1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This coordinates the per-module state used while generating code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenModule.h" 15 #include "CGDebugInfo.h" 16 #include "CodeGenFunction.h" 17 #include "CGCall.h" 18 #include "CGObjCRuntime.h" 19 #include "Mangle.h" 20 #include "TargetInfo.h" 21 #include "clang/Frontend/CodeGenOptions.h" 22 #include "clang/AST/ASTContext.h" 23 #include "clang/AST/CharUnits.h" 24 #include "clang/AST/DeclObjC.h" 25 #include "clang/AST/DeclCXX.h" 26 #include "clang/AST/DeclTemplate.h" 27 #include "clang/AST/RecordLayout.h" 28 #include "clang/Basic/Builtins.h" 29 #include "clang/Basic/Diagnostic.h" 30 #include "clang/Basic/SourceManager.h" 31 #include "clang/Basic/TargetInfo.h" 32 #include "clang/Basic/ConvertUTF.h" 33 #include "llvm/CallingConv.h" 34 #include "llvm/Module.h" 35 #include "llvm/Intrinsics.h" 36 #include "llvm/LLVMContext.h" 37 #include "llvm/ADT/Triple.h" 38 #include "llvm/Target/TargetData.h" 39 #include "llvm/Support/CallSite.h" 40 #include "llvm/Support/ErrorHandling.h" 41 using namespace clang; 42 using namespace CodeGen; 43 44 45 CodeGenModule::CodeGenModule(ASTContext &C, const CodeGenOptions &CGO, 46 llvm::Module &M, const llvm::TargetData &TD, 47 Diagnostic &diags) 48 : BlockModule(C, M, TD, Types, *this), Context(C), 49 Features(C.getLangOptions()), CodeGenOpts(CGO), TheModule(M), 50 TheTargetData(TD), TheTargetCodeGenInfo(0), Diags(diags), 51 Types(C, M, TD, getTargetCodeGenInfo().getABIInfo()), 52 VTables(*this), Runtime(0), ABI(0), 53 CFConstantStringClassRef(0), 54 NSConstantStringClassRef(0), 55 VMContext(M.getContext()) { 56 57 if (!Features.ObjC1) 58 Runtime = 0; 59 else if (!Features.NeXTRuntime) 60 Runtime = CreateGNUObjCRuntime(*this); 61 else if (Features.ObjCNonFragileABI) 62 Runtime = CreateMacNonFragileABIObjCRuntime(*this); 63 else 64 Runtime = CreateMacObjCRuntime(*this); 65 66 if (!Features.CPlusPlus) 67 ABI = 0; 68 else createCXXABI(); 69 70 // If debug info generation is enabled, create the CGDebugInfo object. 71 DebugInfo = CodeGenOpts.DebugInfo ? new CGDebugInfo(*this) : 0; 72 } 73 74 CodeGenModule::~CodeGenModule() { 75 delete Runtime; 76 delete ABI; 77 delete DebugInfo; 78 } 79 80 void CodeGenModule::createObjCRuntime() { 81 if (!Features.NeXTRuntime) 82 Runtime = CreateGNUObjCRuntime(*this); 83 else if (Features.ObjCNonFragileABI) 84 Runtime = CreateMacNonFragileABIObjCRuntime(*this); 85 else 86 Runtime = CreateMacObjCRuntime(*this); 87 } 88 89 void CodeGenModule::createCXXABI() { 90 if (Context.Target.getCXXABI() == "microsoft") 91 ABI = CreateMicrosoftCXXABI(*this); 92 else 93 ABI = CreateItaniumCXXABI(*this); 94 } 95 96 void CodeGenModule::Release() { 97 EmitDeferred(); 98 EmitCXXGlobalInitFunc(); 99 EmitCXXGlobalDtorFunc(); 100 if (Runtime) 101 if (llvm::Function *ObjCInitFunction = Runtime->ModuleInitFunction()) 102 AddGlobalCtor(ObjCInitFunction); 103 EmitCtorList(GlobalCtors, "llvm.global_ctors"); 104 EmitCtorList(GlobalDtors, "llvm.global_dtors"); 105 EmitAnnotations(); 106 EmitLLVMUsed(); 107 } 108 109 bool CodeGenModule::isTargetDarwin() const { 110 return getContext().Target.getTriple().getOS() == llvm::Triple::Darwin; 111 } 112 113 /// ErrorUnsupported - Print out an error that codegen doesn't support the 114 /// specified stmt yet. 115 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type, 116 bool OmitOnError) { 117 if (OmitOnError && getDiags().hasErrorOccurred()) 118 return; 119 unsigned DiagID = getDiags().getCustomDiagID(Diagnostic::Error, 120 "cannot compile this %0 yet"); 121 std::string Msg = Type; 122 getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID) 123 << Msg << S->getSourceRange(); 124 } 125 126 /// ErrorUnsupported - Print out an error that codegen doesn't support the 127 /// specified decl yet. 128 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type, 129 bool OmitOnError) { 130 if (OmitOnError && getDiags().hasErrorOccurred()) 131 return; 132 unsigned DiagID = getDiags().getCustomDiagID(Diagnostic::Error, 133 "cannot compile this %0 yet"); 134 std::string Msg = Type; 135 getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg; 136 } 137 138 LangOptions::VisibilityMode 139 CodeGenModule::getDeclVisibilityMode(const Decl *D) const { 140 if (const VarDecl *VD = dyn_cast<VarDecl>(D)) 141 if (VD->getStorageClass() == VarDecl::PrivateExtern) 142 return LangOptions::Hidden; 143 144 if (const VisibilityAttr *attr = D->getAttr<VisibilityAttr>()) { 145 switch (attr->getVisibility()) { 146 default: assert(0 && "Unknown visibility!"); 147 case VisibilityAttr::DefaultVisibility: 148 return LangOptions::Default; 149 case VisibilityAttr::HiddenVisibility: 150 return LangOptions::Hidden; 151 case VisibilityAttr::ProtectedVisibility: 152 return LangOptions::Protected; 153 } 154 } 155 156 if (getLangOptions().CPlusPlus) { 157 // Entities subject to an explicit instantiation declaration get default 158 // visibility. 159 if (const FunctionDecl *Function = dyn_cast<FunctionDecl>(D)) { 160 if (Function->getTemplateSpecializationKind() 161 == TSK_ExplicitInstantiationDeclaration) 162 return LangOptions::Default; 163 } else if (const ClassTemplateSpecializationDecl *ClassSpec 164 = dyn_cast<ClassTemplateSpecializationDecl>(D)) { 165 if (ClassSpec->getSpecializationKind() 166 == TSK_ExplicitInstantiationDeclaration) 167 return LangOptions::Default; 168 } else if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(D)) { 169 if (Record->getTemplateSpecializationKind() 170 == TSK_ExplicitInstantiationDeclaration) 171 return LangOptions::Default; 172 } else if (const VarDecl *Var = dyn_cast<VarDecl>(D)) { 173 if (Var->isStaticDataMember() && 174 (Var->getTemplateSpecializationKind() 175 == TSK_ExplicitInstantiationDeclaration)) 176 return LangOptions::Default; 177 } 178 179 // If -fvisibility-inlines-hidden was provided, then inline C++ member 180 // functions get "hidden" visibility by default. 181 if (getLangOptions().InlineVisibilityHidden) 182 if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) 183 if (Method->isInlined()) 184 return LangOptions::Hidden; 185 } 186 187 // This decl should have the same visibility as its parent. 188 if (const DeclContext *DC = D->getDeclContext()) 189 return getDeclVisibilityMode(cast<Decl>(DC)); 190 191 return getLangOptions().getVisibilityMode(); 192 } 193 194 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV, 195 const Decl *D) const { 196 // Internal definitions always have default visibility. 197 if (GV->hasLocalLinkage()) { 198 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 199 return; 200 } 201 202 switch (getDeclVisibilityMode(D)) { 203 default: assert(0 && "Unknown visibility!"); 204 case LangOptions::Default: 205 return GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 206 case LangOptions::Hidden: 207 return GV->setVisibility(llvm::GlobalValue::HiddenVisibility); 208 case LangOptions::Protected: 209 return GV->setVisibility(llvm::GlobalValue::ProtectedVisibility); 210 } 211 } 212 213 llvm::StringRef CodeGenModule::getMangledName(GlobalDecl GD) { 214 const NamedDecl *ND = cast<NamedDecl>(GD.getDecl()); 215 216 llvm::StringRef &Str = MangledDeclNames[GD.getCanonicalDecl()]; 217 if (!Str.empty()) 218 return Str; 219 220 if (!getMangleContext().shouldMangleDeclName(ND)) { 221 IdentifierInfo *II = ND->getIdentifier(); 222 assert(II && "Attempt to mangle unnamed decl."); 223 224 Str = II->getName(); 225 return Str; 226 } 227 228 llvm::SmallString<256> Buffer; 229 if (const CXXConstructorDecl *D = dyn_cast<CXXConstructorDecl>(ND)) 230 getMangleContext().mangleCXXCtor(D, GD.getCtorType(), Buffer); 231 else if (const CXXDestructorDecl *D = dyn_cast<CXXDestructorDecl>(ND)) 232 getMangleContext().mangleCXXDtor(D, GD.getDtorType(), Buffer); 233 else if (const BlockDecl *BD = dyn_cast<BlockDecl>(ND)) 234 getMangleContext().mangleBlock(GD, BD, Buffer); 235 else 236 getMangleContext().mangleName(ND, Buffer); 237 238 // Allocate space for the mangled name. 239 size_t Length = Buffer.size(); 240 char *Name = MangledNamesAllocator.Allocate<char>(Length); 241 std::copy(Buffer.begin(), Buffer.end(), Name); 242 243 Str = llvm::StringRef(Name, Length); 244 245 return Str; 246 } 247 248 void CodeGenModule::getMangledName(GlobalDecl GD, MangleBuffer &Buffer, 249 const BlockDecl *BD) { 250 getMangleContext().mangleBlock(GD, BD, Buffer.getBuffer()); 251 } 252 253 llvm::GlobalValue *CodeGenModule::GetGlobalValue(llvm::StringRef Name) { 254 return getModule().getNamedValue(Name); 255 } 256 257 /// AddGlobalCtor - Add a function to the list that will be called before 258 /// main() runs. 259 void CodeGenModule::AddGlobalCtor(llvm::Function * Ctor, int Priority) { 260 // FIXME: Type coercion of void()* types. 261 GlobalCtors.push_back(std::make_pair(Ctor, Priority)); 262 } 263 264 /// AddGlobalDtor - Add a function to the list that will be called 265 /// when the module is unloaded. 266 void CodeGenModule::AddGlobalDtor(llvm::Function * Dtor, int Priority) { 267 // FIXME: Type coercion of void()* types. 268 GlobalDtors.push_back(std::make_pair(Dtor, Priority)); 269 } 270 271 void CodeGenModule::EmitCtorList(const CtorList &Fns, const char *GlobalName) { 272 // Ctor function type is void()*. 273 llvm::FunctionType* CtorFTy = 274 llvm::FunctionType::get(llvm::Type::getVoidTy(VMContext), 275 std::vector<const llvm::Type*>(), 276 false); 277 llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy); 278 279 // Get the type of a ctor entry, { i32, void ()* }. 280 llvm::StructType* CtorStructTy = 281 llvm::StructType::get(VMContext, llvm::Type::getInt32Ty(VMContext), 282 llvm::PointerType::getUnqual(CtorFTy), NULL); 283 284 // Construct the constructor and destructor arrays. 285 std::vector<llvm::Constant*> Ctors; 286 for (CtorList::const_iterator I = Fns.begin(), E = Fns.end(); I != E; ++I) { 287 std::vector<llvm::Constant*> S; 288 S.push_back(llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext), 289 I->second, false)); 290 S.push_back(llvm::ConstantExpr::getBitCast(I->first, CtorPFTy)); 291 Ctors.push_back(llvm::ConstantStruct::get(CtorStructTy, S)); 292 } 293 294 if (!Ctors.empty()) { 295 llvm::ArrayType *AT = llvm::ArrayType::get(CtorStructTy, Ctors.size()); 296 new llvm::GlobalVariable(TheModule, AT, false, 297 llvm::GlobalValue::AppendingLinkage, 298 llvm::ConstantArray::get(AT, Ctors), 299 GlobalName); 300 } 301 } 302 303 void CodeGenModule::EmitAnnotations() { 304 if (Annotations.empty()) 305 return; 306 307 // Create a new global variable for the ConstantStruct in the Module. 308 llvm::Constant *Array = 309 llvm::ConstantArray::get(llvm::ArrayType::get(Annotations[0]->getType(), 310 Annotations.size()), 311 Annotations); 312 llvm::GlobalValue *gv = 313 new llvm::GlobalVariable(TheModule, Array->getType(), false, 314 llvm::GlobalValue::AppendingLinkage, Array, 315 "llvm.global.annotations"); 316 gv->setSection("llvm.metadata"); 317 } 318 319 static CodeGenModule::GVALinkage 320 GetLinkageForFunction(ASTContext &Context, const FunctionDecl *FD, 321 const LangOptions &Features) { 322 CodeGenModule::GVALinkage External = CodeGenModule::GVA_StrongExternal; 323 324 Linkage L = FD->getLinkage(); 325 if (L == ExternalLinkage && Context.getLangOptions().CPlusPlus && 326 FD->getType()->getLinkage() == UniqueExternalLinkage) 327 L = UniqueExternalLinkage; 328 329 switch (L) { 330 case NoLinkage: 331 case InternalLinkage: 332 case UniqueExternalLinkage: 333 return CodeGenModule::GVA_Internal; 334 335 case ExternalLinkage: 336 switch (FD->getTemplateSpecializationKind()) { 337 case TSK_Undeclared: 338 case TSK_ExplicitSpecialization: 339 External = CodeGenModule::GVA_StrongExternal; 340 break; 341 342 case TSK_ExplicitInstantiationDefinition: 343 return CodeGenModule::GVA_ExplicitTemplateInstantiation; 344 345 case TSK_ExplicitInstantiationDeclaration: 346 case TSK_ImplicitInstantiation: 347 External = CodeGenModule::GVA_TemplateInstantiation; 348 break; 349 } 350 } 351 352 if (!FD->isInlined()) 353 return External; 354 355 if (!Features.CPlusPlus || FD->hasAttr<GNUInlineAttr>()) { 356 // GNU or C99 inline semantics. Determine whether this symbol should be 357 // externally visible. 358 if (FD->isInlineDefinitionExternallyVisible()) 359 return External; 360 361 // C99 inline semantics, where the symbol is not externally visible. 362 return CodeGenModule::GVA_C99Inline; 363 } 364 365 // C++0x [temp.explicit]p9: 366 // [ Note: The intent is that an inline function that is the subject of 367 // an explicit instantiation declaration will still be implicitly 368 // instantiated when used so that the body can be considered for 369 // inlining, but that no out-of-line copy of the inline function would be 370 // generated in the translation unit. -- end note ] 371 if (FD->getTemplateSpecializationKind() 372 == TSK_ExplicitInstantiationDeclaration) 373 return CodeGenModule::GVA_C99Inline; 374 375 return CodeGenModule::GVA_CXXInline; 376 } 377 378 llvm::GlobalValue::LinkageTypes 379 CodeGenModule::getFunctionLinkage(const FunctionDecl *D) { 380 GVALinkage Linkage = GetLinkageForFunction(getContext(), D, Features); 381 382 if (Linkage == GVA_Internal) 383 return llvm::Function::InternalLinkage; 384 385 if (D->hasAttr<DLLExportAttr>()) 386 return llvm::Function::DLLExportLinkage; 387 388 if (D->hasAttr<WeakAttr>()) 389 return llvm::Function::WeakAnyLinkage; 390 391 // In C99 mode, 'inline' functions are guaranteed to have a strong 392 // definition somewhere else, so we can use available_externally linkage. 393 if (Linkage == GVA_C99Inline) 394 return llvm::Function::AvailableExternallyLinkage; 395 396 // In C++, the compiler has to emit a definition in every translation unit 397 // that references the function. We should use linkonce_odr because 398 // a) if all references in this translation unit are optimized away, we 399 // don't need to codegen it. b) if the function persists, it needs to be 400 // merged with other definitions. c) C++ has the ODR, so we know the 401 // definition is dependable. 402 if (Linkage == GVA_CXXInline || Linkage == GVA_TemplateInstantiation) 403 return llvm::Function::LinkOnceODRLinkage; 404 405 // An explicit instantiation of a template has weak linkage, since 406 // explicit instantiations can occur in multiple translation units 407 // and must all be equivalent. However, we are not allowed to 408 // throw away these explicit instantiations. 409 if (Linkage == GVA_ExplicitTemplateInstantiation) 410 return llvm::Function::WeakODRLinkage; 411 412 // Otherwise, we have strong external linkage. 413 assert(Linkage == GVA_StrongExternal); 414 return llvm::Function::ExternalLinkage; 415 } 416 417 418 /// SetFunctionDefinitionAttributes - Set attributes for a global. 419 /// 420 /// FIXME: This is currently only done for aliases and functions, but not for 421 /// variables (these details are set in EmitGlobalVarDefinition for variables). 422 void CodeGenModule::SetFunctionDefinitionAttributes(const FunctionDecl *D, 423 llvm::GlobalValue *GV) { 424 SetCommonAttributes(D, GV); 425 } 426 427 void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D, 428 const CGFunctionInfo &Info, 429 llvm::Function *F) { 430 unsigned CallingConv; 431 AttributeListType AttributeList; 432 ConstructAttributeList(Info, D, AttributeList, CallingConv); 433 F->setAttributes(llvm::AttrListPtr::get(AttributeList.begin(), 434 AttributeList.size())); 435 F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv)); 436 } 437 438 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D, 439 llvm::Function *F) { 440 if (!Features.Exceptions && !Features.ObjCNonFragileABI) 441 F->addFnAttr(llvm::Attribute::NoUnwind); 442 443 if (D->hasAttr<AlwaysInlineAttr>()) 444 F->addFnAttr(llvm::Attribute::AlwaysInline); 445 446 if (D->hasAttr<NoInlineAttr>()) 447 F->addFnAttr(llvm::Attribute::NoInline); 448 449 if (Features.getStackProtectorMode() == LangOptions::SSPOn) 450 F->addFnAttr(llvm::Attribute::StackProtect); 451 else if (Features.getStackProtectorMode() == LangOptions::SSPReq) 452 F->addFnAttr(llvm::Attribute::StackProtectReq); 453 454 if (const AlignedAttr *AA = D->getAttr<AlignedAttr>()) { 455 unsigned width = Context.Target.getCharWidth(); 456 F->setAlignment(AA->getAlignment() / width); 457 while ((AA = AA->getNext<AlignedAttr>())) 458 F->setAlignment(std::max(F->getAlignment(), AA->getAlignment() / width)); 459 } 460 // C++ ABI requires 2-byte alignment for member functions. 461 if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D)) 462 F->setAlignment(2); 463 } 464 465 void CodeGenModule::SetCommonAttributes(const Decl *D, 466 llvm::GlobalValue *GV) { 467 setGlobalVisibility(GV, D); 468 469 if (D->hasAttr<UsedAttr>()) 470 AddUsedGlobal(GV); 471 472 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) 473 GV->setSection(SA->getName()); 474 475 getTargetCodeGenInfo().SetTargetAttributes(D, GV, *this); 476 } 477 478 void CodeGenModule::SetInternalFunctionAttributes(const Decl *D, 479 llvm::Function *F, 480 const CGFunctionInfo &FI) { 481 SetLLVMFunctionAttributes(D, FI, F); 482 SetLLVMFunctionAttributesForDefinition(D, F); 483 484 F->setLinkage(llvm::Function::InternalLinkage); 485 486 SetCommonAttributes(D, F); 487 } 488 489 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD, 490 llvm::Function *F, 491 bool IsIncompleteFunction) { 492 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 493 494 if (!IsIncompleteFunction) 495 SetLLVMFunctionAttributes(FD, getTypes().getFunctionInfo(GD), F); 496 497 // Only a few attributes are set on declarations; these may later be 498 // overridden by a definition. 499 500 if (FD->hasAttr<DLLImportAttr>()) { 501 F->setLinkage(llvm::Function::DLLImportLinkage); 502 } else if (FD->hasAttr<WeakAttr>() || 503 FD->hasAttr<WeakImportAttr>()) { 504 // "extern_weak" is overloaded in LLVM; we probably should have 505 // separate linkage types for this. 506 F->setLinkage(llvm::Function::ExternalWeakLinkage); 507 } else { 508 F->setLinkage(llvm::Function::ExternalLinkage); 509 } 510 511 if (const SectionAttr *SA = FD->getAttr<SectionAttr>()) 512 F->setSection(SA->getName()); 513 } 514 515 void CodeGenModule::AddUsedGlobal(llvm::GlobalValue *GV) { 516 assert(!GV->isDeclaration() && 517 "Only globals with definition can force usage."); 518 LLVMUsed.push_back(GV); 519 } 520 521 void CodeGenModule::EmitLLVMUsed() { 522 // Don't create llvm.used if there is no need. 523 if (LLVMUsed.empty()) 524 return; 525 526 const llvm::Type *i8PTy = llvm::Type::getInt8PtrTy(VMContext); 527 528 // Convert LLVMUsed to what ConstantArray needs. 529 std::vector<llvm::Constant*> UsedArray; 530 UsedArray.resize(LLVMUsed.size()); 531 for (unsigned i = 0, e = LLVMUsed.size(); i != e; ++i) { 532 UsedArray[i] = 533 llvm::ConstantExpr::getBitCast(cast<llvm::Constant>(&*LLVMUsed[i]), 534 i8PTy); 535 } 536 537 if (UsedArray.empty()) 538 return; 539 llvm::ArrayType *ATy = llvm::ArrayType::get(i8PTy, UsedArray.size()); 540 541 llvm::GlobalVariable *GV = 542 new llvm::GlobalVariable(getModule(), ATy, false, 543 llvm::GlobalValue::AppendingLinkage, 544 llvm::ConstantArray::get(ATy, UsedArray), 545 "llvm.used"); 546 547 GV->setSection("llvm.metadata"); 548 } 549 550 void CodeGenModule::EmitDeferred() { 551 // Emit code for any potentially referenced deferred decls. Since a 552 // previously unused static decl may become used during the generation of code 553 // for a static function, iterate until no changes are made. 554 555 while (!DeferredDeclsToEmit.empty() || !DeferredVTables.empty()) { 556 if (!DeferredVTables.empty()) { 557 const CXXRecordDecl *RD = DeferredVTables.back(); 558 DeferredVTables.pop_back(); 559 getVTables().GenerateClassData(getVTableLinkage(RD), RD); 560 continue; 561 } 562 563 GlobalDecl D = DeferredDeclsToEmit.back(); 564 DeferredDeclsToEmit.pop_back(); 565 566 // Check to see if we've already emitted this. This is necessary 567 // for a couple of reasons: first, decls can end up in the 568 // deferred-decls queue multiple times, and second, decls can end 569 // up with definitions in unusual ways (e.g. by an extern inline 570 // function acquiring a strong function redefinition). Just 571 // ignore these cases. 572 // 573 // TODO: That said, looking this up multiple times is very wasteful. 574 llvm::StringRef Name = getMangledName(D); 575 llvm::GlobalValue *CGRef = GetGlobalValue(Name); 576 assert(CGRef && "Deferred decl wasn't referenced?"); 577 578 if (!CGRef->isDeclaration()) 579 continue; 580 581 // GlobalAlias::isDeclaration() defers to the aliasee, but for our 582 // purposes an alias counts as a definition. 583 if (isa<llvm::GlobalAlias>(CGRef)) 584 continue; 585 586 // Otherwise, emit the definition and move on to the next one. 587 EmitGlobalDefinition(D); 588 } 589 } 590 591 /// EmitAnnotateAttr - Generate the llvm::ConstantStruct which contains the 592 /// annotation information for a given GlobalValue. The annotation struct is 593 /// {i8 *, i8 *, i8 *, i32}. The first field is a constant expression, the 594 /// GlobalValue being annotated. The second field is the constant string 595 /// created from the AnnotateAttr's annotation. The third field is a constant 596 /// string containing the name of the translation unit. The fourth field is 597 /// the line number in the file of the annotated value declaration. 598 /// 599 /// FIXME: this does not unique the annotation string constants, as llvm-gcc 600 /// appears to. 601 /// 602 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV, 603 const AnnotateAttr *AA, 604 unsigned LineNo) { 605 llvm::Module *M = &getModule(); 606 607 // get [N x i8] constants for the annotation string, and the filename string 608 // which are the 2nd and 3rd elements of the global annotation structure. 609 const llvm::Type *SBP = llvm::Type::getInt8PtrTy(VMContext); 610 llvm::Constant *anno = llvm::ConstantArray::get(VMContext, 611 AA->getAnnotation(), true); 612 llvm::Constant *unit = llvm::ConstantArray::get(VMContext, 613 M->getModuleIdentifier(), 614 true); 615 616 // Get the two global values corresponding to the ConstantArrays we just 617 // created to hold the bytes of the strings. 618 llvm::GlobalValue *annoGV = 619 new llvm::GlobalVariable(*M, anno->getType(), false, 620 llvm::GlobalValue::PrivateLinkage, anno, 621 GV->getName()); 622 // translation unit name string, emitted into the llvm.metadata section. 623 llvm::GlobalValue *unitGV = 624 new llvm::GlobalVariable(*M, unit->getType(), false, 625 llvm::GlobalValue::PrivateLinkage, unit, 626 ".str"); 627 628 // Create the ConstantStruct for the global annotation. 629 llvm::Constant *Fields[4] = { 630 llvm::ConstantExpr::getBitCast(GV, SBP), 631 llvm::ConstantExpr::getBitCast(annoGV, SBP), 632 llvm::ConstantExpr::getBitCast(unitGV, SBP), 633 llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext), LineNo) 634 }; 635 return llvm::ConstantStruct::get(VMContext, Fields, 4, false); 636 } 637 638 static CodeGenModule::GVALinkage 639 GetLinkageForVariable(ASTContext &Context, const VarDecl *VD) { 640 // If this is a static data member, compute the kind of template 641 // specialization. Otherwise, this variable is not part of a 642 // template. 643 TemplateSpecializationKind TSK = TSK_Undeclared; 644 if (VD->isStaticDataMember()) 645 TSK = VD->getTemplateSpecializationKind(); 646 647 Linkage L = VD->getLinkage(); 648 if (L == ExternalLinkage && Context.getLangOptions().CPlusPlus && 649 VD->getType()->getLinkage() == UniqueExternalLinkage) 650 L = UniqueExternalLinkage; 651 652 switch (L) { 653 case NoLinkage: 654 case InternalLinkage: 655 case UniqueExternalLinkage: 656 return CodeGenModule::GVA_Internal; 657 658 case ExternalLinkage: 659 switch (TSK) { 660 case TSK_Undeclared: 661 case TSK_ExplicitSpecialization: 662 return CodeGenModule::GVA_StrongExternal; 663 664 case TSK_ExplicitInstantiationDeclaration: 665 llvm_unreachable("Variable should not be instantiated"); 666 // Fall through to treat this like any other instantiation. 667 668 case TSK_ExplicitInstantiationDefinition: 669 return CodeGenModule::GVA_ExplicitTemplateInstantiation; 670 671 case TSK_ImplicitInstantiation: 672 return CodeGenModule::GVA_TemplateInstantiation; 673 } 674 } 675 676 return CodeGenModule::GVA_StrongExternal; 677 } 678 679 bool CodeGenModule::MayDeferGeneration(const ValueDecl *Global) { 680 // Never defer when EmitAllDecls is specified or the decl has 681 // attribute used. 682 if (Features.EmitAllDecls || Global->hasAttr<UsedAttr>()) 683 return false; 684 685 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) { 686 // Constructors and destructors should never be deferred. 687 if (FD->hasAttr<ConstructorAttr>() || 688 FD->hasAttr<DestructorAttr>()) 689 return false; 690 691 // The key function for a class must never be deferred. 692 if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Global)) { 693 const CXXRecordDecl *RD = MD->getParent(); 694 if (MD->isOutOfLine() && RD->isDynamicClass()) { 695 const CXXMethodDecl *KeyFunction = getContext().getKeyFunction(RD); 696 if (KeyFunction && 697 KeyFunction->getCanonicalDecl() == MD->getCanonicalDecl()) 698 return false; 699 } 700 } 701 702 GVALinkage Linkage = GetLinkageForFunction(getContext(), FD, Features); 703 704 // static, static inline, always_inline, and extern inline functions can 705 // always be deferred. Normal inline functions can be deferred in C99/C++. 706 // Implicit template instantiations can also be deferred in C++. 707 if (Linkage == GVA_Internal || Linkage == GVA_C99Inline || 708 Linkage == GVA_CXXInline || Linkage == GVA_TemplateInstantiation) 709 return true; 710 return false; 711 } 712 713 const VarDecl *VD = cast<VarDecl>(Global); 714 assert(VD->isFileVarDecl() && "Invalid decl"); 715 716 // We never want to defer structs that have non-trivial constructors or 717 // destructors. 718 719 // FIXME: Handle references. 720 if (const RecordType *RT = VD->getType()->getAs<RecordType>()) { 721 if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl())) { 722 if (!RD->hasTrivialConstructor() || !RD->hasTrivialDestructor()) 723 return false; 724 } 725 } 726 727 GVALinkage L = GetLinkageForVariable(getContext(), VD); 728 if (L == GVA_Internal || L == GVA_TemplateInstantiation) { 729 if (!(VD->getInit() && VD->getInit()->HasSideEffects(Context))) 730 return true; 731 } 732 733 return false; 734 } 735 736 llvm::Constant *CodeGenModule::GetWeakRefReference(const ValueDecl *VD) { 737 const AliasAttr *AA = VD->getAttr<AliasAttr>(); 738 assert(AA && "No alias?"); 739 740 const llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType()); 741 742 // See if there is already something with the target's name in the module. 743 llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee()); 744 745 llvm::Constant *Aliasee; 746 if (isa<llvm::FunctionType>(DeclTy)) 747 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GlobalDecl()); 748 else 749 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), 750 llvm::PointerType::getUnqual(DeclTy), 0); 751 if (!Entry) { 752 llvm::GlobalValue* F = cast<llvm::GlobalValue>(Aliasee); 753 F->setLinkage(llvm::Function::ExternalWeakLinkage); 754 WeakRefReferences.insert(F); 755 } 756 757 return Aliasee; 758 } 759 760 void CodeGenModule::EmitGlobal(GlobalDecl GD) { 761 const ValueDecl *Global = cast<ValueDecl>(GD.getDecl()); 762 763 // Weak references don't produce any output by themselves. 764 if (Global->hasAttr<WeakRefAttr>()) 765 return; 766 767 // If this is an alias definition (which otherwise looks like a declaration) 768 // emit it now. 769 if (Global->hasAttr<AliasAttr>()) 770 return EmitAliasDefinition(GD); 771 772 // Ignore declarations, they will be emitted on their first use. 773 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) { 774 // Forward declarations are emitted lazily on first use. 775 if (!FD->isThisDeclarationADefinition()) 776 return; 777 } else { 778 const VarDecl *VD = cast<VarDecl>(Global); 779 assert(VD->isFileVarDecl() && "Cannot emit local var decl as global."); 780 781 if (VD->isThisDeclarationADefinition() != VarDecl::Definition) 782 return; 783 } 784 785 // Defer code generation when possible if this is a static definition, inline 786 // function etc. These we only want to emit if they are used. 787 if (!MayDeferGeneration(Global)) { 788 // Emit the definition if it can't be deferred. 789 EmitGlobalDefinition(GD); 790 return; 791 } 792 793 // If the value has already been used, add it directly to the 794 // DeferredDeclsToEmit list. 795 llvm::StringRef MangledName = getMangledName(GD); 796 if (GetGlobalValue(MangledName)) 797 DeferredDeclsToEmit.push_back(GD); 798 else { 799 // Otherwise, remember that we saw a deferred decl with this name. The 800 // first use of the mangled name will cause it to move into 801 // DeferredDeclsToEmit. 802 DeferredDecls[MangledName] = GD; 803 } 804 } 805 806 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD) { 807 const ValueDecl *D = cast<ValueDecl>(GD.getDecl()); 808 809 PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(), 810 Context.getSourceManager(), 811 "Generating code for declaration"); 812 813 if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) 814 if (Method->isVirtual()) 815 getVTables().EmitThunks(GD); 816 817 if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(D)) 818 return EmitCXXConstructor(CD, GD.getCtorType()); 819 820 if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(D)) 821 return EmitCXXDestructor(DD, GD.getDtorType()); 822 823 if (isa<FunctionDecl>(D)) 824 return EmitGlobalFunctionDefinition(GD); 825 826 if (const VarDecl *VD = dyn_cast<VarDecl>(D)) 827 return EmitGlobalVarDefinition(VD); 828 829 assert(0 && "Invalid argument to EmitGlobalDefinition()"); 830 } 831 832 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the 833 /// module, create and return an llvm Function with the specified type. If there 834 /// is something in the module with the specified name, return it potentially 835 /// bitcasted to the right type. 836 /// 837 /// If D is non-null, it specifies a decl that correspond to this. This is used 838 /// to set the attributes on the function when it is first created. 839 llvm::Constant * 840 CodeGenModule::GetOrCreateLLVMFunction(llvm::StringRef MangledName, 841 const llvm::Type *Ty, 842 GlobalDecl D) { 843 // Lookup the entry, lazily creating it if necessary. 844 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 845 if (Entry) { 846 if (WeakRefReferences.count(Entry)) { 847 const FunctionDecl *FD = cast_or_null<FunctionDecl>(D.getDecl()); 848 if (FD && !FD->hasAttr<WeakAttr>()) 849 Entry->setLinkage(llvm::Function::ExternalLinkage); 850 851 WeakRefReferences.erase(Entry); 852 } 853 854 if (Entry->getType()->getElementType() == Ty) 855 return Entry; 856 857 // Make sure the result is of the correct type. 858 const llvm::Type *PTy = llvm::PointerType::getUnqual(Ty); 859 return llvm::ConstantExpr::getBitCast(Entry, PTy); 860 } 861 862 // This function doesn't have a complete type (for example, the return 863 // type is an incomplete struct). Use a fake type instead, and make 864 // sure not to try to set attributes. 865 bool IsIncompleteFunction = false; 866 867 const llvm::FunctionType *FTy; 868 if (isa<llvm::FunctionType>(Ty)) { 869 FTy = cast<llvm::FunctionType>(Ty); 870 } else { 871 FTy = llvm::FunctionType::get(llvm::Type::getVoidTy(VMContext), 872 std::vector<const llvm::Type*>(), false); 873 IsIncompleteFunction = true; 874 } 875 llvm::Function *F = llvm::Function::Create(FTy, 876 llvm::Function::ExternalLinkage, 877 MangledName, &getModule()); 878 assert(F->getName() == MangledName && "name was uniqued!"); 879 if (D.getDecl()) 880 SetFunctionAttributes(D, F, IsIncompleteFunction); 881 882 // This is the first use or definition of a mangled name. If there is a 883 // deferred decl with this name, remember that we need to emit it at the end 884 // of the file. 885 llvm::StringMap<GlobalDecl>::iterator DDI = DeferredDecls.find(MangledName); 886 if (DDI != DeferredDecls.end()) { 887 // Move the potentially referenced deferred decl to the DeferredDeclsToEmit 888 // list, and remove it from DeferredDecls (since we don't need it anymore). 889 DeferredDeclsToEmit.push_back(DDI->second); 890 DeferredDecls.erase(DDI); 891 } else if (const FunctionDecl *FD = cast_or_null<FunctionDecl>(D.getDecl())) { 892 // If this the first reference to a C++ inline function in a class, queue up 893 // the deferred function body for emission. These are not seen as 894 // top-level declarations. 895 if (FD->isThisDeclarationADefinition() && MayDeferGeneration(FD)) 896 DeferredDeclsToEmit.push_back(D); 897 // A called constructor which has no definition or declaration need be 898 // synthesized. 899 else if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD)) { 900 if (CD->isImplicit()) { 901 assert(CD->isUsed() && "Sema doesn't consider constructor as used."); 902 DeferredDeclsToEmit.push_back(D); 903 } 904 } else if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(FD)) { 905 if (DD->isImplicit()) { 906 assert(DD->isUsed() && "Sema doesn't consider destructor as used."); 907 DeferredDeclsToEmit.push_back(D); 908 } 909 } else if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) { 910 if (MD->isCopyAssignment() && MD->isImplicit()) { 911 assert(MD->isUsed() && "Sema doesn't consider CopyAssignment as used."); 912 DeferredDeclsToEmit.push_back(D); 913 } 914 } 915 } 916 917 // Make sure the result is of the requested type. 918 if (!IsIncompleteFunction) { 919 assert(F->getType()->getElementType() == Ty); 920 return F; 921 } 922 923 const llvm::Type *PTy = llvm::PointerType::getUnqual(Ty); 924 return llvm::ConstantExpr::getBitCast(F, PTy); 925 } 926 927 /// GetAddrOfFunction - Return the address of the given function. If Ty is 928 /// non-null, then this function will use the specified type if it has to 929 /// create it (this occurs when we see a definition of the function). 930 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD, 931 const llvm::Type *Ty) { 932 // If there was no specific requested type, just convert it now. 933 if (!Ty) 934 Ty = getTypes().ConvertType(cast<ValueDecl>(GD.getDecl())->getType()); 935 llvm::StringRef MangledName = getMangledName(GD); 936 return GetOrCreateLLVMFunction(MangledName, Ty, GD); 937 } 938 939 /// CreateRuntimeFunction - Create a new runtime function with the specified 940 /// type and name. 941 llvm::Constant * 942 CodeGenModule::CreateRuntimeFunction(const llvm::FunctionType *FTy, 943 llvm::StringRef Name) { 944 return GetOrCreateLLVMFunction(Name, FTy, GlobalDecl()); 945 } 946 947 static bool DeclIsConstantGlobal(ASTContext &Context, const VarDecl *D) { 948 if (!D->getType().isConstant(Context) && !D->getType()->isReferenceType()) 949 return false; 950 if (Context.getLangOptions().CPlusPlus && 951 Context.getBaseElementType(D->getType())->getAs<RecordType>()) { 952 // FIXME: We should do something fancier here! 953 return false; 954 } 955 return true; 956 } 957 958 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module, 959 /// create and return an llvm GlobalVariable with the specified type. If there 960 /// is something in the module with the specified name, return it potentially 961 /// bitcasted to the right type. 962 /// 963 /// If D is non-null, it specifies a decl that correspond to this. This is used 964 /// to set the attributes on the global when it is first created. 965 llvm::Constant * 966 CodeGenModule::GetOrCreateLLVMGlobal(llvm::StringRef MangledName, 967 const llvm::PointerType *Ty, 968 const VarDecl *D) { 969 // Lookup the entry, lazily creating it if necessary. 970 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 971 if (Entry) { 972 if (WeakRefReferences.count(Entry)) { 973 if (D && !D->hasAttr<WeakAttr>()) 974 Entry->setLinkage(llvm::Function::ExternalLinkage); 975 976 WeakRefReferences.erase(Entry); 977 } 978 979 if (Entry->getType() == Ty) 980 return Entry; 981 982 // Make sure the result is of the correct type. 983 return llvm::ConstantExpr::getBitCast(Entry, Ty); 984 } 985 986 // This is the first use or definition of a mangled name. If there is a 987 // deferred decl with this name, remember that we need to emit it at the end 988 // of the file. 989 llvm::StringMap<GlobalDecl>::iterator DDI = DeferredDecls.find(MangledName); 990 if (DDI != DeferredDecls.end()) { 991 // Move the potentially referenced deferred decl to the DeferredDeclsToEmit 992 // list, and remove it from DeferredDecls (since we don't need it anymore). 993 DeferredDeclsToEmit.push_back(DDI->second); 994 DeferredDecls.erase(DDI); 995 } 996 997 llvm::GlobalVariable *GV = 998 new llvm::GlobalVariable(getModule(), Ty->getElementType(), false, 999 llvm::GlobalValue::ExternalLinkage, 1000 0, MangledName, 0, 1001 false, Ty->getAddressSpace()); 1002 1003 // Handle things which are present even on external declarations. 1004 if (D) { 1005 // FIXME: This code is overly simple and should be merged with other global 1006 // handling. 1007 GV->setConstant(DeclIsConstantGlobal(Context, D)); 1008 1009 // FIXME: Merge with other attribute handling code. 1010 if (D->getStorageClass() == VarDecl::PrivateExtern) 1011 GV->setVisibility(llvm::GlobalValue::HiddenVisibility); 1012 1013 if (D->hasAttr<WeakAttr>() || 1014 D->hasAttr<WeakImportAttr>()) 1015 GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage); 1016 1017 GV->setThreadLocal(D->isThreadSpecified()); 1018 } 1019 1020 return GV; 1021 } 1022 1023 1024 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the 1025 /// given global variable. If Ty is non-null and if the global doesn't exist, 1026 /// then it will be greated with the specified type instead of whatever the 1027 /// normal requested type would be. 1028 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D, 1029 const llvm::Type *Ty) { 1030 assert(D->hasGlobalStorage() && "Not a global variable"); 1031 QualType ASTTy = D->getType(); 1032 if (Ty == 0) 1033 Ty = getTypes().ConvertTypeForMem(ASTTy); 1034 1035 const llvm::PointerType *PTy = 1036 llvm::PointerType::get(Ty, ASTTy.getAddressSpace()); 1037 1038 llvm::StringRef MangledName = getMangledName(D); 1039 return GetOrCreateLLVMGlobal(MangledName, PTy, D); 1040 } 1041 1042 /// CreateRuntimeVariable - Create a new runtime global variable with the 1043 /// specified type and name. 1044 llvm::Constant * 1045 CodeGenModule::CreateRuntimeVariable(const llvm::Type *Ty, 1046 llvm::StringRef Name) { 1047 return GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), 0); 1048 } 1049 1050 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) { 1051 assert(!D->getInit() && "Cannot emit definite definitions here!"); 1052 1053 if (MayDeferGeneration(D)) { 1054 // If we have not seen a reference to this variable yet, place it 1055 // into the deferred declarations table to be emitted if needed 1056 // later. 1057 llvm::StringRef MangledName = getMangledName(D); 1058 if (!GetGlobalValue(MangledName)) { 1059 DeferredDecls[MangledName] = D; 1060 return; 1061 } 1062 } 1063 1064 // The tentative definition is the only definition. 1065 EmitGlobalVarDefinition(D); 1066 } 1067 1068 void CodeGenModule::EmitVTable(CXXRecordDecl *Class, bool DefinitionRequired) { 1069 if (DefinitionRequired) 1070 getVTables().GenerateClassData(getVTableLinkage(Class), Class); 1071 } 1072 1073 llvm::GlobalVariable::LinkageTypes 1074 CodeGenModule::getVTableLinkage(const CXXRecordDecl *RD) { 1075 if (RD->isInAnonymousNamespace() || !RD->hasLinkage()) 1076 return llvm::GlobalVariable::InternalLinkage; 1077 1078 if (const CXXMethodDecl *KeyFunction 1079 = RD->getASTContext().getKeyFunction(RD)) { 1080 // If this class has a key function, use that to determine the linkage of 1081 // the vtable. 1082 const FunctionDecl *Def = 0; 1083 if (KeyFunction->getBody(Def)) 1084 KeyFunction = cast<CXXMethodDecl>(Def); 1085 1086 switch (KeyFunction->getTemplateSpecializationKind()) { 1087 case TSK_Undeclared: 1088 case TSK_ExplicitSpecialization: 1089 if (KeyFunction->isInlined()) 1090 return llvm::GlobalVariable::WeakODRLinkage; 1091 1092 return llvm::GlobalVariable::ExternalLinkage; 1093 1094 case TSK_ImplicitInstantiation: 1095 case TSK_ExplicitInstantiationDefinition: 1096 return llvm::GlobalVariable::WeakODRLinkage; 1097 1098 case TSK_ExplicitInstantiationDeclaration: 1099 // FIXME: Use available_externally linkage. However, this currently 1100 // breaks LLVM's build due to undefined symbols. 1101 // return llvm::GlobalVariable::AvailableExternallyLinkage; 1102 return llvm::GlobalVariable::WeakODRLinkage; 1103 } 1104 } 1105 1106 switch (RD->getTemplateSpecializationKind()) { 1107 case TSK_Undeclared: 1108 case TSK_ExplicitSpecialization: 1109 case TSK_ImplicitInstantiation: 1110 case TSK_ExplicitInstantiationDefinition: 1111 return llvm::GlobalVariable::WeakODRLinkage; 1112 1113 case TSK_ExplicitInstantiationDeclaration: 1114 // FIXME: Use available_externally linkage. However, this currently 1115 // breaks LLVM's build due to undefined symbols. 1116 // return llvm::GlobalVariable::AvailableExternallyLinkage; 1117 return llvm::GlobalVariable::WeakODRLinkage; 1118 } 1119 1120 // Silence GCC warning. 1121 return llvm::GlobalVariable::WeakODRLinkage; 1122 } 1123 1124 CharUnits CodeGenModule::GetTargetTypeStoreSize(const llvm::Type *Ty) const { 1125 return CharUnits::fromQuantity( 1126 TheTargetData.getTypeStoreSizeInBits(Ty) / Context.getCharWidth()); 1127 } 1128 1129 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D) { 1130 llvm::Constant *Init = 0; 1131 QualType ASTTy = D->getType(); 1132 bool NonConstInit = false; 1133 1134 const Expr *InitExpr = D->getAnyInitializer(); 1135 1136 if (!InitExpr) { 1137 // This is a tentative definition; tentative definitions are 1138 // implicitly initialized with { 0 }. 1139 // 1140 // Note that tentative definitions are only emitted at the end of 1141 // a translation unit, so they should never have incomplete 1142 // type. In addition, EmitTentativeDefinition makes sure that we 1143 // never attempt to emit a tentative definition if a real one 1144 // exists. A use may still exists, however, so we still may need 1145 // to do a RAUW. 1146 assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type"); 1147 Init = EmitNullConstant(D->getType()); 1148 } else { 1149 Init = EmitConstantExpr(InitExpr, D->getType()); 1150 if (!Init) { 1151 QualType T = InitExpr->getType(); 1152 if (D->getType()->isReferenceType()) 1153 T = D->getType(); 1154 1155 if (getLangOptions().CPlusPlus) { 1156 EmitCXXGlobalVarDeclInitFunc(D); 1157 Init = EmitNullConstant(T); 1158 NonConstInit = true; 1159 } else { 1160 ErrorUnsupported(D, "static initializer"); 1161 Init = llvm::UndefValue::get(getTypes().ConvertType(T)); 1162 } 1163 } 1164 } 1165 1166 const llvm::Type* InitType = Init->getType(); 1167 llvm::Constant *Entry = GetAddrOfGlobalVar(D, InitType); 1168 1169 // Strip off a bitcast if we got one back. 1170 if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) { 1171 assert(CE->getOpcode() == llvm::Instruction::BitCast || 1172 // all zero index gep. 1173 CE->getOpcode() == llvm::Instruction::GetElementPtr); 1174 Entry = CE->getOperand(0); 1175 } 1176 1177 // Entry is now either a Function or GlobalVariable. 1178 llvm::GlobalVariable *GV = dyn_cast<llvm::GlobalVariable>(Entry); 1179 1180 // We have a definition after a declaration with the wrong type. 1181 // We must make a new GlobalVariable* and update everything that used OldGV 1182 // (a declaration or tentative definition) with the new GlobalVariable* 1183 // (which will be a definition). 1184 // 1185 // This happens if there is a prototype for a global (e.g. 1186 // "extern int x[];") and then a definition of a different type (e.g. 1187 // "int x[10];"). This also happens when an initializer has a different type 1188 // from the type of the global (this happens with unions). 1189 if (GV == 0 || 1190 GV->getType()->getElementType() != InitType || 1191 GV->getType()->getAddressSpace() != ASTTy.getAddressSpace()) { 1192 1193 // Move the old entry aside so that we'll create a new one. 1194 Entry->setName(llvm::StringRef()); 1195 1196 // Make a new global with the correct type, this is now guaranteed to work. 1197 GV = cast<llvm::GlobalVariable>(GetAddrOfGlobalVar(D, InitType)); 1198 1199 // Replace all uses of the old global with the new global 1200 llvm::Constant *NewPtrForOldDecl = 1201 llvm::ConstantExpr::getBitCast(GV, Entry->getType()); 1202 Entry->replaceAllUsesWith(NewPtrForOldDecl); 1203 1204 // Erase the old global, since it is no longer used. 1205 cast<llvm::GlobalValue>(Entry)->eraseFromParent(); 1206 } 1207 1208 if (const AnnotateAttr *AA = D->getAttr<AnnotateAttr>()) { 1209 SourceManager &SM = Context.getSourceManager(); 1210 AddAnnotation(EmitAnnotateAttr(GV, AA, 1211 SM.getInstantiationLineNumber(D->getLocation()))); 1212 } 1213 1214 GV->setInitializer(Init); 1215 1216 // If it is safe to mark the global 'constant', do so now. 1217 GV->setConstant(false); 1218 if (!NonConstInit && DeclIsConstantGlobal(Context, D)) 1219 GV->setConstant(true); 1220 1221 GV->setAlignment(getContext().getDeclAlign(D).getQuantity()); 1222 1223 // Set the llvm linkage type as appropriate. 1224 GVALinkage Linkage = GetLinkageForVariable(getContext(), D); 1225 if (Linkage == GVA_Internal) 1226 GV->setLinkage(llvm::Function::InternalLinkage); 1227 else if (D->hasAttr<DLLImportAttr>()) 1228 GV->setLinkage(llvm::Function::DLLImportLinkage); 1229 else if (D->hasAttr<DLLExportAttr>()) 1230 GV->setLinkage(llvm::Function::DLLExportLinkage); 1231 else if (D->hasAttr<WeakAttr>()) { 1232 if (GV->isConstant()) 1233 GV->setLinkage(llvm::GlobalVariable::WeakODRLinkage); 1234 else 1235 GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage); 1236 } else if (Linkage == GVA_TemplateInstantiation || 1237 Linkage == GVA_ExplicitTemplateInstantiation) 1238 // FIXME: It seems like we can provide more specific linkage here 1239 // (LinkOnceODR, WeakODR). 1240 GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage); 1241 else if (!getLangOptions().CPlusPlus && !CodeGenOpts.NoCommon && 1242 !D->hasExternalStorage() && !D->getInit() && 1243 !D->getAttr<SectionAttr>()) { 1244 GV->setLinkage(llvm::GlobalVariable::CommonLinkage); 1245 // common vars aren't constant even if declared const. 1246 GV->setConstant(false); 1247 } else 1248 GV->setLinkage(llvm::GlobalVariable::ExternalLinkage); 1249 1250 SetCommonAttributes(D, GV); 1251 1252 // Emit global variable debug information. 1253 if (CGDebugInfo *DI = getDebugInfo()) { 1254 DI->setLocation(D->getLocation()); 1255 DI->EmitGlobalVariable(GV, D); 1256 } 1257 } 1258 1259 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we 1260 /// implement a function with no prototype, e.g. "int foo() {}". If there are 1261 /// existing call uses of the old function in the module, this adjusts them to 1262 /// call the new function directly. 1263 /// 1264 /// This is not just a cleanup: the always_inline pass requires direct calls to 1265 /// functions to be able to inline them. If there is a bitcast in the way, it 1266 /// won't inline them. Instcombine normally deletes these calls, but it isn't 1267 /// run at -O0. 1268 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old, 1269 llvm::Function *NewFn) { 1270 // If we're redefining a global as a function, don't transform it. 1271 llvm::Function *OldFn = dyn_cast<llvm::Function>(Old); 1272 if (OldFn == 0) return; 1273 1274 const llvm::Type *NewRetTy = NewFn->getReturnType(); 1275 llvm::SmallVector<llvm::Value*, 4> ArgList; 1276 1277 for (llvm::Value::use_iterator UI = OldFn->use_begin(), E = OldFn->use_end(); 1278 UI != E; ) { 1279 // TODO: Do invokes ever occur in C code? If so, we should handle them too. 1280 llvm::Value::use_iterator I = UI++; // Increment before the CI is erased. 1281 llvm::CallInst *CI = dyn_cast<llvm::CallInst>(*I); 1282 llvm::CallSite CS(CI); 1283 if (!CI || !CS.isCallee(I)) continue; 1284 1285 // If the return types don't match exactly, and if the call isn't dead, then 1286 // we can't transform this call. 1287 if (CI->getType() != NewRetTy && !CI->use_empty()) 1288 continue; 1289 1290 // If the function was passed too few arguments, don't transform. If extra 1291 // arguments were passed, we silently drop them. If any of the types 1292 // mismatch, we don't transform. 1293 unsigned ArgNo = 0; 1294 bool DontTransform = false; 1295 for (llvm::Function::arg_iterator AI = NewFn->arg_begin(), 1296 E = NewFn->arg_end(); AI != E; ++AI, ++ArgNo) { 1297 if (CS.arg_size() == ArgNo || 1298 CS.getArgument(ArgNo)->getType() != AI->getType()) { 1299 DontTransform = true; 1300 break; 1301 } 1302 } 1303 if (DontTransform) 1304 continue; 1305 1306 // Okay, we can transform this. Create the new call instruction and copy 1307 // over the required information. 1308 ArgList.append(CS.arg_begin(), CS.arg_begin() + ArgNo); 1309 llvm::CallInst *NewCall = llvm::CallInst::Create(NewFn, ArgList.begin(), 1310 ArgList.end(), "", CI); 1311 ArgList.clear(); 1312 if (!NewCall->getType()->isVoidTy()) 1313 NewCall->takeName(CI); 1314 NewCall->setAttributes(CI->getAttributes()); 1315 NewCall->setCallingConv(CI->getCallingConv()); 1316 1317 // Finally, remove the old call, replacing any uses with the new one. 1318 if (!CI->use_empty()) 1319 CI->replaceAllUsesWith(NewCall); 1320 1321 // Copy debug location attached to CI. 1322 if (!CI->getDebugLoc().isUnknown()) 1323 NewCall->setDebugLoc(CI->getDebugLoc()); 1324 CI->eraseFromParent(); 1325 } 1326 } 1327 1328 1329 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD) { 1330 const FunctionDecl *D = cast<FunctionDecl>(GD.getDecl()); 1331 const llvm::FunctionType *Ty = getTypes().GetFunctionType(GD); 1332 getMangleContext().mangleInitDiscriminator(); 1333 // Get or create the prototype for the function. 1334 llvm::Constant *Entry = GetAddrOfFunction(GD, Ty); 1335 1336 // Strip off a bitcast if we got one back. 1337 if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) { 1338 assert(CE->getOpcode() == llvm::Instruction::BitCast); 1339 Entry = CE->getOperand(0); 1340 } 1341 1342 1343 if (cast<llvm::GlobalValue>(Entry)->getType()->getElementType() != Ty) { 1344 llvm::GlobalValue *OldFn = cast<llvm::GlobalValue>(Entry); 1345 1346 // If the types mismatch then we have to rewrite the definition. 1347 assert(OldFn->isDeclaration() && 1348 "Shouldn't replace non-declaration"); 1349 1350 // F is the Function* for the one with the wrong type, we must make a new 1351 // Function* and update everything that used F (a declaration) with the new 1352 // Function* (which will be a definition). 1353 // 1354 // This happens if there is a prototype for a function 1355 // (e.g. "int f()") and then a definition of a different type 1356 // (e.g. "int f(int x)"). Move the old function aside so that it 1357 // doesn't interfere with GetAddrOfFunction. 1358 OldFn->setName(llvm::StringRef()); 1359 llvm::Function *NewFn = cast<llvm::Function>(GetAddrOfFunction(GD, Ty)); 1360 1361 // If this is an implementation of a function without a prototype, try to 1362 // replace any existing uses of the function (which may be calls) with uses 1363 // of the new function 1364 if (D->getType()->isFunctionNoProtoType()) { 1365 ReplaceUsesOfNonProtoTypeWithRealFunction(OldFn, NewFn); 1366 OldFn->removeDeadConstantUsers(); 1367 } 1368 1369 // Replace uses of F with the Function we will endow with a body. 1370 if (!Entry->use_empty()) { 1371 llvm::Constant *NewPtrForOldDecl = 1372 llvm::ConstantExpr::getBitCast(NewFn, Entry->getType()); 1373 Entry->replaceAllUsesWith(NewPtrForOldDecl); 1374 } 1375 1376 // Ok, delete the old function now, which is dead. 1377 OldFn->eraseFromParent(); 1378 1379 Entry = NewFn; 1380 } 1381 1382 llvm::Function *Fn = cast<llvm::Function>(Entry); 1383 setFunctionLinkage(D, Fn); 1384 1385 CodeGenFunction(*this).GenerateCode(D, Fn); 1386 1387 SetFunctionDefinitionAttributes(D, Fn); 1388 SetLLVMFunctionAttributesForDefinition(D, Fn); 1389 1390 if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>()) 1391 AddGlobalCtor(Fn, CA->getPriority()); 1392 if (const DestructorAttr *DA = D->getAttr<DestructorAttr>()) 1393 AddGlobalDtor(Fn, DA->getPriority()); 1394 } 1395 1396 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) { 1397 const ValueDecl *D = cast<ValueDecl>(GD.getDecl()); 1398 const AliasAttr *AA = D->getAttr<AliasAttr>(); 1399 assert(AA && "Not an alias?"); 1400 1401 llvm::StringRef MangledName = getMangledName(GD); 1402 1403 // If there is a definition in the module, then it wins over the alias. 1404 // This is dubious, but allow it to be safe. Just ignore the alias. 1405 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 1406 if (Entry && !Entry->isDeclaration()) 1407 return; 1408 1409 const llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType()); 1410 1411 // Create a reference to the named value. This ensures that it is emitted 1412 // if a deferred decl. 1413 llvm::Constant *Aliasee; 1414 if (isa<llvm::FunctionType>(DeclTy)) 1415 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GlobalDecl()); 1416 else 1417 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), 1418 llvm::PointerType::getUnqual(DeclTy), 0); 1419 1420 // Create the new alias itself, but don't set a name yet. 1421 llvm::GlobalValue *GA = 1422 new llvm::GlobalAlias(Aliasee->getType(), 1423 llvm::Function::ExternalLinkage, 1424 "", Aliasee, &getModule()); 1425 1426 if (Entry) { 1427 assert(Entry->isDeclaration()); 1428 1429 // If there is a declaration in the module, then we had an extern followed 1430 // by the alias, as in: 1431 // extern int test6(); 1432 // ... 1433 // int test6() __attribute__((alias("test7"))); 1434 // 1435 // Remove it and replace uses of it with the alias. 1436 GA->takeName(Entry); 1437 1438 Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA, 1439 Entry->getType())); 1440 Entry->eraseFromParent(); 1441 } else { 1442 GA->setName(MangledName); 1443 } 1444 1445 // Set attributes which are particular to an alias; this is a 1446 // specialization of the attributes which may be set on a global 1447 // variable/function. 1448 if (D->hasAttr<DLLExportAttr>()) { 1449 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { 1450 // The dllexport attribute is ignored for undefined symbols. 1451 if (FD->getBody()) 1452 GA->setLinkage(llvm::Function::DLLExportLinkage); 1453 } else { 1454 GA->setLinkage(llvm::Function::DLLExportLinkage); 1455 } 1456 } else if (D->hasAttr<WeakAttr>() || 1457 D->hasAttr<WeakRefAttr>() || 1458 D->hasAttr<WeakImportAttr>()) { 1459 GA->setLinkage(llvm::Function::WeakAnyLinkage); 1460 } 1461 1462 SetCommonAttributes(D, GA); 1463 } 1464 1465 /// getBuiltinLibFunction - Given a builtin id for a function like 1466 /// "__builtin_fabsf", return a Function* for "fabsf". 1467 llvm::Value *CodeGenModule::getBuiltinLibFunction(const FunctionDecl *FD, 1468 unsigned BuiltinID) { 1469 assert((Context.BuiltinInfo.isLibFunction(BuiltinID) || 1470 Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) && 1471 "isn't a lib fn"); 1472 1473 // Get the name, skip over the __builtin_ prefix (if necessary). 1474 const char *Name = Context.BuiltinInfo.GetName(BuiltinID); 1475 if (Context.BuiltinInfo.isLibFunction(BuiltinID)) 1476 Name += 10; 1477 1478 const llvm::FunctionType *Ty = 1479 cast<llvm::FunctionType>(getTypes().ConvertType(FD->getType())); 1480 1481 return GetOrCreateLLVMFunction(Name, Ty, GlobalDecl(FD)); 1482 } 1483 1484 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,const llvm::Type **Tys, 1485 unsigned NumTys) { 1486 return llvm::Intrinsic::getDeclaration(&getModule(), 1487 (llvm::Intrinsic::ID)IID, Tys, NumTys); 1488 } 1489 1490 1491 llvm::Function *CodeGenModule::getMemCpyFn(const llvm::Type *DestType, 1492 const llvm::Type *SrcType, 1493 const llvm::Type *SizeType) { 1494 const llvm::Type *ArgTypes[3] = {DestType, SrcType, SizeType }; 1495 return getIntrinsic(llvm::Intrinsic::memcpy, ArgTypes, 3); 1496 } 1497 1498 llvm::Function *CodeGenModule::getMemMoveFn(const llvm::Type *DestType, 1499 const llvm::Type *SrcType, 1500 const llvm::Type *SizeType) { 1501 const llvm::Type *ArgTypes[3] = {DestType, SrcType, SizeType }; 1502 return getIntrinsic(llvm::Intrinsic::memmove, ArgTypes, 3); 1503 } 1504 1505 llvm::Function *CodeGenModule::getMemSetFn(const llvm::Type *DestType, 1506 const llvm::Type *SizeType) { 1507 const llvm::Type *ArgTypes[2] = { DestType, SizeType }; 1508 return getIntrinsic(llvm::Intrinsic::memset, ArgTypes, 2); 1509 } 1510 1511 static llvm::StringMapEntry<llvm::Constant*> & 1512 GetConstantCFStringEntry(llvm::StringMap<llvm::Constant*> &Map, 1513 const StringLiteral *Literal, 1514 bool TargetIsLSB, 1515 bool &IsUTF16, 1516 unsigned &StringLength) { 1517 unsigned NumBytes = Literal->getByteLength(); 1518 1519 // Check for simple case. 1520 if (!Literal->containsNonAsciiOrNull()) { 1521 StringLength = NumBytes; 1522 return Map.GetOrCreateValue(llvm::StringRef(Literal->getStrData(), 1523 StringLength)); 1524 } 1525 1526 // Otherwise, convert the UTF8 literals into a byte string. 1527 llvm::SmallVector<UTF16, 128> ToBuf(NumBytes); 1528 const UTF8 *FromPtr = (UTF8 *)Literal->getStrData(); 1529 UTF16 *ToPtr = &ToBuf[0]; 1530 1531 ConversionResult Result = ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, 1532 &ToPtr, ToPtr + NumBytes, 1533 strictConversion); 1534 1535 // Check for conversion failure. 1536 if (Result != conversionOK) { 1537 // FIXME: Have Sema::CheckObjCString() validate the UTF-8 string and remove 1538 // this duplicate code. 1539 assert(Result == sourceIllegal && "UTF-8 to UTF-16 conversion failed"); 1540 StringLength = NumBytes; 1541 return Map.GetOrCreateValue(llvm::StringRef(Literal->getStrData(), 1542 StringLength)); 1543 } 1544 1545 // ConvertUTF8toUTF16 returns the length in ToPtr. 1546 StringLength = ToPtr - &ToBuf[0]; 1547 1548 // Render the UTF-16 string into a byte array and convert to the target byte 1549 // order. 1550 // 1551 // FIXME: This isn't something we should need to do here. 1552 llvm::SmallString<128> AsBytes; 1553 AsBytes.reserve(StringLength * 2); 1554 for (unsigned i = 0; i != StringLength; ++i) { 1555 unsigned short Val = ToBuf[i]; 1556 if (TargetIsLSB) { 1557 AsBytes.push_back(Val & 0xFF); 1558 AsBytes.push_back(Val >> 8); 1559 } else { 1560 AsBytes.push_back(Val >> 8); 1561 AsBytes.push_back(Val & 0xFF); 1562 } 1563 } 1564 // Append one extra null character, the second is automatically added by our 1565 // caller. 1566 AsBytes.push_back(0); 1567 1568 IsUTF16 = true; 1569 return Map.GetOrCreateValue(llvm::StringRef(AsBytes.data(), AsBytes.size())); 1570 } 1571 1572 llvm::Constant * 1573 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) { 1574 unsigned StringLength = 0; 1575 bool isUTF16 = false; 1576 llvm::StringMapEntry<llvm::Constant*> &Entry = 1577 GetConstantCFStringEntry(CFConstantStringMap, Literal, 1578 getTargetData().isLittleEndian(), 1579 isUTF16, StringLength); 1580 1581 if (llvm::Constant *C = Entry.getValue()) 1582 return C; 1583 1584 llvm::Constant *Zero = 1585 llvm::Constant::getNullValue(llvm::Type::getInt32Ty(VMContext)); 1586 llvm::Constant *Zeros[] = { Zero, Zero }; 1587 1588 // If we don't already have it, get __CFConstantStringClassReference. 1589 if (!CFConstantStringClassRef) { 1590 const llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy); 1591 Ty = llvm::ArrayType::get(Ty, 0); 1592 llvm::Constant *GV = CreateRuntimeVariable(Ty, 1593 "__CFConstantStringClassReference"); 1594 // Decay array -> ptr 1595 CFConstantStringClassRef = 1596 llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2); 1597 } 1598 1599 QualType CFTy = getContext().getCFConstantStringType(); 1600 1601 const llvm::StructType *STy = 1602 cast<llvm::StructType>(getTypes().ConvertType(CFTy)); 1603 1604 std::vector<llvm::Constant*> Fields(4); 1605 1606 // Class pointer. 1607 Fields[0] = CFConstantStringClassRef; 1608 1609 // Flags. 1610 const llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy); 1611 Fields[1] = isUTF16 ? llvm::ConstantInt::get(Ty, 0x07d0) : 1612 llvm::ConstantInt::get(Ty, 0x07C8); 1613 1614 // String pointer. 1615 llvm::Constant *C = llvm::ConstantArray::get(VMContext, Entry.getKey().str()); 1616 1617 llvm::GlobalValue::LinkageTypes Linkage; 1618 bool isConstant; 1619 if (isUTF16) { 1620 // FIXME: why do utf strings get "_" labels instead of "L" labels? 1621 Linkage = llvm::GlobalValue::InternalLinkage; 1622 // Note: -fwritable-strings doesn't make unicode CFStrings writable, but 1623 // does make plain ascii ones writable. 1624 isConstant = true; 1625 } else { 1626 Linkage = llvm::GlobalValue::PrivateLinkage; 1627 isConstant = !Features.WritableStrings; 1628 } 1629 1630 llvm::GlobalVariable *GV = 1631 new llvm::GlobalVariable(getModule(), C->getType(), isConstant, Linkage, C, 1632 ".str"); 1633 if (isUTF16) { 1634 CharUnits Align = getContext().getTypeAlignInChars(getContext().ShortTy); 1635 GV->setAlignment(Align.getQuantity()); 1636 } 1637 Fields[2] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2); 1638 1639 // String length. 1640 Ty = getTypes().ConvertType(getContext().LongTy); 1641 Fields[3] = llvm::ConstantInt::get(Ty, StringLength); 1642 1643 // The struct. 1644 C = llvm::ConstantStruct::get(STy, Fields); 1645 GV = new llvm::GlobalVariable(getModule(), C->getType(), true, 1646 llvm::GlobalVariable::PrivateLinkage, C, 1647 "_unnamed_cfstring_"); 1648 if (const char *Sect = getContext().Target.getCFStringSection()) 1649 GV->setSection(Sect); 1650 Entry.setValue(GV); 1651 1652 return GV; 1653 } 1654 1655 llvm::Constant * 1656 CodeGenModule::GetAddrOfConstantNSString(const StringLiteral *Literal) { 1657 unsigned StringLength = 0; 1658 bool isUTF16 = false; 1659 llvm::StringMapEntry<llvm::Constant*> &Entry = 1660 GetConstantCFStringEntry(CFConstantStringMap, Literal, 1661 getTargetData().isLittleEndian(), 1662 isUTF16, StringLength); 1663 1664 if (llvm::Constant *C = Entry.getValue()) 1665 return C; 1666 1667 llvm::Constant *Zero = 1668 llvm::Constant::getNullValue(llvm::Type::getInt32Ty(VMContext)); 1669 llvm::Constant *Zeros[] = { Zero, Zero }; 1670 1671 // If we don't already have it, get _NSConstantStringClassReference. 1672 if (!NSConstantStringClassRef) { 1673 const llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy); 1674 Ty = llvm::ArrayType::get(Ty, 0); 1675 llvm::Constant *GV = CreateRuntimeVariable(Ty, 1676 Features.ObjCNonFragileABI ? 1677 "OBJC_CLASS_$_NSConstantString" : 1678 "_NSConstantStringClassReference"); 1679 // Decay array -> ptr 1680 NSConstantStringClassRef = 1681 llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2); 1682 } 1683 1684 QualType NSTy = getContext().getNSConstantStringType(); 1685 1686 const llvm::StructType *STy = 1687 cast<llvm::StructType>(getTypes().ConvertType(NSTy)); 1688 1689 std::vector<llvm::Constant*> Fields(3); 1690 1691 // Class pointer. 1692 Fields[0] = NSConstantStringClassRef; 1693 1694 // String pointer. 1695 llvm::Constant *C = llvm::ConstantArray::get(VMContext, Entry.getKey().str()); 1696 1697 llvm::GlobalValue::LinkageTypes Linkage; 1698 bool isConstant; 1699 if (isUTF16) { 1700 // FIXME: why do utf strings get "_" labels instead of "L" labels? 1701 Linkage = llvm::GlobalValue::InternalLinkage; 1702 // Note: -fwritable-strings doesn't make unicode NSStrings writable, but 1703 // does make plain ascii ones writable. 1704 isConstant = true; 1705 } else { 1706 Linkage = llvm::GlobalValue::PrivateLinkage; 1707 isConstant = !Features.WritableStrings; 1708 } 1709 1710 llvm::GlobalVariable *GV = 1711 new llvm::GlobalVariable(getModule(), C->getType(), isConstant, Linkage, C, 1712 ".str"); 1713 if (isUTF16) { 1714 CharUnits Align = getContext().getTypeAlignInChars(getContext().ShortTy); 1715 GV->setAlignment(Align.getQuantity()); 1716 } 1717 Fields[1] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2); 1718 1719 // String length. 1720 const llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy); 1721 Fields[2] = llvm::ConstantInt::get(Ty, StringLength); 1722 1723 // The struct. 1724 C = llvm::ConstantStruct::get(STy, Fields); 1725 GV = new llvm::GlobalVariable(getModule(), C->getType(), true, 1726 llvm::GlobalVariable::PrivateLinkage, C, 1727 "_unnamed_nsstring_"); 1728 // FIXME. Fix section. 1729 if (const char *Sect = 1730 Features.ObjCNonFragileABI 1731 ? getContext().Target.getNSStringNonFragileABISection() 1732 : getContext().Target.getNSStringSection()) 1733 GV->setSection(Sect); 1734 Entry.setValue(GV); 1735 1736 return GV; 1737 } 1738 1739 /// GetStringForStringLiteral - Return the appropriate bytes for a 1740 /// string literal, properly padded to match the literal type. 1741 std::string CodeGenModule::GetStringForStringLiteral(const StringLiteral *E) { 1742 const char *StrData = E->getStrData(); 1743 unsigned Len = E->getByteLength(); 1744 1745 const ConstantArrayType *CAT = 1746 getContext().getAsConstantArrayType(E->getType()); 1747 assert(CAT && "String isn't pointer or array!"); 1748 1749 // Resize the string to the right size. 1750 std::string Str(StrData, StrData+Len); 1751 uint64_t RealLen = CAT->getSize().getZExtValue(); 1752 1753 if (E->isWide()) 1754 RealLen *= getContext().Target.getWCharWidth()/8; 1755 1756 Str.resize(RealLen, '\0'); 1757 1758 return Str; 1759 } 1760 1761 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a 1762 /// constant array for the given string literal. 1763 llvm::Constant * 1764 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S) { 1765 // FIXME: This can be more efficient. 1766 // FIXME: We shouldn't need to bitcast the constant in the wide string case. 1767 llvm::Constant *C = GetAddrOfConstantString(GetStringForStringLiteral(S)); 1768 if (S->isWide()) { 1769 llvm::Type *DestTy = 1770 llvm::PointerType::getUnqual(getTypes().ConvertType(S->getType())); 1771 C = llvm::ConstantExpr::getBitCast(C, DestTy); 1772 } 1773 return C; 1774 } 1775 1776 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant 1777 /// array for the given ObjCEncodeExpr node. 1778 llvm::Constant * 1779 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) { 1780 std::string Str; 1781 getContext().getObjCEncodingForType(E->getEncodedType(), Str); 1782 1783 return GetAddrOfConstantCString(Str); 1784 } 1785 1786 1787 /// GenerateWritableString -- Creates storage for a string literal. 1788 static llvm::Constant *GenerateStringLiteral(const std::string &str, 1789 bool constant, 1790 CodeGenModule &CGM, 1791 const char *GlobalName) { 1792 // Create Constant for this string literal. Don't add a '\0'. 1793 llvm::Constant *C = 1794 llvm::ConstantArray::get(CGM.getLLVMContext(), str, false); 1795 1796 // Create a global variable for this string 1797 return new llvm::GlobalVariable(CGM.getModule(), C->getType(), constant, 1798 llvm::GlobalValue::PrivateLinkage, 1799 C, GlobalName); 1800 } 1801 1802 /// GetAddrOfConstantString - Returns a pointer to a character array 1803 /// containing the literal. This contents are exactly that of the 1804 /// given string, i.e. it will not be null terminated automatically; 1805 /// see GetAddrOfConstantCString. Note that whether the result is 1806 /// actually a pointer to an LLVM constant depends on 1807 /// Feature.WriteableStrings. 1808 /// 1809 /// The result has pointer to array type. 1810 llvm::Constant *CodeGenModule::GetAddrOfConstantString(const std::string &str, 1811 const char *GlobalName) { 1812 bool IsConstant = !Features.WritableStrings; 1813 1814 // Get the default prefix if a name wasn't specified. 1815 if (!GlobalName) 1816 GlobalName = ".str"; 1817 1818 // Don't share any string literals if strings aren't constant. 1819 if (!IsConstant) 1820 return GenerateStringLiteral(str, false, *this, GlobalName); 1821 1822 llvm::StringMapEntry<llvm::Constant *> &Entry = 1823 ConstantStringMap.GetOrCreateValue(&str[0], &str[str.length()]); 1824 1825 if (Entry.getValue()) 1826 return Entry.getValue(); 1827 1828 // Create a global variable for this. 1829 llvm::Constant *C = GenerateStringLiteral(str, true, *this, GlobalName); 1830 Entry.setValue(C); 1831 return C; 1832 } 1833 1834 /// GetAddrOfConstantCString - Returns a pointer to a character 1835 /// array containing the literal and a terminating '\-' 1836 /// character. The result has pointer to array type. 1837 llvm::Constant *CodeGenModule::GetAddrOfConstantCString(const std::string &str, 1838 const char *GlobalName){ 1839 return GetAddrOfConstantString(str + '\0', GlobalName); 1840 } 1841 1842 /// EmitObjCPropertyImplementations - Emit information for synthesized 1843 /// properties for an implementation. 1844 void CodeGenModule::EmitObjCPropertyImplementations(const 1845 ObjCImplementationDecl *D) { 1846 for (ObjCImplementationDecl::propimpl_iterator 1847 i = D->propimpl_begin(), e = D->propimpl_end(); i != e; ++i) { 1848 ObjCPropertyImplDecl *PID = *i; 1849 1850 // Dynamic is just for type-checking. 1851 if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) { 1852 ObjCPropertyDecl *PD = PID->getPropertyDecl(); 1853 1854 // Determine which methods need to be implemented, some may have 1855 // been overridden. Note that ::isSynthesized is not the method 1856 // we want, that just indicates if the decl came from a 1857 // property. What we want to know is if the method is defined in 1858 // this implementation. 1859 if (!D->getInstanceMethod(PD->getGetterName())) 1860 CodeGenFunction(*this).GenerateObjCGetter( 1861 const_cast<ObjCImplementationDecl *>(D), PID); 1862 if (!PD->isReadOnly() && 1863 !D->getInstanceMethod(PD->getSetterName())) 1864 CodeGenFunction(*this).GenerateObjCSetter( 1865 const_cast<ObjCImplementationDecl *>(D), PID); 1866 } 1867 } 1868 } 1869 1870 /// EmitObjCIvarInitializations - Emit information for ivar initialization 1871 /// for an implementation. 1872 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) { 1873 if (!Features.NeXTRuntime || D->getNumIvarInitializers() == 0) 1874 return; 1875 DeclContext* DC = const_cast<DeclContext*>(dyn_cast<DeclContext>(D)); 1876 assert(DC && "EmitObjCIvarInitializations - null DeclContext"); 1877 IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct"); 1878 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 1879 ObjCMethodDecl *DTORMethod = ObjCMethodDecl::Create(getContext(), 1880 D->getLocation(), 1881 D->getLocation(), cxxSelector, 1882 getContext().VoidTy, 0, 1883 DC, true, false, true, 1884 ObjCMethodDecl::Required); 1885 D->addInstanceMethod(DTORMethod); 1886 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false); 1887 1888 II = &getContext().Idents.get(".cxx_construct"); 1889 cxxSelector = getContext().Selectors.getSelector(0, &II); 1890 // The constructor returns 'self'. 1891 ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(getContext(), 1892 D->getLocation(), 1893 D->getLocation(), cxxSelector, 1894 getContext().getObjCIdType(), 0, 1895 DC, true, false, true, 1896 ObjCMethodDecl::Required); 1897 D->addInstanceMethod(CTORMethod); 1898 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true); 1899 1900 1901 } 1902 1903 /// EmitNamespace - Emit all declarations in a namespace. 1904 void CodeGenModule::EmitNamespace(const NamespaceDecl *ND) { 1905 for (RecordDecl::decl_iterator I = ND->decls_begin(), E = ND->decls_end(); 1906 I != E; ++I) 1907 EmitTopLevelDecl(*I); 1908 } 1909 1910 // EmitLinkageSpec - Emit all declarations in a linkage spec. 1911 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) { 1912 if (LSD->getLanguage() != LinkageSpecDecl::lang_c && 1913 LSD->getLanguage() != LinkageSpecDecl::lang_cxx) { 1914 ErrorUnsupported(LSD, "linkage spec"); 1915 return; 1916 } 1917 1918 for (RecordDecl::decl_iterator I = LSD->decls_begin(), E = LSD->decls_end(); 1919 I != E; ++I) 1920 EmitTopLevelDecl(*I); 1921 } 1922 1923 /// EmitTopLevelDecl - Emit code for a single top level declaration. 1924 void CodeGenModule::EmitTopLevelDecl(Decl *D) { 1925 // If an error has occurred, stop code generation, but continue 1926 // parsing and semantic analysis (to ensure all warnings and errors 1927 // are emitted). 1928 if (Diags.hasErrorOccurred()) 1929 return; 1930 1931 // Ignore dependent declarations. 1932 if (D->getDeclContext() && D->getDeclContext()->isDependentContext()) 1933 return; 1934 1935 switch (D->getKind()) { 1936 case Decl::CXXConversion: 1937 case Decl::CXXMethod: 1938 case Decl::Function: 1939 // Skip function templates 1940 if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate()) 1941 return; 1942 1943 EmitGlobal(cast<FunctionDecl>(D)); 1944 break; 1945 1946 case Decl::Var: 1947 EmitGlobal(cast<VarDecl>(D)); 1948 break; 1949 1950 // C++ Decls 1951 case Decl::Namespace: 1952 EmitNamespace(cast<NamespaceDecl>(D)); 1953 break; 1954 // No code generation needed. 1955 case Decl::UsingShadow: 1956 case Decl::Using: 1957 case Decl::UsingDirective: 1958 case Decl::ClassTemplate: 1959 case Decl::FunctionTemplate: 1960 case Decl::NamespaceAlias: 1961 break; 1962 case Decl::CXXConstructor: 1963 // Skip function templates 1964 if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate()) 1965 return; 1966 1967 EmitCXXConstructors(cast<CXXConstructorDecl>(D)); 1968 break; 1969 case Decl::CXXDestructor: 1970 EmitCXXDestructors(cast<CXXDestructorDecl>(D)); 1971 break; 1972 1973 case Decl::StaticAssert: 1974 // Nothing to do. 1975 break; 1976 1977 // Objective-C Decls 1978 1979 // Forward declarations, no (immediate) code generation. 1980 case Decl::ObjCClass: 1981 case Decl::ObjCForwardProtocol: 1982 case Decl::ObjCCategory: 1983 case Decl::ObjCInterface: 1984 break; 1985 1986 case Decl::ObjCProtocol: 1987 Runtime->GenerateProtocol(cast<ObjCProtocolDecl>(D)); 1988 break; 1989 1990 case Decl::ObjCCategoryImpl: 1991 // Categories have properties but don't support synthesize so we 1992 // can ignore them here. 1993 Runtime->GenerateCategory(cast<ObjCCategoryImplDecl>(D)); 1994 break; 1995 1996 case Decl::ObjCImplementation: { 1997 ObjCImplementationDecl *OMD = cast<ObjCImplementationDecl>(D); 1998 EmitObjCPropertyImplementations(OMD); 1999 EmitObjCIvarInitializations(OMD); 2000 Runtime->GenerateClass(OMD); 2001 break; 2002 } 2003 case Decl::ObjCMethod: { 2004 ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(D); 2005 // If this is not a prototype, emit the body. 2006 if (OMD->getBody()) 2007 CodeGenFunction(*this).GenerateObjCMethod(OMD); 2008 break; 2009 } 2010 case Decl::ObjCCompatibleAlias: 2011 // compatibility-alias is a directive and has no code gen. 2012 break; 2013 2014 case Decl::LinkageSpec: 2015 EmitLinkageSpec(cast<LinkageSpecDecl>(D)); 2016 break; 2017 2018 case Decl::FileScopeAsm: { 2019 FileScopeAsmDecl *AD = cast<FileScopeAsmDecl>(D); 2020 llvm::StringRef AsmString = AD->getAsmString()->getString(); 2021 2022 const std::string &S = getModule().getModuleInlineAsm(); 2023 if (S.empty()) 2024 getModule().setModuleInlineAsm(AsmString); 2025 else 2026 getModule().setModuleInlineAsm(S + '\n' + AsmString.str()); 2027 break; 2028 } 2029 2030 default: 2031 // Make sure we handled everything we should, every other kind is a 2032 // non-top-level decl. FIXME: Would be nice to have an isTopLevelDeclKind 2033 // function. Need to recode Decl::Kind to do that easily. 2034 assert(isa<TypeDecl>(D) && "Unsupported decl kind"); 2035 } 2036 } 2037