1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This coordinates the per-module state used while generating code. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "CodeGenModule.h" 14 #include "CGBlocks.h" 15 #include "CGCUDARuntime.h" 16 #include "CGCXXABI.h" 17 #include "CGCall.h" 18 #include "CGDebugInfo.h" 19 #include "CGObjCRuntime.h" 20 #include "CGOpenCLRuntime.h" 21 #include "CGOpenMPRuntime.h" 22 #include "CGOpenMPRuntimeAMDGCN.h" 23 #include "CGOpenMPRuntimeNVPTX.h" 24 #include "CodeGenFunction.h" 25 #include "CodeGenPGO.h" 26 #include "ConstantEmitter.h" 27 #include "CoverageMappingGen.h" 28 #include "TargetInfo.h" 29 #include "clang/AST/ASTContext.h" 30 #include "clang/AST/CharUnits.h" 31 #include "clang/AST/DeclCXX.h" 32 #include "clang/AST/DeclObjC.h" 33 #include "clang/AST/DeclTemplate.h" 34 #include "clang/AST/Mangle.h" 35 #include "clang/AST/RecordLayout.h" 36 #include "clang/AST/RecursiveASTVisitor.h" 37 #include "clang/AST/StmtVisitor.h" 38 #include "clang/Basic/Builtins.h" 39 #include "clang/Basic/CharInfo.h" 40 #include "clang/Basic/CodeGenOptions.h" 41 #include "clang/Basic/Diagnostic.h" 42 #include "clang/Basic/FileManager.h" 43 #include "clang/Basic/Module.h" 44 #include "clang/Basic/SourceManager.h" 45 #include "clang/Basic/TargetInfo.h" 46 #include "clang/Basic/Version.h" 47 #include "clang/CodeGen/ConstantInitBuilder.h" 48 #include "clang/Frontend/FrontendDiagnostic.h" 49 #include "llvm/ADT/StringSwitch.h" 50 #include "llvm/ADT/Triple.h" 51 #include "llvm/Analysis/TargetLibraryInfo.h" 52 #include "llvm/Frontend/OpenMP/OMPIRBuilder.h" 53 #include "llvm/IR/CallingConv.h" 54 #include "llvm/IR/DataLayout.h" 55 #include "llvm/IR/Intrinsics.h" 56 #include "llvm/IR/LLVMContext.h" 57 #include "llvm/IR/Module.h" 58 #include "llvm/IR/ProfileSummary.h" 59 #include "llvm/ProfileData/InstrProfReader.h" 60 #include "llvm/Support/CodeGen.h" 61 #include "llvm/Support/CommandLine.h" 62 #include "llvm/Support/ConvertUTF.h" 63 #include "llvm/Support/ErrorHandling.h" 64 #include "llvm/Support/MD5.h" 65 #include "llvm/Support/TimeProfiler.h" 66 67 using namespace clang; 68 using namespace CodeGen; 69 70 static llvm::cl::opt<bool> LimitedCoverage( 71 "limited-coverage-experimental", llvm::cl::ZeroOrMore, llvm::cl::Hidden, 72 llvm::cl::desc("Emit limited coverage mapping information (experimental)"), 73 llvm::cl::init(false)); 74 75 static const char AnnotationSection[] = "llvm.metadata"; 76 77 static CGCXXABI *createCXXABI(CodeGenModule &CGM) { 78 switch (CGM.getTarget().getCXXABI().getKind()) { 79 case TargetCXXABI::AppleARM64: 80 case TargetCXXABI::Fuchsia: 81 case TargetCXXABI::GenericAArch64: 82 case TargetCXXABI::GenericARM: 83 case TargetCXXABI::iOS: 84 case TargetCXXABI::WatchOS: 85 case TargetCXXABI::GenericMIPS: 86 case TargetCXXABI::GenericItanium: 87 case TargetCXXABI::WebAssembly: 88 case TargetCXXABI::XL: 89 return CreateItaniumCXXABI(CGM); 90 case TargetCXXABI::Microsoft: 91 return CreateMicrosoftCXXABI(CGM); 92 } 93 94 llvm_unreachable("invalid C++ ABI kind"); 95 } 96 97 CodeGenModule::CodeGenModule(ASTContext &C, const HeaderSearchOptions &HSO, 98 const PreprocessorOptions &PPO, 99 const CodeGenOptions &CGO, llvm::Module &M, 100 DiagnosticsEngine &diags, 101 CoverageSourceInfo *CoverageInfo) 102 : Context(C), LangOpts(C.getLangOpts()), HeaderSearchOpts(HSO), 103 PreprocessorOpts(PPO), CodeGenOpts(CGO), TheModule(M), Diags(diags), 104 Target(C.getTargetInfo()), ABI(createCXXABI(*this)), 105 VMContext(M.getContext()), Types(*this), VTables(*this), 106 SanitizerMD(new SanitizerMetadata(*this)) { 107 108 // Initialize the type cache. 109 llvm::LLVMContext &LLVMContext = M.getContext(); 110 VoidTy = llvm::Type::getVoidTy(LLVMContext); 111 Int8Ty = llvm::Type::getInt8Ty(LLVMContext); 112 Int16Ty = llvm::Type::getInt16Ty(LLVMContext); 113 Int32Ty = llvm::Type::getInt32Ty(LLVMContext); 114 Int64Ty = llvm::Type::getInt64Ty(LLVMContext); 115 HalfTy = llvm::Type::getHalfTy(LLVMContext); 116 BFloatTy = llvm::Type::getBFloatTy(LLVMContext); 117 FloatTy = llvm::Type::getFloatTy(LLVMContext); 118 DoubleTy = llvm::Type::getDoubleTy(LLVMContext); 119 PointerWidthInBits = C.getTargetInfo().getPointerWidth(0); 120 PointerAlignInBytes = 121 C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(0)).getQuantity(); 122 SizeSizeInBytes = 123 C.toCharUnitsFromBits(C.getTargetInfo().getMaxPointerWidth()).getQuantity(); 124 IntAlignInBytes = 125 C.toCharUnitsFromBits(C.getTargetInfo().getIntAlign()).getQuantity(); 126 CharTy = 127 llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getCharWidth()); 128 IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth()); 129 IntPtrTy = llvm::IntegerType::get(LLVMContext, 130 C.getTargetInfo().getMaxPointerWidth()); 131 Int8PtrTy = Int8Ty->getPointerTo(0); 132 Int8PtrPtrTy = Int8PtrTy->getPointerTo(0); 133 AllocaInt8PtrTy = Int8Ty->getPointerTo( 134 M.getDataLayout().getAllocaAddrSpace()); 135 ASTAllocaAddressSpace = getTargetCodeGenInfo().getASTAllocaAddressSpace(); 136 137 RuntimeCC = getTargetCodeGenInfo().getABIInfo().getRuntimeCC(); 138 139 if (LangOpts.ObjC) 140 createObjCRuntime(); 141 if (LangOpts.OpenCL) 142 createOpenCLRuntime(); 143 if (LangOpts.OpenMP) 144 createOpenMPRuntime(); 145 if (LangOpts.CUDA) 146 createCUDARuntime(); 147 148 // Enable TBAA unless it's suppressed. ThreadSanitizer needs TBAA even at O0. 149 if (LangOpts.Sanitize.has(SanitizerKind::Thread) || 150 (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0)) 151 TBAA.reset(new CodeGenTBAA(Context, TheModule, CodeGenOpts, getLangOpts(), 152 getCXXABI().getMangleContext())); 153 154 // If debug info or coverage generation is enabled, create the CGDebugInfo 155 // object. 156 if (CodeGenOpts.getDebugInfo() != codegenoptions::NoDebugInfo || 157 CodeGenOpts.EmitGcovArcs || CodeGenOpts.EmitGcovNotes) 158 DebugInfo.reset(new CGDebugInfo(*this)); 159 160 Block.GlobalUniqueCount = 0; 161 162 if (C.getLangOpts().ObjC) 163 ObjCData.reset(new ObjCEntrypoints()); 164 165 if (CodeGenOpts.hasProfileClangUse()) { 166 auto ReaderOrErr = llvm::IndexedInstrProfReader::create( 167 CodeGenOpts.ProfileInstrumentUsePath, CodeGenOpts.ProfileRemappingFile); 168 if (auto E = ReaderOrErr.takeError()) { 169 unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error, 170 "Could not read profile %0: %1"); 171 llvm::handleAllErrors(std::move(E), [&](const llvm::ErrorInfoBase &EI) { 172 getDiags().Report(DiagID) << CodeGenOpts.ProfileInstrumentUsePath 173 << EI.message(); 174 }); 175 } else 176 PGOReader = std::move(ReaderOrErr.get()); 177 } 178 179 // If coverage mapping generation is enabled, create the 180 // CoverageMappingModuleGen object. 181 if (CodeGenOpts.CoverageMapping) 182 CoverageMapping.reset(new CoverageMappingModuleGen(*this, *CoverageInfo)); 183 184 // Generate the module name hash here if needed. 185 if (CodeGenOpts.UniqueInternalLinkageNames && 186 !getModule().getSourceFileName().empty()) { 187 std::string Path = getModule().getSourceFileName(); 188 // Check if a path substitution is needed from the MacroPrefixMap. 189 for (const auto &Entry : PPO.MacroPrefixMap) 190 if (Path.rfind(Entry.first, 0) != std::string::npos) { 191 Path = Entry.second + Path.substr(Entry.first.size()); 192 break; 193 } 194 llvm::MD5 Md5; 195 Md5.update(Path); 196 llvm::MD5::MD5Result R; 197 Md5.final(R); 198 SmallString<32> Str; 199 llvm::MD5::stringifyResult(R, Str); 200 // Convert MD5hash to Decimal. Demangler suffixes can either contain 201 // numbers or characters but not both. 202 llvm::APInt IntHash(128, Str.str(), 16); 203 // Prepend "__uniq" before the hash for tools like profilers to understand 204 // that this symbol is of internal linkage type. The "__uniq" is the 205 // pre-determined prefix that is used to tell tools that this symbol was 206 // created with -funique-internal-linakge-symbols and the tools can strip or 207 // keep the prefix as needed. 208 ModuleNameHash = (Twine(".__uniq.") + 209 Twine(IntHash.toString(/* Radix = */ 10, /* Signed = */false))).str(); 210 } 211 } 212 213 CodeGenModule::~CodeGenModule() {} 214 215 void CodeGenModule::createObjCRuntime() { 216 // This is just isGNUFamily(), but we want to force implementors of 217 // new ABIs to decide how best to do this. 218 switch (LangOpts.ObjCRuntime.getKind()) { 219 case ObjCRuntime::GNUstep: 220 case ObjCRuntime::GCC: 221 case ObjCRuntime::ObjFW: 222 ObjCRuntime.reset(CreateGNUObjCRuntime(*this)); 223 return; 224 225 case ObjCRuntime::FragileMacOSX: 226 case ObjCRuntime::MacOSX: 227 case ObjCRuntime::iOS: 228 case ObjCRuntime::WatchOS: 229 ObjCRuntime.reset(CreateMacObjCRuntime(*this)); 230 return; 231 } 232 llvm_unreachable("bad runtime kind"); 233 } 234 235 void CodeGenModule::createOpenCLRuntime() { 236 OpenCLRuntime.reset(new CGOpenCLRuntime(*this)); 237 } 238 239 void CodeGenModule::createOpenMPRuntime() { 240 // Select a specialized code generation class based on the target, if any. 241 // If it does not exist use the default implementation. 242 switch (getTriple().getArch()) { 243 case llvm::Triple::nvptx: 244 case llvm::Triple::nvptx64: 245 assert(getLangOpts().OpenMPIsDevice && 246 "OpenMP NVPTX is only prepared to deal with device code."); 247 OpenMPRuntime.reset(new CGOpenMPRuntimeNVPTX(*this)); 248 break; 249 case llvm::Triple::amdgcn: 250 assert(getLangOpts().OpenMPIsDevice && 251 "OpenMP AMDGCN is only prepared to deal with device code."); 252 OpenMPRuntime.reset(new CGOpenMPRuntimeAMDGCN(*this)); 253 break; 254 default: 255 if (LangOpts.OpenMPSimd) 256 OpenMPRuntime.reset(new CGOpenMPSIMDRuntime(*this)); 257 else 258 OpenMPRuntime.reset(new CGOpenMPRuntime(*this)); 259 break; 260 } 261 } 262 263 void CodeGenModule::createCUDARuntime() { 264 CUDARuntime.reset(CreateNVCUDARuntime(*this)); 265 } 266 267 void CodeGenModule::addReplacement(StringRef Name, llvm::Constant *C) { 268 Replacements[Name] = C; 269 } 270 271 void CodeGenModule::applyReplacements() { 272 for (auto &I : Replacements) { 273 StringRef MangledName = I.first(); 274 llvm::Constant *Replacement = I.second; 275 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 276 if (!Entry) 277 continue; 278 auto *OldF = cast<llvm::Function>(Entry); 279 auto *NewF = dyn_cast<llvm::Function>(Replacement); 280 if (!NewF) { 281 if (auto *Alias = dyn_cast<llvm::GlobalAlias>(Replacement)) { 282 NewF = dyn_cast<llvm::Function>(Alias->getAliasee()); 283 } else { 284 auto *CE = cast<llvm::ConstantExpr>(Replacement); 285 assert(CE->getOpcode() == llvm::Instruction::BitCast || 286 CE->getOpcode() == llvm::Instruction::GetElementPtr); 287 NewF = dyn_cast<llvm::Function>(CE->getOperand(0)); 288 } 289 } 290 291 // Replace old with new, but keep the old order. 292 OldF->replaceAllUsesWith(Replacement); 293 if (NewF) { 294 NewF->removeFromParent(); 295 OldF->getParent()->getFunctionList().insertAfter(OldF->getIterator(), 296 NewF); 297 } 298 OldF->eraseFromParent(); 299 } 300 } 301 302 void CodeGenModule::addGlobalValReplacement(llvm::GlobalValue *GV, llvm::Constant *C) { 303 GlobalValReplacements.push_back(std::make_pair(GV, C)); 304 } 305 306 void CodeGenModule::applyGlobalValReplacements() { 307 for (auto &I : GlobalValReplacements) { 308 llvm::GlobalValue *GV = I.first; 309 llvm::Constant *C = I.second; 310 311 GV->replaceAllUsesWith(C); 312 GV->eraseFromParent(); 313 } 314 } 315 316 // This is only used in aliases that we created and we know they have a 317 // linear structure. 318 static const llvm::GlobalObject *getAliasedGlobal( 319 const llvm::GlobalIndirectSymbol &GIS) { 320 llvm::SmallPtrSet<const llvm::GlobalIndirectSymbol*, 4> Visited; 321 const llvm::Constant *C = &GIS; 322 for (;;) { 323 C = C->stripPointerCasts(); 324 if (auto *GO = dyn_cast<llvm::GlobalObject>(C)) 325 return GO; 326 // stripPointerCasts will not walk over weak aliases. 327 auto *GIS2 = dyn_cast<llvm::GlobalIndirectSymbol>(C); 328 if (!GIS2) 329 return nullptr; 330 if (!Visited.insert(GIS2).second) 331 return nullptr; 332 C = GIS2->getIndirectSymbol(); 333 } 334 } 335 336 void CodeGenModule::checkAliases() { 337 // Check if the constructed aliases are well formed. It is really unfortunate 338 // that we have to do this in CodeGen, but we only construct mangled names 339 // and aliases during codegen. 340 bool Error = false; 341 DiagnosticsEngine &Diags = getDiags(); 342 for (const GlobalDecl &GD : Aliases) { 343 const auto *D = cast<ValueDecl>(GD.getDecl()); 344 SourceLocation Location; 345 bool IsIFunc = D->hasAttr<IFuncAttr>(); 346 if (const Attr *A = D->getDefiningAttr()) 347 Location = A->getLocation(); 348 else 349 llvm_unreachable("Not an alias or ifunc?"); 350 StringRef MangledName = getMangledName(GD); 351 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 352 auto *Alias = cast<llvm::GlobalIndirectSymbol>(Entry); 353 const llvm::GlobalValue *GV = getAliasedGlobal(*Alias); 354 if (!GV) { 355 Error = true; 356 Diags.Report(Location, diag::err_cyclic_alias) << IsIFunc; 357 } else if (GV->isDeclaration()) { 358 Error = true; 359 Diags.Report(Location, diag::err_alias_to_undefined) 360 << IsIFunc << IsIFunc; 361 } else if (IsIFunc) { 362 // Check resolver function type. 363 llvm::FunctionType *FTy = dyn_cast<llvm::FunctionType>( 364 GV->getType()->getPointerElementType()); 365 assert(FTy); 366 if (!FTy->getReturnType()->isPointerTy()) 367 Diags.Report(Location, diag::err_ifunc_resolver_return); 368 } 369 370 llvm::Constant *Aliasee = Alias->getIndirectSymbol(); 371 llvm::GlobalValue *AliaseeGV; 372 if (auto CE = dyn_cast<llvm::ConstantExpr>(Aliasee)) 373 AliaseeGV = cast<llvm::GlobalValue>(CE->getOperand(0)); 374 else 375 AliaseeGV = cast<llvm::GlobalValue>(Aliasee); 376 377 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) { 378 StringRef AliasSection = SA->getName(); 379 if (AliasSection != AliaseeGV->getSection()) 380 Diags.Report(SA->getLocation(), diag::warn_alias_with_section) 381 << AliasSection << IsIFunc << IsIFunc; 382 } 383 384 // We have to handle alias to weak aliases in here. LLVM itself disallows 385 // this since the object semantics would not match the IL one. For 386 // compatibility with gcc we implement it by just pointing the alias 387 // to its aliasee's aliasee. We also warn, since the user is probably 388 // expecting the link to be weak. 389 if (auto GA = dyn_cast<llvm::GlobalIndirectSymbol>(AliaseeGV)) { 390 if (GA->isInterposable()) { 391 Diags.Report(Location, diag::warn_alias_to_weak_alias) 392 << GV->getName() << GA->getName() << IsIFunc; 393 Aliasee = llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast( 394 GA->getIndirectSymbol(), Alias->getType()); 395 Alias->setIndirectSymbol(Aliasee); 396 } 397 } 398 } 399 if (!Error) 400 return; 401 402 for (const GlobalDecl &GD : Aliases) { 403 StringRef MangledName = getMangledName(GD); 404 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 405 auto *Alias = cast<llvm::GlobalIndirectSymbol>(Entry); 406 Alias->replaceAllUsesWith(llvm::UndefValue::get(Alias->getType())); 407 Alias->eraseFromParent(); 408 } 409 } 410 411 void CodeGenModule::clear() { 412 DeferredDeclsToEmit.clear(); 413 if (OpenMPRuntime) 414 OpenMPRuntime->clear(); 415 } 416 417 void InstrProfStats::reportDiagnostics(DiagnosticsEngine &Diags, 418 StringRef MainFile) { 419 if (!hasDiagnostics()) 420 return; 421 if (VisitedInMainFile > 0 && VisitedInMainFile == MissingInMainFile) { 422 if (MainFile.empty()) 423 MainFile = "<stdin>"; 424 Diags.Report(diag::warn_profile_data_unprofiled) << MainFile; 425 } else { 426 if (Mismatched > 0) 427 Diags.Report(diag::warn_profile_data_out_of_date) << Visited << Mismatched; 428 429 if (Missing > 0) 430 Diags.Report(diag::warn_profile_data_missing) << Visited << Missing; 431 } 432 } 433 434 static void setVisibilityFromDLLStorageClass(const clang::LangOptions &LO, 435 llvm::Module &M) { 436 if (!LO.VisibilityFromDLLStorageClass) 437 return; 438 439 llvm::GlobalValue::VisibilityTypes DLLExportVisibility = 440 CodeGenModule::GetLLVMVisibility(LO.getDLLExportVisibility()); 441 llvm::GlobalValue::VisibilityTypes NoDLLStorageClassVisibility = 442 CodeGenModule::GetLLVMVisibility(LO.getNoDLLStorageClassVisibility()); 443 llvm::GlobalValue::VisibilityTypes ExternDeclDLLImportVisibility = 444 CodeGenModule::GetLLVMVisibility(LO.getExternDeclDLLImportVisibility()); 445 llvm::GlobalValue::VisibilityTypes ExternDeclNoDLLStorageClassVisibility = 446 CodeGenModule::GetLLVMVisibility( 447 LO.getExternDeclNoDLLStorageClassVisibility()); 448 449 for (llvm::GlobalValue &GV : M.global_values()) { 450 if (GV.hasAppendingLinkage() || GV.hasLocalLinkage()) 451 continue; 452 453 // Reset DSO locality before setting the visibility. This removes 454 // any effects that visibility options and annotations may have 455 // had on the DSO locality. Setting the visibility will implicitly set 456 // appropriate globals to DSO Local; however, this will be pessimistic 457 // w.r.t. to the normal compiler IRGen. 458 GV.setDSOLocal(false); 459 460 if (GV.isDeclarationForLinker()) { 461 GV.setVisibility(GV.getDLLStorageClass() == 462 llvm::GlobalValue::DLLImportStorageClass 463 ? ExternDeclDLLImportVisibility 464 : ExternDeclNoDLLStorageClassVisibility); 465 } else { 466 GV.setVisibility(GV.getDLLStorageClass() == 467 llvm::GlobalValue::DLLExportStorageClass 468 ? DLLExportVisibility 469 : NoDLLStorageClassVisibility); 470 } 471 472 GV.setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 473 } 474 } 475 476 void CodeGenModule::Release() { 477 EmitDeferred(); 478 EmitVTablesOpportunistically(); 479 applyGlobalValReplacements(); 480 applyReplacements(); 481 checkAliases(); 482 emitMultiVersionFunctions(); 483 EmitCXXGlobalInitFunc(); 484 EmitCXXGlobalCleanUpFunc(); 485 registerGlobalDtorsWithAtExit(); 486 EmitCXXThreadLocalInitFunc(); 487 if (ObjCRuntime) 488 if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction()) 489 AddGlobalCtor(ObjCInitFunction); 490 if (Context.getLangOpts().CUDA && CUDARuntime) { 491 if (llvm::Function *CudaCtorFunction = CUDARuntime->finalizeModule()) 492 AddGlobalCtor(CudaCtorFunction); 493 } 494 if (OpenMPRuntime) { 495 if (llvm::Function *OpenMPRequiresDirectiveRegFun = 496 OpenMPRuntime->emitRequiresDirectiveRegFun()) { 497 AddGlobalCtor(OpenMPRequiresDirectiveRegFun, 0); 498 } 499 OpenMPRuntime->createOffloadEntriesAndInfoMetadata(); 500 OpenMPRuntime->clear(); 501 } 502 if (PGOReader) { 503 getModule().setProfileSummary( 504 PGOReader->getSummary(/* UseCS */ false).getMD(VMContext), 505 llvm::ProfileSummary::PSK_Instr); 506 if (PGOStats.hasDiagnostics()) 507 PGOStats.reportDiagnostics(getDiags(), getCodeGenOpts().MainFileName); 508 } 509 EmitCtorList(GlobalCtors, "llvm.global_ctors"); 510 EmitCtorList(GlobalDtors, "llvm.global_dtors"); 511 EmitGlobalAnnotations(); 512 EmitStaticExternCAliases(); 513 EmitDeferredUnusedCoverageMappings(); 514 if (CoverageMapping) 515 CoverageMapping->emit(); 516 if (CodeGenOpts.SanitizeCfiCrossDso) { 517 CodeGenFunction(*this).EmitCfiCheckFail(); 518 CodeGenFunction(*this).EmitCfiCheckStub(); 519 } 520 emitAtAvailableLinkGuard(); 521 if (Context.getTargetInfo().getTriple().isWasm() && 522 !Context.getTargetInfo().getTriple().isOSEmscripten()) { 523 EmitMainVoidAlias(); 524 } 525 emitLLVMUsed(); 526 if (SanStats) 527 SanStats->finish(); 528 529 if (CodeGenOpts.Autolink && 530 (Context.getLangOpts().Modules || !LinkerOptionsMetadata.empty())) { 531 EmitModuleLinkOptions(); 532 } 533 534 // On ELF we pass the dependent library specifiers directly to the linker 535 // without manipulating them. This is in contrast to other platforms where 536 // they are mapped to a specific linker option by the compiler. This 537 // difference is a result of the greater variety of ELF linkers and the fact 538 // that ELF linkers tend to handle libraries in a more complicated fashion 539 // than on other platforms. This forces us to defer handling the dependent 540 // libs to the linker. 541 // 542 // CUDA/HIP device and host libraries are different. Currently there is no 543 // way to differentiate dependent libraries for host or device. Existing 544 // usage of #pragma comment(lib, *) is intended for host libraries on 545 // Windows. Therefore emit llvm.dependent-libraries only for host. 546 if (!ELFDependentLibraries.empty() && !Context.getLangOpts().CUDAIsDevice) { 547 auto *NMD = getModule().getOrInsertNamedMetadata("llvm.dependent-libraries"); 548 for (auto *MD : ELFDependentLibraries) 549 NMD->addOperand(MD); 550 } 551 552 // Record mregparm value now so it is visible through rest of codegen. 553 if (Context.getTargetInfo().getTriple().getArch() == llvm::Triple::x86) 554 getModule().addModuleFlag(llvm::Module::Error, "NumRegisterParameters", 555 CodeGenOpts.NumRegisterParameters); 556 557 if (CodeGenOpts.DwarfVersion) { 558 getModule().addModuleFlag(llvm::Module::Max, "Dwarf Version", 559 CodeGenOpts.DwarfVersion); 560 } 561 562 if (CodeGenOpts.Dwarf64) 563 getModule().addModuleFlag(llvm::Module::Max, "DWARF64", 1); 564 565 if (Context.getLangOpts().SemanticInterposition) 566 // Require various optimization to respect semantic interposition. 567 getModule().setSemanticInterposition(1); 568 569 if (CodeGenOpts.EmitCodeView) { 570 // Indicate that we want CodeView in the metadata. 571 getModule().addModuleFlag(llvm::Module::Warning, "CodeView", 1); 572 } 573 if (CodeGenOpts.CodeViewGHash) { 574 getModule().addModuleFlag(llvm::Module::Warning, "CodeViewGHash", 1); 575 } 576 if (CodeGenOpts.ControlFlowGuard) { 577 // Function ID tables and checks for Control Flow Guard (cfguard=2). 578 getModule().addModuleFlag(llvm::Module::Warning, "cfguard", 2); 579 } else if (CodeGenOpts.ControlFlowGuardNoChecks) { 580 // Function ID tables for Control Flow Guard (cfguard=1). 581 getModule().addModuleFlag(llvm::Module::Warning, "cfguard", 1); 582 } 583 if (CodeGenOpts.EHContGuard) { 584 // Function ID tables for EH Continuation Guard. 585 getModule().addModuleFlag(llvm::Module::Warning, "ehcontguard", 1); 586 } 587 if (CodeGenOpts.OptimizationLevel > 0 && CodeGenOpts.StrictVTablePointers) { 588 // We don't support LTO with 2 with different StrictVTablePointers 589 // FIXME: we could support it by stripping all the information introduced 590 // by StrictVTablePointers. 591 592 getModule().addModuleFlag(llvm::Module::Error, "StrictVTablePointers",1); 593 594 llvm::Metadata *Ops[2] = { 595 llvm::MDString::get(VMContext, "StrictVTablePointers"), 596 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 597 llvm::Type::getInt32Ty(VMContext), 1))}; 598 599 getModule().addModuleFlag(llvm::Module::Require, 600 "StrictVTablePointersRequirement", 601 llvm::MDNode::get(VMContext, Ops)); 602 } 603 if (getModuleDebugInfo()) 604 // We support a single version in the linked module. The LLVM 605 // parser will drop debug info with a different version number 606 // (and warn about it, too). 607 getModule().addModuleFlag(llvm::Module::Warning, "Debug Info Version", 608 llvm::DEBUG_METADATA_VERSION); 609 610 // We need to record the widths of enums and wchar_t, so that we can generate 611 // the correct build attributes in the ARM backend. wchar_size is also used by 612 // TargetLibraryInfo. 613 uint64_t WCharWidth = 614 Context.getTypeSizeInChars(Context.getWideCharType()).getQuantity(); 615 getModule().addModuleFlag(llvm::Module::Error, "wchar_size", WCharWidth); 616 617 llvm::Triple::ArchType Arch = Context.getTargetInfo().getTriple().getArch(); 618 if ( Arch == llvm::Triple::arm 619 || Arch == llvm::Triple::armeb 620 || Arch == llvm::Triple::thumb 621 || Arch == llvm::Triple::thumbeb) { 622 // The minimum width of an enum in bytes 623 uint64_t EnumWidth = Context.getLangOpts().ShortEnums ? 1 : 4; 624 getModule().addModuleFlag(llvm::Module::Error, "min_enum_size", EnumWidth); 625 } 626 627 if (Arch == llvm::Triple::riscv32 || Arch == llvm::Triple::riscv64) { 628 StringRef ABIStr = Target.getABI(); 629 llvm::LLVMContext &Ctx = TheModule.getContext(); 630 getModule().addModuleFlag(llvm::Module::Error, "target-abi", 631 llvm::MDString::get(Ctx, ABIStr)); 632 } 633 634 if (CodeGenOpts.SanitizeCfiCrossDso) { 635 // Indicate that we want cross-DSO control flow integrity checks. 636 getModule().addModuleFlag(llvm::Module::Override, "Cross-DSO CFI", 1); 637 } 638 639 if (CodeGenOpts.WholeProgramVTables) { 640 // Indicate whether VFE was enabled for this module, so that the 641 // vcall_visibility metadata added under whole program vtables is handled 642 // appropriately in the optimizer. 643 getModule().addModuleFlag(llvm::Module::Error, "Virtual Function Elim", 644 CodeGenOpts.VirtualFunctionElimination); 645 } 646 647 if (LangOpts.Sanitize.has(SanitizerKind::CFIICall)) { 648 getModule().addModuleFlag(llvm::Module::Override, 649 "CFI Canonical Jump Tables", 650 CodeGenOpts.SanitizeCfiCanonicalJumpTables); 651 } 652 653 if (CodeGenOpts.CFProtectionReturn && 654 Target.checkCFProtectionReturnSupported(getDiags())) { 655 // Indicate that we want to instrument return control flow protection. 656 getModule().addModuleFlag(llvm::Module::Override, "cf-protection-return", 657 1); 658 } 659 660 if (CodeGenOpts.CFProtectionBranch && 661 Target.checkCFProtectionBranchSupported(getDiags())) { 662 // Indicate that we want to instrument branch control flow protection. 663 getModule().addModuleFlag(llvm::Module::Override, "cf-protection-branch", 664 1); 665 } 666 667 if (Arch == llvm::Triple::aarch64 || Arch == llvm::Triple::aarch64_32 || 668 Arch == llvm::Triple::aarch64_be) { 669 getModule().addModuleFlag(llvm::Module::Error, 670 "branch-target-enforcement", 671 LangOpts.BranchTargetEnforcement); 672 673 getModule().addModuleFlag(llvm::Module::Error, "sign-return-address", 674 LangOpts.hasSignReturnAddress()); 675 676 getModule().addModuleFlag(llvm::Module::Error, "sign-return-address-all", 677 LangOpts.isSignReturnAddressScopeAll()); 678 679 getModule().addModuleFlag(llvm::Module::Error, 680 "sign-return-address-with-bkey", 681 !LangOpts.isSignReturnAddressWithAKey()); 682 } 683 684 if (!CodeGenOpts.MemoryProfileOutput.empty()) { 685 llvm::LLVMContext &Ctx = TheModule.getContext(); 686 getModule().addModuleFlag( 687 llvm::Module::Error, "MemProfProfileFilename", 688 llvm::MDString::get(Ctx, CodeGenOpts.MemoryProfileOutput)); 689 } 690 691 if (LangOpts.CUDAIsDevice && getTriple().isNVPTX()) { 692 // Indicate whether __nvvm_reflect should be configured to flush denormal 693 // floating point values to 0. (This corresponds to its "__CUDA_FTZ" 694 // property.) 695 getModule().addModuleFlag(llvm::Module::Override, "nvvm-reflect-ftz", 696 CodeGenOpts.FP32DenormalMode.Output != 697 llvm::DenormalMode::IEEE); 698 } 699 700 // Emit OpenCL specific module metadata: OpenCL/SPIR version. 701 if (LangOpts.OpenCL) { 702 EmitOpenCLMetadata(); 703 // Emit SPIR version. 704 if (getTriple().isSPIR()) { 705 // SPIR v2.0 s2.12 - The SPIR version used by the module is stored in the 706 // opencl.spir.version named metadata. 707 // C++ is backwards compatible with OpenCL v2.0. 708 auto Version = LangOpts.OpenCLCPlusPlus ? 200 : LangOpts.OpenCLVersion; 709 llvm::Metadata *SPIRVerElts[] = { 710 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 711 Int32Ty, Version / 100)), 712 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 713 Int32Ty, (Version / 100 > 1) ? 0 : 2))}; 714 llvm::NamedMDNode *SPIRVerMD = 715 TheModule.getOrInsertNamedMetadata("opencl.spir.version"); 716 llvm::LLVMContext &Ctx = TheModule.getContext(); 717 SPIRVerMD->addOperand(llvm::MDNode::get(Ctx, SPIRVerElts)); 718 } 719 } 720 721 if (uint32_t PLevel = Context.getLangOpts().PICLevel) { 722 assert(PLevel < 3 && "Invalid PIC Level"); 723 getModule().setPICLevel(static_cast<llvm::PICLevel::Level>(PLevel)); 724 if (Context.getLangOpts().PIE) 725 getModule().setPIELevel(static_cast<llvm::PIELevel::Level>(PLevel)); 726 } 727 728 if (getCodeGenOpts().CodeModel.size() > 0) { 729 unsigned CM = llvm::StringSwitch<unsigned>(getCodeGenOpts().CodeModel) 730 .Case("tiny", llvm::CodeModel::Tiny) 731 .Case("small", llvm::CodeModel::Small) 732 .Case("kernel", llvm::CodeModel::Kernel) 733 .Case("medium", llvm::CodeModel::Medium) 734 .Case("large", llvm::CodeModel::Large) 735 .Default(~0u); 736 if (CM != ~0u) { 737 llvm::CodeModel::Model codeModel = static_cast<llvm::CodeModel::Model>(CM); 738 getModule().setCodeModel(codeModel); 739 } 740 } 741 742 if (CodeGenOpts.NoPLT) 743 getModule().setRtLibUseGOT(); 744 if (CodeGenOpts.UnwindTables) 745 getModule().setUwtable(); 746 747 SimplifyPersonality(); 748 749 if (getCodeGenOpts().EmitDeclMetadata) 750 EmitDeclMetadata(); 751 752 if (getCodeGenOpts().EmitGcovArcs || getCodeGenOpts().EmitGcovNotes) 753 EmitCoverageFile(); 754 755 if (CGDebugInfo *DI = getModuleDebugInfo()) 756 DI->finalize(); 757 758 if (getCodeGenOpts().EmitVersionIdentMetadata) 759 EmitVersionIdentMetadata(); 760 761 if (!getCodeGenOpts().RecordCommandLine.empty()) 762 EmitCommandLineMetadata(); 763 764 getTargetCodeGenInfo().emitTargetMetadata(*this, MangledDeclNames); 765 766 EmitBackendOptionsMetadata(getCodeGenOpts()); 767 768 // Set visibility from DLL storage class 769 // We do this at the end of LLVM IR generation; after any operation 770 // that might affect the DLL storage class or the visibility, and 771 // before anything that might act on these. 772 setVisibilityFromDLLStorageClass(LangOpts, getModule()); 773 } 774 775 void CodeGenModule::EmitOpenCLMetadata() { 776 // SPIR v2.0 s2.13 - The OpenCL version used by the module is stored in the 777 // opencl.ocl.version named metadata node. 778 // C++ is backwards compatible with OpenCL v2.0. 779 // FIXME: We might need to add CXX version at some point too? 780 auto Version = LangOpts.OpenCLCPlusPlus ? 200 : LangOpts.OpenCLVersion; 781 llvm::Metadata *OCLVerElts[] = { 782 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 783 Int32Ty, Version / 100)), 784 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 785 Int32Ty, (Version % 100) / 10))}; 786 llvm::NamedMDNode *OCLVerMD = 787 TheModule.getOrInsertNamedMetadata("opencl.ocl.version"); 788 llvm::LLVMContext &Ctx = TheModule.getContext(); 789 OCLVerMD->addOperand(llvm::MDNode::get(Ctx, OCLVerElts)); 790 } 791 792 void CodeGenModule::EmitBackendOptionsMetadata( 793 const CodeGenOptions CodeGenOpts) { 794 switch (getTriple().getArch()) { 795 default: 796 break; 797 case llvm::Triple::riscv32: 798 case llvm::Triple::riscv64: 799 getModule().addModuleFlag(llvm::Module::Error, "SmallDataLimit", 800 CodeGenOpts.SmallDataLimit); 801 break; 802 } 803 } 804 805 void CodeGenModule::UpdateCompletedType(const TagDecl *TD) { 806 // Make sure that this type is translated. 807 Types.UpdateCompletedType(TD); 808 } 809 810 void CodeGenModule::RefreshTypeCacheForClass(const CXXRecordDecl *RD) { 811 // Make sure that this type is translated. 812 Types.RefreshTypeCacheForClass(RD); 813 } 814 815 llvm::MDNode *CodeGenModule::getTBAATypeInfo(QualType QTy) { 816 if (!TBAA) 817 return nullptr; 818 return TBAA->getTypeInfo(QTy); 819 } 820 821 TBAAAccessInfo CodeGenModule::getTBAAAccessInfo(QualType AccessType) { 822 if (!TBAA) 823 return TBAAAccessInfo(); 824 if (getLangOpts().CUDAIsDevice) { 825 // As CUDA builtin surface/texture types are replaced, skip generating TBAA 826 // access info. 827 if (AccessType->isCUDADeviceBuiltinSurfaceType()) { 828 if (getTargetCodeGenInfo().getCUDADeviceBuiltinSurfaceDeviceType() != 829 nullptr) 830 return TBAAAccessInfo(); 831 } else if (AccessType->isCUDADeviceBuiltinTextureType()) { 832 if (getTargetCodeGenInfo().getCUDADeviceBuiltinTextureDeviceType() != 833 nullptr) 834 return TBAAAccessInfo(); 835 } 836 } 837 return TBAA->getAccessInfo(AccessType); 838 } 839 840 TBAAAccessInfo 841 CodeGenModule::getTBAAVTablePtrAccessInfo(llvm::Type *VTablePtrType) { 842 if (!TBAA) 843 return TBAAAccessInfo(); 844 return TBAA->getVTablePtrAccessInfo(VTablePtrType); 845 } 846 847 llvm::MDNode *CodeGenModule::getTBAAStructInfo(QualType QTy) { 848 if (!TBAA) 849 return nullptr; 850 return TBAA->getTBAAStructInfo(QTy); 851 } 852 853 llvm::MDNode *CodeGenModule::getTBAABaseTypeInfo(QualType QTy) { 854 if (!TBAA) 855 return nullptr; 856 return TBAA->getBaseTypeInfo(QTy); 857 } 858 859 llvm::MDNode *CodeGenModule::getTBAAAccessTagInfo(TBAAAccessInfo Info) { 860 if (!TBAA) 861 return nullptr; 862 return TBAA->getAccessTagInfo(Info); 863 } 864 865 TBAAAccessInfo CodeGenModule::mergeTBAAInfoForCast(TBAAAccessInfo SourceInfo, 866 TBAAAccessInfo TargetInfo) { 867 if (!TBAA) 868 return TBAAAccessInfo(); 869 return TBAA->mergeTBAAInfoForCast(SourceInfo, TargetInfo); 870 } 871 872 TBAAAccessInfo 873 CodeGenModule::mergeTBAAInfoForConditionalOperator(TBAAAccessInfo InfoA, 874 TBAAAccessInfo InfoB) { 875 if (!TBAA) 876 return TBAAAccessInfo(); 877 return TBAA->mergeTBAAInfoForConditionalOperator(InfoA, InfoB); 878 } 879 880 TBAAAccessInfo 881 CodeGenModule::mergeTBAAInfoForMemoryTransfer(TBAAAccessInfo DestInfo, 882 TBAAAccessInfo SrcInfo) { 883 if (!TBAA) 884 return TBAAAccessInfo(); 885 return TBAA->mergeTBAAInfoForConditionalOperator(DestInfo, SrcInfo); 886 } 887 888 void CodeGenModule::DecorateInstructionWithTBAA(llvm::Instruction *Inst, 889 TBAAAccessInfo TBAAInfo) { 890 if (llvm::MDNode *Tag = getTBAAAccessTagInfo(TBAAInfo)) 891 Inst->setMetadata(llvm::LLVMContext::MD_tbaa, Tag); 892 } 893 894 void CodeGenModule::DecorateInstructionWithInvariantGroup( 895 llvm::Instruction *I, const CXXRecordDecl *RD) { 896 I->setMetadata(llvm::LLVMContext::MD_invariant_group, 897 llvm::MDNode::get(getLLVMContext(), {})); 898 } 899 900 void CodeGenModule::Error(SourceLocation loc, StringRef message) { 901 unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, "%0"); 902 getDiags().Report(Context.getFullLoc(loc), diagID) << message; 903 } 904 905 /// ErrorUnsupported - Print out an error that codegen doesn't support the 906 /// specified stmt yet. 907 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type) { 908 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, 909 "cannot compile this %0 yet"); 910 std::string Msg = Type; 911 getDiags().Report(Context.getFullLoc(S->getBeginLoc()), DiagID) 912 << Msg << S->getSourceRange(); 913 } 914 915 /// ErrorUnsupported - Print out an error that codegen doesn't support the 916 /// specified decl yet. 917 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type) { 918 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, 919 "cannot compile this %0 yet"); 920 std::string Msg = Type; 921 getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg; 922 } 923 924 llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) { 925 return llvm::ConstantInt::get(SizeTy, size.getQuantity()); 926 } 927 928 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV, 929 const NamedDecl *D) const { 930 if (GV->hasDLLImportStorageClass()) 931 return; 932 // Internal definitions always have default visibility. 933 if (GV->hasLocalLinkage()) { 934 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 935 return; 936 } 937 if (!D) 938 return; 939 // Set visibility for definitions, and for declarations if requested globally 940 // or set explicitly. 941 LinkageInfo LV = D->getLinkageAndVisibility(); 942 if (LV.isVisibilityExplicit() || getLangOpts().SetVisibilityForExternDecls || 943 !GV->isDeclarationForLinker()) 944 GV->setVisibility(GetLLVMVisibility(LV.getVisibility())); 945 } 946 947 static bool shouldAssumeDSOLocal(const CodeGenModule &CGM, 948 llvm::GlobalValue *GV) { 949 if (GV->hasLocalLinkage()) 950 return true; 951 952 if (!GV->hasDefaultVisibility() && !GV->hasExternalWeakLinkage()) 953 return true; 954 955 // DLLImport explicitly marks the GV as external. 956 if (GV->hasDLLImportStorageClass()) 957 return false; 958 959 const llvm::Triple &TT = CGM.getTriple(); 960 if (TT.isWindowsGNUEnvironment()) { 961 // In MinGW, variables without DLLImport can still be automatically 962 // imported from a DLL by the linker; don't mark variables that 963 // potentially could come from another DLL as DSO local. 964 if (GV->isDeclarationForLinker() && isa<llvm::GlobalVariable>(GV) && 965 !GV->isThreadLocal()) 966 return false; 967 } 968 969 // On COFF, don't mark 'extern_weak' symbols as DSO local. If these symbols 970 // remain unresolved in the link, they can be resolved to zero, which is 971 // outside the current DSO. 972 if (TT.isOSBinFormatCOFF() && GV->hasExternalWeakLinkage()) 973 return false; 974 975 // Every other GV is local on COFF. 976 // Make an exception for windows OS in the triple: Some firmware builds use 977 // *-win32-macho triples. This (accidentally?) produced windows relocations 978 // without GOT tables in older clang versions; Keep this behaviour. 979 // FIXME: even thread local variables? 980 if (TT.isOSBinFormatCOFF() || (TT.isOSWindows() && TT.isOSBinFormatMachO())) 981 return true; 982 983 // Only handle COFF and ELF for now. 984 if (!TT.isOSBinFormatELF()) 985 return false; 986 987 // If this is not an executable, don't assume anything is local. 988 const auto &CGOpts = CGM.getCodeGenOpts(); 989 llvm::Reloc::Model RM = CGOpts.RelocationModel; 990 const auto &LOpts = CGM.getLangOpts(); 991 if (RM != llvm::Reloc::Static && !LOpts.PIE) { 992 // On ELF, if -fno-semantic-interposition is specified and the target 993 // supports local aliases, there will be neither CC1 994 // -fsemantic-interposition nor -fhalf-no-semantic-interposition. Set 995 // dso_local if using a local alias is preferable (can avoid GOT 996 // indirection). 997 if (!GV->canBenefitFromLocalAlias()) 998 return false; 999 return !(CGM.getLangOpts().SemanticInterposition || 1000 CGM.getLangOpts().HalfNoSemanticInterposition); 1001 } 1002 1003 // A definition cannot be preempted from an executable. 1004 if (!GV->isDeclarationForLinker()) 1005 return true; 1006 1007 // Most PIC code sequences that assume that a symbol is local cannot produce a 1008 // 0 if it turns out the symbol is undefined. While this is ABI and relocation 1009 // depended, it seems worth it to handle it here. 1010 if (RM == llvm::Reloc::PIC_ && GV->hasExternalWeakLinkage()) 1011 return false; 1012 1013 // PowerPC64 prefers TOC indirection to avoid copy relocations. 1014 if (TT.isPPC64()) 1015 return false; 1016 1017 if (CGOpts.DirectAccessExternalData) { 1018 // If -fdirect-access-external-data (default for -fno-pic), set dso_local 1019 // for non-thread-local variables. If the symbol is not defined in the 1020 // executable, a copy relocation will be needed at link time. dso_local is 1021 // excluded for thread-local variables because they generally don't support 1022 // copy relocations. 1023 if (auto *Var = dyn_cast<llvm::GlobalVariable>(GV)) 1024 if (!Var->isThreadLocal()) 1025 return true; 1026 1027 // -fno-pic sets dso_local on a function declaration to allow direct 1028 // accesses when taking its address (similar to a data symbol). If the 1029 // function is not defined in the executable, a canonical PLT entry will be 1030 // needed at link time. -fno-direct-access-external-data can avoid the 1031 // canonical PLT entry. We don't generalize this condition to -fpie/-fpic as 1032 // it could just cause trouble without providing perceptible benefits. 1033 if (isa<llvm::Function>(GV) && !CGOpts.NoPLT && RM == llvm::Reloc::Static) 1034 return true; 1035 } 1036 1037 // If we can use copy relocations we can assume it is local. 1038 1039 // Otherwise don't assume it is local. 1040 return false; 1041 } 1042 1043 void CodeGenModule::setDSOLocal(llvm::GlobalValue *GV) const { 1044 GV->setDSOLocal(shouldAssumeDSOLocal(*this, GV)); 1045 } 1046 1047 void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV, 1048 GlobalDecl GD) const { 1049 const auto *D = dyn_cast<NamedDecl>(GD.getDecl()); 1050 // C++ destructors have a few C++ ABI specific special cases. 1051 if (const auto *Dtor = dyn_cast_or_null<CXXDestructorDecl>(D)) { 1052 getCXXABI().setCXXDestructorDLLStorage(GV, Dtor, GD.getDtorType()); 1053 return; 1054 } 1055 setDLLImportDLLExport(GV, D); 1056 } 1057 1058 void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV, 1059 const NamedDecl *D) const { 1060 if (D && D->isExternallyVisible()) { 1061 if (D->hasAttr<DLLImportAttr>()) 1062 GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass); 1063 else if (D->hasAttr<DLLExportAttr>() && !GV->isDeclarationForLinker()) 1064 GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass); 1065 } 1066 } 1067 1068 void CodeGenModule::setGVProperties(llvm::GlobalValue *GV, 1069 GlobalDecl GD) const { 1070 setDLLImportDLLExport(GV, GD); 1071 setGVPropertiesAux(GV, dyn_cast<NamedDecl>(GD.getDecl())); 1072 } 1073 1074 void CodeGenModule::setGVProperties(llvm::GlobalValue *GV, 1075 const NamedDecl *D) const { 1076 setDLLImportDLLExport(GV, D); 1077 setGVPropertiesAux(GV, D); 1078 } 1079 1080 void CodeGenModule::setGVPropertiesAux(llvm::GlobalValue *GV, 1081 const NamedDecl *D) const { 1082 setGlobalVisibility(GV, D); 1083 setDSOLocal(GV); 1084 GV->setPartition(CodeGenOpts.SymbolPartition); 1085 } 1086 1087 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(StringRef S) { 1088 return llvm::StringSwitch<llvm::GlobalVariable::ThreadLocalMode>(S) 1089 .Case("global-dynamic", llvm::GlobalVariable::GeneralDynamicTLSModel) 1090 .Case("local-dynamic", llvm::GlobalVariable::LocalDynamicTLSModel) 1091 .Case("initial-exec", llvm::GlobalVariable::InitialExecTLSModel) 1092 .Case("local-exec", llvm::GlobalVariable::LocalExecTLSModel); 1093 } 1094 1095 llvm::GlobalVariable::ThreadLocalMode 1096 CodeGenModule::GetDefaultLLVMTLSModel() const { 1097 switch (CodeGenOpts.getDefaultTLSModel()) { 1098 case CodeGenOptions::GeneralDynamicTLSModel: 1099 return llvm::GlobalVariable::GeneralDynamicTLSModel; 1100 case CodeGenOptions::LocalDynamicTLSModel: 1101 return llvm::GlobalVariable::LocalDynamicTLSModel; 1102 case CodeGenOptions::InitialExecTLSModel: 1103 return llvm::GlobalVariable::InitialExecTLSModel; 1104 case CodeGenOptions::LocalExecTLSModel: 1105 return llvm::GlobalVariable::LocalExecTLSModel; 1106 } 1107 llvm_unreachable("Invalid TLS model!"); 1108 } 1109 1110 void CodeGenModule::setTLSMode(llvm::GlobalValue *GV, const VarDecl &D) const { 1111 assert(D.getTLSKind() && "setting TLS mode on non-TLS var!"); 1112 1113 llvm::GlobalValue::ThreadLocalMode TLM; 1114 TLM = GetDefaultLLVMTLSModel(); 1115 1116 // Override the TLS model if it is explicitly specified. 1117 if (const TLSModelAttr *Attr = D.getAttr<TLSModelAttr>()) { 1118 TLM = GetLLVMTLSModel(Attr->getModel()); 1119 } 1120 1121 GV->setThreadLocalMode(TLM); 1122 } 1123 1124 static std::string getCPUSpecificMangling(const CodeGenModule &CGM, 1125 StringRef Name) { 1126 const TargetInfo &Target = CGM.getTarget(); 1127 return (Twine('.') + Twine(Target.CPUSpecificManglingCharacter(Name))).str(); 1128 } 1129 1130 static void AppendCPUSpecificCPUDispatchMangling(const CodeGenModule &CGM, 1131 const CPUSpecificAttr *Attr, 1132 unsigned CPUIndex, 1133 raw_ostream &Out) { 1134 // cpu_specific gets the current name, dispatch gets the resolver if IFunc is 1135 // supported. 1136 if (Attr) 1137 Out << getCPUSpecificMangling(CGM, Attr->getCPUName(CPUIndex)->getName()); 1138 else if (CGM.getTarget().supportsIFunc()) 1139 Out << ".resolver"; 1140 } 1141 1142 static void AppendTargetMangling(const CodeGenModule &CGM, 1143 const TargetAttr *Attr, raw_ostream &Out) { 1144 if (Attr->isDefaultVersion()) 1145 return; 1146 1147 Out << '.'; 1148 const TargetInfo &Target = CGM.getTarget(); 1149 ParsedTargetAttr Info = 1150 Attr->parse([&Target](StringRef LHS, StringRef RHS) { 1151 // Multiversioning doesn't allow "no-${feature}", so we can 1152 // only have "+" prefixes here. 1153 assert(LHS.startswith("+") && RHS.startswith("+") && 1154 "Features should always have a prefix."); 1155 return Target.multiVersionSortPriority(LHS.substr(1)) > 1156 Target.multiVersionSortPriority(RHS.substr(1)); 1157 }); 1158 1159 bool IsFirst = true; 1160 1161 if (!Info.Architecture.empty()) { 1162 IsFirst = false; 1163 Out << "arch_" << Info.Architecture; 1164 } 1165 1166 for (StringRef Feat : Info.Features) { 1167 if (!IsFirst) 1168 Out << '_'; 1169 IsFirst = false; 1170 Out << Feat.substr(1); 1171 } 1172 } 1173 1174 // Returns true if GD is a function decl with internal linkage and 1175 // needs a unique suffix after the mangled name. 1176 static bool isUniqueInternalLinkageDecl(GlobalDecl GD, 1177 CodeGenModule &CGM) { 1178 const Decl *D = GD.getDecl(); 1179 return !CGM.getModuleNameHash().empty() && isa<FunctionDecl>(D) && 1180 (CGM.getFunctionLinkage(GD) == llvm::GlobalValue::InternalLinkage); 1181 } 1182 1183 static std::string getMangledNameImpl(CodeGenModule &CGM, GlobalDecl GD, 1184 const NamedDecl *ND, 1185 bool OmitMultiVersionMangling = false) { 1186 SmallString<256> Buffer; 1187 llvm::raw_svector_ostream Out(Buffer); 1188 MangleContext &MC = CGM.getCXXABI().getMangleContext(); 1189 if (!CGM.getModuleNameHash().empty()) 1190 MC.needsUniqueInternalLinkageNames(); 1191 bool ShouldMangle = MC.shouldMangleDeclName(ND); 1192 if (ShouldMangle) 1193 MC.mangleName(GD.getWithDecl(ND), Out); 1194 else { 1195 IdentifierInfo *II = ND->getIdentifier(); 1196 assert(II && "Attempt to mangle unnamed decl."); 1197 const auto *FD = dyn_cast<FunctionDecl>(ND); 1198 1199 if (FD && 1200 FD->getType()->castAs<FunctionType>()->getCallConv() == CC_X86RegCall) { 1201 Out << "__regcall3__" << II->getName(); 1202 } else if (FD && FD->hasAttr<CUDAGlobalAttr>() && 1203 GD.getKernelReferenceKind() == KernelReferenceKind::Stub) { 1204 Out << "__device_stub__" << II->getName(); 1205 } else { 1206 Out << II->getName(); 1207 } 1208 } 1209 1210 // Check if the module name hash should be appended for internal linkage 1211 // symbols. This should come before multi-version target suffixes are 1212 // appended. This is to keep the name and module hash suffix of the 1213 // internal linkage function together. The unique suffix should only be 1214 // added when name mangling is done to make sure that the final name can 1215 // be properly demangled. For example, for C functions without prototypes, 1216 // name mangling is not done and the unique suffix should not be appeneded 1217 // then. 1218 if (ShouldMangle && isUniqueInternalLinkageDecl(GD, CGM)) { 1219 assert(CGM.getCodeGenOpts().UniqueInternalLinkageNames && 1220 "Hash computed when not explicitly requested"); 1221 Out << CGM.getModuleNameHash(); 1222 } 1223 1224 if (const auto *FD = dyn_cast<FunctionDecl>(ND)) 1225 if (FD->isMultiVersion() && !OmitMultiVersionMangling) { 1226 switch (FD->getMultiVersionKind()) { 1227 case MultiVersionKind::CPUDispatch: 1228 case MultiVersionKind::CPUSpecific: 1229 AppendCPUSpecificCPUDispatchMangling(CGM, 1230 FD->getAttr<CPUSpecificAttr>(), 1231 GD.getMultiVersionIndex(), Out); 1232 break; 1233 case MultiVersionKind::Target: 1234 AppendTargetMangling(CGM, FD->getAttr<TargetAttr>(), Out); 1235 break; 1236 case MultiVersionKind::None: 1237 llvm_unreachable("None multiversion type isn't valid here"); 1238 } 1239 } 1240 1241 // Make unique name for device side static file-scope variable for HIP. 1242 if (CGM.getContext().shouldExternalizeStaticVar(ND) && 1243 CGM.getLangOpts().GPURelocatableDeviceCode && 1244 CGM.getLangOpts().CUDAIsDevice && !CGM.getLangOpts().CUID.empty()) 1245 CGM.printPostfixForExternalizedStaticVar(Out); 1246 return std::string(Out.str()); 1247 } 1248 1249 void CodeGenModule::UpdateMultiVersionNames(GlobalDecl GD, 1250 const FunctionDecl *FD) { 1251 if (!FD->isMultiVersion()) 1252 return; 1253 1254 // Get the name of what this would be without the 'target' attribute. This 1255 // allows us to lookup the version that was emitted when this wasn't a 1256 // multiversion function. 1257 std::string NonTargetName = 1258 getMangledNameImpl(*this, GD, FD, /*OmitMultiVersionMangling=*/true); 1259 GlobalDecl OtherGD; 1260 if (lookupRepresentativeDecl(NonTargetName, OtherGD)) { 1261 assert(OtherGD.getCanonicalDecl() 1262 .getDecl() 1263 ->getAsFunction() 1264 ->isMultiVersion() && 1265 "Other GD should now be a multiversioned function"); 1266 // OtherFD is the version of this function that was mangled BEFORE 1267 // becoming a MultiVersion function. It potentially needs to be updated. 1268 const FunctionDecl *OtherFD = OtherGD.getCanonicalDecl() 1269 .getDecl() 1270 ->getAsFunction() 1271 ->getMostRecentDecl(); 1272 std::string OtherName = getMangledNameImpl(*this, OtherGD, OtherFD); 1273 // This is so that if the initial version was already the 'default' 1274 // version, we don't try to update it. 1275 if (OtherName != NonTargetName) { 1276 // Remove instead of erase, since others may have stored the StringRef 1277 // to this. 1278 const auto ExistingRecord = Manglings.find(NonTargetName); 1279 if (ExistingRecord != std::end(Manglings)) 1280 Manglings.remove(&(*ExistingRecord)); 1281 auto Result = Manglings.insert(std::make_pair(OtherName, OtherGD)); 1282 MangledDeclNames[OtherGD.getCanonicalDecl()] = Result.first->first(); 1283 if (llvm::GlobalValue *Entry = GetGlobalValue(NonTargetName)) 1284 Entry->setName(OtherName); 1285 } 1286 } 1287 } 1288 1289 StringRef CodeGenModule::getMangledName(GlobalDecl GD) { 1290 GlobalDecl CanonicalGD = GD.getCanonicalDecl(); 1291 1292 // Some ABIs don't have constructor variants. Make sure that base and 1293 // complete constructors get mangled the same. 1294 if (const auto *CD = dyn_cast<CXXConstructorDecl>(CanonicalGD.getDecl())) { 1295 if (!getTarget().getCXXABI().hasConstructorVariants()) { 1296 CXXCtorType OrigCtorType = GD.getCtorType(); 1297 assert(OrigCtorType == Ctor_Base || OrigCtorType == Ctor_Complete); 1298 if (OrigCtorType == Ctor_Base) 1299 CanonicalGD = GlobalDecl(CD, Ctor_Complete); 1300 } 1301 } 1302 1303 // In CUDA/HIP device compilation with -fgpu-rdc, the mangled name of a 1304 // static device variable depends on whether the variable is referenced by 1305 // a host or device host function. Therefore the mangled name cannot be 1306 // cached. 1307 if (!LangOpts.CUDAIsDevice || 1308 !getContext().mayExternalizeStaticVar(GD.getDecl())) { 1309 auto FoundName = MangledDeclNames.find(CanonicalGD); 1310 if (FoundName != MangledDeclNames.end()) 1311 return FoundName->second; 1312 } 1313 1314 // Keep the first result in the case of a mangling collision. 1315 const auto *ND = cast<NamedDecl>(GD.getDecl()); 1316 std::string MangledName = getMangledNameImpl(*this, GD, ND); 1317 1318 // Ensure either we have different ABIs between host and device compilations, 1319 // says host compilation following MSVC ABI but device compilation follows 1320 // Itanium C++ ABI or, if they follow the same ABI, kernel names after 1321 // mangling should be the same after name stubbing. The later checking is 1322 // very important as the device kernel name being mangled in host-compilation 1323 // is used to resolve the device binaries to be executed. Inconsistent naming 1324 // result in undefined behavior. Even though we cannot check that naming 1325 // directly between host- and device-compilations, the host- and 1326 // device-mangling in host compilation could help catching certain ones. 1327 assert(!isa<FunctionDecl>(ND) || !ND->hasAttr<CUDAGlobalAttr>() || 1328 getLangOpts().CUDAIsDevice || 1329 (getContext().getAuxTargetInfo() && 1330 (getContext().getAuxTargetInfo()->getCXXABI() != 1331 getContext().getTargetInfo().getCXXABI())) || 1332 getCUDARuntime().getDeviceSideName(ND) == 1333 getMangledNameImpl( 1334 *this, 1335 GD.getWithKernelReferenceKind(KernelReferenceKind::Kernel), 1336 ND)); 1337 1338 auto Result = Manglings.insert(std::make_pair(MangledName, GD)); 1339 return MangledDeclNames[CanonicalGD] = Result.first->first(); 1340 } 1341 1342 StringRef CodeGenModule::getBlockMangledName(GlobalDecl GD, 1343 const BlockDecl *BD) { 1344 MangleContext &MangleCtx = getCXXABI().getMangleContext(); 1345 const Decl *D = GD.getDecl(); 1346 1347 SmallString<256> Buffer; 1348 llvm::raw_svector_ostream Out(Buffer); 1349 if (!D) 1350 MangleCtx.mangleGlobalBlock(BD, 1351 dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()), Out); 1352 else if (const auto *CD = dyn_cast<CXXConstructorDecl>(D)) 1353 MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out); 1354 else if (const auto *DD = dyn_cast<CXXDestructorDecl>(D)) 1355 MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out); 1356 else 1357 MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out); 1358 1359 auto Result = Manglings.insert(std::make_pair(Out.str(), BD)); 1360 return Result.first->first(); 1361 } 1362 1363 llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) { 1364 return getModule().getNamedValue(Name); 1365 } 1366 1367 /// AddGlobalCtor - Add a function to the list that will be called before 1368 /// main() runs. 1369 void CodeGenModule::AddGlobalCtor(llvm::Function *Ctor, int Priority, 1370 llvm::Constant *AssociatedData) { 1371 // FIXME: Type coercion of void()* types. 1372 GlobalCtors.push_back(Structor(Priority, Ctor, AssociatedData)); 1373 } 1374 1375 /// AddGlobalDtor - Add a function to the list that will be called 1376 /// when the module is unloaded. 1377 void CodeGenModule::AddGlobalDtor(llvm::Function *Dtor, int Priority, 1378 bool IsDtorAttrFunc) { 1379 if (CodeGenOpts.RegisterGlobalDtorsWithAtExit && 1380 (!getContext().getTargetInfo().getTriple().isOSAIX() || IsDtorAttrFunc)) { 1381 DtorsUsingAtExit[Priority].push_back(Dtor); 1382 return; 1383 } 1384 1385 // FIXME: Type coercion of void()* types. 1386 GlobalDtors.push_back(Structor(Priority, Dtor, nullptr)); 1387 } 1388 1389 void CodeGenModule::EmitCtorList(CtorList &Fns, const char *GlobalName) { 1390 if (Fns.empty()) return; 1391 1392 // Ctor function type is void()*. 1393 llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false); 1394 llvm::Type *CtorPFTy = llvm::PointerType::get(CtorFTy, 1395 TheModule.getDataLayout().getProgramAddressSpace()); 1396 1397 // Get the type of a ctor entry, { i32, void ()*, i8* }. 1398 llvm::StructType *CtorStructTy = llvm::StructType::get( 1399 Int32Ty, CtorPFTy, VoidPtrTy); 1400 1401 // Construct the constructor and destructor arrays. 1402 ConstantInitBuilder builder(*this); 1403 auto ctors = builder.beginArray(CtorStructTy); 1404 for (const auto &I : Fns) { 1405 auto ctor = ctors.beginStruct(CtorStructTy); 1406 ctor.addInt(Int32Ty, I.Priority); 1407 ctor.add(llvm::ConstantExpr::getBitCast(I.Initializer, CtorPFTy)); 1408 if (I.AssociatedData) 1409 ctor.add(llvm::ConstantExpr::getBitCast(I.AssociatedData, VoidPtrTy)); 1410 else 1411 ctor.addNullPointer(VoidPtrTy); 1412 ctor.finishAndAddTo(ctors); 1413 } 1414 1415 auto list = 1416 ctors.finishAndCreateGlobal(GlobalName, getPointerAlign(), 1417 /*constant*/ false, 1418 llvm::GlobalValue::AppendingLinkage); 1419 1420 // The LTO linker doesn't seem to like it when we set an alignment 1421 // on appending variables. Take it off as a workaround. 1422 list->setAlignment(llvm::None); 1423 1424 Fns.clear(); 1425 } 1426 1427 llvm::GlobalValue::LinkageTypes 1428 CodeGenModule::getFunctionLinkage(GlobalDecl GD) { 1429 const auto *D = cast<FunctionDecl>(GD.getDecl()); 1430 1431 GVALinkage Linkage = getContext().GetGVALinkageForFunction(D); 1432 1433 if (const auto *Dtor = dyn_cast<CXXDestructorDecl>(D)) 1434 return getCXXABI().getCXXDestructorLinkage(Linkage, Dtor, GD.getDtorType()); 1435 1436 if (isa<CXXConstructorDecl>(D) && 1437 cast<CXXConstructorDecl>(D)->isInheritingConstructor() && 1438 Context.getTargetInfo().getCXXABI().isMicrosoft()) { 1439 // Our approach to inheriting constructors is fundamentally different from 1440 // that used by the MS ABI, so keep our inheriting constructor thunks 1441 // internal rather than trying to pick an unambiguous mangling for them. 1442 return llvm::GlobalValue::InternalLinkage; 1443 } 1444 1445 return getLLVMLinkageForDeclarator(D, Linkage, /*IsConstantVariable=*/false); 1446 } 1447 1448 llvm::ConstantInt *CodeGenModule::CreateCrossDsoCfiTypeId(llvm::Metadata *MD) { 1449 llvm::MDString *MDS = dyn_cast<llvm::MDString>(MD); 1450 if (!MDS) return nullptr; 1451 1452 return llvm::ConstantInt::get(Int64Ty, llvm::MD5Hash(MDS->getString())); 1453 } 1454 1455 void CodeGenModule::SetLLVMFunctionAttributes(GlobalDecl GD, 1456 const CGFunctionInfo &Info, 1457 llvm::Function *F) { 1458 unsigned CallingConv; 1459 llvm::AttributeList PAL; 1460 ConstructAttributeList(F->getName(), Info, GD, PAL, CallingConv, false); 1461 F->setAttributes(PAL); 1462 F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv)); 1463 } 1464 1465 static void removeImageAccessQualifier(std::string& TyName) { 1466 std::string ReadOnlyQual("__read_only"); 1467 std::string::size_type ReadOnlyPos = TyName.find(ReadOnlyQual); 1468 if (ReadOnlyPos != std::string::npos) 1469 // "+ 1" for the space after access qualifier. 1470 TyName.erase(ReadOnlyPos, ReadOnlyQual.size() + 1); 1471 else { 1472 std::string WriteOnlyQual("__write_only"); 1473 std::string::size_type WriteOnlyPos = TyName.find(WriteOnlyQual); 1474 if (WriteOnlyPos != std::string::npos) 1475 TyName.erase(WriteOnlyPos, WriteOnlyQual.size() + 1); 1476 else { 1477 std::string ReadWriteQual("__read_write"); 1478 std::string::size_type ReadWritePos = TyName.find(ReadWriteQual); 1479 if (ReadWritePos != std::string::npos) 1480 TyName.erase(ReadWritePos, ReadWriteQual.size() + 1); 1481 } 1482 } 1483 } 1484 1485 // Returns the address space id that should be produced to the 1486 // kernel_arg_addr_space metadata. This is always fixed to the ids 1487 // as specified in the SPIR 2.0 specification in order to differentiate 1488 // for example in clGetKernelArgInfo() implementation between the address 1489 // spaces with targets without unique mapping to the OpenCL address spaces 1490 // (basically all single AS CPUs). 1491 static unsigned ArgInfoAddressSpace(LangAS AS) { 1492 switch (AS) { 1493 case LangAS::opencl_global: 1494 return 1; 1495 case LangAS::opencl_constant: 1496 return 2; 1497 case LangAS::opencl_local: 1498 return 3; 1499 case LangAS::opencl_generic: 1500 return 4; // Not in SPIR 2.0 specs. 1501 case LangAS::opencl_global_device: 1502 return 5; 1503 case LangAS::opencl_global_host: 1504 return 6; 1505 default: 1506 return 0; // Assume private. 1507 } 1508 } 1509 1510 void CodeGenModule::GenOpenCLArgMetadata(llvm::Function *Fn, 1511 const FunctionDecl *FD, 1512 CodeGenFunction *CGF) { 1513 assert(((FD && CGF) || (!FD && !CGF)) && 1514 "Incorrect use - FD and CGF should either be both null or not!"); 1515 // Create MDNodes that represent the kernel arg metadata. 1516 // Each MDNode is a list in the form of "key", N number of values which is 1517 // the same number of values as their are kernel arguments. 1518 1519 const PrintingPolicy &Policy = Context.getPrintingPolicy(); 1520 1521 // MDNode for the kernel argument address space qualifiers. 1522 SmallVector<llvm::Metadata *, 8> addressQuals; 1523 1524 // MDNode for the kernel argument access qualifiers (images only). 1525 SmallVector<llvm::Metadata *, 8> accessQuals; 1526 1527 // MDNode for the kernel argument type names. 1528 SmallVector<llvm::Metadata *, 8> argTypeNames; 1529 1530 // MDNode for the kernel argument base type names. 1531 SmallVector<llvm::Metadata *, 8> argBaseTypeNames; 1532 1533 // MDNode for the kernel argument type qualifiers. 1534 SmallVector<llvm::Metadata *, 8> argTypeQuals; 1535 1536 // MDNode for the kernel argument names. 1537 SmallVector<llvm::Metadata *, 8> argNames; 1538 1539 if (FD && CGF) 1540 for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i) { 1541 const ParmVarDecl *parm = FD->getParamDecl(i); 1542 QualType ty = parm->getType(); 1543 std::string typeQuals; 1544 1545 // Get image and pipe access qualifier: 1546 if (ty->isImageType() || ty->isPipeType()) { 1547 const Decl *PDecl = parm; 1548 if (auto *TD = dyn_cast<TypedefType>(ty)) 1549 PDecl = TD->getDecl(); 1550 const OpenCLAccessAttr *A = PDecl->getAttr<OpenCLAccessAttr>(); 1551 if (A && A->isWriteOnly()) 1552 accessQuals.push_back(llvm::MDString::get(VMContext, "write_only")); 1553 else if (A && A->isReadWrite()) 1554 accessQuals.push_back(llvm::MDString::get(VMContext, "read_write")); 1555 else 1556 accessQuals.push_back(llvm::MDString::get(VMContext, "read_only")); 1557 } else 1558 accessQuals.push_back(llvm::MDString::get(VMContext, "none")); 1559 1560 // Get argument name. 1561 argNames.push_back(llvm::MDString::get(VMContext, parm->getName())); 1562 1563 auto getTypeSpelling = [&](QualType Ty) { 1564 auto typeName = Ty.getUnqualifiedType().getAsString(Policy); 1565 1566 if (Ty.isCanonical()) { 1567 StringRef typeNameRef = typeName; 1568 // Turn "unsigned type" to "utype" 1569 if (typeNameRef.consume_front("unsigned ")) 1570 return std::string("u") + typeNameRef.str(); 1571 if (typeNameRef.consume_front("signed ")) 1572 return typeNameRef.str(); 1573 } 1574 1575 return typeName; 1576 }; 1577 1578 if (ty->isPointerType()) { 1579 QualType pointeeTy = ty->getPointeeType(); 1580 1581 // Get address qualifier. 1582 addressQuals.push_back( 1583 llvm::ConstantAsMetadata::get(CGF->Builder.getInt32( 1584 ArgInfoAddressSpace(pointeeTy.getAddressSpace())))); 1585 1586 // Get argument type name. 1587 std::string typeName = getTypeSpelling(pointeeTy) + "*"; 1588 std::string baseTypeName = 1589 getTypeSpelling(pointeeTy.getCanonicalType()) + "*"; 1590 argTypeNames.push_back(llvm::MDString::get(VMContext, typeName)); 1591 argBaseTypeNames.push_back( 1592 llvm::MDString::get(VMContext, baseTypeName)); 1593 1594 // Get argument type qualifiers: 1595 if (ty.isRestrictQualified()) 1596 typeQuals = "restrict"; 1597 if (pointeeTy.isConstQualified() || 1598 (pointeeTy.getAddressSpace() == LangAS::opencl_constant)) 1599 typeQuals += typeQuals.empty() ? "const" : " const"; 1600 if (pointeeTy.isVolatileQualified()) 1601 typeQuals += typeQuals.empty() ? "volatile" : " volatile"; 1602 } else { 1603 uint32_t AddrSpc = 0; 1604 bool isPipe = ty->isPipeType(); 1605 if (ty->isImageType() || isPipe) 1606 AddrSpc = ArgInfoAddressSpace(LangAS::opencl_global); 1607 1608 addressQuals.push_back( 1609 llvm::ConstantAsMetadata::get(CGF->Builder.getInt32(AddrSpc))); 1610 1611 // Get argument type name. 1612 ty = isPipe ? ty->castAs<PipeType>()->getElementType() : ty; 1613 std::string typeName = getTypeSpelling(ty); 1614 std::string baseTypeName = getTypeSpelling(ty.getCanonicalType()); 1615 1616 // Remove access qualifiers on images 1617 // (as they are inseparable from type in clang implementation, 1618 // but OpenCL spec provides a special query to get access qualifier 1619 // via clGetKernelArgInfo with CL_KERNEL_ARG_ACCESS_QUALIFIER): 1620 if (ty->isImageType()) { 1621 removeImageAccessQualifier(typeName); 1622 removeImageAccessQualifier(baseTypeName); 1623 } 1624 1625 argTypeNames.push_back(llvm::MDString::get(VMContext, typeName)); 1626 argBaseTypeNames.push_back( 1627 llvm::MDString::get(VMContext, baseTypeName)); 1628 1629 if (isPipe) 1630 typeQuals = "pipe"; 1631 } 1632 argTypeQuals.push_back(llvm::MDString::get(VMContext, typeQuals)); 1633 } 1634 1635 Fn->setMetadata("kernel_arg_addr_space", 1636 llvm::MDNode::get(VMContext, addressQuals)); 1637 Fn->setMetadata("kernel_arg_access_qual", 1638 llvm::MDNode::get(VMContext, accessQuals)); 1639 Fn->setMetadata("kernel_arg_type", 1640 llvm::MDNode::get(VMContext, argTypeNames)); 1641 Fn->setMetadata("kernel_arg_base_type", 1642 llvm::MDNode::get(VMContext, argBaseTypeNames)); 1643 Fn->setMetadata("kernel_arg_type_qual", 1644 llvm::MDNode::get(VMContext, argTypeQuals)); 1645 if (getCodeGenOpts().EmitOpenCLArgMetadata) 1646 Fn->setMetadata("kernel_arg_name", 1647 llvm::MDNode::get(VMContext, argNames)); 1648 } 1649 1650 /// Determines whether the language options require us to model 1651 /// unwind exceptions. We treat -fexceptions as mandating this 1652 /// except under the fragile ObjC ABI with only ObjC exceptions 1653 /// enabled. This means, for example, that C with -fexceptions 1654 /// enables this. 1655 static bool hasUnwindExceptions(const LangOptions &LangOpts) { 1656 // If exceptions are completely disabled, obviously this is false. 1657 if (!LangOpts.Exceptions) return false; 1658 1659 // If C++ exceptions are enabled, this is true. 1660 if (LangOpts.CXXExceptions) return true; 1661 1662 // If ObjC exceptions are enabled, this depends on the ABI. 1663 if (LangOpts.ObjCExceptions) { 1664 return LangOpts.ObjCRuntime.hasUnwindExceptions(); 1665 } 1666 1667 return true; 1668 } 1669 1670 static bool requiresMemberFunctionPointerTypeMetadata(CodeGenModule &CGM, 1671 const CXXMethodDecl *MD) { 1672 // Check that the type metadata can ever actually be used by a call. 1673 if (!CGM.getCodeGenOpts().LTOUnit || 1674 !CGM.HasHiddenLTOVisibility(MD->getParent())) 1675 return false; 1676 1677 // Only functions whose address can be taken with a member function pointer 1678 // need this sort of type metadata. 1679 return !MD->isStatic() && !MD->isVirtual() && !isa<CXXConstructorDecl>(MD) && 1680 !isa<CXXDestructorDecl>(MD); 1681 } 1682 1683 std::vector<const CXXRecordDecl *> 1684 CodeGenModule::getMostBaseClasses(const CXXRecordDecl *RD) { 1685 llvm::SetVector<const CXXRecordDecl *> MostBases; 1686 1687 std::function<void (const CXXRecordDecl *)> CollectMostBases; 1688 CollectMostBases = [&](const CXXRecordDecl *RD) { 1689 if (RD->getNumBases() == 0) 1690 MostBases.insert(RD); 1691 for (const CXXBaseSpecifier &B : RD->bases()) 1692 CollectMostBases(B.getType()->getAsCXXRecordDecl()); 1693 }; 1694 CollectMostBases(RD); 1695 return MostBases.takeVector(); 1696 } 1697 1698 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D, 1699 llvm::Function *F) { 1700 llvm::AttrBuilder B; 1701 1702 if (CodeGenOpts.UnwindTables) 1703 B.addAttribute(llvm::Attribute::UWTable); 1704 1705 if (CodeGenOpts.StackClashProtector) 1706 B.addAttribute("probe-stack", "inline-asm"); 1707 1708 if (!hasUnwindExceptions(LangOpts)) 1709 B.addAttribute(llvm::Attribute::NoUnwind); 1710 1711 if (!D || !D->hasAttr<NoStackProtectorAttr>()) { 1712 if (LangOpts.getStackProtector() == LangOptions::SSPOn) 1713 B.addAttribute(llvm::Attribute::StackProtect); 1714 else if (LangOpts.getStackProtector() == LangOptions::SSPStrong) 1715 B.addAttribute(llvm::Attribute::StackProtectStrong); 1716 else if (LangOpts.getStackProtector() == LangOptions::SSPReq) 1717 B.addAttribute(llvm::Attribute::StackProtectReq); 1718 } 1719 1720 if (!D) { 1721 // If we don't have a declaration to control inlining, the function isn't 1722 // explicitly marked as alwaysinline for semantic reasons, and inlining is 1723 // disabled, mark the function as noinline. 1724 if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline) && 1725 CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining) 1726 B.addAttribute(llvm::Attribute::NoInline); 1727 1728 F->addAttributes(llvm::AttributeList::FunctionIndex, B); 1729 return; 1730 } 1731 1732 // Track whether we need to add the optnone LLVM attribute, 1733 // starting with the default for this optimization level. 1734 bool ShouldAddOptNone = 1735 !CodeGenOpts.DisableO0ImplyOptNone && CodeGenOpts.OptimizationLevel == 0; 1736 // We can't add optnone in the following cases, it won't pass the verifier. 1737 ShouldAddOptNone &= !D->hasAttr<MinSizeAttr>(); 1738 ShouldAddOptNone &= !D->hasAttr<AlwaysInlineAttr>(); 1739 1740 // Add optnone, but do so only if the function isn't always_inline. 1741 if ((ShouldAddOptNone || D->hasAttr<OptimizeNoneAttr>()) && 1742 !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) { 1743 B.addAttribute(llvm::Attribute::OptimizeNone); 1744 1745 // OptimizeNone implies noinline; we should not be inlining such functions. 1746 B.addAttribute(llvm::Attribute::NoInline); 1747 1748 // We still need to handle naked functions even though optnone subsumes 1749 // much of their semantics. 1750 if (D->hasAttr<NakedAttr>()) 1751 B.addAttribute(llvm::Attribute::Naked); 1752 1753 // OptimizeNone wins over OptimizeForSize and MinSize. 1754 F->removeFnAttr(llvm::Attribute::OptimizeForSize); 1755 F->removeFnAttr(llvm::Attribute::MinSize); 1756 } else if (D->hasAttr<NakedAttr>()) { 1757 // Naked implies noinline: we should not be inlining such functions. 1758 B.addAttribute(llvm::Attribute::Naked); 1759 B.addAttribute(llvm::Attribute::NoInline); 1760 } else if (D->hasAttr<NoDuplicateAttr>()) { 1761 B.addAttribute(llvm::Attribute::NoDuplicate); 1762 } else if (D->hasAttr<NoInlineAttr>() && !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) { 1763 // Add noinline if the function isn't always_inline. 1764 B.addAttribute(llvm::Attribute::NoInline); 1765 } else if (D->hasAttr<AlwaysInlineAttr>() && 1766 !F->hasFnAttribute(llvm::Attribute::NoInline)) { 1767 // (noinline wins over always_inline, and we can't specify both in IR) 1768 B.addAttribute(llvm::Attribute::AlwaysInline); 1769 } else if (CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining) { 1770 // If we're not inlining, then force everything that isn't always_inline to 1771 // carry an explicit noinline attribute. 1772 if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline)) 1773 B.addAttribute(llvm::Attribute::NoInline); 1774 } else { 1775 // Otherwise, propagate the inline hint attribute and potentially use its 1776 // absence to mark things as noinline. 1777 if (auto *FD = dyn_cast<FunctionDecl>(D)) { 1778 // Search function and template pattern redeclarations for inline. 1779 auto CheckForInline = [](const FunctionDecl *FD) { 1780 auto CheckRedeclForInline = [](const FunctionDecl *Redecl) { 1781 return Redecl->isInlineSpecified(); 1782 }; 1783 if (any_of(FD->redecls(), CheckRedeclForInline)) 1784 return true; 1785 const FunctionDecl *Pattern = FD->getTemplateInstantiationPattern(); 1786 if (!Pattern) 1787 return false; 1788 return any_of(Pattern->redecls(), CheckRedeclForInline); 1789 }; 1790 if (CheckForInline(FD)) { 1791 B.addAttribute(llvm::Attribute::InlineHint); 1792 } else if (CodeGenOpts.getInlining() == 1793 CodeGenOptions::OnlyHintInlining && 1794 !FD->isInlined() && 1795 !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) { 1796 B.addAttribute(llvm::Attribute::NoInline); 1797 } 1798 } 1799 } 1800 1801 // Add other optimization related attributes if we are optimizing this 1802 // function. 1803 if (!D->hasAttr<OptimizeNoneAttr>()) { 1804 if (D->hasAttr<ColdAttr>()) { 1805 if (!ShouldAddOptNone) 1806 B.addAttribute(llvm::Attribute::OptimizeForSize); 1807 B.addAttribute(llvm::Attribute::Cold); 1808 } 1809 if (D->hasAttr<HotAttr>()) 1810 B.addAttribute(llvm::Attribute::Hot); 1811 if (D->hasAttr<MinSizeAttr>()) 1812 B.addAttribute(llvm::Attribute::MinSize); 1813 } 1814 1815 F->addAttributes(llvm::AttributeList::FunctionIndex, B); 1816 1817 unsigned alignment = D->getMaxAlignment() / Context.getCharWidth(); 1818 if (alignment) 1819 F->setAlignment(llvm::Align(alignment)); 1820 1821 if (!D->hasAttr<AlignedAttr>()) 1822 if (LangOpts.FunctionAlignment) 1823 F->setAlignment(llvm::Align(1ull << LangOpts.FunctionAlignment)); 1824 1825 // Some C++ ABIs require 2-byte alignment for member functions, in order to 1826 // reserve a bit for differentiating between virtual and non-virtual member 1827 // functions. If the current target's C++ ABI requires this and this is a 1828 // member function, set its alignment accordingly. 1829 if (getTarget().getCXXABI().areMemberFunctionsAligned()) { 1830 if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D)) 1831 F->setAlignment(llvm::Align(2)); 1832 } 1833 1834 // In the cross-dso CFI mode with canonical jump tables, we want !type 1835 // attributes on definitions only. 1836 if (CodeGenOpts.SanitizeCfiCrossDso && 1837 CodeGenOpts.SanitizeCfiCanonicalJumpTables) { 1838 if (auto *FD = dyn_cast<FunctionDecl>(D)) { 1839 // Skip available_externally functions. They won't be codegen'ed in the 1840 // current module anyway. 1841 if (getContext().GetGVALinkageForFunction(FD) != GVA_AvailableExternally) 1842 CreateFunctionTypeMetadataForIcall(FD, F); 1843 } 1844 } 1845 1846 // Emit type metadata on member functions for member function pointer checks. 1847 // These are only ever necessary on definitions; we're guaranteed that the 1848 // definition will be present in the LTO unit as a result of LTO visibility. 1849 auto *MD = dyn_cast<CXXMethodDecl>(D); 1850 if (MD && requiresMemberFunctionPointerTypeMetadata(*this, MD)) { 1851 for (const CXXRecordDecl *Base : getMostBaseClasses(MD->getParent())) { 1852 llvm::Metadata *Id = 1853 CreateMetadataIdentifierForType(Context.getMemberPointerType( 1854 MD->getType(), Context.getRecordType(Base).getTypePtr())); 1855 F->addTypeMetadata(0, Id); 1856 } 1857 } 1858 } 1859 1860 void CodeGenModule::setLLVMFunctionFEnvAttributes(const FunctionDecl *D, 1861 llvm::Function *F) { 1862 if (D->hasAttr<StrictFPAttr>()) { 1863 llvm::AttrBuilder FuncAttrs; 1864 FuncAttrs.addAttribute("strictfp"); 1865 F->addAttributes(llvm::AttributeList::FunctionIndex, FuncAttrs); 1866 } 1867 } 1868 1869 void CodeGenModule::SetCommonAttributes(GlobalDecl GD, llvm::GlobalValue *GV) { 1870 const Decl *D = GD.getDecl(); 1871 if (dyn_cast_or_null<NamedDecl>(D)) 1872 setGVProperties(GV, GD); 1873 else 1874 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 1875 1876 if (D && D->hasAttr<UsedAttr>()) 1877 addUsedOrCompilerUsedGlobal(GV); 1878 1879 if (CodeGenOpts.KeepStaticConsts && D && isa<VarDecl>(D)) { 1880 const auto *VD = cast<VarDecl>(D); 1881 if (VD->getType().isConstQualified() && 1882 VD->getStorageDuration() == SD_Static) 1883 addUsedOrCompilerUsedGlobal(GV); 1884 } 1885 } 1886 1887 bool CodeGenModule::GetCPUAndFeaturesAttributes(GlobalDecl GD, 1888 llvm::AttrBuilder &Attrs) { 1889 // Add target-cpu and target-features attributes to functions. If 1890 // we have a decl for the function and it has a target attribute then 1891 // parse that and add it to the feature set. 1892 StringRef TargetCPU = getTarget().getTargetOpts().CPU; 1893 StringRef TuneCPU = getTarget().getTargetOpts().TuneCPU; 1894 std::vector<std::string> Features; 1895 const auto *FD = dyn_cast_or_null<FunctionDecl>(GD.getDecl()); 1896 FD = FD ? FD->getMostRecentDecl() : FD; 1897 const auto *TD = FD ? FD->getAttr<TargetAttr>() : nullptr; 1898 const auto *SD = FD ? FD->getAttr<CPUSpecificAttr>() : nullptr; 1899 bool AddedAttr = false; 1900 if (TD || SD) { 1901 llvm::StringMap<bool> FeatureMap; 1902 getContext().getFunctionFeatureMap(FeatureMap, GD); 1903 1904 // Produce the canonical string for this set of features. 1905 for (const llvm::StringMap<bool>::value_type &Entry : FeatureMap) 1906 Features.push_back((Entry.getValue() ? "+" : "-") + Entry.getKey().str()); 1907 1908 // Now add the target-cpu and target-features to the function. 1909 // While we populated the feature map above, we still need to 1910 // get and parse the target attribute so we can get the cpu for 1911 // the function. 1912 if (TD) { 1913 ParsedTargetAttr ParsedAttr = TD->parse(); 1914 if (!ParsedAttr.Architecture.empty() && 1915 getTarget().isValidCPUName(ParsedAttr.Architecture)) { 1916 TargetCPU = ParsedAttr.Architecture; 1917 TuneCPU = ""; // Clear the tune CPU. 1918 } 1919 if (!ParsedAttr.Tune.empty() && 1920 getTarget().isValidCPUName(ParsedAttr.Tune)) 1921 TuneCPU = ParsedAttr.Tune; 1922 } 1923 } else { 1924 // Otherwise just add the existing target cpu and target features to the 1925 // function. 1926 Features = getTarget().getTargetOpts().Features; 1927 } 1928 1929 if (!TargetCPU.empty()) { 1930 Attrs.addAttribute("target-cpu", TargetCPU); 1931 AddedAttr = true; 1932 } 1933 if (!TuneCPU.empty()) { 1934 Attrs.addAttribute("tune-cpu", TuneCPU); 1935 AddedAttr = true; 1936 } 1937 if (!Features.empty()) { 1938 llvm::sort(Features); 1939 Attrs.addAttribute("target-features", llvm::join(Features, ",")); 1940 AddedAttr = true; 1941 } 1942 1943 return AddedAttr; 1944 } 1945 1946 void CodeGenModule::setNonAliasAttributes(GlobalDecl GD, 1947 llvm::GlobalObject *GO) { 1948 const Decl *D = GD.getDecl(); 1949 SetCommonAttributes(GD, GO); 1950 1951 if (D) { 1952 if (auto *GV = dyn_cast<llvm::GlobalVariable>(GO)) { 1953 if (D->hasAttr<RetainAttr>()) 1954 addUsedGlobal(GV); 1955 if (auto *SA = D->getAttr<PragmaClangBSSSectionAttr>()) 1956 GV->addAttribute("bss-section", SA->getName()); 1957 if (auto *SA = D->getAttr<PragmaClangDataSectionAttr>()) 1958 GV->addAttribute("data-section", SA->getName()); 1959 if (auto *SA = D->getAttr<PragmaClangRodataSectionAttr>()) 1960 GV->addAttribute("rodata-section", SA->getName()); 1961 if (auto *SA = D->getAttr<PragmaClangRelroSectionAttr>()) 1962 GV->addAttribute("relro-section", SA->getName()); 1963 } 1964 1965 if (auto *F = dyn_cast<llvm::Function>(GO)) { 1966 if (D->hasAttr<RetainAttr>()) 1967 addUsedGlobal(F); 1968 if (auto *SA = D->getAttr<PragmaClangTextSectionAttr>()) 1969 if (!D->getAttr<SectionAttr>()) 1970 F->addFnAttr("implicit-section-name", SA->getName()); 1971 1972 llvm::AttrBuilder Attrs; 1973 if (GetCPUAndFeaturesAttributes(GD, Attrs)) { 1974 // We know that GetCPUAndFeaturesAttributes will always have the 1975 // newest set, since it has the newest possible FunctionDecl, so the 1976 // new ones should replace the old. 1977 llvm::AttrBuilder RemoveAttrs; 1978 RemoveAttrs.addAttribute("target-cpu"); 1979 RemoveAttrs.addAttribute("target-features"); 1980 RemoveAttrs.addAttribute("tune-cpu"); 1981 F->removeAttributes(llvm::AttributeList::FunctionIndex, RemoveAttrs); 1982 F->addAttributes(llvm::AttributeList::FunctionIndex, Attrs); 1983 } 1984 } 1985 1986 if (const auto *CSA = D->getAttr<CodeSegAttr>()) 1987 GO->setSection(CSA->getName()); 1988 else if (const auto *SA = D->getAttr<SectionAttr>()) 1989 GO->setSection(SA->getName()); 1990 } 1991 1992 getTargetCodeGenInfo().setTargetAttributes(D, GO, *this); 1993 } 1994 1995 void CodeGenModule::SetInternalFunctionAttributes(GlobalDecl GD, 1996 llvm::Function *F, 1997 const CGFunctionInfo &FI) { 1998 const Decl *D = GD.getDecl(); 1999 SetLLVMFunctionAttributes(GD, FI, F); 2000 SetLLVMFunctionAttributesForDefinition(D, F); 2001 2002 F->setLinkage(llvm::Function::InternalLinkage); 2003 2004 setNonAliasAttributes(GD, F); 2005 } 2006 2007 static void setLinkageForGV(llvm::GlobalValue *GV, const NamedDecl *ND) { 2008 // Set linkage and visibility in case we never see a definition. 2009 LinkageInfo LV = ND->getLinkageAndVisibility(); 2010 // Don't set internal linkage on declarations. 2011 // "extern_weak" is overloaded in LLVM; we probably should have 2012 // separate linkage types for this. 2013 if (isExternallyVisible(LV.getLinkage()) && 2014 (ND->hasAttr<WeakAttr>() || ND->isWeakImported())) 2015 GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage); 2016 } 2017 2018 void CodeGenModule::CreateFunctionTypeMetadataForIcall(const FunctionDecl *FD, 2019 llvm::Function *F) { 2020 // Only if we are checking indirect calls. 2021 if (!LangOpts.Sanitize.has(SanitizerKind::CFIICall)) 2022 return; 2023 2024 // Non-static class methods are handled via vtable or member function pointer 2025 // checks elsewhere. 2026 if (isa<CXXMethodDecl>(FD) && !cast<CXXMethodDecl>(FD)->isStatic()) 2027 return; 2028 2029 llvm::Metadata *MD = CreateMetadataIdentifierForType(FD->getType()); 2030 F->addTypeMetadata(0, MD); 2031 F->addTypeMetadata(0, CreateMetadataIdentifierGeneralized(FD->getType())); 2032 2033 // Emit a hash-based bit set entry for cross-DSO calls. 2034 if (CodeGenOpts.SanitizeCfiCrossDso) 2035 if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD)) 2036 F->addTypeMetadata(0, llvm::ConstantAsMetadata::get(CrossDsoTypeId)); 2037 } 2038 2039 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD, llvm::Function *F, 2040 bool IsIncompleteFunction, 2041 bool IsThunk) { 2042 2043 if (llvm::Intrinsic::ID IID = F->getIntrinsicID()) { 2044 // If this is an intrinsic function, set the function's attributes 2045 // to the intrinsic's attributes. 2046 F->setAttributes(llvm::Intrinsic::getAttributes(getLLVMContext(), IID)); 2047 return; 2048 } 2049 2050 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 2051 2052 if (!IsIncompleteFunction) 2053 SetLLVMFunctionAttributes(GD, getTypes().arrangeGlobalDeclaration(GD), F); 2054 2055 // Add the Returned attribute for "this", except for iOS 5 and earlier 2056 // where substantial code, including the libstdc++ dylib, was compiled with 2057 // GCC and does not actually return "this". 2058 if (!IsThunk && getCXXABI().HasThisReturn(GD) && 2059 !(getTriple().isiOS() && getTriple().isOSVersionLT(6))) { 2060 assert(!F->arg_empty() && 2061 F->arg_begin()->getType() 2062 ->canLosslesslyBitCastTo(F->getReturnType()) && 2063 "unexpected this return"); 2064 F->addAttribute(1, llvm::Attribute::Returned); 2065 } 2066 2067 // Only a few attributes are set on declarations; these may later be 2068 // overridden by a definition. 2069 2070 setLinkageForGV(F, FD); 2071 setGVProperties(F, FD); 2072 2073 // Setup target-specific attributes. 2074 if (!IsIncompleteFunction && F->isDeclaration()) 2075 getTargetCodeGenInfo().setTargetAttributes(FD, F, *this); 2076 2077 if (const auto *CSA = FD->getAttr<CodeSegAttr>()) 2078 F->setSection(CSA->getName()); 2079 else if (const auto *SA = FD->getAttr<SectionAttr>()) 2080 F->setSection(SA->getName()); 2081 2082 // If we plan on emitting this inline builtin, we can't treat it as a builtin. 2083 if (FD->isInlineBuiltinDeclaration()) { 2084 const FunctionDecl *FDBody; 2085 bool HasBody = FD->hasBody(FDBody); 2086 (void)HasBody; 2087 assert(HasBody && "Inline builtin declarations should always have an " 2088 "available body!"); 2089 if (shouldEmitFunction(FDBody)) 2090 F->addAttribute(llvm::AttributeList::FunctionIndex, 2091 llvm::Attribute::NoBuiltin); 2092 } 2093 2094 if (FD->isReplaceableGlobalAllocationFunction()) { 2095 // A replaceable global allocation function does not act like a builtin by 2096 // default, only if it is invoked by a new-expression or delete-expression. 2097 F->addAttribute(llvm::AttributeList::FunctionIndex, 2098 llvm::Attribute::NoBuiltin); 2099 } 2100 2101 if (isa<CXXConstructorDecl>(FD) || isa<CXXDestructorDecl>(FD)) 2102 F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 2103 else if (const auto *MD = dyn_cast<CXXMethodDecl>(FD)) 2104 if (MD->isVirtual()) 2105 F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 2106 2107 // Don't emit entries for function declarations in the cross-DSO mode. This 2108 // is handled with better precision by the receiving DSO. But if jump tables 2109 // are non-canonical then we need type metadata in order to produce the local 2110 // jump table. 2111 if (!CodeGenOpts.SanitizeCfiCrossDso || 2112 !CodeGenOpts.SanitizeCfiCanonicalJumpTables) 2113 CreateFunctionTypeMetadataForIcall(FD, F); 2114 2115 if (getLangOpts().OpenMP && FD->hasAttr<OMPDeclareSimdDeclAttr>()) 2116 getOpenMPRuntime().emitDeclareSimdFunction(FD, F); 2117 2118 if (const auto *CB = FD->getAttr<CallbackAttr>()) { 2119 // Annotate the callback behavior as metadata: 2120 // - The callback callee (as argument number). 2121 // - The callback payloads (as argument numbers). 2122 llvm::LLVMContext &Ctx = F->getContext(); 2123 llvm::MDBuilder MDB(Ctx); 2124 2125 // The payload indices are all but the first one in the encoding. The first 2126 // identifies the callback callee. 2127 int CalleeIdx = *CB->encoding_begin(); 2128 ArrayRef<int> PayloadIndices(CB->encoding_begin() + 1, CB->encoding_end()); 2129 F->addMetadata(llvm::LLVMContext::MD_callback, 2130 *llvm::MDNode::get(Ctx, {MDB.createCallbackEncoding( 2131 CalleeIdx, PayloadIndices, 2132 /* VarArgsArePassed */ false)})); 2133 } 2134 } 2135 2136 void CodeGenModule::addUsedGlobal(llvm::GlobalValue *GV) { 2137 assert((isa<llvm::Function>(GV) || !GV->isDeclaration()) && 2138 "Only globals with definition can force usage."); 2139 LLVMUsed.emplace_back(GV); 2140 } 2141 2142 void CodeGenModule::addCompilerUsedGlobal(llvm::GlobalValue *GV) { 2143 assert(!GV->isDeclaration() && 2144 "Only globals with definition can force usage."); 2145 LLVMCompilerUsed.emplace_back(GV); 2146 } 2147 2148 void CodeGenModule::addUsedOrCompilerUsedGlobal(llvm::GlobalValue *GV) { 2149 assert((isa<llvm::Function>(GV) || !GV->isDeclaration()) && 2150 "Only globals with definition can force usage."); 2151 if (getTriple().isOSBinFormatELF()) 2152 LLVMCompilerUsed.emplace_back(GV); 2153 else 2154 LLVMUsed.emplace_back(GV); 2155 } 2156 2157 static void emitUsed(CodeGenModule &CGM, StringRef Name, 2158 std::vector<llvm::WeakTrackingVH> &List) { 2159 // Don't create llvm.used if there is no need. 2160 if (List.empty()) 2161 return; 2162 2163 // Convert List to what ConstantArray needs. 2164 SmallVector<llvm::Constant*, 8> UsedArray; 2165 UsedArray.resize(List.size()); 2166 for (unsigned i = 0, e = List.size(); i != e; ++i) { 2167 UsedArray[i] = 2168 llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast( 2169 cast<llvm::Constant>(&*List[i]), CGM.Int8PtrTy); 2170 } 2171 2172 if (UsedArray.empty()) 2173 return; 2174 llvm::ArrayType *ATy = llvm::ArrayType::get(CGM.Int8PtrTy, UsedArray.size()); 2175 2176 auto *GV = new llvm::GlobalVariable( 2177 CGM.getModule(), ATy, false, llvm::GlobalValue::AppendingLinkage, 2178 llvm::ConstantArray::get(ATy, UsedArray), Name); 2179 2180 GV->setSection("llvm.metadata"); 2181 } 2182 2183 void CodeGenModule::emitLLVMUsed() { 2184 emitUsed(*this, "llvm.used", LLVMUsed); 2185 emitUsed(*this, "llvm.compiler.used", LLVMCompilerUsed); 2186 } 2187 2188 void CodeGenModule::AppendLinkerOptions(StringRef Opts) { 2189 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opts); 2190 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 2191 } 2192 2193 void CodeGenModule::AddDetectMismatch(StringRef Name, StringRef Value) { 2194 llvm::SmallString<32> Opt; 2195 getTargetCodeGenInfo().getDetectMismatchOption(Name, Value, Opt); 2196 if (Opt.empty()) 2197 return; 2198 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt); 2199 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 2200 } 2201 2202 void CodeGenModule::AddDependentLib(StringRef Lib) { 2203 auto &C = getLLVMContext(); 2204 if (getTarget().getTriple().isOSBinFormatELF()) { 2205 ELFDependentLibraries.push_back( 2206 llvm::MDNode::get(C, llvm::MDString::get(C, Lib))); 2207 return; 2208 } 2209 2210 llvm::SmallString<24> Opt; 2211 getTargetCodeGenInfo().getDependentLibraryOption(Lib, Opt); 2212 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt); 2213 LinkerOptionsMetadata.push_back(llvm::MDNode::get(C, MDOpts)); 2214 } 2215 2216 /// Add link options implied by the given module, including modules 2217 /// it depends on, using a postorder walk. 2218 static void addLinkOptionsPostorder(CodeGenModule &CGM, Module *Mod, 2219 SmallVectorImpl<llvm::MDNode *> &Metadata, 2220 llvm::SmallPtrSet<Module *, 16> &Visited) { 2221 // Import this module's parent. 2222 if (Mod->Parent && Visited.insert(Mod->Parent).second) { 2223 addLinkOptionsPostorder(CGM, Mod->Parent, Metadata, Visited); 2224 } 2225 2226 // Import this module's dependencies. 2227 for (unsigned I = Mod->Imports.size(); I > 0; --I) { 2228 if (Visited.insert(Mod->Imports[I - 1]).second) 2229 addLinkOptionsPostorder(CGM, Mod->Imports[I-1], Metadata, Visited); 2230 } 2231 2232 // Add linker options to link against the libraries/frameworks 2233 // described by this module. 2234 llvm::LLVMContext &Context = CGM.getLLVMContext(); 2235 bool IsELF = CGM.getTarget().getTriple().isOSBinFormatELF(); 2236 2237 // For modules that use export_as for linking, use that module 2238 // name instead. 2239 if (Mod->UseExportAsModuleLinkName) 2240 return; 2241 2242 for (unsigned I = Mod->LinkLibraries.size(); I > 0; --I) { 2243 // Link against a framework. Frameworks are currently Darwin only, so we 2244 // don't to ask TargetCodeGenInfo for the spelling of the linker option. 2245 if (Mod->LinkLibraries[I-1].IsFramework) { 2246 llvm::Metadata *Args[2] = { 2247 llvm::MDString::get(Context, "-framework"), 2248 llvm::MDString::get(Context, Mod->LinkLibraries[I - 1].Library)}; 2249 2250 Metadata.push_back(llvm::MDNode::get(Context, Args)); 2251 continue; 2252 } 2253 2254 // Link against a library. 2255 if (IsELF) { 2256 llvm::Metadata *Args[2] = { 2257 llvm::MDString::get(Context, "lib"), 2258 llvm::MDString::get(Context, Mod->LinkLibraries[I - 1].Library), 2259 }; 2260 Metadata.push_back(llvm::MDNode::get(Context, Args)); 2261 } else { 2262 llvm::SmallString<24> Opt; 2263 CGM.getTargetCodeGenInfo().getDependentLibraryOption( 2264 Mod->LinkLibraries[I - 1].Library, Opt); 2265 auto *OptString = llvm::MDString::get(Context, Opt); 2266 Metadata.push_back(llvm::MDNode::get(Context, OptString)); 2267 } 2268 } 2269 } 2270 2271 void CodeGenModule::EmitModuleLinkOptions() { 2272 // Collect the set of all of the modules we want to visit to emit link 2273 // options, which is essentially the imported modules and all of their 2274 // non-explicit child modules. 2275 llvm::SetVector<clang::Module *> LinkModules; 2276 llvm::SmallPtrSet<clang::Module *, 16> Visited; 2277 SmallVector<clang::Module *, 16> Stack; 2278 2279 // Seed the stack with imported modules. 2280 for (Module *M : ImportedModules) { 2281 // Do not add any link flags when an implementation TU of a module imports 2282 // a header of that same module. 2283 if (M->getTopLevelModuleName() == getLangOpts().CurrentModule && 2284 !getLangOpts().isCompilingModule()) 2285 continue; 2286 if (Visited.insert(M).second) 2287 Stack.push_back(M); 2288 } 2289 2290 // Find all of the modules to import, making a little effort to prune 2291 // non-leaf modules. 2292 while (!Stack.empty()) { 2293 clang::Module *Mod = Stack.pop_back_val(); 2294 2295 bool AnyChildren = false; 2296 2297 // Visit the submodules of this module. 2298 for (const auto &SM : Mod->submodules()) { 2299 // Skip explicit children; they need to be explicitly imported to be 2300 // linked against. 2301 if (SM->IsExplicit) 2302 continue; 2303 2304 if (Visited.insert(SM).second) { 2305 Stack.push_back(SM); 2306 AnyChildren = true; 2307 } 2308 } 2309 2310 // We didn't find any children, so add this module to the list of 2311 // modules to link against. 2312 if (!AnyChildren) { 2313 LinkModules.insert(Mod); 2314 } 2315 } 2316 2317 // Add link options for all of the imported modules in reverse topological 2318 // order. We don't do anything to try to order import link flags with respect 2319 // to linker options inserted by things like #pragma comment(). 2320 SmallVector<llvm::MDNode *, 16> MetadataArgs; 2321 Visited.clear(); 2322 for (Module *M : LinkModules) 2323 if (Visited.insert(M).second) 2324 addLinkOptionsPostorder(*this, M, MetadataArgs, Visited); 2325 std::reverse(MetadataArgs.begin(), MetadataArgs.end()); 2326 LinkerOptionsMetadata.append(MetadataArgs.begin(), MetadataArgs.end()); 2327 2328 // Add the linker options metadata flag. 2329 auto *NMD = getModule().getOrInsertNamedMetadata("llvm.linker.options"); 2330 for (auto *MD : LinkerOptionsMetadata) 2331 NMD->addOperand(MD); 2332 } 2333 2334 void CodeGenModule::EmitDeferred() { 2335 // Emit deferred declare target declarations. 2336 if (getLangOpts().OpenMP && !getLangOpts().OpenMPSimd) 2337 getOpenMPRuntime().emitDeferredTargetDecls(); 2338 2339 // Emit code for any potentially referenced deferred decls. Since a 2340 // previously unused static decl may become used during the generation of code 2341 // for a static function, iterate until no changes are made. 2342 2343 if (!DeferredVTables.empty()) { 2344 EmitDeferredVTables(); 2345 2346 // Emitting a vtable doesn't directly cause more vtables to 2347 // become deferred, although it can cause functions to be 2348 // emitted that then need those vtables. 2349 assert(DeferredVTables.empty()); 2350 } 2351 2352 // Emit CUDA/HIP static device variables referenced by host code only. 2353 if (getLangOpts().CUDA) 2354 for (auto V : getContext().CUDAStaticDeviceVarReferencedByHost) 2355 DeferredDeclsToEmit.push_back(V); 2356 2357 // Stop if we're out of both deferred vtables and deferred declarations. 2358 if (DeferredDeclsToEmit.empty()) 2359 return; 2360 2361 // Grab the list of decls to emit. If EmitGlobalDefinition schedules more 2362 // work, it will not interfere with this. 2363 std::vector<GlobalDecl> CurDeclsToEmit; 2364 CurDeclsToEmit.swap(DeferredDeclsToEmit); 2365 2366 for (GlobalDecl &D : CurDeclsToEmit) { 2367 // We should call GetAddrOfGlobal with IsForDefinition set to true in order 2368 // to get GlobalValue with exactly the type we need, not something that 2369 // might had been created for another decl with the same mangled name but 2370 // different type. 2371 llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>( 2372 GetAddrOfGlobal(D, ForDefinition)); 2373 2374 // In case of different address spaces, we may still get a cast, even with 2375 // IsForDefinition equal to true. Query mangled names table to get 2376 // GlobalValue. 2377 if (!GV) 2378 GV = GetGlobalValue(getMangledName(D)); 2379 2380 // Make sure GetGlobalValue returned non-null. 2381 assert(GV); 2382 2383 // Check to see if we've already emitted this. This is necessary 2384 // for a couple of reasons: first, decls can end up in the 2385 // deferred-decls queue multiple times, and second, decls can end 2386 // up with definitions in unusual ways (e.g. by an extern inline 2387 // function acquiring a strong function redefinition). Just 2388 // ignore these cases. 2389 if (!GV->isDeclaration()) 2390 continue; 2391 2392 // If this is OpenMP, check if it is legal to emit this global normally. 2393 if (LangOpts.OpenMP && OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(D)) 2394 continue; 2395 2396 // Otherwise, emit the definition and move on to the next one. 2397 EmitGlobalDefinition(D, GV); 2398 2399 // If we found out that we need to emit more decls, do that recursively. 2400 // This has the advantage that the decls are emitted in a DFS and related 2401 // ones are close together, which is convenient for testing. 2402 if (!DeferredVTables.empty() || !DeferredDeclsToEmit.empty()) { 2403 EmitDeferred(); 2404 assert(DeferredVTables.empty() && DeferredDeclsToEmit.empty()); 2405 } 2406 } 2407 } 2408 2409 void CodeGenModule::EmitVTablesOpportunistically() { 2410 // Try to emit external vtables as available_externally if they have emitted 2411 // all inlined virtual functions. It runs after EmitDeferred() and therefore 2412 // is not allowed to create new references to things that need to be emitted 2413 // lazily. Note that it also uses fact that we eagerly emitting RTTI. 2414 2415 assert((OpportunisticVTables.empty() || shouldOpportunisticallyEmitVTables()) 2416 && "Only emit opportunistic vtables with optimizations"); 2417 2418 for (const CXXRecordDecl *RD : OpportunisticVTables) { 2419 assert(getVTables().isVTableExternal(RD) && 2420 "This queue should only contain external vtables"); 2421 if (getCXXABI().canSpeculativelyEmitVTable(RD)) 2422 VTables.GenerateClassData(RD); 2423 } 2424 OpportunisticVTables.clear(); 2425 } 2426 2427 void CodeGenModule::EmitGlobalAnnotations() { 2428 if (Annotations.empty()) 2429 return; 2430 2431 // Create a new global variable for the ConstantStruct in the Module. 2432 llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get( 2433 Annotations[0]->getType(), Annotations.size()), Annotations); 2434 auto *gv = new llvm::GlobalVariable(getModule(), Array->getType(), false, 2435 llvm::GlobalValue::AppendingLinkage, 2436 Array, "llvm.global.annotations"); 2437 gv->setSection(AnnotationSection); 2438 } 2439 2440 llvm::Constant *CodeGenModule::EmitAnnotationString(StringRef Str) { 2441 llvm::Constant *&AStr = AnnotationStrings[Str]; 2442 if (AStr) 2443 return AStr; 2444 2445 // Not found yet, create a new global. 2446 llvm::Constant *s = llvm::ConstantDataArray::getString(getLLVMContext(), Str); 2447 auto *gv = 2448 new llvm::GlobalVariable(getModule(), s->getType(), true, 2449 llvm::GlobalValue::PrivateLinkage, s, ".str"); 2450 gv->setSection(AnnotationSection); 2451 gv->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 2452 AStr = gv; 2453 return gv; 2454 } 2455 2456 llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) { 2457 SourceManager &SM = getContext().getSourceManager(); 2458 PresumedLoc PLoc = SM.getPresumedLoc(Loc); 2459 if (PLoc.isValid()) 2460 return EmitAnnotationString(PLoc.getFilename()); 2461 return EmitAnnotationString(SM.getBufferName(Loc)); 2462 } 2463 2464 llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) { 2465 SourceManager &SM = getContext().getSourceManager(); 2466 PresumedLoc PLoc = SM.getPresumedLoc(L); 2467 unsigned LineNo = PLoc.isValid() ? PLoc.getLine() : 2468 SM.getExpansionLineNumber(L); 2469 return llvm::ConstantInt::get(Int32Ty, LineNo); 2470 } 2471 2472 llvm::Constant *CodeGenModule::EmitAnnotationArgs(const AnnotateAttr *Attr) { 2473 ArrayRef<Expr *> Exprs = {Attr->args_begin(), Attr->args_size()}; 2474 if (Exprs.empty()) 2475 return llvm::ConstantPointerNull::get(Int8PtrTy); 2476 2477 llvm::FoldingSetNodeID ID; 2478 for (Expr *E : Exprs) { 2479 ID.Add(cast<clang::ConstantExpr>(E)->getAPValueResult()); 2480 } 2481 llvm::Constant *&Lookup = AnnotationArgs[ID.ComputeHash()]; 2482 if (Lookup) 2483 return Lookup; 2484 2485 llvm::SmallVector<llvm::Constant *, 4> LLVMArgs; 2486 LLVMArgs.reserve(Exprs.size()); 2487 ConstantEmitter ConstEmiter(*this); 2488 llvm::transform(Exprs, std::back_inserter(LLVMArgs), [&](const Expr *E) { 2489 const auto *CE = cast<clang::ConstantExpr>(E); 2490 return ConstEmiter.emitAbstract(CE->getBeginLoc(), CE->getAPValueResult(), 2491 CE->getType()); 2492 }); 2493 auto *Struct = llvm::ConstantStruct::getAnon(LLVMArgs); 2494 auto *GV = new llvm::GlobalVariable(getModule(), Struct->getType(), true, 2495 llvm::GlobalValue::PrivateLinkage, Struct, 2496 ".args"); 2497 GV->setSection(AnnotationSection); 2498 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 2499 auto *Bitcasted = llvm::ConstantExpr::getBitCast(GV, Int8PtrTy); 2500 2501 Lookup = Bitcasted; 2502 return Bitcasted; 2503 } 2504 2505 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV, 2506 const AnnotateAttr *AA, 2507 SourceLocation L) { 2508 // Get the globals for file name, annotation, and the line number. 2509 llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()), 2510 *UnitGV = EmitAnnotationUnit(L), 2511 *LineNoCst = EmitAnnotationLineNo(L), 2512 *Args = EmitAnnotationArgs(AA); 2513 2514 llvm::Constant *ASZeroGV = GV; 2515 if (GV->getAddressSpace() != 0) { 2516 ASZeroGV = llvm::ConstantExpr::getAddrSpaceCast( 2517 GV, GV->getValueType()->getPointerTo(0)); 2518 } 2519 2520 // Create the ConstantStruct for the global annotation. 2521 llvm::Constant *Fields[] = { 2522 llvm::ConstantExpr::getBitCast(ASZeroGV, Int8PtrTy), 2523 llvm::ConstantExpr::getBitCast(AnnoGV, Int8PtrTy), 2524 llvm::ConstantExpr::getBitCast(UnitGV, Int8PtrTy), 2525 LineNoCst, 2526 Args, 2527 }; 2528 return llvm::ConstantStruct::getAnon(Fields); 2529 } 2530 2531 void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D, 2532 llvm::GlobalValue *GV) { 2533 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 2534 // Get the struct elements for these annotations. 2535 for (const auto *I : D->specific_attrs<AnnotateAttr>()) 2536 Annotations.push_back(EmitAnnotateAttr(GV, I, D->getLocation())); 2537 } 2538 2539 bool CodeGenModule::isInNoSanitizeList(SanitizerMask Kind, llvm::Function *Fn, 2540 SourceLocation Loc) const { 2541 const auto &NoSanitizeL = getContext().getNoSanitizeList(); 2542 // NoSanitize by function name. 2543 if (NoSanitizeL.containsFunction(Kind, Fn->getName())) 2544 return true; 2545 // NoSanitize by location. 2546 if (Loc.isValid()) 2547 return NoSanitizeL.containsLocation(Kind, Loc); 2548 // If location is unknown, this may be a compiler-generated function. Assume 2549 // it's located in the main file. 2550 auto &SM = Context.getSourceManager(); 2551 if (const auto *MainFile = SM.getFileEntryForID(SM.getMainFileID())) { 2552 return NoSanitizeL.containsFile(Kind, MainFile->getName()); 2553 } 2554 return false; 2555 } 2556 2557 bool CodeGenModule::isInNoSanitizeList(llvm::GlobalVariable *GV, 2558 SourceLocation Loc, QualType Ty, 2559 StringRef Category) const { 2560 // For now globals can be ignored only in ASan and KASan. 2561 const SanitizerMask EnabledAsanMask = 2562 LangOpts.Sanitize.Mask & 2563 (SanitizerKind::Address | SanitizerKind::KernelAddress | 2564 SanitizerKind::HWAddress | SanitizerKind::KernelHWAddress | 2565 SanitizerKind::MemTag); 2566 if (!EnabledAsanMask) 2567 return false; 2568 const auto &NoSanitizeL = getContext().getNoSanitizeList(); 2569 if (NoSanitizeL.containsGlobal(EnabledAsanMask, GV->getName(), Category)) 2570 return true; 2571 if (NoSanitizeL.containsLocation(EnabledAsanMask, Loc, Category)) 2572 return true; 2573 // Check global type. 2574 if (!Ty.isNull()) { 2575 // Drill down the array types: if global variable of a fixed type is 2576 // not sanitized, we also don't instrument arrays of them. 2577 while (auto AT = dyn_cast<ArrayType>(Ty.getTypePtr())) 2578 Ty = AT->getElementType(); 2579 Ty = Ty.getCanonicalType().getUnqualifiedType(); 2580 // Only record types (classes, structs etc.) are ignored. 2581 if (Ty->isRecordType()) { 2582 std::string TypeStr = Ty.getAsString(getContext().getPrintingPolicy()); 2583 if (NoSanitizeL.containsType(EnabledAsanMask, TypeStr, Category)) 2584 return true; 2585 } 2586 } 2587 return false; 2588 } 2589 2590 bool CodeGenModule::imbueXRayAttrs(llvm::Function *Fn, SourceLocation Loc, 2591 StringRef Category) const { 2592 const auto &XRayFilter = getContext().getXRayFilter(); 2593 using ImbueAttr = XRayFunctionFilter::ImbueAttribute; 2594 auto Attr = ImbueAttr::NONE; 2595 if (Loc.isValid()) 2596 Attr = XRayFilter.shouldImbueLocation(Loc, Category); 2597 if (Attr == ImbueAttr::NONE) 2598 Attr = XRayFilter.shouldImbueFunction(Fn->getName()); 2599 switch (Attr) { 2600 case ImbueAttr::NONE: 2601 return false; 2602 case ImbueAttr::ALWAYS: 2603 Fn->addFnAttr("function-instrument", "xray-always"); 2604 break; 2605 case ImbueAttr::ALWAYS_ARG1: 2606 Fn->addFnAttr("function-instrument", "xray-always"); 2607 Fn->addFnAttr("xray-log-args", "1"); 2608 break; 2609 case ImbueAttr::NEVER: 2610 Fn->addFnAttr("function-instrument", "xray-never"); 2611 break; 2612 } 2613 return true; 2614 } 2615 2616 bool CodeGenModule::isProfileInstrExcluded(llvm::Function *Fn, 2617 SourceLocation Loc) const { 2618 const auto &ProfileList = getContext().getProfileList(); 2619 // If the profile list is empty, then instrument everything. 2620 if (ProfileList.isEmpty()) 2621 return false; 2622 CodeGenOptions::ProfileInstrKind Kind = getCodeGenOpts().getProfileInstr(); 2623 // First, check the function name. 2624 Optional<bool> V = ProfileList.isFunctionExcluded(Fn->getName(), Kind); 2625 if (V.hasValue()) 2626 return *V; 2627 // Next, check the source location. 2628 if (Loc.isValid()) { 2629 Optional<bool> V = ProfileList.isLocationExcluded(Loc, Kind); 2630 if (V.hasValue()) 2631 return *V; 2632 } 2633 // If location is unknown, this may be a compiler-generated function. Assume 2634 // it's located in the main file. 2635 auto &SM = Context.getSourceManager(); 2636 if (const auto *MainFile = SM.getFileEntryForID(SM.getMainFileID())) { 2637 Optional<bool> V = ProfileList.isFileExcluded(MainFile->getName(), Kind); 2638 if (V.hasValue()) 2639 return *V; 2640 } 2641 return ProfileList.getDefault(); 2642 } 2643 2644 bool CodeGenModule::MustBeEmitted(const ValueDecl *Global) { 2645 // Never defer when EmitAllDecls is specified. 2646 if (LangOpts.EmitAllDecls) 2647 return true; 2648 2649 if (CodeGenOpts.KeepStaticConsts) { 2650 const auto *VD = dyn_cast<VarDecl>(Global); 2651 if (VD && VD->getType().isConstQualified() && 2652 VD->getStorageDuration() == SD_Static) 2653 return true; 2654 } 2655 2656 return getContext().DeclMustBeEmitted(Global); 2657 } 2658 2659 bool CodeGenModule::MayBeEmittedEagerly(const ValueDecl *Global) { 2660 if (const auto *FD = dyn_cast<FunctionDecl>(Global)) { 2661 if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation) 2662 // Implicit template instantiations may change linkage if they are later 2663 // explicitly instantiated, so they should not be emitted eagerly. 2664 return false; 2665 // In OpenMP 5.0 function may be marked as device_type(nohost) and we should 2666 // not emit them eagerly unless we sure that the function must be emitted on 2667 // the host. 2668 if (LangOpts.OpenMP >= 50 && !LangOpts.OpenMPSimd && 2669 !LangOpts.OpenMPIsDevice && 2670 !OMPDeclareTargetDeclAttr::getDeviceType(FD) && 2671 !FD->isUsed(/*CheckUsedAttr=*/false) && !FD->isReferenced()) 2672 return false; 2673 } 2674 if (const auto *VD = dyn_cast<VarDecl>(Global)) 2675 if (Context.getInlineVariableDefinitionKind(VD) == 2676 ASTContext::InlineVariableDefinitionKind::WeakUnknown) 2677 // A definition of an inline constexpr static data member may change 2678 // linkage later if it's redeclared outside the class. 2679 return false; 2680 // If OpenMP is enabled and threadprivates must be generated like TLS, delay 2681 // codegen for global variables, because they may be marked as threadprivate. 2682 if (LangOpts.OpenMP && LangOpts.OpenMPUseTLS && 2683 getContext().getTargetInfo().isTLSSupported() && isa<VarDecl>(Global) && 2684 !isTypeConstant(Global->getType(), false) && 2685 !OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(Global)) 2686 return false; 2687 2688 return true; 2689 } 2690 2691 ConstantAddress CodeGenModule::GetAddrOfMSGuidDecl(const MSGuidDecl *GD) { 2692 StringRef Name = getMangledName(GD); 2693 2694 // The UUID descriptor should be pointer aligned. 2695 CharUnits Alignment = CharUnits::fromQuantity(PointerAlignInBytes); 2696 2697 // Look for an existing global. 2698 if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name)) 2699 return ConstantAddress(GV, Alignment); 2700 2701 ConstantEmitter Emitter(*this); 2702 llvm::Constant *Init; 2703 2704 APValue &V = GD->getAsAPValue(); 2705 if (!V.isAbsent()) { 2706 // If possible, emit the APValue version of the initializer. In particular, 2707 // this gets the type of the constant right. 2708 Init = Emitter.emitForInitializer( 2709 GD->getAsAPValue(), GD->getType().getAddressSpace(), GD->getType()); 2710 } else { 2711 // As a fallback, directly construct the constant. 2712 // FIXME: This may get padding wrong under esoteric struct layout rules. 2713 // MSVC appears to create a complete type 'struct __s_GUID' that it 2714 // presumably uses to represent these constants. 2715 MSGuidDecl::Parts Parts = GD->getParts(); 2716 llvm::Constant *Fields[4] = { 2717 llvm::ConstantInt::get(Int32Ty, Parts.Part1), 2718 llvm::ConstantInt::get(Int16Ty, Parts.Part2), 2719 llvm::ConstantInt::get(Int16Ty, Parts.Part3), 2720 llvm::ConstantDataArray::getRaw( 2721 StringRef(reinterpret_cast<char *>(Parts.Part4And5), 8), 8, 2722 Int8Ty)}; 2723 Init = llvm::ConstantStruct::getAnon(Fields); 2724 } 2725 2726 auto *GV = new llvm::GlobalVariable( 2727 getModule(), Init->getType(), 2728 /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name); 2729 if (supportsCOMDAT()) 2730 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 2731 setDSOLocal(GV); 2732 2733 llvm::Constant *Addr = GV; 2734 if (!V.isAbsent()) { 2735 Emitter.finalize(GV); 2736 } else { 2737 llvm::Type *Ty = getTypes().ConvertTypeForMem(GD->getType()); 2738 Addr = llvm::ConstantExpr::getBitCast( 2739 GV, Ty->getPointerTo(GV->getAddressSpace())); 2740 } 2741 return ConstantAddress(Addr, Alignment); 2742 } 2743 2744 ConstantAddress CodeGenModule::GetAddrOfTemplateParamObject( 2745 const TemplateParamObjectDecl *TPO) { 2746 StringRef Name = getMangledName(TPO); 2747 CharUnits Alignment = getNaturalTypeAlignment(TPO->getType()); 2748 2749 if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name)) 2750 return ConstantAddress(GV, Alignment); 2751 2752 ConstantEmitter Emitter(*this); 2753 llvm::Constant *Init = Emitter.emitForInitializer( 2754 TPO->getValue(), TPO->getType().getAddressSpace(), TPO->getType()); 2755 2756 if (!Init) { 2757 ErrorUnsupported(TPO, "template parameter object"); 2758 return ConstantAddress::invalid(); 2759 } 2760 2761 auto *GV = new llvm::GlobalVariable( 2762 getModule(), Init->getType(), 2763 /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name); 2764 if (supportsCOMDAT()) 2765 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 2766 Emitter.finalize(GV); 2767 2768 return ConstantAddress(GV, Alignment); 2769 } 2770 2771 ConstantAddress CodeGenModule::GetWeakRefReference(const ValueDecl *VD) { 2772 const AliasAttr *AA = VD->getAttr<AliasAttr>(); 2773 assert(AA && "No alias?"); 2774 2775 CharUnits Alignment = getContext().getDeclAlign(VD); 2776 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType()); 2777 2778 // See if there is already something with the target's name in the module. 2779 llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee()); 2780 if (Entry) { 2781 unsigned AS = getContext().getTargetAddressSpace(VD->getType()); 2782 auto Ptr = llvm::ConstantExpr::getBitCast(Entry, DeclTy->getPointerTo(AS)); 2783 return ConstantAddress(Ptr, Alignment); 2784 } 2785 2786 llvm::Constant *Aliasee; 2787 if (isa<llvm::FunctionType>(DeclTy)) 2788 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, 2789 GlobalDecl(cast<FunctionDecl>(VD)), 2790 /*ForVTable=*/false); 2791 else 2792 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), 2793 llvm::PointerType::getUnqual(DeclTy), 2794 nullptr); 2795 2796 auto *F = cast<llvm::GlobalValue>(Aliasee); 2797 F->setLinkage(llvm::Function::ExternalWeakLinkage); 2798 WeakRefReferences.insert(F); 2799 2800 return ConstantAddress(Aliasee, Alignment); 2801 } 2802 2803 void CodeGenModule::EmitGlobal(GlobalDecl GD) { 2804 const auto *Global = cast<ValueDecl>(GD.getDecl()); 2805 2806 // Weak references don't produce any output by themselves. 2807 if (Global->hasAttr<WeakRefAttr>()) 2808 return; 2809 2810 // If this is an alias definition (which otherwise looks like a declaration) 2811 // emit it now. 2812 if (Global->hasAttr<AliasAttr>()) 2813 return EmitAliasDefinition(GD); 2814 2815 // IFunc like an alias whose value is resolved at runtime by calling resolver. 2816 if (Global->hasAttr<IFuncAttr>()) 2817 return emitIFuncDefinition(GD); 2818 2819 // If this is a cpu_dispatch multiversion function, emit the resolver. 2820 if (Global->hasAttr<CPUDispatchAttr>()) 2821 return emitCPUDispatchDefinition(GD); 2822 2823 // If this is CUDA, be selective about which declarations we emit. 2824 if (LangOpts.CUDA) { 2825 if (LangOpts.CUDAIsDevice) { 2826 if (!Global->hasAttr<CUDADeviceAttr>() && 2827 !Global->hasAttr<CUDAGlobalAttr>() && 2828 !Global->hasAttr<CUDAConstantAttr>() && 2829 !Global->hasAttr<CUDASharedAttr>() && 2830 !Global->getType()->isCUDADeviceBuiltinSurfaceType() && 2831 !Global->getType()->isCUDADeviceBuiltinTextureType()) 2832 return; 2833 } else { 2834 // We need to emit host-side 'shadows' for all global 2835 // device-side variables because the CUDA runtime needs their 2836 // size and host-side address in order to provide access to 2837 // their device-side incarnations. 2838 2839 // So device-only functions are the only things we skip. 2840 if (isa<FunctionDecl>(Global) && !Global->hasAttr<CUDAHostAttr>() && 2841 Global->hasAttr<CUDADeviceAttr>()) 2842 return; 2843 2844 assert((isa<FunctionDecl>(Global) || isa<VarDecl>(Global)) && 2845 "Expected Variable or Function"); 2846 } 2847 } 2848 2849 if (LangOpts.OpenMP) { 2850 // If this is OpenMP, check if it is legal to emit this global normally. 2851 if (OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(GD)) 2852 return; 2853 if (auto *DRD = dyn_cast<OMPDeclareReductionDecl>(Global)) { 2854 if (MustBeEmitted(Global)) 2855 EmitOMPDeclareReduction(DRD); 2856 return; 2857 } else if (auto *DMD = dyn_cast<OMPDeclareMapperDecl>(Global)) { 2858 if (MustBeEmitted(Global)) 2859 EmitOMPDeclareMapper(DMD); 2860 return; 2861 } 2862 } 2863 2864 // Ignore declarations, they will be emitted on their first use. 2865 if (const auto *FD = dyn_cast<FunctionDecl>(Global)) { 2866 // Forward declarations are emitted lazily on first use. 2867 if (!FD->doesThisDeclarationHaveABody()) { 2868 if (!FD->doesDeclarationForceExternallyVisibleDefinition()) 2869 return; 2870 2871 StringRef MangledName = getMangledName(GD); 2872 2873 // Compute the function info and LLVM type. 2874 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 2875 llvm::Type *Ty = getTypes().GetFunctionType(FI); 2876 2877 GetOrCreateLLVMFunction(MangledName, Ty, GD, /*ForVTable=*/false, 2878 /*DontDefer=*/false); 2879 return; 2880 } 2881 } else { 2882 const auto *VD = cast<VarDecl>(Global); 2883 assert(VD->isFileVarDecl() && "Cannot emit local var decl as global."); 2884 if (VD->isThisDeclarationADefinition() != VarDecl::Definition && 2885 !Context.isMSStaticDataMemberInlineDefinition(VD)) { 2886 if (LangOpts.OpenMP) { 2887 // Emit declaration of the must-be-emitted declare target variable. 2888 if (llvm::Optional<OMPDeclareTargetDeclAttr::MapTypeTy> Res = 2889 OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD)) { 2890 bool UnifiedMemoryEnabled = 2891 getOpenMPRuntime().hasRequiresUnifiedSharedMemory(); 2892 if (*Res == OMPDeclareTargetDeclAttr::MT_To && 2893 !UnifiedMemoryEnabled) { 2894 (void)GetAddrOfGlobalVar(VD); 2895 } else { 2896 assert(((*Res == OMPDeclareTargetDeclAttr::MT_Link) || 2897 (*Res == OMPDeclareTargetDeclAttr::MT_To && 2898 UnifiedMemoryEnabled)) && 2899 "Link clause or to clause with unified memory expected."); 2900 (void)getOpenMPRuntime().getAddrOfDeclareTargetVar(VD); 2901 } 2902 2903 return; 2904 } 2905 } 2906 // If this declaration may have caused an inline variable definition to 2907 // change linkage, make sure that it's emitted. 2908 if (Context.getInlineVariableDefinitionKind(VD) == 2909 ASTContext::InlineVariableDefinitionKind::Strong) 2910 GetAddrOfGlobalVar(VD); 2911 return; 2912 } 2913 } 2914 2915 // Defer code generation to first use when possible, e.g. if this is an inline 2916 // function. If the global must always be emitted, do it eagerly if possible 2917 // to benefit from cache locality. 2918 if (MustBeEmitted(Global) && MayBeEmittedEagerly(Global)) { 2919 // Emit the definition if it can't be deferred. 2920 EmitGlobalDefinition(GD); 2921 return; 2922 } 2923 2924 // If we're deferring emission of a C++ variable with an 2925 // initializer, remember the order in which it appeared in the file. 2926 if (getLangOpts().CPlusPlus && isa<VarDecl>(Global) && 2927 cast<VarDecl>(Global)->hasInit()) { 2928 DelayedCXXInitPosition[Global] = CXXGlobalInits.size(); 2929 CXXGlobalInits.push_back(nullptr); 2930 } 2931 2932 StringRef MangledName = getMangledName(GD); 2933 if (GetGlobalValue(MangledName) != nullptr) { 2934 // The value has already been used and should therefore be emitted. 2935 addDeferredDeclToEmit(GD); 2936 } else if (MustBeEmitted(Global)) { 2937 // The value must be emitted, but cannot be emitted eagerly. 2938 assert(!MayBeEmittedEagerly(Global)); 2939 addDeferredDeclToEmit(GD); 2940 } else { 2941 // Otherwise, remember that we saw a deferred decl with this name. The 2942 // first use of the mangled name will cause it to move into 2943 // DeferredDeclsToEmit. 2944 DeferredDecls[MangledName] = GD; 2945 } 2946 } 2947 2948 // Check if T is a class type with a destructor that's not dllimport. 2949 static bool HasNonDllImportDtor(QualType T) { 2950 if (const auto *RT = T->getBaseElementTypeUnsafe()->getAs<RecordType>()) 2951 if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl())) 2952 if (RD->getDestructor() && !RD->getDestructor()->hasAttr<DLLImportAttr>()) 2953 return true; 2954 2955 return false; 2956 } 2957 2958 namespace { 2959 struct FunctionIsDirectlyRecursive 2960 : public ConstStmtVisitor<FunctionIsDirectlyRecursive, bool> { 2961 const StringRef Name; 2962 const Builtin::Context &BI; 2963 FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C) 2964 : Name(N), BI(C) {} 2965 2966 bool VisitCallExpr(const CallExpr *E) { 2967 const FunctionDecl *FD = E->getDirectCallee(); 2968 if (!FD) 2969 return false; 2970 AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>(); 2971 if (Attr && Name == Attr->getLabel()) 2972 return true; 2973 unsigned BuiltinID = FD->getBuiltinID(); 2974 if (!BuiltinID || !BI.isLibFunction(BuiltinID)) 2975 return false; 2976 StringRef BuiltinName = BI.getName(BuiltinID); 2977 if (BuiltinName.startswith("__builtin_") && 2978 Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) { 2979 return true; 2980 } 2981 return false; 2982 } 2983 2984 bool VisitStmt(const Stmt *S) { 2985 for (const Stmt *Child : S->children()) 2986 if (Child && this->Visit(Child)) 2987 return true; 2988 return false; 2989 } 2990 }; 2991 2992 // Make sure we're not referencing non-imported vars or functions. 2993 struct DLLImportFunctionVisitor 2994 : public RecursiveASTVisitor<DLLImportFunctionVisitor> { 2995 bool SafeToInline = true; 2996 2997 bool shouldVisitImplicitCode() const { return true; } 2998 2999 bool VisitVarDecl(VarDecl *VD) { 3000 if (VD->getTLSKind()) { 3001 // A thread-local variable cannot be imported. 3002 SafeToInline = false; 3003 return SafeToInline; 3004 } 3005 3006 // A variable definition might imply a destructor call. 3007 if (VD->isThisDeclarationADefinition()) 3008 SafeToInline = !HasNonDllImportDtor(VD->getType()); 3009 3010 return SafeToInline; 3011 } 3012 3013 bool VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) { 3014 if (const auto *D = E->getTemporary()->getDestructor()) 3015 SafeToInline = D->hasAttr<DLLImportAttr>(); 3016 return SafeToInline; 3017 } 3018 3019 bool VisitDeclRefExpr(DeclRefExpr *E) { 3020 ValueDecl *VD = E->getDecl(); 3021 if (isa<FunctionDecl>(VD)) 3022 SafeToInline = VD->hasAttr<DLLImportAttr>(); 3023 else if (VarDecl *V = dyn_cast<VarDecl>(VD)) 3024 SafeToInline = !V->hasGlobalStorage() || V->hasAttr<DLLImportAttr>(); 3025 return SafeToInline; 3026 } 3027 3028 bool VisitCXXConstructExpr(CXXConstructExpr *E) { 3029 SafeToInline = E->getConstructor()->hasAttr<DLLImportAttr>(); 3030 return SafeToInline; 3031 } 3032 3033 bool VisitCXXMemberCallExpr(CXXMemberCallExpr *E) { 3034 CXXMethodDecl *M = E->getMethodDecl(); 3035 if (!M) { 3036 // Call through a pointer to member function. This is safe to inline. 3037 SafeToInline = true; 3038 } else { 3039 SafeToInline = M->hasAttr<DLLImportAttr>(); 3040 } 3041 return SafeToInline; 3042 } 3043 3044 bool VisitCXXDeleteExpr(CXXDeleteExpr *E) { 3045 SafeToInline = E->getOperatorDelete()->hasAttr<DLLImportAttr>(); 3046 return SafeToInline; 3047 } 3048 3049 bool VisitCXXNewExpr(CXXNewExpr *E) { 3050 SafeToInline = E->getOperatorNew()->hasAttr<DLLImportAttr>(); 3051 return SafeToInline; 3052 } 3053 }; 3054 } 3055 3056 // isTriviallyRecursive - Check if this function calls another 3057 // decl that, because of the asm attribute or the other decl being a builtin, 3058 // ends up pointing to itself. 3059 bool 3060 CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) { 3061 StringRef Name; 3062 if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) { 3063 // asm labels are a special kind of mangling we have to support. 3064 AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>(); 3065 if (!Attr) 3066 return false; 3067 Name = Attr->getLabel(); 3068 } else { 3069 Name = FD->getName(); 3070 } 3071 3072 FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo); 3073 const Stmt *Body = FD->getBody(); 3074 return Body ? Walker.Visit(Body) : false; 3075 } 3076 3077 bool CodeGenModule::shouldEmitFunction(GlobalDecl GD) { 3078 if (getFunctionLinkage(GD) != llvm::Function::AvailableExternallyLinkage) 3079 return true; 3080 const auto *F = cast<FunctionDecl>(GD.getDecl()); 3081 if (CodeGenOpts.OptimizationLevel == 0 && !F->hasAttr<AlwaysInlineAttr>()) 3082 return false; 3083 3084 if (F->hasAttr<DLLImportAttr>() && !F->hasAttr<AlwaysInlineAttr>()) { 3085 // Check whether it would be safe to inline this dllimport function. 3086 DLLImportFunctionVisitor Visitor; 3087 Visitor.TraverseFunctionDecl(const_cast<FunctionDecl*>(F)); 3088 if (!Visitor.SafeToInline) 3089 return false; 3090 3091 if (const CXXDestructorDecl *Dtor = dyn_cast<CXXDestructorDecl>(F)) { 3092 // Implicit destructor invocations aren't captured in the AST, so the 3093 // check above can't see them. Check for them manually here. 3094 for (const Decl *Member : Dtor->getParent()->decls()) 3095 if (isa<FieldDecl>(Member)) 3096 if (HasNonDllImportDtor(cast<FieldDecl>(Member)->getType())) 3097 return false; 3098 for (const CXXBaseSpecifier &B : Dtor->getParent()->bases()) 3099 if (HasNonDllImportDtor(B.getType())) 3100 return false; 3101 } 3102 } 3103 3104 // PR9614. Avoid cases where the source code is lying to us. An available 3105 // externally function should have an equivalent function somewhere else, 3106 // but a function that calls itself through asm label/`__builtin_` trickery is 3107 // clearly not equivalent to the real implementation. 3108 // This happens in glibc's btowc and in some configure checks. 3109 return !isTriviallyRecursive(F); 3110 } 3111 3112 bool CodeGenModule::shouldOpportunisticallyEmitVTables() { 3113 return CodeGenOpts.OptimizationLevel > 0; 3114 } 3115 3116 void CodeGenModule::EmitMultiVersionFunctionDefinition(GlobalDecl GD, 3117 llvm::GlobalValue *GV) { 3118 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 3119 3120 if (FD->isCPUSpecificMultiVersion()) { 3121 auto *Spec = FD->getAttr<CPUSpecificAttr>(); 3122 for (unsigned I = 0; I < Spec->cpus_size(); ++I) 3123 EmitGlobalFunctionDefinition(GD.getWithMultiVersionIndex(I), nullptr); 3124 // Requires multiple emits. 3125 } else 3126 EmitGlobalFunctionDefinition(GD, GV); 3127 } 3128 3129 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD, llvm::GlobalValue *GV) { 3130 const auto *D = cast<ValueDecl>(GD.getDecl()); 3131 3132 PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(), 3133 Context.getSourceManager(), 3134 "Generating code for declaration"); 3135 3136 if (const auto *FD = dyn_cast<FunctionDecl>(D)) { 3137 // At -O0, don't generate IR for functions with available_externally 3138 // linkage. 3139 if (!shouldEmitFunction(GD)) 3140 return; 3141 3142 llvm::TimeTraceScope TimeScope("CodeGen Function", [&]() { 3143 std::string Name; 3144 llvm::raw_string_ostream OS(Name); 3145 FD->getNameForDiagnostic(OS, getContext().getPrintingPolicy(), 3146 /*Qualified=*/true); 3147 return Name; 3148 }); 3149 3150 if (const auto *Method = dyn_cast<CXXMethodDecl>(D)) { 3151 // Make sure to emit the definition(s) before we emit the thunks. 3152 // This is necessary for the generation of certain thunks. 3153 if (isa<CXXConstructorDecl>(Method) || isa<CXXDestructorDecl>(Method)) 3154 ABI->emitCXXStructor(GD); 3155 else if (FD->isMultiVersion()) 3156 EmitMultiVersionFunctionDefinition(GD, GV); 3157 else 3158 EmitGlobalFunctionDefinition(GD, GV); 3159 3160 if (Method->isVirtual()) 3161 getVTables().EmitThunks(GD); 3162 3163 return; 3164 } 3165 3166 if (FD->isMultiVersion()) 3167 return EmitMultiVersionFunctionDefinition(GD, GV); 3168 return EmitGlobalFunctionDefinition(GD, GV); 3169 } 3170 3171 if (const auto *VD = dyn_cast<VarDecl>(D)) 3172 return EmitGlobalVarDefinition(VD, !VD->hasDefinition()); 3173 3174 llvm_unreachable("Invalid argument to EmitGlobalDefinition()"); 3175 } 3176 3177 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old, 3178 llvm::Function *NewFn); 3179 3180 static unsigned 3181 TargetMVPriority(const TargetInfo &TI, 3182 const CodeGenFunction::MultiVersionResolverOption &RO) { 3183 unsigned Priority = 0; 3184 for (StringRef Feat : RO.Conditions.Features) 3185 Priority = std::max(Priority, TI.multiVersionSortPriority(Feat)); 3186 3187 if (!RO.Conditions.Architecture.empty()) 3188 Priority = std::max( 3189 Priority, TI.multiVersionSortPriority(RO.Conditions.Architecture)); 3190 return Priority; 3191 } 3192 3193 void CodeGenModule::emitMultiVersionFunctions() { 3194 std::vector<GlobalDecl> MVFuncsToEmit; 3195 MultiVersionFuncs.swap(MVFuncsToEmit); 3196 for (GlobalDecl GD : MVFuncsToEmit) { 3197 SmallVector<CodeGenFunction::MultiVersionResolverOption, 10> Options; 3198 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 3199 getContext().forEachMultiversionedFunctionVersion( 3200 FD, [this, &GD, &Options](const FunctionDecl *CurFD) { 3201 GlobalDecl CurGD{ 3202 (CurFD->isDefined() ? CurFD->getDefinition() : CurFD)}; 3203 StringRef MangledName = getMangledName(CurGD); 3204 llvm::Constant *Func = GetGlobalValue(MangledName); 3205 if (!Func) { 3206 if (CurFD->isDefined()) { 3207 EmitGlobalFunctionDefinition(CurGD, nullptr); 3208 Func = GetGlobalValue(MangledName); 3209 } else { 3210 const CGFunctionInfo &FI = 3211 getTypes().arrangeGlobalDeclaration(GD); 3212 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 3213 Func = GetAddrOfFunction(CurGD, Ty, /*ForVTable=*/false, 3214 /*DontDefer=*/false, ForDefinition); 3215 } 3216 assert(Func && "This should have just been created"); 3217 } 3218 3219 const auto *TA = CurFD->getAttr<TargetAttr>(); 3220 llvm::SmallVector<StringRef, 8> Feats; 3221 TA->getAddedFeatures(Feats); 3222 3223 Options.emplace_back(cast<llvm::Function>(Func), 3224 TA->getArchitecture(), Feats); 3225 }); 3226 3227 llvm::Function *ResolverFunc; 3228 const TargetInfo &TI = getTarget(); 3229 3230 if (TI.supportsIFunc() || FD->isTargetMultiVersion()) { 3231 ResolverFunc = cast<llvm::Function>( 3232 GetGlobalValue((getMangledName(GD) + ".resolver").str())); 3233 ResolverFunc->setLinkage(llvm::Function::WeakODRLinkage); 3234 } else { 3235 ResolverFunc = cast<llvm::Function>(GetGlobalValue(getMangledName(GD))); 3236 } 3237 3238 if (supportsCOMDAT()) 3239 ResolverFunc->setComdat( 3240 getModule().getOrInsertComdat(ResolverFunc->getName())); 3241 3242 llvm::stable_sort( 3243 Options, [&TI](const CodeGenFunction::MultiVersionResolverOption &LHS, 3244 const CodeGenFunction::MultiVersionResolverOption &RHS) { 3245 return TargetMVPriority(TI, LHS) > TargetMVPriority(TI, RHS); 3246 }); 3247 CodeGenFunction CGF(*this); 3248 CGF.EmitMultiVersionResolver(ResolverFunc, Options); 3249 } 3250 3251 // Ensure that any additions to the deferred decls list caused by emitting a 3252 // variant are emitted. This can happen when the variant itself is inline and 3253 // calls a function without linkage. 3254 if (!MVFuncsToEmit.empty()) 3255 EmitDeferred(); 3256 3257 // Ensure that any additions to the multiversion funcs list from either the 3258 // deferred decls or the multiversion functions themselves are emitted. 3259 if (!MultiVersionFuncs.empty()) 3260 emitMultiVersionFunctions(); 3261 } 3262 3263 void CodeGenModule::emitCPUDispatchDefinition(GlobalDecl GD) { 3264 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 3265 assert(FD && "Not a FunctionDecl?"); 3266 const auto *DD = FD->getAttr<CPUDispatchAttr>(); 3267 assert(DD && "Not a cpu_dispatch Function?"); 3268 llvm::Type *DeclTy = getTypes().ConvertType(FD->getType()); 3269 3270 if (const auto *CXXFD = dyn_cast<CXXMethodDecl>(FD)) { 3271 const CGFunctionInfo &FInfo = getTypes().arrangeCXXMethodDeclaration(CXXFD); 3272 DeclTy = getTypes().GetFunctionType(FInfo); 3273 } 3274 3275 StringRef ResolverName = getMangledName(GD); 3276 3277 llvm::Type *ResolverType; 3278 GlobalDecl ResolverGD; 3279 if (getTarget().supportsIFunc()) 3280 ResolverType = llvm::FunctionType::get( 3281 llvm::PointerType::get(DeclTy, 3282 Context.getTargetAddressSpace(FD->getType())), 3283 false); 3284 else { 3285 ResolverType = DeclTy; 3286 ResolverGD = GD; 3287 } 3288 3289 auto *ResolverFunc = cast<llvm::Function>(GetOrCreateLLVMFunction( 3290 ResolverName, ResolverType, ResolverGD, /*ForVTable=*/false)); 3291 ResolverFunc->setLinkage(llvm::Function::WeakODRLinkage); 3292 if (supportsCOMDAT()) 3293 ResolverFunc->setComdat( 3294 getModule().getOrInsertComdat(ResolverFunc->getName())); 3295 3296 SmallVector<CodeGenFunction::MultiVersionResolverOption, 10> Options; 3297 const TargetInfo &Target = getTarget(); 3298 unsigned Index = 0; 3299 for (const IdentifierInfo *II : DD->cpus()) { 3300 // Get the name of the target function so we can look it up/create it. 3301 std::string MangledName = getMangledNameImpl(*this, GD, FD, true) + 3302 getCPUSpecificMangling(*this, II->getName()); 3303 3304 llvm::Constant *Func = GetGlobalValue(MangledName); 3305 3306 if (!Func) { 3307 GlobalDecl ExistingDecl = Manglings.lookup(MangledName); 3308 if (ExistingDecl.getDecl() && 3309 ExistingDecl.getDecl()->getAsFunction()->isDefined()) { 3310 EmitGlobalFunctionDefinition(ExistingDecl, nullptr); 3311 Func = GetGlobalValue(MangledName); 3312 } else { 3313 if (!ExistingDecl.getDecl()) 3314 ExistingDecl = GD.getWithMultiVersionIndex(Index); 3315 3316 Func = GetOrCreateLLVMFunction( 3317 MangledName, DeclTy, ExistingDecl, 3318 /*ForVTable=*/false, /*DontDefer=*/true, 3319 /*IsThunk=*/false, llvm::AttributeList(), ForDefinition); 3320 } 3321 } 3322 3323 llvm::SmallVector<StringRef, 32> Features; 3324 Target.getCPUSpecificCPUDispatchFeatures(II->getName(), Features); 3325 llvm::transform(Features, Features.begin(), 3326 [](StringRef Str) { return Str.substr(1); }); 3327 Features.erase(std::remove_if( 3328 Features.begin(), Features.end(), [&Target](StringRef Feat) { 3329 return !Target.validateCpuSupports(Feat); 3330 }), Features.end()); 3331 Options.emplace_back(cast<llvm::Function>(Func), StringRef{}, Features); 3332 ++Index; 3333 } 3334 3335 llvm::sort( 3336 Options, [](const CodeGenFunction::MultiVersionResolverOption &LHS, 3337 const CodeGenFunction::MultiVersionResolverOption &RHS) { 3338 return CodeGenFunction::GetX86CpuSupportsMask(LHS.Conditions.Features) > 3339 CodeGenFunction::GetX86CpuSupportsMask(RHS.Conditions.Features); 3340 }); 3341 3342 // If the list contains multiple 'default' versions, such as when it contains 3343 // 'pentium' and 'generic', don't emit the call to the generic one (since we 3344 // always run on at least a 'pentium'). We do this by deleting the 'least 3345 // advanced' (read, lowest mangling letter). 3346 while (Options.size() > 1 && 3347 CodeGenFunction::GetX86CpuSupportsMask( 3348 (Options.end() - 2)->Conditions.Features) == 0) { 3349 StringRef LHSName = (Options.end() - 2)->Function->getName(); 3350 StringRef RHSName = (Options.end() - 1)->Function->getName(); 3351 if (LHSName.compare(RHSName) < 0) 3352 Options.erase(Options.end() - 2); 3353 else 3354 Options.erase(Options.end() - 1); 3355 } 3356 3357 CodeGenFunction CGF(*this); 3358 CGF.EmitMultiVersionResolver(ResolverFunc, Options); 3359 3360 if (getTarget().supportsIFunc()) { 3361 std::string AliasName = getMangledNameImpl( 3362 *this, GD, FD, /*OmitMultiVersionMangling=*/true); 3363 llvm::Constant *AliasFunc = GetGlobalValue(AliasName); 3364 if (!AliasFunc) { 3365 auto *IFunc = cast<llvm::GlobalIFunc>(GetOrCreateLLVMFunction( 3366 AliasName, DeclTy, GD, /*ForVTable=*/false, /*DontDefer=*/true, 3367 /*IsThunk=*/false, llvm::AttributeList(), NotForDefinition)); 3368 auto *GA = llvm::GlobalAlias::create( 3369 DeclTy, 0, getFunctionLinkage(GD), AliasName, IFunc, &getModule()); 3370 GA->setLinkage(llvm::Function::WeakODRLinkage); 3371 SetCommonAttributes(GD, GA); 3372 } 3373 } 3374 } 3375 3376 /// If a dispatcher for the specified mangled name is not in the module, create 3377 /// and return an llvm Function with the specified type. 3378 llvm::Constant *CodeGenModule::GetOrCreateMultiVersionResolver( 3379 GlobalDecl GD, llvm::Type *DeclTy, const FunctionDecl *FD) { 3380 std::string MangledName = 3381 getMangledNameImpl(*this, GD, FD, /*OmitMultiVersionMangling=*/true); 3382 3383 // Holds the name of the resolver, in ifunc mode this is the ifunc (which has 3384 // a separate resolver). 3385 std::string ResolverName = MangledName; 3386 if (getTarget().supportsIFunc()) 3387 ResolverName += ".ifunc"; 3388 else if (FD->isTargetMultiVersion()) 3389 ResolverName += ".resolver"; 3390 3391 // If this already exists, just return that one. 3392 if (llvm::GlobalValue *ResolverGV = GetGlobalValue(ResolverName)) 3393 return ResolverGV; 3394 3395 // Since this is the first time we've created this IFunc, make sure 3396 // that we put this multiversioned function into the list to be 3397 // replaced later if necessary (target multiversioning only). 3398 if (!FD->isCPUDispatchMultiVersion() && !FD->isCPUSpecificMultiVersion()) 3399 MultiVersionFuncs.push_back(GD); 3400 3401 if (getTarget().supportsIFunc()) { 3402 llvm::Type *ResolverType = llvm::FunctionType::get( 3403 llvm::PointerType::get( 3404 DeclTy, getContext().getTargetAddressSpace(FD->getType())), 3405 false); 3406 llvm::Constant *Resolver = GetOrCreateLLVMFunction( 3407 MangledName + ".resolver", ResolverType, GlobalDecl{}, 3408 /*ForVTable=*/false); 3409 llvm::GlobalIFunc *GIF = llvm::GlobalIFunc::create( 3410 DeclTy, 0, llvm::Function::WeakODRLinkage, "", Resolver, &getModule()); 3411 GIF->setName(ResolverName); 3412 SetCommonAttributes(FD, GIF); 3413 3414 return GIF; 3415 } 3416 3417 llvm::Constant *Resolver = GetOrCreateLLVMFunction( 3418 ResolverName, DeclTy, GlobalDecl{}, /*ForVTable=*/false); 3419 assert(isa<llvm::GlobalValue>(Resolver) && 3420 "Resolver should be created for the first time"); 3421 SetCommonAttributes(FD, cast<llvm::GlobalValue>(Resolver)); 3422 return Resolver; 3423 } 3424 3425 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the 3426 /// module, create and return an llvm Function with the specified type. If there 3427 /// is something in the module with the specified name, return it potentially 3428 /// bitcasted to the right type. 3429 /// 3430 /// If D is non-null, it specifies a decl that correspond to this. This is used 3431 /// to set the attributes on the function when it is first created. 3432 llvm::Constant *CodeGenModule::GetOrCreateLLVMFunction( 3433 StringRef MangledName, llvm::Type *Ty, GlobalDecl GD, bool ForVTable, 3434 bool DontDefer, bool IsThunk, llvm::AttributeList ExtraAttrs, 3435 ForDefinition_t IsForDefinition) { 3436 const Decl *D = GD.getDecl(); 3437 3438 // Any attempts to use a MultiVersion function should result in retrieving 3439 // the iFunc instead. Name Mangling will handle the rest of the changes. 3440 if (const FunctionDecl *FD = cast_or_null<FunctionDecl>(D)) { 3441 // For the device mark the function as one that should be emitted. 3442 if (getLangOpts().OpenMPIsDevice && OpenMPRuntime && 3443 !OpenMPRuntime->markAsGlobalTarget(GD) && FD->isDefined() && 3444 !DontDefer && !IsForDefinition) { 3445 if (const FunctionDecl *FDDef = FD->getDefinition()) { 3446 GlobalDecl GDDef; 3447 if (const auto *CD = dyn_cast<CXXConstructorDecl>(FDDef)) 3448 GDDef = GlobalDecl(CD, GD.getCtorType()); 3449 else if (const auto *DD = dyn_cast<CXXDestructorDecl>(FDDef)) 3450 GDDef = GlobalDecl(DD, GD.getDtorType()); 3451 else 3452 GDDef = GlobalDecl(FDDef); 3453 EmitGlobal(GDDef); 3454 } 3455 } 3456 3457 if (FD->isMultiVersion()) { 3458 if (FD->hasAttr<TargetAttr>()) 3459 UpdateMultiVersionNames(GD, FD); 3460 if (!IsForDefinition) 3461 return GetOrCreateMultiVersionResolver(GD, Ty, FD); 3462 } 3463 } 3464 3465 // Lookup the entry, lazily creating it if necessary. 3466 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 3467 if (Entry) { 3468 if (WeakRefReferences.erase(Entry)) { 3469 const FunctionDecl *FD = cast_or_null<FunctionDecl>(D); 3470 if (FD && !FD->hasAttr<WeakAttr>()) 3471 Entry->setLinkage(llvm::Function::ExternalLinkage); 3472 } 3473 3474 // Handle dropped DLL attributes. 3475 if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>()) { 3476 Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 3477 setDSOLocal(Entry); 3478 } 3479 3480 // If there are two attempts to define the same mangled name, issue an 3481 // error. 3482 if (IsForDefinition && !Entry->isDeclaration()) { 3483 GlobalDecl OtherGD; 3484 // Check that GD is not yet in DiagnosedConflictingDefinitions is required 3485 // to make sure that we issue an error only once. 3486 if (lookupRepresentativeDecl(MangledName, OtherGD) && 3487 (GD.getCanonicalDecl().getDecl() != 3488 OtherGD.getCanonicalDecl().getDecl()) && 3489 DiagnosedConflictingDefinitions.insert(GD).second) { 3490 getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name) 3491 << MangledName; 3492 getDiags().Report(OtherGD.getDecl()->getLocation(), 3493 diag::note_previous_definition); 3494 } 3495 } 3496 3497 if ((isa<llvm::Function>(Entry) || isa<llvm::GlobalAlias>(Entry)) && 3498 (Entry->getValueType() == Ty)) { 3499 return Entry; 3500 } 3501 3502 // Make sure the result is of the correct type. 3503 // (If function is requested for a definition, we always need to create a new 3504 // function, not just return a bitcast.) 3505 if (!IsForDefinition) 3506 return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo()); 3507 } 3508 3509 // This function doesn't have a complete type (for example, the return 3510 // type is an incomplete struct). Use a fake type instead, and make 3511 // sure not to try to set attributes. 3512 bool IsIncompleteFunction = false; 3513 3514 llvm::FunctionType *FTy; 3515 if (isa<llvm::FunctionType>(Ty)) { 3516 FTy = cast<llvm::FunctionType>(Ty); 3517 } else { 3518 FTy = llvm::FunctionType::get(VoidTy, false); 3519 IsIncompleteFunction = true; 3520 } 3521 3522 llvm::Function *F = 3523 llvm::Function::Create(FTy, llvm::Function::ExternalLinkage, 3524 Entry ? StringRef() : MangledName, &getModule()); 3525 3526 // If we already created a function with the same mangled name (but different 3527 // type) before, take its name and add it to the list of functions to be 3528 // replaced with F at the end of CodeGen. 3529 // 3530 // This happens if there is a prototype for a function (e.g. "int f()") and 3531 // then a definition of a different type (e.g. "int f(int x)"). 3532 if (Entry) { 3533 F->takeName(Entry); 3534 3535 // This might be an implementation of a function without a prototype, in 3536 // which case, try to do special replacement of calls which match the new 3537 // prototype. The really key thing here is that we also potentially drop 3538 // arguments from the call site so as to make a direct call, which makes the 3539 // inliner happier and suppresses a number of optimizer warnings (!) about 3540 // dropping arguments. 3541 if (!Entry->use_empty()) { 3542 ReplaceUsesOfNonProtoTypeWithRealFunction(Entry, F); 3543 Entry->removeDeadConstantUsers(); 3544 } 3545 3546 llvm::Constant *BC = llvm::ConstantExpr::getBitCast( 3547 F, Entry->getValueType()->getPointerTo()); 3548 addGlobalValReplacement(Entry, BC); 3549 } 3550 3551 assert(F->getName() == MangledName && "name was uniqued!"); 3552 if (D) 3553 SetFunctionAttributes(GD, F, IsIncompleteFunction, IsThunk); 3554 if (ExtraAttrs.hasAttributes(llvm::AttributeList::FunctionIndex)) { 3555 llvm::AttrBuilder B(ExtraAttrs, llvm::AttributeList::FunctionIndex); 3556 F->addAttributes(llvm::AttributeList::FunctionIndex, B); 3557 } 3558 3559 if (!DontDefer) { 3560 // All MSVC dtors other than the base dtor are linkonce_odr and delegate to 3561 // each other bottoming out with the base dtor. Therefore we emit non-base 3562 // dtors on usage, even if there is no dtor definition in the TU. 3563 if (D && isa<CXXDestructorDecl>(D) && 3564 getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D), 3565 GD.getDtorType())) 3566 addDeferredDeclToEmit(GD); 3567 3568 // This is the first use or definition of a mangled name. If there is a 3569 // deferred decl with this name, remember that we need to emit it at the end 3570 // of the file. 3571 auto DDI = DeferredDecls.find(MangledName); 3572 if (DDI != DeferredDecls.end()) { 3573 // Move the potentially referenced deferred decl to the 3574 // DeferredDeclsToEmit list, and remove it from DeferredDecls (since we 3575 // don't need it anymore). 3576 addDeferredDeclToEmit(DDI->second); 3577 DeferredDecls.erase(DDI); 3578 3579 // Otherwise, there are cases we have to worry about where we're 3580 // using a declaration for which we must emit a definition but where 3581 // we might not find a top-level definition: 3582 // - member functions defined inline in their classes 3583 // - friend functions defined inline in some class 3584 // - special member functions with implicit definitions 3585 // If we ever change our AST traversal to walk into class methods, 3586 // this will be unnecessary. 3587 // 3588 // We also don't emit a definition for a function if it's going to be an 3589 // entry in a vtable, unless it's already marked as used. 3590 } else if (getLangOpts().CPlusPlus && D) { 3591 // Look for a declaration that's lexically in a record. 3592 for (const auto *FD = cast<FunctionDecl>(D)->getMostRecentDecl(); FD; 3593 FD = FD->getPreviousDecl()) { 3594 if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) { 3595 if (FD->doesThisDeclarationHaveABody()) { 3596 addDeferredDeclToEmit(GD.getWithDecl(FD)); 3597 break; 3598 } 3599 } 3600 } 3601 } 3602 } 3603 3604 // Make sure the result is of the requested type. 3605 if (!IsIncompleteFunction) { 3606 assert(F->getFunctionType() == Ty); 3607 return F; 3608 } 3609 3610 llvm::Type *PTy = llvm::PointerType::getUnqual(Ty); 3611 return llvm::ConstantExpr::getBitCast(F, PTy); 3612 } 3613 3614 /// GetAddrOfFunction - Return the address of the given function. If Ty is 3615 /// non-null, then this function will use the specified type if it has to 3616 /// create it (this occurs when we see a definition of the function). 3617 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD, 3618 llvm::Type *Ty, 3619 bool ForVTable, 3620 bool DontDefer, 3621 ForDefinition_t IsForDefinition) { 3622 assert(!cast<FunctionDecl>(GD.getDecl())->isConsteval() && 3623 "consteval function should never be emitted"); 3624 // If there was no specific requested type, just convert it now. 3625 if (!Ty) { 3626 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 3627 Ty = getTypes().ConvertType(FD->getType()); 3628 } 3629 3630 // Devirtualized destructor calls may come through here instead of via 3631 // getAddrOfCXXStructor. Make sure we use the MS ABI base destructor instead 3632 // of the complete destructor when necessary. 3633 if (const auto *DD = dyn_cast<CXXDestructorDecl>(GD.getDecl())) { 3634 if (getTarget().getCXXABI().isMicrosoft() && 3635 GD.getDtorType() == Dtor_Complete && 3636 DD->getParent()->getNumVBases() == 0) 3637 GD = GlobalDecl(DD, Dtor_Base); 3638 } 3639 3640 StringRef MangledName = getMangledName(GD); 3641 auto *F = GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable, DontDefer, 3642 /*IsThunk=*/false, llvm::AttributeList(), 3643 IsForDefinition); 3644 // Returns kernel handle for HIP kernel stub function. 3645 if (LangOpts.CUDA && !LangOpts.CUDAIsDevice && 3646 cast<FunctionDecl>(GD.getDecl())->hasAttr<CUDAGlobalAttr>()) { 3647 auto *Handle = getCUDARuntime().getKernelHandle( 3648 cast<llvm::Function>(F->stripPointerCasts()), GD); 3649 if (IsForDefinition) 3650 return F; 3651 return llvm::ConstantExpr::getBitCast(Handle, Ty->getPointerTo()); 3652 } 3653 return F; 3654 } 3655 3656 static const FunctionDecl * 3657 GetRuntimeFunctionDecl(ASTContext &C, StringRef Name) { 3658 TranslationUnitDecl *TUDecl = C.getTranslationUnitDecl(); 3659 DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl); 3660 3661 IdentifierInfo &CII = C.Idents.get(Name); 3662 for (const auto *Result : DC->lookup(&CII)) 3663 if (const auto *FD = dyn_cast<FunctionDecl>(Result)) 3664 return FD; 3665 3666 if (!C.getLangOpts().CPlusPlus) 3667 return nullptr; 3668 3669 // Demangle the premangled name from getTerminateFn() 3670 IdentifierInfo &CXXII = 3671 (Name == "_ZSt9terminatev" || Name == "?terminate@@YAXXZ") 3672 ? C.Idents.get("terminate") 3673 : C.Idents.get(Name); 3674 3675 for (const auto &N : {"__cxxabiv1", "std"}) { 3676 IdentifierInfo &NS = C.Idents.get(N); 3677 for (const auto *Result : DC->lookup(&NS)) { 3678 const NamespaceDecl *ND = dyn_cast<NamespaceDecl>(Result); 3679 if (auto *LSD = dyn_cast<LinkageSpecDecl>(Result)) 3680 for (const auto *Result : LSD->lookup(&NS)) 3681 if ((ND = dyn_cast<NamespaceDecl>(Result))) 3682 break; 3683 3684 if (ND) 3685 for (const auto *Result : ND->lookup(&CXXII)) 3686 if (const auto *FD = dyn_cast<FunctionDecl>(Result)) 3687 return FD; 3688 } 3689 } 3690 3691 return nullptr; 3692 } 3693 3694 /// CreateRuntimeFunction - Create a new runtime function with the specified 3695 /// type and name. 3696 llvm::FunctionCallee 3697 CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy, StringRef Name, 3698 llvm::AttributeList ExtraAttrs, bool Local, 3699 bool AssumeConvergent) { 3700 if (AssumeConvergent) { 3701 ExtraAttrs = 3702 ExtraAttrs.addAttribute(VMContext, llvm::AttributeList::FunctionIndex, 3703 llvm::Attribute::Convergent); 3704 } 3705 3706 llvm::Constant *C = 3707 GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false, 3708 /*DontDefer=*/false, /*IsThunk=*/false, 3709 ExtraAttrs); 3710 3711 if (auto *F = dyn_cast<llvm::Function>(C)) { 3712 if (F->empty()) { 3713 F->setCallingConv(getRuntimeCC()); 3714 3715 // In Windows Itanium environments, try to mark runtime functions 3716 // dllimport. For Mingw and MSVC, don't. We don't really know if the user 3717 // will link their standard library statically or dynamically. Marking 3718 // functions imported when they are not imported can cause linker errors 3719 // and warnings. 3720 if (!Local && getTriple().isWindowsItaniumEnvironment() && 3721 !getCodeGenOpts().LTOVisibilityPublicStd) { 3722 const FunctionDecl *FD = GetRuntimeFunctionDecl(Context, Name); 3723 if (!FD || FD->hasAttr<DLLImportAttr>()) { 3724 F->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass); 3725 F->setLinkage(llvm::GlobalValue::ExternalLinkage); 3726 } 3727 } 3728 setDSOLocal(F); 3729 } 3730 } 3731 3732 return {FTy, C}; 3733 } 3734 3735 /// isTypeConstant - Determine whether an object of this type can be emitted 3736 /// as a constant. 3737 /// 3738 /// If ExcludeCtor is true, the duration when the object's constructor runs 3739 /// will not be considered. The caller will need to verify that the object is 3740 /// not written to during its construction. 3741 bool CodeGenModule::isTypeConstant(QualType Ty, bool ExcludeCtor) { 3742 if (!Ty.isConstant(Context) && !Ty->isReferenceType()) 3743 return false; 3744 3745 if (Context.getLangOpts().CPlusPlus) { 3746 if (const CXXRecordDecl *Record 3747 = Context.getBaseElementType(Ty)->getAsCXXRecordDecl()) 3748 return ExcludeCtor && !Record->hasMutableFields() && 3749 Record->hasTrivialDestructor(); 3750 } 3751 3752 return true; 3753 } 3754 3755 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module, 3756 /// create and return an llvm GlobalVariable with the specified type. If there 3757 /// is something in the module with the specified name, return it potentially 3758 /// bitcasted to the right type. 3759 /// 3760 /// If D is non-null, it specifies a decl that correspond to this. This is used 3761 /// to set the attributes on the global when it is first created. 3762 /// 3763 /// If IsForDefinition is true, it is guaranteed that an actual global with 3764 /// type Ty will be returned, not conversion of a variable with the same 3765 /// mangled name but some other type. 3766 llvm::Constant * 3767 CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName, 3768 llvm::PointerType *Ty, 3769 const VarDecl *D, 3770 ForDefinition_t IsForDefinition) { 3771 // Lookup the entry, lazily creating it if necessary. 3772 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 3773 if (Entry) { 3774 if (WeakRefReferences.erase(Entry)) { 3775 if (D && !D->hasAttr<WeakAttr>()) 3776 Entry->setLinkage(llvm::Function::ExternalLinkage); 3777 } 3778 3779 // Handle dropped DLL attributes. 3780 if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>()) 3781 Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 3782 3783 if (LangOpts.OpenMP && !LangOpts.OpenMPSimd && D) 3784 getOpenMPRuntime().registerTargetGlobalVariable(D, Entry); 3785 3786 if (Entry->getType() == Ty) 3787 return Entry; 3788 3789 // If there are two attempts to define the same mangled name, issue an 3790 // error. 3791 if (IsForDefinition && !Entry->isDeclaration()) { 3792 GlobalDecl OtherGD; 3793 const VarDecl *OtherD; 3794 3795 // Check that D is not yet in DiagnosedConflictingDefinitions is required 3796 // to make sure that we issue an error only once. 3797 if (D && lookupRepresentativeDecl(MangledName, OtherGD) && 3798 (D->getCanonicalDecl() != OtherGD.getCanonicalDecl().getDecl()) && 3799 (OtherD = dyn_cast<VarDecl>(OtherGD.getDecl())) && 3800 OtherD->hasInit() && 3801 DiagnosedConflictingDefinitions.insert(D).second) { 3802 getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name) 3803 << MangledName; 3804 getDiags().Report(OtherGD.getDecl()->getLocation(), 3805 diag::note_previous_definition); 3806 } 3807 } 3808 3809 // Make sure the result is of the correct type. 3810 if (Entry->getType()->getAddressSpace() != Ty->getAddressSpace()) 3811 return llvm::ConstantExpr::getAddrSpaceCast(Entry, Ty); 3812 3813 // (If global is requested for a definition, we always need to create a new 3814 // global, not just return a bitcast.) 3815 if (!IsForDefinition) 3816 return llvm::ConstantExpr::getBitCast(Entry, Ty); 3817 } 3818 3819 auto AddrSpace = GetGlobalVarAddressSpace(D); 3820 auto TargetAddrSpace = getContext().getTargetAddressSpace(AddrSpace); 3821 3822 auto *GV = new llvm::GlobalVariable( 3823 getModule(), Ty->getElementType(), false, 3824 llvm::GlobalValue::ExternalLinkage, nullptr, MangledName, nullptr, 3825 llvm::GlobalVariable::NotThreadLocal, TargetAddrSpace); 3826 3827 // If we already created a global with the same mangled name (but different 3828 // type) before, take its name and remove it from its parent. 3829 if (Entry) { 3830 GV->takeName(Entry); 3831 3832 if (!Entry->use_empty()) { 3833 llvm::Constant *NewPtrForOldDecl = 3834 llvm::ConstantExpr::getBitCast(GV, Entry->getType()); 3835 Entry->replaceAllUsesWith(NewPtrForOldDecl); 3836 } 3837 3838 Entry->eraseFromParent(); 3839 } 3840 3841 // This is the first use or definition of a mangled name. If there is a 3842 // deferred decl with this name, remember that we need to emit it at the end 3843 // of the file. 3844 auto DDI = DeferredDecls.find(MangledName); 3845 if (DDI != DeferredDecls.end()) { 3846 // Move the potentially referenced deferred decl to the DeferredDeclsToEmit 3847 // list, and remove it from DeferredDecls (since we don't need it anymore). 3848 addDeferredDeclToEmit(DDI->second); 3849 DeferredDecls.erase(DDI); 3850 } 3851 3852 // Handle things which are present even on external declarations. 3853 if (D) { 3854 if (LangOpts.OpenMP && !LangOpts.OpenMPSimd) 3855 getOpenMPRuntime().registerTargetGlobalVariable(D, GV); 3856 3857 // FIXME: This code is overly simple and should be merged with other global 3858 // handling. 3859 GV->setConstant(isTypeConstant(D->getType(), false)); 3860 3861 GV->setAlignment(getContext().getDeclAlign(D).getAsAlign()); 3862 3863 setLinkageForGV(GV, D); 3864 3865 if (D->getTLSKind()) { 3866 if (D->getTLSKind() == VarDecl::TLS_Dynamic) 3867 CXXThreadLocals.push_back(D); 3868 setTLSMode(GV, *D); 3869 } 3870 3871 setGVProperties(GV, D); 3872 3873 // If required by the ABI, treat declarations of static data members with 3874 // inline initializers as definitions. 3875 if (getContext().isMSStaticDataMemberInlineDefinition(D)) { 3876 EmitGlobalVarDefinition(D); 3877 } 3878 3879 // Emit section information for extern variables. 3880 if (D->hasExternalStorage()) { 3881 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) 3882 GV->setSection(SA->getName()); 3883 } 3884 3885 // Handle XCore specific ABI requirements. 3886 if (getTriple().getArch() == llvm::Triple::xcore && 3887 D->getLanguageLinkage() == CLanguageLinkage && 3888 D->getType().isConstant(Context) && 3889 isExternallyVisible(D->getLinkageAndVisibility().getLinkage())) 3890 GV->setSection(".cp.rodata"); 3891 3892 // Check if we a have a const declaration with an initializer, we may be 3893 // able to emit it as available_externally to expose it's value to the 3894 // optimizer. 3895 if (Context.getLangOpts().CPlusPlus && GV->hasExternalLinkage() && 3896 D->getType().isConstQualified() && !GV->hasInitializer() && 3897 !D->hasDefinition() && D->hasInit() && !D->hasAttr<DLLImportAttr>()) { 3898 const auto *Record = 3899 Context.getBaseElementType(D->getType())->getAsCXXRecordDecl(); 3900 bool HasMutableFields = Record && Record->hasMutableFields(); 3901 if (!HasMutableFields) { 3902 const VarDecl *InitDecl; 3903 const Expr *InitExpr = D->getAnyInitializer(InitDecl); 3904 if (InitExpr) { 3905 ConstantEmitter emitter(*this); 3906 llvm::Constant *Init = emitter.tryEmitForInitializer(*InitDecl); 3907 if (Init) { 3908 auto *InitType = Init->getType(); 3909 if (GV->getValueType() != InitType) { 3910 // The type of the initializer does not match the definition. 3911 // This happens when an initializer has a different type from 3912 // the type of the global (because of padding at the end of a 3913 // structure for instance). 3914 GV->setName(StringRef()); 3915 // Make a new global with the correct type, this is now guaranteed 3916 // to work. 3917 auto *NewGV = cast<llvm::GlobalVariable>( 3918 GetAddrOfGlobalVar(D, InitType, IsForDefinition) 3919 ->stripPointerCasts()); 3920 3921 // Erase the old global, since it is no longer used. 3922 GV->eraseFromParent(); 3923 GV = NewGV; 3924 } else { 3925 GV->setInitializer(Init); 3926 GV->setConstant(true); 3927 GV->setLinkage(llvm::GlobalValue::AvailableExternallyLinkage); 3928 } 3929 emitter.finalize(GV); 3930 } 3931 } 3932 } 3933 } 3934 } 3935 3936 if (GV->isDeclaration()) { 3937 getTargetCodeGenInfo().setTargetAttributes(D, GV, *this); 3938 // External HIP managed variables needed to be recorded for transformation 3939 // in both device and host compilations. 3940 if (getLangOpts().CUDA && D && D->hasAttr<HIPManagedAttr>() && 3941 D->hasExternalStorage()) 3942 getCUDARuntime().handleVarRegistration(D, *GV); 3943 } 3944 3945 LangAS ExpectedAS = 3946 D ? D->getType().getAddressSpace() 3947 : (LangOpts.OpenCL ? LangAS::opencl_global : LangAS::Default); 3948 assert(getContext().getTargetAddressSpace(ExpectedAS) == 3949 Ty->getPointerAddressSpace()); 3950 if (AddrSpace != ExpectedAS) 3951 return getTargetCodeGenInfo().performAddrSpaceCast(*this, GV, AddrSpace, 3952 ExpectedAS, Ty); 3953 3954 return GV; 3955 } 3956 3957 llvm::Constant * 3958 CodeGenModule::GetAddrOfGlobal(GlobalDecl GD, ForDefinition_t IsForDefinition) { 3959 const Decl *D = GD.getDecl(); 3960 3961 if (isa<CXXConstructorDecl>(D) || isa<CXXDestructorDecl>(D)) 3962 return getAddrOfCXXStructor(GD, /*FnInfo=*/nullptr, /*FnType=*/nullptr, 3963 /*DontDefer=*/false, IsForDefinition); 3964 3965 if (isa<CXXMethodDecl>(D)) { 3966 auto FInfo = 3967 &getTypes().arrangeCXXMethodDeclaration(cast<CXXMethodDecl>(D)); 3968 auto Ty = getTypes().GetFunctionType(*FInfo); 3969 return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false, 3970 IsForDefinition); 3971 } 3972 3973 if (isa<FunctionDecl>(D)) { 3974 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 3975 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 3976 return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false, 3977 IsForDefinition); 3978 } 3979 3980 return GetAddrOfGlobalVar(cast<VarDecl>(D), /*Ty=*/nullptr, IsForDefinition); 3981 } 3982 3983 llvm::GlobalVariable *CodeGenModule::CreateOrReplaceCXXRuntimeVariable( 3984 StringRef Name, llvm::Type *Ty, llvm::GlobalValue::LinkageTypes Linkage, 3985 unsigned Alignment) { 3986 llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name); 3987 llvm::GlobalVariable *OldGV = nullptr; 3988 3989 if (GV) { 3990 // Check if the variable has the right type. 3991 if (GV->getValueType() == Ty) 3992 return GV; 3993 3994 // Because C++ name mangling, the only way we can end up with an already 3995 // existing global with the same name is if it has been declared extern "C". 3996 assert(GV->isDeclaration() && "Declaration has wrong type!"); 3997 OldGV = GV; 3998 } 3999 4000 // Create a new variable. 4001 GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true, 4002 Linkage, nullptr, Name); 4003 4004 if (OldGV) { 4005 // Replace occurrences of the old variable if needed. 4006 GV->takeName(OldGV); 4007 4008 if (!OldGV->use_empty()) { 4009 llvm::Constant *NewPtrForOldDecl = 4010 llvm::ConstantExpr::getBitCast(GV, OldGV->getType()); 4011 OldGV->replaceAllUsesWith(NewPtrForOldDecl); 4012 } 4013 4014 OldGV->eraseFromParent(); 4015 } 4016 4017 if (supportsCOMDAT() && GV->isWeakForLinker() && 4018 !GV->hasAvailableExternallyLinkage()) 4019 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 4020 4021 GV->setAlignment(llvm::MaybeAlign(Alignment)); 4022 4023 return GV; 4024 } 4025 4026 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the 4027 /// given global variable. If Ty is non-null and if the global doesn't exist, 4028 /// then it will be created with the specified type instead of whatever the 4029 /// normal requested type would be. If IsForDefinition is true, it is guaranteed 4030 /// that an actual global with type Ty will be returned, not conversion of a 4031 /// variable with the same mangled name but some other type. 4032 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D, 4033 llvm::Type *Ty, 4034 ForDefinition_t IsForDefinition) { 4035 assert(D->hasGlobalStorage() && "Not a global variable"); 4036 QualType ASTTy = D->getType(); 4037 if (!Ty) 4038 Ty = getTypes().ConvertTypeForMem(ASTTy); 4039 4040 llvm::PointerType *PTy = 4041 llvm::PointerType::get(Ty, getContext().getTargetAddressSpace(ASTTy)); 4042 4043 StringRef MangledName = getMangledName(D); 4044 return GetOrCreateLLVMGlobal(MangledName, PTy, D, IsForDefinition); 4045 } 4046 4047 /// CreateRuntimeVariable - Create a new runtime global variable with the 4048 /// specified type and name. 4049 llvm::Constant * 4050 CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty, 4051 StringRef Name) { 4052 auto PtrTy = 4053 getContext().getLangOpts().OpenCL 4054 ? llvm::PointerType::get( 4055 Ty, getContext().getTargetAddressSpace(LangAS::opencl_global)) 4056 : llvm::PointerType::getUnqual(Ty); 4057 auto *Ret = GetOrCreateLLVMGlobal(Name, PtrTy, nullptr); 4058 setDSOLocal(cast<llvm::GlobalValue>(Ret->stripPointerCasts())); 4059 return Ret; 4060 } 4061 4062 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) { 4063 assert(!D->getInit() && "Cannot emit definite definitions here!"); 4064 4065 StringRef MangledName = getMangledName(D); 4066 llvm::GlobalValue *GV = GetGlobalValue(MangledName); 4067 4068 // We already have a definition, not declaration, with the same mangled name. 4069 // Emitting of declaration is not required (and actually overwrites emitted 4070 // definition). 4071 if (GV && !GV->isDeclaration()) 4072 return; 4073 4074 // If we have not seen a reference to this variable yet, place it into the 4075 // deferred declarations table to be emitted if needed later. 4076 if (!MustBeEmitted(D) && !GV) { 4077 DeferredDecls[MangledName] = D; 4078 return; 4079 } 4080 4081 // The tentative definition is the only definition. 4082 EmitGlobalVarDefinition(D); 4083 } 4084 4085 void CodeGenModule::EmitExternalDeclaration(const VarDecl *D) { 4086 EmitExternalVarDeclaration(D); 4087 } 4088 4089 CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const { 4090 return Context.toCharUnitsFromBits( 4091 getDataLayout().getTypeStoreSizeInBits(Ty)); 4092 } 4093 4094 LangAS CodeGenModule::GetGlobalVarAddressSpace(const VarDecl *D) { 4095 LangAS AddrSpace = LangAS::Default; 4096 if (LangOpts.OpenCL) { 4097 AddrSpace = D ? D->getType().getAddressSpace() : LangAS::opencl_global; 4098 assert(AddrSpace == LangAS::opencl_global || 4099 AddrSpace == LangAS::opencl_global_device || 4100 AddrSpace == LangAS::opencl_global_host || 4101 AddrSpace == LangAS::opencl_constant || 4102 AddrSpace == LangAS::opencl_local || 4103 AddrSpace >= LangAS::FirstTargetAddressSpace); 4104 return AddrSpace; 4105 } 4106 4107 if (LangOpts.CUDA && LangOpts.CUDAIsDevice) { 4108 if (D && D->hasAttr<CUDAConstantAttr>()) 4109 return LangAS::cuda_constant; 4110 else if (D && D->hasAttr<CUDASharedAttr>()) 4111 return LangAS::cuda_shared; 4112 else if (D && D->hasAttr<CUDADeviceAttr>()) 4113 return LangAS::cuda_device; 4114 else if (D && D->getType().isConstQualified()) 4115 return LangAS::cuda_constant; 4116 else 4117 return LangAS::cuda_device; 4118 } 4119 4120 if (LangOpts.OpenMP) { 4121 LangAS AS; 4122 if (OpenMPRuntime->hasAllocateAttributeForGlobalVar(D, AS)) 4123 return AS; 4124 } 4125 return getTargetCodeGenInfo().getGlobalVarAddressSpace(*this, D); 4126 } 4127 4128 LangAS CodeGenModule::getStringLiteralAddressSpace() const { 4129 // OpenCL v1.2 s6.5.3: a string literal is in the constant address space. 4130 if (LangOpts.OpenCL) 4131 return LangAS::opencl_constant; 4132 if (auto AS = getTarget().getConstantAddressSpace()) 4133 return AS.getValue(); 4134 return LangAS::Default; 4135 } 4136 4137 // In address space agnostic languages, string literals are in default address 4138 // space in AST. However, certain targets (e.g. amdgcn) request them to be 4139 // emitted in constant address space in LLVM IR. To be consistent with other 4140 // parts of AST, string literal global variables in constant address space 4141 // need to be casted to default address space before being put into address 4142 // map and referenced by other part of CodeGen. 4143 // In OpenCL, string literals are in constant address space in AST, therefore 4144 // they should not be casted to default address space. 4145 static llvm::Constant * 4146 castStringLiteralToDefaultAddressSpace(CodeGenModule &CGM, 4147 llvm::GlobalVariable *GV) { 4148 llvm::Constant *Cast = GV; 4149 if (!CGM.getLangOpts().OpenCL) { 4150 if (auto AS = CGM.getTarget().getConstantAddressSpace()) { 4151 if (AS != LangAS::Default) 4152 Cast = CGM.getTargetCodeGenInfo().performAddrSpaceCast( 4153 CGM, GV, AS.getValue(), LangAS::Default, 4154 GV->getValueType()->getPointerTo( 4155 CGM.getContext().getTargetAddressSpace(LangAS::Default))); 4156 } 4157 } 4158 return Cast; 4159 } 4160 4161 template<typename SomeDecl> 4162 void CodeGenModule::MaybeHandleStaticInExternC(const SomeDecl *D, 4163 llvm::GlobalValue *GV) { 4164 if (!getLangOpts().CPlusPlus) 4165 return; 4166 4167 // Must have 'used' attribute, or else inline assembly can't rely on 4168 // the name existing. 4169 if (!D->template hasAttr<UsedAttr>()) 4170 return; 4171 4172 // Must have internal linkage and an ordinary name. 4173 if (!D->getIdentifier() || D->getFormalLinkage() != InternalLinkage) 4174 return; 4175 4176 // Must be in an extern "C" context. Entities declared directly within 4177 // a record are not extern "C" even if the record is in such a context. 4178 const SomeDecl *First = D->getFirstDecl(); 4179 if (First->getDeclContext()->isRecord() || !First->isInExternCContext()) 4180 return; 4181 4182 // OK, this is an internal linkage entity inside an extern "C" linkage 4183 // specification. Make a note of that so we can give it the "expected" 4184 // mangled name if nothing else is using that name. 4185 std::pair<StaticExternCMap::iterator, bool> R = 4186 StaticExternCValues.insert(std::make_pair(D->getIdentifier(), GV)); 4187 4188 // If we have multiple internal linkage entities with the same name 4189 // in extern "C" regions, none of them gets that name. 4190 if (!R.second) 4191 R.first->second = nullptr; 4192 } 4193 4194 static bool shouldBeInCOMDAT(CodeGenModule &CGM, const Decl &D) { 4195 if (!CGM.supportsCOMDAT()) 4196 return false; 4197 4198 // Do not set COMDAT attribute for CUDA/HIP stub functions to prevent 4199 // them being "merged" by the COMDAT Folding linker optimization. 4200 if (D.hasAttr<CUDAGlobalAttr>()) 4201 return false; 4202 4203 if (D.hasAttr<SelectAnyAttr>()) 4204 return true; 4205 4206 GVALinkage Linkage; 4207 if (auto *VD = dyn_cast<VarDecl>(&D)) 4208 Linkage = CGM.getContext().GetGVALinkageForVariable(VD); 4209 else 4210 Linkage = CGM.getContext().GetGVALinkageForFunction(cast<FunctionDecl>(&D)); 4211 4212 switch (Linkage) { 4213 case GVA_Internal: 4214 case GVA_AvailableExternally: 4215 case GVA_StrongExternal: 4216 return false; 4217 case GVA_DiscardableODR: 4218 case GVA_StrongODR: 4219 return true; 4220 } 4221 llvm_unreachable("No such linkage"); 4222 } 4223 4224 void CodeGenModule::maybeSetTrivialComdat(const Decl &D, 4225 llvm::GlobalObject &GO) { 4226 if (!shouldBeInCOMDAT(*this, D)) 4227 return; 4228 GO.setComdat(TheModule.getOrInsertComdat(GO.getName())); 4229 } 4230 4231 /// Pass IsTentative as true if you want to create a tentative definition. 4232 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D, 4233 bool IsTentative) { 4234 // OpenCL global variables of sampler type are translated to function calls, 4235 // therefore no need to be translated. 4236 QualType ASTTy = D->getType(); 4237 if (getLangOpts().OpenCL && ASTTy->isSamplerT()) 4238 return; 4239 4240 // If this is OpenMP device, check if it is legal to emit this global 4241 // normally. 4242 if (LangOpts.OpenMPIsDevice && OpenMPRuntime && 4243 OpenMPRuntime->emitTargetGlobalVariable(D)) 4244 return; 4245 4246 llvm::Constant *Init = nullptr; 4247 bool NeedsGlobalCtor = false; 4248 bool NeedsGlobalDtor = 4249 D->needsDestruction(getContext()) == QualType::DK_cxx_destructor; 4250 4251 const VarDecl *InitDecl; 4252 const Expr *InitExpr = D->getAnyInitializer(InitDecl); 4253 4254 Optional<ConstantEmitter> emitter; 4255 4256 // CUDA E.2.4.1 "__shared__ variables cannot have an initialization 4257 // as part of their declaration." Sema has already checked for 4258 // error cases, so we just need to set Init to UndefValue. 4259 bool IsCUDASharedVar = 4260 getLangOpts().CUDAIsDevice && D->hasAttr<CUDASharedAttr>(); 4261 // Shadows of initialized device-side global variables are also left 4262 // undefined. 4263 // Managed Variables should be initialized on both host side and device side. 4264 bool IsCUDAShadowVar = 4265 !getLangOpts().CUDAIsDevice && !D->hasAttr<HIPManagedAttr>() && 4266 (D->hasAttr<CUDAConstantAttr>() || D->hasAttr<CUDADeviceAttr>() || 4267 D->hasAttr<CUDASharedAttr>()); 4268 bool IsCUDADeviceShadowVar = 4269 getLangOpts().CUDAIsDevice && !D->hasAttr<HIPManagedAttr>() && 4270 (D->getType()->isCUDADeviceBuiltinSurfaceType() || 4271 D->getType()->isCUDADeviceBuiltinTextureType()); 4272 if (getLangOpts().CUDA && 4273 (IsCUDASharedVar || IsCUDAShadowVar || IsCUDADeviceShadowVar)) 4274 Init = llvm::UndefValue::get(getTypes().ConvertTypeForMem(ASTTy)); 4275 else if (D->hasAttr<LoaderUninitializedAttr>()) 4276 Init = llvm::UndefValue::get(getTypes().ConvertTypeForMem(ASTTy)); 4277 else if (!InitExpr) { 4278 // This is a tentative definition; tentative definitions are 4279 // implicitly initialized with { 0 }. 4280 // 4281 // Note that tentative definitions are only emitted at the end of 4282 // a translation unit, so they should never have incomplete 4283 // type. In addition, EmitTentativeDefinition makes sure that we 4284 // never attempt to emit a tentative definition if a real one 4285 // exists. A use may still exists, however, so we still may need 4286 // to do a RAUW. 4287 assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type"); 4288 Init = EmitNullConstant(D->getType()); 4289 } else { 4290 initializedGlobalDecl = GlobalDecl(D); 4291 emitter.emplace(*this); 4292 Init = emitter->tryEmitForInitializer(*InitDecl); 4293 4294 if (!Init) { 4295 QualType T = InitExpr->getType(); 4296 if (D->getType()->isReferenceType()) 4297 T = D->getType(); 4298 4299 if (getLangOpts().CPlusPlus) { 4300 Init = EmitNullConstant(T); 4301 NeedsGlobalCtor = true; 4302 } else { 4303 ErrorUnsupported(D, "static initializer"); 4304 Init = llvm::UndefValue::get(getTypes().ConvertType(T)); 4305 } 4306 } else { 4307 // We don't need an initializer, so remove the entry for the delayed 4308 // initializer position (just in case this entry was delayed) if we 4309 // also don't need to register a destructor. 4310 if (getLangOpts().CPlusPlus && !NeedsGlobalDtor) 4311 DelayedCXXInitPosition.erase(D); 4312 } 4313 } 4314 4315 llvm::Type* InitType = Init->getType(); 4316 llvm::Constant *Entry = 4317 GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative)); 4318 4319 // Strip off pointer casts if we got them. 4320 Entry = Entry->stripPointerCasts(); 4321 4322 // Entry is now either a Function or GlobalVariable. 4323 auto *GV = dyn_cast<llvm::GlobalVariable>(Entry); 4324 4325 // We have a definition after a declaration with the wrong type. 4326 // We must make a new GlobalVariable* and update everything that used OldGV 4327 // (a declaration or tentative definition) with the new GlobalVariable* 4328 // (which will be a definition). 4329 // 4330 // This happens if there is a prototype for a global (e.g. 4331 // "extern int x[];") and then a definition of a different type (e.g. 4332 // "int x[10];"). This also happens when an initializer has a different type 4333 // from the type of the global (this happens with unions). 4334 if (!GV || GV->getValueType() != InitType || 4335 GV->getType()->getAddressSpace() != 4336 getContext().getTargetAddressSpace(GetGlobalVarAddressSpace(D))) { 4337 4338 // Move the old entry aside so that we'll create a new one. 4339 Entry->setName(StringRef()); 4340 4341 // Make a new global with the correct type, this is now guaranteed to work. 4342 GV = cast<llvm::GlobalVariable>( 4343 GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative)) 4344 ->stripPointerCasts()); 4345 4346 // Replace all uses of the old global with the new global 4347 llvm::Constant *NewPtrForOldDecl = 4348 llvm::ConstantExpr::getBitCast(GV, Entry->getType()); 4349 Entry->replaceAllUsesWith(NewPtrForOldDecl); 4350 4351 // Erase the old global, since it is no longer used. 4352 cast<llvm::GlobalValue>(Entry)->eraseFromParent(); 4353 } 4354 4355 MaybeHandleStaticInExternC(D, GV); 4356 4357 if (D->hasAttr<AnnotateAttr>()) 4358 AddGlobalAnnotations(D, GV); 4359 4360 // Set the llvm linkage type as appropriate. 4361 llvm::GlobalValue::LinkageTypes Linkage = 4362 getLLVMLinkageVarDefinition(D, GV->isConstant()); 4363 4364 // CUDA B.2.1 "The __device__ qualifier declares a variable that resides on 4365 // the device. [...]" 4366 // CUDA B.2.2 "The __constant__ qualifier, optionally used together with 4367 // __device__, declares a variable that: [...] 4368 // Is accessible from all the threads within the grid and from the host 4369 // through the runtime library (cudaGetSymbolAddress() / cudaGetSymbolSize() 4370 // / cudaMemcpyToSymbol() / cudaMemcpyFromSymbol())." 4371 if (GV && LangOpts.CUDA) { 4372 if (LangOpts.CUDAIsDevice) { 4373 if (Linkage != llvm::GlobalValue::InternalLinkage && 4374 (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>())) 4375 GV->setExternallyInitialized(true); 4376 } else { 4377 getCUDARuntime().internalizeDeviceSideVar(D, Linkage); 4378 } 4379 getCUDARuntime().handleVarRegistration(D, *GV); 4380 } 4381 4382 GV->setInitializer(Init); 4383 if (emitter) 4384 emitter->finalize(GV); 4385 4386 // If it is safe to mark the global 'constant', do so now. 4387 GV->setConstant(!NeedsGlobalCtor && !NeedsGlobalDtor && 4388 isTypeConstant(D->getType(), true)); 4389 4390 // If it is in a read-only section, mark it 'constant'. 4391 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) { 4392 const ASTContext::SectionInfo &SI = Context.SectionInfos[SA->getName()]; 4393 if ((SI.SectionFlags & ASTContext::PSF_Write) == 0) 4394 GV->setConstant(true); 4395 } 4396 4397 GV->setAlignment(getContext().getDeclAlign(D).getAsAlign()); 4398 4399 // On Darwin, unlike other Itanium C++ ABI platforms, the thread-wrapper 4400 // function is only defined alongside the variable, not also alongside 4401 // callers. Normally, all accesses to a thread_local go through the 4402 // thread-wrapper in order to ensure initialization has occurred, underlying 4403 // variable will never be used other than the thread-wrapper, so it can be 4404 // converted to internal linkage. 4405 // 4406 // However, if the variable has the 'constinit' attribute, it _can_ be 4407 // referenced directly, without calling the thread-wrapper, so the linkage 4408 // must not be changed. 4409 // 4410 // Additionally, if the variable isn't plain external linkage, e.g. if it's 4411 // weak or linkonce, the de-duplication semantics are important to preserve, 4412 // so we don't change the linkage. 4413 if (D->getTLSKind() == VarDecl::TLS_Dynamic && 4414 Linkage == llvm::GlobalValue::ExternalLinkage && 4415 Context.getTargetInfo().getTriple().isOSDarwin() && 4416 !D->hasAttr<ConstInitAttr>()) 4417 Linkage = llvm::GlobalValue::InternalLinkage; 4418 4419 GV->setLinkage(Linkage); 4420 if (D->hasAttr<DLLImportAttr>()) 4421 GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass); 4422 else if (D->hasAttr<DLLExportAttr>()) 4423 GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass); 4424 else 4425 GV->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass); 4426 4427 if (Linkage == llvm::GlobalVariable::CommonLinkage) { 4428 // common vars aren't constant even if declared const. 4429 GV->setConstant(false); 4430 // Tentative definition of global variables may be initialized with 4431 // non-zero null pointers. In this case they should have weak linkage 4432 // since common linkage must have zero initializer and must not have 4433 // explicit section therefore cannot have non-zero initial value. 4434 if (!GV->getInitializer()->isNullValue()) 4435 GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage); 4436 } 4437 4438 setNonAliasAttributes(D, GV); 4439 4440 if (D->getTLSKind() && !GV->isThreadLocal()) { 4441 if (D->getTLSKind() == VarDecl::TLS_Dynamic) 4442 CXXThreadLocals.push_back(D); 4443 setTLSMode(GV, *D); 4444 } 4445 4446 maybeSetTrivialComdat(*D, *GV); 4447 4448 // Emit the initializer function if necessary. 4449 if (NeedsGlobalCtor || NeedsGlobalDtor) 4450 EmitCXXGlobalVarDeclInitFunc(D, GV, NeedsGlobalCtor); 4451 4452 SanitizerMD->reportGlobalToASan(GV, *D, NeedsGlobalCtor); 4453 4454 // Emit global variable debug information. 4455 if (CGDebugInfo *DI = getModuleDebugInfo()) 4456 if (getCodeGenOpts().hasReducedDebugInfo()) 4457 DI->EmitGlobalVariable(GV, D); 4458 } 4459 4460 void CodeGenModule::EmitExternalVarDeclaration(const VarDecl *D) { 4461 if (CGDebugInfo *DI = getModuleDebugInfo()) 4462 if (getCodeGenOpts().hasReducedDebugInfo()) { 4463 QualType ASTTy = D->getType(); 4464 llvm::Type *Ty = getTypes().ConvertTypeForMem(D->getType()); 4465 llvm::PointerType *PTy = 4466 llvm::PointerType::get(Ty, getContext().getTargetAddressSpace(ASTTy)); 4467 llvm::Constant *GV = GetOrCreateLLVMGlobal(D->getName(), PTy, D); 4468 DI->EmitExternalVariable( 4469 cast<llvm::GlobalVariable>(GV->stripPointerCasts()), D); 4470 } 4471 } 4472 4473 static bool isVarDeclStrongDefinition(const ASTContext &Context, 4474 CodeGenModule &CGM, const VarDecl *D, 4475 bool NoCommon) { 4476 // Don't give variables common linkage if -fno-common was specified unless it 4477 // was overridden by a NoCommon attribute. 4478 if ((NoCommon || D->hasAttr<NoCommonAttr>()) && !D->hasAttr<CommonAttr>()) 4479 return true; 4480 4481 // C11 6.9.2/2: 4482 // A declaration of an identifier for an object that has file scope without 4483 // an initializer, and without a storage-class specifier or with the 4484 // storage-class specifier static, constitutes a tentative definition. 4485 if (D->getInit() || D->hasExternalStorage()) 4486 return true; 4487 4488 // A variable cannot be both common and exist in a section. 4489 if (D->hasAttr<SectionAttr>()) 4490 return true; 4491 4492 // A variable cannot be both common and exist in a section. 4493 // We don't try to determine which is the right section in the front-end. 4494 // If no specialized section name is applicable, it will resort to default. 4495 if (D->hasAttr<PragmaClangBSSSectionAttr>() || 4496 D->hasAttr<PragmaClangDataSectionAttr>() || 4497 D->hasAttr<PragmaClangRelroSectionAttr>() || 4498 D->hasAttr<PragmaClangRodataSectionAttr>()) 4499 return true; 4500 4501 // Thread local vars aren't considered common linkage. 4502 if (D->getTLSKind()) 4503 return true; 4504 4505 // Tentative definitions marked with WeakImportAttr are true definitions. 4506 if (D->hasAttr<WeakImportAttr>()) 4507 return true; 4508 4509 // A variable cannot be both common and exist in a comdat. 4510 if (shouldBeInCOMDAT(CGM, *D)) 4511 return true; 4512 4513 // Declarations with a required alignment do not have common linkage in MSVC 4514 // mode. 4515 if (Context.getTargetInfo().getCXXABI().isMicrosoft()) { 4516 if (D->hasAttr<AlignedAttr>()) 4517 return true; 4518 QualType VarType = D->getType(); 4519 if (Context.isAlignmentRequired(VarType)) 4520 return true; 4521 4522 if (const auto *RT = VarType->getAs<RecordType>()) { 4523 const RecordDecl *RD = RT->getDecl(); 4524 for (const FieldDecl *FD : RD->fields()) { 4525 if (FD->isBitField()) 4526 continue; 4527 if (FD->hasAttr<AlignedAttr>()) 4528 return true; 4529 if (Context.isAlignmentRequired(FD->getType())) 4530 return true; 4531 } 4532 } 4533 } 4534 4535 // Microsoft's link.exe doesn't support alignments greater than 32 bytes for 4536 // common symbols, so symbols with greater alignment requirements cannot be 4537 // common. 4538 // Other COFF linkers (ld.bfd and LLD) support arbitrary power-of-two 4539 // alignments for common symbols via the aligncomm directive, so this 4540 // restriction only applies to MSVC environments. 4541 if (Context.getTargetInfo().getTriple().isKnownWindowsMSVCEnvironment() && 4542 Context.getTypeAlignIfKnown(D->getType()) > 4543 Context.toBits(CharUnits::fromQuantity(32))) 4544 return true; 4545 4546 return false; 4547 } 4548 4549 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageForDeclarator( 4550 const DeclaratorDecl *D, GVALinkage Linkage, bool IsConstantVariable) { 4551 if (Linkage == GVA_Internal) 4552 return llvm::Function::InternalLinkage; 4553 4554 if (D->hasAttr<WeakAttr>()) { 4555 if (IsConstantVariable) 4556 return llvm::GlobalVariable::WeakODRLinkage; 4557 else 4558 return llvm::GlobalVariable::WeakAnyLinkage; 4559 } 4560 4561 if (const auto *FD = D->getAsFunction()) 4562 if (FD->isMultiVersion() && Linkage == GVA_AvailableExternally) 4563 return llvm::GlobalVariable::LinkOnceAnyLinkage; 4564 4565 // We are guaranteed to have a strong definition somewhere else, 4566 // so we can use available_externally linkage. 4567 if (Linkage == GVA_AvailableExternally) 4568 return llvm::GlobalValue::AvailableExternallyLinkage; 4569 4570 // Note that Apple's kernel linker doesn't support symbol 4571 // coalescing, so we need to avoid linkonce and weak linkages there. 4572 // Normally, this means we just map to internal, but for explicit 4573 // instantiations we'll map to external. 4574 4575 // In C++, the compiler has to emit a definition in every translation unit 4576 // that references the function. We should use linkonce_odr because 4577 // a) if all references in this translation unit are optimized away, we 4578 // don't need to codegen it. b) if the function persists, it needs to be 4579 // merged with other definitions. c) C++ has the ODR, so we know the 4580 // definition is dependable. 4581 if (Linkage == GVA_DiscardableODR) 4582 return !Context.getLangOpts().AppleKext ? llvm::Function::LinkOnceODRLinkage 4583 : llvm::Function::InternalLinkage; 4584 4585 // An explicit instantiation of a template has weak linkage, since 4586 // explicit instantiations can occur in multiple translation units 4587 // and must all be equivalent. However, we are not allowed to 4588 // throw away these explicit instantiations. 4589 // 4590 // CUDA/HIP: For -fno-gpu-rdc case, device code is limited to one TU, 4591 // so say that CUDA templates are either external (for kernels) or internal. 4592 // This lets llvm perform aggressive inter-procedural optimizations. For 4593 // -fgpu-rdc case, device function calls across multiple TU's are allowed, 4594 // therefore we need to follow the normal linkage paradigm. 4595 if (Linkage == GVA_StrongODR) { 4596 if (getLangOpts().AppleKext) 4597 return llvm::Function::ExternalLinkage; 4598 if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice && 4599 !getLangOpts().GPURelocatableDeviceCode) 4600 return D->hasAttr<CUDAGlobalAttr>() ? llvm::Function::ExternalLinkage 4601 : llvm::Function::InternalLinkage; 4602 return llvm::Function::WeakODRLinkage; 4603 } 4604 4605 // C++ doesn't have tentative definitions and thus cannot have common 4606 // linkage. 4607 if (!getLangOpts().CPlusPlus && isa<VarDecl>(D) && 4608 !isVarDeclStrongDefinition(Context, *this, cast<VarDecl>(D), 4609 CodeGenOpts.NoCommon)) 4610 return llvm::GlobalVariable::CommonLinkage; 4611 4612 // selectany symbols are externally visible, so use weak instead of 4613 // linkonce. MSVC optimizes away references to const selectany globals, so 4614 // all definitions should be the same and ODR linkage should be used. 4615 // http://msdn.microsoft.com/en-us/library/5tkz6s71.aspx 4616 if (D->hasAttr<SelectAnyAttr>()) 4617 return llvm::GlobalVariable::WeakODRLinkage; 4618 4619 // Otherwise, we have strong external linkage. 4620 assert(Linkage == GVA_StrongExternal); 4621 return llvm::GlobalVariable::ExternalLinkage; 4622 } 4623 4624 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageVarDefinition( 4625 const VarDecl *VD, bool IsConstant) { 4626 GVALinkage Linkage = getContext().GetGVALinkageForVariable(VD); 4627 return getLLVMLinkageForDeclarator(VD, Linkage, IsConstant); 4628 } 4629 4630 /// Replace the uses of a function that was declared with a non-proto type. 4631 /// We want to silently drop extra arguments from call sites 4632 static void replaceUsesOfNonProtoConstant(llvm::Constant *old, 4633 llvm::Function *newFn) { 4634 // Fast path. 4635 if (old->use_empty()) return; 4636 4637 llvm::Type *newRetTy = newFn->getReturnType(); 4638 SmallVector<llvm::Value*, 4> newArgs; 4639 4640 for (llvm::Value::use_iterator ui = old->use_begin(), ue = old->use_end(); 4641 ui != ue; ) { 4642 llvm::Value::use_iterator use = ui++; // Increment before the use is erased. 4643 llvm::User *user = use->getUser(); 4644 4645 // Recognize and replace uses of bitcasts. Most calls to 4646 // unprototyped functions will use bitcasts. 4647 if (auto *bitcast = dyn_cast<llvm::ConstantExpr>(user)) { 4648 if (bitcast->getOpcode() == llvm::Instruction::BitCast) 4649 replaceUsesOfNonProtoConstant(bitcast, newFn); 4650 continue; 4651 } 4652 4653 // Recognize calls to the function. 4654 llvm::CallBase *callSite = dyn_cast<llvm::CallBase>(user); 4655 if (!callSite) continue; 4656 if (!callSite->isCallee(&*use)) 4657 continue; 4658 4659 // If the return types don't match exactly, then we can't 4660 // transform this call unless it's dead. 4661 if (callSite->getType() != newRetTy && !callSite->use_empty()) 4662 continue; 4663 4664 // Get the call site's attribute list. 4665 SmallVector<llvm::AttributeSet, 8> newArgAttrs; 4666 llvm::AttributeList oldAttrs = callSite->getAttributes(); 4667 4668 // If the function was passed too few arguments, don't transform. 4669 unsigned newNumArgs = newFn->arg_size(); 4670 if (callSite->arg_size() < newNumArgs) 4671 continue; 4672 4673 // If extra arguments were passed, we silently drop them. 4674 // If any of the types mismatch, we don't transform. 4675 unsigned argNo = 0; 4676 bool dontTransform = false; 4677 for (llvm::Argument &A : newFn->args()) { 4678 if (callSite->getArgOperand(argNo)->getType() != A.getType()) { 4679 dontTransform = true; 4680 break; 4681 } 4682 4683 // Add any parameter attributes. 4684 newArgAttrs.push_back(oldAttrs.getParamAttributes(argNo)); 4685 argNo++; 4686 } 4687 if (dontTransform) 4688 continue; 4689 4690 // Okay, we can transform this. Create the new call instruction and copy 4691 // over the required information. 4692 newArgs.append(callSite->arg_begin(), callSite->arg_begin() + argNo); 4693 4694 // Copy over any operand bundles. 4695 SmallVector<llvm::OperandBundleDef, 1> newBundles; 4696 callSite->getOperandBundlesAsDefs(newBundles); 4697 4698 llvm::CallBase *newCall; 4699 if (dyn_cast<llvm::CallInst>(callSite)) { 4700 newCall = 4701 llvm::CallInst::Create(newFn, newArgs, newBundles, "", callSite); 4702 } else { 4703 auto *oldInvoke = cast<llvm::InvokeInst>(callSite); 4704 newCall = llvm::InvokeInst::Create(newFn, oldInvoke->getNormalDest(), 4705 oldInvoke->getUnwindDest(), newArgs, 4706 newBundles, "", callSite); 4707 } 4708 newArgs.clear(); // for the next iteration 4709 4710 if (!newCall->getType()->isVoidTy()) 4711 newCall->takeName(callSite); 4712 newCall->setAttributes(llvm::AttributeList::get( 4713 newFn->getContext(), oldAttrs.getFnAttributes(), 4714 oldAttrs.getRetAttributes(), newArgAttrs)); 4715 newCall->setCallingConv(callSite->getCallingConv()); 4716 4717 // Finally, remove the old call, replacing any uses with the new one. 4718 if (!callSite->use_empty()) 4719 callSite->replaceAllUsesWith(newCall); 4720 4721 // Copy debug location attached to CI. 4722 if (callSite->getDebugLoc()) 4723 newCall->setDebugLoc(callSite->getDebugLoc()); 4724 4725 callSite->eraseFromParent(); 4726 } 4727 } 4728 4729 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we 4730 /// implement a function with no prototype, e.g. "int foo() {}". If there are 4731 /// existing call uses of the old function in the module, this adjusts them to 4732 /// call the new function directly. 4733 /// 4734 /// This is not just a cleanup: the always_inline pass requires direct calls to 4735 /// functions to be able to inline them. If there is a bitcast in the way, it 4736 /// won't inline them. Instcombine normally deletes these calls, but it isn't 4737 /// run at -O0. 4738 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old, 4739 llvm::Function *NewFn) { 4740 // If we're redefining a global as a function, don't transform it. 4741 if (!isa<llvm::Function>(Old)) return; 4742 4743 replaceUsesOfNonProtoConstant(Old, NewFn); 4744 } 4745 4746 void CodeGenModule::HandleCXXStaticMemberVarInstantiation(VarDecl *VD) { 4747 auto DK = VD->isThisDeclarationADefinition(); 4748 if (DK == VarDecl::Definition && VD->hasAttr<DLLImportAttr>()) 4749 return; 4750 4751 TemplateSpecializationKind TSK = VD->getTemplateSpecializationKind(); 4752 // If we have a definition, this might be a deferred decl. If the 4753 // instantiation is explicit, make sure we emit it at the end. 4754 if (VD->getDefinition() && TSK == TSK_ExplicitInstantiationDefinition) 4755 GetAddrOfGlobalVar(VD); 4756 4757 EmitTopLevelDecl(VD); 4758 } 4759 4760 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD, 4761 llvm::GlobalValue *GV) { 4762 const auto *D = cast<FunctionDecl>(GD.getDecl()); 4763 4764 // Compute the function info and LLVM type. 4765 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 4766 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 4767 4768 // Get or create the prototype for the function. 4769 if (!GV || (GV->getValueType() != Ty)) 4770 GV = cast<llvm::GlobalValue>(GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, 4771 /*DontDefer=*/true, 4772 ForDefinition)); 4773 4774 // Already emitted. 4775 if (!GV->isDeclaration()) 4776 return; 4777 4778 // We need to set linkage and visibility on the function before 4779 // generating code for it because various parts of IR generation 4780 // want to propagate this information down (e.g. to local static 4781 // declarations). 4782 auto *Fn = cast<llvm::Function>(GV); 4783 setFunctionLinkage(GD, Fn); 4784 4785 // FIXME: this is redundant with part of setFunctionDefinitionAttributes 4786 setGVProperties(Fn, GD); 4787 4788 MaybeHandleStaticInExternC(D, Fn); 4789 4790 maybeSetTrivialComdat(*D, *Fn); 4791 4792 // Set CodeGen attributes that represent floating point environment. 4793 setLLVMFunctionFEnvAttributes(D, Fn); 4794 4795 CodeGenFunction(*this).GenerateCode(GD, Fn, FI); 4796 4797 setNonAliasAttributes(GD, Fn); 4798 SetLLVMFunctionAttributesForDefinition(D, Fn); 4799 4800 if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>()) 4801 AddGlobalCtor(Fn, CA->getPriority()); 4802 if (const DestructorAttr *DA = D->getAttr<DestructorAttr>()) 4803 AddGlobalDtor(Fn, DA->getPriority(), true); 4804 if (D->hasAttr<AnnotateAttr>()) 4805 AddGlobalAnnotations(D, Fn); 4806 } 4807 4808 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) { 4809 const auto *D = cast<ValueDecl>(GD.getDecl()); 4810 const AliasAttr *AA = D->getAttr<AliasAttr>(); 4811 assert(AA && "Not an alias?"); 4812 4813 StringRef MangledName = getMangledName(GD); 4814 4815 if (AA->getAliasee() == MangledName) { 4816 Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0; 4817 return; 4818 } 4819 4820 // If there is a definition in the module, then it wins over the alias. 4821 // This is dubious, but allow it to be safe. Just ignore the alias. 4822 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 4823 if (Entry && !Entry->isDeclaration()) 4824 return; 4825 4826 Aliases.push_back(GD); 4827 4828 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType()); 4829 4830 // Create a reference to the named value. This ensures that it is emitted 4831 // if a deferred decl. 4832 llvm::Constant *Aliasee; 4833 llvm::GlobalValue::LinkageTypes LT; 4834 if (isa<llvm::FunctionType>(DeclTy)) { 4835 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GD, 4836 /*ForVTable=*/false); 4837 LT = getFunctionLinkage(GD); 4838 } else { 4839 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), 4840 llvm::PointerType::getUnqual(DeclTy), 4841 /*D=*/nullptr); 4842 if (const auto *VD = dyn_cast<VarDecl>(GD.getDecl())) 4843 LT = getLLVMLinkageVarDefinition(VD, D->getType().isConstQualified()); 4844 else 4845 LT = getFunctionLinkage(GD); 4846 } 4847 4848 // Create the new alias itself, but don't set a name yet. 4849 unsigned AS = Aliasee->getType()->getPointerAddressSpace(); 4850 auto *GA = 4851 llvm::GlobalAlias::create(DeclTy, AS, LT, "", Aliasee, &getModule()); 4852 4853 if (Entry) { 4854 if (GA->getAliasee() == Entry) { 4855 Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0; 4856 return; 4857 } 4858 4859 assert(Entry->isDeclaration()); 4860 4861 // If there is a declaration in the module, then we had an extern followed 4862 // by the alias, as in: 4863 // extern int test6(); 4864 // ... 4865 // int test6() __attribute__((alias("test7"))); 4866 // 4867 // Remove it and replace uses of it with the alias. 4868 GA->takeName(Entry); 4869 4870 Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA, 4871 Entry->getType())); 4872 Entry->eraseFromParent(); 4873 } else { 4874 GA->setName(MangledName); 4875 } 4876 4877 // Set attributes which are particular to an alias; this is a 4878 // specialization of the attributes which may be set on a global 4879 // variable/function. 4880 if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakRefAttr>() || 4881 D->isWeakImported()) { 4882 GA->setLinkage(llvm::Function::WeakAnyLinkage); 4883 } 4884 4885 if (const auto *VD = dyn_cast<VarDecl>(D)) 4886 if (VD->getTLSKind()) 4887 setTLSMode(GA, *VD); 4888 4889 SetCommonAttributes(GD, GA); 4890 } 4891 4892 void CodeGenModule::emitIFuncDefinition(GlobalDecl GD) { 4893 const auto *D = cast<ValueDecl>(GD.getDecl()); 4894 const IFuncAttr *IFA = D->getAttr<IFuncAttr>(); 4895 assert(IFA && "Not an ifunc?"); 4896 4897 StringRef MangledName = getMangledName(GD); 4898 4899 if (IFA->getResolver() == MangledName) { 4900 Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1; 4901 return; 4902 } 4903 4904 // Report an error if some definition overrides ifunc. 4905 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 4906 if (Entry && !Entry->isDeclaration()) { 4907 GlobalDecl OtherGD; 4908 if (lookupRepresentativeDecl(MangledName, OtherGD) && 4909 DiagnosedConflictingDefinitions.insert(GD).second) { 4910 Diags.Report(D->getLocation(), diag::err_duplicate_mangled_name) 4911 << MangledName; 4912 Diags.Report(OtherGD.getDecl()->getLocation(), 4913 diag::note_previous_definition); 4914 } 4915 return; 4916 } 4917 4918 Aliases.push_back(GD); 4919 4920 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType()); 4921 llvm::Constant *Resolver = 4922 GetOrCreateLLVMFunction(IFA->getResolver(), DeclTy, GD, 4923 /*ForVTable=*/false); 4924 llvm::GlobalIFunc *GIF = 4925 llvm::GlobalIFunc::create(DeclTy, 0, llvm::Function::ExternalLinkage, 4926 "", Resolver, &getModule()); 4927 if (Entry) { 4928 if (GIF->getResolver() == Entry) { 4929 Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1; 4930 return; 4931 } 4932 assert(Entry->isDeclaration()); 4933 4934 // If there is a declaration in the module, then we had an extern followed 4935 // by the ifunc, as in: 4936 // extern int test(); 4937 // ... 4938 // int test() __attribute__((ifunc("resolver"))); 4939 // 4940 // Remove it and replace uses of it with the ifunc. 4941 GIF->takeName(Entry); 4942 4943 Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GIF, 4944 Entry->getType())); 4945 Entry->eraseFromParent(); 4946 } else 4947 GIF->setName(MangledName); 4948 4949 SetCommonAttributes(GD, GIF); 4950 } 4951 4952 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID, 4953 ArrayRef<llvm::Type*> Tys) { 4954 return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID, 4955 Tys); 4956 } 4957 4958 static llvm::StringMapEntry<llvm::GlobalVariable *> & 4959 GetConstantCFStringEntry(llvm::StringMap<llvm::GlobalVariable *> &Map, 4960 const StringLiteral *Literal, bool TargetIsLSB, 4961 bool &IsUTF16, unsigned &StringLength) { 4962 StringRef String = Literal->getString(); 4963 unsigned NumBytes = String.size(); 4964 4965 // Check for simple case. 4966 if (!Literal->containsNonAsciiOrNull()) { 4967 StringLength = NumBytes; 4968 return *Map.insert(std::make_pair(String, nullptr)).first; 4969 } 4970 4971 // Otherwise, convert the UTF8 literals into a string of shorts. 4972 IsUTF16 = true; 4973 4974 SmallVector<llvm::UTF16, 128> ToBuf(NumBytes + 1); // +1 for ending nulls. 4975 const llvm::UTF8 *FromPtr = (const llvm::UTF8 *)String.data(); 4976 llvm::UTF16 *ToPtr = &ToBuf[0]; 4977 4978 (void)llvm::ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, &ToPtr, 4979 ToPtr + NumBytes, llvm::strictConversion); 4980 4981 // ConvertUTF8toUTF16 returns the length in ToPtr. 4982 StringLength = ToPtr - &ToBuf[0]; 4983 4984 // Add an explicit null. 4985 *ToPtr = 0; 4986 return *Map.insert(std::make_pair( 4987 StringRef(reinterpret_cast<const char *>(ToBuf.data()), 4988 (StringLength + 1) * 2), 4989 nullptr)).first; 4990 } 4991 4992 ConstantAddress 4993 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) { 4994 unsigned StringLength = 0; 4995 bool isUTF16 = false; 4996 llvm::StringMapEntry<llvm::GlobalVariable *> &Entry = 4997 GetConstantCFStringEntry(CFConstantStringMap, Literal, 4998 getDataLayout().isLittleEndian(), isUTF16, 4999 StringLength); 5000 5001 if (auto *C = Entry.second) 5002 return ConstantAddress(C, CharUnits::fromQuantity(C->getAlignment())); 5003 5004 llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty); 5005 llvm::Constant *Zeros[] = { Zero, Zero }; 5006 5007 const ASTContext &Context = getContext(); 5008 const llvm::Triple &Triple = getTriple(); 5009 5010 const auto CFRuntime = getLangOpts().CFRuntime; 5011 const bool IsSwiftABI = 5012 static_cast<unsigned>(CFRuntime) >= 5013 static_cast<unsigned>(LangOptions::CoreFoundationABI::Swift); 5014 const bool IsSwift4_1 = CFRuntime == LangOptions::CoreFoundationABI::Swift4_1; 5015 5016 // If we don't already have it, get __CFConstantStringClassReference. 5017 if (!CFConstantStringClassRef) { 5018 const char *CFConstantStringClassName = "__CFConstantStringClassReference"; 5019 llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy); 5020 Ty = llvm::ArrayType::get(Ty, 0); 5021 5022 switch (CFRuntime) { 5023 default: break; 5024 case LangOptions::CoreFoundationABI::Swift: LLVM_FALLTHROUGH; 5025 case LangOptions::CoreFoundationABI::Swift5_0: 5026 CFConstantStringClassName = 5027 Triple.isOSDarwin() ? "$s15SwiftFoundation19_NSCFConstantStringCN" 5028 : "$s10Foundation19_NSCFConstantStringCN"; 5029 Ty = IntPtrTy; 5030 break; 5031 case LangOptions::CoreFoundationABI::Swift4_2: 5032 CFConstantStringClassName = 5033 Triple.isOSDarwin() ? "$S15SwiftFoundation19_NSCFConstantStringCN" 5034 : "$S10Foundation19_NSCFConstantStringCN"; 5035 Ty = IntPtrTy; 5036 break; 5037 case LangOptions::CoreFoundationABI::Swift4_1: 5038 CFConstantStringClassName = 5039 Triple.isOSDarwin() ? "__T015SwiftFoundation19_NSCFConstantStringCN" 5040 : "__T010Foundation19_NSCFConstantStringCN"; 5041 Ty = IntPtrTy; 5042 break; 5043 } 5044 5045 llvm::Constant *C = CreateRuntimeVariable(Ty, CFConstantStringClassName); 5046 5047 if (Triple.isOSBinFormatELF() || Triple.isOSBinFormatCOFF()) { 5048 llvm::GlobalValue *GV = nullptr; 5049 5050 if ((GV = dyn_cast<llvm::GlobalValue>(C))) { 5051 IdentifierInfo &II = Context.Idents.get(GV->getName()); 5052 TranslationUnitDecl *TUDecl = Context.getTranslationUnitDecl(); 5053 DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl); 5054 5055 const VarDecl *VD = nullptr; 5056 for (const auto *Result : DC->lookup(&II)) 5057 if ((VD = dyn_cast<VarDecl>(Result))) 5058 break; 5059 5060 if (Triple.isOSBinFormatELF()) { 5061 if (!VD) 5062 GV->setLinkage(llvm::GlobalValue::ExternalLinkage); 5063 } else { 5064 GV->setLinkage(llvm::GlobalValue::ExternalLinkage); 5065 if (!VD || !VD->hasAttr<DLLExportAttr>()) 5066 GV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass); 5067 else 5068 GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass); 5069 } 5070 5071 setDSOLocal(GV); 5072 } 5073 } 5074 5075 // Decay array -> ptr 5076 CFConstantStringClassRef = 5077 IsSwiftABI ? llvm::ConstantExpr::getPtrToInt(C, Ty) 5078 : llvm::ConstantExpr::getGetElementPtr(Ty, C, Zeros); 5079 } 5080 5081 QualType CFTy = Context.getCFConstantStringType(); 5082 5083 auto *STy = cast<llvm::StructType>(getTypes().ConvertType(CFTy)); 5084 5085 ConstantInitBuilder Builder(*this); 5086 auto Fields = Builder.beginStruct(STy); 5087 5088 // Class pointer. 5089 Fields.add(cast<llvm::ConstantExpr>(CFConstantStringClassRef)); 5090 5091 // Flags. 5092 if (IsSwiftABI) { 5093 Fields.addInt(IntPtrTy, IsSwift4_1 ? 0x05 : 0x01); 5094 Fields.addInt(Int64Ty, isUTF16 ? 0x07d0 : 0x07c8); 5095 } else { 5096 Fields.addInt(IntTy, isUTF16 ? 0x07d0 : 0x07C8); 5097 } 5098 5099 // String pointer. 5100 llvm::Constant *C = nullptr; 5101 if (isUTF16) { 5102 auto Arr = llvm::makeArrayRef( 5103 reinterpret_cast<uint16_t *>(const_cast<char *>(Entry.first().data())), 5104 Entry.first().size() / 2); 5105 C = llvm::ConstantDataArray::get(VMContext, Arr); 5106 } else { 5107 C = llvm::ConstantDataArray::getString(VMContext, Entry.first()); 5108 } 5109 5110 // Note: -fwritable-strings doesn't make the backing store strings of 5111 // CFStrings writable. (See <rdar://problem/10657500>) 5112 auto *GV = 5113 new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true, 5114 llvm::GlobalValue::PrivateLinkage, C, ".str"); 5115 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 5116 // Don't enforce the target's minimum global alignment, since the only use 5117 // of the string is via this class initializer. 5118 CharUnits Align = isUTF16 ? Context.getTypeAlignInChars(Context.ShortTy) 5119 : Context.getTypeAlignInChars(Context.CharTy); 5120 GV->setAlignment(Align.getAsAlign()); 5121 5122 // FIXME: We set the section explicitly to avoid a bug in ld64 224.1. 5123 // Without it LLVM can merge the string with a non unnamed_addr one during 5124 // LTO. Doing that changes the section it ends in, which surprises ld64. 5125 if (Triple.isOSBinFormatMachO()) 5126 GV->setSection(isUTF16 ? "__TEXT,__ustring" 5127 : "__TEXT,__cstring,cstring_literals"); 5128 // Make sure the literal ends up in .rodata to allow for safe ICF and for 5129 // the static linker to adjust permissions to read-only later on. 5130 else if (Triple.isOSBinFormatELF()) 5131 GV->setSection(".rodata"); 5132 5133 // String. 5134 llvm::Constant *Str = 5135 llvm::ConstantExpr::getGetElementPtr(GV->getValueType(), GV, Zeros); 5136 5137 if (isUTF16) 5138 // Cast the UTF16 string to the correct type. 5139 Str = llvm::ConstantExpr::getBitCast(Str, Int8PtrTy); 5140 Fields.add(Str); 5141 5142 // String length. 5143 llvm::IntegerType *LengthTy = 5144 llvm::IntegerType::get(getModule().getContext(), 5145 Context.getTargetInfo().getLongWidth()); 5146 if (IsSwiftABI) { 5147 if (CFRuntime == LangOptions::CoreFoundationABI::Swift4_1 || 5148 CFRuntime == LangOptions::CoreFoundationABI::Swift4_2) 5149 LengthTy = Int32Ty; 5150 else 5151 LengthTy = IntPtrTy; 5152 } 5153 Fields.addInt(LengthTy, StringLength); 5154 5155 // Swift ABI requires 8-byte alignment to ensure that the _Atomic(uint64_t) is 5156 // properly aligned on 32-bit platforms. 5157 CharUnits Alignment = 5158 IsSwiftABI ? Context.toCharUnitsFromBits(64) : getPointerAlign(); 5159 5160 // The struct. 5161 GV = Fields.finishAndCreateGlobal("_unnamed_cfstring_", Alignment, 5162 /*isConstant=*/false, 5163 llvm::GlobalVariable::PrivateLinkage); 5164 GV->addAttribute("objc_arc_inert"); 5165 switch (Triple.getObjectFormat()) { 5166 case llvm::Triple::UnknownObjectFormat: 5167 llvm_unreachable("unknown file format"); 5168 case llvm::Triple::GOFF: 5169 llvm_unreachable("GOFF is not yet implemented"); 5170 case llvm::Triple::XCOFF: 5171 llvm_unreachable("XCOFF is not yet implemented"); 5172 case llvm::Triple::COFF: 5173 case llvm::Triple::ELF: 5174 case llvm::Triple::Wasm: 5175 GV->setSection("cfstring"); 5176 break; 5177 case llvm::Triple::MachO: 5178 GV->setSection("__DATA,__cfstring"); 5179 break; 5180 } 5181 Entry.second = GV; 5182 5183 return ConstantAddress(GV, Alignment); 5184 } 5185 5186 bool CodeGenModule::getExpressionLocationsEnabled() const { 5187 return !CodeGenOpts.EmitCodeView || CodeGenOpts.DebugColumnInfo; 5188 } 5189 5190 QualType CodeGenModule::getObjCFastEnumerationStateType() { 5191 if (ObjCFastEnumerationStateType.isNull()) { 5192 RecordDecl *D = Context.buildImplicitRecord("__objcFastEnumerationState"); 5193 D->startDefinition(); 5194 5195 QualType FieldTypes[] = { 5196 Context.UnsignedLongTy, 5197 Context.getPointerType(Context.getObjCIdType()), 5198 Context.getPointerType(Context.UnsignedLongTy), 5199 Context.getConstantArrayType(Context.UnsignedLongTy, 5200 llvm::APInt(32, 5), nullptr, ArrayType::Normal, 0) 5201 }; 5202 5203 for (size_t i = 0; i < 4; ++i) { 5204 FieldDecl *Field = FieldDecl::Create(Context, 5205 D, 5206 SourceLocation(), 5207 SourceLocation(), nullptr, 5208 FieldTypes[i], /*TInfo=*/nullptr, 5209 /*BitWidth=*/nullptr, 5210 /*Mutable=*/false, 5211 ICIS_NoInit); 5212 Field->setAccess(AS_public); 5213 D->addDecl(Field); 5214 } 5215 5216 D->completeDefinition(); 5217 ObjCFastEnumerationStateType = Context.getTagDeclType(D); 5218 } 5219 5220 return ObjCFastEnumerationStateType; 5221 } 5222 5223 llvm::Constant * 5224 CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) { 5225 assert(!E->getType()->isPointerType() && "Strings are always arrays"); 5226 5227 // Don't emit it as the address of the string, emit the string data itself 5228 // as an inline array. 5229 if (E->getCharByteWidth() == 1) { 5230 SmallString<64> Str(E->getString()); 5231 5232 // Resize the string to the right size, which is indicated by its type. 5233 const ConstantArrayType *CAT = Context.getAsConstantArrayType(E->getType()); 5234 Str.resize(CAT->getSize().getZExtValue()); 5235 return llvm::ConstantDataArray::getString(VMContext, Str, false); 5236 } 5237 5238 auto *AType = cast<llvm::ArrayType>(getTypes().ConvertType(E->getType())); 5239 llvm::Type *ElemTy = AType->getElementType(); 5240 unsigned NumElements = AType->getNumElements(); 5241 5242 // Wide strings have either 2-byte or 4-byte elements. 5243 if (ElemTy->getPrimitiveSizeInBits() == 16) { 5244 SmallVector<uint16_t, 32> Elements; 5245 Elements.reserve(NumElements); 5246 5247 for(unsigned i = 0, e = E->getLength(); i != e; ++i) 5248 Elements.push_back(E->getCodeUnit(i)); 5249 Elements.resize(NumElements); 5250 return llvm::ConstantDataArray::get(VMContext, Elements); 5251 } 5252 5253 assert(ElemTy->getPrimitiveSizeInBits() == 32); 5254 SmallVector<uint32_t, 32> Elements; 5255 Elements.reserve(NumElements); 5256 5257 for(unsigned i = 0, e = E->getLength(); i != e; ++i) 5258 Elements.push_back(E->getCodeUnit(i)); 5259 Elements.resize(NumElements); 5260 return llvm::ConstantDataArray::get(VMContext, Elements); 5261 } 5262 5263 static llvm::GlobalVariable * 5264 GenerateStringLiteral(llvm::Constant *C, llvm::GlobalValue::LinkageTypes LT, 5265 CodeGenModule &CGM, StringRef GlobalName, 5266 CharUnits Alignment) { 5267 unsigned AddrSpace = CGM.getContext().getTargetAddressSpace( 5268 CGM.getStringLiteralAddressSpace()); 5269 5270 llvm::Module &M = CGM.getModule(); 5271 // Create a global variable for this string 5272 auto *GV = new llvm::GlobalVariable( 5273 M, C->getType(), !CGM.getLangOpts().WritableStrings, LT, C, GlobalName, 5274 nullptr, llvm::GlobalVariable::NotThreadLocal, AddrSpace); 5275 GV->setAlignment(Alignment.getAsAlign()); 5276 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 5277 if (GV->isWeakForLinker()) { 5278 assert(CGM.supportsCOMDAT() && "Only COFF uses weak string literals"); 5279 GV->setComdat(M.getOrInsertComdat(GV->getName())); 5280 } 5281 CGM.setDSOLocal(GV); 5282 5283 return GV; 5284 } 5285 5286 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a 5287 /// constant array for the given string literal. 5288 ConstantAddress 5289 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S, 5290 StringRef Name) { 5291 CharUnits Alignment = getContext().getAlignOfGlobalVarInChars(S->getType()); 5292 5293 llvm::Constant *C = GetConstantArrayFromStringLiteral(S); 5294 llvm::GlobalVariable **Entry = nullptr; 5295 if (!LangOpts.WritableStrings) { 5296 Entry = &ConstantStringMap[C]; 5297 if (auto GV = *Entry) { 5298 if (Alignment.getQuantity() > GV->getAlignment()) 5299 GV->setAlignment(Alignment.getAsAlign()); 5300 return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV), 5301 Alignment); 5302 } 5303 } 5304 5305 SmallString<256> MangledNameBuffer; 5306 StringRef GlobalVariableName; 5307 llvm::GlobalValue::LinkageTypes LT; 5308 5309 // Mangle the string literal if that's how the ABI merges duplicate strings. 5310 // Don't do it if they are writable, since we don't want writes in one TU to 5311 // affect strings in another. 5312 if (getCXXABI().getMangleContext().shouldMangleStringLiteral(S) && 5313 !LangOpts.WritableStrings) { 5314 llvm::raw_svector_ostream Out(MangledNameBuffer); 5315 getCXXABI().getMangleContext().mangleStringLiteral(S, Out); 5316 LT = llvm::GlobalValue::LinkOnceODRLinkage; 5317 GlobalVariableName = MangledNameBuffer; 5318 } else { 5319 LT = llvm::GlobalValue::PrivateLinkage; 5320 GlobalVariableName = Name; 5321 } 5322 5323 auto GV = GenerateStringLiteral(C, LT, *this, GlobalVariableName, Alignment); 5324 if (Entry) 5325 *Entry = GV; 5326 5327 SanitizerMD->reportGlobalToASan(GV, S->getStrTokenLoc(0), "<string literal>", 5328 QualType()); 5329 5330 return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV), 5331 Alignment); 5332 } 5333 5334 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant 5335 /// array for the given ObjCEncodeExpr node. 5336 ConstantAddress 5337 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) { 5338 std::string Str; 5339 getContext().getObjCEncodingForType(E->getEncodedType(), Str); 5340 5341 return GetAddrOfConstantCString(Str); 5342 } 5343 5344 /// GetAddrOfConstantCString - Returns a pointer to a character array containing 5345 /// the literal and a terminating '\0' character. 5346 /// The result has pointer to array type. 5347 ConstantAddress CodeGenModule::GetAddrOfConstantCString( 5348 const std::string &Str, const char *GlobalName) { 5349 StringRef StrWithNull(Str.c_str(), Str.size() + 1); 5350 CharUnits Alignment = 5351 getContext().getAlignOfGlobalVarInChars(getContext().CharTy); 5352 5353 llvm::Constant *C = 5354 llvm::ConstantDataArray::getString(getLLVMContext(), StrWithNull, false); 5355 5356 // Don't share any string literals if strings aren't constant. 5357 llvm::GlobalVariable **Entry = nullptr; 5358 if (!LangOpts.WritableStrings) { 5359 Entry = &ConstantStringMap[C]; 5360 if (auto GV = *Entry) { 5361 if (Alignment.getQuantity() > GV->getAlignment()) 5362 GV->setAlignment(Alignment.getAsAlign()); 5363 return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV), 5364 Alignment); 5365 } 5366 } 5367 5368 // Get the default prefix if a name wasn't specified. 5369 if (!GlobalName) 5370 GlobalName = ".str"; 5371 // Create a global variable for this. 5372 auto GV = GenerateStringLiteral(C, llvm::GlobalValue::PrivateLinkage, *this, 5373 GlobalName, Alignment); 5374 if (Entry) 5375 *Entry = GV; 5376 5377 return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV), 5378 Alignment); 5379 } 5380 5381 ConstantAddress CodeGenModule::GetAddrOfGlobalTemporary( 5382 const MaterializeTemporaryExpr *E, const Expr *Init) { 5383 assert((E->getStorageDuration() == SD_Static || 5384 E->getStorageDuration() == SD_Thread) && "not a global temporary"); 5385 const auto *VD = cast<VarDecl>(E->getExtendingDecl()); 5386 5387 // If we're not materializing a subobject of the temporary, keep the 5388 // cv-qualifiers from the type of the MaterializeTemporaryExpr. 5389 QualType MaterializedType = Init->getType(); 5390 if (Init == E->getSubExpr()) 5391 MaterializedType = E->getType(); 5392 5393 CharUnits Align = getContext().getTypeAlignInChars(MaterializedType); 5394 5395 auto InsertResult = MaterializedGlobalTemporaryMap.insert({E, nullptr}); 5396 if (!InsertResult.second) { 5397 // We've seen this before: either we already created it or we're in the 5398 // process of doing so. 5399 if (!InsertResult.first->second) { 5400 // We recursively re-entered this function, probably during emission of 5401 // the initializer. Create a placeholder. We'll clean this up in the 5402 // outer call, at the end of this function. 5403 llvm::Type *Type = getTypes().ConvertTypeForMem(MaterializedType); 5404 InsertResult.first->second = new llvm::GlobalVariable( 5405 getModule(), Type, false, llvm::GlobalVariable::InternalLinkage, 5406 nullptr); 5407 } 5408 return ConstantAddress(InsertResult.first->second, Align); 5409 } 5410 5411 // FIXME: If an externally-visible declaration extends multiple temporaries, 5412 // we need to give each temporary the same name in every translation unit (and 5413 // we also need to make the temporaries externally-visible). 5414 SmallString<256> Name; 5415 llvm::raw_svector_ostream Out(Name); 5416 getCXXABI().getMangleContext().mangleReferenceTemporary( 5417 VD, E->getManglingNumber(), Out); 5418 5419 APValue *Value = nullptr; 5420 if (E->getStorageDuration() == SD_Static && VD && VD->evaluateValue()) { 5421 // If the initializer of the extending declaration is a constant 5422 // initializer, we should have a cached constant initializer for this 5423 // temporary. Note that this might have a different value from the value 5424 // computed by evaluating the initializer if the surrounding constant 5425 // expression modifies the temporary. 5426 Value = E->getOrCreateValue(false); 5427 } 5428 5429 // Try evaluating it now, it might have a constant initializer. 5430 Expr::EvalResult EvalResult; 5431 if (!Value && Init->EvaluateAsRValue(EvalResult, getContext()) && 5432 !EvalResult.hasSideEffects()) 5433 Value = &EvalResult.Val; 5434 5435 LangAS AddrSpace = 5436 VD ? GetGlobalVarAddressSpace(VD) : MaterializedType.getAddressSpace(); 5437 5438 Optional<ConstantEmitter> emitter; 5439 llvm::Constant *InitialValue = nullptr; 5440 bool Constant = false; 5441 llvm::Type *Type; 5442 if (Value) { 5443 // The temporary has a constant initializer, use it. 5444 emitter.emplace(*this); 5445 InitialValue = emitter->emitForInitializer(*Value, AddrSpace, 5446 MaterializedType); 5447 Constant = isTypeConstant(MaterializedType, /*ExcludeCtor*/Value); 5448 Type = InitialValue->getType(); 5449 } else { 5450 // No initializer, the initialization will be provided when we 5451 // initialize the declaration which performed lifetime extension. 5452 Type = getTypes().ConvertTypeForMem(MaterializedType); 5453 } 5454 5455 // Create a global variable for this lifetime-extended temporary. 5456 llvm::GlobalValue::LinkageTypes Linkage = 5457 getLLVMLinkageVarDefinition(VD, Constant); 5458 if (Linkage == llvm::GlobalVariable::ExternalLinkage) { 5459 const VarDecl *InitVD; 5460 if (VD->isStaticDataMember() && VD->getAnyInitializer(InitVD) && 5461 isa<CXXRecordDecl>(InitVD->getLexicalDeclContext())) { 5462 // Temporaries defined inside a class get linkonce_odr linkage because the 5463 // class can be defined in multiple translation units. 5464 Linkage = llvm::GlobalVariable::LinkOnceODRLinkage; 5465 } else { 5466 // There is no need for this temporary to have external linkage if the 5467 // VarDecl has external linkage. 5468 Linkage = llvm::GlobalVariable::InternalLinkage; 5469 } 5470 } 5471 auto TargetAS = getContext().getTargetAddressSpace(AddrSpace); 5472 auto *GV = new llvm::GlobalVariable( 5473 getModule(), Type, Constant, Linkage, InitialValue, Name.c_str(), 5474 /*InsertBefore=*/nullptr, llvm::GlobalVariable::NotThreadLocal, TargetAS); 5475 if (emitter) emitter->finalize(GV); 5476 setGVProperties(GV, VD); 5477 GV->setAlignment(Align.getAsAlign()); 5478 if (supportsCOMDAT() && GV->isWeakForLinker()) 5479 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 5480 if (VD->getTLSKind()) 5481 setTLSMode(GV, *VD); 5482 llvm::Constant *CV = GV; 5483 if (AddrSpace != LangAS::Default) 5484 CV = getTargetCodeGenInfo().performAddrSpaceCast( 5485 *this, GV, AddrSpace, LangAS::Default, 5486 Type->getPointerTo( 5487 getContext().getTargetAddressSpace(LangAS::Default))); 5488 5489 // Update the map with the new temporary. If we created a placeholder above, 5490 // replace it with the new global now. 5491 llvm::Constant *&Entry = MaterializedGlobalTemporaryMap[E]; 5492 if (Entry) { 5493 Entry->replaceAllUsesWith( 5494 llvm::ConstantExpr::getBitCast(CV, Entry->getType())); 5495 llvm::cast<llvm::GlobalVariable>(Entry)->eraseFromParent(); 5496 } 5497 Entry = CV; 5498 5499 return ConstantAddress(CV, Align); 5500 } 5501 5502 /// EmitObjCPropertyImplementations - Emit information for synthesized 5503 /// properties for an implementation. 5504 void CodeGenModule::EmitObjCPropertyImplementations(const 5505 ObjCImplementationDecl *D) { 5506 for (const auto *PID : D->property_impls()) { 5507 // Dynamic is just for type-checking. 5508 if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) { 5509 ObjCPropertyDecl *PD = PID->getPropertyDecl(); 5510 5511 // Determine which methods need to be implemented, some may have 5512 // been overridden. Note that ::isPropertyAccessor is not the method 5513 // we want, that just indicates if the decl came from a 5514 // property. What we want to know is if the method is defined in 5515 // this implementation. 5516 auto *Getter = PID->getGetterMethodDecl(); 5517 if (!Getter || Getter->isSynthesizedAccessorStub()) 5518 CodeGenFunction(*this).GenerateObjCGetter( 5519 const_cast<ObjCImplementationDecl *>(D), PID); 5520 auto *Setter = PID->getSetterMethodDecl(); 5521 if (!PD->isReadOnly() && (!Setter || Setter->isSynthesizedAccessorStub())) 5522 CodeGenFunction(*this).GenerateObjCSetter( 5523 const_cast<ObjCImplementationDecl *>(D), PID); 5524 } 5525 } 5526 } 5527 5528 static bool needsDestructMethod(ObjCImplementationDecl *impl) { 5529 const ObjCInterfaceDecl *iface = impl->getClassInterface(); 5530 for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin(); 5531 ivar; ivar = ivar->getNextIvar()) 5532 if (ivar->getType().isDestructedType()) 5533 return true; 5534 5535 return false; 5536 } 5537 5538 static bool AllTrivialInitializers(CodeGenModule &CGM, 5539 ObjCImplementationDecl *D) { 5540 CodeGenFunction CGF(CGM); 5541 for (ObjCImplementationDecl::init_iterator B = D->init_begin(), 5542 E = D->init_end(); B != E; ++B) { 5543 CXXCtorInitializer *CtorInitExp = *B; 5544 Expr *Init = CtorInitExp->getInit(); 5545 if (!CGF.isTrivialInitializer(Init)) 5546 return false; 5547 } 5548 return true; 5549 } 5550 5551 /// EmitObjCIvarInitializations - Emit information for ivar initialization 5552 /// for an implementation. 5553 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) { 5554 // We might need a .cxx_destruct even if we don't have any ivar initializers. 5555 if (needsDestructMethod(D)) { 5556 IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct"); 5557 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 5558 ObjCMethodDecl *DTORMethod = ObjCMethodDecl::Create( 5559 getContext(), D->getLocation(), D->getLocation(), cxxSelector, 5560 getContext().VoidTy, nullptr, D, 5561 /*isInstance=*/true, /*isVariadic=*/false, 5562 /*isPropertyAccessor=*/true, /*isSynthesizedAccessorStub=*/false, 5563 /*isImplicitlyDeclared=*/true, 5564 /*isDefined=*/false, ObjCMethodDecl::Required); 5565 D->addInstanceMethod(DTORMethod); 5566 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false); 5567 D->setHasDestructors(true); 5568 } 5569 5570 // If the implementation doesn't have any ivar initializers, we don't need 5571 // a .cxx_construct. 5572 if (D->getNumIvarInitializers() == 0 || 5573 AllTrivialInitializers(*this, D)) 5574 return; 5575 5576 IdentifierInfo *II = &getContext().Idents.get(".cxx_construct"); 5577 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 5578 // The constructor returns 'self'. 5579 ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create( 5580 getContext(), D->getLocation(), D->getLocation(), cxxSelector, 5581 getContext().getObjCIdType(), nullptr, D, /*isInstance=*/true, 5582 /*isVariadic=*/false, 5583 /*isPropertyAccessor=*/true, /*isSynthesizedAccessorStub=*/false, 5584 /*isImplicitlyDeclared=*/true, 5585 /*isDefined=*/false, ObjCMethodDecl::Required); 5586 D->addInstanceMethod(CTORMethod); 5587 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true); 5588 D->setHasNonZeroConstructors(true); 5589 } 5590 5591 // EmitLinkageSpec - Emit all declarations in a linkage spec. 5592 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) { 5593 if (LSD->getLanguage() != LinkageSpecDecl::lang_c && 5594 LSD->getLanguage() != LinkageSpecDecl::lang_cxx) { 5595 ErrorUnsupported(LSD, "linkage spec"); 5596 return; 5597 } 5598 5599 EmitDeclContext(LSD); 5600 } 5601 5602 void CodeGenModule::EmitDeclContext(const DeclContext *DC) { 5603 for (auto *I : DC->decls()) { 5604 // Unlike other DeclContexts, the contents of an ObjCImplDecl at TU scope 5605 // are themselves considered "top-level", so EmitTopLevelDecl on an 5606 // ObjCImplDecl does not recursively visit them. We need to do that in 5607 // case they're nested inside another construct (LinkageSpecDecl / 5608 // ExportDecl) that does stop them from being considered "top-level". 5609 if (auto *OID = dyn_cast<ObjCImplDecl>(I)) { 5610 for (auto *M : OID->methods()) 5611 EmitTopLevelDecl(M); 5612 } 5613 5614 EmitTopLevelDecl(I); 5615 } 5616 } 5617 5618 /// EmitTopLevelDecl - Emit code for a single top level declaration. 5619 void CodeGenModule::EmitTopLevelDecl(Decl *D) { 5620 // Ignore dependent declarations. 5621 if (D->isTemplated()) 5622 return; 5623 5624 // Consteval function shouldn't be emitted. 5625 if (auto *FD = dyn_cast<FunctionDecl>(D)) 5626 if (FD->isConsteval()) 5627 return; 5628 5629 switch (D->getKind()) { 5630 case Decl::CXXConversion: 5631 case Decl::CXXMethod: 5632 case Decl::Function: 5633 EmitGlobal(cast<FunctionDecl>(D)); 5634 // Always provide some coverage mapping 5635 // even for the functions that aren't emitted. 5636 AddDeferredUnusedCoverageMapping(D); 5637 break; 5638 5639 case Decl::CXXDeductionGuide: 5640 // Function-like, but does not result in code emission. 5641 break; 5642 5643 case Decl::Var: 5644 case Decl::Decomposition: 5645 case Decl::VarTemplateSpecialization: 5646 EmitGlobal(cast<VarDecl>(D)); 5647 if (auto *DD = dyn_cast<DecompositionDecl>(D)) 5648 for (auto *B : DD->bindings()) 5649 if (auto *HD = B->getHoldingVar()) 5650 EmitGlobal(HD); 5651 break; 5652 5653 // Indirect fields from global anonymous structs and unions can be 5654 // ignored; only the actual variable requires IR gen support. 5655 case Decl::IndirectField: 5656 break; 5657 5658 // C++ Decls 5659 case Decl::Namespace: 5660 EmitDeclContext(cast<NamespaceDecl>(D)); 5661 break; 5662 case Decl::ClassTemplateSpecialization: { 5663 const auto *Spec = cast<ClassTemplateSpecializationDecl>(D); 5664 if (CGDebugInfo *DI = getModuleDebugInfo()) 5665 if (Spec->getSpecializationKind() == 5666 TSK_ExplicitInstantiationDefinition && 5667 Spec->hasDefinition()) 5668 DI->completeTemplateDefinition(*Spec); 5669 } LLVM_FALLTHROUGH; 5670 case Decl::CXXRecord: { 5671 CXXRecordDecl *CRD = cast<CXXRecordDecl>(D); 5672 if (CGDebugInfo *DI = getModuleDebugInfo()) { 5673 if (CRD->hasDefinition()) 5674 DI->EmitAndRetainType(getContext().getRecordType(cast<RecordDecl>(D))); 5675 if (auto *ES = D->getASTContext().getExternalSource()) 5676 if (ES->hasExternalDefinitions(D) == ExternalASTSource::EK_Never) 5677 DI->completeUnusedClass(*CRD); 5678 } 5679 // Emit any static data members, they may be definitions. 5680 for (auto *I : CRD->decls()) 5681 if (isa<VarDecl>(I) || isa<CXXRecordDecl>(I)) 5682 EmitTopLevelDecl(I); 5683 break; 5684 } 5685 // No code generation needed. 5686 case Decl::UsingShadow: 5687 case Decl::ClassTemplate: 5688 case Decl::VarTemplate: 5689 case Decl::Concept: 5690 case Decl::VarTemplatePartialSpecialization: 5691 case Decl::FunctionTemplate: 5692 case Decl::TypeAliasTemplate: 5693 case Decl::Block: 5694 case Decl::Empty: 5695 case Decl::Binding: 5696 break; 5697 case Decl::Using: // using X; [C++] 5698 if (CGDebugInfo *DI = getModuleDebugInfo()) 5699 DI->EmitUsingDecl(cast<UsingDecl>(*D)); 5700 break; 5701 case Decl::NamespaceAlias: 5702 if (CGDebugInfo *DI = getModuleDebugInfo()) 5703 DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(*D)); 5704 break; 5705 case Decl::UsingDirective: // using namespace X; [C++] 5706 if (CGDebugInfo *DI = getModuleDebugInfo()) 5707 DI->EmitUsingDirective(cast<UsingDirectiveDecl>(*D)); 5708 break; 5709 case Decl::CXXConstructor: 5710 getCXXABI().EmitCXXConstructors(cast<CXXConstructorDecl>(D)); 5711 break; 5712 case Decl::CXXDestructor: 5713 getCXXABI().EmitCXXDestructors(cast<CXXDestructorDecl>(D)); 5714 break; 5715 5716 case Decl::StaticAssert: 5717 // Nothing to do. 5718 break; 5719 5720 // Objective-C Decls 5721 5722 // Forward declarations, no (immediate) code generation. 5723 case Decl::ObjCInterface: 5724 case Decl::ObjCCategory: 5725 break; 5726 5727 case Decl::ObjCProtocol: { 5728 auto *Proto = cast<ObjCProtocolDecl>(D); 5729 if (Proto->isThisDeclarationADefinition()) 5730 ObjCRuntime->GenerateProtocol(Proto); 5731 break; 5732 } 5733 5734 case Decl::ObjCCategoryImpl: 5735 // Categories have properties but don't support synthesize so we 5736 // can ignore them here. 5737 ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D)); 5738 break; 5739 5740 case Decl::ObjCImplementation: { 5741 auto *OMD = cast<ObjCImplementationDecl>(D); 5742 EmitObjCPropertyImplementations(OMD); 5743 EmitObjCIvarInitializations(OMD); 5744 ObjCRuntime->GenerateClass(OMD); 5745 // Emit global variable debug information. 5746 if (CGDebugInfo *DI = getModuleDebugInfo()) 5747 if (getCodeGenOpts().hasReducedDebugInfo()) 5748 DI->getOrCreateInterfaceType(getContext().getObjCInterfaceType( 5749 OMD->getClassInterface()), OMD->getLocation()); 5750 break; 5751 } 5752 case Decl::ObjCMethod: { 5753 auto *OMD = cast<ObjCMethodDecl>(D); 5754 // If this is not a prototype, emit the body. 5755 if (OMD->getBody()) 5756 CodeGenFunction(*this).GenerateObjCMethod(OMD); 5757 break; 5758 } 5759 case Decl::ObjCCompatibleAlias: 5760 ObjCRuntime->RegisterAlias(cast<ObjCCompatibleAliasDecl>(D)); 5761 break; 5762 5763 case Decl::PragmaComment: { 5764 const auto *PCD = cast<PragmaCommentDecl>(D); 5765 switch (PCD->getCommentKind()) { 5766 case PCK_Unknown: 5767 llvm_unreachable("unexpected pragma comment kind"); 5768 case PCK_Linker: 5769 AppendLinkerOptions(PCD->getArg()); 5770 break; 5771 case PCK_Lib: 5772 AddDependentLib(PCD->getArg()); 5773 break; 5774 case PCK_Compiler: 5775 case PCK_ExeStr: 5776 case PCK_User: 5777 break; // We ignore all of these. 5778 } 5779 break; 5780 } 5781 5782 case Decl::PragmaDetectMismatch: { 5783 const auto *PDMD = cast<PragmaDetectMismatchDecl>(D); 5784 AddDetectMismatch(PDMD->getName(), PDMD->getValue()); 5785 break; 5786 } 5787 5788 case Decl::LinkageSpec: 5789 EmitLinkageSpec(cast<LinkageSpecDecl>(D)); 5790 break; 5791 5792 case Decl::FileScopeAsm: { 5793 // File-scope asm is ignored during device-side CUDA compilation. 5794 if (LangOpts.CUDA && LangOpts.CUDAIsDevice) 5795 break; 5796 // File-scope asm is ignored during device-side OpenMP compilation. 5797 if (LangOpts.OpenMPIsDevice) 5798 break; 5799 // File-scope asm is ignored during device-side SYCL compilation. 5800 if (LangOpts.SYCLIsDevice) 5801 break; 5802 auto *AD = cast<FileScopeAsmDecl>(D); 5803 getModule().appendModuleInlineAsm(AD->getAsmString()->getString()); 5804 break; 5805 } 5806 5807 case Decl::Import: { 5808 auto *Import = cast<ImportDecl>(D); 5809 5810 // If we've already imported this module, we're done. 5811 if (!ImportedModules.insert(Import->getImportedModule())) 5812 break; 5813 5814 // Emit debug information for direct imports. 5815 if (!Import->getImportedOwningModule()) { 5816 if (CGDebugInfo *DI = getModuleDebugInfo()) 5817 DI->EmitImportDecl(*Import); 5818 } 5819 5820 // Find all of the submodules and emit the module initializers. 5821 llvm::SmallPtrSet<clang::Module *, 16> Visited; 5822 SmallVector<clang::Module *, 16> Stack; 5823 Visited.insert(Import->getImportedModule()); 5824 Stack.push_back(Import->getImportedModule()); 5825 5826 while (!Stack.empty()) { 5827 clang::Module *Mod = Stack.pop_back_val(); 5828 if (!EmittedModuleInitializers.insert(Mod).second) 5829 continue; 5830 5831 for (auto *D : Context.getModuleInitializers(Mod)) 5832 EmitTopLevelDecl(D); 5833 5834 // Visit the submodules of this module. 5835 for (clang::Module::submodule_iterator Sub = Mod->submodule_begin(), 5836 SubEnd = Mod->submodule_end(); 5837 Sub != SubEnd; ++Sub) { 5838 // Skip explicit children; they need to be explicitly imported to emit 5839 // the initializers. 5840 if ((*Sub)->IsExplicit) 5841 continue; 5842 5843 if (Visited.insert(*Sub).second) 5844 Stack.push_back(*Sub); 5845 } 5846 } 5847 break; 5848 } 5849 5850 case Decl::Export: 5851 EmitDeclContext(cast<ExportDecl>(D)); 5852 break; 5853 5854 case Decl::OMPThreadPrivate: 5855 EmitOMPThreadPrivateDecl(cast<OMPThreadPrivateDecl>(D)); 5856 break; 5857 5858 case Decl::OMPAllocate: 5859 break; 5860 5861 case Decl::OMPDeclareReduction: 5862 EmitOMPDeclareReduction(cast<OMPDeclareReductionDecl>(D)); 5863 break; 5864 5865 case Decl::OMPDeclareMapper: 5866 EmitOMPDeclareMapper(cast<OMPDeclareMapperDecl>(D)); 5867 break; 5868 5869 case Decl::OMPRequires: 5870 EmitOMPRequiresDecl(cast<OMPRequiresDecl>(D)); 5871 break; 5872 5873 case Decl::Typedef: 5874 case Decl::TypeAlias: // using foo = bar; [C++11] 5875 if (CGDebugInfo *DI = getModuleDebugInfo()) 5876 DI->EmitAndRetainType( 5877 getContext().getTypedefType(cast<TypedefNameDecl>(D))); 5878 break; 5879 5880 case Decl::Record: 5881 if (CGDebugInfo *DI = getModuleDebugInfo()) 5882 if (cast<RecordDecl>(D)->getDefinition()) 5883 DI->EmitAndRetainType(getContext().getRecordType(cast<RecordDecl>(D))); 5884 break; 5885 5886 case Decl::Enum: 5887 if (CGDebugInfo *DI = getModuleDebugInfo()) 5888 if (cast<EnumDecl>(D)->getDefinition()) 5889 DI->EmitAndRetainType(getContext().getEnumType(cast<EnumDecl>(D))); 5890 break; 5891 5892 default: 5893 // Make sure we handled everything we should, every other kind is a 5894 // non-top-level decl. FIXME: Would be nice to have an isTopLevelDeclKind 5895 // function. Need to recode Decl::Kind to do that easily. 5896 assert(isa<TypeDecl>(D) && "Unsupported decl kind"); 5897 break; 5898 } 5899 } 5900 5901 void CodeGenModule::AddDeferredUnusedCoverageMapping(Decl *D) { 5902 // Do we need to generate coverage mapping? 5903 if (!CodeGenOpts.CoverageMapping) 5904 return; 5905 switch (D->getKind()) { 5906 case Decl::CXXConversion: 5907 case Decl::CXXMethod: 5908 case Decl::Function: 5909 case Decl::ObjCMethod: 5910 case Decl::CXXConstructor: 5911 case Decl::CXXDestructor: { 5912 if (!cast<FunctionDecl>(D)->doesThisDeclarationHaveABody()) 5913 break; 5914 SourceManager &SM = getContext().getSourceManager(); 5915 if (LimitedCoverage && SM.getMainFileID() != SM.getFileID(D->getBeginLoc())) 5916 break; 5917 auto I = DeferredEmptyCoverageMappingDecls.find(D); 5918 if (I == DeferredEmptyCoverageMappingDecls.end()) 5919 DeferredEmptyCoverageMappingDecls[D] = true; 5920 break; 5921 } 5922 default: 5923 break; 5924 }; 5925 } 5926 5927 void CodeGenModule::ClearUnusedCoverageMapping(const Decl *D) { 5928 // Do we need to generate coverage mapping? 5929 if (!CodeGenOpts.CoverageMapping) 5930 return; 5931 if (const auto *Fn = dyn_cast<FunctionDecl>(D)) { 5932 if (Fn->isTemplateInstantiation()) 5933 ClearUnusedCoverageMapping(Fn->getTemplateInstantiationPattern()); 5934 } 5935 auto I = DeferredEmptyCoverageMappingDecls.find(D); 5936 if (I == DeferredEmptyCoverageMappingDecls.end()) 5937 DeferredEmptyCoverageMappingDecls[D] = false; 5938 else 5939 I->second = false; 5940 } 5941 5942 void CodeGenModule::EmitDeferredUnusedCoverageMappings() { 5943 // We call takeVector() here to avoid use-after-free. 5944 // FIXME: DeferredEmptyCoverageMappingDecls is getting mutated because 5945 // we deserialize function bodies to emit coverage info for them, and that 5946 // deserializes more declarations. How should we handle that case? 5947 for (const auto &Entry : DeferredEmptyCoverageMappingDecls.takeVector()) { 5948 if (!Entry.second) 5949 continue; 5950 const Decl *D = Entry.first; 5951 switch (D->getKind()) { 5952 case Decl::CXXConversion: 5953 case Decl::CXXMethod: 5954 case Decl::Function: 5955 case Decl::ObjCMethod: { 5956 CodeGenPGO PGO(*this); 5957 GlobalDecl GD(cast<FunctionDecl>(D)); 5958 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 5959 getFunctionLinkage(GD)); 5960 break; 5961 } 5962 case Decl::CXXConstructor: { 5963 CodeGenPGO PGO(*this); 5964 GlobalDecl GD(cast<CXXConstructorDecl>(D), Ctor_Base); 5965 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 5966 getFunctionLinkage(GD)); 5967 break; 5968 } 5969 case Decl::CXXDestructor: { 5970 CodeGenPGO PGO(*this); 5971 GlobalDecl GD(cast<CXXDestructorDecl>(D), Dtor_Base); 5972 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 5973 getFunctionLinkage(GD)); 5974 break; 5975 } 5976 default: 5977 break; 5978 }; 5979 } 5980 } 5981 5982 void CodeGenModule::EmitMainVoidAlias() { 5983 // In order to transition away from "__original_main" gracefully, emit an 5984 // alias for "main" in the no-argument case so that libc can detect when 5985 // new-style no-argument main is in used. 5986 if (llvm::Function *F = getModule().getFunction("main")) { 5987 if (!F->isDeclaration() && F->arg_size() == 0 && !F->isVarArg() && 5988 F->getReturnType()->isIntegerTy(Context.getTargetInfo().getIntWidth())) 5989 addUsedGlobal(llvm::GlobalAlias::create("__main_void", F)); 5990 } 5991 } 5992 5993 /// Turns the given pointer into a constant. 5994 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context, 5995 const void *Ptr) { 5996 uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr); 5997 llvm::Type *i64 = llvm::Type::getInt64Ty(Context); 5998 return llvm::ConstantInt::get(i64, PtrInt); 5999 } 6000 6001 static void EmitGlobalDeclMetadata(CodeGenModule &CGM, 6002 llvm::NamedMDNode *&GlobalMetadata, 6003 GlobalDecl D, 6004 llvm::GlobalValue *Addr) { 6005 if (!GlobalMetadata) 6006 GlobalMetadata = 6007 CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs"); 6008 6009 // TODO: should we report variant information for ctors/dtors? 6010 llvm::Metadata *Ops[] = {llvm::ConstantAsMetadata::get(Addr), 6011 llvm::ConstantAsMetadata::get(GetPointerConstant( 6012 CGM.getLLVMContext(), D.getDecl()))}; 6013 GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops)); 6014 } 6015 6016 /// For each function which is declared within an extern "C" region and marked 6017 /// as 'used', but has internal linkage, create an alias from the unmangled 6018 /// name to the mangled name if possible. People expect to be able to refer 6019 /// to such functions with an unmangled name from inline assembly within the 6020 /// same translation unit. 6021 void CodeGenModule::EmitStaticExternCAliases() { 6022 if (!getTargetCodeGenInfo().shouldEmitStaticExternCAliases()) 6023 return; 6024 for (auto &I : StaticExternCValues) { 6025 IdentifierInfo *Name = I.first; 6026 llvm::GlobalValue *Val = I.second; 6027 if (Val && !getModule().getNamedValue(Name->getName())) 6028 addCompilerUsedGlobal(llvm::GlobalAlias::create(Name->getName(), Val)); 6029 } 6030 } 6031 6032 bool CodeGenModule::lookupRepresentativeDecl(StringRef MangledName, 6033 GlobalDecl &Result) const { 6034 auto Res = Manglings.find(MangledName); 6035 if (Res == Manglings.end()) 6036 return false; 6037 Result = Res->getValue(); 6038 return true; 6039 } 6040 6041 /// Emits metadata nodes associating all the global values in the 6042 /// current module with the Decls they came from. This is useful for 6043 /// projects using IR gen as a subroutine. 6044 /// 6045 /// Since there's currently no way to associate an MDNode directly 6046 /// with an llvm::GlobalValue, we create a global named metadata 6047 /// with the name 'clang.global.decl.ptrs'. 6048 void CodeGenModule::EmitDeclMetadata() { 6049 llvm::NamedMDNode *GlobalMetadata = nullptr; 6050 6051 for (auto &I : MangledDeclNames) { 6052 llvm::GlobalValue *Addr = getModule().getNamedValue(I.second); 6053 // Some mangled names don't necessarily have an associated GlobalValue 6054 // in this module, e.g. if we mangled it for DebugInfo. 6055 if (Addr) 6056 EmitGlobalDeclMetadata(*this, GlobalMetadata, I.first, Addr); 6057 } 6058 } 6059 6060 /// Emits metadata nodes for all the local variables in the current 6061 /// function. 6062 void CodeGenFunction::EmitDeclMetadata() { 6063 if (LocalDeclMap.empty()) return; 6064 6065 llvm::LLVMContext &Context = getLLVMContext(); 6066 6067 // Find the unique metadata ID for this name. 6068 unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr"); 6069 6070 llvm::NamedMDNode *GlobalMetadata = nullptr; 6071 6072 for (auto &I : LocalDeclMap) { 6073 const Decl *D = I.first; 6074 llvm::Value *Addr = I.second.getPointer(); 6075 if (auto *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) { 6076 llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D); 6077 Alloca->setMetadata( 6078 DeclPtrKind, llvm::MDNode::get( 6079 Context, llvm::ValueAsMetadata::getConstant(DAddr))); 6080 } else if (auto *GV = dyn_cast<llvm::GlobalValue>(Addr)) { 6081 GlobalDecl GD = GlobalDecl(cast<VarDecl>(D)); 6082 EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV); 6083 } 6084 } 6085 } 6086 6087 void CodeGenModule::EmitVersionIdentMetadata() { 6088 llvm::NamedMDNode *IdentMetadata = 6089 TheModule.getOrInsertNamedMetadata("llvm.ident"); 6090 std::string Version = getClangFullVersion(); 6091 llvm::LLVMContext &Ctx = TheModule.getContext(); 6092 6093 llvm::Metadata *IdentNode[] = {llvm::MDString::get(Ctx, Version)}; 6094 IdentMetadata->addOperand(llvm::MDNode::get(Ctx, IdentNode)); 6095 } 6096 6097 void CodeGenModule::EmitCommandLineMetadata() { 6098 llvm::NamedMDNode *CommandLineMetadata = 6099 TheModule.getOrInsertNamedMetadata("llvm.commandline"); 6100 std::string CommandLine = getCodeGenOpts().RecordCommandLine; 6101 llvm::LLVMContext &Ctx = TheModule.getContext(); 6102 6103 llvm::Metadata *CommandLineNode[] = {llvm::MDString::get(Ctx, CommandLine)}; 6104 CommandLineMetadata->addOperand(llvm::MDNode::get(Ctx, CommandLineNode)); 6105 } 6106 6107 void CodeGenModule::EmitCoverageFile() { 6108 if (getCodeGenOpts().CoverageDataFile.empty() && 6109 getCodeGenOpts().CoverageNotesFile.empty()) 6110 return; 6111 6112 llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu"); 6113 if (!CUNode) 6114 return; 6115 6116 llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov"); 6117 llvm::LLVMContext &Ctx = TheModule.getContext(); 6118 auto *CoverageDataFile = 6119 llvm::MDString::get(Ctx, getCodeGenOpts().CoverageDataFile); 6120 auto *CoverageNotesFile = 6121 llvm::MDString::get(Ctx, getCodeGenOpts().CoverageNotesFile); 6122 for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) { 6123 llvm::MDNode *CU = CUNode->getOperand(i); 6124 llvm::Metadata *Elts[] = {CoverageNotesFile, CoverageDataFile, CU}; 6125 GCov->addOperand(llvm::MDNode::get(Ctx, Elts)); 6126 } 6127 } 6128 6129 llvm::Constant *CodeGenModule::GetAddrOfRTTIDescriptor(QualType Ty, 6130 bool ForEH) { 6131 // Return a bogus pointer if RTTI is disabled, unless it's for EH. 6132 // FIXME: should we even be calling this method if RTTI is disabled 6133 // and it's not for EH? 6134 if ((!ForEH && !getLangOpts().RTTI) || getLangOpts().CUDAIsDevice || 6135 (getLangOpts().OpenMP && getLangOpts().OpenMPIsDevice && 6136 getTriple().isNVPTX())) 6137 return llvm::Constant::getNullValue(Int8PtrTy); 6138 6139 if (ForEH && Ty->isObjCObjectPointerType() && 6140 LangOpts.ObjCRuntime.isGNUFamily()) 6141 return ObjCRuntime->GetEHType(Ty); 6142 6143 return getCXXABI().getAddrOfRTTIDescriptor(Ty); 6144 } 6145 6146 void CodeGenModule::EmitOMPThreadPrivateDecl(const OMPThreadPrivateDecl *D) { 6147 // Do not emit threadprivates in simd-only mode. 6148 if (LangOpts.OpenMP && LangOpts.OpenMPSimd) 6149 return; 6150 for (auto RefExpr : D->varlists()) { 6151 auto *VD = cast<VarDecl>(cast<DeclRefExpr>(RefExpr)->getDecl()); 6152 bool PerformInit = 6153 VD->getAnyInitializer() && 6154 !VD->getAnyInitializer()->isConstantInitializer(getContext(), 6155 /*ForRef=*/false); 6156 6157 Address Addr(GetAddrOfGlobalVar(VD), getContext().getDeclAlign(VD)); 6158 if (auto InitFunction = getOpenMPRuntime().emitThreadPrivateVarDefinition( 6159 VD, Addr, RefExpr->getBeginLoc(), PerformInit)) 6160 CXXGlobalInits.push_back(InitFunction); 6161 } 6162 } 6163 6164 llvm::Metadata * 6165 CodeGenModule::CreateMetadataIdentifierImpl(QualType T, MetadataTypeMap &Map, 6166 StringRef Suffix) { 6167 llvm::Metadata *&InternalId = Map[T.getCanonicalType()]; 6168 if (InternalId) 6169 return InternalId; 6170 6171 if (isExternallyVisible(T->getLinkage())) { 6172 std::string OutName; 6173 llvm::raw_string_ostream Out(OutName); 6174 getCXXABI().getMangleContext().mangleTypeName(T, Out); 6175 Out << Suffix; 6176 6177 InternalId = llvm::MDString::get(getLLVMContext(), Out.str()); 6178 } else { 6179 InternalId = llvm::MDNode::getDistinct(getLLVMContext(), 6180 llvm::ArrayRef<llvm::Metadata *>()); 6181 } 6182 6183 return InternalId; 6184 } 6185 6186 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierForType(QualType T) { 6187 return CreateMetadataIdentifierImpl(T, MetadataIdMap, ""); 6188 } 6189 6190 llvm::Metadata * 6191 CodeGenModule::CreateMetadataIdentifierForVirtualMemPtrType(QualType T) { 6192 return CreateMetadataIdentifierImpl(T, VirtualMetadataIdMap, ".virtual"); 6193 } 6194 6195 // Generalize pointer types to a void pointer with the qualifiers of the 6196 // originally pointed-to type, e.g. 'const char *' and 'char * const *' 6197 // generalize to 'const void *' while 'char *' and 'const char **' generalize to 6198 // 'void *'. 6199 static QualType GeneralizeType(ASTContext &Ctx, QualType Ty) { 6200 if (!Ty->isPointerType()) 6201 return Ty; 6202 6203 return Ctx.getPointerType( 6204 QualType(Ctx.VoidTy).withCVRQualifiers( 6205 Ty->getPointeeType().getCVRQualifiers())); 6206 } 6207 6208 // Apply type generalization to a FunctionType's return and argument types 6209 static QualType GeneralizeFunctionType(ASTContext &Ctx, QualType Ty) { 6210 if (auto *FnType = Ty->getAs<FunctionProtoType>()) { 6211 SmallVector<QualType, 8> GeneralizedParams; 6212 for (auto &Param : FnType->param_types()) 6213 GeneralizedParams.push_back(GeneralizeType(Ctx, Param)); 6214 6215 return Ctx.getFunctionType( 6216 GeneralizeType(Ctx, FnType->getReturnType()), 6217 GeneralizedParams, FnType->getExtProtoInfo()); 6218 } 6219 6220 if (auto *FnType = Ty->getAs<FunctionNoProtoType>()) 6221 return Ctx.getFunctionNoProtoType( 6222 GeneralizeType(Ctx, FnType->getReturnType())); 6223 6224 llvm_unreachable("Encountered unknown FunctionType"); 6225 } 6226 6227 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierGeneralized(QualType T) { 6228 return CreateMetadataIdentifierImpl(GeneralizeFunctionType(getContext(), T), 6229 GeneralizedMetadataIdMap, ".generalized"); 6230 } 6231 6232 /// Returns whether this module needs the "all-vtables" type identifier. 6233 bool CodeGenModule::NeedAllVtablesTypeId() const { 6234 // Returns true if at least one of vtable-based CFI checkers is enabled and 6235 // is not in the trapping mode. 6236 return ((LangOpts.Sanitize.has(SanitizerKind::CFIVCall) && 6237 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIVCall)) || 6238 (LangOpts.Sanitize.has(SanitizerKind::CFINVCall) && 6239 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFINVCall)) || 6240 (LangOpts.Sanitize.has(SanitizerKind::CFIDerivedCast) && 6241 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIDerivedCast)) || 6242 (LangOpts.Sanitize.has(SanitizerKind::CFIUnrelatedCast) && 6243 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIUnrelatedCast))); 6244 } 6245 6246 void CodeGenModule::AddVTableTypeMetadata(llvm::GlobalVariable *VTable, 6247 CharUnits Offset, 6248 const CXXRecordDecl *RD) { 6249 llvm::Metadata *MD = 6250 CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0)); 6251 VTable->addTypeMetadata(Offset.getQuantity(), MD); 6252 6253 if (CodeGenOpts.SanitizeCfiCrossDso) 6254 if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD)) 6255 VTable->addTypeMetadata(Offset.getQuantity(), 6256 llvm::ConstantAsMetadata::get(CrossDsoTypeId)); 6257 6258 if (NeedAllVtablesTypeId()) { 6259 llvm::Metadata *MD = llvm::MDString::get(getLLVMContext(), "all-vtables"); 6260 VTable->addTypeMetadata(Offset.getQuantity(), MD); 6261 } 6262 } 6263 6264 llvm::SanitizerStatReport &CodeGenModule::getSanStats() { 6265 if (!SanStats) 6266 SanStats = std::make_unique<llvm::SanitizerStatReport>(&getModule()); 6267 6268 return *SanStats; 6269 } 6270 6271 llvm::Value * 6272 CodeGenModule::createOpenCLIntToSamplerConversion(const Expr *E, 6273 CodeGenFunction &CGF) { 6274 llvm::Constant *C = ConstantEmitter(CGF).emitAbstract(E, E->getType()); 6275 auto *SamplerT = getOpenCLRuntime().getSamplerType(E->getType().getTypePtr()); 6276 auto *FTy = llvm::FunctionType::get(SamplerT, {C->getType()}, false); 6277 auto *Call = CGF.EmitRuntimeCall( 6278 CreateRuntimeFunction(FTy, "__translate_sampler_initializer"), {C}); 6279 return Call; 6280 } 6281 6282 CharUnits CodeGenModule::getNaturalPointeeTypeAlignment( 6283 QualType T, LValueBaseInfo *BaseInfo, TBAAAccessInfo *TBAAInfo) { 6284 return getNaturalTypeAlignment(T->getPointeeType(), BaseInfo, TBAAInfo, 6285 /* forPointeeType= */ true); 6286 } 6287 6288 CharUnits CodeGenModule::getNaturalTypeAlignment(QualType T, 6289 LValueBaseInfo *BaseInfo, 6290 TBAAAccessInfo *TBAAInfo, 6291 bool forPointeeType) { 6292 if (TBAAInfo) 6293 *TBAAInfo = getTBAAAccessInfo(T); 6294 6295 // FIXME: This duplicates logic in ASTContext::getTypeAlignIfKnown. But 6296 // that doesn't return the information we need to compute BaseInfo. 6297 6298 // Honor alignment typedef attributes even on incomplete types. 6299 // We also honor them straight for C++ class types, even as pointees; 6300 // there's an expressivity gap here. 6301 if (auto TT = T->getAs<TypedefType>()) { 6302 if (auto Align = TT->getDecl()->getMaxAlignment()) { 6303 if (BaseInfo) 6304 *BaseInfo = LValueBaseInfo(AlignmentSource::AttributedType); 6305 return getContext().toCharUnitsFromBits(Align); 6306 } 6307 } 6308 6309 bool AlignForArray = T->isArrayType(); 6310 6311 // Analyze the base element type, so we don't get confused by incomplete 6312 // array types. 6313 T = getContext().getBaseElementType(T); 6314 6315 if (T->isIncompleteType()) { 6316 // We could try to replicate the logic from 6317 // ASTContext::getTypeAlignIfKnown, but nothing uses the alignment if the 6318 // type is incomplete, so it's impossible to test. We could try to reuse 6319 // getTypeAlignIfKnown, but that doesn't return the information we need 6320 // to set BaseInfo. So just ignore the possibility that the alignment is 6321 // greater than one. 6322 if (BaseInfo) 6323 *BaseInfo = LValueBaseInfo(AlignmentSource::Type); 6324 return CharUnits::One(); 6325 } 6326 6327 if (BaseInfo) 6328 *BaseInfo = LValueBaseInfo(AlignmentSource::Type); 6329 6330 CharUnits Alignment; 6331 const CXXRecordDecl *RD; 6332 if (T.getQualifiers().hasUnaligned()) { 6333 Alignment = CharUnits::One(); 6334 } else if (forPointeeType && !AlignForArray && 6335 (RD = T->getAsCXXRecordDecl())) { 6336 // For C++ class pointees, we don't know whether we're pointing at a 6337 // base or a complete object, so we generally need to use the 6338 // non-virtual alignment. 6339 Alignment = getClassPointerAlignment(RD); 6340 } else { 6341 Alignment = getContext().getTypeAlignInChars(T); 6342 } 6343 6344 // Cap to the global maximum type alignment unless the alignment 6345 // was somehow explicit on the type. 6346 if (unsigned MaxAlign = getLangOpts().MaxTypeAlign) { 6347 if (Alignment.getQuantity() > MaxAlign && 6348 !getContext().isAlignmentRequired(T)) 6349 Alignment = CharUnits::fromQuantity(MaxAlign); 6350 } 6351 return Alignment; 6352 } 6353 6354 bool CodeGenModule::stopAutoInit() { 6355 unsigned StopAfter = getContext().getLangOpts().TrivialAutoVarInitStopAfter; 6356 if (StopAfter) { 6357 // This number is positive only when -ftrivial-auto-var-init-stop-after=* is 6358 // used 6359 if (NumAutoVarInit >= StopAfter) { 6360 return true; 6361 } 6362 if (!NumAutoVarInit) { 6363 unsigned DiagID = getDiags().getCustomDiagID( 6364 DiagnosticsEngine::Warning, 6365 "-ftrivial-auto-var-init-stop-after=%0 has been enabled to limit the " 6366 "number of times ftrivial-auto-var-init=%1 gets applied."); 6367 getDiags().Report(DiagID) 6368 << StopAfter 6369 << (getContext().getLangOpts().getTrivialAutoVarInit() == 6370 LangOptions::TrivialAutoVarInitKind::Zero 6371 ? "zero" 6372 : "pattern"); 6373 } 6374 ++NumAutoVarInit; 6375 } 6376 return false; 6377 } 6378 6379 void CodeGenModule::printPostfixForExternalizedStaticVar( 6380 llvm::raw_ostream &OS) const { 6381 OS << ".static." << getContext().getCUIDHash(); 6382 } 6383