xref: /llvm-project/clang/lib/CodeGen/CodeGenModule.cpp (revision 6ddfca91e04e62089d685b31533b9a2d677d9a5e)
1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This coordinates the per-module state used while generating code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenModule.h"
15 #include "CGCUDARuntime.h"
16 #include "CGCXXABI.h"
17 #include "CGCall.h"
18 #include "CGDebugInfo.h"
19 #include "CGObjCRuntime.h"
20 #include "CGOpenCLRuntime.h"
21 #include "CodeGenFunction.h"
22 #include "CodeGenTBAA.h"
23 #include "TargetInfo.h"
24 #include "clang/AST/ASTContext.h"
25 #include "clang/AST/CharUnits.h"
26 #include "clang/AST/DeclCXX.h"
27 #include "clang/AST/DeclObjC.h"
28 #include "clang/AST/DeclTemplate.h"
29 #include "clang/AST/Mangle.h"
30 #include "clang/AST/RecordLayout.h"
31 #include "clang/AST/RecursiveASTVisitor.h"
32 #include "clang/Basic/Builtins.h"
33 #include "clang/Basic/ConvertUTF.h"
34 #include "clang/Basic/Diagnostic.h"
35 #include "clang/Basic/Module.h"
36 #include "clang/Basic/SourceManager.h"
37 #include "clang/Basic/TargetInfo.h"
38 #include "clang/Frontend/CodeGenOptions.h"
39 #include "llvm/ADT/APSInt.h"
40 #include "llvm/ADT/Triple.h"
41 #include "llvm/IR/CallingConv.h"
42 #include "llvm/IR/DataLayout.h"
43 #include "llvm/IR/Intrinsics.h"
44 #include "llvm/IR/LLVMContext.h"
45 #include "llvm/IR/Module.h"
46 #include "llvm/Support/CallSite.h"
47 #include "llvm/Support/ErrorHandling.h"
48 #include "llvm/Target/Mangler.h"
49 using namespace clang;
50 using namespace CodeGen;
51 
52 static const char AnnotationSection[] = "llvm.metadata";
53 
54 static CGCXXABI &createCXXABI(CodeGenModule &CGM) {
55   switch (CGM.getContext().getTargetInfo().getCXXABI()) {
56   case CXXABI_ARM: return *CreateARMCXXABI(CGM);
57   case CXXABI_Itanium: return *CreateItaniumCXXABI(CGM);
58   case CXXABI_Microsoft: return *CreateMicrosoftCXXABI(CGM);
59   }
60 
61   llvm_unreachable("invalid C++ ABI kind");
62 }
63 
64 
65 CodeGenModule::CodeGenModule(ASTContext &C, const CodeGenOptions &CGO,
66                              llvm::Module &M, const llvm::DataLayout &TD,
67                              DiagnosticsEngine &diags)
68   : Context(C), LangOpts(C.getLangOpts()), CodeGenOpts(CGO), TheModule(M),
69     TheDataLayout(TD), TheTargetCodeGenInfo(0), Diags(diags),
70     ABI(createCXXABI(*this)),
71     Types(*this),
72     TBAA(0),
73     VTables(*this), ObjCRuntime(0), OpenCLRuntime(0), CUDARuntime(0),
74     DebugInfo(0), ARCData(0), NoObjCARCExceptionsMetadata(0),
75     RRData(0), CFConstantStringClassRef(0),
76     ConstantStringClassRef(0), NSConstantStringType(0),
77     VMContext(M.getContext()),
78     NSConcreteGlobalBlock(0), NSConcreteStackBlock(0),
79     BlockObjectAssign(0), BlockObjectDispose(0),
80     BlockDescriptorType(0), GenericBlockLiteralType(0) {
81 
82   // Initialize the type cache.
83   llvm::LLVMContext &LLVMContext = M.getContext();
84   VoidTy = llvm::Type::getVoidTy(LLVMContext);
85   Int8Ty = llvm::Type::getInt8Ty(LLVMContext);
86   Int16Ty = llvm::Type::getInt16Ty(LLVMContext);
87   Int32Ty = llvm::Type::getInt32Ty(LLVMContext);
88   Int64Ty = llvm::Type::getInt64Ty(LLVMContext);
89   FloatTy = llvm::Type::getFloatTy(LLVMContext);
90   DoubleTy = llvm::Type::getDoubleTy(LLVMContext);
91   PointerWidthInBits = C.getTargetInfo().getPointerWidth(0);
92   PointerAlignInBytes =
93   C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(0)).getQuantity();
94   IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth());
95   IntPtrTy = llvm::IntegerType::get(LLVMContext, PointerWidthInBits);
96   Int8PtrTy = Int8Ty->getPointerTo(0);
97   Int8PtrPtrTy = Int8PtrTy->getPointerTo(0);
98 
99   if (LangOpts.ObjC1)
100     createObjCRuntime();
101   if (LangOpts.OpenCL)
102     createOpenCLRuntime();
103   if (LangOpts.CUDA)
104     createCUDARuntime();
105 
106   // Enable TBAA unless it's suppressed. ThreadSanitizer needs TBAA even at O0.
107   if (LangOpts.SanitizeThread ||
108       (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0))
109     TBAA = new CodeGenTBAA(Context, VMContext, CodeGenOpts, getLangOpts(),
110                            ABI.getMangleContext());
111 
112   // If debug info or coverage generation is enabled, create the CGDebugInfo
113   // object.
114   if (CodeGenOpts.getDebugInfo() != CodeGenOptions::NoDebugInfo ||
115       CodeGenOpts.EmitGcovArcs ||
116       CodeGenOpts.EmitGcovNotes)
117     DebugInfo = new CGDebugInfo(*this);
118 
119   Block.GlobalUniqueCount = 0;
120 
121   if (C.getLangOpts().ObjCAutoRefCount)
122     ARCData = new ARCEntrypoints();
123   RRData = new RREntrypoints();
124 }
125 
126 CodeGenModule::~CodeGenModule() {
127   delete ObjCRuntime;
128   delete OpenCLRuntime;
129   delete CUDARuntime;
130   delete TheTargetCodeGenInfo;
131   delete &ABI;
132   delete TBAA;
133   delete DebugInfo;
134   delete ARCData;
135   delete RRData;
136 }
137 
138 void CodeGenModule::createObjCRuntime() {
139   // This is just isGNUFamily(), but we want to force implementors of
140   // new ABIs to decide how best to do this.
141   switch (LangOpts.ObjCRuntime.getKind()) {
142   case ObjCRuntime::GNUstep:
143   case ObjCRuntime::GCC:
144   case ObjCRuntime::ObjFW:
145     ObjCRuntime = CreateGNUObjCRuntime(*this);
146     return;
147 
148   case ObjCRuntime::FragileMacOSX:
149   case ObjCRuntime::MacOSX:
150   case ObjCRuntime::iOS:
151     ObjCRuntime = CreateMacObjCRuntime(*this);
152     return;
153   }
154   llvm_unreachable("bad runtime kind");
155 }
156 
157 void CodeGenModule::createOpenCLRuntime() {
158   OpenCLRuntime = new CGOpenCLRuntime(*this);
159 }
160 
161 void CodeGenModule::createCUDARuntime() {
162   CUDARuntime = CreateNVCUDARuntime(*this);
163 }
164 
165 void CodeGenModule::Release() {
166   EmitDeferred();
167   EmitCXXGlobalInitFunc();
168   EmitCXXGlobalDtorFunc();
169   if (ObjCRuntime)
170     if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction())
171       AddGlobalCtor(ObjCInitFunction);
172   EmitCtorList(GlobalCtors, "llvm.global_ctors");
173   EmitCtorList(GlobalDtors, "llvm.global_dtors");
174   EmitGlobalAnnotations();
175   EmitLLVMUsed();
176   EmitLinkLibraries();
177 
178   SimplifyPersonality();
179 
180   if (getCodeGenOpts().EmitDeclMetadata)
181     EmitDeclMetadata();
182 
183   if (getCodeGenOpts().EmitGcovArcs || getCodeGenOpts().EmitGcovNotes)
184     EmitCoverageFile();
185 
186   if (DebugInfo)
187     DebugInfo->finalize();
188 }
189 
190 void CodeGenModule::UpdateCompletedType(const TagDecl *TD) {
191   // Make sure that this type is translated.
192   Types.UpdateCompletedType(TD);
193 }
194 
195 llvm::MDNode *CodeGenModule::getTBAAInfo(QualType QTy) {
196   if (!TBAA)
197     return 0;
198   return TBAA->getTBAAInfo(QTy);
199 }
200 
201 llvm::MDNode *CodeGenModule::getTBAAInfoForVTablePtr() {
202   if (!TBAA)
203     return 0;
204   return TBAA->getTBAAInfoForVTablePtr();
205 }
206 
207 llvm::MDNode *CodeGenModule::getTBAAStructInfo(QualType QTy) {
208   if (!TBAA)
209     return 0;
210   return TBAA->getTBAAStructInfo(QTy);
211 }
212 
213 void CodeGenModule::DecorateInstruction(llvm::Instruction *Inst,
214                                         llvm::MDNode *TBAAInfo) {
215   Inst->setMetadata(llvm::LLVMContext::MD_tbaa, TBAAInfo);
216 }
217 
218 bool CodeGenModule::isTargetDarwin() const {
219   return getContext().getTargetInfo().getTriple().isOSDarwin();
220 }
221 
222 void CodeGenModule::Error(SourceLocation loc, StringRef error) {
223   unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, error);
224   getDiags().Report(Context.getFullLoc(loc), diagID);
225 }
226 
227 /// ErrorUnsupported - Print out an error that codegen doesn't support the
228 /// specified stmt yet.
229 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type,
230                                      bool OmitOnError) {
231   if (OmitOnError && getDiags().hasErrorOccurred())
232     return;
233   unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
234                                                "cannot compile this %0 yet");
235   std::string Msg = Type;
236   getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID)
237     << Msg << S->getSourceRange();
238 }
239 
240 /// ErrorUnsupported - Print out an error that codegen doesn't support the
241 /// specified decl yet.
242 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type,
243                                      bool OmitOnError) {
244   if (OmitOnError && getDiags().hasErrorOccurred())
245     return;
246   unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
247                                                "cannot compile this %0 yet");
248   std::string Msg = Type;
249   getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg;
250 }
251 
252 llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) {
253   return llvm::ConstantInt::get(SizeTy, size.getQuantity());
254 }
255 
256 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV,
257                                         const NamedDecl *D) const {
258   // Internal definitions always have default visibility.
259   if (GV->hasLocalLinkage()) {
260     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
261     return;
262   }
263 
264   // Set visibility for definitions.
265   NamedDecl::LinkageInfo LV = D->getLinkageAndVisibility();
266   if (LV.visibilityExplicit() || !GV->hasAvailableExternallyLinkage())
267     GV->setVisibility(GetLLVMVisibility(LV.visibility()));
268 }
269 
270 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(StringRef S) {
271   return llvm::StringSwitch<llvm::GlobalVariable::ThreadLocalMode>(S)
272       .Case("global-dynamic", llvm::GlobalVariable::GeneralDynamicTLSModel)
273       .Case("local-dynamic", llvm::GlobalVariable::LocalDynamicTLSModel)
274       .Case("initial-exec", llvm::GlobalVariable::InitialExecTLSModel)
275       .Case("local-exec", llvm::GlobalVariable::LocalExecTLSModel);
276 }
277 
278 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(
279     CodeGenOptions::TLSModel M) {
280   switch (M) {
281   case CodeGenOptions::GeneralDynamicTLSModel:
282     return llvm::GlobalVariable::GeneralDynamicTLSModel;
283   case CodeGenOptions::LocalDynamicTLSModel:
284     return llvm::GlobalVariable::LocalDynamicTLSModel;
285   case CodeGenOptions::InitialExecTLSModel:
286     return llvm::GlobalVariable::InitialExecTLSModel;
287   case CodeGenOptions::LocalExecTLSModel:
288     return llvm::GlobalVariable::LocalExecTLSModel;
289   }
290   llvm_unreachable("Invalid TLS model!");
291 }
292 
293 void CodeGenModule::setTLSMode(llvm::GlobalVariable *GV,
294                                const VarDecl &D) const {
295   assert(D.isThreadSpecified() && "setting TLS mode on non-TLS var!");
296 
297   llvm::GlobalVariable::ThreadLocalMode TLM;
298   TLM = GetLLVMTLSModel(CodeGenOpts.getDefaultTLSModel());
299 
300   // Override the TLS model if it is explicitly specified.
301   if (D.hasAttr<TLSModelAttr>()) {
302     const TLSModelAttr *Attr = D.getAttr<TLSModelAttr>();
303     TLM = GetLLVMTLSModel(Attr->getModel());
304   }
305 
306   GV->setThreadLocalMode(TLM);
307 }
308 
309 /// Set the symbol visibility of type information (vtable and RTTI)
310 /// associated with the given type.
311 void CodeGenModule::setTypeVisibility(llvm::GlobalValue *GV,
312                                       const CXXRecordDecl *RD,
313                                       TypeVisibilityKind TVK) const {
314   setGlobalVisibility(GV, RD);
315 
316   if (!CodeGenOpts.HiddenWeakVTables)
317     return;
318 
319   // We never want to drop the visibility for RTTI names.
320   if (TVK == TVK_ForRTTIName)
321     return;
322 
323   // We want to drop the visibility to hidden for weak type symbols.
324   // This isn't possible if there might be unresolved references
325   // elsewhere that rely on this symbol being visible.
326 
327   // This should be kept roughly in sync with setThunkVisibility
328   // in CGVTables.cpp.
329 
330   // Preconditions.
331   if (GV->getLinkage() != llvm::GlobalVariable::LinkOnceODRLinkage ||
332       GV->getVisibility() != llvm::GlobalVariable::DefaultVisibility)
333     return;
334 
335   // Don't override an explicit visibility attribute.
336   if (RD->getExplicitVisibility())
337     return;
338 
339   switch (RD->getTemplateSpecializationKind()) {
340   // We have to disable the optimization if this is an EI definition
341   // because there might be EI declarations in other shared objects.
342   case TSK_ExplicitInstantiationDefinition:
343   case TSK_ExplicitInstantiationDeclaration:
344     return;
345 
346   // Every use of a non-template class's type information has to emit it.
347   case TSK_Undeclared:
348     break;
349 
350   // In theory, implicit instantiations can ignore the possibility of
351   // an explicit instantiation declaration because there necessarily
352   // must be an EI definition somewhere with default visibility.  In
353   // practice, it's possible to have an explicit instantiation for
354   // an arbitrary template class, and linkers aren't necessarily able
355   // to deal with mixed-visibility symbols.
356   case TSK_ExplicitSpecialization:
357   case TSK_ImplicitInstantiation:
358     return;
359   }
360 
361   // If there's a key function, there may be translation units
362   // that don't have the key function's definition.  But ignore
363   // this if we're emitting RTTI under -fno-rtti.
364   if (!(TVK != TVK_ForRTTI) || LangOpts.RTTI) {
365     if (Context.getKeyFunction(RD))
366       return;
367   }
368 
369   // Otherwise, drop the visibility to hidden.
370   GV->setVisibility(llvm::GlobalValue::HiddenVisibility);
371   GV->setUnnamedAddr(true);
372 }
373 
374 StringRef CodeGenModule::getMangledName(GlobalDecl GD) {
375   const NamedDecl *ND = cast<NamedDecl>(GD.getDecl());
376 
377   StringRef &Str = MangledDeclNames[GD.getCanonicalDecl()];
378   if (!Str.empty())
379     return Str;
380 
381   if (!getCXXABI().getMangleContext().shouldMangleDeclName(ND)) {
382     IdentifierInfo *II = ND->getIdentifier();
383     assert(II && "Attempt to mangle unnamed decl.");
384 
385     Str = II->getName();
386     return Str;
387   }
388 
389   SmallString<256> Buffer;
390   llvm::raw_svector_ostream Out(Buffer);
391   if (const CXXConstructorDecl *D = dyn_cast<CXXConstructorDecl>(ND))
392     getCXXABI().getMangleContext().mangleCXXCtor(D, GD.getCtorType(), Out);
393   else if (const CXXDestructorDecl *D = dyn_cast<CXXDestructorDecl>(ND))
394     getCXXABI().getMangleContext().mangleCXXDtor(D, GD.getDtorType(), Out);
395   else if (const BlockDecl *BD = dyn_cast<BlockDecl>(ND))
396     getCXXABI().getMangleContext().mangleBlock(BD, Out,
397       dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()));
398   else
399     getCXXABI().getMangleContext().mangleName(ND, Out);
400 
401   // Allocate space for the mangled name.
402   Out.flush();
403   size_t Length = Buffer.size();
404   char *Name = MangledNamesAllocator.Allocate<char>(Length);
405   std::copy(Buffer.begin(), Buffer.end(), Name);
406 
407   Str = StringRef(Name, Length);
408 
409   return Str;
410 }
411 
412 void CodeGenModule::getBlockMangledName(GlobalDecl GD, MangleBuffer &Buffer,
413                                         const BlockDecl *BD) {
414   MangleContext &MangleCtx = getCXXABI().getMangleContext();
415   const Decl *D = GD.getDecl();
416   llvm::raw_svector_ostream Out(Buffer.getBuffer());
417   if (D == 0)
418     MangleCtx.mangleGlobalBlock(BD,
419       dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()), Out);
420   else if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(D))
421     MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out);
422   else if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(D))
423     MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out);
424   else
425     MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out);
426 }
427 
428 llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) {
429   return getModule().getNamedValue(Name);
430 }
431 
432 /// AddGlobalCtor - Add a function to the list that will be called before
433 /// main() runs.
434 void CodeGenModule::AddGlobalCtor(llvm::Function * Ctor, int Priority) {
435   // FIXME: Type coercion of void()* types.
436   GlobalCtors.push_back(std::make_pair(Ctor, Priority));
437 }
438 
439 /// AddGlobalDtor - Add a function to the list that will be called
440 /// when the module is unloaded.
441 void CodeGenModule::AddGlobalDtor(llvm::Function * Dtor, int Priority) {
442   // FIXME: Type coercion of void()* types.
443   GlobalDtors.push_back(std::make_pair(Dtor, Priority));
444 }
445 
446 void CodeGenModule::EmitCtorList(const CtorList &Fns, const char *GlobalName) {
447   // Ctor function type is void()*.
448   llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false);
449   llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy);
450 
451   // Get the type of a ctor entry, { i32, void ()* }.
452   llvm::StructType *CtorStructTy =
453     llvm::StructType::get(Int32Ty, llvm::PointerType::getUnqual(CtorFTy), NULL);
454 
455   // Construct the constructor and destructor arrays.
456   SmallVector<llvm::Constant*, 8> Ctors;
457   for (CtorList::const_iterator I = Fns.begin(), E = Fns.end(); I != E; ++I) {
458     llvm::Constant *S[] = {
459       llvm::ConstantInt::get(Int32Ty, I->second, false),
460       llvm::ConstantExpr::getBitCast(I->first, CtorPFTy)
461     };
462     Ctors.push_back(llvm::ConstantStruct::get(CtorStructTy, S));
463   }
464 
465   if (!Ctors.empty()) {
466     llvm::ArrayType *AT = llvm::ArrayType::get(CtorStructTy, Ctors.size());
467     new llvm::GlobalVariable(TheModule, AT, false,
468                              llvm::GlobalValue::AppendingLinkage,
469                              llvm::ConstantArray::get(AT, Ctors),
470                              GlobalName);
471   }
472 }
473 
474 llvm::GlobalValue::LinkageTypes
475 CodeGenModule::getFunctionLinkage(const FunctionDecl *D) {
476   GVALinkage Linkage = getContext().GetGVALinkageForFunction(D);
477 
478   if (Linkage == GVA_Internal)
479     return llvm::Function::InternalLinkage;
480 
481   if (D->hasAttr<DLLExportAttr>())
482     return llvm::Function::DLLExportLinkage;
483 
484   if (D->hasAttr<WeakAttr>())
485     return llvm::Function::WeakAnyLinkage;
486 
487   // In C99 mode, 'inline' functions are guaranteed to have a strong
488   // definition somewhere else, so we can use available_externally linkage.
489   if (Linkage == GVA_C99Inline)
490     return llvm::Function::AvailableExternallyLinkage;
491 
492   // Note that Apple's kernel linker doesn't support symbol
493   // coalescing, so we need to avoid linkonce and weak linkages there.
494   // Normally, this means we just map to internal, but for explicit
495   // instantiations we'll map to external.
496 
497   // In C++, the compiler has to emit a definition in every translation unit
498   // that references the function.  We should use linkonce_odr because
499   // a) if all references in this translation unit are optimized away, we
500   // don't need to codegen it.  b) if the function persists, it needs to be
501   // merged with other definitions. c) C++ has the ODR, so we know the
502   // definition is dependable.
503   if (Linkage == GVA_CXXInline || Linkage == GVA_TemplateInstantiation)
504     return !Context.getLangOpts().AppleKext
505              ? llvm::Function::LinkOnceODRLinkage
506              : llvm::Function::InternalLinkage;
507 
508   // An explicit instantiation of a template has weak linkage, since
509   // explicit instantiations can occur in multiple translation units
510   // and must all be equivalent. However, we are not allowed to
511   // throw away these explicit instantiations.
512   if (Linkage == GVA_ExplicitTemplateInstantiation)
513     return !Context.getLangOpts().AppleKext
514              ? llvm::Function::WeakODRLinkage
515              : llvm::Function::ExternalLinkage;
516 
517   // Otherwise, we have strong external linkage.
518   assert(Linkage == GVA_StrongExternal);
519   return llvm::Function::ExternalLinkage;
520 }
521 
522 
523 /// SetFunctionDefinitionAttributes - Set attributes for a global.
524 ///
525 /// FIXME: This is currently only done for aliases and functions, but not for
526 /// variables (these details are set in EmitGlobalVarDefinition for variables).
527 void CodeGenModule::SetFunctionDefinitionAttributes(const FunctionDecl *D,
528                                                     llvm::GlobalValue *GV) {
529   SetCommonAttributes(D, GV);
530 }
531 
532 void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D,
533                                               const CGFunctionInfo &Info,
534                                               llvm::Function *F) {
535   unsigned CallingConv;
536   AttributeListType AttributeList;
537   ConstructAttributeList(Info, D, AttributeList, CallingConv);
538   F->setAttributes(llvm::AttributeSet::get(getLLVMContext(), AttributeList));
539   F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv));
540 }
541 
542 /// Determines whether the language options require us to model
543 /// unwind exceptions.  We treat -fexceptions as mandating this
544 /// except under the fragile ObjC ABI with only ObjC exceptions
545 /// enabled.  This means, for example, that C with -fexceptions
546 /// enables this.
547 static bool hasUnwindExceptions(const LangOptions &LangOpts) {
548   // If exceptions are completely disabled, obviously this is false.
549   if (!LangOpts.Exceptions) return false;
550 
551   // If C++ exceptions are enabled, this is true.
552   if (LangOpts.CXXExceptions) return true;
553 
554   // If ObjC exceptions are enabled, this depends on the ABI.
555   if (LangOpts.ObjCExceptions) {
556     return LangOpts.ObjCRuntime.hasUnwindExceptions();
557   }
558 
559   return true;
560 }
561 
562 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D,
563                                                            llvm::Function *F) {
564   if (CodeGenOpts.UnwindTables)
565     F->setHasUWTable();
566 
567   if (!hasUnwindExceptions(LangOpts))
568     F->addFnAttr(llvm::Attribute::NoUnwind);
569 
570   if (D->hasAttr<NakedAttr>()) {
571     // Naked implies noinline: we should not be inlining such functions.
572     F->addFnAttr(llvm::Attribute::Naked);
573     F->addFnAttr(llvm::Attribute::NoInline);
574   }
575 
576   if (D->hasAttr<NoInlineAttr>())
577     F->addFnAttr(llvm::Attribute::NoInline);
578 
579   // (noinline wins over always_inline, and we can't specify both in IR)
580   if ((D->hasAttr<AlwaysInlineAttr>() || D->hasAttr<ForceInlineAttr>()) &&
581       !F->getAttributes().hasAttribute(llvm::AttributeSet::FunctionIndex,
582                                        llvm::Attribute::NoInline))
583     F->addFnAttr(llvm::Attribute::AlwaysInline);
584 
585   // FIXME: Communicate hot and cold attributes to LLVM more directly.
586   if (D->hasAttr<ColdAttr>())
587     F->addFnAttr(llvm::Attribute::OptimizeForSize);
588 
589   if (D->hasAttr<MinSizeAttr>())
590     F->addFnAttr(llvm::Attribute::MinSize);
591 
592   if (isa<CXXConstructorDecl>(D) || isa<CXXDestructorDecl>(D))
593     F->setUnnamedAddr(true);
594 
595   if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D))
596     if (MD->isVirtual())
597       F->setUnnamedAddr(true);
598 
599   if (LangOpts.getStackProtector() == LangOptions::SSPOn)
600     F->addFnAttr(llvm::Attribute::StackProtect);
601   else if (LangOpts.getStackProtector() == LangOptions::SSPReq)
602     F->addFnAttr(llvm::Attribute::StackProtectReq);
603 
604   if (LangOpts.SanitizeAddress) {
605     // When AddressSanitizer is enabled, set AddressSafety attribute
606     // unless __attribute__((no_address_safety_analysis)) is used.
607     if (!D->hasAttr<NoAddressSafetyAnalysisAttr>())
608       F->addFnAttr(llvm::Attribute::AddressSafety);
609   }
610 
611   unsigned alignment = D->getMaxAlignment() / Context.getCharWidth();
612   if (alignment)
613     F->setAlignment(alignment);
614 
615   // C++ ABI requires 2-byte alignment for member functions.
616   if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D))
617     F->setAlignment(2);
618 }
619 
620 void CodeGenModule::SetCommonAttributes(const Decl *D,
621                                         llvm::GlobalValue *GV) {
622   if (const NamedDecl *ND = dyn_cast<NamedDecl>(D))
623     setGlobalVisibility(GV, ND);
624   else
625     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
626 
627   if (D->hasAttr<UsedAttr>())
628     AddUsedGlobal(GV);
629 
630   if (const SectionAttr *SA = D->getAttr<SectionAttr>())
631     GV->setSection(SA->getName());
632 
633   getTargetCodeGenInfo().SetTargetAttributes(D, GV, *this);
634 }
635 
636 void CodeGenModule::SetInternalFunctionAttributes(const Decl *D,
637                                                   llvm::Function *F,
638                                                   const CGFunctionInfo &FI) {
639   SetLLVMFunctionAttributes(D, FI, F);
640   SetLLVMFunctionAttributesForDefinition(D, F);
641 
642   F->setLinkage(llvm::Function::InternalLinkage);
643 
644   SetCommonAttributes(D, F);
645 }
646 
647 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD,
648                                           llvm::Function *F,
649                                           bool IsIncompleteFunction) {
650   if (unsigned IID = F->getIntrinsicID()) {
651     // If this is an intrinsic function, set the function's attributes
652     // to the intrinsic's attributes.
653     F->setAttributes(llvm::Intrinsic::getAttributes(getLLVMContext(),
654                                                     (llvm::Intrinsic::ID)IID));
655     return;
656   }
657 
658   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
659 
660   if (!IsIncompleteFunction)
661     SetLLVMFunctionAttributes(FD, getTypes().arrangeGlobalDeclaration(GD), F);
662 
663   // Only a few attributes are set on declarations; these may later be
664   // overridden by a definition.
665 
666   if (FD->hasAttr<DLLImportAttr>()) {
667     F->setLinkage(llvm::Function::DLLImportLinkage);
668   } else if (FD->hasAttr<WeakAttr>() ||
669              FD->isWeakImported()) {
670     // "extern_weak" is overloaded in LLVM; we probably should have
671     // separate linkage types for this.
672     F->setLinkage(llvm::Function::ExternalWeakLinkage);
673   } else {
674     F->setLinkage(llvm::Function::ExternalLinkage);
675 
676     NamedDecl::LinkageInfo LV = FD->getLinkageAndVisibility();
677     if (LV.linkage() == ExternalLinkage && LV.visibilityExplicit()) {
678       F->setVisibility(GetLLVMVisibility(LV.visibility()));
679     }
680   }
681 
682   if (const SectionAttr *SA = FD->getAttr<SectionAttr>())
683     F->setSection(SA->getName());
684 }
685 
686 void CodeGenModule::AddUsedGlobal(llvm::GlobalValue *GV) {
687   assert(!GV->isDeclaration() &&
688          "Only globals with definition can force usage.");
689   LLVMUsed.push_back(GV);
690 }
691 
692 void CodeGenModule::EmitLLVMUsed() {
693   // Don't create llvm.used if there is no need.
694   if (LLVMUsed.empty())
695     return;
696 
697   // Convert LLVMUsed to what ConstantArray needs.
698   SmallVector<llvm::Constant*, 8> UsedArray;
699   UsedArray.resize(LLVMUsed.size());
700   for (unsigned i = 0, e = LLVMUsed.size(); i != e; ++i) {
701     UsedArray[i] =
702      llvm::ConstantExpr::getBitCast(cast<llvm::Constant>(&*LLVMUsed[i]),
703                                     Int8PtrTy);
704   }
705 
706   if (UsedArray.empty())
707     return;
708   llvm::ArrayType *ATy = llvm::ArrayType::get(Int8PtrTy, UsedArray.size());
709 
710   llvm::GlobalVariable *GV =
711     new llvm::GlobalVariable(getModule(), ATy, false,
712                              llvm::GlobalValue::AppendingLinkage,
713                              llvm::ConstantArray::get(ATy, UsedArray),
714                              "llvm.used");
715 
716   GV->setSection("llvm.metadata");
717 }
718 
719 void CodeGenModule::EmitLinkLibraries() {
720   // If there are no libraries to link against, do nothing.
721   if (LinkLibraries.empty())
722     return;
723 
724   // Create metadata for each library we're linking against.
725   llvm::NamedMDNode *Metadata
726     = getModule().getOrInsertNamedMetadata("llvm.link.libraries");
727   for (unsigned I = 0, N = LinkLibraries.size(); I != N; ++I) {
728     llvm::Value *Args[2] = {
729       llvm::MDString::get(getLLVMContext(), LinkLibraries[I].Library),
730       llvm::ConstantInt::get(llvm::Type::getInt1Ty(getLLVMContext()),
731                              LinkLibraries[I].IsFramework)
732     };
733     Metadata->addOperand(llvm::MDNode::get(getLLVMContext(), Args));
734   }
735 }
736 
737 void CodeGenModule::EmitDeferred() {
738   // Emit code for any potentially referenced deferred decls.  Since a
739   // previously unused static decl may become used during the generation of code
740   // for a static function, iterate until no changes are made.
741 
742   while (!DeferredDeclsToEmit.empty() || !DeferredVTables.empty()) {
743     if (!DeferredVTables.empty()) {
744       const CXXRecordDecl *RD = DeferredVTables.back();
745       DeferredVTables.pop_back();
746       getCXXABI().EmitVTables(RD);
747       continue;
748     }
749 
750     GlobalDecl D = DeferredDeclsToEmit.back();
751     DeferredDeclsToEmit.pop_back();
752 
753     // Check to see if we've already emitted this.  This is necessary
754     // for a couple of reasons: first, decls can end up in the
755     // deferred-decls queue multiple times, and second, decls can end
756     // up with definitions in unusual ways (e.g. by an extern inline
757     // function acquiring a strong function redefinition).  Just
758     // ignore these cases.
759     //
760     // TODO: That said, looking this up multiple times is very wasteful.
761     StringRef Name = getMangledName(D);
762     llvm::GlobalValue *CGRef = GetGlobalValue(Name);
763     assert(CGRef && "Deferred decl wasn't referenced?");
764 
765     if (!CGRef->isDeclaration())
766       continue;
767 
768     // GlobalAlias::isDeclaration() defers to the aliasee, but for our
769     // purposes an alias counts as a definition.
770     if (isa<llvm::GlobalAlias>(CGRef))
771       continue;
772 
773     // Otherwise, emit the definition and move on to the next one.
774     EmitGlobalDefinition(D);
775   }
776 }
777 
778 void CodeGenModule::EmitGlobalAnnotations() {
779   if (Annotations.empty())
780     return;
781 
782   // Create a new global variable for the ConstantStruct in the Module.
783   llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get(
784     Annotations[0]->getType(), Annotations.size()), Annotations);
785   llvm::GlobalValue *gv = new llvm::GlobalVariable(getModule(),
786     Array->getType(), false, llvm::GlobalValue::AppendingLinkage, Array,
787     "llvm.global.annotations");
788   gv->setSection(AnnotationSection);
789 }
790 
791 llvm::Constant *CodeGenModule::EmitAnnotationString(StringRef Str) {
792   llvm::StringMap<llvm::Constant*>::iterator i = AnnotationStrings.find(Str);
793   if (i != AnnotationStrings.end())
794     return i->second;
795 
796   // Not found yet, create a new global.
797   llvm::Constant *s = llvm::ConstantDataArray::getString(getLLVMContext(), Str);
798   llvm::GlobalValue *gv = new llvm::GlobalVariable(getModule(), s->getType(),
799     true, llvm::GlobalValue::PrivateLinkage, s, ".str");
800   gv->setSection(AnnotationSection);
801   gv->setUnnamedAddr(true);
802   AnnotationStrings[Str] = gv;
803   return gv;
804 }
805 
806 llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) {
807   SourceManager &SM = getContext().getSourceManager();
808   PresumedLoc PLoc = SM.getPresumedLoc(Loc);
809   if (PLoc.isValid())
810     return EmitAnnotationString(PLoc.getFilename());
811   return EmitAnnotationString(SM.getBufferName(Loc));
812 }
813 
814 llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) {
815   SourceManager &SM = getContext().getSourceManager();
816   PresumedLoc PLoc = SM.getPresumedLoc(L);
817   unsigned LineNo = PLoc.isValid() ? PLoc.getLine() :
818     SM.getExpansionLineNumber(L);
819   return llvm::ConstantInt::get(Int32Ty, LineNo);
820 }
821 
822 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV,
823                                                 const AnnotateAttr *AA,
824                                                 SourceLocation L) {
825   // Get the globals for file name, annotation, and the line number.
826   llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()),
827                  *UnitGV = EmitAnnotationUnit(L),
828                  *LineNoCst = EmitAnnotationLineNo(L);
829 
830   // Create the ConstantStruct for the global annotation.
831   llvm::Constant *Fields[4] = {
832     llvm::ConstantExpr::getBitCast(GV, Int8PtrTy),
833     llvm::ConstantExpr::getBitCast(AnnoGV, Int8PtrTy),
834     llvm::ConstantExpr::getBitCast(UnitGV, Int8PtrTy),
835     LineNoCst
836   };
837   return llvm::ConstantStruct::getAnon(Fields);
838 }
839 
840 void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D,
841                                          llvm::GlobalValue *GV) {
842   assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
843   // Get the struct elements for these annotations.
844   for (specific_attr_iterator<AnnotateAttr>
845        ai = D->specific_attr_begin<AnnotateAttr>(),
846        ae = D->specific_attr_end<AnnotateAttr>(); ai != ae; ++ai)
847     Annotations.push_back(EmitAnnotateAttr(GV, *ai, D->getLocation()));
848 }
849 
850 bool CodeGenModule::MayDeferGeneration(const ValueDecl *Global) {
851   // Never defer when EmitAllDecls is specified.
852   if (LangOpts.EmitAllDecls)
853     return false;
854 
855   return !getContext().DeclMustBeEmitted(Global);
856 }
857 
858 llvm::Constant *CodeGenModule::GetAddrOfUuidDescriptor(
859     const CXXUuidofExpr* E) {
860   // Sema has verified that IIDSource has a __declspec(uuid()), and that its
861   // well-formed.
862   StringRef Uuid;
863   if (E->isTypeOperand())
864     Uuid = CXXUuidofExpr::GetUuidAttrOfType(E->getTypeOperand())->getGuid();
865   else {
866     // Special case: __uuidof(0) means an all-zero GUID.
867     Expr *Op = E->getExprOperand();
868     if (!Op->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull))
869       Uuid = CXXUuidofExpr::GetUuidAttrOfType(Op->getType())->getGuid();
870     else
871       Uuid = "00000000-0000-0000-0000-000000000000";
872   }
873   std::string Name = "__uuid_" + Uuid.str();
874 
875   // Look for an existing global.
876   if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name))
877     return GV;
878 
879   llvm::Constant *Init = EmitUuidofInitializer(Uuid, E->getType());
880   assert(Init && "failed to initialize as constant");
881 
882   // GUIDs are assumed to be 16 bytes, spread over 4-2-2-8 bytes. However, the
883   // first field is declared as "long", which for many targets is 8 bytes.
884   // Those architectures are not supported. (With the MS abi, long is always 4
885   // bytes.)
886   llvm::Type *GuidType = getTypes().ConvertType(E->getType());
887   if (Init->getType() != GuidType) {
888     DiagnosticsEngine &Diags = getDiags();
889     unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
890         "__uuidof codegen is not supported on this architecture");
891     Diags.Report(E->getExprLoc(), DiagID) << E->getSourceRange();
892     Init = llvm::UndefValue::get(GuidType);
893   }
894 
895   llvm::GlobalVariable *GV = new llvm::GlobalVariable(getModule(), GuidType,
896       /*isConstant=*/true, llvm::GlobalValue::PrivateLinkage, Init, Name);
897   GV->setUnnamedAddr(true);
898   return GV;
899 }
900 
901 llvm::Constant *CodeGenModule::GetWeakRefReference(const ValueDecl *VD) {
902   const AliasAttr *AA = VD->getAttr<AliasAttr>();
903   assert(AA && "No alias?");
904 
905   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType());
906 
907   // See if there is already something with the target's name in the module.
908   llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee());
909   if (Entry) {
910     unsigned AS = getContext().getTargetAddressSpace(VD->getType());
911     return llvm::ConstantExpr::getBitCast(Entry, DeclTy->getPointerTo(AS));
912   }
913 
914   llvm::Constant *Aliasee;
915   if (isa<llvm::FunctionType>(DeclTy))
916     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy,
917                                       GlobalDecl(cast<FunctionDecl>(VD)),
918                                       /*ForVTable=*/false);
919   else
920     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
921                                     llvm::PointerType::getUnqual(DeclTy), 0);
922 
923   llvm::GlobalValue* F = cast<llvm::GlobalValue>(Aliasee);
924   F->setLinkage(llvm::Function::ExternalWeakLinkage);
925   WeakRefReferences.insert(F);
926 
927   return Aliasee;
928 }
929 
930 void CodeGenModule::EmitGlobal(GlobalDecl GD) {
931   const ValueDecl *Global = cast<ValueDecl>(GD.getDecl());
932 
933   // Weak references don't produce any output by themselves.
934   if (Global->hasAttr<WeakRefAttr>())
935     return;
936 
937   // If this is an alias definition (which otherwise looks like a declaration)
938   // emit it now.
939   if (Global->hasAttr<AliasAttr>())
940     return EmitAliasDefinition(GD);
941 
942   // If this is CUDA, be selective about which declarations we emit.
943   if (LangOpts.CUDA) {
944     if (CodeGenOpts.CUDAIsDevice) {
945       if (!Global->hasAttr<CUDADeviceAttr>() &&
946           !Global->hasAttr<CUDAGlobalAttr>() &&
947           !Global->hasAttr<CUDAConstantAttr>() &&
948           !Global->hasAttr<CUDASharedAttr>())
949         return;
950     } else {
951       if (!Global->hasAttr<CUDAHostAttr>() && (
952             Global->hasAttr<CUDADeviceAttr>() ||
953             Global->hasAttr<CUDAConstantAttr>() ||
954             Global->hasAttr<CUDASharedAttr>()))
955         return;
956     }
957   }
958 
959   // Ignore declarations, they will be emitted on their first use.
960   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) {
961     // Forward declarations are emitted lazily on first use.
962     if (!FD->doesThisDeclarationHaveABody()) {
963       if (!FD->doesDeclarationForceExternallyVisibleDefinition())
964         return;
965 
966       const FunctionDecl *InlineDefinition = 0;
967       FD->getBody(InlineDefinition);
968 
969       StringRef MangledName = getMangledName(GD);
970       DeferredDecls.erase(MangledName);
971       EmitGlobalDefinition(InlineDefinition);
972       return;
973     }
974   } else {
975     const VarDecl *VD = cast<VarDecl>(Global);
976     assert(VD->isFileVarDecl() && "Cannot emit local var decl as global.");
977 
978     if (VD->isThisDeclarationADefinition() != VarDecl::Definition)
979       return;
980   }
981 
982   // Defer code generation when possible if this is a static definition, inline
983   // function etc.  These we only want to emit if they are used.
984   if (!MayDeferGeneration(Global)) {
985     // Emit the definition if it can't be deferred.
986     EmitGlobalDefinition(GD);
987     return;
988   }
989 
990   // If we're deferring emission of a C++ variable with an
991   // initializer, remember the order in which it appeared in the file.
992   if (getLangOpts().CPlusPlus && isa<VarDecl>(Global) &&
993       cast<VarDecl>(Global)->hasInit()) {
994     DelayedCXXInitPosition[Global] = CXXGlobalInits.size();
995     CXXGlobalInits.push_back(0);
996   }
997 
998   // If the value has already been used, add it directly to the
999   // DeferredDeclsToEmit list.
1000   StringRef MangledName = getMangledName(GD);
1001   if (GetGlobalValue(MangledName))
1002     DeferredDeclsToEmit.push_back(GD);
1003   else {
1004     // Otherwise, remember that we saw a deferred decl with this name.  The
1005     // first use of the mangled name will cause it to move into
1006     // DeferredDeclsToEmit.
1007     DeferredDecls[MangledName] = GD;
1008   }
1009 }
1010 
1011 namespace {
1012   struct FunctionIsDirectlyRecursive :
1013     public RecursiveASTVisitor<FunctionIsDirectlyRecursive> {
1014     const StringRef Name;
1015     const Builtin::Context &BI;
1016     bool Result;
1017     FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C) :
1018       Name(N), BI(C), Result(false) {
1019     }
1020     typedef RecursiveASTVisitor<FunctionIsDirectlyRecursive> Base;
1021 
1022     bool TraverseCallExpr(CallExpr *E) {
1023       const FunctionDecl *FD = E->getDirectCallee();
1024       if (!FD)
1025         return true;
1026       AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
1027       if (Attr && Name == Attr->getLabel()) {
1028         Result = true;
1029         return false;
1030       }
1031       unsigned BuiltinID = FD->getBuiltinID();
1032       if (!BuiltinID)
1033         return true;
1034       StringRef BuiltinName = BI.GetName(BuiltinID);
1035       if (BuiltinName.startswith("__builtin_") &&
1036           Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) {
1037         Result = true;
1038         return false;
1039       }
1040       return true;
1041     }
1042   };
1043 }
1044 
1045 // isTriviallyRecursive - Check if this function calls another
1046 // decl that, because of the asm attribute or the other decl being a builtin,
1047 // ends up pointing to itself.
1048 bool
1049 CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) {
1050   StringRef Name;
1051   if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) {
1052     // asm labels are a special kind of mangling we have to support.
1053     AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
1054     if (!Attr)
1055       return false;
1056     Name = Attr->getLabel();
1057   } else {
1058     Name = FD->getName();
1059   }
1060 
1061   FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo);
1062   Walker.TraverseFunctionDecl(const_cast<FunctionDecl*>(FD));
1063   return Walker.Result;
1064 }
1065 
1066 bool
1067 CodeGenModule::shouldEmitFunction(const FunctionDecl *F) {
1068   if (getFunctionLinkage(F) != llvm::Function::AvailableExternallyLinkage)
1069     return true;
1070   if (CodeGenOpts.OptimizationLevel == 0 &&
1071       !F->hasAttr<AlwaysInlineAttr>() && !F->hasAttr<ForceInlineAttr>())
1072     return false;
1073   // PR9614. Avoid cases where the source code is lying to us. An available
1074   // externally function should have an equivalent function somewhere else,
1075   // but a function that calls itself is clearly not equivalent to the real
1076   // implementation.
1077   // This happens in glibc's btowc and in some configure checks.
1078   return !isTriviallyRecursive(F);
1079 }
1080 
1081 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD) {
1082   const ValueDecl *D = cast<ValueDecl>(GD.getDecl());
1083 
1084   PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(),
1085                                  Context.getSourceManager(),
1086                                  "Generating code for declaration");
1087 
1088   if (const FunctionDecl *Function = dyn_cast<FunctionDecl>(D)) {
1089     // At -O0, don't generate IR for functions with available_externally
1090     // linkage.
1091     if (!shouldEmitFunction(Function))
1092       return;
1093 
1094     if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) {
1095       // Make sure to emit the definition(s) before we emit the thunks.
1096       // This is necessary for the generation of certain thunks.
1097       if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(Method))
1098         EmitCXXConstructor(CD, GD.getCtorType());
1099       else if (const CXXDestructorDecl *DD =dyn_cast<CXXDestructorDecl>(Method))
1100         EmitCXXDestructor(DD, GD.getDtorType());
1101       else
1102         EmitGlobalFunctionDefinition(GD);
1103 
1104       if (Method->isVirtual())
1105         getVTables().EmitThunks(GD);
1106 
1107       return;
1108     }
1109 
1110     return EmitGlobalFunctionDefinition(GD);
1111   }
1112 
1113   if (const VarDecl *VD = dyn_cast<VarDecl>(D))
1114     return EmitGlobalVarDefinition(VD);
1115 
1116   llvm_unreachable("Invalid argument to EmitGlobalDefinition()");
1117 }
1118 
1119 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the
1120 /// module, create and return an llvm Function with the specified type. If there
1121 /// is something in the module with the specified name, return it potentially
1122 /// bitcasted to the right type.
1123 ///
1124 /// If D is non-null, it specifies a decl that correspond to this.  This is used
1125 /// to set the attributes on the function when it is first created.
1126 llvm::Constant *
1127 CodeGenModule::GetOrCreateLLVMFunction(StringRef MangledName,
1128                                        llvm::Type *Ty,
1129                                        GlobalDecl D, bool ForVTable,
1130                                        llvm::Attribute ExtraAttrs) {
1131   // Lookup the entry, lazily creating it if necessary.
1132   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
1133   if (Entry) {
1134     if (WeakRefReferences.erase(Entry)) {
1135       const FunctionDecl *FD = cast_or_null<FunctionDecl>(D.getDecl());
1136       if (FD && !FD->hasAttr<WeakAttr>())
1137         Entry->setLinkage(llvm::Function::ExternalLinkage);
1138     }
1139 
1140     if (Entry->getType()->getElementType() == Ty)
1141       return Entry;
1142 
1143     // Make sure the result is of the correct type.
1144     return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo());
1145   }
1146 
1147   // This function doesn't have a complete type (for example, the return
1148   // type is an incomplete struct). Use a fake type instead, and make
1149   // sure not to try to set attributes.
1150   bool IsIncompleteFunction = false;
1151 
1152   llvm::FunctionType *FTy;
1153   if (isa<llvm::FunctionType>(Ty)) {
1154     FTy = cast<llvm::FunctionType>(Ty);
1155   } else {
1156     FTy = llvm::FunctionType::get(VoidTy, false);
1157     IsIncompleteFunction = true;
1158   }
1159 
1160   llvm::Function *F = llvm::Function::Create(FTy,
1161                                              llvm::Function::ExternalLinkage,
1162                                              MangledName, &getModule());
1163   assert(F->getName() == MangledName && "name was uniqued!");
1164   if (D.getDecl())
1165     SetFunctionAttributes(D, F, IsIncompleteFunction);
1166   if (ExtraAttrs.hasAttributes())
1167     F->addAttribute(llvm::AttributeSet::FunctionIndex, ExtraAttrs);
1168 
1169   // This is the first use or definition of a mangled name.  If there is a
1170   // deferred decl with this name, remember that we need to emit it at the end
1171   // of the file.
1172   llvm::StringMap<GlobalDecl>::iterator DDI = DeferredDecls.find(MangledName);
1173   if (DDI != DeferredDecls.end()) {
1174     // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
1175     // list, and remove it from DeferredDecls (since we don't need it anymore).
1176     DeferredDeclsToEmit.push_back(DDI->second);
1177     DeferredDecls.erase(DDI);
1178 
1179   // Otherwise, there are cases we have to worry about where we're
1180   // using a declaration for which we must emit a definition but where
1181   // we might not find a top-level definition:
1182   //   - member functions defined inline in their classes
1183   //   - friend functions defined inline in some class
1184   //   - special member functions with implicit definitions
1185   // If we ever change our AST traversal to walk into class methods,
1186   // this will be unnecessary.
1187   //
1188   // We also don't emit a definition for a function if it's going to be an entry
1189   // in a vtable, unless it's already marked as used.
1190   } else if (getLangOpts().CPlusPlus && D.getDecl()) {
1191     // Look for a declaration that's lexically in a record.
1192     const FunctionDecl *FD = cast<FunctionDecl>(D.getDecl());
1193     FD = FD->getMostRecentDecl();
1194     do {
1195       if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) {
1196         if (FD->isImplicit() && !ForVTable) {
1197           assert(FD->isUsed() && "Sema didn't mark implicit function as used!");
1198           DeferredDeclsToEmit.push_back(D.getWithDecl(FD));
1199           break;
1200         } else if (FD->doesThisDeclarationHaveABody()) {
1201           DeferredDeclsToEmit.push_back(D.getWithDecl(FD));
1202           break;
1203         }
1204       }
1205       FD = FD->getPreviousDecl();
1206     } while (FD);
1207   }
1208 
1209   // Make sure the result is of the requested type.
1210   if (!IsIncompleteFunction) {
1211     assert(F->getType()->getElementType() == Ty);
1212     return F;
1213   }
1214 
1215   llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
1216   return llvm::ConstantExpr::getBitCast(F, PTy);
1217 }
1218 
1219 /// GetAddrOfFunction - Return the address of the given function.  If Ty is
1220 /// non-null, then this function will use the specified type if it has to
1221 /// create it (this occurs when we see a definition of the function).
1222 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD,
1223                                                  llvm::Type *Ty,
1224                                                  bool ForVTable) {
1225   // If there was no specific requested type, just convert it now.
1226   if (!Ty)
1227     Ty = getTypes().ConvertType(cast<ValueDecl>(GD.getDecl())->getType());
1228 
1229   StringRef MangledName = getMangledName(GD);
1230   return GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable);
1231 }
1232 
1233 /// CreateRuntimeFunction - Create a new runtime function with the specified
1234 /// type and name.
1235 llvm::Constant *
1236 CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy,
1237                                      StringRef Name,
1238                                      llvm::Attribute ExtraAttrs) {
1239   return GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false,
1240                                  ExtraAttrs);
1241 }
1242 
1243 /// isTypeConstant - Determine whether an object of this type can be emitted
1244 /// as a constant.
1245 ///
1246 /// If ExcludeCtor is true, the duration when the object's constructor runs
1247 /// will not be considered. The caller will need to verify that the object is
1248 /// not written to during its construction.
1249 bool CodeGenModule::isTypeConstant(QualType Ty, bool ExcludeCtor) {
1250   if (!Ty.isConstant(Context) && !Ty->isReferenceType())
1251     return false;
1252 
1253   if (Context.getLangOpts().CPlusPlus) {
1254     if (const CXXRecordDecl *Record
1255           = Context.getBaseElementType(Ty)->getAsCXXRecordDecl())
1256       return ExcludeCtor && !Record->hasMutableFields() &&
1257              Record->hasTrivialDestructor();
1258   }
1259 
1260   return true;
1261 }
1262 
1263 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module,
1264 /// create and return an llvm GlobalVariable with the specified type.  If there
1265 /// is something in the module with the specified name, return it potentially
1266 /// bitcasted to the right type.
1267 ///
1268 /// If D is non-null, it specifies a decl that correspond to this.  This is used
1269 /// to set the attributes on the global when it is first created.
1270 llvm::Constant *
1271 CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName,
1272                                      llvm::PointerType *Ty,
1273                                      const VarDecl *D,
1274                                      bool UnnamedAddr) {
1275   // Lookup the entry, lazily creating it if necessary.
1276   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
1277   if (Entry) {
1278     if (WeakRefReferences.erase(Entry)) {
1279       if (D && !D->hasAttr<WeakAttr>())
1280         Entry->setLinkage(llvm::Function::ExternalLinkage);
1281     }
1282 
1283     if (UnnamedAddr)
1284       Entry->setUnnamedAddr(true);
1285 
1286     if (Entry->getType() == Ty)
1287       return Entry;
1288 
1289     // Make sure the result is of the correct type.
1290     return llvm::ConstantExpr::getBitCast(Entry, Ty);
1291   }
1292 
1293   // This is the first use or definition of a mangled name.  If there is a
1294   // deferred decl with this name, remember that we need to emit it at the end
1295   // of the file.
1296   llvm::StringMap<GlobalDecl>::iterator DDI = DeferredDecls.find(MangledName);
1297   if (DDI != DeferredDecls.end()) {
1298     // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
1299     // list, and remove it from DeferredDecls (since we don't need it anymore).
1300     DeferredDeclsToEmit.push_back(DDI->second);
1301     DeferredDecls.erase(DDI);
1302   }
1303 
1304   unsigned AddrSpace = GetGlobalVarAddressSpace(D, Ty->getAddressSpace());
1305   llvm::GlobalVariable *GV =
1306     new llvm::GlobalVariable(getModule(), Ty->getElementType(), false,
1307                              llvm::GlobalValue::ExternalLinkage,
1308                              0, MangledName, 0,
1309                              llvm::GlobalVariable::NotThreadLocal, AddrSpace);
1310 
1311   // Handle things which are present even on external declarations.
1312   if (D) {
1313     // FIXME: This code is overly simple and should be merged with other global
1314     // handling.
1315     GV->setConstant(isTypeConstant(D->getType(), false));
1316 
1317     // Set linkage and visibility in case we never see a definition.
1318     NamedDecl::LinkageInfo LV = D->getLinkageAndVisibility();
1319     if (LV.linkage() != ExternalLinkage) {
1320       // Don't set internal linkage on declarations.
1321     } else {
1322       if (D->hasAttr<DLLImportAttr>())
1323         GV->setLinkage(llvm::GlobalValue::DLLImportLinkage);
1324       else if (D->hasAttr<WeakAttr>() || D->isWeakImported())
1325         GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage);
1326 
1327       // Set visibility on a declaration only if it's explicit.
1328       if (LV.visibilityExplicit())
1329         GV->setVisibility(GetLLVMVisibility(LV.visibility()));
1330     }
1331 
1332     if (D->isThreadSpecified())
1333       setTLSMode(GV, *D);
1334   }
1335 
1336   if (AddrSpace != Ty->getAddressSpace())
1337     return llvm::ConstantExpr::getBitCast(GV, Ty);
1338   else
1339     return GV;
1340 }
1341 
1342 
1343 llvm::GlobalVariable *
1344 CodeGenModule::CreateOrReplaceCXXRuntimeVariable(StringRef Name,
1345                                       llvm::Type *Ty,
1346                                       llvm::GlobalValue::LinkageTypes Linkage) {
1347   llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name);
1348   llvm::GlobalVariable *OldGV = 0;
1349 
1350 
1351   if (GV) {
1352     // Check if the variable has the right type.
1353     if (GV->getType()->getElementType() == Ty)
1354       return GV;
1355 
1356     // Because C++ name mangling, the only way we can end up with an already
1357     // existing global with the same name is if it has been declared extern "C".
1358     assert(GV->isDeclaration() && "Declaration has wrong type!");
1359     OldGV = GV;
1360   }
1361 
1362   // Create a new variable.
1363   GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true,
1364                                 Linkage, 0, Name);
1365 
1366   if (OldGV) {
1367     // Replace occurrences of the old variable if needed.
1368     GV->takeName(OldGV);
1369 
1370     if (!OldGV->use_empty()) {
1371       llvm::Constant *NewPtrForOldDecl =
1372       llvm::ConstantExpr::getBitCast(GV, OldGV->getType());
1373       OldGV->replaceAllUsesWith(NewPtrForOldDecl);
1374     }
1375 
1376     OldGV->eraseFromParent();
1377   }
1378 
1379   return GV;
1380 }
1381 
1382 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the
1383 /// given global variable.  If Ty is non-null and if the global doesn't exist,
1384 /// then it will be created with the specified type instead of whatever the
1385 /// normal requested type would be.
1386 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D,
1387                                                   llvm::Type *Ty) {
1388   assert(D->hasGlobalStorage() && "Not a global variable");
1389   QualType ASTTy = D->getType();
1390   if (Ty == 0)
1391     Ty = getTypes().ConvertTypeForMem(ASTTy);
1392 
1393   llvm::PointerType *PTy =
1394     llvm::PointerType::get(Ty, getContext().getTargetAddressSpace(ASTTy));
1395 
1396   StringRef MangledName = getMangledName(D);
1397   return GetOrCreateLLVMGlobal(MangledName, PTy, D);
1398 }
1399 
1400 /// CreateRuntimeVariable - Create a new runtime global variable with the
1401 /// specified type and name.
1402 llvm::Constant *
1403 CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty,
1404                                      StringRef Name) {
1405   return GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), 0,
1406                                true);
1407 }
1408 
1409 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) {
1410   assert(!D->getInit() && "Cannot emit definite definitions here!");
1411 
1412   if (MayDeferGeneration(D)) {
1413     // If we have not seen a reference to this variable yet, place it
1414     // into the deferred declarations table to be emitted if needed
1415     // later.
1416     StringRef MangledName = getMangledName(D);
1417     if (!GetGlobalValue(MangledName)) {
1418       DeferredDecls[MangledName] = D;
1419       return;
1420     }
1421   }
1422 
1423   // The tentative definition is the only definition.
1424   EmitGlobalVarDefinition(D);
1425 }
1426 
1427 void CodeGenModule::EmitVTable(CXXRecordDecl *Class, bool DefinitionRequired) {
1428   if (DefinitionRequired)
1429     getCXXABI().EmitVTables(Class);
1430 }
1431 
1432 llvm::GlobalVariable::LinkageTypes
1433 CodeGenModule::getVTableLinkage(const CXXRecordDecl *RD) {
1434   if (RD->getLinkage() != ExternalLinkage)
1435     return llvm::GlobalVariable::InternalLinkage;
1436 
1437   if (const CXXMethodDecl *KeyFunction
1438                                     = RD->getASTContext().getKeyFunction(RD)) {
1439     // If this class has a key function, use that to determine the linkage of
1440     // the vtable.
1441     const FunctionDecl *Def = 0;
1442     if (KeyFunction->hasBody(Def))
1443       KeyFunction = cast<CXXMethodDecl>(Def);
1444 
1445     switch (KeyFunction->getTemplateSpecializationKind()) {
1446       case TSK_Undeclared:
1447       case TSK_ExplicitSpecialization:
1448         // When compiling with optimizations turned on, we emit all vtables,
1449         // even if the key function is not defined in the current translation
1450         // unit. If this is the case, use available_externally linkage.
1451         if (!Def && CodeGenOpts.OptimizationLevel)
1452           return llvm::GlobalVariable::AvailableExternallyLinkage;
1453 
1454         if (KeyFunction->isInlined())
1455           return !Context.getLangOpts().AppleKext ?
1456                    llvm::GlobalVariable::LinkOnceODRLinkage :
1457                    llvm::Function::InternalLinkage;
1458 
1459         return llvm::GlobalVariable::ExternalLinkage;
1460 
1461       case TSK_ImplicitInstantiation:
1462         return !Context.getLangOpts().AppleKext ?
1463                  llvm::GlobalVariable::LinkOnceODRLinkage :
1464                  llvm::Function::InternalLinkage;
1465 
1466       case TSK_ExplicitInstantiationDefinition:
1467         return !Context.getLangOpts().AppleKext ?
1468                  llvm::GlobalVariable::WeakODRLinkage :
1469                  llvm::Function::InternalLinkage;
1470 
1471       case TSK_ExplicitInstantiationDeclaration:
1472         // FIXME: Use available_externally linkage. However, this currently
1473         // breaks LLVM's build due to undefined symbols.
1474         //      return llvm::GlobalVariable::AvailableExternallyLinkage;
1475         return !Context.getLangOpts().AppleKext ?
1476                  llvm::GlobalVariable::LinkOnceODRLinkage :
1477                  llvm::Function::InternalLinkage;
1478     }
1479   }
1480 
1481   if (Context.getLangOpts().AppleKext)
1482     return llvm::Function::InternalLinkage;
1483 
1484   switch (RD->getTemplateSpecializationKind()) {
1485   case TSK_Undeclared:
1486   case TSK_ExplicitSpecialization:
1487   case TSK_ImplicitInstantiation:
1488     // FIXME: Use available_externally linkage. However, this currently
1489     // breaks LLVM's build due to undefined symbols.
1490     //   return llvm::GlobalVariable::AvailableExternallyLinkage;
1491   case TSK_ExplicitInstantiationDeclaration:
1492     return llvm::GlobalVariable::LinkOnceODRLinkage;
1493 
1494   case TSK_ExplicitInstantiationDefinition:
1495       return llvm::GlobalVariable::WeakODRLinkage;
1496   }
1497 
1498   llvm_unreachable("Invalid TemplateSpecializationKind!");
1499 }
1500 
1501 CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const {
1502     return Context.toCharUnitsFromBits(
1503       TheDataLayout.getTypeStoreSizeInBits(Ty));
1504 }
1505 
1506 llvm::Constant *
1507 CodeGenModule::MaybeEmitGlobalStdInitializerListInitializer(const VarDecl *D,
1508                                                        const Expr *rawInit) {
1509   ArrayRef<ExprWithCleanups::CleanupObject> cleanups;
1510   if (const ExprWithCleanups *withCleanups =
1511           dyn_cast<ExprWithCleanups>(rawInit)) {
1512     cleanups = withCleanups->getObjects();
1513     rawInit = withCleanups->getSubExpr();
1514   }
1515 
1516   const InitListExpr *init = dyn_cast<InitListExpr>(rawInit);
1517   if (!init || !init->initializesStdInitializerList() ||
1518       init->getNumInits() == 0)
1519     return 0;
1520 
1521   ASTContext &ctx = getContext();
1522   unsigned numInits = init->getNumInits();
1523   // FIXME: This check is here because we would otherwise silently miscompile
1524   // nested global std::initializer_lists. Better would be to have a real
1525   // implementation.
1526   for (unsigned i = 0; i < numInits; ++i) {
1527     const InitListExpr *inner = dyn_cast<InitListExpr>(init->getInit(i));
1528     if (inner && inner->initializesStdInitializerList()) {
1529       ErrorUnsupported(inner, "nested global std::initializer_list");
1530       return 0;
1531     }
1532   }
1533 
1534   // Synthesize a fake VarDecl for the array and initialize that.
1535   QualType elementType = init->getInit(0)->getType();
1536   llvm::APInt numElements(ctx.getTypeSize(ctx.getSizeType()), numInits);
1537   QualType arrayType = ctx.getConstantArrayType(elementType, numElements,
1538                                                 ArrayType::Normal, 0);
1539 
1540   IdentifierInfo *name = &ctx.Idents.get(D->getNameAsString() + "__initlist");
1541   TypeSourceInfo *sourceInfo = ctx.getTrivialTypeSourceInfo(
1542                                               arrayType, D->getLocation());
1543   VarDecl *backingArray = VarDecl::Create(ctx, const_cast<DeclContext*>(
1544                                                           D->getDeclContext()),
1545                                           D->getLocStart(), D->getLocation(),
1546                                           name, arrayType, sourceInfo,
1547                                           SC_Static, SC_Static);
1548 
1549   // Now clone the InitListExpr to initialize the array instead.
1550   // Incredible hack: we want to use the existing InitListExpr here, so we need
1551   // to tell it that it no longer initializes a std::initializer_list.
1552   ArrayRef<Expr*> Inits(const_cast<InitListExpr*>(init)->getInits(),
1553                         init->getNumInits());
1554   Expr *arrayInit = new (ctx) InitListExpr(ctx, init->getLBraceLoc(), Inits,
1555                                            init->getRBraceLoc());
1556   arrayInit->setType(arrayType);
1557 
1558   if (!cleanups.empty())
1559     arrayInit = ExprWithCleanups::Create(ctx, arrayInit, cleanups);
1560 
1561   backingArray->setInit(arrayInit);
1562 
1563   // Emit the definition of the array.
1564   EmitGlobalVarDefinition(backingArray);
1565 
1566   // Inspect the initializer list to validate it and determine its type.
1567   // FIXME: doing this every time is probably inefficient; caching would be nice
1568   RecordDecl *record = init->getType()->castAs<RecordType>()->getDecl();
1569   RecordDecl::field_iterator field = record->field_begin();
1570   if (field == record->field_end()) {
1571     ErrorUnsupported(D, "weird std::initializer_list");
1572     return 0;
1573   }
1574   QualType elementPtr = ctx.getPointerType(elementType.withConst());
1575   // Start pointer.
1576   if (!ctx.hasSameType(field->getType(), elementPtr)) {
1577     ErrorUnsupported(D, "weird std::initializer_list");
1578     return 0;
1579   }
1580   ++field;
1581   if (field == record->field_end()) {
1582     ErrorUnsupported(D, "weird std::initializer_list");
1583     return 0;
1584   }
1585   bool isStartEnd = false;
1586   if (ctx.hasSameType(field->getType(), elementPtr)) {
1587     // End pointer.
1588     isStartEnd = true;
1589   } else if(!ctx.hasSameType(field->getType(), ctx.getSizeType())) {
1590     ErrorUnsupported(D, "weird std::initializer_list");
1591     return 0;
1592   }
1593 
1594   // Now build an APValue representing the std::initializer_list.
1595   APValue initListValue(APValue::UninitStruct(), 0, 2);
1596   APValue &startField = initListValue.getStructField(0);
1597   APValue::LValuePathEntry startOffsetPathEntry;
1598   startOffsetPathEntry.ArrayIndex = 0;
1599   startField = APValue(APValue::LValueBase(backingArray),
1600                        CharUnits::fromQuantity(0),
1601                        llvm::makeArrayRef(startOffsetPathEntry),
1602                        /*IsOnePastTheEnd=*/false, 0);
1603 
1604   if (isStartEnd) {
1605     APValue &endField = initListValue.getStructField(1);
1606     APValue::LValuePathEntry endOffsetPathEntry;
1607     endOffsetPathEntry.ArrayIndex = numInits;
1608     endField = APValue(APValue::LValueBase(backingArray),
1609                        ctx.getTypeSizeInChars(elementType) * numInits,
1610                        llvm::makeArrayRef(endOffsetPathEntry),
1611                        /*IsOnePastTheEnd=*/true, 0);
1612   } else {
1613     APValue &sizeField = initListValue.getStructField(1);
1614     sizeField = APValue(llvm::APSInt(numElements));
1615   }
1616 
1617   // Emit the constant for the initializer_list.
1618   llvm::Constant *llvmInit =
1619       EmitConstantValueForMemory(initListValue, D->getType());
1620   assert(llvmInit && "failed to initialize as constant");
1621   return llvmInit;
1622 }
1623 
1624 unsigned CodeGenModule::GetGlobalVarAddressSpace(const VarDecl *D,
1625                                                  unsigned AddrSpace) {
1626   if (LangOpts.CUDA && CodeGenOpts.CUDAIsDevice) {
1627     if (D->hasAttr<CUDAConstantAttr>())
1628       AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_constant);
1629     else if (D->hasAttr<CUDASharedAttr>())
1630       AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_shared);
1631     else
1632       AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_device);
1633   }
1634 
1635   return AddrSpace;
1636 }
1637 
1638 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D) {
1639   llvm::Constant *Init = 0;
1640   QualType ASTTy = D->getType();
1641   CXXRecordDecl *RD = ASTTy->getBaseElementTypeUnsafe()->getAsCXXRecordDecl();
1642   bool NeedsGlobalCtor = false;
1643   bool NeedsGlobalDtor = RD && !RD->hasTrivialDestructor();
1644 
1645   const VarDecl *InitDecl;
1646   const Expr *InitExpr = D->getAnyInitializer(InitDecl);
1647 
1648   if (!InitExpr) {
1649     // This is a tentative definition; tentative definitions are
1650     // implicitly initialized with { 0 }.
1651     //
1652     // Note that tentative definitions are only emitted at the end of
1653     // a translation unit, so they should never have incomplete
1654     // type. In addition, EmitTentativeDefinition makes sure that we
1655     // never attempt to emit a tentative definition if a real one
1656     // exists. A use may still exists, however, so we still may need
1657     // to do a RAUW.
1658     assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type");
1659     Init = EmitNullConstant(D->getType());
1660   } else {
1661     // If this is a std::initializer_list, emit the special initializer.
1662     Init = MaybeEmitGlobalStdInitializerListInitializer(D, InitExpr);
1663     // An empty init list will perform zero-initialization, which happens
1664     // to be exactly what we want.
1665     // FIXME: It does so in a global constructor, which is *not* what we
1666     // want.
1667 
1668     if (!Init) {
1669       initializedGlobalDecl = GlobalDecl(D);
1670       Init = EmitConstantInit(*InitDecl);
1671     }
1672     if (!Init) {
1673       QualType T = InitExpr->getType();
1674       if (D->getType()->isReferenceType())
1675         T = D->getType();
1676 
1677       if (getLangOpts().CPlusPlus) {
1678         Init = EmitNullConstant(T);
1679         NeedsGlobalCtor = true;
1680       } else {
1681         ErrorUnsupported(D, "static initializer");
1682         Init = llvm::UndefValue::get(getTypes().ConvertType(T));
1683       }
1684     } else {
1685       // We don't need an initializer, so remove the entry for the delayed
1686       // initializer position (just in case this entry was delayed) if we
1687       // also don't need to register a destructor.
1688       if (getLangOpts().CPlusPlus && !NeedsGlobalDtor)
1689         DelayedCXXInitPosition.erase(D);
1690     }
1691   }
1692 
1693   llvm::Type* InitType = Init->getType();
1694   llvm::Constant *Entry = GetAddrOfGlobalVar(D, InitType);
1695 
1696   // Strip off a bitcast if we got one back.
1697   if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
1698     assert(CE->getOpcode() == llvm::Instruction::BitCast ||
1699            // all zero index gep.
1700            CE->getOpcode() == llvm::Instruction::GetElementPtr);
1701     Entry = CE->getOperand(0);
1702   }
1703 
1704   // Entry is now either a Function or GlobalVariable.
1705   llvm::GlobalVariable *GV = dyn_cast<llvm::GlobalVariable>(Entry);
1706 
1707   // We have a definition after a declaration with the wrong type.
1708   // We must make a new GlobalVariable* and update everything that used OldGV
1709   // (a declaration or tentative definition) with the new GlobalVariable*
1710   // (which will be a definition).
1711   //
1712   // This happens if there is a prototype for a global (e.g.
1713   // "extern int x[];") and then a definition of a different type (e.g.
1714   // "int x[10];"). This also happens when an initializer has a different type
1715   // from the type of the global (this happens with unions).
1716   if (GV == 0 ||
1717       GV->getType()->getElementType() != InitType ||
1718       GV->getType()->getAddressSpace() !=
1719        GetGlobalVarAddressSpace(D, getContext().getTargetAddressSpace(ASTTy))) {
1720 
1721     // Move the old entry aside so that we'll create a new one.
1722     Entry->setName(StringRef());
1723 
1724     // Make a new global with the correct type, this is now guaranteed to work.
1725     GV = cast<llvm::GlobalVariable>(GetAddrOfGlobalVar(D, InitType));
1726 
1727     // Replace all uses of the old global with the new global
1728     llvm::Constant *NewPtrForOldDecl =
1729         llvm::ConstantExpr::getBitCast(GV, Entry->getType());
1730     Entry->replaceAllUsesWith(NewPtrForOldDecl);
1731 
1732     // Erase the old global, since it is no longer used.
1733     cast<llvm::GlobalValue>(Entry)->eraseFromParent();
1734   }
1735 
1736   if (D->hasAttr<AnnotateAttr>())
1737     AddGlobalAnnotations(D, GV);
1738 
1739   GV->setInitializer(Init);
1740 
1741   // If it is safe to mark the global 'constant', do so now.
1742   GV->setConstant(!NeedsGlobalCtor && !NeedsGlobalDtor &&
1743                   isTypeConstant(D->getType(), true));
1744 
1745   GV->setAlignment(getContext().getDeclAlign(D).getQuantity());
1746 
1747   // Set the llvm linkage type as appropriate.
1748   llvm::GlobalValue::LinkageTypes Linkage =
1749     GetLLVMLinkageVarDefinition(D, GV);
1750   GV->setLinkage(Linkage);
1751   if (Linkage == llvm::GlobalVariable::CommonLinkage)
1752     // common vars aren't constant even if declared const.
1753     GV->setConstant(false);
1754 
1755   SetCommonAttributes(D, GV);
1756 
1757   // Emit the initializer function if necessary.
1758   if (NeedsGlobalCtor || NeedsGlobalDtor)
1759     EmitCXXGlobalVarDeclInitFunc(D, GV, NeedsGlobalCtor);
1760 
1761   // If we are compiling with ASan, add metadata indicating dynamically
1762   // initialized globals.
1763   if (LangOpts.SanitizeAddress && NeedsGlobalCtor) {
1764     llvm::Module &M = getModule();
1765 
1766     llvm::NamedMDNode *DynamicInitializers =
1767         M.getOrInsertNamedMetadata("llvm.asan.dynamically_initialized_globals");
1768     llvm::Value *GlobalToAdd[] = { GV };
1769     llvm::MDNode *ThisGlobal = llvm::MDNode::get(VMContext, GlobalToAdd);
1770     DynamicInitializers->addOperand(ThisGlobal);
1771   }
1772 
1773   // Emit global variable debug information.
1774   if (CGDebugInfo *DI = getModuleDebugInfo())
1775     if (getCodeGenOpts().getDebugInfo() >= CodeGenOptions::LimitedDebugInfo)
1776       DI->EmitGlobalVariable(GV, D);
1777 }
1778 
1779 llvm::GlobalValue::LinkageTypes
1780 CodeGenModule::GetLLVMLinkageVarDefinition(const VarDecl *D,
1781                                            llvm::GlobalVariable *GV) {
1782   GVALinkage Linkage = getContext().GetGVALinkageForVariable(D);
1783   if (Linkage == GVA_Internal)
1784     return llvm::Function::InternalLinkage;
1785   else if (D->hasAttr<DLLImportAttr>())
1786     return llvm::Function::DLLImportLinkage;
1787   else if (D->hasAttr<DLLExportAttr>())
1788     return llvm::Function::DLLExportLinkage;
1789   else if (D->hasAttr<WeakAttr>()) {
1790     if (GV->isConstant())
1791       return llvm::GlobalVariable::WeakODRLinkage;
1792     else
1793       return llvm::GlobalVariable::WeakAnyLinkage;
1794   } else if (Linkage == GVA_TemplateInstantiation ||
1795              Linkage == GVA_ExplicitTemplateInstantiation)
1796     return llvm::GlobalVariable::WeakODRLinkage;
1797   else if (!getLangOpts().CPlusPlus &&
1798            ((!CodeGenOpts.NoCommon && !D->getAttr<NoCommonAttr>()) ||
1799              D->getAttr<CommonAttr>()) &&
1800            !D->hasExternalStorage() && !D->getInit() &&
1801            !D->getAttr<SectionAttr>() && !D->isThreadSpecified() &&
1802            !D->getAttr<WeakImportAttr>()) {
1803     // Thread local vars aren't considered common linkage.
1804     return llvm::GlobalVariable::CommonLinkage;
1805   }
1806   return llvm::GlobalVariable::ExternalLinkage;
1807 }
1808 
1809 /// Replace the uses of a function that was declared with a non-proto type.
1810 /// We want to silently drop extra arguments from call sites
1811 static void replaceUsesOfNonProtoConstant(llvm::Constant *old,
1812                                           llvm::Function *newFn) {
1813   // Fast path.
1814   if (old->use_empty()) return;
1815 
1816   llvm::Type *newRetTy = newFn->getReturnType();
1817   SmallVector<llvm::Value*, 4> newArgs;
1818 
1819   for (llvm::Value::use_iterator ui = old->use_begin(), ue = old->use_end();
1820          ui != ue; ) {
1821     llvm::Value::use_iterator use = ui++; // Increment before the use is erased.
1822     llvm::User *user = *use;
1823 
1824     // Recognize and replace uses of bitcasts.  Most calls to
1825     // unprototyped functions will use bitcasts.
1826     if (llvm::ConstantExpr *bitcast = dyn_cast<llvm::ConstantExpr>(user)) {
1827       if (bitcast->getOpcode() == llvm::Instruction::BitCast)
1828         replaceUsesOfNonProtoConstant(bitcast, newFn);
1829       continue;
1830     }
1831 
1832     // Recognize calls to the function.
1833     llvm::CallSite callSite(user);
1834     if (!callSite) continue;
1835     if (!callSite.isCallee(use)) continue;
1836 
1837     // If the return types don't match exactly, then we can't
1838     // transform this call unless it's dead.
1839     if (callSite->getType() != newRetTy && !callSite->use_empty())
1840       continue;
1841 
1842     // Get the call site's attribute list.
1843     SmallVector<llvm::AttributeWithIndex, 8> newAttrs;
1844     llvm::AttributeSet oldAttrs = callSite.getAttributes();
1845 
1846     // Collect any return attributes from the call.
1847     llvm::Attribute returnAttrs = oldAttrs.getRetAttributes();
1848     if (returnAttrs.hasAttributes())
1849       newAttrs.push_back(llvm::AttributeWithIndex::get(
1850                                 llvm::AttributeSet::ReturnIndex, returnAttrs));
1851 
1852     // If the function was passed too few arguments, don't transform.
1853     unsigned newNumArgs = newFn->arg_size();
1854     if (callSite.arg_size() < newNumArgs) continue;
1855 
1856     // If extra arguments were passed, we silently drop them.
1857     // If any of the types mismatch, we don't transform.
1858     unsigned argNo = 0;
1859     bool dontTransform = false;
1860     for (llvm::Function::arg_iterator ai = newFn->arg_begin(),
1861            ae = newFn->arg_end(); ai != ae; ++ai, ++argNo) {
1862       if (callSite.getArgument(argNo)->getType() != ai->getType()) {
1863         dontTransform = true;
1864         break;
1865       }
1866 
1867       // Add any parameter attributes.
1868       llvm::Attribute pAttrs = oldAttrs.getParamAttributes(argNo + 1);
1869       if (pAttrs.hasAttributes())
1870         newAttrs.push_back(llvm::AttributeWithIndex::get(argNo + 1, pAttrs));
1871     }
1872     if (dontTransform)
1873       continue;
1874 
1875     llvm::Attribute fnAttrs = oldAttrs.getFnAttributes();
1876     if (fnAttrs.hasAttributes())
1877       newAttrs.push_back(llvm::
1878                        AttributeWithIndex::get(llvm::AttributeSet::FunctionIndex,
1879                                                fnAttrs));
1880 
1881     // Okay, we can transform this.  Create the new call instruction and copy
1882     // over the required information.
1883     newArgs.append(callSite.arg_begin(), callSite.arg_begin() + argNo);
1884 
1885     llvm::CallSite newCall;
1886     if (callSite.isCall()) {
1887       newCall = llvm::CallInst::Create(newFn, newArgs, "",
1888                                        callSite.getInstruction());
1889     } else {
1890       llvm::InvokeInst *oldInvoke =
1891         cast<llvm::InvokeInst>(callSite.getInstruction());
1892       newCall = llvm::InvokeInst::Create(newFn,
1893                                          oldInvoke->getNormalDest(),
1894                                          oldInvoke->getUnwindDest(),
1895                                          newArgs, "",
1896                                          callSite.getInstruction());
1897     }
1898     newArgs.clear(); // for the next iteration
1899 
1900     if (!newCall->getType()->isVoidTy())
1901       newCall->takeName(callSite.getInstruction());
1902     newCall.setAttributes(
1903                      llvm::AttributeSet::get(newFn->getContext(), newAttrs));
1904     newCall.setCallingConv(callSite.getCallingConv());
1905 
1906     // Finally, remove the old call, replacing any uses with the new one.
1907     if (!callSite->use_empty())
1908       callSite->replaceAllUsesWith(newCall.getInstruction());
1909 
1910     // Copy debug location attached to CI.
1911     if (!callSite->getDebugLoc().isUnknown())
1912       newCall->setDebugLoc(callSite->getDebugLoc());
1913     callSite->eraseFromParent();
1914   }
1915 }
1916 
1917 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we
1918 /// implement a function with no prototype, e.g. "int foo() {}".  If there are
1919 /// existing call uses of the old function in the module, this adjusts them to
1920 /// call the new function directly.
1921 ///
1922 /// This is not just a cleanup: the always_inline pass requires direct calls to
1923 /// functions to be able to inline them.  If there is a bitcast in the way, it
1924 /// won't inline them.  Instcombine normally deletes these calls, but it isn't
1925 /// run at -O0.
1926 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
1927                                                       llvm::Function *NewFn) {
1928   // If we're redefining a global as a function, don't transform it.
1929   if (!isa<llvm::Function>(Old)) return;
1930 
1931   replaceUsesOfNonProtoConstant(Old, NewFn);
1932 }
1933 
1934 void CodeGenModule::HandleCXXStaticMemberVarInstantiation(VarDecl *VD) {
1935   TemplateSpecializationKind TSK = VD->getTemplateSpecializationKind();
1936   // If we have a definition, this might be a deferred decl. If the
1937   // instantiation is explicit, make sure we emit it at the end.
1938   if (VD->getDefinition() && TSK == TSK_ExplicitInstantiationDefinition)
1939     GetAddrOfGlobalVar(VD);
1940 }
1941 
1942 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD) {
1943   const FunctionDecl *D = cast<FunctionDecl>(GD.getDecl());
1944 
1945   // Compute the function info and LLVM type.
1946   const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
1947   llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
1948 
1949   // Get or create the prototype for the function.
1950   llvm::Constant *Entry = GetAddrOfFunction(GD, Ty);
1951 
1952   // Strip off a bitcast if we got one back.
1953   if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
1954     assert(CE->getOpcode() == llvm::Instruction::BitCast);
1955     Entry = CE->getOperand(0);
1956   }
1957 
1958 
1959   if (cast<llvm::GlobalValue>(Entry)->getType()->getElementType() != Ty) {
1960     llvm::GlobalValue *OldFn = cast<llvm::GlobalValue>(Entry);
1961 
1962     // If the types mismatch then we have to rewrite the definition.
1963     assert(OldFn->isDeclaration() &&
1964            "Shouldn't replace non-declaration");
1965 
1966     // F is the Function* for the one with the wrong type, we must make a new
1967     // Function* and update everything that used F (a declaration) with the new
1968     // Function* (which will be a definition).
1969     //
1970     // This happens if there is a prototype for a function
1971     // (e.g. "int f()") and then a definition of a different type
1972     // (e.g. "int f(int x)").  Move the old function aside so that it
1973     // doesn't interfere with GetAddrOfFunction.
1974     OldFn->setName(StringRef());
1975     llvm::Function *NewFn = cast<llvm::Function>(GetAddrOfFunction(GD, Ty));
1976 
1977     // This might be an implementation of a function without a
1978     // prototype, in which case, try to do special replacement of
1979     // calls which match the new prototype.  The really key thing here
1980     // is that we also potentially drop arguments from the call site
1981     // so as to make a direct call, which makes the inliner happier
1982     // and suppresses a number of optimizer warnings (!) about
1983     // dropping arguments.
1984     if (!OldFn->use_empty()) {
1985       ReplaceUsesOfNonProtoTypeWithRealFunction(OldFn, NewFn);
1986       OldFn->removeDeadConstantUsers();
1987     }
1988 
1989     // Replace uses of F with the Function we will endow with a body.
1990     if (!Entry->use_empty()) {
1991       llvm::Constant *NewPtrForOldDecl =
1992         llvm::ConstantExpr::getBitCast(NewFn, Entry->getType());
1993       Entry->replaceAllUsesWith(NewPtrForOldDecl);
1994     }
1995 
1996     // Ok, delete the old function now, which is dead.
1997     OldFn->eraseFromParent();
1998 
1999     Entry = NewFn;
2000   }
2001 
2002   // We need to set linkage and visibility on the function before
2003   // generating code for it because various parts of IR generation
2004   // want to propagate this information down (e.g. to local static
2005   // declarations).
2006   llvm::Function *Fn = cast<llvm::Function>(Entry);
2007   setFunctionLinkage(D, Fn);
2008 
2009   // FIXME: this is redundant with part of SetFunctionDefinitionAttributes
2010   setGlobalVisibility(Fn, D);
2011 
2012   CodeGenFunction(*this).GenerateCode(D, Fn, FI);
2013 
2014   SetFunctionDefinitionAttributes(D, Fn);
2015   SetLLVMFunctionAttributesForDefinition(D, Fn);
2016 
2017   if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>())
2018     AddGlobalCtor(Fn, CA->getPriority());
2019   if (const DestructorAttr *DA = D->getAttr<DestructorAttr>())
2020     AddGlobalDtor(Fn, DA->getPriority());
2021   if (D->hasAttr<AnnotateAttr>())
2022     AddGlobalAnnotations(D, Fn);
2023 }
2024 
2025 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) {
2026   const ValueDecl *D = cast<ValueDecl>(GD.getDecl());
2027   const AliasAttr *AA = D->getAttr<AliasAttr>();
2028   assert(AA && "Not an alias?");
2029 
2030   StringRef MangledName = getMangledName(GD);
2031 
2032   // If there is a definition in the module, then it wins over the alias.
2033   // This is dubious, but allow it to be safe.  Just ignore the alias.
2034   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
2035   if (Entry && !Entry->isDeclaration())
2036     return;
2037 
2038   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
2039 
2040   // Create a reference to the named value.  This ensures that it is emitted
2041   // if a deferred decl.
2042   llvm::Constant *Aliasee;
2043   if (isa<llvm::FunctionType>(DeclTy))
2044     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GD,
2045                                       /*ForVTable=*/false);
2046   else
2047     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
2048                                     llvm::PointerType::getUnqual(DeclTy), 0);
2049 
2050   // Create the new alias itself, but don't set a name yet.
2051   llvm::GlobalValue *GA =
2052     new llvm::GlobalAlias(Aliasee->getType(),
2053                           llvm::Function::ExternalLinkage,
2054                           "", Aliasee, &getModule());
2055 
2056   if (Entry) {
2057     assert(Entry->isDeclaration());
2058 
2059     // If there is a declaration in the module, then we had an extern followed
2060     // by the alias, as in:
2061     //   extern int test6();
2062     //   ...
2063     //   int test6() __attribute__((alias("test7")));
2064     //
2065     // Remove it and replace uses of it with the alias.
2066     GA->takeName(Entry);
2067 
2068     Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA,
2069                                                           Entry->getType()));
2070     Entry->eraseFromParent();
2071   } else {
2072     GA->setName(MangledName);
2073   }
2074 
2075   // Set attributes which are particular to an alias; this is a
2076   // specialization of the attributes which may be set on a global
2077   // variable/function.
2078   if (D->hasAttr<DLLExportAttr>()) {
2079     if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
2080       // The dllexport attribute is ignored for undefined symbols.
2081       if (FD->hasBody())
2082         GA->setLinkage(llvm::Function::DLLExportLinkage);
2083     } else {
2084       GA->setLinkage(llvm::Function::DLLExportLinkage);
2085     }
2086   } else if (D->hasAttr<WeakAttr>() ||
2087              D->hasAttr<WeakRefAttr>() ||
2088              D->isWeakImported()) {
2089     GA->setLinkage(llvm::Function::WeakAnyLinkage);
2090   }
2091 
2092   SetCommonAttributes(D, GA);
2093 }
2094 
2095 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,
2096                                             ArrayRef<llvm::Type*> Tys) {
2097   return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID,
2098                                          Tys);
2099 }
2100 
2101 static llvm::StringMapEntry<llvm::Constant*> &
2102 GetConstantCFStringEntry(llvm::StringMap<llvm::Constant*> &Map,
2103                          const StringLiteral *Literal,
2104                          bool TargetIsLSB,
2105                          bool &IsUTF16,
2106                          unsigned &StringLength) {
2107   StringRef String = Literal->getString();
2108   unsigned NumBytes = String.size();
2109 
2110   // Check for simple case.
2111   if (!Literal->containsNonAsciiOrNull()) {
2112     StringLength = NumBytes;
2113     return Map.GetOrCreateValue(String);
2114   }
2115 
2116   // Otherwise, convert the UTF8 literals into a string of shorts.
2117   IsUTF16 = true;
2118 
2119   SmallVector<UTF16, 128> ToBuf(NumBytes + 1); // +1 for ending nulls.
2120   const UTF8 *FromPtr = (const UTF8 *)String.data();
2121   UTF16 *ToPtr = &ToBuf[0];
2122 
2123   (void)ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes,
2124                            &ToPtr, ToPtr + NumBytes,
2125                            strictConversion);
2126 
2127   // ConvertUTF8toUTF16 returns the length in ToPtr.
2128   StringLength = ToPtr - &ToBuf[0];
2129 
2130   // Add an explicit null.
2131   *ToPtr = 0;
2132   return Map.
2133     GetOrCreateValue(StringRef(reinterpret_cast<const char *>(ToBuf.data()),
2134                                (StringLength + 1) * 2));
2135 }
2136 
2137 static llvm::StringMapEntry<llvm::Constant*> &
2138 GetConstantStringEntry(llvm::StringMap<llvm::Constant*> &Map,
2139                        const StringLiteral *Literal,
2140                        unsigned &StringLength) {
2141   StringRef String = Literal->getString();
2142   StringLength = String.size();
2143   return Map.GetOrCreateValue(String);
2144 }
2145 
2146 llvm::Constant *
2147 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) {
2148   unsigned StringLength = 0;
2149   bool isUTF16 = false;
2150   llvm::StringMapEntry<llvm::Constant*> &Entry =
2151     GetConstantCFStringEntry(CFConstantStringMap, Literal,
2152                              getDataLayout().isLittleEndian(),
2153                              isUTF16, StringLength);
2154 
2155   if (llvm::Constant *C = Entry.getValue())
2156     return C;
2157 
2158   llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty);
2159   llvm::Constant *Zeros[] = { Zero, Zero };
2160 
2161   // If we don't already have it, get __CFConstantStringClassReference.
2162   if (!CFConstantStringClassRef) {
2163     llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
2164     Ty = llvm::ArrayType::get(Ty, 0);
2165     llvm::Constant *GV = CreateRuntimeVariable(Ty,
2166                                            "__CFConstantStringClassReference");
2167     // Decay array -> ptr
2168     CFConstantStringClassRef =
2169       llvm::ConstantExpr::getGetElementPtr(GV, Zeros);
2170   }
2171 
2172   QualType CFTy = getContext().getCFConstantStringType();
2173 
2174   llvm::StructType *STy =
2175     cast<llvm::StructType>(getTypes().ConvertType(CFTy));
2176 
2177   llvm::Constant *Fields[4];
2178 
2179   // Class pointer.
2180   Fields[0] = CFConstantStringClassRef;
2181 
2182   // Flags.
2183   llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy);
2184   Fields[1] = isUTF16 ? llvm::ConstantInt::get(Ty, 0x07d0) :
2185     llvm::ConstantInt::get(Ty, 0x07C8);
2186 
2187   // String pointer.
2188   llvm::Constant *C = 0;
2189   if (isUTF16) {
2190     ArrayRef<uint16_t> Arr =
2191       llvm::makeArrayRef<uint16_t>((uint16_t*)Entry.getKey().data(),
2192                                    Entry.getKey().size() / 2);
2193     C = llvm::ConstantDataArray::get(VMContext, Arr);
2194   } else {
2195     C = llvm::ConstantDataArray::getString(VMContext, Entry.getKey());
2196   }
2197 
2198   llvm::GlobalValue::LinkageTypes Linkage;
2199   if (isUTF16)
2200     // FIXME: why do utf strings get "_" labels instead of "L" labels?
2201     Linkage = llvm::GlobalValue::InternalLinkage;
2202   else
2203     // FIXME: With OS X ld 123.2 (xcode 4) and LTO we would get a linker error
2204     // when using private linkage. It is not clear if this is a bug in ld
2205     // or a reasonable new restriction.
2206     Linkage = llvm::GlobalValue::LinkerPrivateLinkage;
2207 
2208   // Note: -fwritable-strings doesn't make the backing store strings of
2209   // CFStrings writable. (See <rdar://problem/10657500>)
2210   llvm::GlobalVariable *GV =
2211     new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true,
2212                              Linkage, C, ".str");
2213   GV->setUnnamedAddr(true);
2214   if (isUTF16) {
2215     CharUnits Align = getContext().getTypeAlignInChars(getContext().ShortTy);
2216     GV->setAlignment(Align.getQuantity());
2217   } else {
2218     CharUnits Align = getContext().getTypeAlignInChars(getContext().CharTy);
2219     GV->setAlignment(Align.getQuantity());
2220   }
2221 
2222   // String.
2223   Fields[2] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros);
2224 
2225   if (isUTF16)
2226     // Cast the UTF16 string to the correct type.
2227     Fields[2] = llvm::ConstantExpr::getBitCast(Fields[2], Int8PtrTy);
2228 
2229   // String length.
2230   Ty = getTypes().ConvertType(getContext().LongTy);
2231   Fields[3] = llvm::ConstantInt::get(Ty, StringLength);
2232 
2233   // The struct.
2234   C = llvm::ConstantStruct::get(STy, Fields);
2235   GV = new llvm::GlobalVariable(getModule(), C->getType(), true,
2236                                 llvm::GlobalVariable::PrivateLinkage, C,
2237                                 "_unnamed_cfstring_");
2238   if (const char *Sect = getContext().getTargetInfo().getCFStringSection())
2239     GV->setSection(Sect);
2240   Entry.setValue(GV);
2241 
2242   return GV;
2243 }
2244 
2245 static RecordDecl *
2246 CreateRecordDecl(const ASTContext &Ctx, RecordDecl::TagKind TK,
2247                  DeclContext *DC, IdentifierInfo *Id) {
2248   SourceLocation Loc;
2249   if (Ctx.getLangOpts().CPlusPlus)
2250     return CXXRecordDecl::Create(Ctx, TK, DC, Loc, Loc, Id);
2251   else
2252     return RecordDecl::Create(Ctx, TK, DC, Loc, Loc, Id);
2253 }
2254 
2255 llvm::Constant *
2256 CodeGenModule::GetAddrOfConstantString(const StringLiteral *Literal) {
2257   unsigned StringLength = 0;
2258   llvm::StringMapEntry<llvm::Constant*> &Entry =
2259     GetConstantStringEntry(CFConstantStringMap, Literal, StringLength);
2260 
2261   if (llvm::Constant *C = Entry.getValue())
2262     return C;
2263 
2264   llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty);
2265   llvm::Constant *Zeros[] = { Zero, Zero };
2266 
2267   // If we don't already have it, get _NSConstantStringClassReference.
2268   if (!ConstantStringClassRef) {
2269     std::string StringClass(getLangOpts().ObjCConstantStringClass);
2270     llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
2271     llvm::Constant *GV;
2272     if (LangOpts.ObjCRuntime.isNonFragile()) {
2273       std::string str =
2274         StringClass.empty() ? "OBJC_CLASS_$_NSConstantString"
2275                             : "OBJC_CLASS_$_" + StringClass;
2276       GV = getObjCRuntime().GetClassGlobal(str);
2277       // Make sure the result is of the correct type.
2278       llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
2279       ConstantStringClassRef =
2280         llvm::ConstantExpr::getBitCast(GV, PTy);
2281     } else {
2282       std::string str =
2283         StringClass.empty() ? "_NSConstantStringClassReference"
2284                             : "_" + StringClass + "ClassReference";
2285       llvm::Type *PTy = llvm::ArrayType::get(Ty, 0);
2286       GV = CreateRuntimeVariable(PTy, str);
2287       // Decay array -> ptr
2288       ConstantStringClassRef =
2289         llvm::ConstantExpr::getGetElementPtr(GV, Zeros);
2290     }
2291   }
2292 
2293   if (!NSConstantStringType) {
2294     // Construct the type for a constant NSString.
2295     RecordDecl *D = CreateRecordDecl(Context, TTK_Struct,
2296                                      Context.getTranslationUnitDecl(),
2297                                    &Context.Idents.get("__builtin_NSString"));
2298     D->startDefinition();
2299 
2300     QualType FieldTypes[3];
2301 
2302     // const int *isa;
2303     FieldTypes[0] = Context.getPointerType(Context.IntTy.withConst());
2304     // const char *str;
2305     FieldTypes[1] = Context.getPointerType(Context.CharTy.withConst());
2306     // unsigned int length;
2307     FieldTypes[2] = Context.UnsignedIntTy;
2308 
2309     // Create fields
2310     for (unsigned i = 0; i < 3; ++i) {
2311       FieldDecl *Field = FieldDecl::Create(Context, D,
2312                                            SourceLocation(),
2313                                            SourceLocation(), 0,
2314                                            FieldTypes[i], /*TInfo=*/0,
2315                                            /*BitWidth=*/0,
2316                                            /*Mutable=*/false,
2317                                            ICIS_NoInit);
2318       Field->setAccess(AS_public);
2319       D->addDecl(Field);
2320     }
2321 
2322     D->completeDefinition();
2323     QualType NSTy = Context.getTagDeclType(D);
2324     NSConstantStringType = cast<llvm::StructType>(getTypes().ConvertType(NSTy));
2325   }
2326 
2327   llvm::Constant *Fields[3];
2328 
2329   // Class pointer.
2330   Fields[0] = ConstantStringClassRef;
2331 
2332   // String pointer.
2333   llvm::Constant *C =
2334     llvm::ConstantDataArray::getString(VMContext, Entry.getKey());
2335 
2336   llvm::GlobalValue::LinkageTypes Linkage;
2337   bool isConstant;
2338   Linkage = llvm::GlobalValue::PrivateLinkage;
2339   isConstant = !LangOpts.WritableStrings;
2340 
2341   llvm::GlobalVariable *GV =
2342   new llvm::GlobalVariable(getModule(), C->getType(), isConstant, Linkage, C,
2343                            ".str");
2344   GV->setUnnamedAddr(true);
2345   CharUnits Align = getContext().getTypeAlignInChars(getContext().CharTy);
2346   GV->setAlignment(Align.getQuantity());
2347   Fields[1] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros);
2348 
2349   // String length.
2350   llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy);
2351   Fields[2] = llvm::ConstantInt::get(Ty, StringLength);
2352 
2353   // The struct.
2354   C = llvm::ConstantStruct::get(NSConstantStringType, Fields);
2355   GV = new llvm::GlobalVariable(getModule(), C->getType(), true,
2356                                 llvm::GlobalVariable::PrivateLinkage, C,
2357                                 "_unnamed_nsstring_");
2358   // FIXME. Fix section.
2359   if (const char *Sect =
2360         LangOpts.ObjCRuntime.isNonFragile()
2361           ? getContext().getTargetInfo().getNSStringNonFragileABISection()
2362           : getContext().getTargetInfo().getNSStringSection())
2363     GV->setSection(Sect);
2364   Entry.setValue(GV);
2365 
2366   return GV;
2367 }
2368 
2369 QualType CodeGenModule::getObjCFastEnumerationStateType() {
2370   if (ObjCFastEnumerationStateType.isNull()) {
2371     RecordDecl *D = CreateRecordDecl(Context, TTK_Struct,
2372                                      Context.getTranslationUnitDecl(),
2373                       &Context.Idents.get("__objcFastEnumerationState"));
2374     D->startDefinition();
2375 
2376     QualType FieldTypes[] = {
2377       Context.UnsignedLongTy,
2378       Context.getPointerType(Context.getObjCIdType()),
2379       Context.getPointerType(Context.UnsignedLongTy),
2380       Context.getConstantArrayType(Context.UnsignedLongTy,
2381                            llvm::APInt(32, 5), ArrayType::Normal, 0)
2382     };
2383 
2384     for (size_t i = 0; i < 4; ++i) {
2385       FieldDecl *Field = FieldDecl::Create(Context,
2386                                            D,
2387                                            SourceLocation(),
2388                                            SourceLocation(), 0,
2389                                            FieldTypes[i], /*TInfo=*/0,
2390                                            /*BitWidth=*/0,
2391                                            /*Mutable=*/false,
2392                                            ICIS_NoInit);
2393       Field->setAccess(AS_public);
2394       D->addDecl(Field);
2395     }
2396 
2397     D->completeDefinition();
2398     ObjCFastEnumerationStateType = Context.getTagDeclType(D);
2399   }
2400 
2401   return ObjCFastEnumerationStateType;
2402 }
2403 
2404 llvm::Constant *
2405 CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) {
2406   assert(!E->getType()->isPointerType() && "Strings are always arrays");
2407 
2408   // Don't emit it as the address of the string, emit the string data itself
2409   // as an inline array.
2410   if (E->getCharByteWidth() == 1) {
2411     SmallString<64> Str(E->getString());
2412 
2413     // Resize the string to the right size, which is indicated by its type.
2414     const ConstantArrayType *CAT = Context.getAsConstantArrayType(E->getType());
2415     Str.resize(CAT->getSize().getZExtValue());
2416     return llvm::ConstantDataArray::getString(VMContext, Str, false);
2417   }
2418 
2419   llvm::ArrayType *AType =
2420     cast<llvm::ArrayType>(getTypes().ConvertType(E->getType()));
2421   llvm::Type *ElemTy = AType->getElementType();
2422   unsigned NumElements = AType->getNumElements();
2423 
2424   // Wide strings have either 2-byte or 4-byte elements.
2425   if (ElemTy->getPrimitiveSizeInBits() == 16) {
2426     SmallVector<uint16_t, 32> Elements;
2427     Elements.reserve(NumElements);
2428 
2429     for(unsigned i = 0, e = E->getLength(); i != e; ++i)
2430       Elements.push_back(E->getCodeUnit(i));
2431     Elements.resize(NumElements);
2432     return llvm::ConstantDataArray::get(VMContext, Elements);
2433   }
2434 
2435   assert(ElemTy->getPrimitiveSizeInBits() == 32);
2436   SmallVector<uint32_t, 32> Elements;
2437   Elements.reserve(NumElements);
2438 
2439   for(unsigned i = 0, e = E->getLength(); i != e; ++i)
2440     Elements.push_back(E->getCodeUnit(i));
2441   Elements.resize(NumElements);
2442   return llvm::ConstantDataArray::get(VMContext, Elements);
2443 }
2444 
2445 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a
2446 /// constant array for the given string literal.
2447 llvm::Constant *
2448 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S) {
2449   CharUnits Align = getContext().getTypeAlignInChars(S->getType());
2450   if (S->isAscii() || S->isUTF8()) {
2451     SmallString<64> Str(S->getString());
2452 
2453     // Resize the string to the right size, which is indicated by its type.
2454     const ConstantArrayType *CAT = Context.getAsConstantArrayType(S->getType());
2455     Str.resize(CAT->getSize().getZExtValue());
2456     return GetAddrOfConstantString(Str, /*GlobalName*/ 0, Align.getQuantity());
2457   }
2458 
2459   // FIXME: the following does not memoize wide strings.
2460   llvm::Constant *C = GetConstantArrayFromStringLiteral(S);
2461   llvm::GlobalVariable *GV =
2462     new llvm::GlobalVariable(getModule(),C->getType(),
2463                              !LangOpts.WritableStrings,
2464                              llvm::GlobalValue::PrivateLinkage,
2465                              C,".str");
2466 
2467   GV->setAlignment(Align.getQuantity());
2468   GV->setUnnamedAddr(true);
2469   return GV;
2470 }
2471 
2472 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant
2473 /// array for the given ObjCEncodeExpr node.
2474 llvm::Constant *
2475 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) {
2476   std::string Str;
2477   getContext().getObjCEncodingForType(E->getEncodedType(), Str);
2478 
2479   return GetAddrOfConstantCString(Str);
2480 }
2481 
2482 
2483 /// GenerateWritableString -- Creates storage for a string literal.
2484 static llvm::GlobalVariable *GenerateStringLiteral(StringRef str,
2485                                              bool constant,
2486                                              CodeGenModule &CGM,
2487                                              const char *GlobalName,
2488                                              unsigned Alignment) {
2489   // Create Constant for this string literal. Don't add a '\0'.
2490   llvm::Constant *C =
2491       llvm::ConstantDataArray::getString(CGM.getLLVMContext(), str, false);
2492 
2493   // Create a global variable for this string
2494   llvm::GlobalVariable *GV =
2495     new llvm::GlobalVariable(CGM.getModule(), C->getType(), constant,
2496                              llvm::GlobalValue::PrivateLinkage,
2497                              C, GlobalName);
2498   GV->setAlignment(Alignment);
2499   GV->setUnnamedAddr(true);
2500   return GV;
2501 }
2502 
2503 /// GetAddrOfConstantString - Returns a pointer to a character array
2504 /// containing the literal. This contents are exactly that of the
2505 /// given string, i.e. it will not be null terminated automatically;
2506 /// see GetAddrOfConstantCString. Note that whether the result is
2507 /// actually a pointer to an LLVM constant depends on
2508 /// Feature.WriteableStrings.
2509 ///
2510 /// The result has pointer to array type.
2511 llvm::Constant *CodeGenModule::GetAddrOfConstantString(StringRef Str,
2512                                                        const char *GlobalName,
2513                                                        unsigned Alignment) {
2514   // Get the default prefix if a name wasn't specified.
2515   if (!GlobalName)
2516     GlobalName = ".str";
2517 
2518   // Don't share any string literals if strings aren't constant.
2519   if (LangOpts.WritableStrings)
2520     return GenerateStringLiteral(Str, false, *this, GlobalName, Alignment);
2521 
2522   llvm::StringMapEntry<llvm::GlobalVariable *> &Entry =
2523     ConstantStringMap.GetOrCreateValue(Str);
2524 
2525   if (llvm::GlobalVariable *GV = Entry.getValue()) {
2526     if (Alignment > GV->getAlignment()) {
2527       GV->setAlignment(Alignment);
2528     }
2529     return GV;
2530   }
2531 
2532   // Create a global variable for this.
2533   llvm::GlobalVariable *GV = GenerateStringLiteral(Str, true, *this, GlobalName,
2534                                                    Alignment);
2535   Entry.setValue(GV);
2536   return GV;
2537 }
2538 
2539 /// GetAddrOfConstantCString - Returns a pointer to a character
2540 /// array containing the literal and a terminating '\0'
2541 /// character. The result has pointer to array type.
2542 llvm::Constant *CodeGenModule::GetAddrOfConstantCString(const std::string &Str,
2543                                                         const char *GlobalName,
2544                                                         unsigned Alignment) {
2545   StringRef StrWithNull(Str.c_str(), Str.size() + 1);
2546   return GetAddrOfConstantString(StrWithNull, GlobalName, Alignment);
2547 }
2548 
2549 /// EmitObjCPropertyImplementations - Emit information for synthesized
2550 /// properties for an implementation.
2551 void CodeGenModule::EmitObjCPropertyImplementations(const
2552                                                     ObjCImplementationDecl *D) {
2553   for (ObjCImplementationDecl::propimpl_iterator
2554          i = D->propimpl_begin(), e = D->propimpl_end(); i != e; ++i) {
2555     ObjCPropertyImplDecl *PID = *i;
2556 
2557     // Dynamic is just for type-checking.
2558     if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) {
2559       ObjCPropertyDecl *PD = PID->getPropertyDecl();
2560 
2561       // Determine which methods need to be implemented, some may have
2562       // been overridden. Note that ::isPropertyAccessor is not the method
2563       // we want, that just indicates if the decl came from a
2564       // property. What we want to know is if the method is defined in
2565       // this implementation.
2566       if (!D->getInstanceMethod(PD->getGetterName()))
2567         CodeGenFunction(*this).GenerateObjCGetter(
2568                                  const_cast<ObjCImplementationDecl *>(D), PID);
2569       if (!PD->isReadOnly() &&
2570           !D->getInstanceMethod(PD->getSetterName()))
2571         CodeGenFunction(*this).GenerateObjCSetter(
2572                                  const_cast<ObjCImplementationDecl *>(D), PID);
2573     }
2574   }
2575 }
2576 
2577 static bool needsDestructMethod(ObjCImplementationDecl *impl) {
2578   const ObjCInterfaceDecl *iface = impl->getClassInterface();
2579   for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin();
2580        ivar; ivar = ivar->getNextIvar())
2581     if (ivar->getType().isDestructedType())
2582       return true;
2583 
2584   return false;
2585 }
2586 
2587 /// EmitObjCIvarInitializations - Emit information for ivar initialization
2588 /// for an implementation.
2589 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) {
2590   // We might need a .cxx_destruct even if we don't have any ivar initializers.
2591   if (needsDestructMethod(D)) {
2592     IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct");
2593     Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
2594     ObjCMethodDecl *DTORMethod =
2595       ObjCMethodDecl::Create(getContext(), D->getLocation(), D->getLocation(),
2596                              cxxSelector, getContext().VoidTy, 0, D,
2597                              /*isInstance=*/true, /*isVariadic=*/false,
2598                           /*isPropertyAccessor=*/true, /*isImplicitlyDeclared=*/true,
2599                              /*isDefined=*/false, ObjCMethodDecl::Required);
2600     D->addInstanceMethod(DTORMethod);
2601     CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false);
2602     D->setHasDestructors(true);
2603   }
2604 
2605   // If the implementation doesn't have any ivar initializers, we don't need
2606   // a .cxx_construct.
2607   if (D->getNumIvarInitializers() == 0)
2608     return;
2609 
2610   IdentifierInfo *II = &getContext().Idents.get(".cxx_construct");
2611   Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
2612   // The constructor returns 'self'.
2613   ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(getContext(),
2614                                                 D->getLocation(),
2615                                                 D->getLocation(),
2616                                                 cxxSelector,
2617                                                 getContext().getObjCIdType(), 0,
2618                                                 D, /*isInstance=*/true,
2619                                                 /*isVariadic=*/false,
2620                                                 /*isPropertyAccessor=*/true,
2621                                                 /*isImplicitlyDeclared=*/true,
2622                                                 /*isDefined=*/false,
2623                                                 ObjCMethodDecl::Required);
2624   D->addInstanceMethod(CTORMethod);
2625   CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true);
2626   D->setHasNonZeroConstructors(true);
2627 }
2628 
2629 /// EmitNamespace - Emit all declarations in a namespace.
2630 void CodeGenModule::EmitNamespace(const NamespaceDecl *ND) {
2631   for (RecordDecl::decl_iterator I = ND->decls_begin(), E = ND->decls_end();
2632        I != E; ++I)
2633     EmitTopLevelDecl(*I);
2634 }
2635 
2636 // EmitLinkageSpec - Emit all declarations in a linkage spec.
2637 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) {
2638   if (LSD->getLanguage() != LinkageSpecDecl::lang_c &&
2639       LSD->getLanguage() != LinkageSpecDecl::lang_cxx) {
2640     ErrorUnsupported(LSD, "linkage spec");
2641     return;
2642   }
2643 
2644   for (RecordDecl::decl_iterator I = LSD->decls_begin(), E = LSD->decls_end();
2645        I != E; ++I) {
2646     // Meta-data for ObjC class includes references to implemented methods.
2647     // Generate class's method definitions first.
2648     if (ObjCImplDecl *OID = dyn_cast<ObjCImplDecl>(*I)) {
2649       for (ObjCContainerDecl::method_iterator M = OID->meth_begin(),
2650            MEnd = OID->meth_end();
2651            M != MEnd; ++M)
2652         EmitTopLevelDecl(*M);
2653     }
2654     EmitTopLevelDecl(*I);
2655   }
2656 }
2657 
2658 /// EmitTopLevelDecl - Emit code for a single top level declaration.
2659 void CodeGenModule::EmitTopLevelDecl(Decl *D) {
2660   // If an error has occurred, stop code generation, but continue
2661   // parsing and semantic analysis (to ensure all warnings and errors
2662   // are emitted).
2663   if (Diags.hasErrorOccurred())
2664     return;
2665 
2666   // Ignore dependent declarations.
2667   if (D->getDeclContext() && D->getDeclContext()->isDependentContext())
2668     return;
2669 
2670   switch (D->getKind()) {
2671   case Decl::CXXConversion:
2672   case Decl::CXXMethod:
2673   case Decl::Function:
2674     // Skip function templates
2675     if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() ||
2676         cast<FunctionDecl>(D)->isLateTemplateParsed())
2677       return;
2678 
2679     EmitGlobal(cast<FunctionDecl>(D));
2680     break;
2681 
2682   case Decl::Var:
2683     EmitGlobal(cast<VarDecl>(D));
2684     break;
2685 
2686   // Indirect fields from global anonymous structs and unions can be
2687   // ignored; only the actual variable requires IR gen support.
2688   case Decl::IndirectField:
2689     break;
2690 
2691   // C++ Decls
2692   case Decl::Namespace:
2693     EmitNamespace(cast<NamespaceDecl>(D));
2694     break;
2695     // No code generation needed.
2696   case Decl::UsingShadow:
2697   case Decl::Using:
2698   case Decl::UsingDirective:
2699   case Decl::ClassTemplate:
2700   case Decl::FunctionTemplate:
2701   case Decl::TypeAliasTemplate:
2702   case Decl::NamespaceAlias:
2703   case Decl::Block:
2704     break;
2705   case Decl::CXXConstructor:
2706     // Skip function templates
2707     if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() ||
2708         cast<FunctionDecl>(D)->isLateTemplateParsed())
2709       return;
2710 
2711     EmitCXXConstructors(cast<CXXConstructorDecl>(D));
2712     break;
2713   case Decl::CXXDestructor:
2714     if (cast<FunctionDecl>(D)->isLateTemplateParsed())
2715       return;
2716     EmitCXXDestructors(cast<CXXDestructorDecl>(D));
2717     break;
2718 
2719   case Decl::StaticAssert:
2720     // Nothing to do.
2721     break;
2722 
2723   // Objective-C Decls
2724 
2725   // Forward declarations, no (immediate) code generation.
2726   case Decl::ObjCInterface:
2727   case Decl::ObjCCategory:
2728     break;
2729 
2730   case Decl::ObjCProtocol: {
2731     ObjCProtocolDecl *Proto = cast<ObjCProtocolDecl>(D);
2732     if (Proto->isThisDeclarationADefinition())
2733       ObjCRuntime->GenerateProtocol(Proto);
2734     break;
2735   }
2736 
2737   case Decl::ObjCCategoryImpl:
2738     // Categories have properties but don't support synthesize so we
2739     // can ignore them here.
2740     ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D));
2741     break;
2742 
2743   case Decl::ObjCImplementation: {
2744     ObjCImplementationDecl *OMD = cast<ObjCImplementationDecl>(D);
2745     EmitObjCPropertyImplementations(OMD);
2746     EmitObjCIvarInitializations(OMD);
2747     ObjCRuntime->GenerateClass(OMD);
2748     // Emit global variable debug information.
2749     if (CGDebugInfo *DI = getModuleDebugInfo())
2750       if (getCodeGenOpts().getDebugInfo() >= CodeGenOptions::LimitedDebugInfo)
2751         DI->getOrCreateInterfaceType(getContext().getObjCInterfaceType(
2752             OMD->getClassInterface()), OMD->getLocation());
2753     break;
2754   }
2755   case Decl::ObjCMethod: {
2756     ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(D);
2757     // If this is not a prototype, emit the body.
2758     if (OMD->getBody())
2759       CodeGenFunction(*this).GenerateObjCMethod(OMD);
2760     break;
2761   }
2762   case Decl::ObjCCompatibleAlias:
2763     ObjCRuntime->RegisterAlias(cast<ObjCCompatibleAliasDecl>(D));
2764     break;
2765 
2766   case Decl::LinkageSpec:
2767     EmitLinkageSpec(cast<LinkageSpecDecl>(D));
2768     break;
2769 
2770   case Decl::FileScopeAsm: {
2771     FileScopeAsmDecl *AD = cast<FileScopeAsmDecl>(D);
2772     StringRef AsmString = AD->getAsmString()->getString();
2773 
2774     const std::string &S = getModule().getModuleInlineAsm();
2775     if (S.empty())
2776       getModule().setModuleInlineAsm(AsmString);
2777     else if (S.end()[-1] == '\n')
2778       getModule().setModuleInlineAsm(S + AsmString.str());
2779     else
2780       getModule().setModuleInlineAsm(S + '\n' + AsmString.str());
2781     break;
2782   }
2783 
2784   case Decl::Import: {
2785     ImportDecl *Import = cast<ImportDecl>(D);
2786 
2787     // Ignore import declarations that come from imported modules.
2788     if (clang::Module *Owner = Import->getOwningModule()) {
2789       if (getLangOpts().CurrentModule.empty() ||
2790           Owner->getTopLevelModule()->Name == getLangOpts().CurrentModule)
2791         break;
2792     }
2793 
2794     // Walk from this module up to its top-level module; we'll import all of
2795     // these modules and their non-explicit child modules.
2796     llvm::SmallVector<clang::Module *, 2> Stack;
2797     for (clang::Module *Mod = Import->getImportedModule(); Mod;
2798          Mod = Mod->Parent) {
2799       if (!ImportedModules.insert(Mod))
2800         break;
2801 
2802       Stack.push_back(Mod);
2803     }
2804 
2805     // Find all of the non-explicit submodules of the modules we've imported and
2806     // import them.
2807     while (!Stack.empty()) {
2808       clang::Module *Mod = Stack.back();
2809       Stack.pop_back();
2810 
2811       // Add the link libraries for this module.
2812       LinkLibraries.insert(LinkLibraries.end(),
2813                            Mod->LinkLibraries.begin(),
2814                            Mod->LinkLibraries.end());
2815 
2816       // We've imported this module; now import any of its children that haven't
2817       // already been imported.
2818       for (clang::Module::submodule_iterator Sub = Mod->submodule_begin(),
2819                                           SubEnd = Mod->submodule_end();
2820            Sub != SubEnd; ++Sub) {
2821         if ((*Sub)->IsExplicit)
2822           continue;
2823 
2824         if (ImportedModules.insert(*Sub))
2825           Stack.push_back(*Sub);
2826       }
2827     }
2828     break;
2829  }
2830 
2831   default:
2832     // Make sure we handled everything we should, every other kind is a
2833     // non-top-level decl.  FIXME: Would be nice to have an isTopLevelDeclKind
2834     // function. Need to recode Decl::Kind to do that easily.
2835     assert(isa<TypeDecl>(D) && "Unsupported decl kind");
2836   }
2837 }
2838 
2839 /// Turns the given pointer into a constant.
2840 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context,
2841                                           const void *Ptr) {
2842   uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr);
2843   llvm::Type *i64 = llvm::Type::getInt64Ty(Context);
2844   return llvm::ConstantInt::get(i64, PtrInt);
2845 }
2846 
2847 static void EmitGlobalDeclMetadata(CodeGenModule &CGM,
2848                                    llvm::NamedMDNode *&GlobalMetadata,
2849                                    GlobalDecl D,
2850                                    llvm::GlobalValue *Addr) {
2851   if (!GlobalMetadata)
2852     GlobalMetadata =
2853       CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs");
2854 
2855   // TODO: should we report variant information for ctors/dtors?
2856   llvm::Value *Ops[] = {
2857     Addr,
2858     GetPointerConstant(CGM.getLLVMContext(), D.getDecl())
2859   };
2860   GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops));
2861 }
2862 
2863 /// Emits metadata nodes associating all the global values in the
2864 /// current module with the Decls they came from.  This is useful for
2865 /// projects using IR gen as a subroutine.
2866 ///
2867 /// Since there's currently no way to associate an MDNode directly
2868 /// with an llvm::GlobalValue, we create a global named metadata
2869 /// with the name 'clang.global.decl.ptrs'.
2870 void CodeGenModule::EmitDeclMetadata() {
2871   llvm::NamedMDNode *GlobalMetadata = 0;
2872 
2873   // StaticLocalDeclMap
2874   for (llvm::DenseMap<GlobalDecl,StringRef>::iterator
2875          I = MangledDeclNames.begin(), E = MangledDeclNames.end();
2876        I != E; ++I) {
2877     llvm::GlobalValue *Addr = getModule().getNamedValue(I->second);
2878     EmitGlobalDeclMetadata(*this, GlobalMetadata, I->first, Addr);
2879   }
2880 }
2881 
2882 /// Emits metadata nodes for all the local variables in the current
2883 /// function.
2884 void CodeGenFunction::EmitDeclMetadata() {
2885   if (LocalDeclMap.empty()) return;
2886 
2887   llvm::LLVMContext &Context = getLLVMContext();
2888 
2889   // Find the unique metadata ID for this name.
2890   unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr");
2891 
2892   llvm::NamedMDNode *GlobalMetadata = 0;
2893 
2894   for (llvm::DenseMap<const Decl*, llvm::Value*>::iterator
2895          I = LocalDeclMap.begin(), E = LocalDeclMap.end(); I != E; ++I) {
2896     const Decl *D = I->first;
2897     llvm::Value *Addr = I->second;
2898 
2899     if (llvm::AllocaInst *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) {
2900       llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D);
2901       Alloca->setMetadata(DeclPtrKind, llvm::MDNode::get(Context, DAddr));
2902     } else if (llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>(Addr)) {
2903       GlobalDecl GD = GlobalDecl(cast<VarDecl>(D));
2904       EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV);
2905     }
2906   }
2907 }
2908 
2909 void CodeGenModule::EmitCoverageFile() {
2910   if (!getCodeGenOpts().CoverageFile.empty()) {
2911     if (llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu")) {
2912       llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov");
2913       llvm::LLVMContext &Ctx = TheModule.getContext();
2914       llvm::MDString *CoverageFile =
2915           llvm::MDString::get(Ctx, getCodeGenOpts().CoverageFile);
2916       for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) {
2917         llvm::MDNode *CU = CUNode->getOperand(i);
2918         llvm::Value *node[] = { CoverageFile, CU };
2919         llvm::MDNode *N = llvm::MDNode::get(Ctx, node);
2920         GCov->addOperand(N);
2921       }
2922     }
2923   }
2924 }
2925 
2926 llvm::Constant *CodeGenModule::EmitUuidofInitializer(StringRef Uuid,
2927                                                      QualType GuidType) {
2928   // Sema has checked that all uuid strings are of the form
2929   // "12345678-1234-1234-1234-1234567890ab".
2930   assert(Uuid.size() == 36);
2931   const char *Uuidstr = Uuid.data();
2932   for (int i = 0; i < 36; ++i) {
2933     if (i == 8 || i == 13 || i == 18 || i == 23) assert(Uuidstr[i] == '-');
2934     else                                         assert(isxdigit(Uuidstr[i]));
2935   }
2936 
2937   llvm::APInt Field0(32, StringRef(Uuidstr     , 8), 16);
2938   llvm::APInt Field1(16, StringRef(Uuidstr +  9, 4), 16);
2939   llvm::APInt Field2(16, StringRef(Uuidstr + 14, 4), 16);
2940   static const int Field3ValueOffsets[] = { 19, 21, 24, 26, 28, 30, 32, 34 };
2941 
2942   APValue InitStruct(APValue::UninitStruct(), /*NumBases=*/0, /*NumFields=*/4);
2943   InitStruct.getStructField(0) = APValue(llvm::APSInt(Field0));
2944   InitStruct.getStructField(1) = APValue(llvm::APSInt(Field1));
2945   InitStruct.getStructField(2) = APValue(llvm::APSInt(Field2));
2946   APValue& Arr = InitStruct.getStructField(3);
2947   Arr = APValue(APValue::UninitArray(), 8, 8);
2948   for (int t = 0; t < 8; ++t)
2949     Arr.getArrayInitializedElt(t) = APValue(llvm::APSInt(
2950           llvm::APInt(8, StringRef(Uuidstr + Field3ValueOffsets[t], 2), 16)));
2951 
2952   return EmitConstantValue(InitStruct, GuidType);
2953 }
2954