xref: /llvm-project/clang/lib/CodeGen/CodeGenModule.cpp (revision 7044b76707472ffee9d033863aa4178a440a20cd)
1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This coordinates the per-module state used while generating code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenModule.h"
15 #include "CGDebugInfo.h"
16 #include "CodeGenFunction.h"
17 #include "CGCall.h"
18 #include "CGObjCRuntime.h"
19 #include "Mangle.h"
20 #include "clang/Frontend/CompileOptions.h"
21 #include "clang/AST/ASTContext.h"
22 #include "clang/AST/DeclObjC.h"
23 #include "clang/AST/DeclCXX.h"
24 #include "clang/Basic/Diagnostic.h"
25 #include "clang/Basic/SourceManager.h"
26 #include "clang/Basic/TargetInfo.h"
27 #include "llvm/CallingConv.h"
28 #include "llvm/Module.h"
29 #include "llvm/Intrinsics.h"
30 #include "llvm/Target/TargetData.h"
31 using namespace clang;
32 using namespace CodeGen;
33 
34 
35 CodeGenModule::CodeGenModule(ASTContext &C, const CompileOptions &compileOpts,
36                              llvm::Module &M, const llvm::TargetData &TD,
37                              Diagnostic &diags)
38   : BlockModule(C, M, TD, Types, *this), Context(C),
39     Features(C.getLangOptions()), CompileOpts(compileOpts), TheModule(M),
40     TheTargetData(TD), Diags(diags), Types(C, M, TD), Runtime(0),
41     MemCpyFn(0), MemMoveFn(0), MemSetFn(0), CFConstantStringClassRef(0) {
42 
43   if (!Features.ObjC1)
44     Runtime = 0;
45   else if (!Features.NeXTRuntime)
46     Runtime = CreateGNUObjCRuntime(*this);
47   else if (Features.ObjCNonFragileABI)
48     Runtime = CreateMacNonFragileABIObjCRuntime(*this);
49   else
50     Runtime = CreateMacObjCRuntime(*this);
51 
52   // If debug info generation is enabled, create the CGDebugInfo object.
53   DebugInfo = CompileOpts.DebugInfo ? new CGDebugInfo(this) : 0;
54 }
55 
56 CodeGenModule::~CodeGenModule() {
57   delete Runtime;
58   delete DebugInfo;
59 }
60 
61 void CodeGenModule::Release() {
62   EmitDeferred();
63   if (Runtime)
64     if (llvm::Function *ObjCInitFunction = Runtime->ModuleInitFunction())
65       AddGlobalCtor(ObjCInitFunction);
66   EmitCtorList(GlobalCtors, "llvm.global_ctors");
67   EmitCtorList(GlobalDtors, "llvm.global_dtors");
68   EmitAnnotations();
69   EmitLLVMUsed();
70 }
71 
72 /// ErrorUnsupported - Print out an error that codegen doesn't support the
73 /// specified stmt yet.
74 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type,
75                                      bool OmitOnError) {
76   if (OmitOnError && getDiags().hasErrorOccurred())
77     return;
78   unsigned DiagID = getDiags().getCustomDiagID(Diagnostic::Error,
79                                                "cannot compile this %0 yet");
80   std::string Msg = Type;
81   getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID)
82     << Msg << S->getSourceRange();
83 }
84 
85 /// ErrorUnsupported - Print out an error that codegen doesn't support the
86 /// specified decl yet.
87 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type,
88                                      bool OmitOnError) {
89   if (OmitOnError && getDiags().hasErrorOccurred())
90     return;
91   unsigned DiagID = getDiags().getCustomDiagID(Diagnostic::Error,
92                                                "cannot compile this %0 yet");
93   std::string Msg = Type;
94   getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg;
95 }
96 
97 /// setGlobalVisibility - Set the visibility for the given LLVM
98 /// GlobalValue according to the given clang AST visibility value.
99 static void setGlobalVisibility(llvm::GlobalValue *GV,
100                                 VisibilityAttr::VisibilityTypes Vis) {
101   switch (Vis) {
102   default: assert(0 && "Unknown visibility!");
103   case VisibilityAttr::DefaultVisibility:
104     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
105     break;
106   case VisibilityAttr::HiddenVisibility:
107     GV->setVisibility(llvm::GlobalValue::HiddenVisibility);
108     break;
109   case VisibilityAttr::ProtectedVisibility:
110     GV->setVisibility(llvm::GlobalValue::ProtectedVisibility);
111     break;
112   }
113 }
114 
115 /// \brief Retrieves the mangled name for the given declaration.
116 ///
117 /// If the given declaration requires a mangled name, returns an
118 /// const char* containing the mangled name.  Otherwise, returns
119 /// the unmangled name.
120 ///
121 /// FIXME: Returning an IdentifierInfo* here is a total hack. We
122 /// really need some kind of string abstraction that either stores a
123 /// mangled name or stores an IdentifierInfo*. This will require
124 /// changes to the GlobalDeclMap, too. (I disagree, I think what we
125 /// actually need is for Sema to provide some notion of which Decls
126 /// refer to the same semantic decl. We shouldn't need to mangle the
127 /// names and see what comes out the same to figure this out. - DWD)
128 ///
129 /// FIXME: Performance here is going to be terribly until we start
130 /// caching mangled names. However, we should fix the problem above
131 /// first.
132 const char *CodeGenModule::getMangledName(const NamedDecl *ND) {
133   // In C, functions with no attributes never need to be mangled. Fastpath them.
134   if (!getLangOptions().CPlusPlus && !ND->hasAttrs()) {
135     assert(ND->getIdentifier() && "Attempt to mangle unnamed decl.");
136     return ND->getNameAsCString();
137   }
138 
139   llvm::SmallString<256> Name;
140   llvm::raw_svector_ostream Out(Name);
141   if (!mangleName(ND, Context, Out)) {
142     assert(ND->getIdentifier() && "Attempt to mangle unnamed decl.");
143     return ND->getNameAsCString();
144   }
145 
146   Name += '\0';
147   return MangledNames.GetOrCreateValue(Name.begin(), Name.end()).getKeyData();
148 }
149 
150 /// AddGlobalCtor - Add a function to the list that will be called before
151 /// main() runs.
152 void CodeGenModule::AddGlobalCtor(llvm::Function * Ctor, int Priority) {
153   // FIXME: Type coercion of void()* types.
154   GlobalCtors.push_back(std::make_pair(Ctor, Priority));
155 }
156 
157 /// AddGlobalDtor - Add a function to the list that will be called
158 /// when the module is unloaded.
159 void CodeGenModule::AddGlobalDtor(llvm::Function * Dtor, int Priority) {
160   // FIXME: Type coercion of void()* types.
161   GlobalDtors.push_back(std::make_pair(Dtor, Priority));
162 }
163 
164 void CodeGenModule::EmitCtorList(const CtorList &Fns, const char *GlobalName) {
165   // Ctor function type is void()*.
166   llvm::FunctionType* CtorFTy =
167     llvm::FunctionType::get(llvm::Type::VoidTy,
168                             std::vector<const llvm::Type*>(),
169                             false);
170   llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy);
171 
172   // Get the type of a ctor entry, { i32, void ()* }.
173   llvm::StructType* CtorStructTy =
174     llvm::StructType::get(llvm::Type::Int32Ty,
175                           llvm::PointerType::getUnqual(CtorFTy), NULL);
176 
177   // Construct the constructor and destructor arrays.
178   std::vector<llvm::Constant*> Ctors;
179   for (CtorList::const_iterator I = Fns.begin(), E = Fns.end(); I != E; ++I) {
180     std::vector<llvm::Constant*> S;
181     S.push_back(llvm::ConstantInt::get(llvm::Type::Int32Ty, I->second, false));
182     S.push_back(llvm::ConstantExpr::getBitCast(I->first, CtorPFTy));
183     Ctors.push_back(llvm::ConstantStruct::get(CtorStructTy, S));
184   }
185 
186   if (!Ctors.empty()) {
187     llvm::ArrayType *AT = llvm::ArrayType::get(CtorStructTy, Ctors.size());
188     new llvm::GlobalVariable(AT, false,
189                              llvm::GlobalValue::AppendingLinkage,
190                              llvm::ConstantArray::get(AT, Ctors),
191                              GlobalName,
192                              &TheModule);
193   }
194 }
195 
196 void CodeGenModule::EmitAnnotations() {
197   if (Annotations.empty())
198     return;
199 
200   // Create a new global variable for the ConstantStruct in the Module.
201   llvm::Constant *Array =
202   llvm::ConstantArray::get(llvm::ArrayType::get(Annotations[0]->getType(),
203                                                 Annotations.size()),
204                            Annotations);
205   llvm::GlobalValue *gv =
206   new llvm::GlobalVariable(Array->getType(), false,
207                            llvm::GlobalValue::AppendingLinkage, Array,
208                            "llvm.global.annotations", &TheModule);
209   gv->setSection("llvm.metadata");
210 }
211 
212 void CodeGenModule::SetGlobalValueAttributes(const Decl *D,
213                                              bool IsInternal,
214                                              bool IsInline,
215                                              llvm::GlobalValue *GV,
216                                              bool ForDefinition) {
217   // FIXME: Set up linkage and many other things.  Note, this is a simple
218   // approximation of what we really want.
219   if (!ForDefinition) {
220     // Only a few attributes are set on declarations.
221     if (D->getAttr<DLLImportAttr>()) {
222       // The dllimport attribute is overridden by a subsequent declaration as
223       // dllexport.
224       if (!D->getAttr<DLLExportAttr>()) {
225         // dllimport attribute can be applied only to function decls, not to
226         // definitions.
227         if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
228           if (!FD->getBody())
229             GV->setLinkage(llvm::Function::DLLImportLinkage);
230         } else
231           GV->setLinkage(llvm::Function::DLLImportLinkage);
232       }
233     } else if (D->getAttr<WeakAttr>() ||
234                D->getAttr<WeakImportAttr>()) {
235       // "extern_weak" is overloaded in LLVM; we probably should have
236       // separate linkage types for this.
237       GV->setLinkage(llvm::Function::ExternalWeakLinkage);
238    }
239   } else {
240     if (IsInternal) {
241       GV->setLinkage(llvm::Function::InternalLinkage);
242     } else {
243       if (D->getAttr<DLLExportAttr>()) {
244         if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
245           // The dllexport attribute is ignored for undefined symbols.
246           if (FD->getBody())
247             GV->setLinkage(llvm::Function::DLLExportLinkage);
248         } else
249           GV->setLinkage(llvm::Function::DLLExportLinkage);
250       } else if (D->getAttr<WeakAttr>() || D->getAttr<WeakImportAttr>() ||
251                  IsInline)
252         GV->setLinkage(llvm::Function::WeakAnyLinkage);
253     }
254   }
255 
256   // FIXME: Figure out the relative priority of the attribute,
257   // -fvisibility, and private_extern.
258   if (const VisibilityAttr *attr = D->getAttr<VisibilityAttr>())
259     setGlobalVisibility(GV, attr->getVisibility());
260   // FIXME: else handle -fvisibility
261 
262   if (const SectionAttr *SA = D->getAttr<SectionAttr>())
263     GV->setSection(SA->getName());
264 
265   // Only add to llvm.used when we see a definition, otherwise we
266   // might add multiple times or risk the value being replaced by a
267   // subsequent RAUW.
268   if (ForDefinition) {
269     if (D->getAttr<UsedAttr>())
270       AddUsedGlobal(GV);
271   }
272 }
273 
274 void CodeGenModule::SetFunctionAttributes(const Decl *D,
275                                           const CGFunctionInfo &Info,
276                                           llvm::Function *F) {
277   AttributeListType AttributeList;
278   ConstructAttributeList(Info, D, AttributeList);
279 
280   F->setAttributes(llvm::AttrListPtr::get(AttributeList.begin(),
281                                         AttributeList.size()));
282 
283   // Set the appropriate calling convention for the Function.
284   if (D->getAttr<FastCallAttr>())
285     F->setCallingConv(llvm::CallingConv::X86_FastCall);
286 
287   if (D->getAttr<StdCallAttr>())
288     F->setCallingConv(llvm::CallingConv::X86_StdCall);
289 
290   if (D->getAttr<RegparmAttr>())
291     ErrorUnsupported(D, "regparm attribute");
292 }
293 
294 /// SetFunctionAttributesForDefinition - Set function attributes
295 /// specific to a function definition.
296 void CodeGenModule::SetFunctionAttributesForDefinition(const Decl *D,
297                                                        llvm::Function *F) {
298   if (isa<ObjCMethodDecl>(D)) {
299     SetGlobalValueAttributes(D, true, false, F, true);
300   } else {
301     const FunctionDecl *FD = cast<FunctionDecl>(D);
302     SetGlobalValueAttributes(FD, FD->getStorageClass() == FunctionDecl::Static,
303                              FD->isInline(), F, true);
304   }
305 
306   if (!Features.Exceptions && !Features.ObjCNonFragileABI)
307     F->addFnAttr(llvm::Attribute::NoUnwind);
308 
309   if (D->getAttr<AlwaysInlineAttr>())
310     F->addFnAttr(llvm::Attribute::AlwaysInline);
311 
312   if (D->getAttr<NoinlineAttr>())
313     F->addFnAttr(llvm::Attribute::NoInline);
314 }
315 
316 void CodeGenModule::SetMethodAttributes(const ObjCMethodDecl *MD,
317                                         llvm::Function *F) {
318   SetFunctionAttributes(MD, getTypes().getFunctionInfo(MD), F);
319 
320   SetFunctionAttributesForDefinition(MD, F);
321 }
322 
323 void CodeGenModule::SetFunctionAttributes(const FunctionDecl *FD,
324                                           llvm::Function *F) {
325   SetFunctionAttributes(FD, getTypes().getFunctionInfo(FD), F);
326 
327   SetGlobalValueAttributes(FD, FD->getStorageClass() == FunctionDecl::Static,
328                            FD->isInline(), F, false);
329 }
330 
331 void CodeGenModule::AddUsedGlobal(llvm::GlobalValue *GV) {
332   assert(!GV->isDeclaration() &&
333          "Only globals with definition can force usage.");
334   llvm::Type *i8PTy = llvm::PointerType::getUnqual(llvm::Type::Int8Ty);
335   LLVMUsed.push_back(llvm::ConstantExpr::getBitCast(GV, i8PTy));
336 }
337 
338 void CodeGenModule::EmitLLVMUsed() {
339   // Don't create llvm.used if there is no need.
340   if (LLVMUsed.empty())
341     return;
342 
343   llvm::ArrayType *ATy = llvm::ArrayType::get(LLVMUsed[0]->getType(),
344                                               LLVMUsed.size());
345   llvm::GlobalVariable *GV =
346     new llvm::GlobalVariable(ATy, false,
347                              llvm::GlobalValue::AppendingLinkage,
348                              llvm::ConstantArray::get(ATy, LLVMUsed),
349                              "llvm.used", &getModule());
350 
351   GV->setSection("llvm.metadata");
352 }
353 
354 void CodeGenModule::EmitDeferred() {
355   // Emit code for any potentially referenced deferred decls.  Since a
356   // previously unused static decl may become used during the generation of code
357   // for a static function, iterate until no  changes are made.
358   while (!DeferredDeclsToEmit.empty()) {
359     const ValueDecl *D = DeferredDeclsToEmit.back();
360     DeferredDeclsToEmit.pop_back();
361 
362     // The mangled name for the decl must have been emitted in GlobalDeclMap.
363     // Look it up to see if it was defined with a stronger definition (e.g. an
364     // extern inline function with a strong function redefinition).  If so,
365     // just ignore the deferred decl.
366     llvm::GlobalValue *CGRef = GlobalDeclMap[getMangledName(D)];
367     assert(CGRef && "Deferred decl wasn't referenced?");
368 
369     if (!CGRef->isDeclaration())
370       continue;
371 
372     // Otherwise, emit the definition and move on to the next one.
373     EmitGlobalDefinition(D);
374   }
375 }
376 
377 /// EmitAnnotateAttr - Generate the llvm::ConstantStruct which contains the
378 /// annotation information for a given GlobalValue.  The annotation struct is
379 /// {i8 *, i8 *, i8 *, i32}.  The first field is a constant expression, the
380 /// GlobalValue being annotated.  The second field is the constant string
381 /// created from the AnnotateAttr's annotation.  The third field is a constant
382 /// string containing the name of the translation unit.  The fourth field is
383 /// the line number in the file of the annotated value declaration.
384 ///
385 /// FIXME: this does not unique the annotation string constants, as llvm-gcc
386 ///        appears to.
387 ///
388 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV,
389                                                 const AnnotateAttr *AA,
390                                                 unsigned LineNo) {
391   llvm::Module *M = &getModule();
392 
393   // get [N x i8] constants for the annotation string, and the filename string
394   // which are the 2nd and 3rd elements of the global annotation structure.
395   const llvm::Type *SBP = llvm::PointerType::getUnqual(llvm::Type::Int8Ty);
396   llvm::Constant *anno = llvm::ConstantArray::get(AA->getAnnotation(), true);
397   llvm::Constant *unit = llvm::ConstantArray::get(M->getModuleIdentifier(),
398                                                   true);
399 
400   // Get the two global values corresponding to the ConstantArrays we just
401   // created to hold the bytes of the strings.
402   llvm::GlobalValue *annoGV =
403   new llvm::GlobalVariable(anno->getType(), false,
404                            llvm::GlobalValue::InternalLinkage, anno,
405                            GV->getName() + ".str", M);
406   // translation unit name string, emitted into the llvm.metadata section.
407   llvm::GlobalValue *unitGV =
408   new llvm::GlobalVariable(unit->getType(), false,
409                            llvm::GlobalValue::InternalLinkage, unit, ".str", M);
410 
411   // Create the ConstantStruct that is the global annotion.
412   llvm::Constant *Fields[4] = {
413     llvm::ConstantExpr::getBitCast(GV, SBP),
414     llvm::ConstantExpr::getBitCast(annoGV, SBP),
415     llvm::ConstantExpr::getBitCast(unitGV, SBP),
416     llvm::ConstantInt::get(llvm::Type::Int32Ty, LineNo)
417   };
418   return llvm::ConstantStruct::get(Fields, 4, false);
419 }
420 
421 bool CodeGenModule::MayDeferGeneration(const ValueDecl *Global) {
422   // Never defer when EmitAllDecls is specified or the decl has
423   // attribute used.
424   if (Features.EmitAllDecls || Global->getAttr<UsedAttr>())
425     return false;
426 
427   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) {
428     // Constructors and destructors should never be deferred.
429     if (FD->getAttr<ConstructorAttr>() || FD->getAttr<DestructorAttr>())
430       return false;
431 
432     // FIXME: What about inline, and/or extern inline?
433     if (FD->getStorageClass() != FunctionDecl::Static)
434       return false;
435   } else {
436     const VarDecl *VD = cast<VarDecl>(Global);
437     assert(VD->isFileVarDecl() && "Invalid decl");
438 
439     if (VD->getStorageClass() != VarDecl::Static)
440       return false;
441   }
442 
443   return true;
444 }
445 
446 void CodeGenModule::EmitGlobal(const ValueDecl *Global) {
447   // If this is an alias definition (which otherwise looks like a declaration)
448   // emit it now.
449   if (Global->getAttr<AliasAttr>())
450     return EmitAliasDefinition(Global);
451 
452   // Ignore declarations, they will be emitted on their first use.
453   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) {
454     // Forward declarations are emitted lazily on first use.
455     if (!FD->isThisDeclarationADefinition())
456       return;
457   } else {
458     const VarDecl *VD = cast<VarDecl>(Global);
459     assert(VD->isFileVarDecl() && "Cannot emit local var decl as global.");
460 
461     // Forward declarations are emitted lazily on first use.
462     if (!VD->getInit() && VD->hasExternalStorage())
463       return;
464   }
465 
466   // Defer code generation when possible if this is a static definition, inline
467   // function etc.  These we only want to emit if they are used.
468   if (MayDeferGeneration(Global)) {
469     // If the value has already been used, add it directly to the
470     // DeferredDeclsToEmit list.
471     const char *MangledName = getMangledName(Global);
472     if (GlobalDeclMap.count(MangledName))
473       DeferredDeclsToEmit.push_back(Global);
474     else {
475       // Otherwise, remember that we saw a deferred decl with this name.  The
476       // first use of the mangled name will cause it to move into
477       // DeferredDeclsToEmit.
478       DeferredDecls[MangledName] = Global;
479     }
480     return;
481   }
482 
483   // Otherwise emit the definition.
484   EmitGlobalDefinition(Global);
485 }
486 
487 void CodeGenModule::EmitGlobalDefinition(const ValueDecl *D) {
488   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
489     EmitGlobalFunctionDefinition(FD);
490   } else if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
491     EmitGlobalVarDefinition(VD);
492   } else {
493     assert(0 && "Invalid argument to EmitGlobalDefinition()");
494   }
495 }
496 
497 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the
498 /// module, create and return an llvm Function with the specified type. If there
499 /// is something in the module with the specified name, return it potentially
500 /// bitcasted to the right type.
501 ///
502 /// If D is non-null, it specifies a decl that correspond to this.  This is used
503 /// to set the attributes on the function when it is first created.
504 llvm::Constant *CodeGenModule::GetOrCreateLLVMFunction(const char *MangledName,
505                                                        const llvm::Type *Ty,
506                                                        const FunctionDecl *D) {
507   // Lookup the entry, lazily creating it if necessary.
508   llvm::GlobalValue *&Entry = GlobalDeclMap[MangledName];
509   if (Entry) {
510     if (Entry->getType()->getElementType() == Ty)
511       return Entry;
512 
513     // Make sure the result is of the correct type.
514     const llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
515     return llvm::ConstantExpr::getBitCast(Entry, PTy);
516   }
517 
518   // This is the first use or definition of a mangled name.  If there is a
519   // deferred decl with this name, remember that we need to emit it at the end
520   // of the file.
521   llvm::DenseMap<const char*, const ValueDecl*>::iterator DDI =
522   DeferredDecls.find(MangledName);
523   if (DDI != DeferredDecls.end()) {
524     // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
525     // list, and remove it from DeferredDecls (since we don't need it anymore).
526     DeferredDeclsToEmit.push_back(DDI->second);
527     DeferredDecls.erase(DDI);
528   }
529 
530   // This function doesn't have a complete type (for example, the return
531   // type is an incomplete struct). Use a fake type instead, and make
532   // sure not to try to set attributes.
533   bool ShouldSetAttributes = true;
534   if (!isa<llvm::FunctionType>(Ty)) {
535     Ty = llvm::FunctionType::get(llvm::Type::VoidTy,
536                                  std::vector<const llvm::Type*>(), false);
537     ShouldSetAttributes = false;
538   }
539   llvm::Function *F = llvm::Function::Create(cast<llvm::FunctionType>(Ty),
540                                              llvm::Function::ExternalLinkage,
541                                              "", &getModule());
542   F->setName(MangledName);
543   if (D && ShouldSetAttributes)
544     SetFunctionAttributes(D, F);
545   Entry = F;
546   return F;
547 }
548 
549 /// GetAddrOfFunction - Return the address of the given function.  If Ty is
550 /// non-null, then this function will use the specified type if it has to
551 /// create it (this occurs when we see a definition of the function).
552 llvm::Constant *CodeGenModule::GetAddrOfFunction(const FunctionDecl *D,
553                                                  const llvm::Type *Ty) {
554   // If there was no specific requested type, just convert it now.
555   if (!Ty)
556     Ty = getTypes().ConvertType(D->getType());
557   return GetOrCreateLLVMFunction(getMangledName(D), Ty, D);
558 }
559 
560 /// CreateRuntimeFunction - Create a new runtime function with the specified
561 /// type and name.
562 llvm::Constant *
563 CodeGenModule::CreateRuntimeFunction(const llvm::FunctionType *FTy,
564                                      const char *Name) {
565   // Convert Name to be a uniqued string from the IdentifierInfo table.
566   Name = getContext().Idents.get(Name).getName();
567   return GetOrCreateLLVMFunction(Name, FTy, 0);
568 }
569 
570 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module,
571 /// create and return an llvm GlobalVariable with the specified type.  If there
572 /// is something in the module with the specified name, return it potentially
573 /// bitcasted to the right type.
574 ///
575 /// If D is non-null, it specifies a decl that correspond to this.  This is used
576 /// to set the attributes on the global when it is first created.
577 llvm::Constant *CodeGenModule::GetOrCreateLLVMGlobal(const char *MangledName,
578                                                      const llvm::PointerType*Ty,
579                                                      const VarDecl *D) {
580   // Lookup the entry, lazily creating it if necessary.
581   llvm::GlobalValue *&Entry = GlobalDeclMap[MangledName];
582   if (Entry) {
583     if (Entry->getType() == Ty)
584       return Entry;
585 
586     // Make sure the result is of the correct type.
587     return llvm::ConstantExpr::getBitCast(Entry, Ty);
588   }
589 
590   // This is the first use or definition of a mangled name.  If there is a
591   // deferred decl with this name, remember that we need to emit it at the end
592   // of the file.
593   llvm::DenseMap<const char*, const ValueDecl*>::iterator DDI =
594     DeferredDecls.find(MangledName);
595   if (DDI != DeferredDecls.end()) {
596     // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
597     // list, and remove it from DeferredDecls (since we don't need it anymore).
598     DeferredDeclsToEmit.push_back(DDI->second);
599     DeferredDecls.erase(DDI);
600   }
601 
602   llvm::GlobalVariable *GV =
603     new llvm::GlobalVariable(Ty->getElementType(), false,
604                              llvm::GlobalValue::ExternalLinkage,
605                              0, "", &getModule(),
606                              0, Ty->getAddressSpace());
607   GV->setName(MangledName);
608 
609   // Handle things which are present even on external declarations.
610   if (D) {
611     // FIXME: This code is overly simple and should be merged with
612     // other global handling.
613     GV->setConstant(D->getType().isConstant(Context));
614 
615     // FIXME: Merge with other attribute handling code.
616     if (D->getStorageClass() == VarDecl::PrivateExtern)
617       setGlobalVisibility(GV, VisibilityAttr::HiddenVisibility);
618 
619     if (D->getAttr<WeakAttr>() || D->getAttr<WeakImportAttr>())
620       GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage);
621   }
622 
623   return Entry = GV;
624 }
625 
626 
627 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the
628 /// given global variable.  If Ty is non-null and if the global doesn't exist,
629 /// then it will be greated with the specified type instead of whatever the
630 /// normal requested type would be.
631 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D,
632                                                   const llvm::Type *Ty) {
633   assert(D->hasGlobalStorage() && "Not a global variable");
634   QualType ASTTy = D->getType();
635   if (Ty == 0)
636     Ty = getTypes().ConvertTypeForMem(ASTTy);
637 
638   const llvm::PointerType *PTy =
639     llvm::PointerType::get(Ty, ASTTy.getAddressSpace());
640   return GetOrCreateLLVMGlobal(getMangledName(D), PTy, D);
641 }
642 
643 /// CreateRuntimeVariable - Create a new runtime global variable with the
644 /// specified type and name.
645 llvm::Constant *
646 CodeGenModule::CreateRuntimeVariable(const llvm::Type *Ty,
647                                      const char *Name) {
648   // Convert Name to be a uniqued string from the IdentifierInfo table.
649   Name = getContext().Idents.get(Name).getName();
650   return GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), 0);
651 }
652 
653 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D) {
654   llvm::Constant *Init = 0;
655   QualType ASTTy = D->getType();
656 
657   if (D->getInit() == 0) {
658     // This is a tentative definition; tentative definitions are
659     // implicitly initialized with { 0 }
660     const llvm::Type *InitTy = getTypes().ConvertTypeForMem(ASTTy);
661     if (ASTTy->isIncompleteArrayType()) {
662       // An incomplete array is normally [ TYPE x 0 ], but we need
663       // to fix it to [ TYPE x 1 ].
664       const llvm::ArrayType* ATy = cast<llvm::ArrayType>(InitTy);
665       InitTy = llvm::ArrayType::get(ATy->getElementType(), 1);
666     }
667     Init = llvm::Constant::getNullValue(InitTy);
668   } else {
669     Init = EmitConstantExpr(D->getInit());
670     if (!Init) {
671       ErrorUnsupported(D, "static initializer");
672       QualType T = D->getInit()->getType();
673       Init = llvm::UndefValue::get(getTypes().ConvertType(T));
674     }
675   }
676 
677   const llvm::Type* InitType = Init->getType();
678   llvm::Constant *Entry = GetAddrOfGlobalVar(D, InitType);
679 
680   // Strip off a bitcast if we got one back.
681   if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
682     assert(CE->getOpcode() == llvm::Instruction::BitCast);
683     Entry = CE->getOperand(0);
684   }
685 
686   // Entry is now either a Function or GlobalVariable.
687   llvm::GlobalVariable *GV = dyn_cast<llvm::GlobalVariable>(Entry);
688 
689   // If we already have this global and it has an initializer, then
690   // we are in the rare situation where we emitted the defining
691   // declaration of the global and are now being asked to emit a
692   // definition which would be common. This occurs, for example, in
693   // the following situation because statics can be emitted out of
694   // order:
695   //
696   //  static int x;
697   //  static int *y = &x;
698   //  static int x = 10;
699   //  int **z = &y;
700   //
701   // Bail here so we don't blow away the definition. Note that if we
702   // can't distinguish here if we emitted a definition with a null
703   // initializer, but this case is safe.
704   if (GV && GV->hasInitializer() && !GV->getInitializer()->isNullValue()) {
705     assert(!D->getInit() && "Emitting multiple definitions of a decl!");
706     return;
707   }
708 
709   // We have a definition after a declaration with the wrong type.
710   // We must make a new GlobalVariable* and update everything that used OldGV
711   // (a declaration or tentative definition) with the new GlobalVariable*
712   // (which will be a definition).
713   //
714   // This happens if there is a prototype for a global (e.g.
715   // "extern int x[];") and then a definition of a different type (e.g.
716   // "int x[10];"). This also happens when an initializer has a different type
717   // from the type of the global (this happens with unions).
718   //
719   // FIXME: This also ends up happening if there's a definition followed by
720   // a tentative definition!  (Although Sema rejects that construct
721   // at the moment.)
722   if (GV == 0 ||
723       GV->getType()->getElementType() != InitType ||
724       GV->getType()->getAddressSpace() != ASTTy.getAddressSpace()) {
725 
726     // Remove the old entry from GlobalDeclMap so that we'll create a new one.
727     GlobalDeclMap.erase(getMangledName(D));
728 
729     // Make a new global with the correct type, this is now guaranteed to work.
730     GV = cast<llvm::GlobalVariable>(GetAddrOfGlobalVar(D, InitType));
731     GV->takeName(cast<llvm::GlobalValue>(Entry));
732 
733     // Replace all uses of the old global with the new global
734     llvm::Constant *NewPtrForOldDecl =
735         llvm::ConstantExpr::getBitCast(GV, Entry->getType());
736     Entry->replaceAllUsesWith(NewPtrForOldDecl);
737 
738     // Erase the old global, since it is no longer used.
739     // FIXME: What if it was attribute used?  Dangling pointer from LLVMUsed.
740     cast<llvm::GlobalValue>(Entry)->eraseFromParent();
741   }
742 
743   if (const AnnotateAttr *AA = D->getAttr<AnnotateAttr>()) {
744     SourceManager &SM = Context.getSourceManager();
745     AddAnnotation(EmitAnnotateAttr(GV, AA,
746                               SM.getInstantiationLineNumber(D->getLocation())));
747   }
748 
749   GV->setInitializer(Init);
750   GV->setConstant(D->getType().isConstant(Context));
751   GV->setAlignment(getContext().getDeclAlignInBytes(D));
752 
753   if (const VisibilityAttr *attr = D->getAttr<VisibilityAttr>())
754     setGlobalVisibility(GV, attr->getVisibility());
755   // FIXME: else handle -fvisibility
756 
757   // Set the llvm linkage type as appropriate.
758   if (D->getStorageClass() == VarDecl::Static)
759     GV->setLinkage(llvm::Function::InternalLinkage);
760   else if (D->getAttr<DLLImportAttr>())
761     GV->setLinkage(llvm::Function::DLLImportLinkage);
762   else if (D->getAttr<DLLExportAttr>())
763     GV->setLinkage(llvm::Function::DLLExportLinkage);
764   else if (D->getAttr<WeakAttr>() || D->getAttr<WeakImportAttr>())
765     GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage);
766   else {
767     // FIXME: This isn't right.  This should handle common linkage and other
768     // stuff.
769     switch (D->getStorageClass()) {
770     case VarDecl::Static: assert(0 && "This case handled above");
771     case VarDecl::Auto:
772     case VarDecl::Register:
773       assert(0 && "Can't have auto or register globals");
774     case VarDecl::None:
775       if (!D->getInit() && !CompileOpts.NoCommon)
776         GV->setLinkage(llvm::GlobalVariable::CommonLinkage);
777       else
778         GV->setLinkage(llvm::GlobalVariable::ExternalLinkage);
779       break;
780     case VarDecl::Extern:
781       // FIXME: common
782       break;
783 
784     case VarDecl::PrivateExtern:
785       GV->setVisibility(llvm::GlobalValue::HiddenVisibility);
786       // FIXME: common
787       break;
788     }
789   }
790 
791   if (const SectionAttr *SA = D->getAttr<SectionAttr>())
792     GV->setSection(SA->getName());
793 
794   if (D->getAttr<UsedAttr>())
795     AddUsedGlobal(GV);
796 
797   // Emit global variable debug information.
798   if (CGDebugInfo *DI = getDebugInfo()) {
799     DI->setLocation(D->getLocation());
800     DI->EmitGlobalVariable(GV, D);
801   }
802 }
803 
804 
805 void CodeGenModule::EmitGlobalFunctionDefinition(const FunctionDecl *D) {
806   const llvm::FunctionType *Ty =
807     cast<llvm::FunctionType>(getTypes().ConvertType(D->getType()));
808 
809   // As a special case, make sure that definitions of K&R function
810   // "type foo()" aren't declared as varargs (which forces the backend
811   // to do unnecessary work).
812   if (D->getType()->isFunctionNoProtoType()) {
813     assert(Ty->isVarArg() && "Didn't lower type as expected");
814     // Due to stret, the lowered function could have arguments.  Just create the
815     // same type as was lowered by ConvertType but strip off the varargs bit.
816     std::vector<const llvm::Type*> Args(Ty->param_begin(), Ty->param_end());
817     Ty = llvm::FunctionType::get(Ty->getReturnType(), Args, false);
818   }
819 
820   // Get or create the prototype for teh function.
821   llvm::Constant *Entry = GetAddrOfFunction(D, Ty);
822 
823   // Strip off a bitcast if we got one back.
824   if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
825     assert(CE->getOpcode() == llvm::Instruction::BitCast);
826     Entry = CE->getOperand(0);
827   }
828 
829 
830   if (cast<llvm::GlobalValue>(Entry)->getType()->getElementType() != Ty) {
831     // If the types mismatch then we have to rewrite the definition.
832     assert(cast<llvm::GlobalValue>(Entry)->isDeclaration() &&
833            "Shouldn't replace non-declaration");
834 
835     // F is the Function* for the one with the wrong type, we must make a new
836     // Function* and update everything that used F (a declaration) with the new
837     // Function* (which will be a definition).
838     //
839     // This happens if there is a prototype for a function
840     // (e.g. "int f()") and then a definition of a different type
841     // (e.g. "int f(int x)").  Start by making a new function of the
842     // correct type, RAUW, then steal the name.
843     GlobalDeclMap.erase(getMangledName(D));
844     llvm::Function *NewFn = cast<llvm::Function>(GetAddrOfFunction(D, Ty));
845     NewFn->takeName(cast<llvm::GlobalValue>(Entry));
846 
847     // Replace uses of F with the Function we will endow with a body.
848     llvm::Constant *NewPtrForOldDecl =
849       llvm::ConstantExpr::getBitCast(NewFn, Entry->getType());
850     Entry->replaceAllUsesWith(NewPtrForOldDecl);
851 
852     // Ok, delete the old function now, which is dead.
853     // FIXME: If it was attribute(used) the pointer will dangle from the
854     // LLVMUsed array!
855     cast<llvm::GlobalValue>(Entry)->eraseFromParent();
856 
857     Entry = NewFn;
858   }
859 
860   llvm::Function *Fn = cast<llvm::Function>(Entry);
861 
862   CodeGenFunction(*this).GenerateCode(D, Fn);
863 
864   SetFunctionAttributesForDefinition(D, Fn);
865 
866   if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>())
867     AddGlobalCtor(Fn, CA->getPriority());
868   if (const DestructorAttr *DA = D->getAttr<DestructorAttr>())
869     AddGlobalDtor(Fn, DA->getPriority());
870 }
871 
872 void CodeGenModule::EmitAliasDefinition(const ValueDecl *D) {
873   const AliasAttr *AA = D->getAttr<AliasAttr>();
874   assert(AA && "Not an alias?");
875 
876   const llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
877 
878   // Unique the name through the identifier table.
879   const char *AliaseeName = AA->getAliasee().c_str();
880   AliaseeName = getContext().Idents.get(AliaseeName).getName();
881 
882   // Create a reference to the named value.  This ensures that it is emitted
883   // if a deferred decl.
884   llvm::Constant *Aliasee;
885   if (isa<llvm::FunctionType>(DeclTy))
886     Aliasee = GetOrCreateLLVMFunction(AliaseeName, DeclTy, 0);
887   else
888     Aliasee = GetOrCreateLLVMGlobal(AliaseeName,
889                                     llvm::PointerType::getUnqual(DeclTy), 0);
890 
891   // Create the new alias itself, but don't set a name yet.
892   llvm::GlobalValue *GA =
893     new llvm::GlobalAlias(Aliasee->getType(),
894                           llvm::Function::ExternalLinkage,
895                           "", Aliasee, &getModule());
896 
897   // See if there is already something with the alias' name in the module.
898   const char *MangledName = getMangledName(D);
899   llvm::GlobalValue *&Entry = GlobalDeclMap[MangledName];
900 
901   if (Entry && !Entry->isDeclaration()) {
902     // If there is a definition in the module, then it wins over the alias.
903     // This is dubious, but allow it to be safe.  Just ignore the alias.
904     GA->eraseFromParent();
905     return;
906   }
907 
908   if (Entry) {
909     // If there is a declaration in the module, then we had an extern followed
910     // by the alias, as in:
911     //   extern int test6();
912     //   ...
913     //   int test6() __attribute__((alias("test7")));
914     //
915     // Remove it and replace uses of it with the alias.
916 
917     Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA,
918                                                           Entry->getType()));
919     // FIXME: What if it was attribute used?  Dangling pointer from LLVMUsed.
920     Entry->eraseFromParent();
921   }
922 
923   // Now we know that there is no conflict, set the name.
924   Entry = GA;
925   GA->setName(MangledName);
926 
927   // Alias should never be internal or inline.
928   SetGlobalValueAttributes(D, false, false, GA, true);
929 }
930 
931 void CodeGenModule::UpdateCompletedType(const TagDecl *TD) {
932   // Make sure that this type is translated.
933   Types.UpdateCompletedType(TD);
934 }
935 
936 
937 /// getBuiltinLibFunction - Given a builtin id for a function like
938 /// "__builtin_fabsf", return a Function* for "fabsf".
939 llvm::Value *CodeGenModule::getBuiltinLibFunction(unsigned BuiltinID) {
940   assert((Context.BuiltinInfo.isLibFunction(BuiltinID) ||
941           Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) &&
942          "isn't a lib fn");
943 
944   // Get the name, skip over the __builtin_ prefix (if necessary).
945   const char *Name = Context.BuiltinInfo.GetName(BuiltinID);
946   if (Context.BuiltinInfo.isLibFunction(BuiltinID))
947     Name += 10;
948 
949   // Get the type for the builtin.
950   Builtin::Context::GetBuiltinTypeError Error;
951   QualType Type = Context.BuiltinInfo.GetBuiltinType(BuiltinID, Context, Error);
952   assert(Error == Builtin::Context::GE_None && "Can't get builtin type");
953 
954   const llvm::FunctionType *Ty =
955     cast<llvm::FunctionType>(getTypes().ConvertType(Type));
956 
957   // Unique the name through the identifier table.
958   Name = getContext().Idents.get(Name).getName();
959   // FIXME: param attributes for sext/zext etc.
960   return GetOrCreateLLVMFunction(Name, Ty, 0);
961 }
962 
963 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,const llvm::Type **Tys,
964                                             unsigned NumTys) {
965   return llvm::Intrinsic::getDeclaration(&getModule(),
966                                          (llvm::Intrinsic::ID)IID, Tys, NumTys);
967 }
968 
969 llvm::Function *CodeGenModule::getMemCpyFn() {
970   if (MemCpyFn) return MemCpyFn;
971   const llvm::Type *IntPtr = TheTargetData.getIntPtrType();
972   return MemCpyFn = getIntrinsic(llvm::Intrinsic::memcpy, &IntPtr, 1);
973 }
974 
975 llvm::Function *CodeGenModule::getMemMoveFn() {
976   if (MemMoveFn) return MemMoveFn;
977   const llvm::Type *IntPtr = TheTargetData.getIntPtrType();
978   return MemMoveFn = getIntrinsic(llvm::Intrinsic::memmove, &IntPtr, 1);
979 }
980 
981 llvm::Function *CodeGenModule::getMemSetFn() {
982   if (MemSetFn) return MemSetFn;
983   const llvm::Type *IntPtr = TheTargetData.getIntPtrType();
984   return MemSetFn = getIntrinsic(llvm::Intrinsic::memset, &IntPtr, 1);
985 }
986 
987 static void appendFieldAndPadding(CodeGenModule &CGM,
988                                   std::vector<llvm::Constant*>& Fields,
989                                   FieldDecl *FieldD, FieldDecl *NextFieldD,
990                                   llvm::Constant* Field,
991                                   RecordDecl* RD, const llvm::StructType *STy) {
992   // Append the field.
993   Fields.push_back(Field);
994 
995   int StructFieldNo = CGM.getTypes().getLLVMFieldNo(FieldD);
996 
997   int NextStructFieldNo;
998   if (!NextFieldD) {
999     NextStructFieldNo = STy->getNumElements();
1000   } else {
1001     NextStructFieldNo = CGM.getTypes().getLLVMFieldNo(NextFieldD);
1002   }
1003 
1004   // Append padding
1005   for (int i = StructFieldNo + 1; i < NextStructFieldNo; i++) {
1006     llvm::Constant *C =
1007       llvm::Constant::getNullValue(STy->getElementType(StructFieldNo + 1));
1008 
1009     Fields.push_back(C);
1010   }
1011 }
1012 
1013 // We still need to work out the details of handling UTF-16.
1014 // See: <rdr://2996215>
1015 llvm::Constant *CodeGenModule::
1016 GetAddrOfConstantCFString(const std::string &str) {
1017   llvm::StringMapEntry<llvm::Constant *> &Entry =
1018     CFConstantStringMap.GetOrCreateValue(&str[0], &str[str.length()]);
1019 
1020   if (Entry.getValue())
1021     return Entry.getValue();
1022 
1023   llvm::Constant *Zero = llvm::Constant::getNullValue(llvm::Type::Int32Ty);
1024   llvm::Constant *Zeros[] = { Zero, Zero };
1025 
1026   if (!CFConstantStringClassRef) {
1027     const llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
1028     Ty = llvm::ArrayType::get(Ty, 0);
1029 
1030     // FIXME: This is fairly broken if
1031     // __CFConstantStringClassReference is already defined, in that it
1032     // will get renamed and the user will most likely see an opaque
1033     // error message. This is a general issue with relying on
1034     // particular names.
1035     llvm::GlobalVariable *GV =
1036       new llvm::GlobalVariable(Ty, false,
1037                                llvm::GlobalVariable::ExternalLinkage, 0,
1038                                "__CFConstantStringClassReference",
1039                                &getModule());
1040 
1041     // Decay array -> ptr
1042     CFConstantStringClassRef =
1043       llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2);
1044   }
1045 
1046   QualType CFTy = getContext().getCFConstantStringType();
1047   RecordDecl *CFRD = CFTy->getAsRecordType()->getDecl();
1048 
1049   const llvm::StructType *STy =
1050     cast<llvm::StructType>(getTypes().ConvertType(CFTy));
1051 
1052   std::vector<llvm::Constant*> Fields;
1053   RecordDecl::field_iterator Field = CFRD->field_begin();
1054 
1055   // Class pointer.
1056   FieldDecl *CurField = *Field++;
1057   FieldDecl *NextField = *Field++;
1058   appendFieldAndPadding(*this, Fields, CurField, NextField,
1059                         CFConstantStringClassRef, CFRD, STy);
1060 
1061   // Flags.
1062   CurField = NextField;
1063   NextField = *Field++;
1064   const llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy);
1065   appendFieldAndPadding(*this, Fields, CurField, NextField,
1066                         llvm::ConstantInt::get(Ty, 0x07C8), CFRD, STy);
1067 
1068   // String pointer.
1069   CurField = NextField;
1070   NextField = *Field++;
1071   llvm::Constant *C = llvm::ConstantArray::get(str);
1072   C = new llvm::GlobalVariable(C->getType(), true,
1073                                llvm::GlobalValue::InternalLinkage,
1074                                C, ".str", &getModule());
1075   appendFieldAndPadding(*this, Fields, CurField, NextField,
1076                         llvm::ConstantExpr::getGetElementPtr(C, Zeros, 2),
1077                         CFRD, STy);
1078 
1079   // String length.
1080   CurField = NextField;
1081   NextField = 0;
1082   Ty = getTypes().ConvertType(getContext().LongTy);
1083   appendFieldAndPadding(*this, Fields, CurField, NextField,
1084                         llvm::ConstantInt::get(Ty, str.length()), CFRD, STy);
1085 
1086   // The struct.
1087   C = llvm::ConstantStruct::get(STy, Fields);
1088   llvm::GlobalVariable *GV =
1089     new llvm::GlobalVariable(C->getType(), true,
1090                              llvm::GlobalVariable::InternalLinkage,
1091                              C, "", &getModule());
1092 
1093   GV->setSection("__DATA,__cfstring");
1094   Entry.setValue(GV);
1095 
1096   return GV;
1097 }
1098 
1099 /// GetStringForStringLiteral - Return the appropriate bytes for a
1100 /// string literal, properly padded to match the literal type.
1101 std::string CodeGenModule::GetStringForStringLiteral(const StringLiteral *E) {
1102   const char *StrData = E->getStrData();
1103   unsigned Len = E->getByteLength();
1104 
1105   const ConstantArrayType *CAT =
1106     getContext().getAsConstantArrayType(E->getType());
1107   assert(CAT && "String isn't pointer or array!");
1108 
1109   // Resize the string to the right size.
1110   std::string Str(StrData, StrData+Len);
1111   uint64_t RealLen = CAT->getSize().getZExtValue();
1112 
1113   if (E->isWide())
1114     RealLen *= getContext().Target.getWCharWidth()/8;
1115 
1116   Str.resize(RealLen, '\0');
1117 
1118   return Str;
1119 }
1120 
1121 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a
1122 /// constant array for the given string literal.
1123 llvm::Constant *
1124 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S) {
1125   // FIXME: This can be more efficient.
1126   return GetAddrOfConstantString(GetStringForStringLiteral(S));
1127 }
1128 
1129 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant
1130 /// array for the given ObjCEncodeExpr node.
1131 llvm::Constant *
1132 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) {
1133   std::string Str;
1134   getContext().getObjCEncodingForType(E->getEncodedType(), Str);
1135 
1136   return GetAddrOfConstantCString(Str);
1137 }
1138 
1139 
1140 /// GenerateWritableString -- Creates storage for a string literal.
1141 static llvm::Constant *GenerateStringLiteral(const std::string &str,
1142                                              bool constant,
1143                                              CodeGenModule &CGM,
1144                                              const char *GlobalName) {
1145   // Create Constant for this string literal. Don't add a '\0'.
1146   llvm::Constant *C = llvm::ConstantArray::get(str, false);
1147 
1148   // Create a global variable for this string
1149   return new llvm::GlobalVariable(C->getType(), constant,
1150                                   llvm::GlobalValue::InternalLinkage,
1151                                   C, GlobalName ? GlobalName : ".str",
1152                                   &CGM.getModule());
1153 }
1154 
1155 /// GetAddrOfConstantString - Returns a pointer to a character array
1156 /// containing the literal. This contents are exactly that of the
1157 /// given string, i.e. it will not be null terminated automatically;
1158 /// see GetAddrOfConstantCString. Note that whether the result is
1159 /// actually a pointer to an LLVM constant depends on
1160 /// Feature.WriteableStrings.
1161 ///
1162 /// The result has pointer to array type.
1163 llvm::Constant *CodeGenModule::GetAddrOfConstantString(const std::string &str,
1164                                                        const char *GlobalName) {
1165   // Don't share any string literals if writable-strings is turned on.
1166   if (Features.WritableStrings)
1167     return GenerateStringLiteral(str, false, *this, GlobalName);
1168 
1169   llvm::StringMapEntry<llvm::Constant *> &Entry =
1170   ConstantStringMap.GetOrCreateValue(&str[0], &str[str.length()]);
1171 
1172   if (Entry.getValue())
1173     return Entry.getValue();
1174 
1175   // Create a global variable for this.
1176   llvm::Constant *C = GenerateStringLiteral(str, true, *this, GlobalName);
1177   Entry.setValue(C);
1178   return C;
1179 }
1180 
1181 /// GetAddrOfConstantCString - Returns a pointer to a character
1182 /// array containing the literal and a terminating '\-'
1183 /// character. The result has pointer to array type.
1184 llvm::Constant *CodeGenModule::GetAddrOfConstantCString(const std::string &str,
1185                                                         const char *GlobalName){
1186   return GetAddrOfConstantString(str + '\0', GlobalName);
1187 }
1188 
1189 /// EmitObjCPropertyImplementations - Emit information for synthesized
1190 /// properties for an implementation.
1191 void CodeGenModule::EmitObjCPropertyImplementations(const
1192                                                     ObjCImplementationDecl *D) {
1193   for (ObjCImplementationDecl::propimpl_iterator i = D->propimpl_begin(),
1194          e = D->propimpl_end(); i != e; ++i) {
1195     ObjCPropertyImplDecl *PID = *i;
1196 
1197     // Dynamic is just for type-checking.
1198     if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) {
1199       ObjCPropertyDecl *PD = PID->getPropertyDecl();
1200 
1201       // Determine which methods need to be implemented, some may have
1202       // been overridden. Note that ::isSynthesized is not the method
1203       // we want, that just indicates if the decl came from a
1204       // property. What we want to know is if the method is defined in
1205       // this implementation.
1206       if (!D->getInstanceMethod(PD->getGetterName()))
1207         CodeGenFunction(*this).GenerateObjCGetter(
1208                                  const_cast<ObjCImplementationDecl *>(D), PID);
1209       if (!PD->isReadOnly() &&
1210           !D->getInstanceMethod(PD->getSetterName()))
1211         CodeGenFunction(*this).GenerateObjCSetter(
1212                                  const_cast<ObjCImplementationDecl *>(D), PID);
1213     }
1214   }
1215 }
1216 
1217 /// EmitTopLevelDecl - Emit code for a single top level declaration.
1218 void CodeGenModule::EmitTopLevelDecl(Decl *D) {
1219   // If an error has occurred, stop code generation, but continue
1220   // parsing and semantic analysis (to ensure all warnings and errors
1221   // are emitted).
1222   if (Diags.hasErrorOccurred())
1223     return;
1224 
1225   switch (D->getKind()) {
1226   case Decl::Function:
1227   case Decl::Var:
1228     EmitGlobal(cast<ValueDecl>(D));
1229     break;
1230 
1231   case Decl::Namespace:
1232     ErrorUnsupported(D, "namespace");
1233     break;
1234 
1235     // Objective-C Decls
1236 
1237   // Forward declarations, no (immediate) code generation.
1238   case Decl::ObjCClass:
1239   case Decl::ObjCForwardProtocol:
1240   case Decl::ObjCCategory:
1241   case Decl::ObjCInterface:
1242     break;
1243 
1244   case Decl::ObjCProtocol:
1245     Runtime->GenerateProtocol(cast<ObjCProtocolDecl>(D));
1246     break;
1247 
1248   case Decl::ObjCCategoryImpl:
1249     // Categories have properties but don't support synthesize so we
1250     // can ignore them here.
1251 
1252     Runtime->GenerateCategory(cast<ObjCCategoryImplDecl>(D));
1253     break;
1254 
1255   case Decl::ObjCImplementation: {
1256     ObjCImplementationDecl *OMD = cast<ObjCImplementationDecl>(D);
1257     EmitObjCPropertyImplementations(OMD);
1258     Runtime->GenerateClass(OMD);
1259     break;
1260   }
1261   case Decl::ObjCMethod: {
1262     ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(D);
1263     // If this is not a prototype, emit the body.
1264     if (OMD->getBody())
1265       CodeGenFunction(*this).GenerateObjCMethod(OMD);
1266     break;
1267   }
1268   case Decl::ObjCCompatibleAlias:
1269     // compatibility-alias is a directive and has no code gen.
1270     break;
1271 
1272   case Decl::LinkageSpec: {
1273     LinkageSpecDecl *LSD = cast<LinkageSpecDecl>(D);
1274     if (LSD->getLanguage() == LinkageSpecDecl::lang_cxx)
1275       ErrorUnsupported(LSD, "linkage spec");
1276     // FIXME: implement C++ linkage, C linkage works mostly by C
1277     // language reuse already.
1278     break;
1279   }
1280 
1281   case Decl::FileScopeAsm: {
1282     FileScopeAsmDecl *AD = cast<FileScopeAsmDecl>(D);
1283     std::string AsmString(AD->getAsmString()->getStrData(),
1284                           AD->getAsmString()->getByteLength());
1285 
1286     const std::string &S = getModule().getModuleInlineAsm();
1287     if (S.empty())
1288       getModule().setModuleInlineAsm(AsmString);
1289     else
1290       getModule().setModuleInlineAsm(S + '\n' + AsmString);
1291     break;
1292   }
1293 
1294   default:
1295     // Make sure we handled everything we should, every other kind is
1296     // a non-top-level decl.  FIXME: Would be nice to have an
1297     // isTopLevelDeclKind function. Need to recode Decl::Kind to do
1298     // that easily.
1299     assert(isa<TypeDecl>(D) && "Unsupported decl kind");
1300   }
1301 }
1302