xref: /llvm-project/clang/lib/CodeGen/CodeGenModule.cpp (revision 732c99c4ae6e309ea441f73f757c6990b7223f8e)
1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This coordinates the per-module state used while generating code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenModule.h"
15 #include "CGCUDARuntime.h"
16 #include "CGCXXABI.h"
17 #include "CGCall.h"
18 #include "CGDebugInfo.h"
19 #include "CGObjCRuntime.h"
20 #include "CGOpenCLRuntime.h"
21 #include "CodeGenFunction.h"
22 #include "CodeGenTBAA.h"
23 #include "TargetInfo.h"
24 #include "clang/AST/ASTContext.h"
25 #include "clang/AST/CharUnits.h"
26 #include "clang/AST/DeclCXX.h"
27 #include "clang/AST/DeclObjC.h"
28 #include "clang/AST/DeclTemplate.h"
29 #include "clang/AST/Mangle.h"
30 #include "clang/AST/RecordLayout.h"
31 #include "clang/AST/RecursiveASTVisitor.h"
32 #include "clang/Basic/Builtins.h"
33 #include "clang/Basic/CharInfo.h"
34 #include "clang/Basic/Diagnostic.h"
35 #include "clang/Basic/Module.h"
36 #include "clang/Basic/SourceManager.h"
37 #include "clang/Basic/TargetInfo.h"
38 #include "clang/Basic/Version.h"
39 #include "clang/Frontend/CodeGenOptions.h"
40 #include "clang/Sema/SemaDiagnostic.h"
41 #include "llvm/ADT/APSInt.h"
42 #include "llvm/ADT/Triple.h"
43 #include "llvm/IR/CallingConv.h"
44 #include "llvm/IR/DataLayout.h"
45 #include "llvm/IR/Intrinsics.h"
46 #include "llvm/IR/LLVMContext.h"
47 #include "llvm/IR/Module.h"
48 #include "llvm/Support/CallSite.h"
49 #include "llvm/Support/ConvertUTF.h"
50 #include "llvm/Support/ErrorHandling.h"
51 #include "llvm/Target/Mangler.h"
52 
53 using namespace clang;
54 using namespace CodeGen;
55 
56 static const char AnnotationSection[] = "llvm.metadata";
57 
58 static CGCXXABI &createCXXABI(CodeGenModule &CGM) {
59   switch (CGM.getTarget().getCXXABI().getKind()) {
60   case TargetCXXABI::GenericAArch64:
61   case TargetCXXABI::GenericARM:
62   case TargetCXXABI::iOS:
63   case TargetCXXABI::GenericItanium:
64     return *CreateItaniumCXXABI(CGM);
65   case TargetCXXABI::Microsoft:
66     return *CreateMicrosoftCXXABI(CGM);
67   }
68 
69   llvm_unreachable("invalid C++ ABI kind");
70 }
71 
72 CodeGenModule::CodeGenModule(ASTContext &C, const CodeGenOptions &CGO,
73                              llvm::Module &M, const llvm::DataLayout &TD,
74                              DiagnosticsEngine &diags)
75     : Context(C), LangOpts(C.getLangOpts()), CodeGenOpts(CGO), TheModule(M),
76       Diags(diags), TheDataLayout(TD), Target(C.getTargetInfo()),
77       ABI(createCXXABI(*this)), VMContext(M.getContext()), TBAA(0),
78       TheTargetCodeGenInfo(0), Types(*this), VTables(*this), ObjCRuntime(0),
79       OpenCLRuntime(0), CUDARuntime(0), DebugInfo(0), ARCData(0),
80       NoObjCARCExceptionsMetadata(0), RRData(0), CFConstantStringClassRef(0),
81       ConstantStringClassRef(0), NSConstantStringType(0),
82       NSConcreteGlobalBlock(0), NSConcreteStackBlock(0), BlockObjectAssign(0),
83       BlockObjectDispose(0), BlockDescriptorType(0), GenericBlockLiteralType(0),
84       LifetimeStartFn(0), LifetimeEndFn(0),
85       SanitizerBlacklist(
86           llvm::SpecialCaseList::createOrDie(CGO.SanitizerBlacklistFile)),
87       SanOpts(SanitizerBlacklist->isIn(M) ? SanitizerOptions::Disabled
88                                           : LangOpts.Sanitize) {
89 
90   // Initialize the type cache.
91   llvm::LLVMContext &LLVMContext = M.getContext();
92   VoidTy = llvm::Type::getVoidTy(LLVMContext);
93   Int8Ty = llvm::Type::getInt8Ty(LLVMContext);
94   Int16Ty = llvm::Type::getInt16Ty(LLVMContext);
95   Int32Ty = llvm::Type::getInt32Ty(LLVMContext);
96   Int64Ty = llvm::Type::getInt64Ty(LLVMContext);
97   FloatTy = llvm::Type::getFloatTy(LLVMContext);
98   DoubleTy = llvm::Type::getDoubleTy(LLVMContext);
99   PointerWidthInBits = C.getTargetInfo().getPointerWidth(0);
100   PointerAlignInBytes =
101   C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(0)).getQuantity();
102   IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth());
103   IntPtrTy = llvm::IntegerType::get(LLVMContext, PointerWidthInBits);
104   Int8PtrTy = Int8Ty->getPointerTo(0);
105   Int8PtrPtrTy = Int8PtrTy->getPointerTo(0);
106 
107   RuntimeCC = getTargetCodeGenInfo().getABIInfo().getRuntimeCC();
108 
109   if (LangOpts.ObjC1)
110     createObjCRuntime();
111   if (LangOpts.OpenCL)
112     createOpenCLRuntime();
113   if (LangOpts.CUDA)
114     createCUDARuntime();
115 
116   // Enable TBAA unless it's suppressed. ThreadSanitizer needs TBAA even at O0.
117   if (SanOpts.Thread ||
118       (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0))
119     TBAA = new CodeGenTBAA(Context, VMContext, CodeGenOpts, getLangOpts(),
120                            ABI.getMangleContext());
121 
122   // If debug info or coverage generation is enabled, create the CGDebugInfo
123   // object.
124   if (CodeGenOpts.getDebugInfo() != CodeGenOptions::NoDebugInfo ||
125       CodeGenOpts.EmitGcovArcs ||
126       CodeGenOpts.EmitGcovNotes)
127     DebugInfo = new CGDebugInfo(*this);
128 
129   Block.GlobalUniqueCount = 0;
130 
131   if (C.getLangOpts().ObjCAutoRefCount)
132     ARCData = new ARCEntrypoints();
133   RRData = new RREntrypoints();
134 }
135 
136 CodeGenModule::~CodeGenModule() {
137   delete ObjCRuntime;
138   delete OpenCLRuntime;
139   delete CUDARuntime;
140   delete TheTargetCodeGenInfo;
141   delete &ABI;
142   delete TBAA;
143   delete DebugInfo;
144   delete ARCData;
145   delete RRData;
146 }
147 
148 void CodeGenModule::createObjCRuntime() {
149   // This is just isGNUFamily(), but we want to force implementors of
150   // new ABIs to decide how best to do this.
151   switch (LangOpts.ObjCRuntime.getKind()) {
152   case ObjCRuntime::GNUstep:
153   case ObjCRuntime::GCC:
154   case ObjCRuntime::ObjFW:
155     ObjCRuntime = CreateGNUObjCRuntime(*this);
156     return;
157 
158   case ObjCRuntime::FragileMacOSX:
159   case ObjCRuntime::MacOSX:
160   case ObjCRuntime::iOS:
161     ObjCRuntime = CreateMacObjCRuntime(*this);
162     return;
163   }
164   llvm_unreachable("bad runtime kind");
165 }
166 
167 void CodeGenModule::createOpenCLRuntime() {
168   OpenCLRuntime = new CGOpenCLRuntime(*this);
169 }
170 
171 void CodeGenModule::createCUDARuntime() {
172   CUDARuntime = CreateNVCUDARuntime(*this);
173 }
174 
175 void CodeGenModule::applyReplacements() {
176   for (ReplacementsTy::iterator I = Replacements.begin(),
177                                 E = Replacements.end();
178        I != E; ++I) {
179     StringRef MangledName = I->first();
180     llvm::Constant *Replacement = I->second;
181     llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
182     if (!Entry)
183       continue;
184     llvm::Function *OldF = cast<llvm::Function>(Entry);
185     llvm::Function *NewF = dyn_cast<llvm::Function>(Replacement);
186     if (!NewF) {
187       llvm::ConstantExpr *CE = cast<llvm::ConstantExpr>(Replacement);
188       assert(CE->getOpcode() == llvm::Instruction::BitCast ||
189              CE->getOpcode() == llvm::Instruction::GetElementPtr);
190       NewF = cast<llvm::Function>(CE->getOperand(0));
191     }
192 
193     // Replace old with new, but keep the old order.
194     OldF->replaceAllUsesWith(Replacement);
195     NewF->removeFromParent();
196     OldF->getParent()->getFunctionList().insertAfter(OldF, NewF);
197     OldF->eraseFromParent();
198   }
199 }
200 
201 void CodeGenModule::checkAliases() {
202   bool Error = false;
203   for (std::vector<GlobalDecl>::iterator I = Aliases.begin(),
204          E = Aliases.end(); I != E; ++I) {
205     const GlobalDecl &GD = *I;
206     const ValueDecl *D = cast<ValueDecl>(GD.getDecl());
207     const AliasAttr *AA = D->getAttr<AliasAttr>();
208     StringRef MangledName = getMangledName(GD);
209     llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
210     llvm::GlobalAlias *Alias = cast<llvm::GlobalAlias>(Entry);
211     llvm::GlobalValue *GV = Alias->getAliasedGlobal();
212     if (GV->isDeclaration()) {
213       Error = true;
214       getDiags().Report(AA->getLocation(), diag::err_alias_to_undefined);
215     } else if (!Alias->resolveAliasedGlobal(/*stopOnWeak*/ false)) {
216       Error = true;
217       getDiags().Report(AA->getLocation(), diag::err_cyclic_alias);
218     }
219   }
220   if (!Error)
221     return;
222 
223   for (std::vector<GlobalDecl>::iterator I = Aliases.begin(),
224          E = Aliases.end(); I != E; ++I) {
225     const GlobalDecl &GD = *I;
226     StringRef MangledName = getMangledName(GD);
227     llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
228     llvm::GlobalAlias *Alias = cast<llvm::GlobalAlias>(Entry);
229     Alias->replaceAllUsesWith(llvm::UndefValue::get(Alias->getType()));
230     Alias->eraseFromParent();
231   }
232 }
233 
234 void CodeGenModule::Release() {
235   EmitDeferred();
236   applyReplacements();
237   checkAliases();
238   EmitCXXGlobalInitFunc();
239   EmitCXXGlobalDtorFunc();
240   EmitCXXThreadLocalInitFunc();
241   if (ObjCRuntime)
242     if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction())
243       AddGlobalCtor(ObjCInitFunction);
244   EmitCtorList(GlobalCtors, "llvm.global_ctors");
245   EmitCtorList(GlobalDtors, "llvm.global_dtors");
246   EmitGlobalAnnotations();
247   EmitStaticExternCAliases();
248   EmitLLVMUsed();
249 
250   if (CodeGenOpts.Autolink &&
251       (Context.getLangOpts().Modules || !LinkerOptionsMetadata.empty())) {
252     EmitModuleLinkOptions();
253   }
254   if (CodeGenOpts.DwarfVersion)
255     // We actually want the latest version when there are conflicts.
256     // We can change from Warning to Latest if such mode is supported.
257     getModule().addModuleFlag(llvm::Module::Warning, "Dwarf Version",
258                               CodeGenOpts.DwarfVersion);
259 
260   SimplifyPersonality();
261 
262   if (getCodeGenOpts().EmitDeclMetadata)
263     EmitDeclMetadata();
264 
265   if (getCodeGenOpts().EmitGcovArcs || getCodeGenOpts().EmitGcovNotes)
266     EmitCoverageFile();
267 
268   if (DebugInfo)
269     DebugInfo->finalize();
270 
271   EmitVersionIdentMetadata();
272 }
273 
274 void CodeGenModule::UpdateCompletedType(const TagDecl *TD) {
275   // Make sure that this type is translated.
276   Types.UpdateCompletedType(TD);
277 }
278 
279 llvm::MDNode *CodeGenModule::getTBAAInfo(QualType QTy) {
280   if (!TBAA)
281     return 0;
282   return TBAA->getTBAAInfo(QTy);
283 }
284 
285 llvm::MDNode *CodeGenModule::getTBAAInfoForVTablePtr() {
286   if (!TBAA)
287     return 0;
288   return TBAA->getTBAAInfoForVTablePtr();
289 }
290 
291 llvm::MDNode *CodeGenModule::getTBAAStructInfo(QualType QTy) {
292   if (!TBAA)
293     return 0;
294   return TBAA->getTBAAStructInfo(QTy);
295 }
296 
297 llvm::MDNode *CodeGenModule::getTBAAStructTypeInfo(QualType QTy) {
298   if (!TBAA)
299     return 0;
300   return TBAA->getTBAAStructTypeInfo(QTy);
301 }
302 
303 llvm::MDNode *CodeGenModule::getTBAAStructTagInfo(QualType BaseTy,
304                                                   llvm::MDNode *AccessN,
305                                                   uint64_t O) {
306   if (!TBAA)
307     return 0;
308   return TBAA->getTBAAStructTagInfo(BaseTy, AccessN, O);
309 }
310 
311 /// Decorate the instruction with a TBAA tag. For both scalar TBAA
312 /// and struct-path aware TBAA, the tag has the same format:
313 /// base type, access type and offset.
314 /// When ConvertTypeToTag is true, we create a tag based on the scalar type.
315 void CodeGenModule::DecorateInstruction(llvm::Instruction *Inst,
316                                         llvm::MDNode *TBAAInfo,
317                                         bool ConvertTypeToTag) {
318   if (ConvertTypeToTag && TBAA)
319     Inst->setMetadata(llvm::LLVMContext::MD_tbaa,
320                       TBAA->getTBAAScalarTagInfo(TBAAInfo));
321   else
322     Inst->setMetadata(llvm::LLVMContext::MD_tbaa, TBAAInfo);
323 }
324 
325 void CodeGenModule::Error(SourceLocation loc, StringRef error) {
326   unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, error);
327   getDiags().Report(Context.getFullLoc(loc), diagID);
328 }
329 
330 /// ErrorUnsupported - Print out an error that codegen doesn't support the
331 /// specified stmt yet.
332 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type) {
333   unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
334                                                "cannot compile this %0 yet");
335   std::string Msg = Type;
336   getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID)
337     << Msg << S->getSourceRange();
338 }
339 
340 /// ErrorUnsupported - Print out an error that codegen doesn't support the
341 /// specified decl yet.
342 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type) {
343   unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
344                                                "cannot compile this %0 yet");
345   std::string Msg = Type;
346   getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg;
347 }
348 
349 llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) {
350   return llvm::ConstantInt::get(SizeTy, size.getQuantity());
351 }
352 
353 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV,
354                                         const NamedDecl *D) const {
355   // Internal definitions always have default visibility.
356   if (GV->hasLocalLinkage()) {
357     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
358     return;
359   }
360 
361   // Set visibility for definitions.
362   LinkageInfo LV = D->getLinkageAndVisibility();
363   if (LV.isVisibilityExplicit() || !GV->hasAvailableExternallyLinkage())
364     GV->setVisibility(GetLLVMVisibility(LV.getVisibility()));
365 }
366 
367 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(StringRef S) {
368   return llvm::StringSwitch<llvm::GlobalVariable::ThreadLocalMode>(S)
369       .Case("global-dynamic", llvm::GlobalVariable::GeneralDynamicTLSModel)
370       .Case("local-dynamic", llvm::GlobalVariable::LocalDynamicTLSModel)
371       .Case("initial-exec", llvm::GlobalVariable::InitialExecTLSModel)
372       .Case("local-exec", llvm::GlobalVariable::LocalExecTLSModel);
373 }
374 
375 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(
376     CodeGenOptions::TLSModel M) {
377   switch (M) {
378   case CodeGenOptions::GeneralDynamicTLSModel:
379     return llvm::GlobalVariable::GeneralDynamicTLSModel;
380   case CodeGenOptions::LocalDynamicTLSModel:
381     return llvm::GlobalVariable::LocalDynamicTLSModel;
382   case CodeGenOptions::InitialExecTLSModel:
383     return llvm::GlobalVariable::InitialExecTLSModel;
384   case CodeGenOptions::LocalExecTLSModel:
385     return llvm::GlobalVariable::LocalExecTLSModel;
386   }
387   llvm_unreachable("Invalid TLS model!");
388 }
389 
390 void CodeGenModule::setTLSMode(llvm::GlobalVariable *GV,
391                                const VarDecl &D) const {
392   assert(D.getTLSKind() && "setting TLS mode on non-TLS var!");
393 
394   llvm::GlobalVariable::ThreadLocalMode TLM;
395   TLM = GetLLVMTLSModel(CodeGenOpts.getDefaultTLSModel());
396 
397   // Override the TLS model if it is explicitly specified.
398   if (D.hasAttr<TLSModelAttr>()) {
399     const TLSModelAttr *Attr = D.getAttr<TLSModelAttr>();
400     TLM = GetLLVMTLSModel(Attr->getModel());
401   }
402 
403   GV->setThreadLocalMode(TLM);
404 }
405 
406 /// Set the symbol visibility of type information (vtable and RTTI)
407 /// associated with the given type.
408 void CodeGenModule::setTypeVisibility(llvm::GlobalValue *GV,
409                                       const CXXRecordDecl *RD,
410                                       TypeVisibilityKind TVK) const {
411   setGlobalVisibility(GV, RD);
412 
413   if (!CodeGenOpts.HiddenWeakVTables)
414     return;
415 
416   // We never want to drop the visibility for RTTI names.
417   if (TVK == TVK_ForRTTIName)
418     return;
419 
420   // We want to drop the visibility to hidden for weak type symbols.
421   // This isn't possible if there might be unresolved references
422   // elsewhere that rely on this symbol being visible.
423 
424   // This should be kept roughly in sync with setThunkVisibility
425   // in CGVTables.cpp.
426 
427   // Preconditions.
428   if (GV->getLinkage() != llvm::GlobalVariable::LinkOnceODRLinkage ||
429       GV->getVisibility() != llvm::GlobalVariable::DefaultVisibility)
430     return;
431 
432   // Don't override an explicit visibility attribute.
433   if (RD->getExplicitVisibility(NamedDecl::VisibilityForType))
434     return;
435 
436   switch (RD->getTemplateSpecializationKind()) {
437   // We have to disable the optimization if this is an EI definition
438   // because there might be EI declarations in other shared objects.
439   case TSK_ExplicitInstantiationDefinition:
440   case TSK_ExplicitInstantiationDeclaration:
441     return;
442 
443   // Every use of a non-template class's type information has to emit it.
444   case TSK_Undeclared:
445     break;
446 
447   // In theory, implicit instantiations can ignore the possibility of
448   // an explicit instantiation declaration because there necessarily
449   // must be an EI definition somewhere with default visibility.  In
450   // practice, it's possible to have an explicit instantiation for
451   // an arbitrary template class, and linkers aren't necessarily able
452   // to deal with mixed-visibility symbols.
453   case TSK_ExplicitSpecialization:
454   case TSK_ImplicitInstantiation:
455     return;
456   }
457 
458   // If there's a key function, there may be translation units
459   // that don't have the key function's definition.  But ignore
460   // this if we're emitting RTTI under -fno-rtti.
461   if (!(TVK != TVK_ForRTTI) || LangOpts.RTTI) {
462     // FIXME: what should we do if we "lose" the key function during
463     // the emission of the file?
464     if (Context.getCurrentKeyFunction(RD))
465       return;
466   }
467 
468   // Otherwise, drop the visibility to hidden.
469   GV->setVisibility(llvm::GlobalValue::HiddenVisibility);
470   GV->setUnnamedAddr(true);
471 }
472 
473 StringRef CodeGenModule::getMangledName(GlobalDecl GD) {
474   const NamedDecl *ND = cast<NamedDecl>(GD.getDecl());
475 
476   StringRef &Str = MangledDeclNames[GD.getCanonicalDecl()];
477   if (!Str.empty())
478     return Str;
479 
480   if (!getCXXABI().getMangleContext().shouldMangleDeclName(ND)) {
481     IdentifierInfo *II = ND->getIdentifier();
482     assert(II && "Attempt to mangle unnamed decl.");
483 
484     Str = II->getName();
485     return Str;
486   }
487 
488   SmallString<256> Buffer;
489   llvm::raw_svector_ostream Out(Buffer);
490   if (const CXXConstructorDecl *D = dyn_cast<CXXConstructorDecl>(ND))
491     getCXXABI().getMangleContext().mangleCXXCtor(D, GD.getCtorType(), Out);
492   else if (const CXXDestructorDecl *D = dyn_cast<CXXDestructorDecl>(ND))
493     getCXXABI().getMangleContext().mangleCXXDtor(D, GD.getDtorType(), Out);
494   else
495     getCXXABI().getMangleContext().mangleName(ND, Out);
496 
497   // Allocate space for the mangled name.
498   Out.flush();
499   size_t Length = Buffer.size();
500   char *Name = MangledNamesAllocator.Allocate<char>(Length);
501   std::copy(Buffer.begin(), Buffer.end(), Name);
502 
503   Str = StringRef(Name, Length);
504 
505   return Str;
506 }
507 
508 void CodeGenModule::getBlockMangledName(GlobalDecl GD, MangleBuffer &Buffer,
509                                         const BlockDecl *BD) {
510   MangleContext &MangleCtx = getCXXABI().getMangleContext();
511   const Decl *D = GD.getDecl();
512   llvm::raw_svector_ostream Out(Buffer.getBuffer());
513   if (D == 0)
514     MangleCtx.mangleGlobalBlock(BD,
515       dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()), Out);
516   else if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(D))
517     MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out);
518   else if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(D))
519     MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out);
520   else
521     MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out);
522 }
523 
524 llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) {
525   return getModule().getNamedValue(Name);
526 }
527 
528 /// AddGlobalCtor - Add a function to the list that will be called before
529 /// main() runs.
530 void CodeGenModule::AddGlobalCtor(llvm::Function * Ctor, int Priority) {
531   // FIXME: Type coercion of void()* types.
532   GlobalCtors.push_back(std::make_pair(Ctor, Priority));
533 }
534 
535 /// AddGlobalDtor - Add a function to the list that will be called
536 /// when the module is unloaded.
537 void CodeGenModule::AddGlobalDtor(llvm::Function * Dtor, int Priority) {
538   // FIXME: Type coercion of void()* types.
539   GlobalDtors.push_back(std::make_pair(Dtor, Priority));
540 }
541 
542 void CodeGenModule::EmitCtorList(const CtorList &Fns, const char *GlobalName) {
543   // Ctor function type is void()*.
544   llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false);
545   llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy);
546 
547   // Get the type of a ctor entry, { i32, void ()* }.
548   llvm::StructType *CtorStructTy =
549     llvm::StructType::get(Int32Ty, llvm::PointerType::getUnqual(CtorFTy), NULL);
550 
551   // Construct the constructor and destructor arrays.
552   SmallVector<llvm::Constant*, 8> Ctors;
553   for (CtorList::const_iterator I = Fns.begin(), E = Fns.end(); I != E; ++I) {
554     llvm::Constant *S[] = {
555       llvm::ConstantInt::get(Int32Ty, I->second, false),
556       llvm::ConstantExpr::getBitCast(I->first, CtorPFTy)
557     };
558     Ctors.push_back(llvm::ConstantStruct::get(CtorStructTy, S));
559   }
560 
561   if (!Ctors.empty()) {
562     llvm::ArrayType *AT = llvm::ArrayType::get(CtorStructTy, Ctors.size());
563     new llvm::GlobalVariable(TheModule, AT, false,
564                              llvm::GlobalValue::AppendingLinkage,
565                              llvm::ConstantArray::get(AT, Ctors),
566                              GlobalName);
567   }
568 }
569 
570 llvm::GlobalValue::LinkageTypes
571 CodeGenModule::getFunctionLinkage(GlobalDecl GD) {
572   const FunctionDecl *D = cast<FunctionDecl>(GD.getDecl());
573 
574   if (isa<CXXDestructorDecl>(D) &&
575       getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D),
576                                          GD.getDtorType()))
577     return llvm::Function::LinkOnceODRLinkage;
578 
579   GVALinkage Linkage = getContext().GetGVALinkageForFunction(D);
580 
581   if (Linkage == GVA_Internal)
582     return llvm::Function::InternalLinkage;
583 
584   if (D->hasAttr<DLLExportAttr>())
585     return llvm::Function::DLLExportLinkage;
586 
587   if (D->hasAttr<WeakAttr>())
588     return llvm::Function::WeakAnyLinkage;
589 
590   // In C99 mode, 'inline' functions are guaranteed to have a strong
591   // definition somewhere else, so we can use available_externally linkage.
592   if (Linkage == GVA_C99Inline)
593     return llvm::Function::AvailableExternallyLinkage;
594 
595   // Note that Apple's kernel linker doesn't support symbol
596   // coalescing, so we need to avoid linkonce and weak linkages there.
597   // Normally, this means we just map to internal, but for explicit
598   // instantiations we'll map to external.
599 
600   // In C++, the compiler has to emit a definition in every translation unit
601   // that references the function.  We should use linkonce_odr because
602   // a) if all references in this translation unit are optimized away, we
603   // don't need to codegen it.  b) if the function persists, it needs to be
604   // merged with other definitions. c) C++ has the ODR, so we know the
605   // definition is dependable.
606   if (Linkage == GVA_CXXInline || Linkage == GVA_TemplateInstantiation)
607     return !Context.getLangOpts().AppleKext
608              ? llvm::Function::LinkOnceODRLinkage
609              : llvm::Function::InternalLinkage;
610 
611   // An explicit instantiation of a template has weak linkage, since
612   // explicit instantiations can occur in multiple translation units
613   // and must all be equivalent. However, we are not allowed to
614   // throw away these explicit instantiations.
615   if (Linkage == GVA_ExplicitTemplateInstantiation)
616     return !Context.getLangOpts().AppleKext
617              ? llvm::Function::WeakODRLinkage
618              : llvm::Function::ExternalLinkage;
619 
620   // Otherwise, we have strong external linkage.
621   assert(Linkage == GVA_StrongExternal);
622   return llvm::Function::ExternalLinkage;
623 }
624 
625 
626 /// SetFunctionDefinitionAttributes - Set attributes for a global.
627 ///
628 /// FIXME: This is currently only done for aliases and functions, but not for
629 /// variables (these details are set in EmitGlobalVarDefinition for variables).
630 void CodeGenModule::SetFunctionDefinitionAttributes(const FunctionDecl *D,
631                                                     llvm::GlobalValue *GV) {
632   SetCommonAttributes(D, GV);
633 }
634 
635 void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D,
636                                               const CGFunctionInfo &Info,
637                                               llvm::Function *F) {
638   unsigned CallingConv;
639   AttributeListType AttributeList;
640   ConstructAttributeList(Info, D, AttributeList, CallingConv, false);
641   F->setAttributes(llvm::AttributeSet::get(getLLVMContext(), AttributeList));
642   F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv));
643 }
644 
645 /// Determines whether the language options require us to model
646 /// unwind exceptions.  We treat -fexceptions as mandating this
647 /// except under the fragile ObjC ABI with only ObjC exceptions
648 /// enabled.  This means, for example, that C with -fexceptions
649 /// enables this.
650 static bool hasUnwindExceptions(const LangOptions &LangOpts) {
651   // If exceptions are completely disabled, obviously this is false.
652   if (!LangOpts.Exceptions) return false;
653 
654   // If C++ exceptions are enabled, this is true.
655   if (LangOpts.CXXExceptions) return true;
656 
657   // If ObjC exceptions are enabled, this depends on the ABI.
658   if (LangOpts.ObjCExceptions) {
659     return LangOpts.ObjCRuntime.hasUnwindExceptions();
660   }
661 
662   return true;
663 }
664 
665 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D,
666                                                            llvm::Function *F) {
667   llvm::AttrBuilder B;
668 
669   if (CodeGenOpts.UnwindTables)
670     B.addAttribute(llvm::Attribute::UWTable);
671 
672   if (!hasUnwindExceptions(LangOpts))
673     B.addAttribute(llvm::Attribute::NoUnwind);
674 
675   if (D->hasAttr<NakedAttr>()) {
676     // Naked implies noinline: we should not be inlining such functions.
677     B.addAttribute(llvm::Attribute::Naked);
678     B.addAttribute(llvm::Attribute::NoInline);
679   } else if (D->hasAttr<NoInlineAttr>()) {
680     B.addAttribute(llvm::Attribute::NoInline);
681   } else if ((D->hasAttr<AlwaysInlineAttr>() ||
682               D->hasAttr<ForceInlineAttr>()) &&
683              !F->getAttributes().hasAttribute(llvm::AttributeSet::FunctionIndex,
684                                               llvm::Attribute::NoInline)) {
685     // (noinline wins over always_inline, and we can't specify both in IR)
686     B.addAttribute(llvm::Attribute::AlwaysInline);
687   }
688 
689   if (D->hasAttr<ColdAttr>()) {
690     B.addAttribute(llvm::Attribute::OptimizeForSize);
691     B.addAttribute(llvm::Attribute::Cold);
692   }
693 
694   if (D->hasAttr<MinSizeAttr>())
695     B.addAttribute(llvm::Attribute::MinSize);
696 
697   if (LangOpts.getStackProtector() == LangOptions::SSPOn)
698     B.addAttribute(llvm::Attribute::StackProtect);
699   else if (LangOpts.getStackProtector() == LangOptions::SSPReq)
700     B.addAttribute(llvm::Attribute::StackProtectReq);
701 
702   // Add sanitizer attributes if function is not blacklisted.
703   if (!SanitizerBlacklist->isIn(*F)) {
704     // When AddressSanitizer is enabled, set SanitizeAddress attribute
705     // unless __attribute__((no_sanitize_address)) is used.
706     if (SanOpts.Address && !D->hasAttr<NoSanitizeAddressAttr>())
707       B.addAttribute(llvm::Attribute::SanitizeAddress);
708     // Same for ThreadSanitizer and __attribute__((no_sanitize_thread))
709     if (SanOpts.Thread && !D->hasAttr<NoSanitizeThreadAttr>()) {
710       B.addAttribute(llvm::Attribute::SanitizeThread);
711     }
712     // Same for MemorySanitizer and __attribute__((no_sanitize_memory))
713     if (SanOpts.Memory && !D->hasAttr<NoSanitizeMemoryAttr>())
714       B.addAttribute(llvm::Attribute::SanitizeMemory);
715   }
716 
717   F->addAttributes(llvm::AttributeSet::FunctionIndex,
718                    llvm::AttributeSet::get(
719                        F->getContext(), llvm::AttributeSet::FunctionIndex, B));
720 
721   if (isa<CXXConstructorDecl>(D) || isa<CXXDestructorDecl>(D))
722     F->setUnnamedAddr(true);
723   else if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D))
724     if (MD->isVirtual())
725       F->setUnnamedAddr(true);
726 
727   unsigned alignment = D->getMaxAlignment() / Context.getCharWidth();
728   if (alignment)
729     F->setAlignment(alignment);
730 
731   // C++ ABI requires 2-byte alignment for member functions.
732   if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D))
733     F->setAlignment(2);
734 }
735 
736 void CodeGenModule::SetCommonAttributes(const Decl *D,
737                                         llvm::GlobalValue *GV) {
738   if (const NamedDecl *ND = dyn_cast<NamedDecl>(D))
739     setGlobalVisibility(GV, ND);
740   else
741     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
742 
743   if (D->hasAttr<UsedAttr>())
744     AddUsedGlobal(GV);
745 
746   if (const SectionAttr *SA = D->getAttr<SectionAttr>())
747     GV->setSection(SA->getName());
748 
749   // Alias cannot have attributes. Filter them here.
750   if (!isa<llvm::GlobalAlias>(GV))
751     getTargetCodeGenInfo().SetTargetAttributes(D, GV, *this);
752 }
753 
754 void CodeGenModule::SetInternalFunctionAttributes(const Decl *D,
755                                                   llvm::Function *F,
756                                                   const CGFunctionInfo &FI) {
757   SetLLVMFunctionAttributes(D, FI, F);
758   SetLLVMFunctionAttributesForDefinition(D, F);
759 
760   F->setLinkage(llvm::Function::InternalLinkage);
761 
762   SetCommonAttributes(D, F);
763 }
764 
765 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD,
766                                           llvm::Function *F,
767                                           bool IsIncompleteFunction) {
768   if (unsigned IID = F->getIntrinsicID()) {
769     // If this is an intrinsic function, set the function's attributes
770     // to the intrinsic's attributes.
771     F->setAttributes(llvm::Intrinsic::getAttributes(getLLVMContext(),
772                                                     (llvm::Intrinsic::ID)IID));
773     return;
774   }
775 
776   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
777 
778   if (!IsIncompleteFunction)
779     SetLLVMFunctionAttributes(FD, getTypes().arrangeGlobalDeclaration(GD), F);
780 
781   if (getCXXABI().HasThisReturn(GD)) {
782     assert(!F->arg_empty() &&
783            F->arg_begin()->getType()
784              ->canLosslesslyBitCastTo(F->getReturnType()) &&
785            "unexpected this return");
786     F->addAttribute(1, llvm::Attribute::Returned);
787   }
788 
789   // Only a few attributes are set on declarations; these may later be
790   // overridden by a definition.
791 
792   if (FD->hasAttr<DLLImportAttr>()) {
793     F->setLinkage(llvm::Function::DLLImportLinkage);
794   } else if (FD->hasAttr<WeakAttr>() ||
795              FD->isWeakImported()) {
796     // "extern_weak" is overloaded in LLVM; we probably should have
797     // separate linkage types for this.
798     F->setLinkage(llvm::Function::ExternalWeakLinkage);
799   } else {
800     F->setLinkage(llvm::Function::ExternalLinkage);
801 
802     LinkageInfo LV = FD->getLinkageAndVisibility();
803     if (LV.getLinkage() == ExternalLinkage && LV.isVisibilityExplicit()) {
804       F->setVisibility(GetLLVMVisibility(LV.getVisibility()));
805     }
806   }
807 
808   if (const SectionAttr *SA = FD->getAttr<SectionAttr>())
809     F->setSection(SA->getName());
810 
811   // A replaceable global allocation function does not act like a builtin by
812   // default, only if it is invoked by a new-expression or delete-expression.
813   if (FD->isReplaceableGlobalAllocationFunction())
814     F->addAttribute(llvm::AttributeSet::FunctionIndex,
815                     llvm::Attribute::NoBuiltin);
816 }
817 
818 void CodeGenModule::AddUsedGlobal(llvm::GlobalValue *GV) {
819   assert(!GV->isDeclaration() &&
820          "Only globals with definition can force usage.");
821   LLVMUsed.push_back(GV);
822 }
823 
824 void CodeGenModule::EmitLLVMUsed() {
825   // Don't create llvm.used if there is no need.
826   if (LLVMUsed.empty())
827     return;
828 
829   // Convert LLVMUsed to what ConstantArray needs.
830   SmallVector<llvm::Constant*, 8> UsedArray;
831   UsedArray.resize(LLVMUsed.size());
832   for (unsigned i = 0, e = LLVMUsed.size(); i != e; ++i) {
833     UsedArray[i] =
834      llvm::ConstantExpr::getBitCast(cast<llvm::Constant>(&*LLVMUsed[i]),
835                                     Int8PtrTy);
836   }
837 
838   if (UsedArray.empty())
839     return;
840   llvm::ArrayType *ATy = llvm::ArrayType::get(Int8PtrTy, UsedArray.size());
841 
842   llvm::GlobalVariable *GV =
843     new llvm::GlobalVariable(getModule(), ATy, false,
844                              llvm::GlobalValue::AppendingLinkage,
845                              llvm::ConstantArray::get(ATy, UsedArray),
846                              "llvm.used");
847 
848   GV->setSection("llvm.metadata");
849 }
850 
851 void CodeGenModule::AppendLinkerOptions(StringRef Opts) {
852   llvm::Value *MDOpts = llvm::MDString::get(getLLVMContext(), Opts);
853   LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
854 }
855 
856 void CodeGenModule::AddDetectMismatch(StringRef Name, StringRef Value) {
857   llvm::SmallString<32> Opt;
858   getTargetCodeGenInfo().getDetectMismatchOption(Name, Value, Opt);
859   llvm::Value *MDOpts = llvm::MDString::get(getLLVMContext(), Opt);
860   LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
861 }
862 
863 void CodeGenModule::AddDependentLib(StringRef Lib) {
864   llvm::SmallString<24> Opt;
865   getTargetCodeGenInfo().getDependentLibraryOption(Lib, Opt);
866   llvm::Value *MDOpts = llvm::MDString::get(getLLVMContext(), Opt);
867   LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
868 }
869 
870 /// \brief Add link options implied by the given module, including modules
871 /// it depends on, using a postorder walk.
872 static void addLinkOptionsPostorder(CodeGenModule &CGM,
873                                     Module *Mod,
874                                     SmallVectorImpl<llvm::Value *> &Metadata,
875                                     llvm::SmallPtrSet<Module *, 16> &Visited) {
876   // Import this module's parent.
877   if (Mod->Parent && Visited.insert(Mod->Parent)) {
878     addLinkOptionsPostorder(CGM, Mod->Parent, Metadata, Visited);
879   }
880 
881   // Import this module's dependencies.
882   for (unsigned I = Mod->Imports.size(); I > 0; --I) {
883     if (Visited.insert(Mod->Imports[I-1]))
884       addLinkOptionsPostorder(CGM, Mod->Imports[I-1], Metadata, Visited);
885   }
886 
887   // Add linker options to link against the libraries/frameworks
888   // described by this module.
889   llvm::LLVMContext &Context = CGM.getLLVMContext();
890   for (unsigned I = Mod->LinkLibraries.size(); I > 0; --I) {
891     // Link against a framework.  Frameworks are currently Darwin only, so we
892     // don't to ask TargetCodeGenInfo for the spelling of the linker option.
893     if (Mod->LinkLibraries[I-1].IsFramework) {
894       llvm::Value *Args[2] = {
895         llvm::MDString::get(Context, "-framework"),
896         llvm::MDString::get(Context, Mod->LinkLibraries[I-1].Library)
897       };
898 
899       Metadata.push_back(llvm::MDNode::get(Context, Args));
900       continue;
901     }
902 
903     // Link against a library.
904     llvm::SmallString<24> Opt;
905     CGM.getTargetCodeGenInfo().getDependentLibraryOption(
906       Mod->LinkLibraries[I-1].Library, Opt);
907     llvm::Value *OptString = llvm::MDString::get(Context, Opt);
908     Metadata.push_back(llvm::MDNode::get(Context, OptString));
909   }
910 }
911 
912 void CodeGenModule::EmitModuleLinkOptions() {
913   // Collect the set of all of the modules we want to visit to emit link
914   // options, which is essentially the imported modules and all of their
915   // non-explicit child modules.
916   llvm::SetVector<clang::Module *> LinkModules;
917   llvm::SmallPtrSet<clang::Module *, 16> Visited;
918   SmallVector<clang::Module *, 16> Stack;
919 
920   // Seed the stack with imported modules.
921   for (llvm::SetVector<clang::Module *>::iterator M = ImportedModules.begin(),
922                                                MEnd = ImportedModules.end();
923        M != MEnd; ++M) {
924     if (Visited.insert(*M))
925       Stack.push_back(*M);
926   }
927 
928   // Find all of the modules to import, making a little effort to prune
929   // non-leaf modules.
930   while (!Stack.empty()) {
931     clang::Module *Mod = Stack.pop_back_val();
932 
933     bool AnyChildren = false;
934 
935     // Visit the submodules of this module.
936     for (clang::Module::submodule_iterator Sub = Mod->submodule_begin(),
937                                         SubEnd = Mod->submodule_end();
938          Sub != SubEnd; ++Sub) {
939       // Skip explicit children; they need to be explicitly imported to be
940       // linked against.
941       if ((*Sub)->IsExplicit)
942         continue;
943 
944       if (Visited.insert(*Sub)) {
945         Stack.push_back(*Sub);
946         AnyChildren = true;
947       }
948     }
949 
950     // We didn't find any children, so add this module to the list of
951     // modules to link against.
952     if (!AnyChildren) {
953       LinkModules.insert(Mod);
954     }
955   }
956 
957   // Add link options for all of the imported modules in reverse topological
958   // order.  We don't do anything to try to order import link flags with respect
959   // to linker options inserted by things like #pragma comment().
960   SmallVector<llvm::Value *, 16> MetadataArgs;
961   Visited.clear();
962   for (llvm::SetVector<clang::Module *>::iterator M = LinkModules.begin(),
963                                                MEnd = LinkModules.end();
964        M != MEnd; ++M) {
965     if (Visited.insert(*M))
966       addLinkOptionsPostorder(*this, *M, MetadataArgs, Visited);
967   }
968   std::reverse(MetadataArgs.begin(), MetadataArgs.end());
969   LinkerOptionsMetadata.append(MetadataArgs.begin(), MetadataArgs.end());
970 
971   // Add the linker options metadata flag.
972   getModule().addModuleFlag(llvm::Module::AppendUnique, "Linker Options",
973                             llvm::MDNode::get(getLLVMContext(),
974                                               LinkerOptionsMetadata));
975 }
976 
977 void CodeGenModule::EmitDeferred() {
978   // Emit code for any potentially referenced deferred decls.  Since a
979   // previously unused static decl may become used during the generation of code
980   // for a static function, iterate until no changes are made.
981 
982   while (true) {
983     if (!DeferredVTables.empty()) {
984       EmitDeferredVTables();
985 
986       // Emitting a v-table doesn't directly cause more v-tables to
987       // become deferred, although it can cause functions to be
988       // emitted that then need those v-tables.
989       assert(DeferredVTables.empty());
990     }
991 
992     // Stop if we're out of both deferred v-tables and deferred declarations.
993     if (DeferredDeclsToEmit.empty()) break;
994 
995     GlobalDecl D = DeferredDeclsToEmit.back();
996     DeferredDeclsToEmit.pop_back();
997 
998     // Check to see if we've already emitted this.  This is necessary
999     // for a couple of reasons: first, decls can end up in the
1000     // deferred-decls queue multiple times, and second, decls can end
1001     // up with definitions in unusual ways (e.g. by an extern inline
1002     // function acquiring a strong function redefinition).  Just
1003     // ignore these cases.
1004     //
1005     // TODO: That said, looking this up multiple times is very wasteful.
1006     StringRef Name = getMangledName(D);
1007     llvm::GlobalValue *CGRef = GetGlobalValue(Name);
1008     assert(CGRef && "Deferred decl wasn't referenced?");
1009 
1010     if (!CGRef->isDeclaration())
1011       continue;
1012 
1013     // GlobalAlias::isDeclaration() defers to the aliasee, but for our
1014     // purposes an alias counts as a definition.
1015     if (isa<llvm::GlobalAlias>(CGRef))
1016       continue;
1017 
1018     // Otherwise, emit the definition and move on to the next one.
1019     EmitGlobalDefinition(D);
1020   }
1021 }
1022 
1023 void CodeGenModule::EmitGlobalAnnotations() {
1024   if (Annotations.empty())
1025     return;
1026 
1027   // Create a new global variable for the ConstantStruct in the Module.
1028   llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get(
1029     Annotations[0]->getType(), Annotations.size()), Annotations);
1030   llvm::GlobalValue *gv = new llvm::GlobalVariable(getModule(),
1031     Array->getType(), false, llvm::GlobalValue::AppendingLinkage, Array,
1032     "llvm.global.annotations");
1033   gv->setSection(AnnotationSection);
1034 }
1035 
1036 llvm::Constant *CodeGenModule::EmitAnnotationString(StringRef Str) {
1037   llvm::Constant *&AStr = AnnotationStrings[Str];
1038   if (AStr)
1039     return AStr;
1040 
1041   // Not found yet, create a new global.
1042   llvm::Constant *s = llvm::ConstantDataArray::getString(getLLVMContext(), Str);
1043   llvm::GlobalValue *gv = new llvm::GlobalVariable(getModule(), s->getType(),
1044     true, llvm::GlobalValue::PrivateLinkage, s, ".str");
1045   gv->setSection(AnnotationSection);
1046   gv->setUnnamedAddr(true);
1047   AStr = gv;
1048   return gv;
1049 }
1050 
1051 llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) {
1052   SourceManager &SM = getContext().getSourceManager();
1053   PresumedLoc PLoc = SM.getPresumedLoc(Loc);
1054   if (PLoc.isValid())
1055     return EmitAnnotationString(PLoc.getFilename());
1056   return EmitAnnotationString(SM.getBufferName(Loc));
1057 }
1058 
1059 llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) {
1060   SourceManager &SM = getContext().getSourceManager();
1061   PresumedLoc PLoc = SM.getPresumedLoc(L);
1062   unsigned LineNo = PLoc.isValid() ? PLoc.getLine() :
1063     SM.getExpansionLineNumber(L);
1064   return llvm::ConstantInt::get(Int32Ty, LineNo);
1065 }
1066 
1067 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV,
1068                                                 const AnnotateAttr *AA,
1069                                                 SourceLocation L) {
1070   // Get the globals for file name, annotation, and the line number.
1071   llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()),
1072                  *UnitGV = EmitAnnotationUnit(L),
1073                  *LineNoCst = EmitAnnotationLineNo(L);
1074 
1075   // Create the ConstantStruct for the global annotation.
1076   llvm::Constant *Fields[4] = {
1077     llvm::ConstantExpr::getBitCast(GV, Int8PtrTy),
1078     llvm::ConstantExpr::getBitCast(AnnoGV, Int8PtrTy),
1079     llvm::ConstantExpr::getBitCast(UnitGV, Int8PtrTy),
1080     LineNoCst
1081   };
1082   return llvm::ConstantStruct::getAnon(Fields);
1083 }
1084 
1085 void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D,
1086                                          llvm::GlobalValue *GV) {
1087   assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
1088   // Get the struct elements for these annotations.
1089   for (specific_attr_iterator<AnnotateAttr>
1090        ai = D->specific_attr_begin<AnnotateAttr>(),
1091        ae = D->specific_attr_end<AnnotateAttr>(); ai != ae; ++ai)
1092     Annotations.push_back(EmitAnnotateAttr(GV, *ai, D->getLocation()));
1093 }
1094 
1095 bool CodeGenModule::MayDeferGeneration(const ValueDecl *Global) {
1096   // Never defer when EmitAllDecls is specified.
1097   if (LangOpts.EmitAllDecls)
1098     return false;
1099 
1100   return !getContext().DeclMustBeEmitted(Global);
1101 }
1102 
1103 llvm::Constant *CodeGenModule::GetAddrOfUuidDescriptor(
1104     const CXXUuidofExpr* E) {
1105   // Sema has verified that IIDSource has a __declspec(uuid()), and that its
1106   // well-formed.
1107   StringRef Uuid = E->getUuidAsStringRef(Context);
1108   std::string Name = "_GUID_" + Uuid.lower();
1109   std::replace(Name.begin(), Name.end(), '-', '_');
1110 
1111   // Look for an existing global.
1112   if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name))
1113     return GV;
1114 
1115   llvm::Constant *Init = EmitUuidofInitializer(Uuid, E->getType());
1116   assert(Init && "failed to initialize as constant");
1117 
1118   llvm::GlobalVariable *GV = new llvm::GlobalVariable(
1119       getModule(), Init->getType(),
1120       /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name);
1121   return GV;
1122 }
1123 
1124 llvm::Constant *CodeGenModule::GetWeakRefReference(const ValueDecl *VD) {
1125   const AliasAttr *AA = VD->getAttr<AliasAttr>();
1126   assert(AA && "No alias?");
1127 
1128   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType());
1129 
1130   // See if there is already something with the target's name in the module.
1131   llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee());
1132   if (Entry) {
1133     unsigned AS = getContext().getTargetAddressSpace(VD->getType());
1134     return llvm::ConstantExpr::getBitCast(Entry, DeclTy->getPointerTo(AS));
1135   }
1136 
1137   llvm::Constant *Aliasee;
1138   if (isa<llvm::FunctionType>(DeclTy))
1139     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy,
1140                                       GlobalDecl(cast<FunctionDecl>(VD)),
1141                                       /*ForVTable=*/false);
1142   else
1143     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
1144                                     llvm::PointerType::getUnqual(DeclTy), 0);
1145 
1146   llvm::GlobalValue* F = cast<llvm::GlobalValue>(Aliasee);
1147   F->setLinkage(llvm::Function::ExternalWeakLinkage);
1148   WeakRefReferences.insert(F);
1149 
1150   return Aliasee;
1151 }
1152 
1153 void CodeGenModule::EmitGlobal(GlobalDecl GD) {
1154   const ValueDecl *Global = cast<ValueDecl>(GD.getDecl());
1155 
1156   // Weak references don't produce any output by themselves.
1157   if (Global->hasAttr<WeakRefAttr>())
1158     return;
1159 
1160   // If this is an alias definition (which otherwise looks like a declaration)
1161   // emit it now.
1162   if (Global->hasAttr<AliasAttr>())
1163     return EmitAliasDefinition(GD);
1164 
1165   // If this is CUDA, be selective about which declarations we emit.
1166   if (LangOpts.CUDA) {
1167     if (CodeGenOpts.CUDAIsDevice) {
1168       if (!Global->hasAttr<CUDADeviceAttr>() &&
1169           !Global->hasAttr<CUDAGlobalAttr>() &&
1170           !Global->hasAttr<CUDAConstantAttr>() &&
1171           !Global->hasAttr<CUDASharedAttr>())
1172         return;
1173     } else {
1174       if (!Global->hasAttr<CUDAHostAttr>() && (
1175             Global->hasAttr<CUDADeviceAttr>() ||
1176             Global->hasAttr<CUDAConstantAttr>() ||
1177             Global->hasAttr<CUDASharedAttr>()))
1178         return;
1179     }
1180   }
1181 
1182   // Ignore declarations, they will be emitted on their first use.
1183   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) {
1184     // Forward declarations are emitted lazily on first use.
1185     if (!FD->doesThisDeclarationHaveABody()) {
1186       if (!FD->doesDeclarationForceExternallyVisibleDefinition())
1187         return;
1188 
1189       const FunctionDecl *InlineDefinition = 0;
1190       FD->getBody(InlineDefinition);
1191 
1192       StringRef MangledName = getMangledName(GD);
1193       DeferredDecls.erase(MangledName);
1194       EmitGlobalDefinition(InlineDefinition);
1195       return;
1196     }
1197   } else {
1198     const VarDecl *VD = cast<VarDecl>(Global);
1199     assert(VD->isFileVarDecl() && "Cannot emit local var decl as global.");
1200 
1201     if (VD->isThisDeclarationADefinition() != VarDecl::Definition)
1202       return;
1203   }
1204 
1205   // Defer code generation when possible if this is a static definition, inline
1206   // function etc.  These we only want to emit if they are used.
1207   if (!MayDeferGeneration(Global)) {
1208     // Emit the definition if it can't be deferred.
1209     EmitGlobalDefinition(GD);
1210     return;
1211   }
1212 
1213   // If we're deferring emission of a C++ variable with an
1214   // initializer, remember the order in which it appeared in the file.
1215   if (getLangOpts().CPlusPlus && isa<VarDecl>(Global) &&
1216       cast<VarDecl>(Global)->hasInit()) {
1217     DelayedCXXInitPosition[Global] = CXXGlobalInits.size();
1218     CXXGlobalInits.push_back(0);
1219   }
1220 
1221   // If the value has already been used, add it directly to the
1222   // DeferredDeclsToEmit list.
1223   StringRef MangledName = getMangledName(GD);
1224   if (GetGlobalValue(MangledName))
1225     DeferredDeclsToEmit.push_back(GD);
1226   else {
1227     // Otherwise, remember that we saw a deferred decl with this name.  The
1228     // first use of the mangled name will cause it to move into
1229     // DeferredDeclsToEmit.
1230     DeferredDecls[MangledName] = GD;
1231   }
1232 }
1233 
1234 namespace {
1235   struct FunctionIsDirectlyRecursive :
1236     public RecursiveASTVisitor<FunctionIsDirectlyRecursive> {
1237     const StringRef Name;
1238     const Builtin::Context &BI;
1239     bool Result;
1240     FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C) :
1241       Name(N), BI(C), Result(false) {
1242     }
1243     typedef RecursiveASTVisitor<FunctionIsDirectlyRecursive> Base;
1244 
1245     bool TraverseCallExpr(CallExpr *E) {
1246       const FunctionDecl *FD = E->getDirectCallee();
1247       if (!FD)
1248         return true;
1249       AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
1250       if (Attr && Name == Attr->getLabel()) {
1251         Result = true;
1252         return false;
1253       }
1254       unsigned BuiltinID = FD->getBuiltinID();
1255       if (!BuiltinID)
1256         return true;
1257       StringRef BuiltinName = BI.GetName(BuiltinID);
1258       if (BuiltinName.startswith("__builtin_") &&
1259           Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) {
1260         Result = true;
1261         return false;
1262       }
1263       return true;
1264     }
1265   };
1266 }
1267 
1268 // isTriviallyRecursive - Check if this function calls another
1269 // decl that, because of the asm attribute or the other decl being a builtin,
1270 // ends up pointing to itself.
1271 bool
1272 CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) {
1273   StringRef Name;
1274   if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) {
1275     // asm labels are a special kind of mangling we have to support.
1276     AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
1277     if (!Attr)
1278       return false;
1279     Name = Attr->getLabel();
1280   } else {
1281     Name = FD->getName();
1282   }
1283 
1284   FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo);
1285   Walker.TraverseFunctionDecl(const_cast<FunctionDecl*>(FD));
1286   return Walker.Result;
1287 }
1288 
1289 bool
1290 CodeGenModule::shouldEmitFunction(GlobalDecl GD) {
1291   if (getFunctionLinkage(GD) != llvm::Function::AvailableExternallyLinkage)
1292     return true;
1293   const FunctionDecl *F = cast<FunctionDecl>(GD.getDecl());
1294   if (CodeGenOpts.OptimizationLevel == 0 &&
1295       !F->hasAttr<AlwaysInlineAttr>() && !F->hasAttr<ForceInlineAttr>())
1296     return false;
1297   // PR9614. Avoid cases where the source code is lying to us. An available
1298   // externally function should have an equivalent function somewhere else,
1299   // but a function that calls itself is clearly not equivalent to the real
1300   // implementation.
1301   // This happens in glibc's btowc and in some configure checks.
1302   return !isTriviallyRecursive(F);
1303 }
1304 
1305 /// If the type for the method's class was generated by
1306 /// CGDebugInfo::createContextChain(), the cache contains only a
1307 /// limited DIType without any declarations. Since EmitFunctionStart()
1308 /// needs to find the canonical declaration for each method, we need
1309 /// to construct the complete type prior to emitting the method.
1310 void CodeGenModule::CompleteDIClassType(const CXXMethodDecl* D) {
1311   if (!D->isInstance())
1312     return;
1313 
1314   if (CGDebugInfo *DI = getModuleDebugInfo())
1315     if (getCodeGenOpts().getDebugInfo() >= CodeGenOptions::LimitedDebugInfo) {
1316       const PointerType *ThisPtr =
1317         cast<PointerType>(D->getThisType(getContext()));
1318       DI->getOrCreateRecordType(ThisPtr->getPointeeType(), D->getLocation());
1319     }
1320 }
1321 
1322 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD) {
1323   const ValueDecl *D = cast<ValueDecl>(GD.getDecl());
1324 
1325   PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(),
1326                                  Context.getSourceManager(),
1327                                  "Generating code for declaration");
1328 
1329   if (isa<FunctionDecl>(D)) {
1330     // At -O0, don't generate IR for functions with available_externally
1331     // linkage.
1332     if (!shouldEmitFunction(GD))
1333       return;
1334 
1335     if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) {
1336       CompleteDIClassType(Method);
1337       // Make sure to emit the definition(s) before we emit the thunks.
1338       // This is necessary for the generation of certain thunks.
1339       if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(Method))
1340         EmitCXXConstructor(CD, GD.getCtorType());
1341       else if (const CXXDestructorDecl *DD =dyn_cast<CXXDestructorDecl>(Method))
1342         EmitCXXDestructor(DD, GD.getDtorType());
1343       else
1344         EmitGlobalFunctionDefinition(GD);
1345 
1346       if (Method->isVirtual())
1347         getVTables().EmitThunks(GD);
1348 
1349       return;
1350     }
1351 
1352     return EmitGlobalFunctionDefinition(GD);
1353   }
1354 
1355   if (const VarDecl *VD = dyn_cast<VarDecl>(D))
1356     return EmitGlobalVarDefinition(VD);
1357 
1358   llvm_unreachable("Invalid argument to EmitGlobalDefinition()");
1359 }
1360 
1361 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the
1362 /// module, create and return an llvm Function with the specified type. If there
1363 /// is something in the module with the specified name, return it potentially
1364 /// bitcasted to the right type.
1365 ///
1366 /// If D is non-null, it specifies a decl that correspond to this.  This is used
1367 /// to set the attributes on the function when it is first created.
1368 llvm::Constant *
1369 CodeGenModule::GetOrCreateLLVMFunction(StringRef MangledName,
1370                                        llvm::Type *Ty,
1371                                        GlobalDecl GD, bool ForVTable,
1372                                        llvm::AttributeSet ExtraAttrs) {
1373   const Decl *D = GD.getDecl();
1374 
1375   // Lookup the entry, lazily creating it if necessary.
1376   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
1377   if (Entry) {
1378     if (WeakRefReferences.erase(Entry)) {
1379       const FunctionDecl *FD = cast_or_null<FunctionDecl>(D);
1380       if (FD && !FD->hasAttr<WeakAttr>())
1381         Entry->setLinkage(llvm::Function::ExternalLinkage);
1382     }
1383 
1384     if (Entry->getType()->getElementType() == Ty)
1385       return Entry;
1386 
1387     // Make sure the result is of the correct type.
1388     return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo());
1389   }
1390 
1391   // All MSVC dtors other than the base dtor are linkonce_odr and delegate to
1392   // each other bottoming out with the base dtor.  Therefore we emit non-base
1393   // dtors on usage, even if there is no dtor definition in the TU.
1394   if (D && isa<CXXDestructorDecl>(D) &&
1395       getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D),
1396                                          GD.getDtorType()))
1397     DeferredDeclsToEmit.push_back(GD);
1398 
1399   // This function doesn't have a complete type (for example, the return
1400   // type is an incomplete struct). Use a fake type instead, and make
1401   // sure not to try to set attributes.
1402   bool IsIncompleteFunction = false;
1403 
1404   llvm::FunctionType *FTy;
1405   if (isa<llvm::FunctionType>(Ty)) {
1406     FTy = cast<llvm::FunctionType>(Ty);
1407   } else {
1408     FTy = llvm::FunctionType::get(VoidTy, false);
1409     IsIncompleteFunction = true;
1410   }
1411 
1412   llvm::Function *F = llvm::Function::Create(FTy,
1413                                              llvm::Function::ExternalLinkage,
1414                                              MangledName, &getModule());
1415   assert(F->getName() == MangledName && "name was uniqued!");
1416   if (D)
1417     SetFunctionAttributes(GD, F, IsIncompleteFunction);
1418   if (ExtraAttrs.hasAttributes(llvm::AttributeSet::FunctionIndex)) {
1419     llvm::AttrBuilder B(ExtraAttrs, llvm::AttributeSet::FunctionIndex);
1420     F->addAttributes(llvm::AttributeSet::FunctionIndex,
1421                      llvm::AttributeSet::get(VMContext,
1422                                              llvm::AttributeSet::FunctionIndex,
1423                                              B));
1424   }
1425 
1426   // This is the first use or definition of a mangled name.  If there is a
1427   // deferred decl with this name, remember that we need to emit it at the end
1428   // of the file.
1429   llvm::StringMap<GlobalDecl>::iterator DDI = DeferredDecls.find(MangledName);
1430   if (DDI != DeferredDecls.end()) {
1431     // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
1432     // list, and remove it from DeferredDecls (since we don't need it anymore).
1433     DeferredDeclsToEmit.push_back(DDI->second);
1434     DeferredDecls.erase(DDI);
1435 
1436   // Otherwise, if this is a sized deallocation function, emit a weak definition
1437   // for it at the end of the translation unit.
1438   } else if (D && cast<FunctionDecl>(D)
1439                       ->getCorrespondingUnsizedGlobalDeallocationFunction()) {
1440     DeferredDeclsToEmit.push_back(GD);
1441 
1442   // Otherwise, there are cases we have to worry about where we're
1443   // using a declaration for which we must emit a definition but where
1444   // we might not find a top-level definition:
1445   //   - member functions defined inline in their classes
1446   //   - friend functions defined inline in some class
1447   //   - special member functions with implicit definitions
1448   // If we ever change our AST traversal to walk into class methods,
1449   // this will be unnecessary.
1450   //
1451   // We also don't emit a definition for a function if it's going to be an entry
1452   // in a vtable, unless it's already marked as used.
1453   } else if (getLangOpts().CPlusPlus && D) {
1454     // Look for a declaration that's lexically in a record.
1455     const FunctionDecl *FD = cast<FunctionDecl>(D);
1456     FD = FD->getMostRecentDecl();
1457     do {
1458       if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) {
1459         if (FD->isImplicit() && !ForVTable) {
1460           assert(FD->isUsed() && "Sema didn't mark implicit function as used!");
1461           DeferredDeclsToEmit.push_back(GD.getWithDecl(FD));
1462           break;
1463         } else if (FD->doesThisDeclarationHaveABody()) {
1464           DeferredDeclsToEmit.push_back(GD.getWithDecl(FD));
1465           break;
1466         }
1467       }
1468       FD = FD->getPreviousDecl();
1469     } while (FD);
1470   }
1471 
1472   // Make sure the result is of the requested type.
1473   if (!IsIncompleteFunction) {
1474     assert(F->getType()->getElementType() == Ty);
1475     return F;
1476   }
1477 
1478   llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
1479   return llvm::ConstantExpr::getBitCast(F, PTy);
1480 }
1481 
1482 /// GetAddrOfFunction - Return the address of the given function.  If Ty is
1483 /// non-null, then this function will use the specified type if it has to
1484 /// create it (this occurs when we see a definition of the function).
1485 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD,
1486                                                  llvm::Type *Ty,
1487                                                  bool ForVTable) {
1488   // If there was no specific requested type, just convert it now.
1489   if (!Ty)
1490     Ty = getTypes().ConvertType(cast<ValueDecl>(GD.getDecl())->getType());
1491 
1492   StringRef MangledName = getMangledName(GD);
1493   return GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable);
1494 }
1495 
1496 /// CreateRuntimeFunction - Create a new runtime function with the specified
1497 /// type and name.
1498 llvm::Constant *
1499 CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy,
1500                                      StringRef Name,
1501                                      llvm::AttributeSet ExtraAttrs) {
1502   llvm::Constant *C
1503     = GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false,
1504                               ExtraAttrs);
1505   if (llvm::Function *F = dyn_cast<llvm::Function>(C))
1506     if (F->empty())
1507       F->setCallingConv(getRuntimeCC());
1508   return C;
1509 }
1510 
1511 /// isTypeConstant - Determine whether an object of this type can be emitted
1512 /// as a constant.
1513 ///
1514 /// If ExcludeCtor is true, the duration when the object's constructor runs
1515 /// will not be considered. The caller will need to verify that the object is
1516 /// not written to during its construction.
1517 bool CodeGenModule::isTypeConstant(QualType Ty, bool ExcludeCtor) {
1518   if (!Ty.isConstant(Context) && !Ty->isReferenceType())
1519     return false;
1520 
1521   if (Context.getLangOpts().CPlusPlus) {
1522     if (const CXXRecordDecl *Record
1523           = Context.getBaseElementType(Ty)->getAsCXXRecordDecl())
1524       return ExcludeCtor && !Record->hasMutableFields() &&
1525              Record->hasTrivialDestructor();
1526   }
1527 
1528   return true;
1529 }
1530 
1531 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module,
1532 /// create and return an llvm GlobalVariable with the specified type.  If there
1533 /// is something in the module with the specified name, return it potentially
1534 /// bitcasted to the right type.
1535 ///
1536 /// If D is non-null, it specifies a decl that correspond to this.  This is used
1537 /// to set the attributes on the global when it is first created.
1538 llvm::Constant *
1539 CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName,
1540                                      llvm::PointerType *Ty,
1541                                      const VarDecl *D,
1542                                      bool UnnamedAddr) {
1543   // Lookup the entry, lazily creating it if necessary.
1544   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
1545   if (Entry) {
1546     if (WeakRefReferences.erase(Entry)) {
1547       if (D && !D->hasAttr<WeakAttr>())
1548         Entry->setLinkage(llvm::Function::ExternalLinkage);
1549     }
1550 
1551     if (UnnamedAddr)
1552       Entry->setUnnamedAddr(true);
1553 
1554     if (Entry->getType() == Ty)
1555       return Entry;
1556 
1557     // Make sure the result is of the correct type.
1558     return llvm::ConstantExpr::getBitCast(Entry, Ty);
1559   }
1560 
1561   // This is the first use or definition of a mangled name.  If there is a
1562   // deferred decl with this name, remember that we need to emit it at the end
1563   // of the file.
1564   llvm::StringMap<GlobalDecl>::iterator DDI = DeferredDecls.find(MangledName);
1565   if (DDI != DeferredDecls.end()) {
1566     // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
1567     // list, and remove it from DeferredDecls (since we don't need it anymore).
1568     DeferredDeclsToEmit.push_back(DDI->second);
1569     DeferredDecls.erase(DDI);
1570   }
1571 
1572   unsigned AddrSpace = GetGlobalVarAddressSpace(D, Ty->getAddressSpace());
1573   llvm::GlobalVariable *GV =
1574     new llvm::GlobalVariable(getModule(), Ty->getElementType(), false,
1575                              llvm::GlobalValue::ExternalLinkage,
1576                              0, MangledName, 0,
1577                              llvm::GlobalVariable::NotThreadLocal, AddrSpace);
1578 
1579   // Handle things which are present even on external declarations.
1580   if (D) {
1581     // FIXME: This code is overly simple and should be merged with other global
1582     // handling.
1583     GV->setConstant(isTypeConstant(D->getType(), false));
1584 
1585     // Set linkage and visibility in case we never see a definition.
1586     LinkageInfo LV = D->getLinkageAndVisibility();
1587     if (LV.getLinkage() != ExternalLinkage) {
1588       // Don't set internal linkage on declarations.
1589     } else {
1590       if (D->hasAttr<DLLImportAttr>())
1591         GV->setLinkage(llvm::GlobalValue::DLLImportLinkage);
1592       else if (D->hasAttr<WeakAttr>() || D->isWeakImported())
1593         GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage);
1594 
1595       // Set visibility on a declaration only if it's explicit.
1596       if (LV.isVisibilityExplicit())
1597         GV->setVisibility(GetLLVMVisibility(LV.getVisibility()));
1598     }
1599 
1600     if (D->getTLSKind()) {
1601       if (D->getTLSKind() == VarDecl::TLS_Dynamic)
1602         CXXThreadLocals.push_back(std::make_pair(D, GV));
1603       setTLSMode(GV, *D);
1604     }
1605   }
1606 
1607   if (AddrSpace != Ty->getAddressSpace())
1608     return llvm::ConstantExpr::getBitCast(GV, Ty);
1609   else
1610     return GV;
1611 }
1612 
1613 
1614 llvm::GlobalVariable *
1615 CodeGenModule::CreateOrReplaceCXXRuntimeVariable(StringRef Name,
1616                                       llvm::Type *Ty,
1617                                       llvm::GlobalValue::LinkageTypes Linkage) {
1618   llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name);
1619   llvm::GlobalVariable *OldGV = 0;
1620 
1621 
1622   if (GV) {
1623     // Check if the variable has the right type.
1624     if (GV->getType()->getElementType() == Ty)
1625       return GV;
1626 
1627     // Because C++ name mangling, the only way we can end up with an already
1628     // existing global with the same name is if it has been declared extern "C".
1629     assert(GV->isDeclaration() && "Declaration has wrong type!");
1630     OldGV = GV;
1631   }
1632 
1633   // Create a new variable.
1634   GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true,
1635                                 Linkage, 0, Name);
1636 
1637   if (OldGV) {
1638     // Replace occurrences of the old variable if needed.
1639     GV->takeName(OldGV);
1640 
1641     if (!OldGV->use_empty()) {
1642       llvm::Constant *NewPtrForOldDecl =
1643       llvm::ConstantExpr::getBitCast(GV, OldGV->getType());
1644       OldGV->replaceAllUsesWith(NewPtrForOldDecl);
1645     }
1646 
1647     OldGV->eraseFromParent();
1648   }
1649 
1650   return GV;
1651 }
1652 
1653 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the
1654 /// given global variable.  If Ty is non-null and if the global doesn't exist,
1655 /// then it will be created with the specified type instead of whatever the
1656 /// normal requested type would be.
1657 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D,
1658                                                   llvm::Type *Ty) {
1659   assert(D->hasGlobalStorage() && "Not a global variable");
1660   QualType ASTTy = D->getType();
1661   if (Ty == 0)
1662     Ty = getTypes().ConvertTypeForMem(ASTTy);
1663 
1664   llvm::PointerType *PTy =
1665     llvm::PointerType::get(Ty, getContext().getTargetAddressSpace(ASTTy));
1666 
1667   StringRef MangledName = getMangledName(D);
1668   return GetOrCreateLLVMGlobal(MangledName, PTy, D);
1669 }
1670 
1671 /// CreateRuntimeVariable - Create a new runtime global variable with the
1672 /// specified type and name.
1673 llvm::Constant *
1674 CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty,
1675                                      StringRef Name) {
1676   return GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), 0,
1677                                true);
1678 }
1679 
1680 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) {
1681   assert(!D->getInit() && "Cannot emit definite definitions here!");
1682 
1683   if (MayDeferGeneration(D)) {
1684     // If we have not seen a reference to this variable yet, place it
1685     // into the deferred declarations table to be emitted if needed
1686     // later.
1687     StringRef MangledName = getMangledName(D);
1688     if (!GetGlobalValue(MangledName)) {
1689       DeferredDecls[MangledName] = D;
1690       return;
1691     }
1692   }
1693 
1694   // The tentative definition is the only definition.
1695   EmitGlobalVarDefinition(D);
1696 }
1697 
1698 CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const {
1699     return Context.toCharUnitsFromBits(
1700       TheDataLayout.getTypeStoreSizeInBits(Ty));
1701 }
1702 
1703 unsigned CodeGenModule::GetGlobalVarAddressSpace(const VarDecl *D,
1704                                                  unsigned AddrSpace) {
1705   if (LangOpts.CUDA && CodeGenOpts.CUDAIsDevice) {
1706     if (D->hasAttr<CUDAConstantAttr>())
1707       AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_constant);
1708     else if (D->hasAttr<CUDASharedAttr>())
1709       AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_shared);
1710     else
1711       AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_device);
1712   }
1713 
1714   return AddrSpace;
1715 }
1716 
1717 template<typename SomeDecl>
1718 void CodeGenModule::MaybeHandleStaticInExternC(const SomeDecl *D,
1719                                                llvm::GlobalValue *GV) {
1720   if (!getLangOpts().CPlusPlus)
1721     return;
1722 
1723   // Must have 'used' attribute, or else inline assembly can't rely on
1724   // the name existing.
1725   if (!D->template hasAttr<UsedAttr>())
1726     return;
1727 
1728   // Must have internal linkage and an ordinary name.
1729   if (!D->getIdentifier() || D->getFormalLinkage() != InternalLinkage)
1730     return;
1731 
1732   // Must be in an extern "C" context. Entities declared directly within
1733   // a record are not extern "C" even if the record is in such a context.
1734   const SomeDecl *First = D->getFirstDecl();
1735   if (First->getDeclContext()->isRecord() || !First->isInExternCContext())
1736     return;
1737 
1738   // OK, this is an internal linkage entity inside an extern "C" linkage
1739   // specification. Make a note of that so we can give it the "expected"
1740   // mangled name if nothing else is using that name.
1741   std::pair<StaticExternCMap::iterator, bool> R =
1742       StaticExternCValues.insert(std::make_pair(D->getIdentifier(), GV));
1743 
1744   // If we have multiple internal linkage entities with the same name
1745   // in extern "C" regions, none of them gets that name.
1746   if (!R.second)
1747     R.first->second = 0;
1748 }
1749 
1750 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D) {
1751   llvm::Constant *Init = 0;
1752   QualType ASTTy = D->getType();
1753   CXXRecordDecl *RD = ASTTy->getBaseElementTypeUnsafe()->getAsCXXRecordDecl();
1754   bool NeedsGlobalCtor = false;
1755   bool NeedsGlobalDtor = RD && !RD->hasTrivialDestructor();
1756 
1757   const VarDecl *InitDecl;
1758   const Expr *InitExpr = D->getAnyInitializer(InitDecl);
1759 
1760   if (!InitExpr) {
1761     // This is a tentative definition; tentative definitions are
1762     // implicitly initialized with { 0 }.
1763     //
1764     // Note that tentative definitions are only emitted at the end of
1765     // a translation unit, so they should never have incomplete
1766     // type. In addition, EmitTentativeDefinition makes sure that we
1767     // never attempt to emit a tentative definition if a real one
1768     // exists. A use may still exists, however, so we still may need
1769     // to do a RAUW.
1770     assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type");
1771     Init = EmitNullConstant(D->getType());
1772   } else {
1773     initializedGlobalDecl = GlobalDecl(D);
1774     Init = EmitConstantInit(*InitDecl);
1775 
1776     if (!Init) {
1777       QualType T = InitExpr->getType();
1778       if (D->getType()->isReferenceType())
1779         T = D->getType();
1780 
1781       if (getLangOpts().CPlusPlus) {
1782         Init = EmitNullConstant(T);
1783         NeedsGlobalCtor = true;
1784       } else {
1785         ErrorUnsupported(D, "static initializer");
1786         Init = llvm::UndefValue::get(getTypes().ConvertType(T));
1787       }
1788     } else {
1789       // We don't need an initializer, so remove the entry for the delayed
1790       // initializer position (just in case this entry was delayed) if we
1791       // also don't need to register a destructor.
1792       if (getLangOpts().CPlusPlus && !NeedsGlobalDtor)
1793         DelayedCXXInitPosition.erase(D);
1794     }
1795   }
1796 
1797   llvm::Type* InitType = Init->getType();
1798   llvm::Constant *Entry = GetAddrOfGlobalVar(D, InitType);
1799 
1800   // Strip off a bitcast if we got one back.
1801   if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
1802     assert(CE->getOpcode() == llvm::Instruction::BitCast ||
1803            // all zero index gep.
1804            CE->getOpcode() == llvm::Instruction::GetElementPtr);
1805     Entry = CE->getOperand(0);
1806   }
1807 
1808   // Entry is now either a Function or GlobalVariable.
1809   llvm::GlobalVariable *GV = dyn_cast<llvm::GlobalVariable>(Entry);
1810 
1811   // We have a definition after a declaration with the wrong type.
1812   // We must make a new GlobalVariable* and update everything that used OldGV
1813   // (a declaration or tentative definition) with the new GlobalVariable*
1814   // (which will be a definition).
1815   //
1816   // This happens if there is a prototype for a global (e.g.
1817   // "extern int x[];") and then a definition of a different type (e.g.
1818   // "int x[10];"). This also happens when an initializer has a different type
1819   // from the type of the global (this happens with unions).
1820   if (GV == 0 ||
1821       GV->getType()->getElementType() != InitType ||
1822       GV->getType()->getAddressSpace() !=
1823        GetGlobalVarAddressSpace(D, getContext().getTargetAddressSpace(ASTTy))) {
1824 
1825     // Move the old entry aside so that we'll create a new one.
1826     Entry->setName(StringRef());
1827 
1828     // Make a new global with the correct type, this is now guaranteed to work.
1829     GV = cast<llvm::GlobalVariable>(GetAddrOfGlobalVar(D, InitType));
1830 
1831     // Replace all uses of the old global with the new global
1832     llvm::Constant *NewPtrForOldDecl =
1833         llvm::ConstantExpr::getBitCast(GV, Entry->getType());
1834     Entry->replaceAllUsesWith(NewPtrForOldDecl);
1835 
1836     // Erase the old global, since it is no longer used.
1837     cast<llvm::GlobalValue>(Entry)->eraseFromParent();
1838   }
1839 
1840   MaybeHandleStaticInExternC(D, GV);
1841 
1842   if (D->hasAttr<AnnotateAttr>())
1843     AddGlobalAnnotations(D, GV);
1844 
1845   GV->setInitializer(Init);
1846 
1847   // If it is safe to mark the global 'constant', do so now.
1848   GV->setConstant(!NeedsGlobalCtor && !NeedsGlobalDtor &&
1849                   isTypeConstant(D->getType(), true));
1850 
1851   GV->setAlignment(getContext().getDeclAlign(D).getQuantity());
1852 
1853   // Set the llvm linkage type as appropriate.
1854   llvm::GlobalValue::LinkageTypes Linkage =
1855     GetLLVMLinkageVarDefinition(D, GV->isConstant());
1856   GV->setLinkage(Linkage);
1857   if (Linkage == llvm::GlobalVariable::CommonLinkage)
1858     // common vars aren't constant even if declared const.
1859     GV->setConstant(false);
1860 
1861   SetCommonAttributes(D, GV);
1862 
1863   // Emit the initializer function if necessary.
1864   if (NeedsGlobalCtor || NeedsGlobalDtor)
1865     EmitCXXGlobalVarDeclInitFunc(D, GV, NeedsGlobalCtor);
1866 
1867   // If we are compiling with ASan, add metadata indicating dynamically
1868   // initialized globals.
1869   if (SanOpts.Address && NeedsGlobalCtor) {
1870     llvm::Module &M = getModule();
1871 
1872     llvm::NamedMDNode *DynamicInitializers =
1873         M.getOrInsertNamedMetadata("llvm.asan.dynamically_initialized_globals");
1874     llvm::Value *GlobalToAdd[] = { GV };
1875     llvm::MDNode *ThisGlobal = llvm::MDNode::get(VMContext, GlobalToAdd);
1876     DynamicInitializers->addOperand(ThisGlobal);
1877   }
1878 
1879   // Emit global variable debug information.
1880   if (CGDebugInfo *DI = getModuleDebugInfo())
1881     if (getCodeGenOpts().getDebugInfo() >= CodeGenOptions::LimitedDebugInfo)
1882       DI->EmitGlobalVariable(GV, D);
1883 }
1884 
1885 llvm::GlobalValue::LinkageTypes
1886 CodeGenModule::GetLLVMLinkageVarDefinition(const VarDecl *D, bool isConstant) {
1887   GVALinkage Linkage = getContext().GetGVALinkageForVariable(D);
1888   if (Linkage == GVA_Internal)
1889     return llvm::Function::InternalLinkage;
1890   else if (D->hasAttr<DLLImportAttr>())
1891     return llvm::Function::DLLImportLinkage;
1892   else if (D->hasAttr<DLLExportAttr>())
1893     return llvm::Function::DLLExportLinkage;
1894   else if (D->hasAttr<SelectAnyAttr>()) {
1895     // selectany symbols are externally visible, so use weak instead of
1896     // linkonce.  MSVC optimizes away references to const selectany globals, so
1897     // all definitions should be the same and ODR linkage should be used.
1898     // http://msdn.microsoft.com/en-us/library/5tkz6s71.aspx
1899     return llvm::GlobalVariable::WeakODRLinkage;
1900   } else if (D->hasAttr<WeakAttr>()) {
1901     if (isConstant)
1902       return llvm::GlobalVariable::WeakODRLinkage;
1903     else
1904       return llvm::GlobalVariable::WeakAnyLinkage;
1905   } else if (Linkage == GVA_TemplateInstantiation ||
1906              Linkage == GVA_ExplicitTemplateInstantiation)
1907     return llvm::GlobalVariable::WeakODRLinkage;
1908   else if (!getLangOpts().CPlusPlus &&
1909            ((!CodeGenOpts.NoCommon && !D->getAttr<NoCommonAttr>()) ||
1910              D->getAttr<CommonAttr>()) &&
1911            !D->hasExternalStorage() && !D->getInit() &&
1912            !D->getAttr<SectionAttr>() && !D->getTLSKind() &&
1913            !D->getAttr<WeakImportAttr>()) {
1914     // Thread local vars aren't considered common linkage.
1915     return llvm::GlobalVariable::CommonLinkage;
1916   } else if (D->getTLSKind() == VarDecl::TLS_Dynamic &&
1917              getTarget().getTriple().isMacOSX())
1918     // On Darwin, the backing variable for a C++11 thread_local variable always
1919     // has internal linkage; all accesses should just be calls to the
1920     // Itanium-specified entry point, which has the normal linkage of the
1921     // variable.
1922     return llvm::GlobalValue::InternalLinkage;
1923   return llvm::GlobalVariable::ExternalLinkage;
1924 }
1925 
1926 /// Replace the uses of a function that was declared with a non-proto type.
1927 /// We want to silently drop extra arguments from call sites
1928 static void replaceUsesOfNonProtoConstant(llvm::Constant *old,
1929                                           llvm::Function *newFn) {
1930   // Fast path.
1931   if (old->use_empty()) return;
1932 
1933   llvm::Type *newRetTy = newFn->getReturnType();
1934   SmallVector<llvm::Value*, 4> newArgs;
1935 
1936   for (llvm::Value::use_iterator ui = old->use_begin(), ue = old->use_end();
1937          ui != ue; ) {
1938     llvm::Value::use_iterator use = ui++; // Increment before the use is erased.
1939     llvm::User *user = *use;
1940 
1941     // Recognize and replace uses of bitcasts.  Most calls to
1942     // unprototyped functions will use bitcasts.
1943     if (llvm::ConstantExpr *bitcast = dyn_cast<llvm::ConstantExpr>(user)) {
1944       if (bitcast->getOpcode() == llvm::Instruction::BitCast)
1945         replaceUsesOfNonProtoConstant(bitcast, newFn);
1946       continue;
1947     }
1948 
1949     // Recognize calls to the function.
1950     llvm::CallSite callSite(user);
1951     if (!callSite) continue;
1952     if (!callSite.isCallee(use)) continue;
1953 
1954     // If the return types don't match exactly, then we can't
1955     // transform this call unless it's dead.
1956     if (callSite->getType() != newRetTy && !callSite->use_empty())
1957       continue;
1958 
1959     // Get the call site's attribute list.
1960     SmallVector<llvm::AttributeSet, 8> newAttrs;
1961     llvm::AttributeSet oldAttrs = callSite.getAttributes();
1962 
1963     // Collect any return attributes from the call.
1964     if (oldAttrs.hasAttributes(llvm::AttributeSet::ReturnIndex))
1965       newAttrs.push_back(
1966         llvm::AttributeSet::get(newFn->getContext(),
1967                                 oldAttrs.getRetAttributes()));
1968 
1969     // If the function was passed too few arguments, don't transform.
1970     unsigned newNumArgs = newFn->arg_size();
1971     if (callSite.arg_size() < newNumArgs) continue;
1972 
1973     // If extra arguments were passed, we silently drop them.
1974     // If any of the types mismatch, we don't transform.
1975     unsigned argNo = 0;
1976     bool dontTransform = false;
1977     for (llvm::Function::arg_iterator ai = newFn->arg_begin(),
1978            ae = newFn->arg_end(); ai != ae; ++ai, ++argNo) {
1979       if (callSite.getArgument(argNo)->getType() != ai->getType()) {
1980         dontTransform = true;
1981         break;
1982       }
1983 
1984       // Add any parameter attributes.
1985       if (oldAttrs.hasAttributes(argNo + 1))
1986         newAttrs.
1987           push_back(llvm::
1988                     AttributeSet::get(newFn->getContext(),
1989                                       oldAttrs.getParamAttributes(argNo + 1)));
1990     }
1991     if (dontTransform)
1992       continue;
1993 
1994     if (oldAttrs.hasAttributes(llvm::AttributeSet::FunctionIndex))
1995       newAttrs.push_back(llvm::AttributeSet::get(newFn->getContext(),
1996                                                  oldAttrs.getFnAttributes()));
1997 
1998     // Okay, we can transform this.  Create the new call instruction and copy
1999     // over the required information.
2000     newArgs.append(callSite.arg_begin(), callSite.arg_begin() + argNo);
2001 
2002     llvm::CallSite newCall;
2003     if (callSite.isCall()) {
2004       newCall = llvm::CallInst::Create(newFn, newArgs, "",
2005                                        callSite.getInstruction());
2006     } else {
2007       llvm::InvokeInst *oldInvoke =
2008         cast<llvm::InvokeInst>(callSite.getInstruction());
2009       newCall = llvm::InvokeInst::Create(newFn,
2010                                          oldInvoke->getNormalDest(),
2011                                          oldInvoke->getUnwindDest(),
2012                                          newArgs, "",
2013                                          callSite.getInstruction());
2014     }
2015     newArgs.clear(); // for the next iteration
2016 
2017     if (!newCall->getType()->isVoidTy())
2018       newCall->takeName(callSite.getInstruction());
2019     newCall.setAttributes(
2020                      llvm::AttributeSet::get(newFn->getContext(), newAttrs));
2021     newCall.setCallingConv(callSite.getCallingConv());
2022 
2023     // Finally, remove the old call, replacing any uses with the new one.
2024     if (!callSite->use_empty())
2025       callSite->replaceAllUsesWith(newCall.getInstruction());
2026 
2027     // Copy debug location attached to CI.
2028     if (!callSite->getDebugLoc().isUnknown())
2029       newCall->setDebugLoc(callSite->getDebugLoc());
2030     callSite->eraseFromParent();
2031   }
2032 }
2033 
2034 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we
2035 /// implement a function with no prototype, e.g. "int foo() {}".  If there are
2036 /// existing call uses of the old function in the module, this adjusts them to
2037 /// call the new function directly.
2038 ///
2039 /// This is not just a cleanup: the always_inline pass requires direct calls to
2040 /// functions to be able to inline them.  If there is a bitcast in the way, it
2041 /// won't inline them.  Instcombine normally deletes these calls, but it isn't
2042 /// run at -O0.
2043 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
2044                                                       llvm::Function *NewFn) {
2045   // If we're redefining a global as a function, don't transform it.
2046   if (!isa<llvm::Function>(Old)) return;
2047 
2048   replaceUsesOfNonProtoConstant(Old, NewFn);
2049 }
2050 
2051 void CodeGenModule::HandleCXXStaticMemberVarInstantiation(VarDecl *VD) {
2052   TemplateSpecializationKind TSK = VD->getTemplateSpecializationKind();
2053   // If we have a definition, this might be a deferred decl. If the
2054   // instantiation is explicit, make sure we emit it at the end.
2055   if (VD->getDefinition() && TSK == TSK_ExplicitInstantiationDefinition)
2056     GetAddrOfGlobalVar(VD);
2057 
2058   EmitTopLevelDecl(VD);
2059 }
2060 
2061 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD) {
2062   const FunctionDecl *D = cast<FunctionDecl>(GD.getDecl());
2063 
2064   // Compute the function info and LLVM type.
2065   const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
2066   llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
2067 
2068   // Get or create the prototype for the function.
2069   llvm::Constant *Entry = GetAddrOfFunction(GD, Ty);
2070 
2071   // Strip off a bitcast if we got one back.
2072   if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
2073     assert(CE->getOpcode() == llvm::Instruction::BitCast);
2074     Entry = CE->getOperand(0);
2075   }
2076 
2077 
2078   if (cast<llvm::GlobalValue>(Entry)->getType()->getElementType() != Ty) {
2079     llvm::GlobalValue *OldFn = cast<llvm::GlobalValue>(Entry);
2080 
2081     // If the types mismatch then we have to rewrite the definition.
2082     assert(OldFn->isDeclaration() &&
2083            "Shouldn't replace non-declaration");
2084 
2085     // F is the Function* for the one with the wrong type, we must make a new
2086     // Function* and update everything that used F (a declaration) with the new
2087     // Function* (which will be a definition).
2088     //
2089     // This happens if there is a prototype for a function
2090     // (e.g. "int f()") and then a definition of a different type
2091     // (e.g. "int f(int x)").  Move the old function aside so that it
2092     // doesn't interfere with GetAddrOfFunction.
2093     OldFn->setName(StringRef());
2094     llvm::Function *NewFn = cast<llvm::Function>(GetAddrOfFunction(GD, Ty));
2095 
2096     // This might be an implementation of a function without a
2097     // prototype, in which case, try to do special replacement of
2098     // calls which match the new prototype.  The really key thing here
2099     // is that we also potentially drop arguments from the call site
2100     // so as to make a direct call, which makes the inliner happier
2101     // and suppresses a number of optimizer warnings (!) about
2102     // dropping arguments.
2103     if (!OldFn->use_empty()) {
2104       ReplaceUsesOfNonProtoTypeWithRealFunction(OldFn, NewFn);
2105       OldFn->removeDeadConstantUsers();
2106     }
2107 
2108     // Replace uses of F with the Function we will endow with a body.
2109     if (!Entry->use_empty()) {
2110       llvm::Constant *NewPtrForOldDecl =
2111         llvm::ConstantExpr::getBitCast(NewFn, Entry->getType());
2112       Entry->replaceAllUsesWith(NewPtrForOldDecl);
2113     }
2114 
2115     // Ok, delete the old function now, which is dead.
2116     OldFn->eraseFromParent();
2117 
2118     Entry = NewFn;
2119   }
2120 
2121   // We need to set linkage and visibility on the function before
2122   // generating code for it because various parts of IR generation
2123   // want to propagate this information down (e.g. to local static
2124   // declarations).
2125   llvm::Function *Fn = cast<llvm::Function>(Entry);
2126   setFunctionLinkage(GD, Fn);
2127 
2128   // FIXME: this is redundant with part of SetFunctionDefinitionAttributes
2129   setGlobalVisibility(Fn, D);
2130 
2131   MaybeHandleStaticInExternC(D, Fn);
2132 
2133   CodeGenFunction(*this).GenerateCode(D, Fn, FI);
2134 
2135   SetFunctionDefinitionAttributes(D, Fn);
2136   SetLLVMFunctionAttributesForDefinition(D, Fn);
2137 
2138   if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>())
2139     AddGlobalCtor(Fn, CA->getPriority());
2140   if (const DestructorAttr *DA = D->getAttr<DestructorAttr>())
2141     AddGlobalDtor(Fn, DA->getPriority());
2142   if (D->hasAttr<AnnotateAttr>())
2143     AddGlobalAnnotations(D, Fn);
2144 }
2145 
2146 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) {
2147   const ValueDecl *D = cast<ValueDecl>(GD.getDecl());
2148   const AliasAttr *AA = D->getAttr<AliasAttr>();
2149   assert(AA && "Not an alias?");
2150 
2151   StringRef MangledName = getMangledName(GD);
2152 
2153   // If there is a definition in the module, then it wins over the alias.
2154   // This is dubious, but allow it to be safe.  Just ignore the alias.
2155   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
2156   if (Entry && !Entry->isDeclaration())
2157     return;
2158 
2159   Aliases.push_back(GD);
2160 
2161   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
2162 
2163   // Create a reference to the named value.  This ensures that it is emitted
2164   // if a deferred decl.
2165   llvm::Constant *Aliasee;
2166   if (isa<llvm::FunctionType>(DeclTy))
2167     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GD,
2168                                       /*ForVTable=*/false);
2169   else
2170     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
2171                                     llvm::PointerType::getUnqual(DeclTy), 0);
2172 
2173   // Create the new alias itself, but don't set a name yet.
2174   llvm::GlobalValue *GA =
2175     new llvm::GlobalAlias(Aliasee->getType(),
2176                           llvm::Function::ExternalLinkage,
2177                           "", Aliasee, &getModule());
2178 
2179   if (Entry) {
2180     assert(Entry->isDeclaration());
2181 
2182     // If there is a declaration in the module, then we had an extern followed
2183     // by the alias, as in:
2184     //   extern int test6();
2185     //   ...
2186     //   int test6() __attribute__((alias("test7")));
2187     //
2188     // Remove it and replace uses of it with the alias.
2189     GA->takeName(Entry);
2190 
2191     Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA,
2192                                                           Entry->getType()));
2193     Entry->eraseFromParent();
2194   } else {
2195     GA->setName(MangledName);
2196   }
2197 
2198   // Set attributes which are particular to an alias; this is a
2199   // specialization of the attributes which may be set on a global
2200   // variable/function.
2201   if (D->hasAttr<DLLExportAttr>()) {
2202     if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
2203       // The dllexport attribute is ignored for undefined symbols.
2204       if (FD->hasBody())
2205         GA->setLinkage(llvm::Function::DLLExportLinkage);
2206     } else {
2207       GA->setLinkage(llvm::Function::DLLExportLinkage);
2208     }
2209   } else if (D->hasAttr<WeakAttr>() ||
2210              D->hasAttr<WeakRefAttr>() ||
2211              D->isWeakImported()) {
2212     GA->setLinkage(llvm::Function::WeakAnyLinkage);
2213   }
2214 
2215   SetCommonAttributes(D, GA);
2216 }
2217 
2218 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,
2219                                             ArrayRef<llvm::Type*> Tys) {
2220   return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID,
2221                                          Tys);
2222 }
2223 
2224 static llvm::StringMapEntry<llvm::Constant*> &
2225 GetConstantCFStringEntry(llvm::StringMap<llvm::Constant*> &Map,
2226                          const StringLiteral *Literal,
2227                          bool TargetIsLSB,
2228                          bool &IsUTF16,
2229                          unsigned &StringLength) {
2230   StringRef String = Literal->getString();
2231   unsigned NumBytes = String.size();
2232 
2233   // Check for simple case.
2234   if (!Literal->containsNonAsciiOrNull()) {
2235     StringLength = NumBytes;
2236     return Map.GetOrCreateValue(String);
2237   }
2238 
2239   // Otherwise, convert the UTF8 literals into a string of shorts.
2240   IsUTF16 = true;
2241 
2242   SmallVector<UTF16, 128> ToBuf(NumBytes + 1); // +1 for ending nulls.
2243   const UTF8 *FromPtr = (const UTF8 *)String.data();
2244   UTF16 *ToPtr = &ToBuf[0];
2245 
2246   (void)ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes,
2247                            &ToPtr, ToPtr + NumBytes,
2248                            strictConversion);
2249 
2250   // ConvertUTF8toUTF16 returns the length in ToPtr.
2251   StringLength = ToPtr - &ToBuf[0];
2252 
2253   // Add an explicit null.
2254   *ToPtr = 0;
2255   return Map.
2256     GetOrCreateValue(StringRef(reinterpret_cast<const char *>(ToBuf.data()),
2257                                (StringLength + 1) * 2));
2258 }
2259 
2260 static llvm::StringMapEntry<llvm::Constant*> &
2261 GetConstantStringEntry(llvm::StringMap<llvm::Constant*> &Map,
2262                        const StringLiteral *Literal,
2263                        unsigned &StringLength) {
2264   StringRef String = Literal->getString();
2265   StringLength = String.size();
2266   return Map.GetOrCreateValue(String);
2267 }
2268 
2269 llvm::Constant *
2270 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) {
2271   unsigned StringLength = 0;
2272   bool isUTF16 = false;
2273   llvm::StringMapEntry<llvm::Constant*> &Entry =
2274     GetConstantCFStringEntry(CFConstantStringMap, Literal,
2275                              getDataLayout().isLittleEndian(),
2276                              isUTF16, StringLength);
2277 
2278   if (llvm::Constant *C = Entry.getValue())
2279     return C;
2280 
2281   llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty);
2282   llvm::Constant *Zeros[] = { Zero, Zero };
2283   llvm::Value *V;
2284 
2285   // If we don't already have it, get __CFConstantStringClassReference.
2286   if (!CFConstantStringClassRef) {
2287     llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
2288     Ty = llvm::ArrayType::get(Ty, 0);
2289     llvm::Constant *GV = CreateRuntimeVariable(Ty,
2290                                            "__CFConstantStringClassReference");
2291     // Decay array -> ptr
2292     V = llvm::ConstantExpr::getGetElementPtr(GV, Zeros);
2293     CFConstantStringClassRef = V;
2294   }
2295   else
2296     V = CFConstantStringClassRef;
2297 
2298   QualType CFTy = getContext().getCFConstantStringType();
2299 
2300   llvm::StructType *STy =
2301     cast<llvm::StructType>(getTypes().ConvertType(CFTy));
2302 
2303   llvm::Constant *Fields[4];
2304 
2305   // Class pointer.
2306   Fields[0] = cast<llvm::ConstantExpr>(V);
2307 
2308   // Flags.
2309   llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy);
2310   Fields[1] = isUTF16 ? llvm::ConstantInt::get(Ty, 0x07d0) :
2311     llvm::ConstantInt::get(Ty, 0x07C8);
2312 
2313   // String pointer.
2314   llvm::Constant *C = 0;
2315   if (isUTF16) {
2316     ArrayRef<uint16_t> Arr =
2317       llvm::makeArrayRef<uint16_t>(reinterpret_cast<uint16_t*>(
2318                                      const_cast<char *>(Entry.getKey().data())),
2319                                    Entry.getKey().size() / 2);
2320     C = llvm::ConstantDataArray::get(VMContext, Arr);
2321   } else {
2322     C = llvm::ConstantDataArray::getString(VMContext, Entry.getKey());
2323   }
2324 
2325   llvm::GlobalValue::LinkageTypes Linkage;
2326   if (isUTF16)
2327     // FIXME: why do utf strings get "_" labels instead of "L" labels?
2328     Linkage = llvm::GlobalValue::InternalLinkage;
2329   else
2330     // FIXME: With OS X ld 123.2 (xcode 4) and LTO we would get a linker error
2331     // when using private linkage. It is not clear if this is a bug in ld
2332     // or a reasonable new restriction.
2333     Linkage = llvm::GlobalValue::LinkerPrivateLinkage;
2334 
2335   // Note: -fwritable-strings doesn't make the backing store strings of
2336   // CFStrings writable. (See <rdar://problem/10657500>)
2337   llvm::GlobalVariable *GV =
2338     new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true,
2339                              Linkage, C, ".str");
2340   GV->setUnnamedAddr(true);
2341   // Don't enforce the target's minimum global alignment, since the only use
2342   // of the string is via this class initializer.
2343   if (isUTF16) {
2344     CharUnits Align = getContext().getTypeAlignInChars(getContext().ShortTy);
2345     GV->setAlignment(Align.getQuantity());
2346   } else {
2347     CharUnits Align = getContext().getTypeAlignInChars(getContext().CharTy);
2348     GV->setAlignment(Align.getQuantity());
2349   }
2350 
2351   // String.
2352   Fields[2] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros);
2353 
2354   if (isUTF16)
2355     // Cast the UTF16 string to the correct type.
2356     Fields[2] = llvm::ConstantExpr::getBitCast(Fields[2], Int8PtrTy);
2357 
2358   // String length.
2359   Ty = getTypes().ConvertType(getContext().LongTy);
2360   Fields[3] = llvm::ConstantInt::get(Ty, StringLength);
2361 
2362   // The struct.
2363   C = llvm::ConstantStruct::get(STy, Fields);
2364   GV = new llvm::GlobalVariable(getModule(), C->getType(), true,
2365                                 llvm::GlobalVariable::PrivateLinkage, C,
2366                                 "_unnamed_cfstring_");
2367   if (const char *Sect = getTarget().getCFStringSection())
2368     GV->setSection(Sect);
2369   Entry.setValue(GV);
2370 
2371   return GV;
2372 }
2373 
2374 static RecordDecl *
2375 CreateRecordDecl(const ASTContext &Ctx, RecordDecl::TagKind TK,
2376                  DeclContext *DC, IdentifierInfo *Id) {
2377   SourceLocation Loc;
2378   if (Ctx.getLangOpts().CPlusPlus)
2379     return CXXRecordDecl::Create(Ctx, TK, DC, Loc, Loc, Id);
2380   else
2381     return RecordDecl::Create(Ctx, TK, DC, Loc, Loc, Id);
2382 }
2383 
2384 llvm::Constant *
2385 CodeGenModule::GetAddrOfConstantString(const StringLiteral *Literal) {
2386   unsigned StringLength = 0;
2387   llvm::StringMapEntry<llvm::Constant*> &Entry =
2388     GetConstantStringEntry(CFConstantStringMap, Literal, StringLength);
2389 
2390   if (llvm::Constant *C = Entry.getValue())
2391     return C;
2392 
2393   llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty);
2394   llvm::Constant *Zeros[] = { Zero, Zero };
2395   llvm::Value *V;
2396   // If we don't already have it, get _NSConstantStringClassReference.
2397   if (!ConstantStringClassRef) {
2398     std::string StringClass(getLangOpts().ObjCConstantStringClass);
2399     llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
2400     llvm::Constant *GV;
2401     if (LangOpts.ObjCRuntime.isNonFragile()) {
2402       std::string str =
2403         StringClass.empty() ? "OBJC_CLASS_$_NSConstantString"
2404                             : "OBJC_CLASS_$_" + StringClass;
2405       GV = getObjCRuntime().GetClassGlobal(str);
2406       // Make sure the result is of the correct type.
2407       llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
2408       V = llvm::ConstantExpr::getBitCast(GV, PTy);
2409       ConstantStringClassRef = V;
2410     } else {
2411       std::string str =
2412         StringClass.empty() ? "_NSConstantStringClassReference"
2413                             : "_" + StringClass + "ClassReference";
2414       llvm::Type *PTy = llvm::ArrayType::get(Ty, 0);
2415       GV = CreateRuntimeVariable(PTy, str);
2416       // Decay array -> ptr
2417       V = llvm::ConstantExpr::getGetElementPtr(GV, Zeros);
2418       ConstantStringClassRef = V;
2419     }
2420   }
2421   else
2422     V = ConstantStringClassRef;
2423 
2424   if (!NSConstantStringType) {
2425     // Construct the type for a constant NSString.
2426     RecordDecl *D = CreateRecordDecl(Context, TTK_Struct,
2427                                      Context.getTranslationUnitDecl(),
2428                                    &Context.Idents.get("__builtin_NSString"));
2429     D->startDefinition();
2430 
2431     QualType FieldTypes[3];
2432 
2433     // const int *isa;
2434     FieldTypes[0] = Context.getPointerType(Context.IntTy.withConst());
2435     // const char *str;
2436     FieldTypes[1] = Context.getPointerType(Context.CharTy.withConst());
2437     // unsigned int length;
2438     FieldTypes[2] = Context.UnsignedIntTy;
2439 
2440     // Create fields
2441     for (unsigned i = 0; i < 3; ++i) {
2442       FieldDecl *Field = FieldDecl::Create(Context, D,
2443                                            SourceLocation(),
2444                                            SourceLocation(), 0,
2445                                            FieldTypes[i], /*TInfo=*/0,
2446                                            /*BitWidth=*/0,
2447                                            /*Mutable=*/false,
2448                                            ICIS_NoInit);
2449       Field->setAccess(AS_public);
2450       D->addDecl(Field);
2451     }
2452 
2453     D->completeDefinition();
2454     QualType NSTy = Context.getTagDeclType(D);
2455     NSConstantStringType = cast<llvm::StructType>(getTypes().ConvertType(NSTy));
2456   }
2457 
2458   llvm::Constant *Fields[3];
2459 
2460   // Class pointer.
2461   Fields[0] = cast<llvm::ConstantExpr>(V);
2462 
2463   // String pointer.
2464   llvm::Constant *C =
2465     llvm::ConstantDataArray::getString(VMContext, Entry.getKey());
2466 
2467   llvm::GlobalValue::LinkageTypes Linkage;
2468   bool isConstant;
2469   Linkage = llvm::GlobalValue::PrivateLinkage;
2470   isConstant = !LangOpts.WritableStrings;
2471 
2472   llvm::GlobalVariable *GV =
2473   new llvm::GlobalVariable(getModule(), C->getType(), isConstant, Linkage, C,
2474                            ".str");
2475   GV->setUnnamedAddr(true);
2476   // Don't enforce the target's minimum global alignment, since the only use
2477   // of the string is via this class initializer.
2478   CharUnits Align = getContext().getTypeAlignInChars(getContext().CharTy);
2479   GV->setAlignment(Align.getQuantity());
2480   Fields[1] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros);
2481 
2482   // String length.
2483   llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy);
2484   Fields[2] = llvm::ConstantInt::get(Ty, StringLength);
2485 
2486   // The struct.
2487   C = llvm::ConstantStruct::get(NSConstantStringType, Fields);
2488   GV = new llvm::GlobalVariable(getModule(), C->getType(), true,
2489                                 llvm::GlobalVariable::PrivateLinkage, C,
2490                                 "_unnamed_nsstring_");
2491   // FIXME. Fix section.
2492   if (const char *Sect =
2493         LangOpts.ObjCRuntime.isNonFragile()
2494           ? getTarget().getNSStringNonFragileABISection()
2495           : getTarget().getNSStringSection())
2496     GV->setSection(Sect);
2497   Entry.setValue(GV);
2498 
2499   return GV;
2500 }
2501 
2502 QualType CodeGenModule::getObjCFastEnumerationStateType() {
2503   if (ObjCFastEnumerationStateType.isNull()) {
2504     RecordDecl *D = CreateRecordDecl(Context, TTK_Struct,
2505                                      Context.getTranslationUnitDecl(),
2506                       &Context.Idents.get("__objcFastEnumerationState"));
2507     D->startDefinition();
2508 
2509     QualType FieldTypes[] = {
2510       Context.UnsignedLongTy,
2511       Context.getPointerType(Context.getObjCIdType()),
2512       Context.getPointerType(Context.UnsignedLongTy),
2513       Context.getConstantArrayType(Context.UnsignedLongTy,
2514                            llvm::APInt(32, 5), ArrayType::Normal, 0)
2515     };
2516 
2517     for (size_t i = 0; i < 4; ++i) {
2518       FieldDecl *Field = FieldDecl::Create(Context,
2519                                            D,
2520                                            SourceLocation(),
2521                                            SourceLocation(), 0,
2522                                            FieldTypes[i], /*TInfo=*/0,
2523                                            /*BitWidth=*/0,
2524                                            /*Mutable=*/false,
2525                                            ICIS_NoInit);
2526       Field->setAccess(AS_public);
2527       D->addDecl(Field);
2528     }
2529 
2530     D->completeDefinition();
2531     ObjCFastEnumerationStateType = Context.getTagDeclType(D);
2532   }
2533 
2534   return ObjCFastEnumerationStateType;
2535 }
2536 
2537 llvm::Constant *
2538 CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) {
2539   assert(!E->getType()->isPointerType() && "Strings are always arrays");
2540 
2541   // Don't emit it as the address of the string, emit the string data itself
2542   // as an inline array.
2543   if (E->getCharByteWidth() == 1) {
2544     SmallString<64> Str(E->getString());
2545 
2546     // Resize the string to the right size, which is indicated by its type.
2547     const ConstantArrayType *CAT = Context.getAsConstantArrayType(E->getType());
2548     Str.resize(CAT->getSize().getZExtValue());
2549     return llvm::ConstantDataArray::getString(VMContext, Str, false);
2550   }
2551 
2552   llvm::ArrayType *AType =
2553     cast<llvm::ArrayType>(getTypes().ConvertType(E->getType()));
2554   llvm::Type *ElemTy = AType->getElementType();
2555   unsigned NumElements = AType->getNumElements();
2556 
2557   // Wide strings have either 2-byte or 4-byte elements.
2558   if (ElemTy->getPrimitiveSizeInBits() == 16) {
2559     SmallVector<uint16_t, 32> Elements;
2560     Elements.reserve(NumElements);
2561 
2562     for(unsigned i = 0, e = E->getLength(); i != e; ++i)
2563       Elements.push_back(E->getCodeUnit(i));
2564     Elements.resize(NumElements);
2565     return llvm::ConstantDataArray::get(VMContext, Elements);
2566   }
2567 
2568   assert(ElemTy->getPrimitiveSizeInBits() == 32);
2569   SmallVector<uint32_t, 32> Elements;
2570   Elements.reserve(NumElements);
2571 
2572   for(unsigned i = 0, e = E->getLength(); i != e; ++i)
2573     Elements.push_back(E->getCodeUnit(i));
2574   Elements.resize(NumElements);
2575   return llvm::ConstantDataArray::get(VMContext, Elements);
2576 }
2577 
2578 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a
2579 /// constant array for the given string literal.
2580 llvm::Constant *
2581 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S) {
2582   CharUnits Align = getContext().getAlignOfGlobalVarInChars(S->getType());
2583   if (S->isAscii() || S->isUTF8()) {
2584     SmallString<64> Str(S->getString());
2585 
2586     // Resize the string to the right size, which is indicated by its type.
2587     const ConstantArrayType *CAT = Context.getAsConstantArrayType(S->getType());
2588     Str.resize(CAT->getSize().getZExtValue());
2589     return GetAddrOfConstantString(Str, /*GlobalName*/ 0, Align.getQuantity());
2590   }
2591 
2592   // FIXME: the following does not memoize wide strings.
2593   llvm::Constant *C = GetConstantArrayFromStringLiteral(S);
2594   llvm::GlobalVariable *GV =
2595     new llvm::GlobalVariable(getModule(),C->getType(),
2596                              !LangOpts.WritableStrings,
2597                              llvm::GlobalValue::PrivateLinkage,
2598                              C,".str");
2599 
2600   GV->setAlignment(Align.getQuantity());
2601   GV->setUnnamedAddr(true);
2602   return GV;
2603 }
2604 
2605 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant
2606 /// array for the given ObjCEncodeExpr node.
2607 llvm::Constant *
2608 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) {
2609   std::string Str;
2610   getContext().getObjCEncodingForType(E->getEncodedType(), Str);
2611 
2612   return GetAddrOfConstantCString(Str);
2613 }
2614 
2615 
2616 /// GenerateWritableString -- Creates storage for a string literal.
2617 static llvm::GlobalVariable *GenerateStringLiteral(StringRef str,
2618                                              bool constant,
2619                                              CodeGenModule &CGM,
2620                                              const char *GlobalName,
2621                                              unsigned Alignment) {
2622   // Create Constant for this string literal. Don't add a '\0'.
2623   llvm::Constant *C =
2624       llvm::ConstantDataArray::getString(CGM.getLLVMContext(), str, false);
2625 
2626   // Create a global variable for this string
2627   llvm::GlobalVariable *GV =
2628     new llvm::GlobalVariable(CGM.getModule(), C->getType(), constant,
2629                              llvm::GlobalValue::PrivateLinkage,
2630                              C, GlobalName);
2631   GV->setAlignment(Alignment);
2632   GV->setUnnamedAddr(true);
2633   return GV;
2634 }
2635 
2636 /// GetAddrOfConstantString - Returns a pointer to a character array
2637 /// containing the literal. This contents are exactly that of the
2638 /// given string, i.e. it will not be null terminated automatically;
2639 /// see GetAddrOfConstantCString. Note that whether the result is
2640 /// actually a pointer to an LLVM constant depends on
2641 /// Feature.WriteableStrings.
2642 ///
2643 /// The result has pointer to array type.
2644 llvm::Constant *CodeGenModule::GetAddrOfConstantString(StringRef Str,
2645                                                        const char *GlobalName,
2646                                                        unsigned Alignment) {
2647   // Get the default prefix if a name wasn't specified.
2648   if (!GlobalName)
2649     GlobalName = ".str";
2650 
2651   if (Alignment == 0)
2652     Alignment = getContext().getAlignOfGlobalVarInChars(getContext().CharTy)
2653       .getQuantity();
2654 
2655   // Don't share any string literals if strings aren't constant.
2656   if (LangOpts.WritableStrings)
2657     return GenerateStringLiteral(Str, false, *this, GlobalName, Alignment);
2658 
2659   llvm::StringMapEntry<llvm::GlobalVariable *> &Entry =
2660     ConstantStringMap.GetOrCreateValue(Str);
2661 
2662   if (llvm::GlobalVariable *GV = Entry.getValue()) {
2663     if (Alignment > GV->getAlignment()) {
2664       GV->setAlignment(Alignment);
2665     }
2666     return GV;
2667   }
2668 
2669   // Create a global variable for this.
2670   llvm::GlobalVariable *GV = GenerateStringLiteral(Str, true, *this, GlobalName,
2671                                                    Alignment);
2672   Entry.setValue(GV);
2673   return GV;
2674 }
2675 
2676 /// GetAddrOfConstantCString - Returns a pointer to a character
2677 /// array containing the literal and a terminating '\0'
2678 /// character. The result has pointer to array type.
2679 llvm::Constant *CodeGenModule::GetAddrOfConstantCString(const std::string &Str,
2680                                                         const char *GlobalName,
2681                                                         unsigned Alignment) {
2682   StringRef StrWithNull(Str.c_str(), Str.size() + 1);
2683   return GetAddrOfConstantString(StrWithNull, GlobalName, Alignment);
2684 }
2685 
2686 llvm::Constant *CodeGenModule::GetAddrOfGlobalTemporary(
2687     const MaterializeTemporaryExpr *E, const Expr *Init) {
2688   assert((E->getStorageDuration() == SD_Static ||
2689           E->getStorageDuration() == SD_Thread) && "not a global temporary");
2690   const VarDecl *VD = cast<VarDecl>(E->getExtendingDecl());
2691 
2692   // If we're not materializing a subobject of the temporary, keep the
2693   // cv-qualifiers from the type of the MaterializeTemporaryExpr.
2694   QualType MaterializedType = Init->getType();
2695   if (Init == E->GetTemporaryExpr())
2696     MaterializedType = E->getType();
2697 
2698   llvm::Constant *&Slot = MaterializedGlobalTemporaryMap[E];
2699   if (Slot)
2700     return Slot;
2701 
2702   // FIXME: If an externally-visible declaration extends multiple temporaries,
2703   // we need to give each temporary the same name in every translation unit (and
2704   // we also need to make the temporaries externally-visible).
2705   SmallString<256> Name;
2706   llvm::raw_svector_ostream Out(Name);
2707   getCXXABI().getMangleContext().mangleReferenceTemporary(VD, Out);
2708   Out.flush();
2709 
2710   APValue *Value = 0;
2711   if (E->getStorageDuration() == SD_Static) {
2712     // We might have a cached constant initializer for this temporary. Note
2713     // that this might have a different value from the value computed by
2714     // evaluating the initializer if the surrounding constant expression
2715     // modifies the temporary.
2716     Value = getContext().getMaterializedTemporaryValue(E, false);
2717     if (Value && Value->isUninit())
2718       Value = 0;
2719   }
2720 
2721   // Try evaluating it now, it might have a constant initializer.
2722   Expr::EvalResult EvalResult;
2723   if (!Value && Init->EvaluateAsRValue(EvalResult, getContext()) &&
2724       !EvalResult.hasSideEffects())
2725     Value = &EvalResult.Val;
2726 
2727   llvm::Constant *InitialValue = 0;
2728   bool Constant = false;
2729   llvm::Type *Type;
2730   if (Value) {
2731     // The temporary has a constant initializer, use it.
2732     InitialValue = EmitConstantValue(*Value, MaterializedType, 0);
2733     Constant = isTypeConstant(MaterializedType, /*ExcludeCtor*/Value);
2734     Type = InitialValue->getType();
2735   } else {
2736     // No initializer, the initialization will be provided when we
2737     // initialize the declaration which performed lifetime extension.
2738     Type = getTypes().ConvertTypeForMem(MaterializedType);
2739   }
2740 
2741   // Create a global variable for this lifetime-extended temporary.
2742   llvm::GlobalVariable *GV =
2743     new llvm::GlobalVariable(getModule(), Type, Constant,
2744                              llvm::GlobalValue::PrivateLinkage,
2745                              InitialValue, Name.c_str());
2746   GV->setAlignment(
2747       getContext().getTypeAlignInChars(MaterializedType).getQuantity());
2748   if (VD->getTLSKind())
2749     setTLSMode(GV, *VD);
2750   Slot = GV;
2751   return GV;
2752 }
2753 
2754 /// EmitObjCPropertyImplementations - Emit information for synthesized
2755 /// properties for an implementation.
2756 void CodeGenModule::EmitObjCPropertyImplementations(const
2757                                                     ObjCImplementationDecl *D) {
2758   for (ObjCImplementationDecl::propimpl_iterator
2759          i = D->propimpl_begin(), e = D->propimpl_end(); i != e; ++i) {
2760     ObjCPropertyImplDecl *PID = *i;
2761 
2762     // Dynamic is just for type-checking.
2763     if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) {
2764       ObjCPropertyDecl *PD = PID->getPropertyDecl();
2765 
2766       // Determine which methods need to be implemented, some may have
2767       // been overridden. Note that ::isPropertyAccessor is not the method
2768       // we want, that just indicates if the decl came from a
2769       // property. What we want to know is if the method is defined in
2770       // this implementation.
2771       if (!D->getInstanceMethod(PD->getGetterName()))
2772         CodeGenFunction(*this).GenerateObjCGetter(
2773                                  const_cast<ObjCImplementationDecl *>(D), PID);
2774       if (!PD->isReadOnly() &&
2775           !D->getInstanceMethod(PD->getSetterName()))
2776         CodeGenFunction(*this).GenerateObjCSetter(
2777                                  const_cast<ObjCImplementationDecl *>(D), PID);
2778     }
2779   }
2780 }
2781 
2782 static bool needsDestructMethod(ObjCImplementationDecl *impl) {
2783   const ObjCInterfaceDecl *iface = impl->getClassInterface();
2784   for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin();
2785        ivar; ivar = ivar->getNextIvar())
2786     if (ivar->getType().isDestructedType())
2787       return true;
2788 
2789   return false;
2790 }
2791 
2792 /// EmitObjCIvarInitializations - Emit information for ivar initialization
2793 /// for an implementation.
2794 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) {
2795   // We might need a .cxx_destruct even if we don't have any ivar initializers.
2796   if (needsDestructMethod(D)) {
2797     IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct");
2798     Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
2799     ObjCMethodDecl *DTORMethod =
2800       ObjCMethodDecl::Create(getContext(), D->getLocation(), D->getLocation(),
2801                              cxxSelector, getContext().VoidTy, 0, D,
2802                              /*isInstance=*/true, /*isVariadic=*/false,
2803                           /*isPropertyAccessor=*/true, /*isImplicitlyDeclared=*/true,
2804                              /*isDefined=*/false, ObjCMethodDecl::Required);
2805     D->addInstanceMethod(DTORMethod);
2806     CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false);
2807     D->setHasDestructors(true);
2808   }
2809 
2810   // If the implementation doesn't have any ivar initializers, we don't need
2811   // a .cxx_construct.
2812   if (D->getNumIvarInitializers() == 0)
2813     return;
2814 
2815   IdentifierInfo *II = &getContext().Idents.get(".cxx_construct");
2816   Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
2817   // The constructor returns 'self'.
2818   ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(getContext(),
2819                                                 D->getLocation(),
2820                                                 D->getLocation(),
2821                                                 cxxSelector,
2822                                                 getContext().getObjCIdType(), 0,
2823                                                 D, /*isInstance=*/true,
2824                                                 /*isVariadic=*/false,
2825                                                 /*isPropertyAccessor=*/true,
2826                                                 /*isImplicitlyDeclared=*/true,
2827                                                 /*isDefined=*/false,
2828                                                 ObjCMethodDecl::Required);
2829   D->addInstanceMethod(CTORMethod);
2830   CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true);
2831   D->setHasNonZeroConstructors(true);
2832 }
2833 
2834 /// EmitNamespace - Emit all declarations in a namespace.
2835 void CodeGenModule::EmitNamespace(const NamespaceDecl *ND) {
2836   for (RecordDecl::decl_iterator I = ND->decls_begin(), E = ND->decls_end();
2837        I != E; ++I) {
2838     if (const VarDecl *VD = dyn_cast<VarDecl>(*I))
2839       if (VD->getTemplateSpecializationKind() != TSK_ExplicitSpecialization &&
2840           VD->getTemplateSpecializationKind() != TSK_Undeclared)
2841         continue;
2842     EmitTopLevelDecl(*I);
2843   }
2844 }
2845 
2846 // EmitLinkageSpec - Emit all declarations in a linkage spec.
2847 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) {
2848   if (LSD->getLanguage() != LinkageSpecDecl::lang_c &&
2849       LSD->getLanguage() != LinkageSpecDecl::lang_cxx) {
2850     ErrorUnsupported(LSD, "linkage spec");
2851     return;
2852   }
2853 
2854   for (RecordDecl::decl_iterator I = LSD->decls_begin(), E = LSD->decls_end();
2855        I != E; ++I) {
2856     // Meta-data for ObjC class includes references to implemented methods.
2857     // Generate class's method definitions first.
2858     if (ObjCImplDecl *OID = dyn_cast<ObjCImplDecl>(*I)) {
2859       for (ObjCContainerDecl::method_iterator M = OID->meth_begin(),
2860            MEnd = OID->meth_end();
2861            M != MEnd; ++M)
2862         EmitTopLevelDecl(*M);
2863     }
2864     EmitTopLevelDecl(*I);
2865   }
2866 }
2867 
2868 /// EmitTopLevelDecl - Emit code for a single top level declaration.
2869 void CodeGenModule::EmitTopLevelDecl(Decl *D) {
2870   // Ignore dependent declarations.
2871   if (D->getDeclContext() && D->getDeclContext()->isDependentContext())
2872     return;
2873 
2874   switch (D->getKind()) {
2875   case Decl::CXXConversion:
2876   case Decl::CXXMethod:
2877   case Decl::Function:
2878     // Skip function templates
2879     if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() ||
2880         cast<FunctionDecl>(D)->isLateTemplateParsed())
2881       return;
2882 
2883     EmitGlobal(cast<FunctionDecl>(D));
2884     break;
2885 
2886   case Decl::Var:
2887     // Skip variable templates
2888     if (cast<VarDecl>(D)->getDescribedVarTemplate())
2889       return;
2890   case Decl::VarTemplateSpecialization:
2891     EmitGlobal(cast<VarDecl>(D));
2892     break;
2893 
2894   // Indirect fields from global anonymous structs and unions can be
2895   // ignored; only the actual variable requires IR gen support.
2896   case Decl::IndirectField:
2897     break;
2898 
2899   // C++ Decls
2900   case Decl::Namespace:
2901     EmitNamespace(cast<NamespaceDecl>(D));
2902     break;
2903     // No code generation needed.
2904   case Decl::UsingShadow:
2905   case Decl::Using:
2906   case Decl::ClassTemplate:
2907   case Decl::VarTemplate:
2908   case Decl::VarTemplatePartialSpecialization:
2909   case Decl::FunctionTemplate:
2910   case Decl::TypeAliasTemplate:
2911   case Decl::Block:
2912   case Decl::Empty:
2913     break;
2914   case Decl::NamespaceAlias:
2915     if (CGDebugInfo *DI = getModuleDebugInfo())
2916         DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(*D));
2917     return;
2918   case Decl::UsingDirective: // using namespace X; [C++]
2919     if (CGDebugInfo *DI = getModuleDebugInfo())
2920       DI->EmitUsingDirective(cast<UsingDirectiveDecl>(*D));
2921     return;
2922   case Decl::CXXConstructor:
2923     // Skip function templates
2924     if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() ||
2925         cast<FunctionDecl>(D)->isLateTemplateParsed())
2926       return;
2927 
2928     getCXXABI().EmitCXXConstructors(cast<CXXConstructorDecl>(D));
2929     break;
2930   case Decl::CXXDestructor:
2931     if (cast<FunctionDecl>(D)->isLateTemplateParsed())
2932       return;
2933     getCXXABI().EmitCXXDestructors(cast<CXXDestructorDecl>(D));
2934     break;
2935 
2936   case Decl::StaticAssert:
2937     // Nothing to do.
2938     break;
2939 
2940   // Objective-C Decls
2941 
2942   // Forward declarations, no (immediate) code generation.
2943   case Decl::ObjCInterface:
2944   case Decl::ObjCCategory:
2945     break;
2946 
2947   case Decl::ObjCProtocol: {
2948     ObjCProtocolDecl *Proto = cast<ObjCProtocolDecl>(D);
2949     if (Proto->isThisDeclarationADefinition())
2950       ObjCRuntime->GenerateProtocol(Proto);
2951     break;
2952   }
2953 
2954   case Decl::ObjCCategoryImpl:
2955     // Categories have properties but don't support synthesize so we
2956     // can ignore them here.
2957     ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D));
2958     break;
2959 
2960   case Decl::ObjCImplementation: {
2961     ObjCImplementationDecl *OMD = cast<ObjCImplementationDecl>(D);
2962     EmitObjCPropertyImplementations(OMD);
2963     EmitObjCIvarInitializations(OMD);
2964     ObjCRuntime->GenerateClass(OMD);
2965     // Emit global variable debug information.
2966     if (CGDebugInfo *DI = getModuleDebugInfo())
2967       if (getCodeGenOpts().getDebugInfo() >= CodeGenOptions::LimitedDebugInfo)
2968         DI->getOrCreateInterfaceType(getContext().getObjCInterfaceType(
2969             OMD->getClassInterface()), OMD->getLocation());
2970     break;
2971   }
2972   case Decl::ObjCMethod: {
2973     ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(D);
2974     // If this is not a prototype, emit the body.
2975     if (OMD->getBody())
2976       CodeGenFunction(*this).GenerateObjCMethod(OMD);
2977     break;
2978   }
2979   case Decl::ObjCCompatibleAlias:
2980     ObjCRuntime->RegisterAlias(cast<ObjCCompatibleAliasDecl>(D));
2981     break;
2982 
2983   case Decl::LinkageSpec:
2984     EmitLinkageSpec(cast<LinkageSpecDecl>(D));
2985     break;
2986 
2987   case Decl::FileScopeAsm: {
2988     FileScopeAsmDecl *AD = cast<FileScopeAsmDecl>(D);
2989     StringRef AsmString = AD->getAsmString()->getString();
2990 
2991     const std::string &S = getModule().getModuleInlineAsm();
2992     if (S.empty())
2993       getModule().setModuleInlineAsm(AsmString);
2994     else if (S.end()[-1] == '\n')
2995       getModule().setModuleInlineAsm(S + AsmString.str());
2996     else
2997       getModule().setModuleInlineAsm(S + '\n' + AsmString.str());
2998     break;
2999   }
3000 
3001   case Decl::Import: {
3002     ImportDecl *Import = cast<ImportDecl>(D);
3003 
3004     // Ignore import declarations that come from imported modules.
3005     if (clang::Module *Owner = Import->getOwningModule()) {
3006       if (getLangOpts().CurrentModule.empty() ||
3007           Owner->getTopLevelModule()->Name == getLangOpts().CurrentModule)
3008         break;
3009     }
3010 
3011     ImportedModules.insert(Import->getImportedModule());
3012     break;
3013  }
3014 
3015   default:
3016     // Make sure we handled everything we should, every other kind is a
3017     // non-top-level decl.  FIXME: Would be nice to have an isTopLevelDeclKind
3018     // function. Need to recode Decl::Kind to do that easily.
3019     assert(isa<TypeDecl>(D) && "Unsupported decl kind");
3020   }
3021 }
3022 
3023 /// Turns the given pointer into a constant.
3024 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context,
3025                                           const void *Ptr) {
3026   uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr);
3027   llvm::Type *i64 = llvm::Type::getInt64Ty(Context);
3028   return llvm::ConstantInt::get(i64, PtrInt);
3029 }
3030 
3031 static void EmitGlobalDeclMetadata(CodeGenModule &CGM,
3032                                    llvm::NamedMDNode *&GlobalMetadata,
3033                                    GlobalDecl D,
3034                                    llvm::GlobalValue *Addr) {
3035   if (!GlobalMetadata)
3036     GlobalMetadata =
3037       CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs");
3038 
3039   // TODO: should we report variant information for ctors/dtors?
3040   llvm::Value *Ops[] = {
3041     Addr,
3042     GetPointerConstant(CGM.getLLVMContext(), D.getDecl())
3043   };
3044   GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops));
3045 }
3046 
3047 /// For each function which is declared within an extern "C" region and marked
3048 /// as 'used', but has internal linkage, create an alias from the unmangled
3049 /// name to the mangled name if possible. People expect to be able to refer
3050 /// to such functions with an unmangled name from inline assembly within the
3051 /// same translation unit.
3052 void CodeGenModule::EmitStaticExternCAliases() {
3053   for (StaticExternCMap::iterator I = StaticExternCValues.begin(),
3054                                   E = StaticExternCValues.end();
3055        I != E; ++I) {
3056     IdentifierInfo *Name = I->first;
3057     llvm::GlobalValue *Val = I->second;
3058     if (Val && !getModule().getNamedValue(Name->getName()))
3059       AddUsedGlobal(new llvm::GlobalAlias(Val->getType(), Val->getLinkage(),
3060                                           Name->getName(), Val, &getModule()));
3061   }
3062 }
3063 
3064 /// Emits metadata nodes associating all the global values in the
3065 /// current module with the Decls they came from.  This is useful for
3066 /// projects using IR gen as a subroutine.
3067 ///
3068 /// Since there's currently no way to associate an MDNode directly
3069 /// with an llvm::GlobalValue, we create a global named metadata
3070 /// with the name 'clang.global.decl.ptrs'.
3071 void CodeGenModule::EmitDeclMetadata() {
3072   llvm::NamedMDNode *GlobalMetadata = 0;
3073 
3074   // StaticLocalDeclMap
3075   for (llvm::DenseMap<GlobalDecl,StringRef>::iterator
3076          I = MangledDeclNames.begin(), E = MangledDeclNames.end();
3077        I != E; ++I) {
3078     llvm::GlobalValue *Addr = getModule().getNamedValue(I->second);
3079     EmitGlobalDeclMetadata(*this, GlobalMetadata, I->first, Addr);
3080   }
3081 }
3082 
3083 /// Emits metadata nodes for all the local variables in the current
3084 /// function.
3085 void CodeGenFunction::EmitDeclMetadata() {
3086   if (LocalDeclMap.empty()) return;
3087 
3088   llvm::LLVMContext &Context = getLLVMContext();
3089 
3090   // Find the unique metadata ID for this name.
3091   unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr");
3092 
3093   llvm::NamedMDNode *GlobalMetadata = 0;
3094 
3095   for (llvm::DenseMap<const Decl*, llvm::Value*>::iterator
3096          I = LocalDeclMap.begin(), E = LocalDeclMap.end(); I != E; ++I) {
3097     const Decl *D = I->first;
3098     llvm::Value *Addr = I->second;
3099 
3100     if (llvm::AllocaInst *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) {
3101       llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D);
3102       Alloca->setMetadata(DeclPtrKind, llvm::MDNode::get(Context, DAddr));
3103     } else if (llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>(Addr)) {
3104       GlobalDecl GD = GlobalDecl(cast<VarDecl>(D));
3105       EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV);
3106     }
3107   }
3108 }
3109 
3110 void CodeGenModule::EmitVersionIdentMetadata() {
3111   llvm::NamedMDNode *IdentMetadata =
3112     TheModule.getOrInsertNamedMetadata("llvm.ident");
3113   std::string Version = getClangFullVersion();
3114   llvm::LLVMContext &Ctx = TheModule.getContext();
3115 
3116   llvm::Value *IdentNode[] = {
3117     llvm::MDString::get(Ctx, Version)
3118   };
3119   IdentMetadata->addOperand(llvm::MDNode::get(Ctx, IdentNode));
3120 }
3121 
3122 void CodeGenModule::EmitCoverageFile() {
3123   if (!getCodeGenOpts().CoverageFile.empty()) {
3124     if (llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu")) {
3125       llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov");
3126       llvm::LLVMContext &Ctx = TheModule.getContext();
3127       llvm::MDString *CoverageFile =
3128           llvm::MDString::get(Ctx, getCodeGenOpts().CoverageFile);
3129       for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) {
3130         llvm::MDNode *CU = CUNode->getOperand(i);
3131         llvm::Value *node[] = { CoverageFile, CU };
3132         llvm::MDNode *N = llvm::MDNode::get(Ctx, node);
3133         GCov->addOperand(N);
3134       }
3135     }
3136   }
3137 }
3138 
3139 llvm::Constant *CodeGenModule::EmitUuidofInitializer(StringRef Uuid,
3140                                                      QualType GuidType) {
3141   // Sema has checked that all uuid strings are of the form
3142   // "12345678-1234-1234-1234-1234567890ab".
3143   assert(Uuid.size() == 36);
3144   for (unsigned i = 0; i < 36; ++i) {
3145     if (i == 8 || i == 13 || i == 18 || i == 23) assert(Uuid[i] == '-');
3146     else                                         assert(isHexDigit(Uuid[i]));
3147   }
3148 
3149   const unsigned Field3ValueOffsets[8] = { 19, 21, 24, 26, 28, 30, 32, 34 };
3150 
3151   llvm::Constant *Field3[8];
3152   for (unsigned Idx = 0; Idx < 8; ++Idx)
3153     Field3[Idx] = llvm::ConstantInt::get(
3154         Int8Ty, Uuid.substr(Field3ValueOffsets[Idx], 2), 16);
3155 
3156   llvm::Constant *Fields[4] = {
3157     llvm::ConstantInt::get(Int32Ty, Uuid.substr(0,  8), 16),
3158     llvm::ConstantInt::get(Int16Ty, Uuid.substr(9,  4), 16),
3159     llvm::ConstantInt::get(Int16Ty, Uuid.substr(14, 4), 16),
3160     llvm::ConstantArray::get(llvm::ArrayType::get(Int8Ty, 8), Field3)
3161   };
3162 
3163   return llvm::ConstantStruct::getAnon(Fields);
3164 }
3165