1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This coordinates the per-module state used while generating code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenModule.h" 15 #include "CGBlocks.h" 16 #include "CGCUDARuntime.h" 17 #include "CGCXXABI.h" 18 #include "CGCall.h" 19 #include "CGDebugInfo.h" 20 #include "CGObjCRuntime.h" 21 #include "CGOpenCLRuntime.h" 22 #include "CGOpenMPRuntime.h" 23 #include "CGOpenMPRuntimeNVPTX.h" 24 #include "CodeGenFunction.h" 25 #include "CodeGenPGO.h" 26 #include "ConstantEmitter.h" 27 #include "CoverageMappingGen.h" 28 #include "TargetInfo.h" 29 #include "clang/AST/ASTContext.h" 30 #include "clang/AST/CharUnits.h" 31 #include "clang/AST/DeclCXX.h" 32 #include "clang/AST/DeclObjC.h" 33 #include "clang/AST/DeclTemplate.h" 34 #include "clang/AST/Mangle.h" 35 #include "clang/AST/RecordLayout.h" 36 #include "clang/AST/RecursiveASTVisitor.h" 37 #include "clang/Basic/Builtins.h" 38 #include "clang/Basic/CharInfo.h" 39 #include "clang/Basic/Diagnostic.h" 40 #include "clang/Basic/Module.h" 41 #include "clang/Basic/SourceManager.h" 42 #include "clang/Basic/TargetInfo.h" 43 #include "clang/Basic/Version.h" 44 #include "clang/CodeGen/ConstantInitBuilder.h" 45 #include "clang/Frontend/CodeGenOptions.h" 46 #include "clang/Sema/SemaDiagnostic.h" 47 #include "llvm/ADT/StringSwitch.h" 48 #include "llvm/ADT/Triple.h" 49 #include "llvm/Analysis/TargetLibraryInfo.h" 50 #include "llvm/IR/CallSite.h" 51 #include "llvm/IR/CallingConv.h" 52 #include "llvm/IR/DataLayout.h" 53 #include "llvm/IR/Intrinsics.h" 54 #include "llvm/IR/LLVMContext.h" 55 #include "llvm/IR/Module.h" 56 #include "llvm/ProfileData/InstrProfReader.h" 57 #include "llvm/Support/CodeGen.h" 58 #include "llvm/Support/ConvertUTF.h" 59 #include "llvm/Support/ErrorHandling.h" 60 #include "llvm/Support/MD5.h" 61 62 using namespace clang; 63 using namespace CodeGen; 64 65 static llvm::cl::opt<bool> LimitedCoverage( 66 "limited-coverage-experimental", llvm::cl::ZeroOrMore, llvm::cl::Hidden, 67 llvm::cl::desc("Emit limited coverage mapping information (experimental)"), 68 llvm::cl::init(false)); 69 70 static const char AnnotationSection[] = "llvm.metadata"; 71 72 static CGCXXABI *createCXXABI(CodeGenModule &CGM) { 73 switch (CGM.getTarget().getCXXABI().getKind()) { 74 case TargetCXXABI::GenericAArch64: 75 case TargetCXXABI::GenericARM: 76 case TargetCXXABI::iOS: 77 case TargetCXXABI::iOS64: 78 case TargetCXXABI::WatchOS: 79 case TargetCXXABI::GenericMIPS: 80 case TargetCXXABI::GenericItanium: 81 case TargetCXXABI::WebAssembly: 82 return CreateItaniumCXXABI(CGM); 83 case TargetCXXABI::Microsoft: 84 return CreateMicrosoftCXXABI(CGM); 85 } 86 87 llvm_unreachable("invalid C++ ABI kind"); 88 } 89 90 CodeGenModule::CodeGenModule(ASTContext &C, const HeaderSearchOptions &HSO, 91 const PreprocessorOptions &PPO, 92 const CodeGenOptions &CGO, llvm::Module &M, 93 DiagnosticsEngine &diags, 94 CoverageSourceInfo *CoverageInfo) 95 : Context(C), LangOpts(C.getLangOpts()), HeaderSearchOpts(HSO), 96 PreprocessorOpts(PPO), CodeGenOpts(CGO), TheModule(M), Diags(diags), 97 Target(C.getTargetInfo()), ABI(createCXXABI(*this)), 98 VMContext(M.getContext()), Types(*this), VTables(*this), 99 SanitizerMD(new SanitizerMetadata(*this)) { 100 101 // Initialize the type cache. 102 llvm::LLVMContext &LLVMContext = M.getContext(); 103 VoidTy = llvm::Type::getVoidTy(LLVMContext); 104 Int8Ty = llvm::Type::getInt8Ty(LLVMContext); 105 Int16Ty = llvm::Type::getInt16Ty(LLVMContext); 106 Int32Ty = llvm::Type::getInt32Ty(LLVMContext); 107 Int64Ty = llvm::Type::getInt64Ty(LLVMContext); 108 HalfTy = llvm::Type::getHalfTy(LLVMContext); 109 FloatTy = llvm::Type::getFloatTy(LLVMContext); 110 DoubleTy = llvm::Type::getDoubleTy(LLVMContext); 111 PointerWidthInBits = C.getTargetInfo().getPointerWidth(0); 112 PointerAlignInBytes = 113 C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(0)).getQuantity(); 114 SizeSizeInBytes = 115 C.toCharUnitsFromBits(C.getTargetInfo().getMaxPointerWidth()).getQuantity(); 116 IntAlignInBytes = 117 C.toCharUnitsFromBits(C.getTargetInfo().getIntAlign()).getQuantity(); 118 IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth()); 119 IntPtrTy = llvm::IntegerType::get(LLVMContext, 120 C.getTargetInfo().getMaxPointerWidth()); 121 Int8PtrTy = Int8Ty->getPointerTo(0); 122 Int8PtrPtrTy = Int8PtrTy->getPointerTo(0); 123 AllocaInt8PtrTy = Int8Ty->getPointerTo( 124 M.getDataLayout().getAllocaAddrSpace()); 125 ASTAllocaAddressSpace = getTargetCodeGenInfo().getASTAllocaAddressSpace(); 126 127 RuntimeCC = getTargetCodeGenInfo().getABIInfo().getRuntimeCC(); 128 129 if (LangOpts.ObjC) 130 createObjCRuntime(); 131 if (LangOpts.OpenCL) 132 createOpenCLRuntime(); 133 if (LangOpts.OpenMP) 134 createOpenMPRuntime(); 135 if (LangOpts.CUDA) 136 createCUDARuntime(); 137 138 // Enable TBAA unless it's suppressed. ThreadSanitizer needs TBAA even at O0. 139 if (LangOpts.Sanitize.has(SanitizerKind::Thread) || 140 (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0)) 141 TBAA.reset(new CodeGenTBAA(Context, TheModule, CodeGenOpts, getLangOpts(), 142 getCXXABI().getMangleContext())); 143 144 // If debug info or coverage generation is enabled, create the CGDebugInfo 145 // object. 146 if (CodeGenOpts.getDebugInfo() != codegenoptions::NoDebugInfo || 147 CodeGenOpts.EmitGcovArcs || CodeGenOpts.EmitGcovNotes) 148 DebugInfo.reset(new CGDebugInfo(*this)); 149 150 Block.GlobalUniqueCount = 0; 151 152 if (C.getLangOpts().ObjC) 153 ObjCData.reset(new ObjCEntrypoints()); 154 155 if (CodeGenOpts.hasProfileClangUse()) { 156 auto ReaderOrErr = llvm::IndexedInstrProfReader::create( 157 CodeGenOpts.ProfileInstrumentUsePath, CodeGenOpts.ProfileRemappingFile); 158 if (auto E = ReaderOrErr.takeError()) { 159 unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error, 160 "Could not read profile %0: %1"); 161 llvm::handleAllErrors(std::move(E), [&](const llvm::ErrorInfoBase &EI) { 162 getDiags().Report(DiagID) << CodeGenOpts.ProfileInstrumentUsePath 163 << EI.message(); 164 }); 165 } else 166 PGOReader = std::move(ReaderOrErr.get()); 167 } 168 169 // If coverage mapping generation is enabled, create the 170 // CoverageMappingModuleGen object. 171 if (CodeGenOpts.CoverageMapping) 172 CoverageMapping.reset(new CoverageMappingModuleGen(*this, *CoverageInfo)); 173 } 174 175 CodeGenModule::~CodeGenModule() {} 176 177 void CodeGenModule::createObjCRuntime() { 178 // This is just isGNUFamily(), but we want to force implementors of 179 // new ABIs to decide how best to do this. 180 switch (LangOpts.ObjCRuntime.getKind()) { 181 case ObjCRuntime::GNUstep: 182 case ObjCRuntime::GCC: 183 case ObjCRuntime::ObjFW: 184 ObjCRuntime.reset(CreateGNUObjCRuntime(*this)); 185 return; 186 187 case ObjCRuntime::FragileMacOSX: 188 case ObjCRuntime::MacOSX: 189 case ObjCRuntime::iOS: 190 case ObjCRuntime::WatchOS: 191 ObjCRuntime.reset(CreateMacObjCRuntime(*this)); 192 return; 193 } 194 llvm_unreachable("bad runtime kind"); 195 } 196 197 void CodeGenModule::createOpenCLRuntime() { 198 OpenCLRuntime.reset(new CGOpenCLRuntime(*this)); 199 } 200 201 void CodeGenModule::createOpenMPRuntime() { 202 // Select a specialized code generation class based on the target, if any. 203 // If it does not exist use the default implementation. 204 switch (getTriple().getArch()) { 205 case llvm::Triple::nvptx: 206 case llvm::Triple::nvptx64: 207 assert(getLangOpts().OpenMPIsDevice && 208 "OpenMP NVPTX is only prepared to deal with device code."); 209 OpenMPRuntime.reset(new CGOpenMPRuntimeNVPTX(*this)); 210 break; 211 default: 212 if (LangOpts.OpenMPSimd) 213 OpenMPRuntime.reset(new CGOpenMPSIMDRuntime(*this)); 214 else 215 OpenMPRuntime.reset(new CGOpenMPRuntime(*this)); 216 break; 217 } 218 } 219 220 void CodeGenModule::createCUDARuntime() { 221 CUDARuntime.reset(CreateNVCUDARuntime(*this)); 222 } 223 224 void CodeGenModule::addReplacement(StringRef Name, llvm::Constant *C) { 225 Replacements[Name] = C; 226 } 227 228 void CodeGenModule::applyReplacements() { 229 for (auto &I : Replacements) { 230 StringRef MangledName = I.first(); 231 llvm::Constant *Replacement = I.second; 232 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 233 if (!Entry) 234 continue; 235 auto *OldF = cast<llvm::Function>(Entry); 236 auto *NewF = dyn_cast<llvm::Function>(Replacement); 237 if (!NewF) { 238 if (auto *Alias = dyn_cast<llvm::GlobalAlias>(Replacement)) { 239 NewF = dyn_cast<llvm::Function>(Alias->getAliasee()); 240 } else { 241 auto *CE = cast<llvm::ConstantExpr>(Replacement); 242 assert(CE->getOpcode() == llvm::Instruction::BitCast || 243 CE->getOpcode() == llvm::Instruction::GetElementPtr); 244 NewF = dyn_cast<llvm::Function>(CE->getOperand(0)); 245 } 246 } 247 248 // Replace old with new, but keep the old order. 249 OldF->replaceAllUsesWith(Replacement); 250 if (NewF) { 251 NewF->removeFromParent(); 252 OldF->getParent()->getFunctionList().insertAfter(OldF->getIterator(), 253 NewF); 254 } 255 OldF->eraseFromParent(); 256 } 257 } 258 259 void CodeGenModule::addGlobalValReplacement(llvm::GlobalValue *GV, llvm::Constant *C) { 260 GlobalValReplacements.push_back(std::make_pair(GV, C)); 261 } 262 263 void CodeGenModule::applyGlobalValReplacements() { 264 for (auto &I : GlobalValReplacements) { 265 llvm::GlobalValue *GV = I.first; 266 llvm::Constant *C = I.second; 267 268 GV->replaceAllUsesWith(C); 269 GV->eraseFromParent(); 270 } 271 } 272 273 // This is only used in aliases that we created and we know they have a 274 // linear structure. 275 static const llvm::GlobalObject *getAliasedGlobal( 276 const llvm::GlobalIndirectSymbol &GIS) { 277 llvm::SmallPtrSet<const llvm::GlobalIndirectSymbol*, 4> Visited; 278 const llvm::Constant *C = &GIS; 279 for (;;) { 280 C = C->stripPointerCasts(); 281 if (auto *GO = dyn_cast<llvm::GlobalObject>(C)) 282 return GO; 283 // stripPointerCasts will not walk over weak aliases. 284 auto *GIS2 = dyn_cast<llvm::GlobalIndirectSymbol>(C); 285 if (!GIS2) 286 return nullptr; 287 if (!Visited.insert(GIS2).second) 288 return nullptr; 289 C = GIS2->getIndirectSymbol(); 290 } 291 } 292 293 void CodeGenModule::checkAliases() { 294 // Check if the constructed aliases are well formed. It is really unfortunate 295 // that we have to do this in CodeGen, but we only construct mangled names 296 // and aliases during codegen. 297 bool Error = false; 298 DiagnosticsEngine &Diags = getDiags(); 299 for (const GlobalDecl &GD : Aliases) { 300 const auto *D = cast<ValueDecl>(GD.getDecl()); 301 SourceLocation Location; 302 bool IsIFunc = D->hasAttr<IFuncAttr>(); 303 if (const Attr *A = D->getDefiningAttr()) 304 Location = A->getLocation(); 305 else 306 llvm_unreachable("Not an alias or ifunc?"); 307 StringRef MangledName = getMangledName(GD); 308 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 309 auto *Alias = cast<llvm::GlobalIndirectSymbol>(Entry); 310 const llvm::GlobalValue *GV = getAliasedGlobal(*Alias); 311 if (!GV) { 312 Error = true; 313 Diags.Report(Location, diag::err_cyclic_alias) << IsIFunc; 314 } else if (GV->isDeclaration()) { 315 Error = true; 316 Diags.Report(Location, diag::err_alias_to_undefined) 317 << IsIFunc << IsIFunc; 318 } else if (IsIFunc) { 319 // Check resolver function type. 320 llvm::FunctionType *FTy = dyn_cast<llvm::FunctionType>( 321 GV->getType()->getPointerElementType()); 322 assert(FTy); 323 if (!FTy->getReturnType()->isPointerTy()) 324 Diags.Report(Location, diag::err_ifunc_resolver_return); 325 } 326 327 llvm::Constant *Aliasee = Alias->getIndirectSymbol(); 328 llvm::GlobalValue *AliaseeGV; 329 if (auto CE = dyn_cast<llvm::ConstantExpr>(Aliasee)) 330 AliaseeGV = cast<llvm::GlobalValue>(CE->getOperand(0)); 331 else 332 AliaseeGV = cast<llvm::GlobalValue>(Aliasee); 333 334 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) { 335 StringRef AliasSection = SA->getName(); 336 if (AliasSection != AliaseeGV->getSection()) 337 Diags.Report(SA->getLocation(), diag::warn_alias_with_section) 338 << AliasSection << IsIFunc << IsIFunc; 339 } 340 341 // We have to handle alias to weak aliases in here. LLVM itself disallows 342 // this since the object semantics would not match the IL one. For 343 // compatibility with gcc we implement it by just pointing the alias 344 // to its aliasee's aliasee. We also warn, since the user is probably 345 // expecting the link to be weak. 346 if (auto GA = dyn_cast<llvm::GlobalIndirectSymbol>(AliaseeGV)) { 347 if (GA->isInterposable()) { 348 Diags.Report(Location, diag::warn_alias_to_weak_alias) 349 << GV->getName() << GA->getName() << IsIFunc; 350 Aliasee = llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast( 351 GA->getIndirectSymbol(), Alias->getType()); 352 Alias->setIndirectSymbol(Aliasee); 353 } 354 } 355 } 356 if (!Error) 357 return; 358 359 for (const GlobalDecl &GD : Aliases) { 360 StringRef MangledName = getMangledName(GD); 361 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 362 auto *Alias = dyn_cast<llvm::GlobalIndirectSymbol>(Entry); 363 Alias->replaceAllUsesWith(llvm::UndefValue::get(Alias->getType())); 364 Alias->eraseFromParent(); 365 } 366 } 367 368 void CodeGenModule::clear() { 369 DeferredDeclsToEmit.clear(); 370 if (OpenMPRuntime) 371 OpenMPRuntime->clear(); 372 } 373 374 void InstrProfStats::reportDiagnostics(DiagnosticsEngine &Diags, 375 StringRef MainFile) { 376 if (!hasDiagnostics()) 377 return; 378 if (VisitedInMainFile > 0 && VisitedInMainFile == MissingInMainFile) { 379 if (MainFile.empty()) 380 MainFile = "<stdin>"; 381 Diags.Report(diag::warn_profile_data_unprofiled) << MainFile; 382 } else { 383 if (Mismatched > 0) 384 Diags.Report(diag::warn_profile_data_out_of_date) << Visited << Mismatched; 385 386 if (Missing > 0) 387 Diags.Report(diag::warn_profile_data_missing) << Visited << Missing; 388 } 389 } 390 391 void CodeGenModule::Release() { 392 EmitDeferred(); 393 EmitVTablesOpportunistically(); 394 applyGlobalValReplacements(); 395 applyReplacements(); 396 checkAliases(); 397 emitMultiVersionFunctions(); 398 EmitCXXGlobalInitFunc(); 399 EmitCXXGlobalDtorFunc(); 400 registerGlobalDtorsWithAtExit(); 401 EmitCXXThreadLocalInitFunc(); 402 if (ObjCRuntime) 403 if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction()) 404 AddGlobalCtor(ObjCInitFunction); 405 if (Context.getLangOpts().CUDA && !Context.getLangOpts().CUDAIsDevice && 406 CUDARuntime) { 407 if (llvm::Function *CudaCtorFunction = 408 CUDARuntime->makeModuleCtorFunction()) 409 AddGlobalCtor(CudaCtorFunction); 410 } 411 if (OpenMPRuntime) { 412 if (llvm::Function *OpenMPRegistrationFunction = 413 OpenMPRuntime->emitRegistrationFunction()) { 414 auto ComdatKey = OpenMPRegistrationFunction->hasComdat() ? 415 OpenMPRegistrationFunction : nullptr; 416 AddGlobalCtor(OpenMPRegistrationFunction, 0, ComdatKey); 417 } 418 OpenMPRuntime->clear(); 419 } 420 if (PGOReader) { 421 getModule().setProfileSummary(PGOReader->getSummary().getMD(VMContext)); 422 if (PGOStats.hasDiagnostics()) 423 PGOStats.reportDiagnostics(getDiags(), getCodeGenOpts().MainFileName); 424 } 425 EmitCtorList(GlobalCtors, "llvm.global_ctors"); 426 EmitCtorList(GlobalDtors, "llvm.global_dtors"); 427 EmitGlobalAnnotations(); 428 EmitStaticExternCAliases(); 429 EmitDeferredUnusedCoverageMappings(); 430 if (CoverageMapping) 431 CoverageMapping->emit(); 432 if (CodeGenOpts.SanitizeCfiCrossDso) { 433 CodeGenFunction(*this).EmitCfiCheckFail(); 434 CodeGenFunction(*this).EmitCfiCheckStub(); 435 } 436 emitAtAvailableLinkGuard(); 437 emitLLVMUsed(); 438 if (SanStats) 439 SanStats->finish(); 440 441 if (CodeGenOpts.Autolink && 442 (Context.getLangOpts().Modules || !LinkerOptionsMetadata.empty())) { 443 EmitModuleLinkOptions(); 444 } 445 446 // Record mregparm value now so it is visible through rest of codegen. 447 if (Context.getTargetInfo().getTriple().getArch() == llvm::Triple::x86) 448 getModule().addModuleFlag(llvm::Module::Error, "NumRegisterParameters", 449 CodeGenOpts.NumRegisterParameters); 450 451 if (CodeGenOpts.DwarfVersion) { 452 // We actually want the latest version when there are conflicts. 453 // We can change from Warning to Latest if such mode is supported. 454 getModule().addModuleFlag(llvm::Module::Warning, "Dwarf Version", 455 CodeGenOpts.DwarfVersion); 456 } 457 if (CodeGenOpts.EmitCodeView) { 458 // Indicate that we want CodeView in the metadata. 459 getModule().addModuleFlag(llvm::Module::Warning, "CodeView", 1); 460 } 461 if (CodeGenOpts.CodeViewGHash) { 462 getModule().addModuleFlag(llvm::Module::Warning, "CodeViewGHash", 1); 463 } 464 if (CodeGenOpts.ControlFlowGuard) { 465 // We want function ID tables for Control Flow Guard. 466 getModule().addModuleFlag(llvm::Module::Warning, "cfguardtable", 1); 467 } 468 if (CodeGenOpts.OptimizationLevel > 0 && CodeGenOpts.StrictVTablePointers) { 469 // We don't support LTO with 2 with different StrictVTablePointers 470 // FIXME: we could support it by stripping all the information introduced 471 // by StrictVTablePointers. 472 473 getModule().addModuleFlag(llvm::Module::Error, "StrictVTablePointers",1); 474 475 llvm::Metadata *Ops[2] = { 476 llvm::MDString::get(VMContext, "StrictVTablePointers"), 477 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 478 llvm::Type::getInt32Ty(VMContext), 1))}; 479 480 getModule().addModuleFlag(llvm::Module::Require, 481 "StrictVTablePointersRequirement", 482 llvm::MDNode::get(VMContext, Ops)); 483 } 484 if (DebugInfo) 485 // We support a single version in the linked module. The LLVM 486 // parser will drop debug info with a different version number 487 // (and warn about it, too). 488 getModule().addModuleFlag(llvm::Module::Warning, "Debug Info Version", 489 llvm::DEBUG_METADATA_VERSION); 490 491 // We need to record the widths of enums and wchar_t, so that we can generate 492 // the correct build attributes in the ARM backend. wchar_size is also used by 493 // TargetLibraryInfo. 494 uint64_t WCharWidth = 495 Context.getTypeSizeInChars(Context.getWideCharType()).getQuantity(); 496 getModule().addModuleFlag(llvm::Module::Error, "wchar_size", WCharWidth); 497 498 llvm::Triple::ArchType Arch = Context.getTargetInfo().getTriple().getArch(); 499 if ( Arch == llvm::Triple::arm 500 || Arch == llvm::Triple::armeb 501 || Arch == llvm::Triple::thumb 502 || Arch == llvm::Triple::thumbeb) { 503 // The minimum width of an enum in bytes 504 uint64_t EnumWidth = Context.getLangOpts().ShortEnums ? 1 : 4; 505 getModule().addModuleFlag(llvm::Module::Error, "min_enum_size", EnumWidth); 506 } 507 508 if (CodeGenOpts.SanitizeCfiCrossDso) { 509 // Indicate that we want cross-DSO control flow integrity checks. 510 getModule().addModuleFlag(llvm::Module::Override, "Cross-DSO CFI", 1); 511 } 512 513 if (CodeGenOpts.CFProtectionReturn && 514 Target.checkCFProtectionReturnSupported(getDiags())) { 515 // Indicate that we want to instrument return control flow protection. 516 getModule().addModuleFlag(llvm::Module::Override, "cf-protection-return", 517 1); 518 } 519 520 if (CodeGenOpts.CFProtectionBranch && 521 Target.checkCFProtectionBranchSupported(getDiags())) { 522 // Indicate that we want to instrument branch control flow protection. 523 getModule().addModuleFlag(llvm::Module::Override, "cf-protection-branch", 524 1); 525 } 526 527 if (LangOpts.CUDAIsDevice && getTriple().isNVPTX()) { 528 // Indicate whether __nvvm_reflect should be configured to flush denormal 529 // floating point values to 0. (This corresponds to its "__CUDA_FTZ" 530 // property.) 531 getModule().addModuleFlag(llvm::Module::Override, "nvvm-reflect-ftz", 532 CodeGenOpts.FlushDenorm ? 1 : 0); 533 } 534 535 // Emit OpenCL specific module metadata: OpenCL/SPIR version. 536 if (LangOpts.OpenCL) { 537 EmitOpenCLMetadata(); 538 // Emit SPIR version. 539 if (getTriple().getArch() == llvm::Triple::spir || 540 getTriple().getArch() == llvm::Triple::spir64) { 541 // SPIR v2.0 s2.12 - The SPIR version used by the module is stored in the 542 // opencl.spir.version named metadata. 543 llvm::Metadata *SPIRVerElts[] = { 544 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 545 Int32Ty, LangOpts.OpenCLVersion / 100)), 546 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 547 Int32Ty, (LangOpts.OpenCLVersion / 100 > 1) ? 0 : 2))}; 548 llvm::NamedMDNode *SPIRVerMD = 549 TheModule.getOrInsertNamedMetadata("opencl.spir.version"); 550 llvm::LLVMContext &Ctx = TheModule.getContext(); 551 SPIRVerMD->addOperand(llvm::MDNode::get(Ctx, SPIRVerElts)); 552 } 553 } 554 555 if (uint32_t PLevel = Context.getLangOpts().PICLevel) { 556 assert(PLevel < 3 && "Invalid PIC Level"); 557 getModule().setPICLevel(static_cast<llvm::PICLevel::Level>(PLevel)); 558 if (Context.getLangOpts().PIE) 559 getModule().setPIELevel(static_cast<llvm::PIELevel::Level>(PLevel)); 560 } 561 562 if (getCodeGenOpts().CodeModel.size() > 0) { 563 unsigned CM = llvm::StringSwitch<unsigned>(getCodeGenOpts().CodeModel) 564 .Case("tiny", llvm::CodeModel::Tiny) 565 .Case("small", llvm::CodeModel::Small) 566 .Case("kernel", llvm::CodeModel::Kernel) 567 .Case("medium", llvm::CodeModel::Medium) 568 .Case("large", llvm::CodeModel::Large) 569 .Default(~0u); 570 if (CM != ~0u) { 571 llvm::CodeModel::Model codeModel = static_cast<llvm::CodeModel::Model>(CM); 572 getModule().setCodeModel(codeModel); 573 } 574 } 575 576 if (CodeGenOpts.NoPLT) 577 getModule().setRtLibUseGOT(); 578 579 SimplifyPersonality(); 580 581 if (getCodeGenOpts().EmitDeclMetadata) 582 EmitDeclMetadata(); 583 584 if (getCodeGenOpts().EmitGcovArcs || getCodeGenOpts().EmitGcovNotes) 585 EmitCoverageFile(); 586 587 if (DebugInfo) 588 DebugInfo->finalize(); 589 590 if (getCodeGenOpts().EmitVersionIdentMetadata) 591 EmitVersionIdentMetadata(); 592 593 EmitTargetMetadata(); 594 } 595 596 void CodeGenModule::EmitOpenCLMetadata() { 597 // SPIR v2.0 s2.13 - The OpenCL version used by the module is stored in the 598 // opencl.ocl.version named metadata node. 599 llvm::Metadata *OCLVerElts[] = { 600 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 601 Int32Ty, LangOpts.OpenCLVersion / 100)), 602 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 603 Int32Ty, (LangOpts.OpenCLVersion % 100) / 10))}; 604 llvm::NamedMDNode *OCLVerMD = 605 TheModule.getOrInsertNamedMetadata("opencl.ocl.version"); 606 llvm::LLVMContext &Ctx = TheModule.getContext(); 607 OCLVerMD->addOperand(llvm::MDNode::get(Ctx, OCLVerElts)); 608 } 609 610 void CodeGenModule::UpdateCompletedType(const TagDecl *TD) { 611 // Make sure that this type is translated. 612 Types.UpdateCompletedType(TD); 613 } 614 615 void CodeGenModule::RefreshTypeCacheForClass(const CXXRecordDecl *RD) { 616 // Make sure that this type is translated. 617 Types.RefreshTypeCacheForClass(RD); 618 } 619 620 llvm::MDNode *CodeGenModule::getTBAATypeInfo(QualType QTy) { 621 if (!TBAA) 622 return nullptr; 623 return TBAA->getTypeInfo(QTy); 624 } 625 626 TBAAAccessInfo CodeGenModule::getTBAAAccessInfo(QualType AccessType) { 627 if (!TBAA) 628 return TBAAAccessInfo(); 629 return TBAA->getAccessInfo(AccessType); 630 } 631 632 TBAAAccessInfo 633 CodeGenModule::getTBAAVTablePtrAccessInfo(llvm::Type *VTablePtrType) { 634 if (!TBAA) 635 return TBAAAccessInfo(); 636 return TBAA->getVTablePtrAccessInfo(VTablePtrType); 637 } 638 639 llvm::MDNode *CodeGenModule::getTBAAStructInfo(QualType QTy) { 640 if (!TBAA) 641 return nullptr; 642 return TBAA->getTBAAStructInfo(QTy); 643 } 644 645 llvm::MDNode *CodeGenModule::getTBAABaseTypeInfo(QualType QTy) { 646 if (!TBAA) 647 return nullptr; 648 return TBAA->getBaseTypeInfo(QTy); 649 } 650 651 llvm::MDNode *CodeGenModule::getTBAAAccessTagInfo(TBAAAccessInfo Info) { 652 if (!TBAA) 653 return nullptr; 654 return TBAA->getAccessTagInfo(Info); 655 } 656 657 TBAAAccessInfo CodeGenModule::mergeTBAAInfoForCast(TBAAAccessInfo SourceInfo, 658 TBAAAccessInfo TargetInfo) { 659 if (!TBAA) 660 return TBAAAccessInfo(); 661 return TBAA->mergeTBAAInfoForCast(SourceInfo, TargetInfo); 662 } 663 664 TBAAAccessInfo 665 CodeGenModule::mergeTBAAInfoForConditionalOperator(TBAAAccessInfo InfoA, 666 TBAAAccessInfo InfoB) { 667 if (!TBAA) 668 return TBAAAccessInfo(); 669 return TBAA->mergeTBAAInfoForConditionalOperator(InfoA, InfoB); 670 } 671 672 TBAAAccessInfo 673 CodeGenModule::mergeTBAAInfoForMemoryTransfer(TBAAAccessInfo DestInfo, 674 TBAAAccessInfo SrcInfo) { 675 if (!TBAA) 676 return TBAAAccessInfo(); 677 return TBAA->mergeTBAAInfoForConditionalOperator(DestInfo, SrcInfo); 678 } 679 680 void CodeGenModule::DecorateInstructionWithTBAA(llvm::Instruction *Inst, 681 TBAAAccessInfo TBAAInfo) { 682 if (llvm::MDNode *Tag = getTBAAAccessTagInfo(TBAAInfo)) 683 Inst->setMetadata(llvm::LLVMContext::MD_tbaa, Tag); 684 } 685 686 void CodeGenModule::DecorateInstructionWithInvariantGroup( 687 llvm::Instruction *I, const CXXRecordDecl *RD) { 688 I->setMetadata(llvm::LLVMContext::MD_invariant_group, 689 llvm::MDNode::get(getLLVMContext(), {})); 690 } 691 692 void CodeGenModule::Error(SourceLocation loc, StringRef message) { 693 unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, "%0"); 694 getDiags().Report(Context.getFullLoc(loc), diagID) << message; 695 } 696 697 /// ErrorUnsupported - Print out an error that codegen doesn't support the 698 /// specified stmt yet. 699 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type) { 700 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, 701 "cannot compile this %0 yet"); 702 std::string Msg = Type; 703 getDiags().Report(Context.getFullLoc(S->getBeginLoc()), DiagID) 704 << Msg << S->getSourceRange(); 705 } 706 707 /// ErrorUnsupported - Print out an error that codegen doesn't support the 708 /// specified decl yet. 709 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type) { 710 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, 711 "cannot compile this %0 yet"); 712 std::string Msg = Type; 713 getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg; 714 } 715 716 llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) { 717 return llvm::ConstantInt::get(SizeTy, size.getQuantity()); 718 } 719 720 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV, 721 const NamedDecl *D) const { 722 if (GV->hasDLLImportStorageClass()) 723 return; 724 // Internal definitions always have default visibility. 725 if (GV->hasLocalLinkage()) { 726 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 727 return; 728 } 729 if (!D) 730 return; 731 // Set visibility for definitions. 732 LinkageInfo LV = D->getLinkageAndVisibility(); 733 if (LV.isVisibilityExplicit() || !GV->isDeclarationForLinker()) 734 GV->setVisibility(GetLLVMVisibility(LV.getVisibility())); 735 } 736 737 static bool shouldAssumeDSOLocal(const CodeGenModule &CGM, 738 llvm::GlobalValue *GV) { 739 if (GV->hasLocalLinkage()) 740 return true; 741 742 if (!GV->hasDefaultVisibility() && !GV->hasExternalWeakLinkage()) 743 return true; 744 745 // DLLImport explicitly marks the GV as external. 746 if (GV->hasDLLImportStorageClass()) 747 return false; 748 749 const llvm::Triple &TT = CGM.getTriple(); 750 if (TT.isWindowsGNUEnvironment()) { 751 // In MinGW, variables without DLLImport can still be automatically 752 // imported from a DLL by the linker; don't mark variables that 753 // potentially could come from another DLL as DSO local. 754 if (GV->isDeclarationForLinker() && isa<llvm::GlobalVariable>(GV) && 755 !GV->isThreadLocal()) 756 return false; 757 } 758 // Every other GV is local on COFF. 759 // Make an exception for windows OS in the triple: Some firmware builds use 760 // *-win32-macho triples. This (accidentally?) produced windows relocations 761 // without GOT tables in older clang versions; Keep this behaviour. 762 // FIXME: even thread local variables? 763 if (TT.isOSBinFormatCOFF() || (TT.isOSWindows() && TT.isOSBinFormatMachO())) 764 return true; 765 766 // Only handle COFF and ELF for now. 767 if (!TT.isOSBinFormatELF()) 768 return false; 769 770 // If this is not an executable, don't assume anything is local. 771 const auto &CGOpts = CGM.getCodeGenOpts(); 772 llvm::Reloc::Model RM = CGOpts.RelocationModel; 773 const auto &LOpts = CGM.getLangOpts(); 774 if (RM != llvm::Reloc::Static && !LOpts.PIE) 775 return false; 776 777 // A definition cannot be preempted from an executable. 778 if (!GV->isDeclarationForLinker()) 779 return true; 780 781 // Most PIC code sequences that assume that a symbol is local cannot produce a 782 // 0 if it turns out the symbol is undefined. While this is ABI and relocation 783 // depended, it seems worth it to handle it here. 784 if (RM == llvm::Reloc::PIC_ && GV->hasExternalWeakLinkage()) 785 return false; 786 787 // PPC has no copy relocations and cannot use a plt entry as a symbol address. 788 llvm::Triple::ArchType Arch = TT.getArch(); 789 if (Arch == llvm::Triple::ppc || Arch == llvm::Triple::ppc64 || 790 Arch == llvm::Triple::ppc64le) 791 return false; 792 793 // If we can use copy relocations we can assume it is local. 794 if (auto *Var = dyn_cast<llvm::GlobalVariable>(GV)) 795 if (!Var->isThreadLocal() && 796 (RM == llvm::Reloc::Static || CGOpts.PIECopyRelocations)) 797 return true; 798 799 // If we can use a plt entry as the symbol address we can assume it 800 // is local. 801 // FIXME: This should work for PIE, but the gold linker doesn't support it. 802 if (isa<llvm::Function>(GV) && !CGOpts.NoPLT && RM == llvm::Reloc::Static) 803 return true; 804 805 // Otherwise don't assue it is local. 806 return false; 807 } 808 809 void CodeGenModule::setDSOLocal(llvm::GlobalValue *GV) const { 810 GV->setDSOLocal(shouldAssumeDSOLocal(*this, GV)); 811 } 812 813 void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV, 814 GlobalDecl GD) const { 815 const auto *D = dyn_cast<NamedDecl>(GD.getDecl()); 816 // C++ destructors have a few C++ ABI specific special cases. 817 if (const auto *Dtor = dyn_cast_or_null<CXXDestructorDecl>(D)) { 818 getCXXABI().setCXXDestructorDLLStorage(GV, Dtor, GD.getDtorType()); 819 return; 820 } 821 setDLLImportDLLExport(GV, D); 822 } 823 824 void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV, 825 const NamedDecl *D) const { 826 if (D && D->isExternallyVisible()) { 827 if (D->hasAttr<DLLImportAttr>()) 828 GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass); 829 else if (D->hasAttr<DLLExportAttr>() && !GV->isDeclarationForLinker()) 830 GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass); 831 } 832 } 833 834 void CodeGenModule::setGVProperties(llvm::GlobalValue *GV, 835 GlobalDecl GD) const { 836 setDLLImportDLLExport(GV, GD); 837 setGlobalVisibilityAndLocal(GV, dyn_cast<NamedDecl>(GD.getDecl())); 838 } 839 840 void CodeGenModule::setGVProperties(llvm::GlobalValue *GV, 841 const NamedDecl *D) const { 842 setDLLImportDLLExport(GV, D); 843 setGlobalVisibilityAndLocal(GV, D); 844 } 845 846 void CodeGenModule::setGlobalVisibilityAndLocal(llvm::GlobalValue *GV, 847 const NamedDecl *D) const { 848 setGlobalVisibility(GV, D); 849 setDSOLocal(GV); 850 } 851 852 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(StringRef S) { 853 return llvm::StringSwitch<llvm::GlobalVariable::ThreadLocalMode>(S) 854 .Case("global-dynamic", llvm::GlobalVariable::GeneralDynamicTLSModel) 855 .Case("local-dynamic", llvm::GlobalVariable::LocalDynamicTLSModel) 856 .Case("initial-exec", llvm::GlobalVariable::InitialExecTLSModel) 857 .Case("local-exec", llvm::GlobalVariable::LocalExecTLSModel); 858 } 859 860 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel( 861 CodeGenOptions::TLSModel M) { 862 switch (M) { 863 case CodeGenOptions::GeneralDynamicTLSModel: 864 return llvm::GlobalVariable::GeneralDynamicTLSModel; 865 case CodeGenOptions::LocalDynamicTLSModel: 866 return llvm::GlobalVariable::LocalDynamicTLSModel; 867 case CodeGenOptions::InitialExecTLSModel: 868 return llvm::GlobalVariable::InitialExecTLSModel; 869 case CodeGenOptions::LocalExecTLSModel: 870 return llvm::GlobalVariable::LocalExecTLSModel; 871 } 872 llvm_unreachable("Invalid TLS model!"); 873 } 874 875 void CodeGenModule::setTLSMode(llvm::GlobalValue *GV, const VarDecl &D) const { 876 assert(D.getTLSKind() && "setting TLS mode on non-TLS var!"); 877 878 llvm::GlobalValue::ThreadLocalMode TLM; 879 TLM = GetLLVMTLSModel(CodeGenOpts.getDefaultTLSModel()); 880 881 // Override the TLS model if it is explicitly specified. 882 if (const TLSModelAttr *Attr = D.getAttr<TLSModelAttr>()) { 883 TLM = GetLLVMTLSModel(Attr->getModel()); 884 } 885 886 GV->setThreadLocalMode(TLM); 887 } 888 889 static std::string getCPUSpecificMangling(const CodeGenModule &CGM, 890 StringRef Name) { 891 const TargetInfo &Target = CGM.getTarget(); 892 return (Twine('.') + Twine(Target.CPUSpecificManglingCharacter(Name))).str(); 893 } 894 895 static void AppendCPUSpecificCPUDispatchMangling(const CodeGenModule &CGM, 896 const CPUSpecificAttr *Attr, 897 unsigned CPUIndex, 898 raw_ostream &Out) { 899 // cpu_specific gets the current name, dispatch gets the resolver if IFunc is 900 // supported. 901 if (Attr) 902 Out << getCPUSpecificMangling(CGM, Attr->getCPUName(CPUIndex)->getName()); 903 else if (CGM.getTarget().supportsIFunc()) 904 Out << ".resolver"; 905 } 906 907 static void AppendTargetMangling(const CodeGenModule &CGM, 908 const TargetAttr *Attr, raw_ostream &Out) { 909 if (Attr->isDefaultVersion()) 910 return; 911 912 Out << '.'; 913 const TargetInfo &Target = CGM.getTarget(); 914 TargetAttr::ParsedTargetAttr Info = 915 Attr->parse([&Target](StringRef LHS, StringRef RHS) { 916 // Multiversioning doesn't allow "no-${feature}", so we can 917 // only have "+" prefixes here. 918 assert(LHS.startswith("+") && RHS.startswith("+") && 919 "Features should always have a prefix."); 920 return Target.multiVersionSortPriority(LHS.substr(1)) > 921 Target.multiVersionSortPriority(RHS.substr(1)); 922 }); 923 924 bool IsFirst = true; 925 926 if (!Info.Architecture.empty()) { 927 IsFirst = false; 928 Out << "arch_" << Info.Architecture; 929 } 930 931 for (StringRef Feat : Info.Features) { 932 if (!IsFirst) 933 Out << '_'; 934 IsFirst = false; 935 Out << Feat.substr(1); 936 } 937 } 938 939 static std::string getMangledNameImpl(const CodeGenModule &CGM, GlobalDecl GD, 940 const NamedDecl *ND, 941 bool OmitMultiVersionMangling = false) { 942 SmallString<256> Buffer; 943 llvm::raw_svector_ostream Out(Buffer); 944 MangleContext &MC = CGM.getCXXABI().getMangleContext(); 945 if (MC.shouldMangleDeclName(ND)) { 946 llvm::raw_svector_ostream Out(Buffer); 947 if (const auto *D = dyn_cast<CXXConstructorDecl>(ND)) 948 MC.mangleCXXCtor(D, GD.getCtorType(), Out); 949 else if (const auto *D = dyn_cast<CXXDestructorDecl>(ND)) 950 MC.mangleCXXDtor(D, GD.getDtorType(), Out); 951 else 952 MC.mangleName(ND, Out); 953 } else { 954 IdentifierInfo *II = ND->getIdentifier(); 955 assert(II && "Attempt to mangle unnamed decl."); 956 const auto *FD = dyn_cast<FunctionDecl>(ND); 957 958 if (FD && 959 FD->getType()->castAs<FunctionType>()->getCallConv() == CC_X86RegCall) { 960 llvm::raw_svector_ostream Out(Buffer); 961 Out << "__regcall3__" << II->getName(); 962 } else { 963 Out << II->getName(); 964 } 965 } 966 967 if (const auto *FD = dyn_cast<FunctionDecl>(ND)) 968 if (FD->isMultiVersion() && !OmitMultiVersionMangling) { 969 if (FD->isCPUDispatchMultiVersion() || FD->isCPUSpecificMultiVersion()) 970 AppendCPUSpecificCPUDispatchMangling(CGM, 971 FD->getAttr<CPUSpecificAttr>(), 972 GD.getMultiVersionIndex(), Out); 973 else 974 AppendTargetMangling(CGM, FD->getAttr<TargetAttr>(), Out); 975 } 976 977 return Out.str(); 978 } 979 980 void CodeGenModule::UpdateMultiVersionNames(GlobalDecl GD, 981 const FunctionDecl *FD) { 982 if (!FD->isMultiVersion()) 983 return; 984 985 // Get the name of what this would be without the 'target' attribute. This 986 // allows us to lookup the version that was emitted when this wasn't a 987 // multiversion function. 988 std::string NonTargetName = 989 getMangledNameImpl(*this, GD, FD, /*OmitMultiVersionMangling=*/true); 990 GlobalDecl OtherGD; 991 if (lookupRepresentativeDecl(NonTargetName, OtherGD)) { 992 assert(OtherGD.getCanonicalDecl() 993 .getDecl() 994 ->getAsFunction() 995 ->isMultiVersion() && 996 "Other GD should now be a multiversioned function"); 997 // OtherFD is the version of this function that was mangled BEFORE 998 // becoming a MultiVersion function. It potentially needs to be updated. 999 const FunctionDecl *OtherFD = 1000 OtherGD.getCanonicalDecl().getDecl()->getAsFunction(); 1001 std::string OtherName = getMangledNameImpl(*this, OtherGD, OtherFD); 1002 // This is so that if the initial version was already the 'default' 1003 // version, we don't try to update it. 1004 if (OtherName != NonTargetName) { 1005 // Remove instead of erase, since others may have stored the StringRef 1006 // to this. 1007 const auto ExistingRecord = Manglings.find(NonTargetName); 1008 if (ExistingRecord != std::end(Manglings)) 1009 Manglings.remove(&(*ExistingRecord)); 1010 auto Result = Manglings.insert(std::make_pair(OtherName, OtherGD)); 1011 MangledDeclNames[OtherGD.getCanonicalDecl()] = Result.first->first(); 1012 if (llvm::GlobalValue *Entry = GetGlobalValue(NonTargetName)) 1013 Entry->setName(OtherName); 1014 } 1015 } 1016 } 1017 1018 StringRef CodeGenModule::getMangledName(GlobalDecl GD) { 1019 GlobalDecl CanonicalGD = GD.getCanonicalDecl(); 1020 1021 // Some ABIs don't have constructor variants. Make sure that base and 1022 // complete constructors get mangled the same. 1023 if (const auto *CD = dyn_cast<CXXConstructorDecl>(CanonicalGD.getDecl())) { 1024 if (!getTarget().getCXXABI().hasConstructorVariants()) { 1025 CXXCtorType OrigCtorType = GD.getCtorType(); 1026 assert(OrigCtorType == Ctor_Base || OrigCtorType == Ctor_Complete); 1027 if (OrigCtorType == Ctor_Base) 1028 CanonicalGD = GlobalDecl(CD, Ctor_Complete); 1029 } 1030 } 1031 1032 auto FoundName = MangledDeclNames.find(CanonicalGD); 1033 if (FoundName != MangledDeclNames.end()) 1034 return FoundName->second; 1035 1036 // Keep the first result in the case of a mangling collision. 1037 const auto *ND = cast<NamedDecl>(GD.getDecl()); 1038 auto Result = 1039 Manglings.insert(std::make_pair(getMangledNameImpl(*this, GD, ND), GD)); 1040 return MangledDeclNames[CanonicalGD] = Result.first->first(); 1041 } 1042 1043 StringRef CodeGenModule::getBlockMangledName(GlobalDecl GD, 1044 const BlockDecl *BD) { 1045 MangleContext &MangleCtx = getCXXABI().getMangleContext(); 1046 const Decl *D = GD.getDecl(); 1047 1048 SmallString<256> Buffer; 1049 llvm::raw_svector_ostream Out(Buffer); 1050 if (!D) 1051 MangleCtx.mangleGlobalBlock(BD, 1052 dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()), Out); 1053 else if (const auto *CD = dyn_cast<CXXConstructorDecl>(D)) 1054 MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out); 1055 else if (const auto *DD = dyn_cast<CXXDestructorDecl>(D)) 1056 MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out); 1057 else 1058 MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out); 1059 1060 auto Result = Manglings.insert(std::make_pair(Out.str(), BD)); 1061 return Result.first->first(); 1062 } 1063 1064 llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) { 1065 return getModule().getNamedValue(Name); 1066 } 1067 1068 /// AddGlobalCtor - Add a function to the list that will be called before 1069 /// main() runs. 1070 void CodeGenModule::AddGlobalCtor(llvm::Function *Ctor, int Priority, 1071 llvm::Constant *AssociatedData) { 1072 // FIXME: Type coercion of void()* types. 1073 GlobalCtors.push_back(Structor(Priority, Ctor, AssociatedData)); 1074 } 1075 1076 /// AddGlobalDtor - Add a function to the list that will be called 1077 /// when the module is unloaded. 1078 void CodeGenModule::AddGlobalDtor(llvm::Function *Dtor, int Priority) { 1079 if (CodeGenOpts.RegisterGlobalDtorsWithAtExit) { 1080 DtorsUsingAtExit[Priority].push_back(Dtor); 1081 return; 1082 } 1083 1084 // FIXME: Type coercion of void()* types. 1085 GlobalDtors.push_back(Structor(Priority, Dtor, nullptr)); 1086 } 1087 1088 void CodeGenModule::EmitCtorList(CtorList &Fns, const char *GlobalName) { 1089 if (Fns.empty()) return; 1090 1091 // Ctor function type is void()*. 1092 llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false); 1093 llvm::Type *CtorPFTy = llvm::PointerType::get(CtorFTy, 1094 TheModule.getDataLayout().getProgramAddressSpace()); 1095 1096 // Get the type of a ctor entry, { i32, void ()*, i8* }. 1097 llvm::StructType *CtorStructTy = llvm::StructType::get( 1098 Int32Ty, CtorPFTy, VoidPtrTy); 1099 1100 // Construct the constructor and destructor arrays. 1101 ConstantInitBuilder builder(*this); 1102 auto ctors = builder.beginArray(CtorStructTy); 1103 for (const auto &I : Fns) { 1104 auto ctor = ctors.beginStruct(CtorStructTy); 1105 ctor.addInt(Int32Ty, I.Priority); 1106 ctor.add(llvm::ConstantExpr::getBitCast(I.Initializer, CtorPFTy)); 1107 if (I.AssociatedData) 1108 ctor.add(llvm::ConstantExpr::getBitCast(I.AssociatedData, VoidPtrTy)); 1109 else 1110 ctor.addNullPointer(VoidPtrTy); 1111 ctor.finishAndAddTo(ctors); 1112 } 1113 1114 auto list = 1115 ctors.finishAndCreateGlobal(GlobalName, getPointerAlign(), 1116 /*constant*/ false, 1117 llvm::GlobalValue::AppendingLinkage); 1118 1119 // The LTO linker doesn't seem to like it when we set an alignment 1120 // on appending variables. Take it off as a workaround. 1121 list->setAlignment(0); 1122 1123 Fns.clear(); 1124 } 1125 1126 llvm::GlobalValue::LinkageTypes 1127 CodeGenModule::getFunctionLinkage(GlobalDecl GD) { 1128 const auto *D = cast<FunctionDecl>(GD.getDecl()); 1129 1130 GVALinkage Linkage = getContext().GetGVALinkageForFunction(D); 1131 1132 if (const auto *Dtor = dyn_cast<CXXDestructorDecl>(D)) 1133 return getCXXABI().getCXXDestructorLinkage(Linkage, Dtor, GD.getDtorType()); 1134 1135 if (isa<CXXConstructorDecl>(D) && 1136 cast<CXXConstructorDecl>(D)->isInheritingConstructor() && 1137 Context.getTargetInfo().getCXXABI().isMicrosoft()) { 1138 // Our approach to inheriting constructors is fundamentally different from 1139 // that used by the MS ABI, so keep our inheriting constructor thunks 1140 // internal rather than trying to pick an unambiguous mangling for them. 1141 return llvm::GlobalValue::InternalLinkage; 1142 } 1143 1144 return getLLVMLinkageForDeclarator(D, Linkage, /*isConstantVariable=*/false); 1145 } 1146 1147 llvm::ConstantInt *CodeGenModule::CreateCrossDsoCfiTypeId(llvm::Metadata *MD) { 1148 llvm::MDString *MDS = dyn_cast<llvm::MDString>(MD); 1149 if (!MDS) return nullptr; 1150 1151 return llvm::ConstantInt::get(Int64Ty, llvm::MD5Hash(MDS->getString())); 1152 } 1153 1154 void CodeGenModule::SetLLVMFunctionAttributes(GlobalDecl GD, 1155 const CGFunctionInfo &Info, 1156 llvm::Function *F) { 1157 unsigned CallingConv; 1158 llvm::AttributeList PAL; 1159 ConstructAttributeList(F->getName(), Info, GD, PAL, CallingConv, false); 1160 F->setAttributes(PAL); 1161 F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv)); 1162 } 1163 1164 /// Determines whether the language options require us to model 1165 /// unwind exceptions. We treat -fexceptions as mandating this 1166 /// except under the fragile ObjC ABI with only ObjC exceptions 1167 /// enabled. This means, for example, that C with -fexceptions 1168 /// enables this. 1169 static bool hasUnwindExceptions(const LangOptions &LangOpts) { 1170 // If exceptions are completely disabled, obviously this is false. 1171 if (!LangOpts.Exceptions) return false; 1172 1173 // If C++ exceptions are enabled, this is true. 1174 if (LangOpts.CXXExceptions) return true; 1175 1176 // If ObjC exceptions are enabled, this depends on the ABI. 1177 if (LangOpts.ObjCExceptions) { 1178 return LangOpts.ObjCRuntime.hasUnwindExceptions(); 1179 } 1180 1181 return true; 1182 } 1183 1184 static bool requiresMemberFunctionPointerTypeMetadata(CodeGenModule &CGM, 1185 const CXXMethodDecl *MD) { 1186 // Check that the type metadata can ever actually be used by a call. 1187 if (!CGM.getCodeGenOpts().LTOUnit || 1188 !CGM.HasHiddenLTOVisibility(MD->getParent())) 1189 return false; 1190 1191 // Only functions whose address can be taken with a member function pointer 1192 // need this sort of type metadata. 1193 return !MD->isStatic() && !MD->isVirtual() && !isa<CXXConstructorDecl>(MD) && 1194 !isa<CXXDestructorDecl>(MD); 1195 } 1196 1197 std::vector<const CXXRecordDecl *> 1198 CodeGenModule::getMostBaseClasses(const CXXRecordDecl *RD) { 1199 llvm::SetVector<const CXXRecordDecl *> MostBases; 1200 1201 std::function<void (const CXXRecordDecl *)> CollectMostBases; 1202 CollectMostBases = [&](const CXXRecordDecl *RD) { 1203 if (RD->getNumBases() == 0) 1204 MostBases.insert(RD); 1205 for (const CXXBaseSpecifier &B : RD->bases()) 1206 CollectMostBases(B.getType()->getAsCXXRecordDecl()); 1207 }; 1208 CollectMostBases(RD); 1209 return MostBases.takeVector(); 1210 } 1211 1212 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D, 1213 llvm::Function *F) { 1214 llvm::AttrBuilder B; 1215 1216 if (CodeGenOpts.UnwindTables) 1217 B.addAttribute(llvm::Attribute::UWTable); 1218 1219 if (!hasUnwindExceptions(LangOpts)) 1220 B.addAttribute(llvm::Attribute::NoUnwind); 1221 1222 if (!D || !D->hasAttr<NoStackProtectorAttr>()) { 1223 if (LangOpts.getStackProtector() == LangOptions::SSPOn) 1224 B.addAttribute(llvm::Attribute::StackProtect); 1225 else if (LangOpts.getStackProtector() == LangOptions::SSPStrong) 1226 B.addAttribute(llvm::Attribute::StackProtectStrong); 1227 else if (LangOpts.getStackProtector() == LangOptions::SSPReq) 1228 B.addAttribute(llvm::Attribute::StackProtectReq); 1229 } 1230 1231 if (!D) { 1232 // If we don't have a declaration to control inlining, the function isn't 1233 // explicitly marked as alwaysinline for semantic reasons, and inlining is 1234 // disabled, mark the function as noinline. 1235 if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline) && 1236 CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining) 1237 B.addAttribute(llvm::Attribute::NoInline); 1238 1239 F->addAttributes(llvm::AttributeList::FunctionIndex, B); 1240 return; 1241 } 1242 1243 // Track whether we need to add the optnone LLVM attribute, 1244 // starting with the default for this optimization level. 1245 bool ShouldAddOptNone = 1246 !CodeGenOpts.DisableO0ImplyOptNone && CodeGenOpts.OptimizationLevel == 0; 1247 // We can't add optnone in the following cases, it won't pass the verifier. 1248 ShouldAddOptNone &= !D->hasAttr<MinSizeAttr>(); 1249 ShouldAddOptNone &= !F->hasFnAttribute(llvm::Attribute::AlwaysInline); 1250 ShouldAddOptNone &= !D->hasAttr<AlwaysInlineAttr>(); 1251 1252 if (ShouldAddOptNone || D->hasAttr<OptimizeNoneAttr>()) { 1253 B.addAttribute(llvm::Attribute::OptimizeNone); 1254 1255 // OptimizeNone implies noinline; we should not be inlining such functions. 1256 B.addAttribute(llvm::Attribute::NoInline); 1257 assert(!F->hasFnAttribute(llvm::Attribute::AlwaysInline) && 1258 "OptimizeNone and AlwaysInline on same function!"); 1259 1260 // We still need to handle naked functions even though optnone subsumes 1261 // much of their semantics. 1262 if (D->hasAttr<NakedAttr>()) 1263 B.addAttribute(llvm::Attribute::Naked); 1264 1265 // OptimizeNone wins over OptimizeForSize and MinSize. 1266 F->removeFnAttr(llvm::Attribute::OptimizeForSize); 1267 F->removeFnAttr(llvm::Attribute::MinSize); 1268 } else if (D->hasAttr<NakedAttr>()) { 1269 // Naked implies noinline: we should not be inlining such functions. 1270 B.addAttribute(llvm::Attribute::Naked); 1271 B.addAttribute(llvm::Attribute::NoInline); 1272 } else if (D->hasAttr<NoDuplicateAttr>()) { 1273 B.addAttribute(llvm::Attribute::NoDuplicate); 1274 } else if (D->hasAttr<NoInlineAttr>()) { 1275 B.addAttribute(llvm::Attribute::NoInline); 1276 } else if (D->hasAttr<AlwaysInlineAttr>() && 1277 !F->hasFnAttribute(llvm::Attribute::NoInline)) { 1278 // (noinline wins over always_inline, and we can't specify both in IR) 1279 B.addAttribute(llvm::Attribute::AlwaysInline); 1280 } else if (CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining) { 1281 // If we're not inlining, then force everything that isn't always_inline to 1282 // carry an explicit noinline attribute. 1283 if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline)) 1284 B.addAttribute(llvm::Attribute::NoInline); 1285 } else { 1286 // Otherwise, propagate the inline hint attribute and potentially use its 1287 // absence to mark things as noinline. 1288 if (auto *FD = dyn_cast<FunctionDecl>(D)) { 1289 // Search function and template pattern redeclarations for inline. 1290 auto CheckForInline = [](const FunctionDecl *FD) { 1291 auto CheckRedeclForInline = [](const FunctionDecl *Redecl) { 1292 return Redecl->isInlineSpecified(); 1293 }; 1294 if (any_of(FD->redecls(), CheckRedeclForInline)) 1295 return true; 1296 const FunctionDecl *Pattern = FD->getTemplateInstantiationPattern(); 1297 if (!Pattern) 1298 return false; 1299 return any_of(Pattern->redecls(), CheckRedeclForInline); 1300 }; 1301 if (CheckForInline(FD)) { 1302 B.addAttribute(llvm::Attribute::InlineHint); 1303 } else if (CodeGenOpts.getInlining() == 1304 CodeGenOptions::OnlyHintInlining && 1305 !FD->isInlined() && 1306 !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) { 1307 B.addAttribute(llvm::Attribute::NoInline); 1308 } 1309 } 1310 } 1311 1312 // Add other optimization related attributes if we are optimizing this 1313 // function. 1314 if (!D->hasAttr<OptimizeNoneAttr>()) { 1315 if (D->hasAttr<ColdAttr>()) { 1316 if (!ShouldAddOptNone) 1317 B.addAttribute(llvm::Attribute::OptimizeForSize); 1318 B.addAttribute(llvm::Attribute::Cold); 1319 } 1320 1321 if (D->hasAttr<MinSizeAttr>()) 1322 B.addAttribute(llvm::Attribute::MinSize); 1323 } 1324 1325 F->addAttributes(llvm::AttributeList::FunctionIndex, B); 1326 1327 unsigned alignment = D->getMaxAlignment() / Context.getCharWidth(); 1328 if (alignment) 1329 F->setAlignment(alignment); 1330 1331 if (!D->hasAttr<AlignedAttr>()) 1332 if (LangOpts.FunctionAlignment) 1333 F->setAlignment(1 << LangOpts.FunctionAlignment); 1334 1335 // Some C++ ABIs require 2-byte alignment for member functions, in order to 1336 // reserve a bit for differentiating between virtual and non-virtual member 1337 // functions. If the current target's C++ ABI requires this and this is a 1338 // member function, set its alignment accordingly. 1339 if (getTarget().getCXXABI().areMemberFunctionsAligned()) { 1340 if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D)) 1341 F->setAlignment(2); 1342 } 1343 1344 // In the cross-dso CFI mode, we want !type attributes on definitions only. 1345 if (CodeGenOpts.SanitizeCfiCrossDso) 1346 if (auto *FD = dyn_cast<FunctionDecl>(D)) 1347 CreateFunctionTypeMetadataForIcall(FD, F); 1348 1349 // Emit type metadata on member functions for member function pointer checks. 1350 // These are only ever necessary on definitions; we're guaranteed that the 1351 // definition will be present in the LTO unit as a result of LTO visibility. 1352 auto *MD = dyn_cast<CXXMethodDecl>(D); 1353 if (MD && requiresMemberFunctionPointerTypeMetadata(*this, MD)) { 1354 for (const CXXRecordDecl *Base : getMostBaseClasses(MD->getParent())) { 1355 llvm::Metadata *Id = 1356 CreateMetadataIdentifierForType(Context.getMemberPointerType( 1357 MD->getType(), Context.getRecordType(Base).getTypePtr())); 1358 F->addTypeMetadata(0, Id); 1359 } 1360 } 1361 } 1362 1363 void CodeGenModule::SetCommonAttributes(GlobalDecl GD, llvm::GlobalValue *GV) { 1364 const Decl *D = GD.getDecl(); 1365 if (dyn_cast_or_null<NamedDecl>(D)) 1366 setGVProperties(GV, GD); 1367 else 1368 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 1369 1370 if (D && D->hasAttr<UsedAttr>()) 1371 addUsedGlobal(GV); 1372 1373 if (CodeGenOpts.KeepStaticConsts && D && isa<VarDecl>(D)) { 1374 const auto *VD = cast<VarDecl>(D); 1375 if (VD->getType().isConstQualified() && 1376 VD->getStorageDuration() == SD_Static) 1377 addUsedGlobal(GV); 1378 } 1379 } 1380 1381 bool CodeGenModule::GetCPUAndFeaturesAttributes(GlobalDecl GD, 1382 llvm::AttrBuilder &Attrs) { 1383 // Add target-cpu and target-features attributes to functions. If 1384 // we have a decl for the function and it has a target attribute then 1385 // parse that and add it to the feature set. 1386 StringRef TargetCPU = getTarget().getTargetOpts().CPU; 1387 std::vector<std::string> Features; 1388 const auto *FD = dyn_cast_or_null<FunctionDecl>(GD.getDecl()); 1389 FD = FD ? FD->getMostRecentDecl() : FD; 1390 const auto *TD = FD ? FD->getAttr<TargetAttr>() : nullptr; 1391 const auto *SD = FD ? FD->getAttr<CPUSpecificAttr>() : nullptr; 1392 bool AddedAttr = false; 1393 if (TD || SD) { 1394 llvm::StringMap<bool> FeatureMap; 1395 getFunctionFeatureMap(FeatureMap, GD); 1396 1397 // Produce the canonical string for this set of features. 1398 for (const llvm::StringMap<bool>::value_type &Entry : FeatureMap) 1399 Features.push_back((Entry.getValue() ? "+" : "-") + Entry.getKey().str()); 1400 1401 // Now add the target-cpu and target-features to the function. 1402 // While we populated the feature map above, we still need to 1403 // get and parse the target attribute so we can get the cpu for 1404 // the function. 1405 if (TD) { 1406 TargetAttr::ParsedTargetAttr ParsedAttr = TD->parse(); 1407 if (ParsedAttr.Architecture != "" && 1408 getTarget().isValidCPUName(ParsedAttr.Architecture)) 1409 TargetCPU = ParsedAttr.Architecture; 1410 } 1411 } else { 1412 // Otherwise just add the existing target cpu and target features to the 1413 // function. 1414 Features = getTarget().getTargetOpts().Features; 1415 } 1416 1417 if (TargetCPU != "") { 1418 Attrs.addAttribute("target-cpu", TargetCPU); 1419 AddedAttr = true; 1420 } 1421 if (!Features.empty()) { 1422 llvm::sort(Features); 1423 Attrs.addAttribute("target-features", llvm::join(Features, ",")); 1424 AddedAttr = true; 1425 } 1426 1427 return AddedAttr; 1428 } 1429 1430 void CodeGenModule::setNonAliasAttributes(GlobalDecl GD, 1431 llvm::GlobalObject *GO) { 1432 const Decl *D = GD.getDecl(); 1433 SetCommonAttributes(GD, GO); 1434 1435 if (D) { 1436 if (auto *GV = dyn_cast<llvm::GlobalVariable>(GO)) { 1437 if (auto *SA = D->getAttr<PragmaClangBSSSectionAttr>()) 1438 GV->addAttribute("bss-section", SA->getName()); 1439 if (auto *SA = D->getAttr<PragmaClangDataSectionAttr>()) 1440 GV->addAttribute("data-section", SA->getName()); 1441 if (auto *SA = D->getAttr<PragmaClangRodataSectionAttr>()) 1442 GV->addAttribute("rodata-section", SA->getName()); 1443 } 1444 1445 if (auto *F = dyn_cast<llvm::Function>(GO)) { 1446 if (auto *SA = D->getAttr<PragmaClangTextSectionAttr>()) 1447 if (!D->getAttr<SectionAttr>()) 1448 F->addFnAttr("implicit-section-name", SA->getName()); 1449 1450 llvm::AttrBuilder Attrs; 1451 if (GetCPUAndFeaturesAttributes(GD, Attrs)) { 1452 // We know that GetCPUAndFeaturesAttributes will always have the 1453 // newest set, since it has the newest possible FunctionDecl, so the 1454 // new ones should replace the old. 1455 F->removeFnAttr("target-cpu"); 1456 F->removeFnAttr("target-features"); 1457 F->addAttributes(llvm::AttributeList::FunctionIndex, Attrs); 1458 } 1459 } 1460 1461 if (const auto *CSA = D->getAttr<CodeSegAttr>()) 1462 GO->setSection(CSA->getName()); 1463 else if (const auto *SA = D->getAttr<SectionAttr>()) 1464 GO->setSection(SA->getName()); 1465 } 1466 1467 getTargetCodeGenInfo().setTargetAttributes(D, GO, *this); 1468 } 1469 1470 void CodeGenModule::SetInternalFunctionAttributes(GlobalDecl GD, 1471 llvm::Function *F, 1472 const CGFunctionInfo &FI) { 1473 const Decl *D = GD.getDecl(); 1474 SetLLVMFunctionAttributes(GD, FI, F); 1475 SetLLVMFunctionAttributesForDefinition(D, F); 1476 1477 F->setLinkage(llvm::Function::InternalLinkage); 1478 1479 setNonAliasAttributes(GD, F); 1480 } 1481 1482 static void setLinkageForGV(llvm::GlobalValue *GV, const NamedDecl *ND) { 1483 // Set linkage and visibility in case we never see a definition. 1484 LinkageInfo LV = ND->getLinkageAndVisibility(); 1485 // Don't set internal linkage on declarations. 1486 // "extern_weak" is overloaded in LLVM; we probably should have 1487 // separate linkage types for this. 1488 if (isExternallyVisible(LV.getLinkage()) && 1489 (ND->hasAttr<WeakAttr>() || ND->isWeakImported())) 1490 GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage); 1491 } 1492 1493 void CodeGenModule::CreateFunctionTypeMetadataForIcall(const FunctionDecl *FD, 1494 llvm::Function *F) { 1495 // Only if we are checking indirect calls. 1496 if (!LangOpts.Sanitize.has(SanitizerKind::CFIICall)) 1497 return; 1498 1499 // Non-static class methods are handled via vtable or member function pointer 1500 // checks elsewhere. 1501 if (isa<CXXMethodDecl>(FD) && !cast<CXXMethodDecl>(FD)->isStatic()) 1502 return; 1503 1504 // Additionally, if building with cross-DSO support... 1505 if (CodeGenOpts.SanitizeCfiCrossDso) { 1506 // Skip available_externally functions. They won't be codegen'ed in the 1507 // current module anyway. 1508 if (getContext().GetGVALinkageForFunction(FD) == GVA_AvailableExternally) 1509 return; 1510 } 1511 1512 llvm::Metadata *MD = CreateMetadataIdentifierForType(FD->getType()); 1513 F->addTypeMetadata(0, MD); 1514 F->addTypeMetadata(0, CreateMetadataIdentifierGeneralized(FD->getType())); 1515 1516 // Emit a hash-based bit set entry for cross-DSO calls. 1517 if (CodeGenOpts.SanitizeCfiCrossDso) 1518 if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD)) 1519 F->addTypeMetadata(0, llvm::ConstantAsMetadata::get(CrossDsoTypeId)); 1520 } 1521 1522 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD, llvm::Function *F, 1523 bool IsIncompleteFunction, 1524 bool IsThunk) { 1525 1526 if (llvm::Intrinsic::ID IID = F->getIntrinsicID()) { 1527 // If this is an intrinsic function, set the function's attributes 1528 // to the intrinsic's attributes. 1529 F->setAttributes(llvm::Intrinsic::getAttributes(getLLVMContext(), IID)); 1530 return; 1531 } 1532 1533 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 1534 1535 if (!IsIncompleteFunction) { 1536 SetLLVMFunctionAttributes(GD, getTypes().arrangeGlobalDeclaration(GD), F); 1537 // Setup target-specific attributes. 1538 if (F->isDeclaration()) 1539 getTargetCodeGenInfo().setTargetAttributes(FD, F, *this); 1540 } 1541 1542 // Add the Returned attribute for "this", except for iOS 5 and earlier 1543 // where substantial code, including the libstdc++ dylib, was compiled with 1544 // GCC and does not actually return "this". 1545 if (!IsThunk && getCXXABI().HasThisReturn(GD) && 1546 !(getTriple().isiOS() && getTriple().isOSVersionLT(6))) { 1547 assert(!F->arg_empty() && 1548 F->arg_begin()->getType() 1549 ->canLosslesslyBitCastTo(F->getReturnType()) && 1550 "unexpected this return"); 1551 F->addAttribute(1, llvm::Attribute::Returned); 1552 } 1553 1554 // Only a few attributes are set on declarations; these may later be 1555 // overridden by a definition. 1556 1557 setLinkageForGV(F, FD); 1558 setGVProperties(F, FD); 1559 1560 if (const auto *CSA = FD->getAttr<CodeSegAttr>()) 1561 F->setSection(CSA->getName()); 1562 else if (const auto *SA = FD->getAttr<SectionAttr>()) 1563 F->setSection(SA->getName()); 1564 1565 if (FD->isReplaceableGlobalAllocationFunction()) { 1566 // A replaceable global allocation function does not act like a builtin by 1567 // default, only if it is invoked by a new-expression or delete-expression. 1568 F->addAttribute(llvm::AttributeList::FunctionIndex, 1569 llvm::Attribute::NoBuiltin); 1570 1571 // A sane operator new returns a non-aliasing pointer. 1572 // FIXME: Also add NonNull attribute to the return value 1573 // for the non-nothrow forms? 1574 auto Kind = FD->getDeclName().getCXXOverloadedOperator(); 1575 if (getCodeGenOpts().AssumeSaneOperatorNew && 1576 (Kind == OO_New || Kind == OO_Array_New)) 1577 F->addAttribute(llvm::AttributeList::ReturnIndex, 1578 llvm::Attribute::NoAlias); 1579 } 1580 1581 if (isa<CXXConstructorDecl>(FD) || isa<CXXDestructorDecl>(FD)) 1582 F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 1583 else if (const auto *MD = dyn_cast<CXXMethodDecl>(FD)) 1584 if (MD->isVirtual()) 1585 F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 1586 1587 // Don't emit entries for function declarations in the cross-DSO mode. This 1588 // is handled with better precision by the receiving DSO. 1589 if (!CodeGenOpts.SanitizeCfiCrossDso) 1590 CreateFunctionTypeMetadataForIcall(FD, F); 1591 1592 if (getLangOpts().OpenMP && FD->hasAttr<OMPDeclareSimdDeclAttr>()) 1593 getOpenMPRuntime().emitDeclareSimdFunction(FD, F); 1594 } 1595 1596 void CodeGenModule::addUsedGlobal(llvm::GlobalValue *GV) { 1597 assert(!GV->isDeclaration() && 1598 "Only globals with definition can force usage."); 1599 LLVMUsed.emplace_back(GV); 1600 } 1601 1602 void CodeGenModule::addCompilerUsedGlobal(llvm::GlobalValue *GV) { 1603 assert(!GV->isDeclaration() && 1604 "Only globals with definition can force usage."); 1605 LLVMCompilerUsed.emplace_back(GV); 1606 } 1607 1608 static void emitUsed(CodeGenModule &CGM, StringRef Name, 1609 std::vector<llvm::WeakTrackingVH> &List) { 1610 // Don't create llvm.used if there is no need. 1611 if (List.empty()) 1612 return; 1613 1614 // Convert List to what ConstantArray needs. 1615 SmallVector<llvm::Constant*, 8> UsedArray; 1616 UsedArray.resize(List.size()); 1617 for (unsigned i = 0, e = List.size(); i != e; ++i) { 1618 UsedArray[i] = 1619 llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast( 1620 cast<llvm::Constant>(&*List[i]), CGM.Int8PtrTy); 1621 } 1622 1623 if (UsedArray.empty()) 1624 return; 1625 llvm::ArrayType *ATy = llvm::ArrayType::get(CGM.Int8PtrTy, UsedArray.size()); 1626 1627 auto *GV = new llvm::GlobalVariable( 1628 CGM.getModule(), ATy, false, llvm::GlobalValue::AppendingLinkage, 1629 llvm::ConstantArray::get(ATy, UsedArray), Name); 1630 1631 GV->setSection("llvm.metadata"); 1632 } 1633 1634 void CodeGenModule::emitLLVMUsed() { 1635 emitUsed(*this, "llvm.used", LLVMUsed); 1636 emitUsed(*this, "llvm.compiler.used", LLVMCompilerUsed); 1637 } 1638 1639 void CodeGenModule::AppendLinkerOptions(StringRef Opts) { 1640 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opts); 1641 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 1642 } 1643 1644 void CodeGenModule::AddDetectMismatch(StringRef Name, StringRef Value) { 1645 llvm::SmallString<32> Opt; 1646 getTargetCodeGenInfo().getDetectMismatchOption(Name, Value, Opt); 1647 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt); 1648 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 1649 } 1650 1651 void CodeGenModule::AddELFLibDirective(StringRef Lib) { 1652 auto &C = getLLVMContext(); 1653 LinkerOptionsMetadata.push_back(llvm::MDNode::get( 1654 C, {llvm::MDString::get(C, "lib"), llvm::MDString::get(C, Lib)})); 1655 } 1656 1657 void CodeGenModule::AddDependentLib(StringRef Lib) { 1658 llvm::SmallString<24> Opt; 1659 getTargetCodeGenInfo().getDependentLibraryOption(Lib, Opt); 1660 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt); 1661 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 1662 } 1663 1664 /// Add link options implied by the given module, including modules 1665 /// it depends on, using a postorder walk. 1666 static void addLinkOptionsPostorder(CodeGenModule &CGM, Module *Mod, 1667 SmallVectorImpl<llvm::MDNode *> &Metadata, 1668 llvm::SmallPtrSet<Module *, 16> &Visited) { 1669 // Import this module's parent. 1670 if (Mod->Parent && Visited.insert(Mod->Parent).second) { 1671 addLinkOptionsPostorder(CGM, Mod->Parent, Metadata, Visited); 1672 } 1673 1674 // Import this module's dependencies. 1675 for (unsigned I = Mod->Imports.size(); I > 0; --I) { 1676 if (Visited.insert(Mod->Imports[I - 1]).second) 1677 addLinkOptionsPostorder(CGM, Mod->Imports[I-1], Metadata, Visited); 1678 } 1679 1680 // Add linker options to link against the libraries/frameworks 1681 // described by this module. 1682 llvm::LLVMContext &Context = CGM.getLLVMContext(); 1683 1684 // For modules that use export_as for linking, use that module 1685 // name instead. 1686 if (Mod->UseExportAsModuleLinkName) 1687 return; 1688 1689 for (unsigned I = Mod->LinkLibraries.size(); I > 0; --I) { 1690 // Link against a framework. Frameworks are currently Darwin only, so we 1691 // don't to ask TargetCodeGenInfo for the spelling of the linker option. 1692 if (Mod->LinkLibraries[I-1].IsFramework) { 1693 llvm::Metadata *Args[2] = { 1694 llvm::MDString::get(Context, "-framework"), 1695 llvm::MDString::get(Context, Mod->LinkLibraries[I - 1].Library)}; 1696 1697 Metadata.push_back(llvm::MDNode::get(Context, Args)); 1698 continue; 1699 } 1700 1701 // Link against a library. 1702 llvm::SmallString<24> Opt; 1703 CGM.getTargetCodeGenInfo().getDependentLibraryOption( 1704 Mod->LinkLibraries[I-1].Library, Opt); 1705 auto *OptString = llvm::MDString::get(Context, Opt); 1706 Metadata.push_back(llvm::MDNode::get(Context, OptString)); 1707 } 1708 } 1709 1710 void CodeGenModule::EmitModuleLinkOptions() { 1711 // Collect the set of all of the modules we want to visit to emit link 1712 // options, which is essentially the imported modules and all of their 1713 // non-explicit child modules. 1714 llvm::SetVector<clang::Module *> LinkModules; 1715 llvm::SmallPtrSet<clang::Module *, 16> Visited; 1716 SmallVector<clang::Module *, 16> Stack; 1717 1718 // Seed the stack with imported modules. 1719 for (Module *M : ImportedModules) { 1720 // Do not add any link flags when an implementation TU of a module imports 1721 // a header of that same module. 1722 if (M->getTopLevelModuleName() == getLangOpts().CurrentModule && 1723 !getLangOpts().isCompilingModule()) 1724 continue; 1725 if (Visited.insert(M).second) 1726 Stack.push_back(M); 1727 } 1728 1729 // Find all of the modules to import, making a little effort to prune 1730 // non-leaf modules. 1731 while (!Stack.empty()) { 1732 clang::Module *Mod = Stack.pop_back_val(); 1733 1734 bool AnyChildren = false; 1735 1736 // Visit the submodules of this module. 1737 for (clang::Module::submodule_iterator Sub = Mod->submodule_begin(), 1738 SubEnd = Mod->submodule_end(); 1739 Sub != SubEnd; ++Sub) { 1740 // Skip explicit children; they need to be explicitly imported to be 1741 // linked against. 1742 if ((*Sub)->IsExplicit) 1743 continue; 1744 1745 if (Visited.insert(*Sub).second) { 1746 Stack.push_back(*Sub); 1747 AnyChildren = true; 1748 } 1749 } 1750 1751 // We didn't find any children, so add this module to the list of 1752 // modules to link against. 1753 if (!AnyChildren) { 1754 LinkModules.insert(Mod); 1755 } 1756 } 1757 1758 // Add link options for all of the imported modules in reverse topological 1759 // order. We don't do anything to try to order import link flags with respect 1760 // to linker options inserted by things like #pragma comment(). 1761 SmallVector<llvm::MDNode *, 16> MetadataArgs; 1762 Visited.clear(); 1763 for (Module *M : LinkModules) 1764 if (Visited.insert(M).second) 1765 addLinkOptionsPostorder(*this, M, MetadataArgs, Visited); 1766 std::reverse(MetadataArgs.begin(), MetadataArgs.end()); 1767 LinkerOptionsMetadata.append(MetadataArgs.begin(), MetadataArgs.end()); 1768 1769 // Add the linker options metadata flag. 1770 auto *NMD = getModule().getOrInsertNamedMetadata("llvm.linker.options"); 1771 for (auto *MD : LinkerOptionsMetadata) 1772 NMD->addOperand(MD); 1773 } 1774 1775 void CodeGenModule::EmitDeferred() { 1776 // Emit deferred declare target declarations. 1777 if (getLangOpts().OpenMP && !getLangOpts().OpenMPSimd) 1778 getOpenMPRuntime().emitDeferredTargetDecls(); 1779 1780 // Emit code for any potentially referenced deferred decls. Since a 1781 // previously unused static decl may become used during the generation of code 1782 // for a static function, iterate until no changes are made. 1783 1784 if (!DeferredVTables.empty()) { 1785 EmitDeferredVTables(); 1786 1787 // Emitting a vtable doesn't directly cause more vtables to 1788 // become deferred, although it can cause functions to be 1789 // emitted that then need those vtables. 1790 assert(DeferredVTables.empty()); 1791 } 1792 1793 // Stop if we're out of both deferred vtables and deferred declarations. 1794 if (DeferredDeclsToEmit.empty()) 1795 return; 1796 1797 // Grab the list of decls to emit. If EmitGlobalDefinition schedules more 1798 // work, it will not interfere with this. 1799 std::vector<GlobalDecl> CurDeclsToEmit; 1800 CurDeclsToEmit.swap(DeferredDeclsToEmit); 1801 1802 for (GlobalDecl &D : CurDeclsToEmit) { 1803 // We should call GetAddrOfGlobal with IsForDefinition set to true in order 1804 // to get GlobalValue with exactly the type we need, not something that 1805 // might had been created for another decl with the same mangled name but 1806 // different type. 1807 llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>( 1808 GetAddrOfGlobal(D, ForDefinition)); 1809 1810 // In case of different address spaces, we may still get a cast, even with 1811 // IsForDefinition equal to true. Query mangled names table to get 1812 // GlobalValue. 1813 if (!GV) 1814 GV = GetGlobalValue(getMangledName(D)); 1815 1816 // Make sure GetGlobalValue returned non-null. 1817 assert(GV); 1818 1819 // Check to see if we've already emitted this. This is necessary 1820 // for a couple of reasons: first, decls can end up in the 1821 // deferred-decls queue multiple times, and second, decls can end 1822 // up with definitions in unusual ways (e.g. by an extern inline 1823 // function acquiring a strong function redefinition). Just 1824 // ignore these cases. 1825 if (!GV->isDeclaration()) 1826 continue; 1827 1828 // Otherwise, emit the definition and move on to the next one. 1829 EmitGlobalDefinition(D, GV); 1830 1831 // If we found out that we need to emit more decls, do that recursively. 1832 // This has the advantage that the decls are emitted in a DFS and related 1833 // ones are close together, which is convenient for testing. 1834 if (!DeferredVTables.empty() || !DeferredDeclsToEmit.empty()) { 1835 EmitDeferred(); 1836 assert(DeferredVTables.empty() && DeferredDeclsToEmit.empty()); 1837 } 1838 } 1839 } 1840 1841 void CodeGenModule::EmitVTablesOpportunistically() { 1842 // Try to emit external vtables as available_externally if they have emitted 1843 // all inlined virtual functions. It runs after EmitDeferred() and therefore 1844 // is not allowed to create new references to things that need to be emitted 1845 // lazily. Note that it also uses fact that we eagerly emitting RTTI. 1846 1847 assert((OpportunisticVTables.empty() || shouldOpportunisticallyEmitVTables()) 1848 && "Only emit opportunistic vtables with optimizations"); 1849 1850 for (const CXXRecordDecl *RD : OpportunisticVTables) { 1851 assert(getVTables().isVTableExternal(RD) && 1852 "This queue should only contain external vtables"); 1853 if (getCXXABI().canSpeculativelyEmitVTable(RD)) 1854 VTables.GenerateClassData(RD); 1855 } 1856 OpportunisticVTables.clear(); 1857 } 1858 1859 void CodeGenModule::EmitGlobalAnnotations() { 1860 if (Annotations.empty()) 1861 return; 1862 1863 // Create a new global variable for the ConstantStruct in the Module. 1864 llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get( 1865 Annotations[0]->getType(), Annotations.size()), Annotations); 1866 auto *gv = new llvm::GlobalVariable(getModule(), Array->getType(), false, 1867 llvm::GlobalValue::AppendingLinkage, 1868 Array, "llvm.global.annotations"); 1869 gv->setSection(AnnotationSection); 1870 } 1871 1872 llvm::Constant *CodeGenModule::EmitAnnotationString(StringRef Str) { 1873 llvm::Constant *&AStr = AnnotationStrings[Str]; 1874 if (AStr) 1875 return AStr; 1876 1877 // Not found yet, create a new global. 1878 llvm::Constant *s = llvm::ConstantDataArray::getString(getLLVMContext(), Str); 1879 auto *gv = 1880 new llvm::GlobalVariable(getModule(), s->getType(), true, 1881 llvm::GlobalValue::PrivateLinkage, s, ".str"); 1882 gv->setSection(AnnotationSection); 1883 gv->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 1884 AStr = gv; 1885 return gv; 1886 } 1887 1888 llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) { 1889 SourceManager &SM = getContext().getSourceManager(); 1890 PresumedLoc PLoc = SM.getPresumedLoc(Loc); 1891 if (PLoc.isValid()) 1892 return EmitAnnotationString(PLoc.getFilename()); 1893 return EmitAnnotationString(SM.getBufferName(Loc)); 1894 } 1895 1896 llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) { 1897 SourceManager &SM = getContext().getSourceManager(); 1898 PresumedLoc PLoc = SM.getPresumedLoc(L); 1899 unsigned LineNo = PLoc.isValid() ? PLoc.getLine() : 1900 SM.getExpansionLineNumber(L); 1901 return llvm::ConstantInt::get(Int32Ty, LineNo); 1902 } 1903 1904 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV, 1905 const AnnotateAttr *AA, 1906 SourceLocation L) { 1907 // Get the globals for file name, annotation, and the line number. 1908 llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()), 1909 *UnitGV = EmitAnnotationUnit(L), 1910 *LineNoCst = EmitAnnotationLineNo(L); 1911 1912 // Create the ConstantStruct for the global annotation. 1913 llvm::Constant *Fields[4] = { 1914 llvm::ConstantExpr::getBitCast(GV, Int8PtrTy), 1915 llvm::ConstantExpr::getBitCast(AnnoGV, Int8PtrTy), 1916 llvm::ConstantExpr::getBitCast(UnitGV, Int8PtrTy), 1917 LineNoCst 1918 }; 1919 return llvm::ConstantStruct::getAnon(Fields); 1920 } 1921 1922 void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D, 1923 llvm::GlobalValue *GV) { 1924 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 1925 // Get the struct elements for these annotations. 1926 for (const auto *I : D->specific_attrs<AnnotateAttr>()) 1927 Annotations.push_back(EmitAnnotateAttr(GV, I, D->getLocation())); 1928 } 1929 1930 bool CodeGenModule::isInSanitizerBlacklist(SanitizerMask Kind, 1931 llvm::Function *Fn, 1932 SourceLocation Loc) const { 1933 const auto &SanitizerBL = getContext().getSanitizerBlacklist(); 1934 // Blacklist by function name. 1935 if (SanitizerBL.isBlacklistedFunction(Kind, Fn->getName())) 1936 return true; 1937 // Blacklist by location. 1938 if (Loc.isValid()) 1939 return SanitizerBL.isBlacklistedLocation(Kind, Loc); 1940 // If location is unknown, this may be a compiler-generated function. Assume 1941 // it's located in the main file. 1942 auto &SM = Context.getSourceManager(); 1943 if (const auto *MainFile = SM.getFileEntryForID(SM.getMainFileID())) { 1944 return SanitizerBL.isBlacklistedFile(Kind, MainFile->getName()); 1945 } 1946 return false; 1947 } 1948 1949 bool CodeGenModule::isInSanitizerBlacklist(llvm::GlobalVariable *GV, 1950 SourceLocation Loc, QualType Ty, 1951 StringRef Category) const { 1952 // For now globals can be blacklisted only in ASan and KASan. 1953 const SanitizerMask EnabledAsanMask = LangOpts.Sanitize.Mask & 1954 (SanitizerKind::Address | SanitizerKind::KernelAddress | 1955 SanitizerKind::HWAddress | SanitizerKind::KernelHWAddress); 1956 if (!EnabledAsanMask) 1957 return false; 1958 const auto &SanitizerBL = getContext().getSanitizerBlacklist(); 1959 if (SanitizerBL.isBlacklistedGlobal(EnabledAsanMask, GV->getName(), Category)) 1960 return true; 1961 if (SanitizerBL.isBlacklistedLocation(EnabledAsanMask, Loc, Category)) 1962 return true; 1963 // Check global type. 1964 if (!Ty.isNull()) { 1965 // Drill down the array types: if global variable of a fixed type is 1966 // blacklisted, we also don't instrument arrays of them. 1967 while (auto AT = dyn_cast<ArrayType>(Ty.getTypePtr())) 1968 Ty = AT->getElementType(); 1969 Ty = Ty.getCanonicalType().getUnqualifiedType(); 1970 // We allow to blacklist only record types (classes, structs etc.) 1971 if (Ty->isRecordType()) { 1972 std::string TypeStr = Ty.getAsString(getContext().getPrintingPolicy()); 1973 if (SanitizerBL.isBlacklistedType(EnabledAsanMask, TypeStr, Category)) 1974 return true; 1975 } 1976 } 1977 return false; 1978 } 1979 1980 bool CodeGenModule::imbueXRayAttrs(llvm::Function *Fn, SourceLocation Loc, 1981 StringRef Category) const { 1982 const auto &XRayFilter = getContext().getXRayFilter(); 1983 using ImbueAttr = XRayFunctionFilter::ImbueAttribute; 1984 auto Attr = ImbueAttr::NONE; 1985 if (Loc.isValid()) 1986 Attr = XRayFilter.shouldImbueLocation(Loc, Category); 1987 if (Attr == ImbueAttr::NONE) 1988 Attr = XRayFilter.shouldImbueFunction(Fn->getName()); 1989 switch (Attr) { 1990 case ImbueAttr::NONE: 1991 return false; 1992 case ImbueAttr::ALWAYS: 1993 Fn->addFnAttr("function-instrument", "xray-always"); 1994 break; 1995 case ImbueAttr::ALWAYS_ARG1: 1996 Fn->addFnAttr("function-instrument", "xray-always"); 1997 Fn->addFnAttr("xray-log-args", "1"); 1998 break; 1999 case ImbueAttr::NEVER: 2000 Fn->addFnAttr("function-instrument", "xray-never"); 2001 break; 2002 } 2003 return true; 2004 } 2005 2006 bool CodeGenModule::MustBeEmitted(const ValueDecl *Global) { 2007 // Never defer when EmitAllDecls is specified. 2008 if (LangOpts.EmitAllDecls) 2009 return true; 2010 2011 if (CodeGenOpts.KeepStaticConsts) { 2012 const auto *VD = dyn_cast<VarDecl>(Global); 2013 if (VD && VD->getType().isConstQualified() && 2014 VD->getStorageDuration() == SD_Static) 2015 return true; 2016 } 2017 2018 return getContext().DeclMustBeEmitted(Global); 2019 } 2020 2021 bool CodeGenModule::MayBeEmittedEagerly(const ValueDecl *Global) { 2022 if (const auto *FD = dyn_cast<FunctionDecl>(Global)) 2023 if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation) 2024 // Implicit template instantiations may change linkage if they are later 2025 // explicitly instantiated, so they should not be emitted eagerly. 2026 return false; 2027 if (const auto *VD = dyn_cast<VarDecl>(Global)) 2028 if (Context.getInlineVariableDefinitionKind(VD) == 2029 ASTContext::InlineVariableDefinitionKind::WeakUnknown) 2030 // A definition of an inline constexpr static data member may change 2031 // linkage later if it's redeclared outside the class. 2032 return false; 2033 // If OpenMP is enabled and threadprivates must be generated like TLS, delay 2034 // codegen for global variables, because they may be marked as threadprivate. 2035 if (LangOpts.OpenMP && LangOpts.OpenMPUseTLS && 2036 getContext().getTargetInfo().isTLSSupported() && isa<VarDecl>(Global) && 2037 !isTypeConstant(Global->getType(), false) && 2038 !OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(Global)) 2039 return false; 2040 2041 return true; 2042 } 2043 2044 ConstantAddress CodeGenModule::GetAddrOfUuidDescriptor( 2045 const CXXUuidofExpr* E) { 2046 // Sema has verified that IIDSource has a __declspec(uuid()), and that its 2047 // well-formed. 2048 StringRef Uuid = E->getUuidStr(); 2049 std::string Name = "_GUID_" + Uuid.lower(); 2050 std::replace(Name.begin(), Name.end(), '-', '_'); 2051 2052 // The UUID descriptor should be pointer aligned. 2053 CharUnits Alignment = CharUnits::fromQuantity(PointerAlignInBytes); 2054 2055 // Look for an existing global. 2056 if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name)) 2057 return ConstantAddress(GV, Alignment); 2058 2059 llvm::Constant *Init = EmitUuidofInitializer(Uuid); 2060 assert(Init && "failed to initialize as constant"); 2061 2062 auto *GV = new llvm::GlobalVariable( 2063 getModule(), Init->getType(), 2064 /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name); 2065 if (supportsCOMDAT()) 2066 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 2067 setDSOLocal(GV); 2068 return ConstantAddress(GV, Alignment); 2069 } 2070 2071 ConstantAddress CodeGenModule::GetWeakRefReference(const ValueDecl *VD) { 2072 const AliasAttr *AA = VD->getAttr<AliasAttr>(); 2073 assert(AA && "No alias?"); 2074 2075 CharUnits Alignment = getContext().getDeclAlign(VD); 2076 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType()); 2077 2078 // See if there is already something with the target's name in the module. 2079 llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee()); 2080 if (Entry) { 2081 unsigned AS = getContext().getTargetAddressSpace(VD->getType()); 2082 auto Ptr = llvm::ConstantExpr::getBitCast(Entry, DeclTy->getPointerTo(AS)); 2083 return ConstantAddress(Ptr, Alignment); 2084 } 2085 2086 llvm::Constant *Aliasee; 2087 if (isa<llvm::FunctionType>(DeclTy)) 2088 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, 2089 GlobalDecl(cast<FunctionDecl>(VD)), 2090 /*ForVTable=*/false); 2091 else 2092 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), 2093 llvm::PointerType::getUnqual(DeclTy), 2094 nullptr); 2095 2096 auto *F = cast<llvm::GlobalValue>(Aliasee); 2097 F->setLinkage(llvm::Function::ExternalWeakLinkage); 2098 WeakRefReferences.insert(F); 2099 2100 return ConstantAddress(Aliasee, Alignment); 2101 } 2102 2103 void CodeGenModule::EmitGlobal(GlobalDecl GD) { 2104 const auto *Global = cast<ValueDecl>(GD.getDecl()); 2105 2106 // Weak references don't produce any output by themselves. 2107 if (Global->hasAttr<WeakRefAttr>()) 2108 return; 2109 2110 // If this is an alias definition (which otherwise looks like a declaration) 2111 // emit it now. 2112 if (Global->hasAttr<AliasAttr>()) 2113 return EmitAliasDefinition(GD); 2114 2115 // IFunc like an alias whose value is resolved at runtime by calling resolver. 2116 if (Global->hasAttr<IFuncAttr>()) 2117 return emitIFuncDefinition(GD); 2118 2119 // If this is a cpu_dispatch multiversion function, emit the resolver. 2120 if (Global->hasAttr<CPUDispatchAttr>()) 2121 return emitCPUDispatchDefinition(GD); 2122 2123 // If this is CUDA, be selective about which declarations we emit. 2124 if (LangOpts.CUDA) { 2125 if (LangOpts.CUDAIsDevice) { 2126 if (!Global->hasAttr<CUDADeviceAttr>() && 2127 !Global->hasAttr<CUDAGlobalAttr>() && 2128 !Global->hasAttr<CUDAConstantAttr>() && 2129 !Global->hasAttr<CUDASharedAttr>()) 2130 return; 2131 } else { 2132 // We need to emit host-side 'shadows' for all global 2133 // device-side variables because the CUDA runtime needs their 2134 // size and host-side address in order to provide access to 2135 // their device-side incarnations. 2136 2137 // So device-only functions are the only things we skip. 2138 if (isa<FunctionDecl>(Global) && !Global->hasAttr<CUDAHostAttr>() && 2139 Global->hasAttr<CUDADeviceAttr>()) 2140 return; 2141 2142 assert((isa<FunctionDecl>(Global) || isa<VarDecl>(Global)) && 2143 "Expected Variable or Function"); 2144 } 2145 } 2146 2147 if (LangOpts.OpenMP) { 2148 // If this is OpenMP device, check if it is legal to emit this global 2149 // normally. 2150 if (OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(GD)) 2151 return; 2152 if (auto *DRD = dyn_cast<OMPDeclareReductionDecl>(Global)) { 2153 if (MustBeEmitted(Global)) 2154 EmitOMPDeclareReduction(DRD); 2155 return; 2156 } 2157 } 2158 2159 // Ignore declarations, they will be emitted on their first use. 2160 if (const auto *FD = dyn_cast<FunctionDecl>(Global)) { 2161 // Forward declarations are emitted lazily on first use. 2162 if (!FD->doesThisDeclarationHaveABody()) { 2163 if (!FD->doesDeclarationForceExternallyVisibleDefinition()) 2164 return; 2165 2166 StringRef MangledName = getMangledName(GD); 2167 2168 // Compute the function info and LLVM type. 2169 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 2170 llvm::Type *Ty = getTypes().GetFunctionType(FI); 2171 2172 GetOrCreateLLVMFunction(MangledName, Ty, GD, /*ForVTable=*/false, 2173 /*DontDefer=*/false); 2174 return; 2175 } 2176 } else { 2177 const auto *VD = cast<VarDecl>(Global); 2178 assert(VD->isFileVarDecl() && "Cannot emit local var decl as global."); 2179 // We need to emit device-side global CUDA variables even if a 2180 // variable does not have a definition -- we still need to define 2181 // host-side shadow for it. 2182 bool MustEmitForCuda = LangOpts.CUDA && !LangOpts.CUDAIsDevice && 2183 !VD->hasDefinition() && 2184 (VD->hasAttr<CUDAConstantAttr>() || 2185 VD->hasAttr<CUDADeviceAttr>()); 2186 if (!MustEmitForCuda && 2187 VD->isThisDeclarationADefinition() != VarDecl::Definition && 2188 !Context.isMSStaticDataMemberInlineDefinition(VD)) { 2189 if (LangOpts.OpenMP) { 2190 // Emit declaration of the must-be-emitted declare target variable. 2191 if (llvm::Optional<OMPDeclareTargetDeclAttr::MapTypeTy> Res = 2192 OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD)) { 2193 if (*Res == OMPDeclareTargetDeclAttr::MT_To) { 2194 (void)GetAddrOfGlobalVar(VD); 2195 } else { 2196 assert(*Res == OMPDeclareTargetDeclAttr::MT_Link && 2197 "link claue expected."); 2198 (void)getOpenMPRuntime().getAddrOfDeclareTargetLink(VD); 2199 } 2200 return; 2201 } 2202 } 2203 // If this declaration may have caused an inline variable definition to 2204 // change linkage, make sure that it's emitted. 2205 if (Context.getInlineVariableDefinitionKind(VD) == 2206 ASTContext::InlineVariableDefinitionKind::Strong) 2207 GetAddrOfGlobalVar(VD); 2208 return; 2209 } 2210 } 2211 2212 // Defer code generation to first use when possible, e.g. if this is an inline 2213 // function. If the global must always be emitted, do it eagerly if possible 2214 // to benefit from cache locality. 2215 if (MustBeEmitted(Global) && MayBeEmittedEagerly(Global)) { 2216 // Emit the definition if it can't be deferred. 2217 EmitGlobalDefinition(GD); 2218 return; 2219 } 2220 2221 // If we're deferring emission of a C++ variable with an 2222 // initializer, remember the order in which it appeared in the file. 2223 if (getLangOpts().CPlusPlus && isa<VarDecl>(Global) && 2224 cast<VarDecl>(Global)->hasInit()) { 2225 DelayedCXXInitPosition[Global] = CXXGlobalInits.size(); 2226 CXXGlobalInits.push_back(nullptr); 2227 } 2228 2229 StringRef MangledName = getMangledName(GD); 2230 if (GetGlobalValue(MangledName) != nullptr) { 2231 // The value has already been used and should therefore be emitted. 2232 addDeferredDeclToEmit(GD); 2233 } else if (MustBeEmitted(Global)) { 2234 // The value must be emitted, but cannot be emitted eagerly. 2235 assert(!MayBeEmittedEagerly(Global)); 2236 addDeferredDeclToEmit(GD); 2237 } else { 2238 // Otherwise, remember that we saw a deferred decl with this name. The 2239 // first use of the mangled name will cause it to move into 2240 // DeferredDeclsToEmit. 2241 DeferredDecls[MangledName] = GD; 2242 } 2243 } 2244 2245 // Check if T is a class type with a destructor that's not dllimport. 2246 static bool HasNonDllImportDtor(QualType T) { 2247 if (const auto *RT = T->getBaseElementTypeUnsafe()->getAs<RecordType>()) 2248 if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl())) 2249 if (RD->getDestructor() && !RD->getDestructor()->hasAttr<DLLImportAttr>()) 2250 return true; 2251 2252 return false; 2253 } 2254 2255 namespace { 2256 struct FunctionIsDirectlyRecursive : 2257 public RecursiveASTVisitor<FunctionIsDirectlyRecursive> { 2258 const StringRef Name; 2259 const Builtin::Context &BI; 2260 bool Result; 2261 FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C) : 2262 Name(N), BI(C), Result(false) { 2263 } 2264 typedef RecursiveASTVisitor<FunctionIsDirectlyRecursive> Base; 2265 2266 bool TraverseCallExpr(CallExpr *E) { 2267 const FunctionDecl *FD = E->getDirectCallee(); 2268 if (!FD) 2269 return true; 2270 AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>(); 2271 if (Attr && Name == Attr->getLabel()) { 2272 Result = true; 2273 return false; 2274 } 2275 unsigned BuiltinID = FD->getBuiltinID(); 2276 if (!BuiltinID || !BI.isLibFunction(BuiltinID)) 2277 return true; 2278 StringRef BuiltinName = BI.getName(BuiltinID); 2279 if (BuiltinName.startswith("__builtin_") && 2280 Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) { 2281 Result = true; 2282 return false; 2283 } 2284 return true; 2285 } 2286 }; 2287 2288 // Make sure we're not referencing non-imported vars or functions. 2289 struct DLLImportFunctionVisitor 2290 : public RecursiveASTVisitor<DLLImportFunctionVisitor> { 2291 bool SafeToInline = true; 2292 2293 bool shouldVisitImplicitCode() const { return true; } 2294 2295 bool VisitVarDecl(VarDecl *VD) { 2296 if (VD->getTLSKind()) { 2297 // A thread-local variable cannot be imported. 2298 SafeToInline = false; 2299 return SafeToInline; 2300 } 2301 2302 // A variable definition might imply a destructor call. 2303 if (VD->isThisDeclarationADefinition()) 2304 SafeToInline = !HasNonDllImportDtor(VD->getType()); 2305 2306 return SafeToInline; 2307 } 2308 2309 bool VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) { 2310 if (const auto *D = E->getTemporary()->getDestructor()) 2311 SafeToInline = D->hasAttr<DLLImportAttr>(); 2312 return SafeToInline; 2313 } 2314 2315 bool VisitDeclRefExpr(DeclRefExpr *E) { 2316 ValueDecl *VD = E->getDecl(); 2317 if (isa<FunctionDecl>(VD)) 2318 SafeToInline = VD->hasAttr<DLLImportAttr>(); 2319 else if (VarDecl *V = dyn_cast<VarDecl>(VD)) 2320 SafeToInline = !V->hasGlobalStorage() || V->hasAttr<DLLImportAttr>(); 2321 return SafeToInline; 2322 } 2323 2324 bool VisitCXXConstructExpr(CXXConstructExpr *E) { 2325 SafeToInline = E->getConstructor()->hasAttr<DLLImportAttr>(); 2326 return SafeToInline; 2327 } 2328 2329 bool VisitCXXMemberCallExpr(CXXMemberCallExpr *E) { 2330 CXXMethodDecl *M = E->getMethodDecl(); 2331 if (!M) { 2332 // Call through a pointer to member function. This is safe to inline. 2333 SafeToInline = true; 2334 } else { 2335 SafeToInline = M->hasAttr<DLLImportAttr>(); 2336 } 2337 return SafeToInline; 2338 } 2339 2340 bool VisitCXXDeleteExpr(CXXDeleteExpr *E) { 2341 SafeToInline = E->getOperatorDelete()->hasAttr<DLLImportAttr>(); 2342 return SafeToInline; 2343 } 2344 2345 bool VisitCXXNewExpr(CXXNewExpr *E) { 2346 SafeToInline = E->getOperatorNew()->hasAttr<DLLImportAttr>(); 2347 return SafeToInline; 2348 } 2349 }; 2350 } 2351 2352 // isTriviallyRecursive - Check if this function calls another 2353 // decl that, because of the asm attribute or the other decl being a builtin, 2354 // ends up pointing to itself. 2355 bool 2356 CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) { 2357 StringRef Name; 2358 if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) { 2359 // asm labels are a special kind of mangling we have to support. 2360 AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>(); 2361 if (!Attr) 2362 return false; 2363 Name = Attr->getLabel(); 2364 } else { 2365 Name = FD->getName(); 2366 } 2367 2368 FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo); 2369 Walker.TraverseFunctionDecl(const_cast<FunctionDecl*>(FD)); 2370 return Walker.Result; 2371 } 2372 2373 bool CodeGenModule::shouldEmitFunction(GlobalDecl GD) { 2374 if (getFunctionLinkage(GD) != llvm::Function::AvailableExternallyLinkage) 2375 return true; 2376 const auto *F = cast<FunctionDecl>(GD.getDecl()); 2377 if (CodeGenOpts.OptimizationLevel == 0 && !F->hasAttr<AlwaysInlineAttr>()) 2378 return false; 2379 2380 if (F->hasAttr<DLLImportAttr>()) { 2381 // Check whether it would be safe to inline this dllimport function. 2382 DLLImportFunctionVisitor Visitor; 2383 Visitor.TraverseFunctionDecl(const_cast<FunctionDecl*>(F)); 2384 if (!Visitor.SafeToInline) 2385 return false; 2386 2387 if (const CXXDestructorDecl *Dtor = dyn_cast<CXXDestructorDecl>(F)) { 2388 // Implicit destructor invocations aren't captured in the AST, so the 2389 // check above can't see them. Check for them manually here. 2390 for (const Decl *Member : Dtor->getParent()->decls()) 2391 if (isa<FieldDecl>(Member)) 2392 if (HasNonDllImportDtor(cast<FieldDecl>(Member)->getType())) 2393 return false; 2394 for (const CXXBaseSpecifier &B : Dtor->getParent()->bases()) 2395 if (HasNonDllImportDtor(B.getType())) 2396 return false; 2397 } 2398 } 2399 2400 // PR9614. Avoid cases where the source code is lying to us. An available 2401 // externally function should have an equivalent function somewhere else, 2402 // but a function that calls itself is clearly not equivalent to the real 2403 // implementation. 2404 // This happens in glibc's btowc and in some configure checks. 2405 return !isTriviallyRecursive(F); 2406 } 2407 2408 bool CodeGenModule::shouldOpportunisticallyEmitVTables() { 2409 return CodeGenOpts.OptimizationLevel > 0; 2410 } 2411 2412 void CodeGenModule::EmitMultiVersionFunctionDefinition(GlobalDecl GD, 2413 llvm::GlobalValue *GV) { 2414 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 2415 2416 if (FD->isCPUSpecificMultiVersion()) { 2417 auto *Spec = FD->getAttr<CPUSpecificAttr>(); 2418 for (unsigned I = 0; I < Spec->cpus_size(); ++I) 2419 EmitGlobalFunctionDefinition(GD.getWithMultiVersionIndex(I), nullptr); 2420 // Requires multiple emits. 2421 } else 2422 EmitGlobalFunctionDefinition(GD, GV); 2423 } 2424 2425 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD, llvm::GlobalValue *GV) { 2426 const auto *D = cast<ValueDecl>(GD.getDecl()); 2427 2428 PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(), 2429 Context.getSourceManager(), 2430 "Generating code for declaration"); 2431 2432 if (const auto *FD = dyn_cast<FunctionDecl>(D)) { 2433 // At -O0, don't generate IR for functions with available_externally 2434 // linkage. 2435 if (!shouldEmitFunction(GD)) 2436 return; 2437 2438 if (const auto *Method = dyn_cast<CXXMethodDecl>(D)) { 2439 // Make sure to emit the definition(s) before we emit the thunks. 2440 // This is necessary for the generation of certain thunks. 2441 if (const auto *CD = dyn_cast<CXXConstructorDecl>(Method)) 2442 ABI->emitCXXStructor(CD, getFromCtorType(GD.getCtorType())); 2443 else if (const auto *DD = dyn_cast<CXXDestructorDecl>(Method)) 2444 ABI->emitCXXStructor(DD, getFromDtorType(GD.getDtorType())); 2445 else if (FD->isMultiVersion()) 2446 EmitMultiVersionFunctionDefinition(GD, GV); 2447 else 2448 EmitGlobalFunctionDefinition(GD, GV); 2449 2450 if (Method->isVirtual()) 2451 getVTables().EmitThunks(GD); 2452 2453 return; 2454 } 2455 2456 if (FD->isMultiVersion()) 2457 return EmitMultiVersionFunctionDefinition(GD, GV); 2458 return EmitGlobalFunctionDefinition(GD, GV); 2459 } 2460 2461 if (const auto *VD = dyn_cast<VarDecl>(D)) 2462 return EmitGlobalVarDefinition(VD, !VD->hasDefinition()); 2463 2464 llvm_unreachable("Invalid argument to EmitGlobalDefinition()"); 2465 } 2466 2467 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old, 2468 llvm::Function *NewFn); 2469 2470 static unsigned 2471 TargetMVPriority(const TargetInfo &TI, 2472 const CodeGenFunction::MultiVersionResolverOption &RO) { 2473 unsigned Priority = 0; 2474 for (StringRef Feat : RO.Conditions.Features) 2475 Priority = std::max(Priority, TI.multiVersionSortPriority(Feat)); 2476 2477 if (!RO.Conditions.Architecture.empty()) 2478 Priority = std::max( 2479 Priority, TI.multiVersionSortPriority(RO.Conditions.Architecture)); 2480 return Priority; 2481 } 2482 2483 void CodeGenModule::emitMultiVersionFunctions() { 2484 for (GlobalDecl GD : MultiVersionFuncs) { 2485 SmallVector<CodeGenFunction::MultiVersionResolverOption, 10> Options; 2486 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 2487 getContext().forEachMultiversionedFunctionVersion( 2488 FD, [this, &GD, &Options](const FunctionDecl *CurFD) { 2489 GlobalDecl CurGD{ 2490 (CurFD->isDefined() ? CurFD->getDefinition() : CurFD)}; 2491 StringRef MangledName = getMangledName(CurGD); 2492 llvm::Constant *Func = GetGlobalValue(MangledName); 2493 if (!Func) { 2494 if (CurFD->isDefined()) { 2495 EmitGlobalFunctionDefinition(CurGD, nullptr); 2496 Func = GetGlobalValue(MangledName); 2497 } else { 2498 const CGFunctionInfo &FI = 2499 getTypes().arrangeGlobalDeclaration(GD); 2500 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 2501 Func = GetAddrOfFunction(CurGD, Ty, /*ForVTable=*/false, 2502 /*DontDefer=*/false, ForDefinition); 2503 } 2504 assert(Func && "This should have just been created"); 2505 } 2506 2507 const auto *TA = CurFD->getAttr<TargetAttr>(); 2508 llvm::SmallVector<StringRef, 8> Feats; 2509 TA->getAddedFeatures(Feats); 2510 2511 Options.emplace_back(cast<llvm::Function>(Func), 2512 TA->getArchitecture(), Feats); 2513 }); 2514 2515 llvm::Function *ResolverFunc; 2516 const TargetInfo &TI = getTarget(); 2517 2518 if (TI.supportsIFunc() || FD->isTargetMultiVersion()) 2519 ResolverFunc = cast<llvm::Function>( 2520 GetGlobalValue((getMangledName(GD) + ".resolver").str())); 2521 else 2522 ResolverFunc = cast<llvm::Function>(GetGlobalValue(getMangledName(GD))); 2523 2524 if (supportsCOMDAT()) 2525 ResolverFunc->setComdat( 2526 getModule().getOrInsertComdat(ResolverFunc->getName())); 2527 2528 std::stable_sort( 2529 Options.begin(), Options.end(), 2530 [&TI](const CodeGenFunction::MultiVersionResolverOption &LHS, 2531 const CodeGenFunction::MultiVersionResolverOption &RHS) { 2532 return TargetMVPriority(TI, LHS) > TargetMVPriority(TI, RHS); 2533 }); 2534 CodeGenFunction CGF(*this); 2535 CGF.EmitMultiVersionResolver(ResolverFunc, Options); 2536 } 2537 } 2538 2539 void CodeGenModule::emitCPUDispatchDefinition(GlobalDecl GD) { 2540 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 2541 assert(FD && "Not a FunctionDecl?"); 2542 const auto *DD = FD->getAttr<CPUDispatchAttr>(); 2543 assert(DD && "Not a cpu_dispatch Function?"); 2544 QualType CanonTy = Context.getCanonicalType(FD->getType()); 2545 llvm::Type *DeclTy = getTypes().ConvertFunctionType(CanonTy, FD); 2546 2547 if (const auto *CXXFD = dyn_cast<CXXMethodDecl>(FD)) { 2548 const CGFunctionInfo &FInfo = getTypes().arrangeCXXMethodDeclaration(CXXFD); 2549 DeclTy = getTypes().GetFunctionType(FInfo); 2550 } 2551 2552 StringRef ResolverName = getMangledName(GD); 2553 2554 llvm::Type *ResolverType; 2555 GlobalDecl ResolverGD; 2556 if (getTarget().supportsIFunc()) 2557 ResolverType = llvm::FunctionType::get( 2558 llvm::PointerType::get(DeclTy, 2559 Context.getTargetAddressSpace(FD->getType())), 2560 false); 2561 else { 2562 ResolverType = DeclTy; 2563 ResolverGD = GD; 2564 } 2565 2566 auto *ResolverFunc = cast<llvm::Function>(GetOrCreateLLVMFunction( 2567 ResolverName, ResolverType, ResolverGD, /*ForVTable=*/false)); 2568 2569 SmallVector<CodeGenFunction::MultiVersionResolverOption, 10> Options; 2570 const TargetInfo &Target = getTarget(); 2571 unsigned Index = 0; 2572 for (const IdentifierInfo *II : DD->cpus()) { 2573 // Get the name of the target function so we can look it up/create it. 2574 std::string MangledName = getMangledNameImpl(*this, GD, FD, true) + 2575 getCPUSpecificMangling(*this, II->getName()); 2576 2577 llvm::Constant *Func = GetGlobalValue(MangledName); 2578 2579 if (!Func) 2580 Func = GetOrCreateLLVMFunction( 2581 MangledName, DeclTy, GD.getWithMultiVersionIndex(Index), 2582 /*ForVTable=*/false, /*DontDefer=*/true, 2583 /*IsThunk=*/false, llvm::AttributeList(), ForDefinition); 2584 2585 llvm::SmallVector<StringRef, 32> Features; 2586 Target.getCPUSpecificCPUDispatchFeatures(II->getName(), Features); 2587 llvm::transform(Features, Features.begin(), 2588 [](StringRef Str) { return Str.substr(1); }); 2589 Features.erase(std::remove_if( 2590 Features.begin(), Features.end(), [&Target](StringRef Feat) { 2591 return !Target.validateCpuSupports(Feat); 2592 }), Features.end()); 2593 Options.emplace_back(cast<llvm::Function>(Func), StringRef{}, Features); 2594 ++Index; 2595 } 2596 2597 llvm::sort( 2598 Options, [](const CodeGenFunction::MultiVersionResolverOption &LHS, 2599 const CodeGenFunction::MultiVersionResolverOption &RHS) { 2600 return CodeGenFunction::GetX86CpuSupportsMask(LHS.Conditions.Features) > 2601 CodeGenFunction::GetX86CpuSupportsMask(RHS.Conditions.Features); 2602 }); 2603 2604 // If the list contains multiple 'default' versions, such as when it contains 2605 // 'pentium' and 'generic', don't emit the call to the generic one (since we 2606 // always run on at least a 'pentium'). We do this by deleting the 'least 2607 // advanced' (read, lowest mangling letter). 2608 while (Options.size() > 1 && 2609 CodeGenFunction::GetX86CpuSupportsMask( 2610 (Options.end() - 2)->Conditions.Features) == 0) { 2611 StringRef LHSName = (Options.end() - 2)->Function->getName(); 2612 StringRef RHSName = (Options.end() - 1)->Function->getName(); 2613 if (LHSName.compare(RHSName) < 0) 2614 Options.erase(Options.end() - 2); 2615 else 2616 Options.erase(Options.end() - 1); 2617 } 2618 2619 CodeGenFunction CGF(*this); 2620 CGF.EmitMultiVersionResolver(ResolverFunc, Options); 2621 } 2622 2623 /// If a dispatcher for the specified mangled name is not in the module, create 2624 /// and return an llvm Function with the specified type. 2625 llvm::Constant *CodeGenModule::GetOrCreateMultiVersionResolver( 2626 GlobalDecl GD, llvm::Type *DeclTy, const FunctionDecl *FD) { 2627 std::string MangledName = 2628 getMangledNameImpl(*this, GD, FD, /*OmitMultiVersionMangling=*/true); 2629 2630 // Holds the name of the resolver, in ifunc mode this is the ifunc (which has 2631 // a separate resolver). 2632 std::string ResolverName = MangledName; 2633 if (getTarget().supportsIFunc()) 2634 ResolverName += ".ifunc"; 2635 else if (FD->isTargetMultiVersion()) 2636 ResolverName += ".resolver"; 2637 2638 // If this already exists, just return that one. 2639 if (llvm::GlobalValue *ResolverGV = GetGlobalValue(ResolverName)) 2640 return ResolverGV; 2641 2642 // Since this is the first time we've created this IFunc, make sure 2643 // that we put this multiversioned function into the list to be 2644 // replaced later if necessary (target multiversioning only). 2645 if (!FD->isCPUDispatchMultiVersion() && !FD->isCPUSpecificMultiVersion()) 2646 MultiVersionFuncs.push_back(GD); 2647 2648 if (getTarget().supportsIFunc()) { 2649 llvm::Type *ResolverType = llvm::FunctionType::get( 2650 llvm::PointerType::get( 2651 DeclTy, getContext().getTargetAddressSpace(FD->getType())), 2652 false); 2653 llvm::Constant *Resolver = GetOrCreateLLVMFunction( 2654 MangledName + ".resolver", ResolverType, GlobalDecl{}, 2655 /*ForVTable=*/false); 2656 llvm::GlobalIFunc *GIF = llvm::GlobalIFunc::create( 2657 DeclTy, 0, llvm::Function::ExternalLinkage, "", Resolver, &getModule()); 2658 GIF->setName(ResolverName); 2659 SetCommonAttributes(FD, GIF); 2660 2661 return GIF; 2662 } 2663 2664 llvm::Constant *Resolver = GetOrCreateLLVMFunction( 2665 ResolverName, DeclTy, GlobalDecl{}, /*ForVTable=*/false); 2666 assert(isa<llvm::GlobalValue>(Resolver) && 2667 "Resolver should be created for the first time"); 2668 SetCommonAttributes(FD, cast<llvm::GlobalValue>(Resolver)); 2669 return Resolver; 2670 } 2671 2672 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the 2673 /// module, create and return an llvm Function with the specified type. If there 2674 /// is something in the module with the specified name, return it potentially 2675 /// bitcasted to the right type. 2676 /// 2677 /// If D is non-null, it specifies a decl that correspond to this. This is used 2678 /// to set the attributes on the function when it is first created. 2679 llvm::Constant *CodeGenModule::GetOrCreateLLVMFunction( 2680 StringRef MangledName, llvm::Type *Ty, GlobalDecl GD, bool ForVTable, 2681 bool DontDefer, bool IsThunk, llvm::AttributeList ExtraAttrs, 2682 ForDefinition_t IsForDefinition) { 2683 const Decl *D = GD.getDecl(); 2684 2685 // Any attempts to use a MultiVersion function should result in retrieving 2686 // the iFunc instead. Name Mangling will handle the rest of the changes. 2687 if (const FunctionDecl *FD = cast_or_null<FunctionDecl>(D)) { 2688 // For the device mark the function as one that should be emitted. 2689 if (getLangOpts().OpenMPIsDevice && OpenMPRuntime && 2690 !OpenMPRuntime->markAsGlobalTarget(GD) && FD->isDefined() && 2691 !DontDefer && !IsForDefinition) { 2692 if (const FunctionDecl *FDDef = FD->getDefinition()) { 2693 GlobalDecl GDDef; 2694 if (const auto *CD = dyn_cast<CXXConstructorDecl>(FDDef)) 2695 GDDef = GlobalDecl(CD, GD.getCtorType()); 2696 else if (const auto *DD = dyn_cast<CXXDestructorDecl>(FDDef)) 2697 GDDef = GlobalDecl(DD, GD.getDtorType()); 2698 else 2699 GDDef = GlobalDecl(FDDef); 2700 EmitGlobal(GDDef); 2701 } 2702 } 2703 2704 if (FD->isMultiVersion()) { 2705 const auto *TA = FD->getAttr<TargetAttr>(); 2706 if (TA && TA->isDefaultVersion()) 2707 UpdateMultiVersionNames(GD, FD); 2708 if (!IsForDefinition) 2709 return GetOrCreateMultiVersionResolver(GD, Ty, FD); 2710 } 2711 } 2712 2713 // Lookup the entry, lazily creating it if necessary. 2714 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 2715 if (Entry) { 2716 if (WeakRefReferences.erase(Entry)) { 2717 const FunctionDecl *FD = cast_or_null<FunctionDecl>(D); 2718 if (FD && !FD->hasAttr<WeakAttr>()) 2719 Entry->setLinkage(llvm::Function::ExternalLinkage); 2720 } 2721 2722 // Handle dropped DLL attributes. 2723 if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>()) { 2724 Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 2725 setDSOLocal(Entry); 2726 } 2727 2728 // If there are two attempts to define the same mangled name, issue an 2729 // error. 2730 if (IsForDefinition && !Entry->isDeclaration()) { 2731 GlobalDecl OtherGD; 2732 // Check that GD is not yet in DiagnosedConflictingDefinitions is required 2733 // to make sure that we issue an error only once. 2734 if (lookupRepresentativeDecl(MangledName, OtherGD) && 2735 (GD.getCanonicalDecl().getDecl() != 2736 OtherGD.getCanonicalDecl().getDecl()) && 2737 DiagnosedConflictingDefinitions.insert(GD).second) { 2738 getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name) 2739 << MangledName; 2740 getDiags().Report(OtherGD.getDecl()->getLocation(), 2741 diag::note_previous_definition); 2742 } 2743 } 2744 2745 if ((isa<llvm::Function>(Entry) || isa<llvm::GlobalAlias>(Entry)) && 2746 (Entry->getType()->getElementType() == Ty)) { 2747 return Entry; 2748 } 2749 2750 // Make sure the result is of the correct type. 2751 // (If function is requested for a definition, we always need to create a new 2752 // function, not just return a bitcast.) 2753 if (!IsForDefinition) 2754 return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo()); 2755 } 2756 2757 // This function doesn't have a complete type (for example, the return 2758 // type is an incomplete struct). Use a fake type instead, and make 2759 // sure not to try to set attributes. 2760 bool IsIncompleteFunction = false; 2761 2762 llvm::FunctionType *FTy; 2763 if (isa<llvm::FunctionType>(Ty)) { 2764 FTy = cast<llvm::FunctionType>(Ty); 2765 } else { 2766 FTy = llvm::FunctionType::get(VoidTy, false); 2767 IsIncompleteFunction = true; 2768 } 2769 2770 llvm::Function *F = 2771 llvm::Function::Create(FTy, llvm::Function::ExternalLinkage, 2772 Entry ? StringRef() : MangledName, &getModule()); 2773 2774 // If we already created a function with the same mangled name (but different 2775 // type) before, take its name and add it to the list of functions to be 2776 // replaced with F at the end of CodeGen. 2777 // 2778 // This happens if there is a prototype for a function (e.g. "int f()") and 2779 // then a definition of a different type (e.g. "int f(int x)"). 2780 if (Entry) { 2781 F->takeName(Entry); 2782 2783 // This might be an implementation of a function without a prototype, in 2784 // which case, try to do special replacement of calls which match the new 2785 // prototype. The really key thing here is that we also potentially drop 2786 // arguments from the call site so as to make a direct call, which makes the 2787 // inliner happier and suppresses a number of optimizer warnings (!) about 2788 // dropping arguments. 2789 if (!Entry->use_empty()) { 2790 ReplaceUsesOfNonProtoTypeWithRealFunction(Entry, F); 2791 Entry->removeDeadConstantUsers(); 2792 } 2793 2794 llvm::Constant *BC = llvm::ConstantExpr::getBitCast( 2795 F, Entry->getType()->getElementType()->getPointerTo()); 2796 addGlobalValReplacement(Entry, BC); 2797 } 2798 2799 assert(F->getName() == MangledName && "name was uniqued!"); 2800 if (D) 2801 SetFunctionAttributes(GD, F, IsIncompleteFunction, IsThunk); 2802 if (ExtraAttrs.hasAttributes(llvm::AttributeList::FunctionIndex)) { 2803 llvm::AttrBuilder B(ExtraAttrs, llvm::AttributeList::FunctionIndex); 2804 F->addAttributes(llvm::AttributeList::FunctionIndex, B); 2805 } 2806 2807 if (!DontDefer) { 2808 // All MSVC dtors other than the base dtor are linkonce_odr and delegate to 2809 // each other bottoming out with the base dtor. Therefore we emit non-base 2810 // dtors on usage, even if there is no dtor definition in the TU. 2811 if (D && isa<CXXDestructorDecl>(D) && 2812 getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D), 2813 GD.getDtorType())) 2814 addDeferredDeclToEmit(GD); 2815 2816 // This is the first use or definition of a mangled name. If there is a 2817 // deferred decl with this name, remember that we need to emit it at the end 2818 // of the file. 2819 auto DDI = DeferredDecls.find(MangledName); 2820 if (DDI != DeferredDecls.end()) { 2821 // Move the potentially referenced deferred decl to the 2822 // DeferredDeclsToEmit list, and remove it from DeferredDecls (since we 2823 // don't need it anymore). 2824 addDeferredDeclToEmit(DDI->second); 2825 DeferredDecls.erase(DDI); 2826 2827 // Otherwise, there are cases we have to worry about where we're 2828 // using a declaration for which we must emit a definition but where 2829 // we might not find a top-level definition: 2830 // - member functions defined inline in their classes 2831 // - friend functions defined inline in some class 2832 // - special member functions with implicit definitions 2833 // If we ever change our AST traversal to walk into class methods, 2834 // this will be unnecessary. 2835 // 2836 // We also don't emit a definition for a function if it's going to be an 2837 // entry in a vtable, unless it's already marked as used. 2838 } else if (getLangOpts().CPlusPlus && D) { 2839 // Look for a declaration that's lexically in a record. 2840 for (const auto *FD = cast<FunctionDecl>(D)->getMostRecentDecl(); FD; 2841 FD = FD->getPreviousDecl()) { 2842 if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) { 2843 if (FD->doesThisDeclarationHaveABody()) { 2844 addDeferredDeclToEmit(GD.getWithDecl(FD)); 2845 break; 2846 } 2847 } 2848 } 2849 } 2850 } 2851 2852 // Make sure the result is of the requested type. 2853 if (!IsIncompleteFunction) { 2854 assert(F->getType()->getElementType() == Ty); 2855 return F; 2856 } 2857 2858 llvm::Type *PTy = llvm::PointerType::getUnqual(Ty); 2859 return llvm::ConstantExpr::getBitCast(F, PTy); 2860 } 2861 2862 /// GetAddrOfFunction - Return the address of the given function. If Ty is 2863 /// non-null, then this function will use the specified type if it has to 2864 /// create it (this occurs when we see a definition of the function). 2865 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD, 2866 llvm::Type *Ty, 2867 bool ForVTable, 2868 bool DontDefer, 2869 ForDefinition_t IsForDefinition) { 2870 // If there was no specific requested type, just convert it now. 2871 if (!Ty) { 2872 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 2873 auto CanonTy = Context.getCanonicalType(FD->getType()); 2874 Ty = getTypes().ConvertFunctionType(CanonTy, FD); 2875 } 2876 2877 // Devirtualized destructor calls may come through here instead of via 2878 // getAddrOfCXXStructor. Make sure we use the MS ABI base destructor instead 2879 // of the complete destructor when necessary. 2880 if (const auto *DD = dyn_cast<CXXDestructorDecl>(GD.getDecl())) { 2881 if (getTarget().getCXXABI().isMicrosoft() && 2882 GD.getDtorType() == Dtor_Complete && 2883 DD->getParent()->getNumVBases() == 0) 2884 GD = GlobalDecl(DD, Dtor_Base); 2885 } 2886 2887 StringRef MangledName = getMangledName(GD); 2888 return GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable, DontDefer, 2889 /*IsThunk=*/false, llvm::AttributeList(), 2890 IsForDefinition); 2891 } 2892 2893 static const FunctionDecl * 2894 GetRuntimeFunctionDecl(ASTContext &C, StringRef Name) { 2895 TranslationUnitDecl *TUDecl = C.getTranslationUnitDecl(); 2896 DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl); 2897 2898 IdentifierInfo &CII = C.Idents.get(Name); 2899 for (const auto &Result : DC->lookup(&CII)) 2900 if (const auto FD = dyn_cast<FunctionDecl>(Result)) 2901 return FD; 2902 2903 if (!C.getLangOpts().CPlusPlus) 2904 return nullptr; 2905 2906 // Demangle the premangled name from getTerminateFn() 2907 IdentifierInfo &CXXII = 2908 (Name == "_ZSt9terminatev" || Name == "?terminate@@YAXXZ") 2909 ? C.Idents.get("terminate") 2910 : C.Idents.get(Name); 2911 2912 for (const auto &N : {"__cxxabiv1", "std"}) { 2913 IdentifierInfo &NS = C.Idents.get(N); 2914 for (const auto &Result : DC->lookup(&NS)) { 2915 NamespaceDecl *ND = dyn_cast<NamespaceDecl>(Result); 2916 if (auto LSD = dyn_cast<LinkageSpecDecl>(Result)) 2917 for (const auto &Result : LSD->lookup(&NS)) 2918 if ((ND = dyn_cast<NamespaceDecl>(Result))) 2919 break; 2920 2921 if (ND) 2922 for (const auto &Result : ND->lookup(&CXXII)) 2923 if (const auto *FD = dyn_cast<FunctionDecl>(Result)) 2924 return FD; 2925 } 2926 } 2927 2928 return nullptr; 2929 } 2930 2931 /// CreateRuntimeFunction - Create a new runtime function with the specified 2932 /// type and name. 2933 llvm::Constant * 2934 CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy, StringRef Name, 2935 llvm::AttributeList ExtraAttrs, 2936 bool Local) { 2937 llvm::Constant *C = 2938 GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false, 2939 /*DontDefer=*/false, /*IsThunk=*/false, 2940 ExtraAttrs); 2941 2942 if (auto *F = dyn_cast<llvm::Function>(C)) { 2943 if (F->empty()) { 2944 F->setCallingConv(getRuntimeCC()); 2945 2946 if (!Local && getTriple().isOSBinFormatCOFF() && 2947 !getCodeGenOpts().LTOVisibilityPublicStd && 2948 !getTriple().isWindowsGNUEnvironment()) { 2949 const FunctionDecl *FD = GetRuntimeFunctionDecl(Context, Name); 2950 if (!FD || FD->hasAttr<DLLImportAttr>()) { 2951 F->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass); 2952 F->setLinkage(llvm::GlobalValue::ExternalLinkage); 2953 } 2954 } 2955 setDSOLocal(F); 2956 } 2957 } 2958 2959 return C; 2960 } 2961 2962 /// CreateBuiltinFunction - Create a new builtin function with the specified 2963 /// type and name. 2964 llvm::Constant * 2965 CodeGenModule::CreateBuiltinFunction(llvm::FunctionType *FTy, StringRef Name, 2966 llvm::AttributeList ExtraAttrs) { 2967 return CreateRuntimeFunction(FTy, Name, ExtraAttrs, true); 2968 } 2969 2970 /// isTypeConstant - Determine whether an object of this type can be emitted 2971 /// as a constant. 2972 /// 2973 /// If ExcludeCtor is true, the duration when the object's constructor runs 2974 /// will not be considered. The caller will need to verify that the object is 2975 /// not written to during its construction. 2976 bool CodeGenModule::isTypeConstant(QualType Ty, bool ExcludeCtor) { 2977 if (!Ty.isConstant(Context) && !Ty->isReferenceType()) 2978 return false; 2979 2980 if (Context.getLangOpts().CPlusPlus) { 2981 if (const CXXRecordDecl *Record 2982 = Context.getBaseElementType(Ty)->getAsCXXRecordDecl()) 2983 return ExcludeCtor && !Record->hasMutableFields() && 2984 Record->hasTrivialDestructor(); 2985 } 2986 2987 return true; 2988 } 2989 2990 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module, 2991 /// create and return an llvm GlobalVariable with the specified type. If there 2992 /// is something in the module with the specified name, return it potentially 2993 /// bitcasted to the right type. 2994 /// 2995 /// If D is non-null, it specifies a decl that correspond to this. This is used 2996 /// to set the attributes on the global when it is first created. 2997 /// 2998 /// If IsForDefinition is true, it is guaranteed that an actual global with 2999 /// type Ty will be returned, not conversion of a variable with the same 3000 /// mangled name but some other type. 3001 llvm::Constant * 3002 CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName, 3003 llvm::PointerType *Ty, 3004 const VarDecl *D, 3005 ForDefinition_t IsForDefinition) { 3006 // Lookup the entry, lazily creating it if necessary. 3007 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 3008 if (Entry) { 3009 if (WeakRefReferences.erase(Entry)) { 3010 if (D && !D->hasAttr<WeakAttr>()) 3011 Entry->setLinkage(llvm::Function::ExternalLinkage); 3012 } 3013 3014 // Handle dropped DLL attributes. 3015 if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>()) 3016 Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 3017 3018 if (LangOpts.OpenMP && !LangOpts.OpenMPSimd && D) 3019 getOpenMPRuntime().registerTargetGlobalVariable(D, Entry); 3020 3021 if (Entry->getType() == Ty) 3022 return Entry; 3023 3024 // If there are two attempts to define the same mangled name, issue an 3025 // error. 3026 if (IsForDefinition && !Entry->isDeclaration()) { 3027 GlobalDecl OtherGD; 3028 const VarDecl *OtherD; 3029 3030 // Check that D is not yet in DiagnosedConflictingDefinitions is required 3031 // to make sure that we issue an error only once. 3032 if (D && lookupRepresentativeDecl(MangledName, OtherGD) && 3033 (D->getCanonicalDecl() != OtherGD.getCanonicalDecl().getDecl()) && 3034 (OtherD = dyn_cast<VarDecl>(OtherGD.getDecl())) && 3035 OtherD->hasInit() && 3036 DiagnosedConflictingDefinitions.insert(D).second) { 3037 getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name) 3038 << MangledName; 3039 getDiags().Report(OtherGD.getDecl()->getLocation(), 3040 diag::note_previous_definition); 3041 } 3042 } 3043 3044 // Make sure the result is of the correct type. 3045 if (Entry->getType()->getAddressSpace() != Ty->getAddressSpace()) 3046 return llvm::ConstantExpr::getAddrSpaceCast(Entry, Ty); 3047 3048 // (If global is requested for a definition, we always need to create a new 3049 // global, not just return a bitcast.) 3050 if (!IsForDefinition) 3051 return llvm::ConstantExpr::getBitCast(Entry, Ty); 3052 } 3053 3054 auto AddrSpace = GetGlobalVarAddressSpace(D); 3055 auto TargetAddrSpace = getContext().getTargetAddressSpace(AddrSpace); 3056 3057 auto *GV = new llvm::GlobalVariable( 3058 getModule(), Ty->getElementType(), false, 3059 llvm::GlobalValue::ExternalLinkage, nullptr, MangledName, nullptr, 3060 llvm::GlobalVariable::NotThreadLocal, TargetAddrSpace); 3061 3062 // If we already created a global with the same mangled name (but different 3063 // type) before, take its name and remove it from its parent. 3064 if (Entry) { 3065 GV->takeName(Entry); 3066 3067 if (!Entry->use_empty()) { 3068 llvm::Constant *NewPtrForOldDecl = 3069 llvm::ConstantExpr::getBitCast(GV, Entry->getType()); 3070 Entry->replaceAllUsesWith(NewPtrForOldDecl); 3071 } 3072 3073 Entry->eraseFromParent(); 3074 } 3075 3076 // This is the first use or definition of a mangled name. If there is a 3077 // deferred decl with this name, remember that we need to emit it at the end 3078 // of the file. 3079 auto DDI = DeferredDecls.find(MangledName); 3080 if (DDI != DeferredDecls.end()) { 3081 // Move the potentially referenced deferred decl to the DeferredDeclsToEmit 3082 // list, and remove it from DeferredDecls (since we don't need it anymore). 3083 addDeferredDeclToEmit(DDI->second); 3084 DeferredDecls.erase(DDI); 3085 } 3086 3087 // Handle things which are present even on external declarations. 3088 if (D) { 3089 if (LangOpts.OpenMP && !LangOpts.OpenMPSimd) 3090 getOpenMPRuntime().registerTargetGlobalVariable(D, GV); 3091 3092 // FIXME: This code is overly simple and should be merged with other global 3093 // handling. 3094 GV->setConstant(isTypeConstant(D->getType(), false)); 3095 3096 GV->setAlignment(getContext().getDeclAlign(D).getQuantity()); 3097 3098 setLinkageForGV(GV, D); 3099 3100 if (D->getTLSKind()) { 3101 if (D->getTLSKind() == VarDecl::TLS_Dynamic) 3102 CXXThreadLocals.push_back(D); 3103 setTLSMode(GV, *D); 3104 } 3105 3106 setGVProperties(GV, D); 3107 3108 // If required by the ABI, treat declarations of static data members with 3109 // inline initializers as definitions. 3110 if (getContext().isMSStaticDataMemberInlineDefinition(D)) { 3111 EmitGlobalVarDefinition(D); 3112 } 3113 3114 // Emit section information for extern variables. 3115 if (D->hasExternalStorage()) { 3116 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) 3117 GV->setSection(SA->getName()); 3118 } 3119 3120 // Handle XCore specific ABI requirements. 3121 if (getTriple().getArch() == llvm::Triple::xcore && 3122 D->getLanguageLinkage() == CLanguageLinkage && 3123 D->getType().isConstant(Context) && 3124 isExternallyVisible(D->getLinkageAndVisibility().getLinkage())) 3125 GV->setSection(".cp.rodata"); 3126 3127 // Check if we a have a const declaration with an initializer, we may be 3128 // able to emit it as available_externally to expose it's value to the 3129 // optimizer. 3130 if (Context.getLangOpts().CPlusPlus && GV->hasExternalLinkage() && 3131 D->getType().isConstQualified() && !GV->hasInitializer() && 3132 !D->hasDefinition() && D->hasInit() && !D->hasAttr<DLLImportAttr>()) { 3133 const auto *Record = 3134 Context.getBaseElementType(D->getType())->getAsCXXRecordDecl(); 3135 bool HasMutableFields = Record && Record->hasMutableFields(); 3136 if (!HasMutableFields) { 3137 const VarDecl *InitDecl; 3138 const Expr *InitExpr = D->getAnyInitializer(InitDecl); 3139 if (InitExpr) { 3140 ConstantEmitter emitter(*this); 3141 llvm::Constant *Init = emitter.tryEmitForInitializer(*InitDecl); 3142 if (Init) { 3143 auto *InitType = Init->getType(); 3144 if (GV->getType()->getElementType() != InitType) { 3145 // The type of the initializer does not match the definition. 3146 // This happens when an initializer has a different type from 3147 // the type of the global (because of padding at the end of a 3148 // structure for instance). 3149 GV->setName(StringRef()); 3150 // Make a new global with the correct type, this is now guaranteed 3151 // to work. 3152 auto *NewGV = cast<llvm::GlobalVariable>( 3153 GetAddrOfGlobalVar(D, InitType, IsForDefinition)); 3154 3155 // Erase the old global, since it is no longer used. 3156 GV->eraseFromParent(); 3157 GV = NewGV; 3158 } else { 3159 GV->setInitializer(Init); 3160 GV->setConstant(true); 3161 GV->setLinkage(llvm::GlobalValue::AvailableExternallyLinkage); 3162 } 3163 emitter.finalize(GV); 3164 } 3165 } 3166 } 3167 } 3168 } 3169 3170 LangAS ExpectedAS = 3171 D ? D->getType().getAddressSpace() 3172 : (LangOpts.OpenCL ? LangAS::opencl_global : LangAS::Default); 3173 assert(getContext().getTargetAddressSpace(ExpectedAS) == 3174 Ty->getPointerAddressSpace()); 3175 if (AddrSpace != ExpectedAS) 3176 return getTargetCodeGenInfo().performAddrSpaceCast(*this, GV, AddrSpace, 3177 ExpectedAS, Ty); 3178 3179 return GV; 3180 } 3181 3182 llvm::Constant * 3183 CodeGenModule::GetAddrOfGlobal(GlobalDecl GD, 3184 ForDefinition_t IsForDefinition) { 3185 const Decl *D = GD.getDecl(); 3186 if (isa<CXXConstructorDecl>(D)) 3187 return getAddrOfCXXStructor(cast<CXXConstructorDecl>(D), 3188 getFromCtorType(GD.getCtorType()), 3189 /*FnInfo=*/nullptr, /*FnType=*/nullptr, 3190 /*DontDefer=*/false, IsForDefinition); 3191 else if (isa<CXXDestructorDecl>(D)) 3192 return getAddrOfCXXStructor(cast<CXXDestructorDecl>(D), 3193 getFromDtorType(GD.getDtorType()), 3194 /*FnInfo=*/nullptr, /*FnType=*/nullptr, 3195 /*DontDefer=*/false, IsForDefinition); 3196 else if (isa<CXXMethodDecl>(D)) { 3197 auto FInfo = &getTypes().arrangeCXXMethodDeclaration( 3198 cast<CXXMethodDecl>(D)); 3199 auto Ty = getTypes().GetFunctionType(*FInfo); 3200 return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false, 3201 IsForDefinition); 3202 } else if (isa<FunctionDecl>(D)) { 3203 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 3204 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 3205 return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false, 3206 IsForDefinition); 3207 } else 3208 return GetAddrOfGlobalVar(cast<VarDecl>(D), /*Ty=*/nullptr, 3209 IsForDefinition); 3210 } 3211 3212 llvm::GlobalVariable *CodeGenModule::CreateOrReplaceCXXRuntimeVariable( 3213 StringRef Name, llvm::Type *Ty, llvm::GlobalValue::LinkageTypes Linkage, 3214 unsigned Alignment) { 3215 llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name); 3216 llvm::GlobalVariable *OldGV = nullptr; 3217 3218 if (GV) { 3219 // Check if the variable has the right type. 3220 if (GV->getType()->getElementType() == Ty) 3221 return GV; 3222 3223 // Because C++ name mangling, the only way we can end up with an already 3224 // existing global with the same name is if it has been declared extern "C". 3225 assert(GV->isDeclaration() && "Declaration has wrong type!"); 3226 OldGV = GV; 3227 } 3228 3229 // Create a new variable. 3230 GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true, 3231 Linkage, nullptr, Name); 3232 3233 if (OldGV) { 3234 // Replace occurrences of the old variable if needed. 3235 GV->takeName(OldGV); 3236 3237 if (!OldGV->use_empty()) { 3238 llvm::Constant *NewPtrForOldDecl = 3239 llvm::ConstantExpr::getBitCast(GV, OldGV->getType()); 3240 OldGV->replaceAllUsesWith(NewPtrForOldDecl); 3241 } 3242 3243 OldGV->eraseFromParent(); 3244 } 3245 3246 if (supportsCOMDAT() && GV->isWeakForLinker() && 3247 !GV->hasAvailableExternallyLinkage()) 3248 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 3249 3250 GV->setAlignment(Alignment); 3251 3252 return GV; 3253 } 3254 3255 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the 3256 /// given global variable. If Ty is non-null and if the global doesn't exist, 3257 /// then it will be created with the specified type instead of whatever the 3258 /// normal requested type would be. If IsForDefinition is true, it is guaranteed 3259 /// that an actual global with type Ty will be returned, not conversion of a 3260 /// variable with the same mangled name but some other type. 3261 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D, 3262 llvm::Type *Ty, 3263 ForDefinition_t IsForDefinition) { 3264 assert(D->hasGlobalStorage() && "Not a global variable"); 3265 QualType ASTTy = D->getType(); 3266 if (!Ty) 3267 Ty = getTypes().ConvertTypeForMem(ASTTy); 3268 3269 llvm::PointerType *PTy = 3270 llvm::PointerType::get(Ty, getContext().getTargetAddressSpace(ASTTy)); 3271 3272 StringRef MangledName = getMangledName(D); 3273 return GetOrCreateLLVMGlobal(MangledName, PTy, D, IsForDefinition); 3274 } 3275 3276 /// CreateRuntimeVariable - Create a new runtime global variable with the 3277 /// specified type and name. 3278 llvm::Constant * 3279 CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty, 3280 StringRef Name) { 3281 auto *Ret = 3282 GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), nullptr); 3283 setDSOLocal(cast<llvm::GlobalValue>(Ret->stripPointerCasts())); 3284 return Ret; 3285 } 3286 3287 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) { 3288 assert(!D->getInit() && "Cannot emit definite definitions here!"); 3289 3290 StringRef MangledName = getMangledName(D); 3291 llvm::GlobalValue *GV = GetGlobalValue(MangledName); 3292 3293 // We already have a definition, not declaration, with the same mangled name. 3294 // Emitting of declaration is not required (and actually overwrites emitted 3295 // definition). 3296 if (GV && !GV->isDeclaration()) 3297 return; 3298 3299 // If we have not seen a reference to this variable yet, place it into the 3300 // deferred declarations table to be emitted if needed later. 3301 if (!MustBeEmitted(D) && !GV) { 3302 DeferredDecls[MangledName] = D; 3303 return; 3304 } 3305 3306 // The tentative definition is the only definition. 3307 EmitGlobalVarDefinition(D); 3308 } 3309 3310 CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const { 3311 return Context.toCharUnitsFromBits( 3312 getDataLayout().getTypeStoreSizeInBits(Ty)); 3313 } 3314 3315 LangAS CodeGenModule::GetGlobalVarAddressSpace(const VarDecl *D) { 3316 LangAS AddrSpace = LangAS::Default; 3317 if (LangOpts.OpenCL) { 3318 AddrSpace = D ? D->getType().getAddressSpace() : LangAS::opencl_global; 3319 assert(AddrSpace == LangAS::opencl_global || 3320 AddrSpace == LangAS::opencl_constant || 3321 AddrSpace == LangAS::opencl_local || 3322 AddrSpace >= LangAS::FirstTargetAddressSpace); 3323 return AddrSpace; 3324 } 3325 3326 if (LangOpts.CUDA && LangOpts.CUDAIsDevice) { 3327 if (D && D->hasAttr<CUDAConstantAttr>()) 3328 return LangAS::cuda_constant; 3329 else if (D && D->hasAttr<CUDASharedAttr>()) 3330 return LangAS::cuda_shared; 3331 else if (D && D->hasAttr<CUDADeviceAttr>()) 3332 return LangAS::cuda_device; 3333 else if (D && D->getType().isConstQualified()) 3334 return LangAS::cuda_constant; 3335 else 3336 return LangAS::cuda_device; 3337 } 3338 3339 return getTargetCodeGenInfo().getGlobalVarAddressSpace(*this, D); 3340 } 3341 3342 LangAS CodeGenModule::getStringLiteralAddressSpace() const { 3343 // OpenCL v1.2 s6.5.3: a string literal is in the constant address space. 3344 if (LangOpts.OpenCL) 3345 return LangAS::opencl_constant; 3346 if (auto AS = getTarget().getConstantAddressSpace()) 3347 return AS.getValue(); 3348 return LangAS::Default; 3349 } 3350 3351 // In address space agnostic languages, string literals are in default address 3352 // space in AST. However, certain targets (e.g. amdgcn) request them to be 3353 // emitted in constant address space in LLVM IR. To be consistent with other 3354 // parts of AST, string literal global variables in constant address space 3355 // need to be casted to default address space before being put into address 3356 // map and referenced by other part of CodeGen. 3357 // In OpenCL, string literals are in constant address space in AST, therefore 3358 // they should not be casted to default address space. 3359 static llvm::Constant * 3360 castStringLiteralToDefaultAddressSpace(CodeGenModule &CGM, 3361 llvm::GlobalVariable *GV) { 3362 llvm::Constant *Cast = GV; 3363 if (!CGM.getLangOpts().OpenCL) { 3364 if (auto AS = CGM.getTarget().getConstantAddressSpace()) { 3365 if (AS != LangAS::Default) 3366 Cast = CGM.getTargetCodeGenInfo().performAddrSpaceCast( 3367 CGM, GV, AS.getValue(), LangAS::Default, 3368 GV->getValueType()->getPointerTo( 3369 CGM.getContext().getTargetAddressSpace(LangAS::Default))); 3370 } 3371 } 3372 return Cast; 3373 } 3374 3375 template<typename SomeDecl> 3376 void CodeGenModule::MaybeHandleStaticInExternC(const SomeDecl *D, 3377 llvm::GlobalValue *GV) { 3378 if (!getLangOpts().CPlusPlus) 3379 return; 3380 3381 // Must have 'used' attribute, or else inline assembly can't rely on 3382 // the name existing. 3383 if (!D->template hasAttr<UsedAttr>()) 3384 return; 3385 3386 // Must have internal linkage and an ordinary name. 3387 if (!D->getIdentifier() || D->getFormalLinkage() != InternalLinkage) 3388 return; 3389 3390 // Must be in an extern "C" context. Entities declared directly within 3391 // a record are not extern "C" even if the record is in such a context. 3392 const SomeDecl *First = D->getFirstDecl(); 3393 if (First->getDeclContext()->isRecord() || !First->isInExternCContext()) 3394 return; 3395 3396 // OK, this is an internal linkage entity inside an extern "C" linkage 3397 // specification. Make a note of that so we can give it the "expected" 3398 // mangled name if nothing else is using that name. 3399 std::pair<StaticExternCMap::iterator, bool> R = 3400 StaticExternCValues.insert(std::make_pair(D->getIdentifier(), GV)); 3401 3402 // If we have multiple internal linkage entities with the same name 3403 // in extern "C" regions, none of them gets that name. 3404 if (!R.second) 3405 R.first->second = nullptr; 3406 } 3407 3408 static bool shouldBeInCOMDAT(CodeGenModule &CGM, const Decl &D) { 3409 if (!CGM.supportsCOMDAT()) 3410 return false; 3411 3412 if (D.hasAttr<SelectAnyAttr>()) 3413 return true; 3414 3415 GVALinkage Linkage; 3416 if (auto *VD = dyn_cast<VarDecl>(&D)) 3417 Linkage = CGM.getContext().GetGVALinkageForVariable(VD); 3418 else 3419 Linkage = CGM.getContext().GetGVALinkageForFunction(cast<FunctionDecl>(&D)); 3420 3421 switch (Linkage) { 3422 case GVA_Internal: 3423 case GVA_AvailableExternally: 3424 case GVA_StrongExternal: 3425 return false; 3426 case GVA_DiscardableODR: 3427 case GVA_StrongODR: 3428 return true; 3429 } 3430 llvm_unreachable("No such linkage"); 3431 } 3432 3433 void CodeGenModule::maybeSetTrivialComdat(const Decl &D, 3434 llvm::GlobalObject &GO) { 3435 if (!shouldBeInCOMDAT(*this, D)) 3436 return; 3437 GO.setComdat(TheModule.getOrInsertComdat(GO.getName())); 3438 } 3439 3440 /// Pass IsTentative as true if you want to create a tentative definition. 3441 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D, 3442 bool IsTentative) { 3443 // OpenCL global variables of sampler type are translated to function calls, 3444 // therefore no need to be translated. 3445 QualType ASTTy = D->getType(); 3446 if (getLangOpts().OpenCL && ASTTy->isSamplerT()) 3447 return; 3448 3449 // If this is OpenMP device, check if it is legal to emit this global 3450 // normally. 3451 if (LangOpts.OpenMPIsDevice && OpenMPRuntime && 3452 OpenMPRuntime->emitTargetGlobalVariable(D)) 3453 return; 3454 3455 llvm::Constant *Init = nullptr; 3456 CXXRecordDecl *RD = ASTTy->getBaseElementTypeUnsafe()->getAsCXXRecordDecl(); 3457 bool NeedsGlobalCtor = false; 3458 bool NeedsGlobalDtor = RD && !RD->hasTrivialDestructor(); 3459 3460 const VarDecl *InitDecl; 3461 const Expr *InitExpr = D->getAnyInitializer(InitDecl); 3462 3463 Optional<ConstantEmitter> emitter; 3464 3465 // CUDA E.2.4.1 "__shared__ variables cannot have an initialization 3466 // as part of their declaration." Sema has already checked for 3467 // error cases, so we just need to set Init to UndefValue. 3468 if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice && 3469 D->hasAttr<CUDASharedAttr>()) 3470 Init = llvm::UndefValue::get(getTypes().ConvertType(ASTTy)); 3471 else if (!InitExpr) { 3472 // This is a tentative definition; tentative definitions are 3473 // implicitly initialized with { 0 }. 3474 // 3475 // Note that tentative definitions are only emitted at the end of 3476 // a translation unit, so they should never have incomplete 3477 // type. In addition, EmitTentativeDefinition makes sure that we 3478 // never attempt to emit a tentative definition if a real one 3479 // exists. A use may still exists, however, so we still may need 3480 // to do a RAUW. 3481 assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type"); 3482 Init = EmitNullConstant(D->getType()); 3483 } else { 3484 initializedGlobalDecl = GlobalDecl(D); 3485 emitter.emplace(*this); 3486 Init = emitter->tryEmitForInitializer(*InitDecl); 3487 3488 if (!Init) { 3489 QualType T = InitExpr->getType(); 3490 if (D->getType()->isReferenceType()) 3491 T = D->getType(); 3492 3493 if (getLangOpts().CPlusPlus) { 3494 Init = EmitNullConstant(T); 3495 NeedsGlobalCtor = true; 3496 } else { 3497 ErrorUnsupported(D, "static initializer"); 3498 Init = llvm::UndefValue::get(getTypes().ConvertType(T)); 3499 } 3500 } else { 3501 // We don't need an initializer, so remove the entry for the delayed 3502 // initializer position (just in case this entry was delayed) if we 3503 // also don't need to register a destructor. 3504 if (getLangOpts().CPlusPlus && !NeedsGlobalDtor) 3505 DelayedCXXInitPosition.erase(D); 3506 } 3507 } 3508 3509 llvm::Type* InitType = Init->getType(); 3510 llvm::Constant *Entry = 3511 GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative)); 3512 3513 // Strip off a bitcast if we got one back. 3514 if (auto *CE = dyn_cast<llvm::ConstantExpr>(Entry)) { 3515 assert(CE->getOpcode() == llvm::Instruction::BitCast || 3516 CE->getOpcode() == llvm::Instruction::AddrSpaceCast || 3517 // All zero index gep. 3518 CE->getOpcode() == llvm::Instruction::GetElementPtr); 3519 Entry = CE->getOperand(0); 3520 } 3521 3522 // Entry is now either a Function or GlobalVariable. 3523 auto *GV = dyn_cast<llvm::GlobalVariable>(Entry); 3524 3525 // We have a definition after a declaration with the wrong type. 3526 // We must make a new GlobalVariable* and update everything that used OldGV 3527 // (a declaration or tentative definition) with the new GlobalVariable* 3528 // (which will be a definition). 3529 // 3530 // This happens if there is a prototype for a global (e.g. 3531 // "extern int x[];") and then a definition of a different type (e.g. 3532 // "int x[10];"). This also happens when an initializer has a different type 3533 // from the type of the global (this happens with unions). 3534 if (!GV || GV->getType()->getElementType() != InitType || 3535 GV->getType()->getAddressSpace() != 3536 getContext().getTargetAddressSpace(GetGlobalVarAddressSpace(D))) { 3537 3538 // Move the old entry aside so that we'll create a new one. 3539 Entry->setName(StringRef()); 3540 3541 // Make a new global with the correct type, this is now guaranteed to work. 3542 GV = cast<llvm::GlobalVariable>( 3543 GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative))); 3544 3545 // Replace all uses of the old global with the new global 3546 llvm::Constant *NewPtrForOldDecl = 3547 llvm::ConstantExpr::getBitCast(GV, Entry->getType()); 3548 Entry->replaceAllUsesWith(NewPtrForOldDecl); 3549 3550 // Erase the old global, since it is no longer used. 3551 cast<llvm::GlobalValue>(Entry)->eraseFromParent(); 3552 } 3553 3554 MaybeHandleStaticInExternC(D, GV); 3555 3556 if (D->hasAttr<AnnotateAttr>()) 3557 AddGlobalAnnotations(D, GV); 3558 3559 // Set the llvm linkage type as appropriate. 3560 llvm::GlobalValue::LinkageTypes Linkage = 3561 getLLVMLinkageVarDefinition(D, GV->isConstant()); 3562 3563 // CUDA B.2.1 "The __device__ qualifier declares a variable that resides on 3564 // the device. [...]" 3565 // CUDA B.2.2 "The __constant__ qualifier, optionally used together with 3566 // __device__, declares a variable that: [...] 3567 // Is accessible from all the threads within the grid and from the host 3568 // through the runtime library (cudaGetSymbolAddress() / cudaGetSymbolSize() 3569 // / cudaMemcpyToSymbol() / cudaMemcpyFromSymbol())." 3570 if (GV && LangOpts.CUDA) { 3571 if (LangOpts.CUDAIsDevice) { 3572 if (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>()) 3573 GV->setExternallyInitialized(true); 3574 } else { 3575 // Host-side shadows of external declarations of device-side 3576 // global variables become internal definitions. These have to 3577 // be internal in order to prevent name conflicts with global 3578 // host variables with the same name in a different TUs. 3579 if (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>()) { 3580 Linkage = llvm::GlobalValue::InternalLinkage; 3581 3582 // Shadow variables and their properties must be registered 3583 // with CUDA runtime. 3584 unsigned Flags = 0; 3585 if (!D->hasDefinition()) 3586 Flags |= CGCUDARuntime::ExternDeviceVar; 3587 if (D->hasAttr<CUDAConstantAttr>()) 3588 Flags |= CGCUDARuntime::ConstantDeviceVar; 3589 getCUDARuntime().registerDeviceVar(*GV, Flags); 3590 } else if (D->hasAttr<CUDASharedAttr>()) 3591 // __shared__ variables are odd. Shadows do get created, but 3592 // they are not registered with the CUDA runtime, so they 3593 // can't really be used to access their device-side 3594 // counterparts. It's not clear yet whether it's nvcc's bug or 3595 // a feature, but we've got to do the same for compatibility. 3596 Linkage = llvm::GlobalValue::InternalLinkage; 3597 } 3598 } 3599 3600 GV->setInitializer(Init); 3601 if (emitter) emitter->finalize(GV); 3602 3603 // If it is safe to mark the global 'constant', do so now. 3604 GV->setConstant(!NeedsGlobalCtor && !NeedsGlobalDtor && 3605 isTypeConstant(D->getType(), true)); 3606 3607 // If it is in a read-only section, mark it 'constant'. 3608 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) { 3609 const ASTContext::SectionInfo &SI = Context.SectionInfos[SA->getName()]; 3610 if ((SI.SectionFlags & ASTContext::PSF_Write) == 0) 3611 GV->setConstant(true); 3612 } 3613 3614 GV->setAlignment(getContext().getDeclAlign(D).getQuantity()); 3615 3616 3617 // On Darwin, if the normal linkage of a C++ thread_local variable is 3618 // LinkOnce or Weak, we keep the normal linkage to prevent multiple 3619 // copies within a linkage unit; otherwise, the backing variable has 3620 // internal linkage and all accesses should just be calls to the 3621 // Itanium-specified entry point, which has the normal linkage of the 3622 // variable. This is to preserve the ability to change the implementation 3623 // behind the scenes. 3624 if (!D->isStaticLocal() && D->getTLSKind() == VarDecl::TLS_Dynamic && 3625 Context.getTargetInfo().getTriple().isOSDarwin() && 3626 !llvm::GlobalVariable::isLinkOnceLinkage(Linkage) && 3627 !llvm::GlobalVariable::isWeakLinkage(Linkage)) 3628 Linkage = llvm::GlobalValue::InternalLinkage; 3629 3630 GV->setLinkage(Linkage); 3631 if (D->hasAttr<DLLImportAttr>()) 3632 GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass); 3633 else if (D->hasAttr<DLLExportAttr>()) 3634 GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass); 3635 else 3636 GV->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass); 3637 3638 if (Linkage == llvm::GlobalVariable::CommonLinkage) { 3639 // common vars aren't constant even if declared const. 3640 GV->setConstant(false); 3641 // Tentative definition of global variables may be initialized with 3642 // non-zero null pointers. In this case they should have weak linkage 3643 // since common linkage must have zero initializer and must not have 3644 // explicit section therefore cannot have non-zero initial value. 3645 if (!GV->getInitializer()->isNullValue()) 3646 GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage); 3647 } 3648 3649 setNonAliasAttributes(D, GV); 3650 3651 if (D->getTLSKind() && !GV->isThreadLocal()) { 3652 if (D->getTLSKind() == VarDecl::TLS_Dynamic) 3653 CXXThreadLocals.push_back(D); 3654 setTLSMode(GV, *D); 3655 } 3656 3657 maybeSetTrivialComdat(*D, *GV); 3658 3659 // Emit the initializer function if necessary. 3660 if (NeedsGlobalCtor || NeedsGlobalDtor) 3661 EmitCXXGlobalVarDeclInitFunc(D, GV, NeedsGlobalCtor); 3662 3663 SanitizerMD->reportGlobalToASan(GV, *D, NeedsGlobalCtor); 3664 3665 // Emit global variable debug information. 3666 if (CGDebugInfo *DI = getModuleDebugInfo()) 3667 if (getCodeGenOpts().getDebugInfo() >= codegenoptions::LimitedDebugInfo) 3668 DI->EmitGlobalVariable(GV, D); 3669 } 3670 3671 static bool isVarDeclStrongDefinition(const ASTContext &Context, 3672 CodeGenModule &CGM, const VarDecl *D, 3673 bool NoCommon) { 3674 // Don't give variables common linkage if -fno-common was specified unless it 3675 // was overridden by a NoCommon attribute. 3676 if ((NoCommon || D->hasAttr<NoCommonAttr>()) && !D->hasAttr<CommonAttr>()) 3677 return true; 3678 3679 // C11 6.9.2/2: 3680 // A declaration of an identifier for an object that has file scope without 3681 // an initializer, and without a storage-class specifier or with the 3682 // storage-class specifier static, constitutes a tentative definition. 3683 if (D->getInit() || D->hasExternalStorage()) 3684 return true; 3685 3686 // A variable cannot be both common and exist in a section. 3687 if (D->hasAttr<SectionAttr>()) 3688 return true; 3689 3690 // A variable cannot be both common and exist in a section. 3691 // We don't try to determine which is the right section in the front-end. 3692 // If no specialized section name is applicable, it will resort to default. 3693 if (D->hasAttr<PragmaClangBSSSectionAttr>() || 3694 D->hasAttr<PragmaClangDataSectionAttr>() || 3695 D->hasAttr<PragmaClangRodataSectionAttr>()) 3696 return true; 3697 3698 // Thread local vars aren't considered common linkage. 3699 if (D->getTLSKind()) 3700 return true; 3701 3702 // Tentative definitions marked with WeakImportAttr are true definitions. 3703 if (D->hasAttr<WeakImportAttr>()) 3704 return true; 3705 3706 // A variable cannot be both common and exist in a comdat. 3707 if (shouldBeInCOMDAT(CGM, *D)) 3708 return true; 3709 3710 // Declarations with a required alignment do not have common linkage in MSVC 3711 // mode. 3712 if (Context.getTargetInfo().getCXXABI().isMicrosoft()) { 3713 if (D->hasAttr<AlignedAttr>()) 3714 return true; 3715 QualType VarType = D->getType(); 3716 if (Context.isAlignmentRequired(VarType)) 3717 return true; 3718 3719 if (const auto *RT = VarType->getAs<RecordType>()) { 3720 const RecordDecl *RD = RT->getDecl(); 3721 for (const FieldDecl *FD : RD->fields()) { 3722 if (FD->isBitField()) 3723 continue; 3724 if (FD->hasAttr<AlignedAttr>()) 3725 return true; 3726 if (Context.isAlignmentRequired(FD->getType())) 3727 return true; 3728 } 3729 } 3730 } 3731 3732 return false; 3733 } 3734 3735 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageForDeclarator( 3736 const DeclaratorDecl *D, GVALinkage Linkage, bool IsConstantVariable) { 3737 if (Linkage == GVA_Internal) 3738 return llvm::Function::InternalLinkage; 3739 3740 if (D->hasAttr<WeakAttr>()) { 3741 if (IsConstantVariable) 3742 return llvm::GlobalVariable::WeakODRLinkage; 3743 else 3744 return llvm::GlobalVariable::WeakAnyLinkage; 3745 } 3746 3747 if (const auto *FD = D->getAsFunction()) 3748 if (FD->isMultiVersion() && Linkage == GVA_AvailableExternally) 3749 return llvm::GlobalVariable::LinkOnceAnyLinkage; 3750 3751 // We are guaranteed to have a strong definition somewhere else, 3752 // so we can use available_externally linkage. 3753 if (Linkage == GVA_AvailableExternally) 3754 return llvm::GlobalValue::AvailableExternallyLinkage; 3755 3756 // Note that Apple's kernel linker doesn't support symbol 3757 // coalescing, so we need to avoid linkonce and weak linkages there. 3758 // Normally, this means we just map to internal, but for explicit 3759 // instantiations we'll map to external. 3760 3761 // In C++, the compiler has to emit a definition in every translation unit 3762 // that references the function. We should use linkonce_odr because 3763 // a) if all references in this translation unit are optimized away, we 3764 // don't need to codegen it. b) if the function persists, it needs to be 3765 // merged with other definitions. c) C++ has the ODR, so we know the 3766 // definition is dependable. 3767 if (Linkage == GVA_DiscardableODR) 3768 return !Context.getLangOpts().AppleKext ? llvm::Function::LinkOnceODRLinkage 3769 : llvm::Function::InternalLinkage; 3770 3771 // An explicit instantiation of a template has weak linkage, since 3772 // explicit instantiations can occur in multiple translation units 3773 // and must all be equivalent. However, we are not allowed to 3774 // throw away these explicit instantiations. 3775 // 3776 // We don't currently support CUDA device code spread out across multiple TUs, 3777 // so say that CUDA templates are either external (for kernels) or internal. 3778 // This lets llvm perform aggressive inter-procedural optimizations. 3779 if (Linkage == GVA_StrongODR) { 3780 if (Context.getLangOpts().AppleKext) 3781 return llvm::Function::ExternalLinkage; 3782 if (Context.getLangOpts().CUDA && Context.getLangOpts().CUDAIsDevice) 3783 return D->hasAttr<CUDAGlobalAttr>() ? llvm::Function::ExternalLinkage 3784 : llvm::Function::InternalLinkage; 3785 return llvm::Function::WeakODRLinkage; 3786 } 3787 3788 // C++ doesn't have tentative definitions and thus cannot have common 3789 // linkage. 3790 if (!getLangOpts().CPlusPlus && isa<VarDecl>(D) && 3791 !isVarDeclStrongDefinition(Context, *this, cast<VarDecl>(D), 3792 CodeGenOpts.NoCommon)) 3793 return llvm::GlobalVariable::CommonLinkage; 3794 3795 // selectany symbols are externally visible, so use weak instead of 3796 // linkonce. MSVC optimizes away references to const selectany globals, so 3797 // all definitions should be the same and ODR linkage should be used. 3798 // http://msdn.microsoft.com/en-us/library/5tkz6s71.aspx 3799 if (D->hasAttr<SelectAnyAttr>()) 3800 return llvm::GlobalVariable::WeakODRLinkage; 3801 3802 // Otherwise, we have strong external linkage. 3803 assert(Linkage == GVA_StrongExternal); 3804 return llvm::GlobalVariable::ExternalLinkage; 3805 } 3806 3807 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageVarDefinition( 3808 const VarDecl *VD, bool IsConstant) { 3809 GVALinkage Linkage = getContext().GetGVALinkageForVariable(VD); 3810 return getLLVMLinkageForDeclarator(VD, Linkage, IsConstant); 3811 } 3812 3813 /// Replace the uses of a function that was declared with a non-proto type. 3814 /// We want to silently drop extra arguments from call sites 3815 static void replaceUsesOfNonProtoConstant(llvm::Constant *old, 3816 llvm::Function *newFn) { 3817 // Fast path. 3818 if (old->use_empty()) return; 3819 3820 llvm::Type *newRetTy = newFn->getReturnType(); 3821 SmallVector<llvm::Value*, 4> newArgs; 3822 SmallVector<llvm::OperandBundleDef, 1> newBundles; 3823 3824 for (llvm::Value::use_iterator ui = old->use_begin(), ue = old->use_end(); 3825 ui != ue; ) { 3826 llvm::Value::use_iterator use = ui++; // Increment before the use is erased. 3827 llvm::User *user = use->getUser(); 3828 3829 // Recognize and replace uses of bitcasts. Most calls to 3830 // unprototyped functions will use bitcasts. 3831 if (auto *bitcast = dyn_cast<llvm::ConstantExpr>(user)) { 3832 if (bitcast->getOpcode() == llvm::Instruction::BitCast) 3833 replaceUsesOfNonProtoConstant(bitcast, newFn); 3834 continue; 3835 } 3836 3837 // Recognize calls to the function. 3838 llvm::CallSite callSite(user); 3839 if (!callSite) continue; 3840 if (!callSite.isCallee(&*use)) continue; 3841 3842 // If the return types don't match exactly, then we can't 3843 // transform this call unless it's dead. 3844 if (callSite->getType() != newRetTy && !callSite->use_empty()) 3845 continue; 3846 3847 // Get the call site's attribute list. 3848 SmallVector<llvm::AttributeSet, 8> newArgAttrs; 3849 llvm::AttributeList oldAttrs = callSite.getAttributes(); 3850 3851 // If the function was passed too few arguments, don't transform. 3852 unsigned newNumArgs = newFn->arg_size(); 3853 if (callSite.arg_size() < newNumArgs) continue; 3854 3855 // If extra arguments were passed, we silently drop them. 3856 // If any of the types mismatch, we don't transform. 3857 unsigned argNo = 0; 3858 bool dontTransform = false; 3859 for (llvm::Argument &A : newFn->args()) { 3860 if (callSite.getArgument(argNo)->getType() != A.getType()) { 3861 dontTransform = true; 3862 break; 3863 } 3864 3865 // Add any parameter attributes. 3866 newArgAttrs.push_back(oldAttrs.getParamAttributes(argNo)); 3867 argNo++; 3868 } 3869 if (dontTransform) 3870 continue; 3871 3872 // Okay, we can transform this. Create the new call instruction and copy 3873 // over the required information. 3874 newArgs.append(callSite.arg_begin(), callSite.arg_begin() + argNo); 3875 3876 // Copy over any operand bundles. 3877 callSite.getOperandBundlesAsDefs(newBundles); 3878 3879 llvm::CallSite newCall; 3880 if (callSite.isCall()) { 3881 newCall = llvm::CallInst::Create(newFn, newArgs, newBundles, "", 3882 callSite.getInstruction()); 3883 } else { 3884 auto *oldInvoke = cast<llvm::InvokeInst>(callSite.getInstruction()); 3885 newCall = llvm::InvokeInst::Create(newFn, 3886 oldInvoke->getNormalDest(), 3887 oldInvoke->getUnwindDest(), 3888 newArgs, newBundles, "", 3889 callSite.getInstruction()); 3890 } 3891 newArgs.clear(); // for the next iteration 3892 3893 if (!newCall->getType()->isVoidTy()) 3894 newCall->takeName(callSite.getInstruction()); 3895 newCall.setAttributes(llvm::AttributeList::get( 3896 newFn->getContext(), oldAttrs.getFnAttributes(), 3897 oldAttrs.getRetAttributes(), newArgAttrs)); 3898 newCall.setCallingConv(callSite.getCallingConv()); 3899 3900 // Finally, remove the old call, replacing any uses with the new one. 3901 if (!callSite->use_empty()) 3902 callSite->replaceAllUsesWith(newCall.getInstruction()); 3903 3904 // Copy debug location attached to CI. 3905 if (callSite->getDebugLoc()) 3906 newCall->setDebugLoc(callSite->getDebugLoc()); 3907 3908 callSite->eraseFromParent(); 3909 } 3910 } 3911 3912 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we 3913 /// implement a function with no prototype, e.g. "int foo() {}". If there are 3914 /// existing call uses of the old function in the module, this adjusts them to 3915 /// call the new function directly. 3916 /// 3917 /// This is not just a cleanup: the always_inline pass requires direct calls to 3918 /// functions to be able to inline them. If there is a bitcast in the way, it 3919 /// won't inline them. Instcombine normally deletes these calls, but it isn't 3920 /// run at -O0. 3921 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old, 3922 llvm::Function *NewFn) { 3923 // If we're redefining a global as a function, don't transform it. 3924 if (!isa<llvm::Function>(Old)) return; 3925 3926 replaceUsesOfNonProtoConstant(Old, NewFn); 3927 } 3928 3929 void CodeGenModule::HandleCXXStaticMemberVarInstantiation(VarDecl *VD) { 3930 auto DK = VD->isThisDeclarationADefinition(); 3931 if (DK == VarDecl::Definition && VD->hasAttr<DLLImportAttr>()) 3932 return; 3933 3934 TemplateSpecializationKind TSK = VD->getTemplateSpecializationKind(); 3935 // If we have a definition, this might be a deferred decl. If the 3936 // instantiation is explicit, make sure we emit it at the end. 3937 if (VD->getDefinition() && TSK == TSK_ExplicitInstantiationDefinition) 3938 GetAddrOfGlobalVar(VD); 3939 3940 EmitTopLevelDecl(VD); 3941 } 3942 3943 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD, 3944 llvm::GlobalValue *GV) { 3945 const auto *D = cast<FunctionDecl>(GD.getDecl()); 3946 3947 // Compute the function info and LLVM type. 3948 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 3949 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 3950 3951 // Get or create the prototype for the function. 3952 if (!GV || (GV->getType()->getElementType() != Ty)) 3953 GV = cast<llvm::GlobalValue>(GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, 3954 /*DontDefer=*/true, 3955 ForDefinition)); 3956 3957 // Already emitted. 3958 if (!GV->isDeclaration()) 3959 return; 3960 3961 // We need to set linkage and visibility on the function before 3962 // generating code for it because various parts of IR generation 3963 // want to propagate this information down (e.g. to local static 3964 // declarations). 3965 auto *Fn = cast<llvm::Function>(GV); 3966 setFunctionLinkage(GD, Fn); 3967 3968 // FIXME: this is redundant with part of setFunctionDefinitionAttributes 3969 setGVProperties(Fn, GD); 3970 3971 MaybeHandleStaticInExternC(D, Fn); 3972 3973 3974 maybeSetTrivialComdat(*D, *Fn); 3975 3976 CodeGenFunction(*this).GenerateCode(D, Fn, FI); 3977 3978 setNonAliasAttributes(GD, Fn); 3979 SetLLVMFunctionAttributesForDefinition(D, Fn); 3980 3981 if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>()) 3982 AddGlobalCtor(Fn, CA->getPriority()); 3983 if (const DestructorAttr *DA = D->getAttr<DestructorAttr>()) 3984 AddGlobalDtor(Fn, DA->getPriority()); 3985 if (D->hasAttr<AnnotateAttr>()) 3986 AddGlobalAnnotations(D, Fn); 3987 } 3988 3989 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) { 3990 const auto *D = cast<ValueDecl>(GD.getDecl()); 3991 const AliasAttr *AA = D->getAttr<AliasAttr>(); 3992 assert(AA && "Not an alias?"); 3993 3994 StringRef MangledName = getMangledName(GD); 3995 3996 if (AA->getAliasee() == MangledName) { 3997 Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0; 3998 return; 3999 } 4000 4001 // If there is a definition in the module, then it wins over the alias. 4002 // This is dubious, but allow it to be safe. Just ignore the alias. 4003 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 4004 if (Entry && !Entry->isDeclaration()) 4005 return; 4006 4007 Aliases.push_back(GD); 4008 4009 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType()); 4010 4011 // Create a reference to the named value. This ensures that it is emitted 4012 // if a deferred decl. 4013 llvm::Constant *Aliasee; 4014 if (isa<llvm::FunctionType>(DeclTy)) 4015 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GD, 4016 /*ForVTable=*/false); 4017 else 4018 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), 4019 llvm::PointerType::getUnqual(DeclTy), 4020 /*D=*/nullptr); 4021 4022 // Create the new alias itself, but don't set a name yet. 4023 auto *GA = llvm::GlobalAlias::create( 4024 DeclTy, 0, llvm::Function::ExternalLinkage, "", Aliasee, &getModule()); 4025 4026 if (Entry) { 4027 if (GA->getAliasee() == Entry) { 4028 Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0; 4029 return; 4030 } 4031 4032 assert(Entry->isDeclaration()); 4033 4034 // If there is a declaration in the module, then we had an extern followed 4035 // by the alias, as in: 4036 // extern int test6(); 4037 // ... 4038 // int test6() __attribute__((alias("test7"))); 4039 // 4040 // Remove it and replace uses of it with the alias. 4041 GA->takeName(Entry); 4042 4043 Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA, 4044 Entry->getType())); 4045 Entry->eraseFromParent(); 4046 } else { 4047 GA->setName(MangledName); 4048 } 4049 4050 // Set attributes which are particular to an alias; this is a 4051 // specialization of the attributes which may be set on a global 4052 // variable/function. 4053 if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakRefAttr>() || 4054 D->isWeakImported()) { 4055 GA->setLinkage(llvm::Function::WeakAnyLinkage); 4056 } 4057 4058 if (const auto *VD = dyn_cast<VarDecl>(D)) 4059 if (VD->getTLSKind()) 4060 setTLSMode(GA, *VD); 4061 4062 SetCommonAttributes(GD, GA); 4063 } 4064 4065 void CodeGenModule::emitIFuncDefinition(GlobalDecl GD) { 4066 const auto *D = cast<ValueDecl>(GD.getDecl()); 4067 const IFuncAttr *IFA = D->getAttr<IFuncAttr>(); 4068 assert(IFA && "Not an ifunc?"); 4069 4070 StringRef MangledName = getMangledName(GD); 4071 4072 if (IFA->getResolver() == MangledName) { 4073 Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1; 4074 return; 4075 } 4076 4077 // Report an error if some definition overrides ifunc. 4078 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 4079 if (Entry && !Entry->isDeclaration()) { 4080 GlobalDecl OtherGD; 4081 if (lookupRepresentativeDecl(MangledName, OtherGD) && 4082 DiagnosedConflictingDefinitions.insert(GD).second) { 4083 Diags.Report(D->getLocation(), diag::err_duplicate_mangled_name) 4084 << MangledName; 4085 Diags.Report(OtherGD.getDecl()->getLocation(), 4086 diag::note_previous_definition); 4087 } 4088 return; 4089 } 4090 4091 Aliases.push_back(GD); 4092 4093 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType()); 4094 llvm::Constant *Resolver = 4095 GetOrCreateLLVMFunction(IFA->getResolver(), DeclTy, GD, 4096 /*ForVTable=*/false); 4097 llvm::GlobalIFunc *GIF = 4098 llvm::GlobalIFunc::create(DeclTy, 0, llvm::Function::ExternalLinkage, 4099 "", Resolver, &getModule()); 4100 if (Entry) { 4101 if (GIF->getResolver() == Entry) { 4102 Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1; 4103 return; 4104 } 4105 assert(Entry->isDeclaration()); 4106 4107 // If there is a declaration in the module, then we had an extern followed 4108 // by the ifunc, as in: 4109 // extern int test(); 4110 // ... 4111 // int test() __attribute__((ifunc("resolver"))); 4112 // 4113 // Remove it and replace uses of it with the ifunc. 4114 GIF->takeName(Entry); 4115 4116 Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GIF, 4117 Entry->getType())); 4118 Entry->eraseFromParent(); 4119 } else 4120 GIF->setName(MangledName); 4121 4122 SetCommonAttributes(GD, GIF); 4123 } 4124 4125 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID, 4126 ArrayRef<llvm::Type*> Tys) { 4127 return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID, 4128 Tys); 4129 } 4130 4131 static llvm::StringMapEntry<llvm::GlobalVariable *> & 4132 GetConstantCFStringEntry(llvm::StringMap<llvm::GlobalVariable *> &Map, 4133 const StringLiteral *Literal, bool TargetIsLSB, 4134 bool &IsUTF16, unsigned &StringLength) { 4135 StringRef String = Literal->getString(); 4136 unsigned NumBytes = String.size(); 4137 4138 // Check for simple case. 4139 if (!Literal->containsNonAsciiOrNull()) { 4140 StringLength = NumBytes; 4141 return *Map.insert(std::make_pair(String, nullptr)).first; 4142 } 4143 4144 // Otherwise, convert the UTF8 literals into a string of shorts. 4145 IsUTF16 = true; 4146 4147 SmallVector<llvm::UTF16, 128> ToBuf(NumBytes + 1); // +1 for ending nulls. 4148 const llvm::UTF8 *FromPtr = (const llvm::UTF8 *)String.data(); 4149 llvm::UTF16 *ToPtr = &ToBuf[0]; 4150 4151 (void)llvm::ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, &ToPtr, 4152 ToPtr + NumBytes, llvm::strictConversion); 4153 4154 // ConvertUTF8toUTF16 returns the length in ToPtr. 4155 StringLength = ToPtr - &ToBuf[0]; 4156 4157 // Add an explicit null. 4158 *ToPtr = 0; 4159 return *Map.insert(std::make_pair( 4160 StringRef(reinterpret_cast<const char *>(ToBuf.data()), 4161 (StringLength + 1) * 2), 4162 nullptr)).first; 4163 } 4164 4165 ConstantAddress 4166 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) { 4167 unsigned StringLength = 0; 4168 bool isUTF16 = false; 4169 llvm::StringMapEntry<llvm::GlobalVariable *> &Entry = 4170 GetConstantCFStringEntry(CFConstantStringMap, Literal, 4171 getDataLayout().isLittleEndian(), isUTF16, 4172 StringLength); 4173 4174 if (auto *C = Entry.second) 4175 return ConstantAddress(C, CharUnits::fromQuantity(C->getAlignment())); 4176 4177 llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty); 4178 llvm::Constant *Zeros[] = { Zero, Zero }; 4179 4180 const ASTContext &Context = getContext(); 4181 const llvm::Triple &Triple = getTriple(); 4182 4183 const auto CFRuntime = getLangOpts().CFRuntime; 4184 const bool IsSwiftABI = 4185 static_cast<unsigned>(CFRuntime) >= 4186 static_cast<unsigned>(LangOptions::CoreFoundationABI::Swift); 4187 const bool IsSwift4_1 = CFRuntime == LangOptions::CoreFoundationABI::Swift4_1; 4188 4189 // If we don't already have it, get __CFConstantStringClassReference. 4190 if (!CFConstantStringClassRef) { 4191 const char *CFConstantStringClassName = "__CFConstantStringClassReference"; 4192 llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy); 4193 Ty = llvm::ArrayType::get(Ty, 0); 4194 4195 switch (CFRuntime) { 4196 default: break; 4197 case LangOptions::CoreFoundationABI::Swift: LLVM_FALLTHROUGH; 4198 case LangOptions::CoreFoundationABI::Swift5_0: 4199 CFConstantStringClassName = 4200 Triple.isOSDarwin() ? "$s15SwiftFoundation19_NSCFConstantStringCN" 4201 : "$s10Foundation19_NSCFConstantStringCN"; 4202 Ty = IntPtrTy; 4203 break; 4204 case LangOptions::CoreFoundationABI::Swift4_2: 4205 CFConstantStringClassName = 4206 Triple.isOSDarwin() ? "$S15SwiftFoundation19_NSCFConstantStringCN" 4207 : "$S10Foundation19_NSCFConstantStringCN"; 4208 Ty = IntPtrTy; 4209 break; 4210 case LangOptions::CoreFoundationABI::Swift4_1: 4211 CFConstantStringClassName = 4212 Triple.isOSDarwin() ? "__T015SwiftFoundation19_NSCFConstantStringCN" 4213 : "__T010Foundation19_NSCFConstantStringCN"; 4214 Ty = IntPtrTy; 4215 break; 4216 } 4217 4218 llvm::Constant *C = CreateRuntimeVariable(Ty, CFConstantStringClassName); 4219 4220 if (Triple.isOSBinFormatELF() || Triple.isOSBinFormatCOFF()) { 4221 llvm::GlobalValue *GV = nullptr; 4222 4223 if ((GV = dyn_cast<llvm::GlobalValue>(C))) { 4224 IdentifierInfo &II = Context.Idents.get(GV->getName()); 4225 TranslationUnitDecl *TUDecl = Context.getTranslationUnitDecl(); 4226 DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl); 4227 4228 const VarDecl *VD = nullptr; 4229 for (const auto &Result : DC->lookup(&II)) 4230 if ((VD = dyn_cast<VarDecl>(Result))) 4231 break; 4232 4233 if (Triple.isOSBinFormatELF()) { 4234 if (!VD) 4235 GV->setLinkage(llvm::GlobalValue::ExternalLinkage); 4236 } else { 4237 GV->setLinkage(llvm::GlobalValue::ExternalLinkage); 4238 if (!VD || !VD->hasAttr<DLLExportAttr>()) 4239 GV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass); 4240 else 4241 GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass); 4242 } 4243 4244 setDSOLocal(GV); 4245 } 4246 } 4247 4248 // Decay array -> ptr 4249 CFConstantStringClassRef = 4250 IsSwiftABI ? llvm::ConstantExpr::getPtrToInt(C, Ty) 4251 : llvm::ConstantExpr::getGetElementPtr(Ty, C, Zeros); 4252 } 4253 4254 QualType CFTy = Context.getCFConstantStringType(); 4255 4256 auto *STy = cast<llvm::StructType>(getTypes().ConvertType(CFTy)); 4257 4258 ConstantInitBuilder Builder(*this); 4259 auto Fields = Builder.beginStruct(STy); 4260 4261 // Class pointer. 4262 Fields.add(cast<llvm::ConstantExpr>(CFConstantStringClassRef)); 4263 4264 // Flags. 4265 if (IsSwiftABI) { 4266 Fields.addInt(IntPtrTy, IsSwift4_1 ? 0x05 : 0x01); 4267 Fields.addInt(Int64Ty, isUTF16 ? 0x07d0 : 0x07c8); 4268 } else { 4269 Fields.addInt(IntTy, isUTF16 ? 0x07d0 : 0x07C8); 4270 } 4271 4272 // String pointer. 4273 llvm::Constant *C = nullptr; 4274 if (isUTF16) { 4275 auto Arr = llvm::makeArrayRef( 4276 reinterpret_cast<uint16_t *>(const_cast<char *>(Entry.first().data())), 4277 Entry.first().size() / 2); 4278 C = llvm::ConstantDataArray::get(VMContext, Arr); 4279 } else { 4280 C = llvm::ConstantDataArray::getString(VMContext, Entry.first()); 4281 } 4282 4283 // Note: -fwritable-strings doesn't make the backing store strings of 4284 // CFStrings writable. (See <rdar://problem/10657500>) 4285 auto *GV = 4286 new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true, 4287 llvm::GlobalValue::PrivateLinkage, C, ".str"); 4288 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 4289 // Don't enforce the target's minimum global alignment, since the only use 4290 // of the string is via this class initializer. 4291 CharUnits Align = isUTF16 ? Context.getTypeAlignInChars(Context.ShortTy) 4292 : Context.getTypeAlignInChars(Context.CharTy); 4293 GV->setAlignment(Align.getQuantity()); 4294 4295 // FIXME: We set the section explicitly to avoid a bug in ld64 224.1. 4296 // Without it LLVM can merge the string with a non unnamed_addr one during 4297 // LTO. Doing that changes the section it ends in, which surprises ld64. 4298 if (Triple.isOSBinFormatMachO()) 4299 GV->setSection(isUTF16 ? "__TEXT,__ustring" 4300 : "__TEXT,__cstring,cstring_literals"); 4301 // Make sure the literal ends up in .rodata to allow for safe ICF and for 4302 // the static linker to adjust permissions to read-only later on. 4303 else if (Triple.isOSBinFormatELF()) 4304 GV->setSection(".rodata"); 4305 4306 // String. 4307 llvm::Constant *Str = 4308 llvm::ConstantExpr::getGetElementPtr(GV->getValueType(), GV, Zeros); 4309 4310 if (isUTF16) 4311 // Cast the UTF16 string to the correct type. 4312 Str = llvm::ConstantExpr::getBitCast(Str, Int8PtrTy); 4313 Fields.add(Str); 4314 4315 // String length. 4316 llvm::IntegerType *LengthTy = 4317 llvm::IntegerType::get(getModule().getContext(), 4318 Context.getTargetInfo().getLongWidth()); 4319 if (IsSwiftABI) { 4320 if (CFRuntime == LangOptions::CoreFoundationABI::Swift4_1 || 4321 CFRuntime == LangOptions::CoreFoundationABI::Swift4_2) 4322 LengthTy = Int32Ty; 4323 else 4324 LengthTy = IntPtrTy; 4325 } 4326 Fields.addInt(LengthTy, StringLength); 4327 4328 CharUnits Alignment = getPointerAlign(); 4329 4330 // The struct. 4331 GV = Fields.finishAndCreateGlobal("_unnamed_cfstring_", Alignment, 4332 /*isConstant=*/false, 4333 llvm::GlobalVariable::PrivateLinkage); 4334 switch (Triple.getObjectFormat()) { 4335 case llvm::Triple::UnknownObjectFormat: 4336 llvm_unreachable("unknown file format"); 4337 case llvm::Triple::COFF: 4338 case llvm::Triple::ELF: 4339 case llvm::Triple::Wasm: 4340 GV->setSection("cfstring"); 4341 break; 4342 case llvm::Triple::MachO: 4343 GV->setSection("__DATA,__cfstring"); 4344 break; 4345 } 4346 Entry.second = GV; 4347 4348 return ConstantAddress(GV, Alignment); 4349 } 4350 4351 bool CodeGenModule::getExpressionLocationsEnabled() const { 4352 return !CodeGenOpts.EmitCodeView || CodeGenOpts.DebugColumnInfo; 4353 } 4354 4355 QualType CodeGenModule::getObjCFastEnumerationStateType() { 4356 if (ObjCFastEnumerationStateType.isNull()) { 4357 RecordDecl *D = Context.buildImplicitRecord("__objcFastEnumerationState"); 4358 D->startDefinition(); 4359 4360 QualType FieldTypes[] = { 4361 Context.UnsignedLongTy, 4362 Context.getPointerType(Context.getObjCIdType()), 4363 Context.getPointerType(Context.UnsignedLongTy), 4364 Context.getConstantArrayType(Context.UnsignedLongTy, 4365 llvm::APInt(32, 5), ArrayType::Normal, 0) 4366 }; 4367 4368 for (size_t i = 0; i < 4; ++i) { 4369 FieldDecl *Field = FieldDecl::Create(Context, 4370 D, 4371 SourceLocation(), 4372 SourceLocation(), nullptr, 4373 FieldTypes[i], /*TInfo=*/nullptr, 4374 /*BitWidth=*/nullptr, 4375 /*Mutable=*/false, 4376 ICIS_NoInit); 4377 Field->setAccess(AS_public); 4378 D->addDecl(Field); 4379 } 4380 4381 D->completeDefinition(); 4382 ObjCFastEnumerationStateType = Context.getTagDeclType(D); 4383 } 4384 4385 return ObjCFastEnumerationStateType; 4386 } 4387 4388 llvm::Constant * 4389 CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) { 4390 assert(!E->getType()->isPointerType() && "Strings are always arrays"); 4391 4392 // Don't emit it as the address of the string, emit the string data itself 4393 // as an inline array. 4394 if (E->getCharByteWidth() == 1) { 4395 SmallString<64> Str(E->getString()); 4396 4397 // Resize the string to the right size, which is indicated by its type. 4398 const ConstantArrayType *CAT = Context.getAsConstantArrayType(E->getType()); 4399 Str.resize(CAT->getSize().getZExtValue()); 4400 return llvm::ConstantDataArray::getString(VMContext, Str, false); 4401 } 4402 4403 auto *AType = cast<llvm::ArrayType>(getTypes().ConvertType(E->getType())); 4404 llvm::Type *ElemTy = AType->getElementType(); 4405 unsigned NumElements = AType->getNumElements(); 4406 4407 // Wide strings have either 2-byte or 4-byte elements. 4408 if (ElemTy->getPrimitiveSizeInBits() == 16) { 4409 SmallVector<uint16_t, 32> Elements; 4410 Elements.reserve(NumElements); 4411 4412 for(unsigned i = 0, e = E->getLength(); i != e; ++i) 4413 Elements.push_back(E->getCodeUnit(i)); 4414 Elements.resize(NumElements); 4415 return llvm::ConstantDataArray::get(VMContext, Elements); 4416 } 4417 4418 assert(ElemTy->getPrimitiveSizeInBits() == 32); 4419 SmallVector<uint32_t, 32> Elements; 4420 Elements.reserve(NumElements); 4421 4422 for(unsigned i = 0, e = E->getLength(); i != e; ++i) 4423 Elements.push_back(E->getCodeUnit(i)); 4424 Elements.resize(NumElements); 4425 return llvm::ConstantDataArray::get(VMContext, Elements); 4426 } 4427 4428 static llvm::GlobalVariable * 4429 GenerateStringLiteral(llvm::Constant *C, llvm::GlobalValue::LinkageTypes LT, 4430 CodeGenModule &CGM, StringRef GlobalName, 4431 CharUnits Alignment) { 4432 unsigned AddrSpace = CGM.getContext().getTargetAddressSpace( 4433 CGM.getStringLiteralAddressSpace()); 4434 4435 llvm::Module &M = CGM.getModule(); 4436 // Create a global variable for this string 4437 auto *GV = new llvm::GlobalVariable( 4438 M, C->getType(), !CGM.getLangOpts().WritableStrings, LT, C, GlobalName, 4439 nullptr, llvm::GlobalVariable::NotThreadLocal, AddrSpace); 4440 GV->setAlignment(Alignment.getQuantity()); 4441 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 4442 if (GV->isWeakForLinker()) { 4443 assert(CGM.supportsCOMDAT() && "Only COFF uses weak string literals"); 4444 GV->setComdat(M.getOrInsertComdat(GV->getName())); 4445 } 4446 CGM.setDSOLocal(GV); 4447 4448 return GV; 4449 } 4450 4451 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a 4452 /// constant array for the given string literal. 4453 ConstantAddress 4454 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S, 4455 StringRef Name) { 4456 CharUnits Alignment = getContext().getAlignOfGlobalVarInChars(S->getType()); 4457 4458 llvm::Constant *C = GetConstantArrayFromStringLiteral(S); 4459 llvm::GlobalVariable **Entry = nullptr; 4460 if (!LangOpts.WritableStrings) { 4461 Entry = &ConstantStringMap[C]; 4462 if (auto GV = *Entry) { 4463 if (Alignment.getQuantity() > GV->getAlignment()) 4464 GV->setAlignment(Alignment.getQuantity()); 4465 return ConstantAddress(GV, Alignment); 4466 } 4467 } 4468 4469 SmallString<256> MangledNameBuffer; 4470 StringRef GlobalVariableName; 4471 llvm::GlobalValue::LinkageTypes LT; 4472 4473 // Mangle the string literal if that's how the ABI merges duplicate strings. 4474 // Don't do it if they are writable, since we don't want writes in one TU to 4475 // affect strings in another. 4476 if (getCXXABI().getMangleContext().shouldMangleStringLiteral(S) && 4477 !LangOpts.WritableStrings) { 4478 llvm::raw_svector_ostream Out(MangledNameBuffer); 4479 getCXXABI().getMangleContext().mangleStringLiteral(S, Out); 4480 LT = llvm::GlobalValue::LinkOnceODRLinkage; 4481 GlobalVariableName = MangledNameBuffer; 4482 } else { 4483 LT = llvm::GlobalValue::PrivateLinkage; 4484 GlobalVariableName = Name; 4485 } 4486 4487 auto GV = GenerateStringLiteral(C, LT, *this, GlobalVariableName, Alignment); 4488 if (Entry) 4489 *Entry = GV; 4490 4491 SanitizerMD->reportGlobalToASan(GV, S->getStrTokenLoc(0), "<string literal>", 4492 QualType()); 4493 4494 return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV), 4495 Alignment); 4496 } 4497 4498 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant 4499 /// array for the given ObjCEncodeExpr node. 4500 ConstantAddress 4501 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) { 4502 std::string Str; 4503 getContext().getObjCEncodingForType(E->getEncodedType(), Str); 4504 4505 return GetAddrOfConstantCString(Str); 4506 } 4507 4508 /// GetAddrOfConstantCString - Returns a pointer to a character array containing 4509 /// the literal and a terminating '\0' character. 4510 /// The result has pointer to array type. 4511 ConstantAddress CodeGenModule::GetAddrOfConstantCString( 4512 const std::string &Str, const char *GlobalName) { 4513 StringRef StrWithNull(Str.c_str(), Str.size() + 1); 4514 CharUnits Alignment = 4515 getContext().getAlignOfGlobalVarInChars(getContext().CharTy); 4516 4517 llvm::Constant *C = 4518 llvm::ConstantDataArray::getString(getLLVMContext(), StrWithNull, false); 4519 4520 // Don't share any string literals if strings aren't constant. 4521 llvm::GlobalVariable **Entry = nullptr; 4522 if (!LangOpts.WritableStrings) { 4523 Entry = &ConstantStringMap[C]; 4524 if (auto GV = *Entry) { 4525 if (Alignment.getQuantity() > GV->getAlignment()) 4526 GV->setAlignment(Alignment.getQuantity()); 4527 return ConstantAddress(GV, Alignment); 4528 } 4529 } 4530 4531 // Get the default prefix if a name wasn't specified. 4532 if (!GlobalName) 4533 GlobalName = ".str"; 4534 // Create a global variable for this. 4535 auto GV = GenerateStringLiteral(C, llvm::GlobalValue::PrivateLinkage, *this, 4536 GlobalName, Alignment); 4537 if (Entry) 4538 *Entry = GV; 4539 4540 return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV), 4541 Alignment); 4542 } 4543 4544 ConstantAddress CodeGenModule::GetAddrOfGlobalTemporary( 4545 const MaterializeTemporaryExpr *E, const Expr *Init) { 4546 assert((E->getStorageDuration() == SD_Static || 4547 E->getStorageDuration() == SD_Thread) && "not a global temporary"); 4548 const auto *VD = cast<VarDecl>(E->getExtendingDecl()); 4549 4550 // If we're not materializing a subobject of the temporary, keep the 4551 // cv-qualifiers from the type of the MaterializeTemporaryExpr. 4552 QualType MaterializedType = Init->getType(); 4553 if (Init == E->GetTemporaryExpr()) 4554 MaterializedType = E->getType(); 4555 4556 CharUnits Align = getContext().getTypeAlignInChars(MaterializedType); 4557 4558 if (llvm::Constant *Slot = MaterializedGlobalTemporaryMap[E]) 4559 return ConstantAddress(Slot, Align); 4560 4561 // FIXME: If an externally-visible declaration extends multiple temporaries, 4562 // we need to give each temporary the same name in every translation unit (and 4563 // we also need to make the temporaries externally-visible). 4564 SmallString<256> Name; 4565 llvm::raw_svector_ostream Out(Name); 4566 getCXXABI().getMangleContext().mangleReferenceTemporary( 4567 VD, E->getManglingNumber(), Out); 4568 4569 APValue *Value = nullptr; 4570 if (E->getStorageDuration() == SD_Static) { 4571 // We might have a cached constant initializer for this temporary. Note 4572 // that this might have a different value from the value computed by 4573 // evaluating the initializer if the surrounding constant expression 4574 // modifies the temporary. 4575 Value = getContext().getMaterializedTemporaryValue(E, false); 4576 if (Value && Value->isUninit()) 4577 Value = nullptr; 4578 } 4579 4580 // Try evaluating it now, it might have a constant initializer. 4581 Expr::EvalResult EvalResult; 4582 if (!Value && Init->EvaluateAsRValue(EvalResult, getContext()) && 4583 !EvalResult.hasSideEffects()) 4584 Value = &EvalResult.Val; 4585 4586 LangAS AddrSpace = 4587 VD ? GetGlobalVarAddressSpace(VD) : MaterializedType.getAddressSpace(); 4588 4589 Optional<ConstantEmitter> emitter; 4590 llvm::Constant *InitialValue = nullptr; 4591 bool Constant = false; 4592 llvm::Type *Type; 4593 if (Value) { 4594 // The temporary has a constant initializer, use it. 4595 emitter.emplace(*this); 4596 InitialValue = emitter->emitForInitializer(*Value, AddrSpace, 4597 MaterializedType); 4598 Constant = isTypeConstant(MaterializedType, /*ExcludeCtor*/Value); 4599 Type = InitialValue->getType(); 4600 } else { 4601 // No initializer, the initialization will be provided when we 4602 // initialize the declaration which performed lifetime extension. 4603 Type = getTypes().ConvertTypeForMem(MaterializedType); 4604 } 4605 4606 // Create a global variable for this lifetime-extended temporary. 4607 llvm::GlobalValue::LinkageTypes Linkage = 4608 getLLVMLinkageVarDefinition(VD, Constant); 4609 if (Linkage == llvm::GlobalVariable::ExternalLinkage) { 4610 const VarDecl *InitVD; 4611 if (VD->isStaticDataMember() && VD->getAnyInitializer(InitVD) && 4612 isa<CXXRecordDecl>(InitVD->getLexicalDeclContext())) { 4613 // Temporaries defined inside a class get linkonce_odr linkage because the 4614 // class can be defined in multiple translation units. 4615 Linkage = llvm::GlobalVariable::LinkOnceODRLinkage; 4616 } else { 4617 // There is no need for this temporary to have external linkage if the 4618 // VarDecl has external linkage. 4619 Linkage = llvm::GlobalVariable::InternalLinkage; 4620 } 4621 } 4622 auto TargetAS = getContext().getTargetAddressSpace(AddrSpace); 4623 auto *GV = new llvm::GlobalVariable( 4624 getModule(), Type, Constant, Linkage, InitialValue, Name.c_str(), 4625 /*InsertBefore=*/nullptr, llvm::GlobalVariable::NotThreadLocal, TargetAS); 4626 if (emitter) emitter->finalize(GV); 4627 setGVProperties(GV, VD); 4628 GV->setAlignment(Align.getQuantity()); 4629 if (supportsCOMDAT() && GV->isWeakForLinker()) 4630 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 4631 if (VD->getTLSKind()) 4632 setTLSMode(GV, *VD); 4633 llvm::Constant *CV = GV; 4634 if (AddrSpace != LangAS::Default) 4635 CV = getTargetCodeGenInfo().performAddrSpaceCast( 4636 *this, GV, AddrSpace, LangAS::Default, 4637 Type->getPointerTo( 4638 getContext().getTargetAddressSpace(LangAS::Default))); 4639 MaterializedGlobalTemporaryMap[E] = CV; 4640 return ConstantAddress(CV, Align); 4641 } 4642 4643 /// EmitObjCPropertyImplementations - Emit information for synthesized 4644 /// properties for an implementation. 4645 void CodeGenModule::EmitObjCPropertyImplementations(const 4646 ObjCImplementationDecl *D) { 4647 for (const auto *PID : D->property_impls()) { 4648 // Dynamic is just for type-checking. 4649 if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) { 4650 ObjCPropertyDecl *PD = PID->getPropertyDecl(); 4651 4652 // Determine which methods need to be implemented, some may have 4653 // been overridden. Note that ::isPropertyAccessor is not the method 4654 // we want, that just indicates if the decl came from a 4655 // property. What we want to know is if the method is defined in 4656 // this implementation. 4657 if (!D->getInstanceMethod(PD->getGetterName())) 4658 CodeGenFunction(*this).GenerateObjCGetter( 4659 const_cast<ObjCImplementationDecl *>(D), PID); 4660 if (!PD->isReadOnly() && 4661 !D->getInstanceMethod(PD->getSetterName())) 4662 CodeGenFunction(*this).GenerateObjCSetter( 4663 const_cast<ObjCImplementationDecl *>(D), PID); 4664 } 4665 } 4666 } 4667 4668 static bool needsDestructMethod(ObjCImplementationDecl *impl) { 4669 const ObjCInterfaceDecl *iface = impl->getClassInterface(); 4670 for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin(); 4671 ivar; ivar = ivar->getNextIvar()) 4672 if (ivar->getType().isDestructedType()) 4673 return true; 4674 4675 return false; 4676 } 4677 4678 static bool AllTrivialInitializers(CodeGenModule &CGM, 4679 ObjCImplementationDecl *D) { 4680 CodeGenFunction CGF(CGM); 4681 for (ObjCImplementationDecl::init_iterator B = D->init_begin(), 4682 E = D->init_end(); B != E; ++B) { 4683 CXXCtorInitializer *CtorInitExp = *B; 4684 Expr *Init = CtorInitExp->getInit(); 4685 if (!CGF.isTrivialInitializer(Init)) 4686 return false; 4687 } 4688 return true; 4689 } 4690 4691 /// EmitObjCIvarInitializations - Emit information for ivar initialization 4692 /// for an implementation. 4693 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) { 4694 // We might need a .cxx_destruct even if we don't have any ivar initializers. 4695 if (needsDestructMethod(D)) { 4696 IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct"); 4697 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 4698 ObjCMethodDecl *DTORMethod = 4699 ObjCMethodDecl::Create(getContext(), D->getLocation(), D->getLocation(), 4700 cxxSelector, getContext().VoidTy, nullptr, D, 4701 /*isInstance=*/true, /*isVariadic=*/false, 4702 /*isPropertyAccessor=*/true, /*isImplicitlyDeclared=*/true, 4703 /*isDefined=*/false, ObjCMethodDecl::Required); 4704 D->addInstanceMethod(DTORMethod); 4705 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false); 4706 D->setHasDestructors(true); 4707 } 4708 4709 // If the implementation doesn't have any ivar initializers, we don't need 4710 // a .cxx_construct. 4711 if (D->getNumIvarInitializers() == 0 || 4712 AllTrivialInitializers(*this, D)) 4713 return; 4714 4715 IdentifierInfo *II = &getContext().Idents.get(".cxx_construct"); 4716 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 4717 // The constructor returns 'self'. 4718 ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(getContext(), 4719 D->getLocation(), 4720 D->getLocation(), 4721 cxxSelector, 4722 getContext().getObjCIdType(), 4723 nullptr, D, /*isInstance=*/true, 4724 /*isVariadic=*/false, 4725 /*isPropertyAccessor=*/true, 4726 /*isImplicitlyDeclared=*/true, 4727 /*isDefined=*/false, 4728 ObjCMethodDecl::Required); 4729 D->addInstanceMethod(CTORMethod); 4730 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true); 4731 D->setHasNonZeroConstructors(true); 4732 } 4733 4734 // EmitLinkageSpec - Emit all declarations in a linkage spec. 4735 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) { 4736 if (LSD->getLanguage() != LinkageSpecDecl::lang_c && 4737 LSD->getLanguage() != LinkageSpecDecl::lang_cxx) { 4738 ErrorUnsupported(LSD, "linkage spec"); 4739 return; 4740 } 4741 4742 EmitDeclContext(LSD); 4743 } 4744 4745 void CodeGenModule::EmitDeclContext(const DeclContext *DC) { 4746 for (auto *I : DC->decls()) { 4747 // Unlike other DeclContexts, the contents of an ObjCImplDecl at TU scope 4748 // are themselves considered "top-level", so EmitTopLevelDecl on an 4749 // ObjCImplDecl does not recursively visit them. We need to do that in 4750 // case they're nested inside another construct (LinkageSpecDecl / 4751 // ExportDecl) that does stop them from being considered "top-level". 4752 if (auto *OID = dyn_cast<ObjCImplDecl>(I)) { 4753 for (auto *M : OID->methods()) 4754 EmitTopLevelDecl(M); 4755 } 4756 4757 EmitTopLevelDecl(I); 4758 } 4759 } 4760 4761 /// EmitTopLevelDecl - Emit code for a single top level declaration. 4762 void CodeGenModule::EmitTopLevelDecl(Decl *D) { 4763 // Ignore dependent declarations. 4764 if (D->isTemplated()) 4765 return; 4766 4767 switch (D->getKind()) { 4768 case Decl::CXXConversion: 4769 case Decl::CXXMethod: 4770 case Decl::Function: 4771 EmitGlobal(cast<FunctionDecl>(D)); 4772 // Always provide some coverage mapping 4773 // even for the functions that aren't emitted. 4774 AddDeferredUnusedCoverageMapping(D); 4775 break; 4776 4777 case Decl::CXXDeductionGuide: 4778 // Function-like, but does not result in code emission. 4779 break; 4780 4781 case Decl::Var: 4782 case Decl::Decomposition: 4783 case Decl::VarTemplateSpecialization: 4784 EmitGlobal(cast<VarDecl>(D)); 4785 if (auto *DD = dyn_cast<DecompositionDecl>(D)) 4786 for (auto *B : DD->bindings()) 4787 if (auto *HD = B->getHoldingVar()) 4788 EmitGlobal(HD); 4789 break; 4790 4791 // Indirect fields from global anonymous structs and unions can be 4792 // ignored; only the actual variable requires IR gen support. 4793 case Decl::IndirectField: 4794 break; 4795 4796 // C++ Decls 4797 case Decl::Namespace: 4798 EmitDeclContext(cast<NamespaceDecl>(D)); 4799 break; 4800 case Decl::ClassTemplateSpecialization: { 4801 const auto *Spec = cast<ClassTemplateSpecializationDecl>(D); 4802 if (DebugInfo && 4803 Spec->getSpecializationKind() == TSK_ExplicitInstantiationDefinition && 4804 Spec->hasDefinition()) 4805 DebugInfo->completeTemplateDefinition(*Spec); 4806 } LLVM_FALLTHROUGH; 4807 case Decl::CXXRecord: 4808 if (DebugInfo) { 4809 if (auto *ES = D->getASTContext().getExternalSource()) 4810 if (ES->hasExternalDefinitions(D) == ExternalASTSource::EK_Never) 4811 DebugInfo->completeUnusedClass(cast<CXXRecordDecl>(*D)); 4812 } 4813 // Emit any static data members, they may be definitions. 4814 for (auto *I : cast<CXXRecordDecl>(D)->decls()) 4815 if (isa<VarDecl>(I) || isa<CXXRecordDecl>(I)) 4816 EmitTopLevelDecl(I); 4817 break; 4818 // No code generation needed. 4819 case Decl::UsingShadow: 4820 case Decl::ClassTemplate: 4821 case Decl::VarTemplate: 4822 case Decl::VarTemplatePartialSpecialization: 4823 case Decl::FunctionTemplate: 4824 case Decl::TypeAliasTemplate: 4825 case Decl::Block: 4826 case Decl::Empty: 4827 case Decl::Binding: 4828 break; 4829 case Decl::Using: // using X; [C++] 4830 if (CGDebugInfo *DI = getModuleDebugInfo()) 4831 DI->EmitUsingDecl(cast<UsingDecl>(*D)); 4832 return; 4833 case Decl::NamespaceAlias: 4834 if (CGDebugInfo *DI = getModuleDebugInfo()) 4835 DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(*D)); 4836 return; 4837 case Decl::UsingDirective: // using namespace X; [C++] 4838 if (CGDebugInfo *DI = getModuleDebugInfo()) 4839 DI->EmitUsingDirective(cast<UsingDirectiveDecl>(*D)); 4840 return; 4841 case Decl::CXXConstructor: 4842 getCXXABI().EmitCXXConstructors(cast<CXXConstructorDecl>(D)); 4843 break; 4844 case Decl::CXXDestructor: 4845 getCXXABI().EmitCXXDestructors(cast<CXXDestructorDecl>(D)); 4846 break; 4847 4848 case Decl::StaticAssert: 4849 // Nothing to do. 4850 break; 4851 4852 // Objective-C Decls 4853 4854 // Forward declarations, no (immediate) code generation. 4855 case Decl::ObjCInterface: 4856 case Decl::ObjCCategory: 4857 break; 4858 4859 case Decl::ObjCProtocol: { 4860 auto *Proto = cast<ObjCProtocolDecl>(D); 4861 if (Proto->isThisDeclarationADefinition()) 4862 ObjCRuntime->GenerateProtocol(Proto); 4863 break; 4864 } 4865 4866 case Decl::ObjCCategoryImpl: 4867 // Categories have properties but don't support synthesize so we 4868 // can ignore them here. 4869 ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D)); 4870 break; 4871 4872 case Decl::ObjCImplementation: { 4873 auto *OMD = cast<ObjCImplementationDecl>(D); 4874 EmitObjCPropertyImplementations(OMD); 4875 EmitObjCIvarInitializations(OMD); 4876 ObjCRuntime->GenerateClass(OMD); 4877 // Emit global variable debug information. 4878 if (CGDebugInfo *DI = getModuleDebugInfo()) 4879 if (getCodeGenOpts().getDebugInfo() >= codegenoptions::LimitedDebugInfo) 4880 DI->getOrCreateInterfaceType(getContext().getObjCInterfaceType( 4881 OMD->getClassInterface()), OMD->getLocation()); 4882 break; 4883 } 4884 case Decl::ObjCMethod: { 4885 auto *OMD = cast<ObjCMethodDecl>(D); 4886 // If this is not a prototype, emit the body. 4887 if (OMD->getBody()) 4888 CodeGenFunction(*this).GenerateObjCMethod(OMD); 4889 break; 4890 } 4891 case Decl::ObjCCompatibleAlias: 4892 ObjCRuntime->RegisterAlias(cast<ObjCCompatibleAliasDecl>(D)); 4893 break; 4894 4895 case Decl::PragmaComment: { 4896 const auto *PCD = cast<PragmaCommentDecl>(D); 4897 switch (PCD->getCommentKind()) { 4898 case PCK_Unknown: 4899 llvm_unreachable("unexpected pragma comment kind"); 4900 case PCK_Linker: 4901 AppendLinkerOptions(PCD->getArg()); 4902 break; 4903 case PCK_Lib: 4904 if (getTarget().getTriple().isOSBinFormatELF() && 4905 !getTarget().getTriple().isPS4()) 4906 AddELFLibDirective(PCD->getArg()); 4907 else 4908 AddDependentLib(PCD->getArg()); 4909 break; 4910 case PCK_Compiler: 4911 case PCK_ExeStr: 4912 case PCK_User: 4913 break; // We ignore all of these. 4914 } 4915 break; 4916 } 4917 4918 case Decl::PragmaDetectMismatch: { 4919 const auto *PDMD = cast<PragmaDetectMismatchDecl>(D); 4920 AddDetectMismatch(PDMD->getName(), PDMD->getValue()); 4921 break; 4922 } 4923 4924 case Decl::LinkageSpec: 4925 EmitLinkageSpec(cast<LinkageSpecDecl>(D)); 4926 break; 4927 4928 case Decl::FileScopeAsm: { 4929 // File-scope asm is ignored during device-side CUDA compilation. 4930 if (LangOpts.CUDA && LangOpts.CUDAIsDevice) 4931 break; 4932 // File-scope asm is ignored during device-side OpenMP compilation. 4933 if (LangOpts.OpenMPIsDevice) 4934 break; 4935 auto *AD = cast<FileScopeAsmDecl>(D); 4936 getModule().appendModuleInlineAsm(AD->getAsmString()->getString()); 4937 break; 4938 } 4939 4940 case Decl::Import: { 4941 auto *Import = cast<ImportDecl>(D); 4942 4943 // If we've already imported this module, we're done. 4944 if (!ImportedModules.insert(Import->getImportedModule())) 4945 break; 4946 4947 // Emit debug information for direct imports. 4948 if (!Import->getImportedOwningModule()) { 4949 if (CGDebugInfo *DI = getModuleDebugInfo()) 4950 DI->EmitImportDecl(*Import); 4951 } 4952 4953 // Find all of the submodules and emit the module initializers. 4954 llvm::SmallPtrSet<clang::Module *, 16> Visited; 4955 SmallVector<clang::Module *, 16> Stack; 4956 Visited.insert(Import->getImportedModule()); 4957 Stack.push_back(Import->getImportedModule()); 4958 4959 while (!Stack.empty()) { 4960 clang::Module *Mod = Stack.pop_back_val(); 4961 if (!EmittedModuleInitializers.insert(Mod).second) 4962 continue; 4963 4964 for (auto *D : Context.getModuleInitializers(Mod)) 4965 EmitTopLevelDecl(D); 4966 4967 // Visit the submodules of this module. 4968 for (clang::Module::submodule_iterator Sub = Mod->submodule_begin(), 4969 SubEnd = Mod->submodule_end(); 4970 Sub != SubEnd; ++Sub) { 4971 // Skip explicit children; they need to be explicitly imported to emit 4972 // the initializers. 4973 if ((*Sub)->IsExplicit) 4974 continue; 4975 4976 if (Visited.insert(*Sub).second) 4977 Stack.push_back(*Sub); 4978 } 4979 } 4980 break; 4981 } 4982 4983 case Decl::Export: 4984 EmitDeclContext(cast<ExportDecl>(D)); 4985 break; 4986 4987 case Decl::OMPThreadPrivate: 4988 EmitOMPThreadPrivateDecl(cast<OMPThreadPrivateDecl>(D)); 4989 break; 4990 4991 case Decl::OMPDeclareReduction: 4992 EmitOMPDeclareReduction(cast<OMPDeclareReductionDecl>(D)); 4993 break; 4994 4995 case Decl::OMPRequires: 4996 EmitOMPRequiresDecl(cast<OMPRequiresDecl>(D)); 4997 break; 4998 4999 default: 5000 // Make sure we handled everything we should, every other kind is a 5001 // non-top-level decl. FIXME: Would be nice to have an isTopLevelDeclKind 5002 // function. Need to recode Decl::Kind to do that easily. 5003 assert(isa<TypeDecl>(D) && "Unsupported decl kind"); 5004 break; 5005 } 5006 } 5007 5008 void CodeGenModule::AddDeferredUnusedCoverageMapping(Decl *D) { 5009 // Do we need to generate coverage mapping? 5010 if (!CodeGenOpts.CoverageMapping) 5011 return; 5012 switch (D->getKind()) { 5013 case Decl::CXXConversion: 5014 case Decl::CXXMethod: 5015 case Decl::Function: 5016 case Decl::ObjCMethod: 5017 case Decl::CXXConstructor: 5018 case Decl::CXXDestructor: { 5019 if (!cast<FunctionDecl>(D)->doesThisDeclarationHaveABody()) 5020 return; 5021 SourceManager &SM = getContext().getSourceManager(); 5022 if (LimitedCoverage && SM.getMainFileID() != SM.getFileID(D->getBeginLoc())) 5023 return; 5024 auto I = DeferredEmptyCoverageMappingDecls.find(D); 5025 if (I == DeferredEmptyCoverageMappingDecls.end()) 5026 DeferredEmptyCoverageMappingDecls[D] = true; 5027 break; 5028 } 5029 default: 5030 break; 5031 }; 5032 } 5033 5034 void CodeGenModule::ClearUnusedCoverageMapping(const Decl *D) { 5035 // Do we need to generate coverage mapping? 5036 if (!CodeGenOpts.CoverageMapping) 5037 return; 5038 if (const auto *Fn = dyn_cast<FunctionDecl>(D)) { 5039 if (Fn->isTemplateInstantiation()) 5040 ClearUnusedCoverageMapping(Fn->getTemplateInstantiationPattern()); 5041 } 5042 auto I = DeferredEmptyCoverageMappingDecls.find(D); 5043 if (I == DeferredEmptyCoverageMappingDecls.end()) 5044 DeferredEmptyCoverageMappingDecls[D] = false; 5045 else 5046 I->second = false; 5047 } 5048 5049 void CodeGenModule::EmitDeferredUnusedCoverageMappings() { 5050 // We call takeVector() here to avoid use-after-free. 5051 // FIXME: DeferredEmptyCoverageMappingDecls is getting mutated because 5052 // we deserialize function bodies to emit coverage info for them, and that 5053 // deserializes more declarations. How should we handle that case? 5054 for (const auto &Entry : DeferredEmptyCoverageMappingDecls.takeVector()) { 5055 if (!Entry.second) 5056 continue; 5057 const Decl *D = Entry.first; 5058 switch (D->getKind()) { 5059 case Decl::CXXConversion: 5060 case Decl::CXXMethod: 5061 case Decl::Function: 5062 case Decl::ObjCMethod: { 5063 CodeGenPGO PGO(*this); 5064 GlobalDecl GD(cast<FunctionDecl>(D)); 5065 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 5066 getFunctionLinkage(GD)); 5067 break; 5068 } 5069 case Decl::CXXConstructor: { 5070 CodeGenPGO PGO(*this); 5071 GlobalDecl GD(cast<CXXConstructorDecl>(D), Ctor_Base); 5072 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 5073 getFunctionLinkage(GD)); 5074 break; 5075 } 5076 case Decl::CXXDestructor: { 5077 CodeGenPGO PGO(*this); 5078 GlobalDecl GD(cast<CXXDestructorDecl>(D), Dtor_Base); 5079 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 5080 getFunctionLinkage(GD)); 5081 break; 5082 } 5083 default: 5084 break; 5085 }; 5086 } 5087 } 5088 5089 /// Turns the given pointer into a constant. 5090 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context, 5091 const void *Ptr) { 5092 uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr); 5093 llvm::Type *i64 = llvm::Type::getInt64Ty(Context); 5094 return llvm::ConstantInt::get(i64, PtrInt); 5095 } 5096 5097 static void EmitGlobalDeclMetadata(CodeGenModule &CGM, 5098 llvm::NamedMDNode *&GlobalMetadata, 5099 GlobalDecl D, 5100 llvm::GlobalValue *Addr) { 5101 if (!GlobalMetadata) 5102 GlobalMetadata = 5103 CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs"); 5104 5105 // TODO: should we report variant information for ctors/dtors? 5106 llvm::Metadata *Ops[] = {llvm::ConstantAsMetadata::get(Addr), 5107 llvm::ConstantAsMetadata::get(GetPointerConstant( 5108 CGM.getLLVMContext(), D.getDecl()))}; 5109 GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops)); 5110 } 5111 5112 /// For each function which is declared within an extern "C" region and marked 5113 /// as 'used', but has internal linkage, create an alias from the unmangled 5114 /// name to the mangled name if possible. People expect to be able to refer 5115 /// to such functions with an unmangled name from inline assembly within the 5116 /// same translation unit. 5117 void CodeGenModule::EmitStaticExternCAliases() { 5118 if (!getTargetCodeGenInfo().shouldEmitStaticExternCAliases()) 5119 return; 5120 for (auto &I : StaticExternCValues) { 5121 IdentifierInfo *Name = I.first; 5122 llvm::GlobalValue *Val = I.second; 5123 if (Val && !getModule().getNamedValue(Name->getName())) 5124 addUsedGlobal(llvm::GlobalAlias::create(Name->getName(), Val)); 5125 } 5126 } 5127 5128 bool CodeGenModule::lookupRepresentativeDecl(StringRef MangledName, 5129 GlobalDecl &Result) const { 5130 auto Res = Manglings.find(MangledName); 5131 if (Res == Manglings.end()) 5132 return false; 5133 Result = Res->getValue(); 5134 return true; 5135 } 5136 5137 /// Emits metadata nodes associating all the global values in the 5138 /// current module with the Decls they came from. This is useful for 5139 /// projects using IR gen as a subroutine. 5140 /// 5141 /// Since there's currently no way to associate an MDNode directly 5142 /// with an llvm::GlobalValue, we create a global named metadata 5143 /// with the name 'clang.global.decl.ptrs'. 5144 void CodeGenModule::EmitDeclMetadata() { 5145 llvm::NamedMDNode *GlobalMetadata = nullptr; 5146 5147 for (auto &I : MangledDeclNames) { 5148 llvm::GlobalValue *Addr = getModule().getNamedValue(I.second); 5149 // Some mangled names don't necessarily have an associated GlobalValue 5150 // in this module, e.g. if we mangled it for DebugInfo. 5151 if (Addr) 5152 EmitGlobalDeclMetadata(*this, GlobalMetadata, I.first, Addr); 5153 } 5154 } 5155 5156 /// Emits metadata nodes for all the local variables in the current 5157 /// function. 5158 void CodeGenFunction::EmitDeclMetadata() { 5159 if (LocalDeclMap.empty()) return; 5160 5161 llvm::LLVMContext &Context = getLLVMContext(); 5162 5163 // Find the unique metadata ID for this name. 5164 unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr"); 5165 5166 llvm::NamedMDNode *GlobalMetadata = nullptr; 5167 5168 for (auto &I : LocalDeclMap) { 5169 const Decl *D = I.first; 5170 llvm::Value *Addr = I.second.getPointer(); 5171 if (auto *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) { 5172 llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D); 5173 Alloca->setMetadata( 5174 DeclPtrKind, llvm::MDNode::get( 5175 Context, llvm::ValueAsMetadata::getConstant(DAddr))); 5176 } else if (auto *GV = dyn_cast<llvm::GlobalValue>(Addr)) { 5177 GlobalDecl GD = GlobalDecl(cast<VarDecl>(D)); 5178 EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV); 5179 } 5180 } 5181 } 5182 5183 void CodeGenModule::EmitVersionIdentMetadata() { 5184 llvm::NamedMDNode *IdentMetadata = 5185 TheModule.getOrInsertNamedMetadata("llvm.ident"); 5186 std::string Version = getClangFullVersion(); 5187 llvm::LLVMContext &Ctx = TheModule.getContext(); 5188 5189 llvm::Metadata *IdentNode[] = {llvm::MDString::get(Ctx, Version)}; 5190 IdentMetadata->addOperand(llvm::MDNode::get(Ctx, IdentNode)); 5191 } 5192 5193 void CodeGenModule::EmitTargetMetadata() { 5194 // Warning, new MangledDeclNames may be appended within this loop. 5195 // We rely on MapVector insertions adding new elements to the end 5196 // of the container. 5197 // FIXME: Move this loop into the one target that needs it, and only 5198 // loop over those declarations for which we couldn't emit the target 5199 // metadata when we emitted the declaration. 5200 for (unsigned I = 0; I != MangledDeclNames.size(); ++I) { 5201 auto Val = *(MangledDeclNames.begin() + I); 5202 const Decl *D = Val.first.getDecl()->getMostRecentDecl(); 5203 llvm::GlobalValue *GV = GetGlobalValue(Val.second); 5204 getTargetCodeGenInfo().emitTargetMD(D, GV, *this); 5205 } 5206 } 5207 5208 void CodeGenModule::EmitCoverageFile() { 5209 if (getCodeGenOpts().CoverageDataFile.empty() && 5210 getCodeGenOpts().CoverageNotesFile.empty()) 5211 return; 5212 5213 llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu"); 5214 if (!CUNode) 5215 return; 5216 5217 llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov"); 5218 llvm::LLVMContext &Ctx = TheModule.getContext(); 5219 auto *CoverageDataFile = 5220 llvm::MDString::get(Ctx, getCodeGenOpts().CoverageDataFile); 5221 auto *CoverageNotesFile = 5222 llvm::MDString::get(Ctx, getCodeGenOpts().CoverageNotesFile); 5223 for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) { 5224 llvm::MDNode *CU = CUNode->getOperand(i); 5225 llvm::Metadata *Elts[] = {CoverageNotesFile, CoverageDataFile, CU}; 5226 GCov->addOperand(llvm::MDNode::get(Ctx, Elts)); 5227 } 5228 } 5229 5230 llvm::Constant *CodeGenModule::EmitUuidofInitializer(StringRef Uuid) { 5231 // Sema has checked that all uuid strings are of the form 5232 // "12345678-1234-1234-1234-1234567890ab". 5233 assert(Uuid.size() == 36); 5234 for (unsigned i = 0; i < 36; ++i) { 5235 if (i == 8 || i == 13 || i == 18 || i == 23) assert(Uuid[i] == '-'); 5236 else assert(isHexDigit(Uuid[i])); 5237 } 5238 5239 // The starts of all bytes of Field3 in Uuid. Field 3 is "1234-1234567890ab". 5240 const unsigned Field3ValueOffsets[8] = { 19, 21, 24, 26, 28, 30, 32, 34 }; 5241 5242 llvm::Constant *Field3[8]; 5243 for (unsigned Idx = 0; Idx < 8; ++Idx) 5244 Field3[Idx] = llvm::ConstantInt::get( 5245 Int8Ty, Uuid.substr(Field3ValueOffsets[Idx], 2), 16); 5246 5247 llvm::Constant *Fields[4] = { 5248 llvm::ConstantInt::get(Int32Ty, Uuid.substr(0, 8), 16), 5249 llvm::ConstantInt::get(Int16Ty, Uuid.substr(9, 4), 16), 5250 llvm::ConstantInt::get(Int16Ty, Uuid.substr(14, 4), 16), 5251 llvm::ConstantArray::get(llvm::ArrayType::get(Int8Ty, 8), Field3) 5252 }; 5253 5254 return llvm::ConstantStruct::getAnon(Fields); 5255 } 5256 5257 llvm::Constant *CodeGenModule::GetAddrOfRTTIDescriptor(QualType Ty, 5258 bool ForEH) { 5259 // Return a bogus pointer if RTTI is disabled, unless it's for EH. 5260 // FIXME: should we even be calling this method if RTTI is disabled 5261 // and it's not for EH? 5262 if ((!ForEH && !getLangOpts().RTTI) || getLangOpts().CUDAIsDevice) 5263 return llvm::Constant::getNullValue(Int8PtrTy); 5264 5265 if (ForEH && Ty->isObjCObjectPointerType() && 5266 LangOpts.ObjCRuntime.isGNUFamily()) 5267 return ObjCRuntime->GetEHType(Ty); 5268 5269 return getCXXABI().getAddrOfRTTIDescriptor(Ty); 5270 } 5271 5272 void CodeGenModule::EmitOMPThreadPrivateDecl(const OMPThreadPrivateDecl *D) { 5273 // Do not emit threadprivates in simd-only mode. 5274 if (LangOpts.OpenMP && LangOpts.OpenMPSimd) 5275 return; 5276 for (auto RefExpr : D->varlists()) { 5277 auto *VD = cast<VarDecl>(cast<DeclRefExpr>(RefExpr)->getDecl()); 5278 bool PerformInit = 5279 VD->getAnyInitializer() && 5280 !VD->getAnyInitializer()->isConstantInitializer(getContext(), 5281 /*ForRef=*/false); 5282 5283 Address Addr(GetAddrOfGlobalVar(VD), getContext().getDeclAlign(VD)); 5284 if (auto InitFunction = getOpenMPRuntime().emitThreadPrivateVarDefinition( 5285 VD, Addr, RefExpr->getBeginLoc(), PerformInit)) 5286 CXXGlobalInits.push_back(InitFunction); 5287 } 5288 } 5289 5290 llvm::Metadata * 5291 CodeGenModule::CreateMetadataIdentifierImpl(QualType T, MetadataTypeMap &Map, 5292 StringRef Suffix) { 5293 llvm::Metadata *&InternalId = Map[T.getCanonicalType()]; 5294 if (InternalId) 5295 return InternalId; 5296 5297 if (isExternallyVisible(T->getLinkage())) { 5298 std::string OutName; 5299 llvm::raw_string_ostream Out(OutName); 5300 getCXXABI().getMangleContext().mangleTypeName(T, Out); 5301 Out << Suffix; 5302 5303 InternalId = llvm::MDString::get(getLLVMContext(), Out.str()); 5304 } else { 5305 InternalId = llvm::MDNode::getDistinct(getLLVMContext(), 5306 llvm::ArrayRef<llvm::Metadata *>()); 5307 } 5308 5309 return InternalId; 5310 } 5311 5312 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierForType(QualType T) { 5313 return CreateMetadataIdentifierImpl(T, MetadataIdMap, ""); 5314 } 5315 5316 llvm::Metadata * 5317 CodeGenModule::CreateMetadataIdentifierForVirtualMemPtrType(QualType T) { 5318 return CreateMetadataIdentifierImpl(T, VirtualMetadataIdMap, ".virtual"); 5319 } 5320 5321 // Generalize pointer types to a void pointer with the qualifiers of the 5322 // originally pointed-to type, e.g. 'const char *' and 'char * const *' 5323 // generalize to 'const void *' while 'char *' and 'const char **' generalize to 5324 // 'void *'. 5325 static QualType GeneralizeType(ASTContext &Ctx, QualType Ty) { 5326 if (!Ty->isPointerType()) 5327 return Ty; 5328 5329 return Ctx.getPointerType( 5330 QualType(Ctx.VoidTy).withCVRQualifiers( 5331 Ty->getPointeeType().getCVRQualifiers())); 5332 } 5333 5334 // Apply type generalization to a FunctionType's return and argument types 5335 static QualType GeneralizeFunctionType(ASTContext &Ctx, QualType Ty) { 5336 if (auto *FnType = Ty->getAs<FunctionProtoType>()) { 5337 SmallVector<QualType, 8> GeneralizedParams; 5338 for (auto &Param : FnType->param_types()) 5339 GeneralizedParams.push_back(GeneralizeType(Ctx, Param)); 5340 5341 return Ctx.getFunctionType( 5342 GeneralizeType(Ctx, FnType->getReturnType()), 5343 GeneralizedParams, FnType->getExtProtoInfo()); 5344 } 5345 5346 if (auto *FnType = Ty->getAs<FunctionNoProtoType>()) 5347 return Ctx.getFunctionNoProtoType( 5348 GeneralizeType(Ctx, FnType->getReturnType())); 5349 5350 llvm_unreachable("Encountered unknown FunctionType"); 5351 } 5352 5353 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierGeneralized(QualType T) { 5354 return CreateMetadataIdentifierImpl(GeneralizeFunctionType(getContext(), T), 5355 GeneralizedMetadataIdMap, ".generalized"); 5356 } 5357 5358 /// Returns whether this module needs the "all-vtables" type identifier. 5359 bool CodeGenModule::NeedAllVtablesTypeId() const { 5360 // Returns true if at least one of vtable-based CFI checkers is enabled and 5361 // is not in the trapping mode. 5362 return ((LangOpts.Sanitize.has(SanitizerKind::CFIVCall) && 5363 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIVCall)) || 5364 (LangOpts.Sanitize.has(SanitizerKind::CFINVCall) && 5365 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFINVCall)) || 5366 (LangOpts.Sanitize.has(SanitizerKind::CFIDerivedCast) && 5367 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIDerivedCast)) || 5368 (LangOpts.Sanitize.has(SanitizerKind::CFIUnrelatedCast) && 5369 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIUnrelatedCast))); 5370 } 5371 5372 void CodeGenModule::AddVTableTypeMetadata(llvm::GlobalVariable *VTable, 5373 CharUnits Offset, 5374 const CXXRecordDecl *RD) { 5375 llvm::Metadata *MD = 5376 CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0)); 5377 VTable->addTypeMetadata(Offset.getQuantity(), MD); 5378 5379 if (CodeGenOpts.SanitizeCfiCrossDso) 5380 if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD)) 5381 VTable->addTypeMetadata(Offset.getQuantity(), 5382 llvm::ConstantAsMetadata::get(CrossDsoTypeId)); 5383 5384 if (NeedAllVtablesTypeId()) { 5385 llvm::Metadata *MD = llvm::MDString::get(getLLVMContext(), "all-vtables"); 5386 VTable->addTypeMetadata(Offset.getQuantity(), MD); 5387 } 5388 } 5389 5390 TargetAttr::ParsedTargetAttr CodeGenModule::filterFunctionTargetAttrs(const TargetAttr *TD) { 5391 assert(TD != nullptr); 5392 TargetAttr::ParsedTargetAttr ParsedAttr = TD->parse(); 5393 5394 ParsedAttr.Features.erase( 5395 llvm::remove_if(ParsedAttr.Features, 5396 [&](const std::string &Feat) { 5397 return !Target.isValidFeatureName( 5398 StringRef{Feat}.substr(1)); 5399 }), 5400 ParsedAttr.Features.end()); 5401 return ParsedAttr; 5402 } 5403 5404 5405 // Fills in the supplied string map with the set of target features for the 5406 // passed in function. 5407 void CodeGenModule::getFunctionFeatureMap(llvm::StringMap<bool> &FeatureMap, 5408 GlobalDecl GD) { 5409 StringRef TargetCPU = Target.getTargetOpts().CPU; 5410 const FunctionDecl *FD = GD.getDecl()->getAsFunction(); 5411 if (const auto *TD = FD->getAttr<TargetAttr>()) { 5412 TargetAttr::ParsedTargetAttr ParsedAttr = filterFunctionTargetAttrs(TD); 5413 5414 // Make a copy of the features as passed on the command line into the 5415 // beginning of the additional features from the function to override. 5416 ParsedAttr.Features.insert(ParsedAttr.Features.begin(), 5417 Target.getTargetOpts().FeaturesAsWritten.begin(), 5418 Target.getTargetOpts().FeaturesAsWritten.end()); 5419 5420 if (ParsedAttr.Architecture != "" && 5421 Target.isValidCPUName(ParsedAttr.Architecture)) 5422 TargetCPU = ParsedAttr.Architecture; 5423 5424 // Now populate the feature map, first with the TargetCPU which is either 5425 // the default or a new one from the target attribute string. Then we'll use 5426 // the passed in features (FeaturesAsWritten) along with the new ones from 5427 // the attribute. 5428 Target.initFeatureMap(FeatureMap, getDiags(), TargetCPU, 5429 ParsedAttr.Features); 5430 } else if (const auto *SD = FD->getAttr<CPUSpecificAttr>()) { 5431 llvm::SmallVector<StringRef, 32> FeaturesTmp; 5432 Target.getCPUSpecificCPUDispatchFeatures( 5433 SD->getCPUName(GD.getMultiVersionIndex())->getName(), FeaturesTmp); 5434 std::vector<std::string> Features(FeaturesTmp.begin(), FeaturesTmp.end()); 5435 Target.initFeatureMap(FeatureMap, getDiags(), TargetCPU, Features); 5436 } else { 5437 Target.initFeatureMap(FeatureMap, getDiags(), TargetCPU, 5438 Target.getTargetOpts().Features); 5439 } 5440 } 5441 5442 llvm::SanitizerStatReport &CodeGenModule::getSanStats() { 5443 if (!SanStats) 5444 SanStats = llvm::make_unique<llvm::SanitizerStatReport>(&getModule()); 5445 5446 return *SanStats; 5447 } 5448 llvm::Value * 5449 CodeGenModule::createOpenCLIntToSamplerConversion(const Expr *E, 5450 CodeGenFunction &CGF) { 5451 llvm::Constant *C = ConstantEmitter(CGF).emitAbstract(E, E->getType()); 5452 auto SamplerT = getOpenCLRuntime().getSamplerType(E->getType().getTypePtr()); 5453 auto FTy = llvm::FunctionType::get(SamplerT, {C->getType()}, false); 5454 return CGF.Builder.CreateCall(CreateRuntimeFunction(FTy, 5455 "__translate_sampler_initializer"), 5456 {C}); 5457 } 5458