TA->getArchitecture(), Feats); 3232 }); 3233 3234 llvm::Function *ResolverFunc; 3235 const TargetInfo &TI = getTarget(); 3236 3237 if (TI.supportsIFunc() || FD->isTargetMultiVersion()) { 3238 ResolverFunc = cast<llvm::Function>( 3239 GetGlobalValue((getMangledName(GD) + ".resolver").str())); 3240 ResolverFunc->setLinkage(llvm::Function::WeakODRLinkage); 3241 } else { 3242 ResolverFunc = cast<llvm::Function>(GetGlobalValue(getMangledName(GD))); 3243 } 3244 3245 if (supportsCOMDAT()) 3246 ResolverFunc->setComdat( 3247 getModule().getOrInsertComdat(ResolverFunc->getName())); 3248 3249 llvm::stable_sort( 3250 Options, [&TI](const CodeGenFunction::MultiVersionResolverOption &LHS, 3251 const CodeGenFunction::MultiVersionResolverOption &RHS) { 3252 return TargetMVPriority(TI, LHS) > TargetMVPriority(TI, RHS); 3253 }); 3254 CodeGenFunction CGF(*this); 3255 CGF.EmitMultiVersionResolver(ResolverFunc, Options); 3256 } 3257 } 3258 3259 void CodeGenModule::emitCPUDispatchDefinition(GlobalDecl GD) { 3260 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 3261 assert(FD && "Not a FunctionDecl?"); 3262 const auto *DD = FD->getAttr<CPUDispatchAttr>(); 3263 assert(DD && "Not a cpu_dispatch Function?"); 3264 llvm::Type *DeclTy = getTypes().ConvertType(FD->getType()); 3265 3266 if (const auto *CXXFD = dyn_cast<CXXMethodDecl>(FD)) { 3267 const CGFunctionInfo &FInfo = getTypes().arrangeCXXMethodDeclaration(CXXFD); 3268 DeclTy = getTypes().GetFunctionType(FInfo); 3269 } 3270 3271 StringRef ResolverName = getMangledName(GD); 3272 3273 llvm::Type *ResolverType; 3274 GlobalDecl ResolverGD; 3275 if (getTarget().supportsIFunc()) 3276 ResolverType = llvm::FunctionType::get( 3277 llvm::PointerType::get(DeclTy, 3278 Context.getTargetAddressSpace(FD->getType())), 3279 false); 3280 else { 3281 ResolverType = DeclTy; 3282 ResolverGD = GD; 3283 } 3284 3285 auto *ResolverFunc = cast<llvm::Function>(GetOrCreateLLVMFunction( 3286 ResolverName, ResolverType, ResolverGD, /*ForVTable=*/false)); 3287 ResolverFunc->setLinkage(llvm::Function::WeakODRLinkage); 3288 if (supportsCOMDAT()) 3289 ResolverFunc->setComdat( 3290 getModule().getOrInsertComdat(ResolverFunc->getName())); 3291 3292 SmallVector<CodeGenFunction::MultiVersionResolverOption, 10> Options; 3293 const TargetInfo &Target = getTarget(); 3294 unsigned Index = 0; 3295 for (const IdentifierInfo *II : DD->cpus()) { 3296 // Get the name of the target function so we can look it up/create it. 3297 std::string MangledName = getMangledNameImpl(*this, GD, FD, true) + 3298 getCPUSpecificMangling(*this, II->getName()); 3299 3300 llvm::Constant *Func = GetGlobalValue(MangledName); 3301 3302 if (!Func) { 3303 GlobalDecl ExistingDecl = Manglings.lookup(MangledName); 3304 if (ExistingDecl.getDecl() && 3305 ExistingDecl.getDecl()->getAsFunction()->isDefined()) { 3306 EmitGlobalFunctionDefinition(ExistingDecl, nullptr); 3307 Func = GetGlobalValue(MangledName); 3308 } else { 3309 if (!ExistingDecl.getDecl()) 3310 ExistingDecl = GD.getWithMultiVersionIndex(Index); 3311 3312 Func = GetOrCreateLLVMFunction( 3313 MangledName, DeclTy, ExistingDecl, 3314 /*ForVTable=*/false, /*DontDefer=*/true, 3315 /*IsThunk=*/false, llvm::AttributeList(), ForDefinition); 3316 } 3317 } 3318 3319 llvm::SmallVector<StringRef, 32> Features; 3320 Target.getCPUSpecificCPUDispatchFeatures(II->getName(), Features); 3321 llvm::transform(Features, Features.begin(), 3322 [](StringRef Str) { return Str.substr(1); }); 3323 Features.erase(std::remove_if( 3324 Features.begin(), Features.end(), [&Target](StringRef Feat) { 3325 return !Target.validateCpuSupports(Feat); 3326 }), Features.end()); 3327 Options.emplace_back(cast<llvm::Function>(Func), StringRef{}, Features); 3328 ++Index; 3329 } 3330 3331 llvm::sort( 3332 Options, [](const CodeGenFunction::MultiVersionResolverOption &LHS, 3333 const CodeGenFunction::MultiVersionResolverOption &RHS) { 3334 return CodeGenFunction::GetX86CpuSupportsMask(LHS.Conditions.Features) > 3335 CodeGenFunction::GetX86CpuSupportsMask(RHS.Conditions.Features); 3336 }); 3337 3338 // If the list contains multiple 'default' versions, such as when it contains 3339 // 'pentium' and 'generic', don't emit the call to the generic one (since we 3340 // always run on at least a 'pentium'). We do this by deleting the 'least 3341 // advanced' (read, lowest mangling letter). 3342 while (Options.size() > 1 && 3343 CodeGenFunction::GetX86CpuSupportsMask( 3344 (Options.end() - 2)->Conditions.Features) == 0) { 3345 StringRef LHSName = (Options.end() - 2)->Function->getName(); 3346 StringRef RHSName = (Options.end() - 1)->Function->getName(); 3347 if (LHSName.compare(RHSName) < 0) 3348 Options.erase(Options.end() - 2); 3349 else 3350 Options.erase(Options.end() - 1); 3351 } 3352 3353 CodeGenFunction CGF(*this); 3354 CGF.EmitMultiVersionResolver(ResolverFunc, Options); 3355 3356 if (getTarget().supportsIFunc()) { 3357 std::string AliasName = getMangledNameImpl( 3358 *this, GD, FD, /*OmitMultiVersionMangling=*/true); 3359 llvm::Constant *AliasFunc = GetGlobalValue(AliasName); 3360 if (!AliasFunc) { 3361 auto *IFunc = cast<llvm::GlobalIFunc>(GetOrCreateLLVMFunction( 3362 AliasName, DeclTy, GD, /*ForVTable=*/false, /*DontDefer=*/true, 3363 /*IsThunk=*/false, llvm::AttributeList(), NotForDefinition)); 3364 auto *GA = llvm::GlobalAlias::create( 3365 DeclTy, 0, getFunctionLinkage(GD), AliasName, IFunc, &getModule()); 3366 GA->setLinkage(llvm::Function::WeakODRLinkage); 3367 SetCommonAttributes(GD, GA); 3368 } 3369 } 3370 } 3371 3372 /// If a dispatcher for the specified mangled name is not in the module, create 3373 /// and return an llvm Function with the specified type. 3374 llvm::Constant *CodeGenModule::GetOrCreateMultiVersionResolver( 3375 GlobalDecl GD, llvm::Type *DeclTy, const FunctionDecl *FD) { 3376 std::string MangledName = 3377 getMangledNameImpl(*this, GD, FD, /*OmitMultiVersionMangling=*/true); 3378 3379 // Holds the name of the resolver, in ifunc mode this is the ifunc (which has 3380 // a separate resolver). 3381 std::string ResolverName = MangledName; 3382 if (getTarget().supportsIFunc()) 3383 ResolverName += ".ifunc"; 3384 else if (FD->isTargetMultiVersion()) 3385 ResolverName += ".resolver"; 3386 3387 // If this already exists, just return that one. 3388 if (llvm::GlobalValue *ResolverGV = GetGlobalValue(ResolverName)) 3389 return ResolverGV; 3390 3391 // Since this is the first time we've created this IFunc, make sure 3392 // that we put this multiversioned function into the list to be 3393 // replaced later if necessary (target multiversioning only). 3394 if (!FD->isCPUDispatchMultiVersion() && !FD->isCPUSpecificMultiVersion()) 3395 MultiVersionFuncs.push_back(GD); 3396 3397 if (getTarget().supportsIFunc()) { 3398 llvm::Type *ResolverType = llvm::FunctionType::get( 3399 llvm::PointerType::get( 3400 DeclTy, getContext().getTargetAddressSpace(FD->getType())), 3401 false); 3402 llvm::Constant *Resolver = GetOrCreateLLVMFunction( 3403 MangledName + ".resolver", ResolverType, GlobalDecl{}, 3404 /*ForVTable=*/false); 3405 llvm::GlobalIFunc *GIF = llvm::GlobalIFunc::create( 3406 DeclTy, 0, llvm::Function::WeakODRLinkage, "", Resolver, &getModule()); 3407 GIF->setName(ResolverName); 3408 SetCommonAttributes(FD, GIF); 3409 3410 return GIF; 3411 } 3412 3413 llvm::Constant *Resolver = GetOrCreateLLVMFunction( 3414 ResolverName, DeclTy, GlobalDecl{}, /*ForVTable=*/false); 3415 assert(isa<llvm::GlobalValue>(Resolver) && 3416 "Resolver should be created for the first time"); 3417 SetCommonAttributes(FD, cast<llvm::GlobalValue>(Resolver)); 3418 return Resolver; 3419 } 3420 3421 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the 3422 /// module, create and return an llvm Function with the specified type. If there 3423 /// is something in the module with the specified name, return it potentially 3424 /// bitcasted to the right type. 3425 /// 3426 /// If D is non-null, it specifies a decl that correspond to this. This is used 3427 /// to set the attributes on the function when it is first created. 3428 llvm::Constant *CodeGenModule::GetOrCreateLLVMFunction( 3429 StringRef MangledName, llvm::Type *Ty, GlobalDecl GD, bool ForVTable, 3430 bool DontDefer, bool IsThunk, llvm::AttributeList ExtraAttrs, 3431 ForDefinition_t IsForDefinition) { 3432 const Decl *D = GD.getDecl(); 3433 3434 // Any attempts to use a MultiVersion function should result in retrieving 3435 // the iFunc instead. Name Mangling will handle the rest of the changes. 3436 if (const FunctionDecl *FD = cast_or_null<FunctionDecl>(D)) { 3437 // For the device mark the function as one that should be emitted. 3438 if (getLangOpts().OpenMPIsDevice && OpenMPRuntime && 3439 !OpenMPRuntime->markAsGlobalTarget(GD) && FD->isDefined() && 3440 !DontDefer && !IsForDefinition) { 3441 if (const FunctionDecl *FDDef = FD->getDefinition()) { 3442 GlobalDecl GDDef; 3443 if (const auto *CD = dyn_cast<CXXConstructorDecl>(FDDef)) 3444 GDDef = GlobalDecl(CD, GD.getCtorType()); 3445 else if (const auto *DD = dyn_cast<CXXDestructorDecl>(FDDef)) 3446 GDDef = GlobalDecl(DD, GD.getDtorType()); 3447 else 3448 GDDef = GlobalDecl(FDDef); 3449 EmitGlobal(GDDef); 3450 } 3451 } 3452 3453 if (FD->isMultiVersion()) { 3454 if (FD->hasAttr<TargetAttr>()) 3455 UpdateMultiVersionNames(GD, FD); 3456 if (!IsForDefinition) 3457 return GetOrCreateMultiVersionResolver(GD, Ty, FD); 3458 } 3459 } 3460 3461 // Lookup the entry, lazily creating it if necessary. 3462 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 3463 if (Entry) { 3464 if (WeakRefReferences.erase(Entry)) { 3465 const FunctionDecl *FD = cast_or_null<FunctionDecl>(D); 3466 if (FD && !FD->hasAttr<WeakAttr>()) 3467 Entry->setLinkage(llvm::Function::ExternalLinkage); 3468 } 3469 3470 // Handle dropped DLL attributes. 3471 if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>()) { 3472 Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 3473 setDSOLocal(Entry); 3474 } 3475 3476 // If there are two attempts to define the same mangled name, issue an 3477 // error. 3478 if (IsForDefinition && !Entry->isDeclaration()) { 3479 GlobalDecl OtherGD; 3480 // Check that GD is not yet in DiagnosedConflictingDefinitions is required 3481 // to make sure that we issue an error only once. 3482 if (lookupRepresentativeDecl(MangledName, OtherGD) && 3483 (GD.getCanonicalDecl().getDecl() != 3484 OtherGD.getCanonicalDecl().getDecl()) && 3485 DiagnosedConflictingDefinitions.insert(GD).second) { 3486 getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name) 3487 << MangledName; 3488 getDiags().Report(OtherGD.getDecl()->getLocation(), 3489 diag::note_previous_definition); 3490 } 3491 } 3492 3493 if ((isa<llvm::Function>(Entry) || isa<llvm::GlobalAlias>(Entry)) && 3494 (Entry->getValueType() == Ty)) { 3495 return Entry; 3496 } 3497 3498 // Make sure the result is of the correct type. 3499 // (If function is requested for a definition, we always need to create a new 3500 // function, not just return a bitcast.) 3501 if (!IsForDefinition) 3502 return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo()); 3503 } 3504 3505 // This function doesn't have a complete type (for example, the return 3506 // type is an incomplete struct). Use a fake type instead, and make 3507 // sure not to try to set attributes. 3508 bool IsIncompleteFunction = false; 3509 3510 llvm::FunctionType *FTy; 3511 if (isa<llvm::FunctionType>(Ty)) { 3512 FTy = cast<llvm::FunctionType>(Ty); 3513 } else { 3514 FTy = llvm::FunctionType::get(VoidTy, false); 3515 IsIncompleteFunction = true; 3516 } 3517 3518 llvm::Function *F = 3519 llvm::Function::Create(FTy, llvm::Function::ExternalLinkage, 3520 Entry ? StringRef() : MangledName, &getModule()); 3521 3522 // If we already created a function with the same mangled name (but different 3523 // type) before, take its name and add it to the list of functions to be 3524 // replaced with F at the end of CodeGen. 3525 // 3526 // This happens if there is a prototype for a function (e.g. "int f()") and 3527 // then a definition of a different type (e.g. "int f(int x)"). 3528 if (Entry) { 3529 F->takeName(Entry); 3530 3531 // This might be an implementation of a function without a prototype, in 3532 // which case, try to do special replacement of calls which match the new 3533 // prototype. The really key thing here is that we also potentially drop 3534 // arguments from the call site so as to make a direct call, which makes the 3535 // inliner happier and suppresses a number of optimizer warnings (!) about 3536 // dropping arguments. 3537 if (!Entry->use_empty()) { 3538 ReplaceUsesOfNonProtoTypeWithRealFunction(Entry, F); 3539 Entry->removeDeadConstantUsers(); 3540 } 3541 3542 llvm::Constant *BC = llvm::ConstantExpr::getBitCast( 3543 F, Entry->getValueType()->getPointerTo()); 3544 addGlobalValReplacement(Entry, BC); 3545 } 3546 3547 assert(F->getName() == MangledName && "name was uniqued!"); 3548 if (D) 3549 SetFunctionAttributes(GD, F, IsIncompleteFunction, IsThunk); 3550 if (ExtraAttrs.hasAttributes(llvm::AttributeList::FunctionIndex)) { 3551 llvm::AttrBuilder B(ExtraAttrs, llvm::AttributeList::FunctionIndex); 3552 F->addAttributes(llvm::AttributeList::FunctionIndex, B); 3553 } 3554 3555 if (!DontDefer) { 3556 // All MSVC dtors other than the base dtor are linkonce_odr and delegate to 3557 // each other bottoming out with the base dtor. Therefore we emit non-base 3558 // dtors on usage, even if there is no dtor definition in the TU. 3559 if (D && isa<CXXDestructorDecl>(D) && 3560 getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D), 3561 GD.getDtorType())) 3562 addDeferredDeclToEmit(GD); 3563 3564 // This is the first use or definition of a mangled name. If there is a 3565 // deferred decl with this name, remember that we need to emit it at the end 3566 // of the file. 3567 auto DDI = DeferredDecls.find(MangledName); 3568 if (DDI != DeferredDecls.end()) { 3569 // Move the potentially referenced deferred decl to the 3570 // DeferredDeclsToEmit list, and remove it from DeferredDecls (since we 3571 // don't need it anymore). 3572 addDeferredDeclToEmit(DDI->second); 3573 DeferredDecls.erase(DDI); 3574 3575 // Otherwise, there are cases we have to worry about where we're 3576 // using a declaration for which we must emit a definition but where 3577 // we might not find a top-level definition: 3578 // - member functions defined inline in their classes 3579 // - friend functions defined inline in some class 3580 // - special member functions with implicit definitions 3581 // If we ever change our AST traversal to walk into class methods, 3582 // this will be unnecessary. 3583 // 3584 // We also don't emit a definition for a function if it's going to be an 3585 // entry in a vtable, unless it's already marked as used. 3586 } else if (getLangOpts().CPlusPlus && D) { 3587 // Look for a declaration that's lexically in a record. 3588 for (const auto *FD = cast<FunctionDecl>(D)->getMostRecentDecl(); FD; 3589 FD = FD->getPreviousDecl()) { 3590 if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) { 3591 if (FD->doesThisDeclarationHaveABody()) { 3592 addDeferredDeclToEmit(GD.getWithDecl(FD)); 3593 break; 3594 } 3595 } 3596 } 3597 } 3598 } 3599 3600 // Make sure the result is of the requested type. 3601 if (!IsIncompleteFunction) { 3602 assert(F->getFunctionType() == Ty); 3603 return F; 3604 } 3605 3606 llvm::Type *PTy = llvm::PointerType::getUnqual(Ty); 3607 return llvm::ConstantExpr::getBitCast(F, PTy); 3608 } 3609 3610 /// GetAddrOfFunction - Return the address of the given function. If Ty is 3611 /// non-null, then this function will use the specified type if it has to 3612 /// create it (this occurs when we see a definition of the function). 3613 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD, 3614 llvm::Type *Ty, 3615 bool ForVTable, 3616 bool DontDefer, 3617 ForDefinition_t IsForDefinition) { 3618 assert(!cast<FunctionDecl>(GD.getDecl())->isConsteval() && 3619 "consteval function should never be emitted"); 3620 // If there was no specific requested type, just convert it now. 3621 if (!Ty) { 3622 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 3623 Ty = getTypes().ConvertType(FD->getType()); 3624 } 3625 3626 // Devirtualized destructor calls may come through here instead of via 3627 // getAddrOfCXXStructor. Make sure we use the MS ABI base destructor instead 3628 // of the complete destructor when necessary. 3629 if (const auto *DD = dyn_cast<CXXDestructorDecl>(GD.getDecl())) { 3630 if (getTarget().getCXXABI().isMicrosoft() && 3631 GD.getDtorType() == Dtor_Complete && 3632 DD->getParent()->getNumVBases() == 0) 3633 GD = GlobalDecl(DD, Dtor_Base); 3634 } 3635 3636 StringRef MangledName = getMangledName(GD); 3637 auto *F = GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable, DontDefer, 3638 /*IsThunk=*/false, llvm::AttributeList(), 3639 IsForDefinition); 3640 // Returns kernel handle for HIP kernel stub function. 3641 if (LangOpts.CUDA && !LangOpts.CUDAIsDevice && 3642 cast<FunctionDecl>(GD.getDecl())->hasAttr<CUDAGlobalAttr>()) { 3643 auto *Handle = getCUDARuntime().getKernelHandle( 3644 cast<llvm::Function>(F->stripPointerCasts()), GD); 3645 if (IsForDefinition) 3646 return F; 3647 return llvm::ConstantExpr::getBitCast(Handle, Ty->getPointerTo()); 3648 } 3649 return F; 3650 } 3651 3652 static const FunctionDecl * 3653 GetRuntimeFunctionDecl(ASTContext &C, StringRef Name) { 3654 TranslationUnitDecl *TUDecl = C.getTranslationUnitDecl(); 3655 DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl); 3656 3657 IdentifierInfo &CII = C.Idents.get(Name); 3658 for (const auto &Result : DC->lookup(&CII)) 3659 if (const auto FD = dyn_cast<FunctionDecl>(Result)) 3660 return FD; 3661 3662 if (!C.getLangOpts().CPlusPlus) 3663 return nullptr; 3664 3665 // Demangle the premangled name from getTerminateFn() 3666 IdentifierInfo &CXXII = 3667 (Name == "_ZSt9terminatev" || Name == "?terminate@@YAXXZ") 3668 ? C.Idents.get("terminate") 3669 : C.Idents.get(Name); 3670 3671 for (const auto &N : {"__cxxabiv1", "std"}) { 3672 IdentifierInfo &NS = C.Idents.get(N); 3673 for (const auto &Result : DC->lookup(&NS)) { 3674 NamespaceDecl *ND = dyn_cast<NamespaceDecl>(Result); 3675 if (auto LSD = dyn_cast<LinkageSpecDecl>(Result)) 3676 for (const auto &Result : LSD->lookup(&NS)) 3677 if ((ND = dyn_cast<NamespaceDecl>(Result))) 3678 break; 3679 3680 if (ND) 3681 for (const auto &Result : ND->lookup(&CXXII)) 3682 if (const auto *FD = dyn_cast<FunctionDecl>(Result)) 3683 return FD; 3684 } 3685 } 3686 3687 return nullptr; 3688 } 3689 3690 /// CreateRuntimeFunction - Create a new runtime function with the specified 3691 /// type and name. 3692 llvm::FunctionCallee 3693 CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy, StringRef Name, 3694 llvm::AttributeList ExtraAttrs, bool Local, 3695 bool AssumeConvergent) { 3696 if (AssumeConvergent) { 3697 ExtraAttrs = 3698 ExtraAttrs.addAttribute(VMContext, llvm::AttributeList::FunctionIndex, 3699 llvm::Attribute::Convergent); 3700 } 3701 3702 llvm::Constant *C = 3703 GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false, 3704 /*DontDefer=*/false, /*IsThunk=*/false, 3705 ExtraAttrs); 3706 3707 if (auto *F = dyn_cast<llvm::Function>(C)) { 3708 if (F->empty()) { 3709 F->setCallingConv(getRuntimeCC()); 3710 3711 // In Windows Itanium environments, try to mark runtime functions 3712 // dllimport. For Mingw and MSVC, don't. We don't really know if the user 3713 // will link their standard library statically or dynamically. Marking 3714 // functions imported when they are not imported can cause linker errors 3715 // and warnings. 3716 if (!Local && getTriple().isWindowsItaniumEnvironment() && 3717 !getCodeGenOpts().LTOVisibilityPublicStd) { 3718 const FunctionDecl *FD = GetRuntimeFunctionDecl(Context, Name); 3719 if (!FD || FD->hasAttr<DLLImportAttr>()) { 3720 F->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass); 3721 F->setLinkage(llvm::GlobalValue::ExternalLinkage); 3722 } 3723 } 3724 setDSOLocal(F); 3725 } 3726 } 3727 3728 return {FTy, C}; 3729 } 3730 3731 /// isTypeConstant - Determine whether an object of this type can be emitted 3732 /// as a constant. 3733 /// 3734 /// If ExcludeCtor is true, the duration when the object's constructor runs 3735 /// will not be considered. The caller will need to verify that the object is 3736 /// not written to during its construction. 3737 bool CodeGenModule::isTypeConstant(QualType Ty, bool ExcludeCtor) { 3738 if (!Ty.isConstant(Context) && !Ty->isReferenceType()) 3739 return false; 3740 3741 if (Context.getLangOpts().CPlusPlus) { 3742 if (const CXXRecordDecl *Record 3743 = Context.getBaseElementType(Ty)->getAsCXXRecordDecl()) 3744 return ExcludeCtor && !Record->hasMutableFields() && 3745 Record->hasTrivialDestructor(); 3746 } 3747 3748 return true; 3749 } 3750 3751 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module, 3752 /// create and return an llvm GlobalVariable with the specified type. If there 3753 /// is something in the module with the specified name, return it potentially 3754 /// bitcasted to the right type. 3755 /// 3756 /// If D is non-null, it specifies a decl that correspond to this. This is used 3757 /// to set the attributes on the global when it is first created. 3758 /// 3759 /// If IsForDefinition is true, it is guaranteed that an actual global with 3760 /// type Ty will be returned, not conversion of a variable with the same 3761 /// mangled name but some other type. 3762 llvm::Constant * 3763 CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName, 3764 llvm::PointerType *Ty, 3765 const VarDecl *D, 3766 ForDefinition_t IsForDefinition) { 3767 // Lookup the entry, lazily creating it if necessary. 3768 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 3769 if (Entry) { 3770 if (WeakRefReferences.erase(Entry)) { 3771 if (D && !D->hasAttr<WeakAttr>()) 3772 Entry->setLinkage(llvm::Function::ExternalLinkage); 3773 } 3774 3775 // Handle dropped DLL attributes. 3776 if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>()) 3777 Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 3778 3779 if (LangOpts.OpenMP && !LangOpts.OpenMPSimd && D) 3780 getOpenMPRuntime().registerTargetGlobalVariable(D, Entry); 3781 3782 if (Entry->getType() == Ty) 3783 return Entry; 3784 3785 // If there are two attempts to define the same mangled name, issue an 3786 // error. 3787 if (IsForDefinition && !Entry->isDeclaration()) { 3788 GlobalDecl OtherGD; 3789 const VarDecl *OtherD; 3790 3791 // Check that D is not yet in DiagnosedConflictingDefinitions is required 3792 // to make sure that we issue an error only once. 3793 if (D && lookupRepresentativeDecl(MangledName, OtherGD) && 3794 (D->getCanonicalDecl() != OtherGD.getCanonicalDecl().getDecl()) && 3795 (OtherD = dyn_cast<VarDecl>(OtherGD.getDecl())) && 3796 OtherD->hasInit() && 3797 DiagnosedConflictingDefinitions.insert(D).second) { 3798 getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name) 3799 << MangledName; 3800 getDiags().Report(OtherGD.getDecl()->getLocation(), 3801 diag::note_previous_definition); 3802 } 3803 } 3804 3805 // Make sure the result is of the correct type. 3806 if (Entry->getType()->getAddressSpace() != Ty->getAddressSpace()) 3807 return llvm::ConstantExpr::getAddrSpaceCast(Entry, Ty); 3808 3809 // (If global is requested for a definition, we always need to create a new 3810 // global, not just return a bitcast.) 3811 if (!IsForDefinition) 3812 return llvm::ConstantExpr::getBitCast(Entry, Ty); 3813 } 3814 3815 auto AddrSpace = GetGlobalVarAddressSpace(D); 3816 auto TargetAddrSpace = getContext().getTargetAddressSpace(AddrSpace); 3817 3818 auto *GV = new llvm::GlobalVariable( 3819 getModule(), Ty->getElementType(), false, 3820 llvm::GlobalValue::ExternalLinkage, nullptr, MangledName, nullptr, 3821 llvm::GlobalVariable::NotThreadLocal, TargetAddrSpace); 3822 3823 // If we already created a global with the same mangled name (but different 3824 // type) before, take its name and remove it from its parent. 3825 if (Entry) { 3826 GV->takeName(Entry); 3827 3828 if (!Entry->use_empty()) { 3829 llvm::Constant *NewPtrForOldDecl = 3830 llvm::ConstantExpr::getBitCast(GV, Entry->getType()); 3831 Entry->replaceAllUsesWith(NewPtrForOldDecl); 3832 } 3833 3834 Entry->eraseFromParent(); 3835 } 3836 3837 // This is the first use or definition of a mangled name. If there is a 3838 // deferred decl with this name, remember that we need to emit it at the end 3839 // of the file. 3840 auto DDI = DeferredDecls.find(MangledName); 3841 if (DDI != DeferredDecls.end()) { 3842 // Move the potentially referenced deferred decl to the DeferredDeclsToEmit 3843 // list, and remove it from DeferredDecls (since we don't need it anymore). 3844 addDeferredDeclToEmit(DDI->second); 3845 DeferredDecls.erase(DDI); 3846 } 3847 3848 // Handle things which are present even on external declarations. 3849 if (D) { 3850 if (LangOpts.OpenMP && !LangOpts.OpenMPSimd) 3851 getOpenMPRuntime().registerTargetGlobalVariable(D, GV); 3852 3853 // FIXME: This code is overly simple and should be merged with other global 3854 // handling. 3855 GV->setConstant(isTypeConstant(D->getType(), false)); 3856 3857 GV->setAlignment(getContext().getDeclAlign(D).getAsAlign()); 3858 3859 setLinkageForGV(GV, D); 3860 3861 if (D->getTLSKind()) { 3862 if (D->getTLSKind() == VarDecl::TLS_Dynamic) 3863 CXXThreadLocals.push_back(D); 3864 setTLSMode(GV, *D); 3865 } 3866 3867 setGVProperties(GV, D); 3868 3869 // If required by the ABI, treat declarations of static data members with 3870 // inline initializers as definitions. 3871 if (getContext().isMSStaticDataMemberInlineDefinition(D)) { 3872 EmitGlobalVarDefinition(D); 3873 } 3874 3875 // Emit section information for extern variables. 3876 if (D->hasExternalStorage()) { 3877 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) 3878 GV->setSection(SA->getName()); 3879 } 3880 3881 // Handle XCore specific ABI requirements. 3882 if (getTriple().getArch() == llvm::Triple::xcore && 3883 D->getLanguageLinkage() == CLanguageLinkage && 3884 D->getType().isConstant(Context) && 3885 isExternallyVisible(D->getLinkageAndVisibility().getLinkage())) 3886 GV->setSection(".cp.rodata"); 3887 3888 // Check if we a have a const declaration with an initializer, we may be 3889 // able to emit it as available_externally to expose it's value to the 3890 // optimizer. 3891 if (Context.getLangOpts().CPlusPlus && GV->hasExternalLinkage() && 3892 D->getType().isConstQualified() && !GV->hasInitializer() && 3893 !D->hasDefinition() && D->hasInit() && !D->hasAttr<DLLImportAttr>()) { 3894 const auto *Record = 3895 Context.getBaseElementType(D->getType())->getAsCXXRecordDecl(); 3896 bool HasMutableFields = Record && Record->hasMutableFields(); 3897 if (!HasMutableFields) { 3898 const VarDecl *InitDecl; 3899 const Expr *InitExpr = D->getAnyInitializer(InitDecl); 3900 if (InitExpr) { 3901 ConstantEmitter emitter(*this); 3902 llvm::Constant *Init = emitter.tryEmitForInitializer(*InitDecl); 3903 if (Init) { 3904 auto *InitType = Init->getType(); 3905 if (GV->getValueType() != InitType) { 3906 // The type of the initializer does not match the definition. 3907 // This happens when an initializer has a different type from 3908 // the type of the global (because of padding at the end of a 3909 // structure for instance). 3910 GV->setName(StringRef()); 3911 // Make a new global with the correct type, this is now guaranteed 3912 // to work. 3913 auto *NewGV = cast<llvm::GlobalVariable>( 3914 GetAddrOfGlobalVar(D, InitType, IsForDefinition) 3915 ->stripPointerCasts()); 3916 3917 // Erase the old global, since it is no longer used. 3918 GV->eraseFromParent(); 3919 GV = NewGV; 3920 } else { 3921 GV->setInitializer(Init); 3922 GV->setConstant(true); 3923 GV->setLinkage(llvm::GlobalValue::AvailableExternallyLinkage); 3924 } 3925 emitter.finalize(GV); 3926 } 3927 } 3928 } 3929 } 3930 } 3931 3932 if (GV->isDeclaration()) { 3933 getTargetCodeGenInfo().setTargetAttributes(D, GV, *this); 3934 // External HIP managed variables needed to be recorded for transformation 3935 // in both device and host compilations. 3936 if (getLangOpts().CUDA && D && D->hasAttr<HIPManagedAttr>() && 3937 D->hasExternalStorage()) 3938 getCUDARuntime().handleVarRegistration(D, *GV); 3939 } 3940 3941 LangAS ExpectedAS = 3942 D ? D->getType().getAddressSpace() 3943 : (LangOpts.OpenCL ? LangAS::opencl_global : LangAS::Default); 3944 assert(getContext().getTargetAddressSpace(ExpectedAS) == 3945 Ty->getPointerAddressSpace()); 3946 if (AddrSpace != ExpectedAS) 3947 return getTargetCodeGenInfo().performAddrSpaceCast(*this, GV, AddrSpace, 3948 ExpectedAS, Ty); 3949 3950 return GV; 3951 } 3952 3953 llvm::Constant * 3954 CodeGenModule::GetAddrOfGlobal(GlobalDecl GD, ForDefinition_t IsForDefinition) { 3955 const Decl *D = GD.getDecl(); 3956 3957 if (isa<CXXConstructorDecl>(D) || isa<CXXDestructorDecl>(D)) 3958 return getAddrOfCXXStructor(GD, /*FnInfo=*/nullptr, /*FnType=*/nullptr, 3959 /*DontDefer=*/false, IsForDefinition); 3960 3961 if (isa<CXXMethodDecl>(D)) { 3962 auto FInfo = 3963 &getTypes().arrangeCXXMethodDeclaration(cast<CXXMethodDecl>(D)); 3964 auto Ty = getTypes().GetFunctionType(*FInfo); 3965 return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false, 3966 IsForDefinition); 3967 } 3968 3969 if (isa<FunctionDecl>(D)) { 3970 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 3971 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 3972 return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false, 3973 IsForDefinition); 3974 } 3975 3976 return GetAddrOfGlobalVar(cast<VarDecl>(D), /*Ty=*/nullptr, IsForDefinition); 3977 } 3978 3979 llvm::GlobalVariable *CodeGenModule::CreateOrReplaceCXXRuntimeVariable( 3980 StringRef Name, llvm::Type *Ty, llvm::GlobalValue::LinkageTypes Linkage, 3981 unsigned Alignment) { 3982 llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name); 3983 llvm::GlobalVariable *OldGV = nullptr; 3984 3985 if (GV) { 3986 // Check if the variable has the right type. 3987 if (GV->getValueType() == Ty) 3988 return GV; 3989 3990 // Because C++ name mangling, the only way we can end up with an already 3991 // existing global with the same name is if it has been declared extern "C". 3992 assert(GV->isDeclaration() && "Declaration has wrong type!"); 3993 OldGV = GV; 3994 } 3995 3996 // Create a new variable. 3997 GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true, 3998 Linkage, nullptr, Name); 3999 4000 if (OldGV) { 4001 // Replace occurrences of the old variable if needed. 4002 GV->takeName(OldGV); 4003 4004 if (!OldGV->use_empty()) { 4005 llvm::Constant *NewPtrForOldDecl = 4006 llvm::ConstantExpr::getBitCast(GV, OldGV->getType()); 4007 OldGV->replaceAllUsesWith(NewPtrForOldDecl); 4008 } 4009 4010 OldGV->eraseFromParent(); 4011 } 4012 4013 if (supportsCOMDAT() && GV->isWeakForLinker() && 4014 !GV->hasAvailableExternallyLinkage()) 4015 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 4016 4017 GV->setAlignment(llvm::MaybeAlign(Alignment)); 4018 4019 return GV; 4020 } 4021 4022 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the 4023 /// given global variable. If Ty is non-null and if the global doesn't exist, 4024 /// then it will be created with the specified type instead of whatever the 4025 /// normal requested type would be. If IsForDefinition is true, it is guaranteed 4026 /// that an actual global with type Ty will be returned, not conversion of a 4027 /// variable with the same mangled name but some other type. 4028 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D, 4029 llvm::Type *Ty, 4030 ForDefinition_t IsForDefinition) { 4031 assert(D->hasGlobalStorage() && "Not a global variable"); 4032 QualType ASTTy = D->getType(); 4033 if (!Ty) 4034 Ty = getTypes().ConvertTypeForMem(ASTTy); 4035 4036 llvm::PointerType *PTy = 4037 llvm::PointerType::get(Ty, getContext().getTargetAddressSpace(ASTTy)); 4038 4039 StringRef MangledName = getMangledName(D); 4040 return GetOrCreateLLVMGlobal(MangledName, PTy, D, IsForDefinition); 4041 } 4042 4043 /// CreateRuntimeVariable - Create a new runtime global variable with the 4044 /// specified type and name. 4045 llvm::Constant * 4046 CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty, 4047 StringRef Name) { 4048 auto PtrTy = 4049 getContext().getLangOpts().OpenCL 4050 ? llvm::PointerType::get( 4051 Ty, getContext().getTargetAddressSpace(LangAS::opencl_global)) 4052 : llvm::PointerType::getUnqual(Ty); 4053 auto *Ret = GetOrCreateLLVMGlobal(Name, PtrTy, nullptr); 4054 setDSOLocal(cast<llvm::GlobalValue>(Ret->stripPointerCasts())); 4055 return Ret; 4056 } 4057 4058 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) { 4059 assert(!D->getInit() && "Cannot emit definite definitions here!"); 4060 4061 StringRef MangledName = getMangledName(D); 4062 llvm::GlobalValue *GV = GetGlobalValue(MangledName); 4063 4064 // We already have a definition, not declaration, with the same mangled name. 4065 // Emitting of declaration is not required (and actually overwrites emitted 4066 // definition). 4067 if (GV && !GV->isDeclaration()) 4068 return; 4069 4070 // If we have not seen a reference to this variable yet, place it into the 4071 // deferred declarations table to be emitted if needed later. 4072 if (!MustBeEmitted(D) && !GV) { 4073 DeferredDecls[MangledName] = D; 4074 return; 4075 } 4076 4077 // The tentative definition is the only definition. 4078 EmitGlobalVarDefinition(D); 4079 } 4080 4081 void CodeGenModule::EmitExternalDeclaration(const VarDecl *D) { 4082 EmitExternalVarDeclaration(D); 4083 } 4084 4085 CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const { 4086 return Context.toCharUnitsFromBits( 4087 getDataLayout().getTypeStoreSizeInBits(Ty)); 4088 } 4089 4090 LangAS CodeGenModule::GetGlobalVarAddressSpace(const VarDecl *D) { 4091 LangAS AddrSpace = LangAS::Default; 4092 if (LangOpts.OpenCL) { 4093 AddrSpace = D ? D->getType().getAddressSpace() : LangAS::opencl_global; 4094 assert(AddrSpace == LangAS::opencl_global || 4095 AddrSpace == LangAS::opencl_global_device || 4096 AddrSpace == LangAS::opencl_global_host || 4097 AddrSpace == LangAS::opencl_constant || 4098 AddrSpace == LangAS::opencl_local || 4099 AddrSpace >= LangAS::FirstTargetAddressSpace); 4100 return AddrSpace; 4101 } 4102 4103 if (LangOpts.CUDA && LangOpts.CUDAIsDevice) { 4104 if (D && D->hasAttr<CUDAConstantAttr>()) 4105 return LangAS::cuda_constant; 4106 else if (D && D->hasAttr<CUDASharedAttr>()) 4107 return LangAS::cuda_shared; 4108 else if (D && D->hasAttr<CUDADeviceAttr>()) 4109 return LangAS::cuda_device; 4110 else if (D && D->getType().isConstQualified()) 4111 return LangAS::cuda_constant; 4112 else 4113 return LangAS::cuda_device; 4114 } 4115 4116 if (LangOpts.OpenMP) { 4117 LangAS AS; 4118 if (OpenMPRuntime->hasAllocateAttributeForGlobalVar(D, AS)) 4119 return AS; 4120 } 4121 return getTargetCodeGenInfo().getGlobalVarAddressSpace(*this, D); 4122 } 4123 4124 LangAS CodeGenModule::getStringLiteralAddressSpace() const { 4125 // OpenCL v1.2 s6.5.3: a string literal is in the constant address space. 4126 if (LangOpts.OpenCL) 4127 return LangAS::opencl_constant; 4128 if (auto AS = getTarget().getConstantAddressSpace()) 4129 return AS.getValue(); 4130 return LangAS::Default; 4131 } 4132 4133 // In address space agnostic languages, string literals are in default address 4134 // space in AST. However, certain targets (e.g. amdgcn) request them to be 4135 // emitted in constant address space in LLVM IR. To be consistent with other 4136 // parts of AST, string literal global variables in constant address space 4137 // need to be casted to default address space before being put into address 4138 // map and referenced by other part of CodeGen. 4139 // In OpenCL, string literals are in constant address space in AST, therefore 4140 // they should not be casted to default address space. 4141 static llvm::Constant * 4142 castStringLiteralToDefaultAddressSpace(CodeGenModule &CGM, 4143 llvm::GlobalVariable *GV) { 4144 llvm::Constant *Cast = GV; 4145 if (!CGM.getLangOpts().OpenCL) { 4146 if (auto AS = CGM.getTarget().getConstantAddressSpace()) { 4147 if (AS != LangAS::Default) 4148 Cast = CGM.getTargetCodeGenInfo().performAddrSpaceCast( 4149 CGM, GV, AS.getValue(), LangAS::Default, 4150 GV->getValueType()->getPointerTo( 4151 CGM.getContext().getTargetAddressSpace(LangAS::Default))); 4152 } 4153 } 4154 return Cast; 4155 } 4156 4157 template<typename SomeDecl> 4158 void CodeGenModule::MaybeHandleStaticInExternC(const SomeDecl *D, 4159 llvm::GlobalValue *GV) { 4160 if (!getLangOpts().CPlusPlus) 4161 return; 4162 4163 // Must have 'used' attribute, or else inline assembly can't rely on 4164 // the name existing. 4165 if (!D->template hasAttr<UsedAttr>()) 4166 return; 4167 4168 // Must have internal linkage and an ordinary name. 4169 if (!D->getIdentifier() || D->getFormalLinkage() != InternalLinkage) 4170 return; 4171 4172 // Must be in an extern "C" context. Entities declared directly within 4173 // a record are not extern "C" even if the record is in such a context. 4174 const SomeDecl *First = D->getFirstDecl(); 4175 if (First->getDeclContext()->isRecord() || !First->isInExternCContext()) 4176 return; 4177 4178 // OK, this is an internal linkage entity inside an extern "C" linkage 4179 // specification. Make a note of that so we can give it the "expected" 4180 // mangled name if nothing else is using that name. 4181 std::pair<StaticExternCMap::iterator, bool> R = 4182 StaticExternCValues.insert(std::make_pair(D->getIdentifier(), GV)); 4183 4184 // If we have multiple internal linkage entities with the same name 4185 // in extern "C" regions, none of them gets that name. 4186 if (!R.second) 4187 R.first->second = nullptr; 4188 } 4189 4190 static bool shouldBeInCOMDAT(CodeGenModule &CGM, const Decl &D) { 4191 if (!CGM.supportsCOMDAT()) 4192 return false; 4193 4194 // Do not set COMDAT attribute for CUDA/HIP stub functions to prevent 4195 // them being "merged" by the COMDAT Folding linker optimization. 4196 if (D.hasAttr<CUDAGlobalAttr>()) 4197 return false; 4198 4199 if (D.hasAttr<SelectAnyAttr>()) 4200 return true; 4201 4202 GVALinkage Linkage; 4203 if (auto *VD = dyn_cast<VarDecl>(&D)) 4204 Linkage = CGM.getContext().GetGVALinkageForVariable(VD); 4205 else 4206 Linkage = CGM.getContext().GetGVALinkageForFunction(cast<FunctionDecl>(&D)); 4207 4208 switch (Linkage) { 4209 case GVA_Internal: 4210 case GVA_AvailableExternally: 4211 case GVA_StrongExternal: 4212 return false; 4213 case GVA_DiscardableODR: 4214 case GVA_StrongODR: 4215 return true; 4216 } 4217 llvm_unreachable("No such linkage"); 4218 } 4219 4220 void CodeGenModule::maybeSetTrivialComdat(const Decl &D, 4221 llvm::GlobalObject &GO) { 4222 if (!shouldBeInCOMDAT(*this, D)) 4223 return; 4224 GO.setComdat(TheModule.getOrInsertComdat(GO.getName())); 4225 } 4226 4227 /// Pass IsTentative as true if you want to create a tentative definition. 4228 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D, 4229 bool IsTentative) { 4230 // OpenCL global variables of sampler type are translated to function calls, 4231 // therefore no need to be translated. 4232 QualType ASTTy = D->getType(); 4233 if (getLangOpts().OpenCL && ASTTy->isSamplerT()) 4234 return; 4235 4236 // If this is OpenMP device, check if it is legal to emit this global 4237 // normally. 4238 if (LangOpts.OpenMPIsDevice && OpenMPRuntime && 4239 OpenMPRuntime->emitTargetGlobalVariable(D)) 4240 return; 4241 4242 llvm::Constant *Init = nullptr; 4243 bool NeedsGlobalCtor = false; 4244 bool NeedsGlobalDtor = 4245 D->needsDestruction(getContext()) == QualType::DK_cxx_destructor; 4246 4247 const VarDecl *InitDecl; 4248 const Expr *InitExpr = D->getAnyInitializer(InitDecl); 4249 4250 Optional<ConstantEmitter> emitter; 4251 4252 // CUDA E.2.4.1 "__shared__ variables cannot have an initialization 4253 // as part of their declaration." Sema has already checked for 4254 // error cases, so we just need to set Init to UndefValue. 4255 bool IsCUDASharedVar = 4256 getLangOpts().CUDAIsDevice && D->hasAttr<CUDASharedAttr>(); 4257 // Shadows of initialized device-side global variables are also left 4258 // undefined. 4259 // Managed Variables should be initialized on both host side and device side. 4260 bool IsCUDAShadowVar = 4261 !getLangOpts().CUDAIsDevice && !D->hasAttr<HIPManagedAttr>() && 4262 (D->hasAttr<CUDAConstantAttr>() || D->hasAttr<CUDADeviceAttr>() || 4263 D->hasAttr<CUDASharedAttr>()); 4264 bool IsCUDADeviceShadowVar = 4265 getLangOpts().CUDAIsDevice && !D->hasAttr<HIPManagedAttr>() && 4266 (D->getType()->isCUDADeviceBuiltinSurfaceType() || 4267 D->getType()->isCUDADeviceBuiltinTextureType()); 4268 if (getLangOpts().CUDA && 4269 (IsCUDASharedVar || IsCUDAShadowVar || IsCUDADeviceShadowVar)) 4270 Init = llvm::UndefValue::get(getTypes().ConvertType(ASTTy)); 4271 else if (D->hasAttr<LoaderUninitializedAttr>()) 4272 Init = llvm::UndefValue::get(getTypes().ConvertType(ASTTy)); 4273 else if (!InitExpr) { 4274 // This is a tentative definition; tentative definitions are 4275 // implicitly initialized with { 0 }. 4276 // 4277 // Note that tentative definitions are only emitted at the end of 4278 // a translation unit, so they should never have incomplete 4279 // type. In addition, EmitTentativeDefinition makes sure that we 4280 // never attempt to emit a tentative definition if a real one 4281 // exists. A use may still exists, however, so we still may need 4282 // to do a RAUW. 4283 assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type"); 4284 Init = EmitNullConstant(D->getType()); 4285 } else { 4286 initializedGlobalDecl = GlobalDecl(D); 4287 emitter.emplace(*this); 4288 Init = emitter->tryEmitForInitializer(*InitDecl); 4289 4290 if (!Init) { 4291 QualType T = InitExpr->getType(); 4292 if (D->getType()->isReferenceType()) 4293 T = D->getType(); 4294 4295 if (getLangOpts().CPlusPlus) { 4296 Init = EmitNullConstant(T); 4297 NeedsGlobalCtor = true; 4298 } else { 4299 ErrorUnsupported(D, "static initializer"); 4300 Init = llvm::UndefValue::get(getTypes().ConvertType(T)); 4301 } 4302 } else { 4303 // We don't need an initializer, so remove the entry for the delayed 4304 // initializer position (just in case this entry was delayed) if we 4305 // also don't need to register a destructor. 4306 if (getLangOpts().CPlusPlus && !NeedsGlobalDtor) 4307 DelayedCXXInitPosition.erase(D); 4308 } 4309 } 4310 4311 llvm::Type* InitType = Init->getType(); 4312 llvm::Constant *Entry = 4313 GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative)); 4314 4315 // Strip off pointer casts if we got them. 4316 Entry = Entry->stripPointerCasts(); 4317 4318 // Entry is now either a Function or GlobalVariable. 4319 auto *GV = dyn_cast<llvm::GlobalVariable>(Entry); 4320 4321 // We have a definition after a declaration with the wrong type. 4322 // We must make a new GlobalVariable* and update everything that used OldGV 4323 // (a declaration or tentative definition) with the new GlobalVariable* 4324 // (which will be a definition). 4325 // 4326 // This happens if there is a prototype for a global (e.g. 4327 // "extern int x[];") and then a definition of a different type (e.g. 4328 // "int x[10];"). This also happens when an initializer has a different type 4329 // from the type of the global (this happens with unions). 4330 if (!GV || GV->getValueType() != InitType || 4331 GV->getType()->getAddressSpace() != 4332 getContext().getTargetAddressSpace(GetGlobalVarAddressSpace(D))) { 4333 4334 // Move the old entry aside so that we'll create a new one. 4335 Entry->setName(StringRef()); 4336 4337 // Make a new global with the correct type, this is now guaranteed to work. 4338 GV = cast<llvm::GlobalVariable>( 4339 GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative)) 4340 ->stripPointerCasts()); 4341 4342 // Replace all uses of the old global with the new global 4343 llvm::Constant *NewPtrForOldDecl = 4344 llvm::ConstantExpr::getBitCast(GV, Entry->getType()); 4345 Entry->replaceAllUsesWith(NewPtrForOldDecl); 4346 4347 // Erase the old global, since it is no longer used. 4348 cast<llvm::GlobalValue>(Entry)->eraseFromParent(); 4349 } 4350 4351 MaybeHandleStaticInExternC(D, GV); 4352 4353 if (D->hasAttr<AnnotateAttr>()) 4354 AddGlobalAnnotations(D, GV); 4355 4356 // Set the llvm linkage type as appropriate. 4357 llvm::GlobalValue::LinkageTypes Linkage = 4358 getLLVMLinkageVarDefinition(D, GV->isConstant()); 4359 4360 // CUDA B.2.1 "The __device__ qualifier declares a variable that resides on 4361 // the device. [...]" 4362 // CUDA B.2.2 "The __constant__ qualifier, optionally used together with 4363 // __device__, declares a variable that: [...] 4364 // Is accessible from all the threads within the grid and from the host 4365 // through the runtime library (cudaGetSymbolAddress() / cudaGetSymbolSize() 4366 // / cudaMemcpyToSymbol() / cudaMemcpyFromSymbol())." 4367 if (GV && LangOpts.CUDA) { 4368 if (LangOpts.CUDAIsDevice) { 4369 if (Linkage != llvm::GlobalValue::InternalLinkage && 4370 (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>())) 4371 GV->setExternallyInitialized(true); 4372 } else { 4373 getCUDARuntime().internalizeDeviceSideVar(D, Linkage); 4374 } 4375 getCUDARuntime().handleVarRegistration(D, *GV); 4376 } 4377 4378 GV->setInitializer(Init); 4379 if (emitter) 4380 emitter->finalize(GV); 4381 4382 // If it is safe to mark the global 'constant', do so now. 4383 GV->setConstant(!NeedsGlobalCtor && !NeedsGlobalDtor && 4384 isTypeConstant(D->getType(), true)); 4385 4386 // If it is in a read-only section, mark it 'constant'. 4387 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) { 4388 const ASTContext::SectionInfo &SI = Context.SectionInfos[SA->getName()]; 4389 if ((SI.SectionFlags & ASTContext::PSF_Write) == 0) 4390 GV->setConstant(true); 4391 } 4392 4393 GV->setAlignment(getContext().getDeclAlign(D).getAsAlign()); 4394 4395 // On Darwin, unlike other Itanium C++ ABI platforms, the thread-wrapper 4396 // function is only defined alongside the variable, not also alongside 4397 // callers. Normally, all accesses to a thread_local go through the 4398 // thread-wrapper in order to ensure initialization has occurred, underlying 4399 // variable will never be used other than the thread-wrapper, so it can be 4400 // converted to internal linkage. 4401 // 4402 // However, if the variable has the 'constinit' attribute, it _can_ be 4403 // referenced directly, without calling the thread-wrapper, so the linkage 4404 // must not be changed. 4405 // 4406 // Additionally, if the variable isn't plain external linkage, e.g. if it's 4407 // weak or linkonce, the de-duplication semantics are important to preserve, 4408 // so we don't change the linkage. 4409 if (D->getTLSKind() == VarDecl::TLS_Dynamic && 4410 Linkage == llvm::GlobalValue::ExternalLinkage && 4411 Context.getTargetInfo().getTriple().isOSDarwin() && 4412 !D->hasAttr<ConstInitAttr>()) 4413 Linkage = llvm::GlobalValue::InternalLinkage; 4414 4415 GV->setLinkage(Linkage); 4416 if (D->hasAttr<DLLImportAttr>()) 4417 GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass); 4418 else if (D->hasAttr<DLLExportAttr>()) 4419 GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass); 4420 else 4421 GV->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass); 4422 4423 if (Linkage == llvm::GlobalVariable::CommonLinkage) { 4424 // common vars aren't constant even if declared const. 4425 GV->setConstant(false); 4426 // Tentative definition of global variables may be initialized with 4427 // non-zero null pointers. In this case they should have weak linkage 4428 // since common linkage must have zero initializer and must not have 4429 // explicit section therefore cannot have non-zero initial value. 4430 if (!GV->getInitializer()->isNullValue()) 4431 GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage); 4432 } 4433 4434 setNonAliasAttributes(D, GV); 4435 4436 if (D->getTLSKind() && !GV->isThreadLocal()) { 4437 if (D->getTLSKind() == VarDecl::TLS_Dynamic) 4438 CXXThreadLocals.push_back(D); 4439 setTLSMode(GV, *D); 4440 } 4441 4442 maybeSetTrivialComdat(*D, *GV); 4443 4444 // Emit the initializer function if necessary. 4445 if (NeedsGlobalCtor || NeedsGlobalDtor) 4446 EmitCXXGlobalVarDeclInitFunc(D, GV, NeedsGlobalCtor); 4447 4448 SanitizerMD->reportGlobalToASan(GV, *D, NeedsGlobalCtor); 4449 4450 // Emit global variable debug information. 4451 if (CGDebugInfo *DI = getModuleDebugInfo()) 4452 if (getCodeGenOpts().hasReducedDebugInfo()) 4453 DI->EmitGlobalVariable(GV, D); 4454 } 4455 4456 void CodeGenModule::EmitExternalVarDeclaration(const VarDecl *D) { 4457 if (CGDebugInfo *DI = getModuleDebugInfo()) 4458 if (getCodeGenOpts().hasReducedDebugInfo()) { 4459 QualType ASTTy = D->getType(); 4460 llvm::Type *Ty = getTypes().ConvertTypeForMem(D->getType()); 4461 llvm::PointerType *PTy = 4462 llvm::PointerType::get(Ty, getContext().getTargetAddressSpace(ASTTy)); 4463 llvm::Constant *GV = GetOrCreateLLVMGlobal(D->getName(), PTy, D); 4464 DI->EmitExternalVariable( 4465 cast<llvm::GlobalVariable>(GV->stripPointerCasts()), D); 4466 } 4467 } 4468 4469 static bool isVarDeclStrongDefinition(const ASTContext &Context, 4470 CodeGenModule &CGM, const VarDecl *D, 4471 bool NoCommon) { 4472 // Don't give variables common linkage if -fno-common was specified unless it 4473 // was overridden by a NoCommon attribute. 4474 if ((NoCommon || D->hasAttr<NoCommonAttr>()) && !D->hasAttr<CommonAttr>()) 4475 return true; 4476 4477 // C11 6.9.2/2: 4478 // A declaration of an identifier for an object that has file scope without 4479 // an initializer, and without a storage-class specifier or with the 4480 // storage-class specifier static, constitutes a tentative definition. 4481 if (D->getInit() || D->hasExternalStorage()) 4482 return true; 4483 4484 // A variable cannot be both common and exist in a section. 4485 if (D->hasAttr<SectionAttr>()) 4486 return true; 4487 4488 // A variable cannot be both common and exist in a section. 4489 // We don't try to determine which is the right section in the front-end. 4490 // If no specialized section name is applicable, it will resort to default. 4491 if (D->hasAttr<PragmaClangBSSSectionAttr>() || 4492 D->hasAttr<PragmaClangDataSectionAttr>() || 4493 D->hasAttr<PragmaClangRelroSectionAttr>() || 4494 D->hasAttr<PragmaClangRodataSectionAttr>()) 4495 return true; 4496 4497 // Thread local vars aren't considered common linkage. 4498 if (D->getTLSKind()) 4499 return true; 4500 4501 // Tentative definitions marked with WeakImportAttr are true definitions. 4502 if (D->hasAttr<WeakImportAttr>()) 4503 return true; 4504 4505 // A variable cannot be both common and exist in a comdat. 4506 if (shouldBeInCOMDAT(CGM, *D)) 4507 return true; 4508 4509 // Declarations with a required alignment do not have common linkage in MSVC 4510 // mode. 4511 if (Context.getTargetInfo().getCXXABI().isMicrosoft()) { 4512 if (D->hasAttr<AlignedAttr>()) 4513 return true; 4514 QualType VarType = D->getType(); 4515 if (Context.isAlignmentRequired(VarType)) 4516 return true; 4517 4518 if (const auto *RT = VarType->getAs<RecordType>()) { 4519 const RecordDecl *RD = RT->getDecl(); 4520 for (const FieldDecl *FD : RD->fields()) { 4521 if (FD->isBitField()) 4522 continue; 4523 if (FD->hasAttr<AlignedAttr>()) 4524 return true; 4525 if (Context.isAlignmentRequired(FD->getType())) 4526 return true; 4527 } 4528 } 4529 } 4530 4531 // Microsoft's link.exe doesn't support alignments greater than 32 bytes for 4532 // common symbols, so symbols with greater alignment requirements cannot be 4533 // common. 4534 // Other COFF linkers (ld.bfd and LLD) support arbitrary power-of-two 4535 // alignments for common symbols via the aligncomm directive, so this 4536 // restriction only applies to MSVC environments. 4537 if (Context.getTargetInfo().getTriple().isKnownWindowsMSVCEnvironment() && 4538 Context.getTypeAlignIfKnown(D->getType()) > 4539 Context.toBits(CharUnits::fromQuantity(32))) 4540 return true; 4541 4542 return false; 4543 } 4544 4545 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageForDeclarator( 4546 const DeclaratorDecl *D, GVALinkage Linkage, bool IsConstantVariable) { 4547 if (Linkage == GVA_Internal) 4548 return llvm::Function::InternalLinkage; 4549 4550 if (D->hasAttr<WeakAttr>()) { 4551 if (IsConstantVariable) 4552 return llvm::GlobalVariable::WeakODRLinkage; 4553 else 4554 return llvm::GlobalVariable::WeakAnyLinkage; 4555 } 4556 4557 if (const auto *FD = D->getAsFunction()) 4558 if (FD->isMultiVersion() && Linkage == GVA_AvailableExternally) 4559 return llvm::GlobalVariable::LinkOnceAnyLinkage; 4560 4561 // We are guaranteed to have a strong definition somewhere else, 4562 // so we can use available_externally linkage. 4563 if (Linkage == GVA_AvailableExternally) 4564 return llvm::GlobalValue::AvailableExternallyLinkage; 4565 4566 // Note that Apple's kernel linker doesn't support symbol 4567 // coalescing, so we need to avoid linkonce and weak linkages there. 4568 // Normally, this means we just map to internal, but for explicit 4569 // instantiations we'll map to external. 4570 4571 // In C++, the compiler has to emit a definition in every translation unit 4572 // that references the function. We should use linkonce_odr because 4573 // a) if all references in this translation unit are optimized away, we 4574 // don't need to codegen it. b) if the function persists, it needs to be 4575 // merged with other definitions. c) C++ has the ODR, so we know the 4576 // definition is dependable. 4577 if (Linkage == GVA_DiscardableODR) 4578 return !Context.getLangOpts().AppleKext ? llvm::Function::LinkOnceODRLinkage 4579 : llvm::Function::InternalLinkage; 4580 4581 // An explicit instantiation of a template has weak linkage, since 4582 // explicit instantiations can occur in multiple translation units 4583 // and must all be equivalent. However, we are not allowed to 4584 // throw away these explicit instantiations. 4585 // 4586 // CUDA/HIP: For -fno-gpu-rdc case, device code is limited to one TU, 4587 // so say that CUDA templates are either external (for kernels) or internal. 4588 // This lets llvm perform aggressive inter-procedural optimizations. For 4589 // -fgpu-rdc case, device function calls across multiple TU's are allowed, 4590 // therefore we need to follow the normal linkage paradigm. 4591 if (Linkage == GVA_StrongODR) { 4592 if (getLangOpts().AppleKext) 4593 return llvm::Function::ExternalLinkage; 4594 if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice && 4595 !getLangOpts().GPURelocatableDeviceCode) 4596 return D->hasAttr<CUDAGlobalAttr>() ? llvm::Function::ExternalLinkage 4597 : llvm::Function::InternalLinkage; 4598 return llvm::Function::WeakODRLinkage; 4599 } 4600 4601 // C++ doesn't have tentative definitions and thus cannot have common 4602 // linkage. 4603 if (!getLangOpts().CPlusPlus && isa<VarDecl>(D) && 4604 !isVarDeclStrongDefinition(Context, *this, cast<VarDecl>(D), 4605 CodeGenOpts.NoCommon)) 4606 return llvm::GlobalVariable::CommonLinkage; 4607 4608 // selectany symbols are externally visible, so use weak instead of 4609 // linkonce. MSVC optimizes away references to const selectany globals, so 4610 // all definitions should be the same and ODR linkage should be used. 4611 // http://msdn.microsoft.com/en-us/library/5tkz6s71.aspx 4612 if (D->hasAttr<SelectAnyAttr>()) 4613 return llvm::GlobalVariable::WeakODRLinkage; 4614 4615 // Otherwise, we have strong external linkage. 4616 assert(Linkage == GVA_StrongExternal); 4617 return llvm::GlobalVariable::ExternalLinkage; 4618 } 4619 4620 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageVarDefinition( 4621 const VarDecl *VD, bool IsConstant) { 4622 GVALinkage Linkage = getContext().GetGVALinkageForVariable(VD); 4623 return getLLVMLinkageForDeclarator(VD, Linkage, IsConstant); 4624 } 4625 4626 /// Replace the uses of a function that was declared with a non-proto type. 4627 /// We want to silently drop extra arguments from call sites 4628 static void replaceUsesOfNonProtoConstant(llvm::Constant *old, 4629 llvm::Function *newFn) { 4630 // Fast path. 4631 if (old->use_empty()) return; 4632 4633 llvm::Type *newRetTy = newFn->getReturnType(); 4634 SmallVector<llvm::Value*, 4> newArgs; 4635 4636 for (llvm::Value::use_iterator ui = old->use_begin(), ue = old->use_end(); 4637 ui != ue; ) { 4638 llvm::Value::use_iterator use = ui++; // Increment before the use is erased. 4639 llvm::User *user = use->getUser(); 4640 4641 // Recognize and replace uses of bitcasts. Most calls to 4642 // unprototyped functions will use bitcasts. 4643 if (auto *bitcast = dyn_cast<llvm::ConstantExpr>(user)) { 4644 if (bitcast->getOpcode() == llvm::Instruction::BitCast) 4645 replaceUsesOfNonProtoConstant(bitcast, newFn); 4646 continue; 4647 } 4648 4649 // Recognize calls to the function. 4650 llvm::CallBase *callSite = dyn_cast<llvm::CallBase>(user); 4651 if (!callSite) continue; 4652 if (!callSite->isCallee(&*use)) 4653 continue; 4654 4655 // If the return types don't match exactly, then we can't 4656 // transform this call unless it's dead. 4657 if (callSite->getType() != newRetTy && !callSite->use_empty()) 4658 continue; 4659 4660 // Get the call site's attribute list. 4661 SmallVector<llvm::AttributeSet, 8> newArgAttrs; 4662 llvm::AttributeList oldAttrs = callSite->getAttributes(); 4663 4664 // If the function was passed too few arguments, don't transform. 4665 unsigned newNumArgs = newFn->arg_size(); 4666 if (callSite->arg_size() < newNumArgs) 4667 continue; 4668 4669 // If extra arguments were passed, we silently drop them. 4670 // If any of the types mismatch, we don't transform. 4671 unsigned argNo = 0; 4672 bool dontTransform = false; 4673 for (llvm::Argument &A : newFn->args()) { 4674 if (callSite->getArgOperand(argNo)->getType() != A.getType()) { 4675 dontTransform = true; 4676 break; 4677 } 4678 4679 // Add any parameter attributes. 4680 newArgAttrs.push_back(oldAttrs.getParamAttributes(argNo)); 4681 argNo++; 4682 } 4683 if (dontTransform) 4684 continue; 4685 4686 // Okay, we can transform this. Create the new call instruction and copy 4687 // over the required information. 4688 newArgs.append(callSite->arg_begin(), callSite->arg_begin() + argNo); 4689 4690 // Copy over any operand bundles. 4691 SmallVector<llvm::OperandBundleDef, 1> newBundles; 4692 callSite->getOperandBundlesAsDefs(newBundles); 4693 4694 llvm::CallBase *newCall; 4695 if (dyn_cast<llvm::CallInst>(callSite)) { 4696 newCall = 4697 llvm::CallInst::Create(newFn, newArgs, newBundles, "", callSite); 4698 } else { 4699 auto *oldInvoke = cast<llvm::InvokeInst>(callSite); 4700 newCall = llvm::InvokeInst::Create(newFn, oldInvoke->getNormalDest(), 4701 oldInvoke->getUnwindDest(), newArgs, 4702 newBundles, "", callSite); 4703 } 4704 newArgs.clear(); // for the next iteration 4705 4706 if (!newCall->getType()->isVoidTy()) 4707 newCall->takeName(callSite); 4708 newCall->setAttributes(llvm::AttributeList::get( 4709 newFn->getContext(), oldAttrs.getFnAttributes(), 4710 oldAttrs.getRetAttributes(), newArgAttrs)); 4711 newCall->setCallingConv(callSite->getCallingConv()); 4712 4713 // Finally, remove the old call, replacing any uses with the new one. 4714 if (!callSite->use_empty()) 4715 callSite->replaceAllUsesWith(newCall); 4716 4717 // Copy debug location attached to CI. 4718 if (callSite->getDebugLoc()) 4719 newCall->setDebugLoc(callSite->getDebugLoc()); 4720 4721 callSite->eraseFromParent(); 4722 } 4723 } 4724 4725 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we 4726 /// implement a function with no prototype, e.g. "int foo() {}". If there are 4727 /// existing call uses of the old function in the module, this adjusts them to 4728 /// call the new function directly. 4729 /// 4730 /// This is not just a cleanup: the always_inline pass requires direct calls to 4731 /// functions to be able to inline them. If there is a bitcast in the way, it 4732 /// won't inline them. Instcombine normally deletes these calls, but it isn't 4733 /// run at -O0. 4734 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old, 4735 llvm::Function *NewFn) { 4736 // If we're redefining a global as a function, don't transform it. 4737 if (!isa<llvm::Function>(Old)) return; 4738 4739 replaceUsesOfNonProtoConstant(Old, NewFn); 4740 } 4741 4742 void CodeGenModule::HandleCXXStaticMemberVarInstantiation(VarDecl *VD) { 4743 auto DK = VD->isThisDeclarationADefinition(); 4744 if (DK == VarDecl::Definition && VD->hasAttr<DLLImportAttr>()) 4745 return; 4746 4747 TemplateSpecializationKind TSK = VD->getTemplateSpecializationKind(); 4748 // If we have a definition, this might be a deferred decl. If the 4749 // instantiation is explicit, make sure we emit it at the end. 4750 if (VD->getDefinition() && TSK == TSK_ExplicitInstantiationDefinition) 4751 GetAddrOfGlobalVar(VD); 4752 4753 EmitTopLevelDecl(VD); 4754 } 4755 4756 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD, 4757 llvm::GlobalValue *GV) { 4758 const auto *D = cast<FunctionDecl>(GD.getDecl()); 4759 4760 // Compute the function info and LLVM type. 4761 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 4762 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 4763 4764 // Get or create the prototype for the function. 4765 if (!GV || (GV->getValueType() != Ty)) 4766 GV = cast<llvm::GlobalValue>(GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, 4767 /*DontDefer=*/true, 4768 ForDefinition)); 4769 4770 // Already emitted. 4771 if (!GV->isDeclaration()) 4772 return; 4773 4774 // We need to set linkage and visibility on the function before 4775 // generating code for it because various parts of IR generation 4776 // want to propagate this information down (e.g. to local static 4777 // declarations). 4778 auto *Fn = cast<llvm::Function>(GV); 4779 setFunctionLinkage(GD, Fn); 4780 4781 // FIXME: this is redundant with part of setFunctionDefinitionAttributes 4782 setGVProperties(Fn, GD); 4783 4784 MaybeHandleStaticInExternC(D, Fn); 4785 4786 maybeSetTrivialComdat(*D, *Fn); 4787 4788 // Set CodeGen attributes that represent floating point environment. 4789 setLLVMFunctionFEnvAttributes(D, Fn); 4790 4791 CodeGenFunction(*this).GenerateCode(GD, Fn, FI); 4792 4793 setNonAliasAttributes(GD, Fn); 4794 SetLLVMFunctionAttributesForDefinition(D, Fn); 4795 4796 if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>()) 4797 AddGlobalCtor(Fn, CA->getPriority()); 4798 if (const DestructorAttr *DA = D->getAttr<DestructorAttr>()) 4799 AddGlobalDtor(Fn, DA->getPriority(), true); 4800 if (D->hasAttr<AnnotateAttr>()) 4801 AddGlobalAnnotations(D, Fn); 4802 } 4803 4804 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) { 4805 const auto *D = cast<ValueDecl>(GD.getDecl()); 4806 const AliasAttr *AA = D->getAttr<AliasAttr>(); 4807 assert(AA && "Not an alias?"); 4808 4809 StringRef MangledName = getMangledName(GD); 4810 4811 if (AA->getAliasee() == MangledName) { 4812 Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0; 4813 return; 4814 } 4815 4816 // If there is a definition in the module, then it wins over the alias. 4817 // This is dubious, but allow it to be safe. Just ignore the alias. 4818 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 4819 if (Entry && !Entry->isDeclaration()) 4820 return; 4821 4822 Aliases.push_back(GD); 4823 4824 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType()); 4825 4826 // Create a reference to the named value. This ensures that it is emitted 4827 // if a deferred decl. 4828 llvm::Constant *Aliasee; 4829 llvm::GlobalValue::LinkageTypes LT; 4830 if (isa<llvm::FunctionType>(DeclTy)) { 4831 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GD, 4832 /*ForVTable=*/false); 4833 LT = getFunctionLinkage(GD); 4834 } else { 4835 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), 4836 llvm::PointerType::getUnqual(DeclTy), 4837 /*D=*/nullptr); 4838 if (const auto *VD = dyn_cast<VarDecl>(GD.getDecl())) 4839 LT = getLLVMLinkageVarDefinition(VD, D->getType().isConstQualified()); 4840 else 4841 LT = getFunctionLinkage(GD); 4842 } 4843 4844 // Create the new alias itself, but don't set a name yet. 4845 unsigned AS = Aliasee->getType()->getPointerAddressSpace(); 4846 auto *GA = 4847 llvm::GlobalAlias::create(DeclTy, AS, LT, "", Aliasee, &getModule()); 4848 4849 if (Entry) { 4850 if (GA->getAliasee() == Entry) { 4851 Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0; 4852 return; 4853 } 4854 4855 assert(Entry->isDeclaration()); 4856 4857 // If there is a declaration in the module, then we had an extern followed 4858 // by the alias, as in: 4859 // extern int test6(); 4860 // ... 4861 // int test6() __attribute__((alias("test7"))); 4862 // 4863 // Remove it and replace uses of it with the alias. 4864 GA->takeName(Entry); 4865 4866 Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA, 4867 Entry->getType())); 4868 Entry->eraseFromParent(); 4869 } else { 4870 GA->setName(MangledName); 4871 } 4872 4873 // Set attributes which are particular to an alias; this is a 4874 // specialization of the attributes which may be set on a global 4875 // variable/function. 4876 if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakRefAttr>() || 4877 D->isWeakImported()) { 4878 GA->setLinkage(llvm::Function::WeakAnyLinkage); 4879 } 4880 4881 if (const auto *VD = dyn_cast<VarDecl>(D)) 4882 if (VD->getTLSKind()) 4883 setTLSMode(GA, *VD); 4884 4885 SetCommonAttributes(GD, GA); 4886 } 4887 4888 void CodeGenModule::emitIFuncDefinition(GlobalDecl GD) { 4889 const auto *D = cast<ValueDecl>(GD.getDecl()); 4890 const IFuncAttr *IFA = D->getAttr<IFuncAttr>(); 4891 assert(IFA && "Not an ifunc?"); 4892 4893 StringRef MangledName = getMangledName(GD); 4894 4895 if (IFA->getResolver() == MangledName) { 4896 Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1; 4897 return; 4898 } 4899 4900 // Report an error if some definition overrides ifunc. 4901 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 4902 if (Entry && !Entry->isDeclaration()) { 4903 GlobalDecl OtherGD; 4904 if (lookupRepresentativeDecl(MangledName, OtherGD) && 4905 DiagnosedConflictingDefinitions.insert(GD).second) { 4906 Diags.Report(D->getLocation(), diag::err_duplicate_mangled_name) 4907 << MangledName; 4908 Diags.Report(OtherGD.getDecl()->getLocation(), 4909 diag::note_previous_definition); 4910 } 4911 return; 4912 } 4913 4914 Aliases.push_back(GD); 4915 4916 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType()); 4917 llvm::Constant *Resolver = 4918 GetOrCreateLLVMFunction(IFA->getResolver(), DeclTy, GD, 4919 /*ForVTable=*/false); 4920 llvm::GlobalIFunc *GIF = 4921 llvm::GlobalIFunc::create(DeclTy, 0, llvm::Function::ExternalLinkage, 4922 "", Resolver, &getModule()); 4923 if (Entry) { 4924 if (GIF->getResolver() == Entry) { 4925 Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1; 4926 return; 4927 } 4928 assert(Entry->isDeclaration()); 4929 4930 // If there is a declaration in the module, then we had an extern followed 4931 // by the ifunc, as in: 4932 // extern int test(); 4933 // ... 4934 // int test() __attribute__((ifunc("resolver"))); 4935 // 4936 // Remove it and replace uses of it with the ifunc. 4937 GIF->takeName(Entry); 4938 4939 Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GIF, 4940 Entry->getType())); 4941 Entry->eraseFromParent(); 4942 } else 4943 GIF->setName(MangledName); 4944 4945 SetCommonAttributes(GD, GIF); 4946 } 4947 4948 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID, 4949 ArrayRef<llvm::Type*> Tys) { 4950 return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID, 4951 Tys); 4952 } 4953 4954 static llvm::StringMapEntry<llvm::GlobalVariable *> & 4955 GetConstantCFStringEntry(llvm::StringMap<llvm::GlobalVariable *> &Map, 4956 const StringLiteral *Literal, bool TargetIsLSB, 4957 bool &IsUTF16, unsigned &StringLength) { 4958 StringRef String = Literal->getString(); 4959 unsigned NumBytes = String.size(); 4960 4961 // Check for simple case. 4962 if (!Literal->containsNonAsciiOrNull()) { 4963 StringLength = NumBytes; 4964 return *Map.insert(std::make_pair(String, nullptr)).first; 4965 } 4966 4967 // Otherwise, convert the UTF8 literals into a string of shorts. 4968 IsUTF16 = true; 4969 4970 SmallVector<llvm::UTF16, 128> ToBuf(NumBytes + 1); // +1 for ending nulls. 4971 const llvm::UTF8 *FromPtr = (const llvm::UTF8 *)String.data(); 4972 llvm::UTF16 *ToPtr = &ToBuf[0]; 4973 4974 (void)llvm::ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, &ToPtr, 4975 ToPtr + NumBytes, llvm::strictConversion); 4976 4977 // ConvertUTF8toUTF16 returns the length in ToPtr. 4978 StringLength = ToPtr - &ToBuf[0]; 4979 4980 // Add an explicit null. 4981 *ToPtr = 0; 4982 return *Map.insert(std::make_pair( 4983 StringRef(reinterpret_cast<const char *>(ToBuf.data()), 4984 (StringLength + 1) * 2), 4985 nullptr)).first; 4986 } 4987 4988 ConstantAddress 4989 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) { 4990 unsigned StringLength = 0; 4991 bool isUTF16 = false; 4992 llvm::StringMapEntry<llvm::GlobalVariable *> &Entry = 4993 GetConstantCFStringEntry(CFConstantStringMap, Literal, 4994 getDataLayout().isLittleEndian(), isUTF16, 4995 StringLength); 4996 4997 if (auto *C = Entry.second) 4998 return ConstantAddress(C, CharUnits::fromQuantity(C->getAlignment())); 4999 5000 llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty); 5001 llvm::Constant *Zeros[] = { Zero, Zero }; 5002 5003 const ASTContext &Context = getContext(); 5004 const llvm::Triple &Triple = getTriple(); 5005 5006 const auto CFRuntime = getLangOpts().CFRuntime; 5007 const bool IsSwiftABI = 5008 static_cast<unsigned>(CFRuntime) >= 5009 static_cast<unsigned>(LangOptions::CoreFoundationABI::Swift); 5010 const bool IsSwift4_1 = CFRuntime == LangOptions::CoreFoundationABI::Swift4_1; 5011 5012 // If we don't already have it, get __CFConstantStringClassReference. 5013 if (!CFConstantStringClassRef) { 5014 const char *CFConstantStringClassName = "__CFConstantStringClassReference"; 5015 llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy); 5016 Ty = llvm::ArrayType::get(Ty, 0); 5017 5018 switch (CFRuntime) { 5019 default: break; 5020 case LangOptions::CoreFoundationABI::Swift: LLVM_FALLTHROUGH; 5021 case LangOptions::CoreFoundationABI::Swift5_0: 5022 CFConstantStringClassName = 5023 Triple.isOSDarwin() ? "$s15SwiftFoundation19_NSCFConstantStringCN" 5024 : "$s10Foundation19_NSCFConstantStringCN"; 5025 Ty = IntPtrTy; 5026 break; 5027 case LangOptions::CoreFoundationABI::Swift4_2: 5028 CFConstantStringClassName = 5029 Triple.isOSDarwin() ? "$S15SwiftFoundation19_NSCFConstantStringCN" 5030 : "$S10Foundation19_NSCFConstantStringCN"; 5031 Ty = IntPtrTy; 5032 break; 5033 case LangOptions::CoreFoundationABI::Swift4_1: 5034 CFConstantStringClassName = 5035 Triple.isOSDarwin() ? "__T015SwiftFoundation19_NSCFConstantStringCN" 5036 : "__T010Foundation19_NSCFConstantStringCN"; 5037 Ty = IntPtrTy; 5038 break; 5039 } 5040 5041 llvm::Constant *C = CreateRuntimeVariable(Ty, CFConstantStringClassName); 5042 5043 if (Triple.isOSBinFormatELF() || Triple.isOSBinFormatCOFF()) { 5044 llvm::GlobalValue *GV = nullptr; 5045 5046 if ((GV = dyn_cast<llvm::GlobalValue>(C))) { 5047 IdentifierInfo &II = Context.Idents.get(GV->getName()); 5048 TranslationUnitDecl *TUDecl = Context.getTranslationUnitDecl(); 5049 DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl); 5050 5051 const VarDecl *VD = nullptr; 5052 for (const auto &Result : DC->lookup(&II)) 5053 if ((VD = dyn_cast<VarDecl>(Result))) 5054 break; 5055 5056 if (Triple.isOSBinFormatELF()) { 5057 if (!VD) 5058 GV->setLinkage(llvm::GlobalValue::ExternalLinkage); 5059 } else { 5060 GV->setLinkage(llvm::GlobalValue::ExternalLinkage); 5061 if (!VD || !VD->hasAttr<DLLExportAttr>()) 5062 GV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass); 5063 else 5064 GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass); 5065 } 5066 5067 setDSOLocal(GV); 5068 } 5069 } 5070 5071 // Decay array -> ptr 5072 CFConstantStringClassRef = 5073 IsSwiftABI ? llvm::ConstantExpr::getPtrToInt(C, Ty) 5074 : llvm::ConstantExpr::getGetElementPtr(Ty, C, Zeros); 5075 } 5076 5077 QualType CFTy = Context.getCFConstantStringType(); 5078 5079 auto *STy = cast<llvm::StructType>(getTypes().ConvertType(CFTy)); 5080 5081 ConstantInitBuilder Builder(*this); 5082 auto Fields = Builder.beginStruct(STy); 5083 5084 // Class pointer. 5085 Fields.add(cast<llvm::ConstantExpr>(CFConstantStringClassRef)); 5086 5087 // Flags. 5088 if (IsSwiftABI) { 5089 Fields.addInt(IntPtrTy, IsSwift4_1 ? 0x05 : 0x01); 5090 Fields.addInt(Int64Ty, isUTF16 ? 0x07d0 : 0x07c8); 5091 } else { 5092 Fields.addInt(IntTy, isUTF16 ? 0x07d0 : 0x07C8); 5093 } 5094 5095 // String pointer. 5096 llvm::Constant *C = nullptr; 5097 if (isUTF16) { 5098 auto Arr = llvm::makeArrayRef( 5099 reinterpret_cast<uint16_t *>(const_cast<char *>(Entry.first().data())), 5100 Entry.first().size() / 2); 5101 C = llvm::ConstantDataArray::get(VMContext, Arr); 5102 } else { 5103 C = llvm::ConstantDataArray::getString(VMContext, Entry.first()); 5104 } 5105 5106 // Note: -fwritable-strings doesn't make the backing store strings of 5107 // CFStrings writable. (See <rdar://problem/10657500>) 5108 auto *GV = 5109 new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true, 5110 llvm::GlobalValue::PrivateLinkage, C, ".str"); 5111 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 5112 // Don't enforce the target's minimum global alignment, since the only use 5113 // of the string is via this class initializer. 5114 CharUnits Align = isUTF16 ? Context.getTypeAlignInChars(Context.ShortTy) 5115 : Context.getTypeAlignInChars(Context.CharTy); 5116 GV->setAlignment(Align.getAsAlign()); 5117 5118 // FIXME: We set the section explicitly to avoid a bug in ld64 224.1. 5119 // Without it LLVM can merge the string with a non unnamed_addr one during 5120 // LTO. Doing that changes the section it ends in, which surprises ld64. 5121 if (Triple.isOSBinFormatMachO()) 5122 GV->setSection(isUTF16 ? "__TEXT,__ustring" 5123 : "__TEXT,__cstring,cstring_literals"); 5124 // Make sure the literal ends up in .rodata to allow for safe ICF and for 5125 // the static linker to adjust permissions to read-only later on. 5126 else if (Triple.isOSBinFormatELF()) 5127 GV->setSection(".rodata"); 5128 5129 // String. 5130 llvm::Constant *Str = 5131 llvm::ConstantExpr::getGetElementPtr(GV->getValueType(), GV, Zeros); 5132 5133 if (isUTF16) 5134 // Cast the UTF16 string to the correct type. 5135 Str = llvm::ConstantExpr::getBitCast(Str, Int8PtrTy); 5136 Fields.add(Str); 5137 5138 // String length. 5139 llvm::IntegerType *LengthTy = 5140 llvm::IntegerType::get(getModule().getContext(), 5141 Context.getTargetInfo().getLongWidth()); 5142 if (IsSwiftABI) { 5143 if (CFRuntime == LangOptions::CoreFoundationABI::Swift4_1 || 5144 CFRuntime == LangOptions::CoreFoundationABI::Swift4_2) 5145 LengthTy = Int32Ty; 5146 else 5147 LengthTy = IntPtrTy; 5148 } 5149 Fields.addInt(LengthTy, StringLength); 5150 5151 // Swift ABI requires 8-byte alignment to ensure that the _Atomic(uint64_t) is 5152 // properly aligned on 32-bit platforms. 5153 CharUnits Alignment = 5154 IsSwiftABI ? Context.toCharUnitsFromBits(64) : getPointerAlign(); 5155 5156 // The struct. 5157 GV = Fields.finishAndCreateGlobal("_unnamed_cfstring_", Alignment, 5158 /*isConstant=*/false, 5159 llvm::GlobalVariable::PrivateLinkage); 5160 GV->addAttribute("objc_arc_inert"); 5161 switch (Triple.getObjectFormat()) { 5162 case llvm::Triple::UnknownObjectFormat: 5163 llvm_unreachable("unknown file format"); 5164 case llvm::Triple::GOFF: 5165 llvm_unreachable("GOFF is not yet implemented"); 5166 case llvm::Triple::XCOFF: 5167 llvm_unreachable("XCOFF is not yet implemented"); 5168 case llvm::Triple::COFF: 5169 case llvm::Triple::ELF: 5170 case llvm::Triple::Wasm: 5171 GV->setSection("cfstring"); 5172 break; 5173 case llvm::Triple::MachO: 5174 GV->setSection("__DATA,__cfstring"); 5175 break; 5176 } 5177 Entry.second = GV; 5178 5179 return ConstantAddress(GV, Alignment); 5180 } 5181 5182 bool CodeGenModule::getExpressionLocationsEnabled() const { 5183 return !CodeGenOpts.EmitCodeView || CodeGenOpts.DebugColumnInfo; 5184 } 5185 5186 QualType CodeGenModule::getObjCFastEnumerationStateType() { 5187 if (ObjCFastEnumerationStateType.isNull()) { 5188 RecordDecl *D = Context.buildImplicitRecord("__objcFastEnumerationState"); 5189 D->startDefinition(); 5190 5191 QualType FieldTypes[] = { 5192 Context.UnsignedLongTy, 5193 Context.getPointerType(Context.getObjCIdType()), 5194 Context.getPointerType(Context.UnsignedLongTy), 5195 Context.getConstantArrayType(Context.UnsignedLongTy, 5196 llvm::APInt(32, 5), nullptr, ArrayType::Normal, 0) 5197 }; 5198 5199 for (size_t i = 0; i < 4; ++i) { 5200 FieldDecl *Field = FieldDecl::Create(Context, 5201 D, 5202 SourceLocation(), 5203 SourceLocation(), nullptr, 5204 FieldTypes[i], /*TInfo=*/nullptr, 5205 /*BitWidth=*/nullptr, 5206 /*Mutable=*/false, 5207 ICIS_NoInit); 5208 Field->setAccess(AS_public); 5209 D->addDecl(Field); 5210 } 5211 5212 D->completeDefinition(); 5213 ObjCFastEnumerationStateType = Context.getTagDeclType(D); 5214 } 5215 5216 return ObjCFastEnumerationStateType; 5217 } 5218 5219 llvm::Constant * 5220 CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) { 5221 assert(!E->getType()->isPointerType() && "Strings are always arrays"); 5222 5223 // Don't emit it as the address of the string, emit the string data itself 5224 // as an inline array. 5225 if (E->getCharByteWidth() == 1) { 5226 SmallString<64> Str(E->getString()); 5227 5228 // Resize the string to the right size, which is indicated by its type. 5229 const ConstantArrayType *CAT = Context.getAsConstantArrayType(E->getType()); 5230 Str.resize(CAT->getSize().getZExtValue()); 5231 return llvm::ConstantDataArray::getString(VMContext, Str, false); 5232 } 5233 5234 auto *AType = cast<llvm::ArrayType>(getTypes().ConvertType(E->getType())); 5235 llvm::Type *ElemTy = AType->getElementType(); 5236 unsigned NumElements = AType->getNumElements(); 5237 5238 // Wide strings have either 2-byte or 4-byte elements. 5239 if (ElemTy->getPrimitiveSizeInBits() == 16) { 5240 SmallVector<uint16_t, 32> Elements; 5241 Elements.reserve(NumElements); 5242 5243 for(unsigned i = 0, e = E->getLength(); i != e; ++i) 5244 Elements.push_back(E->getCodeUnit(i)); 5245 Elements.resize(NumElements); 5246 return llvm::ConstantDataArray::get(VMContext, Elements); 5247 } 5248 5249 assert(ElemTy->getPrimitiveSizeInBits() == 32); 5250 SmallVector<uint32_t, 32> Elements; 5251 Elements.reserve(NumElements); 5252 5253 for(unsigned i = 0, e = E->getLength(); i != e; ++i) 5254 Elements.push_back(E->getCodeUnit(i)); 5255 Elements.resize(NumElements); 5256 return llvm::ConstantDataArray::get(VMContext, Elements); 5257 } 5258 5259 static llvm::GlobalVariable * 5260 GenerateStringLiteral(llvm::Constant *C, llvm::GlobalValue::LinkageTypes LT, 5261 CodeGenModule &CGM, StringRef GlobalName, 5262 CharUnits Alignment) { 5263 unsigned AddrSpace = CGM.getContext().getTargetAddressSpace( 5264 CGM.getStringLiteralAddressSpace()); 5265 5266 llvm::Module &M = CGM.getModule(); 5267 // Create a global variable for this string 5268 auto *GV = new llvm::GlobalVariable( 5269 M, C->getType(), !CGM.getLangOpts().WritableStrings, LT, C, GlobalName, 5270 nullptr, llvm::GlobalVariable::NotThreadLocal, AddrSpace); 5271 GV->setAlignment(Alignment.getAsAlign()); 5272 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 5273 if (GV->isWeakForLinker()) { 5274 assert(CGM.supportsCOMDAT() && "Only COFF uses weak string literals"); 5275 GV->setComdat(M.getOrInsertComdat(GV->getName())); 5276 } 5277 CGM.setDSOLocal(GV); 5278 5279 return GV; 5280 } 5281 5282 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a 5283 /// constant array for the given string literal. 5284 ConstantAddress 5285 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S, 5286 StringRef Name) { 5287 CharUnits Alignment = getContext().getAlignOfGlobalVarInChars(S->getType()); 5288 5289 llvm::Constant *C = GetConstantArrayFromStringLiteral(S); 5290 llvm::GlobalVariable **Entry = nullptr; 5291 if (!LangOpts.WritableStrings) { 5292 Entry = &ConstantStringMap[C]; 5293 if (auto GV = *Entry) { 5294 if (Alignment.getQuantity() > GV->getAlignment()) 5295 GV->setAlignment(Alignment.getAsAlign()); 5296 return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV), 5297 Alignment); 5298 } 5299 } 5300 5301 SmallString<256> MangledNameBuffer; 5302 StringRef GlobalVariableName; 5303 llvm::GlobalValue::LinkageTypes LT; 5304 5305 // Mangle the string literal if that's how the ABI merges duplicate strings. 5306 // Don't do it if they are writable, since we don't want writes in one TU to 5307 // affect strings in another. 5308 if (getCXXABI().getMangleContext().shouldMangleStringLiteral(S) && 5309 !LangOpts.WritableStrings) { 5310 llvm::raw_svector_ostream Out(MangledNameBuffer); 5311 getCXXABI().getMangleContext().mangleStringLiteral(S, Out); 5312 LT = llvm::GlobalValue::LinkOnceODRLinkage; 5313 GlobalVariableName = MangledNameBuffer; 5314 } else { 5315 LT = llvm::GlobalValue::PrivateLinkage; 5316 GlobalVariableName = Name; 5317 } 5318 5319 auto GV = GenerateStringLiteral(C, LT, *this, GlobalVariableName, Alignment); 5320 if (Entry) 5321 *Entry = GV; 5322 5323 SanitizerMD->reportGlobalToASan(GV, S->getStrTokenLoc(0), "<string literal>", 5324 QualType()); 5325 5326 return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV), 5327 Alignment); 5328 } 5329 5330 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant 5331 /// array for the given ObjCEncodeExpr node. 5332 ConstantAddress 5333 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) { 5334 std::string Str; 5335 getContext().getObjCEncodingForType(E->getEncodedType(), Str); 5336 5337 return GetAddrOfConstantCString(Str); 5338 } 5339 5340 /// GetAddrOfConstantCString - Returns a pointer to a character array containing 5341 /// the literal and a terminating '\0' character. 5342 /// The result has pointer to array type. 5343 ConstantAddress CodeGenModule::GetAddrOfConstantCString( 5344 const std::string &Str, const char *GlobalName) { 5345 StringRef StrWithNull(Str.c_str(), Str.size() + 1); 5346 CharUnits Alignment = 5347 getContext().getAlignOfGlobalVarInChars(getContext().CharTy); 5348 5349 llvm::Constant *C = 5350 llvm::ConstantDataArray::getString(getLLVMContext(), StrWithNull, false); 5351 5352 // Don't share any string literals if strings aren't constant. 5353 llvm::GlobalVariable **Entry = nullptr; 5354 if (!LangOpts.WritableStrings) { 5355 Entry = &ConstantStringMap[C]; 5356 if (auto GV = *Entry) { 5357 if (Alignment.getQuantity() > GV->getAlignment()) 5358 GV->setAlignment(Alignment.getAsAlign()); 5359 return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV), 5360 Alignment); 5361 } 5362 } 5363 5364 // Get the default prefix if a name wasn't specified. 5365 if (!GlobalName) 5366 GlobalName = ".str"; 5367 // Create a global variable for this. 5368 auto GV = GenerateStringLiteral(C, llvm::GlobalValue::PrivateLinkage, *this, 5369 GlobalName, Alignment); 5370 if (Entry) 5371 *Entry = GV; 5372 5373 return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV), 5374 Alignment); 5375 } 5376 5377 ConstantAddress CodeGenModule::GetAddrOfGlobalTemporary( 5378 const MaterializeTemporaryExpr *E, const Expr *Init) { 5379 assert((E->getStorageDuration() == SD_Static || 5380 E->getStorageDuration() == SD_Thread) && "not a global temporary"); 5381 const auto *VD = cast<VarDecl>(E->getExtendingDecl()); 5382 5383 // If we're not materializing a subobject of the temporary, keep the 5384 // cv-qualifiers from the type of the MaterializeTemporaryExpr. 5385 QualType MaterializedType = Init->getType(); 5386 if (Init == E->getSubExpr()) 5387 MaterializedType = E->getType(); 5388 5389 CharUnits Align = getContext().getTypeAlignInChars(MaterializedType); 5390 5391 auto InsertResult = MaterializedGlobalTemporaryMap.insert({E, nullptr}); 5392 if (!InsertResult.second) { 5393 // We've seen this before: either we already created it or we're in the 5394 // process of doing so. 5395 if (!InsertResult.first->second) { 5396 // We recursively re-entered this function, probably during emission of 5397 // the initializer. Create a placeholder. We'll clean this up in the 5398 // outer call, at the end of this function. 5399 llvm::Type *Type = getTypes().ConvertTypeForMem(MaterializedType); 5400 InsertResult.first->second = new llvm::GlobalVariable( 5401 getModule(), Type, false, llvm::GlobalVariable::InternalLinkage, 5402 nullptr); 5403 } 5404 return ConstantAddress(InsertResult.first->second, Align); 5405 } 5406 5407 // FIXME: If an externally-visible declaration extends multiple temporaries, 5408 // we need to give each temporary the same name in every translation unit (and 5409 // we also need to make the temporaries externally-visible). 5410 SmallString<256> Name; 5411 llvm::raw_svector_ostream Out(Name); 5412 getCXXABI().getMangleContext().mangleReferenceTemporary( 5413 VD, E->getManglingNumber(), Out); 5414 5415 APValue *Value = nullptr; 5416 if (E->getStorageDuration() == SD_Static && VD && VD->evaluateValue()) { 5417 // If the initializer of the extending declaration is a constant 5418 // initializer, we should have a cached constant initializer for this 5419 // temporary. Note that this might have a different value from the value 5420 // computed by evaluating the initializer if the surrounding constant 5421 // expression modifies the temporary. 5422 Value = E->getOrCreateValue(false); 5423 } 5424 5425 // Try evaluating it now, it might have a constant initializer. 5426 Expr::EvalResult EvalResult; 5427 if (!Value && Init->EvaluateAsRValue(EvalResult, getContext()) && 5428 !EvalResult.hasSideEffects()) 5429 Value = &EvalResult.Val; 5430 5431 LangAS AddrSpace = 5432 VD ? GetGlobalVarAddressSpace(VD) : MaterializedType.getAddressSpace(); 5433 5434 Optional<ConstantEmitter> emitter; 5435 llvm::Constant *InitialValue = nullptr; 5436 bool Constant = false; 5437 llvm::Type *Type; 5438 if (Value) { 5439 // The temporary has a constant initializer, use it. 5440 emitter.emplace(*this); 5441 InitialValue = emitter->emitForInitializer(*Value, AddrSpace, 5442 MaterializedType); 5443 Constant = isTypeConstant(MaterializedType, /*ExcludeCtor*/Value); 5444 Type = InitialValue->getType(); 5445 } else { 5446 // No initializer, the initialization will be provided when we 5447 // initialize the declaration which performed lifetime extension. 5448 Type = getTypes().ConvertTypeForMem(MaterializedType); 5449 } 5450 5451 // Create a global variable for this lifetime-extended temporary. 5452 llvm::GlobalValue::LinkageTypes Linkage = 5453 getLLVMLinkageVarDefinition(VD, Constant); 5454 if (Linkage == llvm::GlobalVariable::ExternalLinkage) { 5455 const VarDecl *InitVD; 5456 if (VD->isStaticDataMember() && VD->getAnyInitializer(InitVD) && 5457 isa<CXXRecordDecl>(InitVD->getLexicalDeclContext())) { 5458 // Temporaries defined inside a class get linkonce_odr linkage because the 5459 // class can be defined in multiple translation units. 5460 Linkage = llvm::GlobalVariable::LinkOnceODRLinkage; 5461 } else { 5462 // There is no need for this temporary to have external linkage if the 5463 // VarDecl has external linkage. 5464 Linkage = llvm::GlobalVariable::InternalLinkage; 5465 } 5466 } 5467 auto TargetAS = getContext().getTargetAddressSpace(AddrSpace); 5468 auto *GV = new llvm::GlobalVariable( 5469 getModule(), Type, Constant, Linkage, InitialValue, Name.c_str(), 5470 /*InsertBefore=*/nullptr, llvm::GlobalVariable::NotThreadLocal, TargetAS); 5471 if (emitter) emitter->finalize(GV); 5472 setGVProperties(GV, VD); 5473 GV->setAlignment(Align.getAsAlign()); 5474 if (supportsCOMDAT() && GV->isWeakForLinker()) 5475 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 5476 if (VD->getTLSKind()) 5477 setTLSMode(GV, *VD); 5478 llvm::Constant *CV = GV; 5479 if (AddrSpace != LangAS::Default) 5480 CV = getTargetCodeGenInfo().performAddrSpaceCast( 5481 *this, GV, AddrSpace, LangAS::Default, 5482 Type->getPointerTo( 5483 getContext().getTargetAddressSpace(LangAS::Default))); 5484 5485 // Update the map with the new temporary. If we created a placeholder above, 5486 // replace it with the new global now. 5487 llvm::Constant *&Entry = MaterializedGlobalTemporaryMap[E]; 5488 if (Entry) { 5489 Entry->replaceAllUsesWith( 5490 llvm::ConstantExpr::getBitCast(CV, Entry->getType())); 5491 llvm::cast<llvm::GlobalVariable>(Entry)->eraseFromParent(); 5492 } 5493 Entry = CV; 5494 5495 return ConstantAddress(CV, Align); 5496 } 5497 5498 /// EmitObjCPropertyImplementations - Emit information for synthesized 5499 /// properties for an implementation. 5500 void CodeGenModule::EmitObjCPropertyImplementations(const 5501 ObjCImplementationDecl *D) { 5502 for (const auto *PID : D->property_impls()) { 5503 // Dynamic is just for type-checking. 5504 if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) { 5505 ObjCPropertyDecl *PD = PID->getPropertyDecl(); 5506 5507 // Determine which methods need to be implemented, some may have 5508 // been overridden. Note that ::isPropertyAccessor is not the method 5509 // we want, that just indicates if the decl came from a 5510 // property. What we want to know is if the method is defined in 5511 // this implementation. 5512 auto *Getter = PID->getGetterMethodDecl(); 5513 if (!Getter || Getter->isSynthesizedAccessorStub()) 5514 CodeGenFunction(*this).GenerateObjCGetter( 5515 const_cast<ObjCImplementationDecl *>(D), PID); 5516 auto *Setter = PID->getSetterMethodDecl(); 5517 if (!PD->isReadOnly() && (!Setter || Setter->isSynthesizedAccessorStub())) 5518 CodeGenFunction(*this).GenerateObjCSetter( 5519 const_cast<ObjCImplementationDecl *>(D), PID); 5520 } 5521 } 5522 } 5523 5524 static bool needsDestructMethod(ObjCImplementationDecl *impl) { 5525 const ObjCInterfaceDecl *iface = impl->getClassInterface(); 5526 for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin(); 5527 ivar; ivar = ivar->getNextIvar()) 5528 if (ivar->getType().isDestructedType()) 5529 return true; 5530 5531 return false; 5532 } 5533 5534 static bool AllTrivialInitializers(CodeGenModule &CGM, 5535 ObjCImplementationDecl *D) { 5536 CodeGenFunction CGF(CGM); 5537 for (ObjCImplementationDecl::init_iterator B = D->init_begin(), 5538 E = D->init_end(); B != E; ++B) { 5539 CXXCtorInitializer *CtorInitExp = *B; 5540 Expr *Init = CtorInitExp->getInit(); 5541 if (!CGF.isTrivialInitializer(Init)) 5542 return false; 5543 } 5544 return true; 5545 } 5546 5547 /// EmitObjCIvarInitializations - Emit information for ivar initialization 5548 /// for an implementation. 5549 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) { 5550 // We might need a .cxx_destruct even if we don't have any ivar initializers. 5551 if (needsDestructMethod(D)) { 5552 IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct"); 5553 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 5554 ObjCMethodDecl *DTORMethod = ObjCMethodDecl::Create( 5555 getContext(), D->getLocation(), D->getLocation(), cxxSelector, 5556 getContext().VoidTy, nullptr, D, 5557 /*isInstance=*/true, /*isVariadic=*/false, 5558 /*isPropertyAccessor=*/true, /*isSynthesizedAccessorStub=*/false, 5559 /*isImplicitlyDeclared=*/true, 5560 /*isDefined=*/false, ObjCMethodDecl::Required); 5561 D->addInstanceMethod(DTORMethod); 5562 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false); 5563 D->setHasDestructors(true); 5564 } 5565 5566 // If the implementation doesn't have any ivar initializers, we don't need 5567 // a .cxx_construct. 5568 if (D->getNumIvarInitializers() == 0 || 5569 AllTrivialInitializers(*this, D)) 5570 return; 5571 5572 IdentifierInfo *II = &getContext().Idents.get(".cxx_construct"); 5573 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 5574 // The constructor returns 'self'. 5575 ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create( 5576 getContext(), D->getLocation(), D->getLocation(), cxxSelector, 5577 getContext().getObjCIdType(), nullptr, D, /*isInstance=*/true, 5578 /*isVariadic=*/false, 5579 /*isPropertyAccessor=*/true, /*isSynthesizedAccessorStub=*/false, 5580 /*isImplicitlyDeclared=*/true, 5581 /*isDefined=*/false, ObjCMethodDecl::Required); 5582 D->addInstanceMethod(CTORMethod); 5583 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true); 5584 D->setHasNonZeroConstructors(true); 5585 } 5586 5587 // EmitLinkageSpec - Emit all declarations in a linkage spec. 5588 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) { 5589 if (LSD->getLanguage() != LinkageSpecDecl::lang_c && 5590 LSD->getLanguage() != LinkageSpecDecl::lang_cxx) { 5591 ErrorUnsupported(LSD, "linkage spec"); 5592 return; 5593 } 5594 5595 EmitDeclContext(LSD); 5596 } 5597 5598 void CodeGenModule::EmitDeclContext(const DeclContext *DC) { 5599 for (auto *I : DC->decls()) { 5600 // Unlike other DeclContexts, the contents of an ObjCImplDecl at TU scope 5601 // are themselves considered "top-level", so EmitTopLevelDecl on an 5602 // ObjCImplDecl does not recursively visit them. We need to do that in 5603 // case they're nested inside another construct (LinkageSpecDecl / 5604 // ExportDecl) that does stop them from being considered "top-level". 5605 if (auto *OID = dyn_cast<ObjCImplDecl>(I)) { 5606 for (auto *M : OID->methods()) 5607 EmitTopLevelDecl(M); 5608 } 5609 5610 EmitTopLevelDecl(I); 5611 } 5612 } 5613 5614 /// EmitTopLevelDecl - Emit code for a single top level declaration. 5615 void CodeGenModule::EmitTopLevelDecl(Decl *D) { 5616 // Ignore dependent declarations. 5617 if (D->isTemplated()) 5618 return; 5619 5620 // Consteval function shouldn't be emitted. 5621 if (auto *FD = dyn_cast<FunctionDecl>(D)) 5622 if (FD->isConsteval()) 5623 return; 5624 5625 switch (D->getKind()) { 5626 case Decl::CXXConversion: 5627 case Decl::CXXMethod: 5628 case Decl::Function: 5629 EmitGlobal(cast<FunctionDecl>(D)); 5630 // Always provide some coverage mapping 5631 // even for the functions that aren't emitted. 5632 AddDeferredUnusedCoverageMapping(D); 5633 break; 5634 5635 case Decl::CXXDeductionGuide: 5636 // Function-like, but does not result in code emission. 5637 break; 5638 5639 case Decl::Var: 5640 case Decl::Decomposition: 5641 case Decl::VarTemplateSpecialization: 5642 EmitGlobal(cast<VarDecl>(D)); 5643 if (auto *DD = dyn_cast<DecompositionDecl>(D)) 5644 for (auto *B : DD->bindings()) 5645 if (auto *HD = B->getHoldingVar()) 5646 EmitGlobal(HD); 5647 break; 5648 5649 // Indirect fields from global anonymous structs and unions can be 5650 // ignored; only the actual variable requires IR gen support. 5651 case Decl::IndirectField: 5652 break; 5653 5654 // C++ Decls 5655 case Decl::Namespace: 5656 EmitDeclContext(cast<NamespaceDecl>(D)); 5657 break; 5658 case Decl::ClassTemplateSpecialization: { 5659 const auto *Spec = cast<ClassTemplateSpecializationDecl>(D); 5660 if (CGDebugInfo *DI = getModuleDebugInfo()) 5661 if (Spec->getSpecializationKind() == 5662 TSK_ExplicitInstantiationDefinition && 5663 Spec->hasDefinition()) 5664 DI->completeTemplateDefinition(*Spec); 5665 } LLVM_FALLTHROUGH; 5666 case Decl::CXXRecord: { 5667 CXXRecordDecl *CRD = cast<CXXRecordDecl>(D); 5668 if (CGDebugInfo *DI = getModuleDebugInfo()) { 5669 if (CRD->hasDefinition()) 5670 DI->EmitAndRetainType(getContext().getRecordType(cast<RecordDecl>(D))); 5671 if (auto *ES = D->getASTContext().getExternalSource()) 5672 if (ES->hasExternalDefinitions(D) == ExternalASTSource::EK_Never) 5673 DI->completeUnusedClass(*CRD); 5674 } 5675 // Emit any static data members, they may be definitions. 5676 for (auto *I : CRD->decls()) 5677 if (isa<VarDecl>(I) || isa<CXXRecordDecl>(I)) 5678 EmitTopLevelDecl(I); 5679 break; 5680 } 5681 // No code generation needed. 5682 case Decl::UsingShadow: 5683 case Decl::ClassTemplate: 5684 case Decl::VarTemplate: 5685 case Decl::Concept: 5686 case Decl::VarTemplatePartialSpecialization: 5687 case Decl::FunctionTemplate: 5688 case Decl::TypeAliasTemplate: 5689 case Decl::Block: 5690 case Decl::Empty: 5691 case Decl::Binding: 5692 break; 5693 case Decl::Using: // using X; [C++] 5694 if (CGDebugInfo *DI = getModuleDebugInfo()) 5695 DI->EmitUsingDecl(cast<UsingDecl>(*D)); 5696 break; 5697 case Decl::NamespaceAlias: 5698 if (CGDebugInfo *DI = getModuleDebugInfo()) 5699 DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(*D)); 5700 break; 5701 case Decl::UsingDirective: // using namespace X; [C++] 5702 if (CGDebugInfo *DI = getModuleDebugInfo()) 5703 DI->EmitUsingDirective(cast<UsingDirectiveDecl>(*D)); 5704 break; 5705 case Decl::CXXConstructor: 5706 getCXXABI().EmitCXXConstructors(cast<CXXConstructorDecl>(D)); 5707 break; 5708 case Decl::CXXDestructor: 5709 getCXXABI().EmitCXXDestructors(cast<CXXDestructorDecl>(D)); 5710 break; 5711 5712 case Decl::StaticAssert: 5713 // Nothing to do. 5714 break; 5715 5716 // Objective-C Decls 5717 5718 // Forward declarations, no (immediate) code generation. 5719 case Decl::ObjCInterface: 5720 case Decl::ObjCCategory: 5721 break; 5722 5723 case Decl::ObjCProtocol: { 5724 auto *Proto = cast<ObjCProtocolDecl>(D); 5725 if (Proto->isThisDeclarationADefinition()) 5726 ObjCRuntime->GenerateProtocol(Proto); 5727 break; 5728 } 5729 5730 case Decl::ObjCCategoryImpl: 5731 // Categories have properties but don't support synthesize so we 5732 // can ignore them here. 5733 ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D)); 5734 break; 5735 5736 case Decl::ObjCImplementation: { 5737 auto *OMD = cast<ObjCImplementationDecl>(D); 5738 EmitObjCPropertyImplementations(OMD); 5739 EmitObjCIvarInitializations(OMD); 5740 ObjCRuntime->GenerateClass(OMD); 5741 // Emit global variable debug information. 5742 if (CGDebugInfo *DI = getModuleDebugInfo()) 5743 if (getCodeGenOpts().hasReducedDebugInfo()) 5744 DI->getOrCreateInterfaceType(getContext().getObjCInterfaceType( 5745 OMD->getClassInterface()), OMD->getLocation()); 5746 break; 5747 } 5748 case Decl::ObjCMethod: { 5749 auto *OMD = cast<ObjCMethodDecl>(D); 5750 // If this is not a prototype, emit the body. 5751 if (OMD->getBody()) 5752 CodeGenFunction(*this).GenerateObjCMethod(OMD); 5753 break; 5754 } 5755 case Decl::ObjCCompatibleAlias: 5756 ObjCRuntime->RegisterAlias(cast<ObjCCompatibleAliasDecl>(D)); 5757 break; 5758 5759 case Decl::PragmaComment: { 5760 const auto *PCD = cast<PragmaCommentDecl>(D); 5761 switch (PCD->getCommentKind()) { 5762 case PCK_Unknown: 5763 llvm_unreachable("unexpected pragma comment kind"); 5764 case PCK_Linker: 5765 AppendLinkerOptions(PCD->getArg()); 5766 break; 5767 case PCK_Lib: 5768 AddDependentLib(PCD->getArg()); 5769 break; 5770 case PCK_Compiler: 5771 case PCK_ExeStr: 5772 case PCK_User: 5773 break; // We ignore all of these. 5774 } 5775 break; 5776 } 5777 5778 case Decl::PragmaDetectMismatch: { 5779 const auto *PDMD = cast<PragmaDetectMismatchDecl>(D); 5780 AddDetectMismatch(PDMD->getName(), PDMD->getValue()); 5781 break; 5782 } 5783 5784 case Decl::LinkageSpec: 5785 EmitLinkageSpec(cast<LinkageSpecDecl>(D)); 5786 break; 5787 5788 case Decl::FileScopeAsm: { 5789 // File-scope asm is ignored during device-side CUDA compilation. 5790 if (LangOpts.CUDA && LangOpts.CUDAIsDevice) 5791 break; 5792 // File-scope asm is ignored during device-side OpenMP compilation. 5793 if (LangOpts.OpenMPIsDevice) 5794 break; 5795 // File-scope asm is ignored during device-side SYCL compilation. 5796 if (LangOpts.SYCLIsDevice) 5797 break; 5798 auto *AD = cast<FileScopeAsmDecl>(D); 5799 getModule().appendModuleInlineAsm(AD->getAsmString()->getString()); 5800 break; 5801 } 5802 5803 case Decl::Import: { 5804 auto *Import = cast<ImportDecl>(D); 5805 5806 // If we've already imported this module, we're done. 5807 if (!ImportedModules.insert(Import->getImportedModule())) 5808 break; 5809 5810 // Emit debug information for direct imports. 5811 if (!Import->getImportedOwningModule()) { 5812 if (CGDebugInfo *DI = getModuleDebugInfo()) 5813 DI->EmitImportDecl(*Import); 5814 } 5815 5816 // Find all of the submodules and emit the module initializers. 5817 llvm::SmallPtrSet<clang::Module *, 16> Visited; 5818 SmallVector<clang::Module *, 16> Stack; 5819 Visited.insert(Import->getImportedModule()); 5820 Stack.push_back(Import->getImportedModule()); 5821 5822 while (!Stack.empty()) { 5823 clang::Module *Mod = Stack.pop_back_val(); 5824 if (!EmittedModuleInitializers.insert(Mod).second) 5825 continue; 5826 5827 for (auto *D : Context.getModuleInitializers(Mod)) 5828 EmitTopLevelDecl(D); 5829 5830 // Visit the submodules of this module. 5831 for (clang::Module::submodule_iterator Sub = Mod->submodule_begin(), 5832 SubEnd = Mod->submodule_end(); 5833 Sub != SubEnd; ++Sub) { 5834 // Skip explicit children; they need to be explicitly imported to emit 5835 // the initializers. 5836 if ((*Sub)->IsExplicit) 5837 continue; 5838 5839 if (Visited.insert(*Sub).second) 5840 Stack.push_back(*Sub); 5841 } 5842 } 5843 break; 5844 } 5845 5846 case Decl::Export: 5847 EmitDeclContext(cast<ExportDecl>(D)); 5848 break; 5849 5850 case Decl::OMPThreadPrivate: 5851 EmitOMPThreadPrivateDecl(cast<OMPThreadPrivateDecl>(D)); 5852 break; 5853 5854 case Decl::OMPAllocate: 5855 break; 5856 5857 case Decl::OMPDeclareReduction: 5858 EmitOMPDeclareReduction(cast<OMPDeclareReductionDecl>(D)); 5859 break; 5860 5861 case Decl::OMPDeclareMapper: 5862 EmitOMPDeclareMapper(cast<OMPDeclareMapperDecl>(D)); 5863 break; 5864 5865 case Decl::OMPRequires: 5866 EmitOMPRequiresDecl(cast<OMPRequiresDecl>(D)); 5867 break; 5868 5869 case Decl::Typedef: 5870 case Decl::TypeAlias: // using foo = bar; [C++11] 5871 if (CGDebugInfo *DI = getModuleDebugInfo()) 5872 DI->EmitAndRetainType( 5873 getContext().getTypedefType(cast<TypedefNameDecl>(D))); 5874 break; 5875 5876 case Decl::Record: 5877 if (CGDebugInfo *DI = getModuleDebugInfo()) 5878 if (cast<RecordDecl>(D)->getDefinition()) 5879 DI->EmitAndRetainType(getContext().getRecordType(cast<RecordDecl>(D))); 5880 break; 5881 5882 case Decl::Enum: 5883 if (CGDebugInfo *DI = getModuleDebugInfo()) 5884 if (cast<EnumDecl>(D)->getDefinition()) 5885 DI->EmitAndRetainType(getContext().getEnumType(cast<EnumDecl>(D))); 5886 break; 5887 5888 default: 5889 // Make sure we handled everything we should, every other kind is a 5890 // non-top-level decl. FIXME: Would be nice to have an isTopLevelDeclKind 5891 // function. Need to recode Decl::Kind to do that easily. 5892 assert(isa<TypeDecl>(D) && "Unsupported decl kind"); 5893 break; 5894 } 5895 } 5896 5897 void CodeGenModule::AddDeferredUnusedCoverageMapping(Decl *D) { 5898 // Do we need to generate coverage mapping? 5899 if (!CodeGenOpts.CoverageMapping) 5900 return; 5901 switch (D->getKind()) { 5902 case Decl::CXXConversion: 5903 case Decl::CXXMethod: 5904 case Decl::Function: 5905 case Decl::ObjCMethod: 5906 case Decl::CXXConstructor: 5907 case Decl::CXXDestructor: { 5908 if (!cast<FunctionDecl>(D)->doesThisDeclarationHaveABody()) 5909 break; 5910 SourceManager &SM = getContext().getSourceManager(); 5911 if (LimitedCoverage && SM.getMainFileID() != SM.getFileID(D->getBeginLoc())) 5912 break; 5913 auto I = DeferredEmptyCoverageMappingDecls.find(D); 5914 if (I == DeferredEmptyCoverageMappingDecls.end()) 5915 DeferredEmptyCoverageMappingDecls[D] = true; 5916 break; 5917 } 5918 default: 5919 break; 5920 }; 5921 } 5922 5923 void CodeGenModule::ClearUnusedCoverageMapping(const Decl *D) { 5924 // Do we need to generate coverage mapping? 5925 if (!CodeGenOpts.CoverageMapping) 5926 return; 5927 if (const auto *Fn = dyn_cast<FunctionDecl>(D)) { 5928 if (Fn->isTemplateInstantiation()) 5929 ClearUnusedCoverageMapping(Fn->getTemplateInstantiationPattern()); 5930 } 5931 auto I = DeferredEmptyCoverageMappingDecls.find(D); 5932 if (I == DeferredEmptyCoverageMappingDecls.end()) 5933 DeferredEmptyCoverageMappingDecls[D] = false; 5934 else 5935 I->second = false; 5936 } 5937 5938 void CodeGenModule::EmitDeferredUnusedCoverageMappings() { 5939 // We call takeVector() here to avoid use-after-free. 5940 // FIXME: DeferredEmptyCoverageMappingDecls is getting mutated because 5941 // we deserialize function bodies to emit coverage info for them, and that 5942 // deserializes more declarations. How should we handle that case? 5943 for (const auto &Entry : DeferredEmptyCoverageMappingDecls.takeVector()) { 5944 if (!Entry.second) 5945 continue; 5946 const Decl *D = Entry.first; 5947 switch (D->getKind()) { 5948 case Decl::CXXConversion: 5949 case Decl::CXXMethod: 5950 case Decl::Function: 5951 case Decl::ObjCMethod: { 5952 CodeGenPGO PGO(*this); 5953 GlobalDecl GD(cast<FunctionDecl>(D)); 5954 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 5955 getFunctionLinkage(GD)); 5956 break; 5957 } 5958 case Decl::CXXConstructor: { 5959 CodeGenPGO PGO(*this); 5960 GlobalDecl GD(cast<CXXConstructorDecl>(D), Ctor_Base); 5961 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 5962 getFunctionLinkage(GD)); 5963 break; 5964 } 5965 case Decl::CXXDestructor: { 5966 CodeGenPGO PGO(*this); 5967 GlobalDecl GD(cast<CXXDestructorDecl>(D), Dtor_Base); 5968 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 5969 getFunctionLinkage(GD)); 5970 break; 5971 } 5972 default: 5973 break; 5974 }; 5975 } 5976 } 5977 5978 void CodeGenModule::EmitMainVoidAlias() { 5979 // In order to transition away from "__original_main" gracefully, emit an 5980 // alias for "main" in the no-argument case so that libc can detect when 5981 // new-style no-argument main is in used. 5982 if (llvm::Function *F = getModule().getFunction("main")) { 5983 if (!F->isDeclaration() && F->arg_size() == 0 && !F->isVarArg() && 5984 F->getReturnType()->isIntegerTy(Context.getTargetInfo().getIntWidth())) 5985 addUsedGlobal(llvm::GlobalAlias::create("__main_void", F)); 5986 } 5987 } 5988 5989 /// Turns the given pointer into a constant. 5990 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context, 5991 const void *Ptr) { 5992 uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr); 5993 llvm::Type *i64 = llvm::Type::getInt64Ty(Context); 5994 return llvm::ConstantInt::get(i64, PtrInt); 5995 } 5996 5997 static void EmitGlobalDeclMetadata(CodeGenModule &CGM, 5998 llvm::NamedMDNode *&GlobalMetadata, 5999 GlobalDecl D, 6000 llvm::GlobalValue *Addr) { 6001 if (!GlobalMetadata) 6002 GlobalMetadata = 6003 CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs"); 6004 6005 // TODO: should we report variant information for ctors/dtors? 6006 llvm::Metadata *Ops[] = {llvm::ConstantAsMetadata::get(Addr), 6007 llvm::ConstantAsMetadata::get(GetPointerConstant( 6008 CGM.getLLVMContext(), D.getDecl()))}; 6009 GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops)); 6010 } 6011 6012 /// For each function which is declared within an extern "C" region and marked 6013 /// as 'used', but has internal linkage, create an alias from the unmangled 6014 /// name to the mangled name if possible. People expect to be able to refer 6015 /// to such functions with an unmangled name from inline assembly within the 6016 /// same translation unit. 6017 void CodeGenModule::EmitStaticExternCAliases() { 6018 if (!getTargetCodeGenInfo().shouldEmitStaticExternCAliases()) 6019 return; 6020 for (auto &I : StaticExternCValues) { 6021 IdentifierInfo *Name = I.first; 6022 llvm::GlobalValue *Val = I.second; 6023 if (Val && !getModule().getNamedValue(Name->getName())) 6024 addCompilerUsedGlobal(llvm::GlobalAlias::create(Name->getName(), Val)); 6025 } 6026 } 6027 6028 bool CodeGenModule::lookupRepresentativeDecl(StringRef MangledName, 6029 GlobalDecl &Result) const { 6030 auto Res = Manglings.find(MangledName); 6031 if (Res == Manglings.end()) 6032 return false; 6033 Result = Res->getValue(); 6034 return true; 6035 } 6036 6037 /// Emits metadata nodes associating all the global values in the 6038 /// current module with the Decls they came from. This is useful for 6039 /// projects using IR gen as a subroutine. 6040 /// 6041 /// Since there's currently no way to associate an MDNode directly 6042 /// with an llvm::GlobalValue, we create a global named metadata 6043 /// with the name 'clang.global.decl.ptrs'. 6044 void CodeGenModule::EmitDeclMetadata() { 6045 llvm::NamedMDNode *GlobalMetadata = nullptr; 6046 6047 for (auto &I : MangledDeclNames) { 6048 llvm::GlobalValue *Addr = getModule().getNamedValue(I.second); 6049 // Some mangled names don't necessarily have an associated GlobalValue 6050 // in this module, e.g. if we mangled it for DebugInfo. 6051 if (Addr) 6052 EmitGlobalDeclMetadata(*this, GlobalMetadata, I.first, Addr); 6053 } 6054 } 6055 6056 /// Emits metadata nodes for all the local variables in the current 6057 /// function. 6058 void CodeGenFunction::EmitDeclMetadata() { 6059 if (LocalDeclMap.empty()) return; 6060 6061 llvm::LLVMContext &Context = getLLVMContext(); 6062 6063 // Find the unique metadata ID for this name. 6064 unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr"); 6065 6066 llvm::NamedMDNode *GlobalMetadata = nullptr; 6067 6068 for (auto &I : LocalDeclMap) { 6069 const Decl *D = I.first; 6070 llvm::Value *Addr = I.second.getPointer(); 6071 if (auto *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) { 6072 llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D); 6073 Alloca->setMetadata( 6074 DeclPtrKind, llvm::MDNode::get( 6075 Context, llvm::ValueAsMetadata::getConstant(DAddr))); 6076 } else if (auto *GV = dyn_cast<llvm::GlobalValue>(Addr)) { 6077 GlobalDecl GD = GlobalDecl(cast<VarDecl>(D)); 6078 EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV); 6079 } 6080 } 6081 } 6082 6083 void CodeGenModule::EmitVersionIdentMetadata() { 6084 llvm::NamedMDNode *IdentMetadata = 6085 TheModule.getOrInsertNamedMetadata("llvm.ident"); 6086 std::string Version = getClangFullVersion(); 6087 llvm::LLVMContext &Ctx = TheModule.getContext(); 6088 6089 llvm::Metadata *IdentNode[] = {llvm::MDString::get(Ctx, Version)}; 6090 IdentMetadata->addOperand(llvm::MDNode::get(Ctx, IdentNode)); 6091 } 6092 6093 void CodeGenModule::EmitCommandLineMetadata() { 6094 llvm::NamedMDNode *CommandLineMetadata = 6095 TheModule.getOrInsertNamedMetadata("llvm.commandline"); 6096 std::string CommandLine = getCodeGenOpts().RecordCommandLine; 6097 llvm::LLVMContext &Ctx = TheModule.getContext(); 6098 6099 llvm::Metadata *CommandLineNode[] = {llvm::MDString::get(Ctx, CommandLine)}; 6100 CommandLineMetadata->addOperand(llvm::MDNode::get(Ctx, CommandLineNode)); 6101 } 6102 6103 void CodeGenModule::EmitCoverageFile() { 6104 if (getCodeGenOpts().CoverageDataFile.empty() && 6105 getCodeGenOpts().CoverageNotesFile.empty()) 6106 return; 6107 6108 llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu"); 6109 if (!CUNode) 6110 return; 6111 6112 llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov"); 6113 llvm::LLVMContext &Ctx = TheModule.getContext(); 6114 auto *CoverageDataFile = 6115 llvm::MDString::get(Ctx, getCodeGenOpts().CoverageDataFile); 6116 auto *CoverageNotesFile = 6117 llvm::MDString::get(Ctx, getCodeGenOpts().CoverageNotesFile); 6118 for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) { 6119 llvm::MDNode *CU = CUNode->getOperand(i); 6120 llvm::Metadata *Elts[] = {CoverageNotesFile, CoverageDataFile, CU}; 6121 GCov->addOperand(llvm::MDNode::get(Ctx, Elts)); 6122 } 6123 } 6124 6125 llvm::Constant *CodeGenModule::GetAddrOfRTTIDescriptor(QualType Ty, 6126 bool ForEH) { 6127 // Return a bogus pointer if RTTI is disabled, unless it's for EH. 6128 // FIXME: should we even be calling this method if RTTI is disabled 6129 // and it's not for EH? 6130 if ((!ForEH && !getLangOpts().RTTI) || getLangOpts().CUDAIsDevice || 6131 (getLangOpts().OpenMP && getLangOpts().OpenMPIsDevice && 6132 getTriple().isNVPTX())) 6133 return llvm::Constant::getNullValue(Int8PtrTy); 6134 6135 if (ForEH && Ty->isObjCObjectPointerType() && 6136 LangOpts.ObjCRuntime.isGNUFamily()) 6137 return ObjCRuntime->GetEHType(Ty); 6138 6139 return getCXXABI().getAddrOfRTTIDescriptor(Ty); 6140 } 6141 6142 void CodeGenModule::EmitOMPThreadPrivateDecl(const OMPThreadPrivateDecl *D) { 6143 // Do not emit threadprivates in simd-only mode. 6144 if (LangOpts.OpenMP && LangOpts.OpenMPSimd) 6145 return; 6146 for (auto RefExpr : D->varlists()) { 6147 auto *VD = cast<VarDecl>(cast<DeclRefExpr>(RefExpr)->getDecl()); 6148 bool PerformInit = 6149 VD->getAnyInitializer() && 6150 !VD->getAnyInitializer()->isConstantInitializer(getContext(), 6151 /*ForRef=*/false); 6152 6153 Address Addr(GetAddrOfGlobalVar(VD), getContext().getDeclAlign(VD)); 6154 if (auto InitFunction = getOpenMPRuntime().emitThreadPrivateVarDefinition( 6155 VD, Addr, RefExpr->getBeginLoc(), PerformInit)) 6156 CXXGlobalInits.push_back(InitFunction); 6157 } 6158 } 6159 6160 llvm::Metadata * 6161 CodeGenModule::CreateMetadataIdentifierImpl(QualType T, MetadataTypeMap &Map, 6162 StringRef Suffix) { 6163 llvm::Metadata *&InternalId = Map[T.getCanonicalType()]; 6164 if (InternalId) 6165 return InternalId; 6166 6167 if (isExternallyVisible(T->getLinkage())) { 6168 std::string OutName; 6169 llvm::raw_string_ostream Out(OutName); 6170 getCXXABI().getMangleContext().mangleTypeName(T, Out); 6171 Out << Suffix; 6172 6173 InternalId = llvm::MDString::get(getLLVMContext(), Out.str()); 6174 } else { 6175 InternalId = llvm::MDNode::getDistinct(getLLVMContext(), 6176 llvm::ArrayRef<llvm::Metadata *>()); 6177 } 6178 6179 return InternalId; 6180 } 6181 6182 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierForType(QualType T) { 6183 return CreateMetadataIdentifierImpl(T, MetadataIdMap, ""); 6184 } 6185 6186 llvm::Metadata * 6187 CodeGenModule::CreateMetadataIdentifierForVirtualMemPtrType(QualType T) { 6188 return CreateMetadataIdentifierImpl(T, VirtualMetadataIdMap, ".virtual"); 6189 } 6190 6191 // Generalize pointer types to a void pointer with the qualifiers of the 6192 // originally pointed-to type, e.g. 'const char *' and 'char * const *' 6193 // generalize to 'const void *' while 'char *' and 'const char **' generalize to 6194 // 'void *'. 6195 static QualType GeneralizeType(ASTContext &Ctx, QualType Ty) { 6196 if (!Ty->isPointerType()) 6197 return Ty; 6198 6199 return Ctx.getPointerType( 6200 QualType(Ctx.VoidTy).withCVRQualifiers( 6201 Ty->getPointeeType().getCVRQualifiers())); 6202 } 6203 6204 // Apply type generalization to a FunctionType's return and argument types 6205 static QualType GeneralizeFunctionType(ASTContext &Ctx, QualType Ty) { 6206 if (auto *FnType = Ty->getAs<FunctionProtoType>()) { 6207 SmallVector<QualType, 8> GeneralizedParams; 6208 for (auto &Param : FnType->param_types()) 6209 GeneralizedParams.push_back(GeneralizeType(Ctx, Param)); 6210 6211 return Ctx.getFunctionType( 6212 GeneralizeType(Ctx, FnType->getReturnType()), 6213 GeneralizedParams, FnType->getExtProtoInfo()); 6214 } 6215 6216 if (auto *FnType = Ty->getAs<FunctionNoProtoType>()) 6217 return Ctx.getFunctionNoProtoType( 6218 GeneralizeType(Ctx, FnType->getReturnType())); 6219 6220 llvm_unreachable("Encountered unknown FunctionType"); 6221 } 6222 6223 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierGeneralized(QualType T) { 6224 return CreateMetadataIdentifierImpl(GeneralizeFunctionType(getContext(), T), 6225 GeneralizedMetadataIdMap, ".generalized"); 6226 } 6227 6228 /// Returns whether this module needs the "all-vtables" type identifier. 6229 bool CodeGenModule::NeedAllVtablesTypeId() const { 6230 // Returns true if at least one of vtable-based CFI checkers is enabled and 6231 // is not in the trapping mode. 6232 return ((LangOpts.Sanitize.has(SanitizerKind::CFIVCall) && 6233 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIVCall)) || 6234 (LangOpts.Sanitize.has(SanitizerKind::CFINVCall) && 6235 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFINVCall)) || 6236 (LangOpts.Sanitize.has(SanitizerKind::CFIDerivedCast) && 6237 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIDerivedCast)) || 6238 (LangOpts.Sanitize.has(SanitizerKind::CFIUnrelatedCast) && 6239 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIUnrelatedCast))); 6240 } 6241 6242 void CodeGenModule::AddVTableTypeMetadata(llvm::GlobalVariable *VTable, 6243 CharUnits Offset, 6244 const CXXRecordDecl *RD) { 6245 llvm::Metadata *MD = 6246 CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0)); 6247 VTable->addTypeMetadata(Offset.getQuantity(), MD); 6248 6249 if (CodeGenOpts.SanitizeCfiCrossDso) 6250 if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD)) 6251 VTable->addTypeMetadata(Offset.getQuantity(), 6252 llvm::ConstantAsMetadata::get(CrossDsoTypeId)); 6253 6254 if (NeedAllVtablesTypeId()) { 6255 llvm::Metadata *MD = llvm::MDString::get(getLLVMContext(), "all-vtables"); 6256 VTable->addTypeMetadata(Offset.getQuantity(), MD); 6257 } 6258 } 6259 6260 llvm::SanitizerStatReport &CodeGenModule::getSanStats() { 6261 if (!SanStats) 6262 SanStats = std::make_unique<llvm::SanitizerStatReport>(&getModule()); 6263 6264 return *SanStats; 6265 } 6266 llvm::Value * 6267 CodeGenModule::createOpenCLIntToSamplerConversion(const Expr *E, 6268 CodeGenFunction &CGF) { 6269 llvm::Constant *C = ConstantEmitter(CGF).emitAbstract(E, E->getType()); 6270 auto SamplerT = getOpenCLRuntime().getSamplerType(E->getType().getTypePtr()); 6271 auto FTy = llvm::FunctionType::get(SamplerT, {C->getType()}, false); 6272 return CGF.Builder.CreateCall(CreateRuntimeFunction(FTy, 6273 "__translate_sampler_initializer"), 6274 {C}); 6275 } 6276 6277 CharUnits CodeGenModule::getNaturalPointeeTypeAlignment( 6278 QualType T, LValueBaseInfo *BaseInfo, TBAAAccessInfo *TBAAInfo) { 6279 return getNaturalTypeAlignment(T->getPointeeType(), BaseInfo, TBAAInfo, 6280 /* forPointeeType= */ true); 6281 } 6282 6283 CharUnits CodeGenModule::getNaturalTypeAlignment(QualType T, 6284 LValueBaseInfo *BaseInfo, 6285 TBAAAccessInfo *TBAAInfo, 6286 bool forPointeeType) { 6287 if (TBAAInfo) 6288 *TBAAInfo = getTBAAAccessInfo(T); 6289 6290 // FIXME: This duplicates logic in ASTContext::getTypeAlignIfKnown. But 6291 // that doesn't return the information we need to compute BaseInfo. 6292 6293 // Honor alignment typedef attributes even on incomplete types. 6294 // We also honor them straight for C++ class types, even as pointees; 6295 // there's an expressivity gap here. 6296 if (auto TT = T->getAs<TypedefType>()) { 6297 if (auto Align = TT->getDecl()->getMaxAlignment()) { 6298 if (BaseInfo) 6299 *BaseInfo = LValueBaseInfo(AlignmentSource::AttributedType); 6300 return getContext().toCharUnitsFromBits(Align); 6301 } 6302 } 6303 6304 bool AlignForArray = T->isArrayType(); 6305 6306 // Analyze the base element type, so we don't get confused by incomplete 6307 // array types. 6308 T = getContext().getBaseElementType(T); 6309 6310 if (T->isIncompleteType()) { 6311 // We could try to replicate the logic from 6312 // ASTContext::getTypeAlignIfKnown, but nothing uses the alignment if the 6313 // type is incomplete, so it's impossible to test. We could try to reuse 6314 // getTypeAlignIfKnown, but that doesn't return the information we need 6315 // to set BaseInfo. So just ignore the possibility that the alignment is 6316 // greater than one. 6317 if (BaseInfo) 6318 *BaseInfo = LValueBaseInfo(AlignmentSource::Type); 6319 return CharUnits::One(); 6320 } 6321 6322 if (BaseInfo) 6323 *BaseInfo = LValueBaseInfo(AlignmentSource::Type); 6324 6325 CharUnits Alignment; 6326 const CXXRecordDecl *RD; 6327 if (T.getQualifiers().hasUnaligned()) { 6328 Alignment = CharUnits::One(); 6329 } else if (forPointeeType && !AlignForArray && 6330 (RD = T->getAsCXXRecordDecl())) { 6331 // For C++ class pointees, we don't know whether we're pointing at a 6332 // base or a complete object, so we generally need to use the 6333 // non-virtual alignment. 6334 Alignment = getClassPointerAlignment(RD); 6335 } else { 6336 Alignment = getContext().getTypeAlignInChars(T); 6337 } 6338 6339 // Cap to the global maximum type alignment unless the alignment 6340 // was somehow explicit on the type. 6341 if (unsigned MaxAlign = getLangOpts().MaxTypeAlign) { 6342 if (Alignment.getQuantity() > MaxAlign && 6343 !getContext().isAlignmentRequired(T)) 6344 Alignment = CharUnits::fromQuantity(MaxAlign); 6345 } 6346 return Alignment; 6347 } 6348 6349 bool CodeGenModule::stopAutoInit() { 6350 unsigned StopAfter = getContext().getLangOpts().TrivialAutoVarInitStopAfter; 6351 if (StopAfter) { 6352 // This number is positive only when -ftrivial-auto-var-init-stop-after=* is 6353 // used 6354 if (NumAutoVarInit >= StopAfter) { 6355 return true; 6356 } 6357 if (!NumAutoVarInit) { 6358 unsigned DiagID = getDiags().getCustomDiagID( 6359 DiagnosticsEngine::Warning, 6360 "-ftrivial-auto-var-init-stop-after=%0 has been enabled to limit the " 6361 "number of times ftrivial-auto-var-init=%1 gets applied."); 6362 getDiags().Report(DiagID) 6363 << StopAfter 6364 << (getContext().getLangOpts().getTrivialAutoVarInit() == 6365 LangOptions::TrivialAutoVarInitKind::Zero 6366 ? "zero" 6367 : "pattern"); 6368 } 6369 ++NumAutoVarInit; 6370 } 6371 return false; 6372 } 6373 6374 void CodeGenModule::printPostfixForExternalizedStaticVar( 6375 llvm::raw_ostream &OS) const { 6376 OS << ".static." << getContext().getCUIDHash(); 6377 } 6378