1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This coordinates the per-module state used while generating code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenModule.h" 15 #include "CGDebugInfo.h" 16 #include "CodeGenFunction.h" 17 #include "CGCall.h" 18 #include "CGObjCRuntime.h" 19 #include "Mangle.h" 20 #include "TargetInfo.h" 21 #include "clang/Frontend/CodeGenOptions.h" 22 #include "clang/AST/ASTContext.h" 23 #include "clang/AST/CharUnits.h" 24 #include "clang/AST/DeclObjC.h" 25 #include "clang/AST/DeclCXX.h" 26 #include "clang/AST/DeclTemplate.h" 27 #include "clang/AST/RecordLayout.h" 28 #include "clang/Basic/Builtins.h" 29 #include "clang/Basic/Diagnostic.h" 30 #include "clang/Basic/SourceManager.h" 31 #include "clang/Basic/TargetInfo.h" 32 #include "clang/Basic/ConvertUTF.h" 33 #include "llvm/CallingConv.h" 34 #include "llvm/Module.h" 35 #include "llvm/Intrinsics.h" 36 #include "llvm/LLVMContext.h" 37 #include "llvm/ADT/Triple.h" 38 #include "llvm/Target/TargetData.h" 39 #include "llvm/Support/CallSite.h" 40 #include "llvm/Support/ErrorHandling.h" 41 using namespace clang; 42 using namespace CodeGen; 43 44 45 CodeGenModule::CodeGenModule(ASTContext &C, const CodeGenOptions &CGO, 46 llvm::Module &M, const llvm::TargetData &TD, 47 Diagnostic &diags) 48 : BlockModule(C, M, TD, Types, *this), Context(C), 49 Features(C.getLangOptions()), CodeGenOpts(CGO), TheModule(M), 50 TheTargetData(TD), TheTargetCodeGenInfo(0), Diags(diags), 51 Types(C, M, TD, getTargetCodeGenInfo().getABIInfo()), 52 VTables(*this), Runtime(0), ABI(0), 53 CFConstantStringClassRef(0), 54 NSConstantStringClassRef(0), 55 VMContext(M.getContext()) { 56 57 if (!Features.ObjC1) 58 Runtime = 0; 59 else if (!Features.NeXTRuntime) 60 Runtime = CreateGNUObjCRuntime(*this); 61 else if (Features.ObjCNonFragileABI) 62 Runtime = CreateMacNonFragileABIObjCRuntime(*this); 63 else 64 Runtime = CreateMacObjCRuntime(*this); 65 66 if (!Features.CPlusPlus) 67 ABI = 0; 68 else createCXXABI(); 69 70 // If debug info generation is enabled, create the CGDebugInfo object. 71 DebugInfo = CodeGenOpts.DebugInfo ? new CGDebugInfo(*this) : 0; 72 } 73 74 CodeGenModule::~CodeGenModule() { 75 delete Runtime; 76 delete ABI; 77 delete DebugInfo; 78 } 79 80 void CodeGenModule::createObjCRuntime() { 81 if (!Features.NeXTRuntime) 82 Runtime = CreateGNUObjCRuntime(*this); 83 else if (Features.ObjCNonFragileABI) 84 Runtime = CreateMacNonFragileABIObjCRuntime(*this); 85 else 86 Runtime = CreateMacObjCRuntime(*this); 87 } 88 89 void CodeGenModule::createCXXABI() { 90 if (Context.Target.getCXXABI() == "microsoft") 91 ABI = CreateMicrosoftCXXABI(*this); 92 else 93 ABI = CreateItaniumCXXABI(*this); 94 } 95 96 void CodeGenModule::Release() { 97 EmitDeferred(); 98 EmitCXXGlobalInitFunc(); 99 EmitCXXGlobalDtorFunc(); 100 if (Runtime) 101 if (llvm::Function *ObjCInitFunction = Runtime->ModuleInitFunction()) 102 AddGlobalCtor(ObjCInitFunction); 103 EmitCtorList(GlobalCtors, "llvm.global_ctors"); 104 EmitCtorList(GlobalDtors, "llvm.global_dtors"); 105 EmitAnnotations(); 106 EmitLLVMUsed(); 107 108 if (getCodeGenOpts().EmitDeclMetadata) 109 EmitDeclMetadata(); 110 } 111 112 bool CodeGenModule::isTargetDarwin() const { 113 return getContext().Target.getTriple().getOS() == llvm::Triple::Darwin; 114 } 115 116 /// ErrorUnsupported - Print out an error that codegen doesn't support the 117 /// specified stmt yet. 118 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type, 119 bool OmitOnError) { 120 if (OmitOnError && getDiags().hasErrorOccurred()) 121 return; 122 unsigned DiagID = getDiags().getCustomDiagID(Diagnostic::Error, 123 "cannot compile this %0 yet"); 124 std::string Msg = Type; 125 getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID) 126 << Msg << S->getSourceRange(); 127 } 128 129 /// ErrorUnsupported - Print out an error that codegen doesn't support the 130 /// specified decl yet. 131 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type, 132 bool OmitOnError) { 133 if (OmitOnError && getDiags().hasErrorOccurred()) 134 return; 135 unsigned DiagID = getDiags().getCustomDiagID(Diagnostic::Error, 136 "cannot compile this %0 yet"); 137 std::string Msg = Type; 138 getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg; 139 } 140 141 LangOptions::VisibilityMode 142 CodeGenModule::getDeclVisibilityMode(const Decl *D) const { 143 if (const VarDecl *VD = dyn_cast<VarDecl>(D)) 144 if (VD->getStorageClass() == VarDecl::PrivateExtern) 145 return LangOptions::Hidden; 146 147 if (const VisibilityAttr *attr = D->getAttr<VisibilityAttr>()) { 148 switch (attr->getVisibility()) { 149 default: assert(0 && "Unknown visibility!"); 150 case VisibilityAttr::DefaultVisibility: 151 return LangOptions::Default; 152 case VisibilityAttr::HiddenVisibility: 153 return LangOptions::Hidden; 154 case VisibilityAttr::ProtectedVisibility: 155 return LangOptions::Protected; 156 } 157 } 158 159 if (getLangOptions().CPlusPlus) { 160 // Entities subject to an explicit instantiation declaration get default 161 // visibility. 162 if (const FunctionDecl *Function = dyn_cast<FunctionDecl>(D)) { 163 if (Function->getTemplateSpecializationKind() 164 == TSK_ExplicitInstantiationDeclaration) 165 return LangOptions::Default; 166 } else if (const ClassTemplateSpecializationDecl *ClassSpec 167 = dyn_cast<ClassTemplateSpecializationDecl>(D)) { 168 if (ClassSpec->getSpecializationKind() 169 == TSK_ExplicitInstantiationDeclaration) 170 return LangOptions::Default; 171 } else if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(D)) { 172 if (Record->getTemplateSpecializationKind() 173 == TSK_ExplicitInstantiationDeclaration) 174 return LangOptions::Default; 175 } else if (const VarDecl *Var = dyn_cast<VarDecl>(D)) { 176 if (Var->isStaticDataMember() && 177 (Var->getTemplateSpecializationKind() 178 == TSK_ExplicitInstantiationDeclaration)) 179 return LangOptions::Default; 180 } 181 182 // If -fvisibility-inlines-hidden was provided, then inline C++ member 183 // functions get "hidden" visibility by default. 184 if (getLangOptions().InlineVisibilityHidden) 185 if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) 186 if (Method->isInlined()) 187 return LangOptions::Hidden; 188 } 189 190 // This decl should have the same visibility as its parent. 191 if (const DeclContext *DC = D->getDeclContext()) 192 return getDeclVisibilityMode(cast<Decl>(DC)); 193 194 return getLangOptions().getVisibilityMode(); 195 } 196 197 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV, 198 const Decl *D) const { 199 // Internal definitions always have default visibility. 200 if (GV->hasLocalLinkage()) { 201 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 202 return; 203 } 204 205 switch (getDeclVisibilityMode(D)) { 206 default: assert(0 && "Unknown visibility!"); 207 case LangOptions::Default: 208 return GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 209 case LangOptions::Hidden: 210 return GV->setVisibility(llvm::GlobalValue::HiddenVisibility); 211 case LangOptions::Protected: 212 return GV->setVisibility(llvm::GlobalValue::ProtectedVisibility); 213 } 214 } 215 216 llvm::StringRef CodeGenModule::getMangledName(GlobalDecl GD) { 217 const NamedDecl *ND = cast<NamedDecl>(GD.getDecl()); 218 219 llvm::StringRef &Str = MangledDeclNames[GD.getCanonicalDecl()]; 220 if (!Str.empty()) 221 return Str; 222 223 if (!getMangleContext().shouldMangleDeclName(ND)) { 224 IdentifierInfo *II = ND->getIdentifier(); 225 assert(II && "Attempt to mangle unnamed decl."); 226 227 Str = II->getName(); 228 return Str; 229 } 230 231 llvm::SmallString<256> Buffer; 232 if (const CXXConstructorDecl *D = dyn_cast<CXXConstructorDecl>(ND)) 233 getMangleContext().mangleCXXCtor(D, GD.getCtorType(), Buffer); 234 else if (const CXXDestructorDecl *D = dyn_cast<CXXDestructorDecl>(ND)) 235 getMangleContext().mangleCXXDtor(D, GD.getDtorType(), Buffer); 236 else if (const BlockDecl *BD = dyn_cast<BlockDecl>(ND)) 237 getMangleContext().mangleBlock(GD, BD, Buffer); 238 else 239 getMangleContext().mangleName(ND, Buffer); 240 241 // Allocate space for the mangled name. 242 size_t Length = Buffer.size(); 243 char *Name = MangledNamesAllocator.Allocate<char>(Length); 244 std::copy(Buffer.begin(), Buffer.end(), Name); 245 246 Str = llvm::StringRef(Name, Length); 247 248 return Str; 249 } 250 251 void CodeGenModule::getMangledName(GlobalDecl GD, MangleBuffer &Buffer, 252 const BlockDecl *BD) { 253 getMangleContext().mangleBlock(GD, BD, Buffer.getBuffer()); 254 } 255 256 llvm::GlobalValue *CodeGenModule::GetGlobalValue(llvm::StringRef Name) { 257 return getModule().getNamedValue(Name); 258 } 259 260 /// AddGlobalCtor - Add a function to the list that will be called before 261 /// main() runs. 262 void CodeGenModule::AddGlobalCtor(llvm::Function * Ctor, int Priority) { 263 // FIXME: Type coercion of void()* types. 264 GlobalCtors.push_back(std::make_pair(Ctor, Priority)); 265 } 266 267 /// AddGlobalDtor - Add a function to the list that will be called 268 /// when the module is unloaded. 269 void CodeGenModule::AddGlobalDtor(llvm::Function * Dtor, int Priority) { 270 // FIXME: Type coercion of void()* types. 271 GlobalDtors.push_back(std::make_pair(Dtor, Priority)); 272 } 273 274 void CodeGenModule::EmitCtorList(const CtorList &Fns, const char *GlobalName) { 275 // Ctor function type is void()*. 276 llvm::FunctionType* CtorFTy = 277 llvm::FunctionType::get(llvm::Type::getVoidTy(VMContext), 278 std::vector<const llvm::Type*>(), 279 false); 280 llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy); 281 282 // Get the type of a ctor entry, { i32, void ()* }. 283 llvm::StructType* CtorStructTy = 284 llvm::StructType::get(VMContext, llvm::Type::getInt32Ty(VMContext), 285 llvm::PointerType::getUnqual(CtorFTy), NULL); 286 287 // Construct the constructor and destructor arrays. 288 std::vector<llvm::Constant*> Ctors; 289 for (CtorList::const_iterator I = Fns.begin(), E = Fns.end(); I != E; ++I) { 290 std::vector<llvm::Constant*> S; 291 S.push_back(llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext), 292 I->second, false)); 293 S.push_back(llvm::ConstantExpr::getBitCast(I->first, CtorPFTy)); 294 Ctors.push_back(llvm::ConstantStruct::get(CtorStructTy, S)); 295 } 296 297 if (!Ctors.empty()) { 298 llvm::ArrayType *AT = llvm::ArrayType::get(CtorStructTy, Ctors.size()); 299 new llvm::GlobalVariable(TheModule, AT, false, 300 llvm::GlobalValue::AppendingLinkage, 301 llvm::ConstantArray::get(AT, Ctors), 302 GlobalName); 303 } 304 } 305 306 void CodeGenModule::EmitAnnotations() { 307 if (Annotations.empty()) 308 return; 309 310 // Create a new global variable for the ConstantStruct in the Module. 311 llvm::Constant *Array = 312 llvm::ConstantArray::get(llvm::ArrayType::get(Annotations[0]->getType(), 313 Annotations.size()), 314 Annotations); 315 llvm::GlobalValue *gv = 316 new llvm::GlobalVariable(TheModule, Array->getType(), false, 317 llvm::GlobalValue::AppendingLinkage, Array, 318 "llvm.global.annotations"); 319 gv->setSection("llvm.metadata"); 320 } 321 322 static CodeGenModule::GVALinkage 323 GetLinkageForFunction(ASTContext &Context, const FunctionDecl *FD, 324 const LangOptions &Features) { 325 CodeGenModule::GVALinkage External = CodeGenModule::GVA_StrongExternal; 326 327 Linkage L = FD->getLinkage(); 328 if (L == ExternalLinkage && Context.getLangOptions().CPlusPlus && 329 FD->getType()->getLinkage() == UniqueExternalLinkage) 330 L = UniqueExternalLinkage; 331 332 switch (L) { 333 case NoLinkage: 334 case InternalLinkage: 335 case UniqueExternalLinkage: 336 return CodeGenModule::GVA_Internal; 337 338 case ExternalLinkage: 339 switch (FD->getTemplateSpecializationKind()) { 340 case TSK_Undeclared: 341 case TSK_ExplicitSpecialization: 342 External = CodeGenModule::GVA_StrongExternal; 343 break; 344 345 case TSK_ExplicitInstantiationDefinition: 346 return CodeGenModule::GVA_ExplicitTemplateInstantiation; 347 348 case TSK_ExplicitInstantiationDeclaration: 349 case TSK_ImplicitInstantiation: 350 External = CodeGenModule::GVA_TemplateInstantiation; 351 break; 352 } 353 } 354 355 if (!FD->isInlined()) 356 return External; 357 358 if (!Features.CPlusPlus || FD->hasAttr<GNUInlineAttr>()) { 359 // GNU or C99 inline semantics. Determine whether this symbol should be 360 // externally visible. 361 if (FD->isInlineDefinitionExternallyVisible()) 362 return External; 363 364 // C99 inline semantics, where the symbol is not externally visible. 365 return CodeGenModule::GVA_C99Inline; 366 } 367 368 // C++0x [temp.explicit]p9: 369 // [ Note: The intent is that an inline function that is the subject of 370 // an explicit instantiation declaration will still be implicitly 371 // instantiated when used so that the body can be considered for 372 // inlining, but that no out-of-line copy of the inline function would be 373 // generated in the translation unit. -- end note ] 374 if (FD->getTemplateSpecializationKind() 375 == TSK_ExplicitInstantiationDeclaration) 376 return CodeGenModule::GVA_C99Inline; 377 378 return CodeGenModule::GVA_CXXInline; 379 } 380 381 llvm::GlobalValue::LinkageTypes 382 CodeGenModule::getFunctionLinkage(const FunctionDecl *D) { 383 GVALinkage Linkage = GetLinkageForFunction(getContext(), D, Features); 384 385 if (Linkage == GVA_Internal) 386 return llvm::Function::InternalLinkage; 387 388 if (D->hasAttr<DLLExportAttr>()) 389 return llvm::Function::DLLExportLinkage; 390 391 if (D->hasAttr<WeakAttr>()) 392 return llvm::Function::WeakAnyLinkage; 393 394 // In C99 mode, 'inline' functions are guaranteed to have a strong 395 // definition somewhere else, so we can use available_externally linkage. 396 if (Linkage == GVA_C99Inline) 397 return llvm::Function::AvailableExternallyLinkage; 398 399 // In C++, the compiler has to emit a definition in every translation unit 400 // that references the function. We should use linkonce_odr because 401 // a) if all references in this translation unit are optimized away, we 402 // don't need to codegen it. b) if the function persists, it needs to be 403 // merged with other definitions. c) C++ has the ODR, so we know the 404 // definition is dependable. 405 if (Linkage == GVA_CXXInline || Linkage == GVA_TemplateInstantiation) 406 return llvm::Function::LinkOnceODRLinkage; 407 408 // An explicit instantiation of a template has weak linkage, since 409 // explicit instantiations can occur in multiple translation units 410 // and must all be equivalent. However, we are not allowed to 411 // throw away these explicit instantiations. 412 if (Linkage == GVA_ExplicitTemplateInstantiation) 413 return llvm::Function::WeakODRLinkage; 414 415 // Otherwise, we have strong external linkage. 416 assert(Linkage == GVA_StrongExternal); 417 return llvm::Function::ExternalLinkage; 418 } 419 420 421 /// SetFunctionDefinitionAttributes - Set attributes for a global. 422 /// 423 /// FIXME: This is currently only done for aliases and functions, but not for 424 /// variables (these details are set in EmitGlobalVarDefinition for variables). 425 void CodeGenModule::SetFunctionDefinitionAttributes(const FunctionDecl *D, 426 llvm::GlobalValue *GV) { 427 SetCommonAttributes(D, GV); 428 } 429 430 void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D, 431 const CGFunctionInfo &Info, 432 llvm::Function *F) { 433 unsigned CallingConv; 434 AttributeListType AttributeList; 435 ConstructAttributeList(Info, D, AttributeList, CallingConv); 436 F->setAttributes(llvm::AttrListPtr::get(AttributeList.begin(), 437 AttributeList.size())); 438 F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv)); 439 } 440 441 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D, 442 llvm::Function *F) { 443 if (!Features.Exceptions && !Features.ObjCNonFragileABI) 444 F->addFnAttr(llvm::Attribute::NoUnwind); 445 446 if (D->hasAttr<AlwaysInlineAttr>()) 447 F->addFnAttr(llvm::Attribute::AlwaysInline); 448 449 if (D->hasAttr<NoInlineAttr>()) 450 F->addFnAttr(llvm::Attribute::NoInline); 451 452 if (Features.getStackProtectorMode() == LangOptions::SSPOn) 453 F->addFnAttr(llvm::Attribute::StackProtect); 454 else if (Features.getStackProtectorMode() == LangOptions::SSPReq) 455 F->addFnAttr(llvm::Attribute::StackProtectReq); 456 457 if (const AlignedAttr *AA = D->getAttr<AlignedAttr>()) { 458 unsigned width = Context.Target.getCharWidth(); 459 F->setAlignment(AA->getAlignment() / width); 460 while ((AA = AA->getNext<AlignedAttr>())) 461 F->setAlignment(std::max(F->getAlignment(), AA->getAlignment() / width)); 462 } 463 // C++ ABI requires 2-byte alignment for member functions. 464 if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D)) 465 F->setAlignment(2); 466 } 467 468 void CodeGenModule::SetCommonAttributes(const Decl *D, 469 llvm::GlobalValue *GV) { 470 setGlobalVisibility(GV, D); 471 472 if (D->hasAttr<UsedAttr>()) 473 AddUsedGlobal(GV); 474 475 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) 476 GV->setSection(SA->getName()); 477 478 getTargetCodeGenInfo().SetTargetAttributes(D, GV, *this); 479 } 480 481 void CodeGenModule::SetInternalFunctionAttributes(const Decl *D, 482 llvm::Function *F, 483 const CGFunctionInfo &FI) { 484 SetLLVMFunctionAttributes(D, FI, F); 485 SetLLVMFunctionAttributesForDefinition(D, F); 486 487 F->setLinkage(llvm::Function::InternalLinkage); 488 489 SetCommonAttributes(D, F); 490 } 491 492 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD, 493 llvm::Function *F, 494 bool IsIncompleteFunction) { 495 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 496 497 if (!IsIncompleteFunction) 498 SetLLVMFunctionAttributes(FD, getTypes().getFunctionInfo(GD), F); 499 500 // Only a few attributes are set on declarations; these may later be 501 // overridden by a definition. 502 503 if (FD->hasAttr<DLLImportAttr>()) { 504 F->setLinkage(llvm::Function::DLLImportLinkage); 505 } else if (FD->hasAttr<WeakAttr>() || 506 FD->hasAttr<WeakImportAttr>()) { 507 // "extern_weak" is overloaded in LLVM; we probably should have 508 // separate linkage types for this. 509 F->setLinkage(llvm::Function::ExternalWeakLinkage); 510 } else { 511 F->setLinkage(llvm::Function::ExternalLinkage); 512 } 513 514 if (const SectionAttr *SA = FD->getAttr<SectionAttr>()) 515 F->setSection(SA->getName()); 516 } 517 518 void CodeGenModule::AddUsedGlobal(llvm::GlobalValue *GV) { 519 assert(!GV->isDeclaration() && 520 "Only globals with definition can force usage."); 521 LLVMUsed.push_back(GV); 522 } 523 524 void CodeGenModule::EmitLLVMUsed() { 525 // Don't create llvm.used if there is no need. 526 if (LLVMUsed.empty()) 527 return; 528 529 const llvm::Type *i8PTy = llvm::Type::getInt8PtrTy(VMContext); 530 531 // Convert LLVMUsed to what ConstantArray needs. 532 std::vector<llvm::Constant*> UsedArray; 533 UsedArray.resize(LLVMUsed.size()); 534 for (unsigned i = 0, e = LLVMUsed.size(); i != e; ++i) { 535 UsedArray[i] = 536 llvm::ConstantExpr::getBitCast(cast<llvm::Constant>(&*LLVMUsed[i]), 537 i8PTy); 538 } 539 540 if (UsedArray.empty()) 541 return; 542 llvm::ArrayType *ATy = llvm::ArrayType::get(i8PTy, UsedArray.size()); 543 544 llvm::GlobalVariable *GV = 545 new llvm::GlobalVariable(getModule(), ATy, false, 546 llvm::GlobalValue::AppendingLinkage, 547 llvm::ConstantArray::get(ATy, UsedArray), 548 "llvm.used"); 549 550 GV->setSection("llvm.metadata"); 551 } 552 553 void CodeGenModule::EmitDeferred() { 554 // Emit code for any potentially referenced deferred decls. Since a 555 // previously unused static decl may become used during the generation of code 556 // for a static function, iterate until no changes are made. 557 558 while (!DeferredDeclsToEmit.empty() || !DeferredVTables.empty()) { 559 if (!DeferredVTables.empty()) { 560 const CXXRecordDecl *RD = DeferredVTables.back(); 561 DeferredVTables.pop_back(); 562 getVTables().GenerateClassData(getVTableLinkage(RD), RD); 563 continue; 564 } 565 566 GlobalDecl D = DeferredDeclsToEmit.back(); 567 DeferredDeclsToEmit.pop_back(); 568 569 // Check to see if we've already emitted this. This is necessary 570 // for a couple of reasons: first, decls can end up in the 571 // deferred-decls queue multiple times, and second, decls can end 572 // up with definitions in unusual ways (e.g. by an extern inline 573 // function acquiring a strong function redefinition). Just 574 // ignore these cases. 575 // 576 // TODO: That said, looking this up multiple times is very wasteful. 577 llvm::StringRef Name = getMangledName(D); 578 llvm::GlobalValue *CGRef = GetGlobalValue(Name); 579 assert(CGRef && "Deferred decl wasn't referenced?"); 580 581 if (!CGRef->isDeclaration()) 582 continue; 583 584 // GlobalAlias::isDeclaration() defers to the aliasee, but for our 585 // purposes an alias counts as a definition. 586 if (isa<llvm::GlobalAlias>(CGRef)) 587 continue; 588 589 // Otherwise, emit the definition and move on to the next one. 590 EmitGlobalDefinition(D); 591 } 592 } 593 594 /// EmitAnnotateAttr - Generate the llvm::ConstantStruct which contains the 595 /// annotation information for a given GlobalValue. The annotation struct is 596 /// {i8 *, i8 *, i8 *, i32}. The first field is a constant expression, the 597 /// GlobalValue being annotated. The second field is the constant string 598 /// created from the AnnotateAttr's annotation. The third field is a constant 599 /// string containing the name of the translation unit. The fourth field is 600 /// the line number in the file of the annotated value declaration. 601 /// 602 /// FIXME: this does not unique the annotation string constants, as llvm-gcc 603 /// appears to. 604 /// 605 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV, 606 const AnnotateAttr *AA, 607 unsigned LineNo) { 608 llvm::Module *M = &getModule(); 609 610 // get [N x i8] constants for the annotation string, and the filename string 611 // which are the 2nd and 3rd elements of the global annotation structure. 612 const llvm::Type *SBP = llvm::Type::getInt8PtrTy(VMContext); 613 llvm::Constant *anno = llvm::ConstantArray::get(VMContext, 614 AA->getAnnotation(), true); 615 llvm::Constant *unit = llvm::ConstantArray::get(VMContext, 616 M->getModuleIdentifier(), 617 true); 618 619 // Get the two global values corresponding to the ConstantArrays we just 620 // created to hold the bytes of the strings. 621 llvm::GlobalValue *annoGV = 622 new llvm::GlobalVariable(*M, anno->getType(), false, 623 llvm::GlobalValue::PrivateLinkage, anno, 624 GV->getName()); 625 // translation unit name string, emitted into the llvm.metadata section. 626 llvm::GlobalValue *unitGV = 627 new llvm::GlobalVariable(*M, unit->getType(), false, 628 llvm::GlobalValue::PrivateLinkage, unit, 629 ".str"); 630 631 // Create the ConstantStruct for the global annotation. 632 llvm::Constant *Fields[4] = { 633 llvm::ConstantExpr::getBitCast(GV, SBP), 634 llvm::ConstantExpr::getBitCast(annoGV, SBP), 635 llvm::ConstantExpr::getBitCast(unitGV, SBP), 636 llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext), LineNo) 637 }; 638 return llvm::ConstantStruct::get(VMContext, Fields, 4, false); 639 } 640 641 static CodeGenModule::GVALinkage 642 GetLinkageForVariable(ASTContext &Context, const VarDecl *VD) { 643 // If this is a static data member, compute the kind of template 644 // specialization. Otherwise, this variable is not part of a 645 // template. 646 TemplateSpecializationKind TSK = TSK_Undeclared; 647 if (VD->isStaticDataMember()) 648 TSK = VD->getTemplateSpecializationKind(); 649 650 Linkage L = VD->getLinkage(); 651 if (L == ExternalLinkage && Context.getLangOptions().CPlusPlus && 652 VD->getType()->getLinkage() == UniqueExternalLinkage) 653 L = UniqueExternalLinkage; 654 655 switch (L) { 656 case NoLinkage: 657 case InternalLinkage: 658 case UniqueExternalLinkage: 659 return CodeGenModule::GVA_Internal; 660 661 case ExternalLinkage: 662 switch (TSK) { 663 case TSK_Undeclared: 664 case TSK_ExplicitSpecialization: 665 return CodeGenModule::GVA_StrongExternal; 666 667 case TSK_ExplicitInstantiationDeclaration: 668 llvm_unreachable("Variable should not be instantiated"); 669 // Fall through to treat this like any other instantiation. 670 671 case TSK_ExplicitInstantiationDefinition: 672 return CodeGenModule::GVA_ExplicitTemplateInstantiation; 673 674 case TSK_ImplicitInstantiation: 675 return CodeGenModule::GVA_TemplateInstantiation; 676 } 677 } 678 679 return CodeGenModule::GVA_StrongExternal; 680 } 681 682 bool CodeGenModule::MayDeferGeneration(const ValueDecl *Global) { 683 // Never defer when EmitAllDecls is specified or the decl has 684 // attribute used. 685 if (Features.EmitAllDecls || Global->hasAttr<UsedAttr>()) 686 return false; 687 688 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) { 689 // Constructors and destructors should never be deferred. 690 if (FD->hasAttr<ConstructorAttr>() || 691 FD->hasAttr<DestructorAttr>()) 692 return false; 693 694 // The key function for a class must never be deferred. 695 if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Global)) { 696 const CXXRecordDecl *RD = MD->getParent(); 697 if (MD->isOutOfLine() && RD->isDynamicClass()) { 698 const CXXMethodDecl *KeyFunction = getContext().getKeyFunction(RD); 699 if (KeyFunction && 700 KeyFunction->getCanonicalDecl() == MD->getCanonicalDecl()) 701 return false; 702 } 703 } 704 705 GVALinkage Linkage = GetLinkageForFunction(getContext(), FD, Features); 706 707 // static, static inline, always_inline, and extern inline functions can 708 // always be deferred. Normal inline functions can be deferred in C99/C++. 709 // Implicit template instantiations can also be deferred in C++. 710 if (Linkage == GVA_Internal || Linkage == GVA_C99Inline || 711 Linkage == GVA_CXXInline || Linkage == GVA_TemplateInstantiation) 712 return true; 713 return false; 714 } 715 716 const VarDecl *VD = cast<VarDecl>(Global); 717 assert(VD->isFileVarDecl() && "Invalid decl"); 718 719 // We never want to defer structs that have non-trivial constructors or 720 // destructors. 721 722 // FIXME: Handle references. 723 if (const RecordType *RT = VD->getType()->getAs<RecordType>()) { 724 if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl())) { 725 if (!RD->hasTrivialConstructor() || !RD->hasTrivialDestructor()) 726 return false; 727 } 728 } 729 730 GVALinkage L = GetLinkageForVariable(getContext(), VD); 731 if (L == GVA_Internal || L == GVA_TemplateInstantiation) { 732 if (!(VD->getInit() && VD->getInit()->HasSideEffects(Context))) 733 return true; 734 } 735 736 return false; 737 } 738 739 llvm::Constant *CodeGenModule::GetWeakRefReference(const ValueDecl *VD) { 740 const AliasAttr *AA = VD->getAttr<AliasAttr>(); 741 assert(AA && "No alias?"); 742 743 const llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType()); 744 745 // See if there is already something with the target's name in the module. 746 llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee()); 747 748 llvm::Constant *Aliasee; 749 if (isa<llvm::FunctionType>(DeclTy)) 750 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GlobalDecl()); 751 else 752 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), 753 llvm::PointerType::getUnqual(DeclTy), 0); 754 if (!Entry) { 755 llvm::GlobalValue* F = cast<llvm::GlobalValue>(Aliasee); 756 F->setLinkage(llvm::Function::ExternalWeakLinkage); 757 WeakRefReferences.insert(F); 758 } 759 760 return Aliasee; 761 } 762 763 void CodeGenModule::EmitGlobal(GlobalDecl GD) { 764 const ValueDecl *Global = cast<ValueDecl>(GD.getDecl()); 765 766 // Weak references don't produce any output by themselves. 767 if (Global->hasAttr<WeakRefAttr>()) 768 return; 769 770 // If this is an alias definition (which otherwise looks like a declaration) 771 // emit it now. 772 if (Global->hasAttr<AliasAttr>()) 773 return EmitAliasDefinition(GD); 774 775 // Ignore declarations, they will be emitted on their first use. 776 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) { 777 // Forward declarations are emitted lazily on first use. 778 if (!FD->isThisDeclarationADefinition()) 779 return; 780 } else { 781 const VarDecl *VD = cast<VarDecl>(Global); 782 assert(VD->isFileVarDecl() && "Cannot emit local var decl as global."); 783 784 if (VD->isThisDeclarationADefinition() != VarDecl::Definition) 785 return; 786 } 787 788 // Defer code generation when possible if this is a static definition, inline 789 // function etc. These we only want to emit if they are used. 790 if (!MayDeferGeneration(Global)) { 791 // Emit the definition if it can't be deferred. 792 EmitGlobalDefinition(GD); 793 return; 794 } 795 796 // If we're deferring emission of a C++ variable with an 797 // initializer, remember the order in which it appeared in the file. 798 if (getLangOptions().CPlusPlus && isa<VarDecl>(Global) && 799 cast<VarDecl>(Global)->hasInit()) { 800 DelayedCXXInitPosition[Global] = CXXGlobalInits.size(); 801 CXXGlobalInits.push_back(0); 802 } 803 804 // If the value has already been used, add it directly to the 805 // DeferredDeclsToEmit list. 806 llvm::StringRef MangledName = getMangledName(GD); 807 if (GetGlobalValue(MangledName)) 808 DeferredDeclsToEmit.push_back(GD); 809 else { 810 // Otherwise, remember that we saw a deferred decl with this name. The 811 // first use of the mangled name will cause it to move into 812 // DeferredDeclsToEmit. 813 DeferredDecls[MangledName] = GD; 814 } 815 } 816 817 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD) { 818 const ValueDecl *D = cast<ValueDecl>(GD.getDecl()); 819 820 PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(), 821 Context.getSourceManager(), 822 "Generating code for declaration"); 823 824 if (const FunctionDecl *Function = dyn_cast<FunctionDecl>(D)) { 825 // At -O0, don't generate IR for functions with available_externally 826 // linkage. 827 if (CodeGenOpts.OptimizationLevel == 0 && 828 !Function->hasAttr<AlwaysInlineAttr>() && 829 getFunctionLinkage(Function) 830 == llvm::Function::AvailableExternallyLinkage) 831 return; 832 833 if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) { 834 if (Method->isVirtual()) 835 getVTables().EmitThunks(GD); 836 837 if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(Method)) 838 return EmitCXXConstructor(CD, GD.getCtorType()); 839 840 if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(Method)) 841 return EmitCXXDestructor(DD, GD.getDtorType()); 842 } 843 844 return EmitGlobalFunctionDefinition(GD); 845 } 846 847 if (const VarDecl *VD = dyn_cast<VarDecl>(D)) 848 return EmitGlobalVarDefinition(VD); 849 850 assert(0 && "Invalid argument to EmitGlobalDefinition()"); 851 } 852 853 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the 854 /// module, create and return an llvm Function with the specified type. If there 855 /// is something in the module with the specified name, return it potentially 856 /// bitcasted to the right type. 857 /// 858 /// If D is non-null, it specifies a decl that correspond to this. This is used 859 /// to set the attributes on the function when it is first created. 860 llvm::Constant * 861 CodeGenModule::GetOrCreateLLVMFunction(llvm::StringRef MangledName, 862 const llvm::Type *Ty, 863 GlobalDecl D) { 864 // Lookup the entry, lazily creating it if necessary. 865 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 866 if (Entry) { 867 if (WeakRefReferences.count(Entry)) { 868 const FunctionDecl *FD = cast_or_null<FunctionDecl>(D.getDecl()); 869 if (FD && !FD->hasAttr<WeakAttr>()) 870 Entry->setLinkage(llvm::Function::ExternalLinkage); 871 872 WeakRefReferences.erase(Entry); 873 } 874 875 if (Entry->getType()->getElementType() == Ty) 876 return Entry; 877 878 // Make sure the result is of the correct type. 879 const llvm::Type *PTy = llvm::PointerType::getUnqual(Ty); 880 return llvm::ConstantExpr::getBitCast(Entry, PTy); 881 } 882 883 // This function doesn't have a complete type (for example, the return 884 // type is an incomplete struct). Use a fake type instead, and make 885 // sure not to try to set attributes. 886 bool IsIncompleteFunction = false; 887 888 const llvm::FunctionType *FTy; 889 if (isa<llvm::FunctionType>(Ty)) { 890 FTy = cast<llvm::FunctionType>(Ty); 891 } else { 892 FTy = llvm::FunctionType::get(llvm::Type::getVoidTy(VMContext), 893 std::vector<const llvm::Type*>(), false); 894 IsIncompleteFunction = true; 895 } 896 897 llvm::Function *F = llvm::Function::Create(FTy, 898 llvm::Function::ExternalLinkage, 899 MangledName, &getModule()); 900 assert(F->getName() == MangledName && "name was uniqued!"); 901 if (D.getDecl()) 902 SetFunctionAttributes(D, F, IsIncompleteFunction); 903 904 // This is the first use or definition of a mangled name. If there is a 905 // deferred decl with this name, remember that we need to emit it at the end 906 // of the file. 907 llvm::StringMap<GlobalDecl>::iterator DDI = DeferredDecls.find(MangledName); 908 if (DDI != DeferredDecls.end()) { 909 // Move the potentially referenced deferred decl to the DeferredDeclsToEmit 910 // list, and remove it from DeferredDecls (since we don't need it anymore). 911 DeferredDeclsToEmit.push_back(DDI->second); 912 DeferredDecls.erase(DDI); 913 } else if (const FunctionDecl *FD = cast_or_null<FunctionDecl>(D.getDecl())) { 914 // If this the first reference to a C++ inline function in a class, queue up 915 // the deferred function body for emission. These are not seen as 916 // top-level declarations. 917 if (FD->isThisDeclarationADefinition() && MayDeferGeneration(FD)) 918 DeferredDeclsToEmit.push_back(D); 919 // A called constructor which has no definition or declaration need be 920 // synthesized. 921 else if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD)) { 922 if (CD->isImplicit()) { 923 assert(CD->isUsed() && "Sema doesn't consider constructor as used."); 924 DeferredDeclsToEmit.push_back(D); 925 } 926 } else if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(FD)) { 927 if (DD->isImplicit()) { 928 assert(DD->isUsed() && "Sema doesn't consider destructor as used."); 929 DeferredDeclsToEmit.push_back(D); 930 } 931 } else if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) { 932 if (MD->isCopyAssignment() && MD->isImplicit()) { 933 assert(MD->isUsed() && "Sema doesn't consider CopyAssignment as used."); 934 DeferredDeclsToEmit.push_back(D); 935 } 936 } 937 } 938 939 // Make sure the result is of the requested type. 940 if (!IsIncompleteFunction) { 941 assert(F->getType()->getElementType() == Ty); 942 return F; 943 } 944 945 const llvm::Type *PTy = llvm::PointerType::getUnqual(Ty); 946 return llvm::ConstantExpr::getBitCast(F, PTy); 947 } 948 949 /// GetAddrOfFunction - Return the address of the given function. If Ty is 950 /// non-null, then this function will use the specified type if it has to 951 /// create it (this occurs when we see a definition of the function). 952 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD, 953 const llvm::Type *Ty) { 954 // If there was no specific requested type, just convert it now. 955 if (!Ty) 956 Ty = getTypes().ConvertType(cast<ValueDecl>(GD.getDecl())->getType()); 957 958 llvm::StringRef MangledName = getMangledName(GD); 959 return GetOrCreateLLVMFunction(MangledName, Ty, GD); 960 } 961 962 /// CreateRuntimeFunction - Create a new runtime function with the specified 963 /// type and name. 964 llvm::Constant * 965 CodeGenModule::CreateRuntimeFunction(const llvm::FunctionType *FTy, 966 llvm::StringRef Name) { 967 return GetOrCreateLLVMFunction(Name, FTy, GlobalDecl()); 968 } 969 970 static bool DeclIsConstantGlobal(ASTContext &Context, const VarDecl *D) { 971 if (!D->getType().isConstant(Context) && !D->getType()->isReferenceType()) 972 return false; 973 if (Context.getLangOptions().CPlusPlus && 974 Context.getBaseElementType(D->getType())->getAs<RecordType>()) { 975 // FIXME: We should do something fancier here! 976 return false; 977 } 978 return true; 979 } 980 981 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module, 982 /// create and return an llvm GlobalVariable with the specified type. If there 983 /// is something in the module with the specified name, return it potentially 984 /// bitcasted to the right type. 985 /// 986 /// If D is non-null, it specifies a decl that correspond to this. This is used 987 /// to set the attributes on the global when it is first created. 988 llvm::Constant * 989 CodeGenModule::GetOrCreateLLVMGlobal(llvm::StringRef MangledName, 990 const llvm::PointerType *Ty, 991 const VarDecl *D) { 992 // Lookup the entry, lazily creating it if necessary. 993 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 994 if (Entry) { 995 if (WeakRefReferences.count(Entry)) { 996 if (D && !D->hasAttr<WeakAttr>()) 997 Entry->setLinkage(llvm::Function::ExternalLinkage); 998 999 WeakRefReferences.erase(Entry); 1000 } 1001 1002 if (Entry->getType() == Ty) 1003 return Entry; 1004 1005 // Make sure the result is of the correct type. 1006 return llvm::ConstantExpr::getBitCast(Entry, Ty); 1007 } 1008 1009 // This is the first use or definition of a mangled name. If there is a 1010 // deferred decl with this name, remember that we need to emit it at the end 1011 // of the file. 1012 llvm::StringMap<GlobalDecl>::iterator DDI = DeferredDecls.find(MangledName); 1013 if (DDI != DeferredDecls.end()) { 1014 // Move the potentially referenced deferred decl to the DeferredDeclsToEmit 1015 // list, and remove it from DeferredDecls (since we don't need it anymore). 1016 DeferredDeclsToEmit.push_back(DDI->second); 1017 DeferredDecls.erase(DDI); 1018 } 1019 1020 llvm::GlobalVariable *GV = 1021 new llvm::GlobalVariable(getModule(), Ty->getElementType(), false, 1022 llvm::GlobalValue::ExternalLinkage, 1023 0, MangledName, 0, 1024 false, Ty->getAddressSpace()); 1025 1026 // Handle things which are present even on external declarations. 1027 if (D) { 1028 // FIXME: This code is overly simple and should be merged with other global 1029 // handling. 1030 GV->setConstant(DeclIsConstantGlobal(Context, D)); 1031 1032 // FIXME: Merge with other attribute handling code. 1033 if (D->getStorageClass() == VarDecl::PrivateExtern) 1034 GV->setVisibility(llvm::GlobalValue::HiddenVisibility); 1035 1036 if (D->hasAttr<WeakAttr>() || 1037 D->hasAttr<WeakImportAttr>()) 1038 GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage); 1039 1040 GV->setThreadLocal(D->isThreadSpecified()); 1041 } 1042 1043 return GV; 1044 } 1045 1046 1047 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the 1048 /// given global variable. If Ty is non-null and if the global doesn't exist, 1049 /// then it will be greated with the specified type instead of whatever the 1050 /// normal requested type would be. 1051 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D, 1052 const llvm::Type *Ty) { 1053 assert(D->hasGlobalStorage() && "Not a global variable"); 1054 QualType ASTTy = D->getType(); 1055 if (Ty == 0) 1056 Ty = getTypes().ConvertTypeForMem(ASTTy); 1057 1058 const llvm::PointerType *PTy = 1059 llvm::PointerType::get(Ty, ASTTy.getAddressSpace()); 1060 1061 llvm::StringRef MangledName = getMangledName(D); 1062 return GetOrCreateLLVMGlobal(MangledName, PTy, D); 1063 } 1064 1065 /// CreateRuntimeVariable - Create a new runtime global variable with the 1066 /// specified type and name. 1067 llvm::Constant * 1068 CodeGenModule::CreateRuntimeVariable(const llvm::Type *Ty, 1069 llvm::StringRef Name) { 1070 return GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), 0); 1071 } 1072 1073 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) { 1074 assert(!D->getInit() && "Cannot emit definite definitions here!"); 1075 1076 if (MayDeferGeneration(D)) { 1077 // If we have not seen a reference to this variable yet, place it 1078 // into the deferred declarations table to be emitted if needed 1079 // later. 1080 llvm::StringRef MangledName = getMangledName(D); 1081 if (!GetGlobalValue(MangledName)) { 1082 DeferredDecls[MangledName] = D; 1083 return; 1084 } 1085 } 1086 1087 // The tentative definition is the only definition. 1088 EmitGlobalVarDefinition(D); 1089 } 1090 1091 void CodeGenModule::EmitVTable(CXXRecordDecl *Class, bool DefinitionRequired) { 1092 if (DefinitionRequired) 1093 getVTables().GenerateClassData(getVTableLinkage(Class), Class); 1094 } 1095 1096 llvm::GlobalVariable::LinkageTypes 1097 CodeGenModule::getVTableLinkage(const CXXRecordDecl *RD) { 1098 if (RD->isInAnonymousNamespace() || !RD->hasLinkage()) 1099 return llvm::GlobalVariable::InternalLinkage; 1100 1101 if (const CXXMethodDecl *KeyFunction 1102 = RD->getASTContext().getKeyFunction(RD)) { 1103 // If this class has a key function, use that to determine the linkage of 1104 // the vtable. 1105 const FunctionDecl *Def = 0; 1106 if (KeyFunction->hasBody(Def)) 1107 KeyFunction = cast<CXXMethodDecl>(Def); 1108 1109 switch (KeyFunction->getTemplateSpecializationKind()) { 1110 case TSK_Undeclared: 1111 case TSK_ExplicitSpecialization: 1112 if (KeyFunction->isInlined()) 1113 return llvm::GlobalVariable::WeakODRLinkage; 1114 1115 return llvm::GlobalVariable::ExternalLinkage; 1116 1117 case TSK_ImplicitInstantiation: 1118 case TSK_ExplicitInstantiationDefinition: 1119 return llvm::GlobalVariable::WeakODRLinkage; 1120 1121 case TSK_ExplicitInstantiationDeclaration: 1122 // FIXME: Use available_externally linkage. However, this currently 1123 // breaks LLVM's build due to undefined symbols. 1124 // return llvm::GlobalVariable::AvailableExternallyLinkage; 1125 return llvm::GlobalVariable::WeakODRLinkage; 1126 } 1127 } 1128 1129 switch (RD->getTemplateSpecializationKind()) { 1130 case TSK_Undeclared: 1131 case TSK_ExplicitSpecialization: 1132 case TSK_ImplicitInstantiation: 1133 case TSK_ExplicitInstantiationDefinition: 1134 return llvm::GlobalVariable::WeakODRLinkage; 1135 1136 case TSK_ExplicitInstantiationDeclaration: 1137 // FIXME: Use available_externally linkage. However, this currently 1138 // breaks LLVM's build due to undefined symbols. 1139 // return llvm::GlobalVariable::AvailableExternallyLinkage; 1140 return llvm::GlobalVariable::WeakODRLinkage; 1141 } 1142 1143 // Silence GCC warning. 1144 return llvm::GlobalVariable::WeakODRLinkage; 1145 } 1146 1147 CharUnits CodeGenModule::GetTargetTypeStoreSize(const llvm::Type *Ty) const { 1148 return CharUnits::fromQuantity( 1149 TheTargetData.getTypeStoreSizeInBits(Ty) / Context.getCharWidth()); 1150 } 1151 1152 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D) { 1153 llvm::Constant *Init = 0; 1154 QualType ASTTy = D->getType(); 1155 bool NonConstInit = false; 1156 1157 const Expr *InitExpr = D->getAnyInitializer(); 1158 1159 if (!InitExpr) { 1160 // This is a tentative definition; tentative definitions are 1161 // implicitly initialized with { 0 }. 1162 // 1163 // Note that tentative definitions are only emitted at the end of 1164 // a translation unit, so they should never have incomplete 1165 // type. In addition, EmitTentativeDefinition makes sure that we 1166 // never attempt to emit a tentative definition if a real one 1167 // exists. A use may still exists, however, so we still may need 1168 // to do a RAUW. 1169 assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type"); 1170 Init = EmitNullConstant(D->getType()); 1171 } else { 1172 Init = EmitConstantExpr(InitExpr, D->getType()); 1173 if (!Init) { 1174 QualType T = InitExpr->getType(); 1175 if (D->getType()->isReferenceType()) 1176 T = D->getType(); 1177 1178 if (getLangOptions().CPlusPlus) { 1179 EmitCXXGlobalVarDeclInitFunc(D); 1180 Init = EmitNullConstant(T); 1181 NonConstInit = true; 1182 } else { 1183 ErrorUnsupported(D, "static initializer"); 1184 Init = llvm::UndefValue::get(getTypes().ConvertType(T)); 1185 } 1186 } else { 1187 // We don't need an initializer, so remove the entry for the delayed 1188 // initializer position (just in case this entry was delayed). 1189 if (getLangOptions().CPlusPlus) 1190 DelayedCXXInitPosition.erase(D); 1191 } 1192 } 1193 1194 const llvm::Type* InitType = Init->getType(); 1195 llvm::Constant *Entry = GetAddrOfGlobalVar(D, InitType); 1196 1197 // Strip off a bitcast if we got one back. 1198 if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) { 1199 assert(CE->getOpcode() == llvm::Instruction::BitCast || 1200 // all zero index gep. 1201 CE->getOpcode() == llvm::Instruction::GetElementPtr); 1202 Entry = CE->getOperand(0); 1203 } 1204 1205 // Entry is now either a Function or GlobalVariable. 1206 llvm::GlobalVariable *GV = dyn_cast<llvm::GlobalVariable>(Entry); 1207 1208 // We have a definition after a declaration with the wrong type. 1209 // We must make a new GlobalVariable* and update everything that used OldGV 1210 // (a declaration or tentative definition) with the new GlobalVariable* 1211 // (which will be a definition). 1212 // 1213 // This happens if there is a prototype for a global (e.g. 1214 // "extern int x[];") and then a definition of a different type (e.g. 1215 // "int x[10];"). This also happens when an initializer has a different type 1216 // from the type of the global (this happens with unions). 1217 if (GV == 0 || 1218 GV->getType()->getElementType() != InitType || 1219 GV->getType()->getAddressSpace() != ASTTy.getAddressSpace()) { 1220 1221 // Move the old entry aside so that we'll create a new one. 1222 Entry->setName(llvm::StringRef()); 1223 1224 // Make a new global with the correct type, this is now guaranteed to work. 1225 GV = cast<llvm::GlobalVariable>(GetAddrOfGlobalVar(D, InitType)); 1226 1227 // Replace all uses of the old global with the new global 1228 llvm::Constant *NewPtrForOldDecl = 1229 llvm::ConstantExpr::getBitCast(GV, Entry->getType()); 1230 Entry->replaceAllUsesWith(NewPtrForOldDecl); 1231 1232 // Erase the old global, since it is no longer used. 1233 cast<llvm::GlobalValue>(Entry)->eraseFromParent(); 1234 } 1235 1236 if (const AnnotateAttr *AA = D->getAttr<AnnotateAttr>()) { 1237 SourceManager &SM = Context.getSourceManager(); 1238 AddAnnotation(EmitAnnotateAttr(GV, AA, 1239 SM.getInstantiationLineNumber(D->getLocation()))); 1240 } 1241 1242 GV->setInitializer(Init); 1243 1244 // If it is safe to mark the global 'constant', do so now. 1245 GV->setConstant(false); 1246 if (!NonConstInit && DeclIsConstantGlobal(Context, D)) 1247 GV->setConstant(true); 1248 1249 GV->setAlignment(getContext().getDeclAlign(D).getQuantity()); 1250 1251 // Set the llvm linkage type as appropriate. 1252 GVALinkage Linkage = GetLinkageForVariable(getContext(), D); 1253 if (Linkage == GVA_Internal) 1254 GV->setLinkage(llvm::Function::InternalLinkage); 1255 else if (D->hasAttr<DLLImportAttr>()) 1256 GV->setLinkage(llvm::Function::DLLImportLinkage); 1257 else if (D->hasAttr<DLLExportAttr>()) 1258 GV->setLinkage(llvm::Function::DLLExportLinkage); 1259 else if (D->hasAttr<WeakAttr>()) { 1260 if (GV->isConstant()) 1261 GV->setLinkage(llvm::GlobalVariable::WeakODRLinkage); 1262 else 1263 GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage); 1264 } else if (Linkage == GVA_TemplateInstantiation || 1265 Linkage == GVA_ExplicitTemplateInstantiation) 1266 // FIXME: It seems like we can provide more specific linkage here 1267 // (LinkOnceODR, WeakODR). 1268 GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage); 1269 else if (!getLangOptions().CPlusPlus && !CodeGenOpts.NoCommon && 1270 !D->hasExternalStorage() && !D->getInit() && 1271 !D->getAttr<SectionAttr>()) { 1272 GV->setLinkage(llvm::GlobalVariable::CommonLinkage); 1273 // common vars aren't constant even if declared const. 1274 GV->setConstant(false); 1275 } else 1276 GV->setLinkage(llvm::GlobalVariable::ExternalLinkage); 1277 1278 SetCommonAttributes(D, GV); 1279 1280 // Emit global variable debug information. 1281 if (CGDebugInfo *DI = getDebugInfo()) { 1282 DI->setLocation(D->getLocation()); 1283 DI->EmitGlobalVariable(GV, D); 1284 } 1285 } 1286 1287 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we 1288 /// implement a function with no prototype, e.g. "int foo() {}". If there are 1289 /// existing call uses of the old function in the module, this adjusts them to 1290 /// call the new function directly. 1291 /// 1292 /// This is not just a cleanup: the always_inline pass requires direct calls to 1293 /// functions to be able to inline them. If there is a bitcast in the way, it 1294 /// won't inline them. Instcombine normally deletes these calls, but it isn't 1295 /// run at -O0. 1296 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old, 1297 llvm::Function *NewFn) { 1298 // If we're redefining a global as a function, don't transform it. 1299 llvm::Function *OldFn = dyn_cast<llvm::Function>(Old); 1300 if (OldFn == 0) return; 1301 1302 const llvm::Type *NewRetTy = NewFn->getReturnType(); 1303 llvm::SmallVector<llvm::Value*, 4> ArgList; 1304 1305 for (llvm::Value::use_iterator UI = OldFn->use_begin(), E = OldFn->use_end(); 1306 UI != E; ) { 1307 // TODO: Do invokes ever occur in C code? If so, we should handle them too. 1308 llvm::Value::use_iterator I = UI++; // Increment before the CI is erased. 1309 llvm::CallInst *CI = dyn_cast<llvm::CallInst>(*I); 1310 llvm::CallSite CS(CI); 1311 if (!CI || !CS.isCallee(I)) continue; 1312 1313 // If the return types don't match exactly, and if the call isn't dead, then 1314 // we can't transform this call. 1315 if (CI->getType() != NewRetTy && !CI->use_empty()) 1316 continue; 1317 1318 // If the function was passed too few arguments, don't transform. If extra 1319 // arguments were passed, we silently drop them. If any of the types 1320 // mismatch, we don't transform. 1321 unsigned ArgNo = 0; 1322 bool DontTransform = false; 1323 for (llvm::Function::arg_iterator AI = NewFn->arg_begin(), 1324 E = NewFn->arg_end(); AI != E; ++AI, ++ArgNo) { 1325 if (CS.arg_size() == ArgNo || 1326 CS.getArgument(ArgNo)->getType() != AI->getType()) { 1327 DontTransform = true; 1328 break; 1329 } 1330 } 1331 if (DontTransform) 1332 continue; 1333 1334 // Okay, we can transform this. Create the new call instruction and copy 1335 // over the required information. 1336 ArgList.append(CS.arg_begin(), CS.arg_begin() + ArgNo); 1337 llvm::CallInst *NewCall = llvm::CallInst::Create(NewFn, ArgList.begin(), 1338 ArgList.end(), "", CI); 1339 ArgList.clear(); 1340 if (!NewCall->getType()->isVoidTy()) 1341 NewCall->takeName(CI); 1342 NewCall->setAttributes(CI->getAttributes()); 1343 NewCall->setCallingConv(CI->getCallingConv()); 1344 1345 // Finally, remove the old call, replacing any uses with the new one. 1346 if (!CI->use_empty()) 1347 CI->replaceAllUsesWith(NewCall); 1348 1349 // Copy debug location attached to CI. 1350 if (!CI->getDebugLoc().isUnknown()) 1351 NewCall->setDebugLoc(CI->getDebugLoc()); 1352 CI->eraseFromParent(); 1353 } 1354 } 1355 1356 1357 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD) { 1358 const FunctionDecl *D = cast<FunctionDecl>(GD.getDecl()); 1359 const llvm::FunctionType *Ty = getTypes().GetFunctionType(GD); 1360 getMangleContext().mangleInitDiscriminator(); 1361 // Get or create the prototype for the function. 1362 llvm::Constant *Entry = GetAddrOfFunction(GD, Ty); 1363 1364 // Strip off a bitcast if we got one back. 1365 if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) { 1366 assert(CE->getOpcode() == llvm::Instruction::BitCast); 1367 Entry = CE->getOperand(0); 1368 } 1369 1370 1371 if (cast<llvm::GlobalValue>(Entry)->getType()->getElementType() != Ty) { 1372 llvm::GlobalValue *OldFn = cast<llvm::GlobalValue>(Entry); 1373 1374 // If the types mismatch then we have to rewrite the definition. 1375 assert(OldFn->isDeclaration() && 1376 "Shouldn't replace non-declaration"); 1377 1378 // F is the Function* for the one with the wrong type, we must make a new 1379 // Function* and update everything that used F (a declaration) with the new 1380 // Function* (which will be a definition). 1381 // 1382 // This happens if there is a prototype for a function 1383 // (e.g. "int f()") and then a definition of a different type 1384 // (e.g. "int f(int x)"). Move the old function aside so that it 1385 // doesn't interfere with GetAddrOfFunction. 1386 OldFn->setName(llvm::StringRef()); 1387 llvm::Function *NewFn = cast<llvm::Function>(GetAddrOfFunction(GD, Ty)); 1388 1389 // If this is an implementation of a function without a prototype, try to 1390 // replace any existing uses of the function (which may be calls) with uses 1391 // of the new function 1392 if (D->getType()->isFunctionNoProtoType()) { 1393 ReplaceUsesOfNonProtoTypeWithRealFunction(OldFn, NewFn); 1394 OldFn->removeDeadConstantUsers(); 1395 } 1396 1397 // Replace uses of F with the Function we will endow with a body. 1398 if (!Entry->use_empty()) { 1399 llvm::Constant *NewPtrForOldDecl = 1400 llvm::ConstantExpr::getBitCast(NewFn, Entry->getType()); 1401 Entry->replaceAllUsesWith(NewPtrForOldDecl); 1402 } 1403 1404 // Ok, delete the old function now, which is dead. 1405 OldFn->eraseFromParent(); 1406 1407 Entry = NewFn; 1408 } 1409 1410 llvm::Function *Fn = cast<llvm::Function>(Entry); 1411 setFunctionLinkage(D, Fn); 1412 1413 CodeGenFunction(*this).GenerateCode(D, Fn); 1414 1415 SetFunctionDefinitionAttributes(D, Fn); 1416 SetLLVMFunctionAttributesForDefinition(D, Fn); 1417 1418 if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>()) 1419 AddGlobalCtor(Fn, CA->getPriority()); 1420 if (const DestructorAttr *DA = D->getAttr<DestructorAttr>()) 1421 AddGlobalDtor(Fn, DA->getPriority()); 1422 } 1423 1424 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) { 1425 const ValueDecl *D = cast<ValueDecl>(GD.getDecl()); 1426 const AliasAttr *AA = D->getAttr<AliasAttr>(); 1427 assert(AA && "Not an alias?"); 1428 1429 llvm::StringRef MangledName = getMangledName(GD); 1430 1431 // If there is a definition in the module, then it wins over the alias. 1432 // This is dubious, but allow it to be safe. Just ignore the alias. 1433 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 1434 if (Entry && !Entry->isDeclaration()) 1435 return; 1436 1437 const llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType()); 1438 1439 // Create a reference to the named value. This ensures that it is emitted 1440 // if a deferred decl. 1441 llvm::Constant *Aliasee; 1442 if (isa<llvm::FunctionType>(DeclTy)) 1443 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GlobalDecl()); 1444 else 1445 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), 1446 llvm::PointerType::getUnqual(DeclTy), 0); 1447 1448 // Create the new alias itself, but don't set a name yet. 1449 llvm::GlobalValue *GA = 1450 new llvm::GlobalAlias(Aliasee->getType(), 1451 llvm::Function::ExternalLinkage, 1452 "", Aliasee, &getModule()); 1453 1454 if (Entry) { 1455 assert(Entry->isDeclaration()); 1456 1457 // If there is a declaration in the module, then we had an extern followed 1458 // by the alias, as in: 1459 // extern int test6(); 1460 // ... 1461 // int test6() __attribute__((alias("test7"))); 1462 // 1463 // Remove it and replace uses of it with the alias. 1464 GA->takeName(Entry); 1465 1466 Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA, 1467 Entry->getType())); 1468 Entry->eraseFromParent(); 1469 } else { 1470 GA->setName(MangledName); 1471 } 1472 1473 // Set attributes which are particular to an alias; this is a 1474 // specialization of the attributes which may be set on a global 1475 // variable/function. 1476 if (D->hasAttr<DLLExportAttr>()) { 1477 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { 1478 // The dllexport attribute is ignored for undefined symbols. 1479 if (FD->hasBody()) 1480 GA->setLinkage(llvm::Function::DLLExportLinkage); 1481 } else { 1482 GA->setLinkage(llvm::Function::DLLExportLinkage); 1483 } 1484 } else if (D->hasAttr<WeakAttr>() || 1485 D->hasAttr<WeakRefAttr>() || 1486 D->hasAttr<WeakImportAttr>()) { 1487 GA->setLinkage(llvm::Function::WeakAnyLinkage); 1488 } 1489 1490 SetCommonAttributes(D, GA); 1491 } 1492 1493 /// getBuiltinLibFunction - Given a builtin id for a function like 1494 /// "__builtin_fabsf", return a Function* for "fabsf". 1495 llvm::Value *CodeGenModule::getBuiltinLibFunction(const FunctionDecl *FD, 1496 unsigned BuiltinID) { 1497 assert((Context.BuiltinInfo.isLibFunction(BuiltinID) || 1498 Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) && 1499 "isn't a lib fn"); 1500 1501 // Get the name, skip over the __builtin_ prefix (if necessary). 1502 const char *Name = Context.BuiltinInfo.GetName(BuiltinID); 1503 if (Context.BuiltinInfo.isLibFunction(BuiltinID)) 1504 Name += 10; 1505 1506 const llvm::FunctionType *Ty = 1507 cast<llvm::FunctionType>(getTypes().ConvertType(FD->getType())); 1508 1509 return GetOrCreateLLVMFunction(Name, Ty, GlobalDecl(FD)); 1510 } 1511 1512 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,const llvm::Type **Tys, 1513 unsigned NumTys) { 1514 return llvm::Intrinsic::getDeclaration(&getModule(), 1515 (llvm::Intrinsic::ID)IID, Tys, NumTys); 1516 } 1517 1518 1519 llvm::Function *CodeGenModule::getMemCpyFn(const llvm::Type *DestType, 1520 const llvm::Type *SrcType, 1521 const llvm::Type *SizeType) { 1522 const llvm::Type *ArgTypes[3] = {DestType, SrcType, SizeType }; 1523 return getIntrinsic(llvm::Intrinsic::memcpy, ArgTypes, 3); 1524 } 1525 1526 llvm::Function *CodeGenModule::getMemMoveFn(const llvm::Type *DestType, 1527 const llvm::Type *SrcType, 1528 const llvm::Type *SizeType) { 1529 const llvm::Type *ArgTypes[3] = {DestType, SrcType, SizeType }; 1530 return getIntrinsic(llvm::Intrinsic::memmove, ArgTypes, 3); 1531 } 1532 1533 llvm::Function *CodeGenModule::getMemSetFn(const llvm::Type *DestType, 1534 const llvm::Type *SizeType) { 1535 const llvm::Type *ArgTypes[2] = { DestType, SizeType }; 1536 return getIntrinsic(llvm::Intrinsic::memset, ArgTypes, 2); 1537 } 1538 1539 static llvm::StringMapEntry<llvm::Constant*> & 1540 GetConstantCFStringEntry(llvm::StringMap<llvm::Constant*> &Map, 1541 const StringLiteral *Literal, 1542 bool TargetIsLSB, 1543 bool &IsUTF16, 1544 unsigned &StringLength) { 1545 unsigned NumBytes = Literal->getByteLength(); 1546 1547 // Check for simple case. 1548 if (!Literal->containsNonAsciiOrNull()) { 1549 StringLength = NumBytes; 1550 return Map.GetOrCreateValue(llvm::StringRef(Literal->getStrData(), 1551 StringLength)); 1552 } 1553 1554 // Otherwise, convert the UTF8 literals into a byte string. 1555 llvm::SmallVector<UTF16, 128> ToBuf(NumBytes); 1556 const UTF8 *FromPtr = (UTF8 *)Literal->getStrData(); 1557 UTF16 *ToPtr = &ToBuf[0]; 1558 1559 ConversionResult Result = ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, 1560 &ToPtr, ToPtr + NumBytes, 1561 strictConversion); 1562 1563 // Check for conversion failure. 1564 if (Result != conversionOK) { 1565 // FIXME: Have Sema::CheckObjCString() validate the UTF-8 string and remove 1566 // this duplicate code. 1567 assert(Result == sourceIllegal && "UTF-8 to UTF-16 conversion failed"); 1568 StringLength = NumBytes; 1569 return Map.GetOrCreateValue(llvm::StringRef(Literal->getStrData(), 1570 StringLength)); 1571 } 1572 1573 // ConvertUTF8toUTF16 returns the length in ToPtr. 1574 StringLength = ToPtr - &ToBuf[0]; 1575 1576 // Render the UTF-16 string into a byte array and convert to the target byte 1577 // order. 1578 // 1579 // FIXME: This isn't something we should need to do here. 1580 llvm::SmallString<128> AsBytes; 1581 AsBytes.reserve(StringLength * 2); 1582 for (unsigned i = 0; i != StringLength; ++i) { 1583 unsigned short Val = ToBuf[i]; 1584 if (TargetIsLSB) { 1585 AsBytes.push_back(Val & 0xFF); 1586 AsBytes.push_back(Val >> 8); 1587 } else { 1588 AsBytes.push_back(Val >> 8); 1589 AsBytes.push_back(Val & 0xFF); 1590 } 1591 } 1592 // Append one extra null character, the second is automatically added by our 1593 // caller. 1594 AsBytes.push_back(0); 1595 1596 IsUTF16 = true; 1597 return Map.GetOrCreateValue(llvm::StringRef(AsBytes.data(), AsBytes.size())); 1598 } 1599 1600 llvm::Constant * 1601 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) { 1602 unsigned StringLength = 0; 1603 bool isUTF16 = false; 1604 llvm::StringMapEntry<llvm::Constant*> &Entry = 1605 GetConstantCFStringEntry(CFConstantStringMap, Literal, 1606 getTargetData().isLittleEndian(), 1607 isUTF16, StringLength); 1608 1609 if (llvm::Constant *C = Entry.getValue()) 1610 return C; 1611 1612 llvm::Constant *Zero = 1613 llvm::Constant::getNullValue(llvm::Type::getInt32Ty(VMContext)); 1614 llvm::Constant *Zeros[] = { Zero, Zero }; 1615 1616 // If we don't already have it, get __CFConstantStringClassReference. 1617 if (!CFConstantStringClassRef) { 1618 const llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy); 1619 Ty = llvm::ArrayType::get(Ty, 0); 1620 llvm::Constant *GV = CreateRuntimeVariable(Ty, 1621 "__CFConstantStringClassReference"); 1622 // Decay array -> ptr 1623 CFConstantStringClassRef = 1624 llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2); 1625 } 1626 1627 QualType CFTy = getContext().getCFConstantStringType(); 1628 1629 const llvm::StructType *STy = 1630 cast<llvm::StructType>(getTypes().ConvertType(CFTy)); 1631 1632 std::vector<llvm::Constant*> Fields(4); 1633 1634 // Class pointer. 1635 Fields[0] = CFConstantStringClassRef; 1636 1637 // Flags. 1638 const llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy); 1639 Fields[1] = isUTF16 ? llvm::ConstantInt::get(Ty, 0x07d0) : 1640 llvm::ConstantInt::get(Ty, 0x07C8); 1641 1642 // String pointer. 1643 llvm::Constant *C = llvm::ConstantArray::get(VMContext, Entry.getKey().str()); 1644 1645 llvm::GlobalValue::LinkageTypes Linkage; 1646 bool isConstant; 1647 if (isUTF16) { 1648 // FIXME: why do utf strings get "_" labels instead of "L" labels? 1649 Linkage = llvm::GlobalValue::InternalLinkage; 1650 // Note: -fwritable-strings doesn't make unicode CFStrings writable, but 1651 // does make plain ascii ones writable. 1652 isConstant = true; 1653 } else { 1654 Linkage = llvm::GlobalValue::PrivateLinkage; 1655 isConstant = !Features.WritableStrings; 1656 } 1657 1658 llvm::GlobalVariable *GV = 1659 new llvm::GlobalVariable(getModule(), C->getType(), isConstant, Linkage, C, 1660 ".str"); 1661 if (isUTF16) { 1662 CharUnits Align = getContext().getTypeAlignInChars(getContext().ShortTy); 1663 GV->setAlignment(Align.getQuantity()); 1664 } 1665 Fields[2] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2); 1666 1667 // String length. 1668 Ty = getTypes().ConvertType(getContext().LongTy); 1669 Fields[3] = llvm::ConstantInt::get(Ty, StringLength); 1670 1671 // The struct. 1672 C = llvm::ConstantStruct::get(STy, Fields); 1673 GV = new llvm::GlobalVariable(getModule(), C->getType(), true, 1674 llvm::GlobalVariable::PrivateLinkage, C, 1675 "_unnamed_cfstring_"); 1676 if (const char *Sect = getContext().Target.getCFStringSection()) 1677 GV->setSection(Sect); 1678 Entry.setValue(GV); 1679 1680 return GV; 1681 } 1682 1683 llvm::Constant * 1684 CodeGenModule::GetAddrOfConstantNSString(const StringLiteral *Literal) { 1685 unsigned StringLength = 0; 1686 bool isUTF16 = false; 1687 llvm::StringMapEntry<llvm::Constant*> &Entry = 1688 GetConstantCFStringEntry(CFConstantStringMap, Literal, 1689 getTargetData().isLittleEndian(), 1690 isUTF16, StringLength); 1691 1692 if (llvm::Constant *C = Entry.getValue()) 1693 return C; 1694 1695 llvm::Constant *Zero = 1696 llvm::Constant::getNullValue(llvm::Type::getInt32Ty(VMContext)); 1697 llvm::Constant *Zeros[] = { Zero, Zero }; 1698 1699 // If we don't already have it, get _NSConstantStringClassReference. 1700 if (!NSConstantStringClassRef) { 1701 const llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy); 1702 Ty = llvm::ArrayType::get(Ty, 0); 1703 llvm::Constant *GV = CreateRuntimeVariable(Ty, 1704 Features.ObjCNonFragileABI ? 1705 "OBJC_CLASS_$_NSConstantString" : 1706 "_NSConstantStringClassReference"); 1707 // Decay array -> ptr 1708 NSConstantStringClassRef = 1709 llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2); 1710 } 1711 1712 QualType NSTy = getContext().getNSConstantStringType(); 1713 1714 const llvm::StructType *STy = 1715 cast<llvm::StructType>(getTypes().ConvertType(NSTy)); 1716 1717 std::vector<llvm::Constant*> Fields(3); 1718 1719 // Class pointer. 1720 Fields[0] = NSConstantStringClassRef; 1721 1722 // String pointer. 1723 llvm::Constant *C = llvm::ConstantArray::get(VMContext, Entry.getKey().str()); 1724 1725 llvm::GlobalValue::LinkageTypes Linkage; 1726 bool isConstant; 1727 if (isUTF16) { 1728 // FIXME: why do utf strings get "_" labels instead of "L" labels? 1729 Linkage = llvm::GlobalValue::InternalLinkage; 1730 // Note: -fwritable-strings doesn't make unicode NSStrings writable, but 1731 // does make plain ascii ones writable. 1732 isConstant = true; 1733 } else { 1734 Linkage = llvm::GlobalValue::PrivateLinkage; 1735 isConstant = !Features.WritableStrings; 1736 } 1737 1738 llvm::GlobalVariable *GV = 1739 new llvm::GlobalVariable(getModule(), C->getType(), isConstant, Linkage, C, 1740 ".str"); 1741 if (isUTF16) { 1742 CharUnits Align = getContext().getTypeAlignInChars(getContext().ShortTy); 1743 GV->setAlignment(Align.getQuantity()); 1744 } 1745 Fields[1] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2); 1746 1747 // String length. 1748 const llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy); 1749 Fields[2] = llvm::ConstantInt::get(Ty, StringLength); 1750 1751 // The struct. 1752 C = llvm::ConstantStruct::get(STy, Fields); 1753 GV = new llvm::GlobalVariable(getModule(), C->getType(), true, 1754 llvm::GlobalVariable::PrivateLinkage, C, 1755 "_unnamed_nsstring_"); 1756 // FIXME. Fix section. 1757 if (const char *Sect = 1758 Features.ObjCNonFragileABI 1759 ? getContext().Target.getNSStringNonFragileABISection() 1760 : getContext().Target.getNSStringSection()) 1761 GV->setSection(Sect); 1762 Entry.setValue(GV); 1763 1764 return GV; 1765 } 1766 1767 /// GetStringForStringLiteral - Return the appropriate bytes for a 1768 /// string literal, properly padded to match the literal type. 1769 std::string CodeGenModule::GetStringForStringLiteral(const StringLiteral *E) { 1770 const char *StrData = E->getStrData(); 1771 unsigned Len = E->getByteLength(); 1772 1773 const ConstantArrayType *CAT = 1774 getContext().getAsConstantArrayType(E->getType()); 1775 assert(CAT && "String isn't pointer or array!"); 1776 1777 // Resize the string to the right size. 1778 std::string Str(StrData, StrData+Len); 1779 uint64_t RealLen = CAT->getSize().getZExtValue(); 1780 1781 if (E->isWide()) 1782 RealLen *= getContext().Target.getWCharWidth()/8; 1783 1784 Str.resize(RealLen, '\0'); 1785 1786 return Str; 1787 } 1788 1789 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a 1790 /// constant array for the given string literal. 1791 llvm::Constant * 1792 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S) { 1793 // FIXME: This can be more efficient. 1794 // FIXME: We shouldn't need to bitcast the constant in the wide string case. 1795 llvm::Constant *C = GetAddrOfConstantString(GetStringForStringLiteral(S)); 1796 if (S->isWide()) { 1797 llvm::Type *DestTy = 1798 llvm::PointerType::getUnqual(getTypes().ConvertType(S->getType())); 1799 C = llvm::ConstantExpr::getBitCast(C, DestTy); 1800 } 1801 return C; 1802 } 1803 1804 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant 1805 /// array for the given ObjCEncodeExpr node. 1806 llvm::Constant * 1807 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) { 1808 std::string Str; 1809 getContext().getObjCEncodingForType(E->getEncodedType(), Str); 1810 1811 return GetAddrOfConstantCString(Str); 1812 } 1813 1814 1815 /// GenerateWritableString -- Creates storage for a string literal. 1816 static llvm::Constant *GenerateStringLiteral(const std::string &str, 1817 bool constant, 1818 CodeGenModule &CGM, 1819 const char *GlobalName) { 1820 // Create Constant for this string literal. Don't add a '\0'. 1821 llvm::Constant *C = 1822 llvm::ConstantArray::get(CGM.getLLVMContext(), str, false); 1823 1824 // Create a global variable for this string 1825 return new llvm::GlobalVariable(CGM.getModule(), C->getType(), constant, 1826 llvm::GlobalValue::PrivateLinkage, 1827 C, GlobalName); 1828 } 1829 1830 /// GetAddrOfConstantString - Returns a pointer to a character array 1831 /// containing the literal. This contents are exactly that of the 1832 /// given string, i.e. it will not be null terminated automatically; 1833 /// see GetAddrOfConstantCString. Note that whether the result is 1834 /// actually a pointer to an LLVM constant depends on 1835 /// Feature.WriteableStrings. 1836 /// 1837 /// The result has pointer to array type. 1838 llvm::Constant *CodeGenModule::GetAddrOfConstantString(const std::string &str, 1839 const char *GlobalName) { 1840 bool IsConstant = !Features.WritableStrings; 1841 1842 // Get the default prefix if a name wasn't specified. 1843 if (!GlobalName) 1844 GlobalName = ".str"; 1845 1846 // Don't share any string literals if strings aren't constant. 1847 if (!IsConstant) 1848 return GenerateStringLiteral(str, false, *this, GlobalName); 1849 1850 llvm::StringMapEntry<llvm::Constant *> &Entry = 1851 ConstantStringMap.GetOrCreateValue(&str[0], &str[str.length()]); 1852 1853 if (Entry.getValue()) 1854 return Entry.getValue(); 1855 1856 // Create a global variable for this. 1857 llvm::Constant *C = GenerateStringLiteral(str, true, *this, GlobalName); 1858 Entry.setValue(C); 1859 return C; 1860 } 1861 1862 /// GetAddrOfConstantCString - Returns a pointer to a character 1863 /// array containing the literal and a terminating '\-' 1864 /// character. The result has pointer to array type. 1865 llvm::Constant *CodeGenModule::GetAddrOfConstantCString(const std::string &str, 1866 const char *GlobalName){ 1867 return GetAddrOfConstantString(str + '\0', GlobalName); 1868 } 1869 1870 /// EmitObjCPropertyImplementations - Emit information for synthesized 1871 /// properties for an implementation. 1872 void CodeGenModule::EmitObjCPropertyImplementations(const 1873 ObjCImplementationDecl *D) { 1874 for (ObjCImplementationDecl::propimpl_iterator 1875 i = D->propimpl_begin(), e = D->propimpl_end(); i != e; ++i) { 1876 ObjCPropertyImplDecl *PID = *i; 1877 1878 // Dynamic is just for type-checking. 1879 if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) { 1880 ObjCPropertyDecl *PD = PID->getPropertyDecl(); 1881 1882 // Determine which methods need to be implemented, some may have 1883 // been overridden. Note that ::isSynthesized is not the method 1884 // we want, that just indicates if the decl came from a 1885 // property. What we want to know is if the method is defined in 1886 // this implementation. 1887 if (!D->getInstanceMethod(PD->getGetterName())) 1888 CodeGenFunction(*this).GenerateObjCGetter( 1889 const_cast<ObjCImplementationDecl *>(D), PID); 1890 if (!PD->isReadOnly() && 1891 !D->getInstanceMethod(PD->getSetterName())) 1892 CodeGenFunction(*this).GenerateObjCSetter( 1893 const_cast<ObjCImplementationDecl *>(D), PID); 1894 } 1895 } 1896 } 1897 1898 /// EmitObjCIvarInitializations - Emit information for ivar initialization 1899 /// for an implementation. 1900 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) { 1901 if (!Features.NeXTRuntime || D->getNumIvarInitializers() == 0) 1902 return; 1903 DeclContext* DC = const_cast<DeclContext*>(dyn_cast<DeclContext>(D)); 1904 assert(DC && "EmitObjCIvarInitializations - null DeclContext"); 1905 IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct"); 1906 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 1907 ObjCMethodDecl *DTORMethod = ObjCMethodDecl::Create(getContext(), 1908 D->getLocation(), 1909 D->getLocation(), cxxSelector, 1910 getContext().VoidTy, 0, 1911 DC, true, false, true, 1912 ObjCMethodDecl::Required); 1913 D->addInstanceMethod(DTORMethod); 1914 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false); 1915 1916 II = &getContext().Idents.get(".cxx_construct"); 1917 cxxSelector = getContext().Selectors.getSelector(0, &II); 1918 // The constructor returns 'self'. 1919 ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(getContext(), 1920 D->getLocation(), 1921 D->getLocation(), cxxSelector, 1922 getContext().getObjCIdType(), 0, 1923 DC, true, false, true, 1924 ObjCMethodDecl::Required); 1925 D->addInstanceMethod(CTORMethod); 1926 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true); 1927 1928 1929 } 1930 1931 /// EmitNamespace - Emit all declarations in a namespace. 1932 void CodeGenModule::EmitNamespace(const NamespaceDecl *ND) { 1933 for (RecordDecl::decl_iterator I = ND->decls_begin(), E = ND->decls_end(); 1934 I != E; ++I) 1935 EmitTopLevelDecl(*I); 1936 } 1937 1938 // EmitLinkageSpec - Emit all declarations in a linkage spec. 1939 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) { 1940 if (LSD->getLanguage() != LinkageSpecDecl::lang_c && 1941 LSD->getLanguage() != LinkageSpecDecl::lang_cxx) { 1942 ErrorUnsupported(LSD, "linkage spec"); 1943 return; 1944 } 1945 1946 for (RecordDecl::decl_iterator I = LSD->decls_begin(), E = LSD->decls_end(); 1947 I != E; ++I) 1948 EmitTopLevelDecl(*I); 1949 } 1950 1951 /// EmitTopLevelDecl - Emit code for a single top level declaration. 1952 void CodeGenModule::EmitTopLevelDecl(Decl *D) { 1953 // If an error has occurred, stop code generation, but continue 1954 // parsing and semantic analysis (to ensure all warnings and errors 1955 // are emitted). 1956 if (Diags.hasErrorOccurred()) 1957 return; 1958 1959 // Ignore dependent declarations. 1960 if (D->getDeclContext() && D->getDeclContext()->isDependentContext()) 1961 return; 1962 1963 switch (D->getKind()) { 1964 case Decl::CXXConversion: 1965 case Decl::CXXMethod: 1966 case Decl::Function: 1967 // Skip function templates 1968 if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate()) 1969 return; 1970 1971 EmitGlobal(cast<FunctionDecl>(D)); 1972 break; 1973 1974 case Decl::Var: 1975 EmitGlobal(cast<VarDecl>(D)); 1976 break; 1977 1978 // C++ Decls 1979 case Decl::Namespace: 1980 EmitNamespace(cast<NamespaceDecl>(D)); 1981 break; 1982 // No code generation needed. 1983 case Decl::UsingShadow: 1984 case Decl::Using: 1985 case Decl::UsingDirective: 1986 case Decl::ClassTemplate: 1987 case Decl::FunctionTemplate: 1988 case Decl::NamespaceAlias: 1989 break; 1990 case Decl::CXXConstructor: 1991 // Skip function templates 1992 if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate()) 1993 return; 1994 1995 EmitCXXConstructors(cast<CXXConstructorDecl>(D)); 1996 break; 1997 case Decl::CXXDestructor: 1998 EmitCXXDestructors(cast<CXXDestructorDecl>(D)); 1999 break; 2000 2001 case Decl::StaticAssert: 2002 // Nothing to do. 2003 break; 2004 2005 // Objective-C Decls 2006 2007 // Forward declarations, no (immediate) code generation. 2008 case Decl::ObjCClass: 2009 case Decl::ObjCForwardProtocol: 2010 case Decl::ObjCCategory: 2011 case Decl::ObjCInterface: 2012 break; 2013 2014 case Decl::ObjCProtocol: 2015 Runtime->GenerateProtocol(cast<ObjCProtocolDecl>(D)); 2016 break; 2017 2018 case Decl::ObjCCategoryImpl: 2019 // Categories have properties but don't support synthesize so we 2020 // can ignore them here. 2021 Runtime->GenerateCategory(cast<ObjCCategoryImplDecl>(D)); 2022 break; 2023 2024 case Decl::ObjCImplementation: { 2025 ObjCImplementationDecl *OMD = cast<ObjCImplementationDecl>(D); 2026 EmitObjCPropertyImplementations(OMD); 2027 EmitObjCIvarInitializations(OMD); 2028 Runtime->GenerateClass(OMD); 2029 break; 2030 } 2031 case Decl::ObjCMethod: { 2032 ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(D); 2033 // If this is not a prototype, emit the body. 2034 if (OMD->getBody()) 2035 CodeGenFunction(*this).GenerateObjCMethod(OMD); 2036 break; 2037 } 2038 case Decl::ObjCCompatibleAlias: 2039 // compatibility-alias is a directive and has no code gen. 2040 break; 2041 2042 case Decl::LinkageSpec: 2043 EmitLinkageSpec(cast<LinkageSpecDecl>(D)); 2044 break; 2045 2046 case Decl::FileScopeAsm: { 2047 FileScopeAsmDecl *AD = cast<FileScopeAsmDecl>(D); 2048 llvm::StringRef AsmString = AD->getAsmString()->getString(); 2049 2050 const std::string &S = getModule().getModuleInlineAsm(); 2051 if (S.empty()) 2052 getModule().setModuleInlineAsm(AsmString); 2053 else 2054 getModule().setModuleInlineAsm(S + '\n' + AsmString.str()); 2055 break; 2056 } 2057 2058 default: 2059 // Make sure we handled everything we should, every other kind is a 2060 // non-top-level decl. FIXME: Would be nice to have an isTopLevelDeclKind 2061 // function. Need to recode Decl::Kind to do that easily. 2062 assert(isa<TypeDecl>(D) && "Unsupported decl kind"); 2063 } 2064 } 2065 2066 /// Turns the given pointer into a constant. 2067 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context, 2068 const void *Ptr) { 2069 uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr); 2070 const llvm::Type *i64 = llvm::Type::getInt64Ty(Context); 2071 return llvm::ConstantInt::get(i64, PtrInt); 2072 } 2073 2074 static void EmitGlobalDeclMetadata(CodeGenModule &CGM, 2075 llvm::NamedMDNode *&GlobalMetadata, 2076 GlobalDecl D, 2077 llvm::GlobalValue *Addr) { 2078 if (!GlobalMetadata) 2079 GlobalMetadata = 2080 CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs"); 2081 2082 // TODO: should we report variant information for ctors/dtors? 2083 llvm::Value *Ops[] = { 2084 Addr, 2085 GetPointerConstant(CGM.getLLVMContext(), D.getDecl()) 2086 }; 2087 GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops, 2)); 2088 } 2089 2090 /// Emits metadata nodes associating all the global values in the 2091 /// current module with the Decls they came from. This is useful for 2092 /// projects using IR gen as a subroutine. 2093 /// 2094 /// Since there's currently no way to associate an MDNode directly 2095 /// with an llvm::GlobalValue, we create a global named metadata 2096 /// with the name 'clang.global.decl.ptrs'. 2097 void CodeGenModule::EmitDeclMetadata() { 2098 llvm::NamedMDNode *GlobalMetadata = 0; 2099 2100 // StaticLocalDeclMap 2101 for (llvm::DenseMap<GlobalDecl,llvm::StringRef>::iterator 2102 I = MangledDeclNames.begin(), E = MangledDeclNames.end(); 2103 I != E; ++I) { 2104 llvm::GlobalValue *Addr = getModule().getNamedValue(I->second); 2105 EmitGlobalDeclMetadata(*this, GlobalMetadata, I->first, Addr); 2106 } 2107 } 2108 2109 /// Emits metadata nodes for all the local variables in the current 2110 /// function. 2111 void CodeGenFunction::EmitDeclMetadata() { 2112 if (LocalDeclMap.empty()) return; 2113 2114 llvm::LLVMContext &Context = getLLVMContext(); 2115 2116 // Find the unique metadata ID for this name. 2117 unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr"); 2118 2119 llvm::NamedMDNode *GlobalMetadata = 0; 2120 2121 for (llvm::DenseMap<const Decl*, llvm::Value*>::iterator 2122 I = LocalDeclMap.begin(), E = LocalDeclMap.end(); I != E; ++I) { 2123 const Decl *D = I->first; 2124 llvm::Value *Addr = I->second; 2125 2126 if (llvm::AllocaInst *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) { 2127 llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D); 2128 Alloca->setMetadata(DeclPtrKind, llvm::MDNode::get(Context, &DAddr, 1)); 2129 } else if (llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>(Addr)) { 2130 GlobalDecl GD = GlobalDecl(cast<VarDecl>(D)); 2131 EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV); 2132 } 2133 } 2134 } 2135