xref: /llvm-project/clang/lib/CodeGen/CodeGenModule.cpp (revision 70013b640f175f5e6992e3193be3ae3c862416d6)
1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This coordinates the per-module state used while generating code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenModule.h"
15 #include "CGDebugInfo.h"
16 #include "CodeGenFunction.h"
17 #include "CGCall.h"
18 #include "CGObjCRuntime.h"
19 #include "Mangle.h"
20 #include "TargetInfo.h"
21 #include "clang/Frontend/CodeGenOptions.h"
22 #include "clang/AST/ASTContext.h"
23 #include "clang/AST/CharUnits.h"
24 #include "clang/AST/DeclObjC.h"
25 #include "clang/AST/DeclCXX.h"
26 #include "clang/AST/DeclTemplate.h"
27 #include "clang/AST/RecordLayout.h"
28 #include "clang/Basic/Builtins.h"
29 #include "clang/Basic/Diagnostic.h"
30 #include "clang/Basic/SourceManager.h"
31 #include "clang/Basic/TargetInfo.h"
32 #include "clang/Basic/ConvertUTF.h"
33 #include "llvm/CallingConv.h"
34 #include "llvm/Module.h"
35 #include "llvm/Intrinsics.h"
36 #include "llvm/LLVMContext.h"
37 #include "llvm/ADT/Triple.h"
38 #include "llvm/Target/TargetData.h"
39 #include "llvm/Support/CallSite.h"
40 #include "llvm/Support/ErrorHandling.h"
41 using namespace clang;
42 using namespace CodeGen;
43 
44 
45 CodeGenModule::CodeGenModule(ASTContext &C, const CodeGenOptions &CGO,
46                              llvm::Module &M, const llvm::TargetData &TD,
47                              Diagnostic &diags)
48   : BlockModule(C, M, TD, Types, *this), Context(C),
49     Features(C.getLangOptions()), CodeGenOpts(CGO), TheModule(M),
50     TheTargetData(TD), TheTargetCodeGenInfo(0), Diags(diags),
51     Types(C, M, TD, getTargetCodeGenInfo().getABIInfo()),
52     VTables(*this), Runtime(0), ABI(0),
53     CFConstantStringClassRef(0),
54     NSConstantStringClassRef(0),
55     VMContext(M.getContext()) {
56 
57   if (!Features.ObjC1)
58     Runtime = 0;
59   else if (!Features.NeXTRuntime)
60     Runtime = CreateGNUObjCRuntime(*this);
61   else if (Features.ObjCNonFragileABI)
62     Runtime = CreateMacNonFragileABIObjCRuntime(*this);
63   else
64     Runtime = CreateMacObjCRuntime(*this);
65 
66   if (!Features.CPlusPlus)
67     ABI = 0;
68   else createCXXABI();
69 
70   // If debug info generation is enabled, create the CGDebugInfo object.
71   DebugInfo = CodeGenOpts.DebugInfo ? new CGDebugInfo(*this) : 0;
72 }
73 
74 CodeGenModule::~CodeGenModule() {
75   delete Runtime;
76   delete ABI;
77   delete DebugInfo;
78 }
79 
80 void CodeGenModule::createObjCRuntime() {
81   if (!Features.NeXTRuntime)
82     Runtime = CreateGNUObjCRuntime(*this);
83   else if (Features.ObjCNonFragileABI)
84     Runtime = CreateMacNonFragileABIObjCRuntime(*this);
85   else
86     Runtime = CreateMacObjCRuntime(*this);
87 }
88 
89 void CodeGenModule::createCXXABI() {
90   if (Context.Target.getCXXABI() == "microsoft")
91     ABI = CreateMicrosoftCXXABI(*this);
92   else
93     ABI = CreateItaniumCXXABI(*this);
94 }
95 
96 void CodeGenModule::Release() {
97   EmitDeferred();
98   EmitCXXGlobalInitFunc();
99   EmitCXXGlobalDtorFunc();
100   if (Runtime)
101     if (llvm::Function *ObjCInitFunction = Runtime->ModuleInitFunction())
102       AddGlobalCtor(ObjCInitFunction);
103   EmitCtorList(GlobalCtors, "llvm.global_ctors");
104   EmitCtorList(GlobalDtors, "llvm.global_dtors");
105   EmitAnnotations();
106   EmitLLVMUsed();
107 
108   if (getCodeGenOpts().EmitDeclMetadata)
109     EmitDeclMetadata();
110 }
111 
112 bool CodeGenModule::isTargetDarwin() const {
113   return getContext().Target.getTriple().getOS() == llvm::Triple::Darwin;
114 }
115 
116 /// ErrorUnsupported - Print out an error that codegen doesn't support the
117 /// specified stmt yet.
118 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type,
119                                      bool OmitOnError) {
120   if (OmitOnError && getDiags().hasErrorOccurred())
121     return;
122   unsigned DiagID = getDiags().getCustomDiagID(Diagnostic::Error,
123                                                "cannot compile this %0 yet");
124   std::string Msg = Type;
125   getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID)
126     << Msg << S->getSourceRange();
127 }
128 
129 /// ErrorUnsupported - Print out an error that codegen doesn't support the
130 /// specified decl yet.
131 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type,
132                                      bool OmitOnError) {
133   if (OmitOnError && getDiags().hasErrorOccurred())
134     return;
135   unsigned DiagID = getDiags().getCustomDiagID(Diagnostic::Error,
136                                                "cannot compile this %0 yet");
137   std::string Msg = Type;
138   getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg;
139 }
140 
141 LangOptions::VisibilityMode
142 CodeGenModule::getDeclVisibilityMode(const Decl *D) const {
143   if (const VarDecl *VD = dyn_cast<VarDecl>(D))
144     if (VD->getStorageClass() == VarDecl::PrivateExtern)
145       return LangOptions::Hidden;
146 
147   if (const VisibilityAttr *attr = D->getAttr<VisibilityAttr>()) {
148     switch (attr->getVisibility()) {
149     default: assert(0 && "Unknown visibility!");
150     case VisibilityAttr::DefaultVisibility:
151       return LangOptions::Default;
152     case VisibilityAttr::HiddenVisibility:
153       return LangOptions::Hidden;
154     case VisibilityAttr::ProtectedVisibility:
155       return LangOptions::Protected;
156     }
157   }
158 
159   if (getLangOptions().CPlusPlus) {
160     // Entities subject to an explicit instantiation declaration get default
161     // visibility.
162     if (const FunctionDecl *Function = dyn_cast<FunctionDecl>(D)) {
163       if (Function->getTemplateSpecializationKind()
164                                         == TSK_ExplicitInstantiationDeclaration)
165         return LangOptions::Default;
166     } else if (const ClassTemplateSpecializationDecl *ClassSpec
167                               = dyn_cast<ClassTemplateSpecializationDecl>(D)) {
168       if (ClassSpec->getSpecializationKind()
169                                         == TSK_ExplicitInstantiationDeclaration)
170         return LangOptions::Default;
171     } else if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(D)) {
172       if (Record->getTemplateSpecializationKind()
173                                         == TSK_ExplicitInstantiationDeclaration)
174         return LangOptions::Default;
175     } else if (const VarDecl *Var = dyn_cast<VarDecl>(D)) {
176       if (Var->isStaticDataMember() &&
177           (Var->getTemplateSpecializationKind()
178                                       == TSK_ExplicitInstantiationDeclaration))
179         return LangOptions::Default;
180     }
181 
182     // If -fvisibility-inlines-hidden was provided, then inline C++ member
183     // functions get "hidden" visibility by default.
184     if (getLangOptions().InlineVisibilityHidden)
185       if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D))
186         if (Method->isInlined())
187           return LangOptions::Hidden;
188   }
189 
190   // This decl should have the same visibility as its parent.
191   if (const DeclContext *DC = D->getDeclContext())
192     return getDeclVisibilityMode(cast<Decl>(DC));
193 
194   return getLangOptions().getVisibilityMode();
195 }
196 
197 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV,
198                                         const Decl *D) const {
199   // Internal definitions always have default visibility.
200   if (GV->hasLocalLinkage()) {
201     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
202     return;
203   }
204 
205   switch (getDeclVisibilityMode(D)) {
206   default: assert(0 && "Unknown visibility!");
207   case LangOptions::Default:
208     return GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
209   case LangOptions::Hidden:
210     return GV->setVisibility(llvm::GlobalValue::HiddenVisibility);
211   case LangOptions::Protected:
212     return GV->setVisibility(llvm::GlobalValue::ProtectedVisibility);
213   }
214 }
215 
216 llvm::StringRef CodeGenModule::getMangledName(GlobalDecl GD) {
217   const NamedDecl *ND = cast<NamedDecl>(GD.getDecl());
218 
219   llvm::StringRef &Str = MangledDeclNames[GD.getCanonicalDecl()];
220   if (!Str.empty())
221     return Str;
222 
223   if (!getMangleContext().shouldMangleDeclName(ND)) {
224     IdentifierInfo *II = ND->getIdentifier();
225     assert(II && "Attempt to mangle unnamed decl.");
226 
227     Str = II->getName();
228     return Str;
229   }
230 
231   llvm::SmallString<256> Buffer;
232   if (const CXXConstructorDecl *D = dyn_cast<CXXConstructorDecl>(ND))
233     getMangleContext().mangleCXXCtor(D, GD.getCtorType(), Buffer);
234   else if (const CXXDestructorDecl *D = dyn_cast<CXXDestructorDecl>(ND))
235     getMangleContext().mangleCXXDtor(D, GD.getDtorType(), Buffer);
236   else if (const BlockDecl *BD = dyn_cast<BlockDecl>(ND))
237     getMangleContext().mangleBlock(GD, BD, Buffer);
238   else
239     getMangleContext().mangleName(ND, Buffer);
240 
241   // Allocate space for the mangled name.
242   size_t Length = Buffer.size();
243   char *Name = MangledNamesAllocator.Allocate<char>(Length);
244   std::copy(Buffer.begin(), Buffer.end(), Name);
245 
246   Str = llvm::StringRef(Name, Length);
247 
248   return Str;
249 }
250 
251 void CodeGenModule::getMangledName(GlobalDecl GD, MangleBuffer &Buffer,
252                                    const BlockDecl *BD) {
253   getMangleContext().mangleBlock(GD, BD, Buffer.getBuffer());
254 }
255 
256 llvm::GlobalValue *CodeGenModule::GetGlobalValue(llvm::StringRef Name) {
257   return getModule().getNamedValue(Name);
258 }
259 
260 /// AddGlobalCtor - Add a function to the list that will be called before
261 /// main() runs.
262 void CodeGenModule::AddGlobalCtor(llvm::Function * Ctor, int Priority) {
263   // FIXME: Type coercion of void()* types.
264   GlobalCtors.push_back(std::make_pair(Ctor, Priority));
265 }
266 
267 /// AddGlobalDtor - Add a function to the list that will be called
268 /// when the module is unloaded.
269 void CodeGenModule::AddGlobalDtor(llvm::Function * Dtor, int Priority) {
270   // FIXME: Type coercion of void()* types.
271   GlobalDtors.push_back(std::make_pair(Dtor, Priority));
272 }
273 
274 void CodeGenModule::EmitCtorList(const CtorList &Fns, const char *GlobalName) {
275   // Ctor function type is void()*.
276   llvm::FunctionType* CtorFTy =
277     llvm::FunctionType::get(llvm::Type::getVoidTy(VMContext),
278                             std::vector<const llvm::Type*>(),
279                             false);
280   llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy);
281 
282   // Get the type of a ctor entry, { i32, void ()* }.
283   llvm::StructType* CtorStructTy =
284     llvm::StructType::get(VMContext, llvm::Type::getInt32Ty(VMContext),
285                           llvm::PointerType::getUnqual(CtorFTy), NULL);
286 
287   // Construct the constructor and destructor arrays.
288   std::vector<llvm::Constant*> Ctors;
289   for (CtorList::const_iterator I = Fns.begin(), E = Fns.end(); I != E; ++I) {
290     std::vector<llvm::Constant*> S;
291     S.push_back(llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext),
292                 I->second, false));
293     S.push_back(llvm::ConstantExpr::getBitCast(I->first, CtorPFTy));
294     Ctors.push_back(llvm::ConstantStruct::get(CtorStructTy, S));
295   }
296 
297   if (!Ctors.empty()) {
298     llvm::ArrayType *AT = llvm::ArrayType::get(CtorStructTy, Ctors.size());
299     new llvm::GlobalVariable(TheModule, AT, false,
300                              llvm::GlobalValue::AppendingLinkage,
301                              llvm::ConstantArray::get(AT, Ctors),
302                              GlobalName);
303   }
304 }
305 
306 void CodeGenModule::EmitAnnotations() {
307   if (Annotations.empty())
308     return;
309 
310   // Create a new global variable for the ConstantStruct in the Module.
311   llvm::Constant *Array =
312   llvm::ConstantArray::get(llvm::ArrayType::get(Annotations[0]->getType(),
313                                                 Annotations.size()),
314                            Annotations);
315   llvm::GlobalValue *gv =
316   new llvm::GlobalVariable(TheModule, Array->getType(), false,
317                            llvm::GlobalValue::AppendingLinkage, Array,
318                            "llvm.global.annotations");
319   gv->setSection("llvm.metadata");
320 }
321 
322 static CodeGenModule::GVALinkage
323 GetLinkageForFunction(ASTContext &Context, const FunctionDecl *FD,
324                       const LangOptions &Features) {
325   CodeGenModule::GVALinkage External = CodeGenModule::GVA_StrongExternal;
326 
327   Linkage L = FD->getLinkage();
328   if (L == ExternalLinkage && Context.getLangOptions().CPlusPlus &&
329       FD->getType()->getLinkage() == UniqueExternalLinkage)
330     L = UniqueExternalLinkage;
331 
332   switch (L) {
333   case NoLinkage:
334   case InternalLinkage:
335   case UniqueExternalLinkage:
336     return CodeGenModule::GVA_Internal;
337 
338   case ExternalLinkage:
339     switch (FD->getTemplateSpecializationKind()) {
340     case TSK_Undeclared:
341     case TSK_ExplicitSpecialization:
342       External = CodeGenModule::GVA_StrongExternal;
343       break;
344 
345     case TSK_ExplicitInstantiationDefinition:
346       return CodeGenModule::GVA_ExplicitTemplateInstantiation;
347 
348     case TSK_ExplicitInstantiationDeclaration:
349     case TSK_ImplicitInstantiation:
350       External = CodeGenModule::GVA_TemplateInstantiation;
351       break;
352     }
353   }
354 
355   if (!FD->isInlined())
356     return External;
357 
358   if (!Features.CPlusPlus || FD->hasAttr<GNUInlineAttr>()) {
359     // GNU or C99 inline semantics. Determine whether this symbol should be
360     // externally visible.
361     if (FD->isInlineDefinitionExternallyVisible())
362       return External;
363 
364     // C99 inline semantics, where the symbol is not externally visible.
365     return CodeGenModule::GVA_C99Inline;
366   }
367 
368   // C++0x [temp.explicit]p9:
369   //   [ Note: The intent is that an inline function that is the subject of
370   //   an explicit instantiation declaration will still be implicitly
371   //   instantiated when used so that the body can be considered for
372   //   inlining, but that no out-of-line copy of the inline function would be
373   //   generated in the translation unit. -- end note ]
374   if (FD->getTemplateSpecializationKind()
375                                        == TSK_ExplicitInstantiationDeclaration)
376     return CodeGenModule::GVA_C99Inline;
377 
378   return CodeGenModule::GVA_CXXInline;
379 }
380 
381 llvm::GlobalValue::LinkageTypes
382 CodeGenModule::getFunctionLinkage(const FunctionDecl *D) {
383   GVALinkage Linkage = GetLinkageForFunction(getContext(), D, Features);
384 
385   if (Linkage == GVA_Internal)
386     return llvm::Function::InternalLinkage;
387 
388   if (D->hasAttr<DLLExportAttr>())
389     return llvm::Function::DLLExportLinkage;
390 
391   if (D->hasAttr<WeakAttr>())
392     return llvm::Function::WeakAnyLinkage;
393 
394   // In C99 mode, 'inline' functions are guaranteed to have a strong
395   // definition somewhere else, so we can use available_externally linkage.
396   if (Linkage == GVA_C99Inline)
397     return llvm::Function::AvailableExternallyLinkage;
398 
399   // In C++, the compiler has to emit a definition in every translation unit
400   // that references the function.  We should use linkonce_odr because
401   // a) if all references in this translation unit are optimized away, we
402   // don't need to codegen it.  b) if the function persists, it needs to be
403   // merged with other definitions. c) C++ has the ODR, so we know the
404   // definition is dependable.
405   if (Linkage == GVA_CXXInline || Linkage == GVA_TemplateInstantiation)
406     return llvm::Function::LinkOnceODRLinkage;
407 
408   // An explicit instantiation of a template has weak linkage, since
409   // explicit instantiations can occur in multiple translation units
410   // and must all be equivalent. However, we are not allowed to
411   // throw away these explicit instantiations.
412   if (Linkage == GVA_ExplicitTemplateInstantiation)
413     return llvm::Function::WeakODRLinkage;
414 
415   // Otherwise, we have strong external linkage.
416   assert(Linkage == GVA_StrongExternal);
417   return llvm::Function::ExternalLinkage;
418 }
419 
420 
421 /// SetFunctionDefinitionAttributes - Set attributes for a global.
422 ///
423 /// FIXME: This is currently only done for aliases and functions, but not for
424 /// variables (these details are set in EmitGlobalVarDefinition for variables).
425 void CodeGenModule::SetFunctionDefinitionAttributes(const FunctionDecl *D,
426                                                     llvm::GlobalValue *GV) {
427   SetCommonAttributes(D, GV);
428 }
429 
430 void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D,
431                                               const CGFunctionInfo &Info,
432                                               llvm::Function *F) {
433   unsigned CallingConv;
434   AttributeListType AttributeList;
435   ConstructAttributeList(Info, D, AttributeList, CallingConv);
436   F->setAttributes(llvm::AttrListPtr::get(AttributeList.begin(),
437                                           AttributeList.size()));
438   F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv));
439 }
440 
441 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D,
442                                                            llvm::Function *F) {
443   if (!Features.Exceptions && !Features.ObjCNonFragileABI)
444     F->addFnAttr(llvm::Attribute::NoUnwind);
445 
446   if (D->hasAttr<AlwaysInlineAttr>())
447     F->addFnAttr(llvm::Attribute::AlwaysInline);
448 
449   if (D->hasAttr<NoInlineAttr>())
450     F->addFnAttr(llvm::Attribute::NoInline);
451 
452   if (Features.getStackProtectorMode() == LangOptions::SSPOn)
453     F->addFnAttr(llvm::Attribute::StackProtect);
454   else if (Features.getStackProtectorMode() == LangOptions::SSPReq)
455     F->addFnAttr(llvm::Attribute::StackProtectReq);
456 
457   if (const AlignedAttr *AA = D->getAttr<AlignedAttr>()) {
458     unsigned width = Context.Target.getCharWidth();
459     F->setAlignment(AA->getAlignment() / width);
460     while ((AA = AA->getNext<AlignedAttr>()))
461       F->setAlignment(std::max(F->getAlignment(), AA->getAlignment() / width));
462   }
463   // C++ ABI requires 2-byte alignment for member functions.
464   if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D))
465     F->setAlignment(2);
466 }
467 
468 void CodeGenModule::SetCommonAttributes(const Decl *D,
469                                         llvm::GlobalValue *GV) {
470   setGlobalVisibility(GV, D);
471 
472   if (D->hasAttr<UsedAttr>())
473     AddUsedGlobal(GV);
474 
475   if (const SectionAttr *SA = D->getAttr<SectionAttr>())
476     GV->setSection(SA->getName());
477 
478   getTargetCodeGenInfo().SetTargetAttributes(D, GV, *this);
479 }
480 
481 void CodeGenModule::SetInternalFunctionAttributes(const Decl *D,
482                                                   llvm::Function *F,
483                                                   const CGFunctionInfo &FI) {
484   SetLLVMFunctionAttributes(D, FI, F);
485   SetLLVMFunctionAttributesForDefinition(D, F);
486 
487   F->setLinkage(llvm::Function::InternalLinkage);
488 
489   SetCommonAttributes(D, F);
490 }
491 
492 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD,
493                                           llvm::Function *F,
494                                           bool IsIncompleteFunction) {
495   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
496 
497   if (!IsIncompleteFunction)
498     SetLLVMFunctionAttributes(FD, getTypes().getFunctionInfo(GD), F);
499 
500   // Only a few attributes are set on declarations; these may later be
501   // overridden by a definition.
502 
503   if (FD->hasAttr<DLLImportAttr>()) {
504     F->setLinkage(llvm::Function::DLLImportLinkage);
505   } else if (FD->hasAttr<WeakAttr>() ||
506              FD->hasAttr<WeakImportAttr>()) {
507     // "extern_weak" is overloaded in LLVM; we probably should have
508     // separate linkage types for this.
509     F->setLinkage(llvm::Function::ExternalWeakLinkage);
510   } else {
511     F->setLinkage(llvm::Function::ExternalLinkage);
512   }
513 
514   if (const SectionAttr *SA = FD->getAttr<SectionAttr>())
515     F->setSection(SA->getName());
516 }
517 
518 void CodeGenModule::AddUsedGlobal(llvm::GlobalValue *GV) {
519   assert(!GV->isDeclaration() &&
520          "Only globals with definition can force usage.");
521   LLVMUsed.push_back(GV);
522 }
523 
524 void CodeGenModule::EmitLLVMUsed() {
525   // Don't create llvm.used if there is no need.
526   if (LLVMUsed.empty())
527     return;
528 
529   const llvm::Type *i8PTy = llvm::Type::getInt8PtrTy(VMContext);
530 
531   // Convert LLVMUsed to what ConstantArray needs.
532   std::vector<llvm::Constant*> UsedArray;
533   UsedArray.resize(LLVMUsed.size());
534   for (unsigned i = 0, e = LLVMUsed.size(); i != e; ++i) {
535     UsedArray[i] =
536      llvm::ConstantExpr::getBitCast(cast<llvm::Constant>(&*LLVMUsed[i]),
537                                       i8PTy);
538   }
539 
540   if (UsedArray.empty())
541     return;
542   llvm::ArrayType *ATy = llvm::ArrayType::get(i8PTy, UsedArray.size());
543 
544   llvm::GlobalVariable *GV =
545     new llvm::GlobalVariable(getModule(), ATy, false,
546                              llvm::GlobalValue::AppendingLinkage,
547                              llvm::ConstantArray::get(ATy, UsedArray),
548                              "llvm.used");
549 
550   GV->setSection("llvm.metadata");
551 }
552 
553 void CodeGenModule::EmitDeferred() {
554   // Emit code for any potentially referenced deferred decls.  Since a
555   // previously unused static decl may become used during the generation of code
556   // for a static function, iterate until no  changes are made.
557 
558   while (!DeferredDeclsToEmit.empty() || !DeferredVTables.empty()) {
559     if (!DeferredVTables.empty()) {
560       const CXXRecordDecl *RD = DeferredVTables.back();
561       DeferredVTables.pop_back();
562       getVTables().GenerateClassData(getVTableLinkage(RD), RD);
563       continue;
564     }
565 
566     GlobalDecl D = DeferredDeclsToEmit.back();
567     DeferredDeclsToEmit.pop_back();
568 
569     // Check to see if we've already emitted this.  This is necessary
570     // for a couple of reasons: first, decls can end up in the
571     // deferred-decls queue multiple times, and second, decls can end
572     // up with definitions in unusual ways (e.g. by an extern inline
573     // function acquiring a strong function redefinition).  Just
574     // ignore these cases.
575     //
576     // TODO: That said, looking this up multiple times is very wasteful.
577     llvm::StringRef Name = getMangledName(D);
578     llvm::GlobalValue *CGRef = GetGlobalValue(Name);
579     assert(CGRef && "Deferred decl wasn't referenced?");
580 
581     if (!CGRef->isDeclaration())
582       continue;
583 
584     // GlobalAlias::isDeclaration() defers to the aliasee, but for our
585     // purposes an alias counts as a definition.
586     if (isa<llvm::GlobalAlias>(CGRef))
587       continue;
588 
589     // Otherwise, emit the definition and move on to the next one.
590     EmitGlobalDefinition(D);
591   }
592 }
593 
594 /// EmitAnnotateAttr - Generate the llvm::ConstantStruct which contains the
595 /// annotation information for a given GlobalValue.  The annotation struct is
596 /// {i8 *, i8 *, i8 *, i32}.  The first field is a constant expression, the
597 /// GlobalValue being annotated.  The second field is the constant string
598 /// created from the AnnotateAttr's annotation.  The third field is a constant
599 /// string containing the name of the translation unit.  The fourth field is
600 /// the line number in the file of the annotated value declaration.
601 ///
602 /// FIXME: this does not unique the annotation string constants, as llvm-gcc
603 ///        appears to.
604 ///
605 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV,
606                                                 const AnnotateAttr *AA,
607                                                 unsigned LineNo) {
608   llvm::Module *M = &getModule();
609 
610   // get [N x i8] constants for the annotation string, and the filename string
611   // which are the 2nd and 3rd elements of the global annotation structure.
612   const llvm::Type *SBP = llvm::Type::getInt8PtrTy(VMContext);
613   llvm::Constant *anno = llvm::ConstantArray::get(VMContext,
614                                                   AA->getAnnotation(), true);
615   llvm::Constant *unit = llvm::ConstantArray::get(VMContext,
616                                                   M->getModuleIdentifier(),
617                                                   true);
618 
619   // Get the two global values corresponding to the ConstantArrays we just
620   // created to hold the bytes of the strings.
621   llvm::GlobalValue *annoGV =
622     new llvm::GlobalVariable(*M, anno->getType(), false,
623                              llvm::GlobalValue::PrivateLinkage, anno,
624                              GV->getName());
625   // translation unit name string, emitted into the llvm.metadata section.
626   llvm::GlobalValue *unitGV =
627     new llvm::GlobalVariable(*M, unit->getType(), false,
628                              llvm::GlobalValue::PrivateLinkage, unit,
629                              ".str");
630 
631   // Create the ConstantStruct for the global annotation.
632   llvm::Constant *Fields[4] = {
633     llvm::ConstantExpr::getBitCast(GV, SBP),
634     llvm::ConstantExpr::getBitCast(annoGV, SBP),
635     llvm::ConstantExpr::getBitCast(unitGV, SBP),
636     llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext), LineNo)
637   };
638   return llvm::ConstantStruct::get(VMContext, Fields, 4, false);
639 }
640 
641 static CodeGenModule::GVALinkage
642 GetLinkageForVariable(ASTContext &Context, const VarDecl *VD) {
643   // If this is a static data member, compute the kind of template
644   // specialization. Otherwise, this variable is not part of a
645   // template.
646   TemplateSpecializationKind TSK = TSK_Undeclared;
647   if (VD->isStaticDataMember())
648     TSK = VD->getTemplateSpecializationKind();
649 
650   Linkage L = VD->getLinkage();
651   if (L == ExternalLinkage && Context.getLangOptions().CPlusPlus &&
652       VD->getType()->getLinkage() == UniqueExternalLinkage)
653     L = UniqueExternalLinkage;
654 
655   switch (L) {
656   case NoLinkage:
657   case InternalLinkage:
658   case UniqueExternalLinkage:
659     return CodeGenModule::GVA_Internal;
660 
661   case ExternalLinkage:
662     switch (TSK) {
663     case TSK_Undeclared:
664     case TSK_ExplicitSpecialization:
665       return CodeGenModule::GVA_StrongExternal;
666 
667     case TSK_ExplicitInstantiationDeclaration:
668       llvm_unreachable("Variable should not be instantiated");
669       // Fall through to treat this like any other instantiation.
670 
671     case TSK_ExplicitInstantiationDefinition:
672       return CodeGenModule::GVA_ExplicitTemplateInstantiation;
673 
674     case TSK_ImplicitInstantiation:
675       return CodeGenModule::GVA_TemplateInstantiation;
676     }
677   }
678 
679   return CodeGenModule::GVA_StrongExternal;
680 }
681 
682 bool CodeGenModule::MayDeferGeneration(const ValueDecl *Global) {
683   // Never defer when EmitAllDecls is specified or the decl has
684   // attribute used.
685   if (Features.EmitAllDecls || Global->hasAttr<UsedAttr>())
686     return false;
687 
688   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) {
689     // Constructors and destructors should never be deferred.
690     if (FD->hasAttr<ConstructorAttr>() ||
691         FD->hasAttr<DestructorAttr>())
692       return false;
693 
694     // The key function for a class must never be deferred.
695     if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Global)) {
696       const CXXRecordDecl *RD = MD->getParent();
697       if (MD->isOutOfLine() && RD->isDynamicClass()) {
698         const CXXMethodDecl *KeyFunction = getContext().getKeyFunction(RD);
699         if (KeyFunction &&
700             KeyFunction->getCanonicalDecl() == MD->getCanonicalDecl())
701           return false;
702       }
703     }
704 
705     GVALinkage Linkage = GetLinkageForFunction(getContext(), FD, Features);
706 
707     // static, static inline, always_inline, and extern inline functions can
708     // always be deferred.  Normal inline functions can be deferred in C99/C++.
709     // Implicit template instantiations can also be deferred in C++.
710     if (Linkage == GVA_Internal || Linkage == GVA_C99Inline ||
711         Linkage == GVA_CXXInline || Linkage == GVA_TemplateInstantiation)
712       return true;
713     return false;
714   }
715 
716   const VarDecl *VD = cast<VarDecl>(Global);
717   assert(VD->isFileVarDecl() && "Invalid decl");
718 
719   // We never want to defer structs that have non-trivial constructors or
720   // destructors.
721 
722   // FIXME: Handle references.
723   if (const RecordType *RT = VD->getType()->getAs<RecordType>()) {
724     if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl())) {
725       if (!RD->hasTrivialConstructor() || !RD->hasTrivialDestructor())
726         return false;
727     }
728   }
729 
730   GVALinkage L = GetLinkageForVariable(getContext(), VD);
731   if (L == GVA_Internal || L == GVA_TemplateInstantiation) {
732     if (!(VD->getInit() && VD->getInit()->HasSideEffects(Context)))
733       return true;
734   }
735 
736   return false;
737 }
738 
739 llvm::Constant *CodeGenModule::GetWeakRefReference(const ValueDecl *VD) {
740   const AliasAttr *AA = VD->getAttr<AliasAttr>();
741   assert(AA && "No alias?");
742 
743   const llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType());
744 
745   // See if there is already something with the target's name in the module.
746   llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee());
747 
748   llvm::Constant *Aliasee;
749   if (isa<llvm::FunctionType>(DeclTy))
750     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GlobalDecl());
751   else
752     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
753                                     llvm::PointerType::getUnqual(DeclTy), 0);
754   if (!Entry) {
755     llvm::GlobalValue* F = cast<llvm::GlobalValue>(Aliasee);
756     F->setLinkage(llvm::Function::ExternalWeakLinkage);
757     WeakRefReferences.insert(F);
758   }
759 
760   return Aliasee;
761 }
762 
763 void CodeGenModule::EmitGlobal(GlobalDecl GD) {
764   const ValueDecl *Global = cast<ValueDecl>(GD.getDecl());
765 
766   // Weak references don't produce any output by themselves.
767   if (Global->hasAttr<WeakRefAttr>())
768     return;
769 
770   // If this is an alias definition (which otherwise looks like a declaration)
771   // emit it now.
772   if (Global->hasAttr<AliasAttr>())
773     return EmitAliasDefinition(GD);
774 
775   // Ignore declarations, they will be emitted on their first use.
776   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) {
777     // Forward declarations are emitted lazily on first use.
778     if (!FD->isThisDeclarationADefinition())
779       return;
780   } else {
781     const VarDecl *VD = cast<VarDecl>(Global);
782     assert(VD->isFileVarDecl() && "Cannot emit local var decl as global.");
783 
784     if (VD->isThisDeclarationADefinition() != VarDecl::Definition)
785       return;
786   }
787 
788   // Defer code generation when possible if this is a static definition, inline
789   // function etc.  These we only want to emit if they are used.
790   if (!MayDeferGeneration(Global)) {
791     // Emit the definition if it can't be deferred.
792     EmitGlobalDefinition(GD);
793     return;
794   }
795 
796   // If we're deferring emission of a C++ variable with an
797   // initializer, remember the order in which it appeared in the file.
798   if (getLangOptions().CPlusPlus && isa<VarDecl>(Global) &&
799       cast<VarDecl>(Global)->hasInit()) {
800     DelayedCXXInitPosition[Global] = CXXGlobalInits.size();
801     CXXGlobalInits.push_back(0);
802   }
803 
804   // If the value has already been used, add it directly to the
805   // DeferredDeclsToEmit list.
806   llvm::StringRef MangledName = getMangledName(GD);
807   if (GetGlobalValue(MangledName))
808     DeferredDeclsToEmit.push_back(GD);
809   else {
810     // Otherwise, remember that we saw a deferred decl with this name.  The
811     // first use of the mangled name will cause it to move into
812     // DeferredDeclsToEmit.
813     DeferredDecls[MangledName] = GD;
814   }
815 }
816 
817 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD) {
818   const ValueDecl *D = cast<ValueDecl>(GD.getDecl());
819 
820   PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(),
821                                  Context.getSourceManager(),
822                                  "Generating code for declaration");
823 
824   if (const FunctionDecl *Function = dyn_cast<FunctionDecl>(D)) {
825     // At -O0, don't generate IR for functions with available_externally
826     // linkage.
827     if (CodeGenOpts.OptimizationLevel == 0 &&
828         !Function->hasAttr<AlwaysInlineAttr>() &&
829         getFunctionLinkage(Function)
830                                   == llvm::Function::AvailableExternallyLinkage)
831       return;
832 
833     if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) {
834       if (Method->isVirtual())
835         getVTables().EmitThunks(GD);
836 
837       if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(Method))
838         return EmitCXXConstructor(CD, GD.getCtorType());
839 
840       if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(Method))
841         return EmitCXXDestructor(DD, GD.getDtorType());
842     }
843 
844     return EmitGlobalFunctionDefinition(GD);
845   }
846 
847   if (const VarDecl *VD = dyn_cast<VarDecl>(D))
848     return EmitGlobalVarDefinition(VD);
849 
850   assert(0 && "Invalid argument to EmitGlobalDefinition()");
851 }
852 
853 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the
854 /// module, create and return an llvm Function with the specified type. If there
855 /// is something in the module with the specified name, return it potentially
856 /// bitcasted to the right type.
857 ///
858 /// If D is non-null, it specifies a decl that correspond to this.  This is used
859 /// to set the attributes on the function when it is first created.
860 llvm::Constant *
861 CodeGenModule::GetOrCreateLLVMFunction(llvm::StringRef MangledName,
862                                        const llvm::Type *Ty,
863                                        GlobalDecl D) {
864   // Lookup the entry, lazily creating it if necessary.
865   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
866   if (Entry) {
867     if (WeakRefReferences.count(Entry)) {
868       const FunctionDecl *FD = cast_or_null<FunctionDecl>(D.getDecl());
869       if (FD && !FD->hasAttr<WeakAttr>())
870         Entry->setLinkage(llvm::Function::ExternalLinkage);
871 
872       WeakRefReferences.erase(Entry);
873     }
874 
875     if (Entry->getType()->getElementType() == Ty)
876       return Entry;
877 
878     // Make sure the result is of the correct type.
879     const llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
880     return llvm::ConstantExpr::getBitCast(Entry, PTy);
881   }
882 
883   // This function doesn't have a complete type (for example, the return
884   // type is an incomplete struct). Use a fake type instead, and make
885   // sure not to try to set attributes.
886   bool IsIncompleteFunction = false;
887 
888   const llvm::FunctionType *FTy;
889   if (isa<llvm::FunctionType>(Ty)) {
890     FTy = cast<llvm::FunctionType>(Ty);
891   } else {
892     FTy = llvm::FunctionType::get(llvm::Type::getVoidTy(VMContext),
893                                   std::vector<const llvm::Type*>(), false);
894     IsIncompleteFunction = true;
895   }
896 
897   llvm::Function *F = llvm::Function::Create(FTy,
898                                              llvm::Function::ExternalLinkage,
899                                              MangledName, &getModule());
900   assert(F->getName() == MangledName && "name was uniqued!");
901   if (D.getDecl())
902     SetFunctionAttributes(D, F, IsIncompleteFunction);
903 
904   // This is the first use or definition of a mangled name.  If there is a
905   // deferred decl with this name, remember that we need to emit it at the end
906   // of the file.
907   llvm::StringMap<GlobalDecl>::iterator DDI = DeferredDecls.find(MangledName);
908   if (DDI != DeferredDecls.end()) {
909     // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
910     // list, and remove it from DeferredDecls (since we don't need it anymore).
911     DeferredDeclsToEmit.push_back(DDI->second);
912     DeferredDecls.erase(DDI);
913   } else if (const FunctionDecl *FD = cast_or_null<FunctionDecl>(D.getDecl())) {
914     // If this the first reference to a C++ inline function in a class, queue up
915     // the deferred function body for emission.  These are not seen as
916     // top-level declarations.
917     if (FD->isThisDeclarationADefinition() && MayDeferGeneration(FD))
918       DeferredDeclsToEmit.push_back(D);
919     // A called constructor which has no definition or declaration need be
920     // synthesized.
921     else if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD)) {
922       if (CD->isImplicit()) {
923         assert(CD->isUsed() && "Sema doesn't consider constructor as used.");
924         DeferredDeclsToEmit.push_back(D);
925       }
926     } else if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(FD)) {
927       if (DD->isImplicit()) {
928         assert(DD->isUsed() && "Sema doesn't consider destructor as used.");
929         DeferredDeclsToEmit.push_back(D);
930       }
931     } else if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
932       if (MD->isCopyAssignment() && MD->isImplicit()) {
933         assert(MD->isUsed() && "Sema doesn't consider CopyAssignment as used.");
934         DeferredDeclsToEmit.push_back(D);
935       }
936     }
937   }
938 
939   // Make sure the result is of the requested type.
940   if (!IsIncompleteFunction) {
941     assert(F->getType()->getElementType() == Ty);
942     return F;
943   }
944 
945   const llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
946   return llvm::ConstantExpr::getBitCast(F, PTy);
947 }
948 
949 /// GetAddrOfFunction - Return the address of the given function.  If Ty is
950 /// non-null, then this function will use the specified type if it has to
951 /// create it (this occurs when we see a definition of the function).
952 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD,
953                                                  const llvm::Type *Ty) {
954   // If there was no specific requested type, just convert it now.
955   if (!Ty)
956     Ty = getTypes().ConvertType(cast<ValueDecl>(GD.getDecl())->getType());
957 
958   llvm::StringRef MangledName = getMangledName(GD);
959   return GetOrCreateLLVMFunction(MangledName, Ty, GD);
960 }
961 
962 /// CreateRuntimeFunction - Create a new runtime function with the specified
963 /// type and name.
964 llvm::Constant *
965 CodeGenModule::CreateRuntimeFunction(const llvm::FunctionType *FTy,
966                                      llvm::StringRef Name) {
967   return GetOrCreateLLVMFunction(Name, FTy, GlobalDecl());
968 }
969 
970 static bool DeclIsConstantGlobal(ASTContext &Context, const VarDecl *D) {
971   if (!D->getType().isConstant(Context) && !D->getType()->isReferenceType())
972     return false;
973   if (Context.getLangOptions().CPlusPlus &&
974       Context.getBaseElementType(D->getType())->getAs<RecordType>()) {
975     // FIXME: We should do something fancier here!
976     return false;
977   }
978   return true;
979 }
980 
981 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module,
982 /// create and return an llvm GlobalVariable with the specified type.  If there
983 /// is something in the module with the specified name, return it potentially
984 /// bitcasted to the right type.
985 ///
986 /// If D is non-null, it specifies a decl that correspond to this.  This is used
987 /// to set the attributes on the global when it is first created.
988 llvm::Constant *
989 CodeGenModule::GetOrCreateLLVMGlobal(llvm::StringRef MangledName,
990                                      const llvm::PointerType *Ty,
991                                      const VarDecl *D) {
992   // Lookup the entry, lazily creating it if necessary.
993   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
994   if (Entry) {
995     if (WeakRefReferences.count(Entry)) {
996       if (D && !D->hasAttr<WeakAttr>())
997         Entry->setLinkage(llvm::Function::ExternalLinkage);
998 
999       WeakRefReferences.erase(Entry);
1000     }
1001 
1002     if (Entry->getType() == Ty)
1003       return Entry;
1004 
1005     // Make sure the result is of the correct type.
1006     return llvm::ConstantExpr::getBitCast(Entry, Ty);
1007   }
1008 
1009   // This is the first use or definition of a mangled name.  If there is a
1010   // deferred decl with this name, remember that we need to emit it at the end
1011   // of the file.
1012   llvm::StringMap<GlobalDecl>::iterator DDI = DeferredDecls.find(MangledName);
1013   if (DDI != DeferredDecls.end()) {
1014     // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
1015     // list, and remove it from DeferredDecls (since we don't need it anymore).
1016     DeferredDeclsToEmit.push_back(DDI->second);
1017     DeferredDecls.erase(DDI);
1018   }
1019 
1020   llvm::GlobalVariable *GV =
1021     new llvm::GlobalVariable(getModule(), Ty->getElementType(), false,
1022                              llvm::GlobalValue::ExternalLinkage,
1023                              0, MangledName, 0,
1024                              false, Ty->getAddressSpace());
1025 
1026   // Handle things which are present even on external declarations.
1027   if (D) {
1028     // FIXME: This code is overly simple and should be merged with other global
1029     // handling.
1030     GV->setConstant(DeclIsConstantGlobal(Context, D));
1031 
1032     // FIXME: Merge with other attribute handling code.
1033     if (D->getStorageClass() == VarDecl::PrivateExtern)
1034       GV->setVisibility(llvm::GlobalValue::HiddenVisibility);
1035 
1036     if (D->hasAttr<WeakAttr>() ||
1037         D->hasAttr<WeakImportAttr>())
1038       GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage);
1039 
1040     GV->setThreadLocal(D->isThreadSpecified());
1041   }
1042 
1043   return GV;
1044 }
1045 
1046 
1047 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the
1048 /// given global variable.  If Ty is non-null and if the global doesn't exist,
1049 /// then it will be greated with the specified type instead of whatever the
1050 /// normal requested type would be.
1051 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D,
1052                                                   const llvm::Type *Ty) {
1053   assert(D->hasGlobalStorage() && "Not a global variable");
1054   QualType ASTTy = D->getType();
1055   if (Ty == 0)
1056     Ty = getTypes().ConvertTypeForMem(ASTTy);
1057 
1058   const llvm::PointerType *PTy =
1059     llvm::PointerType::get(Ty, ASTTy.getAddressSpace());
1060 
1061   llvm::StringRef MangledName = getMangledName(D);
1062   return GetOrCreateLLVMGlobal(MangledName, PTy, D);
1063 }
1064 
1065 /// CreateRuntimeVariable - Create a new runtime global variable with the
1066 /// specified type and name.
1067 llvm::Constant *
1068 CodeGenModule::CreateRuntimeVariable(const llvm::Type *Ty,
1069                                      llvm::StringRef Name) {
1070   return GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), 0);
1071 }
1072 
1073 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) {
1074   assert(!D->getInit() && "Cannot emit definite definitions here!");
1075 
1076   if (MayDeferGeneration(D)) {
1077     // If we have not seen a reference to this variable yet, place it
1078     // into the deferred declarations table to be emitted if needed
1079     // later.
1080     llvm::StringRef MangledName = getMangledName(D);
1081     if (!GetGlobalValue(MangledName)) {
1082       DeferredDecls[MangledName] = D;
1083       return;
1084     }
1085   }
1086 
1087   // The tentative definition is the only definition.
1088   EmitGlobalVarDefinition(D);
1089 }
1090 
1091 void CodeGenModule::EmitVTable(CXXRecordDecl *Class, bool DefinitionRequired) {
1092   if (DefinitionRequired)
1093     getVTables().GenerateClassData(getVTableLinkage(Class), Class);
1094 }
1095 
1096 llvm::GlobalVariable::LinkageTypes
1097 CodeGenModule::getVTableLinkage(const CXXRecordDecl *RD) {
1098   if (RD->isInAnonymousNamespace() || !RD->hasLinkage())
1099     return llvm::GlobalVariable::InternalLinkage;
1100 
1101   if (const CXXMethodDecl *KeyFunction
1102                                     = RD->getASTContext().getKeyFunction(RD)) {
1103     // If this class has a key function, use that to determine the linkage of
1104     // the vtable.
1105     const FunctionDecl *Def = 0;
1106     if (KeyFunction->hasBody(Def))
1107       KeyFunction = cast<CXXMethodDecl>(Def);
1108 
1109     switch (KeyFunction->getTemplateSpecializationKind()) {
1110       case TSK_Undeclared:
1111       case TSK_ExplicitSpecialization:
1112         if (KeyFunction->isInlined())
1113           return llvm::GlobalVariable::WeakODRLinkage;
1114 
1115         return llvm::GlobalVariable::ExternalLinkage;
1116 
1117       case TSK_ImplicitInstantiation:
1118       case TSK_ExplicitInstantiationDefinition:
1119         return llvm::GlobalVariable::WeakODRLinkage;
1120 
1121       case TSK_ExplicitInstantiationDeclaration:
1122         // FIXME: Use available_externally linkage. However, this currently
1123         // breaks LLVM's build due to undefined symbols.
1124         //      return llvm::GlobalVariable::AvailableExternallyLinkage;
1125         return llvm::GlobalVariable::WeakODRLinkage;
1126     }
1127   }
1128 
1129   switch (RD->getTemplateSpecializationKind()) {
1130   case TSK_Undeclared:
1131   case TSK_ExplicitSpecialization:
1132   case TSK_ImplicitInstantiation:
1133   case TSK_ExplicitInstantiationDefinition:
1134     return llvm::GlobalVariable::WeakODRLinkage;
1135 
1136   case TSK_ExplicitInstantiationDeclaration:
1137     // FIXME: Use available_externally linkage. However, this currently
1138     // breaks LLVM's build due to undefined symbols.
1139     //   return llvm::GlobalVariable::AvailableExternallyLinkage;
1140     return llvm::GlobalVariable::WeakODRLinkage;
1141   }
1142 
1143   // Silence GCC warning.
1144   return llvm::GlobalVariable::WeakODRLinkage;
1145 }
1146 
1147 CharUnits CodeGenModule::GetTargetTypeStoreSize(const llvm::Type *Ty) const {
1148     return CharUnits::fromQuantity(
1149       TheTargetData.getTypeStoreSizeInBits(Ty) / Context.getCharWidth());
1150 }
1151 
1152 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D) {
1153   llvm::Constant *Init = 0;
1154   QualType ASTTy = D->getType();
1155   bool NonConstInit = false;
1156 
1157   const Expr *InitExpr = D->getAnyInitializer();
1158 
1159   if (!InitExpr) {
1160     // This is a tentative definition; tentative definitions are
1161     // implicitly initialized with { 0 }.
1162     //
1163     // Note that tentative definitions are only emitted at the end of
1164     // a translation unit, so they should never have incomplete
1165     // type. In addition, EmitTentativeDefinition makes sure that we
1166     // never attempt to emit a tentative definition if a real one
1167     // exists. A use may still exists, however, so we still may need
1168     // to do a RAUW.
1169     assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type");
1170     Init = EmitNullConstant(D->getType());
1171   } else {
1172     Init = EmitConstantExpr(InitExpr, D->getType());
1173     if (!Init) {
1174       QualType T = InitExpr->getType();
1175       if (D->getType()->isReferenceType())
1176         T = D->getType();
1177 
1178       if (getLangOptions().CPlusPlus) {
1179         EmitCXXGlobalVarDeclInitFunc(D);
1180         Init = EmitNullConstant(T);
1181         NonConstInit = true;
1182       } else {
1183         ErrorUnsupported(D, "static initializer");
1184         Init = llvm::UndefValue::get(getTypes().ConvertType(T));
1185       }
1186     } else {
1187       // We don't need an initializer, so remove the entry for the delayed
1188       // initializer position (just in case this entry was delayed).
1189       if (getLangOptions().CPlusPlus)
1190         DelayedCXXInitPosition.erase(D);
1191     }
1192   }
1193 
1194   const llvm::Type* InitType = Init->getType();
1195   llvm::Constant *Entry = GetAddrOfGlobalVar(D, InitType);
1196 
1197   // Strip off a bitcast if we got one back.
1198   if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
1199     assert(CE->getOpcode() == llvm::Instruction::BitCast ||
1200            // all zero index gep.
1201            CE->getOpcode() == llvm::Instruction::GetElementPtr);
1202     Entry = CE->getOperand(0);
1203   }
1204 
1205   // Entry is now either a Function or GlobalVariable.
1206   llvm::GlobalVariable *GV = dyn_cast<llvm::GlobalVariable>(Entry);
1207 
1208   // We have a definition after a declaration with the wrong type.
1209   // We must make a new GlobalVariable* and update everything that used OldGV
1210   // (a declaration or tentative definition) with the new GlobalVariable*
1211   // (which will be a definition).
1212   //
1213   // This happens if there is a prototype for a global (e.g.
1214   // "extern int x[];") and then a definition of a different type (e.g.
1215   // "int x[10];"). This also happens when an initializer has a different type
1216   // from the type of the global (this happens with unions).
1217   if (GV == 0 ||
1218       GV->getType()->getElementType() != InitType ||
1219       GV->getType()->getAddressSpace() != ASTTy.getAddressSpace()) {
1220 
1221     // Move the old entry aside so that we'll create a new one.
1222     Entry->setName(llvm::StringRef());
1223 
1224     // Make a new global with the correct type, this is now guaranteed to work.
1225     GV = cast<llvm::GlobalVariable>(GetAddrOfGlobalVar(D, InitType));
1226 
1227     // Replace all uses of the old global with the new global
1228     llvm::Constant *NewPtrForOldDecl =
1229         llvm::ConstantExpr::getBitCast(GV, Entry->getType());
1230     Entry->replaceAllUsesWith(NewPtrForOldDecl);
1231 
1232     // Erase the old global, since it is no longer used.
1233     cast<llvm::GlobalValue>(Entry)->eraseFromParent();
1234   }
1235 
1236   if (const AnnotateAttr *AA = D->getAttr<AnnotateAttr>()) {
1237     SourceManager &SM = Context.getSourceManager();
1238     AddAnnotation(EmitAnnotateAttr(GV, AA,
1239                               SM.getInstantiationLineNumber(D->getLocation())));
1240   }
1241 
1242   GV->setInitializer(Init);
1243 
1244   // If it is safe to mark the global 'constant', do so now.
1245   GV->setConstant(false);
1246   if (!NonConstInit && DeclIsConstantGlobal(Context, D))
1247     GV->setConstant(true);
1248 
1249   GV->setAlignment(getContext().getDeclAlign(D).getQuantity());
1250 
1251   // Set the llvm linkage type as appropriate.
1252   GVALinkage Linkage = GetLinkageForVariable(getContext(), D);
1253   if (Linkage == GVA_Internal)
1254     GV->setLinkage(llvm::Function::InternalLinkage);
1255   else if (D->hasAttr<DLLImportAttr>())
1256     GV->setLinkage(llvm::Function::DLLImportLinkage);
1257   else if (D->hasAttr<DLLExportAttr>())
1258     GV->setLinkage(llvm::Function::DLLExportLinkage);
1259   else if (D->hasAttr<WeakAttr>()) {
1260     if (GV->isConstant())
1261       GV->setLinkage(llvm::GlobalVariable::WeakODRLinkage);
1262     else
1263       GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage);
1264   } else if (Linkage == GVA_TemplateInstantiation ||
1265              Linkage == GVA_ExplicitTemplateInstantiation)
1266     // FIXME: It seems like we can provide more specific linkage here
1267     // (LinkOnceODR, WeakODR).
1268     GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage);
1269   else if (!getLangOptions().CPlusPlus && !CodeGenOpts.NoCommon &&
1270            !D->hasExternalStorage() && !D->getInit() &&
1271            !D->getAttr<SectionAttr>()) {
1272     GV->setLinkage(llvm::GlobalVariable::CommonLinkage);
1273     // common vars aren't constant even if declared const.
1274     GV->setConstant(false);
1275   } else
1276     GV->setLinkage(llvm::GlobalVariable::ExternalLinkage);
1277 
1278   SetCommonAttributes(D, GV);
1279 
1280   // Emit global variable debug information.
1281   if (CGDebugInfo *DI = getDebugInfo()) {
1282     DI->setLocation(D->getLocation());
1283     DI->EmitGlobalVariable(GV, D);
1284   }
1285 }
1286 
1287 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we
1288 /// implement a function with no prototype, e.g. "int foo() {}".  If there are
1289 /// existing call uses of the old function in the module, this adjusts them to
1290 /// call the new function directly.
1291 ///
1292 /// This is not just a cleanup: the always_inline pass requires direct calls to
1293 /// functions to be able to inline them.  If there is a bitcast in the way, it
1294 /// won't inline them.  Instcombine normally deletes these calls, but it isn't
1295 /// run at -O0.
1296 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
1297                                                       llvm::Function *NewFn) {
1298   // If we're redefining a global as a function, don't transform it.
1299   llvm::Function *OldFn = dyn_cast<llvm::Function>(Old);
1300   if (OldFn == 0) return;
1301 
1302   const llvm::Type *NewRetTy = NewFn->getReturnType();
1303   llvm::SmallVector<llvm::Value*, 4> ArgList;
1304 
1305   for (llvm::Value::use_iterator UI = OldFn->use_begin(), E = OldFn->use_end();
1306        UI != E; ) {
1307     // TODO: Do invokes ever occur in C code?  If so, we should handle them too.
1308     llvm::Value::use_iterator I = UI++; // Increment before the CI is erased.
1309     llvm::CallInst *CI = dyn_cast<llvm::CallInst>(*I);
1310     llvm::CallSite CS(CI);
1311     if (!CI || !CS.isCallee(I)) continue;
1312 
1313     // If the return types don't match exactly, and if the call isn't dead, then
1314     // we can't transform this call.
1315     if (CI->getType() != NewRetTy && !CI->use_empty())
1316       continue;
1317 
1318     // If the function was passed too few arguments, don't transform.  If extra
1319     // arguments were passed, we silently drop them.  If any of the types
1320     // mismatch, we don't transform.
1321     unsigned ArgNo = 0;
1322     bool DontTransform = false;
1323     for (llvm::Function::arg_iterator AI = NewFn->arg_begin(),
1324          E = NewFn->arg_end(); AI != E; ++AI, ++ArgNo) {
1325       if (CS.arg_size() == ArgNo ||
1326           CS.getArgument(ArgNo)->getType() != AI->getType()) {
1327         DontTransform = true;
1328         break;
1329       }
1330     }
1331     if (DontTransform)
1332       continue;
1333 
1334     // Okay, we can transform this.  Create the new call instruction and copy
1335     // over the required information.
1336     ArgList.append(CS.arg_begin(), CS.arg_begin() + ArgNo);
1337     llvm::CallInst *NewCall = llvm::CallInst::Create(NewFn, ArgList.begin(),
1338                                                      ArgList.end(), "", CI);
1339     ArgList.clear();
1340     if (!NewCall->getType()->isVoidTy())
1341       NewCall->takeName(CI);
1342     NewCall->setAttributes(CI->getAttributes());
1343     NewCall->setCallingConv(CI->getCallingConv());
1344 
1345     // Finally, remove the old call, replacing any uses with the new one.
1346     if (!CI->use_empty())
1347       CI->replaceAllUsesWith(NewCall);
1348 
1349     // Copy debug location attached to CI.
1350     if (!CI->getDebugLoc().isUnknown())
1351       NewCall->setDebugLoc(CI->getDebugLoc());
1352     CI->eraseFromParent();
1353   }
1354 }
1355 
1356 
1357 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD) {
1358   const FunctionDecl *D = cast<FunctionDecl>(GD.getDecl());
1359   const llvm::FunctionType *Ty = getTypes().GetFunctionType(GD);
1360   getMangleContext().mangleInitDiscriminator();
1361   // Get or create the prototype for the function.
1362   llvm::Constant *Entry = GetAddrOfFunction(GD, Ty);
1363 
1364   // Strip off a bitcast if we got one back.
1365   if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
1366     assert(CE->getOpcode() == llvm::Instruction::BitCast);
1367     Entry = CE->getOperand(0);
1368   }
1369 
1370 
1371   if (cast<llvm::GlobalValue>(Entry)->getType()->getElementType() != Ty) {
1372     llvm::GlobalValue *OldFn = cast<llvm::GlobalValue>(Entry);
1373 
1374     // If the types mismatch then we have to rewrite the definition.
1375     assert(OldFn->isDeclaration() &&
1376            "Shouldn't replace non-declaration");
1377 
1378     // F is the Function* for the one with the wrong type, we must make a new
1379     // Function* and update everything that used F (a declaration) with the new
1380     // Function* (which will be a definition).
1381     //
1382     // This happens if there is a prototype for a function
1383     // (e.g. "int f()") and then a definition of a different type
1384     // (e.g. "int f(int x)").  Move the old function aside so that it
1385     // doesn't interfere with GetAddrOfFunction.
1386     OldFn->setName(llvm::StringRef());
1387     llvm::Function *NewFn = cast<llvm::Function>(GetAddrOfFunction(GD, Ty));
1388 
1389     // If this is an implementation of a function without a prototype, try to
1390     // replace any existing uses of the function (which may be calls) with uses
1391     // of the new function
1392     if (D->getType()->isFunctionNoProtoType()) {
1393       ReplaceUsesOfNonProtoTypeWithRealFunction(OldFn, NewFn);
1394       OldFn->removeDeadConstantUsers();
1395     }
1396 
1397     // Replace uses of F with the Function we will endow with a body.
1398     if (!Entry->use_empty()) {
1399       llvm::Constant *NewPtrForOldDecl =
1400         llvm::ConstantExpr::getBitCast(NewFn, Entry->getType());
1401       Entry->replaceAllUsesWith(NewPtrForOldDecl);
1402     }
1403 
1404     // Ok, delete the old function now, which is dead.
1405     OldFn->eraseFromParent();
1406 
1407     Entry = NewFn;
1408   }
1409 
1410   llvm::Function *Fn = cast<llvm::Function>(Entry);
1411   setFunctionLinkage(D, Fn);
1412 
1413   CodeGenFunction(*this).GenerateCode(D, Fn);
1414 
1415   SetFunctionDefinitionAttributes(D, Fn);
1416   SetLLVMFunctionAttributesForDefinition(D, Fn);
1417 
1418   if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>())
1419     AddGlobalCtor(Fn, CA->getPriority());
1420   if (const DestructorAttr *DA = D->getAttr<DestructorAttr>())
1421     AddGlobalDtor(Fn, DA->getPriority());
1422 }
1423 
1424 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) {
1425   const ValueDecl *D = cast<ValueDecl>(GD.getDecl());
1426   const AliasAttr *AA = D->getAttr<AliasAttr>();
1427   assert(AA && "Not an alias?");
1428 
1429   llvm::StringRef MangledName = getMangledName(GD);
1430 
1431   // If there is a definition in the module, then it wins over the alias.
1432   // This is dubious, but allow it to be safe.  Just ignore the alias.
1433   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
1434   if (Entry && !Entry->isDeclaration())
1435     return;
1436 
1437   const llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
1438 
1439   // Create a reference to the named value.  This ensures that it is emitted
1440   // if a deferred decl.
1441   llvm::Constant *Aliasee;
1442   if (isa<llvm::FunctionType>(DeclTy))
1443     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GlobalDecl());
1444   else
1445     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
1446                                     llvm::PointerType::getUnqual(DeclTy), 0);
1447 
1448   // Create the new alias itself, but don't set a name yet.
1449   llvm::GlobalValue *GA =
1450     new llvm::GlobalAlias(Aliasee->getType(),
1451                           llvm::Function::ExternalLinkage,
1452                           "", Aliasee, &getModule());
1453 
1454   if (Entry) {
1455     assert(Entry->isDeclaration());
1456 
1457     // If there is a declaration in the module, then we had an extern followed
1458     // by the alias, as in:
1459     //   extern int test6();
1460     //   ...
1461     //   int test6() __attribute__((alias("test7")));
1462     //
1463     // Remove it and replace uses of it with the alias.
1464     GA->takeName(Entry);
1465 
1466     Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA,
1467                                                           Entry->getType()));
1468     Entry->eraseFromParent();
1469   } else {
1470     GA->setName(MangledName);
1471   }
1472 
1473   // Set attributes which are particular to an alias; this is a
1474   // specialization of the attributes which may be set on a global
1475   // variable/function.
1476   if (D->hasAttr<DLLExportAttr>()) {
1477     if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
1478       // The dllexport attribute is ignored for undefined symbols.
1479       if (FD->hasBody())
1480         GA->setLinkage(llvm::Function::DLLExportLinkage);
1481     } else {
1482       GA->setLinkage(llvm::Function::DLLExportLinkage);
1483     }
1484   } else if (D->hasAttr<WeakAttr>() ||
1485              D->hasAttr<WeakRefAttr>() ||
1486              D->hasAttr<WeakImportAttr>()) {
1487     GA->setLinkage(llvm::Function::WeakAnyLinkage);
1488   }
1489 
1490   SetCommonAttributes(D, GA);
1491 }
1492 
1493 /// getBuiltinLibFunction - Given a builtin id for a function like
1494 /// "__builtin_fabsf", return a Function* for "fabsf".
1495 llvm::Value *CodeGenModule::getBuiltinLibFunction(const FunctionDecl *FD,
1496                                                   unsigned BuiltinID) {
1497   assert((Context.BuiltinInfo.isLibFunction(BuiltinID) ||
1498           Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) &&
1499          "isn't a lib fn");
1500 
1501   // Get the name, skip over the __builtin_ prefix (if necessary).
1502   const char *Name = Context.BuiltinInfo.GetName(BuiltinID);
1503   if (Context.BuiltinInfo.isLibFunction(BuiltinID))
1504     Name += 10;
1505 
1506   const llvm::FunctionType *Ty =
1507     cast<llvm::FunctionType>(getTypes().ConvertType(FD->getType()));
1508 
1509   return GetOrCreateLLVMFunction(Name, Ty, GlobalDecl(FD));
1510 }
1511 
1512 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,const llvm::Type **Tys,
1513                                             unsigned NumTys) {
1514   return llvm::Intrinsic::getDeclaration(&getModule(),
1515                                          (llvm::Intrinsic::ID)IID, Tys, NumTys);
1516 }
1517 
1518 
1519 llvm::Function *CodeGenModule::getMemCpyFn(const llvm::Type *DestType,
1520                                            const llvm::Type *SrcType,
1521                                            const llvm::Type *SizeType) {
1522   const llvm::Type *ArgTypes[3] = {DestType, SrcType, SizeType };
1523   return getIntrinsic(llvm::Intrinsic::memcpy, ArgTypes, 3);
1524 }
1525 
1526 llvm::Function *CodeGenModule::getMemMoveFn(const llvm::Type *DestType,
1527                                             const llvm::Type *SrcType,
1528                                             const llvm::Type *SizeType) {
1529   const llvm::Type *ArgTypes[3] = {DestType, SrcType, SizeType };
1530   return getIntrinsic(llvm::Intrinsic::memmove, ArgTypes, 3);
1531 }
1532 
1533 llvm::Function *CodeGenModule::getMemSetFn(const llvm::Type *DestType,
1534                                            const llvm::Type *SizeType) {
1535   const llvm::Type *ArgTypes[2] = { DestType, SizeType };
1536   return getIntrinsic(llvm::Intrinsic::memset, ArgTypes, 2);
1537 }
1538 
1539 static llvm::StringMapEntry<llvm::Constant*> &
1540 GetConstantCFStringEntry(llvm::StringMap<llvm::Constant*> &Map,
1541                          const StringLiteral *Literal,
1542                          bool TargetIsLSB,
1543                          bool &IsUTF16,
1544                          unsigned &StringLength) {
1545   unsigned NumBytes = Literal->getByteLength();
1546 
1547   // Check for simple case.
1548   if (!Literal->containsNonAsciiOrNull()) {
1549     StringLength = NumBytes;
1550     return Map.GetOrCreateValue(llvm::StringRef(Literal->getStrData(),
1551                                                 StringLength));
1552   }
1553 
1554   // Otherwise, convert the UTF8 literals into a byte string.
1555   llvm::SmallVector<UTF16, 128> ToBuf(NumBytes);
1556   const UTF8 *FromPtr = (UTF8 *)Literal->getStrData();
1557   UTF16 *ToPtr = &ToBuf[0];
1558 
1559   ConversionResult Result = ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes,
1560                                                &ToPtr, ToPtr + NumBytes,
1561                                                strictConversion);
1562 
1563   // Check for conversion failure.
1564   if (Result != conversionOK) {
1565     // FIXME: Have Sema::CheckObjCString() validate the UTF-8 string and remove
1566     // this duplicate code.
1567     assert(Result == sourceIllegal && "UTF-8 to UTF-16 conversion failed");
1568     StringLength = NumBytes;
1569     return Map.GetOrCreateValue(llvm::StringRef(Literal->getStrData(),
1570                                                 StringLength));
1571   }
1572 
1573   // ConvertUTF8toUTF16 returns the length in ToPtr.
1574   StringLength = ToPtr - &ToBuf[0];
1575 
1576   // Render the UTF-16 string into a byte array and convert to the target byte
1577   // order.
1578   //
1579   // FIXME: This isn't something we should need to do here.
1580   llvm::SmallString<128> AsBytes;
1581   AsBytes.reserve(StringLength * 2);
1582   for (unsigned i = 0; i != StringLength; ++i) {
1583     unsigned short Val = ToBuf[i];
1584     if (TargetIsLSB) {
1585       AsBytes.push_back(Val & 0xFF);
1586       AsBytes.push_back(Val >> 8);
1587     } else {
1588       AsBytes.push_back(Val >> 8);
1589       AsBytes.push_back(Val & 0xFF);
1590     }
1591   }
1592   // Append one extra null character, the second is automatically added by our
1593   // caller.
1594   AsBytes.push_back(0);
1595 
1596   IsUTF16 = true;
1597   return Map.GetOrCreateValue(llvm::StringRef(AsBytes.data(), AsBytes.size()));
1598 }
1599 
1600 llvm::Constant *
1601 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) {
1602   unsigned StringLength = 0;
1603   bool isUTF16 = false;
1604   llvm::StringMapEntry<llvm::Constant*> &Entry =
1605     GetConstantCFStringEntry(CFConstantStringMap, Literal,
1606                              getTargetData().isLittleEndian(),
1607                              isUTF16, StringLength);
1608 
1609   if (llvm::Constant *C = Entry.getValue())
1610     return C;
1611 
1612   llvm::Constant *Zero =
1613       llvm::Constant::getNullValue(llvm::Type::getInt32Ty(VMContext));
1614   llvm::Constant *Zeros[] = { Zero, Zero };
1615 
1616   // If we don't already have it, get __CFConstantStringClassReference.
1617   if (!CFConstantStringClassRef) {
1618     const llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
1619     Ty = llvm::ArrayType::get(Ty, 0);
1620     llvm::Constant *GV = CreateRuntimeVariable(Ty,
1621                                            "__CFConstantStringClassReference");
1622     // Decay array -> ptr
1623     CFConstantStringClassRef =
1624       llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2);
1625   }
1626 
1627   QualType CFTy = getContext().getCFConstantStringType();
1628 
1629   const llvm::StructType *STy =
1630     cast<llvm::StructType>(getTypes().ConvertType(CFTy));
1631 
1632   std::vector<llvm::Constant*> Fields(4);
1633 
1634   // Class pointer.
1635   Fields[0] = CFConstantStringClassRef;
1636 
1637   // Flags.
1638   const llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy);
1639   Fields[1] = isUTF16 ? llvm::ConstantInt::get(Ty, 0x07d0) :
1640     llvm::ConstantInt::get(Ty, 0x07C8);
1641 
1642   // String pointer.
1643   llvm::Constant *C = llvm::ConstantArray::get(VMContext, Entry.getKey().str());
1644 
1645   llvm::GlobalValue::LinkageTypes Linkage;
1646   bool isConstant;
1647   if (isUTF16) {
1648     // FIXME: why do utf strings get "_" labels instead of "L" labels?
1649     Linkage = llvm::GlobalValue::InternalLinkage;
1650     // Note: -fwritable-strings doesn't make unicode CFStrings writable, but
1651     // does make plain ascii ones writable.
1652     isConstant = true;
1653   } else {
1654     Linkage = llvm::GlobalValue::PrivateLinkage;
1655     isConstant = !Features.WritableStrings;
1656   }
1657 
1658   llvm::GlobalVariable *GV =
1659     new llvm::GlobalVariable(getModule(), C->getType(), isConstant, Linkage, C,
1660                              ".str");
1661   if (isUTF16) {
1662     CharUnits Align = getContext().getTypeAlignInChars(getContext().ShortTy);
1663     GV->setAlignment(Align.getQuantity());
1664   }
1665   Fields[2] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2);
1666 
1667   // String length.
1668   Ty = getTypes().ConvertType(getContext().LongTy);
1669   Fields[3] = llvm::ConstantInt::get(Ty, StringLength);
1670 
1671   // The struct.
1672   C = llvm::ConstantStruct::get(STy, Fields);
1673   GV = new llvm::GlobalVariable(getModule(), C->getType(), true,
1674                                 llvm::GlobalVariable::PrivateLinkage, C,
1675                                 "_unnamed_cfstring_");
1676   if (const char *Sect = getContext().Target.getCFStringSection())
1677     GV->setSection(Sect);
1678   Entry.setValue(GV);
1679 
1680   return GV;
1681 }
1682 
1683 llvm::Constant *
1684 CodeGenModule::GetAddrOfConstantNSString(const StringLiteral *Literal) {
1685   unsigned StringLength = 0;
1686   bool isUTF16 = false;
1687   llvm::StringMapEntry<llvm::Constant*> &Entry =
1688     GetConstantCFStringEntry(CFConstantStringMap, Literal,
1689                              getTargetData().isLittleEndian(),
1690                              isUTF16, StringLength);
1691 
1692   if (llvm::Constant *C = Entry.getValue())
1693     return C;
1694 
1695   llvm::Constant *Zero =
1696   llvm::Constant::getNullValue(llvm::Type::getInt32Ty(VMContext));
1697   llvm::Constant *Zeros[] = { Zero, Zero };
1698 
1699   // If we don't already have it, get _NSConstantStringClassReference.
1700   if (!NSConstantStringClassRef) {
1701     const llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
1702     Ty = llvm::ArrayType::get(Ty, 0);
1703     llvm::Constant *GV = CreateRuntimeVariable(Ty,
1704                                         Features.ObjCNonFragileABI ?
1705                                         "OBJC_CLASS_$_NSConstantString" :
1706                                         "_NSConstantStringClassReference");
1707     // Decay array -> ptr
1708     NSConstantStringClassRef =
1709       llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2);
1710   }
1711 
1712   QualType NSTy = getContext().getNSConstantStringType();
1713 
1714   const llvm::StructType *STy =
1715   cast<llvm::StructType>(getTypes().ConvertType(NSTy));
1716 
1717   std::vector<llvm::Constant*> Fields(3);
1718 
1719   // Class pointer.
1720   Fields[0] = NSConstantStringClassRef;
1721 
1722   // String pointer.
1723   llvm::Constant *C = llvm::ConstantArray::get(VMContext, Entry.getKey().str());
1724 
1725   llvm::GlobalValue::LinkageTypes Linkage;
1726   bool isConstant;
1727   if (isUTF16) {
1728     // FIXME: why do utf strings get "_" labels instead of "L" labels?
1729     Linkage = llvm::GlobalValue::InternalLinkage;
1730     // Note: -fwritable-strings doesn't make unicode NSStrings writable, but
1731     // does make plain ascii ones writable.
1732     isConstant = true;
1733   } else {
1734     Linkage = llvm::GlobalValue::PrivateLinkage;
1735     isConstant = !Features.WritableStrings;
1736   }
1737 
1738   llvm::GlobalVariable *GV =
1739   new llvm::GlobalVariable(getModule(), C->getType(), isConstant, Linkage, C,
1740                            ".str");
1741   if (isUTF16) {
1742     CharUnits Align = getContext().getTypeAlignInChars(getContext().ShortTy);
1743     GV->setAlignment(Align.getQuantity());
1744   }
1745   Fields[1] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2);
1746 
1747   // String length.
1748   const llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy);
1749   Fields[2] = llvm::ConstantInt::get(Ty, StringLength);
1750 
1751   // The struct.
1752   C = llvm::ConstantStruct::get(STy, Fields);
1753   GV = new llvm::GlobalVariable(getModule(), C->getType(), true,
1754                                 llvm::GlobalVariable::PrivateLinkage, C,
1755                                 "_unnamed_nsstring_");
1756   // FIXME. Fix section.
1757   if (const char *Sect =
1758         Features.ObjCNonFragileABI
1759           ? getContext().Target.getNSStringNonFragileABISection()
1760           : getContext().Target.getNSStringSection())
1761     GV->setSection(Sect);
1762   Entry.setValue(GV);
1763 
1764   return GV;
1765 }
1766 
1767 /// GetStringForStringLiteral - Return the appropriate bytes for a
1768 /// string literal, properly padded to match the literal type.
1769 std::string CodeGenModule::GetStringForStringLiteral(const StringLiteral *E) {
1770   const char *StrData = E->getStrData();
1771   unsigned Len = E->getByteLength();
1772 
1773   const ConstantArrayType *CAT =
1774     getContext().getAsConstantArrayType(E->getType());
1775   assert(CAT && "String isn't pointer or array!");
1776 
1777   // Resize the string to the right size.
1778   std::string Str(StrData, StrData+Len);
1779   uint64_t RealLen = CAT->getSize().getZExtValue();
1780 
1781   if (E->isWide())
1782     RealLen *= getContext().Target.getWCharWidth()/8;
1783 
1784   Str.resize(RealLen, '\0');
1785 
1786   return Str;
1787 }
1788 
1789 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a
1790 /// constant array for the given string literal.
1791 llvm::Constant *
1792 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S) {
1793   // FIXME: This can be more efficient.
1794   // FIXME: We shouldn't need to bitcast the constant in the wide string case.
1795   llvm::Constant *C = GetAddrOfConstantString(GetStringForStringLiteral(S));
1796   if (S->isWide()) {
1797     llvm::Type *DestTy =
1798         llvm::PointerType::getUnqual(getTypes().ConvertType(S->getType()));
1799     C = llvm::ConstantExpr::getBitCast(C, DestTy);
1800   }
1801   return C;
1802 }
1803 
1804 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant
1805 /// array for the given ObjCEncodeExpr node.
1806 llvm::Constant *
1807 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) {
1808   std::string Str;
1809   getContext().getObjCEncodingForType(E->getEncodedType(), Str);
1810 
1811   return GetAddrOfConstantCString(Str);
1812 }
1813 
1814 
1815 /// GenerateWritableString -- Creates storage for a string literal.
1816 static llvm::Constant *GenerateStringLiteral(const std::string &str,
1817                                              bool constant,
1818                                              CodeGenModule &CGM,
1819                                              const char *GlobalName) {
1820   // Create Constant for this string literal. Don't add a '\0'.
1821   llvm::Constant *C =
1822       llvm::ConstantArray::get(CGM.getLLVMContext(), str, false);
1823 
1824   // Create a global variable for this string
1825   return new llvm::GlobalVariable(CGM.getModule(), C->getType(), constant,
1826                                   llvm::GlobalValue::PrivateLinkage,
1827                                   C, GlobalName);
1828 }
1829 
1830 /// GetAddrOfConstantString - Returns a pointer to a character array
1831 /// containing the literal. This contents are exactly that of the
1832 /// given string, i.e. it will not be null terminated automatically;
1833 /// see GetAddrOfConstantCString. Note that whether the result is
1834 /// actually a pointer to an LLVM constant depends on
1835 /// Feature.WriteableStrings.
1836 ///
1837 /// The result has pointer to array type.
1838 llvm::Constant *CodeGenModule::GetAddrOfConstantString(const std::string &str,
1839                                                        const char *GlobalName) {
1840   bool IsConstant = !Features.WritableStrings;
1841 
1842   // Get the default prefix if a name wasn't specified.
1843   if (!GlobalName)
1844     GlobalName = ".str";
1845 
1846   // Don't share any string literals if strings aren't constant.
1847   if (!IsConstant)
1848     return GenerateStringLiteral(str, false, *this, GlobalName);
1849 
1850   llvm::StringMapEntry<llvm::Constant *> &Entry =
1851     ConstantStringMap.GetOrCreateValue(&str[0], &str[str.length()]);
1852 
1853   if (Entry.getValue())
1854     return Entry.getValue();
1855 
1856   // Create a global variable for this.
1857   llvm::Constant *C = GenerateStringLiteral(str, true, *this, GlobalName);
1858   Entry.setValue(C);
1859   return C;
1860 }
1861 
1862 /// GetAddrOfConstantCString - Returns a pointer to a character
1863 /// array containing the literal and a terminating '\-'
1864 /// character. The result has pointer to array type.
1865 llvm::Constant *CodeGenModule::GetAddrOfConstantCString(const std::string &str,
1866                                                         const char *GlobalName){
1867   return GetAddrOfConstantString(str + '\0', GlobalName);
1868 }
1869 
1870 /// EmitObjCPropertyImplementations - Emit information for synthesized
1871 /// properties for an implementation.
1872 void CodeGenModule::EmitObjCPropertyImplementations(const
1873                                                     ObjCImplementationDecl *D) {
1874   for (ObjCImplementationDecl::propimpl_iterator
1875          i = D->propimpl_begin(), e = D->propimpl_end(); i != e; ++i) {
1876     ObjCPropertyImplDecl *PID = *i;
1877 
1878     // Dynamic is just for type-checking.
1879     if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) {
1880       ObjCPropertyDecl *PD = PID->getPropertyDecl();
1881 
1882       // Determine which methods need to be implemented, some may have
1883       // been overridden. Note that ::isSynthesized is not the method
1884       // we want, that just indicates if the decl came from a
1885       // property. What we want to know is if the method is defined in
1886       // this implementation.
1887       if (!D->getInstanceMethod(PD->getGetterName()))
1888         CodeGenFunction(*this).GenerateObjCGetter(
1889                                  const_cast<ObjCImplementationDecl *>(D), PID);
1890       if (!PD->isReadOnly() &&
1891           !D->getInstanceMethod(PD->getSetterName()))
1892         CodeGenFunction(*this).GenerateObjCSetter(
1893                                  const_cast<ObjCImplementationDecl *>(D), PID);
1894     }
1895   }
1896 }
1897 
1898 /// EmitObjCIvarInitializations - Emit information for ivar initialization
1899 /// for an implementation.
1900 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) {
1901   if (!Features.NeXTRuntime || D->getNumIvarInitializers() == 0)
1902     return;
1903   DeclContext* DC = const_cast<DeclContext*>(dyn_cast<DeclContext>(D));
1904   assert(DC && "EmitObjCIvarInitializations - null DeclContext");
1905   IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct");
1906   Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
1907   ObjCMethodDecl *DTORMethod = ObjCMethodDecl::Create(getContext(),
1908                                                   D->getLocation(),
1909                                                   D->getLocation(), cxxSelector,
1910                                                   getContext().VoidTy, 0,
1911                                                   DC, true, false, true,
1912                                                   ObjCMethodDecl::Required);
1913   D->addInstanceMethod(DTORMethod);
1914   CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false);
1915 
1916   II = &getContext().Idents.get(".cxx_construct");
1917   cxxSelector = getContext().Selectors.getSelector(0, &II);
1918   // The constructor returns 'self'.
1919   ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(getContext(),
1920                                                 D->getLocation(),
1921                                                 D->getLocation(), cxxSelector,
1922                                                 getContext().getObjCIdType(), 0,
1923                                                 DC, true, false, true,
1924                                                 ObjCMethodDecl::Required);
1925   D->addInstanceMethod(CTORMethod);
1926   CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true);
1927 
1928 
1929 }
1930 
1931 /// EmitNamespace - Emit all declarations in a namespace.
1932 void CodeGenModule::EmitNamespace(const NamespaceDecl *ND) {
1933   for (RecordDecl::decl_iterator I = ND->decls_begin(), E = ND->decls_end();
1934        I != E; ++I)
1935     EmitTopLevelDecl(*I);
1936 }
1937 
1938 // EmitLinkageSpec - Emit all declarations in a linkage spec.
1939 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) {
1940   if (LSD->getLanguage() != LinkageSpecDecl::lang_c &&
1941       LSD->getLanguage() != LinkageSpecDecl::lang_cxx) {
1942     ErrorUnsupported(LSD, "linkage spec");
1943     return;
1944   }
1945 
1946   for (RecordDecl::decl_iterator I = LSD->decls_begin(), E = LSD->decls_end();
1947        I != E; ++I)
1948     EmitTopLevelDecl(*I);
1949 }
1950 
1951 /// EmitTopLevelDecl - Emit code for a single top level declaration.
1952 void CodeGenModule::EmitTopLevelDecl(Decl *D) {
1953   // If an error has occurred, stop code generation, but continue
1954   // parsing and semantic analysis (to ensure all warnings and errors
1955   // are emitted).
1956   if (Diags.hasErrorOccurred())
1957     return;
1958 
1959   // Ignore dependent declarations.
1960   if (D->getDeclContext() && D->getDeclContext()->isDependentContext())
1961     return;
1962 
1963   switch (D->getKind()) {
1964   case Decl::CXXConversion:
1965   case Decl::CXXMethod:
1966   case Decl::Function:
1967     // Skip function templates
1968     if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate())
1969       return;
1970 
1971     EmitGlobal(cast<FunctionDecl>(D));
1972     break;
1973 
1974   case Decl::Var:
1975     EmitGlobal(cast<VarDecl>(D));
1976     break;
1977 
1978   // C++ Decls
1979   case Decl::Namespace:
1980     EmitNamespace(cast<NamespaceDecl>(D));
1981     break;
1982     // No code generation needed.
1983   case Decl::UsingShadow:
1984   case Decl::Using:
1985   case Decl::UsingDirective:
1986   case Decl::ClassTemplate:
1987   case Decl::FunctionTemplate:
1988   case Decl::NamespaceAlias:
1989     break;
1990   case Decl::CXXConstructor:
1991     // Skip function templates
1992     if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate())
1993       return;
1994 
1995     EmitCXXConstructors(cast<CXXConstructorDecl>(D));
1996     break;
1997   case Decl::CXXDestructor:
1998     EmitCXXDestructors(cast<CXXDestructorDecl>(D));
1999     break;
2000 
2001   case Decl::StaticAssert:
2002     // Nothing to do.
2003     break;
2004 
2005   // Objective-C Decls
2006 
2007   // Forward declarations, no (immediate) code generation.
2008   case Decl::ObjCClass:
2009   case Decl::ObjCForwardProtocol:
2010   case Decl::ObjCCategory:
2011   case Decl::ObjCInterface:
2012     break;
2013 
2014   case Decl::ObjCProtocol:
2015     Runtime->GenerateProtocol(cast<ObjCProtocolDecl>(D));
2016     break;
2017 
2018   case Decl::ObjCCategoryImpl:
2019     // Categories have properties but don't support synthesize so we
2020     // can ignore them here.
2021     Runtime->GenerateCategory(cast<ObjCCategoryImplDecl>(D));
2022     break;
2023 
2024   case Decl::ObjCImplementation: {
2025     ObjCImplementationDecl *OMD = cast<ObjCImplementationDecl>(D);
2026     EmitObjCPropertyImplementations(OMD);
2027     EmitObjCIvarInitializations(OMD);
2028     Runtime->GenerateClass(OMD);
2029     break;
2030   }
2031   case Decl::ObjCMethod: {
2032     ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(D);
2033     // If this is not a prototype, emit the body.
2034     if (OMD->getBody())
2035       CodeGenFunction(*this).GenerateObjCMethod(OMD);
2036     break;
2037   }
2038   case Decl::ObjCCompatibleAlias:
2039     // compatibility-alias is a directive and has no code gen.
2040     break;
2041 
2042   case Decl::LinkageSpec:
2043     EmitLinkageSpec(cast<LinkageSpecDecl>(D));
2044     break;
2045 
2046   case Decl::FileScopeAsm: {
2047     FileScopeAsmDecl *AD = cast<FileScopeAsmDecl>(D);
2048     llvm::StringRef AsmString = AD->getAsmString()->getString();
2049 
2050     const std::string &S = getModule().getModuleInlineAsm();
2051     if (S.empty())
2052       getModule().setModuleInlineAsm(AsmString);
2053     else
2054       getModule().setModuleInlineAsm(S + '\n' + AsmString.str());
2055     break;
2056   }
2057 
2058   default:
2059     // Make sure we handled everything we should, every other kind is a
2060     // non-top-level decl.  FIXME: Would be nice to have an isTopLevelDeclKind
2061     // function. Need to recode Decl::Kind to do that easily.
2062     assert(isa<TypeDecl>(D) && "Unsupported decl kind");
2063   }
2064 }
2065 
2066 /// Turns the given pointer into a constant.
2067 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context,
2068                                           const void *Ptr) {
2069   uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr);
2070   const llvm::Type *i64 = llvm::Type::getInt64Ty(Context);
2071   return llvm::ConstantInt::get(i64, PtrInt);
2072 }
2073 
2074 static void EmitGlobalDeclMetadata(CodeGenModule &CGM,
2075                                    llvm::NamedMDNode *&GlobalMetadata,
2076                                    GlobalDecl D,
2077                                    llvm::GlobalValue *Addr) {
2078   if (!GlobalMetadata)
2079     GlobalMetadata =
2080       CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs");
2081 
2082   // TODO: should we report variant information for ctors/dtors?
2083   llvm::Value *Ops[] = {
2084     Addr,
2085     GetPointerConstant(CGM.getLLVMContext(), D.getDecl())
2086   };
2087   GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops, 2));
2088 }
2089 
2090 /// Emits metadata nodes associating all the global values in the
2091 /// current module with the Decls they came from.  This is useful for
2092 /// projects using IR gen as a subroutine.
2093 ///
2094 /// Since there's currently no way to associate an MDNode directly
2095 /// with an llvm::GlobalValue, we create a global named metadata
2096 /// with the name 'clang.global.decl.ptrs'.
2097 void CodeGenModule::EmitDeclMetadata() {
2098   llvm::NamedMDNode *GlobalMetadata = 0;
2099 
2100   // StaticLocalDeclMap
2101   for (llvm::DenseMap<GlobalDecl,llvm::StringRef>::iterator
2102          I = MangledDeclNames.begin(), E = MangledDeclNames.end();
2103        I != E; ++I) {
2104     llvm::GlobalValue *Addr = getModule().getNamedValue(I->second);
2105     EmitGlobalDeclMetadata(*this, GlobalMetadata, I->first, Addr);
2106   }
2107 }
2108 
2109 /// Emits metadata nodes for all the local variables in the current
2110 /// function.
2111 void CodeGenFunction::EmitDeclMetadata() {
2112   if (LocalDeclMap.empty()) return;
2113 
2114   llvm::LLVMContext &Context = getLLVMContext();
2115 
2116   // Find the unique metadata ID for this name.
2117   unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr");
2118 
2119   llvm::NamedMDNode *GlobalMetadata = 0;
2120 
2121   for (llvm::DenseMap<const Decl*, llvm::Value*>::iterator
2122          I = LocalDeclMap.begin(), E = LocalDeclMap.end(); I != E; ++I) {
2123     const Decl *D = I->first;
2124     llvm::Value *Addr = I->second;
2125 
2126     if (llvm::AllocaInst *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) {
2127       llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D);
2128       Alloca->setMetadata(DeclPtrKind, llvm::MDNode::get(Context, &DAddr, 1));
2129     } else if (llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>(Addr)) {
2130       GlobalDecl GD = GlobalDecl(cast<VarDecl>(D));
2131       EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV);
2132     }
2133   }
2134 }
2135