xref: /llvm-project/clang/lib/CodeGen/CodeGenModule.cpp (revision 749b8ed5af885c65434483e194985c51cf07ba15)
1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This coordinates the per-module state used while generating code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenModule.h"
15 #include "CGDebugInfo.h"
16 #include "CodeGenFunction.h"
17 #include "CGCall.h"
18 #include "CGObjCRuntime.h"
19 #include "Mangle.h"
20 #include "TargetInfo.h"
21 #include "clang/Frontend/CodeGenOptions.h"
22 #include "clang/AST/ASTContext.h"
23 #include "clang/AST/CharUnits.h"
24 #include "clang/AST/DeclObjC.h"
25 #include "clang/AST/DeclCXX.h"
26 #include "clang/AST/DeclTemplate.h"
27 #include "clang/AST/RecordLayout.h"
28 #include "clang/Basic/Builtins.h"
29 #include "clang/Basic/Diagnostic.h"
30 #include "clang/Basic/SourceManager.h"
31 #include "clang/Basic/TargetInfo.h"
32 #include "clang/Basic/ConvertUTF.h"
33 #include "llvm/CallingConv.h"
34 #include "llvm/Module.h"
35 #include "llvm/Intrinsics.h"
36 #include "llvm/LLVMContext.h"
37 #include "llvm/ADT/Triple.h"
38 #include "llvm/Target/TargetData.h"
39 #include "llvm/Support/CallSite.h"
40 #include "llvm/Support/ErrorHandling.h"
41 using namespace clang;
42 using namespace CodeGen;
43 
44 
45 CodeGenModule::CodeGenModule(ASTContext &C, const CodeGenOptions &CGO,
46                              llvm::Module &M, const llvm::TargetData &TD,
47                              Diagnostic &diags)
48   : BlockModule(C, M, TD, Types, *this), Context(C),
49     Features(C.getLangOptions()), CodeGenOpts(CGO), TheModule(M),
50     TheTargetData(TD), TheTargetCodeGenInfo(0), Diags(diags),
51     Types(C, M, TD, getTargetCodeGenInfo().getABIInfo()),
52     VTables(*this), Runtime(0), ABI(0),
53     CFConstantStringClassRef(0),
54     NSConstantStringClassRef(0),
55     VMContext(M.getContext()) {
56 
57   if (!Features.ObjC1)
58     Runtime = 0;
59   else if (!Features.NeXTRuntime)
60     Runtime = CreateGNUObjCRuntime(*this);
61   else if (Features.ObjCNonFragileABI)
62     Runtime = CreateMacNonFragileABIObjCRuntime(*this);
63   else
64     Runtime = CreateMacObjCRuntime(*this);
65 
66   if (!Features.CPlusPlus)
67     ABI = 0;
68   else createCXXABI();
69 
70   // If debug info generation is enabled, create the CGDebugInfo object.
71   DebugInfo = CodeGenOpts.DebugInfo ? new CGDebugInfo(*this) : 0;
72 }
73 
74 CodeGenModule::~CodeGenModule() {
75   delete Runtime;
76   delete ABI;
77   delete DebugInfo;
78 }
79 
80 void CodeGenModule::createObjCRuntime() {
81   if (!Features.NeXTRuntime)
82     Runtime = CreateGNUObjCRuntime(*this);
83   else if (Features.ObjCNonFragileABI)
84     Runtime = CreateMacNonFragileABIObjCRuntime(*this);
85   else
86     Runtime = CreateMacObjCRuntime(*this);
87 }
88 
89 void CodeGenModule::createCXXABI() {
90   if (Context.Target.getCXXABI() == "microsoft")
91     ABI = CreateMicrosoftCXXABI(*this);
92   else
93     ABI = CreateItaniumCXXABI(*this);
94 }
95 
96 void CodeGenModule::Release() {
97   EmitDeferred();
98   EmitCXXGlobalInitFunc();
99   EmitCXXGlobalDtorFunc();
100   if (Runtime)
101     if (llvm::Function *ObjCInitFunction = Runtime->ModuleInitFunction())
102       AddGlobalCtor(ObjCInitFunction);
103   EmitCtorList(GlobalCtors, "llvm.global_ctors");
104   EmitCtorList(GlobalDtors, "llvm.global_dtors");
105   EmitAnnotations();
106   EmitLLVMUsed();
107 }
108 
109 bool CodeGenModule::isTargetDarwin() const {
110   return getContext().Target.getTriple().getOS() == llvm::Triple::Darwin;
111 }
112 
113 /// ErrorUnsupported - Print out an error that codegen doesn't support the
114 /// specified stmt yet.
115 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type,
116                                      bool OmitOnError) {
117   if (OmitOnError && getDiags().hasErrorOccurred())
118     return;
119   unsigned DiagID = getDiags().getCustomDiagID(Diagnostic::Error,
120                                                "cannot compile this %0 yet");
121   std::string Msg = Type;
122   getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID)
123     << Msg << S->getSourceRange();
124 }
125 
126 /// ErrorUnsupported - Print out an error that codegen doesn't support the
127 /// specified decl yet.
128 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type,
129                                      bool OmitOnError) {
130   if (OmitOnError && getDiags().hasErrorOccurred())
131     return;
132   unsigned DiagID = getDiags().getCustomDiagID(Diagnostic::Error,
133                                                "cannot compile this %0 yet");
134   std::string Msg = Type;
135   getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg;
136 }
137 
138 LangOptions::VisibilityMode
139 CodeGenModule::getDeclVisibilityMode(const Decl *D) const {
140   if (const VarDecl *VD = dyn_cast<VarDecl>(D))
141     if (VD->getStorageClass() == VarDecl::PrivateExtern)
142       return LangOptions::Hidden;
143 
144   if (const VisibilityAttr *attr = D->getAttr<VisibilityAttr>()) {
145     switch (attr->getVisibility()) {
146     default: assert(0 && "Unknown visibility!");
147     case VisibilityAttr::DefaultVisibility:
148       return LangOptions::Default;
149     case VisibilityAttr::HiddenVisibility:
150       return LangOptions::Hidden;
151     case VisibilityAttr::ProtectedVisibility:
152       return LangOptions::Protected;
153     }
154   }
155 
156   if (getLangOptions().CPlusPlus) {
157     // Entities subject to an explicit instantiation declaration get default
158     // visibility.
159     if (const FunctionDecl *Function = dyn_cast<FunctionDecl>(D)) {
160       if (Function->getTemplateSpecializationKind()
161                                         == TSK_ExplicitInstantiationDeclaration)
162         return LangOptions::Default;
163     } else if (const ClassTemplateSpecializationDecl *ClassSpec
164                               = dyn_cast<ClassTemplateSpecializationDecl>(D)) {
165       if (ClassSpec->getSpecializationKind()
166                                         == TSK_ExplicitInstantiationDeclaration)
167         return LangOptions::Default;
168     } else if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(D)) {
169       if (Record->getTemplateSpecializationKind()
170                                         == TSK_ExplicitInstantiationDeclaration)
171         return LangOptions::Default;
172     } else if (const VarDecl *Var = dyn_cast<VarDecl>(D)) {
173       if (Var->isStaticDataMember() &&
174           (Var->getTemplateSpecializationKind()
175                                       == TSK_ExplicitInstantiationDeclaration))
176         return LangOptions::Default;
177     }
178 
179     // If -fvisibility-inlines-hidden was provided, then inline C++ member
180     // functions get "hidden" visibility by default.
181     if (getLangOptions().InlineVisibilityHidden)
182       if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D))
183         if (Method->isInlined())
184           return LangOptions::Hidden;
185   }
186 
187   // This decl should have the same visibility as its parent.
188   if (const DeclContext *DC = D->getDeclContext())
189     return getDeclVisibilityMode(cast<Decl>(DC));
190 
191   return getLangOptions().getVisibilityMode();
192 }
193 
194 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV,
195                                         const Decl *D) const {
196   // Internal definitions always have default visibility.
197   if (GV->hasLocalLinkage()) {
198     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
199     return;
200   }
201 
202   switch (getDeclVisibilityMode(D)) {
203   default: assert(0 && "Unknown visibility!");
204   case LangOptions::Default:
205     return GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
206   case LangOptions::Hidden:
207     return GV->setVisibility(llvm::GlobalValue::HiddenVisibility);
208   case LangOptions::Protected:
209     return GV->setVisibility(llvm::GlobalValue::ProtectedVisibility);
210   }
211 }
212 
213 llvm::StringRef CodeGenModule::getMangledName(GlobalDecl GD) {
214   const NamedDecl *ND = cast<NamedDecl>(GD.getDecl());
215 
216   llvm::StringRef &Str = MangledDeclNames[GD.getCanonicalDecl()];
217   if (!Str.empty())
218     return Str;
219 
220   if (!getMangleContext().shouldMangleDeclName(ND)) {
221     IdentifierInfo *II = ND->getIdentifier();
222     assert(II && "Attempt to mangle unnamed decl.");
223 
224     Str = II->getName();
225     return Str;
226   }
227 
228   llvm::SmallString<256> Buffer;
229   if (const CXXConstructorDecl *D = dyn_cast<CXXConstructorDecl>(ND))
230     getMangleContext().mangleCXXCtor(D, GD.getCtorType(), Buffer);
231   else if (const CXXDestructorDecl *D = dyn_cast<CXXDestructorDecl>(ND))
232     getMangleContext().mangleCXXDtor(D, GD.getDtorType(), Buffer);
233   else if (const BlockDecl *BD = dyn_cast<BlockDecl>(ND))
234     getMangleContext().mangleBlock(GD, BD, Buffer);
235   else
236     getMangleContext().mangleName(ND, Buffer);
237 
238   // Allocate space for the mangled name.
239   size_t Length = Buffer.size();
240   char *Name = MangledNamesAllocator.Allocate<char>(Length);
241   std::copy(Buffer.begin(), Buffer.end(), Name);
242 
243   Str = llvm::StringRef(Name, Length);
244 
245   return Str;
246 }
247 
248 void CodeGenModule::getMangledName(GlobalDecl GD, MangleBuffer &Buffer,
249                                    const BlockDecl *BD) {
250   getMangleContext().mangleBlock(GD, BD, Buffer.getBuffer());
251 }
252 
253 llvm::GlobalValue *CodeGenModule::GetGlobalValue(llvm::StringRef Name) {
254   return getModule().getNamedValue(Name);
255 }
256 
257 /// AddGlobalCtor - Add a function to the list that will be called before
258 /// main() runs.
259 void CodeGenModule::AddGlobalCtor(llvm::Function * Ctor, int Priority) {
260   // FIXME: Type coercion of void()* types.
261   GlobalCtors.push_back(std::make_pair(Ctor, Priority));
262 }
263 
264 /// AddGlobalDtor - Add a function to the list that will be called
265 /// when the module is unloaded.
266 void CodeGenModule::AddGlobalDtor(llvm::Function * Dtor, int Priority) {
267   // FIXME: Type coercion of void()* types.
268   GlobalDtors.push_back(std::make_pair(Dtor, Priority));
269 }
270 
271 void CodeGenModule::EmitCtorList(const CtorList &Fns, const char *GlobalName) {
272   // Ctor function type is void()*.
273   llvm::FunctionType* CtorFTy =
274     llvm::FunctionType::get(llvm::Type::getVoidTy(VMContext),
275                             std::vector<const llvm::Type*>(),
276                             false);
277   llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy);
278 
279   // Get the type of a ctor entry, { i32, void ()* }.
280   llvm::StructType* CtorStructTy =
281     llvm::StructType::get(VMContext, llvm::Type::getInt32Ty(VMContext),
282                           llvm::PointerType::getUnqual(CtorFTy), NULL);
283 
284   // Construct the constructor and destructor arrays.
285   std::vector<llvm::Constant*> Ctors;
286   for (CtorList::const_iterator I = Fns.begin(), E = Fns.end(); I != E; ++I) {
287     std::vector<llvm::Constant*> S;
288     S.push_back(llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext),
289                 I->second, false));
290     S.push_back(llvm::ConstantExpr::getBitCast(I->first, CtorPFTy));
291     Ctors.push_back(llvm::ConstantStruct::get(CtorStructTy, S));
292   }
293 
294   if (!Ctors.empty()) {
295     llvm::ArrayType *AT = llvm::ArrayType::get(CtorStructTy, Ctors.size());
296     new llvm::GlobalVariable(TheModule, AT, false,
297                              llvm::GlobalValue::AppendingLinkage,
298                              llvm::ConstantArray::get(AT, Ctors),
299                              GlobalName);
300   }
301 }
302 
303 void CodeGenModule::EmitAnnotations() {
304   if (Annotations.empty())
305     return;
306 
307   // Create a new global variable for the ConstantStruct in the Module.
308   llvm::Constant *Array =
309   llvm::ConstantArray::get(llvm::ArrayType::get(Annotations[0]->getType(),
310                                                 Annotations.size()),
311                            Annotations);
312   llvm::GlobalValue *gv =
313   new llvm::GlobalVariable(TheModule, Array->getType(), false,
314                            llvm::GlobalValue::AppendingLinkage, Array,
315                            "llvm.global.annotations");
316   gv->setSection("llvm.metadata");
317 }
318 
319 static CodeGenModule::GVALinkage
320 GetLinkageForFunction(ASTContext &Context, const FunctionDecl *FD,
321                       const LangOptions &Features) {
322   CodeGenModule::GVALinkage External = CodeGenModule::GVA_StrongExternal;
323 
324   Linkage L = FD->getLinkage();
325   if (L == ExternalLinkage && Context.getLangOptions().CPlusPlus &&
326       FD->getType()->getLinkage() == UniqueExternalLinkage)
327     L = UniqueExternalLinkage;
328 
329   switch (L) {
330   case NoLinkage:
331   case InternalLinkage:
332   case UniqueExternalLinkage:
333     return CodeGenModule::GVA_Internal;
334 
335   case ExternalLinkage:
336     switch (FD->getTemplateSpecializationKind()) {
337     case TSK_Undeclared:
338     case TSK_ExplicitSpecialization:
339       External = CodeGenModule::GVA_StrongExternal;
340       break;
341 
342     case TSK_ExplicitInstantiationDefinition:
343       return CodeGenModule::GVA_ExplicitTemplateInstantiation;
344 
345     case TSK_ExplicitInstantiationDeclaration:
346     case TSK_ImplicitInstantiation:
347       External = CodeGenModule::GVA_TemplateInstantiation;
348       break;
349     }
350   }
351 
352   if (!FD->isInlined())
353     return External;
354 
355   if (!Features.CPlusPlus || FD->hasAttr<GNUInlineAttr>()) {
356     // GNU or C99 inline semantics. Determine whether this symbol should be
357     // externally visible.
358     if (FD->isInlineDefinitionExternallyVisible())
359       return External;
360 
361     // C99 inline semantics, where the symbol is not externally visible.
362     return CodeGenModule::GVA_C99Inline;
363   }
364 
365   // C++0x [temp.explicit]p9:
366   //   [ Note: The intent is that an inline function that is the subject of
367   //   an explicit instantiation declaration will still be implicitly
368   //   instantiated when used so that the body can be considered for
369   //   inlining, but that no out-of-line copy of the inline function would be
370   //   generated in the translation unit. -- end note ]
371   if (FD->getTemplateSpecializationKind()
372                                        == TSK_ExplicitInstantiationDeclaration)
373     return CodeGenModule::GVA_C99Inline;
374 
375   return CodeGenModule::GVA_CXXInline;
376 }
377 
378 llvm::GlobalValue::LinkageTypes
379 CodeGenModule::getFunctionLinkage(const FunctionDecl *D) {
380   GVALinkage Linkage = GetLinkageForFunction(getContext(), D, Features);
381 
382   if (Linkage == GVA_Internal)
383     return llvm::Function::InternalLinkage;
384 
385   if (D->hasAttr<DLLExportAttr>())
386     return llvm::Function::DLLExportLinkage;
387 
388   if (D->hasAttr<WeakAttr>())
389     return llvm::Function::WeakAnyLinkage;
390 
391   // In C99 mode, 'inline' functions are guaranteed to have a strong
392   // definition somewhere else, so we can use available_externally linkage.
393   if (Linkage == GVA_C99Inline)
394     return llvm::Function::AvailableExternallyLinkage;
395 
396   // In C++, the compiler has to emit a definition in every translation unit
397   // that references the function.  We should use linkonce_odr because
398   // a) if all references in this translation unit are optimized away, we
399   // don't need to codegen it.  b) if the function persists, it needs to be
400   // merged with other definitions. c) C++ has the ODR, so we know the
401   // definition is dependable.
402   if (Linkage == GVA_CXXInline || Linkage == GVA_TemplateInstantiation)
403     return llvm::Function::LinkOnceODRLinkage;
404 
405   // An explicit instantiation of a template has weak linkage, since
406   // explicit instantiations can occur in multiple translation units
407   // and must all be equivalent. However, we are not allowed to
408   // throw away these explicit instantiations.
409   if (Linkage == GVA_ExplicitTemplateInstantiation)
410     return llvm::Function::WeakODRLinkage;
411 
412   // Otherwise, we have strong external linkage.
413   assert(Linkage == GVA_StrongExternal);
414   return llvm::Function::ExternalLinkage;
415 }
416 
417 
418 /// SetFunctionDefinitionAttributes - Set attributes for a global.
419 ///
420 /// FIXME: This is currently only done for aliases and functions, but not for
421 /// variables (these details are set in EmitGlobalVarDefinition for variables).
422 void CodeGenModule::SetFunctionDefinitionAttributes(const FunctionDecl *D,
423                                                     llvm::GlobalValue *GV) {
424   SetCommonAttributes(D, GV);
425 }
426 
427 void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D,
428                                               const CGFunctionInfo &Info,
429                                               llvm::Function *F) {
430   unsigned CallingConv;
431   AttributeListType AttributeList;
432   ConstructAttributeList(Info, D, AttributeList, CallingConv);
433   F->setAttributes(llvm::AttrListPtr::get(AttributeList.begin(),
434                                           AttributeList.size()));
435   F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv));
436 }
437 
438 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D,
439                                                            llvm::Function *F) {
440   if (!Features.Exceptions && !Features.ObjCNonFragileABI)
441     F->addFnAttr(llvm::Attribute::NoUnwind);
442 
443   if (D->hasAttr<AlwaysInlineAttr>())
444     F->addFnAttr(llvm::Attribute::AlwaysInline);
445 
446   if (D->hasAttr<NoInlineAttr>())
447     F->addFnAttr(llvm::Attribute::NoInline);
448 
449   if (Features.getStackProtectorMode() == LangOptions::SSPOn)
450     F->addFnAttr(llvm::Attribute::StackProtect);
451   else if (Features.getStackProtectorMode() == LangOptions::SSPReq)
452     F->addFnAttr(llvm::Attribute::StackProtectReq);
453 
454   if (const AlignedAttr *AA = D->getAttr<AlignedAttr>()) {
455     unsigned width = Context.Target.getCharWidth();
456     F->setAlignment(AA->getAlignment() / width);
457     while ((AA = AA->getNext<AlignedAttr>()))
458       F->setAlignment(std::max(F->getAlignment(), AA->getAlignment() / width));
459   }
460   // C++ ABI requires 2-byte alignment for member functions.
461   if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D))
462     F->setAlignment(2);
463 }
464 
465 void CodeGenModule::SetCommonAttributes(const Decl *D,
466                                         llvm::GlobalValue *GV) {
467   setGlobalVisibility(GV, D);
468 
469   if (D->hasAttr<UsedAttr>())
470     AddUsedGlobal(GV);
471 
472   if (const SectionAttr *SA = D->getAttr<SectionAttr>())
473     GV->setSection(SA->getName());
474 
475   getTargetCodeGenInfo().SetTargetAttributes(D, GV, *this);
476 }
477 
478 void CodeGenModule::SetInternalFunctionAttributes(const Decl *D,
479                                                   llvm::Function *F,
480                                                   const CGFunctionInfo &FI) {
481   SetLLVMFunctionAttributes(D, FI, F);
482   SetLLVMFunctionAttributesForDefinition(D, F);
483 
484   F->setLinkage(llvm::Function::InternalLinkage);
485 
486   SetCommonAttributes(D, F);
487 }
488 
489 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD,
490                                           llvm::Function *F,
491                                           bool IsIncompleteFunction) {
492   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
493 
494   if (!IsIncompleteFunction)
495     SetLLVMFunctionAttributes(FD, getTypes().getFunctionInfo(GD), F);
496 
497   // Only a few attributes are set on declarations; these may later be
498   // overridden by a definition.
499 
500   if (FD->hasAttr<DLLImportAttr>()) {
501     F->setLinkage(llvm::Function::DLLImportLinkage);
502   } else if (FD->hasAttr<WeakAttr>() ||
503              FD->hasAttr<WeakImportAttr>()) {
504     // "extern_weak" is overloaded in LLVM; we probably should have
505     // separate linkage types for this.
506     F->setLinkage(llvm::Function::ExternalWeakLinkage);
507   } else {
508     F->setLinkage(llvm::Function::ExternalLinkage);
509   }
510 
511   if (const SectionAttr *SA = FD->getAttr<SectionAttr>())
512     F->setSection(SA->getName());
513 }
514 
515 void CodeGenModule::AddUsedGlobal(llvm::GlobalValue *GV) {
516   assert(!GV->isDeclaration() &&
517          "Only globals with definition can force usage.");
518   LLVMUsed.push_back(GV);
519 }
520 
521 void CodeGenModule::EmitLLVMUsed() {
522   // Don't create llvm.used if there is no need.
523   if (LLVMUsed.empty())
524     return;
525 
526   const llvm::Type *i8PTy = llvm::Type::getInt8PtrTy(VMContext);
527 
528   // Convert LLVMUsed to what ConstantArray needs.
529   std::vector<llvm::Constant*> UsedArray;
530   UsedArray.resize(LLVMUsed.size());
531   for (unsigned i = 0, e = LLVMUsed.size(); i != e; ++i) {
532     UsedArray[i] =
533      llvm::ConstantExpr::getBitCast(cast<llvm::Constant>(&*LLVMUsed[i]),
534                                       i8PTy);
535   }
536 
537   if (UsedArray.empty())
538     return;
539   llvm::ArrayType *ATy = llvm::ArrayType::get(i8PTy, UsedArray.size());
540 
541   llvm::GlobalVariable *GV =
542     new llvm::GlobalVariable(getModule(), ATy, false,
543                              llvm::GlobalValue::AppendingLinkage,
544                              llvm::ConstantArray::get(ATy, UsedArray),
545                              "llvm.used");
546 
547   GV->setSection("llvm.metadata");
548 }
549 
550 void CodeGenModule::EmitDeferred() {
551   // Emit code for any potentially referenced deferred decls.  Since a
552   // previously unused static decl may become used during the generation of code
553   // for a static function, iterate until no  changes are made.
554 
555   while (!DeferredDeclsToEmit.empty() || !DeferredVTables.empty()) {
556     if (!DeferredVTables.empty()) {
557       const CXXRecordDecl *RD = DeferredVTables.back();
558       DeferredVTables.pop_back();
559       getVTables().GenerateClassData(getVTableLinkage(RD), RD);
560       continue;
561     }
562 
563     GlobalDecl D = DeferredDeclsToEmit.back();
564     DeferredDeclsToEmit.pop_back();
565 
566     // Check to see if we've already emitted this.  This is necessary
567     // for a couple of reasons: first, decls can end up in the
568     // deferred-decls queue multiple times, and second, decls can end
569     // up with definitions in unusual ways (e.g. by an extern inline
570     // function acquiring a strong function redefinition).  Just
571     // ignore these cases.
572     //
573     // TODO: That said, looking this up multiple times is very wasteful.
574     llvm::StringRef Name = getMangledName(D);
575     llvm::GlobalValue *CGRef = GetGlobalValue(Name);
576     assert(CGRef && "Deferred decl wasn't referenced?");
577 
578     if (!CGRef->isDeclaration())
579       continue;
580 
581     // GlobalAlias::isDeclaration() defers to the aliasee, but for our
582     // purposes an alias counts as a definition.
583     if (isa<llvm::GlobalAlias>(CGRef))
584       continue;
585 
586     // Otherwise, emit the definition and move on to the next one.
587     EmitGlobalDefinition(D);
588   }
589 }
590 
591 /// EmitAnnotateAttr - Generate the llvm::ConstantStruct which contains the
592 /// annotation information for a given GlobalValue.  The annotation struct is
593 /// {i8 *, i8 *, i8 *, i32}.  The first field is a constant expression, the
594 /// GlobalValue being annotated.  The second field is the constant string
595 /// created from the AnnotateAttr's annotation.  The third field is a constant
596 /// string containing the name of the translation unit.  The fourth field is
597 /// the line number in the file of the annotated value declaration.
598 ///
599 /// FIXME: this does not unique the annotation string constants, as llvm-gcc
600 ///        appears to.
601 ///
602 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV,
603                                                 const AnnotateAttr *AA,
604                                                 unsigned LineNo) {
605   llvm::Module *M = &getModule();
606 
607   // get [N x i8] constants for the annotation string, and the filename string
608   // which are the 2nd and 3rd elements of the global annotation structure.
609   const llvm::Type *SBP = llvm::Type::getInt8PtrTy(VMContext);
610   llvm::Constant *anno = llvm::ConstantArray::get(VMContext,
611                                                   AA->getAnnotation(), true);
612   llvm::Constant *unit = llvm::ConstantArray::get(VMContext,
613                                                   M->getModuleIdentifier(),
614                                                   true);
615 
616   // Get the two global values corresponding to the ConstantArrays we just
617   // created to hold the bytes of the strings.
618   llvm::GlobalValue *annoGV =
619     new llvm::GlobalVariable(*M, anno->getType(), false,
620                              llvm::GlobalValue::PrivateLinkage, anno,
621                              GV->getName());
622   // translation unit name string, emitted into the llvm.metadata section.
623   llvm::GlobalValue *unitGV =
624     new llvm::GlobalVariable(*M, unit->getType(), false,
625                              llvm::GlobalValue::PrivateLinkage, unit,
626                              ".str");
627 
628   // Create the ConstantStruct for the global annotation.
629   llvm::Constant *Fields[4] = {
630     llvm::ConstantExpr::getBitCast(GV, SBP),
631     llvm::ConstantExpr::getBitCast(annoGV, SBP),
632     llvm::ConstantExpr::getBitCast(unitGV, SBP),
633     llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext), LineNo)
634   };
635   return llvm::ConstantStruct::get(VMContext, Fields, 4, false);
636 }
637 
638 static CodeGenModule::GVALinkage
639 GetLinkageForVariable(ASTContext &Context, const VarDecl *VD) {
640   // If this is a static data member, compute the kind of template
641   // specialization. Otherwise, this variable is not part of a
642   // template.
643   TemplateSpecializationKind TSK = TSK_Undeclared;
644   if (VD->isStaticDataMember())
645     TSK = VD->getTemplateSpecializationKind();
646 
647   Linkage L = VD->getLinkage();
648   if (L == ExternalLinkage && Context.getLangOptions().CPlusPlus &&
649       VD->getType()->getLinkage() == UniqueExternalLinkage)
650     L = UniqueExternalLinkage;
651 
652   switch (L) {
653   case NoLinkage:
654   case InternalLinkage:
655   case UniqueExternalLinkage:
656     return CodeGenModule::GVA_Internal;
657 
658   case ExternalLinkage:
659     switch (TSK) {
660     case TSK_Undeclared:
661     case TSK_ExplicitSpecialization:
662       return CodeGenModule::GVA_StrongExternal;
663 
664     case TSK_ExplicitInstantiationDeclaration:
665       llvm_unreachable("Variable should not be instantiated");
666       // Fall through to treat this like any other instantiation.
667 
668     case TSK_ExplicitInstantiationDefinition:
669       return CodeGenModule::GVA_ExplicitTemplateInstantiation;
670 
671     case TSK_ImplicitInstantiation:
672       return CodeGenModule::GVA_TemplateInstantiation;
673     }
674   }
675 
676   return CodeGenModule::GVA_StrongExternal;
677 }
678 
679 bool CodeGenModule::MayDeferGeneration(const ValueDecl *Global) {
680   // Never defer when EmitAllDecls is specified or the decl has
681   // attribute used.
682   if (Features.EmitAllDecls || Global->hasAttr<UsedAttr>())
683     return false;
684 
685   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) {
686     // Constructors and destructors should never be deferred.
687     if (FD->hasAttr<ConstructorAttr>() ||
688         FD->hasAttr<DestructorAttr>())
689       return false;
690 
691     // The key function for a class must never be deferred.
692     if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Global)) {
693       const CXXRecordDecl *RD = MD->getParent();
694       if (MD->isOutOfLine() && RD->isDynamicClass()) {
695         const CXXMethodDecl *KeyFunction = getContext().getKeyFunction(RD);
696         if (KeyFunction &&
697             KeyFunction->getCanonicalDecl() == MD->getCanonicalDecl())
698           return false;
699       }
700     }
701 
702     GVALinkage Linkage = GetLinkageForFunction(getContext(), FD, Features);
703 
704     // static, static inline, always_inline, and extern inline functions can
705     // always be deferred.  Normal inline functions can be deferred in C99/C++.
706     // Implicit template instantiations can also be deferred in C++.
707     if (Linkage == GVA_Internal || Linkage == GVA_C99Inline ||
708         Linkage == GVA_CXXInline || Linkage == GVA_TemplateInstantiation)
709       return true;
710     return false;
711   }
712 
713   const VarDecl *VD = cast<VarDecl>(Global);
714   assert(VD->isFileVarDecl() && "Invalid decl");
715 
716   // We never want to defer structs that have non-trivial constructors or
717   // destructors.
718 
719   // FIXME: Handle references.
720   if (const RecordType *RT = VD->getType()->getAs<RecordType>()) {
721     if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl())) {
722       if (!RD->hasTrivialConstructor() || !RD->hasTrivialDestructor())
723         return false;
724     }
725   }
726 
727   GVALinkage L = GetLinkageForVariable(getContext(), VD);
728   if (L == GVA_Internal || L == GVA_TemplateInstantiation) {
729     if (!(VD->getInit() && VD->getInit()->HasSideEffects(Context)))
730       return true;
731   }
732 
733   return false;
734 }
735 
736 llvm::Constant *CodeGenModule::GetWeakRefReference(const ValueDecl *VD) {
737   const AliasAttr *AA = VD->getAttr<AliasAttr>();
738   assert(AA && "No alias?");
739 
740   const llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType());
741 
742   // See if there is already something with the target's name in the module.
743   llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee());
744 
745   llvm::Constant *Aliasee;
746   if (isa<llvm::FunctionType>(DeclTy))
747     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GlobalDecl());
748   else
749     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
750                                     llvm::PointerType::getUnqual(DeclTy), 0);
751   if (!Entry) {
752     llvm::GlobalValue* F = cast<llvm::GlobalValue>(Aliasee);
753     F->setLinkage(llvm::Function::ExternalWeakLinkage);
754     WeakRefReferences.insert(F);
755   }
756 
757   return Aliasee;
758 }
759 
760 void CodeGenModule::EmitGlobal(GlobalDecl GD) {
761   const ValueDecl *Global = cast<ValueDecl>(GD.getDecl());
762 
763   // Weak references don't produce any output by themselves.
764   if (Global->hasAttr<WeakRefAttr>())
765     return;
766 
767   // If this is an alias definition (which otherwise looks like a declaration)
768   // emit it now.
769   if (Global->hasAttr<AliasAttr>())
770     return EmitAliasDefinition(GD);
771 
772   // Ignore declarations, they will be emitted on their first use.
773   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) {
774     // Forward declarations are emitted lazily on first use.
775     if (!FD->isThisDeclarationADefinition())
776       return;
777   } else {
778     const VarDecl *VD = cast<VarDecl>(Global);
779     assert(VD->isFileVarDecl() && "Cannot emit local var decl as global.");
780 
781     if (VD->isThisDeclarationADefinition() != VarDecl::Definition)
782       return;
783   }
784 
785   // Defer code generation when possible if this is a static definition, inline
786   // function etc.  These we only want to emit if they are used.
787   if (!MayDeferGeneration(Global)) {
788     // Emit the definition if it can't be deferred.
789     EmitGlobalDefinition(GD);
790     return;
791   }
792 
793   // If the value has already been used, add it directly to the
794   // DeferredDeclsToEmit list.
795   llvm::StringRef MangledName = getMangledName(GD);
796   if (GetGlobalValue(MangledName))
797     DeferredDeclsToEmit.push_back(GD);
798   else {
799     // Otherwise, remember that we saw a deferred decl with this name.  The
800     // first use of the mangled name will cause it to move into
801     // DeferredDeclsToEmit.
802     DeferredDecls[MangledName] = GD;
803   }
804 }
805 
806 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD) {
807   const ValueDecl *D = cast<ValueDecl>(GD.getDecl());
808 
809   PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(),
810                                  Context.getSourceManager(),
811                                  "Generating code for declaration");
812 
813   if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D))
814     if (Method->isVirtual())
815       getVTables().EmitThunks(GD);
816 
817   if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(D))
818     return EmitCXXConstructor(CD, GD.getCtorType());
819 
820   if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(D))
821     return EmitCXXDestructor(DD, GD.getDtorType());
822 
823   if (isa<FunctionDecl>(D))
824     return EmitGlobalFunctionDefinition(GD);
825 
826   if (const VarDecl *VD = dyn_cast<VarDecl>(D))
827     return EmitGlobalVarDefinition(VD);
828 
829   assert(0 && "Invalid argument to EmitGlobalDefinition()");
830 }
831 
832 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the
833 /// module, create and return an llvm Function with the specified type. If there
834 /// is something in the module with the specified name, return it potentially
835 /// bitcasted to the right type.
836 ///
837 /// If D is non-null, it specifies a decl that correspond to this.  This is used
838 /// to set the attributes on the function when it is first created.
839 llvm::Constant *
840 CodeGenModule::GetOrCreateLLVMFunction(llvm::StringRef MangledName,
841                                        const llvm::Type *Ty,
842                                        GlobalDecl D) {
843   // Lookup the entry, lazily creating it if necessary.
844   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
845   if (Entry) {
846     if (WeakRefReferences.count(Entry)) {
847       const FunctionDecl *FD = cast_or_null<FunctionDecl>(D.getDecl());
848       if (FD && !FD->hasAttr<WeakAttr>())
849         Entry->setLinkage(llvm::Function::ExternalLinkage);
850 
851       WeakRefReferences.erase(Entry);
852     }
853 
854     if (Entry->getType()->getElementType() == Ty)
855       return Entry;
856 
857     // Make sure the result is of the correct type.
858     const llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
859     return llvm::ConstantExpr::getBitCast(Entry, PTy);
860   }
861 
862   // This function doesn't have a complete type (for example, the return
863   // type is an incomplete struct). Use a fake type instead, and make
864   // sure not to try to set attributes.
865   bool IsIncompleteFunction = false;
866 
867   const llvm::FunctionType *FTy;
868   if (isa<llvm::FunctionType>(Ty)) {
869     FTy = cast<llvm::FunctionType>(Ty);
870   } else {
871     FTy = llvm::FunctionType::get(llvm::Type::getVoidTy(VMContext),
872                                   std::vector<const llvm::Type*>(), false);
873     IsIncompleteFunction = true;
874   }
875   llvm::Function *F = llvm::Function::Create(FTy,
876                                              llvm::Function::ExternalLinkage,
877                                              MangledName, &getModule());
878   assert(F->getName() == MangledName && "name was uniqued!");
879   if (D.getDecl())
880     SetFunctionAttributes(D, F, IsIncompleteFunction);
881 
882   // This is the first use or definition of a mangled name.  If there is a
883   // deferred decl with this name, remember that we need to emit it at the end
884   // of the file.
885   llvm::StringMap<GlobalDecl>::iterator DDI = DeferredDecls.find(MangledName);
886   if (DDI != DeferredDecls.end()) {
887     // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
888     // list, and remove it from DeferredDecls (since we don't need it anymore).
889     DeferredDeclsToEmit.push_back(DDI->second);
890     DeferredDecls.erase(DDI);
891   } else if (const FunctionDecl *FD = cast_or_null<FunctionDecl>(D.getDecl())) {
892     // If this the first reference to a C++ inline function in a class, queue up
893     // the deferred function body for emission.  These are not seen as
894     // top-level declarations.
895     if (FD->isThisDeclarationADefinition() && MayDeferGeneration(FD))
896       DeferredDeclsToEmit.push_back(D);
897     // A called constructor which has no definition or declaration need be
898     // synthesized.
899     else if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD)) {
900       if (CD->isImplicit()) {
901         assert(CD->isUsed() && "Sema doesn't consider constructor as used.");
902         DeferredDeclsToEmit.push_back(D);
903       }
904     } else if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(FD)) {
905       if (DD->isImplicit()) {
906         assert(DD->isUsed() && "Sema doesn't consider destructor as used.");
907         DeferredDeclsToEmit.push_back(D);
908       }
909     } else if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
910       if (MD->isCopyAssignment() && MD->isImplicit()) {
911         assert(MD->isUsed() && "Sema doesn't consider CopyAssignment as used.");
912         DeferredDeclsToEmit.push_back(D);
913       }
914     }
915   }
916 
917   // Make sure the result is of the requested type.
918   if (!IsIncompleteFunction) {
919     assert(F->getType()->getElementType() == Ty);
920     return F;
921   }
922 
923   const llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
924   return llvm::ConstantExpr::getBitCast(F, PTy);
925 }
926 
927 /// GetAddrOfFunction - Return the address of the given function.  If Ty is
928 /// non-null, then this function will use the specified type if it has to
929 /// create it (this occurs when we see a definition of the function).
930 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD,
931                                                  const llvm::Type *Ty) {
932   // If there was no specific requested type, just convert it now.
933   if (!Ty)
934     Ty = getTypes().ConvertType(cast<ValueDecl>(GD.getDecl())->getType());
935   llvm::StringRef MangledName = getMangledName(GD);
936   return GetOrCreateLLVMFunction(MangledName, Ty, GD);
937 }
938 
939 /// CreateRuntimeFunction - Create a new runtime function with the specified
940 /// type and name.
941 llvm::Constant *
942 CodeGenModule::CreateRuntimeFunction(const llvm::FunctionType *FTy,
943                                      llvm::StringRef Name) {
944   return GetOrCreateLLVMFunction(Name, FTy, GlobalDecl());
945 }
946 
947 static bool DeclIsConstantGlobal(ASTContext &Context, const VarDecl *D) {
948   if (!D->getType().isConstant(Context) && !D->getType()->isReferenceType())
949     return false;
950   if (Context.getLangOptions().CPlusPlus &&
951       Context.getBaseElementType(D->getType())->getAs<RecordType>()) {
952     // FIXME: We should do something fancier here!
953     return false;
954   }
955   return true;
956 }
957 
958 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module,
959 /// create and return an llvm GlobalVariable with the specified type.  If there
960 /// is something in the module with the specified name, return it potentially
961 /// bitcasted to the right type.
962 ///
963 /// If D is non-null, it specifies a decl that correspond to this.  This is used
964 /// to set the attributes on the global when it is first created.
965 llvm::Constant *
966 CodeGenModule::GetOrCreateLLVMGlobal(llvm::StringRef MangledName,
967                                      const llvm::PointerType *Ty,
968                                      const VarDecl *D) {
969   // Lookup the entry, lazily creating it if necessary.
970   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
971   if (Entry) {
972     if (WeakRefReferences.count(Entry)) {
973       if (D && !D->hasAttr<WeakAttr>())
974         Entry->setLinkage(llvm::Function::ExternalLinkage);
975 
976       WeakRefReferences.erase(Entry);
977     }
978 
979     if (Entry->getType() == Ty)
980       return Entry;
981 
982     // Make sure the result is of the correct type.
983     return llvm::ConstantExpr::getBitCast(Entry, Ty);
984   }
985 
986   // This is the first use or definition of a mangled name.  If there is a
987   // deferred decl with this name, remember that we need to emit it at the end
988   // of the file.
989   llvm::StringMap<GlobalDecl>::iterator DDI = DeferredDecls.find(MangledName);
990   if (DDI != DeferredDecls.end()) {
991     // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
992     // list, and remove it from DeferredDecls (since we don't need it anymore).
993     DeferredDeclsToEmit.push_back(DDI->second);
994     DeferredDecls.erase(DDI);
995   }
996 
997   llvm::GlobalVariable *GV =
998     new llvm::GlobalVariable(getModule(), Ty->getElementType(), false,
999                              llvm::GlobalValue::ExternalLinkage,
1000                              0, MangledName, 0,
1001                              false, Ty->getAddressSpace());
1002 
1003   // Handle things which are present even on external declarations.
1004   if (D) {
1005     // FIXME: This code is overly simple and should be merged with other global
1006     // handling.
1007     GV->setConstant(DeclIsConstantGlobal(Context, D));
1008 
1009     // FIXME: Merge with other attribute handling code.
1010     if (D->getStorageClass() == VarDecl::PrivateExtern)
1011       GV->setVisibility(llvm::GlobalValue::HiddenVisibility);
1012 
1013     if (D->hasAttr<WeakAttr>() ||
1014         D->hasAttr<WeakImportAttr>())
1015       GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage);
1016 
1017     GV->setThreadLocal(D->isThreadSpecified());
1018   }
1019 
1020   return GV;
1021 }
1022 
1023 
1024 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the
1025 /// given global variable.  If Ty is non-null and if the global doesn't exist,
1026 /// then it will be greated with the specified type instead of whatever the
1027 /// normal requested type would be.
1028 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D,
1029                                                   const llvm::Type *Ty) {
1030   assert(D->hasGlobalStorage() && "Not a global variable");
1031   QualType ASTTy = D->getType();
1032   if (Ty == 0)
1033     Ty = getTypes().ConvertTypeForMem(ASTTy);
1034 
1035   const llvm::PointerType *PTy =
1036     llvm::PointerType::get(Ty, ASTTy.getAddressSpace());
1037 
1038   llvm::StringRef MangledName = getMangledName(D);
1039   return GetOrCreateLLVMGlobal(MangledName, PTy, D);
1040 }
1041 
1042 /// CreateRuntimeVariable - Create a new runtime global variable with the
1043 /// specified type and name.
1044 llvm::Constant *
1045 CodeGenModule::CreateRuntimeVariable(const llvm::Type *Ty,
1046                                      llvm::StringRef Name) {
1047   return GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), 0);
1048 }
1049 
1050 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) {
1051   assert(!D->getInit() && "Cannot emit definite definitions here!");
1052 
1053   if (MayDeferGeneration(D)) {
1054     // If we have not seen a reference to this variable yet, place it
1055     // into the deferred declarations table to be emitted if needed
1056     // later.
1057     llvm::StringRef MangledName = getMangledName(D);
1058     if (!GetGlobalValue(MangledName)) {
1059       DeferredDecls[MangledName] = D;
1060       return;
1061     }
1062   }
1063 
1064   // The tentative definition is the only definition.
1065   EmitGlobalVarDefinition(D);
1066 }
1067 
1068 void CodeGenModule::EmitVTable(CXXRecordDecl *Class, bool DefinitionRequired) {
1069   if (DefinitionRequired)
1070     getVTables().GenerateClassData(getVTableLinkage(Class), Class);
1071 }
1072 
1073 llvm::GlobalVariable::LinkageTypes
1074 CodeGenModule::getVTableLinkage(const CXXRecordDecl *RD) {
1075   if (RD->isInAnonymousNamespace() || !RD->hasLinkage())
1076     return llvm::GlobalVariable::InternalLinkage;
1077 
1078   if (const CXXMethodDecl *KeyFunction
1079                                     = RD->getASTContext().getKeyFunction(RD)) {
1080     // If this class has a key function, use that to determine the linkage of
1081     // the vtable.
1082     const FunctionDecl *Def = 0;
1083     if (KeyFunction->getBody(Def))
1084       KeyFunction = cast<CXXMethodDecl>(Def);
1085 
1086     switch (KeyFunction->getTemplateSpecializationKind()) {
1087       case TSK_Undeclared:
1088       case TSK_ExplicitSpecialization:
1089         if (KeyFunction->isInlined())
1090           return llvm::GlobalVariable::WeakODRLinkage;
1091 
1092         return llvm::GlobalVariable::ExternalLinkage;
1093 
1094       case TSK_ImplicitInstantiation:
1095       case TSK_ExplicitInstantiationDefinition:
1096         return llvm::GlobalVariable::WeakODRLinkage;
1097 
1098       case TSK_ExplicitInstantiationDeclaration:
1099         // FIXME: Use available_externally linkage. However, this currently
1100         // breaks LLVM's build due to undefined symbols.
1101         //      return llvm::GlobalVariable::AvailableExternallyLinkage;
1102         return llvm::GlobalVariable::WeakODRLinkage;
1103     }
1104   }
1105 
1106   switch (RD->getTemplateSpecializationKind()) {
1107   case TSK_Undeclared:
1108   case TSK_ExplicitSpecialization:
1109   case TSK_ImplicitInstantiation:
1110   case TSK_ExplicitInstantiationDefinition:
1111     return llvm::GlobalVariable::WeakODRLinkage;
1112 
1113   case TSK_ExplicitInstantiationDeclaration:
1114     // FIXME: Use available_externally linkage. However, this currently
1115     // breaks LLVM's build due to undefined symbols.
1116     //   return llvm::GlobalVariable::AvailableExternallyLinkage;
1117     return llvm::GlobalVariable::WeakODRLinkage;
1118   }
1119 
1120   // Silence GCC warning.
1121   return llvm::GlobalVariable::WeakODRLinkage;
1122 }
1123 
1124 CharUnits CodeGenModule::GetTargetTypeStoreSize(const llvm::Type *Ty) const {
1125     return CharUnits::fromQuantity(
1126       TheTargetData.getTypeStoreSizeInBits(Ty) / Context.getCharWidth());
1127 }
1128 
1129 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D) {
1130   llvm::Constant *Init = 0;
1131   QualType ASTTy = D->getType();
1132   bool NonConstInit = false;
1133 
1134   const Expr *InitExpr = D->getAnyInitializer();
1135 
1136   if (!InitExpr) {
1137     // This is a tentative definition; tentative definitions are
1138     // implicitly initialized with { 0 }.
1139     //
1140     // Note that tentative definitions are only emitted at the end of
1141     // a translation unit, so they should never have incomplete
1142     // type. In addition, EmitTentativeDefinition makes sure that we
1143     // never attempt to emit a tentative definition if a real one
1144     // exists. A use may still exists, however, so we still may need
1145     // to do a RAUW.
1146     assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type");
1147     Init = EmitNullConstant(D->getType());
1148   } else {
1149     Init = EmitConstantExpr(InitExpr, D->getType());
1150     if (!Init) {
1151       QualType T = InitExpr->getType();
1152       if (D->getType()->isReferenceType())
1153         T = D->getType();
1154 
1155       if (getLangOptions().CPlusPlus) {
1156         EmitCXXGlobalVarDeclInitFunc(D);
1157         Init = EmitNullConstant(T);
1158         NonConstInit = true;
1159       } else {
1160         ErrorUnsupported(D, "static initializer");
1161         Init = llvm::UndefValue::get(getTypes().ConvertType(T));
1162       }
1163     }
1164   }
1165 
1166   const llvm::Type* InitType = Init->getType();
1167   llvm::Constant *Entry = GetAddrOfGlobalVar(D, InitType);
1168 
1169   // Strip off a bitcast if we got one back.
1170   if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
1171     assert(CE->getOpcode() == llvm::Instruction::BitCast ||
1172            // all zero index gep.
1173            CE->getOpcode() == llvm::Instruction::GetElementPtr);
1174     Entry = CE->getOperand(0);
1175   }
1176 
1177   // Entry is now either a Function or GlobalVariable.
1178   llvm::GlobalVariable *GV = dyn_cast<llvm::GlobalVariable>(Entry);
1179 
1180   // We have a definition after a declaration with the wrong type.
1181   // We must make a new GlobalVariable* and update everything that used OldGV
1182   // (a declaration or tentative definition) with the new GlobalVariable*
1183   // (which will be a definition).
1184   //
1185   // This happens if there is a prototype for a global (e.g.
1186   // "extern int x[];") and then a definition of a different type (e.g.
1187   // "int x[10];"). This also happens when an initializer has a different type
1188   // from the type of the global (this happens with unions).
1189   if (GV == 0 ||
1190       GV->getType()->getElementType() != InitType ||
1191       GV->getType()->getAddressSpace() != ASTTy.getAddressSpace()) {
1192 
1193     // Move the old entry aside so that we'll create a new one.
1194     Entry->setName(llvm::StringRef());
1195 
1196     // Make a new global with the correct type, this is now guaranteed to work.
1197     GV = cast<llvm::GlobalVariable>(GetAddrOfGlobalVar(D, InitType));
1198 
1199     // Replace all uses of the old global with the new global
1200     llvm::Constant *NewPtrForOldDecl =
1201         llvm::ConstantExpr::getBitCast(GV, Entry->getType());
1202     Entry->replaceAllUsesWith(NewPtrForOldDecl);
1203 
1204     // Erase the old global, since it is no longer used.
1205     cast<llvm::GlobalValue>(Entry)->eraseFromParent();
1206   }
1207 
1208   if (const AnnotateAttr *AA = D->getAttr<AnnotateAttr>()) {
1209     SourceManager &SM = Context.getSourceManager();
1210     AddAnnotation(EmitAnnotateAttr(GV, AA,
1211                               SM.getInstantiationLineNumber(D->getLocation())));
1212   }
1213 
1214   GV->setInitializer(Init);
1215 
1216   // If it is safe to mark the global 'constant', do so now.
1217   GV->setConstant(false);
1218   if (!NonConstInit && DeclIsConstantGlobal(Context, D))
1219     GV->setConstant(true);
1220 
1221   GV->setAlignment(getContext().getDeclAlign(D).getQuantity());
1222 
1223   // Set the llvm linkage type as appropriate.
1224   GVALinkage Linkage = GetLinkageForVariable(getContext(), D);
1225   if (Linkage == GVA_Internal)
1226     GV->setLinkage(llvm::Function::InternalLinkage);
1227   else if (D->hasAttr<DLLImportAttr>())
1228     GV->setLinkage(llvm::Function::DLLImportLinkage);
1229   else if (D->hasAttr<DLLExportAttr>())
1230     GV->setLinkage(llvm::Function::DLLExportLinkage);
1231   else if (D->hasAttr<WeakAttr>()) {
1232     if (GV->isConstant())
1233       GV->setLinkage(llvm::GlobalVariable::WeakODRLinkage);
1234     else
1235       GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage);
1236   } else if (Linkage == GVA_TemplateInstantiation ||
1237              Linkage == GVA_ExplicitTemplateInstantiation)
1238     // FIXME: It seems like we can provide more specific linkage here
1239     // (LinkOnceODR, WeakODR).
1240     GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage);
1241   else if (!getLangOptions().CPlusPlus && !CodeGenOpts.NoCommon &&
1242            !D->hasExternalStorage() && !D->getInit() &&
1243            !D->getAttr<SectionAttr>()) {
1244     GV->setLinkage(llvm::GlobalVariable::CommonLinkage);
1245     // common vars aren't constant even if declared const.
1246     GV->setConstant(false);
1247   } else
1248     GV->setLinkage(llvm::GlobalVariable::ExternalLinkage);
1249 
1250   SetCommonAttributes(D, GV);
1251 
1252   // Emit global variable debug information.
1253   if (CGDebugInfo *DI = getDebugInfo()) {
1254     DI->setLocation(D->getLocation());
1255     DI->EmitGlobalVariable(GV, D);
1256   }
1257 }
1258 
1259 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we
1260 /// implement a function with no prototype, e.g. "int foo() {}".  If there are
1261 /// existing call uses of the old function in the module, this adjusts them to
1262 /// call the new function directly.
1263 ///
1264 /// This is not just a cleanup: the always_inline pass requires direct calls to
1265 /// functions to be able to inline them.  If there is a bitcast in the way, it
1266 /// won't inline them.  Instcombine normally deletes these calls, but it isn't
1267 /// run at -O0.
1268 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
1269                                                       llvm::Function *NewFn) {
1270   // If we're redefining a global as a function, don't transform it.
1271   llvm::Function *OldFn = dyn_cast<llvm::Function>(Old);
1272   if (OldFn == 0) return;
1273 
1274   const llvm::Type *NewRetTy = NewFn->getReturnType();
1275   llvm::SmallVector<llvm::Value*, 4> ArgList;
1276 
1277   for (llvm::Value::use_iterator UI = OldFn->use_begin(), E = OldFn->use_end();
1278        UI != E; ) {
1279     // TODO: Do invokes ever occur in C code?  If so, we should handle them too.
1280     llvm::Value::use_iterator I = UI++; // Increment before the CI is erased.
1281     llvm::CallInst *CI = dyn_cast<llvm::CallInst>(*I);
1282     llvm::CallSite CS(CI);
1283     if (!CI || !CS.isCallee(I)) continue;
1284 
1285     // If the return types don't match exactly, and if the call isn't dead, then
1286     // we can't transform this call.
1287     if (CI->getType() != NewRetTy && !CI->use_empty())
1288       continue;
1289 
1290     // If the function was passed too few arguments, don't transform.  If extra
1291     // arguments were passed, we silently drop them.  If any of the types
1292     // mismatch, we don't transform.
1293     unsigned ArgNo = 0;
1294     bool DontTransform = false;
1295     for (llvm::Function::arg_iterator AI = NewFn->arg_begin(),
1296          E = NewFn->arg_end(); AI != E; ++AI, ++ArgNo) {
1297       if (CS.arg_size() == ArgNo ||
1298           CS.getArgument(ArgNo)->getType() != AI->getType()) {
1299         DontTransform = true;
1300         break;
1301       }
1302     }
1303     if (DontTransform)
1304       continue;
1305 
1306     // Okay, we can transform this.  Create the new call instruction and copy
1307     // over the required information.
1308     ArgList.append(CS.arg_begin(), CS.arg_begin() + ArgNo);
1309     llvm::CallInst *NewCall = llvm::CallInst::Create(NewFn, ArgList.begin(),
1310                                                      ArgList.end(), "", CI);
1311     ArgList.clear();
1312     if (!NewCall->getType()->isVoidTy())
1313       NewCall->takeName(CI);
1314     NewCall->setAttributes(CI->getAttributes());
1315     NewCall->setCallingConv(CI->getCallingConv());
1316 
1317     // Finally, remove the old call, replacing any uses with the new one.
1318     if (!CI->use_empty())
1319       CI->replaceAllUsesWith(NewCall);
1320 
1321     // Copy debug location attached to CI.
1322     if (!CI->getDebugLoc().isUnknown())
1323       NewCall->setDebugLoc(CI->getDebugLoc());
1324     CI->eraseFromParent();
1325   }
1326 }
1327 
1328 
1329 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD) {
1330   const FunctionDecl *D = cast<FunctionDecl>(GD.getDecl());
1331   const llvm::FunctionType *Ty = getTypes().GetFunctionType(GD);
1332   getMangleContext().mangleInitDiscriminator();
1333   // Get or create the prototype for the function.
1334   llvm::Constant *Entry = GetAddrOfFunction(GD, Ty);
1335 
1336   // Strip off a bitcast if we got one back.
1337   if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
1338     assert(CE->getOpcode() == llvm::Instruction::BitCast);
1339     Entry = CE->getOperand(0);
1340   }
1341 
1342 
1343   if (cast<llvm::GlobalValue>(Entry)->getType()->getElementType() != Ty) {
1344     llvm::GlobalValue *OldFn = cast<llvm::GlobalValue>(Entry);
1345 
1346     // If the types mismatch then we have to rewrite the definition.
1347     assert(OldFn->isDeclaration() &&
1348            "Shouldn't replace non-declaration");
1349 
1350     // F is the Function* for the one with the wrong type, we must make a new
1351     // Function* and update everything that used F (a declaration) with the new
1352     // Function* (which will be a definition).
1353     //
1354     // This happens if there is a prototype for a function
1355     // (e.g. "int f()") and then a definition of a different type
1356     // (e.g. "int f(int x)").  Move the old function aside so that it
1357     // doesn't interfere with GetAddrOfFunction.
1358     OldFn->setName(llvm::StringRef());
1359     llvm::Function *NewFn = cast<llvm::Function>(GetAddrOfFunction(GD, Ty));
1360 
1361     // If this is an implementation of a function without a prototype, try to
1362     // replace any existing uses of the function (which may be calls) with uses
1363     // of the new function
1364     if (D->getType()->isFunctionNoProtoType()) {
1365       ReplaceUsesOfNonProtoTypeWithRealFunction(OldFn, NewFn);
1366       OldFn->removeDeadConstantUsers();
1367     }
1368 
1369     // Replace uses of F with the Function we will endow with a body.
1370     if (!Entry->use_empty()) {
1371       llvm::Constant *NewPtrForOldDecl =
1372         llvm::ConstantExpr::getBitCast(NewFn, Entry->getType());
1373       Entry->replaceAllUsesWith(NewPtrForOldDecl);
1374     }
1375 
1376     // Ok, delete the old function now, which is dead.
1377     OldFn->eraseFromParent();
1378 
1379     Entry = NewFn;
1380   }
1381 
1382   llvm::Function *Fn = cast<llvm::Function>(Entry);
1383   setFunctionLinkage(D, Fn);
1384 
1385   CodeGenFunction(*this).GenerateCode(D, Fn);
1386 
1387   SetFunctionDefinitionAttributes(D, Fn);
1388   SetLLVMFunctionAttributesForDefinition(D, Fn);
1389 
1390   if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>())
1391     AddGlobalCtor(Fn, CA->getPriority());
1392   if (const DestructorAttr *DA = D->getAttr<DestructorAttr>())
1393     AddGlobalDtor(Fn, DA->getPriority());
1394 }
1395 
1396 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) {
1397   const ValueDecl *D = cast<ValueDecl>(GD.getDecl());
1398   const AliasAttr *AA = D->getAttr<AliasAttr>();
1399   assert(AA && "Not an alias?");
1400 
1401   llvm::StringRef MangledName = getMangledName(GD);
1402 
1403   // If there is a definition in the module, then it wins over the alias.
1404   // This is dubious, but allow it to be safe.  Just ignore the alias.
1405   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
1406   if (Entry && !Entry->isDeclaration())
1407     return;
1408 
1409   const llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
1410 
1411   // Create a reference to the named value.  This ensures that it is emitted
1412   // if a deferred decl.
1413   llvm::Constant *Aliasee;
1414   if (isa<llvm::FunctionType>(DeclTy))
1415     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GlobalDecl());
1416   else
1417     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
1418                                     llvm::PointerType::getUnqual(DeclTy), 0);
1419 
1420   // Create the new alias itself, but don't set a name yet.
1421   llvm::GlobalValue *GA =
1422     new llvm::GlobalAlias(Aliasee->getType(),
1423                           llvm::Function::ExternalLinkage,
1424                           "", Aliasee, &getModule());
1425 
1426   if (Entry) {
1427     assert(Entry->isDeclaration());
1428 
1429     // If there is a declaration in the module, then we had an extern followed
1430     // by the alias, as in:
1431     //   extern int test6();
1432     //   ...
1433     //   int test6() __attribute__((alias("test7")));
1434     //
1435     // Remove it and replace uses of it with the alias.
1436     GA->takeName(Entry);
1437 
1438     Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA,
1439                                                           Entry->getType()));
1440     Entry->eraseFromParent();
1441   } else {
1442     GA->setName(MangledName);
1443   }
1444 
1445   // Set attributes which are particular to an alias; this is a
1446   // specialization of the attributes which may be set on a global
1447   // variable/function.
1448   if (D->hasAttr<DLLExportAttr>()) {
1449     if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
1450       // The dllexport attribute is ignored for undefined symbols.
1451       if (FD->getBody())
1452         GA->setLinkage(llvm::Function::DLLExportLinkage);
1453     } else {
1454       GA->setLinkage(llvm::Function::DLLExportLinkage);
1455     }
1456   } else if (D->hasAttr<WeakAttr>() ||
1457              D->hasAttr<WeakRefAttr>() ||
1458              D->hasAttr<WeakImportAttr>()) {
1459     GA->setLinkage(llvm::Function::WeakAnyLinkage);
1460   }
1461 
1462   SetCommonAttributes(D, GA);
1463 }
1464 
1465 /// getBuiltinLibFunction - Given a builtin id for a function like
1466 /// "__builtin_fabsf", return a Function* for "fabsf".
1467 llvm::Value *CodeGenModule::getBuiltinLibFunction(const FunctionDecl *FD,
1468                                                   unsigned BuiltinID) {
1469   assert((Context.BuiltinInfo.isLibFunction(BuiltinID) ||
1470           Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) &&
1471          "isn't a lib fn");
1472 
1473   // Get the name, skip over the __builtin_ prefix (if necessary).
1474   const char *Name = Context.BuiltinInfo.GetName(BuiltinID);
1475   if (Context.BuiltinInfo.isLibFunction(BuiltinID))
1476     Name += 10;
1477 
1478   const llvm::FunctionType *Ty =
1479     cast<llvm::FunctionType>(getTypes().ConvertType(FD->getType()));
1480 
1481   return GetOrCreateLLVMFunction(Name, Ty, GlobalDecl(FD));
1482 }
1483 
1484 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,const llvm::Type **Tys,
1485                                             unsigned NumTys) {
1486   return llvm::Intrinsic::getDeclaration(&getModule(),
1487                                          (llvm::Intrinsic::ID)IID, Tys, NumTys);
1488 }
1489 
1490 
1491 llvm::Function *CodeGenModule::getMemCpyFn(const llvm::Type *DestType,
1492                                            const llvm::Type *SrcType,
1493                                            const llvm::Type *SizeType) {
1494   const llvm::Type *ArgTypes[3] = {DestType, SrcType, SizeType };
1495   return getIntrinsic(llvm::Intrinsic::memcpy, ArgTypes, 3);
1496 }
1497 
1498 llvm::Function *CodeGenModule::getMemMoveFn(const llvm::Type *DestType,
1499                                             const llvm::Type *SrcType,
1500                                             const llvm::Type *SizeType) {
1501   const llvm::Type *ArgTypes[3] = {DestType, SrcType, SizeType };
1502   return getIntrinsic(llvm::Intrinsic::memmove, ArgTypes, 3);
1503 }
1504 
1505 llvm::Function *CodeGenModule::getMemSetFn(const llvm::Type *DestType,
1506                                            const llvm::Type *SizeType) {
1507   const llvm::Type *ArgTypes[2] = { DestType, SizeType };
1508   return getIntrinsic(llvm::Intrinsic::memset, ArgTypes, 2);
1509 }
1510 
1511 static llvm::StringMapEntry<llvm::Constant*> &
1512 GetConstantCFStringEntry(llvm::StringMap<llvm::Constant*> &Map,
1513                          const StringLiteral *Literal,
1514                          bool TargetIsLSB,
1515                          bool &IsUTF16,
1516                          unsigned &StringLength) {
1517   unsigned NumBytes = Literal->getByteLength();
1518 
1519   // Check for simple case.
1520   if (!Literal->containsNonAsciiOrNull()) {
1521     StringLength = NumBytes;
1522     return Map.GetOrCreateValue(llvm::StringRef(Literal->getStrData(),
1523                                                 StringLength));
1524   }
1525 
1526   // Otherwise, convert the UTF8 literals into a byte string.
1527   llvm::SmallVector<UTF16, 128> ToBuf(NumBytes);
1528   const UTF8 *FromPtr = (UTF8 *)Literal->getStrData();
1529   UTF16 *ToPtr = &ToBuf[0];
1530 
1531   ConversionResult Result = ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes,
1532                                                &ToPtr, ToPtr + NumBytes,
1533                                                strictConversion);
1534 
1535   // Check for conversion failure.
1536   if (Result != conversionOK) {
1537     // FIXME: Have Sema::CheckObjCString() validate the UTF-8 string and remove
1538     // this duplicate code.
1539     assert(Result == sourceIllegal && "UTF-8 to UTF-16 conversion failed");
1540     StringLength = NumBytes;
1541     return Map.GetOrCreateValue(llvm::StringRef(Literal->getStrData(),
1542                                                 StringLength));
1543   }
1544 
1545   // ConvertUTF8toUTF16 returns the length in ToPtr.
1546   StringLength = ToPtr - &ToBuf[0];
1547 
1548   // Render the UTF-16 string into a byte array and convert to the target byte
1549   // order.
1550   //
1551   // FIXME: This isn't something we should need to do here.
1552   llvm::SmallString<128> AsBytes;
1553   AsBytes.reserve(StringLength * 2);
1554   for (unsigned i = 0; i != StringLength; ++i) {
1555     unsigned short Val = ToBuf[i];
1556     if (TargetIsLSB) {
1557       AsBytes.push_back(Val & 0xFF);
1558       AsBytes.push_back(Val >> 8);
1559     } else {
1560       AsBytes.push_back(Val >> 8);
1561       AsBytes.push_back(Val & 0xFF);
1562     }
1563   }
1564   // Append one extra null character, the second is automatically added by our
1565   // caller.
1566   AsBytes.push_back(0);
1567 
1568   IsUTF16 = true;
1569   return Map.GetOrCreateValue(llvm::StringRef(AsBytes.data(), AsBytes.size()));
1570 }
1571 
1572 llvm::Constant *
1573 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) {
1574   unsigned StringLength = 0;
1575   bool isUTF16 = false;
1576   llvm::StringMapEntry<llvm::Constant*> &Entry =
1577     GetConstantCFStringEntry(CFConstantStringMap, Literal,
1578                              getTargetData().isLittleEndian(),
1579                              isUTF16, StringLength);
1580 
1581   if (llvm::Constant *C = Entry.getValue())
1582     return C;
1583 
1584   llvm::Constant *Zero =
1585       llvm::Constant::getNullValue(llvm::Type::getInt32Ty(VMContext));
1586   llvm::Constant *Zeros[] = { Zero, Zero };
1587 
1588   // If we don't already have it, get __CFConstantStringClassReference.
1589   if (!CFConstantStringClassRef) {
1590     const llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
1591     Ty = llvm::ArrayType::get(Ty, 0);
1592     llvm::Constant *GV = CreateRuntimeVariable(Ty,
1593                                            "__CFConstantStringClassReference");
1594     // Decay array -> ptr
1595     CFConstantStringClassRef =
1596       llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2);
1597   }
1598 
1599   QualType CFTy = getContext().getCFConstantStringType();
1600 
1601   const llvm::StructType *STy =
1602     cast<llvm::StructType>(getTypes().ConvertType(CFTy));
1603 
1604   std::vector<llvm::Constant*> Fields(4);
1605 
1606   // Class pointer.
1607   Fields[0] = CFConstantStringClassRef;
1608 
1609   // Flags.
1610   const llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy);
1611   Fields[1] = isUTF16 ? llvm::ConstantInt::get(Ty, 0x07d0) :
1612     llvm::ConstantInt::get(Ty, 0x07C8);
1613 
1614   // String pointer.
1615   llvm::Constant *C = llvm::ConstantArray::get(VMContext, Entry.getKey().str());
1616 
1617   llvm::GlobalValue::LinkageTypes Linkage;
1618   bool isConstant;
1619   if (isUTF16) {
1620     // FIXME: why do utf strings get "_" labels instead of "L" labels?
1621     Linkage = llvm::GlobalValue::InternalLinkage;
1622     // Note: -fwritable-strings doesn't make unicode CFStrings writable, but
1623     // does make plain ascii ones writable.
1624     isConstant = true;
1625   } else {
1626     Linkage = llvm::GlobalValue::PrivateLinkage;
1627     isConstant = !Features.WritableStrings;
1628   }
1629 
1630   llvm::GlobalVariable *GV =
1631     new llvm::GlobalVariable(getModule(), C->getType(), isConstant, Linkage, C,
1632                              ".str");
1633   if (isUTF16) {
1634     CharUnits Align = getContext().getTypeAlignInChars(getContext().ShortTy);
1635     GV->setAlignment(Align.getQuantity());
1636   }
1637   Fields[2] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2);
1638 
1639   // String length.
1640   Ty = getTypes().ConvertType(getContext().LongTy);
1641   Fields[3] = llvm::ConstantInt::get(Ty, StringLength);
1642 
1643   // The struct.
1644   C = llvm::ConstantStruct::get(STy, Fields);
1645   GV = new llvm::GlobalVariable(getModule(), C->getType(), true,
1646                                 llvm::GlobalVariable::PrivateLinkage, C,
1647                                 "_unnamed_cfstring_");
1648   if (const char *Sect = getContext().Target.getCFStringSection())
1649     GV->setSection(Sect);
1650   Entry.setValue(GV);
1651 
1652   return GV;
1653 }
1654 
1655 llvm::Constant *
1656 CodeGenModule::GetAddrOfConstantNSString(const StringLiteral *Literal) {
1657   unsigned StringLength = 0;
1658   bool isUTF16 = false;
1659   llvm::StringMapEntry<llvm::Constant*> &Entry =
1660     GetConstantCFStringEntry(CFConstantStringMap, Literal,
1661                              getTargetData().isLittleEndian(),
1662                              isUTF16, StringLength);
1663 
1664   if (llvm::Constant *C = Entry.getValue())
1665     return C;
1666 
1667   llvm::Constant *Zero =
1668   llvm::Constant::getNullValue(llvm::Type::getInt32Ty(VMContext));
1669   llvm::Constant *Zeros[] = { Zero, Zero };
1670 
1671   // If we don't already have it, get _NSConstantStringClassReference.
1672   if (!NSConstantStringClassRef) {
1673     const llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
1674     Ty = llvm::ArrayType::get(Ty, 0);
1675     llvm::Constant *GV = CreateRuntimeVariable(Ty,
1676                                         Features.ObjCNonFragileABI ?
1677                                         "OBJC_CLASS_$_NSConstantString" :
1678                                         "_NSConstantStringClassReference");
1679     // Decay array -> ptr
1680     NSConstantStringClassRef =
1681       llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2);
1682   }
1683 
1684   QualType NSTy = getContext().getNSConstantStringType();
1685 
1686   const llvm::StructType *STy =
1687   cast<llvm::StructType>(getTypes().ConvertType(NSTy));
1688 
1689   std::vector<llvm::Constant*> Fields(3);
1690 
1691   // Class pointer.
1692   Fields[0] = NSConstantStringClassRef;
1693 
1694   // String pointer.
1695   llvm::Constant *C = llvm::ConstantArray::get(VMContext, Entry.getKey().str());
1696 
1697   llvm::GlobalValue::LinkageTypes Linkage;
1698   bool isConstant;
1699   if (isUTF16) {
1700     // FIXME: why do utf strings get "_" labels instead of "L" labels?
1701     Linkage = llvm::GlobalValue::InternalLinkage;
1702     // Note: -fwritable-strings doesn't make unicode NSStrings writable, but
1703     // does make plain ascii ones writable.
1704     isConstant = true;
1705   } else {
1706     Linkage = llvm::GlobalValue::PrivateLinkage;
1707     isConstant = !Features.WritableStrings;
1708   }
1709 
1710   llvm::GlobalVariable *GV =
1711   new llvm::GlobalVariable(getModule(), C->getType(), isConstant, Linkage, C,
1712                            ".str");
1713   if (isUTF16) {
1714     CharUnits Align = getContext().getTypeAlignInChars(getContext().ShortTy);
1715     GV->setAlignment(Align.getQuantity());
1716   }
1717   Fields[1] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2);
1718 
1719   // String length.
1720   const llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy);
1721   Fields[2] = llvm::ConstantInt::get(Ty, StringLength);
1722 
1723   // The struct.
1724   C = llvm::ConstantStruct::get(STy, Fields);
1725   GV = new llvm::GlobalVariable(getModule(), C->getType(), true,
1726                                 llvm::GlobalVariable::PrivateLinkage, C,
1727                                 "_unnamed_nsstring_");
1728   // FIXME. Fix section.
1729   if (const char *Sect =
1730         Features.ObjCNonFragileABI
1731           ? getContext().Target.getNSStringNonFragileABISection()
1732           : getContext().Target.getNSStringSection())
1733     GV->setSection(Sect);
1734   Entry.setValue(GV);
1735 
1736   return GV;
1737 }
1738 
1739 /// GetStringForStringLiteral - Return the appropriate bytes for a
1740 /// string literal, properly padded to match the literal type.
1741 std::string CodeGenModule::GetStringForStringLiteral(const StringLiteral *E) {
1742   const char *StrData = E->getStrData();
1743   unsigned Len = E->getByteLength();
1744 
1745   const ConstantArrayType *CAT =
1746     getContext().getAsConstantArrayType(E->getType());
1747   assert(CAT && "String isn't pointer or array!");
1748 
1749   // Resize the string to the right size.
1750   std::string Str(StrData, StrData+Len);
1751   uint64_t RealLen = CAT->getSize().getZExtValue();
1752 
1753   if (E->isWide())
1754     RealLen *= getContext().Target.getWCharWidth()/8;
1755 
1756   Str.resize(RealLen, '\0');
1757 
1758   return Str;
1759 }
1760 
1761 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a
1762 /// constant array for the given string literal.
1763 llvm::Constant *
1764 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S) {
1765   // FIXME: This can be more efficient.
1766   // FIXME: We shouldn't need to bitcast the constant in the wide string case.
1767   llvm::Constant *C = GetAddrOfConstantString(GetStringForStringLiteral(S));
1768   if (S->isWide()) {
1769     llvm::Type *DestTy =
1770         llvm::PointerType::getUnqual(getTypes().ConvertType(S->getType()));
1771     C = llvm::ConstantExpr::getBitCast(C, DestTy);
1772   }
1773   return C;
1774 }
1775 
1776 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant
1777 /// array for the given ObjCEncodeExpr node.
1778 llvm::Constant *
1779 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) {
1780   std::string Str;
1781   getContext().getObjCEncodingForType(E->getEncodedType(), Str);
1782 
1783   return GetAddrOfConstantCString(Str);
1784 }
1785 
1786 
1787 /// GenerateWritableString -- Creates storage for a string literal.
1788 static llvm::Constant *GenerateStringLiteral(const std::string &str,
1789                                              bool constant,
1790                                              CodeGenModule &CGM,
1791                                              const char *GlobalName) {
1792   // Create Constant for this string literal. Don't add a '\0'.
1793   llvm::Constant *C =
1794       llvm::ConstantArray::get(CGM.getLLVMContext(), str, false);
1795 
1796   // Create a global variable for this string
1797   return new llvm::GlobalVariable(CGM.getModule(), C->getType(), constant,
1798                                   llvm::GlobalValue::PrivateLinkage,
1799                                   C, GlobalName);
1800 }
1801 
1802 /// GetAddrOfConstantString - Returns a pointer to a character array
1803 /// containing the literal. This contents are exactly that of the
1804 /// given string, i.e. it will not be null terminated automatically;
1805 /// see GetAddrOfConstantCString. Note that whether the result is
1806 /// actually a pointer to an LLVM constant depends on
1807 /// Feature.WriteableStrings.
1808 ///
1809 /// The result has pointer to array type.
1810 llvm::Constant *CodeGenModule::GetAddrOfConstantString(const std::string &str,
1811                                                        const char *GlobalName) {
1812   bool IsConstant = !Features.WritableStrings;
1813 
1814   // Get the default prefix if a name wasn't specified.
1815   if (!GlobalName)
1816     GlobalName = ".str";
1817 
1818   // Don't share any string literals if strings aren't constant.
1819   if (!IsConstant)
1820     return GenerateStringLiteral(str, false, *this, GlobalName);
1821 
1822   llvm::StringMapEntry<llvm::Constant *> &Entry =
1823     ConstantStringMap.GetOrCreateValue(&str[0], &str[str.length()]);
1824 
1825   if (Entry.getValue())
1826     return Entry.getValue();
1827 
1828   // Create a global variable for this.
1829   llvm::Constant *C = GenerateStringLiteral(str, true, *this, GlobalName);
1830   Entry.setValue(C);
1831   return C;
1832 }
1833 
1834 /// GetAddrOfConstantCString - Returns a pointer to a character
1835 /// array containing the literal and a terminating '\-'
1836 /// character. The result has pointer to array type.
1837 llvm::Constant *CodeGenModule::GetAddrOfConstantCString(const std::string &str,
1838                                                         const char *GlobalName){
1839   return GetAddrOfConstantString(str + '\0', GlobalName);
1840 }
1841 
1842 /// EmitObjCPropertyImplementations - Emit information for synthesized
1843 /// properties for an implementation.
1844 void CodeGenModule::EmitObjCPropertyImplementations(const
1845                                                     ObjCImplementationDecl *D) {
1846   for (ObjCImplementationDecl::propimpl_iterator
1847          i = D->propimpl_begin(), e = D->propimpl_end(); i != e; ++i) {
1848     ObjCPropertyImplDecl *PID = *i;
1849 
1850     // Dynamic is just for type-checking.
1851     if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) {
1852       ObjCPropertyDecl *PD = PID->getPropertyDecl();
1853 
1854       // Determine which methods need to be implemented, some may have
1855       // been overridden. Note that ::isSynthesized is not the method
1856       // we want, that just indicates if the decl came from a
1857       // property. What we want to know is if the method is defined in
1858       // this implementation.
1859       if (!D->getInstanceMethod(PD->getGetterName()))
1860         CodeGenFunction(*this).GenerateObjCGetter(
1861                                  const_cast<ObjCImplementationDecl *>(D), PID);
1862       if (!PD->isReadOnly() &&
1863           !D->getInstanceMethod(PD->getSetterName()))
1864         CodeGenFunction(*this).GenerateObjCSetter(
1865                                  const_cast<ObjCImplementationDecl *>(D), PID);
1866     }
1867   }
1868 }
1869 
1870 /// EmitObjCIvarInitializations - Emit information for ivar initialization
1871 /// for an implementation.
1872 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) {
1873   if (!Features.NeXTRuntime || D->getNumIvarInitializers() == 0)
1874     return;
1875   DeclContext* DC = const_cast<DeclContext*>(dyn_cast<DeclContext>(D));
1876   assert(DC && "EmitObjCIvarInitializations - null DeclContext");
1877   IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct");
1878   Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
1879   ObjCMethodDecl *DTORMethod = ObjCMethodDecl::Create(getContext(),
1880                                                   D->getLocation(),
1881                                                   D->getLocation(), cxxSelector,
1882                                                   getContext().VoidTy, 0,
1883                                                   DC, true, false, true,
1884                                                   ObjCMethodDecl::Required);
1885   D->addInstanceMethod(DTORMethod);
1886   CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false);
1887 
1888   II = &getContext().Idents.get(".cxx_construct");
1889   cxxSelector = getContext().Selectors.getSelector(0, &II);
1890   // The constructor returns 'self'.
1891   ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(getContext(),
1892                                                 D->getLocation(),
1893                                                 D->getLocation(), cxxSelector,
1894                                                 getContext().getObjCIdType(), 0,
1895                                                 DC, true, false, true,
1896                                                 ObjCMethodDecl::Required);
1897   D->addInstanceMethod(CTORMethod);
1898   CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true);
1899 
1900 
1901 }
1902 
1903 /// EmitNamespace - Emit all declarations in a namespace.
1904 void CodeGenModule::EmitNamespace(const NamespaceDecl *ND) {
1905   for (RecordDecl::decl_iterator I = ND->decls_begin(), E = ND->decls_end();
1906        I != E; ++I)
1907     EmitTopLevelDecl(*I);
1908 }
1909 
1910 // EmitLinkageSpec - Emit all declarations in a linkage spec.
1911 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) {
1912   if (LSD->getLanguage() != LinkageSpecDecl::lang_c &&
1913       LSD->getLanguage() != LinkageSpecDecl::lang_cxx) {
1914     ErrorUnsupported(LSD, "linkage spec");
1915     return;
1916   }
1917 
1918   for (RecordDecl::decl_iterator I = LSD->decls_begin(), E = LSD->decls_end();
1919        I != E; ++I)
1920     EmitTopLevelDecl(*I);
1921 }
1922 
1923 /// EmitTopLevelDecl - Emit code for a single top level declaration.
1924 void CodeGenModule::EmitTopLevelDecl(Decl *D) {
1925   // If an error has occurred, stop code generation, but continue
1926   // parsing and semantic analysis (to ensure all warnings and errors
1927   // are emitted).
1928   if (Diags.hasErrorOccurred())
1929     return;
1930 
1931   // Ignore dependent declarations.
1932   if (D->getDeclContext() && D->getDeclContext()->isDependentContext())
1933     return;
1934 
1935   switch (D->getKind()) {
1936   case Decl::CXXConversion:
1937   case Decl::CXXMethod:
1938   case Decl::Function:
1939     // Skip function templates
1940     if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate())
1941       return;
1942 
1943     EmitGlobal(cast<FunctionDecl>(D));
1944     break;
1945 
1946   case Decl::Var:
1947     EmitGlobal(cast<VarDecl>(D));
1948     break;
1949 
1950   // C++ Decls
1951   case Decl::Namespace:
1952     EmitNamespace(cast<NamespaceDecl>(D));
1953     break;
1954     // No code generation needed.
1955   case Decl::UsingShadow:
1956   case Decl::Using:
1957   case Decl::UsingDirective:
1958   case Decl::ClassTemplate:
1959   case Decl::FunctionTemplate:
1960   case Decl::NamespaceAlias:
1961     break;
1962   case Decl::CXXConstructor:
1963     // Skip function templates
1964     if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate())
1965       return;
1966 
1967     EmitCXXConstructors(cast<CXXConstructorDecl>(D));
1968     break;
1969   case Decl::CXXDestructor:
1970     EmitCXXDestructors(cast<CXXDestructorDecl>(D));
1971     break;
1972 
1973   case Decl::StaticAssert:
1974     // Nothing to do.
1975     break;
1976 
1977   // Objective-C Decls
1978 
1979   // Forward declarations, no (immediate) code generation.
1980   case Decl::ObjCClass:
1981   case Decl::ObjCForwardProtocol:
1982   case Decl::ObjCCategory:
1983   case Decl::ObjCInterface:
1984     break;
1985 
1986   case Decl::ObjCProtocol:
1987     Runtime->GenerateProtocol(cast<ObjCProtocolDecl>(D));
1988     break;
1989 
1990   case Decl::ObjCCategoryImpl:
1991     // Categories have properties but don't support synthesize so we
1992     // can ignore them here.
1993     Runtime->GenerateCategory(cast<ObjCCategoryImplDecl>(D));
1994     break;
1995 
1996   case Decl::ObjCImplementation: {
1997     ObjCImplementationDecl *OMD = cast<ObjCImplementationDecl>(D);
1998     EmitObjCPropertyImplementations(OMD);
1999     EmitObjCIvarInitializations(OMD);
2000     Runtime->GenerateClass(OMD);
2001     break;
2002   }
2003   case Decl::ObjCMethod: {
2004     ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(D);
2005     // If this is not a prototype, emit the body.
2006     if (OMD->getBody())
2007       CodeGenFunction(*this).GenerateObjCMethod(OMD);
2008     break;
2009   }
2010   case Decl::ObjCCompatibleAlias:
2011     // compatibility-alias is a directive and has no code gen.
2012     break;
2013 
2014   case Decl::LinkageSpec:
2015     EmitLinkageSpec(cast<LinkageSpecDecl>(D));
2016     break;
2017 
2018   case Decl::FileScopeAsm: {
2019     FileScopeAsmDecl *AD = cast<FileScopeAsmDecl>(D);
2020     llvm::StringRef AsmString = AD->getAsmString()->getString();
2021 
2022     const std::string &S = getModule().getModuleInlineAsm();
2023     if (S.empty())
2024       getModule().setModuleInlineAsm(AsmString);
2025     else
2026       getModule().setModuleInlineAsm(S + '\n' + AsmString.str());
2027     break;
2028   }
2029 
2030   default:
2031     // Make sure we handled everything we should, every other kind is a
2032     // non-top-level decl.  FIXME: Would be nice to have an isTopLevelDeclKind
2033     // function. Need to recode Decl::Kind to do that easily.
2034     assert(isa<TypeDecl>(D) && "Unsupported decl kind");
2035   }
2036 }
2037