1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This coordinates the per-module state used while generating code. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "CodeGenModule.h" 14 #include "ABIInfo.h" 15 #include "CGBlocks.h" 16 #include "CGCUDARuntime.h" 17 #include "CGCXXABI.h" 18 #include "CGCall.h" 19 #include "CGDebugInfo.h" 20 #include "CGHLSLRuntime.h" 21 #include "CGObjCRuntime.h" 22 #include "CGOpenCLRuntime.h" 23 #include "CGOpenMPRuntime.h" 24 #include "CGOpenMPRuntimeGPU.h" 25 #include "CodeGenFunction.h" 26 #include "CodeGenPGO.h" 27 #include "ConstantEmitter.h" 28 #include "CoverageMappingGen.h" 29 #include "TargetInfo.h" 30 #include "clang/AST/ASTContext.h" 31 #include "clang/AST/CharUnits.h" 32 #include "clang/AST/DeclCXX.h" 33 #include "clang/AST/DeclObjC.h" 34 #include "clang/AST/DeclTemplate.h" 35 #include "clang/AST/Mangle.h" 36 #include "clang/AST/RecursiveASTVisitor.h" 37 #include "clang/AST/StmtVisitor.h" 38 #include "clang/Basic/Builtins.h" 39 #include "clang/Basic/CharInfo.h" 40 #include "clang/Basic/CodeGenOptions.h" 41 #include "clang/Basic/Diagnostic.h" 42 #include "clang/Basic/FileManager.h" 43 #include "clang/Basic/Module.h" 44 #include "clang/Basic/SourceManager.h" 45 #include "clang/Basic/TargetInfo.h" 46 #include "clang/Basic/Version.h" 47 #include "clang/CodeGen/BackendUtil.h" 48 #include "clang/CodeGen/ConstantInitBuilder.h" 49 #include "clang/Frontend/FrontendDiagnostic.h" 50 #include "llvm/ADT/STLExtras.h" 51 #include "llvm/ADT/StringExtras.h" 52 #include "llvm/ADT/StringSwitch.h" 53 #include "llvm/Analysis/TargetLibraryInfo.h" 54 #include "llvm/Frontend/OpenMP/OMPIRBuilder.h" 55 #include "llvm/IR/AttributeMask.h" 56 #include "llvm/IR/CallingConv.h" 57 #include "llvm/IR/DataLayout.h" 58 #include "llvm/IR/Intrinsics.h" 59 #include "llvm/IR/LLVMContext.h" 60 #include "llvm/IR/Module.h" 61 #include "llvm/IR/ProfileSummary.h" 62 #include "llvm/ProfileData/InstrProfReader.h" 63 #include "llvm/ProfileData/SampleProf.h" 64 #include "llvm/Support/CRC.h" 65 #include "llvm/Support/CodeGen.h" 66 #include "llvm/Support/CommandLine.h" 67 #include "llvm/Support/ConvertUTF.h" 68 #include "llvm/Support/ErrorHandling.h" 69 #include "llvm/Support/TimeProfiler.h" 70 #include "llvm/Support/xxhash.h" 71 #include "llvm/TargetParser/Triple.h" 72 #include "llvm/TargetParser/X86TargetParser.h" 73 #include <optional> 74 75 using namespace clang; 76 using namespace CodeGen; 77 78 static llvm::cl::opt<bool> LimitedCoverage( 79 "limited-coverage-experimental", llvm::cl::Hidden, 80 llvm::cl::desc("Emit limited coverage mapping information (experimental)")); 81 82 static const char AnnotationSection[] = "llvm.metadata"; 83 84 static CGCXXABI *createCXXABI(CodeGenModule &CGM) { 85 switch (CGM.getContext().getCXXABIKind()) { 86 case TargetCXXABI::AppleARM64: 87 case TargetCXXABI::Fuchsia: 88 case TargetCXXABI::GenericAArch64: 89 case TargetCXXABI::GenericARM: 90 case TargetCXXABI::iOS: 91 case TargetCXXABI::WatchOS: 92 case TargetCXXABI::GenericMIPS: 93 case TargetCXXABI::GenericItanium: 94 case TargetCXXABI::WebAssembly: 95 case TargetCXXABI::XL: 96 return CreateItaniumCXXABI(CGM); 97 case TargetCXXABI::Microsoft: 98 return CreateMicrosoftCXXABI(CGM); 99 } 100 101 llvm_unreachable("invalid C++ ABI kind"); 102 } 103 104 static std::unique_ptr<TargetCodeGenInfo> 105 createTargetCodeGenInfo(CodeGenModule &CGM) { 106 const TargetInfo &Target = CGM.getTarget(); 107 const llvm::Triple &Triple = Target.getTriple(); 108 const CodeGenOptions &CodeGenOpts = CGM.getCodeGenOpts(); 109 110 switch (Triple.getArch()) { 111 default: 112 return createDefaultTargetCodeGenInfo(CGM); 113 114 case llvm::Triple::le32: 115 return createPNaClTargetCodeGenInfo(CGM); 116 case llvm::Triple::m68k: 117 return createM68kTargetCodeGenInfo(CGM); 118 case llvm::Triple::mips: 119 case llvm::Triple::mipsel: 120 if (Triple.getOS() == llvm::Triple::NaCl) 121 return createPNaClTargetCodeGenInfo(CGM); 122 return createMIPSTargetCodeGenInfo(CGM, /*IsOS32=*/true); 123 124 case llvm::Triple::mips64: 125 case llvm::Triple::mips64el: 126 return createMIPSTargetCodeGenInfo(CGM, /*IsOS32=*/false); 127 128 case llvm::Triple::avr: { 129 // For passing parameters, R8~R25 are used on avr, and R18~R25 are used 130 // on avrtiny. For passing return value, R18~R25 are used on avr, and 131 // R22~R25 are used on avrtiny. 132 unsigned NPR = Target.getABI() == "avrtiny" ? 6 : 18; 133 unsigned NRR = Target.getABI() == "avrtiny" ? 4 : 8; 134 return createAVRTargetCodeGenInfo(CGM, NPR, NRR); 135 } 136 137 case llvm::Triple::aarch64: 138 case llvm::Triple::aarch64_32: 139 case llvm::Triple::aarch64_be: { 140 AArch64ABIKind Kind = AArch64ABIKind::AAPCS; 141 if (Target.getABI() == "darwinpcs") 142 Kind = AArch64ABIKind::DarwinPCS; 143 else if (Triple.isOSWindows()) 144 return createWindowsAArch64TargetCodeGenInfo(CGM, AArch64ABIKind::Win64); 145 146 return createAArch64TargetCodeGenInfo(CGM, Kind); 147 } 148 149 case llvm::Triple::wasm32: 150 case llvm::Triple::wasm64: { 151 WebAssemblyABIKind Kind = WebAssemblyABIKind::MVP; 152 if (Target.getABI() == "experimental-mv") 153 Kind = WebAssemblyABIKind::ExperimentalMV; 154 return createWebAssemblyTargetCodeGenInfo(CGM, Kind); 155 } 156 157 case llvm::Triple::arm: 158 case llvm::Triple::armeb: 159 case llvm::Triple::thumb: 160 case llvm::Triple::thumbeb: { 161 if (Triple.getOS() == llvm::Triple::Win32) 162 return createWindowsARMTargetCodeGenInfo(CGM, ARMABIKind::AAPCS_VFP); 163 164 ARMABIKind Kind = ARMABIKind::AAPCS; 165 StringRef ABIStr = Target.getABI(); 166 if (ABIStr == "apcs-gnu") 167 Kind = ARMABIKind::APCS; 168 else if (ABIStr == "aapcs16") 169 Kind = ARMABIKind::AAPCS16_VFP; 170 else if (CodeGenOpts.FloatABI == "hard" || 171 (CodeGenOpts.FloatABI != "soft" && 172 (Triple.getEnvironment() == llvm::Triple::GNUEABIHF || 173 Triple.getEnvironment() == llvm::Triple::MuslEABIHF || 174 Triple.getEnvironment() == llvm::Triple::EABIHF))) 175 Kind = ARMABIKind::AAPCS_VFP; 176 177 return createARMTargetCodeGenInfo(CGM, Kind); 178 } 179 180 case llvm::Triple::ppc: { 181 if (Triple.isOSAIX()) 182 return createAIXTargetCodeGenInfo(CGM, /*Is64Bit=*/false); 183 184 bool IsSoftFloat = 185 CodeGenOpts.FloatABI == "soft" || Target.hasFeature("spe"); 186 return createPPC32TargetCodeGenInfo(CGM, IsSoftFloat); 187 } 188 case llvm::Triple::ppcle: { 189 bool IsSoftFloat = CodeGenOpts.FloatABI == "soft"; 190 return createPPC32TargetCodeGenInfo(CGM, IsSoftFloat); 191 } 192 case llvm::Triple::ppc64: 193 if (Triple.isOSAIX()) 194 return createAIXTargetCodeGenInfo(CGM, /*Is64Bit=*/true); 195 196 if (Triple.isOSBinFormatELF()) { 197 PPC64_SVR4_ABIKind Kind = PPC64_SVR4_ABIKind::ELFv1; 198 if (Target.getABI() == "elfv2") 199 Kind = PPC64_SVR4_ABIKind::ELFv2; 200 bool IsSoftFloat = CodeGenOpts.FloatABI == "soft"; 201 202 return createPPC64_SVR4_TargetCodeGenInfo(CGM, Kind, IsSoftFloat); 203 } 204 return createPPC64TargetCodeGenInfo(CGM); 205 case llvm::Triple::ppc64le: { 206 assert(Triple.isOSBinFormatELF() && "PPC64 LE non-ELF not supported!"); 207 PPC64_SVR4_ABIKind Kind = PPC64_SVR4_ABIKind::ELFv2; 208 if (Target.getABI() == "elfv1") 209 Kind = PPC64_SVR4_ABIKind::ELFv1; 210 bool IsSoftFloat = CodeGenOpts.FloatABI == "soft"; 211 212 return createPPC64_SVR4_TargetCodeGenInfo(CGM, Kind, IsSoftFloat); 213 } 214 215 case llvm::Triple::nvptx: 216 case llvm::Triple::nvptx64: 217 return createNVPTXTargetCodeGenInfo(CGM); 218 219 case llvm::Triple::msp430: 220 return createMSP430TargetCodeGenInfo(CGM); 221 222 case llvm::Triple::riscv32: 223 case llvm::Triple::riscv64: { 224 StringRef ABIStr = Target.getABI(); 225 unsigned XLen = Target.getPointerWidth(LangAS::Default); 226 unsigned ABIFLen = 0; 227 if (ABIStr.endswith("f")) 228 ABIFLen = 32; 229 else if (ABIStr.endswith("d")) 230 ABIFLen = 64; 231 return createRISCVTargetCodeGenInfo(CGM, XLen, ABIFLen); 232 } 233 234 case llvm::Triple::systemz: { 235 bool SoftFloat = CodeGenOpts.FloatABI == "soft"; 236 bool HasVector = !SoftFloat && Target.getABI() == "vector"; 237 return createSystemZTargetCodeGenInfo(CGM, HasVector, SoftFloat); 238 } 239 240 case llvm::Triple::tce: 241 case llvm::Triple::tcele: 242 return createTCETargetCodeGenInfo(CGM); 243 244 case llvm::Triple::x86: { 245 bool IsDarwinVectorABI = Triple.isOSDarwin(); 246 bool IsWin32FloatStructABI = Triple.isOSWindows() && !Triple.isOSCygMing(); 247 248 if (Triple.getOS() == llvm::Triple::Win32) { 249 return createWinX86_32TargetCodeGenInfo( 250 CGM, IsDarwinVectorABI, IsWin32FloatStructABI, 251 CodeGenOpts.NumRegisterParameters); 252 } 253 return createX86_32TargetCodeGenInfo( 254 CGM, IsDarwinVectorABI, IsWin32FloatStructABI, 255 CodeGenOpts.NumRegisterParameters, CodeGenOpts.FloatABI == "soft"); 256 } 257 258 case llvm::Triple::x86_64: { 259 StringRef ABI = Target.getABI(); 260 X86AVXABILevel AVXLevel = (ABI == "avx512" ? X86AVXABILevel::AVX512 261 : ABI == "avx" ? X86AVXABILevel::AVX 262 : X86AVXABILevel::None); 263 264 switch (Triple.getOS()) { 265 case llvm::Triple::Win32: 266 return createWinX86_64TargetCodeGenInfo(CGM, AVXLevel); 267 default: 268 return createX86_64TargetCodeGenInfo(CGM, AVXLevel); 269 } 270 } 271 case llvm::Triple::hexagon: 272 return createHexagonTargetCodeGenInfo(CGM); 273 case llvm::Triple::lanai: 274 return createLanaiTargetCodeGenInfo(CGM); 275 case llvm::Triple::r600: 276 return createAMDGPUTargetCodeGenInfo(CGM); 277 case llvm::Triple::amdgcn: 278 return createAMDGPUTargetCodeGenInfo(CGM); 279 case llvm::Triple::sparc: 280 return createSparcV8TargetCodeGenInfo(CGM); 281 case llvm::Triple::sparcv9: 282 return createSparcV9TargetCodeGenInfo(CGM); 283 case llvm::Triple::xcore: 284 return createXCoreTargetCodeGenInfo(CGM); 285 case llvm::Triple::arc: 286 return createARCTargetCodeGenInfo(CGM); 287 case llvm::Triple::spir: 288 case llvm::Triple::spir64: 289 return createCommonSPIRTargetCodeGenInfo(CGM); 290 case llvm::Triple::spirv32: 291 case llvm::Triple::spirv64: 292 return createSPIRVTargetCodeGenInfo(CGM); 293 case llvm::Triple::ve: 294 return createVETargetCodeGenInfo(CGM); 295 case llvm::Triple::csky: { 296 bool IsSoftFloat = !Target.hasFeature("hard-float-abi"); 297 bool hasFP64 = 298 Target.hasFeature("fpuv2_df") || Target.hasFeature("fpuv3_df"); 299 return createCSKYTargetCodeGenInfo(CGM, IsSoftFloat ? 0 300 : hasFP64 ? 64 301 : 32); 302 } 303 case llvm::Triple::bpfeb: 304 case llvm::Triple::bpfel: 305 return createBPFTargetCodeGenInfo(CGM); 306 case llvm::Triple::loongarch32: 307 case llvm::Triple::loongarch64: { 308 StringRef ABIStr = Target.getABI(); 309 unsigned ABIFRLen = 0; 310 if (ABIStr.endswith("f")) 311 ABIFRLen = 32; 312 else if (ABIStr.endswith("d")) 313 ABIFRLen = 64; 314 return createLoongArchTargetCodeGenInfo( 315 CGM, Target.getPointerWidth(LangAS::Default), ABIFRLen); 316 } 317 } 318 } 319 320 const TargetCodeGenInfo &CodeGenModule::getTargetCodeGenInfo() { 321 if (!TheTargetCodeGenInfo) 322 TheTargetCodeGenInfo = createTargetCodeGenInfo(*this); 323 return *TheTargetCodeGenInfo; 324 } 325 326 CodeGenModule::CodeGenModule(ASTContext &C, 327 IntrusiveRefCntPtr<llvm::vfs::FileSystem> FS, 328 const HeaderSearchOptions &HSO, 329 const PreprocessorOptions &PPO, 330 const CodeGenOptions &CGO, llvm::Module &M, 331 DiagnosticsEngine &diags, 332 CoverageSourceInfo *CoverageInfo) 333 : Context(C), LangOpts(C.getLangOpts()), FS(FS), HeaderSearchOpts(HSO), 334 PreprocessorOpts(PPO), CodeGenOpts(CGO), TheModule(M), Diags(diags), 335 Target(C.getTargetInfo()), ABI(createCXXABI(*this)), 336 VMContext(M.getContext()), Types(*this), VTables(*this), 337 SanitizerMD(new SanitizerMetadata(*this)) { 338 339 // Initialize the type cache. 340 llvm::LLVMContext &LLVMContext = M.getContext(); 341 VoidTy = llvm::Type::getVoidTy(LLVMContext); 342 Int8Ty = llvm::Type::getInt8Ty(LLVMContext); 343 Int16Ty = llvm::Type::getInt16Ty(LLVMContext); 344 Int32Ty = llvm::Type::getInt32Ty(LLVMContext); 345 Int64Ty = llvm::Type::getInt64Ty(LLVMContext); 346 HalfTy = llvm::Type::getHalfTy(LLVMContext); 347 BFloatTy = llvm::Type::getBFloatTy(LLVMContext); 348 FloatTy = llvm::Type::getFloatTy(LLVMContext); 349 DoubleTy = llvm::Type::getDoubleTy(LLVMContext); 350 PointerWidthInBits = C.getTargetInfo().getPointerWidth(LangAS::Default); 351 PointerAlignInBytes = 352 C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(LangAS::Default)) 353 .getQuantity(); 354 SizeSizeInBytes = 355 C.toCharUnitsFromBits(C.getTargetInfo().getMaxPointerWidth()).getQuantity(); 356 IntAlignInBytes = 357 C.toCharUnitsFromBits(C.getTargetInfo().getIntAlign()).getQuantity(); 358 CharTy = 359 llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getCharWidth()); 360 IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth()); 361 IntPtrTy = llvm::IntegerType::get(LLVMContext, 362 C.getTargetInfo().getMaxPointerWidth()); 363 Int8PtrTy = Int8Ty->getPointerTo(0); 364 Int8PtrPtrTy = Int8PtrTy->getPointerTo(0); 365 const llvm::DataLayout &DL = M.getDataLayout(); 366 AllocaInt8PtrTy = Int8Ty->getPointerTo(DL.getAllocaAddrSpace()); 367 GlobalsInt8PtrTy = Int8Ty->getPointerTo(DL.getDefaultGlobalsAddressSpace()); 368 ConstGlobalsPtrTy = Int8Ty->getPointerTo( 369 C.getTargetAddressSpace(GetGlobalConstantAddressSpace())); 370 ASTAllocaAddressSpace = getTargetCodeGenInfo().getASTAllocaAddressSpace(); 371 372 // Build C++20 Module initializers. 373 // TODO: Add Microsoft here once we know the mangling required for the 374 // initializers. 375 CXX20ModuleInits = 376 LangOpts.CPlusPlusModules && getCXXABI().getMangleContext().getKind() == 377 ItaniumMangleContext::MK_Itanium; 378 379 RuntimeCC = getTargetCodeGenInfo().getABIInfo().getRuntimeCC(); 380 381 if (LangOpts.ObjC) 382 createObjCRuntime(); 383 if (LangOpts.OpenCL) 384 createOpenCLRuntime(); 385 if (LangOpts.OpenMP) 386 createOpenMPRuntime(); 387 if (LangOpts.CUDA) 388 createCUDARuntime(); 389 if (LangOpts.HLSL) 390 createHLSLRuntime(); 391 392 // Enable TBAA unless it's suppressed. ThreadSanitizer needs TBAA even at O0. 393 if (LangOpts.Sanitize.has(SanitizerKind::Thread) || 394 (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0)) 395 TBAA.reset(new CodeGenTBAA(Context, TheModule, CodeGenOpts, getLangOpts(), 396 getCXXABI().getMangleContext())); 397 398 // If debug info or coverage generation is enabled, create the CGDebugInfo 399 // object. 400 if (CodeGenOpts.getDebugInfo() != llvm::codegenoptions::NoDebugInfo || 401 CodeGenOpts.CoverageNotesFile.size() || 402 CodeGenOpts.CoverageDataFile.size()) 403 DebugInfo.reset(new CGDebugInfo(*this)); 404 405 Block.GlobalUniqueCount = 0; 406 407 if (C.getLangOpts().ObjC) 408 ObjCData.reset(new ObjCEntrypoints()); 409 410 if (CodeGenOpts.hasProfileClangUse()) { 411 auto ReaderOrErr = llvm::IndexedInstrProfReader::create( 412 CodeGenOpts.ProfileInstrumentUsePath, *FS, 413 CodeGenOpts.ProfileRemappingFile); 414 // We're checking for profile read errors in CompilerInvocation, so if 415 // there was an error it should've already been caught. If it hasn't been 416 // somehow, trip an assertion. 417 assert(ReaderOrErr); 418 PGOReader = std::move(ReaderOrErr.get()); 419 } 420 421 // If coverage mapping generation is enabled, create the 422 // CoverageMappingModuleGen object. 423 if (CodeGenOpts.CoverageMapping) 424 CoverageMapping.reset(new CoverageMappingModuleGen(*this, *CoverageInfo)); 425 426 // Generate the module name hash here if needed. 427 if (CodeGenOpts.UniqueInternalLinkageNames && 428 !getModule().getSourceFileName().empty()) { 429 std::string Path = getModule().getSourceFileName(); 430 // Check if a path substitution is needed from the MacroPrefixMap. 431 for (const auto &Entry : LangOpts.MacroPrefixMap) 432 if (Path.rfind(Entry.first, 0) != std::string::npos) { 433 Path = Entry.second + Path.substr(Entry.first.size()); 434 break; 435 } 436 ModuleNameHash = llvm::getUniqueInternalLinkagePostfix(Path); 437 } 438 } 439 440 CodeGenModule::~CodeGenModule() {} 441 442 void CodeGenModule::createObjCRuntime() { 443 // This is just isGNUFamily(), but we want to force implementors of 444 // new ABIs to decide how best to do this. 445 switch (LangOpts.ObjCRuntime.getKind()) { 446 case ObjCRuntime::GNUstep: 447 case ObjCRuntime::GCC: 448 case ObjCRuntime::ObjFW: 449 ObjCRuntime.reset(CreateGNUObjCRuntime(*this)); 450 return; 451 452 case ObjCRuntime::FragileMacOSX: 453 case ObjCRuntime::MacOSX: 454 case ObjCRuntime::iOS: 455 case ObjCRuntime::WatchOS: 456 ObjCRuntime.reset(CreateMacObjCRuntime(*this)); 457 return; 458 } 459 llvm_unreachable("bad runtime kind"); 460 } 461 462 void CodeGenModule::createOpenCLRuntime() { 463 OpenCLRuntime.reset(new CGOpenCLRuntime(*this)); 464 } 465 466 void CodeGenModule::createOpenMPRuntime() { 467 // Select a specialized code generation class based on the target, if any. 468 // If it does not exist use the default implementation. 469 switch (getTriple().getArch()) { 470 case llvm::Triple::nvptx: 471 case llvm::Triple::nvptx64: 472 case llvm::Triple::amdgcn: 473 assert(getLangOpts().OpenMPIsTargetDevice && 474 "OpenMP AMDGPU/NVPTX is only prepared to deal with device code."); 475 OpenMPRuntime.reset(new CGOpenMPRuntimeGPU(*this)); 476 break; 477 default: 478 if (LangOpts.OpenMPSimd) 479 OpenMPRuntime.reset(new CGOpenMPSIMDRuntime(*this)); 480 else 481 OpenMPRuntime.reset(new CGOpenMPRuntime(*this)); 482 break; 483 } 484 } 485 486 void CodeGenModule::createCUDARuntime() { 487 CUDARuntime.reset(CreateNVCUDARuntime(*this)); 488 } 489 490 void CodeGenModule::createHLSLRuntime() { 491 HLSLRuntime.reset(new CGHLSLRuntime(*this)); 492 } 493 494 void CodeGenModule::addReplacement(StringRef Name, llvm::Constant *C) { 495 Replacements[Name] = C; 496 } 497 498 void CodeGenModule::applyReplacements() { 499 for (auto &I : Replacements) { 500 StringRef MangledName = I.first; 501 llvm::Constant *Replacement = I.second; 502 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 503 if (!Entry) 504 continue; 505 auto *OldF = cast<llvm::Function>(Entry); 506 auto *NewF = dyn_cast<llvm::Function>(Replacement); 507 if (!NewF) { 508 if (auto *Alias = dyn_cast<llvm::GlobalAlias>(Replacement)) { 509 NewF = dyn_cast<llvm::Function>(Alias->getAliasee()); 510 } else { 511 auto *CE = cast<llvm::ConstantExpr>(Replacement); 512 assert(CE->getOpcode() == llvm::Instruction::BitCast || 513 CE->getOpcode() == llvm::Instruction::GetElementPtr); 514 NewF = dyn_cast<llvm::Function>(CE->getOperand(0)); 515 } 516 } 517 518 // Replace old with new, but keep the old order. 519 OldF->replaceAllUsesWith(Replacement); 520 if (NewF) { 521 NewF->removeFromParent(); 522 OldF->getParent()->getFunctionList().insertAfter(OldF->getIterator(), 523 NewF); 524 } 525 OldF->eraseFromParent(); 526 } 527 } 528 529 void CodeGenModule::addGlobalValReplacement(llvm::GlobalValue *GV, llvm::Constant *C) { 530 GlobalValReplacements.push_back(std::make_pair(GV, C)); 531 } 532 533 void CodeGenModule::applyGlobalValReplacements() { 534 for (auto &I : GlobalValReplacements) { 535 llvm::GlobalValue *GV = I.first; 536 llvm::Constant *C = I.second; 537 538 GV->replaceAllUsesWith(C); 539 GV->eraseFromParent(); 540 } 541 } 542 543 // This is only used in aliases that we created and we know they have a 544 // linear structure. 545 static const llvm::GlobalValue *getAliasedGlobal(const llvm::GlobalValue *GV) { 546 const llvm::Constant *C; 547 if (auto *GA = dyn_cast<llvm::GlobalAlias>(GV)) 548 C = GA->getAliasee(); 549 else if (auto *GI = dyn_cast<llvm::GlobalIFunc>(GV)) 550 C = GI->getResolver(); 551 else 552 return GV; 553 554 const auto *AliaseeGV = dyn_cast<llvm::GlobalValue>(C->stripPointerCasts()); 555 if (!AliaseeGV) 556 return nullptr; 557 558 const llvm::GlobalValue *FinalGV = AliaseeGV->getAliaseeObject(); 559 if (FinalGV == GV) 560 return nullptr; 561 562 return FinalGV; 563 } 564 565 static bool checkAliasedGlobal( 566 DiagnosticsEngine &Diags, SourceLocation Location, bool IsIFunc, 567 const llvm::GlobalValue *Alias, const llvm::GlobalValue *&GV, 568 const llvm::MapVector<GlobalDecl, StringRef> &MangledDeclNames, 569 SourceRange AliasRange) { 570 GV = getAliasedGlobal(Alias); 571 if (!GV) { 572 Diags.Report(Location, diag::err_cyclic_alias) << IsIFunc; 573 return false; 574 } 575 576 if (GV->isDeclaration()) { 577 Diags.Report(Location, diag::err_alias_to_undefined) << IsIFunc << IsIFunc; 578 Diags.Report(Location, diag::note_alias_requires_mangled_name) 579 << IsIFunc << IsIFunc; 580 // Provide a note if the given function is not found and exists as a 581 // mangled name. 582 for (const auto &[Decl, Name] : MangledDeclNames) { 583 if (const auto *ND = dyn_cast<NamedDecl>(Decl.getDecl())) { 584 if (ND->getName() == GV->getName()) { 585 Diags.Report(Location, diag::note_alias_mangled_name_alternative) 586 << Name 587 << FixItHint::CreateReplacement( 588 AliasRange, 589 (Twine(IsIFunc ? "ifunc" : "alias") + "(\"" + Name + "\")") 590 .str()); 591 } 592 } 593 } 594 return false; 595 } 596 597 if (IsIFunc) { 598 // Check resolver function type. 599 const auto *F = dyn_cast<llvm::Function>(GV); 600 if (!F) { 601 Diags.Report(Location, diag::err_alias_to_undefined) 602 << IsIFunc << IsIFunc; 603 return false; 604 } 605 606 llvm::FunctionType *FTy = F->getFunctionType(); 607 if (!FTy->getReturnType()->isPointerTy()) { 608 Diags.Report(Location, diag::err_ifunc_resolver_return); 609 return false; 610 } 611 } 612 613 return true; 614 } 615 616 void CodeGenModule::checkAliases() { 617 // Check if the constructed aliases are well formed. It is really unfortunate 618 // that we have to do this in CodeGen, but we only construct mangled names 619 // and aliases during codegen. 620 bool Error = false; 621 DiagnosticsEngine &Diags = getDiags(); 622 for (const GlobalDecl &GD : Aliases) { 623 const auto *D = cast<ValueDecl>(GD.getDecl()); 624 SourceLocation Location; 625 SourceRange Range; 626 bool IsIFunc = D->hasAttr<IFuncAttr>(); 627 if (const Attr *A = D->getDefiningAttr()) { 628 Location = A->getLocation(); 629 Range = A->getRange(); 630 } else 631 llvm_unreachable("Not an alias or ifunc?"); 632 633 StringRef MangledName = getMangledName(GD); 634 llvm::GlobalValue *Alias = GetGlobalValue(MangledName); 635 const llvm::GlobalValue *GV = nullptr; 636 if (!checkAliasedGlobal(Diags, Location, IsIFunc, Alias, GV, 637 MangledDeclNames, Range)) { 638 Error = true; 639 continue; 640 } 641 642 llvm::Constant *Aliasee = 643 IsIFunc ? cast<llvm::GlobalIFunc>(Alias)->getResolver() 644 : cast<llvm::GlobalAlias>(Alias)->getAliasee(); 645 646 llvm::GlobalValue *AliaseeGV; 647 if (auto CE = dyn_cast<llvm::ConstantExpr>(Aliasee)) 648 AliaseeGV = cast<llvm::GlobalValue>(CE->getOperand(0)); 649 else 650 AliaseeGV = cast<llvm::GlobalValue>(Aliasee); 651 652 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) { 653 StringRef AliasSection = SA->getName(); 654 if (AliasSection != AliaseeGV->getSection()) 655 Diags.Report(SA->getLocation(), diag::warn_alias_with_section) 656 << AliasSection << IsIFunc << IsIFunc; 657 } 658 659 // We have to handle alias to weak aliases in here. LLVM itself disallows 660 // this since the object semantics would not match the IL one. For 661 // compatibility with gcc we implement it by just pointing the alias 662 // to its aliasee's aliasee. We also warn, since the user is probably 663 // expecting the link to be weak. 664 if (auto *GA = dyn_cast<llvm::GlobalAlias>(AliaseeGV)) { 665 if (GA->isInterposable()) { 666 Diags.Report(Location, diag::warn_alias_to_weak_alias) 667 << GV->getName() << GA->getName() << IsIFunc; 668 Aliasee = llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast( 669 GA->getAliasee(), Alias->getType()); 670 671 if (IsIFunc) 672 cast<llvm::GlobalIFunc>(Alias)->setResolver(Aliasee); 673 else 674 cast<llvm::GlobalAlias>(Alias)->setAliasee(Aliasee); 675 } 676 } 677 } 678 if (!Error) 679 return; 680 681 for (const GlobalDecl &GD : Aliases) { 682 StringRef MangledName = getMangledName(GD); 683 llvm::GlobalValue *Alias = GetGlobalValue(MangledName); 684 Alias->replaceAllUsesWith(llvm::UndefValue::get(Alias->getType())); 685 Alias->eraseFromParent(); 686 } 687 } 688 689 void CodeGenModule::clear() { 690 DeferredDeclsToEmit.clear(); 691 EmittedDeferredDecls.clear(); 692 if (OpenMPRuntime) 693 OpenMPRuntime->clear(); 694 } 695 696 void InstrProfStats::reportDiagnostics(DiagnosticsEngine &Diags, 697 StringRef MainFile) { 698 if (!hasDiagnostics()) 699 return; 700 if (VisitedInMainFile > 0 && VisitedInMainFile == MissingInMainFile) { 701 if (MainFile.empty()) 702 MainFile = "<stdin>"; 703 Diags.Report(diag::warn_profile_data_unprofiled) << MainFile; 704 } else { 705 if (Mismatched > 0) 706 Diags.Report(diag::warn_profile_data_out_of_date) << Visited << Mismatched; 707 708 if (Missing > 0) 709 Diags.Report(diag::warn_profile_data_missing) << Visited << Missing; 710 } 711 } 712 713 static void setVisibilityFromDLLStorageClass(const clang::LangOptions &LO, 714 llvm::Module &M) { 715 if (!LO.VisibilityFromDLLStorageClass) 716 return; 717 718 llvm::GlobalValue::VisibilityTypes DLLExportVisibility = 719 CodeGenModule::GetLLVMVisibility(LO.getDLLExportVisibility()); 720 llvm::GlobalValue::VisibilityTypes NoDLLStorageClassVisibility = 721 CodeGenModule::GetLLVMVisibility(LO.getNoDLLStorageClassVisibility()); 722 llvm::GlobalValue::VisibilityTypes ExternDeclDLLImportVisibility = 723 CodeGenModule::GetLLVMVisibility(LO.getExternDeclDLLImportVisibility()); 724 llvm::GlobalValue::VisibilityTypes ExternDeclNoDLLStorageClassVisibility = 725 CodeGenModule::GetLLVMVisibility( 726 LO.getExternDeclNoDLLStorageClassVisibility()); 727 728 for (llvm::GlobalValue &GV : M.global_values()) { 729 if (GV.hasAppendingLinkage() || GV.hasLocalLinkage()) 730 continue; 731 732 // Reset DSO locality before setting the visibility. This removes 733 // any effects that visibility options and annotations may have 734 // had on the DSO locality. Setting the visibility will implicitly set 735 // appropriate globals to DSO Local; however, this will be pessimistic 736 // w.r.t. to the normal compiler IRGen. 737 GV.setDSOLocal(false); 738 739 if (GV.isDeclarationForLinker()) { 740 GV.setVisibility(GV.getDLLStorageClass() == 741 llvm::GlobalValue::DLLImportStorageClass 742 ? ExternDeclDLLImportVisibility 743 : ExternDeclNoDLLStorageClassVisibility); 744 } else { 745 GV.setVisibility(GV.getDLLStorageClass() == 746 llvm::GlobalValue::DLLExportStorageClass 747 ? DLLExportVisibility 748 : NoDLLStorageClassVisibility); 749 } 750 751 GV.setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 752 } 753 } 754 755 void CodeGenModule::Release() { 756 Module *Primary = getContext().getCurrentNamedModule(); 757 if (CXX20ModuleInits && Primary && !Primary->isHeaderLikeModule()) 758 EmitModuleInitializers(Primary); 759 EmitDeferred(); 760 DeferredDecls.insert(EmittedDeferredDecls.begin(), 761 EmittedDeferredDecls.end()); 762 EmittedDeferredDecls.clear(); 763 EmitVTablesOpportunistically(); 764 applyGlobalValReplacements(); 765 applyReplacements(); 766 emitMultiVersionFunctions(); 767 768 if (Context.getLangOpts().IncrementalExtensions && 769 GlobalTopLevelStmtBlockInFlight.first) { 770 const TopLevelStmtDecl *TLSD = GlobalTopLevelStmtBlockInFlight.second; 771 GlobalTopLevelStmtBlockInFlight.first->FinishFunction(TLSD->getEndLoc()); 772 GlobalTopLevelStmtBlockInFlight = {nullptr, nullptr}; 773 } 774 775 // Module implementations are initialized the same way as a regular TU that 776 // imports one or more modules. 777 if (CXX20ModuleInits && Primary && Primary->isInterfaceOrPartition()) 778 EmitCXXModuleInitFunc(Primary); 779 else 780 EmitCXXGlobalInitFunc(); 781 EmitCXXGlobalCleanUpFunc(); 782 registerGlobalDtorsWithAtExit(); 783 EmitCXXThreadLocalInitFunc(); 784 if (ObjCRuntime) 785 if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction()) 786 AddGlobalCtor(ObjCInitFunction); 787 if (Context.getLangOpts().CUDA && CUDARuntime) { 788 if (llvm::Function *CudaCtorFunction = CUDARuntime->finalizeModule()) 789 AddGlobalCtor(CudaCtorFunction); 790 } 791 if (OpenMPRuntime) { 792 if (llvm::Function *OpenMPRequiresDirectiveRegFun = 793 OpenMPRuntime->emitRequiresDirectiveRegFun()) { 794 AddGlobalCtor(OpenMPRequiresDirectiveRegFun, 0); 795 } 796 OpenMPRuntime->createOffloadEntriesAndInfoMetadata(); 797 OpenMPRuntime->clear(); 798 } 799 if (PGOReader) { 800 getModule().setProfileSummary( 801 PGOReader->getSummary(/* UseCS */ false).getMD(VMContext), 802 llvm::ProfileSummary::PSK_Instr); 803 if (PGOStats.hasDiagnostics()) 804 PGOStats.reportDiagnostics(getDiags(), getCodeGenOpts().MainFileName); 805 } 806 llvm::stable_sort(GlobalCtors, [](const Structor &L, const Structor &R) { 807 return L.LexOrder < R.LexOrder; 808 }); 809 EmitCtorList(GlobalCtors, "llvm.global_ctors"); 810 EmitCtorList(GlobalDtors, "llvm.global_dtors"); 811 EmitGlobalAnnotations(); 812 EmitStaticExternCAliases(); 813 checkAliases(); 814 EmitDeferredUnusedCoverageMappings(); 815 CodeGenPGO(*this).setValueProfilingFlag(getModule()); 816 if (CoverageMapping) 817 CoverageMapping->emit(); 818 if (CodeGenOpts.SanitizeCfiCrossDso) { 819 CodeGenFunction(*this).EmitCfiCheckFail(); 820 CodeGenFunction(*this).EmitCfiCheckStub(); 821 } 822 if (LangOpts.Sanitize.has(SanitizerKind::KCFI)) 823 finalizeKCFITypes(); 824 emitAtAvailableLinkGuard(); 825 if (Context.getTargetInfo().getTriple().isWasm()) 826 EmitMainVoidAlias(); 827 828 if (getTriple().isAMDGPU()) { 829 // Emit amdgpu_code_object_version module flag, which is code object version 830 // times 100. 831 if (getTarget().getTargetOpts().CodeObjectVersion != 832 TargetOptions::COV_None) { 833 getModule().addModuleFlag(llvm::Module::Error, 834 "amdgpu_code_object_version", 835 getTarget().getTargetOpts().CodeObjectVersion); 836 } 837 838 // Currently, "-mprintf-kind" option is only supported for HIP 839 if (LangOpts.HIP) { 840 auto *MDStr = llvm::MDString::get( 841 getLLVMContext(), (getTarget().getTargetOpts().AMDGPUPrintfKindVal == 842 TargetOptions::AMDGPUPrintfKind::Hostcall) 843 ? "hostcall" 844 : "buffered"); 845 getModule().addModuleFlag(llvm::Module::Error, "amdgpu_printf_kind", 846 MDStr); 847 } 848 } 849 850 // Emit a global array containing all external kernels or device variables 851 // used by host functions and mark it as used for CUDA/HIP. This is necessary 852 // to get kernels or device variables in archives linked in even if these 853 // kernels or device variables are only used in host functions. 854 if (!Context.CUDAExternalDeviceDeclODRUsedByHost.empty()) { 855 SmallVector<llvm::Constant *, 8> UsedArray; 856 for (auto D : Context.CUDAExternalDeviceDeclODRUsedByHost) { 857 GlobalDecl GD; 858 if (auto *FD = dyn_cast<FunctionDecl>(D)) 859 GD = GlobalDecl(FD, KernelReferenceKind::Kernel); 860 else 861 GD = GlobalDecl(D); 862 UsedArray.push_back(llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast( 863 GetAddrOfGlobal(GD), Int8PtrTy)); 864 } 865 866 llvm::ArrayType *ATy = llvm::ArrayType::get(Int8PtrTy, UsedArray.size()); 867 868 auto *GV = new llvm::GlobalVariable( 869 getModule(), ATy, false, llvm::GlobalValue::InternalLinkage, 870 llvm::ConstantArray::get(ATy, UsedArray), "__clang_gpu_used_external"); 871 addCompilerUsedGlobal(GV); 872 } 873 874 emitLLVMUsed(); 875 if (SanStats) 876 SanStats->finish(); 877 878 if (CodeGenOpts.Autolink && 879 (Context.getLangOpts().Modules || !LinkerOptionsMetadata.empty())) { 880 EmitModuleLinkOptions(); 881 } 882 883 // On ELF we pass the dependent library specifiers directly to the linker 884 // without manipulating them. This is in contrast to other platforms where 885 // they are mapped to a specific linker option by the compiler. This 886 // difference is a result of the greater variety of ELF linkers and the fact 887 // that ELF linkers tend to handle libraries in a more complicated fashion 888 // than on other platforms. This forces us to defer handling the dependent 889 // libs to the linker. 890 // 891 // CUDA/HIP device and host libraries are different. Currently there is no 892 // way to differentiate dependent libraries for host or device. Existing 893 // usage of #pragma comment(lib, *) is intended for host libraries on 894 // Windows. Therefore emit llvm.dependent-libraries only for host. 895 if (!ELFDependentLibraries.empty() && !Context.getLangOpts().CUDAIsDevice) { 896 auto *NMD = getModule().getOrInsertNamedMetadata("llvm.dependent-libraries"); 897 for (auto *MD : ELFDependentLibraries) 898 NMD->addOperand(MD); 899 } 900 901 // Record mregparm value now so it is visible through rest of codegen. 902 if (Context.getTargetInfo().getTriple().getArch() == llvm::Triple::x86) 903 getModule().addModuleFlag(llvm::Module::Error, "NumRegisterParameters", 904 CodeGenOpts.NumRegisterParameters); 905 906 if (CodeGenOpts.DwarfVersion) { 907 getModule().addModuleFlag(llvm::Module::Max, "Dwarf Version", 908 CodeGenOpts.DwarfVersion); 909 } 910 911 if (CodeGenOpts.Dwarf64) 912 getModule().addModuleFlag(llvm::Module::Max, "DWARF64", 1); 913 914 if (Context.getLangOpts().SemanticInterposition) 915 // Require various optimization to respect semantic interposition. 916 getModule().setSemanticInterposition(true); 917 918 if (CodeGenOpts.EmitCodeView) { 919 // Indicate that we want CodeView in the metadata. 920 getModule().addModuleFlag(llvm::Module::Warning, "CodeView", 1); 921 } 922 if (CodeGenOpts.CodeViewGHash) { 923 getModule().addModuleFlag(llvm::Module::Warning, "CodeViewGHash", 1); 924 } 925 if (CodeGenOpts.ControlFlowGuard) { 926 // Function ID tables and checks for Control Flow Guard (cfguard=2). 927 getModule().addModuleFlag(llvm::Module::Warning, "cfguard", 2); 928 } else if (CodeGenOpts.ControlFlowGuardNoChecks) { 929 // Function ID tables for Control Flow Guard (cfguard=1). 930 getModule().addModuleFlag(llvm::Module::Warning, "cfguard", 1); 931 } 932 if (CodeGenOpts.EHContGuard) { 933 // Function ID tables for EH Continuation Guard. 934 getModule().addModuleFlag(llvm::Module::Warning, "ehcontguard", 1); 935 } 936 if (Context.getLangOpts().Kernel) { 937 // Note if we are compiling with /kernel. 938 getModule().addModuleFlag(llvm::Module::Warning, "ms-kernel", 1); 939 } 940 if (CodeGenOpts.OptimizationLevel > 0 && CodeGenOpts.StrictVTablePointers) { 941 // We don't support LTO with 2 with different StrictVTablePointers 942 // FIXME: we could support it by stripping all the information introduced 943 // by StrictVTablePointers. 944 945 getModule().addModuleFlag(llvm::Module::Error, "StrictVTablePointers",1); 946 947 llvm::Metadata *Ops[2] = { 948 llvm::MDString::get(VMContext, "StrictVTablePointers"), 949 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 950 llvm::Type::getInt32Ty(VMContext), 1))}; 951 952 getModule().addModuleFlag(llvm::Module::Require, 953 "StrictVTablePointersRequirement", 954 llvm::MDNode::get(VMContext, Ops)); 955 } 956 if (getModuleDebugInfo()) 957 // We support a single version in the linked module. The LLVM 958 // parser will drop debug info with a different version number 959 // (and warn about it, too). 960 getModule().addModuleFlag(llvm::Module::Warning, "Debug Info Version", 961 llvm::DEBUG_METADATA_VERSION); 962 963 // We need to record the widths of enums and wchar_t, so that we can generate 964 // the correct build attributes in the ARM backend. wchar_size is also used by 965 // TargetLibraryInfo. 966 uint64_t WCharWidth = 967 Context.getTypeSizeInChars(Context.getWideCharType()).getQuantity(); 968 getModule().addModuleFlag(llvm::Module::Error, "wchar_size", WCharWidth); 969 970 llvm::Triple::ArchType Arch = Context.getTargetInfo().getTriple().getArch(); 971 if ( Arch == llvm::Triple::arm 972 || Arch == llvm::Triple::armeb 973 || Arch == llvm::Triple::thumb 974 || Arch == llvm::Triple::thumbeb) { 975 // The minimum width of an enum in bytes 976 uint64_t EnumWidth = Context.getLangOpts().ShortEnums ? 1 : 4; 977 getModule().addModuleFlag(llvm::Module::Error, "min_enum_size", EnumWidth); 978 } 979 980 if (Arch == llvm::Triple::riscv32 || Arch == llvm::Triple::riscv64) { 981 StringRef ABIStr = Target.getABI(); 982 llvm::LLVMContext &Ctx = TheModule.getContext(); 983 getModule().addModuleFlag(llvm::Module::Error, "target-abi", 984 llvm::MDString::get(Ctx, ABIStr)); 985 } 986 987 if (CodeGenOpts.SanitizeCfiCrossDso) { 988 // Indicate that we want cross-DSO control flow integrity checks. 989 getModule().addModuleFlag(llvm::Module::Override, "Cross-DSO CFI", 1); 990 } 991 992 if (CodeGenOpts.WholeProgramVTables) { 993 // Indicate whether VFE was enabled for this module, so that the 994 // vcall_visibility metadata added under whole program vtables is handled 995 // appropriately in the optimizer. 996 getModule().addModuleFlag(llvm::Module::Error, "Virtual Function Elim", 997 CodeGenOpts.VirtualFunctionElimination); 998 } 999 1000 if (LangOpts.Sanitize.has(SanitizerKind::CFIICall)) { 1001 getModule().addModuleFlag(llvm::Module::Override, 1002 "CFI Canonical Jump Tables", 1003 CodeGenOpts.SanitizeCfiCanonicalJumpTables); 1004 } 1005 1006 if (LangOpts.Sanitize.has(SanitizerKind::KCFI)) { 1007 getModule().addModuleFlag(llvm::Module::Override, "kcfi", 1); 1008 // KCFI assumes patchable-function-prefix is the same for all indirectly 1009 // called functions. Store the expected offset for code generation. 1010 if (CodeGenOpts.PatchableFunctionEntryOffset) 1011 getModule().addModuleFlag(llvm::Module::Override, "kcfi-offset", 1012 CodeGenOpts.PatchableFunctionEntryOffset); 1013 } 1014 1015 if (CodeGenOpts.CFProtectionReturn && 1016 Target.checkCFProtectionReturnSupported(getDiags())) { 1017 // Indicate that we want to instrument return control flow protection. 1018 getModule().addModuleFlag(llvm::Module::Min, "cf-protection-return", 1019 1); 1020 } 1021 1022 if (CodeGenOpts.CFProtectionBranch && 1023 Target.checkCFProtectionBranchSupported(getDiags())) { 1024 // Indicate that we want to instrument branch control flow protection. 1025 getModule().addModuleFlag(llvm::Module::Min, "cf-protection-branch", 1026 1); 1027 } 1028 1029 if (CodeGenOpts.FunctionReturnThunks) 1030 getModule().addModuleFlag(llvm::Module::Override, "function_return_thunk_extern", 1); 1031 1032 if (CodeGenOpts.IndirectBranchCSPrefix) 1033 getModule().addModuleFlag(llvm::Module::Override, "indirect_branch_cs_prefix", 1); 1034 1035 // Add module metadata for return address signing (ignoring 1036 // non-leaf/all) and stack tagging. These are actually turned on by function 1037 // attributes, but we use module metadata to emit build attributes. This is 1038 // needed for LTO, where the function attributes are inside bitcode 1039 // serialised into a global variable by the time build attributes are 1040 // emitted, so we can't access them. LTO objects could be compiled with 1041 // different flags therefore module flags are set to "Min" behavior to achieve 1042 // the same end result of the normal build where e.g BTI is off if any object 1043 // doesn't support it. 1044 if (Context.getTargetInfo().hasFeature("ptrauth") && 1045 LangOpts.getSignReturnAddressScope() != 1046 LangOptions::SignReturnAddressScopeKind::None) 1047 getModule().addModuleFlag(llvm::Module::Override, 1048 "sign-return-address-buildattr", 1); 1049 if (LangOpts.Sanitize.has(SanitizerKind::MemtagStack)) 1050 getModule().addModuleFlag(llvm::Module::Override, 1051 "tag-stack-memory-buildattr", 1); 1052 1053 if (Arch == llvm::Triple::thumb || Arch == llvm::Triple::thumbeb || 1054 Arch == llvm::Triple::arm || Arch == llvm::Triple::armeb || 1055 Arch == llvm::Triple::aarch64 || Arch == llvm::Triple::aarch64_32 || 1056 Arch == llvm::Triple::aarch64_be) { 1057 if (LangOpts.BranchTargetEnforcement) 1058 getModule().addModuleFlag(llvm::Module::Min, "branch-target-enforcement", 1059 1); 1060 if (LangOpts.hasSignReturnAddress()) 1061 getModule().addModuleFlag(llvm::Module::Min, "sign-return-address", 1); 1062 if (LangOpts.isSignReturnAddressScopeAll()) 1063 getModule().addModuleFlag(llvm::Module::Min, "sign-return-address-all", 1064 1); 1065 if (!LangOpts.isSignReturnAddressWithAKey()) 1066 getModule().addModuleFlag(llvm::Module::Min, 1067 "sign-return-address-with-bkey", 1); 1068 } 1069 1070 if (!CodeGenOpts.MemoryProfileOutput.empty()) { 1071 llvm::LLVMContext &Ctx = TheModule.getContext(); 1072 getModule().addModuleFlag( 1073 llvm::Module::Error, "MemProfProfileFilename", 1074 llvm::MDString::get(Ctx, CodeGenOpts.MemoryProfileOutput)); 1075 } 1076 1077 if (LangOpts.CUDAIsDevice && getTriple().isNVPTX()) { 1078 // Indicate whether __nvvm_reflect should be configured to flush denormal 1079 // floating point values to 0. (This corresponds to its "__CUDA_FTZ" 1080 // property.) 1081 getModule().addModuleFlag(llvm::Module::Override, "nvvm-reflect-ftz", 1082 CodeGenOpts.FP32DenormalMode.Output != 1083 llvm::DenormalMode::IEEE); 1084 } 1085 1086 if (LangOpts.EHAsynch) 1087 getModule().addModuleFlag(llvm::Module::Warning, "eh-asynch", 1); 1088 1089 // Indicate whether this Module was compiled with -fopenmp 1090 if (getLangOpts().OpenMP && !getLangOpts().OpenMPSimd) 1091 getModule().addModuleFlag(llvm::Module::Max, "openmp", LangOpts.OpenMP); 1092 if (getLangOpts().OpenMPIsTargetDevice) 1093 getModule().addModuleFlag(llvm::Module::Max, "openmp-device", 1094 LangOpts.OpenMP); 1095 1096 // Emit OpenCL specific module metadata: OpenCL/SPIR version. 1097 if (LangOpts.OpenCL || (LangOpts.CUDAIsDevice && getTriple().isSPIRV())) { 1098 EmitOpenCLMetadata(); 1099 // Emit SPIR version. 1100 if (getTriple().isSPIR()) { 1101 // SPIR v2.0 s2.12 - The SPIR version used by the module is stored in the 1102 // opencl.spir.version named metadata. 1103 // C++ for OpenCL has a distinct mapping for version compatibility with 1104 // OpenCL. 1105 auto Version = LangOpts.getOpenCLCompatibleVersion(); 1106 llvm::Metadata *SPIRVerElts[] = { 1107 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 1108 Int32Ty, Version / 100)), 1109 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 1110 Int32Ty, (Version / 100 > 1) ? 0 : 2))}; 1111 llvm::NamedMDNode *SPIRVerMD = 1112 TheModule.getOrInsertNamedMetadata("opencl.spir.version"); 1113 llvm::LLVMContext &Ctx = TheModule.getContext(); 1114 SPIRVerMD->addOperand(llvm::MDNode::get(Ctx, SPIRVerElts)); 1115 } 1116 } 1117 1118 // HLSL related end of code gen work items. 1119 if (LangOpts.HLSL) 1120 getHLSLRuntime().finishCodeGen(); 1121 1122 if (uint32_t PLevel = Context.getLangOpts().PICLevel) { 1123 assert(PLevel < 3 && "Invalid PIC Level"); 1124 getModule().setPICLevel(static_cast<llvm::PICLevel::Level>(PLevel)); 1125 if (Context.getLangOpts().PIE) 1126 getModule().setPIELevel(static_cast<llvm::PIELevel::Level>(PLevel)); 1127 } 1128 1129 if (getCodeGenOpts().CodeModel.size() > 0) { 1130 unsigned CM = llvm::StringSwitch<unsigned>(getCodeGenOpts().CodeModel) 1131 .Case("tiny", llvm::CodeModel::Tiny) 1132 .Case("small", llvm::CodeModel::Small) 1133 .Case("kernel", llvm::CodeModel::Kernel) 1134 .Case("medium", llvm::CodeModel::Medium) 1135 .Case("large", llvm::CodeModel::Large) 1136 .Default(~0u); 1137 if (CM != ~0u) { 1138 llvm::CodeModel::Model codeModel = static_cast<llvm::CodeModel::Model>(CM); 1139 getModule().setCodeModel(codeModel); 1140 } 1141 } 1142 1143 if (CodeGenOpts.NoPLT) 1144 getModule().setRtLibUseGOT(); 1145 if (getTriple().isOSBinFormatELF() && 1146 CodeGenOpts.DirectAccessExternalData != 1147 getModule().getDirectAccessExternalData()) { 1148 getModule().setDirectAccessExternalData( 1149 CodeGenOpts.DirectAccessExternalData); 1150 } 1151 if (CodeGenOpts.UnwindTables) 1152 getModule().setUwtable(llvm::UWTableKind(CodeGenOpts.UnwindTables)); 1153 1154 switch (CodeGenOpts.getFramePointer()) { 1155 case CodeGenOptions::FramePointerKind::None: 1156 // 0 ("none") is the default. 1157 break; 1158 case CodeGenOptions::FramePointerKind::NonLeaf: 1159 getModule().setFramePointer(llvm::FramePointerKind::NonLeaf); 1160 break; 1161 case CodeGenOptions::FramePointerKind::All: 1162 getModule().setFramePointer(llvm::FramePointerKind::All); 1163 break; 1164 } 1165 1166 SimplifyPersonality(); 1167 1168 if (getCodeGenOpts().EmitDeclMetadata) 1169 EmitDeclMetadata(); 1170 1171 if (getCodeGenOpts().CoverageNotesFile.size() || 1172 getCodeGenOpts().CoverageDataFile.size()) 1173 EmitCoverageFile(); 1174 1175 if (CGDebugInfo *DI = getModuleDebugInfo()) 1176 DI->finalize(); 1177 1178 if (getCodeGenOpts().EmitVersionIdentMetadata) 1179 EmitVersionIdentMetadata(); 1180 1181 if (!getCodeGenOpts().RecordCommandLine.empty()) 1182 EmitCommandLineMetadata(); 1183 1184 if (!getCodeGenOpts().StackProtectorGuard.empty()) 1185 getModule().setStackProtectorGuard(getCodeGenOpts().StackProtectorGuard); 1186 if (!getCodeGenOpts().StackProtectorGuardReg.empty()) 1187 getModule().setStackProtectorGuardReg( 1188 getCodeGenOpts().StackProtectorGuardReg); 1189 if (!getCodeGenOpts().StackProtectorGuardSymbol.empty()) 1190 getModule().setStackProtectorGuardSymbol( 1191 getCodeGenOpts().StackProtectorGuardSymbol); 1192 if (getCodeGenOpts().StackProtectorGuardOffset != INT_MAX) 1193 getModule().setStackProtectorGuardOffset( 1194 getCodeGenOpts().StackProtectorGuardOffset); 1195 if (getCodeGenOpts().StackAlignment) 1196 getModule().setOverrideStackAlignment(getCodeGenOpts().StackAlignment); 1197 if (getCodeGenOpts().SkipRaxSetup) 1198 getModule().addModuleFlag(llvm::Module::Override, "SkipRaxSetup", 1); 1199 if (getLangOpts().RegCall4) 1200 getModule().addModuleFlag(llvm::Module::Override, "RegCallv4", 1); 1201 1202 if (getContext().getTargetInfo().getMaxTLSAlign()) 1203 getModule().addModuleFlag(llvm::Module::Error, "MaxTLSAlign", 1204 getContext().getTargetInfo().getMaxTLSAlign()); 1205 1206 getTargetCodeGenInfo().emitTargetMetadata(*this, MangledDeclNames); 1207 1208 EmitBackendOptionsMetadata(getCodeGenOpts()); 1209 1210 // If there is device offloading code embed it in the host now. 1211 EmbedObject(&getModule(), CodeGenOpts, getDiags()); 1212 1213 // Set visibility from DLL storage class 1214 // We do this at the end of LLVM IR generation; after any operation 1215 // that might affect the DLL storage class or the visibility, and 1216 // before anything that might act on these. 1217 setVisibilityFromDLLStorageClass(LangOpts, getModule()); 1218 } 1219 1220 void CodeGenModule::EmitOpenCLMetadata() { 1221 // SPIR v2.0 s2.13 - The OpenCL version used by the module is stored in the 1222 // opencl.ocl.version named metadata node. 1223 // C++ for OpenCL has a distinct mapping for versions compatibile with OpenCL. 1224 auto Version = LangOpts.getOpenCLCompatibleVersion(); 1225 llvm::Metadata *OCLVerElts[] = { 1226 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 1227 Int32Ty, Version / 100)), 1228 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 1229 Int32Ty, (Version % 100) / 10))}; 1230 llvm::NamedMDNode *OCLVerMD = 1231 TheModule.getOrInsertNamedMetadata("opencl.ocl.version"); 1232 llvm::LLVMContext &Ctx = TheModule.getContext(); 1233 OCLVerMD->addOperand(llvm::MDNode::get(Ctx, OCLVerElts)); 1234 } 1235 1236 void CodeGenModule::EmitBackendOptionsMetadata( 1237 const CodeGenOptions &CodeGenOpts) { 1238 if (getTriple().isRISCV()) { 1239 getModule().addModuleFlag(llvm::Module::Min, "SmallDataLimit", 1240 CodeGenOpts.SmallDataLimit); 1241 } 1242 } 1243 1244 void CodeGenModule::UpdateCompletedType(const TagDecl *TD) { 1245 // Make sure that this type is translated. 1246 Types.UpdateCompletedType(TD); 1247 } 1248 1249 void CodeGenModule::RefreshTypeCacheForClass(const CXXRecordDecl *RD) { 1250 // Make sure that this type is translated. 1251 Types.RefreshTypeCacheForClass(RD); 1252 } 1253 1254 llvm::MDNode *CodeGenModule::getTBAATypeInfo(QualType QTy) { 1255 if (!TBAA) 1256 return nullptr; 1257 return TBAA->getTypeInfo(QTy); 1258 } 1259 1260 TBAAAccessInfo CodeGenModule::getTBAAAccessInfo(QualType AccessType) { 1261 if (!TBAA) 1262 return TBAAAccessInfo(); 1263 if (getLangOpts().CUDAIsDevice) { 1264 // As CUDA builtin surface/texture types are replaced, skip generating TBAA 1265 // access info. 1266 if (AccessType->isCUDADeviceBuiltinSurfaceType()) { 1267 if (getTargetCodeGenInfo().getCUDADeviceBuiltinSurfaceDeviceType() != 1268 nullptr) 1269 return TBAAAccessInfo(); 1270 } else if (AccessType->isCUDADeviceBuiltinTextureType()) { 1271 if (getTargetCodeGenInfo().getCUDADeviceBuiltinTextureDeviceType() != 1272 nullptr) 1273 return TBAAAccessInfo(); 1274 } 1275 } 1276 return TBAA->getAccessInfo(AccessType); 1277 } 1278 1279 TBAAAccessInfo 1280 CodeGenModule::getTBAAVTablePtrAccessInfo(llvm::Type *VTablePtrType) { 1281 if (!TBAA) 1282 return TBAAAccessInfo(); 1283 return TBAA->getVTablePtrAccessInfo(VTablePtrType); 1284 } 1285 1286 llvm::MDNode *CodeGenModule::getTBAAStructInfo(QualType QTy) { 1287 if (!TBAA) 1288 return nullptr; 1289 return TBAA->getTBAAStructInfo(QTy); 1290 } 1291 1292 llvm::MDNode *CodeGenModule::getTBAABaseTypeInfo(QualType QTy) { 1293 if (!TBAA) 1294 return nullptr; 1295 return TBAA->getBaseTypeInfo(QTy); 1296 } 1297 1298 llvm::MDNode *CodeGenModule::getTBAAAccessTagInfo(TBAAAccessInfo Info) { 1299 if (!TBAA) 1300 return nullptr; 1301 return TBAA->getAccessTagInfo(Info); 1302 } 1303 1304 TBAAAccessInfo CodeGenModule::mergeTBAAInfoForCast(TBAAAccessInfo SourceInfo, 1305 TBAAAccessInfo TargetInfo) { 1306 if (!TBAA) 1307 return TBAAAccessInfo(); 1308 return TBAA->mergeTBAAInfoForCast(SourceInfo, TargetInfo); 1309 } 1310 1311 TBAAAccessInfo 1312 CodeGenModule::mergeTBAAInfoForConditionalOperator(TBAAAccessInfo InfoA, 1313 TBAAAccessInfo InfoB) { 1314 if (!TBAA) 1315 return TBAAAccessInfo(); 1316 return TBAA->mergeTBAAInfoForConditionalOperator(InfoA, InfoB); 1317 } 1318 1319 TBAAAccessInfo 1320 CodeGenModule::mergeTBAAInfoForMemoryTransfer(TBAAAccessInfo DestInfo, 1321 TBAAAccessInfo SrcInfo) { 1322 if (!TBAA) 1323 return TBAAAccessInfo(); 1324 return TBAA->mergeTBAAInfoForConditionalOperator(DestInfo, SrcInfo); 1325 } 1326 1327 void CodeGenModule::DecorateInstructionWithTBAA(llvm::Instruction *Inst, 1328 TBAAAccessInfo TBAAInfo) { 1329 if (llvm::MDNode *Tag = getTBAAAccessTagInfo(TBAAInfo)) 1330 Inst->setMetadata(llvm::LLVMContext::MD_tbaa, Tag); 1331 } 1332 1333 void CodeGenModule::DecorateInstructionWithInvariantGroup( 1334 llvm::Instruction *I, const CXXRecordDecl *RD) { 1335 I->setMetadata(llvm::LLVMContext::MD_invariant_group, 1336 llvm::MDNode::get(getLLVMContext(), {})); 1337 } 1338 1339 void CodeGenModule::Error(SourceLocation loc, StringRef message) { 1340 unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, "%0"); 1341 getDiags().Report(Context.getFullLoc(loc), diagID) << message; 1342 } 1343 1344 /// ErrorUnsupported - Print out an error that codegen doesn't support the 1345 /// specified stmt yet. 1346 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type) { 1347 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, 1348 "cannot compile this %0 yet"); 1349 std::string Msg = Type; 1350 getDiags().Report(Context.getFullLoc(S->getBeginLoc()), DiagID) 1351 << Msg << S->getSourceRange(); 1352 } 1353 1354 /// ErrorUnsupported - Print out an error that codegen doesn't support the 1355 /// specified decl yet. 1356 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type) { 1357 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, 1358 "cannot compile this %0 yet"); 1359 std::string Msg = Type; 1360 getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg; 1361 } 1362 1363 llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) { 1364 return llvm::ConstantInt::get(SizeTy, size.getQuantity()); 1365 } 1366 1367 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV, 1368 const NamedDecl *D) const { 1369 // Internal definitions always have default visibility. 1370 if (GV->hasLocalLinkage()) { 1371 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 1372 return; 1373 } 1374 if (!D) 1375 return; 1376 // Set visibility for definitions, and for declarations if requested globally 1377 // or set explicitly. 1378 LinkageInfo LV = D->getLinkageAndVisibility(); 1379 if (GV->hasDLLExportStorageClass() || GV->hasDLLImportStorageClass()) { 1380 // Reject incompatible dlllstorage and visibility annotations. 1381 if (!LV.isVisibilityExplicit()) 1382 return; 1383 if (GV->hasDLLExportStorageClass()) { 1384 if (LV.getVisibility() == HiddenVisibility) 1385 getDiags().Report(D->getLocation(), 1386 diag::err_hidden_visibility_dllexport); 1387 } else if (LV.getVisibility() != DefaultVisibility) { 1388 getDiags().Report(D->getLocation(), 1389 diag::err_non_default_visibility_dllimport); 1390 } 1391 return; 1392 } 1393 1394 if (LV.isVisibilityExplicit() || getLangOpts().SetVisibilityForExternDecls || 1395 !GV->isDeclarationForLinker()) 1396 GV->setVisibility(GetLLVMVisibility(LV.getVisibility())); 1397 } 1398 1399 static bool shouldAssumeDSOLocal(const CodeGenModule &CGM, 1400 llvm::GlobalValue *GV) { 1401 if (GV->hasLocalLinkage()) 1402 return true; 1403 1404 if (!GV->hasDefaultVisibility() && !GV->hasExternalWeakLinkage()) 1405 return true; 1406 1407 // DLLImport explicitly marks the GV as external. 1408 if (GV->hasDLLImportStorageClass()) 1409 return false; 1410 1411 const llvm::Triple &TT = CGM.getTriple(); 1412 if (TT.isWindowsGNUEnvironment()) { 1413 // In MinGW, variables without DLLImport can still be automatically 1414 // imported from a DLL by the linker; don't mark variables that 1415 // potentially could come from another DLL as DSO local. 1416 1417 // With EmulatedTLS, TLS variables can be autoimported from other DLLs 1418 // (and this actually happens in the public interface of libstdc++), so 1419 // such variables can't be marked as DSO local. (Native TLS variables 1420 // can't be dllimported at all, though.) 1421 if (GV->isDeclarationForLinker() && isa<llvm::GlobalVariable>(GV) && 1422 (!GV->isThreadLocal() || CGM.getCodeGenOpts().EmulatedTLS)) 1423 return false; 1424 } 1425 1426 // On COFF, don't mark 'extern_weak' symbols as DSO local. If these symbols 1427 // remain unresolved in the link, they can be resolved to zero, which is 1428 // outside the current DSO. 1429 if (TT.isOSBinFormatCOFF() && GV->hasExternalWeakLinkage()) 1430 return false; 1431 1432 // Every other GV is local on COFF. 1433 // Make an exception for windows OS in the triple: Some firmware builds use 1434 // *-win32-macho triples. This (accidentally?) produced windows relocations 1435 // without GOT tables in older clang versions; Keep this behaviour. 1436 // FIXME: even thread local variables? 1437 if (TT.isOSBinFormatCOFF() || (TT.isOSWindows() && TT.isOSBinFormatMachO())) 1438 return true; 1439 1440 // Only handle COFF and ELF for now. 1441 if (!TT.isOSBinFormatELF()) 1442 return false; 1443 1444 // If this is not an executable, don't assume anything is local. 1445 const auto &CGOpts = CGM.getCodeGenOpts(); 1446 llvm::Reloc::Model RM = CGOpts.RelocationModel; 1447 const auto &LOpts = CGM.getLangOpts(); 1448 if (RM != llvm::Reloc::Static && !LOpts.PIE) { 1449 // On ELF, if -fno-semantic-interposition is specified and the target 1450 // supports local aliases, there will be neither CC1 1451 // -fsemantic-interposition nor -fhalf-no-semantic-interposition. Set 1452 // dso_local on the function if using a local alias is preferable (can avoid 1453 // PLT indirection). 1454 if (!(isa<llvm::Function>(GV) && GV->canBenefitFromLocalAlias())) 1455 return false; 1456 return !(CGM.getLangOpts().SemanticInterposition || 1457 CGM.getLangOpts().HalfNoSemanticInterposition); 1458 } 1459 1460 // A definition cannot be preempted from an executable. 1461 if (!GV->isDeclarationForLinker()) 1462 return true; 1463 1464 // Most PIC code sequences that assume that a symbol is local cannot produce a 1465 // 0 if it turns out the symbol is undefined. While this is ABI and relocation 1466 // depended, it seems worth it to handle it here. 1467 if (RM == llvm::Reloc::PIC_ && GV->hasExternalWeakLinkage()) 1468 return false; 1469 1470 // PowerPC64 prefers TOC indirection to avoid copy relocations. 1471 if (TT.isPPC64()) 1472 return false; 1473 1474 if (CGOpts.DirectAccessExternalData) { 1475 // If -fdirect-access-external-data (default for -fno-pic), set dso_local 1476 // for non-thread-local variables. If the symbol is not defined in the 1477 // executable, a copy relocation will be needed at link time. dso_local is 1478 // excluded for thread-local variables because they generally don't support 1479 // copy relocations. 1480 if (auto *Var = dyn_cast<llvm::GlobalVariable>(GV)) 1481 if (!Var->isThreadLocal()) 1482 return true; 1483 1484 // -fno-pic sets dso_local on a function declaration to allow direct 1485 // accesses when taking its address (similar to a data symbol). If the 1486 // function is not defined in the executable, a canonical PLT entry will be 1487 // needed at link time. -fno-direct-access-external-data can avoid the 1488 // canonical PLT entry. We don't generalize this condition to -fpie/-fpic as 1489 // it could just cause trouble without providing perceptible benefits. 1490 if (isa<llvm::Function>(GV) && !CGOpts.NoPLT && RM == llvm::Reloc::Static) 1491 return true; 1492 } 1493 1494 // If we can use copy relocations we can assume it is local. 1495 1496 // Otherwise don't assume it is local. 1497 return false; 1498 } 1499 1500 void CodeGenModule::setDSOLocal(llvm::GlobalValue *GV) const { 1501 GV->setDSOLocal(shouldAssumeDSOLocal(*this, GV)); 1502 } 1503 1504 void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV, 1505 GlobalDecl GD) const { 1506 const auto *D = dyn_cast<NamedDecl>(GD.getDecl()); 1507 // C++ destructors have a few C++ ABI specific special cases. 1508 if (const auto *Dtor = dyn_cast_or_null<CXXDestructorDecl>(D)) { 1509 getCXXABI().setCXXDestructorDLLStorage(GV, Dtor, GD.getDtorType()); 1510 return; 1511 } 1512 setDLLImportDLLExport(GV, D); 1513 } 1514 1515 void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV, 1516 const NamedDecl *D) const { 1517 if (D && D->isExternallyVisible()) { 1518 if (D->hasAttr<DLLImportAttr>()) 1519 GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass); 1520 else if ((D->hasAttr<DLLExportAttr>() || 1521 shouldMapVisibilityToDLLExport(D)) && 1522 !GV->isDeclarationForLinker()) 1523 GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass); 1524 } 1525 } 1526 1527 void CodeGenModule::setGVProperties(llvm::GlobalValue *GV, 1528 GlobalDecl GD) const { 1529 setDLLImportDLLExport(GV, GD); 1530 setGVPropertiesAux(GV, dyn_cast<NamedDecl>(GD.getDecl())); 1531 } 1532 1533 void CodeGenModule::setGVProperties(llvm::GlobalValue *GV, 1534 const NamedDecl *D) const { 1535 setDLLImportDLLExport(GV, D); 1536 setGVPropertiesAux(GV, D); 1537 } 1538 1539 void CodeGenModule::setGVPropertiesAux(llvm::GlobalValue *GV, 1540 const NamedDecl *D) const { 1541 setGlobalVisibility(GV, D); 1542 setDSOLocal(GV); 1543 GV->setPartition(CodeGenOpts.SymbolPartition); 1544 } 1545 1546 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(StringRef S) { 1547 return llvm::StringSwitch<llvm::GlobalVariable::ThreadLocalMode>(S) 1548 .Case("global-dynamic", llvm::GlobalVariable::GeneralDynamicTLSModel) 1549 .Case("local-dynamic", llvm::GlobalVariable::LocalDynamicTLSModel) 1550 .Case("initial-exec", llvm::GlobalVariable::InitialExecTLSModel) 1551 .Case("local-exec", llvm::GlobalVariable::LocalExecTLSModel); 1552 } 1553 1554 llvm::GlobalVariable::ThreadLocalMode 1555 CodeGenModule::GetDefaultLLVMTLSModel() const { 1556 switch (CodeGenOpts.getDefaultTLSModel()) { 1557 case CodeGenOptions::GeneralDynamicTLSModel: 1558 return llvm::GlobalVariable::GeneralDynamicTLSModel; 1559 case CodeGenOptions::LocalDynamicTLSModel: 1560 return llvm::GlobalVariable::LocalDynamicTLSModel; 1561 case CodeGenOptions::InitialExecTLSModel: 1562 return llvm::GlobalVariable::InitialExecTLSModel; 1563 case CodeGenOptions::LocalExecTLSModel: 1564 return llvm::GlobalVariable::LocalExecTLSModel; 1565 } 1566 llvm_unreachable("Invalid TLS model!"); 1567 } 1568 1569 void CodeGenModule::setTLSMode(llvm::GlobalValue *GV, const VarDecl &D) const { 1570 assert(D.getTLSKind() && "setting TLS mode on non-TLS var!"); 1571 1572 llvm::GlobalValue::ThreadLocalMode TLM; 1573 TLM = GetDefaultLLVMTLSModel(); 1574 1575 // Override the TLS model if it is explicitly specified. 1576 if (const TLSModelAttr *Attr = D.getAttr<TLSModelAttr>()) { 1577 TLM = GetLLVMTLSModel(Attr->getModel()); 1578 } 1579 1580 GV->setThreadLocalMode(TLM); 1581 } 1582 1583 static std::string getCPUSpecificMangling(const CodeGenModule &CGM, 1584 StringRef Name) { 1585 const TargetInfo &Target = CGM.getTarget(); 1586 return (Twine('.') + Twine(Target.CPUSpecificManglingCharacter(Name))).str(); 1587 } 1588 1589 static void AppendCPUSpecificCPUDispatchMangling(const CodeGenModule &CGM, 1590 const CPUSpecificAttr *Attr, 1591 unsigned CPUIndex, 1592 raw_ostream &Out) { 1593 // cpu_specific gets the current name, dispatch gets the resolver if IFunc is 1594 // supported. 1595 if (Attr) 1596 Out << getCPUSpecificMangling(CGM, Attr->getCPUName(CPUIndex)->getName()); 1597 else if (CGM.getTarget().supportsIFunc()) 1598 Out << ".resolver"; 1599 } 1600 1601 static void AppendTargetVersionMangling(const CodeGenModule &CGM, 1602 const TargetVersionAttr *Attr, 1603 raw_ostream &Out) { 1604 if (Attr->isDefaultVersion()) 1605 return; 1606 Out << "._"; 1607 const TargetInfo &TI = CGM.getTarget(); 1608 llvm::SmallVector<StringRef, 8> Feats; 1609 Attr->getFeatures(Feats); 1610 llvm::stable_sort(Feats, [&TI](const StringRef FeatL, const StringRef FeatR) { 1611 return TI.multiVersionSortPriority(FeatL) < 1612 TI.multiVersionSortPriority(FeatR); 1613 }); 1614 for (const auto &Feat : Feats) { 1615 Out << 'M'; 1616 Out << Feat; 1617 } 1618 } 1619 1620 static void AppendTargetMangling(const CodeGenModule &CGM, 1621 const TargetAttr *Attr, raw_ostream &Out) { 1622 if (Attr->isDefaultVersion()) 1623 return; 1624 1625 Out << '.'; 1626 const TargetInfo &Target = CGM.getTarget(); 1627 ParsedTargetAttr Info = Target.parseTargetAttr(Attr->getFeaturesStr()); 1628 llvm::sort(Info.Features, [&Target](StringRef LHS, StringRef RHS) { 1629 // Multiversioning doesn't allow "no-${feature}", so we can 1630 // only have "+" prefixes here. 1631 assert(LHS.startswith("+") && RHS.startswith("+") && 1632 "Features should always have a prefix."); 1633 return Target.multiVersionSortPriority(LHS.substr(1)) > 1634 Target.multiVersionSortPriority(RHS.substr(1)); 1635 }); 1636 1637 bool IsFirst = true; 1638 1639 if (!Info.CPU.empty()) { 1640 IsFirst = false; 1641 Out << "arch_" << Info.CPU; 1642 } 1643 1644 for (StringRef Feat : Info.Features) { 1645 if (!IsFirst) 1646 Out << '_'; 1647 IsFirst = false; 1648 Out << Feat.substr(1); 1649 } 1650 } 1651 1652 // Returns true if GD is a function decl with internal linkage and 1653 // needs a unique suffix after the mangled name. 1654 static bool isUniqueInternalLinkageDecl(GlobalDecl GD, 1655 CodeGenModule &CGM) { 1656 const Decl *D = GD.getDecl(); 1657 return !CGM.getModuleNameHash().empty() && isa<FunctionDecl>(D) && 1658 (CGM.getFunctionLinkage(GD) == llvm::GlobalValue::InternalLinkage); 1659 } 1660 1661 static void AppendTargetClonesMangling(const CodeGenModule &CGM, 1662 const TargetClonesAttr *Attr, 1663 unsigned VersionIndex, 1664 raw_ostream &Out) { 1665 const TargetInfo &TI = CGM.getTarget(); 1666 if (TI.getTriple().isAArch64()) { 1667 StringRef FeatureStr = Attr->getFeatureStr(VersionIndex); 1668 if (FeatureStr == "default") 1669 return; 1670 Out << "._"; 1671 SmallVector<StringRef, 8> Features; 1672 FeatureStr.split(Features, "+"); 1673 llvm::stable_sort(Features, 1674 [&TI](const StringRef FeatL, const StringRef FeatR) { 1675 return TI.multiVersionSortPriority(FeatL) < 1676 TI.multiVersionSortPriority(FeatR); 1677 }); 1678 for (auto &Feat : Features) { 1679 Out << 'M'; 1680 Out << Feat; 1681 } 1682 } else { 1683 Out << '.'; 1684 StringRef FeatureStr = Attr->getFeatureStr(VersionIndex); 1685 if (FeatureStr.startswith("arch=")) 1686 Out << "arch_" << FeatureStr.substr(sizeof("arch=") - 1); 1687 else 1688 Out << FeatureStr; 1689 1690 Out << '.' << Attr->getMangledIndex(VersionIndex); 1691 } 1692 } 1693 1694 static std::string getMangledNameImpl(CodeGenModule &CGM, GlobalDecl GD, 1695 const NamedDecl *ND, 1696 bool OmitMultiVersionMangling = false) { 1697 SmallString<256> Buffer; 1698 llvm::raw_svector_ostream Out(Buffer); 1699 MangleContext &MC = CGM.getCXXABI().getMangleContext(); 1700 if (!CGM.getModuleNameHash().empty()) 1701 MC.needsUniqueInternalLinkageNames(); 1702 bool ShouldMangle = MC.shouldMangleDeclName(ND); 1703 if (ShouldMangle) 1704 MC.mangleName(GD.getWithDecl(ND), Out); 1705 else { 1706 IdentifierInfo *II = ND->getIdentifier(); 1707 assert(II && "Attempt to mangle unnamed decl."); 1708 const auto *FD = dyn_cast<FunctionDecl>(ND); 1709 1710 if (FD && 1711 FD->getType()->castAs<FunctionType>()->getCallConv() == CC_X86RegCall) { 1712 if (CGM.getLangOpts().RegCall4) 1713 Out << "__regcall4__" << II->getName(); 1714 else 1715 Out << "__regcall3__" << II->getName(); 1716 } else if (FD && FD->hasAttr<CUDAGlobalAttr>() && 1717 GD.getKernelReferenceKind() == KernelReferenceKind::Stub) { 1718 Out << "__device_stub__" << II->getName(); 1719 } else { 1720 Out << II->getName(); 1721 } 1722 } 1723 1724 // Check if the module name hash should be appended for internal linkage 1725 // symbols. This should come before multi-version target suffixes are 1726 // appended. This is to keep the name and module hash suffix of the 1727 // internal linkage function together. The unique suffix should only be 1728 // added when name mangling is done to make sure that the final name can 1729 // be properly demangled. For example, for C functions without prototypes, 1730 // name mangling is not done and the unique suffix should not be appeneded 1731 // then. 1732 if (ShouldMangle && isUniqueInternalLinkageDecl(GD, CGM)) { 1733 assert(CGM.getCodeGenOpts().UniqueInternalLinkageNames && 1734 "Hash computed when not explicitly requested"); 1735 Out << CGM.getModuleNameHash(); 1736 } 1737 1738 if (const auto *FD = dyn_cast<FunctionDecl>(ND)) 1739 if (FD->isMultiVersion() && !OmitMultiVersionMangling) { 1740 switch (FD->getMultiVersionKind()) { 1741 case MultiVersionKind::CPUDispatch: 1742 case MultiVersionKind::CPUSpecific: 1743 AppendCPUSpecificCPUDispatchMangling(CGM, 1744 FD->getAttr<CPUSpecificAttr>(), 1745 GD.getMultiVersionIndex(), Out); 1746 break; 1747 case MultiVersionKind::Target: 1748 AppendTargetMangling(CGM, FD->getAttr<TargetAttr>(), Out); 1749 break; 1750 case MultiVersionKind::TargetVersion: 1751 AppendTargetVersionMangling(CGM, FD->getAttr<TargetVersionAttr>(), Out); 1752 break; 1753 case MultiVersionKind::TargetClones: 1754 AppendTargetClonesMangling(CGM, FD->getAttr<TargetClonesAttr>(), 1755 GD.getMultiVersionIndex(), Out); 1756 break; 1757 case MultiVersionKind::None: 1758 llvm_unreachable("None multiversion type isn't valid here"); 1759 } 1760 } 1761 1762 // Make unique name for device side static file-scope variable for HIP. 1763 if (CGM.getContext().shouldExternalize(ND) && 1764 CGM.getLangOpts().GPURelocatableDeviceCode && 1765 CGM.getLangOpts().CUDAIsDevice) 1766 CGM.printPostfixForExternalizedDecl(Out, ND); 1767 1768 return std::string(Out.str()); 1769 } 1770 1771 void CodeGenModule::UpdateMultiVersionNames(GlobalDecl GD, 1772 const FunctionDecl *FD, 1773 StringRef &CurName) { 1774 if (!FD->isMultiVersion()) 1775 return; 1776 1777 // Get the name of what this would be without the 'target' attribute. This 1778 // allows us to lookup the version that was emitted when this wasn't a 1779 // multiversion function. 1780 std::string NonTargetName = 1781 getMangledNameImpl(*this, GD, FD, /*OmitMultiVersionMangling=*/true); 1782 GlobalDecl OtherGD; 1783 if (lookupRepresentativeDecl(NonTargetName, OtherGD)) { 1784 assert(OtherGD.getCanonicalDecl() 1785 .getDecl() 1786 ->getAsFunction() 1787 ->isMultiVersion() && 1788 "Other GD should now be a multiversioned function"); 1789 // OtherFD is the version of this function that was mangled BEFORE 1790 // becoming a MultiVersion function. It potentially needs to be updated. 1791 const FunctionDecl *OtherFD = OtherGD.getCanonicalDecl() 1792 .getDecl() 1793 ->getAsFunction() 1794 ->getMostRecentDecl(); 1795 std::string OtherName = getMangledNameImpl(*this, OtherGD, OtherFD); 1796 // This is so that if the initial version was already the 'default' 1797 // version, we don't try to update it. 1798 if (OtherName != NonTargetName) { 1799 // Remove instead of erase, since others may have stored the StringRef 1800 // to this. 1801 const auto ExistingRecord = Manglings.find(NonTargetName); 1802 if (ExistingRecord != std::end(Manglings)) 1803 Manglings.remove(&(*ExistingRecord)); 1804 auto Result = Manglings.insert(std::make_pair(OtherName, OtherGD)); 1805 StringRef OtherNameRef = MangledDeclNames[OtherGD.getCanonicalDecl()] = 1806 Result.first->first(); 1807 // If this is the current decl is being created, make sure we update the name. 1808 if (GD.getCanonicalDecl() == OtherGD.getCanonicalDecl()) 1809 CurName = OtherNameRef; 1810 if (llvm::GlobalValue *Entry = GetGlobalValue(NonTargetName)) 1811 Entry->setName(OtherName); 1812 } 1813 } 1814 } 1815 1816 StringRef CodeGenModule::getMangledName(GlobalDecl GD) { 1817 GlobalDecl CanonicalGD = GD.getCanonicalDecl(); 1818 1819 // Some ABIs don't have constructor variants. Make sure that base and 1820 // complete constructors get mangled the same. 1821 if (const auto *CD = dyn_cast<CXXConstructorDecl>(CanonicalGD.getDecl())) { 1822 if (!getTarget().getCXXABI().hasConstructorVariants()) { 1823 CXXCtorType OrigCtorType = GD.getCtorType(); 1824 assert(OrigCtorType == Ctor_Base || OrigCtorType == Ctor_Complete); 1825 if (OrigCtorType == Ctor_Base) 1826 CanonicalGD = GlobalDecl(CD, Ctor_Complete); 1827 } 1828 } 1829 1830 // In CUDA/HIP device compilation with -fgpu-rdc, the mangled name of a 1831 // static device variable depends on whether the variable is referenced by 1832 // a host or device host function. Therefore the mangled name cannot be 1833 // cached. 1834 if (!LangOpts.CUDAIsDevice || !getContext().mayExternalize(GD.getDecl())) { 1835 auto FoundName = MangledDeclNames.find(CanonicalGD); 1836 if (FoundName != MangledDeclNames.end()) 1837 return FoundName->second; 1838 } 1839 1840 // Keep the first result in the case of a mangling collision. 1841 const auto *ND = cast<NamedDecl>(GD.getDecl()); 1842 std::string MangledName = getMangledNameImpl(*this, GD, ND); 1843 1844 // Ensure either we have different ABIs between host and device compilations, 1845 // says host compilation following MSVC ABI but device compilation follows 1846 // Itanium C++ ABI or, if they follow the same ABI, kernel names after 1847 // mangling should be the same after name stubbing. The later checking is 1848 // very important as the device kernel name being mangled in host-compilation 1849 // is used to resolve the device binaries to be executed. Inconsistent naming 1850 // result in undefined behavior. Even though we cannot check that naming 1851 // directly between host- and device-compilations, the host- and 1852 // device-mangling in host compilation could help catching certain ones. 1853 assert(!isa<FunctionDecl>(ND) || !ND->hasAttr<CUDAGlobalAttr>() || 1854 getContext().shouldExternalize(ND) || getLangOpts().CUDAIsDevice || 1855 (getContext().getAuxTargetInfo() && 1856 (getContext().getAuxTargetInfo()->getCXXABI() != 1857 getContext().getTargetInfo().getCXXABI())) || 1858 getCUDARuntime().getDeviceSideName(ND) == 1859 getMangledNameImpl( 1860 *this, 1861 GD.getWithKernelReferenceKind(KernelReferenceKind::Kernel), 1862 ND)); 1863 1864 auto Result = Manglings.insert(std::make_pair(MangledName, GD)); 1865 return MangledDeclNames[CanonicalGD] = Result.first->first(); 1866 } 1867 1868 StringRef CodeGenModule::getBlockMangledName(GlobalDecl GD, 1869 const BlockDecl *BD) { 1870 MangleContext &MangleCtx = getCXXABI().getMangleContext(); 1871 const Decl *D = GD.getDecl(); 1872 1873 SmallString<256> Buffer; 1874 llvm::raw_svector_ostream Out(Buffer); 1875 if (!D) 1876 MangleCtx.mangleGlobalBlock(BD, 1877 dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()), Out); 1878 else if (const auto *CD = dyn_cast<CXXConstructorDecl>(D)) 1879 MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out); 1880 else if (const auto *DD = dyn_cast<CXXDestructorDecl>(D)) 1881 MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out); 1882 else 1883 MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out); 1884 1885 auto Result = Manglings.insert(std::make_pair(Out.str(), BD)); 1886 return Result.first->first(); 1887 } 1888 1889 const GlobalDecl CodeGenModule::getMangledNameDecl(StringRef Name) { 1890 auto it = MangledDeclNames.begin(); 1891 while (it != MangledDeclNames.end()) { 1892 if (it->second == Name) 1893 return it->first; 1894 it++; 1895 } 1896 return GlobalDecl(); 1897 } 1898 1899 llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) { 1900 return getModule().getNamedValue(Name); 1901 } 1902 1903 /// AddGlobalCtor - Add a function to the list that will be called before 1904 /// main() runs. 1905 void CodeGenModule::AddGlobalCtor(llvm::Function *Ctor, int Priority, 1906 unsigned LexOrder, 1907 llvm::Constant *AssociatedData) { 1908 // FIXME: Type coercion of void()* types. 1909 GlobalCtors.push_back(Structor(Priority, LexOrder, Ctor, AssociatedData)); 1910 } 1911 1912 /// AddGlobalDtor - Add a function to the list that will be called 1913 /// when the module is unloaded. 1914 void CodeGenModule::AddGlobalDtor(llvm::Function *Dtor, int Priority, 1915 bool IsDtorAttrFunc) { 1916 if (CodeGenOpts.RegisterGlobalDtorsWithAtExit && 1917 (!getContext().getTargetInfo().getTriple().isOSAIX() || IsDtorAttrFunc)) { 1918 DtorsUsingAtExit[Priority].push_back(Dtor); 1919 return; 1920 } 1921 1922 // FIXME: Type coercion of void()* types. 1923 GlobalDtors.push_back(Structor(Priority, ~0U, Dtor, nullptr)); 1924 } 1925 1926 void CodeGenModule::EmitCtorList(CtorList &Fns, const char *GlobalName) { 1927 if (Fns.empty()) return; 1928 1929 // Ctor function type is void()*. 1930 llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false); 1931 llvm::Type *CtorPFTy = llvm::PointerType::get(CtorFTy, 1932 TheModule.getDataLayout().getProgramAddressSpace()); 1933 1934 // Get the type of a ctor entry, { i32, void ()*, i8* }. 1935 llvm::StructType *CtorStructTy = llvm::StructType::get( 1936 Int32Ty, CtorPFTy, VoidPtrTy); 1937 1938 // Construct the constructor and destructor arrays. 1939 ConstantInitBuilder builder(*this); 1940 auto ctors = builder.beginArray(CtorStructTy); 1941 for (const auto &I : Fns) { 1942 auto ctor = ctors.beginStruct(CtorStructTy); 1943 ctor.addInt(Int32Ty, I.Priority); 1944 ctor.add(llvm::ConstantExpr::getBitCast(I.Initializer, CtorPFTy)); 1945 if (I.AssociatedData) 1946 ctor.add(llvm::ConstantExpr::getBitCast(I.AssociatedData, VoidPtrTy)); 1947 else 1948 ctor.addNullPointer(VoidPtrTy); 1949 ctor.finishAndAddTo(ctors); 1950 } 1951 1952 auto list = 1953 ctors.finishAndCreateGlobal(GlobalName, getPointerAlign(), 1954 /*constant*/ false, 1955 llvm::GlobalValue::AppendingLinkage); 1956 1957 // The LTO linker doesn't seem to like it when we set an alignment 1958 // on appending variables. Take it off as a workaround. 1959 list->setAlignment(std::nullopt); 1960 1961 Fns.clear(); 1962 } 1963 1964 llvm::GlobalValue::LinkageTypes 1965 CodeGenModule::getFunctionLinkage(GlobalDecl GD) { 1966 const auto *D = cast<FunctionDecl>(GD.getDecl()); 1967 1968 GVALinkage Linkage = getContext().GetGVALinkageForFunction(D); 1969 1970 if (const auto *Dtor = dyn_cast<CXXDestructorDecl>(D)) 1971 return getCXXABI().getCXXDestructorLinkage(Linkage, Dtor, GD.getDtorType()); 1972 1973 if (isa<CXXConstructorDecl>(D) && 1974 cast<CXXConstructorDecl>(D)->isInheritingConstructor() && 1975 Context.getTargetInfo().getCXXABI().isMicrosoft()) { 1976 // Our approach to inheriting constructors is fundamentally different from 1977 // that used by the MS ABI, so keep our inheriting constructor thunks 1978 // internal rather than trying to pick an unambiguous mangling for them. 1979 return llvm::GlobalValue::InternalLinkage; 1980 } 1981 1982 return getLLVMLinkageForDeclarator(D, Linkage, /*IsConstantVariable=*/false); 1983 } 1984 1985 llvm::ConstantInt *CodeGenModule::CreateCrossDsoCfiTypeId(llvm::Metadata *MD) { 1986 llvm::MDString *MDS = dyn_cast<llvm::MDString>(MD); 1987 if (!MDS) return nullptr; 1988 1989 return llvm::ConstantInt::get(Int64Ty, llvm::MD5Hash(MDS->getString())); 1990 } 1991 1992 llvm::ConstantInt *CodeGenModule::CreateKCFITypeId(QualType T) { 1993 if (auto *FnType = T->getAs<FunctionProtoType>()) 1994 T = getContext().getFunctionType( 1995 FnType->getReturnType(), FnType->getParamTypes(), 1996 FnType->getExtProtoInfo().withExceptionSpec(EST_None)); 1997 1998 std::string OutName; 1999 llvm::raw_string_ostream Out(OutName); 2000 getCXXABI().getMangleContext().mangleTypeName( 2001 T, Out, getCodeGenOpts().SanitizeCfiICallNormalizeIntegers); 2002 2003 if (getCodeGenOpts().SanitizeCfiICallNormalizeIntegers) 2004 Out << ".normalized"; 2005 2006 return llvm::ConstantInt::get(Int32Ty, 2007 static_cast<uint32_t>(llvm::xxHash64(OutName))); 2008 } 2009 2010 void CodeGenModule::SetLLVMFunctionAttributes(GlobalDecl GD, 2011 const CGFunctionInfo &Info, 2012 llvm::Function *F, bool IsThunk) { 2013 unsigned CallingConv; 2014 llvm::AttributeList PAL; 2015 ConstructAttributeList(F->getName(), Info, GD, PAL, CallingConv, 2016 /*AttrOnCallSite=*/false, IsThunk); 2017 F->setAttributes(PAL); 2018 F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv)); 2019 } 2020 2021 static void removeImageAccessQualifier(std::string& TyName) { 2022 std::string ReadOnlyQual("__read_only"); 2023 std::string::size_type ReadOnlyPos = TyName.find(ReadOnlyQual); 2024 if (ReadOnlyPos != std::string::npos) 2025 // "+ 1" for the space after access qualifier. 2026 TyName.erase(ReadOnlyPos, ReadOnlyQual.size() + 1); 2027 else { 2028 std::string WriteOnlyQual("__write_only"); 2029 std::string::size_type WriteOnlyPos = TyName.find(WriteOnlyQual); 2030 if (WriteOnlyPos != std::string::npos) 2031 TyName.erase(WriteOnlyPos, WriteOnlyQual.size() + 1); 2032 else { 2033 std::string ReadWriteQual("__read_write"); 2034 std::string::size_type ReadWritePos = TyName.find(ReadWriteQual); 2035 if (ReadWritePos != std::string::npos) 2036 TyName.erase(ReadWritePos, ReadWriteQual.size() + 1); 2037 } 2038 } 2039 } 2040 2041 // Returns the address space id that should be produced to the 2042 // kernel_arg_addr_space metadata. This is always fixed to the ids 2043 // as specified in the SPIR 2.0 specification in order to differentiate 2044 // for example in clGetKernelArgInfo() implementation between the address 2045 // spaces with targets without unique mapping to the OpenCL address spaces 2046 // (basically all single AS CPUs). 2047 static unsigned ArgInfoAddressSpace(LangAS AS) { 2048 switch (AS) { 2049 case LangAS::opencl_global: 2050 return 1; 2051 case LangAS::opencl_constant: 2052 return 2; 2053 case LangAS::opencl_local: 2054 return 3; 2055 case LangAS::opencl_generic: 2056 return 4; // Not in SPIR 2.0 specs. 2057 case LangAS::opencl_global_device: 2058 return 5; 2059 case LangAS::opencl_global_host: 2060 return 6; 2061 default: 2062 return 0; // Assume private. 2063 } 2064 } 2065 2066 void CodeGenModule::GenKernelArgMetadata(llvm::Function *Fn, 2067 const FunctionDecl *FD, 2068 CodeGenFunction *CGF) { 2069 assert(((FD && CGF) || (!FD && !CGF)) && 2070 "Incorrect use - FD and CGF should either be both null or not!"); 2071 // Create MDNodes that represent the kernel arg metadata. 2072 // Each MDNode is a list in the form of "key", N number of values which is 2073 // the same number of values as their are kernel arguments. 2074 2075 const PrintingPolicy &Policy = Context.getPrintingPolicy(); 2076 2077 // MDNode for the kernel argument address space qualifiers. 2078 SmallVector<llvm::Metadata *, 8> addressQuals; 2079 2080 // MDNode for the kernel argument access qualifiers (images only). 2081 SmallVector<llvm::Metadata *, 8> accessQuals; 2082 2083 // MDNode for the kernel argument type names. 2084 SmallVector<llvm::Metadata *, 8> argTypeNames; 2085 2086 // MDNode for the kernel argument base type names. 2087 SmallVector<llvm::Metadata *, 8> argBaseTypeNames; 2088 2089 // MDNode for the kernel argument type qualifiers. 2090 SmallVector<llvm::Metadata *, 8> argTypeQuals; 2091 2092 // MDNode for the kernel argument names. 2093 SmallVector<llvm::Metadata *, 8> argNames; 2094 2095 if (FD && CGF) 2096 for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i) { 2097 const ParmVarDecl *parm = FD->getParamDecl(i); 2098 // Get argument name. 2099 argNames.push_back(llvm::MDString::get(VMContext, parm->getName())); 2100 2101 if (!getLangOpts().OpenCL) 2102 continue; 2103 QualType ty = parm->getType(); 2104 std::string typeQuals; 2105 2106 // Get image and pipe access qualifier: 2107 if (ty->isImageType() || ty->isPipeType()) { 2108 const Decl *PDecl = parm; 2109 if (const auto *TD = ty->getAs<TypedefType>()) 2110 PDecl = TD->getDecl(); 2111 const OpenCLAccessAttr *A = PDecl->getAttr<OpenCLAccessAttr>(); 2112 if (A && A->isWriteOnly()) 2113 accessQuals.push_back(llvm::MDString::get(VMContext, "write_only")); 2114 else if (A && A->isReadWrite()) 2115 accessQuals.push_back(llvm::MDString::get(VMContext, "read_write")); 2116 else 2117 accessQuals.push_back(llvm::MDString::get(VMContext, "read_only")); 2118 } else 2119 accessQuals.push_back(llvm::MDString::get(VMContext, "none")); 2120 2121 auto getTypeSpelling = [&](QualType Ty) { 2122 auto typeName = Ty.getUnqualifiedType().getAsString(Policy); 2123 2124 if (Ty.isCanonical()) { 2125 StringRef typeNameRef = typeName; 2126 // Turn "unsigned type" to "utype" 2127 if (typeNameRef.consume_front("unsigned ")) 2128 return std::string("u") + typeNameRef.str(); 2129 if (typeNameRef.consume_front("signed ")) 2130 return typeNameRef.str(); 2131 } 2132 2133 return typeName; 2134 }; 2135 2136 if (ty->isPointerType()) { 2137 QualType pointeeTy = ty->getPointeeType(); 2138 2139 // Get address qualifier. 2140 addressQuals.push_back( 2141 llvm::ConstantAsMetadata::get(CGF->Builder.getInt32( 2142 ArgInfoAddressSpace(pointeeTy.getAddressSpace())))); 2143 2144 // Get argument type name. 2145 std::string typeName = getTypeSpelling(pointeeTy) + "*"; 2146 std::string baseTypeName = 2147 getTypeSpelling(pointeeTy.getCanonicalType()) + "*"; 2148 argTypeNames.push_back(llvm::MDString::get(VMContext, typeName)); 2149 argBaseTypeNames.push_back( 2150 llvm::MDString::get(VMContext, baseTypeName)); 2151 2152 // Get argument type qualifiers: 2153 if (ty.isRestrictQualified()) 2154 typeQuals = "restrict"; 2155 if (pointeeTy.isConstQualified() || 2156 (pointeeTy.getAddressSpace() == LangAS::opencl_constant)) 2157 typeQuals += typeQuals.empty() ? "const" : " const"; 2158 if (pointeeTy.isVolatileQualified()) 2159 typeQuals += typeQuals.empty() ? "volatile" : " volatile"; 2160 } else { 2161 uint32_t AddrSpc = 0; 2162 bool isPipe = ty->isPipeType(); 2163 if (ty->isImageType() || isPipe) 2164 AddrSpc = ArgInfoAddressSpace(LangAS::opencl_global); 2165 2166 addressQuals.push_back( 2167 llvm::ConstantAsMetadata::get(CGF->Builder.getInt32(AddrSpc))); 2168 2169 // Get argument type name. 2170 ty = isPipe ? ty->castAs<PipeType>()->getElementType() : ty; 2171 std::string typeName = getTypeSpelling(ty); 2172 std::string baseTypeName = getTypeSpelling(ty.getCanonicalType()); 2173 2174 // Remove access qualifiers on images 2175 // (as they are inseparable from type in clang implementation, 2176 // but OpenCL spec provides a special query to get access qualifier 2177 // via clGetKernelArgInfo with CL_KERNEL_ARG_ACCESS_QUALIFIER): 2178 if (ty->isImageType()) { 2179 removeImageAccessQualifier(typeName); 2180 removeImageAccessQualifier(baseTypeName); 2181 } 2182 2183 argTypeNames.push_back(llvm::MDString::get(VMContext, typeName)); 2184 argBaseTypeNames.push_back( 2185 llvm::MDString::get(VMContext, baseTypeName)); 2186 2187 if (isPipe) 2188 typeQuals = "pipe"; 2189 } 2190 argTypeQuals.push_back(llvm::MDString::get(VMContext, typeQuals)); 2191 } 2192 2193 if (getLangOpts().OpenCL) { 2194 Fn->setMetadata("kernel_arg_addr_space", 2195 llvm::MDNode::get(VMContext, addressQuals)); 2196 Fn->setMetadata("kernel_arg_access_qual", 2197 llvm::MDNode::get(VMContext, accessQuals)); 2198 Fn->setMetadata("kernel_arg_type", 2199 llvm::MDNode::get(VMContext, argTypeNames)); 2200 Fn->setMetadata("kernel_arg_base_type", 2201 llvm::MDNode::get(VMContext, argBaseTypeNames)); 2202 Fn->setMetadata("kernel_arg_type_qual", 2203 llvm::MDNode::get(VMContext, argTypeQuals)); 2204 } 2205 if (getCodeGenOpts().EmitOpenCLArgMetadata || 2206 getCodeGenOpts().HIPSaveKernelArgName) 2207 Fn->setMetadata("kernel_arg_name", 2208 llvm::MDNode::get(VMContext, argNames)); 2209 } 2210 2211 /// Determines whether the language options require us to model 2212 /// unwind exceptions. We treat -fexceptions as mandating this 2213 /// except under the fragile ObjC ABI with only ObjC exceptions 2214 /// enabled. This means, for example, that C with -fexceptions 2215 /// enables this. 2216 static bool hasUnwindExceptions(const LangOptions &LangOpts) { 2217 // If exceptions are completely disabled, obviously this is false. 2218 if (!LangOpts.Exceptions) return false; 2219 2220 // If C++ exceptions are enabled, this is true. 2221 if (LangOpts.CXXExceptions) return true; 2222 2223 // If ObjC exceptions are enabled, this depends on the ABI. 2224 if (LangOpts.ObjCExceptions) { 2225 return LangOpts.ObjCRuntime.hasUnwindExceptions(); 2226 } 2227 2228 return true; 2229 } 2230 2231 static bool requiresMemberFunctionPointerTypeMetadata(CodeGenModule &CGM, 2232 const CXXMethodDecl *MD) { 2233 // Check that the type metadata can ever actually be used by a call. 2234 if (!CGM.getCodeGenOpts().LTOUnit || 2235 !CGM.HasHiddenLTOVisibility(MD->getParent())) 2236 return false; 2237 2238 // Only functions whose address can be taken with a member function pointer 2239 // need this sort of type metadata. 2240 return !MD->isStatic() && !MD->isVirtual() && !isa<CXXConstructorDecl>(MD) && 2241 !isa<CXXDestructorDecl>(MD); 2242 } 2243 2244 SmallVector<const CXXRecordDecl *, 0> 2245 CodeGenModule::getMostBaseClasses(const CXXRecordDecl *RD) { 2246 llvm::SetVector<const CXXRecordDecl *> MostBases; 2247 2248 std::function<void (const CXXRecordDecl *)> CollectMostBases; 2249 CollectMostBases = [&](const CXXRecordDecl *RD) { 2250 if (RD->getNumBases() == 0) 2251 MostBases.insert(RD); 2252 for (const CXXBaseSpecifier &B : RD->bases()) 2253 CollectMostBases(B.getType()->getAsCXXRecordDecl()); 2254 }; 2255 CollectMostBases(RD); 2256 return MostBases.takeVector(); 2257 } 2258 2259 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D, 2260 llvm::Function *F) { 2261 llvm::AttrBuilder B(F->getContext()); 2262 2263 if ((!D || !D->hasAttr<NoUwtableAttr>()) && CodeGenOpts.UnwindTables) 2264 B.addUWTableAttr(llvm::UWTableKind(CodeGenOpts.UnwindTables)); 2265 2266 if (CodeGenOpts.StackClashProtector) 2267 B.addAttribute("probe-stack", "inline-asm"); 2268 2269 if (!hasUnwindExceptions(LangOpts)) 2270 B.addAttribute(llvm::Attribute::NoUnwind); 2271 2272 if (D && D->hasAttr<NoStackProtectorAttr>()) 2273 ; // Do nothing. 2274 else if (D && D->hasAttr<StrictGuardStackCheckAttr>() && 2275 LangOpts.getStackProtector() == LangOptions::SSPOn) 2276 B.addAttribute(llvm::Attribute::StackProtectStrong); 2277 else if (LangOpts.getStackProtector() == LangOptions::SSPOn) 2278 B.addAttribute(llvm::Attribute::StackProtect); 2279 else if (LangOpts.getStackProtector() == LangOptions::SSPStrong) 2280 B.addAttribute(llvm::Attribute::StackProtectStrong); 2281 else if (LangOpts.getStackProtector() == LangOptions::SSPReq) 2282 B.addAttribute(llvm::Attribute::StackProtectReq); 2283 2284 if (!D) { 2285 // If we don't have a declaration to control inlining, the function isn't 2286 // explicitly marked as alwaysinline for semantic reasons, and inlining is 2287 // disabled, mark the function as noinline. 2288 if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline) && 2289 CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining) 2290 B.addAttribute(llvm::Attribute::NoInline); 2291 2292 F->addFnAttrs(B); 2293 return; 2294 } 2295 2296 // Track whether we need to add the optnone LLVM attribute, 2297 // starting with the default for this optimization level. 2298 bool ShouldAddOptNone = 2299 !CodeGenOpts.DisableO0ImplyOptNone && CodeGenOpts.OptimizationLevel == 0; 2300 // We can't add optnone in the following cases, it won't pass the verifier. 2301 ShouldAddOptNone &= !D->hasAttr<MinSizeAttr>(); 2302 ShouldAddOptNone &= !D->hasAttr<AlwaysInlineAttr>(); 2303 2304 // Add optnone, but do so only if the function isn't always_inline. 2305 if ((ShouldAddOptNone || D->hasAttr<OptimizeNoneAttr>()) && 2306 !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) { 2307 B.addAttribute(llvm::Attribute::OptimizeNone); 2308 2309 // OptimizeNone implies noinline; we should not be inlining such functions. 2310 B.addAttribute(llvm::Attribute::NoInline); 2311 2312 // We still need to handle naked functions even though optnone subsumes 2313 // much of their semantics. 2314 if (D->hasAttr<NakedAttr>()) 2315 B.addAttribute(llvm::Attribute::Naked); 2316 2317 // OptimizeNone wins over OptimizeForSize and MinSize. 2318 F->removeFnAttr(llvm::Attribute::OptimizeForSize); 2319 F->removeFnAttr(llvm::Attribute::MinSize); 2320 } else if (D->hasAttr<NakedAttr>()) { 2321 // Naked implies noinline: we should not be inlining such functions. 2322 B.addAttribute(llvm::Attribute::Naked); 2323 B.addAttribute(llvm::Attribute::NoInline); 2324 } else if (D->hasAttr<NoDuplicateAttr>()) { 2325 B.addAttribute(llvm::Attribute::NoDuplicate); 2326 } else if (D->hasAttr<NoInlineAttr>() && !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) { 2327 // Add noinline if the function isn't always_inline. 2328 B.addAttribute(llvm::Attribute::NoInline); 2329 } else if (D->hasAttr<AlwaysInlineAttr>() && 2330 !F->hasFnAttribute(llvm::Attribute::NoInline)) { 2331 // (noinline wins over always_inline, and we can't specify both in IR) 2332 B.addAttribute(llvm::Attribute::AlwaysInline); 2333 } else if (CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining) { 2334 // If we're not inlining, then force everything that isn't always_inline to 2335 // carry an explicit noinline attribute. 2336 if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline)) 2337 B.addAttribute(llvm::Attribute::NoInline); 2338 } else { 2339 // Otherwise, propagate the inline hint attribute and potentially use its 2340 // absence to mark things as noinline. 2341 if (auto *FD = dyn_cast<FunctionDecl>(D)) { 2342 // Search function and template pattern redeclarations for inline. 2343 auto CheckForInline = [](const FunctionDecl *FD) { 2344 auto CheckRedeclForInline = [](const FunctionDecl *Redecl) { 2345 return Redecl->isInlineSpecified(); 2346 }; 2347 if (any_of(FD->redecls(), CheckRedeclForInline)) 2348 return true; 2349 const FunctionDecl *Pattern = FD->getTemplateInstantiationPattern(); 2350 if (!Pattern) 2351 return false; 2352 return any_of(Pattern->redecls(), CheckRedeclForInline); 2353 }; 2354 if (CheckForInline(FD)) { 2355 B.addAttribute(llvm::Attribute::InlineHint); 2356 } else if (CodeGenOpts.getInlining() == 2357 CodeGenOptions::OnlyHintInlining && 2358 !FD->isInlined() && 2359 !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) { 2360 B.addAttribute(llvm::Attribute::NoInline); 2361 } 2362 } 2363 } 2364 2365 // Add other optimization related attributes if we are optimizing this 2366 // function. 2367 if (!D->hasAttr<OptimizeNoneAttr>()) { 2368 if (D->hasAttr<ColdAttr>()) { 2369 if (!ShouldAddOptNone) 2370 B.addAttribute(llvm::Attribute::OptimizeForSize); 2371 B.addAttribute(llvm::Attribute::Cold); 2372 } 2373 if (D->hasAttr<HotAttr>()) 2374 B.addAttribute(llvm::Attribute::Hot); 2375 if (D->hasAttr<MinSizeAttr>()) 2376 B.addAttribute(llvm::Attribute::MinSize); 2377 } 2378 2379 F->addFnAttrs(B); 2380 2381 unsigned alignment = D->getMaxAlignment() / Context.getCharWidth(); 2382 if (alignment) 2383 F->setAlignment(llvm::Align(alignment)); 2384 2385 if (!D->hasAttr<AlignedAttr>()) 2386 if (LangOpts.FunctionAlignment) 2387 F->setAlignment(llvm::Align(1ull << LangOpts.FunctionAlignment)); 2388 2389 // Some C++ ABIs require 2-byte alignment for member functions, in order to 2390 // reserve a bit for differentiating between virtual and non-virtual member 2391 // functions. If the current target's C++ ABI requires this and this is a 2392 // member function, set its alignment accordingly. 2393 if (getTarget().getCXXABI().areMemberFunctionsAligned()) { 2394 if (F->getPointerAlignment(getDataLayout()) < 2 && isa<CXXMethodDecl>(D)) 2395 F->setAlignment(std::max(llvm::Align(2), F->getAlign().valueOrOne())); 2396 } 2397 2398 // In the cross-dso CFI mode with canonical jump tables, we want !type 2399 // attributes on definitions only. 2400 if (CodeGenOpts.SanitizeCfiCrossDso && 2401 CodeGenOpts.SanitizeCfiCanonicalJumpTables) { 2402 if (auto *FD = dyn_cast<FunctionDecl>(D)) { 2403 // Skip available_externally functions. They won't be codegen'ed in the 2404 // current module anyway. 2405 if (getContext().GetGVALinkageForFunction(FD) != GVA_AvailableExternally) 2406 CreateFunctionTypeMetadataForIcall(FD, F); 2407 } 2408 } 2409 2410 // Emit type metadata on member functions for member function pointer checks. 2411 // These are only ever necessary on definitions; we're guaranteed that the 2412 // definition will be present in the LTO unit as a result of LTO visibility. 2413 auto *MD = dyn_cast<CXXMethodDecl>(D); 2414 if (MD && requiresMemberFunctionPointerTypeMetadata(*this, MD)) { 2415 for (const CXXRecordDecl *Base : getMostBaseClasses(MD->getParent())) { 2416 llvm::Metadata *Id = 2417 CreateMetadataIdentifierForType(Context.getMemberPointerType( 2418 MD->getType(), Context.getRecordType(Base).getTypePtr())); 2419 F->addTypeMetadata(0, Id); 2420 } 2421 } 2422 } 2423 2424 void CodeGenModule::SetCommonAttributes(GlobalDecl GD, llvm::GlobalValue *GV) { 2425 const Decl *D = GD.getDecl(); 2426 if (isa_and_nonnull<NamedDecl>(D)) 2427 setGVProperties(GV, GD); 2428 else 2429 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 2430 2431 if (D && D->hasAttr<UsedAttr>()) 2432 addUsedOrCompilerUsedGlobal(GV); 2433 2434 if (const auto *VD = dyn_cast_if_present<VarDecl>(D); 2435 VD && 2436 ((CodeGenOpts.KeepPersistentStorageVariables && 2437 (VD->getStorageDuration() == SD_Static || 2438 VD->getStorageDuration() == SD_Thread)) || 2439 (CodeGenOpts.KeepStaticConsts && VD->getStorageDuration() == SD_Static && 2440 VD->getType().isConstQualified()))) 2441 addUsedOrCompilerUsedGlobal(GV); 2442 } 2443 2444 bool CodeGenModule::GetCPUAndFeaturesAttributes(GlobalDecl GD, 2445 llvm::AttrBuilder &Attrs, 2446 bool SetTargetFeatures) { 2447 // Add target-cpu and target-features attributes to functions. If 2448 // we have a decl for the function and it has a target attribute then 2449 // parse that and add it to the feature set. 2450 StringRef TargetCPU = getTarget().getTargetOpts().CPU; 2451 StringRef TuneCPU = getTarget().getTargetOpts().TuneCPU; 2452 std::vector<std::string> Features; 2453 const auto *FD = dyn_cast_or_null<FunctionDecl>(GD.getDecl()); 2454 FD = FD ? FD->getMostRecentDecl() : FD; 2455 const auto *TD = FD ? FD->getAttr<TargetAttr>() : nullptr; 2456 const auto *TV = FD ? FD->getAttr<TargetVersionAttr>() : nullptr; 2457 assert((!TD || !TV) && "both target_version and target specified"); 2458 const auto *SD = FD ? FD->getAttr<CPUSpecificAttr>() : nullptr; 2459 const auto *TC = FD ? FD->getAttr<TargetClonesAttr>() : nullptr; 2460 bool AddedAttr = false; 2461 if (TD || TV || SD || TC) { 2462 llvm::StringMap<bool> FeatureMap; 2463 getContext().getFunctionFeatureMap(FeatureMap, GD); 2464 2465 // Produce the canonical string for this set of features. 2466 for (const llvm::StringMap<bool>::value_type &Entry : FeatureMap) 2467 Features.push_back((Entry.getValue() ? "+" : "-") + Entry.getKey().str()); 2468 2469 // Now add the target-cpu and target-features to the function. 2470 // While we populated the feature map above, we still need to 2471 // get and parse the target attribute so we can get the cpu for 2472 // the function. 2473 if (TD) { 2474 ParsedTargetAttr ParsedAttr = 2475 Target.parseTargetAttr(TD->getFeaturesStr()); 2476 if (!ParsedAttr.CPU.empty() && 2477 getTarget().isValidCPUName(ParsedAttr.CPU)) { 2478 TargetCPU = ParsedAttr.CPU; 2479 TuneCPU = ""; // Clear the tune CPU. 2480 } 2481 if (!ParsedAttr.Tune.empty() && 2482 getTarget().isValidCPUName(ParsedAttr.Tune)) 2483 TuneCPU = ParsedAttr.Tune; 2484 } 2485 2486 if (SD) { 2487 // Apply the given CPU name as the 'tune-cpu' so that the optimizer can 2488 // favor this processor. 2489 TuneCPU = SD->getCPUName(GD.getMultiVersionIndex())->getName(); 2490 } 2491 } else { 2492 // Otherwise just add the existing target cpu and target features to the 2493 // function. 2494 Features = getTarget().getTargetOpts().Features; 2495 } 2496 2497 if (!TargetCPU.empty()) { 2498 Attrs.addAttribute("target-cpu", TargetCPU); 2499 AddedAttr = true; 2500 } 2501 if (!TuneCPU.empty()) { 2502 Attrs.addAttribute("tune-cpu", TuneCPU); 2503 AddedAttr = true; 2504 } 2505 if (!Features.empty() && SetTargetFeatures) { 2506 llvm::erase_if(Features, [&](const std::string& F) { 2507 return getTarget().isReadOnlyFeature(F.substr(1)); 2508 }); 2509 llvm::sort(Features); 2510 Attrs.addAttribute("target-features", llvm::join(Features, ",")); 2511 AddedAttr = true; 2512 } 2513 2514 return AddedAttr; 2515 } 2516 2517 void CodeGenModule::setNonAliasAttributes(GlobalDecl GD, 2518 llvm::GlobalObject *GO) { 2519 const Decl *D = GD.getDecl(); 2520 SetCommonAttributes(GD, GO); 2521 2522 if (D) { 2523 if (auto *GV = dyn_cast<llvm::GlobalVariable>(GO)) { 2524 if (D->hasAttr<RetainAttr>()) 2525 addUsedGlobal(GV); 2526 if (auto *SA = D->getAttr<PragmaClangBSSSectionAttr>()) 2527 GV->addAttribute("bss-section", SA->getName()); 2528 if (auto *SA = D->getAttr<PragmaClangDataSectionAttr>()) 2529 GV->addAttribute("data-section", SA->getName()); 2530 if (auto *SA = D->getAttr<PragmaClangRodataSectionAttr>()) 2531 GV->addAttribute("rodata-section", SA->getName()); 2532 if (auto *SA = D->getAttr<PragmaClangRelroSectionAttr>()) 2533 GV->addAttribute("relro-section", SA->getName()); 2534 } 2535 2536 if (auto *F = dyn_cast<llvm::Function>(GO)) { 2537 if (D->hasAttr<RetainAttr>()) 2538 addUsedGlobal(F); 2539 if (auto *SA = D->getAttr<PragmaClangTextSectionAttr>()) 2540 if (!D->getAttr<SectionAttr>()) 2541 F->addFnAttr("implicit-section-name", SA->getName()); 2542 2543 llvm::AttrBuilder Attrs(F->getContext()); 2544 if (GetCPUAndFeaturesAttributes(GD, Attrs)) { 2545 // We know that GetCPUAndFeaturesAttributes will always have the 2546 // newest set, since it has the newest possible FunctionDecl, so the 2547 // new ones should replace the old. 2548 llvm::AttributeMask RemoveAttrs; 2549 RemoveAttrs.addAttribute("target-cpu"); 2550 RemoveAttrs.addAttribute("target-features"); 2551 RemoveAttrs.addAttribute("tune-cpu"); 2552 F->removeFnAttrs(RemoveAttrs); 2553 F->addFnAttrs(Attrs); 2554 } 2555 } 2556 2557 if (const auto *CSA = D->getAttr<CodeSegAttr>()) 2558 GO->setSection(CSA->getName()); 2559 else if (const auto *SA = D->getAttr<SectionAttr>()) 2560 GO->setSection(SA->getName()); 2561 } 2562 2563 getTargetCodeGenInfo().setTargetAttributes(D, GO, *this); 2564 } 2565 2566 void CodeGenModule::SetInternalFunctionAttributes(GlobalDecl GD, 2567 llvm::Function *F, 2568 const CGFunctionInfo &FI) { 2569 const Decl *D = GD.getDecl(); 2570 SetLLVMFunctionAttributes(GD, FI, F, /*IsThunk=*/false); 2571 SetLLVMFunctionAttributesForDefinition(D, F); 2572 2573 F->setLinkage(llvm::Function::InternalLinkage); 2574 2575 setNonAliasAttributes(GD, F); 2576 } 2577 2578 static void setLinkageForGV(llvm::GlobalValue *GV, const NamedDecl *ND) { 2579 // Set linkage and visibility in case we never see a definition. 2580 LinkageInfo LV = ND->getLinkageAndVisibility(); 2581 // Don't set internal linkage on declarations. 2582 // "extern_weak" is overloaded in LLVM; we probably should have 2583 // separate linkage types for this. 2584 if (isExternallyVisible(LV.getLinkage()) && 2585 (ND->hasAttr<WeakAttr>() || ND->isWeakImported())) 2586 GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage); 2587 } 2588 2589 void CodeGenModule::CreateFunctionTypeMetadataForIcall(const FunctionDecl *FD, 2590 llvm::Function *F) { 2591 // Only if we are checking indirect calls. 2592 if (!LangOpts.Sanitize.has(SanitizerKind::CFIICall)) 2593 return; 2594 2595 // Non-static class methods are handled via vtable or member function pointer 2596 // checks elsewhere. 2597 if (isa<CXXMethodDecl>(FD) && !cast<CXXMethodDecl>(FD)->isStatic()) 2598 return; 2599 2600 llvm::Metadata *MD = CreateMetadataIdentifierForType(FD->getType()); 2601 F->addTypeMetadata(0, MD); 2602 F->addTypeMetadata(0, CreateMetadataIdentifierGeneralized(FD->getType())); 2603 2604 // Emit a hash-based bit set entry for cross-DSO calls. 2605 if (CodeGenOpts.SanitizeCfiCrossDso) 2606 if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD)) 2607 F->addTypeMetadata(0, llvm::ConstantAsMetadata::get(CrossDsoTypeId)); 2608 } 2609 2610 void CodeGenModule::setKCFIType(const FunctionDecl *FD, llvm::Function *F) { 2611 llvm::LLVMContext &Ctx = F->getContext(); 2612 llvm::MDBuilder MDB(Ctx); 2613 F->setMetadata(llvm::LLVMContext::MD_kcfi_type, 2614 llvm::MDNode::get( 2615 Ctx, MDB.createConstant(CreateKCFITypeId(FD->getType())))); 2616 } 2617 2618 static bool allowKCFIIdentifier(StringRef Name) { 2619 // KCFI type identifier constants are only necessary for external assembly 2620 // functions, which means it's safe to skip unusual names. Subset of 2621 // MCAsmInfo::isAcceptableChar() and MCAsmInfoXCOFF::isAcceptableChar(). 2622 return llvm::all_of(Name, [](const char &C) { 2623 return llvm::isAlnum(C) || C == '_' || C == '.'; 2624 }); 2625 } 2626 2627 void CodeGenModule::finalizeKCFITypes() { 2628 llvm::Module &M = getModule(); 2629 for (auto &F : M.functions()) { 2630 // Remove KCFI type metadata from non-address-taken local functions. 2631 bool AddressTaken = F.hasAddressTaken(); 2632 if (!AddressTaken && F.hasLocalLinkage()) 2633 F.eraseMetadata(llvm::LLVMContext::MD_kcfi_type); 2634 2635 // Generate a constant with the expected KCFI type identifier for all 2636 // address-taken function declarations to support annotating indirectly 2637 // called assembly functions. 2638 if (!AddressTaken || !F.isDeclaration()) 2639 continue; 2640 2641 const llvm::ConstantInt *Type; 2642 if (const llvm::MDNode *MD = F.getMetadata(llvm::LLVMContext::MD_kcfi_type)) 2643 Type = llvm::mdconst::extract<llvm::ConstantInt>(MD->getOperand(0)); 2644 else 2645 continue; 2646 2647 StringRef Name = F.getName(); 2648 if (!allowKCFIIdentifier(Name)) 2649 continue; 2650 2651 std::string Asm = (".weak __kcfi_typeid_" + Name + "\n.set __kcfi_typeid_" + 2652 Name + ", " + Twine(Type->getZExtValue()) + "\n") 2653 .str(); 2654 M.appendModuleInlineAsm(Asm); 2655 } 2656 } 2657 2658 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD, llvm::Function *F, 2659 bool IsIncompleteFunction, 2660 bool IsThunk) { 2661 2662 if (llvm::Intrinsic::ID IID = F->getIntrinsicID()) { 2663 // If this is an intrinsic function, set the function's attributes 2664 // to the intrinsic's attributes. 2665 F->setAttributes(llvm::Intrinsic::getAttributes(getLLVMContext(), IID)); 2666 return; 2667 } 2668 2669 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 2670 2671 if (!IsIncompleteFunction) 2672 SetLLVMFunctionAttributes(GD, getTypes().arrangeGlobalDeclaration(GD), F, 2673 IsThunk); 2674 2675 // Add the Returned attribute for "this", except for iOS 5 and earlier 2676 // where substantial code, including the libstdc++ dylib, was compiled with 2677 // GCC and does not actually return "this". 2678 if (!IsThunk && getCXXABI().HasThisReturn(GD) && 2679 !(getTriple().isiOS() && getTriple().isOSVersionLT(6))) { 2680 assert(!F->arg_empty() && 2681 F->arg_begin()->getType() 2682 ->canLosslesslyBitCastTo(F->getReturnType()) && 2683 "unexpected this return"); 2684 F->addParamAttr(0, llvm::Attribute::Returned); 2685 } 2686 2687 // Only a few attributes are set on declarations; these may later be 2688 // overridden by a definition. 2689 2690 setLinkageForGV(F, FD); 2691 setGVProperties(F, FD); 2692 2693 // Setup target-specific attributes. 2694 if (!IsIncompleteFunction && F->isDeclaration()) 2695 getTargetCodeGenInfo().setTargetAttributes(FD, F, *this); 2696 2697 if (const auto *CSA = FD->getAttr<CodeSegAttr>()) 2698 F->setSection(CSA->getName()); 2699 else if (const auto *SA = FD->getAttr<SectionAttr>()) 2700 F->setSection(SA->getName()); 2701 2702 if (const auto *EA = FD->getAttr<ErrorAttr>()) { 2703 if (EA->isError()) 2704 F->addFnAttr("dontcall-error", EA->getUserDiagnostic()); 2705 else if (EA->isWarning()) 2706 F->addFnAttr("dontcall-warn", EA->getUserDiagnostic()); 2707 } 2708 2709 // If we plan on emitting this inline builtin, we can't treat it as a builtin. 2710 if (FD->isInlineBuiltinDeclaration()) { 2711 const FunctionDecl *FDBody; 2712 bool HasBody = FD->hasBody(FDBody); 2713 (void)HasBody; 2714 assert(HasBody && "Inline builtin declarations should always have an " 2715 "available body!"); 2716 if (shouldEmitFunction(FDBody)) 2717 F->addFnAttr(llvm::Attribute::NoBuiltin); 2718 } 2719 2720 if (FD->isReplaceableGlobalAllocationFunction()) { 2721 // A replaceable global allocation function does not act like a builtin by 2722 // default, only if it is invoked by a new-expression or delete-expression. 2723 F->addFnAttr(llvm::Attribute::NoBuiltin); 2724 } 2725 2726 if (isa<CXXConstructorDecl>(FD) || isa<CXXDestructorDecl>(FD)) 2727 F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 2728 else if (const auto *MD = dyn_cast<CXXMethodDecl>(FD)) 2729 if (MD->isVirtual()) 2730 F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 2731 2732 // Don't emit entries for function declarations in the cross-DSO mode. This 2733 // is handled with better precision by the receiving DSO. But if jump tables 2734 // are non-canonical then we need type metadata in order to produce the local 2735 // jump table. 2736 if (!CodeGenOpts.SanitizeCfiCrossDso || 2737 !CodeGenOpts.SanitizeCfiCanonicalJumpTables) 2738 CreateFunctionTypeMetadataForIcall(FD, F); 2739 2740 if (LangOpts.Sanitize.has(SanitizerKind::KCFI)) 2741 setKCFIType(FD, F); 2742 2743 if (getLangOpts().OpenMP && FD->hasAttr<OMPDeclareSimdDeclAttr>()) 2744 getOpenMPRuntime().emitDeclareSimdFunction(FD, F); 2745 2746 if (CodeGenOpts.InlineMaxStackSize != UINT_MAX) 2747 F->addFnAttr("inline-max-stacksize", llvm::utostr(CodeGenOpts.InlineMaxStackSize)); 2748 2749 if (const auto *CB = FD->getAttr<CallbackAttr>()) { 2750 // Annotate the callback behavior as metadata: 2751 // - The callback callee (as argument number). 2752 // - The callback payloads (as argument numbers). 2753 llvm::LLVMContext &Ctx = F->getContext(); 2754 llvm::MDBuilder MDB(Ctx); 2755 2756 // The payload indices are all but the first one in the encoding. The first 2757 // identifies the callback callee. 2758 int CalleeIdx = *CB->encoding_begin(); 2759 ArrayRef<int> PayloadIndices(CB->encoding_begin() + 1, CB->encoding_end()); 2760 F->addMetadata(llvm::LLVMContext::MD_callback, 2761 *llvm::MDNode::get(Ctx, {MDB.createCallbackEncoding( 2762 CalleeIdx, PayloadIndices, 2763 /* VarArgsArePassed */ false)})); 2764 } 2765 } 2766 2767 void CodeGenModule::addUsedGlobal(llvm::GlobalValue *GV) { 2768 assert((isa<llvm::Function>(GV) || !GV->isDeclaration()) && 2769 "Only globals with definition can force usage."); 2770 LLVMUsed.emplace_back(GV); 2771 } 2772 2773 void CodeGenModule::addCompilerUsedGlobal(llvm::GlobalValue *GV) { 2774 assert(!GV->isDeclaration() && 2775 "Only globals with definition can force usage."); 2776 LLVMCompilerUsed.emplace_back(GV); 2777 } 2778 2779 void CodeGenModule::addUsedOrCompilerUsedGlobal(llvm::GlobalValue *GV) { 2780 assert((isa<llvm::Function>(GV) || !GV->isDeclaration()) && 2781 "Only globals with definition can force usage."); 2782 if (getTriple().isOSBinFormatELF()) 2783 LLVMCompilerUsed.emplace_back(GV); 2784 else 2785 LLVMUsed.emplace_back(GV); 2786 } 2787 2788 static void emitUsed(CodeGenModule &CGM, StringRef Name, 2789 std::vector<llvm::WeakTrackingVH> &List) { 2790 // Don't create llvm.used if there is no need. 2791 if (List.empty()) 2792 return; 2793 2794 // Convert List to what ConstantArray needs. 2795 SmallVector<llvm::Constant*, 8> UsedArray; 2796 UsedArray.resize(List.size()); 2797 for (unsigned i = 0, e = List.size(); i != e; ++i) { 2798 UsedArray[i] = 2799 llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast( 2800 cast<llvm::Constant>(&*List[i]), CGM.Int8PtrTy); 2801 } 2802 2803 if (UsedArray.empty()) 2804 return; 2805 llvm::ArrayType *ATy = llvm::ArrayType::get(CGM.Int8PtrTy, UsedArray.size()); 2806 2807 auto *GV = new llvm::GlobalVariable( 2808 CGM.getModule(), ATy, false, llvm::GlobalValue::AppendingLinkage, 2809 llvm::ConstantArray::get(ATy, UsedArray), Name); 2810 2811 GV->setSection("llvm.metadata"); 2812 } 2813 2814 void CodeGenModule::emitLLVMUsed() { 2815 emitUsed(*this, "llvm.used", LLVMUsed); 2816 emitUsed(*this, "llvm.compiler.used", LLVMCompilerUsed); 2817 } 2818 2819 void CodeGenModule::AppendLinkerOptions(StringRef Opts) { 2820 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opts); 2821 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 2822 } 2823 2824 void CodeGenModule::AddDetectMismatch(StringRef Name, StringRef Value) { 2825 llvm::SmallString<32> Opt; 2826 getTargetCodeGenInfo().getDetectMismatchOption(Name, Value, Opt); 2827 if (Opt.empty()) 2828 return; 2829 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt); 2830 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 2831 } 2832 2833 void CodeGenModule::AddDependentLib(StringRef Lib) { 2834 auto &C = getLLVMContext(); 2835 if (getTarget().getTriple().isOSBinFormatELF()) { 2836 ELFDependentLibraries.push_back( 2837 llvm::MDNode::get(C, llvm::MDString::get(C, Lib))); 2838 return; 2839 } 2840 2841 llvm::SmallString<24> Opt; 2842 getTargetCodeGenInfo().getDependentLibraryOption(Lib, Opt); 2843 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt); 2844 LinkerOptionsMetadata.push_back(llvm::MDNode::get(C, MDOpts)); 2845 } 2846 2847 /// Add link options implied by the given module, including modules 2848 /// it depends on, using a postorder walk. 2849 static void addLinkOptionsPostorder(CodeGenModule &CGM, Module *Mod, 2850 SmallVectorImpl<llvm::MDNode *> &Metadata, 2851 llvm::SmallPtrSet<Module *, 16> &Visited) { 2852 // Import this module's parent. 2853 if (Mod->Parent && Visited.insert(Mod->Parent).second) { 2854 addLinkOptionsPostorder(CGM, Mod->Parent, Metadata, Visited); 2855 } 2856 2857 // Import this module's dependencies. 2858 for (Module *Import : llvm::reverse(Mod->Imports)) { 2859 if (Visited.insert(Import).second) 2860 addLinkOptionsPostorder(CGM, Import, Metadata, Visited); 2861 } 2862 2863 // Add linker options to link against the libraries/frameworks 2864 // described by this module. 2865 llvm::LLVMContext &Context = CGM.getLLVMContext(); 2866 bool IsELF = CGM.getTarget().getTriple().isOSBinFormatELF(); 2867 2868 // For modules that use export_as for linking, use that module 2869 // name instead. 2870 if (Mod->UseExportAsModuleLinkName) 2871 return; 2872 2873 for (const Module::LinkLibrary &LL : llvm::reverse(Mod->LinkLibraries)) { 2874 // Link against a framework. Frameworks are currently Darwin only, so we 2875 // don't to ask TargetCodeGenInfo for the spelling of the linker option. 2876 if (LL.IsFramework) { 2877 llvm::Metadata *Args[2] = {llvm::MDString::get(Context, "-framework"), 2878 llvm::MDString::get(Context, LL.Library)}; 2879 2880 Metadata.push_back(llvm::MDNode::get(Context, Args)); 2881 continue; 2882 } 2883 2884 // Link against a library. 2885 if (IsELF) { 2886 llvm::Metadata *Args[2] = { 2887 llvm::MDString::get(Context, "lib"), 2888 llvm::MDString::get(Context, LL.Library), 2889 }; 2890 Metadata.push_back(llvm::MDNode::get(Context, Args)); 2891 } else { 2892 llvm::SmallString<24> Opt; 2893 CGM.getTargetCodeGenInfo().getDependentLibraryOption(LL.Library, Opt); 2894 auto *OptString = llvm::MDString::get(Context, Opt); 2895 Metadata.push_back(llvm::MDNode::get(Context, OptString)); 2896 } 2897 } 2898 } 2899 2900 void CodeGenModule::EmitModuleInitializers(clang::Module *Primary) { 2901 // Emit the initializers in the order that sub-modules appear in the 2902 // source, first Global Module Fragments, if present. 2903 if (auto GMF = Primary->getGlobalModuleFragment()) { 2904 for (Decl *D : getContext().getModuleInitializers(GMF)) { 2905 if (isa<ImportDecl>(D)) 2906 continue; 2907 assert(isa<VarDecl>(D) && "GMF initializer decl is not a var?"); 2908 EmitTopLevelDecl(D); 2909 } 2910 } 2911 // Second any associated with the module, itself. 2912 for (Decl *D : getContext().getModuleInitializers(Primary)) { 2913 // Skip import decls, the inits for those are called explicitly. 2914 if (isa<ImportDecl>(D)) 2915 continue; 2916 EmitTopLevelDecl(D); 2917 } 2918 // Third any associated with the Privat eMOdule Fragment, if present. 2919 if (auto PMF = Primary->getPrivateModuleFragment()) { 2920 for (Decl *D : getContext().getModuleInitializers(PMF)) { 2921 assert(isa<VarDecl>(D) && "PMF initializer decl is not a var?"); 2922 EmitTopLevelDecl(D); 2923 } 2924 } 2925 } 2926 2927 void CodeGenModule::EmitModuleLinkOptions() { 2928 // Collect the set of all of the modules we want to visit to emit link 2929 // options, which is essentially the imported modules and all of their 2930 // non-explicit child modules. 2931 llvm::SetVector<clang::Module *> LinkModules; 2932 llvm::SmallPtrSet<clang::Module *, 16> Visited; 2933 SmallVector<clang::Module *, 16> Stack; 2934 2935 // Seed the stack with imported modules. 2936 for (Module *M : ImportedModules) { 2937 // Do not add any link flags when an implementation TU of a module imports 2938 // a header of that same module. 2939 if (M->getTopLevelModuleName() == getLangOpts().CurrentModule && 2940 !getLangOpts().isCompilingModule()) 2941 continue; 2942 if (Visited.insert(M).second) 2943 Stack.push_back(M); 2944 } 2945 2946 // Find all of the modules to import, making a little effort to prune 2947 // non-leaf modules. 2948 while (!Stack.empty()) { 2949 clang::Module *Mod = Stack.pop_back_val(); 2950 2951 bool AnyChildren = false; 2952 2953 // Visit the submodules of this module. 2954 for (const auto &SM : Mod->submodules()) { 2955 // Skip explicit children; they need to be explicitly imported to be 2956 // linked against. 2957 if (SM->IsExplicit) 2958 continue; 2959 2960 if (Visited.insert(SM).second) { 2961 Stack.push_back(SM); 2962 AnyChildren = true; 2963 } 2964 } 2965 2966 // We didn't find any children, so add this module to the list of 2967 // modules to link against. 2968 if (!AnyChildren) { 2969 LinkModules.insert(Mod); 2970 } 2971 } 2972 2973 // Add link options for all of the imported modules in reverse topological 2974 // order. We don't do anything to try to order import link flags with respect 2975 // to linker options inserted by things like #pragma comment(). 2976 SmallVector<llvm::MDNode *, 16> MetadataArgs; 2977 Visited.clear(); 2978 for (Module *M : LinkModules) 2979 if (Visited.insert(M).second) 2980 addLinkOptionsPostorder(*this, M, MetadataArgs, Visited); 2981 std::reverse(MetadataArgs.begin(), MetadataArgs.end()); 2982 LinkerOptionsMetadata.append(MetadataArgs.begin(), MetadataArgs.end()); 2983 2984 // Add the linker options metadata flag. 2985 auto *NMD = getModule().getOrInsertNamedMetadata("llvm.linker.options"); 2986 for (auto *MD : LinkerOptionsMetadata) 2987 NMD->addOperand(MD); 2988 } 2989 2990 void CodeGenModule::EmitDeferred() { 2991 // Emit deferred declare target declarations. 2992 if (getLangOpts().OpenMP && !getLangOpts().OpenMPSimd) 2993 getOpenMPRuntime().emitDeferredTargetDecls(); 2994 2995 // Emit code for any potentially referenced deferred decls. Since a 2996 // previously unused static decl may become used during the generation of code 2997 // for a static function, iterate until no changes are made. 2998 2999 if (!DeferredVTables.empty()) { 3000 EmitDeferredVTables(); 3001 3002 // Emitting a vtable doesn't directly cause more vtables to 3003 // become deferred, although it can cause functions to be 3004 // emitted that then need those vtables. 3005 assert(DeferredVTables.empty()); 3006 } 3007 3008 // Emit CUDA/HIP static device variables referenced by host code only. 3009 // Note we should not clear CUDADeviceVarODRUsedByHost since it is still 3010 // needed for further handling. 3011 if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice) 3012 llvm::append_range(DeferredDeclsToEmit, 3013 getContext().CUDADeviceVarODRUsedByHost); 3014 3015 // Stop if we're out of both deferred vtables and deferred declarations. 3016 if (DeferredDeclsToEmit.empty()) 3017 return; 3018 3019 // Grab the list of decls to emit. If EmitGlobalDefinition schedules more 3020 // work, it will not interfere with this. 3021 std::vector<GlobalDecl> CurDeclsToEmit; 3022 CurDeclsToEmit.swap(DeferredDeclsToEmit); 3023 3024 for (GlobalDecl &D : CurDeclsToEmit) { 3025 // We should call GetAddrOfGlobal with IsForDefinition set to true in order 3026 // to get GlobalValue with exactly the type we need, not something that 3027 // might had been created for another decl with the same mangled name but 3028 // different type. 3029 llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>( 3030 GetAddrOfGlobal(D, ForDefinition)); 3031 3032 // In case of different address spaces, we may still get a cast, even with 3033 // IsForDefinition equal to true. Query mangled names table to get 3034 // GlobalValue. 3035 if (!GV) 3036 GV = GetGlobalValue(getMangledName(D)); 3037 3038 // Make sure GetGlobalValue returned non-null. 3039 assert(GV); 3040 3041 // Check to see if we've already emitted this. This is necessary 3042 // for a couple of reasons: first, decls can end up in the 3043 // deferred-decls queue multiple times, and second, decls can end 3044 // up with definitions in unusual ways (e.g. by an extern inline 3045 // function acquiring a strong function redefinition). Just 3046 // ignore these cases. 3047 if (!GV->isDeclaration()) 3048 continue; 3049 3050 // If this is OpenMP, check if it is legal to emit this global normally. 3051 if (LangOpts.OpenMP && OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(D)) 3052 continue; 3053 3054 // Otherwise, emit the definition and move on to the next one. 3055 EmitGlobalDefinition(D, GV); 3056 3057 // If we found out that we need to emit more decls, do that recursively. 3058 // This has the advantage that the decls are emitted in a DFS and related 3059 // ones are close together, which is convenient for testing. 3060 if (!DeferredVTables.empty() || !DeferredDeclsToEmit.empty()) { 3061 EmitDeferred(); 3062 assert(DeferredVTables.empty() && DeferredDeclsToEmit.empty()); 3063 } 3064 } 3065 } 3066 3067 void CodeGenModule::EmitVTablesOpportunistically() { 3068 // Try to emit external vtables as available_externally if they have emitted 3069 // all inlined virtual functions. It runs after EmitDeferred() and therefore 3070 // is not allowed to create new references to things that need to be emitted 3071 // lazily. Note that it also uses fact that we eagerly emitting RTTI. 3072 3073 assert((OpportunisticVTables.empty() || shouldOpportunisticallyEmitVTables()) 3074 && "Only emit opportunistic vtables with optimizations"); 3075 3076 for (const CXXRecordDecl *RD : OpportunisticVTables) { 3077 assert(getVTables().isVTableExternal(RD) && 3078 "This queue should only contain external vtables"); 3079 if (getCXXABI().canSpeculativelyEmitVTable(RD)) 3080 VTables.GenerateClassData(RD); 3081 } 3082 OpportunisticVTables.clear(); 3083 } 3084 3085 void CodeGenModule::EmitGlobalAnnotations() { 3086 if (Annotations.empty()) 3087 return; 3088 3089 // Create a new global variable for the ConstantStruct in the Module. 3090 llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get( 3091 Annotations[0]->getType(), Annotations.size()), Annotations); 3092 auto *gv = new llvm::GlobalVariable(getModule(), Array->getType(), false, 3093 llvm::GlobalValue::AppendingLinkage, 3094 Array, "llvm.global.annotations"); 3095 gv->setSection(AnnotationSection); 3096 } 3097 3098 llvm::Constant *CodeGenModule::EmitAnnotationString(StringRef Str) { 3099 llvm::Constant *&AStr = AnnotationStrings[Str]; 3100 if (AStr) 3101 return AStr; 3102 3103 // Not found yet, create a new global. 3104 llvm::Constant *s = llvm::ConstantDataArray::getString(getLLVMContext(), Str); 3105 auto *gv = new llvm::GlobalVariable( 3106 getModule(), s->getType(), true, llvm::GlobalValue::PrivateLinkage, s, 3107 ".str", nullptr, llvm::GlobalValue::NotThreadLocal, 3108 ConstGlobalsPtrTy->getAddressSpace()); 3109 gv->setSection(AnnotationSection); 3110 gv->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 3111 AStr = gv; 3112 return gv; 3113 } 3114 3115 llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) { 3116 SourceManager &SM = getContext().getSourceManager(); 3117 PresumedLoc PLoc = SM.getPresumedLoc(Loc); 3118 if (PLoc.isValid()) 3119 return EmitAnnotationString(PLoc.getFilename()); 3120 return EmitAnnotationString(SM.getBufferName(Loc)); 3121 } 3122 3123 llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) { 3124 SourceManager &SM = getContext().getSourceManager(); 3125 PresumedLoc PLoc = SM.getPresumedLoc(L); 3126 unsigned LineNo = PLoc.isValid() ? PLoc.getLine() : 3127 SM.getExpansionLineNumber(L); 3128 return llvm::ConstantInt::get(Int32Ty, LineNo); 3129 } 3130 3131 llvm::Constant *CodeGenModule::EmitAnnotationArgs(const AnnotateAttr *Attr) { 3132 ArrayRef<Expr *> Exprs = {Attr->args_begin(), Attr->args_size()}; 3133 if (Exprs.empty()) 3134 return llvm::ConstantPointerNull::get(ConstGlobalsPtrTy); 3135 3136 llvm::FoldingSetNodeID ID; 3137 for (Expr *E : Exprs) { 3138 ID.Add(cast<clang::ConstantExpr>(E)->getAPValueResult()); 3139 } 3140 llvm::Constant *&Lookup = AnnotationArgs[ID.ComputeHash()]; 3141 if (Lookup) 3142 return Lookup; 3143 3144 llvm::SmallVector<llvm::Constant *, 4> LLVMArgs; 3145 LLVMArgs.reserve(Exprs.size()); 3146 ConstantEmitter ConstEmiter(*this); 3147 llvm::transform(Exprs, std::back_inserter(LLVMArgs), [&](const Expr *E) { 3148 const auto *CE = cast<clang::ConstantExpr>(E); 3149 return ConstEmiter.emitAbstract(CE->getBeginLoc(), CE->getAPValueResult(), 3150 CE->getType()); 3151 }); 3152 auto *Struct = llvm::ConstantStruct::getAnon(LLVMArgs); 3153 auto *GV = new llvm::GlobalVariable(getModule(), Struct->getType(), true, 3154 llvm::GlobalValue::PrivateLinkage, Struct, 3155 ".args"); 3156 GV->setSection(AnnotationSection); 3157 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 3158 auto *Bitcasted = llvm::ConstantExpr::getBitCast(GV, GlobalsInt8PtrTy); 3159 3160 Lookup = Bitcasted; 3161 return Bitcasted; 3162 } 3163 3164 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV, 3165 const AnnotateAttr *AA, 3166 SourceLocation L) { 3167 // Get the globals for file name, annotation, and the line number. 3168 llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()), 3169 *UnitGV = EmitAnnotationUnit(L), 3170 *LineNoCst = EmitAnnotationLineNo(L), 3171 *Args = EmitAnnotationArgs(AA); 3172 3173 llvm::Constant *GVInGlobalsAS = GV; 3174 if (GV->getAddressSpace() != 3175 getDataLayout().getDefaultGlobalsAddressSpace()) { 3176 GVInGlobalsAS = llvm::ConstantExpr::getAddrSpaceCast( 3177 GV, GV->getValueType()->getPointerTo( 3178 getDataLayout().getDefaultGlobalsAddressSpace())); 3179 } 3180 3181 // Create the ConstantStruct for the global annotation. 3182 llvm::Constant *Fields[] = { 3183 llvm::ConstantExpr::getBitCast(GVInGlobalsAS, GlobalsInt8PtrTy), 3184 llvm::ConstantExpr::getBitCast(AnnoGV, ConstGlobalsPtrTy), 3185 llvm::ConstantExpr::getBitCast(UnitGV, ConstGlobalsPtrTy), 3186 LineNoCst, 3187 Args, 3188 }; 3189 return llvm::ConstantStruct::getAnon(Fields); 3190 } 3191 3192 void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D, 3193 llvm::GlobalValue *GV) { 3194 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 3195 // Get the struct elements for these annotations. 3196 for (const auto *I : D->specific_attrs<AnnotateAttr>()) 3197 Annotations.push_back(EmitAnnotateAttr(GV, I, D->getLocation())); 3198 } 3199 3200 bool CodeGenModule::isInNoSanitizeList(SanitizerMask Kind, llvm::Function *Fn, 3201 SourceLocation Loc) const { 3202 const auto &NoSanitizeL = getContext().getNoSanitizeList(); 3203 // NoSanitize by function name. 3204 if (NoSanitizeL.containsFunction(Kind, Fn->getName())) 3205 return true; 3206 // NoSanitize by location. Check "mainfile" prefix. 3207 auto &SM = Context.getSourceManager(); 3208 const FileEntry &MainFile = *SM.getFileEntryForID(SM.getMainFileID()); 3209 if (NoSanitizeL.containsMainFile(Kind, MainFile.getName())) 3210 return true; 3211 3212 // Check "src" prefix. 3213 if (Loc.isValid()) 3214 return NoSanitizeL.containsLocation(Kind, Loc); 3215 // If location is unknown, this may be a compiler-generated function. Assume 3216 // it's located in the main file. 3217 return NoSanitizeL.containsFile(Kind, MainFile.getName()); 3218 } 3219 3220 bool CodeGenModule::isInNoSanitizeList(SanitizerMask Kind, 3221 llvm::GlobalVariable *GV, 3222 SourceLocation Loc, QualType Ty, 3223 StringRef Category) const { 3224 const auto &NoSanitizeL = getContext().getNoSanitizeList(); 3225 if (NoSanitizeL.containsGlobal(Kind, GV->getName(), Category)) 3226 return true; 3227 auto &SM = Context.getSourceManager(); 3228 if (NoSanitizeL.containsMainFile( 3229 Kind, SM.getFileEntryForID(SM.getMainFileID())->getName(), Category)) 3230 return true; 3231 if (NoSanitizeL.containsLocation(Kind, Loc, Category)) 3232 return true; 3233 3234 // Check global type. 3235 if (!Ty.isNull()) { 3236 // Drill down the array types: if global variable of a fixed type is 3237 // not sanitized, we also don't instrument arrays of them. 3238 while (auto AT = dyn_cast<ArrayType>(Ty.getTypePtr())) 3239 Ty = AT->getElementType(); 3240 Ty = Ty.getCanonicalType().getUnqualifiedType(); 3241 // Only record types (classes, structs etc.) are ignored. 3242 if (Ty->isRecordType()) { 3243 std::string TypeStr = Ty.getAsString(getContext().getPrintingPolicy()); 3244 if (NoSanitizeL.containsType(Kind, TypeStr, Category)) 3245 return true; 3246 } 3247 } 3248 return false; 3249 } 3250 3251 bool CodeGenModule::imbueXRayAttrs(llvm::Function *Fn, SourceLocation Loc, 3252 StringRef Category) const { 3253 const auto &XRayFilter = getContext().getXRayFilter(); 3254 using ImbueAttr = XRayFunctionFilter::ImbueAttribute; 3255 auto Attr = ImbueAttr::NONE; 3256 if (Loc.isValid()) 3257 Attr = XRayFilter.shouldImbueLocation(Loc, Category); 3258 if (Attr == ImbueAttr::NONE) 3259 Attr = XRayFilter.shouldImbueFunction(Fn->getName()); 3260 switch (Attr) { 3261 case ImbueAttr::NONE: 3262 return false; 3263 case ImbueAttr::ALWAYS: 3264 Fn->addFnAttr("function-instrument", "xray-always"); 3265 break; 3266 case ImbueAttr::ALWAYS_ARG1: 3267 Fn->addFnAttr("function-instrument", "xray-always"); 3268 Fn->addFnAttr("xray-log-args", "1"); 3269 break; 3270 case ImbueAttr::NEVER: 3271 Fn->addFnAttr("function-instrument", "xray-never"); 3272 break; 3273 } 3274 return true; 3275 } 3276 3277 ProfileList::ExclusionType 3278 CodeGenModule::isFunctionBlockedByProfileList(llvm::Function *Fn, 3279 SourceLocation Loc) const { 3280 const auto &ProfileList = getContext().getProfileList(); 3281 // If the profile list is empty, then instrument everything. 3282 if (ProfileList.isEmpty()) 3283 return ProfileList::Allow; 3284 CodeGenOptions::ProfileInstrKind Kind = getCodeGenOpts().getProfileInstr(); 3285 // First, check the function name. 3286 if (auto V = ProfileList.isFunctionExcluded(Fn->getName(), Kind)) 3287 return *V; 3288 // Next, check the source location. 3289 if (Loc.isValid()) 3290 if (auto V = ProfileList.isLocationExcluded(Loc, Kind)) 3291 return *V; 3292 // If location is unknown, this may be a compiler-generated function. Assume 3293 // it's located in the main file. 3294 auto &SM = Context.getSourceManager(); 3295 if (const auto *MainFile = SM.getFileEntryForID(SM.getMainFileID())) 3296 if (auto V = ProfileList.isFileExcluded(MainFile->getName(), Kind)) 3297 return *V; 3298 return ProfileList.getDefault(Kind); 3299 } 3300 3301 ProfileList::ExclusionType 3302 CodeGenModule::isFunctionBlockedFromProfileInstr(llvm::Function *Fn, 3303 SourceLocation Loc) const { 3304 auto V = isFunctionBlockedByProfileList(Fn, Loc); 3305 if (V != ProfileList::Allow) 3306 return V; 3307 3308 auto NumGroups = getCodeGenOpts().ProfileTotalFunctionGroups; 3309 if (NumGroups > 1) { 3310 auto Group = llvm::crc32(arrayRefFromStringRef(Fn->getName())) % NumGroups; 3311 if (Group != getCodeGenOpts().ProfileSelectedFunctionGroup) 3312 return ProfileList::Skip; 3313 } 3314 return ProfileList::Allow; 3315 } 3316 3317 bool CodeGenModule::MustBeEmitted(const ValueDecl *Global) { 3318 // Never defer when EmitAllDecls is specified. 3319 if (LangOpts.EmitAllDecls) 3320 return true; 3321 3322 const auto *VD = dyn_cast<VarDecl>(Global); 3323 if (VD && 3324 ((CodeGenOpts.KeepPersistentStorageVariables && 3325 (VD->getStorageDuration() == SD_Static || 3326 VD->getStorageDuration() == SD_Thread)) || 3327 (CodeGenOpts.KeepStaticConsts && VD->getStorageDuration() == SD_Static && 3328 VD->getType().isConstQualified()))) 3329 return true; 3330 3331 return getContext().DeclMustBeEmitted(Global); 3332 } 3333 3334 bool CodeGenModule::MayBeEmittedEagerly(const ValueDecl *Global) { 3335 // In OpenMP 5.0 variables and function may be marked as 3336 // device_type(host/nohost) and we should not emit them eagerly unless we sure 3337 // that they must be emitted on the host/device. To be sure we need to have 3338 // seen a declare target with an explicit mentioning of the function, we know 3339 // we have if the level of the declare target attribute is -1. Note that we 3340 // check somewhere else if we should emit this at all. 3341 if (LangOpts.OpenMP >= 50 && !LangOpts.OpenMPSimd) { 3342 std::optional<OMPDeclareTargetDeclAttr *> ActiveAttr = 3343 OMPDeclareTargetDeclAttr::getActiveAttr(Global); 3344 if (!ActiveAttr || (*ActiveAttr)->getLevel() != (unsigned)-1) 3345 return false; 3346 } 3347 3348 if (const auto *FD = dyn_cast<FunctionDecl>(Global)) { 3349 if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation) 3350 // Implicit template instantiations may change linkage if they are later 3351 // explicitly instantiated, so they should not be emitted eagerly. 3352 return false; 3353 } 3354 if (const auto *VD = dyn_cast<VarDecl>(Global)) { 3355 if (Context.getInlineVariableDefinitionKind(VD) == 3356 ASTContext::InlineVariableDefinitionKind::WeakUnknown) 3357 // A definition of an inline constexpr static data member may change 3358 // linkage later if it's redeclared outside the class. 3359 return false; 3360 if (CXX20ModuleInits && VD->getOwningModule() && 3361 !VD->getOwningModule()->isModuleMapModule()) { 3362 // For CXX20, module-owned initializers need to be deferred, since it is 3363 // not known at this point if they will be run for the current module or 3364 // as part of the initializer for an imported one. 3365 return false; 3366 } 3367 } 3368 // If OpenMP is enabled and threadprivates must be generated like TLS, delay 3369 // codegen for global variables, because they may be marked as threadprivate. 3370 if (LangOpts.OpenMP && LangOpts.OpenMPUseTLS && 3371 getContext().getTargetInfo().isTLSSupported() && isa<VarDecl>(Global) && 3372 !isTypeConstant(Global->getType(), false, false) && 3373 !OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(Global)) 3374 return false; 3375 3376 return true; 3377 } 3378 3379 ConstantAddress CodeGenModule::GetAddrOfMSGuidDecl(const MSGuidDecl *GD) { 3380 StringRef Name = getMangledName(GD); 3381 3382 // The UUID descriptor should be pointer aligned. 3383 CharUnits Alignment = CharUnits::fromQuantity(PointerAlignInBytes); 3384 3385 // Look for an existing global. 3386 if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name)) 3387 return ConstantAddress(GV, GV->getValueType(), Alignment); 3388 3389 ConstantEmitter Emitter(*this); 3390 llvm::Constant *Init; 3391 3392 APValue &V = GD->getAsAPValue(); 3393 if (!V.isAbsent()) { 3394 // If possible, emit the APValue version of the initializer. In particular, 3395 // this gets the type of the constant right. 3396 Init = Emitter.emitForInitializer( 3397 GD->getAsAPValue(), GD->getType().getAddressSpace(), GD->getType()); 3398 } else { 3399 // As a fallback, directly construct the constant. 3400 // FIXME: This may get padding wrong under esoteric struct layout rules. 3401 // MSVC appears to create a complete type 'struct __s_GUID' that it 3402 // presumably uses to represent these constants. 3403 MSGuidDecl::Parts Parts = GD->getParts(); 3404 llvm::Constant *Fields[4] = { 3405 llvm::ConstantInt::get(Int32Ty, Parts.Part1), 3406 llvm::ConstantInt::get(Int16Ty, Parts.Part2), 3407 llvm::ConstantInt::get(Int16Ty, Parts.Part3), 3408 llvm::ConstantDataArray::getRaw( 3409 StringRef(reinterpret_cast<char *>(Parts.Part4And5), 8), 8, 3410 Int8Ty)}; 3411 Init = llvm::ConstantStruct::getAnon(Fields); 3412 } 3413 3414 auto *GV = new llvm::GlobalVariable( 3415 getModule(), Init->getType(), 3416 /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name); 3417 if (supportsCOMDAT()) 3418 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 3419 setDSOLocal(GV); 3420 3421 if (!V.isAbsent()) { 3422 Emitter.finalize(GV); 3423 return ConstantAddress(GV, GV->getValueType(), Alignment); 3424 } 3425 3426 llvm::Type *Ty = getTypes().ConvertTypeForMem(GD->getType()); 3427 llvm::Constant *Addr = llvm::ConstantExpr::getBitCast( 3428 GV, Ty->getPointerTo(GV->getAddressSpace())); 3429 return ConstantAddress(Addr, Ty, Alignment); 3430 } 3431 3432 ConstantAddress CodeGenModule::GetAddrOfUnnamedGlobalConstantDecl( 3433 const UnnamedGlobalConstantDecl *GCD) { 3434 CharUnits Alignment = getContext().getTypeAlignInChars(GCD->getType()); 3435 3436 llvm::GlobalVariable **Entry = nullptr; 3437 Entry = &UnnamedGlobalConstantDeclMap[GCD]; 3438 if (*Entry) 3439 return ConstantAddress(*Entry, (*Entry)->getValueType(), Alignment); 3440 3441 ConstantEmitter Emitter(*this); 3442 llvm::Constant *Init; 3443 3444 const APValue &V = GCD->getValue(); 3445 3446 assert(!V.isAbsent()); 3447 Init = Emitter.emitForInitializer(V, GCD->getType().getAddressSpace(), 3448 GCD->getType()); 3449 3450 auto *GV = new llvm::GlobalVariable(getModule(), Init->getType(), 3451 /*isConstant=*/true, 3452 llvm::GlobalValue::PrivateLinkage, Init, 3453 ".constant"); 3454 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 3455 GV->setAlignment(Alignment.getAsAlign()); 3456 3457 Emitter.finalize(GV); 3458 3459 *Entry = GV; 3460 return ConstantAddress(GV, GV->getValueType(), Alignment); 3461 } 3462 3463 ConstantAddress CodeGenModule::GetAddrOfTemplateParamObject( 3464 const TemplateParamObjectDecl *TPO) { 3465 StringRef Name = getMangledName(TPO); 3466 CharUnits Alignment = getNaturalTypeAlignment(TPO->getType()); 3467 3468 if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name)) 3469 return ConstantAddress(GV, GV->getValueType(), Alignment); 3470 3471 ConstantEmitter Emitter(*this); 3472 llvm::Constant *Init = Emitter.emitForInitializer( 3473 TPO->getValue(), TPO->getType().getAddressSpace(), TPO->getType()); 3474 3475 if (!Init) { 3476 ErrorUnsupported(TPO, "template parameter object"); 3477 return ConstantAddress::invalid(); 3478 } 3479 3480 llvm::GlobalValue::LinkageTypes Linkage = 3481 isExternallyVisible(TPO->getLinkageAndVisibility().getLinkage()) 3482 ? llvm::GlobalValue::LinkOnceODRLinkage 3483 : llvm::GlobalValue::InternalLinkage; 3484 auto *GV = new llvm::GlobalVariable(getModule(), Init->getType(), 3485 /*isConstant=*/true, Linkage, Init, Name); 3486 setGVProperties(GV, TPO); 3487 if (supportsCOMDAT()) 3488 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 3489 Emitter.finalize(GV); 3490 3491 return ConstantAddress(GV, GV->getValueType(), Alignment); 3492 } 3493 3494 ConstantAddress CodeGenModule::GetWeakRefReference(const ValueDecl *VD) { 3495 const AliasAttr *AA = VD->getAttr<AliasAttr>(); 3496 assert(AA && "No alias?"); 3497 3498 CharUnits Alignment = getContext().getDeclAlign(VD); 3499 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType()); 3500 3501 // See if there is already something with the target's name in the module. 3502 llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee()); 3503 if (Entry) { 3504 unsigned AS = getTypes().getTargetAddressSpace(VD->getType()); 3505 auto Ptr = llvm::ConstantExpr::getBitCast(Entry, DeclTy->getPointerTo(AS)); 3506 return ConstantAddress(Ptr, DeclTy, Alignment); 3507 } 3508 3509 llvm::Constant *Aliasee; 3510 if (isa<llvm::FunctionType>(DeclTy)) 3511 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, 3512 GlobalDecl(cast<FunctionDecl>(VD)), 3513 /*ForVTable=*/false); 3514 else 3515 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), DeclTy, LangAS::Default, 3516 nullptr); 3517 3518 auto *F = cast<llvm::GlobalValue>(Aliasee); 3519 F->setLinkage(llvm::Function::ExternalWeakLinkage); 3520 WeakRefReferences.insert(F); 3521 3522 return ConstantAddress(Aliasee, DeclTy, Alignment); 3523 } 3524 3525 void CodeGenModule::EmitGlobal(GlobalDecl GD) { 3526 const auto *Global = cast<ValueDecl>(GD.getDecl()); 3527 3528 // Weak references don't produce any output by themselves. 3529 if (Global->hasAttr<WeakRefAttr>()) 3530 return; 3531 3532 // If this is an alias definition (which otherwise looks like a declaration) 3533 // emit it now. 3534 if (Global->hasAttr<AliasAttr>()) 3535 return EmitAliasDefinition(GD); 3536 3537 // IFunc like an alias whose value is resolved at runtime by calling resolver. 3538 if (Global->hasAttr<IFuncAttr>()) 3539 return emitIFuncDefinition(GD); 3540 3541 // If this is a cpu_dispatch multiversion function, emit the resolver. 3542 if (Global->hasAttr<CPUDispatchAttr>()) 3543 return emitCPUDispatchDefinition(GD); 3544 3545 // If this is CUDA, be selective about which declarations we emit. 3546 if (LangOpts.CUDA) { 3547 if (LangOpts.CUDAIsDevice) { 3548 if (!Global->hasAttr<CUDADeviceAttr>() && 3549 !Global->hasAttr<CUDAGlobalAttr>() && 3550 !Global->hasAttr<CUDAConstantAttr>() && 3551 !Global->hasAttr<CUDASharedAttr>() && 3552 !Global->getType()->isCUDADeviceBuiltinSurfaceType() && 3553 !Global->getType()->isCUDADeviceBuiltinTextureType()) 3554 return; 3555 } else { 3556 // We need to emit host-side 'shadows' for all global 3557 // device-side variables because the CUDA runtime needs their 3558 // size and host-side address in order to provide access to 3559 // their device-side incarnations. 3560 3561 // So device-only functions are the only things we skip. 3562 if (isa<FunctionDecl>(Global) && !Global->hasAttr<CUDAHostAttr>() && 3563 Global->hasAttr<CUDADeviceAttr>()) 3564 return; 3565 3566 assert((isa<FunctionDecl>(Global) || isa<VarDecl>(Global)) && 3567 "Expected Variable or Function"); 3568 } 3569 } 3570 3571 if (LangOpts.OpenMP) { 3572 // If this is OpenMP, check if it is legal to emit this global normally. 3573 if (OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(GD)) 3574 return; 3575 if (auto *DRD = dyn_cast<OMPDeclareReductionDecl>(Global)) { 3576 if (MustBeEmitted(Global)) 3577 EmitOMPDeclareReduction(DRD); 3578 return; 3579 } 3580 if (auto *DMD = dyn_cast<OMPDeclareMapperDecl>(Global)) { 3581 if (MustBeEmitted(Global)) 3582 EmitOMPDeclareMapper(DMD); 3583 return; 3584 } 3585 } 3586 3587 // Ignore declarations, they will be emitted on their first use. 3588 if (const auto *FD = dyn_cast<FunctionDecl>(Global)) { 3589 // Forward declarations are emitted lazily on first use. 3590 if (!FD->doesThisDeclarationHaveABody()) { 3591 if (!FD->doesDeclarationForceExternallyVisibleDefinition()) 3592 return; 3593 3594 StringRef MangledName = getMangledName(GD); 3595 3596 // Compute the function info and LLVM type. 3597 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 3598 llvm::Type *Ty = getTypes().GetFunctionType(FI); 3599 3600 GetOrCreateLLVMFunction(MangledName, Ty, GD, /*ForVTable=*/false, 3601 /*DontDefer=*/false); 3602 return; 3603 } 3604 } else { 3605 const auto *VD = cast<VarDecl>(Global); 3606 assert(VD->isFileVarDecl() && "Cannot emit local var decl as global."); 3607 if (VD->isThisDeclarationADefinition() != VarDecl::Definition && 3608 !Context.isMSStaticDataMemberInlineDefinition(VD)) { 3609 if (LangOpts.OpenMP) { 3610 // Emit declaration of the must-be-emitted declare target variable. 3611 if (std::optional<OMPDeclareTargetDeclAttr::MapTypeTy> Res = 3612 OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD)) { 3613 3614 // If this variable has external storage and doesn't require special 3615 // link handling we defer to its canonical definition. 3616 if (VD->hasExternalStorage() && 3617 Res != OMPDeclareTargetDeclAttr::MT_Link) 3618 return; 3619 3620 bool UnifiedMemoryEnabled = 3621 getOpenMPRuntime().hasRequiresUnifiedSharedMemory(); 3622 if ((*Res == OMPDeclareTargetDeclAttr::MT_To || 3623 *Res == OMPDeclareTargetDeclAttr::MT_Enter) && 3624 !UnifiedMemoryEnabled) { 3625 (void)GetAddrOfGlobalVar(VD); 3626 } else { 3627 assert(((*Res == OMPDeclareTargetDeclAttr::MT_Link) || 3628 ((*Res == OMPDeclareTargetDeclAttr::MT_To || 3629 *Res == OMPDeclareTargetDeclAttr::MT_Enter) && 3630 UnifiedMemoryEnabled)) && 3631 "Link clause or to clause with unified memory expected."); 3632 (void)getOpenMPRuntime().getAddrOfDeclareTargetVar(VD); 3633 } 3634 3635 return; 3636 } 3637 } 3638 // If this declaration may have caused an inline variable definition to 3639 // change linkage, make sure that it's emitted. 3640 if (Context.getInlineVariableDefinitionKind(VD) == 3641 ASTContext::InlineVariableDefinitionKind::Strong) 3642 GetAddrOfGlobalVar(VD); 3643 return; 3644 } 3645 } 3646 3647 // Defer code generation to first use when possible, e.g. if this is an inline 3648 // function. If the global must always be emitted, do it eagerly if possible 3649 // to benefit from cache locality. 3650 if (MustBeEmitted(Global) && MayBeEmittedEagerly(Global)) { 3651 // Emit the definition if it can't be deferred. 3652 EmitGlobalDefinition(GD); 3653 return; 3654 } 3655 3656 // If we're deferring emission of a C++ variable with an 3657 // initializer, remember the order in which it appeared in the file. 3658 if (getLangOpts().CPlusPlus && isa<VarDecl>(Global) && 3659 cast<VarDecl>(Global)->hasInit()) { 3660 DelayedCXXInitPosition[Global] = CXXGlobalInits.size(); 3661 CXXGlobalInits.push_back(nullptr); 3662 } 3663 3664 StringRef MangledName = getMangledName(GD); 3665 if (GetGlobalValue(MangledName) != nullptr) { 3666 // The value has already been used and should therefore be emitted. 3667 addDeferredDeclToEmit(GD); 3668 } else if (MustBeEmitted(Global)) { 3669 // The value must be emitted, but cannot be emitted eagerly. 3670 assert(!MayBeEmittedEagerly(Global)); 3671 addDeferredDeclToEmit(GD); 3672 EmittedDeferredDecls[MangledName] = GD; 3673 } else { 3674 // Otherwise, remember that we saw a deferred decl with this name. The 3675 // first use of the mangled name will cause it to move into 3676 // DeferredDeclsToEmit. 3677 DeferredDecls[MangledName] = GD; 3678 } 3679 } 3680 3681 // Check if T is a class type with a destructor that's not dllimport. 3682 static bool HasNonDllImportDtor(QualType T) { 3683 if (const auto *RT = T->getBaseElementTypeUnsafe()->getAs<RecordType>()) 3684 if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl())) 3685 if (RD->getDestructor() && !RD->getDestructor()->hasAttr<DLLImportAttr>()) 3686 return true; 3687 3688 return false; 3689 } 3690 3691 namespace { 3692 struct FunctionIsDirectlyRecursive 3693 : public ConstStmtVisitor<FunctionIsDirectlyRecursive, bool> { 3694 const StringRef Name; 3695 const Builtin::Context &BI; 3696 FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C) 3697 : Name(N), BI(C) {} 3698 3699 bool VisitCallExpr(const CallExpr *E) { 3700 const FunctionDecl *FD = E->getDirectCallee(); 3701 if (!FD) 3702 return false; 3703 AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>(); 3704 if (Attr && Name == Attr->getLabel()) 3705 return true; 3706 unsigned BuiltinID = FD->getBuiltinID(); 3707 if (!BuiltinID || !BI.isLibFunction(BuiltinID)) 3708 return false; 3709 StringRef BuiltinName = BI.getName(BuiltinID); 3710 if (BuiltinName.startswith("__builtin_") && 3711 Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) { 3712 return true; 3713 } 3714 return false; 3715 } 3716 3717 bool VisitStmt(const Stmt *S) { 3718 for (const Stmt *Child : S->children()) 3719 if (Child && this->Visit(Child)) 3720 return true; 3721 return false; 3722 } 3723 }; 3724 3725 // Make sure we're not referencing non-imported vars or functions. 3726 struct DLLImportFunctionVisitor 3727 : public RecursiveASTVisitor<DLLImportFunctionVisitor> { 3728 bool SafeToInline = true; 3729 3730 bool shouldVisitImplicitCode() const { return true; } 3731 3732 bool VisitVarDecl(VarDecl *VD) { 3733 if (VD->getTLSKind()) { 3734 // A thread-local variable cannot be imported. 3735 SafeToInline = false; 3736 return SafeToInline; 3737 } 3738 3739 // A variable definition might imply a destructor call. 3740 if (VD->isThisDeclarationADefinition()) 3741 SafeToInline = !HasNonDllImportDtor(VD->getType()); 3742 3743 return SafeToInline; 3744 } 3745 3746 bool VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) { 3747 if (const auto *D = E->getTemporary()->getDestructor()) 3748 SafeToInline = D->hasAttr<DLLImportAttr>(); 3749 return SafeToInline; 3750 } 3751 3752 bool VisitDeclRefExpr(DeclRefExpr *E) { 3753 ValueDecl *VD = E->getDecl(); 3754 if (isa<FunctionDecl>(VD)) 3755 SafeToInline = VD->hasAttr<DLLImportAttr>(); 3756 else if (VarDecl *V = dyn_cast<VarDecl>(VD)) 3757 SafeToInline = !V->hasGlobalStorage() || V->hasAttr<DLLImportAttr>(); 3758 return SafeToInline; 3759 } 3760 3761 bool VisitCXXConstructExpr(CXXConstructExpr *E) { 3762 SafeToInline = E->getConstructor()->hasAttr<DLLImportAttr>(); 3763 return SafeToInline; 3764 } 3765 3766 bool VisitCXXMemberCallExpr(CXXMemberCallExpr *E) { 3767 CXXMethodDecl *M = E->getMethodDecl(); 3768 if (!M) { 3769 // Call through a pointer to member function. This is safe to inline. 3770 SafeToInline = true; 3771 } else { 3772 SafeToInline = M->hasAttr<DLLImportAttr>(); 3773 } 3774 return SafeToInline; 3775 } 3776 3777 bool VisitCXXDeleteExpr(CXXDeleteExpr *E) { 3778 SafeToInline = E->getOperatorDelete()->hasAttr<DLLImportAttr>(); 3779 return SafeToInline; 3780 } 3781 3782 bool VisitCXXNewExpr(CXXNewExpr *E) { 3783 SafeToInline = E->getOperatorNew()->hasAttr<DLLImportAttr>(); 3784 return SafeToInline; 3785 } 3786 }; 3787 } 3788 3789 // isTriviallyRecursive - Check if this function calls another 3790 // decl that, because of the asm attribute or the other decl being a builtin, 3791 // ends up pointing to itself. 3792 bool 3793 CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) { 3794 StringRef Name; 3795 if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) { 3796 // asm labels are a special kind of mangling we have to support. 3797 AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>(); 3798 if (!Attr) 3799 return false; 3800 Name = Attr->getLabel(); 3801 } else { 3802 Name = FD->getName(); 3803 } 3804 3805 FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo); 3806 const Stmt *Body = FD->getBody(); 3807 return Body ? Walker.Visit(Body) : false; 3808 } 3809 3810 bool CodeGenModule::shouldEmitFunction(GlobalDecl GD) { 3811 if (getFunctionLinkage(GD) != llvm::Function::AvailableExternallyLinkage) 3812 return true; 3813 const auto *F = cast<FunctionDecl>(GD.getDecl()); 3814 if (CodeGenOpts.OptimizationLevel == 0 && !F->hasAttr<AlwaysInlineAttr>()) 3815 return false; 3816 3817 if (F->hasAttr<DLLImportAttr>() && !F->hasAttr<AlwaysInlineAttr>()) { 3818 // Check whether it would be safe to inline this dllimport function. 3819 DLLImportFunctionVisitor Visitor; 3820 Visitor.TraverseFunctionDecl(const_cast<FunctionDecl*>(F)); 3821 if (!Visitor.SafeToInline) 3822 return false; 3823 3824 if (const CXXDestructorDecl *Dtor = dyn_cast<CXXDestructorDecl>(F)) { 3825 // Implicit destructor invocations aren't captured in the AST, so the 3826 // check above can't see them. Check for them manually here. 3827 for (const Decl *Member : Dtor->getParent()->decls()) 3828 if (isa<FieldDecl>(Member)) 3829 if (HasNonDllImportDtor(cast<FieldDecl>(Member)->getType())) 3830 return false; 3831 for (const CXXBaseSpecifier &B : Dtor->getParent()->bases()) 3832 if (HasNonDllImportDtor(B.getType())) 3833 return false; 3834 } 3835 } 3836 3837 // Inline builtins declaration must be emitted. They often are fortified 3838 // functions. 3839 if (F->isInlineBuiltinDeclaration()) 3840 return true; 3841 3842 // PR9614. Avoid cases where the source code is lying to us. An available 3843 // externally function should have an equivalent function somewhere else, 3844 // but a function that calls itself through asm label/`__builtin_` trickery is 3845 // clearly not equivalent to the real implementation. 3846 // This happens in glibc's btowc and in some configure checks. 3847 return !isTriviallyRecursive(F); 3848 } 3849 3850 bool CodeGenModule::shouldOpportunisticallyEmitVTables() { 3851 return CodeGenOpts.OptimizationLevel > 0; 3852 } 3853 3854 void CodeGenModule::EmitMultiVersionFunctionDefinition(GlobalDecl GD, 3855 llvm::GlobalValue *GV) { 3856 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 3857 3858 if (FD->isCPUSpecificMultiVersion()) { 3859 auto *Spec = FD->getAttr<CPUSpecificAttr>(); 3860 for (unsigned I = 0; I < Spec->cpus_size(); ++I) 3861 EmitGlobalFunctionDefinition(GD.getWithMultiVersionIndex(I), nullptr); 3862 } else if (FD->isTargetClonesMultiVersion()) { 3863 auto *Clone = FD->getAttr<TargetClonesAttr>(); 3864 for (unsigned I = 0; I < Clone->featuresStrs_size(); ++I) 3865 if (Clone->isFirstOfVersion(I)) 3866 EmitGlobalFunctionDefinition(GD.getWithMultiVersionIndex(I), nullptr); 3867 // Ensure that the resolver function is also emitted. 3868 GetOrCreateMultiVersionResolver(GD); 3869 } else 3870 EmitGlobalFunctionDefinition(GD, GV); 3871 } 3872 3873 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD, llvm::GlobalValue *GV) { 3874 const auto *D = cast<ValueDecl>(GD.getDecl()); 3875 3876 PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(), 3877 Context.getSourceManager(), 3878 "Generating code for declaration"); 3879 3880 if (const auto *FD = dyn_cast<FunctionDecl>(D)) { 3881 // At -O0, don't generate IR for functions with available_externally 3882 // linkage. 3883 if (!shouldEmitFunction(GD)) 3884 return; 3885 3886 llvm::TimeTraceScope TimeScope("CodeGen Function", [&]() { 3887 std::string Name; 3888 llvm::raw_string_ostream OS(Name); 3889 FD->getNameForDiagnostic(OS, getContext().getPrintingPolicy(), 3890 /*Qualified=*/true); 3891 return Name; 3892 }); 3893 3894 if (const auto *Method = dyn_cast<CXXMethodDecl>(D)) { 3895 // Make sure to emit the definition(s) before we emit the thunks. 3896 // This is necessary for the generation of certain thunks. 3897 if (isa<CXXConstructorDecl>(Method) || isa<CXXDestructorDecl>(Method)) 3898 ABI->emitCXXStructor(GD); 3899 else if (FD->isMultiVersion()) 3900 EmitMultiVersionFunctionDefinition(GD, GV); 3901 else 3902 EmitGlobalFunctionDefinition(GD, GV); 3903 3904 if (Method->isVirtual()) 3905 getVTables().EmitThunks(GD); 3906 3907 return; 3908 } 3909 3910 if (FD->isMultiVersion()) 3911 return EmitMultiVersionFunctionDefinition(GD, GV); 3912 return EmitGlobalFunctionDefinition(GD, GV); 3913 } 3914 3915 if (const auto *VD = dyn_cast<VarDecl>(D)) 3916 return EmitGlobalVarDefinition(VD, !VD->hasDefinition()); 3917 3918 llvm_unreachable("Invalid argument to EmitGlobalDefinition()"); 3919 } 3920 3921 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old, 3922 llvm::Function *NewFn); 3923 3924 static unsigned 3925 TargetMVPriority(const TargetInfo &TI, 3926 const CodeGenFunction::MultiVersionResolverOption &RO) { 3927 unsigned Priority = 0; 3928 unsigned NumFeatures = 0; 3929 for (StringRef Feat : RO.Conditions.Features) { 3930 Priority = std::max(Priority, TI.multiVersionSortPriority(Feat)); 3931 NumFeatures++; 3932 } 3933 3934 if (!RO.Conditions.Architecture.empty()) 3935 Priority = std::max( 3936 Priority, TI.multiVersionSortPriority(RO.Conditions.Architecture)); 3937 3938 Priority += TI.multiVersionFeatureCost() * NumFeatures; 3939 3940 return Priority; 3941 } 3942 3943 // Multiversion functions should be at most 'WeakODRLinkage' so that a different 3944 // TU can forward declare the function without causing problems. Particularly 3945 // in the cases of CPUDispatch, this causes issues. This also makes sure we 3946 // work with internal linkage functions, so that the same function name can be 3947 // used with internal linkage in multiple TUs. 3948 llvm::GlobalValue::LinkageTypes getMultiversionLinkage(CodeGenModule &CGM, 3949 GlobalDecl GD) { 3950 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 3951 if (FD->getFormalLinkage() == InternalLinkage) 3952 return llvm::GlobalValue::InternalLinkage; 3953 return llvm::GlobalValue::WeakODRLinkage; 3954 } 3955 3956 void CodeGenModule::emitMultiVersionFunctions() { 3957 std::vector<GlobalDecl> MVFuncsToEmit; 3958 MultiVersionFuncs.swap(MVFuncsToEmit); 3959 for (GlobalDecl GD : MVFuncsToEmit) { 3960 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 3961 assert(FD && "Expected a FunctionDecl"); 3962 3963 SmallVector<CodeGenFunction::MultiVersionResolverOption, 10> Options; 3964 if (FD->isTargetMultiVersion()) { 3965 getContext().forEachMultiversionedFunctionVersion( 3966 FD, [this, &GD, &Options](const FunctionDecl *CurFD) { 3967 GlobalDecl CurGD{ 3968 (CurFD->isDefined() ? CurFD->getDefinition() : CurFD)}; 3969 StringRef MangledName = getMangledName(CurGD); 3970 llvm::Constant *Func = GetGlobalValue(MangledName); 3971 if (!Func) { 3972 if (CurFD->isDefined()) { 3973 EmitGlobalFunctionDefinition(CurGD, nullptr); 3974 Func = GetGlobalValue(MangledName); 3975 } else { 3976 const CGFunctionInfo &FI = 3977 getTypes().arrangeGlobalDeclaration(GD); 3978 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 3979 Func = GetAddrOfFunction(CurGD, Ty, /*ForVTable=*/false, 3980 /*DontDefer=*/false, ForDefinition); 3981 } 3982 assert(Func && "This should have just been created"); 3983 } 3984 if (CurFD->getMultiVersionKind() == MultiVersionKind::Target) { 3985 const auto *TA = CurFD->getAttr<TargetAttr>(); 3986 llvm::SmallVector<StringRef, 8> Feats; 3987 TA->getAddedFeatures(Feats); 3988 Options.emplace_back(cast<llvm::Function>(Func), 3989 TA->getArchitecture(), Feats); 3990 } else { 3991 const auto *TVA = CurFD->getAttr<TargetVersionAttr>(); 3992 llvm::SmallVector<StringRef, 8> Feats; 3993 TVA->getFeatures(Feats); 3994 Options.emplace_back(cast<llvm::Function>(Func), 3995 /*Architecture*/ "", Feats); 3996 } 3997 }); 3998 } else if (FD->isTargetClonesMultiVersion()) { 3999 const auto *TC = FD->getAttr<TargetClonesAttr>(); 4000 for (unsigned VersionIndex = 0; VersionIndex < TC->featuresStrs_size(); 4001 ++VersionIndex) { 4002 if (!TC->isFirstOfVersion(VersionIndex)) 4003 continue; 4004 GlobalDecl CurGD{(FD->isDefined() ? FD->getDefinition() : FD), 4005 VersionIndex}; 4006 StringRef Version = TC->getFeatureStr(VersionIndex); 4007 StringRef MangledName = getMangledName(CurGD); 4008 llvm::Constant *Func = GetGlobalValue(MangledName); 4009 if (!Func) { 4010 if (FD->isDefined()) { 4011 EmitGlobalFunctionDefinition(CurGD, nullptr); 4012 Func = GetGlobalValue(MangledName); 4013 } else { 4014 const CGFunctionInfo &FI = 4015 getTypes().arrangeGlobalDeclaration(CurGD); 4016 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 4017 Func = GetAddrOfFunction(CurGD, Ty, /*ForVTable=*/false, 4018 /*DontDefer=*/false, ForDefinition); 4019 } 4020 assert(Func && "This should have just been created"); 4021 } 4022 4023 StringRef Architecture; 4024 llvm::SmallVector<StringRef, 1> Feature; 4025 4026 if (getTarget().getTriple().isAArch64()) { 4027 if (Version != "default") { 4028 llvm::SmallVector<StringRef, 8> VerFeats; 4029 Version.split(VerFeats, "+"); 4030 for (auto &CurFeat : VerFeats) 4031 Feature.push_back(CurFeat.trim()); 4032 } 4033 } else { 4034 if (Version.startswith("arch=")) 4035 Architecture = Version.drop_front(sizeof("arch=") - 1); 4036 else if (Version != "default") 4037 Feature.push_back(Version); 4038 } 4039 4040 Options.emplace_back(cast<llvm::Function>(Func), Architecture, Feature); 4041 } 4042 } else { 4043 assert(0 && "Expected a target or target_clones multiversion function"); 4044 continue; 4045 } 4046 4047 llvm::Constant *ResolverConstant = GetOrCreateMultiVersionResolver(GD); 4048 if (auto *IFunc = dyn_cast<llvm::GlobalIFunc>(ResolverConstant)) 4049 ResolverConstant = IFunc->getResolver(); 4050 llvm::Function *ResolverFunc = cast<llvm::Function>(ResolverConstant); 4051 4052 ResolverFunc->setLinkage(getMultiversionLinkage(*this, GD)); 4053 4054 if (supportsCOMDAT()) 4055 ResolverFunc->setComdat( 4056 getModule().getOrInsertComdat(ResolverFunc->getName())); 4057 4058 const TargetInfo &TI = getTarget(); 4059 llvm::stable_sort( 4060 Options, [&TI](const CodeGenFunction::MultiVersionResolverOption &LHS, 4061 const CodeGenFunction::MultiVersionResolverOption &RHS) { 4062 return TargetMVPriority(TI, LHS) > TargetMVPriority(TI, RHS); 4063 }); 4064 CodeGenFunction CGF(*this); 4065 CGF.EmitMultiVersionResolver(ResolverFunc, Options); 4066 } 4067 4068 // Ensure that any additions to the deferred decls list caused by emitting a 4069 // variant are emitted. This can happen when the variant itself is inline and 4070 // calls a function without linkage. 4071 if (!MVFuncsToEmit.empty()) 4072 EmitDeferred(); 4073 4074 // Ensure that any additions to the multiversion funcs list from either the 4075 // deferred decls or the multiversion functions themselves are emitted. 4076 if (!MultiVersionFuncs.empty()) 4077 emitMultiVersionFunctions(); 4078 } 4079 4080 void CodeGenModule::emitCPUDispatchDefinition(GlobalDecl GD) { 4081 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 4082 assert(FD && "Not a FunctionDecl?"); 4083 assert(FD->isCPUDispatchMultiVersion() && "Not a multiversion function?"); 4084 const auto *DD = FD->getAttr<CPUDispatchAttr>(); 4085 assert(DD && "Not a cpu_dispatch Function?"); 4086 4087 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 4088 llvm::FunctionType *DeclTy = getTypes().GetFunctionType(FI); 4089 4090 StringRef ResolverName = getMangledName(GD); 4091 UpdateMultiVersionNames(GD, FD, ResolverName); 4092 4093 llvm::Type *ResolverType; 4094 GlobalDecl ResolverGD; 4095 if (getTarget().supportsIFunc()) { 4096 ResolverType = llvm::FunctionType::get( 4097 llvm::PointerType::get(DeclTy, 4098 getTypes().getTargetAddressSpace(FD->getType())), 4099 false); 4100 } 4101 else { 4102 ResolverType = DeclTy; 4103 ResolverGD = GD; 4104 } 4105 4106 auto *ResolverFunc = cast<llvm::Function>(GetOrCreateLLVMFunction( 4107 ResolverName, ResolverType, ResolverGD, /*ForVTable=*/false)); 4108 ResolverFunc->setLinkage(getMultiversionLinkage(*this, GD)); 4109 if (supportsCOMDAT()) 4110 ResolverFunc->setComdat( 4111 getModule().getOrInsertComdat(ResolverFunc->getName())); 4112 4113 SmallVector<CodeGenFunction::MultiVersionResolverOption, 10> Options; 4114 const TargetInfo &Target = getTarget(); 4115 unsigned Index = 0; 4116 for (const IdentifierInfo *II : DD->cpus()) { 4117 // Get the name of the target function so we can look it up/create it. 4118 std::string MangledName = getMangledNameImpl(*this, GD, FD, true) + 4119 getCPUSpecificMangling(*this, II->getName()); 4120 4121 llvm::Constant *Func = GetGlobalValue(MangledName); 4122 4123 if (!Func) { 4124 GlobalDecl ExistingDecl = Manglings.lookup(MangledName); 4125 if (ExistingDecl.getDecl() && 4126 ExistingDecl.getDecl()->getAsFunction()->isDefined()) { 4127 EmitGlobalFunctionDefinition(ExistingDecl, nullptr); 4128 Func = GetGlobalValue(MangledName); 4129 } else { 4130 if (!ExistingDecl.getDecl()) 4131 ExistingDecl = GD.getWithMultiVersionIndex(Index); 4132 4133 Func = GetOrCreateLLVMFunction( 4134 MangledName, DeclTy, ExistingDecl, 4135 /*ForVTable=*/false, /*DontDefer=*/true, 4136 /*IsThunk=*/false, llvm::AttributeList(), ForDefinition); 4137 } 4138 } 4139 4140 llvm::SmallVector<StringRef, 32> Features; 4141 Target.getCPUSpecificCPUDispatchFeatures(II->getName(), Features); 4142 llvm::transform(Features, Features.begin(), 4143 [](StringRef Str) { return Str.substr(1); }); 4144 llvm::erase_if(Features, [&Target](StringRef Feat) { 4145 return !Target.validateCpuSupports(Feat); 4146 }); 4147 Options.emplace_back(cast<llvm::Function>(Func), StringRef{}, Features); 4148 ++Index; 4149 } 4150 4151 llvm::stable_sort( 4152 Options, [](const CodeGenFunction::MultiVersionResolverOption &LHS, 4153 const CodeGenFunction::MultiVersionResolverOption &RHS) { 4154 return llvm::X86::getCpuSupportsMask(LHS.Conditions.Features) > 4155 llvm::X86::getCpuSupportsMask(RHS.Conditions.Features); 4156 }); 4157 4158 // If the list contains multiple 'default' versions, such as when it contains 4159 // 'pentium' and 'generic', don't emit the call to the generic one (since we 4160 // always run on at least a 'pentium'). We do this by deleting the 'least 4161 // advanced' (read, lowest mangling letter). 4162 while (Options.size() > 1 && 4163 llvm::X86::getCpuSupportsMask( 4164 (Options.end() - 2)->Conditions.Features) == 0) { 4165 StringRef LHSName = (Options.end() - 2)->Function->getName(); 4166 StringRef RHSName = (Options.end() - 1)->Function->getName(); 4167 if (LHSName.compare(RHSName) < 0) 4168 Options.erase(Options.end() - 2); 4169 else 4170 Options.erase(Options.end() - 1); 4171 } 4172 4173 CodeGenFunction CGF(*this); 4174 CGF.EmitMultiVersionResolver(ResolverFunc, Options); 4175 4176 if (getTarget().supportsIFunc()) { 4177 llvm::GlobalValue::LinkageTypes Linkage = getMultiversionLinkage(*this, GD); 4178 auto *IFunc = cast<llvm::GlobalValue>(GetOrCreateMultiVersionResolver(GD)); 4179 4180 // Fix up function declarations that were created for cpu_specific before 4181 // cpu_dispatch was known 4182 if (!isa<llvm::GlobalIFunc>(IFunc)) { 4183 assert(cast<llvm::Function>(IFunc)->isDeclaration()); 4184 auto *GI = llvm::GlobalIFunc::create(DeclTy, 0, Linkage, "", ResolverFunc, 4185 &getModule()); 4186 GI->takeName(IFunc); 4187 IFunc->replaceAllUsesWith(GI); 4188 IFunc->eraseFromParent(); 4189 IFunc = GI; 4190 } 4191 4192 std::string AliasName = getMangledNameImpl( 4193 *this, GD, FD, /*OmitMultiVersionMangling=*/true); 4194 llvm::Constant *AliasFunc = GetGlobalValue(AliasName); 4195 if (!AliasFunc) { 4196 auto *GA = llvm::GlobalAlias::create(DeclTy, 0, Linkage, AliasName, IFunc, 4197 &getModule()); 4198 SetCommonAttributes(GD, GA); 4199 } 4200 } 4201 } 4202 4203 /// If a dispatcher for the specified mangled name is not in the module, create 4204 /// and return an llvm Function with the specified type. 4205 llvm::Constant *CodeGenModule::GetOrCreateMultiVersionResolver(GlobalDecl GD) { 4206 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 4207 assert(FD && "Not a FunctionDecl?"); 4208 4209 std::string MangledName = 4210 getMangledNameImpl(*this, GD, FD, /*OmitMultiVersionMangling=*/true); 4211 4212 // Holds the name of the resolver, in ifunc mode this is the ifunc (which has 4213 // a separate resolver). 4214 std::string ResolverName = MangledName; 4215 if (getTarget().supportsIFunc()) 4216 ResolverName += ".ifunc"; 4217 else if (FD->isTargetMultiVersion()) 4218 ResolverName += ".resolver"; 4219 4220 // If the resolver has already been created, just return it. 4221 if (llvm::GlobalValue *ResolverGV = GetGlobalValue(ResolverName)) 4222 return ResolverGV; 4223 4224 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 4225 llvm::FunctionType *DeclTy = getTypes().GetFunctionType(FI); 4226 4227 // The resolver needs to be created. For target and target_clones, defer 4228 // creation until the end of the TU. 4229 if (FD->isTargetMultiVersion() || FD->isTargetClonesMultiVersion()) 4230 MultiVersionFuncs.push_back(GD); 4231 4232 // For cpu_specific, don't create an ifunc yet because we don't know if the 4233 // cpu_dispatch will be emitted in this translation unit. 4234 if (getTarget().supportsIFunc() && !FD->isCPUSpecificMultiVersion()) { 4235 llvm::Type *ResolverType = llvm::FunctionType::get( 4236 llvm::PointerType::get(DeclTy, 4237 getTypes().getTargetAddressSpace(FD->getType())), 4238 false); 4239 llvm::Constant *Resolver = GetOrCreateLLVMFunction( 4240 MangledName + ".resolver", ResolverType, GlobalDecl{}, 4241 /*ForVTable=*/false); 4242 llvm::GlobalIFunc *GIF = 4243 llvm::GlobalIFunc::create(DeclTy, 0, getMultiversionLinkage(*this, GD), 4244 "", Resolver, &getModule()); 4245 GIF->setName(ResolverName); 4246 SetCommonAttributes(FD, GIF); 4247 4248 return GIF; 4249 } 4250 4251 llvm::Constant *Resolver = GetOrCreateLLVMFunction( 4252 ResolverName, DeclTy, GlobalDecl{}, /*ForVTable=*/false); 4253 assert(isa<llvm::GlobalValue>(Resolver) && 4254 "Resolver should be created for the first time"); 4255 SetCommonAttributes(FD, cast<llvm::GlobalValue>(Resolver)); 4256 return Resolver; 4257 } 4258 4259 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the 4260 /// module, create and return an llvm Function with the specified type. If there 4261 /// is something in the module with the specified name, return it potentially 4262 /// bitcasted to the right type. 4263 /// 4264 /// If D is non-null, it specifies a decl that correspond to this. This is used 4265 /// to set the attributes on the function when it is first created. 4266 llvm::Constant *CodeGenModule::GetOrCreateLLVMFunction( 4267 StringRef MangledName, llvm::Type *Ty, GlobalDecl GD, bool ForVTable, 4268 bool DontDefer, bool IsThunk, llvm::AttributeList ExtraAttrs, 4269 ForDefinition_t IsForDefinition) { 4270 const Decl *D = GD.getDecl(); 4271 4272 // Any attempts to use a MultiVersion function should result in retrieving 4273 // the iFunc instead. Name Mangling will handle the rest of the changes. 4274 if (const FunctionDecl *FD = cast_or_null<FunctionDecl>(D)) { 4275 // For the device mark the function as one that should be emitted. 4276 if (getLangOpts().OpenMPIsTargetDevice && OpenMPRuntime && 4277 !OpenMPRuntime->markAsGlobalTarget(GD) && FD->isDefined() && 4278 !DontDefer && !IsForDefinition) { 4279 if (const FunctionDecl *FDDef = FD->getDefinition()) { 4280 GlobalDecl GDDef; 4281 if (const auto *CD = dyn_cast<CXXConstructorDecl>(FDDef)) 4282 GDDef = GlobalDecl(CD, GD.getCtorType()); 4283 else if (const auto *DD = dyn_cast<CXXDestructorDecl>(FDDef)) 4284 GDDef = GlobalDecl(DD, GD.getDtorType()); 4285 else 4286 GDDef = GlobalDecl(FDDef); 4287 EmitGlobal(GDDef); 4288 } 4289 } 4290 4291 if (FD->isMultiVersion()) { 4292 UpdateMultiVersionNames(GD, FD, MangledName); 4293 if (!IsForDefinition) 4294 return GetOrCreateMultiVersionResolver(GD); 4295 } 4296 } 4297 4298 // Lookup the entry, lazily creating it if necessary. 4299 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 4300 if (Entry) { 4301 if (WeakRefReferences.erase(Entry)) { 4302 const FunctionDecl *FD = cast_or_null<FunctionDecl>(D); 4303 if (FD && !FD->hasAttr<WeakAttr>()) 4304 Entry->setLinkage(llvm::Function::ExternalLinkage); 4305 } 4306 4307 // Handle dropped DLL attributes. 4308 if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>() && 4309 !shouldMapVisibilityToDLLExport(cast_or_null<NamedDecl>(D))) { 4310 Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 4311 setDSOLocal(Entry); 4312 } 4313 4314 // If there are two attempts to define the same mangled name, issue an 4315 // error. 4316 if (IsForDefinition && !Entry->isDeclaration()) { 4317 GlobalDecl OtherGD; 4318 // Check that GD is not yet in DiagnosedConflictingDefinitions is required 4319 // to make sure that we issue an error only once. 4320 if (lookupRepresentativeDecl(MangledName, OtherGD) && 4321 (GD.getCanonicalDecl().getDecl() != 4322 OtherGD.getCanonicalDecl().getDecl()) && 4323 DiagnosedConflictingDefinitions.insert(GD).second) { 4324 getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name) 4325 << MangledName; 4326 getDiags().Report(OtherGD.getDecl()->getLocation(), 4327 diag::note_previous_definition); 4328 } 4329 } 4330 4331 if ((isa<llvm::Function>(Entry) || isa<llvm::GlobalAlias>(Entry)) && 4332 (Entry->getValueType() == Ty)) { 4333 return Entry; 4334 } 4335 4336 // Make sure the result is of the correct type. 4337 // (If function is requested for a definition, we always need to create a new 4338 // function, not just return a bitcast.) 4339 if (!IsForDefinition) 4340 return llvm::ConstantExpr::getBitCast( 4341 Entry, Ty->getPointerTo(Entry->getAddressSpace())); 4342 } 4343 4344 // This function doesn't have a complete type (for example, the return 4345 // type is an incomplete struct). Use a fake type instead, and make 4346 // sure not to try to set attributes. 4347 bool IsIncompleteFunction = false; 4348 4349 llvm::FunctionType *FTy; 4350 if (isa<llvm::FunctionType>(Ty)) { 4351 FTy = cast<llvm::FunctionType>(Ty); 4352 } else { 4353 FTy = llvm::FunctionType::get(VoidTy, false); 4354 IsIncompleteFunction = true; 4355 } 4356 4357 llvm::Function *F = 4358 llvm::Function::Create(FTy, llvm::Function::ExternalLinkage, 4359 Entry ? StringRef() : MangledName, &getModule()); 4360 4361 // If we already created a function with the same mangled name (but different 4362 // type) before, take its name and add it to the list of functions to be 4363 // replaced with F at the end of CodeGen. 4364 // 4365 // This happens if there is a prototype for a function (e.g. "int f()") and 4366 // then a definition of a different type (e.g. "int f(int x)"). 4367 if (Entry) { 4368 F->takeName(Entry); 4369 4370 // This might be an implementation of a function without a prototype, in 4371 // which case, try to do special replacement of calls which match the new 4372 // prototype. The really key thing here is that we also potentially drop 4373 // arguments from the call site so as to make a direct call, which makes the 4374 // inliner happier and suppresses a number of optimizer warnings (!) about 4375 // dropping arguments. 4376 if (!Entry->use_empty()) { 4377 ReplaceUsesOfNonProtoTypeWithRealFunction(Entry, F); 4378 Entry->removeDeadConstantUsers(); 4379 } 4380 4381 llvm::Constant *BC = llvm::ConstantExpr::getBitCast( 4382 F, Entry->getValueType()->getPointerTo(Entry->getAddressSpace())); 4383 addGlobalValReplacement(Entry, BC); 4384 } 4385 4386 assert(F->getName() == MangledName && "name was uniqued!"); 4387 if (D) 4388 SetFunctionAttributes(GD, F, IsIncompleteFunction, IsThunk); 4389 if (ExtraAttrs.hasFnAttrs()) { 4390 llvm::AttrBuilder B(F->getContext(), ExtraAttrs.getFnAttrs()); 4391 F->addFnAttrs(B); 4392 } 4393 4394 if (!DontDefer) { 4395 // All MSVC dtors other than the base dtor are linkonce_odr and delegate to 4396 // each other bottoming out with the base dtor. Therefore we emit non-base 4397 // dtors on usage, even if there is no dtor definition in the TU. 4398 if (isa_and_nonnull<CXXDestructorDecl>(D) && 4399 getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D), 4400 GD.getDtorType())) 4401 addDeferredDeclToEmit(GD); 4402 4403 // This is the first use or definition of a mangled name. If there is a 4404 // deferred decl with this name, remember that we need to emit it at the end 4405 // of the file. 4406 auto DDI = DeferredDecls.find(MangledName); 4407 if (DDI != DeferredDecls.end()) { 4408 // Move the potentially referenced deferred decl to the 4409 // DeferredDeclsToEmit list, and remove it from DeferredDecls (since we 4410 // don't need it anymore). 4411 addDeferredDeclToEmit(DDI->second); 4412 EmittedDeferredDecls[DDI->first] = DDI->second; 4413 DeferredDecls.erase(DDI); 4414 4415 // Otherwise, there are cases we have to worry about where we're 4416 // using a declaration for which we must emit a definition but where 4417 // we might not find a top-level definition: 4418 // - member functions defined inline in their classes 4419 // - friend functions defined inline in some class 4420 // - special member functions with implicit definitions 4421 // If we ever change our AST traversal to walk into class methods, 4422 // this will be unnecessary. 4423 // 4424 // We also don't emit a definition for a function if it's going to be an 4425 // entry in a vtable, unless it's already marked as used. 4426 } else if (getLangOpts().CPlusPlus && D) { 4427 // Look for a declaration that's lexically in a record. 4428 for (const auto *FD = cast<FunctionDecl>(D)->getMostRecentDecl(); FD; 4429 FD = FD->getPreviousDecl()) { 4430 if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) { 4431 if (FD->doesThisDeclarationHaveABody()) { 4432 addDeferredDeclToEmit(GD.getWithDecl(FD)); 4433 break; 4434 } 4435 } 4436 } 4437 } 4438 } 4439 4440 // Make sure the result is of the requested type. 4441 if (!IsIncompleteFunction) { 4442 assert(F->getFunctionType() == Ty); 4443 return F; 4444 } 4445 4446 return llvm::ConstantExpr::getBitCast(F, 4447 Ty->getPointerTo(F->getAddressSpace())); 4448 } 4449 4450 /// GetAddrOfFunction - Return the address of the given function. If Ty is 4451 /// non-null, then this function will use the specified type if it has to 4452 /// create it (this occurs when we see a definition of the function). 4453 llvm::Constant * 4454 CodeGenModule::GetAddrOfFunction(GlobalDecl GD, llvm::Type *Ty, bool ForVTable, 4455 bool DontDefer, 4456 ForDefinition_t IsForDefinition) { 4457 // If there was no specific requested type, just convert it now. 4458 if (!Ty) { 4459 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 4460 Ty = getTypes().ConvertType(FD->getType()); 4461 } 4462 4463 // Devirtualized destructor calls may come through here instead of via 4464 // getAddrOfCXXStructor. Make sure we use the MS ABI base destructor instead 4465 // of the complete destructor when necessary. 4466 if (const auto *DD = dyn_cast<CXXDestructorDecl>(GD.getDecl())) { 4467 if (getTarget().getCXXABI().isMicrosoft() && 4468 GD.getDtorType() == Dtor_Complete && 4469 DD->getParent()->getNumVBases() == 0) 4470 GD = GlobalDecl(DD, Dtor_Base); 4471 } 4472 4473 StringRef MangledName = getMangledName(GD); 4474 auto *F = GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable, DontDefer, 4475 /*IsThunk=*/false, llvm::AttributeList(), 4476 IsForDefinition); 4477 // Returns kernel handle for HIP kernel stub function. 4478 if (LangOpts.CUDA && !LangOpts.CUDAIsDevice && 4479 cast<FunctionDecl>(GD.getDecl())->hasAttr<CUDAGlobalAttr>()) { 4480 auto *Handle = getCUDARuntime().getKernelHandle( 4481 cast<llvm::Function>(F->stripPointerCasts()), GD); 4482 if (IsForDefinition) 4483 return F; 4484 return llvm::ConstantExpr::getBitCast(Handle, Ty->getPointerTo()); 4485 } 4486 return F; 4487 } 4488 4489 llvm::Constant *CodeGenModule::GetFunctionStart(const ValueDecl *Decl) { 4490 llvm::GlobalValue *F = 4491 cast<llvm::GlobalValue>(GetAddrOfFunction(Decl)->stripPointerCasts()); 4492 4493 return llvm::ConstantExpr::getBitCast( 4494 llvm::NoCFIValue::get(F), 4495 llvm::Type::getInt8PtrTy(VMContext, F->getAddressSpace())); 4496 } 4497 4498 static const FunctionDecl * 4499 GetRuntimeFunctionDecl(ASTContext &C, StringRef Name) { 4500 TranslationUnitDecl *TUDecl = C.getTranslationUnitDecl(); 4501 DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl); 4502 4503 IdentifierInfo &CII = C.Idents.get(Name); 4504 for (const auto *Result : DC->lookup(&CII)) 4505 if (const auto *FD = dyn_cast<FunctionDecl>(Result)) 4506 return FD; 4507 4508 if (!C.getLangOpts().CPlusPlus) 4509 return nullptr; 4510 4511 // Demangle the premangled name from getTerminateFn() 4512 IdentifierInfo &CXXII = 4513 (Name == "_ZSt9terminatev" || Name == "?terminate@@YAXXZ") 4514 ? C.Idents.get("terminate") 4515 : C.Idents.get(Name); 4516 4517 for (const auto &N : {"__cxxabiv1", "std"}) { 4518 IdentifierInfo &NS = C.Idents.get(N); 4519 for (const auto *Result : DC->lookup(&NS)) { 4520 const NamespaceDecl *ND = dyn_cast<NamespaceDecl>(Result); 4521 if (auto *LSD = dyn_cast<LinkageSpecDecl>(Result)) 4522 for (const auto *Result : LSD->lookup(&NS)) 4523 if ((ND = dyn_cast<NamespaceDecl>(Result))) 4524 break; 4525 4526 if (ND) 4527 for (const auto *Result : ND->lookup(&CXXII)) 4528 if (const auto *FD = dyn_cast<FunctionDecl>(Result)) 4529 return FD; 4530 } 4531 } 4532 4533 return nullptr; 4534 } 4535 4536 /// CreateRuntimeFunction - Create a new runtime function with the specified 4537 /// type and name. 4538 llvm::FunctionCallee 4539 CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy, StringRef Name, 4540 llvm::AttributeList ExtraAttrs, bool Local, 4541 bool AssumeConvergent) { 4542 if (AssumeConvergent) { 4543 ExtraAttrs = 4544 ExtraAttrs.addFnAttribute(VMContext, llvm::Attribute::Convergent); 4545 } 4546 4547 llvm::Constant *C = 4548 GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false, 4549 /*DontDefer=*/false, /*IsThunk=*/false, 4550 ExtraAttrs); 4551 4552 if (auto *F = dyn_cast<llvm::Function>(C)) { 4553 if (F->empty()) { 4554 F->setCallingConv(getRuntimeCC()); 4555 4556 // In Windows Itanium environments, try to mark runtime functions 4557 // dllimport. For Mingw and MSVC, don't. We don't really know if the user 4558 // will link their standard library statically or dynamically. Marking 4559 // functions imported when they are not imported can cause linker errors 4560 // and warnings. 4561 if (!Local && getTriple().isWindowsItaniumEnvironment() && 4562 !getCodeGenOpts().LTOVisibilityPublicStd) { 4563 const FunctionDecl *FD = GetRuntimeFunctionDecl(Context, Name); 4564 if (!FD || FD->hasAttr<DLLImportAttr>()) { 4565 F->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass); 4566 F->setLinkage(llvm::GlobalValue::ExternalLinkage); 4567 } 4568 } 4569 setDSOLocal(F); 4570 } 4571 } 4572 4573 return {FTy, C}; 4574 } 4575 4576 /// isTypeConstant - Determine whether an object of this type can be emitted 4577 /// as a constant. 4578 /// 4579 /// If ExcludeCtor is true, the duration when the object's constructor runs 4580 /// will not be considered. The caller will need to verify that the object is 4581 /// not written to during its construction. ExcludeDtor works similarly. 4582 bool CodeGenModule::isTypeConstant(QualType Ty, bool ExcludeCtor, 4583 bool ExcludeDtor) { 4584 if (!Ty.isConstant(Context) && !Ty->isReferenceType()) 4585 return false; 4586 4587 if (Context.getLangOpts().CPlusPlus) { 4588 if (const CXXRecordDecl *Record 4589 = Context.getBaseElementType(Ty)->getAsCXXRecordDecl()) 4590 return ExcludeCtor && !Record->hasMutableFields() && 4591 (Record->hasTrivialDestructor() || ExcludeDtor); 4592 } 4593 4594 return true; 4595 } 4596 4597 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module, 4598 /// create and return an llvm GlobalVariable with the specified type and address 4599 /// space. If there is something in the module with the specified name, return 4600 /// it potentially bitcasted to the right type. 4601 /// 4602 /// If D is non-null, it specifies a decl that correspond to this. This is used 4603 /// to set the attributes on the global when it is first created. 4604 /// 4605 /// If IsForDefinition is true, it is guaranteed that an actual global with 4606 /// type Ty will be returned, not conversion of a variable with the same 4607 /// mangled name but some other type. 4608 llvm::Constant * 4609 CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName, llvm::Type *Ty, 4610 LangAS AddrSpace, const VarDecl *D, 4611 ForDefinition_t IsForDefinition) { 4612 // Lookup the entry, lazily creating it if necessary. 4613 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 4614 unsigned TargetAS = getContext().getTargetAddressSpace(AddrSpace); 4615 if (Entry) { 4616 if (WeakRefReferences.erase(Entry)) { 4617 if (D && !D->hasAttr<WeakAttr>()) 4618 Entry->setLinkage(llvm::Function::ExternalLinkage); 4619 } 4620 4621 // Handle dropped DLL attributes. 4622 if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>() && 4623 !shouldMapVisibilityToDLLExport(D)) 4624 Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 4625 4626 if (LangOpts.OpenMP && !LangOpts.OpenMPSimd && D) 4627 getOpenMPRuntime().registerTargetGlobalVariable(D, Entry); 4628 4629 if (Entry->getValueType() == Ty && Entry->getAddressSpace() == TargetAS) 4630 return Entry; 4631 4632 // If there are two attempts to define the same mangled name, issue an 4633 // error. 4634 if (IsForDefinition && !Entry->isDeclaration()) { 4635 GlobalDecl OtherGD; 4636 const VarDecl *OtherD; 4637 4638 // Check that D is not yet in DiagnosedConflictingDefinitions is required 4639 // to make sure that we issue an error only once. 4640 if (D && lookupRepresentativeDecl(MangledName, OtherGD) && 4641 (D->getCanonicalDecl() != OtherGD.getCanonicalDecl().getDecl()) && 4642 (OtherD = dyn_cast<VarDecl>(OtherGD.getDecl())) && 4643 OtherD->hasInit() && 4644 DiagnosedConflictingDefinitions.insert(D).second) { 4645 getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name) 4646 << MangledName; 4647 getDiags().Report(OtherGD.getDecl()->getLocation(), 4648 diag::note_previous_definition); 4649 } 4650 } 4651 4652 // Make sure the result is of the correct type. 4653 if (Entry->getType()->getAddressSpace() != TargetAS) { 4654 return llvm::ConstantExpr::getAddrSpaceCast(Entry, 4655 Ty->getPointerTo(TargetAS)); 4656 } 4657 4658 // (If global is requested for a definition, we always need to create a new 4659 // global, not just return a bitcast.) 4660 if (!IsForDefinition) 4661 return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo(TargetAS)); 4662 } 4663 4664 auto DAddrSpace = GetGlobalVarAddressSpace(D); 4665 4666 auto *GV = new llvm::GlobalVariable( 4667 getModule(), Ty, false, llvm::GlobalValue::ExternalLinkage, nullptr, 4668 MangledName, nullptr, llvm::GlobalVariable::NotThreadLocal, 4669 getContext().getTargetAddressSpace(DAddrSpace)); 4670 4671 // If we already created a global with the same mangled name (but different 4672 // type) before, take its name and remove it from its parent. 4673 if (Entry) { 4674 GV->takeName(Entry); 4675 4676 if (!Entry->use_empty()) { 4677 llvm::Constant *NewPtrForOldDecl = 4678 llvm::ConstantExpr::getBitCast(GV, Entry->getType()); 4679 Entry->replaceAllUsesWith(NewPtrForOldDecl); 4680 } 4681 4682 Entry->eraseFromParent(); 4683 } 4684 4685 // This is the first use or definition of a mangled name. If there is a 4686 // deferred decl with this name, remember that we need to emit it at the end 4687 // of the file. 4688 auto DDI = DeferredDecls.find(MangledName); 4689 if (DDI != DeferredDecls.end()) { 4690 // Move the potentially referenced deferred decl to the DeferredDeclsToEmit 4691 // list, and remove it from DeferredDecls (since we don't need it anymore). 4692 addDeferredDeclToEmit(DDI->second); 4693 EmittedDeferredDecls[DDI->first] = DDI->second; 4694 DeferredDecls.erase(DDI); 4695 } 4696 4697 // Handle things which are present even on external declarations. 4698 if (D) { 4699 if (LangOpts.OpenMP && !LangOpts.OpenMPSimd) 4700 getOpenMPRuntime().registerTargetGlobalVariable(D, GV); 4701 4702 // FIXME: This code is overly simple and should be merged with other global 4703 // handling. 4704 GV->setConstant(isTypeConstant(D->getType(), false, false)); 4705 4706 GV->setAlignment(getContext().getDeclAlign(D).getAsAlign()); 4707 4708 setLinkageForGV(GV, D); 4709 4710 if (D->getTLSKind()) { 4711 if (D->getTLSKind() == VarDecl::TLS_Dynamic) 4712 CXXThreadLocals.push_back(D); 4713 setTLSMode(GV, *D); 4714 } 4715 4716 setGVProperties(GV, D); 4717 4718 // If required by the ABI, treat declarations of static data members with 4719 // inline initializers as definitions. 4720 if (getContext().isMSStaticDataMemberInlineDefinition(D)) { 4721 EmitGlobalVarDefinition(D); 4722 } 4723 4724 // Emit section information for extern variables. 4725 if (D->hasExternalStorage()) { 4726 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) 4727 GV->setSection(SA->getName()); 4728 } 4729 4730 // Handle XCore specific ABI requirements. 4731 if (getTriple().getArch() == llvm::Triple::xcore && 4732 D->getLanguageLinkage() == CLanguageLinkage && 4733 D->getType().isConstant(Context) && 4734 isExternallyVisible(D->getLinkageAndVisibility().getLinkage())) 4735 GV->setSection(".cp.rodata"); 4736 4737 // Check if we a have a const declaration with an initializer, we may be 4738 // able to emit it as available_externally to expose it's value to the 4739 // optimizer. 4740 if (Context.getLangOpts().CPlusPlus && GV->hasExternalLinkage() && 4741 D->getType().isConstQualified() && !GV->hasInitializer() && 4742 !D->hasDefinition() && D->hasInit() && !D->hasAttr<DLLImportAttr>()) { 4743 const auto *Record = 4744 Context.getBaseElementType(D->getType())->getAsCXXRecordDecl(); 4745 bool HasMutableFields = Record && Record->hasMutableFields(); 4746 if (!HasMutableFields) { 4747 const VarDecl *InitDecl; 4748 const Expr *InitExpr = D->getAnyInitializer(InitDecl); 4749 if (InitExpr) { 4750 ConstantEmitter emitter(*this); 4751 llvm::Constant *Init = emitter.tryEmitForInitializer(*InitDecl); 4752 if (Init) { 4753 auto *InitType = Init->getType(); 4754 if (GV->getValueType() != InitType) { 4755 // The type of the initializer does not match the definition. 4756 // This happens when an initializer has a different type from 4757 // the type of the global (because of padding at the end of a 4758 // structure for instance). 4759 GV->setName(StringRef()); 4760 // Make a new global with the correct type, this is now guaranteed 4761 // to work. 4762 auto *NewGV = cast<llvm::GlobalVariable>( 4763 GetAddrOfGlobalVar(D, InitType, IsForDefinition) 4764 ->stripPointerCasts()); 4765 4766 // Erase the old global, since it is no longer used. 4767 GV->eraseFromParent(); 4768 GV = NewGV; 4769 } else { 4770 GV->setInitializer(Init); 4771 GV->setConstant(true); 4772 GV->setLinkage(llvm::GlobalValue::AvailableExternallyLinkage); 4773 } 4774 emitter.finalize(GV); 4775 } 4776 } 4777 } 4778 } 4779 } 4780 4781 if (D && 4782 D->isThisDeclarationADefinition(Context) == VarDecl::DeclarationOnly) { 4783 getTargetCodeGenInfo().setTargetAttributes(D, GV, *this); 4784 // External HIP managed variables needed to be recorded for transformation 4785 // in both device and host compilations. 4786 if (getLangOpts().CUDA && D && D->hasAttr<HIPManagedAttr>() && 4787 D->hasExternalStorage()) 4788 getCUDARuntime().handleVarRegistration(D, *GV); 4789 } 4790 4791 if (D) 4792 SanitizerMD->reportGlobal(GV, *D); 4793 4794 LangAS ExpectedAS = 4795 D ? D->getType().getAddressSpace() 4796 : (LangOpts.OpenCL ? LangAS::opencl_global : LangAS::Default); 4797 assert(getContext().getTargetAddressSpace(ExpectedAS) == TargetAS); 4798 if (DAddrSpace != ExpectedAS) { 4799 return getTargetCodeGenInfo().performAddrSpaceCast( 4800 *this, GV, DAddrSpace, ExpectedAS, Ty->getPointerTo(TargetAS)); 4801 } 4802 4803 return GV; 4804 } 4805 4806 llvm::Constant * 4807 CodeGenModule::GetAddrOfGlobal(GlobalDecl GD, ForDefinition_t IsForDefinition) { 4808 const Decl *D = GD.getDecl(); 4809 4810 if (isa<CXXConstructorDecl>(D) || isa<CXXDestructorDecl>(D)) 4811 return getAddrOfCXXStructor(GD, /*FnInfo=*/nullptr, /*FnType=*/nullptr, 4812 /*DontDefer=*/false, IsForDefinition); 4813 4814 if (isa<CXXMethodDecl>(D)) { 4815 auto FInfo = 4816 &getTypes().arrangeCXXMethodDeclaration(cast<CXXMethodDecl>(D)); 4817 auto Ty = getTypes().GetFunctionType(*FInfo); 4818 return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false, 4819 IsForDefinition); 4820 } 4821 4822 if (isa<FunctionDecl>(D)) { 4823 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 4824 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 4825 return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false, 4826 IsForDefinition); 4827 } 4828 4829 return GetAddrOfGlobalVar(cast<VarDecl>(D), /*Ty=*/nullptr, IsForDefinition); 4830 } 4831 4832 llvm::GlobalVariable *CodeGenModule::CreateOrReplaceCXXRuntimeVariable( 4833 StringRef Name, llvm::Type *Ty, llvm::GlobalValue::LinkageTypes Linkage, 4834 llvm::Align Alignment) { 4835 llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name); 4836 llvm::GlobalVariable *OldGV = nullptr; 4837 4838 if (GV) { 4839 // Check if the variable has the right type. 4840 if (GV->getValueType() == Ty) 4841 return GV; 4842 4843 // Because C++ name mangling, the only way we can end up with an already 4844 // existing global with the same name is if it has been declared extern "C". 4845 assert(GV->isDeclaration() && "Declaration has wrong type!"); 4846 OldGV = GV; 4847 } 4848 4849 // Create a new variable. 4850 GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true, 4851 Linkage, nullptr, Name); 4852 4853 if (OldGV) { 4854 // Replace occurrences of the old variable if needed. 4855 GV->takeName(OldGV); 4856 4857 if (!OldGV->use_empty()) { 4858 llvm::Constant *NewPtrForOldDecl = 4859 llvm::ConstantExpr::getBitCast(GV, OldGV->getType()); 4860 OldGV->replaceAllUsesWith(NewPtrForOldDecl); 4861 } 4862 4863 OldGV->eraseFromParent(); 4864 } 4865 4866 if (supportsCOMDAT() && GV->isWeakForLinker() && 4867 !GV->hasAvailableExternallyLinkage()) 4868 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 4869 4870 GV->setAlignment(Alignment); 4871 4872 return GV; 4873 } 4874 4875 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the 4876 /// given global variable. If Ty is non-null and if the global doesn't exist, 4877 /// then it will be created with the specified type instead of whatever the 4878 /// normal requested type would be. If IsForDefinition is true, it is guaranteed 4879 /// that an actual global with type Ty will be returned, not conversion of a 4880 /// variable with the same mangled name but some other type. 4881 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D, 4882 llvm::Type *Ty, 4883 ForDefinition_t IsForDefinition) { 4884 assert(D->hasGlobalStorage() && "Not a global variable"); 4885 QualType ASTTy = D->getType(); 4886 if (!Ty) 4887 Ty = getTypes().ConvertTypeForMem(ASTTy); 4888 4889 StringRef MangledName = getMangledName(D); 4890 return GetOrCreateLLVMGlobal(MangledName, Ty, ASTTy.getAddressSpace(), D, 4891 IsForDefinition); 4892 } 4893 4894 /// CreateRuntimeVariable - Create a new runtime global variable with the 4895 /// specified type and name. 4896 llvm::Constant * 4897 CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty, 4898 StringRef Name) { 4899 LangAS AddrSpace = getContext().getLangOpts().OpenCL ? LangAS::opencl_global 4900 : LangAS::Default; 4901 auto *Ret = GetOrCreateLLVMGlobal(Name, Ty, AddrSpace, nullptr); 4902 setDSOLocal(cast<llvm::GlobalValue>(Ret->stripPointerCasts())); 4903 return Ret; 4904 } 4905 4906 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) { 4907 assert(!D->getInit() && "Cannot emit definite definitions here!"); 4908 4909 StringRef MangledName = getMangledName(D); 4910 llvm::GlobalValue *GV = GetGlobalValue(MangledName); 4911 4912 // We already have a definition, not declaration, with the same mangled name. 4913 // Emitting of declaration is not required (and actually overwrites emitted 4914 // definition). 4915 if (GV && !GV->isDeclaration()) 4916 return; 4917 4918 // If we have not seen a reference to this variable yet, place it into the 4919 // deferred declarations table to be emitted if needed later. 4920 if (!MustBeEmitted(D) && !GV) { 4921 DeferredDecls[MangledName] = D; 4922 return; 4923 } 4924 4925 // The tentative definition is the only definition. 4926 EmitGlobalVarDefinition(D); 4927 } 4928 4929 void CodeGenModule::EmitExternalDeclaration(const VarDecl *D) { 4930 EmitExternalVarDeclaration(D); 4931 } 4932 4933 CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const { 4934 return Context.toCharUnitsFromBits( 4935 getDataLayout().getTypeStoreSizeInBits(Ty)); 4936 } 4937 4938 LangAS CodeGenModule::GetGlobalVarAddressSpace(const VarDecl *D) { 4939 if (LangOpts.OpenCL) { 4940 LangAS AS = D ? D->getType().getAddressSpace() : LangAS::opencl_global; 4941 assert(AS == LangAS::opencl_global || 4942 AS == LangAS::opencl_global_device || 4943 AS == LangAS::opencl_global_host || 4944 AS == LangAS::opencl_constant || 4945 AS == LangAS::opencl_local || 4946 AS >= LangAS::FirstTargetAddressSpace); 4947 return AS; 4948 } 4949 4950 if (LangOpts.SYCLIsDevice && 4951 (!D || D->getType().getAddressSpace() == LangAS::Default)) 4952 return LangAS::sycl_global; 4953 4954 if (LangOpts.CUDA && LangOpts.CUDAIsDevice) { 4955 if (D) { 4956 if (D->hasAttr<CUDAConstantAttr>()) 4957 return LangAS::cuda_constant; 4958 if (D->hasAttr<CUDASharedAttr>()) 4959 return LangAS::cuda_shared; 4960 if (D->hasAttr<CUDADeviceAttr>()) 4961 return LangAS::cuda_device; 4962 if (D->getType().isConstQualified()) 4963 return LangAS::cuda_constant; 4964 } 4965 return LangAS::cuda_device; 4966 } 4967 4968 if (LangOpts.OpenMP) { 4969 LangAS AS; 4970 if (OpenMPRuntime->hasAllocateAttributeForGlobalVar(D, AS)) 4971 return AS; 4972 } 4973 return getTargetCodeGenInfo().getGlobalVarAddressSpace(*this, D); 4974 } 4975 4976 LangAS CodeGenModule::GetGlobalConstantAddressSpace() const { 4977 // OpenCL v1.2 s6.5.3: a string literal is in the constant address space. 4978 if (LangOpts.OpenCL) 4979 return LangAS::opencl_constant; 4980 if (LangOpts.SYCLIsDevice) 4981 return LangAS::sycl_global; 4982 if (LangOpts.HIP && LangOpts.CUDAIsDevice && getTriple().isSPIRV()) 4983 // For HIPSPV map literals to cuda_device (maps to CrossWorkGroup in SPIR-V) 4984 // instead of default AS (maps to Generic in SPIR-V). Otherwise, we end up 4985 // with OpVariable instructions with Generic storage class which is not 4986 // allowed (SPIR-V V1.6 s3.42.8). Also, mapping literals to SPIR-V 4987 // UniformConstant storage class is not viable as pointers to it may not be 4988 // casted to Generic pointers which are used to model HIP's "flat" pointers. 4989 return LangAS::cuda_device; 4990 if (auto AS = getTarget().getConstantAddressSpace()) 4991 return *AS; 4992 return LangAS::Default; 4993 } 4994 4995 // In address space agnostic languages, string literals are in default address 4996 // space in AST. However, certain targets (e.g. amdgcn) request them to be 4997 // emitted in constant address space in LLVM IR. To be consistent with other 4998 // parts of AST, string literal global variables in constant address space 4999 // need to be casted to default address space before being put into address 5000 // map and referenced by other part of CodeGen. 5001 // In OpenCL, string literals are in constant address space in AST, therefore 5002 // they should not be casted to default address space. 5003 static llvm::Constant * 5004 castStringLiteralToDefaultAddressSpace(CodeGenModule &CGM, 5005 llvm::GlobalVariable *GV) { 5006 llvm::Constant *Cast = GV; 5007 if (!CGM.getLangOpts().OpenCL) { 5008 auto AS = CGM.GetGlobalConstantAddressSpace(); 5009 if (AS != LangAS::Default) 5010 Cast = CGM.getTargetCodeGenInfo().performAddrSpaceCast( 5011 CGM, GV, AS, LangAS::Default, 5012 GV->getValueType()->getPointerTo( 5013 CGM.getContext().getTargetAddressSpace(LangAS::Default))); 5014 } 5015 return Cast; 5016 } 5017 5018 template<typename SomeDecl> 5019 void CodeGenModule::MaybeHandleStaticInExternC(const SomeDecl *D, 5020 llvm::GlobalValue *GV) { 5021 if (!getLangOpts().CPlusPlus) 5022 return; 5023 5024 // Must have 'used' attribute, or else inline assembly can't rely on 5025 // the name existing. 5026 if (!D->template hasAttr<UsedAttr>()) 5027 return; 5028 5029 // Must have internal linkage and an ordinary name. 5030 if (!D->getIdentifier() || D->getFormalLinkage() != InternalLinkage) 5031 return; 5032 5033 // Must be in an extern "C" context. Entities declared directly within 5034 // a record are not extern "C" even if the record is in such a context. 5035 const SomeDecl *First = D->getFirstDecl(); 5036 if (First->getDeclContext()->isRecord() || !First->isInExternCContext()) 5037 return; 5038 5039 // OK, this is an internal linkage entity inside an extern "C" linkage 5040 // specification. Make a note of that so we can give it the "expected" 5041 // mangled name if nothing else is using that name. 5042 std::pair<StaticExternCMap::iterator, bool> R = 5043 StaticExternCValues.insert(std::make_pair(D->getIdentifier(), GV)); 5044 5045 // If we have multiple internal linkage entities with the same name 5046 // in extern "C" regions, none of them gets that name. 5047 if (!R.second) 5048 R.first->second = nullptr; 5049 } 5050 5051 static bool shouldBeInCOMDAT(CodeGenModule &CGM, const Decl &D) { 5052 if (!CGM.supportsCOMDAT()) 5053 return false; 5054 5055 if (D.hasAttr<SelectAnyAttr>()) 5056 return true; 5057 5058 GVALinkage Linkage; 5059 if (auto *VD = dyn_cast<VarDecl>(&D)) 5060 Linkage = CGM.getContext().GetGVALinkageForVariable(VD); 5061 else 5062 Linkage = CGM.getContext().GetGVALinkageForFunction(cast<FunctionDecl>(&D)); 5063 5064 switch (Linkage) { 5065 case GVA_Internal: 5066 case GVA_AvailableExternally: 5067 case GVA_StrongExternal: 5068 return false; 5069 case GVA_DiscardableODR: 5070 case GVA_StrongODR: 5071 return true; 5072 } 5073 llvm_unreachable("No such linkage"); 5074 } 5075 5076 bool CodeGenModule::supportsCOMDAT() const { 5077 return getTriple().supportsCOMDAT(); 5078 } 5079 5080 void CodeGenModule::maybeSetTrivialComdat(const Decl &D, 5081 llvm::GlobalObject &GO) { 5082 if (!shouldBeInCOMDAT(*this, D)) 5083 return; 5084 GO.setComdat(TheModule.getOrInsertComdat(GO.getName())); 5085 } 5086 5087 /// Pass IsTentative as true if you want to create a tentative definition. 5088 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D, 5089 bool IsTentative) { 5090 // OpenCL global variables of sampler type are translated to function calls, 5091 // therefore no need to be translated. 5092 QualType ASTTy = D->getType(); 5093 if (getLangOpts().OpenCL && ASTTy->isSamplerT()) 5094 return; 5095 5096 // If this is OpenMP device, check if it is legal to emit this global 5097 // normally. 5098 if (LangOpts.OpenMPIsTargetDevice && OpenMPRuntime && 5099 OpenMPRuntime->emitTargetGlobalVariable(D)) 5100 return; 5101 5102 llvm::TrackingVH<llvm::Constant> Init; 5103 bool NeedsGlobalCtor = false; 5104 // Whether the definition of the variable is available externally. 5105 // If yes, we shouldn't emit the GloablCtor and GlobalDtor for the variable 5106 // since this is the job for its original source. 5107 bool IsDefinitionAvailableExternally = 5108 getContext().GetGVALinkageForVariable(D) == GVA_AvailableExternally; 5109 bool NeedsGlobalDtor = 5110 !IsDefinitionAvailableExternally && 5111 D->needsDestruction(getContext()) == QualType::DK_cxx_destructor; 5112 5113 const VarDecl *InitDecl; 5114 const Expr *InitExpr = D->getAnyInitializer(InitDecl); 5115 5116 std::optional<ConstantEmitter> emitter; 5117 5118 // CUDA E.2.4.1 "__shared__ variables cannot have an initialization 5119 // as part of their declaration." Sema has already checked for 5120 // error cases, so we just need to set Init to UndefValue. 5121 bool IsCUDASharedVar = 5122 getLangOpts().CUDAIsDevice && D->hasAttr<CUDASharedAttr>(); 5123 // Shadows of initialized device-side global variables are also left 5124 // undefined. 5125 // Managed Variables should be initialized on both host side and device side. 5126 bool IsCUDAShadowVar = 5127 !getLangOpts().CUDAIsDevice && !D->hasAttr<HIPManagedAttr>() && 5128 (D->hasAttr<CUDAConstantAttr>() || D->hasAttr<CUDADeviceAttr>() || 5129 D->hasAttr<CUDASharedAttr>()); 5130 bool IsCUDADeviceShadowVar = 5131 getLangOpts().CUDAIsDevice && !D->hasAttr<HIPManagedAttr>() && 5132 (D->getType()->isCUDADeviceBuiltinSurfaceType() || 5133 D->getType()->isCUDADeviceBuiltinTextureType()); 5134 if (getLangOpts().CUDA && 5135 (IsCUDASharedVar || IsCUDAShadowVar || IsCUDADeviceShadowVar)) 5136 Init = llvm::UndefValue::get(getTypes().ConvertTypeForMem(ASTTy)); 5137 else if (D->hasAttr<LoaderUninitializedAttr>()) 5138 Init = llvm::UndefValue::get(getTypes().ConvertTypeForMem(ASTTy)); 5139 else if (!InitExpr) { 5140 // This is a tentative definition; tentative definitions are 5141 // implicitly initialized with { 0 }. 5142 // 5143 // Note that tentative definitions are only emitted at the end of 5144 // a translation unit, so they should never have incomplete 5145 // type. In addition, EmitTentativeDefinition makes sure that we 5146 // never attempt to emit a tentative definition if a real one 5147 // exists. A use may still exists, however, so we still may need 5148 // to do a RAUW. 5149 assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type"); 5150 Init = EmitNullConstant(D->getType()); 5151 } else { 5152 initializedGlobalDecl = GlobalDecl(D); 5153 emitter.emplace(*this); 5154 llvm::Constant *Initializer = emitter->tryEmitForInitializer(*InitDecl); 5155 if (!Initializer) { 5156 QualType T = InitExpr->getType(); 5157 if (D->getType()->isReferenceType()) 5158 T = D->getType(); 5159 5160 if (getLangOpts().CPlusPlus) { 5161 if (InitDecl->hasFlexibleArrayInit(getContext())) 5162 ErrorUnsupported(D, "flexible array initializer"); 5163 Init = EmitNullConstant(T); 5164 5165 if (!IsDefinitionAvailableExternally) 5166 NeedsGlobalCtor = true; 5167 } else { 5168 ErrorUnsupported(D, "static initializer"); 5169 Init = llvm::UndefValue::get(getTypes().ConvertType(T)); 5170 } 5171 } else { 5172 Init = Initializer; 5173 // We don't need an initializer, so remove the entry for the delayed 5174 // initializer position (just in case this entry was delayed) if we 5175 // also don't need to register a destructor. 5176 if (getLangOpts().CPlusPlus && !NeedsGlobalDtor) 5177 DelayedCXXInitPosition.erase(D); 5178 5179 #ifndef NDEBUG 5180 CharUnits VarSize = getContext().getTypeSizeInChars(ASTTy) + 5181 InitDecl->getFlexibleArrayInitChars(getContext()); 5182 CharUnits CstSize = CharUnits::fromQuantity( 5183 getDataLayout().getTypeAllocSize(Init->getType())); 5184 assert(VarSize == CstSize && "Emitted constant has unexpected size"); 5185 #endif 5186 } 5187 } 5188 5189 llvm::Type* InitType = Init->getType(); 5190 llvm::Constant *Entry = 5191 GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative)); 5192 5193 // Strip off pointer casts if we got them. 5194 Entry = Entry->stripPointerCasts(); 5195 5196 // Entry is now either a Function or GlobalVariable. 5197 auto *GV = dyn_cast<llvm::GlobalVariable>(Entry); 5198 5199 // We have a definition after a declaration with the wrong type. 5200 // We must make a new GlobalVariable* and update everything that used OldGV 5201 // (a declaration or tentative definition) with the new GlobalVariable* 5202 // (which will be a definition). 5203 // 5204 // This happens if there is a prototype for a global (e.g. 5205 // "extern int x[];") and then a definition of a different type (e.g. 5206 // "int x[10];"). This also happens when an initializer has a different type 5207 // from the type of the global (this happens with unions). 5208 if (!GV || GV->getValueType() != InitType || 5209 GV->getType()->getAddressSpace() != 5210 getContext().getTargetAddressSpace(GetGlobalVarAddressSpace(D))) { 5211 5212 // Move the old entry aside so that we'll create a new one. 5213 Entry->setName(StringRef()); 5214 5215 // Make a new global with the correct type, this is now guaranteed to work. 5216 GV = cast<llvm::GlobalVariable>( 5217 GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative)) 5218 ->stripPointerCasts()); 5219 5220 // Replace all uses of the old global with the new global 5221 llvm::Constant *NewPtrForOldDecl = 5222 llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, 5223 Entry->getType()); 5224 Entry->replaceAllUsesWith(NewPtrForOldDecl); 5225 5226 // Erase the old global, since it is no longer used. 5227 cast<llvm::GlobalValue>(Entry)->eraseFromParent(); 5228 } 5229 5230 MaybeHandleStaticInExternC(D, GV); 5231 5232 if (D->hasAttr<AnnotateAttr>()) 5233 AddGlobalAnnotations(D, GV); 5234 5235 // Set the llvm linkage type as appropriate. 5236 llvm::GlobalValue::LinkageTypes Linkage = 5237 getLLVMLinkageVarDefinition(D, GV->isConstant()); 5238 5239 // CUDA B.2.1 "The __device__ qualifier declares a variable that resides on 5240 // the device. [...]" 5241 // CUDA B.2.2 "The __constant__ qualifier, optionally used together with 5242 // __device__, declares a variable that: [...] 5243 // Is accessible from all the threads within the grid and from the host 5244 // through the runtime library (cudaGetSymbolAddress() / cudaGetSymbolSize() 5245 // / cudaMemcpyToSymbol() / cudaMemcpyFromSymbol())." 5246 if (LangOpts.CUDA) { 5247 if (LangOpts.CUDAIsDevice) { 5248 if (Linkage != llvm::GlobalValue::InternalLinkage && 5249 (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>() || 5250 D->getType()->isCUDADeviceBuiltinSurfaceType() || 5251 D->getType()->isCUDADeviceBuiltinTextureType())) 5252 GV->setExternallyInitialized(true); 5253 } else { 5254 getCUDARuntime().internalizeDeviceSideVar(D, Linkage); 5255 } 5256 getCUDARuntime().handleVarRegistration(D, *GV); 5257 } 5258 5259 GV->setInitializer(Init); 5260 if (emitter) 5261 emitter->finalize(GV); 5262 5263 // If it is safe to mark the global 'constant', do so now. 5264 GV->setConstant(!NeedsGlobalCtor && !NeedsGlobalDtor && 5265 isTypeConstant(D->getType(), true, true)); 5266 5267 // If it is in a read-only section, mark it 'constant'. 5268 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) { 5269 const ASTContext::SectionInfo &SI = Context.SectionInfos[SA->getName()]; 5270 if ((SI.SectionFlags & ASTContext::PSF_Write) == 0) 5271 GV->setConstant(true); 5272 } 5273 5274 CharUnits AlignVal = getContext().getDeclAlign(D); 5275 // Check for alignment specifed in an 'omp allocate' directive. 5276 if (std::optional<CharUnits> AlignValFromAllocate = 5277 getOMPAllocateAlignment(D)) 5278 AlignVal = *AlignValFromAllocate; 5279 GV->setAlignment(AlignVal.getAsAlign()); 5280 5281 // On Darwin, unlike other Itanium C++ ABI platforms, the thread-wrapper 5282 // function is only defined alongside the variable, not also alongside 5283 // callers. Normally, all accesses to a thread_local go through the 5284 // thread-wrapper in order to ensure initialization has occurred, underlying 5285 // variable will never be used other than the thread-wrapper, so it can be 5286 // converted to internal linkage. 5287 // 5288 // However, if the variable has the 'constinit' attribute, it _can_ be 5289 // referenced directly, without calling the thread-wrapper, so the linkage 5290 // must not be changed. 5291 // 5292 // Additionally, if the variable isn't plain external linkage, e.g. if it's 5293 // weak or linkonce, the de-duplication semantics are important to preserve, 5294 // so we don't change the linkage. 5295 if (D->getTLSKind() == VarDecl::TLS_Dynamic && 5296 Linkage == llvm::GlobalValue::ExternalLinkage && 5297 Context.getTargetInfo().getTriple().isOSDarwin() && 5298 !D->hasAttr<ConstInitAttr>()) 5299 Linkage = llvm::GlobalValue::InternalLinkage; 5300 5301 GV->setLinkage(Linkage); 5302 if (D->hasAttr<DLLImportAttr>()) 5303 GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass); 5304 else if (D->hasAttr<DLLExportAttr>()) 5305 GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass); 5306 else 5307 GV->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass); 5308 5309 if (Linkage == llvm::GlobalVariable::CommonLinkage) { 5310 // common vars aren't constant even if declared const. 5311 GV->setConstant(false); 5312 // Tentative definition of global variables may be initialized with 5313 // non-zero null pointers. In this case they should have weak linkage 5314 // since common linkage must have zero initializer and must not have 5315 // explicit section therefore cannot have non-zero initial value. 5316 if (!GV->getInitializer()->isNullValue()) 5317 GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage); 5318 } 5319 5320 setNonAliasAttributes(D, GV); 5321 5322 if (D->getTLSKind() && !GV->isThreadLocal()) { 5323 if (D->getTLSKind() == VarDecl::TLS_Dynamic) 5324 CXXThreadLocals.push_back(D); 5325 setTLSMode(GV, *D); 5326 } 5327 5328 maybeSetTrivialComdat(*D, *GV); 5329 5330 // Emit the initializer function if necessary. 5331 if (NeedsGlobalCtor || NeedsGlobalDtor) 5332 EmitCXXGlobalVarDeclInitFunc(D, GV, NeedsGlobalCtor); 5333 5334 SanitizerMD->reportGlobal(GV, *D, NeedsGlobalCtor); 5335 5336 // Emit global variable debug information. 5337 if (CGDebugInfo *DI = getModuleDebugInfo()) 5338 if (getCodeGenOpts().hasReducedDebugInfo()) 5339 DI->EmitGlobalVariable(GV, D); 5340 } 5341 5342 void CodeGenModule::EmitExternalVarDeclaration(const VarDecl *D) { 5343 if (CGDebugInfo *DI = getModuleDebugInfo()) 5344 if (getCodeGenOpts().hasReducedDebugInfo()) { 5345 QualType ASTTy = D->getType(); 5346 llvm::Type *Ty = getTypes().ConvertTypeForMem(D->getType()); 5347 llvm::Constant *GV = 5348 GetOrCreateLLVMGlobal(D->getName(), Ty, ASTTy.getAddressSpace(), D); 5349 DI->EmitExternalVariable( 5350 cast<llvm::GlobalVariable>(GV->stripPointerCasts()), D); 5351 } 5352 } 5353 5354 static bool isVarDeclStrongDefinition(const ASTContext &Context, 5355 CodeGenModule &CGM, const VarDecl *D, 5356 bool NoCommon) { 5357 // Don't give variables common linkage if -fno-common was specified unless it 5358 // was overridden by a NoCommon attribute. 5359 if ((NoCommon || D->hasAttr<NoCommonAttr>()) && !D->hasAttr<CommonAttr>()) 5360 return true; 5361 5362 // C11 6.9.2/2: 5363 // A declaration of an identifier for an object that has file scope without 5364 // an initializer, and without a storage-class specifier or with the 5365 // storage-class specifier static, constitutes a tentative definition. 5366 if (D->getInit() || D->hasExternalStorage()) 5367 return true; 5368 5369 // A variable cannot be both common and exist in a section. 5370 if (D->hasAttr<SectionAttr>()) 5371 return true; 5372 5373 // A variable cannot be both common and exist in a section. 5374 // We don't try to determine which is the right section in the front-end. 5375 // If no specialized section name is applicable, it will resort to default. 5376 if (D->hasAttr<PragmaClangBSSSectionAttr>() || 5377 D->hasAttr<PragmaClangDataSectionAttr>() || 5378 D->hasAttr<PragmaClangRelroSectionAttr>() || 5379 D->hasAttr<PragmaClangRodataSectionAttr>()) 5380 return true; 5381 5382 // Thread local vars aren't considered common linkage. 5383 if (D->getTLSKind()) 5384 return true; 5385 5386 // Tentative definitions marked with WeakImportAttr are true definitions. 5387 if (D->hasAttr<WeakImportAttr>()) 5388 return true; 5389 5390 // A variable cannot be both common and exist in a comdat. 5391 if (shouldBeInCOMDAT(CGM, *D)) 5392 return true; 5393 5394 // Declarations with a required alignment do not have common linkage in MSVC 5395 // mode. 5396 if (Context.getTargetInfo().getCXXABI().isMicrosoft()) { 5397 if (D->hasAttr<AlignedAttr>()) 5398 return true; 5399 QualType VarType = D->getType(); 5400 if (Context.isAlignmentRequired(VarType)) 5401 return true; 5402 5403 if (const auto *RT = VarType->getAs<RecordType>()) { 5404 const RecordDecl *RD = RT->getDecl(); 5405 for (const FieldDecl *FD : RD->fields()) { 5406 if (FD->isBitField()) 5407 continue; 5408 if (FD->hasAttr<AlignedAttr>()) 5409 return true; 5410 if (Context.isAlignmentRequired(FD->getType())) 5411 return true; 5412 } 5413 } 5414 } 5415 5416 // Microsoft's link.exe doesn't support alignments greater than 32 bytes for 5417 // common symbols, so symbols with greater alignment requirements cannot be 5418 // common. 5419 // Other COFF linkers (ld.bfd and LLD) support arbitrary power-of-two 5420 // alignments for common symbols via the aligncomm directive, so this 5421 // restriction only applies to MSVC environments. 5422 if (Context.getTargetInfo().getTriple().isKnownWindowsMSVCEnvironment() && 5423 Context.getTypeAlignIfKnown(D->getType()) > 5424 Context.toBits(CharUnits::fromQuantity(32))) 5425 return true; 5426 5427 return false; 5428 } 5429 5430 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageForDeclarator( 5431 const DeclaratorDecl *D, GVALinkage Linkage, bool IsConstantVariable) { 5432 if (Linkage == GVA_Internal) 5433 return llvm::Function::InternalLinkage; 5434 5435 if (D->hasAttr<WeakAttr>()) 5436 return llvm::GlobalVariable::WeakAnyLinkage; 5437 5438 if (const auto *FD = D->getAsFunction()) 5439 if (FD->isMultiVersion() && Linkage == GVA_AvailableExternally) 5440 return llvm::GlobalVariable::LinkOnceAnyLinkage; 5441 5442 // We are guaranteed to have a strong definition somewhere else, 5443 // so we can use available_externally linkage. 5444 if (Linkage == GVA_AvailableExternally) 5445 return llvm::GlobalValue::AvailableExternallyLinkage; 5446 5447 // Note that Apple's kernel linker doesn't support symbol 5448 // coalescing, so we need to avoid linkonce and weak linkages there. 5449 // Normally, this means we just map to internal, but for explicit 5450 // instantiations we'll map to external. 5451 5452 // In C++, the compiler has to emit a definition in every translation unit 5453 // that references the function. We should use linkonce_odr because 5454 // a) if all references in this translation unit are optimized away, we 5455 // don't need to codegen it. b) if the function persists, it needs to be 5456 // merged with other definitions. c) C++ has the ODR, so we know the 5457 // definition is dependable. 5458 if (Linkage == GVA_DiscardableODR) 5459 return !Context.getLangOpts().AppleKext ? llvm::Function::LinkOnceODRLinkage 5460 : llvm::Function::InternalLinkage; 5461 5462 // An explicit instantiation of a template has weak linkage, since 5463 // explicit instantiations can occur in multiple translation units 5464 // and must all be equivalent. However, we are not allowed to 5465 // throw away these explicit instantiations. 5466 // 5467 // CUDA/HIP: For -fno-gpu-rdc case, device code is limited to one TU, 5468 // so say that CUDA templates are either external (for kernels) or internal. 5469 // This lets llvm perform aggressive inter-procedural optimizations. For 5470 // -fgpu-rdc case, device function calls across multiple TU's are allowed, 5471 // therefore we need to follow the normal linkage paradigm. 5472 if (Linkage == GVA_StrongODR) { 5473 if (getLangOpts().AppleKext) 5474 return llvm::Function::ExternalLinkage; 5475 if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice && 5476 !getLangOpts().GPURelocatableDeviceCode) 5477 return D->hasAttr<CUDAGlobalAttr>() ? llvm::Function::ExternalLinkage 5478 : llvm::Function::InternalLinkage; 5479 return llvm::Function::WeakODRLinkage; 5480 } 5481 5482 // C++ doesn't have tentative definitions and thus cannot have common 5483 // linkage. 5484 if (!getLangOpts().CPlusPlus && isa<VarDecl>(D) && 5485 !isVarDeclStrongDefinition(Context, *this, cast<VarDecl>(D), 5486 CodeGenOpts.NoCommon)) 5487 return llvm::GlobalVariable::CommonLinkage; 5488 5489 // selectany symbols are externally visible, so use weak instead of 5490 // linkonce. MSVC optimizes away references to const selectany globals, so 5491 // all definitions should be the same and ODR linkage should be used. 5492 // http://msdn.microsoft.com/en-us/library/5tkz6s71.aspx 5493 if (D->hasAttr<SelectAnyAttr>()) 5494 return llvm::GlobalVariable::WeakODRLinkage; 5495 5496 // Otherwise, we have strong external linkage. 5497 assert(Linkage == GVA_StrongExternal); 5498 return llvm::GlobalVariable::ExternalLinkage; 5499 } 5500 5501 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageVarDefinition( 5502 const VarDecl *VD, bool IsConstant) { 5503 GVALinkage Linkage = getContext().GetGVALinkageForVariable(VD); 5504 return getLLVMLinkageForDeclarator(VD, Linkage, IsConstant); 5505 } 5506 5507 /// Replace the uses of a function that was declared with a non-proto type. 5508 /// We want to silently drop extra arguments from call sites 5509 static void replaceUsesOfNonProtoConstant(llvm::Constant *old, 5510 llvm::Function *newFn) { 5511 // Fast path. 5512 if (old->use_empty()) return; 5513 5514 llvm::Type *newRetTy = newFn->getReturnType(); 5515 SmallVector<llvm::Value*, 4> newArgs; 5516 5517 for (llvm::Value::use_iterator ui = old->use_begin(), ue = old->use_end(); 5518 ui != ue; ) { 5519 llvm::Value::use_iterator use = ui++; // Increment before the use is erased. 5520 llvm::User *user = use->getUser(); 5521 5522 // Recognize and replace uses of bitcasts. Most calls to 5523 // unprototyped functions will use bitcasts. 5524 if (auto *bitcast = dyn_cast<llvm::ConstantExpr>(user)) { 5525 if (bitcast->getOpcode() == llvm::Instruction::BitCast) 5526 replaceUsesOfNonProtoConstant(bitcast, newFn); 5527 continue; 5528 } 5529 5530 // Recognize calls to the function. 5531 llvm::CallBase *callSite = dyn_cast<llvm::CallBase>(user); 5532 if (!callSite) continue; 5533 if (!callSite->isCallee(&*use)) 5534 continue; 5535 5536 // If the return types don't match exactly, then we can't 5537 // transform this call unless it's dead. 5538 if (callSite->getType() != newRetTy && !callSite->use_empty()) 5539 continue; 5540 5541 // Get the call site's attribute list. 5542 SmallVector<llvm::AttributeSet, 8> newArgAttrs; 5543 llvm::AttributeList oldAttrs = callSite->getAttributes(); 5544 5545 // If the function was passed too few arguments, don't transform. 5546 unsigned newNumArgs = newFn->arg_size(); 5547 if (callSite->arg_size() < newNumArgs) 5548 continue; 5549 5550 // If extra arguments were passed, we silently drop them. 5551 // If any of the types mismatch, we don't transform. 5552 unsigned argNo = 0; 5553 bool dontTransform = false; 5554 for (llvm::Argument &A : newFn->args()) { 5555 if (callSite->getArgOperand(argNo)->getType() != A.getType()) { 5556 dontTransform = true; 5557 break; 5558 } 5559 5560 // Add any parameter attributes. 5561 newArgAttrs.push_back(oldAttrs.getParamAttrs(argNo)); 5562 argNo++; 5563 } 5564 if (dontTransform) 5565 continue; 5566 5567 // Okay, we can transform this. Create the new call instruction and copy 5568 // over the required information. 5569 newArgs.append(callSite->arg_begin(), callSite->arg_begin() + argNo); 5570 5571 // Copy over any operand bundles. 5572 SmallVector<llvm::OperandBundleDef, 1> newBundles; 5573 callSite->getOperandBundlesAsDefs(newBundles); 5574 5575 llvm::CallBase *newCall; 5576 if (isa<llvm::CallInst>(callSite)) { 5577 newCall = 5578 llvm::CallInst::Create(newFn, newArgs, newBundles, "", callSite); 5579 } else { 5580 auto *oldInvoke = cast<llvm::InvokeInst>(callSite); 5581 newCall = llvm::InvokeInst::Create(newFn, oldInvoke->getNormalDest(), 5582 oldInvoke->getUnwindDest(), newArgs, 5583 newBundles, "", callSite); 5584 } 5585 newArgs.clear(); // for the next iteration 5586 5587 if (!newCall->getType()->isVoidTy()) 5588 newCall->takeName(callSite); 5589 newCall->setAttributes( 5590 llvm::AttributeList::get(newFn->getContext(), oldAttrs.getFnAttrs(), 5591 oldAttrs.getRetAttrs(), newArgAttrs)); 5592 newCall->setCallingConv(callSite->getCallingConv()); 5593 5594 // Finally, remove the old call, replacing any uses with the new one. 5595 if (!callSite->use_empty()) 5596 callSite->replaceAllUsesWith(newCall); 5597 5598 // Copy debug location attached to CI. 5599 if (callSite->getDebugLoc()) 5600 newCall->setDebugLoc(callSite->getDebugLoc()); 5601 5602 callSite->eraseFromParent(); 5603 } 5604 } 5605 5606 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we 5607 /// implement a function with no prototype, e.g. "int foo() {}". If there are 5608 /// existing call uses of the old function in the module, this adjusts them to 5609 /// call the new function directly. 5610 /// 5611 /// This is not just a cleanup: the always_inline pass requires direct calls to 5612 /// functions to be able to inline them. If there is a bitcast in the way, it 5613 /// won't inline them. Instcombine normally deletes these calls, but it isn't 5614 /// run at -O0. 5615 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old, 5616 llvm::Function *NewFn) { 5617 // If we're redefining a global as a function, don't transform it. 5618 if (!isa<llvm::Function>(Old)) return; 5619 5620 replaceUsesOfNonProtoConstant(Old, NewFn); 5621 } 5622 5623 void CodeGenModule::HandleCXXStaticMemberVarInstantiation(VarDecl *VD) { 5624 auto DK = VD->isThisDeclarationADefinition(); 5625 if (DK == VarDecl::Definition && VD->hasAttr<DLLImportAttr>()) 5626 return; 5627 5628 TemplateSpecializationKind TSK = VD->getTemplateSpecializationKind(); 5629 // If we have a definition, this might be a deferred decl. If the 5630 // instantiation is explicit, make sure we emit it at the end. 5631 if (VD->getDefinition() && TSK == TSK_ExplicitInstantiationDefinition) 5632 GetAddrOfGlobalVar(VD); 5633 5634 EmitTopLevelDecl(VD); 5635 } 5636 5637 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD, 5638 llvm::GlobalValue *GV) { 5639 const auto *D = cast<FunctionDecl>(GD.getDecl()); 5640 5641 // Compute the function info and LLVM type. 5642 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 5643 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 5644 5645 // Get or create the prototype for the function. 5646 if (!GV || (GV->getValueType() != Ty)) 5647 GV = cast<llvm::GlobalValue>(GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, 5648 /*DontDefer=*/true, 5649 ForDefinition)); 5650 5651 // Already emitted. 5652 if (!GV->isDeclaration()) 5653 return; 5654 5655 // We need to set linkage and visibility on the function before 5656 // generating code for it because various parts of IR generation 5657 // want to propagate this information down (e.g. to local static 5658 // declarations). 5659 auto *Fn = cast<llvm::Function>(GV); 5660 setFunctionLinkage(GD, Fn); 5661 5662 // FIXME: this is redundant with part of setFunctionDefinitionAttributes 5663 setGVProperties(Fn, GD); 5664 5665 MaybeHandleStaticInExternC(D, Fn); 5666 5667 maybeSetTrivialComdat(*D, *Fn); 5668 5669 CodeGenFunction(*this).GenerateCode(GD, Fn, FI); 5670 5671 setNonAliasAttributes(GD, Fn); 5672 SetLLVMFunctionAttributesForDefinition(D, Fn); 5673 5674 if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>()) 5675 AddGlobalCtor(Fn, CA->getPriority()); 5676 if (const DestructorAttr *DA = D->getAttr<DestructorAttr>()) 5677 AddGlobalDtor(Fn, DA->getPriority(), true); 5678 if (D->hasAttr<AnnotateAttr>()) 5679 AddGlobalAnnotations(D, Fn); 5680 } 5681 5682 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) { 5683 const auto *D = cast<ValueDecl>(GD.getDecl()); 5684 const AliasAttr *AA = D->getAttr<AliasAttr>(); 5685 assert(AA && "Not an alias?"); 5686 5687 StringRef MangledName = getMangledName(GD); 5688 5689 if (AA->getAliasee() == MangledName) { 5690 Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0; 5691 return; 5692 } 5693 5694 // If there is a definition in the module, then it wins over the alias. 5695 // This is dubious, but allow it to be safe. Just ignore the alias. 5696 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 5697 if (Entry && !Entry->isDeclaration()) 5698 return; 5699 5700 Aliases.push_back(GD); 5701 5702 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType()); 5703 5704 // Create a reference to the named value. This ensures that it is emitted 5705 // if a deferred decl. 5706 llvm::Constant *Aliasee; 5707 llvm::GlobalValue::LinkageTypes LT; 5708 if (isa<llvm::FunctionType>(DeclTy)) { 5709 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GD, 5710 /*ForVTable=*/false); 5711 LT = getFunctionLinkage(GD); 5712 } else { 5713 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), DeclTy, LangAS::Default, 5714 /*D=*/nullptr); 5715 if (const auto *VD = dyn_cast<VarDecl>(GD.getDecl())) 5716 LT = getLLVMLinkageVarDefinition(VD, D->getType().isConstQualified()); 5717 else 5718 LT = getFunctionLinkage(GD); 5719 } 5720 5721 // Create the new alias itself, but don't set a name yet. 5722 unsigned AS = Aliasee->getType()->getPointerAddressSpace(); 5723 auto *GA = 5724 llvm::GlobalAlias::create(DeclTy, AS, LT, "", Aliasee, &getModule()); 5725 5726 if (Entry) { 5727 if (GA->getAliasee() == Entry) { 5728 Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0; 5729 return; 5730 } 5731 5732 assert(Entry->isDeclaration()); 5733 5734 // If there is a declaration in the module, then we had an extern followed 5735 // by the alias, as in: 5736 // extern int test6(); 5737 // ... 5738 // int test6() __attribute__((alias("test7"))); 5739 // 5740 // Remove it and replace uses of it with the alias. 5741 GA->takeName(Entry); 5742 5743 Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA, 5744 Entry->getType())); 5745 Entry->eraseFromParent(); 5746 } else { 5747 GA->setName(MangledName); 5748 } 5749 5750 // Set attributes which are particular to an alias; this is a 5751 // specialization of the attributes which may be set on a global 5752 // variable/function. 5753 if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakRefAttr>() || 5754 D->isWeakImported()) { 5755 GA->setLinkage(llvm::Function::WeakAnyLinkage); 5756 } 5757 5758 if (const auto *VD = dyn_cast<VarDecl>(D)) 5759 if (VD->getTLSKind()) 5760 setTLSMode(GA, *VD); 5761 5762 SetCommonAttributes(GD, GA); 5763 5764 // Emit global alias debug information. 5765 if (isa<VarDecl>(D)) 5766 if (CGDebugInfo *DI = getModuleDebugInfo()) 5767 DI->EmitGlobalAlias(cast<llvm::GlobalValue>(GA->getAliasee()->stripPointerCasts()), GD); 5768 } 5769 5770 void CodeGenModule::emitIFuncDefinition(GlobalDecl GD) { 5771 const auto *D = cast<ValueDecl>(GD.getDecl()); 5772 const IFuncAttr *IFA = D->getAttr<IFuncAttr>(); 5773 assert(IFA && "Not an ifunc?"); 5774 5775 StringRef MangledName = getMangledName(GD); 5776 5777 if (IFA->getResolver() == MangledName) { 5778 Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1; 5779 return; 5780 } 5781 5782 // Report an error if some definition overrides ifunc. 5783 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 5784 if (Entry && !Entry->isDeclaration()) { 5785 GlobalDecl OtherGD; 5786 if (lookupRepresentativeDecl(MangledName, OtherGD) && 5787 DiagnosedConflictingDefinitions.insert(GD).second) { 5788 Diags.Report(D->getLocation(), diag::err_duplicate_mangled_name) 5789 << MangledName; 5790 Diags.Report(OtherGD.getDecl()->getLocation(), 5791 diag::note_previous_definition); 5792 } 5793 return; 5794 } 5795 5796 Aliases.push_back(GD); 5797 5798 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType()); 5799 llvm::Type *ResolverTy = llvm::GlobalIFunc::getResolverFunctionType(DeclTy); 5800 llvm::Constant *Resolver = 5801 GetOrCreateLLVMFunction(IFA->getResolver(), ResolverTy, {}, 5802 /*ForVTable=*/false); 5803 llvm::GlobalIFunc *GIF = 5804 llvm::GlobalIFunc::create(DeclTy, 0, llvm::Function::ExternalLinkage, 5805 "", Resolver, &getModule()); 5806 if (Entry) { 5807 if (GIF->getResolver() == Entry) { 5808 Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1; 5809 return; 5810 } 5811 assert(Entry->isDeclaration()); 5812 5813 // If there is a declaration in the module, then we had an extern followed 5814 // by the ifunc, as in: 5815 // extern int test(); 5816 // ... 5817 // int test() __attribute__((ifunc("resolver"))); 5818 // 5819 // Remove it and replace uses of it with the ifunc. 5820 GIF->takeName(Entry); 5821 5822 Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GIF, 5823 Entry->getType())); 5824 Entry->eraseFromParent(); 5825 } else 5826 GIF->setName(MangledName); 5827 5828 SetCommonAttributes(GD, GIF); 5829 } 5830 5831 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID, 5832 ArrayRef<llvm::Type*> Tys) { 5833 return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID, 5834 Tys); 5835 } 5836 5837 static llvm::StringMapEntry<llvm::GlobalVariable *> & 5838 GetConstantCFStringEntry(llvm::StringMap<llvm::GlobalVariable *> &Map, 5839 const StringLiteral *Literal, bool TargetIsLSB, 5840 bool &IsUTF16, unsigned &StringLength) { 5841 StringRef String = Literal->getString(); 5842 unsigned NumBytes = String.size(); 5843 5844 // Check for simple case. 5845 if (!Literal->containsNonAsciiOrNull()) { 5846 StringLength = NumBytes; 5847 return *Map.insert(std::make_pair(String, nullptr)).first; 5848 } 5849 5850 // Otherwise, convert the UTF8 literals into a string of shorts. 5851 IsUTF16 = true; 5852 5853 SmallVector<llvm::UTF16, 128> ToBuf(NumBytes + 1); // +1 for ending nulls. 5854 const llvm::UTF8 *FromPtr = (const llvm::UTF8 *)String.data(); 5855 llvm::UTF16 *ToPtr = &ToBuf[0]; 5856 5857 (void)llvm::ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, &ToPtr, 5858 ToPtr + NumBytes, llvm::strictConversion); 5859 5860 // ConvertUTF8toUTF16 returns the length in ToPtr. 5861 StringLength = ToPtr - &ToBuf[0]; 5862 5863 // Add an explicit null. 5864 *ToPtr = 0; 5865 return *Map.insert(std::make_pair( 5866 StringRef(reinterpret_cast<const char *>(ToBuf.data()), 5867 (StringLength + 1) * 2), 5868 nullptr)).first; 5869 } 5870 5871 ConstantAddress 5872 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) { 5873 unsigned StringLength = 0; 5874 bool isUTF16 = false; 5875 llvm::StringMapEntry<llvm::GlobalVariable *> &Entry = 5876 GetConstantCFStringEntry(CFConstantStringMap, Literal, 5877 getDataLayout().isLittleEndian(), isUTF16, 5878 StringLength); 5879 5880 if (auto *C = Entry.second) 5881 return ConstantAddress( 5882 C, C->getValueType(), CharUnits::fromQuantity(C->getAlignment())); 5883 5884 llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty); 5885 llvm::Constant *Zeros[] = { Zero, Zero }; 5886 5887 const ASTContext &Context = getContext(); 5888 const llvm::Triple &Triple = getTriple(); 5889 5890 const auto CFRuntime = getLangOpts().CFRuntime; 5891 const bool IsSwiftABI = 5892 static_cast<unsigned>(CFRuntime) >= 5893 static_cast<unsigned>(LangOptions::CoreFoundationABI::Swift); 5894 const bool IsSwift4_1 = CFRuntime == LangOptions::CoreFoundationABI::Swift4_1; 5895 5896 // If we don't already have it, get __CFConstantStringClassReference. 5897 if (!CFConstantStringClassRef) { 5898 const char *CFConstantStringClassName = "__CFConstantStringClassReference"; 5899 llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy); 5900 Ty = llvm::ArrayType::get(Ty, 0); 5901 5902 switch (CFRuntime) { 5903 default: break; 5904 case LangOptions::CoreFoundationABI::Swift: [[fallthrough]]; 5905 case LangOptions::CoreFoundationABI::Swift5_0: 5906 CFConstantStringClassName = 5907 Triple.isOSDarwin() ? "$s15SwiftFoundation19_NSCFConstantStringCN" 5908 : "$s10Foundation19_NSCFConstantStringCN"; 5909 Ty = IntPtrTy; 5910 break; 5911 case LangOptions::CoreFoundationABI::Swift4_2: 5912 CFConstantStringClassName = 5913 Triple.isOSDarwin() ? "$S15SwiftFoundation19_NSCFConstantStringCN" 5914 : "$S10Foundation19_NSCFConstantStringCN"; 5915 Ty = IntPtrTy; 5916 break; 5917 case LangOptions::CoreFoundationABI::Swift4_1: 5918 CFConstantStringClassName = 5919 Triple.isOSDarwin() ? "__T015SwiftFoundation19_NSCFConstantStringCN" 5920 : "__T010Foundation19_NSCFConstantStringCN"; 5921 Ty = IntPtrTy; 5922 break; 5923 } 5924 5925 llvm::Constant *C = CreateRuntimeVariable(Ty, CFConstantStringClassName); 5926 5927 if (Triple.isOSBinFormatELF() || Triple.isOSBinFormatCOFF()) { 5928 llvm::GlobalValue *GV = nullptr; 5929 5930 if ((GV = dyn_cast<llvm::GlobalValue>(C))) { 5931 IdentifierInfo &II = Context.Idents.get(GV->getName()); 5932 TranslationUnitDecl *TUDecl = Context.getTranslationUnitDecl(); 5933 DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl); 5934 5935 const VarDecl *VD = nullptr; 5936 for (const auto *Result : DC->lookup(&II)) 5937 if ((VD = dyn_cast<VarDecl>(Result))) 5938 break; 5939 5940 if (Triple.isOSBinFormatELF()) { 5941 if (!VD) 5942 GV->setLinkage(llvm::GlobalValue::ExternalLinkage); 5943 } else { 5944 GV->setLinkage(llvm::GlobalValue::ExternalLinkage); 5945 if (!VD || !VD->hasAttr<DLLExportAttr>()) 5946 GV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass); 5947 else 5948 GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass); 5949 } 5950 5951 setDSOLocal(GV); 5952 } 5953 } 5954 5955 // Decay array -> ptr 5956 CFConstantStringClassRef = 5957 IsSwiftABI ? llvm::ConstantExpr::getPtrToInt(C, Ty) 5958 : llvm::ConstantExpr::getGetElementPtr(Ty, C, Zeros); 5959 } 5960 5961 QualType CFTy = Context.getCFConstantStringType(); 5962 5963 auto *STy = cast<llvm::StructType>(getTypes().ConvertType(CFTy)); 5964 5965 ConstantInitBuilder Builder(*this); 5966 auto Fields = Builder.beginStruct(STy); 5967 5968 // Class pointer. 5969 Fields.add(cast<llvm::Constant>(CFConstantStringClassRef)); 5970 5971 // Flags. 5972 if (IsSwiftABI) { 5973 Fields.addInt(IntPtrTy, IsSwift4_1 ? 0x05 : 0x01); 5974 Fields.addInt(Int64Ty, isUTF16 ? 0x07d0 : 0x07c8); 5975 } else { 5976 Fields.addInt(IntTy, isUTF16 ? 0x07d0 : 0x07C8); 5977 } 5978 5979 // String pointer. 5980 llvm::Constant *C = nullptr; 5981 if (isUTF16) { 5982 auto Arr = llvm::ArrayRef( 5983 reinterpret_cast<uint16_t *>(const_cast<char *>(Entry.first().data())), 5984 Entry.first().size() / 2); 5985 C = llvm::ConstantDataArray::get(VMContext, Arr); 5986 } else { 5987 C = llvm::ConstantDataArray::getString(VMContext, Entry.first()); 5988 } 5989 5990 // Note: -fwritable-strings doesn't make the backing store strings of 5991 // CFStrings writable. 5992 auto *GV = 5993 new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true, 5994 llvm::GlobalValue::PrivateLinkage, C, ".str"); 5995 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 5996 // Don't enforce the target's minimum global alignment, since the only use 5997 // of the string is via this class initializer. 5998 CharUnits Align = isUTF16 ? Context.getTypeAlignInChars(Context.ShortTy) 5999 : Context.getTypeAlignInChars(Context.CharTy); 6000 GV->setAlignment(Align.getAsAlign()); 6001 6002 // FIXME: We set the section explicitly to avoid a bug in ld64 224.1. 6003 // Without it LLVM can merge the string with a non unnamed_addr one during 6004 // LTO. Doing that changes the section it ends in, which surprises ld64. 6005 if (Triple.isOSBinFormatMachO()) 6006 GV->setSection(isUTF16 ? "__TEXT,__ustring" 6007 : "__TEXT,__cstring,cstring_literals"); 6008 // Make sure the literal ends up in .rodata to allow for safe ICF and for 6009 // the static linker to adjust permissions to read-only later on. 6010 else if (Triple.isOSBinFormatELF()) 6011 GV->setSection(".rodata"); 6012 6013 // String. 6014 llvm::Constant *Str = 6015 llvm::ConstantExpr::getGetElementPtr(GV->getValueType(), GV, Zeros); 6016 6017 if (isUTF16) 6018 // Cast the UTF16 string to the correct type. 6019 Str = llvm::ConstantExpr::getBitCast(Str, Int8PtrTy); 6020 Fields.add(Str); 6021 6022 // String length. 6023 llvm::IntegerType *LengthTy = 6024 llvm::IntegerType::get(getModule().getContext(), 6025 Context.getTargetInfo().getLongWidth()); 6026 if (IsSwiftABI) { 6027 if (CFRuntime == LangOptions::CoreFoundationABI::Swift4_1 || 6028 CFRuntime == LangOptions::CoreFoundationABI::Swift4_2) 6029 LengthTy = Int32Ty; 6030 else 6031 LengthTy = IntPtrTy; 6032 } 6033 Fields.addInt(LengthTy, StringLength); 6034 6035 // Swift ABI requires 8-byte alignment to ensure that the _Atomic(uint64_t) is 6036 // properly aligned on 32-bit platforms. 6037 CharUnits Alignment = 6038 IsSwiftABI ? Context.toCharUnitsFromBits(64) : getPointerAlign(); 6039 6040 // The struct. 6041 GV = Fields.finishAndCreateGlobal("_unnamed_cfstring_", Alignment, 6042 /*isConstant=*/false, 6043 llvm::GlobalVariable::PrivateLinkage); 6044 GV->addAttribute("objc_arc_inert"); 6045 switch (Triple.getObjectFormat()) { 6046 case llvm::Triple::UnknownObjectFormat: 6047 llvm_unreachable("unknown file format"); 6048 case llvm::Triple::DXContainer: 6049 case llvm::Triple::GOFF: 6050 case llvm::Triple::SPIRV: 6051 case llvm::Triple::XCOFF: 6052 llvm_unreachable("unimplemented"); 6053 case llvm::Triple::COFF: 6054 case llvm::Triple::ELF: 6055 case llvm::Triple::Wasm: 6056 GV->setSection("cfstring"); 6057 break; 6058 case llvm::Triple::MachO: 6059 GV->setSection("__DATA,__cfstring"); 6060 break; 6061 } 6062 Entry.second = GV; 6063 6064 return ConstantAddress(GV, GV->getValueType(), Alignment); 6065 } 6066 6067 bool CodeGenModule::getExpressionLocationsEnabled() const { 6068 return !CodeGenOpts.EmitCodeView || CodeGenOpts.DebugColumnInfo; 6069 } 6070 6071 QualType CodeGenModule::getObjCFastEnumerationStateType() { 6072 if (ObjCFastEnumerationStateType.isNull()) { 6073 RecordDecl *D = Context.buildImplicitRecord("__objcFastEnumerationState"); 6074 D->startDefinition(); 6075 6076 QualType FieldTypes[] = { 6077 Context.UnsignedLongTy, 6078 Context.getPointerType(Context.getObjCIdType()), 6079 Context.getPointerType(Context.UnsignedLongTy), 6080 Context.getConstantArrayType(Context.UnsignedLongTy, 6081 llvm::APInt(32, 5), nullptr, ArrayType::Normal, 0) 6082 }; 6083 6084 for (size_t i = 0; i < 4; ++i) { 6085 FieldDecl *Field = FieldDecl::Create(Context, 6086 D, 6087 SourceLocation(), 6088 SourceLocation(), nullptr, 6089 FieldTypes[i], /*TInfo=*/nullptr, 6090 /*BitWidth=*/nullptr, 6091 /*Mutable=*/false, 6092 ICIS_NoInit); 6093 Field->setAccess(AS_public); 6094 D->addDecl(Field); 6095 } 6096 6097 D->completeDefinition(); 6098 ObjCFastEnumerationStateType = Context.getTagDeclType(D); 6099 } 6100 6101 return ObjCFastEnumerationStateType; 6102 } 6103 6104 llvm::Constant * 6105 CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) { 6106 assert(!E->getType()->isPointerType() && "Strings are always arrays"); 6107 6108 // Don't emit it as the address of the string, emit the string data itself 6109 // as an inline array. 6110 if (E->getCharByteWidth() == 1) { 6111 SmallString<64> Str(E->getString()); 6112 6113 // Resize the string to the right size, which is indicated by its type. 6114 const ConstantArrayType *CAT = Context.getAsConstantArrayType(E->getType()); 6115 assert(CAT && "String literal not of constant array type!"); 6116 Str.resize(CAT->getSize().getZExtValue()); 6117 return llvm::ConstantDataArray::getString(VMContext, Str, false); 6118 } 6119 6120 auto *AType = cast<llvm::ArrayType>(getTypes().ConvertType(E->getType())); 6121 llvm::Type *ElemTy = AType->getElementType(); 6122 unsigned NumElements = AType->getNumElements(); 6123 6124 // Wide strings have either 2-byte or 4-byte elements. 6125 if (ElemTy->getPrimitiveSizeInBits() == 16) { 6126 SmallVector<uint16_t, 32> Elements; 6127 Elements.reserve(NumElements); 6128 6129 for(unsigned i = 0, e = E->getLength(); i != e; ++i) 6130 Elements.push_back(E->getCodeUnit(i)); 6131 Elements.resize(NumElements); 6132 return llvm::ConstantDataArray::get(VMContext, Elements); 6133 } 6134 6135 assert(ElemTy->getPrimitiveSizeInBits() == 32); 6136 SmallVector<uint32_t, 32> Elements; 6137 Elements.reserve(NumElements); 6138 6139 for(unsigned i = 0, e = E->getLength(); i != e; ++i) 6140 Elements.push_back(E->getCodeUnit(i)); 6141 Elements.resize(NumElements); 6142 return llvm::ConstantDataArray::get(VMContext, Elements); 6143 } 6144 6145 static llvm::GlobalVariable * 6146 GenerateStringLiteral(llvm::Constant *C, llvm::GlobalValue::LinkageTypes LT, 6147 CodeGenModule &CGM, StringRef GlobalName, 6148 CharUnits Alignment) { 6149 unsigned AddrSpace = CGM.getContext().getTargetAddressSpace( 6150 CGM.GetGlobalConstantAddressSpace()); 6151 6152 llvm::Module &M = CGM.getModule(); 6153 // Create a global variable for this string 6154 auto *GV = new llvm::GlobalVariable( 6155 M, C->getType(), !CGM.getLangOpts().WritableStrings, LT, C, GlobalName, 6156 nullptr, llvm::GlobalVariable::NotThreadLocal, AddrSpace); 6157 GV->setAlignment(Alignment.getAsAlign()); 6158 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 6159 if (GV->isWeakForLinker()) { 6160 assert(CGM.supportsCOMDAT() && "Only COFF uses weak string literals"); 6161 GV->setComdat(M.getOrInsertComdat(GV->getName())); 6162 } 6163 CGM.setDSOLocal(GV); 6164 6165 return GV; 6166 } 6167 6168 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a 6169 /// constant array for the given string literal. 6170 ConstantAddress 6171 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S, 6172 StringRef Name) { 6173 CharUnits Alignment = getContext().getAlignOfGlobalVarInChars(S->getType()); 6174 6175 llvm::Constant *C = GetConstantArrayFromStringLiteral(S); 6176 llvm::GlobalVariable **Entry = nullptr; 6177 if (!LangOpts.WritableStrings) { 6178 Entry = &ConstantStringMap[C]; 6179 if (auto GV = *Entry) { 6180 if (uint64_t(Alignment.getQuantity()) > GV->getAlignment()) 6181 GV->setAlignment(Alignment.getAsAlign()); 6182 return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV), 6183 GV->getValueType(), Alignment); 6184 } 6185 } 6186 6187 SmallString<256> MangledNameBuffer; 6188 StringRef GlobalVariableName; 6189 llvm::GlobalValue::LinkageTypes LT; 6190 6191 // Mangle the string literal if that's how the ABI merges duplicate strings. 6192 // Don't do it if they are writable, since we don't want writes in one TU to 6193 // affect strings in another. 6194 if (getCXXABI().getMangleContext().shouldMangleStringLiteral(S) && 6195 !LangOpts.WritableStrings) { 6196 llvm::raw_svector_ostream Out(MangledNameBuffer); 6197 getCXXABI().getMangleContext().mangleStringLiteral(S, Out); 6198 LT = llvm::GlobalValue::LinkOnceODRLinkage; 6199 GlobalVariableName = MangledNameBuffer; 6200 } else { 6201 LT = llvm::GlobalValue::PrivateLinkage; 6202 GlobalVariableName = Name; 6203 } 6204 6205 auto GV = GenerateStringLiteral(C, LT, *this, GlobalVariableName, Alignment); 6206 6207 CGDebugInfo *DI = getModuleDebugInfo(); 6208 if (DI && getCodeGenOpts().hasReducedDebugInfo()) 6209 DI->AddStringLiteralDebugInfo(GV, S); 6210 6211 if (Entry) 6212 *Entry = GV; 6213 6214 SanitizerMD->reportGlobal(GV, S->getStrTokenLoc(0), "<string literal>"); 6215 6216 return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV), 6217 GV->getValueType(), Alignment); 6218 } 6219 6220 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant 6221 /// array for the given ObjCEncodeExpr node. 6222 ConstantAddress 6223 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) { 6224 std::string Str; 6225 getContext().getObjCEncodingForType(E->getEncodedType(), Str); 6226 6227 return GetAddrOfConstantCString(Str); 6228 } 6229 6230 /// GetAddrOfConstantCString - Returns a pointer to a character array containing 6231 /// the literal and a terminating '\0' character. 6232 /// The result has pointer to array type. 6233 ConstantAddress CodeGenModule::GetAddrOfConstantCString( 6234 const std::string &Str, const char *GlobalName) { 6235 StringRef StrWithNull(Str.c_str(), Str.size() + 1); 6236 CharUnits Alignment = 6237 getContext().getAlignOfGlobalVarInChars(getContext().CharTy); 6238 6239 llvm::Constant *C = 6240 llvm::ConstantDataArray::getString(getLLVMContext(), StrWithNull, false); 6241 6242 // Don't share any string literals if strings aren't constant. 6243 llvm::GlobalVariable **Entry = nullptr; 6244 if (!LangOpts.WritableStrings) { 6245 Entry = &ConstantStringMap[C]; 6246 if (auto GV = *Entry) { 6247 if (uint64_t(Alignment.getQuantity()) > GV->getAlignment()) 6248 GV->setAlignment(Alignment.getAsAlign()); 6249 return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV), 6250 GV->getValueType(), Alignment); 6251 } 6252 } 6253 6254 // Get the default prefix if a name wasn't specified. 6255 if (!GlobalName) 6256 GlobalName = ".str"; 6257 // Create a global variable for this. 6258 auto GV = GenerateStringLiteral(C, llvm::GlobalValue::PrivateLinkage, *this, 6259 GlobalName, Alignment); 6260 if (Entry) 6261 *Entry = GV; 6262 6263 return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV), 6264 GV->getValueType(), Alignment); 6265 } 6266 6267 ConstantAddress CodeGenModule::GetAddrOfGlobalTemporary( 6268 const MaterializeTemporaryExpr *E, const Expr *Init) { 6269 assert((E->getStorageDuration() == SD_Static || 6270 E->getStorageDuration() == SD_Thread) && "not a global temporary"); 6271 const auto *VD = cast<VarDecl>(E->getExtendingDecl()); 6272 6273 // If we're not materializing a subobject of the temporary, keep the 6274 // cv-qualifiers from the type of the MaterializeTemporaryExpr. 6275 QualType MaterializedType = Init->getType(); 6276 if (Init == E->getSubExpr()) 6277 MaterializedType = E->getType(); 6278 6279 CharUnits Align = getContext().getTypeAlignInChars(MaterializedType); 6280 6281 auto InsertResult = MaterializedGlobalTemporaryMap.insert({E, nullptr}); 6282 if (!InsertResult.second) { 6283 // We've seen this before: either we already created it or we're in the 6284 // process of doing so. 6285 if (!InsertResult.first->second) { 6286 // We recursively re-entered this function, probably during emission of 6287 // the initializer. Create a placeholder. We'll clean this up in the 6288 // outer call, at the end of this function. 6289 llvm::Type *Type = getTypes().ConvertTypeForMem(MaterializedType); 6290 InsertResult.first->second = new llvm::GlobalVariable( 6291 getModule(), Type, false, llvm::GlobalVariable::InternalLinkage, 6292 nullptr); 6293 } 6294 return ConstantAddress(InsertResult.first->second, 6295 llvm::cast<llvm::GlobalVariable>( 6296 InsertResult.first->second->stripPointerCasts()) 6297 ->getValueType(), 6298 Align); 6299 } 6300 6301 // FIXME: If an externally-visible declaration extends multiple temporaries, 6302 // we need to give each temporary the same name in every translation unit (and 6303 // we also need to make the temporaries externally-visible). 6304 SmallString<256> Name; 6305 llvm::raw_svector_ostream Out(Name); 6306 getCXXABI().getMangleContext().mangleReferenceTemporary( 6307 VD, E->getManglingNumber(), Out); 6308 6309 APValue *Value = nullptr; 6310 if (E->getStorageDuration() == SD_Static && VD && VD->evaluateValue()) { 6311 // If the initializer of the extending declaration is a constant 6312 // initializer, we should have a cached constant initializer for this 6313 // temporary. Note that this might have a different value from the value 6314 // computed by evaluating the initializer if the surrounding constant 6315 // expression modifies the temporary. 6316 Value = E->getOrCreateValue(false); 6317 } 6318 6319 // Try evaluating it now, it might have a constant initializer. 6320 Expr::EvalResult EvalResult; 6321 if (!Value && Init->EvaluateAsRValue(EvalResult, getContext()) && 6322 !EvalResult.hasSideEffects()) 6323 Value = &EvalResult.Val; 6324 6325 LangAS AddrSpace = 6326 VD ? GetGlobalVarAddressSpace(VD) : MaterializedType.getAddressSpace(); 6327 6328 std::optional<ConstantEmitter> emitter; 6329 llvm::Constant *InitialValue = nullptr; 6330 bool Constant = false; 6331 llvm::Type *Type; 6332 if (Value) { 6333 // The temporary has a constant initializer, use it. 6334 emitter.emplace(*this); 6335 InitialValue = emitter->emitForInitializer(*Value, AddrSpace, 6336 MaterializedType); 6337 Constant = isTypeConstant(MaterializedType, /*ExcludeCtor*/ Value, 6338 /*ExcludeDtor*/ false); 6339 Type = InitialValue->getType(); 6340 } else { 6341 // No initializer, the initialization will be provided when we 6342 // initialize the declaration which performed lifetime extension. 6343 Type = getTypes().ConvertTypeForMem(MaterializedType); 6344 } 6345 6346 // Create a global variable for this lifetime-extended temporary. 6347 llvm::GlobalValue::LinkageTypes Linkage = 6348 getLLVMLinkageVarDefinition(VD, Constant); 6349 if (Linkage == llvm::GlobalVariable::ExternalLinkage) { 6350 const VarDecl *InitVD; 6351 if (VD->isStaticDataMember() && VD->getAnyInitializer(InitVD) && 6352 isa<CXXRecordDecl>(InitVD->getLexicalDeclContext())) { 6353 // Temporaries defined inside a class get linkonce_odr linkage because the 6354 // class can be defined in multiple translation units. 6355 Linkage = llvm::GlobalVariable::LinkOnceODRLinkage; 6356 } else { 6357 // There is no need for this temporary to have external linkage if the 6358 // VarDecl has external linkage. 6359 Linkage = llvm::GlobalVariable::InternalLinkage; 6360 } 6361 } 6362 auto TargetAS = getContext().getTargetAddressSpace(AddrSpace); 6363 auto *GV = new llvm::GlobalVariable( 6364 getModule(), Type, Constant, Linkage, InitialValue, Name.c_str(), 6365 /*InsertBefore=*/nullptr, llvm::GlobalVariable::NotThreadLocal, TargetAS); 6366 if (emitter) emitter->finalize(GV); 6367 // Don't assign dllimport or dllexport to local linkage globals. 6368 if (!llvm::GlobalValue::isLocalLinkage(Linkage)) { 6369 setGVProperties(GV, VD); 6370 if (GV->getDLLStorageClass() == llvm::GlobalVariable::DLLExportStorageClass) 6371 // The reference temporary should never be dllexport. 6372 GV->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass); 6373 } 6374 GV->setAlignment(Align.getAsAlign()); 6375 if (supportsCOMDAT() && GV->isWeakForLinker()) 6376 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 6377 if (VD->getTLSKind()) 6378 setTLSMode(GV, *VD); 6379 llvm::Constant *CV = GV; 6380 if (AddrSpace != LangAS::Default) 6381 CV = getTargetCodeGenInfo().performAddrSpaceCast( 6382 *this, GV, AddrSpace, LangAS::Default, 6383 Type->getPointerTo( 6384 getContext().getTargetAddressSpace(LangAS::Default))); 6385 6386 // Update the map with the new temporary. If we created a placeholder above, 6387 // replace it with the new global now. 6388 llvm::Constant *&Entry = MaterializedGlobalTemporaryMap[E]; 6389 if (Entry) { 6390 Entry->replaceAllUsesWith( 6391 llvm::ConstantExpr::getBitCast(CV, Entry->getType())); 6392 llvm::cast<llvm::GlobalVariable>(Entry)->eraseFromParent(); 6393 } 6394 Entry = CV; 6395 6396 return ConstantAddress(CV, Type, Align); 6397 } 6398 6399 /// EmitObjCPropertyImplementations - Emit information for synthesized 6400 /// properties for an implementation. 6401 void CodeGenModule::EmitObjCPropertyImplementations(const 6402 ObjCImplementationDecl *D) { 6403 for (const auto *PID : D->property_impls()) { 6404 // Dynamic is just for type-checking. 6405 if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) { 6406 ObjCPropertyDecl *PD = PID->getPropertyDecl(); 6407 6408 // Determine which methods need to be implemented, some may have 6409 // been overridden. Note that ::isPropertyAccessor is not the method 6410 // we want, that just indicates if the decl came from a 6411 // property. What we want to know is if the method is defined in 6412 // this implementation. 6413 auto *Getter = PID->getGetterMethodDecl(); 6414 if (!Getter || Getter->isSynthesizedAccessorStub()) 6415 CodeGenFunction(*this).GenerateObjCGetter( 6416 const_cast<ObjCImplementationDecl *>(D), PID); 6417 auto *Setter = PID->getSetterMethodDecl(); 6418 if (!PD->isReadOnly() && (!Setter || Setter->isSynthesizedAccessorStub())) 6419 CodeGenFunction(*this).GenerateObjCSetter( 6420 const_cast<ObjCImplementationDecl *>(D), PID); 6421 } 6422 } 6423 } 6424 6425 static bool needsDestructMethod(ObjCImplementationDecl *impl) { 6426 const ObjCInterfaceDecl *iface = impl->getClassInterface(); 6427 for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin(); 6428 ivar; ivar = ivar->getNextIvar()) 6429 if (ivar->getType().isDestructedType()) 6430 return true; 6431 6432 return false; 6433 } 6434 6435 static bool AllTrivialInitializers(CodeGenModule &CGM, 6436 ObjCImplementationDecl *D) { 6437 CodeGenFunction CGF(CGM); 6438 for (ObjCImplementationDecl::init_iterator B = D->init_begin(), 6439 E = D->init_end(); B != E; ++B) { 6440 CXXCtorInitializer *CtorInitExp = *B; 6441 Expr *Init = CtorInitExp->getInit(); 6442 if (!CGF.isTrivialInitializer(Init)) 6443 return false; 6444 } 6445 return true; 6446 } 6447 6448 /// EmitObjCIvarInitializations - Emit information for ivar initialization 6449 /// for an implementation. 6450 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) { 6451 // We might need a .cxx_destruct even if we don't have any ivar initializers. 6452 if (needsDestructMethod(D)) { 6453 IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct"); 6454 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 6455 ObjCMethodDecl *DTORMethod = ObjCMethodDecl::Create( 6456 getContext(), D->getLocation(), D->getLocation(), cxxSelector, 6457 getContext().VoidTy, nullptr, D, 6458 /*isInstance=*/true, /*isVariadic=*/false, 6459 /*isPropertyAccessor=*/true, /*isSynthesizedAccessorStub=*/false, 6460 /*isImplicitlyDeclared=*/true, 6461 /*isDefined=*/false, ObjCMethodDecl::Required); 6462 D->addInstanceMethod(DTORMethod); 6463 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false); 6464 D->setHasDestructors(true); 6465 } 6466 6467 // If the implementation doesn't have any ivar initializers, we don't need 6468 // a .cxx_construct. 6469 if (D->getNumIvarInitializers() == 0 || 6470 AllTrivialInitializers(*this, D)) 6471 return; 6472 6473 IdentifierInfo *II = &getContext().Idents.get(".cxx_construct"); 6474 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 6475 // The constructor returns 'self'. 6476 ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create( 6477 getContext(), D->getLocation(), D->getLocation(), cxxSelector, 6478 getContext().getObjCIdType(), nullptr, D, /*isInstance=*/true, 6479 /*isVariadic=*/false, 6480 /*isPropertyAccessor=*/true, /*isSynthesizedAccessorStub=*/false, 6481 /*isImplicitlyDeclared=*/true, 6482 /*isDefined=*/false, ObjCMethodDecl::Required); 6483 D->addInstanceMethod(CTORMethod); 6484 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true); 6485 D->setHasNonZeroConstructors(true); 6486 } 6487 6488 // EmitLinkageSpec - Emit all declarations in a linkage spec. 6489 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) { 6490 if (LSD->getLanguage() != LinkageSpecDecl::lang_c && 6491 LSD->getLanguage() != LinkageSpecDecl::lang_cxx) { 6492 ErrorUnsupported(LSD, "linkage spec"); 6493 return; 6494 } 6495 6496 EmitDeclContext(LSD); 6497 } 6498 6499 void CodeGenModule::EmitTopLevelStmt(const TopLevelStmtDecl *D) { 6500 // Device code should not be at top level. 6501 if (LangOpts.CUDA && LangOpts.CUDAIsDevice) 6502 return; 6503 6504 std::unique_ptr<CodeGenFunction> &CurCGF = 6505 GlobalTopLevelStmtBlockInFlight.first; 6506 6507 // We emitted a top-level stmt but after it there is initialization. 6508 // Stop squashing the top-level stmts into a single function. 6509 if (CurCGF && CXXGlobalInits.back() != CurCGF->CurFn) { 6510 CurCGF->FinishFunction(D->getEndLoc()); 6511 CurCGF = nullptr; 6512 } 6513 6514 if (!CurCGF) { 6515 // void __stmts__N(void) 6516 // FIXME: Ask the ABI name mangler to pick a name. 6517 std::string Name = "__stmts__" + llvm::utostr(CXXGlobalInits.size()); 6518 FunctionArgList Args; 6519 QualType RetTy = getContext().VoidTy; 6520 const CGFunctionInfo &FnInfo = 6521 getTypes().arrangeBuiltinFunctionDeclaration(RetTy, Args); 6522 llvm::FunctionType *FnTy = getTypes().GetFunctionType(FnInfo); 6523 llvm::Function *Fn = llvm::Function::Create( 6524 FnTy, llvm::GlobalValue::InternalLinkage, Name, &getModule()); 6525 6526 CurCGF.reset(new CodeGenFunction(*this)); 6527 GlobalTopLevelStmtBlockInFlight.second = D; 6528 CurCGF->StartFunction(GlobalDecl(), RetTy, Fn, FnInfo, Args, 6529 D->getBeginLoc(), D->getBeginLoc()); 6530 CXXGlobalInits.push_back(Fn); 6531 } 6532 6533 CurCGF->EmitStmt(D->getStmt()); 6534 } 6535 6536 void CodeGenModule::EmitDeclContext(const DeclContext *DC) { 6537 for (auto *I : DC->decls()) { 6538 // Unlike other DeclContexts, the contents of an ObjCImplDecl at TU scope 6539 // are themselves considered "top-level", so EmitTopLevelDecl on an 6540 // ObjCImplDecl does not recursively visit them. We need to do that in 6541 // case they're nested inside another construct (LinkageSpecDecl / 6542 // ExportDecl) that does stop them from being considered "top-level". 6543 if (auto *OID = dyn_cast<ObjCImplDecl>(I)) { 6544 for (auto *M : OID->methods()) 6545 EmitTopLevelDecl(M); 6546 } 6547 6548 EmitTopLevelDecl(I); 6549 } 6550 } 6551 6552 /// EmitTopLevelDecl - Emit code for a single top level declaration. 6553 void CodeGenModule::EmitTopLevelDecl(Decl *D) { 6554 // Ignore dependent declarations. 6555 if (D->isTemplated()) 6556 return; 6557 6558 // Consteval function shouldn't be emitted. 6559 if (auto *FD = dyn_cast<FunctionDecl>(D); FD && FD->isImmediateFunction()) 6560 return; 6561 6562 switch (D->getKind()) { 6563 case Decl::CXXConversion: 6564 case Decl::CXXMethod: 6565 case Decl::Function: 6566 EmitGlobal(cast<FunctionDecl>(D)); 6567 // Always provide some coverage mapping 6568 // even for the functions that aren't emitted. 6569 AddDeferredUnusedCoverageMapping(D); 6570 break; 6571 6572 case Decl::CXXDeductionGuide: 6573 // Function-like, but does not result in code emission. 6574 break; 6575 6576 case Decl::Var: 6577 case Decl::Decomposition: 6578 case Decl::VarTemplateSpecialization: 6579 EmitGlobal(cast<VarDecl>(D)); 6580 if (auto *DD = dyn_cast<DecompositionDecl>(D)) 6581 for (auto *B : DD->bindings()) 6582 if (auto *HD = B->getHoldingVar()) 6583 EmitGlobal(HD); 6584 break; 6585 6586 // Indirect fields from global anonymous structs and unions can be 6587 // ignored; only the actual variable requires IR gen support. 6588 case Decl::IndirectField: 6589 break; 6590 6591 // C++ Decls 6592 case Decl::Namespace: 6593 EmitDeclContext(cast<NamespaceDecl>(D)); 6594 break; 6595 case Decl::ClassTemplateSpecialization: { 6596 const auto *Spec = cast<ClassTemplateSpecializationDecl>(D); 6597 if (CGDebugInfo *DI = getModuleDebugInfo()) 6598 if (Spec->getSpecializationKind() == 6599 TSK_ExplicitInstantiationDefinition && 6600 Spec->hasDefinition()) 6601 DI->completeTemplateDefinition(*Spec); 6602 } [[fallthrough]]; 6603 case Decl::CXXRecord: { 6604 CXXRecordDecl *CRD = cast<CXXRecordDecl>(D); 6605 if (CGDebugInfo *DI = getModuleDebugInfo()) { 6606 if (CRD->hasDefinition()) 6607 DI->EmitAndRetainType(getContext().getRecordType(cast<RecordDecl>(D))); 6608 if (auto *ES = D->getASTContext().getExternalSource()) 6609 if (ES->hasExternalDefinitions(D) == ExternalASTSource::EK_Never) 6610 DI->completeUnusedClass(*CRD); 6611 } 6612 // Emit any static data members, they may be definitions. 6613 for (auto *I : CRD->decls()) 6614 if (isa<VarDecl>(I) || isa<CXXRecordDecl>(I)) 6615 EmitTopLevelDecl(I); 6616 break; 6617 } 6618 // No code generation needed. 6619 case Decl::UsingShadow: 6620 case Decl::ClassTemplate: 6621 case Decl::VarTemplate: 6622 case Decl::Concept: 6623 case Decl::VarTemplatePartialSpecialization: 6624 case Decl::FunctionTemplate: 6625 case Decl::TypeAliasTemplate: 6626 case Decl::Block: 6627 case Decl::Empty: 6628 case Decl::Binding: 6629 break; 6630 case Decl::Using: // using X; [C++] 6631 if (CGDebugInfo *DI = getModuleDebugInfo()) 6632 DI->EmitUsingDecl(cast<UsingDecl>(*D)); 6633 break; 6634 case Decl::UsingEnum: // using enum X; [C++] 6635 if (CGDebugInfo *DI = getModuleDebugInfo()) 6636 DI->EmitUsingEnumDecl(cast<UsingEnumDecl>(*D)); 6637 break; 6638 case Decl::NamespaceAlias: 6639 if (CGDebugInfo *DI = getModuleDebugInfo()) 6640 DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(*D)); 6641 break; 6642 case Decl::UsingDirective: // using namespace X; [C++] 6643 if (CGDebugInfo *DI = getModuleDebugInfo()) 6644 DI->EmitUsingDirective(cast<UsingDirectiveDecl>(*D)); 6645 break; 6646 case Decl::CXXConstructor: 6647 getCXXABI().EmitCXXConstructors(cast<CXXConstructorDecl>(D)); 6648 break; 6649 case Decl::CXXDestructor: 6650 getCXXABI().EmitCXXDestructors(cast<CXXDestructorDecl>(D)); 6651 break; 6652 6653 case Decl::StaticAssert: 6654 // Nothing to do. 6655 break; 6656 6657 // Objective-C Decls 6658 6659 // Forward declarations, no (immediate) code generation. 6660 case Decl::ObjCInterface: 6661 case Decl::ObjCCategory: 6662 break; 6663 6664 case Decl::ObjCProtocol: { 6665 auto *Proto = cast<ObjCProtocolDecl>(D); 6666 if (Proto->isThisDeclarationADefinition()) 6667 ObjCRuntime->GenerateProtocol(Proto); 6668 break; 6669 } 6670 6671 case Decl::ObjCCategoryImpl: 6672 // Categories have properties but don't support synthesize so we 6673 // can ignore them here. 6674 ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D)); 6675 break; 6676 6677 case Decl::ObjCImplementation: { 6678 auto *OMD = cast<ObjCImplementationDecl>(D); 6679 EmitObjCPropertyImplementations(OMD); 6680 EmitObjCIvarInitializations(OMD); 6681 ObjCRuntime->GenerateClass(OMD); 6682 // Emit global variable debug information. 6683 if (CGDebugInfo *DI = getModuleDebugInfo()) 6684 if (getCodeGenOpts().hasReducedDebugInfo()) 6685 DI->getOrCreateInterfaceType(getContext().getObjCInterfaceType( 6686 OMD->getClassInterface()), OMD->getLocation()); 6687 break; 6688 } 6689 case Decl::ObjCMethod: { 6690 auto *OMD = cast<ObjCMethodDecl>(D); 6691 // If this is not a prototype, emit the body. 6692 if (OMD->getBody()) 6693 CodeGenFunction(*this).GenerateObjCMethod(OMD); 6694 break; 6695 } 6696 case Decl::ObjCCompatibleAlias: 6697 ObjCRuntime->RegisterAlias(cast<ObjCCompatibleAliasDecl>(D)); 6698 break; 6699 6700 case Decl::PragmaComment: { 6701 const auto *PCD = cast<PragmaCommentDecl>(D); 6702 switch (PCD->getCommentKind()) { 6703 case PCK_Unknown: 6704 llvm_unreachable("unexpected pragma comment kind"); 6705 case PCK_Linker: 6706 AppendLinkerOptions(PCD->getArg()); 6707 break; 6708 case PCK_Lib: 6709 AddDependentLib(PCD->getArg()); 6710 break; 6711 case PCK_Compiler: 6712 case PCK_ExeStr: 6713 case PCK_User: 6714 break; // We ignore all of these. 6715 } 6716 break; 6717 } 6718 6719 case Decl::PragmaDetectMismatch: { 6720 const auto *PDMD = cast<PragmaDetectMismatchDecl>(D); 6721 AddDetectMismatch(PDMD->getName(), PDMD->getValue()); 6722 break; 6723 } 6724 6725 case Decl::LinkageSpec: 6726 EmitLinkageSpec(cast<LinkageSpecDecl>(D)); 6727 break; 6728 6729 case Decl::FileScopeAsm: { 6730 // File-scope asm is ignored during device-side CUDA compilation. 6731 if (LangOpts.CUDA && LangOpts.CUDAIsDevice) 6732 break; 6733 // File-scope asm is ignored during device-side OpenMP compilation. 6734 if (LangOpts.OpenMPIsTargetDevice) 6735 break; 6736 // File-scope asm is ignored during device-side SYCL compilation. 6737 if (LangOpts.SYCLIsDevice) 6738 break; 6739 auto *AD = cast<FileScopeAsmDecl>(D); 6740 getModule().appendModuleInlineAsm(AD->getAsmString()->getString()); 6741 break; 6742 } 6743 6744 case Decl::TopLevelStmt: 6745 EmitTopLevelStmt(cast<TopLevelStmtDecl>(D)); 6746 break; 6747 6748 case Decl::Import: { 6749 auto *Import = cast<ImportDecl>(D); 6750 6751 // If we've already imported this module, we're done. 6752 if (!ImportedModules.insert(Import->getImportedModule())) 6753 break; 6754 6755 // Emit debug information for direct imports. 6756 if (!Import->getImportedOwningModule()) { 6757 if (CGDebugInfo *DI = getModuleDebugInfo()) 6758 DI->EmitImportDecl(*Import); 6759 } 6760 6761 // For C++ standard modules we are done - we will call the module 6762 // initializer for imported modules, and that will likewise call those for 6763 // any imports it has. 6764 if (CXX20ModuleInits && Import->getImportedOwningModule() && 6765 !Import->getImportedOwningModule()->isModuleMapModule()) 6766 break; 6767 6768 // For clang C++ module map modules the initializers for sub-modules are 6769 // emitted here. 6770 6771 // Find all of the submodules and emit the module initializers. 6772 llvm::SmallPtrSet<clang::Module *, 16> Visited; 6773 SmallVector<clang::Module *, 16> Stack; 6774 Visited.insert(Import->getImportedModule()); 6775 Stack.push_back(Import->getImportedModule()); 6776 6777 while (!Stack.empty()) { 6778 clang::Module *Mod = Stack.pop_back_val(); 6779 if (!EmittedModuleInitializers.insert(Mod).second) 6780 continue; 6781 6782 for (auto *D : Context.getModuleInitializers(Mod)) 6783 EmitTopLevelDecl(D); 6784 6785 // Visit the submodules of this module. 6786 for (auto *Submodule : Mod->submodules()) { 6787 // Skip explicit children; they need to be explicitly imported to emit 6788 // the initializers. 6789 if (Submodule->IsExplicit) 6790 continue; 6791 6792 if (Visited.insert(Submodule).second) 6793 Stack.push_back(Submodule); 6794 } 6795 } 6796 break; 6797 } 6798 6799 case Decl::Export: 6800 EmitDeclContext(cast<ExportDecl>(D)); 6801 break; 6802 6803 case Decl::OMPThreadPrivate: 6804 EmitOMPThreadPrivateDecl(cast<OMPThreadPrivateDecl>(D)); 6805 break; 6806 6807 case Decl::OMPAllocate: 6808 EmitOMPAllocateDecl(cast<OMPAllocateDecl>(D)); 6809 break; 6810 6811 case Decl::OMPDeclareReduction: 6812 EmitOMPDeclareReduction(cast<OMPDeclareReductionDecl>(D)); 6813 break; 6814 6815 case Decl::OMPDeclareMapper: 6816 EmitOMPDeclareMapper(cast<OMPDeclareMapperDecl>(D)); 6817 break; 6818 6819 case Decl::OMPRequires: 6820 EmitOMPRequiresDecl(cast<OMPRequiresDecl>(D)); 6821 break; 6822 6823 case Decl::Typedef: 6824 case Decl::TypeAlias: // using foo = bar; [C++11] 6825 if (CGDebugInfo *DI = getModuleDebugInfo()) 6826 DI->EmitAndRetainType( 6827 getContext().getTypedefType(cast<TypedefNameDecl>(D))); 6828 break; 6829 6830 case Decl::Record: 6831 if (CGDebugInfo *DI = getModuleDebugInfo()) 6832 if (cast<RecordDecl>(D)->getDefinition()) 6833 DI->EmitAndRetainType(getContext().getRecordType(cast<RecordDecl>(D))); 6834 break; 6835 6836 case Decl::Enum: 6837 if (CGDebugInfo *DI = getModuleDebugInfo()) 6838 if (cast<EnumDecl>(D)->getDefinition()) 6839 DI->EmitAndRetainType(getContext().getEnumType(cast<EnumDecl>(D))); 6840 break; 6841 6842 case Decl::HLSLBuffer: 6843 getHLSLRuntime().addBuffer(cast<HLSLBufferDecl>(D)); 6844 break; 6845 6846 default: 6847 // Make sure we handled everything we should, every other kind is a 6848 // non-top-level decl. FIXME: Would be nice to have an isTopLevelDeclKind 6849 // function. Need to recode Decl::Kind to do that easily. 6850 assert(isa<TypeDecl>(D) && "Unsupported decl kind"); 6851 break; 6852 } 6853 } 6854 6855 void CodeGenModule::AddDeferredUnusedCoverageMapping(Decl *D) { 6856 // Do we need to generate coverage mapping? 6857 if (!CodeGenOpts.CoverageMapping) 6858 return; 6859 switch (D->getKind()) { 6860 case Decl::CXXConversion: 6861 case Decl::CXXMethod: 6862 case Decl::Function: 6863 case Decl::ObjCMethod: 6864 case Decl::CXXConstructor: 6865 case Decl::CXXDestructor: { 6866 if (!cast<FunctionDecl>(D)->doesThisDeclarationHaveABody()) 6867 break; 6868 SourceManager &SM = getContext().getSourceManager(); 6869 if (LimitedCoverage && SM.getMainFileID() != SM.getFileID(D->getBeginLoc())) 6870 break; 6871 auto I = DeferredEmptyCoverageMappingDecls.find(D); 6872 if (I == DeferredEmptyCoverageMappingDecls.end()) 6873 DeferredEmptyCoverageMappingDecls[D] = true; 6874 break; 6875 } 6876 default: 6877 break; 6878 }; 6879 } 6880 6881 void CodeGenModule::ClearUnusedCoverageMapping(const Decl *D) { 6882 // Do we need to generate coverage mapping? 6883 if (!CodeGenOpts.CoverageMapping) 6884 return; 6885 if (const auto *Fn = dyn_cast<FunctionDecl>(D)) { 6886 if (Fn->isTemplateInstantiation()) 6887 ClearUnusedCoverageMapping(Fn->getTemplateInstantiationPattern()); 6888 } 6889 auto I = DeferredEmptyCoverageMappingDecls.find(D); 6890 if (I == DeferredEmptyCoverageMappingDecls.end()) 6891 DeferredEmptyCoverageMappingDecls[D] = false; 6892 else 6893 I->second = false; 6894 } 6895 6896 void CodeGenModule::EmitDeferredUnusedCoverageMappings() { 6897 // We call takeVector() here to avoid use-after-free. 6898 // FIXME: DeferredEmptyCoverageMappingDecls is getting mutated because 6899 // we deserialize function bodies to emit coverage info for them, and that 6900 // deserializes more declarations. How should we handle that case? 6901 for (const auto &Entry : DeferredEmptyCoverageMappingDecls.takeVector()) { 6902 if (!Entry.second) 6903 continue; 6904 const Decl *D = Entry.first; 6905 switch (D->getKind()) { 6906 case Decl::CXXConversion: 6907 case Decl::CXXMethod: 6908 case Decl::Function: 6909 case Decl::ObjCMethod: { 6910 CodeGenPGO PGO(*this); 6911 GlobalDecl GD(cast<FunctionDecl>(D)); 6912 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 6913 getFunctionLinkage(GD)); 6914 break; 6915 } 6916 case Decl::CXXConstructor: { 6917 CodeGenPGO PGO(*this); 6918 GlobalDecl GD(cast<CXXConstructorDecl>(D), Ctor_Base); 6919 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 6920 getFunctionLinkage(GD)); 6921 break; 6922 } 6923 case Decl::CXXDestructor: { 6924 CodeGenPGO PGO(*this); 6925 GlobalDecl GD(cast<CXXDestructorDecl>(D), Dtor_Base); 6926 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 6927 getFunctionLinkage(GD)); 6928 break; 6929 } 6930 default: 6931 break; 6932 }; 6933 } 6934 } 6935 6936 void CodeGenModule::EmitMainVoidAlias() { 6937 // In order to transition away from "__original_main" gracefully, emit an 6938 // alias for "main" in the no-argument case so that libc can detect when 6939 // new-style no-argument main is in used. 6940 if (llvm::Function *F = getModule().getFunction("main")) { 6941 if (!F->isDeclaration() && F->arg_size() == 0 && !F->isVarArg() && 6942 F->getReturnType()->isIntegerTy(Context.getTargetInfo().getIntWidth())) { 6943 auto *GA = llvm::GlobalAlias::create("__main_void", F); 6944 GA->setVisibility(llvm::GlobalValue::HiddenVisibility); 6945 } 6946 } 6947 } 6948 6949 /// Turns the given pointer into a constant. 6950 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context, 6951 const void *Ptr) { 6952 uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr); 6953 llvm::Type *i64 = llvm::Type::getInt64Ty(Context); 6954 return llvm::ConstantInt::get(i64, PtrInt); 6955 } 6956 6957 static void EmitGlobalDeclMetadata(CodeGenModule &CGM, 6958 llvm::NamedMDNode *&GlobalMetadata, 6959 GlobalDecl D, 6960 llvm::GlobalValue *Addr) { 6961 if (!GlobalMetadata) 6962 GlobalMetadata = 6963 CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs"); 6964 6965 // TODO: should we report variant information for ctors/dtors? 6966 llvm::Metadata *Ops[] = {llvm::ConstantAsMetadata::get(Addr), 6967 llvm::ConstantAsMetadata::get(GetPointerConstant( 6968 CGM.getLLVMContext(), D.getDecl()))}; 6969 GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops)); 6970 } 6971 6972 bool CodeGenModule::CheckAndReplaceExternCIFuncs(llvm::GlobalValue *Elem, 6973 llvm::GlobalValue *CppFunc) { 6974 // Store the list of ifuncs we need to replace uses in. 6975 llvm::SmallVector<llvm::GlobalIFunc *> IFuncs; 6976 // List of ConstantExprs that we should be able to delete when we're done 6977 // here. 6978 llvm::SmallVector<llvm::ConstantExpr *> CEs; 6979 6980 // It isn't valid to replace the extern-C ifuncs if all we find is itself! 6981 if (Elem == CppFunc) 6982 return false; 6983 6984 // First make sure that all users of this are ifuncs (or ifuncs via a 6985 // bitcast), and collect the list of ifuncs and CEs so we can work on them 6986 // later. 6987 for (llvm::User *User : Elem->users()) { 6988 // Users can either be a bitcast ConstExpr that is used by the ifuncs, OR an 6989 // ifunc directly. In any other case, just give up, as we don't know what we 6990 // could break by changing those. 6991 if (auto *ConstExpr = dyn_cast<llvm::ConstantExpr>(User)) { 6992 if (ConstExpr->getOpcode() != llvm::Instruction::BitCast) 6993 return false; 6994 6995 for (llvm::User *CEUser : ConstExpr->users()) { 6996 if (auto *IFunc = dyn_cast<llvm::GlobalIFunc>(CEUser)) { 6997 IFuncs.push_back(IFunc); 6998 } else { 6999 return false; 7000 } 7001 } 7002 CEs.push_back(ConstExpr); 7003 } else if (auto *IFunc = dyn_cast<llvm::GlobalIFunc>(User)) { 7004 IFuncs.push_back(IFunc); 7005 } else { 7006 // This user is one we don't know how to handle, so fail redirection. This 7007 // will result in an ifunc retaining a resolver name that will ultimately 7008 // fail to be resolved to a defined function. 7009 return false; 7010 } 7011 } 7012 7013 // Now we know this is a valid case where we can do this alias replacement, we 7014 // need to remove all of the references to Elem (and the bitcasts!) so we can 7015 // delete it. 7016 for (llvm::GlobalIFunc *IFunc : IFuncs) 7017 IFunc->setResolver(nullptr); 7018 for (llvm::ConstantExpr *ConstExpr : CEs) 7019 ConstExpr->destroyConstant(); 7020 7021 // We should now be out of uses for the 'old' version of this function, so we 7022 // can erase it as well. 7023 Elem->eraseFromParent(); 7024 7025 for (llvm::GlobalIFunc *IFunc : IFuncs) { 7026 // The type of the resolver is always just a function-type that returns the 7027 // type of the IFunc, so create that here. If the type of the actual 7028 // resolver doesn't match, it just gets bitcast to the right thing. 7029 auto *ResolverTy = 7030 llvm::FunctionType::get(IFunc->getType(), /*isVarArg*/ false); 7031 llvm::Constant *Resolver = GetOrCreateLLVMFunction( 7032 CppFunc->getName(), ResolverTy, {}, /*ForVTable*/ false); 7033 IFunc->setResolver(Resolver); 7034 } 7035 return true; 7036 } 7037 7038 /// For each function which is declared within an extern "C" region and marked 7039 /// as 'used', but has internal linkage, create an alias from the unmangled 7040 /// name to the mangled name if possible. People expect to be able to refer 7041 /// to such functions with an unmangled name from inline assembly within the 7042 /// same translation unit. 7043 void CodeGenModule::EmitStaticExternCAliases() { 7044 if (!getTargetCodeGenInfo().shouldEmitStaticExternCAliases()) 7045 return; 7046 for (auto &I : StaticExternCValues) { 7047 IdentifierInfo *Name = I.first; 7048 llvm::GlobalValue *Val = I.second; 7049 7050 // If Val is null, that implies there were multiple declarations that each 7051 // had a claim to the unmangled name. In this case, generation of the alias 7052 // is suppressed. See CodeGenModule::MaybeHandleStaticInExternC. 7053 if (!Val) 7054 break; 7055 7056 llvm::GlobalValue *ExistingElem = 7057 getModule().getNamedValue(Name->getName()); 7058 7059 // If there is either not something already by this name, or we were able to 7060 // replace all uses from IFuncs, create the alias. 7061 if (!ExistingElem || CheckAndReplaceExternCIFuncs(ExistingElem, Val)) 7062 addCompilerUsedGlobal(llvm::GlobalAlias::create(Name->getName(), Val)); 7063 } 7064 } 7065 7066 bool CodeGenModule::lookupRepresentativeDecl(StringRef MangledName, 7067 GlobalDecl &Result) const { 7068 auto Res = Manglings.find(MangledName); 7069 if (Res == Manglings.end()) 7070 return false; 7071 Result = Res->getValue(); 7072 return true; 7073 } 7074 7075 /// Emits metadata nodes associating all the global values in the 7076 /// current module with the Decls they came from. This is useful for 7077 /// projects using IR gen as a subroutine. 7078 /// 7079 /// Since there's currently no way to associate an MDNode directly 7080 /// with an llvm::GlobalValue, we create a global named metadata 7081 /// with the name 'clang.global.decl.ptrs'. 7082 void CodeGenModule::EmitDeclMetadata() { 7083 llvm::NamedMDNode *GlobalMetadata = nullptr; 7084 7085 for (auto &I : MangledDeclNames) { 7086 llvm::GlobalValue *Addr = getModule().getNamedValue(I.second); 7087 // Some mangled names don't necessarily have an associated GlobalValue 7088 // in this module, e.g. if we mangled it for DebugInfo. 7089 if (Addr) 7090 EmitGlobalDeclMetadata(*this, GlobalMetadata, I.first, Addr); 7091 } 7092 } 7093 7094 /// Emits metadata nodes for all the local variables in the current 7095 /// function. 7096 void CodeGenFunction::EmitDeclMetadata() { 7097 if (LocalDeclMap.empty()) return; 7098 7099 llvm::LLVMContext &Context = getLLVMContext(); 7100 7101 // Find the unique metadata ID for this name. 7102 unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr"); 7103 7104 llvm::NamedMDNode *GlobalMetadata = nullptr; 7105 7106 for (auto &I : LocalDeclMap) { 7107 const Decl *D = I.first; 7108 llvm::Value *Addr = I.second.getPointer(); 7109 if (auto *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) { 7110 llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D); 7111 Alloca->setMetadata( 7112 DeclPtrKind, llvm::MDNode::get( 7113 Context, llvm::ValueAsMetadata::getConstant(DAddr))); 7114 } else if (auto *GV = dyn_cast<llvm::GlobalValue>(Addr)) { 7115 GlobalDecl GD = GlobalDecl(cast<VarDecl>(D)); 7116 EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV); 7117 } 7118 } 7119 } 7120 7121 void CodeGenModule::EmitVersionIdentMetadata() { 7122 llvm::NamedMDNode *IdentMetadata = 7123 TheModule.getOrInsertNamedMetadata("llvm.ident"); 7124 std::string Version = getClangFullVersion(); 7125 llvm::LLVMContext &Ctx = TheModule.getContext(); 7126 7127 llvm::Metadata *IdentNode[] = {llvm::MDString::get(Ctx, Version)}; 7128 IdentMetadata->addOperand(llvm::MDNode::get(Ctx, IdentNode)); 7129 } 7130 7131 void CodeGenModule::EmitCommandLineMetadata() { 7132 llvm::NamedMDNode *CommandLineMetadata = 7133 TheModule.getOrInsertNamedMetadata("llvm.commandline"); 7134 std::string CommandLine = getCodeGenOpts().RecordCommandLine; 7135 llvm::LLVMContext &Ctx = TheModule.getContext(); 7136 7137 llvm::Metadata *CommandLineNode[] = {llvm::MDString::get(Ctx, CommandLine)}; 7138 CommandLineMetadata->addOperand(llvm::MDNode::get(Ctx, CommandLineNode)); 7139 } 7140 7141 void CodeGenModule::EmitCoverageFile() { 7142 llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu"); 7143 if (!CUNode) 7144 return; 7145 7146 llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov"); 7147 llvm::LLVMContext &Ctx = TheModule.getContext(); 7148 auto *CoverageDataFile = 7149 llvm::MDString::get(Ctx, getCodeGenOpts().CoverageDataFile); 7150 auto *CoverageNotesFile = 7151 llvm::MDString::get(Ctx, getCodeGenOpts().CoverageNotesFile); 7152 for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) { 7153 llvm::MDNode *CU = CUNode->getOperand(i); 7154 llvm::Metadata *Elts[] = {CoverageNotesFile, CoverageDataFile, CU}; 7155 GCov->addOperand(llvm::MDNode::get(Ctx, Elts)); 7156 } 7157 } 7158 7159 llvm::Constant *CodeGenModule::GetAddrOfRTTIDescriptor(QualType Ty, 7160 bool ForEH) { 7161 // Return a bogus pointer if RTTI is disabled, unless it's for EH. 7162 // FIXME: should we even be calling this method if RTTI is disabled 7163 // and it's not for EH? 7164 if (!shouldEmitRTTI(ForEH)) 7165 return llvm::Constant::getNullValue(GlobalsInt8PtrTy); 7166 7167 if (ForEH && Ty->isObjCObjectPointerType() && 7168 LangOpts.ObjCRuntime.isGNUFamily()) 7169 return ObjCRuntime->GetEHType(Ty); 7170 7171 return getCXXABI().getAddrOfRTTIDescriptor(Ty); 7172 } 7173 7174 void CodeGenModule::EmitOMPThreadPrivateDecl(const OMPThreadPrivateDecl *D) { 7175 // Do not emit threadprivates in simd-only mode. 7176 if (LangOpts.OpenMP && LangOpts.OpenMPSimd) 7177 return; 7178 for (auto RefExpr : D->varlists()) { 7179 auto *VD = cast<VarDecl>(cast<DeclRefExpr>(RefExpr)->getDecl()); 7180 bool PerformInit = 7181 VD->getAnyInitializer() && 7182 !VD->getAnyInitializer()->isConstantInitializer(getContext(), 7183 /*ForRef=*/false); 7184 7185 Address Addr(GetAddrOfGlobalVar(VD), 7186 getTypes().ConvertTypeForMem(VD->getType()), 7187 getContext().getDeclAlign(VD)); 7188 if (auto InitFunction = getOpenMPRuntime().emitThreadPrivateVarDefinition( 7189 VD, Addr, RefExpr->getBeginLoc(), PerformInit)) 7190 CXXGlobalInits.push_back(InitFunction); 7191 } 7192 } 7193 7194 llvm::Metadata * 7195 CodeGenModule::CreateMetadataIdentifierImpl(QualType T, MetadataTypeMap &Map, 7196 StringRef Suffix) { 7197 if (auto *FnType = T->getAs<FunctionProtoType>()) 7198 T = getContext().getFunctionType( 7199 FnType->getReturnType(), FnType->getParamTypes(), 7200 FnType->getExtProtoInfo().withExceptionSpec(EST_None)); 7201 7202 llvm::Metadata *&InternalId = Map[T.getCanonicalType()]; 7203 if (InternalId) 7204 return InternalId; 7205 7206 if (isExternallyVisible(T->getLinkage())) { 7207 std::string OutName; 7208 llvm::raw_string_ostream Out(OutName); 7209 getCXXABI().getMangleContext().mangleTypeName( 7210 T, Out, getCodeGenOpts().SanitizeCfiICallNormalizeIntegers); 7211 7212 if (getCodeGenOpts().SanitizeCfiICallNormalizeIntegers) 7213 Out << ".normalized"; 7214 7215 Out << Suffix; 7216 7217 InternalId = llvm::MDString::get(getLLVMContext(), Out.str()); 7218 } else { 7219 InternalId = llvm::MDNode::getDistinct(getLLVMContext(), 7220 llvm::ArrayRef<llvm::Metadata *>()); 7221 } 7222 7223 return InternalId; 7224 } 7225 7226 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierForType(QualType T) { 7227 return CreateMetadataIdentifierImpl(T, MetadataIdMap, ""); 7228 } 7229 7230 llvm::Metadata * 7231 CodeGenModule::CreateMetadataIdentifierForVirtualMemPtrType(QualType T) { 7232 return CreateMetadataIdentifierImpl(T, VirtualMetadataIdMap, ".virtual"); 7233 } 7234 7235 // Generalize pointer types to a void pointer with the qualifiers of the 7236 // originally pointed-to type, e.g. 'const char *' and 'char * const *' 7237 // generalize to 'const void *' while 'char *' and 'const char **' generalize to 7238 // 'void *'. 7239 static QualType GeneralizeType(ASTContext &Ctx, QualType Ty) { 7240 if (!Ty->isPointerType()) 7241 return Ty; 7242 7243 return Ctx.getPointerType( 7244 QualType(Ctx.VoidTy).withCVRQualifiers( 7245 Ty->getPointeeType().getCVRQualifiers())); 7246 } 7247 7248 // Apply type generalization to a FunctionType's return and argument types 7249 static QualType GeneralizeFunctionType(ASTContext &Ctx, QualType Ty) { 7250 if (auto *FnType = Ty->getAs<FunctionProtoType>()) { 7251 SmallVector<QualType, 8> GeneralizedParams; 7252 for (auto &Param : FnType->param_types()) 7253 GeneralizedParams.push_back(GeneralizeType(Ctx, Param)); 7254 7255 return Ctx.getFunctionType( 7256 GeneralizeType(Ctx, FnType->getReturnType()), 7257 GeneralizedParams, FnType->getExtProtoInfo()); 7258 } 7259 7260 if (auto *FnType = Ty->getAs<FunctionNoProtoType>()) 7261 return Ctx.getFunctionNoProtoType( 7262 GeneralizeType(Ctx, FnType->getReturnType())); 7263 7264 llvm_unreachable("Encountered unknown FunctionType"); 7265 } 7266 7267 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierGeneralized(QualType T) { 7268 return CreateMetadataIdentifierImpl(GeneralizeFunctionType(getContext(), T), 7269 GeneralizedMetadataIdMap, ".generalized"); 7270 } 7271 7272 /// Returns whether this module needs the "all-vtables" type identifier. 7273 bool CodeGenModule::NeedAllVtablesTypeId() const { 7274 // Returns true if at least one of vtable-based CFI checkers is enabled and 7275 // is not in the trapping mode. 7276 return ((LangOpts.Sanitize.has(SanitizerKind::CFIVCall) && 7277 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIVCall)) || 7278 (LangOpts.Sanitize.has(SanitizerKind::CFINVCall) && 7279 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFINVCall)) || 7280 (LangOpts.Sanitize.has(SanitizerKind::CFIDerivedCast) && 7281 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIDerivedCast)) || 7282 (LangOpts.Sanitize.has(SanitizerKind::CFIUnrelatedCast) && 7283 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIUnrelatedCast))); 7284 } 7285 7286 void CodeGenModule::AddVTableTypeMetadata(llvm::GlobalVariable *VTable, 7287 CharUnits Offset, 7288 const CXXRecordDecl *RD) { 7289 llvm::Metadata *MD = 7290 CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0)); 7291 VTable->addTypeMetadata(Offset.getQuantity(), MD); 7292 7293 if (CodeGenOpts.SanitizeCfiCrossDso) 7294 if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD)) 7295 VTable->addTypeMetadata(Offset.getQuantity(), 7296 llvm::ConstantAsMetadata::get(CrossDsoTypeId)); 7297 7298 if (NeedAllVtablesTypeId()) { 7299 llvm::Metadata *MD = llvm::MDString::get(getLLVMContext(), "all-vtables"); 7300 VTable->addTypeMetadata(Offset.getQuantity(), MD); 7301 } 7302 } 7303 7304 llvm::SanitizerStatReport &CodeGenModule::getSanStats() { 7305 if (!SanStats) 7306 SanStats = std::make_unique<llvm::SanitizerStatReport>(&getModule()); 7307 7308 return *SanStats; 7309 } 7310 7311 llvm::Value * 7312 CodeGenModule::createOpenCLIntToSamplerConversion(const Expr *E, 7313 CodeGenFunction &CGF) { 7314 llvm::Constant *C = ConstantEmitter(CGF).emitAbstract(E, E->getType()); 7315 auto *SamplerT = getOpenCLRuntime().getSamplerType(E->getType().getTypePtr()); 7316 auto *FTy = llvm::FunctionType::get(SamplerT, {C->getType()}, false); 7317 auto *Call = CGF.EmitRuntimeCall( 7318 CreateRuntimeFunction(FTy, "__translate_sampler_initializer"), {C}); 7319 return Call; 7320 } 7321 7322 CharUnits CodeGenModule::getNaturalPointeeTypeAlignment( 7323 QualType T, LValueBaseInfo *BaseInfo, TBAAAccessInfo *TBAAInfo) { 7324 return getNaturalTypeAlignment(T->getPointeeType(), BaseInfo, TBAAInfo, 7325 /* forPointeeType= */ true); 7326 } 7327 7328 CharUnits CodeGenModule::getNaturalTypeAlignment(QualType T, 7329 LValueBaseInfo *BaseInfo, 7330 TBAAAccessInfo *TBAAInfo, 7331 bool forPointeeType) { 7332 if (TBAAInfo) 7333 *TBAAInfo = getTBAAAccessInfo(T); 7334 7335 // FIXME: This duplicates logic in ASTContext::getTypeAlignIfKnown. But 7336 // that doesn't return the information we need to compute BaseInfo. 7337 7338 // Honor alignment typedef attributes even on incomplete types. 7339 // We also honor them straight for C++ class types, even as pointees; 7340 // there's an expressivity gap here. 7341 if (auto TT = T->getAs<TypedefType>()) { 7342 if (auto Align = TT->getDecl()->getMaxAlignment()) { 7343 if (BaseInfo) 7344 *BaseInfo = LValueBaseInfo(AlignmentSource::AttributedType); 7345 return getContext().toCharUnitsFromBits(Align); 7346 } 7347 } 7348 7349 bool AlignForArray = T->isArrayType(); 7350 7351 // Analyze the base element type, so we don't get confused by incomplete 7352 // array types. 7353 T = getContext().getBaseElementType(T); 7354 7355 if (T->isIncompleteType()) { 7356 // We could try to replicate the logic from 7357 // ASTContext::getTypeAlignIfKnown, but nothing uses the alignment if the 7358 // type is incomplete, so it's impossible to test. We could try to reuse 7359 // getTypeAlignIfKnown, but that doesn't return the information we need 7360 // to set BaseInfo. So just ignore the possibility that the alignment is 7361 // greater than one. 7362 if (BaseInfo) 7363 *BaseInfo = LValueBaseInfo(AlignmentSource::Type); 7364 return CharUnits::One(); 7365 } 7366 7367 if (BaseInfo) 7368 *BaseInfo = LValueBaseInfo(AlignmentSource::Type); 7369 7370 CharUnits Alignment; 7371 const CXXRecordDecl *RD; 7372 if (T.getQualifiers().hasUnaligned()) { 7373 Alignment = CharUnits::One(); 7374 } else if (forPointeeType && !AlignForArray && 7375 (RD = T->getAsCXXRecordDecl())) { 7376 // For C++ class pointees, we don't know whether we're pointing at a 7377 // base or a complete object, so we generally need to use the 7378 // non-virtual alignment. 7379 Alignment = getClassPointerAlignment(RD); 7380 } else { 7381 Alignment = getContext().getTypeAlignInChars(T); 7382 } 7383 7384 // Cap to the global maximum type alignment unless the alignment 7385 // was somehow explicit on the type. 7386 if (unsigned MaxAlign = getLangOpts().MaxTypeAlign) { 7387 if (Alignment.getQuantity() > MaxAlign && 7388 !getContext().isAlignmentRequired(T)) 7389 Alignment = CharUnits::fromQuantity(MaxAlign); 7390 } 7391 return Alignment; 7392 } 7393 7394 bool CodeGenModule::stopAutoInit() { 7395 unsigned StopAfter = getContext().getLangOpts().TrivialAutoVarInitStopAfter; 7396 if (StopAfter) { 7397 // This number is positive only when -ftrivial-auto-var-init-stop-after=* is 7398 // used 7399 if (NumAutoVarInit >= StopAfter) { 7400 return true; 7401 } 7402 if (!NumAutoVarInit) { 7403 unsigned DiagID = getDiags().getCustomDiagID( 7404 DiagnosticsEngine::Warning, 7405 "-ftrivial-auto-var-init-stop-after=%0 has been enabled to limit the " 7406 "number of times ftrivial-auto-var-init=%1 gets applied."); 7407 getDiags().Report(DiagID) 7408 << StopAfter 7409 << (getContext().getLangOpts().getTrivialAutoVarInit() == 7410 LangOptions::TrivialAutoVarInitKind::Zero 7411 ? "zero" 7412 : "pattern"); 7413 } 7414 ++NumAutoVarInit; 7415 } 7416 return false; 7417 } 7418 7419 void CodeGenModule::printPostfixForExternalizedDecl(llvm::raw_ostream &OS, 7420 const Decl *D) const { 7421 // ptxas does not allow '.' in symbol names. On the other hand, HIP prefers 7422 // postfix beginning with '.' since the symbol name can be demangled. 7423 if (LangOpts.HIP) 7424 OS << (isa<VarDecl>(D) ? ".static." : ".intern."); 7425 else 7426 OS << (isa<VarDecl>(D) ? "__static__" : "__intern__"); 7427 7428 // If the CUID is not specified we try to generate a unique postfix. 7429 if (getLangOpts().CUID.empty()) { 7430 SourceManager &SM = getContext().getSourceManager(); 7431 PresumedLoc PLoc = SM.getPresumedLoc(D->getLocation()); 7432 assert(PLoc.isValid() && "Source location is expected to be valid."); 7433 7434 // Get the hash of the user defined macros. 7435 llvm::MD5 Hash; 7436 llvm::MD5::MD5Result Result; 7437 for (const auto &Arg : PreprocessorOpts.Macros) 7438 Hash.update(Arg.first); 7439 Hash.final(Result); 7440 7441 // Get the UniqueID for the file containing the decl. 7442 llvm::sys::fs::UniqueID ID; 7443 if (auto EC = llvm::sys::fs::getUniqueID(PLoc.getFilename(), ID)) { 7444 PLoc = SM.getPresumedLoc(D->getLocation(), /*UseLineDirectives=*/false); 7445 assert(PLoc.isValid() && "Source location is expected to be valid."); 7446 if (auto EC = llvm::sys::fs::getUniqueID(PLoc.getFilename(), ID)) 7447 SM.getDiagnostics().Report(diag::err_cannot_open_file) 7448 << PLoc.getFilename() << EC.message(); 7449 } 7450 OS << llvm::format("%x", ID.getFile()) << llvm::format("%x", ID.getDevice()) 7451 << "_" << llvm::utohexstr(Result.low(), /*LowerCase=*/true, /*Width=*/8); 7452 } else { 7453 OS << getContext().getCUIDHash(); 7454 } 7455 } 7456 7457 void CodeGenModule::moveLazyEmissionStates(CodeGenModule *NewBuilder) { 7458 assert(DeferredDeclsToEmit.empty() && 7459 "Should have emitted all decls deferred to emit."); 7460 assert(NewBuilder->DeferredDecls.empty() && 7461 "Newly created module should not have deferred decls"); 7462 NewBuilder->DeferredDecls = std::move(DeferredDecls); 7463 assert(EmittedDeferredDecls.empty() && 7464 "Still have (unmerged) EmittedDeferredDecls deferred decls"); 7465 7466 assert(NewBuilder->DeferredVTables.empty() && 7467 "Newly created module should not have deferred vtables"); 7468 NewBuilder->DeferredVTables = std::move(DeferredVTables); 7469 7470 assert(NewBuilder->MangledDeclNames.empty() && 7471 "Newly created module should not have mangled decl names"); 7472 assert(NewBuilder->Manglings.empty() && 7473 "Newly created module should not have manglings"); 7474 NewBuilder->Manglings = std::move(Manglings); 7475 7476 NewBuilder->WeakRefReferences = std::move(WeakRefReferences); 7477 7478 NewBuilder->TBAA = std::move(TBAA); 7479 7480 NewBuilder->ABI->MangleCtx = std::move(ABI->MangleCtx); 7481 } 7482