1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This coordinates the per-module state used while generating code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenModule.h" 15 #include "CGBlocks.h" 16 #include "CGCUDARuntime.h" 17 #include "CGCXXABI.h" 18 #include "CGCall.h" 19 #include "CGDebugInfo.h" 20 #include "CGObjCRuntime.h" 21 #include "CGOpenCLRuntime.h" 22 #include "CGOpenMPRuntime.h" 23 #include "CGOpenMPRuntimeNVPTX.h" 24 #include "CodeGenFunction.h" 25 #include "CodeGenPGO.h" 26 #include "ConstantEmitter.h" 27 #include "CoverageMappingGen.h" 28 #include "TargetInfo.h" 29 #include "clang/AST/ASTContext.h" 30 #include "clang/AST/CharUnits.h" 31 #include "clang/AST/DeclCXX.h" 32 #include "clang/AST/DeclObjC.h" 33 #include "clang/AST/DeclTemplate.h" 34 #include "clang/AST/Mangle.h" 35 #include "clang/AST/RecordLayout.h" 36 #include "clang/AST/RecursiveASTVisitor.h" 37 #include "clang/Basic/Builtins.h" 38 #include "clang/Basic/CharInfo.h" 39 #include "clang/Basic/Diagnostic.h" 40 #include "clang/Basic/Module.h" 41 #include "clang/Basic/SourceManager.h" 42 #include "clang/Basic/TargetInfo.h" 43 #include "clang/Basic/Version.h" 44 #include "clang/CodeGen/ConstantInitBuilder.h" 45 #include "clang/Frontend/CodeGenOptions.h" 46 #include "clang/Sema/SemaDiagnostic.h" 47 #include "llvm/ADT/Triple.h" 48 #include "llvm/Analysis/TargetLibraryInfo.h" 49 #include "llvm/IR/CallSite.h" 50 #include "llvm/IR/CallingConv.h" 51 #include "llvm/IR/DataLayout.h" 52 #include "llvm/IR/Intrinsics.h" 53 #include "llvm/IR/LLVMContext.h" 54 #include "llvm/IR/Module.h" 55 #include "llvm/ProfileData/InstrProfReader.h" 56 #include "llvm/Support/ConvertUTF.h" 57 #include "llvm/Support/ErrorHandling.h" 58 #include "llvm/Support/MD5.h" 59 60 using namespace clang; 61 using namespace CodeGen; 62 63 static llvm::cl::opt<bool> LimitedCoverage( 64 "limited-coverage-experimental", llvm::cl::ZeroOrMore, llvm::cl::Hidden, 65 llvm::cl::desc("Emit limited coverage mapping information (experimental)"), 66 llvm::cl::init(false)); 67 68 static const char AnnotationSection[] = "llvm.metadata"; 69 70 static CGCXXABI *createCXXABI(CodeGenModule &CGM) { 71 switch (CGM.getTarget().getCXXABI().getKind()) { 72 case TargetCXXABI::GenericAArch64: 73 case TargetCXXABI::GenericARM: 74 case TargetCXXABI::iOS: 75 case TargetCXXABI::iOS64: 76 case TargetCXXABI::WatchOS: 77 case TargetCXXABI::GenericMIPS: 78 case TargetCXXABI::GenericItanium: 79 case TargetCXXABI::WebAssembly: 80 return CreateItaniumCXXABI(CGM); 81 case TargetCXXABI::Microsoft: 82 return CreateMicrosoftCXXABI(CGM); 83 } 84 85 llvm_unreachable("invalid C++ ABI kind"); 86 } 87 88 CodeGenModule::CodeGenModule(ASTContext &C, const HeaderSearchOptions &HSO, 89 const PreprocessorOptions &PPO, 90 const CodeGenOptions &CGO, llvm::Module &M, 91 DiagnosticsEngine &diags, 92 CoverageSourceInfo *CoverageInfo) 93 : Context(C), LangOpts(C.getLangOpts()), HeaderSearchOpts(HSO), 94 PreprocessorOpts(PPO), CodeGenOpts(CGO), TheModule(M), Diags(diags), 95 Target(C.getTargetInfo()), ABI(createCXXABI(*this)), 96 VMContext(M.getContext()), Types(*this), VTables(*this), 97 SanitizerMD(new SanitizerMetadata(*this)) { 98 99 // Initialize the type cache. 100 llvm::LLVMContext &LLVMContext = M.getContext(); 101 VoidTy = llvm::Type::getVoidTy(LLVMContext); 102 Int8Ty = llvm::Type::getInt8Ty(LLVMContext); 103 Int16Ty = llvm::Type::getInt16Ty(LLVMContext); 104 Int32Ty = llvm::Type::getInt32Ty(LLVMContext); 105 Int64Ty = llvm::Type::getInt64Ty(LLVMContext); 106 HalfTy = llvm::Type::getHalfTy(LLVMContext); 107 FloatTy = llvm::Type::getFloatTy(LLVMContext); 108 DoubleTy = llvm::Type::getDoubleTy(LLVMContext); 109 PointerWidthInBits = C.getTargetInfo().getPointerWidth(0); 110 PointerAlignInBytes = 111 C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(0)).getQuantity(); 112 SizeSizeInBytes = 113 C.toCharUnitsFromBits(C.getTargetInfo().getMaxPointerWidth()).getQuantity(); 114 IntAlignInBytes = 115 C.toCharUnitsFromBits(C.getTargetInfo().getIntAlign()).getQuantity(); 116 IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth()); 117 IntPtrTy = llvm::IntegerType::get(LLVMContext, 118 C.getTargetInfo().getMaxPointerWidth()); 119 Int8PtrTy = Int8Ty->getPointerTo(0); 120 Int8PtrPtrTy = Int8PtrTy->getPointerTo(0); 121 AllocaInt8PtrTy = Int8Ty->getPointerTo( 122 M.getDataLayout().getAllocaAddrSpace()); 123 ASTAllocaAddressSpace = getTargetCodeGenInfo().getASTAllocaAddressSpace(); 124 125 RuntimeCC = getTargetCodeGenInfo().getABIInfo().getRuntimeCC(); 126 BuiltinCC = getTargetCodeGenInfo().getABIInfo().getBuiltinCC(); 127 128 if (LangOpts.ObjC1) 129 createObjCRuntime(); 130 if (LangOpts.OpenCL) 131 createOpenCLRuntime(); 132 if (LangOpts.OpenMP) 133 createOpenMPRuntime(); 134 if (LangOpts.CUDA) 135 createCUDARuntime(); 136 137 // Enable TBAA unless it's suppressed. ThreadSanitizer needs TBAA even at O0. 138 if (LangOpts.Sanitize.has(SanitizerKind::Thread) || 139 (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0)) 140 TBAA.reset(new CodeGenTBAA(Context, TheModule, CodeGenOpts, getLangOpts(), 141 getCXXABI().getMangleContext())); 142 143 // If debug info or coverage generation is enabled, create the CGDebugInfo 144 // object. 145 if (CodeGenOpts.getDebugInfo() != codegenoptions::NoDebugInfo || 146 CodeGenOpts.EmitGcovArcs || CodeGenOpts.EmitGcovNotes) 147 DebugInfo.reset(new CGDebugInfo(*this)); 148 149 Block.GlobalUniqueCount = 0; 150 151 if (C.getLangOpts().ObjC1) 152 ObjCData.reset(new ObjCEntrypoints()); 153 154 if (CodeGenOpts.hasProfileClangUse()) { 155 auto ReaderOrErr = llvm::IndexedInstrProfReader::create( 156 CodeGenOpts.ProfileInstrumentUsePath); 157 if (auto E = ReaderOrErr.takeError()) { 158 unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error, 159 "Could not read profile %0: %1"); 160 llvm::handleAllErrors(std::move(E), [&](const llvm::ErrorInfoBase &EI) { 161 getDiags().Report(DiagID) << CodeGenOpts.ProfileInstrumentUsePath 162 << EI.message(); 163 }); 164 } else 165 PGOReader = std::move(ReaderOrErr.get()); 166 } 167 168 // If coverage mapping generation is enabled, create the 169 // CoverageMappingModuleGen object. 170 if (CodeGenOpts.CoverageMapping) 171 CoverageMapping.reset(new CoverageMappingModuleGen(*this, *CoverageInfo)); 172 } 173 174 CodeGenModule::~CodeGenModule() {} 175 176 void CodeGenModule::createObjCRuntime() { 177 // This is just isGNUFamily(), but we want to force implementors of 178 // new ABIs to decide how best to do this. 179 switch (LangOpts.ObjCRuntime.getKind()) { 180 case ObjCRuntime::GNUstep: 181 case ObjCRuntime::GCC: 182 case ObjCRuntime::ObjFW: 183 ObjCRuntime.reset(CreateGNUObjCRuntime(*this)); 184 return; 185 186 case ObjCRuntime::FragileMacOSX: 187 case ObjCRuntime::MacOSX: 188 case ObjCRuntime::iOS: 189 case ObjCRuntime::WatchOS: 190 ObjCRuntime.reset(CreateMacObjCRuntime(*this)); 191 return; 192 } 193 llvm_unreachable("bad runtime kind"); 194 } 195 196 void CodeGenModule::createOpenCLRuntime() { 197 OpenCLRuntime.reset(new CGOpenCLRuntime(*this)); 198 } 199 200 void CodeGenModule::createOpenMPRuntime() { 201 // Select a specialized code generation class based on the target, if any. 202 // If it does not exist use the default implementation. 203 switch (getTriple().getArch()) { 204 case llvm::Triple::nvptx: 205 case llvm::Triple::nvptx64: 206 assert(getLangOpts().OpenMPIsDevice && 207 "OpenMP NVPTX is only prepared to deal with device code."); 208 OpenMPRuntime.reset(new CGOpenMPRuntimeNVPTX(*this)); 209 break; 210 default: 211 if (LangOpts.OpenMPSimd) 212 OpenMPRuntime.reset(new CGOpenMPSIMDRuntime(*this)); 213 else 214 OpenMPRuntime.reset(new CGOpenMPRuntime(*this)); 215 break; 216 } 217 } 218 219 void CodeGenModule::createCUDARuntime() { 220 CUDARuntime.reset(CreateNVCUDARuntime(*this)); 221 } 222 223 void CodeGenModule::addReplacement(StringRef Name, llvm::Constant *C) { 224 Replacements[Name] = C; 225 } 226 227 void CodeGenModule::applyReplacements() { 228 for (auto &I : Replacements) { 229 StringRef MangledName = I.first(); 230 llvm::Constant *Replacement = I.second; 231 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 232 if (!Entry) 233 continue; 234 auto *OldF = cast<llvm::Function>(Entry); 235 auto *NewF = dyn_cast<llvm::Function>(Replacement); 236 if (!NewF) { 237 if (auto *Alias = dyn_cast<llvm::GlobalAlias>(Replacement)) { 238 NewF = dyn_cast<llvm::Function>(Alias->getAliasee()); 239 } else { 240 auto *CE = cast<llvm::ConstantExpr>(Replacement); 241 assert(CE->getOpcode() == llvm::Instruction::BitCast || 242 CE->getOpcode() == llvm::Instruction::GetElementPtr); 243 NewF = dyn_cast<llvm::Function>(CE->getOperand(0)); 244 } 245 } 246 247 // Replace old with new, but keep the old order. 248 OldF->replaceAllUsesWith(Replacement); 249 if (NewF) { 250 NewF->removeFromParent(); 251 OldF->getParent()->getFunctionList().insertAfter(OldF->getIterator(), 252 NewF); 253 } 254 OldF->eraseFromParent(); 255 } 256 } 257 258 void CodeGenModule::addGlobalValReplacement(llvm::GlobalValue *GV, llvm::Constant *C) { 259 GlobalValReplacements.push_back(std::make_pair(GV, C)); 260 } 261 262 void CodeGenModule::applyGlobalValReplacements() { 263 for (auto &I : GlobalValReplacements) { 264 llvm::GlobalValue *GV = I.first; 265 llvm::Constant *C = I.second; 266 267 GV->replaceAllUsesWith(C); 268 GV->eraseFromParent(); 269 } 270 } 271 272 // This is only used in aliases that we created and we know they have a 273 // linear structure. 274 static const llvm::GlobalObject *getAliasedGlobal( 275 const llvm::GlobalIndirectSymbol &GIS) { 276 llvm::SmallPtrSet<const llvm::GlobalIndirectSymbol*, 4> Visited; 277 const llvm::Constant *C = &GIS; 278 for (;;) { 279 C = C->stripPointerCasts(); 280 if (auto *GO = dyn_cast<llvm::GlobalObject>(C)) 281 return GO; 282 // stripPointerCasts will not walk over weak aliases. 283 auto *GIS2 = dyn_cast<llvm::GlobalIndirectSymbol>(C); 284 if (!GIS2) 285 return nullptr; 286 if (!Visited.insert(GIS2).second) 287 return nullptr; 288 C = GIS2->getIndirectSymbol(); 289 } 290 } 291 292 void CodeGenModule::checkAliases() { 293 // Check if the constructed aliases are well formed. It is really unfortunate 294 // that we have to do this in CodeGen, but we only construct mangled names 295 // and aliases during codegen. 296 bool Error = false; 297 DiagnosticsEngine &Diags = getDiags(); 298 for (const GlobalDecl &GD : Aliases) { 299 const auto *D = cast<ValueDecl>(GD.getDecl()); 300 SourceLocation Location; 301 bool IsIFunc = D->hasAttr<IFuncAttr>(); 302 if (const Attr *A = D->getDefiningAttr()) 303 Location = A->getLocation(); 304 else 305 llvm_unreachable("Not an alias or ifunc?"); 306 StringRef MangledName = getMangledName(GD); 307 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 308 auto *Alias = cast<llvm::GlobalIndirectSymbol>(Entry); 309 const llvm::GlobalValue *GV = getAliasedGlobal(*Alias); 310 if (!GV) { 311 Error = true; 312 Diags.Report(Location, diag::err_cyclic_alias) << IsIFunc; 313 } else if (GV->isDeclaration()) { 314 Error = true; 315 Diags.Report(Location, diag::err_alias_to_undefined) 316 << IsIFunc << IsIFunc; 317 } else if (IsIFunc) { 318 // Check resolver function type. 319 llvm::FunctionType *FTy = dyn_cast<llvm::FunctionType>( 320 GV->getType()->getPointerElementType()); 321 assert(FTy); 322 if (!FTy->getReturnType()->isPointerTy()) 323 Diags.Report(Location, diag::err_ifunc_resolver_return); 324 if (FTy->getNumParams()) 325 Diags.Report(Location, diag::err_ifunc_resolver_params); 326 } 327 328 llvm::Constant *Aliasee = Alias->getIndirectSymbol(); 329 llvm::GlobalValue *AliaseeGV; 330 if (auto CE = dyn_cast<llvm::ConstantExpr>(Aliasee)) 331 AliaseeGV = cast<llvm::GlobalValue>(CE->getOperand(0)); 332 else 333 AliaseeGV = cast<llvm::GlobalValue>(Aliasee); 334 335 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) { 336 StringRef AliasSection = SA->getName(); 337 if (AliasSection != AliaseeGV->getSection()) 338 Diags.Report(SA->getLocation(), diag::warn_alias_with_section) 339 << AliasSection << IsIFunc << IsIFunc; 340 } 341 342 // We have to handle alias to weak aliases in here. LLVM itself disallows 343 // this since the object semantics would not match the IL one. For 344 // compatibility with gcc we implement it by just pointing the alias 345 // to its aliasee's aliasee. We also warn, since the user is probably 346 // expecting the link to be weak. 347 if (auto GA = dyn_cast<llvm::GlobalIndirectSymbol>(AliaseeGV)) { 348 if (GA->isInterposable()) { 349 Diags.Report(Location, diag::warn_alias_to_weak_alias) 350 << GV->getName() << GA->getName() << IsIFunc; 351 Aliasee = llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast( 352 GA->getIndirectSymbol(), Alias->getType()); 353 Alias->setIndirectSymbol(Aliasee); 354 } 355 } 356 } 357 if (!Error) 358 return; 359 360 for (const GlobalDecl &GD : Aliases) { 361 StringRef MangledName = getMangledName(GD); 362 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 363 auto *Alias = dyn_cast<llvm::GlobalIndirectSymbol>(Entry); 364 Alias->replaceAllUsesWith(llvm::UndefValue::get(Alias->getType())); 365 Alias->eraseFromParent(); 366 } 367 } 368 369 void CodeGenModule::clear() { 370 DeferredDeclsToEmit.clear(); 371 if (OpenMPRuntime) 372 OpenMPRuntime->clear(); 373 } 374 375 void InstrProfStats::reportDiagnostics(DiagnosticsEngine &Diags, 376 StringRef MainFile) { 377 if (!hasDiagnostics()) 378 return; 379 if (VisitedInMainFile > 0 && VisitedInMainFile == MissingInMainFile) { 380 if (MainFile.empty()) 381 MainFile = "<stdin>"; 382 Diags.Report(diag::warn_profile_data_unprofiled) << MainFile; 383 } else { 384 if (Mismatched > 0) 385 Diags.Report(diag::warn_profile_data_out_of_date) << Visited << Mismatched; 386 387 if (Missing > 0) 388 Diags.Report(diag::warn_profile_data_missing) << Visited << Missing; 389 } 390 } 391 392 void CodeGenModule::Release() { 393 EmitDeferred(); 394 EmitVTablesOpportunistically(); 395 applyGlobalValReplacements(); 396 applyReplacements(); 397 checkAliases(); 398 emitMultiVersionFunctions(); 399 EmitCXXGlobalInitFunc(); 400 EmitCXXGlobalDtorFunc(); 401 EmitCXXThreadLocalInitFunc(); 402 if (ObjCRuntime) 403 if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction()) 404 AddGlobalCtor(ObjCInitFunction); 405 if (Context.getLangOpts().CUDA && !Context.getLangOpts().CUDAIsDevice && 406 CUDARuntime) { 407 if (llvm::Function *CudaCtorFunction = CUDARuntime->makeModuleCtorFunction()) 408 AddGlobalCtor(CudaCtorFunction); 409 if (llvm::Function *CudaDtorFunction = CUDARuntime->makeModuleDtorFunction()) 410 AddGlobalDtor(CudaDtorFunction); 411 } 412 if (OpenMPRuntime) 413 if (llvm::Function *OpenMPRegistrationFunction = 414 OpenMPRuntime->emitRegistrationFunction()) { 415 auto ComdatKey = OpenMPRegistrationFunction->hasComdat() ? 416 OpenMPRegistrationFunction : nullptr; 417 AddGlobalCtor(OpenMPRegistrationFunction, 0, ComdatKey); 418 } 419 if (PGOReader) { 420 getModule().setProfileSummary(PGOReader->getSummary().getMD(VMContext)); 421 if (PGOStats.hasDiagnostics()) 422 PGOStats.reportDiagnostics(getDiags(), getCodeGenOpts().MainFileName); 423 } 424 EmitCtorList(GlobalCtors, "llvm.global_ctors"); 425 EmitCtorList(GlobalDtors, "llvm.global_dtors"); 426 EmitGlobalAnnotations(); 427 EmitStaticExternCAliases(); 428 EmitDeferredUnusedCoverageMappings(); 429 if (CoverageMapping) 430 CoverageMapping->emit(); 431 if (CodeGenOpts.SanitizeCfiCrossDso) { 432 CodeGenFunction(*this).EmitCfiCheckFail(); 433 CodeGenFunction(*this).EmitCfiCheckStub(); 434 } 435 emitAtAvailableLinkGuard(); 436 emitLLVMUsed(); 437 if (SanStats) 438 SanStats->finish(); 439 440 if (CodeGenOpts.Autolink && 441 (Context.getLangOpts().Modules || !LinkerOptionsMetadata.empty())) { 442 EmitModuleLinkOptions(); 443 } 444 445 // Record mregparm value now so it is visible through rest of codegen. 446 if (Context.getTargetInfo().getTriple().getArch() == llvm::Triple::x86) 447 getModule().addModuleFlag(llvm::Module::Error, "NumRegisterParameters", 448 CodeGenOpts.NumRegisterParameters); 449 450 if (CodeGenOpts.DwarfVersion) { 451 // We actually want the latest version when there are conflicts. 452 // We can change from Warning to Latest if such mode is supported. 453 getModule().addModuleFlag(llvm::Module::Warning, "Dwarf Version", 454 CodeGenOpts.DwarfVersion); 455 } 456 if (CodeGenOpts.EmitCodeView) { 457 // Indicate that we want CodeView in the metadata. 458 getModule().addModuleFlag(llvm::Module::Warning, "CodeView", 1); 459 } 460 if (CodeGenOpts.ControlFlowGuard) { 461 // We want function ID tables for Control Flow Guard. 462 getModule().addModuleFlag(llvm::Module::Warning, "cfguard", 1); 463 } 464 if (CodeGenOpts.OptimizationLevel > 0 && CodeGenOpts.StrictVTablePointers) { 465 // We don't support LTO with 2 with different StrictVTablePointers 466 // FIXME: we could support it by stripping all the information introduced 467 // by StrictVTablePointers. 468 469 getModule().addModuleFlag(llvm::Module::Error, "StrictVTablePointers",1); 470 471 llvm::Metadata *Ops[2] = { 472 llvm::MDString::get(VMContext, "StrictVTablePointers"), 473 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 474 llvm::Type::getInt32Ty(VMContext), 1))}; 475 476 getModule().addModuleFlag(llvm::Module::Require, 477 "StrictVTablePointersRequirement", 478 llvm::MDNode::get(VMContext, Ops)); 479 } 480 if (DebugInfo) 481 // We support a single version in the linked module. The LLVM 482 // parser will drop debug info with a different version number 483 // (and warn about it, too). 484 getModule().addModuleFlag(llvm::Module::Warning, "Debug Info Version", 485 llvm::DEBUG_METADATA_VERSION); 486 487 // We need to record the widths of enums and wchar_t, so that we can generate 488 // the correct build attributes in the ARM backend. wchar_size is also used by 489 // TargetLibraryInfo. 490 uint64_t WCharWidth = 491 Context.getTypeSizeInChars(Context.getWideCharType()).getQuantity(); 492 getModule().addModuleFlag(llvm::Module::Error, "wchar_size", WCharWidth); 493 494 llvm::Triple::ArchType Arch = Context.getTargetInfo().getTriple().getArch(); 495 if ( Arch == llvm::Triple::arm 496 || Arch == llvm::Triple::armeb 497 || Arch == llvm::Triple::thumb 498 || Arch == llvm::Triple::thumbeb) { 499 // The minimum width of an enum in bytes 500 uint64_t EnumWidth = Context.getLangOpts().ShortEnums ? 1 : 4; 501 getModule().addModuleFlag(llvm::Module::Error, "min_enum_size", EnumWidth); 502 } 503 504 if (CodeGenOpts.SanitizeCfiCrossDso) { 505 // Indicate that we want cross-DSO control flow integrity checks. 506 getModule().addModuleFlag(llvm::Module::Override, "Cross-DSO CFI", 1); 507 } 508 509 if (CodeGenOpts.CFProtectionReturn && 510 Target.checkCFProtectionReturnSupported(getDiags())) { 511 // Indicate that we want to instrument return control flow protection. 512 getModule().addModuleFlag(llvm::Module::Override, "cf-protection-return", 513 1); 514 } 515 516 if (CodeGenOpts.CFProtectionBranch && 517 Target.checkCFProtectionBranchSupported(getDiags())) { 518 // Indicate that we want to instrument branch control flow protection. 519 getModule().addModuleFlag(llvm::Module::Override, "cf-protection-branch", 520 1); 521 } 522 523 if (LangOpts.CUDAIsDevice && getTriple().isNVPTX()) { 524 // Indicate whether __nvvm_reflect should be configured to flush denormal 525 // floating point values to 0. (This corresponds to its "__CUDA_FTZ" 526 // property.) 527 getModule().addModuleFlag(llvm::Module::Override, "nvvm-reflect-ftz", 528 LangOpts.CUDADeviceFlushDenormalsToZero ? 1 : 0); 529 } 530 531 // Emit OpenCL specific module metadata: OpenCL/SPIR version. 532 if (LangOpts.OpenCL) { 533 EmitOpenCLMetadata(); 534 // Emit SPIR version. 535 if (getTriple().getArch() == llvm::Triple::spir || 536 getTriple().getArch() == llvm::Triple::spir64) { 537 // SPIR v2.0 s2.12 - The SPIR version used by the module is stored in the 538 // opencl.spir.version named metadata. 539 llvm::Metadata *SPIRVerElts[] = { 540 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 541 Int32Ty, LangOpts.OpenCLVersion / 100)), 542 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 543 Int32Ty, (LangOpts.OpenCLVersion / 100 > 1) ? 0 : 2))}; 544 llvm::NamedMDNode *SPIRVerMD = 545 TheModule.getOrInsertNamedMetadata("opencl.spir.version"); 546 llvm::LLVMContext &Ctx = TheModule.getContext(); 547 SPIRVerMD->addOperand(llvm::MDNode::get(Ctx, SPIRVerElts)); 548 } 549 } 550 551 if (uint32_t PLevel = Context.getLangOpts().PICLevel) { 552 assert(PLevel < 3 && "Invalid PIC Level"); 553 getModule().setPICLevel(static_cast<llvm::PICLevel::Level>(PLevel)); 554 if (Context.getLangOpts().PIE) 555 getModule().setPIELevel(static_cast<llvm::PIELevel::Level>(PLevel)); 556 } 557 558 if (CodeGenOpts.NoPLT) 559 getModule().setRtLibUseGOT(); 560 561 SimplifyPersonality(); 562 563 if (getCodeGenOpts().EmitDeclMetadata) 564 EmitDeclMetadata(); 565 566 if (getCodeGenOpts().EmitGcovArcs || getCodeGenOpts().EmitGcovNotes) 567 EmitCoverageFile(); 568 569 if (DebugInfo) 570 DebugInfo->finalize(); 571 572 EmitVersionIdentMetadata(); 573 574 EmitTargetMetadata(); 575 } 576 577 void CodeGenModule::EmitOpenCLMetadata() { 578 // SPIR v2.0 s2.13 - The OpenCL version used by the module is stored in the 579 // opencl.ocl.version named metadata node. 580 llvm::Metadata *OCLVerElts[] = { 581 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 582 Int32Ty, LangOpts.OpenCLVersion / 100)), 583 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 584 Int32Ty, (LangOpts.OpenCLVersion % 100) / 10))}; 585 llvm::NamedMDNode *OCLVerMD = 586 TheModule.getOrInsertNamedMetadata("opencl.ocl.version"); 587 llvm::LLVMContext &Ctx = TheModule.getContext(); 588 OCLVerMD->addOperand(llvm::MDNode::get(Ctx, OCLVerElts)); 589 } 590 591 void CodeGenModule::UpdateCompletedType(const TagDecl *TD) { 592 // Make sure that this type is translated. 593 Types.UpdateCompletedType(TD); 594 } 595 596 void CodeGenModule::RefreshTypeCacheForClass(const CXXRecordDecl *RD) { 597 // Make sure that this type is translated. 598 Types.RefreshTypeCacheForClass(RD); 599 } 600 601 llvm::MDNode *CodeGenModule::getTBAATypeInfo(QualType QTy) { 602 if (!TBAA) 603 return nullptr; 604 return TBAA->getTypeInfo(QTy); 605 } 606 607 TBAAAccessInfo CodeGenModule::getTBAAAccessInfo(QualType AccessType) { 608 if (!TBAA) 609 return TBAAAccessInfo(); 610 return TBAA->getAccessInfo(AccessType); 611 } 612 613 TBAAAccessInfo 614 CodeGenModule::getTBAAVTablePtrAccessInfo(llvm::Type *VTablePtrType) { 615 if (!TBAA) 616 return TBAAAccessInfo(); 617 return TBAA->getVTablePtrAccessInfo(VTablePtrType); 618 } 619 620 llvm::MDNode *CodeGenModule::getTBAAStructInfo(QualType QTy) { 621 if (!TBAA) 622 return nullptr; 623 return TBAA->getTBAAStructInfo(QTy); 624 } 625 626 llvm::MDNode *CodeGenModule::getTBAABaseTypeInfo(QualType QTy) { 627 if (!TBAA) 628 return nullptr; 629 return TBAA->getBaseTypeInfo(QTy); 630 } 631 632 llvm::MDNode *CodeGenModule::getTBAAAccessTagInfo(TBAAAccessInfo Info) { 633 if (!TBAA) 634 return nullptr; 635 return TBAA->getAccessTagInfo(Info); 636 } 637 638 TBAAAccessInfo CodeGenModule::mergeTBAAInfoForCast(TBAAAccessInfo SourceInfo, 639 TBAAAccessInfo TargetInfo) { 640 if (!TBAA) 641 return TBAAAccessInfo(); 642 return TBAA->mergeTBAAInfoForCast(SourceInfo, TargetInfo); 643 } 644 645 TBAAAccessInfo 646 CodeGenModule::mergeTBAAInfoForConditionalOperator(TBAAAccessInfo InfoA, 647 TBAAAccessInfo InfoB) { 648 if (!TBAA) 649 return TBAAAccessInfo(); 650 return TBAA->mergeTBAAInfoForConditionalOperator(InfoA, InfoB); 651 } 652 653 TBAAAccessInfo 654 CodeGenModule::mergeTBAAInfoForMemoryTransfer(TBAAAccessInfo DestInfo, 655 TBAAAccessInfo SrcInfo) { 656 if (!TBAA) 657 return TBAAAccessInfo(); 658 return TBAA->mergeTBAAInfoForConditionalOperator(DestInfo, SrcInfo); 659 } 660 661 void CodeGenModule::DecorateInstructionWithTBAA(llvm::Instruction *Inst, 662 TBAAAccessInfo TBAAInfo) { 663 if (llvm::MDNode *Tag = getTBAAAccessTagInfo(TBAAInfo)) 664 Inst->setMetadata(llvm::LLVMContext::MD_tbaa, Tag); 665 } 666 667 void CodeGenModule::DecorateInstructionWithInvariantGroup( 668 llvm::Instruction *I, const CXXRecordDecl *RD) { 669 I->setMetadata(llvm::LLVMContext::MD_invariant_group, 670 llvm::MDNode::get(getLLVMContext(), {})); 671 } 672 673 void CodeGenModule::Error(SourceLocation loc, StringRef message) { 674 unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, "%0"); 675 getDiags().Report(Context.getFullLoc(loc), diagID) << message; 676 } 677 678 /// ErrorUnsupported - Print out an error that codegen doesn't support the 679 /// specified stmt yet. 680 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type) { 681 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, 682 "cannot compile this %0 yet"); 683 std::string Msg = Type; 684 getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID) 685 << Msg << S->getSourceRange(); 686 } 687 688 /// ErrorUnsupported - Print out an error that codegen doesn't support the 689 /// specified decl yet. 690 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type) { 691 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, 692 "cannot compile this %0 yet"); 693 std::string Msg = Type; 694 getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg; 695 } 696 697 llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) { 698 return llvm::ConstantInt::get(SizeTy, size.getQuantity()); 699 } 700 701 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV, 702 const NamedDecl *D) const { 703 if (GV->hasDLLImportStorageClass()) 704 return; 705 // Internal definitions always have default visibility. 706 if (GV->hasLocalLinkage()) { 707 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 708 return; 709 } 710 711 // Set visibility for definitions. 712 LinkageInfo LV = D->getLinkageAndVisibility(); 713 if (LV.isVisibilityExplicit() || !GV->isDeclarationForLinker()) 714 GV->setVisibility(GetLLVMVisibility(LV.getVisibility())); 715 } 716 717 static bool shouldAssumeDSOLocal(const CodeGenModule &CGM, 718 llvm::GlobalValue *GV) { 719 // DLLImport explicitly marks the GV as external. 720 if (GV->hasDLLImportStorageClass()) 721 return false; 722 723 const llvm::Triple &TT = CGM.getTriple(); 724 // Every other GV is local on COFF. 725 // Make an exception for windows OS in the triple: Some firmware builds use 726 // *-win32-macho triples. This (accidentally?) produced windows relocations 727 // without GOT tables in older clang versions; Keep this behaviour. 728 // FIXME: even thread local variables? 729 if (TT.isOSBinFormatCOFF() || (TT.isOSWindows() && TT.isOSBinFormatMachO())) 730 return true; 731 732 // Only handle COFF and ELF for now. 733 if (!TT.isOSBinFormatELF()) 734 return false; 735 736 // If this is not an executable, don't assume anything is local. 737 const auto &CGOpts = CGM.getCodeGenOpts(); 738 llvm::Reloc::Model RM = CGOpts.RelocationModel; 739 const auto &LOpts = CGM.getLangOpts(); 740 if (RM != llvm::Reloc::Static && !LOpts.PIE) 741 return false; 742 743 // A definition cannot be preempted from an executable. 744 if (!GV->isDeclarationForLinker()) 745 return true; 746 747 // Most PIC code sequences that assume that a symbol is local cannot produce a 748 // 0 if it turns out the symbol is undefined. While this is ABI and relocation 749 // depended, it seems worth it to handle it here. 750 if (RM == llvm::Reloc::PIC_ && GV->hasExternalWeakLinkage()) 751 return false; 752 753 // PPC has no copy relocations and cannot use a plt entry as a symbol address. 754 llvm::Triple::ArchType Arch = TT.getArch(); 755 if (Arch == llvm::Triple::ppc || Arch == llvm::Triple::ppc64 || 756 Arch == llvm::Triple::ppc64le) 757 return false; 758 759 // If we can use copy relocations we can assume it is local. 760 if (auto *Var = dyn_cast<llvm::GlobalVariable>(GV)) 761 if (!Var->isThreadLocal() && 762 (RM == llvm::Reloc::Static || CGOpts.PIECopyRelocations)) 763 return true; 764 765 // If we can use a plt entry as the symbol address we can assume it 766 // is local. 767 // FIXME: This should work for PIE, but the gold linker doesn't support it. 768 if (isa<llvm::Function>(GV) && !CGOpts.NoPLT && RM == llvm::Reloc::Static) 769 return true; 770 771 // Otherwise don't assue it is local. 772 return false; 773 } 774 775 void CodeGenModule::setDSOLocal(llvm::GlobalValue *GV) const { 776 if (shouldAssumeDSOLocal(*this, GV)) 777 GV->setDSOLocal(true); 778 } 779 780 void CodeGenModule::setGVProperties(llvm::GlobalValue *GV, 781 const NamedDecl *D) const { 782 setGlobalVisibility(GV, D); 783 setDSOLocal(GV); 784 } 785 786 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(StringRef S) { 787 return llvm::StringSwitch<llvm::GlobalVariable::ThreadLocalMode>(S) 788 .Case("global-dynamic", llvm::GlobalVariable::GeneralDynamicTLSModel) 789 .Case("local-dynamic", llvm::GlobalVariable::LocalDynamicTLSModel) 790 .Case("initial-exec", llvm::GlobalVariable::InitialExecTLSModel) 791 .Case("local-exec", llvm::GlobalVariable::LocalExecTLSModel); 792 } 793 794 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel( 795 CodeGenOptions::TLSModel M) { 796 switch (M) { 797 case CodeGenOptions::GeneralDynamicTLSModel: 798 return llvm::GlobalVariable::GeneralDynamicTLSModel; 799 case CodeGenOptions::LocalDynamicTLSModel: 800 return llvm::GlobalVariable::LocalDynamicTLSModel; 801 case CodeGenOptions::InitialExecTLSModel: 802 return llvm::GlobalVariable::InitialExecTLSModel; 803 case CodeGenOptions::LocalExecTLSModel: 804 return llvm::GlobalVariable::LocalExecTLSModel; 805 } 806 llvm_unreachable("Invalid TLS model!"); 807 } 808 809 void CodeGenModule::setTLSMode(llvm::GlobalValue *GV, const VarDecl &D) const { 810 assert(D.getTLSKind() && "setting TLS mode on non-TLS var!"); 811 812 llvm::GlobalValue::ThreadLocalMode TLM; 813 TLM = GetLLVMTLSModel(CodeGenOpts.getDefaultTLSModel()); 814 815 // Override the TLS model if it is explicitly specified. 816 if (const TLSModelAttr *Attr = D.getAttr<TLSModelAttr>()) { 817 TLM = GetLLVMTLSModel(Attr->getModel()); 818 } 819 820 GV->setThreadLocalMode(TLM); 821 } 822 823 static void AppendTargetMangling(const CodeGenModule &CGM, 824 const TargetAttr *Attr, raw_ostream &Out) { 825 if (Attr->isDefaultVersion()) 826 return; 827 828 Out << '.'; 829 const auto &Target = CGM.getTarget(); 830 TargetAttr::ParsedTargetAttr Info = 831 Attr->parse([&Target](StringRef LHS, StringRef RHS) { 832 // Multiversioning doesn't allow "no-${feature}", so we can 833 // only have "+" prefixes here. 834 assert(LHS.startswith("+") && RHS.startswith("+") && 835 "Features should always have a prefix."); 836 return Target.multiVersionSortPriority(LHS.substr(1)) > 837 Target.multiVersionSortPriority(RHS.substr(1)); 838 }); 839 840 bool IsFirst = true; 841 842 if (!Info.Architecture.empty()) { 843 IsFirst = false; 844 Out << "arch_" << Info.Architecture; 845 } 846 847 for (StringRef Feat : Info.Features) { 848 if (!IsFirst) 849 Out << '_'; 850 IsFirst = false; 851 Out << Feat.substr(1); 852 } 853 } 854 855 static std::string getMangledNameImpl(const CodeGenModule &CGM, GlobalDecl GD, 856 const NamedDecl *ND, 857 bool OmitTargetMangling = false) { 858 SmallString<256> Buffer; 859 llvm::raw_svector_ostream Out(Buffer); 860 MangleContext &MC = CGM.getCXXABI().getMangleContext(); 861 if (MC.shouldMangleDeclName(ND)) { 862 llvm::raw_svector_ostream Out(Buffer); 863 if (const auto *D = dyn_cast<CXXConstructorDecl>(ND)) 864 MC.mangleCXXCtor(D, GD.getCtorType(), Out); 865 else if (const auto *D = dyn_cast<CXXDestructorDecl>(ND)) 866 MC.mangleCXXDtor(D, GD.getDtorType(), Out); 867 else 868 MC.mangleName(ND, Out); 869 } else { 870 IdentifierInfo *II = ND->getIdentifier(); 871 assert(II && "Attempt to mangle unnamed decl."); 872 const auto *FD = dyn_cast<FunctionDecl>(ND); 873 874 if (FD && 875 FD->getType()->castAs<FunctionType>()->getCallConv() == CC_X86RegCall) { 876 llvm::raw_svector_ostream Out(Buffer); 877 Out << "__regcall3__" << II->getName(); 878 } else { 879 Out << II->getName(); 880 } 881 } 882 883 if (const auto *FD = dyn_cast<FunctionDecl>(ND)) 884 if (FD->isMultiVersion() && !OmitTargetMangling) 885 AppendTargetMangling(CGM, FD->getAttr<TargetAttr>(), Out); 886 return Out.str(); 887 } 888 889 void CodeGenModule::UpdateMultiVersionNames(GlobalDecl GD, 890 const FunctionDecl *FD) { 891 if (!FD->isMultiVersion()) 892 return; 893 894 // Get the name of what this would be without the 'target' attribute. This 895 // allows us to lookup the version that was emitted when this wasn't a 896 // multiversion function. 897 std::string NonTargetName = 898 getMangledNameImpl(*this, GD, FD, /*OmitTargetMangling=*/true); 899 GlobalDecl OtherGD; 900 if (lookupRepresentativeDecl(NonTargetName, OtherGD)) { 901 assert(OtherGD.getCanonicalDecl() 902 .getDecl() 903 ->getAsFunction() 904 ->isMultiVersion() && 905 "Other GD should now be a multiversioned function"); 906 // OtherFD is the version of this function that was mangled BEFORE 907 // becoming a MultiVersion function. It potentially needs to be updated. 908 const FunctionDecl *OtherFD = 909 OtherGD.getCanonicalDecl().getDecl()->getAsFunction(); 910 std::string OtherName = getMangledNameImpl(*this, OtherGD, OtherFD); 911 // This is so that if the initial version was already the 'default' 912 // version, we don't try to update it. 913 if (OtherName != NonTargetName) { 914 // Remove instead of erase, since others may have stored the StringRef 915 // to this. 916 const auto ExistingRecord = Manglings.find(NonTargetName); 917 if (ExistingRecord != std::end(Manglings)) 918 Manglings.remove(&(*ExistingRecord)); 919 auto Result = Manglings.insert(std::make_pair(OtherName, OtherGD)); 920 MangledDeclNames[OtherGD.getCanonicalDecl()] = Result.first->first(); 921 if (llvm::GlobalValue *Entry = GetGlobalValue(NonTargetName)) 922 Entry->setName(OtherName); 923 } 924 } 925 } 926 927 StringRef CodeGenModule::getMangledName(GlobalDecl GD) { 928 GlobalDecl CanonicalGD = GD.getCanonicalDecl(); 929 930 // Some ABIs don't have constructor variants. Make sure that base and 931 // complete constructors get mangled the same. 932 if (const auto *CD = dyn_cast<CXXConstructorDecl>(CanonicalGD.getDecl())) { 933 if (!getTarget().getCXXABI().hasConstructorVariants()) { 934 CXXCtorType OrigCtorType = GD.getCtorType(); 935 assert(OrigCtorType == Ctor_Base || OrigCtorType == Ctor_Complete); 936 if (OrigCtorType == Ctor_Base) 937 CanonicalGD = GlobalDecl(CD, Ctor_Complete); 938 } 939 } 940 941 auto FoundName = MangledDeclNames.find(CanonicalGD); 942 if (FoundName != MangledDeclNames.end()) 943 return FoundName->second; 944 945 946 // Keep the first result in the case of a mangling collision. 947 const auto *ND = cast<NamedDecl>(GD.getDecl()); 948 auto Result = 949 Manglings.insert(std::make_pair(getMangledNameImpl(*this, GD, ND), GD)); 950 return MangledDeclNames[CanonicalGD] = Result.first->first(); 951 } 952 953 StringRef CodeGenModule::getBlockMangledName(GlobalDecl GD, 954 const BlockDecl *BD) { 955 MangleContext &MangleCtx = getCXXABI().getMangleContext(); 956 const Decl *D = GD.getDecl(); 957 958 SmallString<256> Buffer; 959 llvm::raw_svector_ostream Out(Buffer); 960 if (!D) 961 MangleCtx.mangleGlobalBlock(BD, 962 dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()), Out); 963 else if (const auto *CD = dyn_cast<CXXConstructorDecl>(D)) 964 MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out); 965 else if (const auto *DD = dyn_cast<CXXDestructorDecl>(D)) 966 MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out); 967 else 968 MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out); 969 970 auto Result = Manglings.insert(std::make_pair(Out.str(), BD)); 971 return Result.first->first(); 972 } 973 974 llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) { 975 return getModule().getNamedValue(Name); 976 } 977 978 /// AddGlobalCtor - Add a function to the list that will be called before 979 /// main() runs. 980 void CodeGenModule::AddGlobalCtor(llvm::Function *Ctor, int Priority, 981 llvm::Constant *AssociatedData) { 982 // FIXME: Type coercion of void()* types. 983 GlobalCtors.push_back(Structor(Priority, Ctor, AssociatedData)); 984 } 985 986 /// AddGlobalDtor - Add a function to the list that will be called 987 /// when the module is unloaded. 988 void CodeGenModule::AddGlobalDtor(llvm::Function *Dtor, int Priority) { 989 // FIXME: Type coercion of void()* types. 990 GlobalDtors.push_back(Structor(Priority, Dtor, nullptr)); 991 } 992 993 void CodeGenModule::EmitCtorList(CtorList &Fns, const char *GlobalName) { 994 if (Fns.empty()) return; 995 996 // Ctor function type is void()*. 997 llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false); 998 llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy); 999 1000 // Get the type of a ctor entry, { i32, void ()*, i8* }. 1001 llvm::StructType *CtorStructTy = llvm::StructType::get( 1002 Int32Ty, llvm::PointerType::getUnqual(CtorFTy), VoidPtrTy); 1003 1004 // Construct the constructor and destructor arrays. 1005 ConstantInitBuilder builder(*this); 1006 auto ctors = builder.beginArray(CtorStructTy); 1007 for (const auto &I : Fns) { 1008 auto ctor = ctors.beginStruct(CtorStructTy); 1009 ctor.addInt(Int32Ty, I.Priority); 1010 ctor.add(llvm::ConstantExpr::getBitCast(I.Initializer, CtorPFTy)); 1011 if (I.AssociatedData) 1012 ctor.add(llvm::ConstantExpr::getBitCast(I.AssociatedData, VoidPtrTy)); 1013 else 1014 ctor.addNullPointer(VoidPtrTy); 1015 ctor.finishAndAddTo(ctors); 1016 } 1017 1018 auto list = 1019 ctors.finishAndCreateGlobal(GlobalName, getPointerAlign(), 1020 /*constant*/ false, 1021 llvm::GlobalValue::AppendingLinkage); 1022 1023 // The LTO linker doesn't seem to like it when we set an alignment 1024 // on appending variables. Take it off as a workaround. 1025 list->setAlignment(0); 1026 1027 Fns.clear(); 1028 } 1029 1030 llvm::GlobalValue::LinkageTypes 1031 CodeGenModule::getFunctionLinkage(GlobalDecl GD) { 1032 const auto *D = cast<FunctionDecl>(GD.getDecl()); 1033 1034 GVALinkage Linkage = getContext().GetGVALinkageForFunction(D); 1035 1036 if (isa<CXXDestructorDecl>(D) && 1037 getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D), 1038 GD.getDtorType())) { 1039 // Destructor variants in the Microsoft C++ ABI are always internal or 1040 // linkonce_odr thunks emitted on an as-needed basis. 1041 return Linkage == GVA_Internal ? llvm::GlobalValue::InternalLinkage 1042 : llvm::GlobalValue::LinkOnceODRLinkage; 1043 } 1044 1045 if (isa<CXXConstructorDecl>(D) && 1046 cast<CXXConstructorDecl>(D)->isInheritingConstructor() && 1047 Context.getTargetInfo().getCXXABI().isMicrosoft()) { 1048 // Our approach to inheriting constructors is fundamentally different from 1049 // that used by the MS ABI, so keep our inheriting constructor thunks 1050 // internal rather than trying to pick an unambiguous mangling for them. 1051 return llvm::GlobalValue::InternalLinkage; 1052 } 1053 1054 return getLLVMLinkageForDeclarator(D, Linkage, /*isConstantVariable=*/false); 1055 } 1056 1057 void CodeGenModule::setFunctionDLLStorageClass(GlobalDecl GD, llvm::Function *F) { 1058 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 1059 1060 if (const auto *Dtor = dyn_cast_or_null<CXXDestructorDecl>(FD)) { 1061 if (getCXXABI().useThunkForDtorVariant(Dtor, GD.getDtorType())) { 1062 // Don't dllexport/import destructor thunks. 1063 F->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 1064 return; 1065 } 1066 } 1067 1068 if (FD->hasAttr<DLLImportAttr>()) 1069 F->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass); 1070 else if (FD->hasAttr<DLLExportAttr>()) 1071 F->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass); 1072 else 1073 F->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass); 1074 } 1075 1076 llvm::ConstantInt *CodeGenModule::CreateCrossDsoCfiTypeId(llvm::Metadata *MD) { 1077 llvm::MDString *MDS = dyn_cast<llvm::MDString>(MD); 1078 if (!MDS) return nullptr; 1079 1080 return llvm::ConstantInt::get(Int64Ty, llvm::MD5Hash(MDS->getString())); 1081 } 1082 1083 void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D, 1084 const CGFunctionInfo &Info, 1085 llvm::Function *F) { 1086 unsigned CallingConv; 1087 llvm::AttributeList PAL; 1088 ConstructAttributeList(F->getName(), Info, D, PAL, CallingConv, false); 1089 F->setAttributes(PAL); 1090 F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv)); 1091 } 1092 1093 /// Determines whether the language options require us to model 1094 /// unwind exceptions. We treat -fexceptions as mandating this 1095 /// except under the fragile ObjC ABI with only ObjC exceptions 1096 /// enabled. This means, for example, that C with -fexceptions 1097 /// enables this. 1098 static bool hasUnwindExceptions(const LangOptions &LangOpts) { 1099 // If exceptions are completely disabled, obviously this is false. 1100 if (!LangOpts.Exceptions) return false; 1101 1102 // If C++ exceptions are enabled, this is true. 1103 if (LangOpts.CXXExceptions) return true; 1104 1105 // If ObjC exceptions are enabled, this depends on the ABI. 1106 if (LangOpts.ObjCExceptions) { 1107 return LangOpts.ObjCRuntime.hasUnwindExceptions(); 1108 } 1109 1110 return true; 1111 } 1112 1113 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D, 1114 llvm::Function *F) { 1115 llvm::AttrBuilder B; 1116 1117 if (CodeGenOpts.UnwindTables) 1118 B.addAttribute(llvm::Attribute::UWTable); 1119 1120 if (!hasUnwindExceptions(LangOpts)) 1121 B.addAttribute(llvm::Attribute::NoUnwind); 1122 1123 if (LangOpts.getStackProtector() == LangOptions::SSPOn) 1124 B.addAttribute(llvm::Attribute::StackProtect); 1125 else if (LangOpts.getStackProtector() == LangOptions::SSPStrong) 1126 B.addAttribute(llvm::Attribute::StackProtectStrong); 1127 else if (LangOpts.getStackProtector() == LangOptions::SSPReq) 1128 B.addAttribute(llvm::Attribute::StackProtectReq); 1129 1130 if (!D) { 1131 // If we don't have a declaration to control inlining, the function isn't 1132 // explicitly marked as alwaysinline for semantic reasons, and inlining is 1133 // disabled, mark the function as noinline. 1134 if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline) && 1135 CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining) 1136 B.addAttribute(llvm::Attribute::NoInline); 1137 1138 F->addAttributes(llvm::AttributeList::FunctionIndex, B); 1139 return; 1140 } 1141 1142 // Track whether we need to add the optnone LLVM attribute, 1143 // starting with the default for this optimization level. 1144 bool ShouldAddOptNone = 1145 !CodeGenOpts.DisableO0ImplyOptNone && CodeGenOpts.OptimizationLevel == 0; 1146 // We can't add optnone in the following cases, it won't pass the verifier. 1147 ShouldAddOptNone &= !D->hasAttr<MinSizeAttr>(); 1148 ShouldAddOptNone &= !F->hasFnAttribute(llvm::Attribute::AlwaysInline); 1149 ShouldAddOptNone &= !D->hasAttr<AlwaysInlineAttr>(); 1150 1151 if (ShouldAddOptNone || D->hasAttr<OptimizeNoneAttr>()) { 1152 B.addAttribute(llvm::Attribute::OptimizeNone); 1153 1154 // OptimizeNone implies noinline; we should not be inlining such functions. 1155 B.addAttribute(llvm::Attribute::NoInline); 1156 assert(!F->hasFnAttribute(llvm::Attribute::AlwaysInline) && 1157 "OptimizeNone and AlwaysInline on same function!"); 1158 1159 // We still need to handle naked functions even though optnone subsumes 1160 // much of their semantics. 1161 if (D->hasAttr<NakedAttr>()) 1162 B.addAttribute(llvm::Attribute::Naked); 1163 1164 // OptimizeNone wins over OptimizeForSize and MinSize. 1165 F->removeFnAttr(llvm::Attribute::OptimizeForSize); 1166 F->removeFnAttr(llvm::Attribute::MinSize); 1167 } else if (D->hasAttr<NakedAttr>()) { 1168 // Naked implies noinline: we should not be inlining such functions. 1169 B.addAttribute(llvm::Attribute::Naked); 1170 B.addAttribute(llvm::Attribute::NoInline); 1171 } else if (D->hasAttr<NoDuplicateAttr>()) { 1172 B.addAttribute(llvm::Attribute::NoDuplicate); 1173 } else if (D->hasAttr<NoInlineAttr>()) { 1174 B.addAttribute(llvm::Attribute::NoInline); 1175 } else if (D->hasAttr<AlwaysInlineAttr>() && 1176 !F->hasFnAttribute(llvm::Attribute::NoInline)) { 1177 // (noinline wins over always_inline, and we can't specify both in IR) 1178 B.addAttribute(llvm::Attribute::AlwaysInline); 1179 } else if (CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining) { 1180 // If we're not inlining, then force everything that isn't always_inline to 1181 // carry an explicit noinline attribute. 1182 if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline)) 1183 B.addAttribute(llvm::Attribute::NoInline); 1184 } else { 1185 // Otherwise, propagate the inline hint attribute and potentially use its 1186 // absence to mark things as noinline. 1187 if (auto *FD = dyn_cast<FunctionDecl>(D)) { 1188 if (any_of(FD->redecls(), [&](const FunctionDecl *Redecl) { 1189 return Redecl->isInlineSpecified(); 1190 })) { 1191 B.addAttribute(llvm::Attribute::InlineHint); 1192 } else if (CodeGenOpts.getInlining() == 1193 CodeGenOptions::OnlyHintInlining && 1194 !FD->isInlined() && 1195 !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) { 1196 B.addAttribute(llvm::Attribute::NoInline); 1197 } 1198 } 1199 } 1200 1201 // Add other optimization related attributes if we are optimizing this 1202 // function. 1203 if (!D->hasAttr<OptimizeNoneAttr>()) { 1204 if (D->hasAttr<ColdAttr>()) { 1205 if (!ShouldAddOptNone) 1206 B.addAttribute(llvm::Attribute::OptimizeForSize); 1207 B.addAttribute(llvm::Attribute::Cold); 1208 } 1209 1210 if (D->hasAttr<MinSizeAttr>()) 1211 B.addAttribute(llvm::Attribute::MinSize); 1212 } 1213 1214 F->addAttributes(llvm::AttributeList::FunctionIndex, B); 1215 1216 unsigned alignment = D->getMaxAlignment() / Context.getCharWidth(); 1217 if (alignment) 1218 F->setAlignment(alignment); 1219 1220 // Some C++ ABIs require 2-byte alignment for member functions, in order to 1221 // reserve a bit for differentiating between virtual and non-virtual member 1222 // functions. If the current target's C++ ABI requires this and this is a 1223 // member function, set its alignment accordingly. 1224 if (getTarget().getCXXABI().areMemberFunctionsAligned()) { 1225 if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D)) 1226 F->setAlignment(2); 1227 } 1228 1229 // In the cross-dso CFI mode, we want !type attributes on definitions only. 1230 if (CodeGenOpts.SanitizeCfiCrossDso) 1231 if (auto *FD = dyn_cast<FunctionDecl>(D)) 1232 CreateFunctionTypeMetadata(FD, F); 1233 } 1234 1235 void CodeGenModule::SetCommonAttributes(GlobalDecl GD, llvm::GlobalValue *GV) { 1236 const Decl *D = GD.getDecl(); 1237 if (const auto *ND = dyn_cast_or_null<NamedDecl>(D)) 1238 setGVProperties(GV, ND); 1239 else 1240 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 1241 1242 if (D && D->hasAttr<UsedAttr>()) 1243 addUsedGlobal(GV); 1244 } 1245 1246 void CodeGenModule::setAliasAttributes(GlobalDecl GD, llvm::GlobalValue *GV) { 1247 const Decl *D = GD.getDecl(); 1248 SetCommonAttributes(GD, GV); 1249 1250 // Process the dllexport attribute based on whether the original definition 1251 // (not necessarily the aliasee) was exported. 1252 if (D->hasAttr<DLLExportAttr>()) 1253 GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass); 1254 } 1255 1256 bool CodeGenModule::GetCPUAndFeaturesAttributes(const Decl *D, 1257 llvm::AttrBuilder &Attrs) { 1258 // Add target-cpu and target-features attributes to functions. If 1259 // we have a decl for the function and it has a target attribute then 1260 // parse that and add it to the feature set. 1261 StringRef TargetCPU = getTarget().getTargetOpts().CPU; 1262 std::vector<std::string> Features; 1263 const auto *FD = dyn_cast_or_null<FunctionDecl>(D); 1264 FD = FD ? FD->getMostRecentDecl() : FD; 1265 const auto *TD = FD ? FD->getAttr<TargetAttr>() : nullptr; 1266 bool AddedAttr = false; 1267 if (TD) { 1268 llvm::StringMap<bool> FeatureMap; 1269 getFunctionFeatureMap(FeatureMap, FD); 1270 1271 // Produce the canonical string for this set of features. 1272 for (const llvm::StringMap<bool>::value_type &Entry : FeatureMap) 1273 Features.push_back((Entry.getValue() ? "+" : "-") + Entry.getKey().str()); 1274 1275 // Now add the target-cpu and target-features to the function. 1276 // While we populated the feature map above, we still need to 1277 // get and parse the target attribute so we can get the cpu for 1278 // the function. 1279 TargetAttr::ParsedTargetAttr ParsedAttr = TD->parse(); 1280 if (ParsedAttr.Architecture != "" && 1281 getTarget().isValidCPUName(ParsedAttr.Architecture)) 1282 TargetCPU = ParsedAttr.Architecture; 1283 } else { 1284 // Otherwise just add the existing target cpu and target features to the 1285 // function. 1286 Features = getTarget().getTargetOpts().Features; 1287 } 1288 1289 if (TargetCPU != "") { 1290 Attrs.addAttribute("target-cpu", TargetCPU); 1291 AddedAttr = true; 1292 } 1293 if (!Features.empty()) { 1294 std::sort(Features.begin(), Features.end()); 1295 Attrs.addAttribute("target-features", llvm::join(Features, ",")); 1296 AddedAttr = true; 1297 } 1298 1299 return AddedAttr; 1300 } 1301 1302 void CodeGenModule::setNonAliasAttributes(GlobalDecl GD, 1303 llvm::GlobalObject *GO) { 1304 const Decl *D = GD.getDecl(); 1305 SetCommonAttributes(GD, GO); 1306 1307 if (D) { 1308 if (auto *GV = dyn_cast<llvm::GlobalVariable>(GO)) { 1309 if (auto *SA = D->getAttr<PragmaClangBSSSectionAttr>()) 1310 GV->addAttribute("bss-section", SA->getName()); 1311 if (auto *SA = D->getAttr<PragmaClangDataSectionAttr>()) 1312 GV->addAttribute("data-section", SA->getName()); 1313 if (auto *SA = D->getAttr<PragmaClangRodataSectionAttr>()) 1314 GV->addAttribute("rodata-section", SA->getName()); 1315 } 1316 1317 if (auto *F = dyn_cast<llvm::Function>(GO)) { 1318 if (auto *SA = D->getAttr<PragmaClangTextSectionAttr>()) 1319 if (!D->getAttr<SectionAttr>()) 1320 F->addFnAttr("implicit-section-name", SA->getName()); 1321 1322 llvm::AttrBuilder Attrs; 1323 if (GetCPUAndFeaturesAttributes(D, Attrs)) { 1324 // We know that GetCPUAndFeaturesAttributes will always have the 1325 // newest set, since it has the newest possible FunctionDecl, so the 1326 // new ones should replace the old. 1327 F->removeFnAttr("target-cpu"); 1328 F->removeFnAttr("target-features"); 1329 F->addAttributes(llvm::AttributeList::FunctionIndex, Attrs); 1330 } 1331 } 1332 1333 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) 1334 GO->setSection(SA->getName()); 1335 } 1336 1337 getTargetCodeGenInfo().setTargetAttributes(D, GO, *this); 1338 } 1339 1340 void CodeGenModule::SetInternalFunctionAttributes(GlobalDecl GD, 1341 llvm::Function *F, 1342 const CGFunctionInfo &FI) { 1343 const Decl *D = GD.getDecl(); 1344 SetLLVMFunctionAttributes(D, FI, F); 1345 SetLLVMFunctionAttributesForDefinition(D, F); 1346 1347 F->setLinkage(llvm::Function::InternalLinkage); 1348 1349 setNonAliasAttributes(GD, F); 1350 } 1351 1352 static void setLinkageForGV(llvm::GlobalValue *GV, 1353 const NamedDecl *ND) { 1354 // Set linkage and visibility in case we never see a definition. 1355 LinkageInfo LV = ND->getLinkageAndVisibility(); 1356 if (!isExternallyVisible(LV.getLinkage())) { 1357 // Don't set internal linkage on declarations. 1358 } else { 1359 if (ND->hasAttr<DLLImportAttr>()) { 1360 GV->setLinkage(llvm::GlobalValue::ExternalLinkage); 1361 GV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass); 1362 } else if (ND->hasAttr<DLLExportAttr>()) { 1363 GV->setLinkage(llvm::GlobalValue::ExternalLinkage); 1364 } else if (ND->hasAttr<WeakAttr>() || ND->isWeakImported()) { 1365 // "extern_weak" is overloaded in LLVM; we probably should have 1366 // separate linkage types for this. 1367 GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage); 1368 } 1369 } 1370 } 1371 1372 void CodeGenModule::CreateFunctionTypeMetadata(const FunctionDecl *FD, 1373 llvm::Function *F) { 1374 // Only if we are checking indirect calls. 1375 if (!LangOpts.Sanitize.has(SanitizerKind::CFIICall)) 1376 return; 1377 1378 // Non-static class methods are handled via vtable pointer checks elsewhere. 1379 if (isa<CXXMethodDecl>(FD) && !cast<CXXMethodDecl>(FD)->isStatic()) 1380 return; 1381 1382 // Additionally, if building with cross-DSO support... 1383 if (CodeGenOpts.SanitizeCfiCrossDso) { 1384 // Skip available_externally functions. They won't be codegen'ed in the 1385 // current module anyway. 1386 if (getContext().GetGVALinkageForFunction(FD) == GVA_AvailableExternally) 1387 return; 1388 } 1389 1390 llvm::Metadata *MD = CreateMetadataIdentifierForType(FD->getType()); 1391 F->addTypeMetadata(0, MD); 1392 F->addTypeMetadata(0, CreateMetadataIdentifierGeneralized(FD->getType())); 1393 1394 // Emit a hash-based bit set entry for cross-DSO calls. 1395 if (CodeGenOpts.SanitizeCfiCrossDso) 1396 if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD)) 1397 F->addTypeMetadata(0, llvm::ConstantAsMetadata::get(CrossDsoTypeId)); 1398 } 1399 1400 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD, llvm::Function *F, 1401 bool IsIncompleteFunction, 1402 bool IsThunk) { 1403 1404 if (llvm::Intrinsic::ID IID = F->getIntrinsicID()) { 1405 // If this is an intrinsic function, set the function's attributes 1406 // to the intrinsic's attributes. 1407 F->setAttributes(llvm::Intrinsic::getAttributes(getLLVMContext(), IID)); 1408 return; 1409 } 1410 1411 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 1412 1413 if (!IsIncompleteFunction) { 1414 SetLLVMFunctionAttributes(FD, getTypes().arrangeGlobalDeclaration(GD), F); 1415 // Setup target-specific attributes. 1416 if (F->isDeclaration()) 1417 getTargetCodeGenInfo().setTargetAttributes(FD, F, *this); 1418 } 1419 1420 // Add the Returned attribute for "this", except for iOS 5 and earlier 1421 // where substantial code, including the libstdc++ dylib, was compiled with 1422 // GCC and does not actually return "this". 1423 if (!IsThunk && getCXXABI().HasThisReturn(GD) && 1424 !(getTriple().isiOS() && getTriple().isOSVersionLT(6))) { 1425 assert(!F->arg_empty() && 1426 F->arg_begin()->getType() 1427 ->canLosslesslyBitCastTo(F->getReturnType()) && 1428 "unexpected this return"); 1429 F->addAttribute(1, llvm::Attribute::Returned); 1430 } 1431 1432 // Only a few attributes are set on declarations; these may later be 1433 // overridden by a definition. 1434 1435 setLinkageForGV(F, FD); 1436 setGVProperties(F, FD); 1437 1438 if (FD->getAttr<PragmaClangTextSectionAttr>()) { 1439 F->addFnAttr("implicit-section-name"); 1440 } 1441 1442 if (const SectionAttr *SA = FD->getAttr<SectionAttr>()) 1443 F->setSection(SA->getName()); 1444 1445 if (FD->isReplaceableGlobalAllocationFunction()) { 1446 // A replaceable global allocation function does not act like a builtin by 1447 // default, only if it is invoked by a new-expression or delete-expression. 1448 F->addAttribute(llvm::AttributeList::FunctionIndex, 1449 llvm::Attribute::NoBuiltin); 1450 1451 // A sane operator new returns a non-aliasing pointer. 1452 // FIXME: Also add NonNull attribute to the return value 1453 // for the non-nothrow forms? 1454 auto Kind = FD->getDeclName().getCXXOverloadedOperator(); 1455 if (getCodeGenOpts().AssumeSaneOperatorNew && 1456 (Kind == OO_New || Kind == OO_Array_New)) 1457 F->addAttribute(llvm::AttributeList::ReturnIndex, 1458 llvm::Attribute::NoAlias); 1459 } 1460 1461 if (isa<CXXConstructorDecl>(FD) || isa<CXXDestructorDecl>(FD)) 1462 F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 1463 else if (const auto *MD = dyn_cast<CXXMethodDecl>(FD)) 1464 if (MD->isVirtual()) 1465 F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 1466 1467 // Don't emit entries for function declarations in the cross-DSO mode. This 1468 // is handled with better precision by the receiving DSO. 1469 if (!CodeGenOpts.SanitizeCfiCrossDso) 1470 CreateFunctionTypeMetadata(FD, F); 1471 1472 if (getLangOpts().OpenMP && FD->hasAttr<OMPDeclareSimdDeclAttr>()) 1473 getOpenMPRuntime().emitDeclareSimdFunction(FD, F); 1474 } 1475 1476 void CodeGenModule::addUsedGlobal(llvm::GlobalValue *GV) { 1477 assert(!GV->isDeclaration() && 1478 "Only globals with definition can force usage."); 1479 LLVMUsed.emplace_back(GV); 1480 } 1481 1482 void CodeGenModule::addCompilerUsedGlobal(llvm::GlobalValue *GV) { 1483 assert(!GV->isDeclaration() && 1484 "Only globals with definition can force usage."); 1485 LLVMCompilerUsed.emplace_back(GV); 1486 } 1487 1488 static void emitUsed(CodeGenModule &CGM, StringRef Name, 1489 std::vector<llvm::WeakTrackingVH> &List) { 1490 // Don't create llvm.used if there is no need. 1491 if (List.empty()) 1492 return; 1493 1494 // Convert List to what ConstantArray needs. 1495 SmallVector<llvm::Constant*, 8> UsedArray; 1496 UsedArray.resize(List.size()); 1497 for (unsigned i = 0, e = List.size(); i != e; ++i) { 1498 UsedArray[i] = 1499 llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast( 1500 cast<llvm::Constant>(&*List[i]), CGM.Int8PtrTy); 1501 } 1502 1503 if (UsedArray.empty()) 1504 return; 1505 llvm::ArrayType *ATy = llvm::ArrayType::get(CGM.Int8PtrTy, UsedArray.size()); 1506 1507 auto *GV = new llvm::GlobalVariable( 1508 CGM.getModule(), ATy, false, llvm::GlobalValue::AppendingLinkage, 1509 llvm::ConstantArray::get(ATy, UsedArray), Name); 1510 1511 GV->setSection("llvm.metadata"); 1512 } 1513 1514 void CodeGenModule::emitLLVMUsed() { 1515 emitUsed(*this, "llvm.used", LLVMUsed); 1516 emitUsed(*this, "llvm.compiler.used", LLVMCompilerUsed); 1517 } 1518 1519 void CodeGenModule::AppendLinkerOptions(StringRef Opts) { 1520 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opts); 1521 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 1522 } 1523 1524 void CodeGenModule::AddDetectMismatch(StringRef Name, StringRef Value) { 1525 llvm::SmallString<32> Opt; 1526 getTargetCodeGenInfo().getDetectMismatchOption(Name, Value, Opt); 1527 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt); 1528 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 1529 } 1530 1531 void CodeGenModule::AddELFLibDirective(StringRef Lib) { 1532 auto &C = getLLVMContext(); 1533 LinkerOptionsMetadata.push_back(llvm::MDNode::get( 1534 C, {llvm::MDString::get(C, "lib"), llvm::MDString::get(C, Lib)})); 1535 } 1536 1537 void CodeGenModule::AddDependentLib(StringRef Lib) { 1538 llvm::SmallString<24> Opt; 1539 getTargetCodeGenInfo().getDependentLibraryOption(Lib, Opt); 1540 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt); 1541 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 1542 } 1543 1544 /// \brief Add link options implied by the given module, including modules 1545 /// it depends on, using a postorder walk. 1546 static void addLinkOptionsPostorder(CodeGenModule &CGM, Module *Mod, 1547 SmallVectorImpl<llvm::MDNode *> &Metadata, 1548 llvm::SmallPtrSet<Module *, 16> &Visited) { 1549 // Import this module's parent. 1550 if (Mod->Parent && Visited.insert(Mod->Parent).second) { 1551 addLinkOptionsPostorder(CGM, Mod->Parent, Metadata, Visited); 1552 } 1553 1554 // Import this module's dependencies. 1555 for (unsigned I = Mod->Imports.size(); I > 0; --I) { 1556 if (Visited.insert(Mod->Imports[I - 1]).second) 1557 addLinkOptionsPostorder(CGM, Mod->Imports[I-1], Metadata, Visited); 1558 } 1559 1560 // Add linker options to link against the libraries/frameworks 1561 // described by this module. 1562 llvm::LLVMContext &Context = CGM.getLLVMContext(); 1563 for (unsigned I = Mod->LinkLibraries.size(); I > 0; --I) { 1564 // Link against a framework. Frameworks are currently Darwin only, so we 1565 // don't to ask TargetCodeGenInfo for the spelling of the linker option. 1566 if (Mod->LinkLibraries[I-1].IsFramework) { 1567 llvm::Metadata *Args[2] = { 1568 llvm::MDString::get(Context, "-framework"), 1569 llvm::MDString::get(Context, Mod->LinkLibraries[I - 1].Library)}; 1570 1571 Metadata.push_back(llvm::MDNode::get(Context, Args)); 1572 continue; 1573 } 1574 1575 // Link against a library. 1576 llvm::SmallString<24> Opt; 1577 CGM.getTargetCodeGenInfo().getDependentLibraryOption( 1578 Mod->LinkLibraries[I-1].Library, Opt); 1579 auto *OptString = llvm::MDString::get(Context, Opt); 1580 Metadata.push_back(llvm::MDNode::get(Context, OptString)); 1581 } 1582 } 1583 1584 void CodeGenModule::EmitModuleLinkOptions() { 1585 // Collect the set of all of the modules we want to visit to emit link 1586 // options, which is essentially the imported modules and all of their 1587 // non-explicit child modules. 1588 llvm::SetVector<clang::Module *> LinkModules; 1589 llvm::SmallPtrSet<clang::Module *, 16> Visited; 1590 SmallVector<clang::Module *, 16> Stack; 1591 1592 // Seed the stack with imported modules. 1593 for (Module *M : ImportedModules) { 1594 // Do not add any link flags when an implementation TU of a module imports 1595 // a header of that same module. 1596 if (M->getTopLevelModuleName() == getLangOpts().CurrentModule && 1597 !getLangOpts().isCompilingModule()) 1598 continue; 1599 if (Visited.insert(M).second) 1600 Stack.push_back(M); 1601 } 1602 1603 // Find all of the modules to import, making a little effort to prune 1604 // non-leaf modules. 1605 while (!Stack.empty()) { 1606 clang::Module *Mod = Stack.pop_back_val(); 1607 1608 bool AnyChildren = false; 1609 1610 // Visit the submodules of this module. 1611 for (clang::Module::submodule_iterator Sub = Mod->submodule_begin(), 1612 SubEnd = Mod->submodule_end(); 1613 Sub != SubEnd; ++Sub) { 1614 // Skip explicit children; they need to be explicitly imported to be 1615 // linked against. 1616 if ((*Sub)->IsExplicit) 1617 continue; 1618 1619 if (Visited.insert(*Sub).second) { 1620 Stack.push_back(*Sub); 1621 AnyChildren = true; 1622 } 1623 } 1624 1625 // We didn't find any children, so add this module to the list of 1626 // modules to link against. 1627 if (!AnyChildren) { 1628 LinkModules.insert(Mod); 1629 } 1630 } 1631 1632 // Add link options for all of the imported modules in reverse topological 1633 // order. We don't do anything to try to order import link flags with respect 1634 // to linker options inserted by things like #pragma comment(). 1635 SmallVector<llvm::MDNode *, 16> MetadataArgs; 1636 Visited.clear(); 1637 for (Module *M : LinkModules) 1638 if (Visited.insert(M).second) 1639 addLinkOptionsPostorder(*this, M, MetadataArgs, Visited); 1640 std::reverse(MetadataArgs.begin(), MetadataArgs.end()); 1641 LinkerOptionsMetadata.append(MetadataArgs.begin(), MetadataArgs.end()); 1642 1643 // Add the linker options metadata flag. 1644 auto *NMD = getModule().getOrInsertNamedMetadata("llvm.linker.options"); 1645 for (auto *MD : LinkerOptionsMetadata) 1646 NMD->addOperand(MD); 1647 } 1648 1649 void CodeGenModule::EmitDeferred() { 1650 // Emit code for any potentially referenced deferred decls. Since a 1651 // previously unused static decl may become used during the generation of code 1652 // for a static function, iterate until no changes are made. 1653 1654 if (!DeferredVTables.empty()) { 1655 EmitDeferredVTables(); 1656 1657 // Emitting a vtable doesn't directly cause more vtables to 1658 // become deferred, although it can cause functions to be 1659 // emitted that then need those vtables. 1660 assert(DeferredVTables.empty()); 1661 } 1662 1663 // Stop if we're out of both deferred vtables and deferred declarations. 1664 if (DeferredDeclsToEmit.empty()) 1665 return; 1666 1667 // Grab the list of decls to emit. If EmitGlobalDefinition schedules more 1668 // work, it will not interfere with this. 1669 std::vector<GlobalDecl> CurDeclsToEmit; 1670 CurDeclsToEmit.swap(DeferredDeclsToEmit); 1671 1672 for (GlobalDecl &D : CurDeclsToEmit) { 1673 // We should call GetAddrOfGlobal with IsForDefinition set to true in order 1674 // to get GlobalValue with exactly the type we need, not something that 1675 // might had been created for another decl with the same mangled name but 1676 // different type. 1677 llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>( 1678 GetAddrOfGlobal(D, ForDefinition)); 1679 1680 // In case of different address spaces, we may still get a cast, even with 1681 // IsForDefinition equal to true. Query mangled names table to get 1682 // GlobalValue. 1683 if (!GV) 1684 GV = GetGlobalValue(getMangledName(D)); 1685 1686 // Make sure GetGlobalValue returned non-null. 1687 assert(GV); 1688 1689 // Check to see if we've already emitted this. This is necessary 1690 // for a couple of reasons: first, decls can end up in the 1691 // deferred-decls queue multiple times, and second, decls can end 1692 // up with definitions in unusual ways (e.g. by an extern inline 1693 // function acquiring a strong function redefinition). Just 1694 // ignore these cases. 1695 if (!GV->isDeclaration()) 1696 continue; 1697 1698 // Otherwise, emit the definition and move on to the next one. 1699 EmitGlobalDefinition(D, GV); 1700 1701 // If we found out that we need to emit more decls, do that recursively. 1702 // This has the advantage that the decls are emitted in a DFS and related 1703 // ones are close together, which is convenient for testing. 1704 if (!DeferredVTables.empty() || !DeferredDeclsToEmit.empty()) { 1705 EmitDeferred(); 1706 assert(DeferredVTables.empty() && DeferredDeclsToEmit.empty()); 1707 } 1708 } 1709 } 1710 1711 void CodeGenModule::EmitVTablesOpportunistically() { 1712 // Try to emit external vtables as available_externally if they have emitted 1713 // all inlined virtual functions. It runs after EmitDeferred() and therefore 1714 // is not allowed to create new references to things that need to be emitted 1715 // lazily. Note that it also uses fact that we eagerly emitting RTTI. 1716 1717 assert((OpportunisticVTables.empty() || shouldOpportunisticallyEmitVTables()) 1718 && "Only emit opportunistic vtables with optimizations"); 1719 1720 for (const CXXRecordDecl *RD : OpportunisticVTables) { 1721 assert(getVTables().isVTableExternal(RD) && 1722 "This queue should only contain external vtables"); 1723 if (getCXXABI().canSpeculativelyEmitVTable(RD)) 1724 VTables.GenerateClassData(RD); 1725 } 1726 OpportunisticVTables.clear(); 1727 } 1728 1729 void CodeGenModule::EmitGlobalAnnotations() { 1730 if (Annotations.empty()) 1731 return; 1732 1733 // Create a new global variable for the ConstantStruct in the Module. 1734 llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get( 1735 Annotations[0]->getType(), Annotations.size()), Annotations); 1736 auto *gv = new llvm::GlobalVariable(getModule(), Array->getType(), false, 1737 llvm::GlobalValue::AppendingLinkage, 1738 Array, "llvm.global.annotations"); 1739 gv->setSection(AnnotationSection); 1740 } 1741 1742 llvm::Constant *CodeGenModule::EmitAnnotationString(StringRef Str) { 1743 llvm::Constant *&AStr = AnnotationStrings[Str]; 1744 if (AStr) 1745 return AStr; 1746 1747 // Not found yet, create a new global. 1748 llvm::Constant *s = llvm::ConstantDataArray::getString(getLLVMContext(), Str); 1749 auto *gv = 1750 new llvm::GlobalVariable(getModule(), s->getType(), true, 1751 llvm::GlobalValue::PrivateLinkage, s, ".str"); 1752 gv->setSection(AnnotationSection); 1753 gv->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 1754 AStr = gv; 1755 return gv; 1756 } 1757 1758 llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) { 1759 SourceManager &SM = getContext().getSourceManager(); 1760 PresumedLoc PLoc = SM.getPresumedLoc(Loc); 1761 if (PLoc.isValid()) 1762 return EmitAnnotationString(PLoc.getFilename()); 1763 return EmitAnnotationString(SM.getBufferName(Loc)); 1764 } 1765 1766 llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) { 1767 SourceManager &SM = getContext().getSourceManager(); 1768 PresumedLoc PLoc = SM.getPresumedLoc(L); 1769 unsigned LineNo = PLoc.isValid() ? PLoc.getLine() : 1770 SM.getExpansionLineNumber(L); 1771 return llvm::ConstantInt::get(Int32Ty, LineNo); 1772 } 1773 1774 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV, 1775 const AnnotateAttr *AA, 1776 SourceLocation L) { 1777 // Get the globals for file name, annotation, and the line number. 1778 llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()), 1779 *UnitGV = EmitAnnotationUnit(L), 1780 *LineNoCst = EmitAnnotationLineNo(L); 1781 1782 // Create the ConstantStruct for the global annotation. 1783 llvm::Constant *Fields[4] = { 1784 llvm::ConstantExpr::getBitCast(GV, Int8PtrTy), 1785 llvm::ConstantExpr::getBitCast(AnnoGV, Int8PtrTy), 1786 llvm::ConstantExpr::getBitCast(UnitGV, Int8PtrTy), 1787 LineNoCst 1788 }; 1789 return llvm::ConstantStruct::getAnon(Fields); 1790 } 1791 1792 void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D, 1793 llvm::GlobalValue *GV) { 1794 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 1795 // Get the struct elements for these annotations. 1796 for (const auto *I : D->specific_attrs<AnnotateAttr>()) 1797 Annotations.push_back(EmitAnnotateAttr(GV, I, D->getLocation())); 1798 } 1799 1800 bool CodeGenModule::isInSanitizerBlacklist(SanitizerMask Kind, 1801 llvm::Function *Fn, 1802 SourceLocation Loc) const { 1803 const auto &SanitizerBL = getContext().getSanitizerBlacklist(); 1804 // Blacklist by function name. 1805 if (SanitizerBL.isBlacklistedFunction(Kind, Fn->getName())) 1806 return true; 1807 // Blacklist by location. 1808 if (Loc.isValid()) 1809 return SanitizerBL.isBlacklistedLocation(Kind, Loc); 1810 // If location is unknown, this may be a compiler-generated function. Assume 1811 // it's located in the main file. 1812 auto &SM = Context.getSourceManager(); 1813 if (const auto *MainFile = SM.getFileEntryForID(SM.getMainFileID())) { 1814 return SanitizerBL.isBlacklistedFile(Kind, MainFile->getName()); 1815 } 1816 return false; 1817 } 1818 1819 bool CodeGenModule::isInSanitizerBlacklist(llvm::GlobalVariable *GV, 1820 SourceLocation Loc, QualType Ty, 1821 StringRef Category) const { 1822 // For now globals can be blacklisted only in ASan and KASan. 1823 const SanitizerMask EnabledAsanMask = LangOpts.Sanitize.Mask & 1824 (SanitizerKind::Address | SanitizerKind::KernelAddress | SanitizerKind::HWAddress); 1825 if (!EnabledAsanMask) 1826 return false; 1827 const auto &SanitizerBL = getContext().getSanitizerBlacklist(); 1828 if (SanitizerBL.isBlacklistedGlobal(EnabledAsanMask, GV->getName(), Category)) 1829 return true; 1830 if (SanitizerBL.isBlacklistedLocation(EnabledAsanMask, Loc, Category)) 1831 return true; 1832 // Check global type. 1833 if (!Ty.isNull()) { 1834 // Drill down the array types: if global variable of a fixed type is 1835 // blacklisted, we also don't instrument arrays of them. 1836 while (auto AT = dyn_cast<ArrayType>(Ty.getTypePtr())) 1837 Ty = AT->getElementType(); 1838 Ty = Ty.getCanonicalType().getUnqualifiedType(); 1839 // We allow to blacklist only record types (classes, structs etc.) 1840 if (Ty->isRecordType()) { 1841 std::string TypeStr = Ty.getAsString(getContext().getPrintingPolicy()); 1842 if (SanitizerBL.isBlacklistedType(EnabledAsanMask, TypeStr, Category)) 1843 return true; 1844 } 1845 } 1846 return false; 1847 } 1848 1849 bool CodeGenModule::imbueXRayAttrs(llvm::Function *Fn, SourceLocation Loc, 1850 StringRef Category) const { 1851 if (!LangOpts.XRayInstrument) 1852 return false; 1853 const auto &XRayFilter = getContext().getXRayFilter(); 1854 using ImbueAttr = XRayFunctionFilter::ImbueAttribute; 1855 auto Attr = XRayFunctionFilter::ImbueAttribute::NONE; 1856 if (Loc.isValid()) 1857 Attr = XRayFilter.shouldImbueLocation(Loc, Category); 1858 if (Attr == ImbueAttr::NONE) 1859 Attr = XRayFilter.shouldImbueFunction(Fn->getName()); 1860 switch (Attr) { 1861 case ImbueAttr::NONE: 1862 return false; 1863 case ImbueAttr::ALWAYS: 1864 Fn->addFnAttr("function-instrument", "xray-always"); 1865 break; 1866 case ImbueAttr::ALWAYS_ARG1: 1867 Fn->addFnAttr("function-instrument", "xray-always"); 1868 Fn->addFnAttr("xray-log-args", "1"); 1869 break; 1870 case ImbueAttr::NEVER: 1871 Fn->addFnAttr("function-instrument", "xray-never"); 1872 break; 1873 } 1874 return true; 1875 } 1876 1877 bool CodeGenModule::MustBeEmitted(const ValueDecl *Global) { 1878 // Never defer when EmitAllDecls is specified. 1879 if (LangOpts.EmitAllDecls) 1880 return true; 1881 1882 return getContext().DeclMustBeEmitted(Global); 1883 } 1884 1885 bool CodeGenModule::MayBeEmittedEagerly(const ValueDecl *Global) { 1886 if (const auto *FD = dyn_cast<FunctionDecl>(Global)) 1887 if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation) 1888 // Implicit template instantiations may change linkage if they are later 1889 // explicitly instantiated, so they should not be emitted eagerly. 1890 return false; 1891 if (const auto *VD = dyn_cast<VarDecl>(Global)) 1892 if (Context.getInlineVariableDefinitionKind(VD) == 1893 ASTContext::InlineVariableDefinitionKind::WeakUnknown) 1894 // A definition of an inline constexpr static data member may change 1895 // linkage later if it's redeclared outside the class. 1896 return false; 1897 // If OpenMP is enabled and threadprivates must be generated like TLS, delay 1898 // codegen for global variables, because they may be marked as threadprivate. 1899 if (LangOpts.OpenMP && LangOpts.OpenMPUseTLS && 1900 getContext().getTargetInfo().isTLSSupported() && isa<VarDecl>(Global)) 1901 return false; 1902 1903 return true; 1904 } 1905 1906 ConstantAddress CodeGenModule::GetAddrOfUuidDescriptor( 1907 const CXXUuidofExpr* E) { 1908 // Sema has verified that IIDSource has a __declspec(uuid()), and that its 1909 // well-formed. 1910 StringRef Uuid = E->getUuidStr(); 1911 std::string Name = "_GUID_" + Uuid.lower(); 1912 std::replace(Name.begin(), Name.end(), '-', '_'); 1913 1914 // The UUID descriptor should be pointer aligned. 1915 CharUnits Alignment = CharUnits::fromQuantity(PointerAlignInBytes); 1916 1917 // Look for an existing global. 1918 if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name)) 1919 return ConstantAddress(GV, Alignment); 1920 1921 llvm::Constant *Init = EmitUuidofInitializer(Uuid); 1922 assert(Init && "failed to initialize as constant"); 1923 1924 auto *GV = new llvm::GlobalVariable( 1925 getModule(), Init->getType(), 1926 /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name); 1927 if (supportsCOMDAT()) 1928 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 1929 return ConstantAddress(GV, Alignment); 1930 } 1931 1932 ConstantAddress CodeGenModule::GetWeakRefReference(const ValueDecl *VD) { 1933 const AliasAttr *AA = VD->getAttr<AliasAttr>(); 1934 assert(AA && "No alias?"); 1935 1936 CharUnits Alignment = getContext().getDeclAlign(VD); 1937 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType()); 1938 1939 // See if there is already something with the target's name in the module. 1940 llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee()); 1941 if (Entry) { 1942 unsigned AS = getContext().getTargetAddressSpace(VD->getType()); 1943 auto Ptr = llvm::ConstantExpr::getBitCast(Entry, DeclTy->getPointerTo(AS)); 1944 return ConstantAddress(Ptr, Alignment); 1945 } 1946 1947 llvm::Constant *Aliasee; 1948 if (isa<llvm::FunctionType>(DeclTy)) 1949 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, 1950 GlobalDecl(cast<FunctionDecl>(VD)), 1951 /*ForVTable=*/false); 1952 else 1953 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), 1954 llvm::PointerType::getUnqual(DeclTy), 1955 nullptr); 1956 1957 auto *F = cast<llvm::GlobalValue>(Aliasee); 1958 F->setLinkage(llvm::Function::ExternalWeakLinkage); 1959 WeakRefReferences.insert(F); 1960 1961 return ConstantAddress(Aliasee, Alignment); 1962 } 1963 1964 void CodeGenModule::EmitGlobal(GlobalDecl GD) { 1965 const auto *Global = cast<ValueDecl>(GD.getDecl()); 1966 1967 // Weak references don't produce any output by themselves. 1968 if (Global->hasAttr<WeakRefAttr>()) 1969 return; 1970 1971 // If this is an alias definition (which otherwise looks like a declaration) 1972 // emit it now. 1973 if (Global->hasAttr<AliasAttr>()) 1974 return EmitAliasDefinition(GD); 1975 1976 // IFunc like an alias whose value is resolved at runtime by calling resolver. 1977 if (Global->hasAttr<IFuncAttr>()) 1978 return emitIFuncDefinition(GD); 1979 1980 // If this is CUDA, be selective about which declarations we emit. 1981 if (LangOpts.CUDA) { 1982 if (LangOpts.CUDAIsDevice) { 1983 if (!Global->hasAttr<CUDADeviceAttr>() && 1984 !Global->hasAttr<CUDAGlobalAttr>() && 1985 !Global->hasAttr<CUDAConstantAttr>() && 1986 !Global->hasAttr<CUDASharedAttr>()) 1987 return; 1988 } else { 1989 // We need to emit host-side 'shadows' for all global 1990 // device-side variables because the CUDA runtime needs their 1991 // size and host-side address in order to provide access to 1992 // their device-side incarnations. 1993 1994 // So device-only functions are the only things we skip. 1995 if (isa<FunctionDecl>(Global) && !Global->hasAttr<CUDAHostAttr>() && 1996 Global->hasAttr<CUDADeviceAttr>()) 1997 return; 1998 1999 assert((isa<FunctionDecl>(Global) || isa<VarDecl>(Global)) && 2000 "Expected Variable or Function"); 2001 } 2002 } 2003 2004 if (LangOpts.OpenMP) { 2005 // If this is OpenMP device, check if it is legal to emit this global 2006 // normally. 2007 if (OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(GD)) 2008 return; 2009 if (auto *DRD = dyn_cast<OMPDeclareReductionDecl>(Global)) { 2010 if (MustBeEmitted(Global)) 2011 EmitOMPDeclareReduction(DRD); 2012 return; 2013 } 2014 } 2015 2016 // Ignore declarations, they will be emitted on their first use. 2017 if (const auto *FD = dyn_cast<FunctionDecl>(Global)) { 2018 // Forward declarations are emitted lazily on first use. 2019 if (!FD->doesThisDeclarationHaveABody()) { 2020 if (!FD->doesDeclarationForceExternallyVisibleDefinition()) 2021 return; 2022 2023 StringRef MangledName = getMangledName(GD); 2024 2025 // Compute the function info and LLVM type. 2026 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 2027 llvm::Type *Ty = getTypes().GetFunctionType(FI); 2028 2029 GetOrCreateLLVMFunction(MangledName, Ty, GD, /*ForVTable=*/false, 2030 /*DontDefer=*/false); 2031 return; 2032 } 2033 } else { 2034 const auto *VD = cast<VarDecl>(Global); 2035 assert(VD->isFileVarDecl() && "Cannot emit local var decl as global."); 2036 // We need to emit device-side global CUDA variables even if a 2037 // variable does not have a definition -- we still need to define 2038 // host-side shadow for it. 2039 bool MustEmitForCuda = LangOpts.CUDA && !LangOpts.CUDAIsDevice && 2040 !VD->hasDefinition() && 2041 (VD->hasAttr<CUDAConstantAttr>() || 2042 VD->hasAttr<CUDADeviceAttr>()); 2043 if (!MustEmitForCuda && 2044 VD->isThisDeclarationADefinition() != VarDecl::Definition && 2045 !Context.isMSStaticDataMemberInlineDefinition(VD)) { 2046 // If this declaration may have caused an inline variable definition to 2047 // change linkage, make sure that it's emitted. 2048 if (Context.getInlineVariableDefinitionKind(VD) == 2049 ASTContext::InlineVariableDefinitionKind::Strong) 2050 GetAddrOfGlobalVar(VD); 2051 return; 2052 } 2053 } 2054 2055 // Defer code generation to first use when possible, e.g. if this is an inline 2056 // function. If the global must always be emitted, do it eagerly if possible 2057 // to benefit from cache locality. 2058 if (MustBeEmitted(Global) && MayBeEmittedEagerly(Global)) { 2059 // Emit the definition if it can't be deferred. 2060 EmitGlobalDefinition(GD); 2061 return; 2062 } 2063 2064 // If we're deferring emission of a C++ variable with an 2065 // initializer, remember the order in which it appeared in the file. 2066 if (getLangOpts().CPlusPlus && isa<VarDecl>(Global) && 2067 cast<VarDecl>(Global)->hasInit()) { 2068 DelayedCXXInitPosition[Global] = CXXGlobalInits.size(); 2069 CXXGlobalInits.push_back(nullptr); 2070 } 2071 2072 StringRef MangledName = getMangledName(GD); 2073 if (GetGlobalValue(MangledName) != nullptr) { 2074 // The value has already been used and should therefore be emitted. 2075 addDeferredDeclToEmit(GD); 2076 } else if (MustBeEmitted(Global)) { 2077 // The value must be emitted, but cannot be emitted eagerly. 2078 assert(!MayBeEmittedEagerly(Global)); 2079 addDeferredDeclToEmit(GD); 2080 } else { 2081 // Otherwise, remember that we saw a deferred decl with this name. The 2082 // first use of the mangled name will cause it to move into 2083 // DeferredDeclsToEmit. 2084 DeferredDecls[MangledName] = GD; 2085 } 2086 } 2087 2088 // Check if T is a class type with a destructor that's not dllimport. 2089 static bool HasNonDllImportDtor(QualType T) { 2090 if (const auto *RT = T->getBaseElementTypeUnsafe()->getAs<RecordType>()) 2091 if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl())) 2092 if (RD->getDestructor() && !RD->getDestructor()->hasAttr<DLLImportAttr>()) 2093 return true; 2094 2095 return false; 2096 } 2097 2098 namespace { 2099 struct FunctionIsDirectlyRecursive : 2100 public RecursiveASTVisitor<FunctionIsDirectlyRecursive> { 2101 const StringRef Name; 2102 const Builtin::Context &BI; 2103 bool Result; 2104 FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C) : 2105 Name(N), BI(C), Result(false) { 2106 } 2107 typedef RecursiveASTVisitor<FunctionIsDirectlyRecursive> Base; 2108 2109 bool TraverseCallExpr(CallExpr *E) { 2110 const FunctionDecl *FD = E->getDirectCallee(); 2111 if (!FD) 2112 return true; 2113 AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>(); 2114 if (Attr && Name == Attr->getLabel()) { 2115 Result = true; 2116 return false; 2117 } 2118 unsigned BuiltinID = FD->getBuiltinID(); 2119 if (!BuiltinID || !BI.isLibFunction(BuiltinID)) 2120 return true; 2121 StringRef BuiltinName = BI.getName(BuiltinID); 2122 if (BuiltinName.startswith("__builtin_") && 2123 Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) { 2124 Result = true; 2125 return false; 2126 } 2127 return true; 2128 } 2129 }; 2130 2131 // Make sure we're not referencing non-imported vars or functions. 2132 struct DLLImportFunctionVisitor 2133 : public RecursiveASTVisitor<DLLImportFunctionVisitor> { 2134 bool SafeToInline = true; 2135 2136 bool shouldVisitImplicitCode() const { return true; } 2137 2138 bool VisitVarDecl(VarDecl *VD) { 2139 if (VD->getTLSKind()) { 2140 // A thread-local variable cannot be imported. 2141 SafeToInline = false; 2142 return SafeToInline; 2143 } 2144 2145 // A variable definition might imply a destructor call. 2146 if (VD->isThisDeclarationADefinition()) 2147 SafeToInline = !HasNonDllImportDtor(VD->getType()); 2148 2149 return SafeToInline; 2150 } 2151 2152 bool VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) { 2153 if (const auto *D = E->getTemporary()->getDestructor()) 2154 SafeToInline = D->hasAttr<DLLImportAttr>(); 2155 return SafeToInline; 2156 } 2157 2158 bool VisitDeclRefExpr(DeclRefExpr *E) { 2159 ValueDecl *VD = E->getDecl(); 2160 if (isa<FunctionDecl>(VD)) 2161 SafeToInline = VD->hasAttr<DLLImportAttr>(); 2162 else if (VarDecl *V = dyn_cast<VarDecl>(VD)) 2163 SafeToInline = !V->hasGlobalStorage() || V->hasAttr<DLLImportAttr>(); 2164 return SafeToInline; 2165 } 2166 2167 bool VisitCXXConstructExpr(CXXConstructExpr *E) { 2168 SafeToInline = E->getConstructor()->hasAttr<DLLImportAttr>(); 2169 return SafeToInline; 2170 } 2171 2172 bool VisitCXXMemberCallExpr(CXXMemberCallExpr *E) { 2173 CXXMethodDecl *M = E->getMethodDecl(); 2174 if (!M) { 2175 // Call through a pointer to member function. This is safe to inline. 2176 SafeToInline = true; 2177 } else { 2178 SafeToInline = M->hasAttr<DLLImportAttr>(); 2179 } 2180 return SafeToInline; 2181 } 2182 2183 bool VisitCXXDeleteExpr(CXXDeleteExpr *E) { 2184 SafeToInline = E->getOperatorDelete()->hasAttr<DLLImportAttr>(); 2185 return SafeToInline; 2186 } 2187 2188 bool VisitCXXNewExpr(CXXNewExpr *E) { 2189 SafeToInline = E->getOperatorNew()->hasAttr<DLLImportAttr>(); 2190 return SafeToInline; 2191 } 2192 }; 2193 } 2194 2195 // isTriviallyRecursive - Check if this function calls another 2196 // decl that, because of the asm attribute or the other decl being a builtin, 2197 // ends up pointing to itself. 2198 bool 2199 CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) { 2200 StringRef Name; 2201 if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) { 2202 // asm labels are a special kind of mangling we have to support. 2203 AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>(); 2204 if (!Attr) 2205 return false; 2206 Name = Attr->getLabel(); 2207 } else { 2208 Name = FD->getName(); 2209 } 2210 2211 FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo); 2212 Walker.TraverseFunctionDecl(const_cast<FunctionDecl*>(FD)); 2213 return Walker.Result; 2214 } 2215 2216 bool CodeGenModule::shouldEmitFunction(GlobalDecl GD) { 2217 if (getFunctionLinkage(GD) != llvm::Function::AvailableExternallyLinkage) 2218 return true; 2219 const auto *F = cast<FunctionDecl>(GD.getDecl()); 2220 if (CodeGenOpts.OptimizationLevel == 0 && !F->hasAttr<AlwaysInlineAttr>()) 2221 return false; 2222 2223 if (F->hasAttr<DLLImportAttr>()) { 2224 // Check whether it would be safe to inline this dllimport function. 2225 DLLImportFunctionVisitor Visitor; 2226 Visitor.TraverseFunctionDecl(const_cast<FunctionDecl*>(F)); 2227 if (!Visitor.SafeToInline) 2228 return false; 2229 2230 if (const CXXDestructorDecl *Dtor = dyn_cast<CXXDestructorDecl>(F)) { 2231 // Implicit destructor invocations aren't captured in the AST, so the 2232 // check above can't see them. Check for them manually here. 2233 for (const Decl *Member : Dtor->getParent()->decls()) 2234 if (isa<FieldDecl>(Member)) 2235 if (HasNonDllImportDtor(cast<FieldDecl>(Member)->getType())) 2236 return false; 2237 for (const CXXBaseSpecifier &B : Dtor->getParent()->bases()) 2238 if (HasNonDllImportDtor(B.getType())) 2239 return false; 2240 } 2241 } 2242 2243 // PR9614. Avoid cases where the source code is lying to us. An available 2244 // externally function should have an equivalent function somewhere else, 2245 // but a function that calls itself is clearly not equivalent to the real 2246 // implementation. 2247 // This happens in glibc's btowc and in some configure checks. 2248 return !isTriviallyRecursive(F); 2249 } 2250 2251 bool CodeGenModule::shouldOpportunisticallyEmitVTables() { 2252 return CodeGenOpts.OptimizationLevel > 0; 2253 } 2254 2255 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD, llvm::GlobalValue *GV) { 2256 const auto *D = cast<ValueDecl>(GD.getDecl()); 2257 2258 PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(), 2259 Context.getSourceManager(), 2260 "Generating code for declaration"); 2261 2262 if (isa<FunctionDecl>(D)) { 2263 // At -O0, don't generate IR for functions with available_externally 2264 // linkage. 2265 if (!shouldEmitFunction(GD)) 2266 return; 2267 2268 if (const auto *Method = dyn_cast<CXXMethodDecl>(D)) { 2269 // Make sure to emit the definition(s) before we emit the thunks. 2270 // This is necessary for the generation of certain thunks. 2271 if (const auto *CD = dyn_cast<CXXConstructorDecl>(Method)) 2272 ABI->emitCXXStructor(CD, getFromCtorType(GD.getCtorType())); 2273 else if (const auto *DD = dyn_cast<CXXDestructorDecl>(Method)) 2274 ABI->emitCXXStructor(DD, getFromDtorType(GD.getDtorType())); 2275 else 2276 EmitGlobalFunctionDefinition(GD, GV); 2277 2278 if (Method->isVirtual()) 2279 getVTables().EmitThunks(GD); 2280 2281 return; 2282 } 2283 2284 return EmitGlobalFunctionDefinition(GD, GV); 2285 } 2286 2287 if (const auto *VD = dyn_cast<VarDecl>(D)) 2288 return EmitGlobalVarDefinition(VD, !VD->hasDefinition()); 2289 2290 llvm_unreachable("Invalid argument to EmitGlobalDefinition()"); 2291 } 2292 2293 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old, 2294 llvm::Function *NewFn); 2295 2296 void CodeGenModule::emitMultiVersionFunctions() { 2297 for (GlobalDecl GD : MultiVersionFuncs) { 2298 SmallVector<CodeGenFunction::MultiVersionResolverOption, 10> Options; 2299 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 2300 getContext().forEachMultiversionedFunctionVersion( 2301 FD, [this, &GD, &Options](const FunctionDecl *CurFD) { 2302 GlobalDecl CurGD{ 2303 (CurFD->isDefined() ? CurFD->getDefinition() : CurFD)}; 2304 StringRef MangledName = getMangledName(CurGD); 2305 llvm::Constant *Func = GetGlobalValue(MangledName); 2306 if (!Func) { 2307 if (CurFD->isDefined()) { 2308 EmitGlobalFunctionDefinition(CurGD, nullptr); 2309 Func = GetGlobalValue(MangledName); 2310 } else { 2311 const CGFunctionInfo &FI = 2312 getTypes().arrangeGlobalDeclaration(GD); 2313 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 2314 Func = GetAddrOfFunction(CurGD, Ty, /*ForVTable=*/false, 2315 /*DontDefer=*/false, ForDefinition); 2316 } 2317 assert(Func && "This should have just been created"); 2318 } 2319 Options.emplace_back(getTarget(), cast<llvm::Function>(Func), 2320 CurFD->getAttr<TargetAttr>()->parse()); 2321 }); 2322 2323 llvm::Function *ResolverFunc = cast<llvm::Function>( 2324 GetGlobalValue((getMangledName(GD) + ".resolver").str())); 2325 if (supportsCOMDAT()) 2326 ResolverFunc->setComdat( 2327 getModule().getOrInsertComdat(ResolverFunc->getName())); 2328 std::stable_sort( 2329 Options.begin(), Options.end(), 2330 std::greater<CodeGenFunction::MultiVersionResolverOption>()); 2331 CodeGenFunction CGF(*this); 2332 CGF.EmitMultiVersionResolver(ResolverFunc, Options); 2333 } 2334 } 2335 2336 /// If an ifunc for the specified mangled name is not in the module, create and 2337 /// return an llvm IFunc Function with the specified type. 2338 llvm::Constant * 2339 CodeGenModule::GetOrCreateMultiVersionIFunc(GlobalDecl GD, llvm::Type *DeclTy, 2340 StringRef MangledName, 2341 const FunctionDecl *FD) { 2342 std::string IFuncName = (MangledName + ".ifunc").str(); 2343 if (llvm::GlobalValue *IFuncGV = GetGlobalValue(IFuncName)) 2344 return IFuncGV; 2345 2346 // Since this is the first time we've created this IFunc, make sure 2347 // that we put this multiversioned function into the list to be 2348 // replaced later. 2349 MultiVersionFuncs.push_back(GD); 2350 2351 std::string ResolverName = (MangledName + ".resolver").str(); 2352 llvm::Type *ResolverType = llvm::FunctionType::get( 2353 llvm::PointerType::get(DeclTy, 2354 Context.getTargetAddressSpace(FD->getType())), 2355 false); 2356 llvm::Constant *Resolver = 2357 GetOrCreateLLVMFunction(ResolverName, ResolverType, GlobalDecl{}, 2358 /*ForVTable=*/false); 2359 llvm::GlobalIFunc *GIF = llvm::GlobalIFunc::create( 2360 DeclTy, 0, llvm::Function::ExternalLinkage, "", Resolver, &getModule()); 2361 GIF->setName(IFuncName); 2362 SetCommonAttributes(FD, GIF); 2363 2364 return GIF; 2365 } 2366 2367 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the 2368 /// module, create and return an llvm Function with the specified type. If there 2369 /// is something in the module with the specified name, return it potentially 2370 /// bitcasted to the right type. 2371 /// 2372 /// If D is non-null, it specifies a decl that correspond to this. This is used 2373 /// to set the attributes on the function when it is first created. 2374 llvm::Constant *CodeGenModule::GetOrCreateLLVMFunction( 2375 StringRef MangledName, llvm::Type *Ty, GlobalDecl GD, bool ForVTable, 2376 bool DontDefer, bool IsThunk, llvm::AttributeList ExtraAttrs, 2377 ForDefinition_t IsForDefinition) { 2378 const Decl *D = GD.getDecl(); 2379 2380 // Any attempts to use a MultiVersion function should result in retrieving 2381 // the iFunc instead. Name Mangling will handle the rest of the changes. 2382 if (const FunctionDecl *FD = cast_or_null<FunctionDecl>(D)) { 2383 if (FD->isMultiVersion() && FD->getAttr<TargetAttr>()->isDefaultVersion()) { 2384 UpdateMultiVersionNames(GD, FD); 2385 if (!IsForDefinition) 2386 return GetOrCreateMultiVersionIFunc(GD, Ty, MangledName, FD); 2387 } 2388 } 2389 2390 // Lookup the entry, lazily creating it if necessary. 2391 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 2392 if (Entry) { 2393 if (WeakRefReferences.erase(Entry)) { 2394 const FunctionDecl *FD = cast_or_null<FunctionDecl>(D); 2395 if (FD && !FD->hasAttr<WeakAttr>()) 2396 Entry->setLinkage(llvm::Function::ExternalLinkage); 2397 } 2398 2399 // Handle dropped DLL attributes. 2400 if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>()) 2401 Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 2402 2403 // If there are two attempts to define the same mangled name, issue an 2404 // error. 2405 if (IsForDefinition && !Entry->isDeclaration()) { 2406 GlobalDecl OtherGD; 2407 // Check that GD is not yet in DiagnosedConflictingDefinitions is required 2408 // to make sure that we issue an error only once. 2409 if (lookupRepresentativeDecl(MangledName, OtherGD) && 2410 (GD.getCanonicalDecl().getDecl() != 2411 OtherGD.getCanonicalDecl().getDecl()) && 2412 DiagnosedConflictingDefinitions.insert(GD).second) { 2413 getDiags().Report(D->getLocation(), 2414 diag::err_duplicate_mangled_name); 2415 getDiags().Report(OtherGD.getDecl()->getLocation(), 2416 diag::note_previous_definition); 2417 } 2418 } 2419 2420 if ((isa<llvm::Function>(Entry) || isa<llvm::GlobalAlias>(Entry)) && 2421 (Entry->getType()->getElementType() == Ty)) { 2422 return Entry; 2423 } 2424 2425 // Make sure the result is of the correct type. 2426 // (If function is requested for a definition, we always need to create a new 2427 // function, not just return a bitcast.) 2428 if (!IsForDefinition) 2429 return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo()); 2430 } 2431 2432 // This function doesn't have a complete type (for example, the return 2433 // type is an incomplete struct). Use a fake type instead, and make 2434 // sure not to try to set attributes. 2435 bool IsIncompleteFunction = false; 2436 2437 llvm::FunctionType *FTy; 2438 if (isa<llvm::FunctionType>(Ty)) { 2439 FTy = cast<llvm::FunctionType>(Ty); 2440 } else { 2441 FTy = llvm::FunctionType::get(VoidTy, false); 2442 IsIncompleteFunction = true; 2443 } 2444 2445 llvm::Function *F = 2446 llvm::Function::Create(FTy, llvm::Function::ExternalLinkage, 2447 Entry ? StringRef() : MangledName, &getModule()); 2448 2449 // If we already created a function with the same mangled name (but different 2450 // type) before, take its name and add it to the list of functions to be 2451 // replaced with F at the end of CodeGen. 2452 // 2453 // This happens if there is a prototype for a function (e.g. "int f()") and 2454 // then a definition of a different type (e.g. "int f(int x)"). 2455 if (Entry) { 2456 F->takeName(Entry); 2457 2458 // This might be an implementation of a function without a prototype, in 2459 // which case, try to do special replacement of calls which match the new 2460 // prototype. The really key thing here is that we also potentially drop 2461 // arguments from the call site so as to make a direct call, which makes the 2462 // inliner happier and suppresses a number of optimizer warnings (!) about 2463 // dropping arguments. 2464 if (!Entry->use_empty()) { 2465 ReplaceUsesOfNonProtoTypeWithRealFunction(Entry, F); 2466 Entry->removeDeadConstantUsers(); 2467 } 2468 2469 llvm::Constant *BC = llvm::ConstantExpr::getBitCast( 2470 F, Entry->getType()->getElementType()->getPointerTo()); 2471 addGlobalValReplacement(Entry, BC); 2472 } 2473 2474 assert(F->getName() == MangledName && "name was uniqued!"); 2475 if (D) 2476 SetFunctionAttributes(GD, F, IsIncompleteFunction, IsThunk); 2477 if (ExtraAttrs.hasAttributes(llvm::AttributeList::FunctionIndex)) { 2478 llvm::AttrBuilder B(ExtraAttrs, llvm::AttributeList::FunctionIndex); 2479 F->addAttributes(llvm::AttributeList::FunctionIndex, B); 2480 } 2481 2482 if (!DontDefer) { 2483 // All MSVC dtors other than the base dtor are linkonce_odr and delegate to 2484 // each other bottoming out with the base dtor. Therefore we emit non-base 2485 // dtors on usage, even if there is no dtor definition in the TU. 2486 if (D && isa<CXXDestructorDecl>(D) && 2487 getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D), 2488 GD.getDtorType())) 2489 addDeferredDeclToEmit(GD); 2490 2491 // This is the first use or definition of a mangled name. If there is a 2492 // deferred decl with this name, remember that we need to emit it at the end 2493 // of the file. 2494 auto DDI = DeferredDecls.find(MangledName); 2495 if (DDI != DeferredDecls.end()) { 2496 // Move the potentially referenced deferred decl to the 2497 // DeferredDeclsToEmit list, and remove it from DeferredDecls (since we 2498 // don't need it anymore). 2499 addDeferredDeclToEmit(DDI->second); 2500 DeferredDecls.erase(DDI); 2501 2502 // Otherwise, there are cases we have to worry about where we're 2503 // using a declaration for which we must emit a definition but where 2504 // we might not find a top-level definition: 2505 // - member functions defined inline in their classes 2506 // - friend functions defined inline in some class 2507 // - special member functions with implicit definitions 2508 // If we ever change our AST traversal to walk into class methods, 2509 // this will be unnecessary. 2510 // 2511 // We also don't emit a definition for a function if it's going to be an 2512 // entry in a vtable, unless it's already marked as used. 2513 } else if (getLangOpts().CPlusPlus && D) { 2514 // Look for a declaration that's lexically in a record. 2515 for (const auto *FD = cast<FunctionDecl>(D)->getMostRecentDecl(); FD; 2516 FD = FD->getPreviousDecl()) { 2517 if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) { 2518 if (FD->doesThisDeclarationHaveABody()) { 2519 addDeferredDeclToEmit(GD.getWithDecl(FD)); 2520 break; 2521 } 2522 } 2523 } 2524 } 2525 } 2526 2527 // Make sure the result is of the requested type. 2528 if (!IsIncompleteFunction) { 2529 assert(F->getType()->getElementType() == Ty); 2530 return F; 2531 } 2532 2533 llvm::Type *PTy = llvm::PointerType::getUnqual(Ty); 2534 return llvm::ConstantExpr::getBitCast(F, PTy); 2535 } 2536 2537 /// GetAddrOfFunction - Return the address of the given function. If Ty is 2538 /// non-null, then this function will use the specified type if it has to 2539 /// create it (this occurs when we see a definition of the function). 2540 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD, 2541 llvm::Type *Ty, 2542 bool ForVTable, 2543 bool DontDefer, 2544 ForDefinition_t IsForDefinition) { 2545 // If there was no specific requested type, just convert it now. 2546 if (!Ty) { 2547 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 2548 auto CanonTy = Context.getCanonicalType(FD->getType()); 2549 Ty = getTypes().ConvertFunctionType(CanonTy, FD); 2550 } 2551 2552 StringRef MangledName = getMangledName(GD); 2553 return GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable, DontDefer, 2554 /*IsThunk=*/false, llvm::AttributeList(), 2555 IsForDefinition); 2556 } 2557 2558 static const FunctionDecl * 2559 GetRuntimeFunctionDecl(ASTContext &C, StringRef Name) { 2560 TranslationUnitDecl *TUDecl = C.getTranslationUnitDecl(); 2561 DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl); 2562 2563 IdentifierInfo &CII = C.Idents.get(Name); 2564 for (const auto &Result : DC->lookup(&CII)) 2565 if (const auto FD = dyn_cast<FunctionDecl>(Result)) 2566 return FD; 2567 2568 if (!C.getLangOpts().CPlusPlus) 2569 return nullptr; 2570 2571 // Demangle the premangled name from getTerminateFn() 2572 IdentifierInfo &CXXII = 2573 (Name == "_ZSt9terminatev" || Name == "\01?terminate@@YAXXZ") 2574 ? C.Idents.get("terminate") 2575 : C.Idents.get(Name); 2576 2577 for (const auto &N : {"__cxxabiv1", "std"}) { 2578 IdentifierInfo &NS = C.Idents.get(N); 2579 for (const auto &Result : DC->lookup(&NS)) { 2580 NamespaceDecl *ND = dyn_cast<NamespaceDecl>(Result); 2581 if (auto LSD = dyn_cast<LinkageSpecDecl>(Result)) 2582 for (const auto &Result : LSD->lookup(&NS)) 2583 if ((ND = dyn_cast<NamespaceDecl>(Result))) 2584 break; 2585 2586 if (ND) 2587 for (const auto &Result : ND->lookup(&CXXII)) 2588 if (const auto *FD = dyn_cast<FunctionDecl>(Result)) 2589 return FD; 2590 } 2591 } 2592 2593 return nullptr; 2594 } 2595 2596 /// CreateRuntimeFunction - Create a new runtime function with the specified 2597 /// type and name. 2598 llvm::Constant * 2599 CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy, StringRef Name, 2600 llvm::AttributeList ExtraAttrs, 2601 bool Local) { 2602 llvm::Constant *C = 2603 GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false, 2604 /*DontDefer=*/false, /*IsThunk=*/false, 2605 ExtraAttrs); 2606 2607 if (auto *F = dyn_cast<llvm::Function>(C)) { 2608 if (F->empty()) { 2609 F->setCallingConv(getRuntimeCC()); 2610 2611 if (!Local && getTriple().isOSBinFormatCOFF() && 2612 !getCodeGenOpts().LTOVisibilityPublicStd && 2613 !getTriple().isWindowsGNUEnvironment()) { 2614 const FunctionDecl *FD = GetRuntimeFunctionDecl(Context, Name); 2615 if (!FD || FD->hasAttr<DLLImportAttr>()) { 2616 F->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass); 2617 F->setLinkage(llvm::GlobalValue::ExternalLinkage); 2618 } 2619 } 2620 } 2621 } 2622 2623 return C; 2624 } 2625 2626 /// CreateBuiltinFunction - Create a new builtin function with the specified 2627 /// type and name. 2628 llvm::Constant * 2629 CodeGenModule::CreateBuiltinFunction(llvm::FunctionType *FTy, StringRef Name, 2630 llvm::AttributeList ExtraAttrs) { 2631 llvm::Constant *C = 2632 GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false, 2633 /*DontDefer=*/false, /*IsThunk=*/false, ExtraAttrs); 2634 if (auto *F = dyn_cast<llvm::Function>(C)) 2635 if (F->empty()) 2636 F->setCallingConv(getBuiltinCC()); 2637 return C; 2638 } 2639 2640 /// isTypeConstant - Determine whether an object of this type can be emitted 2641 /// as a constant. 2642 /// 2643 /// If ExcludeCtor is true, the duration when the object's constructor runs 2644 /// will not be considered. The caller will need to verify that the object is 2645 /// not written to during its construction. 2646 bool CodeGenModule::isTypeConstant(QualType Ty, bool ExcludeCtor) { 2647 if (!Ty.isConstant(Context) && !Ty->isReferenceType()) 2648 return false; 2649 2650 if (Context.getLangOpts().CPlusPlus) { 2651 if (const CXXRecordDecl *Record 2652 = Context.getBaseElementType(Ty)->getAsCXXRecordDecl()) 2653 return ExcludeCtor && !Record->hasMutableFields() && 2654 Record->hasTrivialDestructor(); 2655 } 2656 2657 return true; 2658 } 2659 2660 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module, 2661 /// create and return an llvm GlobalVariable with the specified type. If there 2662 /// is something in the module with the specified name, return it potentially 2663 /// bitcasted to the right type. 2664 /// 2665 /// If D is non-null, it specifies a decl that correspond to this. This is used 2666 /// to set the attributes on the global when it is first created. 2667 /// 2668 /// If IsForDefinition is true, it is guranteed that an actual global with 2669 /// type Ty will be returned, not conversion of a variable with the same 2670 /// mangled name but some other type. 2671 llvm::Constant * 2672 CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName, 2673 llvm::PointerType *Ty, 2674 const VarDecl *D, 2675 ForDefinition_t IsForDefinition) { 2676 // Lookup the entry, lazily creating it if necessary. 2677 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 2678 if (Entry) { 2679 if (WeakRefReferences.erase(Entry)) { 2680 if (D && !D->hasAttr<WeakAttr>()) 2681 Entry->setLinkage(llvm::Function::ExternalLinkage); 2682 } 2683 2684 // Handle dropped DLL attributes. 2685 if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>()) 2686 Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 2687 2688 if (Entry->getType() == Ty) 2689 return Entry; 2690 2691 // If there are two attempts to define the same mangled name, issue an 2692 // error. 2693 if (IsForDefinition && !Entry->isDeclaration()) { 2694 GlobalDecl OtherGD; 2695 const VarDecl *OtherD; 2696 2697 // Check that D is not yet in DiagnosedConflictingDefinitions is required 2698 // to make sure that we issue an error only once. 2699 if (D && lookupRepresentativeDecl(MangledName, OtherGD) && 2700 (D->getCanonicalDecl() != OtherGD.getCanonicalDecl().getDecl()) && 2701 (OtherD = dyn_cast<VarDecl>(OtherGD.getDecl())) && 2702 OtherD->hasInit() && 2703 DiagnosedConflictingDefinitions.insert(D).second) { 2704 getDiags().Report(D->getLocation(), 2705 diag::err_duplicate_mangled_name); 2706 getDiags().Report(OtherGD.getDecl()->getLocation(), 2707 diag::note_previous_definition); 2708 } 2709 } 2710 2711 // Make sure the result is of the correct type. 2712 if (Entry->getType()->getAddressSpace() != Ty->getAddressSpace()) 2713 return llvm::ConstantExpr::getAddrSpaceCast(Entry, Ty); 2714 2715 // (If global is requested for a definition, we always need to create a new 2716 // global, not just return a bitcast.) 2717 if (!IsForDefinition) 2718 return llvm::ConstantExpr::getBitCast(Entry, Ty); 2719 } 2720 2721 auto AddrSpace = GetGlobalVarAddressSpace(D); 2722 auto TargetAddrSpace = getContext().getTargetAddressSpace(AddrSpace); 2723 2724 auto *GV = new llvm::GlobalVariable( 2725 getModule(), Ty->getElementType(), false, 2726 llvm::GlobalValue::ExternalLinkage, nullptr, MangledName, nullptr, 2727 llvm::GlobalVariable::NotThreadLocal, TargetAddrSpace); 2728 2729 // If we already created a global with the same mangled name (but different 2730 // type) before, take its name and remove it from its parent. 2731 if (Entry) { 2732 GV->takeName(Entry); 2733 2734 if (!Entry->use_empty()) { 2735 llvm::Constant *NewPtrForOldDecl = 2736 llvm::ConstantExpr::getBitCast(GV, Entry->getType()); 2737 Entry->replaceAllUsesWith(NewPtrForOldDecl); 2738 } 2739 2740 Entry->eraseFromParent(); 2741 } 2742 2743 // This is the first use or definition of a mangled name. If there is a 2744 // deferred decl with this name, remember that we need to emit it at the end 2745 // of the file. 2746 auto DDI = DeferredDecls.find(MangledName); 2747 if (DDI != DeferredDecls.end()) { 2748 // Move the potentially referenced deferred decl to the DeferredDeclsToEmit 2749 // list, and remove it from DeferredDecls (since we don't need it anymore). 2750 addDeferredDeclToEmit(DDI->second); 2751 DeferredDecls.erase(DDI); 2752 } 2753 2754 // Handle things which are present even on external declarations. 2755 if (D) { 2756 // FIXME: This code is overly simple and should be merged with other global 2757 // handling. 2758 GV->setConstant(isTypeConstant(D->getType(), false)); 2759 2760 GV->setAlignment(getContext().getDeclAlign(D).getQuantity()); 2761 2762 setLinkageForGV(GV, D); 2763 2764 if (D->getTLSKind()) { 2765 if (D->getTLSKind() == VarDecl::TLS_Dynamic) 2766 CXXThreadLocals.push_back(D); 2767 setTLSMode(GV, *D); 2768 } 2769 2770 setGVProperties(GV, D); 2771 2772 // If required by the ABI, treat declarations of static data members with 2773 // inline initializers as definitions. 2774 if (getContext().isMSStaticDataMemberInlineDefinition(D)) { 2775 EmitGlobalVarDefinition(D); 2776 } 2777 2778 // Emit section information for extern variables. 2779 if (D->hasExternalStorage()) { 2780 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) 2781 GV->setSection(SA->getName()); 2782 } 2783 2784 // Handle XCore specific ABI requirements. 2785 if (getTriple().getArch() == llvm::Triple::xcore && 2786 D->getLanguageLinkage() == CLanguageLinkage && 2787 D->getType().isConstant(Context) && 2788 isExternallyVisible(D->getLinkageAndVisibility().getLinkage())) 2789 GV->setSection(".cp.rodata"); 2790 2791 // Check if we a have a const declaration with an initializer, we may be 2792 // able to emit it as available_externally to expose it's value to the 2793 // optimizer. 2794 if (Context.getLangOpts().CPlusPlus && GV->hasExternalLinkage() && 2795 D->getType().isConstQualified() && !GV->hasInitializer() && 2796 !D->hasDefinition() && D->hasInit() && !D->hasAttr<DLLImportAttr>()) { 2797 const auto *Record = 2798 Context.getBaseElementType(D->getType())->getAsCXXRecordDecl(); 2799 bool HasMutableFields = Record && Record->hasMutableFields(); 2800 if (!HasMutableFields) { 2801 const VarDecl *InitDecl; 2802 const Expr *InitExpr = D->getAnyInitializer(InitDecl); 2803 if (InitExpr) { 2804 ConstantEmitter emitter(*this); 2805 llvm::Constant *Init = emitter.tryEmitForInitializer(*InitDecl); 2806 if (Init) { 2807 auto *InitType = Init->getType(); 2808 if (GV->getType()->getElementType() != InitType) { 2809 // The type of the initializer does not match the definition. 2810 // This happens when an initializer has a different type from 2811 // the type of the global (because of padding at the end of a 2812 // structure for instance). 2813 GV->setName(StringRef()); 2814 // Make a new global with the correct type, this is now guaranteed 2815 // to work. 2816 auto *NewGV = cast<llvm::GlobalVariable>( 2817 GetAddrOfGlobalVar(D, InitType, IsForDefinition)); 2818 2819 // Erase the old global, since it is no longer used. 2820 cast<llvm::GlobalValue>(GV)->eraseFromParent(); 2821 GV = NewGV; 2822 } else { 2823 GV->setInitializer(Init); 2824 GV->setConstant(true); 2825 GV->setLinkage(llvm::GlobalValue::AvailableExternallyLinkage); 2826 } 2827 emitter.finalize(GV); 2828 } 2829 } 2830 } 2831 } 2832 } 2833 2834 LangAS ExpectedAS = 2835 D ? D->getType().getAddressSpace() 2836 : (LangOpts.OpenCL ? LangAS::opencl_global : LangAS::Default); 2837 assert(getContext().getTargetAddressSpace(ExpectedAS) == 2838 Ty->getPointerAddressSpace()); 2839 if (AddrSpace != ExpectedAS) 2840 return getTargetCodeGenInfo().performAddrSpaceCast(*this, GV, AddrSpace, 2841 ExpectedAS, Ty); 2842 2843 return GV; 2844 } 2845 2846 llvm::Constant * 2847 CodeGenModule::GetAddrOfGlobal(GlobalDecl GD, 2848 ForDefinition_t IsForDefinition) { 2849 const Decl *D = GD.getDecl(); 2850 if (isa<CXXConstructorDecl>(D)) 2851 return getAddrOfCXXStructor(cast<CXXConstructorDecl>(D), 2852 getFromCtorType(GD.getCtorType()), 2853 /*FnInfo=*/nullptr, /*FnType=*/nullptr, 2854 /*DontDefer=*/false, IsForDefinition); 2855 else if (isa<CXXDestructorDecl>(D)) 2856 return getAddrOfCXXStructor(cast<CXXDestructorDecl>(D), 2857 getFromDtorType(GD.getDtorType()), 2858 /*FnInfo=*/nullptr, /*FnType=*/nullptr, 2859 /*DontDefer=*/false, IsForDefinition); 2860 else if (isa<CXXMethodDecl>(D)) { 2861 auto FInfo = &getTypes().arrangeCXXMethodDeclaration( 2862 cast<CXXMethodDecl>(D)); 2863 auto Ty = getTypes().GetFunctionType(*FInfo); 2864 return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false, 2865 IsForDefinition); 2866 } else if (isa<FunctionDecl>(D)) { 2867 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 2868 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 2869 return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false, 2870 IsForDefinition); 2871 } else 2872 return GetAddrOfGlobalVar(cast<VarDecl>(D), /*Ty=*/nullptr, 2873 IsForDefinition); 2874 } 2875 2876 llvm::GlobalVariable * 2877 CodeGenModule::CreateOrReplaceCXXRuntimeVariable(StringRef Name, 2878 llvm::Type *Ty, 2879 llvm::GlobalValue::LinkageTypes Linkage) { 2880 llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name); 2881 llvm::GlobalVariable *OldGV = nullptr; 2882 2883 if (GV) { 2884 // Check if the variable has the right type. 2885 if (GV->getType()->getElementType() == Ty) 2886 return GV; 2887 2888 // Because C++ name mangling, the only way we can end up with an already 2889 // existing global with the same name is if it has been declared extern "C". 2890 assert(GV->isDeclaration() && "Declaration has wrong type!"); 2891 OldGV = GV; 2892 } 2893 2894 // Create a new variable. 2895 GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true, 2896 Linkage, nullptr, Name); 2897 2898 if (OldGV) { 2899 // Replace occurrences of the old variable if needed. 2900 GV->takeName(OldGV); 2901 2902 if (!OldGV->use_empty()) { 2903 llvm::Constant *NewPtrForOldDecl = 2904 llvm::ConstantExpr::getBitCast(GV, OldGV->getType()); 2905 OldGV->replaceAllUsesWith(NewPtrForOldDecl); 2906 } 2907 2908 OldGV->eraseFromParent(); 2909 } 2910 2911 if (supportsCOMDAT() && GV->isWeakForLinker() && 2912 !GV->hasAvailableExternallyLinkage()) 2913 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 2914 2915 return GV; 2916 } 2917 2918 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the 2919 /// given global variable. If Ty is non-null and if the global doesn't exist, 2920 /// then it will be created with the specified type instead of whatever the 2921 /// normal requested type would be. If IsForDefinition is true, it is guranteed 2922 /// that an actual global with type Ty will be returned, not conversion of a 2923 /// variable with the same mangled name but some other type. 2924 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D, 2925 llvm::Type *Ty, 2926 ForDefinition_t IsForDefinition) { 2927 assert(D->hasGlobalStorage() && "Not a global variable"); 2928 QualType ASTTy = D->getType(); 2929 if (!Ty) 2930 Ty = getTypes().ConvertTypeForMem(ASTTy); 2931 2932 llvm::PointerType *PTy = 2933 llvm::PointerType::get(Ty, getContext().getTargetAddressSpace(ASTTy)); 2934 2935 StringRef MangledName = getMangledName(D); 2936 return GetOrCreateLLVMGlobal(MangledName, PTy, D, IsForDefinition); 2937 } 2938 2939 /// CreateRuntimeVariable - Create a new runtime global variable with the 2940 /// specified type and name. 2941 llvm::Constant * 2942 CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty, 2943 StringRef Name) { 2944 return GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), nullptr); 2945 } 2946 2947 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) { 2948 assert(!D->getInit() && "Cannot emit definite definitions here!"); 2949 2950 StringRef MangledName = getMangledName(D); 2951 llvm::GlobalValue *GV = GetGlobalValue(MangledName); 2952 2953 // We already have a definition, not declaration, with the same mangled name. 2954 // Emitting of declaration is not required (and actually overwrites emitted 2955 // definition). 2956 if (GV && !GV->isDeclaration()) 2957 return; 2958 2959 // If we have not seen a reference to this variable yet, place it into the 2960 // deferred declarations table to be emitted if needed later. 2961 if (!MustBeEmitted(D) && !GV) { 2962 DeferredDecls[MangledName] = D; 2963 return; 2964 } 2965 2966 // The tentative definition is the only definition. 2967 EmitGlobalVarDefinition(D); 2968 } 2969 2970 CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const { 2971 return Context.toCharUnitsFromBits( 2972 getDataLayout().getTypeStoreSizeInBits(Ty)); 2973 } 2974 2975 LangAS CodeGenModule::GetGlobalVarAddressSpace(const VarDecl *D) { 2976 LangAS AddrSpace = LangAS::Default; 2977 if (LangOpts.OpenCL) { 2978 AddrSpace = D ? D->getType().getAddressSpace() : LangAS::opencl_global; 2979 assert(AddrSpace == LangAS::opencl_global || 2980 AddrSpace == LangAS::opencl_constant || 2981 AddrSpace == LangAS::opencl_local || 2982 AddrSpace >= LangAS::FirstTargetAddressSpace); 2983 return AddrSpace; 2984 } 2985 2986 if (LangOpts.CUDA && LangOpts.CUDAIsDevice) { 2987 if (D && D->hasAttr<CUDAConstantAttr>()) 2988 return LangAS::cuda_constant; 2989 else if (D && D->hasAttr<CUDASharedAttr>()) 2990 return LangAS::cuda_shared; 2991 else 2992 return LangAS::cuda_device; 2993 } 2994 2995 return getTargetCodeGenInfo().getGlobalVarAddressSpace(*this, D); 2996 } 2997 2998 template<typename SomeDecl> 2999 void CodeGenModule::MaybeHandleStaticInExternC(const SomeDecl *D, 3000 llvm::GlobalValue *GV) { 3001 if (!getLangOpts().CPlusPlus) 3002 return; 3003 3004 // Must have 'used' attribute, or else inline assembly can't rely on 3005 // the name existing. 3006 if (!D->template hasAttr<UsedAttr>()) 3007 return; 3008 3009 // Must have internal linkage and an ordinary name. 3010 if (!D->getIdentifier() || D->getFormalLinkage() != InternalLinkage) 3011 return; 3012 3013 // Must be in an extern "C" context. Entities declared directly within 3014 // a record are not extern "C" even if the record is in such a context. 3015 const SomeDecl *First = D->getFirstDecl(); 3016 if (First->getDeclContext()->isRecord() || !First->isInExternCContext()) 3017 return; 3018 3019 // OK, this is an internal linkage entity inside an extern "C" linkage 3020 // specification. Make a note of that so we can give it the "expected" 3021 // mangled name if nothing else is using that name. 3022 std::pair<StaticExternCMap::iterator, bool> R = 3023 StaticExternCValues.insert(std::make_pair(D->getIdentifier(), GV)); 3024 3025 // If we have multiple internal linkage entities with the same name 3026 // in extern "C" regions, none of them gets that name. 3027 if (!R.second) 3028 R.first->second = nullptr; 3029 } 3030 3031 static bool shouldBeInCOMDAT(CodeGenModule &CGM, const Decl &D) { 3032 if (!CGM.supportsCOMDAT()) 3033 return false; 3034 3035 if (D.hasAttr<SelectAnyAttr>()) 3036 return true; 3037 3038 GVALinkage Linkage; 3039 if (auto *VD = dyn_cast<VarDecl>(&D)) 3040 Linkage = CGM.getContext().GetGVALinkageForVariable(VD); 3041 else 3042 Linkage = CGM.getContext().GetGVALinkageForFunction(cast<FunctionDecl>(&D)); 3043 3044 switch (Linkage) { 3045 case GVA_Internal: 3046 case GVA_AvailableExternally: 3047 case GVA_StrongExternal: 3048 return false; 3049 case GVA_DiscardableODR: 3050 case GVA_StrongODR: 3051 return true; 3052 } 3053 llvm_unreachable("No such linkage"); 3054 } 3055 3056 void CodeGenModule::maybeSetTrivialComdat(const Decl &D, 3057 llvm::GlobalObject &GO) { 3058 if (!shouldBeInCOMDAT(*this, D)) 3059 return; 3060 GO.setComdat(TheModule.getOrInsertComdat(GO.getName())); 3061 } 3062 3063 /// Pass IsTentative as true if you want to create a tentative definition. 3064 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D, 3065 bool IsTentative) { 3066 // OpenCL global variables of sampler type are translated to function calls, 3067 // therefore no need to be translated. 3068 QualType ASTTy = D->getType(); 3069 if (getLangOpts().OpenCL && ASTTy->isSamplerT()) 3070 return; 3071 3072 llvm::Constant *Init = nullptr; 3073 CXXRecordDecl *RD = ASTTy->getBaseElementTypeUnsafe()->getAsCXXRecordDecl(); 3074 bool NeedsGlobalCtor = false; 3075 bool NeedsGlobalDtor = RD && !RD->hasTrivialDestructor(); 3076 3077 const VarDecl *InitDecl; 3078 const Expr *InitExpr = D->getAnyInitializer(InitDecl); 3079 3080 Optional<ConstantEmitter> emitter; 3081 3082 // CUDA E.2.4.1 "__shared__ variables cannot have an initialization 3083 // as part of their declaration." Sema has already checked for 3084 // error cases, so we just need to set Init to UndefValue. 3085 if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice && 3086 D->hasAttr<CUDASharedAttr>()) 3087 Init = llvm::UndefValue::get(getTypes().ConvertType(ASTTy)); 3088 else if (!InitExpr) { 3089 // This is a tentative definition; tentative definitions are 3090 // implicitly initialized with { 0 }. 3091 // 3092 // Note that tentative definitions are only emitted at the end of 3093 // a translation unit, so they should never have incomplete 3094 // type. In addition, EmitTentativeDefinition makes sure that we 3095 // never attempt to emit a tentative definition if a real one 3096 // exists. A use may still exists, however, so we still may need 3097 // to do a RAUW. 3098 assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type"); 3099 Init = EmitNullConstant(D->getType()); 3100 } else { 3101 initializedGlobalDecl = GlobalDecl(D); 3102 emitter.emplace(*this); 3103 Init = emitter->tryEmitForInitializer(*InitDecl); 3104 3105 if (!Init) { 3106 QualType T = InitExpr->getType(); 3107 if (D->getType()->isReferenceType()) 3108 T = D->getType(); 3109 3110 if (getLangOpts().CPlusPlus) { 3111 Init = EmitNullConstant(T); 3112 NeedsGlobalCtor = true; 3113 } else { 3114 ErrorUnsupported(D, "static initializer"); 3115 Init = llvm::UndefValue::get(getTypes().ConvertType(T)); 3116 } 3117 } else { 3118 // We don't need an initializer, so remove the entry for the delayed 3119 // initializer position (just in case this entry was delayed) if we 3120 // also don't need to register a destructor. 3121 if (getLangOpts().CPlusPlus && !NeedsGlobalDtor) 3122 DelayedCXXInitPosition.erase(D); 3123 } 3124 } 3125 3126 llvm::Type* InitType = Init->getType(); 3127 llvm::Constant *Entry = 3128 GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative)); 3129 3130 // Strip off a bitcast if we got one back. 3131 if (auto *CE = dyn_cast<llvm::ConstantExpr>(Entry)) { 3132 assert(CE->getOpcode() == llvm::Instruction::BitCast || 3133 CE->getOpcode() == llvm::Instruction::AddrSpaceCast || 3134 // All zero index gep. 3135 CE->getOpcode() == llvm::Instruction::GetElementPtr); 3136 Entry = CE->getOperand(0); 3137 } 3138 3139 // Entry is now either a Function or GlobalVariable. 3140 auto *GV = dyn_cast<llvm::GlobalVariable>(Entry); 3141 3142 // We have a definition after a declaration with the wrong type. 3143 // We must make a new GlobalVariable* and update everything that used OldGV 3144 // (a declaration or tentative definition) with the new GlobalVariable* 3145 // (which will be a definition). 3146 // 3147 // This happens if there is a prototype for a global (e.g. 3148 // "extern int x[];") and then a definition of a different type (e.g. 3149 // "int x[10];"). This also happens when an initializer has a different type 3150 // from the type of the global (this happens with unions). 3151 if (!GV || GV->getType()->getElementType() != InitType || 3152 GV->getType()->getAddressSpace() != 3153 getContext().getTargetAddressSpace(GetGlobalVarAddressSpace(D))) { 3154 3155 // Move the old entry aside so that we'll create a new one. 3156 Entry->setName(StringRef()); 3157 3158 // Make a new global with the correct type, this is now guaranteed to work. 3159 GV = cast<llvm::GlobalVariable>( 3160 GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative))); 3161 3162 // Replace all uses of the old global with the new global 3163 llvm::Constant *NewPtrForOldDecl = 3164 llvm::ConstantExpr::getBitCast(GV, Entry->getType()); 3165 Entry->replaceAllUsesWith(NewPtrForOldDecl); 3166 3167 // Erase the old global, since it is no longer used. 3168 cast<llvm::GlobalValue>(Entry)->eraseFromParent(); 3169 } 3170 3171 MaybeHandleStaticInExternC(D, GV); 3172 3173 if (D->hasAttr<AnnotateAttr>()) 3174 AddGlobalAnnotations(D, GV); 3175 3176 // Set the llvm linkage type as appropriate. 3177 llvm::GlobalValue::LinkageTypes Linkage = 3178 getLLVMLinkageVarDefinition(D, GV->isConstant()); 3179 3180 // CUDA B.2.1 "The __device__ qualifier declares a variable that resides on 3181 // the device. [...]" 3182 // CUDA B.2.2 "The __constant__ qualifier, optionally used together with 3183 // __device__, declares a variable that: [...] 3184 // Is accessible from all the threads within the grid and from the host 3185 // through the runtime library (cudaGetSymbolAddress() / cudaGetSymbolSize() 3186 // / cudaMemcpyToSymbol() / cudaMemcpyFromSymbol())." 3187 if (GV && LangOpts.CUDA) { 3188 if (LangOpts.CUDAIsDevice) { 3189 if (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>()) 3190 GV->setExternallyInitialized(true); 3191 } else { 3192 // Host-side shadows of external declarations of device-side 3193 // global variables become internal definitions. These have to 3194 // be internal in order to prevent name conflicts with global 3195 // host variables with the same name in a different TUs. 3196 if (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>()) { 3197 Linkage = llvm::GlobalValue::InternalLinkage; 3198 3199 // Shadow variables and their properties must be registered 3200 // with CUDA runtime. 3201 unsigned Flags = 0; 3202 if (!D->hasDefinition()) 3203 Flags |= CGCUDARuntime::ExternDeviceVar; 3204 if (D->hasAttr<CUDAConstantAttr>()) 3205 Flags |= CGCUDARuntime::ConstantDeviceVar; 3206 getCUDARuntime().registerDeviceVar(*GV, Flags); 3207 } else if (D->hasAttr<CUDASharedAttr>()) 3208 // __shared__ variables are odd. Shadows do get created, but 3209 // they are not registered with the CUDA runtime, so they 3210 // can't really be used to access their device-side 3211 // counterparts. It's not clear yet whether it's nvcc's bug or 3212 // a feature, but we've got to do the same for compatibility. 3213 Linkage = llvm::GlobalValue::InternalLinkage; 3214 } 3215 } 3216 3217 GV->setInitializer(Init); 3218 if (emitter) emitter->finalize(GV); 3219 3220 // If it is safe to mark the global 'constant', do so now. 3221 GV->setConstant(!NeedsGlobalCtor && !NeedsGlobalDtor && 3222 isTypeConstant(D->getType(), true)); 3223 3224 // If it is in a read-only section, mark it 'constant'. 3225 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) { 3226 const ASTContext::SectionInfo &SI = Context.SectionInfos[SA->getName()]; 3227 if ((SI.SectionFlags & ASTContext::PSF_Write) == 0) 3228 GV->setConstant(true); 3229 } 3230 3231 GV->setAlignment(getContext().getDeclAlign(D).getQuantity()); 3232 3233 3234 // On Darwin, if the normal linkage of a C++ thread_local variable is 3235 // LinkOnce or Weak, we keep the normal linkage to prevent multiple 3236 // copies within a linkage unit; otherwise, the backing variable has 3237 // internal linkage and all accesses should just be calls to the 3238 // Itanium-specified entry point, which has the normal linkage of the 3239 // variable. This is to preserve the ability to change the implementation 3240 // behind the scenes. 3241 if (!D->isStaticLocal() && D->getTLSKind() == VarDecl::TLS_Dynamic && 3242 Context.getTargetInfo().getTriple().isOSDarwin() && 3243 !llvm::GlobalVariable::isLinkOnceLinkage(Linkage) && 3244 !llvm::GlobalVariable::isWeakLinkage(Linkage)) 3245 Linkage = llvm::GlobalValue::InternalLinkage; 3246 3247 GV->setLinkage(Linkage); 3248 if (D->hasAttr<DLLImportAttr>()) 3249 GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass); 3250 else if (D->hasAttr<DLLExportAttr>()) 3251 GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass); 3252 else 3253 GV->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass); 3254 3255 if (Linkage == llvm::GlobalVariable::CommonLinkage) { 3256 // common vars aren't constant even if declared const. 3257 GV->setConstant(false); 3258 // Tentative definition of global variables may be initialized with 3259 // non-zero null pointers. In this case they should have weak linkage 3260 // since common linkage must have zero initializer and must not have 3261 // explicit section therefore cannot have non-zero initial value. 3262 if (!GV->getInitializer()->isNullValue()) 3263 GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage); 3264 } 3265 3266 setNonAliasAttributes(D, GV); 3267 3268 if (D->getTLSKind() && !GV->isThreadLocal()) { 3269 if (D->getTLSKind() == VarDecl::TLS_Dynamic) 3270 CXXThreadLocals.push_back(D); 3271 setTLSMode(GV, *D); 3272 } 3273 3274 maybeSetTrivialComdat(*D, *GV); 3275 3276 // Emit the initializer function if necessary. 3277 if (NeedsGlobalCtor || NeedsGlobalDtor) 3278 EmitCXXGlobalVarDeclInitFunc(D, GV, NeedsGlobalCtor); 3279 3280 SanitizerMD->reportGlobalToASan(GV, *D, NeedsGlobalCtor); 3281 3282 // Emit global variable debug information. 3283 if (CGDebugInfo *DI = getModuleDebugInfo()) 3284 if (getCodeGenOpts().getDebugInfo() >= codegenoptions::LimitedDebugInfo) 3285 DI->EmitGlobalVariable(GV, D); 3286 } 3287 3288 static bool isVarDeclStrongDefinition(const ASTContext &Context, 3289 CodeGenModule &CGM, const VarDecl *D, 3290 bool NoCommon) { 3291 // Don't give variables common linkage if -fno-common was specified unless it 3292 // was overridden by a NoCommon attribute. 3293 if ((NoCommon || D->hasAttr<NoCommonAttr>()) && !D->hasAttr<CommonAttr>()) 3294 return true; 3295 3296 // C11 6.9.2/2: 3297 // A declaration of an identifier for an object that has file scope without 3298 // an initializer, and without a storage-class specifier or with the 3299 // storage-class specifier static, constitutes a tentative definition. 3300 if (D->getInit() || D->hasExternalStorage()) 3301 return true; 3302 3303 // A variable cannot be both common and exist in a section. 3304 if (D->hasAttr<SectionAttr>()) 3305 return true; 3306 3307 // A variable cannot be both common and exist in a section. 3308 // We dont try to determine which is the right section in the front-end. 3309 // If no specialized section name is applicable, it will resort to default. 3310 if (D->hasAttr<PragmaClangBSSSectionAttr>() || 3311 D->hasAttr<PragmaClangDataSectionAttr>() || 3312 D->hasAttr<PragmaClangRodataSectionAttr>()) 3313 return true; 3314 3315 // Thread local vars aren't considered common linkage. 3316 if (D->getTLSKind()) 3317 return true; 3318 3319 // Tentative definitions marked with WeakImportAttr are true definitions. 3320 if (D->hasAttr<WeakImportAttr>()) 3321 return true; 3322 3323 // A variable cannot be both common and exist in a comdat. 3324 if (shouldBeInCOMDAT(CGM, *D)) 3325 return true; 3326 3327 // Declarations with a required alignment do not have common linkage in MSVC 3328 // mode. 3329 if (Context.getTargetInfo().getCXXABI().isMicrosoft()) { 3330 if (D->hasAttr<AlignedAttr>()) 3331 return true; 3332 QualType VarType = D->getType(); 3333 if (Context.isAlignmentRequired(VarType)) 3334 return true; 3335 3336 if (const auto *RT = VarType->getAs<RecordType>()) { 3337 const RecordDecl *RD = RT->getDecl(); 3338 for (const FieldDecl *FD : RD->fields()) { 3339 if (FD->isBitField()) 3340 continue; 3341 if (FD->hasAttr<AlignedAttr>()) 3342 return true; 3343 if (Context.isAlignmentRequired(FD->getType())) 3344 return true; 3345 } 3346 } 3347 } 3348 3349 return false; 3350 } 3351 3352 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageForDeclarator( 3353 const DeclaratorDecl *D, GVALinkage Linkage, bool IsConstantVariable) { 3354 if (Linkage == GVA_Internal) 3355 return llvm::Function::InternalLinkage; 3356 3357 if (D->hasAttr<WeakAttr>()) { 3358 if (IsConstantVariable) 3359 return llvm::GlobalVariable::WeakODRLinkage; 3360 else 3361 return llvm::GlobalVariable::WeakAnyLinkage; 3362 } 3363 3364 // We are guaranteed to have a strong definition somewhere else, 3365 // so we can use available_externally linkage. 3366 if (Linkage == GVA_AvailableExternally) 3367 return llvm::GlobalValue::AvailableExternallyLinkage; 3368 3369 // Note that Apple's kernel linker doesn't support symbol 3370 // coalescing, so we need to avoid linkonce and weak linkages there. 3371 // Normally, this means we just map to internal, but for explicit 3372 // instantiations we'll map to external. 3373 3374 // In C++, the compiler has to emit a definition in every translation unit 3375 // that references the function. We should use linkonce_odr because 3376 // a) if all references in this translation unit are optimized away, we 3377 // don't need to codegen it. b) if the function persists, it needs to be 3378 // merged with other definitions. c) C++ has the ODR, so we know the 3379 // definition is dependable. 3380 if (Linkage == GVA_DiscardableODR) 3381 return !Context.getLangOpts().AppleKext ? llvm::Function::LinkOnceODRLinkage 3382 : llvm::Function::InternalLinkage; 3383 3384 // An explicit instantiation of a template has weak linkage, since 3385 // explicit instantiations can occur in multiple translation units 3386 // and must all be equivalent. However, we are not allowed to 3387 // throw away these explicit instantiations. 3388 // 3389 // We don't currently support CUDA device code spread out across multiple TUs, 3390 // so say that CUDA templates are either external (for kernels) or internal. 3391 // This lets llvm perform aggressive inter-procedural optimizations. 3392 if (Linkage == GVA_StrongODR) { 3393 if (Context.getLangOpts().AppleKext) 3394 return llvm::Function::ExternalLinkage; 3395 if (Context.getLangOpts().CUDA && Context.getLangOpts().CUDAIsDevice) 3396 return D->hasAttr<CUDAGlobalAttr>() ? llvm::Function::ExternalLinkage 3397 : llvm::Function::InternalLinkage; 3398 return llvm::Function::WeakODRLinkage; 3399 } 3400 3401 // C++ doesn't have tentative definitions and thus cannot have common 3402 // linkage. 3403 if (!getLangOpts().CPlusPlus && isa<VarDecl>(D) && 3404 !isVarDeclStrongDefinition(Context, *this, cast<VarDecl>(D), 3405 CodeGenOpts.NoCommon)) 3406 return llvm::GlobalVariable::CommonLinkage; 3407 3408 // selectany symbols are externally visible, so use weak instead of 3409 // linkonce. MSVC optimizes away references to const selectany globals, so 3410 // all definitions should be the same and ODR linkage should be used. 3411 // http://msdn.microsoft.com/en-us/library/5tkz6s71.aspx 3412 if (D->hasAttr<SelectAnyAttr>()) 3413 return llvm::GlobalVariable::WeakODRLinkage; 3414 3415 // Otherwise, we have strong external linkage. 3416 assert(Linkage == GVA_StrongExternal); 3417 return llvm::GlobalVariable::ExternalLinkage; 3418 } 3419 3420 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageVarDefinition( 3421 const VarDecl *VD, bool IsConstant) { 3422 GVALinkage Linkage = getContext().GetGVALinkageForVariable(VD); 3423 return getLLVMLinkageForDeclarator(VD, Linkage, IsConstant); 3424 } 3425 3426 /// Replace the uses of a function that was declared with a non-proto type. 3427 /// We want to silently drop extra arguments from call sites 3428 static void replaceUsesOfNonProtoConstant(llvm::Constant *old, 3429 llvm::Function *newFn) { 3430 // Fast path. 3431 if (old->use_empty()) return; 3432 3433 llvm::Type *newRetTy = newFn->getReturnType(); 3434 SmallVector<llvm::Value*, 4> newArgs; 3435 SmallVector<llvm::OperandBundleDef, 1> newBundles; 3436 3437 for (llvm::Value::use_iterator ui = old->use_begin(), ue = old->use_end(); 3438 ui != ue; ) { 3439 llvm::Value::use_iterator use = ui++; // Increment before the use is erased. 3440 llvm::User *user = use->getUser(); 3441 3442 // Recognize and replace uses of bitcasts. Most calls to 3443 // unprototyped functions will use bitcasts. 3444 if (auto *bitcast = dyn_cast<llvm::ConstantExpr>(user)) { 3445 if (bitcast->getOpcode() == llvm::Instruction::BitCast) 3446 replaceUsesOfNonProtoConstant(bitcast, newFn); 3447 continue; 3448 } 3449 3450 // Recognize calls to the function. 3451 llvm::CallSite callSite(user); 3452 if (!callSite) continue; 3453 if (!callSite.isCallee(&*use)) continue; 3454 3455 // If the return types don't match exactly, then we can't 3456 // transform this call unless it's dead. 3457 if (callSite->getType() != newRetTy && !callSite->use_empty()) 3458 continue; 3459 3460 // Get the call site's attribute list. 3461 SmallVector<llvm::AttributeSet, 8> newArgAttrs; 3462 llvm::AttributeList oldAttrs = callSite.getAttributes(); 3463 3464 // If the function was passed too few arguments, don't transform. 3465 unsigned newNumArgs = newFn->arg_size(); 3466 if (callSite.arg_size() < newNumArgs) continue; 3467 3468 // If extra arguments were passed, we silently drop them. 3469 // If any of the types mismatch, we don't transform. 3470 unsigned argNo = 0; 3471 bool dontTransform = false; 3472 for (llvm::Argument &A : newFn->args()) { 3473 if (callSite.getArgument(argNo)->getType() != A.getType()) { 3474 dontTransform = true; 3475 break; 3476 } 3477 3478 // Add any parameter attributes. 3479 newArgAttrs.push_back(oldAttrs.getParamAttributes(argNo)); 3480 argNo++; 3481 } 3482 if (dontTransform) 3483 continue; 3484 3485 // Okay, we can transform this. Create the new call instruction and copy 3486 // over the required information. 3487 newArgs.append(callSite.arg_begin(), callSite.arg_begin() + argNo); 3488 3489 // Copy over any operand bundles. 3490 callSite.getOperandBundlesAsDefs(newBundles); 3491 3492 llvm::CallSite newCall; 3493 if (callSite.isCall()) { 3494 newCall = llvm::CallInst::Create(newFn, newArgs, newBundles, "", 3495 callSite.getInstruction()); 3496 } else { 3497 auto *oldInvoke = cast<llvm::InvokeInst>(callSite.getInstruction()); 3498 newCall = llvm::InvokeInst::Create(newFn, 3499 oldInvoke->getNormalDest(), 3500 oldInvoke->getUnwindDest(), 3501 newArgs, newBundles, "", 3502 callSite.getInstruction()); 3503 } 3504 newArgs.clear(); // for the next iteration 3505 3506 if (!newCall->getType()->isVoidTy()) 3507 newCall->takeName(callSite.getInstruction()); 3508 newCall.setAttributes(llvm::AttributeList::get( 3509 newFn->getContext(), oldAttrs.getFnAttributes(), 3510 oldAttrs.getRetAttributes(), newArgAttrs)); 3511 newCall.setCallingConv(callSite.getCallingConv()); 3512 3513 // Finally, remove the old call, replacing any uses with the new one. 3514 if (!callSite->use_empty()) 3515 callSite->replaceAllUsesWith(newCall.getInstruction()); 3516 3517 // Copy debug location attached to CI. 3518 if (callSite->getDebugLoc()) 3519 newCall->setDebugLoc(callSite->getDebugLoc()); 3520 3521 callSite->eraseFromParent(); 3522 } 3523 } 3524 3525 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we 3526 /// implement a function with no prototype, e.g. "int foo() {}". If there are 3527 /// existing call uses of the old function in the module, this adjusts them to 3528 /// call the new function directly. 3529 /// 3530 /// This is not just a cleanup: the always_inline pass requires direct calls to 3531 /// functions to be able to inline them. If there is a bitcast in the way, it 3532 /// won't inline them. Instcombine normally deletes these calls, but it isn't 3533 /// run at -O0. 3534 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old, 3535 llvm::Function *NewFn) { 3536 // If we're redefining a global as a function, don't transform it. 3537 if (!isa<llvm::Function>(Old)) return; 3538 3539 replaceUsesOfNonProtoConstant(Old, NewFn); 3540 } 3541 3542 void CodeGenModule::HandleCXXStaticMemberVarInstantiation(VarDecl *VD) { 3543 auto DK = VD->isThisDeclarationADefinition(); 3544 if (DK == VarDecl::Definition && VD->hasAttr<DLLImportAttr>()) 3545 return; 3546 3547 TemplateSpecializationKind TSK = VD->getTemplateSpecializationKind(); 3548 // If we have a definition, this might be a deferred decl. If the 3549 // instantiation is explicit, make sure we emit it at the end. 3550 if (VD->getDefinition() && TSK == TSK_ExplicitInstantiationDefinition) 3551 GetAddrOfGlobalVar(VD); 3552 3553 EmitTopLevelDecl(VD); 3554 } 3555 3556 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD, 3557 llvm::GlobalValue *GV) { 3558 const auto *D = cast<FunctionDecl>(GD.getDecl()); 3559 3560 // Compute the function info and LLVM type. 3561 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 3562 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 3563 3564 // Get or create the prototype for the function. 3565 if (!GV || (GV->getType()->getElementType() != Ty)) 3566 GV = cast<llvm::GlobalValue>(GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, 3567 /*DontDefer=*/true, 3568 ForDefinition)); 3569 3570 // Already emitted. 3571 if (!GV->isDeclaration()) 3572 return; 3573 3574 // We need to set linkage and visibility on the function before 3575 // generating code for it because various parts of IR generation 3576 // want to propagate this information down (e.g. to local static 3577 // declarations). 3578 auto *Fn = cast<llvm::Function>(GV); 3579 setFunctionLinkage(GD, Fn); 3580 setFunctionDLLStorageClass(GD, Fn); 3581 3582 // FIXME: this is redundant with part of setFunctionDefinitionAttributes 3583 setGVProperties(Fn, D); 3584 3585 MaybeHandleStaticInExternC(D, Fn); 3586 3587 maybeSetTrivialComdat(*D, *Fn); 3588 3589 CodeGenFunction(*this).GenerateCode(D, Fn, FI); 3590 3591 setNonAliasAttributes(GD, Fn); 3592 SetLLVMFunctionAttributesForDefinition(D, Fn); 3593 3594 if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>()) 3595 AddGlobalCtor(Fn, CA->getPriority()); 3596 if (const DestructorAttr *DA = D->getAttr<DestructorAttr>()) 3597 AddGlobalDtor(Fn, DA->getPriority()); 3598 if (D->hasAttr<AnnotateAttr>()) 3599 AddGlobalAnnotations(D, Fn); 3600 } 3601 3602 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) { 3603 const auto *D = cast<ValueDecl>(GD.getDecl()); 3604 const AliasAttr *AA = D->getAttr<AliasAttr>(); 3605 assert(AA && "Not an alias?"); 3606 3607 StringRef MangledName = getMangledName(GD); 3608 3609 if (AA->getAliasee() == MangledName) { 3610 Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0; 3611 return; 3612 } 3613 3614 // If there is a definition in the module, then it wins over the alias. 3615 // This is dubious, but allow it to be safe. Just ignore the alias. 3616 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 3617 if (Entry && !Entry->isDeclaration()) 3618 return; 3619 3620 Aliases.push_back(GD); 3621 3622 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType()); 3623 3624 // Create a reference to the named value. This ensures that it is emitted 3625 // if a deferred decl. 3626 llvm::Constant *Aliasee; 3627 if (isa<llvm::FunctionType>(DeclTy)) 3628 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GD, 3629 /*ForVTable=*/false); 3630 else 3631 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), 3632 llvm::PointerType::getUnqual(DeclTy), 3633 /*D=*/nullptr); 3634 3635 // Create the new alias itself, but don't set a name yet. 3636 auto *GA = llvm::GlobalAlias::create( 3637 DeclTy, 0, llvm::Function::ExternalLinkage, "", Aliasee, &getModule()); 3638 3639 if (Entry) { 3640 if (GA->getAliasee() == Entry) { 3641 Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0; 3642 return; 3643 } 3644 3645 assert(Entry->isDeclaration()); 3646 3647 // If there is a declaration in the module, then we had an extern followed 3648 // by the alias, as in: 3649 // extern int test6(); 3650 // ... 3651 // int test6() __attribute__((alias("test7"))); 3652 // 3653 // Remove it and replace uses of it with the alias. 3654 GA->takeName(Entry); 3655 3656 Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA, 3657 Entry->getType())); 3658 Entry->eraseFromParent(); 3659 } else { 3660 GA->setName(MangledName); 3661 } 3662 3663 // Set attributes which are particular to an alias; this is a 3664 // specialization of the attributes which may be set on a global 3665 // variable/function. 3666 if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakRefAttr>() || 3667 D->isWeakImported()) { 3668 GA->setLinkage(llvm::Function::WeakAnyLinkage); 3669 } 3670 3671 if (const auto *VD = dyn_cast<VarDecl>(D)) 3672 if (VD->getTLSKind()) 3673 setTLSMode(GA, *VD); 3674 3675 setAliasAttributes(GD, GA); 3676 } 3677 3678 void CodeGenModule::emitIFuncDefinition(GlobalDecl GD) { 3679 const auto *D = cast<ValueDecl>(GD.getDecl()); 3680 const IFuncAttr *IFA = D->getAttr<IFuncAttr>(); 3681 assert(IFA && "Not an ifunc?"); 3682 3683 StringRef MangledName = getMangledName(GD); 3684 3685 if (IFA->getResolver() == MangledName) { 3686 Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1; 3687 return; 3688 } 3689 3690 // Report an error if some definition overrides ifunc. 3691 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 3692 if (Entry && !Entry->isDeclaration()) { 3693 GlobalDecl OtherGD; 3694 if (lookupRepresentativeDecl(MangledName, OtherGD) && 3695 DiagnosedConflictingDefinitions.insert(GD).second) { 3696 Diags.Report(D->getLocation(), diag::err_duplicate_mangled_name); 3697 Diags.Report(OtherGD.getDecl()->getLocation(), 3698 diag::note_previous_definition); 3699 } 3700 return; 3701 } 3702 3703 Aliases.push_back(GD); 3704 3705 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType()); 3706 llvm::Constant *Resolver = 3707 GetOrCreateLLVMFunction(IFA->getResolver(), DeclTy, GD, 3708 /*ForVTable=*/false); 3709 llvm::GlobalIFunc *GIF = 3710 llvm::GlobalIFunc::create(DeclTy, 0, llvm::Function::ExternalLinkage, 3711 "", Resolver, &getModule()); 3712 if (Entry) { 3713 if (GIF->getResolver() == Entry) { 3714 Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1; 3715 return; 3716 } 3717 assert(Entry->isDeclaration()); 3718 3719 // If there is a declaration in the module, then we had an extern followed 3720 // by the ifunc, as in: 3721 // extern int test(); 3722 // ... 3723 // int test() __attribute__((ifunc("resolver"))); 3724 // 3725 // Remove it and replace uses of it with the ifunc. 3726 GIF->takeName(Entry); 3727 3728 Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GIF, 3729 Entry->getType())); 3730 Entry->eraseFromParent(); 3731 } else 3732 GIF->setName(MangledName); 3733 3734 SetCommonAttributes(GD, GIF); 3735 } 3736 3737 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID, 3738 ArrayRef<llvm::Type*> Tys) { 3739 return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID, 3740 Tys); 3741 } 3742 3743 static llvm::StringMapEntry<llvm::GlobalVariable *> & 3744 GetConstantCFStringEntry(llvm::StringMap<llvm::GlobalVariable *> &Map, 3745 const StringLiteral *Literal, bool TargetIsLSB, 3746 bool &IsUTF16, unsigned &StringLength) { 3747 StringRef String = Literal->getString(); 3748 unsigned NumBytes = String.size(); 3749 3750 // Check for simple case. 3751 if (!Literal->containsNonAsciiOrNull()) { 3752 StringLength = NumBytes; 3753 return *Map.insert(std::make_pair(String, nullptr)).first; 3754 } 3755 3756 // Otherwise, convert the UTF8 literals into a string of shorts. 3757 IsUTF16 = true; 3758 3759 SmallVector<llvm::UTF16, 128> ToBuf(NumBytes + 1); // +1 for ending nulls. 3760 const llvm::UTF8 *FromPtr = (const llvm::UTF8 *)String.data(); 3761 llvm::UTF16 *ToPtr = &ToBuf[0]; 3762 3763 (void)llvm::ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, &ToPtr, 3764 ToPtr + NumBytes, llvm::strictConversion); 3765 3766 // ConvertUTF8toUTF16 returns the length in ToPtr. 3767 StringLength = ToPtr - &ToBuf[0]; 3768 3769 // Add an explicit null. 3770 *ToPtr = 0; 3771 return *Map.insert(std::make_pair( 3772 StringRef(reinterpret_cast<const char *>(ToBuf.data()), 3773 (StringLength + 1) * 2), 3774 nullptr)).first; 3775 } 3776 3777 ConstantAddress 3778 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) { 3779 unsigned StringLength = 0; 3780 bool isUTF16 = false; 3781 llvm::StringMapEntry<llvm::GlobalVariable *> &Entry = 3782 GetConstantCFStringEntry(CFConstantStringMap, Literal, 3783 getDataLayout().isLittleEndian(), isUTF16, 3784 StringLength); 3785 3786 if (auto *C = Entry.second) 3787 return ConstantAddress(C, CharUnits::fromQuantity(C->getAlignment())); 3788 3789 llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty); 3790 llvm::Constant *Zeros[] = { Zero, Zero }; 3791 3792 // If we don't already have it, get __CFConstantStringClassReference. 3793 if (!CFConstantStringClassRef) { 3794 llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy); 3795 Ty = llvm::ArrayType::get(Ty, 0); 3796 llvm::Constant *GV = 3797 CreateRuntimeVariable(Ty, "__CFConstantStringClassReference"); 3798 3799 if (getTriple().isOSBinFormatCOFF()) { 3800 IdentifierInfo &II = getContext().Idents.get(GV->getName()); 3801 TranslationUnitDecl *TUDecl = getContext().getTranslationUnitDecl(); 3802 DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl); 3803 llvm::GlobalValue *CGV = cast<llvm::GlobalValue>(GV); 3804 3805 const VarDecl *VD = nullptr; 3806 for (const auto &Result : DC->lookup(&II)) 3807 if ((VD = dyn_cast<VarDecl>(Result))) 3808 break; 3809 3810 if (!VD || !VD->hasAttr<DLLExportAttr>()) { 3811 CGV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass); 3812 CGV->setLinkage(llvm::GlobalValue::ExternalLinkage); 3813 } else { 3814 CGV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass); 3815 CGV->setLinkage(llvm::GlobalValue::ExternalLinkage); 3816 } 3817 } 3818 3819 // Decay array -> ptr 3820 CFConstantStringClassRef = 3821 llvm::ConstantExpr::getGetElementPtr(Ty, GV, Zeros); 3822 } 3823 3824 QualType CFTy = getContext().getCFConstantStringType(); 3825 3826 auto *STy = cast<llvm::StructType>(getTypes().ConvertType(CFTy)); 3827 3828 ConstantInitBuilder Builder(*this); 3829 auto Fields = Builder.beginStruct(STy); 3830 3831 // Class pointer. 3832 Fields.add(cast<llvm::ConstantExpr>(CFConstantStringClassRef)); 3833 3834 // Flags. 3835 Fields.addInt(IntTy, isUTF16 ? 0x07d0 : 0x07C8); 3836 3837 // String pointer. 3838 llvm::Constant *C = nullptr; 3839 if (isUTF16) { 3840 auto Arr = llvm::makeArrayRef( 3841 reinterpret_cast<uint16_t *>(const_cast<char *>(Entry.first().data())), 3842 Entry.first().size() / 2); 3843 C = llvm::ConstantDataArray::get(VMContext, Arr); 3844 } else { 3845 C = llvm::ConstantDataArray::getString(VMContext, Entry.first()); 3846 } 3847 3848 // Note: -fwritable-strings doesn't make the backing store strings of 3849 // CFStrings writable. (See <rdar://problem/10657500>) 3850 auto *GV = 3851 new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true, 3852 llvm::GlobalValue::PrivateLinkage, C, ".str"); 3853 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 3854 // Don't enforce the target's minimum global alignment, since the only use 3855 // of the string is via this class initializer. 3856 CharUnits Align = isUTF16 3857 ? getContext().getTypeAlignInChars(getContext().ShortTy) 3858 : getContext().getTypeAlignInChars(getContext().CharTy); 3859 GV->setAlignment(Align.getQuantity()); 3860 3861 // FIXME: We set the section explicitly to avoid a bug in ld64 224.1. 3862 // Without it LLVM can merge the string with a non unnamed_addr one during 3863 // LTO. Doing that changes the section it ends in, which surprises ld64. 3864 if (getTriple().isOSBinFormatMachO()) 3865 GV->setSection(isUTF16 ? "__TEXT,__ustring" 3866 : "__TEXT,__cstring,cstring_literals"); 3867 3868 // String. 3869 llvm::Constant *Str = 3870 llvm::ConstantExpr::getGetElementPtr(GV->getValueType(), GV, Zeros); 3871 3872 if (isUTF16) 3873 // Cast the UTF16 string to the correct type. 3874 Str = llvm::ConstantExpr::getBitCast(Str, Int8PtrTy); 3875 Fields.add(Str); 3876 3877 // String length. 3878 auto Ty = getTypes().ConvertType(getContext().LongTy); 3879 Fields.addInt(cast<llvm::IntegerType>(Ty), StringLength); 3880 3881 CharUnits Alignment = getPointerAlign(); 3882 3883 // The struct. 3884 GV = Fields.finishAndCreateGlobal("_unnamed_cfstring_", Alignment, 3885 /*isConstant=*/false, 3886 llvm::GlobalVariable::PrivateLinkage); 3887 switch (getTriple().getObjectFormat()) { 3888 case llvm::Triple::UnknownObjectFormat: 3889 llvm_unreachable("unknown file format"); 3890 case llvm::Triple::COFF: 3891 case llvm::Triple::ELF: 3892 case llvm::Triple::Wasm: 3893 GV->setSection("cfstring"); 3894 break; 3895 case llvm::Triple::MachO: 3896 GV->setSection("__DATA,__cfstring"); 3897 break; 3898 } 3899 Entry.second = GV; 3900 3901 return ConstantAddress(GV, Alignment); 3902 } 3903 3904 bool CodeGenModule::getExpressionLocationsEnabled() const { 3905 return !CodeGenOpts.EmitCodeView || CodeGenOpts.DebugColumnInfo; 3906 } 3907 3908 QualType CodeGenModule::getObjCFastEnumerationStateType() { 3909 if (ObjCFastEnumerationStateType.isNull()) { 3910 RecordDecl *D = Context.buildImplicitRecord("__objcFastEnumerationState"); 3911 D->startDefinition(); 3912 3913 QualType FieldTypes[] = { 3914 Context.UnsignedLongTy, 3915 Context.getPointerType(Context.getObjCIdType()), 3916 Context.getPointerType(Context.UnsignedLongTy), 3917 Context.getConstantArrayType(Context.UnsignedLongTy, 3918 llvm::APInt(32, 5), ArrayType::Normal, 0) 3919 }; 3920 3921 for (size_t i = 0; i < 4; ++i) { 3922 FieldDecl *Field = FieldDecl::Create(Context, 3923 D, 3924 SourceLocation(), 3925 SourceLocation(), nullptr, 3926 FieldTypes[i], /*TInfo=*/nullptr, 3927 /*BitWidth=*/nullptr, 3928 /*Mutable=*/false, 3929 ICIS_NoInit); 3930 Field->setAccess(AS_public); 3931 D->addDecl(Field); 3932 } 3933 3934 D->completeDefinition(); 3935 ObjCFastEnumerationStateType = Context.getTagDeclType(D); 3936 } 3937 3938 return ObjCFastEnumerationStateType; 3939 } 3940 3941 llvm::Constant * 3942 CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) { 3943 assert(!E->getType()->isPointerType() && "Strings are always arrays"); 3944 3945 // Don't emit it as the address of the string, emit the string data itself 3946 // as an inline array. 3947 if (E->getCharByteWidth() == 1) { 3948 SmallString<64> Str(E->getString()); 3949 3950 // Resize the string to the right size, which is indicated by its type. 3951 const ConstantArrayType *CAT = Context.getAsConstantArrayType(E->getType()); 3952 Str.resize(CAT->getSize().getZExtValue()); 3953 return llvm::ConstantDataArray::getString(VMContext, Str, false); 3954 } 3955 3956 auto *AType = cast<llvm::ArrayType>(getTypes().ConvertType(E->getType())); 3957 llvm::Type *ElemTy = AType->getElementType(); 3958 unsigned NumElements = AType->getNumElements(); 3959 3960 // Wide strings have either 2-byte or 4-byte elements. 3961 if (ElemTy->getPrimitiveSizeInBits() == 16) { 3962 SmallVector<uint16_t, 32> Elements; 3963 Elements.reserve(NumElements); 3964 3965 for(unsigned i = 0, e = E->getLength(); i != e; ++i) 3966 Elements.push_back(E->getCodeUnit(i)); 3967 Elements.resize(NumElements); 3968 return llvm::ConstantDataArray::get(VMContext, Elements); 3969 } 3970 3971 assert(ElemTy->getPrimitiveSizeInBits() == 32); 3972 SmallVector<uint32_t, 32> Elements; 3973 Elements.reserve(NumElements); 3974 3975 for(unsigned i = 0, e = E->getLength(); i != e; ++i) 3976 Elements.push_back(E->getCodeUnit(i)); 3977 Elements.resize(NumElements); 3978 return llvm::ConstantDataArray::get(VMContext, Elements); 3979 } 3980 3981 static llvm::GlobalVariable * 3982 GenerateStringLiteral(llvm::Constant *C, llvm::GlobalValue::LinkageTypes LT, 3983 CodeGenModule &CGM, StringRef GlobalName, 3984 CharUnits Alignment) { 3985 // OpenCL v1.2 s6.5.3: a string literal is in the constant address space. 3986 unsigned AddrSpace = 0; 3987 if (CGM.getLangOpts().OpenCL) 3988 AddrSpace = CGM.getContext().getTargetAddressSpace(LangAS::opencl_constant); 3989 3990 llvm::Module &M = CGM.getModule(); 3991 // Create a global variable for this string 3992 auto *GV = new llvm::GlobalVariable( 3993 M, C->getType(), !CGM.getLangOpts().WritableStrings, LT, C, GlobalName, 3994 nullptr, llvm::GlobalVariable::NotThreadLocal, AddrSpace); 3995 GV->setAlignment(Alignment.getQuantity()); 3996 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 3997 if (GV->isWeakForLinker()) { 3998 assert(CGM.supportsCOMDAT() && "Only COFF uses weak string literals"); 3999 GV->setComdat(M.getOrInsertComdat(GV->getName())); 4000 } 4001 4002 return GV; 4003 } 4004 4005 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a 4006 /// constant array for the given string literal. 4007 ConstantAddress 4008 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S, 4009 StringRef Name) { 4010 CharUnits Alignment = getContext().getAlignOfGlobalVarInChars(S->getType()); 4011 4012 llvm::Constant *C = GetConstantArrayFromStringLiteral(S); 4013 llvm::GlobalVariable **Entry = nullptr; 4014 if (!LangOpts.WritableStrings) { 4015 Entry = &ConstantStringMap[C]; 4016 if (auto GV = *Entry) { 4017 if (Alignment.getQuantity() > GV->getAlignment()) 4018 GV->setAlignment(Alignment.getQuantity()); 4019 return ConstantAddress(GV, Alignment); 4020 } 4021 } 4022 4023 SmallString<256> MangledNameBuffer; 4024 StringRef GlobalVariableName; 4025 llvm::GlobalValue::LinkageTypes LT; 4026 4027 // Mangle the string literal if the ABI allows for it. However, we cannot 4028 // do this if we are compiling with ASan or -fwritable-strings because they 4029 // rely on strings having normal linkage. 4030 if (!LangOpts.WritableStrings && 4031 !LangOpts.Sanitize.has(SanitizerKind::Address) && 4032 getCXXABI().getMangleContext().shouldMangleStringLiteral(S)) { 4033 llvm::raw_svector_ostream Out(MangledNameBuffer); 4034 getCXXABI().getMangleContext().mangleStringLiteral(S, Out); 4035 4036 LT = llvm::GlobalValue::LinkOnceODRLinkage; 4037 GlobalVariableName = MangledNameBuffer; 4038 } else { 4039 LT = llvm::GlobalValue::PrivateLinkage; 4040 GlobalVariableName = Name; 4041 } 4042 4043 auto GV = GenerateStringLiteral(C, LT, *this, GlobalVariableName, Alignment); 4044 if (Entry) 4045 *Entry = GV; 4046 4047 SanitizerMD->reportGlobalToASan(GV, S->getStrTokenLoc(0), "<string literal>", 4048 QualType()); 4049 return ConstantAddress(GV, Alignment); 4050 } 4051 4052 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant 4053 /// array for the given ObjCEncodeExpr node. 4054 ConstantAddress 4055 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) { 4056 std::string Str; 4057 getContext().getObjCEncodingForType(E->getEncodedType(), Str); 4058 4059 return GetAddrOfConstantCString(Str); 4060 } 4061 4062 /// GetAddrOfConstantCString - Returns a pointer to a character array containing 4063 /// the literal and a terminating '\0' character. 4064 /// The result has pointer to array type. 4065 ConstantAddress CodeGenModule::GetAddrOfConstantCString( 4066 const std::string &Str, const char *GlobalName) { 4067 StringRef StrWithNull(Str.c_str(), Str.size() + 1); 4068 CharUnits Alignment = 4069 getContext().getAlignOfGlobalVarInChars(getContext().CharTy); 4070 4071 llvm::Constant *C = 4072 llvm::ConstantDataArray::getString(getLLVMContext(), StrWithNull, false); 4073 4074 // Don't share any string literals if strings aren't constant. 4075 llvm::GlobalVariable **Entry = nullptr; 4076 if (!LangOpts.WritableStrings) { 4077 Entry = &ConstantStringMap[C]; 4078 if (auto GV = *Entry) { 4079 if (Alignment.getQuantity() > GV->getAlignment()) 4080 GV->setAlignment(Alignment.getQuantity()); 4081 return ConstantAddress(GV, Alignment); 4082 } 4083 } 4084 4085 // Get the default prefix if a name wasn't specified. 4086 if (!GlobalName) 4087 GlobalName = ".str"; 4088 // Create a global variable for this. 4089 auto GV = GenerateStringLiteral(C, llvm::GlobalValue::PrivateLinkage, *this, 4090 GlobalName, Alignment); 4091 if (Entry) 4092 *Entry = GV; 4093 return ConstantAddress(GV, Alignment); 4094 } 4095 4096 ConstantAddress CodeGenModule::GetAddrOfGlobalTemporary( 4097 const MaterializeTemporaryExpr *E, const Expr *Init) { 4098 assert((E->getStorageDuration() == SD_Static || 4099 E->getStorageDuration() == SD_Thread) && "not a global temporary"); 4100 const auto *VD = cast<VarDecl>(E->getExtendingDecl()); 4101 4102 // If we're not materializing a subobject of the temporary, keep the 4103 // cv-qualifiers from the type of the MaterializeTemporaryExpr. 4104 QualType MaterializedType = Init->getType(); 4105 if (Init == E->GetTemporaryExpr()) 4106 MaterializedType = E->getType(); 4107 4108 CharUnits Align = getContext().getTypeAlignInChars(MaterializedType); 4109 4110 if (llvm::Constant *Slot = MaterializedGlobalTemporaryMap[E]) 4111 return ConstantAddress(Slot, Align); 4112 4113 // FIXME: If an externally-visible declaration extends multiple temporaries, 4114 // we need to give each temporary the same name in every translation unit (and 4115 // we also need to make the temporaries externally-visible). 4116 SmallString<256> Name; 4117 llvm::raw_svector_ostream Out(Name); 4118 getCXXABI().getMangleContext().mangleReferenceTemporary( 4119 VD, E->getManglingNumber(), Out); 4120 4121 APValue *Value = nullptr; 4122 if (E->getStorageDuration() == SD_Static) { 4123 // We might have a cached constant initializer for this temporary. Note 4124 // that this might have a different value from the value computed by 4125 // evaluating the initializer if the surrounding constant expression 4126 // modifies the temporary. 4127 Value = getContext().getMaterializedTemporaryValue(E, false); 4128 if (Value && Value->isUninit()) 4129 Value = nullptr; 4130 } 4131 4132 // Try evaluating it now, it might have a constant initializer. 4133 Expr::EvalResult EvalResult; 4134 if (!Value && Init->EvaluateAsRValue(EvalResult, getContext()) && 4135 !EvalResult.hasSideEffects()) 4136 Value = &EvalResult.Val; 4137 4138 LangAS AddrSpace = 4139 VD ? GetGlobalVarAddressSpace(VD) : MaterializedType.getAddressSpace(); 4140 4141 Optional<ConstantEmitter> emitter; 4142 llvm::Constant *InitialValue = nullptr; 4143 bool Constant = false; 4144 llvm::Type *Type; 4145 if (Value) { 4146 // The temporary has a constant initializer, use it. 4147 emitter.emplace(*this); 4148 InitialValue = emitter->emitForInitializer(*Value, AddrSpace, 4149 MaterializedType); 4150 Constant = isTypeConstant(MaterializedType, /*ExcludeCtor*/Value); 4151 Type = InitialValue->getType(); 4152 } else { 4153 // No initializer, the initialization will be provided when we 4154 // initialize the declaration which performed lifetime extension. 4155 Type = getTypes().ConvertTypeForMem(MaterializedType); 4156 } 4157 4158 // Create a global variable for this lifetime-extended temporary. 4159 llvm::GlobalValue::LinkageTypes Linkage = 4160 getLLVMLinkageVarDefinition(VD, Constant); 4161 if (Linkage == llvm::GlobalVariable::ExternalLinkage) { 4162 const VarDecl *InitVD; 4163 if (VD->isStaticDataMember() && VD->getAnyInitializer(InitVD) && 4164 isa<CXXRecordDecl>(InitVD->getLexicalDeclContext())) { 4165 // Temporaries defined inside a class get linkonce_odr linkage because the 4166 // class can be defined in multipe translation units. 4167 Linkage = llvm::GlobalVariable::LinkOnceODRLinkage; 4168 } else { 4169 // There is no need for this temporary to have external linkage if the 4170 // VarDecl has external linkage. 4171 Linkage = llvm::GlobalVariable::InternalLinkage; 4172 } 4173 } 4174 auto TargetAS = getContext().getTargetAddressSpace(AddrSpace); 4175 auto *GV = new llvm::GlobalVariable( 4176 getModule(), Type, Constant, Linkage, InitialValue, Name.c_str(), 4177 /*InsertBefore=*/nullptr, llvm::GlobalVariable::NotThreadLocal, TargetAS); 4178 if (emitter) emitter->finalize(GV); 4179 setGVProperties(GV, VD); 4180 GV->setAlignment(Align.getQuantity()); 4181 if (supportsCOMDAT() && GV->isWeakForLinker()) 4182 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 4183 if (VD->getTLSKind()) 4184 setTLSMode(GV, *VD); 4185 llvm::Constant *CV = GV; 4186 if (AddrSpace != LangAS::Default) 4187 CV = getTargetCodeGenInfo().performAddrSpaceCast( 4188 *this, GV, AddrSpace, LangAS::Default, 4189 Type->getPointerTo( 4190 getContext().getTargetAddressSpace(LangAS::Default))); 4191 MaterializedGlobalTemporaryMap[E] = CV; 4192 return ConstantAddress(CV, Align); 4193 } 4194 4195 /// EmitObjCPropertyImplementations - Emit information for synthesized 4196 /// properties for an implementation. 4197 void CodeGenModule::EmitObjCPropertyImplementations(const 4198 ObjCImplementationDecl *D) { 4199 for (const auto *PID : D->property_impls()) { 4200 // Dynamic is just for type-checking. 4201 if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) { 4202 ObjCPropertyDecl *PD = PID->getPropertyDecl(); 4203 4204 // Determine which methods need to be implemented, some may have 4205 // been overridden. Note that ::isPropertyAccessor is not the method 4206 // we want, that just indicates if the decl came from a 4207 // property. What we want to know is if the method is defined in 4208 // this implementation. 4209 if (!D->getInstanceMethod(PD->getGetterName())) 4210 CodeGenFunction(*this).GenerateObjCGetter( 4211 const_cast<ObjCImplementationDecl *>(D), PID); 4212 if (!PD->isReadOnly() && 4213 !D->getInstanceMethod(PD->getSetterName())) 4214 CodeGenFunction(*this).GenerateObjCSetter( 4215 const_cast<ObjCImplementationDecl *>(D), PID); 4216 } 4217 } 4218 } 4219 4220 static bool needsDestructMethod(ObjCImplementationDecl *impl) { 4221 const ObjCInterfaceDecl *iface = impl->getClassInterface(); 4222 for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin(); 4223 ivar; ivar = ivar->getNextIvar()) 4224 if (ivar->getType().isDestructedType()) 4225 return true; 4226 4227 return false; 4228 } 4229 4230 static bool AllTrivialInitializers(CodeGenModule &CGM, 4231 ObjCImplementationDecl *D) { 4232 CodeGenFunction CGF(CGM); 4233 for (ObjCImplementationDecl::init_iterator B = D->init_begin(), 4234 E = D->init_end(); B != E; ++B) { 4235 CXXCtorInitializer *CtorInitExp = *B; 4236 Expr *Init = CtorInitExp->getInit(); 4237 if (!CGF.isTrivialInitializer(Init)) 4238 return false; 4239 } 4240 return true; 4241 } 4242 4243 /// EmitObjCIvarInitializations - Emit information for ivar initialization 4244 /// for an implementation. 4245 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) { 4246 // We might need a .cxx_destruct even if we don't have any ivar initializers. 4247 if (needsDestructMethod(D)) { 4248 IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct"); 4249 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 4250 ObjCMethodDecl *DTORMethod = 4251 ObjCMethodDecl::Create(getContext(), D->getLocation(), D->getLocation(), 4252 cxxSelector, getContext().VoidTy, nullptr, D, 4253 /*isInstance=*/true, /*isVariadic=*/false, 4254 /*isPropertyAccessor=*/true, /*isImplicitlyDeclared=*/true, 4255 /*isDefined=*/false, ObjCMethodDecl::Required); 4256 D->addInstanceMethod(DTORMethod); 4257 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false); 4258 D->setHasDestructors(true); 4259 } 4260 4261 // If the implementation doesn't have any ivar initializers, we don't need 4262 // a .cxx_construct. 4263 if (D->getNumIvarInitializers() == 0 || 4264 AllTrivialInitializers(*this, D)) 4265 return; 4266 4267 IdentifierInfo *II = &getContext().Idents.get(".cxx_construct"); 4268 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 4269 // The constructor returns 'self'. 4270 ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(getContext(), 4271 D->getLocation(), 4272 D->getLocation(), 4273 cxxSelector, 4274 getContext().getObjCIdType(), 4275 nullptr, D, /*isInstance=*/true, 4276 /*isVariadic=*/false, 4277 /*isPropertyAccessor=*/true, 4278 /*isImplicitlyDeclared=*/true, 4279 /*isDefined=*/false, 4280 ObjCMethodDecl::Required); 4281 D->addInstanceMethod(CTORMethod); 4282 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true); 4283 D->setHasNonZeroConstructors(true); 4284 } 4285 4286 // EmitLinkageSpec - Emit all declarations in a linkage spec. 4287 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) { 4288 if (LSD->getLanguage() != LinkageSpecDecl::lang_c && 4289 LSD->getLanguage() != LinkageSpecDecl::lang_cxx) { 4290 ErrorUnsupported(LSD, "linkage spec"); 4291 return; 4292 } 4293 4294 EmitDeclContext(LSD); 4295 } 4296 4297 void CodeGenModule::EmitDeclContext(const DeclContext *DC) { 4298 for (auto *I : DC->decls()) { 4299 // Unlike other DeclContexts, the contents of an ObjCImplDecl at TU scope 4300 // are themselves considered "top-level", so EmitTopLevelDecl on an 4301 // ObjCImplDecl does not recursively visit them. We need to do that in 4302 // case they're nested inside another construct (LinkageSpecDecl / 4303 // ExportDecl) that does stop them from being considered "top-level". 4304 if (auto *OID = dyn_cast<ObjCImplDecl>(I)) { 4305 for (auto *M : OID->methods()) 4306 EmitTopLevelDecl(M); 4307 } 4308 4309 EmitTopLevelDecl(I); 4310 } 4311 } 4312 4313 /// EmitTopLevelDecl - Emit code for a single top level declaration. 4314 void CodeGenModule::EmitTopLevelDecl(Decl *D) { 4315 // Ignore dependent declarations. 4316 if (D->isTemplated()) 4317 return; 4318 4319 switch (D->getKind()) { 4320 case Decl::CXXConversion: 4321 case Decl::CXXMethod: 4322 case Decl::Function: 4323 EmitGlobal(cast<FunctionDecl>(D)); 4324 // Always provide some coverage mapping 4325 // even for the functions that aren't emitted. 4326 AddDeferredUnusedCoverageMapping(D); 4327 break; 4328 4329 case Decl::CXXDeductionGuide: 4330 // Function-like, but does not result in code emission. 4331 break; 4332 4333 case Decl::Var: 4334 case Decl::Decomposition: 4335 case Decl::VarTemplateSpecialization: 4336 EmitGlobal(cast<VarDecl>(D)); 4337 if (auto *DD = dyn_cast<DecompositionDecl>(D)) 4338 for (auto *B : DD->bindings()) 4339 if (auto *HD = B->getHoldingVar()) 4340 EmitGlobal(HD); 4341 break; 4342 4343 // Indirect fields from global anonymous structs and unions can be 4344 // ignored; only the actual variable requires IR gen support. 4345 case Decl::IndirectField: 4346 break; 4347 4348 // C++ Decls 4349 case Decl::Namespace: 4350 EmitDeclContext(cast<NamespaceDecl>(D)); 4351 break; 4352 case Decl::ClassTemplateSpecialization: { 4353 const auto *Spec = cast<ClassTemplateSpecializationDecl>(D); 4354 if (DebugInfo && 4355 Spec->getSpecializationKind() == TSK_ExplicitInstantiationDefinition && 4356 Spec->hasDefinition()) 4357 DebugInfo->completeTemplateDefinition(*Spec); 4358 } LLVM_FALLTHROUGH; 4359 case Decl::CXXRecord: 4360 if (DebugInfo) { 4361 if (auto *ES = D->getASTContext().getExternalSource()) 4362 if (ES->hasExternalDefinitions(D) == ExternalASTSource::EK_Never) 4363 DebugInfo->completeUnusedClass(cast<CXXRecordDecl>(*D)); 4364 } 4365 // Emit any static data members, they may be definitions. 4366 for (auto *I : cast<CXXRecordDecl>(D)->decls()) 4367 if (isa<VarDecl>(I) || isa<CXXRecordDecl>(I)) 4368 EmitTopLevelDecl(I); 4369 break; 4370 // No code generation needed. 4371 case Decl::UsingShadow: 4372 case Decl::ClassTemplate: 4373 case Decl::VarTemplate: 4374 case Decl::VarTemplatePartialSpecialization: 4375 case Decl::FunctionTemplate: 4376 case Decl::TypeAliasTemplate: 4377 case Decl::Block: 4378 case Decl::Empty: 4379 break; 4380 case Decl::Using: // using X; [C++] 4381 if (CGDebugInfo *DI = getModuleDebugInfo()) 4382 DI->EmitUsingDecl(cast<UsingDecl>(*D)); 4383 return; 4384 case Decl::NamespaceAlias: 4385 if (CGDebugInfo *DI = getModuleDebugInfo()) 4386 DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(*D)); 4387 return; 4388 case Decl::UsingDirective: // using namespace X; [C++] 4389 if (CGDebugInfo *DI = getModuleDebugInfo()) 4390 DI->EmitUsingDirective(cast<UsingDirectiveDecl>(*D)); 4391 return; 4392 case Decl::CXXConstructor: 4393 getCXXABI().EmitCXXConstructors(cast<CXXConstructorDecl>(D)); 4394 break; 4395 case Decl::CXXDestructor: 4396 getCXXABI().EmitCXXDestructors(cast<CXXDestructorDecl>(D)); 4397 break; 4398 4399 case Decl::StaticAssert: 4400 // Nothing to do. 4401 break; 4402 4403 // Objective-C Decls 4404 4405 // Forward declarations, no (immediate) code generation. 4406 case Decl::ObjCInterface: 4407 case Decl::ObjCCategory: 4408 break; 4409 4410 case Decl::ObjCProtocol: { 4411 auto *Proto = cast<ObjCProtocolDecl>(D); 4412 if (Proto->isThisDeclarationADefinition()) 4413 ObjCRuntime->GenerateProtocol(Proto); 4414 break; 4415 } 4416 4417 case Decl::ObjCCategoryImpl: 4418 // Categories have properties but don't support synthesize so we 4419 // can ignore them here. 4420 ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D)); 4421 break; 4422 4423 case Decl::ObjCImplementation: { 4424 auto *OMD = cast<ObjCImplementationDecl>(D); 4425 EmitObjCPropertyImplementations(OMD); 4426 EmitObjCIvarInitializations(OMD); 4427 ObjCRuntime->GenerateClass(OMD); 4428 // Emit global variable debug information. 4429 if (CGDebugInfo *DI = getModuleDebugInfo()) 4430 if (getCodeGenOpts().getDebugInfo() >= codegenoptions::LimitedDebugInfo) 4431 DI->getOrCreateInterfaceType(getContext().getObjCInterfaceType( 4432 OMD->getClassInterface()), OMD->getLocation()); 4433 break; 4434 } 4435 case Decl::ObjCMethod: { 4436 auto *OMD = cast<ObjCMethodDecl>(D); 4437 // If this is not a prototype, emit the body. 4438 if (OMD->getBody()) 4439 CodeGenFunction(*this).GenerateObjCMethod(OMD); 4440 break; 4441 } 4442 case Decl::ObjCCompatibleAlias: 4443 ObjCRuntime->RegisterAlias(cast<ObjCCompatibleAliasDecl>(D)); 4444 break; 4445 4446 case Decl::PragmaComment: { 4447 const auto *PCD = cast<PragmaCommentDecl>(D); 4448 switch (PCD->getCommentKind()) { 4449 case PCK_Unknown: 4450 llvm_unreachable("unexpected pragma comment kind"); 4451 case PCK_Linker: 4452 AppendLinkerOptions(PCD->getArg()); 4453 break; 4454 case PCK_Lib: 4455 if (getTarget().getTriple().isOSBinFormatELF() && 4456 !getTarget().getTriple().isPS4()) 4457 AddELFLibDirective(PCD->getArg()); 4458 else 4459 AddDependentLib(PCD->getArg()); 4460 break; 4461 case PCK_Compiler: 4462 case PCK_ExeStr: 4463 case PCK_User: 4464 break; // We ignore all of these. 4465 } 4466 break; 4467 } 4468 4469 case Decl::PragmaDetectMismatch: { 4470 const auto *PDMD = cast<PragmaDetectMismatchDecl>(D); 4471 AddDetectMismatch(PDMD->getName(), PDMD->getValue()); 4472 break; 4473 } 4474 4475 case Decl::LinkageSpec: 4476 EmitLinkageSpec(cast<LinkageSpecDecl>(D)); 4477 break; 4478 4479 case Decl::FileScopeAsm: { 4480 // File-scope asm is ignored during device-side CUDA compilation. 4481 if (LangOpts.CUDA && LangOpts.CUDAIsDevice) 4482 break; 4483 // File-scope asm is ignored during device-side OpenMP compilation. 4484 if (LangOpts.OpenMPIsDevice) 4485 break; 4486 auto *AD = cast<FileScopeAsmDecl>(D); 4487 getModule().appendModuleInlineAsm(AD->getAsmString()->getString()); 4488 break; 4489 } 4490 4491 case Decl::Import: { 4492 auto *Import = cast<ImportDecl>(D); 4493 4494 // If we've already imported this module, we're done. 4495 if (!ImportedModules.insert(Import->getImportedModule())) 4496 break; 4497 4498 // Emit debug information for direct imports. 4499 if (!Import->getImportedOwningModule()) { 4500 if (CGDebugInfo *DI = getModuleDebugInfo()) 4501 DI->EmitImportDecl(*Import); 4502 } 4503 4504 // Find all of the submodules and emit the module initializers. 4505 llvm::SmallPtrSet<clang::Module *, 16> Visited; 4506 SmallVector<clang::Module *, 16> Stack; 4507 Visited.insert(Import->getImportedModule()); 4508 Stack.push_back(Import->getImportedModule()); 4509 4510 while (!Stack.empty()) { 4511 clang::Module *Mod = Stack.pop_back_val(); 4512 if (!EmittedModuleInitializers.insert(Mod).second) 4513 continue; 4514 4515 for (auto *D : Context.getModuleInitializers(Mod)) 4516 EmitTopLevelDecl(D); 4517 4518 // Visit the submodules of this module. 4519 for (clang::Module::submodule_iterator Sub = Mod->submodule_begin(), 4520 SubEnd = Mod->submodule_end(); 4521 Sub != SubEnd; ++Sub) { 4522 // Skip explicit children; they need to be explicitly imported to emit 4523 // the initializers. 4524 if ((*Sub)->IsExplicit) 4525 continue; 4526 4527 if (Visited.insert(*Sub).second) 4528 Stack.push_back(*Sub); 4529 } 4530 } 4531 break; 4532 } 4533 4534 case Decl::Export: 4535 EmitDeclContext(cast<ExportDecl>(D)); 4536 break; 4537 4538 case Decl::OMPThreadPrivate: 4539 EmitOMPThreadPrivateDecl(cast<OMPThreadPrivateDecl>(D)); 4540 break; 4541 4542 case Decl::OMPDeclareReduction: 4543 EmitOMPDeclareReduction(cast<OMPDeclareReductionDecl>(D)); 4544 break; 4545 4546 default: 4547 // Make sure we handled everything we should, every other kind is a 4548 // non-top-level decl. FIXME: Would be nice to have an isTopLevelDeclKind 4549 // function. Need to recode Decl::Kind to do that easily. 4550 assert(isa<TypeDecl>(D) && "Unsupported decl kind"); 4551 break; 4552 } 4553 } 4554 4555 void CodeGenModule::AddDeferredUnusedCoverageMapping(Decl *D) { 4556 // Do we need to generate coverage mapping? 4557 if (!CodeGenOpts.CoverageMapping) 4558 return; 4559 switch (D->getKind()) { 4560 case Decl::CXXConversion: 4561 case Decl::CXXMethod: 4562 case Decl::Function: 4563 case Decl::ObjCMethod: 4564 case Decl::CXXConstructor: 4565 case Decl::CXXDestructor: { 4566 if (!cast<FunctionDecl>(D)->doesThisDeclarationHaveABody()) 4567 return; 4568 SourceManager &SM = getContext().getSourceManager(); 4569 if (LimitedCoverage && SM.getMainFileID() != SM.getFileID(D->getLocStart())) 4570 return; 4571 auto I = DeferredEmptyCoverageMappingDecls.find(D); 4572 if (I == DeferredEmptyCoverageMappingDecls.end()) 4573 DeferredEmptyCoverageMappingDecls[D] = true; 4574 break; 4575 } 4576 default: 4577 break; 4578 }; 4579 } 4580 4581 void CodeGenModule::ClearUnusedCoverageMapping(const Decl *D) { 4582 // Do we need to generate coverage mapping? 4583 if (!CodeGenOpts.CoverageMapping) 4584 return; 4585 if (const auto *Fn = dyn_cast<FunctionDecl>(D)) { 4586 if (Fn->isTemplateInstantiation()) 4587 ClearUnusedCoverageMapping(Fn->getTemplateInstantiationPattern()); 4588 } 4589 auto I = DeferredEmptyCoverageMappingDecls.find(D); 4590 if (I == DeferredEmptyCoverageMappingDecls.end()) 4591 DeferredEmptyCoverageMappingDecls[D] = false; 4592 else 4593 I->second = false; 4594 } 4595 4596 void CodeGenModule::EmitDeferredUnusedCoverageMappings() { 4597 // We call takeVector() here to avoid use-after-free. 4598 // FIXME: DeferredEmptyCoverageMappingDecls is getting mutated because 4599 // we deserialize function bodies to emit coverage info for them, and that 4600 // deserializes more declarations. How should we handle that case? 4601 for (const auto &Entry : DeferredEmptyCoverageMappingDecls.takeVector()) { 4602 if (!Entry.second) 4603 continue; 4604 const Decl *D = Entry.first; 4605 switch (D->getKind()) { 4606 case Decl::CXXConversion: 4607 case Decl::CXXMethod: 4608 case Decl::Function: 4609 case Decl::ObjCMethod: { 4610 CodeGenPGO PGO(*this); 4611 GlobalDecl GD(cast<FunctionDecl>(D)); 4612 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 4613 getFunctionLinkage(GD)); 4614 break; 4615 } 4616 case Decl::CXXConstructor: { 4617 CodeGenPGO PGO(*this); 4618 GlobalDecl GD(cast<CXXConstructorDecl>(D), Ctor_Base); 4619 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 4620 getFunctionLinkage(GD)); 4621 break; 4622 } 4623 case Decl::CXXDestructor: { 4624 CodeGenPGO PGO(*this); 4625 GlobalDecl GD(cast<CXXDestructorDecl>(D), Dtor_Base); 4626 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 4627 getFunctionLinkage(GD)); 4628 break; 4629 } 4630 default: 4631 break; 4632 }; 4633 } 4634 } 4635 4636 /// Turns the given pointer into a constant. 4637 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context, 4638 const void *Ptr) { 4639 uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr); 4640 llvm::Type *i64 = llvm::Type::getInt64Ty(Context); 4641 return llvm::ConstantInt::get(i64, PtrInt); 4642 } 4643 4644 static void EmitGlobalDeclMetadata(CodeGenModule &CGM, 4645 llvm::NamedMDNode *&GlobalMetadata, 4646 GlobalDecl D, 4647 llvm::GlobalValue *Addr) { 4648 if (!GlobalMetadata) 4649 GlobalMetadata = 4650 CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs"); 4651 4652 // TODO: should we report variant information for ctors/dtors? 4653 llvm::Metadata *Ops[] = {llvm::ConstantAsMetadata::get(Addr), 4654 llvm::ConstantAsMetadata::get(GetPointerConstant( 4655 CGM.getLLVMContext(), D.getDecl()))}; 4656 GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops)); 4657 } 4658 4659 /// For each function which is declared within an extern "C" region and marked 4660 /// as 'used', but has internal linkage, create an alias from the unmangled 4661 /// name to the mangled name if possible. People expect to be able to refer 4662 /// to such functions with an unmangled name from inline assembly within the 4663 /// same translation unit. 4664 void CodeGenModule::EmitStaticExternCAliases() { 4665 // Don't do anything if we're generating CUDA device code -- the NVPTX 4666 // assembly target doesn't support aliases. 4667 if (Context.getTargetInfo().getTriple().isNVPTX()) 4668 return; 4669 for (auto &I : StaticExternCValues) { 4670 IdentifierInfo *Name = I.first; 4671 llvm::GlobalValue *Val = I.second; 4672 if (Val && !getModule().getNamedValue(Name->getName())) 4673 addUsedGlobal(llvm::GlobalAlias::create(Name->getName(), Val)); 4674 } 4675 } 4676 4677 bool CodeGenModule::lookupRepresentativeDecl(StringRef MangledName, 4678 GlobalDecl &Result) const { 4679 auto Res = Manglings.find(MangledName); 4680 if (Res == Manglings.end()) 4681 return false; 4682 Result = Res->getValue(); 4683 return true; 4684 } 4685 4686 /// Emits metadata nodes associating all the global values in the 4687 /// current module with the Decls they came from. This is useful for 4688 /// projects using IR gen as a subroutine. 4689 /// 4690 /// Since there's currently no way to associate an MDNode directly 4691 /// with an llvm::GlobalValue, we create a global named metadata 4692 /// with the name 'clang.global.decl.ptrs'. 4693 void CodeGenModule::EmitDeclMetadata() { 4694 llvm::NamedMDNode *GlobalMetadata = nullptr; 4695 4696 for (auto &I : MangledDeclNames) { 4697 llvm::GlobalValue *Addr = getModule().getNamedValue(I.second); 4698 // Some mangled names don't necessarily have an associated GlobalValue 4699 // in this module, e.g. if we mangled it for DebugInfo. 4700 if (Addr) 4701 EmitGlobalDeclMetadata(*this, GlobalMetadata, I.first, Addr); 4702 } 4703 } 4704 4705 /// Emits metadata nodes for all the local variables in the current 4706 /// function. 4707 void CodeGenFunction::EmitDeclMetadata() { 4708 if (LocalDeclMap.empty()) return; 4709 4710 llvm::LLVMContext &Context = getLLVMContext(); 4711 4712 // Find the unique metadata ID for this name. 4713 unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr"); 4714 4715 llvm::NamedMDNode *GlobalMetadata = nullptr; 4716 4717 for (auto &I : LocalDeclMap) { 4718 const Decl *D = I.first; 4719 llvm::Value *Addr = I.second.getPointer(); 4720 if (auto *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) { 4721 llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D); 4722 Alloca->setMetadata( 4723 DeclPtrKind, llvm::MDNode::get( 4724 Context, llvm::ValueAsMetadata::getConstant(DAddr))); 4725 } else if (auto *GV = dyn_cast<llvm::GlobalValue>(Addr)) { 4726 GlobalDecl GD = GlobalDecl(cast<VarDecl>(D)); 4727 EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV); 4728 } 4729 } 4730 } 4731 4732 void CodeGenModule::EmitVersionIdentMetadata() { 4733 llvm::NamedMDNode *IdentMetadata = 4734 TheModule.getOrInsertNamedMetadata("llvm.ident"); 4735 std::string Version = getClangFullVersion(); 4736 llvm::LLVMContext &Ctx = TheModule.getContext(); 4737 4738 llvm::Metadata *IdentNode[] = {llvm::MDString::get(Ctx, Version)}; 4739 IdentMetadata->addOperand(llvm::MDNode::get(Ctx, IdentNode)); 4740 } 4741 4742 void CodeGenModule::EmitTargetMetadata() { 4743 // Warning, new MangledDeclNames may be appended within this loop. 4744 // We rely on MapVector insertions adding new elements to the end 4745 // of the container. 4746 // FIXME: Move this loop into the one target that needs it, and only 4747 // loop over those declarations for which we couldn't emit the target 4748 // metadata when we emitted the declaration. 4749 for (unsigned I = 0; I != MangledDeclNames.size(); ++I) { 4750 auto Val = *(MangledDeclNames.begin() + I); 4751 const Decl *D = Val.first.getDecl()->getMostRecentDecl(); 4752 llvm::GlobalValue *GV = GetGlobalValue(Val.second); 4753 getTargetCodeGenInfo().emitTargetMD(D, GV, *this); 4754 } 4755 } 4756 4757 void CodeGenModule::EmitCoverageFile() { 4758 if (getCodeGenOpts().CoverageDataFile.empty() && 4759 getCodeGenOpts().CoverageNotesFile.empty()) 4760 return; 4761 4762 llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu"); 4763 if (!CUNode) 4764 return; 4765 4766 llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov"); 4767 llvm::LLVMContext &Ctx = TheModule.getContext(); 4768 auto *CoverageDataFile = 4769 llvm::MDString::get(Ctx, getCodeGenOpts().CoverageDataFile); 4770 auto *CoverageNotesFile = 4771 llvm::MDString::get(Ctx, getCodeGenOpts().CoverageNotesFile); 4772 for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) { 4773 llvm::MDNode *CU = CUNode->getOperand(i); 4774 llvm::Metadata *Elts[] = {CoverageNotesFile, CoverageDataFile, CU}; 4775 GCov->addOperand(llvm::MDNode::get(Ctx, Elts)); 4776 } 4777 } 4778 4779 llvm::Constant *CodeGenModule::EmitUuidofInitializer(StringRef Uuid) { 4780 // Sema has checked that all uuid strings are of the form 4781 // "12345678-1234-1234-1234-1234567890ab". 4782 assert(Uuid.size() == 36); 4783 for (unsigned i = 0; i < 36; ++i) { 4784 if (i == 8 || i == 13 || i == 18 || i == 23) assert(Uuid[i] == '-'); 4785 else assert(isHexDigit(Uuid[i])); 4786 } 4787 4788 // The starts of all bytes of Field3 in Uuid. Field 3 is "1234-1234567890ab". 4789 const unsigned Field3ValueOffsets[8] = { 19, 21, 24, 26, 28, 30, 32, 34 }; 4790 4791 llvm::Constant *Field3[8]; 4792 for (unsigned Idx = 0; Idx < 8; ++Idx) 4793 Field3[Idx] = llvm::ConstantInt::get( 4794 Int8Ty, Uuid.substr(Field3ValueOffsets[Idx], 2), 16); 4795 4796 llvm::Constant *Fields[4] = { 4797 llvm::ConstantInt::get(Int32Ty, Uuid.substr(0, 8), 16), 4798 llvm::ConstantInt::get(Int16Ty, Uuid.substr(9, 4), 16), 4799 llvm::ConstantInt::get(Int16Ty, Uuid.substr(14, 4), 16), 4800 llvm::ConstantArray::get(llvm::ArrayType::get(Int8Ty, 8), Field3) 4801 }; 4802 4803 return llvm::ConstantStruct::getAnon(Fields); 4804 } 4805 4806 llvm::Constant *CodeGenModule::GetAddrOfRTTIDescriptor(QualType Ty, 4807 bool ForEH) { 4808 // Return a bogus pointer if RTTI is disabled, unless it's for EH. 4809 // FIXME: should we even be calling this method if RTTI is disabled 4810 // and it's not for EH? 4811 if (!ForEH && !getLangOpts().RTTI) 4812 return llvm::Constant::getNullValue(Int8PtrTy); 4813 4814 if (ForEH && Ty->isObjCObjectPointerType() && 4815 LangOpts.ObjCRuntime.isGNUFamily()) 4816 return ObjCRuntime->GetEHType(Ty); 4817 4818 return getCXXABI().getAddrOfRTTIDescriptor(Ty); 4819 } 4820 4821 void CodeGenModule::EmitOMPThreadPrivateDecl(const OMPThreadPrivateDecl *D) { 4822 // Do not emit threadprivates in simd-only mode. 4823 if (LangOpts.OpenMP && LangOpts.OpenMPSimd) 4824 return; 4825 for (auto RefExpr : D->varlists()) { 4826 auto *VD = cast<VarDecl>(cast<DeclRefExpr>(RefExpr)->getDecl()); 4827 bool PerformInit = 4828 VD->getAnyInitializer() && 4829 !VD->getAnyInitializer()->isConstantInitializer(getContext(), 4830 /*ForRef=*/false); 4831 4832 Address Addr(GetAddrOfGlobalVar(VD), getContext().getDeclAlign(VD)); 4833 if (auto InitFunction = getOpenMPRuntime().emitThreadPrivateVarDefinition( 4834 VD, Addr, RefExpr->getLocStart(), PerformInit)) 4835 CXXGlobalInits.push_back(InitFunction); 4836 } 4837 } 4838 4839 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierForType(QualType T) { 4840 llvm::Metadata *&InternalId = MetadataIdMap[T.getCanonicalType()]; 4841 if (InternalId) 4842 return InternalId; 4843 4844 if (isExternallyVisible(T->getLinkage())) { 4845 std::string OutName; 4846 llvm::raw_string_ostream Out(OutName); 4847 getCXXABI().getMangleContext().mangleTypeName(T, Out); 4848 4849 InternalId = llvm::MDString::get(getLLVMContext(), Out.str()); 4850 } else { 4851 InternalId = llvm::MDNode::getDistinct(getLLVMContext(), 4852 llvm::ArrayRef<llvm::Metadata *>()); 4853 } 4854 4855 return InternalId; 4856 } 4857 4858 // Generalize pointer types to a void pointer with the qualifiers of the 4859 // originally pointed-to type, e.g. 'const char *' and 'char * const *' 4860 // generalize to 'const void *' while 'char *' and 'const char **' generalize to 4861 // 'void *'. 4862 static QualType GeneralizeType(ASTContext &Ctx, QualType Ty) { 4863 if (!Ty->isPointerType()) 4864 return Ty; 4865 4866 return Ctx.getPointerType( 4867 QualType(Ctx.VoidTy).withCVRQualifiers( 4868 Ty->getPointeeType().getCVRQualifiers())); 4869 } 4870 4871 // Apply type generalization to a FunctionType's return and argument types 4872 static QualType GeneralizeFunctionType(ASTContext &Ctx, QualType Ty) { 4873 if (auto *FnType = Ty->getAs<FunctionProtoType>()) { 4874 SmallVector<QualType, 8> GeneralizedParams; 4875 for (auto &Param : FnType->param_types()) 4876 GeneralizedParams.push_back(GeneralizeType(Ctx, Param)); 4877 4878 return Ctx.getFunctionType( 4879 GeneralizeType(Ctx, FnType->getReturnType()), 4880 GeneralizedParams, FnType->getExtProtoInfo()); 4881 } 4882 4883 if (auto *FnType = Ty->getAs<FunctionNoProtoType>()) 4884 return Ctx.getFunctionNoProtoType( 4885 GeneralizeType(Ctx, FnType->getReturnType())); 4886 4887 llvm_unreachable("Encountered unknown FunctionType"); 4888 } 4889 4890 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierGeneralized(QualType T) { 4891 T = GeneralizeFunctionType(getContext(), T); 4892 4893 llvm::Metadata *&InternalId = GeneralizedMetadataIdMap[T.getCanonicalType()]; 4894 if (InternalId) 4895 return InternalId; 4896 4897 if (isExternallyVisible(T->getLinkage())) { 4898 std::string OutName; 4899 llvm::raw_string_ostream Out(OutName); 4900 getCXXABI().getMangleContext().mangleTypeName(T, Out); 4901 Out << ".generalized"; 4902 4903 InternalId = llvm::MDString::get(getLLVMContext(), Out.str()); 4904 } else { 4905 InternalId = llvm::MDNode::getDistinct(getLLVMContext(), 4906 llvm::ArrayRef<llvm::Metadata *>()); 4907 } 4908 4909 return InternalId; 4910 } 4911 4912 /// Returns whether this module needs the "all-vtables" type identifier. 4913 bool CodeGenModule::NeedAllVtablesTypeId() const { 4914 // Returns true if at least one of vtable-based CFI checkers is enabled and 4915 // is not in the trapping mode. 4916 return ((LangOpts.Sanitize.has(SanitizerKind::CFIVCall) && 4917 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIVCall)) || 4918 (LangOpts.Sanitize.has(SanitizerKind::CFINVCall) && 4919 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFINVCall)) || 4920 (LangOpts.Sanitize.has(SanitizerKind::CFIDerivedCast) && 4921 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIDerivedCast)) || 4922 (LangOpts.Sanitize.has(SanitizerKind::CFIUnrelatedCast) && 4923 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIUnrelatedCast))); 4924 } 4925 4926 void CodeGenModule::AddVTableTypeMetadata(llvm::GlobalVariable *VTable, 4927 CharUnits Offset, 4928 const CXXRecordDecl *RD) { 4929 llvm::Metadata *MD = 4930 CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0)); 4931 VTable->addTypeMetadata(Offset.getQuantity(), MD); 4932 4933 if (CodeGenOpts.SanitizeCfiCrossDso) 4934 if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD)) 4935 VTable->addTypeMetadata(Offset.getQuantity(), 4936 llvm::ConstantAsMetadata::get(CrossDsoTypeId)); 4937 4938 if (NeedAllVtablesTypeId()) { 4939 llvm::Metadata *MD = llvm::MDString::get(getLLVMContext(), "all-vtables"); 4940 VTable->addTypeMetadata(Offset.getQuantity(), MD); 4941 } 4942 } 4943 4944 // Fills in the supplied string map with the set of target features for the 4945 // passed in function. 4946 void CodeGenModule::getFunctionFeatureMap(llvm::StringMap<bool> &FeatureMap, 4947 const FunctionDecl *FD) { 4948 StringRef TargetCPU = Target.getTargetOpts().CPU; 4949 if (const auto *TD = FD->getAttr<TargetAttr>()) { 4950 // If we have a TargetAttr build up the feature map based on that. 4951 TargetAttr::ParsedTargetAttr ParsedAttr = TD->parse(); 4952 4953 ParsedAttr.Features.erase( 4954 llvm::remove_if(ParsedAttr.Features, 4955 [&](const std::string &Feat) { 4956 return !Target.isValidFeatureName( 4957 StringRef{Feat}.substr(1)); 4958 }), 4959 ParsedAttr.Features.end()); 4960 4961 // Make a copy of the features as passed on the command line into the 4962 // beginning of the additional features from the function to override. 4963 ParsedAttr.Features.insert(ParsedAttr.Features.begin(), 4964 Target.getTargetOpts().FeaturesAsWritten.begin(), 4965 Target.getTargetOpts().FeaturesAsWritten.end()); 4966 4967 if (ParsedAttr.Architecture != "" && 4968 Target.isValidCPUName(ParsedAttr.Architecture)) 4969 TargetCPU = ParsedAttr.Architecture; 4970 4971 // Now populate the feature map, first with the TargetCPU which is either 4972 // the default or a new one from the target attribute string. Then we'll use 4973 // the passed in features (FeaturesAsWritten) along with the new ones from 4974 // the attribute. 4975 Target.initFeatureMap(FeatureMap, getDiags(), TargetCPU, 4976 ParsedAttr.Features); 4977 } else { 4978 Target.initFeatureMap(FeatureMap, getDiags(), TargetCPU, 4979 Target.getTargetOpts().Features); 4980 } 4981 } 4982 4983 llvm::SanitizerStatReport &CodeGenModule::getSanStats() { 4984 if (!SanStats) 4985 SanStats = llvm::make_unique<llvm::SanitizerStatReport>(&getModule()); 4986 4987 return *SanStats; 4988 } 4989 llvm::Value * 4990 CodeGenModule::createOpenCLIntToSamplerConversion(const Expr *E, 4991 CodeGenFunction &CGF) { 4992 llvm::Constant *C = ConstantEmitter(CGF).emitAbstract(E, E->getType()); 4993 auto SamplerT = getOpenCLRuntime().getSamplerType(E->getType().getTypePtr()); 4994 auto FTy = llvm::FunctionType::get(SamplerT, {C->getType()}, false); 4995 return CGF.Builder.CreateCall(CreateRuntimeFunction(FTy, 4996 "__translate_sampler_initializer"), 4997 {C}); 4998 } 4999