xref: /llvm-project/clang/lib/CodeGen/CodeGenModule.cpp (revision 741dea003e7d97f1e5e6eca2a485784cff923bb2)
1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This coordinates the per-module state used while generating code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenModule.h"
15 #include "CGBlocks.h"
16 #include "CGCUDARuntime.h"
17 #include "CGCXXABI.h"
18 #include "CGCall.h"
19 #include "CGDebugInfo.h"
20 #include "CGObjCRuntime.h"
21 #include "CGOpenCLRuntime.h"
22 #include "CGOpenMPRuntime.h"
23 #include "CGOpenMPRuntimeNVPTX.h"
24 #include "CodeGenFunction.h"
25 #include "CodeGenPGO.h"
26 #include "CodeGenTBAA.h"
27 #include "CoverageMappingGen.h"
28 #include "TargetInfo.h"
29 #include "clang/AST/ASTContext.h"
30 #include "clang/AST/CharUnits.h"
31 #include "clang/AST/DeclCXX.h"
32 #include "clang/AST/DeclObjC.h"
33 #include "clang/AST/DeclTemplate.h"
34 #include "clang/AST/Mangle.h"
35 #include "clang/AST/RecordLayout.h"
36 #include "clang/AST/RecursiveASTVisitor.h"
37 #include "clang/Basic/Builtins.h"
38 #include "clang/Basic/CharInfo.h"
39 #include "clang/Basic/Diagnostic.h"
40 #include "clang/Basic/Module.h"
41 #include "clang/Basic/SourceManager.h"
42 #include "clang/Basic/TargetInfo.h"
43 #include "clang/Basic/Version.h"
44 #include "clang/CodeGen/ConstantInitBuilder.h"
45 #include "clang/Frontend/CodeGenOptions.h"
46 #include "clang/Sema/SemaDiagnostic.h"
47 #include "llvm/ADT/Triple.h"
48 #include "llvm/IR/CallSite.h"
49 #include "llvm/IR/CallingConv.h"
50 #include "llvm/IR/DataLayout.h"
51 #include "llvm/IR/Intrinsics.h"
52 #include "llvm/IR/LLVMContext.h"
53 #include "llvm/IR/Module.h"
54 #include "llvm/ProfileData/InstrProfReader.h"
55 #include "llvm/Support/ConvertUTF.h"
56 #include "llvm/Support/ErrorHandling.h"
57 #include "llvm/Support/MD5.h"
58 
59 using namespace clang;
60 using namespace CodeGen;
61 
62 static const char AnnotationSection[] = "llvm.metadata";
63 
64 static CGCXXABI *createCXXABI(CodeGenModule &CGM) {
65   switch (CGM.getTarget().getCXXABI().getKind()) {
66   case TargetCXXABI::GenericAArch64:
67   case TargetCXXABI::GenericARM:
68   case TargetCXXABI::iOS:
69   case TargetCXXABI::iOS64:
70   case TargetCXXABI::WatchOS:
71   case TargetCXXABI::GenericMIPS:
72   case TargetCXXABI::GenericItanium:
73   case TargetCXXABI::WebAssembly:
74     return CreateItaniumCXXABI(CGM);
75   case TargetCXXABI::Microsoft:
76     return CreateMicrosoftCXXABI(CGM);
77   }
78 
79   llvm_unreachable("invalid C++ ABI kind");
80 }
81 
82 CodeGenModule::CodeGenModule(ASTContext &C, const HeaderSearchOptions &HSO,
83                              const PreprocessorOptions &PPO,
84                              const CodeGenOptions &CGO, llvm::Module &M,
85                              DiagnosticsEngine &diags,
86                              CoverageSourceInfo *CoverageInfo)
87     : Context(C), LangOpts(C.getLangOpts()), HeaderSearchOpts(HSO),
88       PreprocessorOpts(PPO), CodeGenOpts(CGO), TheModule(M), Diags(diags),
89       Target(C.getTargetInfo()), ABI(createCXXABI(*this)),
90       VMContext(M.getContext()), Types(*this), VTables(*this),
91       SanitizerMD(new SanitizerMetadata(*this)) {
92 
93   // Initialize the type cache.
94   llvm::LLVMContext &LLVMContext = M.getContext();
95   VoidTy = llvm::Type::getVoidTy(LLVMContext);
96   Int8Ty = llvm::Type::getInt8Ty(LLVMContext);
97   Int16Ty = llvm::Type::getInt16Ty(LLVMContext);
98   Int32Ty = llvm::Type::getInt32Ty(LLVMContext);
99   Int64Ty = llvm::Type::getInt64Ty(LLVMContext);
100   FloatTy = llvm::Type::getFloatTy(LLVMContext);
101   DoubleTy = llvm::Type::getDoubleTy(LLVMContext);
102   PointerWidthInBits = C.getTargetInfo().getPointerWidth(0);
103   PointerAlignInBytes =
104     C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(0)).getQuantity();
105   SizeSizeInBytes =
106     C.toCharUnitsFromBits(C.getTargetInfo().getMaxPointerWidth()).getQuantity();
107   IntAlignInBytes =
108     C.toCharUnitsFromBits(C.getTargetInfo().getIntAlign()).getQuantity();
109   IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth());
110   IntPtrTy = llvm::IntegerType::get(LLVMContext,
111     C.getTargetInfo().getMaxPointerWidth());
112   Int8PtrTy = Int8Ty->getPointerTo(0);
113   Int8PtrPtrTy = Int8PtrTy->getPointerTo(0);
114 
115   RuntimeCC = getTargetCodeGenInfo().getABIInfo().getRuntimeCC();
116   BuiltinCC = getTargetCodeGenInfo().getABIInfo().getBuiltinCC();
117 
118   if (LangOpts.ObjC1)
119     createObjCRuntime();
120   if (LangOpts.OpenCL)
121     createOpenCLRuntime();
122   if (LangOpts.OpenMP)
123     createOpenMPRuntime();
124   if (LangOpts.CUDA)
125     createCUDARuntime();
126 
127   // Enable TBAA unless it's suppressed. ThreadSanitizer needs TBAA even at O0.
128   if (LangOpts.Sanitize.has(SanitizerKind::Thread) ||
129       (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0))
130     TBAA.reset(new CodeGenTBAA(Context, VMContext, CodeGenOpts, getLangOpts(),
131                                getCXXABI().getMangleContext()));
132 
133   // If debug info or coverage generation is enabled, create the CGDebugInfo
134   // object.
135   if (CodeGenOpts.getDebugInfo() != codegenoptions::NoDebugInfo ||
136       CodeGenOpts.EmitGcovArcs || CodeGenOpts.EmitGcovNotes)
137     DebugInfo.reset(new CGDebugInfo(*this));
138 
139   Block.GlobalUniqueCount = 0;
140 
141   if (C.getLangOpts().ObjC1)
142     ObjCData.reset(new ObjCEntrypoints());
143 
144   if (CodeGenOpts.hasProfileClangUse()) {
145     auto ReaderOrErr = llvm::IndexedInstrProfReader::create(
146         CodeGenOpts.ProfileInstrumentUsePath);
147     if (auto E = ReaderOrErr.takeError()) {
148       unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
149                                               "Could not read profile %0: %1");
150       llvm::handleAllErrors(std::move(E), [&](const llvm::ErrorInfoBase &EI) {
151         getDiags().Report(DiagID) << CodeGenOpts.ProfileInstrumentUsePath
152                                   << EI.message();
153       });
154     } else
155       PGOReader = std::move(ReaderOrErr.get());
156   }
157 
158   // If coverage mapping generation is enabled, create the
159   // CoverageMappingModuleGen object.
160   if (CodeGenOpts.CoverageMapping)
161     CoverageMapping.reset(new CoverageMappingModuleGen(*this, *CoverageInfo));
162 }
163 
164 CodeGenModule::~CodeGenModule() {}
165 
166 void CodeGenModule::createObjCRuntime() {
167   // This is just isGNUFamily(), but we want to force implementors of
168   // new ABIs to decide how best to do this.
169   switch (LangOpts.ObjCRuntime.getKind()) {
170   case ObjCRuntime::GNUstep:
171   case ObjCRuntime::GCC:
172   case ObjCRuntime::ObjFW:
173     ObjCRuntime.reset(CreateGNUObjCRuntime(*this));
174     return;
175 
176   case ObjCRuntime::FragileMacOSX:
177   case ObjCRuntime::MacOSX:
178   case ObjCRuntime::iOS:
179   case ObjCRuntime::WatchOS:
180     ObjCRuntime.reset(CreateMacObjCRuntime(*this));
181     return;
182   }
183   llvm_unreachable("bad runtime kind");
184 }
185 
186 void CodeGenModule::createOpenCLRuntime() {
187   OpenCLRuntime.reset(new CGOpenCLRuntime(*this));
188 }
189 
190 void CodeGenModule::createOpenMPRuntime() {
191   // Select a specialized code generation class based on the target, if any.
192   // If it does not exist use the default implementation.
193   switch (getTriple().getArch()) {
194   case llvm::Triple::nvptx:
195   case llvm::Triple::nvptx64:
196     assert(getLangOpts().OpenMPIsDevice &&
197            "OpenMP NVPTX is only prepared to deal with device code.");
198     OpenMPRuntime.reset(new CGOpenMPRuntimeNVPTX(*this));
199     break;
200   default:
201     OpenMPRuntime.reset(new CGOpenMPRuntime(*this));
202     break;
203   }
204 }
205 
206 void CodeGenModule::createCUDARuntime() {
207   CUDARuntime.reset(CreateNVCUDARuntime(*this));
208 }
209 
210 void CodeGenModule::addReplacement(StringRef Name, llvm::Constant *C) {
211   Replacements[Name] = C;
212 }
213 
214 void CodeGenModule::applyReplacements() {
215   for (auto &I : Replacements) {
216     StringRef MangledName = I.first();
217     llvm::Constant *Replacement = I.second;
218     llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
219     if (!Entry)
220       continue;
221     auto *OldF = cast<llvm::Function>(Entry);
222     auto *NewF = dyn_cast<llvm::Function>(Replacement);
223     if (!NewF) {
224       if (auto *Alias = dyn_cast<llvm::GlobalAlias>(Replacement)) {
225         NewF = dyn_cast<llvm::Function>(Alias->getAliasee());
226       } else {
227         auto *CE = cast<llvm::ConstantExpr>(Replacement);
228         assert(CE->getOpcode() == llvm::Instruction::BitCast ||
229                CE->getOpcode() == llvm::Instruction::GetElementPtr);
230         NewF = dyn_cast<llvm::Function>(CE->getOperand(0));
231       }
232     }
233 
234     // Replace old with new, but keep the old order.
235     OldF->replaceAllUsesWith(Replacement);
236     if (NewF) {
237       NewF->removeFromParent();
238       OldF->getParent()->getFunctionList().insertAfter(OldF->getIterator(),
239                                                        NewF);
240     }
241     OldF->eraseFromParent();
242   }
243 }
244 
245 void CodeGenModule::addGlobalValReplacement(llvm::GlobalValue *GV, llvm::Constant *C) {
246   GlobalValReplacements.push_back(std::make_pair(GV, C));
247 }
248 
249 void CodeGenModule::applyGlobalValReplacements() {
250   for (auto &I : GlobalValReplacements) {
251     llvm::GlobalValue *GV = I.first;
252     llvm::Constant *C = I.second;
253 
254     GV->replaceAllUsesWith(C);
255     GV->eraseFromParent();
256   }
257 }
258 
259 // This is only used in aliases that we created and we know they have a
260 // linear structure.
261 static const llvm::GlobalObject *getAliasedGlobal(
262     const llvm::GlobalIndirectSymbol &GIS) {
263   llvm::SmallPtrSet<const llvm::GlobalIndirectSymbol*, 4> Visited;
264   const llvm::Constant *C = &GIS;
265   for (;;) {
266     C = C->stripPointerCasts();
267     if (auto *GO = dyn_cast<llvm::GlobalObject>(C))
268       return GO;
269     // stripPointerCasts will not walk over weak aliases.
270     auto *GIS2 = dyn_cast<llvm::GlobalIndirectSymbol>(C);
271     if (!GIS2)
272       return nullptr;
273     if (!Visited.insert(GIS2).second)
274       return nullptr;
275     C = GIS2->getIndirectSymbol();
276   }
277 }
278 
279 void CodeGenModule::checkAliases() {
280   // Check if the constructed aliases are well formed. It is really unfortunate
281   // that we have to do this in CodeGen, but we only construct mangled names
282   // and aliases during codegen.
283   bool Error = false;
284   DiagnosticsEngine &Diags = getDiags();
285   for (const GlobalDecl &GD : Aliases) {
286     const auto *D = cast<ValueDecl>(GD.getDecl());
287     SourceLocation Location;
288     bool IsIFunc = D->hasAttr<IFuncAttr>();
289     if (const Attr *A = D->getDefiningAttr())
290       Location = A->getLocation();
291     else
292       llvm_unreachable("Not an alias or ifunc?");
293     StringRef MangledName = getMangledName(GD);
294     llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
295     auto *Alias  = cast<llvm::GlobalIndirectSymbol>(Entry);
296     const llvm::GlobalValue *GV = getAliasedGlobal(*Alias);
297     if (!GV) {
298       Error = true;
299       Diags.Report(Location, diag::err_cyclic_alias) << IsIFunc;
300     } else if (GV->isDeclaration()) {
301       Error = true;
302       Diags.Report(Location, diag::err_alias_to_undefined)
303           << IsIFunc << IsIFunc;
304     } else if (IsIFunc) {
305       // Check resolver function type.
306       llvm::FunctionType *FTy = dyn_cast<llvm::FunctionType>(
307           GV->getType()->getPointerElementType());
308       assert(FTy);
309       if (!FTy->getReturnType()->isPointerTy())
310         Diags.Report(Location, diag::err_ifunc_resolver_return);
311       if (FTy->getNumParams())
312         Diags.Report(Location, diag::err_ifunc_resolver_params);
313     }
314 
315     llvm::Constant *Aliasee = Alias->getIndirectSymbol();
316     llvm::GlobalValue *AliaseeGV;
317     if (auto CE = dyn_cast<llvm::ConstantExpr>(Aliasee))
318       AliaseeGV = cast<llvm::GlobalValue>(CE->getOperand(0));
319     else
320       AliaseeGV = cast<llvm::GlobalValue>(Aliasee);
321 
322     if (const SectionAttr *SA = D->getAttr<SectionAttr>()) {
323       StringRef AliasSection = SA->getName();
324       if (AliasSection != AliaseeGV->getSection())
325         Diags.Report(SA->getLocation(), diag::warn_alias_with_section)
326             << AliasSection << IsIFunc << IsIFunc;
327     }
328 
329     // We have to handle alias to weak aliases in here. LLVM itself disallows
330     // this since the object semantics would not match the IL one. For
331     // compatibility with gcc we implement it by just pointing the alias
332     // to its aliasee's aliasee. We also warn, since the user is probably
333     // expecting the link to be weak.
334     if (auto GA = dyn_cast<llvm::GlobalIndirectSymbol>(AliaseeGV)) {
335       if (GA->isInterposable()) {
336         Diags.Report(Location, diag::warn_alias_to_weak_alias)
337             << GV->getName() << GA->getName() << IsIFunc;
338         Aliasee = llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(
339             GA->getIndirectSymbol(), Alias->getType());
340         Alias->setIndirectSymbol(Aliasee);
341       }
342     }
343   }
344   if (!Error)
345     return;
346 
347   for (const GlobalDecl &GD : Aliases) {
348     StringRef MangledName = getMangledName(GD);
349     llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
350     auto *Alias = dyn_cast<llvm::GlobalIndirectSymbol>(Entry);
351     Alias->replaceAllUsesWith(llvm::UndefValue::get(Alias->getType()));
352     Alias->eraseFromParent();
353   }
354 }
355 
356 void CodeGenModule::clear() {
357   DeferredDeclsToEmit.clear();
358   if (OpenMPRuntime)
359     OpenMPRuntime->clear();
360 }
361 
362 void InstrProfStats::reportDiagnostics(DiagnosticsEngine &Diags,
363                                        StringRef MainFile) {
364   if (!hasDiagnostics())
365     return;
366   if (VisitedInMainFile > 0 && VisitedInMainFile == MissingInMainFile) {
367     if (MainFile.empty())
368       MainFile = "<stdin>";
369     Diags.Report(diag::warn_profile_data_unprofiled) << MainFile;
370   } else
371     Diags.Report(diag::warn_profile_data_out_of_date) << Visited << Missing
372                                                       << Mismatched;
373 }
374 
375 void CodeGenModule::Release() {
376   EmitDeferred();
377   applyGlobalValReplacements();
378   applyReplacements();
379   checkAliases();
380   EmitCXXGlobalInitFunc();
381   EmitCXXGlobalDtorFunc();
382   EmitCXXThreadLocalInitFunc();
383   if (ObjCRuntime)
384     if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction())
385       AddGlobalCtor(ObjCInitFunction);
386   if (Context.getLangOpts().CUDA && !Context.getLangOpts().CUDAIsDevice &&
387       CUDARuntime) {
388     if (llvm::Function *CudaCtorFunction = CUDARuntime->makeModuleCtorFunction())
389       AddGlobalCtor(CudaCtorFunction);
390     if (llvm::Function *CudaDtorFunction = CUDARuntime->makeModuleDtorFunction())
391       AddGlobalDtor(CudaDtorFunction);
392   }
393   if (OpenMPRuntime)
394     if (llvm::Function *OpenMPRegistrationFunction =
395             OpenMPRuntime->emitRegistrationFunction())
396       AddGlobalCtor(OpenMPRegistrationFunction, 0);
397   if (PGOReader) {
398     getModule().setProfileSummary(PGOReader->getSummary().getMD(VMContext));
399     if (PGOStats.hasDiagnostics())
400       PGOStats.reportDiagnostics(getDiags(), getCodeGenOpts().MainFileName);
401   }
402   EmitCtorList(GlobalCtors, "llvm.global_ctors");
403   EmitCtorList(GlobalDtors, "llvm.global_dtors");
404   EmitGlobalAnnotations();
405   EmitStaticExternCAliases();
406   EmitDeferredUnusedCoverageMappings();
407   if (CoverageMapping)
408     CoverageMapping->emit();
409   if (CodeGenOpts.SanitizeCfiCrossDso)
410     CodeGenFunction(*this).EmitCfiCheckFail();
411   emitAtAvailableLinkGuard();
412   emitLLVMUsed();
413   if (SanStats)
414     SanStats->finish();
415 
416   if (CodeGenOpts.Autolink &&
417       (Context.getLangOpts().Modules || !LinkerOptionsMetadata.empty())) {
418     EmitModuleLinkOptions();
419   }
420 
421   // Record mregparm value now so it is visible through rest of codegen.
422   if (Context.getTargetInfo().getTriple().getArch() == llvm::Triple::x86)
423     getModule().addModuleFlag(llvm::Module::Error, "NumRegisterParameters",
424                               CodeGenOpts.NumRegisterParameters);
425 
426   if (CodeGenOpts.DwarfVersion) {
427     // We actually want the latest version when there are conflicts.
428     // We can change from Warning to Latest if such mode is supported.
429     getModule().addModuleFlag(llvm::Module::Warning, "Dwarf Version",
430                               CodeGenOpts.DwarfVersion);
431   }
432   if (CodeGenOpts.EmitCodeView) {
433     // Indicate that we want CodeView in the metadata.
434     getModule().addModuleFlag(llvm::Module::Warning, "CodeView", 1);
435   }
436   if (CodeGenOpts.OptimizationLevel > 0 && CodeGenOpts.StrictVTablePointers) {
437     // We don't support LTO with 2 with different StrictVTablePointers
438     // FIXME: we could support it by stripping all the information introduced
439     // by StrictVTablePointers.
440 
441     getModule().addModuleFlag(llvm::Module::Error, "StrictVTablePointers",1);
442 
443     llvm::Metadata *Ops[2] = {
444               llvm::MDString::get(VMContext, "StrictVTablePointers"),
445               llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
446                   llvm::Type::getInt32Ty(VMContext), 1))};
447 
448     getModule().addModuleFlag(llvm::Module::Require,
449                               "StrictVTablePointersRequirement",
450                               llvm::MDNode::get(VMContext, Ops));
451   }
452   if (DebugInfo)
453     // We support a single version in the linked module. The LLVM
454     // parser will drop debug info with a different version number
455     // (and warn about it, too).
456     getModule().addModuleFlag(llvm::Module::Warning, "Debug Info Version",
457                               llvm::DEBUG_METADATA_VERSION);
458 
459   // We need to record the widths of enums and wchar_t, so that we can generate
460   // the correct build attributes in the ARM backend.
461   llvm::Triple::ArchType Arch = Context.getTargetInfo().getTriple().getArch();
462   if (   Arch == llvm::Triple::arm
463       || Arch == llvm::Triple::armeb
464       || Arch == llvm::Triple::thumb
465       || Arch == llvm::Triple::thumbeb) {
466     // Width of wchar_t in bytes
467     uint64_t WCharWidth =
468         Context.getTypeSizeInChars(Context.getWideCharType()).getQuantity();
469     getModule().addModuleFlag(llvm::Module::Error, "wchar_size", WCharWidth);
470 
471     // The minimum width of an enum in bytes
472     uint64_t EnumWidth = Context.getLangOpts().ShortEnums ? 1 : 4;
473     getModule().addModuleFlag(llvm::Module::Error, "min_enum_size", EnumWidth);
474   }
475 
476   if (CodeGenOpts.SanitizeCfiCrossDso) {
477     // Indicate that we want cross-DSO control flow integrity checks.
478     getModule().addModuleFlag(llvm::Module::Override, "Cross-DSO CFI", 1);
479   }
480 
481   if (LangOpts.CUDAIsDevice && getTriple().isNVPTX()) {
482     // Indicate whether __nvvm_reflect should be configured to flush denormal
483     // floating point values to 0.  (This corresponds to its "__CUDA_FTZ"
484     // property.)
485     getModule().addModuleFlag(llvm::Module::Override, "nvvm-reflect-ftz",
486                               LangOpts.CUDADeviceFlushDenormalsToZero ? 1 : 0);
487   }
488 
489   if (uint32_t PLevel = Context.getLangOpts().PICLevel) {
490     assert(PLevel < 3 && "Invalid PIC Level");
491     getModule().setPICLevel(static_cast<llvm::PICLevel::Level>(PLevel));
492     if (Context.getLangOpts().PIE)
493       getModule().setPIELevel(static_cast<llvm::PIELevel::Level>(PLevel));
494   }
495 
496   SimplifyPersonality();
497 
498   if (getCodeGenOpts().EmitDeclMetadata)
499     EmitDeclMetadata();
500 
501   if (getCodeGenOpts().EmitGcovArcs || getCodeGenOpts().EmitGcovNotes)
502     EmitCoverageFile();
503 
504   if (DebugInfo)
505     DebugInfo->finalize();
506 
507   EmitVersionIdentMetadata();
508 
509   EmitTargetMetadata();
510 }
511 
512 void CodeGenModule::UpdateCompletedType(const TagDecl *TD) {
513   // Make sure that this type is translated.
514   Types.UpdateCompletedType(TD);
515 }
516 
517 void CodeGenModule::RefreshTypeCacheForClass(const CXXRecordDecl *RD) {
518   // Make sure that this type is translated.
519   Types.RefreshTypeCacheForClass(RD);
520 }
521 
522 llvm::MDNode *CodeGenModule::getTBAAInfo(QualType QTy) {
523   if (!TBAA)
524     return nullptr;
525   return TBAA->getTBAAInfo(QTy);
526 }
527 
528 llvm::MDNode *CodeGenModule::getTBAAInfoForVTablePtr() {
529   if (!TBAA)
530     return nullptr;
531   return TBAA->getTBAAInfoForVTablePtr();
532 }
533 
534 llvm::MDNode *CodeGenModule::getTBAAStructInfo(QualType QTy) {
535   if (!TBAA)
536     return nullptr;
537   return TBAA->getTBAAStructInfo(QTy);
538 }
539 
540 llvm::MDNode *CodeGenModule::getTBAAStructTagInfo(QualType BaseTy,
541                                                   llvm::MDNode *AccessN,
542                                                   uint64_t O) {
543   if (!TBAA)
544     return nullptr;
545   return TBAA->getTBAAStructTagInfo(BaseTy, AccessN, O);
546 }
547 
548 /// Decorate the instruction with a TBAA tag. For both scalar TBAA
549 /// and struct-path aware TBAA, the tag has the same format:
550 /// base type, access type and offset.
551 /// When ConvertTypeToTag is true, we create a tag based on the scalar type.
552 void CodeGenModule::DecorateInstructionWithTBAA(llvm::Instruction *Inst,
553                                                 llvm::MDNode *TBAAInfo,
554                                                 bool ConvertTypeToTag) {
555   if (ConvertTypeToTag && TBAA)
556     Inst->setMetadata(llvm::LLVMContext::MD_tbaa,
557                       TBAA->getTBAAScalarTagInfo(TBAAInfo));
558   else
559     Inst->setMetadata(llvm::LLVMContext::MD_tbaa, TBAAInfo);
560 }
561 
562 void CodeGenModule::DecorateInstructionWithInvariantGroup(
563     llvm::Instruction *I, const CXXRecordDecl *RD) {
564   llvm::Metadata *MD = CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0));
565   auto *MetaDataNode = dyn_cast<llvm::MDNode>(MD);
566   // Check if we have to wrap MDString in MDNode.
567   if (!MetaDataNode)
568     MetaDataNode = llvm::MDNode::get(getLLVMContext(), MD);
569   I->setMetadata(llvm::LLVMContext::MD_invariant_group, MetaDataNode);
570 }
571 
572 void CodeGenModule::Error(SourceLocation loc, StringRef message) {
573   unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, "%0");
574   getDiags().Report(Context.getFullLoc(loc), diagID) << message;
575 }
576 
577 /// ErrorUnsupported - Print out an error that codegen doesn't support the
578 /// specified stmt yet.
579 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type) {
580   unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
581                                                "cannot compile this %0 yet");
582   std::string Msg = Type;
583   getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID)
584     << Msg << S->getSourceRange();
585 }
586 
587 /// ErrorUnsupported - Print out an error that codegen doesn't support the
588 /// specified decl yet.
589 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type) {
590   unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
591                                                "cannot compile this %0 yet");
592   std::string Msg = Type;
593   getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg;
594 }
595 
596 llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) {
597   return llvm::ConstantInt::get(SizeTy, size.getQuantity());
598 }
599 
600 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV,
601                                         const NamedDecl *D) const {
602   // Internal definitions always have default visibility.
603   if (GV->hasLocalLinkage()) {
604     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
605     return;
606   }
607 
608   // Set visibility for definitions.
609   LinkageInfo LV = D->getLinkageAndVisibility();
610   if (LV.isVisibilityExplicit() || !GV->hasAvailableExternallyLinkage())
611     GV->setVisibility(GetLLVMVisibility(LV.getVisibility()));
612 }
613 
614 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(StringRef S) {
615   return llvm::StringSwitch<llvm::GlobalVariable::ThreadLocalMode>(S)
616       .Case("global-dynamic", llvm::GlobalVariable::GeneralDynamicTLSModel)
617       .Case("local-dynamic", llvm::GlobalVariable::LocalDynamicTLSModel)
618       .Case("initial-exec", llvm::GlobalVariable::InitialExecTLSModel)
619       .Case("local-exec", llvm::GlobalVariable::LocalExecTLSModel);
620 }
621 
622 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(
623     CodeGenOptions::TLSModel M) {
624   switch (M) {
625   case CodeGenOptions::GeneralDynamicTLSModel:
626     return llvm::GlobalVariable::GeneralDynamicTLSModel;
627   case CodeGenOptions::LocalDynamicTLSModel:
628     return llvm::GlobalVariable::LocalDynamicTLSModel;
629   case CodeGenOptions::InitialExecTLSModel:
630     return llvm::GlobalVariable::InitialExecTLSModel;
631   case CodeGenOptions::LocalExecTLSModel:
632     return llvm::GlobalVariable::LocalExecTLSModel;
633   }
634   llvm_unreachable("Invalid TLS model!");
635 }
636 
637 void CodeGenModule::setTLSMode(llvm::GlobalValue *GV, const VarDecl &D) const {
638   assert(D.getTLSKind() && "setting TLS mode on non-TLS var!");
639 
640   llvm::GlobalValue::ThreadLocalMode TLM;
641   TLM = GetLLVMTLSModel(CodeGenOpts.getDefaultTLSModel());
642 
643   // Override the TLS model if it is explicitly specified.
644   if (const TLSModelAttr *Attr = D.getAttr<TLSModelAttr>()) {
645     TLM = GetLLVMTLSModel(Attr->getModel());
646   }
647 
648   GV->setThreadLocalMode(TLM);
649 }
650 
651 StringRef CodeGenModule::getMangledName(GlobalDecl GD) {
652   GlobalDecl CanonicalGD = GD.getCanonicalDecl();
653 
654   // Some ABIs don't have constructor variants.  Make sure that base and
655   // complete constructors get mangled the same.
656   if (const auto *CD = dyn_cast<CXXConstructorDecl>(CanonicalGD.getDecl())) {
657     if (!getTarget().getCXXABI().hasConstructorVariants()) {
658       CXXCtorType OrigCtorType = GD.getCtorType();
659       assert(OrigCtorType == Ctor_Base || OrigCtorType == Ctor_Complete);
660       if (OrigCtorType == Ctor_Base)
661         CanonicalGD = GlobalDecl(CD, Ctor_Complete);
662     }
663   }
664 
665   StringRef &FoundStr = MangledDeclNames[CanonicalGD];
666   if (!FoundStr.empty())
667     return FoundStr;
668 
669   const auto *ND = cast<NamedDecl>(GD.getDecl());
670   SmallString<256> Buffer;
671   StringRef Str;
672   if (getCXXABI().getMangleContext().shouldMangleDeclName(ND)) {
673     llvm::raw_svector_ostream Out(Buffer);
674     if (const auto *D = dyn_cast<CXXConstructorDecl>(ND))
675       getCXXABI().getMangleContext().mangleCXXCtor(D, GD.getCtorType(), Out);
676     else if (const auto *D = dyn_cast<CXXDestructorDecl>(ND))
677       getCXXABI().getMangleContext().mangleCXXDtor(D, GD.getDtorType(), Out);
678     else
679       getCXXABI().getMangleContext().mangleName(ND, Out);
680     Str = Out.str();
681   } else {
682     IdentifierInfo *II = ND->getIdentifier();
683     assert(II && "Attempt to mangle unnamed decl.");
684     const auto *FD = dyn_cast<FunctionDecl>(ND);
685 
686     if (FD &&
687         FD->getType()->castAs<FunctionType>()->getCallConv() == CC_X86RegCall) {
688       llvm::raw_svector_ostream Out(Buffer);
689       Out << "__regcall3__" << II->getName();
690       Str = Out.str();
691     } else {
692       Str = II->getName();
693     }
694   }
695 
696   // Keep the first result in the case of a mangling collision.
697   auto Result = Manglings.insert(std::make_pair(Str, GD));
698   return FoundStr = Result.first->first();
699 }
700 
701 StringRef CodeGenModule::getBlockMangledName(GlobalDecl GD,
702                                              const BlockDecl *BD) {
703   MangleContext &MangleCtx = getCXXABI().getMangleContext();
704   const Decl *D = GD.getDecl();
705 
706   SmallString<256> Buffer;
707   llvm::raw_svector_ostream Out(Buffer);
708   if (!D)
709     MangleCtx.mangleGlobalBlock(BD,
710       dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()), Out);
711   else if (const auto *CD = dyn_cast<CXXConstructorDecl>(D))
712     MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out);
713   else if (const auto *DD = dyn_cast<CXXDestructorDecl>(D))
714     MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out);
715   else
716     MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out);
717 
718   auto Result = Manglings.insert(std::make_pair(Out.str(), BD));
719   return Result.first->first();
720 }
721 
722 llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) {
723   return getModule().getNamedValue(Name);
724 }
725 
726 /// AddGlobalCtor - Add a function to the list that will be called before
727 /// main() runs.
728 void CodeGenModule::AddGlobalCtor(llvm::Function *Ctor, int Priority,
729                                   llvm::Constant *AssociatedData) {
730   // FIXME: Type coercion of void()* types.
731   GlobalCtors.push_back(Structor(Priority, Ctor, AssociatedData));
732 }
733 
734 /// AddGlobalDtor - Add a function to the list that will be called
735 /// when the module is unloaded.
736 void CodeGenModule::AddGlobalDtor(llvm::Function *Dtor, int Priority) {
737   // FIXME: Type coercion of void()* types.
738   GlobalDtors.push_back(Structor(Priority, Dtor, nullptr));
739 }
740 
741 void CodeGenModule::EmitCtorList(CtorList &Fns, const char *GlobalName) {
742   if (Fns.empty()) return;
743 
744   // Ctor function type is void()*.
745   llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false);
746   llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy);
747 
748   // Get the type of a ctor entry, { i32, void ()*, i8* }.
749   llvm::StructType *CtorStructTy = llvm::StructType::get(
750       Int32Ty, llvm::PointerType::getUnqual(CtorFTy), VoidPtrTy, nullptr);
751 
752   // Construct the constructor and destructor arrays.
753   ConstantInitBuilder builder(*this);
754   auto ctors = builder.beginArray(CtorStructTy);
755   for (const auto &I : Fns) {
756     auto ctor = ctors.beginStruct(CtorStructTy);
757     ctor.addInt(Int32Ty, I.Priority);
758     ctor.add(llvm::ConstantExpr::getBitCast(I.Initializer, CtorPFTy));
759     if (I.AssociatedData)
760       ctor.add(llvm::ConstantExpr::getBitCast(I.AssociatedData, VoidPtrTy));
761     else
762       ctor.addNullPointer(VoidPtrTy);
763     ctor.finishAndAddTo(ctors);
764   }
765 
766   auto list =
767     ctors.finishAndCreateGlobal(GlobalName, getPointerAlign(),
768                                 /*constant*/ false,
769                                 llvm::GlobalValue::AppendingLinkage);
770 
771   // The LTO linker doesn't seem to like it when we set an alignment
772   // on appending variables.  Take it off as a workaround.
773   list->setAlignment(0);
774 
775   Fns.clear();
776 }
777 
778 llvm::GlobalValue::LinkageTypes
779 CodeGenModule::getFunctionLinkage(GlobalDecl GD) {
780   const auto *D = cast<FunctionDecl>(GD.getDecl());
781 
782   GVALinkage Linkage = getContext().GetGVALinkageForFunction(D);
783 
784   if (isa<CXXDestructorDecl>(D) &&
785       getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D),
786                                          GD.getDtorType())) {
787     // Destructor variants in the Microsoft C++ ABI are always internal or
788     // linkonce_odr thunks emitted on an as-needed basis.
789     return Linkage == GVA_Internal ? llvm::GlobalValue::InternalLinkage
790                                    : llvm::GlobalValue::LinkOnceODRLinkage;
791   }
792 
793   if (isa<CXXConstructorDecl>(D) &&
794       cast<CXXConstructorDecl>(D)->isInheritingConstructor() &&
795       Context.getTargetInfo().getCXXABI().isMicrosoft()) {
796     // Our approach to inheriting constructors is fundamentally different from
797     // that used by the MS ABI, so keep our inheriting constructor thunks
798     // internal rather than trying to pick an unambiguous mangling for them.
799     return llvm::GlobalValue::InternalLinkage;
800   }
801 
802   return getLLVMLinkageForDeclarator(D, Linkage, /*isConstantVariable=*/false);
803 }
804 
805 void CodeGenModule::setFunctionDLLStorageClass(GlobalDecl GD, llvm::Function *F) {
806   const auto *FD = cast<FunctionDecl>(GD.getDecl());
807 
808   if (const auto *Dtor = dyn_cast_or_null<CXXDestructorDecl>(FD)) {
809     if (getCXXABI().useThunkForDtorVariant(Dtor, GD.getDtorType())) {
810       // Don't dllexport/import destructor thunks.
811       F->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
812       return;
813     }
814   }
815 
816   if (FD->hasAttr<DLLImportAttr>())
817     F->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass);
818   else if (FD->hasAttr<DLLExportAttr>())
819     F->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass);
820   else
821     F->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass);
822 }
823 
824 llvm::ConstantInt *CodeGenModule::CreateCrossDsoCfiTypeId(llvm::Metadata *MD) {
825   llvm::MDString *MDS = dyn_cast<llvm::MDString>(MD);
826   if (!MDS) return nullptr;
827 
828   return llvm::ConstantInt::get(Int64Ty, llvm::MD5Hash(MDS->getString()));
829 }
830 
831 void CodeGenModule::setFunctionDefinitionAttributes(const FunctionDecl *D,
832                                                     llvm::Function *F) {
833   setNonAliasAttributes(D, F);
834 }
835 
836 void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D,
837                                               const CGFunctionInfo &Info,
838                                               llvm::Function *F) {
839   unsigned CallingConv;
840   AttributeListType AttributeList;
841   ConstructAttributeList(F->getName(), Info, D, AttributeList, CallingConv,
842                          false);
843   F->setAttributes(llvm::AttributeList::get(getLLVMContext(), AttributeList));
844   F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv));
845 }
846 
847 /// Determines whether the language options require us to model
848 /// unwind exceptions.  We treat -fexceptions as mandating this
849 /// except under the fragile ObjC ABI with only ObjC exceptions
850 /// enabled.  This means, for example, that C with -fexceptions
851 /// enables this.
852 static bool hasUnwindExceptions(const LangOptions &LangOpts) {
853   // If exceptions are completely disabled, obviously this is false.
854   if (!LangOpts.Exceptions) return false;
855 
856   // If C++ exceptions are enabled, this is true.
857   if (LangOpts.CXXExceptions) return true;
858 
859   // If ObjC exceptions are enabled, this depends on the ABI.
860   if (LangOpts.ObjCExceptions) {
861     return LangOpts.ObjCRuntime.hasUnwindExceptions();
862   }
863 
864   return true;
865 }
866 
867 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D,
868                                                            llvm::Function *F) {
869   llvm::AttrBuilder B;
870 
871   if (CodeGenOpts.UnwindTables)
872     B.addAttribute(llvm::Attribute::UWTable);
873 
874   if (!hasUnwindExceptions(LangOpts))
875     B.addAttribute(llvm::Attribute::NoUnwind);
876 
877   if (LangOpts.getStackProtector() == LangOptions::SSPOn)
878     B.addAttribute(llvm::Attribute::StackProtect);
879   else if (LangOpts.getStackProtector() == LangOptions::SSPStrong)
880     B.addAttribute(llvm::Attribute::StackProtectStrong);
881   else if (LangOpts.getStackProtector() == LangOptions::SSPReq)
882     B.addAttribute(llvm::Attribute::StackProtectReq);
883 
884   if (!D) {
885     // If we don't have a declaration to control inlining, the function isn't
886     // explicitly marked as alwaysinline for semantic reasons, and inlining is
887     // disabled, mark the function as noinline.
888     if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline) &&
889         CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining)
890       B.addAttribute(llvm::Attribute::NoInline);
891 
892     F->addAttributes(
893         llvm::AttributeList::FunctionIndex,
894         llvm::AttributeList::get(F->getContext(),
895                                  llvm::AttributeList::FunctionIndex, B));
896     return;
897   }
898 
899   if (D->hasAttr<OptimizeNoneAttr>()) {
900     B.addAttribute(llvm::Attribute::OptimizeNone);
901 
902     // OptimizeNone implies noinline; we should not be inlining such functions.
903     B.addAttribute(llvm::Attribute::NoInline);
904     assert(!F->hasFnAttribute(llvm::Attribute::AlwaysInline) &&
905            "OptimizeNone and AlwaysInline on same function!");
906 
907     // We still need to handle naked functions even though optnone subsumes
908     // much of their semantics.
909     if (D->hasAttr<NakedAttr>())
910       B.addAttribute(llvm::Attribute::Naked);
911 
912     // OptimizeNone wins over OptimizeForSize and MinSize.
913     F->removeFnAttr(llvm::Attribute::OptimizeForSize);
914     F->removeFnAttr(llvm::Attribute::MinSize);
915   } else if (D->hasAttr<NakedAttr>()) {
916     // Naked implies noinline: we should not be inlining such functions.
917     B.addAttribute(llvm::Attribute::Naked);
918     B.addAttribute(llvm::Attribute::NoInline);
919   } else if (D->hasAttr<NoDuplicateAttr>()) {
920     B.addAttribute(llvm::Attribute::NoDuplicate);
921   } else if (D->hasAttr<NoInlineAttr>()) {
922     B.addAttribute(llvm::Attribute::NoInline);
923   } else if (D->hasAttr<AlwaysInlineAttr>() &&
924              !F->hasFnAttribute(llvm::Attribute::NoInline)) {
925     // (noinline wins over always_inline, and we can't specify both in IR)
926     B.addAttribute(llvm::Attribute::AlwaysInline);
927   } else if (CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining) {
928     // If we're not inlining, then force everything that isn't always_inline to
929     // carry an explicit noinline attribute.
930     if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline))
931       B.addAttribute(llvm::Attribute::NoInline);
932   } else {
933     // Otherwise, propagate the inline hint attribute and potentially use its
934     // absence to mark things as noinline.
935     if (auto *FD = dyn_cast<FunctionDecl>(D)) {
936       if (any_of(FD->redecls(), [&](const FunctionDecl *Redecl) {
937             return Redecl->isInlineSpecified();
938           })) {
939         B.addAttribute(llvm::Attribute::InlineHint);
940       } else if (CodeGenOpts.getInlining() ==
941                      CodeGenOptions::OnlyHintInlining &&
942                  !FD->isInlined() &&
943                  !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) {
944         B.addAttribute(llvm::Attribute::NoInline);
945       }
946     }
947   }
948 
949   // Add other optimization related attributes if we are optimizing this
950   // function.
951   if (!D->hasAttr<OptimizeNoneAttr>()) {
952     if (D->hasAttr<ColdAttr>()) {
953       B.addAttribute(llvm::Attribute::OptimizeForSize);
954       B.addAttribute(llvm::Attribute::Cold);
955     }
956 
957     if (D->hasAttr<MinSizeAttr>())
958       B.addAttribute(llvm::Attribute::MinSize);
959   }
960 
961   F->addAttributes(llvm::AttributeList::FunctionIndex,
962                    llvm::AttributeList::get(
963                        F->getContext(), llvm::AttributeList::FunctionIndex, B));
964 
965   unsigned alignment = D->getMaxAlignment() / Context.getCharWidth();
966   if (alignment)
967     F->setAlignment(alignment);
968 
969   // Some C++ ABIs require 2-byte alignment for member functions, in order to
970   // reserve a bit for differentiating between virtual and non-virtual member
971   // functions. If the current target's C++ ABI requires this and this is a
972   // member function, set its alignment accordingly.
973   if (getTarget().getCXXABI().areMemberFunctionsAligned()) {
974     if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D))
975       F->setAlignment(2);
976   }
977 
978   // In the cross-dso CFI mode, we want !type attributes on definitions only.
979   if (CodeGenOpts.SanitizeCfiCrossDso)
980     if (auto *FD = dyn_cast<FunctionDecl>(D))
981       CreateFunctionTypeMetadata(FD, F);
982 }
983 
984 void CodeGenModule::SetCommonAttributes(const Decl *D,
985                                         llvm::GlobalValue *GV) {
986   if (const auto *ND = dyn_cast_or_null<NamedDecl>(D))
987     setGlobalVisibility(GV, ND);
988   else
989     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
990 
991   if (D && D->hasAttr<UsedAttr>())
992     addUsedGlobal(GV);
993 }
994 
995 void CodeGenModule::setAliasAttributes(const Decl *D,
996                                        llvm::GlobalValue *GV) {
997   SetCommonAttributes(D, GV);
998 
999   // Process the dllexport attribute based on whether the original definition
1000   // (not necessarily the aliasee) was exported.
1001   if (D->hasAttr<DLLExportAttr>())
1002     GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass);
1003 }
1004 
1005 void CodeGenModule::setNonAliasAttributes(const Decl *D,
1006                                           llvm::GlobalObject *GO) {
1007   SetCommonAttributes(D, GO);
1008 
1009   if (D)
1010     if (const SectionAttr *SA = D->getAttr<SectionAttr>())
1011       GO->setSection(SA->getName());
1012 
1013   getTargetCodeGenInfo().setTargetAttributes(D, GO, *this);
1014 }
1015 
1016 void CodeGenModule::SetInternalFunctionAttributes(const Decl *D,
1017                                                   llvm::Function *F,
1018                                                   const CGFunctionInfo &FI) {
1019   SetLLVMFunctionAttributes(D, FI, F);
1020   SetLLVMFunctionAttributesForDefinition(D, F);
1021 
1022   F->setLinkage(llvm::Function::InternalLinkage);
1023 
1024   setNonAliasAttributes(D, F);
1025 }
1026 
1027 static void setLinkageAndVisibilityForGV(llvm::GlobalValue *GV,
1028                                          const NamedDecl *ND) {
1029   // Set linkage and visibility in case we never see a definition.
1030   LinkageInfo LV = ND->getLinkageAndVisibility();
1031   if (LV.getLinkage() != ExternalLinkage) {
1032     // Don't set internal linkage on declarations.
1033   } else {
1034     if (ND->hasAttr<DLLImportAttr>()) {
1035       GV->setLinkage(llvm::GlobalValue::ExternalLinkage);
1036       GV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass);
1037     } else if (ND->hasAttr<DLLExportAttr>()) {
1038       GV->setLinkage(llvm::GlobalValue::ExternalLinkage);
1039     } else if (ND->hasAttr<WeakAttr>() || ND->isWeakImported()) {
1040       // "extern_weak" is overloaded in LLVM; we probably should have
1041       // separate linkage types for this.
1042       GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage);
1043     }
1044 
1045     // Set visibility on a declaration only if it's explicit.
1046     if (LV.isVisibilityExplicit())
1047       GV->setVisibility(CodeGenModule::GetLLVMVisibility(LV.getVisibility()));
1048   }
1049 }
1050 
1051 void CodeGenModule::CreateFunctionTypeMetadata(const FunctionDecl *FD,
1052                                                llvm::Function *F) {
1053   // Only if we are checking indirect calls.
1054   if (!LangOpts.Sanitize.has(SanitizerKind::CFIICall))
1055     return;
1056 
1057   // Non-static class methods are handled via vtable pointer checks elsewhere.
1058   if (isa<CXXMethodDecl>(FD) && !cast<CXXMethodDecl>(FD)->isStatic())
1059     return;
1060 
1061   // Additionally, if building with cross-DSO support...
1062   if (CodeGenOpts.SanitizeCfiCrossDso) {
1063     // Skip available_externally functions. They won't be codegen'ed in the
1064     // current module anyway.
1065     if (getContext().GetGVALinkageForFunction(FD) == GVA_AvailableExternally)
1066       return;
1067   }
1068 
1069   llvm::Metadata *MD = CreateMetadataIdentifierForType(FD->getType());
1070   F->addTypeMetadata(0, MD);
1071 
1072   // Emit a hash-based bit set entry for cross-DSO calls.
1073   if (CodeGenOpts.SanitizeCfiCrossDso)
1074     if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD))
1075       F->addTypeMetadata(0, llvm::ConstantAsMetadata::get(CrossDsoTypeId));
1076 }
1077 
1078 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD, llvm::Function *F,
1079                                           bool IsIncompleteFunction,
1080                                           bool IsThunk) {
1081   if (llvm::Intrinsic::ID IID = F->getIntrinsicID()) {
1082     // If this is an intrinsic function, set the function's attributes
1083     // to the intrinsic's attributes.
1084     F->setAttributes(llvm::Intrinsic::getAttributes(getLLVMContext(), IID));
1085     return;
1086   }
1087 
1088   const auto *FD = cast<FunctionDecl>(GD.getDecl());
1089 
1090   if (!IsIncompleteFunction)
1091     SetLLVMFunctionAttributes(FD, getTypes().arrangeGlobalDeclaration(GD), F);
1092 
1093   // Add the Returned attribute for "this", except for iOS 5 and earlier
1094   // where substantial code, including the libstdc++ dylib, was compiled with
1095   // GCC and does not actually return "this".
1096   if (!IsThunk && getCXXABI().HasThisReturn(GD) &&
1097       !(getTriple().isiOS() && getTriple().isOSVersionLT(6))) {
1098     assert(!F->arg_empty() &&
1099            F->arg_begin()->getType()
1100              ->canLosslesslyBitCastTo(F->getReturnType()) &&
1101            "unexpected this return");
1102     F->addAttribute(1, llvm::Attribute::Returned);
1103   }
1104 
1105   // Only a few attributes are set on declarations; these may later be
1106   // overridden by a definition.
1107 
1108   setLinkageAndVisibilityForGV(F, FD);
1109 
1110   if (const SectionAttr *SA = FD->getAttr<SectionAttr>())
1111     F->setSection(SA->getName());
1112 
1113   if (FD->isReplaceableGlobalAllocationFunction()) {
1114     // A replaceable global allocation function does not act like a builtin by
1115     // default, only if it is invoked by a new-expression or delete-expression.
1116     F->addAttribute(llvm::AttributeList::FunctionIndex,
1117                     llvm::Attribute::NoBuiltin);
1118 
1119     // A sane operator new returns a non-aliasing pointer.
1120     // FIXME: Also add NonNull attribute to the return value
1121     // for the non-nothrow forms?
1122     auto Kind = FD->getDeclName().getCXXOverloadedOperator();
1123     if (getCodeGenOpts().AssumeSaneOperatorNew &&
1124         (Kind == OO_New || Kind == OO_Array_New))
1125       F->addAttribute(llvm::AttributeList::ReturnIndex,
1126                       llvm::Attribute::NoAlias);
1127   }
1128 
1129   if (isa<CXXConstructorDecl>(FD) || isa<CXXDestructorDecl>(FD))
1130     F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
1131   else if (const auto *MD = dyn_cast<CXXMethodDecl>(FD))
1132     if (MD->isVirtual())
1133       F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
1134 
1135   // Don't emit entries for function declarations in the cross-DSO mode. This
1136   // is handled with better precision by the receiving DSO.
1137   if (!CodeGenOpts.SanitizeCfiCrossDso)
1138     CreateFunctionTypeMetadata(FD, F);
1139 }
1140 
1141 void CodeGenModule::addUsedGlobal(llvm::GlobalValue *GV) {
1142   assert(!GV->isDeclaration() &&
1143          "Only globals with definition can force usage.");
1144   LLVMUsed.emplace_back(GV);
1145 }
1146 
1147 void CodeGenModule::addCompilerUsedGlobal(llvm::GlobalValue *GV) {
1148   assert(!GV->isDeclaration() &&
1149          "Only globals with definition can force usage.");
1150   LLVMCompilerUsed.emplace_back(GV);
1151 }
1152 
1153 static void emitUsed(CodeGenModule &CGM, StringRef Name,
1154                      std::vector<llvm::WeakVH> &List) {
1155   // Don't create llvm.used if there is no need.
1156   if (List.empty())
1157     return;
1158 
1159   // Convert List to what ConstantArray needs.
1160   SmallVector<llvm::Constant*, 8> UsedArray;
1161   UsedArray.resize(List.size());
1162   for (unsigned i = 0, e = List.size(); i != e; ++i) {
1163     UsedArray[i] =
1164         llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(
1165             cast<llvm::Constant>(&*List[i]), CGM.Int8PtrTy);
1166   }
1167 
1168   if (UsedArray.empty())
1169     return;
1170   llvm::ArrayType *ATy = llvm::ArrayType::get(CGM.Int8PtrTy, UsedArray.size());
1171 
1172   auto *GV = new llvm::GlobalVariable(
1173       CGM.getModule(), ATy, false, llvm::GlobalValue::AppendingLinkage,
1174       llvm::ConstantArray::get(ATy, UsedArray), Name);
1175 
1176   GV->setSection("llvm.metadata");
1177 }
1178 
1179 void CodeGenModule::emitLLVMUsed() {
1180   emitUsed(*this, "llvm.used", LLVMUsed);
1181   emitUsed(*this, "llvm.compiler.used", LLVMCompilerUsed);
1182 }
1183 
1184 void CodeGenModule::AppendLinkerOptions(StringRef Opts) {
1185   auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opts);
1186   LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
1187 }
1188 
1189 void CodeGenModule::AddDetectMismatch(StringRef Name, StringRef Value) {
1190   llvm::SmallString<32> Opt;
1191   getTargetCodeGenInfo().getDetectMismatchOption(Name, Value, Opt);
1192   auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt);
1193   LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
1194 }
1195 
1196 void CodeGenModule::AddDependentLib(StringRef Lib) {
1197   llvm::SmallString<24> Opt;
1198   getTargetCodeGenInfo().getDependentLibraryOption(Lib, Opt);
1199   auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt);
1200   LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
1201 }
1202 
1203 /// \brief Add link options implied by the given module, including modules
1204 /// it depends on, using a postorder walk.
1205 static void addLinkOptionsPostorder(CodeGenModule &CGM, Module *Mod,
1206                                     SmallVectorImpl<llvm::Metadata *> &Metadata,
1207                                     llvm::SmallPtrSet<Module *, 16> &Visited) {
1208   // Import this module's parent.
1209   if (Mod->Parent && Visited.insert(Mod->Parent).second) {
1210     addLinkOptionsPostorder(CGM, Mod->Parent, Metadata, Visited);
1211   }
1212 
1213   // Import this module's dependencies.
1214   for (unsigned I = Mod->Imports.size(); I > 0; --I) {
1215     if (Visited.insert(Mod->Imports[I - 1]).second)
1216       addLinkOptionsPostorder(CGM, Mod->Imports[I-1], Metadata, Visited);
1217   }
1218 
1219   // Add linker options to link against the libraries/frameworks
1220   // described by this module.
1221   llvm::LLVMContext &Context = CGM.getLLVMContext();
1222   for (unsigned I = Mod->LinkLibraries.size(); I > 0; --I) {
1223     // Link against a framework.  Frameworks are currently Darwin only, so we
1224     // don't to ask TargetCodeGenInfo for the spelling of the linker option.
1225     if (Mod->LinkLibraries[I-1].IsFramework) {
1226       llvm::Metadata *Args[2] = {
1227           llvm::MDString::get(Context, "-framework"),
1228           llvm::MDString::get(Context, Mod->LinkLibraries[I - 1].Library)};
1229 
1230       Metadata.push_back(llvm::MDNode::get(Context, Args));
1231       continue;
1232     }
1233 
1234     // Link against a library.
1235     llvm::SmallString<24> Opt;
1236     CGM.getTargetCodeGenInfo().getDependentLibraryOption(
1237       Mod->LinkLibraries[I-1].Library, Opt);
1238     auto *OptString = llvm::MDString::get(Context, Opt);
1239     Metadata.push_back(llvm::MDNode::get(Context, OptString));
1240   }
1241 }
1242 
1243 void CodeGenModule::EmitModuleLinkOptions() {
1244   // Collect the set of all of the modules we want to visit to emit link
1245   // options, which is essentially the imported modules and all of their
1246   // non-explicit child modules.
1247   llvm::SetVector<clang::Module *> LinkModules;
1248   llvm::SmallPtrSet<clang::Module *, 16> Visited;
1249   SmallVector<clang::Module *, 16> Stack;
1250 
1251   // Seed the stack with imported modules.
1252   for (Module *M : ImportedModules) {
1253     // Do not add any link flags when an implementation TU of a module imports
1254     // a header of that same module.
1255     if (M->getTopLevelModuleName() == getLangOpts().CurrentModule &&
1256         !getLangOpts().isCompilingModule())
1257       continue;
1258     if (Visited.insert(M).second)
1259       Stack.push_back(M);
1260   }
1261 
1262   // Find all of the modules to import, making a little effort to prune
1263   // non-leaf modules.
1264   while (!Stack.empty()) {
1265     clang::Module *Mod = Stack.pop_back_val();
1266 
1267     bool AnyChildren = false;
1268 
1269     // Visit the submodules of this module.
1270     for (clang::Module::submodule_iterator Sub = Mod->submodule_begin(),
1271                                         SubEnd = Mod->submodule_end();
1272          Sub != SubEnd; ++Sub) {
1273       // Skip explicit children; they need to be explicitly imported to be
1274       // linked against.
1275       if ((*Sub)->IsExplicit)
1276         continue;
1277 
1278       if (Visited.insert(*Sub).second) {
1279         Stack.push_back(*Sub);
1280         AnyChildren = true;
1281       }
1282     }
1283 
1284     // We didn't find any children, so add this module to the list of
1285     // modules to link against.
1286     if (!AnyChildren) {
1287       LinkModules.insert(Mod);
1288     }
1289   }
1290 
1291   // Add link options for all of the imported modules in reverse topological
1292   // order.  We don't do anything to try to order import link flags with respect
1293   // to linker options inserted by things like #pragma comment().
1294   SmallVector<llvm::Metadata *, 16> MetadataArgs;
1295   Visited.clear();
1296   for (Module *M : LinkModules)
1297     if (Visited.insert(M).second)
1298       addLinkOptionsPostorder(*this, M, MetadataArgs, Visited);
1299   std::reverse(MetadataArgs.begin(), MetadataArgs.end());
1300   LinkerOptionsMetadata.append(MetadataArgs.begin(), MetadataArgs.end());
1301 
1302   // Add the linker options metadata flag.
1303   getModule().addModuleFlag(llvm::Module::AppendUnique, "Linker Options",
1304                             llvm::MDNode::get(getLLVMContext(),
1305                                               LinkerOptionsMetadata));
1306 }
1307 
1308 void CodeGenModule::EmitDeferred() {
1309   // Emit code for any potentially referenced deferred decls.  Since a
1310   // previously unused static decl may become used during the generation of code
1311   // for a static function, iterate until no changes are made.
1312 
1313   if (!DeferredVTables.empty()) {
1314     EmitDeferredVTables();
1315 
1316     // Emitting a vtable doesn't directly cause more vtables to
1317     // become deferred, although it can cause functions to be
1318     // emitted that then need those vtables.
1319     assert(DeferredVTables.empty());
1320   }
1321 
1322   // Stop if we're out of both deferred vtables and deferred declarations.
1323   if (DeferredDeclsToEmit.empty())
1324     return;
1325 
1326   // Grab the list of decls to emit. If EmitGlobalDefinition schedules more
1327   // work, it will not interfere with this.
1328   std::vector<DeferredGlobal> CurDeclsToEmit;
1329   CurDeclsToEmit.swap(DeferredDeclsToEmit);
1330 
1331   for (DeferredGlobal &G : CurDeclsToEmit) {
1332     GlobalDecl D = G.GD;
1333     G.GV = nullptr;
1334 
1335     // We should call GetAddrOfGlobal with IsForDefinition set to true in order
1336     // to get GlobalValue with exactly the type we need, not something that
1337     // might had been created for another decl with the same mangled name but
1338     // different type.
1339     llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>(
1340         GetAddrOfGlobal(D, ForDefinition));
1341 
1342     // In case of different address spaces, we may still get a cast, even with
1343     // IsForDefinition equal to true. Query mangled names table to get
1344     // GlobalValue.
1345     if (!GV)
1346       GV = GetGlobalValue(getMangledName(D));
1347 
1348     // Make sure GetGlobalValue returned non-null.
1349     assert(GV);
1350 
1351     // Check to see if we've already emitted this.  This is necessary
1352     // for a couple of reasons: first, decls can end up in the
1353     // deferred-decls queue multiple times, and second, decls can end
1354     // up with definitions in unusual ways (e.g. by an extern inline
1355     // function acquiring a strong function redefinition).  Just
1356     // ignore these cases.
1357     if (!GV->isDeclaration())
1358       continue;
1359 
1360     // Otherwise, emit the definition and move on to the next one.
1361     EmitGlobalDefinition(D, GV);
1362 
1363     // If we found out that we need to emit more decls, do that recursively.
1364     // This has the advantage that the decls are emitted in a DFS and related
1365     // ones are close together, which is convenient for testing.
1366     if (!DeferredVTables.empty() || !DeferredDeclsToEmit.empty()) {
1367       EmitDeferred();
1368       assert(DeferredVTables.empty() && DeferredDeclsToEmit.empty());
1369     }
1370   }
1371 }
1372 
1373 void CodeGenModule::EmitGlobalAnnotations() {
1374   if (Annotations.empty())
1375     return;
1376 
1377   // Create a new global variable for the ConstantStruct in the Module.
1378   llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get(
1379     Annotations[0]->getType(), Annotations.size()), Annotations);
1380   auto *gv = new llvm::GlobalVariable(getModule(), Array->getType(), false,
1381                                       llvm::GlobalValue::AppendingLinkage,
1382                                       Array, "llvm.global.annotations");
1383   gv->setSection(AnnotationSection);
1384 }
1385 
1386 llvm::Constant *CodeGenModule::EmitAnnotationString(StringRef Str) {
1387   llvm::Constant *&AStr = AnnotationStrings[Str];
1388   if (AStr)
1389     return AStr;
1390 
1391   // Not found yet, create a new global.
1392   llvm::Constant *s = llvm::ConstantDataArray::getString(getLLVMContext(), Str);
1393   auto *gv =
1394       new llvm::GlobalVariable(getModule(), s->getType(), true,
1395                                llvm::GlobalValue::PrivateLinkage, s, ".str");
1396   gv->setSection(AnnotationSection);
1397   gv->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
1398   AStr = gv;
1399   return gv;
1400 }
1401 
1402 llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) {
1403   SourceManager &SM = getContext().getSourceManager();
1404   PresumedLoc PLoc = SM.getPresumedLoc(Loc);
1405   if (PLoc.isValid())
1406     return EmitAnnotationString(PLoc.getFilename());
1407   return EmitAnnotationString(SM.getBufferName(Loc));
1408 }
1409 
1410 llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) {
1411   SourceManager &SM = getContext().getSourceManager();
1412   PresumedLoc PLoc = SM.getPresumedLoc(L);
1413   unsigned LineNo = PLoc.isValid() ? PLoc.getLine() :
1414     SM.getExpansionLineNumber(L);
1415   return llvm::ConstantInt::get(Int32Ty, LineNo);
1416 }
1417 
1418 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV,
1419                                                 const AnnotateAttr *AA,
1420                                                 SourceLocation L) {
1421   // Get the globals for file name, annotation, and the line number.
1422   llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()),
1423                  *UnitGV = EmitAnnotationUnit(L),
1424                  *LineNoCst = EmitAnnotationLineNo(L);
1425 
1426   // Create the ConstantStruct for the global annotation.
1427   llvm::Constant *Fields[4] = {
1428     llvm::ConstantExpr::getBitCast(GV, Int8PtrTy),
1429     llvm::ConstantExpr::getBitCast(AnnoGV, Int8PtrTy),
1430     llvm::ConstantExpr::getBitCast(UnitGV, Int8PtrTy),
1431     LineNoCst
1432   };
1433   return llvm::ConstantStruct::getAnon(Fields);
1434 }
1435 
1436 void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D,
1437                                          llvm::GlobalValue *GV) {
1438   assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
1439   // Get the struct elements for these annotations.
1440   for (const auto *I : D->specific_attrs<AnnotateAttr>())
1441     Annotations.push_back(EmitAnnotateAttr(GV, I, D->getLocation()));
1442 }
1443 
1444 bool CodeGenModule::isInSanitizerBlacklist(llvm::Function *Fn,
1445                                            SourceLocation Loc) const {
1446   const auto &SanitizerBL = getContext().getSanitizerBlacklist();
1447   // Blacklist by function name.
1448   if (SanitizerBL.isBlacklistedFunction(Fn->getName()))
1449     return true;
1450   // Blacklist by location.
1451   if (Loc.isValid())
1452     return SanitizerBL.isBlacklistedLocation(Loc);
1453   // If location is unknown, this may be a compiler-generated function. Assume
1454   // it's located in the main file.
1455   auto &SM = Context.getSourceManager();
1456   if (const auto *MainFile = SM.getFileEntryForID(SM.getMainFileID())) {
1457     return SanitizerBL.isBlacklistedFile(MainFile->getName());
1458   }
1459   return false;
1460 }
1461 
1462 bool CodeGenModule::isInSanitizerBlacklist(llvm::GlobalVariable *GV,
1463                                            SourceLocation Loc, QualType Ty,
1464                                            StringRef Category) const {
1465   // For now globals can be blacklisted only in ASan and KASan.
1466   if (!LangOpts.Sanitize.hasOneOf(
1467           SanitizerKind::Address | SanitizerKind::KernelAddress))
1468     return false;
1469   const auto &SanitizerBL = getContext().getSanitizerBlacklist();
1470   if (SanitizerBL.isBlacklistedGlobal(GV->getName(), Category))
1471     return true;
1472   if (SanitizerBL.isBlacklistedLocation(Loc, Category))
1473     return true;
1474   // Check global type.
1475   if (!Ty.isNull()) {
1476     // Drill down the array types: if global variable of a fixed type is
1477     // blacklisted, we also don't instrument arrays of them.
1478     while (auto AT = dyn_cast<ArrayType>(Ty.getTypePtr()))
1479       Ty = AT->getElementType();
1480     Ty = Ty.getCanonicalType().getUnqualifiedType();
1481     // We allow to blacklist only record types (classes, structs etc.)
1482     if (Ty->isRecordType()) {
1483       std::string TypeStr = Ty.getAsString(getContext().getPrintingPolicy());
1484       if (SanitizerBL.isBlacklistedType(TypeStr, Category))
1485         return true;
1486     }
1487   }
1488   return false;
1489 }
1490 
1491 bool CodeGenModule::imbueXRayAttrs(llvm::Function *Fn, SourceLocation Loc,
1492                                    StringRef Category) const {
1493   if (!LangOpts.XRayInstrument)
1494     return false;
1495   const auto &XRayFilter = getContext().getXRayFilter();
1496   using ImbueAttr = XRayFunctionFilter::ImbueAttribute;
1497   auto Attr = XRayFunctionFilter::ImbueAttribute::NONE;
1498   if (Loc.isValid())
1499     Attr = XRayFilter.shouldImbueLocation(Loc, Category);
1500   if (Attr == ImbueAttr::NONE)
1501     Attr = XRayFilter.shouldImbueFunction(Fn->getName());
1502   switch (Attr) {
1503   case ImbueAttr::NONE:
1504     return false;
1505   case ImbueAttr::ALWAYS:
1506     Fn->addFnAttr("function-instrument", "xray-always");
1507     break;
1508   case ImbueAttr::NEVER:
1509     Fn->addFnAttr("function-instrument", "xray-never");
1510     break;
1511   }
1512   return true;
1513 }
1514 
1515 bool CodeGenModule::MustBeEmitted(const ValueDecl *Global) {
1516   // Never defer when EmitAllDecls is specified.
1517   if (LangOpts.EmitAllDecls)
1518     return true;
1519 
1520   return getContext().DeclMustBeEmitted(Global);
1521 }
1522 
1523 bool CodeGenModule::MayBeEmittedEagerly(const ValueDecl *Global) {
1524   if (const auto *FD = dyn_cast<FunctionDecl>(Global))
1525     if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
1526       // Implicit template instantiations may change linkage if they are later
1527       // explicitly instantiated, so they should not be emitted eagerly.
1528       return false;
1529   if (const auto *VD = dyn_cast<VarDecl>(Global))
1530     if (Context.getInlineVariableDefinitionKind(VD) ==
1531         ASTContext::InlineVariableDefinitionKind::WeakUnknown)
1532       // A definition of an inline constexpr static data member may change
1533       // linkage later if it's redeclared outside the class.
1534       return false;
1535   // If OpenMP is enabled and threadprivates must be generated like TLS, delay
1536   // codegen for global variables, because they may be marked as threadprivate.
1537   if (LangOpts.OpenMP && LangOpts.OpenMPUseTLS &&
1538       getContext().getTargetInfo().isTLSSupported() && isa<VarDecl>(Global))
1539     return false;
1540 
1541   return true;
1542 }
1543 
1544 ConstantAddress CodeGenModule::GetAddrOfUuidDescriptor(
1545     const CXXUuidofExpr* E) {
1546   // Sema has verified that IIDSource has a __declspec(uuid()), and that its
1547   // well-formed.
1548   StringRef Uuid = E->getUuidStr();
1549   std::string Name = "_GUID_" + Uuid.lower();
1550   std::replace(Name.begin(), Name.end(), '-', '_');
1551 
1552   // The UUID descriptor should be pointer aligned.
1553   CharUnits Alignment = CharUnits::fromQuantity(PointerAlignInBytes);
1554 
1555   // Look for an existing global.
1556   if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name))
1557     return ConstantAddress(GV, Alignment);
1558 
1559   llvm::Constant *Init = EmitUuidofInitializer(Uuid);
1560   assert(Init && "failed to initialize as constant");
1561 
1562   auto *GV = new llvm::GlobalVariable(
1563       getModule(), Init->getType(),
1564       /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name);
1565   if (supportsCOMDAT())
1566     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
1567   return ConstantAddress(GV, Alignment);
1568 }
1569 
1570 ConstantAddress CodeGenModule::GetWeakRefReference(const ValueDecl *VD) {
1571   const AliasAttr *AA = VD->getAttr<AliasAttr>();
1572   assert(AA && "No alias?");
1573 
1574   CharUnits Alignment = getContext().getDeclAlign(VD);
1575   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType());
1576 
1577   // See if there is already something with the target's name in the module.
1578   llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee());
1579   if (Entry) {
1580     unsigned AS = getContext().getTargetAddressSpace(VD->getType());
1581     auto Ptr = llvm::ConstantExpr::getBitCast(Entry, DeclTy->getPointerTo(AS));
1582     return ConstantAddress(Ptr, Alignment);
1583   }
1584 
1585   llvm::Constant *Aliasee;
1586   if (isa<llvm::FunctionType>(DeclTy))
1587     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy,
1588                                       GlobalDecl(cast<FunctionDecl>(VD)),
1589                                       /*ForVTable=*/false);
1590   else
1591     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
1592                                     llvm::PointerType::getUnqual(DeclTy),
1593                                     nullptr);
1594 
1595   auto *F = cast<llvm::GlobalValue>(Aliasee);
1596   F->setLinkage(llvm::Function::ExternalWeakLinkage);
1597   WeakRefReferences.insert(F);
1598 
1599   return ConstantAddress(Aliasee, Alignment);
1600 }
1601 
1602 void CodeGenModule::EmitGlobal(GlobalDecl GD) {
1603   const auto *Global = cast<ValueDecl>(GD.getDecl());
1604 
1605   // Weak references don't produce any output by themselves.
1606   if (Global->hasAttr<WeakRefAttr>())
1607     return;
1608 
1609   // If this is an alias definition (which otherwise looks like a declaration)
1610   // emit it now.
1611   if (Global->hasAttr<AliasAttr>())
1612     return EmitAliasDefinition(GD);
1613 
1614   // IFunc like an alias whose value is resolved at runtime by calling resolver.
1615   if (Global->hasAttr<IFuncAttr>())
1616     return emitIFuncDefinition(GD);
1617 
1618   // If this is CUDA, be selective about which declarations we emit.
1619   if (LangOpts.CUDA) {
1620     if (LangOpts.CUDAIsDevice) {
1621       if (!Global->hasAttr<CUDADeviceAttr>() &&
1622           !Global->hasAttr<CUDAGlobalAttr>() &&
1623           !Global->hasAttr<CUDAConstantAttr>() &&
1624           !Global->hasAttr<CUDASharedAttr>())
1625         return;
1626     } else {
1627       // We need to emit host-side 'shadows' for all global
1628       // device-side variables because the CUDA runtime needs their
1629       // size and host-side address in order to provide access to
1630       // their device-side incarnations.
1631 
1632       // So device-only functions are the only things we skip.
1633       if (isa<FunctionDecl>(Global) && !Global->hasAttr<CUDAHostAttr>() &&
1634           Global->hasAttr<CUDADeviceAttr>())
1635         return;
1636 
1637       assert((isa<FunctionDecl>(Global) || isa<VarDecl>(Global)) &&
1638              "Expected Variable or Function");
1639     }
1640   }
1641 
1642   if (LangOpts.OpenMP) {
1643     // If this is OpenMP device, check if it is legal to emit this global
1644     // normally.
1645     if (OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(GD))
1646       return;
1647     if (auto *DRD = dyn_cast<OMPDeclareReductionDecl>(Global)) {
1648       if (MustBeEmitted(Global))
1649         EmitOMPDeclareReduction(DRD);
1650       return;
1651     }
1652   }
1653 
1654   // Ignore declarations, they will be emitted on their first use.
1655   if (const auto *FD = dyn_cast<FunctionDecl>(Global)) {
1656     // Forward declarations are emitted lazily on first use.
1657     if (!FD->doesThisDeclarationHaveABody()) {
1658       if (!FD->doesDeclarationForceExternallyVisibleDefinition())
1659         return;
1660 
1661       StringRef MangledName = getMangledName(GD);
1662 
1663       // Compute the function info and LLVM type.
1664       const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
1665       llvm::Type *Ty = getTypes().GetFunctionType(FI);
1666 
1667       GetOrCreateLLVMFunction(MangledName, Ty, GD, /*ForVTable=*/false,
1668                               /*DontDefer=*/false);
1669       return;
1670     }
1671   } else {
1672     const auto *VD = cast<VarDecl>(Global);
1673     assert(VD->isFileVarDecl() && "Cannot emit local var decl as global.");
1674     // We need to emit device-side global CUDA variables even if a
1675     // variable does not have a definition -- we still need to define
1676     // host-side shadow for it.
1677     bool MustEmitForCuda = LangOpts.CUDA && !LangOpts.CUDAIsDevice &&
1678                            !VD->hasDefinition() &&
1679                            (VD->hasAttr<CUDAConstantAttr>() ||
1680                             VD->hasAttr<CUDADeviceAttr>());
1681     if (!MustEmitForCuda &&
1682         VD->isThisDeclarationADefinition() != VarDecl::Definition &&
1683         !Context.isMSStaticDataMemberInlineDefinition(VD)) {
1684       // If this declaration may have caused an inline variable definition to
1685       // change linkage, make sure that it's emitted.
1686       if (Context.getInlineVariableDefinitionKind(VD) ==
1687           ASTContext::InlineVariableDefinitionKind::Strong)
1688         GetAddrOfGlobalVar(VD);
1689       return;
1690     }
1691   }
1692 
1693   // Defer code generation to first use when possible, e.g. if this is an inline
1694   // function. If the global must always be emitted, do it eagerly if possible
1695   // to benefit from cache locality.
1696   if (MustBeEmitted(Global) && MayBeEmittedEagerly(Global)) {
1697     // Emit the definition if it can't be deferred.
1698     EmitGlobalDefinition(GD);
1699     return;
1700   }
1701 
1702   // If we're deferring emission of a C++ variable with an
1703   // initializer, remember the order in which it appeared in the file.
1704   if (getLangOpts().CPlusPlus && isa<VarDecl>(Global) &&
1705       cast<VarDecl>(Global)->hasInit()) {
1706     DelayedCXXInitPosition[Global] = CXXGlobalInits.size();
1707     CXXGlobalInits.push_back(nullptr);
1708   }
1709 
1710   StringRef MangledName = getMangledName(GD);
1711   if (llvm::GlobalValue *GV = GetGlobalValue(MangledName)) {
1712     // The value has already been used and should therefore be emitted.
1713     addDeferredDeclToEmit(GV, GD);
1714   } else if (MustBeEmitted(Global)) {
1715     // The value must be emitted, but cannot be emitted eagerly.
1716     assert(!MayBeEmittedEagerly(Global));
1717     addDeferredDeclToEmit(/*GV=*/nullptr, GD);
1718   } else {
1719     // Otherwise, remember that we saw a deferred decl with this name.  The
1720     // first use of the mangled name will cause it to move into
1721     // DeferredDeclsToEmit.
1722     DeferredDecls[MangledName] = GD;
1723   }
1724 }
1725 
1726 // Check if T is a class type with a destructor that's not dllimport.
1727 static bool HasNonDllImportDtor(QualType T) {
1728   if (const auto *RT = T->getBaseElementTypeUnsafe()->getAs<RecordType>())
1729     if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl()))
1730       if (RD->getDestructor() && !RD->getDestructor()->hasAttr<DLLImportAttr>())
1731         return true;
1732 
1733   return false;
1734 }
1735 
1736 namespace {
1737   struct FunctionIsDirectlyRecursive :
1738     public RecursiveASTVisitor<FunctionIsDirectlyRecursive> {
1739     const StringRef Name;
1740     const Builtin::Context &BI;
1741     bool Result;
1742     FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C) :
1743       Name(N), BI(C), Result(false) {
1744     }
1745     typedef RecursiveASTVisitor<FunctionIsDirectlyRecursive> Base;
1746 
1747     bool TraverseCallExpr(CallExpr *E) {
1748       const FunctionDecl *FD = E->getDirectCallee();
1749       if (!FD)
1750         return true;
1751       AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
1752       if (Attr && Name == Attr->getLabel()) {
1753         Result = true;
1754         return false;
1755       }
1756       unsigned BuiltinID = FD->getBuiltinID();
1757       if (!BuiltinID || !BI.isLibFunction(BuiltinID))
1758         return true;
1759       StringRef BuiltinName = BI.getName(BuiltinID);
1760       if (BuiltinName.startswith("__builtin_") &&
1761           Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) {
1762         Result = true;
1763         return false;
1764       }
1765       return true;
1766     }
1767   };
1768 
1769   // Make sure we're not referencing non-imported vars or functions.
1770   struct DLLImportFunctionVisitor
1771       : public RecursiveASTVisitor<DLLImportFunctionVisitor> {
1772     bool SafeToInline = true;
1773 
1774     bool shouldVisitImplicitCode() const { return true; }
1775 
1776     bool VisitVarDecl(VarDecl *VD) {
1777       if (VD->getTLSKind()) {
1778         // A thread-local variable cannot be imported.
1779         SafeToInline = false;
1780         return SafeToInline;
1781       }
1782 
1783       // A variable definition might imply a destructor call.
1784       if (VD->isThisDeclarationADefinition())
1785         SafeToInline = !HasNonDllImportDtor(VD->getType());
1786 
1787       return SafeToInline;
1788     }
1789 
1790     bool VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) {
1791       if (const auto *D = E->getTemporary()->getDestructor())
1792         SafeToInline = D->hasAttr<DLLImportAttr>();
1793       return SafeToInline;
1794     }
1795 
1796     bool VisitDeclRefExpr(DeclRefExpr *E) {
1797       ValueDecl *VD = E->getDecl();
1798       if (isa<FunctionDecl>(VD))
1799         SafeToInline = VD->hasAttr<DLLImportAttr>();
1800       else if (VarDecl *V = dyn_cast<VarDecl>(VD))
1801         SafeToInline = !V->hasGlobalStorage() || V->hasAttr<DLLImportAttr>();
1802       return SafeToInline;
1803     }
1804 
1805     bool VisitCXXConstructExpr(CXXConstructExpr *E) {
1806       SafeToInline = E->getConstructor()->hasAttr<DLLImportAttr>();
1807       return SafeToInline;
1808     }
1809 
1810     bool VisitCXXMemberCallExpr(CXXMemberCallExpr *E) {
1811       CXXMethodDecl *M = E->getMethodDecl();
1812       if (!M) {
1813         // Call through a pointer to member function. This is safe to inline.
1814         SafeToInline = true;
1815       } else {
1816         SafeToInline = M->hasAttr<DLLImportAttr>();
1817       }
1818       return SafeToInline;
1819     }
1820 
1821     bool VisitCXXDeleteExpr(CXXDeleteExpr *E) {
1822       SafeToInline = E->getOperatorDelete()->hasAttr<DLLImportAttr>();
1823       return SafeToInline;
1824     }
1825 
1826     bool VisitCXXNewExpr(CXXNewExpr *E) {
1827       SafeToInline = E->getOperatorNew()->hasAttr<DLLImportAttr>();
1828       return SafeToInline;
1829     }
1830   };
1831 }
1832 
1833 // isTriviallyRecursive - Check if this function calls another
1834 // decl that, because of the asm attribute or the other decl being a builtin,
1835 // ends up pointing to itself.
1836 bool
1837 CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) {
1838   StringRef Name;
1839   if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) {
1840     // asm labels are a special kind of mangling we have to support.
1841     AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
1842     if (!Attr)
1843       return false;
1844     Name = Attr->getLabel();
1845   } else {
1846     Name = FD->getName();
1847   }
1848 
1849   FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo);
1850   Walker.TraverseFunctionDecl(const_cast<FunctionDecl*>(FD));
1851   return Walker.Result;
1852 }
1853 
1854 bool CodeGenModule::shouldEmitFunction(GlobalDecl GD) {
1855   if (getFunctionLinkage(GD) != llvm::Function::AvailableExternallyLinkage)
1856     return true;
1857   const auto *F = cast<FunctionDecl>(GD.getDecl());
1858   if (CodeGenOpts.OptimizationLevel == 0 && !F->hasAttr<AlwaysInlineAttr>())
1859     return false;
1860 
1861   if (F->hasAttr<DLLImportAttr>()) {
1862     // Check whether it would be safe to inline this dllimport function.
1863     DLLImportFunctionVisitor Visitor;
1864     Visitor.TraverseFunctionDecl(const_cast<FunctionDecl*>(F));
1865     if (!Visitor.SafeToInline)
1866       return false;
1867 
1868     if (const CXXDestructorDecl *Dtor = dyn_cast<CXXDestructorDecl>(F)) {
1869       // Implicit destructor invocations aren't captured in the AST, so the
1870       // check above can't see them. Check for them manually here.
1871       for (const Decl *Member : Dtor->getParent()->decls())
1872         if (isa<FieldDecl>(Member))
1873           if (HasNonDllImportDtor(cast<FieldDecl>(Member)->getType()))
1874             return false;
1875       for (const CXXBaseSpecifier &B : Dtor->getParent()->bases())
1876         if (HasNonDllImportDtor(B.getType()))
1877           return false;
1878     }
1879   }
1880 
1881   // PR9614. Avoid cases where the source code is lying to us. An available
1882   // externally function should have an equivalent function somewhere else,
1883   // but a function that calls itself is clearly not equivalent to the real
1884   // implementation.
1885   // This happens in glibc's btowc and in some configure checks.
1886   return !isTriviallyRecursive(F);
1887 }
1888 
1889 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD, llvm::GlobalValue *GV) {
1890   const auto *D = cast<ValueDecl>(GD.getDecl());
1891 
1892   PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(),
1893                                  Context.getSourceManager(),
1894                                  "Generating code for declaration");
1895 
1896   if (isa<FunctionDecl>(D)) {
1897     // At -O0, don't generate IR for functions with available_externally
1898     // linkage.
1899     if (!shouldEmitFunction(GD))
1900       return;
1901 
1902     if (const auto *Method = dyn_cast<CXXMethodDecl>(D)) {
1903       // Make sure to emit the definition(s) before we emit the thunks.
1904       // This is necessary for the generation of certain thunks.
1905       if (const auto *CD = dyn_cast<CXXConstructorDecl>(Method))
1906         ABI->emitCXXStructor(CD, getFromCtorType(GD.getCtorType()));
1907       else if (const auto *DD = dyn_cast<CXXDestructorDecl>(Method))
1908         ABI->emitCXXStructor(DD, getFromDtorType(GD.getDtorType()));
1909       else
1910         EmitGlobalFunctionDefinition(GD, GV);
1911 
1912       if (Method->isVirtual())
1913         getVTables().EmitThunks(GD);
1914 
1915       return;
1916     }
1917 
1918     return EmitGlobalFunctionDefinition(GD, GV);
1919   }
1920 
1921   if (const auto *VD = dyn_cast<VarDecl>(D))
1922     return EmitGlobalVarDefinition(VD, !VD->hasDefinition());
1923 
1924   llvm_unreachable("Invalid argument to EmitGlobalDefinition()");
1925 }
1926 
1927 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
1928                                                       llvm::Function *NewFn);
1929 
1930 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the
1931 /// module, create and return an llvm Function with the specified type. If there
1932 /// is something in the module with the specified name, return it potentially
1933 /// bitcasted to the right type.
1934 ///
1935 /// If D is non-null, it specifies a decl that correspond to this.  This is used
1936 /// to set the attributes on the function when it is first created.
1937 llvm::Constant *CodeGenModule::GetOrCreateLLVMFunction(
1938     StringRef MangledName, llvm::Type *Ty, GlobalDecl GD, bool ForVTable,
1939     bool DontDefer, bool IsThunk, llvm::AttributeList ExtraAttrs,
1940     ForDefinition_t IsForDefinition) {
1941   const Decl *D = GD.getDecl();
1942 
1943   // Lookup the entry, lazily creating it if necessary.
1944   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
1945   if (Entry) {
1946     if (WeakRefReferences.erase(Entry)) {
1947       const FunctionDecl *FD = cast_or_null<FunctionDecl>(D);
1948       if (FD && !FD->hasAttr<WeakAttr>())
1949         Entry->setLinkage(llvm::Function::ExternalLinkage);
1950     }
1951 
1952     // Handle dropped DLL attributes.
1953     if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>())
1954       Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
1955 
1956     // If there are two attempts to define the same mangled name, issue an
1957     // error.
1958     if (IsForDefinition && !Entry->isDeclaration()) {
1959       GlobalDecl OtherGD;
1960       // Check that GD is not yet in DiagnosedConflictingDefinitions is required
1961       // to make sure that we issue an error only once.
1962       if (lookupRepresentativeDecl(MangledName, OtherGD) &&
1963           (GD.getCanonicalDecl().getDecl() !=
1964            OtherGD.getCanonicalDecl().getDecl()) &&
1965           DiagnosedConflictingDefinitions.insert(GD).second) {
1966         getDiags().Report(D->getLocation(),
1967                           diag::err_duplicate_mangled_name);
1968         getDiags().Report(OtherGD.getDecl()->getLocation(),
1969                           diag::note_previous_definition);
1970       }
1971     }
1972 
1973     if ((isa<llvm::Function>(Entry) || isa<llvm::GlobalAlias>(Entry)) &&
1974         (Entry->getType()->getElementType() == Ty)) {
1975       return Entry;
1976     }
1977 
1978     // Make sure the result is of the correct type.
1979     // (If function is requested for a definition, we always need to create a new
1980     // function, not just return a bitcast.)
1981     if (!IsForDefinition)
1982       return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo());
1983   }
1984 
1985   // This function doesn't have a complete type (for example, the return
1986   // type is an incomplete struct). Use a fake type instead, and make
1987   // sure not to try to set attributes.
1988   bool IsIncompleteFunction = false;
1989 
1990   llvm::FunctionType *FTy;
1991   if (isa<llvm::FunctionType>(Ty)) {
1992     FTy = cast<llvm::FunctionType>(Ty);
1993   } else {
1994     FTy = llvm::FunctionType::get(VoidTy, false);
1995     IsIncompleteFunction = true;
1996   }
1997 
1998   llvm::Function *F =
1999       llvm::Function::Create(FTy, llvm::Function::ExternalLinkage,
2000                              Entry ? StringRef() : MangledName, &getModule());
2001 
2002   // If we already created a function with the same mangled name (but different
2003   // type) before, take its name and add it to the list of functions to be
2004   // replaced with F at the end of CodeGen.
2005   //
2006   // This happens if there is a prototype for a function (e.g. "int f()") and
2007   // then a definition of a different type (e.g. "int f(int x)").
2008   if (Entry) {
2009     F->takeName(Entry);
2010 
2011     // This might be an implementation of a function without a prototype, in
2012     // which case, try to do special replacement of calls which match the new
2013     // prototype.  The really key thing here is that we also potentially drop
2014     // arguments from the call site so as to make a direct call, which makes the
2015     // inliner happier and suppresses a number of optimizer warnings (!) about
2016     // dropping arguments.
2017     if (!Entry->use_empty()) {
2018       ReplaceUsesOfNonProtoTypeWithRealFunction(Entry, F);
2019       Entry->removeDeadConstantUsers();
2020     }
2021 
2022     llvm::Constant *BC = llvm::ConstantExpr::getBitCast(
2023         F, Entry->getType()->getElementType()->getPointerTo());
2024     addGlobalValReplacement(Entry, BC);
2025   }
2026 
2027   assert(F->getName() == MangledName && "name was uniqued!");
2028   if (D)
2029     SetFunctionAttributes(GD, F, IsIncompleteFunction, IsThunk);
2030   if (ExtraAttrs.hasAttributes(llvm::AttributeList::FunctionIndex)) {
2031     llvm::AttrBuilder B(ExtraAttrs, llvm::AttributeList::FunctionIndex);
2032     F->addAttributes(llvm::AttributeList::FunctionIndex,
2033                      llvm::AttributeList::get(
2034                          VMContext, llvm::AttributeList::FunctionIndex, B));
2035   }
2036 
2037   if (!DontDefer) {
2038     // All MSVC dtors other than the base dtor are linkonce_odr and delegate to
2039     // each other bottoming out with the base dtor.  Therefore we emit non-base
2040     // dtors on usage, even if there is no dtor definition in the TU.
2041     if (D && isa<CXXDestructorDecl>(D) &&
2042         getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D),
2043                                            GD.getDtorType()))
2044       addDeferredDeclToEmit(F, GD);
2045 
2046     // This is the first use or definition of a mangled name.  If there is a
2047     // deferred decl with this name, remember that we need to emit it at the end
2048     // of the file.
2049     auto DDI = DeferredDecls.find(MangledName);
2050     if (DDI != DeferredDecls.end()) {
2051       // Move the potentially referenced deferred decl to the
2052       // DeferredDeclsToEmit list, and remove it from DeferredDecls (since we
2053       // don't need it anymore).
2054       addDeferredDeclToEmit(F, DDI->second);
2055       DeferredDecls.erase(DDI);
2056 
2057       // Otherwise, there are cases we have to worry about where we're
2058       // using a declaration for which we must emit a definition but where
2059       // we might not find a top-level definition:
2060       //   - member functions defined inline in their classes
2061       //   - friend functions defined inline in some class
2062       //   - special member functions with implicit definitions
2063       // If we ever change our AST traversal to walk into class methods,
2064       // this will be unnecessary.
2065       //
2066       // We also don't emit a definition for a function if it's going to be an
2067       // entry in a vtable, unless it's already marked as used.
2068     } else if (getLangOpts().CPlusPlus && D) {
2069       // Look for a declaration that's lexically in a record.
2070       for (const auto *FD = cast<FunctionDecl>(D)->getMostRecentDecl(); FD;
2071            FD = FD->getPreviousDecl()) {
2072         if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) {
2073           if (FD->doesThisDeclarationHaveABody()) {
2074             addDeferredDeclToEmit(F, GD.getWithDecl(FD));
2075             break;
2076           }
2077         }
2078       }
2079     }
2080   }
2081 
2082   // Make sure the result is of the requested type.
2083   if (!IsIncompleteFunction) {
2084     assert(F->getType()->getElementType() == Ty);
2085     return F;
2086   }
2087 
2088   llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
2089   return llvm::ConstantExpr::getBitCast(F, PTy);
2090 }
2091 
2092 /// GetAddrOfFunction - Return the address of the given function.  If Ty is
2093 /// non-null, then this function will use the specified type if it has to
2094 /// create it (this occurs when we see a definition of the function).
2095 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD,
2096                                                  llvm::Type *Ty,
2097                                                  bool ForVTable,
2098                                                  bool DontDefer,
2099                                               ForDefinition_t IsForDefinition) {
2100   // If there was no specific requested type, just convert it now.
2101   if (!Ty) {
2102     const auto *FD = cast<FunctionDecl>(GD.getDecl());
2103     auto CanonTy = Context.getCanonicalType(FD->getType());
2104     Ty = getTypes().ConvertFunctionType(CanonTy, FD);
2105   }
2106 
2107   StringRef MangledName = getMangledName(GD);
2108   return GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable, DontDefer,
2109                                  /*IsThunk=*/false, llvm::AttributeList(),
2110                                  IsForDefinition);
2111 }
2112 
2113 static const FunctionDecl *
2114 GetRuntimeFunctionDecl(ASTContext &C, StringRef Name) {
2115   TranslationUnitDecl *TUDecl = C.getTranslationUnitDecl();
2116   DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl);
2117 
2118   IdentifierInfo &CII = C.Idents.get(Name);
2119   for (const auto &Result : DC->lookup(&CII))
2120     if (const auto FD = dyn_cast<FunctionDecl>(Result))
2121       return FD;
2122 
2123   if (!C.getLangOpts().CPlusPlus)
2124     return nullptr;
2125 
2126   // Demangle the premangled name from getTerminateFn()
2127   IdentifierInfo &CXXII =
2128       (Name == "_ZSt9terminatev" || Name == "\01?terminate@@YAXXZ")
2129           ? C.Idents.get("terminate")
2130           : C.Idents.get(Name);
2131 
2132   for (const auto &N : {"__cxxabiv1", "std"}) {
2133     IdentifierInfo &NS = C.Idents.get(N);
2134     for (const auto &Result : DC->lookup(&NS)) {
2135       NamespaceDecl *ND = dyn_cast<NamespaceDecl>(Result);
2136       if (auto LSD = dyn_cast<LinkageSpecDecl>(Result))
2137         for (const auto &Result : LSD->lookup(&NS))
2138           if ((ND = dyn_cast<NamespaceDecl>(Result)))
2139             break;
2140 
2141       if (ND)
2142         for (const auto &Result : ND->lookup(&CXXII))
2143           if (const auto *FD = dyn_cast<FunctionDecl>(Result))
2144             return FD;
2145     }
2146   }
2147 
2148   return nullptr;
2149 }
2150 
2151 /// CreateRuntimeFunction - Create a new runtime function with the specified
2152 /// type and name.
2153 llvm::Constant *
2154 CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy, StringRef Name,
2155                                      llvm::AttributeList ExtraAttrs,
2156                                      bool Local) {
2157   llvm::Constant *C =
2158       GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false,
2159                               /*DontDefer=*/false, /*IsThunk=*/false,
2160                               ExtraAttrs);
2161 
2162   if (auto *F = dyn_cast<llvm::Function>(C)) {
2163     if (F->empty()) {
2164       F->setCallingConv(getRuntimeCC());
2165 
2166       if (!Local && getTriple().isOSBinFormatCOFF() &&
2167           !getCodeGenOpts().LTOVisibilityPublicStd) {
2168         const FunctionDecl *FD = GetRuntimeFunctionDecl(Context, Name);
2169         if (!FD || FD->hasAttr<DLLImportAttr>()) {
2170           F->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass);
2171           F->setLinkage(llvm::GlobalValue::ExternalLinkage);
2172         }
2173       }
2174     }
2175   }
2176 
2177   return C;
2178 }
2179 
2180 /// CreateBuiltinFunction - Create a new builtin function with the specified
2181 /// type and name.
2182 llvm::Constant *
2183 CodeGenModule::CreateBuiltinFunction(llvm::FunctionType *FTy, StringRef Name,
2184                                      llvm::AttributeList ExtraAttrs) {
2185   llvm::Constant *C =
2186       GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false,
2187                               /*DontDefer=*/false, /*IsThunk=*/false, ExtraAttrs);
2188   if (auto *F = dyn_cast<llvm::Function>(C))
2189     if (F->empty())
2190       F->setCallingConv(getBuiltinCC());
2191   return C;
2192 }
2193 
2194 /// isTypeConstant - Determine whether an object of this type can be emitted
2195 /// as a constant.
2196 ///
2197 /// If ExcludeCtor is true, the duration when the object's constructor runs
2198 /// will not be considered. The caller will need to verify that the object is
2199 /// not written to during its construction.
2200 bool CodeGenModule::isTypeConstant(QualType Ty, bool ExcludeCtor) {
2201   if (!Ty.isConstant(Context) && !Ty->isReferenceType())
2202     return false;
2203 
2204   if (Context.getLangOpts().CPlusPlus) {
2205     if (const CXXRecordDecl *Record
2206           = Context.getBaseElementType(Ty)->getAsCXXRecordDecl())
2207       return ExcludeCtor && !Record->hasMutableFields() &&
2208              Record->hasTrivialDestructor();
2209   }
2210 
2211   return true;
2212 }
2213 
2214 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module,
2215 /// create and return an llvm GlobalVariable with the specified type.  If there
2216 /// is something in the module with the specified name, return it potentially
2217 /// bitcasted to the right type.
2218 ///
2219 /// If D is non-null, it specifies a decl that correspond to this.  This is used
2220 /// to set the attributes on the global when it is first created.
2221 ///
2222 /// If IsForDefinition is true, it is guranteed that an actual global with
2223 /// type Ty will be returned, not conversion of a variable with the same
2224 /// mangled name but some other type.
2225 llvm::Constant *
2226 CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName,
2227                                      llvm::PointerType *Ty,
2228                                      const VarDecl *D,
2229                                      ForDefinition_t IsForDefinition) {
2230   // Lookup the entry, lazily creating it if necessary.
2231   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
2232   if (Entry) {
2233     if (WeakRefReferences.erase(Entry)) {
2234       if (D && !D->hasAttr<WeakAttr>())
2235         Entry->setLinkage(llvm::Function::ExternalLinkage);
2236     }
2237 
2238     // Handle dropped DLL attributes.
2239     if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>())
2240       Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
2241 
2242     if (Entry->getType() == Ty)
2243       return Entry;
2244 
2245     // If there are two attempts to define the same mangled name, issue an
2246     // error.
2247     if (IsForDefinition && !Entry->isDeclaration()) {
2248       GlobalDecl OtherGD;
2249       const VarDecl *OtherD;
2250 
2251       // Check that D is not yet in DiagnosedConflictingDefinitions is required
2252       // to make sure that we issue an error only once.
2253       if (D && lookupRepresentativeDecl(MangledName, OtherGD) &&
2254           (D->getCanonicalDecl() != OtherGD.getCanonicalDecl().getDecl()) &&
2255           (OtherD = dyn_cast<VarDecl>(OtherGD.getDecl())) &&
2256           OtherD->hasInit() &&
2257           DiagnosedConflictingDefinitions.insert(D).second) {
2258         getDiags().Report(D->getLocation(),
2259                           diag::err_duplicate_mangled_name);
2260         getDiags().Report(OtherGD.getDecl()->getLocation(),
2261                           diag::note_previous_definition);
2262       }
2263     }
2264 
2265     // Make sure the result is of the correct type.
2266     if (Entry->getType()->getAddressSpace() != Ty->getAddressSpace())
2267       return llvm::ConstantExpr::getAddrSpaceCast(Entry, Ty);
2268 
2269     // (If global is requested for a definition, we always need to create a new
2270     // global, not just return a bitcast.)
2271     if (!IsForDefinition)
2272       return llvm::ConstantExpr::getBitCast(Entry, Ty);
2273   }
2274 
2275   unsigned AddrSpace = GetGlobalVarAddressSpace(D, Ty->getAddressSpace());
2276   auto *GV = new llvm::GlobalVariable(
2277       getModule(), Ty->getElementType(), false,
2278       llvm::GlobalValue::ExternalLinkage, nullptr, MangledName, nullptr,
2279       llvm::GlobalVariable::NotThreadLocal, AddrSpace);
2280 
2281   // If we already created a global with the same mangled name (but different
2282   // type) before, take its name and remove it from its parent.
2283   if (Entry) {
2284     GV->takeName(Entry);
2285 
2286     if (!Entry->use_empty()) {
2287       llvm::Constant *NewPtrForOldDecl =
2288           llvm::ConstantExpr::getBitCast(GV, Entry->getType());
2289       Entry->replaceAllUsesWith(NewPtrForOldDecl);
2290     }
2291 
2292     Entry->eraseFromParent();
2293   }
2294 
2295   // This is the first use or definition of a mangled name.  If there is a
2296   // deferred decl with this name, remember that we need to emit it at the end
2297   // of the file.
2298   auto DDI = DeferredDecls.find(MangledName);
2299   if (DDI != DeferredDecls.end()) {
2300     // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
2301     // list, and remove it from DeferredDecls (since we don't need it anymore).
2302     addDeferredDeclToEmit(GV, DDI->second);
2303     DeferredDecls.erase(DDI);
2304   }
2305 
2306   // Handle things which are present even on external declarations.
2307   if (D) {
2308     // FIXME: This code is overly simple and should be merged with other global
2309     // handling.
2310     GV->setConstant(isTypeConstant(D->getType(), false));
2311 
2312     GV->setAlignment(getContext().getDeclAlign(D).getQuantity());
2313 
2314     setLinkageAndVisibilityForGV(GV, D);
2315 
2316     if (D->getTLSKind()) {
2317       if (D->getTLSKind() == VarDecl::TLS_Dynamic)
2318         CXXThreadLocals.push_back(D);
2319       setTLSMode(GV, *D);
2320     }
2321 
2322     // If required by the ABI, treat declarations of static data members with
2323     // inline initializers as definitions.
2324     if (getContext().isMSStaticDataMemberInlineDefinition(D)) {
2325       EmitGlobalVarDefinition(D);
2326     }
2327 
2328     // Handle XCore specific ABI requirements.
2329     if (getTriple().getArch() == llvm::Triple::xcore &&
2330         D->getLanguageLinkage() == CLanguageLinkage &&
2331         D->getType().isConstant(Context) &&
2332         isExternallyVisible(D->getLinkageAndVisibility().getLinkage()))
2333       GV->setSection(".cp.rodata");
2334   }
2335 
2336   if (AddrSpace != Ty->getAddressSpace())
2337     return llvm::ConstantExpr::getAddrSpaceCast(GV, Ty);
2338 
2339   return GV;
2340 }
2341 
2342 llvm::Constant *
2343 CodeGenModule::GetAddrOfGlobal(GlobalDecl GD,
2344                                ForDefinition_t IsForDefinition) {
2345   const Decl *D = GD.getDecl();
2346   if (isa<CXXConstructorDecl>(D))
2347     return getAddrOfCXXStructor(cast<CXXConstructorDecl>(D),
2348                                 getFromCtorType(GD.getCtorType()),
2349                                 /*FnInfo=*/nullptr, /*FnType=*/nullptr,
2350                                 /*DontDefer=*/false, IsForDefinition);
2351   else if (isa<CXXDestructorDecl>(D))
2352     return getAddrOfCXXStructor(cast<CXXDestructorDecl>(D),
2353                                 getFromDtorType(GD.getDtorType()),
2354                                 /*FnInfo=*/nullptr, /*FnType=*/nullptr,
2355                                 /*DontDefer=*/false, IsForDefinition);
2356   else if (isa<CXXMethodDecl>(D)) {
2357     auto FInfo = &getTypes().arrangeCXXMethodDeclaration(
2358         cast<CXXMethodDecl>(D));
2359     auto Ty = getTypes().GetFunctionType(*FInfo);
2360     return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false,
2361                              IsForDefinition);
2362   } else if (isa<FunctionDecl>(D)) {
2363     const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
2364     llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
2365     return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false,
2366                              IsForDefinition);
2367   } else
2368     return GetAddrOfGlobalVar(cast<VarDecl>(D), /*Ty=*/nullptr,
2369                               IsForDefinition);
2370 }
2371 
2372 llvm::GlobalVariable *
2373 CodeGenModule::CreateOrReplaceCXXRuntimeVariable(StringRef Name,
2374                                       llvm::Type *Ty,
2375                                       llvm::GlobalValue::LinkageTypes Linkage) {
2376   llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name);
2377   llvm::GlobalVariable *OldGV = nullptr;
2378 
2379   if (GV) {
2380     // Check if the variable has the right type.
2381     if (GV->getType()->getElementType() == Ty)
2382       return GV;
2383 
2384     // Because C++ name mangling, the only way we can end up with an already
2385     // existing global with the same name is if it has been declared extern "C".
2386     assert(GV->isDeclaration() && "Declaration has wrong type!");
2387     OldGV = GV;
2388   }
2389 
2390   // Create a new variable.
2391   GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true,
2392                                 Linkage, nullptr, Name);
2393 
2394   if (OldGV) {
2395     // Replace occurrences of the old variable if needed.
2396     GV->takeName(OldGV);
2397 
2398     if (!OldGV->use_empty()) {
2399       llvm::Constant *NewPtrForOldDecl =
2400       llvm::ConstantExpr::getBitCast(GV, OldGV->getType());
2401       OldGV->replaceAllUsesWith(NewPtrForOldDecl);
2402     }
2403 
2404     OldGV->eraseFromParent();
2405   }
2406 
2407   if (supportsCOMDAT() && GV->isWeakForLinker() &&
2408       !GV->hasAvailableExternallyLinkage())
2409     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
2410 
2411   return GV;
2412 }
2413 
2414 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the
2415 /// given global variable.  If Ty is non-null and if the global doesn't exist,
2416 /// then it will be created with the specified type instead of whatever the
2417 /// normal requested type would be. If IsForDefinition is true, it is guranteed
2418 /// that an actual global with type Ty will be returned, not conversion of a
2419 /// variable with the same mangled name but some other type.
2420 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D,
2421                                                   llvm::Type *Ty,
2422                                            ForDefinition_t IsForDefinition) {
2423   assert(D->hasGlobalStorage() && "Not a global variable");
2424   QualType ASTTy = D->getType();
2425   if (!Ty)
2426     Ty = getTypes().ConvertTypeForMem(ASTTy);
2427 
2428   llvm::PointerType *PTy =
2429     llvm::PointerType::get(Ty, getContext().getTargetAddressSpace(ASTTy));
2430 
2431   StringRef MangledName = getMangledName(D);
2432   return GetOrCreateLLVMGlobal(MangledName, PTy, D, IsForDefinition);
2433 }
2434 
2435 /// CreateRuntimeVariable - Create a new runtime global variable with the
2436 /// specified type and name.
2437 llvm::Constant *
2438 CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty,
2439                                      StringRef Name) {
2440   return GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), nullptr);
2441 }
2442 
2443 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) {
2444   assert(!D->getInit() && "Cannot emit definite definitions here!");
2445 
2446   StringRef MangledName = getMangledName(D);
2447   llvm::GlobalValue *GV = GetGlobalValue(MangledName);
2448 
2449   // We already have a definition, not declaration, with the same mangled name.
2450   // Emitting of declaration is not required (and actually overwrites emitted
2451   // definition).
2452   if (GV && !GV->isDeclaration())
2453     return;
2454 
2455   // If we have not seen a reference to this variable yet, place it into the
2456   // deferred declarations table to be emitted if needed later.
2457   if (!MustBeEmitted(D) && !GV) {
2458       DeferredDecls[MangledName] = D;
2459       return;
2460   }
2461 
2462   // The tentative definition is the only definition.
2463   EmitGlobalVarDefinition(D);
2464 }
2465 
2466 CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const {
2467   return Context.toCharUnitsFromBits(
2468       getDataLayout().getTypeStoreSizeInBits(Ty));
2469 }
2470 
2471 unsigned CodeGenModule::GetGlobalVarAddressSpace(const VarDecl *D,
2472                                                  unsigned AddrSpace) {
2473   if (D && LangOpts.CUDA && LangOpts.CUDAIsDevice) {
2474     if (D->hasAttr<CUDAConstantAttr>())
2475       AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_constant);
2476     else if (D->hasAttr<CUDASharedAttr>())
2477       AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_shared);
2478     else
2479       AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_device);
2480   }
2481 
2482   return AddrSpace;
2483 }
2484 
2485 template<typename SomeDecl>
2486 void CodeGenModule::MaybeHandleStaticInExternC(const SomeDecl *D,
2487                                                llvm::GlobalValue *GV) {
2488   if (!getLangOpts().CPlusPlus)
2489     return;
2490 
2491   // Must have 'used' attribute, or else inline assembly can't rely on
2492   // the name existing.
2493   if (!D->template hasAttr<UsedAttr>())
2494     return;
2495 
2496   // Must have internal linkage and an ordinary name.
2497   if (!D->getIdentifier() || D->getFormalLinkage() != InternalLinkage)
2498     return;
2499 
2500   // Must be in an extern "C" context. Entities declared directly within
2501   // a record are not extern "C" even if the record is in such a context.
2502   const SomeDecl *First = D->getFirstDecl();
2503   if (First->getDeclContext()->isRecord() || !First->isInExternCContext())
2504     return;
2505 
2506   // OK, this is an internal linkage entity inside an extern "C" linkage
2507   // specification. Make a note of that so we can give it the "expected"
2508   // mangled name if nothing else is using that name.
2509   std::pair<StaticExternCMap::iterator, bool> R =
2510       StaticExternCValues.insert(std::make_pair(D->getIdentifier(), GV));
2511 
2512   // If we have multiple internal linkage entities with the same name
2513   // in extern "C" regions, none of them gets that name.
2514   if (!R.second)
2515     R.first->second = nullptr;
2516 }
2517 
2518 static bool shouldBeInCOMDAT(CodeGenModule &CGM, const Decl &D) {
2519   if (!CGM.supportsCOMDAT())
2520     return false;
2521 
2522   if (D.hasAttr<SelectAnyAttr>())
2523     return true;
2524 
2525   GVALinkage Linkage;
2526   if (auto *VD = dyn_cast<VarDecl>(&D))
2527     Linkage = CGM.getContext().GetGVALinkageForVariable(VD);
2528   else
2529     Linkage = CGM.getContext().GetGVALinkageForFunction(cast<FunctionDecl>(&D));
2530 
2531   switch (Linkage) {
2532   case GVA_Internal:
2533   case GVA_AvailableExternally:
2534   case GVA_StrongExternal:
2535     return false;
2536   case GVA_DiscardableODR:
2537   case GVA_StrongODR:
2538     return true;
2539   }
2540   llvm_unreachable("No such linkage");
2541 }
2542 
2543 void CodeGenModule::maybeSetTrivialComdat(const Decl &D,
2544                                           llvm::GlobalObject &GO) {
2545   if (!shouldBeInCOMDAT(*this, D))
2546     return;
2547   GO.setComdat(TheModule.getOrInsertComdat(GO.getName()));
2548 }
2549 
2550 /// Pass IsTentative as true if you want to create a tentative definition.
2551 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D,
2552                                             bool IsTentative) {
2553   // OpenCL global variables of sampler type are translated to function calls,
2554   // therefore no need to be translated.
2555   QualType ASTTy = D->getType();
2556   if (getLangOpts().OpenCL && ASTTy->isSamplerT())
2557     return;
2558 
2559   llvm::Constant *Init = nullptr;
2560   CXXRecordDecl *RD = ASTTy->getBaseElementTypeUnsafe()->getAsCXXRecordDecl();
2561   bool NeedsGlobalCtor = false;
2562   bool NeedsGlobalDtor = RD && !RD->hasTrivialDestructor();
2563 
2564   const VarDecl *InitDecl;
2565   const Expr *InitExpr = D->getAnyInitializer(InitDecl);
2566 
2567   // CUDA E.2.4.1 "__shared__ variables cannot have an initialization
2568   // as part of their declaration."  Sema has already checked for
2569   // error cases, so we just need to set Init to UndefValue.
2570   if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice &&
2571       D->hasAttr<CUDASharedAttr>())
2572     Init = llvm::UndefValue::get(getTypes().ConvertType(ASTTy));
2573   else if (!InitExpr) {
2574     // This is a tentative definition; tentative definitions are
2575     // implicitly initialized with { 0 }.
2576     //
2577     // Note that tentative definitions are only emitted at the end of
2578     // a translation unit, so they should never have incomplete
2579     // type. In addition, EmitTentativeDefinition makes sure that we
2580     // never attempt to emit a tentative definition if a real one
2581     // exists. A use may still exists, however, so we still may need
2582     // to do a RAUW.
2583     assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type");
2584     Init = EmitNullConstant(D->getType());
2585   } else {
2586     initializedGlobalDecl = GlobalDecl(D);
2587     Init = EmitConstantInit(*InitDecl);
2588 
2589     if (!Init) {
2590       QualType T = InitExpr->getType();
2591       if (D->getType()->isReferenceType())
2592         T = D->getType();
2593 
2594       if (getLangOpts().CPlusPlus) {
2595         Init = EmitNullConstant(T);
2596         NeedsGlobalCtor = true;
2597       } else {
2598         ErrorUnsupported(D, "static initializer");
2599         Init = llvm::UndefValue::get(getTypes().ConvertType(T));
2600       }
2601     } else {
2602       // We don't need an initializer, so remove the entry for the delayed
2603       // initializer position (just in case this entry was delayed) if we
2604       // also don't need to register a destructor.
2605       if (getLangOpts().CPlusPlus && !NeedsGlobalDtor)
2606         DelayedCXXInitPosition.erase(D);
2607     }
2608   }
2609 
2610   llvm::Type* InitType = Init->getType();
2611   llvm::Constant *Entry =
2612       GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative));
2613 
2614   // Strip off a bitcast if we got one back.
2615   if (auto *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
2616     assert(CE->getOpcode() == llvm::Instruction::BitCast ||
2617            CE->getOpcode() == llvm::Instruction::AddrSpaceCast ||
2618            // All zero index gep.
2619            CE->getOpcode() == llvm::Instruction::GetElementPtr);
2620     Entry = CE->getOperand(0);
2621   }
2622 
2623   // Entry is now either a Function or GlobalVariable.
2624   auto *GV = dyn_cast<llvm::GlobalVariable>(Entry);
2625 
2626   // We have a definition after a declaration with the wrong type.
2627   // We must make a new GlobalVariable* and update everything that used OldGV
2628   // (a declaration or tentative definition) with the new GlobalVariable*
2629   // (which will be a definition).
2630   //
2631   // This happens if there is a prototype for a global (e.g.
2632   // "extern int x[];") and then a definition of a different type (e.g.
2633   // "int x[10];"). This also happens when an initializer has a different type
2634   // from the type of the global (this happens with unions).
2635   if (!GV ||
2636       GV->getType()->getElementType() != InitType ||
2637       GV->getType()->getAddressSpace() !=
2638        GetGlobalVarAddressSpace(D, getContext().getTargetAddressSpace(ASTTy))) {
2639 
2640     // Move the old entry aside so that we'll create a new one.
2641     Entry->setName(StringRef());
2642 
2643     // Make a new global with the correct type, this is now guaranteed to work.
2644     GV = cast<llvm::GlobalVariable>(
2645         GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative)));
2646 
2647     // Replace all uses of the old global with the new global
2648     llvm::Constant *NewPtrForOldDecl =
2649         llvm::ConstantExpr::getBitCast(GV, Entry->getType());
2650     Entry->replaceAllUsesWith(NewPtrForOldDecl);
2651 
2652     // Erase the old global, since it is no longer used.
2653     cast<llvm::GlobalValue>(Entry)->eraseFromParent();
2654   }
2655 
2656   MaybeHandleStaticInExternC(D, GV);
2657 
2658   if (D->hasAttr<AnnotateAttr>())
2659     AddGlobalAnnotations(D, GV);
2660 
2661   // Set the llvm linkage type as appropriate.
2662   llvm::GlobalValue::LinkageTypes Linkage =
2663       getLLVMLinkageVarDefinition(D, GV->isConstant());
2664 
2665   // CUDA B.2.1 "The __device__ qualifier declares a variable that resides on
2666   // the device. [...]"
2667   // CUDA B.2.2 "The __constant__ qualifier, optionally used together with
2668   // __device__, declares a variable that: [...]
2669   // Is accessible from all the threads within the grid and from the host
2670   // through the runtime library (cudaGetSymbolAddress() / cudaGetSymbolSize()
2671   // / cudaMemcpyToSymbol() / cudaMemcpyFromSymbol())."
2672   if (GV && LangOpts.CUDA) {
2673     if (LangOpts.CUDAIsDevice) {
2674       if (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>())
2675         GV->setExternallyInitialized(true);
2676     } else {
2677       // Host-side shadows of external declarations of device-side
2678       // global variables become internal definitions. These have to
2679       // be internal in order to prevent name conflicts with global
2680       // host variables with the same name in a different TUs.
2681       if (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>()) {
2682         Linkage = llvm::GlobalValue::InternalLinkage;
2683 
2684         // Shadow variables and their properties must be registered
2685         // with CUDA runtime.
2686         unsigned Flags = 0;
2687         if (!D->hasDefinition())
2688           Flags |= CGCUDARuntime::ExternDeviceVar;
2689         if (D->hasAttr<CUDAConstantAttr>())
2690           Flags |= CGCUDARuntime::ConstantDeviceVar;
2691         getCUDARuntime().registerDeviceVar(*GV, Flags);
2692       } else if (D->hasAttr<CUDASharedAttr>())
2693         // __shared__ variables are odd. Shadows do get created, but
2694         // they are not registered with the CUDA runtime, so they
2695         // can't really be used to access their device-side
2696         // counterparts. It's not clear yet whether it's nvcc's bug or
2697         // a feature, but we've got to do the same for compatibility.
2698         Linkage = llvm::GlobalValue::InternalLinkage;
2699     }
2700   }
2701   GV->setInitializer(Init);
2702 
2703   // If it is safe to mark the global 'constant', do so now.
2704   GV->setConstant(!NeedsGlobalCtor && !NeedsGlobalDtor &&
2705                   isTypeConstant(D->getType(), true));
2706 
2707   // If it is in a read-only section, mark it 'constant'.
2708   if (const SectionAttr *SA = D->getAttr<SectionAttr>()) {
2709     const ASTContext::SectionInfo &SI = Context.SectionInfos[SA->getName()];
2710     if ((SI.SectionFlags & ASTContext::PSF_Write) == 0)
2711       GV->setConstant(true);
2712   }
2713 
2714   GV->setAlignment(getContext().getDeclAlign(D).getQuantity());
2715 
2716 
2717   // On Darwin, if the normal linkage of a C++ thread_local variable is
2718   // LinkOnce or Weak, we keep the normal linkage to prevent multiple
2719   // copies within a linkage unit; otherwise, the backing variable has
2720   // internal linkage and all accesses should just be calls to the
2721   // Itanium-specified entry point, which has the normal linkage of the
2722   // variable. This is to preserve the ability to change the implementation
2723   // behind the scenes.
2724   if (!D->isStaticLocal() && D->getTLSKind() == VarDecl::TLS_Dynamic &&
2725       Context.getTargetInfo().getTriple().isOSDarwin() &&
2726       !llvm::GlobalVariable::isLinkOnceLinkage(Linkage) &&
2727       !llvm::GlobalVariable::isWeakLinkage(Linkage))
2728     Linkage = llvm::GlobalValue::InternalLinkage;
2729 
2730   GV->setLinkage(Linkage);
2731   if (D->hasAttr<DLLImportAttr>())
2732     GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass);
2733   else if (D->hasAttr<DLLExportAttr>())
2734     GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass);
2735   else
2736     GV->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass);
2737 
2738   if (Linkage == llvm::GlobalVariable::CommonLinkage) {
2739     // common vars aren't constant even if declared const.
2740     GV->setConstant(false);
2741     // Tentative definition of global variables may be initialized with
2742     // non-zero null pointers. In this case they should have weak linkage
2743     // since common linkage must have zero initializer and must not have
2744     // explicit section therefore cannot have non-zero initial value.
2745     if (!GV->getInitializer()->isNullValue())
2746       GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage);
2747   }
2748 
2749   setNonAliasAttributes(D, GV);
2750 
2751   if (D->getTLSKind() && !GV->isThreadLocal()) {
2752     if (D->getTLSKind() == VarDecl::TLS_Dynamic)
2753       CXXThreadLocals.push_back(D);
2754     setTLSMode(GV, *D);
2755   }
2756 
2757   maybeSetTrivialComdat(*D, *GV);
2758 
2759   // Emit the initializer function if necessary.
2760   if (NeedsGlobalCtor || NeedsGlobalDtor)
2761     EmitCXXGlobalVarDeclInitFunc(D, GV, NeedsGlobalCtor);
2762 
2763   SanitizerMD->reportGlobalToASan(GV, *D, NeedsGlobalCtor);
2764 
2765   // Emit global variable debug information.
2766   if (CGDebugInfo *DI = getModuleDebugInfo())
2767     if (getCodeGenOpts().getDebugInfo() >= codegenoptions::LimitedDebugInfo)
2768       DI->EmitGlobalVariable(GV, D);
2769 }
2770 
2771 static bool isVarDeclStrongDefinition(const ASTContext &Context,
2772                                       CodeGenModule &CGM, const VarDecl *D,
2773                                       bool NoCommon) {
2774   // Don't give variables common linkage if -fno-common was specified unless it
2775   // was overridden by a NoCommon attribute.
2776   if ((NoCommon || D->hasAttr<NoCommonAttr>()) && !D->hasAttr<CommonAttr>())
2777     return true;
2778 
2779   // C11 6.9.2/2:
2780   //   A declaration of an identifier for an object that has file scope without
2781   //   an initializer, and without a storage-class specifier or with the
2782   //   storage-class specifier static, constitutes a tentative definition.
2783   if (D->getInit() || D->hasExternalStorage())
2784     return true;
2785 
2786   // A variable cannot be both common and exist in a section.
2787   if (D->hasAttr<SectionAttr>())
2788     return true;
2789 
2790   // Thread local vars aren't considered common linkage.
2791   if (D->getTLSKind())
2792     return true;
2793 
2794   // Tentative definitions marked with WeakImportAttr are true definitions.
2795   if (D->hasAttr<WeakImportAttr>())
2796     return true;
2797 
2798   // A variable cannot be both common and exist in a comdat.
2799   if (shouldBeInCOMDAT(CGM, *D))
2800     return true;
2801 
2802   // Declarations with a required alignment do not have common linkage in MSVC
2803   // mode.
2804   if (Context.getTargetInfo().getCXXABI().isMicrosoft()) {
2805     if (D->hasAttr<AlignedAttr>())
2806       return true;
2807     QualType VarType = D->getType();
2808     if (Context.isAlignmentRequired(VarType))
2809       return true;
2810 
2811     if (const auto *RT = VarType->getAs<RecordType>()) {
2812       const RecordDecl *RD = RT->getDecl();
2813       for (const FieldDecl *FD : RD->fields()) {
2814         if (FD->isBitField())
2815           continue;
2816         if (FD->hasAttr<AlignedAttr>())
2817           return true;
2818         if (Context.isAlignmentRequired(FD->getType()))
2819           return true;
2820       }
2821     }
2822   }
2823 
2824   return false;
2825 }
2826 
2827 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageForDeclarator(
2828     const DeclaratorDecl *D, GVALinkage Linkage, bool IsConstantVariable) {
2829   if (Linkage == GVA_Internal)
2830     return llvm::Function::InternalLinkage;
2831 
2832   if (D->hasAttr<WeakAttr>()) {
2833     if (IsConstantVariable)
2834       return llvm::GlobalVariable::WeakODRLinkage;
2835     else
2836       return llvm::GlobalVariable::WeakAnyLinkage;
2837   }
2838 
2839   // We are guaranteed to have a strong definition somewhere else,
2840   // so we can use available_externally linkage.
2841   if (Linkage == GVA_AvailableExternally)
2842     return llvm::GlobalValue::AvailableExternallyLinkage;
2843 
2844   // Note that Apple's kernel linker doesn't support symbol
2845   // coalescing, so we need to avoid linkonce and weak linkages there.
2846   // Normally, this means we just map to internal, but for explicit
2847   // instantiations we'll map to external.
2848 
2849   // In C++, the compiler has to emit a definition in every translation unit
2850   // that references the function.  We should use linkonce_odr because
2851   // a) if all references in this translation unit are optimized away, we
2852   // don't need to codegen it.  b) if the function persists, it needs to be
2853   // merged with other definitions. c) C++ has the ODR, so we know the
2854   // definition is dependable.
2855   if (Linkage == GVA_DiscardableODR)
2856     return !Context.getLangOpts().AppleKext ? llvm::Function::LinkOnceODRLinkage
2857                                             : llvm::Function::InternalLinkage;
2858 
2859   // An explicit instantiation of a template has weak linkage, since
2860   // explicit instantiations can occur in multiple translation units
2861   // and must all be equivalent. However, we are not allowed to
2862   // throw away these explicit instantiations.
2863   //
2864   // We don't currently support CUDA device code spread out across multiple TUs,
2865   // so say that CUDA templates are either external (for kernels) or internal.
2866   // This lets llvm perform aggressive inter-procedural optimizations.
2867   if (Linkage == GVA_StrongODR) {
2868     if (Context.getLangOpts().AppleKext)
2869       return llvm::Function::ExternalLinkage;
2870     if (Context.getLangOpts().CUDA && Context.getLangOpts().CUDAIsDevice)
2871       return D->hasAttr<CUDAGlobalAttr>() ? llvm::Function::ExternalLinkage
2872                                           : llvm::Function::InternalLinkage;
2873     return llvm::Function::WeakODRLinkage;
2874   }
2875 
2876   // C++ doesn't have tentative definitions and thus cannot have common
2877   // linkage.
2878   if (!getLangOpts().CPlusPlus && isa<VarDecl>(D) &&
2879       !isVarDeclStrongDefinition(Context, *this, cast<VarDecl>(D),
2880                                  CodeGenOpts.NoCommon))
2881     return llvm::GlobalVariable::CommonLinkage;
2882 
2883   // selectany symbols are externally visible, so use weak instead of
2884   // linkonce.  MSVC optimizes away references to const selectany globals, so
2885   // all definitions should be the same and ODR linkage should be used.
2886   // http://msdn.microsoft.com/en-us/library/5tkz6s71.aspx
2887   if (D->hasAttr<SelectAnyAttr>())
2888     return llvm::GlobalVariable::WeakODRLinkage;
2889 
2890   // Otherwise, we have strong external linkage.
2891   assert(Linkage == GVA_StrongExternal);
2892   return llvm::GlobalVariable::ExternalLinkage;
2893 }
2894 
2895 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageVarDefinition(
2896     const VarDecl *VD, bool IsConstant) {
2897   GVALinkage Linkage = getContext().GetGVALinkageForVariable(VD);
2898   return getLLVMLinkageForDeclarator(VD, Linkage, IsConstant);
2899 }
2900 
2901 /// Replace the uses of a function that was declared with a non-proto type.
2902 /// We want to silently drop extra arguments from call sites
2903 static void replaceUsesOfNonProtoConstant(llvm::Constant *old,
2904                                           llvm::Function *newFn) {
2905   // Fast path.
2906   if (old->use_empty()) return;
2907 
2908   llvm::Type *newRetTy = newFn->getReturnType();
2909   SmallVector<llvm::Value*, 4> newArgs;
2910   SmallVector<llvm::OperandBundleDef, 1> newBundles;
2911 
2912   for (llvm::Value::use_iterator ui = old->use_begin(), ue = old->use_end();
2913          ui != ue; ) {
2914     llvm::Value::use_iterator use = ui++; // Increment before the use is erased.
2915     llvm::User *user = use->getUser();
2916 
2917     // Recognize and replace uses of bitcasts.  Most calls to
2918     // unprototyped functions will use bitcasts.
2919     if (auto *bitcast = dyn_cast<llvm::ConstantExpr>(user)) {
2920       if (bitcast->getOpcode() == llvm::Instruction::BitCast)
2921         replaceUsesOfNonProtoConstant(bitcast, newFn);
2922       continue;
2923     }
2924 
2925     // Recognize calls to the function.
2926     llvm::CallSite callSite(user);
2927     if (!callSite) continue;
2928     if (!callSite.isCallee(&*use)) continue;
2929 
2930     // If the return types don't match exactly, then we can't
2931     // transform this call unless it's dead.
2932     if (callSite->getType() != newRetTy && !callSite->use_empty())
2933       continue;
2934 
2935     // Get the call site's attribute list.
2936     SmallVector<llvm::AttributeList, 8> newAttrs;
2937     llvm::AttributeList oldAttrs = callSite.getAttributes();
2938 
2939     // Collect any return attributes from the call.
2940     if (oldAttrs.hasAttributes(llvm::AttributeList::ReturnIndex))
2941       newAttrs.push_back(llvm::AttributeList::get(newFn->getContext(),
2942                                                   oldAttrs.getRetAttributes()));
2943 
2944     // If the function was passed too few arguments, don't transform.
2945     unsigned newNumArgs = newFn->arg_size();
2946     if (callSite.arg_size() < newNumArgs) continue;
2947 
2948     // If extra arguments were passed, we silently drop them.
2949     // If any of the types mismatch, we don't transform.
2950     unsigned argNo = 0;
2951     bool dontTransform = false;
2952     for (llvm::Function::arg_iterator ai = newFn->arg_begin(),
2953            ae = newFn->arg_end(); ai != ae; ++ai, ++argNo) {
2954       if (callSite.getArgument(argNo)->getType() != ai->getType()) {
2955         dontTransform = true;
2956         break;
2957       }
2958 
2959       // Add any parameter attributes.
2960       if (oldAttrs.hasAttributes(argNo + 1))
2961         newAttrs.push_back(llvm::AttributeList::get(
2962             newFn->getContext(), oldAttrs.getParamAttributes(argNo + 1)));
2963     }
2964     if (dontTransform)
2965       continue;
2966 
2967     if (oldAttrs.hasAttributes(llvm::AttributeList::FunctionIndex))
2968       newAttrs.push_back(llvm::AttributeList::get(newFn->getContext(),
2969                                                   oldAttrs.getFnAttributes()));
2970 
2971     // Okay, we can transform this.  Create the new call instruction and copy
2972     // over the required information.
2973     newArgs.append(callSite.arg_begin(), callSite.arg_begin() + argNo);
2974 
2975     // Copy over any operand bundles.
2976     callSite.getOperandBundlesAsDefs(newBundles);
2977 
2978     llvm::CallSite newCall;
2979     if (callSite.isCall()) {
2980       newCall = llvm::CallInst::Create(newFn, newArgs, newBundles, "",
2981                                        callSite.getInstruction());
2982     } else {
2983       auto *oldInvoke = cast<llvm::InvokeInst>(callSite.getInstruction());
2984       newCall = llvm::InvokeInst::Create(newFn,
2985                                          oldInvoke->getNormalDest(),
2986                                          oldInvoke->getUnwindDest(),
2987                                          newArgs, newBundles, "",
2988                                          callSite.getInstruction());
2989     }
2990     newArgs.clear(); // for the next iteration
2991 
2992     if (!newCall->getType()->isVoidTy())
2993       newCall->takeName(callSite.getInstruction());
2994     newCall.setAttributes(
2995         llvm::AttributeList::get(newFn->getContext(), newAttrs));
2996     newCall.setCallingConv(callSite.getCallingConv());
2997 
2998     // Finally, remove the old call, replacing any uses with the new one.
2999     if (!callSite->use_empty())
3000       callSite->replaceAllUsesWith(newCall.getInstruction());
3001 
3002     // Copy debug location attached to CI.
3003     if (callSite->getDebugLoc())
3004       newCall->setDebugLoc(callSite->getDebugLoc());
3005 
3006     callSite->eraseFromParent();
3007   }
3008 }
3009 
3010 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we
3011 /// implement a function with no prototype, e.g. "int foo() {}".  If there are
3012 /// existing call uses of the old function in the module, this adjusts them to
3013 /// call the new function directly.
3014 ///
3015 /// This is not just a cleanup: the always_inline pass requires direct calls to
3016 /// functions to be able to inline them.  If there is a bitcast in the way, it
3017 /// won't inline them.  Instcombine normally deletes these calls, but it isn't
3018 /// run at -O0.
3019 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
3020                                                       llvm::Function *NewFn) {
3021   // If we're redefining a global as a function, don't transform it.
3022   if (!isa<llvm::Function>(Old)) return;
3023 
3024   replaceUsesOfNonProtoConstant(Old, NewFn);
3025 }
3026 
3027 void CodeGenModule::HandleCXXStaticMemberVarInstantiation(VarDecl *VD) {
3028   auto DK = VD->isThisDeclarationADefinition();
3029   if (DK == VarDecl::Definition && VD->hasAttr<DLLImportAttr>())
3030     return;
3031 
3032   TemplateSpecializationKind TSK = VD->getTemplateSpecializationKind();
3033   // If we have a definition, this might be a deferred decl. If the
3034   // instantiation is explicit, make sure we emit it at the end.
3035   if (VD->getDefinition() && TSK == TSK_ExplicitInstantiationDefinition)
3036     GetAddrOfGlobalVar(VD);
3037 
3038   EmitTopLevelDecl(VD);
3039 }
3040 
3041 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD,
3042                                                  llvm::GlobalValue *GV) {
3043   const auto *D = cast<FunctionDecl>(GD.getDecl());
3044 
3045   // Compute the function info and LLVM type.
3046   const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
3047   llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
3048 
3049   // Get or create the prototype for the function.
3050   if (!GV || (GV->getType()->getElementType() != Ty))
3051     GV = cast<llvm::GlobalValue>(GetAddrOfFunction(GD, Ty, /*ForVTable=*/false,
3052                                                    /*DontDefer=*/true,
3053                                                    ForDefinition));
3054 
3055   // Already emitted.
3056   if (!GV->isDeclaration())
3057     return;
3058 
3059   // We need to set linkage and visibility on the function before
3060   // generating code for it because various parts of IR generation
3061   // want to propagate this information down (e.g. to local static
3062   // declarations).
3063   auto *Fn = cast<llvm::Function>(GV);
3064   setFunctionLinkage(GD, Fn);
3065   setFunctionDLLStorageClass(GD, Fn);
3066 
3067   // FIXME: this is redundant with part of setFunctionDefinitionAttributes
3068   setGlobalVisibility(Fn, D);
3069 
3070   MaybeHandleStaticInExternC(D, Fn);
3071 
3072   maybeSetTrivialComdat(*D, *Fn);
3073 
3074   CodeGenFunction(*this).GenerateCode(D, Fn, FI);
3075 
3076   setFunctionDefinitionAttributes(D, Fn);
3077   SetLLVMFunctionAttributesForDefinition(D, Fn);
3078 
3079   if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>())
3080     AddGlobalCtor(Fn, CA->getPriority());
3081   if (const DestructorAttr *DA = D->getAttr<DestructorAttr>())
3082     AddGlobalDtor(Fn, DA->getPriority());
3083   if (D->hasAttr<AnnotateAttr>())
3084     AddGlobalAnnotations(D, Fn);
3085 }
3086 
3087 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) {
3088   const auto *D = cast<ValueDecl>(GD.getDecl());
3089   const AliasAttr *AA = D->getAttr<AliasAttr>();
3090   assert(AA && "Not an alias?");
3091 
3092   StringRef MangledName = getMangledName(GD);
3093 
3094   if (AA->getAliasee() == MangledName) {
3095     Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0;
3096     return;
3097   }
3098 
3099   // If there is a definition in the module, then it wins over the alias.
3100   // This is dubious, but allow it to be safe.  Just ignore the alias.
3101   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
3102   if (Entry && !Entry->isDeclaration())
3103     return;
3104 
3105   Aliases.push_back(GD);
3106 
3107   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
3108 
3109   // Create a reference to the named value.  This ensures that it is emitted
3110   // if a deferred decl.
3111   llvm::Constant *Aliasee;
3112   if (isa<llvm::FunctionType>(DeclTy))
3113     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GD,
3114                                       /*ForVTable=*/false);
3115   else
3116     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
3117                                     llvm::PointerType::getUnqual(DeclTy),
3118                                     /*D=*/nullptr);
3119 
3120   // Create the new alias itself, but don't set a name yet.
3121   auto *GA = llvm::GlobalAlias::create(
3122       DeclTy, 0, llvm::Function::ExternalLinkage, "", Aliasee, &getModule());
3123 
3124   if (Entry) {
3125     if (GA->getAliasee() == Entry) {
3126       Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0;
3127       return;
3128     }
3129 
3130     assert(Entry->isDeclaration());
3131 
3132     // If there is a declaration in the module, then we had an extern followed
3133     // by the alias, as in:
3134     //   extern int test6();
3135     //   ...
3136     //   int test6() __attribute__((alias("test7")));
3137     //
3138     // Remove it and replace uses of it with the alias.
3139     GA->takeName(Entry);
3140 
3141     Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA,
3142                                                           Entry->getType()));
3143     Entry->eraseFromParent();
3144   } else {
3145     GA->setName(MangledName);
3146   }
3147 
3148   // Set attributes which are particular to an alias; this is a
3149   // specialization of the attributes which may be set on a global
3150   // variable/function.
3151   if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakRefAttr>() ||
3152       D->isWeakImported()) {
3153     GA->setLinkage(llvm::Function::WeakAnyLinkage);
3154   }
3155 
3156   if (const auto *VD = dyn_cast<VarDecl>(D))
3157     if (VD->getTLSKind())
3158       setTLSMode(GA, *VD);
3159 
3160   setAliasAttributes(D, GA);
3161 }
3162 
3163 void CodeGenModule::emitIFuncDefinition(GlobalDecl GD) {
3164   const auto *D = cast<ValueDecl>(GD.getDecl());
3165   const IFuncAttr *IFA = D->getAttr<IFuncAttr>();
3166   assert(IFA && "Not an ifunc?");
3167 
3168   StringRef MangledName = getMangledName(GD);
3169 
3170   if (IFA->getResolver() == MangledName) {
3171     Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1;
3172     return;
3173   }
3174 
3175   // Report an error if some definition overrides ifunc.
3176   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
3177   if (Entry && !Entry->isDeclaration()) {
3178     GlobalDecl OtherGD;
3179     if (lookupRepresentativeDecl(MangledName, OtherGD) &&
3180         DiagnosedConflictingDefinitions.insert(GD).second) {
3181       Diags.Report(D->getLocation(), diag::err_duplicate_mangled_name);
3182       Diags.Report(OtherGD.getDecl()->getLocation(),
3183                    diag::note_previous_definition);
3184     }
3185     return;
3186   }
3187 
3188   Aliases.push_back(GD);
3189 
3190   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
3191   llvm::Constant *Resolver =
3192       GetOrCreateLLVMFunction(IFA->getResolver(), DeclTy, GD,
3193                               /*ForVTable=*/false);
3194   llvm::GlobalIFunc *GIF =
3195       llvm::GlobalIFunc::create(DeclTy, 0, llvm::Function::ExternalLinkage,
3196                                 "", Resolver, &getModule());
3197   if (Entry) {
3198     if (GIF->getResolver() == Entry) {
3199       Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1;
3200       return;
3201     }
3202     assert(Entry->isDeclaration());
3203 
3204     // If there is a declaration in the module, then we had an extern followed
3205     // by the ifunc, as in:
3206     //   extern int test();
3207     //   ...
3208     //   int test() __attribute__((ifunc("resolver")));
3209     //
3210     // Remove it and replace uses of it with the ifunc.
3211     GIF->takeName(Entry);
3212 
3213     Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GIF,
3214                                                           Entry->getType()));
3215     Entry->eraseFromParent();
3216   } else
3217     GIF->setName(MangledName);
3218 
3219   SetCommonAttributes(D, GIF);
3220 }
3221 
3222 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,
3223                                             ArrayRef<llvm::Type*> Tys) {
3224   return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID,
3225                                          Tys);
3226 }
3227 
3228 static llvm::StringMapEntry<llvm::GlobalVariable *> &
3229 GetConstantCFStringEntry(llvm::StringMap<llvm::GlobalVariable *> &Map,
3230                          const StringLiteral *Literal, bool TargetIsLSB,
3231                          bool &IsUTF16, unsigned &StringLength) {
3232   StringRef String = Literal->getString();
3233   unsigned NumBytes = String.size();
3234 
3235   // Check for simple case.
3236   if (!Literal->containsNonAsciiOrNull()) {
3237     StringLength = NumBytes;
3238     return *Map.insert(std::make_pair(String, nullptr)).first;
3239   }
3240 
3241   // Otherwise, convert the UTF8 literals into a string of shorts.
3242   IsUTF16 = true;
3243 
3244   SmallVector<llvm::UTF16, 128> ToBuf(NumBytes + 1); // +1 for ending nulls.
3245   const llvm::UTF8 *FromPtr = (const llvm::UTF8 *)String.data();
3246   llvm::UTF16 *ToPtr = &ToBuf[0];
3247 
3248   (void)llvm::ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, &ToPtr,
3249                                  ToPtr + NumBytes, llvm::strictConversion);
3250 
3251   // ConvertUTF8toUTF16 returns the length in ToPtr.
3252   StringLength = ToPtr - &ToBuf[0];
3253 
3254   // Add an explicit null.
3255   *ToPtr = 0;
3256   return *Map.insert(std::make_pair(
3257                          StringRef(reinterpret_cast<const char *>(ToBuf.data()),
3258                                    (StringLength + 1) * 2),
3259                          nullptr)).first;
3260 }
3261 
3262 ConstantAddress
3263 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) {
3264   unsigned StringLength = 0;
3265   bool isUTF16 = false;
3266   llvm::StringMapEntry<llvm::GlobalVariable *> &Entry =
3267       GetConstantCFStringEntry(CFConstantStringMap, Literal,
3268                                getDataLayout().isLittleEndian(), isUTF16,
3269                                StringLength);
3270 
3271   if (auto *C = Entry.second)
3272     return ConstantAddress(C, CharUnits::fromQuantity(C->getAlignment()));
3273 
3274   llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty);
3275   llvm::Constant *Zeros[] = { Zero, Zero };
3276 
3277   // If we don't already have it, get __CFConstantStringClassReference.
3278   if (!CFConstantStringClassRef) {
3279     llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
3280     Ty = llvm::ArrayType::get(Ty, 0);
3281     llvm::Constant *GV =
3282         CreateRuntimeVariable(Ty, "__CFConstantStringClassReference");
3283 
3284     if (getTriple().isOSBinFormatCOFF()) {
3285       IdentifierInfo &II = getContext().Idents.get(GV->getName());
3286       TranslationUnitDecl *TUDecl = getContext().getTranslationUnitDecl();
3287       DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl);
3288       llvm::GlobalValue *CGV = cast<llvm::GlobalValue>(GV);
3289 
3290       const VarDecl *VD = nullptr;
3291       for (const auto &Result : DC->lookup(&II))
3292         if ((VD = dyn_cast<VarDecl>(Result)))
3293           break;
3294 
3295       if (!VD || !VD->hasAttr<DLLExportAttr>()) {
3296         CGV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass);
3297         CGV->setLinkage(llvm::GlobalValue::ExternalLinkage);
3298       } else {
3299         CGV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass);
3300         CGV->setLinkage(llvm::GlobalValue::ExternalLinkage);
3301       }
3302     }
3303 
3304     // Decay array -> ptr
3305     CFConstantStringClassRef =
3306         llvm::ConstantExpr::getGetElementPtr(Ty, GV, Zeros);
3307   }
3308 
3309   QualType CFTy = getContext().getCFConstantStringType();
3310 
3311   auto *STy = cast<llvm::StructType>(getTypes().ConvertType(CFTy));
3312 
3313   ConstantInitBuilder Builder(*this);
3314   auto Fields = Builder.beginStruct(STy);
3315 
3316   // Class pointer.
3317   Fields.add(cast<llvm::ConstantExpr>(CFConstantStringClassRef));
3318 
3319   // Flags.
3320   Fields.addInt(IntTy, isUTF16 ? 0x07d0 : 0x07C8);
3321 
3322   // String pointer.
3323   llvm::Constant *C = nullptr;
3324   if (isUTF16) {
3325     auto Arr = llvm::makeArrayRef(
3326         reinterpret_cast<uint16_t *>(const_cast<char *>(Entry.first().data())),
3327         Entry.first().size() / 2);
3328     C = llvm::ConstantDataArray::get(VMContext, Arr);
3329   } else {
3330     C = llvm::ConstantDataArray::getString(VMContext, Entry.first());
3331   }
3332 
3333   // Note: -fwritable-strings doesn't make the backing store strings of
3334   // CFStrings writable. (See <rdar://problem/10657500>)
3335   auto *GV =
3336       new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true,
3337                                llvm::GlobalValue::PrivateLinkage, C, ".str");
3338   GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
3339   // Don't enforce the target's minimum global alignment, since the only use
3340   // of the string is via this class initializer.
3341   CharUnits Align = isUTF16
3342                         ? getContext().getTypeAlignInChars(getContext().ShortTy)
3343                         : getContext().getTypeAlignInChars(getContext().CharTy);
3344   GV->setAlignment(Align.getQuantity());
3345 
3346   // FIXME: We set the section explicitly to avoid a bug in ld64 224.1.
3347   // Without it LLVM can merge the string with a non unnamed_addr one during
3348   // LTO.  Doing that changes the section it ends in, which surprises ld64.
3349   if (getTriple().isOSBinFormatMachO())
3350     GV->setSection(isUTF16 ? "__TEXT,__ustring"
3351                            : "__TEXT,__cstring,cstring_literals");
3352 
3353   // String.
3354   llvm::Constant *Str =
3355       llvm::ConstantExpr::getGetElementPtr(GV->getValueType(), GV, Zeros);
3356 
3357   if (isUTF16)
3358     // Cast the UTF16 string to the correct type.
3359     Str = llvm::ConstantExpr::getBitCast(Str, Int8PtrTy);
3360   Fields.add(Str);
3361 
3362   // String length.
3363   auto Ty = getTypes().ConvertType(getContext().LongTy);
3364   Fields.addInt(cast<llvm::IntegerType>(Ty), StringLength);
3365 
3366   CharUnits Alignment = getPointerAlign();
3367 
3368   // The struct.
3369   GV = Fields.finishAndCreateGlobal("_unnamed_cfstring_", Alignment,
3370                                     /*isConstant=*/false,
3371                                     llvm::GlobalVariable::PrivateLinkage);
3372   switch (getTriple().getObjectFormat()) {
3373   case llvm::Triple::UnknownObjectFormat:
3374     llvm_unreachable("unknown file format");
3375   case llvm::Triple::COFF:
3376   case llvm::Triple::ELF:
3377   case llvm::Triple::Wasm:
3378     GV->setSection("cfstring");
3379     break;
3380   case llvm::Triple::MachO:
3381     GV->setSection("__DATA,__cfstring");
3382     break;
3383   }
3384   Entry.second = GV;
3385 
3386   return ConstantAddress(GV, Alignment);
3387 }
3388 
3389 QualType CodeGenModule::getObjCFastEnumerationStateType() {
3390   if (ObjCFastEnumerationStateType.isNull()) {
3391     RecordDecl *D = Context.buildImplicitRecord("__objcFastEnumerationState");
3392     D->startDefinition();
3393 
3394     QualType FieldTypes[] = {
3395       Context.UnsignedLongTy,
3396       Context.getPointerType(Context.getObjCIdType()),
3397       Context.getPointerType(Context.UnsignedLongTy),
3398       Context.getConstantArrayType(Context.UnsignedLongTy,
3399                            llvm::APInt(32, 5), ArrayType::Normal, 0)
3400     };
3401 
3402     for (size_t i = 0; i < 4; ++i) {
3403       FieldDecl *Field = FieldDecl::Create(Context,
3404                                            D,
3405                                            SourceLocation(),
3406                                            SourceLocation(), nullptr,
3407                                            FieldTypes[i], /*TInfo=*/nullptr,
3408                                            /*BitWidth=*/nullptr,
3409                                            /*Mutable=*/false,
3410                                            ICIS_NoInit);
3411       Field->setAccess(AS_public);
3412       D->addDecl(Field);
3413     }
3414 
3415     D->completeDefinition();
3416     ObjCFastEnumerationStateType = Context.getTagDeclType(D);
3417   }
3418 
3419   return ObjCFastEnumerationStateType;
3420 }
3421 
3422 llvm::Constant *
3423 CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) {
3424   assert(!E->getType()->isPointerType() && "Strings are always arrays");
3425 
3426   // Don't emit it as the address of the string, emit the string data itself
3427   // as an inline array.
3428   if (E->getCharByteWidth() == 1) {
3429     SmallString<64> Str(E->getString());
3430 
3431     // Resize the string to the right size, which is indicated by its type.
3432     const ConstantArrayType *CAT = Context.getAsConstantArrayType(E->getType());
3433     Str.resize(CAT->getSize().getZExtValue());
3434     return llvm::ConstantDataArray::getString(VMContext, Str, false);
3435   }
3436 
3437   auto *AType = cast<llvm::ArrayType>(getTypes().ConvertType(E->getType()));
3438   llvm::Type *ElemTy = AType->getElementType();
3439   unsigned NumElements = AType->getNumElements();
3440 
3441   // Wide strings have either 2-byte or 4-byte elements.
3442   if (ElemTy->getPrimitiveSizeInBits() == 16) {
3443     SmallVector<uint16_t, 32> Elements;
3444     Elements.reserve(NumElements);
3445 
3446     for(unsigned i = 0, e = E->getLength(); i != e; ++i)
3447       Elements.push_back(E->getCodeUnit(i));
3448     Elements.resize(NumElements);
3449     return llvm::ConstantDataArray::get(VMContext, Elements);
3450   }
3451 
3452   assert(ElemTy->getPrimitiveSizeInBits() == 32);
3453   SmallVector<uint32_t, 32> Elements;
3454   Elements.reserve(NumElements);
3455 
3456   for(unsigned i = 0, e = E->getLength(); i != e; ++i)
3457     Elements.push_back(E->getCodeUnit(i));
3458   Elements.resize(NumElements);
3459   return llvm::ConstantDataArray::get(VMContext, Elements);
3460 }
3461 
3462 static llvm::GlobalVariable *
3463 GenerateStringLiteral(llvm::Constant *C, llvm::GlobalValue::LinkageTypes LT,
3464                       CodeGenModule &CGM, StringRef GlobalName,
3465                       CharUnits Alignment) {
3466   // OpenCL v1.2 s6.5.3: a string literal is in the constant address space.
3467   unsigned AddrSpace = 0;
3468   if (CGM.getLangOpts().OpenCL)
3469     AddrSpace = CGM.getContext().getTargetAddressSpace(LangAS::opencl_constant);
3470 
3471   llvm::Module &M = CGM.getModule();
3472   // Create a global variable for this string
3473   auto *GV = new llvm::GlobalVariable(
3474       M, C->getType(), !CGM.getLangOpts().WritableStrings, LT, C, GlobalName,
3475       nullptr, llvm::GlobalVariable::NotThreadLocal, AddrSpace);
3476   GV->setAlignment(Alignment.getQuantity());
3477   GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
3478   if (GV->isWeakForLinker()) {
3479     assert(CGM.supportsCOMDAT() && "Only COFF uses weak string literals");
3480     GV->setComdat(M.getOrInsertComdat(GV->getName()));
3481   }
3482 
3483   return GV;
3484 }
3485 
3486 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a
3487 /// constant array for the given string literal.
3488 ConstantAddress
3489 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S,
3490                                                   StringRef Name) {
3491   CharUnits Alignment = getContext().getAlignOfGlobalVarInChars(S->getType());
3492 
3493   llvm::Constant *C = GetConstantArrayFromStringLiteral(S);
3494   llvm::GlobalVariable **Entry = nullptr;
3495   if (!LangOpts.WritableStrings) {
3496     Entry = &ConstantStringMap[C];
3497     if (auto GV = *Entry) {
3498       if (Alignment.getQuantity() > GV->getAlignment())
3499         GV->setAlignment(Alignment.getQuantity());
3500       return ConstantAddress(GV, Alignment);
3501     }
3502   }
3503 
3504   SmallString<256> MangledNameBuffer;
3505   StringRef GlobalVariableName;
3506   llvm::GlobalValue::LinkageTypes LT;
3507 
3508   // Mangle the string literal if the ABI allows for it.  However, we cannot
3509   // do this if  we are compiling with ASan or -fwritable-strings because they
3510   // rely on strings having normal linkage.
3511   if (!LangOpts.WritableStrings &&
3512       !LangOpts.Sanitize.has(SanitizerKind::Address) &&
3513       getCXXABI().getMangleContext().shouldMangleStringLiteral(S)) {
3514     llvm::raw_svector_ostream Out(MangledNameBuffer);
3515     getCXXABI().getMangleContext().mangleStringLiteral(S, Out);
3516 
3517     LT = llvm::GlobalValue::LinkOnceODRLinkage;
3518     GlobalVariableName = MangledNameBuffer;
3519   } else {
3520     LT = llvm::GlobalValue::PrivateLinkage;
3521     GlobalVariableName = Name;
3522   }
3523 
3524   auto GV = GenerateStringLiteral(C, LT, *this, GlobalVariableName, Alignment);
3525   if (Entry)
3526     *Entry = GV;
3527 
3528   SanitizerMD->reportGlobalToASan(GV, S->getStrTokenLoc(0), "<string literal>",
3529                                   QualType());
3530   return ConstantAddress(GV, Alignment);
3531 }
3532 
3533 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant
3534 /// array for the given ObjCEncodeExpr node.
3535 ConstantAddress
3536 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) {
3537   std::string Str;
3538   getContext().getObjCEncodingForType(E->getEncodedType(), Str);
3539 
3540   return GetAddrOfConstantCString(Str);
3541 }
3542 
3543 /// GetAddrOfConstantCString - Returns a pointer to a character array containing
3544 /// the literal and a terminating '\0' character.
3545 /// The result has pointer to array type.
3546 ConstantAddress CodeGenModule::GetAddrOfConstantCString(
3547     const std::string &Str, const char *GlobalName) {
3548   StringRef StrWithNull(Str.c_str(), Str.size() + 1);
3549   CharUnits Alignment =
3550     getContext().getAlignOfGlobalVarInChars(getContext().CharTy);
3551 
3552   llvm::Constant *C =
3553       llvm::ConstantDataArray::getString(getLLVMContext(), StrWithNull, false);
3554 
3555   // Don't share any string literals if strings aren't constant.
3556   llvm::GlobalVariable **Entry = nullptr;
3557   if (!LangOpts.WritableStrings) {
3558     Entry = &ConstantStringMap[C];
3559     if (auto GV = *Entry) {
3560       if (Alignment.getQuantity() > GV->getAlignment())
3561         GV->setAlignment(Alignment.getQuantity());
3562       return ConstantAddress(GV, Alignment);
3563     }
3564   }
3565 
3566   // Get the default prefix if a name wasn't specified.
3567   if (!GlobalName)
3568     GlobalName = ".str";
3569   // Create a global variable for this.
3570   auto GV = GenerateStringLiteral(C, llvm::GlobalValue::PrivateLinkage, *this,
3571                                   GlobalName, Alignment);
3572   if (Entry)
3573     *Entry = GV;
3574   return ConstantAddress(GV, Alignment);
3575 }
3576 
3577 ConstantAddress CodeGenModule::GetAddrOfGlobalTemporary(
3578     const MaterializeTemporaryExpr *E, const Expr *Init) {
3579   assert((E->getStorageDuration() == SD_Static ||
3580           E->getStorageDuration() == SD_Thread) && "not a global temporary");
3581   const auto *VD = cast<VarDecl>(E->getExtendingDecl());
3582 
3583   // If we're not materializing a subobject of the temporary, keep the
3584   // cv-qualifiers from the type of the MaterializeTemporaryExpr.
3585   QualType MaterializedType = Init->getType();
3586   if (Init == E->GetTemporaryExpr())
3587     MaterializedType = E->getType();
3588 
3589   CharUnits Align = getContext().getTypeAlignInChars(MaterializedType);
3590 
3591   if (llvm::Constant *Slot = MaterializedGlobalTemporaryMap[E])
3592     return ConstantAddress(Slot, Align);
3593 
3594   // FIXME: If an externally-visible declaration extends multiple temporaries,
3595   // we need to give each temporary the same name in every translation unit (and
3596   // we also need to make the temporaries externally-visible).
3597   SmallString<256> Name;
3598   llvm::raw_svector_ostream Out(Name);
3599   getCXXABI().getMangleContext().mangleReferenceTemporary(
3600       VD, E->getManglingNumber(), Out);
3601 
3602   APValue *Value = nullptr;
3603   if (E->getStorageDuration() == SD_Static) {
3604     // We might have a cached constant initializer for this temporary. Note
3605     // that this might have a different value from the value computed by
3606     // evaluating the initializer if the surrounding constant expression
3607     // modifies the temporary.
3608     Value = getContext().getMaterializedTemporaryValue(E, false);
3609     if (Value && Value->isUninit())
3610       Value = nullptr;
3611   }
3612 
3613   // Try evaluating it now, it might have a constant initializer.
3614   Expr::EvalResult EvalResult;
3615   if (!Value && Init->EvaluateAsRValue(EvalResult, getContext()) &&
3616       !EvalResult.hasSideEffects())
3617     Value = &EvalResult.Val;
3618 
3619   llvm::Constant *InitialValue = nullptr;
3620   bool Constant = false;
3621   llvm::Type *Type;
3622   if (Value) {
3623     // The temporary has a constant initializer, use it.
3624     InitialValue = EmitConstantValue(*Value, MaterializedType, nullptr);
3625     Constant = isTypeConstant(MaterializedType, /*ExcludeCtor*/Value);
3626     Type = InitialValue->getType();
3627   } else {
3628     // No initializer, the initialization will be provided when we
3629     // initialize the declaration which performed lifetime extension.
3630     Type = getTypes().ConvertTypeForMem(MaterializedType);
3631   }
3632 
3633   // Create a global variable for this lifetime-extended temporary.
3634   llvm::GlobalValue::LinkageTypes Linkage =
3635       getLLVMLinkageVarDefinition(VD, Constant);
3636   if (Linkage == llvm::GlobalVariable::ExternalLinkage) {
3637     const VarDecl *InitVD;
3638     if (VD->isStaticDataMember() && VD->getAnyInitializer(InitVD) &&
3639         isa<CXXRecordDecl>(InitVD->getLexicalDeclContext())) {
3640       // Temporaries defined inside a class get linkonce_odr linkage because the
3641       // class can be defined in multipe translation units.
3642       Linkage = llvm::GlobalVariable::LinkOnceODRLinkage;
3643     } else {
3644       // There is no need for this temporary to have external linkage if the
3645       // VarDecl has external linkage.
3646       Linkage = llvm::GlobalVariable::InternalLinkage;
3647     }
3648   }
3649   unsigned AddrSpace = GetGlobalVarAddressSpace(
3650       VD, getContext().getTargetAddressSpace(MaterializedType));
3651   auto *GV = new llvm::GlobalVariable(
3652       getModule(), Type, Constant, Linkage, InitialValue, Name.c_str(),
3653       /*InsertBefore=*/nullptr, llvm::GlobalVariable::NotThreadLocal,
3654       AddrSpace);
3655   setGlobalVisibility(GV, VD);
3656   GV->setAlignment(Align.getQuantity());
3657   if (supportsCOMDAT() && GV->isWeakForLinker())
3658     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
3659   if (VD->getTLSKind())
3660     setTLSMode(GV, *VD);
3661   MaterializedGlobalTemporaryMap[E] = GV;
3662   return ConstantAddress(GV, Align);
3663 }
3664 
3665 /// EmitObjCPropertyImplementations - Emit information for synthesized
3666 /// properties for an implementation.
3667 void CodeGenModule::EmitObjCPropertyImplementations(const
3668                                                     ObjCImplementationDecl *D) {
3669   for (const auto *PID : D->property_impls()) {
3670     // Dynamic is just for type-checking.
3671     if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) {
3672       ObjCPropertyDecl *PD = PID->getPropertyDecl();
3673 
3674       // Determine which methods need to be implemented, some may have
3675       // been overridden. Note that ::isPropertyAccessor is not the method
3676       // we want, that just indicates if the decl came from a
3677       // property. What we want to know is if the method is defined in
3678       // this implementation.
3679       if (!D->getInstanceMethod(PD->getGetterName()))
3680         CodeGenFunction(*this).GenerateObjCGetter(
3681                                  const_cast<ObjCImplementationDecl *>(D), PID);
3682       if (!PD->isReadOnly() &&
3683           !D->getInstanceMethod(PD->getSetterName()))
3684         CodeGenFunction(*this).GenerateObjCSetter(
3685                                  const_cast<ObjCImplementationDecl *>(D), PID);
3686     }
3687   }
3688 }
3689 
3690 static bool needsDestructMethod(ObjCImplementationDecl *impl) {
3691   const ObjCInterfaceDecl *iface = impl->getClassInterface();
3692   for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin();
3693        ivar; ivar = ivar->getNextIvar())
3694     if (ivar->getType().isDestructedType())
3695       return true;
3696 
3697   return false;
3698 }
3699 
3700 static bool AllTrivialInitializers(CodeGenModule &CGM,
3701                                    ObjCImplementationDecl *D) {
3702   CodeGenFunction CGF(CGM);
3703   for (ObjCImplementationDecl::init_iterator B = D->init_begin(),
3704        E = D->init_end(); B != E; ++B) {
3705     CXXCtorInitializer *CtorInitExp = *B;
3706     Expr *Init = CtorInitExp->getInit();
3707     if (!CGF.isTrivialInitializer(Init))
3708       return false;
3709   }
3710   return true;
3711 }
3712 
3713 /// EmitObjCIvarInitializations - Emit information for ivar initialization
3714 /// for an implementation.
3715 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) {
3716   // We might need a .cxx_destruct even if we don't have any ivar initializers.
3717   if (needsDestructMethod(D)) {
3718     IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct");
3719     Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
3720     ObjCMethodDecl *DTORMethod =
3721       ObjCMethodDecl::Create(getContext(), D->getLocation(), D->getLocation(),
3722                              cxxSelector, getContext().VoidTy, nullptr, D,
3723                              /*isInstance=*/true, /*isVariadic=*/false,
3724                           /*isPropertyAccessor=*/true, /*isImplicitlyDeclared=*/true,
3725                              /*isDefined=*/false, ObjCMethodDecl::Required);
3726     D->addInstanceMethod(DTORMethod);
3727     CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false);
3728     D->setHasDestructors(true);
3729   }
3730 
3731   // If the implementation doesn't have any ivar initializers, we don't need
3732   // a .cxx_construct.
3733   if (D->getNumIvarInitializers() == 0 ||
3734       AllTrivialInitializers(*this, D))
3735     return;
3736 
3737   IdentifierInfo *II = &getContext().Idents.get(".cxx_construct");
3738   Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
3739   // The constructor returns 'self'.
3740   ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(getContext(),
3741                                                 D->getLocation(),
3742                                                 D->getLocation(),
3743                                                 cxxSelector,
3744                                                 getContext().getObjCIdType(),
3745                                                 nullptr, D, /*isInstance=*/true,
3746                                                 /*isVariadic=*/false,
3747                                                 /*isPropertyAccessor=*/true,
3748                                                 /*isImplicitlyDeclared=*/true,
3749                                                 /*isDefined=*/false,
3750                                                 ObjCMethodDecl::Required);
3751   D->addInstanceMethod(CTORMethod);
3752   CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true);
3753   D->setHasNonZeroConstructors(true);
3754 }
3755 
3756 // EmitLinkageSpec - Emit all declarations in a linkage spec.
3757 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) {
3758   if (LSD->getLanguage() != LinkageSpecDecl::lang_c &&
3759       LSD->getLanguage() != LinkageSpecDecl::lang_cxx) {
3760     ErrorUnsupported(LSD, "linkage spec");
3761     return;
3762   }
3763 
3764   EmitDeclContext(LSD);
3765 }
3766 
3767 void CodeGenModule::EmitDeclContext(const DeclContext *DC) {
3768   for (auto *I : DC->decls()) {
3769     // Unlike other DeclContexts, the contents of an ObjCImplDecl at TU scope
3770     // are themselves considered "top-level", so EmitTopLevelDecl on an
3771     // ObjCImplDecl does not recursively visit them. We need to do that in
3772     // case they're nested inside another construct (LinkageSpecDecl /
3773     // ExportDecl) that does stop them from being considered "top-level".
3774     if (auto *OID = dyn_cast<ObjCImplDecl>(I)) {
3775       for (auto *M : OID->methods())
3776         EmitTopLevelDecl(M);
3777     }
3778 
3779     EmitTopLevelDecl(I);
3780   }
3781 }
3782 
3783 /// EmitTopLevelDecl - Emit code for a single top level declaration.
3784 void CodeGenModule::EmitTopLevelDecl(Decl *D) {
3785   // Ignore dependent declarations.
3786   if (D->getDeclContext() && D->getDeclContext()->isDependentContext())
3787     return;
3788 
3789   switch (D->getKind()) {
3790   case Decl::CXXConversion:
3791   case Decl::CXXMethod:
3792   case Decl::Function:
3793     // Skip function templates
3794     if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() ||
3795         cast<FunctionDecl>(D)->isLateTemplateParsed())
3796       return;
3797 
3798     EmitGlobal(cast<FunctionDecl>(D));
3799     // Always provide some coverage mapping
3800     // even for the functions that aren't emitted.
3801     AddDeferredUnusedCoverageMapping(D);
3802     break;
3803 
3804   case Decl::Var:
3805   case Decl::Decomposition:
3806     // Skip variable templates
3807     if (cast<VarDecl>(D)->getDescribedVarTemplate())
3808       return;
3809   case Decl::VarTemplateSpecialization:
3810     EmitGlobal(cast<VarDecl>(D));
3811     if (auto *DD = dyn_cast<DecompositionDecl>(D))
3812       for (auto *B : DD->bindings())
3813         if (auto *HD = B->getHoldingVar())
3814           EmitGlobal(HD);
3815     break;
3816 
3817   // Indirect fields from global anonymous structs and unions can be
3818   // ignored; only the actual variable requires IR gen support.
3819   case Decl::IndirectField:
3820     break;
3821 
3822   // C++ Decls
3823   case Decl::Namespace:
3824     EmitDeclContext(cast<NamespaceDecl>(D));
3825     break;
3826   case Decl::CXXRecord:
3827     // Emit any static data members, they may be definitions.
3828     for (auto *I : cast<CXXRecordDecl>(D)->decls())
3829       if (isa<VarDecl>(I) || isa<CXXRecordDecl>(I))
3830         EmitTopLevelDecl(I);
3831     break;
3832     // No code generation needed.
3833   case Decl::UsingShadow:
3834   case Decl::ClassTemplate:
3835   case Decl::VarTemplate:
3836   case Decl::VarTemplatePartialSpecialization:
3837   case Decl::FunctionTemplate:
3838   case Decl::TypeAliasTemplate:
3839   case Decl::Block:
3840   case Decl::Empty:
3841     break;
3842   case Decl::Using:          // using X; [C++]
3843     if (CGDebugInfo *DI = getModuleDebugInfo())
3844         DI->EmitUsingDecl(cast<UsingDecl>(*D));
3845     return;
3846   case Decl::NamespaceAlias:
3847     if (CGDebugInfo *DI = getModuleDebugInfo())
3848         DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(*D));
3849     return;
3850   case Decl::UsingDirective: // using namespace X; [C++]
3851     if (CGDebugInfo *DI = getModuleDebugInfo())
3852       DI->EmitUsingDirective(cast<UsingDirectiveDecl>(*D));
3853     return;
3854   case Decl::CXXConstructor:
3855     // Skip function templates
3856     if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() ||
3857         cast<FunctionDecl>(D)->isLateTemplateParsed())
3858       return;
3859 
3860     getCXXABI().EmitCXXConstructors(cast<CXXConstructorDecl>(D));
3861     break;
3862   case Decl::CXXDestructor:
3863     if (cast<FunctionDecl>(D)->isLateTemplateParsed())
3864       return;
3865     getCXXABI().EmitCXXDestructors(cast<CXXDestructorDecl>(D));
3866     break;
3867 
3868   case Decl::StaticAssert:
3869     // Nothing to do.
3870     break;
3871 
3872   // Objective-C Decls
3873 
3874   // Forward declarations, no (immediate) code generation.
3875   case Decl::ObjCInterface:
3876   case Decl::ObjCCategory:
3877     break;
3878 
3879   case Decl::ObjCProtocol: {
3880     auto *Proto = cast<ObjCProtocolDecl>(D);
3881     if (Proto->isThisDeclarationADefinition())
3882       ObjCRuntime->GenerateProtocol(Proto);
3883     break;
3884   }
3885 
3886   case Decl::ObjCCategoryImpl:
3887     // Categories have properties but don't support synthesize so we
3888     // can ignore them here.
3889     ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D));
3890     break;
3891 
3892   case Decl::ObjCImplementation: {
3893     auto *OMD = cast<ObjCImplementationDecl>(D);
3894     EmitObjCPropertyImplementations(OMD);
3895     EmitObjCIvarInitializations(OMD);
3896     ObjCRuntime->GenerateClass(OMD);
3897     // Emit global variable debug information.
3898     if (CGDebugInfo *DI = getModuleDebugInfo())
3899       if (getCodeGenOpts().getDebugInfo() >= codegenoptions::LimitedDebugInfo)
3900         DI->getOrCreateInterfaceType(getContext().getObjCInterfaceType(
3901             OMD->getClassInterface()), OMD->getLocation());
3902     break;
3903   }
3904   case Decl::ObjCMethod: {
3905     auto *OMD = cast<ObjCMethodDecl>(D);
3906     // If this is not a prototype, emit the body.
3907     if (OMD->getBody())
3908       CodeGenFunction(*this).GenerateObjCMethod(OMD);
3909     break;
3910   }
3911   case Decl::ObjCCompatibleAlias:
3912     ObjCRuntime->RegisterAlias(cast<ObjCCompatibleAliasDecl>(D));
3913     break;
3914 
3915   case Decl::PragmaComment: {
3916     const auto *PCD = cast<PragmaCommentDecl>(D);
3917     switch (PCD->getCommentKind()) {
3918     case PCK_Unknown:
3919       llvm_unreachable("unexpected pragma comment kind");
3920     case PCK_Linker:
3921       AppendLinkerOptions(PCD->getArg());
3922       break;
3923     case PCK_Lib:
3924       AddDependentLib(PCD->getArg());
3925       break;
3926     case PCK_Compiler:
3927     case PCK_ExeStr:
3928     case PCK_User:
3929       break; // We ignore all of these.
3930     }
3931     break;
3932   }
3933 
3934   case Decl::PragmaDetectMismatch: {
3935     const auto *PDMD = cast<PragmaDetectMismatchDecl>(D);
3936     AddDetectMismatch(PDMD->getName(), PDMD->getValue());
3937     break;
3938   }
3939 
3940   case Decl::LinkageSpec:
3941     EmitLinkageSpec(cast<LinkageSpecDecl>(D));
3942     break;
3943 
3944   case Decl::FileScopeAsm: {
3945     // File-scope asm is ignored during device-side CUDA compilation.
3946     if (LangOpts.CUDA && LangOpts.CUDAIsDevice)
3947       break;
3948     // File-scope asm is ignored during device-side OpenMP compilation.
3949     if (LangOpts.OpenMPIsDevice)
3950       break;
3951     auto *AD = cast<FileScopeAsmDecl>(D);
3952     getModule().appendModuleInlineAsm(AD->getAsmString()->getString());
3953     break;
3954   }
3955 
3956   case Decl::Import: {
3957     auto *Import = cast<ImportDecl>(D);
3958 
3959     // If we've already imported this module, we're done.
3960     if (!ImportedModules.insert(Import->getImportedModule()))
3961       break;
3962 
3963     // Emit debug information for direct imports.
3964     if (!Import->getImportedOwningModule()) {
3965       if (CGDebugInfo *DI = getModuleDebugInfo())
3966         DI->EmitImportDecl(*Import);
3967     }
3968 
3969     // Find all of the submodules and emit the module initializers.
3970     llvm::SmallPtrSet<clang::Module *, 16> Visited;
3971     SmallVector<clang::Module *, 16> Stack;
3972     Visited.insert(Import->getImportedModule());
3973     Stack.push_back(Import->getImportedModule());
3974 
3975     while (!Stack.empty()) {
3976       clang::Module *Mod = Stack.pop_back_val();
3977       if (!EmittedModuleInitializers.insert(Mod).second)
3978         continue;
3979 
3980       for (auto *D : Context.getModuleInitializers(Mod))
3981         EmitTopLevelDecl(D);
3982 
3983       // Visit the submodules of this module.
3984       for (clang::Module::submodule_iterator Sub = Mod->submodule_begin(),
3985                                              SubEnd = Mod->submodule_end();
3986            Sub != SubEnd; ++Sub) {
3987         // Skip explicit children; they need to be explicitly imported to emit
3988         // the initializers.
3989         if ((*Sub)->IsExplicit)
3990           continue;
3991 
3992         if (Visited.insert(*Sub).second)
3993           Stack.push_back(*Sub);
3994       }
3995     }
3996     break;
3997   }
3998 
3999   case Decl::Export:
4000     EmitDeclContext(cast<ExportDecl>(D));
4001     break;
4002 
4003   case Decl::OMPThreadPrivate:
4004     EmitOMPThreadPrivateDecl(cast<OMPThreadPrivateDecl>(D));
4005     break;
4006 
4007   case Decl::ClassTemplateSpecialization: {
4008     const auto *Spec = cast<ClassTemplateSpecializationDecl>(D);
4009     if (DebugInfo &&
4010         Spec->getSpecializationKind() == TSK_ExplicitInstantiationDefinition &&
4011         Spec->hasDefinition())
4012       DebugInfo->completeTemplateDefinition(*Spec);
4013     break;
4014   }
4015 
4016   case Decl::OMPDeclareReduction:
4017     EmitOMPDeclareReduction(cast<OMPDeclareReductionDecl>(D));
4018     break;
4019 
4020   default:
4021     // Make sure we handled everything we should, every other kind is a
4022     // non-top-level decl.  FIXME: Would be nice to have an isTopLevelDeclKind
4023     // function. Need to recode Decl::Kind to do that easily.
4024     assert(isa<TypeDecl>(D) && "Unsupported decl kind");
4025     break;
4026   }
4027 }
4028 
4029 void CodeGenModule::AddDeferredUnusedCoverageMapping(Decl *D) {
4030   // Do we need to generate coverage mapping?
4031   if (!CodeGenOpts.CoverageMapping)
4032     return;
4033   switch (D->getKind()) {
4034   case Decl::CXXConversion:
4035   case Decl::CXXMethod:
4036   case Decl::Function:
4037   case Decl::ObjCMethod:
4038   case Decl::CXXConstructor:
4039   case Decl::CXXDestructor: {
4040     if (!cast<FunctionDecl>(D)->doesThisDeclarationHaveABody())
4041       return;
4042     auto I = DeferredEmptyCoverageMappingDecls.find(D);
4043     if (I == DeferredEmptyCoverageMappingDecls.end())
4044       DeferredEmptyCoverageMappingDecls[D] = true;
4045     break;
4046   }
4047   default:
4048     break;
4049   };
4050 }
4051 
4052 void CodeGenModule::ClearUnusedCoverageMapping(const Decl *D) {
4053   // Do we need to generate coverage mapping?
4054   if (!CodeGenOpts.CoverageMapping)
4055     return;
4056   if (const auto *Fn = dyn_cast<FunctionDecl>(D)) {
4057     if (Fn->isTemplateInstantiation())
4058       ClearUnusedCoverageMapping(Fn->getTemplateInstantiationPattern());
4059   }
4060   auto I = DeferredEmptyCoverageMappingDecls.find(D);
4061   if (I == DeferredEmptyCoverageMappingDecls.end())
4062     DeferredEmptyCoverageMappingDecls[D] = false;
4063   else
4064     I->second = false;
4065 }
4066 
4067 void CodeGenModule::EmitDeferredUnusedCoverageMappings() {
4068   std::vector<const Decl *> DeferredDecls;
4069   for (const auto &I : DeferredEmptyCoverageMappingDecls) {
4070     if (!I.second)
4071       continue;
4072     DeferredDecls.push_back(I.first);
4073   }
4074   // Sort the declarations by their location to make sure that the tests get a
4075   // predictable order for the coverage mapping for the unused declarations.
4076   if (CodeGenOpts.DumpCoverageMapping)
4077     std::sort(DeferredDecls.begin(), DeferredDecls.end(),
4078               [] (const Decl *LHS, const Decl *RHS) {
4079       return LHS->getLocStart() < RHS->getLocStart();
4080     });
4081   for (const auto *D : DeferredDecls) {
4082     switch (D->getKind()) {
4083     case Decl::CXXConversion:
4084     case Decl::CXXMethod:
4085     case Decl::Function:
4086     case Decl::ObjCMethod: {
4087       CodeGenPGO PGO(*this);
4088       GlobalDecl GD(cast<FunctionDecl>(D));
4089       PGO.emitEmptyCounterMapping(D, getMangledName(GD),
4090                                   getFunctionLinkage(GD));
4091       break;
4092     }
4093     case Decl::CXXConstructor: {
4094       CodeGenPGO PGO(*this);
4095       GlobalDecl GD(cast<CXXConstructorDecl>(D), Ctor_Base);
4096       PGO.emitEmptyCounterMapping(D, getMangledName(GD),
4097                                   getFunctionLinkage(GD));
4098       break;
4099     }
4100     case Decl::CXXDestructor: {
4101       CodeGenPGO PGO(*this);
4102       GlobalDecl GD(cast<CXXDestructorDecl>(D), Dtor_Base);
4103       PGO.emitEmptyCounterMapping(D, getMangledName(GD),
4104                                   getFunctionLinkage(GD));
4105       break;
4106     }
4107     default:
4108       break;
4109     };
4110   }
4111 }
4112 
4113 /// Turns the given pointer into a constant.
4114 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context,
4115                                           const void *Ptr) {
4116   uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr);
4117   llvm::Type *i64 = llvm::Type::getInt64Ty(Context);
4118   return llvm::ConstantInt::get(i64, PtrInt);
4119 }
4120 
4121 static void EmitGlobalDeclMetadata(CodeGenModule &CGM,
4122                                    llvm::NamedMDNode *&GlobalMetadata,
4123                                    GlobalDecl D,
4124                                    llvm::GlobalValue *Addr) {
4125   if (!GlobalMetadata)
4126     GlobalMetadata =
4127       CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs");
4128 
4129   // TODO: should we report variant information for ctors/dtors?
4130   llvm::Metadata *Ops[] = {llvm::ConstantAsMetadata::get(Addr),
4131                            llvm::ConstantAsMetadata::get(GetPointerConstant(
4132                                CGM.getLLVMContext(), D.getDecl()))};
4133   GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops));
4134 }
4135 
4136 /// For each function which is declared within an extern "C" region and marked
4137 /// as 'used', but has internal linkage, create an alias from the unmangled
4138 /// name to the mangled name if possible. People expect to be able to refer
4139 /// to such functions with an unmangled name from inline assembly within the
4140 /// same translation unit.
4141 void CodeGenModule::EmitStaticExternCAliases() {
4142   // Don't do anything if we're generating CUDA device code -- the NVPTX
4143   // assembly target doesn't support aliases.
4144   if (Context.getTargetInfo().getTriple().isNVPTX())
4145     return;
4146   for (auto &I : StaticExternCValues) {
4147     IdentifierInfo *Name = I.first;
4148     llvm::GlobalValue *Val = I.second;
4149     if (Val && !getModule().getNamedValue(Name->getName()))
4150       addUsedGlobal(llvm::GlobalAlias::create(Name->getName(), Val));
4151   }
4152 }
4153 
4154 bool CodeGenModule::lookupRepresentativeDecl(StringRef MangledName,
4155                                              GlobalDecl &Result) const {
4156   auto Res = Manglings.find(MangledName);
4157   if (Res == Manglings.end())
4158     return false;
4159   Result = Res->getValue();
4160   return true;
4161 }
4162 
4163 /// Emits metadata nodes associating all the global values in the
4164 /// current module with the Decls they came from.  This is useful for
4165 /// projects using IR gen as a subroutine.
4166 ///
4167 /// Since there's currently no way to associate an MDNode directly
4168 /// with an llvm::GlobalValue, we create a global named metadata
4169 /// with the name 'clang.global.decl.ptrs'.
4170 void CodeGenModule::EmitDeclMetadata() {
4171   llvm::NamedMDNode *GlobalMetadata = nullptr;
4172 
4173   for (auto &I : MangledDeclNames) {
4174     llvm::GlobalValue *Addr = getModule().getNamedValue(I.second);
4175     // Some mangled names don't necessarily have an associated GlobalValue
4176     // in this module, e.g. if we mangled it for DebugInfo.
4177     if (Addr)
4178       EmitGlobalDeclMetadata(*this, GlobalMetadata, I.first, Addr);
4179   }
4180 }
4181 
4182 /// Emits metadata nodes for all the local variables in the current
4183 /// function.
4184 void CodeGenFunction::EmitDeclMetadata() {
4185   if (LocalDeclMap.empty()) return;
4186 
4187   llvm::LLVMContext &Context = getLLVMContext();
4188 
4189   // Find the unique metadata ID for this name.
4190   unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr");
4191 
4192   llvm::NamedMDNode *GlobalMetadata = nullptr;
4193 
4194   for (auto &I : LocalDeclMap) {
4195     const Decl *D = I.first;
4196     llvm::Value *Addr = I.second.getPointer();
4197     if (auto *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) {
4198       llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D);
4199       Alloca->setMetadata(
4200           DeclPtrKind, llvm::MDNode::get(
4201                            Context, llvm::ValueAsMetadata::getConstant(DAddr)));
4202     } else if (auto *GV = dyn_cast<llvm::GlobalValue>(Addr)) {
4203       GlobalDecl GD = GlobalDecl(cast<VarDecl>(D));
4204       EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV);
4205     }
4206   }
4207 }
4208 
4209 void CodeGenModule::EmitVersionIdentMetadata() {
4210   llvm::NamedMDNode *IdentMetadata =
4211     TheModule.getOrInsertNamedMetadata("llvm.ident");
4212   std::string Version = getClangFullVersion();
4213   llvm::LLVMContext &Ctx = TheModule.getContext();
4214 
4215   llvm::Metadata *IdentNode[] = {llvm::MDString::get(Ctx, Version)};
4216   IdentMetadata->addOperand(llvm::MDNode::get(Ctx, IdentNode));
4217 }
4218 
4219 void CodeGenModule::EmitTargetMetadata() {
4220   // Warning, new MangledDeclNames may be appended within this loop.
4221   // We rely on MapVector insertions adding new elements to the end
4222   // of the container.
4223   // FIXME: Move this loop into the one target that needs it, and only
4224   // loop over those declarations for which we couldn't emit the target
4225   // metadata when we emitted the declaration.
4226   for (unsigned I = 0; I != MangledDeclNames.size(); ++I) {
4227     auto Val = *(MangledDeclNames.begin() + I);
4228     const Decl *D = Val.first.getDecl()->getMostRecentDecl();
4229     llvm::GlobalValue *GV = GetGlobalValue(Val.second);
4230     getTargetCodeGenInfo().emitTargetMD(D, GV, *this);
4231   }
4232 }
4233 
4234 void CodeGenModule::EmitCoverageFile() {
4235   if (getCodeGenOpts().CoverageDataFile.empty() &&
4236       getCodeGenOpts().CoverageNotesFile.empty())
4237     return;
4238 
4239   llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu");
4240   if (!CUNode)
4241     return;
4242 
4243   llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov");
4244   llvm::LLVMContext &Ctx = TheModule.getContext();
4245   auto *CoverageDataFile =
4246       llvm::MDString::get(Ctx, getCodeGenOpts().CoverageDataFile);
4247   auto *CoverageNotesFile =
4248       llvm::MDString::get(Ctx, getCodeGenOpts().CoverageNotesFile);
4249   for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) {
4250     llvm::MDNode *CU = CUNode->getOperand(i);
4251     llvm::Metadata *Elts[] = {CoverageNotesFile, CoverageDataFile, CU};
4252     GCov->addOperand(llvm::MDNode::get(Ctx, Elts));
4253   }
4254 }
4255 
4256 llvm::Constant *CodeGenModule::EmitUuidofInitializer(StringRef Uuid) {
4257   // Sema has checked that all uuid strings are of the form
4258   // "12345678-1234-1234-1234-1234567890ab".
4259   assert(Uuid.size() == 36);
4260   for (unsigned i = 0; i < 36; ++i) {
4261     if (i == 8 || i == 13 || i == 18 || i == 23) assert(Uuid[i] == '-');
4262     else                                         assert(isHexDigit(Uuid[i]));
4263   }
4264 
4265   // The starts of all bytes of Field3 in Uuid. Field 3 is "1234-1234567890ab".
4266   const unsigned Field3ValueOffsets[8] = { 19, 21, 24, 26, 28, 30, 32, 34 };
4267 
4268   llvm::Constant *Field3[8];
4269   for (unsigned Idx = 0; Idx < 8; ++Idx)
4270     Field3[Idx] = llvm::ConstantInt::get(
4271         Int8Ty, Uuid.substr(Field3ValueOffsets[Idx], 2), 16);
4272 
4273   llvm::Constant *Fields[4] = {
4274     llvm::ConstantInt::get(Int32Ty, Uuid.substr(0,  8), 16),
4275     llvm::ConstantInt::get(Int16Ty, Uuid.substr(9,  4), 16),
4276     llvm::ConstantInt::get(Int16Ty, Uuid.substr(14, 4), 16),
4277     llvm::ConstantArray::get(llvm::ArrayType::get(Int8Ty, 8), Field3)
4278   };
4279 
4280   return llvm::ConstantStruct::getAnon(Fields);
4281 }
4282 
4283 llvm::Constant *CodeGenModule::GetAddrOfRTTIDescriptor(QualType Ty,
4284                                                        bool ForEH) {
4285   // Return a bogus pointer if RTTI is disabled, unless it's for EH.
4286   // FIXME: should we even be calling this method if RTTI is disabled
4287   // and it's not for EH?
4288   if (!ForEH && !getLangOpts().RTTI)
4289     return llvm::Constant::getNullValue(Int8PtrTy);
4290 
4291   if (ForEH && Ty->isObjCObjectPointerType() &&
4292       LangOpts.ObjCRuntime.isGNUFamily())
4293     return ObjCRuntime->GetEHType(Ty);
4294 
4295   return getCXXABI().getAddrOfRTTIDescriptor(Ty);
4296 }
4297 
4298 void CodeGenModule::EmitOMPThreadPrivateDecl(const OMPThreadPrivateDecl *D) {
4299   for (auto RefExpr : D->varlists()) {
4300     auto *VD = cast<VarDecl>(cast<DeclRefExpr>(RefExpr)->getDecl());
4301     bool PerformInit =
4302         VD->getAnyInitializer() &&
4303         !VD->getAnyInitializer()->isConstantInitializer(getContext(),
4304                                                         /*ForRef=*/false);
4305 
4306     Address Addr(GetAddrOfGlobalVar(VD), getContext().getDeclAlign(VD));
4307     if (auto InitFunction = getOpenMPRuntime().emitThreadPrivateVarDefinition(
4308             VD, Addr, RefExpr->getLocStart(), PerformInit))
4309       CXXGlobalInits.push_back(InitFunction);
4310   }
4311 }
4312 
4313 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierForType(QualType T) {
4314   llvm::Metadata *&InternalId = MetadataIdMap[T.getCanonicalType()];
4315   if (InternalId)
4316     return InternalId;
4317 
4318   if (isExternallyVisible(T->getLinkage())) {
4319     std::string OutName;
4320     llvm::raw_string_ostream Out(OutName);
4321     getCXXABI().getMangleContext().mangleTypeName(T, Out);
4322 
4323     InternalId = llvm::MDString::get(getLLVMContext(), Out.str());
4324   } else {
4325     InternalId = llvm::MDNode::getDistinct(getLLVMContext(),
4326                                            llvm::ArrayRef<llvm::Metadata *>());
4327   }
4328 
4329   return InternalId;
4330 }
4331 
4332 /// Returns whether this module needs the "all-vtables" type identifier.
4333 bool CodeGenModule::NeedAllVtablesTypeId() const {
4334   // Returns true if at least one of vtable-based CFI checkers is enabled and
4335   // is not in the trapping mode.
4336   return ((LangOpts.Sanitize.has(SanitizerKind::CFIVCall) &&
4337            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIVCall)) ||
4338           (LangOpts.Sanitize.has(SanitizerKind::CFINVCall) &&
4339            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFINVCall)) ||
4340           (LangOpts.Sanitize.has(SanitizerKind::CFIDerivedCast) &&
4341            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIDerivedCast)) ||
4342           (LangOpts.Sanitize.has(SanitizerKind::CFIUnrelatedCast) &&
4343            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIUnrelatedCast)));
4344 }
4345 
4346 void CodeGenModule::AddVTableTypeMetadata(llvm::GlobalVariable *VTable,
4347                                           CharUnits Offset,
4348                                           const CXXRecordDecl *RD) {
4349   llvm::Metadata *MD =
4350       CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0));
4351   VTable->addTypeMetadata(Offset.getQuantity(), MD);
4352 
4353   if (CodeGenOpts.SanitizeCfiCrossDso)
4354     if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD))
4355       VTable->addTypeMetadata(Offset.getQuantity(),
4356                               llvm::ConstantAsMetadata::get(CrossDsoTypeId));
4357 
4358   if (NeedAllVtablesTypeId()) {
4359     llvm::Metadata *MD = llvm::MDString::get(getLLVMContext(), "all-vtables");
4360     VTable->addTypeMetadata(Offset.getQuantity(), MD);
4361   }
4362 }
4363 
4364 // Fills in the supplied string map with the set of target features for the
4365 // passed in function.
4366 void CodeGenModule::getFunctionFeatureMap(llvm::StringMap<bool> &FeatureMap,
4367                                           const FunctionDecl *FD) {
4368   StringRef TargetCPU = Target.getTargetOpts().CPU;
4369   if (const auto *TD = FD->getAttr<TargetAttr>()) {
4370     // If we have a TargetAttr build up the feature map based on that.
4371     TargetAttr::ParsedTargetAttr ParsedAttr = TD->parse();
4372 
4373     // Make a copy of the features as passed on the command line into the
4374     // beginning of the additional features from the function to override.
4375     ParsedAttr.first.insert(ParsedAttr.first.begin(),
4376                             Target.getTargetOpts().FeaturesAsWritten.begin(),
4377                             Target.getTargetOpts().FeaturesAsWritten.end());
4378 
4379     if (ParsedAttr.second != "")
4380       TargetCPU = ParsedAttr.second;
4381 
4382     // Now populate the feature map, first with the TargetCPU which is either
4383     // the default or a new one from the target attribute string. Then we'll use
4384     // the passed in features (FeaturesAsWritten) along with the new ones from
4385     // the attribute.
4386     Target.initFeatureMap(FeatureMap, getDiags(), TargetCPU, ParsedAttr.first);
4387   } else {
4388     Target.initFeatureMap(FeatureMap, getDiags(), TargetCPU,
4389                           Target.getTargetOpts().Features);
4390   }
4391 }
4392 
4393 llvm::SanitizerStatReport &CodeGenModule::getSanStats() {
4394   if (!SanStats)
4395     SanStats = llvm::make_unique<llvm::SanitizerStatReport>(&getModule());
4396 
4397   return *SanStats;
4398 }
4399 llvm::Value *
4400 CodeGenModule::createOpenCLIntToSamplerConversion(const Expr *E,
4401                                                   CodeGenFunction &CGF) {
4402   llvm::Constant *C = EmitConstantExpr(E, E->getType(), &CGF);
4403   auto SamplerT = getOpenCLRuntime().getSamplerType();
4404   auto FTy = llvm::FunctionType::get(SamplerT, {C->getType()}, false);
4405   return CGF.Builder.CreateCall(CreateRuntimeFunction(FTy,
4406                                 "__translate_sampler_initializer"),
4407                                 {C});
4408 }
4409