xref: /llvm-project/clang/lib/CodeGen/CodeGenModule.cpp (revision 6d989436d063502266f8bc27007e6bb294ef4ec7)
1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This coordinates the per-module state used while generating code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenModule.h"
15 #include "CGBlocks.h"
16 #include "CGCUDARuntime.h"
17 #include "CGCXXABI.h"
18 #include "CGCall.h"
19 #include "CGDebugInfo.h"
20 #include "CGObjCRuntime.h"
21 #include "CGOpenCLRuntime.h"
22 #include "CGOpenMPRuntime.h"
23 #include "CGOpenMPRuntimeNVPTX.h"
24 #include "CodeGenFunction.h"
25 #include "CodeGenPGO.h"
26 #include "ConstantEmitter.h"
27 #include "CoverageMappingGen.h"
28 #include "TargetInfo.h"
29 #include "clang/AST/ASTContext.h"
30 #include "clang/AST/CharUnits.h"
31 #include "clang/AST/DeclCXX.h"
32 #include "clang/AST/DeclObjC.h"
33 #include "clang/AST/DeclTemplate.h"
34 #include "clang/AST/Mangle.h"
35 #include "clang/AST/RecordLayout.h"
36 #include "clang/AST/RecursiveASTVisitor.h"
37 #include "clang/Basic/Builtins.h"
38 #include "clang/Basic/CharInfo.h"
39 #include "clang/Basic/Diagnostic.h"
40 #include "clang/Basic/Module.h"
41 #include "clang/Basic/SourceManager.h"
42 #include "clang/Basic/TargetInfo.h"
43 #include "clang/Basic/Version.h"
44 #include "clang/CodeGen/ConstantInitBuilder.h"
45 #include "clang/Frontend/CodeGenOptions.h"
46 #include "clang/Sema/SemaDiagnostic.h"
47 #include "llvm/ADT/Triple.h"
48 #include "llvm/Analysis/TargetLibraryInfo.h"
49 #include "llvm/IR/CallSite.h"
50 #include "llvm/IR/CallingConv.h"
51 #include "llvm/IR/DataLayout.h"
52 #include "llvm/IR/Intrinsics.h"
53 #include "llvm/IR/LLVMContext.h"
54 #include "llvm/IR/Module.h"
55 #include "llvm/ProfileData/InstrProfReader.h"
56 #include "llvm/Support/ConvertUTF.h"
57 #include "llvm/Support/ErrorHandling.h"
58 #include "llvm/Support/MD5.h"
59 
60 using namespace clang;
61 using namespace CodeGen;
62 
63 static llvm::cl::opt<bool> LimitedCoverage(
64     "limited-coverage-experimental", llvm::cl::ZeroOrMore,
65     llvm::cl::desc("Emit limited coverage mapping information (experimental)"),
66     llvm::cl::init(false));
67 
68 static const char AnnotationSection[] = "llvm.metadata";
69 
70 static CGCXXABI *createCXXABI(CodeGenModule &CGM) {
71   switch (CGM.getTarget().getCXXABI().getKind()) {
72   case TargetCXXABI::GenericAArch64:
73   case TargetCXXABI::GenericARM:
74   case TargetCXXABI::iOS:
75   case TargetCXXABI::iOS64:
76   case TargetCXXABI::WatchOS:
77   case TargetCXXABI::GenericMIPS:
78   case TargetCXXABI::GenericItanium:
79   case TargetCXXABI::WebAssembly:
80     return CreateItaniumCXXABI(CGM);
81   case TargetCXXABI::Microsoft:
82     return CreateMicrosoftCXXABI(CGM);
83   }
84 
85   llvm_unreachable("invalid C++ ABI kind");
86 }
87 
88 CodeGenModule::CodeGenModule(ASTContext &C, const HeaderSearchOptions &HSO,
89                              const PreprocessorOptions &PPO,
90                              const CodeGenOptions &CGO, llvm::Module &M,
91                              DiagnosticsEngine &diags,
92                              CoverageSourceInfo *CoverageInfo)
93     : Context(C), LangOpts(C.getLangOpts()), HeaderSearchOpts(HSO),
94       PreprocessorOpts(PPO), CodeGenOpts(CGO), TheModule(M), Diags(diags),
95       Target(C.getTargetInfo()), ABI(createCXXABI(*this)),
96       VMContext(M.getContext()), Types(*this), VTables(*this),
97       SanitizerMD(new SanitizerMetadata(*this)) {
98 
99   // Initialize the type cache.
100   llvm::LLVMContext &LLVMContext = M.getContext();
101   VoidTy = llvm::Type::getVoidTy(LLVMContext);
102   Int8Ty = llvm::Type::getInt8Ty(LLVMContext);
103   Int16Ty = llvm::Type::getInt16Ty(LLVMContext);
104   Int32Ty = llvm::Type::getInt32Ty(LLVMContext);
105   Int64Ty = llvm::Type::getInt64Ty(LLVMContext);
106   FloatTy = llvm::Type::getFloatTy(LLVMContext);
107   DoubleTy = llvm::Type::getDoubleTy(LLVMContext);
108   PointerWidthInBits = C.getTargetInfo().getPointerWidth(0);
109   PointerAlignInBytes =
110     C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(0)).getQuantity();
111   SizeSizeInBytes =
112     C.toCharUnitsFromBits(C.getTargetInfo().getMaxPointerWidth()).getQuantity();
113   IntAlignInBytes =
114     C.toCharUnitsFromBits(C.getTargetInfo().getIntAlign()).getQuantity();
115   IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth());
116   IntPtrTy = llvm::IntegerType::get(LLVMContext,
117     C.getTargetInfo().getMaxPointerWidth());
118   Int8PtrTy = Int8Ty->getPointerTo(0);
119   Int8PtrPtrTy = Int8PtrTy->getPointerTo(0);
120   AllocaInt8PtrTy = Int8Ty->getPointerTo(
121       M.getDataLayout().getAllocaAddrSpace());
122   ASTAllocaAddressSpace = getTargetCodeGenInfo().getASTAllocaAddressSpace();
123 
124   RuntimeCC = getTargetCodeGenInfo().getABIInfo().getRuntimeCC();
125   BuiltinCC = getTargetCodeGenInfo().getABIInfo().getBuiltinCC();
126 
127   if (LangOpts.ObjC1)
128     createObjCRuntime();
129   if (LangOpts.OpenCL)
130     createOpenCLRuntime();
131   if (LangOpts.OpenMP)
132     createOpenMPRuntime();
133   if (LangOpts.CUDA)
134     createCUDARuntime();
135 
136   // Enable TBAA unless it's suppressed. ThreadSanitizer needs TBAA even at O0.
137   if (LangOpts.Sanitize.has(SanitizerKind::Thread) ||
138       (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0))
139     TBAA.reset(new CodeGenTBAA(Context, VMContext, CodeGenOpts, getLangOpts(),
140                                getCXXABI().getMangleContext()));
141 
142   // If debug info or coverage generation is enabled, create the CGDebugInfo
143   // object.
144   if (CodeGenOpts.getDebugInfo() != codegenoptions::NoDebugInfo ||
145       CodeGenOpts.EmitGcovArcs || CodeGenOpts.EmitGcovNotes)
146     DebugInfo.reset(new CGDebugInfo(*this));
147 
148   Block.GlobalUniqueCount = 0;
149 
150   if (C.getLangOpts().ObjC1)
151     ObjCData.reset(new ObjCEntrypoints());
152 
153   if (CodeGenOpts.hasProfileClangUse()) {
154     auto ReaderOrErr = llvm::IndexedInstrProfReader::create(
155         CodeGenOpts.ProfileInstrumentUsePath);
156     if (auto E = ReaderOrErr.takeError()) {
157       unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
158                                               "Could not read profile %0: %1");
159       llvm::handleAllErrors(std::move(E), [&](const llvm::ErrorInfoBase &EI) {
160         getDiags().Report(DiagID) << CodeGenOpts.ProfileInstrumentUsePath
161                                   << EI.message();
162       });
163     } else
164       PGOReader = std::move(ReaderOrErr.get());
165   }
166 
167   // If coverage mapping generation is enabled, create the
168   // CoverageMappingModuleGen object.
169   if (CodeGenOpts.CoverageMapping)
170     CoverageMapping.reset(new CoverageMappingModuleGen(*this, *CoverageInfo));
171 }
172 
173 CodeGenModule::~CodeGenModule() {}
174 
175 void CodeGenModule::createObjCRuntime() {
176   // This is just isGNUFamily(), but we want to force implementors of
177   // new ABIs to decide how best to do this.
178   switch (LangOpts.ObjCRuntime.getKind()) {
179   case ObjCRuntime::GNUstep:
180   case ObjCRuntime::GCC:
181   case ObjCRuntime::ObjFW:
182     ObjCRuntime.reset(CreateGNUObjCRuntime(*this));
183     return;
184 
185   case ObjCRuntime::FragileMacOSX:
186   case ObjCRuntime::MacOSX:
187   case ObjCRuntime::iOS:
188   case ObjCRuntime::WatchOS:
189     ObjCRuntime.reset(CreateMacObjCRuntime(*this));
190     return;
191   }
192   llvm_unreachable("bad runtime kind");
193 }
194 
195 void CodeGenModule::createOpenCLRuntime() {
196   OpenCLRuntime.reset(new CGOpenCLRuntime(*this));
197 }
198 
199 void CodeGenModule::createOpenMPRuntime() {
200   // Select a specialized code generation class based on the target, if any.
201   // If it does not exist use the default implementation.
202   switch (getTriple().getArch()) {
203   case llvm::Triple::nvptx:
204   case llvm::Triple::nvptx64:
205     assert(getLangOpts().OpenMPIsDevice &&
206            "OpenMP NVPTX is only prepared to deal with device code.");
207     OpenMPRuntime.reset(new CGOpenMPRuntimeNVPTX(*this));
208     break;
209   default:
210     OpenMPRuntime.reset(new CGOpenMPRuntime(*this));
211     break;
212   }
213 }
214 
215 void CodeGenModule::createCUDARuntime() {
216   CUDARuntime.reset(CreateNVCUDARuntime(*this));
217 }
218 
219 void CodeGenModule::addReplacement(StringRef Name, llvm::Constant *C) {
220   Replacements[Name] = C;
221 }
222 
223 void CodeGenModule::applyReplacements() {
224   for (auto &I : Replacements) {
225     StringRef MangledName = I.first();
226     llvm::Constant *Replacement = I.second;
227     llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
228     if (!Entry)
229       continue;
230     auto *OldF = cast<llvm::Function>(Entry);
231     auto *NewF = dyn_cast<llvm::Function>(Replacement);
232     if (!NewF) {
233       if (auto *Alias = dyn_cast<llvm::GlobalAlias>(Replacement)) {
234         NewF = dyn_cast<llvm::Function>(Alias->getAliasee());
235       } else {
236         auto *CE = cast<llvm::ConstantExpr>(Replacement);
237         assert(CE->getOpcode() == llvm::Instruction::BitCast ||
238                CE->getOpcode() == llvm::Instruction::GetElementPtr);
239         NewF = dyn_cast<llvm::Function>(CE->getOperand(0));
240       }
241     }
242 
243     // Replace old with new, but keep the old order.
244     OldF->replaceAllUsesWith(Replacement);
245     if (NewF) {
246       NewF->removeFromParent();
247       OldF->getParent()->getFunctionList().insertAfter(OldF->getIterator(),
248                                                        NewF);
249     }
250     OldF->eraseFromParent();
251   }
252 }
253 
254 void CodeGenModule::addGlobalValReplacement(llvm::GlobalValue *GV, llvm::Constant *C) {
255   GlobalValReplacements.push_back(std::make_pair(GV, C));
256 }
257 
258 void CodeGenModule::applyGlobalValReplacements() {
259   for (auto &I : GlobalValReplacements) {
260     llvm::GlobalValue *GV = I.first;
261     llvm::Constant *C = I.second;
262 
263     GV->replaceAllUsesWith(C);
264     GV->eraseFromParent();
265   }
266 }
267 
268 // This is only used in aliases that we created and we know they have a
269 // linear structure.
270 static const llvm::GlobalObject *getAliasedGlobal(
271     const llvm::GlobalIndirectSymbol &GIS) {
272   llvm::SmallPtrSet<const llvm::GlobalIndirectSymbol*, 4> Visited;
273   const llvm::Constant *C = &GIS;
274   for (;;) {
275     C = C->stripPointerCasts();
276     if (auto *GO = dyn_cast<llvm::GlobalObject>(C))
277       return GO;
278     // stripPointerCasts will not walk over weak aliases.
279     auto *GIS2 = dyn_cast<llvm::GlobalIndirectSymbol>(C);
280     if (!GIS2)
281       return nullptr;
282     if (!Visited.insert(GIS2).second)
283       return nullptr;
284     C = GIS2->getIndirectSymbol();
285   }
286 }
287 
288 void CodeGenModule::checkAliases() {
289   // Check if the constructed aliases are well formed. It is really unfortunate
290   // that we have to do this in CodeGen, but we only construct mangled names
291   // and aliases during codegen.
292   bool Error = false;
293   DiagnosticsEngine &Diags = getDiags();
294   for (const GlobalDecl &GD : Aliases) {
295     const auto *D = cast<ValueDecl>(GD.getDecl());
296     SourceLocation Location;
297     bool IsIFunc = D->hasAttr<IFuncAttr>();
298     if (const Attr *A = D->getDefiningAttr())
299       Location = A->getLocation();
300     else
301       llvm_unreachable("Not an alias or ifunc?");
302     StringRef MangledName = getMangledName(GD);
303     llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
304     auto *Alias  = cast<llvm::GlobalIndirectSymbol>(Entry);
305     const llvm::GlobalValue *GV = getAliasedGlobal(*Alias);
306     if (!GV) {
307       Error = true;
308       Diags.Report(Location, diag::err_cyclic_alias) << IsIFunc;
309     } else if (GV->isDeclaration()) {
310       Error = true;
311       Diags.Report(Location, diag::err_alias_to_undefined)
312           << IsIFunc << IsIFunc;
313     } else if (IsIFunc) {
314       // Check resolver function type.
315       llvm::FunctionType *FTy = dyn_cast<llvm::FunctionType>(
316           GV->getType()->getPointerElementType());
317       assert(FTy);
318       if (!FTy->getReturnType()->isPointerTy())
319         Diags.Report(Location, diag::err_ifunc_resolver_return);
320       if (FTy->getNumParams())
321         Diags.Report(Location, diag::err_ifunc_resolver_params);
322     }
323 
324     llvm::Constant *Aliasee = Alias->getIndirectSymbol();
325     llvm::GlobalValue *AliaseeGV;
326     if (auto CE = dyn_cast<llvm::ConstantExpr>(Aliasee))
327       AliaseeGV = cast<llvm::GlobalValue>(CE->getOperand(0));
328     else
329       AliaseeGV = cast<llvm::GlobalValue>(Aliasee);
330 
331     if (const SectionAttr *SA = D->getAttr<SectionAttr>()) {
332       StringRef AliasSection = SA->getName();
333       if (AliasSection != AliaseeGV->getSection())
334         Diags.Report(SA->getLocation(), diag::warn_alias_with_section)
335             << AliasSection << IsIFunc << IsIFunc;
336     }
337 
338     // We have to handle alias to weak aliases in here. LLVM itself disallows
339     // this since the object semantics would not match the IL one. For
340     // compatibility with gcc we implement it by just pointing the alias
341     // to its aliasee's aliasee. We also warn, since the user is probably
342     // expecting the link to be weak.
343     if (auto GA = dyn_cast<llvm::GlobalIndirectSymbol>(AliaseeGV)) {
344       if (GA->isInterposable()) {
345         Diags.Report(Location, diag::warn_alias_to_weak_alias)
346             << GV->getName() << GA->getName() << IsIFunc;
347         Aliasee = llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(
348             GA->getIndirectSymbol(), Alias->getType());
349         Alias->setIndirectSymbol(Aliasee);
350       }
351     }
352   }
353   if (!Error)
354     return;
355 
356   for (const GlobalDecl &GD : Aliases) {
357     StringRef MangledName = getMangledName(GD);
358     llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
359     auto *Alias = dyn_cast<llvm::GlobalIndirectSymbol>(Entry);
360     Alias->replaceAllUsesWith(llvm::UndefValue::get(Alias->getType()));
361     Alias->eraseFromParent();
362   }
363 }
364 
365 void CodeGenModule::clear() {
366   DeferredDeclsToEmit.clear();
367   if (OpenMPRuntime)
368     OpenMPRuntime->clear();
369 }
370 
371 void InstrProfStats::reportDiagnostics(DiagnosticsEngine &Diags,
372                                        StringRef MainFile) {
373   if (!hasDiagnostics())
374     return;
375   if (VisitedInMainFile > 0 && VisitedInMainFile == MissingInMainFile) {
376     if (MainFile.empty())
377       MainFile = "<stdin>";
378     Diags.Report(diag::warn_profile_data_unprofiled) << MainFile;
379   } else {
380     if (Mismatched > 0)
381       Diags.Report(diag::warn_profile_data_out_of_date) << Visited << Mismatched;
382 
383     if (Missing > 0)
384       Diags.Report(diag::warn_profile_data_missing) << Visited << Missing;
385   }
386 }
387 
388 void CodeGenModule::Release() {
389   EmitDeferred();
390   EmitVTablesOpportunistically();
391   applyGlobalValReplacements();
392   applyReplacements();
393   checkAliases();
394   EmitCXXGlobalInitFunc();
395   EmitCXXGlobalDtorFunc();
396   EmitCXXThreadLocalInitFunc();
397   if (ObjCRuntime)
398     if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction())
399       AddGlobalCtor(ObjCInitFunction);
400   if (Context.getLangOpts().CUDA && !Context.getLangOpts().CUDAIsDevice &&
401       CUDARuntime) {
402     if (llvm::Function *CudaCtorFunction = CUDARuntime->makeModuleCtorFunction())
403       AddGlobalCtor(CudaCtorFunction);
404     if (llvm::Function *CudaDtorFunction = CUDARuntime->makeModuleDtorFunction())
405       AddGlobalDtor(CudaDtorFunction);
406   }
407   if (OpenMPRuntime)
408     if (llvm::Function *OpenMPRegistrationFunction =
409             OpenMPRuntime->emitRegistrationFunction()) {
410       auto ComdatKey = OpenMPRegistrationFunction->hasComdat() ?
411         OpenMPRegistrationFunction : nullptr;
412       AddGlobalCtor(OpenMPRegistrationFunction, 0, ComdatKey);
413     }
414   if (PGOReader) {
415     getModule().setProfileSummary(PGOReader->getSummary().getMD(VMContext));
416     if (PGOStats.hasDiagnostics())
417       PGOStats.reportDiagnostics(getDiags(), getCodeGenOpts().MainFileName);
418   }
419   EmitCtorList(GlobalCtors, "llvm.global_ctors");
420   EmitCtorList(GlobalDtors, "llvm.global_dtors");
421   EmitGlobalAnnotations();
422   EmitStaticExternCAliases();
423   EmitDeferredUnusedCoverageMappings();
424   if (CoverageMapping)
425     CoverageMapping->emit();
426   if (CodeGenOpts.SanitizeCfiCrossDso) {
427     CodeGenFunction(*this).EmitCfiCheckFail();
428     CodeGenFunction(*this).EmitCfiCheckStub();
429   }
430   emitAtAvailableLinkGuard();
431   emitLLVMUsed();
432   if (SanStats)
433     SanStats->finish();
434 
435   if (CodeGenOpts.Autolink &&
436       (Context.getLangOpts().Modules || !LinkerOptionsMetadata.empty())) {
437     EmitModuleLinkOptions();
438   }
439 
440   // Record mregparm value now so it is visible through rest of codegen.
441   if (Context.getTargetInfo().getTriple().getArch() == llvm::Triple::x86)
442     getModule().addModuleFlag(llvm::Module::Error, "NumRegisterParameters",
443                               CodeGenOpts.NumRegisterParameters);
444 
445   if (CodeGenOpts.DwarfVersion) {
446     // We actually want the latest version when there are conflicts.
447     // We can change from Warning to Latest if such mode is supported.
448     getModule().addModuleFlag(llvm::Module::Warning, "Dwarf Version",
449                               CodeGenOpts.DwarfVersion);
450   }
451   if (CodeGenOpts.EmitCodeView) {
452     // Indicate that we want CodeView in the metadata.
453     getModule().addModuleFlag(llvm::Module::Warning, "CodeView", 1);
454   }
455   if (CodeGenOpts.OptimizationLevel > 0 && CodeGenOpts.StrictVTablePointers) {
456     // We don't support LTO with 2 with different StrictVTablePointers
457     // FIXME: we could support it by stripping all the information introduced
458     // by StrictVTablePointers.
459 
460     getModule().addModuleFlag(llvm::Module::Error, "StrictVTablePointers",1);
461 
462     llvm::Metadata *Ops[2] = {
463               llvm::MDString::get(VMContext, "StrictVTablePointers"),
464               llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
465                   llvm::Type::getInt32Ty(VMContext), 1))};
466 
467     getModule().addModuleFlag(llvm::Module::Require,
468                               "StrictVTablePointersRequirement",
469                               llvm::MDNode::get(VMContext, Ops));
470   }
471   if (DebugInfo)
472     // We support a single version in the linked module. The LLVM
473     // parser will drop debug info with a different version number
474     // (and warn about it, too).
475     getModule().addModuleFlag(llvm::Module::Warning, "Debug Info Version",
476                               llvm::DEBUG_METADATA_VERSION);
477 
478   // We need to record the widths of enums and wchar_t, so that we can generate
479   // the correct build attributes in the ARM backend. wchar_size is also used by
480   // TargetLibraryInfo.
481   uint64_t WCharWidth =
482       Context.getTypeSizeInChars(Context.getWideCharType()).getQuantity();
483   getModule().addModuleFlag(llvm::Module::Error, "wchar_size", WCharWidth);
484 
485   llvm::Triple::ArchType Arch = Context.getTargetInfo().getTriple().getArch();
486   if (   Arch == llvm::Triple::arm
487       || Arch == llvm::Triple::armeb
488       || Arch == llvm::Triple::thumb
489       || Arch == llvm::Triple::thumbeb) {
490     // The minimum width of an enum in bytes
491     uint64_t EnumWidth = Context.getLangOpts().ShortEnums ? 1 : 4;
492     getModule().addModuleFlag(llvm::Module::Error, "min_enum_size", EnumWidth);
493   }
494 
495   if (CodeGenOpts.SanitizeCfiCrossDso) {
496     // Indicate that we want cross-DSO control flow integrity checks.
497     getModule().addModuleFlag(llvm::Module::Override, "Cross-DSO CFI", 1);
498   }
499 
500   if (LangOpts.CUDAIsDevice && getTriple().isNVPTX()) {
501     // Indicate whether __nvvm_reflect should be configured to flush denormal
502     // floating point values to 0.  (This corresponds to its "__CUDA_FTZ"
503     // property.)
504     getModule().addModuleFlag(llvm::Module::Override, "nvvm-reflect-ftz",
505                               LangOpts.CUDADeviceFlushDenormalsToZero ? 1 : 0);
506   }
507 
508   // Emit OpenCL specific module metadata: OpenCL/SPIR version.
509   if (LangOpts.OpenCL) {
510     EmitOpenCLMetadata();
511     // Emit SPIR version.
512     if (getTriple().getArch() == llvm::Triple::spir ||
513         getTriple().getArch() == llvm::Triple::spir64) {
514       // SPIR v2.0 s2.12 - The SPIR version used by the module is stored in the
515       // opencl.spir.version named metadata.
516       llvm::Metadata *SPIRVerElts[] = {
517           llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
518               Int32Ty, LangOpts.OpenCLVersion / 100)),
519           llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
520               Int32Ty, (LangOpts.OpenCLVersion / 100 > 1) ? 0 : 2))};
521       llvm::NamedMDNode *SPIRVerMD =
522           TheModule.getOrInsertNamedMetadata("opencl.spir.version");
523       llvm::LLVMContext &Ctx = TheModule.getContext();
524       SPIRVerMD->addOperand(llvm::MDNode::get(Ctx, SPIRVerElts));
525     }
526   }
527 
528   if (uint32_t PLevel = Context.getLangOpts().PICLevel) {
529     assert(PLevel < 3 && "Invalid PIC Level");
530     getModule().setPICLevel(static_cast<llvm::PICLevel::Level>(PLevel));
531     if (Context.getLangOpts().PIE)
532       getModule().setPIELevel(static_cast<llvm::PIELevel::Level>(PLevel));
533   }
534 
535   SimplifyPersonality();
536 
537   if (getCodeGenOpts().EmitDeclMetadata)
538     EmitDeclMetadata();
539 
540   if (getCodeGenOpts().EmitGcovArcs || getCodeGenOpts().EmitGcovNotes)
541     EmitCoverageFile();
542 
543   if (DebugInfo)
544     DebugInfo->finalize();
545 
546   EmitVersionIdentMetadata();
547 
548   EmitTargetMetadata();
549 }
550 
551 void CodeGenModule::EmitOpenCLMetadata() {
552   // SPIR v2.0 s2.13 - The OpenCL version used by the module is stored in the
553   // opencl.ocl.version named metadata node.
554   llvm::Metadata *OCLVerElts[] = {
555       llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
556           Int32Ty, LangOpts.OpenCLVersion / 100)),
557       llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
558           Int32Ty, (LangOpts.OpenCLVersion % 100) / 10))};
559   llvm::NamedMDNode *OCLVerMD =
560       TheModule.getOrInsertNamedMetadata("opencl.ocl.version");
561   llvm::LLVMContext &Ctx = TheModule.getContext();
562   OCLVerMD->addOperand(llvm::MDNode::get(Ctx, OCLVerElts));
563 }
564 
565 void CodeGenModule::UpdateCompletedType(const TagDecl *TD) {
566   // Make sure that this type is translated.
567   Types.UpdateCompletedType(TD);
568 }
569 
570 void CodeGenModule::RefreshTypeCacheForClass(const CXXRecordDecl *RD) {
571   // Make sure that this type is translated.
572   Types.RefreshTypeCacheForClass(RD);
573 }
574 
575 llvm::MDNode *CodeGenModule::getTBAATypeInfo(QualType QTy) {
576   if (!TBAA)
577     return nullptr;
578   return TBAA->getTypeInfo(QTy);
579 }
580 
581 TBAAAccessInfo CodeGenModule::getTBAAAccessInfo(QualType AccessType) {
582   return TBAAAccessInfo(getTBAATypeInfo(AccessType));
583 }
584 
585 TBAAAccessInfo CodeGenModule::getTBAAVTablePtrAccessInfo() {
586   if (!TBAA)
587     return TBAAAccessInfo();
588   return TBAA->getVTablePtrAccessInfo();
589 }
590 
591 llvm::MDNode *CodeGenModule::getTBAAStructInfo(QualType QTy) {
592   if (!TBAA)
593     return nullptr;
594   return TBAA->getTBAAStructInfo(QTy);
595 }
596 
597 llvm::MDNode *CodeGenModule::getTBAABaseTypeInfo(QualType QTy) {
598   if (!TBAA)
599     return nullptr;
600   return TBAA->getBaseTypeInfo(QTy);
601 }
602 
603 llvm::MDNode *CodeGenModule::getTBAAAccessTagInfo(TBAAAccessInfo Info) {
604   if (!TBAA)
605     return nullptr;
606   return TBAA->getAccessTagInfo(Info);
607 }
608 
609 TBAAAccessInfo CodeGenModule::getTBAAMayAliasAccessInfo() {
610   if (!TBAA)
611     return TBAAAccessInfo();
612   return TBAA->getMayAliasAccessInfo();
613 }
614 
615 void CodeGenModule::DecorateInstructionWithTBAA(llvm::Instruction *Inst,
616                                                 TBAAAccessInfo TBAAInfo) {
617   if (llvm::MDNode *Tag = getTBAAAccessTagInfo(TBAAInfo))
618     Inst->setMetadata(llvm::LLVMContext::MD_tbaa, Tag);
619 }
620 
621 void CodeGenModule::DecorateInstructionWithInvariantGroup(
622     llvm::Instruction *I, const CXXRecordDecl *RD) {
623   I->setMetadata(llvm::LLVMContext::MD_invariant_group,
624                  llvm::MDNode::get(getLLVMContext(), {}));
625 }
626 
627 void CodeGenModule::Error(SourceLocation loc, StringRef message) {
628   unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, "%0");
629   getDiags().Report(Context.getFullLoc(loc), diagID) << message;
630 }
631 
632 /// ErrorUnsupported - Print out an error that codegen doesn't support the
633 /// specified stmt yet.
634 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type) {
635   unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
636                                                "cannot compile this %0 yet");
637   std::string Msg = Type;
638   getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID)
639     << Msg << S->getSourceRange();
640 }
641 
642 /// ErrorUnsupported - Print out an error that codegen doesn't support the
643 /// specified decl yet.
644 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type) {
645   unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
646                                                "cannot compile this %0 yet");
647   std::string Msg = Type;
648   getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg;
649 }
650 
651 llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) {
652   return llvm::ConstantInt::get(SizeTy, size.getQuantity());
653 }
654 
655 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV,
656                                         const NamedDecl *D) const {
657   // Internal definitions always have default visibility.
658   if (GV->hasLocalLinkage()) {
659     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
660     return;
661   }
662 
663   // Set visibility for definitions.
664   LinkageInfo LV = D->getLinkageAndVisibility();
665   if (LV.isVisibilityExplicit() || !GV->hasAvailableExternallyLinkage())
666     GV->setVisibility(GetLLVMVisibility(LV.getVisibility()));
667 }
668 
669 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(StringRef S) {
670   return llvm::StringSwitch<llvm::GlobalVariable::ThreadLocalMode>(S)
671       .Case("global-dynamic", llvm::GlobalVariable::GeneralDynamicTLSModel)
672       .Case("local-dynamic", llvm::GlobalVariable::LocalDynamicTLSModel)
673       .Case("initial-exec", llvm::GlobalVariable::InitialExecTLSModel)
674       .Case("local-exec", llvm::GlobalVariable::LocalExecTLSModel);
675 }
676 
677 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(
678     CodeGenOptions::TLSModel M) {
679   switch (M) {
680   case CodeGenOptions::GeneralDynamicTLSModel:
681     return llvm::GlobalVariable::GeneralDynamicTLSModel;
682   case CodeGenOptions::LocalDynamicTLSModel:
683     return llvm::GlobalVariable::LocalDynamicTLSModel;
684   case CodeGenOptions::InitialExecTLSModel:
685     return llvm::GlobalVariable::InitialExecTLSModel;
686   case CodeGenOptions::LocalExecTLSModel:
687     return llvm::GlobalVariable::LocalExecTLSModel;
688   }
689   llvm_unreachable("Invalid TLS model!");
690 }
691 
692 void CodeGenModule::setTLSMode(llvm::GlobalValue *GV, const VarDecl &D) const {
693   assert(D.getTLSKind() && "setting TLS mode on non-TLS var!");
694 
695   llvm::GlobalValue::ThreadLocalMode TLM;
696   TLM = GetLLVMTLSModel(CodeGenOpts.getDefaultTLSModel());
697 
698   // Override the TLS model if it is explicitly specified.
699   if (const TLSModelAttr *Attr = D.getAttr<TLSModelAttr>()) {
700     TLM = GetLLVMTLSModel(Attr->getModel());
701   }
702 
703   GV->setThreadLocalMode(TLM);
704 }
705 
706 StringRef CodeGenModule::getMangledName(GlobalDecl GD) {
707   GlobalDecl CanonicalGD = GD.getCanonicalDecl();
708 
709   // Some ABIs don't have constructor variants.  Make sure that base and
710   // complete constructors get mangled the same.
711   if (const auto *CD = dyn_cast<CXXConstructorDecl>(CanonicalGD.getDecl())) {
712     if (!getTarget().getCXXABI().hasConstructorVariants()) {
713       CXXCtorType OrigCtorType = GD.getCtorType();
714       assert(OrigCtorType == Ctor_Base || OrigCtorType == Ctor_Complete);
715       if (OrigCtorType == Ctor_Base)
716         CanonicalGD = GlobalDecl(CD, Ctor_Complete);
717     }
718   }
719 
720   auto FoundName = MangledDeclNames.find(CanonicalGD);
721   if (FoundName != MangledDeclNames.end())
722     return FoundName->second;
723 
724   const auto *ND = cast<NamedDecl>(GD.getDecl());
725   SmallString<256> Buffer;
726   StringRef Str;
727   if (getCXXABI().getMangleContext().shouldMangleDeclName(ND)) {
728     llvm::raw_svector_ostream Out(Buffer);
729     if (const auto *D = dyn_cast<CXXConstructorDecl>(ND))
730       getCXXABI().getMangleContext().mangleCXXCtor(D, GD.getCtorType(), Out);
731     else if (const auto *D = dyn_cast<CXXDestructorDecl>(ND))
732       getCXXABI().getMangleContext().mangleCXXDtor(D, GD.getDtorType(), Out);
733     else
734       getCXXABI().getMangleContext().mangleName(ND, Out);
735     Str = Out.str();
736   } else {
737     IdentifierInfo *II = ND->getIdentifier();
738     assert(II && "Attempt to mangle unnamed decl.");
739     const auto *FD = dyn_cast<FunctionDecl>(ND);
740 
741     if (FD &&
742         FD->getType()->castAs<FunctionType>()->getCallConv() == CC_X86RegCall) {
743       llvm::raw_svector_ostream Out(Buffer);
744       Out << "__regcall3__" << II->getName();
745       Str = Out.str();
746     } else {
747       Str = II->getName();
748     }
749   }
750 
751   // Keep the first result in the case of a mangling collision.
752   auto Result = Manglings.insert(std::make_pair(Str, GD));
753   return MangledDeclNames[CanonicalGD] = Result.first->first();
754 }
755 
756 StringRef CodeGenModule::getBlockMangledName(GlobalDecl GD,
757                                              const BlockDecl *BD) {
758   MangleContext &MangleCtx = getCXXABI().getMangleContext();
759   const Decl *D = GD.getDecl();
760 
761   SmallString<256> Buffer;
762   llvm::raw_svector_ostream Out(Buffer);
763   if (!D)
764     MangleCtx.mangleGlobalBlock(BD,
765       dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()), Out);
766   else if (const auto *CD = dyn_cast<CXXConstructorDecl>(D))
767     MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out);
768   else if (const auto *DD = dyn_cast<CXXDestructorDecl>(D))
769     MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out);
770   else
771     MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out);
772 
773   auto Result = Manglings.insert(std::make_pair(Out.str(), BD));
774   return Result.first->first();
775 }
776 
777 llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) {
778   return getModule().getNamedValue(Name);
779 }
780 
781 /// AddGlobalCtor - Add a function to the list that will be called before
782 /// main() runs.
783 void CodeGenModule::AddGlobalCtor(llvm::Function *Ctor, int Priority,
784                                   llvm::Constant *AssociatedData) {
785   // FIXME: Type coercion of void()* types.
786   GlobalCtors.push_back(Structor(Priority, Ctor, AssociatedData));
787 }
788 
789 /// AddGlobalDtor - Add a function to the list that will be called
790 /// when the module is unloaded.
791 void CodeGenModule::AddGlobalDtor(llvm::Function *Dtor, int Priority) {
792   // FIXME: Type coercion of void()* types.
793   GlobalDtors.push_back(Structor(Priority, Dtor, nullptr));
794 }
795 
796 void CodeGenModule::EmitCtorList(CtorList &Fns, const char *GlobalName) {
797   if (Fns.empty()) return;
798 
799   // Ctor function type is void()*.
800   llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false);
801   llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy);
802 
803   // Get the type of a ctor entry, { i32, void ()*, i8* }.
804   llvm::StructType *CtorStructTy = llvm::StructType::get(
805       Int32Ty, llvm::PointerType::getUnqual(CtorFTy), VoidPtrTy);
806 
807   // Construct the constructor and destructor arrays.
808   ConstantInitBuilder builder(*this);
809   auto ctors = builder.beginArray(CtorStructTy);
810   for (const auto &I : Fns) {
811     auto ctor = ctors.beginStruct(CtorStructTy);
812     ctor.addInt(Int32Ty, I.Priority);
813     ctor.add(llvm::ConstantExpr::getBitCast(I.Initializer, CtorPFTy));
814     if (I.AssociatedData)
815       ctor.add(llvm::ConstantExpr::getBitCast(I.AssociatedData, VoidPtrTy));
816     else
817       ctor.addNullPointer(VoidPtrTy);
818     ctor.finishAndAddTo(ctors);
819   }
820 
821   auto list =
822     ctors.finishAndCreateGlobal(GlobalName, getPointerAlign(),
823                                 /*constant*/ false,
824                                 llvm::GlobalValue::AppendingLinkage);
825 
826   // The LTO linker doesn't seem to like it when we set an alignment
827   // on appending variables.  Take it off as a workaround.
828   list->setAlignment(0);
829 
830   Fns.clear();
831 }
832 
833 llvm::GlobalValue::LinkageTypes
834 CodeGenModule::getFunctionLinkage(GlobalDecl GD) {
835   const auto *D = cast<FunctionDecl>(GD.getDecl());
836 
837   GVALinkage Linkage = getContext().GetGVALinkageForFunction(D);
838 
839   if (isa<CXXDestructorDecl>(D) &&
840       getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D),
841                                          GD.getDtorType())) {
842     // Destructor variants in the Microsoft C++ ABI are always internal or
843     // linkonce_odr thunks emitted on an as-needed basis.
844     return Linkage == GVA_Internal ? llvm::GlobalValue::InternalLinkage
845                                    : llvm::GlobalValue::LinkOnceODRLinkage;
846   }
847 
848   if (isa<CXXConstructorDecl>(D) &&
849       cast<CXXConstructorDecl>(D)->isInheritingConstructor() &&
850       Context.getTargetInfo().getCXXABI().isMicrosoft()) {
851     // Our approach to inheriting constructors is fundamentally different from
852     // that used by the MS ABI, so keep our inheriting constructor thunks
853     // internal rather than trying to pick an unambiguous mangling for them.
854     return llvm::GlobalValue::InternalLinkage;
855   }
856 
857   return getLLVMLinkageForDeclarator(D, Linkage, /*isConstantVariable=*/false);
858 }
859 
860 void CodeGenModule::setFunctionDLLStorageClass(GlobalDecl GD, llvm::Function *F) {
861   const auto *FD = cast<FunctionDecl>(GD.getDecl());
862 
863   if (const auto *Dtor = dyn_cast_or_null<CXXDestructorDecl>(FD)) {
864     if (getCXXABI().useThunkForDtorVariant(Dtor, GD.getDtorType())) {
865       // Don't dllexport/import destructor thunks.
866       F->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
867       return;
868     }
869   }
870 
871   if (FD->hasAttr<DLLImportAttr>())
872     F->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass);
873   else if (FD->hasAttr<DLLExportAttr>())
874     F->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass);
875   else
876     F->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass);
877 }
878 
879 llvm::ConstantInt *CodeGenModule::CreateCrossDsoCfiTypeId(llvm::Metadata *MD) {
880   llvm::MDString *MDS = dyn_cast<llvm::MDString>(MD);
881   if (!MDS) return nullptr;
882 
883   return llvm::ConstantInt::get(Int64Ty, llvm::MD5Hash(MDS->getString()));
884 }
885 
886 void CodeGenModule::setFunctionDefinitionAttributes(const FunctionDecl *D,
887                                                     llvm::Function *F) {
888   setNonAliasAttributes(D, F);
889 }
890 
891 void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D,
892                                               const CGFunctionInfo &Info,
893                                               llvm::Function *F) {
894   unsigned CallingConv;
895   llvm::AttributeList PAL;
896   ConstructAttributeList(F->getName(), Info, D, PAL, CallingConv, false);
897   F->setAttributes(PAL);
898   F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv));
899 }
900 
901 /// Determines whether the language options require us to model
902 /// unwind exceptions.  We treat -fexceptions as mandating this
903 /// except under the fragile ObjC ABI with only ObjC exceptions
904 /// enabled.  This means, for example, that C with -fexceptions
905 /// enables this.
906 static bool hasUnwindExceptions(const LangOptions &LangOpts) {
907   // If exceptions are completely disabled, obviously this is false.
908   if (!LangOpts.Exceptions) return false;
909 
910   // If C++ exceptions are enabled, this is true.
911   if (LangOpts.CXXExceptions) return true;
912 
913   // If ObjC exceptions are enabled, this depends on the ABI.
914   if (LangOpts.ObjCExceptions) {
915     return LangOpts.ObjCRuntime.hasUnwindExceptions();
916   }
917 
918   return true;
919 }
920 
921 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D,
922                                                            llvm::Function *F) {
923   llvm::AttrBuilder B;
924 
925   if (CodeGenOpts.UnwindTables)
926     B.addAttribute(llvm::Attribute::UWTable);
927 
928   if (!hasUnwindExceptions(LangOpts))
929     B.addAttribute(llvm::Attribute::NoUnwind);
930 
931   if (LangOpts.getStackProtector() == LangOptions::SSPOn)
932     B.addAttribute(llvm::Attribute::StackProtect);
933   else if (LangOpts.getStackProtector() == LangOptions::SSPStrong)
934     B.addAttribute(llvm::Attribute::StackProtectStrong);
935   else if (LangOpts.getStackProtector() == LangOptions::SSPReq)
936     B.addAttribute(llvm::Attribute::StackProtectReq);
937 
938   if (!D) {
939     // If we don't have a declaration to control inlining, the function isn't
940     // explicitly marked as alwaysinline for semantic reasons, and inlining is
941     // disabled, mark the function as noinline.
942     if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline) &&
943         CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining)
944       B.addAttribute(llvm::Attribute::NoInline);
945 
946     F->addAttributes(llvm::AttributeList::FunctionIndex, B);
947     return;
948   }
949 
950   // Track whether we need to add the optnone LLVM attribute,
951   // starting with the default for this optimization level.
952   bool ShouldAddOptNone =
953       !CodeGenOpts.DisableO0ImplyOptNone && CodeGenOpts.OptimizationLevel == 0;
954   // We can't add optnone in the following cases, it won't pass the verifier.
955   ShouldAddOptNone &= !D->hasAttr<MinSizeAttr>();
956   ShouldAddOptNone &= !F->hasFnAttribute(llvm::Attribute::AlwaysInline);
957   ShouldAddOptNone &= !D->hasAttr<AlwaysInlineAttr>();
958 
959   if (ShouldAddOptNone || D->hasAttr<OptimizeNoneAttr>()) {
960     B.addAttribute(llvm::Attribute::OptimizeNone);
961 
962     // OptimizeNone implies noinline; we should not be inlining such functions.
963     B.addAttribute(llvm::Attribute::NoInline);
964     assert(!F->hasFnAttribute(llvm::Attribute::AlwaysInline) &&
965            "OptimizeNone and AlwaysInline on same function!");
966 
967     // We still need to handle naked functions even though optnone subsumes
968     // much of their semantics.
969     if (D->hasAttr<NakedAttr>())
970       B.addAttribute(llvm::Attribute::Naked);
971 
972     // OptimizeNone wins over OptimizeForSize and MinSize.
973     F->removeFnAttr(llvm::Attribute::OptimizeForSize);
974     F->removeFnAttr(llvm::Attribute::MinSize);
975   } else if (D->hasAttr<NakedAttr>()) {
976     // Naked implies noinline: we should not be inlining such functions.
977     B.addAttribute(llvm::Attribute::Naked);
978     B.addAttribute(llvm::Attribute::NoInline);
979   } else if (D->hasAttr<NoDuplicateAttr>()) {
980     B.addAttribute(llvm::Attribute::NoDuplicate);
981   } else if (D->hasAttr<NoInlineAttr>()) {
982     B.addAttribute(llvm::Attribute::NoInline);
983   } else if (D->hasAttr<AlwaysInlineAttr>() &&
984              !F->hasFnAttribute(llvm::Attribute::NoInline)) {
985     // (noinline wins over always_inline, and we can't specify both in IR)
986     B.addAttribute(llvm::Attribute::AlwaysInline);
987   } else if (CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining) {
988     // If we're not inlining, then force everything that isn't always_inline to
989     // carry an explicit noinline attribute.
990     if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline))
991       B.addAttribute(llvm::Attribute::NoInline);
992   } else {
993     // Otherwise, propagate the inline hint attribute and potentially use its
994     // absence to mark things as noinline.
995     if (auto *FD = dyn_cast<FunctionDecl>(D)) {
996       if (any_of(FD->redecls(), [&](const FunctionDecl *Redecl) {
997             return Redecl->isInlineSpecified();
998           })) {
999         B.addAttribute(llvm::Attribute::InlineHint);
1000       } else if (CodeGenOpts.getInlining() ==
1001                      CodeGenOptions::OnlyHintInlining &&
1002                  !FD->isInlined() &&
1003                  !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) {
1004         B.addAttribute(llvm::Attribute::NoInline);
1005       }
1006     }
1007   }
1008 
1009   // Add other optimization related attributes if we are optimizing this
1010   // function.
1011   if (!D->hasAttr<OptimizeNoneAttr>()) {
1012     if (D->hasAttr<ColdAttr>()) {
1013       if (!ShouldAddOptNone)
1014         B.addAttribute(llvm::Attribute::OptimizeForSize);
1015       B.addAttribute(llvm::Attribute::Cold);
1016     }
1017 
1018     if (D->hasAttr<MinSizeAttr>())
1019       B.addAttribute(llvm::Attribute::MinSize);
1020   }
1021 
1022   F->addAttributes(llvm::AttributeList::FunctionIndex, B);
1023 
1024   unsigned alignment = D->getMaxAlignment() / Context.getCharWidth();
1025   if (alignment)
1026     F->setAlignment(alignment);
1027 
1028   // Some C++ ABIs require 2-byte alignment for member functions, in order to
1029   // reserve a bit for differentiating between virtual and non-virtual member
1030   // functions. If the current target's C++ ABI requires this and this is a
1031   // member function, set its alignment accordingly.
1032   if (getTarget().getCXXABI().areMemberFunctionsAligned()) {
1033     if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D))
1034       F->setAlignment(2);
1035   }
1036 
1037   // In the cross-dso CFI mode, we want !type attributes on definitions only.
1038   if (CodeGenOpts.SanitizeCfiCrossDso)
1039     if (auto *FD = dyn_cast<FunctionDecl>(D))
1040       CreateFunctionTypeMetadata(FD, F);
1041 }
1042 
1043 void CodeGenModule::SetCommonAttributes(const Decl *D,
1044                                         llvm::GlobalValue *GV) {
1045   if (const auto *ND = dyn_cast_or_null<NamedDecl>(D))
1046     setGlobalVisibility(GV, ND);
1047   else
1048     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
1049 
1050   if (D && D->hasAttr<UsedAttr>())
1051     addUsedGlobal(GV);
1052 }
1053 
1054 void CodeGenModule::setAliasAttributes(const Decl *D,
1055                                        llvm::GlobalValue *GV) {
1056   SetCommonAttributes(D, GV);
1057 
1058   // Process the dllexport attribute based on whether the original definition
1059   // (not necessarily the aliasee) was exported.
1060   if (D->hasAttr<DLLExportAttr>())
1061     GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass);
1062 }
1063 
1064 void CodeGenModule::setNonAliasAttributes(const Decl *D,
1065                                           llvm::GlobalObject *GO) {
1066   SetCommonAttributes(D, GO);
1067 
1068   if (D) {
1069     if (auto *GV = dyn_cast<llvm::GlobalVariable>(GO)) {
1070       if (auto *SA = D->getAttr<PragmaClangBSSSectionAttr>())
1071         GV->addAttribute("bss-section", SA->getName());
1072       if (auto *SA = D->getAttr<PragmaClangDataSectionAttr>())
1073         GV->addAttribute("data-section", SA->getName());
1074       if (auto *SA = D->getAttr<PragmaClangRodataSectionAttr>())
1075         GV->addAttribute("rodata-section", SA->getName());
1076     }
1077 
1078     if (auto *F = dyn_cast<llvm::Function>(GO)) {
1079       if (auto *SA = D->getAttr<PragmaClangTextSectionAttr>())
1080        if (!D->getAttr<SectionAttr>())
1081          F->addFnAttr("implicit-section-name", SA->getName());
1082     }
1083 
1084     if (const SectionAttr *SA = D->getAttr<SectionAttr>())
1085       GO->setSection(SA->getName());
1086   }
1087 
1088   getTargetCodeGenInfo().setTargetAttributes(D, GO, *this, ForDefinition);
1089 }
1090 
1091 void CodeGenModule::SetInternalFunctionAttributes(const Decl *D,
1092                                                   llvm::Function *F,
1093                                                   const CGFunctionInfo &FI) {
1094   SetLLVMFunctionAttributes(D, FI, F);
1095   SetLLVMFunctionAttributesForDefinition(D, F);
1096 
1097   F->setLinkage(llvm::Function::InternalLinkage);
1098 
1099   setNonAliasAttributes(D, F);
1100 }
1101 
1102 static void setLinkageAndVisibilityForGV(llvm::GlobalValue *GV,
1103                                          const NamedDecl *ND) {
1104   // Set linkage and visibility in case we never see a definition.
1105   LinkageInfo LV = ND->getLinkageAndVisibility();
1106   if (!isExternallyVisible(LV.getLinkage())) {
1107     // Don't set internal linkage on declarations.
1108   } else {
1109     if (ND->hasAttr<DLLImportAttr>()) {
1110       GV->setLinkage(llvm::GlobalValue::ExternalLinkage);
1111       GV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass);
1112     } else if (ND->hasAttr<DLLExportAttr>()) {
1113       GV->setLinkage(llvm::GlobalValue::ExternalLinkage);
1114     } else if (ND->hasAttr<WeakAttr>() || ND->isWeakImported()) {
1115       // "extern_weak" is overloaded in LLVM; we probably should have
1116       // separate linkage types for this.
1117       GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage);
1118     }
1119 
1120     // Set visibility on a declaration only if it's explicit.
1121     if (LV.isVisibilityExplicit())
1122       GV->setVisibility(CodeGenModule::GetLLVMVisibility(LV.getVisibility()));
1123   }
1124 }
1125 
1126 void CodeGenModule::CreateFunctionTypeMetadata(const FunctionDecl *FD,
1127                                                llvm::Function *F) {
1128   // Only if we are checking indirect calls.
1129   if (!LangOpts.Sanitize.has(SanitizerKind::CFIICall))
1130     return;
1131 
1132   // Non-static class methods are handled via vtable pointer checks elsewhere.
1133   if (isa<CXXMethodDecl>(FD) && !cast<CXXMethodDecl>(FD)->isStatic())
1134     return;
1135 
1136   // Additionally, if building with cross-DSO support...
1137   if (CodeGenOpts.SanitizeCfiCrossDso) {
1138     // Skip available_externally functions. They won't be codegen'ed in the
1139     // current module anyway.
1140     if (getContext().GetGVALinkageForFunction(FD) == GVA_AvailableExternally)
1141       return;
1142   }
1143 
1144   llvm::Metadata *MD = CreateMetadataIdentifierForType(FD->getType());
1145   F->addTypeMetadata(0, MD);
1146 
1147   // Emit a hash-based bit set entry for cross-DSO calls.
1148   if (CodeGenOpts.SanitizeCfiCrossDso)
1149     if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD))
1150       F->addTypeMetadata(0, llvm::ConstantAsMetadata::get(CrossDsoTypeId));
1151 }
1152 
1153 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD, llvm::Function *F,
1154                                           bool IsIncompleteFunction,
1155                                           bool IsThunk,
1156                                           ForDefinition_t IsForDefinition) {
1157 
1158   if (llvm::Intrinsic::ID IID = F->getIntrinsicID()) {
1159     // If this is an intrinsic function, set the function's attributes
1160     // to the intrinsic's attributes.
1161     F->setAttributes(llvm::Intrinsic::getAttributes(getLLVMContext(), IID));
1162     return;
1163   }
1164 
1165   const auto *FD = cast<FunctionDecl>(GD.getDecl());
1166 
1167   if (!IsIncompleteFunction) {
1168     SetLLVMFunctionAttributes(FD, getTypes().arrangeGlobalDeclaration(GD), F);
1169     // Setup target-specific attributes.
1170     if (!IsForDefinition)
1171       getTargetCodeGenInfo().setTargetAttributes(FD, F, *this,
1172                                                  NotForDefinition);
1173   }
1174 
1175   // Add the Returned attribute for "this", except for iOS 5 and earlier
1176   // where substantial code, including the libstdc++ dylib, was compiled with
1177   // GCC and does not actually return "this".
1178   if (!IsThunk && getCXXABI().HasThisReturn(GD) &&
1179       !(getTriple().isiOS() && getTriple().isOSVersionLT(6))) {
1180     assert(!F->arg_empty() &&
1181            F->arg_begin()->getType()
1182              ->canLosslesslyBitCastTo(F->getReturnType()) &&
1183            "unexpected this return");
1184     F->addAttribute(1, llvm::Attribute::Returned);
1185   }
1186 
1187   // Only a few attributes are set on declarations; these may later be
1188   // overridden by a definition.
1189 
1190   setLinkageAndVisibilityForGV(F, FD);
1191 
1192   if (FD->getAttr<PragmaClangTextSectionAttr>()) {
1193     F->addFnAttr("implicit-section-name");
1194   }
1195 
1196   if (const SectionAttr *SA = FD->getAttr<SectionAttr>())
1197     F->setSection(SA->getName());
1198 
1199   if (FD->isReplaceableGlobalAllocationFunction()) {
1200     // A replaceable global allocation function does not act like a builtin by
1201     // default, only if it is invoked by a new-expression or delete-expression.
1202     F->addAttribute(llvm::AttributeList::FunctionIndex,
1203                     llvm::Attribute::NoBuiltin);
1204 
1205     // A sane operator new returns a non-aliasing pointer.
1206     // FIXME: Also add NonNull attribute to the return value
1207     // for the non-nothrow forms?
1208     auto Kind = FD->getDeclName().getCXXOverloadedOperator();
1209     if (getCodeGenOpts().AssumeSaneOperatorNew &&
1210         (Kind == OO_New || Kind == OO_Array_New))
1211       F->addAttribute(llvm::AttributeList::ReturnIndex,
1212                       llvm::Attribute::NoAlias);
1213   }
1214 
1215   if (isa<CXXConstructorDecl>(FD) || isa<CXXDestructorDecl>(FD))
1216     F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
1217   else if (const auto *MD = dyn_cast<CXXMethodDecl>(FD))
1218     if (MD->isVirtual())
1219       F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
1220 
1221   // Don't emit entries for function declarations in the cross-DSO mode. This
1222   // is handled with better precision by the receiving DSO.
1223   if (!CodeGenOpts.SanitizeCfiCrossDso)
1224     CreateFunctionTypeMetadata(FD, F);
1225 }
1226 
1227 void CodeGenModule::addUsedGlobal(llvm::GlobalValue *GV) {
1228   assert(!GV->isDeclaration() &&
1229          "Only globals with definition can force usage.");
1230   LLVMUsed.emplace_back(GV);
1231 }
1232 
1233 void CodeGenModule::addCompilerUsedGlobal(llvm::GlobalValue *GV) {
1234   assert(!GV->isDeclaration() &&
1235          "Only globals with definition can force usage.");
1236   LLVMCompilerUsed.emplace_back(GV);
1237 }
1238 
1239 static void emitUsed(CodeGenModule &CGM, StringRef Name,
1240                      std::vector<llvm::WeakTrackingVH> &List) {
1241   // Don't create llvm.used if there is no need.
1242   if (List.empty())
1243     return;
1244 
1245   // Convert List to what ConstantArray needs.
1246   SmallVector<llvm::Constant*, 8> UsedArray;
1247   UsedArray.resize(List.size());
1248   for (unsigned i = 0, e = List.size(); i != e; ++i) {
1249     UsedArray[i] =
1250         llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(
1251             cast<llvm::Constant>(&*List[i]), CGM.Int8PtrTy);
1252   }
1253 
1254   if (UsedArray.empty())
1255     return;
1256   llvm::ArrayType *ATy = llvm::ArrayType::get(CGM.Int8PtrTy, UsedArray.size());
1257 
1258   auto *GV = new llvm::GlobalVariable(
1259       CGM.getModule(), ATy, false, llvm::GlobalValue::AppendingLinkage,
1260       llvm::ConstantArray::get(ATy, UsedArray), Name);
1261 
1262   GV->setSection("llvm.metadata");
1263 }
1264 
1265 void CodeGenModule::emitLLVMUsed() {
1266   emitUsed(*this, "llvm.used", LLVMUsed);
1267   emitUsed(*this, "llvm.compiler.used", LLVMCompilerUsed);
1268 }
1269 
1270 void CodeGenModule::AppendLinkerOptions(StringRef Opts) {
1271   auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opts);
1272   LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
1273 }
1274 
1275 void CodeGenModule::AddDetectMismatch(StringRef Name, StringRef Value) {
1276   llvm::SmallString<32> Opt;
1277   getTargetCodeGenInfo().getDetectMismatchOption(Name, Value, Opt);
1278   auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt);
1279   LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
1280 }
1281 
1282 void CodeGenModule::AddDependentLib(StringRef Lib) {
1283   llvm::SmallString<24> Opt;
1284   getTargetCodeGenInfo().getDependentLibraryOption(Lib, Opt);
1285   auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt);
1286   LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
1287 }
1288 
1289 /// \brief Add link options implied by the given module, including modules
1290 /// it depends on, using a postorder walk.
1291 static void addLinkOptionsPostorder(CodeGenModule &CGM, Module *Mod,
1292                                     SmallVectorImpl<llvm::MDNode *> &Metadata,
1293                                     llvm::SmallPtrSet<Module *, 16> &Visited) {
1294   // Import this module's parent.
1295   if (Mod->Parent && Visited.insert(Mod->Parent).second) {
1296     addLinkOptionsPostorder(CGM, Mod->Parent, Metadata, Visited);
1297   }
1298 
1299   // Import this module's dependencies.
1300   for (unsigned I = Mod->Imports.size(); I > 0; --I) {
1301     if (Visited.insert(Mod->Imports[I - 1]).second)
1302       addLinkOptionsPostorder(CGM, Mod->Imports[I-1], Metadata, Visited);
1303   }
1304 
1305   // Add linker options to link against the libraries/frameworks
1306   // described by this module.
1307   llvm::LLVMContext &Context = CGM.getLLVMContext();
1308   for (unsigned I = Mod->LinkLibraries.size(); I > 0; --I) {
1309     // Link against a framework.  Frameworks are currently Darwin only, so we
1310     // don't to ask TargetCodeGenInfo for the spelling of the linker option.
1311     if (Mod->LinkLibraries[I-1].IsFramework) {
1312       llvm::Metadata *Args[2] = {
1313           llvm::MDString::get(Context, "-framework"),
1314           llvm::MDString::get(Context, Mod->LinkLibraries[I - 1].Library)};
1315 
1316       Metadata.push_back(llvm::MDNode::get(Context, Args));
1317       continue;
1318     }
1319 
1320     // Link against a library.
1321     llvm::SmallString<24> Opt;
1322     CGM.getTargetCodeGenInfo().getDependentLibraryOption(
1323       Mod->LinkLibraries[I-1].Library, Opt);
1324     auto *OptString = llvm::MDString::get(Context, Opt);
1325     Metadata.push_back(llvm::MDNode::get(Context, OptString));
1326   }
1327 }
1328 
1329 void CodeGenModule::EmitModuleLinkOptions() {
1330   // Collect the set of all of the modules we want to visit to emit link
1331   // options, which is essentially the imported modules and all of their
1332   // non-explicit child modules.
1333   llvm::SetVector<clang::Module *> LinkModules;
1334   llvm::SmallPtrSet<clang::Module *, 16> Visited;
1335   SmallVector<clang::Module *, 16> Stack;
1336 
1337   // Seed the stack with imported modules.
1338   for (Module *M : ImportedModules) {
1339     // Do not add any link flags when an implementation TU of a module imports
1340     // a header of that same module.
1341     if (M->getTopLevelModuleName() == getLangOpts().CurrentModule &&
1342         !getLangOpts().isCompilingModule())
1343       continue;
1344     if (Visited.insert(M).second)
1345       Stack.push_back(M);
1346   }
1347 
1348   // Find all of the modules to import, making a little effort to prune
1349   // non-leaf modules.
1350   while (!Stack.empty()) {
1351     clang::Module *Mod = Stack.pop_back_val();
1352 
1353     bool AnyChildren = false;
1354 
1355     // Visit the submodules of this module.
1356     for (clang::Module::submodule_iterator Sub = Mod->submodule_begin(),
1357                                         SubEnd = Mod->submodule_end();
1358          Sub != SubEnd; ++Sub) {
1359       // Skip explicit children; they need to be explicitly imported to be
1360       // linked against.
1361       if ((*Sub)->IsExplicit)
1362         continue;
1363 
1364       if (Visited.insert(*Sub).second) {
1365         Stack.push_back(*Sub);
1366         AnyChildren = true;
1367       }
1368     }
1369 
1370     // We didn't find any children, so add this module to the list of
1371     // modules to link against.
1372     if (!AnyChildren) {
1373       LinkModules.insert(Mod);
1374     }
1375   }
1376 
1377   // Add link options for all of the imported modules in reverse topological
1378   // order.  We don't do anything to try to order import link flags with respect
1379   // to linker options inserted by things like #pragma comment().
1380   SmallVector<llvm::MDNode *, 16> MetadataArgs;
1381   Visited.clear();
1382   for (Module *M : LinkModules)
1383     if (Visited.insert(M).second)
1384       addLinkOptionsPostorder(*this, M, MetadataArgs, Visited);
1385   std::reverse(MetadataArgs.begin(), MetadataArgs.end());
1386   LinkerOptionsMetadata.append(MetadataArgs.begin(), MetadataArgs.end());
1387 
1388   // Add the linker options metadata flag.
1389   auto *NMD = getModule().getOrInsertNamedMetadata("llvm.linker.options");
1390   for (auto *MD : LinkerOptionsMetadata)
1391     NMD->addOperand(MD);
1392 }
1393 
1394 void CodeGenModule::EmitDeferred() {
1395   // Emit code for any potentially referenced deferred decls.  Since a
1396   // previously unused static decl may become used during the generation of code
1397   // for a static function, iterate until no changes are made.
1398 
1399   if (!DeferredVTables.empty()) {
1400     EmitDeferredVTables();
1401 
1402     // Emitting a vtable doesn't directly cause more vtables to
1403     // become deferred, although it can cause functions to be
1404     // emitted that then need those vtables.
1405     assert(DeferredVTables.empty());
1406   }
1407 
1408   // Stop if we're out of both deferred vtables and deferred declarations.
1409   if (DeferredDeclsToEmit.empty())
1410     return;
1411 
1412   // Grab the list of decls to emit. If EmitGlobalDefinition schedules more
1413   // work, it will not interfere with this.
1414   std::vector<GlobalDecl> CurDeclsToEmit;
1415   CurDeclsToEmit.swap(DeferredDeclsToEmit);
1416 
1417   for (GlobalDecl &D : CurDeclsToEmit) {
1418     // We should call GetAddrOfGlobal with IsForDefinition set to true in order
1419     // to get GlobalValue with exactly the type we need, not something that
1420     // might had been created for another decl with the same mangled name but
1421     // different type.
1422     llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>(
1423         GetAddrOfGlobal(D, ForDefinition));
1424 
1425     // In case of different address spaces, we may still get a cast, even with
1426     // IsForDefinition equal to true. Query mangled names table to get
1427     // GlobalValue.
1428     if (!GV)
1429       GV = GetGlobalValue(getMangledName(D));
1430 
1431     // Make sure GetGlobalValue returned non-null.
1432     assert(GV);
1433 
1434     // Check to see if we've already emitted this.  This is necessary
1435     // for a couple of reasons: first, decls can end up in the
1436     // deferred-decls queue multiple times, and second, decls can end
1437     // up with definitions in unusual ways (e.g. by an extern inline
1438     // function acquiring a strong function redefinition).  Just
1439     // ignore these cases.
1440     if (!GV->isDeclaration())
1441       continue;
1442 
1443     // Otherwise, emit the definition and move on to the next one.
1444     EmitGlobalDefinition(D, GV);
1445 
1446     // If we found out that we need to emit more decls, do that recursively.
1447     // This has the advantage that the decls are emitted in a DFS and related
1448     // ones are close together, which is convenient for testing.
1449     if (!DeferredVTables.empty() || !DeferredDeclsToEmit.empty()) {
1450       EmitDeferred();
1451       assert(DeferredVTables.empty() && DeferredDeclsToEmit.empty());
1452     }
1453   }
1454 }
1455 
1456 void CodeGenModule::EmitVTablesOpportunistically() {
1457   // Try to emit external vtables as available_externally if they have emitted
1458   // all inlined virtual functions.  It runs after EmitDeferred() and therefore
1459   // is not allowed to create new references to things that need to be emitted
1460   // lazily. Note that it also uses fact that we eagerly emitting RTTI.
1461 
1462   assert((OpportunisticVTables.empty() || shouldOpportunisticallyEmitVTables())
1463          && "Only emit opportunistic vtables with optimizations");
1464 
1465   for (const CXXRecordDecl *RD : OpportunisticVTables) {
1466     assert(getVTables().isVTableExternal(RD) &&
1467            "This queue should only contain external vtables");
1468     if (getCXXABI().canSpeculativelyEmitVTable(RD))
1469       VTables.GenerateClassData(RD);
1470   }
1471   OpportunisticVTables.clear();
1472 }
1473 
1474 void CodeGenModule::EmitGlobalAnnotations() {
1475   if (Annotations.empty())
1476     return;
1477 
1478   // Create a new global variable for the ConstantStruct in the Module.
1479   llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get(
1480     Annotations[0]->getType(), Annotations.size()), Annotations);
1481   auto *gv = new llvm::GlobalVariable(getModule(), Array->getType(), false,
1482                                       llvm::GlobalValue::AppendingLinkage,
1483                                       Array, "llvm.global.annotations");
1484   gv->setSection(AnnotationSection);
1485 }
1486 
1487 llvm::Constant *CodeGenModule::EmitAnnotationString(StringRef Str) {
1488   llvm::Constant *&AStr = AnnotationStrings[Str];
1489   if (AStr)
1490     return AStr;
1491 
1492   // Not found yet, create a new global.
1493   llvm::Constant *s = llvm::ConstantDataArray::getString(getLLVMContext(), Str);
1494   auto *gv =
1495       new llvm::GlobalVariable(getModule(), s->getType(), true,
1496                                llvm::GlobalValue::PrivateLinkage, s, ".str");
1497   gv->setSection(AnnotationSection);
1498   gv->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
1499   AStr = gv;
1500   return gv;
1501 }
1502 
1503 llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) {
1504   SourceManager &SM = getContext().getSourceManager();
1505   PresumedLoc PLoc = SM.getPresumedLoc(Loc);
1506   if (PLoc.isValid())
1507     return EmitAnnotationString(PLoc.getFilename());
1508   return EmitAnnotationString(SM.getBufferName(Loc));
1509 }
1510 
1511 llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) {
1512   SourceManager &SM = getContext().getSourceManager();
1513   PresumedLoc PLoc = SM.getPresumedLoc(L);
1514   unsigned LineNo = PLoc.isValid() ? PLoc.getLine() :
1515     SM.getExpansionLineNumber(L);
1516   return llvm::ConstantInt::get(Int32Ty, LineNo);
1517 }
1518 
1519 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV,
1520                                                 const AnnotateAttr *AA,
1521                                                 SourceLocation L) {
1522   // Get the globals for file name, annotation, and the line number.
1523   llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()),
1524                  *UnitGV = EmitAnnotationUnit(L),
1525                  *LineNoCst = EmitAnnotationLineNo(L);
1526 
1527   // Create the ConstantStruct for the global annotation.
1528   llvm::Constant *Fields[4] = {
1529     llvm::ConstantExpr::getBitCast(GV, Int8PtrTy),
1530     llvm::ConstantExpr::getBitCast(AnnoGV, Int8PtrTy),
1531     llvm::ConstantExpr::getBitCast(UnitGV, Int8PtrTy),
1532     LineNoCst
1533   };
1534   return llvm::ConstantStruct::getAnon(Fields);
1535 }
1536 
1537 void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D,
1538                                          llvm::GlobalValue *GV) {
1539   assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
1540   // Get the struct elements for these annotations.
1541   for (const auto *I : D->specific_attrs<AnnotateAttr>())
1542     Annotations.push_back(EmitAnnotateAttr(GV, I, D->getLocation()));
1543 }
1544 
1545 bool CodeGenModule::isInSanitizerBlacklist(SanitizerMask Kind,
1546                                            llvm::Function *Fn,
1547                                            SourceLocation Loc) const {
1548   const auto &SanitizerBL = getContext().getSanitizerBlacklist();
1549   // Blacklist by function name.
1550   if (SanitizerBL.isBlacklistedFunction(Kind, Fn->getName()))
1551     return true;
1552   // Blacklist by location.
1553   if (Loc.isValid())
1554     return SanitizerBL.isBlacklistedLocation(Kind, Loc);
1555   // If location is unknown, this may be a compiler-generated function. Assume
1556   // it's located in the main file.
1557   auto &SM = Context.getSourceManager();
1558   if (const auto *MainFile = SM.getFileEntryForID(SM.getMainFileID())) {
1559     return SanitizerBL.isBlacklistedFile(Kind, MainFile->getName());
1560   }
1561   return false;
1562 }
1563 
1564 bool CodeGenModule::isInSanitizerBlacklist(llvm::GlobalVariable *GV,
1565                                            SourceLocation Loc, QualType Ty,
1566                                            StringRef Category) const {
1567   // For now globals can be blacklisted only in ASan and KASan.
1568   const SanitizerMask EnabledAsanMask = LangOpts.Sanitize.Mask &
1569       (SanitizerKind::Address | SanitizerKind::KernelAddress);
1570   if (!EnabledAsanMask)
1571     return false;
1572   const auto &SanitizerBL = getContext().getSanitizerBlacklist();
1573   if (SanitizerBL.isBlacklistedGlobal(EnabledAsanMask, GV->getName(), Category))
1574     return true;
1575   if (SanitizerBL.isBlacklistedLocation(EnabledAsanMask, Loc, Category))
1576     return true;
1577   // Check global type.
1578   if (!Ty.isNull()) {
1579     // Drill down the array types: if global variable of a fixed type is
1580     // blacklisted, we also don't instrument arrays of them.
1581     while (auto AT = dyn_cast<ArrayType>(Ty.getTypePtr()))
1582       Ty = AT->getElementType();
1583     Ty = Ty.getCanonicalType().getUnqualifiedType();
1584     // We allow to blacklist only record types (classes, structs etc.)
1585     if (Ty->isRecordType()) {
1586       std::string TypeStr = Ty.getAsString(getContext().getPrintingPolicy());
1587       if (SanitizerBL.isBlacklistedType(EnabledAsanMask, TypeStr, Category))
1588         return true;
1589     }
1590   }
1591   return false;
1592 }
1593 
1594 bool CodeGenModule::imbueXRayAttrs(llvm::Function *Fn, SourceLocation Loc,
1595                                    StringRef Category) const {
1596   if (!LangOpts.XRayInstrument)
1597     return false;
1598   const auto &XRayFilter = getContext().getXRayFilter();
1599   using ImbueAttr = XRayFunctionFilter::ImbueAttribute;
1600   auto Attr = XRayFunctionFilter::ImbueAttribute::NONE;
1601   if (Loc.isValid())
1602     Attr = XRayFilter.shouldImbueLocation(Loc, Category);
1603   if (Attr == ImbueAttr::NONE)
1604     Attr = XRayFilter.shouldImbueFunction(Fn->getName());
1605   switch (Attr) {
1606   case ImbueAttr::NONE:
1607     return false;
1608   case ImbueAttr::ALWAYS:
1609     Fn->addFnAttr("function-instrument", "xray-always");
1610     break;
1611   case ImbueAttr::ALWAYS_ARG1:
1612     Fn->addFnAttr("function-instrument", "xray-always");
1613     Fn->addFnAttr("xray-log-args", "1");
1614     break;
1615   case ImbueAttr::NEVER:
1616     Fn->addFnAttr("function-instrument", "xray-never");
1617     break;
1618   }
1619   return true;
1620 }
1621 
1622 bool CodeGenModule::MustBeEmitted(const ValueDecl *Global) {
1623   // Never defer when EmitAllDecls is specified.
1624   if (LangOpts.EmitAllDecls)
1625     return true;
1626 
1627   return getContext().DeclMustBeEmitted(Global);
1628 }
1629 
1630 bool CodeGenModule::MayBeEmittedEagerly(const ValueDecl *Global) {
1631   if (const auto *FD = dyn_cast<FunctionDecl>(Global))
1632     if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
1633       // Implicit template instantiations may change linkage if they are later
1634       // explicitly instantiated, so they should not be emitted eagerly.
1635       return false;
1636   if (const auto *VD = dyn_cast<VarDecl>(Global))
1637     if (Context.getInlineVariableDefinitionKind(VD) ==
1638         ASTContext::InlineVariableDefinitionKind::WeakUnknown)
1639       // A definition of an inline constexpr static data member may change
1640       // linkage later if it's redeclared outside the class.
1641       return false;
1642   // If OpenMP is enabled and threadprivates must be generated like TLS, delay
1643   // codegen for global variables, because they may be marked as threadprivate.
1644   if (LangOpts.OpenMP && LangOpts.OpenMPUseTLS &&
1645       getContext().getTargetInfo().isTLSSupported() && isa<VarDecl>(Global))
1646     return false;
1647 
1648   return true;
1649 }
1650 
1651 ConstantAddress CodeGenModule::GetAddrOfUuidDescriptor(
1652     const CXXUuidofExpr* E) {
1653   // Sema has verified that IIDSource has a __declspec(uuid()), and that its
1654   // well-formed.
1655   StringRef Uuid = E->getUuidStr();
1656   std::string Name = "_GUID_" + Uuid.lower();
1657   std::replace(Name.begin(), Name.end(), '-', '_');
1658 
1659   // The UUID descriptor should be pointer aligned.
1660   CharUnits Alignment = CharUnits::fromQuantity(PointerAlignInBytes);
1661 
1662   // Look for an existing global.
1663   if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name))
1664     return ConstantAddress(GV, Alignment);
1665 
1666   llvm::Constant *Init = EmitUuidofInitializer(Uuid);
1667   assert(Init && "failed to initialize as constant");
1668 
1669   auto *GV = new llvm::GlobalVariable(
1670       getModule(), Init->getType(),
1671       /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name);
1672   if (supportsCOMDAT())
1673     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
1674   return ConstantAddress(GV, Alignment);
1675 }
1676 
1677 ConstantAddress CodeGenModule::GetWeakRefReference(const ValueDecl *VD) {
1678   const AliasAttr *AA = VD->getAttr<AliasAttr>();
1679   assert(AA && "No alias?");
1680 
1681   CharUnits Alignment = getContext().getDeclAlign(VD);
1682   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType());
1683 
1684   // See if there is already something with the target's name in the module.
1685   llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee());
1686   if (Entry) {
1687     unsigned AS = getContext().getTargetAddressSpace(VD->getType());
1688     auto Ptr = llvm::ConstantExpr::getBitCast(Entry, DeclTy->getPointerTo(AS));
1689     return ConstantAddress(Ptr, Alignment);
1690   }
1691 
1692   llvm::Constant *Aliasee;
1693   if (isa<llvm::FunctionType>(DeclTy))
1694     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy,
1695                                       GlobalDecl(cast<FunctionDecl>(VD)),
1696                                       /*ForVTable=*/false);
1697   else
1698     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
1699                                     llvm::PointerType::getUnqual(DeclTy),
1700                                     nullptr);
1701 
1702   auto *F = cast<llvm::GlobalValue>(Aliasee);
1703   F->setLinkage(llvm::Function::ExternalWeakLinkage);
1704   WeakRefReferences.insert(F);
1705 
1706   return ConstantAddress(Aliasee, Alignment);
1707 }
1708 
1709 void CodeGenModule::EmitGlobal(GlobalDecl GD) {
1710   const auto *Global = cast<ValueDecl>(GD.getDecl());
1711 
1712   // Weak references don't produce any output by themselves.
1713   if (Global->hasAttr<WeakRefAttr>())
1714     return;
1715 
1716   // If this is an alias definition (which otherwise looks like a declaration)
1717   // emit it now.
1718   if (Global->hasAttr<AliasAttr>())
1719     return EmitAliasDefinition(GD);
1720 
1721   // IFunc like an alias whose value is resolved at runtime by calling resolver.
1722   if (Global->hasAttr<IFuncAttr>())
1723     return emitIFuncDefinition(GD);
1724 
1725   // If this is CUDA, be selective about which declarations we emit.
1726   if (LangOpts.CUDA) {
1727     if (LangOpts.CUDAIsDevice) {
1728       if (!Global->hasAttr<CUDADeviceAttr>() &&
1729           !Global->hasAttr<CUDAGlobalAttr>() &&
1730           !Global->hasAttr<CUDAConstantAttr>() &&
1731           !Global->hasAttr<CUDASharedAttr>())
1732         return;
1733     } else {
1734       // We need to emit host-side 'shadows' for all global
1735       // device-side variables because the CUDA runtime needs their
1736       // size and host-side address in order to provide access to
1737       // their device-side incarnations.
1738 
1739       // So device-only functions are the only things we skip.
1740       if (isa<FunctionDecl>(Global) && !Global->hasAttr<CUDAHostAttr>() &&
1741           Global->hasAttr<CUDADeviceAttr>())
1742         return;
1743 
1744       assert((isa<FunctionDecl>(Global) || isa<VarDecl>(Global)) &&
1745              "Expected Variable or Function");
1746     }
1747   }
1748 
1749   if (LangOpts.OpenMP) {
1750     // If this is OpenMP device, check if it is legal to emit this global
1751     // normally.
1752     if (OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(GD))
1753       return;
1754     if (auto *DRD = dyn_cast<OMPDeclareReductionDecl>(Global)) {
1755       if (MustBeEmitted(Global))
1756         EmitOMPDeclareReduction(DRD);
1757       return;
1758     }
1759   }
1760 
1761   // Ignore declarations, they will be emitted on their first use.
1762   if (const auto *FD = dyn_cast<FunctionDecl>(Global)) {
1763     // Forward declarations are emitted lazily on first use.
1764     if (!FD->doesThisDeclarationHaveABody()) {
1765       if (!FD->doesDeclarationForceExternallyVisibleDefinition())
1766         return;
1767 
1768       StringRef MangledName = getMangledName(GD);
1769 
1770       // Compute the function info and LLVM type.
1771       const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
1772       llvm::Type *Ty = getTypes().GetFunctionType(FI);
1773 
1774       GetOrCreateLLVMFunction(MangledName, Ty, GD, /*ForVTable=*/false,
1775                               /*DontDefer=*/false);
1776       return;
1777     }
1778   } else {
1779     const auto *VD = cast<VarDecl>(Global);
1780     assert(VD->isFileVarDecl() && "Cannot emit local var decl as global.");
1781     // We need to emit device-side global CUDA variables even if a
1782     // variable does not have a definition -- we still need to define
1783     // host-side shadow for it.
1784     bool MustEmitForCuda = LangOpts.CUDA && !LangOpts.CUDAIsDevice &&
1785                            !VD->hasDefinition() &&
1786                            (VD->hasAttr<CUDAConstantAttr>() ||
1787                             VD->hasAttr<CUDADeviceAttr>());
1788     if (!MustEmitForCuda &&
1789         VD->isThisDeclarationADefinition() != VarDecl::Definition &&
1790         !Context.isMSStaticDataMemberInlineDefinition(VD)) {
1791       // If this declaration may have caused an inline variable definition to
1792       // change linkage, make sure that it's emitted.
1793       if (Context.getInlineVariableDefinitionKind(VD) ==
1794           ASTContext::InlineVariableDefinitionKind::Strong)
1795         GetAddrOfGlobalVar(VD);
1796       return;
1797     }
1798   }
1799 
1800   // Defer code generation to first use when possible, e.g. if this is an inline
1801   // function. If the global must always be emitted, do it eagerly if possible
1802   // to benefit from cache locality.
1803   if (MustBeEmitted(Global) && MayBeEmittedEagerly(Global)) {
1804     // Emit the definition if it can't be deferred.
1805     EmitGlobalDefinition(GD);
1806     return;
1807   }
1808 
1809   // If we're deferring emission of a C++ variable with an
1810   // initializer, remember the order in which it appeared in the file.
1811   if (getLangOpts().CPlusPlus && isa<VarDecl>(Global) &&
1812       cast<VarDecl>(Global)->hasInit()) {
1813     DelayedCXXInitPosition[Global] = CXXGlobalInits.size();
1814     CXXGlobalInits.push_back(nullptr);
1815   }
1816 
1817   StringRef MangledName = getMangledName(GD);
1818   if (GetGlobalValue(MangledName) != nullptr) {
1819     // The value has already been used and should therefore be emitted.
1820     addDeferredDeclToEmit(GD);
1821   } else if (MustBeEmitted(Global)) {
1822     // The value must be emitted, but cannot be emitted eagerly.
1823     assert(!MayBeEmittedEagerly(Global));
1824     addDeferredDeclToEmit(GD);
1825   } else {
1826     // Otherwise, remember that we saw a deferred decl with this name.  The
1827     // first use of the mangled name will cause it to move into
1828     // DeferredDeclsToEmit.
1829     DeferredDecls[MangledName] = GD;
1830   }
1831 }
1832 
1833 // Check if T is a class type with a destructor that's not dllimport.
1834 static bool HasNonDllImportDtor(QualType T) {
1835   if (const auto *RT = T->getBaseElementTypeUnsafe()->getAs<RecordType>())
1836     if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl()))
1837       if (RD->getDestructor() && !RD->getDestructor()->hasAttr<DLLImportAttr>())
1838         return true;
1839 
1840   return false;
1841 }
1842 
1843 namespace {
1844   struct FunctionIsDirectlyRecursive :
1845     public RecursiveASTVisitor<FunctionIsDirectlyRecursive> {
1846     const StringRef Name;
1847     const Builtin::Context &BI;
1848     bool Result;
1849     FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C) :
1850       Name(N), BI(C), Result(false) {
1851     }
1852     typedef RecursiveASTVisitor<FunctionIsDirectlyRecursive> Base;
1853 
1854     bool TraverseCallExpr(CallExpr *E) {
1855       const FunctionDecl *FD = E->getDirectCallee();
1856       if (!FD)
1857         return true;
1858       AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
1859       if (Attr && Name == Attr->getLabel()) {
1860         Result = true;
1861         return false;
1862       }
1863       unsigned BuiltinID = FD->getBuiltinID();
1864       if (!BuiltinID || !BI.isLibFunction(BuiltinID))
1865         return true;
1866       StringRef BuiltinName = BI.getName(BuiltinID);
1867       if (BuiltinName.startswith("__builtin_") &&
1868           Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) {
1869         Result = true;
1870         return false;
1871       }
1872       return true;
1873     }
1874   };
1875 
1876   // Make sure we're not referencing non-imported vars or functions.
1877   struct DLLImportFunctionVisitor
1878       : public RecursiveASTVisitor<DLLImportFunctionVisitor> {
1879     bool SafeToInline = true;
1880 
1881     bool shouldVisitImplicitCode() const { return true; }
1882 
1883     bool VisitVarDecl(VarDecl *VD) {
1884       if (VD->getTLSKind()) {
1885         // A thread-local variable cannot be imported.
1886         SafeToInline = false;
1887         return SafeToInline;
1888       }
1889 
1890       // A variable definition might imply a destructor call.
1891       if (VD->isThisDeclarationADefinition())
1892         SafeToInline = !HasNonDllImportDtor(VD->getType());
1893 
1894       return SafeToInline;
1895     }
1896 
1897     bool VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) {
1898       if (const auto *D = E->getTemporary()->getDestructor())
1899         SafeToInline = D->hasAttr<DLLImportAttr>();
1900       return SafeToInline;
1901     }
1902 
1903     bool VisitDeclRefExpr(DeclRefExpr *E) {
1904       ValueDecl *VD = E->getDecl();
1905       if (isa<FunctionDecl>(VD))
1906         SafeToInline = VD->hasAttr<DLLImportAttr>();
1907       else if (VarDecl *V = dyn_cast<VarDecl>(VD))
1908         SafeToInline = !V->hasGlobalStorage() || V->hasAttr<DLLImportAttr>();
1909       return SafeToInline;
1910     }
1911 
1912     bool VisitCXXConstructExpr(CXXConstructExpr *E) {
1913       SafeToInline = E->getConstructor()->hasAttr<DLLImportAttr>();
1914       return SafeToInline;
1915     }
1916 
1917     bool VisitCXXMemberCallExpr(CXXMemberCallExpr *E) {
1918       CXXMethodDecl *M = E->getMethodDecl();
1919       if (!M) {
1920         // Call through a pointer to member function. This is safe to inline.
1921         SafeToInline = true;
1922       } else {
1923         SafeToInline = M->hasAttr<DLLImportAttr>();
1924       }
1925       return SafeToInline;
1926     }
1927 
1928     bool VisitCXXDeleteExpr(CXXDeleteExpr *E) {
1929       SafeToInline = E->getOperatorDelete()->hasAttr<DLLImportAttr>();
1930       return SafeToInline;
1931     }
1932 
1933     bool VisitCXXNewExpr(CXXNewExpr *E) {
1934       SafeToInline = E->getOperatorNew()->hasAttr<DLLImportAttr>();
1935       return SafeToInline;
1936     }
1937   };
1938 }
1939 
1940 // isTriviallyRecursive - Check if this function calls another
1941 // decl that, because of the asm attribute or the other decl being a builtin,
1942 // ends up pointing to itself.
1943 bool
1944 CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) {
1945   StringRef Name;
1946   if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) {
1947     // asm labels are a special kind of mangling we have to support.
1948     AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
1949     if (!Attr)
1950       return false;
1951     Name = Attr->getLabel();
1952   } else {
1953     Name = FD->getName();
1954   }
1955 
1956   FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo);
1957   Walker.TraverseFunctionDecl(const_cast<FunctionDecl*>(FD));
1958   return Walker.Result;
1959 }
1960 
1961 bool CodeGenModule::shouldEmitFunction(GlobalDecl GD) {
1962   if (getFunctionLinkage(GD) != llvm::Function::AvailableExternallyLinkage)
1963     return true;
1964   const auto *F = cast<FunctionDecl>(GD.getDecl());
1965   if (CodeGenOpts.OptimizationLevel == 0 && !F->hasAttr<AlwaysInlineAttr>())
1966     return false;
1967 
1968   if (F->hasAttr<DLLImportAttr>()) {
1969     // Check whether it would be safe to inline this dllimport function.
1970     DLLImportFunctionVisitor Visitor;
1971     Visitor.TraverseFunctionDecl(const_cast<FunctionDecl*>(F));
1972     if (!Visitor.SafeToInline)
1973       return false;
1974 
1975     if (const CXXDestructorDecl *Dtor = dyn_cast<CXXDestructorDecl>(F)) {
1976       // Implicit destructor invocations aren't captured in the AST, so the
1977       // check above can't see them. Check for them manually here.
1978       for (const Decl *Member : Dtor->getParent()->decls())
1979         if (isa<FieldDecl>(Member))
1980           if (HasNonDllImportDtor(cast<FieldDecl>(Member)->getType()))
1981             return false;
1982       for (const CXXBaseSpecifier &B : Dtor->getParent()->bases())
1983         if (HasNonDllImportDtor(B.getType()))
1984           return false;
1985     }
1986   }
1987 
1988   // PR9614. Avoid cases where the source code is lying to us. An available
1989   // externally function should have an equivalent function somewhere else,
1990   // but a function that calls itself is clearly not equivalent to the real
1991   // implementation.
1992   // This happens in glibc's btowc and in some configure checks.
1993   return !isTriviallyRecursive(F);
1994 }
1995 
1996 bool CodeGenModule::shouldOpportunisticallyEmitVTables() {
1997   return CodeGenOpts.OptimizationLevel > 0;
1998 }
1999 
2000 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD, llvm::GlobalValue *GV) {
2001   const auto *D = cast<ValueDecl>(GD.getDecl());
2002 
2003   PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(),
2004                                  Context.getSourceManager(),
2005                                  "Generating code for declaration");
2006 
2007   if (isa<FunctionDecl>(D)) {
2008     // At -O0, don't generate IR for functions with available_externally
2009     // linkage.
2010     if (!shouldEmitFunction(GD))
2011       return;
2012 
2013     if (const auto *Method = dyn_cast<CXXMethodDecl>(D)) {
2014       // Make sure to emit the definition(s) before we emit the thunks.
2015       // This is necessary for the generation of certain thunks.
2016       if (const auto *CD = dyn_cast<CXXConstructorDecl>(Method))
2017         ABI->emitCXXStructor(CD, getFromCtorType(GD.getCtorType()));
2018       else if (const auto *DD = dyn_cast<CXXDestructorDecl>(Method))
2019         ABI->emitCXXStructor(DD, getFromDtorType(GD.getDtorType()));
2020       else
2021         EmitGlobalFunctionDefinition(GD, GV);
2022 
2023       if (Method->isVirtual())
2024         getVTables().EmitThunks(GD);
2025 
2026       return;
2027     }
2028 
2029     return EmitGlobalFunctionDefinition(GD, GV);
2030   }
2031 
2032   if (const auto *VD = dyn_cast<VarDecl>(D))
2033     return EmitGlobalVarDefinition(VD, !VD->hasDefinition());
2034 
2035   llvm_unreachable("Invalid argument to EmitGlobalDefinition()");
2036 }
2037 
2038 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
2039                                                       llvm::Function *NewFn);
2040 
2041 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the
2042 /// module, create and return an llvm Function with the specified type. If there
2043 /// is something in the module with the specified name, return it potentially
2044 /// bitcasted to the right type.
2045 ///
2046 /// If D is non-null, it specifies a decl that correspond to this.  This is used
2047 /// to set the attributes on the function when it is first created.
2048 llvm::Constant *CodeGenModule::GetOrCreateLLVMFunction(
2049     StringRef MangledName, llvm::Type *Ty, GlobalDecl GD, bool ForVTable,
2050     bool DontDefer, bool IsThunk, llvm::AttributeList ExtraAttrs,
2051     ForDefinition_t IsForDefinition) {
2052   const Decl *D = GD.getDecl();
2053 
2054   // Lookup the entry, lazily creating it if necessary.
2055   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
2056   if (Entry) {
2057     if (WeakRefReferences.erase(Entry)) {
2058       const FunctionDecl *FD = cast_or_null<FunctionDecl>(D);
2059       if (FD && !FD->hasAttr<WeakAttr>())
2060         Entry->setLinkage(llvm::Function::ExternalLinkage);
2061     }
2062 
2063     // Handle dropped DLL attributes.
2064     if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>())
2065       Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
2066 
2067     // If there are two attempts to define the same mangled name, issue an
2068     // error.
2069     if (IsForDefinition && !Entry->isDeclaration()) {
2070       GlobalDecl OtherGD;
2071       // Check that GD is not yet in DiagnosedConflictingDefinitions is required
2072       // to make sure that we issue an error only once.
2073       if (lookupRepresentativeDecl(MangledName, OtherGD) &&
2074           (GD.getCanonicalDecl().getDecl() !=
2075            OtherGD.getCanonicalDecl().getDecl()) &&
2076           DiagnosedConflictingDefinitions.insert(GD).second) {
2077         getDiags().Report(D->getLocation(),
2078                           diag::err_duplicate_mangled_name);
2079         getDiags().Report(OtherGD.getDecl()->getLocation(),
2080                           diag::note_previous_definition);
2081       }
2082     }
2083 
2084     if ((isa<llvm::Function>(Entry) || isa<llvm::GlobalAlias>(Entry)) &&
2085         (Entry->getType()->getElementType() == Ty)) {
2086       return Entry;
2087     }
2088 
2089     // Make sure the result is of the correct type.
2090     // (If function is requested for a definition, we always need to create a new
2091     // function, not just return a bitcast.)
2092     if (!IsForDefinition)
2093       return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo());
2094   }
2095 
2096   // This function doesn't have a complete type (for example, the return
2097   // type is an incomplete struct). Use a fake type instead, and make
2098   // sure not to try to set attributes.
2099   bool IsIncompleteFunction = false;
2100 
2101   llvm::FunctionType *FTy;
2102   if (isa<llvm::FunctionType>(Ty)) {
2103     FTy = cast<llvm::FunctionType>(Ty);
2104   } else {
2105     FTy = llvm::FunctionType::get(VoidTy, false);
2106     IsIncompleteFunction = true;
2107   }
2108 
2109   llvm::Function *F =
2110       llvm::Function::Create(FTy, llvm::Function::ExternalLinkage,
2111                              Entry ? StringRef() : MangledName, &getModule());
2112 
2113   // If we already created a function with the same mangled name (but different
2114   // type) before, take its name and add it to the list of functions to be
2115   // replaced with F at the end of CodeGen.
2116   //
2117   // This happens if there is a prototype for a function (e.g. "int f()") and
2118   // then a definition of a different type (e.g. "int f(int x)").
2119   if (Entry) {
2120     F->takeName(Entry);
2121 
2122     // This might be an implementation of a function without a prototype, in
2123     // which case, try to do special replacement of calls which match the new
2124     // prototype.  The really key thing here is that we also potentially drop
2125     // arguments from the call site so as to make a direct call, which makes the
2126     // inliner happier and suppresses a number of optimizer warnings (!) about
2127     // dropping arguments.
2128     if (!Entry->use_empty()) {
2129       ReplaceUsesOfNonProtoTypeWithRealFunction(Entry, F);
2130       Entry->removeDeadConstantUsers();
2131     }
2132 
2133     llvm::Constant *BC = llvm::ConstantExpr::getBitCast(
2134         F, Entry->getType()->getElementType()->getPointerTo());
2135     addGlobalValReplacement(Entry, BC);
2136   }
2137 
2138   assert(F->getName() == MangledName && "name was uniqued!");
2139   if (D)
2140     SetFunctionAttributes(GD, F, IsIncompleteFunction, IsThunk,
2141                           IsForDefinition);
2142   if (ExtraAttrs.hasAttributes(llvm::AttributeList::FunctionIndex)) {
2143     llvm::AttrBuilder B(ExtraAttrs, llvm::AttributeList::FunctionIndex);
2144     F->addAttributes(llvm::AttributeList::FunctionIndex, B);
2145   }
2146 
2147   if (!DontDefer) {
2148     // All MSVC dtors other than the base dtor are linkonce_odr and delegate to
2149     // each other bottoming out with the base dtor.  Therefore we emit non-base
2150     // dtors on usage, even if there is no dtor definition in the TU.
2151     if (D && isa<CXXDestructorDecl>(D) &&
2152         getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D),
2153                                            GD.getDtorType()))
2154       addDeferredDeclToEmit(GD);
2155 
2156     // This is the first use or definition of a mangled name.  If there is a
2157     // deferred decl with this name, remember that we need to emit it at the end
2158     // of the file.
2159     auto DDI = DeferredDecls.find(MangledName);
2160     if (DDI != DeferredDecls.end()) {
2161       // Move the potentially referenced deferred decl to the
2162       // DeferredDeclsToEmit list, and remove it from DeferredDecls (since we
2163       // don't need it anymore).
2164       addDeferredDeclToEmit(DDI->second);
2165       DeferredDecls.erase(DDI);
2166 
2167       // Otherwise, there are cases we have to worry about where we're
2168       // using a declaration for which we must emit a definition but where
2169       // we might not find a top-level definition:
2170       //   - member functions defined inline in their classes
2171       //   - friend functions defined inline in some class
2172       //   - special member functions with implicit definitions
2173       // If we ever change our AST traversal to walk into class methods,
2174       // this will be unnecessary.
2175       //
2176       // We also don't emit a definition for a function if it's going to be an
2177       // entry in a vtable, unless it's already marked as used.
2178     } else if (getLangOpts().CPlusPlus && D) {
2179       // Look for a declaration that's lexically in a record.
2180       for (const auto *FD = cast<FunctionDecl>(D)->getMostRecentDecl(); FD;
2181            FD = FD->getPreviousDecl()) {
2182         if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) {
2183           if (FD->doesThisDeclarationHaveABody()) {
2184             addDeferredDeclToEmit(GD.getWithDecl(FD));
2185             break;
2186           }
2187         }
2188       }
2189     }
2190   }
2191 
2192   // Make sure the result is of the requested type.
2193   if (!IsIncompleteFunction) {
2194     assert(F->getType()->getElementType() == Ty);
2195     return F;
2196   }
2197 
2198   llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
2199   return llvm::ConstantExpr::getBitCast(F, PTy);
2200 }
2201 
2202 /// GetAddrOfFunction - Return the address of the given function.  If Ty is
2203 /// non-null, then this function will use the specified type if it has to
2204 /// create it (this occurs when we see a definition of the function).
2205 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD,
2206                                                  llvm::Type *Ty,
2207                                                  bool ForVTable,
2208                                                  bool DontDefer,
2209                                               ForDefinition_t IsForDefinition) {
2210   // If there was no specific requested type, just convert it now.
2211   if (!Ty) {
2212     const auto *FD = cast<FunctionDecl>(GD.getDecl());
2213     auto CanonTy = Context.getCanonicalType(FD->getType());
2214     Ty = getTypes().ConvertFunctionType(CanonTy, FD);
2215   }
2216 
2217   StringRef MangledName = getMangledName(GD);
2218   return GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable, DontDefer,
2219                                  /*IsThunk=*/false, llvm::AttributeList(),
2220                                  IsForDefinition);
2221 }
2222 
2223 static const FunctionDecl *
2224 GetRuntimeFunctionDecl(ASTContext &C, StringRef Name) {
2225   TranslationUnitDecl *TUDecl = C.getTranslationUnitDecl();
2226   DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl);
2227 
2228   IdentifierInfo &CII = C.Idents.get(Name);
2229   for (const auto &Result : DC->lookup(&CII))
2230     if (const auto FD = dyn_cast<FunctionDecl>(Result))
2231       return FD;
2232 
2233   if (!C.getLangOpts().CPlusPlus)
2234     return nullptr;
2235 
2236   // Demangle the premangled name from getTerminateFn()
2237   IdentifierInfo &CXXII =
2238       (Name == "_ZSt9terminatev" || Name == "\01?terminate@@YAXXZ")
2239           ? C.Idents.get("terminate")
2240           : C.Idents.get(Name);
2241 
2242   for (const auto &N : {"__cxxabiv1", "std"}) {
2243     IdentifierInfo &NS = C.Idents.get(N);
2244     for (const auto &Result : DC->lookup(&NS)) {
2245       NamespaceDecl *ND = dyn_cast<NamespaceDecl>(Result);
2246       if (auto LSD = dyn_cast<LinkageSpecDecl>(Result))
2247         for (const auto &Result : LSD->lookup(&NS))
2248           if ((ND = dyn_cast<NamespaceDecl>(Result)))
2249             break;
2250 
2251       if (ND)
2252         for (const auto &Result : ND->lookup(&CXXII))
2253           if (const auto *FD = dyn_cast<FunctionDecl>(Result))
2254             return FD;
2255     }
2256   }
2257 
2258   return nullptr;
2259 }
2260 
2261 /// CreateRuntimeFunction - Create a new runtime function with the specified
2262 /// type and name.
2263 llvm::Constant *
2264 CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy, StringRef Name,
2265                                      llvm::AttributeList ExtraAttrs,
2266                                      bool Local) {
2267   llvm::Constant *C =
2268       GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false,
2269                               /*DontDefer=*/false, /*IsThunk=*/false,
2270                               ExtraAttrs);
2271 
2272   if (auto *F = dyn_cast<llvm::Function>(C)) {
2273     if (F->empty()) {
2274       F->setCallingConv(getRuntimeCC());
2275 
2276       if (!Local && getTriple().isOSBinFormatCOFF() &&
2277           !getCodeGenOpts().LTOVisibilityPublicStd) {
2278         const FunctionDecl *FD = GetRuntimeFunctionDecl(Context, Name);
2279         if (!FD || FD->hasAttr<DLLImportAttr>()) {
2280           F->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass);
2281           F->setLinkage(llvm::GlobalValue::ExternalLinkage);
2282         }
2283       }
2284     }
2285   }
2286 
2287   return C;
2288 }
2289 
2290 /// CreateBuiltinFunction - Create a new builtin function with the specified
2291 /// type and name.
2292 llvm::Constant *
2293 CodeGenModule::CreateBuiltinFunction(llvm::FunctionType *FTy, StringRef Name,
2294                                      llvm::AttributeList ExtraAttrs) {
2295   llvm::Constant *C =
2296       GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false,
2297                               /*DontDefer=*/false, /*IsThunk=*/false, ExtraAttrs);
2298   if (auto *F = dyn_cast<llvm::Function>(C))
2299     if (F->empty())
2300       F->setCallingConv(getBuiltinCC());
2301   return C;
2302 }
2303 
2304 /// isTypeConstant - Determine whether an object of this type can be emitted
2305 /// as a constant.
2306 ///
2307 /// If ExcludeCtor is true, the duration when the object's constructor runs
2308 /// will not be considered. The caller will need to verify that the object is
2309 /// not written to during its construction.
2310 bool CodeGenModule::isTypeConstant(QualType Ty, bool ExcludeCtor) {
2311   if (!Ty.isConstant(Context) && !Ty->isReferenceType())
2312     return false;
2313 
2314   if (Context.getLangOpts().CPlusPlus) {
2315     if (const CXXRecordDecl *Record
2316           = Context.getBaseElementType(Ty)->getAsCXXRecordDecl())
2317       return ExcludeCtor && !Record->hasMutableFields() &&
2318              Record->hasTrivialDestructor();
2319   }
2320 
2321   return true;
2322 }
2323 
2324 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module,
2325 /// create and return an llvm GlobalVariable with the specified type.  If there
2326 /// is something in the module with the specified name, return it potentially
2327 /// bitcasted to the right type.
2328 ///
2329 /// If D is non-null, it specifies a decl that correspond to this.  This is used
2330 /// to set the attributes on the global when it is first created.
2331 ///
2332 /// If IsForDefinition is true, it is guranteed that an actual global with
2333 /// type Ty will be returned, not conversion of a variable with the same
2334 /// mangled name but some other type.
2335 llvm::Constant *
2336 CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName,
2337                                      llvm::PointerType *Ty,
2338                                      const VarDecl *D,
2339                                      ForDefinition_t IsForDefinition) {
2340   // Lookup the entry, lazily creating it if necessary.
2341   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
2342   if (Entry) {
2343     if (WeakRefReferences.erase(Entry)) {
2344       if (D && !D->hasAttr<WeakAttr>())
2345         Entry->setLinkage(llvm::Function::ExternalLinkage);
2346     }
2347 
2348     // Handle dropped DLL attributes.
2349     if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>())
2350       Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
2351 
2352     if (Entry->getType() == Ty)
2353       return Entry;
2354 
2355     // If there are two attempts to define the same mangled name, issue an
2356     // error.
2357     if (IsForDefinition && !Entry->isDeclaration()) {
2358       GlobalDecl OtherGD;
2359       const VarDecl *OtherD;
2360 
2361       // Check that D is not yet in DiagnosedConflictingDefinitions is required
2362       // to make sure that we issue an error only once.
2363       if (D && lookupRepresentativeDecl(MangledName, OtherGD) &&
2364           (D->getCanonicalDecl() != OtherGD.getCanonicalDecl().getDecl()) &&
2365           (OtherD = dyn_cast<VarDecl>(OtherGD.getDecl())) &&
2366           OtherD->hasInit() &&
2367           DiagnosedConflictingDefinitions.insert(D).second) {
2368         getDiags().Report(D->getLocation(),
2369                           diag::err_duplicate_mangled_name);
2370         getDiags().Report(OtherGD.getDecl()->getLocation(),
2371                           diag::note_previous_definition);
2372       }
2373     }
2374 
2375     // Make sure the result is of the correct type.
2376     if (Entry->getType()->getAddressSpace() != Ty->getAddressSpace())
2377       return llvm::ConstantExpr::getAddrSpaceCast(Entry, Ty);
2378 
2379     // (If global is requested for a definition, we always need to create a new
2380     // global, not just return a bitcast.)
2381     if (!IsForDefinition)
2382       return llvm::ConstantExpr::getBitCast(Entry, Ty);
2383   }
2384 
2385   auto AddrSpace = GetGlobalVarAddressSpace(D);
2386   auto TargetAddrSpace = getContext().getTargetAddressSpace(AddrSpace);
2387 
2388   auto *GV = new llvm::GlobalVariable(
2389       getModule(), Ty->getElementType(), false,
2390       llvm::GlobalValue::ExternalLinkage, nullptr, MangledName, nullptr,
2391       llvm::GlobalVariable::NotThreadLocal, TargetAddrSpace);
2392 
2393   // If we already created a global with the same mangled name (but different
2394   // type) before, take its name and remove it from its parent.
2395   if (Entry) {
2396     GV->takeName(Entry);
2397 
2398     if (!Entry->use_empty()) {
2399       llvm::Constant *NewPtrForOldDecl =
2400           llvm::ConstantExpr::getBitCast(GV, Entry->getType());
2401       Entry->replaceAllUsesWith(NewPtrForOldDecl);
2402     }
2403 
2404     Entry->eraseFromParent();
2405   }
2406 
2407   // This is the first use or definition of a mangled name.  If there is a
2408   // deferred decl with this name, remember that we need to emit it at the end
2409   // of the file.
2410   auto DDI = DeferredDecls.find(MangledName);
2411   if (DDI != DeferredDecls.end()) {
2412     // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
2413     // list, and remove it from DeferredDecls (since we don't need it anymore).
2414     addDeferredDeclToEmit(DDI->second);
2415     DeferredDecls.erase(DDI);
2416   }
2417 
2418   // Handle things which are present even on external declarations.
2419   if (D) {
2420     // FIXME: This code is overly simple and should be merged with other global
2421     // handling.
2422     GV->setConstant(isTypeConstant(D->getType(), false));
2423 
2424     GV->setAlignment(getContext().getDeclAlign(D).getQuantity());
2425 
2426     setLinkageAndVisibilityForGV(GV, D);
2427 
2428     if (D->getTLSKind()) {
2429       if (D->getTLSKind() == VarDecl::TLS_Dynamic)
2430         CXXThreadLocals.push_back(D);
2431       setTLSMode(GV, *D);
2432     }
2433 
2434     // If required by the ABI, treat declarations of static data members with
2435     // inline initializers as definitions.
2436     if (getContext().isMSStaticDataMemberInlineDefinition(D)) {
2437       EmitGlobalVarDefinition(D);
2438     }
2439 
2440     // Emit section information for extern variables.
2441     if (D->hasExternalStorage()) {
2442       if (const SectionAttr *SA = D->getAttr<SectionAttr>())
2443         GV->setSection(SA->getName());
2444     }
2445 
2446     // Handle XCore specific ABI requirements.
2447     if (getTriple().getArch() == llvm::Triple::xcore &&
2448         D->getLanguageLinkage() == CLanguageLinkage &&
2449         D->getType().isConstant(Context) &&
2450         isExternallyVisible(D->getLinkageAndVisibility().getLinkage()))
2451       GV->setSection(".cp.rodata");
2452 
2453     // Check if we a have a const declaration with an initializer, we may be
2454     // able to emit it as available_externally to expose it's value to the
2455     // optimizer.
2456     if (Context.getLangOpts().CPlusPlus && GV->hasExternalLinkage() &&
2457         D->getType().isConstQualified() && !GV->hasInitializer() &&
2458         !D->hasDefinition() && D->hasInit() && !D->hasAttr<DLLImportAttr>()) {
2459       const auto *Record =
2460           Context.getBaseElementType(D->getType())->getAsCXXRecordDecl();
2461       bool HasMutableFields = Record && Record->hasMutableFields();
2462       if (!HasMutableFields) {
2463         const VarDecl *InitDecl;
2464         const Expr *InitExpr = D->getAnyInitializer(InitDecl);
2465         if (InitExpr) {
2466           ConstantEmitter emitter(*this);
2467           llvm::Constant *Init = emitter.tryEmitForInitializer(*InitDecl);
2468           if (Init) {
2469             auto *InitType = Init->getType();
2470             if (GV->getType()->getElementType() != InitType) {
2471               // The type of the initializer does not match the definition.
2472               // This happens when an initializer has a different type from
2473               // the type of the global (because of padding at the end of a
2474               // structure for instance).
2475               GV->setName(StringRef());
2476               // Make a new global with the correct type, this is now guaranteed
2477               // to work.
2478               auto *NewGV = cast<llvm::GlobalVariable>(
2479                   GetAddrOfGlobalVar(D, InitType, IsForDefinition));
2480 
2481               // Erase the old global, since it is no longer used.
2482               cast<llvm::GlobalValue>(GV)->eraseFromParent();
2483               GV = NewGV;
2484             } else {
2485               GV->setInitializer(Init);
2486               GV->setConstant(true);
2487               GV->setLinkage(llvm::GlobalValue::AvailableExternallyLinkage);
2488             }
2489             emitter.finalize(GV);
2490           }
2491         }
2492       }
2493     }
2494   }
2495 
2496   LangAS ExpectedAS =
2497       D ? D->getType().getAddressSpace()
2498         : (LangOpts.OpenCL ? LangAS::opencl_global : LangAS::Default);
2499   assert(getContext().getTargetAddressSpace(ExpectedAS) ==
2500          Ty->getPointerAddressSpace());
2501   if (AddrSpace != ExpectedAS)
2502     return getTargetCodeGenInfo().performAddrSpaceCast(*this, GV, AddrSpace,
2503                                                        ExpectedAS, Ty);
2504 
2505   return GV;
2506 }
2507 
2508 llvm::Constant *
2509 CodeGenModule::GetAddrOfGlobal(GlobalDecl GD,
2510                                ForDefinition_t IsForDefinition) {
2511   const Decl *D = GD.getDecl();
2512   if (isa<CXXConstructorDecl>(D))
2513     return getAddrOfCXXStructor(cast<CXXConstructorDecl>(D),
2514                                 getFromCtorType(GD.getCtorType()),
2515                                 /*FnInfo=*/nullptr, /*FnType=*/nullptr,
2516                                 /*DontDefer=*/false, IsForDefinition);
2517   else if (isa<CXXDestructorDecl>(D))
2518     return getAddrOfCXXStructor(cast<CXXDestructorDecl>(D),
2519                                 getFromDtorType(GD.getDtorType()),
2520                                 /*FnInfo=*/nullptr, /*FnType=*/nullptr,
2521                                 /*DontDefer=*/false, IsForDefinition);
2522   else if (isa<CXXMethodDecl>(D)) {
2523     auto FInfo = &getTypes().arrangeCXXMethodDeclaration(
2524         cast<CXXMethodDecl>(D));
2525     auto Ty = getTypes().GetFunctionType(*FInfo);
2526     return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false,
2527                              IsForDefinition);
2528   } else if (isa<FunctionDecl>(D)) {
2529     const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
2530     llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
2531     return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false,
2532                              IsForDefinition);
2533   } else
2534     return GetAddrOfGlobalVar(cast<VarDecl>(D), /*Ty=*/nullptr,
2535                               IsForDefinition);
2536 }
2537 
2538 llvm::GlobalVariable *
2539 CodeGenModule::CreateOrReplaceCXXRuntimeVariable(StringRef Name,
2540                                       llvm::Type *Ty,
2541                                       llvm::GlobalValue::LinkageTypes Linkage) {
2542   llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name);
2543   llvm::GlobalVariable *OldGV = nullptr;
2544 
2545   if (GV) {
2546     // Check if the variable has the right type.
2547     if (GV->getType()->getElementType() == Ty)
2548       return GV;
2549 
2550     // Because C++ name mangling, the only way we can end up with an already
2551     // existing global with the same name is if it has been declared extern "C".
2552     assert(GV->isDeclaration() && "Declaration has wrong type!");
2553     OldGV = GV;
2554   }
2555 
2556   // Create a new variable.
2557   GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true,
2558                                 Linkage, nullptr, Name);
2559 
2560   if (OldGV) {
2561     // Replace occurrences of the old variable if needed.
2562     GV->takeName(OldGV);
2563 
2564     if (!OldGV->use_empty()) {
2565       llvm::Constant *NewPtrForOldDecl =
2566       llvm::ConstantExpr::getBitCast(GV, OldGV->getType());
2567       OldGV->replaceAllUsesWith(NewPtrForOldDecl);
2568     }
2569 
2570     OldGV->eraseFromParent();
2571   }
2572 
2573   if (supportsCOMDAT() && GV->isWeakForLinker() &&
2574       !GV->hasAvailableExternallyLinkage())
2575     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
2576 
2577   return GV;
2578 }
2579 
2580 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the
2581 /// given global variable.  If Ty is non-null and if the global doesn't exist,
2582 /// then it will be created with the specified type instead of whatever the
2583 /// normal requested type would be. If IsForDefinition is true, it is guranteed
2584 /// that an actual global with type Ty will be returned, not conversion of a
2585 /// variable with the same mangled name but some other type.
2586 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D,
2587                                                   llvm::Type *Ty,
2588                                            ForDefinition_t IsForDefinition) {
2589   assert(D->hasGlobalStorage() && "Not a global variable");
2590   QualType ASTTy = D->getType();
2591   if (!Ty)
2592     Ty = getTypes().ConvertTypeForMem(ASTTy);
2593 
2594   llvm::PointerType *PTy =
2595     llvm::PointerType::get(Ty, getContext().getTargetAddressSpace(ASTTy));
2596 
2597   StringRef MangledName = getMangledName(D);
2598   return GetOrCreateLLVMGlobal(MangledName, PTy, D, IsForDefinition);
2599 }
2600 
2601 /// CreateRuntimeVariable - Create a new runtime global variable with the
2602 /// specified type and name.
2603 llvm::Constant *
2604 CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty,
2605                                      StringRef Name) {
2606   return GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), nullptr);
2607 }
2608 
2609 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) {
2610   assert(!D->getInit() && "Cannot emit definite definitions here!");
2611 
2612   StringRef MangledName = getMangledName(D);
2613   llvm::GlobalValue *GV = GetGlobalValue(MangledName);
2614 
2615   // We already have a definition, not declaration, with the same mangled name.
2616   // Emitting of declaration is not required (and actually overwrites emitted
2617   // definition).
2618   if (GV && !GV->isDeclaration())
2619     return;
2620 
2621   // If we have not seen a reference to this variable yet, place it into the
2622   // deferred declarations table to be emitted if needed later.
2623   if (!MustBeEmitted(D) && !GV) {
2624       DeferredDecls[MangledName] = D;
2625       return;
2626   }
2627 
2628   // The tentative definition is the only definition.
2629   EmitGlobalVarDefinition(D);
2630 }
2631 
2632 CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const {
2633   return Context.toCharUnitsFromBits(
2634       getDataLayout().getTypeStoreSizeInBits(Ty));
2635 }
2636 
2637 LangAS CodeGenModule::GetGlobalVarAddressSpace(const VarDecl *D) {
2638   LangAS AddrSpace = LangAS::Default;
2639   if (LangOpts.OpenCL) {
2640     AddrSpace = D ? D->getType().getAddressSpace() : LangAS::opencl_global;
2641     assert(AddrSpace == LangAS::opencl_global ||
2642            AddrSpace == LangAS::opencl_constant ||
2643            AddrSpace == LangAS::opencl_local ||
2644            AddrSpace >= LangAS::FirstTargetAddressSpace);
2645     return AddrSpace;
2646   }
2647 
2648   if (LangOpts.CUDA && LangOpts.CUDAIsDevice) {
2649     if (D && D->hasAttr<CUDAConstantAttr>())
2650       return LangAS::cuda_constant;
2651     else if (D && D->hasAttr<CUDASharedAttr>())
2652       return LangAS::cuda_shared;
2653     else
2654       return LangAS::cuda_device;
2655   }
2656 
2657   return getTargetCodeGenInfo().getGlobalVarAddressSpace(*this, D);
2658 }
2659 
2660 template<typename SomeDecl>
2661 void CodeGenModule::MaybeHandleStaticInExternC(const SomeDecl *D,
2662                                                llvm::GlobalValue *GV) {
2663   if (!getLangOpts().CPlusPlus)
2664     return;
2665 
2666   // Must have 'used' attribute, or else inline assembly can't rely on
2667   // the name existing.
2668   if (!D->template hasAttr<UsedAttr>())
2669     return;
2670 
2671   // Must have internal linkage and an ordinary name.
2672   if (!D->getIdentifier() || D->getFormalLinkage() != InternalLinkage)
2673     return;
2674 
2675   // Must be in an extern "C" context. Entities declared directly within
2676   // a record are not extern "C" even if the record is in such a context.
2677   const SomeDecl *First = D->getFirstDecl();
2678   if (First->getDeclContext()->isRecord() || !First->isInExternCContext())
2679     return;
2680 
2681   // OK, this is an internal linkage entity inside an extern "C" linkage
2682   // specification. Make a note of that so we can give it the "expected"
2683   // mangled name if nothing else is using that name.
2684   std::pair<StaticExternCMap::iterator, bool> R =
2685       StaticExternCValues.insert(std::make_pair(D->getIdentifier(), GV));
2686 
2687   // If we have multiple internal linkage entities with the same name
2688   // in extern "C" regions, none of them gets that name.
2689   if (!R.second)
2690     R.first->second = nullptr;
2691 }
2692 
2693 static bool shouldBeInCOMDAT(CodeGenModule &CGM, const Decl &D) {
2694   if (!CGM.supportsCOMDAT())
2695     return false;
2696 
2697   if (D.hasAttr<SelectAnyAttr>())
2698     return true;
2699 
2700   GVALinkage Linkage;
2701   if (auto *VD = dyn_cast<VarDecl>(&D))
2702     Linkage = CGM.getContext().GetGVALinkageForVariable(VD);
2703   else
2704     Linkage = CGM.getContext().GetGVALinkageForFunction(cast<FunctionDecl>(&D));
2705 
2706   switch (Linkage) {
2707   case GVA_Internal:
2708   case GVA_AvailableExternally:
2709   case GVA_StrongExternal:
2710     return false;
2711   case GVA_DiscardableODR:
2712   case GVA_StrongODR:
2713     return true;
2714   }
2715   llvm_unreachable("No such linkage");
2716 }
2717 
2718 void CodeGenModule::maybeSetTrivialComdat(const Decl &D,
2719                                           llvm::GlobalObject &GO) {
2720   if (!shouldBeInCOMDAT(*this, D))
2721     return;
2722   GO.setComdat(TheModule.getOrInsertComdat(GO.getName()));
2723 }
2724 
2725 /// Pass IsTentative as true if you want to create a tentative definition.
2726 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D,
2727                                             bool IsTentative) {
2728   // OpenCL global variables of sampler type are translated to function calls,
2729   // therefore no need to be translated.
2730   QualType ASTTy = D->getType();
2731   if (getLangOpts().OpenCL && ASTTy->isSamplerT())
2732     return;
2733 
2734   llvm::Constant *Init = nullptr;
2735   CXXRecordDecl *RD = ASTTy->getBaseElementTypeUnsafe()->getAsCXXRecordDecl();
2736   bool NeedsGlobalCtor = false;
2737   bool NeedsGlobalDtor = RD && !RD->hasTrivialDestructor();
2738 
2739   const VarDecl *InitDecl;
2740   const Expr *InitExpr = D->getAnyInitializer(InitDecl);
2741 
2742   Optional<ConstantEmitter> emitter;
2743 
2744   // CUDA E.2.4.1 "__shared__ variables cannot have an initialization
2745   // as part of their declaration."  Sema has already checked for
2746   // error cases, so we just need to set Init to UndefValue.
2747   if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice &&
2748       D->hasAttr<CUDASharedAttr>())
2749     Init = llvm::UndefValue::get(getTypes().ConvertType(ASTTy));
2750   else if (!InitExpr) {
2751     // This is a tentative definition; tentative definitions are
2752     // implicitly initialized with { 0 }.
2753     //
2754     // Note that tentative definitions are only emitted at the end of
2755     // a translation unit, so they should never have incomplete
2756     // type. In addition, EmitTentativeDefinition makes sure that we
2757     // never attempt to emit a tentative definition if a real one
2758     // exists. A use may still exists, however, so we still may need
2759     // to do a RAUW.
2760     assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type");
2761     Init = EmitNullConstant(D->getType());
2762   } else {
2763     initializedGlobalDecl = GlobalDecl(D);
2764     emitter.emplace(*this);
2765     Init = emitter->tryEmitForInitializer(*InitDecl);
2766 
2767     if (!Init) {
2768       QualType T = InitExpr->getType();
2769       if (D->getType()->isReferenceType())
2770         T = D->getType();
2771 
2772       if (getLangOpts().CPlusPlus) {
2773         Init = EmitNullConstant(T);
2774         NeedsGlobalCtor = true;
2775       } else {
2776         ErrorUnsupported(D, "static initializer");
2777         Init = llvm::UndefValue::get(getTypes().ConvertType(T));
2778       }
2779     } else {
2780       // We don't need an initializer, so remove the entry for the delayed
2781       // initializer position (just in case this entry was delayed) if we
2782       // also don't need to register a destructor.
2783       if (getLangOpts().CPlusPlus && !NeedsGlobalDtor)
2784         DelayedCXXInitPosition.erase(D);
2785     }
2786   }
2787 
2788   llvm::Type* InitType = Init->getType();
2789   llvm::Constant *Entry =
2790       GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative));
2791 
2792   // Strip off a bitcast if we got one back.
2793   if (auto *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
2794     assert(CE->getOpcode() == llvm::Instruction::BitCast ||
2795            CE->getOpcode() == llvm::Instruction::AddrSpaceCast ||
2796            // All zero index gep.
2797            CE->getOpcode() == llvm::Instruction::GetElementPtr);
2798     Entry = CE->getOperand(0);
2799   }
2800 
2801   // Entry is now either a Function or GlobalVariable.
2802   auto *GV = dyn_cast<llvm::GlobalVariable>(Entry);
2803 
2804   // We have a definition after a declaration with the wrong type.
2805   // We must make a new GlobalVariable* and update everything that used OldGV
2806   // (a declaration or tentative definition) with the new GlobalVariable*
2807   // (which will be a definition).
2808   //
2809   // This happens if there is a prototype for a global (e.g.
2810   // "extern int x[];") and then a definition of a different type (e.g.
2811   // "int x[10];"). This also happens when an initializer has a different type
2812   // from the type of the global (this happens with unions).
2813   if (!GV || GV->getType()->getElementType() != InitType ||
2814       GV->getType()->getAddressSpace() !=
2815           getContext().getTargetAddressSpace(GetGlobalVarAddressSpace(D))) {
2816 
2817     // Move the old entry aside so that we'll create a new one.
2818     Entry->setName(StringRef());
2819 
2820     // Make a new global with the correct type, this is now guaranteed to work.
2821     GV = cast<llvm::GlobalVariable>(
2822         GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative)));
2823 
2824     // Replace all uses of the old global with the new global
2825     llvm::Constant *NewPtrForOldDecl =
2826         llvm::ConstantExpr::getBitCast(GV, Entry->getType());
2827     Entry->replaceAllUsesWith(NewPtrForOldDecl);
2828 
2829     // Erase the old global, since it is no longer used.
2830     cast<llvm::GlobalValue>(Entry)->eraseFromParent();
2831   }
2832 
2833   MaybeHandleStaticInExternC(D, GV);
2834 
2835   if (D->hasAttr<AnnotateAttr>())
2836     AddGlobalAnnotations(D, GV);
2837 
2838   // Set the llvm linkage type as appropriate.
2839   llvm::GlobalValue::LinkageTypes Linkage =
2840       getLLVMLinkageVarDefinition(D, GV->isConstant());
2841 
2842   // CUDA B.2.1 "The __device__ qualifier declares a variable that resides on
2843   // the device. [...]"
2844   // CUDA B.2.2 "The __constant__ qualifier, optionally used together with
2845   // __device__, declares a variable that: [...]
2846   // Is accessible from all the threads within the grid and from the host
2847   // through the runtime library (cudaGetSymbolAddress() / cudaGetSymbolSize()
2848   // / cudaMemcpyToSymbol() / cudaMemcpyFromSymbol())."
2849   if (GV && LangOpts.CUDA) {
2850     if (LangOpts.CUDAIsDevice) {
2851       if (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>())
2852         GV->setExternallyInitialized(true);
2853     } else {
2854       // Host-side shadows of external declarations of device-side
2855       // global variables become internal definitions. These have to
2856       // be internal in order to prevent name conflicts with global
2857       // host variables with the same name in a different TUs.
2858       if (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>()) {
2859         Linkage = llvm::GlobalValue::InternalLinkage;
2860 
2861         // Shadow variables and their properties must be registered
2862         // with CUDA runtime.
2863         unsigned Flags = 0;
2864         if (!D->hasDefinition())
2865           Flags |= CGCUDARuntime::ExternDeviceVar;
2866         if (D->hasAttr<CUDAConstantAttr>())
2867           Flags |= CGCUDARuntime::ConstantDeviceVar;
2868         getCUDARuntime().registerDeviceVar(*GV, Flags);
2869       } else if (D->hasAttr<CUDASharedAttr>())
2870         // __shared__ variables are odd. Shadows do get created, but
2871         // they are not registered with the CUDA runtime, so they
2872         // can't really be used to access their device-side
2873         // counterparts. It's not clear yet whether it's nvcc's bug or
2874         // a feature, but we've got to do the same for compatibility.
2875         Linkage = llvm::GlobalValue::InternalLinkage;
2876     }
2877   }
2878 
2879   GV->setInitializer(Init);
2880   if (emitter) emitter->finalize(GV);
2881 
2882   // If it is safe to mark the global 'constant', do so now.
2883   GV->setConstant(!NeedsGlobalCtor && !NeedsGlobalDtor &&
2884                   isTypeConstant(D->getType(), true));
2885 
2886   // If it is in a read-only section, mark it 'constant'.
2887   if (const SectionAttr *SA = D->getAttr<SectionAttr>()) {
2888     const ASTContext::SectionInfo &SI = Context.SectionInfos[SA->getName()];
2889     if ((SI.SectionFlags & ASTContext::PSF_Write) == 0)
2890       GV->setConstant(true);
2891   }
2892 
2893   GV->setAlignment(getContext().getDeclAlign(D).getQuantity());
2894 
2895 
2896   // On Darwin, if the normal linkage of a C++ thread_local variable is
2897   // LinkOnce or Weak, we keep the normal linkage to prevent multiple
2898   // copies within a linkage unit; otherwise, the backing variable has
2899   // internal linkage and all accesses should just be calls to the
2900   // Itanium-specified entry point, which has the normal linkage of the
2901   // variable. This is to preserve the ability to change the implementation
2902   // behind the scenes.
2903   if (!D->isStaticLocal() && D->getTLSKind() == VarDecl::TLS_Dynamic &&
2904       Context.getTargetInfo().getTriple().isOSDarwin() &&
2905       !llvm::GlobalVariable::isLinkOnceLinkage(Linkage) &&
2906       !llvm::GlobalVariable::isWeakLinkage(Linkage))
2907     Linkage = llvm::GlobalValue::InternalLinkage;
2908 
2909   GV->setLinkage(Linkage);
2910   if (D->hasAttr<DLLImportAttr>())
2911     GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass);
2912   else if (D->hasAttr<DLLExportAttr>())
2913     GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass);
2914   else
2915     GV->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass);
2916 
2917   if (Linkage == llvm::GlobalVariable::CommonLinkage) {
2918     // common vars aren't constant even if declared const.
2919     GV->setConstant(false);
2920     // Tentative definition of global variables may be initialized with
2921     // non-zero null pointers. In this case they should have weak linkage
2922     // since common linkage must have zero initializer and must not have
2923     // explicit section therefore cannot have non-zero initial value.
2924     if (!GV->getInitializer()->isNullValue())
2925       GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage);
2926   }
2927 
2928   setNonAliasAttributes(D, GV);
2929 
2930   if (D->getTLSKind() && !GV->isThreadLocal()) {
2931     if (D->getTLSKind() == VarDecl::TLS_Dynamic)
2932       CXXThreadLocals.push_back(D);
2933     setTLSMode(GV, *D);
2934   }
2935 
2936   maybeSetTrivialComdat(*D, *GV);
2937 
2938   // Emit the initializer function if necessary.
2939   if (NeedsGlobalCtor || NeedsGlobalDtor)
2940     EmitCXXGlobalVarDeclInitFunc(D, GV, NeedsGlobalCtor);
2941 
2942   SanitizerMD->reportGlobalToASan(GV, *D, NeedsGlobalCtor);
2943 
2944   // Emit global variable debug information.
2945   if (CGDebugInfo *DI = getModuleDebugInfo())
2946     if (getCodeGenOpts().getDebugInfo() >= codegenoptions::LimitedDebugInfo)
2947       DI->EmitGlobalVariable(GV, D);
2948 }
2949 
2950 static bool isVarDeclStrongDefinition(const ASTContext &Context,
2951                                       CodeGenModule &CGM, const VarDecl *D,
2952                                       bool NoCommon) {
2953   // Don't give variables common linkage if -fno-common was specified unless it
2954   // was overridden by a NoCommon attribute.
2955   if ((NoCommon || D->hasAttr<NoCommonAttr>()) && !D->hasAttr<CommonAttr>())
2956     return true;
2957 
2958   // C11 6.9.2/2:
2959   //   A declaration of an identifier for an object that has file scope without
2960   //   an initializer, and without a storage-class specifier or with the
2961   //   storage-class specifier static, constitutes a tentative definition.
2962   if (D->getInit() || D->hasExternalStorage())
2963     return true;
2964 
2965   // A variable cannot be both common and exist in a section.
2966   if (D->hasAttr<SectionAttr>())
2967     return true;
2968 
2969   // A variable cannot be both common and exist in a section.
2970   // We dont try to determine which is the right section in the front-end.
2971   // If no specialized section name is applicable, it will resort to default.
2972   if (D->hasAttr<PragmaClangBSSSectionAttr>() ||
2973       D->hasAttr<PragmaClangDataSectionAttr>() ||
2974       D->hasAttr<PragmaClangRodataSectionAttr>())
2975     return true;
2976 
2977   // Thread local vars aren't considered common linkage.
2978   if (D->getTLSKind())
2979     return true;
2980 
2981   // Tentative definitions marked with WeakImportAttr are true definitions.
2982   if (D->hasAttr<WeakImportAttr>())
2983     return true;
2984 
2985   // A variable cannot be both common and exist in a comdat.
2986   if (shouldBeInCOMDAT(CGM, *D))
2987     return true;
2988 
2989   // Declarations with a required alignment do not have common linkage in MSVC
2990   // mode.
2991   if (Context.getTargetInfo().getCXXABI().isMicrosoft()) {
2992     if (D->hasAttr<AlignedAttr>())
2993       return true;
2994     QualType VarType = D->getType();
2995     if (Context.isAlignmentRequired(VarType))
2996       return true;
2997 
2998     if (const auto *RT = VarType->getAs<RecordType>()) {
2999       const RecordDecl *RD = RT->getDecl();
3000       for (const FieldDecl *FD : RD->fields()) {
3001         if (FD->isBitField())
3002           continue;
3003         if (FD->hasAttr<AlignedAttr>())
3004           return true;
3005         if (Context.isAlignmentRequired(FD->getType()))
3006           return true;
3007       }
3008     }
3009   }
3010 
3011   return false;
3012 }
3013 
3014 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageForDeclarator(
3015     const DeclaratorDecl *D, GVALinkage Linkage, bool IsConstantVariable) {
3016   if (Linkage == GVA_Internal)
3017     return llvm::Function::InternalLinkage;
3018 
3019   if (D->hasAttr<WeakAttr>()) {
3020     if (IsConstantVariable)
3021       return llvm::GlobalVariable::WeakODRLinkage;
3022     else
3023       return llvm::GlobalVariable::WeakAnyLinkage;
3024   }
3025 
3026   // We are guaranteed to have a strong definition somewhere else,
3027   // so we can use available_externally linkage.
3028   if (Linkage == GVA_AvailableExternally)
3029     return llvm::GlobalValue::AvailableExternallyLinkage;
3030 
3031   // Note that Apple's kernel linker doesn't support symbol
3032   // coalescing, so we need to avoid linkonce and weak linkages there.
3033   // Normally, this means we just map to internal, but for explicit
3034   // instantiations we'll map to external.
3035 
3036   // In C++, the compiler has to emit a definition in every translation unit
3037   // that references the function.  We should use linkonce_odr because
3038   // a) if all references in this translation unit are optimized away, we
3039   // don't need to codegen it.  b) if the function persists, it needs to be
3040   // merged with other definitions. c) C++ has the ODR, so we know the
3041   // definition is dependable.
3042   if (Linkage == GVA_DiscardableODR)
3043     return !Context.getLangOpts().AppleKext ? llvm::Function::LinkOnceODRLinkage
3044                                             : llvm::Function::InternalLinkage;
3045 
3046   // An explicit instantiation of a template has weak linkage, since
3047   // explicit instantiations can occur in multiple translation units
3048   // and must all be equivalent. However, we are not allowed to
3049   // throw away these explicit instantiations.
3050   //
3051   // We don't currently support CUDA device code spread out across multiple TUs,
3052   // so say that CUDA templates are either external (for kernels) or internal.
3053   // This lets llvm perform aggressive inter-procedural optimizations.
3054   if (Linkage == GVA_StrongODR) {
3055     if (Context.getLangOpts().AppleKext)
3056       return llvm::Function::ExternalLinkage;
3057     if (Context.getLangOpts().CUDA && Context.getLangOpts().CUDAIsDevice)
3058       return D->hasAttr<CUDAGlobalAttr>() ? llvm::Function::ExternalLinkage
3059                                           : llvm::Function::InternalLinkage;
3060     return llvm::Function::WeakODRLinkage;
3061   }
3062 
3063   // C++ doesn't have tentative definitions and thus cannot have common
3064   // linkage.
3065   if (!getLangOpts().CPlusPlus && isa<VarDecl>(D) &&
3066       !isVarDeclStrongDefinition(Context, *this, cast<VarDecl>(D),
3067                                  CodeGenOpts.NoCommon))
3068     return llvm::GlobalVariable::CommonLinkage;
3069 
3070   // selectany symbols are externally visible, so use weak instead of
3071   // linkonce.  MSVC optimizes away references to const selectany globals, so
3072   // all definitions should be the same and ODR linkage should be used.
3073   // http://msdn.microsoft.com/en-us/library/5tkz6s71.aspx
3074   if (D->hasAttr<SelectAnyAttr>())
3075     return llvm::GlobalVariable::WeakODRLinkage;
3076 
3077   // Otherwise, we have strong external linkage.
3078   assert(Linkage == GVA_StrongExternal);
3079   return llvm::GlobalVariable::ExternalLinkage;
3080 }
3081 
3082 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageVarDefinition(
3083     const VarDecl *VD, bool IsConstant) {
3084   GVALinkage Linkage = getContext().GetGVALinkageForVariable(VD);
3085   return getLLVMLinkageForDeclarator(VD, Linkage, IsConstant);
3086 }
3087 
3088 /// Replace the uses of a function that was declared with a non-proto type.
3089 /// We want to silently drop extra arguments from call sites
3090 static void replaceUsesOfNonProtoConstant(llvm::Constant *old,
3091                                           llvm::Function *newFn) {
3092   // Fast path.
3093   if (old->use_empty()) return;
3094 
3095   llvm::Type *newRetTy = newFn->getReturnType();
3096   SmallVector<llvm::Value*, 4> newArgs;
3097   SmallVector<llvm::OperandBundleDef, 1> newBundles;
3098 
3099   for (llvm::Value::use_iterator ui = old->use_begin(), ue = old->use_end();
3100          ui != ue; ) {
3101     llvm::Value::use_iterator use = ui++; // Increment before the use is erased.
3102     llvm::User *user = use->getUser();
3103 
3104     // Recognize and replace uses of bitcasts.  Most calls to
3105     // unprototyped functions will use bitcasts.
3106     if (auto *bitcast = dyn_cast<llvm::ConstantExpr>(user)) {
3107       if (bitcast->getOpcode() == llvm::Instruction::BitCast)
3108         replaceUsesOfNonProtoConstant(bitcast, newFn);
3109       continue;
3110     }
3111 
3112     // Recognize calls to the function.
3113     llvm::CallSite callSite(user);
3114     if (!callSite) continue;
3115     if (!callSite.isCallee(&*use)) continue;
3116 
3117     // If the return types don't match exactly, then we can't
3118     // transform this call unless it's dead.
3119     if (callSite->getType() != newRetTy && !callSite->use_empty())
3120       continue;
3121 
3122     // Get the call site's attribute list.
3123     SmallVector<llvm::AttributeSet, 8> newArgAttrs;
3124     llvm::AttributeList oldAttrs = callSite.getAttributes();
3125 
3126     // If the function was passed too few arguments, don't transform.
3127     unsigned newNumArgs = newFn->arg_size();
3128     if (callSite.arg_size() < newNumArgs) continue;
3129 
3130     // If extra arguments were passed, we silently drop them.
3131     // If any of the types mismatch, we don't transform.
3132     unsigned argNo = 0;
3133     bool dontTransform = false;
3134     for (llvm::Argument &A : newFn->args()) {
3135       if (callSite.getArgument(argNo)->getType() != A.getType()) {
3136         dontTransform = true;
3137         break;
3138       }
3139 
3140       // Add any parameter attributes.
3141       newArgAttrs.push_back(oldAttrs.getParamAttributes(argNo));
3142       argNo++;
3143     }
3144     if (dontTransform)
3145       continue;
3146 
3147     // Okay, we can transform this.  Create the new call instruction and copy
3148     // over the required information.
3149     newArgs.append(callSite.arg_begin(), callSite.arg_begin() + argNo);
3150 
3151     // Copy over any operand bundles.
3152     callSite.getOperandBundlesAsDefs(newBundles);
3153 
3154     llvm::CallSite newCall;
3155     if (callSite.isCall()) {
3156       newCall = llvm::CallInst::Create(newFn, newArgs, newBundles, "",
3157                                        callSite.getInstruction());
3158     } else {
3159       auto *oldInvoke = cast<llvm::InvokeInst>(callSite.getInstruction());
3160       newCall = llvm::InvokeInst::Create(newFn,
3161                                          oldInvoke->getNormalDest(),
3162                                          oldInvoke->getUnwindDest(),
3163                                          newArgs, newBundles, "",
3164                                          callSite.getInstruction());
3165     }
3166     newArgs.clear(); // for the next iteration
3167 
3168     if (!newCall->getType()->isVoidTy())
3169       newCall->takeName(callSite.getInstruction());
3170     newCall.setAttributes(llvm::AttributeList::get(
3171         newFn->getContext(), oldAttrs.getFnAttributes(),
3172         oldAttrs.getRetAttributes(), newArgAttrs));
3173     newCall.setCallingConv(callSite.getCallingConv());
3174 
3175     // Finally, remove the old call, replacing any uses with the new one.
3176     if (!callSite->use_empty())
3177       callSite->replaceAllUsesWith(newCall.getInstruction());
3178 
3179     // Copy debug location attached to CI.
3180     if (callSite->getDebugLoc())
3181       newCall->setDebugLoc(callSite->getDebugLoc());
3182 
3183     callSite->eraseFromParent();
3184   }
3185 }
3186 
3187 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we
3188 /// implement a function with no prototype, e.g. "int foo() {}".  If there are
3189 /// existing call uses of the old function in the module, this adjusts them to
3190 /// call the new function directly.
3191 ///
3192 /// This is not just a cleanup: the always_inline pass requires direct calls to
3193 /// functions to be able to inline them.  If there is a bitcast in the way, it
3194 /// won't inline them.  Instcombine normally deletes these calls, but it isn't
3195 /// run at -O0.
3196 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
3197                                                       llvm::Function *NewFn) {
3198   // If we're redefining a global as a function, don't transform it.
3199   if (!isa<llvm::Function>(Old)) return;
3200 
3201   replaceUsesOfNonProtoConstant(Old, NewFn);
3202 }
3203 
3204 void CodeGenModule::HandleCXXStaticMemberVarInstantiation(VarDecl *VD) {
3205   auto DK = VD->isThisDeclarationADefinition();
3206   if (DK == VarDecl::Definition && VD->hasAttr<DLLImportAttr>())
3207     return;
3208 
3209   TemplateSpecializationKind TSK = VD->getTemplateSpecializationKind();
3210   // If we have a definition, this might be a deferred decl. If the
3211   // instantiation is explicit, make sure we emit it at the end.
3212   if (VD->getDefinition() && TSK == TSK_ExplicitInstantiationDefinition)
3213     GetAddrOfGlobalVar(VD);
3214 
3215   EmitTopLevelDecl(VD);
3216 }
3217 
3218 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD,
3219                                                  llvm::GlobalValue *GV) {
3220   const auto *D = cast<FunctionDecl>(GD.getDecl());
3221 
3222   // Compute the function info and LLVM type.
3223   const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
3224   llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
3225 
3226   // Get or create the prototype for the function.
3227   if (!GV || (GV->getType()->getElementType() != Ty))
3228     GV = cast<llvm::GlobalValue>(GetAddrOfFunction(GD, Ty, /*ForVTable=*/false,
3229                                                    /*DontDefer=*/true,
3230                                                    ForDefinition));
3231 
3232   // Already emitted.
3233   if (!GV->isDeclaration())
3234     return;
3235 
3236   // We need to set linkage and visibility on the function before
3237   // generating code for it because various parts of IR generation
3238   // want to propagate this information down (e.g. to local static
3239   // declarations).
3240   auto *Fn = cast<llvm::Function>(GV);
3241   setFunctionLinkage(GD, Fn);
3242   setFunctionDLLStorageClass(GD, Fn);
3243 
3244   // FIXME: this is redundant with part of setFunctionDefinitionAttributes
3245   setGlobalVisibility(Fn, D);
3246 
3247   MaybeHandleStaticInExternC(D, Fn);
3248 
3249   maybeSetTrivialComdat(*D, *Fn);
3250 
3251   CodeGenFunction(*this).GenerateCode(D, Fn, FI);
3252 
3253   setFunctionDefinitionAttributes(D, Fn);
3254   SetLLVMFunctionAttributesForDefinition(D, Fn);
3255 
3256   if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>())
3257     AddGlobalCtor(Fn, CA->getPriority());
3258   if (const DestructorAttr *DA = D->getAttr<DestructorAttr>())
3259     AddGlobalDtor(Fn, DA->getPriority());
3260   if (D->hasAttr<AnnotateAttr>())
3261     AddGlobalAnnotations(D, Fn);
3262 }
3263 
3264 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) {
3265   const auto *D = cast<ValueDecl>(GD.getDecl());
3266   const AliasAttr *AA = D->getAttr<AliasAttr>();
3267   assert(AA && "Not an alias?");
3268 
3269   StringRef MangledName = getMangledName(GD);
3270 
3271   if (AA->getAliasee() == MangledName) {
3272     Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0;
3273     return;
3274   }
3275 
3276   // If there is a definition in the module, then it wins over the alias.
3277   // This is dubious, but allow it to be safe.  Just ignore the alias.
3278   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
3279   if (Entry && !Entry->isDeclaration())
3280     return;
3281 
3282   Aliases.push_back(GD);
3283 
3284   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
3285 
3286   // Create a reference to the named value.  This ensures that it is emitted
3287   // if a deferred decl.
3288   llvm::Constant *Aliasee;
3289   if (isa<llvm::FunctionType>(DeclTy))
3290     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GD,
3291                                       /*ForVTable=*/false);
3292   else
3293     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
3294                                     llvm::PointerType::getUnqual(DeclTy),
3295                                     /*D=*/nullptr);
3296 
3297   // Create the new alias itself, but don't set a name yet.
3298   auto *GA = llvm::GlobalAlias::create(
3299       DeclTy, 0, llvm::Function::ExternalLinkage, "", Aliasee, &getModule());
3300 
3301   if (Entry) {
3302     if (GA->getAliasee() == Entry) {
3303       Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0;
3304       return;
3305     }
3306 
3307     assert(Entry->isDeclaration());
3308 
3309     // If there is a declaration in the module, then we had an extern followed
3310     // by the alias, as in:
3311     //   extern int test6();
3312     //   ...
3313     //   int test6() __attribute__((alias("test7")));
3314     //
3315     // Remove it and replace uses of it with the alias.
3316     GA->takeName(Entry);
3317 
3318     Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA,
3319                                                           Entry->getType()));
3320     Entry->eraseFromParent();
3321   } else {
3322     GA->setName(MangledName);
3323   }
3324 
3325   // Set attributes which are particular to an alias; this is a
3326   // specialization of the attributes which may be set on a global
3327   // variable/function.
3328   if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakRefAttr>() ||
3329       D->isWeakImported()) {
3330     GA->setLinkage(llvm::Function::WeakAnyLinkage);
3331   }
3332 
3333   if (const auto *VD = dyn_cast<VarDecl>(D))
3334     if (VD->getTLSKind())
3335       setTLSMode(GA, *VD);
3336 
3337   setAliasAttributes(D, GA);
3338 }
3339 
3340 void CodeGenModule::emitIFuncDefinition(GlobalDecl GD) {
3341   const auto *D = cast<ValueDecl>(GD.getDecl());
3342   const IFuncAttr *IFA = D->getAttr<IFuncAttr>();
3343   assert(IFA && "Not an ifunc?");
3344 
3345   StringRef MangledName = getMangledName(GD);
3346 
3347   if (IFA->getResolver() == MangledName) {
3348     Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1;
3349     return;
3350   }
3351 
3352   // Report an error if some definition overrides ifunc.
3353   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
3354   if (Entry && !Entry->isDeclaration()) {
3355     GlobalDecl OtherGD;
3356     if (lookupRepresentativeDecl(MangledName, OtherGD) &&
3357         DiagnosedConflictingDefinitions.insert(GD).second) {
3358       Diags.Report(D->getLocation(), diag::err_duplicate_mangled_name);
3359       Diags.Report(OtherGD.getDecl()->getLocation(),
3360                    diag::note_previous_definition);
3361     }
3362     return;
3363   }
3364 
3365   Aliases.push_back(GD);
3366 
3367   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
3368   llvm::Constant *Resolver =
3369       GetOrCreateLLVMFunction(IFA->getResolver(), DeclTy, GD,
3370                               /*ForVTable=*/false);
3371   llvm::GlobalIFunc *GIF =
3372       llvm::GlobalIFunc::create(DeclTy, 0, llvm::Function::ExternalLinkage,
3373                                 "", Resolver, &getModule());
3374   if (Entry) {
3375     if (GIF->getResolver() == Entry) {
3376       Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1;
3377       return;
3378     }
3379     assert(Entry->isDeclaration());
3380 
3381     // If there is a declaration in the module, then we had an extern followed
3382     // by the ifunc, as in:
3383     //   extern int test();
3384     //   ...
3385     //   int test() __attribute__((ifunc("resolver")));
3386     //
3387     // Remove it and replace uses of it with the ifunc.
3388     GIF->takeName(Entry);
3389 
3390     Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GIF,
3391                                                           Entry->getType()));
3392     Entry->eraseFromParent();
3393   } else
3394     GIF->setName(MangledName);
3395 
3396   SetCommonAttributes(D, GIF);
3397 }
3398 
3399 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,
3400                                             ArrayRef<llvm::Type*> Tys) {
3401   return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID,
3402                                          Tys);
3403 }
3404 
3405 static llvm::StringMapEntry<llvm::GlobalVariable *> &
3406 GetConstantCFStringEntry(llvm::StringMap<llvm::GlobalVariable *> &Map,
3407                          const StringLiteral *Literal, bool TargetIsLSB,
3408                          bool &IsUTF16, unsigned &StringLength) {
3409   StringRef String = Literal->getString();
3410   unsigned NumBytes = String.size();
3411 
3412   // Check for simple case.
3413   if (!Literal->containsNonAsciiOrNull()) {
3414     StringLength = NumBytes;
3415     return *Map.insert(std::make_pair(String, nullptr)).first;
3416   }
3417 
3418   // Otherwise, convert the UTF8 literals into a string of shorts.
3419   IsUTF16 = true;
3420 
3421   SmallVector<llvm::UTF16, 128> ToBuf(NumBytes + 1); // +1 for ending nulls.
3422   const llvm::UTF8 *FromPtr = (const llvm::UTF8 *)String.data();
3423   llvm::UTF16 *ToPtr = &ToBuf[0];
3424 
3425   (void)llvm::ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, &ToPtr,
3426                                  ToPtr + NumBytes, llvm::strictConversion);
3427 
3428   // ConvertUTF8toUTF16 returns the length in ToPtr.
3429   StringLength = ToPtr - &ToBuf[0];
3430 
3431   // Add an explicit null.
3432   *ToPtr = 0;
3433   return *Map.insert(std::make_pair(
3434                          StringRef(reinterpret_cast<const char *>(ToBuf.data()),
3435                                    (StringLength + 1) * 2),
3436                          nullptr)).first;
3437 }
3438 
3439 ConstantAddress
3440 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) {
3441   unsigned StringLength = 0;
3442   bool isUTF16 = false;
3443   llvm::StringMapEntry<llvm::GlobalVariable *> &Entry =
3444       GetConstantCFStringEntry(CFConstantStringMap, Literal,
3445                                getDataLayout().isLittleEndian(), isUTF16,
3446                                StringLength);
3447 
3448   if (auto *C = Entry.second)
3449     return ConstantAddress(C, CharUnits::fromQuantity(C->getAlignment()));
3450 
3451   llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty);
3452   llvm::Constant *Zeros[] = { Zero, Zero };
3453 
3454   // If we don't already have it, get __CFConstantStringClassReference.
3455   if (!CFConstantStringClassRef) {
3456     llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
3457     Ty = llvm::ArrayType::get(Ty, 0);
3458     llvm::Constant *GV =
3459         CreateRuntimeVariable(Ty, "__CFConstantStringClassReference");
3460 
3461     if (getTriple().isOSBinFormatCOFF()) {
3462       IdentifierInfo &II = getContext().Idents.get(GV->getName());
3463       TranslationUnitDecl *TUDecl = getContext().getTranslationUnitDecl();
3464       DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl);
3465       llvm::GlobalValue *CGV = cast<llvm::GlobalValue>(GV);
3466 
3467       const VarDecl *VD = nullptr;
3468       for (const auto &Result : DC->lookup(&II))
3469         if ((VD = dyn_cast<VarDecl>(Result)))
3470           break;
3471 
3472       if (!VD || !VD->hasAttr<DLLExportAttr>()) {
3473         CGV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass);
3474         CGV->setLinkage(llvm::GlobalValue::ExternalLinkage);
3475       } else {
3476         CGV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass);
3477         CGV->setLinkage(llvm::GlobalValue::ExternalLinkage);
3478       }
3479     }
3480 
3481     // Decay array -> ptr
3482     CFConstantStringClassRef =
3483         llvm::ConstantExpr::getGetElementPtr(Ty, GV, Zeros);
3484   }
3485 
3486   QualType CFTy = getContext().getCFConstantStringType();
3487 
3488   auto *STy = cast<llvm::StructType>(getTypes().ConvertType(CFTy));
3489 
3490   ConstantInitBuilder Builder(*this);
3491   auto Fields = Builder.beginStruct(STy);
3492 
3493   // Class pointer.
3494   Fields.add(cast<llvm::ConstantExpr>(CFConstantStringClassRef));
3495 
3496   // Flags.
3497   Fields.addInt(IntTy, isUTF16 ? 0x07d0 : 0x07C8);
3498 
3499   // String pointer.
3500   llvm::Constant *C = nullptr;
3501   if (isUTF16) {
3502     auto Arr = llvm::makeArrayRef(
3503         reinterpret_cast<uint16_t *>(const_cast<char *>(Entry.first().data())),
3504         Entry.first().size() / 2);
3505     C = llvm::ConstantDataArray::get(VMContext, Arr);
3506   } else {
3507     C = llvm::ConstantDataArray::getString(VMContext, Entry.first());
3508   }
3509 
3510   // Note: -fwritable-strings doesn't make the backing store strings of
3511   // CFStrings writable. (See <rdar://problem/10657500>)
3512   auto *GV =
3513       new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true,
3514                                llvm::GlobalValue::PrivateLinkage, C, ".str");
3515   GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
3516   // Don't enforce the target's minimum global alignment, since the only use
3517   // of the string is via this class initializer.
3518   CharUnits Align = isUTF16
3519                         ? getContext().getTypeAlignInChars(getContext().ShortTy)
3520                         : getContext().getTypeAlignInChars(getContext().CharTy);
3521   GV->setAlignment(Align.getQuantity());
3522 
3523   // FIXME: We set the section explicitly to avoid a bug in ld64 224.1.
3524   // Without it LLVM can merge the string with a non unnamed_addr one during
3525   // LTO.  Doing that changes the section it ends in, which surprises ld64.
3526   if (getTriple().isOSBinFormatMachO())
3527     GV->setSection(isUTF16 ? "__TEXT,__ustring"
3528                            : "__TEXT,__cstring,cstring_literals");
3529 
3530   // String.
3531   llvm::Constant *Str =
3532       llvm::ConstantExpr::getGetElementPtr(GV->getValueType(), GV, Zeros);
3533 
3534   if (isUTF16)
3535     // Cast the UTF16 string to the correct type.
3536     Str = llvm::ConstantExpr::getBitCast(Str, Int8PtrTy);
3537   Fields.add(Str);
3538 
3539   // String length.
3540   auto Ty = getTypes().ConvertType(getContext().LongTy);
3541   Fields.addInt(cast<llvm::IntegerType>(Ty), StringLength);
3542 
3543   CharUnits Alignment = getPointerAlign();
3544 
3545   // The struct.
3546   GV = Fields.finishAndCreateGlobal("_unnamed_cfstring_", Alignment,
3547                                     /*isConstant=*/false,
3548                                     llvm::GlobalVariable::PrivateLinkage);
3549   switch (getTriple().getObjectFormat()) {
3550   case llvm::Triple::UnknownObjectFormat:
3551     llvm_unreachable("unknown file format");
3552   case llvm::Triple::COFF:
3553   case llvm::Triple::ELF:
3554   case llvm::Triple::Wasm:
3555     GV->setSection("cfstring");
3556     break;
3557   case llvm::Triple::MachO:
3558     GV->setSection("__DATA,__cfstring");
3559     break;
3560   }
3561   Entry.second = GV;
3562 
3563   return ConstantAddress(GV, Alignment);
3564 }
3565 
3566 bool CodeGenModule::getExpressionLocationsEnabled() const {
3567   return !CodeGenOpts.EmitCodeView || CodeGenOpts.DebugColumnInfo;
3568 }
3569 
3570 QualType CodeGenModule::getObjCFastEnumerationStateType() {
3571   if (ObjCFastEnumerationStateType.isNull()) {
3572     RecordDecl *D = Context.buildImplicitRecord("__objcFastEnumerationState");
3573     D->startDefinition();
3574 
3575     QualType FieldTypes[] = {
3576       Context.UnsignedLongTy,
3577       Context.getPointerType(Context.getObjCIdType()),
3578       Context.getPointerType(Context.UnsignedLongTy),
3579       Context.getConstantArrayType(Context.UnsignedLongTy,
3580                            llvm::APInt(32, 5), ArrayType::Normal, 0)
3581     };
3582 
3583     for (size_t i = 0; i < 4; ++i) {
3584       FieldDecl *Field = FieldDecl::Create(Context,
3585                                            D,
3586                                            SourceLocation(),
3587                                            SourceLocation(), nullptr,
3588                                            FieldTypes[i], /*TInfo=*/nullptr,
3589                                            /*BitWidth=*/nullptr,
3590                                            /*Mutable=*/false,
3591                                            ICIS_NoInit);
3592       Field->setAccess(AS_public);
3593       D->addDecl(Field);
3594     }
3595 
3596     D->completeDefinition();
3597     ObjCFastEnumerationStateType = Context.getTagDeclType(D);
3598   }
3599 
3600   return ObjCFastEnumerationStateType;
3601 }
3602 
3603 llvm::Constant *
3604 CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) {
3605   assert(!E->getType()->isPointerType() && "Strings are always arrays");
3606 
3607   // Don't emit it as the address of the string, emit the string data itself
3608   // as an inline array.
3609   if (E->getCharByteWidth() == 1) {
3610     SmallString<64> Str(E->getString());
3611 
3612     // Resize the string to the right size, which is indicated by its type.
3613     const ConstantArrayType *CAT = Context.getAsConstantArrayType(E->getType());
3614     Str.resize(CAT->getSize().getZExtValue());
3615     return llvm::ConstantDataArray::getString(VMContext, Str, false);
3616   }
3617 
3618   auto *AType = cast<llvm::ArrayType>(getTypes().ConvertType(E->getType()));
3619   llvm::Type *ElemTy = AType->getElementType();
3620   unsigned NumElements = AType->getNumElements();
3621 
3622   // Wide strings have either 2-byte or 4-byte elements.
3623   if (ElemTy->getPrimitiveSizeInBits() == 16) {
3624     SmallVector<uint16_t, 32> Elements;
3625     Elements.reserve(NumElements);
3626 
3627     for(unsigned i = 0, e = E->getLength(); i != e; ++i)
3628       Elements.push_back(E->getCodeUnit(i));
3629     Elements.resize(NumElements);
3630     return llvm::ConstantDataArray::get(VMContext, Elements);
3631   }
3632 
3633   assert(ElemTy->getPrimitiveSizeInBits() == 32);
3634   SmallVector<uint32_t, 32> Elements;
3635   Elements.reserve(NumElements);
3636 
3637   for(unsigned i = 0, e = E->getLength(); i != e; ++i)
3638     Elements.push_back(E->getCodeUnit(i));
3639   Elements.resize(NumElements);
3640   return llvm::ConstantDataArray::get(VMContext, Elements);
3641 }
3642 
3643 static llvm::GlobalVariable *
3644 GenerateStringLiteral(llvm::Constant *C, llvm::GlobalValue::LinkageTypes LT,
3645                       CodeGenModule &CGM, StringRef GlobalName,
3646                       CharUnits Alignment) {
3647   // OpenCL v1.2 s6.5.3: a string literal is in the constant address space.
3648   unsigned AddrSpace = 0;
3649   if (CGM.getLangOpts().OpenCL)
3650     AddrSpace = CGM.getContext().getTargetAddressSpace(LangAS::opencl_constant);
3651 
3652   llvm::Module &M = CGM.getModule();
3653   // Create a global variable for this string
3654   auto *GV = new llvm::GlobalVariable(
3655       M, C->getType(), !CGM.getLangOpts().WritableStrings, LT, C, GlobalName,
3656       nullptr, llvm::GlobalVariable::NotThreadLocal, AddrSpace);
3657   GV->setAlignment(Alignment.getQuantity());
3658   GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
3659   if (GV->isWeakForLinker()) {
3660     assert(CGM.supportsCOMDAT() && "Only COFF uses weak string literals");
3661     GV->setComdat(M.getOrInsertComdat(GV->getName()));
3662   }
3663 
3664   return GV;
3665 }
3666 
3667 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a
3668 /// constant array for the given string literal.
3669 ConstantAddress
3670 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S,
3671                                                   StringRef Name) {
3672   CharUnits Alignment = getContext().getAlignOfGlobalVarInChars(S->getType());
3673 
3674   llvm::Constant *C = GetConstantArrayFromStringLiteral(S);
3675   llvm::GlobalVariable **Entry = nullptr;
3676   if (!LangOpts.WritableStrings) {
3677     Entry = &ConstantStringMap[C];
3678     if (auto GV = *Entry) {
3679       if (Alignment.getQuantity() > GV->getAlignment())
3680         GV->setAlignment(Alignment.getQuantity());
3681       return ConstantAddress(GV, Alignment);
3682     }
3683   }
3684 
3685   SmallString<256> MangledNameBuffer;
3686   StringRef GlobalVariableName;
3687   llvm::GlobalValue::LinkageTypes LT;
3688 
3689   // Mangle the string literal if the ABI allows for it.  However, we cannot
3690   // do this if  we are compiling with ASan or -fwritable-strings because they
3691   // rely on strings having normal linkage.
3692   if (!LangOpts.WritableStrings &&
3693       !LangOpts.Sanitize.has(SanitizerKind::Address) &&
3694       getCXXABI().getMangleContext().shouldMangleStringLiteral(S)) {
3695     llvm::raw_svector_ostream Out(MangledNameBuffer);
3696     getCXXABI().getMangleContext().mangleStringLiteral(S, Out);
3697 
3698     LT = llvm::GlobalValue::LinkOnceODRLinkage;
3699     GlobalVariableName = MangledNameBuffer;
3700   } else {
3701     LT = llvm::GlobalValue::PrivateLinkage;
3702     GlobalVariableName = Name;
3703   }
3704 
3705   auto GV = GenerateStringLiteral(C, LT, *this, GlobalVariableName, Alignment);
3706   if (Entry)
3707     *Entry = GV;
3708 
3709   SanitizerMD->reportGlobalToASan(GV, S->getStrTokenLoc(0), "<string literal>",
3710                                   QualType());
3711   return ConstantAddress(GV, Alignment);
3712 }
3713 
3714 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant
3715 /// array for the given ObjCEncodeExpr node.
3716 ConstantAddress
3717 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) {
3718   std::string Str;
3719   getContext().getObjCEncodingForType(E->getEncodedType(), Str);
3720 
3721   return GetAddrOfConstantCString(Str);
3722 }
3723 
3724 /// GetAddrOfConstantCString - Returns a pointer to a character array containing
3725 /// the literal and a terminating '\0' character.
3726 /// The result has pointer to array type.
3727 ConstantAddress CodeGenModule::GetAddrOfConstantCString(
3728     const std::string &Str, const char *GlobalName) {
3729   StringRef StrWithNull(Str.c_str(), Str.size() + 1);
3730   CharUnits Alignment =
3731     getContext().getAlignOfGlobalVarInChars(getContext().CharTy);
3732 
3733   llvm::Constant *C =
3734       llvm::ConstantDataArray::getString(getLLVMContext(), StrWithNull, false);
3735 
3736   // Don't share any string literals if strings aren't constant.
3737   llvm::GlobalVariable **Entry = nullptr;
3738   if (!LangOpts.WritableStrings) {
3739     Entry = &ConstantStringMap[C];
3740     if (auto GV = *Entry) {
3741       if (Alignment.getQuantity() > GV->getAlignment())
3742         GV->setAlignment(Alignment.getQuantity());
3743       return ConstantAddress(GV, Alignment);
3744     }
3745   }
3746 
3747   // Get the default prefix if a name wasn't specified.
3748   if (!GlobalName)
3749     GlobalName = ".str";
3750   // Create a global variable for this.
3751   auto GV = GenerateStringLiteral(C, llvm::GlobalValue::PrivateLinkage, *this,
3752                                   GlobalName, Alignment);
3753   if (Entry)
3754     *Entry = GV;
3755   return ConstantAddress(GV, Alignment);
3756 }
3757 
3758 ConstantAddress CodeGenModule::GetAddrOfGlobalTemporary(
3759     const MaterializeTemporaryExpr *E, const Expr *Init) {
3760   assert((E->getStorageDuration() == SD_Static ||
3761           E->getStorageDuration() == SD_Thread) && "not a global temporary");
3762   const auto *VD = cast<VarDecl>(E->getExtendingDecl());
3763 
3764   // If we're not materializing a subobject of the temporary, keep the
3765   // cv-qualifiers from the type of the MaterializeTemporaryExpr.
3766   QualType MaterializedType = Init->getType();
3767   if (Init == E->GetTemporaryExpr())
3768     MaterializedType = E->getType();
3769 
3770   CharUnits Align = getContext().getTypeAlignInChars(MaterializedType);
3771 
3772   if (llvm::Constant *Slot = MaterializedGlobalTemporaryMap[E])
3773     return ConstantAddress(Slot, Align);
3774 
3775   // FIXME: If an externally-visible declaration extends multiple temporaries,
3776   // we need to give each temporary the same name in every translation unit (and
3777   // we also need to make the temporaries externally-visible).
3778   SmallString<256> Name;
3779   llvm::raw_svector_ostream Out(Name);
3780   getCXXABI().getMangleContext().mangleReferenceTemporary(
3781       VD, E->getManglingNumber(), Out);
3782 
3783   APValue *Value = nullptr;
3784   if (E->getStorageDuration() == SD_Static) {
3785     // We might have a cached constant initializer for this temporary. Note
3786     // that this might have a different value from the value computed by
3787     // evaluating the initializer if the surrounding constant expression
3788     // modifies the temporary.
3789     Value = getContext().getMaterializedTemporaryValue(E, false);
3790     if (Value && Value->isUninit())
3791       Value = nullptr;
3792   }
3793 
3794   // Try evaluating it now, it might have a constant initializer.
3795   Expr::EvalResult EvalResult;
3796   if (!Value && Init->EvaluateAsRValue(EvalResult, getContext()) &&
3797       !EvalResult.hasSideEffects())
3798     Value = &EvalResult.Val;
3799 
3800   LangAS AddrSpace =
3801       VD ? GetGlobalVarAddressSpace(VD) : MaterializedType.getAddressSpace();
3802 
3803   Optional<ConstantEmitter> emitter;
3804   llvm::Constant *InitialValue = nullptr;
3805   bool Constant = false;
3806   llvm::Type *Type;
3807   if (Value) {
3808     // The temporary has a constant initializer, use it.
3809     emitter.emplace(*this);
3810     InitialValue = emitter->emitForInitializer(*Value, AddrSpace,
3811                                                MaterializedType);
3812     Constant = isTypeConstant(MaterializedType, /*ExcludeCtor*/Value);
3813     Type = InitialValue->getType();
3814   } else {
3815     // No initializer, the initialization will be provided when we
3816     // initialize the declaration which performed lifetime extension.
3817     Type = getTypes().ConvertTypeForMem(MaterializedType);
3818   }
3819 
3820   // Create a global variable for this lifetime-extended temporary.
3821   llvm::GlobalValue::LinkageTypes Linkage =
3822       getLLVMLinkageVarDefinition(VD, Constant);
3823   if (Linkage == llvm::GlobalVariable::ExternalLinkage) {
3824     const VarDecl *InitVD;
3825     if (VD->isStaticDataMember() && VD->getAnyInitializer(InitVD) &&
3826         isa<CXXRecordDecl>(InitVD->getLexicalDeclContext())) {
3827       // Temporaries defined inside a class get linkonce_odr linkage because the
3828       // class can be defined in multipe translation units.
3829       Linkage = llvm::GlobalVariable::LinkOnceODRLinkage;
3830     } else {
3831       // There is no need for this temporary to have external linkage if the
3832       // VarDecl has external linkage.
3833       Linkage = llvm::GlobalVariable::InternalLinkage;
3834     }
3835   }
3836   auto TargetAS = getContext().getTargetAddressSpace(AddrSpace);
3837   auto *GV = new llvm::GlobalVariable(
3838       getModule(), Type, Constant, Linkage, InitialValue, Name.c_str(),
3839       /*InsertBefore=*/nullptr, llvm::GlobalVariable::NotThreadLocal, TargetAS);
3840   if (emitter) emitter->finalize(GV);
3841   setGlobalVisibility(GV, VD);
3842   GV->setAlignment(Align.getQuantity());
3843   if (supportsCOMDAT() && GV->isWeakForLinker())
3844     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
3845   if (VD->getTLSKind())
3846     setTLSMode(GV, *VD);
3847   llvm::Constant *CV = GV;
3848   if (AddrSpace != LangAS::Default)
3849     CV = getTargetCodeGenInfo().performAddrSpaceCast(
3850         *this, GV, AddrSpace, LangAS::Default,
3851         Type->getPointerTo(
3852             getContext().getTargetAddressSpace(LangAS::Default)));
3853   MaterializedGlobalTemporaryMap[E] = CV;
3854   return ConstantAddress(CV, Align);
3855 }
3856 
3857 /// EmitObjCPropertyImplementations - Emit information for synthesized
3858 /// properties for an implementation.
3859 void CodeGenModule::EmitObjCPropertyImplementations(const
3860                                                     ObjCImplementationDecl *D) {
3861   for (const auto *PID : D->property_impls()) {
3862     // Dynamic is just for type-checking.
3863     if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) {
3864       ObjCPropertyDecl *PD = PID->getPropertyDecl();
3865 
3866       // Determine which methods need to be implemented, some may have
3867       // been overridden. Note that ::isPropertyAccessor is not the method
3868       // we want, that just indicates if the decl came from a
3869       // property. What we want to know is if the method is defined in
3870       // this implementation.
3871       if (!D->getInstanceMethod(PD->getGetterName()))
3872         CodeGenFunction(*this).GenerateObjCGetter(
3873                                  const_cast<ObjCImplementationDecl *>(D), PID);
3874       if (!PD->isReadOnly() &&
3875           !D->getInstanceMethod(PD->getSetterName()))
3876         CodeGenFunction(*this).GenerateObjCSetter(
3877                                  const_cast<ObjCImplementationDecl *>(D), PID);
3878     }
3879   }
3880 }
3881 
3882 static bool needsDestructMethod(ObjCImplementationDecl *impl) {
3883   const ObjCInterfaceDecl *iface = impl->getClassInterface();
3884   for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin();
3885        ivar; ivar = ivar->getNextIvar())
3886     if (ivar->getType().isDestructedType())
3887       return true;
3888 
3889   return false;
3890 }
3891 
3892 static bool AllTrivialInitializers(CodeGenModule &CGM,
3893                                    ObjCImplementationDecl *D) {
3894   CodeGenFunction CGF(CGM);
3895   for (ObjCImplementationDecl::init_iterator B = D->init_begin(),
3896        E = D->init_end(); B != E; ++B) {
3897     CXXCtorInitializer *CtorInitExp = *B;
3898     Expr *Init = CtorInitExp->getInit();
3899     if (!CGF.isTrivialInitializer(Init))
3900       return false;
3901   }
3902   return true;
3903 }
3904 
3905 /// EmitObjCIvarInitializations - Emit information for ivar initialization
3906 /// for an implementation.
3907 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) {
3908   // We might need a .cxx_destruct even if we don't have any ivar initializers.
3909   if (needsDestructMethod(D)) {
3910     IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct");
3911     Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
3912     ObjCMethodDecl *DTORMethod =
3913       ObjCMethodDecl::Create(getContext(), D->getLocation(), D->getLocation(),
3914                              cxxSelector, getContext().VoidTy, nullptr, D,
3915                              /*isInstance=*/true, /*isVariadic=*/false,
3916                           /*isPropertyAccessor=*/true, /*isImplicitlyDeclared=*/true,
3917                              /*isDefined=*/false, ObjCMethodDecl::Required);
3918     D->addInstanceMethod(DTORMethod);
3919     CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false);
3920     D->setHasDestructors(true);
3921   }
3922 
3923   // If the implementation doesn't have any ivar initializers, we don't need
3924   // a .cxx_construct.
3925   if (D->getNumIvarInitializers() == 0 ||
3926       AllTrivialInitializers(*this, D))
3927     return;
3928 
3929   IdentifierInfo *II = &getContext().Idents.get(".cxx_construct");
3930   Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
3931   // The constructor returns 'self'.
3932   ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(getContext(),
3933                                                 D->getLocation(),
3934                                                 D->getLocation(),
3935                                                 cxxSelector,
3936                                                 getContext().getObjCIdType(),
3937                                                 nullptr, D, /*isInstance=*/true,
3938                                                 /*isVariadic=*/false,
3939                                                 /*isPropertyAccessor=*/true,
3940                                                 /*isImplicitlyDeclared=*/true,
3941                                                 /*isDefined=*/false,
3942                                                 ObjCMethodDecl::Required);
3943   D->addInstanceMethod(CTORMethod);
3944   CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true);
3945   D->setHasNonZeroConstructors(true);
3946 }
3947 
3948 // EmitLinkageSpec - Emit all declarations in a linkage spec.
3949 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) {
3950   if (LSD->getLanguage() != LinkageSpecDecl::lang_c &&
3951       LSD->getLanguage() != LinkageSpecDecl::lang_cxx) {
3952     ErrorUnsupported(LSD, "linkage spec");
3953     return;
3954   }
3955 
3956   EmitDeclContext(LSD);
3957 }
3958 
3959 void CodeGenModule::EmitDeclContext(const DeclContext *DC) {
3960   for (auto *I : DC->decls()) {
3961     // Unlike other DeclContexts, the contents of an ObjCImplDecl at TU scope
3962     // are themselves considered "top-level", so EmitTopLevelDecl on an
3963     // ObjCImplDecl does not recursively visit them. We need to do that in
3964     // case they're nested inside another construct (LinkageSpecDecl /
3965     // ExportDecl) that does stop them from being considered "top-level".
3966     if (auto *OID = dyn_cast<ObjCImplDecl>(I)) {
3967       for (auto *M : OID->methods())
3968         EmitTopLevelDecl(M);
3969     }
3970 
3971     EmitTopLevelDecl(I);
3972   }
3973 }
3974 
3975 /// EmitTopLevelDecl - Emit code for a single top level declaration.
3976 void CodeGenModule::EmitTopLevelDecl(Decl *D) {
3977   // Ignore dependent declarations.
3978   if (D->getDeclContext() && D->getDeclContext()->isDependentContext())
3979     return;
3980 
3981   switch (D->getKind()) {
3982   case Decl::CXXConversion:
3983   case Decl::CXXMethod:
3984   case Decl::Function:
3985     // Skip function templates
3986     if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() ||
3987         cast<FunctionDecl>(D)->isLateTemplateParsed())
3988       return;
3989 
3990     EmitGlobal(cast<FunctionDecl>(D));
3991     // Always provide some coverage mapping
3992     // even for the functions that aren't emitted.
3993     AddDeferredUnusedCoverageMapping(D);
3994     break;
3995 
3996   case Decl::CXXDeductionGuide:
3997     // Function-like, but does not result in code emission.
3998     break;
3999 
4000   case Decl::Var:
4001   case Decl::Decomposition:
4002     // Skip variable templates
4003     if (cast<VarDecl>(D)->getDescribedVarTemplate())
4004       return;
4005     LLVM_FALLTHROUGH;
4006   case Decl::VarTemplateSpecialization:
4007     EmitGlobal(cast<VarDecl>(D));
4008     if (auto *DD = dyn_cast<DecompositionDecl>(D))
4009       for (auto *B : DD->bindings())
4010         if (auto *HD = B->getHoldingVar())
4011           EmitGlobal(HD);
4012     break;
4013 
4014   // Indirect fields from global anonymous structs and unions can be
4015   // ignored; only the actual variable requires IR gen support.
4016   case Decl::IndirectField:
4017     break;
4018 
4019   // C++ Decls
4020   case Decl::Namespace:
4021     EmitDeclContext(cast<NamespaceDecl>(D));
4022     break;
4023   case Decl::CXXRecord:
4024     if (DebugInfo) {
4025       if (auto *ES = D->getASTContext().getExternalSource())
4026         if (ES->hasExternalDefinitions(D) == ExternalASTSource::EK_Never)
4027           DebugInfo->completeUnusedClass(cast<CXXRecordDecl>(*D));
4028     }
4029     // Emit any static data members, they may be definitions.
4030     for (auto *I : cast<CXXRecordDecl>(D)->decls())
4031       if (isa<VarDecl>(I) || isa<CXXRecordDecl>(I))
4032         EmitTopLevelDecl(I);
4033     break;
4034     // No code generation needed.
4035   case Decl::UsingShadow:
4036   case Decl::ClassTemplate:
4037   case Decl::VarTemplate:
4038   case Decl::VarTemplatePartialSpecialization:
4039   case Decl::FunctionTemplate:
4040   case Decl::TypeAliasTemplate:
4041   case Decl::Block:
4042   case Decl::Empty:
4043     break;
4044   case Decl::Using:          // using X; [C++]
4045     if (CGDebugInfo *DI = getModuleDebugInfo())
4046         DI->EmitUsingDecl(cast<UsingDecl>(*D));
4047     return;
4048   case Decl::NamespaceAlias:
4049     if (CGDebugInfo *DI = getModuleDebugInfo())
4050         DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(*D));
4051     return;
4052   case Decl::UsingDirective: // using namespace X; [C++]
4053     if (CGDebugInfo *DI = getModuleDebugInfo())
4054       DI->EmitUsingDirective(cast<UsingDirectiveDecl>(*D));
4055     return;
4056   case Decl::CXXConstructor:
4057     // Skip function templates
4058     if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() ||
4059         cast<FunctionDecl>(D)->isLateTemplateParsed())
4060       return;
4061 
4062     getCXXABI().EmitCXXConstructors(cast<CXXConstructorDecl>(D));
4063     break;
4064   case Decl::CXXDestructor:
4065     if (cast<FunctionDecl>(D)->isLateTemplateParsed())
4066       return;
4067     getCXXABI().EmitCXXDestructors(cast<CXXDestructorDecl>(D));
4068     break;
4069 
4070   case Decl::StaticAssert:
4071     // Nothing to do.
4072     break;
4073 
4074   // Objective-C Decls
4075 
4076   // Forward declarations, no (immediate) code generation.
4077   case Decl::ObjCInterface:
4078   case Decl::ObjCCategory:
4079     break;
4080 
4081   case Decl::ObjCProtocol: {
4082     auto *Proto = cast<ObjCProtocolDecl>(D);
4083     if (Proto->isThisDeclarationADefinition())
4084       ObjCRuntime->GenerateProtocol(Proto);
4085     break;
4086   }
4087 
4088   case Decl::ObjCCategoryImpl:
4089     // Categories have properties but don't support synthesize so we
4090     // can ignore them here.
4091     ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D));
4092     break;
4093 
4094   case Decl::ObjCImplementation: {
4095     auto *OMD = cast<ObjCImplementationDecl>(D);
4096     EmitObjCPropertyImplementations(OMD);
4097     EmitObjCIvarInitializations(OMD);
4098     ObjCRuntime->GenerateClass(OMD);
4099     // Emit global variable debug information.
4100     if (CGDebugInfo *DI = getModuleDebugInfo())
4101       if (getCodeGenOpts().getDebugInfo() >= codegenoptions::LimitedDebugInfo)
4102         DI->getOrCreateInterfaceType(getContext().getObjCInterfaceType(
4103             OMD->getClassInterface()), OMD->getLocation());
4104     break;
4105   }
4106   case Decl::ObjCMethod: {
4107     auto *OMD = cast<ObjCMethodDecl>(D);
4108     // If this is not a prototype, emit the body.
4109     if (OMD->getBody())
4110       CodeGenFunction(*this).GenerateObjCMethod(OMD);
4111     break;
4112   }
4113   case Decl::ObjCCompatibleAlias:
4114     ObjCRuntime->RegisterAlias(cast<ObjCCompatibleAliasDecl>(D));
4115     break;
4116 
4117   case Decl::PragmaComment: {
4118     const auto *PCD = cast<PragmaCommentDecl>(D);
4119     switch (PCD->getCommentKind()) {
4120     case PCK_Unknown:
4121       llvm_unreachable("unexpected pragma comment kind");
4122     case PCK_Linker:
4123       AppendLinkerOptions(PCD->getArg());
4124       break;
4125     case PCK_Lib:
4126       AddDependentLib(PCD->getArg());
4127       break;
4128     case PCK_Compiler:
4129     case PCK_ExeStr:
4130     case PCK_User:
4131       break; // We ignore all of these.
4132     }
4133     break;
4134   }
4135 
4136   case Decl::PragmaDetectMismatch: {
4137     const auto *PDMD = cast<PragmaDetectMismatchDecl>(D);
4138     AddDetectMismatch(PDMD->getName(), PDMD->getValue());
4139     break;
4140   }
4141 
4142   case Decl::LinkageSpec:
4143     EmitLinkageSpec(cast<LinkageSpecDecl>(D));
4144     break;
4145 
4146   case Decl::FileScopeAsm: {
4147     // File-scope asm is ignored during device-side CUDA compilation.
4148     if (LangOpts.CUDA && LangOpts.CUDAIsDevice)
4149       break;
4150     // File-scope asm is ignored during device-side OpenMP compilation.
4151     if (LangOpts.OpenMPIsDevice)
4152       break;
4153     auto *AD = cast<FileScopeAsmDecl>(D);
4154     getModule().appendModuleInlineAsm(AD->getAsmString()->getString());
4155     break;
4156   }
4157 
4158   case Decl::Import: {
4159     auto *Import = cast<ImportDecl>(D);
4160 
4161     // If we've already imported this module, we're done.
4162     if (!ImportedModules.insert(Import->getImportedModule()))
4163       break;
4164 
4165     // Emit debug information for direct imports.
4166     if (!Import->getImportedOwningModule()) {
4167       if (CGDebugInfo *DI = getModuleDebugInfo())
4168         DI->EmitImportDecl(*Import);
4169     }
4170 
4171     // Find all of the submodules and emit the module initializers.
4172     llvm::SmallPtrSet<clang::Module *, 16> Visited;
4173     SmallVector<clang::Module *, 16> Stack;
4174     Visited.insert(Import->getImportedModule());
4175     Stack.push_back(Import->getImportedModule());
4176 
4177     while (!Stack.empty()) {
4178       clang::Module *Mod = Stack.pop_back_val();
4179       if (!EmittedModuleInitializers.insert(Mod).second)
4180         continue;
4181 
4182       for (auto *D : Context.getModuleInitializers(Mod))
4183         EmitTopLevelDecl(D);
4184 
4185       // Visit the submodules of this module.
4186       for (clang::Module::submodule_iterator Sub = Mod->submodule_begin(),
4187                                              SubEnd = Mod->submodule_end();
4188            Sub != SubEnd; ++Sub) {
4189         // Skip explicit children; they need to be explicitly imported to emit
4190         // the initializers.
4191         if ((*Sub)->IsExplicit)
4192           continue;
4193 
4194         if (Visited.insert(*Sub).second)
4195           Stack.push_back(*Sub);
4196       }
4197     }
4198     break;
4199   }
4200 
4201   case Decl::Export:
4202     EmitDeclContext(cast<ExportDecl>(D));
4203     break;
4204 
4205   case Decl::OMPThreadPrivate:
4206     EmitOMPThreadPrivateDecl(cast<OMPThreadPrivateDecl>(D));
4207     break;
4208 
4209   case Decl::ClassTemplateSpecialization: {
4210     const auto *Spec = cast<ClassTemplateSpecializationDecl>(D);
4211     if (DebugInfo &&
4212         Spec->getSpecializationKind() == TSK_ExplicitInstantiationDefinition &&
4213         Spec->hasDefinition())
4214       DebugInfo->completeTemplateDefinition(*Spec);
4215     break;
4216   }
4217 
4218   case Decl::OMPDeclareReduction:
4219     EmitOMPDeclareReduction(cast<OMPDeclareReductionDecl>(D));
4220     break;
4221 
4222   default:
4223     // Make sure we handled everything we should, every other kind is a
4224     // non-top-level decl.  FIXME: Would be nice to have an isTopLevelDeclKind
4225     // function. Need to recode Decl::Kind to do that easily.
4226     assert(isa<TypeDecl>(D) && "Unsupported decl kind");
4227     break;
4228   }
4229 }
4230 
4231 void CodeGenModule::AddDeferredUnusedCoverageMapping(Decl *D) {
4232   // Do we need to generate coverage mapping?
4233   if (!CodeGenOpts.CoverageMapping)
4234     return;
4235   switch (D->getKind()) {
4236   case Decl::CXXConversion:
4237   case Decl::CXXMethod:
4238   case Decl::Function:
4239   case Decl::ObjCMethod:
4240   case Decl::CXXConstructor:
4241   case Decl::CXXDestructor: {
4242     if (!cast<FunctionDecl>(D)->doesThisDeclarationHaveABody())
4243       return;
4244     SourceManager &SM = getContext().getSourceManager();
4245     if (LimitedCoverage && SM.getMainFileID() != SM.getFileID(D->getLocStart()))
4246       return;
4247     auto I = DeferredEmptyCoverageMappingDecls.find(D);
4248     if (I == DeferredEmptyCoverageMappingDecls.end())
4249       DeferredEmptyCoverageMappingDecls[D] = true;
4250     break;
4251   }
4252   default:
4253     break;
4254   };
4255 }
4256 
4257 void CodeGenModule::ClearUnusedCoverageMapping(const Decl *D) {
4258   // Do we need to generate coverage mapping?
4259   if (!CodeGenOpts.CoverageMapping)
4260     return;
4261   if (const auto *Fn = dyn_cast<FunctionDecl>(D)) {
4262     if (Fn->isTemplateInstantiation())
4263       ClearUnusedCoverageMapping(Fn->getTemplateInstantiationPattern());
4264   }
4265   auto I = DeferredEmptyCoverageMappingDecls.find(D);
4266   if (I == DeferredEmptyCoverageMappingDecls.end())
4267     DeferredEmptyCoverageMappingDecls[D] = false;
4268   else
4269     I->second = false;
4270 }
4271 
4272 void CodeGenModule::EmitDeferredUnusedCoverageMappings() {
4273   std::vector<const Decl *> DeferredDecls;
4274   for (const auto &I : DeferredEmptyCoverageMappingDecls) {
4275     if (!I.second)
4276       continue;
4277     DeferredDecls.push_back(I.first);
4278   }
4279   // Sort the declarations by their location to make sure that the tests get a
4280   // predictable order for the coverage mapping for the unused declarations.
4281   if (CodeGenOpts.DumpCoverageMapping)
4282     std::sort(DeferredDecls.begin(), DeferredDecls.end(),
4283               [] (const Decl *LHS, const Decl *RHS) {
4284       return LHS->getLocStart() < RHS->getLocStart();
4285     });
4286   for (const auto *D : DeferredDecls) {
4287     switch (D->getKind()) {
4288     case Decl::CXXConversion:
4289     case Decl::CXXMethod:
4290     case Decl::Function:
4291     case Decl::ObjCMethod: {
4292       CodeGenPGO PGO(*this);
4293       GlobalDecl GD(cast<FunctionDecl>(D));
4294       PGO.emitEmptyCounterMapping(D, getMangledName(GD),
4295                                   getFunctionLinkage(GD));
4296       break;
4297     }
4298     case Decl::CXXConstructor: {
4299       CodeGenPGO PGO(*this);
4300       GlobalDecl GD(cast<CXXConstructorDecl>(D), Ctor_Base);
4301       PGO.emitEmptyCounterMapping(D, getMangledName(GD),
4302                                   getFunctionLinkage(GD));
4303       break;
4304     }
4305     case Decl::CXXDestructor: {
4306       CodeGenPGO PGO(*this);
4307       GlobalDecl GD(cast<CXXDestructorDecl>(D), Dtor_Base);
4308       PGO.emitEmptyCounterMapping(D, getMangledName(GD),
4309                                   getFunctionLinkage(GD));
4310       break;
4311     }
4312     default:
4313       break;
4314     };
4315   }
4316 }
4317 
4318 /// Turns the given pointer into a constant.
4319 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context,
4320                                           const void *Ptr) {
4321   uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr);
4322   llvm::Type *i64 = llvm::Type::getInt64Ty(Context);
4323   return llvm::ConstantInt::get(i64, PtrInt);
4324 }
4325 
4326 static void EmitGlobalDeclMetadata(CodeGenModule &CGM,
4327                                    llvm::NamedMDNode *&GlobalMetadata,
4328                                    GlobalDecl D,
4329                                    llvm::GlobalValue *Addr) {
4330   if (!GlobalMetadata)
4331     GlobalMetadata =
4332       CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs");
4333 
4334   // TODO: should we report variant information for ctors/dtors?
4335   llvm::Metadata *Ops[] = {llvm::ConstantAsMetadata::get(Addr),
4336                            llvm::ConstantAsMetadata::get(GetPointerConstant(
4337                                CGM.getLLVMContext(), D.getDecl()))};
4338   GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops));
4339 }
4340 
4341 /// For each function which is declared within an extern "C" region and marked
4342 /// as 'used', but has internal linkage, create an alias from the unmangled
4343 /// name to the mangled name if possible. People expect to be able to refer
4344 /// to such functions with an unmangled name from inline assembly within the
4345 /// same translation unit.
4346 void CodeGenModule::EmitStaticExternCAliases() {
4347   // Don't do anything if we're generating CUDA device code -- the NVPTX
4348   // assembly target doesn't support aliases.
4349   if (Context.getTargetInfo().getTriple().isNVPTX())
4350     return;
4351   for (auto &I : StaticExternCValues) {
4352     IdentifierInfo *Name = I.first;
4353     llvm::GlobalValue *Val = I.second;
4354     if (Val && !getModule().getNamedValue(Name->getName()))
4355       addUsedGlobal(llvm::GlobalAlias::create(Name->getName(), Val));
4356   }
4357 }
4358 
4359 bool CodeGenModule::lookupRepresentativeDecl(StringRef MangledName,
4360                                              GlobalDecl &Result) const {
4361   auto Res = Manglings.find(MangledName);
4362   if (Res == Manglings.end())
4363     return false;
4364   Result = Res->getValue();
4365   return true;
4366 }
4367 
4368 /// Emits metadata nodes associating all the global values in the
4369 /// current module with the Decls they came from.  This is useful for
4370 /// projects using IR gen as a subroutine.
4371 ///
4372 /// Since there's currently no way to associate an MDNode directly
4373 /// with an llvm::GlobalValue, we create a global named metadata
4374 /// with the name 'clang.global.decl.ptrs'.
4375 void CodeGenModule::EmitDeclMetadata() {
4376   llvm::NamedMDNode *GlobalMetadata = nullptr;
4377 
4378   for (auto &I : MangledDeclNames) {
4379     llvm::GlobalValue *Addr = getModule().getNamedValue(I.second);
4380     // Some mangled names don't necessarily have an associated GlobalValue
4381     // in this module, e.g. if we mangled it for DebugInfo.
4382     if (Addr)
4383       EmitGlobalDeclMetadata(*this, GlobalMetadata, I.first, Addr);
4384   }
4385 }
4386 
4387 /// Emits metadata nodes for all the local variables in the current
4388 /// function.
4389 void CodeGenFunction::EmitDeclMetadata() {
4390   if (LocalDeclMap.empty()) return;
4391 
4392   llvm::LLVMContext &Context = getLLVMContext();
4393 
4394   // Find the unique metadata ID for this name.
4395   unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr");
4396 
4397   llvm::NamedMDNode *GlobalMetadata = nullptr;
4398 
4399   for (auto &I : LocalDeclMap) {
4400     const Decl *D = I.first;
4401     llvm::Value *Addr = I.second.getPointer();
4402     if (auto *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) {
4403       llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D);
4404       Alloca->setMetadata(
4405           DeclPtrKind, llvm::MDNode::get(
4406                            Context, llvm::ValueAsMetadata::getConstant(DAddr)));
4407     } else if (auto *GV = dyn_cast<llvm::GlobalValue>(Addr)) {
4408       GlobalDecl GD = GlobalDecl(cast<VarDecl>(D));
4409       EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV);
4410     }
4411   }
4412 }
4413 
4414 void CodeGenModule::EmitVersionIdentMetadata() {
4415   llvm::NamedMDNode *IdentMetadata =
4416     TheModule.getOrInsertNamedMetadata("llvm.ident");
4417   std::string Version = getClangFullVersion();
4418   llvm::LLVMContext &Ctx = TheModule.getContext();
4419 
4420   llvm::Metadata *IdentNode[] = {llvm::MDString::get(Ctx, Version)};
4421   IdentMetadata->addOperand(llvm::MDNode::get(Ctx, IdentNode));
4422 }
4423 
4424 void CodeGenModule::EmitTargetMetadata() {
4425   // Warning, new MangledDeclNames may be appended within this loop.
4426   // We rely on MapVector insertions adding new elements to the end
4427   // of the container.
4428   // FIXME: Move this loop into the one target that needs it, and only
4429   // loop over those declarations for which we couldn't emit the target
4430   // metadata when we emitted the declaration.
4431   for (unsigned I = 0; I != MangledDeclNames.size(); ++I) {
4432     auto Val = *(MangledDeclNames.begin() + I);
4433     const Decl *D = Val.first.getDecl()->getMostRecentDecl();
4434     llvm::GlobalValue *GV = GetGlobalValue(Val.second);
4435     getTargetCodeGenInfo().emitTargetMD(D, GV, *this);
4436   }
4437 }
4438 
4439 void CodeGenModule::EmitCoverageFile() {
4440   if (getCodeGenOpts().CoverageDataFile.empty() &&
4441       getCodeGenOpts().CoverageNotesFile.empty())
4442     return;
4443 
4444   llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu");
4445   if (!CUNode)
4446     return;
4447 
4448   llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov");
4449   llvm::LLVMContext &Ctx = TheModule.getContext();
4450   auto *CoverageDataFile =
4451       llvm::MDString::get(Ctx, getCodeGenOpts().CoverageDataFile);
4452   auto *CoverageNotesFile =
4453       llvm::MDString::get(Ctx, getCodeGenOpts().CoverageNotesFile);
4454   for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) {
4455     llvm::MDNode *CU = CUNode->getOperand(i);
4456     llvm::Metadata *Elts[] = {CoverageNotesFile, CoverageDataFile, CU};
4457     GCov->addOperand(llvm::MDNode::get(Ctx, Elts));
4458   }
4459 }
4460 
4461 llvm::Constant *CodeGenModule::EmitUuidofInitializer(StringRef Uuid) {
4462   // Sema has checked that all uuid strings are of the form
4463   // "12345678-1234-1234-1234-1234567890ab".
4464   assert(Uuid.size() == 36);
4465   for (unsigned i = 0; i < 36; ++i) {
4466     if (i == 8 || i == 13 || i == 18 || i == 23) assert(Uuid[i] == '-');
4467     else                                         assert(isHexDigit(Uuid[i]));
4468   }
4469 
4470   // The starts of all bytes of Field3 in Uuid. Field 3 is "1234-1234567890ab".
4471   const unsigned Field3ValueOffsets[8] = { 19, 21, 24, 26, 28, 30, 32, 34 };
4472 
4473   llvm::Constant *Field3[8];
4474   for (unsigned Idx = 0; Idx < 8; ++Idx)
4475     Field3[Idx] = llvm::ConstantInt::get(
4476         Int8Ty, Uuid.substr(Field3ValueOffsets[Idx], 2), 16);
4477 
4478   llvm::Constant *Fields[4] = {
4479     llvm::ConstantInt::get(Int32Ty, Uuid.substr(0,  8), 16),
4480     llvm::ConstantInt::get(Int16Ty, Uuid.substr(9,  4), 16),
4481     llvm::ConstantInt::get(Int16Ty, Uuid.substr(14, 4), 16),
4482     llvm::ConstantArray::get(llvm::ArrayType::get(Int8Ty, 8), Field3)
4483   };
4484 
4485   return llvm::ConstantStruct::getAnon(Fields);
4486 }
4487 
4488 llvm::Constant *CodeGenModule::GetAddrOfRTTIDescriptor(QualType Ty,
4489                                                        bool ForEH) {
4490   // Return a bogus pointer if RTTI is disabled, unless it's for EH.
4491   // FIXME: should we even be calling this method if RTTI is disabled
4492   // and it's not for EH?
4493   if (!ForEH && !getLangOpts().RTTI)
4494     return llvm::Constant::getNullValue(Int8PtrTy);
4495 
4496   if (ForEH && Ty->isObjCObjectPointerType() &&
4497       LangOpts.ObjCRuntime.isGNUFamily())
4498     return ObjCRuntime->GetEHType(Ty);
4499 
4500   return getCXXABI().getAddrOfRTTIDescriptor(Ty);
4501 }
4502 
4503 void CodeGenModule::EmitOMPThreadPrivateDecl(const OMPThreadPrivateDecl *D) {
4504   for (auto RefExpr : D->varlists()) {
4505     auto *VD = cast<VarDecl>(cast<DeclRefExpr>(RefExpr)->getDecl());
4506     bool PerformInit =
4507         VD->getAnyInitializer() &&
4508         !VD->getAnyInitializer()->isConstantInitializer(getContext(),
4509                                                         /*ForRef=*/false);
4510 
4511     Address Addr(GetAddrOfGlobalVar(VD), getContext().getDeclAlign(VD));
4512     if (auto InitFunction = getOpenMPRuntime().emitThreadPrivateVarDefinition(
4513             VD, Addr, RefExpr->getLocStart(), PerformInit))
4514       CXXGlobalInits.push_back(InitFunction);
4515   }
4516 }
4517 
4518 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierForType(QualType T) {
4519   llvm::Metadata *&InternalId = MetadataIdMap[T.getCanonicalType()];
4520   if (InternalId)
4521     return InternalId;
4522 
4523   if (isExternallyVisible(T->getLinkage())) {
4524     std::string OutName;
4525     llvm::raw_string_ostream Out(OutName);
4526     getCXXABI().getMangleContext().mangleTypeName(T, Out);
4527 
4528     InternalId = llvm::MDString::get(getLLVMContext(), Out.str());
4529   } else {
4530     InternalId = llvm::MDNode::getDistinct(getLLVMContext(),
4531                                            llvm::ArrayRef<llvm::Metadata *>());
4532   }
4533 
4534   return InternalId;
4535 }
4536 
4537 /// Returns whether this module needs the "all-vtables" type identifier.
4538 bool CodeGenModule::NeedAllVtablesTypeId() const {
4539   // Returns true if at least one of vtable-based CFI checkers is enabled and
4540   // is not in the trapping mode.
4541   return ((LangOpts.Sanitize.has(SanitizerKind::CFIVCall) &&
4542            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIVCall)) ||
4543           (LangOpts.Sanitize.has(SanitizerKind::CFINVCall) &&
4544            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFINVCall)) ||
4545           (LangOpts.Sanitize.has(SanitizerKind::CFIDerivedCast) &&
4546            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIDerivedCast)) ||
4547           (LangOpts.Sanitize.has(SanitizerKind::CFIUnrelatedCast) &&
4548            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIUnrelatedCast)));
4549 }
4550 
4551 void CodeGenModule::AddVTableTypeMetadata(llvm::GlobalVariable *VTable,
4552                                           CharUnits Offset,
4553                                           const CXXRecordDecl *RD) {
4554   llvm::Metadata *MD =
4555       CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0));
4556   VTable->addTypeMetadata(Offset.getQuantity(), MD);
4557 
4558   if (CodeGenOpts.SanitizeCfiCrossDso)
4559     if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD))
4560       VTable->addTypeMetadata(Offset.getQuantity(),
4561                               llvm::ConstantAsMetadata::get(CrossDsoTypeId));
4562 
4563   if (NeedAllVtablesTypeId()) {
4564     llvm::Metadata *MD = llvm::MDString::get(getLLVMContext(), "all-vtables");
4565     VTable->addTypeMetadata(Offset.getQuantity(), MD);
4566   }
4567 }
4568 
4569 // Fills in the supplied string map with the set of target features for the
4570 // passed in function.
4571 void CodeGenModule::getFunctionFeatureMap(llvm::StringMap<bool> &FeatureMap,
4572                                           const FunctionDecl *FD) {
4573   StringRef TargetCPU = Target.getTargetOpts().CPU;
4574   if (const auto *TD = FD->getAttr<TargetAttr>()) {
4575     // If we have a TargetAttr build up the feature map based on that.
4576     TargetAttr::ParsedTargetAttr ParsedAttr = TD->parse();
4577 
4578     // Make a copy of the features as passed on the command line into the
4579     // beginning of the additional features from the function to override.
4580     ParsedAttr.Features.insert(ParsedAttr.Features.begin(),
4581                             Target.getTargetOpts().FeaturesAsWritten.begin(),
4582                             Target.getTargetOpts().FeaturesAsWritten.end());
4583 
4584     if (ParsedAttr.Architecture != "")
4585       TargetCPU = ParsedAttr.Architecture ;
4586 
4587     // Now populate the feature map, first with the TargetCPU which is either
4588     // the default or a new one from the target attribute string. Then we'll use
4589     // the passed in features (FeaturesAsWritten) along with the new ones from
4590     // the attribute.
4591     Target.initFeatureMap(FeatureMap, getDiags(), TargetCPU,
4592                           ParsedAttr.Features);
4593   } else {
4594     Target.initFeatureMap(FeatureMap, getDiags(), TargetCPU,
4595                           Target.getTargetOpts().Features);
4596   }
4597 }
4598 
4599 llvm::SanitizerStatReport &CodeGenModule::getSanStats() {
4600   if (!SanStats)
4601     SanStats = llvm::make_unique<llvm::SanitizerStatReport>(&getModule());
4602 
4603   return *SanStats;
4604 }
4605 llvm::Value *
4606 CodeGenModule::createOpenCLIntToSamplerConversion(const Expr *E,
4607                                                   CodeGenFunction &CGF) {
4608   llvm::Constant *C = ConstantEmitter(CGF).emitAbstract(E, E->getType());
4609   auto SamplerT = getOpenCLRuntime().getSamplerType(E->getType().getTypePtr());
4610   auto FTy = llvm::FunctionType::get(SamplerT, {C->getType()}, false);
4611   return CGF.Builder.CreateCall(CreateRuntimeFunction(FTy,
4612                                 "__translate_sampler_initializer"),
4613                                 {C});
4614 }
4615