xref: /llvm-project/clang/lib/CodeGen/CodeGenModule.cpp (revision 719123230577ebfb689b53ed09f4d06ddc1664ef)
1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This coordinates the per-module state used while generating code.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "CodeGenModule.h"
14 #include "ABIInfo.h"
15 #include "CGBlocks.h"
16 #include "CGCUDARuntime.h"
17 #include "CGCXXABI.h"
18 #include "CGCall.h"
19 #include "CGDebugInfo.h"
20 #include "CGHLSLRuntime.h"
21 #include "CGObjCRuntime.h"
22 #include "CGOpenCLRuntime.h"
23 #include "CGOpenMPRuntime.h"
24 #include "CGOpenMPRuntimeGPU.h"
25 #include "CodeGenFunction.h"
26 #include "CodeGenPGO.h"
27 #include "ConstantEmitter.h"
28 #include "CoverageMappingGen.h"
29 #include "TargetInfo.h"
30 #include "clang/AST/ASTContext.h"
31 #include "clang/AST/CharUnits.h"
32 #include "clang/AST/DeclCXX.h"
33 #include "clang/AST/DeclObjC.h"
34 #include "clang/AST/DeclTemplate.h"
35 #include "clang/AST/Mangle.h"
36 #include "clang/AST/RecursiveASTVisitor.h"
37 #include "clang/AST/StmtVisitor.h"
38 #include "clang/Basic/Builtins.h"
39 #include "clang/Basic/CharInfo.h"
40 #include "clang/Basic/CodeGenOptions.h"
41 #include "clang/Basic/Diagnostic.h"
42 #include "clang/Basic/FileManager.h"
43 #include "clang/Basic/Module.h"
44 #include "clang/Basic/SourceManager.h"
45 #include "clang/Basic/TargetInfo.h"
46 #include "clang/Basic/Version.h"
47 #include "clang/CodeGen/BackendUtil.h"
48 #include "clang/CodeGen/ConstantInitBuilder.h"
49 #include "clang/Frontend/FrontendDiagnostic.h"
50 #include "llvm/ADT/STLExtras.h"
51 #include "llvm/ADT/StringExtras.h"
52 #include "llvm/ADT/StringSwitch.h"
53 #include "llvm/ADT/Triple.h"
54 #include "llvm/Analysis/TargetLibraryInfo.h"
55 #include "llvm/Frontend/OpenMP/OMPIRBuilder.h"
56 #include "llvm/IR/CallingConv.h"
57 #include "llvm/IR/DataLayout.h"
58 #include "llvm/IR/Intrinsics.h"
59 #include "llvm/IR/LLVMContext.h"
60 #include "llvm/IR/Module.h"
61 #include "llvm/IR/ProfileSummary.h"
62 #include "llvm/ProfileData/InstrProfReader.h"
63 #include "llvm/ProfileData/SampleProf.h"
64 #include "llvm/Support/CRC.h"
65 #include "llvm/Support/CodeGen.h"
66 #include "llvm/Support/CommandLine.h"
67 #include "llvm/Support/ConvertUTF.h"
68 #include "llvm/Support/ErrorHandling.h"
69 #include "llvm/Support/TimeProfiler.h"
70 #include "llvm/Support/X86TargetParser.h"
71 #include "llvm/Support/xxhash.h"
72 
73 using namespace clang;
74 using namespace CodeGen;
75 
76 static llvm::cl::opt<bool> LimitedCoverage(
77     "limited-coverage-experimental", llvm::cl::Hidden,
78     llvm::cl::desc("Emit limited coverage mapping information (experimental)"));
79 
80 static const char AnnotationSection[] = "llvm.metadata";
81 
82 static CGCXXABI *createCXXABI(CodeGenModule &CGM) {
83   switch (CGM.getContext().getCXXABIKind()) {
84   case TargetCXXABI::AppleARM64:
85   case TargetCXXABI::Fuchsia:
86   case TargetCXXABI::GenericAArch64:
87   case TargetCXXABI::GenericARM:
88   case TargetCXXABI::iOS:
89   case TargetCXXABI::WatchOS:
90   case TargetCXXABI::GenericMIPS:
91   case TargetCXXABI::GenericItanium:
92   case TargetCXXABI::WebAssembly:
93   case TargetCXXABI::XL:
94     return CreateItaniumCXXABI(CGM);
95   case TargetCXXABI::Microsoft:
96     return CreateMicrosoftCXXABI(CGM);
97   }
98 
99   llvm_unreachable("invalid C++ ABI kind");
100 }
101 
102 CodeGenModule::CodeGenModule(ASTContext &C,
103                              IntrusiveRefCntPtr<llvm::vfs::FileSystem> FS,
104                              const HeaderSearchOptions &HSO,
105                              const PreprocessorOptions &PPO,
106                              const CodeGenOptions &CGO, llvm::Module &M,
107                              DiagnosticsEngine &diags,
108                              CoverageSourceInfo *CoverageInfo)
109     : Context(C), LangOpts(C.getLangOpts()), FS(std::move(FS)),
110       HeaderSearchOpts(HSO), PreprocessorOpts(PPO), CodeGenOpts(CGO),
111       TheModule(M), Diags(diags), Target(C.getTargetInfo()),
112       ABI(createCXXABI(*this)), VMContext(M.getContext()), Types(*this),
113       VTables(*this), SanitizerMD(new SanitizerMetadata(*this)) {
114 
115   // Initialize the type cache.
116   llvm::LLVMContext &LLVMContext = M.getContext();
117   VoidTy = llvm::Type::getVoidTy(LLVMContext);
118   Int8Ty = llvm::Type::getInt8Ty(LLVMContext);
119   Int16Ty = llvm::Type::getInt16Ty(LLVMContext);
120   Int32Ty = llvm::Type::getInt32Ty(LLVMContext);
121   Int64Ty = llvm::Type::getInt64Ty(LLVMContext);
122   HalfTy = llvm::Type::getHalfTy(LLVMContext);
123   BFloatTy = llvm::Type::getBFloatTy(LLVMContext);
124   FloatTy = llvm::Type::getFloatTy(LLVMContext);
125   DoubleTy = llvm::Type::getDoubleTy(LLVMContext);
126   PointerWidthInBits = C.getTargetInfo().getPointerWidth(LangAS::Default);
127   PointerAlignInBytes =
128       C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(LangAS::Default))
129           .getQuantity();
130   SizeSizeInBytes =
131     C.toCharUnitsFromBits(C.getTargetInfo().getMaxPointerWidth()).getQuantity();
132   IntAlignInBytes =
133     C.toCharUnitsFromBits(C.getTargetInfo().getIntAlign()).getQuantity();
134   CharTy =
135     llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getCharWidth());
136   IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth());
137   IntPtrTy = llvm::IntegerType::get(LLVMContext,
138     C.getTargetInfo().getMaxPointerWidth());
139   Int8PtrTy = Int8Ty->getPointerTo(0);
140   Int8PtrPtrTy = Int8PtrTy->getPointerTo(0);
141   const llvm::DataLayout &DL = M.getDataLayout();
142   AllocaInt8PtrTy = Int8Ty->getPointerTo(DL.getAllocaAddrSpace());
143   GlobalsInt8PtrTy = Int8Ty->getPointerTo(DL.getDefaultGlobalsAddressSpace());
144   ConstGlobalsPtrTy = Int8Ty->getPointerTo(
145       C.getTargetAddressSpace(GetGlobalConstantAddressSpace()));
146   ASTAllocaAddressSpace = getTargetCodeGenInfo().getASTAllocaAddressSpace();
147 
148   // Build C++20 Module initializers.
149   // TODO: Add Microsoft here once we know the mangling required for the
150   // initializers.
151   CXX20ModuleInits =
152       LangOpts.CPlusPlusModules && getCXXABI().getMangleContext().getKind() ==
153                                        ItaniumMangleContext::MK_Itanium;
154 
155   RuntimeCC = getTargetCodeGenInfo().getABIInfo().getRuntimeCC();
156 
157   if (LangOpts.ObjC)
158     createObjCRuntime();
159   if (LangOpts.OpenCL)
160     createOpenCLRuntime();
161   if (LangOpts.OpenMP)
162     createOpenMPRuntime();
163   if (LangOpts.CUDA)
164     createCUDARuntime();
165   if (LangOpts.HLSL)
166     createHLSLRuntime();
167 
168   // Enable TBAA unless it's suppressed. ThreadSanitizer needs TBAA even at O0.
169   if (LangOpts.Sanitize.has(SanitizerKind::Thread) ||
170       (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0))
171     TBAA.reset(new CodeGenTBAA(Context, TheModule, CodeGenOpts, getLangOpts(),
172                                getCXXABI().getMangleContext()));
173 
174   // If debug info or coverage generation is enabled, create the CGDebugInfo
175   // object.
176   if (CodeGenOpts.getDebugInfo() != codegenoptions::NoDebugInfo ||
177       CodeGenOpts.EmitGcovArcs || CodeGenOpts.EmitGcovNotes)
178     DebugInfo.reset(new CGDebugInfo(*this));
179 
180   Block.GlobalUniqueCount = 0;
181 
182   if (C.getLangOpts().ObjC)
183     ObjCData.reset(new ObjCEntrypoints());
184 
185   if (CodeGenOpts.hasProfileClangUse()) {
186     auto ReaderOrErr = llvm::IndexedInstrProfReader::create(
187         CodeGenOpts.ProfileInstrumentUsePath, CodeGenOpts.ProfileRemappingFile);
188     // We're checking for profile read errors in CompilerInvocation, so if
189     // there was an error it should've already been caught. If it hasn't been
190     // somehow, trip an assertion.
191     assert(ReaderOrErr);
192     PGOReader = std::move(ReaderOrErr.get());
193   }
194 
195   // If coverage mapping generation is enabled, create the
196   // CoverageMappingModuleGen object.
197   if (CodeGenOpts.CoverageMapping)
198     CoverageMapping.reset(new CoverageMappingModuleGen(*this, *CoverageInfo));
199 
200   // Generate the module name hash here if needed.
201   if (CodeGenOpts.UniqueInternalLinkageNames &&
202       !getModule().getSourceFileName().empty()) {
203     std::string Path = getModule().getSourceFileName();
204     // Check if a path substitution is needed from the MacroPrefixMap.
205     for (const auto &Entry : LangOpts.MacroPrefixMap)
206       if (Path.rfind(Entry.first, 0) != std::string::npos) {
207         Path = Entry.second + Path.substr(Entry.first.size());
208         break;
209       }
210     ModuleNameHash = llvm::getUniqueInternalLinkagePostfix(Path);
211   }
212 }
213 
214 CodeGenModule::~CodeGenModule() {}
215 
216 void CodeGenModule::createObjCRuntime() {
217   // This is just isGNUFamily(), but we want to force implementors of
218   // new ABIs to decide how best to do this.
219   switch (LangOpts.ObjCRuntime.getKind()) {
220   case ObjCRuntime::GNUstep:
221   case ObjCRuntime::GCC:
222   case ObjCRuntime::ObjFW:
223     ObjCRuntime.reset(CreateGNUObjCRuntime(*this));
224     return;
225 
226   case ObjCRuntime::FragileMacOSX:
227   case ObjCRuntime::MacOSX:
228   case ObjCRuntime::iOS:
229   case ObjCRuntime::WatchOS:
230     ObjCRuntime.reset(CreateMacObjCRuntime(*this));
231     return;
232   }
233   llvm_unreachable("bad runtime kind");
234 }
235 
236 void CodeGenModule::createOpenCLRuntime() {
237   OpenCLRuntime.reset(new CGOpenCLRuntime(*this));
238 }
239 
240 void CodeGenModule::createOpenMPRuntime() {
241   // Select a specialized code generation class based on the target, if any.
242   // If it does not exist use the default implementation.
243   switch (getTriple().getArch()) {
244   case llvm::Triple::nvptx:
245   case llvm::Triple::nvptx64:
246   case llvm::Triple::amdgcn:
247     assert(getLangOpts().OpenMPIsDevice &&
248            "OpenMP AMDGPU/NVPTX is only prepared to deal with device code.");
249     OpenMPRuntime.reset(new CGOpenMPRuntimeGPU(*this));
250     break;
251   default:
252     if (LangOpts.OpenMPSimd)
253       OpenMPRuntime.reset(new CGOpenMPSIMDRuntime(*this));
254     else
255       OpenMPRuntime.reset(new CGOpenMPRuntime(*this));
256     break;
257   }
258 }
259 
260 void CodeGenModule::createCUDARuntime() {
261   CUDARuntime.reset(CreateNVCUDARuntime(*this));
262 }
263 
264 void CodeGenModule::createHLSLRuntime() {
265   HLSLRuntime.reset(new CGHLSLRuntime(*this));
266 }
267 
268 void CodeGenModule::addReplacement(StringRef Name, llvm::Constant *C) {
269   Replacements[Name] = C;
270 }
271 
272 void CodeGenModule::applyReplacements() {
273   for (auto &I : Replacements) {
274     StringRef MangledName = I.first();
275     llvm::Constant *Replacement = I.second;
276     llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
277     if (!Entry)
278       continue;
279     auto *OldF = cast<llvm::Function>(Entry);
280     auto *NewF = dyn_cast<llvm::Function>(Replacement);
281     if (!NewF) {
282       if (auto *Alias = dyn_cast<llvm::GlobalAlias>(Replacement)) {
283         NewF = dyn_cast<llvm::Function>(Alias->getAliasee());
284       } else {
285         auto *CE = cast<llvm::ConstantExpr>(Replacement);
286         assert(CE->getOpcode() == llvm::Instruction::BitCast ||
287                CE->getOpcode() == llvm::Instruction::GetElementPtr);
288         NewF = dyn_cast<llvm::Function>(CE->getOperand(0));
289       }
290     }
291 
292     // Replace old with new, but keep the old order.
293     OldF->replaceAllUsesWith(Replacement);
294     if (NewF) {
295       NewF->removeFromParent();
296       OldF->getParent()->getFunctionList().insertAfter(OldF->getIterator(),
297                                                        NewF);
298     }
299     OldF->eraseFromParent();
300   }
301 }
302 
303 void CodeGenModule::addGlobalValReplacement(llvm::GlobalValue *GV, llvm::Constant *C) {
304   GlobalValReplacements.push_back(std::make_pair(GV, C));
305 }
306 
307 void CodeGenModule::applyGlobalValReplacements() {
308   for (auto &I : GlobalValReplacements) {
309     llvm::GlobalValue *GV = I.first;
310     llvm::Constant *C = I.second;
311 
312     GV->replaceAllUsesWith(C);
313     GV->eraseFromParent();
314   }
315 }
316 
317 // This is only used in aliases that we created and we know they have a
318 // linear structure.
319 static const llvm::GlobalValue *getAliasedGlobal(const llvm::GlobalValue *GV) {
320   const llvm::Constant *C;
321   if (auto *GA = dyn_cast<llvm::GlobalAlias>(GV))
322     C = GA->getAliasee();
323   else if (auto *GI = dyn_cast<llvm::GlobalIFunc>(GV))
324     C = GI->getResolver();
325   else
326     return GV;
327 
328   const auto *AliaseeGV = dyn_cast<llvm::GlobalValue>(C->stripPointerCasts());
329   if (!AliaseeGV)
330     return nullptr;
331 
332   const llvm::GlobalValue *FinalGV = AliaseeGV->getAliaseeObject();
333   if (FinalGV == GV)
334     return nullptr;
335 
336   return FinalGV;
337 }
338 
339 static bool checkAliasedGlobal(DiagnosticsEngine &Diags,
340                                SourceLocation Location, bool IsIFunc,
341                                const llvm::GlobalValue *Alias,
342                                const llvm::GlobalValue *&GV) {
343   GV = getAliasedGlobal(Alias);
344   if (!GV) {
345     Diags.Report(Location, diag::err_cyclic_alias) << IsIFunc;
346     return false;
347   }
348 
349   if (GV->isDeclaration()) {
350     Diags.Report(Location, diag::err_alias_to_undefined) << IsIFunc << IsIFunc;
351     return false;
352   }
353 
354   if (IsIFunc) {
355     // Check resolver function type.
356     const auto *F = dyn_cast<llvm::Function>(GV);
357     if (!F) {
358       Diags.Report(Location, diag::err_alias_to_undefined)
359           << IsIFunc << IsIFunc;
360       return false;
361     }
362 
363     llvm::FunctionType *FTy = F->getFunctionType();
364     if (!FTy->getReturnType()->isPointerTy()) {
365       Diags.Report(Location, diag::err_ifunc_resolver_return);
366       return false;
367     }
368   }
369 
370   return true;
371 }
372 
373 void CodeGenModule::checkAliases() {
374   // Check if the constructed aliases are well formed. It is really unfortunate
375   // that we have to do this in CodeGen, but we only construct mangled names
376   // and aliases during codegen.
377   bool Error = false;
378   DiagnosticsEngine &Diags = getDiags();
379   for (const GlobalDecl &GD : Aliases) {
380     const auto *D = cast<ValueDecl>(GD.getDecl());
381     SourceLocation Location;
382     bool IsIFunc = D->hasAttr<IFuncAttr>();
383     if (const Attr *A = D->getDefiningAttr())
384       Location = A->getLocation();
385     else
386       llvm_unreachable("Not an alias or ifunc?");
387 
388     StringRef MangledName = getMangledName(GD);
389     llvm::GlobalValue *Alias = GetGlobalValue(MangledName);
390     const llvm::GlobalValue *GV = nullptr;
391     if (!checkAliasedGlobal(Diags, Location, IsIFunc, Alias, GV)) {
392       Error = true;
393       continue;
394     }
395 
396     llvm::Constant *Aliasee =
397         IsIFunc ? cast<llvm::GlobalIFunc>(Alias)->getResolver()
398                 : cast<llvm::GlobalAlias>(Alias)->getAliasee();
399 
400     llvm::GlobalValue *AliaseeGV;
401     if (auto CE = dyn_cast<llvm::ConstantExpr>(Aliasee))
402       AliaseeGV = cast<llvm::GlobalValue>(CE->getOperand(0));
403     else
404       AliaseeGV = cast<llvm::GlobalValue>(Aliasee);
405 
406     if (const SectionAttr *SA = D->getAttr<SectionAttr>()) {
407       StringRef AliasSection = SA->getName();
408       if (AliasSection != AliaseeGV->getSection())
409         Diags.Report(SA->getLocation(), diag::warn_alias_with_section)
410             << AliasSection << IsIFunc << IsIFunc;
411     }
412 
413     // We have to handle alias to weak aliases in here. LLVM itself disallows
414     // this since the object semantics would not match the IL one. For
415     // compatibility with gcc we implement it by just pointing the alias
416     // to its aliasee's aliasee. We also warn, since the user is probably
417     // expecting the link to be weak.
418     if (auto *GA = dyn_cast<llvm::GlobalAlias>(AliaseeGV)) {
419       if (GA->isInterposable()) {
420         Diags.Report(Location, diag::warn_alias_to_weak_alias)
421             << GV->getName() << GA->getName() << IsIFunc;
422         Aliasee = llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(
423             GA->getAliasee(), Alias->getType());
424 
425         if (IsIFunc)
426           cast<llvm::GlobalIFunc>(Alias)->setResolver(Aliasee);
427         else
428           cast<llvm::GlobalAlias>(Alias)->setAliasee(Aliasee);
429       }
430     }
431   }
432   if (!Error)
433     return;
434 
435   for (const GlobalDecl &GD : Aliases) {
436     StringRef MangledName = getMangledName(GD);
437     llvm::GlobalValue *Alias = GetGlobalValue(MangledName);
438     Alias->replaceAllUsesWith(llvm::UndefValue::get(Alias->getType()));
439     Alias->eraseFromParent();
440   }
441 }
442 
443 void CodeGenModule::clear() {
444   DeferredDeclsToEmit.clear();
445   EmittedDeferredDecls.clear();
446   if (OpenMPRuntime)
447     OpenMPRuntime->clear();
448 }
449 
450 void InstrProfStats::reportDiagnostics(DiagnosticsEngine &Diags,
451                                        StringRef MainFile) {
452   if (!hasDiagnostics())
453     return;
454   if (VisitedInMainFile > 0 && VisitedInMainFile == MissingInMainFile) {
455     if (MainFile.empty())
456       MainFile = "<stdin>";
457     Diags.Report(diag::warn_profile_data_unprofiled) << MainFile;
458   } else {
459     if (Mismatched > 0)
460       Diags.Report(diag::warn_profile_data_out_of_date) << Visited << Mismatched;
461 
462     if (Missing > 0)
463       Diags.Report(diag::warn_profile_data_missing) << Visited << Missing;
464   }
465 }
466 
467 static void setVisibilityFromDLLStorageClass(const clang::LangOptions &LO,
468                                              llvm::Module &M) {
469   if (!LO.VisibilityFromDLLStorageClass)
470     return;
471 
472   llvm::GlobalValue::VisibilityTypes DLLExportVisibility =
473       CodeGenModule::GetLLVMVisibility(LO.getDLLExportVisibility());
474   llvm::GlobalValue::VisibilityTypes NoDLLStorageClassVisibility =
475       CodeGenModule::GetLLVMVisibility(LO.getNoDLLStorageClassVisibility());
476   llvm::GlobalValue::VisibilityTypes ExternDeclDLLImportVisibility =
477       CodeGenModule::GetLLVMVisibility(LO.getExternDeclDLLImportVisibility());
478   llvm::GlobalValue::VisibilityTypes ExternDeclNoDLLStorageClassVisibility =
479       CodeGenModule::GetLLVMVisibility(
480           LO.getExternDeclNoDLLStorageClassVisibility());
481 
482   for (llvm::GlobalValue &GV : M.global_values()) {
483     if (GV.hasAppendingLinkage() || GV.hasLocalLinkage())
484       continue;
485 
486     // Reset DSO locality before setting the visibility. This removes
487     // any effects that visibility options and annotations may have
488     // had on the DSO locality. Setting the visibility will implicitly set
489     // appropriate globals to DSO Local; however, this will be pessimistic
490     // w.r.t. to the normal compiler IRGen.
491     GV.setDSOLocal(false);
492 
493     if (GV.isDeclarationForLinker()) {
494       GV.setVisibility(GV.getDLLStorageClass() ==
495                                llvm::GlobalValue::DLLImportStorageClass
496                            ? ExternDeclDLLImportVisibility
497                            : ExternDeclNoDLLStorageClassVisibility);
498     } else {
499       GV.setVisibility(GV.getDLLStorageClass() ==
500                                llvm::GlobalValue::DLLExportStorageClass
501                            ? DLLExportVisibility
502                            : NoDLLStorageClassVisibility);
503     }
504 
505     GV.setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
506   }
507 }
508 
509 void CodeGenModule::Release() {
510   Module *Primary = getContext().getModuleForCodeGen();
511   if (CXX20ModuleInits && Primary && !Primary->isHeaderLikeModule())
512     EmitModuleInitializers(Primary);
513   EmitDeferred();
514   DeferredDecls.insert(EmittedDeferredDecls.begin(),
515                        EmittedDeferredDecls.end());
516   EmittedDeferredDecls.clear();
517   EmitVTablesOpportunistically();
518   applyGlobalValReplacements();
519   applyReplacements();
520   emitMultiVersionFunctions();
521 
522   if (Context.getLangOpts().IncrementalExtensions &&
523       GlobalTopLevelStmtBlockInFlight.first) {
524     const TopLevelStmtDecl *TLSD = GlobalTopLevelStmtBlockInFlight.second;
525     GlobalTopLevelStmtBlockInFlight.first->FinishFunction(TLSD->getEndLoc());
526     GlobalTopLevelStmtBlockInFlight = {nullptr, nullptr};
527   }
528 
529   if (CXX20ModuleInits && Primary && Primary->isInterfaceOrPartition())
530     EmitCXXModuleInitFunc(Primary);
531   else
532     EmitCXXGlobalInitFunc();
533   EmitCXXGlobalCleanUpFunc();
534   registerGlobalDtorsWithAtExit();
535   EmitCXXThreadLocalInitFunc();
536   if (ObjCRuntime)
537     if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction())
538       AddGlobalCtor(ObjCInitFunction);
539   if (Context.getLangOpts().CUDA && CUDARuntime) {
540     if (llvm::Function *CudaCtorFunction = CUDARuntime->finalizeModule())
541       AddGlobalCtor(CudaCtorFunction);
542   }
543   if (OpenMPRuntime) {
544     if (llvm::Function *OpenMPRequiresDirectiveRegFun =
545             OpenMPRuntime->emitRequiresDirectiveRegFun()) {
546       AddGlobalCtor(OpenMPRequiresDirectiveRegFun, 0);
547     }
548     OpenMPRuntime->createOffloadEntriesAndInfoMetadata();
549     OpenMPRuntime->clear();
550   }
551   if (PGOReader) {
552     getModule().setProfileSummary(
553         PGOReader->getSummary(/* UseCS */ false).getMD(VMContext),
554         llvm::ProfileSummary::PSK_Instr);
555     if (PGOStats.hasDiagnostics())
556       PGOStats.reportDiagnostics(getDiags(), getCodeGenOpts().MainFileName);
557   }
558   llvm::stable_sort(GlobalCtors, [](const Structor &L, const Structor &R) {
559     return L.LexOrder < R.LexOrder;
560   });
561   EmitCtorList(GlobalCtors, "llvm.global_ctors");
562   EmitCtorList(GlobalDtors, "llvm.global_dtors");
563   EmitGlobalAnnotations();
564   EmitStaticExternCAliases();
565   checkAliases();
566   EmitDeferredUnusedCoverageMappings();
567   CodeGenPGO(*this).setValueProfilingFlag(getModule());
568   if (CoverageMapping)
569     CoverageMapping->emit();
570   if (CodeGenOpts.SanitizeCfiCrossDso) {
571     CodeGenFunction(*this).EmitCfiCheckFail();
572     CodeGenFunction(*this).EmitCfiCheckStub();
573   }
574   if (LangOpts.Sanitize.has(SanitizerKind::KCFI))
575     finalizeKCFITypes();
576   emitAtAvailableLinkGuard();
577   if (Context.getTargetInfo().getTriple().isWasm())
578     EmitMainVoidAlias();
579 
580   if (getTriple().isAMDGPU()) {
581     // Emit reference of __amdgpu_device_library_preserve_asan_functions to
582     // preserve ASAN functions in bitcode libraries.
583     if (LangOpts.Sanitize.has(SanitizerKind::Address)) {
584       auto *FT = llvm::FunctionType::get(VoidTy, {});
585       auto *F = llvm::Function::Create(
586           FT, llvm::GlobalValue::ExternalLinkage,
587           "__amdgpu_device_library_preserve_asan_functions", &getModule());
588       auto *Var = new llvm::GlobalVariable(
589           getModule(), FT->getPointerTo(),
590           /*isConstant=*/true, llvm::GlobalValue::WeakAnyLinkage, F,
591           "__amdgpu_device_library_preserve_asan_functions_ptr", nullptr,
592           llvm::GlobalVariable::NotThreadLocal);
593       addCompilerUsedGlobal(Var);
594     }
595     // Emit amdgpu_code_object_version module flag, which is code object version
596     // times 100.
597     if (getTarget().getTargetOpts().CodeObjectVersion !=
598         TargetOptions::COV_None) {
599       getModule().addModuleFlag(llvm::Module::Error,
600                                 "amdgpu_code_object_version",
601                                 getTarget().getTargetOpts().CodeObjectVersion);
602     }
603   }
604 
605   // Emit a global array containing all external kernels or device variables
606   // used by host functions and mark it as used for CUDA/HIP. This is necessary
607   // to get kernels or device variables in archives linked in even if these
608   // kernels or device variables are only used in host functions.
609   if (!Context.CUDAExternalDeviceDeclODRUsedByHost.empty()) {
610     SmallVector<llvm::Constant *, 8> UsedArray;
611     for (auto D : Context.CUDAExternalDeviceDeclODRUsedByHost) {
612       GlobalDecl GD;
613       if (auto *FD = dyn_cast<FunctionDecl>(D))
614         GD = GlobalDecl(FD, KernelReferenceKind::Kernel);
615       else
616         GD = GlobalDecl(D);
617       UsedArray.push_back(llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(
618           GetAddrOfGlobal(GD), Int8PtrTy));
619     }
620 
621     llvm::ArrayType *ATy = llvm::ArrayType::get(Int8PtrTy, UsedArray.size());
622 
623     auto *GV = new llvm::GlobalVariable(
624         getModule(), ATy, false, llvm::GlobalValue::InternalLinkage,
625         llvm::ConstantArray::get(ATy, UsedArray), "__clang_gpu_used_external");
626     addCompilerUsedGlobal(GV);
627   }
628 
629   emitLLVMUsed();
630   if (SanStats)
631     SanStats->finish();
632 
633   if (CodeGenOpts.Autolink &&
634       (Context.getLangOpts().Modules || !LinkerOptionsMetadata.empty())) {
635     EmitModuleLinkOptions();
636   }
637 
638   // On ELF we pass the dependent library specifiers directly to the linker
639   // without manipulating them. This is in contrast to other platforms where
640   // they are mapped to a specific linker option by the compiler. This
641   // difference is a result of the greater variety of ELF linkers and the fact
642   // that ELF linkers tend to handle libraries in a more complicated fashion
643   // than on other platforms. This forces us to defer handling the dependent
644   // libs to the linker.
645   //
646   // CUDA/HIP device and host libraries are different. Currently there is no
647   // way to differentiate dependent libraries for host or device. Existing
648   // usage of #pragma comment(lib, *) is intended for host libraries on
649   // Windows. Therefore emit llvm.dependent-libraries only for host.
650   if (!ELFDependentLibraries.empty() && !Context.getLangOpts().CUDAIsDevice) {
651     auto *NMD = getModule().getOrInsertNamedMetadata("llvm.dependent-libraries");
652     for (auto *MD : ELFDependentLibraries)
653       NMD->addOperand(MD);
654   }
655 
656   // Record mregparm value now so it is visible through rest of codegen.
657   if (Context.getTargetInfo().getTriple().getArch() == llvm::Triple::x86)
658     getModule().addModuleFlag(llvm::Module::Error, "NumRegisterParameters",
659                               CodeGenOpts.NumRegisterParameters);
660 
661   if (CodeGenOpts.DwarfVersion) {
662     getModule().addModuleFlag(llvm::Module::Max, "Dwarf Version",
663                               CodeGenOpts.DwarfVersion);
664   }
665 
666   if (CodeGenOpts.Dwarf64)
667     getModule().addModuleFlag(llvm::Module::Max, "DWARF64", 1);
668 
669   if (Context.getLangOpts().SemanticInterposition)
670     // Require various optimization to respect semantic interposition.
671     getModule().setSemanticInterposition(true);
672 
673   if (CodeGenOpts.EmitCodeView) {
674     // Indicate that we want CodeView in the metadata.
675     getModule().addModuleFlag(llvm::Module::Warning, "CodeView", 1);
676   }
677   if (CodeGenOpts.CodeViewGHash) {
678     getModule().addModuleFlag(llvm::Module::Warning, "CodeViewGHash", 1);
679   }
680   if (CodeGenOpts.ControlFlowGuard) {
681     // Function ID tables and checks for Control Flow Guard (cfguard=2).
682     getModule().addModuleFlag(llvm::Module::Warning, "cfguard", 2);
683   } else if (CodeGenOpts.ControlFlowGuardNoChecks) {
684     // Function ID tables for Control Flow Guard (cfguard=1).
685     getModule().addModuleFlag(llvm::Module::Warning, "cfguard", 1);
686   }
687   if (CodeGenOpts.EHContGuard) {
688     // Function ID tables for EH Continuation Guard.
689     getModule().addModuleFlag(llvm::Module::Warning, "ehcontguard", 1);
690   }
691   if (Context.getLangOpts().Kernel) {
692     // Note if we are compiling with /kernel.
693     getModule().addModuleFlag(llvm::Module::Warning, "ms-kernel", 1);
694   }
695   if (CodeGenOpts.OptimizationLevel > 0 && CodeGenOpts.StrictVTablePointers) {
696     // We don't support LTO with 2 with different StrictVTablePointers
697     // FIXME: we could support it by stripping all the information introduced
698     // by StrictVTablePointers.
699 
700     getModule().addModuleFlag(llvm::Module::Error, "StrictVTablePointers",1);
701 
702     llvm::Metadata *Ops[2] = {
703               llvm::MDString::get(VMContext, "StrictVTablePointers"),
704               llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
705                   llvm::Type::getInt32Ty(VMContext), 1))};
706 
707     getModule().addModuleFlag(llvm::Module::Require,
708                               "StrictVTablePointersRequirement",
709                               llvm::MDNode::get(VMContext, Ops));
710   }
711   if (getModuleDebugInfo())
712     // We support a single version in the linked module. The LLVM
713     // parser will drop debug info with a different version number
714     // (and warn about it, too).
715     getModule().addModuleFlag(llvm::Module::Warning, "Debug Info Version",
716                               llvm::DEBUG_METADATA_VERSION);
717 
718   // We need to record the widths of enums and wchar_t, so that we can generate
719   // the correct build attributes in the ARM backend. wchar_size is also used by
720   // TargetLibraryInfo.
721   uint64_t WCharWidth =
722       Context.getTypeSizeInChars(Context.getWideCharType()).getQuantity();
723   getModule().addModuleFlag(llvm::Module::Error, "wchar_size", WCharWidth);
724 
725   llvm::Triple::ArchType Arch = Context.getTargetInfo().getTriple().getArch();
726   if (   Arch == llvm::Triple::arm
727       || Arch == llvm::Triple::armeb
728       || Arch == llvm::Triple::thumb
729       || Arch == llvm::Triple::thumbeb) {
730     // The minimum width of an enum in bytes
731     uint64_t EnumWidth = Context.getLangOpts().ShortEnums ? 1 : 4;
732     getModule().addModuleFlag(llvm::Module::Error, "min_enum_size", EnumWidth);
733   }
734 
735   if (Arch == llvm::Triple::riscv32 || Arch == llvm::Triple::riscv64) {
736     StringRef ABIStr = Target.getABI();
737     llvm::LLVMContext &Ctx = TheModule.getContext();
738     getModule().addModuleFlag(llvm::Module::Error, "target-abi",
739                               llvm::MDString::get(Ctx, ABIStr));
740   }
741 
742   if (CodeGenOpts.SanitizeCfiCrossDso) {
743     // Indicate that we want cross-DSO control flow integrity checks.
744     getModule().addModuleFlag(llvm::Module::Override, "Cross-DSO CFI", 1);
745   }
746 
747   if (CodeGenOpts.WholeProgramVTables) {
748     // Indicate whether VFE was enabled for this module, so that the
749     // vcall_visibility metadata added under whole program vtables is handled
750     // appropriately in the optimizer.
751     getModule().addModuleFlag(llvm::Module::Error, "Virtual Function Elim",
752                               CodeGenOpts.VirtualFunctionElimination);
753   }
754 
755   if (LangOpts.Sanitize.has(SanitizerKind::CFIICall)) {
756     getModule().addModuleFlag(llvm::Module::Override,
757                               "CFI Canonical Jump Tables",
758                               CodeGenOpts.SanitizeCfiCanonicalJumpTables);
759   }
760 
761   if (LangOpts.Sanitize.has(SanitizerKind::KCFI))
762     getModule().addModuleFlag(llvm::Module::Override, "kcfi", 1);
763 
764   if (CodeGenOpts.CFProtectionReturn &&
765       Target.checkCFProtectionReturnSupported(getDiags())) {
766     // Indicate that we want to instrument return control flow protection.
767     getModule().addModuleFlag(llvm::Module::Min, "cf-protection-return",
768                               1);
769   }
770 
771   if (CodeGenOpts.CFProtectionBranch &&
772       Target.checkCFProtectionBranchSupported(getDiags())) {
773     // Indicate that we want to instrument branch control flow protection.
774     getModule().addModuleFlag(llvm::Module::Min, "cf-protection-branch",
775                               1);
776   }
777 
778   if (CodeGenOpts.IBTSeal)
779     getModule().addModuleFlag(llvm::Module::Min, "ibt-seal", 1);
780 
781   if (CodeGenOpts.FunctionReturnThunks)
782     getModule().addModuleFlag(llvm::Module::Override, "function_return_thunk_extern", 1);
783 
784   if (CodeGenOpts.IndirectBranchCSPrefix)
785     getModule().addModuleFlag(llvm::Module::Override, "indirect_branch_cs_prefix", 1);
786 
787   // Add module metadata for return address signing (ignoring
788   // non-leaf/all) and stack tagging. These are actually turned on by function
789   // attributes, but we use module metadata to emit build attributes. This is
790   // needed for LTO, where the function attributes are inside bitcode
791   // serialised into a global variable by the time build attributes are
792   // emitted, so we can't access them. LTO objects could be compiled with
793   // different flags therefore module flags are set to "Min" behavior to achieve
794   // the same end result of the normal build where e.g BTI is off if any object
795   // doesn't support it.
796   if (Context.getTargetInfo().hasFeature("ptrauth") &&
797       LangOpts.getSignReturnAddressScope() !=
798           LangOptions::SignReturnAddressScopeKind::None)
799     getModule().addModuleFlag(llvm::Module::Override,
800                               "sign-return-address-buildattr", 1);
801   if (LangOpts.Sanitize.has(SanitizerKind::MemtagStack))
802     getModule().addModuleFlag(llvm::Module::Override,
803                               "tag-stack-memory-buildattr", 1);
804 
805   if (Arch == llvm::Triple::thumb || Arch == llvm::Triple::thumbeb ||
806       Arch == llvm::Triple::arm || Arch == llvm::Triple::armeb ||
807       Arch == llvm::Triple::aarch64 || Arch == llvm::Triple::aarch64_32 ||
808       Arch == llvm::Triple::aarch64_be) {
809     if (LangOpts.BranchTargetEnforcement)
810       getModule().addModuleFlag(llvm::Module::Min, "branch-target-enforcement",
811                                 1);
812     if (LangOpts.hasSignReturnAddress())
813       getModule().addModuleFlag(llvm::Module::Min, "sign-return-address", 1);
814     if (LangOpts.isSignReturnAddressScopeAll())
815       getModule().addModuleFlag(llvm::Module::Min, "sign-return-address-all",
816                                 1);
817     if (!LangOpts.isSignReturnAddressWithAKey())
818       getModule().addModuleFlag(llvm::Module::Min,
819                                 "sign-return-address-with-bkey", 1);
820   }
821 
822   if (!CodeGenOpts.MemoryProfileOutput.empty()) {
823     llvm::LLVMContext &Ctx = TheModule.getContext();
824     getModule().addModuleFlag(
825         llvm::Module::Error, "MemProfProfileFilename",
826         llvm::MDString::get(Ctx, CodeGenOpts.MemoryProfileOutput));
827   }
828 
829   if (LangOpts.CUDAIsDevice && getTriple().isNVPTX()) {
830     // Indicate whether __nvvm_reflect should be configured to flush denormal
831     // floating point values to 0.  (This corresponds to its "__CUDA_FTZ"
832     // property.)
833     getModule().addModuleFlag(llvm::Module::Override, "nvvm-reflect-ftz",
834                               CodeGenOpts.FP32DenormalMode.Output !=
835                                   llvm::DenormalMode::IEEE);
836   }
837 
838   if (LangOpts.EHAsynch)
839     getModule().addModuleFlag(llvm::Module::Warning, "eh-asynch", 1);
840 
841   // Indicate whether this Module was compiled with -fopenmp
842   if (getLangOpts().OpenMP && !getLangOpts().OpenMPSimd)
843     getModule().addModuleFlag(llvm::Module::Max, "openmp", LangOpts.OpenMP);
844   if (getLangOpts().OpenMPIsDevice)
845     getModule().addModuleFlag(llvm::Module::Max, "openmp-device",
846                               LangOpts.OpenMP);
847 
848   // Emit OpenCL specific module metadata: OpenCL/SPIR version.
849   if (LangOpts.OpenCL || (LangOpts.CUDAIsDevice && getTriple().isSPIRV())) {
850     EmitOpenCLMetadata();
851     // Emit SPIR version.
852     if (getTriple().isSPIR()) {
853       // SPIR v2.0 s2.12 - The SPIR version used by the module is stored in the
854       // opencl.spir.version named metadata.
855       // C++ for OpenCL has a distinct mapping for version compatibility with
856       // OpenCL.
857       auto Version = LangOpts.getOpenCLCompatibleVersion();
858       llvm::Metadata *SPIRVerElts[] = {
859           llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
860               Int32Ty, Version / 100)),
861           llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
862               Int32Ty, (Version / 100 > 1) ? 0 : 2))};
863       llvm::NamedMDNode *SPIRVerMD =
864           TheModule.getOrInsertNamedMetadata("opencl.spir.version");
865       llvm::LLVMContext &Ctx = TheModule.getContext();
866       SPIRVerMD->addOperand(llvm::MDNode::get(Ctx, SPIRVerElts));
867     }
868   }
869 
870   // HLSL related end of code gen work items.
871   if (LangOpts.HLSL)
872     getHLSLRuntime().finishCodeGen();
873 
874   if (uint32_t PLevel = Context.getLangOpts().PICLevel) {
875     assert(PLevel < 3 && "Invalid PIC Level");
876     getModule().setPICLevel(static_cast<llvm::PICLevel::Level>(PLevel));
877     if (Context.getLangOpts().PIE)
878       getModule().setPIELevel(static_cast<llvm::PIELevel::Level>(PLevel));
879   }
880 
881   if (getCodeGenOpts().CodeModel.size() > 0) {
882     unsigned CM = llvm::StringSwitch<unsigned>(getCodeGenOpts().CodeModel)
883                   .Case("tiny", llvm::CodeModel::Tiny)
884                   .Case("small", llvm::CodeModel::Small)
885                   .Case("kernel", llvm::CodeModel::Kernel)
886                   .Case("medium", llvm::CodeModel::Medium)
887                   .Case("large", llvm::CodeModel::Large)
888                   .Default(~0u);
889     if (CM != ~0u) {
890       llvm::CodeModel::Model codeModel = static_cast<llvm::CodeModel::Model>(CM);
891       getModule().setCodeModel(codeModel);
892     }
893   }
894 
895   if (CodeGenOpts.NoPLT)
896     getModule().setRtLibUseGOT();
897   if (CodeGenOpts.UnwindTables)
898     getModule().setUwtable(llvm::UWTableKind(CodeGenOpts.UnwindTables));
899 
900   switch (CodeGenOpts.getFramePointer()) {
901   case CodeGenOptions::FramePointerKind::None:
902     // 0 ("none") is the default.
903     break;
904   case CodeGenOptions::FramePointerKind::NonLeaf:
905     getModule().setFramePointer(llvm::FramePointerKind::NonLeaf);
906     break;
907   case CodeGenOptions::FramePointerKind::All:
908     getModule().setFramePointer(llvm::FramePointerKind::All);
909     break;
910   }
911 
912   SimplifyPersonality();
913 
914   if (getCodeGenOpts().EmitDeclMetadata)
915     EmitDeclMetadata();
916 
917   if (getCodeGenOpts().EmitGcovArcs || getCodeGenOpts().EmitGcovNotes)
918     EmitCoverageFile();
919 
920   if (CGDebugInfo *DI = getModuleDebugInfo())
921     DI->finalize();
922 
923   if (getCodeGenOpts().EmitVersionIdentMetadata)
924     EmitVersionIdentMetadata();
925 
926   if (!getCodeGenOpts().RecordCommandLine.empty())
927     EmitCommandLineMetadata();
928 
929   if (!getCodeGenOpts().StackProtectorGuard.empty())
930     getModule().setStackProtectorGuard(getCodeGenOpts().StackProtectorGuard);
931   if (!getCodeGenOpts().StackProtectorGuardReg.empty())
932     getModule().setStackProtectorGuardReg(
933         getCodeGenOpts().StackProtectorGuardReg);
934   if (!getCodeGenOpts().StackProtectorGuardSymbol.empty())
935     getModule().setStackProtectorGuardSymbol(
936         getCodeGenOpts().StackProtectorGuardSymbol);
937   if (getCodeGenOpts().StackProtectorGuardOffset != INT_MAX)
938     getModule().setStackProtectorGuardOffset(
939         getCodeGenOpts().StackProtectorGuardOffset);
940   if (getCodeGenOpts().StackAlignment)
941     getModule().setOverrideStackAlignment(getCodeGenOpts().StackAlignment);
942   if (getCodeGenOpts().SkipRaxSetup)
943     getModule().addModuleFlag(llvm::Module::Override, "SkipRaxSetup", 1);
944 
945   getTargetCodeGenInfo().emitTargetMetadata(*this, MangledDeclNames);
946 
947   EmitBackendOptionsMetadata(getCodeGenOpts());
948 
949   // If there is device offloading code embed it in the host now.
950   EmbedObject(&getModule(), CodeGenOpts, getDiags());
951 
952   // Set visibility from DLL storage class
953   // We do this at the end of LLVM IR generation; after any operation
954   // that might affect the DLL storage class or the visibility, and
955   // before anything that might act on these.
956   setVisibilityFromDLLStorageClass(LangOpts, getModule());
957 }
958 
959 void CodeGenModule::EmitOpenCLMetadata() {
960   // SPIR v2.0 s2.13 - The OpenCL version used by the module is stored in the
961   // opencl.ocl.version named metadata node.
962   // C++ for OpenCL has a distinct mapping for versions compatibile with OpenCL.
963   auto Version = LangOpts.getOpenCLCompatibleVersion();
964   llvm::Metadata *OCLVerElts[] = {
965       llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
966           Int32Ty, Version / 100)),
967       llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
968           Int32Ty, (Version % 100) / 10))};
969   llvm::NamedMDNode *OCLVerMD =
970       TheModule.getOrInsertNamedMetadata("opencl.ocl.version");
971   llvm::LLVMContext &Ctx = TheModule.getContext();
972   OCLVerMD->addOperand(llvm::MDNode::get(Ctx, OCLVerElts));
973 }
974 
975 void CodeGenModule::EmitBackendOptionsMetadata(
976     const CodeGenOptions CodeGenOpts) {
977   if (getTriple().isRISCV()) {
978     getModule().addModuleFlag(llvm::Module::Error, "SmallDataLimit",
979                               CodeGenOpts.SmallDataLimit);
980   }
981 }
982 
983 void CodeGenModule::UpdateCompletedType(const TagDecl *TD) {
984   // Make sure that this type is translated.
985   Types.UpdateCompletedType(TD);
986 }
987 
988 void CodeGenModule::RefreshTypeCacheForClass(const CXXRecordDecl *RD) {
989   // Make sure that this type is translated.
990   Types.RefreshTypeCacheForClass(RD);
991 }
992 
993 llvm::MDNode *CodeGenModule::getTBAATypeInfo(QualType QTy) {
994   if (!TBAA)
995     return nullptr;
996   return TBAA->getTypeInfo(QTy);
997 }
998 
999 TBAAAccessInfo CodeGenModule::getTBAAAccessInfo(QualType AccessType) {
1000   if (!TBAA)
1001     return TBAAAccessInfo();
1002   if (getLangOpts().CUDAIsDevice) {
1003     // As CUDA builtin surface/texture types are replaced, skip generating TBAA
1004     // access info.
1005     if (AccessType->isCUDADeviceBuiltinSurfaceType()) {
1006       if (getTargetCodeGenInfo().getCUDADeviceBuiltinSurfaceDeviceType() !=
1007           nullptr)
1008         return TBAAAccessInfo();
1009     } else if (AccessType->isCUDADeviceBuiltinTextureType()) {
1010       if (getTargetCodeGenInfo().getCUDADeviceBuiltinTextureDeviceType() !=
1011           nullptr)
1012         return TBAAAccessInfo();
1013     }
1014   }
1015   return TBAA->getAccessInfo(AccessType);
1016 }
1017 
1018 TBAAAccessInfo
1019 CodeGenModule::getTBAAVTablePtrAccessInfo(llvm::Type *VTablePtrType) {
1020   if (!TBAA)
1021     return TBAAAccessInfo();
1022   return TBAA->getVTablePtrAccessInfo(VTablePtrType);
1023 }
1024 
1025 llvm::MDNode *CodeGenModule::getTBAAStructInfo(QualType QTy) {
1026   if (!TBAA)
1027     return nullptr;
1028   return TBAA->getTBAAStructInfo(QTy);
1029 }
1030 
1031 llvm::MDNode *CodeGenModule::getTBAABaseTypeInfo(QualType QTy) {
1032   if (!TBAA)
1033     return nullptr;
1034   return TBAA->getBaseTypeInfo(QTy);
1035 }
1036 
1037 llvm::MDNode *CodeGenModule::getTBAAAccessTagInfo(TBAAAccessInfo Info) {
1038   if (!TBAA)
1039     return nullptr;
1040   return TBAA->getAccessTagInfo(Info);
1041 }
1042 
1043 TBAAAccessInfo CodeGenModule::mergeTBAAInfoForCast(TBAAAccessInfo SourceInfo,
1044                                                    TBAAAccessInfo TargetInfo) {
1045   if (!TBAA)
1046     return TBAAAccessInfo();
1047   return TBAA->mergeTBAAInfoForCast(SourceInfo, TargetInfo);
1048 }
1049 
1050 TBAAAccessInfo
1051 CodeGenModule::mergeTBAAInfoForConditionalOperator(TBAAAccessInfo InfoA,
1052                                                    TBAAAccessInfo InfoB) {
1053   if (!TBAA)
1054     return TBAAAccessInfo();
1055   return TBAA->mergeTBAAInfoForConditionalOperator(InfoA, InfoB);
1056 }
1057 
1058 TBAAAccessInfo
1059 CodeGenModule::mergeTBAAInfoForMemoryTransfer(TBAAAccessInfo DestInfo,
1060                                               TBAAAccessInfo SrcInfo) {
1061   if (!TBAA)
1062     return TBAAAccessInfo();
1063   return TBAA->mergeTBAAInfoForConditionalOperator(DestInfo, SrcInfo);
1064 }
1065 
1066 void CodeGenModule::DecorateInstructionWithTBAA(llvm::Instruction *Inst,
1067                                                 TBAAAccessInfo TBAAInfo) {
1068   if (llvm::MDNode *Tag = getTBAAAccessTagInfo(TBAAInfo))
1069     Inst->setMetadata(llvm::LLVMContext::MD_tbaa, Tag);
1070 }
1071 
1072 void CodeGenModule::DecorateInstructionWithInvariantGroup(
1073     llvm::Instruction *I, const CXXRecordDecl *RD) {
1074   I->setMetadata(llvm::LLVMContext::MD_invariant_group,
1075                  llvm::MDNode::get(getLLVMContext(), {}));
1076 }
1077 
1078 void CodeGenModule::Error(SourceLocation loc, StringRef message) {
1079   unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, "%0");
1080   getDiags().Report(Context.getFullLoc(loc), diagID) << message;
1081 }
1082 
1083 /// ErrorUnsupported - Print out an error that codegen doesn't support the
1084 /// specified stmt yet.
1085 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type) {
1086   unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
1087                                                "cannot compile this %0 yet");
1088   std::string Msg = Type;
1089   getDiags().Report(Context.getFullLoc(S->getBeginLoc()), DiagID)
1090       << Msg << S->getSourceRange();
1091 }
1092 
1093 /// ErrorUnsupported - Print out an error that codegen doesn't support the
1094 /// specified decl yet.
1095 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type) {
1096   unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
1097                                                "cannot compile this %0 yet");
1098   std::string Msg = Type;
1099   getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg;
1100 }
1101 
1102 llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) {
1103   return llvm::ConstantInt::get(SizeTy, size.getQuantity());
1104 }
1105 
1106 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV,
1107                                         const NamedDecl *D) const {
1108   // Internal definitions always have default visibility.
1109   if (GV->hasLocalLinkage()) {
1110     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
1111     return;
1112   }
1113   if (!D)
1114     return;
1115   // Set visibility for definitions, and for declarations if requested globally
1116   // or set explicitly.
1117   LinkageInfo LV = D->getLinkageAndVisibility();
1118   if (GV->hasDLLExportStorageClass() || GV->hasDLLImportStorageClass()) {
1119     // Reject incompatible dlllstorage and visibility annotations.
1120     if (!LV.isVisibilityExplicit())
1121       return;
1122     if (GV->hasDLLExportStorageClass()) {
1123       if (LV.getVisibility() == HiddenVisibility)
1124         getDiags().Report(D->getLocation(),
1125                           diag::err_hidden_visibility_dllexport);
1126     } else if (LV.getVisibility() != DefaultVisibility) {
1127       getDiags().Report(D->getLocation(),
1128                         diag::err_non_default_visibility_dllimport);
1129     }
1130     return;
1131   }
1132 
1133   if (LV.isVisibilityExplicit() || getLangOpts().SetVisibilityForExternDecls ||
1134       !GV->isDeclarationForLinker())
1135     GV->setVisibility(GetLLVMVisibility(LV.getVisibility()));
1136 }
1137 
1138 static bool shouldAssumeDSOLocal(const CodeGenModule &CGM,
1139                                  llvm::GlobalValue *GV) {
1140   if (GV->hasLocalLinkage())
1141     return true;
1142 
1143   if (!GV->hasDefaultVisibility() && !GV->hasExternalWeakLinkage())
1144     return true;
1145 
1146   // DLLImport explicitly marks the GV as external.
1147   if (GV->hasDLLImportStorageClass())
1148     return false;
1149 
1150   const llvm::Triple &TT = CGM.getTriple();
1151   if (TT.isWindowsGNUEnvironment()) {
1152     // In MinGW, variables without DLLImport can still be automatically
1153     // imported from a DLL by the linker; don't mark variables that
1154     // potentially could come from another DLL as DSO local.
1155 
1156     // With EmulatedTLS, TLS variables can be autoimported from other DLLs
1157     // (and this actually happens in the public interface of libstdc++), so
1158     // such variables can't be marked as DSO local. (Native TLS variables
1159     // can't be dllimported at all, though.)
1160     if (GV->isDeclarationForLinker() && isa<llvm::GlobalVariable>(GV) &&
1161         (!GV->isThreadLocal() || CGM.getCodeGenOpts().EmulatedTLS))
1162       return false;
1163   }
1164 
1165   // On COFF, don't mark 'extern_weak' symbols as DSO local. If these symbols
1166   // remain unresolved in the link, they can be resolved to zero, which is
1167   // outside the current DSO.
1168   if (TT.isOSBinFormatCOFF() && GV->hasExternalWeakLinkage())
1169     return false;
1170 
1171   // Every other GV is local on COFF.
1172   // Make an exception for windows OS in the triple: Some firmware builds use
1173   // *-win32-macho triples. This (accidentally?) produced windows relocations
1174   // without GOT tables in older clang versions; Keep this behaviour.
1175   // FIXME: even thread local variables?
1176   if (TT.isOSBinFormatCOFF() || (TT.isOSWindows() && TT.isOSBinFormatMachO()))
1177     return true;
1178 
1179   // Only handle COFF and ELF for now.
1180   if (!TT.isOSBinFormatELF())
1181     return false;
1182 
1183   // If this is not an executable, don't assume anything is local.
1184   const auto &CGOpts = CGM.getCodeGenOpts();
1185   llvm::Reloc::Model RM = CGOpts.RelocationModel;
1186   const auto &LOpts = CGM.getLangOpts();
1187   if (RM != llvm::Reloc::Static && !LOpts.PIE) {
1188     // On ELF, if -fno-semantic-interposition is specified and the target
1189     // supports local aliases, there will be neither CC1
1190     // -fsemantic-interposition nor -fhalf-no-semantic-interposition. Set
1191     // dso_local on the function if using a local alias is preferable (can avoid
1192     // PLT indirection).
1193     if (!(isa<llvm::Function>(GV) && GV->canBenefitFromLocalAlias()))
1194       return false;
1195     return !(CGM.getLangOpts().SemanticInterposition ||
1196              CGM.getLangOpts().HalfNoSemanticInterposition);
1197   }
1198 
1199   // A definition cannot be preempted from an executable.
1200   if (!GV->isDeclarationForLinker())
1201     return true;
1202 
1203   // Most PIC code sequences that assume that a symbol is local cannot produce a
1204   // 0 if it turns out the symbol is undefined. While this is ABI and relocation
1205   // depended, it seems worth it to handle it here.
1206   if (RM == llvm::Reloc::PIC_ && GV->hasExternalWeakLinkage())
1207     return false;
1208 
1209   // PowerPC64 prefers TOC indirection to avoid copy relocations.
1210   if (TT.isPPC64())
1211     return false;
1212 
1213   if (CGOpts.DirectAccessExternalData) {
1214     // If -fdirect-access-external-data (default for -fno-pic), set dso_local
1215     // for non-thread-local variables. If the symbol is not defined in the
1216     // executable, a copy relocation will be needed at link time. dso_local is
1217     // excluded for thread-local variables because they generally don't support
1218     // copy relocations.
1219     if (auto *Var = dyn_cast<llvm::GlobalVariable>(GV))
1220       if (!Var->isThreadLocal())
1221         return true;
1222 
1223     // -fno-pic sets dso_local on a function declaration to allow direct
1224     // accesses when taking its address (similar to a data symbol). If the
1225     // function is not defined in the executable, a canonical PLT entry will be
1226     // needed at link time. -fno-direct-access-external-data can avoid the
1227     // canonical PLT entry. We don't generalize this condition to -fpie/-fpic as
1228     // it could just cause trouble without providing perceptible benefits.
1229     if (isa<llvm::Function>(GV) && !CGOpts.NoPLT && RM == llvm::Reloc::Static)
1230       return true;
1231   }
1232 
1233   // If we can use copy relocations we can assume it is local.
1234 
1235   // Otherwise don't assume it is local.
1236   return false;
1237 }
1238 
1239 void CodeGenModule::setDSOLocal(llvm::GlobalValue *GV) const {
1240   GV->setDSOLocal(shouldAssumeDSOLocal(*this, GV));
1241 }
1242 
1243 void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV,
1244                                           GlobalDecl GD) const {
1245   const auto *D = dyn_cast<NamedDecl>(GD.getDecl());
1246   // C++ destructors have a few C++ ABI specific special cases.
1247   if (const auto *Dtor = dyn_cast_or_null<CXXDestructorDecl>(D)) {
1248     getCXXABI().setCXXDestructorDLLStorage(GV, Dtor, GD.getDtorType());
1249     return;
1250   }
1251   setDLLImportDLLExport(GV, D);
1252 }
1253 
1254 void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV,
1255                                           const NamedDecl *D) const {
1256   if (D && D->isExternallyVisible()) {
1257     if (D->hasAttr<DLLImportAttr>())
1258       GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass);
1259     else if ((D->hasAttr<DLLExportAttr>() ||
1260               shouldMapVisibilityToDLLExport(D)) &&
1261              !GV->isDeclarationForLinker())
1262       GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass);
1263   }
1264 }
1265 
1266 void CodeGenModule::setGVProperties(llvm::GlobalValue *GV,
1267                                     GlobalDecl GD) const {
1268   setDLLImportDLLExport(GV, GD);
1269   setGVPropertiesAux(GV, dyn_cast<NamedDecl>(GD.getDecl()));
1270 }
1271 
1272 void CodeGenModule::setGVProperties(llvm::GlobalValue *GV,
1273                                     const NamedDecl *D) const {
1274   setDLLImportDLLExport(GV, D);
1275   setGVPropertiesAux(GV, D);
1276 }
1277 
1278 void CodeGenModule::setGVPropertiesAux(llvm::GlobalValue *GV,
1279                                        const NamedDecl *D) const {
1280   setGlobalVisibility(GV, D);
1281   setDSOLocal(GV);
1282   GV->setPartition(CodeGenOpts.SymbolPartition);
1283 }
1284 
1285 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(StringRef S) {
1286   return llvm::StringSwitch<llvm::GlobalVariable::ThreadLocalMode>(S)
1287       .Case("global-dynamic", llvm::GlobalVariable::GeneralDynamicTLSModel)
1288       .Case("local-dynamic", llvm::GlobalVariable::LocalDynamicTLSModel)
1289       .Case("initial-exec", llvm::GlobalVariable::InitialExecTLSModel)
1290       .Case("local-exec", llvm::GlobalVariable::LocalExecTLSModel);
1291 }
1292 
1293 llvm::GlobalVariable::ThreadLocalMode
1294 CodeGenModule::GetDefaultLLVMTLSModel() const {
1295   switch (CodeGenOpts.getDefaultTLSModel()) {
1296   case CodeGenOptions::GeneralDynamicTLSModel:
1297     return llvm::GlobalVariable::GeneralDynamicTLSModel;
1298   case CodeGenOptions::LocalDynamicTLSModel:
1299     return llvm::GlobalVariable::LocalDynamicTLSModel;
1300   case CodeGenOptions::InitialExecTLSModel:
1301     return llvm::GlobalVariable::InitialExecTLSModel;
1302   case CodeGenOptions::LocalExecTLSModel:
1303     return llvm::GlobalVariable::LocalExecTLSModel;
1304   }
1305   llvm_unreachable("Invalid TLS model!");
1306 }
1307 
1308 void CodeGenModule::setTLSMode(llvm::GlobalValue *GV, const VarDecl &D) const {
1309   assert(D.getTLSKind() && "setting TLS mode on non-TLS var!");
1310 
1311   llvm::GlobalValue::ThreadLocalMode TLM;
1312   TLM = GetDefaultLLVMTLSModel();
1313 
1314   // Override the TLS model if it is explicitly specified.
1315   if (const TLSModelAttr *Attr = D.getAttr<TLSModelAttr>()) {
1316     TLM = GetLLVMTLSModel(Attr->getModel());
1317   }
1318 
1319   GV->setThreadLocalMode(TLM);
1320 }
1321 
1322 static std::string getCPUSpecificMangling(const CodeGenModule &CGM,
1323                                           StringRef Name) {
1324   const TargetInfo &Target = CGM.getTarget();
1325   return (Twine('.') + Twine(Target.CPUSpecificManglingCharacter(Name))).str();
1326 }
1327 
1328 static void AppendCPUSpecificCPUDispatchMangling(const CodeGenModule &CGM,
1329                                                  const CPUSpecificAttr *Attr,
1330                                                  unsigned CPUIndex,
1331                                                  raw_ostream &Out) {
1332   // cpu_specific gets the current name, dispatch gets the resolver if IFunc is
1333   // supported.
1334   if (Attr)
1335     Out << getCPUSpecificMangling(CGM, Attr->getCPUName(CPUIndex)->getName());
1336   else if (CGM.getTarget().supportsIFunc())
1337     Out << ".resolver";
1338 }
1339 
1340 static void AppendTargetMangling(const CodeGenModule &CGM,
1341                                  const TargetAttr *Attr, raw_ostream &Out) {
1342   if (Attr->isDefaultVersion())
1343     return;
1344 
1345   Out << '.';
1346   const TargetInfo &Target = CGM.getTarget();
1347   ParsedTargetAttr Info = Target.parseTargetAttr(Attr->getFeaturesStr());
1348   llvm::sort(Info.Features, [&Target](StringRef LHS, StringRef RHS) {
1349     // Multiversioning doesn't allow "no-${feature}", so we can
1350     // only have "+" prefixes here.
1351     assert(LHS.startswith("+") && RHS.startswith("+") &&
1352            "Features should always have a prefix.");
1353     return Target.multiVersionSortPriority(LHS.substr(1)) >
1354            Target.multiVersionSortPriority(RHS.substr(1));
1355   });
1356 
1357   bool IsFirst = true;
1358 
1359   if (!Info.CPU.empty()) {
1360     IsFirst = false;
1361     Out << "arch_" << Info.CPU;
1362   }
1363 
1364   for (StringRef Feat : Info.Features) {
1365     if (!IsFirst)
1366       Out << '_';
1367     IsFirst = false;
1368     Out << Feat.substr(1);
1369   }
1370 }
1371 
1372 // Returns true if GD is a function decl with internal linkage and
1373 // needs a unique suffix after the mangled name.
1374 static bool isUniqueInternalLinkageDecl(GlobalDecl GD,
1375                                         CodeGenModule &CGM) {
1376   const Decl *D = GD.getDecl();
1377   return !CGM.getModuleNameHash().empty() && isa<FunctionDecl>(D) &&
1378          (CGM.getFunctionLinkage(GD) == llvm::GlobalValue::InternalLinkage);
1379 }
1380 
1381 static void AppendTargetClonesMangling(const CodeGenModule &CGM,
1382                                        const TargetClonesAttr *Attr,
1383                                        unsigned VersionIndex,
1384                                        raw_ostream &Out) {
1385   Out << '.';
1386   StringRef FeatureStr = Attr->getFeatureStr(VersionIndex);
1387   if (FeatureStr.startswith("arch="))
1388     Out << "arch_" << FeatureStr.substr(sizeof("arch=") - 1);
1389   else
1390     Out << FeatureStr;
1391 
1392   Out << '.' << Attr->getMangledIndex(VersionIndex);
1393 }
1394 
1395 static std::string getMangledNameImpl(CodeGenModule &CGM, GlobalDecl GD,
1396                                       const NamedDecl *ND,
1397                                       bool OmitMultiVersionMangling = false) {
1398   SmallString<256> Buffer;
1399   llvm::raw_svector_ostream Out(Buffer);
1400   MangleContext &MC = CGM.getCXXABI().getMangleContext();
1401   if (!CGM.getModuleNameHash().empty())
1402     MC.needsUniqueInternalLinkageNames();
1403   bool ShouldMangle = MC.shouldMangleDeclName(ND);
1404   if (ShouldMangle)
1405     MC.mangleName(GD.getWithDecl(ND), Out);
1406   else {
1407     IdentifierInfo *II = ND->getIdentifier();
1408     assert(II && "Attempt to mangle unnamed decl.");
1409     const auto *FD = dyn_cast<FunctionDecl>(ND);
1410 
1411     if (FD &&
1412         FD->getType()->castAs<FunctionType>()->getCallConv() == CC_X86RegCall) {
1413       Out << "__regcall3__" << II->getName();
1414     } else if (FD && FD->hasAttr<CUDAGlobalAttr>() &&
1415                GD.getKernelReferenceKind() == KernelReferenceKind::Stub) {
1416       Out << "__device_stub__" << II->getName();
1417     } else {
1418       Out << II->getName();
1419     }
1420   }
1421 
1422   // Check if the module name hash should be appended for internal linkage
1423   // symbols.   This should come before multi-version target suffixes are
1424   // appended. This is to keep the name and module hash suffix of the
1425   // internal linkage function together.  The unique suffix should only be
1426   // added when name mangling is done to make sure that the final name can
1427   // be properly demangled.  For example, for C functions without prototypes,
1428   // name mangling is not done and the unique suffix should not be appeneded
1429   // then.
1430   if (ShouldMangle && isUniqueInternalLinkageDecl(GD, CGM)) {
1431     assert(CGM.getCodeGenOpts().UniqueInternalLinkageNames &&
1432            "Hash computed when not explicitly requested");
1433     Out << CGM.getModuleNameHash();
1434   }
1435 
1436   if (const auto *FD = dyn_cast<FunctionDecl>(ND))
1437     if (FD->isMultiVersion() && !OmitMultiVersionMangling) {
1438       switch (FD->getMultiVersionKind()) {
1439       case MultiVersionKind::CPUDispatch:
1440       case MultiVersionKind::CPUSpecific:
1441         AppendCPUSpecificCPUDispatchMangling(CGM,
1442                                              FD->getAttr<CPUSpecificAttr>(),
1443                                              GD.getMultiVersionIndex(), Out);
1444         break;
1445       case MultiVersionKind::Target:
1446         AppendTargetMangling(CGM, FD->getAttr<TargetAttr>(), Out);
1447         break;
1448       case MultiVersionKind::TargetClones:
1449         AppendTargetClonesMangling(CGM, FD->getAttr<TargetClonesAttr>(),
1450                                    GD.getMultiVersionIndex(), Out);
1451         break;
1452       case MultiVersionKind::None:
1453         llvm_unreachable("None multiversion type isn't valid here");
1454       }
1455     }
1456 
1457   // Make unique name for device side static file-scope variable for HIP.
1458   if (CGM.getContext().shouldExternalize(ND) &&
1459       CGM.getLangOpts().GPURelocatableDeviceCode &&
1460       CGM.getLangOpts().CUDAIsDevice)
1461     CGM.printPostfixForExternalizedDecl(Out, ND);
1462 
1463   return std::string(Out.str());
1464 }
1465 
1466 void CodeGenModule::UpdateMultiVersionNames(GlobalDecl GD,
1467                                             const FunctionDecl *FD,
1468                                             StringRef &CurName) {
1469   if (!FD->isMultiVersion())
1470     return;
1471 
1472   // Get the name of what this would be without the 'target' attribute.  This
1473   // allows us to lookup the version that was emitted when this wasn't a
1474   // multiversion function.
1475   std::string NonTargetName =
1476       getMangledNameImpl(*this, GD, FD, /*OmitMultiVersionMangling=*/true);
1477   GlobalDecl OtherGD;
1478   if (lookupRepresentativeDecl(NonTargetName, OtherGD)) {
1479     assert(OtherGD.getCanonicalDecl()
1480                .getDecl()
1481                ->getAsFunction()
1482                ->isMultiVersion() &&
1483            "Other GD should now be a multiversioned function");
1484     // OtherFD is the version of this function that was mangled BEFORE
1485     // becoming a MultiVersion function.  It potentially needs to be updated.
1486     const FunctionDecl *OtherFD = OtherGD.getCanonicalDecl()
1487                                       .getDecl()
1488                                       ->getAsFunction()
1489                                       ->getMostRecentDecl();
1490     std::string OtherName = getMangledNameImpl(*this, OtherGD, OtherFD);
1491     // This is so that if the initial version was already the 'default'
1492     // version, we don't try to update it.
1493     if (OtherName != NonTargetName) {
1494       // Remove instead of erase, since others may have stored the StringRef
1495       // to this.
1496       const auto ExistingRecord = Manglings.find(NonTargetName);
1497       if (ExistingRecord != std::end(Manglings))
1498         Manglings.remove(&(*ExistingRecord));
1499       auto Result = Manglings.insert(std::make_pair(OtherName, OtherGD));
1500       StringRef OtherNameRef = MangledDeclNames[OtherGD.getCanonicalDecl()] =
1501           Result.first->first();
1502       // If this is the current decl is being created, make sure we update the name.
1503       if (GD.getCanonicalDecl() == OtherGD.getCanonicalDecl())
1504         CurName = OtherNameRef;
1505       if (llvm::GlobalValue *Entry = GetGlobalValue(NonTargetName))
1506         Entry->setName(OtherName);
1507     }
1508   }
1509 }
1510 
1511 StringRef CodeGenModule::getMangledName(GlobalDecl GD) {
1512   GlobalDecl CanonicalGD = GD.getCanonicalDecl();
1513 
1514   // Some ABIs don't have constructor variants.  Make sure that base and
1515   // complete constructors get mangled the same.
1516   if (const auto *CD = dyn_cast<CXXConstructorDecl>(CanonicalGD.getDecl())) {
1517     if (!getTarget().getCXXABI().hasConstructorVariants()) {
1518       CXXCtorType OrigCtorType = GD.getCtorType();
1519       assert(OrigCtorType == Ctor_Base || OrigCtorType == Ctor_Complete);
1520       if (OrigCtorType == Ctor_Base)
1521         CanonicalGD = GlobalDecl(CD, Ctor_Complete);
1522     }
1523   }
1524 
1525   // In CUDA/HIP device compilation with -fgpu-rdc, the mangled name of a
1526   // static device variable depends on whether the variable is referenced by
1527   // a host or device host function. Therefore the mangled name cannot be
1528   // cached.
1529   if (!LangOpts.CUDAIsDevice || !getContext().mayExternalize(GD.getDecl())) {
1530     auto FoundName = MangledDeclNames.find(CanonicalGD);
1531     if (FoundName != MangledDeclNames.end())
1532       return FoundName->second;
1533   }
1534 
1535   // Keep the first result in the case of a mangling collision.
1536   const auto *ND = cast<NamedDecl>(GD.getDecl());
1537   std::string MangledName = getMangledNameImpl(*this, GD, ND);
1538 
1539   // Ensure either we have different ABIs between host and device compilations,
1540   // says host compilation following MSVC ABI but device compilation follows
1541   // Itanium C++ ABI or, if they follow the same ABI, kernel names after
1542   // mangling should be the same after name stubbing. The later checking is
1543   // very important as the device kernel name being mangled in host-compilation
1544   // is used to resolve the device binaries to be executed. Inconsistent naming
1545   // result in undefined behavior. Even though we cannot check that naming
1546   // directly between host- and device-compilations, the host- and
1547   // device-mangling in host compilation could help catching certain ones.
1548   assert(!isa<FunctionDecl>(ND) || !ND->hasAttr<CUDAGlobalAttr>() ||
1549          getContext().shouldExternalize(ND) || getLangOpts().CUDAIsDevice ||
1550          (getContext().getAuxTargetInfo() &&
1551           (getContext().getAuxTargetInfo()->getCXXABI() !=
1552            getContext().getTargetInfo().getCXXABI())) ||
1553          getCUDARuntime().getDeviceSideName(ND) ==
1554              getMangledNameImpl(
1555                  *this,
1556                  GD.getWithKernelReferenceKind(KernelReferenceKind::Kernel),
1557                  ND));
1558 
1559   auto Result = Manglings.insert(std::make_pair(MangledName, GD));
1560   return MangledDeclNames[CanonicalGD] = Result.first->first();
1561 }
1562 
1563 StringRef CodeGenModule::getBlockMangledName(GlobalDecl GD,
1564                                              const BlockDecl *BD) {
1565   MangleContext &MangleCtx = getCXXABI().getMangleContext();
1566   const Decl *D = GD.getDecl();
1567 
1568   SmallString<256> Buffer;
1569   llvm::raw_svector_ostream Out(Buffer);
1570   if (!D)
1571     MangleCtx.mangleGlobalBlock(BD,
1572       dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()), Out);
1573   else if (const auto *CD = dyn_cast<CXXConstructorDecl>(D))
1574     MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out);
1575   else if (const auto *DD = dyn_cast<CXXDestructorDecl>(D))
1576     MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out);
1577   else
1578     MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out);
1579 
1580   auto Result = Manglings.insert(std::make_pair(Out.str(), BD));
1581   return Result.first->first();
1582 }
1583 
1584 const GlobalDecl CodeGenModule::getMangledNameDecl(StringRef Name) {
1585   auto it = MangledDeclNames.begin();
1586   while (it != MangledDeclNames.end()) {
1587     if (it->second == Name)
1588       return it->first;
1589     it++;
1590   }
1591   return GlobalDecl();
1592 }
1593 
1594 llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) {
1595   return getModule().getNamedValue(Name);
1596 }
1597 
1598 /// AddGlobalCtor - Add a function to the list that will be called before
1599 /// main() runs.
1600 void CodeGenModule::AddGlobalCtor(llvm::Function *Ctor, int Priority,
1601                                   unsigned LexOrder,
1602                                   llvm::Constant *AssociatedData) {
1603   // FIXME: Type coercion of void()* types.
1604   GlobalCtors.push_back(Structor(Priority, LexOrder, Ctor, AssociatedData));
1605 }
1606 
1607 /// AddGlobalDtor - Add a function to the list that will be called
1608 /// when the module is unloaded.
1609 void CodeGenModule::AddGlobalDtor(llvm::Function *Dtor, int Priority,
1610                                   bool IsDtorAttrFunc) {
1611   if (CodeGenOpts.RegisterGlobalDtorsWithAtExit &&
1612       (!getContext().getTargetInfo().getTriple().isOSAIX() || IsDtorAttrFunc)) {
1613     DtorsUsingAtExit[Priority].push_back(Dtor);
1614     return;
1615   }
1616 
1617   // FIXME: Type coercion of void()* types.
1618   GlobalDtors.push_back(Structor(Priority, ~0U, Dtor, nullptr));
1619 }
1620 
1621 void CodeGenModule::EmitCtorList(CtorList &Fns, const char *GlobalName) {
1622   if (Fns.empty()) return;
1623 
1624   // Ctor function type is void()*.
1625   llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false);
1626   llvm::Type *CtorPFTy = llvm::PointerType::get(CtorFTy,
1627       TheModule.getDataLayout().getProgramAddressSpace());
1628 
1629   // Get the type of a ctor entry, { i32, void ()*, i8* }.
1630   llvm::StructType *CtorStructTy = llvm::StructType::get(
1631       Int32Ty, CtorPFTy, VoidPtrTy);
1632 
1633   // Construct the constructor and destructor arrays.
1634   ConstantInitBuilder builder(*this);
1635   auto ctors = builder.beginArray(CtorStructTy);
1636   for (const auto &I : Fns) {
1637     auto ctor = ctors.beginStruct(CtorStructTy);
1638     ctor.addInt(Int32Ty, I.Priority);
1639     ctor.add(llvm::ConstantExpr::getBitCast(I.Initializer, CtorPFTy));
1640     if (I.AssociatedData)
1641       ctor.add(llvm::ConstantExpr::getBitCast(I.AssociatedData, VoidPtrTy));
1642     else
1643       ctor.addNullPointer(VoidPtrTy);
1644     ctor.finishAndAddTo(ctors);
1645   }
1646 
1647   auto list =
1648     ctors.finishAndCreateGlobal(GlobalName, getPointerAlign(),
1649                                 /*constant*/ false,
1650                                 llvm::GlobalValue::AppendingLinkage);
1651 
1652   // The LTO linker doesn't seem to like it when we set an alignment
1653   // on appending variables.  Take it off as a workaround.
1654   list->setAlignment(std::nullopt);
1655 
1656   Fns.clear();
1657 }
1658 
1659 llvm::GlobalValue::LinkageTypes
1660 CodeGenModule::getFunctionLinkage(GlobalDecl GD) {
1661   const auto *D = cast<FunctionDecl>(GD.getDecl());
1662 
1663   GVALinkage Linkage = getContext().GetGVALinkageForFunction(D);
1664 
1665   if (const auto *Dtor = dyn_cast<CXXDestructorDecl>(D))
1666     return getCXXABI().getCXXDestructorLinkage(Linkage, Dtor, GD.getDtorType());
1667 
1668   if (isa<CXXConstructorDecl>(D) &&
1669       cast<CXXConstructorDecl>(D)->isInheritingConstructor() &&
1670       Context.getTargetInfo().getCXXABI().isMicrosoft()) {
1671     // Our approach to inheriting constructors is fundamentally different from
1672     // that used by the MS ABI, so keep our inheriting constructor thunks
1673     // internal rather than trying to pick an unambiguous mangling for them.
1674     return llvm::GlobalValue::InternalLinkage;
1675   }
1676 
1677   return getLLVMLinkageForDeclarator(D, Linkage, /*IsConstantVariable=*/false);
1678 }
1679 
1680 llvm::ConstantInt *CodeGenModule::CreateCrossDsoCfiTypeId(llvm::Metadata *MD) {
1681   llvm::MDString *MDS = dyn_cast<llvm::MDString>(MD);
1682   if (!MDS) return nullptr;
1683 
1684   return llvm::ConstantInt::get(Int64Ty, llvm::MD5Hash(MDS->getString()));
1685 }
1686 
1687 llvm::ConstantInt *CodeGenModule::CreateKCFITypeId(QualType T) {
1688   if (auto *FnType = T->getAs<FunctionProtoType>())
1689     T = getContext().getFunctionType(
1690         FnType->getReturnType(), FnType->getParamTypes(),
1691         FnType->getExtProtoInfo().withExceptionSpec(EST_None));
1692 
1693   std::string OutName;
1694   llvm::raw_string_ostream Out(OutName);
1695   getCXXABI().getMangleContext().mangleTypeName(T, Out);
1696 
1697   return llvm::ConstantInt::get(Int32Ty,
1698                                 static_cast<uint32_t>(llvm::xxHash64(OutName)));
1699 }
1700 
1701 void CodeGenModule::SetLLVMFunctionAttributes(GlobalDecl GD,
1702                                               const CGFunctionInfo &Info,
1703                                               llvm::Function *F, bool IsThunk) {
1704   unsigned CallingConv;
1705   llvm::AttributeList PAL;
1706   ConstructAttributeList(F->getName(), Info, GD, PAL, CallingConv,
1707                          /*AttrOnCallSite=*/false, IsThunk);
1708   F->setAttributes(PAL);
1709   F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv));
1710 }
1711 
1712 static void removeImageAccessQualifier(std::string& TyName) {
1713   std::string ReadOnlyQual("__read_only");
1714   std::string::size_type ReadOnlyPos = TyName.find(ReadOnlyQual);
1715   if (ReadOnlyPos != std::string::npos)
1716     // "+ 1" for the space after access qualifier.
1717     TyName.erase(ReadOnlyPos, ReadOnlyQual.size() + 1);
1718   else {
1719     std::string WriteOnlyQual("__write_only");
1720     std::string::size_type WriteOnlyPos = TyName.find(WriteOnlyQual);
1721     if (WriteOnlyPos != std::string::npos)
1722       TyName.erase(WriteOnlyPos, WriteOnlyQual.size() + 1);
1723     else {
1724       std::string ReadWriteQual("__read_write");
1725       std::string::size_type ReadWritePos = TyName.find(ReadWriteQual);
1726       if (ReadWritePos != std::string::npos)
1727         TyName.erase(ReadWritePos, ReadWriteQual.size() + 1);
1728     }
1729   }
1730 }
1731 
1732 // Returns the address space id that should be produced to the
1733 // kernel_arg_addr_space metadata. This is always fixed to the ids
1734 // as specified in the SPIR 2.0 specification in order to differentiate
1735 // for example in clGetKernelArgInfo() implementation between the address
1736 // spaces with targets without unique mapping to the OpenCL address spaces
1737 // (basically all single AS CPUs).
1738 static unsigned ArgInfoAddressSpace(LangAS AS) {
1739   switch (AS) {
1740   case LangAS::opencl_global:
1741     return 1;
1742   case LangAS::opencl_constant:
1743     return 2;
1744   case LangAS::opencl_local:
1745     return 3;
1746   case LangAS::opencl_generic:
1747     return 4; // Not in SPIR 2.0 specs.
1748   case LangAS::opencl_global_device:
1749     return 5;
1750   case LangAS::opencl_global_host:
1751     return 6;
1752   default:
1753     return 0; // Assume private.
1754   }
1755 }
1756 
1757 void CodeGenModule::GenKernelArgMetadata(llvm::Function *Fn,
1758                                          const FunctionDecl *FD,
1759                                          CodeGenFunction *CGF) {
1760   assert(((FD && CGF) || (!FD && !CGF)) &&
1761          "Incorrect use - FD and CGF should either be both null or not!");
1762   // Create MDNodes that represent the kernel arg metadata.
1763   // Each MDNode is a list in the form of "key", N number of values which is
1764   // the same number of values as their are kernel arguments.
1765 
1766   const PrintingPolicy &Policy = Context.getPrintingPolicy();
1767 
1768   // MDNode for the kernel argument address space qualifiers.
1769   SmallVector<llvm::Metadata *, 8> addressQuals;
1770 
1771   // MDNode for the kernel argument access qualifiers (images only).
1772   SmallVector<llvm::Metadata *, 8> accessQuals;
1773 
1774   // MDNode for the kernel argument type names.
1775   SmallVector<llvm::Metadata *, 8> argTypeNames;
1776 
1777   // MDNode for the kernel argument base type names.
1778   SmallVector<llvm::Metadata *, 8> argBaseTypeNames;
1779 
1780   // MDNode for the kernel argument type qualifiers.
1781   SmallVector<llvm::Metadata *, 8> argTypeQuals;
1782 
1783   // MDNode for the kernel argument names.
1784   SmallVector<llvm::Metadata *, 8> argNames;
1785 
1786   if (FD && CGF)
1787     for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i) {
1788       const ParmVarDecl *parm = FD->getParamDecl(i);
1789       // Get argument name.
1790       argNames.push_back(llvm::MDString::get(VMContext, parm->getName()));
1791 
1792       if (!getLangOpts().OpenCL)
1793         continue;
1794       QualType ty = parm->getType();
1795       std::string typeQuals;
1796 
1797       // Get image and pipe access qualifier:
1798       if (ty->isImageType() || ty->isPipeType()) {
1799         const Decl *PDecl = parm;
1800         if (const auto *TD = ty->getAs<TypedefType>())
1801           PDecl = TD->getDecl();
1802         const OpenCLAccessAttr *A = PDecl->getAttr<OpenCLAccessAttr>();
1803         if (A && A->isWriteOnly())
1804           accessQuals.push_back(llvm::MDString::get(VMContext, "write_only"));
1805         else if (A && A->isReadWrite())
1806           accessQuals.push_back(llvm::MDString::get(VMContext, "read_write"));
1807         else
1808           accessQuals.push_back(llvm::MDString::get(VMContext, "read_only"));
1809       } else
1810         accessQuals.push_back(llvm::MDString::get(VMContext, "none"));
1811 
1812       auto getTypeSpelling = [&](QualType Ty) {
1813         auto typeName = Ty.getUnqualifiedType().getAsString(Policy);
1814 
1815         if (Ty.isCanonical()) {
1816           StringRef typeNameRef = typeName;
1817           // Turn "unsigned type" to "utype"
1818           if (typeNameRef.consume_front("unsigned "))
1819             return std::string("u") + typeNameRef.str();
1820           if (typeNameRef.consume_front("signed "))
1821             return typeNameRef.str();
1822         }
1823 
1824         return typeName;
1825       };
1826 
1827       if (ty->isPointerType()) {
1828         QualType pointeeTy = ty->getPointeeType();
1829 
1830         // Get address qualifier.
1831         addressQuals.push_back(
1832             llvm::ConstantAsMetadata::get(CGF->Builder.getInt32(
1833                 ArgInfoAddressSpace(pointeeTy.getAddressSpace()))));
1834 
1835         // Get argument type name.
1836         std::string typeName = getTypeSpelling(pointeeTy) + "*";
1837         std::string baseTypeName =
1838             getTypeSpelling(pointeeTy.getCanonicalType()) + "*";
1839         argTypeNames.push_back(llvm::MDString::get(VMContext, typeName));
1840         argBaseTypeNames.push_back(
1841             llvm::MDString::get(VMContext, baseTypeName));
1842 
1843         // Get argument type qualifiers:
1844         if (ty.isRestrictQualified())
1845           typeQuals = "restrict";
1846         if (pointeeTy.isConstQualified() ||
1847             (pointeeTy.getAddressSpace() == LangAS::opencl_constant))
1848           typeQuals += typeQuals.empty() ? "const" : " const";
1849         if (pointeeTy.isVolatileQualified())
1850           typeQuals += typeQuals.empty() ? "volatile" : " volatile";
1851       } else {
1852         uint32_t AddrSpc = 0;
1853         bool isPipe = ty->isPipeType();
1854         if (ty->isImageType() || isPipe)
1855           AddrSpc = ArgInfoAddressSpace(LangAS::opencl_global);
1856 
1857         addressQuals.push_back(
1858             llvm::ConstantAsMetadata::get(CGF->Builder.getInt32(AddrSpc)));
1859 
1860         // Get argument type name.
1861         ty = isPipe ? ty->castAs<PipeType>()->getElementType() : ty;
1862         std::string typeName = getTypeSpelling(ty);
1863         std::string baseTypeName = getTypeSpelling(ty.getCanonicalType());
1864 
1865         // Remove access qualifiers on images
1866         // (as they are inseparable from type in clang implementation,
1867         // but OpenCL spec provides a special query to get access qualifier
1868         // via clGetKernelArgInfo with CL_KERNEL_ARG_ACCESS_QUALIFIER):
1869         if (ty->isImageType()) {
1870           removeImageAccessQualifier(typeName);
1871           removeImageAccessQualifier(baseTypeName);
1872         }
1873 
1874         argTypeNames.push_back(llvm::MDString::get(VMContext, typeName));
1875         argBaseTypeNames.push_back(
1876             llvm::MDString::get(VMContext, baseTypeName));
1877 
1878         if (isPipe)
1879           typeQuals = "pipe";
1880       }
1881       argTypeQuals.push_back(llvm::MDString::get(VMContext, typeQuals));
1882     }
1883 
1884   if (getLangOpts().OpenCL) {
1885     Fn->setMetadata("kernel_arg_addr_space",
1886                     llvm::MDNode::get(VMContext, addressQuals));
1887     Fn->setMetadata("kernel_arg_access_qual",
1888                     llvm::MDNode::get(VMContext, accessQuals));
1889     Fn->setMetadata("kernel_arg_type",
1890                     llvm::MDNode::get(VMContext, argTypeNames));
1891     Fn->setMetadata("kernel_arg_base_type",
1892                     llvm::MDNode::get(VMContext, argBaseTypeNames));
1893     Fn->setMetadata("kernel_arg_type_qual",
1894                     llvm::MDNode::get(VMContext, argTypeQuals));
1895   }
1896   if (getCodeGenOpts().EmitOpenCLArgMetadata ||
1897       getCodeGenOpts().HIPSaveKernelArgName)
1898     Fn->setMetadata("kernel_arg_name",
1899                     llvm::MDNode::get(VMContext, argNames));
1900 }
1901 
1902 /// Determines whether the language options require us to model
1903 /// unwind exceptions.  We treat -fexceptions as mandating this
1904 /// except under the fragile ObjC ABI with only ObjC exceptions
1905 /// enabled.  This means, for example, that C with -fexceptions
1906 /// enables this.
1907 static bool hasUnwindExceptions(const LangOptions &LangOpts) {
1908   // If exceptions are completely disabled, obviously this is false.
1909   if (!LangOpts.Exceptions) return false;
1910 
1911   // If C++ exceptions are enabled, this is true.
1912   if (LangOpts.CXXExceptions) return true;
1913 
1914   // If ObjC exceptions are enabled, this depends on the ABI.
1915   if (LangOpts.ObjCExceptions) {
1916     return LangOpts.ObjCRuntime.hasUnwindExceptions();
1917   }
1918 
1919   return true;
1920 }
1921 
1922 static bool requiresMemberFunctionPointerTypeMetadata(CodeGenModule &CGM,
1923                                                       const CXXMethodDecl *MD) {
1924   // Check that the type metadata can ever actually be used by a call.
1925   if (!CGM.getCodeGenOpts().LTOUnit ||
1926       !CGM.HasHiddenLTOVisibility(MD->getParent()))
1927     return false;
1928 
1929   // Only functions whose address can be taken with a member function pointer
1930   // need this sort of type metadata.
1931   return !MD->isStatic() && !MD->isVirtual() && !isa<CXXConstructorDecl>(MD) &&
1932          !isa<CXXDestructorDecl>(MD);
1933 }
1934 
1935 std::vector<const CXXRecordDecl *>
1936 CodeGenModule::getMostBaseClasses(const CXXRecordDecl *RD) {
1937   llvm::SetVector<const CXXRecordDecl *> MostBases;
1938 
1939   std::function<void (const CXXRecordDecl *)> CollectMostBases;
1940   CollectMostBases = [&](const CXXRecordDecl *RD) {
1941     if (RD->getNumBases() == 0)
1942       MostBases.insert(RD);
1943     for (const CXXBaseSpecifier &B : RD->bases())
1944       CollectMostBases(B.getType()->getAsCXXRecordDecl());
1945   };
1946   CollectMostBases(RD);
1947   return MostBases.takeVector();
1948 }
1949 
1950 llvm::GlobalVariable *
1951 CodeGenModule::GetOrCreateRTTIProxyGlobalVariable(llvm::Constant *Addr) {
1952   auto It = RTTIProxyMap.find(Addr);
1953   if (It != RTTIProxyMap.end())
1954     return It->second;
1955 
1956   auto *FTRTTIProxy = new llvm::GlobalVariable(
1957       TheModule, Addr->getType(),
1958       /*isConstant=*/true, llvm::GlobalValue::PrivateLinkage, Addr,
1959       "__llvm_rtti_proxy");
1960   FTRTTIProxy->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
1961 
1962   RTTIProxyMap[Addr] = FTRTTIProxy;
1963   return FTRTTIProxy;
1964 }
1965 
1966 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D,
1967                                                            llvm::Function *F) {
1968   llvm::AttrBuilder B(F->getContext());
1969 
1970   if ((!D || !D->hasAttr<NoUwtableAttr>()) && CodeGenOpts.UnwindTables)
1971     B.addUWTableAttr(llvm::UWTableKind(CodeGenOpts.UnwindTables));
1972 
1973   if (CodeGenOpts.StackClashProtector)
1974     B.addAttribute("probe-stack", "inline-asm");
1975 
1976   if (!hasUnwindExceptions(LangOpts))
1977     B.addAttribute(llvm::Attribute::NoUnwind);
1978 
1979   if (D && D->hasAttr<NoStackProtectorAttr>())
1980     ; // Do nothing.
1981   else if (D && D->hasAttr<StrictGuardStackCheckAttr>() &&
1982            LangOpts.getStackProtector() == LangOptions::SSPOn)
1983     B.addAttribute(llvm::Attribute::StackProtectStrong);
1984   else if (LangOpts.getStackProtector() == LangOptions::SSPOn)
1985     B.addAttribute(llvm::Attribute::StackProtect);
1986   else if (LangOpts.getStackProtector() == LangOptions::SSPStrong)
1987     B.addAttribute(llvm::Attribute::StackProtectStrong);
1988   else if (LangOpts.getStackProtector() == LangOptions::SSPReq)
1989     B.addAttribute(llvm::Attribute::StackProtectReq);
1990 
1991   if (!D) {
1992     // If we don't have a declaration to control inlining, the function isn't
1993     // explicitly marked as alwaysinline for semantic reasons, and inlining is
1994     // disabled, mark the function as noinline.
1995     if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline) &&
1996         CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining)
1997       B.addAttribute(llvm::Attribute::NoInline);
1998 
1999     F->addFnAttrs(B);
2000     return;
2001   }
2002 
2003   // Track whether we need to add the optnone LLVM attribute,
2004   // starting with the default for this optimization level.
2005   bool ShouldAddOptNone =
2006       !CodeGenOpts.DisableO0ImplyOptNone && CodeGenOpts.OptimizationLevel == 0;
2007   // We can't add optnone in the following cases, it won't pass the verifier.
2008   ShouldAddOptNone &= !D->hasAttr<MinSizeAttr>();
2009   ShouldAddOptNone &= !D->hasAttr<AlwaysInlineAttr>();
2010 
2011   // Add optnone, but do so only if the function isn't always_inline.
2012   if ((ShouldAddOptNone || D->hasAttr<OptimizeNoneAttr>()) &&
2013       !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) {
2014     B.addAttribute(llvm::Attribute::OptimizeNone);
2015 
2016     // OptimizeNone implies noinline; we should not be inlining such functions.
2017     B.addAttribute(llvm::Attribute::NoInline);
2018 
2019     // We still need to handle naked functions even though optnone subsumes
2020     // much of their semantics.
2021     if (D->hasAttr<NakedAttr>())
2022       B.addAttribute(llvm::Attribute::Naked);
2023 
2024     // OptimizeNone wins over OptimizeForSize and MinSize.
2025     F->removeFnAttr(llvm::Attribute::OptimizeForSize);
2026     F->removeFnAttr(llvm::Attribute::MinSize);
2027   } else if (D->hasAttr<NakedAttr>()) {
2028     // Naked implies noinline: we should not be inlining such functions.
2029     B.addAttribute(llvm::Attribute::Naked);
2030     B.addAttribute(llvm::Attribute::NoInline);
2031   } else if (D->hasAttr<NoDuplicateAttr>()) {
2032     B.addAttribute(llvm::Attribute::NoDuplicate);
2033   } else if (D->hasAttr<NoInlineAttr>() && !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) {
2034     // Add noinline if the function isn't always_inline.
2035     B.addAttribute(llvm::Attribute::NoInline);
2036   } else if (D->hasAttr<AlwaysInlineAttr>() &&
2037              !F->hasFnAttribute(llvm::Attribute::NoInline)) {
2038     // (noinline wins over always_inline, and we can't specify both in IR)
2039     B.addAttribute(llvm::Attribute::AlwaysInline);
2040   } else if (CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining) {
2041     // If we're not inlining, then force everything that isn't always_inline to
2042     // carry an explicit noinline attribute.
2043     if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline))
2044       B.addAttribute(llvm::Attribute::NoInline);
2045   } else {
2046     // Otherwise, propagate the inline hint attribute and potentially use its
2047     // absence to mark things as noinline.
2048     if (auto *FD = dyn_cast<FunctionDecl>(D)) {
2049       // Search function and template pattern redeclarations for inline.
2050       auto CheckForInline = [](const FunctionDecl *FD) {
2051         auto CheckRedeclForInline = [](const FunctionDecl *Redecl) {
2052           return Redecl->isInlineSpecified();
2053         };
2054         if (any_of(FD->redecls(), CheckRedeclForInline))
2055           return true;
2056         const FunctionDecl *Pattern = FD->getTemplateInstantiationPattern();
2057         if (!Pattern)
2058           return false;
2059         return any_of(Pattern->redecls(), CheckRedeclForInline);
2060       };
2061       if (CheckForInline(FD)) {
2062         B.addAttribute(llvm::Attribute::InlineHint);
2063       } else if (CodeGenOpts.getInlining() ==
2064                      CodeGenOptions::OnlyHintInlining &&
2065                  !FD->isInlined() &&
2066                  !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) {
2067         B.addAttribute(llvm::Attribute::NoInline);
2068       }
2069     }
2070   }
2071 
2072   // Add other optimization related attributes if we are optimizing this
2073   // function.
2074   if (!D->hasAttr<OptimizeNoneAttr>()) {
2075     if (D->hasAttr<ColdAttr>()) {
2076       if (!ShouldAddOptNone)
2077         B.addAttribute(llvm::Attribute::OptimizeForSize);
2078       B.addAttribute(llvm::Attribute::Cold);
2079     }
2080     if (D->hasAttr<HotAttr>())
2081       B.addAttribute(llvm::Attribute::Hot);
2082     if (D->hasAttr<MinSizeAttr>())
2083       B.addAttribute(llvm::Attribute::MinSize);
2084   }
2085 
2086   F->addFnAttrs(B);
2087 
2088   unsigned alignment = D->getMaxAlignment() / Context.getCharWidth();
2089   if (alignment)
2090     F->setAlignment(llvm::Align(alignment));
2091 
2092   if (!D->hasAttr<AlignedAttr>())
2093     if (LangOpts.FunctionAlignment)
2094       F->setAlignment(llvm::Align(1ull << LangOpts.FunctionAlignment));
2095 
2096   // Some C++ ABIs require 2-byte alignment for member functions, in order to
2097   // reserve a bit for differentiating between virtual and non-virtual member
2098   // functions. If the current target's C++ ABI requires this and this is a
2099   // member function, set its alignment accordingly.
2100   if (getTarget().getCXXABI().areMemberFunctionsAligned()) {
2101     if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D))
2102       F->setAlignment(llvm::Align(2));
2103   }
2104 
2105   // In the cross-dso CFI mode with canonical jump tables, we want !type
2106   // attributes on definitions only.
2107   if (CodeGenOpts.SanitizeCfiCrossDso &&
2108       CodeGenOpts.SanitizeCfiCanonicalJumpTables) {
2109     if (auto *FD = dyn_cast<FunctionDecl>(D)) {
2110       // Skip available_externally functions. They won't be codegen'ed in the
2111       // current module anyway.
2112       if (getContext().GetGVALinkageForFunction(FD) != GVA_AvailableExternally)
2113         CreateFunctionTypeMetadataForIcall(FD, F);
2114     }
2115   }
2116 
2117   // Emit type metadata on member functions for member function pointer checks.
2118   // These are only ever necessary on definitions; we're guaranteed that the
2119   // definition will be present in the LTO unit as a result of LTO visibility.
2120   auto *MD = dyn_cast<CXXMethodDecl>(D);
2121   if (MD && requiresMemberFunctionPointerTypeMetadata(*this, MD)) {
2122     for (const CXXRecordDecl *Base : getMostBaseClasses(MD->getParent())) {
2123       llvm::Metadata *Id =
2124           CreateMetadataIdentifierForType(Context.getMemberPointerType(
2125               MD->getType(), Context.getRecordType(Base).getTypePtr()));
2126       F->addTypeMetadata(0, Id);
2127     }
2128   }
2129 }
2130 
2131 void CodeGenModule::setLLVMFunctionFEnvAttributes(const FunctionDecl *D,
2132                                                   llvm::Function *F) {
2133   if (D->hasAttr<StrictFPAttr>()) {
2134     llvm::AttrBuilder FuncAttrs(F->getContext());
2135     FuncAttrs.addAttribute("strictfp");
2136     F->addFnAttrs(FuncAttrs);
2137   }
2138 }
2139 
2140 void CodeGenModule::SetCommonAttributes(GlobalDecl GD, llvm::GlobalValue *GV) {
2141   const Decl *D = GD.getDecl();
2142   if (isa_and_nonnull<NamedDecl>(D))
2143     setGVProperties(GV, GD);
2144   else
2145     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
2146 
2147   if (D && D->hasAttr<UsedAttr>())
2148     addUsedOrCompilerUsedGlobal(GV);
2149 
2150   if (CodeGenOpts.KeepStaticConsts && D && isa<VarDecl>(D)) {
2151     const auto *VD = cast<VarDecl>(D);
2152     if (VD->getType().isConstQualified() &&
2153         VD->getStorageDuration() == SD_Static)
2154       addUsedOrCompilerUsedGlobal(GV);
2155   }
2156 }
2157 
2158 bool CodeGenModule::GetCPUAndFeaturesAttributes(GlobalDecl GD,
2159                                                 llvm::AttrBuilder &Attrs) {
2160   // Add target-cpu and target-features attributes to functions. If
2161   // we have a decl for the function and it has a target attribute then
2162   // parse that and add it to the feature set.
2163   StringRef TargetCPU = getTarget().getTargetOpts().CPU;
2164   StringRef TuneCPU = getTarget().getTargetOpts().TuneCPU;
2165   std::vector<std::string> Features;
2166   const auto *FD = dyn_cast_or_null<FunctionDecl>(GD.getDecl());
2167   FD = FD ? FD->getMostRecentDecl() : FD;
2168   const auto *TD = FD ? FD->getAttr<TargetAttr>() : nullptr;
2169   const auto *SD = FD ? FD->getAttr<CPUSpecificAttr>() : nullptr;
2170   const auto *TC = FD ? FD->getAttr<TargetClonesAttr>() : nullptr;
2171   bool AddedAttr = false;
2172   if (TD || SD || TC) {
2173     llvm::StringMap<bool> FeatureMap;
2174     getContext().getFunctionFeatureMap(FeatureMap, GD);
2175 
2176     // Produce the canonical string for this set of features.
2177     for (const llvm::StringMap<bool>::value_type &Entry : FeatureMap)
2178       Features.push_back((Entry.getValue() ? "+" : "-") + Entry.getKey().str());
2179 
2180     // Now add the target-cpu and target-features to the function.
2181     // While we populated the feature map above, we still need to
2182     // get and parse the target attribute so we can get the cpu for
2183     // the function.
2184     if (TD) {
2185       ParsedTargetAttr ParsedAttr =
2186           Target.parseTargetAttr(TD->getFeaturesStr());
2187       if (!ParsedAttr.CPU.empty() &&
2188           getTarget().isValidCPUName(ParsedAttr.CPU)) {
2189         TargetCPU = ParsedAttr.CPU;
2190         TuneCPU = ""; // Clear the tune CPU.
2191       }
2192       if (!ParsedAttr.Tune.empty() &&
2193           getTarget().isValidCPUName(ParsedAttr.Tune))
2194         TuneCPU = ParsedAttr.Tune;
2195     }
2196 
2197     if (SD) {
2198       // Apply the given CPU name as the 'tune-cpu' so that the optimizer can
2199       // favor this processor.
2200       TuneCPU = getTarget().getCPUSpecificTuneName(
2201           SD->getCPUName(GD.getMultiVersionIndex())->getName());
2202     }
2203   } else {
2204     // Otherwise just add the existing target cpu and target features to the
2205     // function.
2206     Features = getTarget().getTargetOpts().Features;
2207   }
2208 
2209   if (!TargetCPU.empty()) {
2210     Attrs.addAttribute("target-cpu", TargetCPU);
2211     AddedAttr = true;
2212   }
2213   if (!TuneCPU.empty()) {
2214     Attrs.addAttribute("tune-cpu", TuneCPU);
2215     AddedAttr = true;
2216   }
2217   if (!Features.empty()) {
2218     llvm::sort(Features);
2219     Attrs.addAttribute("target-features", llvm::join(Features, ","));
2220     AddedAttr = true;
2221   }
2222 
2223   return AddedAttr;
2224 }
2225 
2226 void CodeGenModule::setNonAliasAttributes(GlobalDecl GD,
2227                                           llvm::GlobalObject *GO) {
2228   const Decl *D = GD.getDecl();
2229   SetCommonAttributes(GD, GO);
2230 
2231   if (D) {
2232     if (auto *GV = dyn_cast<llvm::GlobalVariable>(GO)) {
2233       if (D->hasAttr<RetainAttr>())
2234         addUsedGlobal(GV);
2235       if (auto *SA = D->getAttr<PragmaClangBSSSectionAttr>())
2236         GV->addAttribute("bss-section", SA->getName());
2237       if (auto *SA = D->getAttr<PragmaClangDataSectionAttr>())
2238         GV->addAttribute("data-section", SA->getName());
2239       if (auto *SA = D->getAttr<PragmaClangRodataSectionAttr>())
2240         GV->addAttribute("rodata-section", SA->getName());
2241       if (auto *SA = D->getAttr<PragmaClangRelroSectionAttr>())
2242         GV->addAttribute("relro-section", SA->getName());
2243     }
2244 
2245     if (auto *F = dyn_cast<llvm::Function>(GO)) {
2246       if (D->hasAttr<RetainAttr>())
2247         addUsedGlobal(F);
2248       if (auto *SA = D->getAttr<PragmaClangTextSectionAttr>())
2249         if (!D->getAttr<SectionAttr>())
2250           F->addFnAttr("implicit-section-name", SA->getName());
2251 
2252       llvm::AttrBuilder Attrs(F->getContext());
2253       if (GetCPUAndFeaturesAttributes(GD, Attrs)) {
2254         // We know that GetCPUAndFeaturesAttributes will always have the
2255         // newest set, since it has the newest possible FunctionDecl, so the
2256         // new ones should replace the old.
2257         llvm::AttributeMask RemoveAttrs;
2258         RemoveAttrs.addAttribute("target-cpu");
2259         RemoveAttrs.addAttribute("target-features");
2260         RemoveAttrs.addAttribute("tune-cpu");
2261         F->removeFnAttrs(RemoveAttrs);
2262         F->addFnAttrs(Attrs);
2263       }
2264     }
2265 
2266     if (const auto *CSA = D->getAttr<CodeSegAttr>())
2267       GO->setSection(CSA->getName());
2268     else if (const auto *SA = D->getAttr<SectionAttr>())
2269       GO->setSection(SA->getName());
2270   }
2271 
2272   getTargetCodeGenInfo().setTargetAttributes(D, GO, *this);
2273 }
2274 
2275 void CodeGenModule::SetInternalFunctionAttributes(GlobalDecl GD,
2276                                                   llvm::Function *F,
2277                                                   const CGFunctionInfo &FI) {
2278   const Decl *D = GD.getDecl();
2279   SetLLVMFunctionAttributes(GD, FI, F, /*IsThunk=*/false);
2280   SetLLVMFunctionAttributesForDefinition(D, F);
2281 
2282   F->setLinkage(llvm::Function::InternalLinkage);
2283 
2284   setNonAliasAttributes(GD, F);
2285 }
2286 
2287 static void setLinkageForGV(llvm::GlobalValue *GV, const NamedDecl *ND) {
2288   // Set linkage and visibility in case we never see a definition.
2289   LinkageInfo LV = ND->getLinkageAndVisibility();
2290   // Don't set internal linkage on declarations.
2291   // "extern_weak" is overloaded in LLVM; we probably should have
2292   // separate linkage types for this.
2293   if (isExternallyVisible(LV.getLinkage()) &&
2294       (ND->hasAttr<WeakAttr>() || ND->isWeakImported()))
2295     GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage);
2296 }
2297 
2298 void CodeGenModule::CreateFunctionTypeMetadataForIcall(const FunctionDecl *FD,
2299                                                        llvm::Function *F) {
2300   // Only if we are checking indirect calls.
2301   if (!LangOpts.Sanitize.has(SanitizerKind::CFIICall))
2302     return;
2303 
2304   // Non-static class methods are handled via vtable or member function pointer
2305   // checks elsewhere.
2306   if (isa<CXXMethodDecl>(FD) && !cast<CXXMethodDecl>(FD)->isStatic())
2307     return;
2308 
2309   llvm::Metadata *MD = CreateMetadataIdentifierForType(FD->getType());
2310   F->addTypeMetadata(0, MD);
2311   F->addTypeMetadata(0, CreateMetadataIdentifierGeneralized(FD->getType()));
2312 
2313   // Emit a hash-based bit set entry for cross-DSO calls.
2314   if (CodeGenOpts.SanitizeCfiCrossDso)
2315     if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD))
2316       F->addTypeMetadata(0, llvm::ConstantAsMetadata::get(CrossDsoTypeId));
2317 }
2318 
2319 void CodeGenModule::setKCFIType(const FunctionDecl *FD, llvm::Function *F) {
2320   if (isa<CXXMethodDecl>(FD) && !cast<CXXMethodDecl>(FD)->isStatic())
2321     return;
2322 
2323   llvm::LLVMContext &Ctx = F->getContext();
2324   llvm::MDBuilder MDB(Ctx);
2325   F->setMetadata(llvm::LLVMContext::MD_kcfi_type,
2326                  llvm::MDNode::get(
2327                      Ctx, MDB.createConstant(CreateKCFITypeId(FD->getType()))));
2328 }
2329 
2330 static bool allowKCFIIdentifier(StringRef Name) {
2331   // KCFI type identifier constants are only necessary for external assembly
2332   // functions, which means it's safe to skip unusual names. Subset of
2333   // MCAsmInfo::isAcceptableChar() and MCAsmInfoXCOFF::isAcceptableChar().
2334   return llvm::all_of(Name, [](const char &C) {
2335     return llvm::isAlnum(C) || C == '_' || C == '.';
2336   });
2337 }
2338 
2339 void CodeGenModule::finalizeKCFITypes() {
2340   llvm::Module &M = getModule();
2341   for (auto &F : M.functions()) {
2342     // Remove KCFI type metadata from non-address-taken local functions.
2343     bool AddressTaken = F.hasAddressTaken();
2344     if (!AddressTaken && F.hasLocalLinkage())
2345       F.eraseMetadata(llvm::LLVMContext::MD_kcfi_type);
2346 
2347     // Generate a constant with the expected KCFI type identifier for all
2348     // address-taken function declarations to support annotating indirectly
2349     // called assembly functions.
2350     if (!AddressTaken || !F.isDeclaration())
2351       continue;
2352 
2353     const llvm::ConstantInt *Type;
2354     if (const llvm::MDNode *MD = F.getMetadata(llvm::LLVMContext::MD_kcfi_type))
2355       Type = llvm::mdconst::extract<llvm::ConstantInt>(MD->getOperand(0));
2356     else
2357       continue;
2358 
2359     StringRef Name = F.getName();
2360     if (!allowKCFIIdentifier(Name))
2361       continue;
2362 
2363     std::string Asm = (".weak __kcfi_typeid_" + Name + "\n.set __kcfi_typeid_" +
2364                        Name + ", " + Twine(Type->getZExtValue()) + "\n")
2365                           .str();
2366     M.appendModuleInlineAsm(Asm);
2367   }
2368 }
2369 
2370 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD, llvm::Function *F,
2371                                           bool IsIncompleteFunction,
2372                                           bool IsThunk) {
2373 
2374   if (llvm::Intrinsic::ID IID = F->getIntrinsicID()) {
2375     // If this is an intrinsic function, set the function's attributes
2376     // to the intrinsic's attributes.
2377     F->setAttributes(llvm::Intrinsic::getAttributes(getLLVMContext(), IID));
2378     return;
2379   }
2380 
2381   const auto *FD = cast<FunctionDecl>(GD.getDecl());
2382 
2383   if (!IsIncompleteFunction)
2384     SetLLVMFunctionAttributes(GD, getTypes().arrangeGlobalDeclaration(GD), F,
2385                               IsThunk);
2386 
2387   // Add the Returned attribute for "this", except for iOS 5 and earlier
2388   // where substantial code, including the libstdc++ dylib, was compiled with
2389   // GCC and does not actually return "this".
2390   if (!IsThunk && getCXXABI().HasThisReturn(GD) &&
2391       !(getTriple().isiOS() && getTriple().isOSVersionLT(6))) {
2392     assert(!F->arg_empty() &&
2393            F->arg_begin()->getType()
2394              ->canLosslesslyBitCastTo(F->getReturnType()) &&
2395            "unexpected this return");
2396     F->addParamAttr(0, llvm::Attribute::Returned);
2397   }
2398 
2399   // Only a few attributes are set on declarations; these may later be
2400   // overridden by a definition.
2401 
2402   setLinkageForGV(F, FD);
2403   setGVProperties(F, FD);
2404 
2405   // Setup target-specific attributes.
2406   if (!IsIncompleteFunction && F->isDeclaration())
2407     getTargetCodeGenInfo().setTargetAttributes(FD, F, *this);
2408 
2409   if (const auto *CSA = FD->getAttr<CodeSegAttr>())
2410     F->setSection(CSA->getName());
2411   else if (const auto *SA = FD->getAttr<SectionAttr>())
2412      F->setSection(SA->getName());
2413 
2414   if (const auto *EA = FD->getAttr<ErrorAttr>()) {
2415     if (EA->isError())
2416       F->addFnAttr("dontcall-error", EA->getUserDiagnostic());
2417     else if (EA->isWarning())
2418       F->addFnAttr("dontcall-warn", EA->getUserDiagnostic());
2419   }
2420 
2421   // If we plan on emitting this inline builtin, we can't treat it as a builtin.
2422   if (FD->isInlineBuiltinDeclaration()) {
2423     const FunctionDecl *FDBody;
2424     bool HasBody = FD->hasBody(FDBody);
2425     (void)HasBody;
2426     assert(HasBody && "Inline builtin declarations should always have an "
2427                       "available body!");
2428     if (shouldEmitFunction(FDBody))
2429       F->addFnAttr(llvm::Attribute::NoBuiltin);
2430   }
2431 
2432   if (FD->isReplaceableGlobalAllocationFunction()) {
2433     // A replaceable global allocation function does not act like a builtin by
2434     // default, only if it is invoked by a new-expression or delete-expression.
2435     F->addFnAttr(llvm::Attribute::NoBuiltin);
2436   }
2437 
2438   if (isa<CXXConstructorDecl>(FD) || isa<CXXDestructorDecl>(FD))
2439     F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
2440   else if (const auto *MD = dyn_cast<CXXMethodDecl>(FD))
2441     if (MD->isVirtual())
2442       F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
2443 
2444   // Don't emit entries for function declarations in the cross-DSO mode. This
2445   // is handled with better precision by the receiving DSO. But if jump tables
2446   // are non-canonical then we need type metadata in order to produce the local
2447   // jump table.
2448   if (!CodeGenOpts.SanitizeCfiCrossDso ||
2449       !CodeGenOpts.SanitizeCfiCanonicalJumpTables)
2450     CreateFunctionTypeMetadataForIcall(FD, F);
2451 
2452   if (LangOpts.Sanitize.has(SanitizerKind::KCFI))
2453     setKCFIType(FD, F);
2454 
2455   if (getLangOpts().OpenMP && FD->hasAttr<OMPDeclareSimdDeclAttr>())
2456     getOpenMPRuntime().emitDeclareSimdFunction(FD, F);
2457 
2458   if (CodeGenOpts.InlineMaxStackSize != UINT_MAX)
2459     F->addFnAttr("inline-max-stacksize", llvm::utostr(CodeGenOpts.InlineMaxStackSize));
2460 
2461   if (const auto *CB = FD->getAttr<CallbackAttr>()) {
2462     // Annotate the callback behavior as metadata:
2463     //  - The callback callee (as argument number).
2464     //  - The callback payloads (as argument numbers).
2465     llvm::LLVMContext &Ctx = F->getContext();
2466     llvm::MDBuilder MDB(Ctx);
2467 
2468     // The payload indices are all but the first one in the encoding. The first
2469     // identifies the callback callee.
2470     int CalleeIdx = *CB->encoding_begin();
2471     ArrayRef<int> PayloadIndices(CB->encoding_begin() + 1, CB->encoding_end());
2472     F->addMetadata(llvm::LLVMContext::MD_callback,
2473                    *llvm::MDNode::get(Ctx, {MDB.createCallbackEncoding(
2474                                                CalleeIdx, PayloadIndices,
2475                                                /* VarArgsArePassed */ false)}));
2476   }
2477 }
2478 
2479 void CodeGenModule::addUsedGlobal(llvm::GlobalValue *GV) {
2480   assert((isa<llvm::Function>(GV) || !GV->isDeclaration()) &&
2481          "Only globals with definition can force usage.");
2482   LLVMUsed.emplace_back(GV);
2483 }
2484 
2485 void CodeGenModule::addCompilerUsedGlobal(llvm::GlobalValue *GV) {
2486   assert(!GV->isDeclaration() &&
2487          "Only globals with definition can force usage.");
2488   LLVMCompilerUsed.emplace_back(GV);
2489 }
2490 
2491 void CodeGenModule::addUsedOrCompilerUsedGlobal(llvm::GlobalValue *GV) {
2492   assert((isa<llvm::Function>(GV) || !GV->isDeclaration()) &&
2493          "Only globals with definition can force usage.");
2494   if (getTriple().isOSBinFormatELF())
2495     LLVMCompilerUsed.emplace_back(GV);
2496   else
2497     LLVMUsed.emplace_back(GV);
2498 }
2499 
2500 static void emitUsed(CodeGenModule &CGM, StringRef Name,
2501                      std::vector<llvm::WeakTrackingVH> &List) {
2502   // Don't create llvm.used if there is no need.
2503   if (List.empty())
2504     return;
2505 
2506   // Convert List to what ConstantArray needs.
2507   SmallVector<llvm::Constant*, 8> UsedArray;
2508   UsedArray.resize(List.size());
2509   for (unsigned i = 0, e = List.size(); i != e; ++i) {
2510     UsedArray[i] =
2511         llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(
2512             cast<llvm::Constant>(&*List[i]), CGM.Int8PtrTy);
2513   }
2514 
2515   if (UsedArray.empty())
2516     return;
2517   llvm::ArrayType *ATy = llvm::ArrayType::get(CGM.Int8PtrTy, UsedArray.size());
2518 
2519   auto *GV = new llvm::GlobalVariable(
2520       CGM.getModule(), ATy, false, llvm::GlobalValue::AppendingLinkage,
2521       llvm::ConstantArray::get(ATy, UsedArray), Name);
2522 
2523   GV->setSection("llvm.metadata");
2524 }
2525 
2526 void CodeGenModule::emitLLVMUsed() {
2527   emitUsed(*this, "llvm.used", LLVMUsed);
2528   emitUsed(*this, "llvm.compiler.used", LLVMCompilerUsed);
2529 }
2530 
2531 void CodeGenModule::AppendLinkerOptions(StringRef Opts) {
2532   auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opts);
2533   LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
2534 }
2535 
2536 void CodeGenModule::AddDetectMismatch(StringRef Name, StringRef Value) {
2537   llvm::SmallString<32> Opt;
2538   getTargetCodeGenInfo().getDetectMismatchOption(Name, Value, Opt);
2539   if (Opt.empty())
2540     return;
2541   auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt);
2542   LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
2543 }
2544 
2545 void CodeGenModule::AddDependentLib(StringRef Lib) {
2546   auto &C = getLLVMContext();
2547   if (getTarget().getTriple().isOSBinFormatELF()) {
2548       ELFDependentLibraries.push_back(
2549         llvm::MDNode::get(C, llvm::MDString::get(C, Lib)));
2550     return;
2551   }
2552 
2553   llvm::SmallString<24> Opt;
2554   getTargetCodeGenInfo().getDependentLibraryOption(Lib, Opt);
2555   auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt);
2556   LinkerOptionsMetadata.push_back(llvm::MDNode::get(C, MDOpts));
2557 }
2558 
2559 /// Add link options implied by the given module, including modules
2560 /// it depends on, using a postorder walk.
2561 static void addLinkOptionsPostorder(CodeGenModule &CGM, Module *Mod,
2562                                     SmallVectorImpl<llvm::MDNode *> &Metadata,
2563                                     llvm::SmallPtrSet<Module *, 16> &Visited) {
2564   // Import this module's parent.
2565   if (Mod->Parent && Visited.insert(Mod->Parent).second) {
2566     addLinkOptionsPostorder(CGM, Mod->Parent, Metadata, Visited);
2567   }
2568 
2569   // Import this module's dependencies.
2570   for (Module *Import : llvm::reverse(Mod->Imports)) {
2571     if (Visited.insert(Import).second)
2572       addLinkOptionsPostorder(CGM, Import, Metadata, Visited);
2573   }
2574 
2575   // Add linker options to link against the libraries/frameworks
2576   // described by this module.
2577   llvm::LLVMContext &Context = CGM.getLLVMContext();
2578   bool IsELF = CGM.getTarget().getTriple().isOSBinFormatELF();
2579 
2580   // For modules that use export_as for linking, use that module
2581   // name instead.
2582   if (Mod->UseExportAsModuleLinkName)
2583     return;
2584 
2585   for (const Module::LinkLibrary &LL : llvm::reverse(Mod->LinkLibraries)) {
2586     // Link against a framework.  Frameworks are currently Darwin only, so we
2587     // don't to ask TargetCodeGenInfo for the spelling of the linker option.
2588     if (LL.IsFramework) {
2589       llvm::Metadata *Args[2] = {llvm::MDString::get(Context, "-framework"),
2590                                  llvm::MDString::get(Context, LL.Library)};
2591 
2592       Metadata.push_back(llvm::MDNode::get(Context, Args));
2593       continue;
2594     }
2595 
2596     // Link against a library.
2597     if (IsELF) {
2598       llvm::Metadata *Args[2] = {
2599           llvm::MDString::get(Context, "lib"),
2600           llvm::MDString::get(Context, LL.Library),
2601       };
2602       Metadata.push_back(llvm::MDNode::get(Context, Args));
2603     } else {
2604       llvm::SmallString<24> Opt;
2605       CGM.getTargetCodeGenInfo().getDependentLibraryOption(LL.Library, Opt);
2606       auto *OptString = llvm::MDString::get(Context, Opt);
2607       Metadata.push_back(llvm::MDNode::get(Context, OptString));
2608     }
2609   }
2610 }
2611 
2612 void CodeGenModule::EmitModuleInitializers(clang::Module *Primary) {
2613   // Emit the initializers in the order that sub-modules appear in the
2614   // source, first Global Module Fragments, if present.
2615   if (auto GMF = Primary->getGlobalModuleFragment()) {
2616     for (Decl *D : getContext().getModuleInitializers(GMF)) {
2617       if (isa<ImportDecl>(D))
2618         continue;
2619       assert(isa<VarDecl>(D) && "GMF initializer decl is not a var?");
2620       EmitTopLevelDecl(D);
2621     }
2622   }
2623   // Second any associated with the module, itself.
2624   for (Decl *D : getContext().getModuleInitializers(Primary)) {
2625     // Skip import decls, the inits for those are called explicitly.
2626     if (isa<ImportDecl>(D))
2627       continue;
2628     EmitTopLevelDecl(D);
2629   }
2630   // Third any associated with the Privat eMOdule Fragment, if present.
2631   if (auto PMF = Primary->getPrivateModuleFragment()) {
2632     for (Decl *D : getContext().getModuleInitializers(PMF)) {
2633       assert(isa<VarDecl>(D) && "PMF initializer decl is not a var?");
2634       EmitTopLevelDecl(D);
2635     }
2636   }
2637 }
2638 
2639 void CodeGenModule::EmitModuleLinkOptions() {
2640   // Collect the set of all of the modules we want to visit to emit link
2641   // options, which is essentially the imported modules and all of their
2642   // non-explicit child modules.
2643   llvm::SetVector<clang::Module *> LinkModules;
2644   llvm::SmallPtrSet<clang::Module *, 16> Visited;
2645   SmallVector<clang::Module *, 16> Stack;
2646 
2647   // Seed the stack with imported modules.
2648   for (Module *M : ImportedModules) {
2649     // Do not add any link flags when an implementation TU of a module imports
2650     // a header of that same module.
2651     if (M->getTopLevelModuleName() == getLangOpts().CurrentModule &&
2652         !getLangOpts().isCompilingModule())
2653       continue;
2654     if (Visited.insert(M).second)
2655       Stack.push_back(M);
2656   }
2657 
2658   // Find all of the modules to import, making a little effort to prune
2659   // non-leaf modules.
2660   while (!Stack.empty()) {
2661     clang::Module *Mod = Stack.pop_back_val();
2662 
2663     bool AnyChildren = false;
2664 
2665     // Visit the submodules of this module.
2666     for (const auto &SM : Mod->submodules()) {
2667       // Skip explicit children; they need to be explicitly imported to be
2668       // linked against.
2669       if (SM->IsExplicit)
2670         continue;
2671 
2672       if (Visited.insert(SM).second) {
2673         Stack.push_back(SM);
2674         AnyChildren = true;
2675       }
2676     }
2677 
2678     // We didn't find any children, so add this module to the list of
2679     // modules to link against.
2680     if (!AnyChildren) {
2681       LinkModules.insert(Mod);
2682     }
2683   }
2684 
2685   // Add link options for all of the imported modules in reverse topological
2686   // order.  We don't do anything to try to order import link flags with respect
2687   // to linker options inserted by things like #pragma comment().
2688   SmallVector<llvm::MDNode *, 16> MetadataArgs;
2689   Visited.clear();
2690   for (Module *M : LinkModules)
2691     if (Visited.insert(M).second)
2692       addLinkOptionsPostorder(*this, M, MetadataArgs, Visited);
2693   std::reverse(MetadataArgs.begin(), MetadataArgs.end());
2694   LinkerOptionsMetadata.append(MetadataArgs.begin(), MetadataArgs.end());
2695 
2696   // Add the linker options metadata flag.
2697   auto *NMD = getModule().getOrInsertNamedMetadata("llvm.linker.options");
2698   for (auto *MD : LinkerOptionsMetadata)
2699     NMD->addOperand(MD);
2700 }
2701 
2702 void CodeGenModule::EmitDeferred() {
2703   // Emit deferred declare target declarations.
2704   if (getLangOpts().OpenMP && !getLangOpts().OpenMPSimd)
2705     getOpenMPRuntime().emitDeferredTargetDecls();
2706 
2707   // Emit code for any potentially referenced deferred decls.  Since a
2708   // previously unused static decl may become used during the generation of code
2709   // for a static function, iterate until no changes are made.
2710 
2711   if (!DeferredVTables.empty()) {
2712     EmitDeferredVTables();
2713 
2714     // Emitting a vtable doesn't directly cause more vtables to
2715     // become deferred, although it can cause functions to be
2716     // emitted that then need those vtables.
2717     assert(DeferredVTables.empty());
2718   }
2719 
2720   // Emit CUDA/HIP static device variables referenced by host code only.
2721   // Note we should not clear CUDADeviceVarODRUsedByHost since it is still
2722   // needed for further handling.
2723   if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice)
2724     llvm::append_range(DeferredDeclsToEmit,
2725                        getContext().CUDADeviceVarODRUsedByHost);
2726 
2727   // Stop if we're out of both deferred vtables and deferred declarations.
2728   if (DeferredDeclsToEmit.empty())
2729     return;
2730 
2731   // Grab the list of decls to emit. If EmitGlobalDefinition schedules more
2732   // work, it will not interfere with this.
2733   std::vector<GlobalDecl> CurDeclsToEmit;
2734   CurDeclsToEmit.swap(DeferredDeclsToEmit);
2735 
2736   for (GlobalDecl &D : CurDeclsToEmit) {
2737     // We should call GetAddrOfGlobal with IsForDefinition set to true in order
2738     // to get GlobalValue with exactly the type we need, not something that
2739     // might had been created for another decl with the same mangled name but
2740     // different type.
2741     llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>(
2742         GetAddrOfGlobal(D, ForDefinition));
2743 
2744     // In case of different address spaces, we may still get a cast, even with
2745     // IsForDefinition equal to true. Query mangled names table to get
2746     // GlobalValue.
2747     if (!GV)
2748       GV = GetGlobalValue(getMangledName(D));
2749 
2750     // Make sure GetGlobalValue returned non-null.
2751     assert(GV);
2752 
2753     // Check to see if we've already emitted this.  This is necessary
2754     // for a couple of reasons: first, decls can end up in the
2755     // deferred-decls queue multiple times, and second, decls can end
2756     // up with definitions in unusual ways (e.g. by an extern inline
2757     // function acquiring a strong function redefinition).  Just
2758     // ignore these cases.
2759     if (!GV->isDeclaration())
2760       continue;
2761 
2762     // If this is OpenMP, check if it is legal to emit this global normally.
2763     if (LangOpts.OpenMP && OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(D))
2764       continue;
2765 
2766     // Otherwise, emit the definition and move on to the next one.
2767     EmitGlobalDefinition(D, GV);
2768 
2769     // If we found out that we need to emit more decls, do that recursively.
2770     // This has the advantage that the decls are emitted in a DFS and related
2771     // ones are close together, which is convenient for testing.
2772     if (!DeferredVTables.empty() || !DeferredDeclsToEmit.empty()) {
2773       EmitDeferred();
2774       assert(DeferredVTables.empty() && DeferredDeclsToEmit.empty());
2775     }
2776   }
2777 }
2778 
2779 void CodeGenModule::EmitVTablesOpportunistically() {
2780   // Try to emit external vtables as available_externally if they have emitted
2781   // all inlined virtual functions.  It runs after EmitDeferred() and therefore
2782   // is not allowed to create new references to things that need to be emitted
2783   // lazily. Note that it also uses fact that we eagerly emitting RTTI.
2784 
2785   assert((OpportunisticVTables.empty() || shouldOpportunisticallyEmitVTables())
2786          && "Only emit opportunistic vtables with optimizations");
2787 
2788   for (const CXXRecordDecl *RD : OpportunisticVTables) {
2789     assert(getVTables().isVTableExternal(RD) &&
2790            "This queue should only contain external vtables");
2791     if (getCXXABI().canSpeculativelyEmitVTable(RD))
2792       VTables.GenerateClassData(RD);
2793   }
2794   OpportunisticVTables.clear();
2795 }
2796 
2797 void CodeGenModule::EmitGlobalAnnotations() {
2798   if (Annotations.empty())
2799     return;
2800 
2801   // Create a new global variable for the ConstantStruct in the Module.
2802   llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get(
2803     Annotations[0]->getType(), Annotations.size()), Annotations);
2804   auto *gv = new llvm::GlobalVariable(getModule(), Array->getType(), false,
2805                                       llvm::GlobalValue::AppendingLinkage,
2806                                       Array, "llvm.global.annotations");
2807   gv->setSection(AnnotationSection);
2808 }
2809 
2810 llvm::Constant *CodeGenModule::EmitAnnotationString(StringRef Str) {
2811   llvm::Constant *&AStr = AnnotationStrings[Str];
2812   if (AStr)
2813     return AStr;
2814 
2815   // Not found yet, create a new global.
2816   llvm::Constant *s = llvm::ConstantDataArray::getString(getLLVMContext(), Str);
2817   auto *gv = new llvm::GlobalVariable(
2818       getModule(), s->getType(), true, llvm::GlobalValue::PrivateLinkage, s,
2819       ".str", nullptr, llvm::GlobalValue::NotThreadLocal,
2820       ConstGlobalsPtrTy->getAddressSpace());
2821   gv->setSection(AnnotationSection);
2822   gv->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
2823   AStr = gv;
2824   return gv;
2825 }
2826 
2827 llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) {
2828   SourceManager &SM = getContext().getSourceManager();
2829   PresumedLoc PLoc = SM.getPresumedLoc(Loc);
2830   if (PLoc.isValid())
2831     return EmitAnnotationString(PLoc.getFilename());
2832   return EmitAnnotationString(SM.getBufferName(Loc));
2833 }
2834 
2835 llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) {
2836   SourceManager &SM = getContext().getSourceManager();
2837   PresumedLoc PLoc = SM.getPresumedLoc(L);
2838   unsigned LineNo = PLoc.isValid() ? PLoc.getLine() :
2839     SM.getExpansionLineNumber(L);
2840   return llvm::ConstantInt::get(Int32Ty, LineNo);
2841 }
2842 
2843 llvm::Constant *CodeGenModule::EmitAnnotationArgs(const AnnotateAttr *Attr) {
2844   ArrayRef<Expr *> Exprs = {Attr->args_begin(), Attr->args_size()};
2845   if (Exprs.empty())
2846     return llvm::ConstantPointerNull::get(ConstGlobalsPtrTy);
2847 
2848   llvm::FoldingSetNodeID ID;
2849   for (Expr *E : Exprs) {
2850     ID.Add(cast<clang::ConstantExpr>(E)->getAPValueResult());
2851   }
2852   llvm::Constant *&Lookup = AnnotationArgs[ID.ComputeHash()];
2853   if (Lookup)
2854     return Lookup;
2855 
2856   llvm::SmallVector<llvm::Constant *, 4> LLVMArgs;
2857   LLVMArgs.reserve(Exprs.size());
2858   ConstantEmitter ConstEmiter(*this);
2859   llvm::transform(Exprs, std::back_inserter(LLVMArgs), [&](const Expr *E) {
2860     const auto *CE = cast<clang::ConstantExpr>(E);
2861     return ConstEmiter.emitAbstract(CE->getBeginLoc(), CE->getAPValueResult(),
2862                                     CE->getType());
2863   });
2864   auto *Struct = llvm::ConstantStruct::getAnon(LLVMArgs);
2865   auto *GV = new llvm::GlobalVariable(getModule(), Struct->getType(), true,
2866                                       llvm::GlobalValue::PrivateLinkage, Struct,
2867                                       ".args");
2868   GV->setSection(AnnotationSection);
2869   GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
2870   auto *Bitcasted = llvm::ConstantExpr::getBitCast(GV, GlobalsInt8PtrTy);
2871 
2872   Lookup = Bitcasted;
2873   return Bitcasted;
2874 }
2875 
2876 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV,
2877                                                 const AnnotateAttr *AA,
2878                                                 SourceLocation L) {
2879   // Get the globals for file name, annotation, and the line number.
2880   llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()),
2881                  *UnitGV = EmitAnnotationUnit(L),
2882                  *LineNoCst = EmitAnnotationLineNo(L),
2883                  *Args = EmitAnnotationArgs(AA);
2884 
2885   llvm::Constant *GVInGlobalsAS = GV;
2886   if (GV->getAddressSpace() !=
2887       getDataLayout().getDefaultGlobalsAddressSpace()) {
2888     GVInGlobalsAS = llvm::ConstantExpr::getAddrSpaceCast(
2889         GV, GV->getValueType()->getPointerTo(
2890                 getDataLayout().getDefaultGlobalsAddressSpace()));
2891   }
2892 
2893   // Create the ConstantStruct for the global annotation.
2894   llvm::Constant *Fields[] = {
2895       llvm::ConstantExpr::getBitCast(GVInGlobalsAS, GlobalsInt8PtrTy),
2896       llvm::ConstantExpr::getBitCast(AnnoGV, ConstGlobalsPtrTy),
2897       llvm::ConstantExpr::getBitCast(UnitGV, ConstGlobalsPtrTy),
2898       LineNoCst,
2899       Args,
2900   };
2901   return llvm::ConstantStruct::getAnon(Fields);
2902 }
2903 
2904 void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D,
2905                                          llvm::GlobalValue *GV) {
2906   assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
2907   // Get the struct elements for these annotations.
2908   for (const auto *I : D->specific_attrs<AnnotateAttr>())
2909     Annotations.push_back(EmitAnnotateAttr(GV, I, D->getLocation()));
2910 }
2911 
2912 bool CodeGenModule::isInNoSanitizeList(SanitizerMask Kind, llvm::Function *Fn,
2913                                        SourceLocation Loc) const {
2914   const auto &NoSanitizeL = getContext().getNoSanitizeList();
2915   // NoSanitize by function name.
2916   if (NoSanitizeL.containsFunction(Kind, Fn->getName()))
2917     return true;
2918   // NoSanitize by location. Check "mainfile" prefix.
2919   auto &SM = Context.getSourceManager();
2920   const FileEntry &MainFile = *SM.getFileEntryForID(SM.getMainFileID());
2921   if (NoSanitizeL.containsMainFile(Kind, MainFile.getName()))
2922     return true;
2923 
2924   // Check "src" prefix.
2925   if (Loc.isValid())
2926     return NoSanitizeL.containsLocation(Kind, Loc);
2927   // If location is unknown, this may be a compiler-generated function. Assume
2928   // it's located in the main file.
2929   return NoSanitizeL.containsFile(Kind, MainFile.getName());
2930 }
2931 
2932 bool CodeGenModule::isInNoSanitizeList(SanitizerMask Kind,
2933                                        llvm::GlobalVariable *GV,
2934                                        SourceLocation Loc, QualType Ty,
2935                                        StringRef Category) const {
2936   const auto &NoSanitizeL = getContext().getNoSanitizeList();
2937   if (NoSanitizeL.containsGlobal(Kind, GV->getName(), Category))
2938     return true;
2939   auto &SM = Context.getSourceManager();
2940   if (NoSanitizeL.containsMainFile(
2941           Kind, SM.getFileEntryForID(SM.getMainFileID())->getName(), Category))
2942     return true;
2943   if (NoSanitizeL.containsLocation(Kind, Loc, Category))
2944     return true;
2945 
2946   // Check global type.
2947   if (!Ty.isNull()) {
2948     // Drill down the array types: if global variable of a fixed type is
2949     // not sanitized, we also don't instrument arrays of them.
2950     while (auto AT = dyn_cast<ArrayType>(Ty.getTypePtr()))
2951       Ty = AT->getElementType();
2952     Ty = Ty.getCanonicalType().getUnqualifiedType();
2953     // Only record types (classes, structs etc.) are ignored.
2954     if (Ty->isRecordType()) {
2955       std::string TypeStr = Ty.getAsString(getContext().getPrintingPolicy());
2956       if (NoSanitizeL.containsType(Kind, TypeStr, Category))
2957         return true;
2958     }
2959   }
2960   return false;
2961 }
2962 
2963 bool CodeGenModule::imbueXRayAttrs(llvm::Function *Fn, SourceLocation Loc,
2964                                    StringRef Category) const {
2965   const auto &XRayFilter = getContext().getXRayFilter();
2966   using ImbueAttr = XRayFunctionFilter::ImbueAttribute;
2967   auto Attr = ImbueAttr::NONE;
2968   if (Loc.isValid())
2969     Attr = XRayFilter.shouldImbueLocation(Loc, Category);
2970   if (Attr == ImbueAttr::NONE)
2971     Attr = XRayFilter.shouldImbueFunction(Fn->getName());
2972   switch (Attr) {
2973   case ImbueAttr::NONE:
2974     return false;
2975   case ImbueAttr::ALWAYS:
2976     Fn->addFnAttr("function-instrument", "xray-always");
2977     break;
2978   case ImbueAttr::ALWAYS_ARG1:
2979     Fn->addFnAttr("function-instrument", "xray-always");
2980     Fn->addFnAttr("xray-log-args", "1");
2981     break;
2982   case ImbueAttr::NEVER:
2983     Fn->addFnAttr("function-instrument", "xray-never");
2984     break;
2985   }
2986   return true;
2987 }
2988 
2989 ProfileList::ExclusionType
2990 CodeGenModule::isFunctionBlockedByProfileList(llvm::Function *Fn,
2991                                               SourceLocation Loc) const {
2992   const auto &ProfileList = getContext().getProfileList();
2993   // If the profile list is empty, then instrument everything.
2994   if (ProfileList.isEmpty())
2995     return ProfileList::Allow;
2996   CodeGenOptions::ProfileInstrKind Kind = getCodeGenOpts().getProfileInstr();
2997   // First, check the function name.
2998   if (auto V = ProfileList.isFunctionExcluded(Fn->getName(), Kind))
2999     return *V;
3000   // Next, check the source location.
3001   if (Loc.isValid())
3002     if (auto V = ProfileList.isLocationExcluded(Loc, Kind))
3003       return *V;
3004   // If location is unknown, this may be a compiler-generated function. Assume
3005   // it's located in the main file.
3006   auto &SM = Context.getSourceManager();
3007   if (const auto *MainFile = SM.getFileEntryForID(SM.getMainFileID()))
3008     if (auto V = ProfileList.isFileExcluded(MainFile->getName(), Kind))
3009       return *V;
3010   return ProfileList.getDefault(Kind);
3011 }
3012 
3013 ProfileList::ExclusionType
3014 CodeGenModule::isFunctionBlockedFromProfileInstr(llvm::Function *Fn,
3015                                                  SourceLocation Loc) const {
3016   auto V = isFunctionBlockedByProfileList(Fn, Loc);
3017   if (V != ProfileList::Allow)
3018     return V;
3019 
3020   auto NumGroups = getCodeGenOpts().ProfileTotalFunctionGroups;
3021   if (NumGroups > 1) {
3022     auto Group = llvm::crc32(arrayRefFromStringRef(Fn->getName())) % NumGroups;
3023     if (Group != getCodeGenOpts().ProfileSelectedFunctionGroup)
3024       return ProfileList::Skip;
3025   }
3026   return ProfileList::Allow;
3027 }
3028 
3029 bool CodeGenModule::MustBeEmitted(const ValueDecl *Global) {
3030   // Never defer when EmitAllDecls is specified.
3031   if (LangOpts.EmitAllDecls)
3032     return true;
3033 
3034   if (CodeGenOpts.KeepStaticConsts) {
3035     const auto *VD = dyn_cast<VarDecl>(Global);
3036     if (VD && VD->getType().isConstQualified() &&
3037         VD->getStorageDuration() == SD_Static)
3038       return true;
3039   }
3040 
3041   return getContext().DeclMustBeEmitted(Global);
3042 }
3043 
3044 bool CodeGenModule::MayBeEmittedEagerly(const ValueDecl *Global) {
3045   // In OpenMP 5.0 variables and function may be marked as
3046   // device_type(host/nohost) and we should not emit them eagerly unless we sure
3047   // that they must be emitted on the host/device. To be sure we need to have
3048   // seen a declare target with an explicit mentioning of the function, we know
3049   // we have if the level of the declare target attribute is -1. Note that we
3050   // check somewhere else if we should emit this at all.
3051   if (LangOpts.OpenMP >= 50 && !LangOpts.OpenMPSimd) {
3052     llvm::Optional<OMPDeclareTargetDeclAttr *> ActiveAttr =
3053         OMPDeclareTargetDeclAttr::getActiveAttr(Global);
3054     if (!ActiveAttr || (*ActiveAttr)->getLevel() != (unsigned)-1)
3055       return false;
3056   }
3057 
3058   if (const auto *FD = dyn_cast<FunctionDecl>(Global)) {
3059     if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
3060       // Implicit template instantiations may change linkage if they are later
3061       // explicitly instantiated, so they should not be emitted eagerly.
3062       return false;
3063   }
3064   if (const auto *VD = dyn_cast<VarDecl>(Global)) {
3065     if (Context.getInlineVariableDefinitionKind(VD) ==
3066         ASTContext::InlineVariableDefinitionKind::WeakUnknown)
3067       // A definition of an inline constexpr static data member may change
3068       // linkage later if it's redeclared outside the class.
3069       return false;
3070     if (CXX20ModuleInits && VD->getOwningModule() &&
3071         !VD->getOwningModule()->isModuleMapModule()) {
3072       // For CXX20, module-owned initializers need to be deferred, since it is
3073       // not known at this point if they will be run for the current module or
3074       // as part of the initializer for an imported one.
3075       return false;
3076     }
3077   }
3078   // If OpenMP is enabled and threadprivates must be generated like TLS, delay
3079   // codegen for global variables, because they may be marked as threadprivate.
3080   if (LangOpts.OpenMP && LangOpts.OpenMPUseTLS &&
3081       getContext().getTargetInfo().isTLSSupported() && isa<VarDecl>(Global) &&
3082       !isTypeConstant(Global->getType(), false) &&
3083       !OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(Global))
3084     return false;
3085 
3086   return true;
3087 }
3088 
3089 ConstantAddress CodeGenModule::GetAddrOfMSGuidDecl(const MSGuidDecl *GD) {
3090   StringRef Name = getMangledName(GD);
3091 
3092   // The UUID descriptor should be pointer aligned.
3093   CharUnits Alignment = CharUnits::fromQuantity(PointerAlignInBytes);
3094 
3095   // Look for an existing global.
3096   if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name))
3097     return ConstantAddress(GV, GV->getValueType(), Alignment);
3098 
3099   ConstantEmitter Emitter(*this);
3100   llvm::Constant *Init;
3101 
3102   APValue &V = GD->getAsAPValue();
3103   if (!V.isAbsent()) {
3104     // If possible, emit the APValue version of the initializer. In particular,
3105     // this gets the type of the constant right.
3106     Init = Emitter.emitForInitializer(
3107         GD->getAsAPValue(), GD->getType().getAddressSpace(), GD->getType());
3108   } else {
3109     // As a fallback, directly construct the constant.
3110     // FIXME: This may get padding wrong under esoteric struct layout rules.
3111     // MSVC appears to create a complete type 'struct __s_GUID' that it
3112     // presumably uses to represent these constants.
3113     MSGuidDecl::Parts Parts = GD->getParts();
3114     llvm::Constant *Fields[4] = {
3115         llvm::ConstantInt::get(Int32Ty, Parts.Part1),
3116         llvm::ConstantInt::get(Int16Ty, Parts.Part2),
3117         llvm::ConstantInt::get(Int16Ty, Parts.Part3),
3118         llvm::ConstantDataArray::getRaw(
3119             StringRef(reinterpret_cast<char *>(Parts.Part4And5), 8), 8,
3120             Int8Ty)};
3121     Init = llvm::ConstantStruct::getAnon(Fields);
3122   }
3123 
3124   auto *GV = new llvm::GlobalVariable(
3125       getModule(), Init->getType(),
3126       /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name);
3127   if (supportsCOMDAT())
3128     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
3129   setDSOLocal(GV);
3130 
3131   if (!V.isAbsent()) {
3132     Emitter.finalize(GV);
3133     return ConstantAddress(GV, GV->getValueType(), Alignment);
3134   }
3135 
3136   llvm::Type *Ty = getTypes().ConvertTypeForMem(GD->getType());
3137   llvm::Constant *Addr = llvm::ConstantExpr::getBitCast(
3138       GV, Ty->getPointerTo(GV->getAddressSpace()));
3139   return ConstantAddress(Addr, Ty, Alignment);
3140 }
3141 
3142 ConstantAddress CodeGenModule::GetAddrOfUnnamedGlobalConstantDecl(
3143     const UnnamedGlobalConstantDecl *GCD) {
3144   CharUnits Alignment = getContext().getTypeAlignInChars(GCD->getType());
3145 
3146   llvm::GlobalVariable **Entry = nullptr;
3147   Entry = &UnnamedGlobalConstantDeclMap[GCD];
3148   if (*Entry)
3149     return ConstantAddress(*Entry, (*Entry)->getValueType(), Alignment);
3150 
3151   ConstantEmitter Emitter(*this);
3152   llvm::Constant *Init;
3153 
3154   const APValue &V = GCD->getValue();
3155 
3156   assert(!V.isAbsent());
3157   Init = Emitter.emitForInitializer(V, GCD->getType().getAddressSpace(),
3158                                     GCD->getType());
3159 
3160   auto *GV = new llvm::GlobalVariable(getModule(), Init->getType(),
3161                                       /*isConstant=*/true,
3162                                       llvm::GlobalValue::PrivateLinkage, Init,
3163                                       ".constant");
3164   GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
3165   GV->setAlignment(Alignment.getAsAlign());
3166 
3167   Emitter.finalize(GV);
3168 
3169   *Entry = GV;
3170   return ConstantAddress(GV, GV->getValueType(), Alignment);
3171 }
3172 
3173 ConstantAddress CodeGenModule::GetAddrOfTemplateParamObject(
3174     const TemplateParamObjectDecl *TPO) {
3175   StringRef Name = getMangledName(TPO);
3176   CharUnits Alignment = getNaturalTypeAlignment(TPO->getType());
3177 
3178   if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name))
3179     return ConstantAddress(GV, GV->getValueType(), Alignment);
3180 
3181   ConstantEmitter Emitter(*this);
3182   llvm::Constant *Init = Emitter.emitForInitializer(
3183         TPO->getValue(), TPO->getType().getAddressSpace(), TPO->getType());
3184 
3185   if (!Init) {
3186     ErrorUnsupported(TPO, "template parameter object");
3187     return ConstantAddress::invalid();
3188   }
3189 
3190   auto *GV = new llvm::GlobalVariable(
3191       getModule(), Init->getType(),
3192       /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name);
3193   if (supportsCOMDAT())
3194     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
3195   Emitter.finalize(GV);
3196 
3197   return ConstantAddress(GV, GV->getValueType(), Alignment);
3198 }
3199 
3200 ConstantAddress CodeGenModule::GetWeakRefReference(const ValueDecl *VD) {
3201   const AliasAttr *AA = VD->getAttr<AliasAttr>();
3202   assert(AA && "No alias?");
3203 
3204   CharUnits Alignment = getContext().getDeclAlign(VD);
3205   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType());
3206 
3207   // See if there is already something with the target's name in the module.
3208   llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee());
3209   if (Entry) {
3210     unsigned AS = getTypes().getTargetAddressSpace(VD->getType());
3211     auto Ptr = llvm::ConstantExpr::getBitCast(Entry, DeclTy->getPointerTo(AS));
3212     return ConstantAddress(Ptr, DeclTy, Alignment);
3213   }
3214 
3215   llvm::Constant *Aliasee;
3216   if (isa<llvm::FunctionType>(DeclTy))
3217     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy,
3218                                       GlobalDecl(cast<FunctionDecl>(VD)),
3219                                       /*ForVTable=*/false);
3220   else
3221     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), DeclTy, LangAS::Default,
3222                                     nullptr);
3223 
3224   auto *F = cast<llvm::GlobalValue>(Aliasee);
3225   F->setLinkage(llvm::Function::ExternalWeakLinkage);
3226   WeakRefReferences.insert(F);
3227 
3228   return ConstantAddress(Aliasee, DeclTy, Alignment);
3229 }
3230 
3231 void CodeGenModule::EmitGlobal(GlobalDecl GD) {
3232   const auto *Global = cast<ValueDecl>(GD.getDecl());
3233 
3234   // Weak references don't produce any output by themselves.
3235   if (Global->hasAttr<WeakRefAttr>())
3236     return;
3237 
3238   // If this is an alias definition (which otherwise looks like a declaration)
3239   // emit it now.
3240   if (Global->hasAttr<AliasAttr>())
3241     return EmitAliasDefinition(GD);
3242 
3243   // IFunc like an alias whose value is resolved at runtime by calling resolver.
3244   if (Global->hasAttr<IFuncAttr>())
3245     return emitIFuncDefinition(GD);
3246 
3247   // If this is a cpu_dispatch multiversion function, emit the resolver.
3248   if (Global->hasAttr<CPUDispatchAttr>())
3249     return emitCPUDispatchDefinition(GD);
3250 
3251   // If this is CUDA, be selective about which declarations we emit.
3252   if (LangOpts.CUDA) {
3253     if (LangOpts.CUDAIsDevice) {
3254       if (!Global->hasAttr<CUDADeviceAttr>() &&
3255           !Global->hasAttr<CUDAGlobalAttr>() &&
3256           !Global->hasAttr<CUDAConstantAttr>() &&
3257           !Global->hasAttr<CUDASharedAttr>() &&
3258           !Global->getType()->isCUDADeviceBuiltinSurfaceType() &&
3259           !Global->getType()->isCUDADeviceBuiltinTextureType())
3260         return;
3261     } else {
3262       // We need to emit host-side 'shadows' for all global
3263       // device-side variables because the CUDA runtime needs their
3264       // size and host-side address in order to provide access to
3265       // their device-side incarnations.
3266 
3267       // So device-only functions are the only things we skip.
3268       if (isa<FunctionDecl>(Global) && !Global->hasAttr<CUDAHostAttr>() &&
3269           Global->hasAttr<CUDADeviceAttr>())
3270         return;
3271 
3272       assert((isa<FunctionDecl>(Global) || isa<VarDecl>(Global)) &&
3273              "Expected Variable or Function");
3274     }
3275   }
3276 
3277   if (LangOpts.OpenMP) {
3278     // If this is OpenMP, check if it is legal to emit this global normally.
3279     if (OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(GD))
3280       return;
3281     if (auto *DRD = dyn_cast<OMPDeclareReductionDecl>(Global)) {
3282       if (MustBeEmitted(Global))
3283         EmitOMPDeclareReduction(DRD);
3284       return;
3285     } else if (auto *DMD = dyn_cast<OMPDeclareMapperDecl>(Global)) {
3286       if (MustBeEmitted(Global))
3287         EmitOMPDeclareMapper(DMD);
3288       return;
3289     }
3290   }
3291 
3292   // Ignore declarations, they will be emitted on their first use.
3293   if (const auto *FD = dyn_cast<FunctionDecl>(Global)) {
3294     // Forward declarations are emitted lazily on first use.
3295     if (!FD->doesThisDeclarationHaveABody()) {
3296       if (!FD->doesDeclarationForceExternallyVisibleDefinition())
3297         return;
3298 
3299       StringRef MangledName = getMangledName(GD);
3300 
3301       // Compute the function info and LLVM type.
3302       const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
3303       llvm::Type *Ty = getTypes().GetFunctionType(FI);
3304 
3305       GetOrCreateLLVMFunction(MangledName, Ty, GD, /*ForVTable=*/false,
3306                               /*DontDefer=*/false);
3307       return;
3308     }
3309   } else {
3310     const auto *VD = cast<VarDecl>(Global);
3311     assert(VD->isFileVarDecl() && "Cannot emit local var decl as global.");
3312     if (VD->isThisDeclarationADefinition() != VarDecl::Definition &&
3313         !Context.isMSStaticDataMemberInlineDefinition(VD)) {
3314       if (LangOpts.OpenMP) {
3315         // Emit declaration of the must-be-emitted declare target variable.
3316         if (llvm::Optional<OMPDeclareTargetDeclAttr::MapTypeTy> Res =
3317                 OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD)) {
3318           bool UnifiedMemoryEnabled =
3319               getOpenMPRuntime().hasRequiresUnifiedSharedMemory();
3320           if ((*Res == OMPDeclareTargetDeclAttr::MT_To ||
3321                *Res == OMPDeclareTargetDeclAttr::MT_Enter) &&
3322               !UnifiedMemoryEnabled) {
3323             (void)GetAddrOfGlobalVar(VD);
3324           } else {
3325             assert(((*Res == OMPDeclareTargetDeclAttr::MT_Link) ||
3326                     ((*Res == OMPDeclareTargetDeclAttr::MT_To ||
3327                       *Res == OMPDeclareTargetDeclAttr::MT_Enter) &&
3328                      UnifiedMemoryEnabled)) &&
3329                    "Link clause or to clause with unified memory expected.");
3330             (void)getOpenMPRuntime().getAddrOfDeclareTargetVar(VD);
3331           }
3332 
3333           return;
3334         }
3335       }
3336       // If this declaration may have caused an inline variable definition to
3337       // change linkage, make sure that it's emitted.
3338       if (Context.getInlineVariableDefinitionKind(VD) ==
3339           ASTContext::InlineVariableDefinitionKind::Strong)
3340         GetAddrOfGlobalVar(VD);
3341       return;
3342     }
3343   }
3344 
3345   // Defer code generation to first use when possible, e.g. if this is an inline
3346   // function. If the global must always be emitted, do it eagerly if possible
3347   // to benefit from cache locality.
3348   if (MustBeEmitted(Global) && MayBeEmittedEagerly(Global)) {
3349     // Emit the definition if it can't be deferred.
3350     EmitGlobalDefinition(GD);
3351     return;
3352   }
3353 
3354   // If we're deferring emission of a C++ variable with an
3355   // initializer, remember the order in which it appeared in the file.
3356   if (getLangOpts().CPlusPlus && isa<VarDecl>(Global) &&
3357       cast<VarDecl>(Global)->hasInit()) {
3358     DelayedCXXInitPosition[Global] = CXXGlobalInits.size();
3359     CXXGlobalInits.push_back(nullptr);
3360   }
3361 
3362   StringRef MangledName = getMangledName(GD);
3363   if (GetGlobalValue(MangledName) != nullptr) {
3364     // The value has already been used and should therefore be emitted.
3365     addDeferredDeclToEmit(GD);
3366   } else if (MustBeEmitted(Global)) {
3367     // The value must be emitted, but cannot be emitted eagerly.
3368     assert(!MayBeEmittedEagerly(Global));
3369     addDeferredDeclToEmit(GD);
3370     EmittedDeferredDecls[MangledName] = GD;
3371   } else {
3372     // Otherwise, remember that we saw a deferred decl with this name.  The
3373     // first use of the mangled name will cause it to move into
3374     // DeferredDeclsToEmit.
3375     DeferredDecls[MangledName] = GD;
3376   }
3377 }
3378 
3379 // Check if T is a class type with a destructor that's not dllimport.
3380 static bool HasNonDllImportDtor(QualType T) {
3381   if (const auto *RT = T->getBaseElementTypeUnsafe()->getAs<RecordType>())
3382     if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl()))
3383       if (RD->getDestructor() && !RD->getDestructor()->hasAttr<DLLImportAttr>())
3384         return true;
3385 
3386   return false;
3387 }
3388 
3389 namespace {
3390   struct FunctionIsDirectlyRecursive
3391       : public ConstStmtVisitor<FunctionIsDirectlyRecursive, bool> {
3392     const StringRef Name;
3393     const Builtin::Context &BI;
3394     FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C)
3395         : Name(N), BI(C) {}
3396 
3397     bool VisitCallExpr(const CallExpr *E) {
3398       const FunctionDecl *FD = E->getDirectCallee();
3399       if (!FD)
3400         return false;
3401       AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
3402       if (Attr && Name == Attr->getLabel())
3403         return true;
3404       unsigned BuiltinID = FD->getBuiltinID();
3405       if (!BuiltinID || !BI.isLibFunction(BuiltinID))
3406         return false;
3407       StringRef BuiltinName = BI.getName(BuiltinID);
3408       if (BuiltinName.startswith("__builtin_") &&
3409           Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) {
3410         return true;
3411       }
3412       return false;
3413     }
3414 
3415     bool VisitStmt(const Stmt *S) {
3416       for (const Stmt *Child : S->children())
3417         if (Child && this->Visit(Child))
3418           return true;
3419       return false;
3420     }
3421   };
3422 
3423   // Make sure we're not referencing non-imported vars or functions.
3424   struct DLLImportFunctionVisitor
3425       : public RecursiveASTVisitor<DLLImportFunctionVisitor> {
3426     bool SafeToInline = true;
3427 
3428     bool shouldVisitImplicitCode() const { return true; }
3429 
3430     bool VisitVarDecl(VarDecl *VD) {
3431       if (VD->getTLSKind()) {
3432         // A thread-local variable cannot be imported.
3433         SafeToInline = false;
3434         return SafeToInline;
3435       }
3436 
3437       // A variable definition might imply a destructor call.
3438       if (VD->isThisDeclarationADefinition())
3439         SafeToInline = !HasNonDllImportDtor(VD->getType());
3440 
3441       return SafeToInline;
3442     }
3443 
3444     bool VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) {
3445       if (const auto *D = E->getTemporary()->getDestructor())
3446         SafeToInline = D->hasAttr<DLLImportAttr>();
3447       return SafeToInline;
3448     }
3449 
3450     bool VisitDeclRefExpr(DeclRefExpr *E) {
3451       ValueDecl *VD = E->getDecl();
3452       if (isa<FunctionDecl>(VD))
3453         SafeToInline = VD->hasAttr<DLLImportAttr>();
3454       else if (VarDecl *V = dyn_cast<VarDecl>(VD))
3455         SafeToInline = !V->hasGlobalStorage() || V->hasAttr<DLLImportAttr>();
3456       return SafeToInline;
3457     }
3458 
3459     bool VisitCXXConstructExpr(CXXConstructExpr *E) {
3460       SafeToInline = E->getConstructor()->hasAttr<DLLImportAttr>();
3461       return SafeToInline;
3462     }
3463 
3464     bool VisitCXXMemberCallExpr(CXXMemberCallExpr *E) {
3465       CXXMethodDecl *M = E->getMethodDecl();
3466       if (!M) {
3467         // Call through a pointer to member function. This is safe to inline.
3468         SafeToInline = true;
3469       } else {
3470         SafeToInline = M->hasAttr<DLLImportAttr>();
3471       }
3472       return SafeToInline;
3473     }
3474 
3475     bool VisitCXXDeleteExpr(CXXDeleteExpr *E) {
3476       SafeToInline = E->getOperatorDelete()->hasAttr<DLLImportAttr>();
3477       return SafeToInline;
3478     }
3479 
3480     bool VisitCXXNewExpr(CXXNewExpr *E) {
3481       SafeToInline = E->getOperatorNew()->hasAttr<DLLImportAttr>();
3482       return SafeToInline;
3483     }
3484   };
3485 }
3486 
3487 // isTriviallyRecursive - Check if this function calls another
3488 // decl that, because of the asm attribute or the other decl being a builtin,
3489 // ends up pointing to itself.
3490 bool
3491 CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) {
3492   StringRef Name;
3493   if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) {
3494     // asm labels are a special kind of mangling we have to support.
3495     AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
3496     if (!Attr)
3497       return false;
3498     Name = Attr->getLabel();
3499   } else {
3500     Name = FD->getName();
3501   }
3502 
3503   FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo);
3504   const Stmt *Body = FD->getBody();
3505   return Body ? Walker.Visit(Body) : false;
3506 }
3507 
3508 bool CodeGenModule::shouldEmitFunction(GlobalDecl GD) {
3509   if (getFunctionLinkage(GD) != llvm::Function::AvailableExternallyLinkage)
3510     return true;
3511   const auto *F = cast<FunctionDecl>(GD.getDecl());
3512   if (CodeGenOpts.OptimizationLevel == 0 && !F->hasAttr<AlwaysInlineAttr>())
3513     return false;
3514 
3515   if (F->hasAttr<DLLImportAttr>() && !F->hasAttr<AlwaysInlineAttr>()) {
3516     // Check whether it would be safe to inline this dllimport function.
3517     DLLImportFunctionVisitor Visitor;
3518     Visitor.TraverseFunctionDecl(const_cast<FunctionDecl*>(F));
3519     if (!Visitor.SafeToInline)
3520       return false;
3521 
3522     if (const CXXDestructorDecl *Dtor = dyn_cast<CXXDestructorDecl>(F)) {
3523       // Implicit destructor invocations aren't captured in the AST, so the
3524       // check above can't see them. Check for them manually here.
3525       for (const Decl *Member : Dtor->getParent()->decls())
3526         if (isa<FieldDecl>(Member))
3527           if (HasNonDllImportDtor(cast<FieldDecl>(Member)->getType()))
3528             return false;
3529       for (const CXXBaseSpecifier &B : Dtor->getParent()->bases())
3530         if (HasNonDllImportDtor(B.getType()))
3531           return false;
3532     }
3533   }
3534 
3535   // Inline builtins declaration must be emitted. They often are fortified
3536   // functions.
3537   if (F->isInlineBuiltinDeclaration())
3538     return true;
3539 
3540   // PR9614. Avoid cases where the source code is lying to us. An available
3541   // externally function should have an equivalent function somewhere else,
3542   // but a function that calls itself through asm label/`__builtin_` trickery is
3543   // clearly not equivalent to the real implementation.
3544   // This happens in glibc's btowc and in some configure checks.
3545   return !isTriviallyRecursive(F);
3546 }
3547 
3548 bool CodeGenModule::shouldOpportunisticallyEmitVTables() {
3549   return CodeGenOpts.OptimizationLevel > 0;
3550 }
3551 
3552 void CodeGenModule::EmitMultiVersionFunctionDefinition(GlobalDecl GD,
3553                                                        llvm::GlobalValue *GV) {
3554   const auto *FD = cast<FunctionDecl>(GD.getDecl());
3555 
3556   if (FD->isCPUSpecificMultiVersion()) {
3557     auto *Spec = FD->getAttr<CPUSpecificAttr>();
3558     for (unsigned I = 0; I < Spec->cpus_size(); ++I)
3559       EmitGlobalFunctionDefinition(GD.getWithMultiVersionIndex(I), nullptr);
3560   } else if (FD->isTargetClonesMultiVersion()) {
3561     auto *Clone = FD->getAttr<TargetClonesAttr>();
3562     for (unsigned I = 0; I < Clone->featuresStrs_size(); ++I)
3563       if (Clone->isFirstOfVersion(I))
3564         EmitGlobalFunctionDefinition(GD.getWithMultiVersionIndex(I), nullptr);
3565     // Ensure that the resolver function is also emitted.
3566     GetOrCreateMultiVersionResolver(GD);
3567   } else
3568     EmitGlobalFunctionDefinition(GD, GV);
3569 }
3570 
3571 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD, llvm::GlobalValue *GV) {
3572   const auto *D = cast<ValueDecl>(GD.getDecl());
3573 
3574   PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(),
3575                                  Context.getSourceManager(),
3576                                  "Generating code for declaration");
3577 
3578   if (const auto *FD = dyn_cast<FunctionDecl>(D)) {
3579     // At -O0, don't generate IR for functions with available_externally
3580     // linkage.
3581     if (!shouldEmitFunction(GD))
3582       return;
3583 
3584     llvm::TimeTraceScope TimeScope("CodeGen Function", [&]() {
3585       std::string Name;
3586       llvm::raw_string_ostream OS(Name);
3587       FD->getNameForDiagnostic(OS, getContext().getPrintingPolicy(),
3588                                /*Qualified=*/true);
3589       return Name;
3590     });
3591 
3592     if (const auto *Method = dyn_cast<CXXMethodDecl>(D)) {
3593       // Make sure to emit the definition(s) before we emit the thunks.
3594       // This is necessary for the generation of certain thunks.
3595       if (isa<CXXConstructorDecl>(Method) || isa<CXXDestructorDecl>(Method))
3596         ABI->emitCXXStructor(GD);
3597       else if (FD->isMultiVersion())
3598         EmitMultiVersionFunctionDefinition(GD, GV);
3599       else
3600         EmitGlobalFunctionDefinition(GD, GV);
3601 
3602       if (Method->isVirtual())
3603         getVTables().EmitThunks(GD);
3604 
3605       return;
3606     }
3607 
3608     if (FD->isMultiVersion())
3609       return EmitMultiVersionFunctionDefinition(GD, GV);
3610     return EmitGlobalFunctionDefinition(GD, GV);
3611   }
3612 
3613   if (const auto *VD = dyn_cast<VarDecl>(D))
3614     return EmitGlobalVarDefinition(VD, !VD->hasDefinition());
3615 
3616   llvm_unreachable("Invalid argument to EmitGlobalDefinition()");
3617 }
3618 
3619 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
3620                                                       llvm::Function *NewFn);
3621 
3622 static unsigned
3623 TargetMVPriority(const TargetInfo &TI,
3624                  const CodeGenFunction::MultiVersionResolverOption &RO) {
3625   unsigned Priority = 0;
3626   for (StringRef Feat : RO.Conditions.Features)
3627     Priority = std::max(Priority, TI.multiVersionSortPriority(Feat));
3628 
3629   if (!RO.Conditions.Architecture.empty())
3630     Priority = std::max(
3631         Priority, TI.multiVersionSortPriority(RO.Conditions.Architecture));
3632   return Priority;
3633 }
3634 
3635 // Multiversion functions should be at most 'WeakODRLinkage' so that a different
3636 // TU can forward declare the function without causing problems.  Particularly
3637 // in the cases of CPUDispatch, this causes issues. This also makes sure we
3638 // work with internal linkage functions, so that the same function name can be
3639 // used with internal linkage in multiple TUs.
3640 llvm::GlobalValue::LinkageTypes getMultiversionLinkage(CodeGenModule &CGM,
3641                                                        GlobalDecl GD) {
3642   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
3643   if (FD->getFormalLinkage() == InternalLinkage)
3644     return llvm::GlobalValue::InternalLinkage;
3645   return llvm::GlobalValue::WeakODRLinkage;
3646 }
3647 
3648 void CodeGenModule::emitMultiVersionFunctions() {
3649   std::vector<GlobalDecl> MVFuncsToEmit;
3650   MultiVersionFuncs.swap(MVFuncsToEmit);
3651   for (GlobalDecl GD : MVFuncsToEmit) {
3652     const auto *FD = cast<FunctionDecl>(GD.getDecl());
3653     assert(FD && "Expected a FunctionDecl");
3654 
3655     SmallVector<CodeGenFunction::MultiVersionResolverOption, 10> Options;
3656     if (FD->isTargetMultiVersion()) {
3657       getContext().forEachMultiversionedFunctionVersion(
3658           FD, [this, &GD, &Options](const FunctionDecl *CurFD) {
3659             GlobalDecl CurGD{
3660                 (CurFD->isDefined() ? CurFD->getDefinition() : CurFD)};
3661             StringRef MangledName = getMangledName(CurGD);
3662             llvm::Constant *Func = GetGlobalValue(MangledName);
3663             if (!Func) {
3664               if (CurFD->isDefined()) {
3665                 EmitGlobalFunctionDefinition(CurGD, nullptr);
3666                 Func = GetGlobalValue(MangledName);
3667               } else {
3668                 const CGFunctionInfo &FI =
3669                     getTypes().arrangeGlobalDeclaration(GD);
3670                 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
3671                 Func = GetAddrOfFunction(CurGD, Ty, /*ForVTable=*/false,
3672                                          /*DontDefer=*/false, ForDefinition);
3673               }
3674               assert(Func && "This should have just been created");
3675             }
3676 
3677             const auto *TA = CurFD->getAttr<TargetAttr>();
3678             llvm::SmallVector<StringRef, 8> Feats;
3679             TA->getAddedFeatures(Feats);
3680 
3681             Options.emplace_back(cast<llvm::Function>(Func),
3682                                  TA->getArchitecture(), Feats);
3683           });
3684     } else if (FD->isTargetClonesMultiVersion()) {
3685       const auto *TC = FD->getAttr<TargetClonesAttr>();
3686       for (unsigned VersionIndex = 0; VersionIndex < TC->featuresStrs_size();
3687            ++VersionIndex) {
3688         if (!TC->isFirstOfVersion(VersionIndex))
3689           continue;
3690         GlobalDecl CurGD{(FD->isDefined() ? FD->getDefinition() : FD),
3691                          VersionIndex};
3692         StringRef Version = TC->getFeatureStr(VersionIndex);
3693         StringRef MangledName = getMangledName(CurGD);
3694         llvm::Constant *Func = GetGlobalValue(MangledName);
3695         if (!Func) {
3696           if (FD->isDefined()) {
3697             EmitGlobalFunctionDefinition(CurGD, nullptr);
3698             Func = GetGlobalValue(MangledName);
3699           } else {
3700             const CGFunctionInfo &FI =
3701                 getTypes().arrangeGlobalDeclaration(CurGD);
3702             llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
3703             Func = GetAddrOfFunction(CurGD, Ty, /*ForVTable=*/false,
3704                                      /*DontDefer=*/false, ForDefinition);
3705           }
3706           assert(Func && "This should have just been created");
3707         }
3708 
3709         StringRef Architecture;
3710         llvm::SmallVector<StringRef, 1> Feature;
3711 
3712         if (Version.startswith("arch="))
3713           Architecture = Version.drop_front(sizeof("arch=") - 1);
3714         else if (Version != "default")
3715           Feature.push_back(Version);
3716 
3717         Options.emplace_back(cast<llvm::Function>(Func), Architecture, Feature);
3718       }
3719     } else {
3720       assert(0 && "Expected a target or target_clones multiversion function");
3721       continue;
3722     }
3723 
3724     llvm::Constant *ResolverConstant = GetOrCreateMultiVersionResolver(GD);
3725     if (auto *IFunc = dyn_cast<llvm::GlobalIFunc>(ResolverConstant))
3726       ResolverConstant = IFunc->getResolver();
3727     llvm::Function *ResolverFunc = cast<llvm::Function>(ResolverConstant);
3728 
3729     ResolverFunc->setLinkage(getMultiversionLinkage(*this, GD));
3730 
3731     if (supportsCOMDAT())
3732       ResolverFunc->setComdat(
3733           getModule().getOrInsertComdat(ResolverFunc->getName()));
3734 
3735     const TargetInfo &TI = getTarget();
3736     llvm::stable_sort(
3737         Options, [&TI](const CodeGenFunction::MultiVersionResolverOption &LHS,
3738                        const CodeGenFunction::MultiVersionResolverOption &RHS) {
3739           return TargetMVPriority(TI, LHS) > TargetMVPriority(TI, RHS);
3740         });
3741     CodeGenFunction CGF(*this);
3742     CGF.EmitMultiVersionResolver(ResolverFunc, Options);
3743   }
3744 
3745   // Ensure that any additions to the deferred decls list caused by emitting a
3746   // variant are emitted.  This can happen when the variant itself is inline and
3747   // calls a function without linkage.
3748   if (!MVFuncsToEmit.empty())
3749     EmitDeferred();
3750 
3751   // Ensure that any additions to the multiversion funcs list from either the
3752   // deferred decls or the multiversion functions themselves are emitted.
3753   if (!MultiVersionFuncs.empty())
3754     emitMultiVersionFunctions();
3755 }
3756 
3757 void CodeGenModule::emitCPUDispatchDefinition(GlobalDecl GD) {
3758   const auto *FD = cast<FunctionDecl>(GD.getDecl());
3759   assert(FD && "Not a FunctionDecl?");
3760   assert(FD->isCPUDispatchMultiVersion() && "Not a multiversion function?");
3761   const auto *DD = FD->getAttr<CPUDispatchAttr>();
3762   assert(DD && "Not a cpu_dispatch Function?");
3763 
3764   const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
3765   llvm::FunctionType *DeclTy = getTypes().GetFunctionType(FI);
3766 
3767   StringRef ResolverName = getMangledName(GD);
3768   UpdateMultiVersionNames(GD, FD, ResolverName);
3769 
3770   llvm::Type *ResolverType;
3771   GlobalDecl ResolverGD;
3772   if (getTarget().supportsIFunc()) {
3773     ResolverType = llvm::FunctionType::get(
3774         llvm::PointerType::get(DeclTy,
3775                                getTypes().getTargetAddressSpace(FD->getType())),
3776         false);
3777   }
3778   else {
3779     ResolverType = DeclTy;
3780     ResolverGD = GD;
3781   }
3782 
3783   auto *ResolverFunc = cast<llvm::Function>(GetOrCreateLLVMFunction(
3784       ResolverName, ResolverType, ResolverGD, /*ForVTable=*/false));
3785   ResolverFunc->setLinkage(getMultiversionLinkage(*this, GD));
3786   if (supportsCOMDAT())
3787     ResolverFunc->setComdat(
3788         getModule().getOrInsertComdat(ResolverFunc->getName()));
3789 
3790   SmallVector<CodeGenFunction::MultiVersionResolverOption, 10> Options;
3791   const TargetInfo &Target = getTarget();
3792   unsigned Index = 0;
3793   for (const IdentifierInfo *II : DD->cpus()) {
3794     // Get the name of the target function so we can look it up/create it.
3795     std::string MangledName = getMangledNameImpl(*this, GD, FD, true) +
3796                               getCPUSpecificMangling(*this, II->getName());
3797 
3798     llvm::Constant *Func = GetGlobalValue(MangledName);
3799 
3800     if (!Func) {
3801       GlobalDecl ExistingDecl = Manglings.lookup(MangledName);
3802       if (ExistingDecl.getDecl() &&
3803           ExistingDecl.getDecl()->getAsFunction()->isDefined()) {
3804         EmitGlobalFunctionDefinition(ExistingDecl, nullptr);
3805         Func = GetGlobalValue(MangledName);
3806       } else {
3807         if (!ExistingDecl.getDecl())
3808           ExistingDecl = GD.getWithMultiVersionIndex(Index);
3809 
3810       Func = GetOrCreateLLVMFunction(
3811           MangledName, DeclTy, ExistingDecl,
3812           /*ForVTable=*/false, /*DontDefer=*/true,
3813           /*IsThunk=*/false, llvm::AttributeList(), ForDefinition);
3814       }
3815     }
3816 
3817     llvm::SmallVector<StringRef, 32> Features;
3818     Target.getCPUSpecificCPUDispatchFeatures(II->getName(), Features);
3819     llvm::transform(Features, Features.begin(),
3820                     [](StringRef Str) { return Str.substr(1); });
3821     llvm::erase_if(Features, [&Target](StringRef Feat) {
3822       return !Target.validateCpuSupports(Feat);
3823     });
3824     Options.emplace_back(cast<llvm::Function>(Func), StringRef{}, Features);
3825     ++Index;
3826   }
3827 
3828   llvm::stable_sort(
3829       Options, [](const CodeGenFunction::MultiVersionResolverOption &LHS,
3830                   const CodeGenFunction::MultiVersionResolverOption &RHS) {
3831         return llvm::X86::getCpuSupportsMask(LHS.Conditions.Features) >
3832                llvm::X86::getCpuSupportsMask(RHS.Conditions.Features);
3833       });
3834 
3835   // If the list contains multiple 'default' versions, such as when it contains
3836   // 'pentium' and 'generic', don't emit the call to the generic one (since we
3837   // always run on at least a 'pentium'). We do this by deleting the 'least
3838   // advanced' (read, lowest mangling letter).
3839   while (Options.size() > 1 &&
3840          llvm::X86::getCpuSupportsMask(
3841              (Options.end() - 2)->Conditions.Features) == 0) {
3842     StringRef LHSName = (Options.end() - 2)->Function->getName();
3843     StringRef RHSName = (Options.end() - 1)->Function->getName();
3844     if (LHSName.compare(RHSName) < 0)
3845       Options.erase(Options.end() - 2);
3846     else
3847       Options.erase(Options.end() - 1);
3848   }
3849 
3850   CodeGenFunction CGF(*this);
3851   CGF.EmitMultiVersionResolver(ResolverFunc, Options);
3852 
3853   if (getTarget().supportsIFunc()) {
3854     llvm::GlobalValue::LinkageTypes Linkage = getMultiversionLinkage(*this, GD);
3855     auto *IFunc = cast<llvm::GlobalValue>(GetOrCreateMultiVersionResolver(GD));
3856 
3857     // Fix up function declarations that were created for cpu_specific before
3858     // cpu_dispatch was known
3859     if (!isa<llvm::GlobalIFunc>(IFunc)) {
3860       assert(cast<llvm::Function>(IFunc)->isDeclaration());
3861       auto *GI = llvm::GlobalIFunc::create(DeclTy, 0, Linkage, "", ResolverFunc,
3862                                            &getModule());
3863       GI->takeName(IFunc);
3864       IFunc->replaceAllUsesWith(GI);
3865       IFunc->eraseFromParent();
3866       IFunc = GI;
3867     }
3868 
3869     std::string AliasName = getMangledNameImpl(
3870         *this, GD, FD, /*OmitMultiVersionMangling=*/true);
3871     llvm::Constant *AliasFunc = GetGlobalValue(AliasName);
3872     if (!AliasFunc) {
3873       auto *GA = llvm::GlobalAlias::create(DeclTy, 0, Linkage, AliasName, IFunc,
3874                                            &getModule());
3875       SetCommonAttributes(GD, GA);
3876     }
3877   }
3878 }
3879 
3880 /// If a dispatcher for the specified mangled name is not in the module, create
3881 /// and return an llvm Function with the specified type.
3882 llvm::Constant *CodeGenModule::GetOrCreateMultiVersionResolver(GlobalDecl GD) {
3883   const auto *FD = cast<FunctionDecl>(GD.getDecl());
3884   assert(FD && "Not a FunctionDecl?");
3885 
3886   std::string MangledName =
3887       getMangledNameImpl(*this, GD, FD, /*OmitMultiVersionMangling=*/true);
3888 
3889   // Holds the name of the resolver, in ifunc mode this is the ifunc (which has
3890   // a separate resolver).
3891   std::string ResolverName = MangledName;
3892   if (getTarget().supportsIFunc())
3893     ResolverName += ".ifunc";
3894   else if (FD->isTargetMultiVersion())
3895     ResolverName += ".resolver";
3896 
3897   // If the resolver has already been created, just return it.
3898   if (llvm::GlobalValue *ResolverGV = GetGlobalValue(ResolverName))
3899     return ResolverGV;
3900 
3901   const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
3902   llvm::FunctionType *DeclTy = getTypes().GetFunctionType(FI);
3903 
3904   // The resolver needs to be created. For target and target_clones, defer
3905   // creation until the end of the TU.
3906   if (FD->isTargetMultiVersion() || FD->isTargetClonesMultiVersion())
3907     MultiVersionFuncs.push_back(GD);
3908 
3909   // For cpu_specific, don't create an ifunc yet because we don't know if the
3910   // cpu_dispatch will be emitted in this translation unit.
3911   if (getTarget().supportsIFunc() && !FD->isCPUSpecificMultiVersion()) {
3912     llvm::Type *ResolverType = llvm::FunctionType::get(
3913         llvm::PointerType::get(DeclTy,
3914                                getTypes().getTargetAddressSpace(FD->getType())),
3915         false);
3916     llvm::Constant *Resolver = GetOrCreateLLVMFunction(
3917         MangledName + ".resolver", ResolverType, GlobalDecl{},
3918         /*ForVTable=*/false);
3919     llvm::GlobalIFunc *GIF =
3920         llvm::GlobalIFunc::create(DeclTy, 0, getMultiversionLinkage(*this, GD),
3921                                   "", Resolver, &getModule());
3922     GIF->setName(ResolverName);
3923     SetCommonAttributes(FD, GIF);
3924 
3925     return GIF;
3926   }
3927 
3928   llvm::Constant *Resolver = GetOrCreateLLVMFunction(
3929       ResolverName, DeclTy, GlobalDecl{}, /*ForVTable=*/false);
3930   assert(isa<llvm::GlobalValue>(Resolver) &&
3931          "Resolver should be created for the first time");
3932   SetCommonAttributes(FD, cast<llvm::GlobalValue>(Resolver));
3933   return Resolver;
3934 }
3935 
3936 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the
3937 /// module, create and return an llvm Function with the specified type. If there
3938 /// is something in the module with the specified name, return it potentially
3939 /// bitcasted to the right type.
3940 ///
3941 /// If D is non-null, it specifies a decl that correspond to this.  This is used
3942 /// to set the attributes on the function when it is first created.
3943 llvm::Constant *CodeGenModule::GetOrCreateLLVMFunction(
3944     StringRef MangledName, llvm::Type *Ty, GlobalDecl GD, bool ForVTable,
3945     bool DontDefer, bool IsThunk, llvm::AttributeList ExtraAttrs,
3946     ForDefinition_t IsForDefinition) {
3947   const Decl *D = GD.getDecl();
3948 
3949   // Any attempts to use a MultiVersion function should result in retrieving
3950   // the iFunc instead. Name Mangling will handle the rest of the changes.
3951   if (const FunctionDecl *FD = cast_or_null<FunctionDecl>(D)) {
3952     // For the device mark the function as one that should be emitted.
3953     if (getLangOpts().OpenMPIsDevice && OpenMPRuntime &&
3954         !OpenMPRuntime->markAsGlobalTarget(GD) && FD->isDefined() &&
3955         !DontDefer && !IsForDefinition) {
3956       if (const FunctionDecl *FDDef = FD->getDefinition()) {
3957         GlobalDecl GDDef;
3958         if (const auto *CD = dyn_cast<CXXConstructorDecl>(FDDef))
3959           GDDef = GlobalDecl(CD, GD.getCtorType());
3960         else if (const auto *DD = dyn_cast<CXXDestructorDecl>(FDDef))
3961           GDDef = GlobalDecl(DD, GD.getDtorType());
3962         else
3963           GDDef = GlobalDecl(FDDef);
3964         EmitGlobal(GDDef);
3965       }
3966     }
3967 
3968     if (FD->isMultiVersion()) {
3969       UpdateMultiVersionNames(GD, FD, MangledName);
3970       if (!IsForDefinition)
3971         return GetOrCreateMultiVersionResolver(GD);
3972     }
3973   }
3974 
3975   // Lookup the entry, lazily creating it if necessary.
3976   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
3977   if (Entry) {
3978     if (WeakRefReferences.erase(Entry)) {
3979       const FunctionDecl *FD = cast_or_null<FunctionDecl>(D);
3980       if (FD && !FD->hasAttr<WeakAttr>())
3981         Entry->setLinkage(llvm::Function::ExternalLinkage);
3982     }
3983 
3984     // Handle dropped DLL attributes.
3985     if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>() &&
3986         !shouldMapVisibilityToDLLExport(cast_or_null<NamedDecl>(D))) {
3987       Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
3988       setDSOLocal(Entry);
3989     }
3990 
3991     // If there are two attempts to define the same mangled name, issue an
3992     // error.
3993     if (IsForDefinition && !Entry->isDeclaration()) {
3994       GlobalDecl OtherGD;
3995       // Check that GD is not yet in DiagnosedConflictingDefinitions is required
3996       // to make sure that we issue an error only once.
3997       if (lookupRepresentativeDecl(MangledName, OtherGD) &&
3998           (GD.getCanonicalDecl().getDecl() !=
3999            OtherGD.getCanonicalDecl().getDecl()) &&
4000           DiagnosedConflictingDefinitions.insert(GD).second) {
4001         getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name)
4002             << MangledName;
4003         getDiags().Report(OtherGD.getDecl()->getLocation(),
4004                           diag::note_previous_definition);
4005       }
4006     }
4007 
4008     if ((isa<llvm::Function>(Entry) || isa<llvm::GlobalAlias>(Entry)) &&
4009         (Entry->getValueType() == Ty)) {
4010       return Entry;
4011     }
4012 
4013     // Make sure the result is of the correct type.
4014     // (If function is requested for a definition, we always need to create a new
4015     // function, not just return a bitcast.)
4016     if (!IsForDefinition)
4017       return llvm::ConstantExpr::getBitCast(
4018           Entry, Ty->getPointerTo(Entry->getAddressSpace()));
4019   }
4020 
4021   // This function doesn't have a complete type (for example, the return
4022   // type is an incomplete struct). Use a fake type instead, and make
4023   // sure not to try to set attributes.
4024   bool IsIncompleteFunction = false;
4025 
4026   llvm::FunctionType *FTy;
4027   if (isa<llvm::FunctionType>(Ty)) {
4028     FTy = cast<llvm::FunctionType>(Ty);
4029   } else {
4030     FTy = llvm::FunctionType::get(VoidTy, false);
4031     IsIncompleteFunction = true;
4032   }
4033 
4034   llvm::Function *F =
4035       llvm::Function::Create(FTy, llvm::Function::ExternalLinkage,
4036                              Entry ? StringRef() : MangledName, &getModule());
4037 
4038   // If we already created a function with the same mangled name (but different
4039   // type) before, take its name and add it to the list of functions to be
4040   // replaced with F at the end of CodeGen.
4041   //
4042   // This happens if there is a prototype for a function (e.g. "int f()") and
4043   // then a definition of a different type (e.g. "int f(int x)").
4044   if (Entry) {
4045     F->takeName(Entry);
4046 
4047     // This might be an implementation of a function without a prototype, in
4048     // which case, try to do special replacement of calls which match the new
4049     // prototype.  The really key thing here is that we also potentially drop
4050     // arguments from the call site so as to make a direct call, which makes the
4051     // inliner happier and suppresses a number of optimizer warnings (!) about
4052     // dropping arguments.
4053     if (!Entry->use_empty()) {
4054       ReplaceUsesOfNonProtoTypeWithRealFunction(Entry, F);
4055       Entry->removeDeadConstantUsers();
4056     }
4057 
4058     llvm::Constant *BC = llvm::ConstantExpr::getBitCast(
4059         F, Entry->getValueType()->getPointerTo(Entry->getAddressSpace()));
4060     addGlobalValReplacement(Entry, BC);
4061   }
4062 
4063   assert(F->getName() == MangledName && "name was uniqued!");
4064   if (D)
4065     SetFunctionAttributes(GD, F, IsIncompleteFunction, IsThunk);
4066   if (ExtraAttrs.hasFnAttrs()) {
4067     llvm::AttrBuilder B(F->getContext(), ExtraAttrs.getFnAttrs());
4068     F->addFnAttrs(B);
4069   }
4070 
4071   if (!DontDefer) {
4072     // All MSVC dtors other than the base dtor are linkonce_odr and delegate to
4073     // each other bottoming out with the base dtor.  Therefore we emit non-base
4074     // dtors on usage, even if there is no dtor definition in the TU.
4075     if (isa_and_nonnull<CXXDestructorDecl>(D) &&
4076         getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D),
4077                                            GD.getDtorType()))
4078       addDeferredDeclToEmit(GD);
4079 
4080     // This is the first use or definition of a mangled name.  If there is a
4081     // deferred decl with this name, remember that we need to emit it at the end
4082     // of the file.
4083     auto DDI = DeferredDecls.find(MangledName);
4084     if (DDI != DeferredDecls.end()) {
4085       // Move the potentially referenced deferred decl to the
4086       // DeferredDeclsToEmit list, and remove it from DeferredDecls (since we
4087       // don't need it anymore).
4088       addDeferredDeclToEmit(DDI->second);
4089       EmittedDeferredDecls[DDI->first] = DDI->second;
4090       DeferredDecls.erase(DDI);
4091 
4092       // Otherwise, there are cases we have to worry about where we're
4093       // using a declaration for which we must emit a definition but where
4094       // we might not find a top-level definition:
4095       //   - member functions defined inline in their classes
4096       //   - friend functions defined inline in some class
4097       //   - special member functions with implicit definitions
4098       // If we ever change our AST traversal to walk into class methods,
4099       // this will be unnecessary.
4100       //
4101       // We also don't emit a definition for a function if it's going to be an
4102       // entry in a vtable, unless it's already marked as used.
4103     } else if (getLangOpts().CPlusPlus && D) {
4104       // Look for a declaration that's lexically in a record.
4105       for (const auto *FD = cast<FunctionDecl>(D)->getMostRecentDecl(); FD;
4106            FD = FD->getPreviousDecl()) {
4107         if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) {
4108           if (FD->doesThisDeclarationHaveABody()) {
4109             addDeferredDeclToEmit(GD.getWithDecl(FD));
4110             break;
4111           }
4112         }
4113       }
4114     }
4115   }
4116 
4117   // Make sure the result is of the requested type.
4118   if (!IsIncompleteFunction) {
4119     assert(F->getFunctionType() == Ty);
4120     return F;
4121   }
4122 
4123   return llvm::ConstantExpr::getBitCast(F,
4124                                         Ty->getPointerTo(F->getAddressSpace()));
4125 }
4126 
4127 /// GetAddrOfFunction - Return the address of the given function.  If Ty is
4128 /// non-null, then this function will use the specified type if it has to
4129 /// create it (this occurs when we see a definition of the function).
4130 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD,
4131                                                  llvm::Type *Ty,
4132                                                  bool ForVTable,
4133                                                  bool DontDefer,
4134                                               ForDefinition_t IsForDefinition) {
4135   assert(!cast<FunctionDecl>(GD.getDecl())->isConsteval() &&
4136          "consteval function should never be emitted");
4137   // If there was no specific requested type, just convert it now.
4138   if (!Ty) {
4139     const auto *FD = cast<FunctionDecl>(GD.getDecl());
4140     Ty = getTypes().ConvertType(FD->getType());
4141   }
4142 
4143   // Devirtualized destructor calls may come through here instead of via
4144   // getAddrOfCXXStructor. Make sure we use the MS ABI base destructor instead
4145   // of the complete destructor when necessary.
4146   if (const auto *DD = dyn_cast<CXXDestructorDecl>(GD.getDecl())) {
4147     if (getTarget().getCXXABI().isMicrosoft() &&
4148         GD.getDtorType() == Dtor_Complete &&
4149         DD->getParent()->getNumVBases() == 0)
4150       GD = GlobalDecl(DD, Dtor_Base);
4151   }
4152 
4153   StringRef MangledName = getMangledName(GD);
4154   auto *F = GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable, DontDefer,
4155                                     /*IsThunk=*/false, llvm::AttributeList(),
4156                                     IsForDefinition);
4157   // Returns kernel handle for HIP kernel stub function.
4158   if (LangOpts.CUDA && !LangOpts.CUDAIsDevice &&
4159       cast<FunctionDecl>(GD.getDecl())->hasAttr<CUDAGlobalAttr>()) {
4160     auto *Handle = getCUDARuntime().getKernelHandle(
4161         cast<llvm::Function>(F->stripPointerCasts()), GD);
4162     if (IsForDefinition)
4163       return F;
4164     return llvm::ConstantExpr::getBitCast(Handle, Ty->getPointerTo());
4165   }
4166   return F;
4167 }
4168 
4169 llvm::Constant *CodeGenModule::GetFunctionStart(const ValueDecl *Decl) {
4170   llvm::GlobalValue *F =
4171       cast<llvm::GlobalValue>(GetAddrOfFunction(Decl)->stripPointerCasts());
4172 
4173   return llvm::ConstantExpr::getBitCast(llvm::NoCFIValue::get(F),
4174                                         llvm::Type::getInt8PtrTy(VMContext));
4175 }
4176 
4177 static const FunctionDecl *
4178 GetRuntimeFunctionDecl(ASTContext &C, StringRef Name) {
4179   TranslationUnitDecl *TUDecl = C.getTranslationUnitDecl();
4180   DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl);
4181 
4182   IdentifierInfo &CII = C.Idents.get(Name);
4183   for (const auto *Result : DC->lookup(&CII))
4184     if (const auto *FD = dyn_cast<FunctionDecl>(Result))
4185       return FD;
4186 
4187   if (!C.getLangOpts().CPlusPlus)
4188     return nullptr;
4189 
4190   // Demangle the premangled name from getTerminateFn()
4191   IdentifierInfo &CXXII =
4192       (Name == "_ZSt9terminatev" || Name == "?terminate@@YAXXZ")
4193           ? C.Idents.get("terminate")
4194           : C.Idents.get(Name);
4195 
4196   for (const auto &N : {"__cxxabiv1", "std"}) {
4197     IdentifierInfo &NS = C.Idents.get(N);
4198     for (const auto *Result : DC->lookup(&NS)) {
4199       const NamespaceDecl *ND = dyn_cast<NamespaceDecl>(Result);
4200       if (auto *LSD = dyn_cast<LinkageSpecDecl>(Result))
4201         for (const auto *Result : LSD->lookup(&NS))
4202           if ((ND = dyn_cast<NamespaceDecl>(Result)))
4203             break;
4204 
4205       if (ND)
4206         for (const auto *Result : ND->lookup(&CXXII))
4207           if (const auto *FD = dyn_cast<FunctionDecl>(Result))
4208             return FD;
4209     }
4210   }
4211 
4212   return nullptr;
4213 }
4214 
4215 /// CreateRuntimeFunction - Create a new runtime function with the specified
4216 /// type and name.
4217 llvm::FunctionCallee
4218 CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy, StringRef Name,
4219                                      llvm::AttributeList ExtraAttrs, bool Local,
4220                                      bool AssumeConvergent) {
4221   if (AssumeConvergent) {
4222     ExtraAttrs =
4223         ExtraAttrs.addFnAttribute(VMContext, llvm::Attribute::Convergent);
4224   }
4225 
4226   llvm::Constant *C =
4227       GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false,
4228                               /*DontDefer=*/false, /*IsThunk=*/false,
4229                               ExtraAttrs);
4230 
4231   if (auto *F = dyn_cast<llvm::Function>(C)) {
4232     if (F->empty()) {
4233       F->setCallingConv(getRuntimeCC());
4234 
4235       // In Windows Itanium environments, try to mark runtime functions
4236       // dllimport. For Mingw and MSVC, don't. We don't really know if the user
4237       // will link their standard library statically or dynamically. Marking
4238       // functions imported when they are not imported can cause linker errors
4239       // and warnings.
4240       if (!Local && getTriple().isWindowsItaniumEnvironment() &&
4241           !getCodeGenOpts().LTOVisibilityPublicStd) {
4242         const FunctionDecl *FD = GetRuntimeFunctionDecl(Context, Name);
4243         if (!FD || FD->hasAttr<DLLImportAttr>()) {
4244           F->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass);
4245           F->setLinkage(llvm::GlobalValue::ExternalLinkage);
4246         }
4247       }
4248       setDSOLocal(F);
4249     }
4250   }
4251 
4252   return {FTy, C};
4253 }
4254 
4255 /// isTypeConstant - Determine whether an object of this type can be emitted
4256 /// as a constant.
4257 ///
4258 /// If ExcludeCtor is true, the duration when the object's constructor runs
4259 /// will not be considered. The caller will need to verify that the object is
4260 /// not written to during its construction.
4261 bool CodeGenModule::isTypeConstant(QualType Ty, bool ExcludeCtor) {
4262   if (!Ty.isConstant(Context) && !Ty->isReferenceType())
4263     return false;
4264 
4265   if (Context.getLangOpts().CPlusPlus) {
4266     if (const CXXRecordDecl *Record
4267           = Context.getBaseElementType(Ty)->getAsCXXRecordDecl())
4268       return ExcludeCtor && !Record->hasMutableFields() &&
4269              Record->hasTrivialDestructor();
4270   }
4271 
4272   return true;
4273 }
4274 
4275 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module,
4276 /// create and return an llvm GlobalVariable with the specified type and address
4277 /// space. If there is something in the module with the specified name, return
4278 /// it potentially bitcasted to the right type.
4279 ///
4280 /// If D is non-null, it specifies a decl that correspond to this.  This is used
4281 /// to set the attributes on the global when it is first created.
4282 ///
4283 /// If IsForDefinition is true, it is guaranteed that an actual global with
4284 /// type Ty will be returned, not conversion of a variable with the same
4285 /// mangled name but some other type.
4286 llvm::Constant *
4287 CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName, llvm::Type *Ty,
4288                                      LangAS AddrSpace, const VarDecl *D,
4289                                      ForDefinition_t IsForDefinition) {
4290   // Lookup the entry, lazily creating it if necessary.
4291   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
4292   unsigned TargetAS = getContext().getTargetAddressSpace(AddrSpace);
4293   if (Entry) {
4294     if (WeakRefReferences.erase(Entry)) {
4295       if (D && !D->hasAttr<WeakAttr>())
4296         Entry->setLinkage(llvm::Function::ExternalLinkage);
4297     }
4298 
4299     // Handle dropped DLL attributes.
4300     if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>() &&
4301         !shouldMapVisibilityToDLLExport(D))
4302       Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
4303 
4304     if (LangOpts.OpenMP && !LangOpts.OpenMPSimd && D)
4305       getOpenMPRuntime().registerTargetGlobalVariable(D, Entry);
4306 
4307     if (Entry->getValueType() == Ty && Entry->getAddressSpace() == TargetAS)
4308       return Entry;
4309 
4310     // If there are two attempts to define the same mangled name, issue an
4311     // error.
4312     if (IsForDefinition && !Entry->isDeclaration()) {
4313       GlobalDecl OtherGD;
4314       const VarDecl *OtherD;
4315 
4316       // Check that D is not yet in DiagnosedConflictingDefinitions is required
4317       // to make sure that we issue an error only once.
4318       if (D && lookupRepresentativeDecl(MangledName, OtherGD) &&
4319           (D->getCanonicalDecl() != OtherGD.getCanonicalDecl().getDecl()) &&
4320           (OtherD = dyn_cast<VarDecl>(OtherGD.getDecl())) &&
4321           OtherD->hasInit() &&
4322           DiagnosedConflictingDefinitions.insert(D).second) {
4323         getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name)
4324             << MangledName;
4325         getDiags().Report(OtherGD.getDecl()->getLocation(),
4326                           diag::note_previous_definition);
4327       }
4328     }
4329 
4330     // Make sure the result is of the correct type.
4331     if (Entry->getType()->getAddressSpace() != TargetAS) {
4332       return llvm::ConstantExpr::getAddrSpaceCast(Entry,
4333                                                   Ty->getPointerTo(TargetAS));
4334     }
4335 
4336     // (If global is requested for a definition, we always need to create a new
4337     // global, not just return a bitcast.)
4338     if (!IsForDefinition)
4339       return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo(TargetAS));
4340   }
4341 
4342   auto DAddrSpace = GetGlobalVarAddressSpace(D);
4343 
4344   auto *GV = new llvm::GlobalVariable(
4345       getModule(), Ty, false, llvm::GlobalValue::ExternalLinkage, nullptr,
4346       MangledName, nullptr, llvm::GlobalVariable::NotThreadLocal,
4347       getContext().getTargetAddressSpace(DAddrSpace));
4348 
4349   // If we already created a global with the same mangled name (but different
4350   // type) before, take its name and remove it from its parent.
4351   if (Entry) {
4352     GV->takeName(Entry);
4353 
4354     if (!Entry->use_empty()) {
4355       llvm::Constant *NewPtrForOldDecl =
4356           llvm::ConstantExpr::getBitCast(GV, Entry->getType());
4357       Entry->replaceAllUsesWith(NewPtrForOldDecl);
4358     }
4359 
4360     Entry->eraseFromParent();
4361   }
4362 
4363   // This is the first use or definition of a mangled name.  If there is a
4364   // deferred decl with this name, remember that we need to emit it at the end
4365   // of the file.
4366   auto DDI = DeferredDecls.find(MangledName);
4367   if (DDI != DeferredDecls.end()) {
4368     // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
4369     // list, and remove it from DeferredDecls (since we don't need it anymore).
4370     addDeferredDeclToEmit(DDI->second);
4371     EmittedDeferredDecls[DDI->first] = DDI->second;
4372     DeferredDecls.erase(DDI);
4373   }
4374 
4375   // Handle things which are present even on external declarations.
4376   if (D) {
4377     if (LangOpts.OpenMP && !LangOpts.OpenMPSimd)
4378       getOpenMPRuntime().registerTargetGlobalVariable(D, GV);
4379 
4380     // FIXME: This code is overly simple and should be merged with other global
4381     // handling.
4382     GV->setConstant(isTypeConstant(D->getType(), false));
4383 
4384     GV->setAlignment(getContext().getDeclAlign(D).getAsAlign());
4385 
4386     setLinkageForGV(GV, D);
4387 
4388     if (D->getTLSKind()) {
4389       if (D->getTLSKind() == VarDecl::TLS_Dynamic)
4390         CXXThreadLocals.push_back(D);
4391       setTLSMode(GV, *D);
4392     }
4393 
4394     setGVProperties(GV, D);
4395 
4396     // If required by the ABI, treat declarations of static data members with
4397     // inline initializers as definitions.
4398     if (getContext().isMSStaticDataMemberInlineDefinition(D)) {
4399       EmitGlobalVarDefinition(D);
4400     }
4401 
4402     // Emit section information for extern variables.
4403     if (D->hasExternalStorage()) {
4404       if (const SectionAttr *SA = D->getAttr<SectionAttr>())
4405         GV->setSection(SA->getName());
4406     }
4407 
4408     // Handle XCore specific ABI requirements.
4409     if (getTriple().getArch() == llvm::Triple::xcore &&
4410         D->getLanguageLinkage() == CLanguageLinkage &&
4411         D->getType().isConstant(Context) &&
4412         isExternallyVisible(D->getLinkageAndVisibility().getLinkage()))
4413       GV->setSection(".cp.rodata");
4414 
4415     // Check if we a have a const declaration with an initializer, we may be
4416     // able to emit it as available_externally to expose it's value to the
4417     // optimizer.
4418     if (Context.getLangOpts().CPlusPlus && GV->hasExternalLinkage() &&
4419         D->getType().isConstQualified() && !GV->hasInitializer() &&
4420         !D->hasDefinition() && D->hasInit() && !D->hasAttr<DLLImportAttr>()) {
4421       const auto *Record =
4422           Context.getBaseElementType(D->getType())->getAsCXXRecordDecl();
4423       bool HasMutableFields = Record && Record->hasMutableFields();
4424       if (!HasMutableFields) {
4425         const VarDecl *InitDecl;
4426         const Expr *InitExpr = D->getAnyInitializer(InitDecl);
4427         if (InitExpr) {
4428           ConstantEmitter emitter(*this);
4429           llvm::Constant *Init = emitter.tryEmitForInitializer(*InitDecl);
4430           if (Init) {
4431             auto *InitType = Init->getType();
4432             if (GV->getValueType() != InitType) {
4433               // The type of the initializer does not match the definition.
4434               // This happens when an initializer has a different type from
4435               // the type of the global (because of padding at the end of a
4436               // structure for instance).
4437               GV->setName(StringRef());
4438               // Make a new global with the correct type, this is now guaranteed
4439               // to work.
4440               auto *NewGV = cast<llvm::GlobalVariable>(
4441                   GetAddrOfGlobalVar(D, InitType, IsForDefinition)
4442                       ->stripPointerCasts());
4443 
4444               // Erase the old global, since it is no longer used.
4445               GV->eraseFromParent();
4446               GV = NewGV;
4447             } else {
4448               GV->setInitializer(Init);
4449               GV->setConstant(true);
4450               GV->setLinkage(llvm::GlobalValue::AvailableExternallyLinkage);
4451             }
4452             emitter.finalize(GV);
4453           }
4454         }
4455       }
4456     }
4457   }
4458 
4459   if (GV->isDeclaration()) {
4460     getTargetCodeGenInfo().setTargetAttributes(D, GV, *this);
4461     // External HIP managed variables needed to be recorded for transformation
4462     // in both device and host compilations.
4463     if (getLangOpts().CUDA && D && D->hasAttr<HIPManagedAttr>() &&
4464         D->hasExternalStorage())
4465       getCUDARuntime().handleVarRegistration(D, *GV);
4466   }
4467 
4468   if (D)
4469     SanitizerMD->reportGlobal(GV, *D);
4470 
4471   LangAS ExpectedAS =
4472       D ? D->getType().getAddressSpace()
4473         : (LangOpts.OpenCL ? LangAS::opencl_global : LangAS::Default);
4474   assert(getContext().getTargetAddressSpace(ExpectedAS) == TargetAS);
4475   if (DAddrSpace != ExpectedAS) {
4476     return getTargetCodeGenInfo().performAddrSpaceCast(
4477         *this, GV, DAddrSpace, ExpectedAS, Ty->getPointerTo(TargetAS));
4478   }
4479 
4480   return GV;
4481 }
4482 
4483 llvm::Constant *
4484 CodeGenModule::GetAddrOfGlobal(GlobalDecl GD, ForDefinition_t IsForDefinition) {
4485   const Decl *D = GD.getDecl();
4486 
4487   if (isa<CXXConstructorDecl>(D) || isa<CXXDestructorDecl>(D))
4488     return getAddrOfCXXStructor(GD, /*FnInfo=*/nullptr, /*FnType=*/nullptr,
4489                                 /*DontDefer=*/false, IsForDefinition);
4490 
4491   if (isa<CXXMethodDecl>(D)) {
4492     auto FInfo =
4493         &getTypes().arrangeCXXMethodDeclaration(cast<CXXMethodDecl>(D));
4494     auto Ty = getTypes().GetFunctionType(*FInfo);
4495     return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false,
4496                              IsForDefinition);
4497   }
4498 
4499   if (isa<FunctionDecl>(D)) {
4500     const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
4501     llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
4502     return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false,
4503                              IsForDefinition);
4504   }
4505 
4506   return GetAddrOfGlobalVar(cast<VarDecl>(D), /*Ty=*/nullptr, IsForDefinition);
4507 }
4508 
4509 llvm::GlobalVariable *CodeGenModule::CreateOrReplaceCXXRuntimeVariable(
4510     StringRef Name, llvm::Type *Ty, llvm::GlobalValue::LinkageTypes Linkage,
4511     unsigned Alignment) {
4512   llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name);
4513   llvm::GlobalVariable *OldGV = nullptr;
4514 
4515   if (GV) {
4516     // Check if the variable has the right type.
4517     if (GV->getValueType() == Ty)
4518       return GV;
4519 
4520     // Because C++ name mangling, the only way we can end up with an already
4521     // existing global with the same name is if it has been declared extern "C".
4522     assert(GV->isDeclaration() && "Declaration has wrong type!");
4523     OldGV = GV;
4524   }
4525 
4526   // Create a new variable.
4527   GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true,
4528                                 Linkage, nullptr, Name);
4529 
4530   if (OldGV) {
4531     // Replace occurrences of the old variable if needed.
4532     GV->takeName(OldGV);
4533 
4534     if (!OldGV->use_empty()) {
4535       llvm::Constant *NewPtrForOldDecl =
4536       llvm::ConstantExpr::getBitCast(GV, OldGV->getType());
4537       OldGV->replaceAllUsesWith(NewPtrForOldDecl);
4538     }
4539 
4540     OldGV->eraseFromParent();
4541   }
4542 
4543   if (supportsCOMDAT() && GV->isWeakForLinker() &&
4544       !GV->hasAvailableExternallyLinkage())
4545     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
4546 
4547   GV->setAlignment(llvm::MaybeAlign(Alignment));
4548 
4549   return GV;
4550 }
4551 
4552 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the
4553 /// given global variable.  If Ty is non-null and if the global doesn't exist,
4554 /// then it will be created with the specified type instead of whatever the
4555 /// normal requested type would be. If IsForDefinition is true, it is guaranteed
4556 /// that an actual global with type Ty will be returned, not conversion of a
4557 /// variable with the same mangled name but some other type.
4558 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D,
4559                                                   llvm::Type *Ty,
4560                                            ForDefinition_t IsForDefinition) {
4561   assert(D->hasGlobalStorage() && "Not a global variable");
4562   QualType ASTTy = D->getType();
4563   if (!Ty)
4564     Ty = getTypes().ConvertTypeForMem(ASTTy);
4565 
4566   StringRef MangledName = getMangledName(D);
4567   return GetOrCreateLLVMGlobal(MangledName, Ty, ASTTy.getAddressSpace(), D,
4568                                IsForDefinition);
4569 }
4570 
4571 /// CreateRuntimeVariable - Create a new runtime global variable with the
4572 /// specified type and name.
4573 llvm::Constant *
4574 CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty,
4575                                      StringRef Name) {
4576   LangAS AddrSpace = getContext().getLangOpts().OpenCL ? LangAS::opencl_global
4577                                                        : LangAS::Default;
4578   auto *Ret = GetOrCreateLLVMGlobal(Name, Ty, AddrSpace, nullptr);
4579   setDSOLocal(cast<llvm::GlobalValue>(Ret->stripPointerCasts()));
4580   return Ret;
4581 }
4582 
4583 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) {
4584   assert(!D->getInit() && "Cannot emit definite definitions here!");
4585 
4586   StringRef MangledName = getMangledName(D);
4587   llvm::GlobalValue *GV = GetGlobalValue(MangledName);
4588 
4589   // We already have a definition, not declaration, with the same mangled name.
4590   // Emitting of declaration is not required (and actually overwrites emitted
4591   // definition).
4592   if (GV && !GV->isDeclaration())
4593     return;
4594 
4595   // If we have not seen a reference to this variable yet, place it into the
4596   // deferred declarations table to be emitted if needed later.
4597   if (!MustBeEmitted(D) && !GV) {
4598       DeferredDecls[MangledName] = D;
4599       return;
4600   }
4601 
4602   // The tentative definition is the only definition.
4603   EmitGlobalVarDefinition(D);
4604 }
4605 
4606 void CodeGenModule::EmitExternalDeclaration(const VarDecl *D) {
4607   EmitExternalVarDeclaration(D);
4608 }
4609 
4610 CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const {
4611   return Context.toCharUnitsFromBits(
4612       getDataLayout().getTypeStoreSizeInBits(Ty));
4613 }
4614 
4615 LangAS CodeGenModule::GetGlobalVarAddressSpace(const VarDecl *D) {
4616   if (LangOpts.OpenCL) {
4617     LangAS AS = D ? D->getType().getAddressSpace() : LangAS::opencl_global;
4618     assert(AS == LangAS::opencl_global ||
4619            AS == LangAS::opencl_global_device ||
4620            AS == LangAS::opencl_global_host ||
4621            AS == LangAS::opencl_constant ||
4622            AS == LangAS::opencl_local ||
4623            AS >= LangAS::FirstTargetAddressSpace);
4624     return AS;
4625   }
4626 
4627   if (LangOpts.SYCLIsDevice &&
4628       (!D || D->getType().getAddressSpace() == LangAS::Default))
4629     return LangAS::sycl_global;
4630 
4631   if (LangOpts.CUDA && LangOpts.CUDAIsDevice) {
4632     if (D && D->hasAttr<CUDAConstantAttr>())
4633       return LangAS::cuda_constant;
4634     else if (D && D->hasAttr<CUDASharedAttr>())
4635       return LangAS::cuda_shared;
4636     else if (D && D->hasAttr<CUDADeviceAttr>())
4637       return LangAS::cuda_device;
4638     else if (D && D->getType().isConstQualified())
4639       return LangAS::cuda_constant;
4640     else
4641       return LangAS::cuda_device;
4642   }
4643 
4644   if (LangOpts.OpenMP) {
4645     LangAS AS;
4646     if (OpenMPRuntime->hasAllocateAttributeForGlobalVar(D, AS))
4647       return AS;
4648   }
4649   return getTargetCodeGenInfo().getGlobalVarAddressSpace(*this, D);
4650 }
4651 
4652 LangAS CodeGenModule::GetGlobalConstantAddressSpace() const {
4653   // OpenCL v1.2 s6.5.3: a string literal is in the constant address space.
4654   if (LangOpts.OpenCL)
4655     return LangAS::opencl_constant;
4656   if (LangOpts.SYCLIsDevice)
4657     return LangAS::sycl_global;
4658   if (LangOpts.HIP && LangOpts.CUDAIsDevice && getTriple().isSPIRV())
4659     // For HIPSPV map literals to cuda_device (maps to CrossWorkGroup in SPIR-V)
4660     // instead of default AS (maps to Generic in SPIR-V). Otherwise, we end up
4661     // with OpVariable instructions with Generic storage class which is not
4662     // allowed (SPIR-V V1.6 s3.42.8). Also, mapping literals to SPIR-V
4663     // UniformConstant storage class is not viable as pointers to it may not be
4664     // casted to Generic pointers which are used to model HIP's "flat" pointers.
4665     return LangAS::cuda_device;
4666   if (auto AS = getTarget().getConstantAddressSpace())
4667     return *AS;
4668   return LangAS::Default;
4669 }
4670 
4671 // In address space agnostic languages, string literals are in default address
4672 // space in AST. However, certain targets (e.g. amdgcn) request them to be
4673 // emitted in constant address space in LLVM IR. To be consistent with other
4674 // parts of AST, string literal global variables in constant address space
4675 // need to be casted to default address space before being put into address
4676 // map and referenced by other part of CodeGen.
4677 // In OpenCL, string literals are in constant address space in AST, therefore
4678 // they should not be casted to default address space.
4679 static llvm::Constant *
4680 castStringLiteralToDefaultAddressSpace(CodeGenModule &CGM,
4681                                        llvm::GlobalVariable *GV) {
4682   llvm::Constant *Cast = GV;
4683   if (!CGM.getLangOpts().OpenCL) {
4684     auto AS = CGM.GetGlobalConstantAddressSpace();
4685     if (AS != LangAS::Default)
4686       Cast = CGM.getTargetCodeGenInfo().performAddrSpaceCast(
4687           CGM, GV, AS, LangAS::Default,
4688           GV->getValueType()->getPointerTo(
4689               CGM.getContext().getTargetAddressSpace(LangAS::Default)));
4690   }
4691   return Cast;
4692 }
4693 
4694 template<typename SomeDecl>
4695 void CodeGenModule::MaybeHandleStaticInExternC(const SomeDecl *D,
4696                                                llvm::GlobalValue *GV) {
4697   if (!getLangOpts().CPlusPlus)
4698     return;
4699 
4700   // Must have 'used' attribute, or else inline assembly can't rely on
4701   // the name existing.
4702   if (!D->template hasAttr<UsedAttr>())
4703     return;
4704 
4705   // Must have internal linkage and an ordinary name.
4706   if (!D->getIdentifier() || D->getFormalLinkage() != InternalLinkage)
4707     return;
4708 
4709   // Must be in an extern "C" context. Entities declared directly within
4710   // a record are not extern "C" even if the record is in such a context.
4711   const SomeDecl *First = D->getFirstDecl();
4712   if (First->getDeclContext()->isRecord() || !First->isInExternCContext())
4713     return;
4714 
4715   // OK, this is an internal linkage entity inside an extern "C" linkage
4716   // specification. Make a note of that so we can give it the "expected"
4717   // mangled name if nothing else is using that name.
4718   std::pair<StaticExternCMap::iterator, bool> R =
4719       StaticExternCValues.insert(std::make_pair(D->getIdentifier(), GV));
4720 
4721   // If we have multiple internal linkage entities with the same name
4722   // in extern "C" regions, none of them gets that name.
4723   if (!R.second)
4724     R.first->second = nullptr;
4725 }
4726 
4727 static bool shouldBeInCOMDAT(CodeGenModule &CGM, const Decl &D) {
4728   if (!CGM.supportsCOMDAT())
4729     return false;
4730 
4731   if (D.hasAttr<SelectAnyAttr>())
4732     return true;
4733 
4734   GVALinkage Linkage;
4735   if (auto *VD = dyn_cast<VarDecl>(&D))
4736     Linkage = CGM.getContext().GetGVALinkageForVariable(VD);
4737   else
4738     Linkage = CGM.getContext().GetGVALinkageForFunction(cast<FunctionDecl>(&D));
4739 
4740   switch (Linkage) {
4741   case GVA_Internal:
4742   case GVA_AvailableExternally:
4743   case GVA_StrongExternal:
4744     return false;
4745   case GVA_DiscardableODR:
4746   case GVA_StrongODR:
4747     return true;
4748   }
4749   llvm_unreachable("No such linkage");
4750 }
4751 
4752 void CodeGenModule::maybeSetTrivialComdat(const Decl &D,
4753                                           llvm::GlobalObject &GO) {
4754   if (!shouldBeInCOMDAT(*this, D))
4755     return;
4756   GO.setComdat(TheModule.getOrInsertComdat(GO.getName()));
4757 }
4758 
4759 /// Pass IsTentative as true if you want to create a tentative definition.
4760 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D,
4761                                             bool IsTentative) {
4762   // OpenCL global variables of sampler type are translated to function calls,
4763   // therefore no need to be translated.
4764   QualType ASTTy = D->getType();
4765   if (getLangOpts().OpenCL && ASTTy->isSamplerT())
4766     return;
4767 
4768   // If this is OpenMP device, check if it is legal to emit this global
4769   // normally.
4770   if (LangOpts.OpenMPIsDevice && OpenMPRuntime &&
4771       OpenMPRuntime->emitTargetGlobalVariable(D))
4772     return;
4773 
4774   llvm::TrackingVH<llvm::Constant> Init;
4775   bool NeedsGlobalCtor = false;
4776   bool NeedsGlobalDtor =
4777       D->needsDestruction(getContext()) == QualType::DK_cxx_destructor;
4778 
4779   const VarDecl *InitDecl;
4780   const Expr *InitExpr = D->getAnyInitializer(InitDecl);
4781 
4782   Optional<ConstantEmitter> emitter;
4783 
4784   // CUDA E.2.4.1 "__shared__ variables cannot have an initialization
4785   // as part of their declaration."  Sema has already checked for
4786   // error cases, so we just need to set Init to UndefValue.
4787   bool IsCUDASharedVar =
4788       getLangOpts().CUDAIsDevice && D->hasAttr<CUDASharedAttr>();
4789   // Shadows of initialized device-side global variables are also left
4790   // undefined.
4791   // Managed Variables should be initialized on both host side and device side.
4792   bool IsCUDAShadowVar =
4793       !getLangOpts().CUDAIsDevice && !D->hasAttr<HIPManagedAttr>() &&
4794       (D->hasAttr<CUDAConstantAttr>() || D->hasAttr<CUDADeviceAttr>() ||
4795        D->hasAttr<CUDASharedAttr>());
4796   bool IsCUDADeviceShadowVar =
4797       getLangOpts().CUDAIsDevice && !D->hasAttr<HIPManagedAttr>() &&
4798       (D->getType()->isCUDADeviceBuiltinSurfaceType() ||
4799        D->getType()->isCUDADeviceBuiltinTextureType());
4800   if (getLangOpts().CUDA &&
4801       (IsCUDASharedVar || IsCUDAShadowVar || IsCUDADeviceShadowVar))
4802     Init = llvm::UndefValue::get(getTypes().ConvertTypeForMem(ASTTy));
4803   else if (D->hasAttr<LoaderUninitializedAttr>())
4804     Init = llvm::UndefValue::get(getTypes().ConvertTypeForMem(ASTTy));
4805   else if (!InitExpr) {
4806     // This is a tentative definition; tentative definitions are
4807     // implicitly initialized with { 0 }.
4808     //
4809     // Note that tentative definitions are only emitted at the end of
4810     // a translation unit, so they should never have incomplete
4811     // type. In addition, EmitTentativeDefinition makes sure that we
4812     // never attempt to emit a tentative definition if a real one
4813     // exists. A use may still exists, however, so we still may need
4814     // to do a RAUW.
4815     assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type");
4816     Init = EmitNullConstant(D->getType());
4817   } else {
4818     initializedGlobalDecl = GlobalDecl(D);
4819     emitter.emplace(*this);
4820     llvm::Constant *Initializer = emitter->tryEmitForInitializer(*InitDecl);
4821     if (!Initializer) {
4822       QualType T = InitExpr->getType();
4823       if (D->getType()->isReferenceType())
4824         T = D->getType();
4825 
4826       if (getLangOpts().CPlusPlus) {
4827         if (InitDecl->hasFlexibleArrayInit(getContext()))
4828           ErrorUnsupported(D, "flexible array initializer");
4829         Init = EmitNullConstant(T);
4830         NeedsGlobalCtor = true;
4831       } else {
4832         ErrorUnsupported(D, "static initializer");
4833         Init = llvm::UndefValue::get(getTypes().ConvertType(T));
4834       }
4835     } else {
4836       Init = Initializer;
4837       // We don't need an initializer, so remove the entry for the delayed
4838       // initializer position (just in case this entry was delayed) if we
4839       // also don't need to register a destructor.
4840       if (getLangOpts().CPlusPlus && !NeedsGlobalDtor)
4841         DelayedCXXInitPosition.erase(D);
4842 
4843 #ifndef NDEBUG
4844       CharUnits VarSize = getContext().getTypeSizeInChars(ASTTy) +
4845                           InitDecl->getFlexibleArrayInitChars(getContext());
4846       CharUnits CstSize = CharUnits::fromQuantity(
4847           getDataLayout().getTypeAllocSize(Init->getType()));
4848       assert(VarSize == CstSize && "Emitted constant has unexpected size");
4849 #endif
4850     }
4851   }
4852 
4853   llvm::Type* InitType = Init->getType();
4854   llvm::Constant *Entry =
4855       GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative));
4856 
4857   // Strip off pointer casts if we got them.
4858   Entry = Entry->stripPointerCasts();
4859 
4860   // Entry is now either a Function or GlobalVariable.
4861   auto *GV = dyn_cast<llvm::GlobalVariable>(Entry);
4862 
4863   // We have a definition after a declaration with the wrong type.
4864   // We must make a new GlobalVariable* and update everything that used OldGV
4865   // (a declaration or tentative definition) with the new GlobalVariable*
4866   // (which will be a definition).
4867   //
4868   // This happens if there is a prototype for a global (e.g.
4869   // "extern int x[];") and then a definition of a different type (e.g.
4870   // "int x[10];"). This also happens when an initializer has a different type
4871   // from the type of the global (this happens with unions).
4872   if (!GV || GV->getValueType() != InitType ||
4873       GV->getType()->getAddressSpace() !=
4874           getContext().getTargetAddressSpace(GetGlobalVarAddressSpace(D))) {
4875 
4876     // Move the old entry aside so that we'll create a new one.
4877     Entry->setName(StringRef());
4878 
4879     // Make a new global with the correct type, this is now guaranteed to work.
4880     GV = cast<llvm::GlobalVariable>(
4881         GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative))
4882             ->stripPointerCasts());
4883 
4884     // Replace all uses of the old global with the new global
4885     llvm::Constant *NewPtrForOldDecl =
4886         llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV,
4887                                                              Entry->getType());
4888     Entry->replaceAllUsesWith(NewPtrForOldDecl);
4889 
4890     // Erase the old global, since it is no longer used.
4891     cast<llvm::GlobalValue>(Entry)->eraseFromParent();
4892   }
4893 
4894   MaybeHandleStaticInExternC(D, GV);
4895 
4896   if (D->hasAttr<AnnotateAttr>())
4897     AddGlobalAnnotations(D, GV);
4898 
4899   // Set the llvm linkage type as appropriate.
4900   llvm::GlobalValue::LinkageTypes Linkage =
4901       getLLVMLinkageVarDefinition(D, GV->isConstant());
4902 
4903   // CUDA B.2.1 "The __device__ qualifier declares a variable that resides on
4904   // the device. [...]"
4905   // CUDA B.2.2 "The __constant__ qualifier, optionally used together with
4906   // __device__, declares a variable that: [...]
4907   // Is accessible from all the threads within the grid and from the host
4908   // through the runtime library (cudaGetSymbolAddress() / cudaGetSymbolSize()
4909   // / cudaMemcpyToSymbol() / cudaMemcpyFromSymbol())."
4910   if (GV && LangOpts.CUDA) {
4911     if (LangOpts.CUDAIsDevice) {
4912       if (Linkage != llvm::GlobalValue::InternalLinkage &&
4913           (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>() ||
4914            D->getType()->isCUDADeviceBuiltinSurfaceType() ||
4915            D->getType()->isCUDADeviceBuiltinTextureType()))
4916         GV->setExternallyInitialized(true);
4917     } else {
4918       getCUDARuntime().internalizeDeviceSideVar(D, Linkage);
4919     }
4920     getCUDARuntime().handleVarRegistration(D, *GV);
4921   }
4922 
4923   GV->setInitializer(Init);
4924   if (emitter)
4925     emitter->finalize(GV);
4926 
4927   // If it is safe to mark the global 'constant', do so now.
4928   GV->setConstant(!NeedsGlobalCtor && !NeedsGlobalDtor &&
4929                   isTypeConstant(D->getType(), true));
4930 
4931   // If it is in a read-only section, mark it 'constant'.
4932   if (const SectionAttr *SA = D->getAttr<SectionAttr>()) {
4933     const ASTContext::SectionInfo &SI = Context.SectionInfos[SA->getName()];
4934     if ((SI.SectionFlags & ASTContext::PSF_Write) == 0)
4935       GV->setConstant(true);
4936   }
4937 
4938   CharUnits AlignVal = getContext().getDeclAlign(D);
4939   // Check for alignment specifed in an 'omp allocate' directive.
4940   if (llvm::Optional<CharUnits> AlignValFromAllocate =
4941           getOMPAllocateAlignment(D))
4942     AlignVal = *AlignValFromAllocate;
4943   GV->setAlignment(AlignVal.getAsAlign());
4944 
4945   // On Darwin, unlike other Itanium C++ ABI platforms, the thread-wrapper
4946   // function is only defined alongside the variable, not also alongside
4947   // callers. Normally, all accesses to a thread_local go through the
4948   // thread-wrapper in order to ensure initialization has occurred, underlying
4949   // variable will never be used other than the thread-wrapper, so it can be
4950   // converted to internal linkage.
4951   //
4952   // However, if the variable has the 'constinit' attribute, it _can_ be
4953   // referenced directly, without calling the thread-wrapper, so the linkage
4954   // must not be changed.
4955   //
4956   // Additionally, if the variable isn't plain external linkage, e.g. if it's
4957   // weak or linkonce, the de-duplication semantics are important to preserve,
4958   // so we don't change the linkage.
4959   if (D->getTLSKind() == VarDecl::TLS_Dynamic &&
4960       Linkage == llvm::GlobalValue::ExternalLinkage &&
4961       Context.getTargetInfo().getTriple().isOSDarwin() &&
4962       !D->hasAttr<ConstInitAttr>())
4963     Linkage = llvm::GlobalValue::InternalLinkage;
4964 
4965   GV->setLinkage(Linkage);
4966   if (D->hasAttr<DLLImportAttr>())
4967     GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass);
4968   else if (D->hasAttr<DLLExportAttr>())
4969     GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass);
4970   else
4971     GV->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass);
4972 
4973   if (Linkage == llvm::GlobalVariable::CommonLinkage) {
4974     // common vars aren't constant even if declared const.
4975     GV->setConstant(false);
4976     // Tentative definition of global variables may be initialized with
4977     // non-zero null pointers. In this case they should have weak linkage
4978     // since common linkage must have zero initializer and must not have
4979     // explicit section therefore cannot have non-zero initial value.
4980     if (!GV->getInitializer()->isNullValue())
4981       GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage);
4982   }
4983 
4984   setNonAliasAttributes(D, GV);
4985 
4986   if (D->getTLSKind() && !GV->isThreadLocal()) {
4987     if (D->getTLSKind() == VarDecl::TLS_Dynamic)
4988       CXXThreadLocals.push_back(D);
4989     setTLSMode(GV, *D);
4990   }
4991 
4992   maybeSetTrivialComdat(*D, *GV);
4993 
4994   // Emit the initializer function if necessary.
4995   if (NeedsGlobalCtor || NeedsGlobalDtor)
4996     EmitCXXGlobalVarDeclInitFunc(D, GV, NeedsGlobalCtor);
4997 
4998   SanitizerMD->reportGlobal(GV, *D, NeedsGlobalCtor);
4999 
5000   // Emit global variable debug information.
5001   if (CGDebugInfo *DI = getModuleDebugInfo())
5002     if (getCodeGenOpts().hasReducedDebugInfo())
5003       DI->EmitGlobalVariable(GV, D);
5004 }
5005 
5006 void CodeGenModule::EmitExternalVarDeclaration(const VarDecl *D) {
5007   if (CGDebugInfo *DI = getModuleDebugInfo())
5008     if (getCodeGenOpts().hasReducedDebugInfo()) {
5009       QualType ASTTy = D->getType();
5010       llvm::Type *Ty = getTypes().ConvertTypeForMem(D->getType());
5011       llvm::Constant *GV =
5012           GetOrCreateLLVMGlobal(D->getName(), Ty, ASTTy.getAddressSpace(), D);
5013       DI->EmitExternalVariable(
5014           cast<llvm::GlobalVariable>(GV->stripPointerCasts()), D);
5015     }
5016 }
5017 
5018 static bool isVarDeclStrongDefinition(const ASTContext &Context,
5019                                       CodeGenModule &CGM, const VarDecl *D,
5020                                       bool NoCommon) {
5021   // Don't give variables common linkage if -fno-common was specified unless it
5022   // was overridden by a NoCommon attribute.
5023   if ((NoCommon || D->hasAttr<NoCommonAttr>()) && !D->hasAttr<CommonAttr>())
5024     return true;
5025 
5026   // C11 6.9.2/2:
5027   //   A declaration of an identifier for an object that has file scope without
5028   //   an initializer, and without a storage-class specifier or with the
5029   //   storage-class specifier static, constitutes a tentative definition.
5030   if (D->getInit() || D->hasExternalStorage())
5031     return true;
5032 
5033   // A variable cannot be both common and exist in a section.
5034   if (D->hasAttr<SectionAttr>())
5035     return true;
5036 
5037   // A variable cannot be both common and exist in a section.
5038   // We don't try to determine which is the right section in the front-end.
5039   // If no specialized section name is applicable, it will resort to default.
5040   if (D->hasAttr<PragmaClangBSSSectionAttr>() ||
5041       D->hasAttr<PragmaClangDataSectionAttr>() ||
5042       D->hasAttr<PragmaClangRelroSectionAttr>() ||
5043       D->hasAttr<PragmaClangRodataSectionAttr>())
5044     return true;
5045 
5046   // Thread local vars aren't considered common linkage.
5047   if (D->getTLSKind())
5048     return true;
5049 
5050   // Tentative definitions marked with WeakImportAttr are true definitions.
5051   if (D->hasAttr<WeakImportAttr>())
5052     return true;
5053 
5054   // A variable cannot be both common and exist in a comdat.
5055   if (shouldBeInCOMDAT(CGM, *D))
5056     return true;
5057 
5058   // Declarations with a required alignment do not have common linkage in MSVC
5059   // mode.
5060   if (Context.getTargetInfo().getCXXABI().isMicrosoft()) {
5061     if (D->hasAttr<AlignedAttr>())
5062       return true;
5063     QualType VarType = D->getType();
5064     if (Context.isAlignmentRequired(VarType))
5065       return true;
5066 
5067     if (const auto *RT = VarType->getAs<RecordType>()) {
5068       const RecordDecl *RD = RT->getDecl();
5069       for (const FieldDecl *FD : RD->fields()) {
5070         if (FD->isBitField())
5071           continue;
5072         if (FD->hasAttr<AlignedAttr>())
5073           return true;
5074         if (Context.isAlignmentRequired(FD->getType()))
5075           return true;
5076       }
5077     }
5078   }
5079 
5080   // Microsoft's link.exe doesn't support alignments greater than 32 bytes for
5081   // common symbols, so symbols with greater alignment requirements cannot be
5082   // common.
5083   // Other COFF linkers (ld.bfd and LLD) support arbitrary power-of-two
5084   // alignments for common symbols via the aligncomm directive, so this
5085   // restriction only applies to MSVC environments.
5086   if (Context.getTargetInfo().getTriple().isKnownWindowsMSVCEnvironment() &&
5087       Context.getTypeAlignIfKnown(D->getType()) >
5088           Context.toBits(CharUnits::fromQuantity(32)))
5089     return true;
5090 
5091   return false;
5092 }
5093 
5094 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageForDeclarator(
5095     const DeclaratorDecl *D, GVALinkage Linkage, bool IsConstantVariable) {
5096   if (Linkage == GVA_Internal)
5097     return llvm::Function::InternalLinkage;
5098 
5099   if (D->hasAttr<WeakAttr>())
5100     return llvm::GlobalVariable::WeakAnyLinkage;
5101 
5102   if (const auto *FD = D->getAsFunction())
5103     if (FD->isMultiVersion() && Linkage == GVA_AvailableExternally)
5104       return llvm::GlobalVariable::LinkOnceAnyLinkage;
5105 
5106   // We are guaranteed to have a strong definition somewhere else,
5107   // so we can use available_externally linkage.
5108   if (Linkage == GVA_AvailableExternally)
5109     return llvm::GlobalValue::AvailableExternallyLinkage;
5110 
5111   // Note that Apple's kernel linker doesn't support symbol
5112   // coalescing, so we need to avoid linkonce and weak linkages there.
5113   // Normally, this means we just map to internal, but for explicit
5114   // instantiations we'll map to external.
5115 
5116   // In C++, the compiler has to emit a definition in every translation unit
5117   // that references the function.  We should use linkonce_odr because
5118   // a) if all references in this translation unit are optimized away, we
5119   // don't need to codegen it.  b) if the function persists, it needs to be
5120   // merged with other definitions. c) C++ has the ODR, so we know the
5121   // definition is dependable.
5122   if (Linkage == GVA_DiscardableODR)
5123     return !Context.getLangOpts().AppleKext ? llvm::Function::LinkOnceODRLinkage
5124                                             : llvm::Function::InternalLinkage;
5125 
5126   // An explicit instantiation of a template has weak linkage, since
5127   // explicit instantiations can occur in multiple translation units
5128   // and must all be equivalent. However, we are not allowed to
5129   // throw away these explicit instantiations.
5130   //
5131   // CUDA/HIP: For -fno-gpu-rdc case, device code is limited to one TU,
5132   // so say that CUDA templates are either external (for kernels) or internal.
5133   // This lets llvm perform aggressive inter-procedural optimizations. For
5134   // -fgpu-rdc case, device function calls across multiple TU's are allowed,
5135   // therefore we need to follow the normal linkage paradigm.
5136   if (Linkage == GVA_StrongODR) {
5137     if (getLangOpts().AppleKext)
5138       return llvm::Function::ExternalLinkage;
5139     if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice &&
5140         !getLangOpts().GPURelocatableDeviceCode)
5141       return D->hasAttr<CUDAGlobalAttr>() ? llvm::Function::ExternalLinkage
5142                                           : llvm::Function::InternalLinkage;
5143     return llvm::Function::WeakODRLinkage;
5144   }
5145 
5146   // C++ doesn't have tentative definitions and thus cannot have common
5147   // linkage.
5148   if (!getLangOpts().CPlusPlus && isa<VarDecl>(D) &&
5149       !isVarDeclStrongDefinition(Context, *this, cast<VarDecl>(D),
5150                                  CodeGenOpts.NoCommon))
5151     return llvm::GlobalVariable::CommonLinkage;
5152 
5153   // selectany symbols are externally visible, so use weak instead of
5154   // linkonce.  MSVC optimizes away references to const selectany globals, so
5155   // all definitions should be the same and ODR linkage should be used.
5156   // http://msdn.microsoft.com/en-us/library/5tkz6s71.aspx
5157   if (D->hasAttr<SelectAnyAttr>())
5158     return llvm::GlobalVariable::WeakODRLinkage;
5159 
5160   // Otherwise, we have strong external linkage.
5161   assert(Linkage == GVA_StrongExternal);
5162   return llvm::GlobalVariable::ExternalLinkage;
5163 }
5164 
5165 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageVarDefinition(
5166     const VarDecl *VD, bool IsConstant) {
5167   GVALinkage Linkage = getContext().GetGVALinkageForVariable(VD);
5168   return getLLVMLinkageForDeclarator(VD, Linkage, IsConstant);
5169 }
5170 
5171 /// Replace the uses of a function that was declared with a non-proto type.
5172 /// We want to silently drop extra arguments from call sites
5173 static void replaceUsesOfNonProtoConstant(llvm::Constant *old,
5174                                           llvm::Function *newFn) {
5175   // Fast path.
5176   if (old->use_empty()) return;
5177 
5178   llvm::Type *newRetTy = newFn->getReturnType();
5179   SmallVector<llvm::Value*, 4> newArgs;
5180 
5181   for (llvm::Value::use_iterator ui = old->use_begin(), ue = old->use_end();
5182          ui != ue; ) {
5183     llvm::Value::use_iterator use = ui++; // Increment before the use is erased.
5184     llvm::User *user = use->getUser();
5185 
5186     // Recognize and replace uses of bitcasts.  Most calls to
5187     // unprototyped functions will use bitcasts.
5188     if (auto *bitcast = dyn_cast<llvm::ConstantExpr>(user)) {
5189       if (bitcast->getOpcode() == llvm::Instruction::BitCast)
5190         replaceUsesOfNonProtoConstant(bitcast, newFn);
5191       continue;
5192     }
5193 
5194     // Recognize calls to the function.
5195     llvm::CallBase *callSite = dyn_cast<llvm::CallBase>(user);
5196     if (!callSite) continue;
5197     if (!callSite->isCallee(&*use))
5198       continue;
5199 
5200     // If the return types don't match exactly, then we can't
5201     // transform this call unless it's dead.
5202     if (callSite->getType() != newRetTy && !callSite->use_empty())
5203       continue;
5204 
5205     // Get the call site's attribute list.
5206     SmallVector<llvm::AttributeSet, 8> newArgAttrs;
5207     llvm::AttributeList oldAttrs = callSite->getAttributes();
5208 
5209     // If the function was passed too few arguments, don't transform.
5210     unsigned newNumArgs = newFn->arg_size();
5211     if (callSite->arg_size() < newNumArgs)
5212       continue;
5213 
5214     // If extra arguments were passed, we silently drop them.
5215     // If any of the types mismatch, we don't transform.
5216     unsigned argNo = 0;
5217     bool dontTransform = false;
5218     for (llvm::Argument &A : newFn->args()) {
5219       if (callSite->getArgOperand(argNo)->getType() != A.getType()) {
5220         dontTransform = true;
5221         break;
5222       }
5223 
5224       // Add any parameter attributes.
5225       newArgAttrs.push_back(oldAttrs.getParamAttrs(argNo));
5226       argNo++;
5227     }
5228     if (dontTransform)
5229       continue;
5230 
5231     // Okay, we can transform this.  Create the new call instruction and copy
5232     // over the required information.
5233     newArgs.append(callSite->arg_begin(), callSite->arg_begin() + argNo);
5234 
5235     // Copy over any operand bundles.
5236     SmallVector<llvm::OperandBundleDef, 1> newBundles;
5237     callSite->getOperandBundlesAsDefs(newBundles);
5238 
5239     llvm::CallBase *newCall;
5240     if (isa<llvm::CallInst>(callSite)) {
5241       newCall =
5242           llvm::CallInst::Create(newFn, newArgs, newBundles, "", callSite);
5243     } else {
5244       auto *oldInvoke = cast<llvm::InvokeInst>(callSite);
5245       newCall = llvm::InvokeInst::Create(newFn, oldInvoke->getNormalDest(),
5246                                          oldInvoke->getUnwindDest(), newArgs,
5247                                          newBundles, "", callSite);
5248     }
5249     newArgs.clear(); // for the next iteration
5250 
5251     if (!newCall->getType()->isVoidTy())
5252       newCall->takeName(callSite);
5253     newCall->setAttributes(
5254         llvm::AttributeList::get(newFn->getContext(), oldAttrs.getFnAttrs(),
5255                                  oldAttrs.getRetAttrs(), newArgAttrs));
5256     newCall->setCallingConv(callSite->getCallingConv());
5257 
5258     // Finally, remove the old call, replacing any uses with the new one.
5259     if (!callSite->use_empty())
5260       callSite->replaceAllUsesWith(newCall);
5261 
5262     // Copy debug location attached to CI.
5263     if (callSite->getDebugLoc())
5264       newCall->setDebugLoc(callSite->getDebugLoc());
5265 
5266     callSite->eraseFromParent();
5267   }
5268 }
5269 
5270 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we
5271 /// implement a function with no prototype, e.g. "int foo() {}".  If there are
5272 /// existing call uses of the old function in the module, this adjusts them to
5273 /// call the new function directly.
5274 ///
5275 /// This is not just a cleanup: the always_inline pass requires direct calls to
5276 /// functions to be able to inline them.  If there is a bitcast in the way, it
5277 /// won't inline them.  Instcombine normally deletes these calls, but it isn't
5278 /// run at -O0.
5279 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
5280                                                       llvm::Function *NewFn) {
5281   // If we're redefining a global as a function, don't transform it.
5282   if (!isa<llvm::Function>(Old)) return;
5283 
5284   replaceUsesOfNonProtoConstant(Old, NewFn);
5285 }
5286 
5287 void CodeGenModule::HandleCXXStaticMemberVarInstantiation(VarDecl *VD) {
5288   auto DK = VD->isThisDeclarationADefinition();
5289   if (DK == VarDecl::Definition && VD->hasAttr<DLLImportAttr>())
5290     return;
5291 
5292   TemplateSpecializationKind TSK = VD->getTemplateSpecializationKind();
5293   // If we have a definition, this might be a deferred decl. If the
5294   // instantiation is explicit, make sure we emit it at the end.
5295   if (VD->getDefinition() && TSK == TSK_ExplicitInstantiationDefinition)
5296     GetAddrOfGlobalVar(VD);
5297 
5298   EmitTopLevelDecl(VD);
5299 }
5300 
5301 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD,
5302                                                  llvm::GlobalValue *GV) {
5303   const auto *D = cast<FunctionDecl>(GD.getDecl());
5304 
5305   // Compute the function info and LLVM type.
5306   const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
5307   llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
5308 
5309   // Get or create the prototype for the function.
5310   if (!GV || (GV->getValueType() != Ty))
5311     GV = cast<llvm::GlobalValue>(GetAddrOfFunction(GD, Ty, /*ForVTable=*/false,
5312                                                    /*DontDefer=*/true,
5313                                                    ForDefinition));
5314 
5315   // Already emitted.
5316   if (!GV->isDeclaration())
5317     return;
5318 
5319   // We need to set linkage and visibility on the function before
5320   // generating code for it because various parts of IR generation
5321   // want to propagate this information down (e.g. to local static
5322   // declarations).
5323   auto *Fn = cast<llvm::Function>(GV);
5324   setFunctionLinkage(GD, Fn);
5325 
5326   // FIXME: this is redundant with part of setFunctionDefinitionAttributes
5327   setGVProperties(Fn, GD);
5328 
5329   MaybeHandleStaticInExternC(D, Fn);
5330 
5331   maybeSetTrivialComdat(*D, *Fn);
5332 
5333   // Set CodeGen attributes that represent floating point environment.
5334   setLLVMFunctionFEnvAttributes(D, Fn);
5335 
5336   CodeGenFunction(*this).GenerateCode(GD, Fn, FI);
5337 
5338   setNonAliasAttributes(GD, Fn);
5339   SetLLVMFunctionAttributesForDefinition(D, Fn);
5340 
5341   if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>())
5342     AddGlobalCtor(Fn, CA->getPriority());
5343   if (const DestructorAttr *DA = D->getAttr<DestructorAttr>())
5344     AddGlobalDtor(Fn, DA->getPriority(), true);
5345   if (D->hasAttr<AnnotateAttr>())
5346     AddGlobalAnnotations(D, Fn);
5347 }
5348 
5349 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) {
5350   const auto *D = cast<ValueDecl>(GD.getDecl());
5351   const AliasAttr *AA = D->getAttr<AliasAttr>();
5352   assert(AA && "Not an alias?");
5353 
5354   StringRef MangledName = getMangledName(GD);
5355 
5356   if (AA->getAliasee() == MangledName) {
5357     Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0;
5358     return;
5359   }
5360 
5361   // If there is a definition in the module, then it wins over the alias.
5362   // This is dubious, but allow it to be safe.  Just ignore the alias.
5363   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
5364   if (Entry && !Entry->isDeclaration())
5365     return;
5366 
5367   Aliases.push_back(GD);
5368 
5369   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
5370 
5371   // Create a reference to the named value.  This ensures that it is emitted
5372   // if a deferred decl.
5373   llvm::Constant *Aliasee;
5374   llvm::GlobalValue::LinkageTypes LT;
5375   if (isa<llvm::FunctionType>(DeclTy)) {
5376     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GD,
5377                                       /*ForVTable=*/false);
5378     LT = getFunctionLinkage(GD);
5379   } else {
5380     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), DeclTy, LangAS::Default,
5381                                     /*D=*/nullptr);
5382     if (const auto *VD = dyn_cast<VarDecl>(GD.getDecl()))
5383       LT = getLLVMLinkageVarDefinition(VD, D->getType().isConstQualified());
5384     else
5385       LT = getFunctionLinkage(GD);
5386   }
5387 
5388   // Create the new alias itself, but don't set a name yet.
5389   unsigned AS = Aliasee->getType()->getPointerAddressSpace();
5390   auto *GA =
5391       llvm::GlobalAlias::create(DeclTy, AS, LT, "", Aliasee, &getModule());
5392 
5393   if (Entry) {
5394     if (GA->getAliasee() == Entry) {
5395       Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0;
5396       return;
5397     }
5398 
5399     assert(Entry->isDeclaration());
5400 
5401     // If there is a declaration in the module, then we had an extern followed
5402     // by the alias, as in:
5403     //   extern int test6();
5404     //   ...
5405     //   int test6() __attribute__((alias("test7")));
5406     //
5407     // Remove it and replace uses of it with the alias.
5408     GA->takeName(Entry);
5409 
5410     Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA,
5411                                                           Entry->getType()));
5412     Entry->eraseFromParent();
5413   } else {
5414     GA->setName(MangledName);
5415   }
5416 
5417   // Set attributes which are particular to an alias; this is a
5418   // specialization of the attributes which may be set on a global
5419   // variable/function.
5420   if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakRefAttr>() ||
5421       D->isWeakImported()) {
5422     GA->setLinkage(llvm::Function::WeakAnyLinkage);
5423   }
5424 
5425   if (const auto *VD = dyn_cast<VarDecl>(D))
5426     if (VD->getTLSKind())
5427       setTLSMode(GA, *VD);
5428 
5429   SetCommonAttributes(GD, GA);
5430 
5431   // Emit global alias debug information.
5432   if (isa<VarDecl>(D))
5433     if (CGDebugInfo *DI = getModuleDebugInfo())
5434       DI->EmitGlobalAlias(cast<llvm::GlobalValue>(GA->getAliasee()->stripPointerCasts()), GD);
5435 }
5436 
5437 void CodeGenModule::emitIFuncDefinition(GlobalDecl GD) {
5438   const auto *D = cast<ValueDecl>(GD.getDecl());
5439   const IFuncAttr *IFA = D->getAttr<IFuncAttr>();
5440   assert(IFA && "Not an ifunc?");
5441 
5442   StringRef MangledName = getMangledName(GD);
5443 
5444   if (IFA->getResolver() == MangledName) {
5445     Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1;
5446     return;
5447   }
5448 
5449   // Report an error if some definition overrides ifunc.
5450   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
5451   if (Entry && !Entry->isDeclaration()) {
5452     GlobalDecl OtherGD;
5453     if (lookupRepresentativeDecl(MangledName, OtherGD) &&
5454         DiagnosedConflictingDefinitions.insert(GD).second) {
5455       Diags.Report(D->getLocation(), diag::err_duplicate_mangled_name)
5456           << MangledName;
5457       Diags.Report(OtherGD.getDecl()->getLocation(),
5458                    diag::note_previous_definition);
5459     }
5460     return;
5461   }
5462 
5463   Aliases.push_back(GD);
5464 
5465   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
5466   llvm::Type *ResolverTy = llvm::GlobalIFunc::getResolverFunctionType(DeclTy);
5467   llvm::Constant *Resolver =
5468       GetOrCreateLLVMFunction(IFA->getResolver(), ResolverTy, {},
5469                               /*ForVTable=*/false);
5470   llvm::GlobalIFunc *GIF =
5471       llvm::GlobalIFunc::create(DeclTy, 0, llvm::Function::ExternalLinkage,
5472                                 "", Resolver, &getModule());
5473   if (Entry) {
5474     if (GIF->getResolver() == Entry) {
5475       Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1;
5476       return;
5477     }
5478     assert(Entry->isDeclaration());
5479 
5480     // If there is a declaration in the module, then we had an extern followed
5481     // by the ifunc, as in:
5482     //   extern int test();
5483     //   ...
5484     //   int test() __attribute__((ifunc("resolver")));
5485     //
5486     // Remove it and replace uses of it with the ifunc.
5487     GIF->takeName(Entry);
5488 
5489     Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GIF,
5490                                                           Entry->getType()));
5491     Entry->eraseFromParent();
5492   } else
5493     GIF->setName(MangledName);
5494 
5495   SetCommonAttributes(GD, GIF);
5496 }
5497 
5498 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,
5499                                             ArrayRef<llvm::Type*> Tys) {
5500   return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID,
5501                                          Tys);
5502 }
5503 
5504 static llvm::StringMapEntry<llvm::GlobalVariable *> &
5505 GetConstantCFStringEntry(llvm::StringMap<llvm::GlobalVariable *> &Map,
5506                          const StringLiteral *Literal, bool TargetIsLSB,
5507                          bool &IsUTF16, unsigned &StringLength) {
5508   StringRef String = Literal->getString();
5509   unsigned NumBytes = String.size();
5510 
5511   // Check for simple case.
5512   if (!Literal->containsNonAsciiOrNull()) {
5513     StringLength = NumBytes;
5514     return *Map.insert(std::make_pair(String, nullptr)).first;
5515   }
5516 
5517   // Otherwise, convert the UTF8 literals into a string of shorts.
5518   IsUTF16 = true;
5519 
5520   SmallVector<llvm::UTF16, 128> ToBuf(NumBytes + 1); // +1 for ending nulls.
5521   const llvm::UTF8 *FromPtr = (const llvm::UTF8 *)String.data();
5522   llvm::UTF16 *ToPtr = &ToBuf[0];
5523 
5524   (void)llvm::ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, &ToPtr,
5525                                  ToPtr + NumBytes, llvm::strictConversion);
5526 
5527   // ConvertUTF8toUTF16 returns the length in ToPtr.
5528   StringLength = ToPtr - &ToBuf[0];
5529 
5530   // Add an explicit null.
5531   *ToPtr = 0;
5532   return *Map.insert(std::make_pair(
5533                          StringRef(reinterpret_cast<const char *>(ToBuf.data()),
5534                                    (StringLength + 1) * 2),
5535                          nullptr)).first;
5536 }
5537 
5538 ConstantAddress
5539 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) {
5540   unsigned StringLength = 0;
5541   bool isUTF16 = false;
5542   llvm::StringMapEntry<llvm::GlobalVariable *> &Entry =
5543       GetConstantCFStringEntry(CFConstantStringMap, Literal,
5544                                getDataLayout().isLittleEndian(), isUTF16,
5545                                StringLength);
5546 
5547   if (auto *C = Entry.second)
5548     return ConstantAddress(
5549         C, C->getValueType(), CharUnits::fromQuantity(C->getAlignment()));
5550 
5551   llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty);
5552   llvm::Constant *Zeros[] = { Zero, Zero };
5553 
5554   const ASTContext &Context = getContext();
5555   const llvm::Triple &Triple = getTriple();
5556 
5557   const auto CFRuntime = getLangOpts().CFRuntime;
5558   const bool IsSwiftABI =
5559       static_cast<unsigned>(CFRuntime) >=
5560       static_cast<unsigned>(LangOptions::CoreFoundationABI::Swift);
5561   const bool IsSwift4_1 = CFRuntime == LangOptions::CoreFoundationABI::Swift4_1;
5562 
5563   // If we don't already have it, get __CFConstantStringClassReference.
5564   if (!CFConstantStringClassRef) {
5565     const char *CFConstantStringClassName = "__CFConstantStringClassReference";
5566     llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
5567     Ty = llvm::ArrayType::get(Ty, 0);
5568 
5569     switch (CFRuntime) {
5570     default: break;
5571     case LangOptions::CoreFoundationABI::Swift: [[fallthrough]];
5572     case LangOptions::CoreFoundationABI::Swift5_0:
5573       CFConstantStringClassName =
5574           Triple.isOSDarwin() ? "$s15SwiftFoundation19_NSCFConstantStringCN"
5575                               : "$s10Foundation19_NSCFConstantStringCN";
5576       Ty = IntPtrTy;
5577       break;
5578     case LangOptions::CoreFoundationABI::Swift4_2:
5579       CFConstantStringClassName =
5580           Triple.isOSDarwin() ? "$S15SwiftFoundation19_NSCFConstantStringCN"
5581                               : "$S10Foundation19_NSCFConstantStringCN";
5582       Ty = IntPtrTy;
5583       break;
5584     case LangOptions::CoreFoundationABI::Swift4_1:
5585       CFConstantStringClassName =
5586           Triple.isOSDarwin() ? "__T015SwiftFoundation19_NSCFConstantStringCN"
5587                               : "__T010Foundation19_NSCFConstantStringCN";
5588       Ty = IntPtrTy;
5589       break;
5590     }
5591 
5592     llvm::Constant *C = CreateRuntimeVariable(Ty, CFConstantStringClassName);
5593 
5594     if (Triple.isOSBinFormatELF() || Triple.isOSBinFormatCOFF()) {
5595       llvm::GlobalValue *GV = nullptr;
5596 
5597       if ((GV = dyn_cast<llvm::GlobalValue>(C))) {
5598         IdentifierInfo &II = Context.Idents.get(GV->getName());
5599         TranslationUnitDecl *TUDecl = Context.getTranslationUnitDecl();
5600         DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl);
5601 
5602         const VarDecl *VD = nullptr;
5603         for (const auto *Result : DC->lookup(&II))
5604           if ((VD = dyn_cast<VarDecl>(Result)))
5605             break;
5606 
5607         if (Triple.isOSBinFormatELF()) {
5608           if (!VD)
5609             GV->setLinkage(llvm::GlobalValue::ExternalLinkage);
5610         } else {
5611           GV->setLinkage(llvm::GlobalValue::ExternalLinkage);
5612           if (!VD || !VD->hasAttr<DLLExportAttr>())
5613             GV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass);
5614           else
5615             GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass);
5616         }
5617 
5618         setDSOLocal(GV);
5619       }
5620     }
5621 
5622     // Decay array -> ptr
5623     CFConstantStringClassRef =
5624         IsSwiftABI ? llvm::ConstantExpr::getPtrToInt(C, Ty)
5625                    : llvm::ConstantExpr::getGetElementPtr(Ty, C, Zeros);
5626   }
5627 
5628   QualType CFTy = Context.getCFConstantStringType();
5629 
5630   auto *STy = cast<llvm::StructType>(getTypes().ConvertType(CFTy));
5631 
5632   ConstantInitBuilder Builder(*this);
5633   auto Fields = Builder.beginStruct(STy);
5634 
5635   // Class pointer.
5636   Fields.add(cast<llvm::Constant>(CFConstantStringClassRef));
5637 
5638   // Flags.
5639   if (IsSwiftABI) {
5640     Fields.addInt(IntPtrTy, IsSwift4_1 ? 0x05 : 0x01);
5641     Fields.addInt(Int64Ty, isUTF16 ? 0x07d0 : 0x07c8);
5642   } else {
5643     Fields.addInt(IntTy, isUTF16 ? 0x07d0 : 0x07C8);
5644   }
5645 
5646   // String pointer.
5647   llvm::Constant *C = nullptr;
5648   if (isUTF16) {
5649     auto Arr = llvm::makeArrayRef(
5650         reinterpret_cast<uint16_t *>(const_cast<char *>(Entry.first().data())),
5651         Entry.first().size() / 2);
5652     C = llvm::ConstantDataArray::get(VMContext, Arr);
5653   } else {
5654     C = llvm::ConstantDataArray::getString(VMContext, Entry.first());
5655   }
5656 
5657   // Note: -fwritable-strings doesn't make the backing store strings of
5658   // CFStrings writable. (See <rdar://problem/10657500>)
5659   auto *GV =
5660       new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true,
5661                                llvm::GlobalValue::PrivateLinkage, C, ".str");
5662   GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
5663   // Don't enforce the target's minimum global alignment, since the only use
5664   // of the string is via this class initializer.
5665   CharUnits Align = isUTF16 ? Context.getTypeAlignInChars(Context.ShortTy)
5666                             : Context.getTypeAlignInChars(Context.CharTy);
5667   GV->setAlignment(Align.getAsAlign());
5668 
5669   // FIXME: We set the section explicitly to avoid a bug in ld64 224.1.
5670   // Without it LLVM can merge the string with a non unnamed_addr one during
5671   // LTO.  Doing that changes the section it ends in, which surprises ld64.
5672   if (Triple.isOSBinFormatMachO())
5673     GV->setSection(isUTF16 ? "__TEXT,__ustring"
5674                            : "__TEXT,__cstring,cstring_literals");
5675   // Make sure the literal ends up in .rodata to allow for safe ICF and for
5676   // the static linker to adjust permissions to read-only later on.
5677   else if (Triple.isOSBinFormatELF())
5678     GV->setSection(".rodata");
5679 
5680   // String.
5681   llvm::Constant *Str =
5682       llvm::ConstantExpr::getGetElementPtr(GV->getValueType(), GV, Zeros);
5683 
5684   if (isUTF16)
5685     // Cast the UTF16 string to the correct type.
5686     Str = llvm::ConstantExpr::getBitCast(Str, Int8PtrTy);
5687   Fields.add(Str);
5688 
5689   // String length.
5690   llvm::IntegerType *LengthTy =
5691       llvm::IntegerType::get(getModule().getContext(),
5692                              Context.getTargetInfo().getLongWidth());
5693   if (IsSwiftABI) {
5694     if (CFRuntime == LangOptions::CoreFoundationABI::Swift4_1 ||
5695         CFRuntime == LangOptions::CoreFoundationABI::Swift4_2)
5696       LengthTy = Int32Ty;
5697     else
5698       LengthTy = IntPtrTy;
5699   }
5700   Fields.addInt(LengthTy, StringLength);
5701 
5702   // Swift ABI requires 8-byte alignment to ensure that the _Atomic(uint64_t) is
5703   // properly aligned on 32-bit platforms.
5704   CharUnits Alignment =
5705       IsSwiftABI ? Context.toCharUnitsFromBits(64) : getPointerAlign();
5706 
5707   // The struct.
5708   GV = Fields.finishAndCreateGlobal("_unnamed_cfstring_", Alignment,
5709                                     /*isConstant=*/false,
5710                                     llvm::GlobalVariable::PrivateLinkage);
5711   GV->addAttribute("objc_arc_inert");
5712   switch (Triple.getObjectFormat()) {
5713   case llvm::Triple::UnknownObjectFormat:
5714     llvm_unreachable("unknown file format");
5715   case llvm::Triple::DXContainer:
5716   case llvm::Triple::GOFF:
5717   case llvm::Triple::SPIRV:
5718   case llvm::Triple::XCOFF:
5719     llvm_unreachable("unimplemented");
5720   case llvm::Triple::COFF:
5721   case llvm::Triple::ELF:
5722   case llvm::Triple::Wasm:
5723     GV->setSection("cfstring");
5724     break;
5725   case llvm::Triple::MachO:
5726     GV->setSection("__DATA,__cfstring");
5727     break;
5728   }
5729   Entry.second = GV;
5730 
5731   return ConstantAddress(GV, GV->getValueType(), Alignment);
5732 }
5733 
5734 bool CodeGenModule::getExpressionLocationsEnabled() const {
5735   return !CodeGenOpts.EmitCodeView || CodeGenOpts.DebugColumnInfo;
5736 }
5737 
5738 QualType CodeGenModule::getObjCFastEnumerationStateType() {
5739   if (ObjCFastEnumerationStateType.isNull()) {
5740     RecordDecl *D = Context.buildImplicitRecord("__objcFastEnumerationState");
5741     D->startDefinition();
5742 
5743     QualType FieldTypes[] = {
5744       Context.UnsignedLongTy,
5745       Context.getPointerType(Context.getObjCIdType()),
5746       Context.getPointerType(Context.UnsignedLongTy),
5747       Context.getConstantArrayType(Context.UnsignedLongTy,
5748                            llvm::APInt(32, 5), nullptr, ArrayType::Normal, 0)
5749     };
5750 
5751     for (size_t i = 0; i < 4; ++i) {
5752       FieldDecl *Field = FieldDecl::Create(Context,
5753                                            D,
5754                                            SourceLocation(),
5755                                            SourceLocation(), nullptr,
5756                                            FieldTypes[i], /*TInfo=*/nullptr,
5757                                            /*BitWidth=*/nullptr,
5758                                            /*Mutable=*/false,
5759                                            ICIS_NoInit);
5760       Field->setAccess(AS_public);
5761       D->addDecl(Field);
5762     }
5763 
5764     D->completeDefinition();
5765     ObjCFastEnumerationStateType = Context.getTagDeclType(D);
5766   }
5767 
5768   return ObjCFastEnumerationStateType;
5769 }
5770 
5771 llvm::Constant *
5772 CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) {
5773   assert(!E->getType()->isPointerType() && "Strings are always arrays");
5774 
5775   // Don't emit it as the address of the string, emit the string data itself
5776   // as an inline array.
5777   if (E->getCharByteWidth() == 1) {
5778     SmallString<64> Str(E->getString());
5779 
5780     // Resize the string to the right size, which is indicated by its type.
5781     const ConstantArrayType *CAT = Context.getAsConstantArrayType(E->getType());
5782     Str.resize(CAT->getSize().getZExtValue());
5783     return llvm::ConstantDataArray::getString(VMContext, Str, false);
5784   }
5785 
5786   auto *AType = cast<llvm::ArrayType>(getTypes().ConvertType(E->getType()));
5787   llvm::Type *ElemTy = AType->getElementType();
5788   unsigned NumElements = AType->getNumElements();
5789 
5790   // Wide strings have either 2-byte or 4-byte elements.
5791   if (ElemTy->getPrimitiveSizeInBits() == 16) {
5792     SmallVector<uint16_t, 32> Elements;
5793     Elements.reserve(NumElements);
5794 
5795     for(unsigned i = 0, e = E->getLength(); i != e; ++i)
5796       Elements.push_back(E->getCodeUnit(i));
5797     Elements.resize(NumElements);
5798     return llvm::ConstantDataArray::get(VMContext, Elements);
5799   }
5800 
5801   assert(ElemTy->getPrimitiveSizeInBits() == 32);
5802   SmallVector<uint32_t, 32> Elements;
5803   Elements.reserve(NumElements);
5804 
5805   for(unsigned i = 0, e = E->getLength(); i != e; ++i)
5806     Elements.push_back(E->getCodeUnit(i));
5807   Elements.resize(NumElements);
5808   return llvm::ConstantDataArray::get(VMContext, Elements);
5809 }
5810 
5811 static llvm::GlobalVariable *
5812 GenerateStringLiteral(llvm::Constant *C, llvm::GlobalValue::LinkageTypes LT,
5813                       CodeGenModule &CGM, StringRef GlobalName,
5814                       CharUnits Alignment) {
5815   unsigned AddrSpace = CGM.getContext().getTargetAddressSpace(
5816       CGM.GetGlobalConstantAddressSpace());
5817 
5818   llvm::Module &M = CGM.getModule();
5819   // Create a global variable for this string
5820   auto *GV = new llvm::GlobalVariable(
5821       M, C->getType(), !CGM.getLangOpts().WritableStrings, LT, C, GlobalName,
5822       nullptr, llvm::GlobalVariable::NotThreadLocal, AddrSpace);
5823   GV->setAlignment(Alignment.getAsAlign());
5824   GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
5825   if (GV->isWeakForLinker()) {
5826     assert(CGM.supportsCOMDAT() && "Only COFF uses weak string literals");
5827     GV->setComdat(M.getOrInsertComdat(GV->getName()));
5828   }
5829   CGM.setDSOLocal(GV);
5830 
5831   return GV;
5832 }
5833 
5834 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a
5835 /// constant array for the given string literal.
5836 ConstantAddress
5837 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S,
5838                                                   StringRef Name) {
5839   CharUnits Alignment = getContext().getAlignOfGlobalVarInChars(S->getType());
5840 
5841   llvm::Constant *C = GetConstantArrayFromStringLiteral(S);
5842   llvm::GlobalVariable **Entry = nullptr;
5843   if (!LangOpts.WritableStrings) {
5844     Entry = &ConstantStringMap[C];
5845     if (auto GV = *Entry) {
5846       if (uint64_t(Alignment.getQuantity()) > GV->getAlignment())
5847         GV->setAlignment(Alignment.getAsAlign());
5848       return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV),
5849                              GV->getValueType(), Alignment);
5850     }
5851   }
5852 
5853   SmallString<256> MangledNameBuffer;
5854   StringRef GlobalVariableName;
5855   llvm::GlobalValue::LinkageTypes LT;
5856 
5857   // Mangle the string literal if that's how the ABI merges duplicate strings.
5858   // Don't do it if they are writable, since we don't want writes in one TU to
5859   // affect strings in another.
5860   if (getCXXABI().getMangleContext().shouldMangleStringLiteral(S) &&
5861       !LangOpts.WritableStrings) {
5862     llvm::raw_svector_ostream Out(MangledNameBuffer);
5863     getCXXABI().getMangleContext().mangleStringLiteral(S, Out);
5864     LT = llvm::GlobalValue::LinkOnceODRLinkage;
5865     GlobalVariableName = MangledNameBuffer;
5866   } else {
5867     LT = llvm::GlobalValue::PrivateLinkage;
5868     GlobalVariableName = Name;
5869   }
5870 
5871   auto GV = GenerateStringLiteral(C, LT, *this, GlobalVariableName, Alignment);
5872 
5873   CGDebugInfo *DI = getModuleDebugInfo();
5874   if (DI && getCodeGenOpts().hasReducedDebugInfo())
5875     DI->AddStringLiteralDebugInfo(GV, S);
5876 
5877   if (Entry)
5878     *Entry = GV;
5879 
5880   SanitizerMD->reportGlobal(GV, S->getStrTokenLoc(0), "<string literal>");
5881 
5882   return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV),
5883                          GV->getValueType(), Alignment);
5884 }
5885 
5886 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant
5887 /// array for the given ObjCEncodeExpr node.
5888 ConstantAddress
5889 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) {
5890   std::string Str;
5891   getContext().getObjCEncodingForType(E->getEncodedType(), Str);
5892 
5893   return GetAddrOfConstantCString(Str);
5894 }
5895 
5896 /// GetAddrOfConstantCString - Returns a pointer to a character array containing
5897 /// the literal and a terminating '\0' character.
5898 /// The result has pointer to array type.
5899 ConstantAddress CodeGenModule::GetAddrOfConstantCString(
5900     const std::string &Str, const char *GlobalName) {
5901   StringRef StrWithNull(Str.c_str(), Str.size() + 1);
5902   CharUnits Alignment =
5903     getContext().getAlignOfGlobalVarInChars(getContext().CharTy);
5904 
5905   llvm::Constant *C =
5906       llvm::ConstantDataArray::getString(getLLVMContext(), StrWithNull, false);
5907 
5908   // Don't share any string literals if strings aren't constant.
5909   llvm::GlobalVariable **Entry = nullptr;
5910   if (!LangOpts.WritableStrings) {
5911     Entry = &ConstantStringMap[C];
5912     if (auto GV = *Entry) {
5913       if (uint64_t(Alignment.getQuantity()) > GV->getAlignment())
5914         GV->setAlignment(Alignment.getAsAlign());
5915       return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV),
5916                              GV->getValueType(), Alignment);
5917     }
5918   }
5919 
5920   // Get the default prefix if a name wasn't specified.
5921   if (!GlobalName)
5922     GlobalName = ".str";
5923   // Create a global variable for this.
5924   auto GV = GenerateStringLiteral(C, llvm::GlobalValue::PrivateLinkage, *this,
5925                                   GlobalName, Alignment);
5926   if (Entry)
5927     *Entry = GV;
5928 
5929   return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV),
5930                          GV->getValueType(), Alignment);
5931 }
5932 
5933 ConstantAddress CodeGenModule::GetAddrOfGlobalTemporary(
5934     const MaterializeTemporaryExpr *E, const Expr *Init) {
5935   assert((E->getStorageDuration() == SD_Static ||
5936           E->getStorageDuration() == SD_Thread) && "not a global temporary");
5937   const auto *VD = cast<VarDecl>(E->getExtendingDecl());
5938 
5939   // If we're not materializing a subobject of the temporary, keep the
5940   // cv-qualifiers from the type of the MaterializeTemporaryExpr.
5941   QualType MaterializedType = Init->getType();
5942   if (Init == E->getSubExpr())
5943     MaterializedType = E->getType();
5944 
5945   CharUnits Align = getContext().getTypeAlignInChars(MaterializedType);
5946 
5947   auto InsertResult = MaterializedGlobalTemporaryMap.insert({E, nullptr});
5948   if (!InsertResult.second) {
5949     // We've seen this before: either we already created it or we're in the
5950     // process of doing so.
5951     if (!InsertResult.first->second) {
5952       // We recursively re-entered this function, probably during emission of
5953       // the initializer. Create a placeholder. We'll clean this up in the
5954       // outer call, at the end of this function.
5955       llvm::Type *Type = getTypes().ConvertTypeForMem(MaterializedType);
5956       InsertResult.first->second = new llvm::GlobalVariable(
5957           getModule(), Type, false, llvm::GlobalVariable::InternalLinkage,
5958           nullptr);
5959     }
5960     return ConstantAddress(InsertResult.first->second,
5961                            llvm::cast<llvm::GlobalVariable>(
5962                                InsertResult.first->second->stripPointerCasts())
5963                                ->getValueType(),
5964                            Align);
5965   }
5966 
5967   // FIXME: If an externally-visible declaration extends multiple temporaries,
5968   // we need to give each temporary the same name in every translation unit (and
5969   // we also need to make the temporaries externally-visible).
5970   SmallString<256> Name;
5971   llvm::raw_svector_ostream Out(Name);
5972   getCXXABI().getMangleContext().mangleReferenceTemporary(
5973       VD, E->getManglingNumber(), Out);
5974 
5975   APValue *Value = nullptr;
5976   if (E->getStorageDuration() == SD_Static && VD && VD->evaluateValue()) {
5977     // If the initializer of the extending declaration is a constant
5978     // initializer, we should have a cached constant initializer for this
5979     // temporary. Note that this might have a different value from the value
5980     // computed by evaluating the initializer if the surrounding constant
5981     // expression modifies the temporary.
5982     Value = E->getOrCreateValue(false);
5983   }
5984 
5985   // Try evaluating it now, it might have a constant initializer.
5986   Expr::EvalResult EvalResult;
5987   if (!Value && Init->EvaluateAsRValue(EvalResult, getContext()) &&
5988       !EvalResult.hasSideEffects())
5989     Value = &EvalResult.Val;
5990 
5991   LangAS AddrSpace =
5992       VD ? GetGlobalVarAddressSpace(VD) : MaterializedType.getAddressSpace();
5993 
5994   Optional<ConstantEmitter> emitter;
5995   llvm::Constant *InitialValue = nullptr;
5996   bool Constant = false;
5997   llvm::Type *Type;
5998   if (Value) {
5999     // The temporary has a constant initializer, use it.
6000     emitter.emplace(*this);
6001     InitialValue = emitter->emitForInitializer(*Value, AddrSpace,
6002                                                MaterializedType);
6003     Constant = isTypeConstant(MaterializedType, /*ExcludeCtor*/Value);
6004     Type = InitialValue->getType();
6005   } else {
6006     // No initializer, the initialization will be provided when we
6007     // initialize the declaration which performed lifetime extension.
6008     Type = getTypes().ConvertTypeForMem(MaterializedType);
6009   }
6010 
6011   // Create a global variable for this lifetime-extended temporary.
6012   llvm::GlobalValue::LinkageTypes Linkage =
6013       getLLVMLinkageVarDefinition(VD, Constant);
6014   if (Linkage == llvm::GlobalVariable::ExternalLinkage) {
6015     const VarDecl *InitVD;
6016     if (VD->isStaticDataMember() && VD->getAnyInitializer(InitVD) &&
6017         isa<CXXRecordDecl>(InitVD->getLexicalDeclContext())) {
6018       // Temporaries defined inside a class get linkonce_odr linkage because the
6019       // class can be defined in multiple translation units.
6020       Linkage = llvm::GlobalVariable::LinkOnceODRLinkage;
6021     } else {
6022       // There is no need for this temporary to have external linkage if the
6023       // VarDecl has external linkage.
6024       Linkage = llvm::GlobalVariable::InternalLinkage;
6025     }
6026   }
6027   auto TargetAS = getContext().getTargetAddressSpace(AddrSpace);
6028   auto *GV = new llvm::GlobalVariable(
6029       getModule(), Type, Constant, Linkage, InitialValue, Name.c_str(),
6030       /*InsertBefore=*/nullptr, llvm::GlobalVariable::NotThreadLocal, TargetAS);
6031   if (emitter) emitter->finalize(GV);
6032   // Don't assign dllimport or dllexport to local linkage globals.
6033   if (!llvm::GlobalValue::isLocalLinkage(Linkage)) {
6034     setGVProperties(GV, VD);
6035     if (GV->getDLLStorageClass() == llvm::GlobalVariable::DLLExportStorageClass)
6036       // The reference temporary should never be dllexport.
6037       GV->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass);
6038   }
6039   GV->setAlignment(Align.getAsAlign());
6040   if (supportsCOMDAT() && GV->isWeakForLinker())
6041     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
6042   if (VD->getTLSKind())
6043     setTLSMode(GV, *VD);
6044   llvm::Constant *CV = GV;
6045   if (AddrSpace != LangAS::Default)
6046     CV = getTargetCodeGenInfo().performAddrSpaceCast(
6047         *this, GV, AddrSpace, LangAS::Default,
6048         Type->getPointerTo(
6049             getContext().getTargetAddressSpace(LangAS::Default)));
6050 
6051   // Update the map with the new temporary. If we created a placeholder above,
6052   // replace it with the new global now.
6053   llvm::Constant *&Entry = MaterializedGlobalTemporaryMap[E];
6054   if (Entry) {
6055     Entry->replaceAllUsesWith(
6056         llvm::ConstantExpr::getBitCast(CV, Entry->getType()));
6057     llvm::cast<llvm::GlobalVariable>(Entry)->eraseFromParent();
6058   }
6059   Entry = CV;
6060 
6061   return ConstantAddress(CV, Type, Align);
6062 }
6063 
6064 /// EmitObjCPropertyImplementations - Emit information for synthesized
6065 /// properties for an implementation.
6066 void CodeGenModule::EmitObjCPropertyImplementations(const
6067                                                     ObjCImplementationDecl *D) {
6068   for (const auto *PID : D->property_impls()) {
6069     // Dynamic is just for type-checking.
6070     if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) {
6071       ObjCPropertyDecl *PD = PID->getPropertyDecl();
6072 
6073       // Determine which methods need to be implemented, some may have
6074       // been overridden. Note that ::isPropertyAccessor is not the method
6075       // we want, that just indicates if the decl came from a
6076       // property. What we want to know is if the method is defined in
6077       // this implementation.
6078       auto *Getter = PID->getGetterMethodDecl();
6079       if (!Getter || Getter->isSynthesizedAccessorStub())
6080         CodeGenFunction(*this).GenerateObjCGetter(
6081             const_cast<ObjCImplementationDecl *>(D), PID);
6082       auto *Setter = PID->getSetterMethodDecl();
6083       if (!PD->isReadOnly() && (!Setter || Setter->isSynthesizedAccessorStub()))
6084         CodeGenFunction(*this).GenerateObjCSetter(
6085                                  const_cast<ObjCImplementationDecl *>(D), PID);
6086     }
6087   }
6088 }
6089 
6090 static bool needsDestructMethod(ObjCImplementationDecl *impl) {
6091   const ObjCInterfaceDecl *iface = impl->getClassInterface();
6092   for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin();
6093        ivar; ivar = ivar->getNextIvar())
6094     if (ivar->getType().isDestructedType())
6095       return true;
6096 
6097   return false;
6098 }
6099 
6100 static bool AllTrivialInitializers(CodeGenModule &CGM,
6101                                    ObjCImplementationDecl *D) {
6102   CodeGenFunction CGF(CGM);
6103   for (ObjCImplementationDecl::init_iterator B = D->init_begin(),
6104        E = D->init_end(); B != E; ++B) {
6105     CXXCtorInitializer *CtorInitExp = *B;
6106     Expr *Init = CtorInitExp->getInit();
6107     if (!CGF.isTrivialInitializer(Init))
6108       return false;
6109   }
6110   return true;
6111 }
6112 
6113 /// EmitObjCIvarInitializations - Emit information for ivar initialization
6114 /// for an implementation.
6115 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) {
6116   // We might need a .cxx_destruct even if we don't have any ivar initializers.
6117   if (needsDestructMethod(D)) {
6118     IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct");
6119     Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
6120     ObjCMethodDecl *DTORMethod = ObjCMethodDecl::Create(
6121         getContext(), D->getLocation(), D->getLocation(), cxxSelector,
6122         getContext().VoidTy, nullptr, D,
6123         /*isInstance=*/true, /*isVariadic=*/false,
6124         /*isPropertyAccessor=*/true, /*isSynthesizedAccessorStub=*/false,
6125         /*isImplicitlyDeclared=*/true,
6126         /*isDefined=*/false, ObjCMethodDecl::Required);
6127     D->addInstanceMethod(DTORMethod);
6128     CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false);
6129     D->setHasDestructors(true);
6130   }
6131 
6132   // If the implementation doesn't have any ivar initializers, we don't need
6133   // a .cxx_construct.
6134   if (D->getNumIvarInitializers() == 0 ||
6135       AllTrivialInitializers(*this, D))
6136     return;
6137 
6138   IdentifierInfo *II = &getContext().Idents.get(".cxx_construct");
6139   Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
6140   // The constructor returns 'self'.
6141   ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(
6142       getContext(), D->getLocation(), D->getLocation(), cxxSelector,
6143       getContext().getObjCIdType(), nullptr, D, /*isInstance=*/true,
6144       /*isVariadic=*/false,
6145       /*isPropertyAccessor=*/true, /*isSynthesizedAccessorStub=*/false,
6146       /*isImplicitlyDeclared=*/true,
6147       /*isDefined=*/false, ObjCMethodDecl::Required);
6148   D->addInstanceMethod(CTORMethod);
6149   CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true);
6150   D->setHasNonZeroConstructors(true);
6151 }
6152 
6153 // EmitLinkageSpec - Emit all declarations in a linkage spec.
6154 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) {
6155   if (LSD->getLanguage() != LinkageSpecDecl::lang_c &&
6156       LSD->getLanguage() != LinkageSpecDecl::lang_cxx) {
6157     ErrorUnsupported(LSD, "linkage spec");
6158     return;
6159   }
6160 
6161   EmitDeclContext(LSD);
6162 }
6163 
6164 void CodeGenModule::EmitTopLevelStmt(const TopLevelStmtDecl *D) {
6165   std::unique_ptr<CodeGenFunction> &CurCGF =
6166       GlobalTopLevelStmtBlockInFlight.first;
6167 
6168   // We emitted a top-level stmt but after it there is initialization.
6169   // Stop squashing the top-level stmts into a single function.
6170   if (CurCGF && CXXGlobalInits.back() != CurCGF->CurFn) {
6171     CurCGF->FinishFunction(D->getEndLoc());
6172     CurCGF = nullptr;
6173   }
6174 
6175   if (!CurCGF) {
6176     // void __stmts__N(void)
6177     // FIXME: Ask the ABI name mangler to pick a name.
6178     std::string Name = "__stmts__" + llvm::utostr(CXXGlobalInits.size());
6179     FunctionArgList Args;
6180     QualType RetTy = getContext().VoidTy;
6181     const CGFunctionInfo &FnInfo =
6182         getTypes().arrangeBuiltinFunctionDeclaration(RetTy, Args);
6183     llvm::FunctionType *FnTy = getTypes().GetFunctionType(FnInfo);
6184     llvm::Function *Fn = llvm::Function::Create(
6185         FnTy, llvm::GlobalValue::InternalLinkage, Name, &getModule());
6186 
6187     CurCGF.reset(new CodeGenFunction(*this));
6188     GlobalTopLevelStmtBlockInFlight.second = D;
6189     CurCGF->StartFunction(GlobalDecl(), RetTy, Fn, FnInfo, Args,
6190                           D->getBeginLoc(), D->getBeginLoc());
6191     CXXGlobalInits.push_back(Fn);
6192   }
6193 
6194   CurCGF->EmitStmt(D->getStmt());
6195 }
6196 
6197 void CodeGenModule::EmitDeclContext(const DeclContext *DC) {
6198   for (auto *I : DC->decls()) {
6199     // Unlike other DeclContexts, the contents of an ObjCImplDecl at TU scope
6200     // are themselves considered "top-level", so EmitTopLevelDecl on an
6201     // ObjCImplDecl does not recursively visit them. We need to do that in
6202     // case they're nested inside another construct (LinkageSpecDecl /
6203     // ExportDecl) that does stop them from being considered "top-level".
6204     if (auto *OID = dyn_cast<ObjCImplDecl>(I)) {
6205       for (auto *M : OID->methods())
6206         EmitTopLevelDecl(M);
6207     }
6208 
6209     EmitTopLevelDecl(I);
6210   }
6211 }
6212 
6213 /// EmitTopLevelDecl - Emit code for a single top level declaration.
6214 void CodeGenModule::EmitTopLevelDecl(Decl *D) {
6215   // Ignore dependent declarations.
6216   if (D->isTemplated())
6217     return;
6218 
6219   // Consteval function shouldn't be emitted.
6220   if (auto *FD = dyn_cast<FunctionDecl>(D))
6221     if (FD->isConsteval())
6222       return;
6223 
6224   switch (D->getKind()) {
6225   case Decl::CXXConversion:
6226   case Decl::CXXMethod:
6227   case Decl::Function:
6228     EmitGlobal(cast<FunctionDecl>(D));
6229     // Always provide some coverage mapping
6230     // even for the functions that aren't emitted.
6231     AddDeferredUnusedCoverageMapping(D);
6232     break;
6233 
6234   case Decl::CXXDeductionGuide:
6235     // Function-like, but does not result in code emission.
6236     break;
6237 
6238   case Decl::Var:
6239   case Decl::Decomposition:
6240   case Decl::VarTemplateSpecialization:
6241     EmitGlobal(cast<VarDecl>(D));
6242     if (auto *DD = dyn_cast<DecompositionDecl>(D))
6243       for (auto *B : DD->bindings())
6244         if (auto *HD = B->getHoldingVar())
6245           EmitGlobal(HD);
6246     break;
6247 
6248   // Indirect fields from global anonymous structs and unions can be
6249   // ignored; only the actual variable requires IR gen support.
6250   case Decl::IndirectField:
6251     break;
6252 
6253   // C++ Decls
6254   case Decl::Namespace:
6255     EmitDeclContext(cast<NamespaceDecl>(D));
6256     break;
6257   case Decl::ClassTemplateSpecialization: {
6258     const auto *Spec = cast<ClassTemplateSpecializationDecl>(D);
6259     if (CGDebugInfo *DI = getModuleDebugInfo())
6260       if (Spec->getSpecializationKind() ==
6261               TSK_ExplicitInstantiationDefinition &&
6262           Spec->hasDefinition())
6263         DI->completeTemplateDefinition(*Spec);
6264   } [[fallthrough]];
6265   case Decl::CXXRecord: {
6266     CXXRecordDecl *CRD = cast<CXXRecordDecl>(D);
6267     if (CGDebugInfo *DI = getModuleDebugInfo()) {
6268       if (CRD->hasDefinition())
6269         DI->EmitAndRetainType(getContext().getRecordType(cast<RecordDecl>(D)));
6270       if (auto *ES = D->getASTContext().getExternalSource())
6271         if (ES->hasExternalDefinitions(D) == ExternalASTSource::EK_Never)
6272           DI->completeUnusedClass(*CRD);
6273     }
6274     // Emit any static data members, they may be definitions.
6275     for (auto *I : CRD->decls())
6276       if (isa<VarDecl>(I) || isa<CXXRecordDecl>(I))
6277         EmitTopLevelDecl(I);
6278     break;
6279   }
6280     // No code generation needed.
6281   case Decl::UsingShadow:
6282   case Decl::ClassTemplate:
6283   case Decl::VarTemplate:
6284   case Decl::Concept:
6285   case Decl::VarTemplatePartialSpecialization:
6286   case Decl::FunctionTemplate:
6287   case Decl::TypeAliasTemplate:
6288   case Decl::Block:
6289   case Decl::Empty:
6290   case Decl::Binding:
6291     break;
6292   case Decl::Using:          // using X; [C++]
6293     if (CGDebugInfo *DI = getModuleDebugInfo())
6294         DI->EmitUsingDecl(cast<UsingDecl>(*D));
6295     break;
6296   case Decl::UsingEnum: // using enum X; [C++]
6297     if (CGDebugInfo *DI = getModuleDebugInfo())
6298       DI->EmitUsingEnumDecl(cast<UsingEnumDecl>(*D));
6299     break;
6300   case Decl::NamespaceAlias:
6301     if (CGDebugInfo *DI = getModuleDebugInfo())
6302         DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(*D));
6303     break;
6304   case Decl::UsingDirective: // using namespace X; [C++]
6305     if (CGDebugInfo *DI = getModuleDebugInfo())
6306       DI->EmitUsingDirective(cast<UsingDirectiveDecl>(*D));
6307     break;
6308   case Decl::CXXConstructor:
6309     getCXXABI().EmitCXXConstructors(cast<CXXConstructorDecl>(D));
6310     break;
6311   case Decl::CXXDestructor:
6312     getCXXABI().EmitCXXDestructors(cast<CXXDestructorDecl>(D));
6313     break;
6314 
6315   case Decl::StaticAssert:
6316     // Nothing to do.
6317     break;
6318 
6319   // Objective-C Decls
6320 
6321   // Forward declarations, no (immediate) code generation.
6322   case Decl::ObjCInterface:
6323   case Decl::ObjCCategory:
6324     break;
6325 
6326   case Decl::ObjCProtocol: {
6327     auto *Proto = cast<ObjCProtocolDecl>(D);
6328     if (Proto->isThisDeclarationADefinition())
6329       ObjCRuntime->GenerateProtocol(Proto);
6330     break;
6331   }
6332 
6333   case Decl::ObjCCategoryImpl:
6334     // Categories have properties but don't support synthesize so we
6335     // can ignore them here.
6336     ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D));
6337     break;
6338 
6339   case Decl::ObjCImplementation: {
6340     auto *OMD = cast<ObjCImplementationDecl>(D);
6341     EmitObjCPropertyImplementations(OMD);
6342     EmitObjCIvarInitializations(OMD);
6343     ObjCRuntime->GenerateClass(OMD);
6344     // Emit global variable debug information.
6345     if (CGDebugInfo *DI = getModuleDebugInfo())
6346       if (getCodeGenOpts().hasReducedDebugInfo())
6347         DI->getOrCreateInterfaceType(getContext().getObjCInterfaceType(
6348             OMD->getClassInterface()), OMD->getLocation());
6349     break;
6350   }
6351   case Decl::ObjCMethod: {
6352     auto *OMD = cast<ObjCMethodDecl>(D);
6353     // If this is not a prototype, emit the body.
6354     if (OMD->getBody())
6355       CodeGenFunction(*this).GenerateObjCMethod(OMD);
6356     break;
6357   }
6358   case Decl::ObjCCompatibleAlias:
6359     ObjCRuntime->RegisterAlias(cast<ObjCCompatibleAliasDecl>(D));
6360     break;
6361 
6362   case Decl::PragmaComment: {
6363     const auto *PCD = cast<PragmaCommentDecl>(D);
6364     switch (PCD->getCommentKind()) {
6365     case PCK_Unknown:
6366       llvm_unreachable("unexpected pragma comment kind");
6367     case PCK_Linker:
6368       AppendLinkerOptions(PCD->getArg());
6369       break;
6370     case PCK_Lib:
6371         AddDependentLib(PCD->getArg());
6372       break;
6373     case PCK_Compiler:
6374     case PCK_ExeStr:
6375     case PCK_User:
6376       break; // We ignore all of these.
6377     }
6378     break;
6379   }
6380 
6381   case Decl::PragmaDetectMismatch: {
6382     const auto *PDMD = cast<PragmaDetectMismatchDecl>(D);
6383     AddDetectMismatch(PDMD->getName(), PDMD->getValue());
6384     break;
6385   }
6386 
6387   case Decl::LinkageSpec:
6388     EmitLinkageSpec(cast<LinkageSpecDecl>(D));
6389     break;
6390 
6391   case Decl::FileScopeAsm: {
6392     // File-scope asm is ignored during device-side CUDA compilation.
6393     if (LangOpts.CUDA && LangOpts.CUDAIsDevice)
6394       break;
6395     // File-scope asm is ignored during device-side OpenMP compilation.
6396     if (LangOpts.OpenMPIsDevice)
6397       break;
6398     // File-scope asm is ignored during device-side SYCL compilation.
6399     if (LangOpts.SYCLIsDevice)
6400       break;
6401     auto *AD = cast<FileScopeAsmDecl>(D);
6402     getModule().appendModuleInlineAsm(AD->getAsmString()->getString());
6403     break;
6404   }
6405 
6406   case Decl::TopLevelStmt:
6407     EmitTopLevelStmt(cast<TopLevelStmtDecl>(D));
6408     break;
6409 
6410   case Decl::Import: {
6411     auto *Import = cast<ImportDecl>(D);
6412 
6413     // If we've already imported this module, we're done.
6414     if (!ImportedModules.insert(Import->getImportedModule()))
6415       break;
6416 
6417     // Emit debug information for direct imports.
6418     if (!Import->getImportedOwningModule()) {
6419       if (CGDebugInfo *DI = getModuleDebugInfo())
6420         DI->EmitImportDecl(*Import);
6421     }
6422 
6423     // For C++ standard modules we are done - we will call the module
6424     // initializer for imported modules, and that will likewise call those for
6425     // any imports it has.
6426     if (CXX20ModuleInits && Import->getImportedOwningModule() &&
6427         !Import->getImportedOwningModule()->isModuleMapModule())
6428       break;
6429 
6430     // For clang C++ module map modules the initializers for sub-modules are
6431     // emitted here.
6432 
6433     // Find all of the submodules and emit the module initializers.
6434     llvm::SmallPtrSet<clang::Module *, 16> Visited;
6435     SmallVector<clang::Module *, 16> Stack;
6436     Visited.insert(Import->getImportedModule());
6437     Stack.push_back(Import->getImportedModule());
6438 
6439     while (!Stack.empty()) {
6440       clang::Module *Mod = Stack.pop_back_val();
6441       if (!EmittedModuleInitializers.insert(Mod).second)
6442         continue;
6443 
6444       for (auto *D : Context.getModuleInitializers(Mod))
6445         EmitTopLevelDecl(D);
6446 
6447       // Visit the submodules of this module.
6448       for (clang::Module::submodule_iterator Sub = Mod->submodule_begin(),
6449                                              SubEnd = Mod->submodule_end();
6450            Sub != SubEnd; ++Sub) {
6451         // Skip explicit children; they need to be explicitly imported to emit
6452         // the initializers.
6453         if ((*Sub)->IsExplicit)
6454           continue;
6455 
6456         if (Visited.insert(*Sub).second)
6457           Stack.push_back(*Sub);
6458       }
6459     }
6460     break;
6461   }
6462 
6463   case Decl::Export:
6464     EmitDeclContext(cast<ExportDecl>(D));
6465     break;
6466 
6467   case Decl::OMPThreadPrivate:
6468     EmitOMPThreadPrivateDecl(cast<OMPThreadPrivateDecl>(D));
6469     break;
6470 
6471   case Decl::OMPAllocate:
6472     EmitOMPAllocateDecl(cast<OMPAllocateDecl>(D));
6473     break;
6474 
6475   case Decl::OMPDeclareReduction:
6476     EmitOMPDeclareReduction(cast<OMPDeclareReductionDecl>(D));
6477     break;
6478 
6479   case Decl::OMPDeclareMapper:
6480     EmitOMPDeclareMapper(cast<OMPDeclareMapperDecl>(D));
6481     break;
6482 
6483   case Decl::OMPRequires:
6484     EmitOMPRequiresDecl(cast<OMPRequiresDecl>(D));
6485     break;
6486 
6487   case Decl::Typedef:
6488   case Decl::TypeAlias: // using foo = bar; [C++11]
6489     if (CGDebugInfo *DI = getModuleDebugInfo())
6490       DI->EmitAndRetainType(
6491           getContext().getTypedefType(cast<TypedefNameDecl>(D)));
6492     break;
6493 
6494   case Decl::Record:
6495     if (CGDebugInfo *DI = getModuleDebugInfo())
6496       if (cast<RecordDecl>(D)->getDefinition())
6497         DI->EmitAndRetainType(getContext().getRecordType(cast<RecordDecl>(D)));
6498     break;
6499 
6500   case Decl::Enum:
6501     if (CGDebugInfo *DI = getModuleDebugInfo())
6502       if (cast<EnumDecl>(D)->getDefinition())
6503         DI->EmitAndRetainType(getContext().getEnumType(cast<EnumDecl>(D)));
6504     break;
6505 
6506   case Decl::HLSLBuffer:
6507     getHLSLRuntime().addBuffer(cast<HLSLBufferDecl>(D));
6508     break;
6509 
6510   default:
6511     // Make sure we handled everything we should, every other kind is a
6512     // non-top-level decl.  FIXME: Would be nice to have an isTopLevelDeclKind
6513     // function. Need to recode Decl::Kind to do that easily.
6514     assert(isa<TypeDecl>(D) && "Unsupported decl kind");
6515     break;
6516   }
6517 }
6518 
6519 void CodeGenModule::AddDeferredUnusedCoverageMapping(Decl *D) {
6520   // Do we need to generate coverage mapping?
6521   if (!CodeGenOpts.CoverageMapping)
6522     return;
6523   switch (D->getKind()) {
6524   case Decl::CXXConversion:
6525   case Decl::CXXMethod:
6526   case Decl::Function:
6527   case Decl::ObjCMethod:
6528   case Decl::CXXConstructor:
6529   case Decl::CXXDestructor: {
6530     if (!cast<FunctionDecl>(D)->doesThisDeclarationHaveABody())
6531       break;
6532     SourceManager &SM = getContext().getSourceManager();
6533     if (LimitedCoverage && SM.getMainFileID() != SM.getFileID(D->getBeginLoc()))
6534       break;
6535     auto I = DeferredEmptyCoverageMappingDecls.find(D);
6536     if (I == DeferredEmptyCoverageMappingDecls.end())
6537       DeferredEmptyCoverageMappingDecls[D] = true;
6538     break;
6539   }
6540   default:
6541     break;
6542   };
6543 }
6544 
6545 void CodeGenModule::ClearUnusedCoverageMapping(const Decl *D) {
6546   // Do we need to generate coverage mapping?
6547   if (!CodeGenOpts.CoverageMapping)
6548     return;
6549   if (const auto *Fn = dyn_cast<FunctionDecl>(D)) {
6550     if (Fn->isTemplateInstantiation())
6551       ClearUnusedCoverageMapping(Fn->getTemplateInstantiationPattern());
6552   }
6553   auto I = DeferredEmptyCoverageMappingDecls.find(D);
6554   if (I == DeferredEmptyCoverageMappingDecls.end())
6555     DeferredEmptyCoverageMappingDecls[D] = false;
6556   else
6557     I->second = false;
6558 }
6559 
6560 void CodeGenModule::EmitDeferredUnusedCoverageMappings() {
6561   // We call takeVector() here to avoid use-after-free.
6562   // FIXME: DeferredEmptyCoverageMappingDecls is getting mutated because
6563   // we deserialize function bodies to emit coverage info for them, and that
6564   // deserializes more declarations. How should we handle that case?
6565   for (const auto &Entry : DeferredEmptyCoverageMappingDecls.takeVector()) {
6566     if (!Entry.second)
6567       continue;
6568     const Decl *D = Entry.first;
6569     switch (D->getKind()) {
6570     case Decl::CXXConversion:
6571     case Decl::CXXMethod:
6572     case Decl::Function:
6573     case Decl::ObjCMethod: {
6574       CodeGenPGO PGO(*this);
6575       GlobalDecl GD(cast<FunctionDecl>(D));
6576       PGO.emitEmptyCounterMapping(D, getMangledName(GD),
6577                                   getFunctionLinkage(GD));
6578       break;
6579     }
6580     case Decl::CXXConstructor: {
6581       CodeGenPGO PGO(*this);
6582       GlobalDecl GD(cast<CXXConstructorDecl>(D), Ctor_Base);
6583       PGO.emitEmptyCounterMapping(D, getMangledName(GD),
6584                                   getFunctionLinkage(GD));
6585       break;
6586     }
6587     case Decl::CXXDestructor: {
6588       CodeGenPGO PGO(*this);
6589       GlobalDecl GD(cast<CXXDestructorDecl>(D), Dtor_Base);
6590       PGO.emitEmptyCounterMapping(D, getMangledName(GD),
6591                                   getFunctionLinkage(GD));
6592       break;
6593     }
6594     default:
6595       break;
6596     };
6597   }
6598 }
6599 
6600 void CodeGenModule::EmitMainVoidAlias() {
6601   // In order to transition away from "__original_main" gracefully, emit an
6602   // alias for "main" in the no-argument case so that libc can detect when
6603   // new-style no-argument main is in used.
6604   if (llvm::Function *F = getModule().getFunction("main")) {
6605     if (!F->isDeclaration() && F->arg_size() == 0 && !F->isVarArg() &&
6606         F->getReturnType()->isIntegerTy(Context.getTargetInfo().getIntWidth())) {
6607       auto *GA = llvm::GlobalAlias::create("__main_void", F);
6608       GA->setVisibility(llvm::GlobalValue::HiddenVisibility);
6609     }
6610   }
6611 }
6612 
6613 /// Turns the given pointer into a constant.
6614 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context,
6615                                           const void *Ptr) {
6616   uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr);
6617   llvm::Type *i64 = llvm::Type::getInt64Ty(Context);
6618   return llvm::ConstantInt::get(i64, PtrInt);
6619 }
6620 
6621 static void EmitGlobalDeclMetadata(CodeGenModule &CGM,
6622                                    llvm::NamedMDNode *&GlobalMetadata,
6623                                    GlobalDecl D,
6624                                    llvm::GlobalValue *Addr) {
6625   if (!GlobalMetadata)
6626     GlobalMetadata =
6627       CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs");
6628 
6629   // TODO: should we report variant information for ctors/dtors?
6630   llvm::Metadata *Ops[] = {llvm::ConstantAsMetadata::get(Addr),
6631                            llvm::ConstantAsMetadata::get(GetPointerConstant(
6632                                CGM.getLLVMContext(), D.getDecl()))};
6633   GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops));
6634 }
6635 
6636 bool CodeGenModule::CheckAndReplaceExternCIFuncs(llvm::GlobalValue *Elem,
6637                                                  llvm::GlobalValue *CppFunc) {
6638   // Store the list of ifuncs we need to replace uses in.
6639   llvm::SmallVector<llvm::GlobalIFunc *> IFuncs;
6640   // List of ConstantExprs that we should be able to delete when we're done
6641   // here.
6642   llvm::SmallVector<llvm::ConstantExpr *> CEs;
6643 
6644   // It isn't valid to replace the extern-C ifuncs if all we find is itself!
6645   if (Elem == CppFunc)
6646     return false;
6647 
6648   // First make sure that all users of this are ifuncs (or ifuncs via a
6649   // bitcast), and collect the list of ifuncs and CEs so we can work on them
6650   // later.
6651   for (llvm::User *User : Elem->users()) {
6652     // Users can either be a bitcast ConstExpr that is used by the ifuncs, OR an
6653     // ifunc directly. In any other case, just give up, as we don't know what we
6654     // could break by changing those.
6655     if (auto *ConstExpr = dyn_cast<llvm::ConstantExpr>(User)) {
6656       if (ConstExpr->getOpcode() != llvm::Instruction::BitCast)
6657         return false;
6658 
6659       for (llvm::User *CEUser : ConstExpr->users()) {
6660         if (auto *IFunc = dyn_cast<llvm::GlobalIFunc>(CEUser)) {
6661           IFuncs.push_back(IFunc);
6662         } else {
6663           return false;
6664         }
6665       }
6666       CEs.push_back(ConstExpr);
6667     } else if (auto *IFunc = dyn_cast<llvm::GlobalIFunc>(User)) {
6668       IFuncs.push_back(IFunc);
6669     } else {
6670       // This user is one we don't know how to handle, so fail redirection. This
6671       // will result in an ifunc retaining a resolver name that will ultimately
6672       // fail to be resolved to a defined function.
6673       return false;
6674     }
6675   }
6676 
6677   // Now we know this is a valid case where we can do this alias replacement, we
6678   // need to remove all of the references to Elem (and the bitcasts!) so we can
6679   // delete it.
6680   for (llvm::GlobalIFunc *IFunc : IFuncs)
6681     IFunc->setResolver(nullptr);
6682   for (llvm::ConstantExpr *ConstExpr : CEs)
6683     ConstExpr->destroyConstant();
6684 
6685   // We should now be out of uses for the 'old' version of this function, so we
6686   // can erase it as well.
6687   Elem->eraseFromParent();
6688 
6689   for (llvm::GlobalIFunc *IFunc : IFuncs) {
6690     // The type of the resolver is always just a function-type that returns the
6691     // type of the IFunc, so create that here. If the type of the actual
6692     // resolver doesn't match, it just gets bitcast to the right thing.
6693     auto *ResolverTy =
6694         llvm::FunctionType::get(IFunc->getType(), /*isVarArg*/ false);
6695     llvm::Constant *Resolver = GetOrCreateLLVMFunction(
6696         CppFunc->getName(), ResolverTy, {}, /*ForVTable*/ false);
6697     IFunc->setResolver(Resolver);
6698   }
6699   return true;
6700 }
6701 
6702 /// For each function which is declared within an extern "C" region and marked
6703 /// as 'used', but has internal linkage, create an alias from the unmangled
6704 /// name to the mangled name if possible. People expect to be able to refer
6705 /// to such functions with an unmangled name from inline assembly within the
6706 /// same translation unit.
6707 void CodeGenModule::EmitStaticExternCAliases() {
6708   if (!getTargetCodeGenInfo().shouldEmitStaticExternCAliases())
6709     return;
6710   for (auto &I : StaticExternCValues) {
6711     IdentifierInfo *Name = I.first;
6712     llvm::GlobalValue *Val = I.second;
6713 
6714     // If Val is null, that implies there were multiple declarations that each
6715     // had a claim to the unmangled name. In this case, generation of the alias
6716     // is suppressed. See CodeGenModule::MaybeHandleStaticInExternC.
6717     if (!Val)
6718       break;
6719 
6720     llvm::GlobalValue *ExistingElem =
6721         getModule().getNamedValue(Name->getName());
6722 
6723     // If there is either not something already by this name, or we were able to
6724     // replace all uses from IFuncs, create the alias.
6725     if (!ExistingElem || CheckAndReplaceExternCIFuncs(ExistingElem, Val))
6726       addCompilerUsedGlobal(llvm::GlobalAlias::create(Name->getName(), Val));
6727   }
6728 }
6729 
6730 bool CodeGenModule::lookupRepresentativeDecl(StringRef MangledName,
6731                                              GlobalDecl &Result) const {
6732   auto Res = Manglings.find(MangledName);
6733   if (Res == Manglings.end())
6734     return false;
6735   Result = Res->getValue();
6736   return true;
6737 }
6738 
6739 /// Emits metadata nodes associating all the global values in the
6740 /// current module with the Decls they came from.  This is useful for
6741 /// projects using IR gen as a subroutine.
6742 ///
6743 /// Since there's currently no way to associate an MDNode directly
6744 /// with an llvm::GlobalValue, we create a global named metadata
6745 /// with the name 'clang.global.decl.ptrs'.
6746 void CodeGenModule::EmitDeclMetadata() {
6747   llvm::NamedMDNode *GlobalMetadata = nullptr;
6748 
6749   for (auto &I : MangledDeclNames) {
6750     llvm::GlobalValue *Addr = getModule().getNamedValue(I.second);
6751     // Some mangled names don't necessarily have an associated GlobalValue
6752     // in this module, e.g. if we mangled it for DebugInfo.
6753     if (Addr)
6754       EmitGlobalDeclMetadata(*this, GlobalMetadata, I.first, Addr);
6755   }
6756 }
6757 
6758 /// Emits metadata nodes for all the local variables in the current
6759 /// function.
6760 void CodeGenFunction::EmitDeclMetadata() {
6761   if (LocalDeclMap.empty()) return;
6762 
6763   llvm::LLVMContext &Context = getLLVMContext();
6764 
6765   // Find the unique metadata ID for this name.
6766   unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr");
6767 
6768   llvm::NamedMDNode *GlobalMetadata = nullptr;
6769 
6770   for (auto &I : LocalDeclMap) {
6771     const Decl *D = I.first;
6772     llvm::Value *Addr = I.second.getPointer();
6773     if (auto *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) {
6774       llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D);
6775       Alloca->setMetadata(
6776           DeclPtrKind, llvm::MDNode::get(
6777                            Context, llvm::ValueAsMetadata::getConstant(DAddr)));
6778     } else if (auto *GV = dyn_cast<llvm::GlobalValue>(Addr)) {
6779       GlobalDecl GD = GlobalDecl(cast<VarDecl>(D));
6780       EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV);
6781     }
6782   }
6783 }
6784 
6785 void CodeGenModule::EmitVersionIdentMetadata() {
6786   llvm::NamedMDNode *IdentMetadata =
6787     TheModule.getOrInsertNamedMetadata("llvm.ident");
6788   std::string Version = getClangFullVersion();
6789   llvm::LLVMContext &Ctx = TheModule.getContext();
6790 
6791   llvm::Metadata *IdentNode[] = {llvm::MDString::get(Ctx, Version)};
6792   IdentMetadata->addOperand(llvm::MDNode::get(Ctx, IdentNode));
6793 }
6794 
6795 void CodeGenModule::EmitCommandLineMetadata() {
6796   llvm::NamedMDNode *CommandLineMetadata =
6797     TheModule.getOrInsertNamedMetadata("llvm.commandline");
6798   std::string CommandLine = getCodeGenOpts().RecordCommandLine;
6799   llvm::LLVMContext &Ctx = TheModule.getContext();
6800 
6801   llvm::Metadata *CommandLineNode[] = {llvm::MDString::get(Ctx, CommandLine)};
6802   CommandLineMetadata->addOperand(llvm::MDNode::get(Ctx, CommandLineNode));
6803 }
6804 
6805 void CodeGenModule::EmitCoverageFile() {
6806   if (getCodeGenOpts().CoverageDataFile.empty() &&
6807       getCodeGenOpts().CoverageNotesFile.empty())
6808     return;
6809 
6810   llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu");
6811   if (!CUNode)
6812     return;
6813 
6814   llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov");
6815   llvm::LLVMContext &Ctx = TheModule.getContext();
6816   auto *CoverageDataFile =
6817       llvm::MDString::get(Ctx, getCodeGenOpts().CoverageDataFile);
6818   auto *CoverageNotesFile =
6819       llvm::MDString::get(Ctx, getCodeGenOpts().CoverageNotesFile);
6820   for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) {
6821     llvm::MDNode *CU = CUNode->getOperand(i);
6822     llvm::Metadata *Elts[] = {CoverageNotesFile, CoverageDataFile, CU};
6823     GCov->addOperand(llvm::MDNode::get(Ctx, Elts));
6824   }
6825 }
6826 
6827 llvm::Constant *CodeGenModule::GetAddrOfRTTIDescriptor(QualType Ty,
6828                                                        bool ForEH) {
6829   // Return a bogus pointer if RTTI is disabled, unless it's for EH.
6830   // FIXME: should we even be calling this method if RTTI is disabled
6831   // and it's not for EH?
6832   if ((!ForEH && !getLangOpts().RTTI) || getLangOpts().CUDAIsDevice ||
6833       (getLangOpts().OpenMP && getLangOpts().OpenMPIsDevice &&
6834        getTriple().isNVPTX()))
6835     return llvm::Constant::getNullValue(Int8PtrTy);
6836 
6837   if (ForEH && Ty->isObjCObjectPointerType() &&
6838       LangOpts.ObjCRuntime.isGNUFamily())
6839     return ObjCRuntime->GetEHType(Ty);
6840 
6841   return getCXXABI().getAddrOfRTTIDescriptor(Ty);
6842 }
6843 
6844 void CodeGenModule::EmitOMPThreadPrivateDecl(const OMPThreadPrivateDecl *D) {
6845   // Do not emit threadprivates in simd-only mode.
6846   if (LangOpts.OpenMP && LangOpts.OpenMPSimd)
6847     return;
6848   for (auto RefExpr : D->varlists()) {
6849     auto *VD = cast<VarDecl>(cast<DeclRefExpr>(RefExpr)->getDecl());
6850     bool PerformInit =
6851         VD->getAnyInitializer() &&
6852         !VD->getAnyInitializer()->isConstantInitializer(getContext(),
6853                                                         /*ForRef=*/false);
6854 
6855     Address Addr(GetAddrOfGlobalVar(VD),
6856                  getTypes().ConvertTypeForMem(VD->getType()),
6857                  getContext().getDeclAlign(VD));
6858     if (auto InitFunction = getOpenMPRuntime().emitThreadPrivateVarDefinition(
6859             VD, Addr, RefExpr->getBeginLoc(), PerformInit))
6860       CXXGlobalInits.push_back(InitFunction);
6861   }
6862 }
6863 
6864 llvm::Metadata *
6865 CodeGenModule::CreateMetadataIdentifierImpl(QualType T, MetadataTypeMap &Map,
6866                                             StringRef Suffix) {
6867   if (auto *FnType = T->getAs<FunctionProtoType>())
6868     T = getContext().getFunctionType(
6869         FnType->getReturnType(), FnType->getParamTypes(),
6870         FnType->getExtProtoInfo().withExceptionSpec(EST_None));
6871 
6872   llvm::Metadata *&InternalId = Map[T.getCanonicalType()];
6873   if (InternalId)
6874     return InternalId;
6875 
6876   if (isExternallyVisible(T->getLinkage())) {
6877     std::string OutName;
6878     llvm::raw_string_ostream Out(OutName);
6879     getCXXABI().getMangleContext().mangleTypeName(T, Out);
6880     Out << Suffix;
6881 
6882     InternalId = llvm::MDString::get(getLLVMContext(), Out.str());
6883   } else {
6884     InternalId = llvm::MDNode::getDistinct(getLLVMContext(),
6885                                            llvm::ArrayRef<llvm::Metadata *>());
6886   }
6887 
6888   return InternalId;
6889 }
6890 
6891 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierForType(QualType T) {
6892   return CreateMetadataIdentifierImpl(T, MetadataIdMap, "");
6893 }
6894 
6895 llvm::Metadata *
6896 CodeGenModule::CreateMetadataIdentifierForVirtualMemPtrType(QualType T) {
6897   return CreateMetadataIdentifierImpl(T, VirtualMetadataIdMap, ".virtual");
6898 }
6899 
6900 // Generalize pointer types to a void pointer with the qualifiers of the
6901 // originally pointed-to type, e.g. 'const char *' and 'char * const *'
6902 // generalize to 'const void *' while 'char *' and 'const char **' generalize to
6903 // 'void *'.
6904 static QualType GeneralizeType(ASTContext &Ctx, QualType Ty) {
6905   if (!Ty->isPointerType())
6906     return Ty;
6907 
6908   return Ctx.getPointerType(
6909       QualType(Ctx.VoidTy).withCVRQualifiers(
6910           Ty->getPointeeType().getCVRQualifiers()));
6911 }
6912 
6913 // Apply type generalization to a FunctionType's return and argument types
6914 static QualType GeneralizeFunctionType(ASTContext &Ctx, QualType Ty) {
6915   if (auto *FnType = Ty->getAs<FunctionProtoType>()) {
6916     SmallVector<QualType, 8> GeneralizedParams;
6917     for (auto &Param : FnType->param_types())
6918       GeneralizedParams.push_back(GeneralizeType(Ctx, Param));
6919 
6920     return Ctx.getFunctionType(
6921         GeneralizeType(Ctx, FnType->getReturnType()),
6922         GeneralizedParams, FnType->getExtProtoInfo());
6923   }
6924 
6925   if (auto *FnType = Ty->getAs<FunctionNoProtoType>())
6926     return Ctx.getFunctionNoProtoType(
6927         GeneralizeType(Ctx, FnType->getReturnType()));
6928 
6929   llvm_unreachable("Encountered unknown FunctionType");
6930 }
6931 
6932 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierGeneralized(QualType T) {
6933   return CreateMetadataIdentifierImpl(GeneralizeFunctionType(getContext(), T),
6934                                       GeneralizedMetadataIdMap, ".generalized");
6935 }
6936 
6937 /// Returns whether this module needs the "all-vtables" type identifier.
6938 bool CodeGenModule::NeedAllVtablesTypeId() const {
6939   // Returns true if at least one of vtable-based CFI checkers is enabled and
6940   // is not in the trapping mode.
6941   return ((LangOpts.Sanitize.has(SanitizerKind::CFIVCall) &&
6942            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIVCall)) ||
6943           (LangOpts.Sanitize.has(SanitizerKind::CFINVCall) &&
6944            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFINVCall)) ||
6945           (LangOpts.Sanitize.has(SanitizerKind::CFIDerivedCast) &&
6946            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIDerivedCast)) ||
6947           (LangOpts.Sanitize.has(SanitizerKind::CFIUnrelatedCast) &&
6948            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIUnrelatedCast)));
6949 }
6950 
6951 void CodeGenModule::AddVTableTypeMetadata(llvm::GlobalVariable *VTable,
6952                                           CharUnits Offset,
6953                                           const CXXRecordDecl *RD) {
6954   llvm::Metadata *MD =
6955       CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0));
6956   VTable->addTypeMetadata(Offset.getQuantity(), MD);
6957 
6958   if (CodeGenOpts.SanitizeCfiCrossDso)
6959     if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD))
6960       VTable->addTypeMetadata(Offset.getQuantity(),
6961                               llvm::ConstantAsMetadata::get(CrossDsoTypeId));
6962 
6963   if (NeedAllVtablesTypeId()) {
6964     llvm::Metadata *MD = llvm::MDString::get(getLLVMContext(), "all-vtables");
6965     VTable->addTypeMetadata(Offset.getQuantity(), MD);
6966   }
6967 }
6968 
6969 llvm::SanitizerStatReport &CodeGenModule::getSanStats() {
6970   if (!SanStats)
6971     SanStats = std::make_unique<llvm::SanitizerStatReport>(&getModule());
6972 
6973   return *SanStats;
6974 }
6975 
6976 llvm::Value *
6977 CodeGenModule::createOpenCLIntToSamplerConversion(const Expr *E,
6978                                                   CodeGenFunction &CGF) {
6979   llvm::Constant *C = ConstantEmitter(CGF).emitAbstract(E, E->getType());
6980   auto *SamplerT = getOpenCLRuntime().getSamplerType(E->getType().getTypePtr());
6981   auto *FTy = llvm::FunctionType::get(SamplerT, {C->getType()}, false);
6982   auto *Call = CGF.EmitRuntimeCall(
6983       CreateRuntimeFunction(FTy, "__translate_sampler_initializer"), {C});
6984   return Call;
6985 }
6986 
6987 CharUnits CodeGenModule::getNaturalPointeeTypeAlignment(
6988     QualType T, LValueBaseInfo *BaseInfo, TBAAAccessInfo *TBAAInfo) {
6989   return getNaturalTypeAlignment(T->getPointeeType(), BaseInfo, TBAAInfo,
6990                                  /* forPointeeType= */ true);
6991 }
6992 
6993 CharUnits CodeGenModule::getNaturalTypeAlignment(QualType T,
6994                                                  LValueBaseInfo *BaseInfo,
6995                                                  TBAAAccessInfo *TBAAInfo,
6996                                                  bool forPointeeType) {
6997   if (TBAAInfo)
6998     *TBAAInfo = getTBAAAccessInfo(T);
6999 
7000   // FIXME: This duplicates logic in ASTContext::getTypeAlignIfKnown. But
7001   // that doesn't return the information we need to compute BaseInfo.
7002 
7003   // Honor alignment typedef attributes even on incomplete types.
7004   // We also honor them straight for C++ class types, even as pointees;
7005   // there's an expressivity gap here.
7006   if (auto TT = T->getAs<TypedefType>()) {
7007     if (auto Align = TT->getDecl()->getMaxAlignment()) {
7008       if (BaseInfo)
7009         *BaseInfo = LValueBaseInfo(AlignmentSource::AttributedType);
7010       return getContext().toCharUnitsFromBits(Align);
7011     }
7012   }
7013 
7014   bool AlignForArray = T->isArrayType();
7015 
7016   // Analyze the base element type, so we don't get confused by incomplete
7017   // array types.
7018   T = getContext().getBaseElementType(T);
7019 
7020   if (T->isIncompleteType()) {
7021     // We could try to replicate the logic from
7022     // ASTContext::getTypeAlignIfKnown, but nothing uses the alignment if the
7023     // type is incomplete, so it's impossible to test. We could try to reuse
7024     // getTypeAlignIfKnown, but that doesn't return the information we need
7025     // to set BaseInfo.  So just ignore the possibility that the alignment is
7026     // greater than one.
7027     if (BaseInfo)
7028       *BaseInfo = LValueBaseInfo(AlignmentSource::Type);
7029     return CharUnits::One();
7030   }
7031 
7032   if (BaseInfo)
7033     *BaseInfo = LValueBaseInfo(AlignmentSource::Type);
7034 
7035   CharUnits Alignment;
7036   const CXXRecordDecl *RD;
7037   if (T.getQualifiers().hasUnaligned()) {
7038     Alignment = CharUnits::One();
7039   } else if (forPointeeType && !AlignForArray &&
7040              (RD = T->getAsCXXRecordDecl())) {
7041     // For C++ class pointees, we don't know whether we're pointing at a
7042     // base or a complete object, so we generally need to use the
7043     // non-virtual alignment.
7044     Alignment = getClassPointerAlignment(RD);
7045   } else {
7046     Alignment = getContext().getTypeAlignInChars(T);
7047   }
7048 
7049   // Cap to the global maximum type alignment unless the alignment
7050   // was somehow explicit on the type.
7051   if (unsigned MaxAlign = getLangOpts().MaxTypeAlign) {
7052     if (Alignment.getQuantity() > MaxAlign &&
7053         !getContext().isAlignmentRequired(T))
7054       Alignment = CharUnits::fromQuantity(MaxAlign);
7055   }
7056   return Alignment;
7057 }
7058 
7059 bool CodeGenModule::stopAutoInit() {
7060   unsigned StopAfter = getContext().getLangOpts().TrivialAutoVarInitStopAfter;
7061   if (StopAfter) {
7062     // This number is positive only when -ftrivial-auto-var-init-stop-after=* is
7063     // used
7064     if (NumAutoVarInit >= StopAfter) {
7065       return true;
7066     }
7067     if (!NumAutoVarInit) {
7068       unsigned DiagID = getDiags().getCustomDiagID(
7069           DiagnosticsEngine::Warning,
7070           "-ftrivial-auto-var-init-stop-after=%0 has been enabled to limit the "
7071           "number of times ftrivial-auto-var-init=%1 gets applied.");
7072       getDiags().Report(DiagID)
7073           << StopAfter
7074           << (getContext().getLangOpts().getTrivialAutoVarInit() ==
7075                       LangOptions::TrivialAutoVarInitKind::Zero
7076                   ? "zero"
7077                   : "pattern");
7078     }
7079     ++NumAutoVarInit;
7080   }
7081   return false;
7082 }
7083 
7084 void CodeGenModule::printPostfixForExternalizedDecl(llvm::raw_ostream &OS,
7085                                                     const Decl *D) const {
7086   // ptxas does not allow '.' in symbol names. On the other hand, HIP prefers
7087   // postfix beginning with '.' since the symbol name can be demangled.
7088   if (LangOpts.HIP)
7089     OS << (isa<VarDecl>(D) ? ".static." : ".intern.");
7090   else
7091     OS << (isa<VarDecl>(D) ? "__static__" : "__intern__");
7092 
7093   // If the CUID is not specified we try to generate a unique postfix.
7094   if (getLangOpts().CUID.empty()) {
7095     SourceManager &SM = getContext().getSourceManager();
7096     PresumedLoc PLoc = SM.getPresumedLoc(D->getLocation());
7097     assert(PLoc.isValid() && "Source location is expected to be valid.");
7098 
7099     // Get the hash of the user defined macros.
7100     llvm::MD5 Hash;
7101     llvm::MD5::MD5Result Result;
7102     for (const auto &Arg : PreprocessorOpts.Macros)
7103       Hash.update(Arg.first);
7104     Hash.final(Result);
7105 
7106     // Get the UniqueID for the file containing the decl.
7107     llvm::sys::fs::UniqueID ID;
7108     if (auto EC = llvm::sys::fs::getUniqueID(PLoc.getFilename(), ID)) {
7109       PLoc = SM.getPresumedLoc(D->getLocation(), /*UseLineDirectives=*/false);
7110       assert(PLoc.isValid() && "Source location is expected to be valid.");
7111       if (auto EC = llvm::sys::fs::getUniqueID(PLoc.getFilename(), ID))
7112         SM.getDiagnostics().Report(diag::err_cannot_open_file)
7113             << PLoc.getFilename() << EC.message();
7114     }
7115     OS << llvm::format("%x", ID.getFile()) << llvm::format("%x", ID.getDevice())
7116        << "_" << llvm::utohexstr(Result.low(), /*LowerCase=*/true, /*Width=*/8);
7117   } else {
7118     OS << getContext().getCUIDHash();
7119   }
7120 }
7121 
7122 void CodeGenModule::moveLazyEmissionStates(CodeGenModule *NewBuilder) {
7123   assert(DeferredDeclsToEmit.empty() &&
7124          "Should have emitted all decls deferred to emit.");
7125   assert(NewBuilder->DeferredDecls.empty() &&
7126          "Newly created module should not have deferred decls");
7127   NewBuilder->DeferredDecls = std::move(DeferredDecls);
7128 
7129   assert(NewBuilder->DeferredVTables.empty() &&
7130          "Newly created module should not have deferred vtables");
7131   NewBuilder->DeferredVTables = std::move(DeferredVTables);
7132 
7133   assert(NewBuilder->MangledDeclNames.empty() &&
7134          "Newly created module should not have mangled decl names");
7135   assert(NewBuilder->Manglings.empty() &&
7136          "Newly created module should not have manglings");
7137   NewBuilder->Manglings = std::move(Manglings);
7138 
7139   assert(WeakRefReferences.empty() && "Not all WeakRefRefs have been applied");
7140   NewBuilder->WeakRefReferences = std::move(WeakRefReferences);
7141 
7142   NewBuilder->TBAA = std::move(TBAA);
7143 
7144   assert(NewBuilder->EmittedDeferredDecls.empty() &&
7145          "Still have (unmerged) EmittedDeferredDecls deferred decls");
7146 
7147   NewBuilder->EmittedDeferredDecls = std::move(EmittedDeferredDecls);
7148 
7149   NewBuilder->ABI->MangleCtx = std::move(ABI->MangleCtx);
7150 }
7151