xref: /llvm-project/clang/lib/CodeGen/CodeGenModule.cpp (revision 6e45fa95be9db5318ac7037c673c9b18a48ac5b1)
1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This coordinates the per-module state used while generating code.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "CodeGenModule.h"
14 #include "ABIInfo.h"
15 #include "CGBlocks.h"
16 #include "CGCUDARuntime.h"
17 #include "CGCXXABI.h"
18 #include "CGCall.h"
19 #include "CGDebugInfo.h"
20 #include "CGHLSLRuntime.h"
21 #include "CGObjCRuntime.h"
22 #include "CGOpenCLRuntime.h"
23 #include "CGOpenMPRuntime.h"
24 #include "CGOpenMPRuntimeGPU.h"
25 #include "CodeGenFunction.h"
26 #include "CodeGenPGO.h"
27 #include "ConstantEmitter.h"
28 #include "CoverageMappingGen.h"
29 #include "TargetInfo.h"
30 #include "clang/AST/ASTContext.h"
31 #include "clang/AST/ASTLambda.h"
32 #include "clang/AST/CharUnits.h"
33 #include "clang/AST/Decl.h"
34 #include "clang/AST/DeclCXX.h"
35 #include "clang/AST/DeclObjC.h"
36 #include "clang/AST/DeclTemplate.h"
37 #include "clang/AST/Mangle.h"
38 #include "clang/AST/RecursiveASTVisitor.h"
39 #include "clang/AST/StmtVisitor.h"
40 #include "clang/Basic/Builtins.h"
41 #include "clang/Basic/CharInfo.h"
42 #include "clang/Basic/CodeGenOptions.h"
43 #include "clang/Basic/Diagnostic.h"
44 #include "clang/Basic/FileManager.h"
45 #include "clang/Basic/Module.h"
46 #include "clang/Basic/SourceManager.h"
47 #include "clang/Basic/TargetInfo.h"
48 #include "clang/Basic/Version.h"
49 #include "clang/CodeGen/BackendUtil.h"
50 #include "clang/CodeGen/ConstantInitBuilder.h"
51 #include "clang/Frontend/FrontendDiagnostic.h"
52 #include "llvm/ADT/STLExtras.h"
53 #include "llvm/ADT/StringExtras.h"
54 #include "llvm/ADT/StringSwitch.h"
55 #include "llvm/Analysis/TargetLibraryInfo.h"
56 #include "llvm/BinaryFormat/ELF.h"
57 #include "llvm/Frontend/OpenMP/OMPIRBuilder.h"
58 #include "llvm/IR/AttributeMask.h"
59 #include "llvm/IR/CallingConv.h"
60 #include "llvm/IR/DataLayout.h"
61 #include "llvm/IR/Intrinsics.h"
62 #include "llvm/IR/LLVMContext.h"
63 #include "llvm/IR/Module.h"
64 #include "llvm/IR/ProfileSummary.h"
65 #include "llvm/ProfileData/InstrProfReader.h"
66 #include "llvm/ProfileData/SampleProf.h"
67 #include "llvm/Support/CRC.h"
68 #include "llvm/Support/CodeGen.h"
69 #include "llvm/Support/CommandLine.h"
70 #include "llvm/Support/ConvertUTF.h"
71 #include "llvm/Support/ErrorHandling.h"
72 #include "llvm/Support/TimeProfiler.h"
73 #include "llvm/Support/xxhash.h"
74 #include "llvm/TargetParser/RISCVISAInfo.h"
75 #include "llvm/TargetParser/Triple.h"
76 #include "llvm/TargetParser/X86TargetParser.h"
77 #include "llvm/Transforms/Utils/BuildLibCalls.h"
78 #include <optional>
79 
80 using namespace clang;
81 using namespace CodeGen;
82 
83 static llvm::cl::opt<bool> LimitedCoverage(
84     "limited-coverage-experimental", llvm::cl::Hidden,
85     llvm::cl::desc("Emit limited coverage mapping information (experimental)"));
86 
87 static const char AnnotationSection[] = "llvm.metadata";
88 
89 static CGCXXABI *createCXXABI(CodeGenModule &CGM) {
90   switch (CGM.getContext().getCXXABIKind()) {
91   case TargetCXXABI::AppleARM64:
92   case TargetCXXABI::Fuchsia:
93   case TargetCXXABI::GenericAArch64:
94   case TargetCXXABI::GenericARM:
95   case TargetCXXABI::iOS:
96   case TargetCXXABI::WatchOS:
97   case TargetCXXABI::GenericMIPS:
98   case TargetCXXABI::GenericItanium:
99   case TargetCXXABI::WebAssembly:
100   case TargetCXXABI::XL:
101     return CreateItaniumCXXABI(CGM);
102   case TargetCXXABI::Microsoft:
103     return CreateMicrosoftCXXABI(CGM);
104   }
105 
106   llvm_unreachable("invalid C++ ABI kind");
107 }
108 
109 static std::unique_ptr<TargetCodeGenInfo>
110 createTargetCodeGenInfo(CodeGenModule &CGM) {
111   const TargetInfo &Target = CGM.getTarget();
112   const llvm::Triple &Triple = Target.getTriple();
113   const CodeGenOptions &CodeGenOpts = CGM.getCodeGenOpts();
114 
115   switch (Triple.getArch()) {
116   default:
117     return createDefaultTargetCodeGenInfo(CGM);
118 
119   case llvm::Triple::le32:
120     return createPNaClTargetCodeGenInfo(CGM);
121   case llvm::Triple::m68k:
122     return createM68kTargetCodeGenInfo(CGM);
123   case llvm::Triple::mips:
124   case llvm::Triple::mipsel:
125     if (Triple.getOS() == llvm::Triple::NaCl)
126       return createPNaClTargetCodeGenInfo(CGM);
127     return createMIPSTargetCodeGenInfo(CGM, /*IsOS32=*/true);
128 
129   case llvm::Triple::mips64:
130   case llvm::Triple::mips64el:
131     return createMIPSTargetCodeGenInfo(CGM, /*IsOS32=*/false);
132 
133   case llvm::Triple::avr: {
134     // For passing parameters, R8~R25 are used on avr, and R18~R25 are used
135     // on avrtiny. For passing return value, R18~R25 are used on avr, and
136     // R22~R25 are used on avrtiny.
137     unsigned NPR = Target.getABI() == "avrtiny" ? 6 : 18;
138     unsigned NRR = Target.getABI() == "avrtiny" ? 4 : 8;
139     return createAVRTargetCodeGenInfo(CGM, NPR, NRR);
140   }
141 
142   case llvm::Triple::aarch64:
143   case llvm::Triple::aarch64_32:
144   case llvm::Triple::aarch64_be: {
145     AArch64ABIKind Kind = AArch64ABIKind::AAPCS;
146     if (Target.getABI() == "darwinpcs")
147       Kind = AArch64ABIKind::DarwinPCS;
148     else if (Triple.isOSWindows())
149       return createWindowsAArch64TargetCodeGenInfo(CGM, AArch64ABIKind::Win64);
150     else if (Target.getABI() == "aapcs-soft")
151       Kind = AArch64ABIKind::AAPCSSoft;
152     else if (Target.getABI() == "pauthtest")
153       Kind = AArch64ABIKind::PAuthTest;
154 
155     return createAArch64TargetCodeGenInfo(CGM, Kind);
156   }
157 
158   case llvm::Triple::wasm32:
159   case llvm::Triple::wasm64: {
160     WebAssemblyABIKind Kind = WebAssemblyABIKind::MVP;
161     if (Target.getABI() == "experimental-mv")
162       Kind = WebAssemblyABIKind::ExperimentalMV;
163     return createWebAssemblyTargetCodeGenInfo(CGM, Kind);
164   }
165 
166   case llvm::Triple::arm:
167   case llvm::Triple::armeb:
168   case llvm::Triple::thumb:
169   case llvm::Triple::thumbeb: {
170     if (Triple.getOS() == llvm::Triple::Win32)
171       return createWindowsARMTargetCodeGenInfo(CGM, ARMABIKind::AAPCS_VFP);
172 
173     ARMABIKind Kind = ARMABIKind::AAPCS;
174     StringRef ABIStr = Target.getABI();
175     if (ABIStr == "apcs-gnu")
176       Kind = ARMABIKind::APCS;
177     else if (ABIStr == "aapcs16")
178       Kind = ARMABIKind::AAPCS16_VFP;
179     else if (CodeGenOpts.FloatABI == "hard" ||
180              (CodeGenOpts.FloatABI != "soft" &&
181               (Triple.getEnvironment() == llvm::Triple::GNUEABIHF ||
182                Triple.getEnvironment() == llvm::Triple::MuslEABIHF ||
183                Triple.getEnvironment() == llvm::Triple::EABIHF)))
184       Kind = ARMABIKind::AAPCS_VFP;
185 
186     return createARMTargetCodeGenInfo(CGM, Kind);
187   }
188 
189   case llvm::Triple::ppc: {
190     if (Triple.isOSAIX())
191       return createAIXTargetCodeGenInfo(CGM, /*Is64Bit=*/false);
192 
193     bool IsSoftFloat =
194         CodeGenOpts.FloatABI == "soft" || Target.hasFeature("spe");
195     return createPPC32TargetCodeGenInfo(CGM, IsSoftFloat);
196   }
197   case llvm::Triple::ppcle: {
198     bool IsSoftFloat = CodeGenOpts.FloatABI == "soft";
199     return createPPC32TargetCodeGenInfo(CGM, IsSoftFloat);
200   }
201   case llvm::Triple::ppc64:
202     if (Triple.isOSAIX())
203       return createAIXTargetCodeGenInfo(CGM, /*Is64Bit=*/true);
204 
205     if (Triple.isOSBinFormatELF()) {
206       PPC64_SVR4_ABIKind Kind = PPC64_SVR4_ABIKind::ELFv1;
207       if (Target.getABI() == "elfv2")
208         Kind = PPC64_SVR4_ABIKind::ELFv2;
209       bool IsSoftFloat = CodeGenOpts.FloatABI == "soft";
210 
211       return createPPC64_SVR4_TargetCodeGenInfo(CGM, Kind, IsSoftFloat);
212     }
213     return createPPC64TargetCodeGenInfo(CGM);
214   case llvm::Triple::ppc64le: {
215     assert(Triple.isOSBinFormatELF() && "PPC64 LE non-ELF not supported!");
216     PPC64_SVR4_ABIKind Kind = PPC64_SVR4_ABIKind::ELFv2;
217     if (Target.getABI() == "elfv1")
218       Kind = PPC64_SVR4_ABIKind::ELFv1;
219     bool IsSoftFloat = CodeGenOpts.FloatABI == "soft";
220 
221     return createPPC64_SVR4_TargetCodeGenInfo(CGM, Kind, IsSoftFloat);
222   }
223 
224   case llvm::Triple::nvptx:
225   case llvm::Triple::nvptx64:
226     return createNVPTXTargetCodeGenInfo(CGM);
227 
228   case llvm::Triple::msp430:
229     return createMSP430TargetCodeGenInfo(CGM);
230 
231   case llvm::Triple::riscv32:
232   case llvm::Triple::riscv64: {
233     StringRef ABIStr = Target.getABI();
234     unsigned XLen = Target.getPointerWidth(LangAS::Default);
235     unsigned ABIFLen = 0;
236     if (ABIStr.ends_with("f"))
237       ABIFLen = 32;
238     else if (ABIStr.ends_with("d"))
239       ABIFLen = 64;
240     bool EABI = ABIStr.ends_with("e");
241     return createRISCVTargetCodeGenInfo(CGM, XLen, ABIFLen, EABI);
242   }
243 
244   case llvm::Triple::systemz: {
245     bool SoftFloat = CodeGenOpts.FloatABI == "soft";
246     bool HasVector = !SoftFloat && Target.getABI() == "vector";
247     return createSystemZTargetCodeGenInfo(CGM, HasVector, SoftFloat);
248   }
249 
250   case llvm::Triple::tce:
251   case llvm::Triple::tcele:
252     return createTCETargetCodeGenInfo(CGM);
253 
254   case llvm::Triple::x86: {
255     bool IsDarwinVectorABI = Triple.isOSDarwin();
256     bool IsWin32FloatStructABI = Triple.isOSWindows() && !Triple.isOSCygMing();
257 
258     if (Triple.getOS() == llvm::Triple::Win32) {
259       return createWinX86_32TargetCodeGenInfo(
260           CGM, IsDarwinVectorABI, IsWin32FloatStructABI,
261           CodeGenOpts.NumRegisterParameters);
262     }
263     return createX86_32TargetCodeGenInfo(
264         CGM, IsDarwinVectorABI, IsWin32FloatStructABI,
265         CodeGenOpts.NumRegisterParameters, CodeGenOpts.FloatABI == "soft");
266   }
267 
268   case llvm::Triple::x86_64: {
269     StringRef ABI = Target.getABI();
270     X86AVXABILevel AVXLevel = (ABI == "avx512" ? X86AVXABILevel::AVX512
271                                : ABI == "avx"  ? X86AVXABILevel::AVX
272                                                : X86AVXABILevel::None);
273 
274     switch (Triple.getOS()) {
275     case llvm::Triple::Win32:
276       return createWinX86_64TargetCodeGenInfo(CGM, AVXLevel);
277     default:
278       return createX86_64TargetCodeGenInfo(CGM, AVXLevel);
279     }
280   }
281   case llvm::Triple::hexagon:
282     return createHexagonTargetCodeGenInfo(CGM);
283   case llvm::Triple::lanai:
284     return createLanaiTargetCodeGenInfo(CGM);
285   case llvm::Triple::r600:
286     return createAMDGPUTargetCodeGenInfo(CGM);
287   case llvm::Triple::amdgcn:
288     return createAMDGPUTargetCodeGenInfo(CGM);
289   case llvm::Triple::sparc:
290     return createSparcV8TargetCodeGenInfo(CGM);
291   case llvm::Triple::sparcv9:
292     return createSparcV9TargetCodeGenInfo(CGM);
293   case llvm::Triple::xcore:
294     return createXCoreTargetCodeGenInfo(CGM);
295   case llvm::Triple::arc:
296     return createARCTargetCodeGenInfo(CGM);
297   case llvm::Triple::spir:
298   case llvm::Triple::spir64:
299     return createCommonSPIRTargetCodeGenInfo(CGM);
300   case llvm::Triple::spirv32:
301   case llvm::Triple::spirv64:
302     return createSPIRVTargetCodeGenInfo(CGM);
303   case llvm::Triple::ve:
304     return createVETargetCodeGenInfo(CGM);
305   case llvm::Triple::csky: {
306     bool IsSoftFloat = !Target.hasFeature("hard-float-abi");
307     bool hasFP64 =
308         Target.hasFeature("fpuv2_df") || Target.hasFeature("fpuv3_df");
309     return createCSKYTargetCodeGenInfo(CGM, IsSoftFloat ? 0
310                                             : hasFP64   ? 64
311                                                         : 32);
312   }
313   case llvm::Triple::bpfeb:
314   case llvm::Triple::bpfel:
315     return createBPFTargetCodeGenInfo(CGM);
316   case llvm::Triple::loongarch32:
317   case llvm::Triple::loongarch64: {
318     StringRef ABIStr = Target.getABI();
319     unsigned ABIFRLen = 0;
320     if (ABIStr.ends_with("f"))
321       ABIFRLen = 32;
322     else if (ABIStr.ends_with("d"))
323       ABIFRLen = 64;
324     return createLoongArchTargetCodeGenInfo(
325         CGM, Target.getPointerWidth(LangAS::Default), ABIFRLen);
326   }
327   }
328 }
329 
330 const TargetCodeGenInfo &CodeGenModule::getTargetCodeGenInfo() {
331   if (!TheTargetCodeGenInfo)
332     TheTargetCodeGenInfo = createTargetCodeGenInfo(*this);
333   return *TheTargetCodeGenInfo;
334 }
335 
336 CodeGenModule::CodeGenModule(ASTContext &C,
337                              IntrusiveRefCntPtr<llvm::vfs::FileSystem> FS,
338                              const HeaderSearchOptions &HSO,
339                              const PreprocessorOptions &PPO,
340                              const CodeGenOptions &CGO, llvm::Module &M,
341                              DiagnosticsEngine &diags,
342                              CoverageSourceInfo *CoverageInfo)
343     : Context(C), LangOpts(C.getLangOpts()), FS(FS), HeaderSearchOpts(HSO),
344       PreprocessorOpts(PPO), CodeGenOpts(CGO), TheModule(M), Diags(diags),
345       Target(C.getTargetInfo()), ABI(createCXXABI(*this)),
346       VMContext(M.getContext()), Types(*this), VTables(*this),
347       SanitizerMD(new SanitizerMetadata(*this)) {
348 
349   // Initialize the type cache.
350   llvm::LLVMContext &LLVMContext = M.getContext();
351   VoidTy = llvm::Type::getVoidTy(LLVMContext);
352   Int8Ty = llvm::Type::getInt8Ty(LLVMContext);
353   Int16Ty = llvm::Type::getInt16Ty(LLVMContext);
354   Int32Ty = llvm::Type::getInt32Ty(LLVMContext);
355   Int64Ty = llvm::Type::getInt64Ty(LLVMContext);
356   HalfTy = llvm::Type::getHalfTy(LLVMContext);
357   BFloatTy = llvm::Type::getBFloatTy(LLVMContext);
358   FloatTy = llvm::Type::getFloatTy(LLVMContext);
359   DoubleTy = llvm::Type::getDoubleTy(LLVMContext);
360   PointerWidthInBits = C.getTargetInfo().getPointerWidth(LangAS::Default);
361   PointerAlignInBytes =
362       C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(LangAS::Default))
363           .getQuantity();
364   SizeSizeInBytes =
365     C.toCharUnitsFromBits(C.getTargetInfo().getMaxPointerWidth()).getQuantity();
366   IntAlignInBytes =
367     C.toCharUnitsFromBits(C.getTargetInfo().getIntAlign()).getQuantity();
368   CharTy =
369     llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getCharWidth());
370   IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth());
371   IntPtrTy = llvm::IntegerType::get(LLVMContext,
372     C.getTargetInfo().getMaxPointerWidth());
373   Int8PtrTy = llvm::PointerType::get(LLVMContext,
374                                      C.getTargetAddressSpace(LangAS::Default));
375   const llvm::DataLayout &DL = M.getDataLayout();
376   AllocaInt8PtrTy =
377       llvm::PointerType::get(LLVMContext, DL.getAllocaAddrSpace());
378   GlobalsInt8PtrTy =
379       llvm::PointerType::get(LLVMContext, DL.getDefaultGlobalsAddressSpace());
380   ConstGlobalsPtrTy = llvm::PointerType::get(
381       LLVMContext, C.getTargetAddressSpace(GetGlobalConstantAddressSpace()));
382   ASTAllocaAddressSpace = getTargetCodeGenInfo().getASTAllocaAddressSpace();
383 
384   // Build C++20 Module initializers.
385   // TODO: Add Microsoft here once we know the mangling required for the
386   // initializers.
387   CXX20ModuleInits =
388       LangOpts.CPlusPlusModules && getCXXABI().getMangleContext().getKind() ==
389                                        ItaniumMangleContext::MK_Itanium;
390 
391   RuntimeCC = getTargetCodeGenInfo().getABIInfo().getRuntimeCC();
392 
393   if (LangOpts.ObjC)
394     createObjCRuntime();
395   if (LangOpts.OpenCL)
396     createOpenCLRuntime();
397   if (LangOpts.OpenMP)
398     createOpenMPRuntime();
399   if (LangOpts.CUDA)
400     createCUDARuntime();
401   if (LangOpts.HLSL)
402     createHLSLRuntime();
403 
404   // Enable TBAA unless it's suppressed. ThreadSanitizer needs TBAA even at O0.
405   if (LangOpts.Sanitize.has(SanitizerKind::Thread) ||
406       (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0))
407     TBAA.reset(new CodeGenTBAA(Context, getTypes(), TheModule, CodeGenOpts,
408                                getLangOpts(), getCXXABI().getMangleContext()));
409 
410   // If debug info or coverage generation is enabled, create the CGDebugInfo
411   // object.
412   if (CodeGenOpts.getDebugInfo() != llvm::codegenoptions::NoDebugInfo ||
413       CodeGenOpts.CoverageNotesFile.size() ||
414       CodeGenOpts.CoverageDataFile.size())
415     DebugInfo.reset(new CGDebugInfo(*this));
416 
417   Block.GlobalUniqueCount = 0;
418 
419   if (C.getLangOpts().ObjC)
420     ObjCData.reset(new ObjCEntrypoints());
421 
422   if (CodeGenOpts.hasProfileClangUse()) {
423     auto ReaderOrErr = llvm::IndexedInstrProfReader::create(
424         CodeGenOpts.ProfileInstrumentUsePath, *FS,
425         CodeGenOpts.ProfileRemappingFile);
426     // We're checking for profile read errors in CompilerInvocation, so if
427     // there was an error it should've already been caught. If it hasn't been
428     // somehow, trip an assertion.
429     assert(ReaderOrErr);
430     PGOReader = std::move(ReaderOrErr.get());
431   }
432 
433   // If coverage mapping generation is enabled, create the
434   // CoverageMappingModuleGen object.
435   if (CodeGenOpts.CoverageMapping)
436     CoverageMapping.reset(new CoverageMappingModuleGen(*this, *CoverageInfo));
437 
438   // Generate the module name hash here if needed.
439   if (CodeGenOpts.UniqueInternalLinkageNames &&
440       !getModule().getSourceFileName().empty()) {
441     std::string Path = getModule().getSourceFileName();
442     // Check if a path substitution is needed from the MacroPrefixMap.
443     for (const auto &Entry : LangOpts.MacroPrefixMap)
444       if (Path.rfind(Entry.first, 0) != std::string::npos) {
445         Path = Entry.second + Path.substr(Entry.first.size());
446         break;
447       }
448     ModuleNameHash = llvm::getUniqueInternalLinkagePostfix(Path);
449   }
450 
451   // Record mregparm value now so it is visible through all of codegen.
452   if (Context.getTargetInfo().getTriple().getArch() == llvm::Triple::x86)
453     getModule().addModuleFlag(llvm::Module::Error, "NumRegisterParameters",
454                               CodeGenOpts.NumRegisterParameters);
455 }
456 
457 CodeGenModule::~CodeGenModule() {}
458 
459 void CodeGenModule::createObjCRuntime() {
460   // This is just isGNUFamily(), but we want to force implementors of
461   // new ABIs to decide how best to do this.
462   switch (LangOpts.ObjCRuntime.getKind()) {
463   case ObjCRuntime::GNUstep:
464   case ObjCRuntime::GCC:
465   case ObjCRuntime::ObjFW:
466     ObjCRuntime.reset(CreateGNUObjCRuntime(*this));
467     return;
468 
469   case ObjCRuntime::FragileMacOSX:
470   case ObjCRuntime::MacOSX:
471   case ObjCRuntime::iOS:
472   case ObjCRuntime::WatchOS:
473     ObjCRuntime.reset(CreateMacObjCRuntime(*this));
474     return;
475   }
476   llvm_unreachable("bad runtime kind");
477 }
478 
479 void CodeGenModule::createOpenCLRuntime() {
480   OpenCLRuntime.reset(new CGOpenCLRuntime(*this));
481 }
482 
483 void CodeGenModule::createOpenMPRuntime() {
484   // Select a specialized code generation class based on the target, if any.
485   // If it does not exist use the default implementation.
486   switch (getTriple().getArch()) {
487   case llvm::Triple::nvptx:
488   case llvm::Triple::nvptx64:
489   case llvm::Triple::amdgcn:
490     assert(getLangOpts().OpenMPIsTargetDevice &&
491            "OpenMP AMDGPU/NVPTX is only prepared to deal with device code.");
492     OpenMPRuntime.reset(new CGOpenMPRuntimeGPU(*this));
493     break;
494   default:
495     if (LangOpts.OpenMPSimd)
496       OpenMPRuntime.reset(new CGOpenMPSIMDRuntime(*this));
497     else
498       OpenMPRuntime.reset(new CGOpenMPRuntime(*this));
499     break;
500   }
501 }
502 
503 void CodeGenModule::createCUDARuntime() {
504   CUDARuntime.reset(CreateNVCUDARuntime(*this));
505 }
506 
507 void CodeGenModule::createHLSLRuntime() {
508   HLSLRuntime.reset(new CGHLSLRuntime(*this));
509 }
510 
511 void CodeGenModule::addReplacement(StringRef Name, llvm::Constant *C) {
512   Replacements[Name] = C;
513 }
514 
515 void CodeGenModule::applyReplacements() {
516   for (auto &I : Replacements) {
517     StringRef MangledName = I.first;
518     llvm::Constant *Replacement = I.second;
519     llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
520     if (!Entry)
521       continue;
522     auto *OldF = cast<llvm::Function>(Entry);
523     auto *NewF = dyn_cast<llvm::Function>(Replacement);
524     if (!NewF) {
525       if (auto *Alias = dyn_cast<llvm::GlobalAlias>(Replacement)) {
526         NewF = dyn_cast<llvm::Function>(Alias->getAliasee());
527       } else {
528         auto *CE = cast<llvm::ConstantExpr>(Replacement);
529         assert(CE->getOpcode() == llvm::Instruction::BitCast ||
530                CE->getOpcode() == llvm::Instruction::GetElementPtr);
531         NewF = dyn_cast<llvm::Function>(CE->getOperand(0));
532       }
533     }
534 
535     // Replace old with new, but keep the old order.
536     OldF->replaceAllUsesWith(Replacement);
537     if (NewF) {
538       NewF->removeFromParent();
539       OldF->getParent()->getFunctionList().insertAfter(OldF->getIterator(),
540                                                        NewF);
541     }
542     OldF->eraseFromParent();
543   }
544 }
545 
546 void CodeGenModule::addGlobalValReplacement(llvm::GlobalValue *GV, llvm::Constant *C) {
547   GlobalValReplacements.push_back(std::make_pair(GV, C));
548 }
549 
550 void CodeGenModule::applyGlobalValReplacements() {
551   for (auto &I : GlobalValReplacements) {
552     llvm::GlobalValue *GV = I.first;
553     llvm::Constant *C = I.second;
554 
555     GV->replaceAllUsesWith(C);
556     GV->eraseFromParent();
557   }
558 }
559 
560 // This is only used in aliases that we created and we know they have a
561 // linear structure.
562 static const llvm::GlobalValue *getAliasedGlobal(const llvm::GlobalValue *GV) {
563   const llvm::Constant *C;
564   if (auto *GA = dyn_cast<llvm::GlobalAlias>(GV))
565     C = GA->getAliasee();
566   else if (auto *GI = dyn_cast<llvm::GlobalIFunc>(GV))
567     C = GI->getResolver();
568   else
569     return GV;
570 
571   const auto *AliaseeGV = dyn_cast<llvm::GlobalValue>(C->stripPointerCasts());
572   if (!AliaseeGV)
573     return nullptr;
574 
575   const llvm::GlobalValue *FinalGV = AliaseeGV->getAliaseeObject();
576   if (FinalGV == GV)
577     return nullptr;
578 
579   return FinalGV;
580 }
581 
582 static bool checkAliasedGlobal(
583     const ASTContext &Context, DiagnosticsEngine &Diags, SourceLocation Location,
584     bool IsIFunc, const llvm::GlobalValue *Alias, const llvm::GlobalValue *&GV,
585     const llvm::MapVector<GlobalDecl, StringRef> &MangledDeclNames,
586     SourceRange AliasRange) {
587   GV = getAliasedGlobal(Alias);
588   if (!GV) {
589     Diags.Report(Location, diag::err_cyclic_alias) << IsIFunc;
590     return false;
591   }
592 
593   if (GV->hasCommonLinkage()) {
594     const llvm::Triple &Triple = Context.getTargetInfo().getTriple();
595     if (Triple.getObjectFormat() == llvm::Triple::XCOFF) {
596       Diags.Report(Location, diag::err_alias_to_common);
597       return false;
598     }
599   }
600 
601   if (GV->isDeclaration()) {
602     Diags.Report(Location, diag::err_alias_to_undefined) << IsIFunc << IsIFunc;
603     Diags.Report(Location, diag::note_alias_requires_mangled_name)
604         << IsIFunc << IsIFunc;
605     // Provide a note if the given function is not found and exists as a
606     // mangled name.
607     for (const auto &[Decl, Name] : MangledDeclNames) {
608       if (const auto *ND = dyn_cast<NamedDecl>(Decl.getDecl())) {
609         if (ND->getName() == GV->getName()) {
610           Diags.Report(Location, diag::note_alias_mangled_name_alternative)
611               << Name
612               << FixItHint::CreateReplacement(
613                      AliasRange,
614                      (Twine(IsIFunc ? "ifunc" : "alias") + "(\"" + Name + "\")")
615                          .str());
616         }
617       }
618     }
619     return false;
620   }
621 
622   if (IsIFunc) {
623     // Check resolver function type.
624     const auto *F = dyn_cast<llvm::Function>(GV);
625     if (!F) {
626       Diags.Report(Location, diag::err_alias_to_undefined)
627           << IsIFunc << IsIFunc;
628       return false;
629     }
630 
631     llvm::FunctionType *FTy = F->getFunctionType();
632     if (!FTy->getReturnType()->isPointerTy()) {
633       Diags.Report(Location, diag::err_ifunc_resolver_return);
634       return false;
635     }
636   }
637 
638   return true;
639 }
640 
641 // Emit a warning if toc-data attribute is requested for global variables that
642 // have aliases and remove the toc-data attribute.
643 static void checkAliasForTocData(llvm::GlobalVariable *GVar,
644                                  const CodeGenOptions &CodeGenOpts,
645                                  DiagnosticsEngine &Diags,
646                                  SourceLocation Location) {
647   if (GVar->hasAttribute("toc-data")) {
648     auto GVId = GVar->getName();
649     // Is this a global variable specified by the user as local?
650     if ((llvm::binary_search(CodeGenOpts.TocDataVarsUserSpecified, GVId))) {
651       Diags.Report(Location, diag::warn_toc_unsupported_type)
652           << GVId << "the variable has an alias";
653     }
654     llvm::AttributeSet CurrAttributes = GVar->getAttributes();
655     llvm::AttributeSet NewAttributes =
656         CurrAttributes.removeAttribute(GVar->getContext(), "toc-data");
657     GVar->setAttributes(NewAttributes);
658   }
659 }
660 
661 void CodeGenModule::checkAliases() {
662   // Check if the constructed aliases are well formed. It is really unfortunate
663   // that we have to do this in CodeGen, but we only construct mangled names
664   // and aliases during codegen.
665   bool Error = false;
666   DiagnosticsEngine &Diags = getDiags();
667   for (const GlobalDecl &GD : Aliases) {
668     const auto *D = cast<ValueDecl>(GD.getDecl());
669     SourceLocation Location;
670     SourceRange Range;
671     bool IsIFunc = D->hasAttr<IFuncAttr>();
672     if (const Attr *A = D->getDefiningAttr()) {
673       Location = A->getLocation();
674       Range = A->getRange();
675     } else
676       llvm_unreachable("Not an alias or ifunc?");
677 
678     StringRef MangledName = getMangledName(GD);
679     llvm::GlobalValue *Alias = GetGlobalValue(MangledName);
680     const llvm::GlobalValue *GV = nullptr;
681     if (!checkAliasedGlobal(getContext(), Diags, Location, IsIFunc, Alias, GV,
682                             MangledDeclNames, Range)) {
683       Error = true;
684       continue;
685     }
686 
687     if (getContext().getTargetInfo().getTriple().isOSAIX())
688       if (const llvm::GlobalVariable *GVar =
689               dyn_cast<const llvm::GlobalVariable>(GV))
690         checkAliasForTocData(const_cast<llvm::GlobalVariable *>(GVar),
691                              getCodeGenOpts(), Diags, Location);
692 
693     llvm::Constant *Aliasee =
694         IsIFunc ? cast<llvm::GlobalIFunc>(Alias)->getResolver()
695                 : cast<llvm::GlobalAlias>(Alias)->getAliasee();
696 
697     llvm::GlobalValue *AliaseeGV;
698     if (auto CE = dyn_cast<llvm::ConstantExpr>(Aliasee))
699       AliaseeGV = cast<llvm::GlobalValue>(CE->getOperand(0));
700     else
701       AliaseeGV = cast<llvm::GlobalValue>(Aliasee);
702 
703     if (const SectionAttr *SA = D->getAttr<SectionAttr>()) {
704       StringRef AliasSection = SA->getName();
705       if (AliasSection != AliaseeGV->getSection())
706         Diags.Report(SA->getLocation(), diag::warn_alias_with_section)
707             << AliasSection << IsIFunc << IsIFunc;
708     }
709 
710     // We have to handle alias to weak aliases in here. LLVM itself disallows
711     // this since the object semantics would not match the IL one. For
712     // compatibility with gcc we implement it by just pointing the alias
713     // to its aliasee's aliasee. We also warn, since the user is probably
714     // expecting the link to be weak.
715     if (auto *GA = dyn_cast<llvm::GlobalAlias>(AliaseeGV)) {
716       if (GA->isInterposable()) {
717         Diags.Report(Location, diag::warn_alias_to_weak_alias)
718             << GV->getName() << GA->getName() << IsIFunc;
719         Aliasee = llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(
720             GA->getAliasee(), Alias->getType());
721 
722         if (IsIFunc)
723           cast<llvm::GlobalIFunc>(Alias)->setResolver(Aliasee);
724         else
725           cast<llvm::GlobalAlias>(Alias)->setAliasee(Aliasee);
726       }
727     }
728     // ifunc resolvers are usually implemented to run before sanitizer
729     // initialization. Disable instrumentation to prevent the ordering issue.
730     if (IsIFunc)
731       cast<llvm::Function>(Aliasee)->addFnAttr(
732           llvm::Attribute::DisableSanitizerInstrumentation);
733   }
734   if (!Error)
735     return;
736 
737   for (const GlobalDecl &GD : Aliases) {
738     StringRef MangledName = getMangledName(GD);
739     llvm::GlobalValue *Alias = GetGlobalValue(MangledName);
740     Alias->replaceAllUsesWith(llvm::UndefValue::get(Alias->getType()));
741     Alias->eraseFromParent();
742   }
743 }
744 
745 void CodeGenModule::clear() {
746   DeferredDeclsToEmit.clear();
747   EmittedDeferredDecls.clear();
748   DeferredAnnotations.clear();
749   if (OpenMPRuntime)
750     OpenMPRuntime->clear();
751 }
752 
753 void InstrProfStats::reportDiagnostics(DiagnosticsEngine &Diags,
754                                        StringRef MainFile) {
755   if (!hasDiagnostics())
756     return;
757   if (VisitedInMainFile > 0 && VisitedInMainFile == MissingInMainFile) {
758     if (MainFile.empty())
759       MainFile = "<stdin>";
760     Diags.Report(diag::warn_profile_data_unprofiled) << MainFile;
761   } else {
762     if (Mismatched > 0)
763       Diags.Report(diag::warn_profile_data_out_of_date) << Visited << Mismatched;
764 
765     if (Missing > 0)
766       Diags.Report(diag::warn_profile_data_missing) << Visited << Missing;
767   }
768 }
769 
770 static std::optional<llvm::GlobalValue::VisibilityTypes>
771 getLLVMVisibility(clang::LangOptions::VisibilityFromDLLStorageClassKinds K) {
772   // Map to LLVM visibility.
773   switch (K) {
774   case clang::LangOptions::VisibilityFromDLLStorageClassKinds::Keep:
775     return std::nullopt;
776   case clang::LangOptions::VisibilityFromDLLStorageClassKinds::Default:
777     return llvm::GlobalValue::DefaultVisibility;
778   case clang::LangOptions::VisibilityFromDLLStorageClassKinds::Hidden:
779     return llvm::GlobalValue::HiddenVisibility;
780   case clang::LangOptions::VisibilityFromDLLStorageClassKinds::Protected:
781     return llvm::GlobalValue::ProtectedVisibility;
782   }
783   llvm_unreachable("unknown option value!");
784 }
785 
786 void setLLVMVisibility(llvm::GlobalValue &GV,
787                        std::optional<llvm::GlobalValue::VisibilityTypes> V) {
788   if (!V)
789     return;
790 
791   // Reset DSO locality before setting the visibility. This removes
792   // any effects that visibility options and annotations may have
793   // had on the DSO locality. Setting the visibility will implicitly set
794   // appropriate globals to DSO Local; however, this will be pessimistic
795   // w.r.t. to the normal compiler IRGen.
796   GV.setDSOLocal(false);
797   GV.setVisibility(*V);
798 }
799 
800 static void setVisibilityFromDLLStorageClass(const clang::LangOptions &LO,
801                                              llvm::Module &M) {
802   if (!LO.VisibilityFromDLLStorageClass)
803     return;
804 
805   std::optional<llvm::GlobalValue::VisibilityTypes> DLLExportVisibility =
806       getLLVMVisibility(LO.getDLLExportVisibility());
807 
808   std::optional<llvm::GlobalValue::VisibilityTypes>
809       NoDLLStorageClassVisibility =
810           getLLVMVisibility(LO.getNoDLLStorageClassVisibility());
811 
812   std::optional<llvm::GlobalValue::VisibilityTypes>
813       ExternDeclDLLImportVisibility =
814           getLLVMVisibility(LO.getExternDeclDLLImportVisibility());
815 
816   std::optional<llvm::GlobalValue::VisibilityTypes>
817       ExternDeclNoDLLStorageClassVisibility =
818           getLLVMVisibility(LO.getExternDeclNoDLLStorageClassVisibility());
819 
820   for (llvm::GlobalValue &GV : M.global_values()) {
821     if (GV.hasAppendingLinkage() || GV.hasLocalLinkage())
822       continue;
823 
824     if (GV.isDeclarationForLinker())
825       setLLVMVisibility(GV, GV.getDLLStorageClass() ==
826                                     llvm::GlobalValue::DLLImportStorageClass
827                                 ? ExternDeclDLLImportVisibility
828                                 : ExternDeclNoDLLStorageClassVisibility);
829     else
830       setLLVMVisibility(GV, GV.getDLLStorageClass() ==
831                                     llvm::GlobalValue::DLLExportStorageClass
832                                 ? DLLExportVisibility
833                                 : NoDLLStorageClassVisibility);
834 
835     GV.setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
836   }
837 }
838 
839 static bool isStackProtectorOn(const LangOptions &LangOpts,
840                                const llvm::Triple &Triple,
841                                clang::LangOptions::StackProtectorMode Mode) {
842   if (Triple.isAMDGPU() || Triple.isNVPTX())
843     return false;
844   return LangOpts.getStackProtector() == Mode;
845 }
846 
847 void CodeGenModule::Release() {
848   Module *Primary = getContext().getCurrentNamedModule();
849   if (CXX20ModuleInits && Primary && !Primary->isHeaderLikeModule())
850     EmitModuleInitializers(Primary);
851   EmitDeferred();
852   DeferredDecls.insert(EmittedDeferredDecls.begin(),
853                        EmittedDeferredDecls.end());
854   EmittedDeferredDecls.clear();
855   EmitVTablesOpportunistically();
856   applyGlobalValReplacements();
857   applyReplacements();
858   emitMultiVersionFunctions();
859 
860   if (Context.getLangOpts().IncrementalExtensions &&
861       GlobalTopLevelStmtBlockInFlight.first) {
862     const TopLevelStmtDecl *TLSD = GlobalTopLevelStmtBlockInFlight.second;
863     GlobalTopLevelStmtBlockInFlight.first->FinishFunction(TLSD->getEndLoc());
864     GlobalTopLevelStmtBlockInFlight = {nullptr, nullptr};
865   }
866 
867   // Module implementations are initialized the same way as a regular TU that
868   // imports one or more modules.
869   if (CXX20ModuleInits && Primary && Primary->isInterfaceOrPartition())
870     EmitCXXModuleInitFunc(Primary);
871   else
872     EmitCXXGlobalInitFunc();
873   EmitCXXGlobalCleanUpFunc();
874   registerGlobalDtorsWithAtExit();
875   EmitCXXThreadLocalInitFunc();
876   if (ObjCRuntime)
877     if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction())
878       AddGlobalCtor(ObjCInitFunction);
879   if (Context.getLangOpts().CUDA && CUDARuntime) {
880     if (llvm::Function *CudaCtorFunction = CUDARuntime->finalizeModule())
881       AddGlobalCtor(CudaCtorFunction);
882   }
883   if (OpenMPRuntime) {
884     OpenMPRuntime->createOffloadEntriesAndInfoMetadata();
885     OpenMPRuntime->clear();
886   }
887   if (PGOReader) {
888     getModule().setProfileSummary(
889         PGOReader->getSummary(/* UseCS */ false).getMD(VMContext),
890         llvm::ProfileSummary::PSK_Instr);
891     if (PGOStats.hasDiagnostics())
892       PGOStats.reportDiagnostics(getDiags(), getCodeGenOpts().MainFileName);
893   }
894   llvm::stable_sort(GlobalCtors, [](const Structor &L, const Structor &R) {
895     return L.LexOrder < R.LexOrder;
896   });
897   EmitCtorList(GlobalCtors, "llvm.global_ctors");
898   EmitCtorList(GlobalDtors, "llvm.global_dtors");
899   EmitGlobalAnnotations();
900   EmitStaticExternCAliases();
901   checkAliases();
902   EmitDeferredUnusedCoverageMappings();
903   CodeGenPGO(*this).setValueProfilingFlag(getModule());
904   CodeGenPGO(*this).setProfileVersion(getModule());
905   if (CoverageMapping)
906     CoverageMapping->emit();
907   if (CodeGenOpts.SanitizeCfiCrossDso) {
908     CodeGenFunction(*this).EmitCfiCheckFail();
909     CodeGenFunction(*this).EmitCfiCheckStub();
910   }
911   if (LangOpts.Sanitize.has(SanitizerKind::KCFI))
912     finalizeKCFITypes();
913   emitAtAvailableLinkGuard();
914   if (Context.getTargetInfo().getTriple().isWasm())
915     EmitMainVoidAlias();
916 
917   if (getTriple().isAMDGPU() ||
918       (getTriple().isSPIRV() && getTriple().getVendor() == llvm::Triple::AMD)) {
919     // Emit amdhsa_code_object_version module flag, which is code object version
920     // times 100.
921     if (getTarget().getTargetOpts().CodeObjectVersion !=
922         llvm::CodeObjectVersionKind::COV_None) {
923       getModule().addModuleFlag(llvm::Module::Error,
924                                 "amdhsa_code_object_version",
925                                 getTarget().getTargetOpts().CodeObjectVersion);
926     }
927 
928     // Currently, "-mprintf-kind" option is only supported for HIP
929     if (LangOpts.HIP) {
930       auto *MDStr = llvm::MDString::get(
931           getLLVMContext(), (getTarget().getTargetOpts().AMDGPUPrintfKindVal ==
932                              TargetOptions::AMDGPUPrintfKind::Hostcall)
933                                 ? "hostcall"
934                                 : "buffered");
935       getModule().addModuleFlag(llvm::Module::Error, "amdgpu_printf_kind",
936                                 MDStr);
937     }
938   }
939 
940   // Emit a global array containing all external kernels or device variables
941   // used by host functions and mark it as used for CUDA/HIP. This is necessary
942   // to get kernels or device variables in archives linked in even if these
943   // kernels or device variables are only used in host functions.
944   if (!Context.CUDAExternalDeviceDeclODRUsedByHost.empty()) {
945     SmallVector<llvm::Constant *, 8> UsedArray;
946     for (auto D : Context.CUDAExternalDeviceDeclODRUsedByHost) {
947       GlobalDecl GD;
948       if (auto *FD = dyn_cast<FunctionDecl>(D))
949         GD = GlobalDecl(FD, KernelReferenceKind::Kernel);
950       else
951         GD = GlobalDecl(D);
952       UsedArray.push_back(llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(
953           GetAddrOfGlobal(GD), Int8PtrTy));
954     }
955 
956     llvm::ArrayType *ATy = llvm::ArrayType::get(Int8PtrTy, UsedArray.size());
957 
958     auto *GV = new llvm::GlobalVariable(
959         getModule(), ATy, false, llvm::GlobalValue::InternalLinkage,
960         llvm::ConstantArray::get(ATy, UsedArray), "__clang_gpu_used_external");
961     addCompilerUsedGlobal(GV);
962   }
963   if (LangOpts.HIP && !getLangOpts().OffloadingNewDriver) {
964     // Emit a unique ID so that host and device binaries from the same
965     // compilation unit can be associated.
966     auto *GV = new llvm::GlobalVariable(
967         getModule(), Int8Ty, false, llvm::GlobalValue::ExternalLinkage,
968         llvm::Constant::getNullValue(Int8Ty),
969         "__hip_cuid_" + getContext().getCUIDHash());
970     addCompilerUsedGlobal(GV);
971   }
972   emitLLVMUsed();
973   if (SanStats)
974     SanStats->finish();
975 
976   if (CodeGenOpts.Autolink &&
977       (Context.getLangOpts().Modules || !LinkerOptionsMetadata.empty())) {
978     EmitModuleLinkOptions();
979   }
980 
981   // On ELF we pass the dependent library specifiers directly to the linker
982   // without manipulating them. This is in contrast to other platforms where
983   // they are mapped to a specific linker option by the compiler. This
984   // difference is a result of the greater variety of ELF linkers and the fact
985   // that ELF linkers tend to handle libraries in a more complicated fashion
986   // than on other platforms. This forces us to defer handling the dependent
987   // libs to the linker.
988   //
989   // CUDA/HIP device and host libraries are different. Currently there is no
990   // way to differentiate dependent libraries for host or device. Existing
991   // usage of #pragma comment(lib, *) is intended for host libraries on
992   // Windows. Therefore emit llvm.dependent-libraries only for host.
993   if (!ELFDependentLibraries.empty() && !Context.getLangOpts().CUDAIsDevice) {
994     auto *NMD = getModule().getOrInsertNamedMetadata("llvm.dependent-libraries");
995     for (auto *MD : ELFDependentLibraries)
996       NMD->addOperand(MD);
997   }
998 
999   if (CodeGenOpts.DwarfVersion) {
1000     getModule().addModuleFlag(llvm::Module::Max, "Dwarf Version",
1001                               CodeGenOpts.DwarfVersion);
1002   }
1003 
1004   if (CodeGenOpts.Dwarf64)
1005     getModule().addModuleFlag(llvm::Module::Max, "DWARF64", 1);
1006 
1007   if (Context.getLangOpts().SemanticInterposition)
1008     // Require various optimization to respect semantic interposition.
1009     getModule().setSemanticInterposition(true);
1010 
1011   if (CodeGenOpts.EmitCodeView) {
1012     // Indicate that we want CodeView in the metadata.
1013     getModule().addModuleFlag(llvm::Module::Warning, "CodeView", 1);
1014   }
1015   if (CodeGenOpts.CodeViewGHash) {
1016     getModule().addModuleFlag(llvm::Module::Warning, "CodeViewGHash", 1);
1017   }
1018   if (CodeGenOpts.ControlFlowGuard) {
1019     // Function ID tables and checks for Control Flow Guard (cfguard=2).
1020     getModule().addModuleFlag(llvm::Module::Warning, "cfguard", 2);
1021   } else if (CodeGenOpts.ControlFlowGuardNoChecks) {
1022     // Function ID tables for Control Flow Guard (cfguard=1).
1023     getModule().addModuleFlag(llvm::Module::Warning, "cfguard", 1);
1024   }
1025   if (CodeGenOpts.EHContGuard) {
1026     // Function ID tables for EH Continuation Guard.
1027     getModule().addModuleFlag(llvm::Module::Warning, "ehcontguard", 1);
1028   }
1029   if (Context.getLangOpts().Kernel) {
1030     // Note if we are compiling with /kernel.
1031     getModule().addModuleFlag(llvm::Module::Warning, "ms-kernel", 1);
1032   }
1033   if (CodeGenOpts.OptimizationLevel > 0 && CodeGenOpts.StrictVTablePointers) {
1034     // We don't support LTO with 2 with different StrictVTablePointers
1035     // FIXME: we could support it by stripping all the information introduced
1036     // by StrictVTablePointers.
1037 
1038     getModule().addModuleFlag(llvm::Module::Error, "StrictVTablePointers",1);
1039 
1040     llvm::Metadata *Ops[2] = {
1041               llvm::MDString::get(VMContext, "StrictVTablePointers"),
1042               llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
1043                   llvm::Type::getInt32Ty(VMContext), 1))};
1044 
1045     getModule().addModuleFlag(llvm::Module::Require,
1046                               "StrictVTablePointersRequirement",
1047                               llvm::MDNode::get(VMContext, Ops));
1048   }
1049   if (getModuleDebugInfo())
1050     // We support a single version in the linked module. The LLVM
1051     // parser will drop debug info with a different version number
1052     // (and warn about it, too).
1053     getModule().addModuleFlag(llvm::Module::Warning, "Debug Info Version",
1054                               llvm::DEBUG_METADATA_VERSION);
1055 
1056   // We need to record the widths of enums and wchar_t, so that we can generate
1057   // the correct build attributes in the ARM backend. wchar_size is also used by
1058   // TargetLibraryInfo.
1059   uint64_t WCharWidth =
1060       Context.getTypeSizeInChars(Context.getWideCharType()).getQuantity();
1061   getModule().addModuleFlag(llvm::Module::Error, "wchar_size", WCharWidth);
1062 
1063   if (getTriple().isOSzOS()) {
1064     getModule().addModuleFlag(llvm::Module::Warning,
1065                               "zos_product_major_version",
1066                               uint32_t(CLANG_VERSION_MAJOR));
1067     getModule().addModuleFlag(llvm::Module::Warning,
1068                               "zos_product_minor_version",
1069                               uint32_t(CLANG_VERSION_MINOR));
1070     getModule().addModuleFlag(llvm::Module::Warning, "zos_product_patchlevel",
1071                               uint32_t(CLANG_VERSION_PATCHLEVEL));
1072     std::string ProductId = getClangVendor() + "clang";
1073     getModule().addModuleFlag(llvm::Module::Error, "zos_product_id",
1074                               llvm::MDString::get(VMContext, ProductId));
1075 
1076     // Record the language because we need it for the PPA2.
1077     StringRef lang_str = languageToString(
1078         LangStandard::getLangStandardForKind(LangOpts.LangStd).Language);
1079     getModule().addModuleFlag(llvm::Module::Error, "zos_cu_language",
1080                               llvm::MDString::get(VMContext, lang_str));
1081 
1082     time_t TT = PreprocessorOpts.SourceDateEpoch
1083                     ? *PreprocessorOpts.SourceDateEpoch
1084                     : std::time(nullptr);
1085     getModule().addModuleFlag(llvm::Module::Max, "zos_translation_time",
1086                               static_cast<uint64_t>(TT));
1087 
1088     // Multiple modes will be supported here.
1089     getModule().addModuleFlag(llvm::Module::Error, "zos_le_char_mode",
1090                               llvm::MDString::get(VMContext, "ascii"));
1091   }
1092 
1093   llvm::Triple T = Context.getTargetInfo().getTriple();
1094   if (T.isARM() || T.isThumb()) {
1095     // The minimum width of an enum in bytes
1096     uint64_t EnumWidth = Context.getLangOpts().ShortEnums ? 1 : 4;
1097     getModule().addModuleFlag(llvm::Module::Error, "min_enum_size", EnumWidth);
1098   }
1099 
1100   if (T.isRISCV()) {
1101     StringRef ABIStr = Target.getABI();
1102     llvm::LLVMContext &Ctx = TheModule.getContext();
1103     getModule().addModuleFlag(llvm::Module::Error, "target-abi",
1104                               llvm::MDString::get(Ctx, ABIStr));
1105 
1106     // Add the canonical ISA string as metadata so the backend can set the ELF
1107     // attributes correctly. We use AppendUnique so LTO will keep all of the
1108     // unique ISA strings that were linked together.
1109     const std::vector<std::string> &Features =
1110         getTarget().getTargetOpts().Features;
1111     auto ParseResult =
1112         llvm::RISCVISAInfo::parseFeatures(T.isRISCV64() ? 64 : 32, Features);
1113     if (!errorToBool(ParseResult.takeError()))
1114       getModule().addModuleFlag(
1115           llvm::Module::AppendUnique, "riscv-isa",
1116           llvm::MDNode::get(
1117               Ctx, llvm::MDString::get(Ctx, (*ParseResult)->toString())));
1118   }
1119 
1120   if (CodeGenOpts.SanitizeCfiCrossDso) {
1121     // Indicate that we want cross-DSO control flow integrity checks.
1122     getModule().addModuleFlag(llvm::Module::Override, "Cross-DSO CFI", 1);
1123   }
1124 
1125   if (CodeGenOpts.WholeProgramVTables) {
1126     // Indicate whether VFE was enabled for this module, so that the
1127     // vcall_visibility metadata added under whole program vtables is handled
1128     // appropriately in the optimizer.
1129     getModule().addModuleFlag(llvm::Module::Error, "Virtual Function Elim",
1130                               CodeGenOpts.VirtualFunctionElimination);
1131   }
1132 
1133   if (LangOpts.Sanitize.has(SanitizerKind::CFIICall)) {
1134     getModule().addModuleFlag(llvm::Module::Override,
1135                               "CFI Canonical Jump Tables",
1136                               CodeGenOpts.SanitizeCfiCanonicalJumpTables);
1137   }
1138 
1139   if (LangOpts.Sanitize.has(SanitizerKind::KCFI)) {
1140     getModule().addModuleFlag(llvm::Module::Override, "kcfi", 1);
1141     // KCFI assumes patchable-function-prefix is the same for all indirectly
1142     // called functions. Store the expected offset for code generation.
1143     if (CodeGenOpts.PatchableFunctionEntryOffset)
1144       getModule().addModuleFlag(llvm::Module::Override, "kcfi-offset",
1145                                 CodeGenOpts.PatchableFunctionEntryOffset);
1146   }
1147 
1148   if (CodeGenOpts.CFProtectionReturn &&
1149       Target.checkCFProtectionReturnSupported(getDiags())) {
1150     // Indicate that we want to instrument return control flow protection.
1151     getModule().addModuleFlag(llvm::Module::Min, "cf-protection-return",
1152                               1);
1153   }
1154 
1155   if (CodeGenOpts.CFProtectionBranch &&
1156       Target.checkCFProtectionBranchSupported(getDiags())) {
1157     // Indicate that we want to instrument branch control flow protection.
1158     getModule().addModuleFlag(llvm::Module::Min, "cf-protection-branch",
1159                               1);
1160   }
1161 
1162   if (CodeGenOpts.FunctionReturnThunks)
1163     getModule().addModuleFlag(llvm::Module::Override, "function_return_thunk_extern", 1);
1164 
1165   if (CodeGenOpts.IndirectBranchCSPrefix)
1166     getModule().addModuleFlag(llvm::Module::Override, "indirect_branch_cs_prefix", 1);
1167 
1168   // Add module metadata for return address signing (ignoring
1169   // non-leaf/all) and stack tagging. These are actually turned on by function
1170   // attributes, but we use module metadata to emit build attributes. This is
1171   // needed for LTO, where the function attributes are inside bitcode
1172   // serialised into a global variable by the time build attributes are
1173   // emitted, so we can't access them. LTO objects could be compiled with
1174   // different flags therefore module flags are set to "Min" behavior to achieve
1175   // the same end result of the normal build where e.g BTI is off if any object
1176   // doesn't support it.
1177   if (Context.getTargetInfo().hasFeature("ptrauth") &&
1178       LangOpts.getSignReturnAddressScope() !=
1179           LangOptions::SignReturnAddressScopeKind::None)
1180     getModule().addModuleFlag(llvm::Module::Override,
1181                               "sign-return-address-buildattr", 1);
1182   if (LangOpts.Sanitize.has(SanitizerKind::MemtagStack))
1183     getModule().addModuleFlag(llvm::Module::Override,
1184                               "tag-stack-memory-buildattr", 1);
1185 
1186   if (T.isARM() || T.isThumb() || T.isAArch64()) {
1187     if (LangOpts.BranchTargetEnforcement)
1188       getModule().addModuleFlag(llvm::Module::Min, "branch-target-enforcement",
1189                                 1);
1190     if (LangOpts.BranchProtectionPAuthLR)
1191       getModule().addModuleFlag(llvm::Module::Min, "branch-protection-pauth-lr",
1192                                 1);
1193     if (LangOpts.GuardedControlStack)
1194       getModule().addModuleFlag(llvm::Module::Min, "guarded-control-stack", 1);
1195     if (LangOpts.hasSignReturnAddress())
1196       getModule().addModuleFlag(llvm::Module::Min, "sign-return-address", 1);
1197     if (LangOpts.isSignReturnAddressScopeAll())
1198       getModule().addModuleFlag(llvm::Module::Min, "sign-return-address-all",
1199                                 1);
1200     if (!LangOpts.isSignReturnAddressWithAKey())
1201       getModule().addModuleFlag(llvm::Module::Min,
1202                                 "sign-return-address-with-bkey", 1);
1203 
1204     if (getTriple().isOSLinux()) {
1205       assert(getTriple().isOSBinFormatELF());
1206       using namespace llvm::ELF;
1207       uint64_t PAuthABIVersion =
1208           (LangOpts.PointerAuthIntrinsics
1209            << AARCH64_PAUTH_PLATFORM_LLVM_LINUX_VERSION_INTRINSICS) |
1210           (LangOpts.PointerAuthCalls
1211            << AARCH64_PAUTH_PLATFORM_LLVM_LINUX_VERSION_CALLS) |
1212           (LangOpts.PointerAuthReturns
1213            << AARCH64_PAUTH_PLATFORM_LLVM_LINUX_VERSION_RETURNS) |
1214           (LangOpts.PointerAuthAuthTraps
1215            << AARCH64_PAUTH_PLATFORM_LLVM_LINUX_VERSION_AUTHTRAPS) |
1216           (LangOpts.PointerAuthVTPtrAddressDiscrimination
1217            << AARCH64_PAUTH_PLATFORM_LLVM_LINUX_VERSION_VPTRADDRDISCR) |
1218           (LangOpts.PointerAuthVTPtrTypeDiscrimination
1219            << AARCH64_PAUTH_PLATFORM_LLVM_LINUX_VERSION_VPTRTYPEDISCR) |
1220           (LangOpts.PointerAuthInitFini
1221            << AARCH64_PAUTH_PLATFORM_LLVM_LINUX_VERSION_INITFINI) |
1222           (LangOpts.PointerAuthInitFiniAddressDiscrimination
1223            << AARCH64_PAUTH_PLATFORM_LLVM_LINUX_VERSION_INITFINIADDRDISC);
1224       static_assert(
1225           AARCH64_PAUTH_PLATFORM_LLVM_LINUX_VERSION_INITFINIADDRDISC ==
1226               AARCH64_PAUTH_PLATFORM_LLVM_LINUX_VERSION_LAST,
1227           "Update when new enum items are defined");
1228       if (PAuthABIVersion != 0) {
1229         getModule().addModuleFlag(llvm::Module::Error,
1230                                   "aarch64-elf-pauthabi-platform",
1231                                   AARCH64_PAUTH_PLATFORM_LLVM_LINUX);
1232         getModule().addModuleFlag(llvm::Module::Error,
1233                                   "aarch64-elf-pauthabi-version",
1234                                   PAuthABIVersion);
1235       }
1236     }
1237   }
1238 
1239   if (CodeGenOpts.StackClashProtector)
1240     getModule().addModuleFlag(
1241         llvm::Module::Override, "probe-stack",
1242         llvm::MDString::get(TheModule.getContext(), "inline-asm"));
1243 
1244   if (CodeGenOpts.StackProbeSize && CodeGenOpts.StackProbeSize != 4096)
1245     getModule().addModuleFlag(llvm::Module::Min, "stack-probe-size",
1246                               CodeGenOpts.StackProbeSize);
1247 
1248   if (!CodeGenOpts.MemoryProfileOutput.empty()) {
1249     llvm::LLVMContext &Ctx = TheModule.getContext();
1250     getModule().addModuleFlag(
1251         llvm::Module::Error, "MemProfProfileFilename",
1252         llvm::MDString::get(Ctx, CodeGenOpts.MemoryProfileOutput));
1253   }
1254 
1255   if (LangOpts.CUDAIsDevice && getTriple().isNVPTX()) {
1256     // Indicate whether __nvvm_reflect should be configured to flush denormal
1257     // floating point values to 0.  (This corresponds to its "__CUDA_FTZ"
1258     // property.)
1259     getModule().addModuleFlag(llvm::Module::Override, "nvvm-reflect-ftz",
1260                               CodeGenOpts.FP32DenormalMode.Output !=
1261                                   llvm::DenormalMode::IEEE);
1262   }
1263 
1264   if (LangOpts.EHAsynch)
1265     getModule().addModuleFlag(llvm::Module::Warning, "eh-asynch", 1);
1266 
1267   // Indicate whether this Module was compiled with -fopenmp
1268   if (getLangOpts().OpenMP && !getLangOpts().OpenMPSimd)
1269     getModule().addModuleFlag(llvm::Module::Max, "openmp", LangOpts.OpenMP);
1270   if (getLangOpts().OpenMPIsTargetDevice)
1271     getModule().addModuleFlag(llvm::Module::Max, "openmp-device",
1272                               LangOpts.OpenMP);
1273 
1274   // Emit OpenCL specific module metadata: OpenCL/SPIR version.
1275   if (LangOpts.OpenCL || (LangOpts.CUDAIsDevice && getTriple().isSPIRV())) {
1276     EmitOpenCLMetadata();
1277     // Emit SPIR version.
1278     if (getTriple().isSPIR()) {
1279       // SPIR v2.0 s2.12 - The SPIR version used by the module is stored in the
1280       // opencl.spir.version named metadata.
1281       // C++ for OpenCL has a distinct mapping for version compatibility with
1282       // OpenCL.
1283       auto Version = LangOpts.getOpenCLCompatibleVersion();
1284       llvm::Metadata *SPIRVerElts[] = {
1285           llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
1286               Int32Ty, Version / 100)),
1287           llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
1288               Int32Ty, (Version / 100 > 1) ? 0 : 2))};
1289       llvm::NamedMDNode *SPIRVerMD =
1290           TheModule.getOrInsertNamedMetadata("opencl.spir.version");
1291       llvm::LLVMContext &Ctx = TheModule.getContext();
1292       SPIRVerMD->addOperand(llvm::MDNode::get(Ctx, SPIRVerElts));
1293     }
1294   }
1295 
1296   // HLSL related end of code gen work items.
1297   if (LangOpts.HLSL)
1298     getHLSLRuntime().finishCodeGen();
1299 
1300   if (uint32_t PLevel = Context.getLangOpts().PICLevel) {
1301     assert(PLevel < 3 && "Invalid PIC Level");
1302     getModule().setPICLevel(static_cast<llvm::PICLevel::Level>(PLevel));
1303     if (Context.getLangOpts().PIE)
1304       getModule().setPIELevel(static_cast<llvm::PIELevel::Level>(PLevel));
1305   }
1306 
1307   if (getCodeGenOpts().CodeModel.size() > 0) {
1308     unsigned CM = llvm::StringSwitch<unsigned>(getCodeGenOpts().CodeModel)
1309                   .Case("tiny", llvm::CodeModel::Tiny)
1310                   .Case("small", llvm::CodeModel::Small)
1311                   .Case("kernel", llvm::CodeModel::Kernel)
1312                   .Case("medium", llvm::CodeModel::Medium)
1313                   .Case("large", llvm::CodeModel::Large)
1314                   .Default(~0u);
1315     if (CM != ~0u) {
1316       llvm::CodeModel::Model codeModel = static_cast<llvm::CodeModel::Model>(CM);
1317       getModule().setCodeModel(codeModel);
1318 
1319       if ((CM == llvm::CodeModel::Medium || CM == llvm::CodeModel::Large) &&
1320           Context.getTargetInfo().getTriple().getArch() ==
1321               llvm::Triple::x86_64) {
1322         getModule().setLargeDataThreshold(getCodeGenOpts().LargeDataThreshold);
1323       }
1324     }
1325   }
1326 
1327   if (CodeGenOpts.NoPLT)
1328     getModule().setRtLibUseGOT();
1329   if (getTriple().isOSBinFormatELF() &&
1330       CodeGenOpts.DirectAccessExternalData !=
1331           getModule().getDirectAccessExternalData()) {
1332     getModule().setDirectAccessExternalData(
1333         CodeGenOpts.DirectAccessExternalData);
1334   }
1335   if (CodeGenOpts.UnwindTables)
1336     getModule().setUwtable(llvm::UWTableKind(CodeGenOpts.UnwindTables));
1337 
1338   switch (CodeGenOpts.getFramePointer()) {
1339   case CodeGenOptions::FramePointerKind::None:
1340     // 0 ("none") is the default.
1341     break;
1342   case CodeGenOptions::FramePointerKind::Reserved:
1343     getModule().setFramePointer(llvm::FramePointerKind::Reserved);
1344     break;
1345   case CodeGenOptions::FramePointerKind::NonLeaf:
1346     getModule().setFramePointer(llvm::FramePointerKind::NonLeaf);
1347     break;
1348   case CodeGenOptions::FramePointerKind::All:
1349     getModule().setFramePointer(llvm::FramePointerKind::All);
1350     break;
1351   }
1352 
1353   SimplifyPersonality();
1354 
1355   if (getCodeGenOpts().EmitDeclMetadata)
1356     EmitDeclMetadata();
1357 
1358   if (getCodeGenOpts().CoverageNotesFile.size() ||
1359       getCodeGenOpts().CoverageDataFile.size())
1360     EmitCoverageFile();
1361 
1362   if (CGDebugInfo *DI = getModuleDebugInfo())
1363     DI->finalize();
1364 
1365   if (getCodeGenOpts().EmitVersionIdentMetadata)
1366     EmitVersionIdentMetadata();
1367 
1368   if (!getCodeGenOpts().RecordCommandLine.empty())
1369     EmitCommandLineMetadata();
1370 
1371   if (!getCodeGenOpts().StackProtectorGuard.empty())
1372     getModule().setStackProtectorGuard(getCodeGenOpts().StackProtectorGuard);
1373   if (!getCodeGenOpts().StackProtectorGuardReg.empty())
1374     getModule().setStackProtectorGuardReg(
1375         getCodeGenOpts().StackProtectorGuardReg);
1376   if (!getCodeGenOpts().StackProtectorGuardSymbol.empty())
1377     getModule().setStackProtectorGuardSymbol(
1378         getCodeGenOpts().StackProtectorGuardSymbol);
1379   if (getCodeGenOpts().StackProtectorGuardOffset != INT_MAX)
1380     getModule().setStackProtectorGuardOffset(
1381         getCodeGenOpts().StackProtectorGuardOffset);
1382   if (getCodeGenOpts().StackAlignment)
1383     getModule().setOverrideStackAlignment(getCodeGenOpts().StackAlignment);
1384   if (getCodeGenOpts().SkipRaxSetup)
1385     getModule().addModuleFlag(llvm::Module::Override, "SkipRaxSetup", 1);
1386   if (getLangOpts().RegCall4)
1387     getModule().addModuleFlag(llvm::Module::Override, "RegCallv4", 1);
1388 
1389   if (getContext().getTargetInfo().getMaxTLSAlign())
1390     getModule().addModuleFlag(llvm::Module::Error, "MaxTLSAlign",
1391                               getContext().getTargetInfo().getMaxTLSAlign());
1392 
1393   getTargetCodeGenInfo().emitTargetGlobals(*this);
1394 
1395   getTargetCodeGenInfo().emitTargetMetadata(*this, MangledDeclNames);
1396 
1397   EmitBackendOptionsMetadata(getCodeGenOpts());
1398 
1399   // If there is device offloading code embed it in the host now.
1400   EmbedObject(&getModule(), CodeGenOpts, getDiags());
1401 
1402   // Set visibility from DLL storage class
1403   // We do this at the end of LLVM IR generation; after any operation
1404   // that might affect the DLL storage class or the visibility, and
1405   // before anything that might act on these.
1406   setVisibilityFromDLLStorageClass(LangOpts, getModule());
1407 
1408   // Check the tail call symbols are truly undefined.
1409   if (getTriple().isPPC() && !MustTailCallUndefinedGlobals.empty()) {
1410     for (auto &I : MustTailCallUndefinedGlobals) {
1411       if (!I.first->isDefined())
1412         getDiags().Report(I.second, diag::err_ppc_impossible_musttail) << 2;
1413       else {
1414         StringRef MangledName = getMangledName(GlobalDecl(I.first));
1415         llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
1416         if (!Entry || Entry->isWeakForLinker() ||
1417             Entry->isDeclarationForLinker())
1418           getDiags().Report(I.second, diag::err_ppc_impossible_musttail) << 2;
1419       }
1420     }
1421   }
1422 }
1423 
1424 void CodeGenModule::EmitOpenCLMetadata() {
1425   // SPIR v2.0 s2.13 - The OpenCL version used by the module is stored in the
1426   // opencl.ocl.version named metadata node.
1427   // C++ for OpenCL has a distinct mapping for versions compatible with OpenCL.
1428   auto CLVersion = LangOpts.getOpenCLCompatibleVersion();
1429 
1430   auto EmitVersion = [this](StringRef MDName, int Version) {
1431     llvm::Metadata *OCLVerElts[] = {
1432         llvm::ConstantAsMetadata::get(
1433             llvm::ConstantInt::get(Int32Ty, Version / 100)),
1434         llvm::ConstantAsMetadata::get(
1435             llvm::ConstantInt::get(Int32Ty, (Version % 100) / 10))};
1436     llvm::NamedMDNode *OCLVerMD = TheModule.getOrInsertNamedMetadata(MDName);
1437     llvm::LLVMContext &Ctx = TheModule.getContext();
1438     OCLVerMD->addOperand(llvm::MDNode::get(Ctx, OCLVerElts));
1439   };
1440 
1441   EmitVersion("opencl.ocl.version", CLVersion);
1442   if (LangOpts.OpenCLCPlusPlus) {
1443     // In addition to the OpenCL compatible version, emit the C++ version.
1444     EmitVersion("opencl.cxx.version", LangOpts.OpenCLCPlusPlusVersion);
1445   }
1446 }
1447 
1448 void CodeGenModule::EmitBackendOptionsMetadata(
1449     const CodeGenOptions &CodeGenOpts) {
1450   if (getTriple().isRISCV()) {
1451     getModule().addModuleFlag(llvm::Module::Min, "SmallDataLimit",
1452                               CodeGenOpts.SmallDataLimit);
1453   }
1454 }
1455 
1456 void CodeGenModule::UpdateCompletedType(const TagDecl *TD) {
1457   // Make sure that this type is translated.
1458   Types.UpdateCompletedType(TD);
1459 }
1460 
1461 void CodeGenModule::RefreshTypeCacheForClass(const CXXRecordDecl *RD) {
1462   // Make sure that this type is translated.
1463   Types.RefreshTypeCacheForClass(RD);
1464 }
1465 
1466 llvm::MDNode *CodeGenModule::getTBAATypeInfo(QualType QTy) {
1467   if (!TBAA)
1468     return nullptr;
1469   return TBAA->getTypeInfo(QTy);
1470 }
1471 
1472 TBAAAccessInfo CodeGenModule::getTBAAAccessInfo(QualType AccessType) {
1473   if (!TBAA)
1474     return TBAAAccessInfo();
1475   if (getLangOpts().CUDAIsDevice) {
1476     // As CUDA builtin surface/texture types are replaced, skip generating TBAA
1477     // access info.
1478     if (AccessType->isCUDADeviceBuiltinSurfaceType()) {
1479       if (getTargetCodeGenInfo().getCUDADeviceBuiltinSurfaceDeviceType() !=
1480           nullptr)
1481         return TBAAAccessInfo();
1482     } else if (AccessType->isCUDADeviceBuiltinTextureType()) {
1483       if (getTargetCodeGenInfo().getCUDADeviceBuiltinTextureDeviceType() !=
1484           nullptr)
1485         return TBAAAccessInfo();
1486     }
1487   }
1488   return TBAA->getAccessInfo(AccessType);
1489 }
1490 
1491 TBAAAccessInfo
1492 CodeGenModule::getTBAAVTablePtrAccessInfo(llvm::Type *VTablePtrType) {
1493   if (!TBAA)
1494     return TBAAAccessInfo();
1495   return TBAA->getVTablePtrAccessInfo(VTablePtrType);
1496 }
1497 
1498 llvm::MDNode *CodeGenModule::getTBAAStructInfo(QualType QTy) {
1499   if (!TBAA)
1500     return nullptr;
1501   return TBAA->getTBAAStructInfo(QTy);
1502 }
1503 
1504 llvm::MDNode *CodeGenModule::getTBAABaseTypeInfo(QualType QTy) {
1505   if (!TBAA)
1506     return nullptr;
1507   return TBAA->getBaseTypeInfo(QTy);
1508 }
1509 
1510 llvm::MDNode *CodeGenModule::getTBAAAccessTagInfo(TBAAAccessInfo Info) {
1511   if (!TBAA)
1512     return nullptr;
1513   return TBAA->getAccessTagInfo(Info);
1514 }
1515 
1516 TBAAAccessInfo CodeGenModule::mergeTBAAInfoForCast(TBAAAccessInfo SourceInfo,
1517                                                    TBAAAccessInfo TargetInfo) {
1518   if (!TBAA)
1519     return TBAAAccessInfo();
1520   return TBAA->mergeTBAAInfoForCast(SourceInfo, TargetInfo);
1521 }
1522 
1523 TBAAAccessInfo
1524 CodeGenModule::mergeTBAAInfoForConditionalOperator(TBAAAccessInfo InfoA,
1525                                                    TBAAAccessInfo InfoB) {
1526   if (!TBAA)
1527     return TBAAAccessInfo();
1528   return TBAA->mergeTBAAInfoForConditionalOperator(InfoA, InfoB);
1529 }
1530 
1531 TBAAAccessInfo
1532 CodeGenModule::mergeTBAAInfoForMemoryTransfer(TBAAAccessInfo DestInfo,
1533                                               TBAAAccessInfo SrcInfo) {
1534   if (!TBAA)
1535     return TBAAAccessInfo();
1536   return TBAA->mergeTBAAInfoForConditionalOperator(DestInfo, SrcInfo);
1537 }
1538 
1539 void CodeGenModule::DecorateInstructionWithTBAA(llvm::Instruction *Inst,
1540                                                 TBAAAccessInfo TBAAInfo) {
1541   if (llvm::MDNode *Tag = getTBAAAccessTagInfo(TBAAInfo))
1542     Inst->setMetadata(llvm::LLVMContext::MD_tbaa, Tag);
1543 }
1544 
1545 void CodeGenModule::DecorateInstructionWithInvariantGroup(
1546     llvm::Instruction *I, const CXXRecordDecl *RD) {
1547   I->setMetadata(llvm::LLVMContext::MD_invariant_group,
1548                  llvm::MDNode::get(getLLVMContext(), {}));
1549 }
1550 
1551 void CodeGenModule::Error(SourceLocation loc, StringRef message) {
1552   unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, "%0");
1553   getDiags().Report(Context.getFullLoc(loc), diagID) << message;
1554 }
1555 
1556 /// ErrorUnsupported - Print out an error that codegen doesn't support the
1557 /// specified stmt yet.
1558 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type) {
1559   unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
1560                                                "cannot compile this %0 yet");
1561   std::string Msg = Type;
1562   getDiags().Report(Context.getFullLoc(S->getBeginLoc()), DiagID)
1563       << Msg << S->getSourceRange();
1564 }
1565 
1566 /// ErrorUnsupported - Print out an error that codegen doesn't support the
1567 /// specified decl yet.
1568 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type) {
1569   unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
1570                                                "cannot compile this %0 yet");
1571   std::string Msg = Type;
1572   getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg;
1573 }
1574 
1575 llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) {
1576   return llvm::ConstantInt::get(SizeTy, size.getQuantity());
1577 }
1578 
1579 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV,
1580                                         const NamedDecl *D) const {
1581   // Internal definitions always have default visibility.
1582   if (GV->hasLocalLinkage()) {
1583     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
1584     return;
1585   }
1586   if (!D)
1587     return;
1588 
1589   // Set visibility for definitions, and for declarations if requested globally
1590   // or set explicitly.
1591   LinkageInfo LV = D->getLinkageAndVisibility();
1592 
1593   // OpenMP declare target variables must be visible to the host so they can
1594   // be registered. We require protected visibility unless the variable has
1595   // the DT_nohost modifier and does not need to be registered.
1596   if (Context.getLangOpts().OpenMP &&
1597       Context.getLangOpts().OpenMPIsTargetDevice && isa<VarDecl>(D) &&
1598       D->hasAttr<OMPDeclareTargetDeclAttr>() &&
1599       D->getAttr<OMPDeclareTargetDeclAttr>()->getDevType() !=
1600           OMPDeclareTargetDeclAttr::DT_NoHost &&
1601       LV.getVisibility() == HiddenVisibility) {
1602     GV->setVisibility(llvm::GlobalValue::ProtectedVisibility);
1603     return;
1604   }
1605 
1606   if (GV->hasDLLExportStorageClass() || GV->hasDLLImportStorageClass()) {
1607     // Reject incompatible dlllstorage and visibility annotations.
1608     if (!LV.isVisibilityExplicit())
1609       return;
1610     if (GV->hasDLLExportStorageClass()) {
1611       if (LV.getVisibility() == HiddenVisibility)
1612         getDiags().Report(D->getLocation(),
1613                           diag::err_hidden_visibility_dllexport);
1614     } else if (LV.getVisibility() != DefaultVisibility) {
1615       getDiags().Report(D->getLocation(),
1616                         diag::err_non_default_visibility_dllimport);
1617     }
1618     return;
1619   }
1620 
1621   if (LV.isVisibilityExplicit() || getLangOpts().SetVisibilityForExternDecls ||
1622       !GV->isDeclarationForLinker())
1623     GV->setVisibility(GetLLVMVisibility(LV.getVisibility()));
1624 }
1625 
1626 static bool shouldAssumeDSOLocal(const CodeGenModule &CGM,
1627                                  llvm::GlobalValue *GV) {
1628   if (GV->hasLocalLinkage())
1629     return true;
1630 
1631   if (!GV->hasDefaultVisibility() && !GV->hasExternalWeakLinkage())
1632     return true;
1633 
1634   // DLLImport explicitly marks the GV as external.
1635   if (GV->hasDLLImportStorageClass())
1636     return false;
1637 
1638   const llvm::Triple &TT = CGM.getTriple();
1639   const auto &CGOpts = CGM.getCodeGenOpts();
1640   if (TT.isWindowsGNUEnvironment()) {
1641     // In MinGW, variables without DLLImport can still be automatically
1642     // imported from a DLL by the linker; don't mark variables that
1643     // potentially could come from another DLL as DSO local.
1644 
1645     // With EmulatedTLS, TLS variables can be autoimported from other DLLs
1646     // (and this actually happens in the public interface of libstdc++), so
1647     // such variables can't be marked as DSO local. (Native TLS variables
1648     // can't be dllimported at all, though.)
1649     if (GV->isDeclarationForLinker() && isa<llvm::GlobalVariable>(GV) &&
1650         (!GV->isThreadLocal() || CGM.getCodeGenOpts().EmulatedTLS) &&
1651         CGOpts.AutoImport)
1652       return false;
1653   }
1654 
1655   // On COFF, don't mark 'extern_weak' symbols as DSO local. If these symbols
1656   // remain unresolved in the link, they can be resolved to zero, which is
1657   // outside the current DSO.
1658   if (TT.isOSBinFormatCOFF() && GV->hasExternalWeakLinkage())
1659     return false;
1660 
1661   // Every other GV is local on COFF.
1662   // Make an exception for windows OS in the triple: Some firmware builds use
1663   // *-win32-macho triples. This (accidentally?) produced windows relocations
1664   // without GOT tables in older clang versions; Keep this behaviour.
1665   // FIXME: even thread local variables?
1666   if (TT.isOSBinFormatCOFF() || (TT.isOSWindows() && TT.isOSBinFormatMachO()))
1667     return true;
1668 
1669   // Only handle COFF and ELF for now.
1670   if (!TT.isOSBinFormatELF())
1671     return false;
1672 
1673   // If this is not an executable, don't assume anything is local.
1674   llvm::Reloc::Model RM = CGOpts.RelocationModel;
1675   const auto &LOpts = CGM.getLangOpts();
1676   if (RM != llvm::Reloc::Static && !LOpts.PIE) {
1677     // On ELF, if -fno-semantic-interposition is specified and the target
1678     // supports local aliases, there will be neither CC1
1679     // -fsemantic-interposition nor -fhalf-no-semantic-interposition. Set
1680     // dso_local on the function if using a local alias is preferable (can avoid
1681     // PLT indirection).
1682     if (!(isa<llvm::Function>(GV) && GV->canBenefitFromLocalAlias()))
1683       return false;
1684     return !(CGM.getLangOpts().SemanticInterposition ||
1685              CGM.getLangOpts().HalfNoSemanticInterposition);
1686   }
1687 
1688   // A definition cannot be preempted from an executable.
1689   if (!GV->isDeclarationForLinker())
1690     return true;
1691 
1692   // Most PIC code sequences that assume that a symbol is local cannot produce a
1693   // 0 if it turns out the symbol is undefined. While this is ABI and relocation
1694   // depended, it seems worth it to handle it here.
1695   if (RM == llvm::Reloc::PIC_ && GV->hasExternalWeakLinkage())
1696     return false;
1697 
1698   // PowerPC64 prefers TOC indirection to avoid copy relocations.
1699   if (TT.isPPC64())
1700     return false;
1701 
1702   if (CGOpts.DirectAccessExternalData) {
1703     // If -fdirect-access-external-data (default for -fno-pic), set dso_local
1704     // for non-thread-local variables. If the symbol is not defined in the
1705     // executable, a copy relocation will be needed at link time. dso_local is
1706     // excluded for thread-local variables because they generally don't support
1707     // copy relocations.
1708     if (auto *Var = dyn_cast<llvm::GlobalVariable>(GV))
1709       if (!Var->isThreadLocal())
1710         return true;
1711 
1712     // -fno-pic sets dso_local on a function declaration to allow direct
1713     // accesses when taking its address (similar to a data symbol). If the
1714     // function is not defined in the executable, a canonical PLT entry will be
1715     // needed at link time. -fno-direct-access-external-data can avoid the
1716     // canonical PLT entry. We don't generalize this condition to -fpie/-fpic as
1717     // it could just cause trouble without providing perceptible benefits.
1718     if (isa<llvm::Function>(GV) && !CGOpts.NoPLT && RM == llvm::Reloc::Static)
1719       return true;
1720   }
1721 
1722   // If we can use copy relocations we can assume it is local.
1723 
1724   // Otherwise don't assume it is local.
1725   return false;
1726 }
1727 
1728 void CodeGenModule::setDSOLocal(llvm::GlobalValue *GV) const {
1729   GV->setDSOLocal(shouldAssumeDSOLocal(*this, GV));
1730 }
1731 
1732 void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV,
1733                                           GlobalDecl GD) const {
1734   const auto *D = dyn_cast<NamedDecl>(GD.getDecl());
1735   // C++ destructors have a few C++ ABI specific special cases.
1736   if (const auto *Dtor = dyn_cast_or_null<CXXDestructorDecl>(D)) {
1737     getCXXABI().setCXXDestructorDLLStorage(GV, Dtor, GD.getDtorType());
1738     return;
1739   }
1740   setDLLImportDLLExport(GV, D);
1741 }
1742 
1743 void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV,
1744                                           const NamedDecl *D) const {
1745   if (D && D->isExternallyVisible()) {
1746     if (D->hasAttr<DLLImportAttr>())
1747       GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass);
1748     else if ((D->hasAttr<DLLExportAttr>() ||
1749               shouldMapVisibilityToDLLExport(D)) &&
1750              !GV->isDeclarationForLinker())
1751       GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass);
1752   }
1753 }
1754 
1755 void CodeGenModule::setGVProperties(llvm::GlobalValue *GV,
1756                                     GlobalDecl GD) const {
1757   setDLLImportDLLExport(GV, GD);
1758   setGVPropertiesAux(GV, dyn_cast<NamedDecl>(GD.getDecl()));
1759 }
1760 
1761 void CodeGenModule::setGVProperties(llvm::GlobalValue *GV,
1762                                     const NamedDecl *D) const {
1763   setDLLImportDLLExport(GV, D);
1764   setGVPropertiesAux(GV, D);
1765 }
1766 
1767 void CodeGenModule::setGVPropertiesAux(llvm::GlobalValue *GV,
1768                                        const NamedDecl *D) const {
1769   setGlobalVisibility(GV, D);
1770   setDSOLocal(GV);
1771   GV->setPartition(CodeGenOpts.SymbolPartition);
1772 }
1773 
1774 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(StringRef S) {
1775   return llvm::StringSwitch<llvm::GlobalVariable::ThreadLocalMode>(S)
1776       .Case("global-dynamic", llvm::GlobalVariable::GeneralDynamicTLSModel)
1777       .Case("local-dynamic", llvm::GlobalVariable::LocalDynamicTLSModel)
1778       .Case("initial-exec", llvm::GlobalVariable::InitialExecTLSModel)
1779       .Case("local-exec", llvm::GlobalVariable::LocalExecTLSModel);
1780 }
1781 
1782 llvm::GlobalVariable::ThreadLocalMode
1783 CodeGenModule::GetDefaultLLVMTLSModel() const {
1784   switch (CodeGenOpts.getDefaultTLSModel()) {
1785   case CodeGenOptions::GeneralDynamicTLSModel:
1786     return llvm::GlobalVariable::GeneralDynamicTLSModel;
1787   case CodeGenOptions::LocalDynamicTLSModel:
1788     return llvm::GlobalVariable::LocalDynamicTLSModel;
1789   case CodeGenOptions::InitialExecTLSModel:
1790     return llvm::GlobalVariable::InitialExecTLSModel;
1791   case CodeGenOptions::LocalExecTLSModel:
1792     return llvm::GlobalVariable::LocalExecTLSModel;
1793   }
1794   llvm_unreachable("Invalid TLS model!");
1795 }
1796 
1797 void CodeGenModule::setTLSMode(llvm::GlobalValue *GV, const VarDecl &D) const {
1798   assert(D.getTLSKind() && "setting TLS mode on non-TLS var!");
1799 
1800   llvm::GlobalValue::ThreadLocalMode TLM;
1801   TLM = GetDefaultLLVMTLSModel();
1802 
1803   // Override the TLS model if it is explicitly specified.
1804   if (const TLSModelAttr *Attr = D.getAttr<TLSModelAttr>()) {
1805     TLM = GetLLVMTLSModel(Attr->getModel());
1806   }
1807 
1808   GV->setThreadLocalMode(TLM);
1809 }
1810 
1811 static std::string getCPUSpecificMangling(const CodeGenModule &CGM,
1812                                           StringRef Name) {
1813   const TargetInfo &Target = CGM.getTarget();
1814   return (Twine('.') + Twine(Target.CPUSpecificManglingCharacter(Name))).str();
1815 }
1816 
1817 static void AppendCPUSpecificCPUDispatchMangling(const CodeGenModule &CGM,
1818                                                  const CPUSpecificAttr *Attr,
1819                                                  unsigned CPUIndex,
1820                                                  raw_ostream &Out) {
1821   // cpu_specific gets the current name, dispatch gets the resolver if IFunc is
1822   // supported.
1823   if (Attr)
1824     Out << getCPUSpecificMangling(CGM, Attr->getCPUName(CPUIndex)->getName());
1825   else if (CGM.getTarget().supportsIFunc())
1826     Out << ".resolver";
1827 }
1828 
1829 // Returns true if GD is a function decl with internal linkage and
1830 // needs a unique suffix after the mangled name.
1831 static bool isUniqueInternalLinkageDecl(GlobalDecl GD,
1832                                         CodeGenModule &CGM) {
1833   const Decl *D = GD.getDecl();
1834   return !CGM.getModuleNameHash().empty() && isa<FunctionDecl>(D) &&
1835          (CGM.getFunctionLinkage(GD) == llvm::GlobalValue::InternalLinkage);
1836 }
1837 
1838 static std::string getMangledNameImpl(CodeGenModule &CGM, GlobalDecl GD,
1839                                       const NamedDecl *ND,
1840                                       bool OmitMultiVersionMangling = false) {
1841   SmallString<256> Buffer;
1842   llvm::raw_svector_ostream Out(Buffer);
1843   MangleContext &MC = CGM.getCXXABI().getMangleContext();
1844   if (!CGM.getModuleNameHash().empty())
1845     MC.needsUniqueInternalLinkageNames();
1846   bool ShouldMangle = MC.shouldMangleDeclName(ND);
1847   if (ShouldMangle)
1848     MC.mangleName(GD.getWithDecl(ND), Out);
1849   else {
1850     IdentifierInfo *II = ND->getIdentifier();
1851     assert(II && "Attempt to mangle unnamed decl.");
1852     const auto *FD = dyn_cast<FunctionDecl>(ND);
1853 
1854     if (FD &&
1855         FD->getType()->castAs<FunctionType>()->getCallConv() == CC_X86RegCall) {
1856       if (CGM.getLangOpts().RegCall4)
1857         Out << "__regcall4__" << II->getName();
1858       else
1859         Out << "__regcall3__" << II->getName();
1860     } else if (FD && FD->hasAttr<CUDAGlobalAttr>() &&
1861                GD.getKernelReferenceKind() == KernelReferenceKind::Stub) {
1862       Out << "__device_stub__" << II->getName();
1863     } else {
1864       Out << II->getName();
1865     }
1866   }
1867 
1868   // Check if the module name hash should be appended for internal linkage
1869   // symbols.   This should come before multi-version target suffixes are
1870   // appended. This is to keep the name and module hash suffix of the
1871   // internal linkage function together.  The unique suffix should only be
1872   // added when name mangling is done to make sure that the final name can
1873   // be properly demangled.  For example, for C functions without prototypes,
1874   // name mangling is not done and the unique suffix should not be appeneded
1875   // then.
1876   if (ShouldMangle && isUniqueInternalLinkageDecl(GD, CGM)) {
1877     assert(CGM.getCodeGenOpts().UniqueInternalLinkageNames &&
1878            "Hash computed when not explicitly requested");
1879     Out << CGM.getModuleNameHash();
1880   }
1881 
1882   if (const auto *FD = dyn_cast<FunctionDecl>(ND))
1883     if (FD->isMultiVersion() && !OmitMultiVersionMangling) {
1884       switch (FD->getMultiVersionKind()) {
1885       case MultiVersionKind::CPUDispatch:
1886       case MultiVersionKind::CPUSpecific:
1887         AppendCPUSpecificCPUDispatchMangling(CGM,
1888                                              FD->getAttr<CPUSpecificAttr>(),
1889                                              GD.getMultiVersionIndex(), Out);
1890         break;
1891       case MultiVersionKind::Target: {
1892         auto *Attr = FD->getAttr<TargetAttr>();
1893         assert(Attr && "Expected TargetAttr to be present "
1894                        "for attribute mangling");
1895         const ABIInfo &Info = CGM.getTargetCodeGenInfo().getABIInfo();
1896         Info.appendAttributeMangling(Attr, Out);
1897         break;
1898       }
1899       case MultiVersionKind::TargetVersion: {
1900         auto *Attr = FD->getAttr<TargetVersionAttr>();
1901         assert(Attr && "Expected TargetVersionAttr to be present "
1902                        "for attribute mangling");
1903         const ABIInfo &Info = CGM.getTargetCodeGenInfo().getABIInfo();
1904         Info.appendAttributeMangling(Attr, Out);
1905         break;
1906       }
1907       case MultiVersionKind::TargetClones: {
1908         auto *Attr = FD->getAttr<TargetClonesAttr>();
1909         assert(Attr && "Expected TargetClonesAttr to be present "
1910                        "for attribute mangling");
1911         unsigned Index = GD.getMultiVersionIndex();
1912         const ABIInfo &Info = CGM.getTargetCodeGenInfo().getABIInfo();
1913         Info.appendAttributeMangling(Attr, Index, Out);
1914         break;
1915       }
1916       case MultiVersionKind::None:
1917         llvm_unreachable("None multiversion type isn't valid here");
1918       }
1919     }
1920 
1921   // Make unique name for device side static file-scope variable for HIP.
1922   if (CGM.getContext().shouldExternalize(ND) &&
1923       CGM.getLangOpts().GPURelocatableDeviceCode &&
1924       CGM.getLangOpts().CUDAIsDevice)
1925     CGM.printPostfixForExternalizedDecl(Out, ND);
1926 
1927   return std::string(Out.str());
1928 }
1929 
1930 void CodeGenModule::UpdateMultiVersionNames(GlobalDecl GD,
1931                                             const FunctionDecl *FD,
1932                                             StringRef &CurName) {
1933   if (!FD->isMultiVersion())
1934     return;
1935 
1936   // Get the name of what this would be without the 'target' attribute.  This
1937   // allows us to lookup the version that was emitted when this wasn't a
1938   // multiversion function.
1939   std::string NonTargetName =
1940       getMangledNameImpl(*this, GD, FD, /*OmitMultiVersionMangling=*/true);
1941   GlobalDecl OtherGD;
1942   if (lookupRepresentativeDecl(NonTargetName, OtherGD)) {
1943     assert(OtherGD.getCanonicalDecl()
1944                .getDecl()
1945                ->getAsFunction()
1946                ->isMultiVersion() &&
1947            "Other GD should now be a multiversioned function");
1948     // OtherFD is the version of this function that was mangled BEFORE
1949     // becoming a MultiVersion function.  It potentially needs to be updated.
1950     const FunctionDecl *OtherFD = OtherGD.getCanonicalDecl()
1951                                       .getDecl()
1952                                       ->getAsFunction()
1953                                       ->getMostRecentDecl();
1954     std::string OtherName = getMangledNameImpl(*this, OtherGD, OtherFD);
1955     // This is so that if the initial version was already the 'default'
1956     // version, we don't try to update it.
1957     if (OtherName != NonTargetName) {
1958       // Remove instead of erase, since others may have stored the StringRef
1959       // to this.
1960       const auto ExistingRecord = Manglings.find(NonTargetName);
1961       if (ExistingRecord != std::end(Manglings))
1962         Manglings.remove(&(*ExistingRecord));
1963       auto Result = Manglings.insert(std::make_pair(OtherName, OtherGD));
1964       StringRef OtherNameRef = MangledDeclNames[OtherGD.getCanonicalDecl()] =
1965           Result.first->first();
1966       // If this is the current decl is being created, make sure we update the name.
1967       if (GD.getCanonicalDecl() == OtherGD.getCanonicalDecl())
1968         CurName = OtherNameRef;
1969       if (llvm::GlobalValue *Entry = GetGlobalValue(NonTargetName))
1970         Entry->setName(OtherName);
1971     }
1972   }
1973 }
1974 
1975 StringRef CodeGenModule::getMangledName(GlobalDecl GD) {
1976   GlobalDecl CanonicalGD = GD.getCanonicalDecl();
1977 
1978   // Some ABIs don't have constructor variants.  Make sure that base and
1979   // complete constructors get mangled the same.
1980   if (const auto *CD = dyn_cast<CXXConstructorDecl>(CanonicalGD.getDecl())) {
1981     if (!getTarget().getCXXABI().hasConstructorVariants()) {
1982       CXXCtorType OrigCtorType = GD.getCtorType();
1983       assert(OrigCtorType == Ctor_Base || OrigCtorType == Ctor_Complete);
1984       if (OrigCtorType == Ctor_Base)
1985         CanonicalGD = GlobalDecl(CD, Ctor_Complete);
1986     }
1987   }
1988 
1989   // In CUDA/HIP device compilation with -fgpu-rdc, the mangled name of a
1990   // static device variable depends on whether the variable is referenced by
1991   // a host or device host function. Therefore the mangled name cannot be
1992   // cached.
1993   if (!LangOpts.CUDAIsDevice || !getContext().mayExternalize(GD.getDecl())) {
1994     auto FoundName = MangledDeclNames.find(CanonicalGD);
1995     if (FoundName != MangledDeclNames.end())
1996       return FoundName->second;
1997   }
1998 
1999   // Keep the first result in the case of a mangling collision.
2000   const auto *ND = cast<NamedDecl>(GD.getDecl());
2001   std::string MangledName = getMangledNameImpl(*this, GD, ND);
2002 
2003   // Ensure either we have different ABIs between host and device compilations,
2004   // says host compilation following MSVC ABI but device compilation follows
2005   // Itanium C++ ABI or, if they follow the same ABI, kernel names after
2006   // mangling should be the same after name stubbing. The later checking is
2007   // very important as the device kernel name being mangled in host-compilation
2008   // is used to resolve the device binaries to be executed. Inconsistent naming
2009   // result in undefined behavior. Even though we cannot check that naming
2010   // directly between host- and device-compilations, the host- and
2011   // device-mangling in host compilation could help catching certain ones.
2012   assert(!isa<FunctionDecl>(ND) || !ND->hasAttr<CUDAGlobalAttr>() ||
2013          getContext().shouldExternalize(ND) || getLangOpts().CUDAIsDevice ||
2014          (getContext().getAuxTargetInfo() &&
2015           (getContext().getAuxTargetInfo()->getCXXABI() !=
2016            getContext().getTargetInfo().getCXXABI())) ||
2017          getCUDARuntime().getDeviceSideName(ND) ==
2018              getMangledNameImpl(
2019                  *this,
2020                  GD.getWithKernelReferenceKind(KernelReferenceKind::Kernel),
2021                  ND));
2022 
2023   auto Result = Manglings.insert(std::make_pair(MangledName, GD));
2024   return MangledDeclNames[CanonicalGD] = Result.first->first();
2025 }
2026 
2027 StringRef CodeGenModule::getBlockMangledName(GlobalDecl GD,
2028                                              const BlockDecl *BD) {
2029   MangleContext &MangleCtx = getCXXABI().getMangleContext();
2030   const Decl *D = GD.getDecl();
2031 
2032   SmallString<256> Buffer;
2033   llvm::raw_svector_ostream Out(Buffer);
2034   if (!D)
2035     MangleCtx.mangleGlobalBlock(BD,
2036       dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()), Out);
2037   else if (const auto *CD = dyn_cast<CXXConstructorDecl>(D))
2038     MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out);
2039   else if (const auto *DD = dyn_cast<CXXDestructorDecl>(D))
2040     MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out);
2041   else
2042     MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out);
2043 
2044   auto Result = Manglings.insert(std::make_pair(Out.str(), BD));
2045   return Result.first->first();
2046 }
2047 
2048 const GlobalDecl CodeGenModule::getMangledNameDecl(StringRef Name) {
2049   auto it = MangledDeclNames.begin();
2050   while (it != MangledDeclNames.end()) {
2051     if (it->second == Name)
2052       return it->first;
2053     it++;
2054   }
2055   return GlobalDecl();
2056 }
2057 
2058 llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) {
2059   return getModule().getNamedValue(Name);
2060 }
2061 
2062 /// AddGlobalCtor - Add a function to the list that will be called before
2063 /// main() runs.
2064 void CodeGenModule::AddGlobalCtor(llvm::Function *Ctor, int Priority,
2065                                   unsigned LexOrder,
2066                                   llvm::Constant *AssociatedData) {
2067   // FIXME: Type coercion of void()* types.
2068   GlobalCtors.push_back(Structor(Priority, LexOrder, Ctor, AssociatedData));
2069 }
2070 
2071 /// AddGlobalDtor - Add a function to the list that will be called
2072 /// when the module is unloaded.
2073 void CodeGenModule::AddGlobalDtor(llvm::Function *Dtor, int Priority,
2074                                   bool IsDtorAttrFunc) {
2075   if (CodeGenOpts.RegisterGlobalDtorsWithAtExit &&
2076       (!getContext().getTargetInfo().getTriple().isOSAIX() || IsDtorAttrFunc)) {
2077     DtorsUsingAtExit[Priority].push_back(Dtor);
2078     return;
2079   }
2080 
2081   // FIXME: Type coercion of void()* types.
2082   GlobalDtors.push_back(Structor(Priority, ~0U, Dtor, nullptr));
2083 }
2084 
2085 void CodeGenModule::EmitCtorList(CtorList &Fns, const char *GlobalName) {
2086   if (Fns.empty()) return;
2087 
2088   const PointerAuthSchema &InitFiniAuthSchema =
2089       getCodeGenOpts().PointerAuth.InitFiniPointers;
2090 
2091   // Ctor function type is ptr.
2092   llvm::PointerType *PtrTy = llvm::PointerType::get(
2093       getLLVMContext(), TheModule.getDataLayout().getProgramAddressSpace());
2094 
2095   // Get the type of a ctor entry, { i32, ptr, ptr }.
2096   llvm::StructType *CtorStructTy = llvm::StructType::get(Int32Ty, PtrTy, PtrTy);
2097 
2098   // Construct the constructor and destructor arrays.
2099   ConstantInitBuilder Builder(*this);
2100   auto Ctors = Builder.beginArray(CtorStructTy);
2101   for (const auto &I : Fns) {
2102     auto Ctor = Ctors.beginStruct(CtorStructTy);
2103     Ctor.addInt(Int32Ty, I.Priority);
2104     if (InitFiniAuthSchema) {
2105       llvm::Constant *StorageAddress =
2106           (InitFiniAuthSchema.isAddressDiscriminated()
2107                ? llvm::ConstantExpr::getIntToPtr(
2108                      llvm::ConstantInt::get(
2109                          IntPtrTy,
2110                          llvm::ConstantPtrAuth::AddrDiscriminator_CtorsDtors),
2111                      PtrTy)
2112                : nullptr);
2113       llvm::Constant *SignedCtorPtr = getConstantSignedPointer(
2114           I.Initializer, InitFiniAuthSchema.getKey(), StorageAddress,
2115           llvm::ConstantInt::get(
2116               SizeTy, InitFiniAuthSchema.getConstantDiscrimination()));
2117       Ctor.add(SignedCtorPtr);
2118     } else {
2119       Ctor.add(I.Initializer);
2120     }
2121     if (I.AssociatedData)
2122       Ctor.add(I.AssociatedData);
2123     else
2124       Ctor.addNullPointer(PtrTy);
2125     Ctor.finishAndAddTo(Ctors);
2126   }
2127 
2128   auto List = Ctors.finishAndCreateGlobal(GlobalName, getPointerAlign(),
2129                                           /*constant*/ false,
2130                                           llvm::GlobalValue::AppendingLinkage);
2131 
2132   // The LTO linker doesn't seem to like it when we set an alignment
2133   // on appending variables.  Take it off as a workaround.
2134   List->setAlignment(std::nullopt);
2135 
2136   Fns.clear();
2137 }
2138 
2139 llvm::GlobalValue::LinkageTypes
2140 CodeGenModule::getFunctionLinkage(GlobalDecl GD) {
2141   const auto *D = cast<FunctionDecl>(GD.getDecl());
2142 
2143   GVALinkage Linkage = getContext().GetGVALinkageForFunction(D);
2144 
2145   if (const auto *Dtor = dyn_cast<CXXDestructorDecl>(D))
2146     return getCXXABI().getCXXDestructorLinkage(Linkage, Dtor, GD.getDtorType());
2147 
2148   return getLLVMLinkageForDeclarator(D, Linkage);
2149 }
2150 
2151 llvm::ConstantInt *CodeGenModule::CreateCrossDsoCfiTypeId(llvm::Metadata *MD) {
2152   llvm::MDString *MDS = dyn_cast<llvm::MDString>(MD);
2153   if (!MDS) return nullptr;
2154 
2155   return llvm::ConstantInt::get(Int64Ty, llvm::MD5Hash(MDS->getString()));
2156 }
2157 
2158 llvm::ConstantInt *CodeGenModule::CreateKCFITypeId(QualType T) {
2159   if (auto *FnType = T->getAs<FunctionProtoType>())
2160     T = getContext().getFunctionType(
2161         FnType->getReturnType(), FnType->getParamTypes(),
2162         FnType->getExtProtoInfo().withExceptionSpec(EST_None));
2163 
2164   std::string OutName;
2165   llvm::raw_string_ostream Out(OutName);
2166   getCXXABI().getMangleContext().mangleCanonicalTypeName(
2167       T, Out, getCodeGenOpts().SanitizeCfiICallNormalizeIntegers);
2168 
2169   if (getCodeGenOpts().SanitizeCfiICallNormalizeIntegers)
2170     Out << ".normalized";
2171 
2172   return llvm::ConstantInt::get(Int32Ty,
2173                                 static_cast<uint32_t>(llvm::xxHash64(OutName)));
2174 }
2175 
2176 void CodeGenModule::SetLLVMFunctionAttributes(GlobalDecl GD,
2177                                               const CGFunctionInfo &Info,
2178                                               llvm::Function *F, bool IsThunk) {
2179   unsigned CallingConv;
2180   llvm::AttributeList PAL;
2181   ConstructAttributeList(F->getName(), Info, GD, PAL, CallingConv,
2182                          /*AttrOnCallSite=*/false, IsThunk);
2183   if (CallingConv == llvm::CallingConv::X86_VectorCall &&
2184       getTarget().getTriple().isWindowsArm64EC()) {
2185     SourceLocation Loc;
2186     if (const Decl *D = GD.getDecl())
2187       Loc = D->getLocation();
2188 
2189     Error(Loc, "__vectorcall calling convention is not currently supported");
2190   }
2191   F->setAttributes(PAL);
2192   F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv));
2193 }
2194 
2195 static void removeImageAccessQualifier(std::string& TyName) {
2196   std::string ReadOnlyQual("__read_only");
2197   std::string::size_type ReadOnlyPos = TyName.find(ReadOnlyQual);
2198   if (ReadOnlyPos != std::string::npos)
2199     // "+ 1" for the space after access qualifier.
2200     TyName.erase(ReadOnlyPos, ReadOnlyQual.size() + 1);
2201   else {
2202     std::string WriteOnlyQual("__write_only");
2203     std::string::size_type WriteOnlyPos = TyName.find(WriteOnlyQual);
2204     if (WriteOnlyPos != std::string::npos)
2205       TyName.erase(WriteOnlyPos, WriteOnlyQual.size() + 1);
2206     else {
2207       std::string ReadWriteQual("__read_write");
2208       std::string::size_type ReadWritePos = TyName.find(ReadWriteQual);
2209       if (ReadWritePos != std::string::npos)
2210         TyName.erase(ReadWritePos, ReadWriteQual.size() + 1);
2211     }
2212   }
2213 }
2214 
2215 // Returns the address space id that should be produced to the
2216 // kernel_arg_addr_space metadata. This is always fixed to the ids
2217 // as specified in the SPIR 2.0 specification in order to differentiate
2218 // for example in clGetKernelArgInfo() implementation between the address
2219 // spaces with targets without unique mapping to the OpenCL address spaces
2220 // (basically all single AS CPUs).
2221 static unsigned ArgInfoAddressSpace(LangAS AS) {
2222   switch (AS) {
2223   case LangAS::opencl_global:
2224     return 1;
2225   case LangAS::opencl_constant:
2226     return 2;
2227   case LangAS::opencl_local:
2228     return 3;
2229   case LangAS::opencl_generic:
2230     return 4; // Not in SPIR 2.0 specs.
2231   case LangAS::opencl_global_device:
2232     return 5;
2233   case LangAS::opencl_global_host:
2234     return 6;
2235   default:
2236     return 0; // Assume private.
2237   }
2238 }
2239 
2240 void CodeGenModule::GenKernelArgMetadata(llvm::Function *Fn,
2241                                          const FunctionDecl *FD,
2242                                          CodeGenFunction *CGF) {
2243   assert(((FD && CGF) || (!FD && !CGF)) &&
2244          "Incorrect use - FD and CGF should either be both null or not!");
2245   // Create MDNodes that represent the kernel arg metadata.
2246   // Each MDNode is a list in the form of "key", N number of values which is
2247   // the same number of values as their are kernel arguments.
2248 
2249   const PrintingPolicy &Policy = Context.getPrintingPolicy();
2250 
2251   // MDNode for the kernel argument address space qualifiers.
2252   SmallVector<llvm::Metadata *, 8> addressQuals;
2253 
2254   // MDNode for the kernel argument access qualifiers (images only).
2255   SmallVector<llvm::Metadata *, 8> accessQuals;
2256 
2257   // MDNode for the kernel argument type names.
2258   SmallVector<llvm::Metadata *, 8> argTypeNames;
2259 
2260   // MDNode for the kernel argument base type names.
2261   SmallVector<llvm::Metadata *, 8> argBaseTypeNames;
2262 
2263   // MDNode for the kernel argument type qualifiers.
2264   SmallVector<llvm::Metadata *, 8> argTypeQuals;
2265 
2266   // MDNode for the kernel argument names.
2267   SmallVector<llvm::Metadata *, 8> argNames;
2268 
2269   if (FD && CGF)
2270     for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i) {
2271       const ParmVarDecl *parm = FD->getParamDecl(i);
2272       // Get argument name.
2273       argNames.push_back(llvm::MDString::get(VMContext, parm->getName()));
2274 
2275       if (!getLangOpts().OpenCL)
2276         continue;
2277       QualType ty = parm->getType();
2278       std::string typeQuals;
2279 
2280       // Get image and pipe access qualifier:
2281       if (ty->isImageType() || ty->isPipeType()) {
2282         const Decl *PDecl = parm;
2283         if (const auto *TD = ty->getAs<TypedefType>())
2284           PDecl = TD->getDecl();
2285         const OpenCLAccessAttr *A = PDecl->getAttr<OpenCLAccessAttr>();
2286         if (A && A->isWriteOnly())
2287           accessQuals.push_back(llvm::MDString::get(VMContext, "write_only"));
2288         else if (A && A->isReadWrite())
2289           accessQuals.push_back(llvm::MDString::get(VMContext, "read_write"));
2290         else
2291           accessQuals.push_back(llvm::MDString::get(VMContext, "read_only"));
2292       } else
2293         accessQuals.push_back(llvm::MDString::get(VMContext, "none"));
2294 
2295       auto getTypeSpelling = [&](QualType Ty) {
2296         auto typeName = Ty.getUnqualifiedType().getAsString(Policy);
2297 
2298         if (Ty.isCanonical()) {
2299           StringRef typeNameRef = typeName;
2300           // Turn "unsigned type" to "utype"
2301           if (typeNameRef.consume_front("unsigned "))
2302             return std::string("u") + typeNameRef.str();
2303           if (typeNameRef.consume_front("signed "))
2304             return typeNameRef.str();
2305         }
2306 
2307         return typeName;
2308       };
2309 
2310       if (ty->isPointerType()) {
2311         QualType pointeeTy = ty->getPointeeType();
2312 
2313         // Get address qualifier.
2314         addressQuals.push_back(
2315             llvm::ConstantAsMetadata::get(CGF->Builder.getInt32(
2316                 ArgInfoAddressSpace(pointeeTy.getAddressSpace()))));
2317 
2318         // Get argument type name.
2319         std::string typeName = getTypeSpelling(pointeeTy) + "*";
2320         std::string baseTypeName =
2321             getTypeSpelling(pointeeTy.getCanonicalType()) + "*";
2322         argTypeNames.push_back(llvm::MDString::get(VMContext, typeName));
2323         argBaseTypeNames.push_back(
2324             llvm::MDString::get(VMContext, baseTypeName));
2325 
2326         // Get argument type qualifiers:
2327         if (ty.isRestrictQualified())
2328           typeQuals = "restrict";
2329         if (pointeeTy.isConstQualified() ||
2330             (pointeeTy.getAddressSpace() == LangAS::opencl_constant))
2331           typeQuals += typeQuals.empty() ? "const" : " const";
2332         if (pointeeTy.isVolatileQualified())
2333           typeQuals += typeQuals.empty() ? "volatile" : " volatile";
2334       } else {
2335         uint32_t AddrSpc = 0;
2336         bool isPipe = ty->isPipeType();
2337         if (ty->isImageType() || isPipe)
2338           AddrSpc = ArgInfoAddressSpace(LangAS::opencl_global);
2339 
2340         addressQuals.push_back(
2341             llvm::ConstantAsMetadata::get(CGF->Builder.getInt32(AddrSpc)));
2342 
2343         // Get argument type name.
2344         ty = isPipe ? ty->castAs<PipeType>()->getElementType() : ty;
2345         std::string typeName = getTypeSpelling(ty);
2346         std::string baseTypeName = getTypeSpelling(ty.getCanonicalType());
2347 
2348         // Remove access qualifiers on images
2349         // (as they are inseparable from type in clang implementation,
2350         // but OpenCL spec provides a special query to get access qualifier
2351         // via clGetKernelArgInfo with CL_KERNEL_ARG_ACCESS_QUALIFIER):
2352         if (ty->isImageType()) {
2353           removeImageAccessQualifier(typeName);
2354           removeImageAccessQualifier(baseTypeName);
2355         }
2356 
2357         argTypeNames.push_back(llvm::MDString::get(VMContext, typeName));
2358         argBaseTypeNames.push_back(
2359             llvm::MDString::get(VMContext, baseTypeName));
2360 
2361         if (isPipe)
2362           typeQuals = "pipe";
2363       }
2364       argTypeQuals.push_back(llvm::MDString::get(VMContext, typeQuals));
2365     }
2366 
2367   if (getLangOpts().OpenCL) {
2368     Fn->setMetadata("kernel_arg_addr_space",
2369                     llvm::MDNode::get(VMContext, addressQuals));
2370     Fn->setMetadata("kernel_arg_access_qual",
2371                     llvm::MDNode::get(VMContext, accessQuals));
2372     Fn->setMetadata("kernel_arg_type",
2373                     llvm::MDNode::get(VMContext, argTypeNames));
2374     Fn->setMetadata("kernel_arg_base_type",
2375                     llvm::MDNode::get(VMContext, argBaseTypeNames));
2376     Fn->setMetadata("kernel_arg_type_qual",
2377                     llvm::MDNode::get(VMContext, argTypeQuals));
2378   }
2379   if (getCodeGenOpts().EmitOpenCLArgMetadata ||
2380       getCodeGenOpts().HIPSaveKernelArgName)
2381     Fn->setMetadata("kernel_arg_name",
2382                     llvm::MDNode::get(VMContext, argNames));
2383 }
2384 
2385 /// Determines whether the language options require us to model
2386 /// unwind exceptions.  We treat -fexceptions as mandating this
2387 /// except under the fragile ObjC ABI with only ObjC exceptions
2388 /// enabled.  This means, for example, that C with -fexceptions
2389 /// enables this.
2390 static bool hasUnwindExceptions(const LangOptions &LangOpts) {
2391   // If exceptions are completely disabled, obviously this is false.
2392   if (!LangOpts.Exceptions) return false;
2393 
2394   // If C++ exceptions are enabled, this is true.
2395   if (LangOpts.CXXExceptions) return true;
2396 
2397   // If ObjC exceptions are enabled, this depends on the ABI.
2398   if (LangOpts.ObjCExceptions) {
2399     return LangOpts.ObjCRuntime.hasUnwindExceptions();
2400   }
2401 
2402   return true;
2403 }
2404 
2405 static bool requiresMemberFunctionPointerTypeMetadata(CodeGenModule &CGM,
2406                                                       const CXXMethodDecl *MD) {
2407   // Check that the type metadata can ever actually be used by a call.
2408   if (!CGM.getCodeGenOpts().LTOUnit ||
2409       !CGM.HasHiddenLTOVisibility(MD->getParent()))
2410     return false;
2411 
2412   // Only functions whose address can be taken with a member function pointer
2413   // need this sort of type metadata.
2414   return MD->isImplicitObjectMemberFunction() && !MD->isVirtual() &&
2415          !isa<CXXConstructorDecl, CXXDestructorDecl>(MD);
2416 }
2417 
2418 SmallVector<const CXXRecordDecl *, 0>
2419 CodeGenModule::getMostBaseClasses(const CXXRecordDecl *RD) {
2420   llvm::SetVector<const CXXRecordDecl *> MostBases;
2421 
2422   std::function<void (const CXXRecordDecl *)> CollectMostBases;
2423   CollectMostBases = [&](const CXXRecordDecl *RD) {
2424     if (RD->getNumBases() == 0)
2425       MostBases.insert(RD);
2426     for (const CXXBaseSpecifier &B : RD->bases())
2427       CollectMostBases(B.getType()->getAsCXXRecordDecl());
2428   };
2429   CollectMostBases(RD);
2430   return MostBases.takeVector();
2431 }
2432 
2433 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D,
2434                                                            llvm::Function *F) {
2435   llvm::AttrBuilder B(F->getContext());
2436 
2437   if ((!D || !D->hasAttr<NoUwtableAttr>()) && CodeGenOpts.UnwindTables)
2438     B.addUWTableAttr(llvm::UWTableKind(CodeGenOpts.UnwindTables));
2439 
2440   if (CodeGenOpts.StackClashProtector)
2441     B.addAttribute("probe-stack", "inline-asm");
2442 
2443   if (CodeGenOpts.StackProbeSize && CodeGenOpts.StackProbeSize != 4096)
2444     B.addAttribute("stack-probe-size",
2445                    std::to_string(CodeGenOpts.StackProbeSize));
2446 
2447   if (!hasUnwindExceptions(LangOpts))
2448     B.addAttribute(llvm::Attribute::NoUnwind);
2449 
2450   if (D && D->hasAttr<NoStackProtectorAttr>())
2451     ; // Do nothing.
2452   else if (D && D->hasAttr<StrictGuardStackCheckAttr>() &&
2453            isStackProtectorOn(LangOpts, getTriple(), LangOptions::SSPOn))
2454     B.addAttribute(llvm::Attribute::StackProtectStrong);
2455   else if (isStackProtectorOn(LangOpts, getTriple(), LangOptions::SSPOn))
2456     B.addAttribute(llvm::Attribute::StackProtect);
2457   else if (isStackProtectorOn(LangOpts, getTriple(), LangOptions::SSPStrong))
2458     B.addAttribute(llvm::Attribute::StackProtectStrong);
2459   else if (isStackProtectorOn(LangOpts, getTriple(), LangOptions::SSPReq))
2460     B.addAttribute(llvm::Attribute::StackProtectReq);
2461 
2462   if (!D) {
2463     // If we don't have a declaration to control inlining, the function isn't
2464     // explicitly marked as alwaysinline for semantic reasons, and inlining is
2465     // disabled, mark the function as noinline.
2466     if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline) &&
2467         CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining)
2468       B.addAttribute(llvm::Attribute::NoInline);
2469 
2470     F->addFnAttrs(B);
2471     return;
2472   }
2473 
2474   // Handle SME attributes that apply to function definitions,
2475   // rather than to function prototypes.
2476   if (D->hasAttr<ArmLocallyStreamingAttr>())
2477     B.addAttribute("aarch64_pstate_sm_body");
2478 
2479   if (auto *Attr = D->getAttr<ArmNewAttr>()) {
2480     if (Attr->isNewZA())
2481       B.addAttribute("aarch64_new_za");
2482     if (Attr->isNewZT0())
2483       B.addAttribute("aarch64_new_zt0");
2484   }
2485 
2486   // Track whether we need to add the optnone LLVM attribute,
2487   // starting with the default for this optimization level.
2488   bool ShouldAddOptNone =
2489       !CodeGenOpts.DisableO0ImplyOptNone && CodeGenOpts.OptimizationLevel == 0;
2490   // We can't add optnone in the following cases, it won't pass the verifier.
2491   ShouldAddOptNone &= !D->hasAttr<MinSizeAttr>();
2492   ShouldAddOptNone &= !D->hasAttr<AlwaysInlineAttr>();
2493 
2494   // Add optnone, but do so only if the function isn't always_inline.
2495   if ((ShouldAddOptNone || D->hasAttr<OptimizeNoneAttr>()) &&
2496       !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) {
2497     B.addAttribute(llvm::Attribute::OptimizeNone);
2498 
2499     // OptimizeNone implies noinline; we should not be inlining such functions.
2500     B.addAttribute(llvm::Attribute::NoInline);
2501 
2502     // We still need to handle naked functions even though optnone subsumes
2503     // much of their semantics.
2504     if (D->hasAttr<NakedAttr>())
2505       B.addAttribute(llvm::Attribute::Naked);
2506 
2507     // OptimizeNone wins over OptimizeForSize and MinSize.
2508     F->removeFnAttr(llvm::Attribute::OptimizeForSize);
2509     F->removeFnAttr(llvm::Attribute::MinSize);
2510   } else if (D->hasAttr<NakedAttr>()) {
2511     // Naked implies noinline: we should not be inlining such functions.
2512     B.addAttribute(llvm::Attribute::Naked);
2513     B.addAttribute(llvm::Attribute::NoInline);
2514   } else if (D->hasAttr<NoDuplicateAttr>()) {
2515     B.addAttribute(llvm::Attribute::NoDuplicate);
2516   } else if (D->hasAttr<NoInlineAttr>() && !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) {
2517     // Add noinline if the function isn't always_inline.
2518     B.addAttribute(llvm::Attribute::NoInline);
2519   } else if (D->hasAttr<AlwaysInlineAttr>() &&
2520              !F->hasFnAttribute(llvm::Attribute::NoInline)) {
2521     // (noinline wins over always_inline, and we can't specify both in IR)
2522     B.addAttribute(llvm::Attribute::AlwaysInline);
2523   } else if (CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining) {
2524     // If we're not inlining, then force everything that isn't always_inline to
2525     // carry an explicit noinline attribute.
2526     if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline))
2527       B.addAttribute(llvm::Attribute::NoInline);
2528   } else {
2529     // Otherwise, propagate the inline hint attribute and potentially use its
2530     // absence to mark things as noinline.
2531     if (auto *FD = dyn_cast<FunctionDecl>(D)) {
2532       // Search function and template pattern redeclarations for inline.
2533       auto CheckForInline = [](const FunctionDecl *FD) {
2534         auto CheckRedeclForInline = [](const FunctionDecl *Redecl) {
2535           return Redecl->isInlineSpecified();
2536         };
2537         if (any_of(FD->redecls(), CheckRedeclForInline))
2538           return true;
2539         const FunctionDecl *Pattern = FD->getTemplateInstantiationPattern();
2540         if (!Pattern)
2541           return false;
2542         return any_of(Pattern->redecls(), CheckRedeclForInline);
2543       };
2544       if (CheckForInline(FD)) {
2545         B.addAttribute(llvm::Attribute::InlineHint);
2546       } else if (CodeGenOpts.getInlining() ==
2547                      CodeGenOptions::OnlyHintInlining &&
2548                  !FD->isInlined() &&
2549                  !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) {
2550         B.addAttribute(llvm::Attribute::NoInline);
2551       }
2552     }
2553   }
2554 
2555   // Add other optimization related attributes if we are optimizing this
2556   // function.
2557   if (!D->hasAttr<OptimizeNoneAttr>()) {
2558     if (D->hasAttr<ColdAttr>()) {
2559       if (!ShouldAddOptNone)
2560         B.addAttribute(llvm::Attribute::OptimizeForSize);
2561       B.addAttribute(llvm::Attribute::Cold);
2562     }
2563     if (D->hasAttr<HotAttr>())
2564       B.addAttribute(llvm::Attribute::Hot);
2565     if (D->hasAttr<MinSizeAttr>())
2566       B.addAttribute(llvm::Attribute::MinSize);
2567   }
2568 
2569   F->addFnAttrs(B);
2570 
2571   unsigned alignment = D->getMaxAlignment() / Context.getCharWidth();
2572   if (alignment)
2573     F->setAlignment(llvm::Align(alignment));
2574 
2575   if (!D->hasAttr<AlignedAttr>())
2576     if (LangOpts.FunctionAlignment)
2577       F->setAlignment(llvm::Align(1ull << LangOpts.FunctionAlignment));
2578 
2579   // Some C++ ABIs require 2-byte alignment for member functions, in order to
2580   // reserve a bit for differentiating between virtual and non-virtual member
2581   // functions. If the current target's C++ ABI requires this and this is a
2582   // member function, set its alignment accordingly.
2583   if (getTarget().getCXXABI().areMemberFunctionsAligned()) {
2584     if (isa<CXXMethodDecl>(D) && F->getPointerAlignment(getDataLayout()) < 2)
2585       F->setAlignment(std::max(llvm::Align(2), F->getAlign().valueOrOne()));
2586   }
2587 
2588   // In the cross-dso CFI mode with canonical jump tables, we want !type
2589   // attributes on definitions only.
2590   if (CodeGenOpts.SanitizeCfiCrossDso &&
2591       CodeGenOpts.SanitizeCfiCanonicalJumpTables) {
2592     if (auto *FD = dyn_cast<FunctionDecl>(D)) {
2593       // Skip available_externally functions. They won't be codegen'ed in the
2594       // current module anyway.
2595       if (getContext().GetGVALinkageForFunction(FD) != GVA_AvailableExternally)
2596         CreateFunctionTypeMetadataForIcall(FD, F);
2597     }
2598   }
2599 
2600   // Emit type metadata on member functions for member function pointer checks.
2601   // These are only ever necessary on definitions; we're guaranteed that the
2602   // definition will be present in the LTO unit as a result of LTO visibility.
2603   auto *MD = dyn_cast<CXXMethodDecl>(D);
2604   if (MD && requiresMemberFunctionPointerTypeMetadata(*this, MD)) {
2605     for (const CXXRecordDecl *Base : getMostBaseClasses(MD->getParent())) {
2606       llvm::Metadata *Id =
2607           CreateMetadataIdentifierForType(Context.getMemberPointerType(
2608               MD->getType(), Context.getRecordType(Base).getTypePtr()));
2609       F->addTypeMetadata(0, Id);
2610     }
2611   }
2612 }
2613 
2614 void CodeGenModule::SetCommonAttributes(GlobalDecl GD, llvm::GlobalValue *GV) {
2615   const Decl *D = GD.getDecl();
2616   if (isa_and_nonnull<NamedDecl>(D))
2617     setGVProperties(GV, GD);
2618   else
2619     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
2620 
2621   if (D && D->hasAttr<UsedAttr>())
2622     addUsedOrCompilerUsedGlobal(GV);
2623 
2624   if (const auto *VD = dyn_cast_if_present<VarDecl>(D);
2625       VD &&
2626       ((CodeGenOpts.KeepPersistentStorageVariables &&
2627         (VD->getStorageDuration() == SD_Static ||
2628          VD->getStorageDuration() == SD_Thread)) ||
2629        (CodeGenOpts.KeepStaticConsts && VD->getStorageDuration() == SD_Static &&
2630         VD->getType().isConstQualified())))
2631     addUsedOrCompilerUsedGlobal(GV);
2632 }
2633 
2634 bool CodeGenModule::GetCPUAndFeaturesAttributes(GlobalDecl GD,
2635                                                 llvm::AttrBuilder &Attrs,
2636                                                 bool SetTargetFeatures) {
2637   // Add target-cpu and target-features attributes to functions. If
2638   // we have a decl for the function and it has a target attribute then
2639   // parse that and add it to the feature set.
2640   StringRef TargetCPU = getTarget().getTargetOpts().CPU;
2641   StringRef TuneCPU = getTarget().getTargetOpts().TuneCPU;
2642   std::vector<std::string> Features;
2643   const auto *FD = dyn_cast_or_null<FunctionDecl>(GD.getDecl());
2644   FD = FD ? FD->getMostRecentDecl() : FD;
2645   const auto *TD = FD ? FD->getAttr<TargetAttr>() : nullptr;
2646   const auto *TV = FD ? FD->getAttr<TargetVersionAttr>() : nullptr;
2647   assert((!TD || !TV) && "both target_version and target specified");
2648   const auto *SD = FD ? FD->getAttr<CPUSpecificAttr>() : nullptr;
2649   const auto *TC = FD ? FD->getAttr<TargetClonesAttr>() : nullptr;
2650   bool AddedAttr = false;
2651   if (TD || TV || SD || TC) {
2652     llvm::StringMap<bool> FeatureMap;
2653     getContext().getFunctionFeatureMap(FeatureMap, GD);
2654 
2655     // Produce the canonical string for this set of features.
2656     for (const llvm::StringMap<bool>::value_type &Entry : FeatureMap)
2657       Features.push_back((Entry.getValue() ? "+" : "-") + Entry.getKey().str());
2658 
2659     // Now add the target-cpu and target-features to the function.
2660     // While we populated the feature map above, we still need to
2661     // get and parse the target attribute so we can get the cpu for
2662     // the function.
2663     if (TD) {
2664       ParsedTargetAttr ParsedAttr =
2665           Target.parseTargetAttr(TD->getFeaturesStr());
2666       if (!ParsedAttr.CPU.empty() &&
2667           getTarget().isValidCPUName(ParsedAttr.CPU)) {
2668         TargetCPU = ParsedAttr.CPU;
2669         TuneCPU = ""; // Clear the tune CPU.
2670       }
2671       if (!ParsedAttr.Tune.empty() &&
2672           getTarget().isValidCPUName(ParsedAttr.Tune))
2673         TuneCPU = ParsedAttr.Tune;
2674     }
2675 
2676     if (SD) {
2677       // Apply the given CPU name as the 'tune-cpu' so that the optimizer can
2678       // favor this processor.
2679       TuneCPU = SD->getCPUName(GD.getMultiVersionIndex())->getName();
2680     }
2681   } else {
2682     // Otherwise just add the existing target cpu and target features to the
2683     // function.
2684     Features = getTarget().getTargetOpts().Features;
2685   }
2686 
2687   if (!TargetCPU.empty()) {
2688     Attrs.addAttribute("target-cpu", TargetCPU);
2689     AddedAttr = true;
2690   }
2691   if (!TuneCPU.empty()) {
2692     Attrs.addAttribute("tune-cpu", TuneCPU);
2693     AddedAttr = true;
2694   }
2695   if (!Features.empty() && SetTargetFeatures) {
2696     llvm::erase_if(Features, [&](const std::string& F) {
2697        return getTarget().isReadOnlyFeature(F.substr(1));
2698     });
2699     llvm::sort(Features);
2700     Attrs.addAttribute("target-features", llvm::join(Features, ","));
2701     AddedAttr = true;
2702   }
2703 
2704   return AddedAttr;
2705 }
2706 
2707 void CodeGenModule::setNonAliasAttributes(GlobalDecl GD,
2708                                           llvm::GlobalObject *GO) {
2709   const Decl *D = GD.getDecl();
2710   SetCommonAttributes(GD, GO);
2711 
2712   if (D) {
2713     if (auto *GV = dyn_cast<llvm::GlobalVariable>(GO)) {
2714       if (D->hasAttr<RetainAttr>())
2715         addUsedGlobal(GV);
2716       if (auto *SA = D->getAttr<PragmaClangBSSSectionAttr>())
2717         GV->addAttribute("bss-section", SA->getName());
2718       if (auto *SA = D->getAttr<PragmaClangDataSectionAttr>())
2719         GV->addAttribute("data-section", SA->getName());
2720       if (auto *SA = D->getAttr<PragmaClangRodataSectionAttr>())
2721         GV->addAttribute("rodata-section", SA->getName());
2722       if (auto *SA = D->getAttr<PragmaClangRelroSectionAttr>())
2723         GV->addAttribute("relro-section", SA->getName());
2724     }
2725 
2726     if (auto *F = dyn_cast<llvm::Function>(GO)) {
2727       if (D->hasAttr<RetainAttr>())
2728         addUsedGlobal(F);
2729       if (auto *SA = D->getAttr<PragmaClangTextSectionAttr>())
2730         if (!D->getAttr<SectionAttr>())
2731           F->setSection(SA->getName());
2732 
2733       llvm::AttrBuilder Attrs(F->getContext());
2734       if (GetCPUAndFeaturesAttributes(GD, Attrs)) {
2735         // We know that GetCPUAndFeaturesAttributes will always have the
2736         // newest set, since it has the newest possible FunctionDecl, so the
2737         // new ones should replace the old.
2738         llvm::AttributeMask RemoveAttrs;
2739         RemoveAttrs.addAttribute("target-cpu");
2740         RemoveAttrs.addAttribute("target-features");
2741         RemoveAttrs.addAttribute("tune-cpu");
2742         F->removeFnAttrs(RemoveAttrs);
2743         F->addFnAttrs(Attrs);
2744       }
2745     }
2746 
2747     if (const auto *CSA = D->getAttr<CodeSegAttr>())
2748       GO->setSection(CSA->getName());
2749     else if (const auto *SA = D->getAttr<SectionAttr>())
2750       GO->setSection(SA->getName());
2751   }
2752 
2753   getTargetCodeGenInfo().setTargetAttributes(D, GO, *this);
2754 }
2755 
2756 void CodeGenModule::SetInternalFunctionAttributes(GlobalDecl GD,
2757                                                   llvm::Function *F,
2758                                                   const CGFunctionInfo &FI) {
2759   const Decl *D = GD.getDecl();
2760   SetLLVMFunctionAttributes(GD, FI, F, /*IsThunk=*/false);
2761   SetLLVMFunctionAttributesForDefinition(D, F);
2762 
2763   F->setLinkage(llvm::Function::InternalLinkage);
2764 
2765   setNonAliasAttributes(GD, F);
2766 }
2767 
2768 static void setLinkageForGV(llvm::GlobalValue *GV, const NamedDecl *ND) {
2769   // Set linkage and visibility in case we never see a definition.
2770   LinkageInfo LV = ND->getLinkageAndVisibility();
2771   // Don't set internal linkage on declarations.
2772   // "extern_weak" is overloaded in LLVM; we probably should have
2773   // separate linkage types for this.
2774   if (isExternallyVisible(LV.getLinkage()) &&
2775       (ND->hasAttr<WeakAttr>() || ND->isWeakImported()))
2776     GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage);
2777 }
2778 
2779 void CodeGenModule::CreateFunctionTypeMetadataForIcall(const FunctionDecl *FD,
2780                                                        llvm::Function *F) {
2781   // Only if we are checking indirect calls.
2782   if (!LangOpts.Sanitize.has(SanitizerKind::CFIICall))
2783     return;
2784 
2785   // Non-static class methods are handled via vtable or member function pointer
2786   // checks elsewhere.
2787   if (isa<CXXMethodDecl>(FD) && !cast<CXXMethodDecl>(FD)->isStatic())
2788     return;
2789 
2790   llvm::Metadata *MD = CreateMetadataIdentifierForType(FD->getType());
2791   F->addTypeMetadata(0, MD);
2792   F->addTypeMetadata(0, CreateMetadataIdentifierGeneralized(FD->getType()));
2793 
2794   // Emit a hash-based bit set entry for cross-DSO calls.
2795   if (CodeGenOpts.SanitizeCfiCrossDso)
2796     if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD))
2797       F->addTypeMetadata(0, llvm::ConstantAsMetadata::get(CrossDsoTypeId));
2798 }
2799 
2800 void CodeGenModule::setKCFIType(const FunctionDecl *FD, llvm::Function *F) {
2801   llvm::LLVMContext &Ctx = F->getContext();
2802   llvm::MDBuilder MDB(Ctx);
2803   F->setMetadata(llvm::LLVMContext::MD_kcfi_type,
2804                  llvm::MDNode::get(
2805                      Ctx, MDB.createConstant(CreateKCFITypeId(FD->getType()))));
2806 }
2807 
2808 static bool allowKCFIIdentifier(StringRef Name) {
2809   // KCFI type identifier constants are only necessary for external assembly
2810   // functions, which means it's safe to skip unusual names. Subset of
2811   // MCAsmInfo::isAcceptableChar() and MCAsmInfoXCOFF::isAcceptableChar().
2812   return llvm::all_of(Name, [](const char &C) {
2813     return llvm::isAlnum(C) || C == '_' || C == '.';
2814   });
2815 }
2816 
2817 void CodeGenModule::finalizeKCFITypes() {
2818   llvm::Module &M = getModule();
2819   for (auto &F : M.functions()) {
2820     // Remove KCFI type metadata from non-address-taken local functions.
2821     bool AddressTaken = F.hasAddressTaken();
2822     if (!AddressTaken && F.hasLocalLinkage())
2823       F.eraseMetadata(llvm::LLVMContext::MD_kcfi_type);
2824 
2825     // Generate a constant with the expected KCFI type identifier for all
2826     // address-taken function declarations to support annotating indirectly
2827     // called assembly functions.
2828     if (!AddressTaken || !F.isDeclaration())
2829       continue;
2830 
2831     const llvm::ConstantInt *Type;
2832     if (const llvm::MDNode *MD = F.getMetadata(llvm::LLVMContext::MD_kcfi_type))
2833       Type = llvm::mdconst::extract<llvm::ConstantInt>(MD->getOperand(0));
2834     else
2835       continue;
2836 
2837     StringRef Name = F.getName();
2838     if (!allowKCFIIdentifier(Name))
2839       continue;
2840 
2841     std::string Asm = (".weak __kcfi_typeid_" + Name + "\n.set __kcfi_typeid_" +
2842                        Name + ", " + Twine(Type->getZExtValue()) + "\n")
2843                           .str();
2844     M.appendModuleInlineAsm(Asm);
2845   }
2846 }
2847 
2848 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD, llvm::Function *F,
2849                                           bool IsIncompleteFunction,
2850                                           bool IsThunk) {
2851 
2852   if (llvm::Intrinsic::ID IID = F->getIntrinsicID()) {
2853     // If this is an intrinsic function, set the function's attributes
2854     // to the intrinsic's attributes.
2855     F->setAttributes(llvm::Intrinsic::getAttributes(getLLVMContext(), IID));
2856     return;
2857   }
2858 
2859   const auto *FD = cast<FunctionDecl>(GD.getDecl());
2860 
2861   if (!IsIncompleteFunction)
2862     SetLLVMFunctionAttributes(GD, getTypes().arrangeGlobalDeclaration(GD), F,
2863                               IsThunk);
2864 
2865   // Add the Returned attribute for "this", except for iOS 5 and earlier
2866   // where substantial code, including the libstdc++ dylib, was compiled with
2867   // GCC and does not actually return "this".
2868   if (!IsThunk && getCXXABI().HasThisReturn(GD) &&
2869       !(getTriple().isiOS() && getTriple().isOSVersionLT(6))) {
2870     assert(!F->arg_empty() &&
2871            F->arg_begin()->getType()
2872              ->canLosslesslyBitCastTo(F->getReturnType()) &&
2873            "unexpected this return");
2874     F->addParamAttr(0, llvm::Attribute::Returned);
2875   }
2876 
2877   // Only a few attributes are set on declarations; these may later be
2878   // overridden by a definition.
2879 
2880   setLinkageForGV(F, FD);
2881   setGVProperties(F, FD);
2882 
2883   // Setup target-specific attributes.
2884   if (!IsIncompleteFunction && F->isDeclaration())
2885     getTargetCodeGenInfo().setTargetAttributes(FD, F, *this);
2886 
2887   if (const auto *CSA = FD->getAttr<CodeSegAttr>())
2888     F->setSection(CSA->getName());
2889   else if (const auto *SA = FD->getAttr<SectionAttr>())
2890      F->setSection(SA->getName());
2891 
2892   if (const auto *EA = FD->getAttr<ErrorAttr>()) {
2893     if (EA->isError())
2894       F->addFnAttr("dontcall-error", EA->getUserDiagnostic());
2895     else if (EA->isWarning())
2896       F->addFnAttr("dontcall-warn", EA->getUserDiagnostic());
2897   }
2898 
2899   // If we plan on emitting this inline builtin, we can't treat it as a builtin.
2900   if (FD->isInlineBuiltinDeclaration()) {
2901     const FunctionDecl *FDBody;
2902     bool HasBody = FD->hasBody(FDBody);
2903     (void)HasBody;
2904     assert(HasBody && "Inline builtin declarations should always have an "
2905                       "available body!");
2906     if (shouldEmitFunction(FDBody))
2907       F->addFnAttr(llvm::Attribute::NoBuiltin);
2908   }
2909 
2910   if (FD->isReplaceableGlobalAllocationFunction()) {
2911     // A replaceable global allocation function does not act like a builtin by
2912     // default, only if it is invoked by a new-expression or delete-expression.
2913     F->addFnAttr(llvm::Attribute::NoBuiltin);
2914   }
2915 
2916   if (isa<CXXConstructorDecl>(FD) || isa<CXXDestructorDecl>(FD))
2917     F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
2918   else if (const auto *MD = dyn_cast<CXXMethodDecl>(FD))
2919     if (MD->isVirtual())
2920       F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
2921 
2922   // Don't emit entries for function declarations in the cross-DSO mode. This
2923   // is handled with better precision by the receiving DSO. But if jump tables
2924   // are non-canonical then we need type metadata in order to produce the local
2925   // jump table.
2926   if (!CodeGenOpts.SanitizeCfiCrossDso ||
2927       !CodeGenOpts.SanitizeCfiCanonicalJumpTables)
2928     CreateFunctionTypeMetadataForIcall(FD, F);
2929 
2930   if (LangOpts.Sanitize.has(SanitizerKind::KCFI))
2931     setKCFIType(FD, F);
2932 
2933   if (getLangOpts().OpenMP && FD->hasAttr<OMPDeclareSimdDeclAttr>())
2934     getOpenMPRuntime().emitDeclareSimdFunction(FD, F);
2935 
2936   if (CodeGenOpts.InlineMaxStackSize != UINT_MAX)
2937     F->addFnAttr("inline-max-stacksize", llvm::utostr(CodeGenOpts.InlineMaxStackSize));
2938 
2939   if (const auto *CB = FD->getAttr<CallbackAttr>()) {
2940     // Annotate the callback behavior as metadata:
2941     //  - The callback callee (as argument number).
2942     //  - The callback payloads (as argument numbers).
2943     llvm::LLVMContext &Ctx = F->getContext();
2944     llvm::MDBuilder MDB(Ctx);
2945 
2946     // The payload indices are all but the first one in the encoding. The first
2947     // identifies the callback callee.
2948     int CalleeIdx = *CB->encoding_begin();
2949     ArrayRef<int> PayloadIndices(CB->encoding_begin() + 1, CB->encoding_end());
2950     F->addMetadata(llvm::LLVMContext::MD_callback,
2951                    *llvm::MDNode::get(Ctx, {MDB.createCallbackEncoding(
2952                                                CalleeIdx, PayloadIndices,
2953                                                /* VarArgsArePassed */ false)}));
2954   }
2955 }
2956 
2957 void CodeGenModule::addUsedGlobal(llvm::GlobalValue *GV) {
2958   assert((isa<llvm::Function>(GV) || !GV->isDeclaration()) &&
2959          "Only globals with definition can force usage.");
2960   LLVMUsed.emplace_back(GV);
2961 }
2962 
2963 void CodeGenModule::addCompilerUsedGlobal(llvm::GlobalValue *GV) {
2964   assert(!GV->isDeclaration() &&
2965          "Only globals with definition can force usage.");
2966   LLVMCompilerUsed.emplace_back(GV);
2967 }
2968 
2969 void CodeGenModule::addUsedOrCompilerUsedGlobal(llvm::GlobalValue *GV) {
2970   assert((isa<llvm::Function>(GV) || !GV->isDeclaration()) &&
2971          "Only globals with definition can force usage.");
2972   if (getTriple().isOSBinFormatELF())
2973     LLVMCompilerUsed.emplace_back(GV);
2974   else
2975     LLVMUsed.emplace_back(GV);
2976 }
2977 
2978 static void emitUsed(CodeGenModule &CGM, StringRef Name,
2979                      std::vector<llvm::WeakTrackingVH> &List) {
2980   // Don't create llvm.used if there is no need.
2981   if (List.empty())
2982     return;
2983 
2984   // Convert List to what ConstantArray needs.
2985   SmallVector<llvm::Constant*, 8> UsedArray;
2986   UsedArray.resize(List.size());
2987   for (unsigned i = 0, e = List.size(); i != e; ++i) {
2988     UsedArray[i] =
2989         llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(
2990             cast<llvm::Constant>(&*List[i]), CGM.Int8PtrTy);
2991   }
2992 
2993   if (UsedArray.empty())
2994     return;
2995   llvm::ArrayType *ATy = llvm::ArrayType::get(CGM.Int8PtrTy, UsedArray.size());
2996 
2997   auto *GV = new llvm::GlobalVariable(
2998       CGM.getModule(), ATy, false, llvm::GlobalValue::AppendingLinkage,
2999       llvm::ConstantArray::get(ATy, UsedArray), Name);
3000 
3001   GV->setSection("llvm.metadata");
3002 }
3003 
3004 void CodeGenModule::emitLLVMUsed() {
3005   emitUsed(*this, "llvm.used", LLVMUsed);
3006   emitUsed(*this, "llvm.compiler.used", LLVMCompilerUsed);
3007 }
3008 
3009 void CodeGenModule::AppendLinkerOptions(StringRef Opts) {
3010   auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opts);
3011   LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
3012 }
3013 
3014 void CodeGenModule::AddDetectMismatch(StringRef Name, StringRef Value) {
3015   llvm::SmallString<32> Opt;
3016   getTargetCodeGenInfo().getDetectMismatchOption(Name, Value, Opt);
3017   if (Opt.empty())
3018     return;
3019   auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt);
3020   LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
3021 }
3022 
3023 void CodeGenModule::AddDependentLib(StringRef Lib) {
3024   auto &C = getLLVMContext();
3025   if (getTarget().getTriple().isOSBinFormatELF()) {
3026       ELFDependentLibraries.push_back(
3027         llvm::MDNode::get(C, llvm::MDString::get(C, Lib)));
3028     return;
3029   }
3030 
3031   llvm::SmallString<24> Opt;
3032   getTargetCodeGenInfo().getDependentLibraryOption(Lib, Opt);
3033   auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt);
3034   LinkerOptionsMetadata.push_back(llvm::MDNode::get(C, MDOpts));
3035 }
3036 
3037 /// Add link options implied by the given module, including modules
3038 /// it depends on, using a postorder walk.
3039 static void addLinkOptionsPostorder(CodeGenModule &CGM, Module *Mod,
3040                                     SmallVectorImpl<llvm::MDNode *> &Metadata,
3041                                     llvm::SmallPtrSet<Module *, 16> &Visited) {
3042   // Import this module's parent.
3043   if (Mod->Parent && Visited.insert(Mod->Parent).second) {
3044     addLinkOptionsPostorder(CGM, Mod->Parent, Metadata, Visited);
3045   }
3046 
3047   // Import this module's dependencies.
3048   for (Module *Import : llvm::reverse(Mod->Imports)) {
3049     if (Visited.insert(Import).second)
3050       addLinkOptionsPostorder(CGM, Import, Metadata, Visited);
3051   }
3052 
3053   // Add linker options to link against the libraries/frameworks
3054   // described by this module.
3055   llvm::LLVMContext &Context = CGM.getLLVMContext();
3056   bool IsELF = CGM.getTarget().getTriple().isOSBinFormatELF();
3057 
3058   // For modules that use export_as for linking, use that module
3059   // name instead.
3060   if (Mod->UseExportAsModuleLinkName)
3061     return;
3062 
3063   for (const Module::LinkLibrary &LL : llvm::reverse(Mod->LinkLibraries)) {
3064     // Link against a framework.  Frameworks are currently Darwin only, so we
3065     // don't to ask TargetCodeGenInfo for the spelling of the linker option.
3066     if (LL.IsFramework) {
3067       llvm::Metadata *Args[2] = {llvm::MDString::get(Context, "-framework"),
3068                                  llvm::MDString::get(Context, LL.Library)};
3069 
3070       Metadata.push_back(llvm::MDNode::get(Context, Args));
3071       continue;
3072     }
3073 
3074     // Link against a library.
3075     if (IsELF) {
3076       llvm::Metadata *Args[2] = {
3077           llvm::MDString::get(Context, "lib"),
3078           llvm::MDString::get(Context, LL.Library),
3079       };
3080       Metadata.push_back(llvm::MDNode::get(Context, Args));
3081     } else {
3082       llvm::SmallString<24> Opt;
3083       CGM.getTargetCodeGenInfo().getDependentLibraryOption(LL.Library, Opt);
3084       auto *OptString = llvm::MDString::get(Context, Opt);
3085       Metadata.push_back(llvm::MDNode::get(Context, OptString));
3086     }
3087   }
3088 }
3089 
3090 void CodeGenModule::EmitModuleInitializers(clang::Module *Primary) {
3091   assert(Primary->isNamedModuleUnit() &&
3092          "We should only emit module initializers for named modules.");
3093 
3094   // Emit the initializers in the order that sub-modules appear in the
3095   // source, first Global Module Fragments, if present.
3096   if (auto GMF = Primary->getGlobalModuleFragment()) {
3097     for (Decl *D : getContext().getModuleInitializers(GMF)) {
3098       if (isa<ImportDecl>(D))
3099         continue;
3100       assert(isa<VarDecl>(D) && "GMF initializer decl is not a var?");
3101       EmitTopLevelDecl(D);
3102     }
3103   }
3104   // Second any associated with the module, itself.
3105   for (Decl *D : getContext().getModuleInitializers(Primary)) {
3106     // Skip import decls, the inits for those are called explicitly.
3107     if (isa<ImportDecl>(D))
3108       continue;
3109     EmitTopLevelDecl(D);
3110   }
3111   // Third any associated with the Privat eMOdule Fragment, if present.
3112   if (auto PMF = Primary->getPrivateModuleFragment()) {
3113     for (Decl *D : getContext().getModuleInitializers(PMF)) {
3114       // Skip import decls, the inits for those are called explicitly.
3115       if (isa<ImportDecl>(D))
3116         continue;
3117       assert(isa<VarDecl>(D) && "PMF initializer decl is not a var?");
3118       EmitTopLevelDecl(D);
3119     }
3120   }
3121 }
3122 
3123 void CodeGenModule::EmitModuleLinkOptions() {
3124   // Collect the set of all of the modules we want to visit to emit link
3125   // options, which is essentially the imported modules and all of their
3126   // non-explicit child modules.
3127   llvm::SetVector<clang::Module *> LinkModules;
3128   llvm::SmallPtrSet<clang::Module *, 16> Visited;
3129   SmallVector<clang::Module *, 16> Stack;
3130 
3131   // Seed the stack with imported modules.
3132   for (Module *M : ImportedModules) {
3133     // Do not add any link flags when an implementation TU of a module imports
3134     // a header of that same module.
3135     if (M->getTopLevelModuleName() == getLangOpts().CurrentModule &&
3136         !getLangOpts().isCompilingModule())
3137       continue;
3138     if (Visited.insert(M).second)
3139       Stack.push_back(M);
3140   }
3141 
3142   // Find all of the modules to import, making a little effort to prune
3143   // non-leaf modules.
3144   while (!Stack.empty()) {
3145     clang::Module *Mod = Stack.pop_back_val();
3146 
3147     bool AnyChildren = false;
3148 
3149     // Visit the submodules of this module.
3150     for (const auto &SM : Mod->submodules()) {
3151       // Skip explicit children; they need to be explicitly imported to be
3152       // linked against.
3153       if (SM->IsExplicit)
3154         continue;
3155 
3156       if (Visited.insert(SM).second) {
3157         Stack.push_back(SM);
3158         AnyChildren = true;
3159       }
3160     }
3161 
3162     // We didn't find any children, so add this module to the list of
3163     // modules to link against.
3164     if (!AnyChildren) {
3165       LinkModules.insert(Mod);
3166     }
3167   }
3168 
3169   // Add link options for all of the imported modules in reverse topological
3170   // order.  We don't do anything to try to order import link flags with respect
3171   // to linker options inserted by things like #pragma comment().
3172   SmallVector<llvm::MDNode *, 16> MetadataArgs;
3173   Visited.clear();
3174   for (Module *M : LinkModules)
3175     if (Visited.insert(M).second)
3176       addLinkOptionsPostorder(*this, M, MetadataArgs, Visited);
3177   std::reverse(MetadataArgs.begin(), MetadataArgs.end());
3178   LinkerOptionsMetadata.append(MetadataArgs.begin(), MetadataArgs.end());
3179 
3180   // Add the linker options metadata flag.
3181   auto *NMD = getModule().getOrInsertNamedMetadata("llvm.linker.options");
3182   for (auto *MD : LinkerOptionsMetadata)
3183     NMD->addOperand(MD);
3184 }
3185 
3186 void CodeGenModule::EmitDeferred() {
3187   // Emit deferred declare target declarations.
3188   if (getLangOpts().OpenMP && !getLangOpts().OpenMPSimd)
3189     getOpenMPRuntime().emitDeferredTargetDecls();
3190 
3191   // Emit code for any potentially referenced deferred decls.  Since a
3192   // previously unused static decl may become used during the generation of code
3193   // for a static function, iterate until no changes are made.
3194 
3195   if (!DeferredVTables.empty()) {
3196     EmitDeferredVTables();
3197 
3198     // Emitting a vtable doesn't directly cause more vtables to
3199     // become deferred, although it can cause functions to be
3200     // emitted that then need those vtables.
3201     assert(DeferredVTables.empty());
3202   }
3203 
3204   // Emit CUDA/HIP static device variables referenced by host code only.
3205   // Note we should not clear CUDADeviceVarODRUsedByHost since it is still
3206   // needed for further handling.
3207   if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice)
3208     llvm::append_range(DeferredDeclsToEmit,
3209                        getContext().CUDADeviceVarODRUsedByHost);
3210 
3211   // Stop if we're out of both deferred vtables and deferred declarations.
3212   if (DeferredDeclsToEmit.empty())
3213     return;
3214 
3215   // Grab the list of decls to emit. If EmitGlobalDefinition schedules more
3216   // work, it will not interfere with this.
3217   std::vector<GlobalDecl> CurDeclsToEmit;
3218   CurDeclsToEmit.swap(DeferredDeclsToEmit);
3219 
3220   for (GlobalDecl &D : CurDeclsToEmit) {
3221     // We should call GetAddrOfGlobal with IsForDefinition set to true in order
3222     // to get GlobalValue with exactly the type we need, not something that
3223     // might had been created for another decl with the same mangled name but
3224     // different type.
3225     llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>(
3226         GetAddrOfGlobal(D, ForDefinition));
3227 
3228     // In case of different address spaces, we may still get a cast, even with
3229     // IsForDefinition equal to true. Query mangled names table to get
3230     // GlobalValue.
3231     if (!GV)
3232       GV = GetGlobalValue(getMangledName(D));
3233 
3234     // Make sure GetGlobalValue returned non-null.
3235     assert(GV);
3236 
3237     // Check to see if we've already emitted this.  This is necessary
3238     // for a couple of reasons: first, decls can end up in the
3239     // deferred-decls queue multiple times, and second, decls can end
3240     // up with definitions in unusual ways (e.g. by an extern inline
3241     // function acquiring a strong function redefinition).  Just
3242     // ignore these cases.
3243     if (!GV->isDeclaration())
3244       continue;
3245 
3246     // If this is OpenMP, check if it is legal to emit this global normally.
3247     if (LangOpts.OpenMP && OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(D))
3248       continue;
3249 
3250     // Otherwise, emit the definition and move on to the next one.
3251     EmitGlobalDefinition(D, GV);
3252 
3253     // If we found out that we need to emit more decls, do that recursively.
3254     // This has the advantage that the decls are emitted in a DFS and related
3255     // ones are close together, which is convenient for testing.
3256     if (!DeferredVTables.empty() || !DeferredDeclsToEmit.empty()) {
3257       EmitDeferred();
3258       assert(DeferredVTables.empty() && DeferredDeclsToEmit.empty());
3259     }
3260   }
3261 }
3262 
3263 void CodeGenModule::EmitVTablesOpportunistically() {
3264   // Try to emit external vtables as available_externally if they have emitted
3265   // all inlined virtual functions.  It runs after EmitDeferred() and therefore
3266   // is not allowed to create new references to things that need to be emitted
3267   // lazily. Note that it also uses fact that we eagerly emitting RTTI.
3268 
3269   assert((OpportunisticVTables.empty() || shouldOpportunisticallyEmitVTables())
3270          && "Only emit opportunistic vtables with optimizations");
3271 
3272   for (const CXXRecordDecl *RD : OpportunisticVTables) {
3273     assert(getVTables().isVTableExternal(RD) &&
3274            "This queue should only contain external vtables");
3275     if (getCXXABI().canSpeculativelyEmitVTable(RD))
3276       VTables.GenerateClassData(RD);
3277   }
3278   OpportunisticVTables.clear();
3279 }
3280 
3281 void CodeGenModule::EmitGlobalAnnotations() {
3282   for (const auto& [MangledName, VD] : DeferredAnnotations) {
3283     llvm::GlobalValue *GV = GetGlobalValue(MangledName);
3284     if (GV)
3285       AddGlobalAnnotations(VD, GV);
3286   }
3287   DeferredAnnotations.clear();
3288 
3289   if (Annotations.empty())
3290     return;
3291 
3292   // Create a new global variable for the ConstantStruct in the Module.
3293   llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get(
3294     Annotations[0]->getType(), Annotations.size()), Annotations);
3295   auto *gv = new llvm::GlobalVariable(getModule(), Array->getType(), false,
3296                                       llvm::GlobalValue::AppendingLinkage,
3297                                       Array, "llvm.global.annotations");
3298   gv->setSection(AnnotationSection);
3299 }
3300 
3301 llvm::Constant *CodeGenModule::EmitAnnotationString(StringRef Str) {
3302   llvm::Constant *&AStr = AnnotationStrings[Str];
3303   if (AStr)
3304     return AStr;
3305 
3306   // Not found yet, create a new global.
3307   llvm::Constant *s = llvm::ConstantDataArray::getString(getLLVMContext(), Str);
3308   auto *gv = new llvm::GlobalVariable(
3309       getModule(), s->getType(), true, llvm::GlobalValue::PrivateLinkage, s,
3310       ".str", nullptr, llvm::GlobalValue::NotThreadLocal,
3311       ConstGlobalsPtrTy->getAddressSpace());
3312   gv->setSection(AnnotationSection);
3313   gv->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
3314   AStr = gv;
3315   return gv;
3316 }
3317 
3318 llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) {
3319   SourceManager &SM = getContext().getSourceManager();
3320   PresumedLoc PLoc = SM.getPresumedLoc(Loc);
3321   if (PLoc.isValid())
3322     return EmitAnnotationString(PLoc.getFilename());
3323   return EmitAnnotationString(SM.getBufferName(Loc));
3324 }
3325 
3326 llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) {
3327   SourceManager &SM = getContext().getSourceManager();
3328   PresumedLoc PLoc = SM.getPresumedLoc(L);
3329   unsigned LineNo = PLoc.isValid() ? PLoc.getLine() :
3330     SM.getExpansionLineNumber(L);
3331   return llvm::ConstantInt::get(Int32Ty, LineNo);
3332 }
3333 
3334 llvm::Constant *CodeGenModule::EmitAnnotationArgs(const AnnotateAttr *Attr) {
3335   ArrayRef<Expr *> Exprs = {Attr->args_begin(), Attr->args_size()};
3336   if (Exprs.empty())
3337     return llvm::ConstantPointerNull::get(ConstGlobalsPtrTy);
3338 
3339   llvm::FoldingSetNodeID ID;
3340   for (Expr *E : Exprs) {
3341     ID.Add(cast<clang::ConstantExpr>(E)->getAPValueResult());
3342   }
3343   llvm::Constant *&Lookup = AnnotationArgs[ID.ComputeHash()];
3344   if (Lookup)
3345     return Lookup;
3346 
3347   llvm::SmallVector<llvm::Constant *, 4> LLVMArgs;
3348   LLVMArgs.reserve(Exprs.size());
3349   ConstantEmitter ConstEmiter(*this);
3350   llvm::transform(Exprs, std::back_inserter(LLVMArgs), [&](const Expr *E) {
3351     const auto *CE = cast<clang::ConstantExpr>(E);
3352     return ConstEmiter.emitAbstract(CE->getBeginLoc(), CE->getAPValueResult(),
3353                                     CE->getType());
3354   });
3355   auto *Struct = llvm::ConstantStruct::getAnon(LLVMArgs);
3356   auto *GV = new llvm::GlobalVariable(getModule(), Struct->getType(), true,
3357                                       llvm::GlobalValue::PrivateLinkage, Struct,
3358                                       ".args");
3359   GV->setSection(AnnotationSection);
3360   GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
3361 
3362   Lookup = GV;
3363   return GV;
3364 }
3365 
3366 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV,
3367                                                 const AnnotateAttr *AA,
3368                                                 SourceLocation L) {
3369   // Get the globals for file name, annotation, and the line number.
3370   llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()),
3371                  *UnitGV = EmitAnnotationUnit(L),
3372                  *LineNoCst = EmitAnnotationLineNo(L),
3373                  *Args = EmitAnnotationArgs(AA);
3374 
3375   llvm::Constant *GVInGlobalsAS = GV;
3376   if (GV->getAddressSpace() !=
3377       getDataLayout().getDefaultGlobalsAddressSpace()) {
3378     GVInGlobalsAS = llvm::ConstantExpr::getAddrSpaceCast(
3379         GV,
3380         llvm::PointerType::get(
3381             GV->getContext(), getDataLayout().getDefaultGlobalsAddressSpace()));
3382   }
3383 
3384   // Create the ConstantStruct for the global annotation.
3385   llvm::Constant *Fields[] = {
3386       GVInGlobalsAS, AnnoGV, UnitGV, LineNoCst, Args,
3387   };
3388   return llvm::ConstantStruct::getAnon(Fields);
3389 }
3390 
3391 void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D,
3392                                          llvm::GlobalValue *GV) {
3393   assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
3394   // Get the struct elements for these annotations.
3395   for (const auto *I : D->specific_attrs<AnnotateAttr>())
3396     Annotations.push_back(EmitAnnotateAttr(GV, I, D->getLocation()));
3397 }
3398 
3399 bool CodeGenModule::isInNoSanitizeList(SanitizerMask Kind, llvm::Function *Fn,
3400                                        SourceLocation Loc) const {
3401   const auto &NoSanitizeL = getContext().getNoSanitizeList();
3402   // NoSanitize by function name.
3403   if (NoSanitizeL.containsFunction(Kind, Fn->getName()))
3404     return true;
3405   // NoSanitize by location. Check "mainfile" prefix.
3406   auto &SM = Context.getSourceManager();
3407   FileEntryRef MainFile = *SM.getFileEntryRefForID(SM.getMainFileID());
3408   if (NoSanitizeL.containsMainFile(Kind, MainFile.getName()))
3409     return true;
3410 
3411   // Check "src" prefix.
3412   if (Loc.isValid())
3413     return NoSanitizeL.containsLocation(Kind, Loc);
3414   // If location is unknown, this may be a compiler-generated function. Assume
3415   // it's located in the main file.
3416   return NoSanitizeL.containsFile(Kind, MainFile.getName());
3417 }
3418 
3419 bool CodeGenModule::isInNoSanitizeList(SanitizerMask Kind,
3420                                        llvm::GlobalVariable *GV,
3421                                        SourceLocation Loc, QualType Ty,
3422                                        StringRef Category) const {
3423   const auto &NoSanitizeL = getContext().getNoSanitizeList();
3424   if (NoSanitizeL.containsGlobal(Kind, GV->getName(), Category))
3425     return true;
3426   auto &SM = Context.getSourceManager();
3427   if (NoSanitizeL.containsMainFile(
3428           Kind, SM.getFileEntryRefForID(SM.getMainFileID())->getName(),
3429           Category))
3430     return true;
3431   if (NoSanitizeL.containsLocation(Kind, Loc, Category))
3432     return true;
3433 
3434   // Check global type.
3435   if (!Ty.isNull()) {
3436     // Drill down the array types: if global variable of a fixed type is
3437     // not sanitized, we also don't instrument arrays of them.
3438     while (auto AT = dyn_cast<ArrayType>(Ty.getTypePtr()))
3439       Ty = AT->getElementType();
3440     Ty = Ty.getCanonicalType().getUnqualifiedType();
3441     // Only record types (classes, structs etc.) are ignored.
3442     if (Ty->isRecordType()) {
3443       std::string TypeStr = Ty.getAsString(getContext().getPrintingPolicy());
3444       if (NoSanitizeL.containsType(Kind, TypeStr, Category))
3445         return true;
3446     }
3447   }
3448   return false;
3449 }
3450 
3451 bool CodeGenModule::imbueXRayAttrs(llvm::Function *Fn, SourceLocation Loc,
3452                                    StringRef Category) const {
3453   const auto &XRayFilter = getContext().getXRayFilter();
3454   using ImbueAttr = XRayFunctionFilter::ImbueAttribute;
3455   auto Attr = ImbueAttr::NONE;
3456   if (Loc.isValid())
3457     Attr = XRayFilter.shouldImbueLocation(Loc, Category);
3458   if (Attr == ImbueAttr::NONE)
3459     Attr = XRayFilter.shouldImbueFunction(Fn->getName());
3460   switch (Attr) {
3461   case ImbueAttr::NONE:
3462     return false;
3463   case ImbueAttr::ALWAYS:
3464     Fn->addFnAttr("function-instrument", "xray-always");
3465     break;
3466   case ImbueAttr::ALWAYS_ARG1:
3467     Fn->addFnAttr("function-instrument", "xray-always");
3468     Fn->addFnAttr("xray-log-args", "1");
3469     break;
3470   case ImbueAttr::NEVER:
3471     Fn->addFnAttr("function-instrument", "xray-never");
3472     break;
3473   }
3474   return true;
3475 }
3476 
3477 ProfileList::ExclusionType
3478 CodeGenModule::isFunctionBlockedByProfileList(llvm::Function *Fn,
3479                                               SourceLocation Loc) const {
3480   const auto &ProfileList = getContext().getProfileList();
3481   // If the profile list is empty, then instrument everything.
3482   if (ProfileList.isEmpty())
3483     return ProfileList::Allow;
3484   CodeGenOptions::ProfileInstrKind Kind = getCodeGenOpts().getProfileInstr();
3485   // First, check the function name.
3486   if (auto V = ProfileList.isFunctionExcluded(Fn->getName(), Kind))
3487     return *V;
3488   // Next, check the source location.
3489   if (Loc.isValid())
3490     if (auto V = ProfileList.isLocationExcluded(Loc, Kind))
3491       return *V;
3492   // If location is unknown, this may be a compiler-generated function. Assume
3493   // it's located in the main file.
3494   auto &SM = Context.getSourceManager();
3495   if (auto MainFile = SM.getFileEntryRefForID(SM.getMainFileID()))
3496     if (auto V = ProfileList.isFileExcluded(MainFile->getName(), Kind))
3497       return *V;
3498   return ProfileList.getDefault(Kind);
3499 }
3500 
3501 ProfileList::ExclusionType
3502 CodeGenModule::isFunctionBlockedFromProfileInstr(llvm::Function *Fn,
3503                                                  SourceLocation Loc) const {
3504   auto V = isFunctionBlockedByProfileList(Fn, Loc);
3505   if (V != ProfileList::Allow)
3506     return V;
3507 
3508   auto NumGroups = getCodeGenOpts().ProfileTotalFunctionGroups;
3509   if (NumGroups > 1) {
3510     auto Group = llvm::crc32(arrayRefFromStringRef(Fn->getName())) % NumGroups;
3511     if (Group != getCodeGenOpts().ProfileSelectedFunctionGroup)
3512       return ProfileList::Skip;
3513   }
3514   return ProfileList::Allow;
3515 }
3516 
3517 bool CodeGenModule::MustBeEmitted(const ValueDecl *Global) {
3518   // Never defer when EmitAllDecls is specified.
3519   if (LangOpts.EmitAllDecls)
3520     return true;
3521 
3522   const auto *VD = dyn_cast<VarDecl>(Global);
3523   if (VD &&
3524       ((CodeGenOpts.KeepPersistentStorageVariables &&
3525         (VD->getStorageDuration() == SD_Static ||
3526          VD->getStorageDuration() == SD_Thread)) ||
3527        (CodeGenOpts.KeepStaticConsts && VD->getStorageDuration() == SD_Static &&
3528         VD->getType().isConstQualified())))
3529     return true;
3530 
3531   return getContext().DeclMustBeEmitted(Global);
3532 }
3533 
3534 bool CodeGenModule::MayBeEmittedEagerly(const ValueDecl *Global) {
3535   // In OpenMP 5.0 variables and function may be marked as
3536   // device_type(host/nohost) and we should not emit them eagerly unless we sure
3537   // that they must be emitted on the host/device. To be sure we need to have
3538   // seen a declare target with an explicit mentioning of the function, we know
3539   // we have if the level of the declare target attribute is -1. Note that we
3540   // check somewhere else if we should emit this at all.
3541   if (LangOpts.OpenMP >= 50 && !LangOpts.OpenMPSimd) {
3542     std::optional<OMPDeclareTargetDeclAttr *> ActiveAttr =
3543         OMPDeclareTargetDeclAttr::getActiveAttr(Global);
3544     if (!ActiveAttr || (*ActiveAttr)->getLevel() != (unsigned)-1)
3545       return false;
3546   }
3547 
3548   if (const auto *FD = dyn_cast<FunctionDecl>(Global)) {
3549     if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
3550       // Implicit template instantiations may change linkage if they are later
3551       // explicitly instantiated, so they should not be emitted eagerly.
3552       return false;
3553     // Defer until all versions have been semantically checked.
3554     if (FD->hasAttr<TargetVersionAttr>() && !FD->isMultiVersion())
3555       return false;
3556   }
3557   if (const auto *VD = dyn_cast<VarDecl>(Global)) {
3558     if (Context.getInlineVariableDefinitionKind(VD) ==
3559         ASTContext::InlineVariableDefinitionKind::WeakUnknown)
3560       // A definition of an inline constexpr static data member may change
3561       // linkage later if it's redeclared outside the class.
3562       return false;
3563     if (CXX20ModuleInits && VD->getOwningModule() &&
3564         !VD->getOwningModule()->isModuleMapModule()) {
3565       // For CXX20, module-owned initializers need to be deferred, since it is
3566       // not known at this point if they will be run for the current module or
3567       // as part of the initializer for an imported one.
3568       return false;
3569     }
3570   }
3571   // If OpenMP is enabled and threadprivates must be generated like TLS, delay
3572   // codegen for global variables, because they may be marked as threadprivate.
3573   if (LangOpts.OpenMP && LangOpts.OpenMPUseTLS &&
3574       getContext().getTargetInfo().isTLSSupported() && isa<VarDecl>(Global) &&
3575       !Global->getType().isConstantStorage(getContext(), false, false) &&
3576       !OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(Global))
3577     return false;
3578 
3579   return true;
3580 }
3581 
3582 ConstantAddress CodeGenModule::GetAddrOfMSGuidDecl(const MSGuidDecl *GD) {
3583   StringRef Name = getMangledName(GD);
3584 
3585   // The UUID descriptor should be pointer aligned.
3586   CharUnits Alignment = CharUnits::fromQuantity(PointerAlignInBytes);
3587 
3588   // Look for an existing global.
3589   if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name))
3590     return ConstantAddress(GV, GV->getValueType(), Alignment);
3591 
3592   ConstantEmitter Emitter(*this);
3593   llvm::Constant *Init;
3594 
3595   APValue &V = GD->getAsAPValue();
3596   if (!V.isAbsent()) {
3597     // If possible, emit the APValue version of the initializer. In particular,
3598     // this gets the type of the constant right.
3599     Init = Emitter.emitForInitializer(
3600         GD->getAsAPValue(), GD->getType().getAddressSpace(), GD->getType());
3601   } else {
3602     // As a fallback, directly construct the constant.
3603     // FIXME: This may get padding wrong under esoteric struct layout rules.
3604     // MSVC appears to create a complete type 'struct __s_GUID' that it
3605     // presumably uses to represent these constants.
3606     MSGuidDecl::Parts Parts = GD->getParts();
3607     llvm::Constant *Fields[4] = {
3608         llvm::ConstantInt::get(Int32Ty, Parts.Part1),
3609         llvm::ConstantInt::get(Int16Ty, Parts.Part2),
3610         llvm::ConstantInt::get(Int16Ty, Parts.Part3),
3611         llvm::ConstantDataArray::getRaw(
3612             StringRef(reinterpret_cast<char *>(Parts.Part4And5), 8), 8,
3613             Int8Ty)};
3614     Init = llvm::ConstantStruct::getAnon(Fields);
3615   }
3616 
3617   auto *GV = new llvm::GlobalVariable(
3618       getModule(), Init->getType(),
3619       /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name);
3620   if (supportsCOMDAT())
3621     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
3622   setDSOLocal(GV);
3623 
3624   if (!V.isAbsent()) {
3625     Emitter.finalize(GV);
3626     return ConstantAddress(GV, GV->getValueType(), Alignment);
3627   }
3628 
3629   llvm::Type *Ty = getTypes().ConvertTypeForMem(GD->getType());
3630   return ConstantAddress(GV, Ty, Alignment);
3631 }
3632 
3633 ConstantAddress CodeGenModule::GetAddrOfUnnamedGlobalConstantDecl(
3634     const UnnamedGlobalConstantDecl *GCD) {
3635   CharUnits Alignment = getContext().getTypeAlignInChars(GCD->getType());
3636 
3637   llvm::GlobalVariable **Entry = nullptr;
3638   Entry = &UnnamedGlobalConstantDeclMap[GCD];
3639   if (*Entry)
3640     return ConstantAddress(*Entry, (*Entry)->getValueType(), Alignment);
3641 
3642   ConstantEmitter Emitter(*this);
3643   llvm::Constant *Init;
3644 
3645   const APValue &V = GCD->getValue();
3646 
3647   assert(!V.isAbsent());
3648   Init = Emitter.emitForInitializer(V, GCD->getType().getAddressSpace(),
3649                                     GCD->getType());
3650 
3651   auto *GV = new llvm::GlobalVariable(getModule(), Init->getType(),
3652                                       /*isConstant=*/true,
3653                                       llvm::GlobalValue::PrivateLinkage, Init,
3654                                       ".constant");
3655   GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
3656   GV->setAlignment(Alignment.getAsAlign());
3657 
3658   Emitter.finalize(GV);
3659 
3660   *Entry = GV;
3661   return ConstantAddress(GV, GV->getValueType(), Alignment);
3662 }
3663 
3664 ConstantAddress CodeGenModule::GetAddrOfTemplateParamObject(
3665     const TemplateParamObjectDecl *TPO) {
3666   StringRef Name = getMangledName(TPO);
3667   CharUnits Alignment = getNaturalTypeAlignment(TPO->getType());
3668 
3669   if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name))
3670     return ConstantAddress(GV, GV->getValueType(), Alignment);
3671 
3672   ConstantEmitter Emitter(*this);
3673   llvm::Constant *Init = Emitter.emitForInitializer(
3674         TPO->getValue(), TPO->getType().getAddressSpace(), TPO->getType());
3675 
3676   if (!Init) {
3677     ErrorUnsupported(TPO, "template parameter object");
3678     return ConstantAddress::invalid();
3679   }
3680 
3681   llvm::GlobalValue::LinkageTypes Linkage =
3682       isExternallyVisible(TPO->getLinkageAndVisibility().getLinkage())
3683           ? llvm::GlobalValue::LinkOnceODRLinkage
3684           : llvm::GlobalValue::InternalLinkage;
3685   auto *GV = new llvm::GlobalVariable(getModule(), Init->getType(),
3686                                       /*isConstant=*/true, Linkage, Init, Name);
3687   setGVProperties(GV, TPO);
3688   if (supportsCOMDAT())
3689     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
3690   Emitter.finalize(GV);
3691 
3692     return ConstantAddress(GV, GV->getValueType(), Alignment);
3693 }
3694 
3695 ConstantAddress CodeGenModule::GetWeakRefReference(const ValueDecl *VD) {
3696   const AliasAttr *AA = VD->getAttr<AliasAttr>();
3697   assert(AA && "No alias?");
3698 
3699   CharUnits Alignment = getContext().getDeclAlign(VD);
3700   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType());
3701 
3702   // See if there is already something with the target's name in the module.
3703   llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee());
3704   if (Entry)
3705     return ConstantAddress(Entry, DeclTy, Alignment);
3706 
3707   llvm::Constant *Aliasee;
3708   if (isa<llvm::FunctionType>(DeclTy))
3709     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy,
3710                                       GlobalDecl(cast<FunctionDecl>(VD)),
3711                                       /*ForVTable=*/false);
3712   else
3713     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), DeclTy, LangAS::Default,
3714                                     nullptr);
3715 
3716   auto *F = cast<llvm::GlobalValue>(Aliasee);
3717   F->setLinkage(llvm::Function::ExternalWeakLinkage);
3718   WeakRefReferences.insert(F);
3719 
3720   return ConstantAddress(Aliasee, DeclTy, Alignment);
3721 }
3722 
3723 template <typename AttrT> static bool hasImplicitAttr(const ValueDecl *D) {
3724   if (!D)
3725     return false;
3726   if (auto *A = D->getAttr<AttrT>())
3727     return A->isImplicit();
3728   return D->isImplicit();
3729 }
3730 
3731 bool CodeGenModule::shouldEmitCUDAGlobalVar(const VarDecl *Global) const {
3732   assert(LangOpts.CUDA && "Should not be called by non-CUDA languages");
3733   // We need to emit host-side 'shadows' for all global
3734   // device-side variables because the CUDA runtime needs their
3735   // size and host-side address in order to provide access to
3736   // their device-side incarnations.
3737   return !LangOpts.CUDAIsDevice || Global->hasAttr<CUDADeviceAttr>() ||
3738          Global->hasAttr<CUDAConstantAttr>() ||
3739          Global->hasAttr<CUDASharedAttr>() ||
3740          Global->getType()->isCUDADeviceBuiltinSurfaceType() ||
3741          Global->getType()->isCUDADeviceBuiltinTextureType();
3742 }
3743 
3744 void CodeGenModule::EmitGlobal(GlobalDecl GD) {
3745   const auto *Global = cast<ValueDecl>(GD.getDecl());
3746 
3747   // Weak references don't produce any output by themselves.
3748   if (Global->hasAttr<WeakRefAttr>())
3749     return;
3750 
3751   // If this is an alias definition (which otherwise looks like a declaration)
3752   // emit it now.
3753   if (Global->hasAttr<AliasAttr>())
3754     return EmitAliasDefinition(GD);
3755 
3756   // IFunc like an alias whose value is resolved at runtime by calling resolver.
3757   if (Global->hasAttr<IFuncAttr>())
3758     return emitIFuncDefinition(GD);
3759 
3760   // If this is a cpu_dispatch multiversion function, emit the resolver.
3761   if (Global->hasAttr<CPUDispatchAttr>())
3762     return emitCPUDispatchDefinition(GD);
3763 
3764   // If this is CUDA, be selective about which declarations we emit.
3765   // Non-constexpr non-lambda implicit host device functions are not emitted
3766   // unless they are used on device side.
3767   if (LangOpts.CUDA) {
3768     assert((isa<FunctionDecl>(Global) || isa<VarDecl>(Global)) &&
3769            "Expected Variable or Function");
3770     if (const auto *VD = dyn_cast<VarDecl>(Global)) {
3771       if (!shouldEmitCUDAGlobalVar(VD))
3772         return;
3773     } else if (LangOpts.CUDAIsDevice) {
3774       const auto *FD = dyn_cast<FunctionDecl>(Global);
3775       if ((!Global->hasAttr<CUDADeviceAttr>() ||
3776            (LangOpts.OffloadImplicitHostDeviceTemplates &&
3777             hasImplicitAttr<CUDAHostAttr>(FD) &&
3778             hasImplicitAttr<CUDADeviceAttr>(FD) && !FD->isConstexpr() &&
3779             !isLambdaCallOperator(FD) &&
3780             !getContext().CUDAImplicitHostDeviceFunUsedByDevice.count(FD))) &&
3781           !Global->hasAttr<CUDAGlobalAttr>() &&
3782           !(LangOpts.HIPStdPar && isa<FunctionDecl>(Global) &&
3783             !Global->hasAttr<CUDAHostAttr>()))
3784         return;
3785       // Device-only functions are the only things we skip.
3786     } else if (!Global->hasAttr<CUDAHostAttr>() &&
3787                Global->hasAttr<CUDADeviceAttr>())
3788       return;
3789   }
3790 
3791   if (LangOpts.OpenMP) {
3792     // If this is OpenMP, check if it is legal to emit this global normally.
3793     if (OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(GD))
3794       return;
3795     if (auto *DRD = dyn_cast<OMPDeclareReductionDecl>(Global)) {
3796       if (MustBeEmitted(Global))
3797         EmitOMPDeclareReduction(DRD);
3798       return;
3799     }
3800     if (auto *DMD = dyn_cast<OMPDeclareMapperDecl>(Global)) {
3801       if (MustBeEmitted(Global))
3802         EmitOMPDeclareMapper(DMD);
3803       return;
3804     }
3805   }
3806 
3807   // Ignore declarations, they will be emitted on their first use.
3808   if (const auto *FD = dyn_cast<FunctionDecl>(Global)) {
3809     // Update deferred annotations with the latest declaration if the function
3810     // function was already used or defined.
3811     if (FD->hasAttr<AnnotateAttr>()) {
3812       StringRef MangledName = getMangledName(GD);
3813       if (GetGlobalValue(MangledName))
3814         DeferredAnnotations[MangledName] = FD;
3815     }
3816 
3817     // Forward declarations are emitted lazily on first use.
3818     if (!FD->doesThisDeclarationHaveABody()) {
3819       if (!FD->doesDeclarationForceExternallyVisibleDefinition() &&
3820           (!FD->isMultiVersion() || !getTarget().getTriple().isAArch64()))
3821         return;
3822 
3823       StringRef MangledName = getMangledName(GD);
3824 
3825       // Compute the function info and LLVM type.
3826       const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
3827       llvm::Type *Ty = getTypes().GetFunctionType(FI);
3828 
3829       GetOrCreateLLVMFunction(MangledName, Ty, GD, /*ForVTable=*/false,
3830                               /*DontDefer=*/false);
3831       return;
3832     }
3833   } else {
3834     const auto *VD = cast<VarDecl>(Global);
3835     assert(VD->isFileVarDecl() && "Cannot emit local var decl as global.");
3836     if (VD->isThisDeclarationADefinition() != VarDecl::Definition &&
3837         !Context.isMSStaticDataMemberInlineDefinition(VD)) {
3838       if (LangOpts.OpenMP) {
3839         // Emit declaration of the must-be-emitted declare target variable.
3840         if (std::optional<OMPDeclareTargetDeclAttr::MapTypeTy> Res =
3841                 OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD)) {
3842 
3843           // If this variable has external storage and doesn't require special
3844           // link handling we defer to its canonical definition.
3845           if (VD->hasExternalStorage() &&
3846               Res != OMPDeclareTargetDeclAttr::MT_Link)
3847             return;
3848 
3849           bool UnifiedMemoryEnabled =
3850               getOpenMPRuntime().hasRequiresUnifiedSharedMemory();
3851           if ((*Res == OMPDeclareTargetDeclAttr::MT_To ||
3852                *Res == OMPDeclareTargetDeclAttr::MT_Enter) &&
3853               !UnifiedMemoryEnabled) {
3854             (void)GetAddrOfGlobalVar(VD);
3855           } else {
3856             assert(((*Res == OMPDeclareTargetDeclAttr::MT_Link) ||
3857                     ((*Res == OMPDeclareTargetDeclAttr::MT_To ||
3858                       *Res == OMPDeclareTargetDeclAttr::MT_Enter) &&
3859                      UnifiedMemoryEnabled)) &&
3860                    "Link clause or to clause with unified memory expected.");
3861             (void)getOpenMPRuntime().getAddrOfDeclareTargetVar(VD);
3862           }
3863 
3864           return;
3865         }
3866       }
3867       // If this declaration may have caused an inline variable definition to
3868       // change linkage, make sure that it's emitted.
3869       if (Context.getInlineVariableDefinitionKind(VD) ==
3870           ASTContext::InlineVariableDefinitionKind::Strong)
3871         GetAddrOfGlobalVar(VD);
3872       return;
3873     }
3874   }
3875 
3876   // Defer code generation to first use when possible, e.g. if this is an inline
3877   // function. If the global must always be emitted, do it eagerly if possible
3878   // to benefit from cache locality.
3879   if (MustBeEmitted(Global) && MayBeEmittedEagerly(Global)) {
3880     // Emit the definition if it can't be deferred.
3881     EmitGlobalDefinition(GD);
3882     addEmittedDeferredDecl(GD);
3883     return;
3884   }
3885 
3886   // If we're deferring emission of a C++ variable with an
3887   // initializer, remember the order in which it appeared in the file.
3888   if (getLangOpts().CPlusPlus && isa<VarDecl>(Global) &&
3889       cast<VarDecl>(Global)->hasInit()) {
3890     DelayedCXXInitPosition[Global] = CXXGlobalInits.size();
3891     CXXGlobalInits.push_back(nullptr);
3892   }
3893 
3894   StringRef MangledName = getMangledName(GD);
3895   if (GetGlobalValue(MangledName) != nullptr) {
3896     // The value has already been used and should therefore be emitted.
3897     addDeferredDeclToEmit(GD);
3898   } else if (MustBeEmitted(Global)) {
3899     // The value must be emitted, but cannot be emitted eagerly.
3900     assert(!MayBeEmittedEagerly(Global));
3901     addDeferredDeclToEmit(GD);
3902   } else {
3903     // Otherwise, remember that we saw a deferred decl with this name.  The
3904     // first use of the mangled name will cause it to move into
3905     // DeferredDeclsToEmit.
3906     DeferredDecls[MangledName] = GD;
3907   }
3908 }
3909 
3910 // Check if T is a class type with a destructor that's not dllimport.
3911 static bool HasNonDllImportDtor(QualType T) {
3912   if (const auto *RT = T->getBaseElementTypeUnsafe()->getAs<RecordType>())
3913     if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl()))
3914       if (RD->getDestructor() && !RD->getDestructor()->hasAttr<DLLImportAttr>())
3915         return true;
3916 
3917   return false;
3918 }
3919 
3920 namespace {
3921   struct FunctionIsDirectlyRecursive
3922       : public ConstStmtVisitor<FunctionIsDirectlyRecursive, bool> {
3923     const StringRef Name;
3924     const Builtin::Context &BI;
3925     FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C)
3926         : Name(N), BI(C) {}
3927 
3928     bool VisitCallExpr(const CallExpr *E) {
3929       const FunctionDecl *FD = E->getDirectCallee();
3930       if (!FD)
3931         return false;
3932       AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
3933       if (Attr && Name == Attr->getLabel())
3934         return true;
3935       unsigned BuiltinID = FD->getBuiltinID();
3936       if (!BuiltinID || !BI.isLibFunction(BuiltinID))
3937         return false;
3938       StringRef BuiltinName = BI.getName(BuiltinID);
3939       if (BuiltinName.starts_with("__builtin_") &&
3940           Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) {
3941         return true;
3942       }
3943       return false;
3944     }
3945 
3946     bool VisitStmt(const Stmt *S) {
3947       for (const Stmt *Child : S->children())
3948         if (Child && this->Visit(Child))
3949           return true;
3950       return false;
3951     }
3952   };
3953 
3954   // Make sure we're not referencing non-imported vars or functions.
3955   struct DLLImportFunctionVisitor
3956       : public RecursiveASTVisitor<DLLImportFunctionVisitor> {
3957     bool SafeToInline = true;
3958 
3959     bool shouldVisitImplicitCode() const { return true; }
3960 
3961     bool VisitVarDecl(VarDecl *VD) {
3962       if (VD->getTLSKind()) {
3963         // A thread-local variable cannot be imported.
3964         SafeToInline = false;
3965         return SafeToInline;
3966       }
3967 
3968       // A variable definition might imply a destructor call.
3969       if (VD->isThisDeclarationADefinition())
3970         SafeToInline = !HasNonDllImportDtor(VD->getType());
3971 
3972       return SafeToInline;
3973     }
3974 
3975     bool VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) {
3976       if (const auto *D = E->getTemporary()->getDestructor())
3977         SafeToInline = D->hasAttr<DLLImportAttr>();
3978       return SafeToInline;
3979     }
3980 
3981     bool VisitDeclRefExpr(DeclRefExpr *E) {
3982       ValueDecl *VD = E->getDecl();
3983       if (isa<FunctionDecl>(VD))
3984         SafeToInline = VD->hasAttr<DLLImportAttr>();
3985       else if (VarDecl *V = dyn_cast<VarDecl>(VD))
3986         SafeToInline = !V->hasGlobalStorage() || V->hasAttr<DLLImportAttr>();
3987       return SafeToInline;
3988     }
3989 
3990     bool VisitCXXConstructExpr(CXXConstructExpr *E) {
3991       SafeToInline = E->getConstructor()->hasAttr<DLLImportAttr>();
3992       return SafeToInline;
3993     }
3994 
3995     bool VisitCXXMemberCallExpr(CXXMemberCallExpr *E) {
3996       CXXMethodDecl *M = E->getMethodDecl();
3997       if (!M) {
3998         // Call through a pointer to member function. This is safe to inline.
3999         SafeToInline = true;
4000       } else {
4001         SafeToInline = M->hasAttr<DLLImportAttr>();
4002       }
4003       return SafeToInline;
4004     }
4005 
4006     bool VisitCXXDeleteExpr(CXXDeleteExpr *E) {
4007       SafeToInline = E->getOperatorDelete()->hasAttr<DLLImportAttr>();
4008       return SafeToInline;
4009     }
4010 
4011     bool VisitCXXNewExpr(CXXNewExpr *E) {
4012       SafeToInline = E->getOperatorNew()->hasAttr<DLLImportAttr>();
4013       return SafeToInline;
4014     }
4015   };
4016 }
4017 
4018 // isTriviallyRecursive - Check if this function calls another
4019 // decl that, because of the asm attribute or the other decl being a builtin,
4020 // ends up pointing to itself.
4021 bool
4022 CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) {
4023   StringRef Name;
4024   if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) {
4025     // asm labels are a special kind of mangling we have to support.
4026     AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
4027     if (!Attr)
4028       return false;
4029     Name = Attr->getLabel();
4030   } else {
4031     Name = FD->getName();
4032   }
4033 
4034   FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo);
4035   const Stmt *Body = FD->getBody();
4036   return Body ? Walker.Visit(Body) : false;
4037 }
4038 
4039 bool CodeGenModule::shouldEmitFunction(GlobalDecl GD) {
4040   if (getFunctionLinkage(GD) != llvm::Function::AvailableExternallyLinkage)
4041     return true;
4042 
4043   const auto *F = cast<FunctionDecl>(GD.getDecl());
4044   // Inline builtins declaration must be emitted. They often are fortified
4045   // functions.
4046   if (F->isInlineBuiltinDeclaration())
4047     return true;
4048 
4049   if (CodeGenOpts.OptimizationLevel == 0 && !F->hasAttr<AlwaysInlineAttr>())
4050     return false;
4051 
4052   // We don't import function bodies from other named module units since that
4053   // behavior may break ABI compatibility of the current unit.
4054   if (const Module *M = F->getOwningModule();
4055       M && M->getTopLevelModule()->isNamedModule() &&
4056       getContext().getCurrentNamedModule() != M->getTopLevelModule()) {
4057     // There are practices to mark template member function as always-inline
4058     // and mark the template as extern explicit instantiation but not give
4059     // the definition for member function. So we have to emit the function
4060     // from explicitly instantiation with always-inline.
4061     //
4062     // See https://github.com/llvm/llvm-project/issues/86893 for details.
4063     //
4064     // TODO: Maybe it is better to give it a warning if we call a non-inline
4065     // function from other module units which is marked as always-inline.
4066     if (!F->isTemplateInstantiation() || !F->hasAttr<AlwaysInlineAttr>()) {
4067       return false;
4068     }
4069   }
4070 
4071   if (F->hasAttr<NoInlineAttr>())
4072     return false;
4073 
4074   if (F->hasAttr<DLLImportAttr>() && !F->hasAttr<AlwaysInlineAttr>()) {
4075     // Check whether it would be safe to inline this dllimport function.
4076     DLLImportFunctionVisitor Visitor;
4077     Visitor.TraverseFunctionDecl(const_cast<FunctionDecl*>(F));
4078     if (!Visitor.SafeToInline)
4079       return false;
4080 
4081     if (const CXXDestructorDecl *Dtor = dyn_cast<CXXDestructorDecl>(F)) {
4082       // Implicit destructor invocations aren't captured in the AST, so the
4083       // check above can't see them. Check for them manually here.
4084       for (const Decl *Member : Dtor->getParent()->decls())
4085         if (isa<FieldDecl>(Member))
4086           if (HasNonDllImportDtor(cast<FieldDecl>(Member)->getType()))
4087             return false;
4088       for (const CXXBaseSpecifier &B : Dtor->getParent()->bases())
4089         if (HasNonDllImportDtor(B.getType()))
4090           return false;
4091     }
4092   }
4093 
4094   // PR9614. Avoid cases where the source code is lying to us. An available
4095   // externally function should have an equivalent function somewhere else,
4096   // but a function that calls itself through asm label/`__builtin_` trickery is
4097   // clearly not equivalent to the real implementation.
4098   // This happens in glibc's btowc and in some configure checks.
4099   return !isTriviallyRecursive(F);
4100 }
4101 
4102 bool CodeGenModule::shouldOpportunisticallyEmitVTables() {
4103   return CodeGenOpts.OptimizationLevel > 0;
4104 }
4105 
4106 void CodeGenModule::EmitMultiVersionFunctionDefinition(GlobalDecl GD,
4107                                                        llvm::GlobalValue *GV) {
4108   const auto *FD = cast<FunctionDecl>(GD.getDecl());
4109 
4110   if (FD->isCPUSpecificMultiVersion()) {
4111     auto *Spec = FD->getAttr<CPUSpecificAttr>();
4112     for (unsigned I = 0; I < Spec->cpus_size(); ++I)
4113       EmitGlobalFunctionDefinition(GD.getWithMultiVersionIndex(I), nullptr);
4114   } else if (auto *TC = FD->getAttr<TargetClonesAttr>()) {
4115     for (unsigned I = 0; I < TC->featuresStrs_size(); ++I)
4116       // AArch64 favors the default target version over the clone if any.
4117       if ((!TC->isDefaultVersion(I) || !getTarget().getTriple().isAArch64()) &&
4118           TC->isFirstOfVersion(I))
4119         EmitGlobalFunctionDefinition(GD.getWithMultiVersionIndex(I), nullptr);
4120     // Ensure that the resolver function is also emitted.
4121     GetOrCreateMultiVersionResolver(GD);
4122   } else
4123     EmitGlobalFunctionDefinition(GD, GV);
4124 
4125   // Defer the resolver emission until we can reason whether the TU
4126   // contains a default target version implementation.
4127   if (FD->isTargetVersionMultiVersion())
4128     AddDeferredMultiVersionResolverToEmit(GD);
4129 }
4130 
4131 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD, llvm::GlobalValue *GV) {
4132   const auto *D = cast<ValueDecl>(GD.getDecl());
4133 
4134   PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(),
4135                                  Context.getSourceManager(),
4136                                  "Generating code for declaration");
4137 
4138   if (const auto *FD = dyn_cast<FunctionDecl>(D)) {
4139     // At -O0, don't generate IR for functions with available_externally
4140     // linkage.
4141     if (!shouldEmitFunction(GD))
4142       return;
4143 
4144     llvm::TimeTraceScope TimeScope("CodeGen Function", [&]() {
4145       std::string Name;
4146       llvm::raw_string_ostream OS(Name);
4147       FD->getNameForDiagnostic(OS, getContext().getPrintingPolicy(),
4148                                /*Qualified=*/true);
4149       return Name;
4150     });
4151 
4152     if (const auto *Method = dyn_cast<CXXMethodDecl>(D)) {
4153       // Make sure to emit the definition(s) before we emit the thunks.
4154       // This is necessary for the generation of certain thunks.
4155       if (isa<CXXConstructorDecl>(Method) || isa<CXXDestructorDecl>(Method))
4156         ABI->emitCXXStructor(GD);
4157       else if (FD->isMultiVersion())
4158         EmitMultiVersionFunctionDefinition(GD, GV);
4159       else
4160         EmitGlobalFunctionDefinition(GD, GV);
4161 
4162       if (Method->isVirtual())
4163         getVTables().EmitThunks(GD);
4164 
4165       return;
4166     }
4167 
4168     if (FD->isMultiVersion())
4169       return EmitMultiVersionFunctionDefinition(GD, GV);
4170     return EmitGlobalFunctionDefinition(GD, GV);
4171   }
4172 
4173   if (const auto *VD = dyn_cast<VarDecl>(D))
4174     return EmitGlobalVarDefinition(VD, !VD->hasDefinition());
4175 
4176   llvm_unreachable("Invalid argument to EmitGlobalDefinition()");
4177 }
4178 
4179 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
4180                                                       llvm::Function *NewFn);
4181 
4182 static unsigned
4183 TargetMVPriority(const TargetInfo &TI,
4184                  const CodeGenFunction::MultiVersionResolverOption &RO) {
4185   unsigned Priority = 0;
4186   unsigned NumFeatures = 0;
4187   for (StringRef Feat : RO.Conditions.Features) {
4188     Priority = std::max(Priority, TI.multiVersionSortPriority(Feat));
4189     NumFeatures++;
4190   }
4191 
4192   if (!RO.Conditions.Architecture.empty())
4193     Priority = std::max(
4194         Priority, TI.multiVersionSortPriority(RO.Conditions.Architecture));
4195 
4196   Priority += TI.multiVersionFeatureCost() * NumFeatures;
4197 
4198   return Priority;
4199 }
4200 
4201 // Multiversion functions should be at most 'WeakODRLinkage' so that a different
4202 // TU can forward declare the function without causing problems.  Particularly
4203 // in the cases of CPUDispatch, this causes issues. This also makes sure we
4204 // work with internal linkage functions, so that the same function name can be
4205 // used with internal linkage in multiple TUs.
4206 llvm::GlobalValue::LinkageTypes getMultiversionLinkage(CodeGenModule &CGM,
4207                                                        GlobalDecl GD) {
4208   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
4209   if (FD->getFormalLinkage() == Linkage::Internal)
4210     return llvm::GlobalValue::InternalLinkage;
4211   return llvm::GlobalValue::WeakODRLinkage;
4212 }
4213 
4214 void CodeGenModule::emitMultiVersionFunctions() {
4215   std::vector<GlobalDecl> MVFuncsToEmit;
4216   MultiVersionFuncs.swap(MVFuncsToEmit);
4217   for (GlobalDecl GD : MVFuncsToEmit) {
4218     const auto *FD = cast<FunctionDecl>(GD.getDecl());
4219     assert(FD && "Expected a FunctionDecl");
4220 
4221     auto createFunction = [&](const FunctionDecl *Decl, unsigned MVIdx = 0) {
4222       GlobalDecl CurGD{Decl->isDefined() ? Decl->getDefinition() : Decl, MVIdx};
4223       StringRef MangledName = getMangledName(CurGD);
4224       llvm::Constant *Func = GetGlobalValue(MangledName);
4225       if (!Func) {
4226         if (Decl->isDefined()) {
4227           EmitGlobalFunctionDefinition(CurGD, nullptr);
4228           Func = GetGlobalValue(MangledName);
4229         } else {
4230           const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(CurGD);
4231           llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
4232           Func = GetAddrOfFunction(CurGD, Ty, /*ForVTable=*/false,
4233                                    /*DontDefer=*/false, ForDefinition);
4234         }
4235         assert(Func && "This should have just been created");
4236       }
4237       return cast<llvm::Function>(Func);
4238     };
4239 
4240     // For AArch64, a resolver is only emitted if a function marked with
4241     // target_version("default")) or target_clones() is present and defined
4242     // in this TU. For other architectures it is always emitted.
4243     bool ShouldEmitResolver = !getTarget().getTriple().isAArch64();
4244     SmallVector<CodeGenFunction::MultiVersionResolverOption, 10> Options;
4245 
4246     getContext().forEachMultiversionedFunctionVersion(
4247         FD, [&](const FunctionDecl *CurFD) {
4248           llvm::SmallVector<StringRef, 8> Feats;
4249           bool IsDefined = CurFD->doesThisDeclarationHaveABody();
4250 
4251           if (const auto *TA = CurFD->getAttr<TargetAttr>()) {
4252             TA->getAddedFeatures(Feats);
4253             llvm::Function *Func = createFunction(CurFD);
4254             Options.emplace_back(Func, TA->getArchitecture(), Feats);
4255           } else if (const auto *TVA = CurFD->getAttr<TargetVersionAttr>()) {
4256             if (TVA->isDefaultVersion() && IsDefined)
4257               ShouldEmitResolver = true;
4258             TVA->getFeatures(Feats);
4259             llvm::Function *Func = createFunction(CurFD);
4260             Options.emplace_back(Func, /*Architecture*/ "", Feats);
4261           } else if (const auto *TC = CurFD->getAttr<TargetClonesAttr>()) {
4262             if (IsDefined)
4263               ShouldEmitResolver = true;
4264             for (unsigned I = 0; I < TC->featuresStrs_size(); ++I) {
4265               if (!TC->isFirstOfVersion(I))
4266                 continue;
4267 
4268               llvm::Function *Func = createFunction(CurFD, I);
4269               StringRef Architecture;
4270               Feats.clear();
4271               if (getTarget().getTriple().isAArch64())
4272                 TC->getFeatures(Feats, I);
4273               else {
4274                 StringRef Version = TC->getFeatureStr(I);
4275                 if (Version.starts_with("arch="))
4276                   Architecture = Version.drop_front(sizeof("arch=") - 1);
4277                 else if (Version != "default")
4278                   Feats.push_back(Version);
4279               }
4280               Options.emplace_back(Func, Architecture, Feats);
4281             }
4282           } else
4283             llvm_unreachable("unexpected MultiVersionKind");
4284         });
4285 
4286     if (!ShouldEmitResolver)
4287       continue;
4288 
4289     llvm::Constant *ResolverConstant = GetOrCreateMultiVersionResolver(GD);
4290     if (auto *IFunc = dyn_cast<llvm::GlobalIFunc>(ResolverConstant)) {
4291       ResolverConstant = IFunc->getResolver();
4292       if (FD->isTargetClonesMultiVersion() &&
4293           !getTarget().getTriple().isAArch64()) {
4294         std::string MangledName = getMangledNameImpl(
4295             *this, GD, FD, /*OmitMultiVersionMangling=*/true);
4296         if (!GetGlobalValue(MangledName + ".ifunc")) {
4297           const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
4298           llvm::FunctionType *DeclTy = getTypes().GetFunctionType(FI);
4299           // In prior versions of Clang, the mangling for ifuncs incorrectly
4300           // included an .ifunc suffix. This alias is generated for backward
4301           // compatibility. It is deprecated, and may be removed in the future.
4302           auto *Alias = llvm::GlobalAlias::create(
4303               DeclTy, 0, getMultiversionLinkage(*this, GD),
4304               MangledName + ".ifunc", IFunc, &getModule());
4305           SetCommonAttributes(FD, Alias);
4306         }
4307       }
4308     }
4309     llvm::Function *ResolverFunc = cast<llvm::Function>(ResolverConstant);
4310 
4311     ResolverFunc->setLinkage(getMultiversionLinkage(*this, GD));
4312 
4313     if (!ResolverFunc->hasLocalLinkage() && supportsCOMDAT())
4314       ResolverFunc->setComdat(
4315           getModule().getOrInsertComdat(ResolverFunc->getName()));
4316 
4317     const TargetInfo &TI = getTarget();
4318     llvm::stable_sort(
4319         Options, [&TI](const CodeGenFunction::MultiVersionResolverOption &LHS,
4320                        const CodeGenFunction::MultiVersionResolverOption &RHS) {
4321           return TargetMVPriority(TI, LHS) > TargetMVPriority(TI, RHS);
4322         });
4323     CodeGenFunction CGF(*this);
4324     CGF.EmitMultiVersionResolver(ResolverFunc, Options);
4325   }
4326 
4327   // Ensure that any additions to the deferred decls list caused by emitting a
4328   // variant are emitted.  This can happen when the variant itself is inline and
4329   // calls a function without linkage.
4330   if (!MVFuncsToEmit.empty())
4331     EmitDeferred();
4332 
4333   // Ensure that any additions to the multiversion funcs list from either the
4334   // deferred decls or the multiversion functions themselves are emitted.
4335   if (!MultiVersionFuncs.empty())
4336     emitMultiVersionFunctions();
4337 }
4338 
4339 static void replaceDeclarationWith(llvm::GlobalValue *Old,
4340                                    llvm::Constant *New) {
4341   assert(cast<llvm::Function>(Old)->isDeclaration() && "Not a declaration");
4342   New->takeName(Old);
4343   Old->replaceAllUsesWith(New);
4344   Old->eraseFromParent();
4345 }
4346 
4347 void CodeGenModule::emitCPUDispatchDefinition(GlobalDecl GD) {
4348   const auto *FD = cast<FunctionDecl>(GD.getDecl());
4349   assert(FD && "Not a FunctionDecl?");
4350   assert(FD->isCPUDispatchMultiVersion() && "Not a multiversion function?");
4351   const auto *DD = FD->getAttr<CPUDispatchAttr>();
4352   assert(DD && "Not a cpu_dispatch Function?");
4353 
4354   const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
4355   llvm::FunctionType *DeclTy = getTypes().GetFunctionType(FI);
4356 
4357   StringRef ResolverName = getMangledName(GD);
4358   UpdateMultiVersionNames(GD, FD, ResolverName);
4359 
4360   llvm::Type *ResolverType;
4361   GlobalDecl ResolverGD;
4362   if (getTarget().supportsIFunc()) {
4363     ResolverType = llvm::FunctionType::get(
4364         llvm::PointerType::get(DeclTy,
4365                                getTypes().getTargetAddressSpace(FD->getType())),
4366         false);
4367   }
4368   else {
4369     ResolverType = DeclTy;
4370     ResolverGD = GD;
4371   }
4372 
4373   auto *ResolverFunc = cast<llvm::Function>(GetOrCreateLLVMFunction(
4374       ResolverName, ResolverType, ResolverGD, /*ForVTable=*/false));
4375   ResolverFunc->setLinkage(getMultiversionLinkage(*this, GD));
4376   if (supportsCOMDAT())
4377     ResolverFunc->setComdat(
4378         getModule().getOrInsertComdat(ResolverFunc->getName()));
4379 
4380   SmallVector<CodeGenFunction::MultiVersionResolverOption, 10> Options;
4381   const TargetInfo &Target = getTarget();
4382   unsigned Index = 0;
4383   for (const IdentifierInfo *II : DD->cpus()) {
4384     // Get the name of the target function so we can look it up/create it.
4385     std::string MangledName = getMangledNameImpl(*this, GD, FD, true) +
4386                               getCPUSpecificMangling(*this, II->getName());
4387 
4388     llvm::Constant *Func = GetGlobalValue(MangledName);
4389 
4390     if (!Func) {
4391       GlobalDecl ExistingDecl = Manglings.lookup(MangledName);
4392       if (ExistingDecl.getDecl() &&
4393           ExistingDecl.getDecl()->getAsFunction()->isDefined()) {
4394         EmitGlobalFunctionDefinition(ExistingDecl, nullptr);
4395         Func = GetGlobalValue(MangledName);
4396       } else {
4397         if (!ExistingDecl.getDecl())
4398           ExistingDecl = GD.getWithMultiVersionIndex(Index);
4399 
4400       Func = GetOrCreateLLVMFunction(
4401           MangledName, DeclTy, ExistingDecl,
4402           /*ForVTable=*/false, /*DontDefer=*/true,
4403           /*IsThunk=*/false, llvm::AttributeList(), ForDefinition);
4404       }
4405     }
4406 
4407     llvm::SmallVector<StringRef, 32> Features;
4408     Target.getCPUSpecificCPUDispatchFeatures(II->getName(), Features);
4409     llvm::transform(Features, Features.begin(),
4410                     [](StringRef Str) { return Str.substr(1); });
4411     llvm::erase_if(Features, [&Target](StringRef Feat) {
4412       return !Target.validateCpuSupports(Feat);
4413     });
4414     Options.emplace_back(cast<llvm::Function>(Func), StringRef{}, Features);
4415     ++Index;
4416   }
4417 
4418   llvm::stable_sort(
4419       Options, [](const CodeGenFunction::MultiVersionResolverOption &LHS,
4420                   const CodeGenFunction::MultiVersionResolverOption &RHS) {
4421         return llvm::X86::getCpuSupportsMask(LHS.Conditions.Features) >
4422                llvm::X86::getCpuSupportsMask(RHS.Conditions.Features);
4423       });
4424 
4425   // If the list contains multiple 'default' versions, such as when it contains
4426   // 'pentium' and 'generic', don't emit the call to the generic one (since we
4427   // always run on at least a 'pentium'). We do this by deleting the 'least
4428   // advanced' (read, lowest mangling letter).
4429   while (Options.size() > 1 &&
4430          llvm::all_of(llvm::X86::getCpuSupportsMask(
4431                           (Options.end() - 2)->Conditions.Features),
4432                       [](auto X) { return X == 0; })) {
4433     StringRef LHSName = (Options.end() - 2)->Function->getName();
4434     StringRef RHSName = (Options.end() - 1)->Function->getName();
4435     if (LHSName.compare(RHSName) < 0)
4436       Options.erase(Options.end() - 2);
4437     else
4438       Options.erase(Options.end() - 1);
4439   }
4440 
4441   CodeGenFunction CGF(*this);
4442   CGF.EmitMultiVersionResolver(ResolverFunc, Options);
4443 
4444   if (getTarget().supportsIFunc()) {
4445     llvm::GlobalValue::LinkageTypes Linkage = getMultiversionLinkage(*this, GD);
4446     auto *IFunc = cast<llvm::GlobalValue>(GetOrCreateMultiVersionResolver(GD));
4447 
4448     // Fix up function declarations that were created for cpu_specific before
4449     // cpu_dispatch was known
4450     if (!isa<llvm::GlobalIFunc>(IFunc)) {
4451       auto *GI = llvm::GlobalIFunc::create(DeclTy, 0, Linkage, "", ResolverFunc,
4452                                            &getModule());
4453       replaceDeclarationWith(IFunc, GI);
4454       IFunc = GI;
4455     }
4456 
4457     std::string AliasName = getMangledNameImpl(
4458         *this, GD, FD, /*OmitMultiVersionMangling=*/true);
4459     llvm::Constant *AliasFunc = GetGlobalValue(AliasName);
4460     if (!AliasFunc) {
4461       auto *GA = llvm::GlobalAlias::create(DeclTy, 0, Linkage, AliasName, IFunc,
4462                                            &getModule());
4463       SetCommonAttributes(GD, GA);
4464     }
4465   }
4466 }
4467 
4468 /// Adds a declaration to the list of multi version functions if not present.
4469 void CodeGenModule::AddDeferredMultiVersionResolverToEmit(GlobalDecl GD) {
4470   const auto *FD = cast<FunctionDecl>(GD.getDecl());
4471   assert(FD && "Not a FunctionDecl?");
4472 
4473   if (FD->isTargetVersionMultiVersion() || FD->isTargetClonesMultiVersion()) {
4474     std::string MangledName =
4475         getMangledNameImpl(*this, GD, FD, /*OmitMultiVersionMangling=*/true);
4476     if (!DeferredResolversToEmit.insert(MangledName).second)
4477       return;
4478   }
4479   MultiVersionFuncs.push_back(GD);
4480 }
4481 
4482 /// If a dispatcher for the specified mangled name is not in the module, create
4483 /// and return it. The dispatcher is either an llvm Function with the specified
4484 /// type, or a global ifunc.
4485 llvm::Constant *CodeGenModule::GetOrCreateMultiVersionResolver(GlobalDecl GD) {
4486   const auto *FD = cast<FunctionDecl>(GD.getDecl());
4487   assert(FD && "Not a FunctionDecl?");
4488 
4489   std::string MangledName =
4490       getMangledNameImpl(*this, GD, FD, /*OmitMultiVersionMangling=*/true);
4491 
4492   // Holds the name of the resolver, in ifunc mode this is the ifunc (which has
4493   // a separate resolver).
4494   std::string ResolverName = MangledName;
4495   if (getTarget().supportsIFunc()) {
4496     switch (FD->getMultiVersionKind()) {
4497     case MultiVersionKind::None:
4498       llvm_unreachable("unexpected MultiVersionKind::None for resolver");
4499     case MultiVersionKind::Target:
4500     case MultiVersionKind::CPUSpecific:
4501     case MultiVersionKind::CPUDispatch:
4502       ResolverName += ".ifunc";
4503       break;
4504     case MultiVersionKind::TargetClones:
4505     case MultiVersionKind::TargetVersion:
4506       break;
4507     }
4508   } else if (FD->isTargetMultiVersion()) {
4509     ResolverName += ".resolver";
4510   }
4511 
4512   // If the resolver has already been created, just return it. This lookup may
4513   // yield a function declaration instead of a resolver on AArch64. That is
4514   // because we didn't know whether a resolver will be generated when we first
4515   // encountered a use of the symbol named after this resolver. Therefore,
4516   // targets which support ifuncs should not return here unless we actually
4517   // found an ifunc.
4518   llvm::GlobalValue *ResolverGV = GetGlobalValue(ResolverName);
4519   if (ResolverGV &&
4520       (isa<llvm::GlobalIFunc>(ResolverGV) || !getTarget().supportsIFunc()))
4521     return ResolverGV;
4522 
4523   const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
4524   llvm::FunctionType *DeclTy = getTypes().GetFunctionType(FI);
4525 
4526   // The resolver needs to be created. For target and target_clones, defer
4527   // creation until the end of the TU.
4528   if (FD->isTargetMultiVersion() || FD->isTargetClonesMultiVersion())
4529     AddDeferredMultiVersionResolverToEmit(GD);
4530 
4531   // For cpu_specific, don't create an ifunc yet because we don't know if the
4532   // cpu_dispatch will be emitted in this translation unit.
4533   if (getTarget().supportsIFunc() && !FD->isCPUSpecificMultiVersion()) {
4534     llvm::Type *ResolverType = llvm::FunctionType::get(
4535         llvm::PointerType::get(DeclTy,
4536                                getTypes().getTargetAddressSpace(FD->getType())),
4537         false);
4538     llvm::Constant *Resolver = GetOrCreateLLVMFunction(
4539         MangledName + ".resolver", ResolverType, GlobalDecl{},
4540         /*ForVTable=*/false);
4541     llvm::GlobalIFunc *GIF =
4542         llvm::GlobalIFunc::create(DeclTy, 0, getMultiversionLinkage(*this, GD),
4543                                   "", Resolver, &getModule());
4544     GIF->setName(ResolverName);
4545     SetCommonAttributes(FD, GIF);
4546     if (ResolverGV)
4547       replaceDeclarationWith(ResolverGV, GIF);
4548     return GIF;
4549   }
4550 
4551   llvm::Constant *Resolver = GetOrCreateLLVMFunction(
4552       ResolverName, DeclTy, GlobalDecl{}, /*ForVTable=*/false);
4553   assert(isa<llvm::GlobalValue>(Resolver) &&
4554          "Resolver should be created for the first time");
4555   SetCommonAttributes(FD, cast<llvm::GlobalValue>(Resolver));
4556   if (ResolverGV)
4557     replaceDeclarationWith(ResolverGV, Resolver);
4558   return Resolver;
4559 }
4560 
4561 bool CodeGenModule::shouldDropDLLAttribute(const Decl *D,
4562                                            const llvm::GlobalValue *GV) const {
4563   auto SC = GV->getDLLStorageClass();
4564   if (SC == llvm::GlobalValue::DefaultStorageClass)
4565     return false;
4566   const Decl *MRD = D->getMostRecentDecl();
4567   return (((SC == llvm::GlobalValue::DLLImportStorageClass &&
4568             !MRD->hasAttr<DLLImportAttr>()) ||
4569            (SC == llvm::GlobalValue::DLLExportStorageClass &&
4570             !MRD->hasAttr<DLLExportAttr>())) &&
4571           !shouldMapVisibilityToDLLExport(cast<NamedDecl>(MRD)));
4572 }
4573 
4574 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the
4575 /// module, create and return an llvm Function with the specified type. If there
4576 /// is something in the module with the specified name, return it potentially
4577 /// bitcasted to the right type.
4578 ///
4579 /// If D is non-null, it specifies a decl that correspond to this.  This is used
4580 /// to set the attributes on the function when it is first created.
4581 llvm::Constant *CodeGenModule::GetOrCreateLLVMFunction(
4582     StringRef MangledName, llvm::Type *Ty, GlobalDecl GD, bool ForVTable,
4583     bool DontDefer, bool IsThunk, llvm::AttributeList ExtraAttrs,
4584     ForDefinition_t IsForDefinition) {
4585   const Decl *D = GD.getDecl();
4586 
4587   std::string NameWithoutMultiVersionMangling;
4588   // Any attempts to use a MultiVersion function should result in retrieving
4589   // the iFunc instead. Name Mangling will handle the rest of the changes.
4590   if (const FunctionDecl *FD = cast_or_null<FunctionDecl>(D)) {
4591     // For the device mark the function as one that should be emitted.
4592     if (getLangOpts().OpenMPIsTargetDevice && OpenMPRuntime &&
4593         !OpenMPRuntime->markAsGlobalTarget(GD) && FD->isDefined() &&
4594         !DontDefer && !IsForDefinition) {
4595       if (const FunctionDecl *FDDef = FD->getDefinition()) {
4596         GlobalDecl GDDef;
4597         if (const auto *CD = dyn_cast<CXXConstructorDecl>(FDDef))
4598           GDDef = GlobalDecl(CD, GD.getCtorType());
4599         else if (const auto *DD = dyn_cast<CXXDestructorDecl>(FDDef))
4600           GDDef = GlobalDecl(DD, GD.getDtorType());
4601         else
4602           GDDef = GlobalDecl(FDDef);
4603         EmitGlobal(GDDef);
4604       }
4605     }
4606 
4607     if (FD->isMultiVersion()) {
4608       UpdateMultiVersionNames(GD, FD, MangledName);
4609       if (!IsForDefinition) {
4610         // On AArch64 we do not immediatelly emit an ifunc resolver when a
4611         // function is used. Instead we defer the emission until we see a
4612         // default definition. In the meantime we just reference the symbol
4613         // without FMV mangling (it may or may not be replaced later).
4614         if (getTarget().getTriple().isAArch64()) {
4615           AddDeferredMultiVersionResolverToEmit(GD);
4616           NameWithoutMultiVersionMangling = getMangledNameImpl(
4617               *this, GD, FD, /*OmitMultiVersionMangling=*/true);
4618         } else
4619           return GetOrCreateMultiVersionResolver(GD);
4620       }
4621     }
4622   }
4623 
4624   if (!NameWithoutMultiVersionMangling.empty())
4625     MangledName = NameWithoutMultiVersionMangling;
4626 
4627   // Lookup the entry, lazily creating it if necessary.
4628   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
4629   if (Entry) {
4630     if (WeakRefReferences.erase(Entry)) {
4631       const FunctionDecl *FD = cast_or_null<FunctionDecl>(D);
4632       if (FD && !FD->hasAttr<WeakAttr>())
4633         Entry->setLinkage(llvm::Function::ExternalLinkage);
4634     }
4635 
4636     // Handle dropped DLL attributes.
4637     if (D && shouldDropDLLAttribute(D, Entry)) {
4638       Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
4639       setDSOLocal(Entry);
4640     }
4641 
4642     // If there are two attempts to define the same mangled name, issue an
4643     // error.
4644     if (IsForDefinition && !Entry->isDeclaration()) {
4645       GlobalDecl OtherGD;
4646       // Check that GD is not yet in DiagnosedConflictingDefinitions is required
4647       // to make sure that we issue an error only once.
4648       if (lookupRepresentativeDecl(MangledName, OtherGD) &&
4649           (GD.getCanonicalDecl().getDecl() !=
4650            OtherGD.getCanonicalDecl().getDecl()) &&
4651           DiagnosedConflictingDefinitions.insert(GD).second) {
4652         getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name)
4653             << MangledName;
4654         getDiags().Report(OtherGD.getDecl()->getLocation(),
4655                           diag::note_previous_definition);
4656       }
4657     }
4658 
4659     if ((isa<llvm::Function>(Entry) || isa<llvm::GlobalAlias>(Entry)) &&
4660         (Entry->getValueType() == Ty)) {
4661       return Entry;
4662     }
4663 
4664     // Make sure the result is of the correct type.
4665     // (If function is requested for a definition, we always need to create a new
4666     // function, not just return a bitcast.)
4667     if (!IsForDefinition)
4668       return Entry;
4669   }
4670 
4671   // This function doesn't have a complete type (for example, the return
4672   // type is an incomplete struct). Use a fake type instead, and make
4673   // sure not to try to set attributes.
4674   bool IsIncompleteFunction = false;
4675 
4676   llvm::FunctionType *FTy;
4677   if (isa<llvm::FunctionType>(Ty)) {
4678     FTy = cast<llvm::FunctionType>(Ty);
4679   } else {
4680     FTy = llvm::FunctionType::get(VoidTy, false);
4681     IsIncompleteFunction = true;
4682   }
4683 
4684   llvm::Function *F =
4685       llvm::Function::Create(FTy, llvm::Function::ExternalLinkage,
4686                              Entry ? StringRef() : MangledName, &getModule());
4687 
4688   // Store the declaration associated with this function so it is potentially
4689   // updated by further declarations or definitions and emitted at the end.
4690   if (D && D->hasAttr<AnnotateAttr>())
4691     DeferredAnnotations[MangledName] = cast<ValueDecl>(D);
4692 
4693   // If we already created a function with the same mangled name (but different
4694   // type) before, take its name and add it to the list of functions to be
4695   // replaced with F at the end of CodeGen.
4696   //
4697   // This happens if there is a prototype for a function (e.g. "int f()") and
4698   // then a definition of a different type (e.g. "int f(int x)").
4699   if (Entry) {
4700     F->takeName(Entry);
4701 
4702     // This might be an implementation of a function without a prototype, in
4703     // which case, try to do special replacement of calls which match the new
4704     // prototype.  The really key thing here is that we also potentially drop
4705     // arguments from the call site so as to make a direct call, which makes the
4706     // inliner happier and suppresses a number of optimizer warnings (!) about
4707     // dropping arguments.
4708     if (!Entry->use_empty()) {
4709       ReplaceUsesOfNonProtoTypeWithRealFunction(Entry, F);
4710       Entry->removeDeadConstantUsers();
4711     }
4712 
4713     addGlobalValReplacement(Entry, F);
4714   }
4715 
4716   assert(F->getName() == MangledName && "name was uniqued!");
4717   if (D)
4718     SetFunctionAttributes(GD, F, IsIncompleteFunction, IsThunk);
4719   if (ExtraAttrs.hasFnAttrs()) {
4720     llvm::AttrBuilder B(F->getContext(), ExtraAttrs.getFnAttrs());
4721     F->addFnAttrs(B);
4722   }
4723 
4724   if (!DontDefer) {
4725     // All MSVC dtors other than the base dtor are linkonce_odr and delegate to
4726     // each other bottoming out with the base dtor.  Therefore we emit non-base
4727     // dtors on usage, even if there is no dtor definition in the TU.
4728     if (isa_and_nonnull<CXXDestructorDecl>(D) &&
4729         getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D),
4730                                            GD.getDtorType()))
4731       addDeferredDeclToEmit(GD);
4732 
4733     // This is the first use or definition of a mangled name.  If there is a
4734     // deferred decl with this name, remember that we need to emit it at the end
4735     // of the file.
4736     auto DDI = DeferredDecls.find(MangledName);
4737     if (DDI != DeferredDecls.end()) {
4738       // Move the potentially referenced deferred decl to the
4739       // DeferredDeclsToEmit list, and remove it from DeferredDecls (since we
4740       // don't need it anymore).
4741       addDeferredDeclToEmit(DDI->second);
4742       DeferredDecls.erase(DDI);
4743 
4744       // Otherwise, there are cases we have to worry about where we're
4745       // using a declaration for which we must emit a definition but where
4746       // we might not find a top-level definition:
4747       //   - member functions defined inline in their classes
4748       //   - friend functions defined inline in some class
4749       //   - special member functions with implicit definitions
4750       // If we ever change our AST traversal to walk into class methods,
4751       // this will be unnecessary.
4752       //
4753       // We also don't emit a definition for a function if it's going to be an
4754       // entry in a vtable, unless it's already marked as used.
4755     } else if (getLangOpts().CPlusPlus && D) {
4756       // Look for a declaration that's lexically in a record.
4757       for (const auto *FD = cast<FunctionDecl>(D)->getMostRecentDecl(); FD;
4758            FD = FD->getPreviousDecl()) {
4759         if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) {
4760           if (FD->doesThisDeclarationHaveABody()) {
4761             addDeferredDeclToEmit(GD.getWithDecl(FD));
4762             break;
4763           }
4764         }
4765       }
4766     }
4767   }
4768 
4769   // Make sure the result is of the requested type.
4770   if (!IsIncompleteFunction) {
4771     assert(F->getFunctionType() == Ty);
4772     return F;
4773   }
4774 
4775   return F;
4776 }
4777 
4778 /// GetAddrOfFunction - Return the address of the given function.  If Ty is
4779 /// non-null, then this function will use the specified type if it has to
4780 /// create it (this occurs when we see a definition of the function).
4781 llvm::Constant *
4782 CodeGenModule::GetAddrOfFunction(GlobalDecl GD, llvm::Type *Ty, bool ForVTable,
4783                                  bool DontDefer,
4784                                  ForDefinition_t IsForDefinition) {
4785   // If there was no specific requested type, just convert it now.
4786   if (!Ty) {
4787     const auto *FD = cast<FunctionDecl>(GD.getDecl());
4788     Ty = getTypes().ConvertType(FD->getType());
4789   }
4790 
4791   // Devirtualized destructor calls may come through here instead of via
4792   // getAddrOfCXXStructor. Make sure we use the MS ABI base destructor instead
4793   // of the complete destructor when necessary.
4794   if (const auto *DD = dyn_cast<CXXDestructorDecl>(GD.getDecl())) {
4795     if (getTarget().getCXXABI().isMicrosoft() &&
4796         GD.getDtorType() == Dtor_Complete &&
4797         DD->getParent()->getNumVBases() == 0)
4798       GD = GlobalDecl(DD, Dtor_Base);
4799   }
4800 
4801   StringRef MangledName = getMangledName(GD);
4802   auto *F = GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable, DontDefer,
4803                                     /*IsThunk=*/false, llvm::AttributeList(),
4804                                     IsForDefinition);
4805   // Returns kernel handle for HIP kernel stub function.
4806   if (LangOpts.CUDA && !LangOpts.CUDAIsDevice &&
4807       cast<FunctionDecl>(GD.getDecl())->hasAttr<CUDAGlobalAttr>()) {
4808     auto *Handle = getCUDARuntime().getKernelHandle(
4809         cast<llvm::Function>(F->stripPointerCasts()), GD);
4810     if (IsForDefinition)
4811       return F;
4812     return Handle;
4813   }
4814   return F;
4815 }
4816 
4817 llvm::Constant *CodeGenModule::GetFunctionStart(const ValueDecl *Decl) {
4818   llvm::GlobalValue *F =
4819       cast<llvm::GlobalValue>(GetAddrOfFunction(Decl)->stripPointerCasts());
4820 
4821   return llvm::NoCFIValue::get(F);
4822 }
4823 
4824 static const FunctionDecl *
4825 GetRuntimeFunctionDecl(ASTContext &C, StringRef Name) {
4826   TranslationUnitDecl *TUDecl = C.getTranslationUnitDecl();
4827   DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl);
4828 
4829   IdentifierInfo &CII = C.Idents.get(Name);
4830   for (const auto *Result : DC->lookup(&CII))
4831     if (const auto *FD = dyn_cast<FunctionDecl>(Result))
4832       return FD;
4833 
4834   if (!C.getLangOpts().CPlusPlus)
4835     return nullptr;
4836 
4837   // Demangle the premangled name from getTerminateFn()
4838   IdentifierInfo &CXXII =
4839       (Name == "_ZSt9terminatev" || Name == "?terminate@@YAXXZ")
4840           ? C.Idents.get("terminate")
4841           : C.Idents.get(Name);
4842 
4843   for (const auto &N : {"__cxxabiv1", "std"}) {
4844     IdentifierInfo &NS = C.Idents.get(N);
4845     for (const auto *Result : DC->lookup(&NS)) {
4846       const NamespaceDecl *ND = dyn_cast<NamespaceDecl>(Result);
4847       if (auto *LSD = dyn_cast<LinkageSpecDecl>(Result))
4848         for (const auto *Result : LSD->lookup(&NS))
4849           if ((ND = dyn_cast<NamespaceDecl>(Result)))
4850             break;
4851 
4852       if (ND)
4853         for (const auto *Result : ND->lookup(&CXXII))
4854           if (const auto *FD = dyn_cast<FunctionDecl>(Result))
4855             return FD;
4856     }
4857   }
4858 
4859   return nullptr;
4860 }
4861 
4862 /// CreateRuntimeFunction - Create a new runtime function with the specified
4863 /// type and name.
4864 llvm::FunctionCallee
4865 CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy, StringRef Name,
4866                                      llvm::AttributeList ExtraAttrs, bool Local,
4867                                      bool AssumeConvergent) {
4868   if (AssumeConvergent) {
4869     ExtraAttrs =
4870         ExtraAttrs.addFnAttribute(VMContext, llvm::Attribute::Convergent);
4871   }
4872 
4873   llvm::Constant *C =
4874       GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false,
4875                               /*DontDefer=*/false, /*IsThunk=*/false,
4876                               ExtraAttrs);
4877 
4878   if (auto *F = dyn_cast<llvm::Function>(C)) {
4879     if (F->empty()) {
4880       F->setCallingConv(getRuntimeCC());
4881 
4882       // In Windows Itanium environments, try to mark runtime functions
4883       // dllimport. For Mingw and MSVC, don't. We don't really know if the user
4884       // will link their standard library statically or dynamically. Marking
4885       // functions imported when they are not imported can cause linker errors
4886       // and warnings.
4887       if (!Local && getTriple().isWindowsItaniumEnvironment() &&
4888           !getCodeGenOpts().LTOVisibilityPublicStd) {
4889         const FunctionDecl *FD = GetRuntimeFunctionDecl(Context, Name);
4890         if (!FD || FD->hasAttr<DLLImportAttr>()) {
4891           F->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass);
4892           F->setLinkage(llvm::GlobalValue::ExternalLinkage);
4893         }
4894       }
4895       setDSOLocal(F);
4896       // FIXME: We should use CodeGenModule::SetLLVMFunctionAttributes() instead
4897       // of trying to approximate the attributes using the LLVM function
4898       // signature. This requires revising the API of CreateRuntimeFunction().
4899       markRegisterParameterAttributes(F);
4900     }
4901   }
4902 
4903   return {FTy, C};
4904 }
4905 
4906 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module,
4907 /// create and return an llvm GlobalVariable with the specified type and address
4908 /// space. If there is something in the module with the specified name, return
4909 /// it potentially bitcasted to the right type.
4910 ///
4911 /// If D is non-null, it specifies a decl that correspond to this.  This is used
4912 /// to set the attributes on the global when it is first created.
4913 ///
4914 /// If IsForDefinition is true, it is guaranteed that an actual global with
4915 /// type Ty will be returned, not conversion of a variable with the same
4916 /// mangled name but some other type.
4917 llvm::Constant *
4918 CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName, llvm::Type *Ty,
4919                                      LangAS AddrSpace, const VarDecl *D,
4920                                      ForDefinition_t IsForDefinition) {
4921   // Lookup the entry, lazily creating it if necessary.
4922   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
4923   unsigned TargetAS = getContext().getTargetAddressSpace(AddrSpace);
4924   if (Entry) {
4925     if (WeakRefReferences.erase(Entry)) {
4926       if (D && !D->hasAttr<WeakAttr>())
4927         Entry->setLinkage(llvm::Function::ExternalLinkage);
4928     }
4929 
4930     // Handle dropped DLL attributes.
4931     if (D && shouldDropDLLAttribute(D, Entry))
4932       Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
4933 
4934     if (LangOpts.OpenMP && !LangOpts.OpenMPSimd && D)
4935       getOpenMPRuntime().registerTargetGlobalVariable(D, Entry);
4936 
4937     if (Entry->getValueType() == Ty && Entry->getAddressSpace() == TargetAS)
4938       return Entry;
4939 
4940     // If there are two attempts to define the same mangled name, issue an
4941     // error.
4942     if (IsForDefinition && !Entry->isDeclaration()) {
4943       GlobalDecl OtherGD;
4944       const VarDecl *OtherD;
4945 
4946       // Check that D is not yet in DiagnosedConflictingDefinitions is required
4947       // to make sure that we issue an error only once.
4948       if (D && lookupRepresentativeDecl(MangledName, OtherGD) &&
4949           (D->getCanonicalDecl() != OtherGD.getCanonicalDecl().getDecl()) &&
4950           (OtherD = dyn_cast<VarDecl>(OtherGD.getDecl())) &&
4951           OtherD->hasInit() &&
4952           DiagnosedConflictingDefinitions.insert(D).second) {
4953         getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name)
4954             << MangledName;
4955         getDiags().Report(OtherGD.getDecl()->getLocation(),
4956                           diag::note_previous_definition);
4957       }
4958     }
4959 
4960     // Make sure the result is of the correct type.
4961     if (Entry->getType()->getAddressSpace() != TargetAS)
4962       return llvm::ConstantExpr::getAddrSpaceCast(
4963           Entry, llvm::PointerType::get(Ty->getContext(), TargetAS));
4964 
4965     // (If global is requested for a definition, we always need to create a new
4966     // global, not just return a bitcast.)
4967     if (!IsForDefinition)
4968       return Entry;
4969   }
4970 
4971   auto DAddrSpace = GetGlobalVarAddressSpace(D);
4972 
4973   auto *GV = new llvm::GlobalVariable(
4974       getModule(), Ty, false, llvm::GlobalValue::ExternalLinkage, nullptr,
4975       MangledName, nullptr, llvm::GlobalVariable::NotThreadLocal,
4976       getContext().getTargetAddressSpace(DAddrSpace));
4977 
4978   // If we already created a global with the same mangled name (but different
4979   // type) before, take its name and remove it from its parent.
4980   if (Entry) {
4981     GV->takeName(Entry);
4982 
4983     if (!Entry->use_empty()) {
4984       Entry->replaceAllUsesWith(GV);
4985     }
4986 
4987     Entry->eraseFromParent();
4988   }
4989 
4990   // This is the first use or definition of a mangled name.  If there is a
4991   // deferred decl with this name, remember that we need to emit it at the end
4992   // of the file.
4993   auto DDI = DeferredDecls.find(MangledName);
4994   if (DDI != DeferredDecls.end()) {
4995     // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
4996     // list, and remove it from DeferredDecls (since we don't need it anymore).
4997     addDeferredDeclToEmit(DDI->second);
4998     DeferredDecls.erase(DDI);
4999   }
5000 
5001   // Handle things which are present even on external declarations.
5002   if (D) {
5003     if (LangOpts.OpenMP && !LangOpts.OpenMPSimd)
5004       getOpenMPRuntime().registerTargetGlobalVariable(D, GV);
5005 
5006     // FIXME: This code is overly simple and should be merged with other global
5007     // handling.
5008     GV->setConstant(D->getType().isConstantStorage(getContext(), false, false));
5009 
5010     GV->setAlignment(getContext().getDeclAlign(D).getAsAlign());
5011 
5012     setLinkageForGV(GV, D);
5013 
5014     if (D->getTLSKind()) {
5015       if (D->getTLSKind() == VarDecl::TLS_Dynamic)
5016         CXXThreadLocals.push_back(D);
5017       setTLSMode(GV, *D);
5018     }
5019 
5020     setGVProperties(GV, D);
5021 
5022     // If required by the ABI, treat declarations of static data members with
5023     // inline initializers as definitions.
5024     if (getContext().isMSStaticDataMemberInlineDefinition(D)) {
5025       EmitGlobalVarDefinition(D);
5026     }
5027 
5028     // Emit section information for extern variables.
5029     if (D->hasExternalStorage()) {
5030       if (const SectionAttr *SA = D->getAttr<SectionAttr>())
5031         GV->setSection(SA->getName());
5032     }
5033 
5034     // Handle XCore specific ABI requirements.
5035     if (getTriple().getArch() == llvm::Triple::xcore &&
5036         D->getLanguageLinkage() == CLanguageLinkage &&
5037         D->getType().isConstant(Context) &&
5038         isExternallyVisible(D->getLinkageAndVisibility().getLinkage()))
5039       GV->setSection(".cp.rodata");
5040 
5041     // Handle code model attribute
5042     if (const auto *CMA = D->getAttr<CodeModelAttr>())
5043       GV->setCodeModel(CMA->getModel());
5044 
5045     // Check if we a have a const declaration with an initializer, we may be
5046     // able to emit it as available_externally to expose it's value to the
5047     // optimizer.
5048     if (Context.getLangOpts().CPlusPlus && GV->hasExternalLinkage() &&
5049         D->getType().isConstQualified() && !GV->hasInitializer() &&
5050         !D->hasDefinition() && D->hasInit() && !D->hasAttr<DLLImportAttr>()) {
5051       const auto *Record =
5052           Context.getBaseElementType(D->getType())->getAsCXXRecordDecl();
5053       bool HasMutableFields = Record && Record->hasMutableFields();
5054       if (!HasMutableFields) {
5055         const VarDecl *InitDecl;
5056         const Expr *InitExpr = D->getAnyInitializer(InitDecl);
5057         if (InitExpr) {
5058           ConstantEmitter emitter(*this);
5059           llvm::Constant *Init = emitter.tryEmitForInitializer(*InitDecl);
5060           if (Init) {
5061             auto *InitType = Init->getType();
5062             if (GV->getValueType() != InitType) {
5063               // The type of the initializer does not match the definition.
5064               // This happens when an initializer has a different type from
5065               // the type of the global (because of padding at the end of a
5066               // structure for instance).
5067               GV->setName(StringRef());
5068               // Make a new global with the correct type, this is now guaranteed
5069               // to work.
5070               auto *NewGV = cast<llvm::GlobalVariable>(
5071                   GetAddrOfGlobalVar(D, InitType, IsForDefinition)
5072                       ->stripPointerCasts());
5073 
5074               // Erase the old global, since it is no longer used.
5075               GV->eraseFromParent();
5076               GV = NewGV;
5077             } else {
5078               GV->setInitializer(Init);
5079               GV->setConstant(true);
5080               GV->setLinkage(llvm::GlobalValue::AvailableExternallyLinkage);
5081             }
5082             emitter.finalize(GV);
5083           }
5084         }
5085       }
5086     }
5087   }
5088 
5089   if (D &&
5090       D->isThisDeclarationADefinition(Context) == VarDecl::DeclarationOnly) {
5091     getTargetCodeGenInfo().setTargetAttributes(D, GV, *this);
5092     // External HIP managed variables needed to be recorded for transformation
5093     // in both device and host compilations.
5094     if (getLangOpts().CUDA && D && D->hasAttr<HIPManagedAttr>() &&
5095         D->hasExternalStorage())
5096       getCUDARuntime().handleVarRegistration(D, *GV);
5097   }
5098 
5099   if (D)
5100     SanitizerMD->reportGlobal(GV, *D);
5101 
5102   LangAS ExpectedAS =
5103       D ? D->getType().getAddressSpace()
5104         : (LangOpts.OpenCL ? LangAS::opencl_global : LangAS::Default);
5105   assert(getContext().getTargetAddressSpace(ExpectedAS) == TargetAS);
5106   if (DAddrSpace != ExpectedAS) {
5107     return getTargetCodeGenInfo().performAddrSpaceCast(
5108         *this, GV, DAddrSpace, ExpectedAS,
5109         llvm::PointerType::get(getLLVMContext(), TargetAS));
5110   }
5111 
5112   return GV;
5113 }
5114 
5115 llvm::Constant *
5116 CodeGenModule::GetAddrOfGlobal(GlobalDecl GD, ForDefinition_t IsForDefinition) {
5117   const Decl *D = GD.getDecl();
5118 
5119   if (isa<CXXConstructorDecl>(D) || isa<CXXDestructorDecl>(D))
5120     return getAddrOfCXXStructor(GD, /*FnInfo=*/nullptr, /*FnType=*/nullptr,
5121                                 /*DontDefer=*/false, IsForDefinition);
5122 
5123   if (isa<CXXMethodDecl>(D)) {
5124     auto FInfo =
5125         &getTypes().arrangeCXXMethodDeclaration(cast<CXXMethodDecl>(D));
5126     auto Ty = getTypes().GetFunctionType(*FInfo);
5127     return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false,
5128                              IsForDefinition);
5129   }
5130 
5131   if (isa<FunctionDecl>(D)) {
5132     const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
5133     llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
5134     return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false,
5135                              IsForDefinition);
5136   }
5137 
5138   return GetAddrOfGlobalVar(cast<VarDecl>(D), /*Ty=*/nullptr, IsForDefinition);
5139 }
5140 
5141 llvm::GlobalVariable *CodeGenModule::CreateOrReplaceCXXRuntimeVariable(
5142     StringRef Name, llvm::Type *Ty, llvm::GlobalValue::LinkageTypes Linkage,
5143     llvm::Align Alignment) {
5144   llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name);
5145   llvm::GlobalVariable *OldGV = nullptr;
5146 
5147   if (GV) {
5148     // Check if the variable has the right type.
5149     if (GV->getValueType() == Ty)
5150       return GV;
5151 
5152     // Because C++ name mangling, the only way we can end up with an already
5153     // existing global with the same name is if it has been declared extern "C".
5154     assert(GV->isDeclaration() && "Declaration has wrong type!");
5155     OldGV = GV;
5156   }
5157 
5158   // Create a new variable.
5159   GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true,
5160                                 Linkage, nullptr, Name);
5161 
5162   if (OldGV) {
5163     // Replace occurrences of the old variable if needed.
5164     GV->takeName(OldGV);
5165 
5166     if (!OldGV->use_empty()) {
5167       OldGV->replaceAllUsesWith(GV);
5168     }
5169 
5170     OldGV->eraseFromParent();
5171   }
5172 
5173   if (supportsCOMDAT() && GV->isWeakForLinker() &&
5174       !GV->hasAvailableExternallyLinkage())
5175     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
5176 
5177   GV->setAlignment(Alignment);
5178 
5179   return GV;
5180 }
5181 
5182 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the
5183 /// given global variable.  If Ty is non-null and if the global doesn't exist,
5184 /// then it will be created with the specified type instead of whatever the
5185 /// normal requested type would be. If IsForDefinition is true, it is guaranteed
5186 /// that an actual global with type Ty will be returned, not conversion of a
5187 /// variable with the same mangled name but some other type.
5188 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D,
5189                                                   llvm::Type *Ty,
5190                                            ForDefinition_t IsForDefinition) {
5191   assert(D->hasGlobalStorage() && "Not a global variable");
5192   QualType ASTTy = D->getType();
5193   if (!Ty)
5194     Ty = getTypes().ConvertTypeForMem(ASTTy);
5195 
5196   StringRef MangledName = getMangledName(D);
5197   return GetOrCreateLLVMGlobal(MangledName, Ty, ASTTy.getAddressSpace(), D,
5198                                IsForDefinition);
5199 }
5200 
5201 /// CreateRuntimeVariable - Create a new runtime global variable with the
5202 /// specified type and name.
5203 llvm::Constant *
5204 CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty,
5205                                      StringRef Name) {
5206   LangAS AddrSpace = getContext().getLangOpts().OpenCL ? LangAS::opencl_global
5207                                                        : LangAS::Default;
5208   auto *Ret = GetOrCreateLLVMGlobal(Name, Ty, AddrSpace, nullptr);
5209   setDSOLocal(cast<llvm::GlobalValue>(Ret->stripPointerCasts()));
5210   return Ret;
5211 }
5212 
5213 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) {
5214   assert(!D->getInit() && "Cannot emit definite definitions here!");
5215 
5216   StringRef MangledName = getMangledName(D);
5217   llvm::GlobalValue *GV = GetGlobalValue(MangledName);
5218 
5219   // We already have a definition, not declaration, with the same mangled name.
5220   // Emitting of declaration is not required (and actually overwrites emitted
5221   // definition).
5222   if (GV && !GV->isDeclaration())
5223     return;
5224 
5225   // If we have not seen a reference to this variable yet, place it into the
5226   // deferred declarations table to be emitted if needed later.
5227   if (!MustBeEmitted(D) && !GV) {
5228       DeferredDecls[MangledName] = D;
5229       return;
5230   }
5231 
5232   // The tentative definition is the only definition.
5233   EmitGlobalVarDefinition(D);
5234 }
5235 
5236 void CodeGenModule::EmitExternalDeclaration(const DeclaratorDecl *D) {
5237   if (auto const *V = dyn_cast<const VarDecl>(D))
5238     EmitExternalVarDeclaration(V);
5239   if (auto const *FD = dyn_cast<const FunctionDecl>(D))
5240     EmitExternalFunctionDeclaration(FD);
5241 }
5242 
5243 CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const {
5244   return Context.toCharUnitsFromBits(
5245       getDataLayout().getTypeStoreSizeInBits(Ty));
5246 }
5247 
5248 LangAS CodeGenModule::GetGlobalVarAddressSpace(const VarDecl *D) {
5249   if (LangOpts.OpenCL) {
5250     LangAS AS = D ? D->getType().getAddressSpace() : LangAS::opencl_global;
5251     assert(AS == LangAS::opencl_global ||
5252            AS == LangAS::opencl_global_device ||
5253            AS == LangAS::opencl_global_host ||
5254            AS == LangAS::opencl_constant ||
5255            AS == LangAS::opencl_local ||
5256            AS >= LangAS::FirstTargetAddressSpace);
5257     return AS;
5258   }
5259 
5260   if (LangOpts.SYCLIsDevice &&
5261       (!D || D->getType().getAddressSpace() == LangAS::Default))
5262     return LangAS::sycl_global;
5263 
5264   if (LangOpts.CUDA && LangOpts.CUDAIsDevice) {
5265     if (D) {
5266       if (D->hasAttr<CUDAConstantAttr>())
5267         return LangAS::cuda_constant;
5268       if (D->hasAttr<CUDASharedAttr>())
5269         return LangAS::cuda_shared;
5270       if (D->hasAttr<CUDADeviceAttr>())
5271         return LangAS::cuda_device;
5272       if (D->getType().isConstQualified())
5273         return LangAS::cuda_constant;
5274     }
5275     return LangAS::cuda_device;
5276   }
5277 
5278   if (LangOpts.OpenMP) {
5279     LangAS AS;
5280     if (OpenMPRuntime->hasAllocateAttributeForGlobalVar(D, AS))
5281       return AS;
5282   }
5283   return getTargetCodeGenInfo().getGlobalVarAddressSpace(*this, D);
5284 }
5285 
5286 LangAS CodeGenModule::GetGlobalConstantAddressSpace() const {
5287   // OpenCL v1.2 s6.5.3: a string literal is in the constant address space.
5288   if (LangOpts.OpenCL)
5289     return LangAS::opencl_constant;
5290   if (LangOpts.SYCLIsDevice)
5291     return LangAS::sycl_global;
5292   if (LangOpts.HIP && LangOpts.CUDAIsDevice && getTriple().isSPIRV())
5293     // For HIPSPV map literals to cuda_device (maps to CrossWorkGroup in SPIR-V)
5294     // instead of default AS (maps to Generic in SPIR-V). Otherwise, we end up
5295     // with OpVariable instructions with Generic storage class which is not
5296     // allowed (SPIR-V V1.6 s3.42.8). Also, mapping literals to SPIR-V
5297     // UniformConstant storage class is not viable as pointers to it may not be
5298     // casted to Generic pointers which are used to model HIP's "flat" pointers.
5299     return LangAS::cuda_device;
5300   if (auto AS = getTarget().getConstantAddressSpace())
5301     return *AS;
5302   return LangAS::Default;
5303 }
5304 
5305 // In address space agnostic languages, string literals are in default address
5306 // space in AST. However, certain targets (e.g. amdgcn) request them to be
5307 // emitted in constant address space in LLVM IR. To be consistent with other
5308 // parts of AST, string literal global variables in constant address space
5309 // need to be casted to default address space before being put into address
5310 // map and referenced by other part of CodeGen.
5311 // In OpenCL, string literals are in constant address space in AST, therefore
5312 // they should not be casted to default address space.
5313 static llvm::Constant *
5314 castStringLiteralToDefaultAddressSpace(CodeGenModule &CGM,
5315                                        llvm::GlobalVariable *GV) {
5316   llvm::Constant *Cast = GV;
5317   if (!CGM.getLangOpts().OpenCL) {
5318     auto AS = CGM.GetGlobalConstantAddressSpace();
5319     if (AS != LangAS::Default)
5320       Cast = CGM.getTargetCodeGenInfo().performAddrSpaceCast(
5321           CGM, GV, AS, LangAS::Default,
5322           llvm::PointerType::get(
5323               CGM.getLLVMContext(),
5324               CGM.getContext().getTargetAddressSpace(LangAS::Default)));
5325   }
5326   return Cast;
5327 }
5328 
5329 template<typename SomeDecl>
5330 void CodeGenModule::MaybeHandleStaticInExternC(const SomeDecl *D,
5331                                                llvm::GlobalValue *GV) {
5332   if (!getLangOpts().CPlusPlus)
5333     return;
5334 
5335   // Must have 'used' attribute, or else inline assembly can't rely on
5336   // the name existing.
5337   if (!D->template hasAttr<UsedAttr>())
5338     return;
5339 
5340   // Must have internal linkage and an ordinary name.
5341   if (!D->getIdentifier() || D->getFormalLinkage() != Linkage::Internal)
5342     return;
5343 
5344   // Must be in an extern "C" context. Entities declared directly within
5345   // a record are not extern "C" even if the record is in such a context.
5346   const SomeDecl *First = D->getFirstDecl();
5347   if (First->getDeclContext()->isRecord() || !First->isInExternCContext())
5348     return;
5349 
5350   // OK, this is an internal linkage entity inside an extern "C" linkage
5351   // specification. Make a note of that so we can give it the "expected"
5352   // mangled name if nothing else is using that name.
5353   std::pair<StaticExternCMap::iterator, bool> R =
5354       StaticExternCValues.insert(std::make_pair(D->getIdentifier(), GV));
5355 
5356   // If we have multiple internal linkage entities with the same name
5357   // in extern "C" regions, none of them gets that name.
5358   if (!R.second)
5359     R.first->second = nullptr;
5360 }
5361 
5362 static bool shouldBeInCOMDAT(CodeGenModule &CGM, const Decl &D) {
5363   if (!CGM.supportsCOMDAT())
5364     return false;
5365 
5366   if (D.hasAttr<SelectAnyAttr>())
5367     return true;
5368 
5369   GVALinkage Linkage;
5370   if (auto *VD = dyn_cast<VarDecl>(&D))
5371     Linkage = CGM.getContext().GetGVALinkageForVariable(VD);
5372   else
5373     Linkage = CGM.getContext().GetGVALinkageForFunction(cast<FunctionDecl>(&D));
5374 
5375   switch (Linkage) {
5376   case GVA_Internal:
5377   case GVA_AvailableExternally:
5378   case GVA_StrongExternal:
5379     return false;
5380   case GVA_DiscardableODR:
5381   case GVA_StrongODR:
5382     return true;
5383   }
5384   llvm_unreachable("No such linkage");
5385 }
5386 
5387 bool CodeGenModule::supportsCOMDAT() const {
5388   return getTriple().supportsCOMDAT();
5389 }
5390 
5391 void CodeGenModule::maybeSetTrivialComdat(const Decl &D,
5392                                           llvm::GlobalObject &GO) {
5393   if (!shouldBeInCOMDAT(*this, D))
5394     return;
5395   GO.setComdat(TheModule.getOrInsertComdat(GO.getName()));
5396 }
5397 
5398 /// Pass IsTentative as true if you want to create a tentative definition.
5399 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D,
5400                                             bool IsTentative) {
5401   // OpenCL global variables of sampler type are translated to function calls,
5402   // therefore no need to be translated.
5403   QualType ASTTy = D->getType();
5404   if (getLangOpts().OpenCL && ASTTy->isSamplerT())
5405     return;
5406 
5407   // If this is OpenMP device, check if it is legal to emit this global
5408   // normally.
5409   if (LangOpts.OpenMPIsTargetDevice && OpenMPRuntime &&
5410       OpenMPRuntime->emitTargetGlobalVariable(D))
5411     return;
5412 
5413   llvm::TrackingVH<llvm::Constant> Init;
5414   bool NeedsGlobalCtor = false;
5415   // Whether the definition of the variable is available externally.
5416   // If yes, we shouldn't emit the GloablCtor and GlobalDtor for the variable
5417   // since this is the job for its original source.
5418   bool IsDefinitionAvailableExternally =
5419       getContext().GetGVALinkageForVariable(D) == GVA_AvailableExternally;
5420   bool NeedsGlobalDtor =
5421       !IsDefinitionAvailableExternally &&
5422       D->needsDestruction(getContext()) == QualType::DK_cxx_destructor;
5423 
5424   // It is helpless to emit the definition for an available_externally variable
5425   // which can't be marked as const.
5426   // We don't need to check if it needs global ctor or dtor. See the above
5427   // comment for ideas.
5428   if (IsDefinitionAvailableExternally &&
5429       (!D->hasConstantInitialization() ||
5430        // TODO: Update this when we have interface to check constexpr
5431        // destructor.
5432        D->needsDestruction(getContext()) ||
5433        !D->getType().isConstantStorage(getContext(), true, true)))
5434     return;
5435 
5436   const VarDecl *InitDecl;
5437   const Expr *InitExpr = D->getAnyInitializer(InitDecl);
5438 
5439   std::optional<ConstantEmitter> emitter;
5440 
5441   // CUDA E.2.4.1 "__shared__ variables cannot have an initialization
5442   // as part of their declaration."  Sema has already checked for
5443   // error cases, so we just need to set Init to UndefValue.
5444   bool IsCUDASharedVar =
5445       getLangOpts().CUDAIsDevice && D->hasAttr<CUDASharedAttr>();
5446   // Shadows of initialized device-side global variables are also left
5447   // undefined.
5448   // Managed Variables should be initialized on both host side and device side.
5449   bool IsCUDAShadowVar =
5450       !getLangOpts().CUDAIsDevice && !D->hasAttr<HIPManagedAttr>() &&
5451       (D->hasAttr<CUDAConstantAttr>() || D->hasAttr<CUDADeviceAttr>() ||
5452        D->hasAttr<CUDASharedAttr>());
5453   bool IsCUDADeviceShadowVar =
5454       getLangOpts().CUDAIsDevice && !D->hasAttr<HIPManagedAttr>() &&
5455       (D->getType()->isCUDADeviceBuiltinSurfaceType() ||
5456        D->getType()->isCUDADeviceBuiltinTextureType());
5457   if (getLangOpts().CUDA &&
5458       (IsCUDASharedVar || IsCUDAShadowVar || IsCUDADeviceShadowVar))
5459     Init = llvm::UndefValue::get(getTypes().ConvertTypeForMem(ASTTy));
5460   else if (D->hasAttr<LoaderUninitializedAttr>())
5461     Init = llvm::UndefValue::get(getTypes().ConvertTypeForMem(ASTTy));
5462   else if (!InitExpr) {
5463     // This is a tentative definition; tentative definitions are
5464     // implicitly initialized with { 0 }.
5465     //
5466     // Note that tentative definitions are only emitted at the end of
5467     // a translation unit, so they should never have incomplete
5468     // type. In addition, EmitTentativeDefinition makes sure that we
5469     // never attempt to emit a tentative definition if a real one
5470     // exists. A use may still exists, however, so we still may need
5471     // to do a RAUW.
5472     assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type");
5473     Init = EmitNullConstant(D->getType());
5474   } else {
5475     initializedGlobalDecl = GlobalDecl(D);
5476     emitter.emplace(*this);
5477     llvm::Constant *Initializer = emitter->tryEmitForInitializer(*InitDecl);
5478     if (!Initializer) {
5479       QualType T = InitExpr->getType();
5480       if (D->getType()->isReferenceType())
5481         T = D->getType();
5482 
5483       if (getLangOpts().CPlusPlus) {
5484         if (InitDecl->hasFlexibleArrayInit(getContext()))
5485           ErrorUnsupported(D, "flexible array initializer");
5486         Init = EmitNullConstant(T);
5487 
5488         if (!IsDefinitionAvailableExternally)
5489           NeedsGlobalCtor = true;
5490       } else {
5491         ErrorUnsupported(D, "static initializer");
5492         Init = llvm::UndefValue::get(getTypes().ConvertType(T));
5493       }
5494     } else {
5495       Init = Initializer;
5496       // We don't need an initializer, so remove the entry for the delayed
5497       // initializer position (just in case this entry was delayed) if we
5498       // also don't need to register a destructor.
5499       if (getLangOpts().CPlusPlus && !NeedsGlobalDtor)
5500         DelayedCXXInitPosition.erase(D);
5501 
5502 #ifndef NDEBUG
5503       CharUnits VarSize = getContext().getTypeSizeInChars(ASTTy) +
5504                           InitDecl->getFlexibleArrayInitChars(getContext());
5505       CharUnits CstSize = CharUnits::fromQuantity(
5506           getDataLayout().getTypeAllocSize(Init->getType()));
5507       assert(VarSize == CstSize && "Emitted constant has unexpected size");
5508 #endif
5509     }
5510   }
5511 
5512   llvm::Type* InitType = Init->getType();
5513   llvm::Constant *Entry =
5514       GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative));
5515 
5516   // Strip off pointer casts if we got them.
5517   Entry = Entry->stripPointerCasts();
5518 
5519   // Entry is now either a Function or GlobalVariable.
5520   auto *GV = dyn_cast<llvm::GlobalVariable>(Entry);
5521 
5522   // We have a definition after a declaration with the wrong type.
5523   // We must make a new GlobalVariable* and update everything that used OldGV
5524   // (a declaration or tentative definition) with the new GlobalVariable*
5525   // (which will be a definition).
5526   //
5527   // This happens if there is a prototype for a global (e.g.
5528   // "extern int x[];") and then a definition of a different type (e.g.
5529   // "int x[10];"). This also happens when an initializer has a different type
5530   // from the type of the global (this happens with unions).
5531   if (!GV || GV->getValueType() != InitType ||
5532       GV->getType()->getAddressSpace() !=
5533           getContext().getTargetAddressSpace(GetGlobalVarAddressSpace(D))) {
5534 
5535     // Move the old entry aside so that we'll create a new one.
5536     Entry->setName(StringRef());
5537 
5538     // Make a new global with the correct type, this is now guaranteed to work.
5539     GV = cast<llvm::GlobalVariable>(
5540         GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative))
5541             ->stripPointerCasts());
5542 
5543     // Replace all uses of the old global with the new global
5544     llvm::Constant *NewPtrForOldDecl =
5545         llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV,
5546                                                              Entry->getType());
5547     Entry->replaceAllUsesWith(NewPtrForOldDecl);
5548 
5549     // Erase the old global, since it is no longer used.
5550     cast<llvm::GlobalValue>(Entry)->eraseFromParent();
5551   }
5552 
5553   MaybeHandleStaticInExternC(D, GV);
5554 
5555   if (D->hasAttr<AnnotateAttr>())
5556     AddGlobalAnnotations(D, GV);
5557 
5558   // Set the llvm linkage type as appropriate.
5559   llvm::GlobalValue::LinkageTypes Linkage = getLLVMLinkageVarDefinition(D);
5560 
5561   // CUDA B.2.1 "The __device__ qualifier declares a variable that resides on
5562   // the device. [...]"
5563   // CUDA B.2.2 "The __constant__ qualifier, optionally used together with
5564   // __device__, declares a variable that: [...]
5565   // Is accessible from all the threads within the grid and from the host
5566   // through the runtime library (cudaGetSymbolAddress() / cudaGetSymbolSize()
5567   // / cudaMemcpyToSymbol() / cudaMemcpyFromSymbol())."
5568   if (LangOpts.CUDA) {
5569     if (LangOpts.CUDAIsDevice) {
5570       if (Linkage != llvm::GlobalValue::InternalLinkage &&
5571           (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>() ||
5572            D->getType()->isCUDADeviceBuiltinSurfaceType() ||
5573            D->getType()->isCUDADeviceBuiltinTextureType()))
5574         GV->setExternallyInitialized(true);
5575     } else {
5576       getCUDARuntime().internalizeDeviceSideVar(D, Linkage);
5577     }
5578     getCUDARuntime().handleVarRegistration(D, *GV);
5579   }
5580 
5581   GV->setInitializer(Init);
5582   if (emitter)
5583     emitter->finalize(GV);
5584 
5585   // If it is safe to mark the global 'constant', do so now.
5586   GV->setConstant(!NeedsGlobalCtor && !NeedsGlobalDtor &&
5587                   D->getType().isConstantStorage(getContext(), true, true));
5588 
5589   // If it is in a read-only section, mark it 'constant'.
5590   if (const SectionAttr *SA = D->getAttr<SectionAttr>()) {
5591     const ASTContext::SectionInfo &SI = Context.SectionInfos[SA->getName()];
5592     if ((SI.SectionFlags & ASTContext::PSF_Write) == 0)
5593       GV->setConstant(true);
5594   }
5595 
5596   CharUnits AlignVal = getContext().getDeclAlign(D);
5597   // Check for alignment specifed in an 'omp allocate' directive.
5598   if (std::optional<CharUnits> AlignValFromAllocate =
5599           getOMPAllocateAlignment(D))
5600     AlignVal = *AlignValFromAllocate;
5601   GV->setAlignment(AlignVal.getAsAlign());
5602 
5603   // On Darwin, unlike other Itanium C++ ABI platforms, the thread-wrapper
5604   // function is only defined alongside the variable, not also alongside
5605   // callers. Normally, all accesses to a thread_local go through the
5606   // thread-wrapper in order to ensure initialization has occurred, underlying
5607   // variable will never be used other than the thread-wrapper, so it can be
5608   // converted to internal linkage.
5609   //
5610   // However, if the variable has the 'constinit' attribute, it _can_ be
5611   // referenced directly, without calling the thread-wrapper, so the linkage
5612   // must not be changed.
5613   //
5614   // Additionally, if the variable isn't plain external linkage, e.g. if it's
5615   // weak or linkonce, the de-duplication semantics are important to preserve,
5616   // so we don't change the linkage.
5617   if (D->getTLSKind() == VarDecl::TLS_Dynamic &&
5618       Linkage == llvm::GlobalValue::ExternalLinkage &&
5619       Context.getTargetInfo().getTriple().isOSDarwin() &&
5620       !D->hasAttr<ConstInitAttr>())
5621     Linkage = llvm::GlobalValue::InternalLinkage;
5622 
5623   GV->setLinkage(Linkage);
5624   if (D->hasAttr<DLLImportAttr>())
5625     GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass);
5626   else if (D->hasAttr<DLLExportAttr>())
5627     GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass);
5628   else
5629     GV->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass);
5630 
5631   if (Linkage == llvm::GlobalVariable::CommonLinkage) {
5632     // common vars aren't constant even if declared const.
5633     GV->setConstant(false);
5634     // Tentative definition of global variables may be initialized with
5635     // non-zero null pointers. In this case they should have weak linkage
5636     // since common linkage must have zero initializer and must not have
5637     // explicit section therefore cannot have non-zero initial value.
5638     if (!GV->getInitializer()->isNullValue())
5639       GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage);
5640   }
5641 
5642   setNonAliasAttributes(D, GV);
5643 
5644   if (D->getTLSKind() && !GV->isThreadLocal()) {
5645     if (D->getTLSKind() == VarDecl::TLS_Dynamic)
5646       CXXThreadLocals.push_back(D);
5647     setTLSMode(GV, *D);
5648   }
5649 
5650   maybeSetTrivialComdat(*D, *GV);
5651 
5652   // Emit the initializer function if necessary.
5653   if (NeedsGlobalCtor || NeedsGlobalDtor)
5654     EmitCXXGlobalVarDeclInitFunc(D, GV, NeedsGlobalCtor);
5655 
5656   SanitizerMD->reportGlobal(GV, *D, NeedsGlobalCtor);
5657 
5658   // Emit global variable debug information.
5659   if (CGDebugInfo *DI = getModuleDebugInfo())
5660     if (getCodeGenOpts().hasReducedDebugInfo())
5661       DI->EmitGlobalVariable(GV, D);
5662 }
5663 
5664 void CodeGenModule::EmitExternalVarDeclaration(const VarDecl *D) {
5665   if (CGDebugInfo *DI = getModuleDebugInfo())
5666     if (getCodeGenOpts().hasReducedDebugInfo()) {
5667       QualType ASTTy = D->getType();
5668       llvm::Type *Ty = getTypes().ConvertTypeForMem(D->getType());
5669       llvm::Constant *GV =
5670           GetOrCreateLLVMGlobal(D->getName(), Ty, ASTTy.getAddressSpace(), D);
5671       DI->EmitExternalVariable(
5672           cast<llvm::GlobalVariable>(GV->stripPointerCasts()), D);
5673     }
5674 }
5675 
5676 void CodeGenModule::EmitExternalFunctionDeclaration(const FunctionDecl *FD) {
5677   if (CGDebugInfo *DI = getModuleDebugInfo())
5678     if (getCodeGenOpts().hasReducedDebugInfo()) {
5679       auto *Ty = getTypes().ConvertType(FD->getType());
5680       StringRef MangledName = getMangledName(FD);
5681       auto *Fn = cast<llvm::Function>(
5682           GetOrCreateLLVMFunction(MangledName, Ty, FD, /* ForVTable */ false));
5683       if (!Fn->getSubprogram())
5684         DI->EmitFunctionDecl(FD, FD->getLocation(), FD->getType(), Fn);
5685     }
5686 }
5687 
5688 static bool isVarDeclStrongDefinition(const ASTContext &Context,
5689                                       CodeGenModule &CGM, const VarDecl *D,
5690                                       bool NoCommon) {
5691   // Don't give variables common linkage if -fno-common was specified unless it
5692   // was overridden by a NoCommon attribute.
5693   if ((NoCommon || D->hasAttr<NoCommonAttr>()) && !D->hasAttr<CommonAttr>())
5694     return true;
5695 
5696   // C11 6.9.2/2:
5697   //   A declaration of an identifier for an object that has file scope without
5698   //   an initializer, and without a storage-class specifier or with the
5699   //   storage-class specifier static, constitutes a tentative definition.
5700   if (D->getInit() || D->hasExternalStorage())
5701     return true;
5702 
5703   // A variable cannot be both common and exist in a section.
5704   if (D->hasAttr<SectionAttr>())
5705     return true;
5706 
5707   // A variable cannot be both common and exist in a section.
5708   // We don't try to determine which is the right section in the front-end.
5709   // If no specialized section name is applicable, it will resort to default.
5710   if (D->hasAttr<PragmaClangBSSSectionAttr>() ||
5711       D->hasAttr<PragmaClangDataSectionAttr>() ||
5712       D->hasAttr<PragmaClangRelroSectionAttr>() ||
5713       D->hasAttr<PragmaClangRodataSectionAttr>())
5714     return true;
5715 
5716   // Thread local vars aren't considered common linkage.
5717   if (D->getTLSKind())
5718     return true;
5719 
5720   // Tentative definitions marked with WeakImportAttr are true definitions.
5721   if (D->hasAttr<WeakImportAttr>())
5722     return true;
5723 
5724   // A variable cannot be both common and exist in a comdat.
5725   if (shouldBeInCOMDAT(CGM, *D))
5726     return true;
5727 
5728   // Declarations with a required alignment do not have common linkage in MSVC
5729   // mode.
5730   if (Context.getTargetInfo().getCXXABI().isMicrosoft()) {
5731     if (D->hasAttr<AlignedAttr>())
5732       return true;
5733     QualType VarType = D->getType();
5734     if (Context.isAlignmentRequired(VarType))
5735       return true;
5736 
5737     if (const auto *RT = VarType->getAs<RecordType>()) {
5738       const RecordDecl *RD = RT->getDecl();
5739       for (const FieldDecl *FD : RD->fields()) {
5740         if (FD->isBitField())
5741           continue;
5742         if (FD->hasAttr<AlignedAttr>())
5743           return true;
5744         if (Context.isAlignmentRequired(FD->getType()))
5745           return true;
5746       }
5747     }
5748   }
5749 
5750   // Microsoft's link.exe doesn't support alignments greater than 32 bytes for
5751   // common symbols, so symbols with greater alignment requirements cannot be
5752   // common.
5753   // Other COFF linkers (ld.bfd and LLD) support arbitrary power-of-two
5754   // alignments for common symbols via the aligncomm directive, so this
5755   // restriction only applies to MSVC environments.
5756   if (Context.getTargetInfo().getTriple().isKnownWindowsMSVCEnvironment() &&
5757       Context.getTypeAlignIfKnown(D->getType()) >
5758           Context.toBits(CharUnits::fromQuantity(32)))
5759     return true;
5760 
5761   return false;
5762 }
5763 
5764 llvm::GlobalValue::LinkageTypes
5765 CodeGenModule::getLLVMLinkageForDeclarator(const DeclaratorDecl *D,
5766                                            GVALinkage Linkage) {
5767   if (Linkage == GVA_Internal)
5768     return llvm::Function::InternalLinkage;
5769 
5770   if (D->hasAttr<WeakAttr>())
5771     return llvm::GlobalVariable::WeakAnyLinkage;
5772 
5773   if (const auto *FD = D->getAsFunction())
5774     if (FD->isMultiVersion() && Linkage == GVA_AvailableExternally)
5775       return llvm::GlobalVariable::LinkOnceAnyLinkage;
5776 
5777   // We are guaranteed to have a strong definition somewhere else,
5778   // so we can use available_externally linkage.
5779   if (Linkage == GVA_AvailableExternally)
5780     return llvm::GlobalValue::AvailableExternallyLinkage;
5781 
5782   // Note that Apple's kernel linker doesn't support symbol
5783   // coalescing, so we need to avoid linkonce and weak linkages there.
5784   // Normally, this means we just map to internal, but for explicit
5785   // instantiations we'll map to external.
5786 
5787   // In C++, the compiler has to emit a definition in every translation unit
5788   // that references the function.  We should use linkonce_odr because
5789   // a) if all references in this translation unit are optimized away, we
5790   // don't need to codegen it.  b) if the function persists, it needs to be
5791   // merged with other definitions. c) C++ has the ODR, so we know the
5792   // definition is dependable.
5793   if (Linkage == GVA_DiscardableODR)
5794     return !Context.getLangOpts().AppleKext ? llvm::Function::LinkOnceODRLinkage
5795                                             : llvm::Function::InternalLinkage;
5796 
5797   // An explicit instantiation of a template has weak linkage, since
5798   // explicit instantiations can occur in multiple translation units
5799   // and must all be equivalent. However, we are not allowed to
5800   // throw away these explicit instantiations.
5801   //
5802   // CUDA/HIP: For -fno-gpu-rdc case, device code is limited to one TU,
5803   // so say that CUDA templates are either external (for kernels) or internal.
5804   // This lets llvm perform aggressive inter-procedural optimizations. For
5805   // -fgpu-rdc case, device function calls across multiple TU's are allowed,
5806   // therefore we need to follow the normal linkage paradigm.
5807   if (Linkage == GVA_StrongODR) {
5808     if (getLangOpts().AppleKext)
5809       return llvm::Function::ExternalLinkage;
5810     if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice &&
5811         !getLangOpts().GPURelocatableDeviceCode)
5812       return D->hasAttr<CUDAGlobalAttr>() ? llvm::Function::ExternalLinkage
5813                                           : llvm::Function::InternalLinkage;
5814     return llvm::Function::WeakODRLinkage;
5815   }
5816 
5817   // C++ doesn't have tentative definitions and thus cannot have common
5818   // linkage.
5819   if (!getLangOpts().CPlusPlus && isa<VarDecl>(D) &&
5820       !isVarDeclStrongDefinition(Context, *this, cast<VarDecl>(D),
5821                                  CodeGenOpts.NoCommon))
5822     return llvm::GlobalVariable::CommonLinkage;
5823 
5824   // selectany symbols are externally visible, so use weak instead of
5825   // linkonce.  MSVC optimizes away references to const selectany globals, so
5826   // all definitions should be the same and ODR linkage should be used.
5827   // http://msdn.microsoft.com/en-us/library/5tkz6s71.aspx
5828   if (D->hasAttr<SelectAnyAttr>())
5829     return llvm::GlobalVariable::WeakODRLinkage;
5830 
5831   // Otherwise, we have strong external linkage.
5832   assert(Linkage == GVA_StrongExternal);
5833   return llvm::GlobalVariable::ExternalLinkage;
5834 }
5835 
5836 llvm::GlobalValue::LinkageTypes
5837 CodeGenModule::getLLVMLinkageVarDefinition(const VarDecl *VD) {
5838   GVALinkage Linkage = getContext().GetGVALinkageForVariable(VD);
5839   return getLLVMLinkageForDeclarator(VD, Linkage);
5840 }
5841 
5842 /// Replace the uses of a function that was declared with a non-proto type.
5843 /// We want to silently drop extra arguments from call sites
5844 static void replaceUsesOfNonProtoConstant(llvm::Constant *old,
5845                                           llvm::Function *newFn) {
5846   // Fast path.
5847   if (old->use_empty())
5848     return;
5849 
5850   llvm::Type *newRetTy = newFn->getReturnType();
5851   SmallVector<llvm::Value *, 4> newArgs;
5852 
5853   SmallVector<llvm::CallBase *> callSitesToBeRemovedFromParent;
5854 
5855   for (llvm::Value::use_iterator ui = old->use_begin(), ue = old->use_end();
5856        ui != ue; ui++) {
5857     llvm::User *user = ui->getUser();
5858 
5859     // Recognize and replace uses of bitcasts.  Most calls to
5860     // unprototyped functions will use bitcasts.
5861     if (auto *bitcast = dyn_cast<llvm::ConstantExpr>(user)) {
5862       if (bitcast->getOpcode() == llvm::Instruction::BitCast)
5863         replaceUsesOfNonProtoConstant(bitcast, newFn);
5864       continue;
5865     }
5866 
5867     // Recognize calls to the function.
5868     llvm::CallBase *callSite = dyn_cast<llvm::CallBase>(user);
5869     if (!callSite)
5870       continue;
5871     if (!callSite->isCallee(&*ui))
5872       continue;
5873 
5874     // If the return types don't match exactly, then we can't
5875     // transform this call unless it's dead.
5876     if (callSite->getType() != newRetTy && !callSite->use_empty())
5877       continue;
5878 
5879     // Get the call site's attribute list.
5880     SmallVector<llvm::AttributeSet, 8> newArgAttrs;
5881     llvm::AttributeList oldAttrs = callSite->getAttributes();
5882 
5883     // If the function was passed too few arguments, don't transform.
5884     unsigned newNumArgs = newFn->arg_size();
5885     if (callSite->arg_size() < newNumArgs)
5886       continue;
5887 
5888     // If extra arguments were passed, we silently drop them.
5889     // If any of the types mismatch, we don't transform.
5890     unsigned argNo = 0;
5891     bool dontTransform = false;
5892     for (llvm::Argument &A : newFn->args()) {
5893       if (callSite->getArgOperand(argNo)->getType() != A.getType()) {
5894         dontTransform = true;
5895         break;
5896       }
5897 
5898       // Add any parameter attributes.
5899       newArgAttrs.push_back(oldAttrs.getParamAttrs(argNo));
5900       argNo++;
5901     }
5902     if (dontTransform)
5903       continue;
5904 
5905     // Okay, we can transform this.  Create the new call instruction and copy
5906     // over the required information.
5907     newArgs.append(callSite->arg_begin(), callSite->arg_begin() + argNo);
5908 
5909     // Copy over any operand bundles.
5910     SmallVector<llvm::OperandBundleDef, 1> newBundles;
5911     callSite->getOperandBundlesAsDefs(newBundles);
5912 
5913     llvm::CallBase *newCall;
5914     if (isa<llvm::CallInst>(callSite)) {
5915       newCall =
5916           llvm::CallInst::Create(newFn, newArgs, newBundles, "", callSite);
5917     } else {
5918       auto *oldInvoke = cast<llvm::InvokeInst>(callSite);
5919       newCall = llvm::InvokeInst::Create(newFn, oldInvoke->getNormalDest(),
5920                                          oldInvoke->getUnwindDest(), newArgs,
5921                                          newBundles, "", callSite);
5922     }
5923     newArgs.clear(); // for the next iteration
5924 
5925     if (!newCall->getType()->isVoidTy())
5926       newCall->takeName(callSite);
5927     newCall->setAttributes(
5928         llvm::AttributeList::get(newFn->getContext(), oldAttrs.getFnAttrs(),
5929                                  oldAttrs.getRetAttrs(), newArgAttrs));
5930     newCall->setCallingConv(callSite->getCallingConv());
5931 
5932     // Finally, remove the old call, replacing any uses with the new one.
5933     if (!callSite->use_empty())
5934       callSite->replaceAllUsesWith(newCall);
5935 
5936     // Copy debug location attached to CI.
5937     if (callSite->getDebugLoc())
5938       newCall->setDebugLoc(callSite->getDebugLoc());
5939 
5940     callSitesToBeRemovedFromParent.push_back(callSite);
5941   }
5942 
5943   for (auto *callSite : callSitesToBeRemovedFromParent) {
5944     callSite->eraseFromParent();
5945   }
5946 }
5947 
5948 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we
5949 /// implement a function with no prototype, e.g. "int foo() {}".  If there are
5950 /// existing call uses of the old function in the module, this adjusts them to
5951 /// call the new function directly.
5952 ///
5953 /// This is not just a cleanup: the always_inline pass requires direct calls to
5954 /// functions to be able to inline them.  If there is a bitcast in the way, it
5955 /// won't inline them.  Instcombine normally deletes these calls, but it isn't
5956 /// run at -O0.
5957 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
5958                                                       llvm::Function *NewFn) {
5959   // If we're redefining a global as a function, don't transform it.
5960   if (!isa<llvm::Function>(Old)) return;
5961 
5962   replaceUsesOfNonProtoConstant(Old, NewFn);
5963 }
5964 
5965 void CodeGenModule::HandleCXXStaticMemberVarInstantiation(VarDecl *VD) {
5966   auto DK = VD->isThisDeclarationADefinition();
5967   if ((DK == VarDecl::Definition && VD->hasAttr<DLLImportAttr>()) ||
5968       (LangOpts.CUDA && !shouldEmitCUDAGlobalVar(VD)))
5969     return;
5970 
5971   TemplateSpecializationKind TSK = VD->getTemplateSpecializationKind();
5972   // If we have a definition, this might be a deferred decl. If the
5973   // instantiation is explicit, make sure we emit it at the end.
5974   if (VD->getDefinition() && TSK == TSK_ExplicitInstantiationDefinition)
5975     GetAddrOfGlobalVar(VD);
5976 
5977   EmitTopLevelDecl(VD);
5978 }
5979 
5980 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD,
5981                                                  llvm::GlobalValue *GV) {
5982   const auto *D = cast<FunctionDecl>(GD.getDecl());
5983 
5984   // Compute the function info and LLVM type.
5985   const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
5986   llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
5987 
5988   // Get or create the prototype for the function.
5989   if (!GV || (GV->getValueType() != Ty))
5990     GV = cast<llvm::GlobalValue>(GetAddrOfFunction(GD, Ty, /*ForVTable=*/false,
5991                                                    /*DontDefer=*/true,
5992                                                    ForDefinition));
5993 
5994   // Already emitted.
5995   if (!GV->isDeclaration())
5996     return;
5997 
5998   // We need to set linkage and visibility on the function before
5999   // generating code for it because various parts of IR generation
6000   // want to propagate this information down (e.g. to local static
6001   // declarations).
6002   auto *Fn = cast<llvm::Function>(GV);
6003   setFunctionLinkage(GD, Fn);
6004 
6005   // FIXME: this is redundant with part of setFunctionDefinitionAttributes
6006   setGVProperties(Fn, GD);
6007 
6008   MaybeHandleStaticInExternC(D, Fn);
6009 
6010   maybeSetTrivialComdat(*D, *Fn);
6011 
6012   CodeGenFunction(*this).GenerateCode(GD, Fn, FI);
6013 
6014   setNonAliasAttributes(GD, Fn);
6015   SetLLVMFunctionAttributesForDefinition(D, Fn);
6016 
6017   if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>())
6018     AddGlobalCtor(Fn, CA->getPriority());
6019   if (const DestructorAttr *DA = D->getAttr<DestructorAttr>())
6020     AddGlobalDtor(Fn, DA->getPriority(), true);
6021   if (getLangOpts().OpenMP && D->hasAttr<OMPDeclareTargetDeclAttr>())
6022     getOpenMPRuntime().emitDeclareTargetFunction(D, GV);
6023 }
6024 
6025 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) {
6026   const auto *D = cast<ValueDecl>(GD.getDecl());
6027   const AliasAttr *AA = D->getAttr<AliasAttr>();
6028   assert(AA && "Not an alias?");
6029 
6030   StringRef MangledName = getMangledName(GD);
6031 
6032   if (AA->getAliasee() == MangledName) {
6033     Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0;
6034     return;
6035   }
6036 
6037   // If there is a definition in the module, then it wins over the alias.
6038   // This is dubious, but allow it to be safe.  Just ignore the alias.
6039   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
6040   if (Entry && !Entry->isDeclaration())
6041     return;
6042 
6043   Aliases.push_back(GD);
6044 
6045   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
6046 
6047   // Create a reference to the named value.  This ensures that it is emitted
6048   // if a deferred decl.
6049   llvm::Constant *Aliasee;
6050   llvm::GlobalValue::LinkageTypes LT;
6051   if (isa<llvm::FunctionType>(DeclTy)) {
6052     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GD,
6053                                       /*ForVTable=*/false);
6054     LT = getFunctionLinkage(GD);
6055   } else {
6056     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), DeclTy, LangAS::Default,
6057                                     /*D=*/nullptr);
6058     if (const auto *VD = dyn_cast<VarDecl>(GD.getDecl()))
6059       LT = getLLVMLinkageVarDefinition(VD);
6060     else
6061       LT = getFunctionLinkage(GD);
6062   }
6063 
6064   // Create the new alias itself, but don't set a name yet.
6065   unsigned AS = Aliasee->getType()->getPointerAddressSpace();
6066   auto *GA =
6067       llvm::GlobalAlias::create(DeclTy, AS, LT, "", Aliasee, &getModule());
6068 
6069   if (Entry) {
6070     if (GA->getAliasee() == Entry) {
6071       Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0;
6072       return;
6073     }
6074 
6075     assert(Entry->isDeclaration());
6076 
6077     // If there is a declaration in the module, then we had an extern followed
6078     // by the alias, as in:
6079     //   extern int test6();
6080     //   ...
6081     //   int test6() __attribute__((alias("test7")));
6082     //
6083     // Remove it and replace uses of it with the alias.
6084     GA->takeName(Entry);
6085 
6086     Entry->replaceAllUsesWith(GA);
6087     Entry->eraseFromParent();
6088   } else {
6089     GA->setName(MangledName);
6090   }
6091 
6092   // Set attributes which are particular to an alias; this is a
6093   // specialization of the attributes which may be set on a global
6094   // variable/function.
6095   if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakRefAttr>() ||
6096       D->isWeakImported()) {
6097     GA->setLinkage(llvm::Function::WeakAnyLinkage);
6098   }
6099 
6100   if (const auto *VD = dyn_cast<VarDecl>(D))
6101     if (VD->getTLSKind())
6102       setTLSMode(GA, *VD);
6103 
6104   SetCommonAttributes(GD, GA);
6105 
6106   // Emit global alias debug information.
6107   if (isa<VarDecl>(D))
6108     if (CGDebugInfo *DI = getModuleDebugInfo())
6109       DI->EmitGlobalAlias(cast<llvm::GlobalValue>(GA->getAliasee()->stripPointerCasts()), GD);
6110 }
6111 
6112 void CodeGenModule::emitIFuncDefinition(GlobalDecl GD) {
6113   const auto *D = cast<ValueDecl>(GD.getDecl());
6114   const IFuncAttr *IFA = D->getAttr<IFuncAttr>();
6115   assert(IFA && "Not an ifunc?");
6116 
6117   StringRef MangledName = getMangledName(GD);
6118 
6119   if (IFA->getResolver() == MangledName) {
6120     Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1;
6121     return;
6122   }
6123 
6124   // Report an error if some definition overrides ifunc.
6125   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
6126   if (Entry && !Entry->isDeclaration()) {
6127     GlobalDecl OtherGD;
6128     if (lookupRepresentativeDecl(MangledName, OtherGD) &&
6129         DiagnosedConflictingDefinitions.insert(GD).second) {
6130       Diags.Report(D->getLocation(), diag::err_duplicate_mangled_name)
6131           << MangledName;
6132       Diags.Report(OtherGD.getDecl()->getLocation(),
6133                    diag::note_previous_definition);
6134     }
6135     return;
6136   }
6137 
6138   Aliases.push_back(GD);
6139 
6140   // The resolver might not be visited yet. Specify a dummy non-function type to
6141   // indicate IsIncompleteFunction. Either the type is ignored (if the resolver
6142   // was emitted) or the whole function will be replaced (if the resolver has
6143   // not been emitted).
6144   llvm::Constant *Resolver =
6145       GetOrCreateLLVMFunction(IFA->getResolver(), VoidTy, {},
6146                               /*ForVTable=*/false);
6147   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
6148   llvm::GlobalIFunc *GIF =
6149       llvm::GlobalIFunc::create(DeclTy, 0, llvm::Function::ExternalLinkage,
6150                                 "", Resolver, &getModule());
6151   if (Entry) {
6152     if (GIF->getResolver() == Entry) {
6153       Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1;
6154       return;
6155     }
6156     assert(Entry->isDeclaration());
6157 
6158     // If there is a declaration in the module, then we had an extern followed
6159     // by the ifunc, as in:
6160     //   extern int test();
6161     //   ...
6162     //   int test() __attribute__((ifunc("resolver")));
6163     //
6164     // Remove it and replace uses of it with the ifunc.
6165     GIF->takeName(Entry);
6166 
6167     Entry->replaceAllUsesWith(GIF);
6168     Entry->eraseFromParent();
6169   } else
6170     GIF->setName(MangledName);
6171   SetCommonAttributes(GD, GIF);
6172 }
6173 
6174 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,
6175                                             ArrayRef<llvm::Type*> Tys) {
6176   return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID,
6177                                          Tys);
6178 }
6179 
6180 static llvm::StringMapEntry<llvm::GlobalVariable *> &
6181 GetConstantCFStringEntry(llvm::StringMap<llvm::GlobalVariable *> &Map,
6182                          const StringLiteral *Literal, bool TargetIsLSB,
6183                          bool &IsUTF16, unsigned &StringLength) {
6184   StringRef String = Literal->getString();
6185   unsigned NumBytes = String.size();
6186 
6187   // Check for simple case.
6188   if (!Literal->containsNonAsciiOrNull()) {
6189     StringLength = NumBytes;
6190     return *Map.insert(std::make_pair(String, nullptr)).first;
6191   }
6192 
6193   // Otherwise, convert the UTF8 literals into a string of shorts.
6194   IsUTF16 = true;
6195 
6196   SmallVector<llvm::UTF16, 128> ToBuf(NumBytes + 1); // +1 for ending nulls.
6197   const llvm::UTF8 *FromPtr = (const llvm::UTF8 *)String.data();
6198   llvm::UTF16 *ToPtr = &ToBuf[0];
6199 
6200   (void)llvm::ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, &ToPtr,
6201                                  ToPtr + NumBytes, llvm::strictConversion);
6202 
6203   // ConvertUTF8toUTF16 returns the length in ToPtr.
6204   StringLength = ToPtr - &ToBuf[0];
6205 
6206   // Add an explicit null.
6207   *ToPtr = 0;
6208   return *Map.insert(std::make_pair(
6209                          StringRef(reinterpret_cast<const char *>(ToBuf.data()),
6210                                    (StringLength + 1) * 2),
6211                          nullptr)).first;
6212 }
6213 
6214 ConstantAddress
6215 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) {
6216   unsigned StringLength = 0;
6217   bool isUTF16 = false;
6218   llvm::StringMapEntry<llvm::GlobalVariable *> &Entry =
6219       GetConstantCFStringEntry(CFConstantStringMap, Literal,
6220                                getDataLayout().isLittleEndian(), isUTF16,
6221                                StringLength);
6222 
6223   if (auto *C = Entry.second)
6224     return ConstantAddress(
6225         C, C->getValueType(), CharUnits::fromQuantity(C->getAlignment()));
6226 
6227   const ASTContext &Context = getContext();
6228   const llvm::Triple &Triple = getTriple();
6229 
6230   const auto CFRuntime = getLangOpts().CFRuntime;
6231   const bool IsSwiftABI =
6232       static_cast<unsigned>(CFRuntime) >=
6233       static_cast<unsigned>(LangOptions::CoreFoundationABI::Swift);
6234   const bool IsSwift4_1 = CFRuntime == LangOptions::CoreFoundationABI::Swift4_1;
6235 
6236   // If we don't already have it, get __CFConstantStringClassReference.
6237   if (!CFConstantStringClassRef) {
6238     const char *CFConstantStringClassName = "__CFConstantStringClassReference";
6239     llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
6240     Ty = llvm::ArrayType::get(Ty, 0);
6241 
6242     switch (CFRuntime) {
6243     default: break;
6244     case LangOptions::CoreFoundationABI::Swift: [[fallthrough]];
6245     case LangOptions::CoreFoundationABI::Swift5_0:
6246       CFConstantStringClassName =
6247           Triple.isOSDarwin() ? "$s15SwiftFoundation19_NSCFConstantStringCN"
6248                               : "$s10Foundation19_NSCFConstantStringCN";
6249       Ty = IntPtrTy;
6250       break;
6251     case LangOptions::CoreFoundationABI::Swift4_2:
6252       CFConstantStringClassName =
6253           Triple.isOSDarwin() ? "$S15SwiftFoundation19_NSCFConstantStringCN"
6254                               : "$S10Foundation19_NSCFConstantStringCN";
6255       Ty = IntPtrTy;
6256       break;
6257     case LangOptions::CoreFoundationABI::Swift4_1:
6258       CFConstantStringClassName =
6259           Triple.isOSDarwin() ? "__T015SwiftFoundation19_NSCFConstantStringCN"
6260                               : "__T010Foundation19_NSCFConstantStringCN";
6261       Ty = IntPtrTy;
6262       break;
6263     }
6264 
6265     llvm::Constant *C = CreateRuntimeVariable(Ty, CFConstantStringClassName);
6266 
6267     if (Triple.isOSBinFormatELF() || Triple.isOSBinFormatCOFF()) {
6268       llvm::GlobalValue *GV = nullptr;
6269 
6270       if ((GV = dyn_cast<llvm::GlobalValue>(C))) {
6271         IdentifierInfo &II = Context.Idents.get(GV->getName());
6272         TranslationUnitDecl *TUDecl = Context.getTranslationUnitDecl();
6273         DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl);
6274 
6275         const VarDecl *VD = nullptr;
6276         for (const auto *Result : DC->lookup(&II))
6277           if ((VD = dyn_cast<VarDecl>(Result)))
6278             break;
6279 
6280         if (Triple.isOSBinFormatELF()) {
6281           if (!VD)
6282             GV->setLinkage(llvm::GlobalValue::ExternalLinkage);
6283         } else {
6284           GV->setLinkage(llvm::GlobalValue::ExternalLinkage);
6285           if (!VD || !VD->hasAttr<DLLExportAttr>())
6286             GV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass);
6287           else
6288             GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass);
6289         }
6290 
6291         setDSOLocal(GV);
6292       }
6293     }
6294 
6295     // Decay array -> ptr
6296     CFConstantStringClassRef =
6297         IsSwiftABI ? llvm::ConstantExpr::getPtrToInt(C, Ty) : C;
6298   }
6299 
6300   QualType CFTy = Context.getCFConstantStringType();
6301 
6302   auto *STy = cast<llvm::StructType>(getTypes().ConvertType(CFTy));
6303 
6304   ConstantInitBuilder Builder(*this);
6305   auto Fields = Builder.beginStruct(STy);
6306 
6307   // Class pointer.
6308   Fields.add(cast<llvm::Constant>(CFConstantStringClassRef));
6309 
6310   // Flags.
6311   if (IsSwiftABI) {
6312     Fields.addInt(IntPtrTy, IsSwift4_1 ? 0x05 : 0x01);
6313     Fields.addInt(Int64Ty, isUTF16 ? 0x07d0 : 0x07c8);
6314   } else {
6315     Fields.addInt(IntTy, isUTF16 ? 0x07d0 : 0x07C8);
6316   }
6317 
6318   // String pointer.
6319   llvm::Constant *C = nullptr;
6320   if (isUTF16) {
6321     auto Arr = llvm::ArrayRef(
6322         reinterpret_cast<uint16_t *>(const_cast<char *>(Entry.first().data())),
6323         Entry.first().size() / 2);
6324     C = llvm::ConstantDataArray::get(VMContext, Arr);
6325   } else {
6326     C = llvm::ConstantDataArray::getString(VMContext, Entry.first());
6327   }
6328 
6329   // Note: -fwritable-strings doesn't make the backing store strings of
6330   // CFStrings writable.
6331   auto *GV =
6332       new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true,
6333                                llvm::GlobalValue::PrivateLinkage, C, ".str");
6334   GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
6335   // Don't enforce the target's minimum global alignment, since the only use
6336   // of the string is via this class initializer.
6337   CharUnits Align = isUTF16 ? Context.getTypeAlignInChars(Context.ShortTy)
6338                             : Context.getTypeAlignInChars(Context.CharTy);
6339   GV->setAlignment(Align.getAsAlign());
6340 
6341   // FIXME: We set the section explicitly to avoid a bug in ld64 224.1.
6342   // Without it LLVM can merge the string with a non unnamed_addr one during
6343   // LTO.  Doing that changes the section it ends in, which surprises ld64.
6344   if (Triple.isOSBinFormatMachO())
6345     GV->setSection(isUTF16 ? "__TEXT,__ustring"
6346                            : "__TEXT,__cstring,cstring_literals");
6347   // Make sure the literal ends up in .rodata to allow for safe ICF and for
6348   // the static linker to adjust permissions to read-only later on.
6349   else if (Triple.isOSBinFormatELF())
6350     GV->setSection(".rodata");
6351 
6352   // String.
6353   Fields.add(GV);
6354 
6355   // String length.
6356   llvm::IntegerType *LengthTy =
6357       llvm::IntegerType::get(getModule().getContext(),
6358                              Context.getTargetInfo().getLongWidth());
6359   if (IsSwiftABI) {
6360     if (CFRuntime == LangOptions::CoreFoundationABI::Swift4_1 ||
6361         CFRuntime == LangOptions::CoreFoundationABI::Swift4_2)
6362       LengthTy = Int32Ty;
6363     else
6364       LengthTy = IntPtrTy;
6365   }
6366   Fields.addInt(LengthTy, StringLength);
6367 
6368   // Swift ABI requires 8-byte alignment to ensure that the _Atomic(uint64_t) is
6369   // properly aligned on 32-bit platforms.
6370   CharUnits Alignment =
6371       IsSwiftABI ? Context.toCharUnitsFromBits(64) : getPointerAlign();
6372 
6373   // The struct.
6374   GV = Fields.finishAndCreateGlobal("_unnamed_cfstring_", Alignment,
6375                                     /*isConstant=*/false,
6376                                     llvm::GlobalVariable::PrivateLinkage);
6377   GV->addAttribute("objc_arc_inert");
6378   switch (Triple.getObjectFormat()) {
6379   case llvm::Triple::UnknownObjectFormat:
6380     llvm_unreachable("unknown file format");
6381   case llvm::Triple::DXContainer:
6382   case llvm::Triple::GOFF:
6383   case llvm::Triple::SPIRV:
6384   case llvm::Triple::XCOFF:
6385     llvm_unreachable("unimplemented");
6386   case llvm::Triple::COFF:
6387   case llvm::Triple::ELF:
6388   case llvm::Triple::Wasm:
6389     GV->setSection("cfstring");
6390     break;
6391   case llvm::Triple::MachO:
6392     GV->setSection("__DATA,__cfstring");
6393     break;
6394   }
6395   Entry.second = GV;
6396 
6397   return ConstantAddress(GV, GV->getValueType(), Alignment);
6398 }
6399 
6400 bool CodeGenModule::getExpressionLocationsEnabled() const {
6401   return !CodeGenOpts.EmitCodeView || CodeGenOpts.DebugColumnInfo;
6402 }
6403 
6404 QualType CodeGenModule::getObjCFastEnumerationStateType() {
6405   if (ObjCFastEnumerationStateType.isNull()) {
6406     RecordDecl *D = Context.buildImplicitRecord("__objcFastEnumerationState");
6407     D->startDefinition();
6408 
6409     QualType FieldTypes[] = {
6410         Context.UnsignedLongTy, Context.getPointerType(Context.getObjCIdType()),
6411         Context.getPointerType(Context.UnsignedLongTy),
6412         Context.getConstantArrayType(Context.UnsignedLongTy, llvm::APInt(32, 5),
6413                                      nullptr, ArraySizeModifier::Normal, 0)};
6414 
6415     for (size_t i = 0; i < 4; ++i) {
6416       FieldDecl *Field = FieldDecl::Create(Context,
6417                                            D,
6418                                            SourceLocation(),
6419                                            SourceLocation(), nullptr,
6420                                            FieldTypes[i], /*TInfo=*/nullptr,
6421                                            /*BitWidth=*/nullptr,
6422                                            /*Mutable=*/false,
6423                                            ICIS_NoInit);
6424       Field->setAccess(AS_public);
6425       D->addDecl(Field);
6426     }
6427 
6428     D->completeDefinition();
6429     ObjCFastEnumerationStateType = Context.getTagDeclType(D);
6430   }
6431 
6432   return ObjCFastEnumerationStateType;
6433 }
6434 
6435 llvm::Constant *
6436 CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) {
6437   assert(!E->getType()->isPointerType() && "Strings are always arrays");
6438 
6439   // Don't emit it as the address of the string, emit the string data itself
6440   // as an inline array.
6441   if (E->getCharByteWidth() == 1) {
6442     SmallString<64> Str(E->getString());
6443 
6444     // Resize the string to the right size, which is indicated by its type.
6445     const ConstantArrayType *CAT = Context.getAsConstantArrayType(E->getType());
6446     assert(CAT && "String literal not of constant array type!");
6447     Str.resize(CAT->getZExtSize());
6448     return llvm::ConstantDataArray::getString(VMContext, Str, false);
6449   }
6450 
6451   auto *AType = cast<llvm::ArrayType>(getTypes().ConvertType(E->getType()));
6452   llvm::Type *ElemTy = AType->getElementType();
6453   unsigned NumElements = AType->getNumElements();
6454 
6455   // Wide strings have either 2-byte or 4-byte elements.
6456   if (ElemTy->getPrimitiveSizeInBits() == 16) {
6457     SmallVector<uint16_t, 32> Elements;
6458     Elements.reserve(NumElements);
6459 
6460     for(unsigned i = 0, e = E->getLength(); i != e; ++i)
6461       Elements.push_back(E->getCodeUnit(i));
6462     Elements.resize(NumElements);
6463     return llvm::ConstantDataArray::get(VMContext, Elements);
6464   }
6465 
6466   assert(ElemTy->getPrimitiveSizeInBits() == 32);
6467   SmallVector<uint32_t, 32> Elements;
6468   Elements.reserve(NumElements);
6469 
6470   for(unsigned i = 0, e = E->getLength(); i != e; ++i)
6471     Elements.push_back(E->getCodeUnit(i));
6472   Elements.resize(NumElements);
6473   return llvm::ConstantDataArray::get(VMContext, Elements);
6474 }
6475 
6476 static llvm::GlobalVariable *
6477 GenerateStringLiteral(llvm::Constant *C, llvm::GlobalValue::LinkageTypes LT,
6478                       CodeGenModule &CGM, StringRef GlobalName,
6479                       CharUnits Alignment) {
6480   unsigned AddrSpace = CGM.getContext().getTargetAddressSpace(
6481       CGM.GetGlobalConstantAddressSpace());
6482 
6483   llvm::Module &M = CGM.getModule();
6484   // Create a global variable for this string
6485   auto *GV = new llvm::GlobalVariable(
6486       M, C->getType(), !CGM.getLangOpts().WritableStrings, LT, C, GlobalName,
6487       nullptr, llvm::GlobalVariable::NotThreadLocal, AddrSpace);
6488   GV->setAlignment(Alignment.getAsAlign());
6489   GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
6490   if (GV->isWeakForLinker()) {
6491     assert(CGM.supportsCOMDAT() && "Only COFF uses weak string literals");
6492     GV->setComdat(M.getOrInsertComdat(GV->getName()));
6493   }
6494   CGM.setDSOLocal(GV);
6495 
6496   return GV;
6497 }
6498 
6499 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a
6500 /// constant array for the given string literal.
6501 ConstantAddress
6502 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S,
6503                                                   StringRef Name) {
6504   CharUnits Alignment =
6505       getContext().getAlignOfGlobalVarInChars(S->getType(), /*VD=*/nullptr);
6506 
6507   llvm::Constant *C = GetConstantArrayFromStringLiteral(S);
6508   llvm::GlobalVariable **Entry = nullptr;
6509   if (!LangOpts.WritableStrings) {
6510     Entry = &ConstantStringMap[C];
6511     if (auto GV = *Entry) {
6512       if (uint64_t(Alignment.getQuantity()) > GV->getAlignment())
6513         GV->setAlignment(Alignment.getAsAlign());
6514       return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV),
6515                              GV->getValueType(), Alignment);
6516     }
6517   }
6518 
6519   SmallString<256> MangledNameBuffer;
6520   StringRef GlobalVariableName;
6521   llvm::GlobalValue::LinkageTypes LT;
6522 
6523   // Mangle the string literal if that's how the ABI merges duplicate strings.
6524   // Don't do it if they are writable, since we don't want writes in one TU to
6525   // affect strings in another.
6526   if (getCXXABI().getMangleContext().shouldMangleStringLiteral(S) &&
6527       !LangOpts.WritableStrings) {
6528     llvm::raw_svector_ostream Out(MangledNameBuffer);
6529     getCXXABI().getMangleContext().mangleStringLiteral(S, Out);
6530     LT = llvm::GlobalValue::LinkOnceODRLinkage;
6531     GlobalVariableName = MangledNameBuffer;
6532   } else {
6533     LT = llvm::GlobalValue::PrivateLinkage;
6534     GlobalVariableName = Name;
6535   }
6536 
6537   auto GV = GenerateStringLiteral(C, LT, *this, GlobalVariableName, Alignment);
6538 
6539   CGDebugInfo *DI = getModuleDebugInfo();
6540   if (DI && getCodeGenOpts().hasReducedDebugInfo())
6541     DI->AddStringLiteralDebugInfo(GV, S);
6542 
6543   if (Entry)
6544     *Entry = GV;
6545 
6546   SanitizerMD->reportGlobal(GV, S->getStrTokenLoc(0), "<string literal>");
6547 
6548   return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV),
6549                          GV->getValueType(), Alignment);
6550 }
6551 
6552 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant
6553 /// array for the given ObjCEncodeExpr node.
6554 ConstantAddress
6555 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) {
6556   std::string Str;
6557   getContext().getObjCEncodingForType(E->getEncodedType(), Str);
6558 
6559   return GetAddrOfConstantCString(Str);
6560 }
6561 
6562 /// GetAddrOfConstantCString - Returns a pointer to a character array containing
6563 /// the literal and a terminating '\0' character.
6564 /// The result has pointer to array type.
6565 ConstantAddress CodeGenModule::GetAddrOfConstantCString(
6566     const std::string &Str, const char *GlobalName) {
6567   StringRef StrWithNull(Str.c_str(), Str.size() + 1);
6568   CharUnits Alignment = getContext().getAlignOfGlobalVarInChars(
6569       getContext().CharTy, /*VD=*/nullptr);
6570 
6571   llvm::Constant *C =
6572       llvm::ConstantDataArray::getString(getLLVMContext(), StrWithNull, false);
6573 
6574   // Don't share any string literals if strings aren't constant.
6575   llvm::GlobalVariable **Entry = nullptr;
6576   if (!LangOpts.WritableStrings) {
6577     Entry = &ConstantStringMap[C];
6578     if (auto GV = *Entry) {
6579       if (uint64_t(Alignment.getQuantity()) > GV->getAlignment())
6580         GV->setAlignment(Alignment.getAsAlign());
6581       return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV),
6582                              GV->getValueType(), Alignment);
6583     }
6584   }
6585 
6586   // Get the default prefix if a name wasn't specified.
6587   if (!GlobalName)
6588     GlobalName = ".str";
6589   // Create a global variable for this.
6590   auto GV = GenerateStringLiteral(C, llvm::GlobalValue::PrivateLinkage, *this,
6591                                   GlobalName, Alignment);
6592   if (Entry)
6593     *Entry = GV;
6594 
6595   return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV),
6596                          GV->getValueType(), Alignment);
6597 }
6598 
6599 ConstantAddress CodeGenModule::GetAddrOfGlobalTemporary(
6600     const MaterializeTemporaryExpr *E, const Expr *Init) {
6601   assert((E->getStorageDuration() == SD_Static ||
6602           E->getStorageDuration() == SD_Thread) && "not a global temporary");
6603   const auto *VD = cast<VarDecl>(E->getExtendingDecl());
6604 
6605   // If we're not materializing a subobject of the temporary, keep the
6606   // cv-qualifiers from the type of the MaterializeTemporaryExpr.
6607   QualType MaterializedType = Init->getType();
6608   if (Init == E->getSubExpr())
6609     MaterializedType = E->getType();
6610 
6611   CharUnits Align = getContext().getTypeAlignInChars(MaterializedType);
6612 
6613   auto InsertResult = MaterializedGlobalTemporaryMap.insert({E, nullptr});
6614   if (!InsertResult.second) {
6615     // We've seen this before: either we already created it or we're in the
6616     // process of doing so.
6617     if (!InsertResult.first->second) {
6618       // We recursively re-entered this function, probably during emission of
6619       // the initializer. Create a placeholder. We'll clean this up in the
6620       // outer call, at the end of this function.
6621       llvm::Type *Type = getTypes().ConvertTypeForMem(MaterializedType);
6622       InsertResult.first->second = new llvm::GlobalVariable(
6623           getModule(), Type, false, llvm::GlobalVariable::InternalLinkage,
6624           nullptr);
6625     }
6626     return ConstantAddress(InsertResult.first->second,
6627                            llvm::cast<llvm::GlobalVariable>(
6628                                InsertResult.first->second->stripPointerCasts())
6629                                ->getValueType(),
6630                            Align);
6631   }
6632 
6633   // FIXME: If an externally-visible declaration extends multiple temporaries,
6634   // we need to give each temporary the same name in every translation unit (and
6635   // we also need to make the temporaries externally-visible).
6636   SmallString<256> Name;
6637   llvm::raw_svector_ostream Out(Name);
6638   getCXXABI().getMangleContext().mangleReferenceTemporary(
6639       VD, E->getManglingNumber(), Out);
6640 
6641   APValue *Value = nullptr;
6642   if (E->getStorageDuration() == SD_Static && VD->evaluateValue()) {
6643     // If the initializer of the extending declaration is a constant
6644     // initializer, we should have a cached constant initializer for this
6645     // temporary. Note that this might have a different value from the value
6646     // computed by evaluating the initializer if the surrounding constant
6647     // expression modifies the temporary.
6648     Value = E->getOrCreateValue(false);
6649   }
6650 
6651   // Try evaluating it now, it might have a constant initializer.
6652   Expr::EvalResult EvalResult;
6653   if (!Value && Init->EvaluateAsRValue(EvalResult, getContext()) &&
6654       !EvalResult.hasSideEffects())
6655     Value = &EvalResult.Val;
6656 
6657   LangAS AddrSpace = GetGlobalVarAddressSpace(VD);
6658 
6659   std::optional<ConstantEmitter> emitter;
6660   llvm::Constant *InitialValue = nullptr;
6661   bool Constant = false;
6662   llvm::Type *Type;
6663   if (Value) {
6664     // The temporary has a constant initializer, use it.
6665     emitter.emplace(*this);
6666     InitialValue = emitter->emitForInitializer(*Value, AddrSpace,
6667                                                MaterializedType);
6668     Constant =
6669         MaterializedType.isConstantStorage(getContext(), /*ExcludeCtor*/ Value,
6670                                            /*ExcludeDtor*/ false);
6671     Type = InitialValue->getType();
6672   } else {
6673     // No initializer, the initialization will be provided when we
6674     // initialize the declaration which performed lifetime extension.
6675     Type = getTypes().ConvertTypeForMem(MaterializedType);
6676   }
6677 
6678   // Create a global variable for this lifetime-extended temporary.
6679   llvm::GlobalValue::LinkageTypes Linkage = getLLVMLinkageVarDefinition(VD);
6680   if (Linkage == llvm::GlobalVariable::ExternalLinkage) {
6681     const VarDecl *InitVD;
6682     if (VD->isStaticDataMember() && VD->getAnyInitializer(InitVD) &&
6683         isa<CXXRecordDecl>(InitVD->getLexicalDeclContext())) {
6684       // Temporaries defined inside a class get linkonce_odr linkage because the
6685       // class can be defined in multiple translation units.
6686       Linkage = llvm::GlobalVariable::LinkOnceODRLinkage;
6687     } else {
6688       // There is no need for this temporary to have external linkage if the
6689       // VarDecl has external linkage.
6690       Linkage = llvm::GlobalVariable::InternalLinkage;
6691     }
6692   }
6693   auto TargetAS = getContext().getTargetAddressSpace(AddrSpace);
6694   auto *GV = new llvm::GlobalVariable(
6695       getModule(), Type, Constant, Linkage, InitialValue, Name.c_str(),
6696       /*InsertBefore=*/nullptr, llvm::GlobalVariable::NotThreadLocal, TargetAS);
6697   if (emitter) emitter->finalize(GV);
6698   // Don't assign dllimport or dllexport to local linkage globals.
6699   if (!llvm::GlobalValue::isLocalLinkage(Linkage)) {
6700     setGVProperties(GV, VD);
6701     if (GV->getDLLStorageClass() == llvm::GlobalVariable::DLLExportStorageClass)
6702       // The reference temporary should never be dllexport.
6703       GV->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass);
6704   }
6705   GV->setAlignment(Align.getAsAlign());
6706   if (supportsCOMDAT() && GV->isWeakForLinker())
6707     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
6708   if (VD->getTLSKind())
6709     setTLSMode(GV, *VD);
6710   llvm::Constant *CV = GV;
6711   if (AddrSpace != LangAS::Default)
6712     CV = getTargetCodeGenInfo().performAddrSpaceCast(
6713         *this, GV, AddrSpace, LangAS::Default,
6714         llvm::PointerType::get(
6715             getLLVMContext(),
6716             getContext().getTargetAddressSpace(LangAS::Default)));
6717 
6718   // Update the map with the new temporary. If we created a placeholder above,
6719   // replace it with the new global now.
6720   llvm::Constant *&Entry = MaterializedGlobalTemporaryMap[E];
6721   if (Entry) {
6722     Entry->replaceAllUsesWith(CV);
6723     llvm::cast<llvm::GlobalVariable>(Entry)->eraseFromParent();
6724   }
6725   Entry = CV;
6726 
6727   return ConstantAddress(CV, Type, Align);
6728 }
6729 
6730 /// EmitObjCPropertyImplementations - Emit information for synthesized
6731 /// properties for an implementation.
6732 void CodeGenModule::EmitObjCPropertyImplementations(const
6733                                                     ObjCImplementationDecl *D) {
6734   for (const auto *PID : D->property_impls()) {
6735     // Dynamic is just for type-checking.
6736     if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) {
6737       ObjCPropertyDecl *PD = PID->getPropertyDecl();
6738 
6739       // Determine which methods need to be implemented, some may have
6740       // been overridden. Note that ::isPropertyAccessor is not the method
6741       // we want, that just indicates if the decl came from a
6742       // property. What we want to know is if the method is defined in
6743       // this implementation.
6744       auto *Getter = PID->getGetterMethodDecl();
6745       if (!Getter || Getter->isSynthesizedAccessorStub())
6746         CodeGenFunction(*this).GenerateObjCGetter(
6747             const_cast<ObjCImplementationDecl *>(D), PID);
6748       auto *Setter = PID->getSetterMethodDecl();
6749       if (!PD->isReadOnly() && (!Setter || Setter->isSynthesizedAccessorStub()))
6750         CodeGenFunction(*this).GenerateObjCSetter(
6751                                  const_cast<ObjCImplementationDecl *>(D), PID);
6752     }
6753   }
6754 }
6755 
6756 static bool needsDestructMethod(ObjCImplementationDecl *impl) {
6757   const ObjCInterfaceDecl *iface = impl->getClassInterface();
6758   for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin();
6759        ivar; ivar = ivar->getNextIvar())
6760     if (ivar->getType().isDestructedType())
6761       return true;
6762 
6763   return false;
6764 }
6765 
6766 static bool AllTrivialInitializers(CodeGenModule &CGM,
6767                                    ObjCImplementationDecl *D) {
6768   CodeGenFunction CGF(CGM);
6769   for (ObjCImplementationDecl::init_iterator B = D->init_begin(),
6770        E = D->init_end(); B != E; ++B) {
6771     CXXCtorInitializer *CtorInitExp = *B;
6772     Expr *Init = CtorInitExp->getInit();
6773     if (!CGF.isTrivialInitializer(Init))
6774       return false;
6775   }
6776   return true;
6777 }
6778 
6779 /// EmitObjCIvarInitializations - Emit information for ivar initialization
6780 /// for an implementation.
6781 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) {
6782   // We might need a .cxx_destruct even if we don't have any ivar initializers.
6783   if (needsDestructMethod(D)) {
6784     const IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct");
6785     Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
6786     ObjCMethodDecl *DTORMethod = ObjCMethodDecl::Create(
6787         getContext(), D->getLocation(), D->getLocation(), cxxSelector,
6788         getContext().VoidTy, nullptr, D,
6789         /*isInstance=*/true, /*isVariadic=*/false,
6790         /*isPropertyAccessor=*/true, /*isSynthesizedAccessorStub=*/false,
6791         /*isImplicitlyDeclared=*/true,
6792         /*isDefined=*/false, ObjCImplementationControl::Required);
6793     D->addInstanceMethod(DTORMethod);
6794     CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false);
6795     D->setHasDestructors(true);
6796   }
6797 
6798   // If the implementation doesn't have any ivar initializers, we don't need
6799   // a .cxx_construct.
6800   if (D->getNumIvarInitializers() == 0 ||
6801       AllTrivialInitializers(*this, D))
6802     return;
6803 
6804   const IdentifierInfo *II = &getContext().Idents.get(".cxx_construct");
6805   Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
6806   // The constructor returns 'self'.
6807   ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(
6808       getContext(), D->getLocation(), D->getLocation(), cxxSelector,
6809       getContext().getObjCIdType(), nullptr, D, /*isInstance=*/true,
6810       /*isVariadic=*/false,
6811       /*isPropertyAccessor=*/true, /*isSynthesizedAccessorStub=*/false,
6812       /*isImplicitlyDeclared=*/true,
6813       /*isDefined=*/false, ObjCImplementationControl::Required);
6814   D->addInstanceMethod(CTORMethod);
6815   CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true);
6816   D->setHasNonZeroConstructors(true);
6817 }
6818 
6819 // EmitLinkageSpec - Emit all declarations in a linkage spec.
6820 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) {
6821   if (LSD->getLanguage() != LinkageSpecLanguageIDs::C &&
6822       LSD->getLanguage() != LinkageSpecLanguageIDs::CXX) {
6823     ErrorUnsupported(LSD, "linkage spec");
6824     return;
6825   }
6826 
6827   EmitDeclContext(LSD);
6828 }
6829 
6830 void CodeGenModule::EmitTopLevelStmt(const TopLevelStmtDecl *D) {
6831   // Device code should not be at top level.
6832   if (LangOpts.CUDA && LangOpts.CUDAIsDevice)
6833     return;
6834 
6835   std::unique_ptr<CodeGenFunction> &CurCGF =
6836       GlobalTopLevelStmtBlockInFlight.first;
6837 
6838   // We emitted a top-level stmt but after it there is initialization.
6839   // Stop squashing the top-level stmts into a single function.
6840   if (CurCGF && CXXGlobalInits.back() != CurCGF->CurFn) {
6841     CurCGF->FinishFunction(D->getEndLoc());
6842     CurCGF = nullptr;
6843   }
6844 
6845   if (!CurCGF) {
6846     // void __stmts__N(void)
6847     // FIXME: Ask the ABI name mangler to pick a name.
6848     std::string Name = "__stmts__" + llvm::utostr(CXXGlobalInits.size());
6849     FunctionArgList Args;
6850     QualType RetTy = getContext().VoidTy;
6851     const CGFunctionInfo &FnInfo =
6852         getTypes().arrangeBuiltinFunctionDeclaration(RetTy, Args);
6853     llvm::FunctionType *FnTy = getTypes().GetFunctionType(FnInfo);
6854     llvm::Function *Fn = llvm::Function::Create(
6855         FnTy, llvm::GlobalValue::InternalLinkage, Name, &getModule());
6856 
6857     CurCGF.reset(new CodeGenFunction(*this));
6858     GlobalTopLevelStmtBlockInFlight.second = D;
6859     CurCGF->StartFunction(GlobalDecl(), RetTy, Fn, FnInfo, Args,
6860                           D->getBeginLoc(), D->getBeginLoc());
6861     CXXGlobalInits.push_back(Fn);
6862   }
6863 
6864   CurCGF->EmitStmt(D->getStmt());
6865 }
6866 
6867 void CodeGenModule::EmitDeclContext(const DeclContext *DC) {
6868   for (auto *I : DC->decls()) {
6869     // Unlike other DeclContexts, the contents of an ObjCImplDecl at TU scope
6870     // are themselves considered "top-level", so EmitTopLevelDecl on an
6871     // ObjCImplDecl does not recursively visit them. We need to do that in
6872     // case they're nested inside another construct (LinkageSpecDecl /
6873     // ExportDecl) that does stop them from being considered "top-level".
6874     if (auto *OID = dyn_cast<ObjCImplDecl>(I)) {
6875       for (auto *M : OID->methods())
6876         EmitTopLevelDecl(M);
6877     }
6878 
6879     EmitTopLevelDecl(I);
6880   }
6881 }
6882 
6883 /// EmitTopLevelDecl - Emit code for a single top level declaration.
6884 void CodeGenModule::EmitTopLevelDecl(Decl *D) {
6885   // Ignore dependent declarations.
6886   if (D->isTemplated())
6887     return;
6888 
6889   // Consteval function shouldn't be emitted.
6890   if (auto *FD = dyn_cast<FunctionDecl>(D); FD && FD->isImmediateFunction())
6891     return;
6892 
6893   switch (D->getKind()) {
6894   case Decl::CXXConversion:
6895   case Decl::CXXMethod:
6896   case Decl::Function:
6897     EmitGlobal(cast<FunctionDecl>(D));
6898     // Always provide some coverage mapping
6899     // even for the functions that aren't emitted.
6900     AddDeferredUnusedCoverageMapping(D);
6901     break;
6902 
6903   case Decl::CXXDeductionGuide:
6904     // Function-like, but does not result in code emission.
6905     break;
6906 
6907   case Decl::Var:
6908   case Decl::Decomposition:
6909   case Decl::VarTemplateSpecialization:
6910     EmitGlobal(cast<VarDecl>(D));
6911     if (auto *DD = dyn_cast<DecompositionDecl>(D))
6912       for (auto *B : DD->bindings())
6913         if (auto *HD = B->getHoldingVar())
6914           EmitGlobal(HD);
6915     break;
6916 
6917   // Indirect fields from global anonymous structs and unions can be
6918   // ignored; only the actual variable requires IR gen support.
6919   case Decl::IndirectField:
6920     break;
6921 
6922   // C++ Decls
6923   case Decl::Namespace:
6924     EmitDeclContext(cast<NamespaceDecl>(D));
6925     break;
6926   case Decl::ClassTemplateSpecialization: {
6927     const auto *Spec = cast<ClassTemplateSpecializationDecl>(D);
6928     if (CGDebugInfo *DI = getModuleDebugInfo())
6929       if (Spec->getSpecializationKind() ==
6930               TSK_ExplicitInstantiationDefinition &&
6931           Spec->hasDefinition())
6932         DI->completeTemplateDefinition(*Spec);
6933   } [[fallthrough]];
6934   case Decl::CXXRecord: {
6935     CXXRecordDecl *CRD = cast<CXXRecordDecl>(D);
6936     if (CGDebugInfo *DI = getModuleDebugInfo()) {
6937       if (CRD->hasDefinition())
6938         DI->EmitAndRetainType(getContext().getRecordType(cast<RecordDecl>(D)));
6939       if (auto *ES = D->getASTContext().getExternalSource())
6940         if (ES->hasExternalDefinitions(D) == ExternalASTSource::EK_Never)
6941           DI->completeUnusedClass(*CRD);
6942     }
6943     // Emit any static data members, they may be definitions.
6944     for (auto *I : CRD->decls())
6945       if (isa<VarDecl>(I) || isa<CXXRecordDecl>(I))
6946         EmitTopLevelDecl(I);
6947     break;
6948   }
6949     // No code generation needed.
6950   case Decl::UsingShadow:
6951   case Decl::ClassTemplate:
6952   case Decl::VarTemplate:
6953   case Decl::Concept:
6954   case Decl::VarTemplatePartialSpecialization:
6955   case Decl::FunctionTemplate:
6956   case Decl::TypeAliasTemplate:
6957   case Decl::Block:
6958   case Decl::Empty:
6959   case Decl::Binding:
6960     break;
6961   case Decl::Using:          // using X; [C++]
6962     if (CGDebugInfo *DI = getModuleDebugInfo())
6963         DI->EmitUsingDecl(cast<UsingDecl>(*D));
6964     break;
6965   case Decl::UsingEnum: // using enum X; [C++]
6966     if (CGDebugInfo *DI = getModuleDebugInfo())
6967       DI->EmitUsingEnumDecl(cast<UsingEnumDecl>(*D));
6968     break;
6969   case Decl::NamespaceAlias:
6970     if (CGDebugInfo *DI = getModuleDebugInfo())
6971         DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(*D));
6972     break;
6973   case Decl::UsingDirective: // using namespace X; [C++]
6974     if (CGDebugInfo *DI = getModuleDebugInfo())
6975       DI->EmitUsingDirective(cast<UsingDirectiveDecl>(*D));
6976     break;
6977   case Decl::CXXConstructor:
6978     getCXXABI().EmitCXXConstructors(cast<CXXConstructorDecl>(D));
6979     break;
6980   case Decl::CXXDestructor:
6981     getCXXABI().EmitCXXDestructors(cast<CXXDestructorDecl>(D));
6982     break;
6983 
6984   case Decl::StaticAssert:
6985     // Nothing to do.
6986     break;
6987 
6988   // Objective-C Decls
6989 
6990   // Forward declarations, no (immediate) code generation.
6991   case Decl::ObjCInterface:
6992   case Decl::ObjCCategory:
6993     break;
6994 
6995   case Decl::ObjCProtocol: {
6996     auto *Proto = cast<ObjCProtocolDecl>(D);
6997     if (Proto->isThisDeclarationADefinition())
6998       ObjCRuntime->GenerateProtocol(Proto);
6999     break;
7000   }
7001 
7002   case Decl::ObjCCategoryImpl:
7003     // Categories have properties but don't support synthesize so we
7004     // can ignore them here.
7005     ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D));
7006     break;
7007 
7008   case Decl::ObjCImplementation: {
7009     auto *OMD = cast<ObjCImplementationDecl>(D);
7010     EmitObjCPropertyImplementations(OMD);
7011     EmitObjCIvarInitializations(OMD);
7012     ObjCRuntime->GenerateClass(OMD);
7013     // Emit global variable debug information.
7014     if (CGDebugInfo *DI = getModuleDebugInfo())
7015       if (getCodeGenOpts().hasReducedDebugInfo())
7016         DI->getOrCreateInterfaceType(getContext().getObjCInterfaceType(
7017             OMD->getClassInterface()), OMD->getLocation());
7018     break;
7019   }
7020   case Decl::ObjCMethod: {
7021     auto *OMD = cast<ObjCMethodDecl>(D);
7022     // If this is not a prototype, emit the body.
7023     if (OMD->getBody())
7024       CodeGenFunction(*this).GenerateObjCMethod(OMD);
7025     break;
7026   }
7027   case Decl::ObjCCompatibleAlias:
7028     ObjCRuntime->RegisterAlias(cast<ObjCCompatibleAliasDecl>(D));
7029     break;
7030 
7031   case Decl::PragmaComment: {
7032     const auto *PCD = cast<PragmaCommentDecl>(D);
7033     switch (PCD->getCommentKind()) {
7034     case PCK_Unknown:
7035       llvm_unreachable("unexpected pragma comment kind");
7036     case PCK_Linker:
7037       AppendLinkerOptions(PCD->getArg());
7038       break;
7039     case PCK_Lib:
7040         AddDependentLib(PCD->getArg());
7041       break;
7042     case PCK_Compiler:
7043     case PCK_ExeStr:
7044     case PCK_User:
7045       break; // We ignore all of these.
7046     }
7047     break;
7048   }
7049 
7050   case Decl::PragmaDetectMismatch: {
7051     const auto *PDMD = cast<PragmaDetectMismatchDecl>(D);
7052     AddDetectMismatch(PDMD->getName(), PDMD->getValue());
7053     break;
7054   }
7055 
7056   case Decl::LinkageSpec:
7057     EmitLinkageSpec(cast<LinkageSpecDecl>(D));
7058     break;
7059 
7060   case Decl::FileScopeAsm: {
7061     // File-scope asm is ignored during device-side CUDA compilation.
7062     if (LangOpts.CUDA && LangOpts.CUDAIsDevice)
7063       break;
7064     // File-scope asm is ignored during device-side OpenMP compilation.
7065     if (LangOpts.OpenMPIsTargetDevice)
7066       break;
7067     // File-scope asm is ignored during device-side SYCL compilation.
7068     if (LangOpts.SYCLIsDevice)
7069       break;
7070     auto *AD = cast<FileScopeAsmDecl>(D);
7071     getModule().appendModuleInlineAsm(AD->getAsmString()->getString());
7072     break;
7073   }
7074 
7075   case Decl::TopLevelStmt:
7076     EmitTopLevelStmt(cast<TopLevelStmtDecl>(D));
7077     break;
7078 
7079   case Decl::Import: {
7080     auto *Import = cast<ImportDecl>(D);
7081 
7082     // If we've already imported this module, we're done.
7083     if (!ImportedModules.insert(Import->getImportedModule()))
7084       break;
7085 
7086     // Emit debug information for direct imports.
7087     if (!Import->getImportedOwningModule()) {
7088       if (CGDebugInfo *DI = getModuleDebugInfo())
7089         DI->EmitImportDecl(*Import);
7090     }
7091 
7092     // For C++ standard modules we are done - we will call the module
7093     // initializer for imported modules, and that will likewise call those for
7094     // any imports it has.
7095     if (CXX20ModuleInits && Import->getImportedOwningModule() &&
7096         !Import->getImportedOwningModule()->isModuleMapModule())
7097       break;
7098 
7099     // For clang C++ module map modules the initializers for sub-modules are
7100     // emitted here.
7101 
7102     // Find all of the submodules and emit the module initializers.
7103     llvm::SmallPtrSet<clang::Module *, 16> Visited;
7104     SmallVector<clang::Module *, 16> Stack;
7105     Visited.insert(Import->getImportedModule());
7106     Stack.push_back(Import->getImportedModule());
7107 
7108     while (!Stack.empty()) {
7109       clang::Module *Mod = Stack.pop_back_val();
7110       if (!EmittedModuleInitializers.insert(Mod).second)
7111         continue;
7112 
7113       for (auto *D : Context.getModuleInitializers(Mod))
7114         EmitTopLevelDecl(D);
7115 
7116       // Visit the submodules of this module.
7117       for (auto *Submodule : Mod->submodules()) {
7118         // Skip explicit children; they need to be explicitly imported to emit
7119         // the initializers.
7120         if (Submodule->IsExplicit)
7121           continue;
7122 
7123         if (Visited.insert(Submodule).second)
7124           Stack.push_back(Submodule);
7125       }
7126     }
7127     break;
7128   }
7129 
7130   case Decl::Export:
7131     EmitDeclContext(cast<ExportDecl>(D));
7132     break;
7133 
7134   case Decl::OMPThreadPrivate:
7135     EmitOMPThreadPrivateDecl(cast<OMPThreadPrivateDecl>(D));
7136     break;
7137 
7138   case Decl::OMPAllocate:
7139     EmitOMPAllocateDecl(cast<OMPAllocateDecl>(D));
7140     break;
7141 
7142   case Decl::OMPDeclareReduction:
7143     EmitOMPDeclareReduction(cast<OMPDeclareReductionDecl>(D));
7144     break;
7145 
7146   case Decl::OMPDeclareMapper:
7147     EmitOMPDeclareMapper(cast<OMPDeclareMapperDecl>(D));
7148     break;
7149 
7150   case Decl::OMPRequires:
7151     EmitOMPRequiresDecl(cast<OMPRequiresDecl>(D));
7152     break;
7153 
7154   case Decl::Typedef:
7155   case Decl::TypeAlias: // using foo = bar; [C++11]
7156     if (CGDebugInfo *DI = getModuleDebugInfo())
7157       DI->EmitAndRetainType(
7158           getContext().getTypedefType(cast<TypedefNameDecl>(D)));
7159     break;
7160 
7161   case Decl::Record:
7162     if (CGDebugInfo *DI = getModuleDebugInfo())
7163       if (cast<RecordDecl>(D)->getDefinition())
7164         DI->EmitAndRetainType(getContext().getRecordType(cast<RecordDecl>(D)));
7165     break;
7166 
7167   case Decl::Enum:
7168     if (CGDebugInfo *DI = getModuleDebugInfo())
7169       if (cast<EnumDecl>(D)->getDefinition())
7170         DI->EmitAndRetainType(getContext().getEnumType(cast<EnumDecl>(D)));
7171     break;
7172 
7173   case Decl::HLSLBuffer:
7174     getHLSLRuntime().addBuffer(cast<HLSLBufferDecl>(D));
7175     break;
7176 
7177   default:
7178     // Make sure we handled everything we should, every other kind is a
7179     // non-top-level decl.  FIXME: Would be nice to have an isTopLevelDeclKind
7180     // function. Need to recode Decl::Kind to do that easily.
7181     assert(isa<TypeDecl>(D) && "Unsupported decl kind");
7182     break;
7183   }
7184 }
7185 
7186 void CodeGenModule::AddDeferredUnusedCoverageMapping(Decl *D) {
7187   // Do we need to generate coverage mapping?
7188   if (!CodeGenOpts.CoverageMapping)
7189     return;
7190   switch (D->getKind()) {
7191   case Decl::CXXConversion:
7192   case Decl::CXXMethod:
7193   case Decl::Function:
7194   case Decl::ObjCMethod:
7195   case Decl::CXXConstructor:
7196   case Decl::CXXDestructor: {
7197     if (!cast<FunctionDecl>(D)->doesThisDeclarationHaveABody())
7198       break;
7199     SourceManager &SM = getContext().getSourceManager();
7200     if (LimitedCoverage && SM.getMainFileID() != SM.getFileID(D->getBeginLoc()))
7201       break;
7202     if (!llvm::coverage::SystemHeadersCoverage &&
7203         SM.isInSystemHeader(D->getBeginLoc()))
7204       break;
7205     DeferredEmptyCoverageMappingDecls.try_emplace(D, true);
7206     break;
7207   }
7208   default:
7209     break;
7210   };
7211 }
7212 
7213 void CodeGenModule::ClearUnusedCoverageMapping(const Decl *D) {
7214   // Do we need to generate coverage mapping?
7215   if (!CodeGenOpts.CoverageMapping)
7216     return;
7217   if (const auto *Fn = dyn_cast<FunctionDecl>(D)) {
7218     if (Fn->isTemplateInstantiation())
7219       ClearUnusedCoverageMapping(Fn->getTemplateInstantiationPattern());
7220   }
7221   DeferredEmptyCoverageMappingDecls.insert_or_assign(D, false);
7222 }
7223 
7224 void CodeGenModule::EmitDeferredUnusedCoverageMappings() {
7225   // We call takeVector() here to avoid use-after-free.
7226   // FIXME: DeferredEmptyCoverageMappingDecls is getting mutated because
7227   // we deserialize function bodies to emit coverage info for them, and that
7228   // deserializes more declarations. How should we handle that case?
7229   for (const auto &Entry : DeferredEmptyCoverageMappingDecls.takeVector()) {
7230     if (!Entry.second)
7231       continue;
7232     const Decl *D = Entry.first;
7233     switch (D->getKind()) {
7234     case Decl::CXXConversion:
7235     case Decl::CXXMethod:
7236     case Decl::Function:
7237     case Decl::ObjCMethod: {
7238       CodeGenPGO PGO(*this);
7239       GlobalDecl GD(cast<FunctionDecl>(D));
7240       PGO.emitEmptyCounterMapping(D, getMangledName(GD),
7241                                   getFunctionLinkage(GD));
7242       break;
7243     }
7244     case Decl::CXXConstructor: {
7245       CodeGenPGO PGO(*this);
7246       GlobalDecl GD(cast<CXXConstructorDecl>(D), Ctor_Base);
7247       PGO.emitEmptyCounterMapping(D, getMangledName(GD),
7248                                   getFunctionLinkage(GD));
7249       break;
7250     }
7251     case Decl::CXXDestructor: {
7252       CodeGenPGO PGO(*this);
7253       GlobalDecl GD(cast<CXXDestructorDecl>(D), Dtor_Base);
7254       PGO.emitEmptyCounterMapping(D, getMangledName(GD),
7255                                   getFunctionLinkage(GD));
7256       break;
7257     }
7258     default:
7259       break;
7260     };
7261   }
7262 }
7263 
7264 void CodeGenModule::EmitMainVoidAlias() {
7265   // In order to transition away from "__original_main" gracefully, emit an
7266   // alias for "main" in the no-argument case so that libc can detect when
7267   // new-style no-argument main is in used.
7268   if (llvm::Function *F = getModule().getFunction("main")) {
7269     if (!F->isDeclaration() && F->arg_size() == 0 && !F->isVarArg() &&
7270         F->getReturnType()->isIntegerTy(Context.getTargetInfo().getIntWidth())) {
7271       auto *GA = llvm::GlobalAlias::create("__main_void", F);
7272       GA->setVisibility(llvm::GlobalValue::HiddenVisibility);
7273     }
7274   }
7275 }
7276 
7277 /// Turns the given pointer into a constant.
7278 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context,
7279                                           const void *Ptr) {
7280   uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr);
7281   llvm::Type *i64 = llvm::Type::getInt64Ty(Context);
7282   return llvm::ConstantInt::get(i64, PtrInt);
7283 }
7284 
7285 static void EmitGlobalDeclMetadata(CodeGenModule &CGM,
7286                                    llvm::NamedMDNode *&GlobalMetadata,
7287                                    GlobalDecl D,
7288                                    llvm::GlobalValue *Addr) {
7289   if (!GlobalMetadata)
7290     GlobalMetadata =
7291       CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs");
7292 
7293   // TODO: should we report variant information for ctors/dtors?
7294   llvm::Metadata *Ops[] = {llvm::ConstantAsMetadata::get(Addr),
7295                            llvm::ConstantAsMetadata::get(GetPointerConstant(
7296                                CGM.getLLVMContext(), D.getDecl()))};
7297   GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops));
7298 }
7299 
7300 bool CodeGenModule::CheckAndReplaceExternCIFuncs(llvm::GlobalValue *Elem,
7301                                                  llvm::GlobalValue *CppFunc) {
7302   // Store the list of ifuncs we need to replace uses in.
7303   llvm::SmallVector<llvm::GlobalIFunc *> IFuncs;
7304   // List of ConstantExprs that we should be able to delete when we're done
7305   // here.
7306   llvm::SmallVector<llvm::ConstantExpr *> CEs;
7307 
7308   // It isn't valid to replace the extern-C ifuncs if all we find is itself!
7309   if (Elem == CppFunc)
7310     return false;
7311 
7312   // First make sure that all users of this are ifuncs (or ifuncs via a
7313   // bitcast), and collect the list of ifuncs and CEs so we can work on them
7314   // later.
7315   for (llvm::User *User : Elem->users()) {
7316     // Users can either be a bitcast ConstExpr that is used by the ifuncs, OR an
7317     // ifunc directly. In any other case, just give up, as we don't know what we
7318     // could break by changing those.
7319     if (auto *ConstExpr = dyn_cast<llvm::ConstantExpr>(User)) {
7320       if (ConstExpr->getOpcode() != llvm::Instruction::BitCast)
7321         return false;
7322 
7323       for (llvm::User *CEUser : ConstExpr->users()) {
7324         if (auto *IFunc = dyn_cast<llvm::GlobalIFunc>(CEUser)) {
7325           IFuncs.push_back(IFunc);
7326         } else {
7327           return false;
7328         }
7329       }
7330       CEs.push_back(ConstExpr);
7331     } else if (auto *IFunc = dyn_cast<llvm::GlobalIFunc>(User)) {
7332       IFuncs.push_back(IFunc);
7333     } else {
7334       // This user is one we don't know how to handle, so fail redirection. This
7335       // will result in an ifunc retaining a resolver name that will ultimately
7336       // fail to be resolved to a defined function.
7337       return false;
7338     }
7339   }
7340 
7341   // Now we know this is a valid case where we can do this alias replacement, we
7342   // need to remove all of the references to Elem (and the bitcasts!) so we can
7343   // delete it.
7344   for (llvm::GlobalIFunc *IFunc : IFuncs)
7345     IFunc->setResolver(nullptr);
7346   for (llvm::ConstantExpr *ConstExpr : CEs)
7347     ConstExpr->destroyConstant();
7348 
7349   // We should now be out of uses for the 'old' version of this function, so we
7350   // can erase it as well.
7351   Elem->eraseFromParent();
7352 
7353   for (llvm::GlobalIFunc *IFunc : IFuncs) {
7354     // The type of the resolver is always just a function-type that returns the
7355     // type of the IFunc, so create that here. If the type of the actual
7356     // resolver doesn't match, it just gets bitcast to the right thing.
7357     auto *ResolverTy =
7358         llvm::FunctionType::get(IFunc->getType(), /*isVarArg*/ false);
7359     llvm::Constant *Resolver = GetOrCreateLLVMFunction(
7360         CppFunc->getName(), ResolverTy, {}, /*ForVTable*/ false);
7361     IFunc->setResolver(Resolver);
7362   }
7363   return true;
7364 }
7365 
7366 /// For each function which is declared within an extern "C" region and marked
7367 /// as 'used', but has internal linkage, create an alias from the unmangled
7368 /// name to the mangled name if possible. People expect to be able to refer
7369 /// to such functions with an unmangled name from inline assembly within the
7370 /// same translation unit.
7371 void CodeGenModule::EmitStaticExternCAliases() {
7372   if (!getTargetCodeGenInfo().shouldEmitStaticExternCAliases())
7373     return;
7374   for (auto &I : StaticExternCValues) {
7375     const IdentifierInfo *Name = I.first;
7376     llvm::GlobalValue *Val = I.second;
7377 
7378     // If Val is null, that implies there were multiple declarations that each
7379     // had a claim to the unmangled name. In this case, generation of the alias
7380     // is suppressed. See CodeGenModule::MaybeHandleStaticInExternC.
7381     if (!Val)
7382       break;
7383 
7384     llvm::GlobalValue *ExistingElem =
7385         getModule().getNamedValue(Name->getName());
7386 
7387     // If there is either not something already by this name, or we were able to
7388     // replace all uses from IFuncs, create the alias.
7389     if (!ExistingElem || CheckAndReplaceExternCIFuncs(ExistingElem, Val))
7390       addCompilerUsedGlobal(llvm::GlobalAlias::create(Name->getName(), Val));
7391   }
7392 }
7393 
7394 bool CodeGenModule::lookupRepresentativeDecl(StringRef MangledName,
7395                                              GlobalDecl &Result) const {
7396   auto Res = Manglings.find(MangledName);
7397   if (Res == Manglings.end())
7398     return false;
7399   Result = Res->getValue();
7400   return true;
7401 }
7402 
7403 /// Emits metadata nodes associating all the global values in the
7404 /// current module with the Decls they came from.  This is useful for
7405 /// projects using IR gen as a subroutine.
7406 ///
7407 /// Since there's currently no way to associate an MDNode directly
7408 /// with an llvm::GlobalValue, we create a global named metadata
7409 /// with the name 'clang.global.decl.ptrs'.
7410 void CodeGenModule::EmitDeclMetadata() {
7411   llvm::NamedMDNode *GlobalMetadata = nullptr;
7412 
7413   for (auto &I : MangledDeclNames) {
7414     llvm::GlobalValue *Addr = getModule().getNamedValue(I.second);
7415     // Some mangled names don't necessarily have an associated GlobalValue
7416     // in this module, e.g. if we mangled it for DebugInfo.
7417     if (Addr)
7418       EmitGlobalDeclMetadata(*this, GlobalMetadata, I.first, Addr);
7419   }
7420 }
7421 
7422 /// Emits metadata nodes for all the local variables in the current
7423 /// function.
7424 void CodeGenFunction::EmitDeclMetadata() {
7425   if (LocalDeclMap.empty()) return;
7426 
7427   llvm::LLVMContext &Context = getLLVMContext();
7428 
7429   // Find the unique metadata ID for this name.
7430   unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr");
7431 
7432   llvm::NamedMDNode *GlobalMetadata = nullptr;
7433 
7434   for (auto &I : LocalDeclMap) {
7435     const Decl *D = I.first;
7436     llvm::Value *Addr = I.second.emitRawPointer(*this);
7437     if (auto *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) {
7438       llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D);
7439       Alloca->setMetadata(
7440           DeclPtrKind, llvm::MDNode::get(
7441                            Context, llvm::ValueAsMetadata::getConstant(DAddr)));
7442     } else if (auto *GV = dyn_cast<llvm::GlobalValue>(Addr)) {
7443       GlobalDecl GD = GlobalDecl(cast<VarDecl>(D));
7444       EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV);
7445     }
7446   }
7447 }
7448 
7449 void CodeGenModule::EmitVersionIdentMetadata() {
7450   llvm::NamedMDNode *IdentMetadata =
7451     TheModule.getOrInsertNamedMetadata("llvm.ident");
7452   std::string Version = getClangFullVersion();
7453   llvm::LLVMContext &Ctx = TheModule.getContext();
7454 
7455   llvm::Metadata *IdentNode[] = {llvm::MDString::get(Ctx, Version)};
7456   IdentMetadata->addOperand(llvm::MDNode::get(Ctx, IdentNode));
7457 }
7458 
7459 void CodeGenModule::EmitCommandLineMetadata() {
7460   llvm::NamedMDNode *CommandLineMetadata =
7461     TheModule.getOrInsertNamedMetadata("llvm.commandline");
7462   std::string CommandLine = getCodeGenOpts().RecordCommandLine;
7463   llvm::LLVMContext &Ctx = TheModule.getContext();
7464 
7465   llvm::Metadata *CommandLineNode[] = {llvm::MDString::get(Ctx, CommandLine)};
7466   CommandLineMetadata->addOperand(llvm::MDNode::get(Ctx, CommandLineNode));
7467 }
7468 
7469 void CodeGenModule::EmitCoverageFile() {
7470   llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu");
7471   if (!CUNode)
7472     return;
7473 
7474   llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov");
7475   llvm::LLVMContext &Ctx = TheModule.getContext();
7476   auto *CoverageDataFile =
7477       llvm::MDString::get(Ctx, getCodeGenOpts().CoverageDataFile);
7478   auto *CoverageNotesFile =
7479       llvm::MDString::get(Ctx, getCodeGenOpts().CoverageNotesFile);
7480   for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) {
7481     llvm::MDNode *CU = CUNode->getOperand(i);
7482     llvm::Metadata *Elts[] = {CoverageNotesFile, CoverageDataFile, CU};
7483     GCov->addOperand(llvm::MDNode::get(Ctx, Elts));
7484   }
7485 }
7486 
7487 llvm::Constant *CodeGenModule::GetAddrOfRTTIDescriptor(QualType Ty,
7488                                                        bool ForEH) {
7489   // Return a bogus pointer if RTTI is disabled, unless it's for EH.
7490   // FIXME: should we even be calling this method if RTTI is disabled
7491   // and it's not for EH?
7492   if (!shouldEmitRTTI(ForEH))
7493     return llvm::Constant::getNullValue(GlobalsInt8PtrTy);
7494 
7495   if (ForEH && Ty->isObjCObjectPointerType() &&
7496       LangOpts.ObjCRuntime.isGNUFamily())
7497     return ObjCRuntime->GetEHType(Ty);
7498 
7499   return getCXXABI().getAddrOfRTTIDescriptor(Ty);
7500 }
7501 
7502 void CodeGenModule::EmitOMPThreadPrivateDecl(const OMPThreadPrivateDecl *D) {
7503   // Do not emit threadprivates in simd-only mode.
7504   if (LangOpts.OpenMP && LangOpts.OpenMPSimd)
7505     return;
7506   for (auto RefExpr : D->varlist()) {
7507     auto *VD = cast<VarDecl>(cast<DeclRefExpr>(RefExpr)->getDecl());
7508     bool PerformInit =
7509         VD->getAnyInitializer() &&
7510         !VD->getAnyInitializer()->isConstantInitializer(getContext(),
7511                                                         /*ForRef=*/false);
7512 
7513     Address Addr(GetAddrOfGlobalVar(VD),
7514                  getTypes().ConvertTypeForMem(VD->getType()),
7515                  getContext().getDeclAlign(VD));
7516     if (auto InitFunction = getOpenMPRuntime().emitThreadPrivateVarDefinition(
7517             VD, Addr, RefExpr->getBeginLoc(), PerformInit))
7518       CXXGlobalInits.push_back(InitFunction);
7519   }
7520 }
7521 
7522 llvm::Metadata *
7523 CodeGenModule::CreateMetadataIdentifierImpl(QualType T, MetadataTypeMap &Map,
7524                                             StringRef Suffix) {
7525   if (auto *FnType = T->getAs<FunctionProtoType>())
7526     T = getContext().getFunctionType(
7527         FnType->getReturnType(), FnType->getParamTypes(),
7528         FnType->getExtProtoInfo().withExceptionSpec(EST_None));
7529 
7530   llvm::Metadata *&InternalId = Map[T.getCanonicalType()];
7531   if (InternalId)
7532     return InternalId;
7533 
7534   if (isExternallyVisible(T->getLinkage())) {
7535     std::string OutName;
7536     llvm::raw_string_ostream Out(OutName);
7537     getCXXABI().getMangleContext().mangleCanonicalTypeName(
7538         T, Out, getCodeGenOpts().SanitizeCfiICallNormalizeIntegers);
7539 
7540     if (getCodeGenOpts().SanitizeCfiICallNormalizeIntegers)
7541       Out << ".normalized";
7542 
7543     Out << Suffix;
7544 
7545     InternalId = llvm::MDString::get(getLLVMContext(), Out.str());
7546   } else {
7547     InternalId = llvm::MDNode::getDistinct(getLLVMContext(),
7548                                            llvm::ArrayRef<llvm::Metadata *>());
7549   }
7550 
7551   return InternalId;
7552 }
7553 
7554 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierForType(QualType T) {
7555   return CreateMetadataIdentifierImpl(T, MetadataIdMap, "");
7556 }
7557 
7558 llvm::Metadata *
7559 CodeGenModule::CreateMetadataIdentifierForVirtualMemPtrType(QualType T) {
7560   return CreateMetadataIdentifierImpl(T, VirtualMetadataIdMap, ".virtual");
7561 }
7562 
7563 // Generalize pointer types to a void pointer with the qualifiers of the
7564 // originally pointed-to type, e.g. 'const char *' and 'char * const *'
7565 // generalize to 'const void *' while 'char *' and 'const char **' generalize to
7566 // 'void *'.
7567 static QualType GeneralizeType(ASTContext &Ctx, QualType Ty) {
7568   if (!Ty->isPointerType())
7569     return Ty;
7570 
7571   return Ctx.getPointerType(
7572       QualType(Ctx.VoidTy).withCVRQualifiers(
7573           Ty->getPointeeType().getCVRQualifiers()));
7574 }
7575 
7576 // Apply type generalization to a FunctionType's return and argument types
7577 static QualType GeneralizeFunctionType(ASTContext &Ctx, QualType Ty) {
7578   if (auto *FnType = Ty->getAs<FunctionProtoType>()) {
7579     SmallVector<QualType, 8> GeneralizedParams;
7580     for (auto &Param : FnType->param_types())
7581       GeneralizedParams.push_back(GeneralizeType(Ctx, Param));
7582 
7583     return Ctx.getFunctionType(
7584         GeneralizeType(Ctx, FnType->getReturnType()),
7585         GeneralizedParams, FnType->getExtProtoInfo());
7586   }
7587 
7588   if (auto *FnType = Ty->getAs<FunctionNoProtoType>())
7589     return Ctx.getFunctionNoProtoType(
7590         GeneralizeType(Ctx, FnType->getReturnType()));
7591 
7592   llvm_unreachable("Encountered unknown FunctionType");
7593 }
7594 
7595 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierGeneralized(QualType T) {
7596   return CreateMetadataIdentifierImpl(GeneralizeFunctionType(getContext(), T),
7597                                       GeneralizedMetadataIdMap, ".generalized");
7598 }
7599 
7600 /// Returns whether this module needs the "all-vtables" type identifier.
7601 bool CodeGenModule::NeedAllVtablesTypeId() const {
7602   // Returns true if at least one of vtable-based CFI checkers is enabled and
7603   // is not in the trapping mode.
7604   return ((LangOpts.Sanitize.has(SanitizerKind::CFIVCall) &&
7605            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIVCall)) ||
7606           (LangOpts.Sanitize.has(SanitizerKind::CFINVCall) &&
7607            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFINVCall)) ||
7608           (LangOpts.Sanitize.has(SanitizerKind::CFIDerivedCast) &&
7609            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIDerivedCast)) ||
7610           (LangOpts.Sanitize.has(SanitizerKind::CFIUnrelatedCast) &&
7611            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIUnrelatedCast)));
7612 }
7613 
7614 void CodeGenModule::AddVTableTypeMetadata(llvm::GlobalVariable *VTable,
7615                                           CharUnits Offset,
7616                                           const CXXRecordDecl *RD) {
7617   llvm::Metadata *MD =
7618       CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0));
7619   VTable->addTypeMetadata(Offset.getQuantity(), MD);
7620 
7621   if (CodeGenOpts.SanitizeCfiCrossDso)
7622     if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD))
7623       VTable->addTypeMetadata(Offset.getQuantity(),
7624                               llvm::ConstantAsMetadata::get(CrossDsoTypeId));
7625 
7626   if (NeedAllVtablesTypeId()) {
7627     llvm::Metadata *MD = llvm::MDString::get(getLLVMContext(), "all-vtables");
7628     VTable->addTypeMetadata(Offset.getQuantity(), MD);
7629   }
7630 }
7631 
7632 llvm::SanitizerStatReport &CodeGenModule::getSanStats() {
7633   if (!SanStats)
7634     SanStats = std::make_unique<llvm::SanitizerStatReport>(&getModule());
7635 
7636   return *SanStats;
7637 }
7638 
7639 llvm::Value *
7640 CodeGenModule::createOpenCLIntToSamplerConversion(const Expr *E,
7641                                                   CodeGenFunction &CGF) {
7642   llvm::Constant *C = ConstantEmitter(CGF).emitAbstract(E, E->getType());
7643   auto *SamplerT = getOpenCLRuntime().getSamplerType(E->getType().getTypePtr());
7644   auto *FTy = llvm::FunctionType::get(SamplerT, {C->getType()}, false);
7645   auto *Call = CGF.EmitRuntimeCall(
7646       CreateRuntimeFunction(FTy, "__translate_sampler_initializer"), {C});
7647   return Call;
7648 }
7649 
7650 CharUnits CodeGenModule::getNaturalPointeeTypeAlignment(
7651     QualType T, LValueBaseInfo *BaseInfo, TBAAAccessInfo *TBAAInfo) {
7652   return getNaturalTypeAlignment(T->getPointeeType(), BaseInfo, TBAAInfo,
7653                                  /* forPointeeType= */ true);
7654 }
7655 
7656 CharUnits CodeGenModule::getNaturalTypeAlignment(QualType T,
7657                                                  LValueBaseInfo *BaseInfo,
7658                                                  TBAAAccessInfo *TBAAInfo,
7659                                                  bool forPointeeType) {
7660   if (TBAAInfo)
7661     *TBAAInfo = getTBAAAccessInfo(T);
7662 
7663   // FIXME: This duplicates logic in ASTContext::getTypeAlignIfKnown. But
7664   // that doesn't return the information we need to compute BaseInfo.
7665 
7666   // Honor alignment typedef attributes even on incomplete types.
7667   // We also honor them straight for C++ class types, even as pointees;
7668   // there's an expressivity gap here.
7669   if (auto TT = T->getAs<TypedefType>()) {
7670     if (auto Align = TT->getDecl()->getMaxAlignment()) {
7671       if (BaseInfo)
7672         *BaseInfo = LValueBaseInfo(AlignmentSource::AttributedType);
7673       return getContext().toCharUnitsFromBits(Align);
7674     }
7675   }
7676 
7677   bool AlignForArray = T->isArrayType();
7678 
7679   // Analyze the base element type, so we don't get confused by incomplete
7680   // array types.
7681   T = getContext().getBaseElementType(T);
7682 
7683   if (T->isIncompleteType()) {
7684     // We could try to replicate the logic from
7685     // ASTContext::getTypeAlignIfKnown, but nothing uses the alignment if the
7686     // type is incomplete, so it's impossible to test. We could try to reuse
7687     // getTypeAlignIfKnown, but that doesn't return the information we need
7688     // to set BaseInfo.  So just ignore the possibility that the alignment is
7689     // greater than one.
7690     if (BaseInfo)
7691       *BaseInfo = LValueBaseInfo(AlignmentSource::Type);
7692     return CharUnits::One();
7693   }
7694 
7695   if (BaseInfo)
7696     *BaseInfo = LValueBaseInfo(AlignmentSource::Type);
7697 
7698   CharUnits Alignment;
7699   const CXXRecordDecl *RD;
7700   if (T.getQualifiers().hasUnaligned()) {
7701     Alignment = CharUnits::One();
7702   } else if (forPointeeType && !AlignForArray &&
7703              (RD = T->getAsCXXRecordDecl())) {
7704     // For C++ class pointees, we don't know whether we're pointing at a
7705     // base or a complete object, so we generally need to use the
7706     // non-virtual alignment.
7707     Alignment = getClassPointerAlignment(RD);
7708   } else {
7709     Alignment = getContext().getTypeAlignInChars(T);
7710   }
7711 
7712   // Cap to the global maximum type alignment unless the alignment
7713   // was somehow explicit on the type.
7714   if (unsigned MaxAlign = getLangOpts().MaxTypeAlign) {
7715     if (Alignment.getQuantity() > MaxAlign &&
7716         !getContext().isAlignmentRequired(T))
7717       Alignment = CharUnits::fromQuantity(MaxAlign);
7718   }
7719   return Alignment;
7720 }
7721 
7722 bool CodeGenModule::stopAutoInit() {
7723   unsigned StopAfter = getContext().getLangOpts().TrivialAutoVarInitStopAfter;
7724   if (StopAfter) {
7725     // This number is positive only when -ftrivial-auto-var-init-stop-after=* is
7726     // used
7727     if (NumAutoVarInit >= StopAfter) {
7728       return true;
7729     }
7730     if (!NumAutoVarInit) {
7731       unsigned DiagID = getDiags().getCustomDiagID(
7732           DiagnosticsEngine::Warning,
7733           "-ftrivial-auto-var-init-stop-after=%0 has been enabled to limit the "
7734           "number of times ftrivial-auto-var-init=%1 gets applied.");
7735       getDiags().Report(DiagID)
7736           << StopAfter
7737           << (getContext().getLangOpts().getTrivialAutoVarInit() ==
7738                       LangOptions::TrivialAutoVarInitKind::Zero
7739                   ? "zero"
7740                   : "pattern");
7741     }
7742     ++NumAutoVarInit;
7743   }
7744   return false;
7745 }
7746 
7747 void CodeGenModule::printPostfixForExternalizedDecl(llvm::raw_ostream &OS,
7748                                                     const Decl *D) const {
7749   // ptxas does not allow '.' in symbol names. On the other hand, HIP prefers
7750   // postfix beginning with '.' since the symbol name can be demangled.
7751   if (LangOpts.HIP)
7752     OS << (isa<VarDecl>(D) ? ".static." : ".intern.");
7753   else
7754     OS << (isa<VarDecl>(D) ? "__static__" : "__intern__");
7755 
7756   // If the CUID is not specified we try to generate a unique postfix.
7757   if (getLangOpts().CUID.empty()) {
7758     SourceManager &SM = getContext().getSourceManager();
7759     PresumedLoc PLoc = SM.getPresumedLoc(D->getLocation());
7760     assert(PLoc.isValid() && "Source location is expected to be valid.");
7761 
7762     // Get the hash of the user defined macros.
7763     llvm::MD5 Hash;
7764     llvm::MD5::MD5Result Result;
7765     for (const auto &Arg : PreprocessorOpts.Macros)
7766       Hash.update(Arg.first);
7767     Hash.final(Result);
7768 
7769     // Get the UniqueID for the file containing the decl.
7770     llvm::sys::fs::UniqueID ID;
7771     if (llvm::sys::fs::getUniqueID(PLoc.getFilename(), ID)) {
7772       PLoc = SM.getPresumedLoc(D->getLocation(), /*UseLineDirectives=*/false);
7773       assert(PLoc.isValid() && "Source location is expected to be valid.");
7774       if (auto EC = llvm::sys::fs::getUniqueID(PLoc.getFilename(), ID))
7775         SM.getDiagnostics().Report(diag::err_cannot_open_file)
7776             << PLoc.getFilename() << EC.message();
7777     }
7778     OS << llvm::format("%x", ID.getFile()) << llvm::format("%x", ID.getDevice())
7779        << "_" << llvm::utohexstr(Result.low(), /*LowerCase=*/true, /*Width=*/8);
7780   } else {
7781     OS << getContext().getCUIDHash();
7782   }
7783 }
7784 
7785 void CodeGenModule::moveLazyEmissionStates(CodeGenModule *NewBuilder) {
7786   assert(DeferredDeclsToEmit.empty() &&
7787          "Should have emitted all decls deferred to emit.");
7788   assert(NewBuilder->DeferredDecls.empty() &&
7789          "Newly created module should not have deferred decls");
7790   NewBuilder->DeferredDecls = std::move(DeferredDecls);
7791   assert(EmittedDeferredDecls.empty() &&
7792          "Still have (unmerged) EmittedDeferredDecls deferred decls");
7793 
7794   assert(NewBuilder->DeferredVTables.empty() &&
7795          "Newly created module should not have deferred vtables");
7796   NewBuilder->DeferredVTables = std::move(DeferredVTables);
7797 
7798   assert(NewBuilder->MangledDeclNames.empty() &&
7799          "Newly created module should not have mangled decl names");
7800   assert(NewBuilder->Manglings.empty() &&
7801          "Newly created module should not have manglings");
7802   NewBuilder->Manglings = std::move(Manglings);
7803 
7804   NewBuilder->WeakRefReferences = std::move(WeakRefReferences);
7805 
7806   NewBuilder->TBAA = std::move(TBAA);
7807 
7808   NewBuilder->ABI->MangleCtx = std::move(ABI->MangleCtx);
7809 }
7810