xref: /llvm-project/clang/lib/CodeGen/CodeGenModule.cpp (revision 71006f2378373c841ac187e383a019e005b9636e)
1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This coordinates the per-module state used while generating code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenModule.h"
15 #include "CGDebugInfo.h"
16 #include "CodeGenFunction.h"
17 #include "CodeGenTBAA.h"
18 #include "CGCall.h"
19 #include "CGCUDARuntime.h"
20 #include "CGCXXABI.h"
21 #include "CGObjCRuntime.h"
22 #include "CGOpenCLRuntime.h"
23 #include "TargetInfo.h"
24 #include "clang/Frontend/CodeGenOptions.h"
25 #include "clang/AST/ASTContext.h"
26 #include "clang/AST/CharUnits.h"
27 #include "clang/AST/DeclObjC.h"
28 #include "clang/AST/DeclCXX.h"
29 #include "clang/AST/DeclTemplate.h"
30 #include "clang/AST/Mangle.h"
31 #include "clang/AST/RecordLayout.h"
32 #include "clang/AST/RecursiveASTVisitor.h"
33 #include "clang/Basic/Builtins.h"
34 #include "clang/Basic/Diagnostic.h"
35 #include "clang/Basic/SourceManager.h"
36 #include "clang/Basic/TargetInfo.h"
37 #include "clang/Basic/ConvertUTF.h"
38 #include "llvm/CallingConv.h"
39 #include "llvm/Module.h"
40 #include "llvm/Intrinsics.h"
41 #include "llvm/LLVMContext.h"
42 #include "llvm/ADT/Triple.h"
43 #include "llvm/Target/Mangler.h"
44 #include "llvm/Target/TargetData.h"
45 #include "llvm/Support/CallSite.h"
46 #include "llvm/Support/ErrorHandling.h"
47 using namespace clang;
48 using namespace CodeGen;
49 
50 static const char AnnotationSection[] = "llvm.metadata";
51 
52 static CGCXXABI &createCXXABI(CodeGenModule &CGM) {
53   switch (CGM.getContext().getTargetInfo().getCXXABI()) {
54   case CXXABI_ARM: return *CreateARMCXXABI(CGM);
55   case CXXABI_Itanium: return *CreateItaniumCXXABI(CGM);
56   case CXXABI_Microsoft: return *CreateMicrosoftCXXABI(CGM);
57   }
58 
59   llvm_unreachable("invalid C++ ABI kind");
60 }
61 
62 
63 CodeGenModule::CodeGenModule(ASTContext &C, const CodeGenOptions &CGO,
64                              llvm::Module &M, const llvm::TargetData &TD,
65                              DiagnosticsEngine &diags)
66   : Context(C), Features(C.getLangOptions()), CodeGenOpts(CGO), TheModule(M),
67     TheTargetData(TD), TheTargetCodeGenInfo(0), Diags(diags),
68     ABI(createCXXABI(*this)),
69     Types(*this),
70     TBAA(0),
71     VTables(*this), ObjCRuntime(0), OpenCLRuntime(0), CUDARuntime(0),
72     DebugInfo(0), ARCData(0), NoObjCARCExceptionsMetadata(0),
73     RRData(0), CFConstantStringClassRef(0),
74     ConstantStringClassRef(0), NSConstantStringType(0),
75     VMContext(M.getContext()),
76     NSConcreteGlobalBlock(0), NSConcreteStackBlock(0),
77     BlockObjectAssign(0), BlockObjectDispose(0),
78     BlockDescriptorType(0), GenericBlockLiteralType(0) {
79 
80   // Initialize the type cache.
81   llvm::LLVMContext &LLVMContext = M.getContext();
82   VoidTy = llvm::Type::getVoidTy(LLVMContext);
83   Int8Ty = llvm::Type::getInt8Ty(LLVMContext);
84   Int16Ty = llvm::Type::getInt16Ty(LLVMContext);
85   Int32Ty = llvm::Type::getInt32Ty(LLVMContext);
86   Int64Ty = llvm::Type::getInt64Ty(LLVMContext);
87   FloatTy = llvm::Type::getFloatTy(LLVMContext);
88   DoubleTy = llvm::Type::getDoubleTy(LLVMContext);
89   PointerWidthInBits = C.getTargetInfo().getPointerWidth(0);
90   PointerAlignInBytes =
91   C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(0)).getQuantity();
92   IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth());
93   IntPtrTy = llvm::IntegerType::get(LLVMContext, PointerWidthInBits);
94   Int8PtrTy = Int8Ty->getPointerTo(0);
95   Int8PtrPtrTy = Int8PtrTy->getPointerTo(0);
96 
97   if (Features.ObjC1)
98     createObjCRuntime();
99   if (Features.OpenCL)
100     createOpenCLRuntime();
101   if (Features.CUDA)
102     createCUDARuntime();
103 
104   // Enable TBAA unless it's suppressed.
105   if (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0)
106     TBAA = new CodeGenTBAA(Context, VMContext, getLangOptions(),
107                            ABI.getMangleContext());
108 
109   // If debug info or coverage generation is enabled, create the CGDebugInfo
110   // object.
111   if (CodeGenOpts.DebugInfo || CodeGenOpts.EmitGcovArcs ||
112       CodeGenOpts.EmitGcovNotes)
113     DebugInfo = new CGDebugInfo(*this);
114 
115   Block.GlobalUniqueCount = 0;
116 
117   if (C.getLangOptions().ObjCAutoRefCount)
118     ARCData = new ARCEntrypoints();
119   RRData = new RREntrypoints();
120 }
121 
122 CodeGenModule::~CodeGenModule() {
123   delete ObjCRuntime;
124   delete OpenCLRuntime;
125   delete CUDARuntime;
126   delete TheTargetCodeGenInfo;
127   delete &ABI;
128   delete TBAA;
129   delete DebugInfo;
130   delete ARCData;
131   delete RRData;
132 }
133 
134 void CodeGenModule::createObjCRuntime() {
135   if (!Features.NeXTRuntime)
136     ObjCRuntime = CreateGNUObjCRuntime(*this);
137   else
138     ObjCRuntime = CreateMacObjCRuntime(*this);
139 }
140 
141 void CodeGenModule::createOpenCLRuntime() {
142   OpenCLRuntime = new CGOpenCLRuntime(*this);
143 }
144 
145 void CodeGenModule::createCUDARuntime() {
146   CUDARuntime = CreateNVCUDARuntime(*this);
147 }
148 
149 void CodeGenModule::Release() {
150   EmitDeferred();
151   EmitCXXGlobalInitFunc();
152   EmitCXXGlobalDtorFunc();
153   if (ObjCRuntime)
154     if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction())
155       AddGlobalCtor(ObjCInitFunction);
156   EmitCtorList(GlobalCtors, "llvm.global_ctors");
157   EmitCtorList(GlobalDtors, "llvm.global_dtors");
158   EmitGlobalAnnotations();
159   EmitLLVMUsed();
160 
161   SimplifyPersonality();
162 
163   if (getCodeGenOpts().EmitDeclMetadata)
164     EmitDeclMetadata();
165 
166   if (getCodeGenOpts().EmitGcovArcs || getCodeGenOpts().EmitGcovNotes)
167     EmitCoverageFile();
168 
169   if (DebugInfo)
170     DebugInfo->finalize();
171 }
172 
173 void CodeGenModule::UpdateCompletedType(const TagDecl *TD) {
174   // Make sure that this type is translated.
175   Types.UpdateCompletedType(TD);
176 }
177 
178 llvm::MDNode *CodeGenModule::getTBAAInfo(QualType QTy) {
179   if (!TBAA)
180     return 0;
181   return TBAA->getTBAAInfo(QTy);
182 }
183 
184 void CodeGenModule::DecorateInstruction(llvm::Instruction *Inst,
185                                         llvm::MDNode *TBAAInfo) {
186   Inst->setMetadata(llvm::LLVMContext::MD_tbaa, TBAAInfo);
187 }
188 
189 bool CodeGenModule::isTargetDarwin() const {
190   return getContext().getTargetInfo().getTriple().isOSDarwin();
191 }
192 
193 void CodeGenModule::Error(SourceLocation loc, StringRef error) {
194   unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, error);
195   getDiags().Report(Context.getFullLoc(loc), diagID);
196 }
197 
198 /// ErrorUnsupported - Print out an error that codegen doesn't support the
199 /// specified stmt yet.
200 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type,
201                                      bool OmitOnError) {
202   if (OmitOnError && getDiags().hasErrorOccurred())
203     return;
204   unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
205                                                "cannot compile this %0 yet");
206   std::string Msg = Type;
207   getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID)
208     << Msg << S->getSourceRange();
209 }
210 
211 /// ErrorUnsupported - Print out an error that codegen doesn't support the
212 /// specified decl yet.
213 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type,
214                                      bool OmitOnError) {
215   if (OmitOnError && getDiags().hasErrorOccurred())
216     return;
217   unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
218                                                "cannot compile this %0 yet");
219   std::string Msg = Type;
220   getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg;
221 }
222 
223 llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) {
224   return llvm::ConstantInt::get(SizeTy, size.getQuantity());
225 }
226 
227 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV,
228                                         const NamedDecl *D) const {
229   // Internal definitions always have default visibility.
230   if (GV->hasLocalLinkage()) {
231     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
232     return;
233   }
234 
235   // Set visibility for definitions.
236   NamedDecl::LinkageInfo LV = D->getLinkageAndVisibility();
237   if (LV.visibilityExplicit() || !GV->hasAvailableExternallyLinkage())
238     GV->setVisibility(GetLLVMVisibility(LV.visibility()));
239 }
240 
241 /// Set the symbol visibility of type information (vtable and RTTI)
242 /// associated with the given type.
243 void CodeGenModule::setTypeVisibility(llvm::GlobalValue *GV,
244                                       const CXXRecordDecl *RD,
245                                       TypeVisibilityKind TVK) const {
246   setGlobalVisibility(GV, RD);
247 
248   if (!CodeGenOpts.HiddenWeakVTables)
249     return;
250 
251   // We never want to drop the visibility for RTTI names.
252   if (TVK == TVK_ForRTTIName)
253     return;
254 
255   // We want to drop the visibility to hidden for weak type symbols.
256   // This isn't possible if there might be unresolved references
257   // elsewhere that rely on this symbol being visible.
258 
259   // This should be kept roughly in sync with setThunkVisibility
260   // in CGVTables.cpp.
261 
262   // Preconditions.
263   if (GV->getLinkage() != llvm::GlobalVariable::LinkOnceODRLinkage ||
264       GV->getVisibility() != llvm::GlobalVariable::DefaultVisibility)
265     return;
266 
267   // Don't override an explicit visibility attribute.
268   if (RD->getExplicitVisibility())
269     return;
270 
271   switch (RD->getTemplateSpecializationKind()) {
272   // We have to disable the optimization if this is an EI definition
273   // because there might be EI declarations in other shared objects.
274   case TSK_ExplicitInstantiationDefinition:
275   case TSK_ExplicitInstantiationDeclaration:
276     return;
277 
278   // Every use of a non-template class's type information has to emit it.
279   case TSK_Undeclared:
280     break;
281 
282   // In theory, implicit instantiations can ignore the possibility of
283   // an explicit instantiation declaration because there necessarily
284   // must be an EI definition somewhere with default visibility.  In
285   // practice, it's possible to have an explicit instantiation for
286   // an arbitrary template class, and linkers aren't necessarily able
287   // to deal with mixed-visibility symbols.
288   case TSK_ExplicitSpecialization:
289   case TSK_ImplicitInstantiation:
290     if (!CodeGenOpts.HiddenWeakTemplateVTables)
291       return;
292     break;
293   }
294 
295   // If there's a key function, there may be translation units
296   // that don't have the key function's definition.  But ignore
297   // this if we're emitting RTTI under -fno-rtti.
298   if (!(TVK != TVK_ForRTTI) || Features.RTTI) {
299     if (Context.getKeyFunction(RD))
300       return;
301   }
302 
303   // Otherwise, drop the visibility to hidden.
304   GV->setVisibility(llvm::GlobalValue::HiddenVisibility);
305   GV->setUnnamedAddr(true);
306 }
307 
308 StringRef CodeGenModule::getMangledName(GlobalDecl GD) {
309   const NamedDecl *ND = cast<NamedDecl>(GD.getDecl());
310 
311   StringRef &Str = MangledDeclNames[GD.getCanonicalDecl()];
312   if (!Str.empty())
313     return Str;
314 
315   if (!getCXXABI().getMangleContext().shouldMangleDeclName(ND)) {
316     IdentifierInfo *II = ND->getIdentifier();
317     assert(II && "Attempt to mangle unnamed decl.");
318 
319     Str = II->getName();
320     return Str;
321   }
322 
323   SmallString<256> Buffer;
324   llvm::raw_svector_ostream Out(Buffer);
325   if (const CXXConstructorDecl *D = dyn_cast<CXXConstructorDecl>(ND))
326     getCXXABI().getMangleContext().mangleCXXCtor(D, GD.getCtorType(), Out);
327   else if (const CXXDestructorDecl *D = dyn_cast<CXXDestructorDecl>(ND))
328     getCXXABI().getMangleContext().mangleCXXDtor(D, GD.getDtorType(), Out);
329   else if (const BlockDecl *BD = dyn_cast<BlockDecl>(ND))
330     getCXXABI().getMangleContext().mangleBlock(BD, Out);
331   else
332     getCXXABI().getMangleContext().mangleName(ND, Out);
333 
334   // Allocate space for the mangled name.
335   Out.flush();
336   size_t Length = Buffer.size();
337   char *Name = MangledNamesAllocator.Allocate<char>(Length);
338   std::copy(Buffer.begin(), Buffer.end(), Name);
339 
340   Str = StringRef(Name, Length);
341 
342   return Str;
343 }
344 
345 void CodeGenModule::getBlockMangledName(GlobalDecl GD, MangleBuffer &Buffer,
346                                         const BlockDecl *BD) {
347   MangleContext &MangleCtx = getCXXABI().getMangleContext();
348   const Decl *D = GD.getDecl();
349   llvm::raw_svector_ostream Out(Buffer.getBuffer());
350   if (D == 0)
351     MangleCtx.mangleGlobalBlock(BD, Out);
352   else if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(D))
353     MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out);
354   else if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(D))
355     MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out);
356   else
357     MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out);
358 }
359 
360 llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) {
361   return getModule().getNamedValue(Name);
362 }
363 
364 /// AddGlobalCtor - Add a function to the list that will be called before
365 /// main() runs.
366 void CodeGenModule::AddGlobalCtor(llvm::Function * Ctor, int Priority) {
367   // FIXME: Type coercion of void()* types.
368   GlobalCtors.push_back(std::make_pair(Ctor, Priority));
369 }
370 
371 /// AddGlobalDtor - Add a function to the list that will be called
372 /// when the module is unloaded.
373 void CodeGenModule::AddGlobalDtor(llvm::Function * Dtor, int Priority) {
374   // FIXME: Type coercion of void()* types.
375   GlobalDtors.push_back(std::make_pair(Dtor, Priority));
376 }
377 
378 void CodeGenModule::EmitCtorList(const CtorList &Fns, const char *GlobalName) {
379   // Ctor function type is void()*.
380   llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false);
381   llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy);
382 
383   // Get the type of a ctor entry, { i32, void ()* }.
384   llvm::StructType *CtorStructTy =
385     llvm::StructType::get(Int32Ty, llvm::PointerType::getUnqual(CtorFTy), NULL);
386 
387   // Construct the constructor and destructor arrays.
388   SmallVector<llvm::Constant*, 8> Ctors;
389   for (CtorList::const_iterator I = Fns.begin(), E = Fns.end(); I != E; ++I) {
390     llvm::Constant *S[] = {
391       llvm::ConstantInt::get(Int32Ty, I->second, false),
392       llvm::ConstantExpr::getBitCast(I->first, CtorPFTy)
393     };
394     Ctors.push_back(llvm::ConstantStruct::get(CtorStructTy, S));
395   }
396 
397   if (!Ctors.empty()) {
398     llvm::ArrayType *AT = llvm::ArrayType::get(CtorStructTy, Ctors.size());
399     new llvm::GlobalVariable(TheModule, AT, false,
400                              llvm::GlobalValue::AppendingLinkage,
401                              llvm::ConstantArray::get(AT, Ctors),
402                              GlobalName);
403   }
404 }
405 
406 llvm::GlobalValue::LinkageTypes
407 CodeGenModule::getFunctionLinkage(const FunctionDecl *D) {
408   GVALinkage Linkage = getContext().GetGVALinkageForFunction(D);
409 
410   if (Linkage == GVA_Internal)
411     return llvm::Function::InternalLinkage;
412 
413   if (D->hasAttr<DLLExportAttr>())
414     return llvm::Function::DLLExportLinkage;
415 
416   if (D->hasAttr<WeakAttr>())
417     return llvm::Function::WeakAnyLinkage;
418 
419   // In C99 mode, 'inline' functions are guaranteed to have a strong
420   // definition somewhere else, so we can use available_externally linkage.
421   if (Linkage == GVA_C99Inline)
422     return llvm::Function::AvailableExternallyLinkage;
423 
424   // Note that Apple's kernel linker doesn't support symbol
425   // coalescing, so we need to avoid linkonce and weak linkages there.
426   // Normally, this means we just map to internal, but for explicit
427   // instantiations we'll map to external.
428 
429   // In C++, the compiler has to emit a definition in every translation unit
430   // that references the function.  We should use linkonce_odr because
431   // a) if all references in this translation unit are optimized away, we
432   // don't need to codegen it.  b) if the function persists, it needs to be
433   // merged with other definitions. c) C++ has the ODR, so we know the
434   // definition is dependable.
435   if (Linkage == GVA_CXXInline || Linkage == GVA_TemplateInstantiation)
436     return !Context.getLangOptions().AppleKext
437              ? llvm::Function::LinkOnceODRLinkage
438              : llvm::Function::InternalLinkage;
439 
440   // An explicit instantiation of a template has weak linkage, since
441   // explicit instantiations can occur in multiple translation units
442   // and must all be equivalent. However, we are not allowed to
443   // throw away these explicit instantiations.
444   if (Linkage == GVA_ExplicitTemplateInstantiation)
445     return !Context.getLangOptions().AppleKext
446              ? llvm::Function::WeakODRLinkage
447              : llvm::Function::ExternalLinkage;
448 
449   // Otherwise, we have strong external linkage.
450   assert(Linkage == GVA_StrongExternal);
451   return llvm::Function::ExternalLinkage;
452 }
453 
454 
455 /// SetFunctionDefinitionAttributes - Set attributes for a global.
456 ///
457 /// FIXME: This is currently only done for aliases and functions, but not for
458 /// variables (these details are set in EmitGlobalVarDefinition for variables).
459 void CodeGenModule::SetFunctionDefinitionAttributes(const FunctionDecl *D,
460                                                     llvm::GlobalValue *GV) {
461   SetCommonAttributes(D, GV);
462 }
463 
464 void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D,
465                                               const CGFunctionInfo &Info,
466                                               llvm::Function *F) {
467   unsigned CallingConv;
468   AttributeListType AttributeList;
469   ConstructAttributeList(Info, D, AttributeList, CallingConv);
470   F->setAttributes(llvm::AttrListPtr::get(AttributeList.begin(),
471                                           AttributeList.size()));
472   F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv));
473 }
474 
475 /// Determines whether the language options require us to model
476 /// unwind exceptions.  We treat -fexceptions as mandating this
477 /// except under the fragile ObjC ABI with only ObjC exceptions
478 /// enabled.  This means, for example, that C with -fexceptions
479 /// enables this.
480 static bool hasUnwindExceptions(const LangOptions &Features) {
481   // If exceptions are completely disabled, obviously this is false.
482   if (!Features.Exceptions) return false;
483 
484   // If C++ exceptions are enabled, this is true.
485   if (Features.CXXExceptions) return true;
486 
487   // If ObjC exceptions are enabled, this depends on the ABI.
488   if (Features.ObjCExceptions) {
489     if (!Features.ObjCNonFragileABI) return false;
490   }
491 
492   return true;
493 }
494 
495 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D,
496                                                            llvm::Function *F) {
497   if (CodeGenOpts.UnwindTables)
498     F->setHasUWTable();
499 
500   if (!hasUnwindExceptions(Features))
501     F->addFnAttr(llvm::Attribute::NoUnwind);
502 
503   if (D->hasAttr<NakedAttr>()) {
504     // Naked implies noinline: we should not be inlining such functions.
505     F->addFnAttr(llvm::Attribute::Naked);
506     F->addFnAttr(llvm::Attribute::NoInline);
507   }
508 
509   if (D->hasAttr<NoInlineAttr>())
510     F->addFnAttr(llvm::Attribute::NoInline);
511 
512   // (noinline wins over always_inline, and we can't specify both in IR)
513   if (D->hasAttr<AlwaysInlineAttr>() &&
514       !F->hasFnAttr(llvm::Attribute::NoInline))
515     F->addFnAttr(llvm::Attribute::AlwaysInline);
516 
517   if (isa<CXXConstructorDecl>(D) || isa<CXXDestructorDecl>(D))
518     F->setUnnamedAddr(true);
519 
520   if (Features.getStackProtector() == LangOptions::SSPOn)
521     F->addFnAttr(llvm::Attribute::StackProtect);
522   else if (Features.getStackProtector() == LangOptions::SSPReq)
523     F->addFnAttr(llvm::Attribute::StackProtectReq);
524 
525   if (Features.AddressSanitizer) {
526     // When AddressSanitizer is enabled, set AddressSafety attribute
527     // unless __attribute__((no_address_safety_analysis)) is used.
528     if (!D->hasAttr<NoAddressSafetyAnalysisAttr>())
529       F->addFnAttr(llvm::Attribute::AddressSafety);
530   }
531 
532   unsigned alignment = D->getMaxAlignment() / Context.getCharWidth();
533   if (alignment)
534     F->setAlignment(alignment);
535 
536   // C++ ABI requires 2-byte alignment for member functions.
537   if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D))
538     F->setAlignment(2);
539 }
540 
541 void CodeGenModule::SetCommonAttributes(const Decl *D,
542                                         llvm::GlobalValue *GV) {
543   if (const NamedDecl *ND = dyn_cast<NamedDecl>(D))
544     setGlobalVisibility(GV, ND);
545   else
546     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
547 
548   if (D->hasAttr<UsedAttr>())
549     AddUsedGlobal(GV);
550 
551   if (const SectionAttr *SA = D->getAttr<SectionAttr>())
552     GV->setSection(SA->getName());
553 
554   getTargetCodeGenInfo().SetTargetAttributes(D, GV, *this);
555 }
556 
557 void CodeGenModule::SetInternalFunctionAttributes(const Decl *D,
558                                                   llvm::Function *F,
559                                                   const CGFunctionInfo &FI) {
560   SetLLVMFunctionAttributes(D, FI, F);
561   SetLLVMFunctionAttributesForDefinition(D, F);
562 
563   F->setLinkage(llvm::Function::InternalLinkage);
564 
565   SetCommonAttributes(D, F);
566 }
567 
568 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD,
569                                           llvm::Function *F,
570                                           bool IsIncompleteFunction) {
571   if (unsigned IID = F->getIntrinsicID()) {
572     // If this is an intrinsic function, set the function's attributes
573     // to the intrinsic's attributes.
574     F->setAttributes(llvm::Intrinsic::getAttributes((llvm::Intrinsic::ID)IID));
575     return;
576   }
577 
578   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
579 
580   if (!IsIncompleteFunction)
581     SetLLVMFunctionAttributes(FD, getTypes().arrangeGlobalDeclaration(GD), F);
582 
583   // Only a few attributes are set on declarations; these may later be
584   // overridden by a definition.
585 
586   if (FD->hasAttr<DLLImportAttr>()) {
587     F->setLinkage(llvm::Function::DLLImportLinkage);
588   } else if (FD->hasAttr<WeakAttr>() ||
589              FD->isWeakImported()) {
590     // "extern_weak" is overloaded in LLVM; we probably should have
591     // separate linkage types for this.
592     F->setLinkage(llvm::Function::ExternalWeakLinkage);
593   } else {
594     F->setLinkage(llvm::Function::ExternalLinkage);
595 
596     NamedDecl::LinkageInfo LV = FD->getLinkageAndVisibility();
597     if (LV.linkage() == ExternalLinkage && LV.visibilityExplicit()) {
598       F->setVisibility(GetLLVMVisibility(LV.visibility()));
599     }
600   }
601 
602   if (const SectionAttr *SA = FD->getAttr<SectionAttr>())
603     F->setSection(SA->getName());
604 }
605 
606 void CodeGenModule::AddUsedGlobal(llvm::GlobalValue *GV) {
607   assert(!GV->isDeclaration() &&
608          "Only globals with definition can force usage.");
609   LLVMUsed.push_back(GV);
610 }
611 
612 void CodeGenModule::EmitLLVMUsed() {
613   // Don't create llvm.used if there is no need.
614   if (LLVMUsed.empty())
615     return;
616 
617   // Convert LLVMUsed to what ConstantArray needs.
618   SmallVector<llvm::Constant*, 8> UsedArray;
619   UsedArray.resize(LLVMUsed.size());
620   for (unsigned i = 0, e = LLVMUsed.size(); i != e; ++i) {
621     UsedArray[i] =
622      llvm::ConstantExpr::getBitCast(cast<llvm::Constant>(&*LLVMUsed[i]),
623                                     Int8PtrTy);
624   }
625 
626   if (UsedArray.empty())
627     return;
628   llvm::ArrayType *ATy = llvm::ArrayType::get(Int8PtrTy, UsedArray.size());
629 
630   llvm::GlobalVariable *GV =
631     new llvm::GlobalVariable(getModule(), ATy, false,
632                              llvm::GlobalValue::AppendingLinkage,
633                              llvm::ConstantArray::get(ATy, UsedArray),
634                              "llvm.used");
635 
636   GV->setSection("llvm.metadata");
637 }
638 
639 void CodeGenModule::EmitDeferred() {
640   // Emit code for any potentially referenced deferred decls.  Since a
641   // previously unused static decl may become used during the generation of code
642   // for a static function, iterate until no changes are made.
643 
644   while (!DeferredDeclsToEmit.empty() || !DeferredVTables.empty()) {
645     if (!DeferredVTables.empty()) {
646       const CXXRecordDecl *RD = DeferredVTables.back();
647       DeferredVTables.pop_back();
648       getVTables().GenerateClassData(getVTableLinkage(RD), RD);
649       continue;
650     }
651 
652     GlobalDecl D = DeferredDeclsToEmit.back();
653     DeferredDeclsToEmit.pop_back();
654 
655     // Check to see if we've already emitted this.  This is necessary
656     // for a couple of reasons: first, decls can end up in the
657     // deferred-decls queue multiple times, and second, decls can end
658     // up with definitions in unusual ways (e.g. by an extern inline
659     // function acquiring a strong function redefinition).  Just
660     // ignore these cases.
661     //
662     // TODO: That said, looking this up multiple times is very wasteful.
663     StringRef Name = getMangledName(D);
664     llvm::GlobalValue *CGRef = GetGlobalValue(Name);
665     assert(CGRef && "Deferred decl wasn't referenced?");
666 
667     if (!CGRef->isDeclaration())
668       continue;
669 
670     // GlobalAlias::isDeclaration() defers to the aliasee, but for our
671     // purposes an alias counts as a definition.
672     if (isa<llvm::GlobalAlias>(CGRef))
673       continue;
674 
675     // Otherwise, emit the definition and move on to the next one.
676     EmitGlobalDefinition(D);
677   }
678 }
679 
680 void CodeGenModule::EmitGlobalAnnotations() {
681   if (Annotations.empty())
682     return;
683 
684   // Create a new global variable for the ConstantStruct in the Module.
685   llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get(
686     Annotations[0]->getType(), Annotations.size()), Annotations);
687   llvm::GlobalValue *gv = new llvm::GlobalVariable(getModule(),
688     Array->getType(), false, llvm::GlobalValue::AppendingLinkage, Array,
689     "llvm.global.annotations");
690   gv->setSection(AnnotationSection);
691 }
692 
693 llvm::Constant *CodeGenModule::EmitAnnotationString(llvm::StringRef Str) {
694   llvm::StringMap<llvm::Constant*>::iterator i = AnnotationStrings.find(Str);
695   if (i != AnnotationStrings.end())
696     return i->second;
697 
698   // Not found yet, create a new global.
699   llvm::Constant *s = llvm::ConstantDataArray::getString(getLLVMContext(), Str);
700   llvm::GlobalValue *gv = new llvm::GlobalVariable(getModule(), s->getType(),
701     true, llvm::GlobalValue::PrivateLinkage, s, ".str");
702   gv->setSection(AnnotationSection);
703   gv->setUnnamedAddr(true);
704   AnnotationStrings[Str] = gv;
705   return gv;
706 }
707 
708 llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) {
709   SourceManager &SM = getContext().getSourceManager();
710   PresumedLoc PLoc = SM.getPresumedLoc(Loc);
711   if (PLoc.isValid())
712     return EmitAnnotationString(PLoc.getFilename());
713   return EmitAnnotationString(SM.getBufferName(Loc));
714 }
715 
716 llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) {
717   SourceManager &SM = getContext().getSourceManager();
718   PresumedLoc PLoc = SM.getPresumedLoc(L);
719   unsigned LineNo = PLoc.isValid() ? PLoc.getLine() :
720     SM.getExpansionLineNumber(L);
721   return llvm::ConstantInt::get(Int32Ty, LineNo);
722 }
723 
724 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV,
725                                                 const AnnotateAttr *AA,
726                                                 SourceLocation L) {
727   // Get the globals for file name, annotation, and the line number.
728   llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()),
729                  *UnitGV = EmitAnnotationUnit(L),
730                  *LineNoCst = EmitAnnotationLineNo(L);
731 
732   // Create the ConstantStruct for the global annotation.
733   llvm::Constant *Fields[4] = {
734     llvm::ConstantExpr::getBitCast(GV, Int8PtrTy),
735     llvm::ConstantExpr::getBitCast(AnnoGV, Int8PtrTy),
736     llvm::ConstantExpr::getBitCast(UnitGV, Int8PtrTy),
737     LineNoCst
738   };
739   return llvm::ConstantStruct::getAnon(Fields);
740 }
741 
742 void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D,
743                                          llvm::GlobalValue *GV) {
744   assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
745   // Get the struct elements for these annotations.
746   for (specific_attr_iterator<AnnotateAttr>
747        ai = D->specific_attr_begin<AnnotateAttr>(),
748        ae = D->specific_attr_end<AnnotateAttr>(); ai != ae; ++ai)
749     Annotations.push_back(EmitAnnotateAttr(GV, *ai, D->getLocation()));
750 }
751 
752 bool CodeGenModule::MayDeferGeneration(const ValueDecl *Global) {
753   // Never defer when EmitAllDecls is specified.
754   if (Features.EmitAllDecls)
755     return false;
756 
757   return !getContext().DeclMustBeEmitted(Global);
758 }
759 
760 llvm::Constant *CodeGenModule::GetWeakRefReference(const ValueDecl *VD) {
761   const AliasAttr *AA = VD->getAttr<AliasAttr>();
762   assert(AA && "No alias?");
763 
764   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType());
765 
766   // See if there is already something with the target's name in the module.
767   llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee());
768 
769   llvm::Constant *Aliasee;
770   if (isa<llvm::FunctionType>(DeclTy))
771     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GlobalDecl(),
772                                       /*ForVTable=*/false);
773   else
774     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
775                                     llvm::PointerType::getUnqual(DeclTy), 0);
776   if (!Entry) {
777     llvm::GlobalValue* F = cast<llvm::GlobalValue>(Aliasee);
778     F->setLinkage(llvm::Function::ExternalWeakLinkage);
779     WeakRefReferences.insert(F);
780   }
781 
782   return Aliasee;
783 }
784 
785 void CodeGenModule::EmitGlobal(GlobalDecl GD) {
786   const ValueDecl *Global = cast<ValueDecl>(GD.getDecl());
787 
788   // Weak references don't produce any output by themselves.
789   if (Global->hasAttr<WeakRefAttr>())
790     return;
791 
792   // If this is an alias definition (which otherwise looks like a declaration)
793   // emit it now.
794   if (Global->hasAttr<AliasAttr>())
795     return EmitAliasDefinition(GD);
796 
797   // If this is CUDA, be selective about which declarations we emit.
798   if (Features.CUDA) {
799     if (CodeGenOpts.CUDAIsDevice) {
800       if (!Global->hasAttr<CUDADeviceAttr>() &&
801           !Global->hasAttr<CUDAGlobalAttr>() &&
802           !Global->hasAttr<CUDAConstantAttr>() &&
803           !Global->hasAttr<CUDASharedAttr>())
804         return;
805     } else {
806       if (!Global->hasAttr<CUDAHostAttr>() && (
807             Global->hasAttr<CUDADeviceAttr>() ||
808             Global->hasAttr<CUDAConstantAttr>() ||
809             Global->hasAttr<CUDASharedAttr>()))
810         return;
811     }
812   }
813 
814   // Ignore declarations, they will be emitted on their first use.
815   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) {
816     // Forward declarations are emitted lazily on first use.
817     if (!FD->doesThisDeclarationHaveABody()) {
818       if (!FD->doesDeclarationForceExternallyVisibleDefinition())
819         return;
820 
821       const FunctionDecl *InlineDefinition = 0;
822       FD->getBody(InlineDefinition);
823 
824       StringRef MangledName = getMangledName(GD);
825       llvm::StringMap<GlobalDecl>::iterator DDI =
826           DeferredDecls.find(MangledName);
827       if (DDI != DeferredDecls.end())
828         DeferredDecls.erase(DDI);
829       EmitGlobalDefinition(InlineDefinition);
830       return;
831     }
832   } else {
833     const VarDecl *VD = cast<VarDecl>(Global);
834     assert(VD->isFileVarDecl() && "Cannot emit local var decl as global.");
835 
836     if (VD->isThisDeclarationADefinition() != VarDecl::Definition)
837       return;
838   }
839 
840   // Defer code generation when possible if this is a static definition, inline
841   // function etc.  These we only want to emit if they are used.
842   if (!MayDeferGeneration(Global)) {
843     // Emit the definition if it can't be deferred.
844     EmitGlobalDefinition(GD);
845     return;
846   }
847 
848   // If we're deferring emission of a C++ variable with an
849   // initializer, remember the order in which it appeared in the file.
850   if (getLangOptions().CPlusPlus && isa<VarDecl>(Global) &&
851       cast<VarDecl>(Global)->hasInit()) {
852     DelayedCXXInitPosition[Global] = CXXGlobalInits.size();
853     CXXGlobalInits.push_back(0);
854   }
855 
856   // If the value has already been used, add it directly to the
857   // DeferredDeclsToEmit list.
858   StringRef MangledName = getMangledName(GD);
859   if (GetGlobalValue(MangledName))
860     DeferredDeclsToEmit.push_back(GD);
861   else {
862     // Otherwise, remember that we saw a deferred decl with this name.  The
863     // first use of the mangled name will cause it to move into
864     // DeferredDeclsToEmit.
865     DeferredDecls[MangledName] = GD;
866   }
867 }
868 
869 namespace {
870   struct FunctionIsDirectlyRecursive :
871     public RecursiveASTVisitor<FunctionIsDirectlyRecursive> {
872     const StringRef Name;
873     const Builtin::Context &BI;
874     bool Result;
875     FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C) :
876       Name(N), BI(C), Result(false) {
877     }
878     typedef RecursiveASTVisitor<FunctionIsDirectlyRecursive> Base;
879 
880     bool TraverseCallExpr(CallExpr *E) {
881       const FunctionDecl *FD = E->getDirectCallee();
882       if (!FD)
883         return true;
884       AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
885       if (Attr && Name == Attr->getLabel()) {
886         Result = true;
887         return false;
888       }
889       unsigned BuiltinID = FD->getBuiltinID();
890       if (!BuiltinID)
891         return true;
892       StringRef BuiltinName = BI.GetName(BuiltinID);
893       if (BuiltinName.startswith("__builtin_") &&
894           Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) {
895         Result = true;
896         return false;
897       }
898       return true;
899     }
900   };
901 }
902 
903 // isTriviallyRecursive - Check if this function calls another
904 // decl that, because of the asm attribute or the other decl being a builtin,
905 // ends up pointing to itself.
906 bool
907 CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) {
908   StringRef Name;
909   if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) {
910     // asm labels are a special kind of mangling we have to support.
911     AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
912     if (!Attr)
913       return false;
914     Name = Attr->getLabel();
915   } else {
916     Name = FD->getName();
917   }
918 
919   FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo);
920   Walker.TraverseFunctionDecl(const_cast<FunctionDecl*>(FD));
921   return Walker.Result;
922 }
923 
924 bool
925 CodeGenModule::shouldEmitFunction(const FunctionDecl *F) {
926   if (getFunctionLinkage(F) != llvm::Function::AvailableExternallyLinkage)
927     return true;
928   if (CodeGenOpts.OptimizationLevel == 0 &&
929       !F->hasAttr<AlwaysInlineAttr>())
930     return false;
931   // PR9614. Avoid cases where the source code is lying to us. An available
932   // externally function should have an equivalent function somewhere else,
933   // but a function that calls itself is clearly not equivalent to the real
934   // implementation.
935   // This happens in glibc's btowc and in some configure checks.
936   return !isTriviallyRecursive(F);
937 }
938 
939 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD) {
940   const ValueDecl *D = cast<ValueDecl>(GD.getDecl());
941 
942   PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(),
943                                  Context.getSourceManager(),
944                                  "Generating code for declaration");
945 
946   if (const FunctionDecl *Function = dyn_cast<FunctionDecl>(D)) {
947     // At -O0, don't generate IR for functions with available_externally
948     // linkage.
949     if (!shouldEmitFunction(Function))
950       return;
951 
952     if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) {
953       // Make sure to emit the definition(s) before we emit the thunks.
954       // This is necessary for the generation of certain thunks.
955       if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(Method))
956         EmitCXXConstructor(CD, GD.getCtorType());
957       else if (const CXXDestructorDecl *DD =dyn_cast<CXXDestructorDecl>(Method))
958         EmitCXXDestructor(DD, GD.getDtorType());
959       else
960         EmitGlobalFunctionDefinition(GD);
961 
962       if (Method->isVirtual())
963         getVTables().EmitThunks(GD);
964 
965       return;
966     }
967 
968     return EmitGlobalFunctionDefinition(GD);
969   }
970 
971   if (const VarDecl *VD = dyn_cast<VarDecl>(D))
972     return EmitGlobalVarDefinition(VD);
973 
974   llvm_unreachable("Invalid argument to EmitGlobalDefinition()");
975 }
976 
977 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the
978 /// module, create and return an llvm Function with the specified type. If there
979 /// is something in the module with the specified name, return it potentially
980 /// bitcasted to the right type.
981 ///
982 /// If D is non-null, it specifies a decl that correspond to this.  This is used
983 /// to set the attributes on the function when it is first created.
984 llvm::Constant *
985 CodeGenModule::GetOrCreateLLVMFunction(StringRef MangledName,
986                                        llvm::Type *Ty,
987                                        GlobalDecl D, bool ForVTable,
988                                        llvm::Attributes ExtraAttrs) {
989   // Lookup the entry, lazily creating it if necessary.
990   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
991   if (Entry) {
992     if (WeakRefReferences.count(Entry)) {
993       const FunctionDecl *FD = cast_or_null<FunctionDecl>(D.getDecl());
994       if (FD && !FD->hasAttr<WeakAttr>())
995         Entry->setLinkage(llvm::Function::ExternalLinkage);
996 
997       WeakRefReferences.erase(Entry);
998     }
999 
1000     if (Entry->getType()->getElementType() == Ty)
1001       return Entry;
1002 
1003     // Make sure the result is of the correct type.
1004     return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo());
1005   }
1006 
1007   // This function doesn't have a complete type (for example, the return
1008   // type is an incomplete struct). Use a fake type instead, and make
1009   // sure not to try to set attributes.
1010   bool IsIncompleteFunction = false;
1011 
1012   llvm::FunctionType *FTy;
1013   if (isa<llvm::FunctionType>(Ty)) {
1014     FTy = cast<llvm::FunctionType>(Ty);
1015   } else {
1016     FTy = llvm::FunctionType::get(VoidTy, false);
1017     IsIncompleteFunction = true;
1018   }
1019 
1020   llvm::Function *F = llvm::Function::Create(FTy,
1021                                              llvm::Function::ExternalLinkage,
1022                                              MangledName, &getModule());
1023   assert(F->getName() == MangledName && "name was uniqued!");
1024   if (D.getDecl())
1025     SetFunctionAttributes(D, F, IsIncompleteFunction);
1026   if (ExtraAttrs != llvm::Attribute::None)
1027     F->addFnAttr(ExtraAttrs);
1028 
1029   // This is the first use or definition of a mangled name.  If there is a
1030   // deferred decl with this name, remember that we need to emit it at the end
1031   // of the file.
1032   llvm::StringMap<GlobalDecl>::iterator DDI = DeferredDecls.find(MangledName);
1033   if (DDI != DeferredDecls.end()) {
1034     // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
1035     // list, and remove it from DeferredDecls (since we don't need it anymore).
1036     DeferredDeclsToEmit.push_back(DDI->second);
1037     DeferredDecls.erase(DDI);
1038 
1039   // Otherwise, there are cases we have to worry about where we're
1040   // using a declaration for which we must emit a definition but where
1041   // we might not find a top-level definition:
1042   //   - member functions defined inline in their classes
1043   //   - friend functions defined inline in some class
1044   //   - special member functions with implicit definitions
1045   // If we ever change our AST traversal to walk into class methods,
1046   // this will be unnecessary.
1047   //
1048   // We also don't emit a definition for a function if it's going to be an entry
1049   // in a vtable, unless it's already marked as used.
1050   } else if (getLangOptions().CPlusPlus && D.getDecl()) {
1051     // Look for a declaration that's lexically in a record.
1052     const FunctionDecl *FD = cast<FunctionDecl>(D.getDecl());
1053     do {
1054       if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) {
1055         if (FD->isImplicit() && !ForVTable) {
1056           assert(FD->isUsed() && "Sema didn't mark implicit function as used!");
1057           DeferredDeclsToEmit.push_back(D.getWithDecl(FD));
1058           break;
1059         } else if (FD->doesThisDeclarationHaveABody()) {
1060           DeferredDeclsToEmit.push_back(D.getWithDecl(FD));
1061           break;
1062         }
1063       }
1064       FD = FD->getPreviousDecl();
1065     } while (FD);
1066   }
1067 
1068   // Make sure the result is of the requested type.
1069   if (!IsIncompleteFunction) {
1070     assert(F->getType()->getElementType() == Ty);
1071     return F;
1072   }
1073 
1074   llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
1075   return llvm::ConstantExpr::getBitCast(F, PTy);
1076 }
1077 
1078 /// GetAddrOfFunction - Return the address of the given function.  If Ty is
1079 /// non-null, then this function will use the specified type if it has to
1080 /// create it (this occurs when we see a definition of the function).
1081 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD,
1082                                                  llvm::Type *Ty,
1083                                                  bool ForVTable) {
1084   // If there was no specific requested type, just convert it now.
1085   if (!Ty)
1086     Ty = getTypes().ConvertType(cast<ValueDecl>(GD.getDecl())->getType());
1087 
1088   StringRef MangledName = getMangledName(GD);
1089   return GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable);
1090 }
1091 
1092 /// CreateRuntimeFunction - Create a new runtime function with the specified
1093 /// type and name.
1094 llvm::Constant *
1095 CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy,
1096                                      StringRef Name,
1097                                      llvm::Attributes ExtraAttrs) {
1098   return GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false,
1099                                  ExtraAttrs);
1100 }
1101 
1102 /// isTypeConstant - Determine whether an object of this type can be emitted
1103 /// as a constant.
1104 ///
1105 /// If ExcludeCtor is true, the duration when the object's constructor runs
1106 /// will not be considered. The caller will need to verify that the object is
1107 /// not written to during its construction.
1108 bool CodeGenModule::isTypeConstant(QualType Ty, bool ExcludeCtor) {
1109   if (!Ty.isConstant(Context) && !Ty->isReferenceType())
1110     return false;
1111 
1112   if (Context.getLangOptions().CPlusPlus) {
1113     if (const CXXRecordDecl *Record
1114           = Context.getBaseElementType(Ty)->getAsCXXRecordDecl())
1115       return ExcludeCtor && !Record->hasMutableFields() &&
1116              Record->hasTrivialDestructor();
1117   }
1118 
1119   return true;
1120 }
1121 
1122 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module,
1123 /// create and return an llvm GlobalVariable with the specified type.  If there
1124 /// is something in the module with the specified name, return it potentially
1125 /// bitcasted to the right type.
1126 ///
1127 /// If D is non-null, it specifies a decl that correspond to this.  This is used
1128 /// to set the attributes on the global when it is first created.
1129 llvm::Constant *
1130 CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName,
1131                                      llvm::PointerType *Ty,
1132                                      const VarDecl *D,
1133                                      bool UnnamedAddr) {
1134   // Lookup the entry, lazily creating it if necessary.
1135   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
1136   if (Entry) {
1137     if (WeakRefReferences.count(Entry)) {
1138       if (D && !D->hasAttr<WeakAttr>())
1139         Entry->setLinkage(llvm::Function::ExternalLinkage);
1140 
1141       WeakRefReferences.erase(Entry);
1142     }
1143 
1144     if (UnnamedAddr)
1145       Entry->setUnnamedAddr(true);
1146 
1147     if (Entry->getType() == Ty)
1148       return Entry;
1149 
1150     // Make sure the result is of the correct type.
1151     return llvm::ConstantExpr::getBitCast(Entry, Ty);
1152   }
1153 
1154   // This is the first use or definition of a mangled name.  If there is a
1155   // deferred decl with this name, remember that we need to emit it at the end
1156   // of the file.
1157   llvm::StringMap<GlobalDecl>::iterator DDI = DeferredDecls.find(MangledName);
1158   if (DDI != DeferredDecls.end()) {
1159     // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
1160     // list, and remove it from DeferredDecls (since we don't need it anymore).
1161     DeferredDeclsToEmit.push_back(DDI->second);
1162     DeferredDecls.erase(DDI);
1163   }
1164 
1165   llvm::GlobalVariable *GV =
1166     new llvm::GlobalVariable(getModule(), Ty->getElementType(), false,
1167                              llvm::GlobalValue::ExternalLinkage,
1168                              0, MangledName, 0,
1169                              false, Ty->getAddressSpace());
1170 
1171   // Handle things which are present even on external declarations.
1172   if (D) {
1173     // FIXME: This code is overly simple and should be merged with other global
1174     // handling.
1175     GV->setConstant(isTypeConstant(D->getType(), false));
1176 
1177     // Set linkage and visibility in case we never see a definition.
1178     NamedDecl::LinkageInfo LV = D->getLinkageAndVisibility();
1179     if (LV.linkage() != ExternalLinkage) {
1180       // Don't set internal linkage on declarations.
1181     } else {
1182       if (D->hasAttr<DLLImportAttr>())
1183         GV->setLinkage(llvm::GlobalValue::DLLImportLinkage);
1184       else if (D->hasAttr<WeakAttr>() || D->isWeakImported())
1185         GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage);
1186 
1187       // Set visibility on a declaration only if it's explicit.
1188       if (LV.visibilityExplicit())
1189         GV->setVisibility(GetLLVMVisibility(LV.visibility()));
1190     }
1191 
1192     GV->setThreadLocal(D->isThreadSpecified());
1193   }
1194 
1195   return GV;
1196 }
1197 
1198 
1199 llvm::GlobalVariable *
1200 CodeGenModule::CreateOrReplaceCXXRuntimeVariable(StringRef Name,
1201                                       llvm::Type *Ty,
1202                                       llvm::GlobalValue::LinkageTypes Linkage) {
1203   llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name);
1204   llvm::GlobalVariable *OldGV = 0;
1205 
1206 
1207   if (GV) {
1208     // Check if the variable has the right type.
1209     if (GV->getType()->getElementType() == Ty)
1210       return GV;
1211 
1212     // Because C++ name mangling, the only way we can end up with an already
1213     // existing global with the same name is if it has been declared extern "C".
1214       assert(GV->isDeclaration() && "Declaration has wrong type!");
1215     OldGV = GV;
1216   }
1217 
1218   // Create a new variable.
1219   GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true,
1220                                 Linkage, 0, Name);
1221 
1222   if (OldGV) {
1223     // Replace occurrences of the old variable if needed.
1224     GV->takeName(OldGV);
1225 
1226     if (!OldGV->use_empty()) {
1227       llvm::Constant *NewPtrForOldDecl =
1228       llvm::ConstantExpr::getBitCast(GV, OldGV->getType());
1229       OldGV->replaceAllUsesWith(NewPtrForOldDecl);
1230     }
1231 
1232     OldGV->eraseFromParent();
1233   }
1234 
1235   return GV;
1236 }
1237 
1238 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the
1239 /// given global variable.  If Ty is non-null and if the global doesn't exist,
1240 /// then it will be greated with the specified type instead of whatever the
1241 /// normal requested type would be.
1242 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D,
1243                                                   llvm::Type *Ty) {
1244   assert(D->hasGlobalStorage() && "Not a global variable");
1245   QualType ASTTy = D->getType();
1246   if (Ty == 0)
1247     Ty = getTypes().ConvertTypeForMem(ASTTy);
1248 
1249   llvm::PointerType *PTy =
1250     llvm::PointerType::get(Ty, getContext().getTargetAddressSpace(ASTTy));
1251 
1252   StringRef MangledName = getMangledName(D);
1253   return GetOrCreateLLVMGlobal(MangledName, PTy, D);
1254 }
1255 
1256 /// CreateRuntimeVariable - Create a new runtime global variable with the
1257 /// specified type and name.
1258 llvm::Constant *
1259 CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty,
1260                                      StringRef Name) {
1261   return GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), 0,
1262                                true);
1263 }
1264 
1265 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) {
1266   assert(!D->getInit() && "Cannot emit definite definitions here!");
1267 
1268   if (MayDeferGeneration(D)) {
1269     // If we have not seen a reference to this variable yet, place it
1270     // into the deferred declarations table to be emitted if needed
1271     // later.
1272     StringRef MangledName = getMangledName(D);
1273     if (!GetGlobalValue(MangledName)) {
1274       DeferredDecls[MangledName] = D;
1275       return;
1276     }
1277   }
1278 
1279   // The tentative definition is the only definition.
1280   EmitGlobalVarDefinition(D);
1281 }
1282 
1283 void CodeGenModule::EmitVTable(CXXRecordDecl *Class, bool DefinitionRequired) {
1284   if (DefinitionRequired)
1285     getVTables().GenerateClassData(getVTableLinkage(Class), Class);
1286 }
1287 
1288 llvm::GlobalVariable::LinkageTypes
1289 CodeGenModule::getVTableLinkage(const CXXRecordDecl *RD) {
1290   if (RD->getLinkage() != ExternalLinkage)
1291     return llvm::GlobalVariable::InternalLinkage;
1292 
1293   if (const CXXMethodDecl *KeyFunction
1294                                     = RD->getASTContext().getKeyFunction(RD)) {
1295     // If this class has a key function, use that to determine the linkage of
1296     // the vtable.
1297     const FunctionDecl *Def = 0;
1298     if (KeyFunction->hasBody(Def))
1299       KeyFunction = cast<CXXMethodDecl>(Def);
1300 
1301     switch (KeyFunction->getTemplateSpecializationKind()) {
1302       case TSK_Undeclared:
1303       case TSK_ExplicitSpecialization:
1304         // When compiling with optimizations turned on, we emit all vtables,
1305         // even if the key function is not defined in the current translation
1306         // unit. If this is the case, use available_externally linkage.
1307         if (!Def && CodeGenOpts.OptimizationLevel)
1308           return llvm::GlobalVariable::AvailableExternallyLinkage;
1309 
1310         if (KeyFunction->isInlined())
1311           return !Context.getLangOptions().AppleKext ?
1312                    llvm::GlobalVariable::LinkOnceODRLinkage :
1313                    llvm::Function::InternalLinkage;
1314 
1315         return llvm::GlobalVariable::ExternalLinkage;
1316 
1317       case TSK_ImplicitInstantiation:
1318         return !Context.getLangOptions().AppleKext ?
1319                  llvm::GlobalVariable::LinkOnceODRLinkage :
1320                  llvm::Function::InternalLinkage;
1321 
1322       case TSK_ExplicitInstantiationDefinition:
1323         return !Context.getLangOptions().AppleKext ?
1324                  llvm::GlobalVariable::WeakODRLinkage :
1325                  llvm::Function::InternalLinkage;
1326 
1327       case TSK_ExplicitInstantiationDeclaration:
1328         // FIXME: Use available_externally linkage. However, this currently
1329         // breaks LLVM's build due to undefined symbols.
1330         //      return llvm::GlobalVariable::AvailableExternallyLinkage;
1331         return !Context.getLangOptions().AppleKext ?
1332                  llvm::GlobalVariable::LinkOnceODRLinkage :
1333                  llvm::Function::InternalLinkage;
1334     }
1335   }
1336 
1337   if (Context.getLangOptions().AppleKext)
1338     return llvm::Function::InternalLinkage;
1339 
1340   switch (RD->getTemplateSpecializationKind()) {
1341   case TSK_Undeclared:
1342   case TSK_ExplicitSpecialization:
1343   case TSK_ImplicitInstantiation:
1344     // FIXME: Use available_externally linkage. However, this currently
1345     // breaks LLVM's build due to undefined symbols.
1346     //   return llvm::GlobalVariable::AvailableExternallyLinkage;
1347   case TSK_ExplicitInstantiationDeclaration:
1348     return llvm::GlobalVariable::LinkOnceODRLinkage;
1349 
1350   case TSK_ExplicitInstantiationDefinition:
1351       return llvm::GlobalVariable::WeakODRLinkage;
1352   }
1353 
1354   llvm_unreachable("Invalid TemplateSpecializationKind!");
1355 }
1356 
1357 CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const {
1358     return Context.toCharUnitsFromBits(
1359       TheTargetData.getTypeStoreSizeInBits(Ty));
1360 }
1361 
1362 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D) {
1363   llvm::Constant *Init = 0;
1364   QualType ASTTy = D->getType();
1365   CXXRecordDecl *RD = ASTTy->getBaseElementTypeUnsafe()->getAsCXXRecordDecl();
1366   bool NeedsGlobalCtor = false;
1367   bool NeedsGlobalDtor = RD && !RD->hasTrivialDestructor();
1368 
1369   const VarDecl *InitDecl;
1370   const Expr *InitExpr = D->getAnyInitializer(InitDecl);
1371 
1372   if (!InitExpr) {
1373     // This is a tentative definition; tentative definitions are
1374     // implicitly initialized with { 0 }.
1375     //
1376     // Note that tentative definitions are only emitted at the end of
1377     // a translation unit, so they should never have incomplete
1378     // type. In addition, EmitTentativeDefinition makes sure that we
1379     // never attempt to emit a tentative definition if a real one
1380     // exists. A use may still exists, however, so we still may need
1381     // to do a RAUW.
1382     assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type");
1383     Init = EmitNullConstant(D->getType());
1384   } else {
1385     Init = EmitConstantInit(*InitDecl);
1386     if (!Init) {
1387       QualType T = InitExpr->getType();
1388       if (D->getType()->isReferenceType())
1389         T = D->getType();
1390 
1391       if (getLangOptions().CPlusPlus) {
1392         Init = EmitNullConstant(T);
1393         NeedsGlobalCtor = true;
1394       } else {
1395         ErrorUnsupported(D, "static initializer");
1396         Init = llvm::UndefValue::get(getTypes().ConvertType(T));
1397       }
1398     } else {
1399       // We don't need an initializer, so remove the entry for the delayed
1400       // initializer position (just in case this entry was delayed) if we
1401       // also don't need to register a destructor.
1402       if (getLangOptions().CPlusPlus && !NeedsGlobalDtor)
1403         DelayedCXXInitPosition.erase(D);
1404     }
1405   }
1406 
1407   llvm::Type* InitType = Init->getType();
1408   llvm::Constant *Entry = GetAddrOfGlobalVar(D, InitType);
1409 
1410   // Strip off a bitcast if we got one back.
1411   if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
1412     assert(CE->getOpcode() == llvm::Instruction::BitCast ||
1413            // all zero index gep.
1414            CE->getOpcode() == llvm::Instruction::GetElementPtr);
1415     Entry = CE->getOperand(0);
1416   }
1417 
1418   // Entry is now either a Function or GlobalVariable.
1419   llvm::GlobalVariable *GV = dyn_cast<llvm::GlobalVariable>(Entry);
1420 
1421   // We have a definition after a declaration with the wrong type.
1422   // We must make a new GlobalVariable* and update everything that used OldGV
1423   // (a declaration or tentative definition) with the new GlobalVariable*
1424   // (which will be a definition).
1425   //
1426   // This happens if there is a prototype for a global (e.g.
1427   // "extern int x[];") and then a definition of a different type (e.g.
1428   // "int x[10];"). This also happens when an initializer has a different type
1429   // from the type of the global (this happens with unions).
1430   if (GV == 0 ||
1431       GV->getType()->getElementType() != InitType ||
1432       GV->getType()->getAddressSpace() !=
1433         getContext().getTargetAddressSpace(ASTTy)) {
1434 
1435     // Move the old entry aside so that we'll create a new one.
1436     Entry->setName(StringRef());
1437 
1438     // Make a new global with the correct type, this is now guaranteed to work.
1439     GV = cast<llvm::GlobalVariable>(GetAddrOfGlobalVar(D, InitType));
1440 
1441     // Replace all uses of the old global with the new global
1442     llvm::Constant *NewPtrForOldDecl =
1443         llvm::ConstantExpr::getBitCast(GV, Entry->getType());
1444     Entry->replaceAllUsesWith(NewPtrForOldDecl);
1445 
1446     // Erase the old global, since it is no longer used.
1447     cast<llvm::GlobalValue>(Entry)->eraseFromParent();
1448   }
1449 
1450   if (D->hasAttr<AnnotateAttr>())
1451     AddGlobalAnnotations(D, GV);
1452 
1453   GV->setInitializer(Init);
1454 
1455   // If it is safe to mark the global 'constant', do so now.
1456   GV->setConstant(!NeedsGlobalCtor && !NeedsGlobalDtor &&
1457                   isTypeConstant(D->getType(), true));
1458 
1459   GV->setAlignment(getContext().getDeclAlign(D).getQuantity());
1460 
1461   // Set the llvm linkage type as appropriate.
1462   llvm::GlobalValue::LinkageTypes Linkage =
1463     GetLLVMLinkageVarDefinition(D, GV);
1464   GV->setLinkage(Linkage);
1465   if (Linkage == llvm::GlobalVariable::CommonLinkage)
1466     // common vars aren't constant even if declared const.
1467     GV->setConstant(false);
1468 
1469   SetCommonAttributes(D, GV);
1470 
1471   // Emit the initializer function if necessary.
1472   if (NeedsGlobalCtor || NeedsGlobalDtor)
1473     EmitCXXGlobalVarDeclInitFunc(D, GV, NeedsGlobalCtor);
1474 
1475   // Emit global variable debug information.
1476   if (CGDebugInfo *DI = getModuleDebugInfo())
1477     DI->EmitGlobalVariable(GV, D);
1478 }
1479 
1480 llvm::GlobalValue::LinkageTypes
1481 CodeGenModule::GetLLVMLinkageVarDefinition(const VarDecl *D,
1482                                            llvm::GlobalVariable *GV) {
1483   GVALinkage Linkage = getContext().GetGVALinkageForVariable(D);
1484   if (Linkage == GVA_Internal)
1485     return llvm::Function::InternalLinkage;
1486   else if (D->hasAttr<DLLImportAttr>())
1487     return llvm::Function::DLLImportLinkage;
1488   else if (D->hasAttr<DLLExportAttr>())
1489     return llvm::Function::DLLExportLinkage;
1490   else if (D->hasAttr<WeakAttr>()) {
1491     if (GV->isConstant())
1492       return llvm::GlobalVariable::WeakODRLinkage;
1493     else
1494       return llvm::GlobalVariable::WeakAnyLinkage;
1495   } else if (Linkage == GVA_TemplateInstantiation ||
1496              Linkage == GVA_ExplicitTemplateInstantiation)
1497     return llvm::GlobalVariable::WeakODRLinkage;
1498   else if (!getLangOptions().CPlusPlus &&
1499            ((!CodeGenOpts.NoCommon && !D->getAttr<NoCommonAttr>()) ||
1500              D->getAttr<CommonAttr>()) &&
1501            !D->hasExternalStorage() && !D->getInit() &&
1502            !D->getAttr<SectionAttr>() && !D->isThreadSpecified() &&
1503            !D->getAttr<WeakImportAttr>()) {
1504     // Thread local vars aren't considered common linkage.
1505     return llvm::GlobalVariable::CommonLinkage;
1506   }
1507   return llvm::GlobalVariable::ExternalLinkage;
1508 }
1509 
1510 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we
1511 /// implement a function with no prototype, e.g. "int foo() {}".  If there are
1512 /// existing call uses of the old function in the module, this adjusts them to
1513 /// call the new function directly.
1514 ///
1515 /// This is not just a cleanup: the always_inline pass requires direct calls to
1516 /// functions to be able to inline them.  If there is a bitcast in the way, it
1517 /// won't inline them.  Instcombine normally deletes these calls, but it isn't
1518 /// run at -O0.
1519 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
1520                                                       llvm::Function *NewFn) {
1521   // If we're redefining a global as a function, don't transform it.
1522   llvm::Function *OldFn = dyn_cast<llvm::Function>(Old);
1523   if (OldFn == 0) return;
1524 
1525   llvm::Type *NewRetTy = NewFn->getReturnType();
1526   SmallVector<llvm::Value*, 4> ArgList;
1527 
1528   for (llvm::Value::use_iterator UI = OldFn->use_begin(), E = OldFn->use_end();
1529        UI != E; ) {
1530     // TODO: Do invokes ever occur in C code?  If so, we should handle them too.
1531     llvm::Value::use_iterator I = UI++; // Increment before the CI is erased.
1532     llvm::CallInst *CI = dyn_cast<llvm::CallInst>(*I);
1533     if (!CI) continue; // FIXME: when we allow Invoke, just do CallSite CS(*I)
1534     llvm::CallSite CS(CI);
1535     if (!CI || !CS.isCallee(I)) continue;
1536 
1537     // If the return types don't match exactly, and if the call isn't dead, then
1538     // we can't transform this call.
1539     if (CI->getType() != NewRetTy && !CI->use_empty())
1540       continue;
1541 
1542     // Get the attribute list.
1543     llvm::SmallVector<llvm::AttributeWithIndex, 8> AttrVec;
1544     llvm::AttrListPtr AttrList = CI->getAttributes();
1545 
1546     // Get any return attributes.
1547     llvm::Attributes RAttrs = AttrList.getRetAttributes();
1548 
1549     // Add the return attributes.
1550     if (RAttrs)
1551       AttrVec.push_back(llvm::AttributeWithIndex::get(0, RAttrs));
1552 
1553     // If the function was passed too few arguments, don't transform.  If extra
1554     // arguments were passed, we silently drop them.  If any of the types
1555     // mismatch, we don't transform.
1556     unsigned ArgNo = 0;
1557     bool DontTransform = false;
1558     for (llvm::Function::arg_iterator AI = NewFn->arg_begin(),
1559          E = NewFn->arg_end(); AI != E; ++AI, ++ArgNo) {
1560       if (CS.arg_size() == ArgNo ||
1561           CS.getArgument(ArgNo)->getType() != AI->getType()) {
1562         DontTransform = true;
1563         break;
1564       }
1565 
1566       // Add any parameter attributes.
1567       if (llvm::Attributes PAttrs = AttrList.getParamAttributes(ArgNo + 1))
1568         AttrVec.push_back(llvm::AttributeWithIndex::get(ArgNo + 1, PAttrs));
1569     }
1570     if (DontTransform)
1571       continue;
1572 
1573     if (llvm::Attributes FnAttrs =  AttrList.getFnAttributes())
1574       AttrVec.push_back(llvm::AttributeWithIndex::get(~0, FnAttrs));
1575 
1576     // Okay, we can transform this.  Create the new call instruction and copy
1577     // over the required information.
1578     ArgList.append(CS.arg_begin(), CS.arg_begin() + ArgNo);
1579     llvm::CallInst *NewCall = llvm::CallInst::Create(NewFn, ArgList, "", CI);
1580     ArgList.clear();
1581     if (!NewCall->getType()->isVoidTy())
1582       NewCall->takeName(CI);
1583     NewCall->setAttributes(llvm::AttrListPtr::get(AttrVec.begin(),
1584                                                   AttrVec.end()));
1585     NewCall->setCallingConv(CI->getCallingConv());
1586 
1587     // Finally, remove the old call, replacing any uses with the new one.
1588     if (!CI->use_empty())
1589       CI->replaceAllUsesWith(NewCall);
1590 
1591     // Copy debug location attached to CI.
1592     if (!CI->getDebugLoc().isUnknown())
1593       NewCall->setDebugLoc(CI->getDebugLoc());
1594     CI->eraseFromParent();
1595   }
1596 }
1597 
1598 
1599 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD) {
1600   const FunctionDecl *D = cast<FunctionDecl>(GD.getDecl());
1601 
1602   // Compute the function info and LLVM type.
1603   const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
1604   llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
1605 
1606   // Get or create the prototype for the function.
1607   llvm::Constant *Entry = GetAddrOfFunction(GD, Ty);
1608 
1609   // Strip off a bitcast if we got one back.
1610   if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
1611     assert(CE->getOpcode() == llvm::Instruction::BitCast);
1612     Entry = CE->getOperand(0);
1613   }
1614 
1615 
1616   if (cast<llvm::GlobalValue>(Entry)->getType()->getElementType() != Ty) {
1617     llvm::GlobalValue *OldFn = cast<llvm::GlobalValue>(Entry);
1618 
1619     // If the types mismatch then we have to rewrite the definition.
1620     assert(OldFn->isDeclaration() &&
1621            "Shouldn't replace non-declaration");
1622 
1623     // F is the Function* for the one with the wrong type, we must make a new
1624     // Function* and update everything that used F (a declaration) with the new
1625     // Function* (which will be a definition).
1626     //
1627     // This happens if there is a prototype for a function
1628     // (e.g. "int f()") and then a definition of a different type
1629     // (e.g. "int f(int x)").  Move the old function aside so that it
1630     // doesn't interfere with GetAddrOfFunction.
1631     OldFn->setName(StringRef());
1632     llvm::Function *NewFn = cast<llvm::Function>(GetAddrOfFunction(GD, Ty));
1633 
1634     // If this is an implementation of a function without a prototype, try to
1635     // replace any existing uses of the function (which may be calls) with uses
1636     // of the new function
1637     if (D->getType()->isFunctionNoProtoType()) {
1638       ReplaceUsesOfNonProtoTypeWithRealFunction(OldFn, NewFn);
1639       OldFn->removeDeadConstantUsers();
1640     }
1641 
1642     // Replace uses of F with the Function we will endow with a body.
1643     if (!Entry->use_empty()) {
1644       llvm::Constant *NewPtrForOldDecl =
1645         llvm::ConstantExpr::getBitCast(NewFn, Entry->getType());
1646       Entry->replaceAllUsesWith(NewPtrForOldDecl);
1647     }
1648 
1649     // Ok, delete the old function now, which is dead.
1650     OldFn->eraseFromParent();
1651 
1652     Entry = NewFn;
1653   }
1654 
1655   // We need to set linkage and visibility on the function before
1656   // generating code for it because various parts of IR generation
1657   // want to propagate this information down (e.g. to local static
1658   // declarations).
1659   llvm::Function *Fn = cast<llvm::Function>(Entry);
1660   setFunctionLinkage(D, Fn);
1661 
1662   // FIXME: this is redundant with part of SetFunctionDefinitionAttributes
1663   setGlobalVisibility(Fn, D);
1664 
1665   CodeGenFunction(*this).GenerateCode(D, Fn, FI);
1666 
1667   SetFunctionDefinitionAttributes(D, Fn);
1668   SetLLVMFunctionAttributesForDefinition(D, Fn);
1669 
1670   if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>())
1671     AddGlobalCtor(Fn, CA->getPriority());
1672   if (const DestructorAttr *DA = D->getAttr<DestructorAttr>())
1673     AddGlobalDtor(Fn, DA->getPriority());
1674   if (D->hasAttr<AnnotateAttr>())
1675     AddGlobalAnnotations(D, Fn);
1676 }
1677 
1678 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) {
1679   const ValueDecl *D = cast<ValueDecl>(GD.getDecl());
1680   const AliasAttr *AA = D->getAttr<AliasAttr>();
1681   assert(AA && "Not an alias?");
1682 
1683   StringRef MangledName = getMangledName(GD);
1684 
1685   // If there is a definition in the module, then it wins over the alias.
1686   // This is dubious, but allow it to be safe.  Just ignore the alias.
1687   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
1688   if (Entry && !Entry->isDeclaration())
1689     return;
1690 
1691   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
1692 
1693   // Create a reference to the named value.  This ensures that it is emitted
1694   // if a deferred decl.
1695   llvm::Constant *Aliasee;
1696   if (isa<llvm::FunctionType>(DeclTy))
1697     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GlobalDecl(),
1698                                       /*ForVTable=*/false);
1699   else
1700     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
1701                                     llvm::PointerType::getUnqual(DeclTy), 0);
1702 
1703   // Create the new alias itself, but don't set a name yet.
1704   llvm::GlobalValue *GA =
1705     new llvm::GlobalAlias(Aliasee->getType(),
1706                           llvm::Function::ExternalLinkage,
1707                           "", Aliasee, &getModule());
1708 
1709   if (Entry) {
1710     assert(Entry->isDeclaration());
1711 
1712     // If there is a declaration in the module, then we had an extern followed
1713     // by the alias, as in:
1714     //   extern int test6();
1715     //   ...
1716     //   int test6() __attribute__((alias("test7")));
1717     //
1718     // Remove it and replace uses of it with the alias.
1719     GA->takeName(Entry);
1720 
1721     Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA,
1722                                                           Entry->getType()));
1723     Entry->eraseFromParent();
1724   } else {
1725     GA->setName(MangledName);
1726   }
1727 
1728   // Set attributes which are particular to an alias; this is a
1729   // specialization of the attributes which may be set on a global
1730   // variable/function.
1731   if (D->hasAttr<DLLExportAttr>()) {
1732     if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
1733       // The dllexport attribute is ignored for undefined symbols.
1734       if (FD->hasBody())
1735         GA->setLinkage(llvm::Function::DLLExportLinkage);
1736     } else {
1737       GA->setLinkage(llvm::Function::DLLExportLinkage);
1738     }
1739   } else if (D->hasAttr<WeakAttr>() ||
1740              D->hasAttr<WeakRefAttr>() ||
1741              D->isWeakImported()) {
1742     GA->setLinkage(llvm::Function::WeakAnyLinkage);
1743   }
1744 
1745   SetCommonAttributes(D, GA);
1746 }
1747 
1748 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,
1749                                             ArrayRef<llvm::Type*> Tys) {
1750   return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID,
1751                                          Tys);
1752 }
1753 
1754 static llvm::StringMapEntry<llvm::Constant*> &
1755 GetConstantCFStringEntry(llvm::StringMap<llvm::Constant*> &Map,
1756                          const StringLiteral *Literal,
1757                          bool TargetIsLSB,
1758                          bool &IsUTF16,
1759                          unsigned &StringLength) {
1760   StringRef String = Literal->getString();
1761   unsigned NumBytes = String.size();
1762 
1763   // Check for simple case.
1764   if (!Literal->containsNonAsciiOrNull()) {
1765     StringLength = NumBytes;
1766     return Map.GetOrCreateValue(String);
1767   }
1768 
1769   // Otherwise, convert the UTF8 literals into a byte string.
1770   SmallVector<UTF16, 128> ToBuf(NumBytes);
1771   const UTF8 *FromPtr = (UTF8 *)String.data();
1772   UTF16 *ToPtr = &ToBuf[0];
1773 
1774   (void)ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes,
1775                            &ToPtr, ToPtr + NumBytes,
1776                            strictConversion);
1777 
1778   // ConvertUTF8toUTF16 returns the length in ToPtr.
1779   StringLength = ToPtr - &ToBuf[0];
1780 
1781   // Render the UTF-16 string into a byte array and convert to the target byte
1782   // order.
1783   //
1784   // FIXME: This isn't something we should need to do here.
1785   SmallString<128> AsBytes;
1786   AsBytes.reserve(StringLength * 2);
1787   for (unsigned i = 0; i != StringLength; ++i) {
1788     unsigned short Val = ToBuf[i];
1789     if (TargetIsLSB) {
1790       AsBytes.push_back(Val & 0xFF);
1791       AsBytes.push_back(Val >> 8);
1792     } else {
1793       AsBytes.push_back(Val >> 8);
1794       AsBytes.push_back(Val & 0xFF);
1795     }
1796   }
1797   // Append one extra null character, the second is automatically added by our
1798   // caller.
1799   AsBytes.push_back(0);
1800 
1801   IsUTF16 = true;
1802   return Map.GetOrCreateValue(StringRef(AsBytes.data(), AsBytes.size()));
1803 }
1804 
1805 static llvm::StringMapEntry<llvm::Constant*> &
1806 GetConstantStringEntry(llvm::StringMap<llvm::Constant*> &Map,
1807 		       const StringLiteral *Literal,
1808 		       unsigned &StringLength)
1809 {
1810 	StringRef String = Literal->getString();
1811 	StringLength = String.size();
1812 	return Map.GetOrCreateValue(String);
1813 }
1814 
1815 llvm::Constant *
1816 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) {
1817   unsigned StringLength = 0;
1818   bool isUTF16 = false;
1819   llvm::StringMapEntry<llvm::Constant*> &Entry =
1820     GetConstantCFStringEntry(CFConstantStringMap, Literal,
1821                              getTargetData().isLittleEndian(),
1822                              isUTF16, StringLength);
1823 
1824   if (llvm::Constant *C = Entry.getValue())
1825     return C;
1826 
1827   llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty);
1828   llvm::Constant *Zeros[] = { Zero, Zero };
1829 
1830   // If we don't already have it, get __CFConstantStringClassReference.
1831   if (!CFConstantStringClassRef) {
1832     llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
1833     Ty = llvm::ArrayType::get(Ty, 0);
1834     llvm::Constant *GV = CreateRuntimeVariable(Ty,
1835                                            "__CFConstantStringClassReference");
1836     // Decay array -> ptr
1837     CFConstantStringClassRef =
1838       llvm::ConstantExpr::getGetElementPtr(GV, Zeros);
1839   }
1840 
1841   QualType CFTy = getContext().getCFConstantStringType();
1842 
1843   llvm::StructType *STy =
1844     cast<llvm::StructType>(getTypes().ConvertType(CFTy));
1845 
1846   llvm::Constant *Fields[4];
1847 
1848   // Class pointer.
1849   Fields[0] = CFConstantStringClassRef;
1850 
1851   // Flags.
1852   llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy);
1853   Fields[1] = isUTF16 ? llvm::ConstantInt::get(Ty, 0x07d0) :
1854     llvm::ConstantInt::get(Ty, 0x07C8);
1855 
1856   // String pointer.
1857   llvm::Constant *C = llvm::ConstantDataArray::getString(VMContext,
1858                                                          Entry.getKey());
1859 
1860   llvm::GlobalValue::LinkageTypes Linkage;
1861   if (isUTF16)
1862     // FIXME: why do utf strings get "_" labels instead of "L" labels?
1863     Linkage = llvm::GlobalValue::InternalLinkage;
1864   else
1865     // FIXME: With OS X ld 123.2 (xcode 4) and LTO we would get a linker error
1866     // when using private linkage. It is not clear if this is a bug in ld
1867     // or a reasonable new restriction.
1868     Linkage = llvm::GlobalValue::LinkerPrivateLinkage;
1869 
1870   // Note: -fwritable-strings doesn't make the backing store strings of
1871   // CFStrings writable. (See <rdar://problem/10657500>)
1872   llvm::GlobalVariable *GV =
1873     new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true,
1874                              Linkage, C, ".str");
1875   GV->setUnnamedAddr(true);
1876   if (isUTF16) {
1877     CharUnits Align = getContext().getTypeAlignInChars(getContext().ShortTy);
1878     GV->setAlignment(Align.getQuantity());
1879   } else {
1880     CharUnits Align = getContext().getTypeAlignInChars(getContext().CharTy);
1881     GV->setAlignment(Align.getQuantity());
1882   }
1883   Fields[2] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros);
1884 
1885   // String length.
1886   Ty = getTypes().ConvertType(getContext().LongTy);
1887   Fields[3] = llvm::ConstantInt::get(Ty, StringLength);
1888 
1889   // The struct.
1890   C = llvm::ConstantStruct::get(STy, Fields);
1891   GV = new llvm::GlobalVariable(getModule(), C->getType(), true,
1892                                 llvm::GlobalVariable::PrivateLinkage, C,
1893                                 "_unnamed_cfstring_");
1894   if (const char *Sect = getContext().getTargetInfo().getCFStringSection())
1895     GV->setSection(Sect);
1896   Entry.setValue(GV);
1897 
1898   return GV;
1899 }
1900 
1901 static RecordDecl *
1902 CreateRecordDecl(const ASTContext &Ctx, RecordDecl::TagKind TK,
1903                  DeclContext *DC, IdentifierInfo *Id) {
1904   SourceLocation Loc;
1905   if (Ctx.getLangOptions().CPlusPlus)
1906     return CXXRecordDecl::Create(Ctx, TK, DC, Loc, Loc, Id);
1907   else
1908     return RecordDecl::Create(Ctx, TK, DC, Loc, Loc, Id);
1909 }
1910 
1911 llvm::Constant *
1912 CodeGenModule::GetAddrOfConstantString(const StringLiteral *Literal) {
1913   unsigned StringLength = 0;
1914   llvm::StringMapEntry<llvm::Constant*> &Entry =
1915     GetConstantStringEntry(CFConstantStringMap, Literal, StringLength);
1916 
1917   if (llvm::Constant *C = Entry.getValue())
1918     return C;
1919 
1920   llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty);
1921   llvm::Constant *Zeros[] = { Zero, Zero };
1922 
1923   // If we don't already have it, get _NSConstantStringClassReference.
1924   if (!ConstantStringClassRef) {
1925     std::string StringClass(getLangOptions().ObjCConstantStringClass);
1926     llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
1927     llvm::Constant *GV;
1928     if (Features.ObjCNonFragileABI) {
1929       std::string str =
1930         StringClass.empty() ? "OBJC_CLASS_$_NSConstantString"
1931                             : "OBJC_CLASS_$_" + StringClass;
1932       GV = getObjCRuntime().GetClassGlobal(str);
1933       // Make sure the result is of the correct type.
1934       llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
1935       ConstantStringClassRef =
1936         llvm::ConstantExpr::getBitCast(GV, PTy);
1937     } else {
1938       std::string str =
1939         StringClass.empty() ? "_NSConstantStringClassReference"
1940                             : "_" + StringClass + "ClassReference";
1941       llvm::Type *PTy = llvm::ArrayType::get(Ty, 0);
1942       GV = CreateRuntimeVariable(PTy, str);
1943       // Decay array -> ptr
1944       ConstantStringClassRef =
1945         llvm::ConstantExpr::getGetElementPtr(GV, Zeros);
1946     }
1947   }
1948 
1949   if (!NSConstantStringType) {
1950     // Construct the type for a constant NSString.
1951     RecordDecl *D = CreateRecordDecl(Context, TTK_Struct,
1952                                      Context.getTranslationUnitDecl(),
1953                                    &Context.Idents.get("__builtin_NSString"));
1954     D->startDefinition();
1955 
1956     QualType FieldTypes[3];
1957 
1958     // const int *isa;
1959     FieldTypes[0] = Context.getPointerType(Context.IntTy.withConst());
1960     // const char *str;
1961     FieldTypes[1] = Context.getPointerType(Context.CharTy.withConst());
1962     // unsigned int length;
1963     FieldTypes[2] = Context.UnsignedIntTy;
1964 
1965     // Create fields
1966     for (unsigned i = 0; i < 3; ++i) {
1967       FieldDecl *Field = FieldDecl::Create(Context, D,
1968                                            SourceLocation(),
1969                                            SourceLocation(), 0,
1970                                            FieldTypes[i], /*TInfo=*/0,
1971                                            /*BitWidth=*/0,
1972                                            /*Mutable=*/false,
1973                                            /*HasInit=*/false);
1974       Field->setAccess(AS_public);
1975       D->addDecl(Field);
1976     }
1977 
1978     D->completeDefinition();
1979     QualType NSTy = Context.getTagDeclType(D);
1980     NSConstantStringType = cast<llvm::StructType>(getTypes().ConvertType(NSTy));
1981   }
1982 
1983   llvm::Constant *Fields[3];
1984 
1985   // Class pointer.
1986   Fields[0] = ConstantStringClassRef;
1987 
1988   // String pointer.
1989   llvm::Constant *C =
1990     llvm::ConstantDataArray::getString(VMContext, Entry.getKey());
1991 
1992   llvm::GlobalValue::LinkageTypes Linkage;
1993   bool isConstant;
1994   Linkage = llvm::GlobalValue::PrivateLinkage;
1995   isConstant = !Features.WritableStrings;
1996 
1997   llvm::GlobalVariable *GV =
1998   new llvm::GlobalVariable(getModule(), C->getType(), isConstant, Linkage, C,
1999                            ".str");
2000   GV->setUnnamedAddr(true);
2001   CharUnits Align = getContext().getTypeAlignInChars(getContext().CharTy);
2002   GV->setAlignment(Align.getQuantity());
2003   Fields[1] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros);
2004 
2005   // String length.
2006   llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy);
2007   Fields[2] = llvm::ConstantInt::get(Ty, StringLength);
2008 
2009   // The struct.
2010   C = llvm::ConstantStruct::get(NSConstantStringType, Fields);
2011   GV = new llvm::GlobalVariable(getModule(), C->getType(), true,
2012                                 llvm::GlobalVariable::PrivateLinkage, C,
2013                                 "_unnamed_nsstring_");
2014   // FIXME. Fix section.
2015   if (const char *Sect =
2016         Features.ObjCNonFragileABI
2017           ? getContext().getTargetInfo().getNSStringNonFragileABISection()
2018           : getContext().getTargetInfo().getNSStringSection())
2019     GV->setSection(Sect);
2020   Entry.setValue(GV);
2021 
2022   return GV;
2023 }
2024 
2025 QualType CodeGenModule::getObjCFastEnumerationStateType() {
2026   if (ObjCFastEnumerationStateType.isNull()) {
2027     RecordDecl *D = CreateRecordDecl(Context, TTK_Struct,
2028                                      Context.getTranslationUnitDecl(),
2029                       &Context.Idents.get("__objcFastEnumerationState"));
2030     D->startDefinition();
2031 
2032     QualType FieldTypes[] = {
2033       Context.UnsignedLongTy,
2034       Context.getPointerType(Context.getObjCIdType()),
2035       Context.getPointerType(Context.UnsignedLongTy),
2036       Context.getConstantArrayType(Context.UnsignedLongTy,
2037                            llvm::APInt(32, 5), ArrayType::Normal, 0)
2038     };
2039 
2040     for (size_t i = 0; i < 4; ++i) {
2041       FieldDecl *Field = FieldDecl::Create(Context,
2042                                            D,
2043                                            SourceLocation(),
2044                                            SourceLocation(), 0,
2045                                            FieldTypes[i], /*TInfo=*/0,
2046                                            /*BitWidth=*/0,
2047                                            /*Mutable=*/false,
2048                                            /*HasInit=*/false);
2049       Field->setAccess(AS_public);
2050       D->addDecl(Field);
2051     }
2052 
2053     D->completeDefinition();
2054     ObjCFastEnumerationStateType = Context.getTagDeclType(D);
2055   }
2056 
2057   return ObjCFastEnumerationStateType;
2058 }
2059 
2060 llvm::Constant *
2061 CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) {
2062   assert(!E->getType()->isPointerType() && "Strings are always arrays");
2063 
2064   // Don't emit it as the address of the string, emit the string data itself
2065   // as an inline array.
2066   if (E->getCharByteWidth() == 1) {
2067     SmallString<64> Str(E->getString());
2068 
2069     // Resize the string to the right size, which is indicated by its type.
2070     const ConstantArrayType *CAT = Context.getAsConstantArrayType(E->getType());
2071     Str.resize(CAT->getSize().getZExtValue());
2072     return llvm::ConstantDataArray::getString(VMContext, Str, false);
2073   }
2074 
2075   llvm::ArrayType *AType =
2076     cast<llvm::ArrayType>(getTypes().ConvertType(E->getType()));
2077   llvm::Type *ElemTy = AType->getElementType();
2078   unsigned NumElements = AType->getNumElements();
2079 
2080   // Wide strings have either 2-byte or 4-byte elements.
2081   if (ElemTy->getPrimitiveSizeInBits() == 16) {
2082     SmallVector<uint16_t, 32> Elements;
2083     Elements.reserve(NumElements);
2084 
2085     for(unsigned i = 0, e = E->getLength(); i != e; ++i)
2086       Elements.push_back(E->getCodeUnit(i));
2087     Elements.resize(NumElements);
2088     return llvm::ConstantDataArray::get(VMContext, Elements);
2089   }
2090 
2091   assert(ElemTy->getPrimitiveSizeInBits() == 32);
2092   SmallVector<uint32_t, 32> Elements;
2093   Elements.reserve(NumElements);
2094 
2095   for(unsigned i = 0, e = E->getLength(); i != e; ++i)
2096     Elements.push_back(E->getCodeUnit(i));
2097   Elements.resize(NumElements);
2098   return llvm::ConstantDataArray::get(VMContext, Elements);
2099 }
2100 
2101 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a
2102 /// constant array for the given string literal.
2103 llvm::Constant *
2104 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S) {
2105   CharUnits Align = getContext().getTypeAlignInChars(S->getType());
2106   if (S->isAscii() || S->isUTF8()) {
2107     SmallString<64> Str(S->getString());
2108 
2109     // Resize the string to the right size, which is indicated by its type.
2110     const ConstantArrayType *CAT = Context.getAsConstantArrayType(S->getType());
2111     Str.resize(CAT->getSize().getZExtValue());
2112     return GetAddrOfConstantString(Str, /*GlobalName*/ 0, Align.getQuantity());
2113   }
2114 
2115   // FIXME: the following does not memoize wide strings.
2116   llvm::Constant *C = GetConstantArrayFromStringLiteral(S);
2117   llvm::GlobalVariable *GV =
2118     new llvm::GlobalVariable(getModule(),C->getType(),
2119                              !Features.WritableStrings,
2120                              llvm::GlobalValue::PrivateLinkage,
2121                              C,".str");
2122 
2123   GV->setAlignment(Align.getQuantity());
2124   GV->setUnnamedAddr(true);
2125   return GV;
2126 }
2127 
2128 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant
2129 /// array for the given ObjCEncodeExpr node.
2130 llvm::Constant *
2131 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) {
2132   std::string Str;
2133   getContext().getObjCEncodingForType(E->getEncodedType(), Str);
2134 
2135   return GetAddrOfConstantCString(Str);
2136 }
2137 
2138 
2139 /// GenerateWritableString -- Creates storage for a string literal.
2140 static llvm::GlobalVariable *GenerateStringLiteral(StringRef str,
2141                                              bool constant,
2142                                              CodeGenModule &CGM,
2143                                              const char *GlobalName,
2144                                              unsigned Alignment) {
2145   // Create Constant for this string literal. Don't add a '\0'.
2146   llvm::Constant *C =
2147       llvm::ConstantDataArray::getString(CGM.getLLVMContext(), str, false);
2148 
2149   // Create a global variable for this string
2150   llvm::GlobalVariable *GV =
2151     new llvm::GlobalVariable(CGM.getModule(), C->getType(), constant,
2152                              llvm::GlobalValue::PrivateLinkage,
2153                              C, GlobalName);
2154   GV->setAlignment(Alignment);
2155   GV->setUnnamedAddr(true);
2156   return GV;
2157 }
2158 
2159 /// GetAddrOfConstantString - Returns a pointer to a character array
2160 /// containing the literal. This contents are exactly that of the
2161 /// given string, i.e. it will not be null terminated automatically;
2162 /// see GetAddrOfConstantCString. Note that whether the result is
2163 /// actually a pointer to an LLVM constant depends on
2164 /// Feature.WriteableStrings.
2165 ///
2166 /// The result has pointer to array type.
2167 llvm::Constant *CodeGenModule::GetAddrOfConstantString(StringRef Str,
2168                                                        const char *GlobalName,
2169                                                        unsigned Alignment) {
2170   // Get the default prefix if a name wasn't specified.
2171   if (!GlobalName)
2172     GlobalName = ".str";
2173 
2174   // Don't share any string literals if strings aren't constant.
2175   if (Features.WritableStrings)
2176     return GenerateStringLiteral(Str, false, *this, GlobalName, Alignment);
2177 
2178   llvm::StringMapEntry<llvm::GlobalVariable *> &Entry =
2179     ConstantStringMap.GetOrCreateValue(Str);
2180 
2181   if (llvm::GlobalVariable *GV = Entry.getValue()) {
2182     if (Alignment > GV->getAlignment()) {
2183       GV->setAlignment(Alignment);
2184     }
2185     return GV;
2186   }
2187 
2188   // Create a global variable for this.
2189   llvm::GlobalVariable *GV = GenerateStringLiteral(Str, true, *this, GlobalName,
2190                                                    Alignment);
2191   Entry.setValue(GV);
2192   return GV;
2193 }
2194 
2195 /// GetAddrOfConstantCString - Returns a pointer to a character
2196 /// array containing the literal and a terminating '\0'
2197 /// character. The result has pointer to array type.
2198 llvm::Constant *CodeGenModule::GetAddrOfConstantCString(const std::string &Str,
2199                                                         const char *GlobalName,
2200                                                         unsigned Alignment) {
2201   StringRef StrWithNull(Str.c_str(), Str.size() + 1);
2202   return GetAddrOfConstantString(StrWithNull, GlobalName, Alignment);
2203 }
2204 
2205 /// EmitObjCPropertyImplementations - Emit information for synthesized
2206 /// properties for an implementation.
2207 void CodeGenModule::EmitObjCPropertyImplementations(const
2208                                                     ObjCImplementationDecl *D) {
2209   for (ObjCImplementationDecl::propimpl_iterator
2210          i = D->propimpl_begin(), e = D->propimpl_end(); i != e; ++i) {
2211     ObjCPropertyImplDecl *PID = *i;
2212 
2213     // Dynamic is just for type-checking.
2214     if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) {
2215       ObjCPropertyDecl *PD = PID->getPropertyDecl();
2216 
2217       // Determine which methods need to be implemented, some may have
2218       // been overridden. Note that ::isSynthesized is not the method
2219       // we want, that just indicates if the decl came from a
2220       // property. What we want to know is if the method is defined in
2221       // this implementation.
2222       if (!D->getInstanceMethod(PD->getGetterName()))
2223         CodeGenFunction(*this).GenerateObjCGetter(
2224                                  const_cast<ObjCImplementationDecl *>(D), PID);
2225       if (!PD->isReadOnly() &&
2226           !D->getInstanceMethod(PD->getSetterName()))
2227         CodeGenFunction(*this).GenerateObjCSetter(
2228                                  const_cast<ObjCImplementationDecl *>(D), PID);
2229     }
2230   }
2231 }
2232 
2233 static bool needsDestructMethod(ObjCImplementationDecl *impl) {
2234   const ObjCInterfaceDecl *iface = impl->getClassInterface();
2235   for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin();
2236        ivar; ivar = ivar->getNextIvar())
2237     if (ivar->getType().isDestructedType())
2238       return true;
2239 
2240   return false;
2241 }
2242 
2243 /// EmitObjCIvarInitializations - Emit information for ivar initialization
2244 /// for an implementation.
2245 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) {
2246   // We might need a .cxx_destruct even if we don't have any ivar initializers.
2247   if (needsDestructMethod(D)) {
2248     IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct");
2249     Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
2250     ObjCMethodDecl *DTORMethod =
2251       ObjCMethodDecl::Create(getContext(), D->getLocation(), D->getLocation(),
2252                              cxxSelector, getContext().VoidTy, 0, D,
2253                              /*isInstance=*/true, /*isVariadic=*/false,
2254                           /*isSynthesized=*/true, /*isImplicitlyDeclared=*/true,
2255                              /*isDefined=*/false, ObjCMethodDecl::Required);
2256     D->addInstanceMethod(DTORMethod);
2257     CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false);
2258     D->setHasCXXStructors(true);
2259   }
2260 
2261   // If the implementation doesn't have any ivar initializers, we don't need
2262   // a .cxx_construct.
2263   if (D->getNumIvarInitializers() == 0)
2264     return;
2265 
2266   IdentifierInfo *II = &getContext().Idents.get(".cxx_construct");
2267   Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
2268   // The constructor returns 'self'.
2269   ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(getContext(),
2270                                                 D->getLocation(),
2271                                                 D->getLocation(),
2272                                                 cxxSelector,
2273                                                 getContext().getObjCIdType(), 0,
2274                                                 D, /*isInstance=*/true,
2275                                                 /*isVariadic=*/false,
2276                                                 /*isSynthesized=*/true,
2277                                                 /*isImplicitlyDeclared=*/true,
2278                                                 /*isDefined=*/false,
2279                                                 ObjCMethodDecl::Required);
2280   D->addInstanceMethod(CTORMethod);
2281   CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true);
2282   D->setHasCXXStructors(true);
2283 }
2284 
2285 /// EmitNamespace - Emit all declarations in a namespace.
2286 void CodeGenModule::EmitNamespace(const NamespaceDecl *ND) {
2287   for (RecordDecl::decl_iterator I = ND->decls_begin(), E = ND->decls_end();
2288        I != E; ++I)
2289     EmitTopLevelDecl(*I);
2290 }
2291 
2292 // EmitLinkageSpec - Emit all declarations in a linkage spec.
2293 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) {
2294   if (LSD->getLanguage() != LinkageSpecDecl::lang_c &&
2295       LSD->getLanguage() != LinkageSpecDecl::lang_cxx) {
2296     ErrorUnsupported(LSD, "linkage spec");
2297     return;
2298   }
2299 
2300   for (RecordDecl::decl_iterator I = LSD->decls_begin(), E = LSD->decls_end();
2301        I != E; ++I)
2302     EmitTopLevelDecl(*I);
2303 }
2304 
2305 /// EmitTopLevelDecl - Emit code for a single top level declaration.
2306 void CodeGenModule::EmitTopLevelDecl(Decl *D) {
2307   // If an error has occurred, stop code generation, but continue
2308   // parsing and semantic analysis (to ensure all warnings and errors
2309   // are emitted).
2310   if (Diags.hasErrorOccurred())
2311     return;
2312 
2313   // Ignore dependent declarations.
2314   if (D->getDeclContext() && D->getDeclContext()->isDependentContext())
2315     return;
2316 
2317   switch (D->getKind()) {
2318   case Decl::CXXConversion:
2319   case Decl::CXXMethod:
2320   case Decl::Function:
2321     // Skip function templates
2322     if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() ||
2323         cast<FunctionDecl>(D)->isLateTemplateParsed())
2324       return;
2325 
2326     EmitGlobal(cast<FunctionDecl>(D));
2327     break;
2328 
2329   case Decl::Var:
2330     EmitGlobal(cast<VarDecl>(D));
2331     break;
2332 
2333   // Indirect fields from global anonymous structs and unions can be
2334   // ignored; only the actual variable requires IR gen support.
2335   case Decl::IndirectField:
2336     break;
2337 
2338   // C++ Decls
2339   case Decl::Namespace:
2340     EmitNamespace(cast<NamespaceDecl>(D));
2341     break;
2342     // No code generation needed.
2343   case Decl::UsingShadow:
2344   case Decl::Using:
2345   case Decl::UsingDirective:
2346   case Decl::ClassTemplate:
2347   case Decl::FunctionTemplate:
2348   case Decl::TypeAliasTemplate:
2349   case Decl::NamespaceAlias:
2350   case Decl::Block:
2351   case Decl::Import:
2352     break;
2353   case Decl::CXXConstructor:
2354     // Skip function templates
2355     if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() ||
2356         cast<FunctionDecl>(D)->isLateTemplateParsed())
2357       return;
2358 
2359     EmitCXXConstructors(cast<CXXConstructorDecl>(D));
2360     break;
2361   case Decl::CXXDestructor:
2362     if (cast<FunctionDecl>(D)->isLateTemplateParsed())
2363       return;
2364     EmitCXXDestructors(cast<CXXDestructorDecl>(D));
2365     break;
2366 
2367   case Decl::StaticAssert:
2368     // Nothing to do.
2369     break;
2370 
2371   // Objective-C Decls
2372 
2373   // Forward declarations, no (immediate) code generation.
2374   case Decl::ObjCInterface:
2375     break;
2376 
2377   case Decl::ObjCCategory: {
2378     ObjCCategoryDecl *CD = cast<ObjCCategoryDecl>(D);
2379     if (CD->IsClassExtension() && CD->hasSynthBitfield())
2380       Context.ResetObjCLayout(CD->getClassInterface());
2381     break;
2382   }
2383 
2384   case Decl::ObjCProtocol: {
2385     ObjCProtocolDecl *Proto = cast<ObjCProtocolDecl>(D);
2386     if (Proto->isThisDeclarationADefinition())
2387       ObjCRuntime->GenerateProtocol(Proto);
2388     break;
2389   }
2390 
2391   case Decl::ObjCCategoryImpl:
2392     // Categories have properties but don't support synthesize so we
2393     // can ignore them here.
2394     ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D));
2395     break;
2396 
2397   case Decl::ObjCImplementation: {
2398     ObjCImplementationDecl *OMD = cast<ObjCImplementationDecl>(D);
2399     if (Features.ObjCNonFragileABI2 && OMD->hasSynthBitfield())
2400       Context.ResetObjCLayout(OMD->getClassInterface());
2401     EmitObjCPropertyImplementations(OMD);
2402     EmitObjCIvarInitializations(OMD);
2403     ObjCRuntime->GenerateClass(OMD);
2404     break;
2405   }
2406   case Decl::ObjCMethod: {
2407     ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(D);
2408     // If this is not a prototype, emit the body.
2409     if (OMD->getBody())
2410       CodeGenFunction(*this).GenerateObjCMethod(OMD);
2411     break;
2412   }
2413   case Decl::ObjCCompatibleAlias:
2414     ObjCRuntime->RegisterAlias(cast<ObjCCompatibleAliasDecl>(D));
2415     break;
2416 
2417   case Decl::LinkageSpec:
2418     EmitLinkageSpec(cast<LinkageSpecDecl>(D));
2419     break;
2420 
2421   case Decl::FileScopeAsm: {
2422     FileScopeAsmDecl *AD = cast<FileScopeAsmDecl>(D);
2423     StringRef AsmString = AD->getAsmString()->getString();
2424 
2425     const std::string &S = getModule().getModuleInlineAsm();
2426     if (S.empty())
2427       getModule().setModuleInlineAsm(AsmString);
2428     else if (*--S.end() == '\n')
2429       getModule().setModuleInlineAsm(S + AsmString.str());
2430     else
2431       getModule().setModuleInlineAsm(S + '\n' + AsmString.str());
2432     break;
2433   }
2434 
2435   default:
2436     // Make sure we handled everything we should, every other kind is a
2437     // non-top-level decl.  FIXME: Would be nice to have an isTopLevelDeclKind
2438     // function. Need to recode Decl::Kind to do that easily.
2439     assert(isa<TypeDecl>(D) && "Unsupported decl kind");
2440   }
2441 }
2442 
2443 /// Turns the given pointer into a constant.
2444 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context,
2445                                           const void *Ptr) {
2446   uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr);
2447   llvm::Type *i64 = llvm::Type::getInt64Ty(Context);
2448   return llvm::ConstantInt::get(i64, PtrInt);
2449 }
2450 
2451 static void EmitGlobalDeclMetadata(CodeGenModule &CGM,
2452                                    llvm::NamedMDNode *&GlobalMetadata,
2453                                    GlobalDecl D,
2454                                    llvm::GlobalValue *Addr) {
2455   if (!GlobalMetadata)
2456     GlobalMetadata =
2457       CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs");
2458 
2459   // TODO: should we report variant information for ctors/dtors?
2460   llvm::Value *Ops[] = {
2461     Addr,
2462     GetPointerConstant(CGM.getLLVMContext(), D.getDecl())
2463   };
2464   GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops));
2465 }
2466 
2467 /// Emits metadata nodes associating all the global values in the
2468 /// current module with the Decls they came from.  This is useful for
2469 /// projects using IR gen as a subroutine.
2470 ///
2471 /// Since there's currently no way to associate an MDNode directly
2472 /// with an llvm::GlobalValue, we create a global named metadata
2473 /// with the name 'clang.global.decl.ptrs'.
2474 void CodeGenModule::EmitDeclMetadata() {
2475   llvm::NamedMDNode *GlobalMetadata = 0;
2476 
2477   // StaticLocalDeclMap
2478   for (llvm::DenseMap<GlobalDecl,StringRef>::iterator
2479          I = MangledDeclNames.begin(), E = MangledDeclNames.end();
2480        I != E; ++I) {
2481     llvm::GlobalValue *Addr = getModule().getNamedValue(I->second);
2482     EmitGlobalDeclMetadata(*this, GlobalMetadata, I->first, Addr);
2483   }
2484 }
2485 
2486 /// Emits metadata nodes for all the local variables in the current
2487 /// function.
2488 void CodeGenFunction::EmitDeclMetadata() {
2489   if (LocalDeclMap.empty()) return;
2490 
2491   llvm::LLVMContext &Context = getLLVMContext();
2492 
2493   // Find the unique metadata ID for this name.
2494   unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr");
2495 
2496   llvm::NamedMDNode *GlobalMetadata = 0;
2497 
2498   for (llvm::DenseMap<const Decl*, llvm::Value*>::iterator
2499          I = LocalDeclMap.begin(), E = LocalDeclMap.end(); I != E; ++I) {
2500     const Decl *D = I->first;
2501     llvm::Value *Addr = I->second;
2502 
2503     if (llvm::AllocaInst *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) {
2504       llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D);
2505       Alloca->setMetadata(DeclPtrKind, llvm::MDNode::get(Context, DAddr));
2506     } else if (llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>(Addr)) {
2507       GlobalDecl GD = GlobalDecl(cast<VarDecl>(D));
2508       EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV);
2509     }
2510   }
2511 }
2512 
2513 void CodeGenModule::EmitCoverageFile() {
2514   if (!getCodeGenOpts().CoverageFile.empty()) {
2515     if (llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu")) {
2516       llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov");
2517       llvm::LLVMContext &Ctx = TheModule.getContext();
2518       llvm::MDString *CoverageFile =
2519           llvm::MDString::get(Ctx, getCodeGenOpts().CoverageFile);
2520       for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) {
2521         llvm::MDNode *CU = CUNode->getOperand(i);
2522         llvm::Value *node[] = { CoverageFile, CU };
2523         llvm::MDNode *N = llvm::MDNode::get(Ctx, node);
2524         GCov->addOperand(N);
2525       }
2526     }
2527   }
2528 }
2529