xref: /llvm-project/clang/lib/CodeGen/CodeGenModule.cpp (revision 78d0e91865f6038adb23ec272c3e1e7e1525057f)
1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This coordinates the per-module state used while generating code.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "CodeGenModule.h"
14 #include "CGBlocks.h"
15 #include "CGCUDARuntime.h"
16 #include "CGCXXABI.h"
17 #include "CGCall.h"
18 #include "CGDebugInfo.h"
19 #include "CGObjCRuntime.h"
20 #include "CGOpenCLRuntime.h"
21 #include "CGOpenMPRuntime.h"
22 #include "CGOpenMPRuntimeAMDGCN.h"
23 #include "CGOpenMPRuntimeNVPTX.h"
24 #include "CodeGenFunction.h"
25 #include "CodeGenPGO.h"
26 #include "ConstantEmitter.h"
27 #include "CoverageMappingGen.h"
28 #include "TargetInfo.h"
29 #include "clang/AST/ASTContext.h"
30 #include "clang/AST/CharUnits.h"
31 #include "clang/AST/DeclCXX.h"
32 #include "clang/AST/DeclObjC.h"
33 #include "clang/AST/DeclTemplate.h"
34 #include "clang/AST/Mangle.h"
35 #include "clang/AST/RecordLayout.h"
36 #include "clang/AST/RecursiveASTVisitor.h"
37 #include "clang/AST/StmtVisitor.h"
38 #include "clang/Basic/Builtins.h"
39 #include "clang/Basic/CharInfo.h"
40 #include "clang/Basic/CodeGenOptions.h"
41 #include "clang/Basic/Diagnostic.h"
42 #include "clang/Basic/FileManager.h"
43 #include "clang/Basic/Module.h"
44 #include "clang/Basic/SourceManager.h"
45 #include "clang/Basic/TargetInfo.h"
46 #include "clang/Basic/Version.h"
47 #include "clang/CodeGen/ConstantInitBuilder.h"
48 #include "clang/Frontend/FrontendDiagnostic.h"
49 #include "llvm/ADT/StringSwitch.h"
50 #include "llvm/ADT/Triple.h"
51 #include "llvm/Analysis/TargetLibraryInfo.h"
52 #include "llvm/Frontend/OpenMP/OMPIRBuilder.h"
53 #include "llvm/IR/CallingConv.h"
54 #include "llvm/IR/DataLayout.h"
55 #include "llvm/IR/Intrinsics.h"
56 #include "llvm/IR/LLVMContext.h"
57 #include "llvm/IR/Module.h"
58 #include "llvm/IR/ProfileSummary.h"
59 #include "llvm/ProfileData/InstrProfReader.h"
60 #include "llvm/Support/CodeGen.h"
61 #include "llvm/Support/CommandLine.h"
62 #include "llvm/Support/ConvertUTF.h"
63 #include "llvm/Support/ErrorHandling.h"
64 #include "llvm/Support/MD5.h"
65 #include "llvm/Support/TimeProfiler.h"
66 
67 using namespace clang;
68 using namespace CodeGen;
69 
70 static llvm::cl::opt<bool> LimitedCoverage(
71     "limited-coverage-experimental", llvm::cl::ZeroOrMore, llvm::cl::Hidden,
72     llvm::cl::desc("Emit limited coverage mapping information (experimental)"),
73     llvm::cl::init(false));
74 
75 static const char AnnotationSection[] = "llvm.metadata";
76 
77 static CGCXXABI *createCXXABI(CodeGenModule &CGM) {
78   switch (CGM.getTarget().getCXXABI().getKind()) {
79   case TargetCXXABI::AppleARM64:
80   case TargetCXXABI::Fuchsia:
81   case TargetCXXABI::GenericAArch64:
82   case TargetCXXABI::GenericARM:
83   case TargetCXXABI::iOS:
84   case TargetCXXABI::WatchOS:
85   case TargetCXXABI::GenericMIPS:
86   case TargetCXXABI::GenericItanium:
87   case TargetCXXABI::WebAssembly:
88   case TargetCXXABI::XL:
89     return CreateItaniumCXXABI(CGM);
90   case TargetCXXABI::Microsoft:
91     return CreateMicrosoftCXXABI(CGM);
92   }
93 
94   llvm_unreachable("invalid C++ ABI kind");
95 }
96 
97 CodeGenModule::CodeGenModule(ASTContext &C, const HeaderSearchOptions &HSO,
98                              const PreprocessorOptions &PPO,
99                              const CodeGenOptions &CGO, llvm::Module &M,
100                              DiagnosticsEngine &diags,
101                              CoverageSourceInfo *CoverageInfo)
102     : Context(C), LangOpts(C.getLangOpts()), HeaderSearchOpts(HSO),
103       PreprocessorOpts(PPO), CodeGenOpts(CGO), TheModule(M), Diags(diags),
104       Target(C.getTargetInfo()), ABI(createCXXABI(*this)),
105       VMContext(M.getContext()), Types(*this), VTables(*this),
106       SanitizerMD(new SanitizerMetadata(*this)) {
107 
108   // Initialize the type cache.
109   llvm::LLVMContext &LLVMContext = M.getContext();
110   VoidTy = llvm::Type::getVoidTy(LLVMContext);
111   Int8Ty = llvm::Type::getInt8Ty(LLVMContext);
112   Int16Ty = llvm::Type::getInt16Ty(LLVMContext);
113   Int32Ty = llvm::Type::getInt32Ty(LLVMContext);
114   Int64Ty = llvm::Type::getInt64Ty(LLVMContext);
115   HalfTy = llvm::Type::getHalfTy(LLVMContext);
116   BFloatTy = llvm::Type::getBFloatTy(LLVMContext);
117   FloatTy = llvm::Type::getFloatTy(LLVMContext);
118   DoubleTy = llvm::Type::getDoubleTy(LLVMContext);
119   PointerWidthInBits = C.getTargetInfo().getPointerWidth(0);
120   PointerAlignInBytes =
121     C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(0)).getQuantity();
122   SizeSizeInBytes =
123     C.toCharUnitsFromBits(C.getTargetInfo().getMaxPointerWidth()).getQuantity();
124   IntAlignInBytes =
125     C.toCharUnitsFromBits(C.getTargetInfo().getIntAlign()).getQuantity();
126   CharTy =
127     llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getCharWidth());
128   IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth());
129   IntPtrTy = llvm::IntegerType::get(LLVMContext,
130     C.getTargetInfo().getMaxPointerWidth());
131   Int8PtrTy = Int8Ty->getPointerTo(0);
132   Int8PtrPtrTy = Int8PtrTy->getPointerTo(0);
133   AllocaInt8PtrTy = Int8Ty->getPointerTo(
134       M.getDataLayout().getAllocaAddrSpace());
135   ASTAllocaAddressSpace = getTargetCodeGenInfo().getASTAllocaAddressSpace();
136 
137   RuntimeCC = getTargetCodeGenInfo().getABIInfo().getRuntimeCC();
138 
139   if (LangOpts.ObjC)
140     createObjCRuntime();
141   if (LangOpts.OpenCL)
142     createOpenCLRuntime();
143   if (LangOpts.OpenMP)
144     createOpenMPRuntime();
145   if (LangOpts.CUDA)
146     createCUDARuntime();
147 
148   // Enable TBAA unless it's suppressed. ThreadSanitizer needs TBAA even at O0.
149   if (LangOpts.Sanitize.has(SanitizerKind::Thread) ||
150       (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0))
151     TBAA.reset(new CodeGenTBAA(Context, TheModule, CodeGenOpts, getLangOpts(),
152                                getCXXABI().getMangleContext()));
153 
154   // If debug info or coverage generation is enabled, create the CGDebugInfo
155   // object.
156   if (CodeGenOpts.getDebugInfo() != codegenoptions::NoDebugInfo ||
157       CodeGenOpts.EmitGcovArcs || CodeGenOpts.EmitGcovNotes)
158     DebugInfo.reset(new CGDebugInfo(*this));
159 
160   Block.GlobalUniqueCount = 0;
161 
162   if (C.getLangOpts().ObjC)
163     ObjCData.reset(new ObjCEntrypoints());
164 
165   if (CodeGenOpts.hasProfileClangUse()) {
166     auto ReaderOrErr = llvm::IndexedInstrProfReader::create(
167         CodeGenOpts.ProfileInstrumentUsePath, CodeGenOpts.ProfileRemappingFile);
168     if (auto E = ReaderOrErr.takeError()) {
169       unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
170                                               "Could not read profile %0: %1");
171       llvm::handleAllErrors(std::move(E), [&](const llvm::ErrorInfoBase &EI) {
172         getDiags().Report(DiagID) << CodeGenOpts.ProfileInstrumentUsePath
173                                   << EI.message();
174       });
175     } else
176       PGOReader = std::move(ReaderOrErr.get());
177   }
178 
179   // If coverage mapping generation is enabled, create the
180   // CoverageMappingModuleGen object.
181   if (CodeGenOpts.CoverageMapping)
182     CoverageMapping.reset(new CoverageMappingModuleGen(*this, *CoverageInfo));
183 
184   // Generate the module name hash here if needed.
185   if (CodeGenOpts.UniqueInternalLinkageNames &&
186       !getModule().getSourceFileName().empty()) {
187     std::string Path = getModule().getSourceFileName();
188     // Check if a path substitution is needed from the MacroPrefixMap.
189     for (const auto &Entry : PPO.MacroPrefixMap)
190       if (Path.rfind(Entry.first, 0) != std::string::npos) {
191         Path = Entry.second + Path.substr(Entry.first.size());
192         break;
193       }
194     llvm::MD5 Md5;
195     Md5.update(Path);
196     llvm::MD5::MD5Result R;
197     Md5.final(R);
198     SmallString<32> Str;
199     llvm::MD5::stringifyResult(R, Str);
200     // Convert MD5hash to Decimal. Demangler suffixes can either contain
201     // numbers or characters but not both.
202     llvm::APInt IntHash(128, Str.str(), 16);
203     // Prepend "__uniq" before the hash for tools like profilers to understand
204     // that this symbol is of internal linkage type.  The "__uniq" is the
205     // pre-determined prefix that is used to tell tools that this symbol was
206     // created with -funique-internal-linakge-symbols and the tools can strip or
207     // keep the prefix as needed.
208     ModuleNameHash = (Twine(".__uniq.") +
209         Twine(IntHash.toString(/* Radix = */ 10, /* Signed = */false))).str();
210   }
211 }
212 
213 CodeGenModule::~CodeGenModule() {}
214 
215 void CodeGenModule::createObjCRuntime() {
216   // This is just isGNUFamily(), but we want to force implementors of
217   // new ABIs to decide how best to do this.
218   switch (LangOpts.ObjCRuntime.getKind()) {
219   case ObjCRuntime::GNUstep:
220   case ObjCRuntime::GCC:
221   case ObjCRuntime::ObjFW:
222     ObjCRuntime.reset(CreateGNUObjCRuntime(*this));
223     return;
224 
225   case ObjCRuntime::FragileMacOSX:
226   case ObjCRuntime::MacOSX:
227   case ObjCRuntime::iOS:
228   case ObjCRuntime::WatchOS:
229     ObjCRuntime.reset(CreateMacObjCRuntime(*this));
230     return;
231   }
232   llvm_unreachable("bad runtime kind");
233 }
234 
235 void CodeGenModule::createOpenCLRuntime() {
236   OpenCLRuntime.reset(new CGOpenCLRuntime(*this));
237 }
238 
239 void CodeGenModule::createOpenMPRuntime() {
240   // Select a specialized code generation class based on the target, if any.
241   // If it does not exist use the default implementation.
242   switch (getTriple().getArch()) {
243   case llvm::Triple::nvptx:
244   case llvm::Triple::nvptx64:
245     assert(getLangOpts().OpenMPIsDevice &&
246            "OpenMP NVPTX is only prepared to deal with device code.");
247     OpenMPRuntime.reset(new CGOpenMPRuntimeNVPTX(*this));
248     break;
249   case llvm::Triple::amdgcn:
250     assert(getLangOpts().OpenMPIsDevice &&
251            "OpenMP AMDGCN is only prepared to deal with device code.");
252     OpenMPRuntime.reset(new CGOpenMPRuntimeAMDGCN(*this));
253     break;
254   default:
255     if (LangOpts.OpenMPSimd)
256       OpenMPRuntime.reset(new CGOpenMPSIMDRuntime(*this));
257     else
258       OpenMPRuntime.reset(new CGOpenMPRuntime(*this));
259     break;
260   }
261 }
262 
263 void CodeGenModule::createCUDARuntime() {
264   CUDARuntime.reset(CreateNVCUDARuntime(*this));
265 }
266 
267 void CodeGenModule::addReplacement(StringRef Name, llvm::Constant *C) {
268   Replacements[Name] = C;
269 }
270 
271 void CodeGenModule::applyReplacements() {
272   for (auto &I : Replacements) {
273     StringRef MangledName = I.first();
274     llvm::Constant *Replacement = I.second;
275     llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
276     if (!Entry)
277       continue;
278     auto *OldF = cast<llvm::Function>(Entry);
279     auto *NewF = dyn_cast<llvm::Function>(Replacement);
280     if (!NewF) {
281       if (auto *Alias = dyn_cast<llvm::GlobalAlias>(Replacement)) {
282         NewF = dyn_cast<llvm::Function>(Alias->getAliasee());
283       } else {
284         auto *CE = cast<llvm::ConstantExpr>(Replacement);
285         assert(CE->getOpcode() == llvm::Instruction::BitCast ||
286                CE->getOpcode() == llvm::Instruction::GetElementPtr);
287         NewF = dyn_cast<llvm::Function>(CE->getOperand(0));
288       }
289     }
290 
291     // Replace old with new, but keep the old order.
292     OldF->replaceAllUsesWith(Replacement);
293     if (NewF) {
294       NewF->removeFromParent();
295       OldF->getParent()->getFunctionList().insertAfter(OldF->getIterator(),
296                                                        NewF);
297     }
298     OldF->eraseFromParent();
299   }
300 }
301 
302 void CodeGenModule::addGlobalValReplacement(llvm::GlobalValue *GV, llvm::Constant *C) {
303   GlobalValReplacements.push_back(std::make_pair(GV, C));
304 }
305 
306 void CodeGenModule::applyGlobalValReplacements() {
307   for (auto &I : GlobalValReplacements) {
308     llvm::GlobalValue *GV = I.first;
309     llvm::Constant *C = I.second;
310 
311     GV->replaceAllUsesWith(C);
312     GV->eraseFromParent();
313   }
314 }
315 
316 // This is only used in aliases that we created and we know they have a
317 // linear structure.
318 static const llvm::GlobalObject *getAliasedGlobal(
319     const llvm::GlobalIndirectSymbol &GIS) {
320   llvm::SmallPtrSet<const llvm::GlobalIndirectSymbol*, 4> Visited;
321   const llvm::Constant *C = &GIS;
322   for (;;) {
323     C = C->stripPointerCasts();
324     if (auto *GO = dyn_cast<llvm::GlobalObject>(C))
325       return GO;
326     // stripPointerCasts will not walk over weak aliases.
327     auto *GIS2 = dyn_cast<llvm::GlobalIndirectSymbol>(C);
328     if (!GIS2)
329       return nullptr;
330     if (!Visited.insert(GIS2).second)
331       return nullptr;
332     C = GIS2->getIndirectSymbol();
333   }
334 }
335 
336 void CodeGenModule::checkAliases() {
337   // Check if the constructed aliases are well formed. It is really unfortunate
338   // that we have to do this in CodeGen, but we only construct mangled names
339   // and aliases during codegen.
340   bool Error = false;
341   DiagnosticsEngine &Diags = getDiags();
342   for (const GlobalDecl &GD : Aliases) {
343     const auto *D = cast<ValueDecl>(GD.getDecl());
344     SourceLocation Location;
345     bool IsIFunc = D->hasAttr<IFuncAttr>();
346     if (const Attr *A = D->getDefiningAttr())
347       Location = A->getLocation();
348     else
349       llvm_unreachable("Not an alias or ifunc?");
350     StringRef MangledName = getMangledName(GD);
351     llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
352     auto *Alias  = cast<llvm::GlobalIndirectSymbol>(Entry);
353     const llvm::GlobalValue *GV = getAliasedGlobal(*Alias);
354     if (!GV) {
355       Error = true;
356       Diags.Report(Location, diag::err_cyclic_alias) << IsIFunc;
357     } else if (GV->isDeclaration()) {
358       Error = true;
359       Diags.Report(Location, diag::err_alias_to_undefined)
360           << IsIFunc << IsIFunc;
361     } else if (IsIFunc) {
362       // Check resolver function type.
363       llvm::FunctionType *FTy = dyn_cast<llvm::FunctionType>(
364           GV->getType()->getPointerElementType());
365       assert(FTy);
366       if (!FTy->getReturnType()->isPointerTy())
367         Diags.Report(Location, diag::err_ifunc_resolver_return);
368     }
369 
370     llvm::Constant *Aliasee = Alias->getIndirectSymbol();
371     llvm::GlobalValue *AliaseeGV;
372     if (auto CE = dyn_cast<llvm::ConstantExpr>(Aliasee))
373       AliaseeGV = cast<llvm::GlobalValue>(CE->getOperand(0));
374     else
375       AliaseeGV = cast<llvm::GlobalValue>(Aliasee);
376 
377     if (const SectionAttr *SA = D->getAttr<SectionAttr>()) {
378       StringRef AliasSection = SA->getName();
379       if (AliasSection != AliaseeGV->getSection())
380         Diags.Report(SA->getLocation(), diag::warn_alias_with_section)
381             << AliasSection << IsIFunc << IsIFunc;
382     }
383 
384     // We have to handle alias to weak aliases in here. LLVM itself disallows
385     // this since the object semantics would not match the IL one. For
386     // compatibility with gcc we implement it by just pointing the alias
387     // to its aliasee's aliasee. We also warn, since the user is probably
388     // expecting the link to be weak.
389     if (auto GA = dyn_cast<llvm::GlobalIndirectSymbol>(AliaseeGV)) {
390       if (GA->isInterposable()) {
391         Diags.Report(Location, diag::warn_alias_to_weak_alias)
392             << GV->getName() << GA->getName() << IsIFunc;
393         Aliasee = llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(
394             GA->getIndirectSymbol(), Alias->getType());
395         Alias->setIndirectSymbol(Aliasee);
396       }
397     }
398   }
399   if (!Error)
400     return;
401 
402   for (const GlobalDecl &GD : Aliases) {
403     StringRef MangledName = getMangledName(GD);
404     llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
405     auto *Alias = cast<llvm::GlobalIndirectSymbol>(Entry);
406     Alias->replaceAllUsesWith(llvm::UndefValue::get(Alias->getType()));
407     Alias->eraseFromParent();
408   }
409 }
410 
411 void CodeGenModule::clear() {
412   DeferredDeclsToEmit.clear();
413   if (OpenMPRuntime)
414     OpenMPRuntime->clear();
415 }
416 
417 void InstrProfStats::reportDiagnostics(DiagnosticsEngine &Diags,
418                                        StringRef MainFile) {
419   if (!hasDiagnostics())
420     return;
421   if (VisitedInMainFile > 0 && VisitedInMainFile == MissingInMainFile) {
422     if (MainFile.empty())
423       MainFile = "<stdin>";
424     Diags.Report(diag::warn_profile_data_unprofiled) << MainFile;
425   } else {
426     if (Mismatched > 0)
427       Diags.Report(diag::warn_profile_data_out_of_date) << Visited << Mismatched;
428 
429     if (Missing > 0)
430       Diags.Report(diag::warn_profile_data_missing) << Visited << Missing;
431   }
432 }
433 
434 static void setVisibilityFromDLLStorageClass(const clang::LangOptions &LO,
435                                              llvm::Module &M) {
436   if (!LO.VisibilityFromDLLStorageClass)
437     return;
438 
439   llvm::GlobalValue::VisibilityTypes DLLExportVisibility =
440       CodeGenModule::GetLLVMVisibility(LO.getDLLExportVisibility());
441   llvm::GlobalValue::VisibilityTypes NoDLLStorageClassVisibility =
442       CodeGenModule::GetLLVMVisibility(LO.getNoDLLStorageClassVisibility());
443   llvm::GlobalValue::VisibilityTypes ExternDeclDLLImportVisibility =
444       CodeGenModule::GetLLVMVisibility(LO.getExternDeclDLLImportVisibility());
445   llvm::GlobalValue::VisibilityTypes ExternDeclNoDLLStorageClassVisibility =
446       CodeGenModule::GetLLVMVisibility(
447           LO.getExternDeclNoDLLStorageClassVisibility());
448 
449   for (llvm::GlobalValue &GV : M.global_values()) {
450     if (GV.hasAppendingLinkage() || GV.hasLocalLinkage())
451       continue;
452 
453     // Reset DSO locality before setting the visibility. This removes
454     // any effects that visibility options and annotations may have
455     // had on the DSO locality. Setting the visibility will implicitly set
456     // appropriate globals to DSO Local; however, this will be pessimistic
457     // w.r.t. to the normal compiler IRGen.
458     GV.setDSOLocal(false);
459 
460     if (GV.isDeclarationForLinker()) {
461       GV.setVisibility(GV.getDLLStorageClass() ==
462                                llvm::GlobalValue::DLLImportStorageClass
463                            ? ExternDeclDLLImportVisibility
464                            : ExternDeclNoDLLStorageClassVisibility);
465     } else {
466       GV.setVisibility(GV.getDLLStorageClass() ==
467                                llvm::GlobalValue::DLLExportStorageClass
468                            ? DLLExportVisibility
469                            : NoDLLStorageClassVisibility);
470     }
471 
472     GV.setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
473   }
474 }
475 
476 void CodeGenModule::Release() {
477   EmitDeferred();
478   EmitVTablesOpportunistically();
479   applyGlobalValReplacements();
480   applyReplacements();
481   checkAliases();
482   emitMultiVersionFunctions();
483   EmitCXXGlobalInitFunc();
484   EmitCXXGlobalCleanUpFunc();
485   registerGlobalDtorsWithAtExit();
486   EmitCXXThreadLocalInitFunc();
487   if (ObjCRuntime)
488     if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction())
489       AddGlobalCtor(ObjCInitFunction);
490   if (Context.getLangOpts().CUDA && CUDARuntime) {
491     if (llvm::Function *CudaCtorFunction = CUDARuntime->finalizeModule())
492       AddGlobalCtor(CudaCtorFunction);
493   }
494   if (OpenMPRuntime) {
495     if (llvm::Function *OpenMPRequiresDirectiveRegFun =
496             OpenMPRuntime->emitRequiresDirectiveRegFun()) {
497       AddGlobalCtor(OpenMPRequiresDirectiveRegFun, 0);
498     }
499     OpenMPRuntime->createOffloadEntriesAndInfoMetadata();
500     OpenMPRuntime->clear();
501   }
502   if (PGOReader) {
503     getModule().setProfileSummary(
504         PGOReader->getSummary(/* UseCS */ false).getMD(VMContext),
505         llvm::ProfileSummary::PSK_Instr);
506     if (PGOStats.hasDiagnostics())
507       PGOStats.reportDiagnostics(getDiags(), getCodeGenOpts().MainFileName);
508   }
509   EmitCtorList(GlobalCtors, "llvm.global_ctors");
510   EmitCtorList(GlobalDtors, "llvm.global_dtors");
511   EmitGlobalAnnotations();
512   EmitStaticExternCAliases();
513   EmitDeferredUnusedCoverageMappings();
514   if (CoverageMapping)
515     CoverageMapping->emit();
516   if (CodeGenOpts.SanitizeCfiCrossDso) {
517     CodeGenFunction(*this).EmitCfiCheckFail();
518     CodeGenFunction(*this).EmitCfiCheckStub();
519   }
520   emitAtAvailableLinkGuard();
521   if (Context.getTargetInfo().getTriple().isWasm() &&
522       !Context.getTargetInfo().getTriple().isOSEmscripten()) {
523     EmitMainVoidAlias();
524   }
525   emitLLVMUsed();
526   if (SanStats)
527     SanStats->finish();
528 
529   if (CodeGenOpts.Autolink &&
530       (Context.getLangOpts().Modules || !LinkerOptionsMetadata.empty())) {
531     EmitModuleLinkOptions();
532   }
533 
534   // On ELF we pass the dependent library specifiers directly to the linker
535   // without manipulating them. This is in contrast to other platforms where
536   // they are mapped to a specific linker option by the compiler. This
537   // difference is a result of the greater variety of ELF linkers and the fact
538   // that ELF linkers tend to handle libraries in a more complicated fashion
539   // than on other platforms. This forces us to defer handling the dependent
540   // libs to the linker.
541   //
542   // CUDA/HIP device and host libraries are different. Currently there is no
543   // way to differentiate dependent libraries for host or device. Existing
544   // usage of #pragma comment(lib, *) is intended for host libraries on
545   // Windows. Therefore emit llvm.dependent-libraries only for host.
546   if (!ELFDependentLibraries.empty() && !Context.getLangOpts().CUDAIsDevice) {
547     auto *NMD = getModule().getOrInsertNamedMetadata("llvm.dependent-libraries");
548     for (auto *MD : ELFDependentLibraries)
549       NMD->addOperand(MD);
550   }
551 
552   // Record mregparm value now so it is visible through rest of codegen.
553   if (Context.getTargetInfo().getTriple().getArch() == llvm::Triple::x86)
554     getModule().addModuleFlag(llvm::Module::Error, "NumRegisterParameters",
555                               CodeGenOpts.NumRegisterParameters);
556 
557   if (CodeGenOpts.DwarfVersion) {
558     getModule().addModuleFlag(llvm::Module::Max, "Dwarf Version",
559                               CodeGenOpts.DwarfVersion);
560   }
561 
562   if (CodeGenOpts.Dwarf64)
563     getModule().addModuleFlag(llvm::Module::Max, "DWARF64", 1);
564 
565   if (Context.getLangOpts().SemanticInterposition)
566     // Require various optimization to respect semantic interposition.
567     getModule().setSemanticInterposition(1);
568 
569   if (CodeGenOpts.EmitCodeView) {
570     // Indicate that we want CodeView in the metadata.
571     getModule().addModuleFlag(llvm::Module::Warning, "CodeView", 1);
572   }
573   if (CodeGenOpts.CodeViewGHash) {
574     getModule().addModuleFlag(llvm::Module::Warning, "CodeViewGHash", 1);
575   }
576   if (CodeGenOpts.ControlFlowGuard) {
577     // Function ID tables and checks for Control Flow Guard (cfguard=2).
578     getModule().addModuleFlag(llvm::Module::Warning, "cfguard", 2);
579   } else if (CodeGenOpts.ControlFlowGuardNoChecks) {
580     // Function ID tables for Control Flow Guard (cfguard=1).
581     getModule().addModuleFlag(llvm::Module::Warning, "cfguard", 1);
582   }
583   if (CodeGenOpts.EHContGuard) {
584     // Function ID tables for EH Continuation Guard.
585     getModule().addModuleFlag(llvm::Module::Warning, "ehcontguard", 1);
586   }
587   if (CodeGenOpts.OptimizationLevel > 0 && CodeGenOpts.StrictVTablePointers) {
588     // We don't support LTO with 2 with different StrictVTablePointers
589     // FIXME: we could support it by stripping all the information introduced
590     // by StrictVTablePointers.
591 
592     getModule().addModuleFlag(llvm::Module::Error, "StrictVTablePointers",1);
593 
594     llvm::Metadata *Ops[2] = {
595               llvm::MDString::get(VMContext, "StrictVTablePointers"),
596               llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
597                   llvm::Type::getInt32Ty(VMContext), 1))};
598 
599     getModule().addModuleFlag(llvm::Module::Require,
600                               "StrictVTablePointersRequirement",
601                               llvm::MDNode::get(VMContext, Ops));
602   }
603   if (getModuleDebugInfo())
604     // We support a single version in the linked module. The LLVM
605     // parser will drop debug info with a different version number
606     // (and warn about it, too).
607     getModule().addModuleFlag(llvm::Module::Warning, "Debug Info Version",
608                               llvm::DEBUG_METADATA_VERSION);
609 
610   // We need to record the widths of enums and wchar_t, so that we can generate
611   // the correct build attributes in the ARM backend. wchar_size is also used by
612   // TargetLibraryInfo.
613   uint64_t WCharWidth =
614       Context.getTypeSizeInChars(Context.getWideCharType()).getQuantity();
615   getModule().addModuleFlag(llvm::Module::Error, "wchar_size", WCharWidth);
616 
617   llvm::Triple::ArchType Arch = Context.getTargetInfo().getTriple().getArch();
618   if (   Arch == llvm::Triple::arm
619       || Arch == llvm::Triple::armeb
620       || Arch == llvm::Triple::thumb
621       || Arch == llvm::Triple::thumbeb) {
622     // The minimum width of an enum in bytes
623     uint64_t EnumWidth = Context.getLangOpts().ShortEnums ? 1 : 4;
624     getModule().addModuleFlag(llvm::Module::Error, "min_enum_size", EnumWidth);
625   }
626 
627   if (Arch == llvm::Triple::riscv32 || Arch == llvm::Triple::riscv64) {
628     StringRef ABIStr = Target.getABI();
629     llvm::LLVMContext &Ctx = TheModule.getContext();
630     getModule().addModuleFlag(llvm::Module::Error, "target-abi",
631                               llvm::MDString::get(Ctx, ABIStr));
632   }
633 
634   if (CodeGenOpts.SanitizeCfiCrossDso) {
635     // Indicate that we want cross-DSO control flow integrity checks.
636     getModule().addModuleFlag(llvm::Module::Override, "Cross-DSO CFI", 1);
637   }
638 
639   if (CodeGenOpts.WholeProgramVTables) {
640     // Indicate whether VFE was enabled for this module, so that the
641     // vcall_visibility metadata added under whole program vtables is handled
642     // appropriately in the optimizer.
643     getModule().addModuleFlag(llvm::Module::Error, "Virtual Function Elim",
644                               CodeGenOpts.VirtualFunctionElimination);
645   }
646 
647   if (LangOpts.Sanitize.has(SanitizerKind::CFIICall)) {
648     getModule().addModuleFlag(llvm::Module::Override,
649                               "CFI Canonical Jump Tables",
650                               CodeGenOpts.SanitizeCfiCanonicalJumpTables);
651   }
652 
653   if (CodeGenOpts.CFProtectionReturn &&
654       Target.checkCFProtectionReturnSupported(getDiags())) {
655     // Indicate that we want to instrument return control flow protection.
656     getModule().addModuleFlag(llvm::Module::Override, "cf-protection-return",
657                               1);
658   }
659 
660   if (CodeGenOpts.CFProtectionBranch &&
661       Target.checkCFProtectionBranchSupported(getDiags())) {
662     // Indicate that we want to instrument branch control flow protection.
663     getModule().addModuleFlag(llvm::Module::Override, "cf-protection-branch",
664                               1);
665   }
666 
667   if (Arch == llvm::Triple::aarch64 || Arch == llvm::Triple::aarch64_32 ||
668       Arch == llvm::Triple::aarch64_be) {
669     getModule().addModuleFlag(llvm::Module::Error,
670                               "branch-target-enforcement",
671                               LangOpts.BranchTargetEnforcement);
672 
673     getModule().addModuleFlag(llvm::Module::Error, "sign-return-address",
674                               LangOpts.hasSignReturnAddress());
675 
676     getModule().addModuleFlag(llvm::Module::Error, "sign-return-address-all",
677                               LangOpts.isSignReturnAddressScopeAll());
678 
679     getModule().addModuleFlag(llvm::Module::Error,
680                               "sign-return-address-with-bkey",
681                               !LangOpts.isSignReturnAddressWithAKey());
682   }
683 
684   if (!CodeGenOpts.MemoryProfileOutput.empty()) {
685     llvm::LLVMContext &Ctx = TheModule.getContext();
686     getModule().addModuleFlag(
687         llvm::Module::Error, "MemProfProfileFilename",
688         llvm::MDString::get(Ctx, CodeGenOpts.MemoryProfileOutput));
689   }
690 
691   if (LangOpts.CUDAIsDevice && getTriple().isNVPTX()) {
692     // Indicate whether __nvvm_reflect should be configured to flush denormal
693     // floating point values to 0.  (This corresponds to its "__CUDA_FTZ"
694     // property.)
695     getModule().addModuleFlag(llvm::Module::Override, "nvvm-reflect-ftz",
696                               CodeGenOpts.FP32DenormalMode.Output !=
697                                   llvm::DenormalMode::IEEE);
698   }
699 
700   // Emit OpenCL specific module metadata: OpenCL/SPIR version.
701   if (LangOpts.OpenCL) {
702     EmitOpenCLMetadata();
703     // Emit SPIR version.
704     if (getTriple().isSPIR()) {
705       // SPIR v2.0 s2.12 - The SPIR version used by the module is stored in the
706       // opencl.spir.version named metadata.
707       // C++ is backwards compatible with OpenCL v2.0.
708       auto Version = LangOpts.OpenCLCPlusPlus ? 200 : LangOpts.OpenCLVersion;
709       llvm::Metadata *SPIRVerElts[] = {
710           llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
711               Int32Ty, Version / 100)),
712           llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
713               Int32Ty, (Version / 100 > 1) ? 0 : 2))};
714       llvm::NamedMDNode *SPIRVerMD =
715           TheModule.getOrInsertNamedMetadata("opencl.spir.version");
716       llvm::LLVMContext &Ctx = TheModule.getContext();
717       SPIRVerMD->addOperand(llvm::MDNode::get(Ctx, SPIRVerElts));
718     }
719   }
720 
721   if (uint32_t PLevel = Context.getLangOpts().PICLevel) {
722     assert(PLevel < 3 && "Invalid PIC Level");
723     getModule().setPICLevel(static_cast<llvm::PICLevel::Level>(PLevel));
724     if (Context.getLangOpts().PIE)
725       getModule().setPIELevel(static_cast<llvm::PIELevel::Level>(PLevel));
726   }
727 
728   if (getCodeGenOpts().CodeModel.size() > 0) {
729     unsigned CM = llvm::StringSwitch<unsigned>(getCodeGenOpts().CodeModel)
730                   .Case("tiny", llvm::CodeModel::Tiny)
731                   .Case("small", llvm::CodeModel::Small)
732                   .Case("kernel", llvm::CodeModel::Kernel)
733                   .Case("medium", llvm::CodeModel::Medium)
734                   .Case("large", llvm::CodeModel::Large)
735                   .Default(~0u);
736     if (CM != ~0u) {
737       llvm::CodeModel::Model codeModel = static_cast<llvm::CodeModel::Model>(CM);
738       getModule().setCodeModel(codeModel);
739     }
740   }
741 
742   if (CodeGenOpts.NoPLT)
743     getModule().setRtLibUseGOT();
744 
745   SimplifyPersonality();
746 
747   if (getCodeGenOpts().EmitDeclMetadata)
748     EmitDeclMetadata();
749 
750   if (getCodeGenOpts().EmitGcovArcs || getCodeGenOpts().EmitGcovNotes)
751     EmitCoverageFile();
752 
753   if (CGDebugInfo *DI = getModuleDebugInfo())
754     DI->finalize();
755 
756   if (getCodeGenOpts().EmitVersionIdentMetadata)
757     EmitVersionIdentMetadata();
758 
759   if (!getCodeGenOpts().RecordCommandLine.empty())
760     EmitCommandLineMetadata();
761 
762   getTargetCodeGenInfo().emitTargetMetadata(*this, MangledDeclNames);
763 
764   EmitBackendOptionsMetadata(getCodeGenOpts());
765 
766   // Set visibility from DLL storage class
767   // We do this at the end of LLVM IR generation; after any operation
768   // that might affect the DLL storage class or the visibility, and
769   // before anything that might act on these.
770   setVisibilityFromDLLStorageClass(LangOpts, getModule());
771 }
772 
773 void CodeGenModule::EmitOpenCLMetadata() {
774   // SPIR v2.0 s2.13 - The OpenCL version used by the module is stored in the
775   // opencl.ocl.version named metadata node.
776   // C++ is backwards compatible with OpenCL v2.0.
777   // FIXME: We might need to add CXX version at some point too?
778   auto Version = LangOpts.OpenCLCPlusPlus ? 200 : LangOpts.OpenCLVersion;
779   llvm::Metadata *OCLVerElts[] = {
780       llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
781           Int32Ty, Version / 100)),
782       llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
783           Int32Ty, (Version % 100) / 10))};
784   llvm::NamedMDNode *OCLVerMD =
785       TheModule.getOrInsertNamedMetadata("opencl.ocl.version");
786   llvm::LLVMContext &Ctx = TheModule.getContext();
787   OCLVerMD->addOperand(llvm::MDNode::get(Ctx, OCLVerElts));
788 }
789 
790 void CodeGenModule::EmitBackendOptionsMetadata(
791     const CodeGenOptions CodeGenOpts) {
792   switch (getTriple().getArch()) {
793   default:
794     break;
795   case llvm::Triple::riscv32:
796   case llvm::Triple::riscv64:
797     getModule().addModuleFlag(llvm::Module::Error, "SmallDataLimit",
798                               CodeGenOpts.SmallDataLimit);
799     break;
800   }
801 }
802 
803 void CodeGenModule::UpdateCompletedType(const TagDecl *TD) {
804   // Make sure that this type is translated.
805   Types.UpdateCompletedType(TD);
806 }
807 
808 void CodeGenModule::RefreshTypeCacheForClass(const CXXRecordDecl *RD) {
809   // Make sure that this type is translated.
810   Types.RefreshTypeCacheForClass(RD);
811 }
812 
813 llvm::MDNode *CodeGenModule::getTBAATypeInfo(QualType QTy) {
814   if (!TBAA)
815     return nullptr;
816   return TBAA->getTypeInfo(QTy);
817 }
818 
819 TBAAAccessInfo CodeGenModule::getTBAAAccessInfo(QualType AccessType) {
820   if (!TBAA)
821     return TBAAAccessInfo();
822   if (getLangOpts().CUDAIsDevice) {
823     // As CUDA builtin surface/texture types are replaced, skip generating TBAA
824     // access info.
825     if (AccessType->isCUDADeviceBuiltinSurfaceType()) {
826       if (getTargetCodeGenInfo().getCUDADeviceBuiltinSurfaceDeviceType() !=
827           nullptr)
828         return TBAAAccessInfo();
829     } else if (AccessType->isCUDADeviceBuiltinTextureType()) {
830       if (getTargetCodeGenInfo().getCUDADeviceBuiltinTextureDeviceType() !=
831           nullptr)
832         return TBAAAccessInfo();
833     }
834   }
835   return TBAA->getAccessInfo(AccessType);
836 }
837 
838 TBAAAccessInfo
839 CodeGenModule::getTBAAVTablePtrAccessInfo(llvm::Type *VTablePtrType) {
840   if (!TBAA)
841     return TBAAAccessInfo();
842   return TBAA->getVTablePtrAccessInfo(VTablePtrType);
843 }
844 
845 llvm::MDNode *CodeGenModule::getTBAAStructInfo(QualType QTy) {
846   if (!TBAA)
847     return nullptr;
848   return TBAA->getTBAAStructInfo(QTy);
849 }
850 
851 llvm::MDNode *CodeGenModule::getTBAABaseTypeInfo(QualType QTy) {
852   if (!TBAA)
853     return nullptr;
854   return TBAA->getBaseTypeInfo(QTy);
855 }
856 
857 llvm::MDNode *CodeGenModule::getTBAAAccessTagInfo(TBAAAccessInfo Info) {
858   if (!TBAA)
859     return nullptr;
860   return TBAA->getAccessTagInfo(Info);
861 }
862 
863 TBAAAccessInfo CodeGenModule::mergeTBAAInfoForCast(TBAAAccessInfo SourceInfo,
864                                                    TBAAAccessInfo TargetInfo) {
865   if (!TBAA)
866     return TBAAAccessInfo();
867   return TBAA->mergeTBAAInfoForCast(SourceInfo, TargetInfo);
868 }
869 
870 TBAAAccessInfo
871 CodeGenModule::mergeTBAAInfoForConditionalOperator(TBAAAccessInfo InfoA,
872                                                    TBAAAccessInfo InfoB) {
873   if (!TBAA)
874     return TBAAAccessInfo();
875   return TBAA->mergeTBAAInfoForConditionalOperator(InfoA, InfoB);
876 }
877 
878 TBAAAccessInfo
879 CodeGenModule::mergeTBAAInfoForMemoryTransfer(TBAAAccessInfo DestInfo,
880                                               TBAAAccessInfo SrcInfo) {
881   if (!TBAA)
882     return TBAAAccessInfo();
883   return TBAA->mergeTBAAInfoForConditionalOperator(DestInfo, SrcInfo);
884 }
885 
886 void CodeGenModule::DecorateInstructionWithTBAA(llvm::Instruction *Inst,
887                                                 TBAAAccessInfo TBAAInfo) {
888   if (llvm::MDNode *Tag = getTBAAAccessTagInfo(TBAAInfo))
889     Inst->setMetadata(llvm::LLVMContext::MD_tbaa, Tag);
890 }
891 
892 void CodeGenModule::DecorateInstructionWithInvariantGroup(
893     llvm::Instruction *I, const CXXRecordDecl *RD) {
894   I->setMetadata(llvm::LLVMContext::MD_invariant_group,
895                  llvm::MDNode::get(getLLVMContext(), {}));
896 }
897 
898 void CodeGenModule::Error(SourceLocation loc, StringRef message) {
899   unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, "%0");
900   getDiags().Report(Context.getFullLoc(loc), diagID) << message;
901 }
902 
903 /// ErrorUnsupported - Print out an error that codegen doesn't support the
904 /// specified stmt yet.
905 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type) {
906   unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
907                                                "cannot compile this %0 yet");
908   std::string Msg = Type;
909   getDiags().Report(Context.getFullLoc(S->getBeginLoc()), DiagID)
910       << Msg << S->getSourceRange();
911 }
912 
913 /// ErrorUnsupported - Print out an error that codegen doesn't support the
914 /// specified decl yet.
915 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type) {
916   unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
917                                                "cannot compile this %0 yet");
918   std::string Msg = Type;
919   getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg;
920 }
921 
922 llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) {
923   return llvm::ConstantInt::get(SizeTy, size.getQuantity());
924 }
925 
926 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV,
927                                         const NamedDecl *D) const {
928   if (GV->hasDLLImportStorageClass())
929     return;
930   // Internal definitions always have default visibility.
931   if (GV->hasLocalLinkage()) {
932     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
933     return;
934   }
935   if (!D)
936     return;
937   // Set visibility for definitions, and for declarations if requested globally
938   // or set explicitly.
939   LinkageInfo LV = D->getLinkageAndVisibility();
940   if (LV.isVisibilityExplicit() || getLangOpts().SetVisibilityForExternDecls ||
941       !GV->isDeclarationForLinker())
942     GV->setVisibility(GetLLVMVisibility(LV.getVisibility()));
943 }
944 
945 static bool shouldAssumeDSOLocal(const CodeGenModule &CGM,
946                                  llvm::GlobalValue *GV) {
947   if (GV->hasLocalLinkage())
948     return true;
949 
950   if (!GV->hasDefaultVisibility() && !GV->hasExternalWeakLinkage())
951     return true;
952 
953   // DLLImport explicitly marks the GV as external.
954   if (GV->hasDLLImportStorageClass())
955     return false;
956 
957   const llvm::Triple &TT = CGM.getTriple();
958   if (TT.isWindowsGNUEnvironment()) {
959     // In MinGW, variables without DLLImport can still be automatically
960     // imported from a DLL by the linker; don't mark variables that
961     // potentially could come from another DLL as DSO local.
962     if (GV->isDeclarationForLinker() && isa<llvm::GlobalVariable>(GV) &&
963         !GV->isThreadLocal())
964       return false;
965   }
966 
967   // On COFF, don't mark 'extern_weak' symbols as DSO local. If these symbols
968   // remain unresolved in the link, they can be resolved to zero, which is
969   // outside the current DSO.
970   if (TT.isOSBinFormatCOFF() && GV->hasExternalWeakLinkage())
971     return false;
972 
973   // Every other GV is local on COFF.
974   // Make an exception for windows OS in the triple: Some firmware builds use
975   // *-win32-macho triples. This (accidentally?) produced windows relocations
976   // without GOT tables in older clang versions; Keep this behaviour.
977   // FIXME: even thread local variables?
978   if (TT.isOSBinFormatCOFF() || (TT.isOSWindows() && TT.isOSBinFormatMachO()))
979     return true;
980 
981   const auto &CGOpts = CGM.getCodeGenOpts();
982   llvm::Reloc::Model RM = CGOpts.RelocationModel;
983   const auto &LOpts = CGM.getLangOpts();
984 
985   if (TT.isOSBinFormatMachO()) {
986     if (RM == llvm::Reloc::Static)
987       return true;
988     return GV->isStrongDefinitionForLinker();
989   }
990 
991   // Only handle COFF and ELF for now.
992   if (!TT.isOSBinFormatELF())
993     return false;
994 
995   if (RM != llvm::Reloc::Static && !LOpts.PIE) {
996     // On ELF, if -fno-semantic-interposition is specified and the target
997     // supports local aliases, there will be neither CC1
998     // -fsemantic-interposition nor -fhalf-no-semantic-interposition. Set
999     // dso_local if using a local alias is preferable (can avoid GOT
1000     // indirection).
1001     if (!GV->canBenefitFromLocalAlias())
1002       return false;
1003     return !(CGM.getLangOpts().SemanticInterposition ||
1004              CGM.getLangOpts().HalfNoSemanticInterposition);
1005   }
1006 
1007   // A definition cannot be preempted from an executable.
1008   if (!GV->isDeclarationForLinker())
1009     return true;
1010 
1011   // Most PIC code sequences that assume that a symbol is local cannot produce a
1012   // 0 if it turns out the symbol is undefined. While this is ABI and relocation
1013   // depended, it seems worth it to handle it here.
1014   if (RM == llvm::Reloc::PIC_ && GV->hasExternalWeakLinkage())
1015     return false;
1016 
1017   // PowerPC64 prefers TOC indirection to avoid copy relocations.
1018   if (TT.isPPC64())
1019     return false;
1020 
1021   if (CGOpts.DirectAccessExternalData) {
1022     // If -fdirect-access-external-data (default for -fno-pic), set dso_local
1023     // for non-thread-local variables. If the symbol is not defined in the
1024     // executable, a copy relocation will be needed at link time. dso_local is
1025     // excluded for thread-local variables because they generally don't support
1026     // copy relocations.
1027     if (auto *Var = dyn_cast<llvm::GlobalVariable>(GV))
1028       if (!Var->isThreadLocal())
1029         return true;
1030 
1031     // -fno-pic sets dso_local on a function declaration to allow direct
1032     // accesses when taking its address (similar to a data symbol). If the
1033     // function is not defined in the executable, a canonical PLT entry will be
1034     // needed at link time. -fno-direct-access-external-data can avoid the
1035     // canonical PLT entry. We don't generalize this condition to -fpie/-fpic as
1036     // it could just cause trouble without providing perceptible benefits.
1037     if (isa<llvm::Function>(GV) && !CGOpts.NoPLT && RM == llvm::Reloc::Static)
1038       return true;
1039   }
1040 
1041   // If we can use copy relocations we can assume it is local.
1042 
1043   // Otherwise don't assume it is local.
1044   return false;
1045 }
1046 
1047 void CodeGenModule::setDSOLocal(llvm::GlobalValue *GV) const {
1048   GV->setDSOLocal(shouldAssumeDSOLocal(*this, GV));
1049 }
1050 
1051 void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV,
1052                                           GlobalDecl GD) const {
1053   const auto *D = dyn_cast<NamedDecl>(GD.getDecl());
1054   // C++ destructors have a few C++ ABI specific special cases.
1055   if (const auto *Dtor = dyn_cast_or_null<CXXDestructorDecl>(D)) {
1056     getCXXABI().setCXXDestructorDLLStorage(GV, Dtor, GD.getDtorType());
1057     return;
1058   }
1059   setDLLImportDLLExport(GV, D);
1060 }
1061 
1062 void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV,
1063                                           const NamedDecl *D) const {
1064   if (D && D->isExternallyVisible()) {
1065     if (D->hasAttr<DLLImportAttr>())
1066       GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass);
1067     else if (D->hasAttr<DLLExportAttr>() && !GV->isDeclarationForLinker())
1068       GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass);
1069   }
1070 }
1071 
1072 void CodeGenModule::setGVProperties(llvm::GlobalValue *GV,
1073                                     GlobalDecl GD) const {
1074   setDLLImportDLLExport(GV, GD);
1075   setGVPropertiesAux(GV, dyn_cast<NamedDecl>(GD.getDecl()));
1076 }
1077 
1078 void CodeGenModule::setGVProperties(llvm::GlobalValue *GV,
1079                                     const NamedDecl *D) const {
1080   setDLLImportDLLExport(GV, D);
1081   setGVPropertiesAux(GV, D);
1082 }
1083 
1084 void CodeGenModule::setGVPropertiesAux(llvm::GlobalValue *GV,
1085                                        const NamedDecl *D) const {
1086   setGlobalVisibility(GV, D);
1087   setDSOLocal(GV);
1088   GV->setPartition(CodeGenOpts.SymbolPartition);
1089 }
1090 
1091 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(StringRef S) {
1092   return llvm::StringSwitch<llvm::GlobalVariable::ThreadLocalMode>(S)
1093       .Case("global-dynamic", llvm::GlobalVariable::GeneralDynamicTLSModel)
1094       .Case("local-dynamic", llvm::GlobalVariable::LocalDynamicTLSModel)
1095       .Case("initial-exec", llvm::GlobalVariable::InitialExecTLSModel)
1096       .Case("local-exec", llvm::GlobalVariable::LocalExecTLSModel);
1097 }
1098 
1099 llvm::GlobalVariable::ThreadLocalMode
1100 CodeGenModule::GetDefaultLLVMTLSModel() const {
1101   switch (CodeGenOpts.getDefaultTLSModel()) {
1102   case CodeGenOptions::GeneralDynamicTLSModel:
1103     return llvm::GlobalVariable::GeneralDynamicTLSModel;
1104   case CodeGenOptions::LocalDynamicTLSModel:
1105     return llvm::GlobalVariable::LocalDynamicTLSModel;
1106   case CodeGenOptions::InitialExecTLSModel:
1107     return llvm::GlobalVariable::InitialExecTLSModel;
1108   case CodeGenOptions::LocalExecTLSModel:
1109     return llvm::GlobalVariable::LocalExecTLSModel;
1110   }
1111   llvm_unreachable("Invalid TLS model!");
1112 }
1113 
1114 void CodeGenModule::setTLSMode(llvm::GlobalValue *GV, const VarDecl &D) const {
1115   assert(D.getTLSKind() && "setting TLS mode on non-TLS var!");
1116 
1117   llvm::GlobalValue::ThreadLocalMode TLM;
1118   TLM = GetDefaultLLVMTLSModel();
1119 
1120   // Override the TLS model if it is explicitly specified.
1121   if (const TLSModelAttr *Attr = D.getAttr<TLSModelAttr>()) {
1122     TLM = GetLLVMTLSModel(Attr->getModel());
1123   }
1124 
1125   GV->setThreadLocalMode(TLM);
1126 }
1127 
1128 static std::string getCPUSpecificMangling(const CodeGenModule &CGM,
1129                                           StringRef Name) {
1130   const TargetInfo &Target = CGM.getTarget();
1131   return (Twine('.') + Twine(Target.CPUSpecificManglingCharacter(Name))).str();
1132 }
1133 
1134 static void AppendCPUSpecificCPUDispatchMangling(const CodeGenModule &CGM,
1135                                                  const CPUSpecificAttr *Attr,
1136                                                  unsigned CPUIndex,
1137                                                  raw_ostream &Out) {
1138   // cpu_specific gets the current name, dispatch gets the resolver if IFunc is
1139   // supported.
1140   if (Attr)
1141     Out << getCPUSpecificMangling(CGM, Attr->getCPUName(CPUIndex)->getName());
1142   else if (CGM.getTarget().supportsIFunc())
1143     Out << ".resolver";
1144 }
1145 
1146 static void AppendTargetMangling(const CodeGenModule &CGM,
1147                                  const TargetAttr *Attr, raw_ostream &Out) {
1148   if (Attr->isDefaultVersion())
1149     return;
1150 
1151   Out << '.';
1152   const TargetInfo &Target = CGM.getTarget();
1153   ParsedTargetAttr Info =
1154       Attr->parse([&Target](StringRef LHS, StringRef RHS) {
1155         // Multiversioning doesn't allow "no-${feature}", so we can
1156         // only have "+" prefixes here.
1157         assert(LHS.startswith("+") && RHS.startswith("+") &&
1158                "Features should always have a prefix.");
1159         return Target.multiVersionSortPriority(LHS.substr(1)) >
1160                Target.multiVersionSortPriority(RHS.substr(1));
1161       });
1162 
1163   bool IsFirst = true;
1164 
1165   if (!Info.Architecture.empty()) {
1166     IsFirst = false;
1167     Out << "arch_" << Info.Architecture;
1168   }
1169 
1170   for (StringRef Feat : Info.Features) {
1171     if (!IsFirst)
1172       Out << '_';
1173     IsFirst = false;
1174     Out << Feat.substr(1);
1175   }
1176 }
1177 
1178 // Returns true if GD is a function/var decl with internal linkage and
1179 // needs a unique suffix after the mangled name.
1180 static bool isUniqueInternalLinkageDecl(GlobalDecl GD,
1181                                         CodeGenModule &CGM) {
1182   const Decl *D = GD.getDecl();
1183   if (!CGM.getModuleNameHash().empty() &&
1184       ((isa<FunctionDecl>(D) &&
1185         CGM.getFunctionLinkage(GD) == llvm::GlobalValue::InternalLinkage) ||
1186        (isa<VarDecl>(D) && CGM.getContext().GetGVALinkageForVariable(
1187                                cast<VarDecl>(D)) == GVA_Internal)))
1188     return true;
1189   return false;
1190 }
1191 
1192 static std::string getMangledNameImpl(CodeGenModule &CGM, GlobalDecl GD,
1193                                       const NamedDecl *ND,
1194                                       bool OmitMultiVersionMangling = false) {
1195   SmallString<256> Buffer;
1196   llvm::raw_svector_ostream Out(Buffer);
1197   MangleContext &MC = CGM.getCXXABI().getMangleContext();
1198   if (!CGM.getModuleNameHash().empty())
1199     MC.needsUniqueInternalLinkageNames();
1200   bool ShouldMangle = MC.shouldMangleDeclName(ND);
1201   if (ShouldMangle)
1202     MC.mangleName(GD.getWithDecl(ND), Out);
1203   else {
1204     IdentifierInfo *II = ND->getIdentifier();
1205     assert(II && "Attempt to mangle unnamed decl.");
1206     const auto *FD = dyn_cast<FunctionDecl>(ND);
1207 
1208     if (FD &&
1209         FD->getType()->castAs<FunctionType>()->getCallConv() == CC_X86RegCall) {
1210       Out << "__regcall3__" << II->getName();
1211     } else if (FD && FD->hasAttr<CUDAGlobalAttr>() &&
1212                GD.getKernelReferenceKind() == KernelReferenceKind::Stub) {
1213       Out << "__device_stub__" << II->getName();
1214     } else {
1215       Out << II->getName();
1216     }
1217   }
1218 
1219   // Check if the module name hash should be appended for internal linkage
1220   // symbols.   This should come before multi-version target suffixes are
1221   // appended. This is to keep the name and module hash suffix of the
1222   // internal linkage function together.  The unique suffix should only be
1223   // added when name mangling is done to make sure that the final name can
1224   // be properly demangled.  For example, for C functions without prototypes,
1225   // name mangling is not done and the unique suffix should not be appeneded
1226   // then.
1227   if (ShouldMangle && isUniqueInternalLinkageDecl(GD, CGM)) {
1228     assert(CGM.getCodeGenOpts().UniqueInternalLinkageNames &&
1229            "Hash computed when not explicitly requested");
1230     Out << CGM.getModuleNameHash();
1231   }
1232 
1233   if (const auto *FD = dyn_cast<FunctionDecl>(ND))
1234     if (FD->isMultiVersion() && !OmitMultiVersionMangling) {
1235       switch (FD->getMultiVersionKind()) {
1236       case MultiVersionKind::CPUDispatch:
1237       case MultiVersionKind::CPUSpecific:
1238         AppendCPUSpecificCPUDispatchMangling(CGM,
1239                                              FD->getAttr<CPUSpecificAttr>(),
1240                                              GD.getMultiVersionIndex(), Out);
1241         break;
1242       case MultiVersionKind::Target:
1243         AppendTargetMangling(CGM, FD->getAttr<TargetAttr>(), Out);
1244         break;
1245       case MultiVersionKind::None:
1246         llvm_unreachable("None multiversion type isn't valid here");
1247       }
1248     }
1249 
1250   // Make unique name for device side static file-scope variable for HIP.
1251   if (CGM.getContext().shouldExternalizeStaticVar(ND) &&
1252       CGM.getLangOpts().GPURelocatableDeviceCode &&
1253       CGM.getLangOpts().CUDAIsDevice && !CGM.getLangOpts().CUID.empty())
1254     CGM.printPostfixForExternalizedStaticVar(Out);
1255   return std::string(Out.str());
1256 }
1257 
1258 void CodeGenModule::UpdateMultiVersionNames(GlobalDecl GD,
1259                                             const FunctionDecl *FD) {
1260   if (!FD->isMultiVersion())
1261     return;
1262 
1263   // Get the name of what this would be without the 'target' attribute.  This
1264   // allows us to lookup the version that was emitted when this wasn't a
1265   // multiversion function.
1266   std::string NonTargetName =
1267       getMangledNameImpl(*this, GD, FD, /*OmitMultiVersionMangling=*/true);
1268   GlobalDecl OtherGD;
1269   if (lookupRepresentativeDecl(NonTargetName, OtherGD)) {
1270     assert(OtherGD.getCanonicalDecl()
1271                .getDecl()
1272                ->getAsFunction()
1273                ->isMultiVersion() &&
1274            "Other GD should now be a multiversioned function");
1275     // OtherFD is the version of this function that was mangled BEFORE
1276     // becoming a MultiVersion function.  It potentially needs to be updated.
1277     const FunctionDecl *OtherFD = OtherGD.getCanonicalDecl()
1278                                       .getDecl()
1279                                       ->getAsFunction()
1280                                       ->getMostRecentDecl();
1281     std::string OtherName = getMangledNameImpl(*this, OtherGD, OtherFD);
1282     // This is so that if the initial version was already the 'default'
1283     // version, we don't try to update it.
1284     if (OtherName != NonTargetName) {
1285       // Remove instead of erase, since others may have stored the StringRef
1286       // to this.
1287       const auto ExistingRecord = Manglings.find(NonTargetName);
1288       if (ExistingRecord != std::end(Manglings))
1289         Manglings.remove(&(*ExistingRecord));
1290       auto Result = Manglings.insert(std::make_pair(OtherName, OtherGD));
1291       MangledDeclNames[OtherGD.getCanonicalDecl()] = Result.first->first();
1292       if (llvm::GlobalValue *Entry = GetGlobalValue(NonTargetName))
1293         Entry->setName(OtherName);
1294     }
1295   }
1296 }
1297 
1298 StringRef CodeGenModule::getMangledName(GlobalDecl GD) {
1299   GlobalDecl CanonicalGD = GD.getCanonicalDecl();
1300 
1301   // Some ABIs don't have constructor variants.  Make sure that base and
1302   // complete constructors get mangled the same.
1303   if (const auto *CD = dyn_cast<CXXConstructorDecl>(CanonicalGD.getDecl())) {
1304     if (!getTarget().getCXXABI().hasConstructorVariants()) {
1305       CXXCtorType OrigCtorType = GD.getCtorType();
1306       assert(OrigCtorType == Ctor_Base || OrigCtorType == Ctor_Complete);
1307       if (OrigCtorType == Ctor_Base)
1308         CanonicalGD = GlobalDecl(CD, Ctor_Complete);
1309     }
1310   }
1311 
1312   // In CUDA/HIP device compilation with -fgpu-rdc, the mangled name of a
1313   // static device variable depends on whether the variable is referenced by
1314   // a host or device host function. Therefore the mangled name cannot be
1315   // cached.
1316   if (!LangOpts.CUDAIsDevice ||
1317       !getContext().mayExternalizeStaticVar(GD.getDecl())) {
1318     auto FoundName = MangledDeclNames.find(CanonicalGD);
1319     if (FoundName != MangledDeclNames.end())
1320       return FoundName->second;
1321   }
1322 
1323   // Keep the first result in the case of a mangling collision.
1324   const auto *ND = cast<NamedDecl>(GD.getDecl());
1325   std::string MangledName = getMangledNameImpl(*this, GD, ND);
1326 
1327   // Ensure either we have different ABIs between host and device compilations,
1328   // says host compilation following MSVC ABI but device compilation follows
1329   // Itanium C++ ABI or, if they follow the same ABI, kernel names after
1330   // mangling should be the same after name stubbing. The later checking is
1331   // very important as the device kernel name being mangled in host-compilation
1332   // is used to resolve the device binaries to be executed. Inconsistent naming
1333   // result in undefined behavior. Even though we cannot check that naming
1334   // directly between host- and device-compilations, the host- and
1335   // device-mangling in host compilation could help catching certain ones.
1336   assert(!isa<FunctionDecl>(ND) || !ND->hasAttr<CUDAGlobalAttr>() ||
1337          getLangOpts().CUDAIsDevice ||
1338          (getContext().getAuxTargetInfo() &&
1339           (getContext().getAuxTargetInfo()->getCXXABI() !=
1340            getContext().getTargetInfo().getCXXABI())) ||
1341          getCUDARuntime().getDeviceSideName(ND) ==
1342              getMangledNameImpl(
1343                  *this,
1344                  GD.getWithKernelReferenceKind(KernelReferenceKind::Kernel),
1345                  ND));
1346 
1347   auto Result = Manglings.insert(std::make_pair(MangledName, GD));
1348   return MangledDeclNames[CanonicalGD] = Result.first->first();
1349 }
1350 
1351 StringRef CodeGenModule::getBlockMangledName(GlobalDecl GD,
1352                                              const BlockDecl *BD) {
1353   MangleContext &MangleCtx = getCXXABI().getMangleContext();
1354   const Decl *D = GD.getDecl();
1355 
1356   SmallString<256> Buffer;
1357   llvm::raw_svector_ostream Out(Buffer);
1358   if (!D)
1359     MangleCtx.mangleGlobalBlock(BD,
1360       dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()), Out);
1361   else if (const auto *CD = dyn_cast<CXXConstructorDecl>(D))
1362     MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out);
1363   else if (const auto *DD = dyn_cast<CXXDestructorDecl>(D))
1364     MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out);
1365   else
1366     MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out);
1367 
1368   auto Result = Manglings.insert(std::make_pair(Out.str(), BD));
1369   return Result.first->first();
1370 }
1371 
1372 llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) {
1373   return getModule().getNamedValue(Name);
1374 }
1375 
1376 /// AddGlobalCtor - Add a function to the list that will be called before
1377 /// main() runs.
1378 void CodeGenModule::AddGlobalCtor(llvm::Function *Ctor, int Priority,
1379                                   llvm::Constant *AssociatedData) {
1380   // FIXME: Type coercion of void()* types.
1381   GlobalCtors.push_back(Structor(Priority, Ctor, AssociatedData));
1382 }
1383 
1384 /// AddGlobalDtor - Add a function to the list that will be called
1385 /// when the module is unloaded.
1386 void CodeGenModule::AddGlobalDtor(llvm::Function *Dtor, int Priority,
1387                                   bool IsDtorAttrFunc) {
1388   if (CodeGenOpts.RegisterGlobalDtorsWithAtExit &&
1389       (!getContext().getTargetInfo().getTriple().isOSAIX() || IsDtorAttrFunc)) {
1390     DtorsUsingAtExit[Priority].push_back(Dtor);
1391     return;
1392   }
1393 
1394   // FIXME: Type coercion of void()* types.
1395   GlobalDtors.push_back(Structor(Priority, Dtor, nullptr));
1396 }
1397 
1398 void CodeGenModule::EmitCtorList(CtorList &Fns, const char *GlobalName) {
1399   if (Fns.empty()) return;
1400 
1401   // Ctor function type is void()*.
1402   llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false);
1403   llvm::Type *CtorPFTy = llvm::PointerType::get(CtorFTy,
1404       TheModule.getDataLayout().getProgramAddressSpace());
1405 
1406   // Get the type of a ctor entry, { i32, void ()*, i8* }.
1407   llvm::StructType *CtorStructTy = llvm::StructType::get(
1408       Int32Ty, CtorPFTy, VoidPtrTy);
1409 
1410   // Construct the constructor and destructor arrays.
1411   ConstantInitBuilder builder(*this);
1412   auto ctors = builder.beginArray(CtorStructTy);
1413   for (const auto &I : Fns) {
1414     auto ctor = ctors.beginStruct(CtorStructTy);
1415     ctor.addInt(Int32Ty, I.Priority);
1416     ctor.add(llvm::ConstantExpr::getBitCast(I.Initializer, CtorPFTy));
1417     if (I.AssociatedData)
1418       ctor.add(llvm::ConstantExpr::getBitCast(I.AssociatedData, VoidPtrTy));
1419     else
1420       ctor.addNullPointer(VoidPtrTy);
1421     ctor.finishAndAddTo(ctors);
1422   }
1423 
1424   auto list =
1425     ctors.finishAndCreateGlobal(GlobalName, getPointerAlign(),
1426                                 /*constant*/ false,
1427                                 llvm::GlobalValue::AppendingLinkage);
1428 
1429   // The LTO linker doesn't seem to like it when we set an alignment
1430   // on appending variables.  Take it off as a workaround.
1431   list->setAlignment(llvm::None);
1432 
1433   Fns.clear();
1434 }
1435 
1436 llvm::GlobalValue::LinkageTypes
1437 CodeGenModule::getFunctionLinkage(GlobalDecl GD) {
1438   const auto *D = cast<FunctionDecl>(GD.getDecl());
1439 
1440   GVALinkage Linkage = getContext().GetGVALinkageForFunction(D);
1441 
1442   if (const auto *Dtor = dyn_cast<CXXDestructorDecl>(D))
1443     return getCXXABI().getCXXDestructorLinkage(Linkage, Dtor, GD.getDtorType());
1444 
1445   if (isa<CXXConstructorDecl>(D) &&
1446       cast<CXXConstructorDecl>(D)->isInheritingConstructor() &&
1447       Context.getTargetInfo().getCXXABI().isMicrosoft()) {
1448     // Our approach to inheriting constructors is fundamentally different from
1449     // that used by the MS ABI, so keep our inheriting constructor thunks
1450     // internal rather than trying to pick an unambiguous mangling for them.
1451     return llvm::GlobalValue::InternalLinkage;
1452   }
1453 
1454   return getLLVMLinkageForDeclarator(D, Linkage, /*IsConstantVariable=*/false);
1455 }
1456 
1457 llvm::ConstantInt *CodeGenModule::CreateCrossDsoCfiTypeId(llvm::Metadata *MD) {
1458   llvm::MDString *MDS = dyn_cast<llvm::MDString>(MD);
1459   if (!MDS) return nullptr;
1460 
1461   return llvm::ConstantInt::get(Int64Ty, llvm::MD5Hash(MDS->getString()));
1462 }
1463 
1464 void CodeGenModule::SetLLVMFunctionAttributes(GlobalDecl GD,
1465                                               const CGFunctionInfo &Info,
1466                                               llvm::Function *F) {
1467   unsigned CallingConv;
1468   llvm::AttributeList PAL;
1469   ConstructAttributeList(F->getName(), Info, GD, PAL, CallingConv, false);
1470   F->setAttributes(PAL);
1471   F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv));
1472 }
1473 
1474 static void removeImageAccessQualifier(std::string& TyName) {
1475   std::string ReadOnlyQual("__read_only");
1476   std::string::size_type ReadOnlyPos = TyName.find(ReadOnlyQual);
1477   if (ReadOnlyPos != std::string::npos)
1478     // "+ 1" for the space after access qualifier.
1479     TyName.erase(ReadOnlyPos, ReadOnlyQual.size() + 1);
1480   else {
1481     std::string WriteOnlyQual("__write_only");
1482     std::string::size_type WriteOnlyPos = TyName.find(WriteOnlyQual);
1483     if (WriteOnlyPos != std::string::npos)
1484       TyName.erase(WriteOnlyPos, WriteOnlyQual.size() + 1);
1485     else {
1486       std::string ReadWriteQual("__read_write");
1487       std::string::size_type ReadWritePos = TyName.find(ReadWriteQual);
1488       if (ReadWritePos != std::string::npos)
1489         TyName.erase(ReadWritePos, ReadWriteQual.size() + 1);
1490     }
1491   }
1492 }
1493 
1494 // Returns the address space id that should be produced to the
1495 // kernel_arg_addr_space metadata. This is always fixed to the ids
1496 // as specified in the SPIR 2.0 specification in order to differentiate
1497 // for example in clGetKernelArgInfo() implementation between the address
1498 // spaces with targets without unique mapping to the OpenCL address spaces
1499 // (basically all single AS CPUs).
1500 static unsigned ArgInfoAddressSpace(LangAS AS) {
1501   switch (AS) {
1502   case LangAS::opencl_global:
1503     return 1;
1504   case LangAS::opencl_constant:
1505     return 2;
1506   case LangAS::opencl_local:
1507     return 3;
1508   case LangAS::opencl_generic:
1509     return 4; // Not in SPIR 2.0 specs.
1510   case LangAS::opencl_global_device:
1511     return 5;
1512   case LangAS::opencl_global_host:
1513     return 6;
1514   default:
1515     return 0; // Assume private.
1516   }
1517 }
1518 
1519 void CodeGenModule::GenOpenCLArgMetadata(llvm::Function *Fn,
1520                                          const FunctionDecl *FD,
1521                                          CodeGenFunction *CGF) {
1522   assert(((FD && CGF) || (!FD && !CGF)) &&
1523          "Incorrect use - FD and CGF should either be both null or not!");
1524   // Create MDNodes that represent the kernel arg metadata.
1525   // Each MDNode is a list in the form of "key", N number of values which is
1526   // the same number of values as their are kernel arguments.
1527 
1528   const PrintingPolicy &Policy = Context.getPrintingPolicy();
1529 
1530   // MDNode for the kernel argument address space qualifiers.
1531   SmallVector<llvm::Metadata *, 8> addressQuals;
1532 
1533   // MDNode for the kernel argument access qualifiers (images only).
1534   SmallVector<llvm::Metadata *, 8> accessQuals;
1535 
1536   // MDNode for the kernel argument type names.
1537   SmallVector<llvm::Metadata *, 8> argTypeNames;
1538 
1539   // MDNode for the kernel argument base type names.
1540   SmallVector<llvm::Metadata *, 8> argBaseTypeNames;
1541 
1542   // MDNode for the kernel argument type qualifiers.
1543   SmallVector<llvm::Metadata *, 8> argTypeQuals;
1544 
1545   // MDNode for the kernel argument names.
1546   SmallVector<llvm::Metadata *, 8> argNames;
1547 
1548   if (FD && CGF)
1549     for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i) {
1550       const ParmVarDecl *parm = FD->getParamDecl(i);
1551       QualType ty = parm->getType();
1552       std::string typeQuals;
1553 
1554       // Get image and pipe access qualifier:
1555       if (ty->isImageType() || ty->isPipeType()) {
1556         const Decl *PDecl = parm;
1557         if (auto *TD = dyn_cast<TypedefType>(ty))
1558           PDecl = TD->getDecl();
1559         const OpenCLAccessAttr *A = PDecl->getAttr<OpenCLAccessAttr>();
1560         if (A && A->isWriteOnly())
1561           accessQuals.push_back(llvm::MDString::get(VMContext, "write_only"));
1562         else if (A && A->isReadWrite())
1563           accessQuals.push_back(llvm::MDString::get(VMContext, "read_write"));
1564         else
1565           accessQuals.push_back(llvm::MDString::get(VMContext, "read_only"));
1566       } else
1567         accessQuals.push_back(llvm::MDString::get(VMContext, "none"));
1568 
1569       // Get argument name.
1570       argNames.push_back(llvm::MDString::get(VMContext, parm->getName()));
1571 
1572       auto getTypeSpelling = [&](QualType Ty) {
1573         auto typeName = Ty.getUnqualifiedType().getAsString(Policy);
1574 
1575         if (Ty.isCanonical()) {
1576           StringRef typeNameRef = typeName;
1577           // Turn "unsigned type" to "utype"
1578           if (typeNameRef.consume_front("unsigned "))
1579             return std::string("u") + typeNameRef.str();
1580           if (typeNameRef.consume_front("signed "))
1581             return typeNameRef.str();
1582         }
1583 
1584         return typeName;
1585       };
1586 
1587       if (ty->isPointerType()) {
1588         QualType pointeeTy = ty->getPointeeType();
1589 
1590         // Get address qualifier.
1591         addressQuals.push_back(
1592             llvm::ConstantAsMetadata::get(CGF->Builder.getInt32(
1593                 ArgInfoAddressSpace(pointeeTy.getAddressSpace()))));
1594 
1595         // Get argument type name.
1596         std::string typeName = getTypeSpelling(pointeeTy) + "*";
1597         std::string baseTypeName =
1598             getTypeSpelling(pointeeTy.getCanonicalType()) + "*";
1599         argTypeNames.push_back(llvm::MDString::get(VMContext, typeName));
1600         argBaseTypeNames.push_back(
1601             llvm::MDString::get(VMContext, baseTypeName));
1602 
1603         // Get argument type qualifiers:
1604         if (ty.isRestrictQualified())
1605           typeQuals = "restrict";
1606         if (pointeeTy.isConstQualified() ||
1607             (pointeeTy.getAddressSpace() == LangAS::opencl_constant))
1608           typeQuals += typeQuals.empty() ? "const" : " const";
1609         if (pointeeTy.isVolatileQualified())
1610           typeQuals += typeQuals.empty() ? "volatile" : " volatile";
1611       } else {
1612         uint32_t AddrSpc = 0;
1613         bool isPipe = ty->isPipeType();
1614         if (ty->isImageType() || isPipe)
1615           AddrSpc = ArgInfoAddressSpace(LangAS::opencl_global);
1616 
1617         addressQuals.push_back(
1618             llvm::ConstantAsMetadata::get(CGF->Builder.getInt32(AddrSpc)));
1619 
1620         // Get argument type name.
1621         ty = isPipe ? ty->castAs<PipeType>()->getElementType() : ty;
1622         std::string typeName = getTypeSpelling(ty);
1623         std::string baseTypeName = getTypeSpelling(ty.getCanonicalType());
1624 
1625         // Remove access qualifiers on images
1626         // (as they are inseparable from type in clang implementation,
1627         // but OpenCL spec provides a special query to get access qualifier
1628         // via clGetKernelArgInfo with CL_KERNEL_ARG_ACCESS_QUALIFIER):
1629         if (ty->isImageType()) {
1630           removeImageAccessQualifier(typeName);
1631           removeImageAccessQualifier(baseTypeName);
1632         }
1633 
1634         argTypeNames.push_back(llvm::MDString::get(VMContext, typeName));
1635         argBaseTypeNames.push_back(
1636             llvm::MDString::get(VMContext, baseTypeName));
1637 
1638         if (isPipe)
1639           typeQuals = "pipe";
1640       }
1641       argTypeQuals.push_back(llvm::MDString::get(VMContext, typeQuals));
1642     }
1643 
1644   Fn->setMetadata("kernel_arg_addr_space",
1645                   llvm::MDNode::get(VMContext, addressQuals));
1646   Fn->setMetadata("kernel_arg_access_qual",
1647                   llvm::MDNode::get(VMContext, accessQuals));
1648   Fn->setMetadata("kernel_arg_type",
1649                   llvm::MDNode::get(VMContext, argTypeNames));
1650   Fn->setMetadata("kernel_arg_base_type",
1651                   llvm::MDNode::get(VMContext, argBaseTypeNames));
1652   Fn->setMetadata("kernel_arg_type_qual",
1653                   llvm::MDNode::get(VMContext, argTypeQuals));
1654   if (getCodeGenOpts().EmitOpenCLArgMetadata)
1655     Fn->setMetadata("kernel_arg_name",
1656                     llvm::MDNode::get(VMContext, argNames));
1657 }
1658 
1659 /// Determines whether the language options require us to model
1660 /// unwind exceptions.  We treat -fexceptions as mandating this
1661 /// except under the fragile ObjC ABI with only ObjC exceptions
1662 /// enabled.  This means, for example, that C with -fexceptions
1663 /// enables this.
1664 static bool hasUnwindExceptions(const LangOptions &LangOpts) {
1665   // If exceptions are completely disabled, obviously this is false.
1666   if (!LangOpts.Exceptions) return false;
1667 
1668   // If C++ exceptions are enabled, this is true.
1669   if (LangOpts.CXXExceptions) return true;
1670 
1671   // If ObjC exceptions are enabled, this depends on the ABI.
1672   if (LangOpts.ObjCExceptions) {
1673     return LangOpts.ObjCRuntime.hasUnwindExceptions();
1674   }
1675 
1676   return true;
1677 }
1678 
1679 static bool requiresMemberFunctionPointerTypeMetadata(CodeGenModule &CGM,
1680                                                       const CXXMethodDecl *MD) {
1681   // Check that the type metadata can ever actually be used by a call.
1682   if (!CGM.getCodeGenOpts().LTOUnit ||
1683       !CGM.HasHiddenLTOVisibility(MD->getParent()))
1684     return false;
1685 
1686   // Only functions whose address can be taken with a member function pointer
1687   // need this sort of type metadata.
1688   return !MD->isStatic() && !MD->isVirtual() && !isa<CXXConstructorDecl>(MD) &&
1689          !isa<CXXDestructorDecl>(MD);
1690 }
1691 
1692 std::vector<const CXXRecordDecl *>
1693 CodeGenModule::getMostBaseClasses(const CXXRecordDecl *RD) {
1694   llvm::SetVector<const CXXRecordDecl *> MostBases;
1695 
1696   std::function<void (const CXXRecordDecl *)> CollectMostBases;
1697   CollectMostBases = [&](const CXXRecordDecl *RD) {
1698     if (RD->getNumBases() == 0)
1699       MostBases.insert(RD);
1700     for (const CXXBaseSpecifier &B : RD->bases())
1701       CollectMostBases(B.getType()->getAsCXXRecordDecl());
1702   };
1703   CollectMostBases(RD);
1704   return MostBases.takeVector();
1705 }
1706 
1707 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D,
1708                                                            llvm::Function *F) {
1709   llvm::AttrBuilder B;
1710 
1711   if (CodeGenOpts.UnwindTables)
1712     B.addAttribute(llvm::Attribute::UWTable);
1713 
1714   if (CodeGenOpts.StackClashProtector)
1715     B.addAttribute("probe-stack", "inline-asm");
1716 
1717   if (!hasUnwindExceptions(LangOpts))
1718     B.addAttribute(llvm::Attribute::NoUnwind);
1719 
1720   if (!D || !D->hasAttr<NoStackProtectorAttr>()) {
1721     if (LangOpts.getStackProtector() == LangOptions::SSPOn)
1722       B.addAttribute(llvm::Attribute::StackProtect);
1723     else if (LangOpts.getStackProtector() == LangOptions::SSPStrong)
1724       B.addAttribute(llvm::Attribute::StackProtectStrong);
1725     else if (LangOpts.getStackProtector() == LangOptions::SSPReq)
1726       B.addAttribute(llvm::Attribute::StackProtectReq);
1727   }
1728 
1729   if (!D) {
1730     // If we don't have a declaration to control inlining, the function isn't
1731     // explicitly marked as alwaysinline for semantic reasons, and inlining is
1732     // disabled, mark the function as noinline.
1733     if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline) &&
1734         CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining)
1735       B.addAttribute(llvm::Attribute::NoInline);
1736 
1737     F->addAttributes(llvm::AttributeList::FunctionIndex, B);
1738     return;
1739   }
1740 
1741   // Track whether we need to add the optnone LLVM attribute,
1742   // starting with the default for this optimization level.
1743   bool ShouldAddOptNone =
1744       !CodeGenOpts.DisableO0ImplyOptNone && CodeGenOpts.OptimizationLevel == 0;
1745   // We can't add optnone in the following cases, it won't pass the verifier.
1746   ShouldAddOptNone &= !D->hasAttr<MinSizeAttr>();
1747   ShouldAddOptNone &= !D->hasAttr<AlwaysInlineAttr>();
1748 
1749   // Add optnone, but do so only if the function isn't always_inline.
1750   if ((ShouldAddOptNone || D->hasAttr<OptimizeNoneAttr>()) &&
1751       !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) {
1752     B.addAttribute(llvm::Attribute::OptimizeNone);
1753 
1754     // OptimizeNone implies noinline; we should not be inlining such functions.
1755     B.addAttribute(llvm::Attribute::NoInline);
1756 
1757     // We still need to handle naked functions even though optnone subsumes
1758     // much of their semantics.
1759     if (D->hasAttr<NakedAttr>())
1760       B.addAttribute(llvm::Attribute::Naked);
1761 
1762     // OptimizeNone wins over OptimizeForSize and MinSize.
1763     F->removeFnAttr(llvm::Attribute::OptimizeForSize);
1764     F->removeFnAttr(llvm::Attribute::MinSize);
1765   } else if (D->hasAttr<NakedAttr>()) {
1766     // Naked implies noinline: we should not be inlining such functions.
1767     B.addAttribute(llvm::Attribute::Naked);
1768     B.addAttribute(llvm::Attribute::NoInline);
1769   } else if (D->hasAttr<NoDuplicateAttr>()) {
1770     B.addAttribute(llvm::Attribute::NoDuplicate);
1771   } else if (D->hasAttr<NoInlineAttr>() && !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) {
1772     // Add noinline if the function isn't always_inline.
1773     B.addAttribute(llvm::Attribute::NoInline);
1774   } else if (D->hasAttr<AlwaysInlineAttr>() &&
1775              !F->hasFnAttribute(llvm::Attribute::NoInline)) {
1776     // (noinline wins over always_inline, and we can't specify both in IR)
1777     B.addAttribute(llvm::Attribute::AlwaysInline);
1778   } else if (CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining) {
1779     // If we're not inlining, then force everything that isn't always_inline to
1780     // carry an explicit noinline attribute.
1781     if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline))
1782       B.addAttribute(llvm::Attribute::NoInline);
1783   } else {
1784     // Otherwise, propagate the inline hint attribute and potentially use its
1785     // absence to mark things as noinline.
1786     if (auto *FD = dyn_cast<FunctionDecl>(D)) {
1787       // Search function and template pattern redeclarations for inline.
1788       auto CheckForInline = [](const FunctionDecl *FD) {
1789         auto CheckRedeclForInline = [](const FunctionDecl *Redecl) {
1790           return Redecl->isInlineSpecified();
1791         };
1792         if (any_of(FD->redecls(), CheckRedeclForInline))
1793           return true;
1794         const FunctionDecl *Pattern = FD->getTemplateInstantiationPattern();
1795         if (!Pattern)
1796           return false;
1797         return any_of(Pattern->redecls(), CheckRedeclForInline);
1798       };
1799       if (CheckForInline(FD)) {
1800         B.addAttribute(llvm::Attribute::InlineHint);
1801       } else if (CodeGenOpts.getInlining() ==
1802                      CodeGenOptions::OnlyHintInlining &&
1803                  !FD->isInlined() &&
1804                  !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) {
1805         B.addAttribute(llvm::Attribute::NoInline);
1806       }
1807     }
1808   }
1809 
1810   // Add other optimization related attributes if we are optimizing this
1811   // function.
1812   if (!D->hasAttr<OptimizeNoneAttr>()) {
1813     if (D->hasAttr<ColdAttr>()) {
1814       if (!ShouldAddOptNone)
1815         B.addAttribute(llvm::Attribute::OptimizeForSize);
1816       B.addAttribute(llvm::Attribute::Cold);
1817     }
1818     if (D->hasAttr<HotAttr>())
1819       B.addAttribute(llvm::Attribute::Hot);
1820     if (D->hasAttr<MinSizeAttr>())
1821       B.addAttribute(llvm::Attribute::MinSize);
1822   }
1823 
1824   F->addAttributes(llvm::AttributeList::FunctionIndex, B);
1825 
1826   unsigned alignment = D->getMaxAlignment() / Context.getCharWidth();
1827   if (alignment)
1828     F->setAlignment(llvm::Align(alignment));
1829 
1830   if (!D->hasAttr<AlignedAttr>())
1831     if (LangOpts.FunctionAlignment)
1832       F->setAlignment(llvm::Align(1ull << LangOpts.FunctionAlignment));
1833 
1834   // Some C++ ABIs require 2-byte alignment for member functions, in order to
1835   // reserve a bit for differentiating between virtual and non-virtual member
1836   // functions. If the current target's C++ ABI requires this and this is a
1837   // member function, set its alignment accordingly.
1838   if (getTarget().getCXXABI().areMemberFunctionsAligned()) {
1839     if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D))
1840       F->setAlignment(llvm::Align(2));
1841   }
1842 
1843   // In the cross-dso CFI mode with canonical jump tables, we want !type
1844   // attributes on definitions only.
1845   if (CodeGenOpts.SanitizeCfiCrossDso &&
1846       CodeGenOpts.SanitizeCfiCanonicalJumpTables) {
1847     if (auto *FD = dyn_cast<FunctionDecl>(D)) {
1848       // Skip available_externally functions. They won't be codegen'ed in the
1849       // current module anyway.
1850       if (getContext().GetGVALinkageForFunction(FD) != GVA_AvailableExternally)
1851         CreateFunctionTypeMetadataForIcall(FD, F);
1852     }
1853   }
1854 
1855   // Emit type metadata on member functions for member function pointer checks.
1856   // These are only ever necessary on definitions; we're guaranteed that the
1857   // definition will be present in the LTO unit as a result of LTO visibility.
1858   auto *MD = dyn_cast<CXXMethodDecl>(D);
1859   if (MD && requiresMemberFunctionPointerTypeMetadata(*this, MD)) {
1860     for (const CXXRecordDecl *Base : getMostBaseClasses(MD->getParent())) {
1861       llvm::Metadata *Id =
1862           CreateMetadataIdentifierForType(Context.getMemberPointerType(
1863               MD->getType(), Context.getRecordType(Base).getTypePtr()));
1864       F->addTypeMetadata(0, Id);
1865     }
1866   }
1867 }
1868 
1869 void CodeGenModule::setLLVMFunctionFEnvAttributes(const FunctionDecl *D,
1870                                                   llvm::Function *F) {
1871   if (D->hasAttr<StrictFPAttr>()) {
1872     llvm::AttrBuilder FuncAttrs;
1873     FuncAttrs.addAttribute("strictfp");
1874     F->addAttributes(llvm::AttributeList::FunctionIndex, FuncAttrs);
1875   }
1876 }
1877 
1878 void CodeGenModule::SetCommonAttributes(GlobalDecl GD, llvm::GlobalValue *GV) {
1879   const Decl *D = GD.getDecl();
1880   if (dyn_cast_or_null<NamedDecl>(D))
1881     setGVProperties(GV, GD);
1882   else
1883     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
1884 
1885   if (D && D->hasAttr<UsedAttr>())
1886     addUsedOrCompilerUsedGlobal(GV);
1887 
1888   if (CodeGenOpts.KeepStaticConsts && D && isa<VarDecl>(D)) {
1889     const auto *VD = cast<VarDecl>(D);
1890     if (VD->getType().isConstQualified() &&
1891         VD->getStorageDuration() == SD_Static)
1892       addUsedOrCompilerUsedGlobal(GV);
1893   }
1894 }
1895 
1896 bool CodeGenModule::GetCPUAndFeaturesAttributes(GlobalDecl GD,
1897                                                 llvm::AttrBuilder &Attrs) {
1898   // Add target-cpu and target-features attributes to functions. If
1899   // we have a decl for the function and it has a target attribute then
1900   // parse that and add it to the feature set.
1901   StringRef TargetCPU = getTarget().getTargetOpts().CPU;
1902   StringRef TuneCPU = getTarget().getTargetOpts().TuneCPU;
1903   std::vector<std::string> Features;
1904   const auto *FD = dyn_cast_or_null<FunctionDecl>(GD.getDecl());
1905   FD = FD ? FD->getMostRecentDecl() : FD;
1906   const auto *TD = FD ? FD->getAttr<TargetAttr>() : nullptr;
1907   const auto *SD = FD ? FD->getAttr<CPUSpecificAttr>() : nullptr;
1908   bool AddedAttr = false;
1909   if (TD || SD) {
1910     llvm::StringMap<bool> FeatureMap;
1911     getContext().getFunctionFeatureMap(FeatureMap, GD);
1912 
1913     // Produce the canonical string for this set of features.
1914     for (const llvm::StringMap<bool>::value_type &Entry : FeatureMap)
1915       Features.push_back((Entry.getValue() ? "+" : "-") + Entry.getKey().str());
1916 
1917     // Now add the target-cpu and target-features to the function.
1918     // While we populated the feature map above, we still need to
1919     // get and parse the target attribute so we can get the cpu for
1920     // the function.
1921     if (TD) {
1922       ParsedTargetAttr ParsedAttr = TD->parse();
1923       if (!ParsedAttr.Architecture.empty() &&
1924           getTarget().isValidCPUName(ParsedAttr.Architecture)) {
1925         TargetCPU = ParsedAttr.Architecture;
1926         TuneCPU = ""; // Clear the tune CPU.
1927       }
1928       if (!ParsedAttr.Tune.empty() &&
1929           getTarget().isValidCPUName(ParsedAttr.Tune))
1930         TuneCPU = ParsedAttr.Tune;
1931     }
1932   } else {
1933     // Otherwise just add the existing target cpu and target features to the
1934     // function.
1935     Features = getTarget().getTargetOpts().Features;
1936   }
1937 
1938   if (!TargetCPU.empty()) {
1939     Attrs.addAttribute("target-cpu", TargetCPU);
1940     AddedAttr = true;
1941   }
1942   if (!TuneCPU.empty()) {
1943     Attrs.addAttribute("tune-cpu", TuneCPU);
1944     AddedAttr = true;
1945   }
1946   if (!Features.empty()) {
1947     llvm::sort(Features);
1948     Attrs.addAttribute("target-features", llvm::join(Features, ","));
1949     AddedAttr = true;
1950   }
1951 
1952   return AddedAttr;
1953 }
1954 
1955 void CodeGenModule::setNonAliasAttributes(GlobalDecl GD,
1956                                           llvm::GlobalObject *GO) {
1957   const Decl *D = GD.getDecl();
1958   SetCommonAttributes(GD, GO);
1959 
1960   if (D) {
1961     if (auto *GV = dyn_cast<llvm::GlobalVariable>(GO)) {
1962       if (D->hasAttr<RetainAttr>())
1963         addUsedGlobal(GV);
1964       if (auto *SA = D->getAttr<PragmaClangBSSSectionAttr>())
1965         GV->addAttribute("bss-section", SA->getName());
1966       if (auto *SA = D->getAttr<PragmaClangDataSectionAttr>())
1967         GV->addAttribute("data-section", SA->getName());
1968       if (auto *SA = D->getAttr<PragmaClangRodataSectionAttr>())
1969         GV->addAttribute("rodata-section", SA->getName());
1970       if (auto *SA = D->getAttr<PragmaClangRelroSectionAttr>())
1971         GV->addAttribute("relro-section", SA->getName());
1972     }
1973 
1974     if (auto *F = dyn_cast<llvm::Function>(GO)) {
1975       if (D->hasAttr<RetainAttr>())
1976         addUsedGlobal(F);
1977       if (auto *SA = D->getAttr<PragmaClangTextSectionAttr>())
1978         if (!D->getAttr<SectionAttr>())
1979           F->addFnAttr("implicit-section-name", SA->getName());
1980 
1981       llvm::AttrBuilder Attrs;
1982       if (GetCPUAndFeaturesAttributes(GD, Attrs)) {
1983         // We know that GetCPUAndFeaturesAttributes will always have the
1984         // newest set, since it has the newest possible FunctionDecl, so the
1985         // new ones should replace the old.
1986         llvm::AttrBuilder RemoveAttrs;
1987         RemoveAttrs.addAttribute("target-cpu");
1988         RemoveAttrs.addAttribute("target-features");
1989         RemoveAttrs.addAttribute("tune-cpu");
1990         F->removeAttributes(llvm::AttributeList::FunctionIndex, RemoveAttrs);
1991         F->addAttributes(llvm::AttributeList::FunctionIndex, Attrs);
1992       }
1993     }
1994 
1995     if (const auto *CSA = D->getAttr<CodeSegAttr>())
1996       GO->setSection(CSA->getName());
1997     else if (const auto *SA = D->getAttr<SectionAttr>())
1998       GO->setSection(SA->getName());
1999   }
2000 
2001   getTargetCodeGenInfo().setTargetAttributes(D, GO, *this);
2002 }
2003 
2004 void CodeGenModule::SetInternalFunctionAttributes(GlobalDecl GD,
2005                                                   llvm::Function *F,
2006                                                   const CGFunctionInfo &FI) {
2007   const Decl *D = GD.getDecl();
2008   SetLLVMFunctionAttributes(GD, FI, F);
2009   SetLLVMFunctionAttributesForDefinition(D, F);
2010 
2011   F->setLinkage(llvm::Function::InternalLinkage);
2012 
2013   setNonAliasAttributes(GD, F);
2014 }
2015 
2016 static void setLinkageForGV(llvm::GlobalValue *GV, const NamedDecl *ND) {
2017   // Set linkage and visibility in case we never see a definition.
2018   LinkageInfo LV = ND->getLinkageAndVisibility();
2019   // Don't set internal linkage on declarations.
2020   // "extern_weak" is overloaded in LLVM; we probably should have
2021   // separate linkage types for this.
2022   if (isExternallyVisible(LV.getLinkage()) &&
2023       (ND->hasAttr<WeakAttr>() || ND->isWeakImported()))
2024     GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage);
2025 }
2026 
2027 void CodeGenModule::CreateFunctionTypeMetadataForIcall(const FunctionDecl *FD,
2028                                                        llvm::Function *F) {
2029   // Only if we are checking indirect calls.
2030   if (!LangOpts.Sanitize.has(SanitizerKind::CFIICall))
2031     return;
2032 
2033   // Non-static class methods are handled via vtable or member function pointer
2034   // checks elsewhere.
2035   if (isa<CXXMethodDecl>(FD) && !cast<CXXMethodDecl>(FD)->isStatic())
2036     return;
2037 
2038   llvm::Metadata *MD = CreateMetadataIdentifierForType(FD->getType());
2039   F->addTypeMetadata(0, MD);
2040   F->addTypeMetadata(0, CreateMetadataIdentifierGeneralized(FD->getType()));
2041 
2042   // Emit a hash-based bit set entry for cross-DSO calls.
2043   if (CodeGenOpts.SanitizeCfiCrossDso)
2044     if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD))
2045       F->addTypeMetadata(0, llvm::ConstantAsMetadata::get(CrossDsoTypeId));
2046 }
2047 
2048 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD, llvm::Function *F,
2049                                           bool IsIncompleteFunction,
2050                                           bool IsThunk) {
2051 
2052   if (llvm::Intrinsic::ID IID = F->getIntrinsicID()) {
2053     // If this is an intrinsic function, set the function's attributes
2054     // to the intrinsic's attributes.
2055     F->setAttributes(llvm::Intrinsic::getAttributes(getLLVMContext(), IID));
2056     return;
2057   }
2058 
2059   const auto *FD = cast<FunctionDecl>(GD.getDecl());
2060 
2061   if (!IsIncompleteFunction)
2062     SetLLVMFunctionAttributes(GD, getTypes().arrangeGlobalDeclaration(GD), F);
2063 
2064   // Add the Returned attribute for "this", except for iOS 5 and earlier
2065   // where substantial code, including the libstdc++ dylib, was compiled with
2066   // GCC and does not actually return "this".
2067   if (!IsThunk && getCXXABI().HasThisReturn(GD) &&
2068       !(getTriple().isiOS() && getTriple().isOSVersionLT(6))) {
2069     assert(!F->arg_empty() &&
2070            F->arg_begin()->getType()
2071              ->canLosslesslyBitCastTo(F->getReturnType()) &&
2072            "unexpected this return");
2073     F->addAttribute(1, llvm::Attribute::Returned);
2074   }
2075 
2076   // Only a few attributes are set on declarations; these may later be
2077   // overridden by a definition.
2078 
2079   setLinkageForGV(F, FD);
2080   setGVProperties(F, FD);
2081 
2082   // Setup target-specific attributes.
2083   if (!IsIncompleteFunction && F->isDeclaration())
2084     getTargetCodeGenInfo().setTargetAttributes(FD, F, *this);
2085 
2086   if (const auto *CSA = FD->getAttr<CodeSegAttr>())
2087     F->setSection(CSA->getName());
2088   else if (const auto *SA = FD->getAttr<SectionAttr>())
2089      F->setSection(SA->getName());
2090 
2091   // If we plan on emitting this inline builtin, we can't treat it as a builtin.
2092   if (FD->isInlineBuiltinDeclaration()) {
2093     const FunctionDecl *FDBody;
2094     bool HasBody = FD->hasBody(FDBody);
2095     (void)HasBody;
2096     assert(HasBody && "Inline builtin declarations should always have an "
2097                       "available body!");
2098     if (shouldEmitFunction(FDBody))
2099       F->addAttribute(llvm::AttributeList::FunctionIndex,
2100                       llvm::Attribute::NoBuiltin);
2101   }
2102 
2103   if (FD->isReplaceableGlobalAllocationFunction()) {
2104     // A replaceable global allocation function does not act like a builtin by
2105     // default, only if it is invoked by a new-expression or delete-expression.
2106     F->addAttribute(llvm::AttributeList::FunctionIndex,
2107                     llvm::Attribute::NoBuiltin);
2108   }
2109 
2110   if (isa<CXXConstructorDecl>(FD) || isa<CXXDestructorDecl>(FD))
2111     F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
2112   else if (const auto *MD = dyn_cast<CXXMethodDecl>(FD))
2113     if (MD->isVirtual())
2114       F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
2115 
2116   // Don't emit entries for function declarations in the cross-DSO mode. This
2117   // is handled with better precision by the receiving DSO. But if jump tables
2118   // are non-canonical then we need type metadata in order to produce the local
2119   // jump table.
2120   if (!CodeGenOpts.SanitizeCfiCrossDso ||
2121       !CodeGenOpts.SanitizeCfiCanonicalJumpTables)
2122     CreateFunctionTypeMetadataForIcall(FD, F);
2123 
2124   if (getLangOpts().OpenMP && FD->hasAttr<OMPDeclareSimdDeclAttr>())
2125     getOpenMPRuntime().emitDeclareSimdFunction(FD, F);
2126 
2127   if (const auto *CB = FD->getAttr<CallbackAttr>()) {
2128     // Annotate the callback behavior as metadata:
2129     //  - The callback callee (as argument number).
2130     //  - The callback payloads (as argument numbers).
2131     llvm::LLVMContext &Ctx = F->getContext();
2132     llvm::MDBuilder MDB(Ctx);
2133 
2134     // The payload indices are all but the first one in the encoding. The first
2135     // identifies the callback callee.
2136     int CalleeIdx = *CB->encoding_begin();
2137     ArrayRef<int> PayloadIndices(CB->encoding_begin() + 1, CB->encoding_end());
2138     F->addMetadata(llvm::LLVMContext::MD_callback,
2139                    *llvm::MDNode::get(Ctx, {MDB.createCallbackEncoding(
2140                                                CalleeIdx, PayloadIndices,
2141                                                /* VarArgsArePassed */ false)}));
2142   }
2143 }
2144 
2145 void CodeGenModule::addUsedGlobal(llvm::GlobalValue *GV) {
2146   assert((isa<llvm::Function>(GV) || !GV->isDeclaration()) &&
2147          "Only globals with definition can force usage.");
2148   LLVMUsed.emplace_back(GV);
2149 }
2150 
2151 void CodeGenModule::addCompilerUsedGlobal(llvm::GlobalValue *GV) {
2152   assert(!GV->isDeclaration() &&
2153          "Only globals with definition can force usage.");
2154   LLVMCompilerUsed.emplace_back(GV);
2155 }
2156 
2157 void CodeGenModule::addUsedOrCompilerUsedGlobal(llvm::GlobalValue *GV) {
2158   assert((isa<llvm::Function>(GV) || !GV->isDeclaration()) &&
2159          "Only globals with definition can force usage.");
2160   if (getTriple().isOSBinFormatELF())
2161     LLVMCompilerUsed.emplace_back(GV);
2162   else
2163     LLVMUsed.emplace_back(GV);
2164 }
2165 
2166 static void emitUsed(CodeGenModule &CGM, StringRef Name,
2167                      std::vector<llvm::WeakTrackingVH> &List) {
2168   // Don't create llvm.used if there is no need.
2169   if (List.empty())
2170     return;
2171 
2172   // Convert List to what ConstantArray needs.
2173   SmallVector<llvm::Constant*, 8> UsedArray;
2174   UsedArray.resize(List.size());
2175   for (unsigned i = 0, e = List.size(); i != e; ++i) {
2176     UsedArray[i] =
2177         llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(
2178             cast<llvm::Constant>(&*List[i]), CGM.Int8PtrTy);
2179   }
2180 
2181   if (UsedArray.empty())
2182     return;
2183   llvm::ArrayType *ATy = llvm::ArrayType::get(CGM.Int8PtrTy, UsedArray.size());
2184 
2185   auto *GV = new llvm::GlobalVariable(
2186       CGM.getModule(), ATy, false, llvm::GlobalValue::AppendingLinkage,
2187       llvm::ConstantArray::get(ATy, UsedArray), Name);
2188 
2189   GV->setSection("llvm.metadata");
2190 }
2191 
2192 void CodeGenModule::emitLLVMUsed() {
2193   emitUsed(*this, "llvm.used", LLVMUsed);
2194   emitUsed(*this, "llvm.compiler.used", LLVMCompilerUsed);
2195 }
2196 
2197 void CodeGenModule::AppendLinkerOptions(StringRef Opts) {
2198   auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opts);
2199   LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
2200 }
2201 
2202 void CodeGenModule::AddDetectMismatch(StringRef Name, StringRef Value) {
2203   llvm::SmallString<32> Opt;
2204   getTargetCodeGenInfo().getDetectMismatchOption(Name, Value, Opt);
2205   if (Opt.empty())
2206     return;
2207   auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt);
2208   LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
2209 }
2210 
2211 void CodeGenModule::AddDependentLib(StringRef Lib) {
2212   auto &C = getLLVMContext();
2213   if (getTarget().getTriple().isOSBinFormatELF()) {
2214       ELFDependentLibraries.push_back(
2215         llvm::MDNode::get(C, llvm::MDString::get(C, Lib)));
2216     return;
2217   }
2218 
2219   llvm::SmallString<24> Opt;
2220   getTargetCodeGenInfo().getDependentLibraryOption(Lib, Opt);
2221   auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt);
2222   LinkerOptionsMetadata.push_back(llvm::MDNode::get(C, MDOpts));
2223 }
2224 
2225 /// Add link options implied by the given module, including modules
2226 /// it depends on, using a postorder walk.
2227 static void addLinkOptionsPostorder(CodeGenModule &CGM, Module *Mod,
2228                                     SmallVectorImpl<llvm::MDNode *> &Metadata,
2229                                     llvm::SmallPtrSet<Module *, 16> &Visited) {
2230   // Import this module's parent.
2231   if (Mod->Parent && Visited.insert(Mod->Parent).second) {
2232     addLinkOptionsPostorder(CGM, Mod->Parent, Metadata, Visited);
2233   }
2234 
2235   // Import this module's dependencies.
2236   for (unsigned I = Mod->Imports.size(); I > 0; --I) {
2237     if (Visited.insert(Mod->Imports[I - 1]).second)
2238       addLinkOptionsPostorder(CGM, Mod->Imports[I-1], Metadata, Visited);
2239   }
2240 
2241   // Add linker options to link against the libraries/frameworks
2242   // described by this module.
2243   llvm::LLVMContext &Context = CGM.getLLVMContext();
2244   bool IsELF = CGM.getTarget().getTriple().isOSBinFormatELF();
2245 
2246   // For modules that use export_as for linking, use that module
2247   // name instead.
2248   if (Mod->UseExportAsModuleLinkName)
2249     return;
2250 
2251   for (unsigned I = Mod->LinkLibraries.size(); I > 0; --I) {
2252     // Link against a framework.  Frameworks are currently Darwin only, so we
2253     // don't to ask TargetCodeGenInfo for the spelling of the linker option.
2254     if (Mod->LinkLibraries[I-1].IsFramework) {
2255       llvm::Metadata *Args[2] = {
2256           llvm::MDString::get(Context, "-framework"),
2257           llvm::MDString::get(Context, Mod->LinkLibraries[I - 1].Library)};
2258 
2259       Metadata.push_back(llvm::MDNode::get(Context, Args));
2260       continue;
2261     }
2262 
2263     // Link against a library.
2264     if (IsELF) {
2265       llvm::Metadata *Args[2] = {
2266           llvm::MDString::get(Context, "lib"),
2267           llvm::MDString::get(Context, Mod->LinkLibraries[I - 1].Library),
2268       };
2269       Metadata.push_back(llvm::MDNode::get(Context, Args));
2270     } else {
2271       llvm::SmallString<24> Opt;
2272       CGM.getTargetCodeGenInfo().getDependentLibraryOption(
2273           Mod->LinkLibraries[I - 1].Library, Opt);
2274       auto *OptString = llvm::MDString::get(Context, Opt);
2275       Metadata.push_back(llvm::MDNode::get(Context, OptString));
2276     }
2277   }
2278 }
2279 
2280 void CodeGenModule::EmitModuleLinkOptions() {
2281   // Collect the set of all of the modules we want to visit to emit link
2282   // options, which is essentially the imported modules and all of their
2283   // non-explicit child modules.
2284   llvm::SetVector<clang::Module *> LinkModules;
2285   llvm::SmallPtrSet<clang::Module *, 16> Visited;
2286   SmallVector<clang::Module *, 16> Stack;
2287 
2288   // Seed the stack with imported modules.
2289   for (Module *M : ImportedModules) {
2290     // Do not add any link flags when an implementation TU of a module imports
2291     // a header of that same module.
2292     if (M->getTopLevelModuleName() == getLangOpts().CurrentModule &&
2293         !getLangOpts().isCompilingModule())
2294       continue;
2295     if (Visited.insert(M).second)
2296       Stack.push_back(M);
2297   }
2298 
2299   // Find all of the modules to import, making a little effort to prune
2300   // non-leaf modules.
2301   while (!Stack.empty()) {
2302     clang::Module *Mod = Stack.pop_back_val();
2303 
2304     bool AnyChildren = false;
2305 
2306     // Visit the submodules of this module.
2307     for (const auto &SM : Mod->submodules()) {
2308       // Skip explicit children; they need to be explicitly imported to be
2309       // linked against.
2310       if (SM->IsExplicit)
2311         continue;
2312 
2313       if (Visited.insert(SM).second) {
2314         Stack.push_back(SM);
2315         AnyChildren = true;
2316       }
2317     }
2318 
2319     // We didn't find any children, so add this module to the list of
2320     // modules to link against.
2321     if (!AnyChildren) {
2322       LinkModules.insert(Mod);
2323     }
2324   }
2325 
2326   // Add link options for all of the imported modules in reverse topological
2327   // order.  We don't do anything to try to order import link flags with respect
2328   // to linker options inserted by things like #pragma comment().
2329   SmallVector<llvm::MDNode *, 16> MetadataArgs;
2330   Visited.clear();
2331   for (Module *M : LinkModules)
2332     if (Visited.insert(M).second)
2333       addLinkOptionsPostorder(*this, M, MetadataArgs, Visited);
2334   std::reverse(MetadataArgs.begin(), MetadataArgs.end());
2335   LinkerOptionsMetadata.append(MetadataArgs.begin(), MetadataArgs.end());
2336 
2337   // Add the linker options metadata flag.
2338   auto *NMD = getModule().getOrInsertNamedMetadata("llvm.linker.options");
2339   for (auto *MD : LinkerOptionsMetadata)
2340     NMD->addOperand(MD);
2341 }
2342 
2343 void CodeGenModule::EmitDeferred() {
2344   // Emit deferred declare target declarations.
2345   if (getLangOpts().OpenMP && !getLangOpts().OpenMPSimd)
2346     getOpenMPRuntime().emitDeferredTargetDecls();
2347 
2348   // Emit code for any potentially referenced deferred decls.  Since a
2349   // previously unused static decl may become used during the generation of code
2350   // for a static function, iterate until no changes are made.
2351 
2352   if (!DeferredVTables.empty()) {
2353     EmitDeferredVTables();
2354 
2355     // Emitting a vtable doesn't directly cause more vtables to
2356     // become deferred, although it can cause functions to be
2357     // emitted that then need those vtables.
2358     assert(DeferredVTables.empty());
2359   }
2360 
2361   // Emit CUDA/HIP static device variables referenced by host code only.
2362   if (getLangOpts().CUDA)
2363     for (auto V : getContext().CUDAStaticDeviceVarReferencedByHost)
2364       DeferredDeclsToEmit.push_back(V);
2365 
2366   // Stop if we're out of both deferred vtables and deferred declarations.
2367   if (DeferredDeclsToEmit.empty())
2368     return;
2369 
2370   // Grab the list of decls to emit. If EmitGlobalDefinition schedules more
2371   // work, it will not interfere with this.
2372   std::vector<GlobalDecl> CurDeclsToEmit;
2373   CurDeclsToEmit.swap(DeferredDeclsToEmit);
2374 
2375   for (GlobalDecl &D : CurDeclsToEmit) {
2376     // We should call GetAddrOfGlobal with IsForDefinition set to true in order
2377     // to get GlobalValue with exactly the type we need, not something that
2378     // might had been created for another decl with the same mangled name but
2379     // different type.
2380     llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>(
2381         GetAddrOfGlobal(D, ForDefinition));
2382 
2383     // In case of different address spaces, we may still get a cast, even with
2384     // IsForDefinition equal to true. Query mangled names table to get
2385     // GlobalValue.
2386     if (!GV)
2387       GV = GetGlobalValue(getMangledName(D));
2388 
2389     // Make sure GetGlobalValue returned non-null.
2390     assert(GV);
2391 
2392     // Check to see if we've already emitted this.  This is necessary
2393     // for a couple of reasons: first, decls can end up in the
2394     // deferred-decls queue multiple times, and second, decls can end
2395     // up with definitions in unusual ways (e.g. by an extern inline
2396     // function acquiring a strong function redefinition).  Just
2397     // ignore these cases.
2398     if (!GV->isDeclaration())
2399       continue;
2400 
2401     // If this is OpenMP, check if it is legal to emit this global normally.
2402     if (LangOpts.OpenMP && OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(D))
2403       continue;
2404 
2405     // Otherwise, emit the definition and move on to the next one.
2406     EmitGlobalDefinition(D, GV);
2407 
2408     // If we found out that we need to emit more decls, do that recursively.
2409     // This has the advantage that the decls are emitted in a DFS and related
2410     // ones are close together, which is convenient for testing.
2411     if (!DeferredVTables.empty() || !DeferredDeclsToEmit.empty()) {
2412       EmitDeferred();
2413       assert(DeferredVTables.empty() && DeferredDeclsToEmit.empty());
2414     }
2415   }
2416 }
2417 
2418 void CodeGenModule::EmitVTablesOpportunistically() {
2419   // Try to emit external vtables as available_externally if they have emitted
2420   // all inlined virtual functions.  It runs after EmitDeferred() and therefore
2421   // is not allowed to create new references to things that need to be emitted
2422   // lazily. Note that it also uses fact that we eagerly emitting RTTI.
2423 
2424   assert((OpportunisticVTables.empty() || shouldOpportunisticallyEmitVTables())
2425          && "Only emit opportunistic vtables with optimizations");
2426 
2427   for (const CXXRecordDecl *RD : OpportunisticVTables) {
2428     assert(getVTables().isVTableExternal(RD) &&
2429            "This queue should only contain external vtables");
2430     if (getCXXABI().canSpeculativelyEmitVTable(RD))
2431       VTables.GenerateClassData(RD);
2432   }
2433   OpportunisticVTables.clear();
2434 }
2435 
2436 void CodeGenModule::EmitGlobalAnnotations() {
2437   if (Annotations.empty())
2438     return;
2439 
2440   // Create a new global variable for the ConstantStruct in the Module.
2441   llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get(
2442     Annotations[0]->getType(), Annotations.size()), Annotations);
2443   auto *gv = new llvm::GlobalVariable(getModule(), Array->getType(), false,
2444                                       llvm::GlobalValue::AppendingLinkage,
2445                                       Array, "llvm.global.annotations");
2446   gv->setSection(AnnotationSection);
2447 }
2448 
2449 llvm::Constant *CodeGenModule::EmitAnnotationString(StringRef Str) {
2450   llvm::Constant *&AStr = AnnotationStrings[Str];
2451   if (AStr)
2452     return AStr;
2453 
2454   // Not found yet, create a new global.
2455   llvm::Constant *s = llvm::ConstantDataArray::getString(getLLVMContext(), Str);
2456   auto *gv =
2457       new llvm::GlobalVariable(getModule(), s->getType(), true,
2458                                llvm::GlobalValue::PrivateLinkage, s, ".str");
2459   gv->setSection(AnnotationSection);
2460   gv->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
2461   AStr = gv;
2462   return gv;
2463 }
2464 
2465 llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) {
2466   SourceManager &SM = getContext().getSourceManager();
2467   PresumedLoc PLoc = SM.getPresumedLoc(Loc);
2468   if (PLoc.isValid())
2469     return EmitAnnotationString(PLoc.getFilename());
2470   return EmitAnnotationString(SM.getBufferName(Loc));
2471 }
2472 
2473 llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) {
2474   SourceManager &SM = getContext().getSourceManager();
2475   PresumedLoc PLoc = SM.getPresumedLoc(L);
2476   unsigned LineNo = PLoc.isValid() ? PLoc.getLine() :
2477     SM.getExpansionLineNumber(L);
2478   return llvm::ConstantInt::get(Int32Ty, LineNo);
2479 }
2480 
2481 llvm::Constant *CodeGenModule::EmitAnnotationArgs(const AnnotateAttr *Attr) {
2482   ArrayRef<Expr *> Exprs = {Attr->args_begin(), Attr->args_size()};
2483   if (Exprs.empty())
2484     return llvm::ConstantPointerNull::get(Int8PtrTy);
2485 
2486   llvm::FoldingSetNodeID ID;
2487   for (Expr *E : Exprs) {
2488     ID.Add(cast<clang::ConstantExpr>(E)->getAPValueResult());
2489   }
2490   llvm::Constant *&Lookup = AnnotationArgs[ID.ComputeHash()];
2491   if (Lookup)
2492     return Lookup;
2493 
2494   llvm::SmallVector<llvm::Constant *, 4> LLVMArgs;
2495   LLVMArgs.reserve(Exprs.size());
2496   ConstantEmitter ConstEmiter(*this);
2497   llvm::transform(Exprs, std::back_inserter(LLVMArgs), [&](const Expr *E) {
2498     const auto *CE = cast<clang::ConstantExpr>(E);
2499     return ConstEmiter.emitAbstract(CE->getBeginLoc(), CE->getAPValueResult(),
2500                                     CE->getType());
2501   });
2502   auto *Struct = llvm::ConstantStruct::getAnon(LLVMArgs);
2503   auto *GV = new llvm::GlobalVariable(getModule(), Struct->getType(), true,
2504                                       llvm::GlobalValue::PrivateLinkage, Struct,
2505                                       ".args");
2506   GV->setSection(AnnotationSection);
2507   GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
2508   auto *Bitcasted = llvm::ConstantExpr::getBitCast(GV, Int8PtrTy);
2509 
2510   Lookup = Bitcasted;
2511   return Bitcasted;
2512 }
2513 
2514 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV,
2515                                                 const AnnotateAttr *AA,
2516                                                 SourceLocation L) {
2517   // Get the globals for file name, annotation, and the line number.
2518   llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()),
2519                  *UnitGV = EmitAnnotationUnit(L),
2520                  *LineNoCst = EmitAnnotationLineNo(L),
2521                  *Args = EmitAnnotationArgs(AA);
2522 
2523   llvm::Constant *ASZeroGV = GV;
2524   if (GV->getAddressSpace() != 0) {
2525     ASZeroGV = llvm::ConstantExpr::getAddrSpaceCast(
2526                    GV, GV->getValueType()->getPointerTo(0));
2527   }
2528 
2529   // Create the ConstantStruct for the global annotation.
2530   llvm::Constant *Fields[] = {
2531       llvm::ConstantExpr::getBitCast(ASZeroGV, Int8PtrTy),
2532       llvm::ConstantExpr::getBitCast(AnnoGV, Int8PtrTy),
2533       llvm::ConstantExpr::getBitCast(UnitGV, Int8PtrTy),
2534       LineNoCst,
2535       Args,
2536   };
2537   return llvm::ConstantStruct::getAnon(Fields);
2538 }
2539 
2540 void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D,
2541                                          llvm::GlobalValue *GV) {
2542   assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
2543   // Get the struct elements for these annotations.
2544   for (const auto *I : D->specific_attrs<AnnotateAttr>())
2545     Annotations.push_back(EmitAnnotateAttr(GV, I, D->getLocation()));
2546 }
2547 
2548 bool CodeGenModule::isInNoSanitizeList(SanitizerMask Kind, llvm::Function *Fn,
2549                                        SourceLocation Loc) const {
2550   const auto &NoSanitizeL = getContext().getNoSanitizeList();
2551   // NoSanitize by function name.
2552   if (NoSanitizeL.containsFunction(Kind, Fn->getName()))
2553     return true;
2554   // NoSanitize by location.
2555   if (Loc.isValid())
2556     return NoSanitizeL.containsLocation(Kind, Loc);
2557   // If location is unknown, this may be a compiler-generated function. Assume
2558   // it's located in the main file.
2559   auto &SM = Context.getSourceManager();
2560   if (const auto *MainFile = SM.getFileEntryForID(SM.getMainFileID())) {
2561     return NoSanitizeL.containsFile(Kind, MainFile->getName());
2562   }
2563   return false;
2564 }
2565 
2566 bool CodeGenModule::isInNoSanitizeList(llvm::GlobalVariable *GV,
2567                                        SourceLocation Loc, QualType Ty,
2568                                        StringRef Category) const {
2569   // For now globals can be ignored only in ASan and KASan.
2570   const SanitizerMask EnabledAsanMask =
2571       LangOpts.Sanitize.Mask &
2572       (SanitizerKind::Address | SanitizerKind::KernelAddress |
2573        SanitizerKind::HWAddress | SanitizerKind::KernelHWAddress |
2574        SanitizerKind::MemTag);
2575   if (!EnabledAsanMask)
2576     return false;
2577   const auto &NoSanitizeL = getContext().getNoSanitizeList();
2578   if (NoSanitizeL.containsGlobal(EnabledAsanMask, GV->getName(), Category))
2579     return true;
2580   if (NoSanitizeL.containsLocation(EnabledAsanMask, Loc, Category))
2581     return true;
2582   // Check global type.
2583   if (!Ty.isNull()) {
2584     // Drill down the array types: if global variable of a fixed type is
2585     // not sanitized, we also don't instrument arrays of them.
2586     while (auto AT = dyn_cast<ArrayType>(Ty.getTypePtr()))
2587       Ty = AT->getElementType();
2588     Ty = Ty.getCanonicalType().getUnqualifiedType();
2589     // Only record types (classes, structs etc.) are ignored.
2590     if (Ty->isRecordType()) {
2591       std::string TypeStr = Ty.getAsString(getContext().getPrintingPolicy());
2592       if (NoSanitizeL.containsType(EnabledAsanMask, TypeStr, Category))
2593         return true;
2594     }
2595   }
2596   return false;
2597 }
2598 
2599 bool CodeGenModule::imbueXRayAttrs(llvm::Function *Fn, SourceLocation Loc,
2600                                    StringRef Category) const {
2601   const auto &XRayFilter = getContext().getXRayFilter();
2602   using ImbueAttr = XRayFunctionFilter::ImbueAttribute;
2603   auto Attr = ImbueAttr::NONE;
2604   if (Loc.isValid())
2605     Attr = XRayFilter.shouldImbueLocation(Loc, Category);
2606   if (Attr == ImbueAttr::NONE)
2607     Attr = XRayFilter.shouldImbueFunction(Fn->getName());
2608   switch (Attr) {
2609   case ImbueAttr::NONE:
2610     return false;
2611   case ImbueAttr::ALWAYS:
2612     Fn->addFnAttr("function-instrument", "xray-always");
2613     break;
2614   case ImbueAttr::ALWAYS_ARG1:
2615     Fn->addFnAttr("function-instrument", "xray-always");
2616     Fn->addFnAttr("xray-log-args", "1");
2617     break;
2618   case ImbueAttr::NEVER:
2619     Fn->addFnAttr("function-instrument", "xray-never");
2620     break;
2621   }
2622   return true;
2623 }
2624 
2625 bool CodeGenModule::isProfileInstrExcluded(llvm::Function *Fn,
2626                                            SourceLocation Loc) const {
2627   const auto &ProfileList = getContext().getProfileList();
2628   // If the profile list is empty, then instrument everything.
2629   if (ProfileList.isEmpty())
2630     return false;
2631   CodeGenOptions::ProfileInstrKind Kind = getCodeGenOpts().getProfileInstr();
2632   // First, check the function name.
2633   Optional<bool> V = ProfileList.isFunctionExcluded(Fn->getName(), Kind);
2634   if (V.hasValue())
2635     return *V;
2636   // Next, check the source location.
2637   if (Loc.isValid()) {
2638     Optional<bool> V = ProfileList.isLocationExcluded(Loc, Kind);
2639     if (V.hasValue())
2640       return *V;
2641   }
2642   // If location is unknown, this may be a compiler-generated function. Assume
2643   // it's located in the main file.
2644   auto &SM = Context.getSourceManager();
2645   if (const auto *MainFile = SM.getFileEntryForID(SM.getMainFileID())) {
2646     Optional<bool> V = ProfileList.isFileExcluded(MainFile->getName(), Kind);
2647     if (V.hasValue())
2648       return *V;
2649   }
2650   return ProfileList.getDefault();
2651 }
2652 
2653 bool CodeGenModule::MustBeEmitted(const ValueDecl *Global) {
2654   // Never defer when EmitAllDecls is specified.
2655   if (LangOpts.EmitAllDecls)
2656     return true;
2657 
2658   if (CodeGenOpts.KeepStaticConsts) {
2659     const auto *VD = dyn_cast<VarDecl>(Global);
2660     if (VD && VD->getType().isConstQualified() &&
2661         VD->getStorageDuration() == SD_Static)
2662       return true;
2663   }
2664 
2665   return getContext().DeclMustBeEmitted(Global);
2666 }
2667 
2668 bool CodeGenModule::MayBeEmittedEagerly(const ValueDecl *Global) {
2669   if (const auto *FD = dyn_cast<FunctionDecl>(Global)) {
2670     if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
2671       // Implicit template instantiations may change linkage if they are later
2672       // explicitly instantiated, so they should not be emitted eagerly.
2673       return false;
2674     // In OpenMP 5.0 function may be marked as device_type(nohost) and we should
2675     // not emit them eagerly unless we sure that the function must be emitted on
2676     // the host.
2677     if (LangOpts.OpenMP >= 50 && !LangOpts.OpenMPSimd &&
2678         !LangOpts.OpenMPIsDevice &&
2679         !OMPDeclareTargetDeclAttr::getDeviceType(FD) &&
2680         !FD->isUsed(/*CheckUsedAttr=*/false) && !FD->isReferenced())
2681       return false;
2682   }
2683   if (const auto *VD = dyn_cast<VarDecl>(Global))
2684     if (Context.getInlineVariableDefinitionKind(VD) ==
2685         ASTContext::InlineVariableDefinitionKind::WeakUnknown)
2686       // A definition of an inline constexpr static data member may change
2687       // linkage later if it's redeclared outside the class.
2688       return false;
2689   // If OpenMP is enabled and threadprivates must be generated like TLS, delay
2690   // codegen for global variables, because they may be marked as threadprivate.
2691   if (LangOpts.OpenMP && LangOpts.OpenMPUseTLS &&
2692       getContext().getTargetInfo().isTLSSupported() && isa<VarDecl>(Global) &&
2693       !isTypeConstant(Global->getType(), false) &&
2694       !OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(Global))
2695     return false;
2696 
2697   return true;
2698 }
2699 
2700 ConstantAddress CodeGenModule::GetAddrOfMSGuidDecl(const MSGuidDecl *GD) {
2701   StringRef Name = getMangledName(GD);
2702 
2703   // The UUID descriptor should be pointer aligned.
2704   CharUnits Alignment = CharUnits::fromQuantity(PointerAlignInBytes);
2705 
2706   // Look for an existing global.
2707   if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name))
2708     return ConstantAddress(GV, Alignment);
2709 
2710   ConstantEmitter Emitter(*this);
2711   llvm::Constant *Init;
2712 
2713   APValue &V = GD->getAsAPValue();
2714   if (!V.isAbsent()) {
2715     // If possible, emit the APValue version of the initializer. In particular,
2716     // this gets the type of the constant right.
2717     Init = Emitter.emitForInitializer(
2718         GD->getAsAPValue(), GD->getType().getAddressSpace(), GD->getType());
2719   } else {
2720     // As a fallback, directly construct the constant.
2721     // FIXME: This may get padding wrong under esoteric struct layout rules.
2722     // MSVC appears to create a complete type 'struct __s_GUID' that it
2723     // presumably uses to represent these constants.
2724     MSGuidDecl::Parts Parts = GD->getParts();
2725     llvm::Constant *Fields[4] = {
2726         llvm::ConstantInt::get(Int32Ty, Parts.Part1),
2727         llvm::ConstantInt::get(Int16Ty, Parts.Part2),
2728         llvm::ConstantInt::get(Int16Ty, Parts.Part3),
2729         llvm::ConstantDataArray::getRaw(
2730             StringRef(reinterpret_cast<char *>(Parts.Part4And5), 8), 8,
2731             Int8Ty)};
2732     Init = llvm::ConstantStruct::getAnon(Fields);
2733   }
2734 
2735   auto *GV = new llvm::GlobalVariable(
2736       getModule(), Init->getType(),
2737       /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name);
2738   if (supportsCOMDAT())
2739     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
2740   setDSOLocal(GV);
2741 
2742   llvm::Constant *Addr = GV;
2743   if (!V.isAbsent()) {
2744     Emitter.finalize(GV);
2745   } else {
2746     llvm::Type *Ty = getTypes().ConvertTypeForMem(GD->getType());
2747     Addr = llvm::ConstantExpr::getBitCast(
2748         GV, Ty->getPointerTo(GV->getAddressSpace()));
2749   }
2750   return ConstantAddress(Addr, Alignment);
2751 }
2752 
2753 ConstantAddress CodeGenModule::GetAddrOfTemplateParamObject(
2754     const TemplateParamObjectDecl *TPO) {
2755   StringRef Name = getMangledName(TPO);
2756   CharUnits Alignment = getNaturalTypeAlignment(TPO->getType());
2757 
2758   if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name))
2759     return ConstantAddress(GV, Alignment);
2760 
2761   ConstantEmitter Emitter(*this);
2762   llvm::Constant *Init = Emitter.emitForInitializer(
2763         TPO->getValue(), TPO->getType().getAddressSpace(), TPO->getType());
2764 
2765   if (!Init) {
2766     ErrorUnsupported(TPO, "template parameter object");
2767     return ConstantAddress::invalid();
2768   }
2769 
2770   auto *GV = new llvm::GlobalVariable(
2771       getModule(), Init->getType(),
2772       /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name);
2773   if (supportsCOMDAT())
2774     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
2775   Emitter.finalize(GV);
2776 
2777   return ConstantAddress(GV, Alignment);
2778 }
2779 
2780 ConstantAddress CodeGenModule::GetWeakRefReference(const ValueDecl *VD) {
2781   const AliasAttr *AA = VD->getAttr<AliasAttr>();
2782   assert(AA && "No alias?");
2783 
2784   CharUnits Alignment = getContext().getDeclAlign(VD);
2785   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType());
2786 
2787   // See if there is already something with the target's name in the module.
2788   llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee());
2789   if (Entry) {
2790     unsigned AS = getContext().getTargetAddressSpace(VD->getType());
2791     auto Ptr = llvm::ConstantExpr::getBitCast(Entry, DeclTy->getPointerTo(AS));
2792     return ConstantAddress(Ptr, Alignment);
2793   }
2794 
2795   llvm::Constant *Aliasee;
2796   if (isa<llvm::FunctionType>(DeclTy))
2797     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy,
2798                                       GlobalDecl(cast<FunctionDecl>(VD)),
2799                                       /*ForVTable=*/false);
2800   else
2801     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
2802                                     llvm::PointerType::getUnqual(DeclTy),
2803                                     nullptr);
2804 
2805   auto *F = cast<llvm::GlobalValue>(Aliasee);
2806   F->setLinkage(llvm::Function::ExternalWeakLinkage);
2807   WeakRefReferences.insert(F);
2808 
2809   return ConstantAddress(Aliasee, Alignment);
2810 }
2811 
2812 void CodeGenModule::EmitGlobal(GlobalDecl GD) {
2813   const auto *Global = cast<ValueDecl>(GD.getDecl());
2814 
2815   // Weak references don't produce any output by themselves.
2816   if (Global->hasAttr<WeakRefAttr>())
2817     return;
2818 
2819   // If this is an alias definition (which otherwise looks like a declaration)
2820   // emit it now.
2821   if (Global->hasAttr<AliasAttr>())
2822     return EmitAliasDefinition(GD);
2823 
2824   // IFunc like an alias whose value is resolved at runtime by calling resolver.
2825   if (Global->hasAttr<IFuncAttr>())
2826     return emitIFuncDefinition(GD);
2827 
2828   // If this is a cpu_dispatch multiversion function, emit the resolver.
2829   if (Global->hasAttr<CPUDispatchAttr>())
2830     return emitCPUDispatchDefinition(GD);
2831 
2832   // If this is CUDA, be selective about which declarations we emit.
2833   if (LangOpts.CUDA) {
2834     if (LangOpts.CUDAIsDevice) {
2835       if (!Global->hasAttr<CUDADeviceAttr>() &&
2836           !Global->hasAttr<CUDAGlobalAttr>() &&
2837           !Global->hasAttr<CUDAConstantAttr>() &&
2838           !Global->hasAttr<CUDASharedAttr>() &&
2839           !Global->getType()->isCUDADeviceBuiltinSurfaceType() &&
2840           !Global->getType()->isCUDADeviceBuiltinTextureType())
2841         return;
2842     } else {
2843       // We need to emit host-side 'shadows' for all global
2844       // device-side variables because the CUDA runtime needs their
2845       // size and host-side address in order to provide access to
2846       // their device-side incarnations.
2847 
2848       // So device-only functions are the only things we skip.
2849       if (isa<FunctionDecl>(Global) && !Global->hasAttr<CUDAHostAttr>() &&
2850           Global->hasAttr<CUDADeviceAttr>())
2851         return;
2852 
2853       assert((isa<FunctionDecl>(Global) || isa<VarDecl>(Global)) &&
2854              "Expected Variable or Function");
2855     }
2856   }
2857 
2858   if (LangOpts.OpenMP) {
2859     // If this is OpenMP, check if it is legal to emit this global normally.
2860     if (OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(GD))
2861       return;
2862     if (auto *DRD = dyn_cast<OMPDeclareReductionDecl>(Global)) {
2863       if (MustBeEmitted(Global))
2864         EmitOMPDeclareReduction(DRD);
2865       return;
2866     } else if (auto *DMD = dyn_cast<OMPDeclareMapperDecl>(Global)) {
2867       if (MustBeEmitted(Global))
2868         EmitOMPDeclareMapper(DMD);
2869       return;
2870     }
2871   }
2872 
2873   // Ignore declarations, they will be emitted on their first use.
2874   if (const auto *FD = dyn_cast<FunctionDecl>(Global)) {
2875     // Forward declarations are emitted lazily on first use.
2876     if (!FD->doesThisDeclarationHaveABody()) {
2877       if (!FD->doesDeclarationForceExternallyVisibleDefinition())
2878         return;
2879 
2880       StringRef MangledName = getMangledName(GD);
2881 
2882       // Compute the function info and LLVM type.
2883       const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
2884       llvm::Type *Ty = getTypes().GetFunctionType(FI);
2885 
2886       GetOrCreateLLVMFunction(MangledName, Ty, GD, /*ForVTable=*/false,
2887                               /*DontDefer=*/false);
2888       return;
2889     }
2890   } else {
2891     const auto *VD = cast<VarDecl>(Global);
2892     assert(VD->isFileVarDecl() && "Cannot emit local var decl as global.");
2893     if (VD->isThisDeclarationADefinition() != VarDecl::Definition &&
2894         !Context.isMSStaticDataMemberInlineDefinition(VD)) {
2895       if (LangOpts.OpenMP) {
2896         // Emit declaration of the must-be-emitted declare target variable.
2897         if (llvm::Optional<OMPDeclareTargetDeclAttr::MapTypeTy> Res =
2898                 OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD)) {
2899           bool UnifiedMemoryEnabled =
2900               getOpenMPRuntime().hasRequiresUnifiedSharedMemory();
2901           if (*Res == OMPDeclareTargetDeclAttr::MT_To &&
2902               !UnifiedMemoryEnabled) {
2903             (void)GetAddrOfGlobalVar(VD);
2904           } else {
2905             assert(((*Res == OMPDeclareTargetDeclAttr::MT_Link) ||
2906                     (*Res == OMPDeclareTargetDeclAttr::MT_To &&
2907                      UnifiedMemoryEnabled)) &&
2908                    "Link clause or to clause with unified memory expected.");
2909             (void)getOpenMPRuntime().getAddrOfDeclareTargetVar(VD);
2910           }
2911 
2912           return;
2913         }
2914       }
2915       // If this declaration may have caused an inline variable definition to
2916       // change linkage, make sure that it's emitted.
2917       if (Context.getInlineVariableDefinitionKind(VD) ==
2918           ASTContext::InlineVariableDefinitionKind::Strong)
2919         GetAddrOfGlobalVar(VD);
2920       return;
2921     }
2922   }
2923 
2924   // Defer code generation to first use when possible, e.g. if this is an inline
2925   // function. If the global must always be emitted, do it eagerly if possible
2926   // to benefit from cache locality.
2927   if (MustBeEmitted(Global) && MayBeEmittedEagerly(Global)) {
2928     // Emit the definition if it can't be deferred.
2929     EmitGlobalDefinition(GD);
2930     return;
2931   }
2932 
2933   // If we're deferring emission of a C++ variable with an
2934   // initializer, remember the order in which it appeared in the file.
2935   if (getLangOpts().CPlusPlus && isa<VarDecl>(Global) &&
2936       cast<VarDecl>(Global)->hasInit()) {
2937     DelayedCXXInitPosition[Global] = CXXGlobalInits.size();
2938     CXXGlobalInits.push_back(nullptr);
2939   }
2940 
2941   StringRef MangledName = getMangledName(GD);
2942   if (GetGlobalValue(MangledName) != nullptr) {
2943     // The value has already been used and should therefore be emitted.
2944     addDeferredDeclToEmit(GD);
2945   } else if (MustBeEmitted(Global)) {
2946     // The value must be emitted, but cannot be emitted eagerly.
2947     assert(!MayBeEmittedEagerly(Global));
2948     addDeferredDeclToEmit(GD);
2949   } else {
2950     // Otherwise, remember that we saw a deferred decl with this name.  The
2951     // first use of the mangled name will cause it to move into
2952     // DeferredDeclsToEmit.
2953     DeferredDecls[MangledName] = GD;
2954   }
2955 }
2956 
2957 // Check if T is a class type with a destructor that's not dllimport.
2958 static bool HasNonDllImportDtor(QualType T) {
2959   if (const auto *RT = T->getBaseElementTypeUnsafe()->getAs<RecordType>())
2960     if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl()))
2961       if (RD->getDestructor() && !RD->getDestructor()->hasAttr<DLLImportAttr>())
2962         return true;
2963 
2964   return false;
2965 }
2966 
2967 namespace {
2968   struct FunctionIsDirectlyRecursive
2969       : public ConstStmtVisitor<FunctionIsDirectlyRecursive, bool> {
2970     const StringRef Name;
2971     const Builtin::Context &BI;
2972     FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C)
2973         : Name(N), BI(C) {}
2974 
2975     bool VisitCallExpr(const CallExpr *E) {
2976       const FunctionDecl *FD = E->getDirectCallee();
2977       if (!FD)
2978         return false;
2979       AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
2980       if (Attr && Name == Attr->getLabel())
2981         return true;
2982       unsigned BuiltinID = FD->getBuiltinID();
2983       if (!BuiltinID || !BI.isLibFunction(BuiltinID))
2984         return false;
2985       StringRef BuiltinName = BI.getName(BuiltinID);
2986       if (BuiltinName.startswith("__builtin_") &&
2987           Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) {
2988         return true;
2989       }
2990       return false;
2991     }
2992 
2993     bool VisitStmt(const Stmt *S) {
2994       for (const Stmt *Child : S->children())
2995         if (Child && this->Visit(Child))
2996           return true;
2997       return false;
2998     }
2999   };
3000 
3001   // Make sure we're not referencing non-imported vars or functions.
3002   struct DLLImportFunctionVisitor
3003       : public RecursiveASTVisitor<DLLImportFunctionVisitor> {
3004     bool SafeToInline = true;
3005 
3006     bool shouldVisitImplicitCode() const { return true; }
3007 
3008     bool VisitVarDecl(VarDecl *VD) {
3009       if (VD->getTLSKind()) {
3010         // A thread-local variable cannot be imported.
3011         SafeToInline = false;
3012         return SafeToInline;
3013       }
3014 
3015       // A variable definition might imply a destructor call.
3016       if (VD->isThisDeclarationADefinition())
3017         SafeToInline = !HasNonDllImportDtor(VD->getType());
3018 
3019       return SafeToInline;
3020     }
3021 
3022     bool VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) {
3023       if (const auto *D = E->getTemporary()->getDestructor())
3024         SafeToInline = D->hasAttr<DLLImportAttr>();
3025       return SafeToInline;
3026     }
3027 
3028     bool VisitDeclRefExpr(DeclRefExpr *E) {
3029       ValueDecl *VD = E->getDecl();
3030       if (isa<FunctionDecl>(VD))
3031         SafeToInline = VD->hasAttr<DLLImportAttr>();
3032       else if (VarDecl *V = dyn_cast<VarDecl>(VD))
3033         SafeToInline = !V->hasGlobalStorage() || V->hasAttr<DLLImportAttr>();
3034       return SafeToInline;
3035     }
3036 
3037     bool VisitCXXConstructExpr(CXXConstructExpr *E) {
3038       SafeToInline = E->getConstructor()->hasAttr<DLLImportAttr>();
3039       return SafeToInline;
3040     }
3041 
3042     bool VisitCXXMemberCallExpr(CXXMemberCallExpr *E) {
3043       CXXMethodDecl *M = E->getMethodDecl();
3044       if (!M) {
3045         // Call through a pointer to member function. This is safe to inline.
3046         SafeToInline = true;
3047       } else {
3048         SafeToInline = M->hasAttr<DLLImportAttr>();
3049       }
3050       return SafeToInline;
3051     }
3052 
3053     bool VisitCXXDeleteExpr(CXXDeleteExpr *E) {
3054       SafeToInline = E->getOperatorDelete()->hasAttr<DLLImportAttr>();
3055       return SafeToInline;
3056     }
3057 
3058     bool VisitCXXNewExpr(CXXNewExpr *E) {
3059       SafeToInline = E->getOperatorNew()->hasAttr<DLLImportAttr>();
3060       return SafeToInline;
3061     }
3062   };
3063 }
3064 
3065 // isTriviallyRecursive - Check if this function calls another
3066 // decl that, because of the asm attribute or the other decl being a builtin,
3067 // ends up pointing to itself.
3068 bool
3069 CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) {
3070   StringRef Name;
3071   if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) {
3072     // asm labels are a special kind of mangling we have to support.
3073     AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
3074     if (!Attr)
3075       return false;
3076     Name = Attr->getLabel();
3077   } else {
3078     Name = FD->getName();
3079   }
3080 
3081   FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo);
3082   const Stmt *Body = FD->getBody();
3083   return Body ? Walker.Visit(Body) : false;
3084 }
3085 
3086 bool CodeGenModule::shouldEmitFunction(GlobalDecl GD) {
3087   if (getFunctionLinkage(GD) != llvm::Function::AvailableExternallyLinkage)
3088     return true;
3089   const auto *F = cast<FunctionDecl>(GD.getDecl());
3090   if (CodeGenOpts.OptimizationLevel == 0 && !F->hasAttr<AlwaysInlineAttr>())
3091     return false;
3092 
3093   if (F->hasAttr<DLLImportAttr>() && !F->hasAttr<AlwaysInlineAttr>()) {
3094     // Check whether it would be safe to inline this dllimport function.
3095     DLLImportFunctionVisitor Visitor;
3096     Visitor.TraverseFunctionDecl(const_cast<FunctionDecl*>(F));
3097     if (!Visitor.SafeToInline)
3098       return false;
3099 
3100     if (const CXXDestructorDecl *Dtor = dyn_cast<CXXDestructorDecl>(F)) {
3101       // Implicit destructor invocations aren't captured in the AST, so the
3102       // check above can't see them. Check for them manually here.
3103       for (const Decl *Member : Dtor->getParent()->decls())
3104         if (isa<FieldDecl>(Member))
3105           if (HasNonDllImportDtor(cast<FieldDecl>(Member)->getType()))
3106             return false;
3107       for (const CXXBaseSpecifier &B : Dtor->getParent()->bases())
3108         if (HasNonDllImportDtor(B.getType()))
3109           return false;
3110     }
3111   }
3112 
3113   // PR9614. Avoid cases where the source code is lying to us. An available
3114   // externally function should have an equivalent function somewhere else,
3115   // but a function that calls itself through asm label/`__builtin_` trickery is
3116   // clearly not equivalent to the real implementation.
3117   // This happens in glibc's btowc and in some configure checks.
3118   return !isTriviallyRecursive(F);
3119 }
3120 
3121 bool CodeGenModule::shouldOpportunisticallyEmitVTables() {
3122   return CodeGenOpts.OptimizationLevel > 0;
3123 }
3124 
3125 void CodeGenModule::EmitMultiVersionFunctionDefinition(GlobalDecl GD,
3126                                                        llvm::GlobalValue *GV) {
3127   const auto *FD = cast<FunctionDecl>(GD.getDecl());
3128 
3129   if (FD->isCPUSpecificMultiVersion()) {
3130     auto *Spec = FD->getAttr<CPUSpecificAttr>();
3131     for (unsigned I = 0; I < Spec->cpus_size(); ++I)
3132       EmitGlobalFunctionDefinition(GD.getWithMultiVersionIndex(I), nullptr);
3133     // Requires multiple emits.
3134   } else
3135     EmitGlobalFunctionDefinition(GD, GV);
3136 }
3137 
3138 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD, llvm::GlobalValue *GV) {
3139   const auto *D = cast<ValueDecl>(GD.getDecl());
3140 
3141   PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(),
3142                                  Context.getSourceManager(),
3143                                  "Generating code for declaration");
3144 
3145   if (const auto *FD = dyn_cast<FunctionDecl>(D)) {
3146     // At -O0, don't generate IR for functions with available_externally
3147     // linkage.
3148     if (!shouldEmitFunction(GD))
3149       return;
3150 
3151     llvm::TimeTraceScope TimeScope("CodeGen Function", [&]() {
3152       std::string Name;
3153       llvm::raw_string_ostream OS(Name);
3154       FD->getNameForDiagnostic(OS, getContext().getPrintingPolicy(),
3155                                /*Qualified=*/true);
3156       return Name;
3157     });
3158 
3159     if (const auto *Method = dyn_cast<CXXMethodDecl>(D)) {
3160       // Make sure to emit the definition(s) before we emit the thunks.
3161       // This is necessary for the generation of certain thunks.
3162       if (isa<CXXConstructorDecl>(Method) || isa<CXXDestructorDecl>(Method))
3163         ABI->emitCXXStructor(GD);
3164       else if (FD->isMultiVersion())
3165         EmitMultiVersionFunctionDefinition(GD, GV);
3166       else
3167         EmitGlobalFunctionDefinition(GD, GV);
3168 
3169       if (Method->isVirtual())
3170         getVTables().EmitThunks(GD);
3171 
3172       return;
3173     }
3174 
3175     if (FD->isMultiVersion())
3176       return EmitMultiVersionFunctionDefinition(GD, GV);
3177     return EmitGlobalFunctionDefinition(GD, GV);
3178   }
3179 
3180   if (const auto *VD = dyn_cast<VarDecl>(D))
3181     return EmitGlobalVarDefinition(VD, !VD->hasDefinition());
3182 
3183   llvm_unreachable("Invalid argument to EmitGlobalDefinition()");
3184 }
3185 
3186 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
3187                                                       llvm::Function *NewFn);
3188 
3189 static unsigned
3190 TargetMVPriority(const TargetInfo &TI,
3191                  const CodeGenFunction::MultiVersionResolverOption &RO) {
3192   unsigned Priority = 0;
3193   for (StringRef Feat : RO.Conditions.Features)
3194     Priority = std::max(Priority, TI.multiVersionSortPriority(Feat));
3195 
3196   if (!RO.Conditions.Architecture.empty())
3197     Priority = std::max(
3198         Priority, TI.multiVersionSortPriority(RO.Conditions.Architecture));
3199   return Priority;
3200 }
3201 
3202 void CodeGenModule::emitMultiVersionFunctions() {
3203   for (GlobalDecl GD : MultiVersionFuncs) {
3204     SmallVector<CodeGenFunction::MultiVersionResolverOption, 10> Options;
3205     const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
3206     getContext().forEachMultiversionedFunctionVersion(
3207         FD, [this, &GD, &Options](const FunctionDecl *CurFD) {
3208           GlobalDecl CurGD{
3209               (CurFD->isDefined() ? CurFD->getDefinition() : CurFD)};
3210           StringRef MangledName = getMangledName(CurGD);
3211           llvm::Constant *Func = GetGlobalValue(MangledName);
3212           if (!Func) {
3213             if (CurFD->isDefined()) {
3214               EmitGlobalFunctionDefinition(CurGD, nullptr);
3215               Func = GetGlobalValue(MangledName);
3216             } else {
3217               const CGFunctionInfo &FI =
3218                   getTypes().arrangeGlobalDeclaration(GD);
3219               llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
3220               Func = GetAddrOfFunction(CurGD, Ty, /*ForVTable=*/false,
3221                                        /*DontDefer=*/false, ForDefinition);
3222             }
3223             assert(Func && "This should have just been created");
3224           }
3225 
3226           const auto *TA = CurFD->getAttr<TargetAttr>();
3227           llvm::SmallVector<StringRef, 8> Feats;
3228           TA->getAddedFeatures(Feats);
3229 
3230           Options.emplace_back(cast<llvm::Function>(Func),
3231                                TA->getArchitecture(), Feats);
3232         });
3233 
3234     llvm::Function *ResolverFunc;
3235     const TargetInfo &TI = getTarget();
3236 
3237     if (TI.supportsIFunc() || FD->isTargetMultiVersion()) {
3238       ResolverFunc = cast<llvm::Function>(
3239           GetGlobalValue((getMangledName(GD) + ".resolver").str()));
3240       ResolverFunc->setLinkage(llvm::Function::WeakODRLinkage);
3241     } else {
3242       ResolverFunc = cast<llvm::Function>(GetGlobalValue(getMangledName(GD)));
3243     }
3244 
3245     if (supportsCOMDAT())
3246       ResolverFunc->setComdat(
3247           getModule().getOrInsertComdat(ResolverFunc->getName()));
3248 
3249     llvm::stable_sort(
3250         Options, [&TI](const CodeGenFunction::MultiVersionResolverOption &LHS,
3251                        const CodeGenFunction::MultiVersionResolverOption &RHS) {
3252           return TargetMVPriority(TI, LHS) > TargetMVPriority(TI, RHS);
3253         });
3254     CodeGenFunction CGF(*this);
3255     CGF.EmitMultiVersionResolver(ResolverFunc, Options);
3256   }
3257 }
3258 
3259 void CodeGenModule::emitCPUDispatchDefinition(GlobalDecl GD) {
3260   const auto *FD = cast<FunctionDecl>(GD.getDecl());
3261   assert(FD && "Not a FunctionDecl?");
3262   const auto *DD = FD->getAttr<CPUDispatchAttr>();
3263   assert(DD && "Not a cpu_dispatch Function?");
3264   llvm::Type *DeclTy = getTypes().ConvertType(FD->getType());
3265 
3266   if (const auto *CXXFD = dyn_cast<CXXMethodDecl>(FD)) {
3267     const CGFunctionInfo &FInfo = getTypes().arrangeCXXMethodDeclaration(CXXFD);
3268     DeclTy = getTypes().GetFunctionType(FInfo);
3269   }
3270 
3271   StringRef ResolverName = getMangledName(GD);
3272 
3273   llvm::Type *ResolverType;
3274   GlobalDecl ResolverGD;
3275   if (getTarget().supportsIFunc())
3276     ResolverType = llvm::FunctionType::get(
3277         llvm::PointerType::get(DeclTy,
3278                                Context.getTargetAddressSpace(FD->getType())),
3279         false);
3280   else {
3281     ResolverType = DeclTy;
3282     ResolverGD = GD;
3283   }
3284 
3285   auto *ResolverFunc = cast<llvm::Function>(GetOrCreateLLVMFunction(
3286       ResolverName, ResolverType, ResolverGD, /*ForVTable=*/false));
3287   ResolverFunc->setLinkage(llvm::Function::WeakODRLinkage);
3288   if (supportsCOMDAT())
3289     ResolverFunc->setComdat(
3290         getModule().getOrInsertComdat(ResolverFunc->getName()));
3291 
3292   SmallVector<CodeGenFunction::MultiVersionResolverOption, 10> Options;
3293   const TargetInfo &Target = getTarget();
3294   unsigned Index = 0;
3295   for (const IdentifierInfo *II : DD->cpus()) {
3296     // Get the name of the target function so we can look it up/create it.
3297     std::string MangledName = getMangledNameImpl(*this, GD, FD, true) +
3298                               getCPUSpecificMangling(*this, II->getName());
3299 
3300     llvm::Constant *Func = GetGlobalValue(MangledName);
3301 
3302     if (!Func) {
3303       GlobalDecl ExistingDecl = Manglings.lookup(MangledName);
3304       if (ExistingDecl.getDecl() &&
3305           ExistingDecl.getDecl()->getAsFunction()->isDefined()) {
3306         EmitGlobalFunctionDefinition(ExistingDecl, nullptr);
3307         Func = GetGlobalValue(MangledName);
3308       } else {
3309         if (!ExistingDecl.getDecl())
3310           ExistingDecl = GD.getWithMultiVersionIndex(Index);
3311 
3312       Func = GetOrCreateLLVMFunction(
3313           MangledName, DeclTy, ExistingDecl,
3314           /*ForVTable=*/false, /*DontDefer=*/true,
3315           /*IsThunk=*/false, llvm::AttributeList(), ForDefinition);
3316       }
3317     }
3318 
3319     llvm::SmallVector<StringRef, 32> Features;
3320     Target.getCPUSpecificCPUDispatchFeatures(II->getName(), Features);
3321     llvm::transform(Features, Features.begin(),
3322                     [](StringRef Str) { return Str.substr(1); });
3323     Features.erase(std::remove_if(
3324         Features.begin(), Features.end(), [&Target](StringRef Feat) {
3325           return !Target.validateCpuSupports(Feat);
3326         }), Features.end());
3327     Options.emplace_back(cast<llvm::Function>(Func), StringRef{}, Features);
3328     ++Index;
3329   }
3330 
3331   llvm::sort(
3332       Options, [](const CodeGenFunction::MultiVersionResolverOption &LHS,
3333                   const CodeGenFunction::MultiVersionResolverOption &RHS) {
3334         return CodeGenFunction::GetX86CpuSupportsMask(LHS.Conditions.Features) >
3335                CodeGenFunction::GetX86CpuSupportsMask(RHS.Conditions.Features);
3336       });
3337 
3338   // If the list contains multiple 'default' versions, such as when it contains
3339   // 'pentium' and 'generic', don't emit the call to the generic one (since we
3340   // always run on at least a 'pentium'). We do this by deleting the 'least
3341   // advanced' (read, lowest mangling letter).
3342   while (Options.size() > 1 &&
3343          CodeGenFunction::GetX86CpuSupportsMask(
3344              (Options.end() - 2)->Conditions.Features) == 0) {
3345     StringRef LHSName = (Options.end() - 2)->Function->getName();
3346     StringRef RHSName = (Options.end() - 1)->Function->getName();
3347     if (LHSName.compare(RHSName) < 0)
3348       Options.erase(Options.end() - 2);
3349     else
3350       Options.erase(Options.end() - 1);
3351   }
3352 
3353   CodeGenFunction CGF(*this);
3354   CGF.EmitMultiVersionResolver(ResolverFunc, Options);
3355 
3356   if (getTarget().supportsIFunc()) {
3357     std::string AliasName = getMangledNameImpl(
3358         *this, GD, FD, /*OmitMultiVersionMangling=*/true);
3359     llvm::Constant *AliasFunc = GetGlobalValue(AliasName);
3360     if (!AliasFunc) {
3361       auto *IFunc = cast<llvm::GlobalIFunc>(GetOrCreateLLVMFunction(
3362           AliasName, DeclTy, GD, /*ForVTable=*/false, /*DontDefer=*/true,
3363           /*IsThunk=*/false, llvm::AttributeList(), NotForDefinition));
3364       auto *GA = llvm::GlobalAlias::create(
3365          DeclTy, 0, getFunctionLinkage(GD), AliasName, IFunc, &getModule());
3366       GA->setLinkage(llvm::Function::WeakODRLinkage);
3367       SetCommonAttributes(GD, GA);
3368     }
3369   }
3370 }
3371 
3372 /// If a dispatcher for the specified mangled name is not in the module, create
3373 /// and return an llvm Function with the specified type.
3374 llvm::Constant *CodeGenModule::GetOrCreateMultiVersionResolver(
3375     GlobalDecl GD, llvm::Type *DeclTy, const FunctionDecl *FD) {
3376   std::string MangledName =
3377       getMangledNameImpl(*this, GD, FD, /*OmitMultiVersionMangling=*/true);
3378 
3379   // Holds the name of the resolver, in ifunc mode this is the ifunc (which has
3380   // a separate resolver).
3381   std::string ResolverName = MangledName;
3382   if (getTarget().supportsIFunc())
3383     ResolverName += ".ifunc";
3384   else if (FD->isTargetMultiVersion())
3385     ResolverName += ".resolver";
3386 
3387   // If this already exists, just return that one.
3388   if (llvm::GlobalValue *ResolverGV = GetGlobalValue(ResolverName))
3389     return ResolverGV;
3390 
3391   // Since this is the first time we've created this IFunc, make sure
3392   // that we put this multiversioned function into the list to be
3393   // replaced later if necessary (target multiversioning only).
3394   if (!FD->isCPUDispatchMultiVersion() && !FD->isCPUSpecificMultiVersion())
3395     MultiVersionFuncs.push_back(GD);
3396 
3397   if (getTarget().supportsIFunc()) {
3398     llvm::Type *ResolverType = llvm::FunctionType::get(
3399         llvm::PointerType::get(
3400             DeclTy, getContext().getTargetAddressSpace(FD->getType())),
3401         false);
3402     llvm::Constant *Resolver = GetOrCreateLLVMFunction(
3403         MangledName + ".resolver", ResolverType, GlobalDecl{},
3404         /*ForVTable=*/false);
3405     llvm::GlobalIFunc *GIF = llvm::GlobalIFunc::create(
3406         DeclTy, 0, llvm::Function::WeakODRLinkage, "", Resolver, &getModule());
3407     GIF->setName(ResolverName);
3408     SetCommonAttributes(FD, GIF);
3409 
3410     return GIF;
3411   }
3412 
3413   llvm::Constant *Resolver = GetOrCreateLLVMFunction(
3414       ResolverName, DeclTy, GlobalDecl{}, /*ForVTable=*/false);
3415   assert(isa<llvm::GlobalValue>(Resolver) &&
3416          "Resolver should be created for the first time");
3417   SetCommonAttributes(FD, cast<llvm::GlobalValue>(Resolver));
3418   return Resolver;
3419 }
3420 
3421 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the
3422 /// module, create and return an llvm Function with the specified type. If there
3423 /// is something in the module with the specified name, return it potentially
3424 /// bitcasted to the right type.
3425 ///
3426 /// If D is non-null, it specifies a decl that correspond to this.  This is used
3427 /// to set the attributes on the function when it is first created.
3428 llvm::Constant *CodeGenModule::GetOrCreateLLVMFunction(
3429     StringRef MangledName, llvm::Type *Ty, GlobalDecl GD, bool ForVTable,
3430     bool DontDefer, bool IsThunk, llvm::AttributeList ExtraAttrs,
3431     ForDefinition_t IsForDefinition) {
3432   const Decl *D = GD.getDecl();
3433 
3434   // Any attempts to use a MultiVersion function should result in retrieving
3435   // the iFunc instead. Name Mangling will handle the rest of the changes.
3436   if (const FunctionDecl *FD = cast_or_null<FunctionDecl>(D)) {
3437     // For the device mark the function as one that should be emitted.
3438     if (getLangOpts().OpenMPIsDevice && OpenMPRuntime &&
3439         !OpenMPRuntime->markAsGlobalTarget(GD) && FD->isDefined() &&
3440         !DontDefer && !IsForDefinition) {
3441       if (const FunctionDecl *FDDef = FD->getDefinition()) {
3442         GlobalDecl GDDef;
3443         if (const auto *CD = dyn_cast<CXXConstructorDecl>(FDDef))
3444           GDDef = GlobalDecl(CD, GD.getCtorType());
3445         else if (const auto *DD = dyn_cast<CXXDestructorDecl>(FDDef))
3446           GDDef = GlobalDecl(DD, GD.getDtorType());
3447         else
3448           GDDef = GlobalDecl(FDDef);
3449         EmitGlobal(GDDef);
3450       }
3451     }
3452 
3453     if (FD->isMultiVersion()) {
3454       if (FD->hasAttr<TargetAttr>())
3455         UpdateMultiVersionNames(GD, FD);
3456       if (!IsForDefinition)
3457         return GetOrCreateMultiVersionResolver(GD, Ty, FD);
3458     }
3459   }
3460 
3461   // Lookup the entry, lazily creating it if necessary.
3462   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
3463   if (Entry) {
3464     if (WeakRefReferences.erase(Entry)) {
3465       const FunctionDecl *FD = cast_or_null<FunctionDecl>(D);
3466       if (FD && !FD->hasAttr<WeakAttr>())
3467         Entry->setLinkage(llvm::Function::ExternalLinkage);
3468     }
3469 
3470     // Handle dropped DLL attributes.
3471     if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>()) {
3472       Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
3473       setDSOLocal(Entry);
3474     }
3475 
3476     // If there are two attempts to define the same mangled name, issue an
3477     // error.
3478     if (IsForDefinition && !Entry->isDeclaration()) {
3479       GlobalDecl OtherGD;
3480       // Check that GD is not yet in DiagnosedConflictingDefinitions is required
3481       // to make sure that we issue an error only once.
3482       if (lookupRepresentativeDecl(MangledName, OtherGD) &&
3483           (GD.getCanonicalDecl().getDecl() !=
3484            OtherGD.getCanonicalDecl().getDecl()) &&
3485           DiagnosedConflictingDefinitions.insert(GD).second) {
3486         getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name)
3487             << MangledName;
3488         getDiags().Report(OtherGD.getDecl()->getLocation(),
3489                           diag::note_previous_definition);
3490       }
3491     }
3492 
3493     if ((isa<llvm::Function>(Entry) || isa<llvm::GlobalAlias>(Entry)) &&
3494         (Entry->getValueType() == Ty)) {
3495       return Entry;
3496     }
3497 
3498     // Make sure the result is of the correct type.
3499     // (If function is requested for a definition, we always need to create a new
3500     // function, not just return a bitcast.)
3501     if (!IsForDefinition)
3502       return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo());
3503   }
3504 
3505   // This function doesn't have a complete type (for example, the return
3506   // type is an incomplete struct). Use a fake type instead, and make
3507   // sure not to try to set attributes.
3508   bool IsIncompleteFunction = false;
3509 
3510   llvm::FunctionType *FTy;
3511   if (isa<llvm::FunctionType>(Ty)) {
3512     FTy = cast<llvm::FunctionType>(Ty);
3513   } else {
3514     FTy = llvm::FunctionType::get(VoidTy, false);
3515     IsIncompleteFunction = true;
3516   }
3517 
3518   llvm::Function *F =
3519       llvm::Function::Create(FTy, llvm::Function::ExternalLinkage,
3520                              Entry ? StringRef() : MangledName, &getModule());
3521 
3522   // If we already created a function with the same mangled name (but different
3523   // type) before, take its name and add it to the list of functions to be
3524   // replaced with F at the end of CodeGen.
3525   //
3526   // This happens if there is a prototype for a function (e.g. "int f()") and
3527   // then a definition of a different type (e.g. "int f(int x)").
3528   if (Entry) {
3529     F->takeName(Entry);
3530 
3531     // This might be an implementation of a function without a prototype, in
3532     // which case, try to do special replacement of calls which match the new
3533     // prototype.  The really key thing here is that we also potentially drop
3534     // arguments from the call site so as to make a direct call, which makes the
3535     // inliner happier and suppresses a number of optimizer warnings (!) about
3536     // dropping arguments.
3537     if (!Entry->use_empty()) {
3538       ReplaceUsesOfNonProtoTypeWithRealFunction(Entry, F);
3539       Entry->removeDeadConstantUsers();
3540     }
3541 
3542     llvm::Constant *BC = llvm::ConstantExpr::getBitCast(
3543         F, Entry->getValueType()->getPointerTo());
3544     addGlobalValReplacement(Entry, BC);
3545   }
3546 
3547   assert(F->getName() == MangledName && "name was uniqued!");
3548   if (D)
3549     SetFunctionAttributes(GD, F, IsIncompleteFunction, IsThunk);
3550   if (ExtraAttrs.hasAttributes(llvm::AttributeList::FunctionIndex)) {
3551     llvm::AttrBuilder B(ExtraAttrs, llvm::AttributeList::FunctionIndex);
3552     F->addAttributes(llvm::AttributeList::FunctionIndex, B);
3553   }
3554 
3555   if (!DontDefer) {
3556     // All MSVC dtors other than the base dtor are linkonce_odr and delegate to
3557     // each other bottoming out with the base dtor.  Therefore we emit non-base
3558     // dtors on usage, even if there is no dtor definition in the TU.
3559     if (D && isa<CXXDestructorDecl>(D) &&
3560         getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D),
3561                                            GD.getDtorType()))
3562       addDeferredDeclToEmit(GD);
3563 
3564     // This is the first use or definition of a mangled name.  If there is a
3565     // deferred decl with this name, remember that we need to emit it at the end
3566     // of the file.
3567     auto DDI = DeferredDecls.find(MangledName);
3568     if (DDI != DeferredDecls.end()) {
3569       // Move the potentially referenced deferred decl to the
3570       // DeferredDeclsToEmit list, and remove it from DeferredDecls (since we
3571       // don't need it anymore).
3572       addDeferredDeclToEmit(DDI->second);
3573       DeferredDecls.erase(DDI);
3574 
3575       // Otherwise, there are cases we have to worry about where we're
3576       // using a declaration for which we must emit a definition but where
3577       // we might not find a top-level definition:
3578       //   - member functions defined inline in their classes
3579       //   - friend functions defined inline in some class
3580       //   - special member functions with implicit definitions
3581       // If we ever change our AST traversal to walk into class methods,
3582       // this will be unnecessary.
3583       //
3584       // We also don't emit a definition for a function if it's going to be an
3585       // entry in a vtable, unless it's already marked as used.
3586     } else if (getLangOpts().CPlusPlus && D) {
3587       // Look for a declaration that's lexically in a record.
3588       for (const auto *FD = cast<FunctionDecl>(D)->getMostRecentDecl(); FD;
3589            FD = FD->getPreviousDecl()) {
3590         if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) {
3591           if (FD->doesThisDeclarationHaveABody()) {
3592             addDeferredDeclToEmit(GD.getWithDecl(FD));
3593             break;
3594           }
3595         }
3596       }
3597     }
3598   }
3599 
3600   // Make sure the result is of the requested type.
3601   if (!IsIncompleteFunction) {
3602     assert(F->getFunctionType() == Ty);
3603     return F;
3604   }
3605 
3606   llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
3607   return llvm::ConstantExpr::getBitCast(F, PTy);
3608 }
3609 
3610 /// GetAddrOfFunction - Return the address of the given function.  If Ty is
3611 /// non-null, then this function will use the specified type if it has to
3612 /// create it (this occurs when we see a definition of the function).
3613 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD,
3614                                                  llvm::Type *Ty,
3615                                                  bool ForVTable,
3616                                                  bool DontDefer,
3617                                               ForDefinition_t IsForDefinition) {
3618   assert(!cast<FunctionDecl>(GD.getDecl())->isConsteval() &&
3619          "consteval function should never be emitted");
3620   // If there was no specific requested type, just convert it now.
3621   if (!Ty) {
3622     const auto *FD = cast<FunctionDecl>(GD.getDecl());
3623     Ty = getTypes().ConvertType(FD->getType());
3624   }
3625 
3626   // Devirtualized destructor calls may come through here instead of via
3627   // getAddrOfCXXStructor. Make sure we use the MS ABI base destructor instead
3628   // of the complete destructor when necessary.
3629   if (const auto *DD = dyn_cast<CXXDestructorDecl>(GD.getDecl())) {
3630     if (getTarget().getCXXABI().isMicrosoft() &&
3631         GD.getDtorType() == Dtor_Complete &&
3632         DD->getParent()->getNumVBases() == 0)
3633       GD = GlobalDecl(DD, Dtor_Base);
3634   }
3635 
3636   StringRef MangledName = getMangledName(GD);
3637   auto *F = GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable, DontDefer,
3638                                     /*IsThunk=*/false, llvm::AttributeList(),
3639                                     IsForDefinition);
3640   // Returns kernel handle for HIP kernel stub function.
3641   if (LangOpts.CUDA && !LangOpts.CUDAIsDevice &&
3642       cast<FunctionDecl>(GD.getDecl())->hasAttr<CUDAGlobalAttr>()) {
3643     auto *Handle = getCUDARuntime().getKernelHandle(
3644         cast<llvm::Function>(F->stripPointerCasts()), GD);
3645     if (IsForDefinition)
3646       return F;
3647     return llvm::ConstantExpr::getBitCast(Handle, Ty->getPointerTo());
3648   }
3649   return F;
3650 }
3651 
3652 static const FunctionDecl *
3653 GetRuntimeFunctionDecl(ASTContext &C, StringRef Name) {
3654   TranslationUnitDecl *TUDecl = C.getTranslationUnitDecl();
3655   DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl);
3656 
3657   IdentifierInfo &CII = C.Idents.get(Name);
3658   for (const auto &Result : DC->lookup(&CII))
3659     if (const auto FD = dyn_cast<FunctionDecl>(Result))
3660       return FD;
3661 
3662   if (!C.getLangOpts().CPlusPlus)
3663     return nullptr;
3664 
3665   // Demangle the premangled name from getTerminateFn()
3666   IdentifierInfo &CXXII =
3667       (Name == "_ZSt9terminatev" || Name == "?terminate@@YAXXZ")
3668           ? C.Idents.get("terminate")
3669           : C.Idents.get(Name);
3670 
3671   for (const auto &N : {"__cxxabiv1", "std"}) {
3672     IdentifierInfo &NS = C.Idents.get(N);
3673     for (const auto &Result : DC->lookup(&NS)) {
3674       NamespaceDecl *ND = dyn_cast<NamespaceDecl>(Result);
3675       if (auto LSD = dyn_cast<LinkageSpecDecl>(Result))
3676         for (const auto &Result : LSD->lookup(&NS))
3677           if ((ND = dyn_cast<NamespaceDecl>(Result)))
3678             break;
3679 
3680       if (ND)
3681         for (const auto &Result : ND->lookup(&CXXII))
3682           if (const auto *FD = dyn_cast<FunctionDecl>(Result))
3683             return FD;
3684     }
3685   }
3686 
3687   return nullptr;
3688 }
3689 
3690 /// CreateRuntimeFunction - Create a new runtime function with the specified
3691 /// type and name.
3692 llvm::FunctionCallee
3693 CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy, StringRef Name,
3694                                      llvm::AttributeList ExtraAttrs, bool Local,
3695                                      bool AssumeConvergent) {
3696   if (AssumeConvergent) {
3697     ExtraAttrs =
3698         ExtraAttrs.addAttribute(VMContext, llvm::AttributeList::FunctionIndex,
3699                                 llvm::Attribute::Convergent);
3700   }
3701 
3702   llvm::Constant *C =
3703       GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false,
3704                               /*DontDefer=*/false, /*IsThunk=*/false,
3705                               ExtraAttrs);
3706 
3707   if (auto *F = dyn_cast<llvm::Function>(C)) {
3708     if (F->empty()) {
3709       F->setCallingConv(getRuntimeCC());
3710 
3711       // In Windows Itanium environments, try to mark runtime functions
3712       // dllimport. For Mingw and MSVC, don't. We don't really know if the user
3713       // will link their standard library statically or dynamically. Marking
3714       // functions imported when they are not imported can cause linker errors
3715       // and warnings.
3716       if (!Local && getTriple().isWindowsItaniumEnvironment() &&
3717           !getCodeGenOpts().LTOVisibilityPublicStd) {
3718         const FunctionDecl *FD = GetRuntimeFunctionDecl(Context, Name);
3719         if (!FD || FD->hasAttr<DLLImportAttr>()) {
3720           F->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass);
3721           F->setLinkage(llvm::GlobalValue::ExternalLinkage);
3722         }
3723       }
3724       setDSOLocal(F);
3725     }
3726   }
3727 
3728   return {FTy, C};
3729 }
3730 
3731 /// isTypeConstant - Determine whether an object of this type can be emitted
3732 /// as a constant.
3733 ///
3734 /// If ExcludeCtor is true, the duration when the object's constructor runs
3735 /// will not be considered. The caller will need to verify that the object is
3736 /// not written to during its construction.
3737 bool CodeGenModule::isTypeConstant(QualType Ty, bool ExcludeCtor) {
3738   if (!Ty.isConstant(Context) && !Ty->isReferenceType())
3739     return false;
3740 
3741   if (Context.getLangOpts().CPlusPlus) {
3742     if (const CXXRecordDecl *Record
3743           = Context.getBaseElementType(Ty)->getAsCXXRecordDecl())
3744       return ExcludeCtor && !Record->hasMutableFields() &&
3745              Record->hasTrivialDestructor();
3746   }
3747 
3748   return true;
3749 }
3750 
3751 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module,
3752 /// create and return an llvm GlobalVariable with the specified type.  If there
3753 /// is something in the module with the specified name, return it potentially
3754 /// bitcasted to the right type.
3755 ///
3756 /// If D is non-null, it specifies a decl that correspond to this.  This is used
3757 /// to set the attributes on the global when it is first created.
3758 ///
3759 /// If IsForDefinition is true, it is guaranteed that an actual global with
3760 /// type Ty will be returned, not conversion of a variable with the same
3761 /// mangled name but some other type.
3762 llvm::Constant *
3763 CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName,
3764                                      llvm::PointerType *Ty,
3765                                      const VarDecl *D,
3766                                      ForDefinition_t IsForDefinition) {
3767   // Lookup the entry, lazily creating it if necessary.
3768   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
3769   if (Entry) {
3770     if (WeakRefReferences.erase(Entry)) {
3771       if (D && !D->hasAttr<WeakAttr>())
3772         Entry->setLinkage(llvm::Function::ExternalLinkage);
3773     }
3774 
3775     // Handle dropped DLL attributes.
3776     if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>())
3777       Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
3778 
3779     if (LangOpts.OpenMP && !LangOpts.OpenMPSimd && D)
3780       getOpenMPRuntime().registerTargetGlobalVariable(D, Entry);
3781 
3782     if (Entry->getType() == Ty)
3783       return Entry;
3784 
3785     // If there are two attempts to define the same mangled name, issue an
3786     // error.
3787     if (IsForDefinition && !Entry->isDeclaration()) {
3788       GlobalDecl OtherGD;
3789       const VarDecl *OtherD;
3790 
3791       // Check that D is not yet in DiagnosedConflictingDefinitions is required
3792       // to make sure that we issue an error only once.
3793       if (D && lookupRepresentativeDecl(MangledName, OtherGD) &&
3794           (D->getCanonicalDecl() != OtherGD.getCanonicalDecl().getDecl()) &&
3795           (OtherD = dyn_cast<VarDecl>(OtherGD.getDecl())) &&
3796           OtherD->hasInit() &&
3797           DiagnosedConflictingDefinitions.insert(D).second) {
3798         getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name)
3799             << MangledName;
3800         getDiags().Report(OtherGD.getDecl()->getLocation(),
3801                           diag::note_previous_definition);
3802       }
3803     }
3804 
3805     // Make sure the result is of the correct type.
3806     if (Entry->getType()->getAddressSpace() != Ty->getAddressSpace())
3807       return llvm::ConstantExpr::getAddrSpaceCast(Entry, Ty);
3808 
3809     // (If global is requested for a definition, we always need to create a new
3810     // global, not just return a bitcast.)
3811     if (!IsForDefinition)
3812       return llvm::ConstantExpr::getBitCast(Entry, Ty);
3813   }
3814 
3815   auto AddrSpace = GetGlobalVarAddressSpace(D);
3816   auto TargetAddrSpace = getContext().getTargetAddressSpace(AddrSpace);
3817 
3818   auto *GV = new llvm::GlobalVariable(
3819       getModule(), Ty->getElementType(), false,
3820       llvm::GlobalValue::ExternalLinkage, nullptr, MangledName, nullptr,
3821       llvm::GlobalVariable::NotThreadLocal, TargetAddrSpace);
3822 
3823   // If we already created a global with the same mangled name (but different
3824   // type) before, take its name and remove it from its parent.
3825   if (Entry) {
3826     GV->takeName(Entry);
3827 
3828     if (!Entry->use_empty()) {
3829       llvm::Constant *NewPtrForOldDecl =
3830           llvm::ConstantExpr::getBitCast(GV, Entry->getType());
3831       Entry->replaceAllUsesWith(NewPtrForOldDecl);
3832     }
3833 
3834     Entry->eraseFromParent();
3835   }
3836 
3837   // This is the first use or definition of a mangled name.  If there is a
3838   // deferred decl with this name, remember that we need to emit it at the end
3839   // of the file.
3840   auto DDI = DeferredDecls.find(MangledName);
3841   if (DDI != DeferredDecls.end()) {
3842     // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
3843     // list, and remove it from DeferredDecls (since we don't need it anymore).
3844     addDeferredDeclToEmit(DDI->second);
3845     DeferredDecls.erase(DDI);
3846   }
3847 
3848   // Handle things which are present even on external declarations.
3849   if (D) {
3850     if (LangOpts.OpenMP && !LangOpts.OpenMPSimd)
3851       getOpenMPRuntime().registerTargetGlobalVariable(D, GV);
3852 
3853     // FIXME: This code is overly simple and should be merged with other global
3854     // handling.
3855     GV->setConstant(isTypeConstant(D->getType(), false));
3856 
3857     GV->setAlignment(getContext().getDeclAlign(D).getAsAlign());
3858 
3859     setLinkageForGV(GV, D);
3860 
3861     if (D->getTLSKind()) {
3862       if (D->getTLSKind() == VarDecl::TLS_Dynamic)
3863         CXXThreadLocals.push_back(D);
3864       setTLSMode(GV, *D);
3865     }
3866 
3867     setGVProperties(GV, D);
3868 
3869     // If required by the ABI, treat declarations of static data members with
3870     // inline initializers as definitions.
3871     if (getContext().isMSStaticDataMemberInlineDefinition(D)) {
3872       EmitGlobalVarDefinition(D);
3873     }
3874 
3875     // Emit section information for extern variables.
3876     if (D->hasExternalStorage()) {
3877       if (const SectionAttr *SA = D->getAttr<SectionAttr>())
3878         GV->setSection(SA->getName());
3879     }
3880 
3881     // Handle XCore specific ABI requirements.
3882     if (getTriple().getArch() == llvm::Triple::xcore &&
3883         D->getLanguageLinkage() == CLanguageLinkage &&
3884         D->getType().isConstant(Context) &&
3885         isExternallyVisible(D->getLinkageAndVisibility().getLinkage()))
3886       GV->setSection(".cp.rodata");
3887 
3888     // Check if we a have a const declaration with an initializer, we may be
3889     // able to emit it as available_externally to expose it's value to the
3890     // optimizer.
3891     if (Context.getLangOpts().CPlusPlus && GV->hasExternalLinkage() &&
3892         D->getType().isConstQualified() && !GV->hasInitializer() &&
3893         !D->hasDefinition() && D->hasInit() && !D->hasAttr<DLLImportAttr>()) {
3894       const auto *Record =
3895           Context.getBaseElementType(D->getType())->getAsCXXRecordDecl();
3896       bool HasMutableFields = Record && Record->hasMutableFields();
3897       if (!HasMutableFields) {
3898         const VarDecl *InitDecl;
3899         const Expr *InitExpr = D->getAnyInitializer(InitDecl);
3900         if (InitExpr) {
3901           ConstantEmitter emitter(*this);
3902           llvm::Constant *Init = emitter.tryEmitForInitializer(*InitDecl);
3903           if (Init) {
3904             auto *InitType = Init->getType();
3905             if (GV->getValueType() != InitType) {
3906               // The type of the initializer does not match the definition.
3907               // This happens when an initializer has a different type from
3908               // the type of the global (because of padding at the end of a
3909               // structure for instance).
3910               GV->setName(StringRef());
3911               // Make a new global with the correct type, this is now guaranteed
3912               // to work.
3913               auto *NewGV = cast<llvm::GlobalVariable>(
3914                   GetAddrOfGlobalVar(D, InitType, IsForDefinition)
3915                       ->stripPointerCasts());
3916 
3917               // Erase the old global, since it is no longer used.
3918               GV->eraseFromParent();
3919               GV = NewGV;
3920             } else {
3921               GV->setInitializer(Init);
3922               GV->setConstant(true);
3923               GV->setLinkage(llvm::GlobalValue::AvailableExternallyLinkage);
3924             }
3925             emitter.finalize(GV);
3926           }
3927         }
3928       }
3929     }
3930   }
3931 
3932   if (GV->isDeclaration()) {
3933     getTargetCodeGenInfo().setTargetAttributes(D, GV, *this);
3934     // External HIP managed variables needed to be recorded for transformation
3935     // in both device and host compilations.
3936     if (getLangOpts().CUDA && D && D->hasAttr<HIPManagedAttr>() &&
3937         D->hasExternalStorage())
3938       getCUDARuntime().handleVarRegistration(D, *GV);
3939   }
3940 
3941   LangAS ExpectedAS =
3942       D ? D->getType().getAddressSpace()
3943         : (LangOpts.OpenCL ? LangAS::opencl_global : LangAS::Default);
3944   assert(getContext().getTargetAddressSpace(ExpectedAS) ==
3945          Ty->getPointerAddressSpace());
3946   if (AddrSpace != ExpectedAS)
3947     return getTargetCodeGenInfo().performAddrSpaceCast(*this, GV, AddrSpace,
3948                                                        ExpectedAS, Ty);
3949 
3950   return GV;
3951 }
3952 
3953 llvm::Constant *
3954 CodeGenModule::GetAddrOfGlobal(GlobalDecl GD, ForDefinition_t IsForDefinition) {
3955   const Decl *D = GD.getDecl();
3956 
3957   if (isa<CXXConstructorDecl>(D) || isa<CXXDestructorDecl>(D))
3958     return getAddrOfCXXStructor(GD, /*FnInfo=*/nullptr, /*FnType=*/nullptr,
3959                                 /*DontDefer=*/false, IsForDefinition);
3960 
3961   if (isa<CXXMethodDecl>(D)) {
3962     auto FInfo =
3963         &getTypes().arrangeCXXMethodDeclaration(cast<CXXMethodDecl>(D));
3964     auto Ty = getTypes().GetFunctionType(*FInfo);
3965     return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false,
3966                              IsForDefinition);
3967   }
3968 
3969   if (isa<FunctionDecl>(D)) {
3970     const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
3971     llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
3972     return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false,
3973                              IsForDefinition);
3974   }
3975 
3976   return GetAddrOfGlobalVar(cast<VarDecl>(D), /*Ty=*/nullptr, IsForDefinition);
3977 }
3978 
3979 llvm::GlobalVariable *CodeGenModule::CreateOrReplaceCXXRuntimeVariable(
3980     StringRef Name, llvm::Type *Ty, llvm::GlobalValue::LinkageTypes Linkage,
3981     unsigned Alignment) {
3982   llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name);
3983   llvm::GlobalVariable *OldGV = nullptr;
3984 
3985   if (GV) {
3986     // Check if the variable has the right type.
3987     if (GV->getValueType() == Ty)
3988       return GV;
3989 
3990     // Because C++ name mangling, the only way we can end up with an already
3991     // existing global with the same name is if it has been declared extern "C".
3992     assert(GV->isDeclaration() && "Declaration has wrong type!");
3993     OldGV = GV;
3994   }
3995 
3996   // Create a new variable.
3997   GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true,
3998                                 Linkage, nullptr, Name);
3999 
4000   if (OldGV) {
4001     // Replace occurrences of the old variable if needed.
4002     GV->takeName(OldGV);
4003 
4004     if (!OldGV->use_empty()) {
4005       llvm::Constant *NewPtrForOldDecl =
4006       llvm::ConstantExpr::getBitCast(GV, OldGV->getType());
4007       OldGV->replaceAllUsesWith(NewPtrForOldDecl);
4008     }
4009 
4010     OldGV->eraseFromParent();
4011   }
4012 
4013   if (supportsCOMDAT() && GV->isWeakForLinker() &&
4014       !GV->hasAvailableExternallyLinkage())
4015     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
4016 
4017   GV->setAlignment(llvm::MaybeAlign(Alignment));
4018 
4019   return GV;
4020 }
4021 
4022 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the
4023 /// given global variable.  If Ty is non-null and if the global doesn't exist,
4024 /// then it will be created with the specified type instead of whatever the
4025 /// normal requested type would be. If IsForDefinition is true, it is guaranteed
4026 /// that an actual global with type Ty will be returned, not conversion of a
4027 /// variable with the same mangled name but some other type.
4028 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D,
4029                                                   llvm::Type *Ty,
4030                                            ForDefinition_t IsForDefinition) {
4031   assert(D->hasGlobalStorage() && "Not a global variable");
4032   QualType ASTTy = D->getType();
4033   if (!Ty)
4034     Ty = getTypes().ConvertTypeForMem(ASTTy);
4035 
4036   llvm::PointerType *PTy =
4037     llvm::PointerType::get(Ty, getContext().getTargetAddressSpace(ASTTy));
4038 
4039   StringRef MangledName = getMangledName(D);
4040   return GetOrCreateLLVMGlobal(MangledName, PTy, D, IsForDefinition);
4041 }
4042 
4043 /// CreateRuntimeVariable - Create a new runtime global variable with the
4044 /// specified type and name.
4045 llvm::Constant *
4046 CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty,
4047                                      StringRef Name) {
4048   auto PtrTy =
4049       getContext().getLangOpts().OpenCL
4050           ? llvm::PointerType::get(
4051                 Ty, getContext().getTargetAddressSpace(LangAS::opencl_global))
4052           : llvm::PointerType::getUnqual(Ty);
4053   auto *Ret = GetOrCreateLLVMGlobal(Name, PtrTy, nullptr);
4054   setDSOLocal(cast<llvm::GlobalValue>(Ret->stripPointerCasts()));
4055   return Ret;
4056 }
4057 
4058 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) {
4059   assert(!D->getInit() && "Cannot emit definite definitions here!");
4060 
4061   StringRef MangledName = getMangledName(D);
4062   llvm::GlobalValue *GV = GetGlobalValue(MangledName);
4063 
4064   // We already have a definition, not declaration, with the same mangled name.
4065   // Emitting of declaration is not required (and actually overwrites emitted
4066   // definition).
4067   if (GV && !GV->isDeclaration())
4068     return;
4069 
4070   // If we have not seen a reference to this variable yet, place it into the
4071   // deferred declarations table to be emitted if needed later.
4072   if (!MustBeEmitted(D) && !GV) {
4073       DeferredDecls[MangledName] = D;
4074       return;
4075   }
4076 
4077   // The tentative definition is the only definition.
4078   EmitGlobalVarDefinition(D);
4079 }
4080 
4081 void CodeGenModule::EmitExternalDeclaration(const VarDecl *D) {
4082   EmitExternalVarDeclaration(D);
4083 }
4084 
4085 CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const {
4086   return Context.toCharUnitsFromBits(
4087       getDataLayout().getTypeStoreSizeInBits(Ty));
4088 }
4089 
4090 LangAS CodeGenModule::GetGlobalVarAddressSpace(const VarDecl *D) {
4091   LangAS AddrSpace = LangAS::Default;
4092   if (LangOpts.OpenCL) {
4093     AddrSpace = D ? D->getType().getAddressSpace() : LangAS::opencl_global;
4094     assert(AddrSpace == LangAS::opencl_global ||
4095            AddrSpace == LangAS::opencl_global_device ||
4096            AddrSpace == LangAS::opencl_global_host ||
4097            AddrSpace == LangAS::opencl_constant ||
4098            AddrSpace == LangAS::opencl_local ||
4099            AddrSpace >= LangAS::FirstTargetAddressSpace);
4100     return AddrSpace;
4101   }
4102 
4103   if (LangOpts.CUDA && LangOpts.CUDAIsDevice) {
4104     if (D && D->hasAttr<CUDAConstantAttr>())
4105       return LangAS::cuda_constant;
4106     else if (D && D->hasAttr<CUDASharedAttr>())
4107       return LangAS::cuda_shared;
4108     else if (D && D->hasAttr<CUDADeviceAttr>())
4109       return LangAS::cuda_device;
4110     else if (D && D->getType().isConstQualified())
4111       return LangAS::cuda_constant;
4112     else
4113       return LangAS::cuda_device;
4114   }
4115 
4116   if (LangOpts.OpenMP) {
4117     LangAS AS;
4118     if (OpenMPRuntime->hasAllocateAttributeForGlobalVar(D, AS))
4119       return AS;
4120   }
4121   return getTargetCodeGenInfo().getGlobalVarAddressSpace(*this, D);
4122 }
4123 
4124 LangAS CodeGenModule::getStringLiteralAddressSpace() const {
4125   // OpenCL v1.2 s6.5.3: a string literal is in the constant address space.
4126   if (LangOpts.OpenCL)
4127     return LangAS::opencl_constant;
4128   if (auto AS = getTarget().getConstantAddressSpace())
4129     return AS.getValue();
4130   return LangAS::Default;
4131 }
4132 
4133 // In address space agnostic languages, string literals are in default address
4134 // space in AST. However, certain targets (e.g. amdgcn) request them to be
4135 // emitted in constant address space in LLVM IR. To be consistent with other
4136 // parts of AST, string literal global variables in constant address space
4137 // need to be casted to default address space before being put into address
4138 // map and referenced by other part of CodeGen.
4139 // In OpenCL, string literals are in constant address space in AST, therefore
4140 // they should not be casted to default address space.
4141 static llvm::Constant *
4142 castStringLiteralToDefaultAddressSpace(CodeGenModule &CGM,
4143                                        llvm::GlobalVariable *GV) {
4144   llvm::Constant *Cast = GV;
4145   if (!CGM.getLangOpts().OpenCL) {
4146     if (auto AS = CGM.getTarget().getConstantAddressSpace()) {
4147       if (AS != LangAS::Default)
4148         Cast = CGM.getTargetCodeGenInfo().performAddrSpaceCast(
4149             CGM, GV, AS.getValue(), LangAS::Default,
4150             GV->getValueType()->getPointerTo(
4151                 CGM.getContext().getTargetAddressSpace(LangAS::Default)));
4152     }
4153   }
4154   return Cast;
4155 }
4156 
4157 template<typename SomeDecl>
4158 void CodeGenModule::MaybeHandleStaticInExternC(const SomeDecl *D,
4159                                                llvm::GlobalValue *GV) {
4160   if (!getLangOpts().CPlusPlus)
4161     return;
4162 
4163   // Must have 'used' attribute, or else inline assembly can't rely on
4164   // the name existing.
4165   if (!D->template hasAttr<UsedAttr>())
4166     return;
4167 
4168   // Must have internal linkage and an ordinary name.
4169   if (!D->getIdentifier() || D->getFormalLinkage() != InternalLinkage)
4170     return;
4171 
4172   // Must be in an extern "C" context. Entities declared directly within
4173   // a record are not extern "C" even if the record is in such a context.
4174   const SomeDecl *First = D->getFirstDecl();
4175   if (First->getDeclContext()->isRecord() || !First->isInExternCContext())
4176     return;
4177 
4178   // OK, this is an internal linkage entity inside an extern "C" linkage
4179   // specification. Make a note of that so we can give it the "expected"
4180   // mangled name if nothing else is using that name.
4181   std::pair<StaticExternCMap::iterator, bool> R =
4182       StaticExternCValues.insert(std::make_pair(D->getIdentifier(), GV));
4183 
4184   // If we have multiple internal linkage entities with the same name
4185   // in extern "C" regions, none of them gets that name.
4186   if (!R.second)
4187     R.first->second = nullptr;
4188 }
4189 
4190 static bool shouldBeInCOMDAT(CodeGenModule &CGM, const Decl &D) {
4191   if (!CGM.supportsCOMDAT())
4192     return false;
4193 
4194   // Do not set COMDAT attribute for CUDA/HIP stub functions to prevent
4195   // them being "merged" by the COMDAT Folding linker optimization.
4196   if (D.hasAttr<CUDAGlobalAttr>())
4197     return false;
4198 
4199   if (D.hasAttr<SelectAnyAttr>())
4200     return true;
4201 
4202   GVALinkage Linkage;
4203   if (auto *VD = dyn_cast<VarDecl>(&D))
4204     Linkage = CGM.getContext().GetGVALinkageForVariable(VD);
4205   else
4206     Linkage = CGM.getContext().GetGVALinkageForFunction(cast<FunctionDecl>(&D));
4207 
4208   switch (Linkage) {
4209   case GVA_Internal:
4210   case GVA_AvailableExternally:
4211   case GVA_StrongExternal:
4212     return false;
4213   case GVA_DiscardableODR:
4214   case GVA_StrongODR:
4215     return true;
4216   }
4217   llvm_unreachable("No such linkage");
4218 }
4219 
4220 void CodeGenModule::maybeSetTrivialComdat(const Decl &D,
4221                                           llvm::GlobalObject &GO) {
4222   if (!shouldBeInCOMDAT(*this, D))
4223     return;
4224   GO.setComdat(TheModule.getOrInsertComdat(GO.getName()));
4225 }
4226 
4227 /// Pass IsTentative as true if you want to create a tentative definition.
4228 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D,
4229                                             bool IsTentative) {
4230   // OpenCL global variables of sampler type are translated to function calls,
4231   // therefore no need to be translated.
4232   QualType ASTTy = D->getType();
4233   if (getLangOpts().OpenCL && ASTTy->isSamplerT())
4234     return;
4235 
4236   // If this is OpenMP device, check if it is legal to emit this global
4237   // normally.
4238   if (LangOpts.OpenMPIsDevice && OpenMPRuntime &&
4239       OpenMPRuntime->emitTargetGlobalVariable(D))
4240     return;
4241 
4242   llvm::Constant *Init = nullptr;
4243   bool NeedsGlobalCtor = false;
4244   bool NeedsGlobalDtor =
4245       D->needsDestruction(getContext()) == QualType::DK_cxx_destructor;
4246 
4247   const VarDecl *InitDecl;
4248   const Expr *InitExpr = D->getAnyInitializer(InitDecl);
4249 
4250   Optional<ConstantEmitter> emitter;
4251 
4252   // CUDA E.2.4.1 "__shared__ variables cannot have an initialization
4253   // as part of their declaration."  Sema has already checked for
4254   // error cases, so we just need to set Init to UndefValue.
4255   bool IsCUDASharedVar =
4256       getLangOpts().CUDAIsDevice && D->hasAttr<CUDASharedAttr>();
4257   // Shadows of initialized device-side global variables are also left
4258   // undefined.
4259   // Managed Variables should be initialized on both host side and device side.
4260   bool IsCUDAShadowVar =
4261       !getLangOpts().CUDAIsDevice && !D->hasAttr<HIPManagedAttr>() &&
4262       (D->hasAttr<CUDAConstantAttr>() || D->hasAttr<CUDADeviceAttr>() ||
4263        D->hasAttr<CUDASharedAttr>());
4264   bool IsCUDADeviceShadowVar =
4265       getLangOpts().CUDAIsDevice && !D->hasAttr<HIPManagedAttr>() &&
4266       (D->getType()->isCUDADeviceBuiltinSurfaceType() ||
4267        D->getType()->isCUDADeviceBuiltinTextureType());
4268   if (getLangOpts().CUDA &&
4269       (IsCUDASharedVar || IsCUDAShadowVar || IsCUDADeviceShadowVar))
4270     Init = llvm::UndefValue::get(getTypes().ConvertType(ASTTy));
4271   else if (D->hasAttr<LoaderUninitializedAttr>())
4272     Init = llvm::UndefValue::get(getTypes().ConvertType(ASTTy));
4273   else if (!InitExpr) {
4274     // This is a tentative definition; tentative definitions are
4275     // implicitly initialized with { 0 }.
4276     //
4277     // Note that tentative definitions are only emitted at the end of
4278     // a translation unit, so they should never have incomplete
4279     // type. In addition, EmitTentativeDefinition makes sure that we
4280     // never attempt to emit a tentative definition if a real one
4281     // exists. A use may still exists, however, so we still may need
4282     // to do a RAUW.
4283     assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type");
4284     Init = EmitNullConstant(D->getType());
4285   } else {
4286     initializedGlobalDecl = GlobalDecl(D);
4287     emitter.emplace(*this);
4288     Init = emitter->tryEmitForInitializer(*InitDecl);
4289 
4290     if (!Init) {
4291       QualType T = InitExpr->getType();
4292       if (D->getType()->isReferenceType())
4293         T = D->getType();
4294 
4295       if (getLangOpts().CPlusPlus) {
4296         Init = EmitNullConstant(T);
4297         NeedsGlobalCtor = true;
4298       } else {
4299         ErrorUnsupported(D, "static initializer");
4300         Init = llvm::UndefValue::get(getTypes().ConvertType(T));
4301       }
4302     } else {
4303       // We don't need an initializer, so remove the entry for the delayed
4304       // initializer position (just in case this entry was delayed) if we
4305       // also don't need to register a destructor.
4306       if (getLangOpts().CPlusPlus && !NeedsGlobalDtor)
4307         DelayedCXXInitPosition.erase(D);
4308     }
4309   }
4310 
4311   llvm::Type* InitType = Init->getType();
4312   llvm::Constant *Entry =
4313       GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative));
4314 
4315   // Strip off pointer casts if we got them.
4316   Entry = Entry->stripPointerCasts();
4317 
4318   // Entry is now either a Function or GlobalVariable.
4319   auto *GV = dyn_cast<llvm::GlobalVariable>(Entry);
4320 
4321   // We have a definition after a declaration with the wrong type.
4322   // We must make a new GlobalVariable* and update everything that used OldGV
4323   // (a declaration or tentative definition) with the new GlobalVariable*
4324   // (which will be a definition).
4325   //
4326   // This happens if there is a prototype for a global (e.g.
4327   // "extern int x[];") and then a definition of a different type (e.g.
4328   // "int x[10];"). This also happens when an initializer has a different type
4329   // from the type of the global (this happens with unions).
4330   if (!GV || GV->getValueType() != InitType ||
4331       GV->getType()->getAddressSpace() !=
4332           getContext().getTargetAddressSpace(GetGlobalVarAddressSpace(D))) {
4333 
4334     // Move the old entry aside so that we'll create a new one.
4335     Entry->setName(StringRef());
4336 
4337     // Make a new global with the correct type, this is now guaranteed to work.
4338     GV = cast<llvm::GlobalVariable>(
4339         GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative))
4340             ->stripPointerCasts());
4341 
4342     // Replace all uses of the old global with the new global
4343     llvm::Constant *NewPtrForOldDecl =
4344         llvm::ConstantExpr::getBitCast(GV, Entry->getType());
4345     Entry->replaceAllUsesWith(NewPtrForOldDecl);
4346 
4347     // Erase the old global, since it is no longer used.
4348     cast<llvm::GlobalValue>(Entry)->eraseFromParent();
4349   }
4350 
4351   MaybeHandleStaticInExternC(D, GV);
4352 
4353   if (D->hasAttr<AnnotateAttr>())
4354     AddGlobalAnnotations(D, GV);
4355 
4356   // Set the llvm linkage type as appropriate.
4357   llvm::GlobalValue::LinkageTypes Linkage =
4358       getLLVMLinkageVarDefinition(D, GV->isConstant());
4359 
4360   // CUDA B.2.1 "The __device__ qualifier declares a variable that resides on
4361   // the device. [...]"
4362   // CUDA B.2.2 "The __constant__ qualifier, optionally used together with
4363   // __device__, declares a variable that: [...]
4364   // Is accessible from all the threads within the grid and from the host
4365   // through the runtime library (cudaGetSymbolAddress() / cudaGetSymbolSize()
4366   // / cudaMemcpyToSymbol() / cudaMemcpyFromSymbol())."
4367   if (GV && LangOpts.CUDA) {
4368     if (LangOpts.CUDAIsDevice) {
4369       if (Linkage != llvm::GlobalValue::InternalLinkage &&
4370           (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>()))
4371         GV->setExternallyInitialized(true);
4372     } else {
4373       getCUDARuntime().internalizeDeviceSideVar(D, Linkage);
4374     }
4375     getCUDARuntime().handleVarRegistration(D, *GV);
4376   }
4377 
4378   GV->setInitializer(Init);
4379   if (emitter)
4380     emitter->finalize(GV);
4381 
4382   // If it is safe to mark the global 'constant', do so now.
4383   GV->setConstant(!NeedsGlobalCtor && !NeedsGlobalDtor &&
4384                   isTypeConstant(D->getType(), true));
4385 
4386   // If it is in a read-only section, mark it 'constant'.
4387   if (const SectionAttr *SA = D->getAttr<SectionAttr>()) {
4388     const ASTContext::SectionInfo &SI = Context.SectionInfos[SA->getName()];
4389     if ((SI.SectionFlags & ASTContext::PSF_Write) == 0)
4390       GV->setConstant(true);
4391   }
4392 
4393   GV->setAlignment(getContext().getDeclAlign(D).getAsAlign());
4394 
4395   // On Darwin, unlike other Itanium C++ ABI platforms, the thread-wrapper
4396   // function is only defined alongside the variable, not also alongside
4397   // callers. Normally, all accesses to a thread_local go through the
4398   // thread-wrapper in order to ensure initialization has occurred, underlying
4399   // variable will never be used other than the thread-wrapper, so it can be
4400   // converted to internal linkage.
4401   //
4402   // However, if the variable has the 'constinit' attribute, it _can_ be
4403   // referenced directly, without calling the thread-wrapper, so the linkage
4404   // must not be changed.
4405   //
4406   // Additionally, if the variable isn't plain external linkage, e.g. if it's
4407   // weak or linkonce, the de-duplication semantics are important to preserve,
4408   // so we don't change the linkage.
4409   if (D->getTLSKind() == VarDecl::TLS_Dynamic &&
4410       Linkage == llvm::GlobalValue::ExternalLinkage &&
4411       Context.getTargetInfo().getTriple().isOSDarwin() &&
4412       !D->hasAttr<ConstInitAttr>())
4413     Linkage = llvm::GlobalValue::InternalLinkage;
4414 
4415   GV->setLinkage(Linkage);
4416   if (D->hasAttr<DLLImportAttr>())
4417     GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass);
4418   else if (D->hasAttr<DLLExportAttr>())
4419     GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass);
4420   else
4421     GV->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass);
4422 
4423   if (Linkage == llvm::GlobalVariable::CommonLinkage) {
4424     // common vars aren't constant even if declared const.
4425     GV->setConstant(false);
4426     // Tentative definition of global variables may be initialized with
4427     // non-zero null pointers. In this case they should have weak linkage
4428     // since common linkage must have zero initializer and must not have
4429     // explicit section therefore cannot have non-zero initial value.
4430     if (!GV->getInitializer()->isNullValue())
4431       GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage);
4432   }
4433 
4434   setNonAliasAttributes(D, GV);
4435 
4436   if (D->getTLSKind() && !GV->isThreadLocal()) {
4437     if (D->getTLSKind() == VarDecl::TLS_Dynamic)
4438       CXXThreadLocals.push_back(D);
4439     setTLSMode(GV, *D);
4440   }
4441 
4442   maybeSetTrivialComdat(*D, *GV);
4443 
4444   // Emit the initializer function if necessary.
4445   if (NeedsGlobalCtor || NeedsGlobalDtor)
4446     EmitCXXGlobalVarDeclInitFunc(D, GV, NeedsGlobalCtor);
4447 
4448   SanitizerMD->reportGlobalToASan(GV, *D, NeedsGlobalCtor);
4449 
4450   // Emit global variable debug information.
4451   if (CGDebugInfo *DI = getModuleDebugInfo())
4452     if (getCodeGenOpts().hasReducedDebugInfo())
4453       DI->EmitGlobalVariable(GV, D);
4454 }
4455 
4456 void CodeGenModule::EmitExternalVarDeclaration(const VarDecl *D) {
4457   if (CGDebugInfo *DI = getModuleDebugInfo())
4458     if (getCodeGenOpts().hasReducedDebugInfo()) {
4459       QualType ASTTy = D->getType();
4460       llvm::Type *Ty = getTypes().ConvertTypeForMem(D->getType());
4461       llvm::PointerType *PTy =
4462           llvm::PointerType::get(Ty, getContext().getTargetAddressSpace(ASTTy));
4463       llvm::Constant *GV = GetOrCreateLLVMGlobal(D->getName(), PTy, D);
4464       DI->EmitExternalVariable(
4465           cast<llvm::GlobalVariable>(GV->stripPointerCasts()), D);
4466     }
4467 }
4468 
4469 static bool isVarDeclStrongDefinition(const ASTContext &Context,
4470                                       CodeGenModule &CGM, const VarDecl *D,
4471                                       bool NoCommon) {
4472   // Don't give variables common linkage if -fno-common was specified unless it
4473   // was overridden by a NoCommon attribute.
4474   if ((NoCommon || D->hasAttr<NoCommonAttr>()) && !D->hasAttr<CommonAttr>())
4475     return true;
4476 
4477   // C11 6.9.2/2:
4478   //   A declaration of an identifier for an object that has file scope without
4479   //   an initializer, and without a storage-class specifier or with the
4480   //   storage-class specifier static, constitutes a tentative definition.
4481   if (D->getInit() || D->hasExternalStorage())
4482     return true;
4483 
4484   // A variable cannot be both common and exist in a section.
4485   if (D->hasAttr<SectionAttr>())
4486     return true;
4487 
4488   // A variable cannot be both common and exist in a section.
4489   // We don't try to determine which is the right section in the front-end.
4490   // If no specialized section name is applicable, it will resort to default.
4491   if (D->hasAttr<PragmaClangBSSSectionAttr>() ||
4492       D->hasAttr<PragmaClangDataSectionAttr>() ||
4493       D->hasAttr<PragmaClangRelroSectionAttr>() ||
4494       D->hasAttr<PragmaClangRodataSectionAttr>())
4495     return true;
4496 
4497   // Thread local vars aren't considered common linkage.
4498   if (D->getTLSKind())
4499     return true;
4500 
4501   // Tentative definitions marked with WeakImportAttr are true definitions.
4502   if (D->hasAttr<WeakImportAttr>())
4503     return true;
4504 
4505   // A variable cannot be both common and exist in a comdat.
4506   if (shouldBeInCOMDAT(CGM, *D))
4507     return true;
4508 
4509   // Declarations with a required alignment do not have common linkage in MSVC
4510   // mode.
4511   if (Context.getTargetInfo().getCXXABI().isMicrosoft()) {
4512     if (D->hasAttr<AlignedAttr>())
4513       return true;
4514     QualType VarType = D->getType();
4515     if (Context.isAlignmentRequired(VarType))
4516       return true;
4517 
4518     if (const auto *RT = VarType->getAs<RecordType>()) {
4519       const RecordDecl *RD = RT->getDecl();
4520       for (const FieldDecl *FD : RD->fields()) {
4521         if (FD->isBitField())
4522           continue;
4523         if (FD->hasAttr<AlignedAttr>())
4524           return true;
4525         if (Context.isAlignmentRequired(FD->getType()))
4526           return true;
4527       }
4528     }
4529   }
4530 
4531   // Microsoft's link.exe doesn't support alignments greater than 32 bytes for
4532   // common symbols, so symbols with greater alignment requirements cannot be
4533   // common.
4534   // Other COFF linkers (ld.bfd and LLD) support arbitrary power-of-two
4535   // alignments for common symbols via the aligncomm directive, so this
4536   // restriction only applies to MSVC environments.
4537   if (Context.getTargetInfo().getTriple().isKnownWindowsMSVCEnvironment() &&
4538       Context.getTypeAlignIfKnown(D->getType()) >
4539           Context.toBits(CharUnits::fromQuantity(32)))
4540     return true;
4541 
4542   return false;
4543 }
4544 
4545 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageForDeclarator(
4546     const DeclaratorDecl *D, GVALinkage Linkage, bool IsConstantVariable) {
4547   if (Linkage == GVA_Internal)
4548     return llvm::Function::InternalLinkage;
4549 
4550   if (D->hasAttr<WeakAttr>()) {
4551     if (IsConstantVariable)
4552       return llvm::GlobalVariable::WeakODRLinkage;
4553     else
4554       return llvm::GlobalVariable::WeakAnyLinkage;
4555   }
4556 
4557   if (const auto *FD = D->getAsFunction())
4558     if (FD->isMultiVersion() && Linkage == GVA_AvailableExternally)
4559       return llvm::GlobalVariable::LinkOnceAnyLinkage;
4560 
4561   // We are guaranteed to have a strong definition somewhere else,
4562   // so we can use available_externally linkage.
4563   if (Linkage == GVA_AvailableExternally)
4564     return llvm::GlobalValue::AvailableExternallyLinkage;
4565 
4566   // Note that Apple's kernel linker doesn't support symbol
4567   // coalescing, so we need to avoid linkonce and weak linkages there.
4568   // Normally, this means we just map to internal, but for explicit
4569   // instantiations we'll map to external.
4570 
4571   // In C++, the compiler has to emit a definition in every translation unit
4572   // that references the function.  We should use linkonce_odr because
4573   // a) if all references in this translation unit are optimized away, we
4574   // don't need to codegen it.  b) if the function persists, it needs to be
4575   // merged with other definitions. c) C++ has the ODR, so we know the
4576   // definition is dependable.
4577   if (Linkage == GVA_DiscardableODR)
4578     return !Context.getLangOpts().AppleKext ? llvm::Function::LinkOnceODRLinkage
4579                                             : llvm::Function::InternalLinkage;
4580 
4581   // An explicit instantiation of a template has weak linkage, since
4582   // explicit instantiations can occur in multiple translation units
4583   // and must all be equivalent. However, we are not allowed to
4584   // throw away these explicit instantiations.
4585   //
4586   // CUDA/HIP: For -fno-gpu-rdc case, device code is limited to one TU,
4587   // so say that CUDA templates are either external (for kernels) or internal.
4588   // This lets llvm perform aggressive inter-procedural optimizations. For
4589   // -fgpu-rdc case, device function calls across multiple TU's are allowed,
4590   // therefore we need to follow the normal linkage paradigm.
4591   if (Linkage == GVA_StrongODR) {
4592     if (getLangOpts().AppleKext)
4593       return llvm::Function::ExternalLinkage;
4594     if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice &&
4595         !getLangOpts().GPURelocatableDeviceCode)
4596       return D->hasAttr<CUDAGlobalAttr>() ? llvm::Function::ExternalLinkage
4597                                           : llvm::Function::InternalLinkage;
4598     return llvm::Function::WeakODRLinkage;
4599   }
4600 
4601   // C++ doesn't have tentative definitions and thus cannot have common
4602   // linkage.
4603   if (!getLangOpts().CPlusPlus && isa<VarDecl>(D) &&
4604       !isVarDeclStrongDefinition(Context, *this, cast<VarDecl>(D),
4605                                  CodeGenOpts.NoCommon))
4606     return llvm::GlobalVariable::CommonLinkage;
4607 
4608   // selectany symbols are externally visible, so use weak instead of
4609   // linkonce.  MSVC optimizes away references to const selectany globals, so
4610   // all definitions should be the same and ODR linkage should be used.
4611   // http://msdn.microsoft.com/en-us/library/5tkz6s71.aspx
4612   if (D->hasAttr<SelectAnyAttr>())
4613     return llvm::GlobalVariable::WeakODRLinkage;
4614 
4615   // Otherwise, we have strong external linkage.
4616   assert(Linkage == GVA_StrongExternal);
4617   return llvm::GlobalVariable::ExternalLinkage;
4618 }
4619 
4620 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageVarDefinition(
4621     const VarDecl *VD, bool IsConstant) {
4622   GVALinkage Linkage = getContext().GetGVALinkageForVariable(VD);
4623   return getLLVMLinkageForDeclarator(VD, Linkage, IsConstant);
4624 }
4625 
4626 /// Replace the uses of a function that was declared with a non-proto type.
4627 /// We want to silently drop extra arguments from call sites
4628 static void replaceUsesOfNonProtoConstant(llvm::Constant *old,
4629                                           llvm::Function *newFn) {
4630   // Fast path.
4631   if (old->use_empty()) return;
4632 
4633   llvm::Type *newRetTy = newFn->getReturnType();
4634   SmallVector<llvm::Value*, 4> newArgs;
4635 
4636   for (llvm::Value::use_iterator ui = old->use_begin(), ue = old->use_end();
4637          ui != ue; ) {
4638     llvm::Value::use_iterator use = ui++; // Increment before the use is erased.
4639     llvm::User *user = use->getUser();
4640 
4641     // Recognize and replace uses of bitcasts.  Most calls to
4642     // unprototyped functions will use bitcasts.
4643     if (auto *bitcast = dyn_cast<llvm::ConstantExpr>(user)) {
4644       if (bitcast->getOpcode() == llvm::Instruction::BitCast)
4645         replaceUsesOfNonProtoConstant(bitcast, newFn);
4646       continue;
4647     }
4648 
4649     // Recognize calls to the function.
4650     llvm::CallBase *callSite = dyn_cast<llvm::CallBase>(user);
4651     if (!callSite) continue;
4652     if (!callSite->isCallee(&*use))
4653       continue;
4654 
4655     // If the return types don't match exactly, then we can't
4656     // transform this call unless it's dead.
4657     if (callSite->getType() != newRetTy && !callSite->use_empty())
4658       continue;
4659 
4660     // Get the call site's attribute list.
4661     SmallVector<llvm::AttributeSet, 8> newArgAttrs;
4662     llvm::AttributeList oldAttrs = callSite->getAttributes();
4663 
4664     // If the function was passed too few arguments, don't transform.
4665     unsigned newNumArgs = newFn->arg_size();
4666     if (callSite->arg_size() < newNumArgs)
4667       continue;
4668 
4669     // If extra arguments were passed, we silently drop them.
4670     // If any of the types mismatch, we don't transform.
4671     unsigned argNo = 0;
4672     bool dontTransform = false;
4673     for (llvm::Argument &A : newFn->args()) {
4674       if (callSite->getArgOperand(argNo)->getType() != A.getType()) {
4675         dontTransform = true;
4676         break;
4677       }
4678 
4679       // Add any parameter attributes.
4680       newArgAttrs.push_back(oldAttrs.getParamAttributes(argNo));
4681       argNo++;
4682     }
4683     if (dontTransform)
4684       continue;
4685 
4686     // Okay, we can transform this.  Create the new call instruction and copy
4687     // over the required information.
4688     newArgs.append(callSite->arg_begin(), callSite->arg_begin() + argNo);
4689 
4690     // Copy over any operand bundles.
4691     SmallVector<llvm::OperandBundleDef, 1> newBundles;
4692     callSite->getOperandBundlesAsDefs(newBundles);
4693 
4694     llvm::CallBase *newCall;
4695     if (dyn_cast<llvm::CallInst>(callSite)) {
4696       newCall =
4697           llvm::CallInst::Create(newFn, newArgs, newBundles, "", callSite);
4698     } else {
4699       auto *oldInvoke = cast<llvm::InvokeInst>(callSite);
4700       newCall = llvm::InvokeInst::Create(newFn, oldInvoke->getNormalDest(),
4701                                          oldInvoke->getUnwindDest(), newArgs,
4702                                          newBundles, "", callSite);
4703     }
4704     newArgs.clear(); // for the next iteration
4705 
4706     if (!newCall->getType()->isVoidTy())
4707       newCall->takeName(callSite);
4708     newCall->setAttributes(llvm::AttributeList::get(
4709         newFn->getContext(), oldAttrs.getFnAttributes(),
4710         oldAttrs.getRetAttributes(), newArgAttrs));
4711     newCall->setCallingConv(callSite->getCallingConv());
4712 
4713     // Finally, remove the old call, replacing any uses with the new one.
4714     if (!callSite->use_empty())
4715       callSite->replaceAllUsesWith(newCall);
4716 
4717     // Copy debug location attached to CI.
4718     if (callSite->getDebugLoc())
4719       newCall->setDebugLoc(callSite->getDebugLoc());
4720 
4721     callSite->eraseFromParent();
4722   }
4723 }
4724 
4725 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we
4726 /// implement a function with no prototype, e.g. "int foo() {}".  If there are
4727 /// existing call uses of the old function in the module, this adjusts them to
4728 /// call the new function directly.
4729 ///
4730 /// This is not just a cleanup: the always_inline pass requires direct calls to
4731 /// functions to be able to inline them.  If there is a bitcast in the way, it
4732 /// won't inline them.  Instcombine normally deletes these calls, but it isn't
4733 /// run at -O0.
4734 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
4735                                                       llvm::Function *NewFn) {
4736   // If we're redefining a global as a function, don't transform it.
4737   if (!isa<llvm::Function>(Old)) return;
4738 
4739   replaceUsesOfNonProtoConstant(Old, NewFn);
4740 }
4741 
4742 void CodeGenModule::HandleCXXStaticMemberVarInstantiation(VarDecl *VD) {
4743   auto DK = VD->isThisDeclarationADefinition();
4744   if (DK == VarDecl::Definition && VD->hasAttr<DLLImportAttr>())
4745     return;
4746 
4747   TemplateSpecializationKind TSK = VD->getTemplateSpecializationKind();
4748   // If we have a definition, this might be a deferred decl. If the
4749   // instantiation is explicit, make sure we emit it at the end.
4750   if (VD->getDefinition() && TSK == TSK_ExplicitInstantiationDefinition)
4751     GetAddrOfGlobalVar(VD);
4752 
4753   EmitTopLevelDecl(VD);
4754 }
4755 
4756 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD,
4757                                                  llvm::GlobalValue *GV) {
4758   const auto *D = cast<FunctionDecl>(GD.getDecl());
4759 
4760   // Compute the function info and LLVM type.
4761   const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
4762   llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
4763 
4764   // Get or create the prototype for the function.
4765   if (!GV || (GV->getValueType() != Ty))
4766     GV = cast<llvm::GlobalValue>(GetAddrOfFunction(GD, Ty, /*ForVTable=*/false,
4767                                                    /*DontDefer=*/true,
4768                                                    ForDefinition));
4769 
4770   // Already emitted.
4771   if (!GV->isDeclaration())
4772     return;
4773 
4774   // We need to set linkage and visibility on the function before
4775   // generating code for it because various parts of IR generation
4776   // want to propagate this information down (e.g. to local static
4777   // declarations).
4778   auto *Fn = cast<llvm::Function>(GV);
4779   setFunctionLinkage(GD, Fn);
4780 
4781   // FIXME: this is redundant with part of setFunctionDefinitionAttributes
4782   setGVProperties(Fn, GD);
4783 
4784   MaybeHandleStaticInExternC(D, Fn);
4785 
4786   maybeSetTrivialComdat(*D, *Fn);
4787 
4788   // Set CodeGen attributes that represent floating point environment.
4789   setLLVMFunctionFEnvAttributes(D, Fn);
4790 
4791   CodeGenFunction(*this).GenerateCode(GD, Fn, FI);
4792 
4793   setNonAliasAttributes(GD, Fn);
4794   SetLLVMFunctionAttributesForDefinition(D, Fn);
4795 
4796   if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>())
4797     AddGlobalCtor(Fn, CA->getPriority());
4798   if (const DestructorAttr *DA = D->getAttr<DestructorAttr>())
4799     AddGlobalDtor(Fn, DA->getPriority(), true);
4800   if (D->hasAttr<AnnotateAttr>())
4801     AddGlobalAnnotations(D, Fn);
4802 }
4803 
4804 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) {
4805   const auto *D = cast<ValueDecl>(GD.getDecl());
4806   const AliasAttr *AA = D->getAttr<AliasAttr>();
4807   assert(AA && "Not an alias?");
4808 
4809   StringRef MangledName = getMangledName(GD);
4810 
4811   if (AA->getAliasee() == MangledName) {
4812     Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0;
4813     return;
4814   }
4815 
4816   // If there is a definition in the module, then it wins over the alias.
4817   // This is dubious, but allow it to be safe.  Just ignore the alias.
4818   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
4819   if (Entry && !Entry->isDeclaration())
4820     return;
4821 
4822   Aliases.push_back(GD);
4823 
4824   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
4825 
4826   // Create a reference to the named value.  This ensures that it is emitted
4827   // if a deferred decl.
4828   llvm::Constant *Aliasee;
4829   llvm::GlobalValue::LinkageTypes LT;
4830   if (isa<llvm::FunctionType>(DeclTy)) {
4831     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GD,
4832                                       /*ForVTable=*/false);
4833     LT = getFunctionLinkage(GD);
4834   } else {
4835     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
4836                                     llvm::PointerType::getUnqual(DeclTy),
4837                                     /*D=*/nullptr);
4838     if (const auto *VD = dyn_cast<VarDecl>(GD.getDecl()))
4839       LT = getLLVMLinkageVarDefinition(VD, D->getType().isConstQualified());
4840     else
4841       LT = getFunctionLinkage(GD);
4842   }
4843 
4844   // Create the new alias itself, but don't set a name yet.
4845   unsigned AS = Aliasee->getType()->getPointerAddressSpace();
4846   auto *GA =
4847       llvm::GlobalAlias::create(DeclTy, AS, LT, "", Aliasee, &getModule());
4848 
4849   if (Entry) {
4850     if (GA->getAliasee() == Entry) {
4851       Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0;
4852       return;
4853     }
4854 
4855     assert(Entry->isDeclaration());
4856 
4857     // If there is a declaration in the module, then we had an extern followed
4858     // by the alias, as in:
4859     //   extern int test6();
4860     //   ...
4861     //   int test6() __attribute__((alias("test7")));
4862     //
4863     // Remove it and replace uses of it with the alias.
4864     GA->takeName(Entry);
4865 
4866     Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA,
4867                                                           Entry->getType()));
4868     Entry->eraseFromParent();
4869   } else {
4870     GA->setName(MangledName);
4871   }
4872 
4873   // Set attributes which are particular to an alias; this is a
4874   // specialization of the attributes which may be set on a global
4875   // variable/function.
4876   if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakRefAttr>() ||
4877       D->isWeakImported()) {
4878     GA->setLinkage(llvm::Function::WeakAnyLinkage);
4879   }
4880 
4881   if (const auto *VD = dyn_cast<VarDecl>(D))
4882     if (VD->getTLSKind())
4883       setTLSMode(GA, *VD);
4884 
4885   SetCommonAttributes(GD, GA);
4886 }
4887 
4888 void CodeGenModule::emitIFuncDefinition(GlobalDecl GD) {
4889   const auto *D = cast<ValueDecl>(GD.getDecl());
4890   const IFuncAttr *IFA = D->getAttr<IFuncAttr>();
4891   assert(IFA && "Not an ifunc?");
4892 
4893   StringRef MangledName = getMangledName(GD);
4894 
4895   if (IFA->getResolver() == MangledName) {
4896     Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1;
4897     return;
4898   }
4899 
4900   // Report an error if some definition overrides ifunc.
4901   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
4902   if (Entry && !Entry->isDeclaration()) {
4903     GlobalDecl OtherGD;
4904     if (lookupRepresentativeDecl(MangledName, OtherGD) &&
4905         DiagnosedConflictingDefinitions.insert(GD).second) {
4906       Diags.Report(D->getLocation(), diag::err_duplicate_mangled_name)
4907           << MangledName;
4908       Diags.Report(OtherGD.getDecl()->getLocation(),
4909                    diag::note_previous_definition);
4910     }
4911     return;
4912   }
4913 
4914   Aliases.push_back(GD);
4915 
4916   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
4917   llvm::Constant *Resolver =
4918       GetOrCreateLLVMFunction(IFA->getResolver(), DeclTy, GD,
4919                               /*ForVTable=*/false);
4920   llvm::GlobalIFunc *GIF =
4921       llvm::GlobalIFunc::create(DeclTy, 0, llvm::Function::ExternalLinkage,
4922                                 "", Resolver, &getModule());
4923   if (Entry) {
4924     if (GIF->getResolver() == Entry) {
4925       Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1;
4926       return;
4927     }
4928     assert(Entry->isDeclaration());
4929 
4930     // If there is a declaration in the module, then we had an extern followed
4931     // by the ifunc, as in:
4932     //   extern int test();
4933     //   ...
4934     //   int test() __attribute__((ifunc("resolver")));
4935     //
4936     // Remove it and replace uses of it with the ifunc.
4937     GIF->takeName(Entry);
4938 
4939     Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GIF,
4940                                                           Entry->getType()));
4941     Entry->eraseFromParent();
4942   } else
4943     GIF->setName(MangledName);
4944 
4945   SetCommonAttributes(GD, GIF);
4946 }
4947 
4948 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,
4949                                             ArrayRef<llvm::Type*> Tys) {
4950   return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID,
4951                                          Tys);
4952 }
4953 
4954 static llvm::StringMapEntry<llvm::GlobalVariable *> &
4955 GetConstantCFStringEntry(llvm::StringMap<llvm::GlobalVariable *> &Map,
4956                          const StringLiteral *Literal, bool TargetIsLSB,
4957                          bool &IsUTF16, unsigned &StringLength) {
4958   StringRef String = Literal->getString();
4959   unsigned NumBytes = String.size();
4960 
4961   // Check for simple case.
4962   if (!Literal->containsNonAsciiOrNull()) {
4963     StringLength = NumBytes;
4964     return *Map.insert(std::make_pair(String, nullptr)).first;
4965   }
4966 
4967   // Otherwise, convert the UTF8 literals into a string of shorts.
4968   IsUTF16 = true;
4969 
4970   SmallVector<llvm::UTF16, 128> ToBuf(NumBytes + 1); // +1 for ending nulls.
4971   const llvm::UTF8 *FromPtr = (const llvm::UTF8 *)String.data();
4972   llvm::UTF16 *ToPtr = &ToBuf[0];
4973 
4974   (void)llvm::ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, &ToPtr,
4975                                  ToPtr + NumBytes, llvm::strictConversion);
4976 
4977   // ConvertUTF8toUTF16 returns the length in ToPtr.
4978   StringLength = ToPtr - &ToBuf[0];
4979 
4980   // Add an explicit null.
4981   *ToPtr = 0;
4982   return *Map.insert(std::make_pair(
4983                          StringRef(reinterpret_cast<const char *>(ToBuf.data()),
4984                                    (StringLength + 1) * 2),
4985                          nullptr)).first;
4986 }
4987 
4988 ConstantAddress
4989 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) {
4990   unsigned StringLength = 0;
4991   bool isUTF16 = false;
4992   llvm::StringMapEntry<llvm::GlobalVariable *> &Entry =
4993       GetConstantCFStringEntry(CFConstantStringMap, Literal,
4994                                getDataLayout().isLittleEndian(), isUTF16,
4995                                StringLength);
4996 
4997   if (auto *C = Entry.second)
4998     return ConstantAddress(C, CharUnits::fromQuantity(C->getAlignment()));
4999 
5000   llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty);
5001   llvm::Constant *Zeros[] = { Zero, Zero };
5002 
5003   const ASTContext &Context = getContext();
5004   const llvm::Triple &Triple = getTriple();
5005 
5006   const auto CFRuntime = getLangOpts().CFRuntime;
5007   const bool IsSwiftABI =
5008       static_cast<unsigned>(CFRuntime) >=
5009       static_cast<unsigned>(LangOptions::CoreFoundationABI::Swift);
5010   const bool IsSwift4_1 = CFRuntime == LangOptions::CoreFoundationABI::Swift4_1;
5011 
5012   // If we don't already have it, get __CFConstantStringClassReference.
5013   if (!CFConstantStringClassRef) {
5014     const char *CFConstantStringClassName = "__CFConstantStringClassReference";
5015     llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
5016     Ty = llvm::ArrayType::get(Ty, 0);
5017 
5018     switch (CFRuntime) {
5019     default: break;
5020     case LangOptions::CoreFoundationABI::Swift: LLVM_FALLTHROUGH;
5021     case LangOptions::CoreFoundationABI::Swift5_0:
5022       CFConstantStringClassName =
5023           Triple.isOSDarwin() ? "$s15SwiftFoundation19_NSCFConstantStringCN"
5024                               : "$s10Foundation19_NSCFConstantStringCN";
5025       Ty = IntPtrTy;
5026       break;
5027     case LangOptions::CoreFoundationABI::Swift4_2:
5028       CFConstantStringClassName =
5029           Triple.isOSDarwin() ? "$S15SwiftFoundation19_NSCFConstantStringCN"
5030                               : "$S10Foundation19_NSCFConstantStringCN";
5031       Ty = IntPtrTy;
5032       break;
5033     case LangOptions::CoreFoundationABI::Swift4_1:
5034       CFConstantStringClassName =
5035           Triple.isOSDarwin() ? "__T015SwiftFoundation19_NSCFConstantStringCN"
5036                               : "__T010Foundation19_NSCFConstantStringCN";
5037       Ty = IntPtrTy;
5038       break;
5039     }
5040 
5041     llvm::Constant *C = CreateRuntimeVariable(Ty, CFConstantStringClassName);
5042 
5043     if (Triple.isOSBinFormatELF() || Triple.isOSBinFormatCOFF()) {
5044       llvm::GlobalValue *GV = nullptr;
5045 
5046       if ((GV = dyn_cast<llvm::GlobalValue>(C))) {
5047         IdentifierInfo &II = Context.Idents.get(GV->getName());
5048         TranslationUnitDecl *TUDecl = Context.getTranslationUnitDecl();
5049         DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl);
5050 
5051         const VarDecl *VD = nullptr;
5052         for (const auto &Result : DC->lookup(&II))
5053           if ((VD = dyn_cast<VarDecl>(Result)))
5054             break;
5055 
5056         if (Triple.isOSBinFormatELF()) {
5057           if (!VD)
5058             GV->setLinkage(llvm::GlobalValue::ExternalLinkage);
5059         } else {
5060           GV->setLinkage(llvm::GlobalValue::ExternalLinkage);
5061           if (!VD || !VD->hasAttr<DLLExportAttr>())
5062             GV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass);
5063           else
5064             GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass);
5065         }
5066 
5067         setDSOLocal(GV);
5068       }
5069     }
5070 
5071     // Decay array -> ptr
5072     CFConstantStringClassRef =
5073         IsSwiftABI ? llvm::ConstantExpr::getPtrToInt(C, Ty)
5074                    : llvm::ConstantExpr::getGetElementPtr(Ty, C, Zeros);
5075   }
5076 
5077   QualType CFTy = Context.getCFConstantStringType();
5078 
5079   auto *STy = cast<llvm::StructType>(getTypes().ConvertType(CFTy));
5080 
5081   ConstantInitBuilder Builder(*this);
5082   auto Fields = Builder.beginStruct(STy);
5083 
5084   // Class pointer.
5085   Fields.add(cast<llvm::ConstantExpr>(CFConstantStringClassRef));
5086 
5087   // Flags.
5088   if (IsSwiftABI) {
5089     Fields.addInt(IntPtrTy, IsSwift4_1 ? 0x05 : 0x01);
5090     Fields.addInt(Int64Ty, isUTF16 ? 0x07d0 : 0x07c8);
5091   } else {
5092     Fields.addInt(IntTy, isUTF16 ? 0x07d0 : 0x07C8);
5093   }
5094 
5095   // String pointer.
5096   llvm::Constant *C = nullptr;
5097   if (isUTF16) {
5098     auto Arr = llvm::makeArrayRef(
5099         reinterpret_cast<uint16_t *>(const_cast<char *>(Entry.first().data())),
5100         Entry.first().size() / 2);
5101     C = llvm::ConstantDataArray::get(VMContext, Arr);
5102   } else {
5103     C = llvm::ConstantDataArray::getString(VMContext, Entry.first());
5104   }
5105 
5106   // Note: -fwritable-strings doesn't make the backing store strings of
5107   // CFStrings writable. (See <rdar://problem/10657500>)
5108   auto *GV =
5109       new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true,
5110                                llvm::GlobalValue::PrivateLinkage, C, ".str");
5111   GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
5112   // Don't enforce the target's minimum global alignment, since the only use
5113   // of the string is via this class initializer.
5114   CharUnits Align = isUTF16 ? Context.getTypeAlignInChars(Context.ShortTy)
5115                             : Context.getTypeAlignInChars(Context.CharTy);
5116   GV->setAlignment(Align.getAsAlign());
5117 
5118   // FIXME: We set the section explicitly to avoid a bug in ld64 224.1.
5119   // Without it LLVM can merge the string with a non unnamed_addr one during
5120   // LTO.  Doing that changes the section it ends in, which surprises ld64.
5121   if (Triple.isOSBinFormatMachO())
5122     GV->setSection(isUTF16 ? "__TEXT,__ustring"
5123                            : "__TEXT,__cstring,cstring_literals");
5124   // Make sure the literal ends up in .rodata to allow for safe ICF and for
5125   // the static linker to adjust permissions to read-only later on.
5126   else if (Triple.isOSBinFormatELF())
5127     GV->setSection(".rodata");
5128 
5129   // String.
5130   llvm::Constant *Str =
5131       llvm::ConstantExpr::getGetElementPtr(GV->getValueType(), GV, Zeros);
5132 
5133   if (isUTF16)
5134     // Cast the UTF16 string to the correct type.
5135     Str = llvm::ConstantExpr::getBitCast(Str, Int8PtrTy);
5136   Fields.add(Str);
5137 
5138   // String length.
5139   llvm::IntegerType *LengthTy =
5140       llvm::IntegerType::get(getModule().getContext(),
5141                              Context.getTargetInfo().getLongWidth());
5142   if (IsSwiftABI) {
5143     if (CFRuntime == LangOptions::CoreFoundationABI::Swift4_1 ||
5144         CFRuntime == LangOptions::CoreFoundationABI::Swift4_2)
5145       LengthTy = Int32Ty;
5146     else
5147       LengthTy = IntPtrTy;
5148   }
5149   Fields.addInt(LengthTy, StringLength);
5150 
5151   // Swift ABI requires 8-byte alignment to ensure that the _Atomic(uint64_t) is
5152   // properly aligned on 32-bit platforms.
5153   CharUnits Alignment =
5154       IsSwiftABI ? Context.toCharUnitsFromBits(64) : getPointerAlign();
5155 
5156   // The struct.
5157   GV = Fields.finishAndCreateGlobal("_unnamed_cfstring_", Alignment,
5158                                     /*isConstant=*/false,
5159                                     llvm::GlobalVariable::PrivateLinkage);
5160   GV->addAttribute("objc_arc_inert");
5161   switch (Triple.getObjectFormat()) {
5162   case llvm::Triple::UnknownObjectFormat:
5163     llvm_unreachable("unknown file format");
5164   case llvm::Triple::GOFF:
5165     llvm_unreachable("GOFF is not yet implemented");
5166   case llvm::Triple::XCOFF:
5167     llvm_unreachable("XCOFF is not yet implemented");
5168   case llvm::Triple::COFF:
5169   case llvm::Triple::ELF:
5170   case llvm::Triple::Wasm:
5171     GV->setSection("cfstring");
5172     break;
5173   case llvm::Triple::MachO:
5174     GV->setSection("__DATA,__cfstring");
5175     break;
5176   }
5177   Entry.second = GV;
5178 
5179   return ConstantAddress(GV, Alignment);
5180 }
5181 
5182 bool CodeGenModule::getExpressionLocationsEnabled() const {
5183   return !CodeGenOpts.EmitCodeView || CodeGenOpts.DebugColumnInfo;
5184 }
5185 
5186 QualType CodeGenModule::getObjCFastEnumerationStateType() {
5187   if (ObjCFastEnumerationStateType.isNull()) {
5188     RecordDecl *D = Context.buildImplicitRecord("__objcFastEnumerationState");
5189     D->startDefinition();
5190 
5191     QualType FieldTypes[] = {
5192       Context.UnsignedLongTy,
5193       Context.getPointerType(Context.getObjCIdType()),
5194       Context.getPointerType(Context.UnsignedLongTy),
5195       Context.getConstantArrayType(Context.UnsignedLongTy,
5196                            llvm::APInt(32, 5), nullptr, ArrayType::Normal, 0)
5197     };
5198 
5199     for (size_t i = 0; i < 4; ++i) {
5200       FieldDecl *Field = FieldDecl::Create(Context,
5201                                            D,
5202                                            SourceLocation(),
5203                                            SourceLocation(), nullptr,
5204                                            FieldTypes[i], /*TInfo=*/nullptr,
5205                                            /*BitWidth=*/nullptr,
5206                                            /*Mutable=*/false,
5207                                            ICIS_NoInit);
5208       Field->setAccess(AS_public);
5209       D->addDecl(Field);
5210     }
5211 
5212     D->completeDefinition();
5213     ObjCFastEnumerationStateType = Context.getTagDeclType(D);
5214   }
5215 
5216   return ObjCFastEnumerationStateType;
5217 }
5218 
5219 llvm::Constant *
5220 CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) {
5221   assert(!E->getType()->isPointerType() && "Strings are always arrays");
5222 
5223   // Don't emit it as the address of the string, emit the string data itself
5224   // as an inline array.
5225   if (E->getCharByteWidth() == 1) {
5226     SmallString<64> Str(E->getString());
5227 
5228     // Resize the string to the right size, which is indicated by its type.
5229     const ConstantArrayType *CAT = Context.getAsConstantArrayType(E->getType());
5230     Str.resize(CAT->getSize().getZExtValue());
5231     return llvm::ConstantDataArray::getString(VMContext, Str, false);
5232   }
5233 
5234   auto *AType = cast<llvm::ArrayType>(getTypes().ConvertType(E->getType()));
5235   llvm::Type *ElemTy = AType->getElementType();
5236   unsigned NumElements = AType->getNumElements();
5237 
5238   // Wide strings have either 2-byte or 4-byte elements.
5239   if (ElemTy->getPrimitiveSizeInBits() == 16) {
5240     SmallVector<uint16_t, 32> Elements;
5241     Elements.reserve(NumElements);
5242 
5243     for(unsigned i = 0, e = E->getLength(); i != e; ++i)
5244       Elements.push_back(E->getCodeUnit(i));
5245     Elements.resize(NumElements);
5246     return llvm::ConstantDataArray::get(VMContext, Elements);
5247   }
5248 
5249   assert(ElemTy->getPrimitiveSizeInBits() == 32);
5250   SmallVector<uint32_t, 32> Elements;
5251   Elements.reserve(NumElements);
5252 
5253   for(unsigned i = 0, e = E->getLength(); i != e; ++i)
5254     Elements.push_back(E->getCodeUnit(i));
5255   Elements.resize(NumElements);
5256   return llvm::ConstantDataArray::get(VMContext, Elements);
5257 }
5258 
5259 static llvm::GlobalVariable *
5260 GenerateStringLiteral(llvm::Constant *C, llvm::GlobalValue::LinkageTypes LT,
5261                       CodeGenModule &CGM, StringRef GlobalName,
5262                       CharUnits Alignment) {
5263   unsigned AddrSpace = CGM.getContext().getTargetAddressSpace(
5264       CGM.getStringLiteralAddressSpace());
5265 
5266   llvm::Module &M = CGM.getModule();
5267   // Create a global variable for this string
5268   auto *GV = new llvm::GlobalVariable(
5269       M, C->getType(), !CGM.getLangOpts().WritableStrings, LT, C, GlobalName,
5270       nullptr, llvm::GlobalVariable::NotThreadLocal, AddrSpace);
5271   GV->setAlignment(Alignment.getAsAlign());
5272   GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
5273   if (GV->isWeakForLinker()) {
5274     assert(CGM.supportsCOMDAT() && "Only COFF uses weak string literals");
5275     GV->setComdat(M.getOrInsertComdat(GV->getName()));
5276   }
5277   CGM.setDSOLocal(GV);
5278 
5279   return GV;
5280 }
5281 
5282 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a
5283 /// constant array for the given string literal.
5284 ConstantAddress
5285 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S,
5286                                                   StringRef Name) {
5287   CharUnits Alignment = getContext().getAlignOfGlobalVarInChars(S->getType());
5288 
5289   llvm::Constant *C = GetConstantArrayFromStringLiteral(S);
5290   llvm::GlobalVariable **Entry = nullptr;
5291   if (!LangOpts.WritableStrings) {
5292     Entry = &ConstantStringMap[C];
5293     if (auto GV = *Entry) {
5294       if (Alignment.getQuantity() > GV->getAlignment())
5295         GV->setAlignment(Alignment.getAsAlign());
5296       return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV),
5297                              Alignment);
5298     }
5299   }
5300 
5301   SmallString<256> MangledNameBuffer;
5302   StringRef GlobalVariableName;
5303   llvm::GlobalValue::LinkageTypes LT;
5304 
5305   // Mangle the string literal if that's how the ABI merges duplicate strings.
5306   // Don't do it if they are writable, since we don't want writes in one TU to
5307   // affect strings in another.
5308   if (getCXXABI().getMangleContext().shouldMangleStringLiteral(S) &&
5309       !LangOpts.WritableStrings) {
5310     llvm::raw_svector_ostream Out(MangledNameBuffer);
5311     getCXXABI().getMangleContext().mangleStringLiteral(S, Out);
5312     LT = llvm::GlobalValue::LinkOnceODRLinkage;
5313     GlobalVariableName = MangledNameBuffer;
5314   } else {
5315     LT = llvm::GlobalValue::PrivateLinkage;
5316     GlobalVariableName = Name;
5317   }
5318 
5319   auto GV = GenerateStringLiteral(C, LT, *this, GlobalVariableName, Alignment);
5320   if (Entry)
5321     *Entry = GV;
5322 
5323   SanitizerMD->reportGlobalToASan(GV, S->getStrTokenLoc(0), "<string literal>",
5324                                   QualType());
5325 
5326   return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV),
5327                          Alignment);
5328 }
5329 
5330 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant
5331 /// array for the given ObjCEncodeExpr node.
5332 ConstantAddress
5333 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) {
5334   std::string Str;
5335   getContext().getObjCEncodingForType(E->getEncodedType(), Str);
5336 
5337   return GetAddrOfConstantCString(Str);
5338 }
5339 
5340 /// GetAddrOfConstantCString - Returns a pointer to a character array containing
5341 /// the literal and a terminating '\0' character.
5342 /// The result has pointer to array type.
5343 ConstantAddress CodeGenModule::GetAddrOfConstantCString(
5344     const std::string &Str, const char *GlobalName) {
5345   StringRef StrWithNull(Str.c_str(), Str.size() + 1);
5346   CharUnits Alignment =
5347     getContext().getAlignOfGlobalVarInChars(getContext().CharTy);
5348 
5349   llvm::Constant *C =
5350       llvm::ConstantDataArray::getString(getLLVMContext(), StrWithNull, false);
5351 
5352   // Don't share any string literals if strings aren't constant.
5353   llvm::GlobalVariable **Entry = nullptr;
5354   if (!LangOpts.WritableStrings) {
5355     Entry = &ConstantStringMap[C];
5356     if (auto GV = *Entry) {
5357       if (Alignment.getQuantity() > GV->getAlignment())
5358         GV->setAlignment(Alignment.getAsAlign());
5359       return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV),
5360                              Alignment);
5361     }
5362   }
5363 
5364   // Get the default prefix if a name wasn't specified.
5365   if (!GlobalName)
5366     GlobalName = ".str";
5367   // Create a global variable for this.
5368   auto GV = GenerateStringLiteral(C, llvm::GlobalValue::PrivateLinkage, *this,
5369                                   GlobalName, Alignment);
5370   if (Entry)
5371     *Entry = GV;
5372 
5373   return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV),
5374                          Alignment);
5375 }
5376 
5377 ConstantAddress CodeGenModule::GetAddrOfGlobalTemporary(
5378     const MaterializeTemporaryExpr *E, const Expr *Init) {
5379   assert((E->getStorageDuration() == SD_Static ||
5380           E->getStorageDuration() == SD_Thread) && "not a global temporary");
5381   const auto *VD = cast<VarDecl>(E->getExtendingDecl());
5382 
5383   // If we're not materializing a subobject of the temporary, keep the
5384   // cv-qualifiers from the type of the MaterializeTemporaryExpr.
5385   QualType MaterializedType = Init->getType();
5386   if (Init == E->getSubExpr())
5387     MaterializedType = E->getType();
5388 
5389   CharUnits Align = getContext().getTypeAlignInChars(MaterializedType);
5390 
5391   auto InsertResult = MaterializedGlobalTemporaryMap.insert({E, nullptr});
5392   if (!InsertResult.second) {
5393     // We've seen this before: either we already created it or we're in the
5394     // process of doing so.
5395     if (!InsertResult.first->second) {
5396       // We recursively re-entered this function, probably during emission of
5397       // the initializer. Create a placeholder. We'll clean this up in the
5398       // outer call, at the end of this function.
5399       llvm::Type *Type = getTypes().ConvertTypeForMem(MaterializedType);
5400       InsertResult.first->second = new llvm::GlobalVariable(
5401           getModule(), Type, false, llvm::GlobalVariable::InternalLinkage,
5402           nullptr);
5403     }
5404     return ConstantAddress(InsertResult.first->second, Align);
5405   }
5406 
5407   // FIXME: If an externally-visible declaration extends multiple temporaries,
5408   // we need to give each temporary the same name in every translation unit (and
5409   // we also need to make the temporaries externally-visible).
5410   SmallString<256> Name;
5411   llvm::raw_svector_ostream Out(Name);
5412   getCXXABI().getMangleContext().mangleReferenceTemporary(
5413       VD, E->getManglingNumber(), Out);
5414 
5415   APValue *Value = nullptr;
5416   if (E->getStorageDuration() == SD_Static && VD && VD->evaluateValue()) {
5417     // If the initializer of the extending declaration is a constant
5418     // initializer, we should have a cached constant initializer for this
5419     // temporary. Note that this might have a different value from the value
5420     // computed by evaluating the initializer if the surrounding constant
5421     // expression modifies the temporary.
5422     Value = E->getOrCreateValue(false);
5423   }
5424 
5425   // Try evaluating it now, it might have a constant initializer.
5426   Expr::EvalResult EvalResult;
5427   if (!Value && Init->EvaluateAsRValue(EvalResult, getContext()) &&
5428       !EvalResult.hasSideEffects())
5429     Value = &EvalResult.Val;
5430 
5431   LangAS AddrSpace =
5432       VD ? GetGlobalVarAddressSpace(VD) : MaterializedType.getAddressSpace();
5433 
5434   Optional<ConstantEmitter> emitter;
5435   llvm::Constant *InitialValue = nullptr;
5436   bool Constant = false;
5437   llvm::Type *Type;
5438   if (Value) {
5439     // The temporary has a constant initializer, use it.
5440     emitter.emplace(*this);
5441     InitialValue = emitter->emitForInitializer(*Value, AddrSpace,
5442                                                MaterializedType);
5443     Constant = isTypeConstant(MaterializedType, /*ExcludeCtor*/Value);
5444     Type = InitialValue->getType();
5445   } else {
5446     // No initializer, the initialization will be provided when we
5447     // initialize the declaration which performed lifetime extension.
5448     Type = getTypes().ConvertTypeForMem(MaterializedType);
5449   }
5450 
5451   // Create a global variable for this lifetime-extended temporary.
5452   llvm::GlobalValue::LinkageTypes Linkage =
5453       getLLVMLinkageVarDefinition(VD, Constant);
5454   if (Linkage == llvm::GlobalVariable::ExternalLinkage) {
5455     const VarDecl *InitVD;
5456     if (VD->isStaticDataMember() && VD->getAnyInitializer(InitVD) &&
5457         isa<CXXRecordDecl>(InitVD->getLexicalDeclContext())) {
5458       // Temporaries defined inside a class get linkonce_odr linkage because the
5459       // class can be defined in multiple translation units.
5460       Linkage = llvm::GlobalVariable::LinkOnceODRLinkage;
5461     } else {
5462       // There is no need for this temporary to have external linkage if the
5463       // VarDecl has external linkage.
5464       Linkage = llvm::GlobalVariable::InternalLinkage;
5465     }
5466   }
5467   auto TargetAS = getContext().getTargetAddressSpace(AddrSpace);
5468   auto *GV = new llvm::GlobalVariable(
5469       getModule(), Type, Constant, Linkage, InitialValue, Name.c_str(),
5470       /*InsertBefore=*/nullptr, llvm::GlobalVariable::NotThreadLocal, TargetAS);
5471   if (emitter) emitter->finalize(GV);
5472   setGVProperties(GV, VD);
5473   GV->setAlignment(Align.getAsAlign());
5474   if (supportsCOMDAT() && GV->isWeakForLinker())
5475     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
5476   if (VD->getTLSKind())
5477     setTLSMode(GV, *VD);
5478   llvm::Constant *CV = GV;
5479   if (AddrSpace != LangAS::Default)
5480     CV = getTargetCodeGenInfo().performAddrSpaceCast(
5481         *this, GV, AddrSpace, LangAS::Default,
5482         Type->getPointerTo(
5483             getContext().getTargetAddressSpace(LangAS::Default)));
5484 
5485   // Update the map with the new temporary. If we created a placeholder above,
5486   // replace it with the new global now.
5487   llvm::Constant *&Entry = MaterializedGlobalTemporaryMap[E];
5488   if (Entry) {
5489     Entry->replaceAllUsesWith(
5490         llvm::ConstantExpr::getBitCast(CV, Entry->getType()));
5491     llvm::cast<llvm::GlobalVariable>(Entry)->eraseFromParent();
5492   }
5493   Entry = CV;
5494 
5495   return ConstantAddress(CV, Align);
5496 }
5497 
5498 /// EmitObjCPropertyImplementations - Emit information for synthesized
5499 /// properties for an implementation.
5500 void CodeGenModule::EmitObjCPropertyImplementations(const
5501                                                     ObjCImplementationDecl *D) {
5502   for (const auto *PID : D->property_impls()) {
5503     // Dynamic is just for type-checking.
5504     if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) {
5505       ObjCPropertyDecl *PD = PID->getPropertyDecl();
5506 
5507       // Determine which methods need to be implemented, some may have
5508       // been overridden. Note that ::isPropertyAccessor is not the method
5509       // we want, that just indicates if the decl came from a
5510       // property. What we want to know is if the method is defined in
5511       // this implementation.
5512       auto *Getter = PID->getGetterMethodDecl();
5513       if (!Getter || Getter->isSynthesizedAccessorStub())
5514         CodeGenFunction(*this).GenerateObjCGetter(
5515             const_cast<ObjCImplementationDecl *>(D), PID);
5516       auto *Setter = PID->getSetterMethodDecl();
5517       if (!PD->isReadOnly() && (!Setter || Setter->isSynthesizedAccessorStub()))
5518         CodeGenFunction(*this).GenerateObjCSetter(
5519                                  const_cast<ObjCImplementationDecl *>(D), PID);
5520     }
5521   }
5522 }
5523 
5524 static bool needsDestructMethod(ObjCImplementationDecl *impl) {
5525   const ObjCInterfaceDecl *iface = impl->getClassInterface();
5526   for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin();
5527        ivar; ivar = ivar->getNextIvar())
5528     if (ivar->getType().isDestructedType())
5529       return true;
5530 
5531   return false;
5532 }
5533 
5534 static bool AllTrivialInitializers(CodeGenModule &CGM,
5535                                    ObjCImplementationDecl *D) {
5536   CodeGenFunction CGF(CGM);
5537   for (ObjCImplementationDecl::init_iterator B = D->init_begin(),
5538        E = D->init_end(); B != E; ++B) {
5539     CXXCtorInitializer *CtorInitExp = *B;
5540     Expr *Init = CtorInitExp->getInit();
5541     if (!CGF.isTrivialInitializer(Init))
5542       return false;
5543   }
5544   return true;
5545 }
5546 
5547 /// EmitObjCIvarInitializations - Emit information for ivar initialization
5548 /// for an implementation.
5549 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) {
5550   // We might need a .cxx_destruct even if we don't have any ivar initializers.
5551   if (needsDestructMethod(D)) {
5552     IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct");
5553     Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
5554     ObjCMethodDecl *DTORMethod = ObjCMethodDecl::Create(
5555         getContext(), D->getLocation(), D->getLocation(), cxxSelector,
5556         getContext().VoidTy, nullptr, D,
5557         /*isInstance=*/true, /*isVariadic=*/false,
5558         /*isPropertyAccessor=*/true, /*isSynthesizedAccessorStub=*/false,
5559         /*isImplicitlyDeclared=*/true,
5560         /*isDefined=*/false, ObjCMethodDecl::Required);
5561     D->addInstanceMethod(DTORMethod);
5562     CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false);
5563     D->setHasDestructors(true);
5564   }
5565 
5566   // If the implementation doesn't have any ivar initializers, we don't need
5567   // a .cxx_construct.
5568   if (D->getNumIvarInitializers() == 0 ||
5569       AllTrivialInitializers(*this, D))
5570     return;
5571 
5572   IdentifierInfo *II = &getContext().Idents.get(".cxx_construct");
5573   Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
5574   // The constructor returns 'self'.
5575   ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(
5576       getContext(), D->getLocation(), D->getLocation(), cxxSelector,
5577       getContext().getObjCIdType(), nullptr, D, /*isInstance=*/true,
5578       /*isVariadic=*/false,
5579       /*isPropertyAccessor=*/true, /*isSynthesizedAccessorStub=*/false,
5580       /*isImplicitlyDeclared=*/true,
5581       /*isDefined=*/false, ObjCMethodDecl::Required);
5582   D->addInstanceMethod(CTORMethod);
5583   CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true);
5584   D->setHasNonZeroConstructors(true);
5585 }
5586 
5587 // EmitLinkageSpec - Emit all declarations in a linkage spec.
5588 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) {
5589   if (LSD->getLanguage() != LinkageSpecDecl::lang_c &&
5590       LSD->getLanguage() != LinkageSpecDecl::lang_cxx) {
5591     ErrorUnsupported(LSD, "linkage spec");
5592     return;
5593   }
5594 
5595   EmitDeclContext(LSD);
5596 }
5597 
5598 void CodeGenModule::EmitDeclContext(const DeclContext *DC) {
5599   for (auto *I : DC->decls()) {
5600     // Unlike other DeclContexts, the contents of an ObjCImplDecl at TU scope
5601     // are themselves considered "top-level", so EmitTopLevelDecl on an
5602     // ObjCImplDecl does not recursively visit them. We need to do that in
5603     // case they're nested inside another construct (LinkageSpecDecl /
5604     // ExportDecl) that does stop them from being considered "top-level".
5605     if (auto *OID = dyn_cast<ObjCImplDecl>(I)) {
5606       for (auto *M : OID->methods())
5607         EmitTopLevelDecl(M);
5608     }
5609 
5610     EmitTopLevelDecl(I);
5611   }
5612 }
5613 
5614 /// EmitTopLevelDecl - Emit code for a single top level declaration.
5615 void CodeGenModule::EmitTopLevelDecl(Decl *D) {
5616   // Ignore dependent declarations.
5617   if (D->isTemplated())
5618     return;
5619 
5620   // Consteval function shouldn't be emitted.
5621   if (auto *FD = dyn_cast<FunctionDecl>(D))
5622     if (FD->isConsteval())
5623       return;
5624 
5625   switch (D->getKind()) {
5626   case Decl::CXXConversion:
5627   case Decl::CXXMethod:
5628   case Decl::Function:
5629     EmitGlobal(cast<FunctionDecl>(D));
5630     // Always provide some coverage mapping
5631     // even for the functions that aren't emitted.
5632     AddDeferredUnusedCoverageMapping(D);
5633     break;
5634 
5635   case Decl::CXXDeductionGuide:
5636     // Function-like, but does not result in code emission.
5637     break;
5638 
5639   case Decl::Var:
5640   case Decl::Decomposition:
5641   case Decl::VarTemplateSpecialization:
5642     EmitGlobal(cast<VarDecl>(D));
5643     if (auto *DD = dyn_cast<DecompositionDecl>(D))
5644       for (auto *B : DD->bindings())
5645         if (auto *HD = B->getHoldingVar())
5646           EmitGlobal(HD);
5647     break;
5648 
5649   // Indirect fields from global anonymous structs and unions can be
5650   // ignored; only the actual variable requires IR gen support.
5651   case Decl::IndirectField:
5652     break;
5653 
5654   // C++ Decls
5655   case Decl::Namespace:
5656     EmitDeclContext(cast<NamespaceDecl>(D));
5657     break;
5658   case Decl::ClassTemplateSpecialization: {
5659     const auto *Spec = cast<ClassTemplateSpecializationDecl>(D);
5660     if (CGDebugInfo *DI = getModuleDebugInfo())
5661       if (Spec->getSpecializationKind() ==
5662               TSK_ExplicitInstantiationDefinition &&
5663           Spec->hasDefinition())
5664         DI->completeTemplateDefinition(*Spec);
5665   } LLVM_FALLTHROUGH;
5666   case Decl::CXXRecord: {
5667     CXXRecordDecl *CRD = cast<CXXRecordDecl>(D);
5668     if (CGDebugInfo *DI = getModuleDebugInfo()) {
5669       if (CRD->hasDefinition())
5670         DI->EmitAndRetainType(getContext().getRecordType(cast<RecordDecl>(D)));
5671       if (auto *ES = D->getASTContext().getExternalSource())
5672         if (ES->hasExternalDefinitions(D) == ExternalASTSource::EK_Never)
5673           DI->completeUnusedClass(*CRD);
5674     }
5675     // Emit any static data members, they may be definitions.
5676     for (auto *I : CRD->decls())
5677       if (isa<VarDecl>(I) || isa<CXXRecordDecl>(I))
5678         EmitTopLevelDecl(I);
5679     break;
5680   }
5681     // No code generation needed.
5682   case Decl::UsingShadow:
5683   case Decl::ClassTemplate:
5684   case Decl::VarTemplate:
5685   case Decl::Concept:
5686   case Decl::VarTemplatePartialSpecialization:
5687   case Decl::FunctionTemplate:
5688   case Decl::TypeAliasTemplate:
5689   case Decl::Block:
5690   case Decl::Empty:
5691   case Decl::Binding:
5692     break;
5693   case Decl::Using:          // using X; [C++]
5694     if (CGDebugInfo *DI = getModuleDebugInfo())
5695         DI->EmitUsingDecl(cast<UsingDecl>(*D));
5696     break;
5697   case Decl::NamespaceAlias:
5698     if (CGDebugInfo *DI = getModuleDebugInfo())
5699         DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(*D));
5700     break;
5701   case Decl::UsingDirective: // using namespace X; [C++]
5702     if (CGDebugInfo *DI = getModuleDebugInfo())
5703       DI->EmitUsingDirective(cast<UsingDirectiveDecl>(*D));
5704     break;
5705   case Decl::CXXConstructor:
5706     getCXXABI().EmitCXXConstructors(cast<CXXConstructorDecl>(D));
5707     break;
5708   case Decl::CXXDestructor:
5709     getCXXABI().EmitCXXDestructors(cast<CXXDestructorDecl>(D));
5710     break;
5711 
5712   case Decl::StaticAssert:
5713     // Nothing to do.
5714     break;
5715 
5716   // Objective-C Decls
5717 
5718   // Forward declarations, no (immediate) code generation.
5719   case Decl::ObjCInterface:
5720   case Decl::ObjCCategory:
5721     break;
5722 
5723   case Decl::ObjCProtocol: {
5724     auto *Proto = cast<ObjCProtocolDecl>(D);
5725     if (Proto->isThisDeclarationADefinition())
5726       ObjCRuntime->GenerateProtocol(Proto);
5727     break;
5728   }
5729 
5730   case Decl::ObjCCategoryImpl:
5731     // Categories have properties but don't support synthesize so we
5732     // can ignore them here.
5733     ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D));
5734     break;
5735 
5736   case Decl::ObjCImplementation: {
5737     auto *OMD = cast<ObjCImplementationDecl>(D);
5738     EmitObjCPropertyImplementations(OMD);
5739     EmitObjCIvarInitializations(OMD);
5740     ObjCRuntime->GenerateClass(OMD);
5741     // Emit global variable debug information.
5742     if (CGDebugInfo *DI = getModuleDebugInfo())
5743       if (getCodeGenOpts().hasReducedDebugInfo())
5744         DI->getOrCreateInterfaceType(getContext().getObjCInterfaceType(
5745             OMD->getClassInterface()), OMD->getLocation());
5746     break;
5747   }
5748   case Decl::ObjCMethod: {
5749     auto *OMD = cast<ObjCMethodDecl>(D);
5750     // If this is not a prototype, emit the body.
5751     if (OMD->getBody())
5752       CodeGenFunction(*this).GenerateObjCMethod(OMD);
5753     break;
5754   }
5755   case Decl::ObjCCompatibleAlias:
5756     ObjCRuntime->RegisterAlias(cast<ObjCCompatibleAliasDecl>(D));
5757     break;
5758 
5759   case Decl::PragmaComment: {
5760     const auto *PCD = cast<PragmaCommentDecl>(D);
5761     switch (PCD->getCommentKind()) {
5762     case PCK_Unknown:
5763       llvm_unreachable("unexpected pragma comment kind");
5764     case PCK_Linker:
5765       AppendLinkerOptions(PCD->getArg());
5766       break;
5767     case PCK_Lib:
5768         AddDependentLib(PCD->getArg());
5769       break;
5770     case PCK_Compiler:
5771     case PCK_ExeStr:
5772     case PCK_User:
5773       break; // We ignore all of these.
5774     }
5775     break;
5776   }
5777 
5778   case Decl::PragmaDetectMismatch: {
5779     const auto *PDMD = cast<PragmaDetectMismatchDecl>(D);
5780     AddDetectMismatch(PDMD->getName(), PDMD->getValue());
5781     break;
5782   }
5783 
5784   case Decl::LinkageSpec:
5785     EmitLinkageSpec(cast<LinkageSpecDecl>(D));
5786     break;
5787 
5788   case Decl::FileScopeAsm: {
5789     // File-scope asm is ignored during device-side CUDA compilation.
5790     if (LangOpts.CUDA && LangOpts.CUDAIsDevice)
5791       break;
5792     // File-scope asm is ignored during device-side OpenMP compilation.
5793     if (LangOpts.OpenMPIsDevice)
5794       break;
5795     // File-scope asm is ignored during device-side SYCL compilation.
5796     if (LangOpts.SYCLIsDevice)
5797       break;
5798     auto *AD = cast<FileScopeAsmDecl>(D);
5799     getModule().appendModuleInlineAsm(AD->getAsmString()->getString());
5800     break;
5801   }
5802 
5803   case Decl::Import: {
5804     auto *Import = cast<ImportDecl>(D);
5805 
5806     // If we've already imported this module, we're done.
5807     if (!ImportedModules.insert(Import->getImportedModule()))
5808       break;
5809 
5810     // Emit debug information for direct imports.
5811     if (!Import->getImportedOwningModule()) {
5812       if (CGDebugInfo *DI = getModuleDebugInfo())
5813         DI->EmitImportDecl(*Import);
5814     }
5815 
5816     // Find all of the submodules and emit the module initializers.
5817     llvm::SmallPtrSet<clang::Module *, 16> Visited;
5818     SmallVector<clang::Module *, 16> Stack;
5819     Visited.insert(Import->getImportedModule());
5820     Stack.push_back(Import->getImportedModule());
5821 
5822     while (!Stack.empty()) {
5823       clang::Module *Mod = Stack.pop_back_val();
5824       if (!EmittedModuleInitializers.insert(Mod).second)
5825         continue;
5826 
5827       for (auto *D : Context.getModuleInitializers(Mod))
5828         EmitTopLevelDecl(D);
5829 
5830       // Visit the submodules of this module.
5831       for (clang::Module::submodule_iterator Sub = Mod->submodule_begin(),
5832                                              SubEnd = Mod->submodule_end();
5833            Sub != SubEnd; ++Sub) {
5834         // Skip explicit children; they need to be explicitly imported to emit
5835         // the initializers.
5836         if ((*Sub)->IsExplicit)
5837           continue;
5838 
5839         if (Visited.insert(*Sub).second)
5840           Stack.push_back(*Sub);
5841       }
5842     }
5843     break;
5844   }
5845 
5846   case Decl::Export:
5847     EmitDeclContext(cast<ExportDecl>(D));
5848     break;
5849 
5850   case Decl::OMPThreadPrivate:
5851     EmitOMPThreadPrivateDecl(cast<OMPThreadPrivateDecl>(D));
5852     break;
5853 
5854   case Decl::OMPAllocate:
5855     break;
5856 
5857   case Decl::OMPDeclareReduction:
5858     EmitOMPDeclareReduction(cast<OMPDeclareReductionDecl>(D));
5859     break;
5860 
5861   case Decl::OMPDeclareMapper:
5862     EmitOMPDeclareMapper(cast<OMPDeclareMapperDecl>(D));
5863     break;
5864 
5865   case Decl::OMPRequires:
5866     EmitOMPRequiresDecl(cast<OMPRequiresDecl>(D));
5867     break;
5868 
5869   case Decl::Typedef:
5870   case Decl::TypeAlias: // using foo = bar; [C++11]
5871     if (CGDebugInfo *DI = getModuleDebugInfo())
5872       DI->EmitAndRetainType(
5873           getContext().getTypedefType(cast<TypedefNameDecl>(D)));
5874     break;
5875 
5876   case Decl::Record:
5877     if (CGDebugInfo *DI = getModuleDebugInfo())
5878       if (cast<RecordDecl>(D)->getDefinition())
5879         DI->EmitAndRetainType(getContext().getRecordType(cast<RecordDecl>(D)));
5880     break;
5881 
5882   case Decl::Enum:
5883     if (CGDebugInfo *DI = getModuleDebugInfo())
5884       if (cast<EnumDecl>(D)->getDefinition())
5885         DI->EmitAndRetainType(getContext().getEnumType(cast<EnumDecl>(D)));
5886     break;
5887 
5888   default:
5889     // Make sure we handled everything we should, every other kind is a
5890     // non-top-level decl.  FIXME: Would be nice to have an isTopLevelDeclKind
5891     // function. Need to recode Decl::Kind to do that easily.
5892     assert(isa<TypeDecl>(D) && "Unsupported decl kind");
5893     break;
5894   }
5895 }
5896 
5897 void CodeGenModule::AddDeferredUnusedCoverageMapping(Decl *D) {
5898   // Do we need to generate coverage mapping?
5899   if (!CodeGenOpts.CoverageMapping)
5900     return;
5901   switch (D->getKind()) {
5902   case Decl::CXXConversion:
5903   case Decl::CXXMethod:
5904   case Decl::Function:
5905   case Decl::ObjCMethod:
5906   case Decl::CXXConstructor:
5907   case Decl::CXXDestructor: {
5908     if (!cast<FunctionDecl>(D)->doesThisDeclarationHaveABody())
5909       break;
5910     SourceManager &SM = getContext().getSourceManager();
5911     if (LimitedCoverage && SM.getMainFileID() != SM.getFileID(D->getBeginLoc()))
5912       break;
5913     auto I = DeferredEmptyCoverageMappingDecls.find(D);
5914     if (I == DeferredEmptyCoverageMappingDecls.end())
5915       DeferredEmptyCoverageMappingDecls[D] = true;
5916     break;
5917   }
5918   default:
5919     break;
5920   };
5921 }
5922 
5923 void CodeGenModule::ClearUnusedCoverageMapping(const Decl *D) {
5924   // Do we need to generate coverage mapping?
5925   if (!CodeGenOpts.CoverageMapping)
5926     return;
5927   if (const auto *Fn = dyn_cast<FunctionDecl>(D)) {
5928     if (Fn->isTemplateInstantiation())
5929       ClearUnusedCoverageMapping(Fn->getTemplateInstantiationPattern());
5930   }
5931   auto I = DeferredEmptyCoverageMappingDecls.find(D);
5932   if (I == DeferredEmptyCoverageMappingDecls.end())
5933     DeferredEmptyCoverageMappingDecls[D] = false;
5934   else
5935     I->second = false;
5936 }
5937 
5938 void CodeGenModule::EmitDeferredUnusedCoverageMappings() {
5939   // We call takeVector() here to avoid use-after-free.
5940   // FIXME: DeferredEmptyCoverageMappingDecls is getting mutated because
5941   // we deserialize function bodies to emit coverage info for them, and that
5942   // deserializes more declarations. How should we handle that case?
5943   for (const auto &Entry : DeferredEmptyCoverageMappingDecls.takeVector()) {
5944     if (!Entry.second)
5945       continue;
5946     const Decl *D = Entry.first;
5947     switch (D->getKind()) {
5948     case Decl::CXXConversion:
5949     case Decl::CXXMethod:
5950     case Decl::Function:
5951     case Decl::ObjCMethod: {
5952       CodeGenPGO PGO(*this);
5953       GlobalDecl GD(cast<FunctionDecl>(D));
5954       PGO.emitEmptyCounterMapping(D, getMangledName(GD),
5955                                   getFunctionLinkage(GD));
5956       break;
5957     }
5958     case Decl::CXXConstructor: {
5959       CodeGenPGO PGO(*this);
5960       GlobalDecl GD(cast<CXXConstructorDecl>(D), Ctor_Base);
5961       PGO.emitEmptyCounterMapping(D, getMangledName(GD),
5962                                   getFunctionLinkage(GD));
5963       break;
5964     }
5965     case Decl::CXXDestructor: {
5966       CodeGenPGO PGO(*this);
5967       GlobalDecl GD(cast<CXXDestructorDecl>(D), Dtor_Base);
5968       PGO.emitEmptyCounterMapping(D, getMangledName(GD),
5969                                   getFunctionLinkage(GD));
5970       break;
5971     }
5972     default:
5973       break;
5974     };
5975   }
5976 }
5977 
5978 void CodeGenModule::EmitMainVoidAlias() {
5979   // In order to transition away from "__original_main" gracefully, emit an
5980   // alias for "main" in the no-argument case so that libc can detect when
5981   // new-style no-argument main is in used.
5982   if (llvm::Function *F = getModule().getFunction("main")) {
5983     if (!F->isDeclaration() && F->arg_size() == 0 && !F->isVarArg() &&
5984         F->getReturnType()->isIntegerTy(Context.getTargetInfo().getIntWidth()))
5985       addUsedGlobal(llvm::GlobalAlias::create("__main_void", F));
5986   }
5987 }
5988 
5989 /// Turns the given pointer into a constant.
5990 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context,
5991                                           const void *Ptr) {
5992   uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr);
5993   llvm::Type *i64 = llvm::Type::getInt64Ty(Context);
5994   return llvm::ConstantInt::get(i64, PtrInt);
5995 }
5996 
5997 static void EmitGlobalDeclMetadata(CodeGenModule &CGM,
5998                                    llvm::NamedMDNode *&GlobalMetadata,
5999                                    GlobalDecl D,
6000                                    llvm::GlobalValue *Addr) {
6001   if (!GlobalMetadata)
6002     GlobalMetadata =
6003       CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs");
6004 
6005   // TODO: should we report variant information for ctors/dtors?
6006   llvm::Metadata *Ops[] = {llvm::ConstantAsMetadata::get(Addr),
6007                            llvm::ConstantAsMetadata::get(GetPointerConstant(
6008                                CGM.getLLVMContext(), D.getDecl()))};
6009   GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops));
6010 }
6011 
6012 /// For each function which is declared within an extern "C" region and marked
6013 /// as 'used', but has internal linkage, create an alias from the unmangled
6014 /// name to the mangled name if possible. People expect to be able to refer
6015 /// to such functions with an unmangled name from inline assembly within the
6016 /// same translation unit.
6017 void CodeGenModule::EmitStaticExternCAliases() {
6018   if (!getTargetCodeGenInfo().shouldEmitStaticExternCAliases())
6019     return;
6020   for (auto &I : StaticExternCValues) {
6021     IdentifierInfo *Name = I.first;
6022     llvm::GlobalValue *Val = I.second;
6023     if (Val && !getModule().getNamedValue(Name->getName()))
6024       addCompilerUsedGlobal(llvm::GlobalAlias::create(Name->getName(), Val));
6025   }
6026 }
6027 
6028 bool CodeGenModule::lookupRepresentativeDecl(StringRef MangledName,
6029                                              GlobalDecl &Result) const {
6030   auto Res = Manglings.find(MangledName);
6031   if (Res == Manglings.end())
6032     return false;
6033   Result = Res->getValue();
6034   return true;
6035 }
6036 
6037 /// Emits metadata nodes associating all the global values in the
6038 /// current module with the Decls they came from.  This is useful for
6039 /// projects using IR gen as a subroutine.
6040 ///
6041 /// Since there's currently no way to associate an MDNode directly
6042 /// with an llvm::GlobalValue, we create a global named metadata
6043 /// with the name 'clang.global.decl.ptrs'.
6044 void CodeGenModule::EmitDeclMetadata() {
6045   llvm::NamedMDNode *GlobalMetadata = nullptr;
6046 
6047   for (auto &I : MangledDeclNames) {
6048     llvm::GlobalValue *Addr = getModule().getNamedValue(I.second);
6049     // Some mangled names don't necessarily have an associated GlobalValue
6050     // in this module, e.g. if we mangled it for DebugInfo.
6051     if (Addr)
6052       EmitGlobalDeclMetadata(*this, GlobalMetadata, I.first, Addr);
6053   }
6054 }
6055 
6056 /// Emits metadata nodes for all the local variables in the current
6057 /// function.
6058 void CodeGenFunction::EmitDeclMetadata() {
6059   if (LocalDeclMap.empty()) return;
6060 
6061   llvm::LLVMContext &Context = getLLVMContext();
6062 
6063   // Find the unique metadata ID for this name.
6064   unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr");
6065 
6066   llvm::NamedMDNode *GlobalMetadata = nullptr;
6067 
6068   for (auto &I : LocalDeclMap) {
6069     const Decl *D = I.first;
6070     llvm::Value *Addr = I.second.getPointer();
6071     if (auto *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) {
6072       llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D);
6073       Alloca->setMetadata(
6074           DeclPtrKind, llvm::MDNode::get(
6075                            Context, llvm::ValueAsMetadata::getConstant(DAddr)));
6076     } else if (auto *GV = dyn_cast<llvm::GlobalValue>(Addr)) {
6077       GlobalDecl GD = GlobalDecl(cast<VarDecl>(D));
6078       EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV);
6079     }
6080   }
6081 }
6082 
6083 void CodeGenModule::EmitVersionIdentMetadata() {
6084   llvm::NamedMDNode *IdentMetadata =
6085     TheModule.getOrInsertNamedMetadata("llvm.ident");
6086   std::string Version = getClangFullVersion();
6087   llvm::LLVMContext &Ctx = TheModule.getContext();
6088 
6089   llvm::Metadata *IdentNode[] = {llvm::MDString::get(Ctx, Version)};
6090   IdentMetadata->addOperand(llvm::MDNode::get(Ctx, IdentNode));
6091 }
6092 
6093 void CodeGenModule::EmitCommandLineMetadata() {
6094   llvm::NamedMDNode *CommandLineMetadata =
6095     TheModule.getOrInsertNamedMetadata("llvm.commandline");
6096   std::string CommandLine = getCodeGenOpts().RecordCommandLine;
6097   llvm::LLVMContext &Ctx = TheModule.getContext();
6098 
6099   llvm::Metadata *CommandLineNode[] = {llvm::MDString::get(Ctx, CommandLine)};
6100   CommandLineMetadata->addOperand(llvm::MDNode::get(Ctx, CommandLineNode));
6101 }
6102 
6103 void CodeGenModule::EmitCoverageFile() {
6104   if (getCodeGenOpts().CoverageDataFile.empty() &&
6105       getCodeGenOpts().CoverageNotesFile.empty())
6106     return;
6107 
6108   llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu");
6109   if (!CUNode)
6110     return;
6111 
6112   llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov");
6113   llvm::LLVMContext &Ctx = TheModule.getContext();
6114   auto *CoverageDataFile =
6115       llvm::MDString::get(Ctx, getCodeGenOpts().CoverageDataFile);
6116   auto *CoverageNotesFile =
6117       llvm::MDString::get(Ctx, getCodeGenOpts().CoverageNotesFile);
6118   for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) {
6119     llvm::MDNode *CU = CUNode->getOperand(i);
6120     llvm::Metadata *Elts[] = {CoverageNotesFile, CoverageDataFile, CU};
6121     GCov->addOperand(llvm::MDNode::get(Ctx, Elts));
6122   }
6123 }
6124 
6125 llvm::Constant *CodeGenModule::GetAddrOfRTTIDescriptor(QualType Ty,
6126                                                        bool ForEH) {
6127   // Return a bogus pointer if RTTI is disabled, unless it's for EH.
6128   // FIXME: should we even be calling this method if RTTI is disabled
6129   // and it's not for EH?
6130   if ((!ForEH && !getLangOpts().RTTI) || getLangOpts().CUDAIsDevice ||
6131       (getLangOpts().OpenMP && getLangOpts().OpenMPIsDevice &&
6132        getTriple().isNVPTX()))
6133     return llvm::Constant::getNullValue(Int8PtrTy);
6134 
6135   if (ForEH && Ty->isObjCObjectPointerType() &&
6136       LangOpts.ObjCRuntime.isGNUFamily())
6137     return ObjCRuntime->GetEHType(Ty);
6138 
6139   return getCXXABI().getAddrOfRTTIDescriptor(Ty);
6140 }
6141 
6142 void CodeGenModule::EmitOMPThreadPrivateDecl(const OMPThreadPrivateDecl *D) {
6143   // Do not emit threadprivates in simd-only mode.
6144   if (LangOpts.OpenMP && LangOpts.OpenMPSimd)
6145     return;
6146   for (auto RefExpr : D->varlists()) {
6147     auto *VD = cast<VarDecl>(cast<DeclRefExpr>(RefExpr)->getDecl());
6148     bool PerformInit =
6149         VD->getAnyInitializer() &&
6150         !VD->getAnyInitializer()->isConstantInitializer(getContext(),
6151                                                         /*ForRef=*/false);
6152 
6153     Address Addr(GetAddrOfGlobalVar(VD), getContext().getDeclAlign(VD));
6154     if (auto InitFunction = getOpenMPRuntime().emitThreadPrivateVarDefinition(
6155             VD, Addr, RefExpr->getBeginLoc(), PerformInit))
6156       CXXGlobalInits.push_back(InitFunction);
6157   }
6158 }
6159 
6160 llvm::Metadata *
6161 CodeGenModule::CreateMetadataIdentifierImpl(QualType T, MetadataTypeMap &Map,
6162                                             StringRef Suffix) {
6163   llvm::Metadata *&InternalId = Map[T.getCanonicalType()];
6164   if (InternalId)
6165     return InternalId;
6166 
6167   if (isExternallyVisible(T->getLinkage())) {
6168     std::string OutName;
6169     llvm::raw_string_ostream Out(OutName);
6170     getCXXABI().getMangleContext().mangleTypeName(T, Out);
6171     Out << Suffix;
6172 
6173     InternalId = llvm::MDString::get(getLLVMContext(), Out.str());
6174   } else {
6175     InternalId = llvm::MDNode::getDistinct(getLLVMContext(),
6176                                            llvm::ArrayRef<llvm::Metadata *>());
6177   }
6178 
6179   return InternalId;
6180 }
6181 
6182 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierForType(QualType T) {
6183   return CreateMetadataIdentifierImpl(T, MetadataIdMap, "");
6184 }
6185 
6186 llvm::Metadata *
6187 CodeGenModule::CreateMetadataIdentifierForVirtualMemPtrType(QualType T) {
6188   return CreateMetadataIdentifierImpl(T, VirtualMetadataIdMap, ".virtual");
6189 }
6190 
6191 // Generalize pointer types to a void pointer with the qualifiers of the
6192 // originally pointed-to type, e.g. 'const char *' and 'char * const *'
6193 // generalize to 'const void *' while 'char *' and 'const char **' generalize to
6194 // 'void *'.
6195 static QualType GeneralizeType(ASTContext &Ctx, QualType Ty) {
6196   if (!Ty->isPointerType())
6197     return Ty;
6198 
6199   return Ctx.getPointerType(
6200       QualType(Ctx.VoidTy).withCVRQualifiers(
6201           Ty->getPointeeType().getCVRQualifiers()));
6202 }
6203 
6204 // Apply type generalization to a FunctionType's return and argument types
6205 static QualType GeneralizeFunctionType(ASTContext &Ctx, QualType Ty) {
6206   if (auto *FnType = Ty->getAs<FunctionProtoType>()) {
6207     SmallVector<QualType, 8> GeneralizedParams;
6208     for (auto &Param : FnType->param_types())
6209       GeneralizedParams.push_back(GeneralizeType(Ctx, Param));
6210 
6211     return Ctx.getFunctionType(
6212         GeneralizeType(Ctx, FnType->getReturnType()),
6213         GeneralizedParams, FnType->getExtProtoInfo());
6214   }
6215 
6216   if (auto *FnType = Ty->getAs<FunctionNoProtoType>())
6217     return Ctx.getFunctionNoProtoType(
6218         GeneralizeType(Ctx, FnType->getReturnType()));
6219 
6220   llvm_unreachable("Encountered unknown FunctionType");
6221 }
6222 
6223 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierGeneralized(QualType T) {
6224   return CreateMetadataIdentifierImpl(GeneralizeFunctionType(getContext(), T),
6225                                       GeneralizedMetadataIdMap, ".generalized");
6226 }
6227 
6228 /// Returns whether this module needs the "all-vtables" type identifier.
6229 bool CodeGenModule::NeedAllVtablesTypeId() const {
6230   // Returns true if at least one of vtable-based CFI checkers is enabled and
6231   // is not in the trapping mode.
6232   return ((LangOpts.Sanitize.has(SanitizerKind::CFIVCall) &&
6233            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIVCall)) ||
6234           (LangOpts.Sanitize.has(SanitizerKind::CFINVCall) &&
6235            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFINVCall)) ||
6236           (LangOpts.Sanitize.has(SanitizerKind::CFIDerivedCast) &&
6237            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIDerivedCast)) ||
6238           (LangOpts.Sanitize.has(SanitizerKind::CFIUnrelatedCast) &&
6239            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIUnrelatedCast)));
6240 }
6241 
6242 void CodeGenModule::AddVTableTypeMetadata(llvm::GlobalVariable *VTable,
6243                                           CharUnits Offset,
6244                                           const CXXRecordDecl *RD) {
6245   llvm::Metadata *MD =
6246       CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0));
6247   VTable->addTypeMetadata(Offset.getQuantity(), MD);
6248 
6249   if (CodeGenOpts.SanitizeCfiCrossDso)
6250     if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD))
6251       VTable->addTypeMetadata(Offset.getQuantity(),
6252                               llvm::ConstantAsMetadata::get(CrossDsoTypeId));
6253 
6254   if (NeedAllVtablesTypeId()) {
6255     llvm::Metadata *MD = llvm::MDString::get(getLLVMContext(), "all-vtables");
6256     VTable->addTypeMetadata(Offset.getQuantity(), MD);
6257   }
6258 }
6259 
6260 llvm::SanitizerStatReport &CodeGenModule::getSanStats() {
6261   if (!SanStats)
6262     SanStats = std::make_unique<llvm::SanitizerStatReport>(&getModule());
6263 
6264   return *SanStats;
6265 }
6266 llvm::Value *
6267 CodeGenModule::createOpenCLIntToSamplerConversion(const Expr *E,
6268                                                   CodeGenFunction &CGF) {
6269   llvm::Constant *C = ConstantEmitter(CGF).emitAbstract(E, E->getType());
6270   auto SamplerT = getOpenCLRuntime().getSamplerType(E->getType().getTypePtr());
6271   auto FTy = llvm::FunctionType::get(SamplerT, {C->getType()}, false);
6272   return CGF.Builder.CreateCall(CreateRuntimeFunction(FTy,
6273                                 "__translate_sampler_initializer"),
6274                                 {C});
6275 }
6276 
6277 CharUnits CodeGenModule::getNaturalPointeeTypeAlignment(
6278     QualType T, LValueBaseInfo *BaseInfo, TBAAAccessInfo *TBAAInfo) {
6279   return getNaturalTypeAlignment(T->getPointeeType(), BaseInfo, TBAAInfo,
6280                                  /* forPointeeType= */ true);
6281 }
6282 
6283 CharUnits CodeGenModule::getNaturalTypeAlignment(QualType T,
6284                                                  LValueBaseInfo *BaseInfo,
6285                                                  TBAAAccessInfo *TBAAInfo,
6286                                                  bool forPointeeType) {
6287   if (TBAAInfo)
6288     *TBAAInfo = getTBAAAccessInfo(T);
6289 
6290   // FIXME: This duplicates logic in ASTContext::getTypeAlignIfKnown. But
6291   // that doesn't return the information we need to compute BaseInfo.
6292 
6293   // Honor alignment typedef attributes even on incomplete types.
6294   // We also honor them straight for C++ class types, even as pointees;
6295   // there's an expressivity gap here.
6296   if (auto TT = T->getAs<TypedefType>()) {
6297     if (auto Align = TT->getDecl()->getMaxAlignment()) {
6298       if (BaseInfo)
6299         *BaseInfo = LValueBaseInfo(AlignmentSource::AttributedType);
6300       return getContext().toCharUnitsFromBits(Align);
6301     }
6302   }
6303 
6304   bool AlignForArray = T->isArrayType();
6305 
6306   // Analyze the base element type, so we don't get confused by incomplete
6307   // array types.
6308   T = getContext().getBaseElementType(T);
6309 
6310   if (T->isIncompleteType()) {
6311     // We could try to replicate the logic from
6312     // ASTContext::getTypeAlignIfKnown, but nothing uses the alignment if the
6313     // type is incomplete, so it's impossible to test. We could try to reuse
6314     // getTypeAlignIfKnown, but that doesn't return the information we need
6315     // to set BaseInfo.  So just ignore the possibility that the alignment is
6316     // greater than one.
6317     if (BaseInfo)
6318       *BaseInfo = LValueBaseInfo(AlignmentSource::Type);
6319     return CharUnits::One();
6320   }
6321 
6322   if (BaseInfo)
6323     *BaseInfo = LValueBaseInfo(AlignmentSource::Type);
6324 
6325   CharUnits Alignment;
6326   const CXXRecordDecl *RD;
6327   if (T.getQualifiers().hasUnaligned()) {
6328     Alignment = CharUnits::One();
6329   } else if (forPointeeType && !AlignForArray &&
6330              (RD = T->getAsCXXRecordDecl())) {
6331     // For C++ class pointees, we don't know whether we're pointing at a
6332     // base or a complete object, so we generally need to use the
6333     // non-virtual alignment.
6334     Alignment = getClassPointerAlignment(RD);
6335   } else {
6336     Alignment = getContext().getTypeAlignInChars(T);
6337   }
6338 
6339   // Cap to the global maximum type alignment unless the alignment
6340   // was somehow explicit on the type.
6341   if (unsigned MaxAlign = getLangOpts().MaxTypeAlign) {
6342     if (Alignment.getQuantity() > MaxAlign &&
6343         !getContext().isAlignmentRequired(T))
6344       Alignment = CharUnits::fromQuantity(MaxAlign);
6345   }
6346   return Alignment;
6347 }
6348 
6349 bool CodeGenModule::stopAutoInit() {
6350   unsigned StopAfter = getContext().getLangOpts().TrivialAutoVarInitStopAfter;
6351   if (StopAfter) {
6352     // This number is positive only when -ftrivial-auto-var-init-stop-after=* is
6353     // used
6354     if (NumAutoVarInit >= StopAfter) {
6355       return true;
6356     }
6357     if (!NumAutoVarInit) {
6358       unsigned DiagID = getDiags().getCustomDiagID(
6359           DiagnosticsEngine::Warning,
6360           "-ftrivial-auto-var-init-stop-after=%0 has been enabled to limit the "
6361           "number of times ftrivial-auto-var-init=%1 gets applied.");
6362       getDiags().Report(DiagID)
6363           << StopAfter
6364           << (getContext().getLangOpts().getTrivialAutoVarInit() ==
6365                       LangOptions::TrivialAutoVarInitKind::Zero
6366                   ? "zero"
6367                   : "pattern");
6368     }
6369     ++NumAutoVarInit;
6370   }
6371   return false;
6372 }
6373 
6374 void CodeGenModule::printPostfixForExternalizedStaticVar(
6375     llvm::raw_ostream &OS) const {
6376   OS << ".static." << getContext().getCUIDHash();
6377 }
6378