xref: /llvm-project/clang/lib/CodeGen/CodeGenModule.cpp (revision 6d96f163476be00b36a9acf0d5abe1ac0136e12f)
1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This coordinates the per-module state used while generating code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenModule.h"
15 #include "CGBlocks.h"
16 #include "CGCUDARuntime.h"
17 #include "CGCXXABI.h"
18 #include "CGCall.h"
19 #include "CGDebugInfo.h"
20 #include "CGObjCRuntime.h"
21 #include "CGOpenCLRuntime.h"
22 #include "CGOpenMPRuntime.h"
23 #include "CGOpenMPRuntimeNVPTX.h"
24 #include "CodeGenFunction.h"
25 #include "CodeGenPGO.h"
26 #include "CodeGenTBAA.h"
27 #include "CoverageMappingGen.h"
28 #include "TargetInfo.h"
29 #include "clang/AST/ASTContext.h"
30 #include "clang/AST/CharUnits.h"
31 #include "clang/AST/DeclCXX.h"
32 #include "clang/AST/DeclObjC.h"
33 #include "clang/AST/DeclTemplate.h"
34 #include "clang/AST/Mangle.h"
35 #include "clang/AST/RecordLayout.h"
36 #include "clang/AST/RecursiveASTVisitor.h"
37 #include "clang/Basic/Builtins.h"
38 #include "clang/Basic/CharInfo.h"
39 #include "clang/Basic/Diagnostic.h"
40 #include "clang/Basic/Module.h"
41 #include "clang/Basic/SourceManager.h"
42 #include "clang/Basic/TargetInfo.h"
43 #include "clang/Basic/Version.h"
44 #include "clang/CodeGen/ConstantInitBuilder.h"
45 #include "clang/Frontend/CodeGenOptions.h"
46 #include "clang/Sema/SemaDiagnostic.h"
47 #include "llvm/ADT/Triple.h"
48 #include "llvm/IR/CallSite.h"
49 #include "llvm/IR/CallingConv.h"
50 #include "llvm/IR/DataLayout.h"
51 #include "llvm/IR/Intrinsics.h"
52 #include "llvm/IR/LLVMContext.h"
53 #include "llvm/IR/Module.h"
54 #include "llvm/ProfileData/InstrProfReader.h"
55 #include "llvm/Support/ConvertUTF.h"
56 #include "llvm/Support/ErrorHandling.h"
57 #include "llvm/Support/MD5.h"
58 
59 using namespace clang;
60 using namespace CodeGen;
61 
62 static const char AnnotationSection[] = "llvm.metadata";
63 
64 static CGCXXABI *createCXXABI(CodeGenModule &CGM) {
65   switch (CGM.getTarget().getCXXABI().getKind()) {
66   case TargetCXXABI::GenericAArch64:
67   case TargetCXXABI::GenericARM:
68   case TargetCXXABI::iOS:
69   case TargetCXXABI::iOS64:
70   case TargetCXXABI::WatchOS:
71   case TargetCXXABI::GenericMIPS:
72   case TargetCXXABI::GenericItanium:
73   case TargetCXXABI::WebAssembly:
74     return CreateItaniumCXXABI(CGM);
75   case TargetCXXABI::Microsoft:
76     return CreateMicrosoftCXXABI(CGM);
77   }
78 
79   llvm_unreachable("invalid C++ ABI kind");
80 }
81 
82 CodeGenModule::CodeGenModule(ASTContext &C, const HeaderSearchOptions &HSO,
83                              const PreprocessorOptions &PPO,
84                              const CodeGenOptions &CGO, llvm::Module &M,
85                              DiagnosticsEngine &diags,
86                              CoverageSourceInfo *CoverageInfo)
87     : Context(C), LangOpts(C.getLangOpts()), HeaderSearchOpts(HSO),
88       PreprocessorOpts(PPO), CodeGenOpts(CGO), TheModule(M), Diags(diags),
89       Target(C.getTargetInfo()), ABI(createCXXABI(*this)),
90       VMContext(M.getContext()), Types(*this), VTables(*this),
91       SanitizerMD(new SanitizerMetadata(*this)) {
92 
93   // Initialize the type cache.
94   llvm::LLVMContext &LLVMContext = M.getContext();
95   VoidTy = llvm::Type::getVoidTy(LLVMContext);
96   Int8Ty = llvm::Type::getInt8Ty(LLVMContext);
97   Int16Ty = llvm::Type::getInt16Ty(LLVMContext);
98   Int32Ty = llvm::Type::getInt32Ty(LLVMContext);
99   Int64Ty = llvm::Type::getInt64Ty(LLVMContext);
100   FloatTy = llvm::Type::getFloatTy(LLVMContext);
101   DoubleTy = llvm::Type::getDoubleTy(LLVMContext);
102   PointerWidthInBits = C.getTargetInfo().getPointerWidth(0);
103   PointerAlignInBytes =
104     C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(0)).getQuantity();
105   SizeSizeInBytes =
106     C.toCharUnitsFromBits(C.getTargetInfo().getMaxPointerWidth()).getQuantity();
107   IntAlignInBytes =
108     C.toCharUnitsFromBits(C.getTargetInfo().getIntAlign()).getQuantity();
109   IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth());
110   IntPtrTy = llvm::IntegerType::get(LLVMContext,
111     C.getTargetInfo().getMaxPointerWidth());
112   Int8PtrTy = Int8Ty->getPointerTo(0);
113   Int8PtrPtrTy = Int8PtrTy->getPointerTo(0);
114   AllocaInt8PtrTy = Int8Ty->getPointerTo(
115       M.getDataLayout().getAllocaAddrSpace());
116   ASTAllocaAddressSpace = getTargetCodeGenInfo().getASTAllocaAddressSpace();
117 
118   RuntimeCC = getTargetCodeGenInfo().getABIInfo().getRuntimeCC();
119   BuiltinCC = getTargetCodeGenInfo().getABIInfo().getBuiltinCC();
120 
121   if (LangOpts.ObjC1)
122     createObjCRuntime();
123   if (LangOpts.OpenCL)
124     createOpenCLRuntime();
125   if (LangOpts.OpenMP)
126     createOpenMPRuntime();
127   if (LangOpts.CUDA)
128     createCUDARuntime();
129 
130   // Enable TBAA unless it's suppressed. ThreadSanitizer needs TBAA even at O0.
131   if (LangOpts.Sanitize.has(SanitizerKind::Thread) ||
132       (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0))
133     TBAA.reset(new CodeGenTBAA(Context, VMContext, CodeGenOpts, getLangOpts(),
134                                getCXXABI().getMangleContext()));
135 
136   // If debug info or coverage generation is enabled, create the CGDebugInfo
137   // object.
138   if (CodeGenOpts.getDebugInfo() != codegenoptions::NoDebugInfo ||
139       CodeGenOpts.EmitGcovArcs || CodeGenOpts.EmitGcovNotes)
140     DebugInfo.reset(new CGDebugInfo(*this));
141 
142   Block.GlobalUniqueCount = 0;
143 
144   if (C.getLangOpts().ObjC1)
145     ObjCData.reset(new ObjCEntrypoints());
146 
147   if (CodeGenOpts.hasProfileClangUse()) {
148     auto ReaderOrErr = llvm::IndexedInstrProfReader::create(
149         CodeGenOpts.ProfileInstrumentUsePath);
150     if (auto E = ReaderOrErr.takeError()) {
151       unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
152                                               "Could not read profile %0: %1");
153       llvm::handleAllErrors(std::move(E), [&](const llvm::ErrorInfoBase &EI) {
154         getDiags().Report(DiagID) << CodeGenOpts.ProfileInstrumentUsePath
155                                   << EI.message();
156       });
157     } else
158       PGOReader = std::move(ReaderOrErr.get());
159   }
160 
161   // If coverage mapping generation is enabled, create the
162   // CoverageMappingModuleGen object.
163   if (CodeGenOpts.CoverageMapping)
164     CoverageMapping.reset(new CoverageMappingModuleGen(*this, *CoverageInfo));
165 }
166 
167 CodeGenModule::~CodeGenModule() {}
168 
169 void CodeGenModule::createObjCRuntime() {
170   // This is just isGNUFamily(), but we want to force implementors of
171   // new ABIs to decide how best to do this.
172   switch (LangOpts.ObjCRuntime.getKind()) {
173   case ObjCRuntime::GNUstep:
174   case ObjCRuntime::GCC:
175   case ObjCRuntime::ObjFW:
176     ObjCRuntime.reset(CreateGNUObjCRuntime(*this));
177     return;
178 
179   case ObjCRuntime::FragileMacOSX:
180   case ObjCRuntime::MacOSX:
181   case ObjCRuntime::iOS:
182   case ObjCRuntime::WatchOS:
183     ObjCRuntime.reset(CreateMacObjCRuntime(*this));
184     return;
185   }
186   llvm_unreachable("bad runtime kind");
187 }
188 
189 void CodeGenModule::createOpenCLRuntime() {
190   OpenCLRuntime.reset(new CGOpenCLRuntime(*this));
191 }
192 
193 void CodeGenModule::createOpenMPRuntime() {
194   // Select a specialized code generation class based on the target, if any.
195   // If it does not exist use the default implementation.
196   switch (getTriple().getArch()) {
197   case llvm::Triple::nvptx:
198   case llvm::Triple::nvptx64:
199     assert(getLangOpts().OpenMPIsDevice &&
200            "OpenMP NVPTX is only prepared to deal with device code.");
201     OpenMPRuntime.reset(new CGOpenMPRuntimeNVPTX(*this));
202     break;
203   default:
204     OpenMPRuntime.reset(new CGOpenMPRuntime(*this));
205     break;
206   }
207 }
208 
209 void CodeGenModule::createCUDARuntime() {
210   CUDARuntime.reset(CreateNVCUDARuntime(*this));
211 }
212 
213 void CodeGenModule::addReplacement(StringRef Name, llvm::Constant *C) {
214   Replacements[Name] = C;
215 }
216 
217 void CodeGenModule::applyReplacements() {
218   for (auto &I : Replacements) {
219     StringRef MangledName = I.first();
220     llvm::Constant *Replacement = I.second;
221     llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
222     if (!Entry)
223       continue;
224     auto *OldF = cast<llvm::Function>(Entry);
225     auto *NewF = dyn_cast<llvm::Function>(Replacement);
226     if (!NewF) {
227       if (auto *Alias = dyn_cast<llvm::GlobalAlias>(Replacement)) {
228         NewF = dyn_cast<llvm::Function>(Alias->getAliasee());
229       } else {
230         auto *CE = cast<llvm::ConstantExpr>(Replacement);
231         assert(CE->getOpcode() == llvm::Instruction::BitCast ||
232                CE->getOpcode() == llvm::Instruction::GetElementPtr);
233         NewF = dyn_cast<llvm::Function>(CE->getOperand(0));
234       }
235     }
236 
237     // Replace old with new, but keep the old order.
238     OldF->replaceAllUsesWith(Replacement);
239     if (NewF) {
240       NewF->removeFromParent();
241       OldF->getParent()->getFunctionList().insertAfter(OldF->getIterator(),
242                                                        NewF);
243     }
244     OldF->eraseFromParent();
245   }
246 }
247 
248 void CodeGenModule::addGlobalValReplacement(llvm::GlobalValue *GV, llvm::Constant *C) {
249   GlobalValReplacements.push_back(std::make_pair(GV, C));
250 }
251 
252 void CodeGenModule::applyGlobalValReplacements() {
253   for (auto &I : GlobalValReplacements) {
254     llvm::GlobalValue *GV = I.first;
255     llvm::Constant *C = I.second;
256 
257     GV->replaceAllUsesWith(C);
258     GV->eraseFromParent();
259   }
260 }
261 
262 // This is only used in aliases that we created and we know they have a
263 // linear structure.
264 static const llvm::GlobalObject *getAliasedGlobal(
265     const llvm::GlobalIndirectSymbol &GIS) {
266   llvm::SmallPtrSet<const llvm::GlobalIndirectSymbol*, 4> Visited;
267   const llvm::Constant *C = &GIS;
268   for (;;) {
269     C = C->stripPointerCasts();
270     if (auto *GO = dyn_cast<llvm::GlobalObject>(C))
271       return GO;
272     // stripPointerCasts will not walk over weak aliases.
273     auto *GIS2 = dyn_cast<llvm::GlobalIndirectSymbol>(C);
274     if (!GIS2)
275       return nullptr;
276     if (!Visited.insert(GIS2).second)
277       return nullptr;
278     C = GIS2->getIndirectSymbol();
279   }
280 }
281 
282 void CodeGenModule::checkAliases() {
283   // Check if the constructed aliases are well formed. It is really unfortunate
284   // that we have to do this in CodeGen, but we only construct mangled names
285   // and aliases during codegen.
286   bool Error = false;
287   DiagnosticsEngine &Diags = getDiags();
288   for (const GlobalDecl &GD : Aliases) {
289     const auto *D = cast<ValueDecl>(GD.getDecl());
290     SourceLocation Location;
291     bool IsIFunc = D->hasAttr<IFuncAttr>();
292     if (const Attr *A = D->getDefiningAttr())
293       Location = A->getLocation();
294     else
295       llvm_unreachable("Not an alias or ifunc?");
296     StringRef MangledName = getMangledName(GD);
297     llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
298     auto *Alias  = cast<llvm::GlobalIndirectSymbol>(Entry);
299     const llvm::GlobalValue *GV = getAliasedGlobal(*Alias);
300     if (!GV) {
301       Error = true;
302       Diags.Report(Location, diag::err_cyclic_alias) << IsIFunc;
303     } else if (GV->isDeclaration()) {
304       Error = true;
305       Diags.Report(Location, diag::err_alias_to_undefined)
306           << IsIFunc << IsIFunc;
307     } else if (IsIFunc) {
308       // Check resolver function type.
309       llvm::FunctionType *FTy = dyn_cast<llvm::FunctionType>(
310           GV->getType()->getPointerElementType());
311       assert(FTy);
312       if (!FTy->getReturnType()->isPointerTy())
313         Diags.Report(Location, diag::err_ifunc_resolver_return);
314       if (FTy->getNumParams())
315         Diags.Report(Location, diag::err_ifunc_resolver_params);
316     }
317 
318     llvm::Constant *Aliasee = Alias->getIndirectSymbol();
319     llvm::GlobalValue *AliaseeGV;
320     if (auto CE = dyn_cast<llvm::ConstantExpr>(Aliasee))
321       AliaseeGV = cast<llvm::GlobalValue>(CE->getOperand(0));
322     else
323       AliaseeGV = cast<llvm::GlobalValue>(Aliasee);
324 
325     if (const SectionAttr *SA = D->getAttr<SectionAttr>()) {
326       StringRef AliasSection = SA->getName();
327       if (AliasSection != AliaseeGV->getSection())
328         Diags.Report(SA->getLocation(), diag::warn_alias_with_section)
329             << AliasSection << IsIFunc << IsIFunc;
330     }
331 
332     // We have to handle alias to weak aliases in here. LLVM itself disallows
333     // this since the object semantics would not match the IL one. For
334     // compatibility with gcc we implement it by just pointing the alias
335     // to its aliasee's aliasee. We also warn, since the user is probably
336     // expecting the link to be weak.
337     if (auto GA = dyn_cast<llvm::GlobalIndirectSymbol>(AliaseeGV)) {
338       if (GA->isInterposable()) {
339         Diags.Report(Location, diag::warn_alias_to_weak_alias)
340             << GV->getName() << GA->getName() << IsIFunc;
341         Aliasee = llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(
342             GA->getIndirectSymbol(), Alias->getType());
343         Alias->setIndirectSymbol(Aliasee);
344       }
345     }
346   }
347   if (!Error)
348     return;
349 
350   for (const GlobalDecl &GD : Aliases) {
351     StringRef MangledName = getMangledName(GD);
352     llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
353     auto *Alias = dyn_cast<llvm::GlobalIndirectSymbol>(Entry);
354     Alias->replaceAllUsesWith(llvm::UndefValue::get(Alias->getType()));
355     Alias->eraseFromParent();
356   }
357 }
358 
359 void CodeGenModule::clear() {
360   DeferredDeclsToEmit.clear();
361   if (OpenMPRuntime)
362     OpenMPRuntime->clear();
363 }
364 
365 void InstrProfStats::reportDiagnostics(DiagnosticsEngine &Diags,
366                                        StringRef MainFile) {
367   if (!hasDiagnostics())
368     return;
369   if (VisitedInMainFile > 0 && VisitedInMainFile == MissingInMainFile) {
370     if (MainFile.empty())
371       MainFile = "<stdin>";
372     Diags.Report(diag::warn_profile_data_unprofiled) << MainFile;
373   } else {
374     if (Mismatched > 0)
375       Diags.Report(diag::warn_profile_data_out_of_date) << Visited << Mismatched;
376 
377     if (Missing > 0)
378       Diags.Report(diag::warn_profile_data_missing) << Visited << Missing;
379   }
380 }
381 
382 void CodeGenModule::Release() {
383   EmitDeferred();
384   applyGlobalValReplacements();
385   applyReplacements();
386   checkAliases();
387   EmitCXXGlobalInitFunc();
388   EmitCXXGlobalDtorFunc();
389   EmitCXXThreadLocalInitFunc();
390   if (ObjCRuntime)
391     if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction())
392       AddGlobalCtor(ObjCInitFunction);
393   if (Context.getLangOpts().CUDA && !Context.getLangOpts().CUDAIsDevice &&
394       CUDARuntime) {
395     if (llvm::Function *CudaCtorFunction = CUDARuntime->makeModuleCtorFunction())
396       AddGlobalCtor(CudaCtorFunction);
397     if (llvm::Function *CudaDtorFunction = CUDARuntime->makeModuleDtorFunction())
398       AddGlobalDtor(CudaDtorFunction);
399   }
400   if (OpenMPRuntime)
401     if (llvm::Function *OpenMPRegistrationFunction =
402             OpenMPRuntime->emitRegistrationFunction())
403       AddGlobalCtor(OpenMPRegistrationFunction, 0);
404   if (PGOReader) {
405     getModule().setProfileSummary(PGOReader->getSummary().getMD(VMContext));
406     if (PGOStats.hasDiagnostics())
407       PGOStats.reportDiagnostics(getDiags(), getCodeGenOpts().MainFileName);
408   }
409   EmitCtorList(GlobalCtors, "llvm.global_ctors");
410   EmitCtorList(GlobalDtors, "llvm.global_dtors");
411   EmitGlobalAnnotations();
412   EmitStaticExternCAliases();
413   EmitDeferredUnusedCoverageMappings();
414   if (CoverageMapping)
415     CoverageMapping->emit();
416   if (CodeGenOpts.SanitizeCfiCrossDso) {
417     CodeGenFunction(*this).EmitCfiCheckFail();
418     CodeGenFunction(*this).EmitCfiCheckStub();
419   }
420   emitAtAvailableLinkGuard();
421   emitLLVMUsed();
422   if (SanStats)
423     SanStats->finish();
424 
425   if (CodeGenOpts.Autolink &&
426       (Context.getLangOpts().Modules || !LinkerOptionsMetadata.empty())) {
427     EmitModuleLinkOptions();
428   }
429 
430   // Record mregparm value now so it is visible through rest of codegen.
431   if (Context.getTargetInfo().getTriple().getArch() == llvm::Triple::x86)
432     getModule().addModuleFlag(llvm::Module::Error, "NumRegisterParameters",
433                               CodeGenOpts.NumRegisterParameters);
434 
435   if (CodeGenOpts.DwarfVersion) {
436     // We actually want the latest version when there are conflicts.
437     // We can change from Warning to Latest if such mode is supported.
438     getModule().addModuleFlag(llvm::Module::Warning, "Dwarf Version",
439                               CodeGenOpts.DwarfVersion);
440   }
441   if (CodeGenOpts.EmitCodeView) {
442     // Indicate that we want CodeView in the metadata.
443     getModule().addModuleFlag(llvm::Module::Warning, "CodeView", 1);
444   }
445   if (CodeGenOpts.OptimizationLevel > 0 && CodeGenOpts.StrictVTablePointers) {
446     // We don't support LTO with 2 with different StrictVTablePointers
447     // FIXME: we could support it by stripping all the information introduced
448     // by StrictVTablePointers.
449 
450     getModule().addModuleFlag(llvm::Module::Error, "StrictVTablePointers",1);
451 
452     llvm::Metadata *Ops[2] = {
453               llvm::MDString::get(VMContext, "StrictVTablePointers"),
454               llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
455                   llvm::Type::getInt32Ty(VMContext), 1))};
456 
457     getModule().addModuleFlag(llvm::Module::Require,
458                               "StrictVTablePointersRequirement",
459                               llvm::MDNode::get(VMContext, Ops));
460   }
461   if (DebugInfo)
462     // We support a single version in the linked module. The LLVM
463     // parser will drop debug info with a different version number
464     // (and warn about it, too).
465     getModule().addModuleFlag(llvm::Module::Warning, "Debug Info Version",
466                               llvm::DEBUG_METADATA_VERSION);
467 
468   // We need to record the widths of enums and wchar_t, so that we can generate
469   // the correct build attributes in the ARM backend.
470   llvm::Triple::ArchType Arch = Context.getTargetInfo().getTriple().getArch();
471   if (   Arch == llvm::Triple::arm
472       || Arch == llvm::Triple::armeb
473       || Arch == llvm::Triple::thumb
474       || Arch == llvm::Triple::thumbeb) {
475     // Width of wchar_t in bytes
476     uint64_t WCharWidth =
477         Context.getTypeSizeInChars(Context.getWideCharType()).getQuantity();
478     getModule().addModuleFlag(llvm::Module::Error, "wchar_size", WCharWidth);
479 
480     // The minimum width of an enum in bytes
481     uint64_t EnumWidth = Context.getLangOpts().ShortEnums ? 1 : 4;
482     getModule().addModuleFlag(llvm::Module::Error, "min_enum_size", EnumWidth);
483   }
484 
485   if (CodeGenOpts.SanitizeCfiCrossDso) {
486     // Indicate that we want cross-DSO control flow integrity checks.
487     getModule().addModuleFlag(llvm::Module::Override, "Cross-DSO CFI", 1);
488   }
489 
490   if (LangOpts.CUDAIsDevice && getTriple().isNVPTX()) {
491     // Indicate whether __nvvm_reflect should be configured to flush denormal
492     // floating point values to 0.  (This corresponds to its "__CUDA_FTZ"
493     // property.)
494     getModule().addModuleFlag(llvm::Module::Override, "nvvm-reflect-ftz",
495                               LangOpts.CUDADeviceFlushDenormalsToZero ? 1 : 0);
496   }
497 
498   if (uint32_t PLevel = Context.getLangOpts().PICLevel) {
499     assert(PLevel < 3 && "Invalid PIC Level");
500     getModule().setPICLevel(static_cast<llvm::PICLevel::Level>(PLevel));
501     if (Context.getLangOpts().PIE)
502       getModule().setPIELevel(static_cast<llvm::PIELevel::Level>(PLevel));
503   }
504 
505   SimplifyPersonality();
506 
507   if (getCodeGenOpts().EmitDeclMetadata)
508     EmitDeclMetadata();
509 
510   if (getCodeGenOpts().EmitGcovArcs || getCodeGenOpts().EmitGcovNotes)
511     EmitCoverageFile();
512 
513   if (DebugInfo)
514     DebugInfo->finalize();
515 
516   EmitVersionIdentMetadata();
517 
518   EmitTargetMetadata();
519 }
520 
521 void CodeGenModule::UpdateCompletedType(const TagDecl *TD) {
522   // Make sure that this type is translated.
523   Types.UpdateCompletedType(TD);
524 }
525 
526 void CodeGenModule::RefreshTypeCacheForClass(const CXXRecordDecl *RD) {
527   // Make sure that this type is translated.
528   Types.RefreshTypeCacheForClass(RD);
529 }
530 
531 llvm::MDNode *CodeGenModule::getTBAAInfo(QualType QTy) {
532   if (!TBAA)
533     return nullptr;
534   return TBAA->getTBAAInfo(QTy);
535 }
536 
537 llvm::MDNode *CodeGenModule::getTBAAInfoForVTablePtr() {
538   if (!TBAA)
539     return nullptr;
540   return TBAA->getTBAAInfoForVTablePtr();
541 }
542 
543 llvm::MDNode *CodeGenModule::getTBAAStructInfo(QualType QTy) {
544   if (!TBAA)
545     return nullptr;
546   return TBAA->getTBAAStructInfo(QTy);
547 }
548 
549 llvm::MDNode *CodeGenModule::getTBAAStructTagInfo(QualType BaseTy,
550                                                   llvm::MDNode *AccessN,
551                                                   uint64_t O) {
552   if (!TBAA)
553     return nullptr;
554   return TBAA->getTBAAStructTagInfo(BaseTy, AccessN, O);
555 }
556 
557 /// Decorate the instruction with a TBAA tag. For both scalar TBAA
558 /// and struct-path aware TBAA, the tag has the same format:
559 /// base type, access type and offset.
560 /// When ConvertTypeToTag is true, we create a tag based on the scalar type.
561 void CodeGenModule::DecorateInstructionWithTBAA(llvm::Instruction *Inst,
562                                                 llvm::MDNode *TBAAInfo,
563                                                 bool ConvertTypeToTag) {
564   if (ConvertTypeToTag && TBAA)
565     Inst->setMetadata(llvm::LLVMContext::MD_tbaa,
566                       TBAA->getTBAAScalarTagInfo(TBAAInfo));
567   else
568     Inst->setMetadata(llvm::LLVMContext::MD_tbaa, TBAAInfo);
569 }
570 
571 void CodeGenModule::DecorateInstructionWithInvariantGroup(
572     llvm::Instruction *I, const CXXRecordDecl *RD) {
573   I->setMetadata(llvm::LLVMContext::MD_invariant_group,
574                  llvm::MDNode::get(getLLVMContext(), {}));
575 }
576 
577 void CodeGenModule::Error(SourceLocation loc, StringRef message) {
578   unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, "%0");
579   getDiags().Report(Context.getFullLoc(loc), diagID) << message;
580 }
581 
582 /// ErrorUnsupported - Print out an error that codegen doesn't support the
583 /// specified stmt yet.
584 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type) {
585   unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
586                                                "cannot compile this %0 yet");
587   std::string Msg = Type;
588   getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID)
589     << Msg << S->getSourceRange();
590 }
591 
592 /// ErrorUnsupported - Print out an error that codegen doesn't support the
593 /// specified decl yet.
594 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type) {
595   unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
596                                                "cannot compile this %0 yet");
597   std::string Msg = Type;
598   getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg;
599 }
600 
601 llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) {
602   return llvm::ConstantInt::get(SizeTy, size.getQuantity());
603 }
604 
605 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV,
606                                         const NamedDecl *D) const {
607   // Internal definitions always have default visibility.
608   if (GV->hasLocalLinkage()) {
609     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
610     return;
611   }
612 
613   // Set visibility for definitions.
614   LinkageInfo LV = D->getLinkageAndVisibility();
615   if (LV.isVisibilityExplicit() || !GV->hasAvailableExternallyLinkage())
616     GV->setVisibility(GetLLVMVisibility(LV.getVisibility()));
617 }
618 
619 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(StringRef S) {
620   return llvm::StringSwitch<llvm::GlobalVariable::ThreadLocalMode>(S)
621       .Case("global-dynamic", llvm::GlobalVariable::GeneralDynamicTLSModel)
622       .Case("local-dynamic", llvm::GlobalVariable::LocalDynamicTLSModel)
623       .Case("initial-exec", llvm::GlobalVariable::InitialExecTLSModel)
624       .Case("local-exec", llvm::GlobalVariable::LocalExecTLSModel);
625 }
626 
627 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(
628     CodeGenOptions::TLSModel M) {
629   switch (M) {
630   case CodeGenOptions::GeneralDynamicTLSModel:
631     return llvm::GlobalVariable::GeneralDynamicTLSModel;
632   case CodeGenOptions::LocalDynamicTLSModel:
633     return llvm::GlobalVariable::LocalDynamicTLSModel;
634   case CodeGenOptions::InitialExecTLSModel:
635     return llvm::GlobalVariable::InitialExecTLSModel;
636   case CodeGenOptions::LocalExecTLSModel:
637     return llvm::GlobalVariable::LocalExecTLSModel;
638   }
639   llvm_unreachable("Invalid TLS model!");
640 }
641 
642 void CodeGenModule::setTLSMode(llvm::GlobalValue *GV, const VarDecl &D) const {
643   assert(D.getTLSKind() && "setting TLS mode on non-TLS var!");
644 
645   llvm::GlobalValue::ThreadLocalMode TLM;
646   TLM = GetLLVMTLSModel(CodeGenOpts.getDefaultTLSModel());
647 
648   // Override the TLS model if it is explicitly specified.
649   if (const TLSModelAttr *Attr = D.getAttr<TLSModelAttr>()) {
650     TLM = GetLLVMTLSModel(Attr->getModel());
651   }
652 
653   GV->setThreadLocalMode(TLM);
654 }
655 
656 StringRef CodeGenModule::getMangledName(GlobalDecl GD) {
657   GlobalDecl CanonicalGD = GD.getCanonicalDecl();
658 
659   // Some ABIs don't have constructor variants.  Make sure that base and
660   // complete constructors get mangled the same.
661   if (const auto *CD = dyn_cast<CXXConstructorDecl>(CanonicalGD.getDecl())) {
662     if (!getTarget().getCXXABI().hasConstructorVariants()) {
663       CXXCtorType OrigCtorType = GD.getCtorType();
664       assert(OrigCtorType == Ctor_Base || OrigCtorType == Ctor_Complete);
665       if (OrigCtorType == Ctor_Base)
666         CanonicalGD = GlobalDecl(CD, Ctor_Complete);
667     }
668   }
669 
670   StringRef &FoundStr = MangledDeclNames[CanonicalGD];
671   if (!FoundStr.empty())
672     return FoundStr;
673 
674   const auto *ND = cast<NamedDecl>(GD.getDecl());
675   SmallString<256> Buffer;
676   StringRef Str;
677   if (getCXXABI().getMangleContext().shouldMangleDeclName(ND)) {
678     llvm::raw_svector_ostream Out(Buffer);
679     if (const auto *D = dyn_cast<CXXConstructorDecl>(ND))
680       getCXXABI().getMangleContext().mangleCXXCtor(D, GD.getCtorType(), Out);
681     else if (const auto *D = dyn_cast<CXXDestructorDecl>(ND))
682       getCXXABI().getMangleContext().mangleCXXDtor(D, GD.getDtorType(), Out);
683     else
684       getCXXABI().getMangleContext().mangleName(ND, Out);
685     Str = Out.str();
686   } else {
687     IdentifierInfo *II = ND->getIdentifier();
688     assert(II && "Attempt to mangle unnamed decl.");
689     const auto *FD = dyn_cast<FunctionDecl>(ND);
690 
691     if (FD &&
692         FD->getType()->castAs<FunctionType>()->getCallConv() == CC_X86RegCall) {
693       llvm::raw_svector_ostream Out(Buffer);
694       Out << "__regcall3__" << II->getName();
695       Str = Out.str();
696     } else {
697       Str = II->getName();
698     }
699   }
700 
701   // Keep the first result in the case of a mangling collision.
702   auto Result = Manglings.insert(std::make_pair(Str, GD));
703   return FoundStr = Result.first->first();
704 }
705 
706 StringRef CodeGenModule::getBlockMangledName(GlobalDecl GD,
707                                              const BlockDecl *BD) {
708   MangleContext &MangleCtx = getCXXABI().getMangleContext();
709   const Decl *D = GD.getDecl();
710 
711   SmallString<256> Buffer;
712   llvm::raw_svector_ostream Out(Buffer);
713   if (!D)
714     MangleCtx.mangleGlobalBlock(BD,
715       dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()), Out);
716   else if (const auto *CD = dyn_cast<CXXConstructorDecl>(D))
717     MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out);
718   else if (const auto *DD = dyn_cast<CXXDestructorDecl>(D))
719     MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out);
720   else
721     MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out);
722 
723   auto Result = Manglings.insert(std::make_pair(Out.str(), BD));
724   return Result.first->first();
725 }
726 
727 llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) {
728   return getModule().getNamedValue(Name);
729 }
730 
731 /// AddGlobalCtor - Add a function to the list that will be called before
732 /// main() runs.
733 void CodeGenModule::AddGlobalCtor(llvm::Function *Ctor, int Priority,
734                                   llvm::Constant *AssociatedData) {
735   // FIXME: Type coercion of void()* types.
736   GlobalCtors.push_back(Structor(Priority, Ctor, AssociatedData));
737 }
738 
739 /// AddGlobalDtor - Add a function to the list that will be called
740 /// when the module is unloaded.
741 void CodeGenModule::AddGlobalDtor(llvm::Function *Dtor, int Priority) {
742   // FIXME: Type coercion of void()* types.
743   GlobalDtors.push_back(Structor(Priority, Dtor, nullptr));
744 }
745 
746 void CodeGenModule::EmitCtorList(CtorList &Fns, const char *GlobalName) {
747   if (Fns.empty()) return;
748 
749   // Ctor function type is void()*.
750   llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false);
751   llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy);
752 
753   // Get the type of a ctor entry, { i32, void ()*, i8* }.
754   llvm::StructType *CtorStructTy = llvm::StructType::get(
755       Int32Ty, llvm::PointerType::getUnqual(CtorFTy), VoidPtrTy);
756 
757   // Construct the constructor and destructor arrays.
758   ConstantInitBuilder builder(*this);
759   auto ctors = builder.beginArray(CtorStructTy);
760   for (const auto &I : Fns) {
761     auto ctor = ctors.beginStruct(CtorStructTy);
762     ctor.addInt(Int32Ty, I.Priority);
763     ctor.add(llvm::ConstantExpr::getBitCast(I.Initializer, CtorPFTy));
764     if (I.AssociatedData)
765       ctor.add(llvm::ConstantExpr::getBitCast(I.AssociatedData, VoidPtrTy));
766     else
767       ctor.addNullPointer(VoidPtrTy);
768     ctor.finishAndAddTo(ctors);
769   }
770 
771   auto list =
772     ctors.finishAndCreateGlobal(GlobalName, getPointerAlign(),
773                                 /*constant*/ false,
774                                 llvm::GlobalValue::AppendingLinkage);
775 
776   // The LTO linker doesn't seem to like it when we set an alignment
777   // on appending variables.  Take it off as a workaround.
778   list->setAlignment(0);
779 
780   Fns.clear();
781 }
782 
783 llvm::GlobalValue::LinkageTypes
784 CodeGenModule::getFunctionLinkage(GlobalDecl GD) {
785   const auto *D = cast<FunctionDecl>(GD.getDecl());
786 
787   GVALinkage Linkage = getContext().GetGVALinkageForFunction(D);
788 
789   if (isa<CXXDestructorDecl>(D) &&
790       getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D),
791                                          GD.getDtorType())) {
792     // Destructor variants in the Microsoft C++ ABI are always internal or
793     // linkonce_odr thunks emitted on an as-needed basis.
794     return Linkage == GVA_Internal ? llvm::GlobalValue::InternalLinkage
795                                    : llvm::GlobalValue::LinkOnceODRLinkage;
796   }
797 
798   if (isa<CXXConstructorDecl>(D) &&
799       cast<CXXConstructorDecl>(D)->isInheritingConstructor() &&
800       Context.getTargetInfo().getCXXABI().isMicrosoft()) {
801     // Our approach to inheriting constructors is fundamentally different from
802     // that used by the MS ABI, so keep our inheriting constructor thunks
803     // internal rather than trying to pick an unambiguous mangling for them.
804     return llvm::GlobalValue::InternalLinkage;
805   }
806 
807   return getLLVMLinkageForDeclarator(D, Linkage, /*isConstantVariable=*/false);
808 }
809 
810 void CodeGenModule::setFunctionDLLStorageClass(GlobalDecl GD, llvm::Function *F) {
811   const auto *FD = cast<FunctionDecl>(GD.getDecl());
812 
813   if (const auto *Dtor = dyn_cast_or_null<CXXDestructorDecl>(FD)) {
814     if (getCXXABI().useThunkForDtorVariant(Dtor, GD.getDtorType())) {
815       // Don't dllexport/import destructor thunks.
816       F->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
817       return;
818     }
819   }
820 
821   if (FD->hasAttr<DLLImportAttr>())
822     F->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass);
823   else if (FD->hasAttr<DLLExportAttr>())
824     F->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass);
825   else
826     F->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass);
827 }
828 
829 llvm::ConstantInt *CodeGenModule::CreateCrossDsoCfiTypeId(llvm::Metadata *MD) {
830   llvm::MDString *MDS = dyn_cast<llvm::MDString>(MD);
831   if (!MDS) return nullptr;
832 
833   return llvm::ConstantInt::get(Int64Ty, llvm::MD5Hash(MDS->getString()));
834 }
835 
836 void CodeGenModule::setFunctionDefinitionAttributes(const FunctionDecl *D,
837                                                     llvm::Function *F) {
838   setNonAliasAttributes(D, F);
839 }
840 
841 void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D,
842                                               const CGFunctionInfo &Info,
843                                               llvm::Function *F) {
844   unsigned CallingConv;
845   llvm::AttributeList PAL;
846   ConstructAttributeList(F->getName(), Info, D, PAL, CallingConv, false);
847   F->setAttributes(PAL);
848   F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv));
849 }
850 
851 /// Determines whether the language options require us to model
852 /// unwind exceptions.  We treat -fexceptions as mandating this
853 /// except under the fragile ObjC ABI with only ObjC exceptions
854 /// enabled.  This means, for example, that C with -fexceptions
855 /// enables this.
856 static bool hasUnwindExceptions(const LangOptions &LangOpts) {
857   // If exceptions are completely disabled, obviously this is false.
858   if (!LangOpts.Exceptions) return false;
859 
860   // If C++ exceptions are enabled, this is true.
861   if (LangOpts.CXXExceptions) return true;
862 
863   // If ObjC exceptions are enabled, this depends on the ABI.
864   if (LangOpts.ObjCExceptions) {
865     return LangOpts.ObjCRuntime.hasUnwindExceptions();
866   }
867 
868   return true;
869 }
870 
871 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D,
872                                                            llvm::Function *F) {
873   llvm::AttrBuilder B;
874 
875   if (CodeGenOpts.UnwindTables)
876     B.addAttribute(llvm::Attribute::UWTable);
877 
878   if (!hasUnwindExceptions(LangOpts))
879     B.addAttribute(llvm::Attribute::NoUnwind);
880 
881   if (LangOpts.getStackProtector() == LangOptions::SSPOn)
882     B.addAttribute(llvm::Attribute::StackProtect);
883   else if (LangOpts.getStackProtector() == LangOptions::SSPStrong)
884     B.addAttribute(llvm::Attribute::StackProtectStrong);
885   else if (LangOpts.getStackProtector() == LangOptions::SSPReq)
886     B.addAttribute(llvm::Attribute::StackProtectReq);
887 
888   if (!D) {
889     // If we don't have a declaration to control inlining, the function isn't
890     // explicitly marked as alwaysinline for semantic reasons, and inlining is
891     // disabled, mark the function as noinline.
892     if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline) &&
893         CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining)
894       B.addAttribute(llvm::Attribute::NoInline);
895 
896     F->addAttributes(llvm::AttributeList::FunctionIndex, B);
897     return;
898   }
899 
900   if (D->hasAttr<OptimizeNoneAttr>()) {
901     B.addAttribute(llvm::Attribute::OptimizeNone);
902 
903     // OptimizeNone implies noinline; we should not be inlining such functions.
904     B.addAttribute(llvm::Attribute::NoInline);
905     assert(!F->hasFnAttribute(llvm::Attribute::AlwaysInline) &&
906            "OptimizeNone and AlwaysInline on same function!");
907 
908     // We still need to handle naked functions even though optnone subsumes
909     // much of their semantics.
910     if (D->hasAttr<NakedAttr>())
911       B.addAttribute(llvm::Attribute::Naked);
912 
913     // OptimizeNone wins over OptimizeForSize and MinSize.
914     F->removeFnAttr(llvm::Attribute::OptimizeForSize);
915     F->removeFnAttr(llvm::Attribute::MinSize);
916   } else if (D->hasAttr<NakedAttr>()) {
917     // Naked implies noinline: we should not be inlining such functions.
918     B.addAttribute(llvm::Attribute::Naked);
919     B.addAttribute(llvm::Attribute::NoInline);
920   } else if (D->hasAttr<NoDuplicateAttr>()) {
921     B.addAttribute(llvm::Attribute::NoDuplicate);
922   } else if (D->hasAttr<NoInlineAttr>()) {
923     B.addAttribute(llvm::Attribute::NoInline);
924   } else if (D->hasAttr<AlwaysInlineAttr>() &&
925              !F->hasFnAttribute(llvm::Attribute::NoInline)) {
926     // (noinline wins over always_inline, and we can't specify both in IR)
927     B.addAttribute(llvm::Attribute::AlwaysInline);
928   } else if (CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining) {
929     // If we're not inlining, then force everything that isn't always_inline to
930     // carry an explicit noinline attribute.
931     if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline))
932       B.addAttribute(llvm::Attribute::NoInline);
933   } else {
934     // Otherwise, propagate the inline hint attribute and potentially use its
935     // absence to mark things as noinline.
936     if (auto *FD = dyn_cast<FunctionDecl>(D)) {
937       if (any_of(FD->redecls(), [&](const FunctionDecl *Redecl) {
938             return Redecl->isInlineSpecified();
939           })) {
940         B.addAttribute(llvm::Attribute::InlineHint);
941       } else if (CodeGenOpts.getInlining() ==
942                      CodeGenOptions::OnlyHintInlining &&
943                  !FD->isInlined() &&
944                  !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) {
945         B.addAttribute(llvm::Attribute::NoInline);
946       }
947     }
948   }
949 
950   // Add other optimization related attributes if we are optimizing this
951   // function.
952   if (!D->hasAttr<OptimizeNoneAttr>()) {
953     if (D->hasAttr<ColdAttr>()) {
954       B.addAttribute(llvm::Attribute::OptimizeForSize);
955       B.addAttribute(llvm::Attribute::Cold);
956     }
957 
958     if (D->hasAttr<MinSizeAttr>())
959       B.addAttribute(llvm::Attribute::MinSize);
960   }
961 
962   F->addAttributes(llvm::AttributeList::FunctionIndex, B);
963 
964   unsigned alignment = D->getMaxAlignment() / Context.getCharWidth();
965   if (alignment)
966     F->setAlignment(alignment);
967 
968   // Some C++ ABIs require 2-byte alignment for member functions, in order to
969   // reserve a bit for differentiating between virtual and non-virtual member
970   // functions. If the current target's C++ ABI requires this and this is a
971   // member function, set its alignment accordingly.
972   if (getTarget().getCXXABI().areMemberFunctionsAligned()) {
973     if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D))
974       F->setAlignment(2);
975   }
976 
977   // In the cross-dso CFI mode, we want !type attributes on definitions only.
978   if (CodeGenOpts.SanitizeCfiCrossDso)
979     if (auto *FD = dyn_cast<FunctionDecl>(D))
980       CreateFunctionTypeMetadata(FD, F);
981 }
982 
983 void CodeGenModule::SetCommonAttributes(const Decl *D,
984                                         llvm::GlobalValue *GV) {
985   if (const auto *ND = dyn_cast_or_null<NamedDecl>(D))
986     setGlobalVisibility(GV, ND);
987   else
988     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
989 
990   if (D && D->hasAttr<UsedAttr>())
991     addUsedGlobal(GV);
992 }
993 
994 void CodeGenModule::setAliasAttributes(const Decl *D,
995                                        llvm::GlobalValue *GV) {
996   SetCommonAttributes(D, GV);
997 
998   // Process the dllexport attribute based on whether the original definition
999   // (not necessarily the aliasee) was exported.
1000   if (D->hasAttr<DLLExportAttr>())
1001     GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass);
1002 }
1003 
1004 void CodeGenModule::setNonAliasAttributes(const Decl *D,
1005                                           llvm::GlobalObject *GO) {
1006   SetCommonAttributes(D, GO);
1007 
1008   if (D)
1009     if (const SectionAttr *SA = D->getAttr<SectionAttr>())
1010       GO->setSection(SA->getName());
1011 
1012   getTargetCodeGenInfo().setTargetAttributes(D, GO, *this);
1013 }
1014 
1015 void CodeGenModule::SetInternalFunctionAttributes(const Decl *D,
1016                                                   llvm::Function *F,
1017                                                   const CGFunctionInfo &FI) {
1018   SetLLVMFunctionAttributes(D, FI, F);
1019   SetLLVMFunctionAttributesForDefinition(D, F);
1020 
1021   F->setLinkage(llvm::Function::InternalLinkage);
1022 
1023   setNonAliasAttributes(D, F);
1024 }
1025 
1026 static void setLinkageAndVisibilityForGV(llvm::GlobalValue *GV,
1027                                          const NamedDecl *ND) {
1028   // Set linkage and visibility in case we never see a definition.
1029   LinkageInfo LV = ND->getLinkageAndVisibility();
1030   if (LV.getLinkage() != ExternalLinkage) {
1031     // Don't set internal linkage on declarations.
1032   } else {
1033     if (ND->hasAttr<DLLImportAttr>()) {
1034       GV->setLinkage(llvm::GlobalValue::ExternalLinkage);
1035       GV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass);
1036     } else if (ND->hasAttr<DLLExportAttr>()) {
1037       GV->setLinkage(llvm::GlobalValue::ExternalLinkage);
1038     } else if (ND->hasAttr<WeakAttr>() || ND->isWeakImported()) {
1039       // "extern_weak" is overloaded in LLVM; we probably should have
1040       // separate linkage types for this.
1041       GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage);
1042     }
1043 
1044     // Set visibility on a declaration only if it's explicit.
1045     if (LV.isVisibilityExplicit())
1046       GV->setVisibility(CodeGenModule::GetLLVMVisibility(LV.getVisibility()));
1047   }
1048 }
1049 
1050 void CodeGenModule::CreateFunctionTypeMetadata(const FunctionDecl *FD,
1051                                                llvm::Function *F) {
1052   // Only if we are checking indirect calls.
1053   if (!LangOpts.Sanitize.has(SanitizerKind::CFIICall))
1054     return;
1055 
1056   // Non-static class methods are handled via vtable pointer checks elsewhere.
1057   if (isa<CXXMethodDecl>(FD) && !cast<CXXMethodDecl>(FD)->isStatic())
1058     return;
1059 
1060   // Additionally, if building with cross-DSO support...
1061   if (CodeGenOpts.SanitizeCfiCrossDso) {
1062     // Skip available_externally functions. They won't be codegen'ed in the
1063     // current module anyway.
1064     if (getContext().GetGVALinkageForFunction(FD) == GVA_AvailableExternally)
1065       return;
1066   }
1067 
1068   llvm::Metadata *MD = CreateMetadataIdentifierForType(FD->getType());
1069   F->addTypeMetadata(0, MD);
1070 
1071   // Emit a hash-based bit set entry for cross-DSO calls.
1072   if (CodeGenOpts.SanitizeCfiCrossDso)
1073     if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD))
1074       F->addTypeMetadata(0, llvm::ConstantAsMetadata::get(CrossDsoTypeId));
1075 }
1076 
1077 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD, llvm::Function *F,
1078                                           bool IsIncompleteFunction,
1079                                           bool IsThunk) {
1080   if (llvm::Intrinsic::ID IID = F->getIntrinsicID()) {
1081     // If this is an intrinsic function, set the function's attributes
1082     // to the intrinsic's attributes.
1083     F->setAttributes(llvm::Intrinsic::getAttributes(getLLVMContext(), IID));
1084     return;
1085   }
1086 
1087   const auto *FD = cast<FunctionDecl>(GD.getDecl());
1088 
1089   if (!IsIncompleteFunction)
1090     SetLLVMFunctionAttributes(FD, getTypes().arrangeGlobalDeclaration(GD), F);
1091 
1092   // Add the Returned attribute for "this", except for iOS 5 and earlier
1093   // where substantial code, including the libstdc++ dylib, was compiled with
1094   // GCC and does not actually return "this".
1095   if (!IsThunk && getCXXABI().HasThisReturn(GD) &&
1096       !(getTriple().isiOS() && getTriple().isOSVersionLT(6))) {
1097     assert(!F->arg_empty() &&
1098            F->arg_begin()->getType()
1099              ->canLosslesslyBitCastTo(F->getReturnType()) &&
1100            "unexpected this return");
1101     F->addAttribute(1, llvm::Attribute::Returned);
1102   }
1103 
1104   // Only a few attributes are set on declarations; these may later be
1105   // overridden by a definition.
1106 
1107   setLinkageAndVisibilityForGV(F, FD);
1108 
1109   if (const SectionAttr *SA = FD->getAttr<SectionAttr>())
1110     F->setSection(SA->getName());
1111 
1112   if (FD->isReplaceableGlobalAllocationFunction()) {
1113     // A replaceable global allocation function does not act like a builtin by
1114     // default, only if it is invoked by a new-expression or delete-expression.
1115     F->addAttribute(llvm::AttributeList::FunctionIndex,
1116                     llvm::Attribute::NoBuiltin);
1117 
1118     // A sane operator new returns a non-aliasing pointer.
1119     // FIXME: Also add NonNull attribute to the return value
1120     // for the non-nothrow forms?
1121     auto Kind = FD->getDeclName().getCXXOverloadedOperator();
1122     if (getCodeGenOpts().AssumeSaneOperatorNew &&
1123         (Kind == OO_New || Kind == OO_Array_New))
1124       F->addAttribute(llvm::AttributeList::ReturnIndex,
1125                       llvm::Attribute::NoAlias);
1126   }
1127 
1128   if (isa<CXXConstructorDecl>(FD) || isa<CXXDestructorDecl>(FD))
1129     F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
1130   else if (const auto *MD = dyn_cast<CXXMethodDecl>(FD))
1131     if (MD->isVirtual())
1132       F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
1133 
1134   // Don't emit entries for function declarations in the cross-DSO mode. This
1135   // is handled with better precision by the receiving DSO.
1136   if (!CodeGenOpts.SanitizeCfiCrossDso)
1137     CreateFunctionTypeMetadata(FD, F);
1138 }
1139 
1140 void CodeGenModule::addUsedGlobal(llvm::GlobalValue *GV) {
1141   assert(!GV->isDeclaration() &&
1142          "Only globals with definition can force usage.");
1143   LLVMUsed.emplace_back(GV);
1144 }
1145 
1146 void CodeGenModule::addCompilerUsedGlobal(llvm::GlobalValue *GV) {
1147   assert(!GV->isDeclaration() &&
1148          "Only globals with definition can force usage.");
1149   LLVMCompilerUsed.emplace_back(GV);
1150 }
1151 
1152 static void emitUsed(CodeGenModule &CGM, StringRef Name,
1153                      std::vector<llvm::WeakTrackingVH> &List) {
1154   // Don't create llvm.used if there is no need.
1155   if (List.empty())
1156     return;
1157 
1158   // Convert List to what ConstantArray needs.
1159   SmallVector<llvm::Constant*, 8> UsedArray;
1160   UsedArray.resize(List.size());
1161   for (unsigned i = 0, e = List.size(); i != e; ++i) {
1162     UsedArray[i] =
1163         llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(
1164             cast<llvm::Constant>(&*List[i]), CGM.Int8PtrTy);
1165   }
1166 
1167   if (UsedArray.empty())
1168     return;
1169   llvm::ArrayType *ATy = llvm::ArrayType::get(CGM.Int8PtrTy, UsedArray.size());
1170 
1171   auto *GV = new llvm::GlobalVariable(
1172       CGM.getModule(), ATy, false, llvm::GlobalValue::AppendingLinkage,
1173       llvm::ConstantArray::get(ATy, UsedArray), Name);
1174 
1175   GV->setSection("llvm.metadata");
1176 }
1177 
1178 void CodeGenModule::emitLLVMUsed() {
1179   emitUsed(*this, "llvm.used", LLVMUsed);
1180   emitUsed(*this, "llvm.compiler.used", LLVMCompilerUsed);
1181 }
1182 
1183 void CodeGenModule::AppendLinkerOptions(StringRef Opts) {
1184   auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opts);
1185   LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
1186 }
1187 
1188 void CodeGenModule::AddDetectMismatch(StringRef Name, StringRef Value) {
1189   llvm::SmallString<32> Opt;
1190   getTargetCodeGenInfo().getDetectMismatchOption(Name, Value, Opt);
1191   auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt);
1192   LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
1193 }
1194 
1195 void CodeGenModule::AddDependentLib(StringRef Lib) {
1196   llvm::SmallString<24> Opt;
1197   getTargetCodeGenInfo().getDependentLibraryOption(Lib, Opt);
1198   auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt);
1199   LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
1200 }
1201 
1202 /// \brief Add link options implied by the given module, including modules
1203 /// it depends on, using a postorder walk.
1204 static void addLinkOptionsPostorder(CodeGenModule &CGM, Module *Mod,
1205                                     SmallVectorImpl<llvm::Metadata *> &Metadata,
1206                                     llvm::SmallPtrSet<Module *, 16> &Visited) {
1207   // Import this module's parent.
1208   if (Mod->Parent && Visited.insert(Mod->Parent).second) {
1209     addLinkOptionsPostorder(CGM, Mod->Parent, Metadata, Visited);
1210   }
1211 
1212   // Import this module's dependencies.
1213   for (unsigned I = Mod->Imports.size(); I > 0; --I) {
1214     if (Visited.insert(Mod->Imports[I - 1]).second)
1215       addLinkOptionsPostorder(CGM, Mod->Imports[I-1], Metadata, Visited);
1216   }
1217 
1218   // Add linker options to link against the libraries/frameworks
1219   // described by this module.
1220   llvm::LLVMContext &Context = CGM.getLLVMContext();
1221   for (unsigned I = Mod->LinkLibraries.size(); I > 0; --I) {
1222     // Link against a framework.  Frameworks are currently Darwin only, so we
1223     // don't to ask TargetCodeGenInfo for the spelling of the linker option.
1224     if (Mod->LinkLibraries[I-1].IsFramework) {
1225       llvm::Metadata *Args[2] = {
1226           llvm::MDString::get(Context, "-framework"),
1227           llvm::MDString::get(Context, Mod->LinkLibraries[I - 1].Library)};
1228 
1229       Metadata.push_back(llvm::MDNode::get(Context, Args));
1230       continue;
1231     }
1232 
1233     // Link against a library.
1234     llvm::SmallString<24> Opt;
1235     CGM.getTargetCodeGenInfo().getDependentLibraryOption(
1236       Mod->LinkLibraries[I-1].Library, Opt);
1237     auto *OptString = llvm::MDString::get(Context, Opt);
1238     Metadata.push_back(llvm::MDNode::get(Context, OptString));
1239   }
1240 }
1241 
1242 void CodeGenModule::EmitModuleLinkOptions() {
1243   // Collect the set of all of the modules we want to visit to emit link
1244   // options, which is essentially the imported modules and all of their
1245   // non-explicit child modules.
1246   llvm::SetVector<clang::Module *> LinkModules;
1247   llvm::SmallPtrSet<clang::Module *, 16> Visited;
1248   SmallVector<clang::Module *, 16> Stack;
1249 
1250   // Seed the stack with imported modules.
1251   for (Module *M : ImportedModules) {
1252     // Do not add any link flags when an implementation TU of a module imports
1253     // a header of that same module.
1254     if (M->getTopLevelModuleName() == getLangOpts().CurrentModule &&
1255         !getLangOpts().isCompilingModule())
1256       continue;
1257     if (Visited.insert(M).second)
1258       Stack.push_back(M);
1259   }
1260 
1261   // Find all of the modules to import, making a little effort to prune
1262   // non-leaf modules.
1263   while (!Stack.empty()) {
1264     clang::Module *Mod = Stack.pop_back_val();
1265 
1266     bool AnyChildren = false;
1267 
1268     // Visit the submodules of this module.
1269     for (clang::Module::submodule_iterator Sub = Mod->submodule_begin(),
1270                                         SubEnd = Mod->submodule_end();
1271          Sub != SubEnd; ++Sub) {
1272       // Skip explicit children; they need to be explicitly imported to be
1273       // linked against.
1274       if ((*Sub)->IsExplicit)
1275         continue;
1276 
1277       if (Visited.insert(*Sub).second) {
1278         Stack.push_back(*Sub);
1279         AnyChildren = true;
1280       }
1281     }
1282 
1283     // We didn't find any children, so add this module to the list of
1284     // modules to link against.
1285     if (!AnyChildren) {
1286       LinkModules.insert(Mod);
1287     }
1288   }
1289 
1290   // Add link options for all of the imported modules in reverse topological
1291   // order.  We don't do anything to try to order import link flags with respect
1292   // to linker options inserted by things like #pragma comment().
1293   SmallVector<llvm::Metadata *, 16> MetadataArgs;
1294   Visited.clear();
1295   for (Module *M : LinkModules)
1296     if (Visited.insert(M).second)
1297       addLinkOptionsPostorder(*this, M, MetadataArgs, Visited);
1298   std::reverse(MetadataArgs.begin(), MetadataArgs.end());
1299   LinkerOptionsMetadata.append(MetadataArgs.begin(), MetadataArgs.end());
1300 
1301   // Add the linker options metadata flag.
1302   getModule().addModuleFlag(llvm::Module::AppendUnique, "Linker Options",
1303                             llvm::MDNode::get(getLLVMContext(),
1304                                               LinkerOptionsMetadata));
1305 }
1306 
1307 void CodeGenModule::EmitDeferred() {
1308   // Emit code for any potentially referenced deferred decls.  Since a
1309   // previously unused static decl may become used during the generation of code
1310   // for a static function, iterate until no changes are made.
1311 
1312   if (!DeferredVTables.empty()) {
1313     EmitDeferredVTables();
1314 
1315     // Emitting a vtable doesn't directly cause more vtables to
1316     // become deferred, although it can cause functions to be
1317     // emitted that then need those vtables.
1318     assert(DeferredVTables.empty());
1319   }
1320 
1321   // Stop if we're out of both deferred vtables and deferred declarations.
1322   if (DeferredDeclsToEmit.empty())
1323     return;
1324 
1325   // Grab the list of decls to emit. If EmitGlobalDefinition schedules more
1326   // work, it will not interfere with this.
1327   std::vector<GlobalDecl> CurDeclsToEmit;
1328   CurDeclsToEmit.swap(DeferredDeclsToEmit);
1329 
1330   for (GlobalDecl &D : CurDeclsToEmit) {
1331     // We should call GetAddrOfGlobal with IsForDefinition set to true in order
1332     // to get GlobalValue with exactly the type we need, not something that
1333     // might had been created for another decl with the same mangled name but
1334     // different type.
1335     llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>(
1336         GetAddrOfGlobal(D, ForDefinition));
1337 
1338     // In case of different address spaces, we may still get a cast, even with
1339     // IsForDefinition equal to true. Query mangled names table to get
1340     // GlobalValue.
1341     if (!GV)
1342       GV = GetGlobalValue(getMangledName(D));
1343 
1344     // Make sure GetGlobalValue returned non-null.
1345     assert(GV);
1346 
1347     // Check to see if we've already emitted this.  This is necessary
1348     // for a couple of reasons: first, decls can end up in the
1349     // deferred-decls queue multiple times, and second, decls can end
1350     // up with definitions in unusual ways (e.g. by an extern inline
1351     // function acquiring a strong function redefinition).  Just
1352     // ignore these cases.
1353     if (!GV->isDeclaration())
1354       continue;
1355 
1356     // Otherwise, emit the definition and move on to the next one.
1357     EmitGlobalDefinition(D, GV);
1358 
1359     // If we found out that we need to emit more decls, do that recursively.
1360     // This has the advantage that the decls are emitted in a DFS and related
1361     // ones are close together, which is convenient for testing.
1362     if (!DeferredVTables.empty() || !DeferredDeclsToEmit.empty()) {
1363       EmitDeferred();
1364       assert(DeferredVTables.empty() && DeferredDeclsToEmit.empty());
1365     }
1366   }
1367 }
1368 
1369 void CodeGenModule::EmitGlobalAnnotations() {
1370   if (Annotations.empty())
1371     return;
1372 
1373   // Create a new global variable for the ConstantStruct in the Module.
1374   llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get(
1375     Annotations[0]->getType(), Annotations.size()), Annotations);
1376   auto *gv = new llvm::GlobalVariable(getModule(), Array->getType(), false,
1377                                       llvm::GlobalValue::AppendingLinkage,
1378                                       Array, "llvm.global.annotations");
1379   gv->setSection(AnnotationSection);
1380 }
1381 
1382 llvm::Constant *CodeGenModule::EmitAnnotationString(StringRef Str) {
1383   llvm::Constant *&AStr = AnnotationStrings[Str];
1384   if (AStr)
1385     return AStr;
1386 
1387   // Not found yet, create a new global.
1388   llvm::Constant *s = llvm::ConstantDataArray::getString(getLLVMContext(), Str);
1389   auto *gv =
1390       new llvm::GlobalVariable(getModule(), s->getType(), true,
1391                                llvm::GlobalValue::PrivateLinkage, s, ".str");
1392   gv->setSection(AnnotationSection);
1393   gv->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
1394   AStr = gv;
1395   return gv;
1396 }
1397 
1398 llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) {
1399   SourceManager &SM = getContext().getSourceManager();
1400   PresumedLoc PLoc = SM.getPresumedLoc(Loc);
1401   if (PLoc.isValid())
1402     return EmitAnnotationString(PLoc.getFilename());
1403   return EmitAnnotationString(SM.getBufferName(Loc));
1404 }
1405 
1406 llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) {
1407   SourceManager &SM = getContext().getSourceManager();
1408   PresumedLoc PLoc = SM.getPresumedLoc(L);
1409   unsigned LineNo = PLoc.isValid() ? PLoc.getLine() :
1410     SM.getExpansionLineNumber(L);
1411   return llvm::ConstantInt::get(Int32Ty, LineNo);
1412 }
1413 
1414 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV,
1415                                                 const AnnotateAttr *AA,
1416                                                 SourceLocation L) {
1417   // Get the globals for file name, annotation, and the line number.
1418   llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()),
1419                  *UnitGV = EmitAnnotationUnit(L),
1420                  *LineNoCst = EmitAnnotationLineNo(L);
1421 
1422   // Create the ConstantStruct for the global annotation.
1423   llvm::Constant *Fields[4] = {
1424     llvm::ConstantExpr::getBitCast(GV, Int8PtrTy),
1425     llvm::ConstantExpr::getBitCast(AnnoGV, Int8PtrTy),
1426     llvm::ConstantExpr::getBitCast(UnitGV, Int8PtrTy),
1427     LineNoCst
1428   };
1429   return llvm::ConstantStruct::getAnon(Fields);
1430 }
1431 
1432 void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D,
1433                                          llvm::GlobalValue *GV) {
1434   assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
1435   // Get the struct elements for these annotations.
1436   for (const auto *I : D->specific_attrs<AnnotateAttr>())
1437     Annotations.push_back(EmitAnnotateAttr(GV, I, D->getLocation()));
1438 }
1439 
1440 bool CodeGenModule::isInSanitizerBlacklist(llvm::Function *Fn,
1441                                            SourceLocation Loc) const {
1442   const auto &SanitizerBL = getContext().getSanitizerBlacklist();
1443   // Blacklist by function name.
1444   if (SanitizerBL.isBlacklistedFunction(Fn->getName()))
1445     return true;
1446   // Blacklist by location.
1447   if (Loc.isValid())
1448     return SanitizerBL.isBlacklistedLocation(Loc);
1449   // If location is unknown, this may be a compiler-generated function. Assume
1450   // it's located in the main file.
1451   auto &SM = Context.getSourceManager();
1452   if (const auto *MainFile = SM.getFileEntryForID(SM.getMainFileID())) {
1453     return SanitizerBL.isBlacklistedFile(MainFile->getName());
1454   }
1455   return false;
1456 }
1457 
1458 bool CodeGenModule::isInSanitizerBlacklist(llvm::GlobalVariable *GV,
1459                                            SourceLocation Loc, QualType Ty,
1460                                            StringRef Category) const {
1461   // For now globals can be blacklisted only in ASan and KASan.
1462   if (!LangOpts.Sanitize.hasOneOf(
1463           SanitizerKind::Address | SanitizerKind::KernelAddress))
1464     return false;
1465   const auto &SanitizerBL = getContext().getSanitizerBlacklist();
1466   if (SanitizerBL.isBlacklistedGlobal(GV->getName(), Category))
1467     return true;
1468   if (SanitizerBL.isBlacklistedLocation(Loc, Category))
1469     return true;
1470   // Check global type.
1471   if (!Ty.isNull()) {
1472     // Drill down the array types: if global variable of a fixed type is
1473     // blacklisted, we also don't instrument arrays of them.
1474     while (auto AT = dyn_cast<ArrayType>(Ty.getTypePtr()))
1475       Ty = AT->getElementType();
1476     Ty = Ty.getCanonicalType().getUnqualifiedType();
1477     // We allow to blacklist only record types (classes, structs etc.)
1478     if (Ty->isRecordType()) {
1479       std::string TypeStr = Ty.getAsString(getContext().getPrintingPolicy());
1480       if (SanitizerBL.isBlacklistedType(TypeStr, Category))
1481         return true;
1482     }
1483   }
1484   return false;
1485 }
1486 
1487 bool CodeGenModule::imbueXRayAttrs(llvm::Function *Fn, SourceLocation Loc,
1488                                    StringRef Category) const {
1489   if (!LangOpts.XRayInstrument)
1490     return false;
1491   const auto &XRayFilter = getContext().getXRayFilter();
1492   using ImbueAttr = XRayFunctionFilter::ImbueAttribute;
1493   auto Attr = XRayFunctionFilter::ImbueAttribute::NONE;
1494   if (Loc.isValid())
1495     Attr = XRayFilter.shouldImbueLocation(Loc, Category);
1496   if (Attr == ImbueAttr::NONE)
1497     Attr = XRayFilter.shouldImbueFunction(Fn->getName());
1498   switch (Attr) {
1499   case ImbueAttr::NONE:
1500     return false;
1501   case ImbueAttr::ALWAYS:
1502     Fn->addFnAttr("function-instrument", "xray-always");
1503     break;
1504   case ImbueAttr::NEVER:
1505     Fn->addFnAttr("function-instrument", "xray-never");
1506     break;
1507   }
1508   return true;
1509 }
1510 
1511 bool CodeGenModule::MustBeEmitted(const ValueDecl *Global) {
1512   // Never defer when EmitAllDecls is specified.
1513   if (LangOpts.EmitAllDecls)
1514     return true;
1515 
1516   return getContext().DeclMustBeEmitted(Global);
1517 }
1518 
1519 bool CodeGenModule::MayBeEmittedEagerly(const ValueDecl *Global) {
1520   if (const auto *FD = dyn_cast<FunctionDecl>(Global))
1521     if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
1522       // Implicit template instantiations may change linkage if they are later
1523       // explicitly instantiated, so they should not be emitted eagerly.
1524       return false;
1525   if (const auto *VD = dyn_cast<VarDecl>(Global))
1526     if (Context.getInlineVariableDefinitionKind(VD) ==
1527         ASTContext::InlineVariableDefinitionKind::WeakUnknown)
1528       // A definition of an inline constexpr static data member may change
1529       // linkage later if it's redeclared outside the class.
1530       return false;
1531   // If OpenMP is enabled and threadprivates must be generated like TLS, delay
1532   // codegen for global variables, because they may be marked as threadprivate.
1533   if (LangOpts.OpenMP && LangOpts.OpenMPUseTLS &&
1534       getContext().getTargetInfo().isTLSSupported() && isa<VarDecl>(Global))
1535     return false;
1536 
1537   return true;
1538 }
1539 
1540 ConstantAddress CodeGenModule::GetAddrOfUuidDescriptor(
1541     const CXXUuidofExpr* E) {
1542   // Sema has verified that IIDSource has a __declspec(uuid()), and that its
1543   // well-formed.
1544   StringRef Uuid = E->getUuidStr();
1545   std::string Name = "_GUID_" + Uuid.lower();
1546   std::replace(Name.begin(), Name.end(), '-', '_');
1547 
1548   // The UUID descriptor should be pointer aligned.
1549   CharUnits Alignment = CharUnits::fromQuantity(PointerAlignInBytes);
1550 
1551   // Look for an existing global.
1552   if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name))
1553     return ConstantAddress(GV, Alignment);
1554 
1555   llvm::Constant *Init = EmitUuidofInitializer(Uuid);
1556   assert(Init && "failed to initialize as constant");
1557 
1558   auto *GV = new llvm::GlobalVariable(
1559       getModule(), Init->getType(),
1560       /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name);
1561   if (supportsCOMDAT())
1562     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
1563   return ConstantAddress(GV, Alignment);
1564 }
1565 
1566 ConstantAddress CodeGenModule::GetWeakRefReference(const ValueDecl *VD) {
1567   const AliasAttr *AA = VD->getAttr<AliasAttr>();
1568   assert(AA && "No alias?");
1569 
1570   CharUnits Alignment = getContext().getDeclAlign(VD);
1571   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType());
1572 
1573   // See if there is already something with the target's name in the module.
1574   llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee());
1575   if (Entry) {
1576     unsigned AS = getContext().getTargetAddressSpace(VD->getType());
1577     auto Ptr = llvm::ConstantExpr::getBitCast(Entry, DeclTy->getPointerTo(AS));
1578     return ConstantAddress(Ptr, Alignment);
1579   }
1580 
1581   llvm::Constant *Aliasee;
1582   if (isa<llvm::FunctionType>(DeclTy))
1583     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy,
1584                                       GlobalDecl(cast<FunctionDecl>(VD)),
1585                                       /*ForVTable=*/false);
1586   else
1587     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
1588                                     llvm::PointerType::getUnqual(DeclTy),
1589                                     nullptr);
1590 
1591   auto *F = cast<llvm::GlobalValue>(Aliasee);
1592   F->setLinkage(llvm::Function::ExternalWeakLinkage);
1593   WeakRefReferences.insert(F);
1594 
1595   return ConstantAddress(Aliasee, Alignment);
1596 }
1597 
1598 void CodeGenModule::EmitGlobal(GlobalDecl GD) {
1599   const auto *Global = cast<ValueDecl>(GD.getDecl());
1600 
1601   // Weak references don't produce any output by themselves.
1602   if (Global->hasAttr<WeakRefAttr>())
1603     return;
1604 
1605   // If this is an alias definition (which otherwise looks like a declaration)
1606   // emit it now.
1607   if (Global->hasAttr<AliasAttr>())
1608     return EmitAliasDefinition(GD);
1609 
1610   // IFunc like an alias whose value is resolved at runtime by calling resolver.
1611   if (Global->hasAttr<IFuncAttr>())
1612     return emitIFuncDefinition(GD);
1613 
1614   // If this is CUDA, be selective about which declarations we emit.
1615   if (LangOpts.CUDA) {
1616     if (LangOpts.CUDAIsDevice) {
1617       if (!Global->hasAttr<CUDADeviceAttr>() &&
1618           !Global->hasAttr<CUDAGlobalAttr>() &&
1619           !Global->hasAttr<CUDAConstantAttr>() &&
1620           !Global->hasAttr<CUDASharedAttr>())
1621         return;
1622     } else {
1623       // We need to emit host-side 'shadows' for all global
1624       // device-side variables because the CUDA runtime needs their
1625       // size and host-side address in order to provide access to
1626       // their device-side incarnations.
1627 
1628       // So device-only functions are the only things we skip.
1629       if (isa<FunctionDecl>(Global) && !Global->hasAttr<CUDAHostAttr>() &&
1630           Global->hasAttr<CUDADeviceAttr>())
1631         return;
1632 
1633       assert((isa<FunctionDecl>(Global) || isa<VarDecl>(Global)) &&
1634              "Expected Variable or Function");
1635     }
1636   }
1637 
1638   if (LangOpts.OpenMP) {
1639     // If this is OpenMP device, check if it is legal to emit this global
1640     // normally.
1641     if (OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(GD))
1642       return;
1643     if (auto *DRD = dyn_cast<OMPDeclareReductionDecl>(Global)) {
1644       if (MustBeEmitted(Global))
1645         EmitOMPDeclareReduction(DRD);
1646       return;
1647     }
1648   }
1649 
1650   // Ignore declarations, they will be emitted on their first use.
1651   if (const auto *FD = dyn_cast<FunctionDecl>(Global)) {
1652     // Forward declarations are emitted lazily on first use.
1653     if (!FD->doesThisDeclarationHaveABody()) {
1654       if (!FD->doesDeclarationForceExternallyVisibleDefinition())
1655         return;
1656 
1657       StringRef MangledName = getMangledName(GD);
1658 
1659       // Compute the function info and LLVM type.
1660       const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
1661       llvm::Type *Ty = getTypes().GetFunctionType(FI);
1662 
1663       GetOrCreateLLVMFunction(MangledName, Ty, GD, /*ForVTable=*/false,
1664                               /*DontDefer=*/false);
1665       return;
1666     }
1667   } else {
1668     const auto *VD = cast<VarDecl>(Global);
1669     assert(VD->isFileVarDecl() && "Cannot emit local var decl as global.");
1670     // We need to emit device-side global CUDA variables even if a
1671     // variable does not have a definition -- we still need to define
1672     // host-side shadow for it.
1673     bool MustEmitForCuda = LangOpts.CUDA && !LangOpts.CUDAIsDevice &&
1674                            !VD->hasDefinition() &&
1675                            (VD->hasAttr<CUDAConstantAttr>() ||
1676                             VD->hasAttr<CUDADeviceAttr>());
1677     if (!MustEmitForCuda &&
1678         VD->isThisDeclarationADefinition() != VarDecl::Definition &&
1679         !Context.isMSStaticDataMemberInlineDefinition(VD)) {
1680       // If this declaration may have caused an inline variable definition to
1681       // change linkage, make sure that it's emitted.
1682       if (Context.getInlineVariableDefinitionKind(VD) ==
1683           ASTContext::InlineVariableDefinitionKind::Strong)
1684         GetAddrOfGlobalVar(VD);
1685       return;
1686     }
1687   }
1688 
1689   // Defer code generation to first use when possible, e.g. if this is an inline
1690   // function. If the global must always be emitted, do it eagerly if possible
1691   // to benefit from cache locality.
1692   if (MustBeEmitted(Global) && MayBeEmittedEagerly(Global)) {
1693     // Emit the definition if it can't be deferred.
1694     EmitGlobalDefinition(GD);
1695     return;
1696   }
1697 
1698   // If we're deferring emission of a C++ variable with an
1699   // initializer, remember the order in which it appeared in the file.
1700   if (getLangOpts().CPlusPlus && isa<VarDecl>(Global) &&
1701       cast<VarDecl>(Global)->hasInit()) {
1702     DelayedCXXInitPosition[Global] = CXXGlobalInits.size();
1703     CXXGlobalInits.push_back(nullptr);
1704   }
1705 
1706   StringRef MangledName = getMangledName(GD);
1707   if (GetGlobalValue(MangledName) != nullptr) {
1708     // The value has already been used and should therefore be emitted.
1709     addDeferredDeclToEmit(GD);
1710   } else if (MustBeEmitted(Global)) {
1711     // The value must be emitted, but cannot be emitted eagerly.
1712     assert(!MayBeEmittedEagerly(Global));
1713     addDeferredDeclToEmit(GD);
1714   } else {
1715     // Otherwise, remember that we saw a deferred decl with this name.  The
1716     // first use of the mangled name will cause it to move into
1717     // DeferredDeclsToEmit.
1718     DeferredDecls[MangledName] = GD;
1719   }
1720 }
1721 
1722 // Check if T is a class type with a destructor that's not dllimport.
1723 static bool HasNonDllImportDtor(QualType T) {
1724   if (const auto *RT = T->getBaseElementTypeUnsafe()->getAs<RecordType>())
1725     if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl()))
1726       if (RD->getDestructor() && !RD->getDestructor()->hasAttr<DLLImportAttr>())
1727         return true;
1728 
1729   return false;
1730 }
1731 
1732 namespace {
1733   struct FunctionIsDirectlyRecursive :
1734     public RecursiveASTVisitor<FunctionIsDirectlyRecursive> {
1735     const StringRef Name;
1736     const Builtin::Context &BI;
1737     bool Result;
1738     FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C) :
1739       Name(N), BI(C), Result(false) {
1740     }
1741     typedef RecursiveASTVisitor<FunctionIsDirectlyRecursive> Base;
1742 
1743     bool TraverseCallExpr(CallExpr *E) {
1744       const FunctionDecl *FD = E->getDirectCallee();
1745       if (!FD)
1746         return true;
1747       AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
1748       if (Attr && Name == Attr->getLabel()) {
1749         Result = true;
1750         return false;
1751       }
1752       unsigned BuiltinID = FD->getBuiltinID();
1753       if (!BuiltinID || !BI.isLibFunction(BuiltinID))
1754         return true;
1755       StringRef BuiltinName = BI.getName(BuiltinID);
1756       if (BuiltinName.startswith("__builtin_") &&
1757           Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) {
1758         Result = true;
1759         return false;
1760       }
1761       return true;
1762     }
1763   };
1764 
1765   // Make sure we're not referencing non-imported vars or functions.
1766   struct DLLImportFunctionVisitor
1767       : public RecursiveASTVisitor<DLLImportFunctionVisitor> {
1768     bool SafeToInline = true;
1769 
1770     bool shouldVisitImplicitCode() const { return true; }
1771 
1772     bool VisitVarDecl(VarDecl *VD) {
1773       if (VD->getTLSKind()) {
1774         // A thread-local variable cannot be imported.
1775         SafeToInline = false;
1776         return SafeToInline;
1777       }
1778 
1779       // A variable definition might imply a destructor call.
1780       if (VD->isThisDeclarationADefinition())
1781         SafeToInline = !HasNonDllImportDtor(VD->getType());
1782 
1783       return SafeToInline;
1784     }
1785 
1786     bool VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) {
1787       if (const auto *D = E->getTemporary()->getDestructor())
1788         SafeToInline = D->hasAttr<DLLImportAttr>();
1789       return SafeToInline;
1790     }
1791 
1792     bool VisitDeclRefExpr(DeclRefExpr *E) {
1793       ValueDecl *VD = E->getDecl();
1794       if (isa<FunctionDecl>(VD))
1795         SafeToInline = VD->hasAttr<DLLImportAttr>();
1796       else if (VarDecl *V = dyn_cast<VarDecl>(VD))
1797         SafeToInline = !V->hasGlobalStorage() || V->hasAttr<DLLImportAttr>();
1798       return SafeToInline;
1799     }
1800 
1801     bool VisitCXXConstructExpr(CXXConstructExpr *E) {
1802       SafeToInline = E->getConstructor()->hasAttr<DLLImportAttr>();
1803       return SafeToInline;
1804     }
1805 
1806     bool VisitCXXMemberCallExpr(CXXMemberCallExpr *E) {
1807       CXXMethodDecl *M = E->getMethodDecl();
1808       if (!M) {
1809         // Call through a pointer to member function. This is safe to inline.
1810         SafeToInline = true;
1811       } else {
1812         SafeToInline = M->hasAttr<DLLImportAttr>();
1813       }
1814       return SafeToInline;
1815     }
1816 
1817     bool VisitCXXDeleteExpr(CXXDeleteExpr *E) {
1818       SafeToInline = E->getOperatorDelete()->hasAttr<DLLImportAttr>();
1819       return SafeToInline;
1820     }
1821 
1822     bool VisitCXXNewExpr(CXXNewExpr *E) {
1823       SafeToInline = E->getOperatorNew()->hasAttr<DLLImportAttr>();
1824       return SafeToInline;
1825     }
1826   };
1827 }
1828 
1829 // isTriviallyRecursive - Check if this function calls another
1830 // decl that, because of the asm attribute or the other decl being a builtin,
1831 // ends up pointing to itself.
1832 bool
1833 CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) {
1834   StringRef Name;
1835   if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) {
1836     // asm labels are a special kind of mangling we have to support.
1837     AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
1838     if (!Attr)
1839       return false;
1840     Name = Attr->getLabel();
1841   } else {
1842     Name = FD->getName();
1843   }
1844 
1845   FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo);
1846   Walker.TraverseFunctionDecl(const_cast<FunctionDecl*>(FD));
1847   return Walker.Result;
1848 }
1849 
1850 bool CodeGenModule::shouldEmitFunction(GlobalDecl GD) {
1851   if (getFunctionLinkage(GD) != llvm::Function::AvailableExternallyLinkage)
1852     return true;
1853   const auto *F = cast<FunctionDecl>(GD.getDecl());
1854   if (CodeGenOpts.OptimizationLevel == 0 && !F->hasAttr<AlwaysInlineAttr>())
1855     return false;
1856 
1857   if (F->hasAttr<DLLImportAttr>()) {
1858     // Check whether it would be safe to inline this dllimport function.
1859     DLLImportFunctionVisitor Visitor;
1860     Visitor.TraverseFunctionDecl(const_cast<FunctionDecl*>(F));
1861     if (!Visitor.SafeToInline)
1862       return false;
1863 
1864     if (const CXXDestructorDecl *Dtor = dyn_cast<CXXDestructorDecl>(F)) {
1865       // Implicit destructor invocations aren't captured in the AST, so the
1866       // check above can't see them. Check for them manually here.
1867       for (const Decl *Member : Dtor->getParent()->decls())
1868         if (isa<FieldDecl>(Member))
1869           if (HasNonDllImportDtor(cast<FieldDecl>(Member)->getType()))
1870             return false;
1871       for (const CXXBaseSpecifier &B : Dtor->getParent()->bases())
1872         if (HasNonDllImportDtor(B.getType()))
1873           return false;
1874     }
1875   }
1876 
1877   // PR9614. Avoid cases where the source code is lying to us. An available
1878   // externally function should have an equivalent function somewhere else,
1879   // but a function that calls itself is clearly not equivalent to the real
1880   // implementation.
1881   // This happens in glibc's btowc and in some configure checks.
1882   return !isTriviallyRecursive(F);
1883 }
1884 
1885 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD, llvm::GlobalValue *GV) {
1886   const auto *D = cast<ValueDecl>(GD.getDecl());
1887 
1888   PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(),
1889                                  Context.getSourceManager(),
1890                                  "Generating code for declaration");
1891 
1892   if (isa<FunctionDecl>(D)) {
1893     // At -O0, don't generate IR for functions with available_externally
1894     // linkage.
1895     if (!shouldEmitFunction(GD))
1896       return;
1897 
1898     if (const auto *Method = dyn_cast<CXXMethodDecl>(D)) {
1899       // Make sure to emit the definition(s) before we emit the thunks.
1900       // This is necessary for the generation of certain thunks.
1901       if (const auto *CD = dyn_cast<CXXConstructorDecl>(Method))
1902         ABI->emitCXXStructor(CD, getFromCtorType(GD.getCtorType()));
1903       else if (const auto *DD = dyn_cast<CXXDestructorDecl>(Method))
1904         ABI->emitCXXStructor(DD, getFromDtorType(GD.getDtorType()));
1905       else
1906         EmitGlobalFunctionDefinition(GD, GV);
1907 
1908       if (Method->isVirtual())
1909         getVTables().EmitThunks(GD);
1910 
1911       return;
1912     }
1913 
1914     return EmitGlobalFunctionDefinition(GD, GV);
1915   }
1916 
1917   if (const auto *VD = dyn_cast<VarDecl>(D))
1918     return EmitGlobalVarDefinition(VD, !VD->hasDefinition());
1919 
1920   llvm_unreachable("Invalid argument to EmitGlobalDefinition()");
1921 }
1922 
1923 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
1924                                                       llvm::Function *NewFn);
1925 
1926 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the
1927 /// module, create and return an llvm Function with the specified type. If there
1928 /// is something in the module with the specified name, return it potentially
1929 /// bitcasted to the right type.
1930 ///
1931 /// If D is non-null, it specifies a decl that correspond to this.  This is used
1932 /// to set the attributes on the function when it is first created.
1933 llvm::Constant *CodeGenModule::GetOrCreateLLVMFunction(
1934     StringRef MangledName, llvm::Type *Ty, GlobalDecl GD, bool ForVTable,
1935     bool DontDefer, bool IsThunk, llvm::AttributeList ExtraAttrs,
1936     ForDefinition_t IsForDefinition) {
1937   const Decl *D = GD.getDecl();
1938 
1939   // Lookup the entry, lazily creating it if necessary.
1940   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
1941   if (Entry) {
1942     if (WeakRefReferences.erase(Entry)) {
1943       const FunctionDecl *FD = cast_or_null<FunctionDecl>(D);
1944       if (FD && !FD->hasAttr<WeakAttr>())
1945         Entry->setLinkage(llvm::Function::ExternalLinkage);
1946     }
1947 
1948     // Handle dropped DLL attributes.
1949     if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>())
1950       Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
1951 
1952     // If there are two attempts to define the same mangled name, issue an
1953     // error.
1954     if (IsForDefinition && !Entry->isDeclaration()) {
1955       GlobalDecl OtherGD;
1956       // Check that GD is not yet in DiagnosedConflictingDefinitions is required
1957       // to make sure that we issue an error only once.
1958       if (lookupRepresentativeDecl(MangledName, OtherGD) &&
1959           (GD.getCanonicalDecl().getDecl() !=
1960            OtherGD.getCanonicalDecl().getDecl()) &&
1961           DiagnosedConflictingDefinitions.insert(GD).second) {
1962         getDiags().Report(D->getLocation(),
1963                           diag::err_duplicate_mangled_name);
1964         getDiags().Report(OtherGD.getDecl()->getLocation(),
1965                           diag::note_previous_definition);
1966       }
1967     }
1968 
1969     if ((isa<llvm::Function>(Entry) || isa<llvm::GlobalAlias>(Entry)) &&
1970         (Entry->getType()->getElementType() == Ty)) {
1971       return Entry;
1972     }
1973 
1974     // Make sure the result is of the correct type.
1975     // (If function is requested for a definition, we always need to create a new
1976     // function, not just return a bitcast.)
1977     if (!IsForDefinition)
1978       return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo());
1979   }
1980 
1981   // This function doesn't have a complete type (for example, the return
1982   // type is an incomplete struct). Use a fake type instead, and make
1983   // sure not to try to set attributes.
1984   bool IsIncompleteFunction = false;
1985 
1986   llvm::FunctionType *FTy;
1987   if (isa<llvm::FunctionType>(Ty)) {
1988     FTy = cast<llvm::FunctionType>(Ty);
1989   } else {
1990     FTy = llvm::FunctionType::get(VoidTy, false);
1991     IsIncompleteFunction = true;
1992   }
1993 
1994   llvm::Function *F =
1995       llvm::Function::Create(FTy, llvm::Function::ExternalLinkage,
1996                              Entry ? StringRef() : MangledName, &getModule());
1997 
1998   // If we already created a function with the same mangled name (but different
1999   // type) before, take its name and add it to the list of functions to be
2000   // replaced with F at the end of CodeGen.
2001   //
2002   // This happens if there is a prototype for a function (e.g. "int f()") and
2003   // then a definition of a different type (e.g. "int f(int x)").
2004   if (Entry) {
2005     F->takeName(Entry);
2006 
2007     // This might be an implementation of a function without a prototype, in
2008     // which case, try to do special replacement of calls which match the new
2009     // prototype.  The really key thing here is that we also potentially drop
2010     // arguments from the call site so as to make a direct call, which makes the
2011     // inliner happier and suppresses a number of optimizer warnings (!) about
2012     // dropping arguments.
2013     if (!Entry->use_empty()) {
2014       ReplaceUsesOfNonProtoTypeWithRealFunction(Entry, F);
2015       Entry->removeDeadConstantUsers();
2016     }
2017 
2018     llvm::Constant *BC = llvm::ConstantExpr::getBitCast(
2019         F, Entry->getType()->getElementType()->getPointerTo());
2020     addGlobalValReplacement(Entry, BC);
2021   }
2022 
2023   assert(F->getName() == MangledName && "name was uniqued!");
2024   if (D)
2025     SetFunctionAttributes(GD, F, IsIncompleteFunction, IsThunk);
2026   if (ExtraAttrs.hasAttributes(llvm::AttributeList::FunctionIndex)) {
2027     llvm::AttrBuilder B(ExtraAttrs, llvm::AttributeList::FunctionIndex);
2028     F->addAttributes(llvm::AttributeList::FunctionIndex, B);
2029   }
2030 
2031   if (!DontDefer) {
2032     // All MSVC dtors other than the base dtor are linkonce_odr and delegate to
2033     // each other bottoming out with the base dtor.  Therefore we emit non-base
2034     // dtors on usage, even if there is no dtor definition in the TU.
2035     if (D && isa<CXXDestructorDecl>(D) &&
2036         getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D),
2037                                            GD.getDtorType()))
2038       addDeferredDeclToEmit(GD);
2039 
2040     // This is the first use or definition of a mangled name.  If there is a
2041     // deferred decl with this name, remember that we need to emit it at the end
2042     // of the file.
2043     auto DDI = DeferredDecls.find(MangledName);
2044     if (DDI != DeferredDecls.end()) {
2045       // Move the potentially referenced deferred decl to the
2046       // DeferredDeclsToEmit list, and remove it from DeferredDecls (since we
2047       // don't need it anymore).
2048       addDeferredDeclToEmit(DDI->second);
2049       DeferredDecls.erase(DDI);
2050 
2051       // Otherwise, there are cases we have to worry about where we're
2052       // using a declaration for which we must emit a definition but where
2053       // we might not find a top-level definition:
2054       //   - member functions defined inline in their classes
2055       //   - friend functions defined inline in some class
2056       //   - special member functions with implicit definitions
2057       // If we ever change our AST traversal to walk into class methods,
2058       // this will be unnecessary.
2059       //
2060       // We also don't emit a definition for a function if it's going to be an
2061       // entry in a vtable, unless it's already marked as used.
2062     } else if (getLangOpts().CPlusPlus && D) {
2063       // Look for a declaration that's lexically in a record.
2064       for (const auto *FD = cast<FunctionDecl>(D)->getMostRecentDecl(); FD;
2065            FD = FD->getPreviousDecl()) {
2066         if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) {
2067           if (FD->doesThisDeclarationHaveABody()) {
2068             addDeferredDeclToEmit(GD.getWithDecl(FD));
2069             break;
2070           }
2071         }
2072       }
2073     }
2074   }
2075 
2076   // Make sure the result is of the requested type.
2077   if (!IsIncompleteFunction) {
2078     assert(F->getType()->getElementType() == Ty);
2079     return F;
2080   }
2081 
2082   llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
2083   return llvm::ConstantExpr::getBitCast(F, PTy);
2084 }
2085 
2086 /// GetAddrOfFunction - Return the address of the given function.  If Ty is
2087 /// non-null, then this function will use the specified type if it has to
2088 /// create it (this occurs when we see a definition of the function).
2089 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD,
2090                                                  llvm::Type *Ty,
2091                                                  bool ForVTable,
2092                                                  bool DontDefer,
2093                                               ForDefinition_t IsForDefinition) {
2094   // If there was no specific requested type, just convert it now.
2095   if (!Ty) {
2096     const auto *FD = cast<FunctionDecl>(GD.getDecl());
2097     auto CanonTy = Context.getCanonicalType(FD->getType());
2098     Ty = getTypes().ConvertFunctionType(CanonTy, FD);
2099   }
2100 
2101   StringRef MangledName = getMangledName(GD);
2102   return GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable, DontDefer,
2103                                  /*IsThunk=*/false, llvm::AttributeList(),
2104                                  IsForDefinition);
2105 }
2106 
2107 static const FunctionDecl *
2108 GetRuntimeFunctionDecl(ASTContext &C, StringRef Name) {
2109   TranslationUnitDecl *TUDecl = C.getTranslationUnitDecl();
2110   DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl);
2111 
2112   IdentifierInfo &CII = C.Idents.get(Name);
2113   for (const auto &Result : DC->lookup(&CII))
2114     if (const auto FD = dyn_cast<FunctionDecl>(Result))
2115       return FD;
2116 
2117   if (!C.getLangOpts().CPlusPlus)
2118     return nullptr;
2119 
2120   // Demangle the premangled name from getTerminateFn()
2121   IdentifierInfo &CXXII =
2122       (Name == "_ZSt9terminatev" || Name == "\01?terminate@@YAXXZ")
2123           ? C.Idents.get("terminate")
2124           : C.Idents.get(Name);
2125 
2126   for (const auto &N : {"__cxxabiv1", "std"}) {
2127     IdentifierInfo &NS = C.Idents.get(N);
2128     for (const auto &Result : DC->lookup(&NS)) {
2129       NamespaceDecl *ND = dyn_cast<NamespaceDecl>(Result);
2130       if (auto LSD = dyn_cast<LinkageSpecDecl>(Result))
2131         for (const auto &Result : LSD->lookup(&NS))
2132           if ((ND = dyn_cast<NamespaceDecl>(Result)))
2133             break;
2134 
2135       if (ND)
2136         for (const auto &Result : ND->lookup(&CXXII))
2137           if (const auto *FD = dyn_cast<FunctionDecl>(Result))
2138             return FD;
2139     }
2140   }
2141 
2142   return nullptr;
2143 }
2144 
2145 /// CreateRuntimeFunction - Create a new runtime function with the specified
2146 /// type and name.
2147 llvm::Constant *
2148 CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy, StringRef Name,
2149                                      llvm::AttributeList ExtraAttrs,
2150                                      bool Local) {
2151   llvm::Constant *C =
2152       GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false,
2153                               /*DontDefer=*/false, /*IsThunk=*/false,
2154                               ExtraAttrs);
2155 
2156   if (auto *F = dyn_cast<llvm::Function>(C)) {
2157     if (F->empty()) {
2158       F->setCallingConv(getRuntimeCC());
2159 
2160       if (!Local && getTriple().isOSBinFormatCOFF() &&
2161           !getCodeGenOpts().LTOVisibilityPublicStd) {
2162         const FunctionDecl *FD = GetRuntimeFunctionDecl(Context, Name);
2163         if (!FD || FD->hasAttr<DLLImportAttr>()) {
2164           F->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass);
2165           F->setLinkage(llvm::GlobalValue::ExternalLinkage);
2166         }
2167       }
2168     }
2169   }
2170 
2171   return C;
2172 }
2173 
2174 /// CreateBuiltinFunction - Create a new builtin function with the specified
2175 /// type and name.
2176 llvm::Constant *
2177 CodeGenModule::CreateBuiltinFunction(llvm::FunctionType *FTy, StringRef Name,
2178                                      llvm::AttributeList ExtraAttrs) {
2179   llvm::Constant *C =
2180       GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false,
2181                               /*DontDefer=*/false, /*IsThunk=*/false, ExtraAttrs);
2182   if (auto *F = dyn_cast<llvm::Function>(C))
2183     if (F->empty())
2184       F->setCallingConv(getBuiltinCC());
2185   return C;
2186 }
2187 
2188 /// isTypeConstant - Determine whether an object of this type can be emitted
2189 /// as a constant.
2190 ///
2191 /// If ExcludeCtor is true, the duration when the object's constructor runs
2192 /// will not be considered. The caller will need to verify that the object is
2193 /// not written to during its construction.
2194 bool CodeGenModule::isTypeConstant(QualType Ty, bool ExcludeCtor) {
2195   if (!Ty.isConstant(Context) && !Ty->isReferenceType())
2196     return false;
2197 
2198   if (Context.getLangOpts().CPlusPlus) {
2199     if (const CXXRecordDecl *Record
2200           = Context.getBaseElementType(Ty)->getAsCXXRecordDecl())
2201       return ExcludeCtor && !Record->hasMutableFields() &&
2202              Record->hasTrivialDestructor();
2203   }
2204 
2205   return true;
2206 }
2207 
2208 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module,
2209 /// create and return an llvm GlobalVariable with the specified type.  If there
2210 /// is something in the module with the specified name, return it potentially
2211 /// bitcasted to the right type.
2212 ///
2213 /// If D is non-null, it specifies a decl that correspond to this.  This is used
2214 /// to set the attributes on the global when it is first created.
2215 ///
2216 /// If IsForDefinition is true, it is guranteed that an actual global with
2217 /// type Ty will be returned, not conversion of a variable with the same
2218 /// mangled name but some other type.
2219 llvm::Constant *
2220 CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName,
2221                                      llvm::PointerType *Ty,
2222                                      const VarDecl *D,
2223                                      ForDefinition_t IsForDefinition) {
2224   // Lookup the entry, lazily creating it if necessary.
2225   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
2226   if (Entry) {
2227     if (WeakRefReferences.erase(Entry)) {
2228       if (D && !D->hasAttr<WeakAttr>())
2229         Entry->setLinkage(llvm::Function::ExternalLinkage);
2230     }
2231 
2232     // Handle dropped DLL attributes.
2233     if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>())
2234       Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
2235 
2236     if (Entry->getType() == Ty)
2237       return Entry;
2238 
2239     // If there are two attempts to define the same mangled name, issue an
2240     // error.
2241     if (IsForDefinition && !Entry->isDeclaration()) {
2242       GlobalDecl OtherGD;
2243       const VarDecl *OtherD;
2244 
2245       // Check that D is not yet in DiagnosedConflictingDefinitions is required
2246       // to make sure that we issue an error only once.
2247       if (D && lookupRepresentativeDecl(MangledName, OtherGD) &&
2248           (D->getCanonicalDecl() != OtherGD.getCanonicalDecl().getDecl()) &&
2249           (OtherD = dyn_cast<VarDecl>(OtherGD.getDecl())) &&
2250           OtherD->hasInit() &&
2251           DiagnosedConflictingDefinitions.insert(D).second) {
2252         getDiags().Report(D->getLocation(),
2253                           diag::err_duplicate_mangled_name);
2254         getDiags().Report(OtherGD.getDecl()->getLocation(),
2255                           diag::note_previous_definition);
2256       }
2257     }
2258 
2259     // Make sure the result is of the correct type.
2260     if (Entry->getType()->getAddressSpace() != Ty->getAddressSpace())
2261       return llvm::ConstantExpr::getAddrSpaceCast(Entry, Ty);
2262 
2263     // (If global is requested for a definition, we always need to create a new
2264     // global, not just return a bitcast.)
2265     if (!IsForDefinition)
2266       return llvm::ConstantExpr::getBitCast(Entry, Ty);
2267   }
2268 
2269   unsigned AddrSpace = GetGlobalVarAddressSpace(D, Ty->getAddressSpace());
2270   auto *GV = new llvm::GlobalVariable(
2271       getModule(), Ty->getElementType(), false,
2272       llvm::GlobalValue::ExternalLinkage, nullptr, MangledName, nullptr,
2273       llvm::GlobalVariable::NotThreadLocal, AddrSpace);
2274 
2275   // If we already created a global with the same mangled name (but different
2276   // type) before, take its name and remove it from its parent.
2277   if (Entry) {
2278     GV->takeName(Entry);
2279 
2280     if (!Entry->use_empty()) {
2281       llvm::Constant *NewPtrForOldDecl =
2282           llvm::ConstantExpr::getBitCast(GV, Entry->getType());
2283       Entry->replaceAllUsesWith(NewPtrForOldDecl);
2284     }
2285 
2286     Entry->eraseFromParent();
2287   }
2288 
2289   // This is the first use or definition of a mangled name.  If there is a
2290   // deferred decl with this name, remember that we need to emit it at the end
2291   // of the file.
2292   auto DDI = DeferredDecls.find(MangledName);
2293   if (DDI != DeferredDecls.end()) {
2294     // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
2295     // list, and remove it from DeferredDecls (since we don't need it anymore).
2296     addDeferredDeclToEmit(DDI->second);
2297     DeferredDecls.erase(DDI);
2298   }
2299 
2300   // Handle things which are present even on external declarations.
2301   if (D) {
2302     // FIXME: This code is overly simple and should be merged with other global
2303     // handling.
2304     GV->setConstant(isTypeConstant(D->getType(), false));
2305 
2306     GV->setAlignment(getContext().getDeclAlign(D).getQuantity());
2307 
2308     setLinkageAndVisibilityForGV(GV, D);
2309 
2310     if (D->getTLSKind()) {
2311       if (D->getTLSKind() == VarDecl::TLS_Dynamic)
2312         CXXThreadLocals.push_back(D);
2313       setTLSMode(GV, *D);
2314     }
2315 
2316     // If required by the ABI, treat declarations of static data members with
2317     // inline initializers as definitions.
2318     if (getContext().isMSStaticDataMemberInlineDefinition(D)) {
2319       EmitGlobalVarDefinition(D);
2320     }
2321 
2322     // Handle XCore specific ABI requirements.
2323     if (getTriple().getArch() == llvm::Triple::xcore &&
2324         D->getLanguageLinkage() == CLanguageLinkage &&
2325         D->getType().isConstant(Context) &&
2326         isExternallyVisible(D->getLinkageAndVisibility().getLinkage()))
2327       GV->setSection(".cp.rodata");
2328   }
2329 
2330   if (AddrSpace != Ty->getAddressSpace())
2331     return llvm::ConstantExpr::getAddrSpaceCast(GV, Ty);
2332 
2333   return GV;
2334 }
2335 
2336 llvm::Constant *
2337 CodeGenModule::GetAddrOfGlobal(GlobalDecl GD,
2338                                ForDefinition_t IsForDefinition) {
2339   const Decl *D = GD.getDecl();
2340   if (isa<CXXConstructorDecl>(D))
2341     return getAddrOfCXXStructor(cast<CXXConstructorDecl>(D),
2342                                 getFromCtorType(GD.getCtorType()),
2343                                 /*FnInfo=*/nullptr, /*FnType=*/nullptr,
2344                                 /*DontDefer=*/false, IsForDefinition);
2345   else if (isa<CXXDestructorDecl>(D))
2346     return getAddrOfCXXStructor(cast<CXXDestructorDecl>(D),
2347                                 getFromDtorType(GD.getDtorType()),
2348                                 /*FnInfo=*/nullptr, /*FnType=*/nullptr,
2349                                 /*DontDefer=*/false, IsForDefinition);
2350   else if (isa<CXXMethodDecl>(D)) {
2351     auto FInfo = &getTypes().arrangeCXXMethodDeclaration(
2352         cast<CXXMethodDecl>(D));
2353     auto Ty = getTypes().GetFunctionType(*FInfo);
2354     return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false,
2355                              IsForDefinition);
2356   } else if (isa<FunctionDecl>(D)) {
2357     const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
2358     llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
2359     return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false,
2360                              IsForDefinition);
2361   } else
2362     return GetAddrOfGlobalVar(cast<VarDecl>(D), /*Ty=*/nullptr,
2363                               IsForDefinition);
2364 }
2365 
2366 llvm::GlobalVariable *
2367 CodeGenModule::CreateOrReplaceCXXRuntimeVariable(StringRef Name,
2368                                       llvm::Type *Ty,
2369                                       llvm::GlobalValue::LinkageTypes Linkage) {
2370   llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name);
2371   llvm::GlobalVariable *OldGV = nullptr;
2372 
2373   if (GV) {
2374     // Check if the variable has the right type.
2375     if (GV->getType()->getElementType() == Ty)
2376       return GV;
2377 
2378     // Because C++ name mangling, the only way we can end up with an already
2379     // existing global with the same name is if it has been declared extern "C".
2380     assert(GV->isDeclaration() && "Declaration has wrong type!");
2381     OldGV = GV;
2382   }
2383 
2384   // Create a new variable.
2385   GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true,
2386                                 Linkage, nullptr, Name);
2387 
2388   if (OldGV) {
2389     // Replace occurrences of the old variable if needed.
2390     GV->takeName(OldGV);
2391 
2392     if (!OldGV->use_empty()) {
2393       llvm::Constant *NewPtrForOldDecl =
2394       llvm::ConstantExpr::getBitCast(GV, OldGV->getType());
2395       OldGV->replaceAllUsesWith(NewPtrForOldDecl);
2396     }
2397 
2398     OldGV->eraseFromParent();
2399   }
2400 
2401   if (supportsCOMDAT() && GV->isWeakForLinker() &&
2402       !GV->hasAvailableExternallyLinkage())
2403     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
2404 
2405   return GV;
2406 }
2407 
2408 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the
2409 /// given global variable.  If Ty is non-null and if the global doesn't exist,
2410 /// then it will be created with the specified type instead of whatever the
2411 /// normal requested type would be. If IsForDefinition is true, it is guranteed
2412 /// that an actual global with type Ty will be returned, not conversion of a
2413 /// variable with the same mangled name but some other type.
2414 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D,
2415                                                   llvm::Type *Ty,
2416                                            ForDefinition_t IsForDefinition) {
2417   assert(D->hasGlobalStorage() && "Not a global variable");
2418   QualType ASTTy = D->getType();
2419   if (!Ty)
2420     Ty = getTypes().ConvertTypeForMem(ASTTy);
2421 
2422   llvm::PointerType *PTy =
2423     llvm::PointerType::get(Ty, getContext().getTargetAddressSpace(ASTTy));
2424 
2425   StringRef MangledName = getMangledName(D);
2426   return GetOrCreateLLVMGlobal(MangledName, PTy, D, IsForDefinition);
2427 }
2428 
2429 /// CreateRuntimeVariable - Create a new runtime global variable with the
2430 /// specified type and name.
2431 llvm::Constant *
2432 CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty,
2433                                      StringRef Name) {
2434   return GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), nullptr);
2435 }
2436 
2437 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) {
2438   assert(!D->getInit() && "Cannot emit definite definitions here!");
2439 
2440   StringRef MangledName = getMangledName(D);
2441   llvm::GlobalValue *GV = GetGlobalValue(MangledName);
2442 
2443   // We already have a definition, not declaration, with the same mangled name.
2444   // Emitting of declaration is not required (and actually overwrites emitted
2445   // definition).
2446   if (GV && !GV->isDeclaration())
2447     return;
2448 
2449   // If we have not seen a reference to this variable yet, place it into the
2450   // deferred declarations table to be emitted if needed later.
2451   if (!MustBeEmitted(D) && !GV) {
2452       DeferredDecls[MangledName] = D;
2453       return;
2454   }
2455 
2456   // The tentative definition is the only definition.
2457   EmitGlobalVarDefinition(D);
2458 }
2459 
2460 CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const {
2461   return Context.toCharUnitsFromBits(
2462       getDataLayout().getTypeStoreSizeInBits(Ty));
2463 }
2464 
2465 unsigned CodeGenModule::GetGlobalVarAddressSpace(const VarDecl *D,
2466                                                  unsigned AddrSpace) {
2467   if (D && LangOpts.CUDA && LangOpts.CUDAIsDevice) {
2468     if (D->hasAttr<CUDAConstantAttr>())
2469       AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_constant);
2470     else if (D->hasAttr<CUDASharedAttr>())
2471       AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_shared);
2472     else
2473       AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_device);
2474   }
2475 
2476   return AddrSpace;
2477 }
2478 
2479 template<typename SomeDecl>
2480 void CodeGenModule::MaybeHandleStaticInExternC(const SomeDecl *D,
2481                                                llvm::GlobalValue *GV) {
2482   if (!getLangOpts().CPlusPlus)
2483     return;
2484 
2485   // Must have 'used' attribute, or else inline assembly can't rely on
2486   // the name existing.
2487   if (!D->template hasAttr<UsedAttr>())
2488     return;
2489 
2490   // Must have internal linkage and an ordinary name.
2491   if (!D->getIdentifier() || D->getFormalLinkage() != InternalLinkage)
2492     return;
2493 
2494   // Must be in an extern "C" context. Entities declared directly within
2495   // a record are not extern "C" even if the record is in such a context.
2496   const SomeDecl *First = D->getFirstDecl();
2497   if (First->getDeclContext()->isRecord() || !First->isInExternCContext())
2498     return;
2499 
2500   // OK, this is an internal linkage entity inside an extern "C" linkage
2501   // specification. Make a note of that so we can give it the "expected"
2502   // mangled name if nothing else is using that name.
2503   std::pair<StaticExternCMap::iterator, bool> R =
2504       StaticExternCValues.insert(std::make_pair(D->getIdentifier(), GV));
2505 
2506   // If we have multiple internal linkage entities with the same name
2507   // in extern "C" regions, none of them gets that name.
2508   if (!R.second)
2509     R.first->second = nullptr;
2510 }
2511 
2512 static bool shouldBeInCOMDAT(CodeGenModule &CGM, const Decl &D) {
2513   if (!CGM.supportsCOMDAT())
2514     return false;
2515 
2516   if (D.hasAttr<SelectAnyAttr>())
2517     return true;
2518 
2519   GVALinkage Linkage;
2520   if (auto *VD = dyn_cast<VarDecl>(&D))
2521     Linkage = CGM.getContext().GetGVALinkageForVariable(VD);
2522   else
2523     Linkage = CGM.getContext().GetGVALinkageForFunction(cast<FunctionDecl>(&D));
2524 
2525   switch (Linkage) {
2526   case GVA_Internal:
2527   case GVA_AvailableExternally:
2528   case GVA_StrongExternal:
2529     return false;
2530   case GVA_DiscardableODR:
2531   case GVA_StrongODR:
2532     return true;
2533   }
2534   llvm_unreachable("No such linkage");
2535 }
2536 
2537 void CodeGenModule::maybeSetTrivialComdat(const Decl &D,
2538                                           llvm::GlobalObject &GO) {
2539   if (!shouldBeInCOMDAT(*this, D))
2540     return;
2541   GO.setComdat(TheModule.getOrInsertComdat(GO.getName()));
2542 }
2543 
2544 /// Pass IsTentative as true if you want to create a tentative definition.
2545 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D,
2546                                             bool IsTentative) {
2547   // OpenCL global variables of sampler type are translated to function calls,
2548   // therefore no need to be translated.
2549   QualType ASTTy = D->getType();
2550   if (getLangOpts().OpenCL && ASTTy->isSamplerT())
2551     return;
2552 
2553   llvm::Constant *Init = nullptr;
2554   CXXRecordDecl *RD = ASTTy->getBaseElementTypeUnsafe()->getAsCXXRecordDecl();
2555   bool NeedsGlobalCtor = false;
2556   bool NeedsGlobalDtor = RD && !RD->hasTrivialDestructor();
2557 
2558   const VarDecl *InitDecl;
2559   const Expr *InitExpr = D->getAnyInitializer(InitDecl);
2560 
2561   // CUDA E.2.4.1 "__shared__ variables cannot have an initialization
2562   // as part of their declaration."  Sema has already checked for
2563   // error cases, so we just need to set Init to UndefValue.
2564   if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice &&
2565       D->hasAttr<CUDASharedAttr>())
2566     Init = llvm::UndefValue::get(getTypes().ConvertType(ASTTy));
2567   else if (!InitExpr) {
2568     // This is a tentative definition; tentative definitions are
2569     // implicitly initialized with { 0 }.
2570     //
2571     // Note that tentative definitions are only emitted at the end of
2572     // a translation unit, so they should never have incomplete
2573     // type. In addition, EmitTentativeDefinition makes sure that we
2574     // never attempt to emit a tentative definition if a real one
2575     // exists. A use may still exists, however, so we still may need
2576     // to do a RAUW.
2577     assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type");
2578     Init = EmitNullConstant(D->getType());
2579   } else {
2580     initializedGlobalDecl = GlobalDecl(D);
2581     Init = EmitConstantInit(*InitDecl);
2582 
2583     if (!Init) {
2584       QualType T = InitExpr->getType();
2585       if (D->getType()->isReferenceType())
2586         T = D->getType();
2587 
2588       if (getLangOpts().CPlusPlus) {
2589         Init = EmitNullConstant(T);
2590         NeedsGlobalCtor = true;
2591       } else {
2592         ErrorUnsupported(D, "static initializer");
2593         Init = llvm::UndefValue::get(getTypes().ConvertType(T));
2594       }
2595     } else {
2596       // We don't need an initializer, so remove the entry for the delayed
2597       // initializer position (just in case this entry was delayed) if we
2598       // also don't need to register a destructor.
2599       if (getLangOpts().CPlusPlus && !NeedsGlobalDtor)
2600         DelayedCXXInitPosition.erase(D);
2601     }
2602   }
2603 
2604   llvm::Type* InitType = Init->getType();
2605   llvm::Constant *Entry =
2606       GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative));
2607 
2608   // Strip off a bitcast if we got one back.
2609   if (auto *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
2610     assert(CE->getOpcode() == llvm::Instruction::BitCast ||
2611            CE->getOpcode() == llvm::Instruction::AddrSpaceCast ||
2612            // All zero index gep.
2613            CE->getOpcode() == llvm::Instruction::GetElementPtr);
2614     Entry = CE->getOperand(0);
2615   }
2616 
2617   // Entry is now either a Function or GlobalVariable.
2618   auto *GV = dyn_cast<llvm::GlobalVariable>(Entry);
2619 
2620   // We have a definition after a declaration with the wrong type.
2621   // We must make a new GlobalVariable* and update everything that used OldGV
2622   // (a declaration or tentative definition) with the new GlobalVariable*
2623   // (which will be a definition).
2624   //
2625   // This happens if there is a prototype for a global (e.g.
2626   // "extern int x[];") and then a definition of a different type (e.g.
2627   // "int x[10];"). This also happens when an initializer has a different type
2628   // from the type of the global (this happens with unions).
2629   if (!GV ||
2630       GV->getType()->getElementType() != InitType ||
2631       GV->getType()->getAddressSpace() !=
2632        GetGlobalVarAddressSpace(D, getContext().getTargetAddressSpace(ASTTy))) {
2633 
2634     // Move the old entry aside so that we'll create a new one.
2635     Entry->setName(StringRef());
2636 
2637     // Make a new global with the correct type, this is now guaranteed to work.
2638     GV = cast<llvm::GlobalVariable>(
2639         GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative)));
2640 
2641     // Replace all uses of the old global with the new global
2642     llvm::Constant *NewPtrForOldDecl =
2643         llvm::ConstantExpr::getBitCast(GV, Entry->getType());
2644     Entry->replaceAllUsesWith(NewPtrForOldDecl);
2645 
2646     // Erase the old global, since it is no longer used.
2647     cast<llvm::GlobalValue>(Entry)->eraseFromParent();
2648   }
2649 
2650   MaybeHandleStaticInExternC(D, GV);
2651 
2652   if (D->hasAttr<AnnotateAttr>())
2653     AddGlobalAnnotations(D, GV);
2654 
2655   // Set the llvm linkage type as appropriate.
2656   llvm::GlobalValue::LinkageTypes Linkage =
2657       getLLVMLinkageVarDefinition(D, GV->isConstant());
2658 
2659   // CUDA B.2.1 "The __device__ qualifier declares a variable that resides on
2660   // the device. [...]"
2661   // CUDA B.2.2 "The __constant__ qualifier, optionally used together with
2662   // __device__, declares a variable that: [...]
2663   // Is accessible from all the threads within the grid and from the host
2664   // through the runtime library (cudaGetSymbolAddress() / cudaGetSymbolSize()
2665   // / cudaMemcpyToSymbol() / cudaMemcpyFromSymbol())."
2666   if (GV && LangOpts.CUDA) {
2667     if (LangOpts.CUDAIsDevice) {
2668       if (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>())
2669         GV->setExternallyInitialized(true);
2670     } else {
2671       // Host-side shadows of external declarations of device-side
2672       // global variables become internal definitions. These have to
2673       // be internal in order to prevent name conflicts with global
2674       // host variables with the same name in a different TUs.
2675       if (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>()) {
2676         Linkage = llvm::GlobalValue::InternalLinkage;
2677 
2678         // Shadow variables and their properties must be registered
2679         // with CUDA runtime.
2680         unsigned Flags = 0;
2681         if (!D->hasDefinition())
2682           Flags |= CGCUDARuntime::ExternDeviceVar;
2683         if (D->hasAttr<CUDAConstantAttr>())
2684           Flags |= CGCUDARuntime::ConstantDeviceVar;
2685         getCUDARuntime().registerDeviceVar(*GV, Flags);
2686       } else if (D->hasAttr<CUDASharedAttr>())
2687         // __shared__ variables are odd. Shadows do get created, but
2688         // they are not registered with the CUDA runtime, so they
2689         // can't really be used to access their device-side
2690         // counterparts. It's not clear yet whether it's nvcc's bug or
2691         // a feature, but we've got to do the same for compatibility.
2692         Linkage = llvm::GlobalValue::InternalLinkage;
2693     }
2694   }
2695   GV->setInitializer(Init);
2696 
2697   // If it is safe to mark the global 'constant', do so now.
2698   GV->setConstant(!NeedsGlobalCtor && !NeedsGlobalDtor &&
2699                   isTypeConstant(D->getType(), true));
2700 
2701   // If it is in a read-only section, mark it 'constant'.
2702   if (const SectionAttr *SA = D->getAttr<SectionAttr>()) {
2703     const ASTContext::SectionInfo &SI = Context.SectionInfos[SA->getName()];
2704     if ((SI.SectionFlags & ASTContext::PSF_Write) == 0)
2705       GV->setConstant(true);
2706   }
2707 
2708   GV->setAlignment(getContext().getDeclAlign(D).getQuantity());
2709 
2710 
2711   // On Darwin, if the normal linkage of a C++ thread_local variable is
2712   // LinkOnce or Weak, we keep the normal linkage to prevent multiple
2713   // copies within a linkage unit; otherwise, the backing variable has
2714   // internal linkage and all accesses should just be calls to the
2715   // Itanium-specified entry point, which has the normal linkage of the
2716   // variable. This is to preserve the ability to change the implementation
2717   // behind the scenes.
2718   if (!D->isStaticLocal() && D->getTLSKind() == VarDecl::TLS_Dynamic &&
2719       Context.getTargetInfo().getTriple().isOSDarwin() &&
2720       !llvm::GlobalVariable::isLinkOnceLinkage(Linkage) &&
2721       !llvm::GlobalVariable::isWeakLinkage(Linkage))
2722     Linkage = llvm::GlobalValue::InternalLinkage;
2723 
2724   GV->setLinkage(Linkage);
2725   if (D->hasAttr<DLLImportAttr>())
2726     GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass);
2727   else if (D->hasAttr<DLLExportAttr>())
2728     GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass);
2729   else
2730     GV->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass);
2731 
2732   if (Linkage == llvm::GlobalVariable::CommonLinkage) {
2733     // common vars aren't constant even if declared const.
2734     GV->setConstant(false);
2735     // Tentative definition of global variables may be initialized with
2736     // non-zero null pointers. In this case they should have weak linkage
2737     // since common linkage must have zero initializer and must not have
2738     // explicit section therefore cannot have non-zero initial value.
2739     if (!GV->getInitializer()->isNullValue())
2740       GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage);
2741   }
2742 
2743   setNonAliasAttributes(D, GV);
2744 
2745   if (D->getTLSKind() && !GV->isThreadLocal()) {
2746     if (D->getTLSKind() == VarDecl::TLS_Dynamic)
2747       CXXThreadLocals.push_back(D);
2748     setTLSMode(GV, *D);
2749   }
2750 
2751   maybeSetTrivialComdat(*D, *GV);
2752 
2753   // Emit the initializer function if necessary.
2754   if (NeedsGlobalCtor || NeedsGlobalDtor)
2755     EmitCXXGlobalVarDeclInitFunc(D, GV, NeedsGlobalCtor);
2756 
2757   SanitizerMD->reportGlobalToASan(GV, *D, NeedsGlobalCtor);
2758 
2759   // Emit global variable debug information.
2760   if (CGDebugInfo *DI = getModuleDebugInfo())
2761     if (getCodeGenOpts().getDebugInfo() >= codegenoptions::LimitedDebugInfo)
2762       DI->EmitGlobalVariable(GV, D);
2763 }
2764 
2765 static bool isVarDeclStrongDefinition(const ASTContext &Context,
2766                                       CodeGenModule &CGM, const VarDecl *D,
2767                                       bool NoCommon) {
2768   // Don't give variables common linkage if -fno-common was specified unless it
2769   // was overridden by a NoCommon attribute.
2770   if ((NoCommon || D->hasAttr<NoCommonAttr>()) && !D->hasAttr<CommonAttr>())
2771     return true;
2772 
2773   // C11 6.9.2/2:
2774   //   A declaration of an identifier for an object that has file scope without
2775   //   an initializer, and without a storage-class specifier or with the
2776   //   storage-class specifier static, constitutes a tentative definition.
2777   if (D->getInit() || D->hasExternalStorage())
2778     return true;
2779 
2780   // A variable cannot be both common and exist in a section.
2781   if (D->hasAttr<SectionAttr>())
2782     return true;
2783 
2784   // Thread local vars aren't considered common linkage.
2785   if (D->getTLSKind())
2786     return true;
2787 
2788   // Tentative definitions marked with WeakImportAttr are true definitions.
2789   if (D->hasAttr<WeakImportAttr>())
2790     return true;
2791 
2792   // A variable cannot be both common and exist in a comdat.
2793   if (shouldBeInCOMDAT(CGM, *D))
2794     return true;
2795 
2796   // Declarations with a required alignment do not have common linkage in MSVC
2797   // mode.
2798   if (Context.getTargetInfo().getCXXABI().isMicrosoft()) {
2799     if (D->hasAttr<AlignedAttr>())
2800       return true;
2801     QualType VarType = D->getType();
2802     if (Context.isAlignmentRequired(VarType))
2803       return true;
2804 
2805     if (const auto *RT = VarType->getAs<RecordType>()) {
2806       const RecordDecl *RD = RT->getDecl();
2807       for (const FieldDecl *FD : RD->fields()) {
2808         if (FD->isBitField())
2809           continue;
2810         if (FD->hasAttr<AlignedAttr>())
2811           return true;
2812         if (Context.isAlignmentRequired(FD->getType()))
2813           return true;
2814       }
2815     }
2816   }
2817 
2818   return false;
2819 }
2820 
2821 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageForDeclarator(
2822     const DeclaratorDecl *D, GVALinkage Linkage, bool IsConstantVariable) {
2823   if (Linkage == GVA_Internal)
2824     return llvm::Function::InternalLinkage;
2825 
2826   if (D->hasAttr<WeakAttr>()) {
2827     if (IsConstantVariable)
2828       return llvm::GlobalVariable::WeakODRLinkage;
2829     else
2830       return llvm::GlobalVariable::WeakAnyLinkage;
2831   }
2832 
2833   // We are guaranteed to have a strong definition somewhere else,
2834   // so we can use available_externally linkage.
2835   if (Linkage == GVA_AvailableExternally)
2836     return llvm::GlobalValue::AvailableExternallyLinkage;
2837 
2838   // Note that Apple's kernel linker doesn't support symbol
2839   // coalescing, so we need to avoid linkonce and weak linkages there.
2840   // Normally, this means we just map to internal, but for explicit
2841   // instantiations we'll map to external.
2842 
2843   // In C++, the compiler has to emit a definition in every translation unit
2844   // that references the function.  We should use linkonce_odr because
2845   // a) if all references in this translation unit are optimized away, we
2846   // don't need to codegen it.  b) if the function persists, it needs to be
2847   // merged with other definitions. c) C++ has the ODR, so we know the
2848   // definition is dependable.
2849   if (Linkage == GVA_DiscardableODR)
2850     return !Context.getLangOpts().AppleKext ? llvm::Function::LinkOnceODRLinkage
2851                                             : llvm::Function::InternalLinkage;
2852 
2853   // An explicit instantiation of a template has weak linkage, since
2854   // explicit instantiations can occur in multiple translation units
2855   // and must all be equivalent. However, we are not allowed to
2856   // throw away these explicit instantiations.
2857   //
2858   // We don't currently support CUDA device code spread out across multiple TUs,
2859   // so say that CUDA templates are either external (for kernels) or internal.
2860   // This lets llvm perform aggressive inter-procedural optimizations.
2861   if (Linkage == GVA_StrongODR) {
2862     if (Context.getLangOpts().AppleKext)
2863       return llvm::Function::ExternalLinkage;
2864     if (Context.getLangOpts().CUDA && Context.getLangOpts().CUDAIsDevice)
2865       return D->hasAttr<CUDAGlobalAttr>() ? llvm::Function::ExternalLinkage
2866                                           : llvm::Function::InternalLinkage;
2867     return llvm::Function::WeakODRLinkage;
2868   }
2869 
2870   // C++ doesn't have tentative definitions and thus cannot have common
2871   // linkage.
2872   if (!getLangOpts().CPlusPlus && isa<VarDecl>(D) &&
2873       !isVarDeclStrongDefinition(Context, *this, cast<VarDecl>(D),
2874                                  CodeGenOpts.NoCommon))
2875     return llvm::GlobalVariable::CommonLinkage;
2876 
2877   // selectany symbols are externally visible, so use weak instead of
2878   // linkonce.  MSVC optimizes away references to const selectany globals, so
2879   // all definitions should be the same and ODR linkage should be used.
2880   // http://msdn.microsoft.com/en-us/library/5tkz6s71.aspx
2881   if (D->hasAttr<SelectAnyAttr>())
2882     return llvm::GlobalVariable::WeakODRLinkage;
2883 
2884   // Otherwise, we have strong external linkage.
2885   assert(Linkage == GVA_StrongExternal);
2886   return llvm::GlobalVariable::ExternalLinkage;
2887 }
2888 
2889 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageVarDefinition(
2890     const VarDecl *VD, bool IsConstant) {
2891   GVALinkage Linkage = getContext().GetGVALinkageForVariable(VD);
2892   return getLLVMLinkageForDeclarator(VD, Linkage, IsConstant);
2893 }
2894 
2895 /// Replace the uses of a function that was declared with a non-proto type.
2896 /// We want to silently drop extra arguments from call sites
2897 static void replaceUsesOfNonProtoConstant(llvm::Constant *old,
2898                                           llvm::Function *newFn) {
2899   // Fast path.
2900   if (old->use_empty()) return;
2901 
2902   llvm::Type *newRetTy = newFn->getReturnType();
2903   SmallVector<llvm::Value*, 4> newArgs;
2904   SmallVector<llvm::OperandBundleDef, 1> newBundles;
2905 
2906   for (llvm::Value::use_iterator ui = old->use_begin(), ue = old->use_end();
2907          ui != ue; ) {
2908     llvm::Value::use_iterator use = ui++; // Increment before the use is erased.
2909     llvm::User *user = use->getUser();
2910 
2911     // Recognize and replace uses of bitcasts.  Most calls to
2912     // unprototyped functions will use bitcasts.
2913     if (auto *bitcast = dyn_cast<llvm::ConstantExpr>(user)) {
2914       if (bitcast->getOpcode() == llvm::Instruction::BitCast)
2915         replaceUsesOfNonProtoConstant(bitcast, newFn);
2916       continue;
2917     }
2918 
2919     // Recognize calls to the function.
2920     llvm::CallSite callSite(user);
2921     if (!callSite) continue;
2922     if (!callSite.isCallee(&*use)) continue;
2923 
2924     // If the return types don't match exactly, then we can't
2925     // transform this call unless it's dead.
2926     if (callSite->getType() != newRetTy && !callSite->use_empty())
2927       continue;
2928 
2929     // Get the call site's attribute list.
2930     SmallVector<llvm::AttributeSet, 8> newArgAttrs;
2931     llvm::AttributeList oldAttrs = callSite.getAttributes();
2932 
2933     // If the function was passed too few arguments, don't transform.
2934     unsigned newNumArgs = newFn->arg_size();
2935     if (callSite.arg_size() < newNumArgs) continue;
2936 
2937     // If extra arguments were passed, we silently drop them.
2938     // If any of the types mismatch, we don't transform.
2939     unsigned argNo = 0;
2940     bool dontTransform = false;
2941     for (llvm::Argument &A : newFn->args()) {
2942       if (callSite.getArgument(argNo)->getType() != A.getType()) {
2943         dontTransform = true;
2944         break;
2945       }
2946 
2947       // Add any parameter attributes.
2948       newArgAttrs.push_back(oldAttrs.getParamAttributes(argNo));
2949       argNo++;
2950     }
2951     if (dontTransform)
2952       continue;
2953 
2954     // Okay, we can transform this.  Create the new call instruction and copy
2955     // over the required information.
2956     newArgs.append(callSite.arg_begin(), callSite.arg_begin() + argNo);
2957 
2958     // Copy over any operand bundles.
2959     callSite.getOperandBundlesAsDefs(newBundles);
2960 
2961     llvm::CallSite newCall;
2962     if (callSite.isCall()) {
2963       newCall = llvm::CallInst::Create(newFn, newArgs, newBundles, "",
2964                                        callSite.getInstruction());
2965     } else {
2966       auto *oldInvoke = cast<llvm::InvokeInst>(callSite.getInstruction());
2967       newCall = llvm::InvokeInst::Create(newFn,
2968                                          oldInvoke->getNormalDest(),
2969                                          oldInvoke->getUnwindDest(),
2970                                          newArgs, newBundles, "",
2971                                          callSite.getInstruction());
2972     }
2973     newArgs.clear(); // for the next iteration
2974 
2975     if (!newCall->getType()->isVoidTy())
2976       newCall->takeName(callSite.getInstruction());
2977     newCall.setAttributes(llvm::AttributeList::get(
2978         newFn->getContext(), oldAttrs.getFnAttributes(),
2979         oldAttrs.getRetAttributes(), newArgAttrs));
2980     newCall.setCallingConv(callSite.getCallingConv());
2981 
2982     // Finally, remove the old call, replacing any uses with the new one.
2983     if (!callSite->use_empty())
2984       callSite->replaceAllUsesWith(newCall.getInstruction());
2985 
2986     // Copy debug location attached to CI.
2987     if (callSite->getDebugLoc())
2988       newCall->setDebugLoc(callSite->getDebugLoc());
2989 
2990     callSite->eraseFromParent();
2991   }
2992 }
2993 
2994 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we
2995 /// implement a function with no prototype, e.g. "int foo() {}".  If there are
2996 /// existing call uses of the old function in the module, this adjusts them to
2997 /// call the new function directly.
2998 ///
2999 /// This is not just a cleanup: the always_inline pass requires direct calls to
3000 /// functions to be able to inline them.  If there is a bitcast in the way, it
3001 /// won't inline them.  Instcombine normally deletes these calls, but it isn't
3002 /// run at -O0.
3003 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
3004                                                       llvm::Function *NewFn) {
3005   // If we're redefining a global as a function, don't transform it.
3006   if (!isa<llvm::Function>(Old)) return;
3007 
3008   replaceUsesOfNonProtoConstant(Old, NewFn);
3009 }
3010 
3011 void CodeGenModule::HandleCXXStaticMemberVarInstantiation(VarDecl *VD) {
3012   auto DK = VD->isThisDeclarationADefinition();
3013   if (DK == VarDecl::Definition && VD->hasAttr<DLLImportAttr>())
3014     return;
3015 
3016   TemplateSpecializationKind TSK = VD->getTemplateSpecializationKind();
3017   // If we have a definition, this might be a deferred decl. If the
3018   // instantiation is explicit, make sure we emit it at the end.
3019   if (VD->getDefinition() && TSK == TSK_ExplicitInstantiationDefinition)
3020     GetAddrOfGlobalVar(VD);
3021 
3022   EmitTopLevelDecl(VD);
3023 }
3024 
3025 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD,
3026                                                  llvm::GlobalValue *GV) {
3027   const auto *D = cast<FunctionDecl>(GD.getDecl());
3028 
3029   // Compute the function info and LLVM type.
3030   const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
3031   llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
3032 
3033   // Get or create the prototype for the function.
3034   if (!GV || (GV->getType()->getElementType() != Ty))
3035     GV = cast<llvm::GlobalValue>(GetAddrOfFunction(GD, Ty, /*ForVTable=*/false,
3036                                                    /*DontDefer=*/true,
3037                                                    ForDefinition));
3038 
3039   // Already emitted.
3040   if (!GV->isDeclaration())
3041     return;
3042 
3043   // We need to set linkage and visibility on the function before
3044   // generating code for it because various parts of IR generation
3045   // want to propagate this information down (e.g. to local static
3046   // declarations).
3047   auto *Fn = cast<llvm::Function>(GV);
3048   setFunctionLinkage(GD, Fn);
3049   setFunctionDLLStorageClass(GD, Fn);
3050 
3051   // FIXME: this is redundant with part of setFunctionDefinitionAttributes
3052   setGlobalVisibility(Fn, D);
3053 
3054   MaybeHandleStaticInExternC(D, Fn);
3055 
3056   maybeSetTrivialComdat(*D, *Fn);
3057 
3058   CodeGenFunction(*this).GenerateCode(D, Fn, FI);
3059 
3060   setFunctionDefinitionAttributes(D, Fn);
3061   SetLLVMFunctionAttributesForDefinition(D, Fn);
3062 
3063   if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>())
3064     AddGlobalCtor(Fn, CA->getPriority());
3065   if (const DestructorAttr *DA = D->getAttr<DestructorAttr>())
3066     AddGlobalDtor(Fn, DA->getPriority());
3067   if (D->hasAttr<AnnotateAttr>())
3068     AddGlobalAnnotations(D, Fn);
3069 }
3070 
3071 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) {
3072   const auto *D = cast<ValueDecl>(GD.getDecl());
3073   const AliasAttr *AA = D->getAttr<AliasAttr>();
3074   assert(AA && "Not an alias?");
3075 
3076   StringRef MangledName = getMangledName(GD);
3077 
3078   if (AA->getAliasee() == MangledName) {
3079     Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0;
3080     return;
3081   }
3082 
3083   // If there is a definition in the module, then it wins over the alias.
3084   // This is dubious, but allow it to be safe.  Just ignore the alias.
3085   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
3086   if (Entry && !Entry->isDeclaration())
3087     return;
3088 
3089   Aliases.push_back(GD);
3090 
3091   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
3092 
3093   // Create a reference to the named value.  This ensures that it is emitted
3094   // if a deferred decl.
3095   llvm::Constant *Aliasee;
3096   if (isa<llvm::FunctionType>(DeclTy))
3097     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GD,
3098                                       /*ForVTable=*/false);
3099   else
3100     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
3101                                     llvm::PointerType::getUnqual(DeclTy),
3102                                     /*D=*/nullptr);
3103 
3104   // Create the new alias itself, but don't set a name yet.
3105   auto *GA = llvm::GlobalAlias::create(
3106       DeclTy, 0, llvm::Function::ExternalLinkage, "", Aliasee, &getModule());
3107 
3108   if (Entry) {
3109     if (GA->getAliasee() == Entry) {
3110       Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0;
3111       return;
3112     }
3113 
3114     assert(Entry->isDeclaration());
3115 
3116     // If there is a declaration in the module, then we had an extern followed
3117     // by the alias, as in:
3118     //   extern int test6();
3119     //   ...
3120     //   int test6() __attribute__((alias("test7")));
3121     //
3122     // Remove it and replace uses of it with the alias.
3123     GA->takeName(Entry);
3124 
3125     Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA,
3126                                                           Entry->getType()));
3127     Entry->eraseFromParent();
3128   } else {
3129     GA->setName(MangledName);
3130   }
3131 
3132   // Set attributes which are particular to an alias; this is a
3133   // specialization of the attributes which may be set on a global
3134   // variable/function.
3135   if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakRefAttr>() ||
3136       D->isWeakImported()) {
3137     GA->setLinkage(llvm::Function::WeakAnyLinkage);
3138   }
3139 
3140   if (const auto *VD = dyn_cast<VarDecl>(D))
3141     if (VD->getTLSKind())
3142       setTLSMode(GA, *VD);
3143 
3144   setAliasAttributes(D, GA);
3145 }
3146 
3147 void CodeGenModule::emitIFuncDefinition(GlobalDecl GD) {
3148   const auto *D = cast<ValueDecl>(GD.getDecl());
3149   const IFuncAttr *IFA = D->getAttr<IFuncAttr>();
3150   assert(IFA && "Not an ifunc?");
3151 
3152   StringRef MangledName = getMangledName(GD);
3153 
3154   if (IFA->getResolver() == MangledName) {
3155     Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1;
3156     return;
3157   }
3158 
3159   // Report an error if some definition overrides ifunc.
3160   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
3161   if (Entry && !Entry->isDeclaration()) {
3162     GlobalDecl OtherGD;
3163     if (lookupRepresentativeDecl(MangledName, OtherGD) &&
3164         DiagnosedConflictingDefinitions.insert(GD).second) {
3165       Diags.Report(D->getLocation(), diag::err_duplicate_mangled_name);
3166       Diags.Report(OtherGD.getDecl()->getLocation(),
3167                    diag::note_previous_definition);
3168     }
3169     return;
3170   }
3171 
3172   Aliases.push_back(GD);
3173 
3174   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
3175   llvm::Constant *Resolver =
3176       GetOrCreateLLVMFunction(IFA->getResolver(), DeclTy, GD,
3177                               /*ForVTable=*/false);
3178   llvm::GlobalIFunc *GIF =
3179       llvm::GlobalIFunc::create(DeclTy, 0, llvm::Function::ExternalLinkage,
3180                                 "", Resolver, &getModule());
3181   if (Entry) {
3182     if (GIF->getResolver() == Entry) {
3183       Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1;
3184       return;
3185     }
3186     assert(Entry->isDeclaration());
3187 
3188     // If there is a declaration in the module, then we had an extern followed
3189     // by the ifunc, as in:
3190     //   extern int test();
3191     //   ...
3192     //   int test() __attribute__((ifunc("resolver")));
3193     //
3194     // Remove it and replace uses of it with the ifunc.
3195     GIF->takeName(Entry);
3196 
3197     Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GIF,
3198                                                           Entry->getType()));
3199     Entry->eraseFromParent();
3200   } else
3201     GIF->setName(MangledName);
3202 
3203   SetCommonAttributes(D, GIF);
3204 }
3205 
3206 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,
3207                                             ArrayRef<llvm::Type*> Tys) {
3208   return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID,
3209                                          Tys);
3210 }
3211 
3212 static llvm::StringMapEntry<llvm::GlobalVariable *> &
3213 GetConstantCFStringEntry(llvm::StringMap<llvm::GlobalVariable *> &Map,
3214                          const StringLiteral *Literal, bool TargetIsLSB,
3215                          bool &IsUTF16, unsigned &StringLength) {
3216   StringRef String = Literal->getString();
3217   unsigned NumBytes = String.size();
3218 
3219   // Check for simple case.
3220   if (!Literal->containsNonAsciiOrNull()) {
3221     StringLength = NumBytes;
3222     return *Map.insert(std::make_pair(String, nullptr)).first;
3223   }
3224 
3225   // Otherwise, convert the UTF8 literals into a string of shorts.
3226   IsUTF16 = true;
3227 
3228   SmallVector<llvm::UTF16, 128> ToBuf(NumBytes + 1); // +1 for ending nulls.
3229   const llvm::UTF8 *FromPtr = (const llvm::UTF8 *)String.data();
3230   llvm::UTF16 *ToPtr = &ToBuf[0];
3231 
3232   (void)llvm::ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, &ToPtr,
3233                                  ToPtr + NumBytes, llvm::strictConversion);
3234 
3235   // ConvertUTF8toUTF16 returns the length in ToPtr.
3236   StringLength = ToPtr - &ToBuf[0];
3237 
3238   // Add an explicit null.
3239   *ToPtr = 0;
3240   return *Map.insert(std::make_pair(
3241                          StringRef(reinterpret_cast<const char *>(ToBuf.data()),
3242                                    (StringLength + 1) * 2),
3243                          nullptr)).first;
3244 }
3245 
3246 ConstantAddress
3247 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) {
3248   unsigned StringLength = 0;
3249   bool isUTF16 = false;
3250   llvm::StringMapEntry<llvm::GlobalVariable *> &Entry =
3251       GetConstantCFStringEntry(CFConstantStringMap, Literal,
3252                                getDataLayout().isLittleEndian(), isUTF16,
3253                                StringLength);
3254 
3255   if (auto *C = Entry.second)
3256     return ConstantAddress(C, CharUnits::fromQuantity(C->getAlignment()));
3257 
3258   llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty);
3259   llvm::Constant *Zeros[] = { Zero, Zero };
3260 
3261   // If we don't already have it, get __CFConstantStringClassReference.
3262   if (!CFConstantStringClassRef) {
3263     llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
3264     Ty = llvm::ArrayType::get(Ty, 0);
3265     llvm::Constant *GV =
3266         CreateRuntimeVariable(Ty, "__CFConstantStringClassReference");
3267 
3268     if (getTriple().isOSBinFormatCOFF()) {
3269       IdentifierInfo &II = getContext().Idents.get(GV->getName());
3270       TranslationUnitDecl *TUDecl = getContext().getTranslationUnitDecl();
3271       DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl);
3272       llvm::GlobalValue *CGV = cast<llvm::GlobalValue>(GV);
3273 
3274       const VarDecl *VD = nullptr;
3275       for (const auto &Result : DC->lookup(&II))
3276         if ((VD = dyn_cast<VarDecl>(Result)))
3277           break;
3278 
3279       if (!VD || !VD->hasAttr<DLLExportAttr>()) {
3280         CGV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass);
3281         CGV->setLinkage(llvm::GlobalValue::ExternalLinkage);
3282       } else {
3283         CGV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass);
3284         CGV->setLinkage(llvm::GlobalValue::ExternalLinkage);
3285       }
3286     }
3287 
3288     // Decay array -> ptr
3289     CFConstantStringClassRef =
3290         llvm::ConstantExpr::getGetElementPtr(Ty, GV, Zeros);
3291   }
3292 
3293   QualType CFTy = getContext().getCFConstantStringType();
3294 
3295   auto *STy = cast<llvm::StructType>(getTypes().ConvertType(CFTy));
3296 
3297   ConstantInitBuilder Builder(*this);
3298   auto Fields = Builder.beginStruct(STy);
3299 
3300   // Class pointer.
3301   Fields.add(cast<llvm::ConstantExpr>(CFConstantStringClassRef));
3302 
3303   // Flags.
3304   Fields.addInt(IntTy, isUTF16 ? 0x07d0 : 0x07C8);
3305 
3306   // String pointer.
3307   llvm::Constant *C = nullptr;
3308   if (isUTF16) {
3309     auto Arr = llvm::makeArrayRef(
3310         reinterpret_cast<uint16_t *>(const_cast<char *>(Entry.first().data())),
3311         Entry.first().size() / 2);
3312     C = llvm::ConstantDataArray::get(VMContext, Arr);
3313   } else {
3314     C = llvm::ConstantDataArray::getString(VMContext, Entry.first());
3315   }
3316 
3317   // Note: -fwritable-strings doesn't make the backing store strings of
3318   // CFStrings writable. (See <rdar://problem/10657500>)
3319   auto *GV =
3320       new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true,
3321                                llvm::GlobalValue::PrivateLinkage, C, ".str");
3322   GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
3323   // Don't enforce the target's minimum global alignment, since the only use
3324   // of the string is via this class initializer.
3325   CharUnits Align = isUTF16
3326                         ? getContext().getTypeAlignInChars(getContext().ShortTy)
3327                         : getContext().getTypeAlignInChars(getContext().CharTy);
3328   GV->setAlignment(Align.getQuantity());
3329 
3330   // FIXME: We set the section explicitly to avoid a bug in ld64 224.1.
3331   // Without it LLVM can merge the string with a non unnamed_addr one during
3332   // LTO.  Doing that changes the section it ends in, which surprises ld64.
3333   if (getTriple().isOSBinFormatMachO())
3334     GV->setSection(isUTF16 ? "__TEXT,__ustring"
3335                            : "__TEXT,__cstring,cstring_literals");
3336 
3337   // String.
3338   llvm::Constant *Str =
3339       llvm::ConstantExpr::getGetElementPtr(GV->getValueType(), GV, Zeros);
3340 
3341   if (isUTF16)
3342     // Cast the UTF16 string to the correct type.
3343     Str = llvm::ConstantExpr::getBitCast(Str, Int8PtrTy);
3344   Fields.add(Str);
3345 
3346   // String length.
3347   auto Ty = getTypes().ConvertType(getContext().LongTy);
3348   Fields.addInt(cast<llvm::IntegerType>(Ty), StringLength);
3349 
3350   CharUnits Alignment = getPointerAlign();
3351 
3352   // The struct.
3353   GV = Fields.finishAndCreateGlobal("_unnamed_cfstring_", Alignment,
3354                                     /*isConstant=*/false,
3355                                     llvm::GlobalVariable::PrivateLinkage);
3356   switch (getTriple().getObjectFormat()) {
3357   case llvm::Triple::UnknownObjectFormat:
3358     llvm_unreachable("unknown file format");
3359   case llvm::Triple::COFF:
3360   case llvm::Triple::ELF:
3361   case llvm::Triple::Wasm:
3362     GV->setSection("cfstring");
3363     break;
3364   case llvm::Triple::MachO:
3365     GV->setSection("__DATA,__cfstring");
3366     break;
3367   }
3368   Entry.second = GV;
3369 
3370   return ConstantAddress(GV, Alignment);
3371 }
3372 
3373 QualType CodeGenModule::getObjCFastEnumerationStateType() {
3374   if (ObjCFastEnumerationStateType.isNull()) {
3375     RecordDecl *D = Context.buildImplicitRecord("__objcFastEnumerationState");
3376     D->startDefinition();
3377 
3378     QualType FieldTypes[] = {
3379       Context.UnsignedLongTy,
3380       Context.getPointerType(Context.getObjCIdType()),
3381       Context.getPointerType(Context.UnsignedLongTy),
3382       Context.getConstantArrayType(Context.UnsignedLongTy,
3383                            llvm::APInt(32, 5), ArrayType::Normal, 0)
3384     };
3385 
3386     for (size_t i = 0; i < 4; ++i) {
3387       FieldDecl *Field = FieldDecl::Create(Context,
3388                                            D,
3389                                            SourceLocation(),
3390                                            SourceLocation(), nullptr,
3391                                            FieldTypes[i], /*TInfo=*/nullptr,
3392                                            /*BitWidth=*/nullptr,
3393                                            /*Mutable=*/false,
3394                                            ICIS_NoInit);
3395       Field->setAccess(AS_public);
3396       D->addDecl(Field);
3397     }
3398 
3399     D->completeDefinition();
3400     ObjCFastEnumerationStateType = Context.getTagDeclType(D);
3401   }
3402 
3403   return ObjCFastEnumerationStateType;
3404 }
3405 
3406 llvm::Constant *
3407 CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) {
3408   assert(!E->getType()->isPointerType() && "Strings are always arrays");
3409 
3410   // Don't emit it as the address of the string, emit the string data itself
3411   // as an inline array.
3412   if (E->getCharByteWidth() == 1) {
3413     SmallString<64> Str(E->getString());
3414 
3415     // Resize the string to the right size, which is indicated by its type.
3416     const ConstantArrayType *CAT = Context.getAsConstantArrayType(E->getType());
3417     Str.resize(CAT->getSize().getZExtValue());
3418     return llvm::ConstantDataArray::getString(VMContext, Str, false);
3419   }
3420 
3421   auto *AType = cast<llvm::ArrayType>(getTypes().ConvertType(E->getType()));
3422   llvm::Type *ElemTy = AType->getElementType();
3423   unsigned NumElements = AType->getNumElements();
3424 
3425   // Wide strings have either 2-byte or 4-byte elements.
3426   if (ElemTy->getPrimitiveSizeInBits() == 16) {
3427     SmallVector<uint16_t, 32> Elements;
3428     Elements.reserve(NumElements);
3429 
3430     for(unsigned i = 0, e = E->getLength(); i != e; ++i)
3431       Elements.push_back(E->getCodeUnit(i));
3432     Elements.resize(NumElements);
3433     return llvm::ConstantDataArray::get(VMContext, Elements);
3434   }
3435 
3436   assert(ElemTy->getPrimitiveSizeInBits() == 32);
3437   SmallVector<uint32_t, 32> Elements;
3438   Elements.reserve(NumElements);
3439 
3440   for(unsigned i = 0, e = E->getLength(); i != e; ++i)
3441     Elements.push_back(E->getCodeUnit(i));
3442   Elements.resize(NumElements);
3443   return llvm::ConstantDataArray::get(VMContext, Elements);
3444 }
3445 
3446 static llvm::GlobalVariable *
3447 GenerateStringLiteral(llvm::Constant *C, llvm::GlobalValue::LinkageTypes LT,
3448                       CodeGenModule &CGM, StringRef GlobalName,
3449                       CharUnits Alignment) {
3450   // OpenCL v1.2 s6.5.3: a string literal is in the constant address space.
3451   unsigned AddrSpace = 0;
3452   if (CGM.getLangOpts().OpenCL)
3453     AddrSpace = CGM.getContext().getTargetAddressSpace(LangAS::opencl_constant);
3454 
3455   llvm::Module &M = CGM.getModule();
3456   // Create a global variable for this string
3457   auto *GV = new llvm::GlobalVariable(
3458       M, C->getType(), !CGM.getLangOpts().WritableStrings, LT, C, GlobalName,
3459       nullptr, llvm::GlobalVariable::NotThreadLocal, AddrSpace);
3460   GV->setAlignment(Alignment.getQuantity());
3461   GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
3462   if (GV->isWeakForLinker()) {
3463     assert(CGM.supportsCOMDAT() && "Only COFF uses weak string literals");
3464     GV->setComdat(M.getOrInsertComdat(GV->getName()));
3465   }
3466 
3467   return GV;
3468 }
3469 
3470 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a
3471 /// constant array for the given string literal.
3472 ConstantAddress
3473 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S,
3474                                                   StringRef Name) {
3475   CharUnits Alignment = getContext().getAlignOfGlobalVarInChars(S->getType());
3476 
3477   llvm::Constant *C = GetConstantArrayFromStringLiteral(S);
3478   llvm::GlobalVariable **Entry = nullptr;
3479   if (!LangOpts.WritableStrings) {
3480     Entry = &ConstantStringMap[C];
3481     if (auto GV = *Entry) {
3482       if (Alignment.getQuantity() > GV->getAlignment())
3483         GV->setAlignment(Alignment.getQuantity());
3484       return ConstantAddress(GV, Alignment);
3485     }
3486   }
3487 
3488   SmallString<256> MangledNameBuffer;
3489   StringRef GlobalVariableName;
3490   llvm::GlobalValue::LinkageTypes LT;
3491 
3492   // Mangle the string literal if the ABI allows for it.  However, we cannot
3493   // do this if  we are compiling with ASan or -fwritable-strings because they
3494   // rely on strings having normal linkage.
3495   if (!LangOpts.WritableStrings &&
3496       !LangOpts.Sanitize.has(SanitizerKind::Address) &&
3497       getCXXABI().getMangleContext().shouldMangleStringLiteral(S)) {
3498     llvm::raw_svector_ostream Out(MangledNameBuffer);
3499     getCXXABI().getMangleContext().mangleStringLiteral(S, Out);
3500 
3501     LT = llvm::GlobalValue::LinkOnceODRLinkage;
3502     GlobalVariableName = MangledNameBuffer;
3503   } else {
3504     LT = llvm::GlobalValue::PrivateLinkage;
3505     GlobalVariableName = Name;
3506   }
3507 
3508   auto GV = GenerateStringLiteral(C, LT, *this, GlobalVariableName, Alignment);
3509   if (Entry)
3510     *Entry = GV;
3511 
3512   SanitizerMD->reportGlobalToASan(GV, S->getStrTokenLoc(0), "<string literal>",
3513                                   QualType());
3514   return ConstantAddress(GV, Alignment);
3515 }
3516 
3517 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant
3518 /// array for the given ObjCEncodeExpr node.
3519 ConstantAddress
3520 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) {
3521   std::string Str;
3522   getContext().getObjCEncodingForType(E->getEncodedType(), Str);
3523 
3524   return GetAddrOfConstantCString(Str);
3525 }
3526 
3527 /// GetAddrOfConstantCString - Returns a pointer to a character array containing
3528 /// the literal and a terminating '\0' character.
3529 /// The result has pointer to array type.
3530 ConstantAddress CodeGenModule::GetAddrOfConstantCString(
3531     const std::string &Str, const char *GlobalName) {
3532   StringRef StrWithNull(Str.c_str(), Str.size() + 1);
3533   CharUnits Alignment =
3534     getContext().getAlignOfGlobalVarInChars(getContext().CharTy);
3535 
3536   llvm::Constant *C =
3537       llvm::ConstantDataArray::getString(getLLVMContext(), StrWithNull, false);
3538 
3539   // Don't share any string literals if strings aren't constant.
3540   llvm::GlobalVariable **Entry = nullptr;
3541   if (!LangOpts.WritableStrings) {
3542     Entry = &ConstantStringMap[C];
3543     if (auto GV = *Entry) {
3544       if (Alignment.getQuantity() > GV->getAlignment())
3545         GV->setAlignment(Alignment.getQuantity());
3546       return ConstantAddress(GV, Alignment);
3547     }
3548   }
3549 
3550   // Get the default prefix if a name wasn't specified.
3551   if (!GlobalName)
3552     GlobalName = ".str";
3553   // Create a global variable for this.
3554   auto GV = GenerateStringLiteral(C, llvm::GlobalValue::PrivateLinkage, *this,
3555                                   GlobalName, Alignment);
3556   if (Entry)
3557     *Entry = GV;
3558   return ConstantAddress(GV, Alignment);
3559 }
3560 
3561 ConstantAddress CodeGenModule::GetAddrOfGlobalTemporary(
3562     const MaterializeTemporaryExpr *E, const Expr *Init) {
3563   assert((E->getStorageDuration() == SD_Static ||
3564           E->getStorageDuration() == SD_Thread) && "not a global temporary");
3565   const auto *VD = cast<VarDecl>(E->getExtendingDecl());
3566 
3567   // If we're not materializing a subobject of the temporary, keep the
3568   // cv-qualifiers from the type of the MaterializeTemporaryExpr.
3569   QualType MaterializedType = Init->getType();
3570   if (Init == E->GetTemporaryExpr())
3571     MaterializedType = E->getType();
3572 
3573   CharUnits Align = getContext().getTypeAlignInChars(MaterializedType);
3574 
3575   if (llvm::Constant *Slot = MaterializedGlobalTemporaryMap[E])
3576     return ConstantAddress(Slot, Align);
3577 
3578   // FIXME: If an externally-visible declaration extends multiple temporaries,
3579   // we need to give each temporary the same name in every translation unit (and
3580   // we also need to make the temporaries externally-visible).
3581   SmallString<256> Name;
3582   llvm::raw_svector_ostream Out(Name);
3583   getCXXABI().getMangleContext().mangleReferenceTemporary(
3584       VD, E->getManglingNumber(), Out);
3585 
3586   APValue *Value = nullptr;
3587   if (E->getStorageDuration() == SD_Static) {
3588     // We might have a cached constant initializer for this temporary. Note
3589     // that this might have a different value from the value computed by
3590     // evaluating the initializer if the surrounding constant expression
3591     // modifies the temporary.
3592     Value = getContext().getMaterializedTemporaryValue(E, false);
3593     if (Value && Value->isUninit())
3594       Value = nullptr;
3595   }
3596 
3597   // Try evaluating it now, it might have a constant initializer.
3598   Expr::EvalResult EvalResult;
3599   if (!Value && Init->EvaluateAsRValue(EvalResult, getContext()) &&
3600       !EvalResult.hasSideEffects())
3601     Value = &EvalResult.Val;
3602 
3603   llvm::Constant *InitialValue = nullptr;
3604   bool Constant = false;
3605   llvm::Type *Type;
3606   if (Value) {
3607     // The temporary has a constant initializer, use it.
3608     InitialValue = EmitConstantValue(*Value, MaterializedType, nullptr);
3609     Constant = isTypeConstant(MaterializedType, /*ExcludeCtor*/Value);
3610     Type = InitialValue->getType();
3611   } else {
3612     // No initializer, the initialization will be provided when we
3613     // initialize the declaration which performed lifetime extension.
3614     Type = getTypes().ConvertTypeForMem(MaterializedType);
3615   }
3616 
3617   // Create a global variable for this lifetime-extended temporary.
3618   llvm::GlobalValue::LinkageTypes Linkage =
3619       getLLVMLinkageVarDefinition(VD, Constant);
3620   if (Linkage == llvm::GlobalVariable::ExternalLinkage) {
3621     const VarDecl *InitVD;
3622     if (VD->isStaticDataMember() && VD->getAnyInitializer(InitVD) &&
3623         isa<CXXRecordDecl>(InitVD->getLexicalDeclContext())) {
3624       // Temporaries defined inside a class get linkonce_odr linkage because the
3625       // class can be defined in multipe translation units.
3626       Linkage = llvm::GlobalVariable::LinkOnceODRLinkage;
3627     } else {
3628       // There is no need for this temporary to have external linkage if the
3629       // VarDecl has external linkage.
3630       Linkage = llvm::GlobalVariable::InternalLinkage;
3631     }
3632   }
3633   unsigned AddrSpace = GetGlobalVarAddressSpace(
3634       VD, getContext().getTargetAddressSpace(MaterializedType));
3635   auto *GV = new llvm::GlobalVariable(
3636       getModule(), Type, Constant, Linkage, InitialValue, Name.c_str(),
3637       /*InsertBefore=*/nullptr, llvm::GlobalVariable::NotThreadLocal,
3638       AddrSpace);
3639   setGlobalVisibility(GV, VD);
3640   GV->setAlignment(Align.getQuantity());
3641   if (supportsCOMDAT() && GV->isWeakForLinker())
3642     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
3643   if (VD->getTLSKind())
3644     setTLSMode(GV, *VD);
3645   MaterializedGlobalTemporaryMap[E] = GV;
3646   return ConstantAddress(GV, Align);
3647 }
3648 
3649 /// EmitObjCPropertyImplementations - Emit information for synthesized
3650 /// properties for an implementation.
3651 void CodeGenModule::EmitObjCPropertyImplementations(const
3652                                                     ObjCImplementationDecl *D) {
3653   for (const auto *PID : D->property_impls()) {
3654     // Dynamic is just for type-checking.
3655     if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) {
3656       ObjCPropertyDecl *PD = PID->getPropertyDecl();
3657 
3658       // Determine which methods need to be implemented, some may have
3659       // been overridden. Note that ::isPropertyAccessor is not the method
3660       // we want, that just indicates if the decl came from a
3661       // property. What we want to know is if the method is defined in
3662       // this implementation.
3663       if (!D->getInstanceMethod(PD->getGetterName()))
3664         CodeGenFunction(*this).GenerateObjCGetter(
3665                                  const_cast<ObjCImplementationDecl *>(D), PID);
3666       if (!PD->isReadOnly() &&
3667           !D->getInstanceMethod(PD->getSetterName()))
3668         CodeGenFunction(*this).GenerateObjCSetter(
3669                                  const_cast<ObjCImplementationDecl *>(D), PID);
3670     }
3671   }
3672 }
3673 
3674 static bool needsDestructMethod(ObjCImplementationDecl *impl) {
3675   const ObjCInterfaceDecl *iface = impl->getClassInterface();
3676   for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin();
3677        ivar; ivar = ivar->getNextIvar())
3678     if (ivar->getType().isDestructedType())
3679       return true;
3680 
3681   return false;
3682 }
3683 
3684 static bool AllTrivialInitializers(CodeGenModule &CGM,
3685                                    ObjCImplementationDecl *D) {
3686   CodeGenFunction CGF(CGM);
3687   for (ObjCImplementationDecl::init_iterator B = D->init_begin(),
3688        E = D->init_end(); B != E; ++B) {
3689     CXXCtorInitializer *CtorInitExp = *B;
3690     Expr *Init = CtorInitExp->getInit();
3691     if (!CGF.isTrivialInitializer(Init))
3692       return false;
3693   }
3694   return true;
3695 }
3696 
3697 /// EmitObjCIvarInitializations - Emit information for ivar initialization
3698 /// for an implementation.
3699 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) {
3700   // We might need a .cxx_destruct even if we don't have any ivar initializers.
3701   if (needsDestructMethod(D)) {
3702     IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct");
3703     Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
3704     ObjCMethodDecl *DTORMethod =
3705       ObjCMethodDecl::Create(getContext(), D->getLocation(), D->getLocation(),
3706                              cxxSelector, getContext().VoidTy, nullptr, D,
3707                              /*isInstance=*/true, /*isVariadic=*/false,
3708                           /*isPropertyAccessor=*/true, /*isImplicitlyDeclared=*/true,
3709                              /*isDefined=*/false, ObjCMethodDecl::Required);
3710     D->addInstanceMethod(DTORMethod);
3711     CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false);
3712     D->setHasDestructors(true);
3713   }
3714 
3715   // If the implementation doesn't have any ivar initializers, we don't need
3716   // a .cxx_construct.
3717   if (D->getNumIvarInitializers() == 0 ||
3718       AllTrivialInitializers(*this, D))
3719     return;
3720 
3721   IdentifierInfo *II = &getContext().Idents.get(".cxx_construct");
3722   Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
3723   // The constructor returns 'self'.
3724   ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(getContext(),
3725                                                 D->getLocation(),
3726                                                 D->getLocation(),
3727                                                 cxxSelector,
3728                                                 getContext().getObjCIdType(),
3729                                                 nullptr, D, /*isInstance=*/true,
3730                                                 /*isVariadic=*/false,
3731                                                 /*isPropertyAccessor=*/true,
3732                                                 /*isImplicitlyDeclared=*/true,
3733                                                 /*isDefined=*/false,
3734                                                 ObjCMethodDecl::Required);
3735   D->addInstanceMethod(CTORMethod);
3736   CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true);
3737   D->setHasNonZeroConstructors(true);
3738 }
3739 
3740 // EmitLinkageSpec - Emit all declarations in a linkage spec.
3741 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) {
3742   if (LSD->getLanguage() != LinkageSpecDecl::lang_c &&
3743       LSD->getLanguage() != LinkageSpecDecl::lang_cxx) {
3744     ErrorUnsupported(LSD, "linkage spec");
3745     return;
3746   }
3747 
3748   EmitDeclContext(LSD);
3749 }
3750 
3751 void CodeGenModule::EmitDeclContext(const DeclContext *DC) {
3752   for (auto *I : DC->decls()) {
3753     // Unlike other DeclContexts, the contents of an ObjCImplDecl at TU scope
3754     // are themselves considered "top-level", so EmitTopLevelDecl on an
3755     // ObjCImplDecl does not recursively visit them. We need to do that in
3756     // case they're nested inside another construct (LinkageSpecDecl /
3757     // ExportDecl) that does stop them from being considered "top-level".
3758     if (auto *OID = dyn_cast<ObjCImplDecl>(I)) {
3759       for (auto *M : OID->methods())
3760         EmitTopLevelDecl(M);
3761     }
3762 
3763     EmitTopLevelDecl(I);
3764   }
3765 }
3766 
3767 /// EmitTopLevelDecl - Emit code for a single top level declaration.
3768 void CodeGenModule::EmitTopLevelDecl(Decl *D) {
3769   // Ignore dependent declarations.
3770   if (D->getDeclContext() && D->getDeclContext()->isDependentContext())
3771     return;
3772 
3773   switch (D->getKind()) {
3774   case Decl::CXXConversion:
3775   case Decl::CXXMethod:
3776   case Decl::Function:
3777     // Skip function templates
3778     if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() ||
3779         cast<FunctionDecl>(D)->isLateTemplateParsed())
3780       return;
3781 
3782     EmitGlobal(cast<FunctionDecl>(D));
3783     // Always provide some coverage mapping
3784     // even for the functions that aren't emitted.
3785     AddDeferredUnusedCoverageMapping(D);
3786     break;
3787 
3788   case Decl::CXXDeductionGuide:
3789     // Function-like, but does not result in code emission.
3790     break;
3791 
3792   case Decl::Var:
3793   case Decl::Decomposition:
3794     // Skip variable templates
3795     if (cast<VarDecl>(D)->getDescribedVarTemplate())
3796       return;
3797   case Decl::VarTemplateSpecialization:
3798     EmitGlobal(cast<VarDecl>(D));
3799     if (auto *DD = dyn_cast<DecompositionDecl>(D))
3800       for (auto *B : DD->bindings())
3801         if (auto *HD = B->getHoldingVar())
3802           EmitGlobal(HD);
3803     break;
3804 
3805   // Indirect fields from global anonymous structs and unions can be
3806   // ignored; only the actual variable requires IR gen support.
3807   case Decl::IndirectField:
3808     break;
3809 
3810   // C++ Decls
3811   case Decl::Namespace:
3812     EmitDeclContext(cast<NamespaceDecl>(D));
3813     break;
3814   case Decl::CXXRecord:
3815     if (DebugInfo) {
3816       if (auto *ES = D->getASTContext().getExternalSource())
3817         if (ES->hasExternalDefinitions(D) == ExternalASTSource::EK_Never)
3818           DebugInfo->completeUnusedClass(cast<CXXRecordDecl>(*D));
3819     }
3820     // Emit any static data members, they may be definitions.
3821     for (auto *I : cast<CXXRecordDecl>(D)->decls())
3822       if (isa<VarDecl>(I) || isa<CXXRecordDecl>(I))
3823         EmitTopLevelDecl(I);
3824     break;
3825     // No code generation needed.
3826   case Decl::UsingShadow:
3827   case Decl::ClassTemplate:
3828   case Decl::VarTemplate:
3829   case Decl::VarTemplatePartialSpecialization:
3830   case Decl::FunctionTemplate:
3831   case Decl::TypeAliasTemplate:
3832   case Decl::Block:
3833   case Decl::Empty:
3834     break;
3835   case Decl::Using:          // using X; [C++]
3836     if (CGDebugInfo *DI = getModuleDebugInfo())
3837         DI->EmitUsingDecl(cast<UsingDecl>(*D));
3838     return;
3839   case Decl::NamespaceAlias:
3840     if (CGDebugInfo *DI = getModuleDebugInfo())
3841         DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(*D));
3842     return;
3843   case Decl::UsingDirective: // using namespace X; [C++]
3844     if (CGDebugInfo *DI = getModuleDebugInfo())
3845       DI->EmitUsingDirective(cast<UsingDirectiveDecl>(*D));
3846     return;
3847   case Decl::CXXConstructor:
3848     // Skip function templates
3849     if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() ||
3850         cast<FunctionDecl>(D)->isLateTemplateParsed())
3851       return;
3852 
3853     getCXXABI().EmitCXXConstructors(cast<CXXConstructorDecl>(D));
3854     break;
3855   case Decl::CXXDestructor:
3856     if (cast<FunctionDecl>(D)->isLateTemplateParsed())
3857       return;
3858     getCXXABI().EmitCXXDestructors(cast<CXXDestructorDecl>(D));
3859     break;
3860 
3861   case Decl::StaticAssert:
3862     // Nothing to do.
3863     break;
3864 
3865   // Objective-C Decls
3866 
3867   // Forward declarations, no (immediate) code generation.
3868   case Decl::ObjCInterface:
3869   case Decl::ObjCCategory:
3870     break;
3871 
3872   case Decl::ObjCProtocol: {
3873     auto *Proto = cast<ObjCProtocolDecl>(D);
3874     if (Proto->isThisDeclarationADefinition())
3875       ObjCRuntime->GenerateProtocol(Proto);
3876     break;
3877   }
3878 
3879   case Decl::ObjCCategoryImpl:
3880     // Categories have properties but don't support synthesize so we
3881     // can ignore them here.
3882     ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D));
3883     break;
3884 
3885   case Decl::ObjCImplementation: {
3886     auto *OMD = cast<ObjCImplementationDecl>(D);
3887     EmitObjCPropertyImplementations(OMD);
3888     EmitObjCIvarInitializations(OMD);
3889     ObjCRuntime->GenerateClass(OMD);
3890     // Emit global variable debug information.
3891     if (CGDebugInfo *DI = getModuleDebugInfo())
3892       if (getCodeGenOpts().getDebugInfo() >= codegenoptions::LimitedDebugInfo)
3893         DI->getOrCreateInterfaceType(getContext().getObjCInterfaceType(
3894             OMD->getClassInterface()), OMD->getLocation());
3895     break;
3896   }
3897   case Decl::ObjCMethod: {
3898     auto *OMD = cast<ObjCMethodDecl>(D);
3899     // If this is not a prototype, emit the body.
3900     if (OMD->getBody())
3901       CodeGenFunction(*this).GenerateObjCMethod(OMD);
3902     break;
3903   }
3904   case Decl::ObjCCompatibleAlias:
3905     ObjCRuntime->RegisterAlias(cast<ObjCCompatibleAliasDecl>(D));
3906     break;
3907 
3908   case Decl::PragmaComment: {
3909     const auto *PCD = cast<PragmaCommentDecl>(D);
3910     switch (PCD->getCommentKind()) {
3911     case PCK_Unknown:
3912       llvm_unreachable("unexpected pragma comment kind");
3913     case PCK_Linker:
3914       AppendLinkerOptions(PCD->getArg());
3915       break;
3916     case PCK_Lib:
3917       AddDependentLib(PCD->getArg());
3918       break;
3919     case PCK_Compiler:
3920     case PCK_ExeStr:
3921     case PCK_User:
3922       break; // We ignore all of these.
3923     }
3924     break;
3925   }
3926 
3927   case Decl::PragmaDetectMismatch: {
3928     const auto *PDMD = cast<PragmaDetectMismatchDecl>(D);
3929     AddDetectMismatch(PDMD->getName(), PDMD->getValue());
3930     break;
3931   }
3932 
3933   case Decl::LinkageSpec:
3934     EmitLinkageSpec(cast<LinkageSpecDecl>(D));
3935     break;
3936 
3937   case Decl::FileScopeAsm: {
3938     // File-scope asm is ignored during device-side CUDA compilation.
3939     if (LangOpts.CUDA && LangOpts.CUDAIsDevice)
3940       break;
3941     // File-scope asm is ignored during device-side OpenMP compilation.
3942     if (LangOpts.OpenMPIsDevice)
3943       break;
3944     auto *AD = cast<FileScopeAsmDecl>(D);
3945     getModule().appendModuleInlineAsm(AD->getAsmString()->getString());
3946     break;
3947   }
3948 
3949   case Decl::Import: {
3950     auto *Import = cast<ImportDecl>(D);
3951 
3952     // If we've already imported this module, we're done.
3953     if (!ImportedModules.insert(Import->getImportedModule()))
3954       break;
3955 
3956     // Emit debug information for direct imports.
3957     if (!Import->getImportedOwningModule()) {
3958       if (CGDebugInfo *DI = getModuleDebugInfo())
3959         DI->EmitImportDecl(*Import);
3960     }
3961 
3962     // Find all of the submodules and emit the module initializers.
3963     llvm::SmallPtrSet<clang::Module *, 16> Visited;
3964     SmallVector<clang::Module *, 16> Stack;
3965     Visited.insert(Import->getImportedModule());
3966     Stack.push_back(Import->getImportedModule());
3967 
3968     while (!Stack.empty()) {
3969       clang::Module *Mod = Stack.pop_back_val();
3970       if (!EmittedModuleInitializers.insert(Mod).second)
3971         continue;
3972 
3973       for (auto *D : Context.getModuleInitializers(Mod))
3974         EmitTopLevelDecl(D);
3975 
3976       // Visit the submodules of this module.
3977       for (clang::Module::submodule_iterator Sub = Mod->submodule_begin(),
3978                                              SubEnd = Mod->submodule_end();
3979            Sub != SubEnd; ++Sub) {
3980         // Skip explicit children; they need to be explicitly imported to emit
3981         // the initializers.
3982         if ((*Sub)->IsExplicit)
3983           continue;
3984 
3985         if (Visited.insert(*Sub).second)
3986           Stack.push_back(*Sub);
3987       }
3988     }
3989     break;
3990   }
3991 
3992   case Decl::Export:
3993     EmitDeclContext(cast<ExportDecl>(D));
3994     break;
3995 
3996   case Decl::OMPThreadPrivate:
3997     EmitOMPThreadPrivateDecl(cast<OMPThreadPrivateDecl>(D));
3998     break;
3999 
4000   case Decl::ClassTemplateSpecialization: {
4001     const auto *Spec = cast<ClassTemplateSpecializationDecl>(D);
4002     if (DebugInfo &&
4003         Spec->getSpecializationKind() == TSK_ExplicitInstantiationDefinition &&
4004         Spec->hasDefinition())
4005       DebugInfo->completeTemplateDefinition(*Spec);
4006     break;
4007   }
4008 
4009   case Decl::OMPDeclareReduction:
4010     EmitOMPDeclareReduction(cast<OMPDeclareReductionDecl>(D));
4011     break;
4012 
4013   default:
4014     // Make sure we handled everything we should, every other kind is a
4015     // non-top-level decl.  FIXME: Would be nice to have an isTopLevelDeclKind
4016     // function. Need to recode Decl::Kind to do that easily.
4017     assert(isa<TypeDecl>(D) && "Unsupported decl kind");
4018     break;
4019   }
4020 }
4021 
4022 void CodeGenModule::AddDeferredUnusedCoverageMapping(Decl *D) {
4023   // Do we need to generate coverage mapping?
4024   if (!CodeGenOpts.CoverageMapping)
4025     return;
4026   switch (D->getKind()) {
4027   case Decl::CXXConversion:
4028   case Decl::CXXMethod:
4029   case Decl::Function:
4030   case Decl::ObjCMethod:
4031   case Decl::CXXConstructor:
4032   case Decl::CXXDestructor: {
4033     if (!cast<FunctionDecl>(D)->doesThisDeclarationHaveABody())
4034       return;
4035     auto I = DeferredEmptyCoverageMappingDecls.find(D);
4036     if (I == DeferredEmptyCoverageMappingDecls.end())
4037       DeferredEmptyCoverageMappingDecls[D] = true;
4038     break;
4039   }
4040   default:
4041     break;
4042   };
4043 }
4044 
4045 void CodeGenModule::ClearUnusedCoverageMapping(const Decl *D) {
4046   // Do we need to generate coverage mapping?
4047   if (!CodeGenOpts.CoverageMapping)
4048     return;
4049   if (const auto *Fn = dyn_cast<FunctionDecl>(D)) {
4050     if (Fn->isTemplateInstantiation())
4051       ClearUnusedCoverageMapping(Fn->getTemplateInstantiationPattern());
4052   }
4053   auto I = DeferredEmptyCoverageMappingDecls.find(D);
4054   if (I == DeferredEmptyCoverageMappingDecls.end())
4055     DeferredEmptyCoverageMappingDecls[D] = false;
4056   else
4057     I->second = false;
4058 }
4059 
4060 void CodeGenModule::EmitDeferredUnusedCoverageMappings() {
4061   std::vector<const Decl *> DeferredDecls;
4062   for (const auto &I : DeferredEmptyCoverageMappingDecls) {
4063     if (!I.second)
4064       continue;
4065     DeferredDecls.push_back(I.first);
4066   }
4067   // Sort the declarations by their location to make sure that the tests get a
4068   // predictable order for the coverage mapping for the unused declarations.
4069   if (CodeGenOpts.DumpCoverageMapping)
4070     std::sort(DeferredDecls.begin(), DeferredDecls.end(),
4071               [] (const Decl *LHS, const Decl *RHS) {
4072       return LHS->getLocStart() < RHS->getLocStart();
4073     });
4074   for (const auto *D : DeferredDecls) {
4075     switch (D->getKind()) {
4076     case Decl::CXXConversion:
4077     case Decl::CXXMethod:
4078     case Decl::Function:
4079     case Decl::ObjCMethod: {
4080       CodeGenPGO PGO(*this);
4081       GlobalDecl GD(cast<FunctionDecl>(D));
4082       PGO.emitEmptyCounterMapping(D, getMangledName(GD),
4083                                   getFunctionLinkage(GD));
4084       break;
4085     }
4086     case Decl::CXXConstructor: {
4087       CodeGenPGO PGO(*this);
4088       GlobalDecl GD(cast<CXXConstructorDecl>(D), Ctor_Base);
4089       PGO.emitEmptyCounterMapping(D, getMangledName(GD),
4090                                   getFunctionLinkage(GD));
4091       break;
4092     }
4093     case Decl::CXXDestructor: {
4094       CodeGenPGO PGO(*this);
4095       GlobalDecl GD(cast<CXXDestructorDecl>(D), Dtor_Base);
4096       PGO.emitEmptyCounterMapping(D, getMangledName(GD),
4097                                   getFunctionLinkage(GD));
4098       break;
4099     }
4100     default:
4101       break;
4102     };
4103   }
4104 }
4105 
4106 /// Turns the given pointer into a constant.
4107 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context,
4108                                           const void *Ptr) {
4109   uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr);
4110   llvm::Type *i64 = llvm::Type::getInt64Ty(Context);
4111   return llvm::ConstantInt::get(i64, PtrInt);
4112 }
4113 
4114 static void EmitGlobalDeclMetadata(CodeGenModule &CGM,
4115                                    llvm::NamedMDNode *&GlobalMetadata,
4116                                    GlobalDecl D,
4117                                    llvm::GlobalValue *Addr) {
4118   if (!GlobalMetadata)
4119     GlobalMetadata =
4120       CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs");
4121 
4122   // TODO: should we report variant information for ctors/dtors?
4123   llvm::Metadata *Ops[] = {llvm::ConstantAsMetadata::get(Addr),
4124                            llvm::ConstantAsMetadata::get(GetPointerConstant(
4125                                CGM.getLLVMContext(), D.getDecl()))};
4126   GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops));
4127 }
4128 
4129 /// For each function which is declared within an extern "C" region and marked
4130 /// as 'used', but has internal linkage, create an alias from the unmangled
4131 /// name to the mangled name if possible. People expect to be able to refer
4132 /// to such functions with an unmangled name from inline assembly within the
4133 /// same translation unit.
4134 void CodeGenModule::EmitStaticExternCAliases() {
4135   // Don't do anything if we're generating CUDA device code -- the NVPTX
4136   // assembly target doesn't support aliases.
4137   if (Context.getTargetInfo().getTriple().isNVPTX())
4138     return;
4139   for (auto &I : StaticExternCValues) {
4140     IdentifierInfo *Name = I.first;
4141     llvm::GlobalValue *Val = I.second;
4142     if (Val && !getModule().getNamedValue(Name->getName()))
4143       addUsedGlobal(llvm::GlobalAlias::create(Name->getName(), Val));
4144   }
4145 }
4146 
4147 bool CodeGenModule::lookupRepresentativeDecl(StringRef MangledName,
4148                                              GlobalDecl &Result) const {
4149   auto Res = Manglings.find(MangledName);
4150   if (Res == Manglings.end())
4151     return false;
4152   Result = Res->getValue();
4153   return true;
4154 }
4155 
4156 /// Emits metadata nodes associating all the global values in the
4157 /// current module with the Decls they came from.  This is useful for
4158 /// projects using IR gen as a subroutine.
4159 ///
4160 /// Since there's currently no way to associate an MDNode directly
4161 /// with an llvm::GlobalValue, we create a global named metadata
4162 /// with the name 'clang.global.decl.ptrs'.
4163 void CodeGenModule::EmitDeclMetadata() {
4164   llvm::NamedMDNode *GlobalMetadata = nullptr;
4165 
4166   for (auto &I : MangledDeclNames) {
4167     llvm::GlobalValue *Addr = getModule().getNamedValue(I.second);
4168     // Some mangled names don't necessarily have an associated GlobalValue
4169     // in this module, e.g. if we mangled it for DebugInfo.
4170     if (Addr)
4171       EmitGlobalDeclMetadata(*this, GlobalMetadata, I.first, Addr);
4172   }
4173 }
4174 
4175 /// Emits metadata nodes for all the local variables in the current
4176 /// function.
4177 void CodeGenFunction::EmitDeclMetadata() {
4178   if (LocalDeclMap.empty()) return;
4179 
4180   llvm::LLVMContext &Context = getLLVMContext();
4181 
4182   // Find the unique metadata ID for this name.
4183   unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr");
4184 
4185   llvm::NamedMDNode *GlobalMetadata = nullptr;
4186 
4187   for (auto &I : LocalDeclMap) {
4188     const Decl *D = I.first;
4189     llvm::Value *Addr = I.second.getPointer();
4190     if (auto *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) {
4191       llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D);
4192       Alloca->setMetadata(
4193           DeclPtrKind, llvm::MDNode::get(
4194                            Context, llvm::ValueAsMetadata::getConstant(DAddr)));
4195     } else if (auto *GV = dyn_cast<llvm::GlobalValue>(Addr)) {
4196       GlobalDecl GD = GlobalDecl(cast<VarDecl>(D));
4197       EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV);
4198     }
4199   }
4200 }
4201 
4202 void CodeGenModule::EmitVersionIdentMetadata() {
4203   llvm::NamedMDNode *IdentMetadata =
4204     TheModule.getOrInsertNamedMetadata("llvm.ident");
4205   std::string Version = getClangFullVersion();
4206   llvm::LLVMContext &Ctx = TheModule.getContext();
4207 
4208   llvm::Metadata *IdentNode[] = {llvm::MDString::get(Ctx, Version)};
4209   IdentMetadata->addOperand(llvm::MDNode::get(Ctx, IdentNode));
4210 }
4211 
4212 void CodeGenModule::EmitTargetMetadata() {
4213   // Warning, new MangledDeclNames may be appended within this loop.
4214   // We rely on MapVector insertions adding new elements to the end
4215   // of the container.
4216   // FIXME: Move this loop into the one target that needs it, and only
4217   // loop over those declarations for which we couldn't emit the target
4218   // metadata when we emitted the declaration.
4219   for (unsigned I = 0; I != MangledDeclNames.size(); ++I) {
4220     auto Val = *(MangledDeclNames.begin() + I);
4221     const Decl *D = Val.first.getDecl()->getMostRecentDecl();
4222     llvm::GlobalValue *GV = GetGlobalValue(Val.second);
4223     getTargetCodeGenInfo().emitTargetMD(D, GV, *this);
4224   }
4225 }
4226 
4227 void CodeGenModule::EmitCoverageFile() {
4228   if (getCodeGenOpts().CoverageDataFile.empty() &&
4229       getCodeGenOpts().CoverageNotesFile.empty())
4230     return;
4231 
4232   llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu");
4233   if (!CUNode)
4234     return;
4235 
4236   llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov");
4237   llvm::LLVMContext &Ctx = TheModule.getContext();
4238   auto *CoverageDataFile =
4239       llvm::MDString::get(Ctx, getCodeGenOpts().CoverageDataFile);
4240   auto *CoverageNotesFile =
4241       llvm::MDString::get(Ctx, getCodeGenOpts().CoverageNotesFile);
4242   for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) {
4243     llvm::MDNode *CU = CUNode->getOperand(i);
4244     llvm::Metadata *Elts[] = {CoverageNotesFile, CoverageDataFile, CU};
4245     GCov->addOperand(llvm::MDNode::get(Ctx, Elts));
4246   }
4247 }
4248 
4249 llvm::Constant *CodeGenModule::EmitUuidofInitializer(StringRef Uuid) {
4250   // Sema has checked that all uuid strings are of the form
4251   // "12345678-1234-1234-1234-1234567890ab".
4252   assert(Uuid.size() == 36);
4253   for (unsigned i = 0; i < 36; ++i) {
4254     if (i == 8 || i == 13 || i == 18 || i == 23) assert(Uuid[i] == '-');
4255     else                                         assert(isHexDigit(Uuid[i]));
4256   }
4257 
4258   // The starts of all bytes of Field3 in Uuid. Field 3 is "1234-1234567890ab".
4259   const unsigned Field3ValueOffsets[8] = { 19, 21, 24, 26, 28, 30, 32, 34 };
4260 
4261   llvm::Constant *Field3[8];
4262   for (unsigned Idx = 0; Idx < 8; ++Idx)
4263     Field3[Idx] = llvm::ConstantInt::get(
4264         Int8Ty, Uuid.substr(Field3ValueOffsets[Idx], 2), 16);
4265 
4266   llvm::Constant *Fields[4] = {
4267     llvm::ConstantInt::get(Int32Ty, Uuid.substr(0,  8), 16),
4268     llvm::ConstantInt::get(Int16Ty, Uuid.substr(9,  4), 16),
4269     llvm::ConstantInt::get(Int16Ty, Uuid.substr(14, 4), 16),
4270     llvm::ConstantArray::get(llvm::ArrayType::get(Int8Ty, 8), Field3)
4271   };
4272 
4273   return llvm::ConstantStruct::getAnon(Fields);
4274 }
4275 
4276 llvm::Constant *CodeGenModule::GetAddrOfRTTIDescriptor(QualType Ty,
4277                                                        bool ForEH) {
4278   // Return a bogus pointer if RTTI is disabled, unless it's for EH.
4279   // FIXME: should we even be calling this method if RTTI is disabled
4280   // and it's not for EH?
4281   if (!ForEH && !getLangOpts().RTTI)
4282     return llvm::Constant::getNullValue(Int8PtrTy);
4283 
4284   if (ForEH && Ty->isObjCObjectPointerType() &&
4285       LangOpts.ObjCRuntime.isGNUFamily())
4286     return ObjCRuntime->GetEHType(Ty);
4287 
4288   return getCXXABI().getAddrOfRTTIDescriptor(Ty);
4289 }
4290 
4291 void CodeGenModule::EmitOMPThreadPrivateDecl(const OMPThreadPrivateDecl *D) {
4292   for (auto RefExpr : D->varlists()) {
4293     auto *VD = cast<VarDecl>(cast<DeclRefExpr>(RefExpr)->getDecl());
4294     bool PerformInit =
4295         VD->getAnyInitializer() &&
4296         !VD->getAnyInitializer()->isConstantInitializer(getContext(),
4297                                                         /*ForRef=*/false);
4298 
4299     Address Addr(GetAddrOfGlobalVar(VD), getContext().getDeclAlign(VD));
4300     if (auto InitFunction = getOpenMPRuntime().emitThreadPrivateVarDefinition(
4301             VD, Addr, RefExpr->getLocStart(), PerformInit))
4302       CXXGlobalInits.push_back(InitFunction);
4303   }
4304 }
4305 
4306 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierForType(QualType T) {
4307   llvm::Metadata *&InternalId = MetadataIdMap[T.getCanonicalType()];
4308   if (InternalId)
4309     return InternalId;
4310 
4311   if (isExternallyVisible(T->getLinkage())) {
4312     std::string OutName;
4313     llvm::raw_string_ostream Out(OutName);
4314     getCXXABI().getMangleContext().mangleTypeName(T, Out);
4315 
4316     InternalId = llvm::MDString::get(getLLVMContext(), Out.str());
4317   } else {
4318     InternalId = llvm::MDNode::getDistinct(getLLVMContext(),
4319                                            llvm::ArrayRef<llvm::Metadata *>());
4320   }
4321 
4322   return InternalId;
4323 }
4324 
4325 /// Returns whether this module needs the "all-vtables" type identifier.
4326 bool CodeGenModule::NeedAllVtablesTypeId() const {
4327   // Returns true if at least one of vtable-based CFI checkers is enabled and
4328   // is not in the trapping mode.
4329   return ((LangOpts.Sanitize.has(SanitizerKind::CFIVCall) &&
4330            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIVCall)) ||
4331           (LangOpts.Sanitize.has(SanitizerKind::CFINVCall) &&
4332            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFINVCall)) ||
4333           (LangOpts.Sanitize.has(SanitizerKind::CFIDerivedCast) &&
4334            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIDerivedCast)) ||
4335           (LangOpts.Sanitize.has(SanitizerKind::CFIUnrelatedCast) &&
4336            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIUnrelatedCast)));
4337 }
4338 
4339 void CodeGenModule::AddVTableTypeMetadata(llvm::GlobalVariable *VTable,
4340                                           CharUnits Offset,
4341                                           const CXXRecordDecl *RD) {
4342   llvm::Metadata *MD =
4343       CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0));
4344   VTable->addTypeMetadata(Offset.getQuantity(), MD);
4345 
4346   if (CodeGenOpts.SanitizeCfiCrossDso)
4347     if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD))
4348       VTable->addTypeMetadata(Offset.getQuantity(),
4349                               llvm::ConstantAsMetadata::get(CrossDsoTypeId));
4350 
4351   if (NeedAllVtablesTypeId()) {
4352     llvm::Metadata *MD = llvm::MDString::get(getLLVMContext(), "all-vtables");
4353     VTable->addTypeMetadata(Offset.getQuantity(), MD);
4354   }
4355 }
4356 
4357 // Fills in the supplied string map with the set of target features for the
4358 // passed in function.
4359 void CodeGenModule::getFunctionFeatureMap(llvm::StringMap<bool> &FeatureMap,
4360                                           const FunctionDecl *FD) {
4361   StringRef TargetCPU = Target.getTargetOpts().CPU;
4362   if (const auto *TD = FD->getAttr<TargetAttr>()) {
4363     // If we have a TargetAttr build up the feature map based on that.
4364     TargetAttr::ParsedTargetAttr ParsedAttr = TD->parse();
4365 
4366     // Make a copy of the features as passed on the command line into the
4367     // beginning of the additional features from the function to override.
4368     ParsedAttr.first.insert(ParsedAttr.first.begin(),
4369                             Target.getTargetOpts().FeaturesAsWritten.begin(),
4370                             Target.getTargetOpts().FeaturesAsWritten.end());
4371 
4372     if (ParsedAttr.second != "")
4373       TargetCPU = ParsedAttr.second;
4374 
4375     // Now populate the feature map, first with the TargetCPU which is either
4376     // the default or a new one from the target attribute string. Then we'll use
4377     // the passed in features (FeaturesAsWritten) along with the new ones from
4378     // the attribute.
4379     Target.initFeatureMap(FeatureMap, getDiags(), TargetCPU, ParsedAttr.first);
4380   } else {
4381     Target.initFeatureMap(FeatureMap, getDiags(), TargetCPU,
4382                           Target.getTargetOpts().Features);
4383   }
4384 }
4385 
4386 llvm::SanitizerStatReport &CodeGenModule::getSanStats() {
4387   if (!SanStats)
4388     SanStats = llvm::make_unique<llvm::SanitizerStatReport>(&getModule());
4389 
4390   return *SanStats;
4391 }
4392 llvm::Value *
4393 CodeGenModule::createOpenCLIntToSamplerConversion(const Expr *E,
4394                                                   CodeGenFunction &CGF) {
4395   llvm::Constant *C = EmitConstantExpr(E, E->getType(), &CGF);
4396   auto SamplerT = getOpenCLRuntime().getSamplerType();
4397   auto FTy = llvm::FunctionType::get(SamplerT, {C->getType()}, false);
4398   return CGF.Builder.CreateCall(CreateRuntimeFunction(FTy,
4399                                 "__translate_sampler_initializer"),
4400                                 {C});
4401 }
4402