1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This coordinates the per-module state used while generating code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenModule.h" 15 #include "CGDebugInfo.h" 16 #include "CodeGenFunction.h" 17 #include "CodeGenTBAA.h" 18 #include "CGCall.h" 19 #include "CGCUDARuntime.h" 20 #include "CGCXXABI.h" 21 #include "CGObjCRuntime.h" 22 #include "CGOpenCLRuntime.h" 23 #include "TargetInfo.h" 24 #include "clang/Frontend/CodeGenOptions.h" 25 #include "clang/AST/ASTContext.h" 26 #include "clang/AST/CharUnits.h" 27 #include "clang/AST/DeclObjC.h" 28 #include "clang/AST/DeclCXX.h" 29 #include "clang/AST/DeclTemplate.h" 30 #include "clang/AST/Mangle.h" 31 #include "clang/AST/RecordLayout.h" 32 #include "clang/AST/RecursiveASTVisitor.h" 33 #include "clang/Basic/Builtins.h" 34 #include "clang/Basic/Diagnostic.h" 35 #include "clang/Basic/SourceManager.h" 36 #include "clang/Basic/TargetInfo.h" 37 #include "clang/Basic/ConvertUTF.h" 38 #include "llvm/CallingConv.h" 39 #include "llvm/Module.h" 40 #include "llvm/Intrinsics.h" 41 #include "llvm/LLVMContext.h" 42 #include "llvm/ADT/Triple.h" 43 #include "llvm/Target/Mangler.h" 44 #include "llvm/Target/TargetData.h" 45 #include "llvm/Support/CallSite.h" 46 #include "llvm/Support/ErrorHandling.h" 47 using namespace clang; 48 using namespace CodeGen; 49 50 static const char AnnotationSection[] = "llvm.metadata"; 51 52 static CGCXXABI &createCXXABI(CodeGenModule &CGM) { 53 switch (CGM.getContext().getTargetInfo().getCXXABI()) { 54 case CXXABI_ARM: return *CreateARMCXXABI(CGM); 55 case CXXABI_Itanium: return *CreateItaniumCXXABI(CGM); 56 case CXXABI_Microsoft: return *CreateMicrosoftCXXABI(CGM); 57 } 58 59 llvm_unreachable("invalid C++ ABI kind"); 60 } 61 62 63 CodeGenModule::CodeGenModule(ASTContext &C, const CodeGenOptions &CGO, 64 llvm::Module &M, const llvm::TargetData &TD, 65 DiagnosticsEngine &diags) 66 : Context(C), Features(C.getLangOptions()), CodeGenOpts(CGO), TheModule(M), 67 TheTargetData(TD), TheTargetCodeGenInfo(0), Diags(diags), 68 ABI(createCXXABI(*this)), 69 Types(*this), 70 TBAA(0), 71 VTables(*this), ObjCRuntime(0), OpenCLRuntime(0), CUDARuntime(0), 72 DebugInfo(0), ARCData(0), NoObjCARCExceptionsMetadata(0), 73 RRData(0), CFConstantStringClassRef(0), 74 ConstantStringClassRef(0), NSConstantStringType(0), 75 VMContext(M.getContext()), 76 NSConcreteGlobalBlock(0), NSConcreteStackBlock(0), 77 BlockObjectAssign(0), BlockObjectDispose(0), 78 BlockDescriptorType(0), GenericBlockLiteralType(0) { 79 80 // Initialize the type cache. 81 llvm::LLVMContext &LLVMContext = M.getContext(); 82 VoidTy = llvm::Type::getVoidTy(LLVMContext); 83 Int8Ty = llvm::Type::getInt8Ty(LLVMContext); 84 Int16Ty = llvm::Type::getInt16Ty(LLVMContext); 85 Int32Ty = llvm::Type::getInt32Ty(LLVMContext); 86 Int64Ty = llvm::Type::getInt64Ty(LLVMContext); 87 FloatTy = llvm::Type::getFloatTy(LLVMContext); 88 DoubleTy = llvm::Type::getDoubleTy(LLVMContext); 89 PointerWidthInBits = C.getTargetInfo().getPointerWidth(0); 90 PointerAlignInBytes = 91 C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(0)).getQuantity(); 92 IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth()); 93 IntPtrTy = llvm::IntegerType::get(LLVMContext, PointerWidthInBits); 94 Int8PtrTy = Int8Ty->getPointerTo(0); 95 Int8PtrPtrTy = Int8PtrTy->getPointerTo(0); 96 97 if (Features.ObjC1) 98 createObjCRuntime(); 99 if (Features.OpenCL) 100 createOpenCLRuntime(); 101 if (Features.CUDA) 102 createCUDARuntime(); 103 104 // Enable TBAA unless it's suppressed. 105 if (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0) 106 TBAA = new CodeGenTBAA(Context, VMContext, getLangOptions(), 107 ABI.getMangleContext()); 108 109 // If debug info or coverage generation is enabled, create the CGDebugInfo 110 // object. 111 if (CodeGenOpts.DebugInfo || CodeGenOpts.EmitGcovArcs || 112 CodeGenOpts.EmitGcovNotes) 113 DebugInfo = new CGDebugInfo(*this); 114 115 Block.GlobalUniqueCount = 0; 116 117 if (C.getLangOptions().ObjCAutoRefCount) 118 ARCData = new ARCEntrypoints(); 119 RRData = new RREntrypoints(); 120 } 121 122 CodeGenModule::~CodeGenModule() { 123 delete ObjCRuntime; 124 delete OpenCLRuntime; 125 delete CUDARuntime; 126 delete TheTargetCodeGenInfo; 127 delete &ABI; 128 delete TBAA; 129 delete DebugInfo; 130 delete ARCData; 131 delete RRData; 132 } 133 134 void CodeGenModule::createObjCRuntime() { 135 if (!Features.NeXTRuntime) 136 ObjCRuntime = CreateGNUObjCRuntime(*this); 137 else 138 ObjCRuntime = CreateMacObjCRuntime(*this); 139 } 140 141 void CodeGenModule::createOpenCLRuntime() { 142 OpenCLRuntime = new CGOpenCLRuntime(*this); 143 } 144 145 void CodeGenModule::createCUDARuntime() { 146 CUDARuntime = CreateNVCUDARuntime(*this); 147 } 148 149 void CodeGenModule::Release() { 150 EmitDeferred(); 151 EmitCXXGlobalInitFunc(); 152 EmitCXXGlobalDtorFunc(); 153 if (ObjCRuntime) 154 if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction()) 155 AddGlobalCtor(ObjCInitFunction); 156 EmitCtorList(GlobalCtors, "llvm.global_ctors"); 157 EmitCtorList(GlobalDtors, "llvm.global_dtors"); 158 EmitGlobalAnnotations(); 159 EmitLLVMUsed(); 160 161 SimplifyPersonality(); 162 163 if (getCodeGenOpts().EmitDeclMetadata) 164 EmitDeclMetadata(); 165 166 if (getCodeGenOpts().EmitGcovArcs || getCodeGenOpts().EmitGcovNotes) 167 EmitCoverageFile(); 168 169 if (DebugInfo) 170 DebugInfo->finalize(); 171 } 172 173 void CodeGenModule::UpdateCompletedType(const TagDecl *TD) { 174 // Make sure that this type is translated. 175 Types.UpdateCompletedType(TD); 176 } 177 178 llvm::MDNode *CodeGenModule::getTBAAInfo(QualType QTy) { 179 if (!TBAA) 180 return 0; 181 return TBAA->getTBAAInfo(QTy); 182 } 183 184 void CodeGenModule::DecorateInstruction(llvm::Instruction *Inst, 185 llvm::MDNode *TBAAInfo) { 186 Inst->setMetadata(llvm::LLVMContext::MD_tbaa, TBAAInfo); 187 } 188 189 bool CodeGenModule::isTargetDarwin() const { 190 return getContext().getTargetInfo().getTriple().isOSDarwin(); 191 } 192 193 void CodeGenModule::Error(SourceLocation loc, StringRef error) { 194 unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, error); 195 getDiags().Report(Context.getFullLoc(loc), diagID); 196 } 197 198 /// ErrorUnsupported - Print out an error that codegen doesn't support the 199 /// specified stmt yet. 200 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type, 201 bool OmitOnError) { 202 if (OmitOnError && getDiags().hasErrorOccurred()) 203 return; 204 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, 205 "cannot compile this %0 yet"); 206 std::string Msg = Type; 207 getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID) 208 << Msg << S->getSourceRange(); 209 } 210 211 /// ErrorUnsupported - Print out an error that codegen doesn't support the 212 /// specified decl yet. 213 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type, 214 bool OmitOnError) { 215 if (OmitOnError && getDiags().hasErrorOccurred()) 216 return; 217 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, 218 "cannot compile this %0 yet"); 219 std::string Msg = Type; 220 getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg; 221 } 222 223 llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) { 224 return llvm::ConstantInt::get(SizeTy, size.getQuantity()); 225 } 226 227 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV, 228 const NamedDecl *D) const { 229 // Internal definitions always have default visibility. 230 if (GV->hasLocalLinkage()) { 231 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 232 return; 233 } 234 235 // Set visibility for definitions. 236 NamedDecl::LinkageInfo LV = D->getLinkageAndVisibility(); 237 if (LV.visibilityExplicit() || !GV->hasAvailableExternallyLinkage()) 238 GV->setVisibility(GetLLVMVisibility(LV.visibility())); 239 } 240 241 /// Set the symbol visibility of type information (vtable and RTTI) 242 /// associated with the given type. 243 void CodeGenModule::setTypeVisibility(llvm::GlobalValue *GV, 244 const CXXRecordDecl *RD, 245 TypeVisibilityKind TVK) const { 246 setGlobalVisibility(GV, RD); 247 248 if (!CodeGenOpts.HiddenWeakVTables) 249 return; 250 251 // We never want to drop the visibility for RTTI names. 252 if (TVK == TVK_ForRTTIName) 253 return; 254 255 // We want to drop the visibility to hidden for weak type symbols. 256 // This isn't possible if there might be unresolved references 257 // elsewhere that rely on this symbol being visible. 258 259 // This should be kept roughly in sync with setThunkVisibility 260 // in CGVTables.cpp. 261 262 // Preconditions. 263 if (GV->getLinkage() != llvm::GlobalVariable::LinkOnceODRLinkage || 264 GV->getVisibility() != llvm::GlobalVariable::DefaultVisibility) 265 return; 266 267 // Don't override an explicit visibility attribute. 268 if (RD->getExplicitVisibility()) 269 return; 270 271 switch (RD->getTemplateSpecializationKind()) { 272 // We have to disable the optimization if this is an EI definition 273 // because there might be EI declarations in other shared objects. 274 case TSK_ExplicitInstantiationDefinition: 275 case TSK_ExplicitInstantiationDeclaration: 276 return; 277 278 // Every use of a non-template class's type information has to emit it. 279 case TSK_Undeclared: 280 break; 281 282 // In theory, implicit instantiations can ignore the possibility of 283 // an explicit instantiation declaration because there necessarily 284 // must be an EI definition somewhere with default visibility. In 285 // practice, it's possible to have an explicit instantiation for 286 // an arbitrary template class, and linkers aren't necessarily able 287 // to deal with mixed-visibility symbols. 288 case TSK_ExplicitSpecialization: 289 case TSK_ImplicitInstantiation: 290 if (!CodeGenOpts.HiddenWeakTemplateVTables) 291 return; 292 break; 293 } 294 295 // If there's a key function, there may be translation units 296 // that don't have the key function's definition. But ignore 297 // this if we're emitting RTTI under -fno-rtti. 298 if (!(TVK != TVK_ForRTTI) || Features.RTTI) { 299 if (Context.getKeyFunction(RD)) 300 return; 301 } 302 303 // Otherwise, drop the visibility to hidden. 304 GV->setVisibility(llvm::GlobalValue::HiddenVisibility); 305 GV->setUnnamedAddr(true); 306 } 307 308 StringRef CodeGenModule::getMangledName(GlobalDecl GD) { 309 const NamedDecl *ND = cast<NamedDecl>(GD.getDecl()); 310 311 StringRef &Str = MangledDeclNames[GD.getCanonicalDecl()]; 312 if (!Str.empty()) 313 return Str; 314 315 if (!getCXXABI().getMangleContext().shouldMangleDeclName(ND)) { 316 IdentifierInfo *II = ND->getIdentifier(); 317 assert(II && "Attempt to mangle unnamed decl."); 318 319 Str = II->getName(); 320 return Str; 321 } 322 323 SmallString<256> Buffer; 324 llvm::raw_svector_ostream Out(Buffer); 325 if (const CXXConstructorDecl *D = dyn_cast<CXXConstructorDecl>(ND)) 326 getCXXABI().getMangleContext().mangleCXXCtor(D, GD.getCtorType(), Out); 327 else if (const CXXDestructorDecl *D = dyn_cast<CXXDestructorDecl>(ND)) 328 getCXXABI().getMangleContext().mangleCXXDtor(D, GD.getDtorType(), Out); 329 else if (const BlockDecl *BD = dyn_cast<BlockDecl>(ND)) 330 getCXXABI().getMangleContext().mangleBlock(BD, Out); 331 else 332 getCXXABI().getMangleContext().mangleName(ND, Out); 333 334 // Allocate space for the mangled name. 335 Out.flush(); 336 size_t Length = Buffer.size(); 337 char *Name = MangledNamesAllocator.Allocate<char>(Length); 338 std::copy(Buffer.begin(), Buffer.end(), Name); 339 340 Str = StringRef(Name, Length); 341 342 return Str; 343 } 344 345 void CodeGenModule::getBlockMangledName(GlobalDecl GD, MangleBuffer &Buffer, 346 const BlockDecl *BD) { 347 MangleContext &MangleCtx = getCXXABI().getMangleContext(); 348 const Decl *D = GD.getDecl(); 349 llvm::raw_svector_ostream Out(Buffer.getBuffer()); 350 if (D == 0) 351 MangleCtx.mangleGlobalBlock(BD, Out); 352 else if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(D)) 353 MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out); 354 else if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(D)) 355 MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out); 356 else 357 MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out); 358 } 359 360 llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) { 361 return getModule().getNamedValue(Name); 362 } 363 364 /// AddGlobalCtor - Add a function to the list that will be called before 365 /// main() runs. 366 void CodeGenModule::AddGlobalCtor(llvm::Function * Ctor, int Priority) { 367 // FIXME: Type coercion of void()* types. 368 GlobalCtors.push_back(std::make_pair(Ctor, Priority)); 369 } 370 371 /// AddGlobalDtor - Add a function to the list that will be called 372 /// when the module is unloaded. 373 void CodeGenModule::AddGlobalDtor(llvm::Function * Dtor, int Priority) { 374 // FIXME: Type coercion of void()* types. 375 GlobalDtors.push_back(std::make_pair(Dtor, Priority)); 376 } 377 378 void CodeGenModule::EmitCtorList(const CtorList &Fns, const char *GlobalName) { 379 // Ctor function type is void()*. 380 llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false); 381 llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy); 382 383 // Get the type of a ctor entry, { i32, void ()* }. 384 llvm::StructType *CtorStructTy = 385 llvm::StructType::get(Int32Ty, llvm::PointerType::getUnqual(CtorFTy), NULL); 386 387 // Construct the constructor and destructor arrays. 388 SmallVector<llvm::Constant*, 8> Ctors; 389 for (CtorList::const_iterator I = Fns.begin(), E = Fns.end(); I != E; ++I) { 390 llvm::Constant *S[] = { 391 llvm::ConstantInt::get(Int32Ty, I->second, false), 392 llvm::ConstantExpr::getBitCast(I->first, CtorPFTy) 393 }; 394 Ctors.push_back(llvm::ConstantStruct::get(CtorStructTy, S)); 395 } 396 397 if (!Ctors.empty()) { 398 llvm::ArrayType *AT = llvm::ArrayType::get(CtorStructTy, Ctors.size()); 399 new llvm::GlobalVariable(TheModule, AT, false, 400 llvm::GlobalValue::AppendingLinkage, 401 llvm::ConstantArray::get(AT, Ctors), 402 GlobalName); 403 } 404 } 405 406 llvm::GlobalValue::LinkageTypes 407 CodeGenModule::getFunctionLinkage(const FunctionDecl *D) { 408 GVALinkage Linkage = getContext().GetGVALinkageForFunction(D); 409 410 if (Linkage == GVA_Internal) 411 return llvm::Function::InternalLinkage; 412 413 if (D->hasAttr<DLLExportAttr>()) 414 return llvm::Function::DLLExportLinkage; 415 416 if (D->hasAttr<WeakAttr>()) 417 return llvm::Function::WeakAnyLinkage; 418 419 // In C99 mode, 'inline' functions are guaranteed to have a strong 420 // definition somewhere else, so we can use available_externally linkage. 421 if (Linkage == GVA_C99Inline) 422 return llvm::Function::AvailableExternallyLinkage; 423 424 // Note that Apple's kernel linker doesn't support symbol 425 // coalescing, so we need to avoid linkonce and weak linkages there. 426 // Normally, this means we just map to internal, but for explicit 427 // instantiations we'll map to external. 428 429 // In C++, the compiler has to emit a definition in every translation unit 430 // that references the function. We should use linkonce_odr because 431 // a) if all references in this translation unit are optimized away, we 432 // don't need to codegen it. b) if the function persists, it needs to be 433 // merged with other definitions. c) C++ has the ODR, so we know the 434 // definition is dependable. 435 if (Linkage == GVA_CXXInline || Linkage == GVA_TemplateInstantiation) 436 return !Context.getLangOptions().AppleKext 437 ? llvm::Function::LinkOnceODRLinkage 438 : llvm::Function::InternalLinkage; 439 440 // An explicit instantiation of a template has weak linkage, since 441 // explicit instantiations can occur in multiple translation units 442 // and must all be equivalent. However, we are not allowed to 443 // throw away these explicit instantiations. 444 if (Linkage == GVA_ExplicitTemplateInstantiation) 445 return !Context.getLangOptions().AppleKext 446 ? llvm::Function::WeakODRLinkage 447 : llvm::Function::ExternalLinkage; 448 449 // Otherwise, we have strong external linkage. 450 assert(Linkage == GVA_StrongExternal); 451 return llvm::Function::ExternalLinkage; 452 } 453 454 455 /// SetFunctionDefinitionAttributes - Set attributes for a global. 456 /// 457 /// FIXME: This is currently only done for aliases and functions, but not for 458 /// variables (these details are set in EmitGlobalVarDefinition for variables). 459 void CodeGenModule::SetFunctionDefinitionAttributes(const FunctionDecl *D, 460 llvm::GlobalValue *GV) { 461 SetCommonAttributes(D, GV); 462 } 463 464 void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D, 465 const CGFunctionInfo &Info, 466 llvm::Function *F) { 467 unsigned CallingConv; 468 AttributeListType AttributeList; 469 ConstructAttributeList(Info, D, AttributeList, CallingConv); 470 F->setAttributes(llvm::AttrListPtr::get(AttributeList.begin(), 471 AttributeList.size())); 472 F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv)); 473 } 474 475 /// Determines whether the language options require us to model 476 /// unwind exceptions. We treat -fexceptions as mandating this 477 /// except under the fragile ObjC ABI with only ObjC exceptions 478 /// enabled. This means, for example, that C with -fexceptions 479 /// enables this. 480 static bool hasUnwindExceptions(const LangOptions &Features) { 481 // If exceptions are completely disabled, obviously this is false. 482 if (!Features.Exceptions) return false; 483 484 // If C++ exceptions are enabled, this is true. 485 if (Features.CXXExceptions) return true; 486 487 // If ObjC exceptions are enabled, this depends on the ABI. 488 if (Features.ObjCExceptions) { 489 if (!Features.ObjCNonFragileABI) return false; 490 } 491 492 return true; 493 } 494 495 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D, 496 llvm::Function *F) { 497 if (CodeGenOpts.UnwindTables) 498 F->setHasUWTable(); 499 500 if (!hasUnwindExceptions(Features)) 501 F->addFnAttr(llvm::Attribute::NoUnwind); 502 503 if (D->hasAttr<NakedAttr>()) { 504 // Naked implies noinline: we should not be inlining such functions. 505 F->addFnAttr(llvm::Attribute::Naked); 506 F->addFnAttr(llvm::Attribute::NoInline); 507 } 508 509 if (D->hasAttr<NoInlineAttr>()) 510 F->addFnAttr(llvm::Attribute::NoInline); 511 512 // (noinline wins over always_inline, and we can't specify both in IR) 513 if (D->hasAttr<AlwaysInlineAttr>() && 514 !F->hasFnAttr(llvm::Attribute::NoInline)) 515 F->addFnAttr(llvm::Attribute::AlwaysInline); 516 517 if (isa<CXXConstructorDecl>(D) || isa<CXXDestructorDecl>(D)) 518 F->setUnnamedAddr(true); 519 520 if (Features.getStackProtector() == LangOptions::SSPOn) 521 F->addFnAttr(llvm::Attribute::StackProtect); 522 else if (Features.getStackProtector() == LangOptions::SSPReq) 523 F->addFnAttr(llvm::Attribute::StackProtectReq); 524 525 if (Features.AddressSanitizer) { 526 // When AddressSanitizer is enabled, set AddressSafety attribute 527 // unless __attribute__((no_address_safety_analysis)) is used. 528 if (!D->hasAttr<NoAddressSafetyAnalysisAttr>()) 529 F->addFnAttr(llvm::Attribute::AddressSafety); 530 } 531 532 unsigned alignment = D->getMaxAlignment() / Context.getCharWidth(); 533 if (alignment) 534 F->setAlignment(alignment); 535 536 // C++ ABI requires 2-byte alignment for member functions. 537 if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D)) 538 F->setAlignment(2); 539 } 540 541 void CodeGenModule::SetCommonAttributes(const Decl *D, 542 llvm::GlobalValue *GV) { 543 if (const NamedDecl *ND = dyn_cast<NamedDecl>(D)) 544 setGlobalVisibility(GV, ND); 545 else 546 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 547 548 if (D->hasAttr<UsedAttr>()) 549 AddUsedGlobal(GV); 550 551 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) 552 GV->setSection(SA->getName()); 553 554 getTargetCodeGenInfo().SetTargetAttributes(D, GV, *this); 555 } 556 557 void CodeGenModule::SetInternalFunctionAttributes(const Decl *D, 558 llvm::Function *F, 559 const CGFunctionInfo &FI) { 560 SetLLVMFunctionAttributes(D, FI, F); 561 SetLLVMFunctionAttributesForDefinition(D, F); 562 563 F->setLinkage(llvm::Function::InternalLinkage); 564 565 SetCommonAttributes(D, F); 566 } 567 568 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD, 569 llvm::Function *F, 570 bool IsIncompleteFunction) { 571 if (unsigned IID = F->getIntrinsicID()) { 572 // If this is an intrinsic function, set the function's attributes 573 // to the intrinsic's attributes. 574 F->setAttributes(llvm::Intrinsic::getAttributes((llvm::Intrinsic::ID)IID)); 575 return; 576 } 577 578 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 579 580 if (!IsIncompleteFunction) 581 SetLLVMFunctionAttributes(FD, getTypes().arrangeGlobalDeclaration(GD), F); 582 583 // Only a few attributes are set on declarations; these may later be 584 // overridden by a definition. 585 586 if (FD->hasAttr<DLLImportAttr>()) { 587 F->setLinkage(llvm::Function::DLLImportLinkage); 588 } else if (FD->hasAttr<WeakAttr>() || 589 FD->isWeakImported()) { 590 // "extern_weak" is overloaded in LLVM; we probably should have 591 // separate linkage types for this. 592 F->setLinkage(llvm::Function::ExternalWeakLinkage); 593 } else { 594 F->setLinkage(llvm::Function::ExternalLinkage); 595 596 NamedDecl::LinkageInfo LV = FD->getLinkageAndVisibility(); 597 if (LV.linkage() == ExternalLinkage && LV.visibilityExplicit()) { 598 F->setVisibility(GetLLVMVisibility(LV.visibility())); 599 } 600 } 601 602 if (const SectionAttr *SA = FD->getAttr<SectionAttr>()) 603 F->setSection(SA->getName()); 604 } 605 606 void CodeGenModule::AddUsedGlobal(llvm::GlobalValue *GV) { 607 assert(!GV->isDeclaration() && 608 "Only globals with definition can force usage."); 609 LLVMUsed.push_back(GV); 610 } 611 612 void CodeGenModule::EmitLLVMUsed() { 613 // Don't create llvm.used if there is no need. 614 if (LLVMUsed.empty()) 615 return; 616 617 // Convert LLVMUsed to what ConstantArray needs. 618 SmallVector<llvm::Constant*, 8> UsedArray; 619 UsedArray.resize(LLVMUsed.size()); 620 for (unsigned i = 0, e = LLVMUsed.size(); i != e; ++i) { 621 UsedArray[i] = 622 llvm::ConstantExpr::getBitCast(cast<llvm::Constant>(&*LLVMUsed[i]), 623 Int8PtrTy); 624 } 625 626 if (UsedArray.empty()) 627 return; 628 llvm::ArrayType *ATy = llvm::ArrayType::get(Int8PtrTy, UsedArray.size()); 629 630 llvm::GlobalVariable *GV = 631 new llvm::GlobalVariable(getModule(), ATy, false, 632 llvm::GlobalValue::AppendingLinkage, 633 llvm::ConstantArray::get(ATy, UsedArray), 634 "llvm.used"); 635 636 GV->setSection("llvm.metadata"); 637 } 638 639 void CodeGenModule::EmitDeferred() { 640 // Emit code for any potentially referenced deferred decls. Since a 641 // previously unused static decl may become used during the generation of code 642 // for a static function, iterate until no changes are made. 643 644 while (!DeferredDeclsToEmit.empty() || !DeferredVTables.empty()) { 645 if (!DeferredVTables.empty()) { 646 const CXXRecordDecl *RD = DeferredVTables.back(); 647 DeferredVTables.pop_back(); 648 getVTables().GenerateClassData(getVTableLinkage(RD), RD); 649 continue; 650 } 651 652 GlobalDecl D = DeferredDeclsToEmit.back(); 653 DeferredDeclsToEmit.pop_back(); 654 655 // Check to see if we've already emitted this. This is necessary 656 // for a couple of reasons: first, decls can end up in the 657 // deferred-decls queue multiple times, and second, decls can end 658 // up with definitions in unusual ways (e.g. by an extern inline 659 // function acquiring a strong function redefinition). Just 660 // ignore these cases. 661 // 662 // TODO: That said, looking this up multiple times is very wasteful. 663 StringRef Name = getMangledName(D); 664 llvm::GlobalValue *CGRef = GetGlobalValue(Name); 665 assert(CGRef && "Deferred decl wasn't referenced?"); 666 667 if (!CGRef->isDeclaration()) 668 continue; 669 670 // GlobalAlias::isDeclaration() defers to the aliasee, but for our 671 // purposes an alias counts as a definition. 672 if (isa<llvm::GlobalAlias>(CGRef)) 673 continue; 674 675 // Otherwise, emit the definition and move on to the next one. 676 EmitGlobalDefinition(D); 677 } 678 } 679 680 void CodeGenModule::EmitGlobalAnnotations() { 681 if (Annotations.empty()) 682 return; 683 684 // Create a new global variable for the ConstantStruct in the Module. 685 llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get( 686 Annotations[0]->getType(), Annotations.size()), Annotations); 687 llvm::GlobalValue *gv = new llvm::GlobalVariable(getModule(), 688 Array->getType(), false, llvm::GlobalValue::AppendingLinkage, Array, 689 "llvm.global.annotations"); 690 gv->setSection(AnnotationSection); 691 } 692 693 llvm::Constant *CodeGenModule::EmitAnnotationString(llvm::StringRef Str) { 694 llvm::StringMap<llvm::Constant*>::iterator i = AnnotationStrings.find(Str); 695 if (i != AnnotationStrings.end()) 696 return i->second; 697 698 // Not found yet, create a new global. 699 llvm::Constant *s = llvm::ConstantDataArray::getString(getLLVMContext(), Str); 700 llvm::GlobalValue *gv = new llvm::GlobalVariable(getModule(), s->getType(), 701 true, llvm::GlobalValue::PrivateLinkage, s, ".str"); 702 gv->setSection(AnnotationSection); 703 gv->setUnnamedAddr(true); 704 AnnotationStrings[Str] = gv; 705 return gv; 706 } 707 708 llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) { 709 SourceManager &SM = getContext().getSourceManager(); 710 PresumedLoc PLoc = SM.getPresumedLoc(Loc); 711 if (PLoc.isValid()) 712 return EmitAnnotationString(PLoc.getFilename()); 713 return EmitAnnotationString(SM.getBufferName(Loc)); 714 } 715 716 llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) { 717 SourceManager &SM = getContext().getSourceManager(); 718 PresumedLoc PLoc = SM.getPresumedLoc(L); 719 unsigned LineNo = PLoc.isValid() ? PLoc.getLine() : 720 SM.getExpansionLineNumber(L); 721 return llvm::ConstantInt::get(Int32Ty, LineNo); 722 } 723 724 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV, 725 const AnnotateAttr *AA, 726 SourceLocation L) { 727 // Get the globals for file name, annotation, and the line number. 728 llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()), 729 *UnitGV = EmitAnnotationUnit(L), 730 *LineNoCst = EmitAnnotationLineNo(L); 731 732 // Create the ConstantStruct for the global annotation. 733 llvm::Constant *Fields[4] = { 734 llvm::ConstantExpr::getBitCast(GV, Int8PtrTy), 735 llvm::ConstantExpr::getBitCast(AnnoGV, Int8PtrTy), 736 llvm::ConstantExpr::getBitCast(UnitGV, Int8PtrTy), 737 LineNoCst 738 }; 739 return llvm::ConstantStruct::getAnon(Fields); 740 } 741 742 void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D, 743 llvm::GlobalValue *GV) { 744 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 745 // Get the struct elements for these annotations. 746 for (specific_attr_iterator<AnnotateAttr> 747 ai = D->specific_attr_begin<AnnotateAttr>(), 748 ae = D->specific_attr_end<AnnotateAttr>(); ai != ae; ++ai) 749 Annotations.push_back(EmitAnnotateAttr(GV, *ai, D->getLocation())); 750 } 751 752 bool CodeGenModule::MayDeferGeneration(const ValueDecl *Global) { 753 // Never defer when EmitAllDecls is specified. 754 if (Features.EmitAllDecls) 755 return false; 756 757 return !getContext().DeclMustBeEmitted(Global); 758 } 759 760 llvm::Constant *CodeGenModule::GetWeakRefReference(const ValueDecl *VD) { 761 const AliasAttr *AA = VD->getAttr<AliasAttr>(); 762 assert(AA && "No alias?"); 763 764 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType()); 765 766 // See if there is already something with the target's name in the module. 767 llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee()); 768 769 llvm::Constant *Aliasee; 770 if (isa<llvm::FunctionType>(DeclTy)) 771 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GlobalDecl(), 772 /*ForVTable=*/false); 773 else 774 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), 775 llvm::PointerType::getUnqual(DeclTy), 0); 776 if (!Entry) { 777 llvm::GlobalValue* F = cast<llvm::GlobalValue>(Aliasee); 778 F->setLinkage(llvm::Function::ExternalWeakLinkage); 779 WeakRefReferences.insert(F); 780 } 781 782 return Aliasee; 783 } 784 785 void CodeGenModule::EmitGlobal(GlobalDecl GD) { 786 const ValueDecl *Global = cast<ValueDecl>(GD.getDecl()); 787 788 // Weak references don't produce any output by themselves. 789 if (Global->hasAttr<WeakRefAttr>()) 790 return; 791 792 // If this is an alias definition (which otherwise looks like a declaration) 793 // emit it now. 794 if (Global->hasAttr<AliasAttr>()) 795 return EmitAliasDefinition(GD); 796 797 // If this is CUDA, be selective about which declarations we emit. 798 if (Features.CUDA) { 799 if (CodeGenOpts.CUDAIsDevice) { 800 if (!Global->hasAttr<CUDADeviceAttr>() && 801 !Global->hasAttr<CUDAGlobalAttr>() && 802 !Global->hasAttr<CUDAConstantAttr>() && 803 !Global->hasAttr<CUDASharedAttr>()) 804 return; 805 } else { 806 if (!Global->hasAttr<CUDAHostAttr>() && ( 807 Global->hasAttr<CUDADeviceAttr>() || 808 Global->hasAttr<CUDAConstantAttr>() || 809 Global->hasAttr<CUDASharedAttr>())) 810 return; 811 } 812 } 813 814 // Ignore declarations, they will be emitted on their first use. 815 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) { 816 // Forward declarations are emitted lazily on first use. 817 if (!FD->doesThisDeclarationHaveABody()) { 818 if (!FD->doesDeclarationForceExternallyVisibleDefinition()) 819 return; 820 821 const FunctionDecl *InlineDefinition = 0; 822 FD->getBody(InlineDefinition); 823 824 StringRef MangledName = getMangledName(GD); 825 llvm::StringMap<GlobalDecl>::iterator DDI = 826 DeferredDecls.find(MangledName); 827 if (DDI != DeferredDecls.end()) 828 DeferredDecls.erase(DDI); 829 EmitGlobalDefinition(InlineDefinition); 830 return; 831 } 832 } else { 833 const VarDecl *VD = cast<VarDecl>(Global); 834 assert(VD->isFileVarDecl() && "Cannot emit local var decl as global."); 835 836 if (VD->isThisDeclarationADefinition() != VarDecl::Definition) 837 return; 838 } 839 840 // Defer code generation when possible if this is a static definition, inline 841 // function etc. These we only want to emit if they are used. 842 if (!MayDeferGeneration(Global)) { 843 // Emit the definition if it can't be deferred. 844 EmitGlobalDefinition(GD); 845 return; 846 } 847 848 // If we're deferring emission of a C++ variable with an 849 // initializer, remember the order in which it appeared in the file. 850 if (getLangOptions().CPlusPlus && isa<VarDecl>(Global) && 851 cast<VarDecl>(Global)->hasInit()) { 852 DelayedCXXInitPosition[Global] = CXXGlobalInits.size(); 853 CXXGlobalInits.push_back(0); 854 } 855 856 // If the value has already been used, add it directly to the 857 // DeferredDeclsToEmit list. 858 StringRef MangledName = getMangledName(GD); 859 if (GetGlobalValue(MangledName)) 860 DeferredDeclsToEmit.push_back(GD); 861 else { 862 // Otherwise, remember that we saw a deferred decl with this name. The 863 // first use of the mangled name will cause it to move into 864 // DeferredDeclsToEmit. 865 DeferredDecls[MangledName] = GD; 866 } 867 } 868 869 namespace { 870 struct FunctionIsDirectlyRecursive : 871 public RecursiveASTVisitor<FunctionIsDirectlyRecursive> { 872 const StringRef Name; 873 const Builtin::Context &BI; 874 bool Result; 875 FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C) : 876 Name(N), BI(C), Result(false) { 877 } 878 typedef RecursiveASTVisitor<FunctionIsDirectlyRecursive> Base; 879 880 bool TraverseCallExpr(CallExpr *E) { 881 const FunctionDecl *FD = E->getDirectCallee(); 882 if (!FD) 883 return true; 884 AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>(); 885 if (Attr && Name == Attr->getLabel()) { 886 Result = true; 887 return false; 888 } 889 unsigned BuiltinID = FD->getBuiltinID(); 890 if (!BuiltinID) 891 return true; 892 StringRef BuiltinName = BI.GetName(BuiltinID); 893 if (BuiltinName.startswith("__builtin_") && 894 Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) { 895 Result = true; 896 return false; 897 } 898 return true; 899 } 900 }; 901 } 902 903 // isTriviallyRecursive - Check if this function calls another 904 // decl that, because of the asm attribute or the other decl being a builtin, 905 // ends up pointing to itself. 906 bool 907 CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) { 908 StringRef Name; 909 if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) { 910 // asm labels are a special kind of mangling we have to support. 911 AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>(); 912 if (!Attr) 913 return false; 914 Name = Attr->getLabel(); 915 } else { 916 Name = FD->getName(); 917 } 918 919 FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo); 920 Walker.TraverseFunctionDecl(const_cast<FunctionDecl*>(FD)); 921 return Walker.Result; 922 } 923 924 bool 925 CodeGenModule::shouldEmitFunction(const FunctionDecl *F) { 926 if (getFunctionLinkage(F) != llvm::Function::AvailableExternallyLinkage) 927 return true; 928 if (CodeGenOpts.OptimizationLevel == 0 && 929 !F->hasAttr<AlwaysInlineAttr>()) 930 return false; 931 // PR9614. Avoid cases where the source code is lying to us. An available 932 // externally function should have an equivalent function somewhere else, 933 // but a function that calls itself is clearly not equivalent to the real 934 // implementation. 935 // This happens in glibc's btowc and in some configure checks. 936 return !isTriviallyRecursive(F); 937 } 938 939 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD) { 940 const ValueDecl *D = cast<ValueDecl>(GD.getDecl()); 941 942 PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(), 943 Context.getSourceManager(), 944 "Generating code for declaration"); 945 946 if (const FunctionDecl *Function = dyn_cast<FunctionDecl>(D)) { 947 // At -O0, don't generate IR for functions with available_externally 948 // linkage. 949 if (!shouldEmitFunction(Function)) 950 return; 951 952 if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) { 953 // Make sure to emit the definition(s) before we emit the thunks. 954 // This is necessary for the generation of certain thunks. 955 if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(Method)) 956 EmitCXXConstructor(CD, GD.getCtorType()); 957 else if (const CXXDestructorDecl *DD =dyn_cast<CXXDestructorDecl>(Method)) 958 EmitCXXDestructor(DD, GD.getDtorType()); 959 else 960 EmitGlobalFunctionDefinition(GD); 961 962 if (Method->isVirtual()) 963 getVTables().EmitThunks(GD); 964 965 return; 966 } 967 968 return EmitGlobalFunctionDefinition(GD); 969 } 970 971 if (const VarDecl *VD = dyn_cast<VarDecl>(D)) 972 return EmitGlobalVarDefinition(VD); 973 974 llvm_unreachable("Invalid argument to EmitGlobalDefinition()"); 975 } 976 977 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the 978 /// module, create and return an llvm Function with the specified type. If there 979 /// is something in the module with the specified name, return it potentially 980 /// bitcasted to the right type. 981 /// 982 /// If D is non-null, it specifies a decl that correspond to this. This is used 983 /// to set the attributes on the function when it is first created. 984 llvm::Constant * 985 CodeGenModule::GetOrCreateLLVMFunction(StringRef MangledName, 986 llvm::Type *Ty, 987 GlobalDecl D, bool ForVTable, 988 llvm::Attributes ExtraAttrs) { 989 // Lookup the entry, lazily creating it if necessary. 990 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 991 if (Entry) { 992 if (WeakRefReferences.count(Entry)) { 993 const FunctionDecl *FD = cast_or_null<FunctionDecl>(D.getDecl()); 994 if (FD && !FD->hasAttr<WeakAttr>()) 995 Entry->setLinkage(llvm::Function::ExternalLinkage); 996 997 WeakRefReferences.erase(Entry); 998 } 999 1000 if (Entry->getType()->getElementType() == Ty) 1001 return Entry; 1002 1003 // Make sure the result is of the correct type. 1004 return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo()); 1005 } 1006 1007 // This function doesn't have a complete type (for example, the return 1008 // type is an incomplete struct). Use a fake type instead, and make 1009 // sure not to try to set attributes. 1010 bool IsIncompleteFunction = false; 1011 1012 llvm::FunctionType *FTy; 1013 if (isa<llvm::FunctionType>(Ty)) { 1014 FTy = cast<llvm::FunctionType>(Ty); 1015 } else { 1016 FTy = llvm::FunctionType::get(VoidTy, false); 1017 IsIncompleteFunction = true; 1018 } 1019 1020 llvm::Function *F = llvm::Function::Create(FTy, 1021 llvm::Function::ExternalLinkage, 1022 MangledName, &getModule()); 1023 assert(F->getName() == MangledName && "name was uniqued!"); 1024 if (D.getDecl()) 1025 SetFunctionAttributes(D, F, IsIncompleteFunction); 1026 if (ExtraAttrs != llvm::Attribute::None) 1027 F->addFnAttr(ExtraAttrs); 1028 1029 // This is the first use or definition of a mangled name. If there is a 1030 // deferred decl with this name, remember that we need to emit it at the end 1031 // of the file. 1032 llvm::StringMap<GlobalDecl>::iterator DDI = DeferredDecls.find(MangledName); 1033 if (DDI != DeferredDecls.end()) { 1034 // Move the potentially referenced deferred decl to the DeferredDeclsToEmit 1035 // list, and remove it from DeferredDecls (since we don't need it anymore). 1036 DeferredDeclsToEmit.push_back(DDI->second); 1037 DeferredDecls.erase(DDI); 1038 1039 // Otherwise, there are cases we have to worry about where we're 1040 // using a declaration for which we must emit a definition but where 1041 // we might not find a top-level definition: 1042 // - member functions defined inline in their classes 1043 // - friend functions defined inline in some class 1044 // - special member functions with implicit definitions 1045 // If we ever change our AST traversal to walk into class methods, 1046 // this will be unnecessary. 1047 // 1048 // We also don't emit a definition for a function if it's going to be an entry 1049 // in a vtable, unless it's already marked as used. 1050 } else if (getLangOptions().CPlusPlus && D.getDecl()) { 1051 // Look for a declaration that's lexically in a record. 1052 const FunctionDecl *FD = cast<FunctionDecl>(D.getDecl()); 1053 do { 1054 if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) { 1055 if (FD->isImplicit() && !ForVTable) { 1056 assert(FD->isUsed() && "Sema didn't mark implicit function as used!"); 1057 DeferredDeclsToEmit.push_back(D.getWithDecl(FD)); 1058 break; 1059 } else if (FD->doesThisDeclarationHaveABody()) { 1060 DeferredDeclsToEmit.push_back(D.getWithDecl(FD)); 1061 break; 1062 } 1063 } 1064 FD = FD->getPreviousDecl(); 1065 } while (FD); 1066 } 1067 1068 // Make sure the result is of the requested type. 1069 if (!IsIncompleteFunction) { 1070 assert(F->getType()->getElementType() == Ty); 1071 return F; 1072 } 1073 1074 llvm::Type *PTy = llvm::PointerType::getUnqual(Ty); 1075 return llvm::ConstantExpr::getBitCast(F, PTy); 1076 } 1077 1078 /// GetAddrOfFunction - Return the address of the given function. If Ty is 1079 /// non-null, then this function will use the specified type if it has to 1080 /// create it (this occurs when we see a definition of the function). 1081 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD, 1082 llvm::Type *Ty, 1083 bool ForVTable) { 1084 // If there was no specific requested type, just convert it now. 1085 if (!Ty) 1086 Ty = getTypes().ConvertType(cast<ValueDecl>(GD.getDecl())->getType()); 1087 1088 StringRef MangledName = getMangledName(GD); 1089 return GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable); 1090 } 1091 1092 /// CreateRuntimeFunction - Create a new runtime function with the specified 1093 /// type and name. 1094 llvm::Constant * 1095 CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy, 1096 StringRef Name, 1097 llvm::Attributes ExtraAttrs) { 1098 return GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false, 1099 ExtraAttrs); 1100 } 1101 1102 /// isTypeConstant - Determine whether an object of this type can be emitted 1103 /// as a constant. 1104 /// 1105 /// If ExcludeCtor is true, the duration when the object's constructor runs 1106 /// will not be considered. The caller will need to verify that the object is 1107 /// not written to during its construction. 1108 bool CodeGenModule::isTypeConstant(QualType Ty, bool ExcludeCtor) { 1109 if (!Ty.isConstant(Context) && !Ty->isReferenceType()) 1110 return false; 1111 1112 if (Context.getLangOptions().CPlusPlus) { 1113 if (const CXXRecordDecl *Record 1114 = Context.getBaseElementType(Ty)->getAsCXXRecordDecl()) 1115 return ExcludeCtor && !Record->hasMutableFields() && 1116 Record->hasTrivialDestructor(); 1117 } 1118 1119 return true; 1120 } 1121 1122 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module, 1123 /// create and return an llvm GlobalVariable with the specified type. If there 1124 /// is something in the module with the specified name, return it potentially 1125 /// bitcasted to the right type. 1126 /// 1127 /// If D is non-null, it specifies a decl that correspond to this. This is used 1128 /// to set the attributes on the global when it is first created. 1129 llvm::Constant * 1130 CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName, 1131 llvm::PointerType *Ty, 1132 const VarDecl *D, 1133 bool UnnamedAddr) { 1134 // Lookup the entry, lazily creating it if necessary. 1135 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 1136 if (Entry) { 1137 if (WeakRefReferences.count(Entry)) { 1138 if (D && !D->hasAttr<WeakAttr>()) 1139 Entry->setLinkage(llvm::Function::ExternalLinkage); 1140 1141 WeakRefReferences.erase(Entry); 1142 } 1143 1144 if (UnnamedAddr) 1145 Entry->setUnnamedAddr(true); 1146 1147 if (Entry->getType() == Ty) 1148 return Entry; 1149 1150 // Make sure the result is of the correct type. 1151 return llvm::ConstantExpr::getBitCast(Entry, Ty); 1152 } 1153 1154 // This is the first use or definition of a mangled name. If there is a 1155 // deferred decl with this name, remember that we need to emit it at the end 1156 // of the file. 1157 llvm::StringMap<GlobalDecl>::iterator DDI = DeferredDecls.find(MangledName); 1158 if (DDI != DeferredDecls.end()) { 1159 // Move the potentially referenced deferred decl to the DeferredDeclsToEmit 1160 // list, and remove it from DeferredDecls (since we don't need it anymore). 1161 DeferredDeclsToEmit.push_back(DDI->second); 1162 DeferredDecls.erase(DDI); 1163 } 1164 1165 llvm::GlobalVariable *GV = 1166 new llvm::GlobalVariable(getModule(), Ty->getElementType(), false, 1167 llvm::GlobalValue::ExternalLinkage, 1168 0, MangledName, 0, 1169 false, Ty->getAddressSpace()); 1170 1171 // Handle things which are present even on external declarations. 1172 if (D) { 1173 // FIXME: This code is overly simple and should be merged with other global 1174 // handling. 1175 GV->setConstant(isTypeConstant(D->getType(), false)); 1176 1177 // Set linkage and visibility in case we never see a definition. 1178 NamedDecl::LinkageInfo LV = D->getLinkageAndVisibility(); 1179 if (LV.linkage() != ExternalLinkage) { 1180 // Don't set internal linkage on declarations. 1181 } else { 1182 if (D->hasAttr<DLLImportAttr>()) 1183 GV->setLinkage(llvm::GlobalValue::DLLImportLinkage); 1184 else if (D->hasAttr<WeakAttr>() || D->isWeakImported()) 1185 GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage); 1186 1187 // Set visibility on a declaration only if it's explicit. 1188 if (LV.visibilityExplicit()) 1189 GV->setVisibility(GetLLVMVisibility(LV.visibility())); 1190 } 1191 1192 GV->setThreadLocal(D->isThreadSpecified()); 1193 } 1194 1195 return GV; 1196 } 1197 1198 1199 llvm::GlobalVariable * 1200 CodeGenModule::CreateOrReplaceCXXRuntimeVariable(StringRef Name, 1201 llvm::Type *Ty, 1202 llvm::GlobalValue::LinkageTypes Linkage) { 1203 llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name); 1204 llvm::GlobalVariable *OldGV = 0; 1205 1206 1207 if (GV) { 1208 // Check if the variable has the right type. 1209 if (GV->getType()->getElementType() == Ty) 1210 return GV; 1211 1212 // Because C++ name mangling, the only way we can end up with an already 1213 // existing global with the same name is if it has been declared extern "C". 1214 assert(GV->isDeclaration() && "Declaration has wrong type!"); 1215 OldGV = GV; 1216 } 1217 1218 // Create a new variable. 1219 GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true, 1220 Linkage, 0, Name); 1221 1222 if (OldGV) { 1223 // Replace occurrences of the old variable if needed. 1224 GV->takeName(OldGV); 1225 1226 if (!OldGV->use_empty()) { 1227 llvm::Constant *NewPtrForOldDecl = 1228 llvm::ConstantExpr::getBitCast(GV, OldGV->getType()); 1229 OldGV->replaceAllUsesWith(NewPtrForOldDecl); 1230 } 1231 1232 OldGV->eraseFromParent(); 1233 } 1234 1235 return GV; 1236 } 1237 1238 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the 1239 /// given global variable. If Ty is non-null and if the global doesn't exist, 1240 /// then it will be greated with the specified type instead of whatever the 1241 /// normal requested type would be. 1242 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D, 1243 llvm::Type *Ty) { 1244 assert(D->hasGlobalStorage() && "Not a global variable"); 1245 QualType ASTTy = D->getType(); 1246 if (Ty == 0) 1247 Ty = getTypes().ConvertTypeForMem(ASTTy); 1248 1249 llvm::PointerType *PTy = 1250 llvm::PointerType::get(Ty, getContext().getTargetAddressSpace(ASTTy)); 1251 1252 StringRef MangledName = getMangledName(D); 1253 return GetOrCreateLLVMGlobal(MangledName, PTy, D); 1254 } 1255 1256 /// CreateRuntimeVariable - Create a new runtime global variable with the 1257 /// specified type and name. 1258 llvm::Constant * 1259 CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty, 1260 StringRef Name) { 1261 return GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), 0, 1262 true); 1263 } 1264 1265 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) { 1266 assert(!D->getInit() && "Cannot emit definite definitions here!"); 1267 1268 if (MayDeferGeneration(D)) { 1269 // If we have not seen a reference to this variable yet, place it 1270 // into the deferred declarations table to be emitted if needed 1271 // later. 1272 StringRef MangledName = getMangledName(D); 1273 if (!GetGlobalValue(MangledName)) { 1274 DeferredDecls[MangledName] = D; 1275 return; 1276 } 1277 } 1278 1279 // The tentative definition is the only definition. 1280 EmitGlobalVarDefinition(D); 1281 } 1282 1283 void CodeGenModule::EmitVTable(CXXRecordDecl *Class, bool DefinitionRequired) { 1284 if (DefinitionRequired) 1285 getVTables().GenerateClassData(getVTableLinkage(Class), Class); 1286 } 1287 1288 llvm::GlobalVariable::LinkageTypes 1289 CodeGenModule::getVTableLinkage(const CXXRecordDecl *RD) { 1290 if (RD->getLinkage() != ExternalLinkage) 1291 return llvm::GlobalVariable::InternalLinkage; 1292 1293 if (const CXXMethodDecl *KeyFunction 1294 = RD->getASTContext().getKeyFunction(RD)) { 1295 // If this class has a key function, use that to determine the linkage of 1296 // the vtable. 1297 const FunctionDecl *Def = 0; 1298 if (KeyFunction->hasBody(Def)) 1299 KeyFunction = cast<CXXMethodDecl>(Def); 1300 1301 switch (KeyFunction->getTemplateSpecializationKind()) { 1302 case TSK_Undeclared: 1303 case TSK_ExplicitSpecialization: 1304 // When compiling with optimizations turned on, we emit all vtables, 1305 // even if the key function is not defined in the current translation 1306 // unit. If this is the case, use available_externally linkage. 1307 if (!Def && CodeGenOpts.OptimizationLevel) 1308 return llvm::GlobalVariable::AvailableExternallyLinkage; 1309 1310 if (KeyFunction->isInlined()) 1311 return !Context.getLangOptions().AppleKext ? 1312 llvm::GlobalVariable::LinkOnceODRLinkage : 1313 llvm::Function::InternalLinkage; 1314 1315 return llvm::GlobalVariable::ExternalLinkage; 1316 1317 case TSK_ImplicitInstantiation: 1318 return !Context.getLangOptions().AppleKext ? 1319 llvm::GlobalVariable::LinkOnceODRLinkage : 1320 llvm::Function::InternalLinkage; 1321 1322 case TSK_ExplicitInstantiationDefinition: 1323 return !Context.getLangOptions().AppleKext ? 1324 llvm::GlobalVariable::WeakODRLinkage : 1325 llvm::Function::InternalLinkage; 1326 1327 case TSK_ExplicitInstantiationDeclaration: 1328 // FIXME: Use available_externally linkage. However, this currently 1329 // breaks LLVM's build due to undefined symbols. 1330 // return llvm::GlobalVariable::AvailableExternallyLinkage; 1331 return !Context.getLangOptions().AppleKext ? 1332 llvm::GlobalVariable::LinkOnceODRLinkage : 1333 llvm::Function::InternalLinkage; 1334 } 1335 } 1336 1337 if (Context.getLangOptions().AppleKext) 1338 return llvm::Function::InternalLinkage; 1339 1340 switch (RD->getTemplateSpecializationKind()) { 1341 case TSK_Undeclared: 1342 case TSK_ExplicitSpecialization: 1343 case TSK_ImplicitInstantiation: 1344 // FIXME: Use available_externally linkage. However, this currently 1345 // breaks LLVM's build due to undefined symbols. 1346 // return llvm::GlobalVariable::AvailableExternallyLinkage; 1347 case TSK_ExplicitInstantiationDeclaration: 1348 return llvm::GlobalVariable::LinkOnceODRLinkage; 1349 1350 case TSK_ExplicitInstantiationDefinition: 1351 return llvm::GlobalVariable::WeakODRLinkage; 1352 } 1353 1354 llvm_unreachable("Invalid TemplateSpecializationKind!"); 1355 } 1356 1357 CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const { 1358 return Context.toCharUnitsFromBits( 1359 TheTargetData.getTypeStoreSizeInBits(Ty)); 1360 } 1361 1362 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D) { 1363 llvm::Constant *Init = 0; 1364 QualType ASTTy = D->getType(); 1365 CXXRecordDecl *RD = ASTTy->getBaseElementTypeUnsafe()->getAsCXXRecordDecl(); 1366 bool NeedsGlobalCtor = false; 1367 bool NeedsGlobalDtor = RD && !RD->hasTrivialDestructor(); 1368 1369 const VarDecl *InitDecl; 1370 const Expr *InitExpr = D->getAnyInitializer(InitDecl); 1371 1372 if (!InitExpr) { 1373 // This is a tentative definition; tentative definitions are 1374 // implicitly initialized with { 0 }. 1375 // 1376 // Note that tentative definitions are only emitted at the end of 1377 // a translation unit, so they should never have incomplete 1378 // type. In addition, EmitTentativeDefinition makes sure that we 1379 // never attempt to emit a tentative definition if a real one 1380 // exists. A use may still exists, however, so we still may need 1381 // to do a RAUW. 1382 assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type"); 1383 Init = EmitNullConstant(D->getType()); 1384 } else { 1385 Init = EmitConstantInit(*InitDecl); 1386 if (!Init) { 1387 QualType T = InitExpr->getType(); 1388 if (D->getType()->isReferenceType()) 1389 T = D->getType(); 1390 1391 if (getLangOptions().CPlusPlus) { 1392 Init = EmitNullConstant(T); 1393 NeedsGlobalCtor = true; 1394 } else { 1395 ErrorUnsupported(D, "static initializer"); 1396 Init = llvm::UndefValue::get(getTypes().ConvertType(T)); 1397 } 1398 } else { 1399 // We don't need an initializer, so remove the entry for the delayed 1400 // initializer position (just in case this entry was delayed) if we 1401 // also don't need to register a destructor. 1402 if (getLangOptions().CPlusPlus && !NeedsGlobalDtor) 1403 DelayedCXXInitPosition.erase(D); 1404 } 1405 } 1406 1407 llvm::Type* InitType = Init->getType(); 1408 llvm::Constant *Entry = GetAddrOfGlobalVar(D, InitType); 1409 1410 // Strip off a bitcast if we got one back. 1411 if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) { 1412 assert(CE->getOpcode() == llvm::Instruction::BitCast || 1413 // all zero index gep. 1414 CE->getOpcode() == llvm::Instruction::GetElementPtr); 1415 Entry = CE->getOperand(0); 1416 } 1417 1418 // Entry is now either a Function or GlobalVariable. 1419 llvm::GlobalVariable *GV = dyn_cast<llvm::GlobalVariable>(Entry); 1420 1421 // We have a definition after a declaration with the wrong type. 1422 // We must make a new GlobalVariable* and update everything that used OldGV 1423 // (a declaration or tentative definition) with the new GlobalVariable* 1424 // (which will be a definition). 1425 // 1426 // This happens if there is a prototype for a global (e.g. 1427 // "extern int x[];") and then a definition of a different type (e.g. 1428 // "int x[10];"). This also happens when an initializer has a different type 1429 // from the type of the global (this happens with unions). 1430 if (GV == 0 || 1431 GV->getType()->getElementType() != InitType || 1432 GV->getType()->getAddressSpace() != 1433 getContext().getTargetAddressSpace(ASTTy)) { 1434 1435 // Move the old entry aside so that we'll create a new one. 1436 Entry->setName(StringRef()); 1437 1438 // Make a new global with the correct type, this is now guaranteed to work. 1439 GV = cast<llvm::GlobalVariable>(GetAddrOfGlobalVar(D, InitType)); 1440 1441 // Replace all uses of the old global with the new global 1442 llvm::Constant *NewPtrForOldDecl = 1443 llvm::ConstantExpr::getBitCast(GV, Entry->getType()); 1444 Entry->replaceAllUsesWith(NewPtrForOldDecl); 1445 1446 // Erase the old global, since it is no longer used. 1447 cast<llvm::GlobalValue>(Entry)->eraseFromParent(); 1448 } 1449 1450 if (D->hasAttr<AnnotateAttr>()) 1451 AddGlobalAnnotations(D, GV); 1452 1453 GV->setInitializer(Init); 1454 1455 // If it is safe to mark the global 'constant', do so now. 1456 GV->setConstant(!NeedsGlobalCtor && !NeedsGlobalDtor && 1457 isTypeConstant(D->getType(), true)); 1458 1459 GV->setAlignment(getContext().getDeclAlign(D).getQuantity()); 1460 1461 // Set the llvm linkage type as appropriate. 1462 llvm::GlobalValue::LinkageTypes Linkage = 1463 GetLLVMLinkageVarDefinition(D, GV); 1464 GV->setLinkage(Linkage); 1465 if (Linkage == llvm::GlobalVariable::CommonLinkage) 1466 // common vars aren't constant even if declared const. 1467 GV->setConstant(false); 1468 1469 SetCommonAttributes(D, GV); 1470 1471 // Emit the initializer function if necessary. 1472 if (NeedsGlobalCtor || NeedsGlobalDtor) 1473 EmitCXXGlobalVarDeclInitFunc(D, GV, NeedsGlobalCtor); 1474 1475 // Emit global variable debug information. 1476 if (CGDebugInfo *DI = getModuleDebugInfo()) 1477 DI->EmitGlobalVariable(GV, D); 1478 } 1479 1480 llvm::GlobalValue::LinkageTypes 1481 CodeGenModule::GetLLVMLinkageVarDefinition(const VarDecl *D, 1482 llvm::GlobalVariable *GV) { 1483 GVALinkage Linkage = getContext().GetGVALinkageForVariable(D); 1484 if (Linkage == GVA_Internal) 1485 return llvm::Function::InternalLinkage; 1486 else if (D->hasAttr<DLLImportAttr>()) 1487 return llvm::Function::DLLImportLinkage; 1488 else if (D->hasAttr<DLLExportAttr>()) 1489 return llvm::Function::DLLExportLinkage; 1490 else if (D->hasAttr<WeakAttr>()) { 1491 if (GV->isConstant()) 1492 return llvm::GlobalVariable::WeakODRLinkage; 1493 else 1494 return llvm::GlobalVariable::WeakAnyLinkage; 1495 } else if (Linkage == GVA_TemplateInstantiation || 1496 Linkage == GVA_ExplicitTemplateInstantiation) 1497 return llvm::GlobalVariable::WeakODRLinkage; 1498 else if (!getLangOptions().CPlusPlus && 1499 ((!CodeGenOpts.NoCommon && !D->getAttr<NoCommonAttr>()) || 1500 D->getAttr<CommonAttr>()) && 1501 !D->hasExternalStorage() && !D->getInit() && 1502 !D->getAttr<SectionAttr>() && !D->isThreadSpecified() && 1503 !D->getAttr<WeakImportAttr>()) { 1504 // Thread local vars aren't considered common linkage. 1505 return llvm::GlobalVariable::CommonLinkage; 1506 } 1507 return llvm::GlobalVariable::ExternalLinkage; 1508 } 1509 1510 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we 1511 /// implement a function with no prototype, e.g. "int foo() {}". If there are 1512 /// existing call uses of the old function in the module, this adjusts them to 1513 /// call the new function directly. 1514 /// 1515 /// This is not just a cleanup: the always_inline pass requires direct calls to 1516 /// functions to be able to inline them. If there is a bitcast in the way, it 1517 /// won't inline them. Instcombine normally deletes these calls, but it isn't 1518 /// run at -O0. 1519 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old, 1520 llvm::Function *NewFn) { 1521 // If we're redefining a global as a function, don't transform it. 1522 llvm::Function *OldFn = dyn_cast<llvm::Function>(Old); 1523 if (OldFn == 0) return; 1524 1525 llvm::Type *NewRetTy = NewFn->getReturnType(); 1526 SmallVector<llvm::Value*, 4> ArgList; 1527 1528 for (llvm::Value::use_iterator UI = OldFn->use_begin(), E = OldFn->use_end(); 1529 UI != E; ) { 1530 // TODO: Do invokes ever occur in C code? If so, we should handle them too. 1531 llvm::Value::use_iterator I = UI++; // Increment before the CI is erased. 1532 llvm::CallInst *CI = dyn_cast<llvm::CallInst>(*I); 1533 if (!CI) continue; // FIXME: when we allow Invoke, just do CallSite CS(*I) 1534 llvm::CallSite CS(CI); 1535 if (!CI || !CS.isCallee(I)) continue; 1536 1537 // If the return types don't match exactly, and if the call isn't dead, then 1538 // we can't transform this call. 1539 if (CI->getType() != NewRetTy && !CI->use_empty()) 1540 continue; 1541 1542 // Get the attribute list. 1543 llvm::SmallVector<llvm::AttributeWithIndex, 8> AttrVec; 1544 llvm::AttrListPtr AttrList = CI->getAttributes(); 1545 1546 // Get any return attributes. 1547 llvm::Attributes RAttrs = AttrList.getRetAttributes(); 1548 1549 // Add the return attributes. 1550 if (RAttrs) 1551 AttrVec.push_back(llvm::AttributeWithIndex::get(0, RAttrs)); 1552 1553 // If the function was passed too few arguments, don't transform. If extra 1554 // arguments were passed, we silently drop them. If any of the types 1555 // mismatch, we don't transform. 1556 unsigned ArgNo = 0; 1557 bool DontTransform = false; 1558 for (llvm::Function::arg_iterator AI = NewFn->arg_begin(), 1559 E = NewFn->arg_end(); AI != E; ++AI, ++ArgNo) { 1560 if (CS.arg_size() == ArgNo || 1561 CS.getArgument(ArgNo)->getType() != AI->getType()) { 1562 DontTransform = true; 1563 break; 1564 } 1565 1566 // Add any parameter attributes. 1567 if (llvm::Attributes PAttrs = AttrList.getParamAttributes(ArgNo + 1)) 1568 AttrVec.push_back(llvm::AttributeWithIndex::get(ArgNo + 1, PAttrs)); 1569 } 1570 if (DontTransform) 1571 continue; 1572 1573 if (llvm::Attributes FnAttrs = AttrList.getFnAttributes()) 1574 AttrVec.push_back(llvm::AttributeWithIndex::get(~0, FnAttrs)); 1575 1576 // Okay, we can transform this. Create the new call instruction and copy 1577 // over the required information. 1578 ArgList.append(CS.arg_begin(), CS.arg_begin() + ArgNo); 1579 llvm::CallInst *NewCall = llvm::CallInst::Create(NewFn, ArgList, "", CI); 1580 ArgList.clear(); 1581 if (!NewCall->getType()->isVoidTy()) 1582 NewCall->takeName(CI); 1583 NewCall->setAttributes(llvm::AttrListPtr::get(AttrVec.begin(), 1584 AttrVec.end())); 1585 NewCall->setCallingConv(CI->getCallingConv()); 1586 1587 // Finally, remove the old call, replacing any uses with the new one. 1588 if (!CI->use_empty()) 1589 CI->replaceAllUsesWith(NewCall); 1590 1591 // Copy debug location attached to CI. 1592 if (!CI->getDebugLoc().isUnknown()) 1593 NewCall->setDebugLoc(CI->getDebugLoc()); 1594 CI->eraseFromParent(); 1595 } 1596 } 1597 1598 1599 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD) { 1600 const FunctionDecl *D = cast<FunctionDecl>(GD.getDecl()); 1601 1602 // Compute the function info and LLVM type. 1603 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 1604 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 1605 1606 // Get or create the prototype for the function. 1607 llvm::Constant *Entry = GetAddrOfFunction(GD, Ty); 1608 1609 // Strip off a bitcast if we got one back. 1610 if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) { 1611 assert(CE->getOpcode() == llvm::Instruction::BitCast); 1612 Entry = CE->getOperand(0); 1613 } 1614 1615 1616 if (cast<llvm::GlobalValue>(Entry)->getType()->getElementType() != Ty) { 1617 llvm::GlobalValue *OldFn = cast<llvm::GlobalValue>(Entry); 1618 1619 // If the types mismatch then we have to rewrite the definition. 1620 assert(OldFn->isDeclaration() && 1621 "Shouldn't replace non-declaration"); 1622 1623 // F is the Function* for the one with the wrong type, we must make a new 1624 // Function* and update everything that used F (a declaration) with the new 1625 // Function* (which will be a definition). 1626 // 1627 // This happens if there is a prototype for a function 1628 // (e.g. "int f()") and then a definition of a different type 1629 // (e.g. "int f(int x)"). Move the old function aside so that it 1630 // doesn't interfere with GetAddrOfFunction. 1631 OldFn->setName(StringRef()); 1632 llvm::Function *NewFn = cast<llvm::Function>(GetAddrOfFunction(GD, Ty)); 1633 1634 // If this is an implementation of a function without a prototype, try to 1635 // replace any existing uses of the function (which may be calls) with uses 1636 // of the new function 1637 if (D->getType()->isFunctionNoProtoType()) { 1638 ReplaceUsesOfNonProtoTypeWithRealFunction(OldFn, NewFn); 1639 OldFn->removeDeadConstantUsers(); 1640 } 1641 1642 // Replace uses of F with the Function we will endow with a body. 1643 if (!Entry->use_empty()) { 1644 llvm::Constant *NewPtrForOldDecl = 1645 llvm::ConstantExpr::getBitCast(NewFn, Entry->getType()); 1646 Entry->replaceAllUsesWith(NewPtrForOldDecl); 1647 } 1648 1649 // Ok, delete the old function now, which is dead. 1650 OldFn->eraseFromParent(); 1651 1652 Entry = NewFn; 1653 } 1654 1655 // We need to set linkage and visibility on the function before 1656 // generating code for it because various parts of IR generation 1657 // want to propagate this information down (e.g. to local static 1658 // declarations). 1659 llvm::Function *Fn = cast<llvm::Function>(Entry); 1660 setFunctionLinkage(D, Fn); 1661 1662 // FIXME: this is redundant with part of SetFunctionDefinitionAttributes 1663 setGlobalVisibility(Fn, D); 1664 1665 CodeGenFunction(*this).GenerateCode(D, Fn, FI); 1666 1667 SetFunctionDefinitionAttributes(D, Fn); 1668 SetLLVMFunctionAttributesForDefinition(D, Fn); 1669 1670 if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>()) 1671 AddGlobalCtor(Fn, CA->getPriority()); 1672 if (const DestructorAttr *DA = D->getAttr<DestructorAttr>()) 1673 AddGlobalDtor(Fn, DA->getPriority()); 1674 if (D->hasAttr<AnnotateAttr>()) 1675 AddGlobalAnnotations(D, Fn); 1676 } 1677 1678 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) { 1679 const ValueDecl *D = cast<ValueDecl>(GD.getDecl()); 1680 const AliasAttr *AA = D->getAttr<AliasAttr>(); 1681 assert(AA && "Not an alias?"); 1682 1683 StringRef MangledName = getMangledName(GD); 1684 1685 // If there is a definition in the module, then it wins over the alias. 1686 // This is dubious, but allow it to be safe. Just ignore the alias. 1687 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 1688 if (Entry && !Entry->isDeclaration()) 1689 return; 1690 1691 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType()); 1692 1693 // Create a reference to the named value. This ensures that it is emitted 1694 // if a deferred decl. 1695 llvm::Constant *Aliasee; 1696 if (isa<llvm::FunctionType>(DeclTy)) 1697 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GlobalDecl(), 1698 /*ForVTable=*/false); 1699 else 1700 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), 1701 llvm::PointerType::getUnqual(DeclTy), 0); 1702 1703 // Create the new alias itself, but don't set a name yet. 1704 llvm::GlobalValue *GA = 1705 new llvm::GlobalAlias(Aliasee->getType(), 1706 llvm::Function::ExternalLinkage, 1707 "", Aliasee, &getModule()); 1708 1709 if (Entry) { 1710 assert(Entry->isDeclaration()); 1711 1712 // If there is a declaration in the module, then we had an extern followed 1713 // by the alias, as in: 1714 // extern int test6(); 1715 // ... 1716 // int test6() __attribute__((alias("test7"))); 1717 // 1718 // Remove it and replace uses of it with the alias. 1719 GA->takeName(Entry); 1720 1721 Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA, 1722 Entry->getType())); 1723 Entry->eraseFromParent(); 1724 } else { 1725 GA->setName(MangledName); 1726 } 1727 1728 // Set attributes which are particular to an alias; this is a 1729 // specialization of the attributes which may be set on a global 1730 // variable/function. 1731 if (D->hasAttr<DLLExportAttr>()) { 1732 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { 1733 // The dllexport attribute is ignored for undefined symbols. 1734 if (FD->hasBody()) 1735 GA->setLinkage(llvm::Function::DLLExportLinkage); 1736 } else { 1737 GA->setLinkage(llvm::Function::DLLExportLinkage); 1738 } 1739 } else if (D->hasAttr<WeakAttr>() || 1740 D->hasAttr<WeakRefAttr>() || 1741 D->isWeakImported()) { 1742 GA->setLinkage(llvm::Function::WeakAnyLinkage); 1743 } 1744 1745 SetCommonAttributes(D, GA); 1746 } 1747 1748 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID, 1749 ArrayRef<llvm::Type*> Tys) { 1750 return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID, 1751 Tys); 1752 } 1753 1754 static llvm::StringMapEntry<llvm::Constant*> & 1755 GetConstantCFStringEntry(llvm::StringMap<llvm::Constant*> &Map, 1756 const StringLiteral *Literal, 1757 bool TargetIsLSB, 1758 bool &IsUTF16, 1759 unsigned &StringLength) { 1760 StringRef String = Literal->getString(); 1761 unsigned NumBytes = String.size(); 1762 1763 // Check for simple case. 1764 if (!Literal->containsNonAsciiOrNull()) { 1765 StringLength = NumBytes; 1766 return Map.GetOrCreateValue(String); 1767 } 1768 1769 // Otherwise, convert the UTF8 literals into a byte string. 1770 SmallVector<UTF16, 128> ToBuf(NumBytes); 1771 const UTF8 *FromPtr = (UTF8 *)String.data(); 1772 UTF16 *ToPtr = &ToBuf[0]; 1773 1774 (void)ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, 1775 &ToPtr, ToPtr + NumBytes, 1776 strictConversion); 1777 1778 // ConvertUTF8toUTF16 returns the length in ToPtr. 1779 StringLength = ToPtr - &ToBuf[0]; 1780 1781 // Render the UTF-16 string into a byte array and convert to the target byte 1782 // order. 1783 // 1784 // FIXME: This isn't something we should need to do here. 1785 SmallString<128> AsBytes; 1786 AsBytes.reserve(StringLength * 2); 1787 for (unsigned i = 0; i != StringLength; ++i) { 1788 unsigned short Val = ToBuf[i]; 1789 if (TargetIsLSB) { 1790 AsBytes.push_back(Val & 0xFF); 1791 AsBytes.push_back(Val >> 8); 1792 } else { 1793 AsBytes.push_back(Val >> 8); 1794 AsBytes.push_back(Val & 0xFF); 1795 } 1796 } 1797 // Append one extra null character, the second is automatically added by our 1798 // caller. 1799 AsBytes.push_back(0); 1800 1801 IsUTF16 = true; 1802 return Map.GetOrCreateValue(StringRef(AsBytes.data(), AsBytes.size())); 1803 } 1804 1805 static llvm::StringMapEntry<llvm::Constant*> & 1806 GetConstantStringEntry(llvm::StringMap<llvm::Constant*> &Map, 1807 const StringLiteral *Literal, 1808 unsigned &StringLength) 1809 { 1810 StringRef String = Literal->getString(); 1811 StringLength = String.size(); 1812 return Map.GetOrCreateValue(String); 1813 } 1814 1815 llvm::Constant * 1816 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) { 1817 unsigned StringLength = 0; 1818 bool isUTF16 = false; 1819 llvm::StringMapEntry<llvm::Constant*> &Entry = 1820 GetConstantCFStringEntry(CFConstantStringMap, Literal, 1821 getTargetData().isLittleEndian(), 1822 isUTF16, StringLength); 1823 1824 if (llvm::Constant *C = Entry.getValue()) 1825 return C; 1826 1827 llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty); 1828 llvm::Constant *Zeros[] = { Zero, Zero }; 1829 1830 // If we don't already have it, get __CFConstantStringClassReference. 1831 if (!CFConstantStringClassRef) { 1832 llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy); 1833 Ty = llvm::ArrayType::get(Ty, 0); 1834 llvm::Constant *GV = CreateRuntimeVariable(Ty, 1835 "__CFConstantStringClassReference"); 1836 // Decay array -> ptr 1837 CFConstantStringClassRef = 1838 llvm::ConstantExpr::getGetElementPtr(GV, Zeros); 1839 } 1840 1841 QualType CFTy = getContext().getCFConstantStringType(); 1842 1843 llvm::StructType *STy = 1844 cast<llvm::StructType>(getTypes().ConvertType(CFTy)); 1845 1846 llvm::Constant *Fields[4]; 1847 1848 // Class pointer. 1849 Fields[0] = CFConstantStringClassRef; 1850 1851 // Flags. 1852 llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy); 1853 Fields[1] = isUTF16 ? llvm::ConstantInt::get(Ty, 0x07d0) : 1854 llvm::ConstantInt::get(Ty, 0x07C8); 1855 1856 // String pointer. 1857 llvm::Constant *C = llvm::ConstantDataArray::getString(VMContext, 1858 Entry.getKey()); 1859 1860 llvm::GlobalValue::LinkageTypes Linkage; 1861 if (isUTF16) 1862 // FIXME: why do utf strings get "_" labels instead of "L" labels? 1863 Linkage = llvm::GlobalValue::InternalLinkage; 1864 else 1865 // FIXME: With OS X ld 123.2 (xcode 4) and LTO we would get a linker error 1866 // when using private linkage. It is not clear if this is a bug in ld 1867 // or a reasonable new restriction. 1868 Linkage = llvm::GlobalValue::LinkerPrivateLinkage; 1869 1870 // Note: -fwritable-strings doesn't make the backing store strings of 1871 // CFStrings writable. (See <rdar://problem/10657500>) 1872 llvm::GlobalVariable *GV = 1873 new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true, 1874 Linkage, C, ".str"); 1875 GV->setUnnamedAddr(true); 1876 if (isUTF16) { 1877 CharUnits Align = getContext().getTypeAlignInChars(getContext().ShortTy); 1878 GV->setAlignment(Align.getQuantity()); 1879 } else { 1880 CharUnits Align = getContext().getTypeAlignInChars(getContext().CharTy); 1881 GV->setAlignment(Align.getQuantity()); 1882 } 1883 Fields[2] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros); 1884 1885 // String length. 1886 Ty = getTypes().ConvertType(getContext().LongTy); 1887 Fields[3] = llvm::ConstantInt::get(Ty, StringLength); 1888 1889 // The struct. 1890 C = llvm::ConstantStruct::get(STy, Fields); 1891 GV = new llvm::GlobalVariable(getModule(), C->getType(), true, 1892 llvm::GlobalVariable::PrivateLinkage, C, 1893 "_unnamed_cfstring_"); 1894 if (const char *Sect = getContext().getTargetInfo().getCFStringSection()) 1895 GV->setSection(Sect); 1896 Entry.setValue(GV); 1897 1898 return GV; 1899 } 1900 1901 static RecordDecl * 1902 CreateRecordDecl(const ASTContext &Ctx, RecordDecl::TagKind TK, 1903 DeclContext *DC, IdentifierInfo *Id) { 1904 SourceLocation Loc; 1905 if (Ctx.getLangOptions().CPlusPlus) 1906 return CXXRecordDecl::Create(Ctx, TK, DC, Loc, Loc, Id); 1907 else 1908 return RecordDecl::Create(Ctx, TK, DC, Loc, Loc, Id); 1909 } 1910 1911 llvm::Constant * 1912 CodeGenModule::GetAddrOfConstantString(const StringLiteral *Literal) { 1913 unsigned StringLength = 0; 1914 llvm::StringMapEntry<llvm::Constant*> &Entry = 1915 GetConstantStringEntry(CFConstantStringMap, Literal, StringLength); 1916 1917 if (llvm::Constant *C = Entry.getValue()) 1918 return C; 1919 1920 llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty); 1921 llvm::Constant *Zeros[] = { Zero, Zero }; 1922 1923 // If we don't already have it, get _NSConstantStringClassReference. 1924 if (!ConstantStringClassRef) { 1925 std::string StringClass(getLangOptions().ObjCConstantStringClass); 1926 llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy); 1927 llvm::Constant *GV; 1928 if (Features.ObjCNonFragileABI) { 1929 std::string str = 1930 StringClass.empty() ? "OBJC_CLASS_$_NSConstantString" 1931 : "OBJC_CLASS_$_" + StringClass; 1932 GV = getObjCRuntime().GetClassGlobal(str); 1933 // Make sure the result is of the correct type. 1934 llvm::Type *PTy = llvm::PointerType::getUnqual(Ty); 1935 ConstantStringClassRef = 1936 llvm::ConstantExpr::getBitCast(GV, PTy); 1937 } else { 1938 std::string str = 1939 StringClass.empty() ? "_NSConstantStringClassReference" 1940 : "_" + StringClass + "ClassReference"; 1941 llvm::Type *PTy = llvm::ArrayType::get(Ty, 0); 1942 GV = CreateRuntimeVariable(PTy, str); 1943 // Decay array -> ptr 1944 ConstantStringClassRef = 1945 llvm::ConstantExpr::getGetElementPtr(GV, Zeros); 1946 } 1947 } 1948 1949 if (!NSConstantStringType) { 1950 // Construct the type for a constant NSString. 1951 RecordDecl *D = CreateRecordDecl(Context, TTK_Struct, 1952 Context.getTranslationUnitDecl(), 1953 &Context.Idents.get("__builtin_NSString")); 1954 D->startDefinition(); 1955 1956 QualType FieldTypes[3]; 1957 1958 // const int *isa; 1959 FieldTypes[0] = Context.getPointerType(Context.IntTy.withConst()); 1960 // const char *str; 1961 FieldTypes[1] = Context.getPointerType(Context.CharTy.withConst()); 1962 // unsigned int length; 1963 FieldTypes[2] = Context.UnsignedIntTy; 1964 1965 // Create fields 1966 for (unsigned i = 0; i < 3; ++i) { 1967 FieldDecl *Field = FieldDecl::Create(Context, D, 1968 SourceLocation(), 1969 SourceLocation(), 0, 1970 FieldTypes[i], /*TInfo=*/0, 1971 /*BitWidth=*/0, 1972 /*Mutable=*/false, 1973 /*HasInit=*/false); 1974 Field->setAccess(AS_public); 1975 D->addDecl(Field); 1976 } 1977 1978 D->completeDefinition(); 1979 QualType NSTy = Context.getTagDeclType(D); 1980 NSConstantStringType = cast<llvm::StructType>(getTypes().ConvertType(NSTy)); 1981 } 1982 1983 llvm::Constant *Fields[3]; 1984 1985 // Class pointer. 1986 Fields[0] = ConstantStringClassRef; 1987 1988 // String pointer. 1989 llvm::Constant *C = 1990 llvm::ConstantDataArray::getString(VMContext, Entry.getKey()); 1991 1992 llvm::GlobalValue::LinkageTypes Linkage; 1993 bool isConstant; 1994 Linkage = llvm::GlobalValue::PrivateLinkage; 1995 isConstant = !Features.WritableStrings; 1996 1997 llvm::GlobalVariable *GV = 1998 new llvm::GlobalVariable(getModule(), C->getType(), isConstant, Linkage, C, 1999 ".str"); 2000 GV->setUnnamedAddr(true); 2001 CharUnits Align = getContext().getTypeAlignInChars(getContext().CharTy); 2002 GV->setAlignment(Align.getQuantity()); 2003 Fields[1] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros); 2004 2005 // String length. 2006 llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy); 2007 Fields[2] = llvm::ConstantInt::get(Ty, StringLength); 2008 2009 // The struct. 2010 C = llvm::ConstantStruct::get(NSConstantStringType, Fields); 2011 GV = new llvm::GlobalVariable(getModule(), C->getType(), true, 2012 llvm::GlobalVariable::PrivateLinkage, C, 2013 "_unnamed_nsstring_"); 2014 // FIXME. Fix section. 2015 if (const char *Sect = 2016 Features.ObjCNonFragileABI 2017 ? getContext().getTargetInfo().getNSStringNonFragileABISection() 2018 : getContext().getTargetInfo().getNSStringSection()) 2019 GV->setSection(Sect); 2020 Entry.setValue(GV); 2021 2022 return GV; 2023 } 2024 2025 QualType CodeGenModule::getObjCFastEnumerationStateType() { 2026 if (ObjCFastEnumerationStateType.isNull()) { 2027 RecordDecl *D = CreateRecordDecl(Context, TTK_Struct, 2028 Context.getTranslationUnitDecl(), 2029 &Context.Idents.get("__objcFastEnumerationState")); 2030 D->startDefinition(); 2031 2032 QualType FieldTypes[] = { 2033 Context.UnsignedLongTy, 2034 Context.getPointerType(Context.getObjCIdType()), 2035 Context.getPointerType(Context.UnsignedLongTy), 2036 Context.getConstantArrayType(Context.UnsignedLongTy, 2037 llvm::APInt(32, 5), ArrayType::Normal, 0) 2038 }; 2039 2040 for (size_t i = 0; i < 4; ++i) { 2041 FieldDecl *Field = FieldDecl::Create(Context, 2042 D, 2043 SourceLocation(), 2044 SourceLocation(), 0, 2045 FieldTypes[i], /*TInfo=*/0, 2046 /*BitWidth=*/0, 2047 /*Mutable=*/false, 2048 /*HasInit=*/false); 2049 Field->setAccess(AS_public); 2050 D->addDecl(Field); 2051 } 2052 2053 D->completeDefinition(); 2054 ObjCFastEnumerationStateType = Context.getTagDeclType(D); 2055 } 2056 2057 return ObjCFastEnumerationStateType; 2058 } 2059 2060 llvm::Constant * 2061 CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) { 2062 assert(!E->getType()->isPointerType() && "Strings are always arrays"); 2063 2064 // Don't emit it as the address of the string, emit the string data itself 2065 // as an inline array. 2066 if (E->getCharByteWidth() == 1) { 2067 SmallString<64> Str(E->getString()); 2068 2069 // Resize the string to the right size, which is indicated by its type. 2070 const ConstantArrayType *CAT = Context.getAsConstantArrayType(E->getType()); 2071 Str.resize(CAT->getSize().getZExtValue()); 2072 return llvm::ConstantDataArray::getString(VMContext, Str, false); 2073 } 2074 2075 llvm::ArrayType *AType = 2076 cast<llvm::ArrayType>(getTypes().ConvertType(E->getType())); 2077 llvm::Type *ElemTy = AType->getElementType(); 2078 unsigned NumElements = AType->getNumElements(); 2079 2080 // Wide strings have either 2-byte or 4-byte elements. 2081 if (ElemTy->getPrimitiveSizeInBits() == 16) { 2082 SmallVector<uint16_t, 32> Elements; 2083 Elements.reserve(NumElements); 2084 2085 for(unsigned i = 0, e = E->getLength(); i != e; ++i) 2086 Elements.push_back(E->getCodeUnit(i)); 2087 Elements.resize(NumElements); 2088 return llvm::ConstantDataArray::get(VMContext, Elements); 2089 } 2090 2091 assert(ElemTy->getPrimitiveSizeInBits() == 32); 2092 SmallVector<uint32_t, 32> Elements; 2093 Elements.reserve(NumElements); 2094 2095 for(unsigned i = 0, e = E->getLength(); i != e; ++i) 2096 Elements.push_back(E->getCodeUnit(i)); 2097 Elements.resize(NumElements); 2098 return llvm::ConstantDataArray::get(VMContext, Elements); 2099 } 2100 2101 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a 2102 /// constant array for the given string literal. 2103 llvm::Constant * 2104 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S) { 2105 CharUnits Align = getContext().getTypeAlignInChars(S->getType()); 2106 if (S->isAscii() || S->isUTF8()) { 2107 SmallString<64> Str(S->getString()); 2108 2109 // Resize the string to the right size, which is indicated by its type. 2110 const ConstantArrayType *CAT = Context.getAsConstantArrayType(S->getType()); 2111 Str.resize(CAT->getSize().getZExtValue()); 2112 return GetAddrOfConstantString(Str, /*GlobalName*/ 0, Align.getQuantity()); 2113 } 2114 2115 // FIXME: the following does not memoize wide strings. 2116 llvm::Constant *C = GetConstantArrayFromStringLiteral(S); 2117 llvm::GlobalVariable *GV = 2118 new llvm::GlobalVariable(getModule(),C->getType(), 2119 !Features.WritableStrings, 2120 llvm::GlobalValue::PrivateLinkage, 2121 C,".str"); 2122 2123 GV->setAlignment(Align.getQuantity()); 2124 GV->setUnnamedAddr(true); 2125 return GV; 2126 } 2127 2128 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant 2129 /// array for the given ObjCEncodeExpr node. 2130 llvm::Constant * 2131 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) { 2132 std::string Str; 2133 getContext().getObjCEncodingForType(E->getEncodedType(), Str); 2134 2135 return GetAddrOfConstantCString(Str); 2136 } 2137 2138 2139 /// GenerateWritableString -- Creates storage for a string literal. 2140 static llvm::GlobalVariable *GenerateStringLiteral(StringRef str, 2141 bool constant, 2142 CodeGenModule &CGM, 2143 const char *GlobalName, 2144 unsigned Alignment) { 2145 // Create Constant for this string literal. Don't add a '\0'. 2146 llvm::Constant *C = 2147 llvm::ConstantDataArray::getString(CGM.getLLVMContext(), str, false); 2148 2149 // Create a global variable for this string 2150 llvm::GlobalVariable *GV = 2151 new llvm::GlobalVariable(CGM.getModule(), C->getType(), constant, 2152 llvm::GlobalValue::PrivateLinkage, 2153 C, GlobalName); 2154 GV->setAlignment(Alignment); 2155 GV->setUnnamedAddr(true); 2156 return GV; 2157 } 2158 2159 /// GetAddrOfConstantString - Returns a pointer to a character array 2160 /// containing the literal. This contents are exactly that of the 2161 /// given string, i.e. it will not be null terminated automatically; 2162 /// see GetAddrOfConstantCString. Note that whether the result is 2163 /// actually a pointer to an LLVM constant depends on 2164 /// Feature.WriteableStrings. 2165 /// 2166 /// The result has pointer to array type. 2167 llvm::Constant *CodeGenModule::GetAddrOfConstantString(StringRef Str, 2168 const char *GlobalName, 2169 unsigned Alignment) { 2170 // Get the default prefix if a name wasn't specified. 2171 if (!GlobalName) 2172 GlobalName = ".str"; 2173 2174 // Don't share any string literals if strings aren't constant. 2175 if (Features.WritableStrings) 2176 return GenerateStringLiteral(Str, false, *this, GlobalName, Alignment); 2177 2178 llvm::StringMapEntry<llvm::GlobalVariable *> &Entry = 2179 ConstantStringMap.GetOrCreateValue(Str); 2180 2181 if (llvm::GlobalVariable *GV = Entry.getValue()) { 2182 if (Alignment > GV->getAlignment()) { 2183 GV->setAlignment(Alignment); 2184 } 2185 return GV; 2186 } 2187 2188 // Create a global variable for this. 2189 llvm::GlobalVariable *GV = GenerateStringLiteral(Str, true, *this, GlobalName, 2190 Alignment); 2191 Entry.setValue(GV); 2192 return GV; 2193 } 2194 2195 /// GetAddrOfConstantCString - Returns a pointer to a character 2196 /// array containing the literal and a terminating '\0' 2197 /// character. The result has pointer to array type. 2198 llvm::Constant *CodeGenModule::GetAddrOfConstantCString(const std::string &Str, 2199 const char *GlobalName, 2200 unsigned Alignment) { 2201 StringRef StrWithNull(Str.c_str(), Str.size() + 1); 2202 return GetAddrOfConstantString(StrWithNull, GlobalName, Alignment); 2203 } 2204 2205 /// EmitObjCPropertyImplementations - Emit information for synthesized 2206 /// properties for an implementation. 2207 void CodeGenModule::EmitObjCPropertyImplementations(const 2208 ObjCImplementationDecl *D) { 2209 for (ObjCImplementationDecl::propimpl_iterator 2210 i = D->propimpl_begin(), e = D->propimpl_end(); i != e; ++i) { 2211 ObjCPropertyImplDecl *PID = *i; 2212 2213 // Dynamic is just for type-checking. 2214 if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) { 2215 ObjCPropertyDecl *PD = PID->getPropertyDecl(); 2216 2217 // Determine which methods need to be implemented, some may have 2218 // been overridden. Note that ::isSynthesized is not the method 2219 // we want, that just indicates if the decl came from a 2220 // property. What we want to know is if the method is defined in 2221 // this implementation. 2222 if (!D->getInstanceMethod(PD->getGetterName())) 2223 CodeGenFunction(*this).GenerateObjCGetter( 2224 const_cast<ObjCImplementationDecl *>(D), PID); 2225 if (!PD->isReadOnly() && 2226 !D->getInstanceMethod(PD->getSetterName())) 2227 CodeGenFunction(*this).GenerateObjCSetter( 2228 const_cast<ObjCImplementationDecl *>(D), PID); 2229 } 2230 } 2231 } 2232 2233 static bool needsDestructMethod(ObjCImplementationDecl *impl) { 2234 const ObjCInterfaceDecl *iface = impl->getClassInterface(); 2235 for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin(); 2236 ivar; ivar = ivar->getNextIvar()) 2237 if (ivar->getType().isDestructedType()) 2238 return true; 2239 2240 return false; 2241 } 2242 2243 /// EmitObjCIvarInitializations - Emit information for ivar initialization 2244 /// for an implementation. 2245 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) { 2246 // We might need a .cxx_destruct even if we don't have any ivar initializers. 2247 if (needsDestructMethod(D)) { 2248 IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct"); 2249 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 2250 ObjCMethodDecl *DTORMethod = 2251 ObjCMethodDecl::Create(getContext(), D->getLocation(), D->getLocation(), 2252 cxxSelector, getContext().VoidTy, 0, D, 2253 /*isInstance=*/true, /*isVariadic=*/false, 2254 /*isSynthesized=*/true, /*isImplicitlyDeclared=*/true, 2255 /*isDefined=*/false, ObjCMethodDecl::Required); 2256 D->addInstanceMethod(DTORMethod); 2257 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false); 2258 D->setHasCXXStructors(true); 2259 } 2260 2261 // If the implementation doesn't have any ivar initializers, we don't need 2262 // a .cxx_construct. 2263 if (D->getNumIvarInitializers() == 0) 2264 return; 2265 2266 IdentifierInfo *II = &getContext().Idents.get(".cxx_construct"); 2267 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 2268 // The constructor returns 'self'. 2269 ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(getContext(), 2270 D->getLocation(), 2271 D->getLocation(), 2272 cxxSelector, 2273 getContext().getObjCIdType(), 0, 2274 D, /*isInstance=*/true, 2275 /*isVariadic=*/false, 2276 /*isSynthesized=*/true, 2277 /*isImplicitlyDeclared=*/true, 2278 /*isDefined=*/false, 2279 ObjCMethodDecl::Required); 2280 D->addInstanceMethod(CTORMethod); 2281 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true); 2282 D->setHasCXXStructors(true); 2283 } 2284 2285 /// EmitNamespace - Emit all declarations in a namespace. 2286 void CodeGenModule::EmitNamespace(const NamespaceDecl *ND) { 2287 for (RecordDecl::decl_iterator I = ND->decls_begin(), E = ND->decls_end(); 2288 I != E; ++I) 2289 EmitTopLevelDecl(*I); 2290 } 2291 2292 // EmitLinkageSpec - Emit all declarations in a linkage spec. 2293 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) { 2294 if (LSD->getLanguage() != LinkageSpecDecl::lang_c && 2295 LSD->getLanguage() != LinkageSpecDecl::lang_cxx) { 2296 ErrorUnsupported(LSD, "linkage spec"); 2297 return; 2298 } 2299 2300 for (RecordDecl::decl_iterator I = LSD->decls_begin(), E = LSD->decls_end(); 2301 I != E; ++I) 2302 EmitTopLevelDecl(*I); 2303 } 2304 2305 /// EmitTopLevelDecl - Emit code for a single top level declaration. 2306 void CodeGenModule::EmitTopLevelDecl(Decl *D) { 2307 // If an error has occurred, stop code generation, but continue 2308 // parsing and semantic analysis (to ensure all warnings and errors 2309 // are emitted). 2310 if (Diags.hasErrorOccurred()) 2311 return; 2312 2313 // Ignore dependent declarations. 2314 if (D->getDeclContext() && D->getDeclContext()->isDependentContext()) 2315 return; 2316 2317 switch (D->getKind()) { 2318 case Decl::CXXConversion: 2319 case Decl::CXXMethod: 2320 case Decl::Function: 2321 // Skip function templates 2322 if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() || 2323 cast<FunctionDecl>(D)->isLateTemplateParsed()) 2324 return; 2325 2326 EmitGlobal(cast<FunctionDecl>(D)); 2327 break; 2328 2329 case Decl::Var: 2330 EmitGlobal(cast<VarDecl>(D)); 2331 break; 2332 2333 // Indirect fields from global anonymous structs and unions can be 2334 // ignored; only the actual variable requires IR gen support. 2335 case Decl::IndirectField: 2336 break; 2337 2338 // C++ Decls 2339 case Decl::Namespace: 2340 EmitNamespace(cast<NamespaceDecl>(D)); 2341 break; 2342 // No code generation needed. 2343 case Decl::UsingShadow: 2344 case Decl::Using: 2345 case Decl::UsingDirective: 2346 case Decl::ClassTemplate: 2347 case Decl::FunctionTemplate: 2348 case Decl::TypeAliasTemplate: 2349 case Decl::NamespaceAlias: 2350 case Decl::Block: 2351 case Decl::Import: 2352 break; 2353 case Decl::CXXConstructor: 2354 // Skip function templates 2355 if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() || 2356 cast<FunctionDecl>(D)->isLateTemplateParsed()) 2357 return; 2358 2359 EmitCXXConstructors(cast<CXXConstructorDecl>(D)); 2360 break; 2361 case Decl::CXXDestructor: 2362 if (cast<FunctionDecl>(D)->isLateTemplateParsed()) 2363 return; 2364 EmitCXXDestructors(cast<CXXDestructorDecl>(D)); 2365 break; 2366 2367 case Decl::StaticAssert: 2368 // Nothing to do. 2369 break; 2370 2371 // Objective-C Decls 2372 2373 // Forward declarations, no (immediate) code generation. 2374 case Decl::ObjCInterface: 2375 break; 2376 2377 case Decl::ObjCCategory: { 2378 ObjCCategoryDecl *CD = cast<ObjCCategoryDecl>(D); 2379 if (CD->IsClassExtension() && CD->hasSynthBitfield()) 2380 Context.ResetObjCLayout(CD->getClassInterface()); 2381 break; 2382 } 2383 2384 case Decl::ObjCProtocol: { 2385 ObjCProtocolDecl *Proto = cast<ObjCProtocolDecl>(D); 2386 if (Proto->isThisDeclarationADefinition()) 2387 ObjCRuntime->GenerateProtocol(Proto); 2388 break; 2389 } 2390 2391 case Decl::ObjCCategoryImpl: 2392 // Categories have properties but don't support synthesize so we 2393 // can ignore them here. 2394 ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D)); 2395 break; 2396 2397 case Decl::ObjCImplementation: { 2398 ObjCImplementationDecl *OMD = cast<ObjCImplementationDecl>(D); 2399 if (Features.ObjCNonFragileABI2 && OMD->hasSynthBitfield()) 2400 Context.ResetObjCLayout(OMD->getClassInterface()); 2401 EmitObjCPropertyImplementations(OMD); 2402 EmitObjCIvarInitializations(OMD); 2403 ObjCRuntime->GenerateClass(OMD); 2404 break; 2405 } 2406 case Decl::ObjCMethod: { 2407 ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(D); 2408 // If this is not a prototype, emit the body. 2409 if (OMD->getBody()) 2410 CodeGenFunction(*this).GenerateObjCMethod(OMD); 2411 break; 2412 } 2413 case Decl::ObjCCompatibleAlias: 2414 ObjCRuntime->RegisterAlias(cast<ObjCCompatibleAliasDecl>(D)); 2415 break; 2416 2417 case Decl::LinkageSpec: 2418 EmitLinkageSpec(cast<LinkageSpecDecl>(D)); 2419 break; 2420 2421 case Decl::FileScopeAsm: { 2422 FileScopeAsmDecl *AD = cast<FileScopeAsmDecl>(D); 2423 StringRef AsmString = AD->getAsmString()->getString(); 2424 2425 const std::string &S = getModule().getModuleInlineAsm(); 2426 if (S.empty()) 2427 getModule().setModuleInlineAsm(AsmString); 2428 else if (*--S.end() == '\n') 2429 getModule().setModuleInlineAsm(S + AsmString.str()); 2430 else 2431 getModule().setModuleInlineAsm(S + '\n' + AsmString.str()); 2432 break; 2433 } 2434 2435 default: 2436 // Make sure we handled everything we should, every other kind is a 2437 // non-top-level decl. FIXME: Would be nice to have an isTopLevelDeclKind 2438 // function. Need to recode Decl::Kind to do that easily. 2439 assert(isa<TypeDecl>(D) && "Unsupported decl kind"); 2440 } 2441 } 2442 2443 /// Turns the given pointer into a constant. 2444 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context, 2445 const void *Ptr) { 2446 uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr); 2447 llvm::Type *i64 = llvm::Type::getInt64Ty(Context); 2448 return llvm::ConstantInt::get(i64, PtrInt); 2449 } 2450 2451 static void EmitGlobalDeclMetadata(CodeGenModule &CGM, 2452 llvm::NamedMDNode *&GlobalMetadata, 2453 GlobalDecl D, 2454 llvm::GlobalValue *Addr) { 2455 if (!GlobalMetadata) 2456 GlobalMetadata = 2457 CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs"); 2458 2459 // TODO: should we report variant information for ctors/dtors? 2460 llvm::Value *Ops[] = { 2461 Addr, 2462 GetPointerConstant(CGM.getLLVMContext(), D.getDecl()) 2463 }; 2464 GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops)); 2465 } 2466 2467 /// Emits metadata nodes associating all the global values in the 2468 /// current module with the Decls they came from. This is useful for 2469 /// projects using IR gen as a subroutine. 2470 /// 2471 /// Since there's currently no way to associate an MDNode directly 2472 /// with an llvm::GlobalValue, we create a global named metadata 2473 /// with the name 'clang.global.decl.ptrs'. 2474 void CodeGenModule::EmitDeclMetadata() { 2475 llvm::NamedMDNode *GlobalMetadata = 0; 2476 2477 // StaticLocalDeclMap 2478 for (llvm::DenseMap<GlobalDecl,StringRef>::iterator 2479 I = MangledDeclNames.begin(), E = MangledDeclNames.end(); 2480 I != E; ++I) { 2481 llvm::GlobalValue *Addr = getModule().getNamedValue(I->second); 2482 EmitGlobalDeclMetadata(*this, GlobalMetadata, I->first, Addr); 2483 } 2484 } 2485 2486 /// Emits metadata nodes for all the local variables in the current 2487 /// function. 2488 void CodeGenFunction::EmitDeclMetadata() { 2489 if (LocalDeclMap.empty()) return; 2490 2491 llvm::LLVMContext &Context = getLLVMContext(); 2492 2493 // Find the unique metadata ID for this name. 2494 unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr"); 2495 2496 llvm::NamedMDNode *GlobalMetadata = 0; 2497 2498 for (llvm::DenseMap<const Decl*, llvm::Value*>::iterator 2499 I = LocalDeclMap.begin(), E = LocalDeclMap.end(); I != E; ++I) { 2500 const Decl *D = I->first; 2501 llvm::Value *Addr = I->second; 2502 2503 if (llvm::AllocaInst *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) { 2504 llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D); 2505 Alloca->setMetadata(DeclPtrKind, llvm::MDNode::get(Context, DAddr)); 2506 } else if (llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>(Addr)) { 2507 GlobalDecl GD = GlobalDecl(cast<VarDecl>(D)); 2508 EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV); 2509 } 2510 } 2511 } 2512 2513 void CodeGenModule::EmitCoverageFile() { 2514 if (!getCodeGenOpts().CoverageFile.empty()) { 2515 if (llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu")) { 2516 llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov"); 2517 llvm::LLVMContext &Ctx = TheModule.getContext(); 2518 llvm::MDString *CoverageFile = 2519 llvm::MDString::get(Ctx, getCodeGenOpts().CoverageFile); 2520 for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) { 2521 llvm::MDNode *CU = CUNode->getOperand(i); 2522 llvm::Value *node[] = { CoverageFile, CU }; 2523 llvm::MDNode *N = llvm::MDNode::get(Ctx, node); 2524 GCov->addOperand(N); 2525 } 2526 } 2527 } 2528 } 2529