xref: /llvm-project/clang/lib/CodeGen/CodeGenModule.cpp (revision 7246dcc880cb36e47daa120f63585d46f92e2649)
1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This coordinates the per-module state used while generating code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenModule.h"
15 #include "CGBlocks.h"
16 #include "CGCUDARuntime.h"
17 #include "CGCXXABI.h"
18 #include "CGCall.h"
19 #include "CGDebugInfo.h"
20 #include "CGObjCRuntime.h"
21 #include "CGOpenCLRuntime.h"
22 #include "CGOpenMPRuntime.h"
23 #include "CGOpenMPRuntimeNVPTX.h"
24 #include "CodeGenFunction.h"
25 #include "CodeGenPGO.h"
26 #include "CodeGenTBAA.h"
27 #include "CoverageMappingGen.h"
28 #include "TargetInfo.h"
29 #include "clang/AST/ASTContext.h"
30 #include "clang/AST/CharUnits.h"
31 #include "clang/AST/DeclCXX.h"
32 #include "clang/AST/DeclObjC.h"
33 #include "clang/AST/DeclTemplate.h"
34 #include "clang/AST/Mangle.h"
35 #include "clang/AST/RecordLayout.h"
36 #include "clang/AST/RecursiveASTVisitor.h"
37 #include "clang/Basic/Builtins.h"
38 #include "clang/Basic/CharInfo.h"
39 #include "clang/Basic/Diagnostic.h"
40 #include "clang/Basic/Module.h"
41 #include "clang/Basic/SourceManager.h"
42 #include "clang/Basic/TargetInfo.h"
43 #include "clang/Basic/Version.h"
44 #include "clang/Frontend/CodeGenOptions.h"
45 #include "clang/Sema/SemaDiagnostic.h"
46 #include "llvm/ADT/Triple.h"
47 #include "llvm/IR/CallSite.h"
48 #include "llvm/IR/CallingConv.h"
49 #include "llvm/IR/DataLayout.h"
50 #include "llvm/IR/Intrinsics.h"
51 #include "llvm/IR/LLVMContext.h"
52 #include "llvm/IR/Module.h"
53 #include "llvm/ProfileData/InstrProfReader.h"
54 #include "llvm/Support/ConvertUTF.h"
55 #include "llvm/Support/ErrorHandling.h"
56 #include "llvm/Support/MD5.h"
57 
58 using namespace clang;
59 using namespace CodeGen;
60 
61 static const char AnnotationSection[] = "llvm.metadata";
62 
63 static CGCXXABI *createCXXABI(CodeGenModule &CGM) {
64   switch (CGM.getTarget().getCXXABI().getKind()) {
65   case TargetCXXABI::GenericAArch64:
66   case TargetCXXABI::GenericARM:
67   case TargetCXXABI::iOS:
68   case TargetCXXABI::iOS64:
69   case TargetCXXABI::WatchOS:
70   case TargetCXXABI::GenericMIPS:
71   case TargetCXXABI::GenericItanium:
72   case TargetCXXABI::WebAssembly:
73     return CreateItaniumCXXABI(CGM);
74   case TargetCXXABI::Microsoft:
75     return CreateMicrosoftCXXABI(CGM);
76   }
77 
78   llvm_unreachable("invalid C++ ABI kind");
79 }
80 
81 CodeGenModule::CodeGenModule(ASTContext &C, const HeaderSearchOptions &HSO,
82                              const PreprocessorOptions &PPO,
83                              const CodeGenOptions &CGO, llvm::Module &M,
84                              DiagnosticsEngine &diags,
85                              CoverageSourceInfo *CoverageInfo)
86     : Context(C), LangOpts(C.getLangOpts()), HeaderSearchOpts(HSO),
87       PreprocessorOpts(PPO), CodeGenOpts(CGO), TheModule(M), Diags(diags),
88       Target(C.getTargetInfo()), ABI(createCXXABI(*this)),
89       VMContext(M.getContext()), Types(*this), VTables(*this),
90       SanitizerMD(new SanitizerMetadata(*this)) {
91 
92   // Initialize the type cache.
93   llvm::LLVMContext &LLVMContext = M.getContext();
94   VoidTy = llvm::Type::getVoidTy(LLVMContext);
95   Int8Ty = llvm::Type::getInt8Ty(LLVMContext);
96   Int16Ty = llvm::Type::getInt16Ty(LLVMContext);
97   Int32Ty = llvm::Type::getInt32Ty(LLVMContext);
98   Int64Ty = llvm::Type::getInt64Ty(LLVMContext);
99   FloatTy = llvm::Type::getFloatTy(LLVMContext);
100   DoubleTy = llvm::Type::getDoubleTy(LLVMContext);
101   PointerWidthInBits = C.getTargetInfo().getPointerWidth(0);
102   PointerAlignInBytes =
103     C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(0)).getQuantity();
104   SizeSizeInBytes =
105     C.toCharUnitsFromBits(C.getTargetInfo().getMaxPointerWidth()).getQuantity();
106   IntAlignInBytes =
107     C.toCharUnitsFromBits(C.getTargetInfo().getIntAlign()).getQuantity();
108   IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth());
109   IntPtrTy = llvm::IntegerType::get(LLVMContext,
110     C.getTargetInfo().getMaxPointerWidth());
111   Int8PtrTy = Int8Ty->getPointerTo(0);
112   Int8PtrPtrTy = Int8PtrTy->getPointerTo(0);
113 
114   RuntimeCC = getTargetCodeGenInfo().getABIInfo().getRuntimeCC();
115   BuiltinCC = getTargetCodeGenInfo().getABIInfo().getBuiltinCC();
116 
117   if (LangOpts.ObjC1)
118     createObjCRuntime();
119   if (LangOpts.OpenCL)
120     createOpenCLRuntime();
121   if (LangOpts.OpenMP)
122     createOpenMPRuntime();
123   if (LangOpts.CUDA)
124     createCUDARuntime();
125 
126   // Enable TBAA unless it's suppressed. ThreadSanitizer needs TBAA even at O0.
127   if (LangOpts.Sanitize.has(SanitizerKind::Thread) ||
128       (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0))
129     TBAA.reset(new CodeGenTBAA(Context, VMContext, CodeGenOpts, getLangOpts(),
130                                getCXXABI().getMangleContext()));
131 
132   // If debug info or coverage generation is enabled, create the CGDebugInfo
133   // object.
134   if (CodeGenOpts.getDebugInfo() != codegenoptions::NoDebugInfo ||
135       CodeGenOpts.EmitGcovArcs || CodeGenOpts.EmitGcovNotes)
136     DebugInfo.reset(new CGDebugInfo(*this));
137 
138   Block.GlobalUniqueCount = 0;
139 
140   if (C.getLangOpts().ObjC1)
141     ObjCData.reset(new ObjCEntrypoints());
142 
143   if (CodeGenOpts.hasProfileClangUse()) {
144     auto ReaderOrErr = llvm::IndexedInstrProfReader::create(
145         CodeGenOpts.ProfileInstrumentUsePath);
146     if (auto E = ReaderOrErr.takeError()) {
147       unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
148                                               "Could not read profile %0: %1");
149       llvm::handleAllErrors(std::move(E), [&](const llvm::ErrorInfoBase &EI) {
150         getDiags().Report(DiagID) << CodeGenOpts.ProfileInstrumentUsePath
151                                   << EI.message();
152       });
153     } else
154       PGOReader = std::move(ReaderOrErr.get());
155   }
156 
157   // If coverage mapping generation is enabled, create the
158   // CoverageMappingModuleGen object.
159   if (CodeGenOpts.CoverageMapping)
160     CoverageMapping.reset(new CoverageMappingModuleGen(*this, *CoverageInfo));
161 }
162 
163 CodeGenModule::~CodeGenModule() {}
164 
165 void CodeGenModule::createObjCRuntime() {
166   // This is just isGNUFamily(), but we want to force implementors of
167   // new ABIs to decide how best to do this.
168   switch (LangOpts.ObjCRuntime.getKind()) {
169   case ObjCRuntime::GNUstep:
170   case ObjCRuntime::GCC:
171   case ObjCRuntime::ObjFW:
172     ObjCRuntime.reset(CreateGNUObjCRuntime(*this));
173     return;
174 
175   case ObjCRuntime::FragileMacOSX:
176   case ObjCRuntime::MacOSX:
177   case ObjCRuntime::iOS:
178   case ObjCRuntime::WatchOS:
179     ObjCRuntime.reset(CreateMacObjCRuntime(*this));
180     return;
181   }
182   llvm_unreachable("bad runtime kind");
183 }
184 
185 void CodeGenModule::createOpenCLRuntime() {
186   OpenCLRuntime.reset(new CGOpenCLRuntime(*this));
187 }
188 
189 void CodeGenModule::createOpenMPRuntime() {
190   // Select a specialized code generation class based on the target, if any.
191   // If it does not exist use the default implementation.
192   switch (getTriple().getArch()) {
193   case llvm::Triple::nvptx:
194   case llvm::Triple::nvptx64:
195     assert(getLangOpts().OpenMPIsDevice &&
196            "OpenMP NVPTX is only prepared to deal with device code.");
197     OpenMPRuntime.reset(new CGOpenMPRuntimeNVPTX(*this));
198     break;
199   default:
200     OpenMPRuntime.reset(new CGOpenMPRuntime(*this));
201     break;
202   }
203 }
204 
205 void CodeGenModule::createCUDARuntime() {
206   CUDARuntime.reset(CreateNVCUDARuntime(*this));
207 }
208 
209 void CodeGenModule::addReplacement(StringRef Name, llvm::Constant *C) {
210   Replacements[Name] = C;
211 }
212 
213 void CodeGenModule::applyReplacements() {
214   for (auto &I : Replacements) {
215     StringRef MangledName = I.first();
216     llvm::Constant *Replacement = I.second;
217     llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
218     if (!Entry)
219       continue;
220     auto *OldF = cast<llvm::Function>(Entry);
221     auto *NewF = dyn_cast<llvm::Function>(Replacement);
222     if (!NewF) {
223       if (auto *Alias = dyn_cast<llvm::GlobalAlias>(Replacement)) {
224         NewF = dyn_cast<llvm::Function>(Alias->getAliasee());
225       } else {
226         auto *CE = cast<llvm::ConstantExpr>(Replacement);
227         assert(CE->getOpcode() == llvm::Instruction::BitCast ||
228                CE->getOpcode() == llvm::Instruction::GetElementPtr);
229         NewF = dyn_cast<llvm::Function>(CE->getOperand(0));
230       }
231     }
232 
233     // Replace old with new, but keep the old order.
234     OldF->replaceAllUsesWith(Replacement);
235     if (NewF) {
236       NewF->removeFromParent();
237       OldF->getParent()->getFunctionList().insertAfter(OldF->getIterator(),
238                                                        NewF);
239     }
240     OldF->eraseFromParent();
241   }
242 }
243 
244 void CodeGenModule::addGlobalValReplacement(llvm::GlobalValue *GV, llvm::Constant *C) {
245   GlobalValReplacements.push_back(std::make_pair(GV, C));
246 }
247 
248 void CodeGenModule::applyGlobalValReplacements() {
249   for (auto &I : GlobalValReplacements) {
250     llvm::GlobalValue *GV = I.first;
251     llvm::Constant *C = I.second;
252 
253     GV->replaceAllUsesWith(C);
254     GV->eraseFromParent();
255   }
256 }
257 
258 // This is only used in aliases that we created and we know they have a
259 // linear structure.
260 static const llvm::GlobalObject *getAliasedGlobal(
261     const llvm::GlobalIndirectSymbol &GIS) {
262   llvm::SmallPtrSet<const llvm::GlobalIndirectSymbol*, 4> Visited;
263   const llvm::Constant *C = &GIS;
264   for (;;) {
265     C = C->stripPointerCasts();
266     if (auto *GO = dyn_cast<llvm::GlobalObject>(C))
267       return GO;
268     // stripPointerCasts will not walk over weak aliases.
269     auto *GIS2 = dyn_cast<llvm::GlobalIndirectSymbol>(C);
270     if (!GIS2)
271       return nullptr;
272     if (!Visited.insert(GIS2).second)
273       return nullptr;
274     C = GIS2->getIndirectSymbol();
275   }
276 }
277 
278 void CodeGenModule::checkAliases() {
279   // Check if the constructed aliases are well formed. It is really unfortunate
280   // that we have to do this in CodeGen, but we only construct mangled names
281   // and aliases during codegen.
282   bool Error = false;
283   DiagnosticsEngine &Diags = getDiags();
284   for (const GlobalDecl &GD : Aliases) {
285     const auto *D = cast<ValueDecl>(GD.getDecl());
286     SourceLocation Location;
287     bool IsIFunc = D->hasAttr<IFuncAttr>();
288     if (const Attr *A = D->getDefiningAttr())
289       Location = A->getLocation();
290     else
291       llvm_unreachable("Not an alias or ifunc?");
292     StringRef MangledName = getMangledName(GD);
293     llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
294     auto *Alias  = cast<llvm::GlobalIndirectSymbol>(Entry);
295     const llvm::GlobalValue *GV = getAliasedGlobal(*Alias);
296     if (!GV) {
297       Error = true;
298       Diags.Report(Location, diag::err_cyclic_alias) << IsIFunc;
299     } else if (GV->isDeclaration()) {
300       Error = true;
301       Diags.Report(Location, diag::err_alias_to_undefined)
302           << IsIFunc << IsIFunc;
303     } else if (IsIFunc) {
304       // Check resolver function type.
305       llvm::FunctionType *FTy = dyn_cast<llvm::FunctionType>(
306           GV->getType()->getPointerElementType());
307       assert(FTy);
308       if (!FTy->getReturnType()->isPointerTy())
309         Diags.Report(Location, diag::err_ifunc_resolver_return);
310       if (FTy->getNumParams())
311         Diags.Report(Location, diag::err_ifunc_resolver_params);
312     }
313 
314     llvm::Constant *Aliasee = Alias->getIndirectSymbol();
315     llvm::GlobalValue *AliaseeGV;
316     if (auto CE = dyn_cast<llvm::ConstantExpr>(Aliasee))
317       AliaseeGV = cast<llvm::GlobalValue>(CE->getOperand(0));
318     else
319       AliaseeGV = cast<llvm::GlobalValue>(Aliasee);
320 
321     if (const SectionAttr *SA = D->getAttr<SectionAttr>()) {
322       StringRef AliasSection = SA->getName();
323       if (AliasSection != AliaseeGV->getSection())
324         Diags.Report(SA->getLocation(), diag::warn_alias_with_section)
325             << AliasSection << IsIFunc << IsIFunc;
326     }
327 
328     // We have to handle alias to weak aliases in here. LLVM itself disallows
329     // this since the object semantics would not match the IL one. For
330     // compatibility with gcc we implement it by just pointing the alias
331     // to its aliasee's aliasee. We also warn, since the user is probably
332     // expecting the link to be weak.
333     if (auto GA = dyn_cast<llvm::GlobalIndirectSymbol>(AliaseeGV)) {
334       if (GA->isInterposable()) {
335         Diags.Report(Location, diag::warn_alias_to_weak_alias)
336             << GV->getName() << GA->getName() << IsIFunc;
337         Aliasee = llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(
338             GA->getIndirectSymbol(), Alias->getType());
339         Alias->setIndirectSymbol(Aliasee);
340       }
341     }
342   }
343   if (!Error)
344     return;
345 
346   for (const GlobalDecl &GD : Aliases) {
347     StringRef MangledName = getMangledName(GD);
348     llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
349     auto *Alias = dyn_cast<llvm::GlobalIndirectSymbol>(Entry);
350     Alias->replaceAllUsesWith(llvm::UndefValue::get(Alias->getType()));
351     Alias->eraseFromParent();
352   }
353 }
354 
355 void CodeGenModule::clear() {
356   DeferredDeclsToEmit.clear();
357   if (OpenMPRuntime)
358     OpenMPRuntime->clear();
359 }
360 
361 void InstrProfStats::reportDiagnostics(DiagnosticsEngine &Diags,
362                                        StringRef MainFile) {
363   if (!hasDiagnostics())
364     return;
365   if (VisitedInMainFile > 0 && VisitedInMainFile == MissingInMainFile) {
366     if (MainFile.empty())
367       MainFile = "<stdin>";
368     Diags.Report(diag::warn_profile_data_unprofiled) << MainFile;
369   } else
370     Diags.Report(diag::warn_profile_data_out_of_date) << Visited << Missing
371                                                       << Mismatched;
372 }
373 
374 void CodeGenModule::Release() {
375   EmitDeferred();
376   applyGlobalValReplacements();
377   applyReplacements();
378   checkAliases();
379   EmitCXXGlobalInitFunc();
380   EmitCXXGlobalDtorFunc();
381   EmitCXXThreadLocalInitFunc();
382   if (ObjCRuntime)
383     if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction())
384       AddGlobalCtor(ObjCInitFunction);
385   if (Context.getLangOpts().CUDA && !Context.getLangOpts().CUDAIsDevice &&
386       CUDARuntime) {
387     if (llvm::Function *CudaCtorFunction = CUDARuntime->makeModuleCtorFunction())
388       AddGlobalCtor(CudaCtorFunction);
389     if (llvm::Function *CudaDtorFunction = CUDARuntime->makeModuleDtorFunction())
390       AddGlobalDtor(CudaDtorFunction);
391   }
392   if (OpenMPRuntime)
393     if (llvm::Function *OpenMPRegistrationFunction =
394             OpenMPRuntime->emitRegistrationFunction())
395       AddGlobalCtor(OpenMPRegistrationFunction, 0);
396   if (PGOReader) {
397     getModule().setProfileSummary(PGOReader->getSummary().getMD(VMContext));
398     if (PGOStats.hasDiagnostics())
399       PGOStats.reportDiagnostics(getDiags(), getCodeGenOpts().MainFileName);
400   }
401   EmitCtorList(GlobalCtors, "llvm.global_ctors");
402   EmitCtorList(GlobalDtors, "llvm.global_dtors");
403   EmitGlobalAnnotations();
404   EmitStaticExternCAliases();
405   EmitDeferredUnusedCoverageMappings();
406   if (CoverageMapping)
407     CoverageMapping->emit();
408   if (CodeGenOpts.SanitizeCfiCrossDso)
409     CodeGenFunction(*this).EmitCfiCheckFail();
410   emitLLVMUsed();
411   if (SanStats)
412     SanStats->finish();
413 
414   if (CodeGenOpts.Autolink &&
415       (Context.getLangOpts().Modules || !LinkerOptionsMetadata.empty())) {
416     EmitModuleLinkOptions();
417   }
418   if (CodeGenOpts.DwarfVersion) {
419     // We actually want the latest version when there are conflicts.
420     // We can change from Warning to Latest if such mode is supported.
421     getModule().addModuleFlag(llvm::Module::Warning, "Dwarf Version",
422                               CodeGenOpts.DwarfVersion);
423   }
424   if (CodeGenOpts.EmitCodeView) {
425     // Indicate that we want CodeView in the metadata.
426     getModule().addModuleFlag(llvm::Module::Warning, "CodeView", 1);
427   }
428   if (CodeGenOpts.OptimizationLevel > 0 && CodeGenOpts.StrictVTablePointers) {
429     // We don't support LTO with 2 with different StrictVTablePointers
430     // FIXME: we could support it by stripping all the information introduced
431     // by StrictVTablePointers.
432 
433     getModule().addModuleFlag(llvm::Module::Error, "StrictVTablePointers",1);
434 
435     llvm::Metadata *Ops[2] = {
436               llvm::MDString::get(VMContext, "StrictVTablePointers"),
437               llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
438                   llvm::Type::getInt32Ty(VMContext), 1))};
439 
440     getModule().addModuleFlag(llvm::Module::Require,
441                               "StrictVTablePointersRequirement",
442                               llvm::MDNode::get(VMContext, Ops));
443   }
444   if (DebugInfo)
445     // We support a single version in the linked module. The LLVM
446     // parser will drop debug info with a different version number
447     // (and warn about it, too).
448     getModule().addModuleFlag(llvm::Module::Warning, "Debug Info Version",
449                               llvm::DEBUG_METADATA_VERSION);
450 
451   // We need to record the widths of enums and wchar_t, so that we can generate
452   // the correct build attributes in the ARM backend.
453   llvm::Triple::ArchType Arch = Context.getTargetInfo().getTriple().getArch();
454   if (   Arch == llvm::Triple::arm
455       || Arch == llvm::Triple::armeb
456       || Arch == llvm::Triple::thumb
457       || Arch == llvm::Triple::thumbeb) {
458     // Width of wchar_t in bytes
459     uint64_t WCharWidth =
460         Context.getTypeSizeInChars(Context.getWideCharType()).getQuantity();
461     getModule().addModuleFlag(llvm::Module::Error, "wchar_size", WCharWidth);
462 
463     // The minimum width of an enum in bytes
464     uint64_t EnumWidth = Context.getLangOpts().ShortEnums ? 1 : 4;
465     getModule().addModuleFlag(llvm::Module::Error, "min_enum_size", EnumWidth);
466   }
467 
468   if (CodeGenOpts.SanitizeCfiCrossDso) {
469     // Indicate that we want cross-DSO control flow integrity checks.
470     getModule().addModuleFlag(llvm::Module::Override, "Cross-DSO CFI", 1);
471   }
472 
473   if (LangOpts.CUDAIsDevice && getTriple().isNVPTX()) {
474     // Indicate whether __nvvm_reflect should be configured to flush denormal
475     // floating point values to 0.  (This corresponds to its "__CUDA_FTZ"
476     // property.)
477     getModule().addModuleFlag(llvm::Module::Override, "nvvm-reflect-ftz",
478                               LangOpts.CUDADeviceFlushDenormalsToZero ? 1 : 0);
479   }
480 
481   if (uint32_t PLevel = Context.getLangOpts().PICLevel) {
482     assert(PLevel < 3 && "Invalid PIC Level");
483     getModule().setPICLevel(static_cast<llvm::PICLevel::Level>(PLevel));
484     if (Context.getLangOpts().PIE)
485       getModule().setPIELevel(static_cast<llvm::PIELevel::Level>(PLevel));
486   }
487 
488   SimplifyPersonality();
489 
490   if (getCodeGenOpts().EmitDeclMetadata)
491     EmitDeclMetadata();
492 
493   if (getCodeGenOpts().EmitGcovArcs || getCodeGenOpts().EmitGcovNotes)
494     EmitCoverageFile();
495 
496   if (DebugInfo)
497     DebugInfo->finalize();
498 
499   EmitVersionIdentMetadata();
500 
501   EmitTargetMetadata();
502 
503   // Emit any deferred diagnostics gathered during codegen.  We didn't emit them
504   // when we first discovered them because that would have halted codegen,
505   // preventing us from gathering other deferred diags.
506   for (const PartialDiagnosticAt &DiagAt : DeferredDiags) {
507     SourceLocation Loc = DiagAt.first;
508     const PartialDiagnostic &PD = DiagAt.second;
509     DiagnosticBuilder Builder(getDiags().Report(Loc, PD.getDiagID()));
510     PD.Emit(Builder);
511   }
512 }
513 
514 void CodeGenModule::UpdateCompletedType(const TagDecl *TD) {
515   // Make sure that this type is translated.
516   Types.UpdateCompletedType(TD);
517 }
518 
519 void CodeGenModule::RefreshTypeCacheForClass(const CXXRecordDecl *RD) {
520   // Make sure that this type is translated.
521   Types.RefreshTypeCacheForClass(RD);
522 }
523 
524 llvm::MDNode *CodeGenModule::getTBAAInfo(QualType QTy) {
525   if (!TBAA)
526     return nullptr;
527   return TBAA->getTBAAInfo(QTy);
528 }
529 
530 llvm::MDNode *CodeGenModule::getTBAAInfoForVTablePtr() {
531   if (!TBAA)
532     return nullptr;
533   return TBAA->getTBAAInfoForVTablePtr();
534 }
535 
536 llvm::MDNode *CodeGenModule::getTBAAStructInfo(QualType QTy) {
537   if (!TBAA)
538     return nullptr;
539   return TBAA->getTBAAStructInfo(QTy);
540 }
541 
542 llvm::MDNode *CodeGenModule::getTBAAStructTagInfo(QualType BaseTy,
543                                                   llvm::MDNode *AccessN,
544                                                   uint64_t O) {
545   if (!TBAA)
546     return nullptr;
547   return TBAA->getTBAAStructTagInfo(BaseTy, AccessN, O);
548 }
549 
550 /// Decorate the instruction with a TBAA tag. For both scalar TBAA
551 /// and struct-path aware TBAA, the tag has the same format:
552 /// base type, access type and offset.
553 /// When ConvertTypeToTag is true, we create a tag based on the scalar type.
554 void CodeGenModule::DecorateInstructionWithTBAA(llvm::Instruction *Inst,
555                                                 llvm::MDNode *TBAAInfo,
556                                                 bool ConvertTypeToTag) {
557   if (ConvertTypeToTag && TBAA)
558     Inst->setMetadata(llvm::LLVMContext::MD_tbaa,
559                       TBAA->getTBAAScalarTagInfo(TBAAInfo));
560   else
561     Inst->setMetadata(llvm::LLVMContext::MD_tbaa, TBAAInfo);
562 }
563 
564 void CodeGenModule::DecorateInstructionWithInvariantGroup(
565     llvm::Instruction *I, const CXXRecordDecl *RD) {
566   llvm::Metadata *MD = CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0));
567   auto *MetaDataNode = dyn_cast<llvm::MDNode>(MD);
568   // Check if we have to wrap MDString in MDNode.
569   if (!MetaDataNode)
570     MetaDataNode = llvm::MDNode::get(getLLVMContext(), MD);
571   I->setMetadata(llvm::LLVMContext::MD_invariant_group, MetaDataNode);
572 }
573 
574 void CodeGenModule::Error(SourceLocation loc, StringRef message) {
575   unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, "%0");
576   getDiags().Report(Context.getFullLoc(loc), diagID) << message;
577 }
578 
579 /// ErrorUnsupported - Print out an error that codegen doesn't support the
580 /// specified stmt yet.
581 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type) {
582   unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
583                                                "cannot compile this %0 yet");
584   std::string Msg = Type;
585   getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID)
586     << Msg << S->getSourceRange();
587 }
588 
589 /// ErrorUnsupported - Print out an error that codegen doesn't support the
590 /// specified decl yet.
591 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type) {
592   unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
593                                                "cannot compile this %0 yet");
594   std::string Msg = Type;
595   getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg;
596 }
597 
598 llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) {
599   return llvm::ConstantInt::get(SizeTy, size.getQuantity());
600 }
601 
602 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV,
603                                         const NamedDecl *D) const {
604   // Internal definitions always have default visibility.
605   if (GV->hasLocalLinkage()) {
606     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
607     return;
608   }
609 
610   // Set visibility for definitions.
611   LinkageInfo LV = D->getLinkageAndVisibility();
612   if (LV.isVisibilityExplicit() || !GV->hasAvailableExternallyLinkage())
613     GV->setVisibility(GetLLVMVisibility(LV.getVisibility()));
614 }
615 
616 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(StringRef S) {
617   return llvm::StringSwitch<llvm::GlobalVariable::ThreadLocalMode>(S)
618       .Case("global-dynamic", llvm::GlobalVariable::GeneralDynamicTLSModel)
619       .Case("local-dynamic", llvm::GlobalVariable::LocalDynamicTLSModel)
620       .Case("initial-exec", llvm::GlobalVariable::InitialExecTLSModel)
621       .Case("local-exec", llvm::GlobalVariable::LocalExecTLSModel);
622 }
623 
624 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(
625     CodeGenOptions::TLSModel M) {
626   switch (M) {
627   case CodeGenOptions::GeneralDynamicTLSModel:
628     return llvm::GlobalVariable::GeneralDynamicTLSModel;
629   case CodeGenOptions::LocalDynamicTLSModel:
630     return llvm::GlobalVariable::LocalDynamicTLSModel;
631   case CodeGenOptions::InitialExecTLSModel:
632     return llvm::GlobalVariable::InitialExecTLSModel;
633   case CodeGenOptions::LocalExecTLSModel:
634     return llvm::GlobalVariable::LocalExecTLSModel;
635   }
636   llvm_unreachable("Invalid TLS model!");
637 }
638 
639 void CodeGenModule::setTLSMode(llvm::GlobalValue *GV, const VarDecl &D) const {
640   assert(D.getTLSKind() && "setting TLS mode on non-TLS var!");
641 
642   llvm::GlobalValue::ThreadLocalMode TLM;
643   TLM = GetLLVMTLSModel(CodeGenOpts.getDefaultTLSModel());
644 
645   // Override the TLS model if it is explicitly specified.
646   if (const TLSModelAttr *Attr = D.getAttr<TLSModelAttr>()) {
647     TLM = GetLLVMTLSModel(Attr->getModel());
648   }
649 
650   GV->setThreadLocalMode(TLM);
651 }
652 
653 StringRef CodeGenModule::getMangledName(GlobalDecl GD) {
654   GlobalDecl CanonicalGD = GD.getCanonicalDecl();
655 
656   // Some ABIs don't have constructor variants.  Make sure that base and
657   // complete constructors get mangled the same.
658   if (const auto *CD = dyn_cast<CXXConstructorDecl>(CanonicalGD.getDecl())) {
659     if (!getTarget().getCXXABI().hasConstructorVariants()) {
660       CXXCtorType OrigCtorType = GD.getCtorType();
661       assert(OrigCtorType == Ctor_Base || OrigCtorType == Ctor_Complete);
662       if (OrigCtorType == Ctor_Base)
663         CanonicalGD = GlobalDecl(CD, Ctor_Complete);
664     }
665   }
666 
667   StringRef &FoundStr = MangledDeclNames[CanonicalGD];
668   if (!FoundStr.empty())
669     return FoundStr;
670 
671   const auto *ND = cast<NamedDecl>(GD.getDecl());
672   SmallString<256> Buffer;
673   StringRef Str;
674   if (getCXXABI().getMangleContext().shouldMangleDeclName(ND)) {
675     llvm::raw_svector_ostream Out(Buffer);
676     if (const auto *D = dyn_cast<CXXConstructorDecl>(ND))
677       getCXXABI().getMangleContext().mangleCXXCtor(D, GD.getCtorType(), Out);
678     else if (const auto *D = dyn_cast<CXXDestructorDecl>(ND))
679       getCXXABI().getMangleContext().mangleCXXDtor(D, GD.getDtorType(), Out);
680     else
681       getCXXABI().getMangleContext().mangleName(ND, Out);
682     Str = Out.str();
683   } else {
684     IdentifierInfo *II = ND->getIdentifier();
685     assert(II && "Attempt to mangle unnamed decl.");
686     Str = II->getName();
687   }
688 
689   // Keep the first result in the case of a mangling collision.
690   auto Result = Manglings.insert(std::make_pair(Str, GD));
691   return FoundStr = Result.first->first();
692 }
693 
694 StringRef CodeGenModule::getBlockMangledName(GlobalDecl GD,
695                                              const BlockDecl *BD) {
696   MangleContext &MangleCtx = getCXXABI().getMangleContext();
697   const Decl *D = GD.getDecl();
698 
699   SmallString<256> Buffer;
700   llvm::raw_svector_ostream Out(Buffer);
701   if (!D)
702     MangleCtx.mangleGlobalBlock(BD,
703       dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()), Out);
704   else if (const auto *CD = dyn_cast<CXXConstructorDecl>(D))
705     MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out);
706   else if (const auto *DD = dyn_cast<CXXDestructorDecl>(D))
707     MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out);
708   else
709     MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out);
710 
711   auto Result = Manglings.insert(std::make_pair(Out.str(), BD));
712   return Result.first->first();
713 }
714 
715 llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) {
716   return getModule().getNamedValue(Name);
717 }
718 
719 /// AddGlobalCtor - Add a function to the list that will be called before
720 /// main() runs.
721 void CodeGenModule::AddGlobalCtor(llvm::Function *Ctor, int Priority,
722                                   llvm::Constant *AssociatedData) {
723   // FIXME: Type coercion of void()* types.
724   GlobalCtors.push_back(Structor(Priority, Ctor, AssociatedData));
725 }
726 
727 /// AddGlobalDtor - Add a function to the list that will be called
728 /// when the module is unloaded.
729 void CodeGenModule::AddGlobalDtor(llvm::Function *Dtor, int Priority) {
730   // FIXME: Type coercion of void()* types.
731   GlobalDtors.push_back(Structor(Priority, Dtor, nullptr));
732 }
733 
734 void CodeGenModule::EmitCtorList(const CtorList &Fns, const char *GlobalName) {
735   // Ctor function type is void()*.
736   llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false);
737   llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy);
738 
739   // Get the type of a ctor entry, { i32, void ()*, i8* }.
740   llvm::StructType *CtorStructTy = llvm::StructType::get(
741       Int32Ty, llvm::PointerType::getUnqual(CtorFTy), VoidPtrTy, nullptr);
742 
743   // Construct the constructor and destructor arrays.
744   SmallVector<llvm::Constant *, 8> Ctors;
745   for (const auto &I : Fns) {
746     llvm::Constant *S[] = {
747         llvm::ConstantInt::get(Int32Ty, I.Priority, false),
748         llvm::ConstantExpr::getBitCast(I.Initializer, CtorPFTy),
749         (I.AssociatedData
750              ? llvm::ConstantExpr::getBitCast(I.AssociatedData, VoidPtrTy)
751              : llvm::Constant::getNullValue(VoidPtrTy))};
752     Ctors.push_back(llvm::ConstantStruct::get(CtorStructTy, S));
753   }
754 
755   if (!Ctors.empty()) {
756     llvm::ArrayType *AT = llvm::ArrayType::get(CtorStructTy, Ctors.size());
757     new llvm::GlobalVariable(TheModule, AT, false,
758                              llvm::GlobalValue::AppendingLinkage,
759                              llvm::ConstantArray::get(AT, Ctors),
760                              GlobalName);
761   }
762 }
763 
764 llvm::GlobalValue::LinkageTypes
765 CodeGenModule::getFunctionLinkage(GlobalDecl GD) {
766   const auto *D = cast<FunctionDecl>(GD.getDecl());
767 
768   GVALinkage Linkage = getContext().GetGVALinkageForFunction(D);
769 
770   if (isa<CXXDestructorDecl>(D) &&
771       getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D),
772                                          GD.getDtorType())) {
773     // Destructor variants in the Microsoft C++ ABI are always internal or
774     // linkonce_odr thunks emitted on an as-needed basis.
775     return Linkage == GVA_Internal ? llvm::GlobalValue::InternalLinkage
776                                    : llvm::GlobalValue::LinkOnceODRLinkage;
777   }
778 
779   if (isa<CXXConstructorDecl>(D) &&
780       cast<CXXConstructorDecl>(D)->isInheritingConstructor() &&
781       Context.getTargetInfo().getCXXABI().isMicrosoft()) {
782     // Our approach to inheriting constructors is fundamentally different from
783     // that used by the MS ABI, so keep our inheriting constructor thunks
784     // internal rather than trying to pick an unambiguous mangling for them.
785     return llvm::GlobalValue::InternalLinkage;
786   }
787 
788   return getLLVMLinkageForDeclarator(D, Linkage, /*isConstantVariable=*/false);
789 }
790 
791 void CodeGenModule::setFunctionDLLStorageClass(GlobalDecl GD, llvm::Function *F) {
792   const auto *FD = cast<FunctionDecl>(GD.getDecl());
793 
794   if (const auto *Dtor = dyn_cast_or_null<CXXDestructorDecl>(FD)) {
795     if (getCXXABI().useThunkForDtorVariant(Dtor, GD.getDtorType())) {
796       // Don't dllexport/import destructor thunks.
797       F->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
798       return;
799     }
800   }
801 
802   if (FD->hasAttr<DLLImportAttr>())
803     F->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass);
804   else if (FD->hasAttr<DLLExportAttr>())
805     F->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass);
806   else
807     F->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass);
808 }
809 
810 llvm::ConstantInt *CodeGenModule::CreateCrossDsoCfiTypeId(llvm::Metadata *MD) {
811   llvm::MDString *MDS = dyn_cast<llvm::MDString>(MD);
812   if (!MDS) return nullptr;
813 
814   llvm::MD5 md5;
815   llvm::MD5::MD5Result result;
816   md5.update(MDS->getString());
817   md5.final(result);
818   uint64_t id = 0;
819   for (int i = 0; i < 8; ++i)
820     id |= static_cast<uint64_t>(result[i]) << (i * 8);
821   return llvm::ConstantInt::get(Int64Ty, id);
822 }
823 
824 void CodeGenModule::setFunctionDefinitionAttributes(const FunctionDecl *D,
825                                                     llvm::Function *F) {
826   setNonAliasAttributes(D, F);
827 }
828 
829 void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D,
830                                               const CGFunctionInfo &Info,
831                                               llvm::Function *F) {
832   unsigned CallingConv;
833   AttributeListType AttributeList;
834   ConstructAttributeList(F->getName(), Info, D, AttributeList, CallingConv,
835                          false);
836   F->setAttributes(llvm::AttributeSet::get(getLLVMContext(), AttributeList));
837   F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv));
838 }
839 
840 /// Determines whether the language options require us to model
841 /// unwind exceptions.  We treat -fexceptions as mandating this
842 /// except under the fragile ObjC ABI with only ObjC exceptions
843 /// enabled.  This means, for example, that C with -fexceptions
844 /// enables this.
845 static bool hasUnwindExceptions(const LangOptions &LangOpts) {
846   // If exceptions are completely disabled, obviously this is false.
847   if (!LangOpts.Exceptions) return false;
848 
849   // If C++ exceptions are enabled, this is true.
850   if (LangOpts.CXXExceptions) return true;
851 
852   // If ObjC exceptions are enabled, this depends on the ABI.
853   if (LangOpts.ObjCExceptions) {
854     return LangOpts.ObjCRuntime.hasUnwindExceptions();
855   }
856 
857   return true;
858 }
859 
860 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D,
861                                                            llvm::Function *F) {
862   llvm::AttrBuilder B;
863 
864   if (CodeGenOpts.UnwindTables)
865     B.addAttribute(llvm::Attribute::UWTable);
866 
867   if (!hasUnwindExceptions(LangOpts))
868     B.addAttribute(llvm::Attribute::NoUnwind);
869 
870   if (LangOpts.getStackProtector() == LangOptions::SSPOn)
871     B.addAttribute(llvm::Attribute::StackProtect);
872   else if (LangOpts.getStackProtector() == LangOptions::SSPStrong)
873     B.addAttribute(llvm::Attribute::StackProtectStrong);
874   else if (LangOpts.getStackProtector() == LangOptions::SSPReq)
875     B.addAttribute(llvm::Attribute::StackProtectReq);
876 
877   if (!D) {
878     F->addAttributes(llvm::AttributeSet::FunctionIndex,
879                      llvm::AttributeSet::get(
880                          F->getContext(),
881                          llvm::AttributeSet::FunctionIndex, B));
882     return;
883   }
884 
885   if (D->hasAttr<NakedAttr>()) {
886     // Naked implies noinline: we should not be inlining such functions.
887     B.addAttribute(llvm::Attribute::Naked);
888     B.addAttribute(llvm::Attribute::NoInline);
889   } else if (D->hasAttr<NoDuplicateAttr>()) {
890     B.addAttribute(llvm::Attribute::NoDuplicate);
891   } else if (D->hasAttr<NoInlineAttr>()) {
892     B.addAttribute(llvm::Attribute::NoInline);
893   } else if (D->hasAttr<AlwaysInlineAttr>() &&
894              !F->getAttributes().hasAttribute(llvm::AttributeSet::FunctionIndex,
895                                               llvm::Attribute::NoInline)) {
896     // (noinline wins over always_inline, and we can't specify both in IR)
897     B.addAttribute(llvm::Attribute::AlwaysInline);
898   }
899 
900   if (D->hasAttr<ColdAttr>()) {
901     if (!D->hasAttr<OptimizeNoneAttr>())
902       B.addAttribute(llvm::Attribute::OptimizeForSize);
903     B.addAttribute(llvm::Attribute::Cold);
904   }
905 
906   if (D->hasAttr<MinSizeAttr>())
907     B.addAttribute(llvm::Attribute::MinSize);
908 
909   F->addAttributes(llvm::AttributeSet::FunctionIndex,
910                    llvm::AttributeSet::get(
911                        F->getContext(), llvm::AttributeSet::FunctionIndex, B));
912 
913   if (D->hasAttr<OptimizeNoneAttr>()) {
914     // OptimizeNone implies noinline; we should not be inlining such functions.
915     F->addFnAttr(llvm::Attribute::OptimizeNone);
916     F->addFnAttr(llvm::Attribute::NoInline);
917 
918     // OptimizeNone wins over OptimizeForSize, MinSize, AlwaysInline.
919     F->removeFnAttr(llvm::Attribute::OptimizeForSize);
920     F->removeFnAttr(llvm::Attribute::MinSize);
921     assert(!F->hasFnAttribute(llvm::Attribute::AlwaysInline) &&
922            "OptimizeNone and AlwaysInline on same function!");
923 
924     // Attribute 'inlinehint' has no effect on 'optnone' functions.
925     // Explicitly remove it from the set of function attributes.
926     F->removeFnAttr(llvm::Attribute::InlineHint);
927   }
928 
929   unsigned alignment = D->getMaxAlignment() / Context.getCharWidth();
930   if (alignment)
931     F->setAlignment(alignment);
932 
933   // Some C++ ABIs require 2-byte alignment for member functions, in order to
934   // reserve a bit for differentiating between virtual and non-virtual member
935   // functions. If the current target's C++ ABI requires this and this is a
936   // member function, set its alignment accordingly.
937   if (getTarget().getCXXABI().areMemberFunctionsAligned()) {
938     if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D))
939       F->setAlignment(2);
940   }
941 }
942 
943 void CodeGenModule::SetCommonAttributes(const Decl *D,
944                                         llvm::GlobalValue *GV) {
945   if (const auto *ND = dyn_cast_or_null<NamedDecl>(D))
946     setGlobalVisibility(GV, ND);
947   else
948     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
949 
950   if (D && D->hasAttr<UsedAttr>())
951     addUsedGlobal(GV);
952 }
953 
954 void CodeGenModule::setAliasAttributes(const Decl *D,
955                                        llvm::GlobalValue *GV) {
956   SetCommonAttributes(D, GV);
957 
958   // Process the dllexport attribute based on whether the original definition
959   // (not necessarily the aliasee) was exported.
960   if (D->hasAttr<DLLExportAttr>())
961     GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass);
962 }
963 
964 void CodeGenModule::setNonAliasAttributes(const Decl *D,
965                                           llvm::GlobalObject *GO) {
966   SetCommonAttributes(D, GO);
967 
968   if (D)
969     if (const SectionAttr *SA = D->getAttr<SectionAttr>())
970       GO->setSection(SA->getName());
971 
972   getTargetCodeGenInfo().setTargetAttributes(D, GO, *this);
973 }
974 
975 void CodeGenModule::SetInternalFunctionAttributes(const Decl *D,
976                                                   llvm::Function *F,
977                                                   const CGFunctionInfo &FI) {
978   SetLLVMFunctionAttributes(D, FI, F);
979   SetLLVMFunctionAttributesForDefinition(D, F);
980 
981   F->setLinkage(llvm::Function::InternalLinkage);
982 
983   setNonAliasAttributes(D, F);
984 }
985 
986 static void setLinkageAndVisibilityForGV(llvm::GlobalValue *GV,
987                                          const NamedDecl *ND) {
988   // Set linkage and visibility in case we never see a definition.
989   LinkageInfo LV = ND->getLinkageAndVisibility();
990   if (LV.getLinkage() != ExternalLinkage) {
991     // Don't set internal linkage on declarations.
992   } else {
993     if (ND->hasAttr<DLLImportAttr>()) {
994       GV->setLinkage(llvm::GlobalValue::ExternalLinkage);
995       GV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass);
996     } else if (ND->hasAttr<DLLExportAttr>()) {
997       GV->setLinkage(llvm::GlobalValue::ExternalLinkage);
998       GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass);
999     } else if (ND->hasAttr<WeakAttr>() || ND->isWeakImported()) {
1000       // "extern_weak" is overloaded in LLVM; we probably should have
1001       // separate linkage types for this.
1002       GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage);
1003     }
1004 
1005     // Set visibility on a declaration only if it's explicit.
1006     if (LV.isVisibilityExplicit())
1007       GV->setVisibility(CodeGenModule::GetLLVMVisibility(LV.getVisibility()));
1008   }
1009 }
1010 
1011 void CodeGenModule::CreateFunctionTypeMetadata(const FunctionDecl *FD,
1012                                                llvm::Function *F) {
1013   // Only if we are checking indirect calls.
1014   if (!LangOpts.Sanitize.has(SanitizerKind::CFIICall))
1015     return;
1016 
1017   // Non-static class methods are handled via vtable pointer checks elsewhere.
1018   if (isa<CXXMethodDecl>(FD) && !cast<CXXMethodDecl>(FD)->isStatic())
1019     return;
1020 
1021   // Additionally, if building with cross-DSO support...
1022   if (CodeGenOpts.SanitizeCfiCrossDso) {
1023     // Don't emit entries for function declarations. In cross-DSO mode these are
1024     // handled with better precision at run time.
1025     if (!FD->hasBody())
1026       return;
1027     // Skip available_externally functions. They won't be codegen'ed in the
1028     // current module anyway.
1029     if (getContext().GetGVALinkageForFunction(FD) == GVA_AvailableExternally)
1030       return;
1031   }
1032 
1033   llvm::Metadata *MD = CreateMetadataIdentifierForType(FD->getType());
1034   F->addTypeMetadata(0, MD);
1035 
1036   // Emit a hash-based bit set entry for cross-DSO calls.
1037   if (CodeGenOpts.SanitizeCfiCrossDso)
1038     if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD))
1039       F->addTypeMetadata(0, llvm::ConstantAsMetadata::get(CrossDsoTypeId));
1040 }
1041 
1042 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD, llvm::Function *F,
1043                                           bool IsIncompleteFunction,
1044                                           bool IsThunk) {
1045   if (llvm::Intrinsic::ID IID = F->getIntrinsicID()) {
1046     // If this is an intrinsic function, set the function's attributes
1047     // to the intrinsic's attributes.
1048     F->setAttributes(llvm::Intrinsic::getAttributes(getLLVMContext(), IID));
1049     return;
1050   }
1051 
1052   const auto *FD = cast<FunctionDecl>(GD.getDecl());
1053 
1054   if (!IsIncompleteFunction)
1055     SetLLVMFunctionAttributes(FD, getTypes().arrangeGlobalDeclaration(GD), F);
1056 
1057   // Add the Returned attribute for "this", except for iOS 5 and earlier
1058   // where substantial code, including the libstdc++ dylib, was compiled with
1059   // GCC and does not actually return "this".
1060   if (!IsThunk && getCXXABI().HasThisReturn(GD) &&
1061       !(getTriple().isiOS() && getTriple().isOSVersionLT(6))) {
1062     assert(!F->arg_empty() &&
1063            F->arg_begin()->getType()
1064              ->canLosslesslyBitCastTo(F->getReturnType()) &&
1065            "unexpected this return");
1066     F->addAttribute(1, llvm::Attribute::Returned);
1067   }
1068 
1069   // Only a few attributes are set on declarations; these may later be
1070   // overridden by a definition.
1071 
1072   setLinkageAndVisibilityForGV(F, FD);
1073 
1074   if (const SectionAttr *SA = FD->getAttr<SectionAttr>())
1075     F->setSection(SA->getName());
1076 
1077   if (FD->isReplaceableGlobalAllocationFunction()) {
1078     // A replaceable global allocation function does not act like a builtin by
1079     // default, only if it is invoked by a new-expression or delete-expression.
1080     F->addAttribute(llvm::AttributeSet::FunctionIndex,
1081                     llvm::Attribute::NoBuiltin);
1082 
1083     // A sane operator new returns a non-aliasing pointer.
1084     // FIXME: Also add NonNull attribute to the return value
1085     // for the non-nothrow forms?
1086     auto Kind = FD->getDeclName().getCXXOverloadedOperator();
1087     if (getCodeGenOpts().AssumeSaneOperatorNew &&
1088         (Kind == OO_New || Kind == OO_Array_New))
1089       F->addAttribute(llvm::AttributeSet::ReturnIndex,
1090                       llvm::Attribute::NoAlias);
1091   }
1092 
1093   if (isa<CXXConstructorDecl>(FD) || isa<CXXDestructorDecl>(FD))
1094     F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
1095   else if (const auto *MD = dyn_cast<CXXMethodDecl>(FD))
1096     if (MD->isVirtual())
1097       F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
1098 
1099   CreateFunctionTypeMetadata(FD, F);
1100 }
1101 
1102 void CodeGenModule::addUsedGlobal(llvm::GlobalValue *GV) {
1103   assert(!GV->isDeclaration() &&
1104          "Only globals with definition can force usage.");
1105   LLVMUsed.emplace_back(GV);
1106 }
1107 
1108 void CodeGenModule::addCompilerUsedGlobal(llvm::GlobalValue *GV) {
1109   assert(!GV->isDeclaration() &&
1110          "Only globals with definition can force usage.");
1111   LLVMCompilerUsed.emplace_back(GV);
1112 }
1113 
1114 static void emitUsed(CodeGenModule &CGM, StringRef Name,
1115                      std::vector<llvm::WeakVH> &List) {
1116   // Don't create llvm.used if there is no need.
1117   if (List.empty())
1118     return;
1119 
1120   // Convert List to what ConstantArray needs.
1121   SmallVector<llvm::Constant*, 8> UsedArray;
1122   UsedArray.resize(List.size());
1123   for (unsigned i = 0, e = List.size(); i != e; ++i) {
1124     UsedArray[i] =
1125         llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(
1126             cast<llvm::Constant>(&*List[i]), CGM.Int8PtrTy);
1127   }
1128 
1129   if (UsedArray.empty())
1130     return;
1131   llvm::ArrayType *ATy = llvm::ArrayType::get(CGM.Int8PtrTy, UsedArray.size());
1132 
1133   auto *GV = new llvm::GlobalVariable(
1134       CGM.getModule(), ATy, false, llvm::GlobalValue::AppendingLinkage,
1135       llvm::ConstantArray::get(ATy, UsedArray), Name);
1136 
1137   GV->setSection("llvm.metadata");
1138 }
1139 
1140 void CodeGenModule::emitLLVMUsed() {
1141   emitUsed(*this, "llvm.used", LLVMUsed);
1142   emitUsed(*this, "llvm.compiler.used", LLVMCompilerUsed);
1143 }
1144 
1145 void CodeGenModule::AppendLinkerOptions(StringRef Opts) {
1146   auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opts);
1147   LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
1148 }
1149 
1150 void CodeGenModule::AddDetectMismatch(StringRef Name, StringRef Value) {
1151   llvm::SmallString<32> Opt;
1152   getTargetCodeGenInfo().getDetectMismatchOption(Name, Value, Opt);
1153   auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt);
1154   LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
1155 }
1156 
1157 void CodeGenModule::AddDependentLib(StringRef Lib) {
1158   llvm::SmallString<24> Opt;
1159   getTargetCodeGenInfo().getDependentLibraryOption(Lib, Opt);
1160   auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt);
1161   LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
1162 }
1163 
1164 /// \brief Add link options implied by the given module, including modules
1165 /// it depends on, using a postorder walk.
1166 static void addLinkOptionsPostorder(CodeGenModule &CGM, Module *Mod,
1167                                     SmallVectorImpl<llvm::Metadata *> &Metadata,
1168                                     llvm::SmallPtrSet<Module *, 16> &Visited) {
1169   // Import this module's parent.
1170   if (Mod->Parent && Visited.insert(Mod->Parent).second) {
1171     addLinkOptionsPostorder(CGM, Mod->Parent, Metadata, Visited);
1172   }
1173 
1174   // Import this module's dependencies.
1175   for (unsigned I = Mod->Imports.size(); I > 0; --I) {
1176     if (Visited.insert(Mod->Imports[I - 1]).second)
1177       addLinkOptionsPostorder(CGM, Mod->Imports[I-1], Metadata, Visited);
1178   }
1179 
1180   // Add linker options to link against the libraries/frameworks
1181   // described by this module.
1182   llvm::LLVMContext &Context = CGM.getLLVMContext();
1183   for (unsigned I = Mod->LinkLibraries.size(); I > 0; --I) {
1184     // Link against a framework.  Frameworks are currently Darwin only, so we
1185     // don't to ask TargetCodeGenInfo for the spelling of the linker option.
1186     if (Mod->LinkLibraries[I-1].IsFramework) {
1187       llvm::Metadata *Args[2] = {
1188           llvm::MDString::get(Context, "-framework"),
1189           llvm::MDString::get(Context, Mod->LinkLibraries[I - 1].Library)};
1190 
1191       Metadata.push_back(llvm::MDNode::get(Context, Args));
1192       continue;
1193     }
1194 
1195     // Link against a library.
1196     llvm::SmallString<24> Opt;
1197     CGM.getTargetCodeGenInfo().getDependentLibraryOption(
1198       Mod->LinkLibraries[I-1].Library, Opt);
1199     auto *OptString = llvm::MDString::get(Context, Opt);
1200     Metadata.push_back(llvm::MDNode::get(Context, OptString));
1201   }
1202 }
1203 
1204 void CodeGenModule::EmitModuleLinkOptions() {
1205   // Collect the set of all of the modules we want to visit to emit link
1206   // options, which is essentially the imported modules and all of their
1207   // non-explicit child modules.
1208   llvm::SetVector<clang::Module *> LinkModules;
1209   llvm::SmallPtrSet<clang::Module *, 16> Visited;
1210   SmallVector<clang::Module *, 16> Stack;
1211 
1212   // Seed the stack with imported modules.
1213   for (Module *M : ImportedModules)
1214     if (Visited.insert(M).second)
1215       Stack.push_back(M);
1216 
1217   // Find all of the modules to import, making a little effort to prune
1218   // non-leaf modules.
1219   while (!Stack.empty()) {
1220     clang::Module *Mod = Stack.pop_back_val();
1221 
1222     bool AnyChildren = false;
1223 
1224     // Visit the submodules of this module.
1225     for (clang::Module::submodule_iterator Sub = Mod->submodule_begin(),
1226                                         SubEnd = Mod->submodule_end();
1227          Sub != SubEnd; ++Sub) {
1228       // Skip explicit children; they need to be explicitly imported to be
1229       // linked against.
1230       if ((*Sub)->IsExplicit)
1231         continue;
1232 
1233       if (Visited.insert(*Sub).second) {
1234         Stack.push_back(*Sub);
1235         AnyChildren = true;
1236       }
1237     }
1238 
1239     // We didn't find any children, so add this module to the list of
1240     // modules to link against.
1241     if (!AnyChildren) {
1242       LinkModules.insert(Mod);
1243     }
1244   }
1245 
1246   // Add link options for all of the imported modules in reverse topological
1247   // order.  We don't do anything to try to order import link flags with respect
1248   // to linker options inserted by things like #pragma comment().
1249   SmallVector<llvm::Metadata *, 16> MetadataArgs;
1250   Visited.clear();
1251   for (Module *M : LinkModules)
1252     if (Visited.insert(M).second)
1253       addLinkOptionsPostorder(*this, M, MetadataArgs, Visited);
1254   std::reverse(MetadataArgs.begin(), MetadataArgs.end());
1255   LinkerOptionsMetadata.append(MetadataArgs.begin(), MetadataArgs.end());
1256 
1257   // Add the linker options metadata flag.
1258   getModule().addModuleFlag(llvm::Module::AppendUnique, "Linker Options",
1259                             llvm::MDNode::get(getLLVMContext(),
1260                                               LinkerOptionsMetadata));
1261 }
1262 
1263 void CodeGenModule::EmitDeferred() {
1264   // Emit code for any potentially referenced deferred decls.  Since a
1265   // previously unused static decl may become used during the generation of code
1266   // for a static function, iterate until no changes are made.
1267 
1268   if (!DeferredVTables.empty()) {
1269     EmitDeferredVTables();
1270 
1271     // Emitting a vtable doesn't directly cause more vtables to
1272     // become deferred, although it can cause functions to be
1273     // emitted that then need those vtables.
1274     assert(DeferredVTables.empty());
1275   }
1276 
1277   // Stop if we're out of both deferred vtables and deferred declarations.
1278   if (DeferredDeclsToEmit.empty())
1279     return;
1280 
1281   // Grab the list of decls to emit. If EmitGlobalDefinition schedules more
1282   // work, it will not interfere with this.
1283   std::vector<DeferredGlobal> CurDeclsToEmit;
1284   CurDeclsToEmit.swap(DeferredDeclsToEmit);
1285 
1286   for (DeferredGlobal &G : CurDeclsToEmit) {
1287     GlobalDecl D = G.GD;
1288     G.GV = nullptr;
1289 
1290     // We should call GetAddrOfGlobal with IsForDefinition set to true in order
1291     // to get GlobalValue with exactly the type we need, not something that
1292     // might had been created for another decl with the same mangled name but
1293     // different type.
1294     llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>(
1295         GetAddrOfGlobal(D, /*IsForDefinition=*/true));
1296 
1297     // In case of different address spaces, we may still get a cast, even with
1298     // IsForDefinition equal to true. Query mangled names table to get
1299     // GlobalValue.
1300     if (!GV)
1301       GV = GetGlobalValue(getMangledName(D));
1302 
1303     // Make sure GetGlobalValue returned non-null.
1304     assert(GV);
1305 
1306     // Check to see if we've already emitted this.  This is necessary
1307     // for a couple of reasons: first, decls can end up in the
1308     // deferred-decls queue multiple times, and second, decls can end
1309     // up with definitions in unusual ways (e.g. by an extern inline
1310     // function acquiring a strong function redefinition).  Just
1311     // ignore these cases.
1312     if (!GV->isDeclaration())
1313       continue;
1314 
1315     // Otherwise, emit the definition and move on to the next one.
1316     EmitGlobalDefinition(D, GV);
1317 
1318     // If we found out that we need to emit more decls, do that recursively.
1319     // This has the advantage that the decls are emitted in a DFS and related
1320     // ones are close together, which is convenient for testing.
1321     if (!DeferredVTables.empty() || !DeferredDeclsToEmit.empty()) {
1322       EmitDeferred();
1323       assert(DeferredVTables.empty() && DeferredDeclsToEmit.empty());
1324     }
1325   }
1326 }
1327 
1328 void CodeGenModule::EmitGlobalAnnotations() {
1329   if (Annotations.empty())
1330     return;
1331 
1332   // Create a new global variable for the ConstantStruct in the Module.
1333   llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get(
1334     Annotations[0]->getType(), Annotations.size()), Annotations);
1335   auto *gv = new llvm::GlobalVariable(getModule(), Array->getType(), false,
1336                                       llvm::GlobalValue::AppendingLinkage,
1337                                       Array, "llvm.global.annotations");
1338   gv->setSection(AnnotationSection);
1339 }
1340 
1341 llvm::Constant *CodeGenModule::EmitAnnotationString(StringRef Str) {
1342   llvm::Constant *&AStr = AnnotationStrings[Str];
1343   if (AStr)
1344     return AStr;
1345 
1346   // Not found yet, create a new global.
1347   llvm::Constant *s = llvm::ConstantDataArray::getString(getLLVMContext(), Str);
1348   auto *gv =
1349       new llvm::GlobalVariable(getModule(), s->getType(), true,
1350                                llvm::GlobalValue::PrivateLinkage, s, ".str");
1351   gv->setSection(AnnotationSection);
1352   gv->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
1353   AStr = gv;
1354   return gv;
1355 }
1356 
1357 llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) {
1358   SourceManager &SM = getContext().getSourceManager();
1359   PresumedLoc PLoc = SM.getPresumedLoc(Loc);
1360   if (PLoc.isValid())
1361     return EmitAnnotationString(PLoc.getFilename());
1362   return EmitAnnotationString(SM.getBufferName(Loc));
1363 }
1364 
1365 llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) {
1366   SourceManager &SM = getContext().getSourceManager();
1367   PresumedLoc PLoc = SM.getPresumedLoc(L);
1368   unsigned LineNo = PLoc.isValid() ? PLoc.getLine() :
1369     SM.getExpansionLineNumber(L);
1370   return llvm::ConstantInt::get(Int32Ty, LineNo);
1371 }
1372 
1373 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV,
1374                                                 const AnnotateAttr *AA,
1375                                                 SourceLocation L) {
1376   // Get the globals for file name, annotation, and the line number.
1377   llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()),
1378                  *UnitGV = EmitAnnotationUnit(L),
1379                  *LineNoCst = EmitAnnotationLineNo(L);
1380 
1381   // Create the ConstantStruct for the global annotation.
1382   llvm::Constant *Fields[4] = {
1383     llvm::ConstantExpr::getBitCast(GV, Int8PtrTy),
1384     llvm::ConstantExpr::getBitCast(AnnoGV, Int8PtrTy),
1385     llvm::ConstantExpr::getBitCast(UnitGV, Int8PtrTy),
1386     LineNoCst
1387   };
1388   return llvm::ConstantStruct::getAnon(Fields);
1389 }
1390 
1391 void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D,
1392                                          llvm::GlobalValue *GV) {
1393   assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
1394   // Get the struct elements for these annotations.
1395   for (const auto *I : D->specific_attrs<AnnotateAttr>())
1396     Annotations.push_back(EmitAnnotateAttr(GV, I, D->getLocation()));
1397 }
1398 
1399 bool CodeGenModule::isInSanitizerBlacklist(llvm::Function *Fn,
1400                                            SourceLocation Loc) const {
1401   const auto &SanitizerBL = getContext().getSanitizerBlacklist();
1402   // Blacklist by function name.
1403   if (SanitizerBL.isBlacklistedFunction(Fn->getName()))
1404     return true;
1405   // Blacklist by location.
1406   if (Loc.isValid())
1407     return SanitizerBL.isBlacklistedLocation(Loc);
1408   // If location is unknown, this may be a compiler-generated function. Assume
1409   // it's located in the main file.
1410   auto &SM = Context.getSourceManager();
1411   if (const auto *MainFile = SM.getFileEntryForID(SM.getMainFileID())) {
1412     return SanitizerBL.isBlacklistedFile(MainFile->getName());
1413   }
1414   return false;
1415 }
1416 
1417 bool CodeGenModule::isInSanitizerBlacklist(llvm::GlobalVariable *GV,
1418                                            SourceLocation Loc, QualType Ty,
1419                                            StringRef Category) const {
1420   // For now globals can be blacklisted only in ASan and KASan.
1421   if (!LangOpts.Sanitize.hasOneOf(
1422           SanitizerKind::Address | SanitizerKind::KernelAddress))
1423     return false;
1424   const auto &SanitizerBL = getContext().getSanitizerBlacklist();
1425   if (SanitizerBL.isBlacklistedGlobal(GV->getName(), Category))
1426     return true;
1427   if (SanitizerBL.isBlacklistedLocation(Loc, Category))
1428     return true;
1429   // Check global type.
1430   if (!Ty.isNull()) {
1431     // Drill down the array types: if global variable of a fixed type is
1432     // blacklisted, we also don't instrument arrays of them.
1433     while (auto AT = dyn_cast<ArrayType>(Ty.getTypePtr()))
1434       Ty = AT->getElementType();
1435     Ty = Ty.getCanonicalType().getUnqualifiedType();
1436     // We allow to blacklist only record types (classes, structs etc.)
1437     if (Ty->isRecordType()) {
1438       std::string TypeStr = Ty.getAsString(getContext().getPrintingPolicy());
1439       if (SanitizerBL.isBlacklistedType(TypeStr, Category))
1440         return true;
1441     }
1442   }
1443   return false;
1444 }
1445 
1446 bool CodeGenModule::MustBeEmitted(const ValueDecl *Global) {
1447   // Never defer when EmitAllDecls is specified.
1448   if (LangOpts.EmitAllDecls)
1449     return true;
1450 
1451   return getContext().DeclMustBeEmitted(Global);
1452 }
1453 
1454 bool CodeGenModule::MayBeEmittedEagerly(const ValueDecl *Global) {
1455   if (const auto *FD = dyn_cast<FunctionDecl>(Global))
1456     if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
1457       // Implicit template instantiations may change linkage if they are later
1458       // explicitly instantiated, so they should not be emitted eagerly.
1459       return false;
1460   if (const auto *VD = dyn_cast<VarDecl>(Global))
1461     if (Context.getInlineVariableDefinitionKind(VD) ==
1462         ASTContext::InlineVariableDefinitionKind::WeakUnknown)
1463       // A definition of an inline constexpr static data member may change
1464       // linkage later if it's redeclared outside the class.
1465       return false;
1466   // If OpenMP is enabled and threadprivates must be generated like TLS, delay
1467   // codegen for global variables, because they may be marked as threadprivate.
1468   if (LangOpts.OpenMP && LangOpts.OpenMPUseTLS &&
1469       getContext().getTargetInfo().isTLSSupported() && isa<VarDecl>(Global))
1470     return false;
1471 
1472   return true;
1473 }
1474 
1475 ConstantAddress CodeGenModule::GetAddrOfUuidDescriptor(
1476     const CXXUuidofExpr* E) {
1477   // Sema has verified that IIDSource has a __declspec(uuid()), and that its
1478   // well-formed.
1479   StringRef Uuid = E->getUuidStr();
1480   std::string Name = "_GUID_" + Uuid.lower();
1481   std::replace(Name.begin(), Name.end(), '-', '_');
1482 
1483   // The UUID descriptor should be pointer aligned.
1484   CharUnits Alignment = CharUnits::fromQuantity(PointerAlignInBytes);
1485 
1486   // Look for an existing global.
1487   if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name))
1488     return ConstantAddress(GV, Alignment);
1489 
1490   llvm::Constant *Init = EmitUuidofInitializer(Uuid);
1491   assert(Init && "failed to initialize as constant");
1492 
1493   auto *GV = new llvm::GlobalVariable(
1494       getModule(), Init->getType(),
1495       /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name);
1496   if (supportsCOMDAT())
1497     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
1498   return ConstantAddress(GV, Alignment);
1499 }
1500 
1501 ConstantAddress CodeGenModule::GetWeakRefReference(const ValueDecl *VD) {
1502   const AliasAttr *AA = VD->getAttr<AliasAttr>();
1503   assert(AA && "No alias?");
1504 
1505   CharUnits Alignment = getContext().getDeclAlign(VD);
1506   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType());
1507 
1508   // See if there is already something with the target's name in the module.
1509   llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee());
1510   if (Entry) {
1511     unsigned AS = getContext().getTargetAddressSpace(VD->getType());
1512     auto Ptr = llvm::ConstantExpr::getBitCast(Entry, DeclTy->getPointerTo(AS));
1513     return ConstantAddress(Ptr, Alignment);
1514   }
1515 
1516   llvm::Constant *Aliasee;
1517   if (isa<llvm::FunctionType>(DeclTy))
1518     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy,
1519                                       GlobalDecl(cast<FunctionDecl>(VD)),
1520                                       /*ForVTable=*/false);
1521   else
1522     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
1523                                     llvm::PointerType::getUnqual(DeclTy),
1524                                     nullptr);
1525 
1526   auto *F = cast<llvm::GlobalValue>(Aliasee);
1527   F->setLinkage(llvm::Function::ExternalWeakLinkage);
1528   WeakRefReferences.insert(F);
1529 
1530   return ConstantAddress(Aliasee, Alignment);
1531 }
1532 
1533 void CodeGenModule::EmitGlobal(GlobalDecl GD) {
1534   const auto *Global = cast<ValueDecl>(GD.getDecl());
1535 
1536   // Weak references don't produce any output by themselves.
1537   if (Global->hasAttr<WeakRefAttr>())
1538     return;
1539 
1540   // If this is an alias definition (which otherwise looks like a declaration)
1541   // emit it now.
1542   if (Global->hasAttr<AliasAttr>())
1543     return EmitAliasDefinition(GD);
1544 
1545   // IFunc like an alias whose value is resolved at runtime by calling resolver.
1546   if (Global->hasAttr<IFuncAttr>())
1547     return emitIFuncDefinition(GD);
1548 
1549   // If this is CUDA, be selective about which declarations we emit.
1550   if (LangOpts.CUDA) {
1551     if (LangOpts.CUDAIsDevice) {
1552       if (!Global->hasAttr<CUDADeviceAttr>() &&
1553           !Global->hasAttr<CUDAGlobalAttr>() &&
1554           !Global->hasAttr<CUDAConstantAttr>() &&
1555           !Global->hasAttr<CUDASharedAttr>())
1556         return;
1557     } else {
1558       // We need to emit host-side 'shadows' for all global
1559       // device-side variables because the CUDA runtime needs their
1560       // size and host-side address in order to provide access to
1561       // their device-side incarnations.
1562 
1563       // So device-only functions are the only things we skip.
1564       if (isa<FunctionDecl>(Global) && !Global->hasAttr<CUDAHostAttr>() &&
1565           Global->hasAttr<CUDADeviceAttr>())
1566         return;
1567 
1568       assert((isa<FunctionDecl>(Global) || isa<VarDecl>(Global)) &&
1569              "Expected Variable or Function");
1570     }
1571   }
1572 
1573   if (LangOpts.OpenMP) {
1574     // If this is OpenMP device, check if it is legal to emit this global
1575     // normally.
1576     if (OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(GD))
1577       return;
1578     if (auto *DRD = dyn_cast<OMPDeclareReductionDecl>(Global)) {
1579       if (MustBeEmitted(Global))
1580         EmitOMPDeclareReduction(DRD);
1581       return;
1582     }
1583   }
1584 
1585   // Ignore declarations, they will be emitted on their first use.
1586   if (const auto *FD = dyn_cast<FunctionDecl>(Global)) {
1587     // Forward declarations are emitted lazily on first use.
1588     if (!FD->doesThisDeclarationHaveABody()) {
1589       if (!FD->doesDeclarationForceExternallyVisibleDefinition())
1590         return;
1591 
1592       StringRef MangledName = getMangledName(GD);
1593 
1594       // Compute the function info and LLVM type.
1595       const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
1596       llvm::Type *Ty = getTypes().GetFunctionType(FI);
1597 
1598       GetOrCreateLLVMFunction(MangledName, Ty, GD, /*ForVTable=*/false,
1599                               /*DontDefer=*/false);
1600       return;
1601     }
1602   } else {
1603     const auto *VD = cast<VarDecl>(Global);
1604     assert(VD->isFileVarDecl() && "Cannot emit local var decl as global.");
1605     // We need to emit device-side global CUDA variables even if a
1606     // variable does not have a definition -- we still need to define
1607     // host-side shadow for it.
1608     bool MustEmitForCuda = LangOpts.CUDA && !LangOpts.CUDAIsDevice &&
1609                            !VD->hasDefinition() &&
1610                            (VD->hasAttr<CUDAConstantAttr>() ||
1611                             VD->hasAttr<CUDADeviceAttr>());
1612     if (!MustEmitForCuda &&
1613         VD->isThisDeclarationADefinition() != VarDecl::Definition &&
1614         !Context.isMSStaticDataMemberInlineDefinition(VD)) {
1615       // If this declaration may have caused an inline variable definition to
1616       // change linkage, make sure that it's emitted.
1617       if (Context.getInlineVariableDefinitionKind(VD) ==
1618           ASTContext::InlineVariableDefinitionKind::Strong)
1619         GetAddrOfGlobalVar(VD);
1620       return;
1621     }
1622   }
1623 
1624   // Defer code generation to first use when possible, e.g. if this is an inline
1625   // function. If the global must always be emitted, do it eagerly if possible
1626   // to benefit from cache locality.
1627   if (MustBeEmitted(Global) && MayBeEmittedEagerly(Global)) {
1628     // Emit the definition if it can't be deferred.
1629     EmitGlobalDefinition(GD);
1630     return;
1631   }
1632 
1633   // If we're deferring emission of a C++ variable with an
1634   // initializer, remember the order in which it appeared in the file.
1635   if (getLangOpts().CPlusPlus && isa<VarDecl>(Global) &&
1636       cast<VarDecl>(Global)->hasInit()) {
1637     DelayedCXXInitPosition[Global] = CXXGlobalInits.size();
1638     CXXGlobalInits.push_back(nullptr);
1639   }
1640 
1641   StringRef MangledName = getMangledName(GD);
1642   if (llvm::GlobalValue *GV = GetGlobalValue(MangledName)) {
1643     // The value has already been used and should therefore be emitted.
1644     addDeferredDeclToEmit(GV, GD);
1645   } else if (MustBeEmitted(Global)) {
1646     // The value must be emitted, but cannot be emitted eagerly.
1647     assert(!MayBeEmittedEagerly(Global));
1648     addDeferredDeclToEmit(/*GV=*/nullptr, GD);
1649   } else {
1650     // Otherwise, remember that we saw a deferred decl with this name.  The
1651     // first use of the mangled name will cause it to move into
1652     // DeferredDeclsToEmit.
1653     DeferredDecls[MangledName] = GD;
1654   }
1655 }
1656 
1657 namespace {
1658   struct FunctionIsDirectlyRecursive :
1659     public RecursiveASTVisitor<FunctionIsDirectlyRecursive> {
1660     const StringRef Name;
1661     const Builtin::Context &BI;
1662     bool Result;
1663     FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C) :
1664       Name(N), BI(C), Result(false) {
1665     }
1666     typedef RecursiveASTVisitor<FunctionIsDirectlyRecursive> Base;
1667 
1668     bool TraverseCallExpr(CallExpr *E) {
1669       const FunctionDecl *FD = E->getDirectCallee();
1670       if (!FD)
1671         return true;
1672       AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
1673       if (Attr && Name == Attr->getLabel()) {
1674         Result = true;
1675         return false;
1676       }
1677       unsigned BuiltinID = FD->getBuiltinID();
1678       if (!BuiltinID || !BI.isLibFunction(BuiltinID))
1679         return true;
1680       StringRef BuiltinName = BI.getName(BuiltinID);
1681       if (BuiltinName.startswith("__builtin_") &&
1682           Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) {
1683         Result = true;
1684         return false;
1685       }
1686       return true;
1687     }
1688   };
1689 
1690   struct DLLImportFunctionVisitor
1691       : public RecursiveASTVisitor<DLLImportFunctionVisitor> {
1692     bool SafeToInline = true;
1693 
1694     bool shouldVisitImplicitCode() const { return true; }
1695 
1696     bool VisitVarDecl(VarDecl *VD) {
1697       // A thread-local variable cannot be imported.
1698       SafeToInline = !VD->getTLSKind();
1699       return SafeToInline;
1700     }
1701 
1702     // Make sure we're not referencing non-imported vars or functions.
1703     bool VisitDeclRefExpr(DeclRefExpr *E) {
1704       ValueDecl *VD = E->getDecl();
1705       if (isa<FunctionDecl>(VD))
1706         SafeToInline = VD->hasAttr<DLLImportAttr>();
1707       else if (VarDecl *V = dyn_cast<VarDecl>(VD))
1708         SafeToInline = !V->hasGlobalStorage() || V->hasAttr<DLLImportAttr>();
1709       return SafeToInline;
1710     }
1711     bool VisitCXXConstructExpr(CXXConstructExpr *E) {
1712       SafeToInline = E->getConstructor()->hasAttr<DLLImportAttr>();
1713       return SafeToInline;
1714     }
1715     bool VisitCXXDeleteExpr(CXXDeleteExpr *E) {
1716       SafeToInline = E->getOperatorDelete()->hasAttr<DLLImportAttr>();
1717       return SafeToInline;
1718     }
1719     bool VisitCXXNewExpr(CXXNewExpr *E) {
1720       SafeToInline = E->getOperatorNew()->hasAttr<DLLImportAttr>();
1721       return SafeToInline;
1722     }
1723   };
1724 }
1725 
1726 // isTriviallyRecursive - Check if this function calls another
1727 // decl that, because of the asm attribute or the other decl being a builtin,
1728 // ends up pointing to itself.
1729 bool
1730 CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) {
1731   StringRef Name;
1732   if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) {
1733     // asm labels are a special kind of mangling we have to support.
1734     AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
1735     if (!Attr)
1736       return false;
1737     Name = Attr->getLabel();
1738   } else {
1739     Name = FD->getName();
1740   }
1741 
1742   FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo);
1743   Walker.TraverseFunctionDecl(const_cast<FunctionDecl*>(FD));
1744   return Walker.Result;
1745 }
1746 
1747 // Check if T is a class type with a destructor that's not dllimport.
1748 static bool HasNonDllImportDtor(QualType T) {
1749   if (const RecordType *RT = dyn_cast<RecordType>(T))
1750     if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl()))
1751       if (RD->getDestructor() && !RD->getDestructor()->hasAttr<DLLImportAttr>())
1752         return true;
1753 
1754   return false;
1755 }
1756 
1757 bool CodeGenModule::shouldEmitFunction(GlobalDecl GD) {
1758   if (getFunctionLinkage(GD) != llvm::Function::AvailableExternallyLinkage)
1759     return true;
1760   const auto *F = cast<FunctionDecl>(GD.getDecl());
1761   if (CodeGenOpts.OptimizationLevel == 0 && !F->hasAttr<AlwaysInlineAttr>())
1762     return false;
1763 
1764   if (F->hasAttr<DLLImportAttr>()) {
1765     // Check whether it would be safe to inline this dllimport function.
1766     DLLImportFunctionVisitor Visitor;
1767     Visitor.TraverseFunctionDecl(const_cast<FunctionDecl*>(F));
1768     if (!Visitor.SafeToInline)
1769       return false;
1770 
1771     if (const CXXDestructorDecl *Dtor = dyn_cast<CXXDestructorDecl>(F)) {
1772       // Implicit destructor invocations aren't captured in the AST, so the
1773       // check above can't see them. Check for them manually here.
1774       for (const Decl *Member : Dtor->getParent()->decls())
1775         if (isa<FieldDecl>(Member))
1776           if (HasNonDllImportDtor(cast<FieldDecl>(Member)->getType()))
1777             return false;
1778       for (const CXXBaseSpecifier &B : Dtor->getParent()->bases())
1779         if (HasNonDllImportDtor(B.getType()))
1780           return false;
1781     }
1782   }
1783 
1784   // PR9614. Avoid cases where the source code is lying to us. An available
1785   // externally function should have an equivalent function somewhere else,
1786   // but a function that calls itself is clearly not equivalent to the real
1787   // implementation.
1788   // This happens in glibc's btowc and in some configure checks.
1789   return !isTriviallyRecursive(F);
1790 }
1791 
1792 /// If the type for the method's class was generated by
1793 /// CGDebugInfo::createContextChain(), the cache contains only a
1794 /// limited DIType without any declarations. Since EmitFunctionStart()
1795 /// needs to find the canonical declaration for each method, we need
1796 /// to construct the complete type prior to emitting the method.
1797 void CodeGenModule::CompleteDIClassType(const CXXMethodDecl* D) {
1798   if (!D->isInstance())
1799     return;
1800 
1801   if (CGDebugInfo *DI = getModuleDebugInfo())
1802     if (getCodeGenOpts().getDebugInfo() >= codegenoptions::LimitedDebugInfo) {
1803       const auto *ThisPtr = cast<PointerType>(D->getThisType(getContext()));
1804       DI->getOrCreateRecordType(ThisPtr->getPointeeType(), D->getLocation());
1805     }
1806 }
1807 
1808 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD, llvm::GlobalValue *GV) {
1809   const auto *D = cast<ValueDecl>(GD.getDecl());
1810 
1811   PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(),
1812                                  Context.getSourceManager(),
1813                                  "Generating code for declaration");
1814 
1815   if (isa<FunctionDecl>(D)) {
1816     // At -O0, don't generate IR for functions with available_externally
1817     // linkage.
1818     if (!shouldEmitFunction(GD))
1819       return;
1820 
1821     if (const auto *Method = dyn_cast<CXXMethodDecl>(D)) {
1822       CompleteDIClassType(Method);
1823       // Make sure to emit the definition(s) before we emit the thunks.
1824       // This is necessary for the generation of certain thunks.
1825       if (const auto *CD = dyn_cast<CXXConstructorDecl>(Method))
1826         ABI->emitCXXStructor(CD, getFromCtorType(GD.getCtorType()));
1827       else if (const auto *DD = dyn_cast<CXXDestructorDecl>(Method))
1828         ABI->emitCXXStructor(DD, getFromDtorType(GD.getDtorType()));
1829       else
1830         EmitGlobalFunctionDefinition(GD, GV);
1831 
1832       if (Method->isVirtual())
1833         getVTables().EmitThunks(GD);
1834 
1835       return;
1836     }
1837 
1838     return EmitGlobalFunctionDefinition(GD, GV);
1839   }
1840 
1841   if (const auto *VD = dyn_cast<VarDecl>(D))
1842     return EmitGlobalVarDefinition(VD, !VD->hasDefinition());
1843 
1844   llvm_unreachable("Invalid argument to EmitGlobalDefinition()");
1845 }
1846 
1847 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
1848                                                       llvm::Function *NewFn);
1849 
1850 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the
1851 /// module, create and return an llvm Function with the specified type. If there
1852 /// is something in the module with the specified name, return it potentially
1853 /// bitcasted to the right type.
1854 ///
1855 /// If D is non-null, it specifies a decl that correspond to this.  This is used
1856 /// to set the attributes on the function when it is first created.
1857 llvm::Constant *
1858 CodeGenModule::GetOrCreateLLVMFunction(StringRef MangledName,
1859                                        llvm::Type *Ty,
1860                                        GlobalDecl GD, bool ForVTable,
1861                                        bool DontDefer, bool IsThunk,
1862                                        llvm::AttributeSet ExtraAttrs,
1863                                        bool IsForDefinition) {
1864   const Decl *D = GD.getDecl();
1865 
1866   // Lookup the entry, lazily creating it if necessary.
1867   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
1868   if (Entry) {
1869     if (WeakRefReferences.erase(Entry)) {
1870       const FunctionDecl *FD = cast_or_null<FunctionDecl>(D);
1871       if (FD && !FD->hasAttr<WeakAttr>())
1872         Entry->setLinkage(llvm::Function::ExternalLinkage);
1873     }
1874 
1875     // Handle dropped DLL attributes.
1876     if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>())
1877       Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
1878 
1879     // If there are two attempts to define the same mangled name, issue an
1880     // error.
1881     if (IsForDefinition && !Entry->isDeclaration()) {
1882       GlobalDecl OtherGD;
1883       // Check that GD is not yet in DiagnosedConflictingDefinitions is required
1884       // to make sure that we issue an error only once.
1885       if (lookupRepresentativeDecl(MangledName, OtherGD) &&
1886           (GD.getCanonicalDecl().getDecl() !=
1887            OtherGD.getCanonicalDecl().getDecl()) &&
1888           DiagnosedConflictingDefinitions.insert(GD).second) {
1889         getDiags().Report(D->getLocation(),
1890                           diag::err_duplicate_mangled_name);
1891         getDiags().Report(OtherGD.getDecl()->getLocation(),
1892                           diag::note_previous_definition);
1893       }
1894     }
1895 
1896     if ((isa<llvm::Function>(Entry) || isa<llvm::GlobalAlias>(Entry)) &&
1897         (Entry->getType()->getElementType() == Ty)) {
1898       return Entry;
1899     }
1900 
1901     // Make sure the result is of the correct type.
1902     // (If function is requested for a definition, we always need to create a new
1903     // function, not just return a bitcast.)
1904     if (!IsForDefinition)
1905       return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo());
1906   }
1907 
1908   // This function doesn't have a complete type (for example, the return
1909   // type is an incomplete struct). Use a fake type instead, and make
1910   // sure not to try to set attributes.
1911   bool IsIncompleteFunction = false;
1912 
1913   llvm::FunctionType *FTy;
1914   if (isa<llvm::FunctionType>(Ty)) {
1915     FTy = cast<llvm::FunctionType>(Ty);
1916   } else {
1917     FTy = llvm::FunctionType::get(VoidTy, false);
1918     IsIncompleteFunction = true;
1919   }
1920 
1921   llvm::Function *F =
1922       llvm::Function::Create(FTy, llvm::Function::ExternalLinkage,
1923                              Entry ? StringRef() : MangledName, &getModule());
1924 
1925   // If we already created a function with the same mangled name (but different
1926   // type) before, take its name and add it to the list of functions to be
1927   // replaced with F at the end of CodeGen.
1928   //
1929   // This happens if there is a prototype for a function (e.g. "int f()") and
1930   // then a definition of a different type (e.g. "int f(int x)").
1931   if (Entry) {
1932     F->takeName(Entry);
1933 
1934     // This might be an implementation of a function without a prototype, in
1935     // which case, try to do special replacement of calls which match the new
1936     // prototype.  The really key thing here is that we also potentially drop
1937     // arguments from the call site so as to make a direct call, which makes the
1938     // inliner happier and suppresses a number of optimizer warnings (!) about
1939     // dropping arguments.
1940     if (!Entry->use_empty()) {
1941       ReplaceUsesOfNonProtoTypeWithRealFunction(Entry, F);
1942       Entry->removeDeadConstantUsers();
1943     }
1944 
1945     llvm::Constant *BC = llvm::ConstantExpr::getBitCast(
1946         F, Entry->getType()->getElementType()->getPointerTo());
1947     addGlobalValReplacement(Entry, BC);
1948   }
1949 
1950   assert(F->getName() == MangledName && "name was uniqued!");
1951   if (D)
1952     SetFunctionAttributes(GD, F, IsIncompleteFunction, IsThunk);
1953   if (ExtraAttrs.hasAttributes(llvm::AttributeSet::FunctionIndex)) {
1954     llvm::AttrBuilder B(ExtraAttrs, llvm::AttributeSet::FunctionIndex);
1955     F->addAttributes(llvm::AttributeSet::FunctionIndex,
1956                      llvm::AttributeSet::get(VMContext,
1957                                              llvm::AttributeSet::FunctionIndex,
1958                                              B));
1959   }
1960 
1961   if (!DontDefer) {
1962     // All MSVC dtors other than the base dtor are linkonce_odr and delegate to
1963     // each other bottoming out with the base dtor.  Therefore we emit non-base
1964     // dtors on usage, even if there is no dtor definition in the TU.
1965     if (D && isa<CXXDestructorDecl>(D) &&
1966         getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D),
1967                                            GD.getDtorType()))
1968       addDeferredDeclToEmit(F, GD);
1969 
1970     // This is the first use or definition of a mangled name.  If there is a
1971     // deferred decl with this name, remember that we need to emit it at the end
1972     // of the file.
1973     auto DDI = DeferredDecls.find(MangledName);
1974     if (DDI != DeferredDecls.end()) {
1975       // Move the potentially referenced deferred decl to the
1976       // DeferredDeclsToEmit list, and remove it from DeferredDecls (since we
1977       // don't need it anymore).
1978       addDeferredDeclToEmit(F, DDI->second);
1979       DeferredDecls.erase(DDI);
1980 
1981       // Otherwise, there are cases we have to worry about where we're
1982       // using a declaration for which we must emit a definition but where
1983       // we might not find a top-level definition:
1984       //   - member functions defined inline in their classes
1985       //   - friend functions defined inline in some class
1986       //   - special member functions with implicit definitions
1987       // If we ever change our AST traversal to walk into class methods,
1988       // this will be unnecessary.
1989       //
1990       // We also don't emit a definition for a function if it's going to be an
1991       // entry in a vtable, unless it's already marked as used.
1992     } else if (getLangOpts().CPlusPlus && D) {
1993       // Look for a declaration that's lexically in a record.
1994       for (const auto *FD = cast<FunctionDecl>(D)->getMostRecentDecl(); FD;
1995            FD = FD->getPreviousDecl()) {
1996         if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) {
1997           if (FD->doesThisDeclarationHaveABody()) {
1998             addDeferredDeclToEmit(F, GD.getWithDecl(FD));
1999             break;
2000           }
2001         }
2002       }
2003     }
2004   }
2005 
2006   // Make sure the result is of the requested type.
2007   if (!IsIncompleteFunction) {
2008     assert(F->getType()->getElementType() == Ty);
2009     return F;
2010   }
2011 
2012   llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
2013   return llvm::ConstantExpr::getBitCast(F, PTy);
2014 }
2015 
2016 /// GetAddrOfFunction - Return the address of the given function.  If Ty is
2017 /// non-null, then this function will use the specified type if it has to
2018 /// create it (this occurs when we see a definition of the function).
2019 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD,
2020                                                  llvm::Type *Ty,
2021                                                  bool ForVTable,
2022                                                  bool DontDefer,
2023                                                  bool IsForDefinition) {
2024   // If there was no specific requested type, just convert it now.
2025   if (!Ty) {
2026     const auto *FD = cast<FunctionDecl>(GD.getDecl());
2027     auto CanonTy = Context.getCanonicalType(FD->getType());
2028     Ty = getTypes().ConvertFunctionType(CanonTy, FD);
2029   }
2030 
2031   StringRef MangledName = getMangledName(GD);
2032   return GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable, DontDefer,
2033                                  /*IsThunk=*/false, llvm::AttributeSet(),
2034                                  IsForDefinition);
2035 }
2036 
2037 /// CreateRuntimeFunction - Create a new runtime function with the specified
2038 /// type and name.
2039 llvm::Constant *
2040 CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy,
2041                                      StringRef Name,
2042                                      llvm::AttributeSet ExtraAttrs) {
2043   llvm::Constant *C =
2044       GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false,
2045                               /*DontDefer=*/false, /*IsThunk=*/false, ExtraAttrs);
2046   if (auto *F = dyn_cast<llvm::Function>(C))
2047     if (F->empty())
2048       F->setCallingConv(getRuntimeCC());
2049   return C;
2050 }
2051 
2052 /// CreateBuiltinFunction - Create a new builtin function with the specified
2053 /// type and name.
2054 llvm::Constant *
2055 CodeGenModule::CreateBuiltinFunction(llvm::FunctionType *FTy,
2056                                      StringRef Name,
2057                                      llvm::AttributeSet ExtraAttrs) {
2058   llvm::Constant *C =
2059       GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false,
2060                               /*DontDefer=*/false, /*IsThunk=*/false, ExtraAttrs);
2061   if (auto *F = dyn_cast<llvm::Function>(C))
2062     if (F->empty())
2063       F->setCallingConv(getBuiltinCC());
2064   return C;
2065 }
2066 
2067 /// isTypeConstant - Determine whether an object of this type can be emitted
2068 /// as a constant.
2069 ///
2070 /// If ExcludeCtor is true, the duration when the object's constructor runs
2071 /// will not be considered. The caller will need to verify that the object is
2072 /// not written to during its construction.
2073 bool CodeGenModule::isTypeConstant(QualType Ty, bool ExcludeCtor) {
2074   if (!Ty.isConstant(Context) && !Ty->isReferenceType())
2075     return false;
2076 
2077   if (Context.getLangOpts().CPlusPlus) {
2078     if (const CXXRecordDecl *Record
2079           = Context.getBaseElementType(Ty)->getAsCXXRecordDecl())
2080       return ExcludeCtor && !Record->hasMutableFields() &&
2081              Record->hasTrivialDestructor();
2082   }
2083 
2084   return true;
2085 }
2086 
2087 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module,
2088 /// create and return an llvm GlobalVariable with the specified type.  If there
2089 /// is something in the module with the specified name, return it potentially
2090 /// bitcasted to the right type.
2091 ///
2092 /// If D is non-null, it specifies a decl that correspond to this.  This is used
2093 /// to set the attributes on the global when it is first created.
2094 ///
2095 /// If IsForDefinition is true, it is guranteed that an actual global with
2096 /// type Ty will be returned, not conversion of a variable with the same
2097 /// mangled name but some other type.
2098 llvm::Constant *
2099 CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName,
2100                                      llvm::PointerType *Ty,
2101                                      const VarDecl *D,
2102                                      bool IsForDefinition) {
2103   // Lookup the entry, lazily creating it if necessary.
2104   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
2105   if (Entry) {
2106     if (WeakRefReferences.erase(Entry)) {
2107       if (D && !D->hasAttr<WeakAttr>())
2108         Entry->setLinkage(llvm::Function::ExternalLinkage);
2109     }
2110 
2111     // Handle dropped DLL attributes.
2112     if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>())
2113       Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
2114 
2115     if (Entry->getType() == Ty)
2116       return Entry;
2117 
2118     // If there are two attempts to define the same mangled name, issue an
2119     // error.
2120     if (IsForDefinition && !Entry->isDeclaration()) {
2121       GlobalDecl OtherGD;
2122       const VarDecl *OtherD;
2123 
2124       // Check that D is not yet in DiagnosedConflictingDefinitions is required
2125       // to make sure that we issue an error only once.
2126       if (D && lookupRepresentativeDecl(MangledName, OtherGD) &&
2127           (D->getCanonicalDecl() != OtherGD.getCanonicalDecl().getDecl()) &&
2128           (OtherD = dyn_cast<VarDecl>(OtherGD.getDecl())) &&
2129           OtherD->hasInit() &&
2130           DiagnosedConflictingDefinitions.insert(D).second) {
2131         getDiags().Report(D->getLocation(),
2132                           diag::err_duplicate_mangled_name);
2133         getDiags().Report(OtherGD.getDecl()->getLocation(),
2134                           diag::note_previous_definition);
2135       }
2136     }
2137 
2138     // Make sure the result is of the correct type.
2139     if (Entry->getType()->getAddressSpace() != Ty->getAddressSpace())
2140       return llvm::ConstantExpr::getAddrSpaceCast(Entry, Ty);
2141 
2142     // (If global is requested for a definition, we always need to create a new
2143     // global, not just return a bitcast.)
2144     if (!IsForDefinition)
2145       return llvm::ConstantExpr::getBitCast(Entry, Ty);
2146   }
2147 
2148   unsigned AddrSpace = GetGlobalVarAddressSpace(D, Ty->getAddressSpace());
2149   auto *GV = new llvm::GlobalVariable(
2150       getModule(), Ty->getElementType(), false,
2151       llvm::GlobalValue::ExternalLinkage, nullptr, MangledName, nullptr,
2152       llvm::GlobalVariable::NotThreadLocal, AddrSpace);
2153 
2154   // If we already created a global with the same mangled name (but different
2155   // type) before, take its name and remove it from its parent.
2156   if (Entry) {
2157     GV->takeName(Entry);
2158 
2159     if (!Entry->use_empty()) {
2160       llvm::Constant *NewPtrForOldDecl =
2161           llvm::ConstantExpr::getBitCast(GV, Entry->getType());
2162       Entry->replaceAllUsesWith(NewPtrForOldDecl);
2163     }
2164 
2165     Entry->eraseFromParent();
2166   }
2167 
2168   // This is the first use or definition of a mangled name.  If there is a
2169   // deferred decl with this name, remember that we need to emit it at the end
2170   // of the file.
2171   auto DDI = DeferredDecls.find(MangledName);
2172   if (DDI != DeferredDecls.end()) {
2173     // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
2174     // list, and remove it from DeferredDecls (since we don't need it anymore).
2175     addDeferredDeclToEmit(GV, DDI->second);
2176     DeferredDecls.erase(DDI);
2177   }
2178 
2179   // Handle things which are present even on external declarations.
2180   if (D) {
2181     // FIXME: This code is overly simple and should be merged with other global
2182     // handling.
2183     GV->setConstant(isTypeConstant(D->getType(), false));
2184 
2185     GV->setAlignment(getContext().getDeclAlign(D).getQuantity());
2186 
2187     setLinkageAndVisibilityForGV(GV, D);
2188 
2189     if (D->getTLSKind()) {
2190       if (D->getTLSKind() == VarDecl::TLS_Dynamic)
2191         CXXThreadLocals.push_back(D);
2192       setTLSMode(GV, *D);
2193     }
2194 
2195     // If required by the ABI, treat declarations of static data members with
2196     // inline initializers as definitions.
2197     if (getContext().isMSStaticDataMemberInlineDefinition(D)) {
2198       EmitGlobalVarDefinition(D);
2199     }
2200 
2201     // Handle XCore specific ABI requirements.
2202     if (getTriple().getArch() == llvm::Triple::xcore &&
2203         D->getLanguageLinkage() == CLanguageLinkage &&
2204         D->getType().isConstant(Context) &&
2205         isExternallyVisible(D->getLinkageAndVisibility().getLinkage()))
2206       GV->setSection(".cp.rodata");
2207   }
2208 
2209   if (AddrSpace != Ty->getAddressSpace())
2210     return llvm::ConstantExpr::getAddrSpaceCast(GV, Ty);
2211 
2212   return GV;
2213 }
2214 
2215 llvm::Constant *
2216 CodeGenModule::GetAddrOfGlobal(GlobalDecl GD,
2217                                bool IsForDefinition) {
2218   if (isa<CXXConstructorDecl>(GD.getDecl()))
2219     return getAddrOfCXXStructor(cast<CXXConstructorDecl>(GD.getDecl()),
2220                                 getFromCtorType(GD.getCtorType()),
2221                                 /*FnInfo=*/nullptr, /*FnType=*/nullptr,
2222                                 /*DontDefer=*/false, IsForDefinition);
2223   else if (isa<CXXDestructorDecl>(GD.getDecl()))
2224     return getAddrOfCXXStructor(cast<CXXDestructorDecl>(GD.getDecl()),
2225                                 getFromDtorType(GD.getDtorType()),
2226                                 /*FnInfo=*/nullptr, /*FnType=*/nullptr,
2227                                 /*DontDefer=*/false, IsForDefinition);
2228   else if (isa<CXXMethodDecl>(GD.getDecl())) {
2229     auto FInfo = &getTypes().arrangeCXXMethodDeclaration(
2230         cast<CXXMethodDecl>(GD.getDecl()));
2231     auto Ty = getTypes().GetFunctionType(*FInfo);
2232     return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false,
2233                              IsForDefinition);
2234   } else if (isa<FunctionDecl>(GD.getDecl())) {
2235     const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
2236     llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
2237     return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false,
2238                              IsForDefinition);
2239   } else
2240     return GetAddrOfGlobalVar(cast<VarDecl>(GD.getDecl()), /*Ty=*/nullptr,
2241                               IsForDefinition);
2242 }
2243 
2244 llvm::GlobalVariable *
2245 CodeGenModule::CreateOrReplaceCXXRuntimeVariable(StringRef Name,
2246                                       llvm::Type *Ty,
2247                                       llvm::GlobalValue::LinkageTypes Linkage) {
2248   llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name);
2249   llvm::GlobalVariable *OldGV = nullptr;
2250 
2251   if (GV) {
2252     // Check if the variable has the right type.
2253     if (GV->getType()->getElementType() == Ty)
2254       return GV;
2255 
2256     // Because C++ name mangling, the only way we can end up with an already
2257     // existing global with the same name is if it has been declared extern "C".
2258     assert(GV->isDeclaration() && "Declaration has wrong type!");
2259     OldGV = GV;
2260   }
2261 
2262   // Create a new variable.
2263   GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true,
2264                                 Linkage, nullptr, Name);
2265 
2266   if (OldGV) {
2267     // Replace occurrences of the old variable if needed.
2268     GV->takeName(OldGV);
2269 
2270     if (!OldGV->use_empty()) {
2271       llvm::Constant *NewPtrForOldDecl =
2272       llvm::ConstantExpr::getBitCast(GV, OldGV->getType());
2273       OldGV->replaceAllUsesWith(NewPtrForOldDecl);
2274     }
2275 
2276     OldGV->eraseFromParent();
2277   }
2278 
2279   if (supportsCOMDAT() && GV->isWeakForLinker() &&
2280       !GV->hasAvailableExternallyLinkage())
2281     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
2282 
2283   return GV;
2284 }
2285 
2286 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the
2287 /// given global variable.  If Ty is non-null and if the global doesn't exist,
2288 /// then it will be created with the specified type instead of whatever the
2289 /// normal requested type would be. If IsForDefinition is true, it is guranteed
2290 /// that an actual global with type Ty will be returned, not conversion of a
2291 /// variable with the same mangled name but some other type.
2292 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D,
2293                                                   llvm::Type *Ty,
2294                                                   bool IsForDefinition) {
2295   assert(D->hasGlobalStorage() && "Not a global variable");
2296   QualType ASTTy = D->getType();
2297   if (!Ty)
2298     Ty = getTypes().ConvertTypeForMem(ASTTy);
2299 
2300   llvm::PointerType *PTy =
2301     llvm::PointerType::get(Ty, getContext().getTargetAddressSpace(ASTTy));
2302 
2303   StringRef MangledName = getMangledName(D);
2304   return GetOrCreateLLVMGlobal(MangledName, PTy, D, IsForDefinition);
2305 }
2306 
2307 /// CreateRuntimeVariable - Create a new runtime global variable with the
2308 /// specified type and name.
2309 llvm::Constant *
2310 CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty,
2311                                      StringRef Name) {
2312   return GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), nullptr);
2313 }
2314 
2315 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) {
2316   assert(!D->getInit() && "Cannot emit definite definitions here!");
2317 
2318   StringRef MangledName = getMangledName(D);
2319   llvm::GlobalValue *GV = GetGlobalValue(MangledName);
2320 
2321   // We already have a definition, not declaration, with the same mangled name.
2322   // Emitting of declaration is not required (and actually overwrites emitted
2323   // definition).
2324   if (GV && !GV->isDeclaration())
2325     return;
2326 
2327   // If we have not seen a reference to this variable yet, place it into the
2328   // deferred declarations table to be emitted if needed later.
2329   if (!MustBeEmitted(D) && !GV) {
2330       DeferredDecls[MangledName] = D;
2331       return;
2332   }
2333 
2334   // The tentative definition is the only definition.
2335   EmitGlobalVarDefinition(D);
2336 }
2337 
2338 CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const {
2339   return Context.toCharUnitsFromBits(
2340       getDataLayout().getTypeStoreSizeInBits(Ty));
2341 }
2342 
2343 unsigned CodeGenModule::GetGlobalVarAddressSpace(const VarDecl *D,
2344                                                  unsigned AddrSpace) {
2345   if (D && LangOpts.CUDA && LangOpts.CUDAIsDevice) {
2346     if (D->hasAttr<CUDAConstantAttr>())
2347       AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_constant);
2348     else if (D->hasAttr<CUDASharedAttr>())
2349       AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_shared);
2350     else
2351       AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_device);
2352   }
2353 
2354   return AddrSpace;
2355 }
2356 
2357 template<typename SomeDecl>
2358 void CodeGenModule::MaybeHandleStaticInExternC(const SomeDecl *D,
2359                                                llvm::GlobalValue *GV) {
2360   if (!getLangOpts().CPlusPlus)
2361     return;
2362 
2363   // Must have 'used' attribute, or else inline assembly can't rely on
2364   // the name existing.
2365   if (!D->template hasAttr<UsedAttr>())
2366     return;
2367 
2368   // Must have internal linkage and an ordinary name.
2369   if (!D->getIdentifier() || D->getFormalLinkage() != InternalLinkage)
2370     return;
2371 
2372   // Must be in an extern "C" context. Entities declared directly within
2373   // a record are not extern "C" even if the record is in such a context.
2374   const SomeDecl *First = D->getFirstDecl();
2375   if (First->getDeclContext()->isRecord() || !First->isInExternCContext())
2376     return;
2377 
2378   // OK, this is an internal linkage entity inside an extern "C" linkage
2379   // specification. Make a note of that so we can give it the "expected"
2380   // mangled name if nothing else is using that name.
2381   std::pair<StaticExternCMap::iterator, bool> R =
2382       StaticExternCValues.insert(std::make_pair(D->getIdentifier(), GV));
2383 
2384   // If we have multiple internal linkage entities with the same name
2385   // in extern "C" regions, none of them gets that name.
2386   if (!R.second)
2387     R.first->second = nullptr;
2388 }
2389 
2390 static bool shouldBeInCOMDAT(CodeGenModule &CGM, const Decl &D) {
2391   if (!CGM.supportsCOMDAT())
2392     return false;
2393 
2394   if (D.hasAttr<SelectAnyAttr>())
2395     return true;
2396 
2397   GVALinkage Linkage;
2398   if (auto *VD = dyn_cast<VarDecl>(&D))
2399     Linkage = CGM.getContext().GetGVALinkageForVariable(VD);
2400   else
2401     Linkage = CGM.getContext().GetGVALinkageForFunction(cast<FunctionDecl>(&D));
2402 
2403   switch (Linkage) {
2404   case GVA_Internal:
2405   case GVA_AvailableExternally:
2406   case GVA_StrongExternal:
2407     return false;
2408   case GVA_DiscardableODR:
2409   case GVA_StrongODR:
2410     return true;
2411   }
2412   llvm_unreachable("No such linkage");
2413 }
2414 
2415 void CodeGenModule::maybeSetTrivialComdat(const Decl &D,
2416                                           llvm::GlobalObject &GO) {
2417   if (!shouldBeInCOMDAT(*this, D))
2418     return;
2419   GO.setComdat(TheModule.getOrInsertComdat(GO.getName()));
2420 }
2421 
2422 /// Pass IsTentative as true if you want to create a tentative definition.
2423 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D,
2424                                             bool IsTentative) {
2425   // OpenCL global variables of sampler type are translated to function calls,
2426   // therefore no need to be translated.
2427   QualType ASTTy = D->getType();
2428   if (getLangOpts().OpenCL && ASTTy->isSamplerT())
2429     return;
2430 
2431   llvm::Constant *Init = nullptr;
2432   CXXRecordDecl *RD = ASTTy->getBaseElementTypeUnsafe()->getAsCXXRecordDecl();
2433   bool NeedsGlobalCtor = false;
2434   bool NeedsGlobalDtor = RD && !RD->hasTrivialDestructor();
2435 
2436   const VarDecl *InitDecl;
2437   const Expr *InitExpr = D->getAnyInitializer(InitDecl);
2438 
2439   // CUDA E.2.4.1 "__shared__ variables cannot have an initialization
2440   // as part of their declaration."  Sema has already checked for
2441   // error cases, so we just need to set Init to UndefValue.
2442   if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice &&
2443       D->hasAttr<CUDASharedAttr>())
2444     Init = llvm::UndefValue::get(getTypes().ConvertType(ASTTy));
2445   else if (!InitExpr) {
2446     // This is a tentative definition; tentative definitions are
2447     // implicitly initialized with { 0 }.
2448     //
2449     // Note that tentative definitions are only emitted at the end of
2450     // a translation unit, so they should never have incomplete
2451     // type. In addition, EmitTentativeDefinition makes sure that we
2452     // never attempt to emit a tentative definition if a real one
2453     // exists. A use may still exists, however, so we still may need
2454     // to do a RAUW.
2455     assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type");
2456     Init = EmitNullConstant(D->getType());
2457   } else {
2458     initializedGlobalDecl = GlobalDecl(D);
2459     Init = EmitConstantInit(*InitDecl);
2460 
2461     if (!Init) {
2462       QualType T = InitExpr->getType();
2463       if (D->getType()->isReferenceType())
2464         T = D->getType();
2465 
2466       if (getLangOpts().CPlusPlus) {
2467         Init = EmitNullConstant(T);
2468         NeedsGlobalCtor = true;
2469       } else {
2470         ErrorUnsupported(D, "static initializer");
2471         Init = llvm::UndefValue::get(getTypes().ConvertType(T));
2472       }
2473     } else {
2474       // We don't need an initializer, so remove the entry for the delayed
2475       // initializer position (just in case this entry was delayed) if we
2476       // also don't need to register a destructor.
2477       if (getLangOpts().CPlusPlus && !NeedsGlobalDtor)
2478         DelayedCXXInitPosition.erase(D);
2479     }
2480   }
2481 
2482   llvm::Type* InitType = Init->getType();
2483   llvm::Constant *Entry =
2484       GetAddrOfGlobalVar(D, InitType, /*IsForDefinition=*/!IsTentative);
2485 
2486   // Strip off a bitcast if we got one back.
2487   if (auto *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
2488     assert(CE->getOpcode() == llvm::Instruction::BitCast ||
2489            CE->getOpcode() == llvm::Instruction::AddrSpaceCast ||
2490            // All zero index gep.
2491            CE->getOpcode() == llvm::Instruction::GetElementPtr);
2492     Entry = CE->getOperand(0);
2493   }
2494 
2495   // Entry is now either a Function or GlobalVariable.
2496   auto *GV = dyn_cast<llvm::GlobalVariable>(Entry);
2497 
2498   // We have a definition after a declaration with the wrong type.
2499   // We must make a new GlobalVariable* and update everything that used OldGV
2500   // (a declaration or tentative definition) with the new GlobalVariable*
2501   // (which will be a definition).
2502   //
2503   // This happens if there is a prototype for a global (e.g.
2504   // "extern int x[];") and then a definition of a different type (e.g.
2505   // "int x[10];"). This also happens when an initializer has a different type
2506   // from the type of the global (this happens with unions).
2507   if (!GV ||
2508       GV->getType()->getElementType() != InitType ||
2509       GV->getType()->getAddressSpace() !=
2510        GetGlobalVarAddressSpace(D, getContext().getTargetAddressSpace(ASTTy))) {
2511 
2512     // Move the old entry aside so that we'll create a new one.
2513     Entry->setName(StringRef());
2514 
2515     // Make a new global with the correct type, this is now guaranteed to work.
2516     GV = cast<llvm::GlobalVariable>(
2517         GetAddrOfGlobalVar(D, InitType, /*IsForDefinition=*/!IsTentative));
2518 
2519     // Replace all uses of the old global with the new global
2520     llvm::Constant *NewPtrForOldDecl =
2521         llvm::ConstantExpr::getBitCast(GV, Entry->getType());
2522     Entry->replaceAllUsesWith(NewPtrForOldDecl);
2523 
2524     // Erase the old global, since it is no longer used.
2525     cast<llvm::GlobalValue>(Entry)->eraseFromParent();
2526   }
2527 
2528   MaybeHandleStaticInExternC(D, GV);
2529 
2530   if (D->hasAttr<AnnotateAttr>())
2531     AddGlobalAnnotations(D, GV);
2532 
2533   // Set the llvm linkage type as appropriate.
2534   llvm::GlobalValue::LinkageTypes Linkage =
2535       getLLVMLinkageVarDefinition(D, GV->isConstant());
2536 
2537   // CUDA B.2.1 "The __device__ qualifier declares a variable that resides on
2538   // the device. [...]"
2539   // CUDA B.2.2 "The __constant__ qualifier, optionally used together with
2540   // __device__, declares a variable that: [...]
2541   // Is accessible from all the threads within the grid and from the host
2542   // through the runtime library (cudaGetSymbolAddress() / cudaGetSymbolSize()
2543   // / cudaMemcpyToSymbol() / cudaMemcpyFromSymbol())."
2544   if (GV && LangOpts.CUDA) {
2545     if (LangOpts.CUDAIsDevice) {
2546       if (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>())
2547         GV->setExternallyInitialized(true);
2548     } else {
2549       // Host-side shadows of external declarations of device-side
2550       // global variables become internal definitions. These have to
2551       // be internal in order to prevent name conflicts with global
2552       // host variables with the same name in a different TUs.
2553       if (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>()) {
2554         Linkage = llvm::GlobalValue::InternalLinkage;
2555 
2556         // Shadow variables and their properties must be registered
2557         // with CUDA runtime.
2558         unsigned Flags = 0;
2559         if (!D->hasDefinition())
2560           Flags |= CGCUDARuntime::ExternDeviceVar;
2561         if (D->hasAttr<CUDAConstantAttr>())
2562           Flags |= CGCUDARuntime::ConstantDeviceVar;
2563         getCUDARuntime().registerDeviceVar(*GV, Flags);
2564       } else if (D->hasAttr<CUDASharedAttr>())
2565         // __shared__ variables are odd. Shadows do get created, but
2566         // they are not registered with the CUDA runtime, so they
2567         // can't really be used to access their device-side
2568         // counterparts. It's not clear yet whether it's nvcc's bug or
2569         // a feature, but we've got to do the same for compatibility.
2570         Linkage = llvm::GlobalValue::InternalLinkage;
2571     }
2572   }
2573   GV->setInitializer(Init);
2574 
2575   // If it is safe to mark the global 'constant', do so now.
2576   GV->setConstant(!NeedsGlobalCtor && !NeedsGlobalDtor &&
2577                   isTypeConstant(D->getType(), true));
2578 
2579   // If it is in a read-only section, mark it 'constant'.
2580   if (const SectionAttr *SA = D->getAttr<SectionAttr>()) {
2581     const ASTContext::SectionInfo &SI = Context.SectionInfos[SA->getName()];
2582     if ((SI.SectionFlags & ASTContext::PSF_Write) == 0)
2583       GV->setConstant(true);
2584   }
2585 
2586   GV->setAlignment(getContext().getDeclAlign(D).getQuantity());
2587 
2588 
2589   // On Darwin, if the normal linkage of a C++ thread_local variable is
2590   // LinkOnce or Weak, we keep the normal linkage to prevent multiple
2591   // copies within a linkage unit; otherwise, the backing variable has
2592   // internal linkage and all accesses should just be calls to the
2593   // Itanium-specified entry point, which has the normal linkage of the
2594   // variable. This is to preserve the ability to change the implementation
2595   // behind the scenes.
2596   if (!D->isStaticLocal() && D->getTLSKind() == VarDecl::TLS_Dynamic &&
2597       Context.getTargetInfo().getTriple().isOSDarwin() &&
2598       !llvm::GlobalVariable::isLinkOnceLinkage(Linkage) &&
2599       !llvm::GlobalVariable::isWeakLinkage(Linkage))
2600     Linkage = llvm::GlobalValue::InternalLinkage;
2601 
2602   GV->setLinkage(Linkage);
2603   if (D->hasAttr<DLLImportAttr>())
2604     GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass);
2605   else if (D->hasAttr<DLLExportAttr>())
2606     GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass);
2607   else
2608     GV->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass);
2609 
2610   if (Linkage == llvm::GlobalVariable::CommonLinkage)
2611     // common vars aren't constant even if declared const.
2612     GV->setConstant(false);
2613 
2614   setNonAliasAttributes(D, GV);
2615 
2616   if (D->getTLSKind() && !GV->isThreadLocal()) {
2617     if (D->getTLSKind() == VarDecl::TLS_Dynamic)
2618       CXXThreadLocals.push_back(D);
2619     setTLSMode(GV, *D);
2620   }
2621 
2622   maybeSetTrivialComdat(*D, *GV);
2623 
2624   // Emit the initializer function if necessary.
2625   if (NeedsGlobalCtor || NeedsGlobalDtor)
2626     EmitCXXGlobalVarDeclInitFunc(D, GV, NeedsGlobalCtor);
2627 
2628   SanitizerMD->reportGlobalToASan(GV, *D, NeedsGlobalCtor);
2629 
2630   // Emit global variable debug information.
2631   if (CGDebugInfo *DI = getModuleDebugInfo())
2632     if (getCodeGenOpts().getDebugInfo() >= codegenoptions::LimitedDebugInfo)
2633       DI->EmitGlobalVariable(GV, D);
2634 }
2635 
2636 static bool isVarDeclStrongDefinition(const ASTContext &Context,
2637                                       CodeGenModule &CGM, const VarDecl *D,
2638                                       bool NoCommon) {
2639   // Don't give variables common linkage if -fno-common was specified unless it
2640   // was overridden by a NoCommon attribute.
2641   if ((NoCommon || D->hasAttr<NoCommonAttr>()) && !D->hasAttr<CommonAttr>())
2642     return true;
2643 
2644   // C11 6.9.2/2:
2645   //   A declaration of an identifier for an object that has file scope without
2646   //   an initializer, and without a storage-class specifier or with the
2647   //   storage-class specifier static, constitutes a tentative definition.
2648   if (D->getInit() || D->hasExternalStorage())
2649     return true;
2650 
2651   // A variable cannot be both common and exist in a section.
2652   if (D->hasAttr<SectionAttr>())
2653     return true;
2654 
2655   // Thread local vars aren't considered common linkage.
2656   if (D->getTLSKind())
2657     return true;
2658 
2659   // Tentative definitions marked with WeakImportAttr are true definitions.
2660   if (D->hasAttr<WeakImportAttr>())
2661     return true;
2662 
2663   // A variable cannot be both common and exist in a comdat.
2664   if (shouldBeInCOMDAT(CGM, *D))
2665     return true;
2666 
2667   // Declarations with a required alignment do not have common linkage in MSVC
2668   // mode.
2669   if (Context.getTargetInfo().getCXXABI().isMicrosoft()) {
2670     if (D->hasAttr<AlignedAttr>())
2671       return true;
2672     QualType VarType = D->getType();
2673     if (Context.isAlignmentRequired(VarType))
2674       return true;
2675 
2676     if (const auto *RT = VarType->getAs<RecordType>()) {
2677       const RecordDecl *RD = RT->getDecl();
2678       for (const FieldDecl *FD : RD->fields()) {
2679         if (FD->isBitField())
2680           continue;
2681         if (FD->hasAttr<AlignedAttr>())
2682           return true;
2683         if (Context.isAlignmentRequired(FD->getType()))
2684           return true;
2685       }
2686     }
2687   }
2688 
2689   return false;
2690 }
2691 
2692 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageForDeclarator(
2693     const DeclaratorDecl *D, GVALinkage Linkage, bool IsConstantVariable) {
2694   if (Linkage == GVA_Internal)
2695     return llvm::Function::InternalLinkage;
2696 
2697   if (D->hasAttr<WeakAttr>()) {
2698     if (IsConstantVariable)
2699       return llvm::GlobalVariable::WeakODRLinkage;
2700     else
2701       return llvm::GlobalVariable::WeakAnyLinkage;
2702   }
2703 
2704   // We are guaranteed to have a strong definition somewhere else,
2705   // so we can use available_externally linkage.
2706   if (Linkage == GVA_AvailableExternally)
2707     return llvm::Function::AvailableExternallyLinkage;
2708 
2709   // Note that Apple's kernel linker doesn't support symbol
2710   // coalescing, so we need to avoid linkonce and weak linkages there.
2711   // Normally, this means we just map to internal, but for explicit
2712   // instantiations we'll map to external.
2713 
2714   // In C++, the compiler has to emit a definition in every translation unit
2715   // that references the function.  We should use linkonce_odr because
2716   // a) if all references in this translation unit are optimized away, we
2717   // don't need to codegen it.  b) if the function persists, it needs to be
2718   // merged with other definitions. c) C++ has the ODR, so we know the
2719   // definition is dependable.
2720   if (Linkage == GVA_DiscardableODR)
2721     return !Context.getLangOpts().AppleKext ? llvm::Function::LinkOnceODRLinkage
2722                                             : llvm::Function::InternalLinkage;
2723 
2724   // An explicit instantiation of a template has weak linkage, since
2725   // explicit instantiations can occur in multiple translation units
2726   // and must all be equivalent. However, we are not allowed to
2727   // throw away these explicit instantiations.
2728   //
2729   // We don't currently support CUDA device code spread out across multiple TUs,
2730   // so say that CUDA templates are either external (for kernels) or internal.
2731   // This lets llvm perform aggressive inter-procedural optimizations.
2732   if (Linkage == GVA_StrongODR) {
2733     if (Context.getLangOpts().AppleKext)
2734       return llvm::Function::ExternalLinkage;
2735     if (Context.getLangOpts().CUDA && Context.getLangOpts().CUDAIsDevice)
2736       return D->hasAttr<CUDAGlobalAttr>() ? llvm::Function::ExternalLinkage
2737                                           : llvm::Function::InternalLinkage;
2738     return llvm::Function::WeakODRLinkage;
2739   }
2740 
2741   // C++ doesn't have tentative definitions and thus cannot have common
2742   // linkage.
2743   if (!getLangOpts().CPlusPlus && isa<VarDecl>(D) &&
2744       !isVarDeclStrongDefinition(Context, *this, cast<VarDecl>(D),
2745                                  CodeGenOpts.NoCommon))
2746     return llvm::GlobalVariable::CommonLinkage;
2747 
2748   // selectany symbols are externally visible, so use weak instead of
2749   // linkonce.  MSVC optimizes away references to const selectany globals, so
2750   // all definitions should be the same and ODR linkage should be used.
2751   // http://msdn.microsoft.com/en-us/library/5tkz6s71.aspx
2752   if (D->hasAttr<SelectAnyAttr>())
2753     return llvm::GlobalVariable::WeakODRLinkage;
2754 
2755   // Otherwise, we have strong external linkage.
2756   assert(Linkage == GVA_StrongExternal);
2757   return llvm::GlobalVariable::ExternalLinkage;
2758 }
2759 
2760 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageVarDefinition(
2761     const VarDecl *VD, bool IsConstant) {
2762   GVALinkage Linkage = getContext().GetGVALinkageForVariable(VD);
2763   return getLLVMLinkageForDeclarator(VD, Linkage, IsConstant);
2764 }
2765 
2766 /// Replace the uses of a function that was declared with a non-proto type.
2767 /// We want to silently drop extra arguments from call sites
2768 static void replaceUsesOfNonProtoConstant(llvm::Constant *old,
2769                                           llvm::Function *newFn) {
2770   // Fast path.
2771   if (old->use_empty()) return;
2772 
2773   llvm::Type *newRetTy = newFn->getReturnType();
2774   SmallVector<llvm::Value*, 4> newArgs;
2775   SmallVector<llvm::OperandBundleDef, 1> newBundles;
2776 
2777   for (llvm::Value::use_iterator ui = old->use_begin(), ue = old->use_end();
2778          ui != ue; ) {
2779     llvm::Value::use_iterator use = ui++; // Increment before the use is erased.
2780     llvm::User *user = use->getUser();
2781 
2782     // Recognize and replace uses of bitcasts.  Most calls to
2783     // unprototyped functions will use bitcasts.
2784     if (auto *bitcast = dyn_cast<llvm::ConstantExpr>(user)) {
2785       if (bitcast->getOpcode() == llvm::Instruction::BitCast)
2786         replaceUsesOfNonProtoConstant(bitcast, newFn);
2787       continue;
2788     }
2789 
2790     // Recognize calls to the function.
2791     llvm::CallSite callSite(user);
2792     if (!callSite) continue;
2793     if (!callSite.isCallee(&*use)) continue;
2794 
2795     // If the return types don't match exactly, then we can't
2796     // transform this call unless it's dead.
2797     if (callSite->getType() != newRetTy && !callSite->use_empty())
2798       continue;
2799 
2800     // Get the call site's attribute list.
2801     SmallVector<llvm::AttributeSet, 8> newAttrs;
2802     llvm::AttributeSet oldAttrs = callSite.getAttributes();
2803 
2804     // Collect any return attributes from the call.
2805     if (oldAttrs.hasAttributes(llvm::AttributeSet::ReturnIndex))
2806       newAttrs.push_back(
2807         llvm::AttributeSet::get(newFn->getContext(),
2808                                 oldAttrs.getRetAttributes()));
2809 
2810     // If the function was passed too few arguments, don't transform.
2811     unsigned newNumArgs = newFn->arg_size();
2812     if (callSite.arg_size() < newNumArgs) continue;
2813 
2814     // If extra arguments were passed, we silently drop them.
2815     // If any of the types mismatch, we don't transform.
2816     unsigned argNo = 0;
2817     bool dontTransform = false;
2818     for (llvm::Function::arg_iterator ai = newFn->arg_begin(),
2819            ae = newFn->arg_end(); ai != ae; ++ai, ++argNo) {
2820       if (callSite.getArgument(argNo)->getType() != ai->getType()) {
2821         dontTransform = true;
2822         break;
2823       }
2824 
2825       // Add any parameter attributes.
2826       if (oldAttrs.hasAttributes(argNo + 1))
2827         newAttrs.
2828           push_back(llvm::
2829                     AttributeSet::get(newFn->getContext(),
2830                                       oldAttrs.getParamAttributes(argNo + 1)));
2831     }
2832     if (dontTransform)
2833       continue;
2834 
2835     if (oldAttrs.hasAttributes(llvm::AttributeSet::FunctionIndex))
2836       newAttrs.push_back(llvm::AttributeSet::get(newFn->getContext(),
2837                                                  oldAttrs.getFnAttributes()));
2838 
2839     // Okay, we can transform this.  Create the new call instruction and copy
2840     // over the required information.
2841     newArgs.append(callSite.arg_begin(), callSite.arg_begin() + argNo);
2842 
2843     // Copy over any operand bundles.
2844     callSite.getOperandBundlesAsDefs(newBundles);
2845 
2846     llvm::CallSite newCall;
2847     if (callSite.isCall()) {
2848       newCall = llvm::CallInst::Create(newFn, newArgs, newBundles, "",
2849                                        callSite.getInstruction());
2850     } else {
2851       auto *oldInvoke = cast<llvm::InvokeInst>(callSite.getInstruction());
2852       newCall = llvm::InvokeInst::Create(newFn,
2853                                          oldInvoke->getNormalDest(),
2854                                          oldInvoke->getUnwindDest(),
2855                                          newArgs, newBundles, "",
2856                                          callSite.getInstruction());
2857     }
2858     newArgs.clear(); // for the next iteration
2859 
2860     if (!newCall->getType()->isVoidTy())
2861       newCall->takeName(callSite.getInstruction());
2862     newCall.setAttributes(
2863                      llvm::AttributeSet::get(newFn->getContext(), newAttrs));
2864     newCall.setCallingConv(callSite.getCallingConv());
2865 
2866     // Finally, remove the old call, replacing any uses with the new one.
2867     if (!callSite->use_empty())
2868       callSite->replaceAllUsesWith(newCall.getInstruction());
2869 
2870     // Copy debug location attached to CI.
2871     if (callSite->getDebugLoc())
2872       newCall->setDebugLoc(callSite->getDebugLoc());
2873 
2874     callSite->eraseFromParent();
2875   }
2876 }
2877 
2878 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we
2879 /// implement a function with no prototype, e.g. "int foo() {}".  If there are
2880 /// existing call uses of the old function in the module, this adjusts them to
2881 /// call the new function directly.
2882 ///
2883 /// This is not just a cleanup: the always_inline pass requires direct calls to
2884 /// functions to be able to inline them.  If there is a bitcast in the way, it
2885 /// won't inline them.  Instcombine normally deletes these calls, but it isn't
2886 /// run at -O0.
2887 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
2888                                                       llvm::Function *NewFn) {
2889   // If we're redefining a global as a function, don't transform it.
2890   if (!isa<llvm::Function>(Old)) return;
2891 
2892   replaceUsesOfNonProtoConstant(Old, NewFn);
2893 }
2894 
2895 void CodeGenModule::HandleCXXStaticMemberVarInstantiation(VarDecl *VD) {
2896   auto DK = VD->isThisDeclarationADefinition();
2897   if (DK == VarDecl::Definition && VD->hasAttr<DLLImportAttr>())
2898     return;
2899 
2900   TemplateSpecializationKind TSK = VD->getTemplateSpecializationKind();
2901   // If we have a definition, this might be a deferred decl. If the
2902   // instantiation is explicit, make sure we emit it at the end.
2903   if (VD->getDefinition() && TSK == TSK_ExplicitInstantiationDefinition)
2904     GetAddrOfGlobalVar(VD);
2905 
2906   EmitTopLevelDecl(VD);
2907 }
2908 
2909 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD,
2910                                                  llvm::GlobalValue *GV) {
2911   const auto *D = cast<FunctionDecl>(GD.getDecl());
2912 
2913   // Emit this function's deferred diagnostics, if none of them are errors.  If
2914   // any of them are errors, don't codegen the function, but also don't emit any
2915   // of the diagnostics just yet.  Emitting an error during codegen stops
2916   // further codegen, and we want to display as many deferred diags as possible.
2917   // We'll emit the now twice-deferred diags at the very end of codegen.
2918   //
2919   // (If a function has both error and non-error diags, we don't emit the
2920   // non-error diags here, because order can be significant, e.g. with notes
2921   // that follow errors.)
2922   auto Diags = D->takeDeferredDiags();
2923   bool HasError = llvm::any_of(Diags, [this](const PartialDiagnosticAt &PDAt) {
2924     return getDiags().getDiagnosticLevel(PDAt.second.getDiagID(), PDAt.first) >=
2925            DiagnosticsEngine::Error;
2926   });
2927   if (HasError) {
2928     DeferredDiags.insert(DeferredDiags.end(),
2929                          std::make_move_iterator(Diags.begin()),
2930                          std::make_move_iterator(Diags.end()));
2931     return;
2932   }
2933   for (PartialDiagnosticAt &PDAt : Diags) {
2934     const SourceLocation &Loc = PDAt.first;
2935     const PartialDiagnostic &PD = PDAt.second;
2936     DiagnosticBuilder Builder(getDiags().Report(Loc, PD.getDiagID()));
2937     PD.Emit(Builder);
2938   }
2939 
2940   // Compute the function info and LLVM type.
2941   const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
2942   llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
2943 
2944   // Get or create the prototype for the function.
2945   if (!GV || (GV->getType()->getElementType() != Ty))
2946     GV = cast<llvm::GlobalValue>(GetAddrOfFunction(GD, Ty, /*ForVTable=*/false,
2947                                                    /*DontDefer=*/true,
2948                                                    /*IsForDefinition=*/true));
2949 
2950   // Already emitted.
2951   if (!GV->isDeclaration())
2952     return;
2953 
2954   // We need to set linkage and visibility on the function before
2955   // generating code for it because various parts of IR generation
2956   // want to propagate this information down (e.g. to local static
2957   // declarations).
2958   auto *Fn = cast<llvm::Function>(GV);
2959   setFunctionLinkage(GD, Fn);
2960   setFunctionDLLStorageClass(GD, Fn);
2961 
2962   // FIXME: this is redundant with part of setFunctionDefinitionAttributes
2963   setGlobalVisibility(Fn, D);
2964 
2965   MaybeHandleStaticInExternC(D, Fn);
2966 
2967   maybeSetTrivialComdat(*D, *Fn);
2968 
2969   CodeGenFunction(*this).GenerateCode(D, Fn, FI);
2970 
2971   setFunctionDefinitionAttributes(D, Fn);
2972   SetLLVMFunctionAttributesForDefinition(D, Fn);
2973 
2974   if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>())
2975     AddGlobalCtor(Fn, CA->getPriority());
2976   if (const DestructorAttr *DA = D->getAttr<DestructorAttr>())
2977     AddGlobalDtor(Fn, DA->getPriority());
2978   if (D->hasAttr<AnnotateAttr>())
2979     AddGlobalAnnotations(D, Fn);
2980 }
2981 
2982 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) {
2983   const auto *D = cast<ValueDecl>(GD.getDecl());
2984   const AliasAttr *AA = D->getAttr<AliasAttr>();
2985   assert(AA && "Not an alias?");
2986 
2987   StringRef MangledName = getMangledName(GD);
2988 
2989   if (AA->getAliasee() == MangledName) {
2990     Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0;
2991     return;
2992   }
2993 
2994   // If there is a definition in the module, then it wins over the alias.
2995   // This is dubious, but allow it to be safe.  Just ignore the alias.
2996   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
2997   if (Entry && !Entry->isDeclaration())
2998     return;
2999 
3000   Aliases.push_back(GD);
3001 
3002   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
3003 
3004   // Create a reference to the named value.  This ensures that it is emitted
3005   // if a deferred decl.
3006   llvm::Constant *Aliasee;
3007   if (isa<llvm::FunctionType>(DeclTy))
3008     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GD,
3009                                       /*ForVTable=*/false);
3010   else
3011     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
3012                                     llvm::PointerType::getUnqual(DeclTy),
3013                                     /*D=*/nullptr);
3014 
3015   // Create the new alias itself, but don't set a name yet.
3016   auto *GA = llvm::GlobalAlias::create(
3017       DeclTy, 0, llvm::Function::ExternalLinkage, "", Aliasee, &getModule());
3018 
3019   if (Entry) {
3020     if (GA->getAliasee() == Entry) {
3021       Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0;
3022       return;
3023     }
3024 
3025     assert(Entry->isDeclaration());
3026 
3027     // If there is a declaration in the module, then we had an extern followed
3028     // by the alias, as in:
3029     //   extern int test6();
3030     //   ...
3031     //   int test6() __attribute__((alias("test7")));
3032     //
3033     // Remove it and replace uses of it with the alias.
3034     GA->takeName(Entry);
3035 
3036     Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA,
3037                                                           Entry->getType()));
3038     Entry->eraseFromParent();
3039   } else {
3040     GA->setName(MangledName);
3041   }
3042 
3043   // Set attributes which are particular to an alias; this is a
3044   // specialization of the attributes which may be set on a global
3045   // variable/function.
3046   if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakRefAttr>() ||
3047       D->isWeakImported()) {
3048     GA->setLinkage(llvm::Function::WeakAnyLinkage);
3049   }
3050 
3051   if (const auto *VD = dyn_cast<VarDecl>(D))
3052     if (VD->getTLSKind())
3053       setTLSMode(GA, *VD);
3054 
3055   setAliasAttributes(D, GA);
3056 }
3057 
3058 void CodeGenModule::emitIFuncDefinition(GlobalDecl GD) {
3059   const auto *D = cast<ValueDecl>(GD.getDecl());
3060   const IFuncAttr *IFA = D->getAttr<IFuncAttr>();
3061   assert(IFA && "Not an ifunc?");
3062 
3063   StringRef MangledName = getMangledName(GD);
3064 
3065   if (IFA->getResolver() == MangledName) {
3066     Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1;
3067     return;
3068   }
3069 
3070   // Report an error if some definition overrides ifunc.
3071   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
3072   if (Entry && !Entry->isDeclaration()) {
3073     GlobalDecl OtherGD;
3074     if (lookupRepresentativeDecl(MangledName, OtherGD) &&
3075         DiagnosedConflictingDefinitions.insert(GD).second) {
3076       Diags.Report(D->getLocation(), diag::err_duplicate_mangled_name);
3077       Diags.Report(OtherGD.getDecl()->getLocation(),
3078                    diag::note_previous_definition);
3079     }
3080     return;
3081   }
3082 
3083   Aliases.push_back(GD);
3084 
3085   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
3086   llvm::Constant *Resolver =
3087       GetOrCreateLLVMFunction(IFA->getResolver(), DeclTy, GD,
3088                               /*ForVTable=*/false);
3089   llvm::GlobalIFunc *GIF =
3090       llvm::GlobalIFunc::create(DeclTy, 0, llvm::Function::ExternalLinkage,
3091                                 "", Resolver, &getModule());
3092   if (Entry) {
3093     if (GIF->getResolver() == Entry) {
3094       Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1;
3095       return;
3096     }
3097     assert(Entry->isDeclaration());
3098 
3099     // If there is a declaration in the module, then we had an extern followed
3100     // by the ifunc, as in:
3101     //   extern int test();
3102     //   ...
3103     //   int test() __attribute__((ifunc("resolver")));
3104     //
3105     // Remove it and replace uses of it with the ifunc.
3106     GIF->takeName(Entry);
3107 
3108     Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GIF,
3109                                                           Entry->getType()));
3110     Entry->eraseFromParent();
3111   } else
3112     GIF->setName(MangledName);
3113 
3114   SetCommonAttributes(D, GIF);
3115 }
3116 
3117 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,
3118                                             ArrayRef<llvm::Type*> Tys) {
3119   return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID,
3120                                          Tys);
3121 }
3122 
3123 static llvm::StringMapEntry<llvm::GlobalVariable *> &
3124 GetConstantCFStringEntry(llvm::StringMap<llvm::GlobalVariable *> &Map,
3125                          const StringLiteral *Literal, bool TargetIsLSB,
3126                          bool &IsUTF16, unsigned &StringLength) {
3127   StringRef String = Literal->getString();
3128   unsigned NumBytes = String.size();
3129 
3130   // Check for simple case.
3131   if (!Literal->containsNonAsciiOrNull()) {
3132     StringLength = NumBytes;
3133     return *Map.insert(std::make_pair(String, nullptr)).first;
3134   }
3135 
3136   // Otherwise, convert the UTF8 literals into a string of shorts.
3137   IsUTF16 = true;
3138 
3139   SmallVector<UTF16, 128> ToBuf(NumBytes + 1); // +1 for ending nulls.
3140   const UTF8 *FromPtr = (const UTF8 *)String.data();
3141   UTF16 *ToPtr = &ToBuf[0];
3142 
3143   (void)ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes,
3144                            &ToPtr, ToPtr + NumBytes,
3145                            strictConversion);
3146 
3147   // ConvertUTF8toUTF16 returns the length in ToPtr.
3148   StringLength = ToPtr - &ToBuf[0];
3149 
3150   // Add an explicit null.
3151   *ToPtr = 0;
3152   return *Map.insert(std::make_pair(
3153                          StringRef(reinterpret_cast<const char *>(ToBuf.data()),
3154                                    (StringLength + 1) * 2),
3155                          nullptr)).first;
3156 }
3157 
3158 static llvm::StringMapEntry<llvm::GlobalVariable *> &
3159 GetConstantStringEntry(llvm::StringMap<llvm::GlobalVariable *> &Map,
3160                        const StringLiteral *Literal, unsigned &StringLength) {
3161   StringRef String = Literal->getString();
3162   StringLength = String.size();
3163   return *Map.insert(std::make_pair(String, nullptr)).first;
3164 }
3165 
3166 ConstantAddress
3167 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) {
3168   unsigned StringLength = 0;
3169   bool isUTF16 = false;
3170   llvm::StringMapEntry<llvm::GlobalVariable *> &Entry =
3171       GetConstantCFStringEntry(CFConstantStringMap, Literal,
3172                                getDataLayout().isLittleEndian(), isUTF16,
3173                                StringLength);
3174 
3175   if (auto *C = Entry.second)
3176     return ConstantAddress(C, CharUnits::fromQuantity(C->getAlignment()));
3177 
3178   llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty);
3179   llvm::Constant *Zeros[] = { Zero, Zero };
3180 
3181   // If we don't already have it, get __CFConstantStringClassReference.
3182   if (!CFConstantStringClassRef) {
3183     llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
3184     Ty = llvm::ArrayType::get(Ty, 0);
3185     llvm::Constant *GV =
3186         CreateRuntimeVariable(Ty, "__CFConstantStringClassReference");
3187 
3188     if (getTriple().isOSBinFormatCOFF()) {
3189       IdentifierInfo &II = getContext().Idents.get(GV->getName());
3190       TranslationUnitDecl *TUDecl = getContext().getTranslationUnitDecl();
3191       DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl);
3192       llvm::GlobalValue *CGV = cast<llvm::GlobalValue>(GV);
3193 
3194       const VarDecl *VD = nullptr;
3195       for (const auto &Result : DC->lookup(&II))
3196         if ((VD = dyn_cast<VarDecl>(Result)))
3197           break;
3198 
3199       if (!VD || !VD->hasAttr<DLLExportAttr>()) {
3200         CGV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass);
3201         CGV->setLinkage(llvm::GlobalValue::ExternalLinkage);
3202       } else {
3203         CGV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass);
3204         CGV->setLinkage(llvm::GlobalValue::ExternalLinkage);
3205       }
3206     }
3207 
3208     // Decay array -> ptr
3209     CFConstantStringClassRef =
3210         llvm::ConstantExpr::getGetElementPtr(Ty, GV, Zeros);
3211   }
3212 
3213   QualType CFTy = getContext().getCFConstantStringType();
3214 
3215   auto *STy = cast<llvm::StructType>(getTypes().ConvertType(CFTy));
3216 
3217   llvm::Constant *Fields[4];
3218 
3219   // Class pointer.
3220   Fields[0] = cast<llvm::ConstantExpr>(CFConstantStringClassRef);
3221 
3222   // Flags.
3223   llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy);
3224   Fields[1] = isUTF16 ? llvm::ConstantInt::get(Ty, 0x07d0)
3225                       : llvm::ConstantInt::get(Ty, 0x07C8);
3226 
3227   // String pointer.
3228   llvm::Constant *C = nullptr;
3229   if (isUTF16) {
3230     auto Arr = llvm::makeArrayRef(
3231         reinterpret_cast<uint16_t *>(const_cast<char *>(Entry.first().data())),
3232         Entry.first().size() / 2);
3233     C = llvm::ConstantDataArray::get(VMContext, Arr);
3234   } else {
3235     C = llvm::ConstantDataArray::getString(VMContext, Entry.first());
3236   }
3237 
3238   // Note: -fwritable-strings doesn't make the backing store strings of
3239   // CFStrings writable. (See <rdar://problem/10657500>)
3240   auto *GV =
3241       new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true,
3242                                llvm::GlobalValue::PrivateLinkage, C, ".str");
3243   GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
3244   // Don't enforce the target's minimum global alignment, since the only use
3245   // of the string is via this class initializer.
3246   CharUnits Align = isUTF16
3247                         ? getContext().getTypeAlignInChars(getContext().ShortTy)
3248                         : getContext().getTypeAlignInChars(getContext().CharTy);
3249   GV->setAlignment(Align.getQuantity());
3250 
3251   // FIXME: We set the section explicitly to avoid a bug in ld64 224.1.
3252   // Without it LLVM can merge the string with a non unnamed_addr one during
3253   // LTO.  Doing that changes the section it ends in, which surprises ld64.
3254   if (getTriple().isOSBinFormatMachO())
3255     GV->setSection(isUTF16 ? "__TEXT,__ustring"
3256                            : "__TEXT,__cstring,cstring_literals");
3257 
3258   // String.
3259   Fields[2] =
3260       llvm::ConstantExpr::getGetElementPtr(GV->getValueType(), GV, Zeros);
3261 
3262   if (isUTF16)
3263     // Cast the UTF16 string to the correct type.
3264     Fields[2] = llvm::ConstantExpr::getBitCast(Fields[2], Int8PtrTy);
3265 
3266   // String length.
3267   Ty = getTypes().ConvertType(getContext().LongTy);
3268   Fields[3] = llvm::ConstantInt::get(Ty, StringLength);
3269 
3270   CharUnits Alignment = getPointerAlign();
3271 
3272   // The struct.
3273   C = llvm::ConstantStruct::get(STy, Fields);
3274   GV = new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/false,
3275                                 llvm::GlobalVariable::PrivateLinkage, C,
3276                                 "_unnamed_cfstring_");
3277   GV->setAlignment(Alignment.getQuantity());
3278   switch (getTriple().getObjectFormat()) {
3279   case llvm::Triple::UnknownObjectFormat:
3280     llvm_unreachable("unknown file format");
3281   case llvm::Triple::COFF:
3282   case llvm::Triple::ELF:
3283     GV->setSection("cfstring");
3284     break;
3285   case llvm::Triple::MachO:
3286     GV->setSection("__DATA,__cfstring");
3287     break;
3288   }
3289   Entry.second = GV;
3290 
3291   return ConstantAddress(GV, Alignment);
3292 }
3293 
3294 ConstantAddress
3295 CodeGenModule::GetAddrOfConstantString(const StringLiteral *Literal) {
3296   unsigned StringLength = 0;
3297   llvm::StringMapEntry<llvm::GlobalVariable *> &Entry =
3298       GetConstantStringEntry(CFConstantStringMap, Literal, StringLength);
3299 
3300   if (auto *C = Entry.second)
3301     return ConstantAddress(C, CharUnits::fromQuantity(C->getAlignment()));
3302 
3303   llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty);
3304   llvm::Constant *Zeros[] = { Zero, Zero };
3305   llvm::Value *V;
3306   // If we don't already have it, get _NSConstantStringClassReference.
3307   if (!ConstantStringClassRef) {
3308     std::string StringClass(getLangOpts().ObjCConstantStringClass);
3309     llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
3310     llvm::Constant *GV;
3311     if (LangOpts.ObjCRuntime.isNonFragile()) {
3312       std::string str =
3313         StringClass.empty() ? "OBJC_CLASS_$_NSConstantString"
3314                             : "OBJC_CLASS_$_" + StringClass;
3315       GV = getObjCRuntime().GetClassGlobal(str);
3316       // Make sure the result is of the correct type.
3317       llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
3318       V = llvm::ConstantExpr::getBitCast(GV, PTy);
3319       ConstantStringClassRef = V;
3320     } else {
3321       std::string str =
3322         StringClass.empty() ? "_NSConstantStringClassReference"
3323                             : "_" + StringClass + "ClassReference";
3324       llvm::Type *PTy = llvm::ArrayType::get(Ty, 0);
3325       GV = CreateRuntimeVariable(PTy, str);
3326       // Decay array -> ptr
3327       V = llvm::ConstantExpr::getGetElementPtr(PTy, GV, Zeros);
3328       ConstantStringClassRef = V;
3329     }
3330   } else
3331     V = ConstantStringClassRef;
3332 
3333   if (!NSConstantStringType) {
3334     // Construct the type for a constant NSString.
3335     RecordDecl *D = Context.buildImplicitRecord("__builtin_NSString");
3336     D->startDefinition();
3337 
3338     QualType FieldTypes[3];
3339 
3340     // const int *isa;
3341     FieldTypes[0] = Context.getPointerType(Context.IntTy.withConst());
3342     // const char *str;
3343     FieldTypes[1] = Context.getPointerType(Context.CharTy.withConst());
3344     // unsigned int length;
3345     FieldTypes[2] = Context.UnsignedIntTy;
3346 
3347     // Create fields
3348     for (unsigned i = 0; i < 3; ++i) {
3349       FieldDecl *Field = FieldDecl::Create(Context, D,
3350                                            SourceLocation(),
3351                                            SourceLocation(), nullptr,
3352                                            FieldTypes[i], /*TInfo=*/nullptr,
3353                                            /*BitWidth=*/nullptr,
3354                                            /*Mutable=*/false,
3355                                            ICIS_NoInit);
3356       Field->setAccess(AS_public);
3357       D->addDecl(Field);
3358     }
3359 
3360     D->completeDefinition();
3361     QualType NSTy = Context.getTagDeclType(D);
3362     NSConstantStringType = cast<llvm::StructType>(getTypes().ConvertType(NSTy));
3363   }
3364 
3365   llvm::Constant *Fields[3];
3366 
3367   // Class pointer.
3368   Fields[0] = cast<llvm::ConstantExpr>(V);
3369 
3370   // String pointer.
3371   llvm::Constant *C =
3372       llvm::ConstantDataArray::getString(VMContext, Entry.first());
3373 
3374   llvm::GlobalValue::LinkageTypes Linkage;
3375   bool isConstant;
3376   Linkage = llvm::GlobalValue::PrivateLinkage;
3377   isConstant = !LangOpts.WritableStrings;
3378 
3379   auto *GV = new llvm::GlobalVariable(getModule(), C->getType(), isConstant,
3380                                       Linkage, C, ".str");
3381   GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
3382   // Don't enforce the target's minimum global alignment, since the only use
3383   // of the string is via this class initializer.
3384   CharUnits Align = getContext().getTypeAlignInChars(getContext().CharTy);
3385   GV->setAlignment(Align.getQuantity());
3386   Fields[1] =
3387       llvm::ConstantExpr::getGetElementPtr(GV->getValueType(), GV, Zeros);
3388 
3389   // String length.
3390   llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy);
3391   Fields[2] = llvm::ConstantInt::get(Ty, StringLength);
3392 
3393   // The struct.
3394   CharUnits Alignment = getPointerAlign();
3395   C = llvm::ConstantStruct::get(NSConstantStringType, Fields);
3396   GV = new llvm::GlobalVariable(getModule(), C->getType(), true,
3397                                 llvm::GlobalVariable::PrivateLinkage, C,
3398                                 "_unnamed_nsstring_");
3399   GV->setAlignment(Alignment.getQuantity());
3400   const char *NSStringSection = "__OBJC,__cstring_object,regular,no_dead_strip";
3401   const char *NSStringNonFragileABISection =
3402       "__DATA,__objc_stringobj,regular,no_dead_strip";
3403   // FIXME. Fix section.
3404   GV->setSection(LangOpts.ObjCRuntime.isNonFragile()
3405                      ? NSStringNonFragileABISection
3406                      : NSStringSection);
3407   Entry.second = GV;
3408 
3409   return ConstantAddress(GV, Alignment);
3410 }
3411 
3412 QualType CodeGenModule::getObjCFastEnumerationStateType() {
3413   if (ObjCFastEnumerationStateType.isNull()) {
3414     RecordDecl *D = Context.buildImplicitRecord("__objcFastEnumerationState");
3415     D->startDefinition();
3416 
3417     QualType FieldTypes[] = {
3418       Context.UnsignedLongTy,
3419       Context.getPointerType(Context.getObjCIdType()),
3420       Context.getPointerType(Context.UnsignedLongTy),
3421       Context.getConstantArrayType(Context.UnsignedLongTy,
3422                            llvm::APInt(32, 5), ArrayType::Normal, 0)
3423     };
3424 
3425     for (size_t i = 0; i < 4; ++i) {
3426       FieldDecl *Field = FieldDecl::Create(Context,
3427                                            D,
3428                                            SourceLocation(),
3429                                            SourceLocation(), nullptr,
3430                                            FieldTypes[i], /*TInfo=*/nullptr,
3431                                            /*BitWidth=*/nullptr,
3432                                            /*Mutable=*/false,
3433                                            ICIS_NoInit);
3434       Field->setAccess(AS_public);
3435       D->addDecl(Field);
3436     }
3437 
3438     D->completeDefinition();
3439     ObjCFastEnumerationStateType = Context.getTagDeclType(D);
3440   }
3441 
3442   return ObjCFastEnumerationStateType;
3443 }
3444 
3445 llvm::Constant *
3446 CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) {
3447   assert(!E->getType()->isPointerType() && "Strings are always arrays");
3448 
3449   // Don't emit it as the address of the string, emit the string data itself
3450   // as an inline array.
3451   if (E->getCharByteWidth() == 1) {
3452     SmallString<64> Str(E->getString());
3453 
3454     // Resize the string to the right size, which is indicated by its type.
3455     const ConstantArrayType *CAT = Context.getAsConstantArrayType(E->getType());
3456     Str.resize(CAT->getSize().getZExtValue());
3457     return llvm::ConstantDataArray::getString(VMContext, Str, false);
3458   }
3459 
3460   auto *AType = cast<llvm::ArrayType>(getTypes().ConvertType(E->getType()));
3461   llvm::Type *ElemTy = AType->getElementType();
3462   unsigned NumElements = AType->getNumElements();
3463 
3464   // Wide strings have either 2-byte or 4-byte elements.
3465   if (ElemTy->getPrimitiveSizeInBits() == 16) {
3466     SmallVector<uint16_t, 32> Elements;
3467     Elements.reserve(NumElements);
3468 
3469     for(unsigned i = 0, e = E->getLength(); i != e; ++i)
3470       Elements.push_back(E->getCodeUnit(i));
3471     Elements.resize(NumElements);
3472     return llvm::ConstantDataArray::get(VMContext, Elements);
3473   }
3474 
3475   assert(ElemTy->getPrimitiveSizeInBits() == 32);
3476   SmallVector<uint32_t, 32> Elements;
3477   Elements.reserve(NumElements);
3478 
3479   for(unsigned i = 0, e = E->getLength(); i != e; ++i)
3480     Elements.push_back(E->getCodeUnit(i));
3481   Elements.resize(NumElements);
3482   return llvm::ConstantDataArray::get(VMContext, Elements);
3483 }
3484 
3485 static llvm::GlobalVariable *
3486 GenerateStringLiteral(llvm::Constant *C, llvm::GlobalValue::LinkageTypes LT,
3487                       CodeGenModule &CGM, StringRef GlobalName,
3488                       CharUnits Alignment) {
3489   // OpenCL v1.2 s6.5.3: a string literal is in the constant address space.
3490   unsigned AddrSpace = 0;
3491   if (CGM.getLangOpts().OpenCL)
3492     AddrSpace = CGM.getContext().getTargetAddressSpace(LangAS::opencl_constant);
3493 
3494   llvm::Module &M = CGM.getModule();
3495   // Create a global variable for this string
3496   auto *GV = new llvm::GlobalVariable(
3497       M, C->getType(), !CGM.getLangOpts().WritableStrings, LT, C, GlobalName,
3498       nullptr, llvm::GlobalVariable::NotThreadLocal, AddrSpace);
3499   GV->setAlignment(Alignment.getQuantity());
3500   GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
3501   if (GV->isWeakForLinker()) {
3502     assert(CGM.supportsCOMDAT() && "Only COFF uses weak string literals");
3503     GV->setComdat(M.getOrInsertComdat(GV->getName()));
3504   }
3505 
3506   return GV;
3507 }
3508 
3509 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a
3510 /// constant array for the given string literal.
3511 ConstantAddress
3512 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S,
3513                                                   StringRef Name) {
3514   CharUnits Alignment = getContext().getAlignOfGlobalVarInChars(S->getType());
3515 
3516   llvm::Constant *C = GetConstantArrayFromStringLiteral(S);
3517   llvm::GlobalVariable **Entry = nullptr;
3518   if (!LangOpts.WritableStrings) {
3519     Entry = &ConstantStringMap[C];
3520     if (auto GV = *Entry) {
3521       if (Alignment.getQuantity() > GV->getAlignment())
3522         GV->setAlignment(Alignment.getQuantity());
3523       return ConstantAddress(GV, Alignment);
3524     }
3525   }
3526 
3527   SmallString<256> MangledNameBuffer;
3528   StringRef GlobalVariableName;
3529   llvm::GlobalValue::LinkageTypes LT;
3530 
3531   // Mangle the string literal if the ABI allows for it.  However, we cannot
3532   // do this if  we are compiling with ASan or -fwritable-strings because they
3533   // rely on strings having normal linkage.
3534   if (!LangOpts.WritableStrings &&
3535       !LangOpts.Sanitize.has(SanitizerKind::Address) &&
3536       getCXXABI().getMangleContext().shouldMangleStringLiteral(S)) {
3537     llvm::raw_svector_ostream Out(MangledNameBuffer);
3538     getCXXABI().getMangleContext().mangleStringLiteral(S, Out);
3539 
3540     LT = llvm::GlobalValue::LinkOnceODRLinkage;
3541     GlobalVariableName = MangledNameBuffer;
3542   } else {
3543     LT = llvm::GlobalValue::PrivateLinkage;
3544     GlobalVariableName = Name;
3545   }
3546 
3547   auto GV = GenerateStringLiteral(C, LT, *this, GlobalVariableName, Alignment);
3548   if (Entry)
3549     *Entry = GV;
3550 
3551   SanitizerMD->reportGlobalToASan(GV, S->getStrTokenLoc(0), "<string literal>",
3552                                   QualType());
3553   return ConstantAddress(GV, Alignment);
3554 }
3555 
3556 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant
3557 /// array for the given ObjCEncodeExpr node.
3558 ConstantAddress
3559 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) {
3560   std::string Str;
3561   getContext().getObjCEncodingForType(E->getEncodedType(), Str);
3562 
3563   return GetAddrOfConstantCString(Str);
3564 }
3565 
3566 /// GetAddrOfConstantCString - Returns a pointer to a character array containing
3567 /// the literal and a terminating '\0' character.
3568 /// The result has pointer to array type.
3569 ConstantAddress CodeGenModule::GetAddrOfConstantCString(
3570     const std::string &Str, const char *GlobalName) {
3571   StringRef StrWithNull(Str.c_str(), Str.size() + 1);
3572   CharUnits Alignment =
3573     getContext().getAlignOfGlobalVarInChars(getContext().CharTy);
3574 
3575   llvm::Constant *C =
3576       llvm::ConstantDataArray::getString(getLLVMContext(), StrWithNull, false);
3577 
3578   // Don't share any string literals if strings aren't constant.
3579   llvm::GlobalVariable **Entry = nullptr;
3580   if (!LangOpts.WritableStrings) {
3581     Entry = &ConstantStringMap[C];
3582     if (auto GV = *Entry) {
3583       if (Alignment.getQuantity() > GV->getAlignment())
3584         GV->setAlignment(Alignment.getQuantity());
3585       return ConstantAddress(GV, Alignment);
3586     }
3587   }
3588 
3589   // Get the default prefix if a name wasn't specified.
3590   if (!GlobalName)
3591     GlobalName = ".str";
3592   // Create a global variable for this.
3593   auto GV = GenerateStringLiteral(C, llvm::GlobalValue::PrivateLinkage, *this,
3594                                   GlobalName, Alignment);
3595   if (Entry)
3596     *Entry = GV;
3597   return ConstantAddress(GV, Alignment);
3598 }
3599 
3600 ConstantAddress CodeGenModule::GetAddrOfGlobalTemporary(
3601     const MaterializeTemporaryExpr *E, const Expr *Init) {
3602   assert((E->getStorageDuration() == SD_Static ||
3603           E->getStorageDuration() == SD_Thread) && "not a global temporary");
3604   const auto *VD = cast<VarDecl>(E->getExtendingDecl());
3605 
3606   // If we're not materializing a subobject of the temporary, keep the
3607   // cv-qualifiers from the type of the MaterializeTemporaryExpr.
3608   QualType MaterializedType = Init->getType();
3609   if (Init == E->GetTemporaryExpr())
3610     MaterializedType = E->getType();
3611 
3612   CharUnits Align = getContext().getTypeAlignInChars(MaterializedType);
3613 
3614   if (llvm::Constant *Slot = MaterializedGlobalTemporaryMap[E])
3615     return ConstantAddress(Slot, Align);
3616 
3617   // FIXME: If an externally-visible declaration extends multiple temporaries,
3618   // we need to give each temporary the same name in every translation unit (and
3619   // we also need to make the temporaries externally-visible).
3620   SmallString<256> Name;
3621   llvm::raw_svector_ostream Out(Name);
3622   getCXXABI().getMangleContext().mangleReferenceTemporary(
3623       VD, E->getManglingNumber(), Out);
3624 
3625   APValue *Value = nullptr;
3626   if (E->getStorageDuration() == SD_Static) {
3627     // We might have a cached constant initializer for this temporary. Note
3628     // that this might have a different value from the value computed by
3629     // evaluating the initializer if the surrounding constant expression
3630     // modifies the temporary.
3631     Value = getContext().getMaterializedTemporaryValue(E, false);
3632     if (Value && Value->isUninit())
3633       Value = nullptr;
3634   }
3635 
3636   // Try evaluating it now, it might have a constant initializer.
3637   Expr::EvalResult EvalResult;
3638   if (!Value && Init->EvaluateAsRValue(EvalResult, getContext()) &&
3639       !EvalResult.hasSideEffects())
3640     Value = &EvalResult.Val;
3641 
3642   llvm::Constant *InitialValue = nullptr;
3643   bool Constant = false;
3644   llvm::Type *Type;
3645   if (Value) {
3646     // The temporary has a constant initializer, use it.
3647     InitialValue = EmitConstantValue(*Value, MaterializedType, nullptr);
3648     Constant = isTypeConstant(MaterializedType, /*ExcludeCtor*/Value);
3649     Type = InitialValue->getType();
3650   } else {
3651     // No initializer, the initialization will be provided when we
3652     // initialize the declaration which performed lifetime extension.
3653     Type = getTypes().ConvertTypeForMem(MaterializedType);
3654   }
3655 
3656   // Create a global variable for this lifetime-extended temporary.
3657   llvm::GlobalValue::LinkageTypes Linkage =
3658       getLLVMLinkageVarDefinition(VD, Constant);
3659   if (Linkage == llvm::GlobalVariable::ExternalLinkage) {
3660     const VarDecl *InitVD;
3661     if (VD->isStaticDataMember() && VD->getAnyInitializer(InitVD) &&
3662         isa<CXXRecordDecl>(InitVD->getLexicalDeclContext())) {
3663       // Temporaries defined inside a class get linkonce_odr linkage because the
3664       // class can be defined in multipe translation units.
3665       Linkage = llvm::GlobalVariable::LinkOnceODRLinkage;
3666     } else {
3667       // There is no need for this temporary to have external linkage if the
3668       // VarDecl has external linkage.
3669       Linkage = llvm::GlobalVariable::InternalLinkage;
3670     }
3671   }
3672   unsigned AddrSpace = GetGlobalVarAddressSpace(
3673       VD, getContext().getTargetAddressSpace(MaterializedType));
3674   auto *GV = new llvm::GlobalVariable(
3675       getModule(), Type, Constant, Linkage, InitialValue, Name.c_str(),
3676       /*InsertBefore=*/nullptr, llvm::GlobalVariable::NotThreadLocal,
3677       AddrSpace);
3678   setGlobalVisibility(GV, VD);
3679   GV->setAlignment(Align.getQuantity());
3680   if (supportsCOMDAT() && GV->isWeakForLinker())
3681     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
3682   if (VD->getTLSKind())
3683     setTLSMode(GV, *VD);
3684   MaterializedGlobalTemporaryMap[E] = GV;
3685   return ConstantAddress(GV, Align);
3686 }
3687 
3688 /// EmitObjCPropertyImplementations - Emit information for synthesized
3689 /// properties for an implementation.
3690 void CodeGenModule::EmitObjCPropertyImplementations(const
3691                                                     ObjCImplementationDecl *D) {
3692   for (const auto *PID : D->property_impls()) {
3693     // Dynamic is just for type-checking.
3694     if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) {
3695       ObjCPropertyDecl *PD = PID->getPropertyDecl();
3696 
3697       // Determine which methods need to be implemented, some may have
3698       // been overridden. Note that ::isPropertyAccessor is not the method
3699       // we want, that just indicates if the decl came from a
3700       // property. What we want to know is if the method is defined in
3701       // this implementation.
3702       if (!D->getInstanceMethod(PD->getGetterName()))
3703         CodeGenFunction(*this).GenerateObjCGetter(
3704                                  const_cast<ObjCImplementationDecl *>(D), PID);
3705       if (!PD->isReadOnly() &&
3706           !D->getInstanceMethod(PD->getSetterName()))
3707         CodeGenFunction(*this).GenerateObjCSetter(
3708                                  const_cast<ObjCImplementationDecl *>(D), PID);
3709     }
3710   }
3711 }
3712 
3713 static bool needsDestructMethod(ObjCImplementationDecl *impl) {
3714   const ObjCInterfaceDecl *iface = impl->getClassInterface();
3715   for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin();
3716        ivar; ivar = ivar->getNextIvar())
3717     if (ivar->getType().isDestructedType())
3718       return true;
3719 
3720   return false;
3721 }
3722 
3723 static bool AllTrivialInitializers(CodeGenModule &CGM,
3724                                    ObjCImplementationDecl *D) {
3725   CodeGenFunction CGF(CGM);
3726   for (ObjCImplementationDecl::init_iterator B = D->init_begin(),
3727        E = D->init_end(); B != E; ++B) {
3728     CXXCtorInitializer *CtorInitExp = *B;
3729     Expr *Init = CtorInitExp->getInit();
3730     if (!CGF.isTrivialInitializer(Init))
3731       return false;
3732   }
3733   return true;
3734 }
3735 
3736 /// EmitObjCIvarInitializations - Emit information for ivar initialization
3737 /// for an implementation.
3738 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) {
3739   // We might need a .cxx_destruct even if we don't have any ivar initializers.
3740   if (needsDestructMethod(D)) {
3741     IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct");
3742     Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
3743     ObjCMethodDecl *DTORMethod =
3744       ObjCMethodDecl::Create(getContext(), D->getLocation(), D->getLocation(),
3745                              cxxSelector, getContext().VoidTy, nullptr, D,
3746                              /*isInstance=*/true, /*isVariadic=*/false,
3747                           /*isPropertyAccessor=*/true, /*isImplicitlyDeclared=*/true,
3748                              /*isDefined=*/false, ObjCMethodDecl::Required);
3749     D->addInstanceMethod(DTORMethod);
3750     CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false);
3751     D->setHasDestructors(true);
3752   }
3753 
3754   // If the implementation doesn't have any ivar initializers, we don't need
3755   // a .cxx_construct.
3756   if (D->getNumIvarInitializers() == 0 ||
3757       AllTrivialInitializers(*this, D))
3758     return;
3759 
3760   IdentifierInfo *II = &getContext().Idents.get(".cxx_construct");
3761   Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
3762   // The constructor returns 'self'.
3763   ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(getContext(),
3764                                                 D->getLocation(),
3765                                                 D->getLocation(),
3766                                                 cxxSelector,
3767                                                 getContext().getObjCIdType(),
3768                                                 nullptr, D, /*isInstance=*/true,
3769                                                 /*isVariadic=*/false,
3770                                                 /*isPropertyAccessor=*/true,
3771                                                 /*isImplicitlyDeclared=*/true,
3772                                                 /*isDefined=*/false,
3773                                                 ObjCMethodDecl::Required);
3774   D->addInstanceMethod(CTORMethod);
3775   CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true);
3776   D->setHasNonZeroConstructors(true);
3777 }
3778 
3779 // EmitLinkageSpec - Emit all declarations in a linkage spec.
3780 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) {
3781   if (LSD->getLanguage() != LinkageSpecDecl::lang_c &&
3782       LSD->getLanguage() != LinkageSpecDecl::lang_cxx) {
3783     ErrorUnsupported(LSD, "linkage spec");
3784     return;
3785   }
3786 
3787   EmitDeclContext(LSD);
3788 }
3789 
3790 void CodeGenModule::EmitDeclContext(const DeclContext *DC) {
3791   for (auto *I : DC->decls()) {
3792     // Unlike other DeclContexts, the contents of an ObjCImplDecl at TU scope
3793     // are themselves considered "top-level", so EmitTopLevelDecl on an
3794     // ObjCImplDecl does not recursively visit them. We need to do that in
3795     // case they're nested inside another construct (LinkageSpecDecl /
3796     // ExportDecl) that does stop them from being considered "top-level".
3797     if (auto *OID = dyn_cast<ObjCImplDecl>(I)) {
3798       for (auto *M : OID->methods())
3799         EmitTopLevelDecl(M);
3800     }
3801 
3802     EmitTopLevelDecl(I);
3803   }
3804 }
3805 
3806 /// EmitTopLevelDecl - Emit code for a single top level declaration.
3807 void CodeGenModule::EmitTopLevelDecl(Decl *D) {
3808   // Ignore dependent declarations.
3809   if (D->getDeclContext() && D->getDeclContext()->isDependentContext())
3810     return;
3811 
3812   switch (D->getKind()) {
3813   case Decl::CXXConversion:
3814   case Decl::CXXMethod:
3815   case Decl::Function:
3816     // Skip function templates
3817     if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() ||
3818         cast<FunctionDecl>(D)->isLateTemplateParsed())
3819       return;
3820 
3821     EmitGlobal(cast<FunctionDecl>(D));
3822     // Always provide some coverage mapping
3823     // even for the functions that aren't emitted.
3824     AddDeferredUnusedCoverageMapping(D);
3825     break;
3826 
3827   case Decl::Var:
3828   case Decl::Decomposition:
3829     // Skip variable templates
3830     if (cast<VarDecl>(D)->getDescribedVarTemplate())
3831       return;
3832   case Decl::VarTemplateSpecialization:
3833     EmitGlobal(cast<VarDecl>(D));
3834     if (auto *DD = dyn_cast<DecompositionDecl>(D))
3835       for (auto *B : DD->bindings())
3836         if (auto *HD = B->getHoldingVar())
3837           EmitGlobal(HD);
3838     break;
3839 
3840   // Indirect fields from global anonymous structs and unions can be
3841   // ignored; only the actual variable requires IR gen support.
3842   case Decl::IndirectField:
3843     break;
3844 
3845   // C++ Decls
3846   case Decl::Namespace:
3847     EmitDeclContext(cast<NamespaceDecl>(D));
3848     break;
3849   case Decl::CXXRecord:
3850     // Emit any static data members, they may be definitions.
3851     for (auto *I : cast<CXXRecordDecl>(D)->decls())
3852       if (isa<VarDecl>(I) || isa<CXXRecordDecl>(I))
3853         EmitTopLevelDecl(I);
3854     break;
3855     // No code generation needed.
3856   case Decl::UsingShadow:
3857   case Decl::ClassTemplate:
3858   case Decl::VarTemplate:
3859   case Decl::VarTemplatePartialSpecialization:
3860   case Decl::FunctionTemplate:
3861   case Decl::TypeAliasTemplate:
3862   case Decl::Block:
3863   case Decl::Empty:
3864     break;
3865   case Decl::Using:          // using X; [C++]
3866     if (CGDebugInfo *DI = getModuleDebugInfo())
3867         DI->EmitUsingDecl(cast<UsingDecl>(*D));
3868     return;
3869   case Decl::NamespaceAlias:
3870     if (CGDebugInfo *DI = getModuleDebugInfo())
3871         DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(*D));
3872     return;
3873   case Decl::UsingDirective: // using namespace X; [C++]
3874     if (CGDebugInfo *DI = getModuleDebugInfo())
3875       DI->EmitUsingDirective(cast<UsingDirectiveDecl>(*D));
3876     return;
3877   case Decl::CXXConstructor:
3878     // Skip function templates
3879     if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() ||
3880         cast<FunctionDecl>(D)->isLateTemplateParsed())
3881       return;
3882 
3883     getCXXABI().EmitCXXConstructors(cast<CXXConstructorDecl>(D));
3884     break;
3885   case Decl::CXXDestructor:
3886     if (cast<FunctionDecl>(D)->isLateTemplateParsed())
3887       return;
3888     getCXXABI().EmitCXXDestructors(cast<CXXDestructorDecl>(D));
3889     break;
3890 
3891   case Decl::StaticAssert:
3892     // Nothing to do.
3893     break;
3894 
3895   // Objective-C Decls
3896 
3897   // Forward declarations, no (immediate) code generation.
3898   case Decl::ObjCInterface:
3899   case Decl::ObjCCategory:
3900     break;
3901 
3902   case Decl::ObjCProtocol: {
3903     auto *Proto = cast<ObjCProtocolDecl>(D);
3904     if (Proto->isThisDeclarationADefinition())
3905       ObjCRuntime->GenerateProtocol(Proto);
3906     break;
3907   }
3908 
3909   case Decl::ObjCCategoryImpl:
3910     // Categories have properties but don't support synthesize so we
3911     // can ignore them here.
3912     ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D));
3913     break;
3914 
3915   case Decl::ObjCImplementation: {
3916     auto *OMD = cast<ObjCImplementationDecl>(D);
3917     EmitObjCPropertyImplementations(OMD);
3918     EmitObjCIvarInitializations(OMD);
3919     ObjCRuntime->GenerateClass(OMD);
3920     // Emit global variable debug information.
3921     if (CGDebugInfo *DI = getModuleDebugInfo())
3922       if (getCodeGenOpts().getDebugInfo() >= codegenoptions::LimitedDebugInfo)
3923         DI->getOrCreateInterfaceType(getContext().getObjCInterfaceType(
3924             OMD->getClassInterface()), OMD->getLocation());
3925     break;
3926   }
3927   case Decl::ObjCMethod: {
3928     auto *OMD = cast<ObjCMethodDecl>(D);
3929     // If this is not a prototype, emit the body.
3930     if (OMD->getBody())
3931       CodeGenFunction(*this).GenerateObjCMethod(OMD);
3932     break;
3933   }
3934   case Decl::ObjCCompatibleAlias:
3935     ObjCRuntime->RegisterAlias(cast<ObjCCompatibleAliasDecl>(D));
3936     break;
3937 
3938   case Decl::PragmaComment: {
3939     const auto *PCD = cast<PragmaCommentDecl>(D);
3940     switch (PCD->getCommentKind()) {
3941     case PCK_Unknown:
3942       llvm_unreachable("unexpected pragma comment kind");
3943     case PCK_Linker:
3944       AppendLinkerOptions(PCD->getArg());
3945       break;
3946     case PCK_Lib:
3947       AddDependentLib(PCD->getArg());
3948       break;
3949     case PCK_Compiler:
3950     case PCK_ExeStr:
3951     case PCK_User:
3952       break; // We ignore all of these.
3953     }
3954     break;
3955   }
3956 
3957   case Decl::PragmaDetectMismatch: {
3958     const auto *PDMD = cast<PragmaDetectMismatchDecl>(D);
3959     AddDetectMismatch(PDMD->getName(), PDMD->getValue());
3960     break;
3961   }
3962 
3963   case Decl::LinkageSpec:
3964     EmitLinkageSpec(cast<LinkageSpecDecl>(D));
3965     break;
3966 
3967   case Decl::FileScopeAsm: {
3968     // File-scope asm is ignored during device-side CUDA compilation.
3969     if (LangOpts.CUDA && LangOpts.CUDAIsDevice)
3970       break;
3971     // File-scope asm is ignored during device-side OpenMP compilation.
3972     if (LangOpts.OpenMPIsDevice)
3973       break;
3974     auto *AD = cast<FileScopeAsmDecl>(D);
3975     getModule().appendModuleInlineAsm(AD->getAsmString()->getString());
3976     break;
3977   }
3978 
3979   case Decl::Import: {
3980     auto *Import = cast<ImportDecl>(D);
3981 
3982     // If we've already imported this module, we're done.
3983     if (!ImportedModules.insert(Import->getImportedModule()))
3984       break;
3985 
3986     // Emit debug information for direct imports.
3987     if (!Import->getImportedOwningModule()) {
3988       if (CGDebugInfo *DI = getModuleDebugInfo())
3989         DI->EmitImportDecl(*Import);
3990     }
3991 
3992     // Emit the module initializers.
3993     for (auto *D : Context.getModuleInitializers(Import->getImportedModule()))
3994       EmitTopLevelDecl(D);
3995     break;
3996   }
3997 
3998   case Decl::Export:
3999     EmitDeclContext(cast<ExportDecl>(D));
4000     break;
4001 
4002   case Decl::OMPThreadPrivate:
4003     EmitOMPThreadPrivateDecl(cast<OMPThreadPrivateDecl>(D));
4004     break;
4005 
4006   case Decl::ClassTemplateSpecialization: {
4007     const auto *Spec = cast<ClassTemplateSpecializationDecl>(D);
4008     if (DebugInfo &&
4009         Spec->getSpecializationKind() == TSK_ExplicitInstantiationDefinition &&
4010         Spec->hasDefinition())
4011       DebugInfo->completeTemplateDefinition(*Spec);
4012     break;
4013   }
4014 
4015   case Decl::OMPDeclareReduction:
4016     EmitOMPDeclareReduction(cast<OMPDeclareReductionDecl>(D));
4017     break;
4018 
4019   default:
4020     // Make sure we handled everything we should, every other kind is a
4021     // non-top-level decl.  FIXME: Would be nice to have an isTopLevelDeclKind
4022     // function. Need to recode Decl::Kind to do that easily.
4023     assert(isa<TypeDecl>(D) && "Unsupported decl kind");
4024     break;
4025   }
4026 }
4027 
4028 void CodeGenModule::AddDeferredUnusedCoverageMapping(Decl *D) {
4029   // Do we need to generate coverage mapping?
4030   if (!CodeGenOpts.CoverageMapping)
4031     return;
4032   switch (D->getKind()) {
4033   case Decl::CXXConversion:
4034   case Decl::CXXMethod:
4035   case Decl::Function:
4036   case Decl::ObjCMethod:
4037   case Decl::CXXConstructor:
4038   case Decl::CXXDestructor: {
4039     if (!cast<FunctionDecl>(D)->doesThisDeclarationHaveABody())
4040       return;
4041     auto I = DeferredEmptyCoverageMappingDecls.find(D);
4042     if (I == DeferredEmptyCoverageMappingDecls.end())
4043       DeferredEmptyCoverageMappingDecls[D] = true;
4044     break;
4045   }
4046   default:
4047     break;
4048   };
4049 }
4050 
4051 void CodeGenModule::ClearUnusedCoverageMapping(const Decl *D) {
4052   // Do we need to generate coverage mapping?
4053   if (!CodeGenOpts.CoverageMapping)
4054     return;
4055   if (const auto *Fn = dyn_cast<FunctionDecl>(D)) {
4056     if (Fn->isTemplateInstantiation())
4057       ClearUnusedCoverageMapping(Fn->getTemplateInstantiationPattern());
4058   }
4059   auto I = DeferredEmptyCoverageMappingDecls.find(D);
4060   if (I == DeferredEmptyCoverageMappingDecls.end())
4061     DeferredEmptyCoverageMappingDecls[D] = false;
4062   else
4063     I->second = false;
4064 }
4065 
4066 void CodeGenModule::EmitDeferredUnusedCoverageMappings() {
4067   std::vector<const Decl *> DeferredDecls;
4068   for (const auto &I : DeferredEmptyCoverageMappingDecls) {
4069     if (!I.second)
4070       continue;
4071     DeferredDecls.push_back(I.first);
4072   }
4073   // Sort the declarations by their location to make sure that the tests get a
4074   // predictable order for the coverage mapping for the unused declarations.
4075   if (CodeGenOpts.DumpCoverageMapping)
4076     std::sort(DeferredDecls.begin(), DeferredDecls.end(),
4077               [] (const Decl *LHS, const Decl *RHS) {
4078       return LHS->getLocStart() < RHS->getLocStart();
4079     });
4080   for (const auto *D : DeferredDecls) {
4081     switch (D->getKind()) {
4082     case Decl::CXXConversion:
4083     case Decl::CXXMethod:
4084     case Decl::Function:
4085     case Decl::ObjCMethod: {
4086       CodeGenPGO PGO(*this);
4087       GlobalDecl GD(cast<FunctionDecl>(D));
4088       PGO.emitEmptyCounterMapping(D, getMangledName(GD),
4089                                   getFunctionLinkage(GD));
4090       break;
4091     }
4092     case Decl::CXXConstructor: {
4093       CodeGenPGO PGO(*this);
4094       GlobalDecl GD(cast<CXXConstructorDecl>(D), Ctor_Base);
4095       PGO.emitEmptyCounterMapping(D, getMangledName(GD),
4096                                   getFunctionLinkage(GD));
4097       break;
4098     }
4099     case Decl::CXXDestructor: {
4100       CodeGenPGO PGO(*this);
4101       GlobalDecl GD(cast<CXXDestructorDecl>(D), Dtor_Base);
4102       PGO.emitEmptyCounterMapping(D, getMangledName(GD),
4103                                   getFunctionLinkage(GD));
4104       break;
4105     }
4106     default:
4107       break;
4108     };
4109   }
4110 }
4111 
4112 /// Turns the given pointer into a constant.
4113 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context,
4114                                           const void *Ptr) {
4115   uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr);
4116   llvm::Type *i64 = llvm::Type::getInt64Ty(Context);
4117   return llvm::ConstantInt::get(i64, PtrInt);
4118 }
4119 
4120 static void EmitGlobalDeclMetadata(CodeGenModule &CGM,
4121                                    llvm::NamedMDNode *&GlobalMetadata,
4122                                    GlobalDecl D,
4123                                    llvm::GlobalValue *Addr) {
4124   if (!GlobalMetadata)
4125     GlobalMetadata =
4126       CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs");
4127 
4128   // TODO: should we report variant information for ctors/dtors?
4129   llvm::Metadata *Ops[] = {llvm::ConstantAsMetadata::get(Addr),
4130                            llvm::ConstantAsMetadata::get(GetPointerConstant(
4131                                CGM.getLLVMContext(), D.getDecl()))};
4132   GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops));
4133 }
4134 
4135 /// For each function which is declared within an extern "C" region and marked
4136 /// as 'used', but has internal linkage, create an alias from the unmangled
4137 /// name to the mangled name if possible. People expect to be able to refer
4138 /// to such functions with an unmangled name from inline assembly within the
4139 /// same translation unit.
4140 void CodeGenModule::EmitStaticExternCAliases() {
4141   // Don't do anything if we're generating CUDA device code -- the NVPTX
4142   // assembly target doesn't support aliases.
4143   if (Context.getTargetInfo().getTriple().isNVPTX())
4144     return;
4145   for (auto &I : StaticExternCValues) {
4146     IdentifierInfo *Name = I.first;
4147     llvm::GlobalValue *Val = I.second;
4148     if (Val && !getModule().getNamedValue(Name->getName()))
4149       addUsedGlobal(llvm::GlobalAlias::create(Name->getName(), Val));
4150   }
4151 }
4152 
4153 bool CodeGenModule::lookupRepresentativeDecl(StringRef MangledName,
4154                                              GlobalDecl &Result) const {
4155   auto Res = Manglings.find(MangledName);
4156   if (Res == Manglings.end())
4157     return false;
4158   Result = Res->getValue();
4159   return true;
4160 }
4161 
4162 /// Emits metadata nodes associating all the global values in the
4163 /// current module with the Decls they came from.  This is useful for
4164 /// projects using IR gen as a subroutine.
4165 ///
4166 /// Since there's currently no way to associate an MDNode directly
4167 /// with an llvm::GlobalValue, we create a global named metadata
4168 /// with the name 'clang.global.decl.ptrs'.
4169 void CodeGenModule::EmitDeclMetadata() {
4170   llvm::NamedMDNode *GlobalMetadata = nullptr;
4171 
4172   for (auto &I : MangledDeclNames) {
4173     llvm::GlobalValue *Addr = getModule().getNamedValue(I.second);
4174     // Some mangled names don't necessarily have an associated GlobalValue
4175     // in this module, e.g. if we mangled it for DebugInfo.
4176     if (Addr)
4177       EmitGlobalDeclMetadata(*this, GlobalMetadata, I.first, Addr);
4178   }
4179 }
4180 
4181 /// Emits metadata nodes for all the local variables in the current
4182 /// function.
4183 void CodeGenFunction::EmitDeclMetadata() {
4184   if (LocalDeclMap.empty()) return;
4185 
4186   llvm::LLVMContext &Context = getLLVMContext();
4187 
4188   // Find the unique metadata ID for this name.
4189   unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr");
4190 
4191   llvm::NamedMDNode *GlobalMetadata = nullptr;
4192 
4193   for (auto &I : LocalDeclMap) {
4194     const Decl *D = I.first;
4195     llvm::Value *Addr = I.second.getPointer();
4196     if (auto *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) {
4197       llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D);
4198       Alloca->setMetadata(
4199           DeclPtrKind, llvm::MDNode::get(
4200                            Context, llvm::ValueAsMetadata::getConstant(DAddr)));
4201     } else if (auto *GV = dyn_cast<llvm::GlobalValue>(Addr)) {
4202       GlobalDecl GD = GlobalDecl(cast<VarDecl>(D));
4203       EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV);
4204     }
4205   }
4206 }
4207 
4208 void CodeGenModule::EmitVersionIdentMetadata() {
4209   llvm::NamedMDNode *IdentMetadata =
4210     TheModule.getOrInsertNamedMetadata("llvm.ident");
4211   std::string Version = getClangFullVersion();
4212   llvm::LLVMContext &Ctx = TheModule.getContext();
4213 
4214   llvm::Metadata *IdentNode[] = {llvm::MDString::get(Ctx, Version)};
4215   IdentMetadata->addOperand(llvm::MDNode::get(Ctx, IdentNode));
4216 }
4217 
4218 void CodeGenModule::EmitTargetMetadata() {
4219   // Warning, new MangledDeclNames may be appended within this loop.
4220   // We rely on MapVector insertions adding new elements to the end
4221   // of the container.
4222   // FIXME: Move this loop into the one target that needs it, and only
4223   // loop over those declarations for which we couldn't emit the target
4224   // metadata when we emitted the declaration.
4225   for (unsigned I = 0; I != MangledDeclNames.size(); ++I) {
4226     auto Val = *(MangledDeclNames.begin() + I);
4227     const Decl *D = Val.first.getDecl()->getMostRecentDecl();
4228     llvm::GlobalValue *GV = GetGlobalValue(Val.second);
4229     getTargetCodeGenInfo().emitTargetMD(D, GV, *this);
4230   }
4231 }
4232 
4233 void CodeGenModule::EmitCoverageFile() {
4234   if (getCodeGenOpts().CoverageDataFile.empty() &&
4235       getCodeGenOpts().CoverageNotesFile.empty())
4236     return;
4237 
4238   llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu");
4239   if (!CUNode)
4240     return;
4241 
4242   llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov");
4243   llvm::LLVMContext &Ctx = TheModule.getContext();
4244   auto *CoverageDataFile =
4245       llvm::MDString::get(Ctx, getCodeGenOpts().CoverageDataFile);
4246   auto *CoverageNotesFile =
4247       llvm::MDString::get(Ctx, getCodeGenOpts().CoverageNotesFile);
4248   for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) {
4249     llvm::MDNode *CU = CUNode->getOperand(i);
4250     llvm::Metadata *Elts[] = {CoverageNotesFile, CoverageDataFile, CU};
4251     GCov->addOperand(llvm::MDNode::get(Ctx, Elts));
4252   }
4253 }
4254 
4255 llvm::Constant *CodeGenModule::EmitUuidofInitializer(StringRef Uuid) {
4256   // Sema has checked that all uuid strings are of the form
4257   // "12345678-1234-1234-1234-1234567890ab".
4258   assert(Uuid.size() == 36);
4259   for (unsigned i = 0; i < 36; ++i) {
4260     if (i == 8 || i == 13 || i == 18 || i == 23) assert(Uuid[i] == '-');
4261     else                                         assert(isHexDigit(Uuid[i]));
4262   }
4263 
4264   // The starts of all bytes of Field3 in Uuid. Field 3 is "1234-1234567890ab".
4265   const unsigned Field3ValueOffsets[8] = { 19, 21, 24, 26, 28, 30, 32, 34 };
4266 
4267   llvm::Constant *Field3[8];
4268   for (unsigned Idx = 0; Idx < 8; ++Idx)
4269     Field3[Idx] = llvm::ConstantInt::get(
4270         Int8Ty, Uuid.substr(Field3ValueOffsets[Idx], 2), 16);
4271 
4272   llvm::Constant *Fields[4] = {
4273     llvm::ConstantInt::get(Int32Ty, Uuid.substr(0,  8), 16),
4274     llvm::ConstantInt::get(Int16Ty, Uuid.substr(9,  4), 16),
4275     llvm::ConstantInt::get(Int16Ty, Uuid.substr(14, 4), 16),
4276     llvm::ConstantArray::get(llvm::ArrayType::get(Int8Ty, 8), Field3)
4277   };
4278 
4279   return llvm::ConstantStruct::getAnon(Fields);
4280 }
4281 
4282 llvm::Constant *CodeGenModule::GetAddrOfRTTIDescriptor(QualType Ty,
4283                                                        bool ForEH) {
4284   // Return a bogus pointer if RTTI is disabled, unless it's for EH.
4285   // FIXME: should we even be calling this method if RTTI is disabled
4286   // and it's not for EH?
4287   if (!ForEH && !getLangOpts().RTTI)
4288     return llvm::Constant::getNullValue(Int8PtrTy);
4289 
4290   if (ForEH && Ty->isObjCObjectPointerType() &&
4291       LangOpts.ObjCRuntime.isGNUFamily())
4292     return ObjCRuntime->GetEHType(Ty);
4293 
4294   return getCXXABI().getAddrOfRTTIDescriptor(Ty);
4295 }
4296 
4297 void CodeGenModule::EmitOMPThreadPrivateDecl(const OMPThreadPrivateDecl *D) {
4298   for (auto RefExpr : D->varlists()) {
4299     auto *VD = cast<VarDecl>(cast<DeclRefExpr>(RefExpr)->getDecl());
4300     bool PerformInit =
4301         VD->getAnyInitializer() &&
4302         !VD->getAnyInitializer()->isConstantInitializer(getContext(),
4303                                                         /*ForRef=*/false);
4304 
4305     Address Addr(GetAddrOfGlobalVar(VD), getContext().getDeclAlign(VD));
4306     if (auto InitFunction = getOpenMPRuntime().emitThreadPrivateVarDefinition(
4307             VD, Addr, RefExpr->getLocStart(), PerformInit))
4308       CXXGlobalInits.push_back(InitFunction);
4309   }
4310 }
4311 
4312 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierForType(QualType T) {
4313   llvm::Metadata *&InternalId = MetadataIdMap[T.getCanonicalType()];
4314   if (InternalId)
4315     return InternalId;
4316 
4317   if (isExternallyVisible(T->getLinkage())) {
4318     std::string OutName;
4319     llvm::raw_string_ostream Out(OutName);
4320     getCXXABI().getMangleContext().mangleTypeName(T, Out);
4321 
4322     InternalId = llvm::MDString::get(getLLVMContext(), Out.str());
4323   } else {
4324     InternalId = llvm::MDNode::getDistinct(getLLVMContext(),
4325                                            llvm::ArrayRef<llvm::Metadata *>());
4326   }
4327 
4328   return InternalId;
4329 }
4330 
4331 /// Returns whether this module needs the "all-vtables" type identifier.
4332 bool CodeGenModule::NeedAllVtablesTypeId() const {
4333   // Returns true if at least one of vtable-based CFI checkers is enabled and
4334   // is not in the trapping mode.
4335   return ((LangOpts.Sanitize.has(SanitizerKind::CFIVCall) &&
4336            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIVCall)) ||
4337           (LangOpts.Sanitize.has(SanitizerKind::CFINVCall) &&
4338            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFINVCall)) ||
4339           (LangOpts.Sanitize.has(SanitizerKind::CFIDerivedCast) &&
4340            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIDerivedCast)) ||
4341           (LangOpts.Sanitize.has(SanitizerKind::CFIUnrelatedCast) &&
4342            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIUnrelatedCast)));
4343 }
4344 
4345 void CodeGenModule::AddVTableTypeMetadata(llvm::GlobalVariable *VTable,
4346                                           CharUnits Offset,
4347                                           const CXXRecordDecl *RD) {
4348   llvm::Metadata *MD =
4349       CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0));
4350   VTable->addTypeMetadata(Offset.getQuantity(), MD);
4351 
4352   if (CodeGenOpts.SanitizeCfiCrossDso)
4353     if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD))
4354       VTable->addTypeMetadata(Offset.getQuantity(),
4355                               llvm::ConstantAsMetadata::get(CrossDsoTypeId));
4356 
4357   if (NeedAllVtablesTypeId()) {
4358     llvm::Metadata *MD = llvm::MDString::get(getLLVMContext(), "all-vtables");
4359     VTable->addTypeMetadata(Offset.getQuantity(), MD);
4360   }
4361 }
4362 
4363 // Fills in the supplied string map with the set of target features for the
4364 // passed in function.
4365 void CodeGenModule::getFunctionFeatureMap(llvm::StringMap<bool> &FeatureMap,
4366                                           const FunctionDecl *FD) {
4367   StringRef TargetCPU = Target.getTargetOpts().CPU;
4368   if (const auto *TD = FD->getAttr<TargetAttr>()) {
4369     // If we have a TargetAttr build up the feature map based on that.
4370     TargetAttr::ParsedTargetAttr ParsedAttr = TD->parse();
4371 
4372     // Make a copy of the features as passed on the command line into the
4373     // beginning of the additional features from the function to override.
4374     ParsedAttr.first.insert(ParsedAttr.first.begin(),
4375                             Target.getTargetOpts().FeaturesAsWritten.begin(),
4376                             Target.getTargetOpts().FeaturesAsWritten.end());
4377 
4378     if (ParsedAttr.second != "")
4379       TargetCPU = ParsedAttr.second;
4380 
4381     // Now populate the feature map, first with the TargetCPU which is either
4382     // the default or a new one from the target attribute string. Then we'll use
4383     // the passed in features (FeaturesAsWritten) along with the new ones from
4384     // the attribute.
4385     Target.initFeatureMap(FeatureMap, getDiags(), TargetCPU, ParsedAttr.first);
4386   } else {
4387     Target.initFeatureMap(FeatureMap, getDiags(), TargetCPU,
4388                           Target.getTargetOpts().Features);
4389   }
4390 }
4391 
4392 llvm::SanitizerStatReport &CodeGenModule::getSanStats() {
4393   if (!SanStats)
4394     SanStats = llvm::make_unique<llvm::SanitizerStatReport>(&getModule());
4395 
4396   return *SanStats;
4397 }
4398 llvm::Value *
4399 CodeGenModule::createOpenCLIntToSamplerConversion(const Expr *E,
4400                                                   CodeGenFunction &CGF) {
4401   llvm::Constant *C = EmitConstantExpr(E, E->getType(), &CGF);
4402   auto SamplerT = getOpenCLRuntime().getSamplerType();
4403   auto FTy = llvm::FunctionType::get(SamplerT, {C->getType()}, false);
4404   return CGF.Builder.CreateCall(CreateRuntimeFunction(FTy,
4405                                 "__translate_sampler_initializer"),
4406                                 {C});
4407 }
4408