xref: /llvm-project/clang/lib/CodeGen/CodeGenModule.cpp (revision 7833d20f1fd575fac89ce76822ffd561a40552e5)
1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This coordinates the per-module state used while generating code.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "CodeGenModule.h"
14 #include "CGBlocks.h"
15 #include "CGCUDARuntime.h"
16 #include "CGCXXABI.h"
17 #include "CGCall.h"
18 #include "CGDebugInfo.h"
19 #include "CGObjCRuntime.h"
20 #include "CGOpenCLRuntime.h"
21 #include "CGOpenMPRuntime.h"
22 #include "CGOpenMPRuntimeAMDGCN.h"
23 #include "CGOpenMPRuntimeNVPTX.h"
24 #include "CodeGenFunction.h"
25 #include "CodeGenPGO.h"
26 #include "ConstantEmitter.h"
27 #include "CoverageMappingGen.h"
28 #include "TargetInfo.h"
29 #include "clang/AST/ASTContext.h"
30 #include "clang/AST/CharUnits.h"
31 #include "clang/AST/DeclCXX.h"
32 #include "clang/AST/DeclObjC.h"
33 #include "clang/AST/DeclTemplate.h"
34 #include "clang/AST/Mangle.h"
35 #include "clang/AST/RecordLayout.h"
36 #include "clang/AST/RecursiveASTVisitor.h"
37 #include "clang/AST/StmtVisitor.h"
38 #include "clang/Basic/Builtins.h"
39 #include "clang/Basic/CharInfo.h"
40 #include "clang/Basic/CodeGenOptions.h"
41 #include "clang/Basic/Diagnostic.h"
42 #include "clang/Basic/FileManager.h"
43 #include "clang/Basic/Module.h"
44 #include "clang/Basic/SourceManager.h"
45 #include "clang/Basic/TargetInfo.h"
46 #include "clang/Basic/Version.h"
47 #include "clang/CodeGen/ConstantInitBuilder.h"
48 #include "clang/Frontend/FrontendDiagnostic.h"
49 #include "llvm/ADT/StringSwitch.h"
50 #include "llvm/ADT/Triple.h"
51 #include "llvm/Analysis/TargetLibraryInfo.h"
52 #include "llvm/Frontend/OpenMP/OMPIRBuilder.h"
53 #include "llvm/IR/CallingConv.h"
54 #include "llvm/IR/DataLayout.h"
55 #include "llvm/IR/Intrinsics.h"
56 #include "llvm/IR/LLVMContext.h"
57 #include "llvm/IR/Module.h"
58 #include "llvm/IR/ProfileSummary.h"
59 #include "llvm/ProfileData/InstrProfReader.h"
60 #include "llvm/Support/CodeGen.h"
61 #include "llvm/Support/CommandLine.h"
62 #include "llvm/Support/ConvertUTF.h"
63 #include "llvm/Support/ErrorHandling.h"
64 #include "llvm/Support/MD5.h"
65 #include "llvm/Support/TimeProfiler.h"
66 #include "llvm/Support/X86TargetParser.h"
67 
68 using namespace clang;
69 using namespace CodeGen;
70 
71 static llvm::cl::opt<bool> LimitedCoverage(
72     "limited-coverage-experimental", llvm::cl::ZeroOrMore, llvm::cl::Hidden,
73     llvm::cl::desc("Emit limited coverage mapping information (experimental)"),
74     llvm::cl::init(false));
75 
76 static const char AnnotationSection[] = "llvm.metadata";
77 
78 static CGCXXABI *createCXXABI(CodeGenModule &CGM) {
79   switch (CGM.getContext().getCXXABIKind()) {
80   case TargetCXXABI::AppleARM64:
81   case TargetCXXABI::Fuchsia:
82   case TargetCXXABI::GenericAArch64:
83   case TargetCXXABI::GenericARM:
84   case TargetCXXABI::iOS:
85   case TargetCXXABI::WatchOS:
86   case TargetCXXABI::GenericMIPS:
87   case TargetCXXABI::GenericItanium:
88   case TargetCXXABI::WebAssembly:
89   case TargetCXXABI::XL:
90     return CreateItaniumCXXABI(CGM);
91   case TargetCXXABI::Microsoft:
92     return CreateMicrosoftCXXABI(CGM);
93   }
94 
95   llvm_unreachable("invalid C++ ABI kind");
96 }
97 
98 CodeGenModule::CodeGenModule(ASTContext &C, const HeaderSearchOptions &HSO,
99                              const PreprocessorOptions &PPO,
100                              const CodeGenOptions &CGO, llvm::Module &M,
101                              DiagnosticsEngine &diags,
102                              CoverageSourceInfo *CoverageInfo)
103     : Context(C), LangOpts(C.getLangOpts()), HeaderSearchOpts(HSO),
104       PreprocessorOpts(PPO), CodeGenOpts(CGO), TheModule(M), Diags(diags),
105       Target(C.getTargetInfo()), ABI(createCXXABI(*this)),
106       VMContext(M.getContext()), Types(*this), VTables(*this),
107       SanitizerMD(new SanitizerMetadata(*this)) {
108 
109   // Initialize the type cache.
110   llvm::LLVMContext &LLVMContext = M.getContext();
111   VoidTy = llvm::Type::getVoidTy(LLVMContext);
112   Int8Ty = llvm::Type::getInt8Ty(LLVMContext);
113   Int16Ty = llvm::Type::getInt16Ty(LLVMContext);
114   Int32Ty = llvm::Type::getInt32Ty(LLVMContext);
115   Int64Ty = llvm::Type::getInt64Ty(LLVMContext);
116   HalfTy = llvm::Type::getHalfTy(LLVMContext);
117   BFloatTy = llvm::Type::getBFloatTy(LLVMContext);
118   FloatTy = llvm::Type::getFloatTy(LLVMContext);
119   DoubleTy = llvm::Type::getDoubleTy(LLVMContext);
120   PointerWidthInBits = C.getTargetInfo().getPointerWidth(0);
121   PointerAlignInBytes =
122     C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(0)).getQuantity();
123   SizeSizeInBytes =
124     C.toCharUnitsFromBits(C.getTargetInfo().getMaxPointerWidth()).getQuantity();
125   IntAlignInBytes =
126     C.toCharUnitsFromBits(C.getTargetInfo().getIntAlign()).getQuantity();
127   CharTy =
128     llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getCharWidth());
129   IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth());
130   IntPtrTy = llvm::IntegerType::get(LLVMContext,
131     C.getTargetInfo().getMaxPointerWidth());
132   Int8PtrTy = Int8Ty->getPointerTo(0);
133   Int8PtrPtrTy = Int8PtrTy->getPointerTo(0);
134   const llvm::DataLayout &DL = M.getDataLayout();
135   AllocaInt8PtrTy = Int8Ty->getPointerTo(DL.getAllocaAddrSpace());
136   GlobalsInt8PtrTy = Int8Ty->getPointerTo(DL.getDefaultGlobalsAddressSpace());
137   ASTAllocaAddressSpace = getTargetCodeGenInfo().getASTAllocaAddressSpace();
138 
139   RuntimeCC = getTargetCodeGenInfo().getABIInfo().getRuntimeCC();
140 
141   if (LangOpts.ObjC)
142     createObjCRuntime();
143   if (LangOpts.OpenCL)
144     createOpenCLRuntime();
145   if (LangOpts.OpenMP)
146     createOpenMPRuntime();
147   if (LangOpts.CUDA)
148     createCUDARuntime();
149 
150   // Enable TBAA unless it's suppressed. ThreadSanitizer needs TBAA even at O0.
151   if (LangOpts.Sanitize.has(SanitizerKind::Thread) ||
152       (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0))
153     TBAA.reset(new CodeGenTBAA(Context, TheModule, CodeGenOpts, getLangOpts(),
154                                getCXXABI().getMangleContext()));
155 
156   // If debug info or coverage generation is enabled, create the CGDebugInfo
157   // object.
158   if (CodeGenOpts.getDebugInfo() != codegenoptions::NoDebugInfo ||
159       CodeGenOpts.EmitGcovArcs || CodeGenOpts.EmitGcovNotes)
160     DebugInfo.reset(new CGDebugInfo(*this));
161 
162   Block.GlobalUniqueCount = 0;
163 
164   if (C.getLangOpts().ObjC)
165     ObjCData.reset(new ObjCEntrypoints());
166 
167   if (CodeGenOpts.hasProfileClangUse()) {
168     auto ReaderOrErr = llvm::IndexedInstrProfReader::create(
169         CodeGenOpts.ProfileInstrumentUsePath, CodeGenOpts.ProfileRemappingFile);
170     if (auto E = ReaderOrErr.takeError()) {
171       unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
172                                               "Could not read profile %0: %1");
173       llvm::handleAllErrors(std::move(E), [&](const llvm::ErrorInfoBase &EI) {
174         getDiags().Report(DiagID) << CodeGenOpts.ProfileInstrumentUsePath
175                                   << EI.message();
176       });
177     } else
178       PGOReader = std::move(ReaderOrErr.get());
179   }
180 
181   // If coverage mapping generation is enabled, create the
182   // CoverageMappingModuleGen object.
183   if (CodeGenOpts.CoverageMapping)
184     CoverageMapping.reset(new CoverageMappingModuleGen(*this, *CoverageInfo));
185 
186   // Generate the module name hash here if needed.
187   if (CodeGenOpts.UniqueInternalLinkageNames &&
188       !getModule().getSourceFileName().empty()) {
189     std::string Path = getModule().getSourceFileName();
190     // Check if a path substitution is needed from the MacroPrefixMap.
191     for (const auto &Entry : LangOpts.MacroPrefixMap)
192       if (Path.rfind(Entry.first, 0) != std::string::npos) {
193         Path = Entry.second + Path.substr(Entry.first.size());
194         break;
195       }
196     llvm::MD5 Md5;
197     Md5.update(Path);
198     llvm::MD5::MD5Result R;
199     Md5.final(R);
200     SmallString<32> Str;
201     llvm::MD5::stringifyResult(R, Str);
202     // Convert MD5hash to Decimal. Demangler suffixes can either contain
203     // numbers or characters but not both.
204     llvm::APInt IntHash(128, Str.str(), 16);
205     // Prepend "__uniq" before the hash for tools like profilers to understand
206     // that this symbol is of internal linkage type.  The "__uniq" is the
207     // pre-determined prefix that is used to tell tools that this symbol was
208     // created with -funique-internal-linakge-symbols and the tools can strip or
209     // keep the prefix as needed.
210     ModuleNameHash = (Twine(".__uniq.") +
211         Twine(toString(IntHash, /* Radix = */ 10, /* Signed = */false))).str();
212   }
213 }
214 
215 CodeGenModule::~CodeGenModule() {}
216 
217 void CodeGenModule::createObjCRuntime() {
218   // This is just isGNUFamily(), but we want to force implementors of
219   // new ABIs to decide how best to do this.
220   switch (LangOpts.ObjCRuntime.getKind()) {
221   case ObjCRuntime::GNUstep:
222   case ObjCRuntime::GCC:
223   case ObjCRuntime::ObjFW:
224     ObjCRuntime.reset(CreateGNUObjCRuntime(*this));
225     return;
226 
227   case ObjCRuntime::FragileMacOSX:
228   case ObjCRuntime::MacOSX:
229   case ObjCRuntime::iOS:
230   case ObjCRuntime::WatchOS:
231     ObjCRuntime.reset(CreateMacObjCRuntime(*this));
232     return;
233   }
234   llvm_unreachable("bad runtime kind");
235 }
236 
237 void CodeGenModule::createOpenCLRuntime() {
238   OpenCLRuntime.reset(new CGOpenCLRuntime(*this));
239 }
240 
241 void CodeGenModule::createOpenMPRuntime() {
242   // Select a specialized code generation class based on the target, if any.
243   // If it does not exist use the default implementation.
244   switch (getTriple().getArch()) {
245   case llvm::Triple::nvptx:
246   case llvm::Triple::nvptx64:
247     assert(getLangOpts().OpenMPIsDevice &&
248            "OpenMP NVPTX is only prepared to deal with device code.");
249     OpenMPRuntime.reset(new CGOpenMPRuntimeNVPTX(*this));
250     break;
251   case llvm::Triple::amdgcn:
252     assert(getLangOpts().OpenMPIsDevice &&
253            "OpenMP AMDGCN is only prepared to deal with device code.");
254     OpenMPRuntime.reset(new CGOpenMPRuntimeAMDGCN(*this));
255     break;
256   default:
257     if (LangOpts.OpenMPSimd)
258       OpenMPRuntime.reset(new CGOpenMPSIMDRuntime(*this));
259     else
260       OpenMPRuntime.reset(new CGOpenMPRuntime(*this));
261     break;
262   }
263 }
264 
265 void CodeGenModule::createCUDARuntime() {
266   CUDARuntime.reset(CreateNVCUDARuntime(*this));
267 }
268 
269 void CodeGenModule::addReplacement(StringRef Name, llvm::Constant *C) {
270   Replacements[Name] = C;
271 }
272 
273 void CodeGenModule::applyReplacements() {
274   for (auto &I : Replacements) {
275     StringRef MangledName = I.first();
276     llvm::Constant *Replacement = I.second;
277     llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
278     if (!Entry)
279       continue;
280     auto *OldF = cast<llvm::Function>(Entry);
281     auto *NewF = dyn_cast<llvm::Function>(Replacement);
282     if (!NewF) {
283       if (auto *Alias = dyn_cast<llvm::GlobalAlias>(Replacement)) {
284         NewF = dyn_cast<llvm::Function>(Alias->getAliasee());
285       } else {
286         auto *CE = cast<llvm::ConstantExpr>(Replacement);
287         assert(CE->getOpcode() == llvm::Instruction::BitCast ||
288                CE->getOpcode() == llvm::Instruction::GetElementPtr);
289         NewF = dyn_cast<llvm::Function>(CE->getOperand(0));
290       }
291     }
292 
293     // Replace old with new, but keep the old order.
294     OldF->replaceAllUsesWith(Replacement);
295     if (NewF) {
296       NewF->removeFromParent();
297       OldF->getParent()->getFunctionList().insertAfter(OldF->getIterator(),
298                                                        NewF);
299     }
300     OldF->eraseFromParent();
301   }
302 }
303 
304 void CodeGenModule::addGlobalValReplacement(llvm::GlobalValue *GV, llvm::Constant *C) {
305   GlobalValReplacements.push_back(std::make_pair(GV, C));
306 }
307 
308 void CodeGenModule::applyGlobalValReplacements() {
309   for (auto &I : GlobalValReplacements) {
310     llvm::GlobalValue *GV = I.first;
311     llvm::Constant *C = I.second;
312 
313     GV->replaceAllUsesWith(C);
314     GV->eraseFromParent();
315   }
316 }
317 
318 // This is only used in aliases that we created and we know they have a
319 // linear structure.
320 static const llvm::GlobalObject *getAliasedGlobal(
321     const llvm::GlobalIndirectSymbol &GIS) {
322   llvm::SmallPtrSet<const llvm::GlobalIndirectSymbol*, 4> Visited;
323   const llvm::Constant *C = &GIS;
324   for (;;) {
325     C = C->stripPointerCasts();
326     if (auto *GO = dyn_cast<llvm::GlobalObject>(C))
327       return GO;
328     // stripPointerCasts will not walk over weak aliases.
329     auto *GIS2 = dyn_cast<llvm::GlobalIndirectSymbol>(C);
330     if (!GIS2)
331       return nullptr;
332     if (!Visited.insert(GIS2).second)
333       return nullptr;
334     C = GIS2->getIndirectSymbol();
335   }
336 }
337 
338 void CodeGenModule::checkAliases() {
339   // Check if the constructed aliases are well formed. It is really unfortunate
340   // that we have to do this in CodeGen, but we only construct mangled names
341   // and aliases during codegen.
342   bool Error = false;
343   DiagnosticsEngine &Diags = getDiags();
344   for (const GlobalDecl &GD : Aliases) {
345     const auto *D = cast<ValueDecl>(GD.getDecl());
346     SourceLocation Location;
347     bool IsIFunc = D->hasAttr<IFuncAttr>();
348     if (const Attr *A = D->getDefiningAttr())
349       Location = A->getLocation();
350     else
351       llvm_unreachable("Not an alias or ifunc?");
352     StringRef MangledName = getMangledName(GD);
353     llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
354     auto *Alias  = cast<llvm::GlobalIndirectSymbol>(Entry);
355     const llvm::GlobalValue *GV = getAliasedGlobal(*Alias);
356     if (!GV) {
357       Error = true;
358       Diags.Report(Location, diag::err_cyclic_alias) << IsIFunc;
359     } else if (GV->isDeclaration()) {
360       Error = true;
361       Diags.Report(Location, diag::err_alias_to_undefined)
362           << IsIFunc << IsIFunc;
363     } else if (IsIFunc) {
364       // Check resolver function type.
365       llvm::FunctionType *FTy = dyn_cast<llvm::FunctionType>(
366           GV->getType()->getPointerElementType());
367       assert(FTy);
368       if (!FTy->getReturnType()->isPointerTy())
369         Diags.Report(Location, diag::err_ifunc_resolver_return);
370     }
371 
372     llvm::Constant *Aliasee = Alias->getIndirectSymbol();
373     llvm::GlobalValue *AliaseeGV;
374     if (auto CE = dyn_cast<llvm::ConstantExpr>(Aliasee))
375       AliaseeGV = cast<llvm::GlobalValue>(CE->getOperand(0));
376     else
377       AliaseeGV = cast<llvm::GlobalValue>(Aliasee);
378 
379     if (const SectionAttr *SA = D->getAttr<SectionAttr>()) {
380       StringRef AliasSection = SA->getName();
381       if (AliasSection != AliaseeGV->getSection())
382         Diags.Report(SA->getLocation(), diag::warn_alias_with_section)
383             << AliasSection << IsIFunc << IsIFunc;
384     }
385 
386     // We have to handle alias to weak aliases in here. LLVM itself disallows
387     // this since the object semantics would not match the IL one. For
388     // compatibility with gcc we implement it by just pointing the alias
389     // to its aliasee's aliasee. We also warn, since the user is probably
390     // expecting the link to be weak.
391     if (auto GA = dyn_cast<llvm::GlobalIndirectSymbol>(AliaseeGV)) {
392       if (GA->isInterposable()) {
393         Diags.Report(Location, diag::warn_alias_to_weak_alias)
394             << GV->getName() << GA->getName() << IsIFunc;
395         Aliasee = llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(
396             GA->getIndirectSymbol(), Alias->getType());
397         Alias->setIndirectSymbol(Aliasee);
398       }
399     }
400   }
401   if (!Error)
402     return;
403 
404   for (const GlobalDecl &GD : Aliases) {
405     StringRef MangledName = getMangledName(GD);
406     llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
407     auto *Alias = cast<llvm::GlobalIndirectSymbol>(Entry);
408     Alias->replaceAllUsesWith(llvm::UndefValue::get(Alias->getType()));
409     Alias->eraseFromParent();
410   }
411 }
412 
413 void CodeGenModule::clear() {
414   DeferredDeclsToEmit.clear();
415   if (OpenMPRuntime)
416     OpenMPRuntime->clear();
417 }
418 
419 void InstrProfStats::reportDiagnostics(DiagnosticsEngine &Diags,
420                                        StringRef MainFile) {
421   if (!hasDiagnostics())
422     return;
423   if (VisitedInMainFile > 0 && VisitedInMainFile == MissingInMainFile) {
424     if (MainFile.empty())
425       MainFile = "<stdin>";
426     Diags.Report(diag::warn_profile_data_unprofiled) << MainFile;
427   } else {
428     if (Mismatched > 0)
429       Diags.Report(diag::warn_profile_data_out_of_date) << Visited << Mismatched;
430 
431     if (Missing > 0)
432       Diags.Report(diag::warn_profile_data_missing) << Visited << Missing;
433   }
434 }
435 
436 static void setVisibilityFromDLLStorageClass(const clang::LangOptions &LO,
437                                              llvm::Module &M) {
438   if (!LO.VisibilityFromDLLStorageClass)
439     return;
440 
441   llvm::GlobalValue::VisibilityTypes DLLExportVisibility =
442       CodeGenModule::GetLLVMVisibility(LO.getDLLExportVisibility());
443   llvm::GlobalValue::VisibilityTypes NoDLLStorageClassVisibility =
444       CodeGenModule::GetLLVMVisibility(LO.getNoDLLStorageClassVisibility());
445   llvm::GlobalValue::VisibilityTypes ExternDeclDLLImportVisibility =
446       CodeGenModule::GetLLVMVisibility(LO.getExternDeclDLLImportVisibility());
447   llvm::GlobalValue::VisibilityTypes ExternDeclNoDLLStorageClassVisibility =
448       CodeGenModule::GetLLVMVisibility(
449           LO.getExternDeclNoDLLStorageClassVisibility());
450 
451   for (llvm::GlobalValue &GV : M.global_values()) {
452     if (GV.hasAppendingLinkage() || GV.hasLocalLinkage())
453       continue;
454 
455     // Reset DSO locality before setting the visibility. This removes
456     // any effects that visibility options and annotations may have
457     // had on the DSO locality. Setting the visibility will implicitly set
458     // appropriate globals to DSO Local; however, this will be pessimistic
459     // w.r.t. to the normal compiler IRGen.
460     GV.setDSOLocal(false);
461 
462     if (GV.isDeclarationForLinker()) {
463       GV.setVisibility(GV.getDLLStorageClass() ==
464                                llvm::GlobalValue::DLLImportStorageClass
465                            ? ExternDeclDLLImportVisibility
466                            : ExternDeclNoDLLStorageClassVisibility);
467     } else {
468       GV.setVisibility(GV.getDLLStorageClass() ==
469                                llvm::GlobalValue::DLLExportStorageClass
470                            ? DLLExportVisibility
471                            : NoDLLStorageClassVisibility);
472     }
473 
474     GV.setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
475   }
476 }
477 
478 void CodeGenModule::Release() {
479   EmitDeferred();
480   EmitVTablesOpportunistically();
481   applyGlobalValReplacements();
482   applyReplacements();
483   checkAliases();
484   emitMultiVersionFunctions();
485   EmitCXXGlobalInitFunc();
486   EmitCXXGlobalCleanUpFunc();
487   registerGlobalDtorsWithAtExit();
488   EmitCXXThreadLocalInitFunc();
489   if (ObjCRuntime)
490     if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction())
491       AddGlobalCtor(ObjCInitFunction);
492   if (Context.getLangOpts().CUDA && CUDARuntime) {
493     if (llvm::Function *CudaCtorFunction = CUDARuntime->finalizeModule())
494       AddGlobalCtor(CudaCtorFunction);
495   }
496   if (OpenMPRuntime) {
497     if (llvm::Function *OpenMPRequiresDirectiveRegFun =
498             OpenMPRuntime->emitRequiresDirectiveRegFun()) {
499       AddGlobalCtor(OpenMPRequiresDirectiveRegFun, 0);
500     }
501     OpenMPRuntime->createOffloadEntriesAndInfoMetadata();
502     OpenMPRuntime->clear();
503   }
504   if (PGOReader) {
505     getModule().setProfileSummary(
506         PGOReader->getSummary(/* UseCS */ false).getMD(VMContext),
507         llvm::ProfileSummary::PSK_Instr);
508     if (PGOStats.hasDiagnostics())
509       PGOStats.reportDiagnostics(getDiags(), getCodeGenOpts().MainFileName);
510   }
511   EmitCtorList(GlobalCtors, "llvm.global_ctors");
512   EmitCtorList(GlobalDtors, "llvm.global_dtors");
513   EmitGlobalAnnotations();
514   EmitStaticExternCAliases();
515   EmitDeferredUnusedCoverageMappings();
516   CodeGenPGO(*this).setValueProfilingFlag(getModule());
517   if (CoverageMapping)
518     CoverageMapping->emit();
519   if (CodeGenOpts.SanitizeCfiCrossDso) {
520     CodeGenFunction(*this).EmitCfiCheckFail();
521     CodeGenFunction(*this).EmitCfiCheckStub();
522   }
523   emitAtAvailableLinkGuard();
524   if (Context.getTargetInfo().getTriple().isWasm() &&
525       !Context.getTargetInfo().getTriple().isOSEmscripten()) {
526     EmitMainVoidAlias();
527   }
528 
529   // Emit reference of __amdgpu_device_library_preserve_asan_functions to
530   // preserve ASAN functions in bitcode libraries.
531   if (LangOpts.Sanitize.has(SanitizerKind::Address) && getTriple().isAMDGPU()) {
532     auto *FT = llvm::FunctionType::get(VoidTy, {});
533     auto *F = llvm::Function::Create(
534         FT, llvm::GlobalValue::ExternalLinkage,
535         "__amdgpu_device_library_preserve_asan_functions", &getModule());
536     auto *Var = new llvm::GlobalVariable(
537         getModule(), FT->getPointerTo(),
538         /*isConstant=*/true, llvm::GlobalValue::WeakAnyLinkage, F,
539         "__amdgpu_device_library_preserve_asan_functions_ptr", nullptr,
540         llvm::GlobalVariable::NotThreadLocal);
541     addCompilerUsedGlobal(Var);
542   }
543 
544   emitLLVMUsed();
545   if (SanStats)
546     SanStats->finish();
547 
548   if (CodeGenOpts.Autolink &&
549       (Context.getLangOpts().Modules || !LinkerOptionsMetadata.empty())) {
550     EmitModuleLinkOptions();
551   }
552 
553   // On ELF we pass the dependent library specifiers directly to the linker
554   // without manipulating them. This is in contrast to other platforms where
555   // they are mapped to a specific linker option by the compiler. This
556   // difference is a result of the greater variety of ELF linkers and the fact
557   // that ELF linkers tend to handle libraries in a more complicated fashion
558   // than on other platforms. This forces us to defer handling the dependent
559   // libs to the linker.
560   //
561   // CUDA/HIP device and host libraries are different. Currently there is no
562   // way to differentiate dependent libraries for host or device. Existing
563   // usage of #pragma comment(lib, *) is intended for host libraries on
564   // Windows. Therefore emit llvm.dependent-libraries only for host.
565   if (!ELFDependentLibraries.empty() && !Context.getLangOpts().CUDAIsDevice) {
566     auto *NMD = getModule().getOrInsertNamedMetadata("llvm.dependent-libraries");
567     for (auto *MD : ELFDependentLibraries)
568       NMD->addOperand(MD);
569   }
570 
571   // Record mregparm value now so it is visible through rest of codegen.
572   if (Context.getTargetInfo().getTriple().getArch() == llvm::Triple::x86)
573     getModule().addModuleFlag(llvm::Module::Error, "NumRegisterParameters",
574                               CodeGenOpts.NumRegisterParameters);
575 
576   if (CodeGenOpts.DwarfVersion) {
577     getModule().addModuleFlag(llvm::Module::Max, "Dwarf Version",
578                               CodeGenOpts.DwarfVersion);
579   }
580 
581   if (CodeGenOpts.Dwarf64)
582     getModule().addModuleFlag(llvm::Module::Max, "DWARF64", 1);
583 
584   if (Context.getLangOpts().SemanticInterposition)
585     // Require various optimization to respect semantic interposition.
586     getModule().setSemanticInterposition(1);
587 
588   if (CodeGenOpts.EmitCodeView) {
589     // Indicate that we want CodeView in the metadata.
590     getModule().addModuleFlag(llvm::Module::Warning, "CodeView", 1);
591   }
592   if (CodeGenOpts.CodeViewGHash) {
593     getModule().addModuleFlag(llvm::Module::Warning, "CodeViewGHash", 1);
594   }
595   if (CodeGenOpts.ControlFlowGuard) {
596     // Function ID tables and checks for Control Flow Guard (cfguard=2).
597     getModule().addModuleFlag(llvm::Module::Warning, "cfguard", 2);
598   } else if (CodeGenOpts.ControlFlowGuardNoChecks) {
599     // Function ID tables for Control Flow Guard (cfguard=1).
600     getModule().addModuleFlag(llvm::Module::Warning, "cfguard", 1);
601   }
602   if (CodeGenOpts.EHContGuard) {
603     // Function ID tables for EH Continuation Guard.
604     getModule().addModuleFlag(llvm::Module::Warning, "ehcontguard", 1);
605   }
606   if (CodeGenOpts.OptimizationLevel > 0 && CodeGenOpts.StrictVTablePointers) {
607     // We don't support LTO with 2 with different StrictVTablePointers
608     // FIXME: we could support it by stripping all the information introduced
609     // by StrictVTablePointers.
610 
611     getModule().addModuleFlag(llvm::Module::Error, "StrictVTablePointers",1);
612 
613     llvm::Metadata *Ops[2] = {
614               llvm::MDString::get(VMContext, "StrictVTablePointers"),
615               llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
616                   llvm::Type::getInt32Ty(VMContext), 1))};
617 
618     getModule().addModuleFlag(llvm::Module::Require,
619                               "StrictVTablePointersRequirement",
620                               llvm::MDNode::get(VMContext, Ops));
621   }
622   if (getModuleDebugInfo())
623     // We support a single version in the linked module. The LLVM
624     // parser will drop debug info with a different version number
625     // (and warn about it, too).
626     getModule().addModuleFlag(llvm::Module::Warning, "Debug Info Version",
627                               llvm::DEBUG_METADATA_VERSION);
628 
629   // We need to record the widths of enums and wchar_t, so that we can generate
630   // the correct build attributes in the ARM backend. wchar_size is also used by
631   // TargetLibraryInfo.
632   uint64_t WCharWidth =
633       Context.getTypeSizeInChars(Context.getWideCharType()).getQuantity();
634   getModule().addModuleFlag(llvm::Module::Error, "wchar_size", WCharWidth);
635 
636   llvm::Triple::ArchType Arch = Context.getTargetInfo().getTriple().getArch();
637   if (   Arch == llvm::Triple::arm
638       || Arch == llvm::Triple::armeb
639       || Arch == llvm::Triple::thumb
640       || Arch == llvm::Triple::thumbeb) {
641     // The minimum width of an enum in bytes
642     uint64_t EnumWidth = Context.getLangOpts().ShortEnums ? 1 : 4;
643     getModule().addModuleFlag(llvm::Module::Error, "min_enum_size", EnumWidth);
644   }
645 
646   if (Arch == llvm::Triple::riscv32 || Arch == llvm::Triple::riscv64) {
647     StringRef ABIStr = Target.getABI();
648     llvm::LLVMContext &Ctx = TheModule.getContext();
649     getModule().addModuleFlag(llvm::Module::Error, "target-abi",
650                               llvm::MDString::get(Ctx, ABIStr));
651   }
652 
653   if (CodeGenOpts.SanitizeCfiCrossDso) {
654     // Indicate that we want cross-DSO control flow integrity checks.
655     getModule().addModuleFlag(llvm::Module::Override, "Cross-DSO CFI", 1);
656   }
657 
658   if (CodeGenOpts.WholeProgramVTables) {
659     // Indicate whether VFE was enabled for this module, so that the
660     // vcall_visibility metadata added under whole program vtables is handled
661     // appropriately in the optimizer.
662     getModule().addModuleFlag(llvm::Module::Error, "Virtual Function Elim",
663                               CodeGenOpts.VirtualFunctionElimination);
664   }
665 
666   if (LangOpts.Sanitize.has(SanitizerKind::CFIICall)) {
667     getModule().addModuleFlag(llvm::Module::Override,
668                               "CFI Canonical Jump Tables",
669                               CodeGenOpts.SanitizeCfiCanonicalJumpTables);
670   }
671 
672   if (CodeGenOpts.CFProtectionReturn &&
673       Target.checkCFProtectionReturnSupported(getDiags())) {
674     // Indicate that we want to instrument return control flow protection.
675     getModule().addModuleFlag(llvm::Module::Override, "cf-protection-return",
676                               1);
677   }
678 
679   if (CodeGenOpts.CFProtectionBranch &&
680       Target.checkCFProtectionBranchSupported(getDiags())) {
681     // Indicate that we want to instrument branch control flow protection.
682     getModule().addModuleFlag(llvm::Module::Override, "cf-protection-branch",
683                               1);
684   }
685 
686   if (Arch == llvm::Triple::aarch64 || Arch == llvm::Triple::aarch64_32 ||
687       Arch == llvm::Triple::aarch64_be) {
688     getModule().addModuleFlag(llvm::Module::Error,
689                               "branch-target-enforcement",
690                               LangOpts.BranchTargetEnforcement);
691 
692     getModule().addModuleFlag(llvm::Module::Error, "sign-return-address",
693                               LangOpts.hasSignReturnAddress());
694 
695     getModule().addModuleFlag(llvm::Module::Error, "sign-return-address-all",
696                               LangOpts.isSignReturnAddressScopeAll());
697 
698     getModule().addModuleFlag(llvm::Module::Error,
699                               "sign-return-address-with-bkey",
700                               !LangOpts.isSignReturnAddressWithAKey());
701   }
702 
703   if (!CodeGenOpts.MemoryProfileOutput.empty()) {
704     llvm::LLVMContext &Ctx = TheModule.getContext();
705     getModule().addModuleFlag(
706         llvm::Module::Error, "MemProfProfileFilename",
707         llvm::MDString::get(Ctx, CodeGenOpts.MemoryProfileOutput));
708   }
709 
710   if (LangOpts.CUDAIsDevice && getTriple().isNVPTX()) {
711     // Indicate whether __nvvm_reflect should be configured to flush denormal
712     // floating point values to 0.  (This corresponds to its "__CUDA_FTZ"
713     // property.)
714     getModule().addModuleFlag(llvm::Module::Override, "nvvm-reflect-ftz",
715                               CodeGenOpts.FP32DenormalMode.Output !=
716                                   llvm::DenormalMode::IEEE);
717   }
718 
719   if (LangOpts.EHAsynch)
720     getModule().addModuleFlag(llvm::Module::Warning, "eh-asynch", 1);
721 
722   // Indicate whether this Module was compiled with -fopenmp
723   if (getLangOpts().OpenMP && !getLangOpts().OpenMPSimd)
724     getModule().addModuleFlag(llvm::Module::Max, "openmp", LangOpts.OpenMP);
725   if (getLangOpts().OpenMPIsDevice)
726     getModule().addModuleFlag(llvm::Module::Max, "openmp-device",
727                               LangOpts.OpenMP);
728 
729   // Emit OpenCL specific module metadata: OpenCL/SPIR version.
730   if (LangOpts.OpenCL) {
731     EmitOpenCLMetadata();
732     // Emit SPIR version.
733     if (getTriple().isSPIR()) {
734       // SPIR v2.0 s2.12 - The SPIR version used by the module is stored in the
735       // opencl.spir.version named metadata.
736       // C++ for OpenCL has a distinct mapping for version compatibility with
737       // OpenCL.
738       auto Version = LangOpts.getOpenCLCompatibleVersion();
739       llvm::Metadata *SPIRVerElts[] = {
740           llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
741               Int32Ty, Version / 100)),
742           llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
743               Int32Ty, (Version / 100 > 1) ? 0 : 2))};
744       llvm::NamedMDNode *SPIRVerMD =
745           TheModule.getOrInsertNamedMetadata("opencl.spir.version");
746       llvm::LLVMContext &Ctx = TheModule.getContext();
747       SPIRVerMD->addOperand(llvm::MDNode::get(Ctx, SPIRVerElts));
748     }
749   }
750 
751   if (uint32_t PLevel = Context.getLangOpts().PICLevel) {
752     assert(PLevel < 3 && "Invalid PIC Level");
753     getModule().setPICLevel(static_cast<llvm::PICLevel::Level>(PLevel));
754     if (Context.getLangOpts().PIE)
755       getModule().setPIELevel(static_cast<llvm::PIELevel::Level>(PLevel));
756   }
757 
758   if (getCodeGenOpts().CodeModel.size() > 0) {
759     unsigned CM = llvm::StringSwitch<unsigned>(getCodeGenOpts().CodeModel)
760                   .Case("tiny", llvm::CodeModel::Tiny)
761                   .Case("small", llvm::CodeModel::Small)
762                   .Case("kernel", llvm::CodeModel::Kernel)
763                   .Case("medium", llvm::CodeModel::Medium)
764                   .Case("large", llvm::CodeModel::Large)
765                   .Default(~0u);
766     if (CM != ~0u) {
767       llvm::CodeModel::Model codeModel = static_cast<llvm::CodeModel::Model>(CM);
768       getModule().setCodeModel(codeModel);
769     }
770   }
771 
772   if (CodeGenOpts.NoPLT)
773     getModule().setRtLibUseGOT();
774   if (CodeGenOpts.UnwindTables)
775     getModule().setUwtable();
776 
777   switch (CodeGenOpts.getFramePointer()) {
778   case CodeGenOptions::FramePointerKind::None:
779     // 0 ("none") is the default.
780     break;
781   case CodeGenOptions::FramePointerKind::NonLeaf:
782     getModule().setFramePointer(llvm::FramePointerKind::NonLeaf);
783     break;
784   case CodeGenOptions::FramePointerKind::All:
785     getModule().setFramePointer(llvm::FramePointerKind::All);
786     break;
787   }
788 
789   SimplifyPersonality();
790 
791   if (getCodeGenOpts().EmitDeclMetadata)
792     EmitDeclMetadata();
793 
794   if (getCodeGenOpts().EmitGcovArcs || getCodeGenOpts().EmitGcovNotes)
795     EmitCoverageFile();
796 
797   if (CGDebugInfo *DI = getModuleDebugInfo())
798     DI->finalize();
799 
800   if (getCodeGenOpts().EmitVersionIdentMetadata)
801     EmitVersionIdentMetadata();
802 
803   if (!getCodeGenOpts().RecordCommandLine.empty())
804     EmitCommandLineMetadata();
805 
806   if (!getCodeGenOpts().StackProtectorGuard.empty())
807     getModule().setStackProtectorGuard(getCodeGenOpts().StackProtectorGuard);
808   if (!getCodeGenOpts().StackProtectorGuardReg.empty())
809     getModule().setStackProtectorGuardReg(
810         getCodeGenOpts().StackProtectorGuardReg);
811   if (getCodeGenOpts().StackProtectorGuardOffset != INT_MAX)
812     getModule().setStackProtectorGuardOffset(
813         getCodeGenOpts().StackProtectorGuardOffset);
814   if (getCodeGenOpts().StackAlignment)
815     getModule().setOverrideStackAlignment(getCodeGenOpts().StackAlignment);
816 
817   getTargetCodeGenInfo().emitTargetMetadata(*this, MangledDeclNames);
818 
819   EmitBackendOptionsMetadata(getCodeGenOpts());
820 
821   // Set visibility from DLL storage class
822   // We do this at the end of LLVM IR generation; after any operation
823   // that might affect the DLL storage class or the visibility, and
824   // before anything that might act on these.
825   setVisibilityFromDLLStorageClass(LangOpts, getModule());
826 }
827 
828 void CodeGenModule::EmitOpenCLMetadata() {
829   // SPIR v2.0 s2.13 - The OpenCL version used by the module is stored in the
830   // opencl.ocl.version named metadata node.
831   // C++ for OpenCL has a distinct mapping for versions compatibile with OpenCL.
832   auto Version = LangOpts.getOpenCLCompatibleVersion();
833   llvm::Metadata *OCLVerElts[] = {
834       llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
835           Int32Ty, Version / 100)),
836       llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
837           Int32Ty, (Version % 100) / 10))};
838   llvm::NamedMDNode *OCLVerMD =
839       TheModule.getOrInsertNamedMetadata("opencl.ocl.version");
840   llvm::LLVMContext &Ctx = TheModule.getContext();
841   OCLVerMD->addOperand(llvm::MDNode::get(Ctx, OCLVerElts));
842 }
843 
844 void CodeGenModule::EmitBackendOptionsMetadata(
845     const CodeGenOptions CodeGenOpts) {
846   switch (getTriple().getArch()) {
847   default:
848     break;
849   case llvm::Triple::riscv32:
850   case llvm::Triple::riscv64:
851     getModule().addModuleFlag(llvm::Module::Error, "SmallDataLimit",
852                               CodeGenOpts.SmallDataLimit);
853     break;
854   }
855 }
856 
857 void CodeGenModule::UpdateCompletedType(const TagDecl *TD) {
858   // Make sure that this type is translated.
859   Types.UpdateCompletedType(TD);
860 }
861 
862 void CodeGenModule::RefreshTypeCacheForClass(const CXXRecordDecl *RD) {
863   // Make sure that this type is translated.
864   Types.RefreshTypeCacheForClass(RD);
865 }
866 
867 llvm::MDNode *CodeGenModule::getTBAATypeInfo(QualType QTy) {
868   if (!TBAA)
869     return nullptr;
870   return TBAA->getTypeInfo(QTy);
871 }
872 
873 TBAAAccessInfo CodeGenModule::getTBAAAccessInfo(QualType AccessType) {
874   if (!TBAA)
875     return TBAAAccessInfo();
876   if (getLangOpts().CUDAIsDevice) {
877     // As CUDA builtin surface/texture types are replaced, skip generating TBAA
878     // access info.
879     if (AccessType->isCUDADeviceBuiltinSurfaceType()) {
880       if (getTargetCodeGenInfo().getCUDADeviceBuiltinSurfaceDeviceType() !=
881           nullptr)
882         return TBAAAccessInfo();
883     } else if (AccessType->isCUDADeviceBuiltinTextureType()) {
884       if (getTargetCodeGenInfo().getCUDADeviceBuiltinTextureDeviceType() !=
885           nullptr)
886         return TBAAAccessInfo();
887     }
888   }
889   return TBAA->getAccessInfo(AccessType);
890 }
891 
892 TBAAAccessInfo
893 CodeGenModule::getTBAAVTablePtrAccessInfo(llvm::Type *VTablePtrType) {
894   if (!TBAA)
895     return TBAAAccessInfo();
896   return TBAA->getVTablePtrAccessInfo(VTablePtrType);
897 }
898 
899 llvm::MDNode *CodeGenModule::getTBAAStructInfo(QualType QTy) {
900   if (!TBAA)
901     return nullptr;
902   return TBAA->getTBAAStructInfo(QTy);
903 }
904 
905 llvm::MDNode *CodeGenModule::getTBAABaseTypeInfo(QualType QTy) {
906   if (!TBAA)
907     return nullptr;
908   return TBAA->getBaseTypeInfo(QTy);
909 }
910 
911 llvm::MDNode *CodeGenModule::getTBAAAccessTagInfo(TBAAAccessInfo Info) {
912   if (!TBAA)
913     return nullptr;
914   return TBAA->getAccessTagInfo(Info);
915 }
916 
917 TBAAAccessInfo CodeGenModule::mergeTBAAInfoForCast(TBAAAccessInfo SourceInfo,
918                                                    TBAAAccessInfo TargetInfo) {
919   if (!TBAA)
920     return TBAAAccessInfo();
921   return TBAA->mergeTBAAInfoForCast(SourceInfo, TargetInfo);
922 }
923 
924 TBAAAccessInfo
925 CodeGenModule::mergeTBAAInfoForConditionalOperator(TBAAAccessInfo InfoA,
926                                                    TBAAAccessInfo InfoB) {
927   if (!TBAA)
928     return TBAAAccessInfo();
929   return TBAA->mergeTBAAInfoForConditionalOperator(InfoA, InfoB);
930 }
931 
932 TBAAAccessInfo
933 CodeGenModule::mergeTBAAInfoForMemoryTransfer(TBAAAccessInfo DestInfo,
934                                               TBAAAccessInfo SrcInfo) {
935   if (!TBAA)
936     return TBAAAccessInfo();
937   return TBAA->mergeTBAAInfoForConditionalOperator(DestInfo, SrcInfo);
938 }
939 
940 void CodeGenModule::DecorateInstructionWithTBAA(llvm::Instruction *Inst,
941                                                 TBAAAccessInfo TBAAInfo) {
942   if (llvm::MDNode *Tag = getTBAAAccessTagInfo(TBAAInfo))
943     Inst->setMetadata(llvm::LLVMContext::MD_tbaa, Tag);
944 }
945 
946 void CodeGenModule::DecorateInstructionWithInvariantGroup(
947     llvm::Instruction *I, const CXXRecordDecl *RD) {
948   I->setMetadata(llvm::LLVMContext::MD_invariant_group,
949                  llvm::MDNode::get(getLLVMContext(), {}));
950 }
951 
952 void CodeGenModule::Error(SourceLocation loc, StringRef message) {
953   unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, "%0");
954   getDiags().Report(Context.getFullLoc(loc), diagID) << message;
955 }
956 
957 /// ErrorUnsupported - Print out an error that codegen doesn't support the
958 /// specified stmt yet.
959 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type) {
960   unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
961                                                "cannot compile this %0 yet");
962   std::string Msg = Type;
963   getDiags().Report(Context.getFullLoc(S->getBeginLoc()), DiagID)
964       << Msg << S->getSourceRange();
965 }
966 
967 /// ErrorUnsupported - Print out an error that codegen doesn't support the
968 /// specified decl yet.
969 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type) {
970   unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
971                                                "cannot compile this %0 yet");
972   std::string Msg = Type;
973   getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg;
974 }
975 
976 llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) {
977   return llvm::ConstantInt::get(SizeTy, size.getQuantity());
978 }
979 
980 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV,
981                                         const NamedDecl *D) const {
982   if (GV->hasDLLImportStorageClass())
983     return;
984   // Internal definitions always have default visibility.
985   if (GV->hasLocalLinkage()) {
986     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
987     return;
988   }
989   if (!D)
990     return;
991   // Set visibility for definitions, and for declarations if requested globally
992   // or set explicitly.
993   LinkageInfo LV = D->getLinkageAndVisibility();
994   if (LV.isVisibilityExplicit() || getLangOpts().SetVisibilityForExternDecls ||
995       !GV->isDeclarationForLinker())
996     GV->setVisibility(GetLLVMVisibility(LV.getVisibility()));
997 }
998 
999 static bool shouldAssumeDSOLocal(const CodeGenModule &CGM,
1000                                  llvm::GlobalValue *GV) {
1001   if (GV->hasLocalLinkage())
1002     return true;
1003 
1004   if (!GV->hasDefaultVisibility() && !GV->hasExternalWeakLinkage())
1005     return true;
1006 
1007   // DLLImport explicitly marks the GV as external.
1008   if (GV->hasDLLImportStorageClass())
1009     return false;
1010 
1011   const llvm::Triple &TT = CGM.getTriple();
1012   if (TT.isWindowsGNUEnvironment()) {
1013     // In MinGW, variables without DLLImport can still be automatically
1014     // imported from a DLL by the linker; don't mark variables that
1015     // potentially could come from another DLL as DSO local.
1016 
1017     // With EmulatedTLS, TLS variables can be autoimported from other DLLs
1018     // (and this actually happens in the public interface of libstdc++), so
1019     // such variables can't be marked as DSO local. (Native TLS variables
1020     // can't be dllimported at all, though.)
1021     if (GV->isDeclarationForLinker() && isa<llvm::GlobalVariable>(GV) &&
1022         (!GV->isThreadLocal() || CGM.getCodeGenOpts().EmulatedTLS))
1023       return false;
1024   }
1025 
1026   // On COFF, don't mark 'extern_weak' symbols as DSO local. If these symbols
1027   // remain unresolved in the link, they can be resolved to zero, which is
1028   // outside the current DSO.
1029   if (TT.isOSBinFormatCOFF() && GV->hasExternalWeakLinkage())
1030     return false;
1031 
1032   // Every other GV is local on COFF.
1033   // Make an exception for windows OS in the triple: Some firmware builds use
1034   // *-win32-macho triples. This (accidentally?) produced windows relocations
1035   // without GOT tables in older clang versions; Keep this behaviour.
1036   // FIXME: even thread local variables?
1037   if (TT.isOSBinFormatCOFF() || (TT.isOSWindows() && TT.isOSBinFormatMachO()))
1038     return true;
1039 
1040   // Only handle COFF and ELF for now.
1041   if (!TT.isOSBinFormatELF())
1042     return false;
1043 
1044   // If this is not an executable, don't assume anything is local.
1045   const auto &CGOpts = CGM.getCodeGenOpts();
1046   llvm::Reloc::Model RM = CGOpts.RelocationModel;
1047   const auto &LOpts = CGM.getLangOpts();
1048   if (RM != llvm::Reloc::Static && !LOpts.PIE) {
1049     // On ELF, if -fno-semantic-interposition is specified and the target
1050     // supports local aliases, there will be neither CC1
1051     // -fsemantic-interposition nor -fhalf-no-semantic-interposition. Set
1052     // dso_local on the function if using a local alias is preferable (can avoid
1053     // PLT indirection).
1054     if (!(isa<llvm::Function>(GV) && GV->canBenefitFromLocalAlias()))
1055       return false;
1056     return !(CGM.getLangOpts().SemanticInterposition ||
1057              CGM.getLangOpts().HalfNoSemanticInterposition);
1058   }
1059 
1060   // A definition cannot be preempted from an executable.
1061   if (!GV->isDeclarationForLinker())
1062     return true;
1063 
1064   // Most PIC code sequences that assume that a symbol is local cannot produce a
1065   // 0 if it turns out the symbol is undefined. While this is ABI and relocation
1066   // depended, it seems worth it to handle it here.
1067   if (RM == llvm::Reloc::PIC_ && GV->hasExternalWeakLinkage())
1068     return false;
1069 
1070   // PowerPC64 prefers TOC indirection to avoid copy relocations.
1071   if (TT.isPPC64())
1072     return false;
1073 
1074   if (CGOpts.DirectAccessExternalData) {
1075     // If -fdirect-access-external-data (default for -fno-pic), set dso_local
1076     // for non-thread-local variables. If the symbol is not defined in the
1077     // executable, a copy relocation will be needed at link time. dso_local is
1078     // excluded for thread-local variables because they generally don't support
1079     // copy relocations.
1080     if (auto *Var = dyn_cast<llvm::GlobalVariable>(GV))
1081       if (!Var->isThreadLocal())
1082         return true;
1083 
1084     // -fno-pic sets dso_local on a function declaration to allow direct
1085     // accesses when taking its address (similar to a data symbol). If the
1086     // function is not defined in the executable, a canonical PLT entry will be
1087     // needed at link time. -fno-direct-access-external-data can avoid the
1088     // canonical PLT entry. We don't generalize this condition to -fpie/-fpic as
1089     // it could just cause trouble without providing perceptible benefits.
1090     if (isa<llvm::Function>(GV) && !CGOpts.NoPLT && RM == llvm::Reloc::Static)
1091       return true;
1092   }
1093 
1094   // If we can use copy relocations we can assume it is local.
1095 
1096   // Otherwise don't assume it is local.
1097   return false;
1098 }
1099 
1100 void CodeGenModule::setDSOLocal(llvm::GlobalValue *GV) const {
1101   GV->setDSOLocal(shouldAssumeDSOLocal(*this, GV));
1102 }
1103 
1104 void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV,
1105                                           GlobalDecl GD) const {
1106   const auto *D = dyn_cast<NamedDecl>(GD.getDecl());
1107   // C++ destructors have a few C++ ABI specific special cases.
1108   if (const auto *Dtor = dyn_cast_or_null<CXXDestructorDecl>(D)) {
1109     getCXXABI().setCXXDestructorDLLStorage(GV, Dtor, GD.getDtorType());
1110     return;
1111   }
1112   setDLLImportDLLExport(GV, D);
1113 }
1114 
1115 void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV,
1116                                           const NamedDecl *D) const {
1117   if (D && D->isExternallyVisible()) {
1118     if (D->hasAttr<DLLImportAttr>())
1119       GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass);
1120     else if (D->hasAttr<DLLExportAttr>() && !GV->isDeclarationForLinker())
1121       GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass);
1122   }
1123 }
1124 
1125 void CodeGenModule::setGVProperties(llvm::GlobalValue *GV,
1126                                     GlobalDecl GD) const {
1127   setDLLImportDLLExport(GV, GD);
1128   setGVPropertiesAux(GV, dyn_cast<NamedDecl>(GD.getDecl()));
1129 }
1130 
1131 void CodeGenModule::setGVProperties(llvm::GlobalValue *GV,
1132                                     const NamedDecl *D) const {
1133   setDLLImportDLLExport(GV, D);
1134   setGVPropertiesAux(GV, D);
1135 }
1136 
1137 void CodeGenModule::setGVPropertiesAux(llvm::GlobalValue *GV,
1138                                        const NamedDecl *D) const {
1139   setGlobalVisibility(GV, D);
1140   setDSOLocal(GV);
1141   GV->setPartition(CodeGenOpts.SymbolPartition);
1142 }
1143 
1144 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(StringRef S) {
1145   return llvm::StringSwitch<llvm::GlobalVariable::ThreadLocalMode>(S)
1146       .Case("global-dynamic", llvm::GlobalVariable::GeneralDynamicTLSModel)
1147       .Case("local-dynamic", llvm::GlobalVariable::LocalDynamicTLSModel)
1148       .Case("initial-exec", llvm::GlobalVariable::InitialExecTLSModel)
1149       .Case("local-exec", llvm::GlobalVariable::LocalExecTLSModel);
1150 }
1151 
1152 llvm::GlobalVariable::ThreadLocalMode
1153 CodeGenModule::GetDefaultLLVMTLSModel() const {
1154   switch (CodeGenOpts.getDefaultTLSModel()) {
1155   case CodeGenOptions::GeneralDynamicTLSModel:
1156     return llvm::GlobalVariable::GeneralDynamicTLSModel;
1157   case CodeGenOptions::LocalDynamicTLSModel:
1158     return llvm::GlobalVariable::LocalDynamicTLSModel;
1159   case CodeGenOptions::InitialExecTLSModel:
1160     return llvm::GlobalVariable::InitialExecTLSModel;
1161   case CodeGenOptions::LocalExecTLSModel:
1162     return llvm::GlobalVariable::LocalExecTLSModel;
1163   }
1164   llvm_unreachable("Invalid TLS model!");
1165 }
1166 
1167 void CodeGenModule::setTLSMode(llvm::GlobalValue *GV, const VarDecl &D) const {
1168   assert(D.getTLSKind() && "setting TLS mode on non-TLS var!");
1169 
1170   llvm::GlobalValue::ThreadLocalMode TLM;
1171   TLM = GetDefaultLLVMTLSModel();
1172 
1173   // Override the TLS model if it is explicitly specified.
1174   if (const TLSModelAttr *Attr = D.getAttr<TLSModelAttr>()) {
1175     TLM = GetLLVMTLSModel(Attr->getModel());
1176   }
1177 
1178   GV->setThreadLocalMode(TLM);
1179 }
1180 
1181 static std::string getCPUSpecificMangling(const CodeGenModule &CGM,
1182                                           StringRef Name) {
1183   const TargetInfo &Target = CGM.getTarget();
1184   return (Twine('.') + Twine(Target.CPUSpecificManglingCharacter(Name))).str();
1185 }
1186 
1187 static void AppendCPUSpecificCPUDispatchMangling(const CodeGenModule &CGM,
1188                                                  const CPUSpecificAttr *Attr,
1189                                                  unsigned CPUIndex,
1190                                                  raw_ostream &Out) {
1191   // cpu_specific gets the current name, dispatch gets the resolver if IFunc is
1192   // supported.
1193   if (Attr)
1194     Out << getCPUSpecificMangling(CGM, Attr->getCPUName(CPUIndex)->getName());
1195   else if (CGM.getTarget().supportsIFunc())
1196     Out << ".resolver";
1197 }
1198 
1199 static void AppendTargetMangling(const CodeGenModule &CGM,
1200                                  const TargetAttr *Attr, raw_ostream &Out) {
1201   if (Attr->isDefaultVersion())
1202     return;
1203 
1204   Out << '.';
1205   const TargetInfo &Target = CGM.getTarget();
1206   ParsedTargetAttr Info =
1207       Attr->parse([&Target](StringRef LHS, StringRef RHS) {
1208         // Multiversioning doesn't allow "no-${feature}", so we can
1209         // only have "+" prefixes here.
1210         assert(LHS.startswith("+") && RHS.startswith("+") &&
1211                "Features should always have a prefix.");
1212         return Target.multiVersionSortPriority(LHS.substr(1)) >
1213                Target.multiVersionSortPriority(RHS.substr(1));
1214       });
1215 
1216   bool IsFirst = true;
1217 
1218   if (!Info.Architecture.empty()) {
1219     IsFirst = false;
1220     Out << "arch_" << Info.Architecture;
1221   }
1222 
1223   for (StringRef Feat : Info.Features) {
1224     if (!IsFirst)
1225       Out << '_';
1226     IsFirst = false;
1227     Out << Feat.substr(1);
1228   }
1229 }
1230 
1231 // Returns true if GD is a function decl with internal linkage and
1232 // needs a unique suffix after the mangled name.
1233 static bool isUniqueInternalLinkageDecl(GlobalDecl GD,
1234                                         CodeGenModule &CGM) {
1235   const Decl *D = GD.getDecl();
1236   return !CGM.getModuleNameHash().empty() && isa<FunctionDecl>(D) &&
1237          (CGM.getFunctionLinkage(GD) == llvm::GlobalValue::InternalLinkage);
1238 }
1239 
1240 static std::string getMangledNameImpl(CodeGenModule &CGM, GlobalDecl GD,
1241                                       const NamedDecl *ND,
1242                                       bool OmitMultiVersionMangling = false) {
1243   SmallString<256> Buffer;
1244   llvm::raw_svector_ostream Out(Buffer);
1245   MangleContext &MC = CGM.getCXXABI().getMangleContext();
1246   if (!CGM.getModuleNameHash().empty())
1247     MC.needsUniqueInternalLinkageNames();
1248   bool ShouldMangle = MC.shouldMangleDeclName(ND);
1249   if (ShouldMangle)
1250     MC.mangleName(GD.getWithDecl(ND), Out);
1251   else {
1252     IdentifierInfo *II = ND->getIdentifier();
1253     assert(II && "Attempt to mangle unnamed decl.");
1254     const auto *FD = dyn_cast<FunctionDecl>(ND);
1255 
1256     if (FD &&
1257         FD->getType()->castAs<FunctionType>()->getCallConv() == CC_X86RegCall) {
1258       Out << "__regcall3__" << II->getName();
1259     } else if (FD && FD->hasAttr<CUDAGlobalAttr>() &&
1260                GD.getKernelReferenceKind() == KernelReferenceKind::Stub) {
1261       Out << "__device_stub__" << II->getName();
1262     } else {
1263       Out << II->getName();
1264     }
1265   }
1266 
1267   // Check if the module name hash should be appended for internal linkage
1268   // symbols.   This should come before multi-version target suffixes are
1269   // appended. This is to keep the name and module hash suffix of the
1270   // internal linkage function together.  The unique suffix should only be
1271   // added when name mangling is done to make sure that the final name can
1272   // be properly demangled.  For example, for C functions without prototypes,
1273   // name mangling is not done and the unique suffix should not be appeneded
1274   // then.
1275   if (ShouldMangle && isUniqueInternalLinkageDecl(GD, CGM)) {
1276     assert(CGM.getCodeGenOpts().UniqueInternalLinkageNames &&
1277            "Hash computed when not explicitly requested");
1278     Out << CGM.getModuleNameHash();
1279   }
1280 
1281   if (const auto *FD = dyn_cast<FunctionDecl>(ND))
1282     if (FD->isMultiVersion() && !OmitMultiVersionMangling) {
1283       switch (FD->getMultiVersionKind()) {
1284       case MultiVersionKind::CPUDispatch:
1285       case MultiVersionKind::CPUSpecific:
1286         AppendCPUSpecificCPUDispatchMangling(CGM,
1287                                              FD->getAttr<CPUSpecificAttr>(),
1288                                              GD.getMultiVersionIndex(), Out);
1289         break;
1290       case MultiVersionKind::Target:
1291         AppendTargetMangling(CGM, FD->getAttr<TargetAttr>(), Out);
1292         break;
1293       case MultiVersionKind::None:
1294         llvm_unreachable("None multiversion type isn't valid here");
1295       }
1296     }
1297 
1298   // Make unique name for device side static file-scope variable for HIP.
1299   if (CGM.getContext().shouldExternalizeStaticVar(ND) &&
1300       CGM.getLangOpts().GPURelocatableDeviceCode &&
1301       CGM.getLangOpts().CUDAIsDevice && !CGM.getLangOpts().CUID.empty())
1302     CGM.printPostfixForExternalizedStaticVar(Out);
1303   return std::string(Out.str());
1304 }
1305 
1306 void CodeGenModule::UpdateMultiVersionNames(GlobalDecl GD,
1307                                             const FunctionDecl *FD) {
1308   if (!FD->isMultiVersion())
1309     return;
1310 
1311   // Get the name of what this would be without the 'target' attribute.  This
1312   // allows us to lookup the version that was emitted when this wasn't a
1313   // multiversion function.
1314   std::string NonTargetName =
1315       getMangledNameImpl(*this, GD, FD, /*OmitMultiVersionMangling=*/true);
1316   GlobalDecl OtherGD;
1317   if (lookupRepresentativeDecl(NonTargetName, OtherGD)) {
1318     assert(OtherGD.getCanonicalDecl()
1319                .getDecl()
1320                ->getAsFunction()
1321                ->isMultiVersion() &&
1322            "Other GD should now be a multiversioned function");
1323     // OtherFD is the version of this function that was mangled BEFORE
1324     // becoming a MultiVersion function.  It potentially needs to be updated.
1325     const FunctionDecl *OtherFD = OtherGD.getCanonicalDecl()
1326                                       .getDecl()
1327                                       ->getAsFunction()
1328                                       ->getMostRecentDecl();
1329     std::string OtherName = getMangledNameImpl(*this, OtherGD, OtherFD);
1330     // This is so that if the initial version was already the 'default'
1331     // version, we don't try to update it.
1332     if (OtherName != NonTargetName) {
1333       // Remove instead of erase, since others may have stored the StringRef
1334       // to this.
1335       const auto ExistingRecord = Manglings.find(NonTargetName);
1336       if (ExistingRecord != std::end(Manglings))
1337         Manglings.remove(&(*ExistingRecord));
1338       auto Result = Manglings.insert(std::make_pair(OtherName, OtherGD));
1339       MangledDeclNames[OtherGD.getCanonicalDecl()] = Result.first->first();
1340       if (llvm::GlobalValue *Entry = GetGlobalValue(NonTargetName))
1341         Entry->setName(OtherName);
1342     }
1343   }
1344 }
1345 
1346 StringRef CodeGenModule::getMangledName(GlobalDecl GD) {
1347   GlobalDecl CanonicalGD = GD.getCanonicalDecl();
1348 
1349   // Some ABIs don't have constructor variants.  Make sure that base and
1350   // complete constructors get mangled the same.
1351   if (const auto *CD = dyn_cast<CXXConstructorDecl>(CanonicalGD.getDecl())) {
1352     if (!getTarget().getCXXABI().hasConstructorVariants()) {
1353       CXXCtorType OrigCtorType = GD.getCtorType();
1354       assert(OrigCtorType == Ctor_Base || OrigCtorType == Ctor_Complete);
1355       if (OrigCtorType == Ctor_Base)
1356         CanonicalGD = GlobalDecl(CD, Ctor_Complete);
1357     }
1358   }
1359 
1360   // In CUDA/HIP device compilation with -fgpu-rdc, the mangled name of a
1361   // static device variable depends on whether the variable is referenced by
1362   // a host or device host function. Therefore the mangled name cannot be
1363   // cached.
1364   if (!LangOpts.CUDAIsDevice ||
1365       !getContext().mayExternalizeStaticVar(GD.getDecl())) {
1366     auto FoundName = MangledDeclNames.find(CanonicalGD);
1367     if (FoundName != MangledDeclNames.end())
1368       return FoundName->second;
1369   }
1370 
1371   // Keep the first result in the case of a mangling collision.
1372   const auto *ND = cast<NamedDecl>(GD.getDecl());
1373   std::string MangledName = getMangledNameImpl(*this, GD, ND);
1374 
1375   // Ensure either we have different ABIs between host and device compilations,
1376   // says host compilation following MSVC ABI but device compilation follows
1377   // Itanium C++ ABI or, if they follow the same ABI, kernel names after
1378   // mangling should be the same after name stubbing. The later checking is
1379   // very important as the device kernel name being mangled in host-compilation
1380   // is used to resolve the device binaries to be executed. Inconsistent naming
1381   // result in undefined behavior. Even though we cannot check that naming
1382   // directly between host- and device-compilations, the host- and
1383   // device-mangling in host compilation could help catching certain ones.
1384   assert(!isa<FunctionDecl>(ND) || !ND->hasAttr<CUDAGlobalAttr>() ||
1385          getLangOpts().CUDAIsDevice ||
1386          (getContext().getAuxTargetInfo() &&
1387           (getContext().getAuxTargetInfo()->getCXXABI() !=
1388            getContext().getTargetInfo().getCXXABI())) ||
1389          getCUDARuntime().getDeviceSideName(ND) ==
1390              getMangledNameImpl(
1391                  *this,
1392                  GD.getWithKernelReferenceKind(KernelReferenceKind::Kernel),
1393                  ND));
1394 
1395   auto Result = Manglings.insert(std::make_pair(MangledName, GD));
1396   return MangledDeclNames[CanonicalGD] = Result.first->first();
1397 }
1398 
1399 StringRef CodeGenModule::getBlockMangledName(GlobalDecl GD,
1400                                              const BlockDecl *BD) {
1401   MangleContext &MangleCtx = getCXXABI().getMangleContext();
1402   const Decl *D = GD.getDecl();
1403 
1404   SmallString<256> Buffer;
1405   llvm::raw_svector_ostream Out(Buffer);
1406   if (!D)
1407     MangleCtx.mangleGlobalBlock(BD,
1408       dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()), Out);
1409   else if (const auto *CD = dyn_cast<CXXConstructorDecl>(D))
1410     MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out);
1411   else if (const auto *DD = dyn_cast<CXXDestructorDecl>(D))
1412     MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out);
1413   else
1414     MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out);
1415 
1416   auto Result = Manglings.insert(std::make_pair(Out.str(), BD));
1417   return Result.first->first();
1418 }
1419 
1420 llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) {
1421   return getModule().getNamedValue(Name);
1422 }
1423 
1424 /// AddGlobalCtor - Add a function to the list that will be called before
1425 /// main() runs.
1426 void CodeGenModule::AddGlobalCtor(llvm::Function *Ctor, int Priority,
1427                                   llvm::Constant *AssociatedData) {
1428   // FIXME: Type coercion of void()* types.
1429   GlobalCtors.push_back(Structor(Priority, Ctor, AssociatedData));
1430 }
1431 
1432 /// AddGlobalDtor - Add a function to the list that will be called
1433 /// when the module is unloaded.
1434 void CodeGenModule::AddGlobalDtor(llvm::Function *Dtor, int Priority,
1435                                   bool IsDtorAttrFunc) {
1436   if (CodeGenOpts.RegisterGlobalDtorsWithAtExit &&
1437       (!getContext().getTargetInfo().getTriple().isOSAIX() || IsDtorAttrFunc)) {
1438     DtorsUsingAtExit[Priority].push_back(Dtor);
1439     return;
1440   }
1441 
1442   // FIXME: Type coercion of void()* types.
1443   GlobalDtors.push_back(Structor(Priority, Dtor, nullptr));
1444 }
1445 
1446 void CodeGenModule::EmitCtorList(CtorList &Fns, const char *GlobalName) {
1447   if (Fns.empty()) return;
1448 
1449   // Ctor function type is void()*.
1450   llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false);
1451   llvm::Type *CtorPFTy = llvm::PointerType::get(CtorFTy,
1452       TheModule.getDataLayout().getProgramAddressSpace());
1453 
1454   // Get the type of a ctor entry, { i32, void ()*, i8* }.
1455   llvm::StructType *CtorStructTy = llvm::StructType::get(
1456       Int32Ty, CtorPFTy, VoidPtrTy);
1457 
1458   // Construct the constructor and destructor arrays.
1459   ConstantInitBuilder builder(*this);
1460   auto ctors = builder.beginArray(CtorStructTy);
1461   for (const auto &I : Fns) {
1462     auto ctor = ctors.beginStruct(CtorStructTy);
1463     ctor.addInt(Int32Ty, I.Priority);
1464     ctor.add(llvm::ConstantExpr::getBitCast(I.Initializer, CtorPFTy));
1465     if (I.AssociatedData)
1466       ctor.add(llvm::ConstantExpr::getBitCast(I.AssociatedData, VoidPtrTy));
1467     else
1468       ctor.addNullPointer(VoidPtrTy);
1469     ctor.finishAndAddTo(ctors);
1470   }
1471 
1472   auto list =
1473     ctors.finishAndCreateGlobal(GlobalName, getPointerAlign(),
1474                                 /*constant*/ false,
1475                                 llvm::GlobalValue::AppendingLinkage);
1476 
1477   // The LTO linker doesn't seem to like it when we set an alignment
1478   // on appending variables.  Take it off as a workaround.
1479   list->setAlignment(llvm::None);
1480 
1481   Fns.clear();
1482 }
1483 
1484 llvm::GlobalValue::LinkageTypes
1485 CodeGenModule::getFunctionLinkage(GlobalDecl GD) {
1486   const auto *D = cast<FunctionDecl>(GD.getDecl());
1487 
1488   GVALinkage Linkage = getContext().GetGVALinkageForFunction(D);
1489 
1490   if (const auto *Dtor = dyn_cast<CXXDestructorDecl>(D))
1491     return getCXXABI().getCXXDestructorLinkage(Linkage, Dtor, GD.getDtorType());
1492 
1493   if (isa<CXXConstructorDecl>(D) &&
1494       cast<CXXConstructorDecl>(D)->isInheritingConstructor() &&
1495       Context.getTargetInfo().getCXXABI().isMicrosoft()) {
1496     // Our approach to inheriting constructors is fundamentally different from
1497     // that used by the MS ABI, so keep our inheriting constructor thunks
1498     // internal rather than trying to pick an unambiguous mangling for them.
1499     return llvm::GlobalValue::InternalLinkage;
1500   }
1501 
1502   return getLLVMLinkageForDeclarator(D, Linkage, /*IsConstantVariable=*/false);
1503 }
1504 
1505 llvm::ConstantInt *CodeGenModule::CreateCrossDsoCfiTypeId(llvm::Metadata *MD) {
1506   llvm::MDString *MDS = dyn_cast<llvm::MDString>(MD);
1507   if (!MDS) return nullptr;
1508 
1509   return llvm::ConstantInt::get(Int64Ty, llvm::MD5Hash(MDS->getString()));
1510 }
1511 
1512 void CodeGenModule::SetLLVMFunctionAttributes(GlobalDecl GD,
1513                                               const CGFunctionInfo &Info,
1514                                               llvm::Function *F, bool IsThunk) {
1515   unsigned CallingConv;
1516   llvm::AttributeList PAL;
1517   ConstructAttributeList(F->getName(), Info, GD, PAL, CallingConv,
1518                          /*AttrOnCallSite=*/false, IsThunk);
1519   F->setAttributes(PAL);
1520   F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv));
1521 }
1522 
1523 static void removeImageAccessQualifier(std::string& TyName) {
1524   std::string ReadOnlyQual("__read_only");
1525   std::string::size_type ReadOnlyPos = TyName.find(ReadOnlyQual);
1526   if (ReadOnlyPos != std::string::npos)
1527     // "+ 1" for the space after access qualifier.
1528     TyName.erase(ReadOnlyPos, ReadOnlyQual.size() + 1);
1529   else {
1530     std::string WriteOnlyQual("__write_only");
1531     std::string::size_type WriteOnlyPos = TyName.find(WriteOnlyQual);
1532     if (WriteOnlyPos != std::string::npos)
1533       TyName.erase(WriteOnlyPos, WriteOnlyQual.size() + 1);
1534     else {
1535       std::string ReadWriteQual("__read_write");
1536       std::string::size_type ReadWritePos = TyName.find(ReadWriteQual);
1537       if (ReadWritePos != std::string::npos)
1538         TyName.erase(ReadWritePos, ReadWriteQual.size() + 1);
1539     }
1540   }
1541 }
1542 
1543 // Returns the address space id that should be produced to the
1544 // kernel_arg_addr_space metadata. This is always fixed to the ids
1545 // as specified in the SPIR 2.0 specification in order to differentiate
1546 // for example in clGetKernelArgInfo() implementation between the address
1547 // spaces with targets without unique mapping to the OpenCL address spaces
1548 // (basically all single AS CPUs).
1549 static unsigned ArgInfoAddressSpace(LangAS AS) {
1550   switch (AS) {
1551   case LangAS::opencl_global:
1552     return 1;
1553   case LangAS::opencl_constant:
1554     return 2;
1555   case LangAS::opencl_local:
1556     return 3;
1557   case LangAS::opencl_generic:
1558     return 4; // Not in SPIR 2.0 specs.
1559   case LangAS::opencl_global_device:
1560     return 5;
1561   case LangAS::opencl_global_host:
1562     return 6;
1563   default:
1564     return 0; // Assume private.
1565   }
1566 }
1567 
1568 void CodeGenModule::GenOpenCLArgMetadata(llvm::Function *Fn,
1569                                          const FunctionDecl *FD,
1570                                          CodeGenFunction *CGF) {
1571   assert(((FD && CGF) || (!FD && !CGF)) &&
1572          "Incorrect use - FD and CGF should either be both null or not!");
1573   // Create MDNodes that represent the kernel arg metadata.
1574   // Each MDNode is a list in the form of "key", N number of values which is
1575   // the same number of values as their are kernel arguments.
1576 
1577   const PrintingPolicy &Policy = Context.getPrintingPolicy();
1578 
1579   // MDNode for the kernel argument address space qualifiers.
1580   SmallVector<llvm::Metadata *, 8> addressQuals;
1581 
1582   // MDNode for the kernel argument access qualifiers (images only).
1583   SmallVector<llvm::Metadata *, 8> accessQuals;
1584 
1585   // MDNode for the kernel argument type names.
1586   SmallVector<llvm::Metadata *, 8> argTypeNames;
1587 
1588   // MDNode for the kernel argument base type names.
1589   SmallVector<llvm::Metadata *, 8> argBaseTypeNames;
1590 
1591   // MDNode for the kernel argument type qualifiers.
1592   SmallVector<llvm::Metadata *, 8> argTypeQuals;
1593 
1594   // MDNode for the kernel argument names.
1595   SmallVector<llvm::Metadata *, 8> argNames;
1596 
1597   if (FD && CGF)
1598     for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i) {
1599       const ParmVarDecl *parm = FD->getParamDecl(i);
1600       QualType ty = parm->getType();
1601       std::string typeQuals;
1602 
1603       // Get image and pipe access qualifier:
1604       if (ty->isImageType() || ty->isPipeType()) {
1605         const Decl *PDecl = parm;
1606         if (auto *TD = dyn_cast<TypedefType>(ty))
1607           PDecl = TD->getDecl();
1608         const OpenCLAccessAttr *A = PDecl->getAttr<OpenCLAccessAttr>();
1609         if (A && A->isWriteOnly())
1610           accessQuals.push_back(llvm::MDString::get(VMContext, "write_only"));
1611         else if (A && A->isReadWrite())
1612           accessQuals.push_back(llvm::MDString::get(VMContext, "read_write"));
1613         else
1614           accessQuals.push_back(llvm::MDString::get(VMContext, "read_only"));
1615       } else
1616         accessQuals.push_back(llvm::MDString::get(VMContext, "none"));
1617 
1618       // Get argument name.
1619       argNames.push_back(llvm::MDString::get(VMContext, parm->getName()));
1620 
1621       auto getTypeSpelling = [&](QualType Ty) {
1622         auto typeName = Ty.getUnqualifiedType().getAsString(Policy);
1623 
1624         if (Ty.isCanonical()) {
1625           StringRef typeNameRef = typeName;
1626           // Turn "unsigned type" to "utype"
1627           if (typeNameRef.consume_front("unsigned "))
1628             return std::string("u") + typeNameRef.str();
1629           if (typeNameRef.consume_front("signed "))
1630             return typeNameRef.str();
1631         }
1632 
1633         return typeName;
1634       };
1635 
1636       if (ty->isPointerType()) {
1637         QualType pointeeTy = ty->getPointeeType();
1638 
1639         // Get address qualifier.
1640         addressQuals.push_back(
1641             llvm::ConstantAsMetadata::get(CGF->Builder.getInt32(
1642                 ArgInfoAddressSpace(pointeeTy.getAddressSpace()))));
1643 
1644         // Get argument type name.
1645         std::string typeName = getTypeSpelling(pointeeTy) + "*";
1646         std::string baseTypeName =
1647             getTypeSpelling(pointeeTy.getCanonicalType()) + "*";
1648         argTypeNames.push_back(llvm::MDString::get(VMContext, typeName));
1649         argBaseTypeNames.push_back(
1650             llvm::MDString::get(VMContext, baseTypeName));
1651 
1652         // Get argument type qualifiers:
1653         if (ty.isRestrictQualified())
1654           typeQuals = "restrict";
1655         if (pointeeTy.isConstQualified() ||
1656             (pointeeTy.getAddressSpace() == LangAS::opencl_constant))
1657           typeQuals += typeQuals.empty() ? "const" : " const";
1658         if (pointeeTy.isVolatileQualified())
1659           typeQuals += typeQuals.empty() ? "volatile" : " volatile";
1660       } else {
1661         uint32_t AddrSpc = 0;
1662         bool isPipe = ty->isPipeType();
1663         if (ty->isImageType() || isPipe)
1664           AddrSpc = ArgInfoAddressSpace(LangAS::opencl_global);
1665 
1666         addressQuals.push_back(
1667             llvm::ConstantAsMetadata::get(CGF->Builder.getInt32(AddrSpc)));
1668 
1669         // Get argument type name.
1670         ty = isPipe ? ty->castAs<PipeType>()->getElementType() : ty;
1671         std::string typeName = getTypeSpelling(ty);
1672         std::string baseTypeName = getTypeSpelling(ty.getCanonicalType());
1673 
1674         // Remove access qualifiers on images
1675         // (as they are inseparable from type in clang implementation,
1676         // but OpenCL spec provides a special query to get access qualifier
1677         // via clGetKernelArgInfo with CL_KERNEL_ARG_ACCESS_QUALIFIER):
1678         if (ty->isImageType()) {
1679           removeImageAccessQualifier(typeName);
1680           removeImageAccessQualifier(baseTypeName);
1681         }
1682 
1683         argTypeNames.push_back(llvm::MDString::get(VMContext, typeName));
1684         argBaseTypeNames.push_back(
1685             llvm::MDString::get(VMContext, baseTypeName));
1686 
1687         if (isPipe)
1688           typeQuals = "pipe";
1689       }
1690       argTypeQuals.push_back(llvm::MDString::get(VMContext, typeQuals));
1691     }
1692 
1693   Fn->setMetadata("kernel_arg_addr_space",
1694                   llvm::MDNode::get(VMContext, addressQuals));
1695   Fn->setMetadata("kernel_arg_access_qual",
1696                   llvm::MDNode::get(VMContext, accessQuals));
1697   Fn->setMetadata("kernel_arg_type",
1698                   llvm::MDNode::get(VMContext, argTypeNames));
1699   Fn->setMetadata("kernel_arg_base_type",
1700                   llvm::MDNode::get(VMContext, argBaseTypeNames));
1701   Fn->setMetadata("kernel_arg_type_qual",
1702                   llvm::MDNode::get(VMContext, argTypeQuals));
1703   if (getCodeGenOpts().EmitOpenCLArgMetadata)
1704     Fn->setMetadata("kernel_arg_name",
1705                     llvm::MDNode::get(VMContext, argNames));
1706 }
1707 
1708 /// Determines whether the language options require us to model
1709 /// unwind exceptions.  We treat -fexceptions as mandating this
1710 /// except under the fragile ObjC ABI with only ObjC exceptions
1711 /// enabled.  This means, for example, that C with -fexceptions
1712 /// enables this.
1713 static bool hasUnwindExceptions(const LangOptions &LangOpts) {
1714   // If exceptions are completely disabled, obviously this is false.
1715   if (!LangOpts.Exceptions) return false;
1716 
1717   // If C++ exceptions are enabled, this is true.
1718   if (LangOpts.CXXExceptions) return true;
1719 
1720   // If ObjC exceptions are enabled, this depends on the ABI.
1721   if (LangOpts.ObjCExceptions) {
1722     return LangOpts.ObjCRuntime.hasUnwindExceptions();
1723   }
1724 
1725   return true;
1726 }
1727 
1728 static bool requiresMemberFunctionPointerTypeMetadata(CodeGenModule &CGM,
1729                                                       const CXXMethodDecl *MD) {
1730   // Check that the type metadata can ever actually be used by a call.
1731   if (!CGM.getCodeGenOpts().LTOUnit ||
1732       !CGM.HasHiddenLTOVisibility(MD->getParent()))
1733     return false;
1734 
1735   // Only functions whose address can be taken with a member function pointer
1736   // need this sort of type metadata.
1737   return !MD->isStatic() && !MD->isVirtual() && !isa<CXXConstructorDecl>(MD) &&
1738          !isa<CXXDestructorDecl>(MD);
1739 }
1740 
1741 std::vector<const CXXRecordDecl *>
1742 CodeGenModule::getMostBaseClasses(const CXXRecordDecl *RD) {
1743   llvm::SetVector<const CXXRecordDecl *> MostBases;
1744 
1745   std::function<void (const CXXRecordDecl *)> CollectMostBases;
1746   CollectMostBases = [&](const CXXRecordDecl *RD) {
1747     if (RD->getNumBases() == 0)
1748       MostBases.insert(RD);
1749     for (const CXXBaseSpecifier &B : RD->bases())
1750       CollectMostBases(B.getType()->getAsCXXRecordDecl());
1751   };
1752   CollectMostBases(RD);
1753   return MostBases.takeVector();
1754 }
1755 
1756 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D,
1757                                                            llvm::Function *F) {
1758   llvm::AttrBuilder B;
1759 
1760   if (CodeGenOpts.UnwindTables)
1761     B.addAttribute(llvm::Attribute::UWTable);
1762 
1763   if (CodeGenOpts.StackClashProtector)
1764     B.addAttribute("probe-stack", "inline-asm");
1765 
1766   if (!hasUnwindExceptions(LangOpts))
1767     B.addAttribute(llvm::Attribute::NoUnwind);
1768 
1769   if (!D || !D->hasAttr<NoStackProtectorAttr>()) {
1770     if (LangOpts.getStackProtector() == LangOptions::SSPOn)
1771       B.addAttribute(llvm::Attribute::StackProtect);
1772     else if (LangOpts.getStackProtector() == LangOptions::SSPStrong)
1773       B.addAttribute(llvm::Attribute::StackProtectStrong);
1774     else if (LangOpts.getStackProtector() == LangOptions::SSPReq)
1775       B.addAttribute(llvm::Attribute::StackProtectReq);
1776   }
1777 
1778   if (!D) {
1779     // If we don't have a declaration to control inlining, the function isn't
1780     // explicitly marked as alwaysinline for semantic reasons, and inlining is
1781     // disabled, mark the function as noinline.
1782     if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline) &&
1783         CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining)
1784       B.addAttribute(llvm::Attribute::NoInline);
1785 
1786     F->addFnAttrs(B);
1787     return;
1788   }
1789 
1790   // Track whether we need to add the optnone LLVM attribute,
1791   // starting with the default for this optimization level.
1792   bool ShouldAddOptNone =
1793       !CodeGenOpts.DisableO0ImplyOptNone && CodeGenOpts.OptimizationLevel == 0;
1794   // We can't add optnone in the following cases, it won't pass the verifier.
1795   ShouldAddOptNone &= !D->hasAttr<MinSizeAttr>();
1796   ShouldAddOptNone &= !D->hasAttr<AlwaysInlineAttr>();
1797 
1798   // Add optnone, but do so only if the function isn't always_inline.
1799   if ((ShouldAddOptNone || D->hasAttr<OptimizeNoneAttr>()) &&
1800       !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) {
1801     B.addAttribute(llvm::Attribute::OptimizeNone);
1802 
1803     // OptimizeNone implies noinline; we should not be inlining such functions.
1804     B.addAttribute(llvm::Attribute::NoInline);
1805 
1806     // We still need to handle naked functions even though optnone subsumes
1807     // much of their semantics.
1808     if (D->hasAttr<NakedAttr>())
1809       B.addAttribute(llvm::Attribute::Naked);
1810 
1811     // OptimizeNone wins over OptimizeForSize and MinSize.
1812     F->removeFnAttr(llvm::Attribute::OptimizeForSize);
1813     F->removeFnAttr(llvm::Attribute::MinSize);
1814   } else if (D->hasAttr<NakedAttr>()) {
1815     // Naked implies noinline: we should not be inlining such functions.
1816     B.addAttribute(llvm::Attribute::Naked);
1817     B.addAttribute(llvm::Attribute::NoInline);
1818   } else if (D->hasAttr<NoDuplicateAttr>()) {
1819     B.addAttribute(llvm::Attribute::NoDuplicate);
1820   } else if (D->hasAttr<NoInlineAttr>() && !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) {
1821     // Add noinline if the function isn't always_inline.
1822     B.addAttribute(llvm::Attribute::NoInline);
1823   } else if (D->hasAttr<AlwaysInlineAttr>() &&
1824              !F->hasFnAttribute(llvm::Attribute::NoInline)) {
1825     // (noinline wins over always_inline, and we can't specify both in IR)
1826     B.addAttribute(llvm::Attribute::AlwaysInline);
1827   } else if (CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining) {
1828     // If we're not inlining, then force everything that isn't always_inline to
1829     // carry an explicit noinline attribute.
1830     if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline))
1831       B.addAttribute(llvm::Attribute::NoInline);
1832   } else {
1833     // Otherwise, propagate the inline hint attribute and potentially use its
1834     // absence to mark things as noinline.
1835     if (auto *FD = dyn_cast<FunctionDecl>(D)) {
1836       // Search function and template pattern redeclarations for inline.
1837       auto CheckForInline = [](const FunctionDecl *FD) {
1838         auto CheckRedeclForInline = [](const FunctionDecl *Redecl) {
1839           return Redecl->isInlineSpecified();
1840         };
1841         if (any_of(FD->redecls(), CheckRedeclForInline))
1842           return true;
1843         const FunctionDecl *Pattern = FD->getTemplateInstantiationPattern();
1844         if (!Pattern)
1845           return false;
1846         return any_of(Pattern->redecls(), CheckRedeclForInline);
1847       };
1848       if (CheckForInline(FD)) {
1849         B.addAttribute(llvm::Attribute::InlineHint);
1850       } else if (CodeGenOpts.getInlining() ==
1851                      CodeGenOptions::OnlyHintInlining &&
1852                  !FD->isInlined() &&
1853                  !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) {
1854         B.addAttribute(llvm::Attribute::NoInline);
1855       }
1856     }
1857   }
1858 
1859   // Add other optimization related attributes if we are optimizing this
1860   // function.
1861   if (!D->hasAttr<OptimizeNoneAttr>()) {
1862     if (D->hasAttr<ColdAttr>()) {
1863       if (!ShouldAddOptNone)
1864         B.addAttribute(llvm::Attribute::OptimizeForSize);
1865       B.addAttribute(llvm::Attribute::Cold);
1866     }
1867     if (D->hasAttr<HotAttr>())
1868       B.addAttribute(llvm::Attribute::Hot);
1869     if (D->hasAttr<MinSizeAttr>())
1870       B.addAttribute(llvm::Attribute::MinSize);
1871   }
1872 
1873   F->addFnAttrs(B);
1874 
1875   unsigned alignment = D->getMaxAlignment() / Context.getCharWidth();
1876   if (alignment)
1877     F->setAlignment(llvm::Align(alignment));
1878 
1879   if (!D->hasAttr<AlignedAttr>())
1880     if (LangOpts.FunctionAlignment)
1881       F->setAlignment(llvm::Align(1ull << LangOpts.FunctionAlignment));
1882 
1883   // Some C++ ABIs require 2-byte alignment for member functions, in order to
1884   // reserve a bit for differentiating between virtual and non-virtual member
1885   // functions. If the current target's C++ ABI requires this and this is a
1886   // member function, set its alignment accordingly.
1887   if (getTarget().getCXXABI().areMemberFunctionsAligned()) {
1888     if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D))
1889       F->setAlignment(llvm::Align(2));
1890   }
1891 
1892   // In the cross-dso CFI mode with canonical jump tables, we want !type
1893   // attributes on definitions only.
1894   if (CodeGenOpts.SanitizeCfiCrossDso &&
1895       CodeGenOpts.SanitizeCfiCanonicalJumpTables) {
1896     if (auto *FD = dyn_cast<FunctionDecl>(D)) {
1897       // Skip available_externally functions. They won't be codegen'ed in the
1898       // current module anyway.
1899       if (getContext().GetGVALinkageForFunction(FD) != GVA_AvailableExternally)
1900         CreateFunctionTypeMetadataForIcall(FD, F);
1901     }
1902   }
1903 
1904   // Emit type metadata on member functions for member function pointer checks.
1905   // These are only ever necessary on definitions; we're guaranteed that the
1906   // definition will be present in the LTO unit as a result of LTO visibility.
1907   auto *MD = dyn_cast<CXXMethodDecl>(D);
1908   if (MD && requiresMemberFunctionPointerTypeMetadata(*this, MD)) {
1909     for (const CXXRecordDecl *Base : getMostBaseClasses(MD->getParent())) {
1910       llvm::Metadata *Id =
1911           CreateMetadataIdentifierForType(Context.getMemberPointerType(
1912               MD->getType(), Context.getRecordType(Base).getTypePtr()));
1913       F->addTypeMetadata(0, Id);
1914     }
1915   }
1916 }
1917 
1918 void CodeGenModule::setLLVMFunctionFEnvAttributes(const FunctionDecl *D,
1919                                                   llvm::Function *F) {
1920   if (D->hasAttr<StrictFPAttr>()) {
1921     llvm::AttrBuilder FuncAttrs;
1922     FuncAttrs.addAttribute("strictfp");
1923     F->addFnAttrs(FuncAttrs);
1924   }
1925 }
1926 
1927 void CodeGenModule::SetCommonAttributes(GlobalDecl GD, llvm::GlobalValue *GV) {
1928   const Decl *D = GD.getDecl();
1929   if (dyn_cast_or_null<NamedDecl>(D))
1930     setGVProperties(GV, GD);
1931   else
1932     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
1933 
1934   if (D && D->hasAttr<UsedAttr>())
1935     addUsedOrCompilerUsedGlobal(GV);
1936 
1937   if (CodeGenOpts.KeepStaticConsts && D && isa<VarDecl>(D)) {
1938     const auto *VD = cast<VarDecl>(D);
1939     if (VD->getType().isConstQualified() &&
1940         VD->getStorageDuration() == SD_Static)
1941       addUsedOrCompilerUsedGlobal(GV);
1942   }
1943 }
1944 
1945 bool CodeGenModule::GetCPUAndFeaturesAttributes(GlobalDecl GD,
1946                                                 llvm::AttrBuilder &Attrs) {
1947   // Add target-cpu and target-features attributes to functions. If
1948   // we have a decl for the function and it has a target attribute then
1949   // parse that and add it to the feature set.
1950   StringRef TargetCPU = getTarget().getTargetOpts().CPU;
1951   StringRef TuneCPU = getTarget().getTargetOpts().TuneCPU;
1952   std::vector<std::string> Features;
1953   const auto *FD = dyn_cast_or_null<FunctionDecl>(GD.getDecl());
1954   FD = FD ? FD->getMostRecentDecl() : FD;
1955   const auto *TD = FD ? FD->getAttr<TargetAttr>() : nullptr;
1956   const auto *SD = FD ? FD->getAttr<CPUSpecificAttr>() : nullptr;
1957   bool AddedAttr = false;
1958   if (TD || SD) {
1959     llvm::StringMap<bool> FeatureMap;
1960     getContext().getFunctionFeatureMap(FeatureMap, GD);
1961 
1962     // Produce the canonical string for this set of features.
1963     for (const llvm::StringMap<bool>::value_type &Entry : FeatureMap)
1964       Features.push_back((Entry.getValue() ? "+" : "-") + Entry.getKey().str());
1965 
1966     // Now add the target-cpu and target-features to the function.
1967     // While we populated the feature map above, we still need to
1968     // get and parse the target attribute so we can get the cpu for
1969     // the function.
1970     if (TD) {
1971       ParsedTargetAttr ParsedAttr = TD->parse();
1972       if (!ParsedAttr.Architecture.empty() &&
1973           getTarget().isValidCPUName(ParsedAttr.Architecture)) {
1974         TargetCPU = ParsedAttr.Architecture;
1975         TuneCPU = ""; // Clear the tune CPU.
1976       }
1977       if (!ParsedAttr.Tune.empty() &&
1978           getTarget().isValidCPUName(ParsedAttr.Tune))
1979         TuneCPU = ParsedAttr.Tune;
1980     }
1981   } else {
1982     // Otherwise just add the existing target cpu and target features to the
1983     // function.
1984     Features = getTarget().getTargetOpts().Features;
1985   }
1986 
1987   if (!TargetCPU.empty()) {
1988     Attrs.addAttribute("target-cpu", TargetCPU);
1989     AddedAttr = true;
1990   }
1991   if (!TuneCPU.empty()) {
1992     Attrs.addAttribute("tune-cpu", TuneCPU);
1993     AddedAttr = true;
1994   }
1995   if (!Features.empty()) {
1996     llvm::sort(Features);
1997     Attrs.addAttribute("target-features", llvm::join(Features, ","));
1998     AddedAttr = true;
1999   }
2000 
2001   return AddedAttr;
2002 }
2003 
2004 void CodeGenModule::setNonAliasAttributes(GlobalDecl GD,
2005                                           llvm::GlobalObject *GO) {
2006   const Decl *D = GD.getDecl();
2007   SetCommonAttributes(GD, GO);
2008 
2009   if (D) {
2010     if (auto *GV = dyn_cast<llvm::GlobalVariable>(GO)) {
2011       if (D->hasAttr<RetainAttr>())
2012         addUsedGlobal(GV);
2013       if (auto *SA = D->getAttr<PragmaClangBSSSectionAttr>())
2014         GV->addAttribute("bss-section", SA->getName());
2015       if (auto *SA = D->getAttr<PragmaClangDataSectionAttr>())
2016         GV->addAttribute("data-section", SA->getName());
2017       if (auto *SA = D->getAttr<PragmaClangRodataSectionAttr>())
2018         GV->addAttribute("rodata-section", SA->getName());
2019       if (auto *SA = D->getAttr<PragmaClangRelroSectionAttr>())
2020         GV->addAttribute("relro-section", SA->getName());
2021     }
2022 
2023     if (auto *F = dyn_cast<llvm::Function>(GO)) {
2024       if (D->hasAttr<RetainAttr>())
2025         addUsedGlobal(F);
2026       if (auto *SA = D->getAttr<PragmaClangTextSectionAttr>())
2027         if (!D->getAttr<SectionAttr>())
2028           F->addFnAttr("implicit-section-name", SA->getName());
2029 
2030       llvm::AttrBuilder Attrs;
2031       if (GetCPUAndFeaturesAttributes(GD, Attrs)) {
2032         // We know that GetCPUAndFeaturesAttributes will always have the
2033         // newest set, since it has the newest possible FunctionDecl, so the
2034         // new ones should replace the old.
2035         llvm::AttrBuilder RemoveAttrs;
2036         RemoveAttrs.addAttribute("target-cpu");
2037         RemoveAttrs.addAttribute("target-features");
2038         RemoveAttrs.addAttribute("tune-cpu");
2039         F->removeFnAttrs(RemoveAttrs);
2040         F->addFnAttrs(Attrs);
2041       }
2042     }
2043 
2044     if (const auto *CSA = D->getAttr<CodeSegAttr>())
2045       GO->setSection(CSA->getName());
2046     else if (const auto *SA = D->getAttr<SectionAttr>())
2047       GO->setSection(SA->getName());
2048   }
2049 
2050   getTargetCodeGenInfo().setTargetAttributes(D, GO, *this);
2051 }
2052 
2053 void CodeGenModule::SetInternalFunctionAttributes(GlobalDecl GD,
2054                                                   llvm::Function *F,
2055                                                   const CGFunctionInfo &FI) {
2056   const Decl *D = GD.getDecl();
2057   SetLLVMFunctionAttributes(GD, FI, F, /*IsThunk=*/false);
2058   SetLLVMFunctionAttributesForDefinition(D, F);
2059 
2060   F->setLinkage(llvm::Function::InternalLinkage);
2061 
2062   setNonAliasAttributes(GD, F);
2063 }
2064 
2065 static void setLinkageForGV(llvm::GlobalValue *GV, const NamedDecl *ND) {
2066   // Set linkage and visibility in case we never see a definition.
2067   LinkageInfo LV = ND->getLinkageAndVisibility();
2068   // Don't set internal linkage on declarations.
2069   // "extern_weak" is overloaded in LLVM; we probably should have
2070   // separate linkage types for this.
2071   if (isExternallyVisible(LV.getLinkage()) &&
2072       (ND->hasAttr<WeakAttr>() || ND->isWeakImported()))
2073     GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage);
2074 }
2075 
2076 void CodeGenModule::CreateFunctionTypeMetadataForIcall(const FunctionDecl *FD,
2077                                                        llvm::Function *F) {
2078   // Only if we are checking indirect calls.
2079   if (!LangOpts.Sanitize.has(SanitizerKind::CFIICall))
2080     return;
2081 
2082   // Non-static class methods are handled via vtable or member function pointer
2083   // checks elsewhere.
2084   if (isa<CXXMethodDecl>(FD) && !cast<CXXMethodDecl>(FD)->isStatic())
2085     return;
2086 
2087   llvm::Metadata *MD = CreateMetadataIdentifierForType(FD->getType());
2088   F->addTypeMetadata(0, MD);
2089   F->addTypeMetadata(0, CreateMetadataIdentifierGeneralized(FD->getType()));
2090 
2091   // Emit a hash-based bit set entry for cross-DSO calls.
2092   if (CodeGenOpts.SanitizeCfiCrossDso)
2093     if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD))
2094       F->addTypeMetadata(0, llvm::ConstantAsMetadata::get(CrossDsoTypeId));
2095 }
2096 
2097 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD, llvm::Function *F,
2098                                           bool IsIncompleteFunction,
2099                                           bool IsThunk) {
2100 
2101   if (llvm::Intrinsic::ID IID = F->getIntrinsicID()) {
2102     // If this is an intrinsic function, set the function's attributes
2103     // to the intrinsic's attributes.
2104     F->setAttributes(llvm::Intrinsic::getAttributes(getLLVMContext(), IID));
2105     return;
2106   }
2107 
2108   const auto *FD = cast<FunctionDecl>(GD.getDecl());
2109 
2110   if (!IsIncompleteFunction)
2111     SetLLVMFunctionAttributes(GD, getTypes().arrangeGlobalDeclaration(GD), F,
2112                               IsThunk);
2113 
2114   // Add the Returned attribute for "this", except for iOS 5 and earlier
2115   // where substantial code, including the libstdc++ dylib, was compiled with
2116   // GCC and does not actually return "this".
2117   if (!IsThunk && getCXXABI().HasThisReturn(GD) &&
2118       !(getTriple().isiOS() && getTriple().isOSVersionLT(6))) {
2119     assert(!F->arg_empty() &&
2120            F->arg_begin()->getType()
2121              ->canLosslesslyBitCastTo(F->getReturnType()) &&
2122            "unexpected this return");
2123     F->addParamAttr(0, llvm::Attribute::Returned);
2124   }
2125 
2126   // Only a few attributes are set on declarations; these may later be
2127   // overridden by a definition.
2128 
2129   setLinkageForGV(F, FD);
2130   setGVProperties(F, FD);
2131 
2132   // Setup target-specific attributes.
2133   if (!IsIncompleteFunction && F->isDeclaration())
2134     getTargetCodeGenInfo().setTargetAttributes(FD, F, *this);
2135 
2136   if (const auto *CSA = FD->getAttr<CodeSegAttr>())
2137     F->setSection(CSA->getName());
2138   else if (const auto *SA = FD->getAttr<SectionAttr>())
2139      F->setSection(SA->getName());
2140 
2141   if (FD->hasAttr<ErrorAttr>())
2142     F->addFnAttr("dontcall");
2143 
2144   // If we plan on emitting this inline builtin, we can't treat it as a builtin.
2145   if (FD->isInlineBuiltinDeclaration()) {
2146     const FunctionDecl *FDBody;
2147     bool HasBody = FD->hasBody(FDBody);
2148     (void)HasBody;
2149     assert(HasBody && "Inline builtin declarations should always have an "
2150                       "available body!");
2151     if (shouldEmitFunction(FDBody))
2152       F->addFnAttr(llvm::Attribute::NoBuiltin);
2153   }
2154 
2155   if (FD->isReplaceableGlobalAllocationFunction()) {
2156     // A replaceable global allocation function does not act like a builtin by
2157     // default, only if it is invoked by a new-expression or delete-expression.
2158     F->addFnAttr(llvm::Attribute::NoBuiltin);
2159   }
2160 
2161   if (isa<CXXConstructorDecl>(FD) || isa<CXXDestructorDecl>(FD))
2162     F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
2163   else if (const auto *MD = dyn_cast<CXXMethodDecl>(FD))
2164     if (MD->isVirtual())
2165       F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
2166 
2167   // Don't emit entries for function declarations in the cross-DSO mode. This
2168   // is handled with better precision by the receiving DSO. But if jump tables
2169   // are non-canonical then we need type metadata in order to produce the local
2170   // jump table.
2171   if (!CodeGenOpts.SanitizeCfiCrossDso ||
2172       !CodeGenOpts.SanitizeCfiCanonicalJumpTables)
2173     CreateFunctionTypeMetadataForIcall(FD, F);
2174 
2175   if (getLangOpts().OpenMP && FD->hasAttr<OMPDeclareSimdDeclAttr>())
2176     getOpenMPRuntime().emitDeclareSimdFunction(FD, F);
2177 
2178   if (const auto *CB = FD->getAttr<CallbackAttr>()) {
2179     // Annotate the callback behavior as metadata:
2180     //  - The callback callee (as argument number).
2181     //  - The callback payloads (as argument numbers).
2182     llvm::LLVMContext &Ctx = F->getContext();
2183     llvm::MDBuilder MDB(Ctx);
2184 
2185     // The payload indices are all but the first one in the encoding. The first
2186     // identifies the callback callee.
2187     int CalleeIdx = *CB->encoding_begin();
2188     ArrayRef<int> PayloadIndices(CB->encoding_begin() + 1, CB->encoding_end());
2189     F->addMetadata(llvm::LLVMContext::MD_callback,
2190                    *llvm::MDNode::get(Ctx, {MDB.createCallbackEncoding(
2191                                                CalleeIdx, PayloadIndices,
2192                                                /* VarArgsArePassed */ false)}));
2193   }
2194 }
2195 
2196 void CodeGenModule::addUsedGlobal(llvm::GlobalValue *GV) {
2197   assert((isa<llvm::Function>(GV) || !GV->isDeclaration()) &&
2198          "Only globals with definition can force usage.");
2199   LLVMUsed.emplace_back(GV);
2200 }
2201 
2202 void CodeGenModule::addCompilerUsedGlobal(llvm::GlobalValue *GV) {
2203   assert(!GV->isDeclaration() &&
2204          "Only globals with definition can force usage.");
2205   LLVMCompilerUsed.emplace_back(GV);
2206 }
2207 
2208 void CodeGenModule::addUsedOrCompilerUsedGlobal(llvm::GlobalValue *GV) {
2209   assert((isa<llvm::Function>(GV) || !GV->isDeclaration()) &&
2210          "Only globals with definition can force usage.");
2211   if (getTriple().isOSBinFormatELF())
2212     LLVMCompilerUsed.emplace_back(GV);
2213   else
2214     LLVMUsed.emplace_back(GV);
2215 }
2216 
2217 static void emitUsed(CodeGenModule &CGM, StringRef Name,
2218                      std::vector<llvm::WeakTrackingVH> &List) {
2219   // Don't create llvm.used if there is no need.
2220   if (List.empty())
2221     return;
2222 
2223   // Convert List to what ConstantArray needs.
2224   SmallVector<llvm::Constant*, 8> UsedArray;
2225   UsedArray.resize(List.size());
2226   for (unsigned i = 0, e = List.size(); i != e; ++i) {
2227     UsedArray[i] =
2228         llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(
2229             cast<llvm::Constant>(&*List[i]), CGM.Int8PtrTy);
2230   }
2231 
2232   if (UsedArray.empty())
2233     return;
2234   llvm::ArrayType *ATy = llvm::ArrayType::get(CGM.Int8PtrTy, UsedArray.size());
2235 
2236   auto *GV = new llvm::GlobalVariable(
2237       CGM.getModule(), ATy, false, llvm::GlobalValue::AppendingLinkage,
2238       llvm::ConstantArray::get(ATy, UsedArray), Name);
2239 
2240   GV->setSection("llvm.metadata");
2241 }
2242 
2243 void CodeGenModule::emitLLVMUsed() {
2244   emitUsed(*this, "llvm.used", LLVMUsed);
2245   emitUsed(*this, "llvm.compiler.used", LLVMCompilerUsed);
2246 }
2247 
2248 void CodeGenModule::AppendLinkerOptions(StringRef Opts) {
2249   auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opts);
2250   LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
2251 }
2252 
2253 void CodeGenModule::AddDetectMismatch(StringRef Name, StringRef Value) {
2254   llvm::SmallString<32> Opt;
2255   getTargetCodeGenInfo().getDetectMismatchOption(Name, Value, Opt);
2256   if (Opt.empty())
2257     return;
2258   auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt);
2259   LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
2260 }
2261 
2262 void CodeGenModule::AddDependentLib(StringRef Lib) {
2263   auto &C = getLLVMContext();
2264   if (getTarget().getTriple().isOSBinFormatELF()) {
2265       ELFDependentLibraries.push_back(
2266         llvm::MDNode::get(C, llvm::MDString::get(C, Lib)));
2267     return;
2268   }
2269 
2270   llvm::SmallString<24> Opt;
2271   getTargetCodeGenInfo().getDependentLibraryOption(Lib, Opt);
2272   auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt);
2273   LinkerOptionsMetadata.push_back(llvm::MDNode::get(C, MDOpts));
2274 }
2275 
2276 /// Add link options implied by the given module, including modules
2277 /// it depends on, using a postorder walk.
2278 static void addLinkOptionsPostorder(CodeGenModule &CGM, Module *Mod,
2279                                     SmallVectorImpl<llvm::MDNode *> &Metadata,
2280                                     llvm::SmallPtrSet<Module *, 16> &Visited) {
2281   // Import this module's parent.
2282   if (Mod->Parent && Visited.insert(Mod->Parent).second) {
2283     addLinkOptionsPostorder(CGM, Mod->Parent, Metadata, Visited);
2284   }
2285 
2286   // Import this module's dependencies.
2287   for (unsigned I = Mod->Imports.size(); I > 0; --I) {
2288     if (Visited.insert(Mod->Imports[I - 1]).second)
2289       addLinkOptionsPostorder(CGM, Mod->Imports[I-1], Metadata, Visited);
2290   }
2291 
2292   // Add linker options to link against the libraries/frameworks
2293   // described by this module.
2294   llvm::LLVMContext &Context = CGM.getLLVMContext();
2295   bool IsELF = CGM.getTarget().getTriple().isOSBinFormatELF();
2296 
2297   // For modules that use export_as for linking, use that module
2298   // name instead.
2299   if (Mod->UseExportAsModuleLinkName)
2300     return;
2301 
2302   for (unsigned I = Mod->LinkLibraries.size(); I > 0; --I) {
2303     // Link against a framework.  Frameworks are currently Darwin only, so we
2304     // don't to ask TargetCodeGenInfo for the spelling of the linker option.
2305     if (Mod->LinkLibraries[I-1].IsFramework) {
2306       llvm::Metadata *Args[2] = {
2307           llvm::MDString::get(Context, "-framework"),
2308           llvm::MDString::get(Context, Mod->LinkLibraries[I - 1].Library)};
2309 
2310       Metadata.push_back(llvm::MDNode::get(Context, Args));
2311       continue;
2312     }
2313 
2314     // Link against a library.
2315     if (IsELF) {
2316       llvm::Metadata *Args[2] = {
2317           llvm::MDString::get(Context, "lib"),
2318           llvm::MDString::get(Context, Mod->LinkLibraries[I - 1].Library),
2319       };
2320       Metadata.push_back(llvm::MDNode::get(Context, Args));
2321     } else {
2322       llvm::SmallString<24> Opt;
2323       CGM.getTargetCodeGenInfo().getDependentLibraryOption(
2324           Mod->LinkLibraries[I - 1].Library, Opt);
2325       auto *OptString = llvm::MDString::get(Context, Opt);
2326       Metadata.push_back(llvm::MDNode::get(Context, OptString));
2327     }
2328   }
2329 }
2330 
2331 void CodeGenModule::EmitModuleLinkOptions() {
2332   // Collect the set of all of the modules we want to visit to emit link
2333   // options, which is essentially the imported modules and all of their
2334   // non-explicit child modules.
2335   llvm::SetVector<clang::Module *> LinkModules;
2336   llvm::SmallPtrSet<clang::Module *, 16> Visited;
2337   SmallVector<clang::Module *, 16> Stack;
2338 
2339   // Seed the stack with imported modules.
2340   for (Module *M : ImportedModules) {
2341     // Do not add any link flags when an implementation TU of a module imports
2342     // a header of that same module.
2343     if (M->getTopLevelModuleName() == getLangOpts().CurrentModule &&
2344         !getLangOpts().isCompilingModule())
2345       continue;
2346     if (Visited.insert(M).second)
2347       Stack.push_back(M);
2348   }
2349 
2350   // Find all of the modules to import, making a little effort to prune
2351   // non-leaf modules.
2352   while (!Stack.empty()) {
2353     clang::Module *Mod = Stack.pop_back_val();
2354 
2355     bool AnyChildren = false;
2356 
2357     // Visit the submodules of this module.
2358     for (const auto &SM : Mod->submodules()) {
2359       // Skip explicit children; they need to be explicitly imported to be
2360       // linked against.
2361       if (SM->IsExplicit)
2362         continue;
2363 
2364       if (Visited.insert(SM).second) {
2365         Stack.push_back(SM);
2366         AnyChildren = true;
2367       }
2368     }
2369 
2370     // We didn't find any children, so add this module to the list of
2371     // modules to link against.
2372     if (!AnyChildren) {
2373       LinkModules.insert(Mod);
2374     }
2375   }
2376 
2377   // Add link options for all of the imported modules in reverse topological
2378   // order.  We don't do anything to try to order import link flags with respect
2379   // to linker options inserted by things like #pragma comment().
2380   SmallVector<llvm::MDNode *, 16> MetadataArgs;
2381   Visited.clear();
2382   for (Module *M : LinkModules)
2383     if (Visited.insert(M).second)
2384       addLinkOptionsPostorder(*this, M, MetadataArgs, Visited);
2385   std::reverse(MetadataArgs.begin(), MetadataArgs.end());
2386   LinkerOptionsMetadata.append(MetadataArgs.begin(), MetadataArgs.end());
2387 
2388   // Add the linker options metadata flag.
2389   auto *NMD = getModule().getOrInsertNamedMetadata("llvm.linker.options");
2390   for (auto *MD : LinkerOptionsMetadata)
2391     NMD->addOperand(MD);
2392 }
2393 
2394 void CodeGenModule::EmitDeferred() {
2395   // Emit deferred declare target declarations.
2396   if (getLangOpts().OpenMP && !getLangOpts().OpenMPSimd)
2397     getOpenMPRuntime().emitDeferredTargetDecls();
2398 
2399   // Emit code for any potentially referenced deferred decls.  Since a
2400   // previously unused static decl may become used during the generation of code
2401   // for a static function, iterate until no changes are made.
2402 
2403   if (!DeferredVTables.empty()) {
2404     EmitDeferredVTables();
2405 
2406     // Emitting a vtable doesn't directly cause more vtables to
2407     // become deferred, although it can cause functions to be
2408     // emitted that then need those vtables.
2409     assert(DeferredVTables.empty());
2410   }
2411 
2412   // Emit CUDA/HIP static device variables referenced by host code only.
2413   // Note we should not clear CUDADeviceVarODRUsedByHost since it is still
2414   // needed for further handling.
2415   if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice)
2416     for (const auto *V : getContext().CUDADeviceVarODRUsedByHost)
2417       DeferredDeclsToEmit.push_back(V);
2418 
2419   // Stop if we're out of both deferred vtables and deferred declarations.
2420   if (DeferredDeclsToEmit.empty())
2421     return;
2422 
2423   // Grab the list of decls to emit. If EmitGlobalDefinition schedules more
2424   // work, it will not interfere with this.
2425   std::vector<GlobalDecl> CurDeclsToEmit;
2426   CurDeclsToEmit.swap(DeferredDeclsToEmit);
2427 
2428   for (GlobalDecl &D : CurDeclsToEmit) {
2429     // We should call GetAddrOfGlobal with IsForDefinition set to true in order
2430     // to get GlobalValue with exactly the type we need, not something that
2431     // might had been created for another decl with the same mangled name but
2432     // different type.
2433     llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>(
2434         GetAddrOfGlobal(D, ForDefinition));
2435 
2436     // In case of different address spaces, we may still get a cast, even with
2437     // IsForDefinition equal to true. Query mangled names table to get
2438     // GlobalValue.
2439     if (!GV)
2440       GV = GetGlobalValue(getMangledName(D));
2441 
2442     // Make sure GetGlobalValue returned non-null.
2443     assert(GV);
2444 
2445     // Check to see if we've already emitted this.  This is necessary
2446     // for a couple of reasons: first, decls can end up in the
2447     // deferred-decls queue multiple times, and second, decls can end
2448     // up with definitions in unusual ways (e.g. by an extern inline
2449     // function acquiring a strong function redefinition).  Just
2450     // ignore these cases.
2451     if (!GV->isDeclaration())
2452       continue;
2453 
2454     // If this is OpenMP, check if it is legal to emit this global normally.
2455     if (LangOpts.OpenMP && OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(D))
2456       continue;
2457 
2458     // Otherwise, emit the definition and move on to the next one.
2459     EmitGlobalDefinition(D, GV);
2460 
2461     // If we found out that we need to emit more decls, do that recursively.
2462     // This has the advantage that the decls are emitted in a DFS and related
2463     // ones are close together, which is convenient for testing.
2464     if (!DeferredVTables.empty() || !DeferredDeclsToEmit.empty()) {
2465       EmitDeferred();
2466       assert(DeferredVTables.empty() && DeferredDeclsToEmit.empty());
2467     }
2468   }
2469 }
2470 
2471 void CodeGenModule::EmitVTablesOpportunistically() {
2472   // Try to emit external vtables as available_externally if they have emitted
2473   // all inlined virtual functions.  It runs after EmitDeferred() and therefore
2474   // is not allowed to create new references to things that need to be emitted
2475   // lazily. Note that it also uses fact that we eagerly emitting RTTI.
2476 
2477   assert((OpportunisticVTables.empty() || shouldOpportunisticallyEmitVTables())
2478          && "Only emit opportunistic vtables with optimizations");
2479 
2480   for (const CXXRecordDecl *RD : OpportunisticVTables) {
2481     assert(getVTables().isVTableExternal(RD) &&
2482            "This queue should only contain external vtables");
2483     if (getCXXABI().canSpeculativelyEmitVTable(RD))
2484       VTables.GenerateClassData(RD);
2485   }
2486   OpportunisticVTables.clear();
2487 }
2488 
2489 void CodeGenModule::EmitGlobalAnnotations() {
2490   if (Annotations.empty())
2491     return;
2492 
2493   // Create a new global variable for the ConstantStruct in the Module.
2494   llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get(
2495     Annotations[0]->getType(), Annotations.size()), Annotations);
2496   auto *gv = new llvm::GlobalVariable(getModule(), Array->getType(), false,
2497                                       llvm::GlobalValue::AppendingLinkage,
2498                                       Array, "llvm.global.annotations");
2499   gv->setSection(AnnotationSection);
2500 }
2501 
2502 llvm::Constant *CodeGenModule::EmitAnnotationString(StringRef Str) {
2503   llvm::Constant *&AStr = AnnotationStrings[Str];
2504   if (AStr)
2505     return AStr;
2506 
2507   // Not found yet, create a new global.
2508   llvm::Constant *s = llvm::ConstantDataArray::getString(getLLVMContext(), Str);
2509   auto *gv =
2510       new llvm::GlobalVariable(getModule(), s->getType(), true,
2511                                llvm::GlobalValue::PrivateLinkage, s, ".str");
2512   gv->setSection(AnnotationSection);
2513   gv->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
2514   AStr = gv;
2515   return gv;
2516 }
2517 
2518 llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) {
2519   SourceManager &SM = getContext().getSourceManager();
2520   PresumedLoc PLoc = SM.getPresumedLoc(Loc);
2521   if (PLoc.isValid())
2522     return EmitAnnotationString(PLoc.getFilename());
2523   return EmitAnnotationString(SM.getBufferName(Loc));
2524 }
2525 
2526 llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) {
2527   SourceManager &SM = getContext().getSourceManager();
2528   PresumedLoc PLoc = SM.getPresumedLoc(L);
2529   unsigned LineNo = PLoc.isValid() ? PLoc.getLine() :
2530     SM.getExpansionLineNumber(L);
2531   return llvm::ConstantInt::get(Int32Ty, LineNo);
2532 }
2533 
2534 llvm::Constant *CodeGenModule::EmitAnnotationArgs(const AnnotateAttr *Attr) {
2535   ArrayRef<Expr *> Exprs = {Attr->args_begin(), Attr->args_size()};
2536   if (Exprs.empty())
2537     return llvm::ConstantPointerNull::get(GlobalsInt8PtrTy);
2538 
2539   llvm::FoldingSetNodeID ID;
2540   for (Expr *E : Exprs) {
2541     ID.Add(cast<clang::ConstantExpr>(E)->getAPValueResult());
2542   }
2543   llvm::Constant *&Lookup = AnnotationArgs[ID.ComputeHash()];
2544   if (Lookup)
2545     return Lookup;
2546 
2547   llvm::SmallVector<llvm::Constant *, 4> LLVMArgs;
2548   LLVMArgs.reserve(Exprs.size());
2549   ConstantEmitter ConstEmiter(*this);
2550   llvm::transform(Exprs, std::back_inserter(LLVMArgs), [&](const Expr *E) {
2551     const auto *CE = cast<clang::ConstantExpr>(E);
2552     return ConstEmiter.emitAbstract(CE->getBeginLoc(), CE->getAPValueResult(),
2553                                     CE->getType());
2554   });
2555   auto *Struct = llvm::ConstantStruct::getAnon(LLVMArgs);
2556   auto *GV = new llvm::GlobalVariable(getModule(), Struct->getType(), true,
2557                                       llvm::GlobalValue::PrivateLinkage, Struct,
2558                                       ".args");
2559   GV->setSection(AnnotationSection);
2560   GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
2561   auto *Bitcasted = llvm::ConstantExpr::getBitCast(GV, GlobalsInt8PtrTy);
2562 
2563   Lookup = Bitcasted;
2564   return Bitcasted;
2565 }
2566 
2567 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV,
2568                                                 const AnnotateAttr *AA,
2569                                                 SourceLocation L) {
2570   // Get the globals for file name, annotation, and the line number.
2571   llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()),
2572                  *UnitGV = EmitAnnotationUnit(L),
2573                  *LineNoCst = EmitAnnotationLineNo(L),
2574                  *Args = EmitAnnotationArgs(AA);
2575 
2576   llvm::Constant *GVInGlobalsAS = GV;
2577   if (GV->getAddressSpace() !=
2578       getDataLayout().getDefaultGlobalsAddressSpace()) {
2579     GVInGlobalsAS = llvm::ConstantExpr::getAddrSpaceCast(
2580         GV, GV->getValueType()->getPointerTo(
2581                 getDataLayout().getDefaultGlobalsAddressSpace()));
2582   }
2583 
2584   // Create the ConstantStruct for the global annotation.
2585   llvm::Constant *Fields[] = {
2586       llvm::ConstantExpr::getBitCast(GVInGlobalsAS, GlobalsInt8PtrTy),
2587       llvm::ConstantExpr::getBitCast(AnnoGV, GlobalsInt8PtrTy),
2588       llvm::ConstantExpr::getBitCast(UnitGV, GlobalsInt8PtrTy),
2589       LineNoCst,
2590       Args,
2591   };
2592   return llvm::ConstantStruct::getAnon(Fields);
2593 }
2594 
2595 void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D,
2596                                          llvm::GlobalValue *GV) {
2597   assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
2598   // Get the struct elements for these annotations.
2599   for (const auto *I : D->specific_attrs<AnnotateAttr>())
2600     Annotations.push_back(EmitAnnotateAttr(GV, I, D->getLocation()));
2601 }
2602 
2603 bool CodeGenModule::isInNoSanitizeList(SanitizerMask Kind, llvm::Function *Fn,
2604                                        SourceLocation Loc) const {
2605   const auto &NoSanitizeL = getContext().getNoSanitizeList();
2606   // NoSanitize by function name.
2607   if (NoSanitizeL.containsFunction(Kind, Fn->getName()))
2608     return true;
2609   // NoSanitize by location.
2610   if (Loc.isValid())
2611     return NoSanitizeL.containsLocation(Kind, Loc);
2612   // If location is unknown, this may be a compiler-generated function. Assume
2613   // it's located in the main file.
2614   auto &SM = Context.getSourceManager();
2615   if (const auto *MainFile = SM.getFileEntryForID(SM.getMainFileID())) {
2616     return NoSanitizeL.containsFile(Kind, MainFile->getName());
2617   }
2618   return false;
2619 }
2620 
2621 bool CodeGenModule::isInNoSanitizeList(llvm::GlobalVariable *GV,
2622                                        SourceLocation Loc, QualType Ty,
2623                                        StringRef Category) const {
2624   // For now globals can be ignored only in ASan and KASan.
2625   const SanitizerMask EnabledAsanMask =
2626       LangOpts.Sanitize.Mask &
2627       (SanitizerKind::Address | SanitizerKind::KernelAddress |
2628        SanitizerKind::HWAddress | SanitizerKind::KernelHWAddress |
2629        SanitizerKind::MemTag);
2630   if (!EnabledAsanMask)
2631     return false;
2632   const auto &NoSanitizeL = getContext().getNoSanitizeList();
2633   if (NoSanitizeL.containsGlobal(EnabledAsanMask, GV->getName(), Category))
2634     return true;
2635   if (NoSanitizeL.containsLocation(EnabledAsanMask, Loc, Category))
2636     return true;
2637   // Check global type.
2638   if (!Ty.isNull()) {
2639     // Drill down the array types: if global variable of a fixed type is
2640     // not sanitized, we also don't instrument arrays of them.
2641     while (auto AT = dyn_cast<ArrayType>(Ty.getTypePtr()))
2642       Ty = AT->getElementType();
2643     Ty = Ty.getCanonicalType().getUnqualifiedType();
2644     // Only record types (classes, structs etc.) are ignored.
2645     if (Ty->isRecordType()) {
2646       std::string TypeStr = Ty.getAsString(getContext().getPrintingPolicy());
2647       if (NoSanitizeL.containsType(EnabledAsanMask, TypeStr, Category))
2648         return true;
2649     }
2650   }
2651   return false;
2652 }
2653 
2654 bool CodeGenModule::imbueXRayAttrs(llvm::Function *Fn, SourceLocation Loc,
2655                                    StringRef Category) const {
2656   const auto &XRayFilter = getContext().getXRayFilter();
2657   using ImbueAttr = XRayFunctionFilter::ImbueAttribute;
2658   auto Attr = ImbueAttr::NONE;
2659   if (Loc.isValid())
2660     Attr = XRayFilter.shouldImbueLocation(Loc, Category);
2661   if (Attr == ImbueAttr::NONE)
2662     Attr = XRayFilter.shouldImbueFunction(Fn->getName());
2663   switch (Attr) {
2664   case ImbueAttr::NONE:
2665     return false;
2666   case ImbueAttr::ALWAYS:
2667     Fn->addFnAttr("function-instrument", "xray-always");
2668     break;
2669   case ImbueAttr::ALWAYS_ARG1:
2670     Fn->addFnAttr("function-instrument", "xray-always");
2671     Fn->addFnAttr("xray-log-args", "1");
2672     break;
2673   case ImbueAttr::NEVER:
2674     Fn->addFnAttr("function-instrument", "xray-never");
2675     break;
2676   }
2677   return true;
2678 }
2679 
2680 bool CodeGenModule::isProfileInstrExcluded(llvm::Function *Fn,
2681                                            SourceLocation Loc) const {
2682   const auto &ProfileList = getContext().getProfileList();
2683   // If the profile list is empty, then instrument everything.
2684   if (ProfileList.isEmpty())
2685     return false;
2686   CodeGenOptions::ProfileInstrKind Kind = getCodeGenOpts().getProfileInstr();
2687   // First, check the function name.
2688   Optional<bool> V = ProfileList.isFunctionExcluded(Fn->getName(), Kind);
2689   if (V.hasValue())
2690     return *V;
2691   // Next, check the source location.
2692   if (Loc.isValid()) {
2693     Optional<bool> V = ProfileList.isLocationExcluded(Loc, Kind);
2694     if (V.hasValue())
2695       return *V;
2696   }
2697   // If location is unknown, this may be a compiler-generated function. Assume
2698   // it's located in the main file.
2699   auto &SM = Context.getSourceManager();
2700   if (const auto *MainFile = SM.getFileEntryForID(SM.getMainFileID())) {
2701     Optional<bool> V = ProfileList.isFileExcluded(MainFile->getName(), Kind);
2702     if (V.hasValue())
2703       return *V;
2704   }
2705   return ProfileList.getDefault();
2706 }
2707 
2708 bool CodeGenModule::MustBeEmitted(const ValueDecl *Global) {
2709   // Never defer when EmitAllDecls is specified.
2710   if (LangOpts.EmitAllDecls)
2711     return true;
2712 
2713   if (CodeGenOpts.KeepStaticConsts) {
2714     const auto *VD = dyn_cast<VarDecl>(Global);
2715     if (VD && VD->getType().isConstQualified() &&
2716         VD->getStorageDuration() == SD_Static)
2717       return true;
2718   }
2719 
2720   return getContext().DeclMustBeEmitted(Global);
2721 }
2722 
2723 bool CodeGenModule::MayBeEmittedEagerly(const ValueDecl *Global) {
2724   // In OpenMP 5.0 variables and function may be marked as
2725   // device_type(host/nohost) and we should not emit them eagerly unless we sure
2726   // that they must be emitted on the host/device. To be sure we need to have
2727   // seen a declare target with an explicit mentioning of the function, we know
2728   // we have if the level of the declare target attribute is -1. Note that we
2729   // check somewhere else if we should emit this at all.
2730   if (LangOpts.OpenMP >= 50 && !LangOpts.OpenMPSimd) {
2731     llvm::Optional<OMPDeclareTargetDeclAttr *> ActiveAttr =
2732         OMPDeclareTargetDeclAttr::getActiveAttr(Global);
2733     if (!ActiveAttr || (*ActiveAttr)->getLevel() != (unsigned)-1)
2734       return false;
2735   }
2736 
2737   if (const auto *FD = dyn_cast<FunctionDecl>(Global)) {
2738     if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
2739       // Implicit template instantiations may change linkage if they are later
2740       // explicitly instantiated, so they should not be emitted eagerly.
2741       return false;
2742   }
2743   if (const auto *VD = dyn_cast<VarDecl>(Global))
2744     if (Context.getInlineVariableDefinitionKind(VD) ==
2745         ASTContext::InlineVariableDefinitionKind::WeakUnknown)
2746       // A definition of an inline constexpr static data member may change
2747       // linkage later if it's redeclared outside the class.
2748       return false;
2749   // If OpenMP is enabled and threadprivates must be generated like TLS, delay
2750   // codegen for global variables, because they may be marked as threadprivate.
2751   if (LangOpts.OpenMP && LangOpts.OpenMPUseTLS &&
2752       getContext().getTargetInfo().isTLSSupported() && isa<VarDecl>(Global) &&
2753       !isTypeConstant(Global->getType(), false) &&
2754       !OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(Global))
2755     return false;
2756 
2757   return true;
2758 }
2759 
2760 ConstantAddress CodeGenModule::GetAddrOfMSGuidDecl(const MSGuidDecl *GD) {
2761   StringRef Name = getMangledName(GD);
2762 
2763   // The UUID descriptor should be pointer aligned.
2764   CharUnits Alignment = CharUnits::fromQuantity(PointerAlignInBytes);
2765 
2766   // Look for an existing global.
2767   if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name))
2768     return ConstantAddress(GV, Alignment);
2769 
2770   ConstantEmitter Emitter(*this);
2771   llvm::Constant *Init;
2772 
2773   APValue &V = GD->getAsAPValue();
2774   if (!V.isAbsent()) {
2775     // If possible, emit the APValue version of the initializer. In particular,
2776     // this gets the type of the constant right.
2777     Init = Emitter.emitForInitializer(
2778         GD->getAsAPValue(), GD->getType().getAddressSpace(), GD->getType());
2779   } else {
2780     // As a fallback, directly construct the constant.
2781     // FIXME: This may get padding wrong under esoteric struct layout rules.
2782     // MSVC appears to create a complete type 'struct __s_GUID' that it
2783     // presumably uses to represent these constants.
2784     MSGuidDecl::Parts Parts = GD->getParts();
2785     llvm::Constant *Fields[4] = {
2786         llvm::ConstantInt::get(Int32Ty, Parts.Part1),
2787         llvm::ConstantInt::get(Int16Ty, Parts.Part2),
2788         llvm::ConstantInt::get(Int16Ty, Parts.Part3),
2789         llvm::ConstantDataArray::getRaw(
2790             StringRef(reinterpret_cast<char *>(Parts.Part4And5), 8), 8,
2791             Int8Ty)};
2792     Init = llvm::ConstantStruct::getAnon(Fields);
2793   }
2794 
2795   auto *GV = new llvm::GlobalVariable(
2796       getModule(), Init->getType(),
2797       /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name);
2798   if (supportsCOMDAT())
2799     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
2800   setDSOLocal(GV);
2801 
2802   llvm::Constant *Addr = GV;
2803   if (!V.isAbsent()) {
2804     Emitter.finalize(GV);
2805   } else {
2806     llvm::Type *Ty = getTypes().ConvertTypeForMem(GD->getType());
2807     Addr = llvm::ConstantExpr::getBitCast(
2808         GV, Ty->getPointerTo(GV->getAddressSpace()));
2809   }
2810   return ConstantAddress(Addr, Alignment);
2811 }
2812 
2813 ConstantAddress CodeGenModule::GetAddrOfTemplateParamObject(
2814     const TemplateParamObjectDecl *TPO) {
2815   StringRef Name = getMangledName(TPO);
2816   CharUnits Alignment = getNaturalTypeAlignment(TPO->getType());
2817 
2818   if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name))
2819     return ConstantAddress(GV, Alignment);
2820 
2821   ConstantEmitter Emitter(*this);
2822   llvm::Constant *Init = Emitter.emitForInitializer(
2823         TPO->getValue(), TPO->getType().getAddressSpace(), TPO->getType());
2824 
2825   if (!Init) {
2826     ErrorUnsupported(TPO, "template parameter object");
2827     return ConstantAddress::invalid();
2828   }
2829 
2830   auto *GV = new llvm::GlobalVariable(
2831       getModule(), Init->getType(),
2832       /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name);
2833   if (supportsCOMDAT())
2834     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
2835   Emitter.finalize(GV);
2836 
2837   return ConstantAddress(GV, Alignment);
2838 }
2839 
2840 ConstantAddress CodeGenModule::GetWeakRefReference(const ValueDecl *VD) {
2841   const AliasAttr *AA = VD->getAttr<AliasAttr>();
2842   assert(AA && "No alias?");
2843 
2844   CharUnits Alignment = getContext().getDeclAlign(VD);
2845   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType());
2846 
2847   // See if there is already something with the target's name in the module.
2848   llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee());
2849   if (Entry) {
2850     unsigned AS = getContext().getTargetAddressSpace(VD->getType());
2851     auto Ptr = llvm::ConstantExpr::getBitCast(Entry, DeclTy->getPointerTo(AS));
2852     return ConstantAddress(Ptr, Alignment);
2853   }
2854 
2855   llvm::Constant *Aliasee;
2856   if (isa<llvm::FunctionType>(DeclTy))
2857     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy,
2858                                       GlobalDecl(cast<FunctionDecl>(VD)),
2859                                       /*ForVTable=*/false);
2860   else
2861     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), DeclTy, LangAS::Default,
2862                                     nullptr);
2863 
2864   auto *F = cast<llvm::GlobalValue>(Aliasee);
2865   F->setLinkage(llvm::Function::ExternalWeakLinkage);
2866   WeakRefReferences.insert(F);
2867 
2868   return ConstantAddress(Aliasee, Alignment);
2869 }
2870 
2871 void CodeGenModule::EmitGlobal(GlobalDecl GD) {
2872   const auto *Global = cast<ValueDecl>(GD.getDecl());
2873 
2874   // Weak references don't produce any output by themselves.
2875   if (Global->hasAttr<WeakRefAttr>())
2876     return;
2877 
2878   // If this is an alias definition (which otherwise looks like a declaration)
2879   // emit it now.
2880   if (Global->hasAttr<AliasAttr>())
2881     return EmitAliasDefinition(GD);
2882 
2883   // IFunc like an alias whose value is resolved at runtime by calling resolver.
2884   if (Global->hasAttr<IFuncAttr>())
2885     return emitIFuncDefinition(GD);
2886 
2887   // If this is a cpu_dispatch multiversion function, emit the resolver.
2888   if (Global->hasAttr<CPUDispatchAttr>())
2889     return emitCPUDispatchDefinition(GD);
2890 
2891   // If this is CUDA, be selective about which declarations we emit.
2892   if (LangOpts.CUDA) {
2893     if (LangOpts.CUDAIsDevice) {
2894       if (!Global->hasAttr<CUDADeviceAttr>() &&
2895           !Global->hasAttr<CUDAGlobalAttr>() &&
2896           !Global->hasAttr<CUDAConstantAttr>() &&
2897           !Global->hasAttr<CUDASharedAttr>() &&
2898           !Global->getType()->isCUDADeviceBuiltinSurfaceType() &&
2899           !Global->getType()->isCUDADeviceBuiltinTextureType())
2900         return;
2901     } else {
2902       // We need to emit host-side 'shadows' for all global
2903       // device-side variables because the CUDA runtime needs their
2904       // size and host-side address in order to provide access to
2905       // their device-side incarnations.
2906 
2907       // So device-only functions are the only things we skip.
2908       if (isa<FunctionDecl>(Global) && !Global->hasAttr<CUDAHostAttr>() &&
2909           Global->hasAttr<CUDADeviceAttr>())
2910         return;
2911 
2912       assert((isa<FunctionDecl>(Global) || isa<VarDecl>(Global)) &&
2913              "Expected Variable or Function");
2914     }
2915   }
2916 
2917   if (LangOpts.OpenMP) {
2918     // If this is OpenMP, check if it is legal to emit this global normally.
2919     if (OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(GD))
2920       return;
2921     if (auto *DRD = dyn_cast<OMPDeclareReductionDecl>(Global)) {
2922       if (MustBeEmitted(Global))
2923         EmitOMPDeclareReduction(DRD);
2924       return;
2925     } else if (auto *DMD = dyn_cast<OMPDeclareMapperDecl>(Global)) {
2926       if (MustBeEmitted(Global))
2927         EmitOMPDeclareMapper(DMD);
2928       return;
2929     }
2930   }
2931 
2932   // Ignore declarations, they will be emitted on their first use.
2933   if (const auto *FD = dyn_cast<FunctionDecl>(Global)) {
2934     // Forward declarations are emitted lazily on first use.
2935     if (!FD->doesThisDeclarationHaveABody()) {
2936       if (!FD->doesDeclarationForceExternallyVisibleDefinition())
2937         return;
2938 
2939       StringRef MangledName = getMangledName(GD);
2940 
2941       // Compute the function info and LLVM type.
2942       const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
2943       llvm::Type *Ty = getTypes().GetFunctionType(FI);
2944 
2945       GetOrCreateLLVMFunction(MangledName, Ty, GD, /*ForVTable=*/false,
2946                               /*DontDefer=*/false);
2947       return;
2948     }
2949   } else {
2950     const auto *VD = cast<VarDecl>(Global);
2951     assert(VD->isFileVarDecl() && "Cannot emit local var decl as global.");
2952     if (VD->isThisDeclarationADefinition() != VarDecl::Definition &&
2953         !Context.isMSStaticDataMemberInlineDefinition(VD)) {
2954       if (LangOpts.OpenMP) {
2955         // Emit declaration of the must-be-emitted declare target variable.
2956         if (llvm::Optional<OMPDeclareTargetDeclAttr::MapTypeTy> Res =
2957                 OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD)) {
2958           bool UnifiedMemoryEnabled =
2959               getOpenMPRuntime().hasRequiresUnifiedSharedMemory();
2960           if (*Res == OMPDeclareTargetDeclAttr::MT_To &&
2961               !UnifiedMemoryEnabled) {
2962             (void)GetAddrOfGlobalVar(VD);
2963           } else {
2964             assert(((*Res == OMPDeclareTargetDeclAttr::MT_Link) ||
2965                     (*Res == OMPDeclareTargetDeclAttr::MT_To &&
2966                      UnifiedMemoryEnabled)) &&
2967                    "Link clause or to clause with unified memory expected.");
2968             (void)getOpenMPRuntime().getAddrOfDeclareTargetVar(VD);
2969           }
2970 
2971           return;
2972         }
2973       }
2974       // If this declaration may have caused an inline variable definition to
2975       // change linkage, make sure that it's emitted.
2976       if (Context.getInlineVariableDefinitionKind(VD) ==
2977           ASTContext::InlineVariableDefinitionKind::Strong)
2978         GetAddrOfGlobalVar(VD);
2979       return;
2980     }
2981   }
2982 
2983   // Defer code generation to first use when possible, e.g. if this is an inline
2984   // function. If the global must always be emitted, do it eagerly if possible
2985   // to benefit from cache locality.
2986   if (MustBeEmitted(Global) && MayBeEmittedEagerly(Global)) {
2987     // Emit the definition if it can't be deferred.
2988     EmitGlobalDefinition(GD);
2989     return;
2990   }
2991 
2992   // If we're deferring emission of a C++ variable with an
2993   // initializer, remember the order in which it appeared in the file.
2994   if (getLangOpts().CPlusPlus && isa<VarDecl>(Global) &&
2995       cast<VarDecl>(Global)->hasInit()) {
2996     DelayedCXXInitPosition[Global] = CXXGlobalInits.size();
2997     CXXGlobalInits.push_back(nullptr);
2998   }
2999 
3000   StringRef MangledName = getMangledName(GD);
3001   if (GetGlobalValue(MangledName) != nullptr) {
3002     // The value has already been used and should therefore be emitted.
3003     addDeferredDeclToEmit(GD);
3004   } else if (MustBeEmitted(Global)) {
3005     // The value must be emitted, but cannot be emitted eagerly.
3006     assert(!MayBeEmittedEagerly(Global));
3007     addDeferredDeclToEmit(GD);
3008   } else {
3009     // Otherwise, remember that we saw a deferred decl with this name.  The
3010     // first use of the mangled name will cause it to move into
3011     // DeferredDeclsToEmit.
3012     DeferredDecls[MangledName] = GD;
3013   }
3014 }
3015 
3016 // Check if T is a class type with a destructor that's not dllimport.
3017 static bool HasNonDllImportDtor(QualType T) {
3018   if (const auto *RT = T->getBaseElementTypeUnsafe()->getAs<RecordType>())
3019     if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl()))
3020       if (RD->getDestructor() && !RD->getDestructor()->hasAttr<DLLImportAttr>())
3021         return true;
3022 
3023   return false;
3024 }
3025 
3026 namespace {
3027   struct FunctionIsDirectlyRecursive
3028       : public ConstStmtVisitor<FunctionIsDirectlyRecursive, bool> {
3029     const StringRef Name;
3030     const Builtin::Context &BI;
3031     FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C)
3032         : Name(N), BI(C) {}
3033 
3034     bool VisitCallExpr(const CallExpr *E) {
3035       const FunctionDecl *FD = E->getDirectCallee();
3036       if (!FD)
3037         return false;
3038       AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
3039       if (Attr && Name == Attr->getLabel())
3040         return true;
3041       unsigned BuiltinID = FD->getBuiltinID();
3042       if (!BuiltinID || !BI.isLibFunction(BuiltinID))
3043         return false;
3044       StringRef BuiltinName = BI.getName(BuiltinID);
3045       if (BuiltinName.startswith("__builtin_") &&
3046           Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) {
3047         return true;
3048       }
3049       return false;
3050     }
3051 
3052     bool VisitStmt(const Stmt *S) {
3053       for (const Stmt *Child : S->children())
3054         if (Child && this->Visit(Child))
3055           return true;
3056       return false;
3057     }
3058   };
3059 
3060   // Make sure we're not referencing non-imported vars or functions.
3061   struct DLLImportFunctionVisitor
3062       : public RecursiveASTVisitor<DLLImportFunctionVisitor> {
3063     bool SafeToInline = true;
3064 
3065     bool shouldVisitImplicitCode() const { return true; }
3066 
3067     bool VisitVarDecl(VarDecl *VD) {
3068       if (VD->getTLSKind()) {
3069         // A thread-local variable cannot be imported.
3070         SafeToInline = false;
3071         return SafeToInline;
3072       }
3073 
3074       // A variable definition might imply a destructor call.
3075       if (VD->isThisDeclarationADefinition())
3076         SafeToInline = !HasNonDllImportDtor(VD->getType());
3077 
3078       return SafeToInline;
3079     }
3080 
3081     bool VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) {
3082       if (const auto *D = E->getTemporary()->getDestructor())
3083         SafeToInline = D->hasAttr<DLLImportAttr>();
3084       return SafeToInline;
3085     }
3086 
3087     bool VisitDeclRefExpr(DeclRefExpr *E) {
3088       ValueDecl *VD = E->getDecl();
3089       if (isa<FunctionDecl>(VD))
3090         SafeToInline = VD->hasAttr<DLLImportAttr>();
3091       else if (VarDecl *V = dyn_cast<VarDecl>(VD))
3092         SafeToInline = !V->hasGlobalStorage() || V->hasAttr<DLLImportAttr>();
3093       return SafeToInline;
3094     }
3095 
3096     bool VisitCXXConstructExpr(CXXConstructExpr *E) {
3097       SafeToInline = E->getConstructor()->hasAttr<DLLImportAttr>();
3098       return SafeToInline;
3099     }
3100 
3101     bool VisitCXXMemberCallExpr(CXXMemberCallExpr *E) {
3102       CXXMethodDecl *M = E->getMethodDecl();
3103       if (!M) {
3104         // Call through a pointer to member function. This is safe to inline.
3105         SafeToInline = true;
3106       } else {
3107         SafeToInline = M->hasAttr<DLLImportAttr>();
3108       }
3109       return SafeToInline;
3110     }
3111 
3112     bool VisitCXXDeleteExpr(CXXDeleteExpr *E) {
3113       SafeToInline = E->getOperatorDelete()->hasAttr<DLLImportAttr>();
3114       return SafeToInline;
3115     }
3116 
3117     bool VisitCXXNewExpr(CXXNewExpr *E) {
3118       SafeToInline = E->getOperatorNew()->hasAttr<DLLImportAttr>();
3119       return SafeToInline;
3120     }
3121   };
3122 }
3123 
3124 // isTriviallyRecursive - Check if this function calls another
3125 // decl that, because of the asm attribute or the other decl being a builtin,
3126 // ends up pointing to itself.
3127 bool
3128 CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) {
3129   StringRef Name;
3130   if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) {
3131     // asm labels are a special kind of mangling we have to support.
3132     AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
3133     if (!Attr)
3134       return false;
3135     Name = Attr->getLabel();
3136   } else {
3137     Name = FD->getName();
3138   }
3139 
3140   FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo);
3141   const Stmt *Body = FD->getBody();
3142   return Body ? Walker.Visit(Body) : false;
3143 }
3144 
3145 bool CodeGenModule::shouldEmitFunction(GlobalDecl GD) {
3146   if (getFunctionLinkage(GD) != llvm::Function::AvailableExternallyLinkage)
3147     return true;
3148   const auto *F = cast<FunctionDecl>(GD.getDecl());
3149   if (CodeGenOpts.OptimizationLevel == 0 && !F->hasAttr<AlwaysInlineAttr>())
3150     return false;
3151 
3152   if (F->hasAttr<DLLImportAttr>() && !F->hasAttr<AlwaysInlineAttr>()) {
3153     // Check whether it would be safe to inline this dllimport function.
3154     DLLImportFunctionVisitor Visitor;
3155     Visitor.TraverseFunctionDecl(const_cast<FunctionDecl*>(F));
3156     if (!Visitor.SafeToInline)
3157       return false;
3158 
3159     if (const CXXDestructorDecl *Dtor = dyn_cast<CXXDestructorDecl>(F)) {
3160       // Implicit destructor invocations aren't captured in the AST, so the
3161       // check above can't see them. Check for them manually here.
3162       for (const Decl *Member : Dtor->getParent()->decls())
3163         if (isa<FieldDecl>(Member))
3164           if (HasNonDllImportDtor(cast<FieldDecl>(Member)->getType()))
3165             return false;
3166       for (const CXXBaseSpecifier &B : Dtor->getParent()->bases())
3167         if (HasNonDllImportDtor(B.getType()))
3168           return false;
3169     }
3170   }
3171 
3172   // Inline builtins declaration must be emitted. They often are fortified
3173   // functions.
3174   if (F->isInlineBuiltinDeclaration())
3175     return true;
3176 
3177   // PR9614. Avoid cases where the source code is lying to us. An available
3178   // externally function should have an equivalent function somewhere else,
3179   // but a function that calls itself through asm label/`__builtin_` trickery is
3180   // clearly not equivalent to the real implementation.
3181   // This happens in glibc's btowc and in some configure checks.
3182   return !isTriviallyRecursive(F);
3183 }
3184 
3185 bool CodeGenModule::shouldOpportunisticallyEmitVTables() {
3186   return CodeGenOpts.OptimizationLevel > 0;
3187 }
3188 
3189 void CodeGenModule::EmitMultiVersionFunctionDefinition(GlobalDecl GD,
3190                                                        llvm::GlobalValue *GV) {
3191   const auto *FD = cast<FunctionDecl>(GD.getDecl());
3192 
3193   if (FD->isCPUSpecificMultiVersion()) {
3194     auto *Spec = FD->getAttr<CPUSpecificAttr>();
3195     for (unsigned I = 0; I < Spec->cpus_size(); ++I)
3196       EmitGlobalFunctionDefinition(GD.getWithMultiVersionIndex(I), nullptr);
3197     // Requires multiple emits.
3198   } else
3199     EmitGlobalFunctionDefinition(GD, GV);
3200 }
3201 
3202 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD, llvm::GlobalValue *GV) {
3203   const auto *D = cast<ValueDecl>(GD.getDecl());
3204 
3205   PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(),
3206                                  Context.getSourceManager(),
3207                                  "Generating code for declaration");
3208 
3209   if (const auto *FD = dyn_cast<FunctionDecl>(D)) {
3210     // At -O0, don't generate IR for functions with available_externally
3211     // linkage.
3212     if (!shouldEmitFunction(GD))
3213       return;
3214 
3215     llvm::TimeTraceScope TimeScope("CodeGen Function", [&]() {
3216       std::string Name;
3217       llvm::raw_string_ostream OS(Name);
3218       FD->getNameForDiagnostic(OS, getContext().getPrintingPolicy(),
3219                                /*Qualified=*/true);
3220       return Name;
3221     });
3222 
3223     if (const auto *Method = dyn_cast<CXXMethodDecl>(D)) {
3224       // Make sure to emit the definition(s) before we emit the thunks.
3225       // This is necessary for the generation of certain thunks.
3226       if (isa<CXXConstructorDecl>(Method) || isa<CXXDestructorDecl>(Method))
3227         ABI->emitCXXStructor(GD);
3228       else if (FD->isMultiVersion())
3229         EmitMultiVersionFunctionDefinition(GD, GV);
3230       else
3231         EmitGlobalFunctionDefinition(GD, GV);
3232 
3233       if (Method->isVirtual())
3234         getVTables().EmitThunks(GD);
3235 
3236       return;
3237     }
3238 
3239     if (FD->isMultiVersion())
3240       return EmitMultiVersionFunctionDefinition(GD, GV);
3241     return EmitGlobalFunctionDefinition(GD, GV);
3242   }
3243 
3244   if (const auto *VD = dyn_cast<VarDecl>(D))
3245     return EmitGlobalVarDefinition(VD, !VD->hasDefinition());
3246 
3247   llvm_unreachable("Invalid argument to EmitGlobalDefinition()");
3248 }
3249 
3250 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
3251                                                       llvm::Function *NewFn);
3252 
3253 static unsigned
3254 TargetMVPriority(const TargetInfo &TI,
3255                  const CodeGenFunction::MultiVersionResolverOption &RO) {
3256   unsigned Priority = 0;
3257   for (StringRef Feat : RO.Conditions.Features)
3258     Priority = std::max(Priority, TI.multiVersionSortPriority(Feat));
3259 
3260   if (!RO.Conditions.Architecture.empty())
3261     Priority = std::max(
3262         Priority, TI.multiVersionSortPriority(RO.Conditions.Architecture));
3263   return Priority;
3264 }
3265 
3266 // Multiversion functions should be at most 'WeakODRLinkage' so that a different
3267 // TU can forward declare the function without causing problems.  Particularly
3268 // in the cases of CPUDispatch, this causes issues. This also makes sure we
3269 // work with internal linkage functions, so that the same function name can be
3270 // used with internal linkage in multiple TUs.
3271 llvm::GlobalValue::LinkageTypes getMultiversionLinkage(CodeGenModule &CGM,
3272                                                        GlobalDecl GD) {
3273   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
3274   if (FD->getFormalLinkage() == InternalLinkage)
3275     return llvm::GlobalValue::InternalLinkage;
3276   return llvm::GlobalValue::WeakODRLinkage;
3277 }
3278 
3279 void CodeGenModule::emitMultiVersionFunctions() {
3280   std::vector<GlobalDecl> MVFuncsToEmit;
3281   MultiVersionFuncs.swap(MVFuncsToEmit);
3282   for (GlobalDecl GD : MVFuncsToEmit) {
3283     SmallVector<CodeGenFunction::MultiVersionResolverOption, 10> Options;
3284     const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
3285     getContext().forEachMultiversionedFunctionVersion(
3286         FD, [this, &GD, &Options](const FunctionDecl *CurFD) {
3287           GlobalDecl CurGD{
3288               (CurFD->isDefined() ? CurFD->getDefinition() : CurFD)};
3289           StringRef MangledName = getMangledName(CurGD);
3290           llvm::Constant *Func = GetGlobalValue(MangledName);
3291           if (!Func) {
3292             if (CurFD->isDefined()) {
3293               EmitGlobalFunctionDefinition(CurGD, nullptr);
3294               Func = GetGlobalValue(MangledName);
3295             } else {
3296               const CGFunctionInfo &FI =
3297                   getTypes().arrangeGlobalDeclaration(GD);
3298               llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
3299               Func = GetAddrOfFunction(CurGD, Ty, /*ForVTable=*/false,
3300                                        /*DontDefer=*/false, ForDefinition);
3301             }
3302             assert(Func && "This should have just been created");
3303           }
3304 
3305           const auto *TA = CurFD->getAttr<TargetAttr>();
3306           llvm::SmallVector<StringRef, 8> Feats;
3307           TA->getAddedFeatures(Feats);
3308 
3309           Options.emplace_back(cast<llvm::Function>(Func),
3310                                TA->getArchitecture(), Feats);
3311         });
3312 
3313     llvm::Function *ResolverFunc;
3314     const TargetInfo &TI = getTarget();
3315 
3316     if (TI.supportsIFunc() || FD->isTargetMultiVersion()) {
3317       ResolverFunc = cast<llvm::Function>(
3318           GetGlobalValue((getMangledName(GD) + ".resolver").str()));
3319       ResolverFunc->setLinkage(getMultiversionLinkage(*this, GD));
3320     } else {
3321       ResolverFunc = cast<llvm::Function>(GetGlobalValue(getMangledName(GD)));
3322     }
3323 
3324     if (supportsCOMDAT())
3325       ResolverFunc->setComdat(
3326           getModule().getOrInsertComdat(ResolverFunc->getName()));
3327 
3328     llvm::stable_sort(
3329         Options, [&TI](const CodeGenFunction::MultiVersionResolverOption &LHS,
3330                        const CodeGenFunction::MultiVersionResolverOption &RHS) {
3331           return TargetMVPriority(TI, LHS) > TargetMVPriority(TI, RHS);
3332         });
3333     CodeGenFunction CGF(*this);
3334     CGF.EmitMultiVersionResolver(ResolverFunc, Options);
3335   }
3336 
3337   // Ensure that any additions to the deferred decls list caused by emitting a
3338   // variant are emitted.  This can happen when the variant itself is inline and
3339   // calls a function without linkage.
3340   if (!MVFuncsToEmit.empty())
3341     EmitDeferred();
3342 
3343   // Ensure that any additions to the multiversion funcs list from either the
3344   // deferred decls or the multiversion functions themselves are emitted.
3345   if (!MultiVersionFuncs.empty())
3346     emitMultiVersionFunctions();
3347 }
3348 
3349 void CodeGenModule::emitCPUDispatchDefinition(GlobalDecl GD) {
3350   const auto *FD = cast<FunctionDecl>(GD.getDecl());
3351   assert(FD && "Not a FunctionDecl?");
3352   const auto *DD = FD->getAttr<CPUDispatchAttr>();
3353   assert(DD && "Not a cpu_dispatch Function?");
3354   llvm::Type *DeclTy = getTypes().ConvertType(FD->getType());
3355 
3356   if (const auto *CXXFD = dyn_cast<CXXMethodDecl>(FD)) {
3357     const CGFunctionInfo &FInfo = getTypes().arrangeCXXMethodDeclaration(CXXFD);
3358     DeclTy = getTypes().GetFunctionType(FInfo);
3359   }
3360 
3361   StringRef ResolverName = getMangledName(GD);
3362 
3363   llvm::Type *ResolverType;
3364   GlobalDecl ResolverGD;
3365   if (getTarget().supportsIFunc())
3366     ResolverType = llvm::FunctionType::get(
3367         llvm::PointerType::get(DeclTy,
3368                                Context.getTargetAddressSpace(FD->getType())),
3369         false);
3370   else {
3371     ResolverType = DeclTy;
3372     ResolverGD = GD;
3373   }
3374 
3375   auto *ResolverFunc = cast<llvm::Function>(GetOrCreateLLVMFunction(
3376       ResolverName, ResolverType, ResolverGD, /*ForVTable=*/false));
3377   ResolverFunc->setLinkage(getMultiversionLinkage(*this, GD));
3378   if (supportsCOMDAT())
3379     ResolverFunc->setComdat(
3380         getModule().getOrInsertComdat(ResolverFunc->getName()));
3381 
3382   SmallVector<CodeGenFunction::MultiVersionResolverOption, 10> Options;
3383   const TargetInfo &Target = getTarget();
3384   unsigned Index = 0;
3385   for (const IdentifierInfo *II : DD->cpus()) {
3386     // Get the name of the target function so we can look it up/create it.
3387     std::string MangledName = getMangledNameImpl(*this, GD, FD, true) +
3388                               getCPUSpecificMangling(*this, II->getName());
3389 
3390     llvm::Constant *Func = GetGlobalValue(MangledName);
3391 
3392     if (!Func) {
3393       GlobalDecl ExistingDecl = Manglings.lookup(MangledName);
3394       if (ExistingDecl.getDecl() &&
3395           ExistingDecl.getDecl()->getAsFunction()->isDefined()) {
3396         EmitGlobalFunctionDefinition(ExistingDecl, nullptr);
3397         Func = GetGlobalValue(MangledName);
3398       } else {
3399         if (!ExistingDecl.getDecl())
3400           ExistingDecl = GD.getWithMultiVersionIndex(Index);
3401 
3402       Func = GetOrCreateLLVMFunction(
3403           MangledName, DeclTy, ExistingDecl,
3404           /*ForVTable=*/false, /*DontDefer=*/true,
3405           /*IsThunk=*/false, llvm::AttributeList(), ForDefinition);
3406       }
3407     }
3408 
3409     llvm::SmallVector<StringRef, 32> Features;
3410     Target.getCPUSpecificCPUDispatchFeatures(II->getName(), Features);
3411     llvm::transform(Features, Features.begin(),
3412                     [](StringRef Str) { return Str.substr(1); });
3413     Features.erase(std::remove_if(
3414         Features.begin(), Features.end(), [&Target](StringRef Feat) {
3415           return !Target.validateCpuSupports(Feat);
3416         }), Features.end());
3417     Options.emplace_back(cast<llvm::Function>(Func), StringRef{}, Features);
3418     ++Index;
3419   }
3420 
3421   llvm::stable_sort(
3422       Options, [](const CodeGenFunction::MultiVersionResolverOption &LHS,
3423                   const CodeGenFunction::MultiVersionResolverOption &RHS) {
3424         return llvm::X86::getCpuSupportsMask(LHS.Conditions.Features) >
3425                llvm::X86::getCpuSupportsMask(RHS.Conditions.Features);
3426       });
3427 
3428   // If the list contains multiple 'default' versions, such as when it contains
3429   // 'pentium' and 'generic', don't emit the call to the generic one (since we
3430   // always run on at least a 'pentium'). We do this by deleting the 'least
3431   // advanced' (read, lowest mangling letter).
3432   while (Options.size() > 1 &&
3433          llvm::X86::getCpuSupportsMask(
3434              (Options.end() - 2)->Conditions.Features) == 0) {
3435     StringRef LHSName = (Options.end() - 2)->Function->getName();
3436     StringRef RHSName = (Options.end() - 1)->Function->getName();
3437     if (LHSName.compare(RHSName) < 0)
3438       Options.erase(Options.end() - 2);
3439     else
3440       Options.erase(Options.end() - 1);
3441   }
3442 
3443   CodeGenFunction CGF(*this);
3444   CGF.EmitMultiVersionResolver(ResolverFunc, Options);
3445 
3446   if (getTarget().supportsIFunc()) {
3447     std::string AliasName = getMangledNameImpl(
3448         *this, GD, FD, /*OmitMultiVersionMangling=*/true);
3449     llvm::Constant *AliasFunc = GetGlobalValue(AliasName);
3450     if (!AliasFunc) {
3451       auto *IFunc = cast<llvm::GlobalIFunc>(GetOrCreateLLVMFunction(
3452           AliasName, DeclTy, GD, /*ForVTable=*/false, /*DontDefer=*/true,
3453           /*IsThunk=*/false, llvm::AttributeList(), NotForDefinition));
3454       auto *GA = llvm::GlobalAlias::create(DeclTy, 0,
3455                                            getMultiversionLinkage(*this, GD),
3456                                            AliasName, IFunc, &getModule());
3457       SetCommonAttributes(GD, GA);
3458     }
3459   }
3460 }
3461 
3462 /// If a dispatcher for the specified mangled name is not in the module, create
3463 /// and return an llvm Function with the specified type.
3464 llvm::Constant *CodeGenModule::GetOrCreateMultiVersionResolver(
3465     GlobalDecl GD, llvm::Type *DeclTy, const FunctionDecl *FD) {
3466   std::string MangledName =
3467       getMangledNameImpl(*this, GD, FD, /*OmitMultiVersionMangling=*/true);
3468 
3469   // Holds the name of the resolver, in ifunc mode this is the ifunc (which has
3470   // a separate resolver).
3471   std::string ResolverName = MangledName;
3472   if (getTarget().supportsIFunc())
3473     ResolverName += ".ifunc";
3474   else if (FD->isTargetMultiVersion())
3475     ResolverName += ".resolver";
3476 
3477   // If this already exists, just return that one.
3478   if (llvm::GlobalValue *ResolverGV = GetGlobalValue(ResolverName))
3479     return ResolverGV;
3480 
3481   // Since this is the first time we've created this IFunc, make sure
3482   // that we put this multiversioned function into the list to be
3483   // replaced later if necessary (target multiversioning only).
3484   if (!FD->isCPUDispatchMultiVersion() && !FD->isCPUSpecificMultiVersion())
3485     MultiVersionFuncs.push_back(GD);
3486 
3487   if (getTarget().supportsIFunc()) {
3488     llvm::Type *ResolverType = llvm::FunctionType::get(
3489         llvm::PointerType::get(
3490             DeclTy, getContext().getTargetAddressSpace(FD->getType())),
3491         false);
3492     llvm::Constant *Resolver = GetOrCreateLLVMFunction(
3493         MangledName + ".resolver", ResolverType, GlobalDecl{},
3494         /*ForVTable=*/false);
3495     llvm::GlobalIFunc *GIF =
3496         llvm::GlobalIFunc::create(DeclTy, 0, getMultiversionLinkage(*this, GD),
3497                                   "", Resolver, &getModule());
3498     GIF->setName(ResolverName);
3499     SetCommonAttributes(FD, GIF);
3500 
3501     return GIF;
3502   }
3503 
3504   llvm::Constant *Resolver = GetOrCreateLLVMFunction(
3505       ResolverName, DeclTy, GlobalDecl{}, /*ForVTable=*/false);
3506   assert(isa<llvm::GlobalValue>(Resolver) &&
3507          "Resolver should be created for the first time");
3508   SetCommonAttributes(FD, cast<llvm::GlobalValue>(Resolver));
3509   return Resolver;
3510 }
3511 
3512 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the
3513 /// module, create and return an llvm Function with the specified type. If there
3514 /// is something in the module with the specified name, return it potentially
3515 /// bitcasted to the right type.
3516 ///
3517 /// If D is non-null, it specifies a decl that correspond to this.  This is used
3518 /// to set the attributes on the function when it is first created.
3519 llvm::Constant *CodeGenModule::GetOrCreateLLVMFunction(
3520     StringRef MangledName, llvm::Type *Ty, GlobalDecl GD, bool ForVTable,
3521     bool DontDefer, bool IsThunk, llvm::AttributeList ExtraAttrs,
3522     ForDefinition_t IsForDefinition) {
3523   const Decl *D = GD.getDecl();
3524 
3525   // Any attempts to use a MultiVersion function should result in retrieving
3526   // the iFunc instead. Name Mangling will handle the rest of the changes.
3527   if (const FunctionDecl *FD = cast_or_null<FunctionDecl>(D)) {
3528     // For the device mark the function as one that should be emitted.
3529     if (getLangOpts().OpenMPIsDevice && OpenMPRuntime &&
3530         !OpenMPRuntime->markAsGlobalTarget(GD) && FD->isDefined() &&
3531         !DontDefer && !IsForDefinition) {
3532       if (const FunctionDecl *FDDef = FD->getDefinition()) {
3533         GlobalDecl GDDef;
3534         if (const auto *CD = dyn_cast<CXXConstructorDecl>(FDDef))
3535           GDDef = GlobalDecl(CD, GD.getCtorType());
3536         else if (const auto *DD = dyn_cast<CXXDestructorDecl>(FDDef))
3537           GDDef = GlobalDecl(DD, GD.getDtorType());
3538         else
3539           GDDef = GlobalDecl(FDDef);
3540         EmitGlobal(GDDef);
3541       }
3542     }
3543 
3544     if (FD->isMultiVersion()) {
3545       if (FD->hasAttr<TargetAttr>())
3546         UpdateMultiVersionNames(GD, FD);
3547       if (!IsForDefinition)
3548         return GetOrCreateMultiVersionResolver(GD, Ty, FD);
3549     }
3550   }
3551 
3552   // Lookup the entry, lazily creating it if necessary.
3553   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
3554   if (Entry) {
3555     if (WeakRefReferences.erase(Entry)) {
3556       const FunctionDecl *FD = cast_or_null<FunctionDecl>(D);
3557       if (FD && !FD->hasAttr<WeakAttr>())
3558         Entry->setLinkage(llvm::Function::ExternalLinkage);
3559     }
3560 
3561     // Handle dropped DLL attributes.
3562     if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>()) {
3563       Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
3564       setDSOLocal(Entry);
3565     }
3566 
3567     // If there are two attempts to define the same mangled name, issue an
3568     // error.
3569     if (IsForDefinition && !Entry->isDeclaration()) {
3570       GlobalDecl OtherGD;
3571       // Check that GD is not yet in DiagnosedConflictingDefinitions is required
3572       // to make sure that we issue an error only once.
3573       if (lookupRepresentativeDecl(MangledName, OtherGD) &&
3574           (GD.getCanonicalDecl().getDecl() !=
3575            OtherGD.getCanonicalDecl().getDecl()) &&
3576           DiagnosedConflictingDefinitions.insert(GD).second) {
3577         getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name)
3578             << MangledName;
3579         getDiags().Report(OtherGD.getDecl()->getLocation(),
3580                           diag::note_previous_definition);
3581       }
3582     }
3583 
3584     if ((isa<llvm::Function>(Entry) || isa<llvm::GlobalAlias>(Entry)) &&
3585         (Entry->getValueType() == Ty)) {
3586       return Entry;
3587     }
3588 
3589     // Make sure the result is of the correct type.
3590     // (If function is requested for a definition, we always need to create a new
3591     // function, not just return a bitcast.)
3592     if (!IsForDefinition)
3593       return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo());
3594   }
3595 
3596   // This function doesn't have a complete type (for example, the return
3597   // type is an incomplete struct). Use a fake type instead, and make
3598   // sure not to try to set attributes.
3599   bool IsIncompleteFunction = false;
3600 
3601   llvm::FunctionType *FTy;
3602   if (isa<llvm::FunctionType>(Ty)) {
3603     FTy = cast<llvm::FunctionType>(Ty);
3604   } else {
3605     FTy = llvm::FunctionType::get(VoidTy, false);
3606     IsIncompleteFunction = true;
3607   }
3608 
3609   llvm::Function *F =
3610       llvm::Function::Create(FTy, llvm::Function::ExternalLinkage,
3611                              Entry ? StringRef() : MangledName, &getModule());
3612 
3613   // If we already created a function with the same mangled name (but different
3614   // type) before, take its name and add it to the list of functions to be
3615   // replaced with F at the end of CodeGen.
3616   //
3617   // This happens if there is a prototype for a function (e.g. "int f()") and
3618   // then a definition of a different type (e.g. "int f(int x)").
3619   if (Entry) {
3620     F->takeName(Entry);
3621 
3622     // This might be an implementation of a function without a prototype, in
3623     // which case, try to do special replacement of calls which match the new
3624     // prototype.  The really key thing here is that we also potentially drop
3625     // arguments from the call site so as to make a direct call, which makes the
3626     // inliner happier and suppresses a number of optimizer warnings (!) about
3627     // dropping arguments.
3628     if (!Entry->use_empty()) {
3629       ReplaceUsesOfNonProtoTypeWithRealFunction(Entry, F);
3630       Entry->removeDeadConstantUsers();
3631     }
3632 
3633     llvm::Constant *BC = llvm::ConstantExpr::getBitCast(
3634         F, Entry->getValueType()->getPointerTo());
3635     addGlobalValReplacement(Entry, BC);
3636   }
3637 
3638   assert(F->getName() == MangledName && "name was uniqued!");
3639   if (D)
3640     SetFunctionAttributes(GD, F, IsIncompleteFunction, IsThunk);
3641   if (ExtraAttrs.hasFnAttrs()) {
3642     llvm::AttrBuilder B(ExtraAttrs, llvm::AttributeList::FunctionIndex);
3643     F->addFnAttrs(B);
3644   }
3645 
3646   if (!DontDefer) {
3647     // All MSVC dtors other than the base dtor are linkonce_odr and delegate to
3648     // each other bottoming out with the base dtor.  Therefore we emit non-base
3649     // dtors on usage, even if there is no dtor definition in the TU.
3650     if (D && isa<CXXDestructorDecl>(D) &&
3651         getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D),
3652                                            GD.getDtorType()))
3653       addDeferredDeclToEmit(GD);
3654 
3655     // This is the first use or definition of a mangled name.  If there is a
3656     // deferred decl with this name, remember that we need to emit it at the end
3657     // of the file.
3658     auto DDI = DeferredDecls.find(MangledName);
3659     if (DDI != DeferredDecls.end()) {
3660       // Move the potentially referenced deferred decl to the
3661       // DeferredDeclsToEmit list, and remove it from DeferredDecls (since we
3662       // don't need it anymore).
3663       addDeferredDeclToEmit(DDI->second);
3664       DeferredDecls.erase(DDI);
3665 
3666       // Otherwise, there are cases we have to worry about where we're
3667       // using a declaration for which we must emit a definition but where
3668       // we might not find a top-level definition:
3669       //   - member functions defined inline in their classes
3670       //   - friend functions defined inline in some class
3671       //   - special member functions with implicit definitions
3672       // If we ever change our AST traversal to walk into class methods,
3673       // this will be unnecessary.
3674       //
3675       // We also don't emit a definition for a function if it's going to be an
3676       // entry in a vtable, unless it's already marked as used.
3677     } else if (getLangOpts().CPlusPlus && D) {
3678       // Look for a declaration that's lexically in a record.
3679       for (const auto *FD = cast<FunctionDecl>(D)->getMostRecentDecl(); FD;
3680            FD = FD->getPreviousDecl()) {
3681         if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) {
3682           if (FD->doesThisDeclarationHaveABody()) {
3683             addDeferredDeclToEmit(GD.getWithDecl(FD));
3684             break;
3685           }
3686         }
3687       }
3688     }
3689   }
3690 
3691   // Make sure the result is of the requested type.
3692   if (!IsIncompleteFunction) {
3693     assert(F->getFunctionType() == Ty);
3694     return F;
3695   }
3696 
3697   llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
3698   return llvm::ConstantExpr::getBitCast(F, PTy);
3699 }
3700 
3701 /// GetAddrOfFunction - Return the address of the given function.  If Ty is
3702 /// non-null, then this function will use the specified type if it has to
3703 /// create it (this occurs when we see a definition of the function).
3704 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD,
3705                                                  llvm::Type *Ty,
3706                                                  bool ForVTable,
3707                                                  bool DontDefer,
3708                                               ForDefinition_t IsForDefinition) {
3709   assert(!cast<FunctionDecl>(GD.getDecl())->isConsteval() &&
3710          "consteval function should never be emitted");
3711   // If there was no specific requested type, just convert it now.
3712   if (!Ty) {
3713     const auto *FD = cast<FunctionDecl>(GD.getDecl());
3714     Ty = getTypes().ConvertType(FD->getType());
3715   }
3716 
3717   // Devirtualized destructor calls may come through here instead of via
3718   // getAddrOfCXXStructor. Make sure we use the MS ABI base destructor instead
3719   // of the complete destructor when necessary.
3720   if (const auto *DD = dyn_cast<CXXDestructorDecl>(GD.getDecl())) {
3721     if (getTarget().getCXXABI().isMicrosoft() &&
3722         GD.getDtorType() == Dtor_Complete &&
3723         DD->getParent()->getNumVBases() == 0)
3724       GD = GlobalDecl(DD, Dtor_Base);
3725   }
3726 
3727   StringRef MangledName = getMangledName(GD);
3728   auto *F = GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable, DontDefer,
3729                                     /*IsThunk=*/false, llvm::AttributeList(),
3730                                     IsForDefinition);
3731   // Returns kernel handle for HIP kernel stub function.
3732   if (LangOpts.CUDA && !LangOpts.CUDAIsDevice &&
3733       cast<FunctionDecl>(GD.getDecl())->hasAttr<CUDAGlobalAttr>()) {
3734     auto *Handle = getCUDARuntime().getKernelHandle(
3735         cast<llvm::Function>(F->stripPointerCasts()), GD);
3736     if (IsForDefinition)
3737       return F;
3738     return llvm::ConstantExpr::getBitCast(Handle, Ty->getPointerTo());
3739   }
3740   return F;
3741 }
3742 
3743 static const FunctionDecl *
3744 GetRuntimeFunctionDecl(ASTContext &C, StringRef Name) {
3745   TranslationUnitDecl *TUDecl = C.getTranslationUnitDecl();
3746   DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl);
3747 
3748   IdentifierInfo &CII = C.Idents.get(Name);
3749   for (const auto *Result : DC->lookup(&CII))
3750     if (const auto *FD = dyn_cast<FunctionDecl>(Result))
3751       return FD;
3752 
3753   if (!C.getLangOpts().CPlusPlus)
3754     return nullptr;
3755 
3756   // Demangle the premangled name from getTerminateFn()
3757   IdentifierInfo &CXXII =
3758       (Name == "_ZSt9terminatev" || Name == "?terminate@@YAXXZ")
3759           ? C.Idents.get("terminate")
3760           : C.Idents.get(Name);
3761 
3762   for (const auto &N : {"__cxxabiv1", "std"}) {
3763     IdentifierInfo &NS = C.Idents.get(N);
3764     for (const auto *Result : DC->lookup(&NS)) {
3765       const NamespaceDecl *ND = dyn_cast<NamespaceDecl>(Result);
3766       if (auto *LSD = dyn_cast<LinkageSpecDecl>(Result))
3767         for (const auto *Result : LSD->lookup(&NS))
3768           if ((ND = dyn_cast<NamespaceDecl>(Result)))
3769             break;
3770 
3771       if (ND)
3772         for (const auto *Result : ND->lookup(&CXXII))
3773           if (const auto *FD = dyn_cast<FunctionDecl>(Result))
3774             return FD;
3775     }
3776   }
3777 
3778   return nullptr;
3779 }
3780 
3781 /// CreateRuntimeFunction - Create a new runtime function with the specified
3782 /// type and name.
3783 llvm::FunctionCallee
3784 CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy, StringRef Name,
3785                                      llvm::AttributeList ExtraAttrs, bool Local,
3786                                      bool AssumeConvergent) {
3787   if (AssumeConvergent) {
3788     ExtraAttrs =
3789         ExtraAttrs.addFnAttribute(VMContext, llvm::Attribute::Convergent);
3790   }
3791 
3792   llvm::Constant *C =
3793       GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false,
3794                               /*DontDefer=*/false, /*IsThunk=*/false,
3795                               ExtraAttrs);
3796 
3797   if (auto *F = dyn_cast<llvm::Function>(C)) {
3798     if (F->empty()) {
3799       F->setCallingConv(getRuntimeCC());
3800 
3801       // In Windows Itanium environments, try to mark runtime functions
3802       // dllimport. For Mingw and MSVC, don't. We don't really know if the user
3803       // will link their standard library statically or dynamically. Marking
3804       // functions imported when they are not imported can cause linker errors
3805       // and warnings.
3806       if (!Local && getTriple().isWindowsItaniumEnvironment() &&
3807           !getCodeGenOpts().LTOVisibilityPublicStd) {
3808         const FunctionDecl *FD = GetRuntimeFunctionDecl(Context, Name);
3809         if (!FD || FD->hasAttr<DLLImportAttr>()) {
3810           F->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass);
3811           F->setLinkage(llvm::GlobalValue::ExternalLinkage);
3812         }
3813       }
3814       setDSOLocal(F);
3815     }
3816   }
3817 
3818   return {FTy, C};
3819 }
3820 
3821 /// isTypeConstant - Determine whether an object of this type can be emitted
3822 /// as a constant.
3823 ///
3824 /// If ExcludeCtor is true, the duration when the object's constructor runs
3825 /// will not be considered. The caller will need to verify that the object is
3826 /// not written to during its construction.
3827 bool CodeGenModule::isTypeConstant(QualType Ty, bool ExcludeCtor) {
3828   if (!Ty.isConstant(Context) && !Ty->isReferenceType())
3829     return false;
3830 
3831   if (Context.getLangOpts().CPlusPlus) {
3832     if (const CXXRecordDecl *Record
3833           = Context.getBaseElementType(Ty)->getAsCXXRecordDecl())
3834       return ExcludeCtor && !Record->hasMutableFields() &&
3835              Record->hasTrivialDestructor();
3836   }
3837 
3838   return true;
3839 }
3840 
3841 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module,
3842 /// create and return an llvm GlobalVariable with the specified type and address
3843 /// space. If there is something in the module with the specified name, return
3844 /// it potentially bitcasted to the right type.
3845 ///
3846 /// If D is non-null, it specifies a decl that correspond to this.  This is used
3847 /// to set the attributes on the global when it is first created.
3848 ///
3849 /// If IsForDefinition is true, it is guaranteed that an actual global with
3850 /// type Ty will be returned, not conversion of a variable with the same
3851 /// mangled name but some other type.
3852 llvm::Constant *
3853 CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName, llvm::Type *Ty,
3854                                      LangAS AddrSpace, const VarDecl *D,
3855                                      ForDefinition_t IsForDefinition) {
3856   // Lookup the entry, lazily creating it if necessary.
3857   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
3858   unsigned TargetAS = getContext().getTargetAddressSpace(AddrSpace);
3859   if (Entry) {
3860     if (WeakRefReferences.erase(Entry)) {
3861       if (D && !D->hasAttr<WeakAttr>())
3862         Entry->setLinkage(llvm::Function::ExternalLinkage);
3863     }
3864 
3865     // Handle dropped DLL attributes.
3866     if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>())
3867       Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
3868 
3869     if (LangOpts.OpenMP && !LangOpts.OpenMPSimd && D)
3870       getOpenMPRuntime().registerTargetGlobalVariable(D, Entry);
3871 
3872     if (Entry->getValueType() == Ty && Entry->getAddressSpace() == TargetAS)
3873       return Entry;
3874 
3875     // If there are two attempts to define the same mangled name, issue an
3876     // error.
3877     if (IsForDefinition && !Entry->isDeclaration()) {
3878       GlobalDecl OtherGD;
3879       const VarDecl *OtherD;
3880 
3881       // Check that D is not yet in DiagnosedConflictingDefinitions is required
3882       // to make sure that we issue an error only once.
3883       if (D && lookupRepresentativeDecl(MangledName, OtherGD) &&
3884           (D->getCanonicalDecl() != OtherGD.getCanonicalDecl().getDecl()) &&
3885           (OtherD = dyn_cast<VarDecl>(OtherGD.getDecl())) &&
3886           OtherD->hasInit() &&
3887           DiagnosedConflictingDefinitions.insert(D).second) {
3888         getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name)
3889             << MangledName;
3890         getDiags().Report(OtherGD.getDecl()->getLocation(),
3891                           diag::note_previous_definition);
3892       }
3893     }
3894 
3895     // Make sure the result is of the correct type.
3896     if (Entry->getType()->getAddressSpace() != TargetAS) {
3897       return llvm::ConstantExpr::getAddrSpaceCast(Entry,
3898                                                   Ty->getPointerTo(TargetAS));
3899     }
3900 
3901     // (If global is requested for a definition, we always need to create a new
3902     // global, not just return a bitcast.)
3903     if (!IsForDefinition)
3904       return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo(TargetAS));
3905   }
3906 
3907   auto DAddrSpace = GetGlobalVarAddressSpace(D);
3908 
3909   auto *GV = new llvm::GlobalVariable(
3910       getModule(), Ty, false, llvm::GlobalValue::ExternalLinkage, nullptr,
3911       MangledName, nullptr, llvm::GlobalVariable::NotThreadLocal,
3912       getContext().getTargetAddressSpace(DAddrSpace));
3913 
3914   // If we already created a global with the same mangled name (but different
3915   // type) before, take its name and remove it from its parent.
3916   if (Entry) {
3917     GV->takeName(Entry);
3918 
3919     if (!Entry->use_empty()) {
3920       llvm::Constant *NewPtrForOldDecl =
3921           llvm::ConstantExpr::getBitCast(GV, Entry->getType());
3922       Entry->replaceAllUsesWith(NewPtrForOldDecl);
3923     }
3924 
3925     Entry->eraseFromParent();
3926   }
3927 
3928   // This is the first use or definition of a mangled name.  If there is a
3929   // deferred decl with this name, remember that we need to emit it at the end
3930   // of the file.
3931   auto DDI = DeferredDecls.find(MangledName);
3932   if (DDI != DeferredDecls.end()) {
3933     // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
3934     // list, and remove it from DeferredDecls (since we don't need it anymore).
3935     addDeferredDeclToEmit(DDI->second);
3936     DeferredDecls.erase(DDI);
3937   }
3938 
3939   // Handle things which are present even on external declarations.
3940   if (D) {
3941     if (LangOpts.OpenMP && !LangOpts.OpenMPSimd)
3942       getOpenMPRuntime().registerTargetGlobalVariable(D, GV);
3943 
3944     // FIXME: This code is overly simple and should be merged with other global
3945     // handling.
3946     GV->setConstant(isTypeConstant(D->getType(), false));
3947 
3948     GV->setAlignment(getContext().getDeclAlign(D).getAsAlign());
3949 
3950     setLinkageForGV(GV, D);
3951 
3952     if (D->getTLSKind()) {
3953       if (D->getTLSKind() == VarDecl::TLS_Dynamic)
3954         CXXThreadLocals.push_back(D);
3955       setTLSMode(GV, *D);
3956     }
3957 
3958     setGVProperties(GV, D);
3959 
3960     // If required by the ABI, treat declarations of static data members with
3961     // inline initializers as definitions.
3962     if (getContext().isMSStaticDataMemberInlineDefinition(D)) {
3963       EmitGlobalVarDefinition(D);
3964     }
3965 
3966     // Emit section information for extern variables.
3967     if (D->hasExternalStorage()) {
3968       if (const SectionAttr *SA = D->getAttr<SectionAttr>())
3969         GV->setSection(SA->getName());
3970     }
3971 
3972     // Handle XCore specific ABI requirements.
3973     if (getTriple().getArch() == llvm::Triple::xcore &&
3974         D->getLanguageLinkage() == CLanguageLinkage &&
3975         D->getType().isConstant(Context) &&
3976         isExternallyVisible(D->getLinkageAndVisibility().getLinkage()))
3977       GV->setSection(".cp.rodata");
3978 
3979     // Check if we a have a const declaration with an initializer, we may be
3980     // able to emit it as available_externally to expose it's value to the
3981     // optimizer.
3982     if (Context.getLangOpts().CPlusPlus && GV->hasExternalLinkage() &&
3983         D->getType().isConstQualified() && !GV->hasInitializer() &&
3984         !D->hasDefinition() && D->hasInit() && !D->hasAttr<DLLImportAttr>()) {
3985       const auto *Record =
3986           Context.getBaseElementType(D->getType())->getAsCXXRecordDecl();
3987       bool HasMutableFields = Record && Record->hasMutableFields();
3988       if (!HasMutableFields) {
3989         const VarDecl *InitDecl;
3990         const Expr *InitExpr = D->getAnyInitializer(InitDecl);
3991         if (InitExpr) {
3992           ConstantEmitter emitter(*this);
3993           llvm::Constant *Init = emitter.tryEmitForInitializer(*InitDecl);
3994           if (Init) {
3995             auto *InitType = Init->getType();
3996             if (GV->getValueType() != InitType) {
3997               // The type of the initializer does not match the definition.
3998               // This happens when an initializer has a different type from
3999               // the type of the global (because of padding at the end of a
4000               // structure for instance).
4001               GV->setName(StringRef());
4002               // Make a new global with the correct type, this is now guaranteed
4003               // to work.
4004               auto *NewGV = cast<llvm::GlobalVariable>(
4005                   GetAddrOfGlobalVar(D, InitType, IsForDefinition)
4006                       ->stripPointerCasts());
4007 
4008               // Erase the old global, since it is no longer used.
4009               GV->eraseFromParent();
4010               GV = NewGV;
4011             } else {
4012               GV->setInitializer(Init);
4013               GV->setConstant(true);
4014               GV->setLinkage(llvm::GlobalValue::AvailableExternallyLinkage);
4015             }
4016             emitter.finalize(GV);
4017           }
4018         }
4019       }
4020     }
4021   }
4022 
4023   if (GV->isDeclaration()) {
4024     getTargetCodeGenInfo().setTargetAttributes(D, GV, *this);
4025     // External HIP managed variables needed to be recorded for transformation
4026     // in both device and host compilations.
4027     if (getLangOpts().CUDA && D && D->hasAttr<HIPManagedAttr>() &&
4028         D->hasExternalStorage())
4029       getCUDARuntime().handleVarRegistration(D, *GV);
4030   }
4031 
4032   LangAS ExpectedAS =
4033       D ? D->getType().getAddressSpace()
4034         : (LangOpts.OpenCL ? LangAS::opencl_global : LangAS::Default);
4035   assert(getContext().getTargetAddressSpace(ExpectedAS) == TargetAS);
4036   if (DAddrSpace != ExpectedAS) {
4037     return getTargetCodeGenInfo().performAddrSpaceCast(
4038         *this, GV, DAddrSpace, ExpectedAS, Ty->getPointerTo(TargetAS));
4039   }
4040 
4041   return GV;
4042 }
4043 
4044 llvm::Constant *
4045 CodeGenModule::GetAddrOfGlobal(GlobalDecl GD, ForDefinition_t IsForDefinition) {
4046   const Decl *D = GD.getDecl();
4047 
4048   if (isa<CXXConstructorDecl>(D) || isa<CXXDestructorDecl>(D))
4049     return getAddrOfCXXStructor(GD, /*FnInfo=*/nullptr, /*FnType=*/nullptr,
4050                                 /*DontDefer=*/false, IsForDefinition);
4051 
4052   if (isa<CXXMethodDecl>(D)) {
4053     auto FInfo =
4054         &getTypes().arrangeCXXMethodDeclaration(cast<CXXMethodDecl>(D));
4055     auto Ty = getTypes().GetFunctionType(*FInfo);
4056     return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false,
4057                              IsForDefinition);
4058   }
4059 
4060   if (isa<FunctionDecl>(D)) {
4061     const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
4062     llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
4063     return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false,
4064                              IsForDefinition);
4065   }
4066 
4067   return GetAddrOfGlobalVar(cast<VarDecl>(D), /*Ty=*/nullptr, IsForDefinition);
4068 }
4069 
4070 llvm::GlobalVariable *CodeGenModule::CreateOrReplaceCXXRuntimeVariable(
4071     StringRef Name, llvm::Type *Ty, llvm::GlobalValue::LinkageTypes Linkage,
4072     unsigned Alignment) {
4073   llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name);
4074   llvm::GlobalVariable *OldGV = nullptr;
4075 
4076   if (GV) {
4077     // Check if the variable has the right type.
4078     if (GV->getValueType() == Ty)
4079       return GV;
4080 
4081     // Because C++ name mangling, the only way we can end up with an already
4082     // existing global with the same name is if it has been declared extern "C".
4083     assert(GV->isDeclaration() && "Declaration has wrong type!");
4084     OldGV = GV;
4085   }
4086 
4087   // Create a new variable.
4088   GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true,
4089                                 Linkage, nullptr, Name);
4090 
4091   if (OldGV) {
4092     // Replace occurrences of the old variable if needed.
4093     GV->takeName(OldGV);
4094 
4095     if (!OldGV->use_empty()) {
4096       llvm::Constant *NewPtrForOldDecl =
4097       llvm::ConstantExpr::getBitCast(GV, OldGV->getType());
4098       OldGV->replaceAllUsesWith(NewPtrForOldDecl);
4099     }
4100 
4101     OldGV->eraseFromParent();
4102   }
4103 
4104   if (supportsCOMDAT() && GV->isWeakForLinker() &&
4105       !GV->hasAvailableExternallyLinkage())
4106     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
4107 
4108   GV->setAlignment(llvm::MaybeAlign(Alignment));
4109 
4110   return GV;
4111 }
4112 
4113 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the
4114 /// given global variable.  If Ty is non-null and if the global doesn't exist,
4115 /// then it will be created with the specified type instead of whatever the
4116 /// normal requested type would be. If IsForDefinition is true, it is guaranteed
4117 /// that an actual global with type Ty will be returned, not conversion of a
4118 /// variable with the same mangled name but some other type.
4119 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D,
4120                                                   llvm::Type *Ty,
4121                                            ForDefinition_t IsForDefinition) {
4122   assert(D->hasGlobalStorage() && "Not a global variable");
4123   QualType ASTTy = D->getType();
4124   if (!Ty)
4125     Ty = getTypes().ConvertTypeForMem(ASTTy);
4126 
4127   StringRef MangledName = getMangledName(D);
4128   return GetOrCreateLLVMGlobal(MangledName, Ty, ASTTy.getAddressSpace(), D,
4129                                IsForDefinition);
4130 }
4131 
4132 /// CreateRuntimeVariable - Create a new runtime global variable with the
4133 /// specified type and name.
4134 llvm::Constant *
4135 CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty,
4136                                      StringRef Name) {
4137   LangAS AddrSpace = getContext().getLangOpts().OpenCL ? LangAS::opencl_global
4138                                                        : LangAS::Default;
4139   auto *Ret = GetOrCreateLLVMGlobal(Name, Ty, AddrSpace, nullptr);
4140   setDSOLocal(cast<llvm::GlobalValue>(Ret->stripPointerCasts()));
4141   return Ret;
4142 }
4143 
4144 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) {
4145   assert(!D->getInit() && "Cannot emit definite definitions here!");
4146 
4147   StringRef MangledName = getMangledName(D);
4148   llvm::GlobalValue *GV = GetGlobalValue(MangledName);
4149 
4150   // We already have a definition, not declaration, with the same mangled name.
4151   // Emitting of declaration is not required (and actually overwrites emitted
4152   // definition).
4153   if (GV && !GV->isDeclaration())
4154     return;
4155 
4156   // If we have not seen a reference to this variable yet, place it into the
4157   // deferred declarations table to be emitted if needed later.
4158   if (!MustBeEmitted(D) && !GV) {
4159       DeferredDecls[MangledName] = D;
4160       return;
4161   }
4162 
4163   // The tentative definition is the only definition.
4164   EmitGlobalVarDefinition(D);
4165 }
4166 
4167 void CodeGenModule::EmitExternalDeclaration(const VarDecl *D) {
4168   EmitExternalVarDeclaration(D);
4169 }
4170 
4171 CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const {
4172   return Context.toCharUnitsFromBits(
4173       getDataLayout().getTypeStoreSizeInBits(Ty));
4174 }
4175 
4176 LangAS CodeGenModule::GetGlobalVarAddressSpace(const VarDecl *D) {
4177   if (LangOpts.OpenCL) {
4178     LangAS AS = D ? D->getType().getAddressSpace() : LangAS::opencl_global;
4179     assert(AS == LangAS::opencl_global ||
4180            AS == LangAS::opencl_global_device ||
4181            AS == LangAS::opencl_global_host ||
4182            AS == LangAS::opencl_constant ||
4183            AS == LangAS::opencl_local ||
4184            AS >= LangAS::FirstTargetAddressSpace);
4185     return AS;
4186   }
4187 
4188   if (LangOpts.SYCLIsDevice &&
4189       (!D || D->getType().getAddressSpace() == LangAS::Default))
4190     return LangAS::sycl_global;
4191 
4192   if (LangOpts.CUDA && LangOpts.CUDAIsDevice) {
4193     if (D && D->hasAttr<CUDAConstantAttr>())
4194       return LangAS::cuda_constant;
4195     else if (D && D->hasAttr<CUDASharedAttr>())
4196       return LangAS::cuda_shared;
4197     else if (D && D->hasAttr<CUDADeviceAttr>())
4198       return LangAS::cuda_device;
4199     else if (D && D->getType().isConstQualified())
4200       return LangAS::cuda_constant;
4201     else
4202       return LangAS::cuda_device;
4203   }
4204 
4205   if (LangOpts.OpenMP) {
4206     LangAS AS;
4207     if (OpenMPRuntime->hasAllocateAttributeForGlobalVar(D, AS))
4208       return AS;
4209   }
4210   return getTargetCodeGenInfo().getGlobalVarAddressSpace(*this, D);
4211 }
4212 
4213 LangAS CodeGenModule::GetGlobalConstantAddressSpace() const {
4214   // OpenCL v1.2 s6.5.3: a string literal is in the constant address space.
4215   if (LangOpts.OpenCL)
4216     return LangAS::opencl_constant;
4217   if (LangOpts.SYCLIsDevice)
4218     return LangAS::sycl_global;
4219   if (auto AS = getTarget().getConstantAddressSpace())
4220     return AS.getValue();
4221   return LangAS::Default;
4222 }
4223 
4224 // In address space agnostic languages, string literals are in default address
4225 // space in AST. However, certain targets (e.g. amdgcn) request them to be
4226 // emitted in constant address space in LLVM IR. To be consistent with other
4227 // parts of AST, string literal global variables in constant address space
4228 // need to be casted to default address space before being put into address
4229 // map and referenced by other part of CodeGen.
4230 // In OpenCL, string literals are in constant address space in AST, therefore
4231 // they should not be casted to default address space.
4232 static llvm::Constant *
4233 castStringLiteralToDefaultAddressSpace(CodeGenModule &CGM,
4234                                        llvm::GlobalVariable *GV) {
4235   llvm::Constant *Cast = GV;
4236   if (!CGM.getLangOpts().OpenCL) {
4237     auto AS = CGM.GetGlobalConstantAddressSpace();
4238     if (AS != LangAS::Default)
4239       Cast = CGM.getTargetCodeGenInfo().performAddrSpaceCast(
4240           CGM, GV, AS, LangAS::Default,
4241           GV->getValueType()->getPointerTo(
4242               CGM.getContext().getTargetAddressSpace(LangAS::Default)));
4243   }
4244   return Cast;
4245 }
4246 
4247 template<typename SomeDecl>
4248 void CodeGenModule::MaybeHandleStaticInExternC(const SomeDecl *D,
4249                                                llvm::GlobalValue *GV) {
4250   if (!getLangOpts().CPlusPlus)
4251     return;
4252 
4253   // Must have 'used' attribute, or else inline assembly can't rely on
4254   // the name existing.
4255   if (!D->template hasAttr<UsedAttr>())
4256     return;
4257 
4258   // Must have internal linkage and an ordinary name.
4259   if (!D->getIdentifier() || D->getFormalLinkage() != InternalLinkage)
4260     return;
4261 
4262   // Must be in an extern "C" context. Entities declared directly within
4263   // a record are not extern "C" even if the record is in such a context.
4264   const SomeDecl *First = D->getFirstDecl();
4265   if (First->getDeclContext()->isRecord() || !First->isInExternCContext())
4266     return;
4267 
4268   // OK, this is an internal linkage entity inside an extern "C" linkage
4269   // specification. Make a note of that so we can give it the "expected"
4270   // mangled name if nothing else is using that name.
4271   std::pair<StaticExternCMap::iterator, bool> R =
4272       StaticExternCValues.insert(std::make_pair(D->getIdentifier(), GV));
4273 
4274   // If we have multiple internal linkage entities with the same name
4275   // in extern "C" regions, none of them gets that name.
4276   if (!R.second)
4277     R.first->second = nullptr;
4278 }
4279 
4280 static bool shouldBeInCOMDAT(CodeGenModule &CGM, const Decl &D) {
4281   if (!CGM.supportsCOMDAT())
4282     return false;
4283 
4284   // Do not set COMDAT attribute for CUDA/HIP stub functions to prevent
4285   // them being "merged" by the COMDAT Folding linker optimization.
4286   if (D.hasAttr<CUDAGlobalAttr>())
4287     return false;
4288 
4289   if (D.hasAttr<SelectAnyAttr>())
4290     return true;
4291 
4292   GVALinkage Linkage;
4293   if (auto *VD = dyn_cast<VarDecl>(&D))
4294     Linkage = CGM.getContext().GetGVALinkageForVariable(VD);
4295   else
4296     Linkage = CGM.getContext().GetGVALinkageForFunction(cast<FunctionDecl>(&D));
4297 
4298   switch (Linkage) {
4299   case GVA_Internal:
4300   case GVA_AvailableExternally:
4301   case GVA_StrongExternal:
4302     return false;
4303   case GVA_DiscardableODR:
4304   case GVA_StrongODR:
4305     return true;
4306   }
4307   llvm_unreachable("No such linkage");
4308 }
4309 
4310 void CodeGenModule::maybeSetTrivialComdat(const Decl &D,
4311                                           llvm::GlobalObject &GO) {
4312   if (!shouldBeInCOMDAT(*this, D))
4313     return;
4314   GO.setComdat(TheModule.getOrInsertComdat(GO.getName()));
4315 }
4316 
4317 /// Pass IsTentative as true if you want to create a tentative definition.
4318 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D,
4319                                             bool IsTentative) {
4320   // OpenCL global variables of sampler type are translated to function calls,
4321   // therefore no need to be translated.
4322   QualType ASTTy = D->getType();
4323   if (getLangOpts().OpenCL && ASTTy->isSamplerT())
4324     return;
4325 
4326   // If this is OpenMP device, check if it is legal to emit this global
4327   // normally.
4328   if (LangOpts.OpenMPIsDevice && OpenMPRuntime &&
4329       OpenMPRuntime->emitTargetGlobalVariable(D))
4330     return;
4331 
4332   llvm::TrackingVH<llvm::Constant> Init;
4333   bool NeedsGlobalCtor = false;
4334   bool NeedsGlobalDtor =
4335       D->needsDestruction(getContext()) == QualType::DK_cxx_destructor;
4336 
4337   const VarDecl *InitDecl;
4338   const Expr *InitExpr = D->getAnyInitializer(InitDecl);
4339 
4340   Optional<ConstantEmitter> emitter;
4341 
4342   // CUDA E.2.4.1 "__shared__ variables cannot have an initialization
4343   // as part of their declaration."  Sema has already checked for
4344   // error cases, so we just need to set Init to UndefValue.
4345   bool IsCUDASharedVar =
4346       getLangOpts().CUDAIsDevice && D->hasAttr<CUDASharedAttr>();
4347   // Shadows of initialized device-side global variables are also left
4348   // undefined.
4349   // Managed Variables should be initialized on both host side and device side.
4350   bool IsCUDAShadowVar =
4351       !getLangOpts().CUDAIsDevice && !D->hasAttr<HIPManagedAttr>() &&
4352       (D->hasAttr<CUDAConstantAttr>() || D->hasAttr<CUDADeviceAttr>() ||
4353        D->hasAttr<CUDASharedAttr>());
4354   bool IsCUDADeviceShadowVar =
4355       getLangOpts().CUDAIsDevice && !D->hasAttr<HIPManagedAttr>() &&
4356       (D->getType()->isCUDADeviceBuiltinSurfaceType() ||
4357        D->getType()->isCUDADeviceBuiltinTextureType());
4358   if (getLangOpts().CUDA &&
4359       (IsCUDASharedVar || IsCUDAShadowVar || IsCUDADeviceShadowVar))
4360     Init = llvm::UndefValue::get(getTypes().ConvertTypeForMem(ASTTy));
4361   else if (D->hasAttr<LoaderUninitializedAttr>())
4362     Init = llvm::UndefValue::get(getTypes().ConvertTypeForMem(ASTTy));
4363   else if (!InitExpr) {
4364     // This is a tentative definition; tentative definitions are
4365     // implicitly initialized with { 0 }.
4366     //
4367     // Note that tentative definitions are only emitted at the end of
4368     // a translation unit, so they should never have incomplete
4369     // type. In addition, EmitTentativeDefinition makes sure that we
4370     // never attempt to emit a tentative definition if a real one
4371     // exists. A use may still exists, however, so we still may need
4372     // to do a RAUW.
4373     assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type");
4374     Init = EmitNullConstant(D->getType());
4375   } else {
4376     initializedGlobalDecl = GlobalDecl(D);
4377     emitter.emplace(*this);
4378     llvm::Constant *Initializer = emitter->tryEmitForInitializer(*InitDecl);
4379     if (!Initializer) {
4380       QualType T = InitExpr->getType();
4381       if (D->getType()->isReferenceType())
4382         T = D->getType();
4383 
4384       if (getLangOpts().CPlusPlus) {
4385         Init = EmitNullConstant(T);
4386         NeedsGlobalCtor = true;
4387       } else {
4388         ErrorUnsupported(D, "static initializer");
4389         Init = llvm::UndefValue::get(getTypes().ConvertType(T));
4390       }
4391     } else {
4392       Init = Initializer;
4393       // We don't need an initializer, so remove the entry for the delayed
4394       // initializer position (just in case this entry was delayed) if we
4395       // also don't need to register a destructor.
4396       if (getLangOpts().CPlusPlus && !NeedsGlobalDtor)
4397         DelayedCXXInitPosition.erase(D);
4398     }
4399   }
4400 
4401   llvm::Type* InitType = Init->getType();
4402   llvm::Constant *Entry =
4403       GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative));
4404 
4405   // Strip off pointer casts if we got them.
4406   Entry = Entry->stripPointerCasts();
4407 
4408   // Entry is now either a Function or GlobalVariable.
4409   auto *GV = dyn_cast<llvm::GlobalVariable>(Entry);
4410 
4411   // We have a definition after a declaration with the wrong type.
4412   // We must make a new GlobalVariable* and update everything that used OldGV
4413   // (a declaration or tentative definition) with the new GlobalVariable*
4414   // (which will be a definition).
4415   //
4416   // This happens if there is a prototype for a global (e.g.
4417   // "extern int x[];") and then a definition of a different type (e.g.
4418   // "int x[10];"). This also happens when an initializer has a different type
4419   // from the type of the global (this happens with unions).
4420   if (!GV || GV->getValueType() != InitType ||
4421       GV->getType()->getAddressSpace() !=
4422           getContext().getTargetAddressSpace(GetGlobalVarAddressSpace(D))) {
4423 
4424     // Move the old entry aside so that we'll create a new one.
4425     Entry->setName(StringRef());
4426 
4427     // Make a new global with the correct type, this is now guaranteed to work.
4428     GV = cast<llvm::GlobalVariable>(
4429         GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative))
4430             ->stripPointerCasts());
4431 
4432     // Replace all uses of the old global with the new global
4433     llvm::Constant *NewPtrForOldDecl =
4434         llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV,
4435                                                              Entry->getType());
4436     Entry->replaceAllUsesWith(NewPtrForOldDecl);
4437 
4438     // Erase the old global, since it is no longer used.
4439     cast<llvm::GlobalValue>(Entry)->eraseFromParent();
4440   }
4441 
4442   MaybeHandleStaticInExternC(D, GV);
4443 
4444   if (D->hasAttr<AnnotateAttr>())
4445     AddGlobalAnnotations(D, GV);
4446 
4447   // Set the llvm linkage type as appropriate.
4448   llvm::GlobalValue::LinkageTypes Linkage =
4449       getLLVMLinkageVarDefinition(D, GV->isConstant());
4450 
4451   // CUDA B.2.1 "The __device__ qualifier declares a variable that resides on
4452   // the device. [...]"
4453   // CUDA B.2.2 "The __constant__ qualifier, optionally used together with
4454   // __device__, declares a variable that: [...]
4455   // Is accessible from all the threads within the grid and from the host
4456   // through the runtime library (cudaGetSymbolAddress() / cudaGetSymbolSize()
4457   // / cudaMemcpyToSymbol() / cudaMemcpyFromSymbol())."
4458   if (GV && LangOpts.CUDA) {
4459     if (LangOpts.CUDAIsDevice) {
4460       if (Linkage != llvm::GlobalValue::InternalLinkage &&
4461           (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>() ||
4462            D->getType()->isCUDADeviceBuiltinSurfaceType() ||
4463            D->getType()->isCUDADeviceBuiltinTextureType()))
4464         GV->setExternallyInitialized(true);
4465     } else {
4466       getCUDARuntime().internalizeDeviceSideVar(D, Linkage);
4467     }
4468     getCUDARuntime().handleVarRegistration(D, *GV);
4469   }
4470 
4471   GV->setInitializer(Init);
4472   if (emitter)
4473     emitter->finalize(GV);
4474 
4475   // If it is safe to mark the global 'constant', do so now.
4476   GV->setConstant(!NeedsGlobalCtor && !NeedsGlobalDtor &&
4477                   isTypeConstant(D->getType(), true));
4478 
4479   // If it is in a read-only section, mark it 'constant'.
4480   if (const SectionAttr *SA = D->getAttr<SectionAttr>()) {
4481     const ASTContext::SectionInfo &SI = Context.SectionInfos[SA->getName()];
4482     if ((SI.SectionFlags & ASTContext::PSF_Write) == 0)
4483       GV->setConstant(true);
4484   }
4485 
4486   GV->setAlignment(getContext().getDeclAlign(D).getAsAlign());
4487 
4488   // On Darwin, unlike other Itanium C++ ABI platforms, the thread-wrapper
4489   // function is only defined alongside the variable, not also alongside
4490   // callers. Normally, all accesses to a thread_local go through the
4491   // thread-wrapper in order to ensure initialization has occurred, underlying
4492   // variable will never be used other than the thread-wrapper, so it can be
4493   // converted to internal linkage.
4494   //
4495   // However, if the variable has the 'constinit' attribute, it _can_ be
4496   // referenced directly, without calling the thread-wrapper, so the linkage
4497   // must not be changed.
4498   //
4499   // Additionally, if the variable isn't plain external linkage, e.g. if it's
4500   // weak or linkonce, the de-duplication semantics are important to preserve,
4501   // so we don't change the linkage.
4502   if (D->getTLSKind() == VarDecl::TLS_Dynamic &&
4503       Linkage == llvm::GlobalValue::ExternalLinkage &&
4504       Context.getTargetInfo().getTriple().isOSDarwin() &&
4505       !D->hasAttr<ConstInitAttr>())
4506     Linkage = llvm::GlobalValue::InternalLinkage;
4507 
4508   GV->setLinkage(Linkage);
4509   if (D->hasAttr<DLLImportAttr>())
4510     GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass);
4511   else if (D->hasAttr<DLLExportAttr>())
4512     GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass);
4513   else
4514     GV->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass);
4515 
4516   if (Linkage == llvm::GlobalVariable::CommonLinkage) {
4517     // common vars aren't constant even if declared const.
4518     GV->setConstant(false);
4519     // Tentative definition of global variables may be initialized with
4520     // non-zero null pointers. In this case they should have weak linkage
4521     // since common linkage must have zero initializer and must not have
4522     // explicit section therefore cannot have non-zero initial value.
4523     if (!GV->getInitializer()->isNullValue())
4524       GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage);
4525   }
4526 
4527   setNonAliasAttributes(D, GV);
4528 
4529   if (D->getTLSKind() && !GV->isThreadLocal()) {
4530     if (D->getTLSKind() == VarDecl::TLS_Dynamic)
4531       CXXThreadLocals.push_back(D);
4532     setTLSMode(GV, *D);
4533   }
4534 
4535   maybeSetTrivialComdat(*D, *GV);
4536 
4537   // Emit the initializer function if necessary.
4538   if (NeedsGlobalCtor || NeedsGlobalDtor)
4539     EmitCXXGlobalVarDeclInitFunc(D, GV, NeedsGlobalCtor);
4540 
4541   SanitizerMD->reportGlobalToASan(GV, *D, NeedsGlobalCtor);
4542 
4543   // Emit global variable debug information.
4544   if (CGDebugInfo *DI = getModuleDebugInfo())
4545     if (getCodeGenOpts().hasReducedDebugInfo())
4546       DI->EmitGlobalVariable(GV, D);
4547 }
4548 
4549 void CodeGenModule::EmitExternalVarDeclaration(const VarDecl *D) {
4550   if (CGDebugInfo *DI = getModuleDebugInfo())
4551     if (getCodeGenOpts().hasReducedDebugInfo()) {
4552       QualType ASTTy = D->getType();
4553       llvm::Type *Ty = getTypes().ConvertTypeForMem(D->getType());
4554       llvm::Constant *GV =
4555           GetOrCreateLLVMGlobal(D->getName(), Ty, ASTTy.getAddressSpace(), D);
4556       DI->EmitExternalVariable(
4557           cast<llvm::GlobalVariable>(GV->stripPointerCasts()), D);
4558     }
4559 }
4560 
4561 static bool isVarDeclStrongDefinition(const ASTContext &Context,
4562                                       CodeGenModule &CGM, const VarDecl *D,
4563                                       bool NoCommon) {
4564   // Don't give variables common linkage if -fno-common was specified unless it
4565   // was overridden by a NoCommon attribute.
4566   if ((NoCommon || D->hasAttr<NoCommonAttr>()) && !D->hasAttr<CommonAttr>())
4567     return true;
4568 
4569   // C11 6.9.2/2:
4570   //   A declaration of an identifier for an object that has file scope without
4571   //   an initializer, and without a storage-class specifier or with the
4572   //   storage-class specifier static, constitutes a tentative definition.
4573   if (D->getInit() || D->hasExternalStorage())
4574     return true;
4575 
4576   // A variable cannot be both common and exist in a section.
4577   if (D->hasAttr<SectionAttr>())
4578     return true;
4579 
4580   // A variable cannot be both common and exist in a section.
4581   // We don't try to determine which is the right section in the front-end.
4582   // If no specialized section name is applicable, it will resort to default.
4583   if (D->hasAttr<PragmaClangBSSSectionAttr>() ||
4584       D->hasAttr<PragmaClangDataSectionAttr>() ||
4585       D->hasAttr<PragmaClangRelroSectionAttr>() ||
4586       D->hasAttr<PragmaClangRodataSectionAttr>())
4587     return true;
4588 
4589   // Thread local vars aren't considered common linkage.
4590   if (D->getTLSKind())
4591     return true;
4592 
4593   // Tentative definitions marked with WeakImportAttr are true definitions.
4594   if (D->hasAttr<WeakImportAttr>())
4595     return true;
4596 
4597   // A variable cannot be both common and exist in a comdat.
4598   if (shouldBeInCOMDAT(CGM, *D))
4599     return true;
4600 
4601   // Declarations with a required alignment do not have common linkage in MSVC
4602   // mode.
4603   if (Context.getTargetInfo().getCXXABI().isMicrosoft()) {
4604     if (D->hasAttr<AlignedAttr>())
4605       return true;
4606     QualType VarType = D->getType();
4607     if (Context.isAlignmentRequired(VarType))
4608       return true;
4609 
4610     if (const auto *RT = VarType->getAs<RecordType>()) {
4611       const RecordDecl *RD = RT->getDecl();
4612       for (const FieldDecl *FD : RD->fields()) {
4613         if (FD->isBitField())
4614           continue;
4615         if (FD->hasAttr<AlignedAttr>())
4616           return true;
4617         if (Context.isAlignmentRequired(FD->getType()))
4618           return true;
4619       }
4620     }
4621   }
4622 
4623   // Microsoft's link.exe doesn't support alignments greater than 32 bytes for
4624   // common symbols, so symbols with greater alignment requirements cannot be
4625   // common.
4626   // Other COFF linkers (ld.bfd and LLD) support arbitrary power-of-two
4627   // alignments for common symbols via the aligncomm directive, so this
4628   // restriction only applies to MSVC environments.
4629   if (Context.getTargetInfo().getTriple().isKnownWindowsMSVCEnvironment() &&
4630       Context.getTypeAlignIfKnown(D->getType()) >
4631           Context.toBits(CharUnits::fromQuantity(32)))
4632     return true;
4633 
4634   return false;
4635 }
4636 
4637 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageForDeclarator(
4638     const DeclaratorDecl *D, GVALinkage Linkage, bool IsConstantVariable) {
4639   if (Linkage == GVA_Internal)
4640     return llvm::Function::InternalLinkage;
4641 
4642   if (D->hasAttr<WeakAttr>()) {
4643     if (IsConstantVariable)
4644       return llvm::GlobalVariable::WeakODRLinkage;
4645     else
4646       return llvm::GlobalVariable::WeakAnyLinkage;
4647   }
4648 
4649   if (const auto *FD = D->getAsFunction())
4650     if (FD->isMultiVersion() && Linkage == GVA_AvailableExternally)
4651       return llvm::GlobalVariable::LinkOnceAnyLinkage;
4652 
4653   // We are guaranteed to have a strong definition somewhere else,
4654   // so we can use available_externally linkage.
4655   if (Linkage == GVA_AvailableExternally)
4656     return llvm::GlobalValue::AvailableExternallyLinkage;
4657 
4658   // Note that Apple's kernel linker doesn't support symbol
4659   // coalescing, so we need to avoid linkonce and weak linkages there.
4660   // Normally, this means we just map to internal, but for explicit
4661   // instantiations we'll map to external.
4662 
4663   // In C++, the compiler has to emit a definition in every translation unit
4664   // that references the function.  We should use linkonce_odr because
4665   // a) if all references in this translation unit are optimized away, we
4666   // don't need to codegen it.  b) if the function persists, it needs to be
4667   // merged with other definitions. c) C++ has the ODR, so we know the
4668   // definition is dependable.
4669   if (Linkage == GVA_DiscardableODR)
4670     return !Context.getLangOpts().AppleKext ? llvm::Function::LinkOnceODRLinkage
4671                                             : llvm::Function::InternalLinkage;
4672 
4673   // An explicit instantiation of a template has weak linkage, since
4674   // explicit instantiations can occur in multiple translation units
4675   // and must all be equivalent. However, we are not allowed to
4676   // throw away these explicit instantiations.
4677   //
4678   // CUDA/HIP: For -fno-gpu-rdc case, device code is limited to one TU,
4679   // so say that CUDA templates are either external (for kernels) or internal.
4680   // This lets llvm perform aggressive inter-procedural optimizations. For
4681   // -fgpu-rdc case, device function calls across multiple TU's are allowed,
4682   // therefore we need to follow the normal linkage paradigm.
4683   if (Linkage == GVA_StrongODR) {
4684     if (getLangOpts().AppleKext)
4685       return llvm::Function::ExternalLinkage;
4686     if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice &&
4687         !getLangOpts().GPURelocatableDeviceCode)
4688       return D->hasAttr<CUDAGlobalAttr>() ? llvm::Function::ExternalLinkage
4689                                           : llvm::Function::InternalLinkage;
4690     return llvm::Function::WeakODRLinkage;
4691   }
4692 
4693   // C++ doesn't have tentative definitions and thus cannot have common
4694   // linkage.
4695   if (!getLangOpts().CPlusPlus && isa<VarDecl>(D) &&
4696       !isVarDeclStrongDefinition(Context, *this, cast<VarDecl>(D),
4697                                  CodeGenOpts.NoCommon))
4698     return llvm::GlobalVariable::CommonLinkage;
4699 
4700   // selectany symbols are externally visible, so use weak instead of
4701   // linkonce.  MSVC optimizes away references to const selectany globals, so
4702   // all definitions should be the same and ODR linkage should be used.
4703   // http://msdn.microsoft.com/en-us/library/5tkz6s71.aspx
4704   if (D->hasAttr<SelectAnyAttr>())
4705     return llvm::GlobalVariable::WeakODRLinkage;
4706 
4707   // Otherwise, we have strong external linkage.
4708   assert(Linkage == GVA_StrongExternal);
4709   return llvm::GlobalVariable::ExternalLinkage;
4710 }
4711 
4712 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageVarDefinition(
4713     const VarDecl *VD, bool IsConstant) {
4714   GVALinkage Linkage = getContext().GetGVALinkageForVariable(VD);
4715   return getLLVMLinkageForDeclarator(VD, Linkage, IsConstant);
4716 }
4717 
4718 /// Replace the uses of a function that was declared with a non-proto type.
4719 /// We want to silently drop extra arguments from call sites
4720 static void replaceUsesOfNonProtoConstant(llvm::Constant *old,
4721                                           llvm::Function *newFn) {
4722   // Fast path.
4723   if (old->use_empty()) return;
4724 
4725   llvm::Type *newRetTy = newFn->getReturnType();
4726   SmallVector<llvm::Value*, 4> newArgs;
4727 
4728   for (llvm::Value::use_iterator ui = old->use_begin(), ue = old->use_end();
4729          ui != ue; ) {
4730     llvm::Value::use_iterator use = ui++; // Increment before the use is erased.
4731     llvm::User *user = use->getUser();
4732 
4733     // Recognize and replace uses of bitcasts.  Most calls to
4734     // unprototyped functions will use bitcasts.
4735     if (auto *bitcast = dyn_cast<llvm::ConstantExpr>(user)) {
4736       if (bitcast->getOpcode() == llvm::Instruction::BitCast)
4737         replaceUsesOfNonProtoConstant(bitcast, newFn);
4738       continue;
4739     }
4740 
4741     // Recognize calls to the function.
4742     llvm::CallBase *callSite = dyn_cast<llvm::CallBase>(user);
4743     if (!callSite) continue;
4744     if (!callSite->isCallee(&*use))
4745       continue;
4746 
4747     // If the return types don't match exactly, then we can't
4748     // transform this call unless it's dead.
4749     if (callSite->getType() != newRetTy && !callSite->use_empty())
4750       continue;
4751 
4752     // Get the call site's attribute list.
4753     SmallVector<llvm::AttributeSet, 8> newArgAttrs;
4754     llvm::AttributeList oldAttrs = callSite->getAttributes();
4755 
4756     // If the function was passed too few arguments, don't transform.
4757     unsigned newNumArgs = newFn->arg_size();
4758     if (callSite->arg_size() < newNumArgs)
4759       continue;
4760 
4761     // If extra arguments were passed, we silently drop them.
4762     // If any of the types mismatch, we don't transform.
4763     unsigned argNo = 0;
4764     bool dontTransform = false;
4765     for (llvm::Argument &A : newFn->args()) {
4766       if (callSite->getArgOperand(argNo)->getType() != A.getType()) {
4767         dontTransform = true;
4768         break;
4769       }
4770 
4771       // Add any parameter attributes.
4772       newArgAttrs.push_back(oldAttrs.getParamAttrs(argNo));
4773       argNo++;
4774     }
4775     if (dontTransform)
4776       continue;
4777 
4778     // Okay, we can transform this.  Create the new call instruction and copy
4779     // over the required information.
4780     newArgs.append(callSite->arg_begin(), callSite->arg_begin() + argNo);
4781 
4782     // Copy over any operand bundles.
4783     SmallVector<llvm::OperandBundleDef, 1> newBundles;
4784     callSite->getOperandBundlesAsDefs(newBundles);
4785 
4786     llvm::CallBase *newCall;
4787     if (dyn_cast<llvm::CallInst>(callSite)) {
4788       newCall =
4789           llvm::CallInst::Create(newFn, newArgs, newBundles, "", callSite);
4790     } else {
4791       auto *oldInvoke = cast<llvm::InvokeInst>(callSite);
4792       newCall = llvm::InvokeInst::Create(newFn, oldInvoke->getNormalDest(),
4793                                          oldInvoke->getUnwindDest(), newArgs,
4794                                          newBundles, "", callSite);
4795     }
4796     newArgs.clear(); // for the next iteration
4797 
4798     if (!newCall->getType()->isVoidTy())
4799       newCall->takeName(callSite);
4800     newCall->setAttributes(
4801         llvm::AttributeList::get(newFn->getContext(), oldAttrs.getFnAttrs(),
4802                                  oldAttrs.getRetAttrs(), newArgAttrs));
4803     newCall->setCallingConv(callSite->getCallingConv());
4804 
4805     // Finally, remove the old call, replacing any uses with the new one.
4806     if (!callSite->use_empty())
4807       callSite->replaceAllUsesWith(newCall);
4808 
4809     // Copy debug location attached to CI.
4810     if (callSite->getDebugLoc())
4811       newCall->setDebugLoc(callSite->getDebugLoc());
4812 
4813     callSite->eraseFromParent();
4814   }
4815 }
4816 
4817 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we
4818 /// implement a function with no prototype, e.g. "int foo() {}".  If there are
4819 /// existing call uses of the old function in the module, this adjusts them to
4820 /// call the new function directly.
4821 ///
4822 /// This is not just a cleanup: the always_inline pass requires direct calls to
4823 /// functions to be able to inline them.  If there is a bitcast in the way, it
4824 /// won't inline them.  Instcombine normally deletes these calls, but it isn't
4825 /// run at -O0.
4826 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
4827                                                       llvm::Function *NewFn) {
4828   // If we're redefining a global as a function, don't transform it.
4829   if (!isa<llvm::Function>(Old)) return;
4830 
4831   replaceUsesOfNonProtoConstant(Old, NewFn);
4832 }
4833 
4834 void CodeGenModule::HandleCXXStaticMemberVarInstantiation(VarDecl *VD) {
4835   auto DK = VD->isThisDeclarationADefinition();
4836   if (DK == VarDecl::Definition && VD->hasAttr<DLLImportAttr>())
4837     return;
4838 
4839   TemplateSpecializationKind TSK = VD->getTemplateSpecializationKind();
4840   // If we have a definition, this might be a deferred decl. If the
4841   // instantiation is explicit, make sure we emit it at the end.
4842   if (VD->getDefinition() && TSK == TSK_ExplicitInstantiationDefinition)
4843     GetAddrOfGlobalVar(VD);
4844 
4845   EmitTopLevelDecl(VD);
4846 }
4847 
4848 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD,
4849                                                  llvm::GlobalValue *GV) {
4850   const auto *D = cast<FunctionDecl>(GD.getDecl());
4851 
4852   // Compute the function info and LLVM type.
4853   const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
4854   llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
4855 
4856   // Get or create the prototype for the function.
4857   if (!GV || (GV->getValueType() != Ty))
4858     GV = cast<llvm::GlobalValue>(GetAddrOfFunction(GD, Ty, /*ForVTable=*/false,
4859                                                    /*DontDefer=*/true,
4860                                                    ForDefinition));
4861 
4862   // Already emitted.
4863   if (!GV->isDeclaration())
4864     return;
4865 
4866   // We need to set linkage and visibility on the function before
4867   // generating code for it because various parts of IR generation
4868   // want to propagate this information down (e.g. to local static
4869   // declarations).
4870   auto *Fn = cast<llvm::Function>(GV);
4871   setFunctionLinkage(GD, Fn);
4872 
4873   // FIXME: this is redundant with part of setFunctionDefinitionAttributes
4874   setGVProperties(Fn, GD);
4875 
4876   MaybeHandleStaticInExternC(D, Fn);
4877 
4878   maybeSetTrivialComdat(*D, *Fn);
4879 
4880   // Set CodeGen attributes that represent floating point environment.
4881   setLLVMFunctionFEnvAttributes(D, Fn);
4882 
4883   CodeGenFunction(*this).GenerateCode(GD, Fn, FI);
4884 
4885   setNonAliasAttributes(GD, Fn);
4886   SetLLVMFunctionAttributesForDefinition(D, Fn);
4887 
4888   if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>())
4889     AddGlobalCtor(Fn, CA->getPriority());
4890   if (const DestructorAttr *DA = D->getAttr<DestructorAttr>())
4891     AddGlobalDtor(Fn, DA->getPriority(), true);
4892   if (D->hasAttr<AnnotateAttr>())
4893     AddGlobalAnnotations(D, Fn);
4894 }
4895 
4896 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) {
4897   const auto *D = cast<ValueDecl>(GD.getDecl());
4898   const AliasAttr *AA = D->getAttr<AliasAttr>();
4899   assert(AA && "Not an alias?");
4900 
4901   StringRef MangledName = getMangledName(GD);
4902 
4903   if (AA->getAliasee() == MangledName) {
4904     Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0;
4905     return;
4906   }
4907 
4908   // If there is a definition in the module, then it wins over the alias.
4909   // This is dubious, but allow it to be safe.  Just ignore the alias.
4910   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
4911   if (Entry && !Entry->isDeclaration())
4912     return;
4913 
4914   Aliases.push_back(GD);
4915 
4916   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
4917 
4918   // Create a reference to the named value.  This ensures that it is emitted
4919   // if a deferred decl.
4920   llvm::Constant *Aliasee;
4921   llvm::GlobalValue::LinkageTypes LT;
4922   if (isa<llvm::FunctionType>(DeclTy)) {
4923     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GD,
4924                                       /*ForVTable=*/false);
4925     LT = getFunctionLinkage(GD);
4926   } else {
4927     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), DeclTy, LangAS::Default,
4928                                     /*D=*/nullptr);
4929     if (const auto *VD = dyn_cast<VarDecl>(GD.getDecl()))
4930       LT = getLLVMLinkageVarDefinition(VD, D->getType().isConstQualified());
4931     else
4932       LT = getFunctionLinkage(GD);
4933   }
4934 
4935   // Create the new alias itself, but don't set a name yet.
4936   unsigned AS = Aliasee->getType()->getPointerAddressSpace();
4937   auto *GA =
4938       llvm::GlobalAlias::create(DeclTy, AS, LT, "", Aliasee, &getModule());
4939 
4940   if (Entry) {
4941     if (GA->getAliasee() == Entry) {
4942       Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0;
4943       return;
4944     }
4945 
4946     assert(Entry->isDeclaration());
4947 
4948     // If there is a declaration in the module, then we had an extern followed
4949     // by the alias, as in:
4950     //   extern int test6();
4951     //   ...
4952     //   int test6() __attribute__((alias("test7")));
4953     //
4954     // Remove it and replace uses of it with the alias.
4955     GA->takeName(Entry);
4956 
4957     Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA,
4958                                                           Entry->getType()));
4959     Entry->eraseFromParent();
4960   } else {
4961     GA->setName(MangledName);
4962   }
4963 
4964   // Set attributes which are particular to an alias; this is a
4965   // specialization of the attributes which may be set on a global
4966   // variable/function.
4967   if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakRefAttr>() ||
4968       D->isWeakImported()) {
4969     GA->setLinkage(llvm::Function::WeakAnyLinkage);
4970   }
4971 
4972   if (const auto *VD = dyn_cast<VarDecl>(D))
4973     if (VD->getTLSKind())
4974       setTLSMode(GA, *VD);
4975 
4976   SetCommonAttributes(GD, GA);
4977 }
4978 
4979 void CodeGenModule::emitIFuncDefinition(GlobalDecl GD) {
4980   const auto *D = cast<ValueDecl>(GD.getDecl());
4981   const IFuncAttr *IFA = D->getAttr<IFuncAttr>();
4982   assert(IFA && "Not an ifunc?");
4983 
4984   StringRef MangledName = getMangledName(GD);
4985 
4986   if (IFA->getResolver() == MangledName) {
4987     Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1;
4988     return;
4989   }
4990 
4991   // Report an error if some definition overrides ifunc.
4992   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
4993   if (Entry && !Entry->isDeclaration()) {
4994     GlobalDecl OtherGD;
4995     if (lookupRepresentativeDecl(MangledName, OtherGD) &&
4996         DiagnosedConflictingDefinitions.insert(GD).second) {
4997       Diags.Report(D->getLocation(), diag::err_duplicate_mangled_name)
4998           << MangledName;
4999       Diags.Report(OtherGD.getDecl()->getLocation(),
5000                    diag::note_previous_definition);
5001     }
5002     return;
5003   }
5004 
5005   Aliases.push_back(GD);
5006 
5007   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
5008   llvm::Constant *Resolver =
5009       GetOrCreateLLVMFunction(IFA->getResolver(), DeclTy, GD,
5010                               /*ForVTable=*/false);
5011   llvm::GlobalIFunc *GIF =
5012       llvm::GlobalIFunc::create(DeclTy, 0, llvm::Function::ExternalLinkage,
5013                                 "", Resolver, &getModule());
5014   if (Entry) {
5015     if (GIF->getResolver() == Entry) {
5016       Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1;
5017       return;
5018     }
5019     assert(Entry->isDeclaration());
5020 
5021     // If there is a declaration in the module, then we had an extern followed
5022     // by the ifunc, as in:
5023     //   extern int test();
5024     //   ...
5025     //   int test() __attribute__((ifunc("resolver")));
5026     //
5027     // Remove it and replace uses of it with the ifunc.
5028     GIF->takeName(Entry);
5029 
5030     Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GIF,
5031                                                           Entry->getType()));
5032     Entry->eraseFromParent();
5033   } else
5034     GIF->setName(MangledName);
5035 
5036   SetCommonAttributes(GD, GIF);
5037 }
5038 
5039 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,
5040                                             ArrayRef<llvm::Type*> Tys) {
5041   return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID,
5042                                          Tys);
5043 }
5044 
5045 static llvm::StringMapEntry<llvm::GlobalVariable *> &
5046 GetConstantCFStringEntry(llvm::StringMap<llvm::GlobalVariable *> &Map,
5047                          const StringLiteral *Literal, bool TargetIsLSB,
5048                          bool &IsUTF16, unsigned &StringLength) {
5049   StringRef String = Literal->getString();
5050   unsigned NumBytes = String.size();
5051 
5052   // Check for simple case.
5053   if (!Literal->containsNonAsciiOrNull()) {
5054     StringLength = NumBytes;
5055     return *Map.insert(std::make_pair(String, nullptr)).first;
5056   }
5057 
5058   // Otherwise, convert the UTF8 literals into a string of shorts.
5059   IsUTF16 = true;
5060 
5061   SmallVector<llvm::UTF16, 128> ToBuf(NumBytes + 1); // +1 for ending nulls.
5062   const llvm::UTF8 *FromPtr = (const llvm::UTF8 *)String.data();
5063   llvm::UTF16 *ToPtr = &ToBuf[0];
5064 
5065   (void)llvm::ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, &ToPtr,
5066                                  ToPtr + NumBytes, llvm::strictConversion);
5067 
5068   // ConvertUTF8toUTF16 returns the length in ToPtr.
5069   StringLength = ToPtr - &ToBuf[0];
5070 
5071   // Add an explicit null.
5072   *ToPtr = 0;
5073   return *Map.insert(std::make_pair(
5074                          StringRef(reinterpret_cast<const char *>(ToBuf.data()),
5075                                    (StringLength + 1) * 2),
5076                          nullptr)).first;
5077 }
5078 
5079 ConstantAddress
5080 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) {
5081   unsigned StringLength = 0;
5082   bool isUTF16 = false;
5083   llvm::StringMapEntry<llvm::GlobalVariable *> &Entry =
5084       GetConstantCFStringEntry(CFConstantStringMap, Literal,
5085                                getDataLayout().isLittleEndian(), isUTF16,
5086                                StringLength);
5087 
5088   if (auto *C = Entry.second)
5089     return ConstantAddress(C, CharUnits::fromQuantity(C->getAlignment()));
5090 
5091   llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty);
5092   llvm::Constant *Zeros[] = { Zero, Zero };
5093 
5094   const ASTContext &Context = getContext();
5095   const llvm::Triple &Triple = getTriple();
5096 
5097   const auto CFRuntime = getLangOpts().CFRuntime;
5098   const bool IsSwiftABI =
5099       static_cast<unsigned>(CFRuntime) >=
5100       static_cast<unsigned>(LangOptions::CoreFoundationABI::Swift);
5101   const bool IsSwift4_1 = CFRuntime == LangOptions::CoreFoundationABI::Swift4_1;
5102 
5103   // If we don't already have it, get __CFConstantStringClassReference.
5104   if (!CFConstantStringClassRef) {
5105     const char *CFConstantStringClassName = "__CFConstantStringClassReference";
5106     llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
5107     Ty = llvm::ArrayType::get(Ty, 0);
5108 
5109     switch (CFRuntime) {
5110     default: break;
5111     case LangOptions::CoreFoundationABI::Swift: LLVM_FALLTHROUGH;
5112     case LangOptions::CoreFoundationABI::Swift5_0:
5113       CFConstantStringClassName =
5114           Triple.isOSDarwin() ? "$s15SwiftFoundation19_NSCFConstantStringCN"
5115                               : "$s10Foundation19_NSCFConstantStringCN";
5116       Ty = IntPtrTy;
5117       break;
5118     case LangOptions::CoreFoundationABI::Swift4_2:
5119       CFConstantStringClassName =
5120           Triple.isOSDarwin() ? "$S15SwiftFoundation19_NSCFConstantStringCN"
5121                               : "$S10Foundation19_NSCFConstantStringCN";
5122       Ty = IntPtrTy;
5123       break;
5124     case LangOptions::CoreFoundationABI::Swift4_1:
5125       CFConstantStringClassName =
5126           Triple.isOSDarwin() ? "__T015SwiftFoundation19_NSCFConstantStringCN"
5127                               : "__T010Foundation19_NSCFConstantStringCN";
5128       Ty = IntPtrTy;
5129       break;
5130     }
5131 
5132     llvm::Constant *C = CreateRuntimeVariable(Ty, CFConstantStringClassName);
5133 
5134     if (Triple.isOSBinFormatELF() || Triple.isOSBinFormatCOFF()) {
5135       llvm::GlobalValue *GV = nullptr;
5136 
5137       if ((GV = dyn_cast<llvm::GlobalValue>(C))) {
5138         IdentifierInfo &II = Context.Idents.get(GV->getName());
5139         TranslationUnitDecl *TUDecl = Context.getTranslationUnitDecl();
5140         DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl);
5141 
5142         const VarDecl *VD = nullptr;
5143         for (const auto *Result : DC->lookup(&II))
5144           if ((VD = dyn_cast<VarDecl>(Result)))
5145             break;
5146 
5147         if (Triple.isOSBinFormatELF()) {
5148           if (!VD)
5149             GV->setLinkage(llvm::GlobalValue::ExternalLinkage);
5150         } else {
5151           GV->setLinkage(llvm::GlobalValue::ExternalLinkage);
5152           if (!VD || !VD->hasAttr<DLLExportAttr>())
5153             GV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass);
5154           else
5155             GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass);
5156         }
5157 
5158         setDSOLocal(GV);
5159       }
5160     }
5161 
5162     // Decay array -> ptr
5163     CFConstantStringClassRef =
5164         IsSwiftABI ? llvm::ConstantExpr::getPtrToInt(C, Ty)
5165                    : llvm::ConstantExpr::getGetElementPtr(Ty, C, Zeros);
5166   }
5167 
5168   QualType CFTy = Context.getCFConstantStringType();
5169 
5170   auto *STy = cast<llvm::StructType>(getTypes().ConvertType(CFTy));
5171 
5172   ConstantInitBuilder Builder(*this);
5173   auto Fields = Builder.beginStruct(STy);
5174 
5175   // Class pointer.
5176   Fields.add(cast<llvm::ConstantExpr>(CFConstantStringClassRef));
5177 
5178   // Flags.
5179   if (IsSwiftABI) {
5180     Fields.addInt(IntPtrTy, IsSwift4_1 ? 0x05 : 0x01);
5181     Fields.addInt(Int64Ty, isUTF16 ? 0x07d0 : 0x07c8);
5182   } else {
5183     Fields.addInt(IntTy, isUTF16 ? 0x07d0 : 0x07C8);
5184   }
5185 
5186   // String pointer.
5187   llvm::Constant *C = nullptr;
5188   if (isUTF16) {
5189     auto Arr = llvm::makeArrayRef(
5190         reinterpret_cast<uint16_t *>(const_cast<char *>(Entry.first().data())),
5191         Entry.first().size() / 2);
5192     C = llvm::ConstantDataArray::get(VMContext, Arr);
5193   } else {
5194     C = llvm::ConstantDataArray::getString(VMContext, Entry.first());
5195   }
5196 
5197   // Note: -fwritable-strings doesn't make the backing store strings of
5198   // CFStrings writable. (See <rdar://problem/10657500>)
5199   auto *GV =
5200       new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true,
5201                                llvm::GlobalValue::PrivateLinkage, C, ".str");
5202   GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
5203   // Don't enforce the target's minimum global alignment, since the only use
5204   // of the string is via this class initializer.
5205   CharUnits Align = isUTF16 ? Context.getTypeAlignInChars(Context.ShortTy)
5206                             : Context.getTypeAlignInChars(Context.CharTy);
5207   GV->setAlignment(Align.getAsAlign());
5208 
5209   // FIXME: We set the section explicitly to avoid a bug in ld64 224.1.
5210   // Without it LLVM can merge the string with a non unnamed_addr one during
5211   // LTO.  Doing that changes the section it ends in, which surprises ld64.
5212   if (Triple.isOSBinFormatMachO())
5213     GV->setSection(isUTF16 ? "__TEXT,__ustring"
5214                            : "__TEXT,__cstring,cstring_literals");
5215   // Make sure the literal ends up in .rodata to allow for safe ICF and for
5216   // the static linker to adjust permissions to read-only later on.
5217   else if (Triple.isOSBinFormatELF())
5218     GV->setSection(".rodata");
5219 
5220   // String.
5221   llvm::Constant *Str =
5222       llvm::ConstantExpr::getGetElementPtr(GV->getValueType(), GV, Zeros);
5223 
5224   if (isUTF16)
5225     // Cast the UTF16 string to the correct type.
5226     Str = llvm::ConstantExpr::getBitCast(Str, Int8PtrTy);
5227   Fields.add(Str);
5228 
5229   // String length.
5230   llvm::IntegerType *LengthTy =
5231       llvm::IntegerType::get(getModule().getContext(),
5232                              Context.getTargetInfo().getLongWidth());
5233   if (IsSwiftABI) {
5234     if (CFRuntime == LangOptions::CoreFoundationABI::Swift4_1 ||
5235         CFRuntime == LangOptions::CoreFoundationABI::Swift4_2)
5236       LengthTy = Int32Ty;
5237     else
5238       LengthTy = IntPtrTy;
5239   }
5240   Fields.addInt(LengthTy, StringLength);
5241 
5242   // Swift ABI requires 8-byte alignment to ensure that the _Atomic(uint64_t) is
5243   // properly aligned on 32-bit platforms.
5244   CharUnits Alignment =
5245       IsSwiftABI ? Context.toCharUnitsFromBits(64) : getPointerAlign();
5246 
5247   // The struct.
5248   GV = Fields.finishAndCreateGlobal("_unnamed_cfstring_", Alignment,
5249                                     /*isConstant=*/false,
5250                                     llvm::GlobalVariable::PrivateLinkage);
5251   GV->addAttribute("objc_arc_inert");
5252   switch (Triple.getObjectFormat()) {
5253   case llvm::Triple::UnknownObjectFormat:
5254     llvm_unreachable("unknown file format");
5255   case llvm::Triple::GOFF:
5256     llvm_unreachable("GOFF is not yet implemented");
5257   case llvm::Triple::XCOFF:
5258     llvm_unreachable("XCOFF is not yet implemented");
5259   case llvm::Triple::COFF:
5260   case llvm::Triple::ELF:
5261   case llvm::Triple::Wasm:
5262     GV->setSection("cfstring");
5263     break;
5264   case llvm::Triple::MachO:
5265     GV->setSection("__DATA,__cfstring");
5266     break;
5267   }
5268   Entry.second = GV;
5269 
5270   return ConstantAddress(GV, Alignment);
5271 }
5272 
5273 bool CodeGenModule::getExpressionLocationsEnabled() const {
5274   return !CodeGenOpts.EmitCodeView || CodeGenOpts.DebugColumnInfo;
5275 }
5276 
5277 QualType CodeGenModule::getObjCFastEnumerationStateType() {
5278   if (ObjCFastEnumerationStateType.isNull()) {
5279     RecordDecl *D = Context.buildImplicitRecord("__objcFastEnumerationState");
5280     D->startDefinition();
5281 
5282     QualType FieldTypes[] = {
5283       Context.UnsignedLongTy,
5284       Context.getPointerType(Context.getObjCIdType()),
5285       Context.getPointerType(Context.UnsignedLongTy),
5286       Context.getConstantArrayType(Context.UnsignedLongTy,
5287                            llvm::APInt(32, 5), nullptr, ArrayType::Normal, 0)
5288     };
5289 
5290     for (size_t i = 0; i < 4; ++i) {
5291       FieldDecl *Field = FieldDecl::Create(Context,
5292                                            D,
5293                                            SourceLocation(),
5294                                            SourceLocation(), nullptr,
5295                                            FieldTypes[i], /*TInfo=*/nullptr,
5296                                            /*BitWidth=*/nullptr,
5297                                            /*Mutable=*/false,
5298                                            ICIS_NoInit);
5299       Field->setAccess(AS_public);
5300       D->addDecl(Field);
5301     }
5302 
5303     D->completeDefinition();
5304     ObjCFastEnumerationStateType = Context.getTagDeclType(D);
5305   }
5306 
5307   return ObjCFastEnumerationStateType;
5308 }
5309 
5310 llvm::Constant *
5311 CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) {
5312   assert(!E->getType()->isPointerType() && "Strings are always arrays");
5313 
5314   // Don't emit it as the address of the string, emit the string data itself
5315   // as an inline array.
5316   if (E->getCharByteWidth() == 1) {
5317     SmallString<64> Str(E->getString());
5318 
5319     // Resize the string to the right size, which is indicated by its type.
5320     const ConstantArrayType *CAT = Context.getAsConstantArrayType(E->getType());
5321     Str.resize(CAT->getSize().getZExtValue());
5322     return llvm::ConstantDataArray::getString(VMContext, Str, false);
5323   }
5324 
5325   auto *AType = cast<llvm::ArrayType>(getTypes().ConvertType(E->getType()));
5326   llvm::Type *ElemTy = AType->getElementType();
5327   unsigned NumElements = AType->getNumElements();
5328 
5329   // Wide strings have either 2-byte or 4-byte elements.
5330   if (ElemTy->getPrimitiveSizeInBits() == 16) {
5331     SmallVector<uint16_t, 32> Elements;
5332     Elements.reserve(NumElements);
5333 
5334     for(unsigned i = 0, e = E->getLength(); i != e; ++i)
5335       Elements.push_back(E->getCodeUnit(i));
5336     Elements.resize(NumElements);
5337     return llvm::ConstantDataArray::get(VMContext, Elements);
5338   }
5339 
5340   assert(ElemTy->getPrimitiveSizeInBits() == 32);
5341   SmallVector<uint32_t, 32> Elements;
5342   Elements.reserve(NumElements);
5343 
5344   for(unsigned i = 0, e = E->getLength(); i != e; ++i)
5345     Elements.push_back(E->getCodeUnit(i));
5346   Elements.resize(NumElements);
5347   return llvm::ConstantDataArray::get(VMContext, Elements);
5348 }
5349 
5350 static llvm::GlobalVariable *
5351 GenerateStringLiteral(llvm::Constant *C, llvm::GlobalValue::LinkageTypes LT,
5352                       CodeGenModule &CGM, StringRef GlobalName,
5353                       CharUnits Alignment) {
5354   unsigned AddrSpace = CGM.getContext().getTargetAddressSpace(
5355       CGM.GetGlobalConstantAddressSpace());
5356 
5357   llvm::Module &M = CGM.getModule();
5358   // Create a global variable for this string
5359   auto *GV = new llvm::GlobalVariable(
5360       M, C->getType(), !CGM.getLangOpts().WritableStrings, LT, C, GlobalName,
5361       nullptr, llvm::GlobalVariable::NotThreadLocal, AddrSpace);
5362   GV->setAlignment(Alignment.getAsAlign());
5363   GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
5364   if (GV->isWeakForLinker()) {
5365     assert(CGM.supportsCOMDAT() && "Only COFF uses weak string literals");
5366     GV->setComdat(M.getOrInsertComdat(GV->getName()));
5367   }
5368   CGM.setDSOLocal(GV);
5369 
5370   return GV;
5371 }
5372 
5373 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a
5374 /// constant array for the given string literal.
5375 ConstantAddress
5376 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S,
5377                                                   StringRef Name) {
5378   CharUnits Alignment = getContext().getAlignOfGlobalVarInChars(S->getType());
5379 
5380   llvm::Constant *C = GetConstantArrayFromStringLiteral(S);
5381   llvm::GlobalVariable **Entry = nullptr;
5382   if (!LangOpts.WritableStrings) {
5383     Entry = &ConstantStringMap[C];
5384     if (auto GV = *Entry) {
5385       if (Alignment.getQuantity() > GV->getAlignment())
5386         GV->setAlignment(Alignment.getAsAlign());
5387       return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV),
5388                              Alignment);
5389     }
5390   }
5391 
5392   SmallString<256> MangledNameBuffer;
5393   StringRef GlobalVariableName;
5394   llvm::GlobalValue::LinkageTypes LT;
5395 
5396   // Mangle the string literal if that's how the ABI merges duplicate strings.
5397   // Don't do it if they are writable, since we don't want writes in one TU to
5398   // affect strings in another.
5399   if (getCXXABI().getMangleContext().shouldMangleStringLiteral(S) &&
5400       !LangOpts.WritableStrings) {
5401     llvm::raw_svector_ostream Out(MangledNameBuffer);
5402     getCXXABI().getMangleContext().mangleStringLiteral(S, Out);
5403     LT = llvm::GlobalValue::LinkOnceODRLinkage;
5404     GlobalVariableName = MangledNameBuffer;
5405   } else {
5406     LT = llvm::GlobalValue::PrivateLinkage;
5407     GlobalVariableName = Name;
5408   }
5409 
5410   auto GV = GenerateStringLiteral(C, LT, *this, GlobalVariableName, Alignment);
5411   if (Entry)
5412     *Entry = GV;
5413 
5414   SanitizerMD->reportGlobalToASan(GV, S->getStrTokenLoc(0), "<string literal>",
5415                                   QualType());
5416 
5417   return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV),
5418                          Alignment);
5419 }
5420 
5421 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant
5422 /// array for the given ObjCEncodeExpr node.
5423 ConstantAddress
5424 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) {
5425   std::string Str;
5426   getContext().getObjCEncodingForType(E->getEncodedType(), Str);
5427 
5428   return GetAddrOfConstantCString(Str);
5429 }
5430 
5431 /// GetAddrOfConstantCString - Returns a pointer to a character array containing
5432 /// the literal and a terminating '\0' character.
5433 /// The result has pointer to array type.
5434 ConstantAddress CodeGenModule::GetAddrOfConstantCString(
5435     const std::string &Str, const char *GlobalName) {
5436   StringRef StrWithNull(Str.c_str(), Str.size() + 1);
5437   CharUnits Alignment =
5438     getContext().getAlignOfGlobalVarInChars(getContext().CharTy);
5439 
5440   llvm::Constant *C =
5441       llvm::ConstantDataArray::getString(getLLVMContext(), StrWithNull, false);
5442 
5443   // Don't share any string literals if strings aren't constant.
5444   llvm::GlobalVariable **Entry = nullptr;
5445   if (!LangOpts.WritableStrings) {
5446     Entry = &ConstantStringMap[C];
5447     if (auto GV = *Entry) {
5448       if (Alignment.getQuantity() > GV->getAlignment())
5449         GV->setAlignment(Alignment.getAsAlign());
5450       return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV),
5451                              Alignment);
5452     }
5453   }
5454 
5455   // Get the default prefix if a name wasn't specified.
5456   if (!GlobalName)
5457     GlobalName = ".str";
5458   // Create a global variable for this.
5459   auto GV = GenerateStringLiteral(C, llvm::GlobalValue::PrivateLinkage, *this,
5460                                   GlobalName, Alignment);
5461   if (Entry)
5462     *Entry = GV;
5463 
5464   return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV),
5465                          Alignment);
5466 }
5467 
5468 ConstantAddress CodeGenModule::GetAddrOfGlobalTemporary(
5469     const MaterializeTemporaryExpr *E, const Expr *Init) {
5470   assert((E->getStorageDuration() == SD_Static ||
5471           E->getStorageDuration() == SD_Thread) && "not a global temporary");
5472   const auto *VD = cast<VarDecl>(E->getExtendingDecl());
5473 
5474   // If we're not materializing a subobject of the temporary, keep the
5475   // cv-qualifiers from the type of the MaterializeTemporaryExpr.
5476   QualType MaterializedType = Init->getType();
5477   if (Init == E->getSubExpr())
5478     MaterializedType = E->getType();
5479 
5480   CharUnits Align = getContext().getTypeAlignInChars(MaterializedType);
5481 
5482   auto InsertResult = MaterializedGlobalTemporaryMap.insert({E, nullptr});
5483   if (!InsertResult.second) {
5484     // We've seen this before: either we already created it or we're in the
5485     // process of doing so.
5486     if (!InsertResult.first->second) {
5487       // We recursively re-entered this function, probably during emission of
5488       // the initializer. Create a placeholder. We'll clean this up in the
5489       // outer call, at the end of this function.
5490       llvm::Type *Type = getTypes().ConvertTypeForMem(MaterializedType);
5491       InsertResult.first->second = new llvm::GlobalVariable(
5492           getModule(), Type, false, llvm::GlobalVariable::InternalLinkage,
5493           nullptr);
5494     }
5495     return ConstantAddress(InsertResult.first->second, Align);
5496   }
5497 
5498   // FIXME: If an externally-visible declaration extends multiple temporaries,
5499   // we need to give each temporary the same name in every translation unit (and
5500   // we also need to make the temporaries externally-visible).
5501   SmallString<256> Name;
5502   llvm::raw_svector_ostream Out(Name);
5503   getCXXABI().getMangleContext().mangleReferenceTemporary(
5504       VD, E->getManglingNumber(), Out);
5505 
5506   APValue *Value = nullptr;
5507   if (E->getStorageDuration() == SD_Static && VD && VD->evaluateValue()) {
5508     // If the initializer of the extending declaration is a constant
5509     // initializer, we should have a cached constant initializer for this
5510     // temporary. Note that this might have a different value from the value
5511     // computed by evaluating the initializer if the surrounding constant
5512     // expression modifies the temporary.
5513     Value = E->getOrCreateValue(false);
5514   }
5515 
5516   // Try evaluating it now, it might have a constant initializer.
5517   Expr::EvalResult EvalResult;
5518   if (!Value && Init->EvaluateAsRValue(EvalResult, getContext()) &&
5519       !EvalResult.hasSideEffects())
5520     Value = &EvalResult.Val;
5521 
5522   LangAS AddrSpace =
5523       VD ? GetGlobalVarAddressSpace(VD) : MaterializedType.getAddressSpace();
5524 
5525   Optional<ConstantEmitter> emitter;
5526   llvm::Constant *InitialValue = nullptr;
5527   bool Constant = false;
5528   llvm::Type *Type;
5529   if (Value) {
5530     // The temporary has a constant initializer, use it.
5531     emitter.emplace(*this);
5532     InitialValue = emitter->emitForInitializer(*Value, AddrSpace,
5533                                                MaterializedType);
5534     Constant = isTypeConstant(MaterializedType, /*ExcludeCtor*/Value);
5535     Type = InitialValue->getType();
5536   } else {
5537     // No initializer, the initialization will be provided when we
5538     // initialize the declaration which performed lifetime extension.
5539     Type = getTypes().ConvertTypeForMem(MaterializedType);
5540   }
5541 
5542   // Create a global variable for this lifetime-extended temporary.
5543   llvm::GlobalValue::LinkageTypes Linkage =
5544       getLLVMLinkageVarDefinition(VD, Constant);
5545   if (Linkage == llvm::GlobalVariable::ExternalLinkage) {
5546     const VarDecl *InitVD;
5547     if (VD->isStaticDataMember() && VD->getAnyInitializer(InitVD) &&
5548         isa<CXXRecordDecl>(InitVD->getLexicalDeclContext())) {
5549       // Temporaries defined inside a class get linkonce_odr linkage because the
5550       // class can be defined in multiple translation units.
5551       Linkage = llvm::GlobalVariable::LinkOnceODRLinkage;
5552     } else {
5553       // There is no need for this temporary to have external linkage if the
5554       // VarDecl has external linkage.
5555       Linkage = llvm::GlobalVariable::InternalLinkage;
5556     }
5557   }
5558   auto TargetAS = getContext().getTargetAddressSpace(AddrSpace);
5559   auto *GV = new llvm::GlobalVariable(
5560       getModule(), Type, Constant, Linkage, InitialValue, Name.c_str(),
5561       /*InsertBefore=*/nullptr, llvm::GlobalVariable::NotThreadLocal, TargetAS);
5562   if (emitter) emitter->finalize(GV);
5563   setGVProperties(GV, VD);
5564   GV->setAlignment(Align.getAsAlign());
5565   if (supportsCOMDAT() && GV->isWeakForLinker())
5566     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
5567   if (VD->getTLSKind())
5568     setTLSMode(GV, *VD);
5569   llvm::Constant *CV = GV;
5570   if (AddrSpace != LangAS::Default)
5571     CV = getTargetCodeGenInfo().performAddrSpaceCast(
5572         *this, GV, AddrSpace, LangAS::Default,
5573         Type->getPointerTo(
5574             getContext().getTargetAddressSpace(LangAS::Default)));
5575 
5576   // Update the map with the new temporary. If we created a placeholder above,
5577   // replace it with the new global now.
5578   llvm::Constant *&Entry = MaterializedGlobalTemporaryMap[E];
5579   if (Entry) {
5580     Entry->replaceAllUsesWith(
5581         llvm::ConstantExpr::getBitCast(CV, Entry->getType()));
5582     llvm::cast<llvm::GlobalVariable>(Entry)->eraseFromParent();
5583   }
5584   Entry = CV;
5585 
5586   return ConstantAddress(CV, Align);
5587 }
5588 
5589 /// EmitObjCPropertyImplementations - Emit information for synthesized
5590 /// properties for an implementation.
5591 void CodeGenModule::EmitObjCPropertyImplementations(const
5592                                                     ObjCImplementationDecl *D) {
5593   for (const auto *PID : D->property_impls()) {
5594     // Dynamic is just for type-checking.
5595     if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) {
5596       ObjCPropertyDecl *PD = PID->getPropertyDecl();
5597 
5598       // Determine which methods need to be implemented, some may have
5599       // been overridden. Note that ::isPropertyAccessor is not the method
5600       // we want, that just indicates if the decl came from a
5601       // property. What we want to know is if the method is defined in
5602       // this implementation.
5603       auto *Getter = PID->getGetterMethodDecl();
5604       if (!Getter || Getter->isSynthesizedAccessorStub())
5605         CodeGenFunction(*this).GenerateObjCGetter(
5606             const_cast<ObjCImplementationDecl *>(D), PID);
5607       auto *Setter = PID->getSetterMethodDecl();
5608       if (!PD->isReadOnly() && (!Setter || Setter->isSynthesizedAccessorStub()))
5609         CodeGenFunction(*this).GenerateObjCSetter(
5610                                  const_cast<ObjCImplementationDecl *>(D), PID);
5611     }
5612   }
5613 }
5614 
5615 static bool needsDestructMethod(ObjCImplementationDecl *impl) {
5616   const ObjCInterfaceDecl *iface = impl->getClassInterface();
5617   for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin();
5618        ivar; ivar = ivar->getNextIvar())
5619     if (ivar->getType().isDestructedType())
5620       return true;
5621 
5622   return false;
5623 }
5624 
5625 static bool AllTrivialInitializers(CodeGenModule &CGM,
5626                                    ObjCImplementationDecl *D) {
5627   CodeGenFunction CGF(CGM);
5628   for (ObjCImplementationDecl::init_iterator B = D->init_begin(),
5629        E = D->init_end(); B != E; ++B) {
5630     CXXCtorInitializer *CtorInitExp = *B;
5631     Expr *Init = CtorInitExp->getInit();
5632     if (!CGF.isTrivialInitializer(Init))
5633       return false;
5634   }
5635   return true;
5636 }
5637 
5638 /// EmitObjCIvarInitializations - Emit information for ivar initialization
5639 /// for an implementation.
5640 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) {
5641   // We might need a .cxx_destruct even if we don't have any ivar initializers.
5642   if (needsDestructMethod(D)) {
5643     IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct");
5644     Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
5645     ObjCMethodDecl *DTORMethod = ObjCMethodDecl::Create(
5646         getContext(), D->getLocation(), D->getLocation(), cxxSelector,
5647         getContext().VoidTy, nullptr, D,
5648         /*isInstance=*/true, /*isVariadic=*/false,
5649         /*isPropertyAccessor=*/true, /*isSynthesizedAccessorStub=*/false,
5650         /*isImplicitlyDeclared=*/true,
5651         /*isDefined=*/false, ObjCMethodDecl::Required);
5652     D->addInstanceMethod(DTORMethod);
5653     CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false);
5654     D->setHasDestructors(true);
5655   }
5656 
5657   // If the implementation doesn't have any ivar initializers, we don't need
5658   // a .cxx_construct.
5659   if (D->getNumIvarInitializers() == 0 ||
5660       AllTrivialInitializers(*this, D))
5661     return;
5662 
5663   IdentifierInfo *II = &getContext().Idents.get(".cxx_construct");
5664   Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
5665   // The constructor returns 'self'.
5666   ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(
5667       getContext(), D->getLocation(), D->getLocation(), cxxSelector,
5668       getContext().getObjCIdType(), nullptr, D, /*isInstance=*/true,
5669       /*isVariadic=*/false,
5670       /*isPropertyAccessor=*/true, /*isSynthesizedAccessorStub=*/false,
5671       /*isImplicitlyDeclared=*/true,
5672       /*isDefined=*/false, ObjCMethodDecl::Required);
5673   D->addInstanceMethod(CTORMethod);
5674   CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true);
5675   D->setHasNonZeroConstructors(true);
5676 }
5677 
5678 // EmitLinkageSpec - Emit all declarations in a linkage spec.
5679 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) {
5680   if (LSD->getLanguage() != LinkageSpecDecl::lang_c &&
5681       LSD->getLanguage() != LinkageSpecDecl::lang_cxx) {
5682     ErrorUnsupported(LSD, "linkage spec");
5683     return;
5684   }
5685 
5686   EmitDeclContext(LSD);
5687 }
5688 
5689 void CodeGenModule::EmitDeclContext(const DeclContext *DC) {
5690   for (auto *I : DC->decls()) {
5691     // Unlike other DeclContexts, the contents of an ObjCImplDecl at TU scope
5692     // are themselves considered "top-level", so EmitTopLevelDecl on an
5693     // ObjCImplDecl does not recursively visit them. We need to do that in
5694     // case they're nested inside another construct (LinkageSpecDecl /
5695     // ExportDecl) that does stop them from being considered "top-level".
5696     if (auto *OID = dyn_cast<ObjCImplDecl>(I)) {
5697       for (auto *M : OID->methods())
5698         EmitTopLevelDecl(M);
5699     }
5700 
5701     EmitTopLevelDecl(I);
5702   }
5703 }
5704 
5705 /// EmitTopLevelDecl - Emit code for a single top level declaration.
5706 void CodeGenModule::EmitTopLevelDecl(Decl *D) {
5707   // Ignore dependent declarations.
5708   if (D->isTemplated())
5709     return;
5710 
5711   // Consteval function shouldn't be emitted.
5712   if (auto *FD = dyn_cast<FunctionDecl>(D))
5713     if (FD->isConsteval())
5714       return;
5715 
5716   switch (D->getKind()) {
5717   case Decl::CXXConversion:
5718   case Decl::CXXMethod:
5719   case Decl::Function:
5720     EmitGlobal(cast<FunctionDecl>(D));
5721     // Always provide some coverage mapping
5722     // even for the functions that aren't emitted.
5723     AddDeferredUnusedCoverageMapping(D);
5724     break;
5725 
5726   case Decl::CXXDeductionGuide:
5727     // Function-like, but does not result in code emission.
5728     break;
5729 
5730   case Decl::Var:
5731   case Decl::Decomposition:
5732   case Decl::VarTemplateSpecialization:
5733     EmitGlobal(cast<VarDecl>(D));
5734     if (auto *DD = dyn_cast<DecompositionDecl>(D))
5735       for (auto *B : DD->bindings())
5736         if (auto *HD = B->getHoldingVar())
5737           EmitGlobal(HD);
5738     break;
5739 
5740   // Indirect fields from global anonymous structs and unions can be
5741   // ignored; only the actual variable requires IR gen support.
5742   case Decl::IndirectField:
5743     break;
5744 
5745   // C++ Decls
5746   case Decl::Namespace:
5747     EmitDeclContext(cast<NamespaceDecl>(D));
5748     break;
5749   case Decl::ClassTemplateSpecialization: {
5750     const auto *Spec = cast<ClassTemplateSpecializationDecl>(D);
5751     if (CGDebugInfo *DI = getModuleDebugInfo())
5752       if (Spec->getSpecializationKind() ==
5753               TSK_ExplicitInstantiationDefinition &&
5754           Spec->hasDefinition())
5755         DI->completeTemplateDefinition(*Spec);
5756   } LLVM_FALLTHROUGH;
5757   case Decl::CXXRecord: {
5758     CXXRecordDecl *CRD = cast<CXXRecordDecl>(D);
5759     if (CGDebugInfo *DI = getModuleDebugInfo()) {
5760       if (CRD->hasDefinition())
5761         DI->EmitAndRetainType(getContext().getRecordType(cast<RecordDecl>(D)));
5762       if (auto *ES = D->getASTContext().getExternalSource())
5763         if (ES->hasExternalDefinitions(D) == ExternalASTSource::EK_Never)
5764           DI->completeUnusedClass(*CRD);
5765     }
5766     // Emit any static data members, they may be definitions.
5767     for (auto *I : CRD->decls())
5768       if (isa<VarDecl>(I) || isa<CXXRecordDecl>(I))
5769         EmitTopLevelDecl(I);
5770     break;
5771   }
5772     // No code generation needed.
5773   case Decl::UsingShadow:
5774   case Decl::ClassTemplate:
5775   case Decl::VarTemplate:
5776   case Decl::Concept:
5777   case Decl::VarTemplatePartialSpecialization:
5778   case Decl::FunctionTemplate:
5779   case Decl::TypeAliasTemplate:
5780   case Decl::Block:
5781   case Decl::Empty:
5782   case Decl::Binding:
5783     break;
5784   case Decl::Using:          // using X; [C++]
5785     if (CGDebugInfo *DI = getModuleDebugInfo())
5786         DI->EmitUsingDecl(cast<UsingDecl>(*D));
5787     break;
5788   case Decl::UsingEnum: // using enum X; [C++]
5789     if (CGDebugInfo *DI = getModuleDebugInfo())
5790       DI->EmitUsingEnumDecl(cast<UsingEnumDecl>(*D));
5791     break;
5792   case Decl::NamespaceAlias:
5793     if (CGDebugInfo *DI = getModuleDebugInfo())
5794         DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(*D));
5795     break;
5796   case Decl::UsingDirective: // using namespace X; [C++]
5797     if (CGDebugInfo *DI = getModuleDebugInfo())
5798       DI->EmitUsingDirective(cast<UsingDirectiveDecl>(*D));
5799     break;
5800   case Decl::CXXConstructor:
5801     getCXXABI().EmitCXXConstructors(cast<CXXConstructorDecl>(D));
5802     break;
5803   case Decl::CXXDestructor:
5804     getCXXABI().EmitCXXDestructors(cast<CXXDestructorDecl>(D));
5805     break;
5806 
5807   case Decl::StaticAssert:
5808     // Nothing to do.
5809     break;
5810 
5811   // Objective-C Decls
5812 
5813   // Forward declarations, no (immediate) code generation.
5814   case Decl::ObjCInterface:
5815   case Decl::ObjCCategory:
5816     break;
5817 
5818   case Decl::ObjCProtocol: {
5819     auto *Proto = cast<ObjCProtocolDecl>(D);
5820     if (Proto->isThisDeclarationADefinition())
5821       ObjCRuntime->GenerateProtocol(Proto);
5822     break;
5823   }
5824 
5825   case Decl::ObjCCategoryImpl:
5826     // Categories have properties but don't support synthesize so we
5827     // can ignore them here.
5828     ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D));
5829     break;
5830 
5831   case Decl::ObjCImplementation: {
5832     auto *OMD = cast<ObjCImplementationDecl>(D);
5833     EmitObjCPropertyImplementations(OMD);
5834     EmitObjCIvarInitializations(OMD);
5835     ObjCRuntime->GenerateClass(OMD);
5836     // Emit global variable debug information.
5837     if (CGDebugInfo *DI = getModuleDebugInfo())
5838       if (getCodeGenOpts().hasReducedDebugInfo())
5839         DI->getOrCreateInterfaceType(getContext().getObjCInterfaceType(
5840             OMD->getClassInterface()), OMD->getLocation());
5841     break;
5842   }
5843   case Decl::ObjCMethod: {
5844     auto *OMD = cast<ObjCMethodDecl>(D);
5845     // If this is not a prototype, emit the body.
5846     if (OMD->getBody())
5847       CodeGenFunction(*this).GenerateObjCMethod(OMD);
5848     break;
5849   }
5850   case Decl::ObjCCompatibleAlias:
5851     ObjCRuntime->RegisterAlias(cast<ObjCCompatibleAliasDecl>(D));
5852     break;
5853 
5854   case Decl::PragmaComment: {
5855     const auto *PCD = cast<PragmaCommentDecl>(D);
5856     switch (PCD->getCommentKind()) {
5857     case PCK_Unknown:
5858       llvm_unreachable("unexpected pragma comment kind");
5859     case PCK_Linker:
5860       AppendLinkerOptions(PCD->getArg());
5861       break;
5862     case PCK_Lib:
5863         AddDependentLib(PCD->getArg());
5864       break;
5865     case PCK_Compiler:
5866     case PCK_ExeStr:
5867     case PCK_User:
5868       break; // We ignore all of these.
5869     }
5870     break;
5871   }
5872 
5873   case Decl::PragmaDetectMismatch: {
5874     const auto *PDMD = cast<PragmaDetectMismatchDecl>(D);
5875     AddDetectMismatch(PDMD->getName(), PDMD->getValue());
5876     break;
5877   }
5878 
5879   case Decl::LinkageSpec:
5880     EmitLinkageSpec(cast<LinkageSpecDecl>(D));
5881     break;
5882 
5883   case Decl::FileScopeAsm: {
5884     // File-scope asm is ignored during device-side CUDA compilation.
5885     if (LangOpts.CUDA && LangOpts.CUDAIsDevice)
5886       break;
5887     // File-scope asm is ignored during device-side OpenMP compilation.
5888     if (LangOpts.OpenMPIsDevice)
5889       break;
5890     // File-scope asm is ignored during device-side SYCL compilation.
5891     if (LangOpts.SYCLIsDevice)
5892       break;
5893     auto *AD = cast<FileScopeAsmDecl>(D);
5894     getModule().appendModuleInlineAsm(AD->getAsmString()->getString());
5895     break;
5896   }
5897 
5898   case Decl::Import: {
5899     auto *Import = cast<ImportDecl>(D);
5900 
5901     // If we've already imported this module, we're done.
5902     if (!ImportedModules.insert(Import->getImportedModule()))
5903       break;
5904 
5905     // Emit debug information for direct imports.
5906     if (!Import->getImportedOwningModule()) {
5907       if (CGDebugInfo *DI = getModuleDebugInfo())
5908         DI->EmitImportDecl(*Import);
5909     }
5910 
5911     // Find all of the submodules and emit the module initializers.
5912     llvm::SmallPtrSet<clang::Module *, 16> Visited;
5913     SmallVector<clang::Module *, 16> Stack;
5914     Visited.insert(Import->getImportedModule());
5915     Stack.push_back(Import->getImportedModule());
5916 
5917     while (!Stack.empty()) {
5918       clang::Module *Mod = Stack.pop_back_val();
5919       if (!EmittedModuleInitializers.insert(Mod).second)
5920         continue;
5921 
5922       for (auto *D : Context.getModuleInitializers(Mod))
5923         EmitTopLevelDecl(D);
5924 
5925       // Visit the submodules of this module.
5926       for (clang::Module::submodule_iterator Sub = Mod->submodule_begin(),
5927                                              SubEnd = Mod->submodule_end();
5928            Sub != SubEnd; ++Sub) {
5929         // Skip explicit children; they need to be explicitly imported to emit
5930         // the initializers.
5931         if ((*Sub)->IsExplicit)
5932           continue;
5933 
5934         if (Visited.insert(*Sub).second)
5935           Stack.push_back(*Sub);
5936       }
5937     }
5938     break;
5939   }
5940 
5941   case Decl::Export:
5942     EmitDeclContext(cast<ExportDecl>(D));
5943     break;
5944 
5945   case Decl::OMPThreadPrivate:
5946     EmitOMPThreadPrivateDecl(cast<OMPThreadPrivateDecl>(D));
5947     break;
5948 
5949   case Decl::OMPAllocate:
5950     EmitOMPAllocateDecl(cast<OMPAllocateDecl>(D));
5951     break;
5952 
5953   case Decl::OMPDeclareReduction:
5954     EmitOMPDeclareReduction(cast<OMPDeclareReductionDecl>(D));
5955     break;
5956 
5957   case Decl::OMPDeclareMapper:
5958     EmitOMPDeclareMapper(cast<OMPDeclareMapperDecl>(D));
5959     break;
5960 
5961   case Decl::OMPRequires:
5962     EmitOMPRequiresDecl(cast<OMPRequiresDecl>(D));
5963     break;
5964 
5965   case Decl::Typedef:
5966   case Decl::TypeAlias: // using foo = bar; [C++11]
5967     if (CGDebugInfo *DI = getModuleDebugInfo())
5968       DI->EmitAndRetainType(
5969           getContext().getTypedefType(cast<TypedefNameDecl>(D)));
5970     break;
5971 
5972   case Decl::Record:
5973     if (CGDebugInfo *DI = getModuleDebugInfo())
5974       if (cast<RecordDecl>(D)->getDefinition())
5975         DI->EmitAndRetainType(getContext().getRecordType(cast<RecordDecl>(D)));
5976     break;
5977 
5978   case Decl::Enum:
5979     if (CGDebugInfo *DI = getModuleDebugInfo())
5980       if (cast<EnumDecl>(D)->getDefinition())
5981         DI->EmitAndRetainType(getContext().getEnumType(cast<EnumDecl>(D)));
5982     break;
5983 
5984   default:
5985     // Make sure we handled everything we should, every other kind is a
5986     // non-top-level decl.  FIXME: Would be nice to have an isTopLevelDeclKind
5987     // function. Need to recode Decl::Kind to do that easily.
5988     assert(isa<TypeDecl>(D) && "Unsupported decl kind");
5989     break;
5990   }
5991 }
5992 
5993 void CodeGenModule::AddDeferredUnusedCoverageMapping(Decl *D) {
5994   // Do we need to generate coverage mapping?
5995   if (!CodeGenOpts.CoverageMapping)
5996     return;
5997   switch (D->getKind()) {
5998   case Decl::CXXConversion:
5999   case Decl::CXXMethod:
6000   case Decl::Function:
6001   case Decl::ObjCMethod:
6002   case Decl::CXXConstructor:
6003   case Decl::CXXDestructor: {
6004     if (!cast<FunctionDecl>(D)->doesThisDeclarationHaveABody())
6005       break;
6006     SourceManager &SM = getContext().getSourceManager();
6007     if (LimitedCoverage && SM.getMainFileID() != SM.getFileID(D->getBeginLoc()))
6008       break;
6009     auto I = DeferredEmptyCoverageMappingDecls.find(D);
6010     if (I == DeferredEmptyCoverageMappingDecls.end())
6011       DeferredEmptyCoverageMappingDecls[D] = true;
6012     break;
6013   }
6014   default:
6015     break;
6016   };
6017 }
6018 
6019 void CodeGenModule::ClearUnusedCoverageMapping(const Decl *D) {
6020   // Do we need to generate coverage mapping?
6021   if (!CodeGenOpts.CoverageMapping)
6022     return;
6023   if (const auto *Fn = dyn_cast<FunctionDecl>(D)) {
6024     if (Fn->isTemplateInstantiation())
6025       ClearUnusedCoverageMapping(Fn->getTemplateInstantiationPattern());
6026   }
6027   auto I = DeferredEmptyCoverageMappingDecls.find(D);
6028   if (I == DeferredEmptyCoverageMappingDecls.end())
6029     DeferredEmptyCoverageMappingDecls[D] = false;
6030   else
6031     I->second = false;
6032 }
6033 
6034 void CodeGenModule::EmitDeferredUnusedCoverageMappings() {
6035   // We call takeVector() here to avoid use-after-free.
6036   // FIXME: DeferredEmptyCoverageMappingDecls is getting mutated because
6037   // we deserialize function bodies to emit coverage info for them, and that
6038   // deserializes more declarations. How should we handle that case?
6039   for (const auto &Entry : DeferredEmptyCoverageMappingDecls.takeVector()) {
6040     if (!Entry.second)
6041       continue;
6042     const Decl *D = Entry.first;
6043     switch (D->getKind()) {
6044     case Decl::CXXConversion:
6045     case Decl::CXXMethod:
6046     case Decl::Function:
6047     case Decl::ObjCMethod: {
6048       CodeGenPGO PGO(*this);
6049       GlobalDecl GD(cast<FunctionDecl>(D));
6050       PGO.emitEmptyCounterMapping(D, getMangledName(GD),
6051                                   getFunctionLinkage(GD));
6052       break;
6053     }
6054     case Decl::CXXConstructor: {
6055       CodeGenPGO PGO(*this);
6056       GlobalDecl GD(cast<CXXConstructorDecl>(D), Ctor_Base);
6057       PGO.emitEmptyCounterMapping(D, getMangledName(GD),
6058                                   getFunctionLinkage(GD));
6059       break;
6060     }
6061     case Decl::CXXDestructor: {
6062       CodeGenPGO PGO(*this);
6063       GlobalDecl GD(cast<CXXDestructorDecl>(D), Dtor_Base);
6064       PGO.emitEmptyCounterMapping(D, getMangledName(GD),
6065                                   getFunctionLinkage(GD));
6066       break;
6067     }
6068     default:
6069       break;
6070     };
6071   }
6072 }
6073 
6074 void CodeGenModule::EmitMainVoidAlias() {
6075   // In order to transition away from "__original_main" gracefully, emit an
6076   // alias for "main" in the no-argument case so that libc can detect when
6077   // new-style no-argument main is in used.
6078   if (llvm::Function *F = getModule().getFunction("main")) {
6079     if (!F->isDeclaration() && F->arg_size() == 0 && !F->isVarArg() &&
6080         F->getReturnType()->isIntegerTy(Context.getTargetInfo().getIntWidth()))
6081       addUsedGlobal(llvm::GlobalAlias::create("__main_void", F));
6082   }
6083 }
6084 
6085 /// Turns the given pointer into a constant.
6086 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context,
6087                                           const void *Ptr) {
6088   uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr);
6089   llvm::Type *i64 = llvm::Type::getInt64Ty(Context);
6090   return llvm::ConstantInt::get(i64, PtrInt);
6091 }
6092 
6093 static void EmitGlobalDeclMetadata(CodeGenModule &CGM,
6094                                    llvm::NamedMDNode *&GlobalMetadata,
6095                                    GlobalDecl D,
6096                                    llvm::GlobalValue *Addr) {
6097   if (!GlobalMetadata)
6098     GlobalMetadata =
6099       CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs");
6100 
6101   // TODO: should we report variant information for ctors/dtors?
6102   llvm::Metadata *Ops[] = {llvm::ConstantAsMetadata::get(Addr),
6103                            llvm::ConstantAsMetadata::get(GetPointerConstant(
6104                                CGM.getLLVMContext(), D.getDecl()))};
6105   GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops));
6106 }
6107 
6108 /// For each function which is declared within an extern "C" region and marked
6109 /// as 'used', but has internal linkage, create an alias from the unmangled
6110 /// name to the mangled name if possible. People expect to be able to refer
6111 /// to such functions with an unmangled name from inline assembly within the
6112 /// same translation unit.
6113 void CodeGenModule::EmitStaticExternCAliases() {
6114   if (!getTargetCodeGenInfo().shouldEmitStaticExternCAliases())
6115     return;
6116   for (auto &I : StaticExternCValues) {
6117     IdentifierInfo *Name = I.first;
6118     llvm::GlobalValue *Val = I.second;
6119     if (Val && !getModule().getNamedValue(Name->getName()))
6120       addCompilerUsedGlobal(llvm::GlobalAlias::create(Name->getName(), Val));
6121   }
6122 }
6123 
6124 bool CodeGenModule::lookupRepresentativeDecl(StringRef MangledName,
6125                                              GlobalDecl &Result) const {
6126   auto Res = Manglings.find(MangledName);
6127   if (Res == Manglings.end())
6128     return false;
6129   Result = Res->getValue();
6130   return true;
6131 }
6132 
6133 /// Emits metadata nodes associating all the global values in the
6134 /// current module with the Decls they came from.  This is useful for
6135 /// projects using IR gen as a subroutine.
6136 ///
6137 /// Since there's currently no way to associate an MDNode directly
6138 /// with an llvm::GlobalValue, we create a global named metadata
6139 /// with the name 'clang.global.decl.ptrs'.
6140 void CodeGenModule::EmitDeclMetadata() {
6141   llvm::NamedMDNode *GlobalMetadata = nullptr;
6142 
6143   for (auto &I : MangledDeclNames) {
6144     llvm::GlobalValue *Addr = getModule().getNamedValue(I.second);
6145     // Some mangled names don't necessarily have an associated GlobalValue
6146     // in this module, e.g. if we mangled it for DebugInfo.
6147     if (Addr)
6148       EmitGlobalDeclMetadata(*this, GlobalMetadata, I.first, Addr);
6149   }
6150 }
6151 
6152 /// Emits metadata nodes for all the local variables in the current
6153 /// function.
6154 void CodeGenFunction::EmitDeclMetadata() {
6155   if (LocalDeclMap.empty()) return;
6156 
6157   llvm::LLVMContext &Context = getLLVMContext();
6158 
6159   // Find the unique metadata ID for this name.
6160   unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr");
6161 
6162   llvm::NamedMDNode *GlobalMetadata = nullptr;
6163 
6164   for (auto &I : LocalDeclMap) {
6165     const Decl *D = I.first;
6166     llvm::Value *Addr = I.second.getPointer();
6167     if (auto *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) {
6168       llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D);
6169       Alloca->setMetadata(
6170           DeclPtrKind, llvm::MDNode::get(
6171                            Context, llvm::ValueAsMetadata::getConstant(DAddr)));
6172     } else if (auto *GV = dyn_cast<llvm::GlobalValue>(Addr)) {
6173       GlobalDecl GD = GlobalDecl(cast<VarDecl>(D));
6174       EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV);
6175     }
6176   }
6177 }
6178 
6179 void CodeGenModule::EmitVersionIdentMetadata() {
6180   llvm::NamedMDNode *IdentMetadata =
6181     TheModule.getOrInsertNamedMetadata("llvm.ident");
6182   std::string Version = getClangFullVersion();
6183   llvm::LLVMContext &Ctx = TheModule.getContext();
6184 
6185   llvm::Metadata *IdentNode[] = {llvm::MDString::get(Ctx, Version)};
6186   IdentMetadata->addOperand(llvm::MDNode::get(Ctx, IdentNode));
6187 }
6188 
6189 void CodeGenModule::EmitCommandLineMetadata() {
6190   llvm::NamedMDNode *CommandLineMetadata =
6191     TheModule.getOrInsertNamedMetadata("llvm.commandline");
6192   std::string CommandLine = getCodeGenOpts().RecordCommandLine;
6193   llvm::LLVMContext &Ctx = TheModule.getContext();
6194 
6195   llvm::Metadata *CommandLineNode[] = {llvm::MDString::get(Ctx, CommandLine)};
6196   CommandLineMetadata->addOperand(llvm::MDNode::get(Ctx, CommandLineNode));
6197 }
6198 
6199 void CodeGenModule::EmitCoverageFile() {
6200   if (getCodeGenOpts().CoverageDataFile.empty() &&
6201       getCodeGenOpts().CoverageNotesFile.empty())
6202     return;
6203 
6204   llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu");
6205   if (!CUNode)
6206     return;
6207 
6208   llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov");
6209   llvm::LLVMContext &Ctx = TheModule.getContext();
6210   auto *CoverageDataFile =
6211       llvm::MDString::get(Ctx, getCodeGenOpts().CoverageDataFile);
6212   auto *CoverageNotesFile =
6213       llvm::MDString::get(Ctx, getCodeGenOpts().CoverageNotesFile);
6214   for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) {
6215     llvm::MDNode *CU = CUNode->getOperand(i);
6216     llvm::Metadata *Elts[] = {CoverageNotesFile, CoverageDataFile, CU};
6217     GCov->addOperand(llvm::MDNode::get(Ctx, Elts));
6218   }
6219 }
6220 
6221 llvm::Constant *CodeGenModule::GetAddrOfRTTIDescriptor(QualType Ty,
6222                                                        bool ForEH) {
6223   // Return a bogus pointer if RTTI is disabled, unless it's for EH.
6224   // FIXME: should we even be calling this method if RTTI is disabled
6225   // and it's not for EH?
6226   if ((!ForEH && !getLangOpts().RTTI) || getLangOpts().CUDAIsDevice ||
6227       (getLangOpts().OpenMP && getLangOpts().OpenMPIsDevice &&
6228        getTriple().isNVPTX()))
6229     return llvm::Constant::getNullValue(Int8PtrTy);
6230 
6231   if (ForEH && Ty->isObjCObjectPointerType() &&
6232       LangOpts.ObjCRuntime.isGNUFamily())
6233     return ObjCRuntime->GetEHType(Ty);
6234 
6235   return getCXXABI().getAddrOfRTTIDescriptor(Ty);
6236 }
6237 
6238 void CodeGenModule::EmitOMPThreadPrivateDecl(const OMPThreadPrivateDecl *D) {
6239   // Do not emit threadprivates in simd-only mode.
6240   if (LangOpts.OpenMP && LangOpts.OpenMPSimd)
6241     return;
6242   for (auto RefExpr : D->varlists()) {
6243     auto *VD = cast<VarDecl>(cast<DeclRefExpr>(RefExpr)->getDecl());
6244     bool PerformInit =
6245         VD->getAnyInitializer() &&
6246         !VD->getAnyInitializer()->isConstantInitializer(getContext(),
6247                                                         /*ForRef=*/false);
6248 
6249     Address Addr(GetAddrOfGlobalVar(VD), getContext().getDeclAlign(VD));
6250     if (auto InitFunction = getOpenMPRuntime().emitThreadPrivateVarDefinition(
6251             VD, Addr, RefExpr->getBeginLoc(), PerformInit))
6252       CXXGlobalInits.push_back(InitFunction);
6253   }
6254 }
6255 
6256 llvm::Metadata *
6257 CodeGenModule::CreateMetadataIdentifierImpl(QualType T, MetadataTypeMap &Map,
6258                                             StringRef Suffix) {
6259   llvm::Metadata *&InternalId = Map[T.getCanonicalType()];
6260   if (InternalId)
6261     return InternalId;
6262 
6263   if (isExternallyVisible(T->getLinkage())) {
6264     std::string OutName;
6265     llvm::raw_string_ostream Out(OutName);
6266     getCXXABI().getMangleContext().mangleTypeName(T, Out);
6267     Out << Suffix;
6268 
6269     InternalId = llvm::MDString::get(getLLVMContext(), Out.str());
6270   } else {
6271     InternalId = llvm::MDNode::getDistinct(getLLVMContext(),
6272                                            llvm::ArrayRef<llvm::Metadata *>());
6273   }
6274 
6275   return InternalId;
6276 }
6277 
6278 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierForType(QualType T) {
6279   return CreateMetadataIdentifierImpl(T, MetadataIdMap, "");
6280 }
6281 
6282 llvm::Metadata *
6283 CodeGenModule::CreateMetadataIdentifierForVirtualMemPtrType(QualType T) {
6284   return CreateMetadataIdentifierImpl(T, VirtualMetadataIdMap, ".virtual");
6285 }
6286 
6287 // Generalize pointer types to a void pointer with the qualifiers of the
6288 // originally pointed-to type, e.g. 'const char *' and 'char * const *'
6289 // generalize to 'const void *' while 'char *' and 'const char **' generalize to
6290 // 'void *'.
6291 static QualType GeneralizeType(ASTContext &Ctx, QualType Ty) {
6292   if (!Ty->isPointerType())
6293     return Ty;
6294 
6295   return Ctx.getPointerType(
6296       QualType(Ctx.VoidTy).withCVRQualifiers(
6297           Ty->getPointeeType().getCVRQualifiers()));
6298 }
6299 
6300 // Apply type generalization to a FunctionType's return and argument types
6301 static QualType GeneralizeFunctionType(ASTContext &Ctx, QualType Ty) {
6302   if (auto *FnType = Ty->getAs<FunctionProtoType>()) {
6303     SmallVector<QualType, 8> GeneralizedParams;
6304     for (auto &Param : FnType->param_types())
6305       GeneralizedParams.push_back(GeneralizeType(Ctx, Param));
6306 
6307     return Ctx.getFunctionType(
6308         GeneralizeType(Ctx, FnType->getReturnType()),
6309         GeneralizedParams, FnType->getExtProtoInfo());
6310   }
6311 
6312   if (auto *FnType = Ty->getAs<FunctionNoProtoType>())
6313     return Ctx.getFunctionNoProtoType(
6314         GeneralizeType(Ctx, FnType->getReturnType()));
6315 
6316   llvm_unreachable("Encountered unknown FunctionType");
6317 }
6318 
6319 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierGeneralized(QualType T) {
6320   return CreateMetadataIdentifierImpl(GeneralizeFunctionType(getContext(), T),
6321                                       GeneralizedMetadataIdMap, ".generalized");
6322 }
6323 
6324 /// Returns whether this module needs the "all-vtables" type identifier.
6325 bool CodeGenModule::NeedAllVtablesTypeId() const {
6326   // Returns true if at least one of vtable-based CFI checkers is enabled and
6327   // is not in the trapping mode.
6328   return ((LangOpts.Sanitize.has(SanitizerKind::CFIVCall) &&
6329            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIVCall)) ||
6330           (LangOpts.Sanitize.has(SanitizerKind::CFINVCall) &&
6331            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFINVCall)) ||
6332           (LangOpts.Sanitize.has(SanitizerKind::CFIDerivedCast) &&
6333            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIDerivedCast)) ||
6334           (LangOpts.Sanitize.has(SanitizerKind::CFIUnrelatedCast) &&
6335            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIUnrelatedCast)));
6336 }
6337 
6338 void CodeGenModule::AddVTableTypeMetadata(llvm::GlobalVariable *VTable,
6339                                           CharUnits Offset,
6340                                           const CXXRecordDecl *RD) {
6341   llvm::Metadata *MD =
6342       CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0));
6343   VTable->addTypeMetadata(Offset.getQuantity(), MD);
6344 
6345   if (CodeGenOpts.SanitizeCfiCrossDso)
6346     if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD))
6347       VTable->addTypeMetadata(Offset.getQuantity(),
6348                               llvm::ConstantAsMetadata::get(CrossDsoTypeId));
6349 
6350   if (NeedAllVtablesTypeId()) {
6351     llvm::Metadata *MD = llvm::MDString::get(getLLVMContext(), "all-vtables");
6352     VTable->addTypeMetadata(Offset.getQuantity(), MD);
6353   }
6354 }
6355 
6356 llvm::SanitizerStatReport &CodeGenModule::getSanStats() {
6357   if (!SanStats)
6358     SanStats = std::make_unique<llvm::SanitizerStatReport>(&getModule());
6359 
6360   return *SanStats;
6361 }
6362 
6363 llvm::Value *
6364 CodeGenModule::createOpenCLIntToSamplerConversion(const Expr *E,
6365                                                   CodeGenFunction &CGF) {
6366   llvm::Constant *C = ConstantEmitter(CGF).emitAbstract(E, E->getType());
6367   auto *SamplerT = getOpenCLRuntime().getSamplerType(E->getType().getTypePtr());
6368   auto *FTy = llvm::FunctionType::get(SamplerT, {C->getType()}, false);
6369   auto *Call = CGF.EmitRuntimeCall(
6370       CreateRuntimeFunction(FTy, "__translate_sampler_initializer"), {C});
6371   return Call;
6372 }
6373 
6374 CharUnits CodeGenModule::getNaturalPointeeTypeAlignment(
6375     QualType T, LValueBaseInfo *BaseInfo, TBAAAccessInfo *TBAAInfo) {
6376   return getNaturalTypeAlignment(T->getPointeeType(), BaseInfo, TBAAInfo,
6377                                  /* forPointeeType= */ true);
6378 }
6379 
6380 CharUnits CodeGenModule::getNaturalTypeAlignment(QualType T,
6381                                                  LValueBaseInfo *BaseInfo,
6382                                                  TBAAAccessInfo *TBAAInfo,
6383                                                  bool forPointeeType) {
6384   if (TBAAInfo)
6385     *TBAAInfo = getTBAAAccessInfo(T);
6386 
6387   // FIXME: This duplicates logic in ASTContext::getTypeAlignIfKnown. But
6388   // that doesn't return the information we need to compute BaseInfo.
6389 
6390   // Honor alignment typedef attributes even on incomplete types.
6391   // We also honor them straight for C++ class types, even as pointees;
6392   // there's an expressivity gap here.
6393   if (auto TT = T->getAs<TypedefType>()) {
6394     if (auto Align = TT->getDecl()->getMaxAlignment()) {
6395       if (BaseInfo)
6396         *BaseInfo = LValueBaseInfo(AlignmentSource::AttributedType);
6397       return getContext().toCharUnitsFromBits(Align);
6398     }
6399   }
6400 
6401   bool AlignForArray = T->isArrayType();
6402 
6403   // Analyze the base element type, so we don't get confused by incomplete
6404   // array types.
6405   T = getContext().getBaseElementType(T);
6406 
6407   if (T->isIncompleteType()) {
6408     // We could try to replicate the logic from
6409     // ASTContext::getTypeAlignIfKnown, but nothing uses the alignment if the
6410     // type is incomplete, so it's impossible to test. We could try to reuse
6411     // getTypeAlignIfKnown, but that doesn't return the information we need
6412     // to set BaseInfo.  So just ignore the possibility that the alignment is
6413     // greater than one.
6414     if (BaseInfo)
6415       *BaseInfo = LValueBaseInfo(AlignmentSource::Type);
6416     return CharUnits::One();
6417   }
6418 
6419   if (BaseInfo)
6420     *BaseInfo = LValueBaseInfo(AlignmentSource::Type);
6421 
6422   CharUnits Alignment;
6423   const CXXRecordDecl *RD;
6424   if (T.getQualifiers().hasUnaligned()) {
6425     Alignment = CharUnits::One();
6426   } else if (forPointeeType && !AlignForArray &&
6427              (RD = T->getAsCXXRecordDecl())) {
6428     // For C++ class pointees, we don't know whether we're pointing at a
6429     // base or a complete object, so we generally need to use the
6430     // non-virtual alignment.
6431     Alignment = getClassPointerAlignment(RD);
6432   } else {
6433     Alignment = getContext().getTypeAlignInChars(T);
6434   }
6435 
6436   // Cap to the global maximum type alignment unless the alignment
6437   // was somehow explicit on the type.
6438   if (unsigned MaxAlign = getLangOpts().MaxTypeAlign) {
6439     if (Alignment.getQuantity() > MaxAlign &&
6440         !getContext().isAlignmentRequired(T))
6441       Alignment = CharUnits::fromQuantity(MaxAlign);
6442   }
6443   return Alignment;
6444 }
6445 
6446 bool CodeGenModule::stopAutoInit() {
6447   unsigned StopAfter = getContext().getLangOpts().TrivialAutoVarInitStopAfter;
6448   if (StopAfter) {
6449     // This number is positive only when -ftrivial-auto-var-init-stop-after=* is
6450     // used
6451     if (NumAutoVarInit >= StopAfter) {
6452       return true;
6453     }
6454     if (!NumAutoVarInit) {
6455       unsigned DiagID = getDiags().getCustomDiagID(
6456           DiagnosticsEngine::Warning,
6457           "-ftrivial-auto-var-init-stop-after=%0 has been enabled to limit the "
6458           "number of times ftrivial-auto-var-init=%1 gets applied.");
6459       getDiags().Report(DiagID)
6460           << StopAfter
6461           << (getContext().getLangOpts().getTrivialAutoVarInit() ==
6462                       LangOptions::TrivialAutoVarInitKind::Zero
6463                   ? "zero"
6464                   : "pattern");
6465     }
6466     ++NumAutoVarInit;
6467   }
6468   return false;
6469 }
6470 
6471 void CodeGenModule::printPostfixForExternalizedStaticVar(
6472     llvm::raw_ostream &OS) const {
6473   OS << "__static__" << getContext().getCUIDHash();
6474 }
6475