1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This coordinates the per-module state used while generating code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenModule.h" 15 #include "CGBlocks.h" 16 #include "CGCUDARuntime.h" 17 #include "CGCXXABI.h" 18 #include "CGCall.h" 19 #include "CGDebugInfo.h" 20 #include "CGObjCRuntime.h" 21 #include "CGOpenCLRuntime.h" 22 #include "CGOpenMPRuntime.h" 23 #include "CGOpenMPRuntimeNVPTX.h" 24 #include "CodeGenFunction.h" 25 #include "CodeGenPGO.h" 26 #include "CodeGenTBAA.h" 27 #include "ConstantBuilder.h" 28 #include "CoverageMappingGen.h" 29 #include "TargetInfo.h" 30 #include "clang/AST/ASTContext.h" 31 #include "clang/AST/CharUnits.h" 32 #include "clang/AST/DeclCXX.h" 33 #include "clang/AST/DeclObjC.h" 34 #include "clang/AST/DeclTemplate.h" 35 #include "clang/AST/Mangle.h" 36 #include "clang/AST/RecordLayout.h" 37 #include "clang/AST/RecursiveASTVisitor.h" 38 #include "clang/Basic/Builtins.h" 39 #include "clang/Basic/CharInfo.h" 40 #include "clang/Basic/Diagnostic.h" 41 #include "clang/Basic/Module.h" 42 #include "clang/Basic/SourceManager.h" 43 #include "clang/Basic/TargetInfo.h" 44 #include "clang/Basic/Version.h" 45 #include "clang/Frontend/CodeGenOptions.h" 46 #include "clang/Sema/SemaDiagnostic.h" 47 #include "llvm/ADT/Triple.h" 48 #include "llvm/IR/CallSite.h" 49 #include "llvm/IR/CallingConv.h" 50 #include "llvm/IR/DataLayout.h" 51 #include "llvm/IR/Intrinsics.h" 52 #include "llvm/IR/LLVMContext.h" 53 #include "llvm/IR/Module.h" 54 #include "llvm/ProfileData/InstrProfReader.h" 55 #include "llvm/Support/ConvertUTF.h" 56 #include "llvm/Support/ErrorHandling.h" 57 #include "llvm/Support/MD5.h" 58 59 using namespace clang; 60 using namespace CodeGen; 61 62 static const char AnnotationSection[] = "llvm.metadata"; 63 64 static CGCXXABI *createCXXABI(CodeGenModule &CGM) { 65 switch (CGM.getTarget().getCXXABI().getKind()) { 66 case TargetCXXABI::GenericAArch64: 67 case TargetCXXABI::GenericARM: 68 case TargetCXXABI::iOS: 69 case TargetCXXABI::iOS64: 70 case TargetCXXABI::WatchOS: 71 case TargetCXXABI::GenericMIPS: 72 case TargetCXXABI::GenericItanium: 73 case TargetCXXABI::WebAssembly: 74 return CreateItaniumCXXABI(CGM); 75 case TargetCXXABI::Microsoft: 76 return CreateMicrosoftCXXABI(CGM); 77 } 78 79 llvm_unreachable("invalid C++ ABI kind"); 80 } 81 82 CodeGenModule::CodeGenModule(ASTContext &C, const HeaderSearchOptions &HSO, 83 const PreprocessorOptions &PPO, 84 const CodeGenOptions &CGO, llvm::Module &M, 85 DiagnosticsEngine &diags, 86 CoverageSourceInfo *CoverageInfo) 87 : Context(C), LangOpts(C.getLangOpts()), HeaderSearchOpts(HSO), 88 PreprocessorOpts(PPO), CodeGenOpts(CGO), TheModule(M), Diags(diags), 89 Target(C.getTargetInfo()), ABI(createCXXABI(*this)), 90 VMContext(M.getContext()), Types(*this), VTables(*this), 91 SanitizerMD(new SanitizerMetadata(*this)) { 92 93 // Initialize the type cache. 94 llvm::LLVMContext &LLVMContext = M.getContext(); 95 VoidTy = llvm::Type::getVoidTy(LLVMContext); 96 Int8Ty = llvm::Type::getInt8Ty(LLVMContext); 97 Int16Ty = llvm::Type::getInt16Ty(LLVMContext); 98 Int32Ty = llvm::Type::getInt32Ty(LLVMContext); 99 Int64Ty = llvm::Type::getInt64Ty(LLVMContext); 100 FloatTy = llvm::Type::getFloatTy(LLVMContext); 101 DoubleTy = llvm::Type::getDoubleTy(LLVMContext); 102 PointerWidthInBits = C.getTargetInfo().getPointerWidth(0); 103 PointerAlignInBytes = 104 C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(0)).getQuantity(); 105 SizeSizeInBytes = 106 C.toCharUnitsFromBits(C.getTargetInfo().getMaxPointerWidth()).getQuantity(); 107 IntAlignInBytes = 108 C.toCharUnitsFromBits(C.getTargetInfo().getIntAlign()).getQuantity(); 109 IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth()); 110 IntPtrTy = llvm::IntegerType::get(LLVMContext, 111 C.getTargetInfo().getMaxPointerWidth()); 112 Int8PtrTy = Int8Ty->getPointerTo(0); 113 Int8PtrPtrTy = Int8PtrTy->getPointerTo(0); 114 115 RuntimeCC = getTargetCodeGenInfo().getABIInfo().getRuntimeCC(); 116 BuiltinCC = getTargetCodeGenInfo().getABIInfo().getBuiltinCC(); 117 118 if (LangOpts.ObjC1) 119 createObjCRuntime(); 120 if (LangOpts.OpenCL) 121 createOpenCLRuntime(); 122 if (LangOpts.OpenMP) 123 createOpenMPRuntime(); 124 if (LangOpts.CUDA) 125 createCUDARuntime(); 126 127 // Enable TBAA unless it's suppressed. ThreadSanitizer needs TBAA even at O0. 128 if (LangOpts.Sanitize.has(SanitizerKind::Thread) || 129 (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0)) 130 TBAA.reset(new CodeGenTBAA(Context, VMContext, CodeGenOpts, getLangOpts(), 131 getCXXABI().getMangleContext())); 132 133 // If debug info or coverage generation is enabled, create the CGDebugInfo 134 // object. 135 if (CodeGenOpts.getDebugInfo() != codegenoptions::NoDebugInfo || 136 CodeGenOpts.EmitGcovArcs || CodeGenOpts.EmitGcovNotes) 137 DebugInfo.reset(new CGDebugInfo(*this)); 138 139 Block.GlobalUniqueCount = 0; 140 141 if (C.getLangOpts().ObjC1) 142 ObjCData.reset(new ObjCEntrypoints()); 143 144 if (CodeGenOpts.hasProfileClangUse()) { 145 auto ReaderOrErr = llvm::IndexedInstrProfReader::create( 146 CodeGenOpts.ProfileInstrumentUsePath); 147 if (auto E = ReaderOrErr.takeError()) { 148 unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error, 149 "Could not read profile %0: %1"); 150 llvm::handleAllErrors(std::move(E), [&](const llvm::ErrorInfoBase &EI) { 151 getDiags().Report(DiagID) << CodeGenOpts.ProfileInstrumentUsePath 152 << EI.message(); 153 }); 154 } else 155 PGOReader = std::move(ReaderOrErr.get()); 156 } 157 158 // If coverage mapping generation is enabled, create the 159 // CoverageMappingModuleGen object. 160 if (CodeGenOpts.CoverageMapping) 161 CoverageMapping.reset(new CoverageMappingModuleGen(*this, *CoverageInfo)); 162 } 163 164 CodeGenModule::~CodeGenModule() {} 165 166 void CodeGenModule::createObjCRuntime() { 167 // This is just isGNUFamily(), but we want to force implementors of 168 // new ABIs to decide how best to do this. 169 switch (LangOpts.ObjCRuntime.getKind()) { 170 case ObjCRuntime::GNUstep: 171 case ObjCRuntime::GCC: 172 case ObjCRuntime::ObjFW: 173 ObjCRuntime.reset(CreateGNUObjCRuntime(*this)); 174 return; 175 176 case ObjCRuntime::FragileMacOSX: 177 case ObjCRuntime::MacOSX: 178 case ObjCRuntime::iOS: 179 case ObjCRuntime::WatchOS: 180 ObjCRuntime.reset(CreateMacObjCRuntime(*this)); 181 return; 182 } 183 llvm_unreachable("bad runtime kind"); 184 } 185 186 void CodeGenModule::createOpenCLRuntime() { 187 OpenCLRuntime.reset(new CGOpenCLRuntime(*this)); 188 } 189 190 void CodeGenModule::createOpenMPRuntime() { 191 // Select a specialized code generation class based on the target, if any. 192 // If it does not exist use the default implementation. 193 switch (getTriple().getArch()) { 194 case llvm::Triple::nvptx: 195 case llvm::Triple::nvptx64: 196 assert(getLangOpts().OpenMPIsDevice && 197 "OpenMP NVPTX is only prepared to deal with device code."); 198 OpenMPRuntime.reset(new CGOpenMPRuntimeNVPTX(*this)); 199 break; 200 default: 201 OpenMPRuntime.reset(new CGOpenMPRuntime(*this)); 202 break; 203 } 204 } 205 206 void CodeGenModule::createCUDARuntime() { 207 CUDARuntime.reset(CreateNVCUDARuntime(*this)); 208 } 209 210 void CodeGenModule::addReplacement(StringRef Name, llvm::Constant *C) { 211 Replacements[Name] = C; 212 } 213 214 void CodeGenModule::applyReplacements() { 215 for (auto &I : Replacements) { 216 StringRef MangledName = I.first(); 217 llvm::Constant *Replacement = I.second; 218 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 219 if (!Entry) 220 continue; 221 auto *OldF = cast<llvm::Function>(Entry); 222 auto *NewF = dyn_cast<llvm::Function>(Replacement); 223 if (!NewF) { 224 if (auto *Alias = dyn_cast<llvm::GlobalAlias>(Replacement)) { 225 NewF = dyn_cast<llvm::Function>(Alias->getAliasee()); 226 } else { 227 auto *CE = cast<llvm::ConstantExpr>(Replacement); 228 assert(CE->getOpcode() == llvm::Instruction::BitCast || 229 CE->getOpcode() == llvm::Instruction::GetElementPtr); 230 NewF = dyn_cast<llvm::Function>(CE->getOperand(0)); 231 } 232 } 233 234 // Replace old with new, but keep the old order. 235 OldF->replaceAllUsesWith(Replacement); 236 if (NewF) { 237 NewF->removeFromParent(); 238 OldF->getParent()->getFunctionList().insertAfter(OldF->getIterator(), 239 NewF); 240 } 241 OldF->eraseFromParent(); 242 } 243 } 244 245 void CodeGenModule::addGlobalValReplacement(llvm::GlobalValue *GV, llvm::Constant *C) { 246 GlobalValReplacements.push_back(std::make_pair(GV, C)); 247 } 248 249 void CodeGenModule::applyGlobalValReplacements() { 250 for (auto &I : GlobalValReplacements) { 251 llvm::GlobalValue *GV = I.first; 252 llvm::Constant *C = I.second; 253 254 GV->replaceAllUsesWith(C); 255 GV->eraseFromParent(); 256 } 257 } 258 259 // This is only used in aliases that we created and we know they have a 260 // linear structure. 261 static const llvm::GlobalObject *getAliasedGlobal( 262 const llvm::GlobalIndirectSymbol &GIS) { 263 llvm::SmallPtrSet<const llvm::GlobalIndirectSymbol*, 4> Visited; 264 const llvm::Constant *C = &GIS; 265 for (;;) { 266 C = C->stripPointerCasts(); 267 if (auto *GO = dyn_cast<llvm::GlobalObject>(C)) 268 return GO; 269 // stripPointerCasts will not walk over weak aliases. 270 auto *GIS2 = dyn_cast<llvm::GlobalIndirectSymbol>(C); 271 if (!GIS2) 272 return nullptr; 273 if (!Visited.insert(GIS2).second) 274 return nullptr; 275 C = GIS2->getIndirectSymbol(); 276 } 277 } 278 279 void CodeGenModule::checkAliases() { 280 // Check if the constructed aliases are well formed. It is really unfortunate 281 // that we have to do this in CodeGen, but we only construct mangled names 282 // and aliases during codegen. 283 bool Error = false; 284 DiagnosticsEngine &Diags = getDiags(); 285 for (const GlobalDecl &GD : Aliases) { 286 const auto *D = cast<ValueDecl>(GD.getDecl()); 287 SourceLocation Location; 288 bool IsIFunc = D->hasAttr<IFuncAttr>(); 289 if (const Attr *A = D->getDefiningAttr()) 290 Location = A->getLocation(); 291 else 292 llvm_unreachable("Not an alias or ifunc?"); 293 StringRef MangledName = getMangledName(GD); 294 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 295 auto *Alias = cast<llvm::GlobalIndirectSymbol>(Entry); 296 const llvm::GlobalValue *GV = getAliasedGlobal(*Alias); 297 if (!GV) { 298 Error = true; 299 Diags.Report(Location, diag::err_cyclic_alias) << IsIFunc; 300 } else if (GV->isDeclaration()) { 301 Error = true; 302 Diags.Report(Location, diag::err_alias_to_undefined) 303 << IsIFunc << IsIFunc; 304 } else if (IsIFunc) { 305 // Check resolver function type. 306 llvm::FunctionType *FTy = dyn_cast<llvm::FunctionType>( 307 GV->getType()->getPointerElementType()); 308 assert(FTy); 309 if (!FTy->getReturnType()->isPointerTy()) 310 Diags.Report(Location, diag::err_ifunc_resolver_return); 311 if (FTy->getNumParams()) 312 Diags.Report(Location, diag::err_ifunc_resolver_params); 313 } 314 315 llvm::Constant *Aliasee = Alias->getIndirectSymbol(); 316 llvm::GlobalValue *AliaseeGV; 317 if (auto CE = dyn_cast<llvm::ConstantExpr>(Aliasee)) 318 AliaseeGV = cast<llvm::GlobalValue>(CE->getOperand(0)); 319 else 320 AliaseeGV = cast<llvm::GlobalValue>(Aliasee); 321 322 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) { 323 StringRef AliasSection = SA->getName(); 324 if (AliasSection != AliaseeGV->getSection()) 325 Diags.Report(SA->getLocation(), diag::warn_alias_with_section) 326 << AliasSection << IsIFunc << IsIFunc; 327 } 328 329 // We have to handle alias to weak aliases in here. LLVM itself disallows 330 // this since the object semantics would not match the IL one. For 331 // compatibility with gcc we implement it by just pointing the alias 332 // to its aliasee's aliasee. We also warn, since the user is probably 333 // expecting the link to be weak. 334 if (auto GA = dyn_cast<llvm::GlobalIndirectSymbol>(AliaseeGV)) { 335 if (GA->isInterposable()) { 336 Diags.Report(Location, diag::warn_alias_to_weak_alias) 337 << GV->getName() << GA->getName() << IsIFunc; 338 Aliasee = llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast( 339 GA->getIndirectSymbol(), Alias->getType()); 340 Alias->setIndirectSymbol(Aliasee); 341 } 342 } 343 } 344 if (!Error) 345 return; 346 347 for (const GlobalDecl &GD : Aliases) { 348 StringRef MangledName = getMangledName(GD); 349 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 350 auto *Alias = dyn_cast<llvm::GlobalIndirectSymbol>(Entry); 351 Alias->replaceAllUsesWith(llvm::UndefValue::get(Alias->getType())); 352 Alias->eraseFromParent(); 353 } 354 } 355 356 void CodeGenModule::clear() { 357 DeferredDeclsToEmit.clear(); 358 if (OpenMPRuntime) 359 OpenMPRuntime->clear(); 360 } 361 362 void InstrProfStats::reportDiagnostics(DiagnosticsEngine &Diags, 363 StringRef MainFile) { 364 if (!hasDiagnostics()) 365 return; 366 if (VisitedInMainFile > 0 && VisitedInMainFile == MissingInMainFile) { 367 if (MainFile.empty()) 368 MainFile = "<stdin>"; 369 Diags.Report(diag::warn_profile_data_unprofiled) << MainFile; 370 } else 371 Diags.Report(diag::warn_profile_data_out_of_date) << Visited << Missing 372 << Mismatched; 373 } 374 375 void CodeGenModule::Release() { 376 EmitDeferred(); 377 applyGlobalValReplacements(); 378 applyReplacements(); 379 checkAliases(); 380 EmitCXXGlobalInitFunc(); 381 EmitCXXGlobalDtorFunc(); 382 EmitCXXThreadLocalInitFunc(); 383 if (ObjCRuntime) 384 if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction()) 385 AddGlobalCtor(ObjCInitFunction); 386 if (Context.getLangOpts().CUDA && !Context.getLangOpts().CUDAIsDevice && 387 CUDARuntime) { 388 if (llvm::Function *CudaCtorFunction = CUDARuntime->makeModuleCtorFunction()) 389 AddGlobalCtor(CudaCtorFunction); 390 if (llvm::Function *CudaDtorFunction = CUDARuntime->makeModuleDtorFunction()) 391 AddGlobalDtor(CudaDtorFunction); 392 } 393 if (OpenMPRuntime) 394 if (llvm::Function *OpenMPRegistrationFunction = 395 OpenMPRuntime->emitRegistrationFunction()) 396 AddGlobalCtor(OpenMPRegistrationFunction, 0); 397 if (PGOReader) { 398 getModule().setProfileSummary(PGOReader->getSummary().getMD(VMContext)); 399 if (PGOStats.hasDiagnostics()) 400 PGOStats.reportDiagnostics(getDiags(), getCodeGenOpts().MainFileName); 401 } 402 EmitCtorList(GlobalCtors, "llvm.global_ctors"); 403 EmitCtorList(GlobalDtors, "llvm.global_dtors"); 404 EmitGlobalAnnotations(); 405 EmitStaticExternCAliases(); 406 EmitDeferredUnusedCoverageMappings(); 407 if (CoverageMapping) 408 CoverageMapping->emit(); 409 if (CodeGenOpts.SanitizeCfiCrossDso) 410 CodeGenFunction(*this).EmitCfiCheckFail(); 411 emitLLVMUsed(); 412 if (SanStats) 413 SanStats->finish(); 414 415 if (CodeGenOpts.Autolink && 416 (Context.getLangOpts().Modules || !LinkerOptionsMetadata.empty())) { 417 EmitModuleLinkOptions(); 418 } 419 if (CodeGenOpts.DwarfVersion) { 420 // We actually want the latest version when there are conflicts. 421 // We can change from Warning to Latest if such mode is supported. 422 getModule().addModuleFlag(llvm::Module::Warning, "Dwarf Version", 423 CodeGenOpts.DwarfVersion); 424 } 425 if (CodeGenOpts.EmitCodeView) { 426 // Indicate that we want CodeView in the metadata. 427 getModule().addModuleFlag(llvm::Module::Warning, "CodeView", 1); 428 } 429 if (CodeGenOpts.OptimizationLevel > 0 && CodeGenOpts.StrictVTablePointers) { 430 // We don't support LTO with 2 with different StrictVTablePointers 431 // FIXME: we could support it by stripping all the information introduced 432 // by StrictVTablePointers. 433 434 getModule().addModuleFlag(llvm::Module::Error, "StrictVTablePointers",1); 435 436 llvm::Metadata *Ops[2] = { 437 llvm::MDString::get(VMContext, "StrictVTablePointers"), 438 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 439 llvm::Type::getInt32Ty(VMContext), 1))}; 440 441 getModule().addModuleFlag(llvm::Module::Require, 442 "StrictVTablePointersRequirement", 443 llvm::MDNode::get(VMContext, Ops)); 444 } 445 if (DebugInfo) 446 // We support a single version in the linked module. The LLVM 447 // parser will drop debug info with a different version number 448 // (and warn about it, too). 449 getModule().addModuleFlag(llvm::Module::Warning, "Debug Info Version", 450 llvm::DEBUG_METADATA_VERSION); 451 452 // We need to record the widths of enums and wchar_t, so that we can generate 453 // the correct build attributes in the ARM backend. 454 llvm::Triple::ArchType Arch = Context.getTargetInfo().getTriple().getArch(); 455 if ( Arch == llvm::Triple::arm 456 || Arch == llvm::Triple::armeb 457 || Arch == llvm::Triple::thumb 458 || Arch == llvm::Triple::thumbeb) { 459 // Width of wchar_t in bytes 460 uint64_t WCharWidth = 461 Context.getTypeSizeInChars(Context.getWideCharType()).getQuantity(); 462 getModule().addModuleFlag(llvm::Module::Error, "wchar_size", WCharWidth); 463 464 // The minimum width of an enum in bytes 465 uint64_t EnumWidth = Context.getLangOpts().ShortEnums ? 1 : 4; 466 getModule().addModuleFlag(llvm::Module::Error, "min_enum_size", EnumWidth); 467 } 468 469 if (CodeGenOpts.SanitizeCfiCrossDso) { 470 // Indicate that we want cross-DSO control flow integrity checks. 471 getModule().addModuleFlag(llvm::Module::Override, "Cross-DSO CFI", 1); 472 } 473 474 if (LangOpts.CUDAIsDevice && getTriple().isNVPTX()) { 475 // Indicate whether __nvvm_reflect should be configured to flush denormal 476 // floating point values to 0. (This corresponds to its "__CUDA_FTZ" 477 // property.) 478 getModule().addModuleFlag(llvm::Module::Override, "nvvm-reflect-ftz", 479 LangOpts.CUDADeviceFlushDenormalsToZero ? 1 : 0); 480 } 481 482 if (uint32_t PLevel = Context.getLangOpts().PICLevel) { 483 assert(PLevel < 3 && "Invalid PIC Level"); 484 getModule().setPICLevel(static_cast<llvm::PICLevel::Level>(PLevel)); 485 if (Context.getLangOpts().PIE) 486 getModule().setPIELevel(static_cast<llvm::PIELevel::Level>(PLevel)); 487 } 488 489 SimplifyPersonality(); 490 491 if (getCodeGenOpts().EmitDeclMetadata) 492 EmitDeclMetadata(); 493 494 if (getCodeGenOpts().EmitGcovArcs || getCodeGenOpts().EmitGcovNotes) 495 EmitCoverageFile(); 496 497 if (DebugInfo) 498 DebugInfo->finalize(); 499 500 EmitVersionIdentMetadata(); 501 502 EmitTargetMetadata(); 503 } 504 505 void CodeGenModule::UpdateCompletedType(const TagDecl *TD) { 506 // Make sure that this type is translated. 507 Types.UpdateCompletedType(TD); 508 } 509 510 void CodeGenModule::RefreshTypeCacheForClass(const CXXRecordDecl *RD) { 511 // Make sure that this type is translated. 512 Types.RefreshTypeCacheForClass(RD); 513 } 514 515 llvm::MDNode *CodeGenModule::getTBAAInfo(QualType QTy) { 516 if (!TBAA) 517 return nullptr; 518 return TBAA->getTBAAInfo(QTy); 519 } 520 521 llvm::MDNode *CodeGenModule::getTBAAInfoForVTablePtr() { 522 if (!TBAA) 523 return nullptr; 524 return TBAA->getTBAAInfoForVTablePtr(); 525 } 526 527 llvm::MDNode *CodeGenModule::getTBAAStructInfo(QualType QTy) { 528 if (!TBAA) 529 return nullptr; 530 return TBAA->getTBAAStructInfo(QTy); 531 } 532 533 llvm::MDNode *CodeGenModule::getTBAAStructTagInfo(QualType BaseTy, 534 llvm::MDNode *AccessN, 535 uint64_t O) { 536 if (!TBAA) 537 return nullptr; 538 return TBAA->getTBAAStructTagInfo(BaseTy, AccessN, O); 539 } 540 541 /// Decorate the instruction with a TBAA tag. For both scalar TBAA 542 /// and struct-path aware TBAA, the tag has the same format: 543 /// base type, access type and offset. 544 /// When ConvertTypeToTag is true, we create a tag based on the scalar type. 545 void CodeGenModule::DecorateInstructionWithTBAA(llvm::Instruction *Inst, 546 llvm::MDNode *TBAAInfo, 547 bool ConvertTypeToTag) { 548 if (ConvertTypeToTag && TBAA) 549 Inst->setMetadata(llvm::LLVMContext::MD_tbaa, 550 TBAA->getTBAAScalarTagInfo(TBAAInfo)); 551 else 552 Inst->setMetadata(llvm::LLVMContext::MD_tbaa, TBAAInfo); 553 } 554 555 void CodeGenModule::DecorateInstructionWithInvariantGroup( 556 llvm::Instruction *I, const CXXRecordDecl *RD) { 557 llvm::Metadata *MD = CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0)); 558 auto *MetaDataNode = dyn_cast<llvm::MDNode>(MD); 559 // Check if we have to wrap MDString in MDNode. 560 if (!MetaDataNode) 561 MetaDataNode = llvm::MDNode::get(getLLVMContext(), MD); 562 I->setMetadata(llvm::LLVMContext::MD_invariant_group, MetaDataNode); 563 } 564 565 void CodeGenModule::Error(SourceLocation loc, StringRef message) { 566 unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, "%0"); 567 getDiags().Report(Context.getFullLoc(loc), diagID) << message; 568 } 569 570 /// ErrorUnsupported - Print out an error that codegen doesn't support the 571 /// specified stmt yet. 572 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type) { 573 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, 574 "cannot compile this %0 yet"); 575 std::string Msg = Type; 576 getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID) 577 << Msg << S->getSourceRange(); 578 } 579 580 /// ErrorUnsupported - Print out an error that codegen doesn't support the 581 /// specified decl yet. 582 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type) { 583 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, 584 "cannot compile this %0 yet"); 585 std::string Msg = Type; 586 getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg; 587 } 588 589 llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) { 590 return llvm::ConstantInt::get(SizeTy, size.getQuantity()); 591 } 592 593 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV, 594 const NamedDecl *D) const { 595 // Internal definitions always have default visibility. 596 if (GV->hasLocalLinkage()) { 597 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 598 return; 599 } 600 601 // Set visibility for definitions. 602 LinkageInfo LV = D->getLinkageAndVisibility(); 603 if (LV.isVisibilityExplicit() || !GV->hasAvailableExternallyLinkage()) 604 GV->setVisibility(GetLLVMVisibility(LV.getVisibility())); 605 } 606 607 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(StringRef S) { 608 return llvm::StringSwitch<llvm::GlobalVariable::ThreadLocalMode>(S) 609 .Case("global-dynamic", llvm::GlobalVariable::GeneralDynamicTLSModel) 610 .Case("local-dynamic", llvm::GlobalVariable::LocalDynamicTLSModel) 611 .Case("initial-exec", llvm::GlobalVariable::InitialExecTLSModel) 612 .Case("local-exec", llvm::GlobalVariable::LocalExecTLSModel); 613 } 614 615 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel( 616 CodeGenOptions::TLSModel M) { 617 switch (M) { 618 case CodeGenOptions::GeneralDynamicTLSModel: 619 return llvm::GlobalVariable::GeneralDynamicTLSModel; 620 case CodeGenOptions::LocalDynamicTLSModel: 621 return llvm::GlobalVariable::LocalDynamicTLSModel; 622 case CodeGenOptions::InitialExecTLSModel: 623 return llvm::GlobalVariable::InitialExecTLSModel; 624 case CodeGenOptions::LocalExecTLSModel: 625 return llvm::GlobalVariable::LocalExecTLSModel; 626 } 627 llvm_unreachable("Invalid TLS model!"); 628 } 629 630 void CodeGenModule::setTLSMode(llvm::GlobalValue *GV, const VarDecl &D) const { 631 assert(D.getTLSKind() && "setting TLS mode on non-TLS var!"); 632 633 llvm::GlobalValue::ThreadLocalMode TLM; 634 TLM = GetLLVMTLSModel(CodeGenOpts.getDefaultTLSModel()); 635 636 // Override the TLS model if it is explicitly specified. 637 if (const TLSModelAttr *Attr = D.getAttr<TLSModelAttr>()) { 638 TLM = GetLLVMTLSModel(Attr->getModel()); 639 } 640 641 GV->setThreadLocalMode(TLM); 642 } 643 644 StringRef CodeGenModule::getMangledName(GlobalDecl GD) { 645 GlobalDecl CanonicalGD = GD.getCanonicalDecl(); 646 647 // Some ABIs don't have constructor variants. Make sure that base and 648 // complete constructors get mangled the same. 649 if (const auto *CD = dyn_cast<CXXConstructorDecl>(CanonicalGD.getDecl())) { 650 if (!getTarget().getCXXABI().hasConstructorVariants()) { 651 CXXCtorType OrigCtorType = GD.getCtorType(); 652 assert(OrigCtorType == Ctor_Base || OrigCtorType == Ctor_Complete); 653 if (OrigCtorType == Ctor_Base) 654 CanonicalGD = GlobalDecl(CD, Ctor_Complete); 655 } 656 } 657 658 StringRef &FoundStr = MangledDeclNames[CanonicalGD]; 659 if (!FoundStr.empty()) 660 return FoundStr; 661 662 const auto *ND = cast<NamedDecl>(GD.getDecl()); 663 SmallString<256> Buffer; 664 StringRef Str; 665 if (getCXXABI().getMangleContext().shouldMangleDeclName(ND)) { 666 llvm::raw_svector_ostream Out(Buffer); 667 if (const auto *D = dyn_cast<CXXConstructorDecl>(ND)) 668 getCXXABI().getMangleContext().mangleCXXCtor(D, GD.getCtorType(), Out); 669 else if (const auto *D = dyn_cast<CXXDestructorDecl>(ND)) 670 getCXXABI().getMangleContext().mangleCXXDtor(D, GD.getDtorType(), Out); 671 else 672 getCXXABI().getMangleContext().mangleName(ND, Out); 673 Str = Out.str(); 674 } else { 675 IdentifierInfo *II = ND->getIdentifier(); 676 assert(II && "Attempt to mangle unnamed decl."); 677 const auto *FD = dyn_cast<FunctionDecl>(ND); 678 679 if (FD && 680 FD->getType()->castAs<FunctionType>()->getCallConv() == CC_X86RegCall) { 681 llvm::raw_svector_ostream Out(Buffer); 682 Out << "__regcall3__" << II->getName(); 683 Str = Out.str(); 684 } else { 685 Str = II->getName(); 686 } 687 } 688 689 // Keep the first result in the case of a mangling collision. 690 auto Result = Manglings.insert(std::make_pair(Str, GD)); 691 return FoundStr = Result.first->first(); 692 } 693 694 StringRef CodeGenModule::getBlockMangledName(GlobalDecl GD, 695 const BlockDecl *BD) { 696 MangleContext &MangleCtx = getCXXABI().getMangleContext(); 697 const Decl *D = GD.getDecl(); 698 699 SmallString<256> Buffer; 700 llvm::raw_svector_ostream Out(Buffer); 701 if (!D) 702 MangleCtx.mangleGlobalBlock(BD, 703 dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()), Out); 704 else if (const auto *CD = dyn_cast<CXXConstructorDecl>(D)) 705 MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out); 706 else if (const auto *DD = dyn_cast<CXXDestructorDecl>(D)) 707 MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out); 708 else 709 MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out); 710 711 auto Result = Manglings.insert(std::make_pair(Out.str(), BD)); 712 return Result.first->first(); 713 } 714 715 llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) { 716 return getModule().getNamedValue(Name); 717 } 718 719 /// AddGlobalCtor - Add a function to the list that will be called before 720 /// main() runs. 721 void CodeGenModule::AddGlobalCtor(llvm::Function *Ctor, int Priority, 722 llvm::Constant *AssociatedData) { 723 // FIXME: Type coercion of void()* types. 724 GlobalCtors.push_back(Structor(Priority, Ctor, AssociatedData)); 725 } 726 727 /// AddGlobalDtor - Add a function to the list that will be called 728 /// when the module is unloaded. 729 void CodeGenModule::AddGlobalDtor(llvm::Function *Dtor, int Priority) { 730 // FIXME: Type coercion of void()* types. 731 GlobalDtors.push_back(Structor(Priority, Dtor, nullptr)); 732 } 733 734 void CodeGenModule::EmitCtorList(CtorList &Fns, const char *GlobalName) { 735 if (Fns.empty()) return; 736 737 // Ctor function type is void()*. 738 llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false); 739 llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy); 740 741 // Get the type of a ctor entry, { i32, void ()*, i8* }. 742 llvm::StructType *CtorStructTy = llvm::StructType::get( 743 Int32Ty, llvm::PointerType::getUnqual(CtorFTy), VoidPtrTy, nullptr); 744 745 // Construct the constructor and destructor arrays. 746 ConstantBuilder builder(*this); 747 auto ctors = builder.beginArray(CtorStructTy); 748 for (const auto &I : Fns) { 749 auto ctor = ctors.beginStruct(CtorStructTy); 750 ctor.addInt(Int32Ty, I.Priority); 751 ctor.add(llvm::ConstantExpr::getBitCast(I.Initializer, CtorPFTy)); 752 if (I.AssociatedData) 753 ctor.add(llvm::ConstantExpr::getBitCast(I.AssociatedData, VoidPtrTy)); 754 else 755 ctor.addNullPointer(VoidPtrTy); 756 ctors.add(ctor.finish()); 757 } 758 759 (void) ctors.finishAndCreateGlobal(GlobalName, getPointerAlign(), 760 /*constant*/ false, 761 llvm::GlobalValue::AppendingLinkage); 762 Fns.clear(); 763 } 764 765 llvm::GlobalValue::LinkageTypes 766 CodeGenModule::getFunctionLinkage(GlobalDecl GD) { 767 const auto *D = cast<FunctionDecl>(GD.getDecl()); 768 769 GVALinkage Linkage = getContext().GetGVALinkageForFunction(D); 770 771 if (isa<CXXDestructorDecl>(D) && 772 getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D), 773 GD.getDtorType())) { 774 // Destructor variants in the Microsoft C++ ABI are always internal or 775 // linkonce_odr thunks emitted on an as-needed basis. 776 return Linkage == GVA_Internal ? llvm::GlobalValue::InternalLinkage 777 : llvm::GlobalValue::LinkOnceODRLinkage; 778 } 779 780 if (isa<CXXConstructorDecl>(D) && 781 cast<CXXConstructorDecl>(D)->isInheritingConstructor() && 782 Context.getTargetInfo().getCXXABI().isMicrosoft()) { 783 // Our approach to inheriting constructors is fundamentally different from 784 // that used by the MS ABI, so keep our inheriting constructor thunks 785 // internal rather than trying to pick an unambiguous mangling for them. 786 return llvm::GlobalValue::InternalLinkage; 787 } 788 789 return getLLVMLinkageForDeclarator(D, Linkage, /*isConstantVariable=*/false); 790 } 791 792 void CodeGenModule::setFunctionDLLStorageClass(GlobalDecl GD, llvm::Function *F) { 793 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 794 795 if (const auto *Dtor = dyn_cast_or_null<CXXDestructorDecl>(FD)) { 796 if (getCXXABI().useThunkForDtorVariant(Dtor, GD.getDtorType())) { 797 // Don't dllexport/import destructor thunks. 798 F->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 799 return; 800 } 801 } 802 803 if (FD->hasAttr<DLLImportAttr>()) 804 F->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass); 805 else if (FD->hasAttr<DLLExportAttr>()) 806 F->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass); 807 else 808 F->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass); 809 } 810 811 llvm::ConstantInt *CodeGenModule::CreateCrossDsoCfiTypeId(llvm::Metadata *MD) { 812 llvm::MDString *MDS = dyn_cast<llvm::MDString>(MD); 813 if (!MDS) return nullptr; 814 815 llvm::MD5 md5; 816 llvm::MD5::MD5Result result; 817 md5.update(MDS->getString()); 818 md5.final(result); 819 uint64_t id = 0; 820 for (int i = 0; i < 8; ++i) 821 id |= static_cast<uint64_t>(result[i]) << (i * 8); 822 return llvm::ConstantInt::get(Int64Ty, id); 823 } 824 825 void CodeGenModule::setFunctionDefinitionAttributes(const FunctionDecl *D, 826 llvm::Function *F) { 827 setNonAliasAttributes(D, F); 828 } 829 830 void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D, 831 const CGFunctionInfo &Info, 832 llvm::Function *F) { 833 unsigned CallingConv; 834 AttributeListType AttributeList; 835 ConstructAttributeList(F->getName(), Info, D, AttributeList, CallingConv, 836 false); 837 F->setAttributes(llvm::AttributeSet::get(getLLVMContext(), AttributeList)); 838 F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv)); 839 } 840 841 /// Determines whether the language options require us to model 842 /// unwind exceptions. We treat -fexceptions as mandating this 843 /// except under the fragile ObjC ABI with only ObjC exceptions 844 /// enabled. This means, for example, that C with -fexceptions 845 /// enables this. 846 static bool hasUnwindExceptions(const LangOptions &LangOpts) { 847 // If exceptions are completely disabled, obviously this is false. 848 if (!LangOpts.Exceptions) return false; 849 850 // If C++ exceptions are enabled, this is true. 851 if (LangOpts.CXXExceptions) return true; 852 853 // If ObjC exceptions are enabled, this depends on the ABI. 854 if (LangOpts.ObjCExceptions) { 855 return LangOpts.ObjCRuntime.hasUnwindExceptions(); 856 } 857 858 return true; 859 } 860 861 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D, 862 llvm::Function *F) { 863 llvm::AttrBuilder B; 864 865 if (CodeGenOpts.UnwindTables) 866 B.addAttribute(llvm::Attribute::UWTable); 867 868 if (!hasUnwindExceptions(LangOpts)) 869 B.addAttribute(llvm::Attribute::NoUnwind); 870 871 if (LangOpts.getStackProtector() == LangOptions::SSPOn) 872 B.addAttribute(llvm::Attribute::StackProtect); 873 else if (LangOpts.getStackProtector() == LangOptions::SSPStrong) 874 B.addAttribute(llvm::Attribute::StackProtectStrong); 875 else if (LangOpts.getStackProtector() == LangOptions::SSPReq) 876 B.addAttribute(llvm::Attribute::StackProtectReq); 877 878 if (!D) { 879 F->addAttributes(llvm::AttributeSet::FunctionIndex, 880 llvm::AttributeSet::get( 881 F->getContext(), 882 llvm::AttributeSet::FunctionIndex, B)); 883 return; 884 } 885 886 if (D->hasAttr<NakedAttr>()) { 887 // Naked implies noinline: we should not be inlining such functions. 888 B.addAttribute(llvm::Attribute::Naked); 889 B.addAttribute(llvm::Attribute::NoInline); 890 } else if (D->hasAttr<NoDuplicateAttr>()) { 891 B.addAttribute(llvm::Attribute::NoDuplicate); 892 } else if (D->hasAttr<NoInlineAttr>()) { 893 B.addAttribute(llvm::Attribute::NoInline); 894 } else if (D->hasAttr<AlwaysInlineAttr>() && 895 !F->getAttributes().hasAttribute(llvm::AttributeSet::FunctionIndex, 896 llvm::Attribute::NoInline)) { 897 // (noinline wins over always_inline, and we can't specify both in IR) 898 B.addAttribute(llvm::Attribute::AlwaysInline); 899 } 900 901 if (D->hasAttr<ColdAttr>()) { 902 if (!D->hasAttr<OptimizeNoneAttr>()) 903 B.addAttribute(llvm::Attribute::OptimizeForSize); 904 B.addAttribute(llvm::Attribute::Cold); 905 } 906 907 if (D->hasAttr<MinSizeAttr>()) 908 B.addAttribute(llvm::Attribute::MinSize); 909 910 F->addAttributes(llvm::AttributeSet::FunctionIndex, 911 llvm::AttributeSet::get( 912 F->getContext(), llvm::AttributeSet::FunctionIndex, B)); 913 914 if (D->hasAttr<OptimizeNoneAttr>()) { 915 // OptimizeNone implies noinline; we should not be inlining such functions. 916 F->addFnAttr(llvm::Attribute::OptimizeNone); 917 F->addFnAttr(llvm::Attribute::NoInline); 918 919 // OptimizeNone wins over OptimizeForSize, MinSize, AlwaysInline. 920 F->removeFnAttr(llvm::Attribute::OptimizeForSize); 921 F->removeFnAttr(llvm::Attribute::MinSize); 922 assert(!F->hasFnAttribute(llvm::Attribute::AlwaysInline) && 923 "OptimizeNone and AlwaysInline on same function!"); 924 925 // Attribute 'inlinehint' has no effect on 'optnone' functions. 926 // Explicitly remove it from the set of function attributes. 927 F->removeFnAttr(llvm::Attribute::InlineHint); 928 } 929 930 unsigned alignment = D->getMaxAlignment() / Context.getCharWidth(); 931 if (alignment) 932 F->setAlignment(alignment); 933 934 // Some C++ ABIs require 2-byte alignment for member functions, in order to 935 // reserve a bit for differentiating between virtual and non-virtual member 936 // functions. If the current target's C++ ABI requires this and this is a 937 // member function, set its alignment accordingly. 938 if (getTarget().getCXXABI().areMemberFunctionsAligned()) { 939 if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D)) 940 F->setAlignment(2); 941 } 942 943 // In the cross-dso CFI mode, we want !type attributes on definitions only. 944 if (CodeGenOpts.SanitizeCfiCrossDso) 945 if (auto *FD = dyn_cast<FunctionDecl>(D)) 946 CreateFunctionTypeMetadata(FD, F); 947 } 948 949 void CodeGenModule::SetCommonAttributes(const Decl *D, 950 llvm::GlobalValue *GV) { 951 if (const auto *ND = dyn_cast_or_null<NamedDecl>(D)) 952 setGlobalVisibility(GV, ND); 953 else 954 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 955 956 if (D && D->hasAttr<UsedAttr>()) 957 addUsedGlobal(GV); 958 } 959 960 void CodeGenModule::setAliasAttributes(const Decl *D, 961 llvm::GlobalValue *GV) { 962 SetCommonAttributes(D, GV); 963 964 // Process the dllexport attribute based on whether the original definition 965 // (not necessarily the aliasee) was exported. 966 if (D->hasAttr<DLLExportAttr>()) 967 GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass); 968 } 969 970 void CodeGenModule::setNonAliasAttributes(const Decl *D, 971 llvm::GlobalObject *GO) { 972 SetCommonAttributes(D, GO); 973 974 if (D) 975 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) 976 GO->setSection(SA->getName()); 977 978 getTargetCodeGenInfo().setTargetAttributes(D, GO, *this); 979 } 980 981 void CodeGenModule::SetInternalFunctionAttributes(const Decl *D, 982 llvm::Function *F, 983 const CGFunctionInfo &FI) { 984 SetLLVMFunctionAttributes(D, FI, F); 985 SetLLVMFunctionAttributesForDefinition(D, F); 986 987 F->setLinkage(llvm::Function::InternalLinkage); 988 989 setNonAliasAttributes(D, F); 990 } 991 992 static void setLinkageAndVisibilityForGV(llvm::GlobalValue *GV, 993 const NamedDecl *ND) { 994 // Set linkage and visibility in case we never see a definition. 995 LinkageInfo LV = ND->getLinkageAndVisibility(); 996 if (LV.getLinkage() != ExternalLinkage) { 997 // Don't set internal linkage on declarations. 998 } else { 999 if (ND->hasAttr<DLLImportAttr>()) { 1000 GV->setLinkage(llvm::GlobalValue::ExternalLinkage); 1001 GV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass); 1002 } else if (ND->hasAttr<DLLExportAttr>()) { 1003 GV->setLinkage(llvm::GlobalValue::ExternalLinkage); 1004 GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass); 1005 } else if (ND->hasAttr<WeakAttr>() || ND->isWeakImported()) { 1006 // "extern_weak" is overloaded in LLVM; we probably should have 1007 // separate linkage types for this. 1008 GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage); 1009 } 1010 1011 // Set visibility on a declaration only if it's explicit. 1012 if (LV.isVisibilityExplicit()) 1013 GV->setVisibility(CodeGenModule::GetLLVMVisibility(LV.getVisibility())); 1014 } 1015 } 1016 1017 void CodeGenModule::CreateFunctionTypeMetadata(const FunctionDecl *FD, 1018 llvm::Function *F) { 1019 // Only if we are checking indirect calls. 1020 if (!LangOpts.Sanitize.has(SanitizerKind::CFIICall)) 1021 return; 1022 1023 // Non-static class methods are handled via vtable pointer checks elsewhere. 1024 if (isa<CXXMethodDecl>(FD) && !cast<CXXMethodDecl>(FD)->isStatic()) 1025 return; 1026 1027 // Additionally, if building with cross-DSO support... 1028 if (CodeGenOpts.SanitizeCfiCrossDso) { 1029 // Skip available_externally functions. They won't be codegen'ed in the 1030 // current module anyway. 1031 if (getContext().GetGVALinkageForFunction(FD) == GVA_AvailableExternally) 1032 return; 1033 } 1034 1035 llvm::Metadata *MD = CreateMetadataIdentifierForType(FD->getType()); 1036 F->addTypeMetadata(0, MD); 1037 1038 // Emit a hash-based bit set entry for cross-DSO calls. 1039 if (CodeGenOpts.SanitizeCfiCrossDso) 1040 if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD)) 1041 F->addTypeMetadata(0, llvm::ConstantAsMetadata::get(CrossDsoTypeId)); 1042 } 1043 1044 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD, llvm::Function *F, 1045 bool IsIncompleteFunction, 1046 bool IsThunk) { 1047 if (llvm::Intrinsic::ID IID = F->getIntrinsicID()) { 1048 // If this is an intrinsic function, set the function's attributes 1049 // to the intrinsic's attributes. 1050 F->setAttributes(llvm::Intrinsic::getAttributes(getLLVMContext(), IID)); 1051 return; 1052 } 1053 1054 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 1055 1056 if (!IsIncompleteFunction) 1057 SetLLVMFunctionAttributes(FD, getTypes().arrangeGlobalDeclaration(GD), F); 1058 1059 // Add the Returned attribute for "this", except for iOS 5 and earlier 1060 // where substantial code, including the libstdc++ dylib, was compiled with 1061 // GCC and does not actually return "this". 1062 if (!IsThunk && getCXXABI().HasThisReturn(GD) && 1063 !(getTriple().isiOS() && getTriple().isOSVersionLT(6))) { 1064 assert(!F->arg_empty() && 1065 F->arg_begin()->getType() 1066 ->canLosslesslyBitCastTo(F->getReturnType()) && 1067 "unexpected this return"); 1068 F->addAttribute(1, llvm::Attribute::Returned); 1069 } 1070 1071 // Only a few attributes are set on declarations; these may later be 1072 // overridden by a definition. 1073 1074 setLinkageAndVisibilityForGV(F, FD); 1075 1076 if (const SectionAttr *SA = FD->getAttr<SectionAttr>()) 1077 F->setSection(SA->getName()); 1078 1079 if (FD->isReplaceableGlobalAllocationFunction()) { 1080 // A replaceable global allocation function does not act like a builtin by 1081 // default, only if it is invoked by a new-expression or delete-expression. 1082 F->addAttribute(llvm::AttributeSet::FunctionIndex, 1083 llvm::Attribute::NoBuiltin); 1084 1085 // A sane operator new returns a non-aliasing pointer. 1086 // FIXME: Also add NonNull attribute to the return value 1087 // for the non-nothrow forms? 1088 auto Kind = FD->getDeclName().getCXXOverloadedOperator(); 1089 if (getCodeGenOpts().AssumeSaneOperatorNew && 1090 (Kind == OO_New || Kind == OO_Array_New)) 1091 F->addAttribute(llvm::AttributeSet::ReturnIndex, 1092 llvm::Attribute::NoAlias); 1093 } 1094 1095 if (isa<CXXConstructorDecl>(FD) || isa<CXXDestructorDecl>(FD)) 1096 F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 1097 else if (const auto *MD = dyn_cast<CXXMethodDecl>(FD)) 1098 if (MD->isVirtual()) 1099 F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 1100 1101 // Don't emit entries for function declarations in the cross-DSO mode. This 1102 // is handled with better precision by the receiving DSO. 1103 if (!CodeGenOpts.SanitizeCfiCrossDso) 1104 CreateFunctionTypeMetadata(FD, F); 1105 } 1106 1107 void CodeGenModule::addUsedGlobal(llvm::GlobalValue *GV) { 1108 assert(!GV->isDeclaration() && 1109 "Only globals with definition can force usage."); 1110 LLVMUsed.emplace_back(GV); 1111 } 1112 1113 void CodeGenModule::addCompilerUsedGlobal(llvm::GlobalValue *GV) { 1114 assert(!GV->isDeclaration() && 1115 "Only globals with definition can force usage."); 1116 LLVMCompilerUsed.emplace_back(GV); 1117 } 1118 1119 static void emitUsed(CodeGenModule &CGM, StringRef Name, 1120 std::vector<llvm::WeakVH> &List) { 1121 // Don't create llvm.used if there is no need. 1122 if (List.empty()) 1123 return; 1124 1125 // Convert List to what ConstantArray needs. 1126 SmallVector<llvm::Constant*, 8> UsedArray; 1127 UsedArray.resize(List.size()); 1128 for (unsigned i = 0, e = List.size(); i != e; ++i) { 1129 UsedArray[i] = 1130 llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast( 1131 cast<llvm::Constant>(&*List[i]), CGM.Int8PtrTy); 1132 } 1133 1134 if (UsedArray.empty()) 1135 return; 1136 llvm::ArrayType *ATy = llvm::ArrayType::get(CGM.Int8PtrTy, UsedArray.size()); 1137 1138 auto *GV = new llvm::GlobalVariable( 1139 CGM.getModule(), ATy, false, llvm::GlobalValue::AppendingLinkage, 1140 llvm::ConstantArray::get(ATy, UsedArray), Name); 1141 1142 GV->setSection("llvm.metadata"); 1143 } 1144 1145 void CodeGenModule::emitLLVMUsed() { 1146 emitUsed(*this, "llvm.used", LLVMUsed); 1147 emitUsed(*this, "llvm.compiler.used", LLVMCompilerUsed); 1148 } 1149 1150 void CodeGenModule::AppendLinkerOptions(StringRef Opts) { 1151 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opts); 1152 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 1153 } 1154 1155 void CodeGenModule::AddDetectMismatch(StringRef Name, StringRef Value) { 1156 llvm::SmallString<32> Opt; 1157 getTargetCodeGenInfo().getDetectMismatchOption(Name, Value, Opt); 1158 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt); 1159 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 1160 } 1161 1162 void CodeGenModule::AddDependentLib(StringRef Lib) { 1163 llvm::SmallString<24> Opt; 1164 getTargetCodeGenInfo().getDependentLibraryOption(Lib, Opt); 1165 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt); 1166 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 1167 } 1168 1169 /// \brief Add link options implied by the given module, including modules 1170 /// it depends on, using a postorder walk. 1171 static void addLinkOptionsPostorder(CodeGenModule &CGM, Module *Mod, 1172 SmallVectorImpl<llvm::Metadata *> &Metadata, 1173 llvm::SmallPtrSet<Module *, 16> &Visited) { 1174 // Import this module's parent. 1175 if (Mod->Parent && Visited.insert(Mod->Parent).second) { 1176 addLinkOptionsPostorder(CGM, Mod->Parent, Metadata, Visited); 1177 } 1178 1179 // Import this module's dependencies. 1180 for (unsigned I = Mod->Imports.size(); I > 0; --I) { 1181 if (Visited.insert(Mod->Imports[I - 1]).second) 1182 addLinkOptionsPostorder(CGM, Mod->Imports[I-1], Metadata, Visited); 1183 } 1184 1185 // Add linker options to link against the libraries/frameworks 1186 // described by this module. 1187 llvm::LLVMContext &Context = CGM.getLLVMContext(); 1188 for (unsigned I = Mod->LinkLibraries.size(); I > 0; --I) { 1189 // Link against a framework. Frameworks are currently Darwin only, so we 1190 // don't to ask TargetCodeGenInfo for the spelling of the linker option. 1191 if (Mod->LinkLibraries[I-1].IsFramework) { 1192 llvm::Metadata *Args[2] = { 1193 llvm::MDString::get(Context, "-framework"), 1194 llvm::MDString::get(Context, Mod->LinkLibraries[I - 1].Library)}; 1195 1196 Metadata.push_back(llvm::MDNode::get(Context, Args)); 1197 continue; 1198 } 1199 1200 // Link against a library. 1201 llvm::SmallString<24> Opt; 1202 CGM.getTargetCodeGenInfo().getDependentLibraryOption( 1203 Mod->LinkLibraries[I-1].Library, Opt); 1204 auto *OptString = llvm::MDString::get(Context, Opt); 1205 Metadata.push_back(llvm::MDNode::get(Context, OptString)); 1206 } 1207 } 1208 1209 void CodeGenModule::EmitModuleLinkOptions() { 1210 // Collect the set of all of the modules we want to visit to emit link 1211 // options, which is essentially the imported modules and all of their 1212 // non-explicit child modules. 1213 llvm::SetVector<clang::Module *> LinkModules; 1214 llvm::SmallPtrSet<clang::Module *, 16> Visited; 1215 SmallVector<clang::Module *, 16> Stack; 1216 1217 // Seed the stack with imported modules. 1218 for (Module *M : ImportedModules) 1219 if (Visited.insert(M).second) 1220 Stack.push_back(M); 1221 1222 // Find all of the modules to import, making a little effort to prune 1223 // non-leaf modules. 1224 while (!Stack.empty()) { 1225 clang::Module *Mod = Stack.pop_back_val(); 1226 1227 bool AnyChildren = false; 1228 1229 // Visit the submodules of this module. 1230 for (clang::Module::submodule_iterator Sub = Mod->submodule_begin(), 1231 SubEnd = Mod->submodule_end(); 1232 Sub != SubEnd; ++Sub) { 1233 // Skip explicit children; they need to be explicitly imported to be 1234 // linked against. 1235 if ((*Sub)->IsExplicit) 1236 continue; 1237 1238 if (Visited.insert(*Sub).second) { 1239 Stack.push_back(*Sub); 1240 AnyChildren = true; 1241 } 1242 } 1243 1244 // We didn't find any children, so add this module to the list of 1245 // modules to link against. 1246 if (!AnyChildren) { 1247 LinkModules.insert(Mod); 1248 } 1249 } 1250 1251 // Add link options for all of the imported modules in reverse topological 1252 // order. We don't do anything to try to order import link flags with respect 1253 // to linker options inserted by things like #pragma comment(). 1254 SmallVector<llvm::Metadata *, 16> MetadataArgs; 1255 Visited.clear(); 1256 for (Module *M : LinkModules) 1257 if (Visited.insert(M).second) 1258 addLinkOptionsPostorder(*this, M, MetadataArgs, Visited); 1259 std::reverse(MetadataArgs.begin(), MetadataArgs.end()); 1260 LinkerOptionsMetadata.append(MetadataArgs.begin(), MetadataArgs.end()); 1261 1262 // Add the linker options metadata flag. 1263 getModule().addModuleFlag(llvm::Module::AppendUnique, "Linker Options", 1264 llvm::MDNode::get(getLLVMContext(), 1265 LinkerOptionsMetadata)); 1266 } 1267 1268 void CodeGenModule::EmitDeferred() { 1269 // Emit code for any potentially referenced deferred decls. Since a 1270 // previously unused static decl may become used during the generation of code 1271 // for a static function, iterate until no changes are made. 1272 1273 if (!DeferredVTables.empty()) { 1274 EmitDeferredVTables(); 1275 1276 // Emitting a vtable doesn't directly cause more vtables to 1277 // become deferred, although it can cause functions to be 1278 // emitted that then need those vtables. 1279 assert(DeferredVTables.empty()); 1280 } 1281 1282 // Stop if we're out of both deferred vtables and deferred declarations. 1283 if (DeferredDeclsToEmit.empty()) 1284 return; 1285 1286 // Grab the list of decls to emit. If EmitGlobalDefinition schedules more 1287 // work, it will not interfere with this. 1288 std::vector<DeferredGlobal> CurDeclsToEmit; 1289 CurDeclsToEmit.swap(DeferredDeclsToEmit); 1290 1291 for (DeferredGlobal &G : CurDeclsToEmit) { 1292 GlobalDecl D = G.GD; 1293 G.GV = nullptr; 1294 1295 // We should call GetAddrOfGlobal with IsForDefinition set to true in order 1296 // to get GlobalValue with exactly the type we need, not something that 1297 // might had been created for another decl with the same mangled name but 1298 // different type. 1299 llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>( 1300 GetAddrOfGlobal(D, /*IsForDefinition=*/true)); 1301 1302 // In case of different address spaces, we may still get a cast, even with 1303 // IsForDefinition equal to true. Query mangled names table to get 1304 // GlobalValue. 1305 if (!GV) 1306 GV = GetGlobalValue(getMangledName(D)); 1307 1308 // Make sure GetGlobalValue returned non-null. 1309 assert(GV); 1310 1311 // Check to see if we've already emitted this. This is necessary 1312 // for a couple of reasons: first, decls can end up in the 1313 // deferred-decls queue multiple times, and second, decls can end 1314 // up with definitions in unusual ways (e.g. by an extern inline 1315 // function acquiring a strong function redefinition). Just 1316 // ignore these cases. 1317 if (!GV->isDeclaration()) 1318 continue; 1319 1320 // Otherwise, emit the definition and move on to the next one. 1321 EmitGlobalDefinition(D, GV); 1322 1323 // If we found out that we need to emit more decls, do that recursively. 1324 // This has the advantage that the decls are emitted in a DFS and related 1325 // ones are close together, which is convenient for testing. 1326 if (!DeferredVTables.empty() || !DeferredDeclsToEmit.empty()) { 1327 EmitDeferred(); 1328 assert(DeferredVTables.empty() && DeferredDeclsToEmit.empty()); 1329 } 1330 } 1331 } 1332 1333 void CodeGenModule::EmitGlobalAnnotations() { 1334 if (Annotations.empty()) 1335 return; 1336 1337 // Create a new global variable for the ConstantStruct in the Module. 1338 llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get( 1339 Annotations[0]->getType(), Annotations.size()), Annotations); 1340 auto *gv = new llvm::GlobalVariable(getModule(), Array->getType(), false, 1341 llvm::GlobalValue::AppendingLinkage, 1342 Array, "llvm.global.annotations"); 1343 gv->setSection(AnnotationSection); 1344 } 1345 1346 llvm::Constant *CodeGenModule::EmitAnnotationString(StringRef Str) { 1347 llvm::Constant *&AStr = AnnotationStrings[Str]; 1348 if (AStr) 1349 return AStr; 1350 1351 // Not found yet, create a new global. 1352 llvm::Constant *s = llvm::ConstantDataArray::getString(getLLVMContext(), Str); 1353 auto *gv = 1354 new llvm::GlobalVariable(getModule(), s->getType(), true, 1355 llvm::GlobalValue::PrivateLinkage, s, ".str"); 1356 gv->setSection(AnnotationSection); 1357 gv->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 1358 AStr = gv; 1359 return gv; 1360 } 1361 1362 llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) { 1363 SourceManager &SM = getContext().getSourceManager(); 1364 PresumedLoc PLoc = SM.getPresumedLoc(Loc); 1365 if (PLoc.isValid()) 1366 return EmitAnnotationString(PLoc.getFilename()); 1367 return EmitAnnotationString(SM.getBufferName(Loc)); 1368 } 1369 1370 llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) { 1371 SourceManager &SM = getContext().getSourceManager(); 1372 PresumedLoc PLoc = SM.getPresumedLoc(L); 1373 unsigned LineNo = PLoc.isValid() ? PLoc.getLine() : 1374 SM.getExpansionLineNumber(L); 1375 return llvm::ConstantInt::get(Int32Ty, LineNo); 1376 } 1377 1378 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV, 1379 const AnnotateAttr *AA, 1380 SourceLocation L) { 1381 // Get the globals for file name, annotation, and the line number. 1382 llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()), 1383 *UnitGV = EmitAnnotationUnit(L), 1384 *LineNoCst = EmitAnnotationLineNo(L); 1385 1386 // Create the ConstantStruct for the global annotation. 1387 llvm::Constant *Fields[4] = { 1388 llvm::ConstantExpr::getBitCast(GV, Int8PtrTy), 1389 llvm::ConstantExpr::getBitCast(AnnoGV, Int8PtrTy), 1390 llvm::ConstantExpr::getBitCast(UnitGV, Int8PtrTy), 1391 LineNoCst 1392 }; 1393 return llvm::ConstantStruct::getAnon(Fields); 1394 } 1395 1396 void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D, 1397 llvm::GlobalValue *GV) { 1398 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 1399 // Get the struct elements for these annotations. 1400 for (const auto *I : D->specific_attrs<AnnotateAttr>()) 1401 Annotations.push_back(EmitAnnotateAttr(GV, I, D->getLocation())); 1402 } 1403 1404 bool CodeGenModule::isInSanitizerBlacklist(llvm::Function *Fn, 1405 SourceLocation Loc) const { 1406 const auto &SanitizerBL = getContext().getSanitizerBlacklist(); 1407 // Blacklist by function name. 1408 if (SanitizerBL.isBlacklistedFunction(Fn->getName())) 1409 return true; 1410 // Blacklist by location. 1411 if (Loc.isValid()) 1412 return SanitizerBL.isBlacklistedLocation(Loc); 1413 // If location is unknown, this may be a compiler-generated function. Assume 1414 // it's located in the main file. 1415 auto &SM = Context.getSourceManager(); 1416 if (const auto *MainFile = SM.getFileEntryForID(SM.getMainFileID())) { 1417 return SanitizerBL.isBlacklistedFile(MainFile->getName()); 1418 } 1419 return false; 1420 } 1421 1422 bool CodeGenModule::isInSanitizerBlacklist(llvm::GlobalVariable *GV, 1423 SourceLocation Loc, QualType Ty, 1424 StringRef Category) const { 1425 // For now globals can be blacklisted only in ASan and KASan. 1426 if (!LangOpts.Sanitize.hasOneOf( 1427 SanitizerKind::Address | SanitizerKind::KernelAddress)) 1428 return false; 1429 const auto &SanitizerBL = getContext().getSanitizerBlacklist(); 1430 if (SanitizerBL.isBlacklistedGlobal(GV->getName(), Category)) 1431 return true; 1432 if (SanitizerBL.isBlacklistedLocation(Loc, Category)) 1433 return true; 1434 // Check global type. 1435 if (!Ty.isNull()) { 1436 // Drill down the array types: if global variable of a fixed type is 1437 // blacklisted, we also don't instrument arrays of them. 1438 while (auto AT = dyn_cast<ArrayType>(Ty.getTypePtr())) 1439 Ty = AT->getElementType(); 1440 Ty = Ty.getCanonicalType().getUnqualifiedType(); 1441 // We allow to blacklist only record types (classes, structs etc.) 1442 if (Ty->isRecordType()) { 1443 std::string TypeStr = Ty.getAsString(getContext().getPrintingPolicy()); 1444 if (SanitizerBL.isBlacklistedType(TypeStr, Category)) 1445 return true; 1446 } 1447 } 1448 return false; 1449 } 1450 1451 bool CodeGenModule::MustBeEmitted(const ValueDecl *Global) { 1452 // Never defer when EmitAllDecls is specified. 1453 if (LangOpts.EmitAllDecls) 1454 return true; 1455 1456 return getContext().DeclMustBeEmitted(Global); 1457 } 1458 1459 bool CodeGenModule::MayBeEmittedEagerly(const ValueDecl *Global) { 1460 if (const auto *FD = dyn_cast<FunctionDecl>(Global)) 1461 if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation) 1462 // Implicit template instantiations may change linkage if they are later 1463 // explicitly instantiated, so they should not be emitted eagerly. 1464 return false; 1465 if (const auto *VD = dyn_cast<VarDecl>(Global)) 1466 if (Context.getInlineVariableDefinitionKind(VD) == 1467 ASTContext::InlineVariableDefinitionKind::WeakUnknown) 1468 // A definition of an inline constexpr static data member may change 1469 // linkage later if it's redeclared outside the class. 1470 return false; 1471 // If OpenMP is enabled and threadprivates must be generated like TLS, delay 1472 // codegen for global variables, because they may be marked as threadprivate. 1473 if (LangOpts.OpenMP && LangOpts.OpenMPUseTLS && 1474 getContext().getTargetInfo().isTLSSupported() && isa<VarDecl>(Global)) 1475 return false; 1476 1477 return true; 1478 } 1479 1480 ConstantAddress CodeGenModule::GetAddrOfUuidDescriptor( 1481 const CXXUuidofExpr* E) { 1482 // Sema has verified that IIDSource has a __declspec(uuid()), and that its 1483 // well-formed. 1484 StringRef Uuid = E->getUuidStr(); 1485 std::string Name = "_GUID_" + Uuid.lower(); 1486 std::replace(Name.begin(), Name.end(), '-', '_'); 1487 1488 // The UUID descriptor should be pointer aligned. 1489 CharUnits Alignment = CharUnits::fromQuantity(PointerAlignInBytes); 1490 1491 // Look for an existing global. 1492 if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name)) 1493 return ConstantAddress(GV, Alignment); 1494 1495 llvm::Constant *Init = EmitUuidofInitializer(Uuid); 1496 assert(Init && "failed to initialize as constant"); 1497 1498 auto *GV = new llvm::GlobalVariable( 1499 getModule(), Init->getType(), 1500 /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name); 1501 if (supportsCOMDAT()) 1502 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 1503 return ConstantAddress(GV, Alignment); 1504 } 1505 1506 ConstantAddress CodeGenModule::GetWeakRefReference(const ValueDecl *VD) { 1507 const AliasAttr *AA = VD->getAttr<AliasAttr>(); 1508 assert(AA && "No alias?"); 1509 1510 CharUnits Alignment = getContext().getDeclAlign(VD); 1511 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType()); 1512 1513 // See if there is already something with the target's name in the module. 1514 llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee()); 1515 if (Entry) { 1516 unsigned AS = getContext().getTargetAddressSpace(VD->getType()); 1517 auto Ptr = llvm::ConstantExpr::getBitCast(Entry, DeclTy->getPointerTo(AS)); 1518 return ConstantAddress(Ptr, Alignment); 1519 } 1520 1521 llvm::Constant *Aliasee; 1522 if (isa<llvm::FunctionType>(DeclTy)) 1523 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, 1524 GlobalDecl(cast<FunctionDecl>(VD)), 1525 /*ForVTable=*/false); 1526 else 1527 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), 1528 llvm::PointerType::getUnqual(DeclTy), 1529 nullptr); 1530 1531 auto *F = cast<llvm::GlobalValue>(Aliasee); 1532 F->setLinkage(llvm::Function::ExternalWeakLinkage); 1533 WeakRefReferences.insert(F); 1534 1535 return ConstantAddress(Aliasee, Alignment); 1536 } 1537 1538 void CodeGenModule::EmitGlobal(GlobalDecl GD) { 1539 const auto *Global = cast<ValueDecl>(GD.getDecl()); 1540 1541 // Weak references don't produce any output by themselves. 1542 if (Global->hasAttr<WeakRefAttr>()) 1543 return; 1544 1545 // If this is an alias definition (which otherwise looks like a declaration) 1546 // emit it now. 1547 if (Global->hasAttr<AliasAttr>()) 1548 return EmitAliasDefinition(GD); 1549 1550 // IFunc like an alias whose value is resolved at runtime by calling resolver. 1551 if (Global->hasAttr<IFuncAttr>()) 1552 return emitIFuncDefinition(GD); 1553 1554 // If this is CUDA, be selective about which declarations we emit. 1555 if (LangOpts.CUDA) { 1556 if (LangOpts.CUDAIsDevice) { 1557 if (!Global->hasAttr<CUDADeviceAttr>() && 1558 !Global->hasAttr<CUDAGlobalAttr>() && 1559 !Global->hasAttr<CUDAConstantAttr>() && 1560 !Global->hasAttr<CUDASharedAttr>()) 1561 return; 1562 } else { 1563 // We need to emit host-side 'shadows' for all global 1564 // device-side variables because the CUDA runtime needs their 1565 // size and host-side address in order to provide access to 1566 // their device-side incarnations. 1567 1568 // So device-only functions are the only things we skip. 1569 if (isa<FunctionDecl>(Global) && !Global->hasAttr<CUDAHostAttr>() && 1570 Global->hasAttr<CUDADeviceAttr>()) 1571 return; 1572 1573 assert((isa<FunctionDecl>(Global) || isa<VarDecl>(Global)) && 1574 "Expected Variable or Function"); 1575 } 1576 } 1577 1578 if (LangOpts.OpenMP) { 1579 // If this is OpenMP device, check if it is legal to emit this global 1580 // normally. 1581 if (OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(GD)) 1582 return; 1583 if (auto *DRD = dyn_cast<OMPDeclareReductionDecl>(Global)) { 1584 if (MustBeEmitted(Global)) 1585 EmitOMPDeclareReduction(DRD); 1586 return; 1587 } 1588 } 1589 1590 // Ignore declarations, they will be emitted on their first use. 1591 if (const auto *FD = dyn_cast<FunctionDecl>(Global)) { 1592 // Forward declarations are emitted lazily on first use. 1593 if (!FD->doesThisDeclarationHaveABody()) { 1594 if (!FD->doesDeclarationForceExternallyVisibleDefinition()) 1595 return; 1596 1597 StringRef MangledName = getMangledName(GD); 1598 1599 // Compute the function info and LLVM type. 1600 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 1601 llvm::Type *Ty = getTypes().GetFunctionType(FI); 1602 1603 GetOrCreateLLVMFunction(MangledName, Ty, GD, /*ForVTable=*/false, 1604 /*DontDefer=*/false); 1605 return; 1606 } 1607 } else { 1608 const auto *VD = cast<VarDecl>(Global); 1609 assert(VD->isFileVarDecl() && "Cannot emit local var decl as global."); 1610 // We need to emit device-side global CUDA variables even if a 1611 // variable does not have a definition -- we still need to define 1612 // host-side shadow for it. 1613 bool MustEmitForCuda = LangOpts.CUDA && !LangOpts.CUDAIsDevice && 1614 !VD->hasDefinition() && 1615 (VD->hasAttr<CUDAConstantAttr>() || 1616 VD->hasAttr<CUDADeviceAttr>()); 1617 if (!MustEmitForCuda && 1618 VD->isThisDeclarationADefinition() != VarDecl::Definition && 1619 !Context.isMSStaticDataMemberInlineDefinition(VD)) { 1620 // If this declaration may have caused an inline variable definition to 1621 // change linkage, make sure that it's emitted. 1622 if (Context.getInlineVariableDefinitionKind(VD) == 1623 ASTContext::InlineVariableDefinitionKind::Strong) 1624 GetAddrOfGlobalVar(VD); 1625 return; 1626 } 1627 } 1628 1629 // Defer code generation to first use when possible, e.g. if this is an inline 1630 // function. If the global must always be emitted, do it eagerly if possible 1631 // to benefit from cache locality. 1632 if (MustBeEmitted(Global) && MayBeEmittedEagerly(Global)) { 1633 // Emit the definition if it can't be deferred. 1634 EmitGlobalDefinition(GD); 1635 return; 1636 } 1637 1638 // If we're deferring emission of a C++ variable with an 1639 // initializer, remember the order in which it appeared in the file. 1640 if (getLangOpts().CPlusPlus && isa<VarDecl>(Global) && 1641 cast<VarDecl>(Global)->hasInit()) { 1642 DelayedCXXInitPosition[Global] = CXXGlobalInits.size(); 1643 CXXGlobalInits.push_back(nullptr); 1644 } 1645 1646 StringRef MangledName = getMangledName(GD); 1647 if (llvm::GlobalValue *GV = GetGlobalValue(MangledName)) { 1648 // The value has already been used and should therefore be emitted. 1649 addDeferredDeclToEmit(GV, GD); 1650 } else if (MustBeEmitted(Global)) { 1651 // The value must be emitted, but cannot be emitted eagerly. 1652 assert(!MayBeEmittedEagerly(Global)); 1653 addDeferredDeclToEmit(/*GV=*/nullptr, GD); 1654 } else { 1655 // Otherwise, remember that we saw a deferred decl with this name. The 1656 // first use of the mangled name will cause it to move into 1657 // DeferredDeclsToEmit. 1658 DeferredDecls[MangledName] = GD; 1659 } 1660 } 1661 1662 namespace { 1663 struct FunctionIsDirectlyRecursive : 1664 public RecursiveASTVisitor<FunctionIsDirectlyRecursive> { 1665 const StringRef Name; 1666 const Builtin::Context &BI; 1667 bool Result; 1668 FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C) : 1669 Name(N), BI(C), Result(false) { 1670 } 1671 typedef RecursiveASTVisitor<FunctionIsDirectlyRecursive> Base; 1672 1673 bool TraverseCallExpr(CallExpr *E) { 1674 const FunctionDecl *FD = E->getDirectCallee(); 1675 if (!FD) 1676 return true; 1677 AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>(); 1678 if (Attr && Name == Attr->getLabel()) { 1679 Result = true; 1680 return false; 1681 } 1682 unsigned BuiltinID = FD->getBuiltinID(); 1683 if (!BuiltinID || !BI.isLibFunction(BuiltinID)) 1684 return true; 1685 StringRef BuiltinName = BI.getName(BuiltinID); 1686 if (BuiltinName.startswith("__builtin_") && 1687 Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) { 1688 Result = true; 1689 return false; 1690 } 1691 return true; 1692 } 1693 }; 1694 1695 struct DLLImportFunctionVisitor 1696 : public RecursiveASTVisitor<DLLImportFunctionVisitor> { 1697 bool SafeToInline = true; 1698 1699 bool shouldVisitImplicitCode() const { return true; } 1700 1701 bool VisitVarDecl(VarDecl *VD) { 1702 // A thread-local variable cannot be imported. 1703 SafeToInline = !VD->getTLSKind(); 1704 return SafeToInline; 1705 } 1706 1707 // Make sure we're not referencing non-imported vars or functions. 1708 bool VisitDeclRefExpr(DeclRefExpr *E) { 1709 ValueDecl *VD = E->getDecl(); 1710 if (isa<FunctionDecl>(VD)) 1711 SafeToInline = VD->hasAttr<DLLImportAttr>(); 1712 else if (VarDecl *V = dyn_cast<VarDecl>(VD)) 1713 SafeToInline = !V->hasGlobalStorage() || V->hasAttr<DLLImportAttr>(); 1714 return SafeToInline; 1715 } 1716 bool VisitCXXConstructExpr(CXXConstructExpr *E) { 1717 SafeToInline = E->getConstructor()->hasAttr<DLLImportAttr>(); 1718 return SafeToInline; 1719 } 1720 bool VisitCXXDeleteExpr(CXXDeleteExpr *E) { 1721 SafeToInline = E->getOperatorDelete()->hasAttr<DLLImportAttr>(); 1722 return SafeToInline; 1723 } 1724 bool VisitCXXNewExpr(CXXNewExpr *E) { 1725 SafeToInline = E->getOperatorNew()->hasAttr<DLLImportAttr>(); 1726 return SafeToInline; 1727 } 1728 }; 1729 } 1730 1731 // isTriviallyRecursive - Check if this function calls another 1732 // decl that, because of the asm attribute or the other decl being a builtin, 1733 // ends up pointing to itself. 1734 bool 1735 CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) { 1736 StringRef Name; 1737 if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) { 1738 // asm labels are a special kind of mangling we have to support. 1739 AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>(); 1740 if (!Attr) 1741 return false; 1742 Name = Attr->getLabel(); 1743 } else { 1744 Name = FD->getName(); 1745 } 1746 1747 FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo); 1748 Walker.TraverseFunctionDecl(const_cast<FunctionDecl*>(FD)); 1749 return Walker.Result; 1750 } 1751 1752 // Check if T is a class type with a destructor that's not dllimport. 1753 static bool HasNonDllImportDtor(QualType T) { 1754 if (const RecordType *RT = dyn_cast<RecordType>(T)) 1755 if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl())) 1756 if (RD->getDestructor() && !RD->getDestructor()->hasAttr<DLLImportAttr>()) 1757 return true; 1758 1759 return false; 1760 } 1761 1762 bool CodeGenModule::shouldEmitFunction(GlobalDecl GD) { 1763 if (getFunctionLinkage(GD) != llvm::Function::AvailableExternallyLinkage) 1764 return true; 1765 const auto *F = cast<FunctionDecl>(GD.getDecl()); 1766 if (CodeGenOpts.OptimizationLevel == 0 && !F->hasAttr<AlwaysInlineAttr>()) 1767 return false; 1768 1769 if (F->hasAttr<DLLImportAttr>()) { 1770 // Check whether it would be safe to inline this dllimport function. 1771 DLLImportFunctionVisitor Visitor; 1772 Visitor.TraverseFunctionDecl(const_cast<FunctionDecl*>(F)); 1773 if (!Visitor.SafeToInline) 1774 return false; 1775 1776 if (const CXXDestructorDecl *Dtor = dyn_cast<CXXDestructorDecl>(F)) { 1777 // Implicit destructor invocations aren't captured in the AST, so the 1778 // check above can't see them. Check for them manually here. 1779 for (const Decl *Member : Dtor->getParent()->decls()) 1780 if (isa<FieldDecl>(Member)) 1781 if (HasNonDllImportDtor(cast<FieldDecl>(Member)->getType())) 1782 return false; 1783 for (const CXXBaseSpecifier &B : Dtor->getParent()->bases()) 1784 if (HasNonDllImportDtor(B.getType())) 1785 return false; 1786 } 1787 } 1788 1789 // PR9614. Avoid cases where the source code is lying to us. An available 1790 // externally function should have an equivalent function somewhere else, 1791 // but a function that calls itself is clearly not equivalent to the real 1792 // implementation. 1793 // This happens in glibc's btowc and in some configure checks. 1794 return !isTriviallyRecursive(F); 1795 } 1796 1797 /// If the type for the method's class was generated by 1798 /// CGDebugInfo::createContextChain(), the cache contains only a 1799 /// limited DIType without any declarations. Since EmitFunctionStart() 1800 /// needs to find the canonical declaration for each method, we need 1801 /// to construct the complete type prior to emitting the method. 1802 void CodeGenModule::CompleteDIClassType(const CXXMethodDecl* D) { 1803 if (!D->isInstance()) 1804 return; 1805 1806 if (CGDebugInfo *DI = getModuleDebugInfo()) 1807 if (getCodeGenOpts().getDebugInfo() >= codegenoptions::LimitedDebugInfo) { 1808 const auto *ThisPtr = cast<PointerType>(D->getThisType(getContext())); 1809 DI->getOrCreateRecordType(ThisPtr->getPointeeType(), D->getLocation()); 1810 } 1811 } 1812 1813 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD, llvm::GlobalValue *GV) { 1814 const auto *D = cast<ValueDecl>(GD.getDecl()); 1815 1816 PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(), 1817 Context.getSourceManager(), 1818 "Generating code for declaration"); 1819 1820 if (isa<FunctionDecl>(D)) { 1821 // At -O0, don't generate IR for functions with available_externally 1822 // linkage. 1823 if (!shouldEmitFunction(GD)) 1824 return; 1825 1826 if (const auto *Method = dyn_cast<CXXMethodDecl>(D)) { 1827 CompleteDIClassType(Method); 1828 // Make sure to emit the definition(s) before we emit the thunks. 1829 // This is necessary for the generation of certain thunks. 1830 if (const auto *CD = dyn_cast<CXXConstructorDecl>(Method)) 1831 ABI->emitCXXStructor(CD, getFromCtorType(GD.getCtorType())); 1832 else if (const auto *DD = dyn_cast<CXXDestructorDecl>(Method)) 1833 ABI->emitCXXStructor(DD, getFromDtorType(GD.getDtorType())); 1834 else 1835 EmitGlobalFunctionDefinition(GD, GV); 1836 1837 if (Method->isVirtual()) 1838 getVTables().EmitThunks(GD); 1839 1840 return; 1841 } 1842 1843 return EmitGlobalFunctionDefinition(GD, GV); 1844 } 1845 1846 if (const auto *VD = dyn_cast<VarDecl>(D)) 1847 return EmitGlobalVarDefinition(VD, !VD->hasDefinition()); 1848 1849 llvm_unreachable("Invalid argument to EmitGlobalDefinition()"); 1850 } 1851 1852 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old, 1853 llvm::Function *NewFn); 1854 1855 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the 1856 /// module, create and return an llvm Function with the specified type. If there 1857 /// is something in the module with the specified name, return it potentially 1858 /// bitcasted to the right type. 1859 /// 1860 /// If D is non-null, it specifies a decl that correspond to this. This is used 1861 /// to set the attributes on the function when it is first created. 1862 llvm::Constant * 1863 CodeGenModule::GetOrCreateLLVMFunction(StringRef MangledName, 1864 llvm::Type *Ty, 1865 GlobalDecl GD, bool ForVTable, 1866 bool DontDefer, bool IsThunk, 1867 llvm::AttributeSet ExtraAttrs, 1868 bool IsForDefinition) { 1869 const Decl *D = GD.getDecl(); 1870 1871 // Lookup the entry, lazily creating it if necessary. 1872 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 1873 if (Entry) { 1874 if (WeakRefReferences.erase(Entry)) { 1875 const FunctionDecl *FD = cast_or_null<FunctionDecl>(D); 1876 if (FD && !FD->hasAttr<WeakAttr>()) 1877 Entry->setLinkage(llvm::Function::ExternalLinkage); 1878 } 1879 1880 // Handle dropped DLL attributes. 1881 if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>()) 1882 Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 1883 1884 // If there are two attempts to define the same mangled name, issue an 1885 // error. 1886 if (IsForDefinition && !Entry->isDeclaration()) { 1887 GlobalDecl OtherGD; 1888 // Check that GD is not yet in DiagnosedConflictingDefinitions is required 1889 // to make sure that we issue an error only once. 1890 if (lookupRepresentativeDecl(MangledName, OtherGD) && 1891 (GD.getCanonicalDecl().getDecl() != 1892 OtherGD.getCanonicalDecl().getDecl()) && 1893 DiagnosedConflictingDefinitions.insert(GD).second) { 1894 getDiags().Report(D->getLocation(), 1895 diag::err_duplicate_mangled_name); 1896 getDiags().Report(OtherGD.getDecl()->getLocation(), 1897 diag::note_previous_definition); 1898 } 1899 } 1900 1901 if ((isa<llvm::Function>(Entry) || isa<llvm::GlobalAlias>(Entry)) && 1902 (Entry->getType()->getElementType() == Ty)) { 1903 return Entry; 1904 } 1905 1906 // Make sure the result is of the correct type. 1907 // (If function is requested for a definition, we always need to create a new 1908 // function, not just return a bitcast.) 1909 if (!IsForDefinition) 1910 return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo()); 1911 } 1912 1913 // This function doesn't have a complete type (for example, the return 1914 // type is an incomplete struct). Use a fake type instead, and make 1915 // sure not to try to set attributes. 1916 bool IsIncompleteFunction = false; 1917 1918 llvm::FunctionType *FTy; 1919 if (isa<llvm::FunctionType>(Ty)) { 1920 FTy = cast<llvm::FunctionType>(Ty); 1921 } else { 1922 FTy = llvm::FunctionType::get(VoidTy, false); 1923 IsIncompleteFunction = true; 1924 } 1925 1926 llvm::Function *F = 1927 llvm::Function::Create(FTy, llvm::Function::ExternalLinkage, 1928 Entry ? StringRef() : MangledName, &getModule()); 1929 1930 // If we already created a function with the same mangled name (but different 1931 // type) before, take its name and add it to the list of functions to be 1932 // replaced with F at the end of CodeGen. 1933 // 1934 // This happens if there is a prototype for a function (e.g. "int f()") and 1935 // then a definition of a different type (e.g. "int f(int x)"). 1936 if (Entry) { 1937 F->takeName(Entry); 1938 1939 // This might be an implementation of a function without a prototype, in 1940 // which case, try to do special replacement of calls which match the new 1941 // prototype. The really key thing here is that we also potentially drop 1942 // arguments from the call site so as to make a direct call, which makes the 1943 // inliner happier and suppresses a number of optimizer warnings (!) about 1944 // dropping arguments. 1945 if (!Entry->use_empty()) { 1946 ReplaceUsesOfNonProtoTypeWithRealFunction(Entry, F); 1947 Entry->removeDeadConstantUsers(); 1948 } 1949 1950 llvm::Constant *BC = llvm::ConstantExpr::getBitCast( 1951 F, Entry->getType()->getElementType()->getPointerTo()); 1952 addGlobalValReplacement(Entry, BC); 1953 } 1954 1955 assert(F->getName() == MangledName && "name was uniqued!"); 1956 if (D) 1957 SetFunctionAttributes(GD, F, IsIncompleteFunction, IsThunk); 1958 if (ExtraAttrs.hasAttributes(llvm::AttributeSet::FunctionIndex)) { 1959 llvm::AttrBuilder B(ExtraAttrs, llvm::AttributeSet::FunctionIndex); 1960 F->addAttributes(llvm::AttributeSet::FunctionIndex, 1961 llvm::AttributeSet::get(VMContext, 1962 llvm::AttributeSet::FunctionIndex, 1963 B)); 1964 } 1965 1966 if (!DontDefer) { 1967 // All MSVC dtors other than the base dtor are linkonce_odr and delegate to 1968 // each other bottoming out with the base dtor. Therefore we emit non-base 1969 // dtors on usage, even if there is no dtor definition in the TU. 1970 if (D && isa<CXXDestructorDecl>(D) && 1971 getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D), 1972 GD.getDtorType())) 1973 addDeferredDeclToEmit(F, GD); 1974 1975 // This is the first use or definition of a mangled name. If there is a 1976 // deferred decl with this name, remember that we need to emit it at the end 1977 // of the file. 1978 auto DDI = DeferredDecls.find(MangledName); 1979 if (DDI != DeferredDecls.end()) { 1980 // Move the potentially referenced deferred decl to the 1981 // DeferredDeclsToEmit list, and remove it from DeferredDecls (since we 1982 // don't need it anymore). 1983 addDeferredDeclToEmit(F, DDI->second); 1984 DeferredDecls.erase(DDI); 1985 1986 // Otherwise, there are cases we have to worry about where we're 1987 // using a declaration for which we must emit a definition but where 1988 // we might not find a top-level definition: 1989 // - member functions defined inline in their classes 1990 // - friend functions defined inline in some class 1991 // - special member functions with implicit definitions 1992 // If we ever change our AST traversal to walk into class methods, 1993 // this will be unnecessary. 1994 // 1995 // We also don't emit a definition for a function if it's going to be an 1996 // entry in a vtable, unless it's already marked as used. 1997 } else if (getLangOpts().CPlusPlus && D) { 1998 // Look for a declaration that's lexically in a record. 1999 for (const auto *FD = cast<FunctionDecl>(D)->getMostRecentDecl(); FD; 2000 FD = FD->getPreviousDecl()) { 2001 if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) { 2002 if (FD->doesThisDeclarationHaveABody()) { 2003 addDeferredDeclToEmit(F, GD.getWithDecl(FD)); 2004 break; 2005 } 2006 } 2007 } 2008 } 2009 } 2010 2011 // Make sure the result is of the requested type. 2012 if (!IsIncompleteFunction) { 2013 assert(F->getType()->getElementType() == Ty); 2014 return F; 2015 } 2016 2017 llvm::Type *PTy = llvm::PointerType::getUnqual(Ty); 2018 return llvm::ConstantExpr::getBitCast(F, PTy); 2019 } 2020 2021 /// GetAddrOfFunction - Return the address of the given function. If Ty is 2022 /// non-null, then this function will use the specified type if it has to 2023 /// create it (this occurs when we see a definition of the function). 2024 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD, 2025 llvm::Type *Ty, 2026 bool ForVTable, 2027 bool DontDefer, 2028 bool IsForDefinition) { 2029 // If there was no specific requested type, just convert it now. 2030 if (!Ty) { 2031 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 2032 auto CanonTy = Context.getCanonicalType(FD->getType()); 2033 Ty = getTypes().ConvertFunctionType(CanonTy, FD); 2034 } 2035 2036 StringRef MangledName = getMangledName(GD); 2037 return GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable, DontDefer, 2038 /*IsThunk=*/false, llvm::AttributeSet(), 2039 IsForDefinition); 2040 } 2041 2042 /// CreateRuntimeFunction - Create a new runtime function with the specified 2043 /// type and name. 2044 llvm::Constant * 2045 CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy, 2046 StringRef Name, 2047 llvm::AttributeSet ExtraAttrs) { 2048 llvm::Constant *C = 2049 GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false, 2050 /*DontDefer=*/false, /*IsThunk=*/false, ExtraAttrs); 2051 if (auto *F = dyn_cast<llvm::Function>(C)) 2052 if (F->empty()) 2053 F->setCallingConv(getRuntimeCC()); 2054 return C; 2055 } 2056 2057 /// CreateBuiltinFunction - Create a new builtin function with the specified 2058 /// type and name. 2059 llvm::Constant * 2060 CodeGenModule::CreateBuiltinFunction(llvm::FunctionType *FTy, 2061 StringRef Name, 2062 llvm::AttributeSet ExtraAttrs) { 2063 llvm::Constant *C = 2064 GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false, 2065 /*DontDefer=*/false, /*IsThunk=*/false, ExtraAttrs); 2066 if (auto *F = dyn_cast<llvm::Function>(C)) 2067 if (F->empty()) 2068 F->setCallingConv(getBuiltinCC()); 2069 return C; 2070 } 2071 2072 /// isTypeConstant - Determine whether an object of this type can be emitted 2073 /// as a constant. 2074 /// 2075 /// If ExcludeCtor is true, the duration when the object's constructor runs 2076 /// will not be considered. The caller will need to verify that the object is 2077 /// not written to during its construction. 2078 bool CodeGenModule::isTypeConstant(QualType Ty, bool ExcludeCtor) { 2079 if (!Ty.isConstant(Context) && !Ty->isReferenceType()) 2080 return false; 2081 2082 if (Context.getLangOpts().CPlusPlus) { 2083 if (const CXXRecordDecl *Record 2084 = Context.getBaseElementType(Ty)->getAsCXXRecordDecl()) 2085 return ExcludeCtor && !Record->hasMutableFields() && 2086 Record->hasTrivialDestructor(); 2087 } 2088 2089 return true; 2090 } 2091 2092 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module, 2093 /// create and return an llvm GlobalVariable with the specified type. If there 2094 /// is something in the module with the specified name, return it potentially 2095 /// bitcasted to the right type. 2096 /// 2097 /// If D is non-null, it specifies a decl that correspond to this. This is used 2098 /// to set the attributes on the global when it is first created. 2099 /// 2100 /// If IsForDefinition is true, it is guranteed that an actual global with 2101 /// type Ty will be returned, not conversion of a variable with the same 2102 /// mangled name but some other type. 2103 llvm::Constant * 2104 CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName, 2105 llvm::PointerType *Ty, 2106 const VarDecl *D, 2107 bool IsForDefinition) { 2108 // Lookup the entry, lazily creating it if necessary. 2109 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 2110 if (Entry) { 2111 if (WeakRefReferences.erase(Entry)) { 2112 if (D && !D->hasAttr<WeakAttr>()) 2113 Entry->setLinkage(llvm::Function::ExternalLinkage); 2114 } 2115 2116 // Handle dropped DLL attributes. 2117 if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>()) 2118 Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 2119 2120 if (Entry->getType() == Ty) 2121 return Entry; 2122 2123 // If there are two attempts to define the same mangled name, issue an 2124 // error. 2125 if (IsForDefinition && !Entry->isDeclaration()) { 2126 GlobalDecl OtherGD; 2127 const VarDecl *OtherD; 2128 2129 // Check that D is not yet in DiagnosedConflictingDefinitions is required 2130 // to make sure that we issue an error only once. 2131 if (D && lookupRepresentativeDecl(MangledName, OtherGD) && 2132 (D->getCanonicalDecl() != OtherGD.getCanonicalDecl().getDecl()) && 2133 (OtherD = dyn_cast<VarDecl>(OtherGD.getDecl())) && 2134 OtherD->hasInit() && 2135 DiagnosedConflictingDefinitions.insert(D).second) { 2136 getDiags().Report(D->getLocation(), 2137 diag::err_duplicate_mangled_name); 2138 getDiags().Report(OtherGD.getDecl()->getLocation(), 2139 diag::note_previous_definition); 2140 } 2141 } 2142 2143 // Make sure the result is of the correct type. 2144 if (Entry->getType()->getAddressSpace() != Ty->getAddressSpace()) 2145 return llvm::ConstantExpr::getAddrSpaceCast(Entry, Ty); 2146 2147 // (If global is requested for a definition, we always need to create a new 2148 // global, not just return a bitcast.) 2149 if (!IsForDefinition) 2150 return llvm::ConstantExpr::getBitCast(Entry, Ty); 2151 } 2152 2153 unsigned AddrSpace = GetGlobalVarAddressSpace(D, Ty->getAddressSpace()); 2154 auto *GV = new llvm::GlobalVariable( 2155 getModule(), Ty->getElementType(), false, 2156 llvm::GlobalValue::ExternalLinkage, nullptr, MangledName, nullptr, 2157 llvm::GlobalVariable::NotThreadLocal, AddrSpace); 2158 2159 // If we already created a global with the same mangled name (but different 2160 // type) before, take its name and remove it from its parent. 2161 if (Entry) { 2162 GV->takeName(Entry); 2163 2164 if (!Entry->use_empty()) { 2165 llvm::Constant *NewPtrForOldDecl = 2166 llvm::ConstantExpr::getBitCast(GV, Entry->getType()); 2167 Entry->replaceAllUsesWith(NewPtrForOldDecl); 2168 } 2169 2170 Entry->eraseFromParent(); 2171 } 2172 2173 // This is the first use or definition of a mangled name. If there is a 2174 // deferred decl with this name, remember that we need to emit it at the end 2175 // of the file. 2176 auto DDI = DeferredDecls.find(MangledName); 2177 if (DDI != DeferredDecls.end()) { 2178 // Move the potentially referenced deferred decl to the DeferredDeclsToEmit 2179 // list, and remove it from DeferredDecls (since we don't need it anymore). 2180 addDeferredDeclToEmit(GV, DDI->second); 2181 DeferredDecls.erase(DDI); 2182 } 2183 2184 // Handle things which are present even on external declarations. 2185 if (D) { 2186 // FIXME: This code is overly simple and should be merged with other global 2187 // handling. 2188 GV->setConstant(isTypeConstant(D->getType(), false)); 2189 2190 GV->setAlignment(getContext().getDeclAlign(D).getQuantity()); 2191 2192 setLinkageAndVisibilityForGV(GV, D); 2193 2194 if (D->getTLSKind()) { 2195 if (D->getTLSKind() == VarDecl::TLS_Dynamic) 2196 CXXThreadLocals.push_back(D); 2197 setTLSMode(GV, *D); 2198 } 2199 2200 // If required by the ABI, treat declarations of static data members with 2201 // inline initializers as definitions. 2202 if (getContext().isMSStaticDataMemberInlineDefinition(D)) { 2203 EmitGlobalVarDefinition(D); 2204 } 2205 2206 // Handle XCore specific ABI requirements. 2207 if (getTriple().getArch() == llvm::Triple::xcore && 2208 D->getLanguageLinkage() == CLanguageLinkage && 2209 D->getType().isConstant(Context) && 2210 isExternallyVisible(D->getLinkageAndVisibility().getLinkage())) 2211 GV->setSection(".cp.rodata"); 2212 } 2213 2214 if (AddrSpace != Ty->getAddressSpace()) 2215 return llvm::ConstantExpr::getAddrSpaceCast(GV, Ty); 2216 2217 return GV; 2218 } 2219 2220 llvm::Constant * 2221 CodeGenModule::GetAddrOfGlobal(GlobalDecl GD, 2222 bool IsForDefinition) { 2223 if (isa<CXXConstructorDecl>(GD.getDecl())) 2224 return getAddrOfCXXStructor(cast<CXXConstructorDecl>(GD.getDecl()), 2225 getFromCtorType(GD.getCtorType()), 2226 /*FnInfo=*/nullptr, /*FnType=*/nullptr, 2227 /*DontDefer=*/false, IsForDefinition); 2228 else if (isa<CXXDestructorDecl>(GD.getDecl())) 2229 return getAddrOfCXXStructor(cast<CXXDestructorDecl>(GD.getDecl()), 2230 getFromDtorType(GD.getDtorType()), 2231 /*FnInfo=*/nullptr, /*FnType=*/nullptr, 2232 /*DontDefer=*/false, IsForDefinition); 2233 else if (isa<CXXMethodDecl>(GD.getDecl())) { 2234 auto FInfo = &getTypes().arrangeCXXMethodDeclaration( 2235 cast<CXXMethodDecl>(GD.getDecl())); 2236 auto Ty = getTypes().GetFunctionType(*FInfo); 2237 return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false, 2238 IsForDefinition); 2239 } else if (isa<FunctionDecl>(GD.getDecl())) { 2240 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 2241 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 2242 return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false, 2243 IsForDefinition); 2244 } else 2245 return GetAddrOfGlobalVar(cast<VarDecl>(GD.getDecl()), /*Ty=*/nullptr, 2246 IsForDefinition); 2247 } 2248 2249 llvm::GlobalVariable * 2250 CodeGenModule::CreateOrReplaceCXXRuntimeVariable(StringRef Name, 2251 llvm::Type *Ty, 2252 llvm::GlobalValue::LinkageTypes Linkage) { 2253 llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name); 2254 llvm::GlobalVariable *OldGV = nullptr; 2255 2256 if (GV) { 2257 // Check if the variable has the right type. 2258 if (GV->getType()->getElementType() == Ty) 2259 return GV; 2260 2261 // Because C++ name mangling, the only way we can end up with an already 2262 // existing global with the same name is if it has been declared extern "C". 2263 assert(GV->isDeclaration() && "Declaration has wrong type!"); 2264 OldGV = GV; 2265 } 2266 2267 // Create a new variable. 2268 GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true, 2269 Linkage, nullptr, Name); 2270 2271 if (OldGV) { 2272 // Replace occurrences of the old variable if needed. 2273 GV->takeName(OldGV); 2274 2275 if (!OldGV->use_empty()) { 2276 llvm::Constant *NewPtrForOldDecl = 2277 llvm::ConstantExpr::getBitCast(GV, OldGV->getType()); 2278 OldGV->replaceAllUsesWith(NewPtrForOldDecl); 2279 } 2280 2281 OldGV->eraseFromParent(); 2282 } 2283 2284 if (supportsCOMDAT() && GV->isWeakForLinker() && 2285 !GV->hasAvailableExternallyLinkage()) 2286 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 2287 2288 return GV; 2289 } 2290 2291 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the 2292 /// given global variable. If Ty is non-null and if the global doesn't exist, 2293 /// then it will be created with the specified type instead of whatever the 2294 /// normal requested type would be. If IsForDefinition is true, it is guranteed 2295 /// that an actual global with type Ty will be returned, not conversion of a 2296 /// variable with the same mangled name but some other type. 2297 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D, 2298 llvm::Type *Ty, 2299 bool IsForDefinition) { 2300 assert(D->hasGlobalStorage() && "Not a global variable"); 2301 QualType ASTTy = D->getType(); 2302 if (!Ty) 2303 Ty = getTypes().ConvertTypeForMem(ASTTy); 2304 2305 llvm::PointerType *PTy = 2306 llvm::PointerType::get(Ty, getContext().getTargetAddressSpace(ASTTy)); 2307 2308 StringRef MangledName = getMangledName(D); 2309 return GetOrCreateLLVMGlobal(MangledName, PTy, D, IsForDefinition); 2310 } 2311 2312 /// CreateRuntimeVariable - Create a new runtime global variable with the 2313 /// specified type and name. 2314 llvm::Constant * 2315 CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty, 2316 StringRef Name) { 2317 return GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), nullptr); 2318 } 2319 2320 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) { 2321 assert(!D->getInit() && "Cannot emit definite definitions here!"); 2322 2323 StringRef MangledName = getMangledName(D); 2324 llvm::GlobalValue *GV = GetGlobalValue(MangledName); 2325 2326 // We already have a definition, not declaration, with the same mangled name. 2327 // Emitting of declaration is not required (and actually overwrites emitted 2328 // definition). 2329 if (GV && !GV->isDeclaration()) 2330 return; 2331 2332 // If we have not seen a reference to this variable yet, place it into the 2333 // deferred declarations table to be emitted if needed later. 2334 if (!MustBeEmitted(D) && !GV) { 2335 DeferredDecls[MangledName] = D; 2336 return; 2337 } 2338 2339 // The tentative definition is the only definition. 2340 EmitGlobalVarDefinition(D); 2341 } 2342 2343 CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const { 2344 return Context.toCharUnitsFromBits( 2345 getDataLayout().getTypeStoreSizeInBits(Ty)); 2346 } 2347 2348 unsigned CodeGenModule::GetGlobalVarAddressSpace(const VarDecl *D, 2349 unsigned AddrSpace) { 2350 if (D && LangOpts.CUDA && LangOpts.CUDAIsDevice) { 2351 if (D->hasAttr<CUDAConstantAttr>()) 2352 AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_constant); 2353 else if (D->hasAttr<CUDASharedAttr>()) 2354 AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_shared); 2355 else 2356 AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_device); 2357 } 2358 2359 return AddrSpace; 2360 } 2361 2362 template<typename SomeDecl> 2363 void CodeGenModule::MaybeHandleStaticInExternC(const SomeDecl *D, 2364 llvm::GlobalValue *GV) { 2365 if (!getLangOpts().CPlusPlus) 2366 return; 2367 2368 // Must have 'used' attribute, or else inline assembly can't rely on 2369 // the name existing. 2370 if (!D->template hasAttr<UsedAttr>()) 2371 return; 2372 2373 // Must have internal linkage and an ordinary name. 2374 if (!D->getIdentifier() || D->getFormalLinkage() != InternalLinkage) 2375 return; 2376 2377 // Must be in an extern "C" context. Entities declared directly within 2378 // a record are not extern "C" even if the record is in such a context. 2379 const SomeDecl *First = D->getFirstDecl(); 2380 if (First->getDeclContext()->isRecord() || !First->isInExternCContext()) 2381 return; 2382 2383 // OK, this is an internal linkage entity inside an extern "C" linkage 2384 // specification. Make a note of that so we can give it the "expected" 2385 // mangled name if nothing else is using that name. 2386 std::pair<StaticExternCMap::iterator, bool> R = 2387 StaticExternCValues.insert(std::make_pair(D->getIdentifier(), GV)); 2388 2389 // If we have multiple internal linkage entities with the same name 2390 // in extern "C" regions, none of them gets that name. 2391 if (!R.second) 2392 R.first->second = nullptr; 2393 } 2394 2395 static bool shouldBeInCOMDAT(CodeGenModule &CGM, const Decl &D) { 2396 if (!CGM.supportsCOMDAT()) 2397 return false; 2398 2399 if (D.hasAttr<SelectAnyAttr>()) 2400 return true; 2401 2402 GVALinkage Linkage; 2403 if (auto *VD = dyn_cast<VarDecl>(&D)) 2404 Linkage = CGM.getContext().GetGVALinkageForVariable(VD); 2405 else 2406 Linkage = CGM.getContext().GetGVALinkageForFunction(cast<FunctionDecl>(&D)); 2407 2408 switch (Linkage) { 2409 case GVA_Internal: 2410 case GVA_AvailableExternally: 2411 case GVA_StrongExternal: 2412 return false; 2413 case GVA_DiscardableODR: 2414 case GVA_StrongODR: 2415 return true; 2416 } 2417 llvm_unreachable("No such linkage"); 2418 } 2419 2420 void CodeGenModule::maybeSetTrivialComdat(const Decl &D, 2421 llvm::GlobalObject &GO) { 2422 if (!shouldBeInCOMDAT(*this, D)) 2423 return; 2424 GO.setComdat(TheModule.getOrInsertComdat(GO.getName())); 2425 } 2426 2427 /// Pass IsTentative as true if you want to create a tentative definition. 2428 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D, 2429 bool IsTentative) { 2430 // OpenCL global variables of sampler type are translated to function calls, 2431 // therefore no need to be translated. 2432 QualType ASTTy = D->getType(); 2433 if (getLangOpts().OpenCL && ASTTy->isSamplerT()) 2434 return; 2435 2436 llvm::Constant *Init = nullptr; 2437 CXXRecordDecl *RD = ASTTy->getBaseElementTypeUnsafe()->getAsCXXRecordDecl(); 2438 bool NeedsGlobalCtor = false; 2439 bool NeedsGlobalDtor = RD && !RD->hasTrivialDestructor(); 2440 2441 const VarDecl *InitDecl; 2442 const Expr *InitExpr = D->getAnyInitializer(InitDecl); 2443 2444 // CUDA E.2.4.1 "__shared__ variables cannot have an initialization 2445 // as part of their declaration." Sema has already checked for 2446 // error cases, so we just need to set Init to UndefValue. 2447 if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice && 2448 D->hasAttr<CUDASharedAttr>()) 2449 Init = llvm::UndefValue::get(getTypes().ConvertType(ASTTy)); 2450 else if (!InitExpr) { 2451 // This is a tentative definition; tentative definitions are 2452 // implicitly initialized with { 0 }. 2453 // 2454 // Note that tentative definitions are only emitted at the end of 2455 // a translation unit, so they should never have incomplete 2456 // type. In addition, EmitTentativeDefinition makes sure that we 2457 // never attempt to emit a tentative definition if a real one 2458 // exists. A use may still exists, however, so we still may need 2459 // to do a RAUW. 2460 assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type"); 2461 Init = EmitNullConstant(D->getType()); 2462 } else { 2463 initializedGlobalDecl = GlobalDecl(D); 2464 Init = EmitConstantInit(*InitDecl); 2465 2466 if (!Init) { 2467 QualType T = InitExpr->getType(); 2468 if (D->getType()->isReferenceType()) 2469 T = D->getType(); 2470 2471 if (getLangOpts().CPlusPlus) { 2472 Init = EmitNullConstant(T); 2473 NeedsGlobalCtor = true; 2474 } else { 2475 ErrorUnsupported(D, "static initializer"); 2476 Init = llvm::UndefValue::get(getTypes().ConvertType(T)); 2477 } 2478 } else { 2479 // We don't need an initializer, so remove the entry for the delayed 2480 // initializer position (just in case this entry was delayed) if we 2481 // also don't need to register a destructor. 2482 if (getLangOpts().CPlusPlus && !NeedsGlobalDtor) 2483 DelayedCXXInitPosition.erase(D); 2484 } 2485 } 2486 2487 llvm::Type* InitType = Init->getType(); 2488 llvm::Constant *Entry = 2489 GetAddrOfGlobalVar(D, InitType, /*IsForDefinition=*/!IsTentative); 2490 2491 // Strip off a bitcast if we got one back. 2492 if (auto *CE = dyn_cast<llvm::ConstantExpr>(Entry)) { 2493 assert(CE->getOpcode() == llvm::Instruction::BitCast || 2494 CE->getOpcode() == llvm::Instruction::AddrSpaceCast || 2495 // All zero index gep. 2496 CE->getOpcode() == llvm::Instruction::GetElementPtr); 2497 Entry = CE->getOperand(0); 2498 } 2499 2500 // Entry is now either a Function or GlobalVariable. 2501 auto *GV = dyn_cast<llvm::GlobalVariable>(Entry); 2502 2503 // We have a definition after a declaration with the wrong type. 2504 // We must make a new GlobalVariable* and update everything that used OldGV 2505 // (a declaration or tentative definition) with the new GlobalVariable* 2506 // (which will be a definition). 2507 // 2508 // This happens if there is a prototype for a global (e.g. 2509 // "extern int x[];") and then a definition of a different type (e.g. 2510 // "int x[10];"). This also happens when an initializer has a different type 2511 // from the type of the global (this happens with unions). 2512 if (!GV || 2513 GV->getType()->getElementType() != InitType || 2514 GV->getType()->getAddressSpace() != 2515 GetGlobalVarAddressSpace(D, getContext().getTargetAddressSpace(ASTTy))) { 2516 2517 // Move the old entry aside so that we'll create a new one. 2518 Entry->setName(StringRef()); 2519 2520 // Make a new global with the correct type, this is now guaranteed to work. 2521 GV = cast<llvm::GlobalVariable>( 2522 GetAddrOfGlobalVar(D, InitType, /*IsForDefinition=*/!IsTentative)); 2523 2524 // Replace all uses of the old global with the new global 2525 llvm::Constant *NewPtrForOldDecl = 2526 llvm::ConstantExpr::getBitCast(GV, Entry->getType()); 2527 Entry->replaceAllUsesWith(NewPtrForOldDecl); 2528 2529 // Erase the old global, since it is no longer used. 2530 cast<llvm::GlobalValue>(Entry)->eraseFromParent(); 2531 } 2532 2533 MaybeHandleStaticInExternC(D, GV); 2534 2535 if (D->hasAttr<AnnotateAttr>()) 2536 AddGlobalAnnotations(D, GV); 2537 2538 // Set the llvm linkage type as appropriate. 2539 llvm::GlobalValue::LinkageTypes Linkage = 2540 getLLVMLinkageVarDefinition(D, GV->isConstant()); 2541 2542 // CUDA B.2.1 "The __device__ qualifier declares a variable that resides on 2543 // the device. [...]" 2544 // CUDA B.2.2 "The __constant__ qualifier, optionally used together with 2545 // __device__, declares a variable that: [...] 2546 // Is accessible from all the threads within the grid and from the host 2547 // through the runtime library (cudaGetSymbolAddress() / cudaGetSymbolSize() 2548 // / cudaMemcpyToSymbol() / cudaMemcpyFromSymbol())." 2549 if (GV && LangOpts.CUDA) { 2550 if (LangOpts.CUDAIsDevice) { 2551 if (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>()) 2552 GV->setExternallyInitialized(true); 2553 } else { 2554 // Host-side shadows of external declarations of device-side 2555 // global variables become internal definitions. These have to 2556 // be internal in order to prevent name conflicts with global 2557 // host variables with the same name in a different TUs. 2558 if (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>()) { 2559 Linkage = llvm::GlobalValue::InternalLinkage; 2560 2561 // Shadow variables and their properties must be registered 2562 // with CUDA runtime. 2563 unsigned Flags = 0; 2564 if (!D->hasDefinition()) 2565 Flags |= CGCUDARuntime::ExternDeviceVar; 2566 if (D->hasAttr<CUDAConstantAttr>()) 2567 Flags |= CGCUDARuntime::ConstantDeviceVar; 2568 getCUDARuntime().registerDeviceVar(*GV, Flags); 2569 } else if (D->hasAttr<CUDASharedAttr>()) 2570 // __shared__ variables are odd. Shadows do get created, but 2571 // they are not registered with the CUDA runtime, so they 2572 // can't really be used to access their device-side 2573 // counterparts. It's not clear yet whether it's nvcc's bug or 2574 // a feature, but we've got to do the same for compatibility. 2575 Linkage = llvm::GlobalValue::InternalLinkage; 2576 } 2577 } 2578 GV->setInitializer(Init); 2579 2580 // If it is safe to mark the global 'constant', do so now. 2581 GV->setConstant(!NeedsGlobalCtor && !NeedsGlobalDtor && 2582 isTypeConstant(D->getType(), true)); 2583 2584 // If it is in a read-only section, mark it 'constant'. 2585 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) { 2586 const ASTContext::SectionInfo &SI = Context.SectionInfos[SA->getName()]; 2587 if ((SI.SectionFlags & ASTContext::PSF_Write) == 0) 2588 GV->setConstant(true); 2589 } 2590 2591 GV->setAlignment(getContext().getDeclAlign(D).getQuantity()); 2592 2593 2594 // On Darwin, if the normal linkage of a C++ thread_local variable is 2595 // LinkOnce or Weak, we keep the normal linkage to prevent multiple 2596 // copies within a linkage unit; otherwise, the backing variable has 2597 // internal linkage and all accesses should just be calls to the 2598 // Itanium-specified entry point, which has the normal linkage of the 2599 // variable. This is to preserve the ability to change the implementation 2600 // behind the scenes. 2601 if (!D->isStaticLocal() && D->getTLSKind() == VarDecl::TLS_Dynamic && 2602 Context.getTargetInfo().getTriple().isOSDarwin() && 2603 !llvm::GlobalVariable::isLinkOnceLinkage(Linkage) && 2604 !llvm::GlobalVariable::isWeakLinkage(Linkage)) 2605 Linkage = llvm::GlobalValue::InternalLinkage; 2606 2607 GV->setLinkage(Linkage); 2608 if (D->hasAttr<DLLImportAttr>()) 2609 GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass); 2610 else if (D->hasAttr<DLLExportAttr>()) 2611 GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass); 2612 else 2613 GV->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass); 2614 2615 if (Linkage == llvm::GlobalVariable::CommonLinkage) 2616 // common vars aren't constant even if declared const. 2617 GV->setConstant(false); 2618 2619 setNonAliasAttributes(D, GV); 2620 2621 if (D->getTLSKind() && !GV->isThreadLocal()) { 2622 if (D->getTLSKind() == VarDecl::TLS_Dynamic) 2623 CXXThreadLocals.push_back(D); 2624 setTLSMode(GV, *D); 2625 } 2626 2627 maybeSetTrivialComdat(*D, *GV); 2628 2629 // Emit the initializer function if necessary. 2630 if (NeedsGlobalCtor || NeedsGlobalDtor) 2631 EmitCXXGlobalVarDeclInitFunc(D, GV, NeedsGlobalCtor); 2632 2633 SanitizerMD->reportGlobalToASan(GV, *D, NeedsGlobalCtor); 2634 2635 // Emit global variable debug information. 2636 if (CGDebugInfo *DI = getModuleDebugInfo()) 2637 if (getCodeGenOpts().getDebugInfo() >= codegenoptions::LimitedDebugInfo) 2638 DI->EmitGlobalVariable(GV, D); 2639 } 2640 2641 static bool isVarDeclStrongDefinition(const ASTContext &Context, 2642 CodeGenModule &CGM, const VarDecl *D, 2643 bool NoCommon) { 2644 // Don't give variables common linkage if -fno-common was specified unless it 2645 // was overridden by a NoCommon attribute. 2646 if ((NoCommon || D->hasAttr<NoCommonAttr>()) && !D->hasAttr<CommonAttr>()) 2647 return true; 2648 2649 // C11 6.9.2/2: 2650 // A declaration of an identifier for an object that has file scope without 2651 // an initializer, and without a storage-class specifier or with the 2652 // storage-class specifier static, constitutes a tentative definition. 2653 if (D->getInit() || D->hasExternalStorage()) 2654 return true; 2655 2656 // A variable cannot be both common and exist in a section. 2657 if (D->hasAttr<SectionAttr>()) 2658 return true; 2659 2660 // Thread local vars aren't considered common linkage. 2661 if (D->getTLSKind()) 2662 return true; 2663 2664 // Tentative definitions marked with WeakImportAttr are true definitions. 2665 if (D->hasAttr<WeakImportAttr>()) 2666 return true; 2667 2668 // A variable cannot be both common and exist in a comdat. 2669 if (shouldBeInCOMDAT(CGM, *D)) 2670 return true; 2671 2672 // Declarations with a required alignment do not have common linkage in MSVC 2673 // mode. 2674 if (Context.getTargetInfo().getCXXABI().isMicrosoft()) { 2675 if (D->hasAttr<AlignedAttr>()) 2676 return true; 2677 QualType VarType = D->getType(); 2678 if (Context.isAlignmentRequired(VarType)) 2679 return true; 2680 2681 if (const auto *RT = VarType->getAs<RecordType>()) { 2682 const RecordDecl *RD = RT->getDecl(); 2683 for (const FieldDecl *FD : RD->fields()) { 2684 if (FD->isBitField()) 2685 continue; 2686 if (FD->hasAttr<AlignedAttr>()) 2687 return true; 2688 if (Context.isAlignmentRequired(FD->getType())) 2689 return true; 2690 } 2691 } 2692 } 2693 2694 return false; 2695 } 2696 2697 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageForDeclarator( 2698 const DeclaratorDecl *D, GVALinkage Linkage, bool IsConstantVariable) { 2699 if (Linkage == GVA_Internal) 2700 return llvm::Function::InternalLinkage; 2701 2702 if (D->hasAttr<WeakAttr>()) { 2703 if (IsConstantVariable) 2704 return llvm::GlobalVariable::WeakODRLinkage; 2705 else 2706 return llvm::GlobalVariable::WeakAnyLinkage; 2707 } 2708 2709 // We are guaranteed to have a strong definition somewhere else, 2710 // so we can use available_externally linkage. 2711 if (Linkage == GVA_AvailableExternally) 2712 return llvm::Function::AvailableExternallyLinkage; 2713 2714 // Note that Apple's kernel linker doesn't support symbol 2715 // coalescing, so we need to avoid linkonce and weak linkages there. 2716 // Normally, this means we just map to internal, but for explicit 2717 // instantiations we'll map to external. 2718 2719 // In C++, the compiler has to emit a definition in every translation unit 2720 // that references the function. We should use linkonce_odr because 2721 // a) if all references in this translation unit are optimized away, we 2722 // don't need to codegen it. b) if the function persists, it needs to be 2723 // merged with other definitions. c) C++ has the ODR, so we know the 2724 // definition is dependable. 2725 if (Linkage == GVA_DiscardableODR) 2726 return !Context.getLangOpts().AppleKext ? llvm::Function::LinkOnceODRLinkage 2727 : llvm::Function::InternalLinkage; 2728 2729 // An explicit instantiation of a template has weak linkage, since 2730 // explicit instantiations can occur in multiple translation units 2731 // and must all be equivalent. However, we are not allowed to 2732 // throw away these explicit instantiations. 2733 // 2734 // We don't currently support CUDA device code spread out across multiple TUs, 2735 // so say that CUDA templates are either external (for kernels) or internal. 2736 // This lets llvm perform aggressive inter-procedural optimizations. 2737 if (Linkage == GVA_StrongODR) { 2738 if (Context.getLangOpts().AppleKext) 2739 return llvm::Function::ExternalLinkage; 2740 if (Context.getLangOpts().CUDA && Context.getLangOpts().CUDAIsDevice) 2741 return D->hasAttr<CUDAGlobalAttr>() ? llvm::Function::ExternalLinkage 2742 : llvm::Function::InternalLinkage; 2743 return llvm::Function::WeakODRLinkage; 2744 } 2745 2746 // C++ doesn't have tentative definitions and thus cannot have common 2747 // linkage. 2748 if (!getLangOpts().CPlusPlus && isa<VarDecl>(D) && 2749 !isVarDeclStrongDefinition(Context, *this, cast<VarDecl>(D), 2750 CodeGenOpts.NoCommon)) 2751 return llvm::GlobalVariable::CommonLinkage; 2752 2753 // selectany symbols are externally visible, so use weak instead of 2754 // linkonce. MSVC optimizes away references to const selectany globals, so 2755 // all definitions should be the same and ODR linkage should be used. 2756 // http://msdn.microsoft.com/en-us/library/5tkz6s71.aspx 2757 if (D->hasAttr<SelectAnyAttr>()) 2758 return llvm::GlobalVariable::WeakODRLinkage; 2759 2760 // Otherwise, we have strong external linkage. 2761 assert(Linkage == GVA_StrongExternal); 2762 return llvm::GlobalVariable::ExternalLinkage; 2763 } 2764 2765 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageVarDefinition( 2766 const VarDecl *VD, bool IsConstant) { 2767 GVALinkage Linkage = getContext().GetGVALinkageForVariable(VD); 2768 return getLLVMLinkageForDeclarator(VD, Linkage, IsConstant); 2769 } 2770 2771 /// Replace the uses of a function that was declared with a non-proto type. 2772 /// We want to silently drop extra arguments from call sites 2773 static void replaceUsesOfNonProtoConstant(llvm::Constant *old, 2774 llvm::Function *newFn) { 2775 // Fast path. 2776 if (old->use_empty()) return; 2777 2778 llvm::Type *newRetTy = newFn->getReturnType(); 2779 SmallVector<llvm::Value*, 4> newArgs; 2780 SmallVector<llvm::OperandBundleDef, 1> newBundles; 2781 2782 for (llvm::Value::use_iterator ui = old->use_begin(), ue = old->use_end(); 2783 ui != ue; ) { 2784 llvm::Value::use_iterator use = ui++; // Increment before the use is erased. 2785 llvm::User *user = use->getUser(); 2786 2787 // Recognize and replace uses of bitcasts. Most calls to 2788 // unprototyped functions will use bitcasts. 2789 if (auto *bitcast = dyn_cast<llvm::ConstantExpr>(user)) { 2790 if (bitcast->getOpcode() == llvm::Instruction::BitCast) 2791 replaceUsesOfNonProtoConstant(bitcast, newFn); 2792 continue; 2793 } 2794 2795 // Recognize calls to the function. 2796 llvm::CallSite callSite(user); 2797 if (!callSite) continue; 2798 if (!callSite.isCallee(&*use)) continue; 2799 2800 // If the return types don't match exactly, then we can't 2801 // transform this call unless it's dead. 2802 if (callSite->getType() != newRetTy && !callSite->use_empty()) 2803 continue; 2804 2805 // Get the call site's attribute list. 2806 SmallVector<llvm::AttributeSet, 8> newAttrs; 2807 llvm::AttributeSet oldAttrs = callSite.getAttributes(); 2808 2809 // Collect any return attributes from the call. 2810 if (oldAttrs.hasAttributes(llvm::AttributeSet::ReturnIndex)) 2811 newAttrs.push_back( 2812 llvm::AttributeSet::get(newFn->getContext(), 2813 oldAttrs.getRetAttributes())); 2814 2815 // If the function was passed too few arguments, don't transform. 2816 unsigned newNumArgs = newFn->arg_size(); 2817 if (callSite.arg_size() < newNumArgs) continue; 2818 2819 // If extra arguments were passed, we silently drop them. 2820 // If any of the types mismatch, we don't transform. 2821 unsigned argNo = 0; 2822 bool dontTransform = false; 2823 for (llvm::Function::arg_iterator ai = newFn->arg_begin(), 2824 ae = newFn->arg_end(); ai != ae; ++ai, ++argNo) { 2825 if (callSite.getArgument(argNo)->getType() != ai->getType()) { 2826 dontTransform = true; 2827 break; 2828 } 2829 2830 // Add any parameter attributes. 2831 if (oldAttrs.hasAttributes(argNo + 1)) 2832 newAttrs. 2833 push_back(llvm:: 2834 AttributeSet::get(newFn->getContext(), 2835 oldAttrs.getParamAttributes(argNo + 1))); 2836 } 2837 if (dontTransform) 2838 continue; 2839 2840 if (oldAttrs.hasAttributes(llvm::AttributeSet::FunctionIndex)) 2841 newAttrs.push_back(llvm::AttributeSet::get(newFn->getContext(), 2842 oldAttrs.getFnAttributes())); 2843 2844 // Okay, we can transform this. Create the new call instruction and copy 2845 // over the required information. 2846 newArgs.append(callSite.arg_begin(), callSite.arg_begin() + argNo); 2847 2848 // Copy over any operand bundles. 2849 callSite.getOperandBundlesAsDefs(newBundles); 2850 2851 llvm::CallSite newCall; 2852 if (callSite.isCall()) { 2853 newCall = llvm::CallInst::Create(newFn, newArgs, newBundles, "", 2854 callSite.getInstruction()); 2855 } else { 2856 auto *oldInvoke = cast<llvm::InvokeInst>(callSite.getInstruction()); 2857 newCall = llvm::InvokeInst::Create(newFn, 2858 oldInvoke->getNormalDest(), 2859 oldInvoke->getUnwindDest(), 2860 newArgs, newBundles, "", 2861 callSite.getInstruction()); 2862 } 2863 newArgs.clear(); // for the next iteration 2864 2865 if (!newCall->getType()->isVoidTy()) 2866 newCall->takeName(callSite.getInstruction()); 2867 newCall.setAttributes( 2868 llvm::AttributeSet::get(newFn->getContext(), newAttrs)); 2869 newCall.setCallingConv(callSite.getCallingConv()); 2870 2871 // Finally, remove the old call, replacing any uses with the new one. 2872 if (!callSite->use_empty()) 2873 callSite->replaceAllUsesWith(newCall.getInstruction()); 2874 2875 // Copy debug location attached to CI. 2876 if (callSite->getDebugLoc()) 2877 newCall->setDebugLoc(callSite->getDebugLoc()); 2878 2879 callSite->eraseFromParent(); 2880 } 2881 } 2882 2883 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we 2884 /// implement a function with no prototype, e.g. "int foo() {}". If there are 2885 /// existing call uses of the old function in the module, this adjusts them to 2886 /// call the new function directly. 2887 /// 2888 /// This is not just a cleanup: the always_inline pass requires direct calls to 2889 /// functions to be able to inline them. If there is a bitcast in the way, it 2890 /// won't inline them. Instcombine normally deletes these calls, but it isn't 2891 /// run at -O0. 2892 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old, 2893 llvm::Function *NewFn) { 2894 // If we're redefining a global as a function, don't transform it. 2895 if (!isa<llvm::Function>(Old)) return; 2896 2897 replaceUsesOfNonProtoConstant(Old, NewFn); 2898 } 2899 2900 void CodeGenModule::HandleCXXStaticMemberVarInstantiation(VarDecl *VD) { 2901 auto DK = VD->isThisDeclarationADefinition(); 2902 if (DK == VarDecl::Definition && VD->hasAttr<DLLImportAttr>()) 2903 return; 2904 2905 TemplateSpecializationKind TSK = VD->getTemplateSpecializationKind(); 2906 // If we have a definition, this might be a deferred decl. If the 2907 // instantiation is explicit, make sure we emit it at the end. 2908 if (VD->getDefinition() && TSK == TSK_ExplicitInstantiationDefinition) 2909 GetAddrOfGlobalVar(VD); 2910 2911 EmitTopLevelDecl(VD); 2912 } 2913 2914 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD, 2915 llvm::GlobalValue *GV) { 2916 const auto *D = cast<FunctionDecl>(GD.getDecl()); 2917 2918 // Compute the function info and LLVM type. 2919 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 2920 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 2921 2922 // Get or create the prototype for the function. 2923 if (!GV || (GV->getType()->getElementType() != Ty)) 2924 GV = cast<llvm::GlobalValue>(GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, 2925 /*DontDefer=*/true, 2926 /*IsForDefinition=*/true)); 2927 2928 // Already emitted. 2929 if (!GV->isDeclaration()) 2930 return; 2931 2932 // We need to set linkage and visibility on the function before 2933 // generating code for it because various parts of IR generation 2934 // want to propagate this information down (e.g. to local static 2935 // declarations). 2936 auto *Fn = cast<llvm::Function>(GV); 2937 setFunctionLinkage(GD, Fn); 2938 setFunctionDLLStorageClass(GD, Fn); 2939 2940 // FIXME: this is redundant with part of setFunctionDefinitionAttributes 2941 setGlobalVisibility(Fn, D); 2942 2943 MaybeHandleStaticInExternC(D, Fn); 2944 2945 maybeSetTrivialComdat(*D, *Fn); 2946 2947 CodeGenFunction(*this).GenerateCode(D, Fn, FI); 2948 2949 setFunctionDefinitionAttributes(D, Fn); 2950 SetLLVMFunctionAttributesForDefinition(D, Fn); 2951 2952 if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>()) 2953 AddGlobalCtor(Fn, CA->getPriority()); 2954 if (const DestructorAttr *DA = D->getAttr<DestructorAttr>()) 2955 AddGlobalDtor(Fn, DA->getPriority()); 2956 if (D->hasAttr<AnnotateAttr>()) 2957 AddGlobalAnnotations(D, Fn); 2958 } 2959 2960 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) { 2961 const auto *D = cast<ValueDecl>(GD.getDecl()); 2962 const AliasAttr *AA = D->getAttr<AliasAttr>(); 2963 assert(AA && "Not an alias?"); 2964 2965 StringRef MangledName = getMangledName(GD); 2966 2967 if (AA->getAliasee() == MangledName) { 2968 Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0; 2969 return; 2970 } 2971 2972 // If there is a definition in the module, then it wins over the alias. 2973 // This is dubious, but allow it to be safe. Just ignore the alias. 2974 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 2975 if (Entry && !Entry->isDeclaration()) 2976 return; 2977 2978 Aliases.push_back(GD); 2979 2980 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType()); 2981 2982 // Create a reference to the named value. This ensures that it is emitted 2983 // if a deferred decl. 2984 llvm::Constant *Aliasee; 2985 if (isa<llvm::FunctionType>(DeclTy)) 2986 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GD, 2987 /*ForVTable=*/false); 2988 else 2989 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), 2990 llvm::PointerType::getUnqual(DeclTy), 2991 /*D=*/nullptr); 2992 2993 // Create the new alias itself, but don't set a name yet. 2994 auto *GA = llvm::GlobalAlias::create( 2995 DeclTy, 0, llvm::Function::ExternalLinkage, "", Aliasee, &getModule()); 2996 2997 if (Entry) { 2998 if (GA->getAliasee() == Entry) { 2999 Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0; 3000 return; 3001 } 3002 3003 assert(Entry->isDeclaration()); 3004 3005 // If there is a declaration in the module, then we had an extern followed 3006 // by the alias, as in: 3007 // extern int test6(); 3008 // ... 3009 // int test6() __attribute__((alias("test7"))); 3010 // 3011 // Remove it and replace uses of it with the alias. 3012 GA->takeName(Entry); 3013 3014 Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA, 3015 Entry->getType())); 3016 Entry->eraseFromParent(); 3017 } else { 3018 GA->setName(MangledName); 3019 } 3020 3021 // Set attributes which are particular to an alias; this is a 3022 // specialization of the attributes which may be set on a global 3023 // variable/function. 3024 if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakRefAttr>() || 3025 D->isWeakImported()) { 3026 GA->setLinkage(llvm::Function::WeakAnyLinkage); 3027 } 3028 3029 if (const auto *VD = dyn_cast<VarDecl>(D)) 3030 if (VD->getTLSKind()) 3031 setTLSMode(GA, *VD); 3032 3033 setAliasAttributes(D, GA); 3034 } 3035 3036 void CodeGenModule::emitIFuncDefinition(GlobalDecl GD) { 3037 const auto *D = cast<ValueDecl>(GD.getDecl()); 3038 const IFuncAttr *IFA = D->getAttr<IFuncAttr>(); 3039 assert(IFA && "Not an ifunc?"); 3040 3041 StringRef MangledName = getMangledName(GD); 3042 3043 if (IFA->getResolver() == MangledName) { 3044 Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1; 3045 return; 3046 } 3047 3048 // Report an error if some definition overrides ifunc. 3049 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 3050 if (Entry && !Entry->isDeclaration()) { 3051 GlobalDecl OtherGD; 3052 if (lookupRepresentativeDecl(MangledName, OtherGD) && 3053 DiagnosedConflictingDefinitions.insert(GD).second) { 3054 Diags.Report(D->getLocation(), diag::err_duplicate_mangled_name); 3055 Diags.Report(OtherGD.getDecl()->getLocation(), 3056 diag::note_previous_definition); 3057 } 3058 return; 3059 } 3060 3061 Aliases.push_back(GD); 3062 3063 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType()); 3064 llvm::Constant *Resolver = 3065 GetOrCreateLLVMFunction(IFA->getResolver(), DeclTy, GD, 3066 /*ForVTable=*/false); 3067 llvm::GlobalIFunc *GIF = 3068 llvm::GlobalIFunc::create(DeclTy, 0, llvm::Function::ExternalLinkage, 3069 "", Resolver, &getModule()); 3070 if (Entry) { 3071 if (GIF->getResolver() == Entry) { 3072 Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1; 3073 return; 3074 } 3075 assert(Entry->isDeclaration()); 3076 3077 // If there is a declaration in the module, then we had an extern followed 3078 // by the ifunc, as in: 3079 // extern int test(); 3080 // ... 3081 // int test() __attribute__((ifunc("resolver"))); 3082 // 3083 // Remove it and replace uses of it with the ifunc. 3084 GIF->takeName(Entry); 3085 3086 Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GIF, 3087 Entry->getType())); 3088 Entry->eraseFromParent(); 3089 } else 3090 GIF->setName(MangledName); 3091 3092 SetCommonAttributes(D, GIF); 3093 } 3094 3095 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID, 3096 ArrayRef<llvm::Type*> Tys) { 3097 return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID, 3098 Tys); 3099 } 3100 3101 static llvm::StringMapEntry<llvm::GlobalVariable *> & 3102 GetConstantCFStringEntry(llvm::StringMap<llvm::GlobalVariable *> &Map, 3103 const StringLiteral *Literal, bool TargetIsLSB, 3104 bool &IsUTF16, unsigned &StringLength) { 3105 StringRef String = Literal->getString(); 3106 unsigned NumBytes = String.size(); 3107 3108 // Check for simple case. 3109 if (!Literal->containsNonAsciiOrNull()) { 3110 StringLength = NumBytes; 3111 return *Map.insert(std::make_pair(String, nullptr)).first; 3112 } 3113 3114 // Otherwise, convert the UTF8 literals into a string of shorts. 3115 IsUTF16 = true; 3116 3117 SmallVector<llvm::UTF16, 128> ToBuf(NumBytes + 1); // +1 for ending nulls. 3118 const llvm::UTF8 *FromPtr = (const llvm::UTF8 *)String.data(); 3119 llvm::UTF16 *ToPtr = &ToBuf[0]; 3120 3121 (void)llvm::ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, &ToPtr, 3122 ToPtr + NumBytes, llvm::strictConversion); 3123 3124 // ConvertUTF8toUTF16 returns the length in ToPtr. 3125 StringLength = ToPtr - &ToBuf[0]; 3126 3127 // Add an explicit null. 3128 *ToPtr = 0; 3129 return *Map.insert(std::make_pair( 3130 StringRef(reinterpret_cast<const char *>(ToBuf.data()), 3131 (StringLength + 1) * 2), 3132 nullptr)).first; 3133 } 3134 3135 static llvm::StringMapEntry<llvm::GlobalVariable *> & 3136 GetConstantStringEntry(llvm::StringMap<llvm::GlobalVariable *> &Map, 3137 const StringLiteral *Literal, unsigned &StringLength) { 3138 StringRef String = Literal->getString(); 3139 StringLength = String.size(); 3140 return *Map.insert(std::make_pair(String, nullptr)).first; 3141 } 3142 3143 ConstantAddress 3144 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) { 3145 unsigned StringLength = 0; 3146 bool isUTF16 = false; 3147 llvm::StringMapEntry<llvm::GlobalVariable *> &Entry = 3148 GetConstantCFStringEntry(CFConstantStringMap, Literal, 3149 getDataLayout().isLittleEndian(), isUTF16, 3150 StringLength); 3151 3152 if (auto *C = Entry.second) 3153 return ConstantAddress(C, CharUnits::fromQuantity(C->getAlignment())); 3154 3155 llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty); 3156 llvm::Constant *Zeros[] = { Zero, Zero }; 3157 3158 // If we don't already have it, get __CFConstantStringClassReference. 3159 if (!CFConstantStringClassRef) { 3160 llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy); 3161 Ty = llvm::ArrayType::get(Ty, 0); 3162 llvm::Constant *GV = 3163 CreateRuntimeVariable(Ty, "__CFConstantStringClassReference"); 3164 3165 if (getTriple().isOSBinFormatCOFF()) { 3166 IdentifierInfo &II = getContext().Idents.get(GV->getName()); 3167 TranslationUnitDecl *TUDecl = getContext().getTranslationUnitDecl(); 3168 DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl); 3169 llvm::GlobalValue *CGV = cast<llvm::GlobalValue>(GV); 3170 3171 const VarDecl *VD = nullptr; 3172 for (const auto &Result : DC->lookup(&II)) 3173 if ((VD = dyn_cast<VarDecl>(Result))) 3174 break; 3175 3176 if (!VD || !VD->hasAttr<DLLExportAttr>()) { 3177 CGV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass); 3178 CGV->setLinkage(llvm::GlobalValue::ExternalLinkage); 3179 } else { 3180 CGV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass); 3181 CGV->setLinkage(llvm::GlobalValue::ExternalLinkage); 3182 } 3183 } 3184 3185 // Decay array -> ptr 3186 CFConstantStringClassRef = 3187 llvm::ConstantExpr::getGetElementPtr(Ty, GV, Zeros); 3188 } 3189 3190 QualType CFTy = getContext().getCFConstantStringType(); 3191 3192 auto *STy = cast<llvm::StructType>(getTypes().ConvertType(CFTy)); 3193 3194 ConstantBuilder Builder(*this); 3195 auto Fields = Builder.beginStruct(STy); 3196 3197 // Class pointer. 3198 Fields.add(cast<llvm::ConstantExpr>(CFConstantStringClassRef)); 3199 3200 // Flags. 3201 Fields.addInt(IntTy, isUTF16 ? 0x07d0 : 0x07C8); 3202 3203 // String pointer. 3204 llvm::Constant *C = nullptr; 3205 if (isUTF16) { 3206 auto Arr = llvm::makeArrayRef( 3207 reinterpret_cast<uint16_t *>(const_cast<char *>(Entry.first().data())), 3208 Entry.first().size() / 2); 3209 C = llvm::ConstantDataArray::get(VMContext, Arr); 3210 } else { 3211 C = llvm::ConstantDataArray::getString(VMContext, Entry.first()); 3212 } 3213 3214 // Note: -fwritable-strings doesn't make the backing store strings of 3215 // CFStrings writable. (See <rdar://problem/10657500>) 3216 auto *GV = 3217 new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true, 3218 llvm::GlobalValue::PrivateLinkage, C, ".str"); 3219 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 3220 // Don't enforce the target's minimum global alignment, since the only use 3221 // of the string is via this class initializer. 3222 CharUnits Align = isUTF16 3223 ? getContext().getTypeAlignInChars(getContext().ShortTy) 3224 : getContext().getTypeAlignInChars(getContext().CharTy); 3225 GV->setAlignment(Align.getQuantity()); 3226 3227 // FIXME: We set the section explicitly to avoid a bug in ld64 224.1. 3228 // Without it LLVM can merge the string with a non unnamed_addr one during 3229 // LTO. Doing that changes the section it ends in, which surprises ld64. 3230 if (getTriple().isOSBinFormatMachO()) 3231 GV->setSection(isUTF16 ? "__TEXT,__ustring" 3232 : "__TEXT,__cstring,cstring_literals"); 3233 3234 // String. 3235 llvm::Constant *Str = 3236 llvm::ConstantExpr::getGetElementPtr(GV->getValueType(), GV, Zeros); 3237 3238 if (isUTF16) 3239 // Cast the UTF16 string to the correct type. 3240 Str = llvm::ConstantExpr::getBitCast(Str, Int8PtrTy); 3241 Fields.add(Str); 3242 3243 // String length. 3244 auto Ty = getTypes().ConvertType(getContext().LongTy); 3245 Fields.addInt(cast<llvm::IntegerType>(Ty), StringLength); 3246 3247 CharUnits Alignment = getPointerAlign(); 3248 3249 // The struct. 3250 GV = Fields.finishAndCreateGlobal("_unnamed_cfstring_", Alignment, 3251 /*isConstant=*/false, 3252 llvm::GlobalVariable::PrivateLinkage); 3253 switch (getTriple().getObjectFormat()) { 3254 case llvm::Triple::UnknownObjectFormat: 3255 llvm_unreachable("unknown file format"); 3256 case llvm::Triple::COFF: 3257 case llvm::Triple::ELF: 3258 GV->setSection("cfstring"); 3259 break; 3260 case llvm::Triple::MachO: 3261 GV->setSection("__DATA,__cfstring"); 3262 break; 3263 } 3264 Entry.second = GV; 3265 3266 return ConstantAddress(GV, Alignment); 3267 } 3268 3269 ConstantAddress 3270 CodeGenModule::GetAddrOfConstantString(const StringLiteral *Literal) { 3271 unsigned StringLength = 0; 3272 llvm::StringMapEntry<llvm::GlobalVariable *> &Entry = 3273 GetConstantStringEntry(CFConstantStringMap, Literal, StringLength); 3274 3275 if (auto *C = Entry.second) 3276 return ConstantAddress(C, CharUnits::fromQuantity(C->getAlignment())); 3277 3278 llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty); 3279 llvm::Constant *Zeros[] = { Zero, Zero }; 3280 llvm::Value *V; 3281 // If we don't already have it, get _NSConstantStringClassReference. 3282 if (!ConstantStringClassRef) { 3283 std::string StringClass(getLangOpts().ObjCConstantStringClass); 3284 llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy); 3285 llvm::Constant *GV; 3286 if (LangOpts.ObjCRuntime.isNonFragile()) { 3287 std::string str = 3288 StringClass.empty() ? "OBJC_CLASS_$_NSConstantString" 3289 : "OBJC_CLASS_$_" + StringClass; 3290 GV = getObjCRuntime().GetClassGlobal(str); 3291 // Make sure the result is of the correct type. 3292 llvm::Type *PTy = llvm::PointerType::getUnqual(Ty); 3293 V = llvm::ConstantExpr::getBitCast(GV, PTy); 3294 ConstantStringClassRef = V; 3295 } else { 3296 std::string str = 3297 StringClass.empty() ? "_NSConstantStringClassReference" 3298 : "_" + StringClass + "ClassReference"; 3299 llvm::Type *PTy = llvm::ArrayType::get(Ty, 0); 3300 GV = CreateRuntimeVariable(PTy, str); 3301 // Decay array -> ptr 3302 V = llvm::ConstantExpr::getGetElementPtr(PTy, GV, Zeros); 3303 ConstantStringClassRef = V; 3304 } 3305 } else 3306 V = ConstantStringClassRef; 3307 3308 if (!NSConstantStringType) { 3309 // Construct the type for a constant NSString. 3310 RecordDecl *D = Context.buildImplicitRecord("__builtin_NSString"); 3311 D->startDefinition(); 3312 3313 QualType FieldTypes[3]; 3314 3315 // const int *isa; 3316 FieldTypes[0] = Context.getPointerType(Context.IntTy.withConst()); 3317 // const char *str; 3318 FieldTypes[1] = Context.getPointerType(Context.CharTy.withConst()); 3319 // unsigned int length; 3320 FieldTypes[2] = Context.UnsignedIntTy; 3321 3322 // Create fields 3323 for (unsigned i = 0; i < 3; ++i) { 3324 FieldDecl *Field = FieldDecl::Create(Context, D, 3325 SourceLocation(), 3326 SourceLocation(), nullptr, 3327 FieldTypes[i], /*TInfo=*/nullptr, 3328 /*BitWidth=*/nullptr, 3329 /*Mutable=*/false, 3330 ICIS_NoInit); 3331 Field->setAccess(AS_public); 3332 D->addDecl(Field); 3333 } 3334 3335 D->completeDefinition(); 3336 QualType NSTy = Context.getTagDeclType(D); 3337 NSConstantStringType = cast<llvm::StructType>(getTypes().ConvertType(NSTy)); 3338 } 3339 3340 ConstantBuilder Builder(*this); 3341 auto Fields = Builder.beginStruct(NSConstantStringType); 3342 3343 // Class pointer. 3344 Fields.add(cast<llvm::ConstantExpr>(V)); 3345 3346 // String pointer. 3347 llvm::Constant *C = 3348 llvm::ConstantDataArray::getString(VMContext, Entry.first()); 3349 3350 llvm::GlobalValue::LinkageTypes Linkage = llvm::GlobalValue::PrivateLinkage; 3351 bool isConstant = !LangOpts.WritableStrings; 3352 3353 auto *GV = new llvm::GlobalVariable(getModule(), C->getType(), isConstant, 3354 Linkage, C, ".str"); 3355 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 3356 // Don't enforce the target's minimum global alignment, since the only use 3357 // of the string is via this class initializer. 3358 CharUnits Align = getContext().getTypeAlignInChars(getContext().CharTy); 3359 GV->setAlignment(Align.getQuantity()); 3360 Fields.add( 3361 llvm::ConstantExpr::getGetElementPtr(GV->getValueType(), GV, Zeros)); 3362 3363 // String length. 3364 Fields.addInt(IntTy, StringLength); 3365 3366 // The struct. 3367 CharUnits Alignment = getPointerAlign(); 3368 GV = Fields.finishAndCreateGlobal("_unnamed_nsstring_", Alignment, 3369 /*constant*/ true, 3370 llvm::GlobalVariable::PrivateLinkage); 3371 const char *NSStringSection = "__OBJC,__cstring_object,regular,no_dead_strip"; 3372 const char *NSStringNonFragileABISection = 3373 "__DATA,__objc_stringobj,regular,no_dead_strip"; 3374 // FIXME. Fix section. 3375 GV->setSection(LangOpts.ObjCRuntime.isNonFragile() 3376 ? NSStringNonFragileABISection 3377 : NSStringSection); 3378 Entry.second = GV; 3379 3380 return ConstantAddress(GV, Alignment); 3381 } 3382 3383 QualType CodeGenModule::getObjCFastEnumerationStateType() { 3384 if (ObjCFastEnumerationStateType.isNull()) { 3385 RecordDecl *D = Context.buildImplicitRecord("__objcFastEnumerationState"); 3386 D->startDefinition(); 3387 3388 QualType FieldTypes[] = { 3389 Context.UnsignedLongTy, 3390 Context.getPointerType(Context.getObjCIdType()), 3391 Context.getPointerType(Context.UnsignedLongTy), 3392 Context.getConstantArrayType(Context.UnsignedLongTy, 3393 llvm::APInt(32, 5), ArrayType::Normal, 0) 3394 }; 3395 3396 for (size_t i = 0; i < 4; ++i) { 3397 FieldDecl *Field = FieldDecl::Create(Context, 3398 D, 3399 SourceLocation(), 3400 SourceLocation(), nullptr, 3401 FieldTypes[i], /*TInfo=*/nullptr, 3402 /*BitWidth=*/nullptr, 3403 /*Mutable=*/false, 3404 ICIS_NoInit); 3405 Field->setAccess(AS_public); 3406 D->addDecl(Field); 3407 } 3408 3409 D->completeDefinition(); 3410 ObjCFastEnumerationStateType = Context.getTagDeclType(D); 3411 } 3412 3413 return ObjCFastEnumerationStateType; 3414 } 3415 3416 llvm::Constant * 3417 CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) { 3418 assert(!E->getType()->isPointerType() && "Strings are always arrays"); 3419 3420 // Don't emit it as the address of the string, emit the string data itself 3421 // as an inline array. 3422 if (E->getCharByteWidth() == 1) { 3423 SmallString<64> Str(E->getString()); 3424 3425 // Resize the string to the right size, which is indicated by its type. 3426 const ConstantArrayType *CAT = Context.getAsConstantArrayType(E->getType()); 3427 Str.resize(CAT->getSize().getZExtValue()); 3428 return llvm::ConstantDataArray::getString(VMContext, Str, false); 3429 } 3430 3431 auto *AType = cast<llvm::ArrayType>(getTypes().ConvertType(E->getType())); 3432 llvm::Type *ElemTy = AType->getElementType(); 3433 unsigned NumElements = AType->getNumElements(); 3434 3435 // Wide strings have either 2-byte or 4-byte elements. 3436 if (ElemTy->getPrimitiveSizeInBits() == 16) { 3437 SmallVector<uint16_t, 32> Elements; 3438 Elements.reserve(NumElements); 3439 3440 for(unsigned i = 0, e = E->getLength(); i != e; ++i) 3441 Elements.push_back(E->getCodeUnit(i)); 3442 Elements.resize(NumElements); 3443 return llvm::ConstantDataArray::get(VMContext, Elements); 3444 } 3445 3446 assert(ElemTy->getPrimitiveSizeInBits() == 32); 3447 SmallVector<uint32_t, 32> Elements; 3448 Elements.reserve(NumElements); 3449 3450 for(unsigned i = 0, e = E->getLength(); i != e; ++i) 3451 Elements.push_back(E->getCodeUnit(i)); 3452 Elements.resize(NumElements); 3453 return llvm::ConstantDataArray::get(VMContext, Elements); 3454 } 3455 3456 static llvm::GlobalVariable * 3457 GenerateStringLiteral(llvm::Constant *C, llvm::GlobalValue::LinkageTypes LT, 3458 CodeGenModule &CGM, StringRef GlobalName, 3459 CharUnits Alignment) { 3460 // OpenCL v1.2 s6.5.3: a string literal is in the constant address space. 3461 unsigned AddrSpace = 0; 3462 if (CGM.getLangOpts().OpenCL) 3463 AddrSpace = CGM.getContext().getTargetAddressSpace(LangAS::opencl_constant); 3464 3465 llvm::Module &M = CGM.getModule(); 3466 // Create a global variable for this string 3467 auto *GV = new llvm::GlobalVariable( 3468 M, C->getType(), !CGM.getLangOpts().WritableStrings, LT, C, GlobalName, 3469 nullptr, llvm::GlobalVariable::NotThreadLocal, AddrSpace); 3470 GV->setAlignment(Alignment.getQuantity()); 3471 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 3472 if (GV->isWeakForLinker()) { 3473 assert(CGM.supportsCOMDAT() && "Only COFF uses weak string literals"); 3474 GV->setComdat(M.getOrInsertComdat(GV->getName())); 3475 } 3476 3477 return GV; 3478 } 3479 3480 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a 3481 /// constant array for the given string literal. 3482 ConstantAddress 3483 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S, 3484 StringRef Name) { 3485 CharUnits Alignment = getContext().getAlignOfGlobalVarInChars(S->getType()); 3486 3487 llvm::Constant *C = GetConstantArrayFromStringLiteral(S); 3488 llvm::GlobalVariable **Entry = nullptr; 3489 if (!LangOpts.WritableStrings) { 3490 Entry = &ConstantStringMap[C]; 3491 if (auto GV = *Entry) { 3492 if (Alignment.getQuantity() > GV->getAlignment()) 3493 GV->setAlignment(Alignment.getQuantity()); 3494 return ConstantAddress(GV, Alignment); 3495 } 3496 } 3497 3498 SmallString<256> MangledNameBuffer; 3499 StringRef GlobalVariableName; 3500 llvm::GlobalValue::LinkageTypes LT; 3501 3502 // Mangle the string literal if the ABI allows for it. However, we cannot 3503 // do this if we are compiling with ASan or -fwritable-strings because they 3504 // rely on strings having normal linkage. 3505 if (!LangOpts.WritableStrings && 3506 !LangOpts.Sanitize.has(SanitizerKind::Address) && 3507 getCXXABI().getMangleContext().shouldMangleStringLiteral(S)) { 3508 llvm::raw_svector_ostream Out(MangledNameBuffer); 3509 getCXXABI().getMangleContext().mangleStringLiteral(S, Out); 3510 3511 LT = llvm::GlobalValue::LinkOnceODRLinkage; 3512 GlobalVariableName = MangledNameBuffer; 3513 } else { 3514 LT = llvm::GlobalValue::PrivateLinkage; 3515 GlobalVariableName = Name; 3516 } 3517 3518 auto GV = GenerateStringLiteral(C, LT, *this, GlobalVariableName, Alignment); 3519 if (Entry) 3520 *Entry = GV; 3521 3522 SanitizerMD->reportGlobalToASan(GV, S->getStrTokenLoc(0), "<string literal>", 3523 QualType()); 3524 return ConstantAddress(GV, Alignment); 3525 } 3526 3527 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant 3528 /// array for the given ObjCEncodeExpr node. 3529 ConstantAddress 3530 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) { 3531 std::string Str; 3532 getContext().getObjCEncodingForType(E->getEncodedType(), Str); 3533 3534 return GetAddrOfConstantCString(Str); 3535 } 3536 3537 /// GetAddrOfConstantCString - Returns a pointer to a character array containing 3538 /// the literal and a terminating '\0' character. 3539 /// The result has pointer to array type. 3540 ConstantAddress CodeGenModule::GetAddrOfConstantCString( 3541 const std::string &Str, const char *GlobalName) { 3542 StringRef StrWithNull(Str.c_str(), Str.size() + 1); 3543 CharUnits Alignment = 3544 getContext().getAlignOfGlobalVarInChars(getContext().CharTy); 3545 3546 llvm::Constant *C = 3547 llvm::ConstantDataArray::getString(getLLVMContext(), StrWithNull, false); 3548 3549 // Don't share any string literals if strings aren't constant. 3550 llvm::GlobalVariable **Entry = nullptr; 3551 if (!LangOpts.WritableStrings) { 3552 Entry = &ConstantStringMap[C]; 3553 if (auto GV = *Entry) { 3554 if (Alignment.getQuantity() > GV->getAlignment()) 3555 GV->setAlignment(Alignment.getQuantity()); 3556 return ConstantAddress(GV, Alignment); 3557 } 3558 } 3559 3560 // Get the default prefix if a name wasn't specified. 3561 if (!GlobalName) 3562 GlobalName = ".str"; 3563 // Create a global variable for this. 3564 auto GV = GenerateStringLiteral(C, llvm::GlobalValue::PrivateLinkage, *this, 3565 GlobalName, Alignment); 3566 if (Entry) 3567 *Entry = GV; 3568 return ConstantAddress(GV, Alignment); 3569 } 3570 3571 ConstantAddress CodeGenModule::GetAddrOfGlobalTemporary( 3572 const MaterializeTemporaryExpr *E, const Expr *Init) { 3573 assert((E->getStorageDuration() == SD_Static || 3574 E->getStorageDuration() == SD_Thread) && "not a global temporary"); 3575 const auto *VD = cast<VarDecl>(E->getExtendingDecl()); 3576 3577 // If we're not materializing a subobject of the temporary, keep the 3578 // cv-qualifiers from the type of the MaterializeTemporaryExpr. 3579 QualType MaterializedType = Init->getType(); 3580 if (Init == E->GetTemporaryExpr()) 3581 MaterializedType = E->getType(); 3582 3583 CharUnits Align = getContext().getTypeAlignInChars(MaterializedType); 3584 3585 if (llvm::Constant *Slot = MaterializedGlobalTemporaryMap[E]) 3586 return ConstantAddress(Slot, Align); 3587 3588 // FIXME: If an externally-visible declaration extends multiple temporaries, 3589 // we need to give each temporary the same name in every translation unit (and 3590 // we also need to make the temporaries externally-visible). 3591 SmallString<256> Name; 3592 llvm::raw_svector_ostream Out(Name); 3593 getCXXABI().getMangleContext().mangleReferenceTemporary( 3594 VD, E->getManglingNumber(), Out); 3595 3596 APValue *Value = nullptr; 3597 if (E->getStorageDuration() == SD_Static) { 3598 // We might have a cached constant initializer for this temporary. Note 3599 // that this might have a different value from the value computed by 3600 // evaluating the initializer if the surrounding constant expression 3601 // modifies the temporary. 3602 Value = getContext().getMaterializedTemporaryValue(E, false); 3603 if (Value && Value->isUninit()) 3604 Value = nullptr; 3605 } 3606 3607 // Try evaluating it now, it might have a constant initializer. 3608 Expr::EvalResult EvalResult; 3609 if (!Value && Init->EvaluateAsRValue(EvalResult, getContext()) && 3610 !EvalResult.hasSideEffects()) 3611 Value = &EvalResult.Val; 3612 3613 llvm::Constant *InitialValue = nullptr; 3614 bool Constant = false; 3615 llvm::Type *Type; 3616 if (Value) { 3617 // The temporary has a constant initializer, use it. 3618 InitialValue = EmitConstantValue(*Value, MaterializedType, nullptr); 3619 Constant = isTypeConstant(MaterializedType, /*ExcludeCtor*/Value); 3620 Type = InitialValue->getType(); 3621 } else { 3622 // No initializer, the initialization will be provided when we 3623 // initialize the declaration which performed lifetime extension. 3624 Type = getTypes().ConvertTypeForMem(MaterializedType); 3625 } 3626 3627 // Create a global variable for this lifetime-extended temporary. 3628 llvm::GlobalValue::LinkageTypes Linkage = 3629 getLLVMLinkageVarDefinition(VD, Constant); 3630 if (Linkage == llvm::GlobalVariable::ExternalLinkage) { 3631 const VarDecl *InitVD; 3632 if (VD->isStaticDataMember() && VD->getAnyInitializer(InitVD) && 3633 isa<CXXRecordDecl>(InitVD->getLexicalDeclContext())) { 3634 // Temporaries defined inside a class get linkonce_odr linkage because the 3635 // class can be defined in multipe translation units. 3636 Linkage = llvm::GlobalVariable::LinkOnceODRLinkage; 3637 } else { 3638 // There is no need for this temporary to have external linkage if the 3639 // VarDecl has external linkage. 3640 Linkage = llvm::GlobalVariable::InternalLinkage; 3641 } 3642 } 3643 unsigned AddrSpace = GetGlobalVarAddressSpace( 3644 VD, getContext().getTargetAddressSpace(MaterializedType)); 3645 auto *GV = new llvm::GlobalVariable( 3646 getModule(), Type, Constant, Linkage, InitialValue, Name.c_str(), 3647 /*InsertBefore=*/nullptr, llvm::GlobalVariable::NotThreadLocal, 3648 AddrSpace); 3649 setGlobalVisibility(GV, VD); 3650 GV->setAlignment(Align.getQuantity()); 3651 if (supportsCOMDAT() && GV->isWeakForLinker()) 3652 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 3653 if (VD->getTLSKind()) 3654 setTLSMode(GV, *VD); 3655 MaterializedGlobalTemporaryMap[E] = GV; 3656 return ConstantAddress(GV, Align); 3657 } 3658 3659 /// EmitObjCPropertyImplementations - Emit information for synthesized 3660 /// properties for an implementation. 3661 void CodeGenModule::EmitObjCPropertyImplementations(const 3662 ObjCImplementationDecl *D) { 3663 for (const auto *PID : D->property_impls()) { 3664 // Dynamic is just for type-checking. 3665 if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) { 3666 ObjCPropertyDecl *PD = PID->getPropertyDecl(); 3667 3668 // Determine which methods need to be implemented, some may have 3669 // been overridden. Note that ::isPropertyAccessor is not the method 3670 // we want, that just indicates if the decl came from a 3671 // property. What we want to know is if the method is defined in 3672 // this implementation. 3673 if (!D->getInstanceMethod(PD->getGetterName())) 3674 CodeGenFunction(*this).GenerateObjCGetter( 3675 const_cast<ObjCImplementationDecl *>(D), PID); 3676 if (!PD->isReadOnly() && 3677 !D->getInstanceMethod(PD->getSetterName())) 3678 CodeGenFunction(*this).GenerateObjCSetter( 3679 const_cast<ObjCImplementationDecl *>(D), PID); 3680 } 3681 } 3682 } 3683 3684 static bool needsDestructMethod(ObjCImplementationDecl *impl) { 3685 const ObjCInterfaceDecl *iface = impl->getClassInterface(); 3686 for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin(); 3687 ivar; ivar = ivar->getNextIvar()) 3688 if (ivar->getType().isDestructedType()) 3689 return true; 3690 3691 return false; 3692 } 3693 3694 static bool AllTrivialInitializers(CodeGenModule &CGM, 3695 ObjCImplementationDecl *D) { 3696 CodeGenFunction CGF(CGM); 3697 for (ObjCImplementationDecl::init_iterator B = D->init_begin(), 3698 E = D->init_end(); B != E; ++B) { 3699 CXXCtorInitializer *CtorInitExp = *B; 3700 Expr *Init = CtorInitExp->getInit(); 3701 if (!CGF.isTrivialInitializer(Init)) 3702 return false; 3703 } 3704 return true; 3705 } 3706 3707 /// EmitObjCIvarInitializations - Emit information for ivar initialization 3708 /// for an implementation. 3709 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) { 3710 // We might need a .cxx_destruct even if we don't have any ivar initializers. 3711 if (needsDestructMethod(D)) { 3712 IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct"); 3713 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 3714 ObjCMethodDecl *DTORMethod = 3715 ObjCMethodDecl::Create(getContext(), D->getLocation(), D->getLocation(), 3716 cxxSelector, getContext().VoidTy, nullptr, D, 3717 /*isInstance=*/true, /*isVariadic=*/false, 3718 /*isPropertyAccessor=*/true, /*isImplicitlyDeclared=*/true, 3719 /*isDefined=*/false, ObjCMethodDecl::Required); 3720 D->addInstanceMethod(DTORMethod); 3721 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false); 3722 D->setHasDestructors(true); 3723 } 3724 3725 // If the implementation doesn't have any ivar initializers, we don't need 3726 // a .cxx_construct. 3727 if (D->getNumIvarInitializers() == 0 || 3728 AllTrivialInitializers(*this, D)) 3729 return; 3730 3731 IdentifierInfo *II = &getContext().Idents.get(".cxx_construct"); 3732 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 3733 // The constructor returns 'self'. 3734 ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(getContext(), 3735 D->getLocation(), 3736 D->getLocation(), 3737 cxxSelector, 3738 getContext().getObjCIdType(), 3739 nullptr, D, /*isInstance=*/true, 3740 /*isVariadic=*/false, 3741 /*isPropertyAccessor=*/true, 3742 /*isImplicitlyDeclared=*/true, 3743 /*isDefined=*/false, 3744 ObjCMethodDecl::Required); 3745 D->addInstanceMethod(CTORMethod); 3746 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true); 3747 D->setHasNonZeroConstructors(true); 3748 } 3749 3750 // EmitLinkageSpec - Emit all declarations in a linkage spec. 3751 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) { 3752 if (LSD->getLanguage() != LinkageSpecDecl::lang_c && 3753 LSD->getLanguage() != LinkageSpecDecl::lang_cxx) { 3754 ErrorUnsupported(LSD, "linkage spec"); 3755 return; 3756 } 3757 3758 EmitDeclContext(LSD); 3759 } 3760 3761 void CodeGenModule::EmitDeclContext(const DeclContext *DC) { 3762 for (auto *I : DC->decls()) { 3763 // Unlike other DeclContexts, the contents of an ObjCImplDecl at TU scope 3764 // are themselves considered "top-level", so EmitTopLevelDecl on an 3765 // ObjCImplDecl does not recursively visit them. We need to do that in 3766 // case they're nested inside another construct (LinkageSpecDecl / 3767 // ExportDecl) that does stop them from being considered "top-level". 3768 if (auto *OID = dyn_cast<ObjCImplDecl>(I)) { 3769 for (auto *M : OID->methods()) 3770 EmitTopLevelDecl(M); 3771 } 3772 3773 EmitTopLevelDecl(I); 3774 } 3775 } 3776 3777 /// EmitTopLevelDecl - Emit code for a single top level declaration. 3778 void CodeGenModule::EmitTopLevelDecl(Decl *D) { 3779 // Ignore dependent declarations. 3780 if (D->getDeclContext() && D->getDeclContext()->isDependentContext()) 3781 return; 3782 3783 switch (D->getKind()) { 3784 case Decl::CXXConversion: 3785 case Decl::CXXMethod: 3786 case Decl::Function: 3787 // Skip function templates 3788 if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() || 3789 cast<FunctionDecl>(D)->isLateTemplateParsed()) 3790 return; 3791 3792 EmitGlobal(cast<FunctionDecl>(D)); 3793 // Always provide some coverage mapping 3794 // even for the functions that aren't emitted. 3795 AddDeferredUnusedCoverageMapping(D); 3796 break; 3797 3798 case Decl::Var: 3799 case Decl::Decomposition: 3800 // Skip variable templates 3801 if (cast<VarDecl>(D)->getDescribedVarTemplate()) 3802 return; 3803 case Decl::VarTemplateSpecialization: 3804 EmitGlobal(cast<VarDecl>(D)); 3805 if (auto *DD = dyn_cast<DecompositionDecl>(D)) 3806 for (auto *B : DD->bindings()) 3807 if (auto *HD = B->getHoldingVar()) 3808 EmitGlobal(HD); 3809 break; 3810 3811 // Indirect fields from global anonymous structs and unions can be 3812 // ignored; only the actual variable requires IR gen support. 3813 case Decl::IndirectField: 3814 break; 3815 3816 // C++ Decls 3817 case Decl::Namespace: 3818 EmitDeclContext(cast<NamespaceDecl>(D)); 3819 break; 3820 case Decl::CXXRecord: 3821 // Emit any static data members, they may be definitions. 3822 for (auto *I : cast<CXXRecordDecl>(D)->decls()) 3823 if (isa<VarDecl>(I) || isa<CXXRecordDecl>(I)) 3824 EmitTopLevelDecl(I); 3825 break; 3826 // No code generation needed. 3827 case Decl::UsingShadow: 3828 case Decl::ClassTemplate: 3829 case Decl::VarTemplate: 3830 case Decl::VarTemplatePartialSpecialization: 3831 case Decl::FunctionTemplate: 3832 case Decl::TypeAliasTemplate: 3833 case Decl::Block: 3834 case Decl::Empty: 3835 break; 3836 case Decl::Using: // using X; [C++] 3837 if (CGDebugInfo *DI = getModuleDebugInfo()) 3838 DI->EmitUsingDecl(cast<UsingDecl>(*D)); 3839 return; 3840 case Decl::NamespaceAlias: 3841 if (CGDebugInfo *DI = getModuleDebugInfo()) 3842 DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(*D)); 3843 return; 3844 case Decl::UsingDirective: // using namespace X; [C++] 3845 if (CGDebugInfo *DI = getModuleDebugInfo()) 3846 DI->EmitUsingDirective(cast<UsingDirectiveDecl>(*D)); 3847 return; 3848 case Decl::CXXConstructor: 3849 // Skip function templates 3850 if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() || 3851 cast<FunctionDecl>(D)->isLateTemplateParsed()) 3852 return; 3853 3854 getCXXABI().EmitCXXConstructors(cast<CXXConstructorDecl>(D)); 3855 break; 3856 case Decl::CXXDestructor: 3857 if (cast<FunctionDecl>(D)->isLateTemplateParsed()) 3858 return; 3859 getCXXABI().EmitCXXDestructors(cast<CXXDestructorDecl>(D)); 3860 break; 3861 3862 case Decl::StaticAssert: 3863 // Nothing to do. 3864 break; 3865 3866 // Objective-C Decls 3867 3868 // Forward declarations, no (immediate) code generation. 3869 case Decl::ObjCInterface: 3870 case Decl::ObjCCategory: 3871 break; 3872 3873 case Decl::ObjCProtocol: { 3874 auto *Proto = cast<ObjCProtocolDecl>(D); 3875 if (Proto->isThisDeclarationADefinition()) 3876 ObjCRuntime->GenerateProtocol(Proto); 3877 break; 3878 } 3879 3880 case Decl::ObjCCategoryImpl: 3881 // Categories have properties but don't support synthesize so we 3882 // can ignore them here. 3883 ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D)); 3884 break; 3885 3886 case Decl::ObjCImplementation: { 3887 auto *OMD = cast<ObjCImplementationDecl>(D); 3888 EmitObjCPropertyImplementations(OMD); 3889 EmitObjCIvarInitializations(OMD); 3890 ObjCRuntime->GenerateClass(OMD); 3891 // Emit global variable debug information. 3892 if (CGDebugInfo *DI = getModuleDebugInfo()) 3893 if (getCodeGenOpts().getDebugInfo() >= codegenoptions::LimitedDebugInfo) 3894 DI->getOrCreateInterfaceType(getContext().getObjCInterfaceType( 3895 OMD->getClassInterface()), OMD->getLocation()); 3896 break; 3897 } 3898 case Decl::ObjCMethod: { 3899 auto *OMD = cast<ObjCMethodDecl>(D); 3900 // If this is not a prototype, emit the body. 3901 if (OMD->getBody()) 3902 CodeGenFunction(*this).GenerateObjCMethod(OMD); 3903 break; 3904 } 3905 case Decl::ObjCCompatibleAlias: 3906 ObjCRuntime->RegisterAlias(cast<ObjCCompatibleAliasDecl>(D)); 3907 break; 3908 3909 case Decl::PragmaComment: { 3910 const auto *PCD = cast<PragmaCommentDecl>(D); 3911 switch (PCD->getCommentKind()) { 3912 case PCK_Unknown: 3913 llvm_unreachable("unexpected pragma comment kind"); 3914 case PCK_Linker: 3915 AppendLinkerOptions(PCD->getArg()); 3916 break; 3917 case PCK_Lib: 3918 AddDependentLib(PCD->getArg()); 3919 break; 3920 case PCK_Compiler: 3921 case PCK_ExeStr: 3922 case PCK_User: 3923 break; // We ignore all of these. 3924 } 3925 break; 3926 } 3927 3928 case Decl::PragmaDetectMismatch: { 3929 const auto *PDMD = cast<PragmaDetectMismatchDecl>(D); 3930 AddDetectMismatch(PDMD->getName(), PDMD->getValue()); 3931 break; 3932 } 3933 3934 case Decl::LinkageSpec: 3935 EmitLinkageSpec(cast<LinkageSpecDecl>(D)); 3936 break; 3937 3938 case Decl::FileScopeAsm: { 3939 // File-scope asm is ignored during device-side CUDA compilation. 3940 if (LangOpts.CUDA && LangOpts.CUDAIsDevice) 3941 break; 3942 // File-scope asm is ignored during device-side OpenMP compilation. 3943 if (LangOpts.OpenMPIsDevice) 3944 break; 3945 auto *AD = cast<FileScopeAsmDecl>(D); 3946 getModule().appendModuleInlineAsm(AD->getAsmString()->getString()); 3947 break; 3948 } 3949 3950 case Decl::Import: { 3951 auto *Import = cast<ImportDecl>(D); 3952 3953 // If we've already imported this module, we're done. 3954 if (!ImportedModules.insert(Import->getImportedModule())) 3955 break; 3956 3957 // Emit debug information for direct imports. 3958 if (!Import->getImportedOwningModule()) { 3959 if (CGDebugInfo *DI = getModuleDebugInfo()) 3960 DI->EmitImportDecl(*Import); 3961 } 3962 3963 // Find all of the submodules and emit the module initializers. 3964 llvm::SmallPtrSet<clang::Module *, 16> Visited; 3965 SmallVector<clang::Module *, 16> Stack; 3966 Visited.insert(Import->getImportedModule()); 3967 Stack.push_back(Import->getImportedModule()); 3968 3969 while (!Stack.empty()) { 3970 clang::Module *Mod = Stack.pop_back_val(); 3971 if (!EmittedModuleInitializers.insert(Mod).second) 3972 continue; 3973 3974 for (auto *D : Context.getModuleInitializers(Mod)) 3975 EmitTopLevelDecl(D); 3976 3977 // Visit the submodules of this module. 3978 for (clang::Module::submodule_iterator Sub = Mod->submodule_begin(), 3979 SubEnd = Mod->submodule_end(); 3980 Sub != SubEnd; ++Sub) { 3981 // Skip explicit children; they need to be explicitly imported to emit 3982 // the initializers. 3983 if ((*Sub)->IsExplicit) 3984 continue; 3985 3986 if (Visited.insert(*Sub).second) 3987 Stack.push_back(*Sub); 3988 } 3989 } 3990 break; 3991 } 3992 3993 case Decl::Export: 3994 EmitDeclContext(cast<ExportDecl>(D)); 3995 break; 3996 3997 case Decl::OMPThreadPrivate: 3998 EmitOMPThreadPrivateDecl(cast<OMPThreadPrivateDecl>(D)); 3999 break; 4000 4001 case Decl::ClassTemplateSpecialization: { 4002 const auto *Spec = cast<ClassTemplateSpecializationDecl>(D); 4003 if (DebugInfo && 4004 Spec->getSpecializationKind() == TSK_ExplicitInstantiationDefinition && 4005 Spec->hasDefinition()) 4006 DebugInfo->completeTemplateDefinition(*Spec); 4007 break; 4008 } 4009 4010 case Decl::OMPDeclareReduction: 4011 EmitOMPDeclareReduction(cast<OMPDeclareReductionDecl>(D)); 4012 break; 4013 4014 default: 4015 // Make sure we handled everything we should, every other kind is a 4016 // non-top-level decl. FIXME: Would be nice to have an isTopLevelDeclKind 4017 // function. Need to recode Decl::Kind to do that easily. 4018 assert(isa<TypeDecl>(D) && "Unsupported decl kind"); 4019 break; 4020 } 4021 } 4022 4023 void CodeGenModule::AddDeferredUnusedCoverageMapping(Decl *D) { 4024 // Do we need to generate coverage mapping? 4025 if (!CodeGenOpts.CoverageMapping) 4026 return; 4027 switch (D->getKind()) { 4028 case Decl::CXXConversion: 4029 case Decl::CXXMethod: 4030 case Decl::Function: 4031 case Decl::ObjCMethod: 4032 case Decl::CXXConstructor: 4033 case Decl::CXXDestructor: { 4034 if (!cast<FunctionDecl>(D)->doesThisDeclarationHaveABody()) 4035 return; 4036 auto I = DeferredEmptyCoverageMappingDecls.find(D); 4037 if (I == DeferredEmptyCoverageMappingDecls.end()) 4038 DeferredEmptyCoverageMappingDecls[D] = true; 4039 break; 4040 } 4041 default: 4042 break; 4043 }; 4044 } 4045 4046 void CodeGenModule::ClearUnusedCoverageMapping(const Decl *D) { 4047 // Do we need to generate coverage mapping? 4048 if (!CodeGenOpts.CoverageMapping) 4049 return; 4050 if (const auto *Fn = dyn_cast<FunctionDecl>(D)) { 4051 if (Fn->isTemplateInstantiation()) 4052 ClearUnusedCoverageMapping(Fn->getTemplateInstantiationPattern()); 4053 } 4054 auto I = DeferredEmptyCoverageMappingDecls.find(D); 4055 if (I == DeferredEmptyCoverageMappingDecls.end()) 4056 DeferredEmptyCoverageMappingDecls[D] = false; 4057 else 4058 I->second = false; 4059 } 4060 4061 void CodeGenModule::EmitDeferredUnusedCoverageMappings() { 4062 std::vector<const Decl *> DeferredDecls; 4063 for (const auto &I : DeferredEmptyCoverageMappingDecls) { 4064 if (!I.second) 4065 continue; 4066 DeferredDecls.push_back(I.first); 4067 } 4068 // Sort the declarations by their location to make sure that the tests get a 4069 // predictable order for the coverage mapping for the unused declarations. 4070 if (CodeGenOpts.DumpCoverageMapping) 4071 std::sort(DeferredDecls.begin(), DeferredDecls.end(), 4072 [] (const Decl *LHS, const Decl *RHS) { 4073 return LHS->getLocStart() < RHS->getLocStart(); 4074 }); 4075 for (const auto *D : DeferredDecls) { 4076 switch (D->getKind()) { 4077 case Decl::CXXConversion: 4078 case Decl::CXXMethod: 4079 case Decl::Function: 4080 case Decl::ObjCMethod: { 4081 CodeGenPGO PGO(*this); 4082 GlobalDecl GD(cast<FunctionDecl>(D)); 4083 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 4084 getFunctionLinkage(GD)); 4085 break; 4086 } 4087 case Decl::CXXConstructor: { 4088 CodeGenPGO PGO(*this); 4089 GlobalDecl GD(cast<CXXConstructorDecl>(D), Ctor_Base); 4090 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 4091 getFunctionLinkage(GD)); 4092 break; 4093 } 4094 case Decl::CXXDestructor: { 4095 CodeGenPGO PGO(*this); 4096 GlobalDecl GD(cast<CXXDestructorDecl>(D), Dtor_Base); 4097 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 4098 getFunctionLinkage(GD)); 4099 break; 4100 } 4101 default: 4102 break; 4103 }; 4104 } 4105 } 4106 4107 /// Turns the given pointer into a constant. 4108 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context, 4109 const void *Ptr) { 4110 uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr); 4111 llvm::Type *i64 = llvm::Type::getInt64Ty(Context); 4112 return llvm::ConstantInt::get(i64, PtrInt); 4113 } 4114 4115 static void EmitGlobalDeclMetadata(CodeGenModule &CGM, 4116 llvm::NamedMDNode *&GlobalMetadata, 4117 GlobalDecl D, 4118 llvm::GlobalValue *Addr) { 4119 if (!GlobalMetadata) 4120 GlobalMetadata = 4121 CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs"); 4122 4123 // TODO: should we report variant information for ctors/dtors? 4124 llvm::Metadata *Ops[] = {llvm::ConstantAsMetadata::get(Addr), 4125 llvm::ConstantAsMetadata::get(GetPointerConstant( 4126 CGM.getLLVMContext(), D.getDecl()))}; 4127 GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops)); 4128 } 4129 4130 /// For each function which is declared within an extern "C" region and marked 4131 /// as 'used', but has internal linkage, create an alias from the unmangled 4132 /// name to the mangled name if possible. People expect to be able to refer 4133 /// to such functions with an unmangled name from inline assembly within the 4134 /// same translation unit. 4135 void CodeGenModule::EmitStaticExternCAliases() { 4136 // Don't do anything if we're generating CUDA device code -- the NVPTX 4137 // assembly target doesn't support aliases. 4138 if (Context.getTargetInfo().getTriple().isNVPTX()) 4139 return; 4140 for (auto &I : StaticExternCValues) { 4141 IdentifierInfo *Name = I.first; 4142 llvm::GlobalValue *Val = I.second; 4143 if (Val && !getModule().getNamedValue(Name->getName())) 4144 addUsedGlobal(llvm::GlobalAlias::create(Name->getName(), Val)); 4145 } 4146 } 4147 4148 bool CodeGenModule::lookupRepresentativeDecl(StringRef MangledName, 4149 GlobalDecl &Result) const { 4150 auto Res = Manglings.find(MangledName); 4151 if (Res == Manglings.end()) 4152 return false; 4153 Result = Res->getValue(); 4154 return true; 4155 } 4156 4157 /// Emits metadata nodes associating all the global values in the 4158 /// current module with the Decls they came from. This is useful for 4159 /// projects using IR gen as a subroutine. 4160 /// 4161 /// Since there's currently no way to associate an MDNode directly 4162 /// with an llvm::GlobalValue, we create a global named metadata 4163 /// with the name 'clang.global.decl.ptrs'. 4164 void CodeGenModule::EmitDeclMetadata() { 4165 llvm::NamedMDNode *GlobalMetadata = nullptr; 4166 4167 for (auto &I : MangledDeclNames) { 4168 llvm::GlobalValue *Addr = getModule().getNamedValue(I.second); 4169 // Some mangled names don't necessarily have an associated GlobalValue 4170 // in this module, e.g. if we mangled it for DebugInfo. 4171 if (Addr) 4172 EmitGlobalDeclMetadata(*this, GlobalMetadata, I.first, Addr); 4173 } 4174 } 4175 4176 /// Emits metadata nodes for all the local variables in the current 4177 /// function. 4178 void CodeGenFunction::EmitDeclMetadata() { 4179 if (LocalDeclMap.empty()) return; 4180 4181 llvm::LLVMContext &Context = getLLVMContext(); 4182 4183 // Find the unique metadata ID for this name. 4184 unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr"); 4185 4186 llvm::NamedMDNode *GlobalMetadata = nullptr; 4187 4188 for (auto &I : LocalDeclMap) { 4189 const Decl *D = I.first; 4190 llvm::Value *Addr = I.second.getPointer(); 4191 if (auto *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) { 4192 llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D); 4193 Alloca->setMetadata( 4194 DeclPtrKind, llvm::MDNode::get( 4195 Context, llvm::ValueAsMetadata::getConstant(DAddr))); 4196 } else if (auto *GV = dyn_cast<llvm::GlobalValue>(Addr)) { 4197 GlobalDecl GD = GlobalDecl(cast<VarDecl>(D)); 4198 EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV); 4199 } 4200 } 4201 } 4202 4203 void CodeGenModule::EmitVersionIdentMetadata() { 4204 llvm::NamedMDNode *IdentMetadata = 4205 TheModule.getOrInsertNamedMetadata("llvm.ident"); 4206 std::string Version = getClangFullVersion(); 4207 llvm::LLVMContext &Ctx = TheModule.getContext(); 4208 4209 llvm::Metadata *IdentNode[] = {llvm::MDString::get(Ctx, Version)}; 4210 IdentMetadata->addOperand(llvm::MDNode::get(Ctx, IdentNode)); 4211 } 4212 4213 void CodeGenModule::EmitTargetMetadata() { 4214 // Warning, new MangledDeclNames may be appended within this loop. 4215 // We rely on MapVector insertions adding new elements to the end 4216 // of the container. 4217 // FIXME: Move this loop into the one target that needs it, and only 4218 // loop over those declarations for which we couldn't emit the target 4219 // metadata when we emitted the declaration. 4220 for (unsigned I = 0; I != MangledDeclNames.size(); ++I) { 4221 auto Val = *(MangledDeclNames.begin() + I); 4222 const Decl *D = Val.first.getDecl()->getMostRecentDecl(); 4223 llvm::GlobalValue *GV = GetGlobalValue(Val.second); 4224 getTargetCodeGenInfo().emitTargetMD(D, GV, *this); 4225 } 4226 } 4227 4228 void CodeGenModule::EmitCoverageFile() { 4229 if (getCodeGenOpts().CoverageDataFile.empty() && 4230 getCodeGenOpts().CoverageNotesFile.empty()) 4231 return; 4232 4233 llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu"); 4234 if (!CUNode) 4235 return; 4236 4237 llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov"); 4238 llvm::LLVMContext &Ctx = TheModule.getContext(); 4239 auto *CoverageDataFile = 4240 llvm::MDString::get(Ctx, getCodeGenOpts().CoverageDataFile); 4241 auto *CoverageNotesFile = 4242 llvm::MDString::get(Ctx, getCodeGenOpts().CoverageNotesFile); 4243 for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) { 4244 llvm::MDNode *CU = CUNode->getOperand(i); 4245 llvm::Metadata *Elts[] = {CoverageNotesFile, CoverageDataFile, CU}; 4246 GCov->addOperand(llvm::MDNode::get(Ctx, Elts)); 4247 } 4248 } 4249 4250 llvm::Constant *CodeGenModule::EmitUuidofInitializer(StringRef Uuid) { 4251 // Sema has checked that all uuid strings are of the form 4252 // "12345678-1234-1234-1234-1234567890ab". 4253 assert(Uuid.size() == 36); 4254 for (unsigned i = 0; i < 36; ++i) { 4255 if (i == 8 || i == 13 || i == 18 || i == 23) assert(Uuid[i] == '-'); 4256 else assert(isHexDigit(Uuid[i])); 4257 } 4258 4259 // The starts of all bytes of Field3 in Uuid. Field 3 is "1234-1234567890ab". 4260 const unsigned Field3ValueOffsets[8] = { 19, 21, 24, 26, 28, 30, 32, 34 }; 4261 4262 llvm::Constant *Field3[8]; 4263 for (unsigned Idx = 0; Idx < 8; ++Idx) 4264 Field3[Idx] = llvm::ConstantInt::get( 4265 Int8Ty, Uuid.substr(Field3ValueOffsets[Idx], 2), 16); 4266 4267 llvm::Constant *Fields[4] = { 4268 llvm::ConstantInt::get(Int32Ty, Uuid.substr(0, 8), 16), 4269 llvm::ConstantInt::get(Int16Ty, Uuid.substr(9, 4), 16), 4270 llvm::ConstantInt::get(Int16Ty, Uuid.substr(14, 4), 16), 4271 llvm::ConstantArray::get(llvm::ArrayType::get(Int8Ty, 8), Field3) 4272 }; 4273 4274 return llvm::ConstantStruct::getAnon(Fields); 4275 } 4276 4277 llvm::Constant *CodeGenModule::GetAddrOfRTTIDescriptor(QualType Ty, 4278 bool ForEH) { 4279 // Return a bogus pointer if RTTI is disabled, unless it's for EH. 4280 // FIXME: should we even be calling this method if RTTI is disabled 4281 // and it's not for EH? 4282 if (!ForEH && !getLangOpts().RTTI) 4283 return llvm::Constant::getNullValue(Int8PtrTy); 4284 4285 if (ForEH && Ty->isObjCObjectPointerType() && 4286 LangOpts.ObjCRuntime.isGNUFamily()) 4287 return ObjCRuntime->GetEHType(Ty); 4288 4289 return getCXXABI().getAddrOfRTTIDescriptor(Ty); 4290 } 4291 4292 void CodeGenModule::EmitOMPThreadPrivateDecl(const OMPThreadPrivateDecl *D) { 4293 for (auto RefExpr : D->varlists()) { 4294 auto *VD = cast<VarDecl>(cast<DeclRefExpr>(RefExpr)->getDecl()); 4295 bool PerformInit = 4296 VD->getAnyInitializer() && 4297 !VD->getAnyInitializer()->isConstantInitializer(getContext(), 4298 /*ForRef=*/false); 4299 4300 Address Addr(GetAddrOfGlobalVar(VD), getContext().getDeclAlign(VD)); 4301 if (auto InitFunction = getOpenMPRuntime().emitThreadPrivateVarDefinition( 4302 VD, Addr, RefExpr->getLocStart(), PerformInit)) 4303 CXXGlobalInits.push_back(InitFunction); 4304 } 4305 } 4306 4307 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierForType(QualType T) { 4308 llvm::Metadata *&InternalId = MetadataIdMap[T.getCanonicalType()]; 4309 if (InternalId) 4310 return InternalId; 4311 4312 if (isExternallyVisible(T->getLinkage())) { 4313 std::string OutName; 4314 llvm::raw_string_ostream Out(OutName); 4315 getCXXABI().getMangleContext().mangleTypeName(T, Out); 4316 4317 InternalId = llvm::MDString::get(getLLVMContext(), Out.str()); 4318 } else { 4319 InternalId = llvm::MDNode::getDistinct(getLLVMContext(), 4320 llvm::ArrayRef<llvm::Metadata *>()); 4321 } 4322 4323 return InternalId; 4324 } 4325 4326 /// Returns whether this module needs the "all-vtables" type identifier. 4327 bool CodeGenModule::NeedAllVtablesTypeId() const { 4328 // Returns true if at least one of vtable-based CFI checkers is enabled and 4329 // is not in the trapping mode. 4330 return ((LangOpts.Sanitize.has(SanitizerKind::CFIVCall) && 4331 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIVCall)) || 4332 (LangOpts.Sanitize.has(SanitizerKind::CFINVCall) && 4333 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFINVCall)) || 4334 (LangOpts.Sanitize.has(SanitizerKind::CFIDerivedCast) && 4335 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIDerivedCast)) || 4336 (LangOpts.Sanitize.has(SanitizerKind::CFIUnrelatedCast) && 4337 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIUnrelatedCast))); 4338 } 4339 4340 void CodeGenModule::AddVTableTypeMetadata(llvm::GlobalVariable *VTable, 4341 CharUnits Offset, 4342 const CXXRecordDecl *RD) { 4343 llvm::Metadata *MD = 4344 CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0)); 4345 VTable->addTypeMetadata(Offset.getQuantity(), MD); 4346 4347 if (CodeGenOpts.SanitizeCfiCrossDso) 4348 if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD)) 4349 VTable->addTypeMetadata(Offset.getQuantity(), 4350 llvm::ConstantAsMetadata::get(CrossDsoTypeId)); 4351 4352 if (NeedAllVtablesTypeId()) { 4353 llvm::Metadata *MD = llvm::MDString::get(getLLVMContext(), "all-vtables"); 4354 VTable->addTypeMetadata(Offset.getQuantity(), MD); 4355 } 4356 } 4357 4358 // Fills in the supplied string map with the set of target features for the 4359 // passed in function. 4360 void CodeGenModule::getFunctionFeatureMap(llvm::StringMap<bool> &FeatureMap, 4361 const FunctionDecl *FD) { 4362 StringRef TargetCPU = Target.getTargetOpts().CPU; 4363 if (const auto *TD = FD->getAttr<TargetAttr>()) { 4364 // If we have a TargetAttr build up the feature map based on that. 4365 TargetAttr::ParsedTargetAttr ParsedAttr = TD->parse(); 4366 4367 // Make a copy of the features as passed on the command line into the 4368 // beginning of the additional features from the function to override. 4369 ParsedAttr.first.insert(ParsedAttr.first.begin(), 4370 Target.getTargetOpts().FeaturesAsWritten.begin(), 4371 Target.getTargetOpts().FeaturesAsWritten.end()); 4372 4373 if (ParsedAttr.second != "") 4374 TargetCPU = ParsedAttr.second; 4375 4376 // Now populate the feature map, first with the TargetCPU which is either 4377 // the default or a new one from the target attribute string. Then we'll use 4378 // the passed in features (FeaturesAsWritten) along with the new ones from 4379 // the attribute. 4380 Target.initFeatureMap(FeatureMap, getDiags(), TargetCPU, ParsedAttr.first); 4381 } else { 4382 Target.initFeatureMap(FeatureMap, getDiags(), TargetCPU, 4383 Target.getTargetOpts().Features); 4384 } 4385 } 4386 4387 llvm::SanitizerStatReport &CodeGenModule::getSanStats() { 4388 if (!SanStats) 4389 SanStats = llvm::make_unique<llvm::SanitizerStatReport>(&getModule()); 4390 4391 return *SanStats; 4392 } 4393 llvm::Value * 4394 CodeGenModule::createOpenCLIntToSamplerConversion(const Expr *E, 4395 CodeGenFunction &CGF) { 4396 llvm::Constant *C = EmitConstantExpr(E, E->getType(), &CGF); 4397 auto SamplerT = getOpenCLRuntime().getSamplerType(); 4398 auto FTy = llvm::FunctionType::get(SamplerT, {C->getType()}, false); 4399 return CGF.Builder.CreateCall(CreateRuntimeFunction(FTy, 4400 "__translate_sampler_initializer"), 4401 {C}); 4402 } 4403