xref: /llvm-project/clang/lib/CodeGen/CodeGenModule.cpp (revision 6ff7161d51a9e5a43fd7e69ab2df69a67fcd12e3)
1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This coordinates the per-module state used while generating code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenModule.h"
15 #include "CGDebugInfo.h"
16 #include "CodeGenFunction.h"
17 #include "CGCall.h"
18 #include "CGObjCRuntime.h"
19 #include "Mangle.h"
20 #include "TargetInfo.h"
21 #include "clang/Frontend/CodeGenOptions.h"
22 #include "clang/AST/ASTContext.h"
23 #include "clang/AST/CharUnits.h"
24 #include "clang/AST/DeclObjC.h"
25 #include "clang/AST/DeclCXX.h"
26 #include "clang/AST/DeclTemplate.h"
27 #include "clang/AST/RecordLayout.h"
28 #include "clang/Basic/Builtins.h"
29 #include "clang/Basic/Diagnostic.h"
30 #include "clang/Basic/SourceManager.h"
31 #include "clang/Basic/TargetInfo.h"
32 #include "clang/Basic/ConvertUTF.h"
33 #include "llvm/CallingConv.h"
34 #include "llvm/Module.h"
35 #include "llvm/Intrinsics.h"
36 #include "llvm/LLVMContext.h"
37 #include "llvm/ADT/Triple.h"
38 #include "llvm/Target/TargetData.h"
39 #include "llvm/Support/CallSite.h"
40 #include "llvm/Support/ErrorHandling.h"
41 using namespace clang;
42 using namespace CodeGen;
43 
44 
45 CodeGenModule::CodeGenModule(ASTContext &C, const CodeGenOptions &CGO,
46                              llvm::Module &M, const llvm::TargetData &TD,
47                              Diagnostic &diags)
48   : BlockModule(C, M, TD, Types, *this), Context(C),
49     Features(C.getLangOptions()), CodeGenOpts(CGO), TheModule(M),
50     TheTargetData(TD), TheTargetCodeGenInfo(0), Diags(diags),
51     Types(C, M, TD, getTargetCodeGenInfo().getABIInfo()),
52     VTables(*this), Runtime(0), ABI(0),
53     CFConstantStringClassRef(0), NSConstantStringClassRef(0),
54     VMContext(M.getContext()),
55     NSConcreteGlobalBlockDecl(0), NSConcreteStackBlockDecl(0),
56     NSConcreteGlobalBlock(0), NSConcreteStackBlock(0),
57     BlockObjectAssignDecl(0), BlockObjectDisposeDecl(0),
58     BlockObjectAssign(0), BlockObjectDispose(0){
59 
60   if (!Features.ObjC1)
61     Runtime = 0;
62   else if (!Features.NeXTRuntime)
63     Runtime = CreateGNUObjCRuntime(*this);
64   else if (Features.ObjCNonFragileABI)
65     Runtime = CreateMacNonFragileABIObjCRuntime(*this);
66   else
67     Runtime = CreateMacObjCRuntime(*this);
68 
69   if (!Features.CPlusPlus)
70     ABI = 0;
71   else createCXXABI();
72 
73   // If debug info generation is enabled, create the CGDebugInfo object.
74   DebugInfo = CodeGenOpts.DebugInfo ? new CGDebugInfo(*this) : 0;
75 }
76 
77 CodeGenModule::~CodeGenModule() {
78   delete Runtime;
79   delete ABI;
80   delete DebugInfo;
81 }
82 
83 void CodeGenModule::createObjCRuntime() {
84   if (!Features.NeXTRuntime)
85     Runtime = CreateGNUObjCRuntime(*this);
86   else if (Features.ObjCNonFragileABI)
87     Runtime = CreateMacNonFragileABIObjCRuntime(*this);
88   else
89     Runtime = CreateMacObjCRuntime(*this);
90 }
91 
92 void CodeGenModule::createCXXABI() {
93   if (Context.Target.getCXXABI() == "microsoft")
94     ABI = CreateMicrosoftCXXABI(*this);
95   else
96     ABI = CreateItaniumCXXABI(*this);
97 }
98 
99 void CodeGenModule::Release() {
100   EmitDeferred();
101   EmitCXXGlobalInitFunc();
102   EmitCXXGlobalDtorFunc();
103   if (Runtime)
104     if (llvm::Function *ObjCInitFunction = Runtime->ModuleInitFunction())
105       AddGlobalCtor(ObjCInitFunction);
106   EmitCtorList(GlobalCtors, "llvm.global_ctors");
107   EmitCtorList(GlobalDtors, "llvm.global_dtors");
108   EmitAnnotations();
109   EmitLLVMUsed();
110 
111   if (getCodeGenOpts().EmitDeclMetadata)
112     EmitDeclMetadata();
113 }
114 
115 bool CodeGenModule::isTargetDarwin() const {
116   return getContext().Target.getTriple().getOS() == llvm::Triple::Darwin;
117 }
118 
119 /// ErrorUnsupported - Print out an error that codegen doesn't support the
120 /// specified stmt yet.
121 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type,
122                                      bool OmitOnError) {
123   if (OmitOnError && getDiags().hasErrorOccurred())
124     return;
125   unsigned DiagID = getDiags().getCustomDiagID(Diagnostic::Error,
126                                                "cannot compile this %0 yet");
127   std::string Msg = Type;
128   getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID)
129     << Msg << S->getSourceRange();
130 }
131 
132 /// ErrorUnsupported - Print out an error that codegen doesn't support the
133 /// specified decl yet.
134 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type,
135                                      bool OmitOnError) {
136   if (OmitOnError && getDiags().hasErrorOccurred())
137     return;
138   unsigned DiagID = getDiags().getCustomDiagID(Diagnostic::Error,
139                                                "cannot compile this %0 yet");
140   std::string Msg = Type;
141   getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg;
142 }
143 
144 LangOptions::VisibilityMode
145 CodeGenModule::getDeclVisibilityMode(const Decl *D) const {
146   if (const VarDecl *VD = dyn_cast<VarDecl>(D))
147     if (VD->getStorageClass() == VarDecl::PrivateExtern)
148       return LangOptions::Hidden;
149 
150   if (const VisibilityAttr *attr = D->getAttr<VisibilityAttr>()) {
151     switch (attr->getVisibility()) {
152     default: assert(0 && "Unknown visibility!");
153     case VisibilityAttr::DefaultVisibility:
154       return LangOptions::Default;
155     case VisibilityAttr::HiddenVisibility:
156       return LangOptions::Hidden;
157     case VisibilityAttr::ProtectedVisibility:
158       return LangOptions::Protected;
159     }
160   }
161 
162   if (getLangOptions().CPlusPlus) {
163     // Entities subject to an explicit instantiation declaration get default
164     // visibility.
165     if (const FunctionDecl *Function = dyn_cast<FunctionDecl>(D)) {
166       if (Function->getTemplateSpecializationKind()
167                                         == TSK_ExplicitInstantiationDeclaration)
168         return LangOptions::Default;
169     } else if (const ClassTemplateSpecializationDecl *ClassSpec
170                               = dyn_cast<ClassTemplateSpecializationDecl>(D)) {
171       if (ClassSpec->getSpecializationKind()
172                                         == TSK_ExplicitInstantiationDeclaration)
173         return LangOptions::Default;
174     } else if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(D)) {
175       if (Record->getTemplateSpecializationKind()
176                                         == TSK_ExplicitInstantiationDeclaration)
177         return LangOptions::Default;
178     } else if (const VarDecl *Var = dyn_cast<VarDecl>(D)) {
179       if (Var->isStaticDataMember() &&
180           (Var->getTemplateSpecializationKind()
181                                       == TSK_ExplicitInstantiationDeclaration))
182         return LangOptions::Default;
183     }
184 
185     // If -fvisibility-inlines-hidden was provided, then inline C++ member
186     // functions get "hidden" visibility by default.
187     if (getLangOptions().InlineVisibilityHidden)
188       if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D))
189         if (Method->isInlined())
190           return LangOptions::Hidden;
191   }
192 
193   // If this decl is contained in a class, it should have the same visibility
194   // as the parent class.
195   if (const DeclContext *DC = D->getDeclContext())
196     if (DC->isRecord())
197       return getDeclVisibilityMode(cast<Decl>(DC));
198 
199   return getLangOptions().getVisibilityMode();
200 }
201 
202 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV,
203                                         const Decl *D) const {
204   // Internal definitions always have default visibility.
205   if (GV->hasLocalLinkage()) {
206     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
207     return;
208   }
209 
210   switch (getDeclVisibilityMode(D)) {
211   default: assert(0 && "Unknown visibility!");
212   case LangOptions::Default:
213     return GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
214   case LangOptions::Hidden:
215     return GV->setVisibility(llvm::GlobalValue::HiddenVisibility);
216   case LangOptions::Protected:
217     return GV->setVisibility(llvm::GlobalValue::ProtectedVisibility);
218   }
219 }
220 
221 /// Set the symbol visibility of type information (vtable and RTTI)
222 /// associated with the given type.
223 void CodeGenModule::setTypeVisibility(llvm::GlobalValue *GV,
224                                       const CXXRecordDecl *RD,
225                                       bool IsForRTTI) const {
226   setGlobalVisibility(GV, RD);
227 
228   // We want to drop the visibility to hidden for weak type symbols.
229   // This isn't possible if there might be unresolved references
230   // elsewhere that rely on this symbol being visible.
231 
232   // This should be kept roughly in sync with setThunkVisibility
233   // in CGVTables.cpp.
234 
235   // Preconditions.
236   if (GV->getLinkage() != llvm::GlobalVariable::WeakODRLinkage ||
237       GV->getVisibility() != llvm::GlobalVariable::DefaultVisibility)
238     return;
239 
240   // Don't override an explicit visibility attribute.
241   if (RD->hasAttr<VisibilityAttr>())
242     return;
243 
244   switch (RD->getTemplateSpecializationKind()) {
245   // We have to disable the optimization if this is an EI definition
246   // because there might be EI declarations in other shared objects.
247   case TSK_ExplicitInstantiationDefinition:
248   case TSK_ExplicitInstantiationDeclaration:
249     return;
250 
251   // Every use of a non-template class's type information has to emit it.
252   case TSK_Undeclared:
253     break;
254 
255   // In theory, implicit instantiations can ignore the possibility of
256   // an explicit instantiation declaration because there necessarily
257   // must be an EI definition somewhere with default visibility.  In
258   // practice, it's possible to have an explicit instantiation for
259   // an arbitrary template class, and linkers aren't necessarily able
260   // to deal with mixed-visibility symbols.
261   case TSK_ExplicitSpecialization:
262   case TSK_ImplicitInstantiation:
263     if (!CodeGenOpts.EmitWeakTemplatesHidden)
264       return;
265     break;
266   }
267 
268   // If there's a key function, there may be translation units
269   // that don't have the key function's definition.  But ignore
270   // this if we're emitting RTTI under -fno-rtti.
271   if (!IsForRTTI || Features.RTTI)
272     if (Context.getKeyFunction(RD))
273       return;
274 
275   // Otherwise, drop the visibility to hidden.
276   GV->setVisibility(llvm::GlobalValue::HiddenVisibility);
277 }
278 
279 llvm::StringRef CodeGenModule::getMangledName(GlobalDecl GD) {
280   const NamedDecl *ND = cast<NamedDecl>(GD.getDecl());
281 
282   llvm::StringRef &Str = MangledDeclNames[GD.getCanonicalDecl()];
283   if (!Str.empty())
284     return Str;
285 
286   if (!getMangleContext().shouldMangleDeclName(ND)) {
287     IdentifierInfo *II = ND->getIdentifier();
288     assert(II && "Attempt to mangle unnamed decl.");
289 
290     Str = II->getName();
291     return Str;
292   }
293 
294   llvm::SmallString<256> Buffer;
295   if (const CXXConstructorDecl *D = dyn_cast<CXXConstructorDecl>(ND))
296     getMangleContext().mangleCXXCtor(D, GD.getCtorType(), Buffer);
297   else if (const CXXDestructorDecl *D = dyn_cast<CXXDestructorDecl>(ND))
298     getMangleContext().mangleCXXDtor(D, GD.getDtorType(), Buffer);
299   else if (const BlockDecl *BD = dyn_cast<BlockDecl>(ND))
300     getMangleContext().mangleBlock(GD, BD, Buffer);
301   else
302     getMangleContext().mangleName(ND, Buffer);
303 
304   // Allocate space for the mangled name.
305   size_t Length = Buffer.size();
306   char *Name = MangledNamesAllocator.Allocate<char>(Length);
307   std::copy(Buffer.begin(), Buffer.end(), Name);
308 
309   Str = llvm::StringRef(Name, Length);
310 
311   return Str;
312 }
313 
314 void CodeGenModule::getMangledName(GlobalDecl GD, MangleBuffer &Buffer,
315                                    const BlockDecl *BD) {
316   getMangleContext().mangleBlock(GD, BD, Buffer.getBuffer());
317 }
318 
319 llvm::GlobalValue *CodeGenModule::GetGlobalValue(llvm::StringRef Name) {
320   return getModule().getNamedValue(Name);
321 }
322 
323 /// AddGlobalCtor - Add a function to the list that will be called before
324 /// main() runs.
325 void CodeGenModule::AddGlobalCtor(llvm::Function * Ctor, int Priority) {
326   // FIXME: Type coercion of void()* types.
327   GlobalCtors.push_back(std::make_pair(Ctor, Priority));
328 }
329 
330 /// AddGlobalDtor - Add a function to the list that will be called
331 /// when the module is unloaded.
332 void CodeGenModule::AddGlobalDtor(llvm::Function * Dtor, int Priority) {
333   // FIXME: Type coercion of void()* types.
334   GlobalDtors.push_back(std::make_pair(Dtor, Priority));
335 }
336 
337 void CodeGenModule::EmitCtorList(const CtorList &Fns, const char *GlobalName) {
338   // Ctor function type is void()*.
339   llvm::FunctionType* CtorFTy =
340     llvm::FunctionType::get(llvm::Type::getVoidTy(VMContext),
341                             std::vector<const llvm::Type*>(),
342                             false);
343   llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy);
344 
345   // Get the type of a ctor entry, { i32, void ()* }.
346   llvm::StructType* CtorStructTy =
347     llvm::StructType::get(VMContext, llvm::Type::getInt32Ty(VMContext),
348                           llvm::PointerType::getUnqual(CtorFTy), NULL);
349 
350   // Construct the constructor and destructor arrays.
351   std::vector<llvm::Constant*> Ctors;
352   for (CtorList::const_iterator I = Fns.begin(), E = Fns.end(); I != E; ++I) {
353     std::vector<llvm::Constant*> S;
354     S.push_back(llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext),
355                 I->second, false));
356     S.push_back(llvm::ConstantExpr::getBitCast(I->first, CtorPFTy));
357     Ctors.push_back(llvm::ConstantStruct::get(CtorStructTy, S));
358   }
359 
360   if (!Ctors.empty()) {
361     llvm::ArrayType *AT = llvm::ArrayType::get(CtorStructTy, Ctors.size());
362     new llvm::GlobalVariable(TheModule, AT, false,
363                              llvm::GlobalValue::AppendingLinkage,
364                              llvm::ConstantArray::get(AT, Ctors),
365                              GlobalName);
366   }
367 }
368 
369 void CodeGenModule::EmitAnnotations() {
370   if (Annotations.empty())
371     return;
372 
373   // Create a new global variable for the ConstantStruct in the Module.
374   llvm::Constant *Array =
375   llvm::ConstantArray::get(llvm::ArrayType::get(Annotations[0]->getType(),
376                                                 Annotations.size()),
377                            Annotations);
378   llvm::GlobalValue *gv =
379   new llvm::GlobalVariable(TheModule, Array->getType(), false,
380                            llvm::GlobalValue::AppendingLinkage, Array,
381                            "llvm.global.annotations");
382   gv->setSection("llvm.metadata");
383 }
384 
385 llvm::GlobalValue::LinkageTypes
386 CodeGenModule::getFunctionLinkage(const FunctionDecl *D) {
387   GVALinkage Linkage = getContext().GetGVALinkageForFunction(D);
388 
389   if (Linkage == GVA_Internal)
390     return llvm::Function::InternalLinkage;
391 
392   if (D->hasAttr<DLLExportAttr>())
393     return llvm::Function::DLLExportLinkage;
394 
395   if (D->hasAttr<WeakAttr>())
396     return llvm::Function::WeakAnyLinkage;
397 
398   // In C99 mode, 'inline' functions are guaranteed to have a strong
399   // definition somewhere else, so we can use available_externally linkage.
400   if (Linkage == GVA_C99Inline)
401     return llvm::Function::AvailableExternallyLinkage;
402 
403   // In C++, the compiler has to emit a definition in every translation unit
404   // that references the function.  We should use linkonce_odr because
405   // a) if all references in this translation unit are optimized away, we
406   // don't need to codegen it.  b) if the function persists, it needs to be
407   // merged with other definitions. c) C++ has the ODR, so we know the
408   // definition is dependable.
409   if (Linkage == GVA_CXXInline || Linkage == GVA_TemplateInstantiation)
410     return llvm::Function::LinkOnceODRLinkage;
411 
412   // An explicit instantiation of a template has weak linkage, since
413   // explicit instantiations can occur in multiple translation units
414   // and must all be equivalent. However, we are not allowed to
415   // throw away these explicit instantiations.
416   if (Linkage == GVA_ExplicitTemplateInstantiation)
417     return llvm::Function::WeakODRLinkage;
418 
419   // Otherwise, we have strong external linkage.
420   assert(Linkage == GVA_StrongExternal);
421   return llvm::Function::ExternalLinkage;
422 }
423 
424 
425 /// SetFunctionDefinitionAttributes - Set attributes for a global.
426 ///
427 /// FIXME: This is currently only done for aliases and functions, but not for
428 /// variables (these details are set in EmitGlobalVarDefinition for variables).
429 void CodeGenModule::SetFunctionDefinitionAttributes(const FunctionDecl *D,
430                                                     llvm::GlobalValue *GV) {
431   SetCommonAttributes(D, GV);
432 }
433 
434 void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D,
435                                               const CGFunctionInfo &Info,
436                                               llvm::Function *F) {
437   unsigned CallingConv;
438   AttributeListType AttributeList;
439   ConstructAttributeList(Info, D, AttributeList, CallingConv);
440   F->setAttributes(llvm::AttrListPtr::get(AttributeList.begin(),
441                                           AttributeList.size()));
442   F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv));
443 }
444 
445 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D,
446                                                            llvm::Function *F) {
447   if (!Features.Exceptions && !Features.ObjCNonFragileABI)
448     F->addFnAttr(llvm::Attribute::NoUnwind);
449 
450   if (D->hasAttr<AlwaysInlineAttr>())
451     F->addFnAttr(llvm::Attribute::AlwaysInline);
452 
453   if (D->hasAttr<NoInlineAttr>())
454     F->addFnAttr(llvm::Attribute::NoInline);
455 
456   if (Features.getStackProtectorMode() == LangOptions::SSPOn)
457     F->addFnAttr(llvm::Attribute::StackProtect);
458   else if (Features.getStackProtectorMode() == LangOptions::SSPReq)
459     F->addFnAttr(llvm::Attribute::StackProtectReq);
460 
461   if (const AlignedAttr *AA = D->getAttr<AlignedAttr>()) {
462     unsigned width = Context.Target.getCharWidth();
463     F->setAlignment(AA->getAlignment() / width);
464     while ((AA = AA->getNext<AlignedAttr>()))
465       F->setAlignment(std::max(F->getAlignment(), AA->getAlignment() / width));
466   }
467   // C++ ABI requires 2-byte alignment for member functions.
468   if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D))
469     F->setAlignment(2);
470 }
471 
472 void CodeGenModule::SetCommonAttributes(const Decl *D,
473                                         llvm::GlobalValue *GV) {
474   setGlobalVisibility(GV, D);
475 
476   if (D->hasAttr<UsedAttr>())
477     AddUsedGlobal(GV);
478 
479   if (const SectionAttr *SA = D->getAttr<SectionAttr>())
480     GV->setSection(SA->getName());
481 
482   getTargetCodeGenInfo().SetTargetAttributes(D, GV, *this);
483 }
484 
485 void CodeGenModule::SetInternalFunctionAttributes(const Decl *D,
486                                                   llvm::Function *F,
487                                                   const CGFunctionInfo &FI) {
488   SetLLVMFunctionAttributes(D, FI, F);
489   SetLLVMFunctionAttributesForDefinition(D, F);
490 
491   F->setLinkage(llvm::Function::InternalLinkage);
492 
493   SetCommonAttributes(D, F);
494 }
495 
496 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD,
497                                           llvm::Function *F,
498                                           bool IsIncompleteFunction) {
499   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
500 
501   if (!IsIncompleteFunction)
502     SetLLVMFunctionAttributes(FD, getTypes().getFunctionInfo(GD), F);
503 
504   // Only a few attributes are set on declarations; these may later be
505   // overridden by a definition.
506 
507   if (FD->hasAttr<DLLImportAttr>()) {
508     F->setLinkage(llvm::Function::DLLImportLinkage);
509   } else if (FD->hasAttr<WeakAttr>() ||
510              FD->hasAttr<WeakImportAttr>()) {
511     // "extern_weak" is overloaded in LLVM; we probably should have
512     // separate linkage types for this.
513     F->setLinkage(llvm::Function::ExternalWeakLinkage);
514   } else {
515     F->setLinkage(llvm::Function::ExternalLinkage);
516   }
517 
518   if (const SectionAttr *SA = FD->getAttr<SectionAttr>())
519     F->setSection(SA->getName());
520 }
521 
522 void CodeGenModule::AddUsedGlobal(llvm::GlobalValue *GV) {
523   assert(!GV->isDeclaration() &&
524          "Only globals with definition can force usage.");
525   LLVMUsed.push_back(GV);
526 }
527 
528 void CodeGenModule::EmitLLVMUsed() {
529   // Don't create llvm.used if there is no need.
530   if (LLVMUsed.empty())
531     return;
532 
533   const llvm::Type *i8PTy = llvm::Type::getInt8PtrTy(VMContext);
534 
535   // Convert LLVMUsed to what ConstantArray needs.
536   std::vector<llvm::Constant*> UsedArray;
537   UsedArray.resize(LLVMUsed.size());
538   for (unsigned i = 0, e = LLVMUsed.size(); i != e; ++i) {
539     UsedArray[i] =
540      llvm::ConstantExpr::getBitCast(cast<llvm::Constant>(&*LLVMUsed[i]),
541                                       i8PTy);
542   }
543 
544   if (UsedArray.empty())
545     return;
546   llvm::ArrayType *ATy = llvm::ArrayType::get(i8PTy, UsedArray.size());
547 
548   llvm::GlobalVariable *GV =
549     new llvm::GlobalVariable(getModule(), ATy, false,
550                              llvm::GlobalValue::AppendingLinkage,
551                              llvm::ConstantArray::get(ATy, UsedArray),
552                              "llvm.used");
553 
554   GV->setSection("llvm.metadata");
555 }
556 
557 void CodeGenModule::EmitDeferred() {
558   // Emit code for any potentially referenced deferred decls.  Since a
559   // previously unused static decl may become used during the generation of code
560   // for a static function, iterate until no  changes are made.
561 
562   while (!DeferredDeclsToEmit.empty() || !DeferredVTables.empty()) {
563     if (!DeferredVTables.empty()) {
564       const CXXRecordDecl *RD = DeferredVTables.back();
565       DeferredVTables.pop_back();
566       getVTables().GenerateClassData(getVTableLinkage(RD), RD);
567       continue;
568     }
569 
570     GlobalDecl D = DeferredDeclsToEmit.back();
571     DeferredDeclsToEmit.pop_back();
572 
573     // Check to see if we've already emitted this.  This is necessary
574     // for a couple of reasons: first, decls can end up in the
575     // deferred-decls queue multiple times, and second, decls can end
576     // up with definitions in unusual ways (e.g. by an extern inline
577     // function acquiring a strong function redefinition).  Just
578     // ignore these cases.
579     //
580     // TODO: That said, looking this up multiple times is very wasteful.
581     llvm::StringRef Name = getMangledName(D);
582     llvm::GlobalValue *CGRef = GetGlobalValue(Name);
583     assert(CGRef && "Deferred decl wasn't referenced?");
584 
585     if (!CGRef->isDeclaration())
586       continue;
587 
588     // GlobalAlias::isDeclaration() defers to the aliasee, but for our
589     // purposes an alias counts as a definition.
590     if (isa<llvm::GlobalAlias>(CGRef))
591       continue;
592 
593     // Otherwise, emit the definition and move on to the next one.
594     EmitGlobalDefinition(D);
595   }
596 }
597 
598 /// EmitAnnotateAttr - Generate the llvm::ConstantStruct which contains the
599 /// annotation information for a given GlobalValue.  The annotation struct is
600 /// {i8 *, i8 *, i8 *, i32}.  The first field is a constant expression, the
601 /// GlobalValue being annotated.  The second field is the constant string
602 /// created from the AnnotateAttr's annotation.  The third field is a constant
603 /// string containing the name of the translation unit.  The fourth field is
604 /// the line number in the file of the annotated value declaration.
605 ///
606 /// FIXME: this does not unique the annotation string constants, as llvm-gcc
607 ///        appears to.
608 ///
609 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV,
610                                                 const AnnotateAttr *AA,
611                                                 unsigned LineNo) {
612   llvm::Module *M = &getModule();
613 
614   // get [N x i8] constants for the annotation string, and the filename string
615   // which are the 2nd and 3rd elements of the global annotation structure.
616   const llvm::Type *SBP = llvm::Type::getInt8PtrTy(VMContext);
617   llvm::Constant *anno = llvm::ConstantArray::get(VMContext,
618                                                   AA->getAnnotation(), true);
619   llvm::Constant *unit = llvm::ConstantArray::get(VMContext,
620                                                   M->getModuleIdentifier(),
621                                                   true);
622 
623   // Get the two global values corresponding to the ConstantArrays we just
624   // created to hold the bytes of the strings.
625   llvm::GlobalValue *annoGV =
626     new llvm::GlobalVariable(*M, anno->getType(), false,
627                              llvm::GlobalValue::PrivateLinkage, anno,
628                              GV->getName());
629   // translation unit name string, emitted into the llvm.metadata section.
630   llvm::GlobalValue *unitGV =
631     new llvm::GlobalVariable(*M, unit->getType(), false,
632                              llvm::GlobalValue::PrivateLinkage, unit,
633                              ".str");
634 
635   // Create the ConstantStruct for the global annotation.
636   llvm::Constant *Fields[4] = {
637     llvm::ConstantExpr::getBitCast(GV, SBP),
638     llvm::ConstantExpr::getBitCast(annoGV, SBP),
639     llvm::ConstantExpr::getBitCast(unitGV, SBP),
640     llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext), LineNo)
641   };
642   return llvm::ConstantStruct::get(VMContext, Fields, 4, false);
643 }
644 
645 bool CodeGenModule::MayDeferGeneration(const ValueDecl *Global) {
646   // Never defer when EmitAllDecls is specified.
647   if (Features.EmitAllDecls)
648     return false;
649 
650   return !getContext().DeclMustBeEmitted(Global);
651 }
652 
653 llvm::Constant *CodeGenModule::GetWeakRefReference(const ValueDecl *VD) {
654   const AliasAttr *AA = VD->getAttr<AliasAttr>();
655   assert(AA && "No alias?");
656 
657   const llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType());
658 
659   // See if there is already something with the target's name in the module.
660   llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee());
661 
662   llvm::Constant *Aliasee;
663   if (isa<llvm::FunctionType>(DeclTy))
664     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GlobalDecl());
665   else
666     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
667                                     llvm::PointerType::getUnqual(DeclTy), 0);
668   if (!Entry) {
669     llvm::GlobalValue* F = cast<llvm::GlobalValue>(Aliasee);
670     F->setLinkage(llvm::Function::ExternalWeakLinkage);
671     WeakRefReferences.insert(F);
672   }
673 
674   return Aliasee;
675 }
676 
677 void CodeGenModule::EmitGlobal(GlobalDecl GD) {
678   const ValueDecl *Global = cast<ValueDecl>(GD.getDecl());
679 
680   // Weak references don't produce any output by themselves.
681   if (Global->hasAttr<WeakRefAttr>())
682     return;
683 
684   // If this is an alias definition (which otherwise looks like a declaration)
685   // emit it now.
686   if (Global->hasAttr<AliasAttr>())
687     return EmitAliasDefinition(GD);
688 
689   // Ignore declarations, they will be emitted on their first use.
690   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) {
691     if (FD->getIdentifier()) {
692       llvm::StringRef Name = FD->getName();
693       if (Name == "_Block_object_assign") {
694         BlockObjectAssignDecl = FD;
695       } else if (Name == "_Block_object_dispose") {
696         BlockObjectDisposeDecl = FD;
697       }
698     }
699 
700     // Forward declarations are emitted lazily on first use.
701     if (!FD->isThisDeclarationADefinition())
702       return;
703   } else {
704     const VarDecl *VD = cast<VarDecl>(Global);
705     assert(VD->isFileVarDecl() && "Cannot emit local var decl as global.");
706 
707     if (VD->getIdentifier()) {
708       llvm::StringRef Name = VD->getName();
709       if (Name == "_NSConcreteGlobalBlock") {
710         NSConcreteGlobalBlockDecl = VD;
711       } else if (Name == "_NSConcreteStackBlock") {
712         NSConcreteStackBlockDecl = VD;
713       }
714     }
715 
716 
717     if (VD->isThisDeclarationADefinition() != VarDecl::Definition)
718       return;
719   }
720 
721   // Defer code generation when possible if this is a static definition, inline
722   // function etc.  These we only want to emit if they are used.
723   if (!MayDeferGeneration(Global)) {
724     // Emit the definition if it can't be deferred.
725     EmitGlobalDefinition(GD);
726     return;
727   }
728 
729   // If we're deferring emission of a C++ variable with an
730   // initializer, remember the order in which it appeared in the file.
731   if (getLangOptions().CPlusPlus && isa<VarDecl>(Global) &&
732       cast<VarDecl>(Global)->hasInit()) {
733     DelayedCXXInitPosition[Global] = CXXGlobalInits.size();
734     CXXGlobalInits.push_back(0);
735   }
736 
737   // If the value has already been used, add it directly to the
738   // DeferredDeclsToEmit list.
739   llvm::StringRef MangledName = getMangledName(GD);
740   if (GetGlobalValue(MangledName))
741     DeferredDeclsToEmit.push_back(GD);
742   else {
743     // Otherwise, remember that we saw a deferred decl with this name.  The
744     // first use of the mangled name will cause it to move into
745     // DeferredDeclsToEmit.
746     DeferredDecls[MangledName] = GD;
747   }
748 }
749 
750 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD) {
751   const ValueDecl *D = cast<ValueDecl>(GD.getDecl());
752 
753   PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(),
754                                  Context.getSourceManager(),
755                                  "Generating code for declaration");
756 
757   if (const FunctionDecl *Function = dyn_cast<FunctionDecl>(D)) {
758     // At -O0, don't generate IR for functions with available_externally
759     // linkage.
760     if (CodeGenOpts.OptimizationLevel == 0 &&
761         !Function->hasAttr<AlwaysInlineAttr>() &&
762         getFunctionLinkage(Function)
763                                   == llvm::Function::AvailableExternallyLinkage)
764       return;
765 
766     if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) {
767       if (Method->isVirtual())
768         getVTables().EmitThunks(GD);
769 
770       if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(Method))
771         return EmitCXXConstructor(CD, GD.getCtorType());
772 
773       if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(Method))
774         return EmitCXXDestructor(DD, GD.getDtorType());
775     }
776 
777     return EmitGlobalFunctionDefinition(GD);
778   }
779 
780   if (const VarDecl *VD = dyn_cast<VarDecl>(D))
781     return EmitGlobalVarDefinition(VD);
782 
783   assert(0 && "Invalid argument to EmitGlobalDefinition()");
784 }
785 
786 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the
787 /// module, create and return an llvm Function with the specified type. If there
788 /// is something in the module with the specified name, return it potentially
789 /// bitcasted to the right type.
790 ///
791 /// If D is non-null, it specifies a decl that correspond to this.  This is used
792 /// to set the attributes on the function when it is first created.
793 llvm::Constant *
794 CodeGenModule::GetOrCreateLLVMFunction(llvm::StringRef MangledName,
795                                        const llvm::Type *Ty,
796                                        GlobalDecl D) {
797   // Lookup the entry, lazily creating it if necessary.
798   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
799   if (Entry) {
800     if (WeakRefReferences.count(Entry)) {
801       const FunctionDecl *FD = cast_or_null<FunctionDecl>(D.getDecl());
802       if (FD && !FD->hasAttr<WeakAttr>())
803         Entry->setLinkage(llvm::Function::ExternalLinkage);
804 
805       WeakRefReferences.erase(Entry);
806     }
807 
808     if (Entry->getType()->getElementType() == Ty)
809       return Entry;
810 
811     // Make sure the result is of the correct type.
812     const llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
813     return llvm::ConstantExpr::getBitCast(Entry, PTy);
814   }
815 
816   // This function doesn't have a complete type (for example, the return
817   // type is an incomplete struct). Use a fake type instead, and make
818   // sure not to try to set attributes.
819   bool IsIncompleteFunction = false;
820 
821   const llvm::FunctionType *FTy;
822   if (isa<llvm::FunctionType>(Ty)) {
823     FTy = cast<llvm::FunctionType>(Ty);
824   } else {
825     FTy = llvm::FunctionType::get(llvm::Type::getVoidTy(VMContext),
826                                   std::vector<const llvm::Type*>(), false);
827     IsIncompleteFunction = true;
828   }
829 
830   llvm::Function *F = llvm::Function::Create(FTy,
831                                              llvm::Function::ExternalLinkage,
832                                              MangledName, &getModule());
833   assert(F->getName() == MangledName && "name was uniqued!");
834   if (D.getDecl())
835     SetFunctionAttributes(D, F, IsIncompleteFunction);
836 
837   // This is the first use or definition of a mangled name.  If there is a
838   // deferred decl with this name, remember that we need to emit it at the end
839   // of the file.
840   llvm::StringMap<GlobalDecl>::iterator DDI = DeferredDecls.find(MangledName);
841   if (DDI != DeferredDecls.end()) {
842     // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
843     // list, and remove it from DeferredDecls (since we don't need it anymore).
844     DeferredDeclsToEmit.push_back(DDI->second);
845     DeferredDecls.erase(DDI);
846   } else if (const FunctionDecl *FD = cast_or_null<FunctionDecl>(D.getDecl())) {
847     // If this the first reference to a C++ inline function in a class, queue up
848     // the deferred function body for emission.  These are not seen as
849     // top-level declarations.
850     if (FD->isThisDeclarationADefinition() && MayDeferGeneration(FD))
851       DeferredDeclsToEmit.push_back(D);
852     // A called constructor which has no definition or declaration need be
853     // synthesized.
854     else if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD)) {
855       if (CD->isImplicit()) {
856         assert(CD->isUsed() && "Sema doesn't consider constructor as used.");
857         DeferredDeclsToEmit.push_back(D);
858       }
859     } else if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(FD)) {
860       if (DD->isImplicit()) {
861         assert(DD->isUsed() && "Sema doesn't consider destructor as used.");
862         DeferredDeclsToEmit.push_back(D);
863       }
864     } else if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
865       if (MD->isCopyAssignment() && MD->isImplicit()) {
866         assert(MD->isUsed() && "Sema doesn't consider CopyAssignment as used.");
867         DeferredDeclsToEmit.push_back(D);
868       }
869     }
870   }
871 
872   // Make sure the result is of the requested type.
873   if (!IsIncompleteFunction) {
874     assert(F->getType()->getElementType() == Ty);
875     return F;
876   }
877 
878   const llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
879   return llvm::ConstantExpr::getBitCast(F, PTy);
880 }
881 
882 /// GetAddrOfFunction - Return the address of the given function.  If Ty is
883 /// non-null, then this function will use the specified type if it has to
884 /// create it (this occurs when we see a definition of the function).
885 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD,
886                                                  const llvm::Type *Ty) {
887   // If there was no specific requested type, just convert it now.
888   if (!Ty)
889     Ty = getTypes().ConvertType(cast<ValueDecl>(GD.getDecl())->getType());
890 
891   llvm::StringRef MangledName = getMangledName(GD);
892   return GetOrCreateLLVMFunction(MangledName, Ty, GD);
893 }
894 
895 /// CreateRuntimeFunction - Create a new runtime function with the specified
896 /// type and name.
897 llvm::Constant *
898 CodeGenModule::CreateRuntimeFunction(const llvm::FunctionType *FTy,
899                                      llvm::StringRef Name) {
900   return GetOrCreateLLVMFunction(Name, FTy, GlobalDecl());
901 }
902 
903 static bool DeclIsConstantGlobal(ASTContext &Context, const VarDecl *D) {
904   if (!D->getType().isConstant(Context) && !D->getType()->isReferenceType())
905     return false;
906   if (Context.getLangOptions().CPlusPlus &&
907       Context.getBaseElementType(D->getType())->getAs<RecordType>()) {
908     // FIXME: We should do something fancier here!
909     return false;
910   }
911   return true;
912 }
913 
914 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module,
915 /// create and return an llvm GlobalVariable with the specified type.  If there
916 /// is something in the module with the specified name, return it potentially
917 /// bitcasted to the right type.
918 ///
919 /// If D is non-null, it specifies a decl that correspond to this.  This is used
920 /// to set the attributes on the global when it is first created.
921 llvm::Constant *
922 CodeGenModule::GetOrCreateLLVMGlobal(llvm::StringRef MangledName,
923                                      const llvm::PointerType *Ty,
924                                      const VarDecl *D) {
925   // Lookup the entry, lazily creating it if necessary.
926   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
927   if (Entry) {
928     if (WeakRefReferences.count(Entry)) {
929       if (D && !D->hasAttr<WeakAttr>())
930         Entry->setLinkage(llvm::Function::ExternalLinkage);
931 
932       WeakRefReferences.erase(Entry);
933     }
934 
935     if (Entry->getType() == Ty)
936       return Entry;
937 
938     // Make sure the result is of the correct type.
939     return llvm::ConstantExpr::getBitCast(Entry, Ty);
940   }
941 
942   // This is the first use or definition of a mangled name.  If there is a
943   // deferred decl with this name, remember that we need to emit it at the end
944   // of the file.
945   llvm::StringMap<GlobalDecl>::iterator DDI = DeferredDecls.find(MangledName);
946   if (DDI != DeferredDecls.end()) {
947     // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
948     // list, and remove it from DeferredDecls (since we don't need it anymore).
949     DeferredDeclsToEmit.push_back(DDI->second);
950     DeferredDecls.erase(DDI);
951   }
952 
953   llvm::GlobalVariable *GV =
954     new llvm::GlobalVariable(getModule(), Ty->getElementType(), false,
955                              llvm::GlobalValue::ExternalLinkage,
956                              0, MangledName, 0,
957                              false, Ty->getAddressSpace());
958 
959   // Handle things which are present even on external declarations.
960   if (D) {
961     // FIXME: This code is overly simple and should be merged with other global
962     // handling.
963     GV->setConstant(DeclIsConstantGlobal(Context, D));
964 
965     // FIXME: Merge with other attribute handling code.
966     if (D->getStorageClass() == VarDecl::PrivateExtern)
967       GV->setVisibility(llvm::GlobalValue::HiddenVisibility);
968 
969     if (D->hasAttr<WeakAttr>() ||
970         D->hasAttr<WeakImportAttr>())
971       GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage);
972 
973     GV->setThreadLocal(D->isThreadSpecified());
974   }
975 
976   return GV;
977 }
978 
979 
980 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the
981 /// given global variable.  If Ty is non-null and if the global doesn't exist,
982 /// then it will be greated with the specified type instead of whatever the
983 /// normal requested type would be.
984 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D,
985                                                   const llvm::Type *Ty) {
986   assert(D->hasGlobalStorage() && "Not a global variable");
987   QualType ASTTy = D->getType();
988   if (Ty == 0)
989     Ty = getTypes().ConvertTypeForMem(ASTTy);
990 
991   const llvm::PointerType *PTy =
992     llvm::PointerType::get(Ty, ASTTy.getAddressSpace());
993 
994   llvm::StringRef MangledName = getMangledName(D);
995   return GetOrCreateLLVMGlobal(MangledName, PTy, D);
996 }
997 
998 /// CreateRuntimeVariable - Create a new runtime global variable with the
999 /// specified type and name.
1000 llvm::Constant *
1001 CodeGenModule::CreateRuntimeVariable(const llvm::Type *Ty,
1002                                      llvm::StringRef Name) {
1003   return GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), 0);
1004 }
1005 
1006 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) {
1007   assert(!D->getInit() && "Cannot emit definite definitions here!");
1008 
1009   if (MayDeferGeneration(D)) {
1010     // If we have not seen a reference to this variable yet, place it
1011     // into the deferred declarations table to be emitted if needed
1012     // later.
1013     llvm::StringRef MangledName = getMangledName(D);
1014     if (!GetGlobalValue(MangledName)) {
1015       DeferredDecls[MangledName] = D;
1016       return;
1017     }
1018   }
1019 
1020   // The tentative definition is the only definition.
1021   EmitGlobalVarDefinition(D);
1022 }
1023 
1024 void CodeGenModule::EmitVTable(CXXRecordDecl *Class, bool DefinitionRequired) {
1025   if (DefinitionRequired)
1026     getVTables().GenerateClassData(getVTableLinkage(Class), Class);
1027 }
1028 
1029 llvm::GlobalVariable::LinkageTypes
1030 CodeGenModule::getVTableLinkage(const CXXRecordDecl *RD) {
1031   if (RD->isInAnonymousNamespace() || !RD->hasLinkage())
1032     return llvm::GlobalVariable::InternalLinkage;
1033 
1034   if (const CXXMethodDecl *KeyFunction
1035                                     = RD->getASTContext().getKeyFunction(RD)) {
1036     // If this class has a key function, use that to determine the linkage of
1037     // the vtable.
1038     const FunctionDecl *Def = 0;
1039     if (KeyFunction->hasBody(Def))
1040       KeyFunction = cast<CXXMethodDecl>(Def);
1041 
1042     switch (KeyFunction->getTemplateSpecializationKind()) {
1043       case TSK_Undeclared:
1044       case TSK_ExplicitSpecialization:
1045         if (KeyFunction->isInlined())
1046           return llvm::GlobalVariable::WeakODRLinkage;
1047 
1048         return llvm::GlobalVariable::ExternalLinkage;
1049 
1050       case TSK_ImplicitInstantiation:
1051       case TSK_ExplicitInstantiationDefinition:
1052         return llvm::GlobalVariable::WeakODRLinkage;
1053 
1054       case TSK_ExplicitInstantiationDeclaration:
1055         // FIXME: Use available_externally linkage. However, this currently
1056         // breaks LLVM's build due to undefined symbols.
1057         //      return llvm::GlobalVariable::AvailableExternallyLinkage;
1058         return llvm::GlobalVariable::WeakODRLinkage;
1059     }
1060   }
1061 
1062   switch (RD->getTemplateSpecializationKind()) {
1063   case TSK_Undeclared:
1064   case TSK_ExplicitSpecialization:
1065   case TSK_ImplicitInstantiation:
1066   case TSK_ExplicitInstantiationDefinition:
1067     return llvm::GlobalVariable::WeakODRLinkage;
1068 
1069   case TSK_ExplicitInstantiationDeclaration:
1070     // FIXME: Use available_externally linkage. However, this currently
1071     // breaks LLVM's build due to undefined symbols.
1072     //   return llvm::GlobalVariable::AvailableExternallyLinkage;
1073     return llvm::GlobalVariable::WeakODRLinkage;
1074   }
1075 
1076   // Silence GCC warning.
1077   return llvm::GlobalVariable::WeakODRLinkage;
1078 }
1079 
1080 CharUnits CodeGenModule::GetTargetTypeStoreSize(const llvm::Type *Ty) const {
1081     return CharUnits::fromQuantity(
1082       TheTargetData.getTypeStoreSizeInBits(Ty) / Context.getCharWidth());
1083 }
1084 
1085 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D) {
1086   llvm::Constant *Init = 0;
1087   QualType ASTTy = D->getType();
1088   bool NonConstInit = false;
1089 
1090   const Expr *InitExpr = D->getAnyInitializer();
1091 
1092   if (!InitExpr) {
1093     // This is a tentative definition; tentative definitions are
1094     // implicitly initialized with { 0 }.
1095     //
1096     // Note that tentative definitions are only emitted at the end of
1097     // a translation unit, so they should never have incomplete
1098     // type. In addition, EmitTentativeDefinition makes sure that we
1099     // never attempt to emit a tentative definition if a real one
1100     // exists. A use may still exists, however, so we still may need
1101     // to do a RAUW.
1102     assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type");
1103     Init = EmitNullConstant(D->getType());
1104   } else {
1105     Init = EmitConstantExpr(InitExpr, D->getType());
1106     if (!Init) {
1107       QualType T = InitExpr->getType();
1108       if (D->getType()->isReferenceType())
1109         T = D->getType();
1110 
1111       if (getLangOptions().CPlusPlus) {
1112         EmitCXXGlobalVarDeclInitFunc(D);
1113         Init = EmitNullConstant(T);
1114         NonConstInit = true;
1115       } else {
1116         ErrorUnsupported(D, "static initializer");
1117         Init = llvm::UndefValue::get(getTypes().ConvertType(T));
1118       }
1119     } else {
1120       // We don't need an initializer, so remove the entry for the delayed
1121       // initializer position (just in case this entry was delayed).
1122       if (getLangOptions().CPlusPlus)
1123         DelayedCXXInitPosition.erase(D);
1124     }
1125   }
1126 
1127   const llvm::Type* InitType = Init->getType();
1128   llvm::Constant *Entry = GetAddrOfGlobalVar(D, InitType);
1129 
1130   // Strip off a bitcast if we got one back.
1131   if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
1132     assert(CE->getOpcode() == llvm::Instruction::BitCast ||
1133            // all zero index gep.
1134            CE->getOpcode() == llvm::Instruction::GetElementPtr);
1135     Entry = CE->getOperand(0);
1136   }
1137 
1138   // Entry is now either a Function or GlobalVariable.
1139   llvm::GlobalVariable *GV = dyn_cast<llvm::GlobalVariable>(Entry);
1140 
1141   // We have a definition after a declaration with the wrong type.
1142   // We must make a new GlobalVariable* and update everything that used OldGV
1143   // (a declaration or tentative definition) with the new GlobalVariable*
1144   // (which will be a definition).
1145   //
1146   // This happens if there is a prototype for a global (e.g.
1147   // "extern int x[];") and then a definition of a different type (e.g.
1148   // "int x[10];"). This also happens when an initializer has a different type
1149   // from the type of the global (this happens with unions).
1150   if (GV == 0 ||
1151       GV->getType()->getElementType() != InitType ||
1152       GV->getType()->getAddressSpace() != ASTTy.getAddressSpace()) {
1153 
1154     // Move the old entry aside so that we'll create a new one.
1155     Entry->setName(llvm::StringRef());
1156 
1157     // Make a new global with the correct type, this is now guaranteed to work.
1158     GV = cast<llvm::GlobalVariable>(GetAddrOfGlobalVar(D, InitType));
1159 
1160     // Replace all uses of the old global with the new global
1161     llvm::Constant *NewPtrForOldDecl =
1162         llvm::ConstantExpr::getBitCast(GV, Entry->getType());
1163     Entry->replaceAllUsesWith(NewPtrForOldDecl);
1164 
1165     // Erase the old global, since it is no longer used.
1166     cast<llvm::GlobalValue>(Entry)->eraseFromParent();
1167   }
1168 
1169   if (const AnnotateAttr *AA = D->getAttr<AnnotateAttr>()) {
1170     SourceManager &SM = Context.getSourceManager();
1171     AddAnnotation(EmitAnnotateAttr(GV, AA,
1172                               SM.getInstantiationLineNumber(D->getLocation())));
1173   }
1174 
1175   GV->setInitializer(Init);
1176 
1177   // If it is safe to mark the global 'constant', do so now.
1178   GV->setConstant(false);
1179   if (!NonConstInit && DeclIsConstantGlobal(Context, D))
1180     GV->setConstant(true);
1181 
1182   GV->setAlignment(getContext().getDeclAlign(D).getQuantity());
1183 
1184   // Set the llvm linkage type as appropriate.
1185   GVALinkage Linkage = getContext().GetGVALinkageForVariable(D);
1186   if (Linkage == GVA_Internal)
1187     GV->setLinkage(llvm::Function::InternalLinkage);
1188   else if (D->hasAttr<DLLImportAttr>())
1189     GV->setLinkage(llvm::Function::DLLImportLinkage);
1190   else if (D->hasAttr<DLLExportAttr>())
1191     GV->setLinkage(llvm::Function::DLLExportLinkage);
1192   else if (D->hasAttr<WeakAttr>()) {
1193     if (GV->isConstant())
1194       GV->setLinkage(llvm::GlobalVariable::WeakODRLinkage);
1195     else
1196       GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage);
1197   } else if (Linkage == GVA_TemplateInstantiation ||
1198              Linkage == GVA_ExplicitTemplateInstantiation)
1199     // FIXME: It seems like we can provide more specific linkage here
1200     // (LinkOnceODR, WeakODR).
1201     GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage);
1202   else if (!getLangOptions().CPlusPlus && !CodeGenOpts.NoCommon &&
1203            !D->hasExternalStorage() && !D->getInit() &&
1204            !D->getAttr<SectionAttr>() && !D->isThreadSpecified()) {
1205     // Thread local vars aren't considered common linkage.
1206     GV->setLinkage(llvm::GlobalVariable::CommonLinkage);
1207     // common vars aren't constant even if declared const.
1208     GV->setConstant(false);
1209   } else
1210     GV->setLinkage(llvm::GlobalVariable::ExternalLinkage);
1211 
1212   SetCommonAttributes(D, GV);
1213 
1214   // Emit global variable debug information.
1215   if (CGDebugInfo *DI = getDebugInfo()) {
1216     DI->setLocation(D->getLocation());
1217     DI->EmitGlobalVariable(GV, D);
1218   }
1219 }
1220 
1221 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we
1222 /// implement a function with no prototype, e.g. "int foo() {}".  If there are
1223 /// existing call uses of the old function in the module, this adjusts them to
1224 /// call the new function directly.
1225 ///
1226 /// This is not just a cleanup: the always_inline pass requires direct calls to
1227 /// functions to be able to inline them.  If there is a bitcast in the way, it
1228 /// won't inline them.  Instcombine normally deletes these calls, but it isn't
1229 /// run at -O0.
1230 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
1231                                                       llvm::Function *NewFn) {
1232   // If we're redefining a global as a function, don't transform it.
1233   llvm::Function *OldFn = dyn_cast<llvm::Function>(Old);
1234   if (OldFn == 0) return;
1235 
1236   const llvm::Type *NewRetTy = NewFn->getReturnType();
1237   llvm::SmallVector<llvm::Value*, 4> ArgList;
1238 
1239   for (llvm::Value::use_iterator UI = OldFn->use_begin(), E = OldFn->use_end();
1240        UI != E; ) {
1241     // TODO: Do invokes ever occur in C code?  If so, we should handle them too.
1242     llvm::Value::use_iterator I = UI++; // Increment before the CI is erased.
1243     llvm::CallInst *CI = dyn_cast<llvm::CallInst>(*I);
1244     if (!CI) continue; // FIXME: when we allow Invoke, just do CallSite CS(*I)
1245     llvm::CallSite CS(CI);
1246     if (!CI || !CS.isCallee(I)) continue;
1247 
1248     // If the return types don't match exactly, and if the call isn't dead, then
1249     // we can't transform this call.
1250     if (CI->getType() != NewRetTy && !CI->use_empty())
1251       continue;
1252 
1253     // If the function was passed too few arguments, don't transform.  If extra
1254     // arguments were passed, we silently drop them.  If any of the types
1255     // mismatch, we don't transform.
1256     unsigned ArgNo = 0;
1257     bool DontTransform = false;
1258     for (llvm::Function::arg_iterator AI = NewFn->arg_begin(),
1259          E = NewFn->arg_end(); AI != E; ++AI, ++ArgNo) {
1260       if (CS.arg_size() == ArgNo ||
1261           CS.getArgument(ArgNo)->getType() != AI->getType()) {
1262         DontTransform = true;
1263         break;
1264       }
1265     }
1266     if (DontTransform)
1267       continue;
1268 
1269     // Okay, we can transform this.  Create the new call instruction and copy
1270     // over the required information.
1271     ArgList.append(CS.arg_begin(), CS.arg_begin() + ArgNo);
1272     llvm::CallInst *NewCall = llvm::CallInst::Create(NewFn, ArgList.begin(),
1273                                                      ArgList.end(), "", CI);
1274     ArgList.clear();
1275     if (!NewCall->getType()->isVoidTy())
1276       NewCall->takeName(CI);
1277     NewCall->setAttributes(CI->getAttributes());
1278     NewCall->setCallingConv(CI->getCallingConv());
1279 
1280     // Finally, remove the old call, replacing any uses with the new one.
1281     if (!CI->use_empty())
1282       CI->replaceAllUsesWith(NewCall);
1283 
1284     // Copy debug location attached to CI.
1285     if (!CI->getDebugLoc().isUnknown())
1286       NewCall->setDebugLoc(CI->getDebugLoc());
1287     CI->eraseFromParent();
1288   }
1289 }
1290 
1291 
1292 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD) {
1293   const FunctionDecl *D = cast<FunctionDecl>(GD.getDecl());
1294   const llvm::FunctionType *Ty = getTypes().GetFunctionType(GD);
1295   getMangleContext().mangleInitDiscriminator();
1296   // Get or create the prototype for the function.
1297   llvm::Constant *Entry = GetAddrOfFunction(GD, Ty);
1298 
1299   // Strip off a bitcast if we got one back.
1300   if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
1301     assert(CE->getOpcode() == llvm::Instruction::BitCast);
1302     Entry = CE->getOperand(0);
1303   }
1304 
1305 
1306   if (cast<llvm::GlobalValue>(Entry)->getType()->getElementType() != Ty) {
1307     llvm::GlobalValue *OldFn = cast<llvm::GlobalValue>(Entry);
1308 
1309     // If the types mismatch then we have to rewrite the definition.
1310     assert(OldFn->isDeclaration() &&
1311            "Shouldn't replace non-declaration");
1312 
1313     // F is the Function* for the one with the wrong type, we must make a new
1314     // Function* and update everything that used F (a declaration) with the new
1315     // Function* (which will be a definition).
1316     //
1317     // This happens if there is a prototype for a function
1318     // (e.g. "int f()") and then a definition of a different type
1319     // (e.g. "int f(int x)").  Move the old function aside so that it
1320     // doesn't interfere with GetAddrOfFunction.
1321     OldFn->setName(llvm::StringRef());
1322     llvm::Function *NewFn = cast<llvm::Function>(GetAddrOfFunction(GD, Ty));
1323 
1324     // If this is an implementation of a function without a prototype, try to
1325     // replace any existing uses of the function (which may be calls) with uses
1326     // of the new function
1327     if (D->getType()->isFunctionNoProtoType()) {
1328       ReplaceUsesOfNonProtoTypeWithRealFunction(OldFn, NewFn);
1329       OldFn->removeDeadConstantUsers();
1330     }
1331 
1332     // Replace uses of F with the Function we will endow with a body.
1333     if (!Entry->use_empty()) {
1334       llvm::Constant *NewPtrForOldDecl =
1335         llvm::ConstantExpr::getBitCast(NewFn, Entry->getType());
1336       Entry->replaceAllUsesWith(NewPtrForOldDecl);
1337     }
1338 
1339     // Ok, delete the old function now, which is dead.
1340     OldFn->eraseFromParent();
1341 
1342     Entry = NewFn;
1343   }
1344 
1345   llvm::Function *Fn = cast<llvm::Function>(Entry);
1346   setFunctionLinkage(D, Fn);
1347 
1348   CodeGenFunction(*this).GenerateCode(D, Fn);
1349 
1350   SetFunctionDefinitionAttributes(D, Fn);
1351   SetLLVMFunctionAttributesForDefinition(D, Fn);
1352 
1353   if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>())
1354     AddGlobalCtor(Fn, CA->getPriority());
1355   if (const DestructorAttr *DA = D->getAttr<DestructorAttr>())
1356     AddGlobalDtor(Fn, DA->getPriority());
1357 }
1358 
1359 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) {
1360   const ValueDecl *D = cast<ValueDecl>(GD.getDecl());
1361   const AliasAttr *AA = D->getAttr<AliasAttr>();
1362   assert(AA && "Not an alias?");
1363 
1364   llvm::StringRef MangledName = getMangledName(GD);
1365 
1366   // If there is a definition in the module, then it wins over the alias.
1367   // This is dubious, but allow it to be safe.  Just ignore the alias.
1368   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
1369   if (Entry && !Entry->isDeclaration())
1370     return;
1371 
1372   const llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
1373 
1374   // Create a reference to the named value.  This ensures that it is emitted
1375   // if a deferred decl.
1376   llvm::Constant *Aliasee;
1377   if (isa<llvm::FunctionType>(DeclTy))
1378     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GlobalDecl());
1379   else
1380     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
1381                                     llvm::PointerType::getUnqual(DeclTy), 0);
1382 
1383   // Create the new alias itself, but don't set a name yet.
1384   llvm::GlobalValue *GA =
1385     new llvm::GlobalAlias(Aliasee->getType(),
1386                           llvm::Function::ExternalLinkage,
1387                           "", Aliasee, &getModule());
1388 
1389   if (Entry) {
1390     assert(Entry->isDeclaration());
1391 
1392     // If there is a declaration in the module, then we had an extern followed
1393     // by the alias, as in:
1394     //   extern int test6();
1395     //   ...
1396     //   int test6() __attribute__((alias("test7")));
1397     //
1398     // Remove it and replace uses of it with the alias.
1399     GA->takeName(Entry);
1400 
1401     Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA,
1402                                                           Entry->getType()));
1403     Entry->eraseFromParent();
1404   } else {
1405     GA->setName(MangledName);
1406   }
1407 
1408   // Set attributes which are particular to an alias; this is a
1409   // specialization of the attributes which may be set on a global
1410   // variable/function.
1411   if (D->hasAttr<DLLExportAttr>()) {
1412     if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
1413       // The dllexport attribute is ignored for undefined symbols.
1414       if (FD->hasBody())
1415         GA->setLinkage(llvm::Function::DLLExportLinkage);
1416     } else {
1417       GA->setLinkage(llvm::Function::DLLExportLinkage);
1418     }
1419   } else if (D->hasAttr<WeakAttr>() ||
1420              D->hasAttr<WeakRefAttr>() ||
1421              D->hasAttr<WeakImportAttr>()) {
1422     GA->setLinkage(llvm::Function::WeakAnyLinkage);
1423   }
1424 
1425   SetCommonAttributes(D, GA);
1426 }
1427 
1428 /// getBuiltinLibFunction - Given a builtin id for a function like
1429 /// "__builtin_fabsf", return a Function* for "fabsf".
1430 llvm::Value *CodeGenModule::getBuiltinLibFunction(const FunctionDecl *FD,
1431                                                   unsigned BuiltinID) {
1432   assert((Context.BuiltinInfo.isLibFunction(BuiltinID) ||
1433           Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) &&
1434          "isn't a lib fn");
1435 
1436   // Get the name, skip over the __builtin_ prefix (if necessary).
1437   const char *Name = Context.BuiltinInfo.GetName(BuiltinID);
1438   if (Context.BuiltinInfo.isLibFunction(BuiltinID))
1439     Name += 10;
1440 
1441   const llvm::FunctionType *Ty =
1442     cast<llvm::FunctionType>(getTypes().ConvertType(FD->getType()));
1443 
1444   return GetOrCreateLLVMFunction(Name, Ty, GlobalDecl(FD));
1445 }
1446 
1447 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,const llvm::Type **Tys,
1448                                             unsigned NumTys) {
1449   return llvm::Intrinsic::getDeclaration(&getModule(),
1450                                          (llvm::Intrinsic::ID)IID, Tys, NumTys);
1451 }
1452 
1453 
1454 llvm::Function *CodeGenModule::getMemCpyFn(const llvm::Type *DestType,
1455                                            const llvm::Type *SrcType,
1456                                            const llvm::Type *SizeType) {
1457   const llvm::Type *ArgTypes[3] = {DestType, SrcType, SizeType };
1458   return getIntrinsic(llvm::Intrinsic::memcpy, ArgTypes, 3);
1459 }
1460 
1461 llvm::Function *CodeGenModule::getMemMoveFn(const llvm::Type *DestType,
1462                                             const llvm::Type *SrcType,
1463                                             const llvm::Type *SizeType) {
1464   const llvm::Type *ArgTypes[3] = {DestType, SrcType, SizeType };
1465   return getIntrinsic(llvm::Intrinsic::memmove, ArgTypes, 3);
1466 }
1467 
1468 llvm::Function *CodeGenModule::getMemSetFn(const llvm::Type *DestType,
1469                                            const llvm::Type *SizeType) {
1470   const llvm::Type *ArgTypes[2] = { DestType, SizeType };
1471   return getIntrinsic(llvm::Intrinsic::memset, ArgTypes, 2);
1472 }
1473 
1474 static llvm::StringMapEntry<llvm::Constant*> &
1475 GetConstantCFStringEntry(llvm::StringMap<llvm::Constant*> &Map,
1476                          const StringLiteral *Literal,
1477                          bool TargetIsLSB,
1478                          bool &IsUTF16,
1479                          unsigned &StringLength) {
1480   unsigned NumBytes = Literal->getByteLength();
1481 
1482   // Check for simple case.
1483   if (!Literal->containsNonAsciiOrNull()) {
1484     StringLength = NumBytes;
1485     return Map.GetOrCreateValue(llvm::StringRef(Literal->getStrData(),
1486                                                 StringLength));
1487   }
1488 
1489   // Otherwise, convert the UTF8 literals into a byte string.
1490   llvm::SmallVector<UTF16, 128> ToBuf(NumBytes);
1491   const UTF8 *FromPtr = (UTF8 *)Literal->getStrData();
1492   UTF16 *ToPtr = &ToBuf[0];
1493 
1494   ConversionResult Result = ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes,
1495                                                &ToPtr, ToPtr + NumBytes,
1496                                                strictConversion);
1497 
1498   // Check for conversion failure.
1499   if (Result != conversionOK) {
1500     // FIXME: Have Sema::CheckObjCString() validate the UTF-8 string and remove
1501     // this duplicate code.
1502     assert(Result == sourceIllegal && "UTF-8 to UTF-16 conversion failed");
1503     StringLength = NumBytes;
1504     return Map.GetOrCreateValue(llvm::StringRef(Literal->getStrData(),
1505                                                 StringLength));
1506   }
1507 
1508   // ConvertUTF8toUTF16 returns the length in ToPtr.
1509   StringLength = ToPtr - &ToBuf[0];
1510 
1511   // Render the UTF-16 string into a byte array and convert to the target byte
1512   // order.
1513   //
1514   // FIXME: This isn't something we should need to do here.
1515   llvm::SmallString<128> AsBytes;
1516   AsBytes.reserve(StringLength * 2);
1517   for (unsigned i = 0; i != StringLength; ++i) {
1518     unsigned short Val = ToBuf[i];
1519     if (TargetIsLSB) {
1520       AsBytes.push_back(Val & 0xFF);
1521       AsBytes.push_back(Val >> 8);
1522     } else {
1523       AsBytes.push_back(Val >> 8);
1524       AsBytes.push_back(Val & 0xFF);
1525     }
1526   }
1527   // Append one extra null character, the second is automatically added by our
1528   // caller.
1529   AsBytes.push_back(0);
1530 
1531   IsUTF16 = true;
1532   return Map.GetOrCreateValue(llvm::StringRef(AsBytes.data(), AsBytes.size()));
1533 }
1534 
1535 llvm::Constant *
1536 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) {
1537   unsigned StringLength = 0;
1538   bool isUTF16 = false;
1539   llvm::StringMapEntry<llvm::Constant*> &Entry =
1540     GetConstantCFStringEntry(CFConstantStringMap, Literal,
1541                              getTargetData().isLittleEndian(),
1542                              isUTF16, StringLength);
1543 
1544   if (llvm::Constant *C = Entry.getValue())
1545     return C;
1546 
1547   llvm::Constant *Zero =
1548       llvm::Constant::getNullValue(llvm::Type::getInt32Ty(VMContext));
1549   llvm::Constant *Zeros[] = { Zero, Zero };
1550 
1551   // If we don't already have it, get __CFConstantStringClassReference.
1552   if (!CFConstantStringClassRef) {
1553     const llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
1554     Ty = llvm::ArrayType::get(Ty, 0);
1555     llvm::Constant *GV = CreateRuntimeVariable(Ty,
1556                                            "__CFConstantStringClassReference");
1557     // Decay array -> ptr
1558     CFConstantStringClassRef =
1559       llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2);
1560   }
1561 
1562   QualType CFTy = getContext().getCFConstantStringType();
1563 
1564   const llvm::StructType *STy =
1565     cast<llvm::StructType>(getTypes().ConvertType(CFTy));
1566 
1567   std::vector<llvm::Constant*> Fields(4);
1568 
1569   // Class pointer.
1570   Fields[0] = CFConstantStringClassRef;
1571 
1572   // Flags.
1573   const llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy);
1574   Fields[1] = isUTF16 ? llvm::ConstantInt::get(Ty, 0x07d0) :
1575     llvm::ConstantInt::get(Ty, 0x07C8);
1576 
1577   // String pointer.
1578   llvm::Constant *C = llvm::ConstantArray::get(VMContext, Entry.getKey().str());
1579 
1580   llvm::GlobalValue::LinkageTypes Linkage;
1581   bool isConstant;
1582   if (isUTF16) {
1583     // FIXME: why do utf strings get "_" labels instead of "L" labels?
1584     Linkage = llvm::GlobalValue::InternalLinkage;
1585     // Note: -fwritable-strings doesn't make unicode CFStrings writable, but
1586     // does make plain ascii ones writable.
1587     isConstant = true;
1588   } else {
1589     Linkage = llvm::GlobalValue::PrivateLinkage;
1590     isConstant = !Features.WritableStrings;
1591   }
1592 
1593   llvm::GlobalVariable *GV =
1594     new llvm::GlobalVariable(getModule(), C->getType(), isConstant, Linkage, C,
1595                              ".str");
1596   if (isUTF16) {
1597     CharUnits Align = getContext().getTypeAlignInChars(getContext().ShortTy);
1598     GV->setAlignment(Align.getQuantity());
1599   }
1600   Fields[2] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2);
1601 
1602   // String length.
1603   Ty = getTypes().ConvertType(getContext().LongTy);
1604   Fields[3] = llvm::ConstantInt::get(Ty, StringLength);
1605 
1606   // The struct.
1607   C = llvm::ConstantStruct::get(STy, Fields);
1608   GV = new llvm::GlobalVariable(getModule(), C->getType(), true,
1609                                 llvm::GlobalVariable::PrivateLinkage, C,
1610                                 "_unnamed_cfstring_");
1611   if (const char *Sect = getContext().Target.getCFStringSection())
1612     GV->setSection(Sect);
1613   Entry.setValue(GV);
1614 
1615   return GV;
1616 }
1617 
1618 llvm::Constant *
1619 CodeGenModule::GetAddrOfConstantNSString(const StringLiteral *Literal) {
1620   unsigned StringLength = 0;
1621   bool isUTF16 = false;
1622   llvm::StringMapEntry<llvm::Constant*> &Entry =
1623     GetConstantCFStringEntry(CFConstantStringMap, Literal,
1624                              getTargetData().isLittleEndian(),
1625                              isUTF16, StringLength);
1626 
1627   if (llvm::Constant *C = Entry.getValue())
1628     return C;
1629 
1630   llvm::Constant *Zero =
1631   llvm::Constant::getNullValue(llvm::Type::getInt32Ty(VMContext));
1632   llvm::Constant *Zeros[] = { Zero, Zero };
1633 
1634   // If we don't already have it, get _NSConstantStringClassReference.
1635   if (!NSConstantStringClassRef) {
1636     const llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
1637     Ty = llvm::ArrayType::get(Ty, 0);
1638     llvm::Constant *GV = CreateRuntimeVariable(Ty,
1639                                         Features.ObjCNonFragileABI ?
1640                                         "OBJC_CLASS_$_NSConstantString" :
1641                                         "_NSConstantStringClassReference");
1642     // Decay array -> ptr
1643     NSConstantStringClassRef =
1644       llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2);
1645   }
1646 
1647   QualType NSTy = getContext().getNSConstantStringType();
1648 
1649   const llvm::StructType *STy =
1650   cast<llvm::StructType>(getTypes().ConvertType(NSTy));
1651 
1652   std::vector<llvm::Constant*> Fields(3);
1653 
1654   // Class pointer.
1655   Fields[0] = NSConstantStringClassRef;
1656 
1657   // String pointer.
1658   llvm::Constant *C = llvm::ConstantArray::get(VMContext, Entry.getKey().str());
1659 
1660   llvm::GlobalValue::LinkageTypes Linkage;
1661   bool isConstant;
1662   if (isUTF16) {
1663     // FIXME: why do utf strings get "_" labels instead of "L" labels?
1664     Linkage = llvm::GlobalValue::InternalLinkage;
1665     // Note: -fwritable-strings doesn't make unicode NSStrings writable, but
1666     // does make plain ascii ones writable.
1667     isConstant = true;
1668   } else {
1669     Linkage = llvm::GlobalValue::PrivateLinkage;
1670     isConstant = !Features.WritableStrings;
1671   }
1672 
1673   llvm::GlobalVariable *GV =
1674   new llvm::GlobalVariable(getModule(), C->getType(), isConstant, Linkage, C,
1675                            ".str");
1676   if (isUTF16) {
1677     CharUnits Align = getContext().getTypeAlignInChars(getContext().ShortTy);
1678     GV->setAlignment(Align.getQuantity());
1679   }
1680   Fields[1] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2);
1681 
1682   // String length.
1683   const llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy);
1684   Fields[2] = llvm::ConstantInt::get(Ty, StringLength);
1685 
1686   // The struct.
1687   C = llvm::ConstantStruct::get(STy, Fields);
1688   GV = new llvm::GlobalVariable(getModule(), C->getType(), true,
1689                                 llvm::GlobalVariable::PrivateLinkage, C,
1690                                 "_unnamed_nsstring_");
1691   // FIXME. Fix section.
1692   if (const char *Sect =
1693         Features.ObjCNonFragileABI
1694           ? getContext().Target.getNSStringNonFragileABISection()
1695           : getContext().Target.getNSStringSection())
1696     GV->setSection(Sect);
1697   Entry.setValue(GV);
1698 
1699   return GV;
1700 }
1701 
1702 /// GetStringForStringLiteral - Return the appropriate bytes for a
1703 /// string literal, properly padded to match the literal type.
1704 std::string CodeGenModule::GetStringForStringLiteral(const StringLiteral *E) {
1705   const char *StrData = E->getStrData();
1706   unsigned Len = E->getByteLength();
1707 
1708   const ConstantArrayType *CAT =
1709     getContext().getAsConstantArrayType(E->getType());
1710   assert(CAT && "String isn't pointer or array!");
1711 
1712   // Resize the string to the right size.
1713   std::string Str(StrData, StrData+Len);
1714   uint64_t RealLen = CAT->getSize().getZExtValue();
1715 
1716   if (E->isWide())
1717     RealLen *= getContext().Target.getWCharWidth()/8;
1718 
1719   Str.resize(RealLen, '\0');
1720 
1721   return Str;
1722 }
1723 
1724 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a
1725 /// constant array for the given string literal.
1726 llvm::Constant *
1727 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S) {
1728   // FIXME: This can be more efficient.
1729   // FIXME: We shouldn't need to bitcast the constant in the wide string case.
1730   llvm::Constant *C = GetAddrOfConstantString(GetStringForStringLiteral(S));
1731   if (S->isWide()) {
1732     llvm::Type *DestTy =
1733         llvm::PointerType::getUnqual(getTypes().ConvertType(S->getType()));
1734     C = llvm::ConstantExpr::getBitCast(C, DestTy);
1735   }
1736   return C;
1737 }
1738 
1739 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant
1740 /// array for the given ObjCEncodeExpr node.
1741 llvm::Constant *
1742 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) {
1743   std::string Str;
1744   getContext().getObjCEncodingForType(E->getEncodedType(), Str);
1745 
1746   return GetAddrOfConstantCString(Str);
1747 }
1748 
1749 
1750 /// GenerateWritableString -- Creates storage for a string literal.
1751 static llvm::Constant *GenerateStringLiteral(const std::string &str,
1752                                              bool constant,
1753                                              CodeGenModule &CGM,
1754                                              const char *GlobalName) {
1755   // Create Constant for this string literal. Don't add a '\0'.
1756   llvm::Constant *C =
1757       llvm::ConstantArray::get(CGM.getLLVMContext(), str, false);
1758 
1759   // Create a global variable for this string
1760   return new llvm::GlobalVariable(CGM.getModule(), C->getType(), constant,
1761                                   llvm::GlobalValue::PrivateLinkage,
1762                                   C, GlobalName);
1763 }
1764 
1765 /// GetAddrOfConstantString - Returns a pointer to a character array
1766 /// containing the literal. This contents are exactly that of the
1767 /// given string, i.e. it will not be null terminated automatically;
1768 /// see GetAddrOfConstantCString. Note that whether the result is
1769 /// actually a pointer to an LLVM constant depends on
1770 /// Feature.WriteableStrings.
1771 ///
1772 /// The result has pointer to array type.
1773 llvm::Constant *CodeGenModule::GetAddrOfConstantString(const std::string &str,
1774                                                        const char *GlobalName) {
1775   bool IsConstant = !Features.WritableStrings;
1776 
1777   // Get the default prefix if a name wasn't specified.
1778   if (!GlobalName)
1779     GlobalName = ".str";
1780 
1781   // Don't share any string literals if strings aren't constant.
1782   if (!IsConstant)
1783     return GenerateStringLiteral(str, false, *this, GlobalName);
1784 
1785   llvm::StringMapEntry<llvm::Constant *> &Entry =
1786     ConstantStringMap.GetOrCreateValue(&str[0], &str[str.length()]);
1787 
1788   if (Entry.getValue())
1789     return Entry.getValue();
1790 
1791   // Create a global variable for this.
1792   llvm::Constant *C = GenerateStringLiteral(str, true, *this, GlobalName);
1793   Entry.setValue(C);
1794   return C;
1795 }
1796 
1797 /// GetAddrOfConstantCString - Returns a pointer to a character
1798 /// array containing the literal and a terminating '\-'
1799 /// character. The result has pointer to array type.
1800 llvm::Constant *CodeGenModule::GetAddrOfConstantCString(const std::string &str,
1801                                                         const char *GlobalName){
1802   return GetAddrOfConstantString(str + '\0', GlobalName);
1803 }
1804 
1805 /// EmitObjCPropertyImplementations - Emit information for synthesized
1806 /// properties for an implementation.
1807 void CodeGenModule::EmitObjCPropertyImplementations(const
1808                                                     ObjCImplementationDecl *D) {
1809   for (ObjCImplementationDecl::propimpl_iterator
1810          i = D->propimpl_begin(), e = D->propimpl_end(); i != e; ++i) {
1811     ObjCPropertyImplDecl *PID = *i;
1812 
1813     // Dynamic is just for type-checking.
1814     if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) {
1815       ObjCPropertyDecl *PD = PID->getPropertyDecl();
1816 
1817       // Determine which methods need to be implemented, some may have
1818       // been overridden. Note that ::isSynthesized is not the method
1819       // we want, that just indicates if the decl came from a
1820       // property. What we want to know is if the method is defined in
1821       // this implementation.
1822       if (!D->getInstanceMethod(PD->getGetterName()))
1823         CodeGenFunction(*this).GenerateObjCGetter(
1824                                  const_cast<ObjCImplementationDecl *>(D), PID);
1825       if (!PD->isReadOnly() &&
1826           !D->getInstanceMethod(PD->getSetterName()))
1827         CodeGenFunction(*this).GenerateObjCSetter(
1828                                  const_cast<ObjCImplementationDecl *>(D), PID);
1829     }
1830   }
1831 }
1832 
1833 /// EmitObjCIvarInitializations - Emit information for ivar initialization
1834 /// for an implementation.
1835 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) {
1836   if (!Features.NeXTRuntime || D->getNumIvarInitializers() == 0)
1837     return;
1838   DeclContext* DC = const_cast<DeclContext*>(dyn_cast<DeclContext>(D));
1839   assert(DC && "EmitObjCIvarInitializations - null DeclContext");
1840   IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct");
1841   Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
1842   ObjCMethodDecl *DTORMethod = ObjCMethodDecl::Create(getContext(),
1843                                                   D->getLocation(),
1844                                                   D->getLocation(), cxxSelector,
1845                                                   getContext().VoidTy, 0,
1846                                                   DC, true, false, true, false,
1847                                                   ObjCMethodDecl::Required);
1848   D->addInstanceMethod(DTORMethod);
1849   CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false);
1850 
1851   II = &getContext().Idents.get(".cxx_construct");
1852   cxxSelector = getContext().Selectors.getSelector(0, &II);
1853   // The constructor returns 'self'.
1854   ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(getContext(),
1855                                                 D->getLocation(),
1856                                                 D->getLocation(), cxxSelector,
1857                                                 getContext().getObjCIdType(), 0,
1858                                                 DC, true, false, true, false,
1859                                                 ObjCMethodDecl::Required);
1860   D->addInstanceMethod(CTORMethod);
1861   CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true);
1862 
1863 
1864 }
1865 
1866 /// EmitNamespace - Emit all declarations in a namespace.
1867 void CodeGenModule::EmitNamespace(const NamespaceDecl *ND) {
1868   for (RecordDecl::decl_iterator I = ND->decls_begin(), E = ND->decls_end();
1869        I != E; ++I)
1870     EmitTopLevelDecl(*I);
1871 }
1872 
1873 // EmitLinkageSpec - Emit all declarations in a linkage spec.
1874 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) {
1875   if (LSD->getLanguage() != LinkageSpecDecl::lang_c &&
1876       LSD->getLanguage() != LinkageSpecDecl::lang_cxx) {
1877     ErrorUnsupported(LSD, "linkage spec");
1878     return;
1879   }
1880 
1881   for (RecordDecl::decl_iterator I = LSD->decls_begin(), E = LSD->decls_end();
1882        I != E; ++I)
1883     EmitTopLevelDecl(*I);
1884 }
1885 
1886 /// EmitTopLevelDecl - Emit code for a single top level declaration.
1887 void CodeGenModule::EmitTopLevelDecl(Decl *D) {
1888   // If an error has occurred, stop code generation, but continue
1889   // parsing and semantic analysis (to ensure all warnings and errors
1890   // are emitted).
1891   if (Diags.hasErrorOccurred())
1892     return;
1893 
1894   // Ignore dependent declarations.
1895   if (D->getDeclContext() && D->getDeclContext()->isDependentContext())
1896     return;
1897 
1898   switch (D->getKind()) {
1899   case Decl::CXXConversion:
1900   case Decl::CXXMethod:
1901   case Decl::Function:
1902     // Skip function templates
1903     if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate())
1904       return;
1905 
1906     EmitGlobal(cast<FunctionDecl>(D));
1907     break;
1908 
1909   case Decl::Var:
1910     EmitGlobal(cast<VarDecl>(D));
1911     break;
1912 
1913   // C++ Decls
1914   case Decl::Namespace:
1915     EmitNamespace(cast<NamespaceDecl>(D));
1916     break;
1917     // No code generation needed.
1918   case Decl::UsingShadow:
1919   case Decl::Using:
1920   case Decl::UsingDirective:
1921   case Decl::ClassTemplate:
1922   case Decl::FunctionTemplate:
1923   case Decl::NamespaceAlias:
1924     break;
1925   case Decl::CXXConstructor:
1926     // Skip function templates
1927     if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate())
1928       return;
1929 
1930     EmitCXXConstructors(cast<CXXConstructorDecl>(D));
1931     break;
1932   case Decl::CXXDestructor:
1933     EmitCXXDestructors(cast<CXXDestructorDecl>(D));
1934     break;
1935 
1936   case Decl::StaticAssert:
1937     // Nothing to do.
1938     break;
1939 
1940   // Objective-C Decls
1941 
1942   // Forward declarations, no (immediate) code generation.
1943   case Decl::ObjCClass:
1944   case Decl::ObjCForwardProtocol:
1945   case Decl::ObjCCategory:
1946   case Decl::ObjCInterface:
1947     break;
1948 
1949   case Decl::ObjCProtocol:
1950     Runtime->GenerateProtocol(cast<ObjCProtocolDecl>(D));
1951     break;
1952 
1953   case Decl::ObjCCategoryImpl:
1954     // Categories have properties but don't support synthesize so we
1955     // can ignore them here.
1956     Runtime->GenerateCategory(cast<ObjCCategoryImplDecl>(D));
1957     break;
1958 
1959   case Decl::ObjCImplementation: {
1960     ObjCImplementationDecl *OMD = cast<ObjCImplementationDecl>(D);
1961     EmitObjCPropertyImplementations(OMD);
1962     EmitObjCIvarInitializations(OMD);
1963     Runtime->GenerateClass(OMD);
1964     break;
1965   }
1966   case Decl::ObjCMethod: {
1967     ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(D);
1968     // If this is not a prototype, emit the body.
1969     if (OMD->getBody())
1970       CodeGenFunction(*this).GenerateObjCMethod(OMD);
1971     break;
1972   }
1973   case Decl::ObjCCompatibleAlias:
1974     // compatibility-alias is a directive and has no code gen.
1975     break;
1976 
1977   case Decl::LinkageSpec:
1978     EmitLinkageSpec(cast<LinkageSpecDecl>(D));
1979     break;
1980 
1981   case Decl::FileScopeAsm: {
1982     FileScopeAsmDecl *AD = cast<FileScopeAsmDecl>(D);
1983     llvm::StringRef AsmString = AD->getAsmString()->getString();
1984 
1985     const std::string &S = getModule().getModuleInlineAsm();
1986     if (S.empty())
1987       getModule().setModuleInlineAsm(AsmString);
1988     else
1989       getModule().setModuleInlineAsm(S + '\n' + AsmString.str());
1990     break;
1991   }
1992 
1993   default:
1994     // Make sure we handled everything we should, every other kind is a
1995     // non-top-level decl.  FIXME: Would be nice to have an isTopLevelDeclKind
1996     // function. Need to recode Decl::Kind to do that easily.
1997     assert(isa<TypeDecl>(D) && "Unsupported decl kind");
1998   }
1999 }
2000 
2001 /// Turns the given pointer into a constant.
2002 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context,
2003                                           const void *Ptr) {
2004   uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr);
2005   const llvm::Type *i64 = llvm::Type::getInt64Ty(Context);
2006   return llvm::ConstantInt::get(i64, PtrInt);
2007 }
2008 
2009 static void EmitGlobalDeclMetadata(CodeGenModule &CGM,
2010                                    llvm::NamedMDNode *&GlobalMetadata,
2011                                    GlobalDecl D,
2012                                    llvm::GlobalValue *Addr) {
2013   if (!GlobalMetadata)
2014     GlobalMetadata =
2015       CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs");
2016 
2017   // TODO: should we report variant information for ctors/dtors?
2018   llvm::Value *Ops[] = {
2019     Addr,
2020     GetPointerConstant(CGM.getLLVMContext(), D.getDecl())
2021   };
2022   GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops, 2));
2023 }
2024 
2025 /// Emits metadata nodes associating all the global values in the
2026 /// current module with the Decls they came from.  This is useful for
2027 /// projects using IR gen as a subroutine.
2028 ///
2029 /// Since there's currently no way to associate an MDNode directly
2030 /// with an llvm::GlobalValue, we create a global named metadata
2031 /// with the name 'clang.global.decl.ptrs'.
2032 void CodeGenModule::EmitDeclMetadata() {
2033   llvm::NamedMDNode *GlobalMetadata = 0;
2034 
2035   // StaticLocalDeclMap
2036   for (llvm::DenseMap<GlobalDecl,llvm::StringRef>::iterator
2037          I = MangledDeclNames.begin(), E = MangledDeclNames.end();
2038        I != E; ++I) {
2039     llvm::GlobalValue *Addr = getModule().getNamedValue(I->second);
2040     EmitGlobalDeclMetadata(*this, GlobalMetadata, I->first, Addr);
2041   }
2042 }
2043 
2044 /// Emits metadata nodes for all the local variables in the current
2045 /// function.
2046 void CodeGenFunction::EmitDeclMetadata() {
2047   if (LocalDeclMap.empty()) return;
2048 
2049   llvm::LLVMContext &Context = getLLVMContext();
2050 
2051   // Find the unique metadata ID for this name.
2052   unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr");
2053 
2054   llvm::NamedMDNode *GlobalMetadata = 0;
2055 
2056   for (llvm::DenseMap<const Decl*, llvm::Value*>::iterator
2057          I = LocalDeclMap.begin(), E = LocalDeclMap.end(); I != E; ++I) {
2058     const Decl *D = I->first;
2059     llvm::Value *Addr = I->second;
2060 
2061     if (llvm::AllocaInst *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) {
2062       llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D);
2063       Alloca->setMetadata(DeclPtrKind, llvm::MDNode::get(Context, &DAddr, 1));
2064     } else if (llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>(Addr)) {
2065       GlobalDecl GD = GlobalDecl(cast<VarDecl>(D));
2066       EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV);
2067     }
2068   }
2069 }
2070 
2071 ///@name Custom Runtime Function Interfaces
2072 ///@{
2073 //
2074 // FIXME: These can be eliminated once we can have clients just get the required
2075 // AST nodes from the builtin tables.
2076 
2077 llvm::Constant *CodeGenModule::getBlockObjectDispose() {
2078   if (BlockObjectDispose)
2079     return BlockObjectDispose;
2080 
2081   // If we saw an explicit decl, use that.
2082   if (BlockObjectDisposeDecl) {
2083     return BlockObjectDispose = GetAddrOfFunction(
2084       BlockObjectDisposeDecl,
2085       getTypes().GetFunctionType(BlockObjectDisposeDecl));
2086   }
2087 
2088   // Otherwise construct the function by hand.
2089   const llvm::FunctionType *FTy;
2090   std::vector<const llvm::Type*> ArgTys;
2091   const llvm::Type *ResultType = llvm::Type::getVoidTy(VMContext);
2092   ArgTys.push_back(PtrToInt8Ty);
2093   ArgTys.push_back(llvm::Type::getInt32Ty(VMContext));
2094   FTy = llvm::FunctionType::get(ResultType, ArgTys, false);
2095   return BlockObjectDispose =
2096     CreateRuntimeFunction(FTy, "_Block_object_dispose");
2097 }
2098 
2099 llvm::Constant *CodeGenModule::getBlockObjectAssign() {
2100   if (BlockObjectAssign)
2101     return BlockObjectAssign;
2102 
2103   // If we saw an explicit decl, use that.
2104   if (BlockObjectAssignDecl) {
2105     return BlockObjectAssign = GetAddrOfFunction(
2106       BlockObjectAssignDecl,
2107       getTypes().GetFunctionType(BlockObjectAssignDecl));
2108   }
2109 
2110   // Otherwise construct the function by hand.
2111   const llvm::FunctionType *FTy;
2112   std::vector<const llvm::Type*> ArgTys;
2113   const llvm::Type *ResultType = llvm::Type::getVoidTy(VMContext);
2114   ArgTys.push_back(PtrToInt8Ty);
2115   ArgTys.push_back(PtrToInt8Ty);
2116   ArgTys.push_back(llvm::Type::getInt32Ty(VMContext));
2117   FTy = llvm::FunctionType::get(ResultType, ArgTys, false);
2118   return BlockObjectAssign =
2119     CreateRuntimeFunction(FTy, "_Block_object_assign");
2120 }
2121 
2122 llvm::Constant *CodeGenModule::getNSConcreteGlobalBlock() {
2123   if (NSConcreteGlobalBlock)
2124     return NSConcreteGlobalBlock;
2125 
2126   // If we saw an explicit decl, use that.
2127   if (NSConcreteGlobalBlockDecl) {
2128     return NSConcreteGlobalBlock = GetAddrOfGlobalVar(
2129       NSConcreteGlobalBlockDecl,
2130       getTypes().ConvertType(NSConcreteGlobalBlockDecl->getType()));
2131   }
2132 
2133   // Otherwise construct the variable by hand.
2134   return NSConcreteGlobalBlock = CreateRuntimeVariable(
2135     PtrToInt8Ty, "_NSConcreteGlobalBlock");
2136 }
2137 
2138 llvm::Constant *CodeGenModule::getNSConcreteStackBlock() {
2139   if (NSConcreteStackBlock)
2140     return NSConcreteStackBlock;
2141 
2142   // If we saw an explicit decl, use that.
2143   if (NSConcreteStackBlockDecl) {
2144     return NSConcreteStackBlock = GetAddrOfGlobalVar(
2145       NSConcreteStackBlockDecl,
2146       getTypes().ConvertType(NSConcreteStackBlockDecl->getType()));
2147   }
2148 
2149   // Otherwise construct the variable by hand.
2150   return NSConcreteStackBlock = CreateRuntimeVariable(
2151     PtrToInt8Ty, "_NSConcreteStackBlock");
2152 }
2153 
2154 ///@}
2155