1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This coordinates the per-module state used while generating code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenModule.h" 15 #include "CGBlocks.h" 16 #include "CGCUDARuntime.h" 17 #include "CGCXXABI.h" 18 #include "CGCall.h" 19 #include "CGDebugInfo.h" 20 #include "CGObjCRuntime.h" 21 #include "CGOpenCLRuntime.h" 22 #include "CGOpenMPRuntime.h" 23 #include "CGOpenMPRuntimeNVPTX.h" 24 #include "CodeGenFunction.h" 25 #include "CodeGenPGO.h" 26 #include "CodeGenTBAA.h" 27 #include "ConstantBuilder.h" 28 #include "CoverageMappingGen.h" 29 #include "TargetInfo.h" 30 #include "clang/AST/ASTContext.h" 31 #include "clang/AST/CharUnits.h" 32 #include "clang/AST/DeclCXX.h" 33 #include "clang/AST/DeclObjC.h" 34 #include "clang/AST/DeclTemplate.h" 35 #include "clang/AST/Mangle.h" 36 #include "clang/AST/RecordLayout.h" 37 #include "clang/AST/RecursiveASTVisitor.h" 38 #include "clang/Basic/Builtins.h" 39 #include "clang/Basic/CharInfo.h" 40 #include "clang/Basic/Diagnostic.h" 41 #include "clang/Basic/Module.h" 42 #include "clang/Basic/SourceManager.h" 43 #include "clang/Basic/TargetInfo.h" 44 #include "clang/Basic/Version.h" 45 #include "clang/Frontend/CodeGenOptions.h" 46 #include "clang/Sema/SemaDiagnostic.h" 47 #include "llvm/ADT/Triple.h" 48 #include "llvm/IR/CallSite.h" 49 #include "llvm/IR/CallingConv.h" 50 #include "llvm/IR/DataLayout.h" 51 #include "llvm/IR/Intrinsics.h" 52 #include "llvm/IR/LLVMContext.h" 53 #include "llvm/IR/Module.h" 54 #include "llvm/ProfileData/InstrProfReader.h" 55 #include "llvm/Support/ConvertUTF.h" 56 #include "llvm/Support/ErrorHandling.h" 57 #include "llvm/Support/MD5.h" 58 59 using namespace clang; 60 using namespace CodeGen; 61 62 static const char AnnotationSection[] = "llvm.metadata"; 63 64 static CGCXXABI *createCXXABI(CodeGenModule &CGM) { 65 switch (CGM.getTarget().getCXXABI().getKind()) { 66 case TargetCXXABI::GenericAArch64: 67 case TargetCXXABI::GenericARM: 68 case TargetCXXABI::iOS: 69 case TargetCXXABI::iOS64: 70 case TargetCXXABI::WatchOS: 71 case TargetCXXABI::GenericMIPS: 72 case TargetCXXABI::GenericItanium: 73 case TargetCXXABI::WebAssembly: 74 return CreateItaniumCXXABI(CGM); 75 case TargetCXXABI::Microsoft: 76 return CreateMicrosoftCXXABI(CGM); 77 } 78 79 llvm_unreachable("invalid C++ ABI kind"); 80 } 81 82 CodeGenModule::CodeGenModule(ASTContext &C, const HeaderSearchOptions &HSO, 83 const PreprocessorOptions &PPO, 84 const CodeGenOptions &CGO, llvm::Module &M, 85 DiagnosticsEngine &diags, 86 CoverageSourceInfo *CoverageInfo) 87 : Context(C), LangOpts(C.getLangOpts()), HeaderSearchOpts(HSO), 88 PreprocessorOpts(PPO), CodeGenOpts(CGO), TheModule(M), Diags(diags), 89 Target(C.getTargetInfo()), ABI(createCXXABI(*this)), 90 VMContext(M.getContext()), Types(*this), VTables(*this), 91 SanitizerMD(new SanitizerMetadata(*this)) { 92 93 // Initialize the type cache. 94 llvm::LLVMContext &LLVMContext = M.getContext(); 95 VoidTy = llvm::Type::getVoidTy(LLVMContext); 96 Int8Ty = llvm::Type::getInt8Ty(LLVMContext); 97 Int16Ty = llvm::Type::getInt16Ty(LLVMContext); 98 Int32Ty = llvm::Type::getInt32Ty(LLVMContext); 99 Int64Ty = llvm::Type::getInt64Ty(LLVMContext); 100 FloatTy = llvm::Type::getFloatTy(LLVMContext); 101 DoubleTy = llvm::Type::getDoubleTy(LLVMContext); 102 PointerWidthInBits = C.getTargetInfo().getPointerWidth(0); 103 PointerAlignInBytes = 104 C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(0)).getQuantity(); 105 SizeSizeInBytes = 106 C.toCharUnitsFromBits(C.getTargetInfo().getMaxPointerWidth()).getQuantity(); 107 IntAlignInBytes = 108 C.toCharUnitsFromBits(C.getTargetInfo().getIntAlign()).getQuantity(); 109 IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth()); 110 IntPtrTy = llvm::IntegerType::get(LLVMContext, 111 C.getTargetInfo().getMaxPointerWidth()); 112 Int8PtrTy = Int8Ty->getPointerTo(0); 113 Int8PtrPtrTy = Int8PtrTy->getPointerTo(0); 114 115 RuntimeCC = getTargetCodeGenInfo().getABIInfo().getRuntimeCC(); 116 BuiltinCC = getTargetCodeGenInfo().getABIInfo().getBuiltinCC(); 117 118 if (LangOpts.ObjC1) 119 createObjCRuntime(); 120 if (LangOpts.OpenCL) 121 createOpenCLRuntime(); 122 if (LangOpts.OpenMP) 123 createOpenMPRuntime(); 124 if (LangOpts.CUDA) 125 createCUDARuntime(); 126 127 // Enable TBAA unless it's suppressed. ThreadSanitizer needs TBAA even at O0. 128 if (LangOpts.Sanitize.has(SanitizerKind::Thread) || 129 (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0)) 130 TBAA.reset(new CodeGenTBAA(Context, VMContext, CodeGenOpts, getLangOpts(), 131 getCXXABI().getMangleContext())); 132 133 // If debug info or coverage generation is enabled, create the CGDebugInfo 134 // object. 135 if (CodeGenOpts.getDebugInfo() != codegenoptions::NoDebugInfo || 136 CodeGenOpts.EmitGcovArcs || CodeGenOpts.EmitGcovNotes) 137 DebugInfo.reset(new CGDebugInfo(*this)); 138 139 Block.GlobalUniqueCount = 0; 140 141 if (C.getLangOpts().ObjC1) 142 ObjCData.reset(new ObjCEntrypoints()); 143 144 if (CodeGenOpts.hasProfileClangUse()) { 145 auto ReaderOrErr = llvm::IndexedInstrProfReader::create( 146 CodeGenOpts.ProfileInstrumentUsePath); 147 if (auto E = ReaderOrErr.takeError()) { 148 unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error, 149 "Could not read profile %0: %1"); 150 llvm::handleAllErrors(std::move(E), [&](const llvm::ErrorInfoBase &EI) { 151 getDiags().Report(DiagID) << CodeGenOpts.ProfileInstrumentUsePath 152 << EI.message(); 153 }); 154 } else 155 PGOReader = std::move(ReaderOrErr.get()); 156 } 157 158 // If coverage mapping generation is enabled, create the 159 // CoverageMappingModuleGen object. 160 if (CodeGenOpts.CoverageMapping) 161 CoverageMapping.reset(new CoverageMappingModuleGen(*this, *CoverageInfo)); 162 } 163 164 CodeGenModule::~CodeGenModule() {} 165 166 void CodeGenModule::createObjCRuntime() { 167 // This is just isGNUFamily(), but we want to force implementors of 168 // new ABIs to decide how best to do this. 169 switch (LangOpts.ObjCRuntime.getKind()) { 170 case ObjCRuntime::GNUstep: 171 case ObjCRuntime::GCC: 172 case ObjCRuntime::ObjFW: 173 ObjCRuntime.reset(CreateGNUObjCRuntime(*this)); 174 return; 175 176 case ObjCRuntime::FragileMacOSX: 177 case ObjCRuntime::MacOSX: 178 case ObjCRuntime::iOS: 179 case ObjCRuntime::WatchOS: 180 ObjCRuntime.reset(CreateMacObjCRuntime(*this)); 181 return; 182 } 183 llvm_unreachable("bad runtime kind"); 184 } 185 186 void CodeGenModule::createOpenCLRuntime() { 187 OpenCLRuntime.reset(new CGOpenCLRuntime(*this)); 188 } 189 190 void CodeGenModule::createOpenMPRuntime() { 191 // Select a specialized code generation class based on the target, if any. 192 // If it does not exist use the default implementation. 193 switch (getTriple().getArch()) { 194 case llvm::Triple::nvptx: 195 case llvm::Triple::nvptx64: 196 assert(getLangOpts().OpenMPIsDevice && 197 "OpenMP NVPTX is only prepared to deal with device code."); 198 OpenMPRuntime.reset(new CGOpenMPRuntimeNVPTX(*this)); 199 break; 200 default: 201 OpenMPRuntime.reset(new CGOpenMPRuntime(*this)); 202 break; 203 } 204 } 205 206 void CodeGenModule::createCUDARuntime() { 207 CUDARuntime.reset(CreateNVCUDARuntime(*this)); 208 } 209 210 void CodeGenModule::addReplacement(StringRef Name, llvm::Constant *C) { 211 Replacements[Name] = C; 212 } 213 214 void CodeGenModule::applyReplacements() { 215 for (auto &I : Replacements) { 216 StringRef MangledName = I.first(); 217 llvm::Constant *Replacement = I.second; 218 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 219 if (!Entry) 220 continue; 221 auto *OldF = cast<llvm::Function>(Entry); 222 auto *NewF = dyn_cast<llvm::Function>(Replacement); 223 if (!NewF) { 224 if (auto *Alias = dyn_cast<llvm::GlobalAlias>(Replacement)) { 225 NewF = dyn_cast<llvm::Function>(Alias->getAliasee()); 226 } else { 227 auto *CE = cast<llvm::ConstantExpr>(Replacement); 228 assert(CE->getOpcode() == llvm::Instruction::BitCast || 229 CE->getOpcode() == llvm::Instruction::GetElementPtr); 230 NewF = dyn_cast<llvm::Function>(CE->getOperand(0)); 231 } 232 } 233 234 // Replace old with new, but keep the old order. 235 OldF->replaceAllUsesWith(Replacement); 236 if (NewF) { 237 NewF->removeFromParent(); 238 OldF->getParent()->getFunctionList().insertAfter(OldF->getIterator(), 239 NewF); 240 } 241 OldF->eraseFromParent(); 242 } 243 } 244 245 void CodeGenModule::addGlobalValReplacement(llvm::GlobalValue *GV, llvm::Constant *C) { 246 GlobalValReplacements.push_back(std::make_pair(GV, C)); 247 } 248 249 void CodeGenModule::applyGlobalValReplacements() { 250 for (auto &I : GlobalValReplacements) { 251 llvm::GlobalValue *GV = I.first; 252 llvm::Constant *C = I.second; 253 254 GV->replaceAllUsesWith(C); 255 GV->eraseFromParent(); 256 } 257 } 258 259 // This is only used in aliases that we created and we know they have a 260 // linear structure. 261 static const llvm::GlobalObject *getAliasedGlobal( 262 const llvm::GlobalIndirectSymbol &GIS) { 263 llvm::SmallPtrSet<const llvm::GlobalIndirectSymbol*, 4> Visited; 264 const llvm::Constant *C = &GIS; 265 for (;;) { 266 C = C->stripPointerCasts(); 267 if (auto *GO = dyn_cast<llvm::GlobalObject>(C)) 268 return GO; 269 // stripPointerCasts will not walk over weak aliases. 270 auto *GIS2 = dyn_cast<llvm::GlobalIndirectSymbol>(C); 271 if (!GIS2) 272 return nullptr; 273 if (!Visited.insert(GIS2).second) 274 return nullptr; 275 C = GIS2->getIndirectSymbol(); 276 } 277 } 278 279 void CodeGenModule::checkAliases() { 280 // Check if the constructed aliases are well formed. It is really unfortunate 281 // that we have to do this in CodeGen, but we only construct mangled names 282 // and aliases during codegen. 283 bool Error = false; 284 DiagnosticsEngine &Diags = getDiags(); 285 for (const GlobalDecl &GD : Aliases) { 286 const auto *D = cast<ValueDecl>(GD.getDecl()); 287 SourceLocation Location; 288 bool IsIFunc = D->hasAttr<IFuncAttr>(); 289 if (const Attr *A = D->getDefiningAttr()) 290 Location = A->getLocation(); 291 else 292 llvm_unreachable("Not an alias or ifunc?"); 293 StringRef MangledName = getMangledName(GD); 294 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 295 auto *Alias = cast<llvm::GlobalIndirectSymbol>(Entry); 296 const llvm::GlobalValue *GV = getAliasedGlobal(*Alias); 297 if (!GV) { 298 Error = true; 299 Diags.Report(Location, diag::err_cyclic_alias) << IsIFunc; 300 } else if (GV->isDeclaration()) { 301 Error = true; 302 Diags.Report(Location, diag::err_alias_to_undefined) 303 << IsIFunc << IsIFunc; 304 } else if (IsIFunc) { 305 // Check resolver function type. 306 llvm::FunctionType *FTy = dyn_cast<llvm::FunctionType>( 307 GV->getType()->getPointerElementType()); 308 assert(FTy); 309 if (!FTy->getReturnType()->isPointerTy()) 310 Diags.Report(Location, diag::err_ifunc_resolver_return); 311 if (FTy->getNumParams()) 312 Diags.Report(Location, diag::err_ifunc_resolver_params); 313 } 314 315 llvm::Constant *Aliasee = Alias->getIndirectSymbol(); 316 llvm::GlobalValue *AliaseeGV; 317 if (auto CE = dyn_cast<llvm::ConstantExpr>(Aliasee)) 318 AliaseeGV = cast<llvm::GlobalValue>(CE->getOperand(0)); 319 else 320 AliaseeGV = cast<llvm::GlobalValue>(Aliasee); 321 322 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) { 323 StringRef AliasSection = SA->getName(); 324 if (AliasSection != AliaseeGV->getSection()) 325 Diags.Report(SA->getLocation(), diag::warn_alias_with_section) 326 << AliasSection << IsIFunc << IsIFunc; 327 } 328 329 // We have to handle alias to weak aliases in here. LLVM itself disallows 330 // this since the object semantics would not match the IL one. For 331 // compatibility with gcc we implement it by just pointing the alias 332 // to its aliasee's aliasee. We also warn, since the user is probably 333 // expecting the link to be weak. 334 if (auto GA = dyn_cast<llvm::GlobalIndirectSymbol>(AliaseeGV)) { 335 if (GA->isInterposable()) { 336 Diags.Report(Location, diag::warn_alias_to_weak_alias) 337 << GV->getName() << GA->getName() << IsIFunc; 338 Aliasee = llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast( 339 GA->getIndirectSymbol(), Alias->getType()); 340 Alias->setIndirectSymbol(Aliasee); 341 } 342 } 343 } 344 if (!Error) 345 return; 346 347 for (const GlobalDecl &GD : Aliases) { 348 StringRef MangledName = getMangledName(GD); 349 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 350 auto *Alias = dyn_cast<llvm::GlobalIndirectSymbol>(Entry); 351 Alias->replaceAllUsesWith(llvm::UndefValue::get(Alias->getType())); 352 Alias->eraseFromParent(); 353 } 354 } 355 356 void CodeGenModule::clear() { 357 DeferredDeclsToEmit.clear(); 358 if (OpenMPRuntime) 359 OpenMPRuntime->clear(); 360 } 361 362 void InstrProfStats::reportDiagnostics(DiagnosticsEngine &Diags, 363 StringRef MainFile) { 364 if (!hasDiagnostics()) 365 return; 366 if (VisitedInMainFile > 0 && VisitedInMainFile == MissingInMainFile) { 367 if (MainFile.empty()) 368 MainFile = "<stdin>"; 369 Diags.Report(diag::warn_profile_data_unprofiled) << MainFile; 370 } else 371 Diags.Report(diag::warn_profile_data_out_of_date) << Visited << Missing 372 << Mismatched; 373 } 374 375 void CodeGenModule::Release() { 376 EmitDeferred(); 377 applyGlobalValReplacements(); 378 applyReplacements(); 379 checkAliases(); 380 EmitCXXGlobalInitFunc(); 381 EmitCXXGlobalDtorFunc(); 382 EmitCXXThreadLocalInitFunc(); 383 if (ObjCRuntime) 384 if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction()) 385 AddGlobalCtor(ObjCInitFunction); 386 if (Context.getLangOpts().CUDA && !Context.getLangOpts().CUDAIsDevice && 387 CUDARuntime) { 388 if (llvm::Function *CudaCtorFunction = CUDARuntime->makeModuleCtorFunction()) 389 AddGlobalCtor(CudaCtorFunction); 390 if (llvm::Function *CudaDtorFunction = CUDARuntime->makeModuleDtorFunction()) 391 AddGlobalDtor(CudaDtorFunction); 392 } 393 if (OpenMPRuntime) 394 if (llvm::Function *OpenMPRegistrationFunction = 395 OpenMPRuntime->emitRegistrationFunction()) 396 AddGlobalCtor(OpenMPRegistrationFunction, 0); 397 if (PGOReader) { 398 getModule().setProfileSummary(PGOReader->getSummary().getMD(VMContext)); 399 if (PGOStats.hasDiagnostics()) 400 PGOStats.reportDiagnostics(getDiags(), getCodeGenOpts().MainFileName); 401 } 402 EmitCtorList(GlobalCtors, "llvm.global_ctors"); 403 EmitCtorList(GlobalDtors, "llvm.global_dtors"); 404 EmitGlobalAnnotations(); 405 EmitStaticExternCAliases(); 406 EmitDeferredUnusedCoverageMappings(); 407 if (CoverageMapping) 408 CoverageMapping->emit(); 409 if (CodeGenOpts.SanitizeCfiCrossDso) 410 CodeGenFunction(*this).EmitCfiCheckFail(); 411 emitLLVMUsed(); 412 if (SanStats) 413 SanStats->finish(); 414 415 if (CodeGenOpts.Autolink && 416 (Context.getLangOpts().Modules || !LinkerOptionsMetadata.empty())) { 417 EmitModuleLinkOptions(); 418 } 419 if (CodeGenOpts.DwarfVersion) { 420 // We actually want the latest version when there are conflicts. 421 // We can change from Warning to Latest if such mode is supported. 422 getModule().addModuleFlag(llvm::Module::Warning, "Dwarf Version", 423 CodeGenOpts.DwarfVersion); 424 } 425 if (CodeGenOpts.EmitCodeView) { 426 // Indicate that we want CodeView in the metadata. 427 getModule().addModuleFlag(llvm::Module::Warning, "CodeView", 1); 428 } 429 if (CodeGenOpts.OptimizationLevel > 0 && CodeGenOpts.StrictVTablePointers) { 430 // We don't support LTO with 2 with different StrictVTablePointers 431 // FIXME: we could support it by stripping all the information introduced 432 // by StrictVTablePointers. 433 434 getModule().addModuleFlag(llvm::Module::Error, "StrictVTablePointers",1); 435 436 llvm::Metadata *Ops[2] = { 437 llvm::MDString::get(VMContext, "StrictVTablePointers"), 438 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 439 llvm::Type::getInt32Ty(VMContext), 1))}; 440 441 getModule().addModuleFlag(llvm::Module::Require, 442 "StrictVTablePointersRequirement", 443 llvm::MDNode::get(VMContext, Ops)); 444 } 445 if (DebugInfo) 446 // We support a single version in the linked module. The LLVM 447 // parser will drop debug info with a different version number 448 // (and warn about it, too). 449 getModule().addModuleFlag(llvm::Module::Warning, "Debug Info Version", 450 llvm::DEBUG_METADATA_VERSION); 451 452 // We need to record the widths of enums and wchar_t, so that we can generate 453 // the correct build attributes in the ARM backend. 454 llvm::Triple::ArchType Arch = Context.getTargetInfo().getTriple().getArch(); 455 if ( Arch == llvm::Triple::arm 456 || Arch == llvm::Triple::armeb 457 || Arch == llvm::Triple::thumb 458 || Arch == llvm::Triple::thumbeb) { 459 // Width of wchar_t in bytes 460 uint64_t WCharWidth = 461 Context.getTypeSizeInChars(Context.getWideCharType()).getQuantity(); 462 getModule().addModuleFlag(llvm::Module::Error, "wchar_size", WCharWidth); 463 464 // The minimum width of an enum in bytes 465 uint64_t EnumWidth = Context.getLangOpts().ShortEnums ? 1 : 4; 466 getModule().addModuleFlag(llvm::Module::Error, "min_enum_size", EnumWidth); 467 } 468 469 if (CodeGenOpts.SanitizeCfiCrossDso) { 470 // Indicate that we want cross-DSO control flow integrity checks. 471 getModule().addModuleFlag(llvm::Module::Override, "Cross-DSO CFI", 1); 472 } 473 474 if (LangOpts.CUDAIsDevice && getTriple().isNVPTX()) { 475 // Indicate whether __nvvm_reflect should be configured to flush denormal 476 // floating point values to 0. (This corresponds to its "__CUDA_FTZ" 477 // property.) 478 getModule().addModuleFlag(llvm::Module::Override, "nvvm-reflect-ftz", 479 LangOpts.CUDADeviceFlushDenormalsToZero ? 1 : 0); 480 } 481 482 if (uint32_t PLevel = Context.getLangOpts().PICLevel) { 483 assert(PLevel < 3 && "Invalid PIC Level"); 484 getModule().setPICLevel(static_cast<llvm::PICLevel::Level>(PLevel)); 485 if (Context.getLangOpts().PIE) 486 getModule().setPIELevel(static_cast<llvm::PIELevel::Level>(PLevel)); 487 } 488 489 SimplifyPersonality(); 490 491 if (getCodeGenOpts().EmitDeclMetadata) 492 EmitDeclMetadata(); 493 494 if (getCodeGenOpts().EmitGcovArcs || getCodeGenOpts().EmitGcovNotes) 495 EmitCoverageFile(); 496 497 if (DebugInfo) 498 DebugInfo->finalize(); 499 500 EmitVersionIdentMetadata(); 501 502 EmitTargetMetadata(); 503 } 504 505 void CodeGenModule::UpdateCompletedType(const TagDecl *TD) { 506 // Make sure that this type is translated. 507 Types.UpdateCompletedType(TD); 508 } 509 510 void CodeGenModule::RefreshTypeCacheForClass(const CXXRecordDecl *RD) { 511 // Make sure that this type is translated. 512 Types.RefreshTypeCacheForClass(RD); 513 } 514 515 llvm::MDNode *CodeGenModule::getTBAAInfo(QualType QTy) { 516 if (!TBAA) 517 return nullptr; 518 return TBAA->getTBAAInfo(QTy); 519 } 520 521 llvm::MDNode *CodeGenModule::getTBAAInfoForVTablePtr() { 522 if (!TBAA) 523 return nullptr; 524 return TBAA->getTBAAInfoForVTablePtr(); 525 } 526 527 llvm::MDNode *CodeGenModule::getTBAAStructInfo(QualType QTy) { 528 if (!TBAA) 529 return nullptr; 530 return TBAA->getTBAAStructInfo(QTy); 531 } 532 533 llvm::MDNode *CodeGenModule::getTBAAStructTagInfo(QualType BaseTy, 534 llvm::MDNode *AccessN, 535 uint64_t O) { 536 if (!TBAA) 537 return nullptr; 538 return TBAA->getTBAAStructTagInfo(BaseTy, AccessN, O); 539 } 540 541 /// Decorate the instruction with a TBAA tag. For both scalar TBAA 542 /// and struct-path aware TBAA, the tag has the same format: 543 /// base type, access type and offset. 544 /// When ConvertTypeToTag is true, we create a tag based on the scalar type. 545 void CodeGenModule::DecorateInstructionWithTBAA(llvm::Instruction *Inst, 546 llvm::MDNode *TBAAInfo, 547 bool ConvertTypeToTag) { 548 if (ConvertTypeToTag && TBAA) 549 Inst->setMetadata(llvm::LLVMContext::MD_tbaa, 550 TBAA->getTBAAScalarTagInfo(TBAAInfo)); 551 else 552 Inst->setMetadata(llvm::LLVMContext::MD_tbaa, TBAAInfo); 553 } 554 555 void CodeGenModule::DecorateInstructionWithInvariantGroup( 556 llvm::Instruction *I, const CXXRecordDecl *RD) { 557 llvm::Metadata *MD = CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0)); 558 auto *MetaDataNode = dyn_cast<llvm::MDNode>(MD); 559 // Check if we have to wrap MDString in MDNode. 560 if (!MetaDataNode) 561 MetaDataNode = llvm::MDNode::get(getLLVMContext(), MD); 562 I->setMetadata(llvm::LLVMContext::MD_invariant_group, MetaDataNode); 563 } 564 565 void CodeGenModule::Error(SourceLocation loc, StringRef message) { 566 unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, "%0"); 567 getDiags().Report(Context.getFullLoc(loc), diagID) << message; 568 } 569 570 /// ErrorUnsupported - Print out an error that codegen doesn't support the 571 /// specified stmt yet. 572 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type) { 573 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, 574 "cannot compile this %0 yet"); 575 std::string Msg = Type; 576 getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID) 577 << Msg << S->getSourceRange(); 578 } 579 580 /// ErrorUnsupported - Print out an error that codegen doesn't support the 581 /// specified decl yet. 582 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type) { 583 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, 584 "cannot compile this %0 yet"); 585 std::string Msg = Type; 586 getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg; 587 } 588 589 llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) { 590 return llvm::ConstantInt::get(SizeTy, size.getQuantity()); 591 } 592 593 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV, 594 const NamedDecl *D) const { 595 // Internal definitions always have default visibility. 596 if (GV->hasLocalLinkage()) { 597 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 598 return; 599 } 600 601 // Set visibility for definitions. 602 LinkageInfo LV = D->getLinkageAndVisibility(); 603 if (LV.isVisibilityExplicit() || !GV->hasAvailableExternallyLinkage()) 604 GV->setVisibility(GetLLVMVisibility(LV.getVisibility())); 605 } 606 607 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(StringRef S) { 608 return llvm::StringSwitch<llvm::GlobalVariable::ThreadLocalMode>(S) 609 .Case("global-dynamic", llvm::GlobalVariable::GeneralDynamicTLSModel) 610 .Case("local-dynamic", llvm::GlobalVariable::LocalDynamicTLSModel) 611 .Case("initial-exec", llvm::GlobalVariable::InitialExecTLSModel) 612 .Case("local-exec", llvm::GlobalVariable::LocalExecTLSModel); 613 } 614 615 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel( 616 CodeGenOptions::TLSModel M) { 617 switch (M) { 618 case CodeGenOptions::GeneralDynamicTLSModel: 619 return llvm::GlobalVariable::GeneralDynamicTLSModel; 620 case CodeGenOptions::LocalDynamicTLSModel: 621 return llvm::GlobalVariable::LocalDynamicTLSModel; 622 case CodeGenOptions::InitialExecTLSModel: 623 return llvm::GlobalVariable::InitialExecTLSModel; 624 case CodeGenOptions::LocalExecTLSModel: 625 return llvm::GlobalVariable::LocalExecTLSModel; 626 } 627 llvm_unreachable("Invalid TLS model!"); 628 } 629 630 void CodeGenModule::setTLSMode(llvm::GlobalValue *GV, const VarDecl &D) const { 631 assert(D.getTLSKind() && "setting TLS mode on non-TLS var!"); 632 633 llvm::GlobalValue::ThreadLocalMode TLM; 634 TLM = GetLLVMTLSModel(CodeGenOpts.getDefaultTLSModel()); 635 636 // Override the TLS model if it is explicitly specified. 637 if (const TLSModelAttr *Attr = D.getAttr<TLSModelAttr>()) { 638 TLM = GetLLVMTLSModel(Attr->getModel()); 639 } 640 641 GV->setThreadLocalMode(TLM); 642 } 643 644 StringRef CodeGenModule::getMangledName(GlobalDecl GD) { 645 GlobalDecl CanonicalGD = GD.getCanonicalDecl(); 646 647 // Some ABIs don't have constructor variants. Make sure that base and 648 // complete constructors get mangled the same. 649 if (const auto *CD = dyn_cast<CXXConstructorDecl>(CanonicalGD.getDecl())) { 650 if (!getTarget().getCXXABI().hasConstructorVariants()) { 651 CXXCtorType OrigCtorType = GD.getCtorType(); 652 assert(OrigCtorType == Ctor_Base || OrigCtorType == Ctor_Complete); 653 if (OrigCtorType == Ctor_Base) 654 CanonicalGD = GlobalDecl(CD, Ctor_Complete); 655 } 656 } 657 658 StringRef &FoundStr = MangledDeclNames[CanonicalGD]; 659 if (!FoundStr.empty()) 660 return FoundStr; 661 662 const auto *ND = cast<NamedDecl>(GD.getDecl()); 663 SmallString<256> Buffer; 664 StringRef Str; 665 if (getCXXABI().getMangleContext().shouldMangleDeclName(ND)) { 666 llvm::raw_svector_ostream Out(Buffer); 667 if (const auto *D = dyn_cast<CXXConstructorDecl>(ND)) 668 getCXXABI().getMangleContext().mangleCXXCtor(D, GD.getCtorType(), Out); 669 else if (const auto *D = dyn_cast<CXXDestructorDecl>(ND)) 670 getCXXABI().getMangleContext().mangleCXXDtor(D, GD.getDtorType(), Out); 671 else 672 getCXXABI().getMangleContext().mangleName(ND, Out); 673 Str = Out.str(); 674 } else { 675 IdentifierInfo *II = ND->getIdentifier(); 676 assert(II && "Attempt to mangle unnamed decl."); 677 const auto *FD = dyn_cast<FunctionDecl>(ND); 678 679 if (FD && 680 FD->getType()->castAs<FunctionType>()->getCallConv() == CC_X86RegCall) { 681 llvm::raw_svector_ostream Out(Buffer); 682 Out << "__regcall3__" << II->getName(); 683 Str = Out.str(); 684 } else { 685 Str = II->getName(); 686 } 687 } 688 689 // Keep the first result in the case of a mangling collision. 690 auto Result = Manglings.insert(std::make_pair(Str, GD)); 691 return FoundStr = Result.first->first(); 692 } 693 694 StringRef CodeGenModule::getBlockMangledName(GlobalDecl GD, 695 const BlockDecl *BD) { 696 MangleContext &MangleCtx = getCXXABI().getMangleContext(); 697 const Decl *D = GD.getDecl(); 698 699 SmallString<256> Buffer; 700 llvm::raw_svector_ostream Out(Buffer); 701 if (!D) 702 MangleCtx.mangleGlobalBlock(BD, 703 dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()), Out); 704 else if (const auto *CD = dyn_cast<CXXConstructorDecl>(D)) 705 MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out); 706 else if (const auto *DD = dyn_cast<CXXDestructorDecl>(D)) 707 MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out); 708 else 709 MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out); 710 711 auto Result = Manglings.insert(std::make_pair(Out.str(), BD)); 712 return Result.first->first(); 713 } 714 715 llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) { 716 return getModule().getNamedValue(Name); 717 } 718 719 /// AddGlobalCtor - Add a function to the list that will be called before 720 /// main() runs. 721 void CodeGenModule::AddGlobalCtor(llvm::Function *Ctor, int Priority, 722 llvm::Constant *AssociatedData) { 723 // FIXME: Type coercion of void()* types. 724 GlobalCtors.push_back(Structor(Priority, Ctor, AssociatedData)); 725 } 726 727 /// AddGlobalDtor - Add a function to the list that will be called 728 /// when the module is unloaded. 729 void CodeGenModule::AddGlobalDtor(llvm::Function *Dtor, int Priority) { 730 // FIXME: Type coercion of void()* types. 731 GlobalDtors.push_back(Structor(Priority, Dtor, nullptr)); 732 } 733 734 void CodeGenModule::EmitCtorList(CtorList &Fns, const char *GlobalName) { 735 if (Fns.empty()) return; 736 737 // Ctor function type is void()*. 738 llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false); 739 llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy); 740 741 // Get the type of a ctor entry, { i32, void ()*, i8* }. 742 llvm::StructType *CtorStructTy = llvm::StructType::get( 743 Int32Ty, llvm::PointerType::getUnqual(CtorFTy), VoidPtrTy, nullptr); 744 745 // Construct the constructor and destructor arrays. 746 ConstantInitBuilder builder(*this); 747 auto ctors = builder.beginArray(CtorStructTy); 748 for (const auto &I : Fns) { 749 auto ctor = ctors.beginStruct(CtorStructTy); 750 ctor.addInt(Int32Ty, I.Priority); 751 ctor.add(llvm::ConstantExpr::getBitCast(I.Initializer, CtorPFTy)); 752 if (I.AssociatedData) 753 ctor.add(llvm::ConstantExpr::getBitCast(I.AssociatedData, VoidPtrTy)); 754 else 755 ctor.addNullPointer(VoidPtrTy); 756 ctor.finishAndAddTo(ctors); 757 } 758 759 auto list = 760 ctors.finishAndCreateGlobal(GlobalName, getPointerAlign(), 761 /*constant*/ false, 762 llvm::GlobalValue::AppendingLinkage); 763 764 // The LTO linker doesn't seem to like it when we set an alignment 765 // on appending variables. Take it off as a workaround. 766 list->setAlignment(0); 767 768 Fns.clear(); 769 } 770 771 llvm::GlobalValue::LinkageTypes 772 CodeGenModule::getFunctionLinkage(GlobalDecl GD) { 773 const auto *D = cast<FunctionDecl>(GD.getDecl()); 774 775 GVALinkage Linkage = getContext().GetGVALinkageForFunction(D); 776 777 if (isa<CXXDestructorDecl>(D) && 778 getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D), 779 GD.getDtorType())) { 780 // Destructor variants in the Microsoft C++ ABI are always internal or 781 // linkonce_odr thunks emitted on an as-needed basis. 782 return Linkage == GVA_Internal ? llvm::GlobalValue::InternalLinkage 783 : llvm::GlobalValue::LinkOnceODRLinkage; 784 } 785 786 if (isa<CXXConstructorDecl>(D) && 787 cast<CXXConstructorDecl>(D)->isInheritingConstructor() && 788 Context.getTargetInfo().getCXXABI().isMicrosoft()) { 789 // Our approach to inheriting constructors is fundamentally different from 790 // that used by the MS ABI, so keep our inheriting constructor thunks 791 // internal rather than trying to pick an unambiguous mangling for them. 792 return llvm::GlobalValue::InternalLinkage; 793 } 794 795 return getLLVMLinkageForDeclarator(D, Linkage, /*isConstantVariable=*/false); 796 } 797 798 void CodeGenModule::setFunctionDLLStorageClass(GlobalDecl GD, llvm::Function *F) { 799 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 800 801 if (const auto *Dtor = dyn_cast_or_null<CXXDestructorDecl>(FD)) { 802 if (getCXXABI().useThunkForDtorVariant(Dtor, GD.getDtorType())) { 803 // Don't dllexport/import destructor thunks. 804 F->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 805 return; 806 } 807 } 808 809 if (FD->hasAttr<DLLImportAttr>()) 810 F->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass); 811 else if (FD->hasAttr<DLLExportAttr>()) 812 F->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass); 813 else 814 F->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass); 815 } 816 817 llvm::ConstantInt *CodeGenModule::CreateCrossDsoCfiTypeId(llvm::Metadata *MD) { 818 llvm::MDString *MDS = dyn_cast<llvm::MDString>(MD); 819 if (!MDS) return nullptr; 820 821 return llvm::ConstantInt::get(Int64Ty, llvm::MD5Hash(MDS->getString())); 822 } 823 824 void CodeGenModule::setFunctionDefinitionAttributes(const FunctionDecl *D, 825 llvm::Function *F) { 826 setNonAliasAttributes(D, F); 827 } 828 829 void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D, 830 const CGFunctionInfo &Info, 831 llvm::Function *F) { 832 unsigned CallingConv; 833 AttributeListType AttributeList; 834 ConstructAttributeList(F->getName(), Info, D, AttributeList, CallingConv, 835 false); 836 F->setAttributes(llvm::AttributeSet::get(getLLVMContext(), AttributeList)); 837 F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv)); 838 } 839 840 /// Determines whether the language options require us to model 841 /// unwind exceptions. We treat -fexceptions as mandating this 842 /// except under the fragile ObjC ABI with only ObjC exceptions 843 /// enabled. This means, for example, that C with -fexceptions 844 /// enables this. 845 static bool hasUnwindExceptions(const LangOptions &LangOpts) { 846 // If exceptions are completely disabled, obviously this is false. 847 if (!LangOpts.Exceptions) return false; 848 849 // If C++ exceptions are enabled, this is true. 850 if (LangOpts.CXXExceptions) return true; 851 852 // If ObjC exceptions are enabled, this depends on the ABI. 853 if (LangOpts.ObjCExceptions) { 854 return LangOpts.ObjCRuntime.hasUnwindExceptions(); 855 } 856 857 return true; 858 } 859 860 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D, 861 llvm::Function *F) { 862 llvm::AttrBuilder B; 863 864 if (CodeGenOpts.UnwindTables) 865 B.addAttribute(llvm::Attribute::UWTable); 866 867 if (!hasUnwindExceptions(LangOpts)) 868 B.addAttribute(llvm::Attribute::NoUnwind); 869 870 if (LangOpts.getStackProtector() == LangOptions::SSPOn) 871 B.addAttribute(llvm::Attribute::StackProtect); 872 else if (LangOpts.getStackProtector() == LangOptions::SSPStrong) 873 B.addAttribute(llvm::Attribute::StackProtectStrong); 874 else if (LangOpts.getStackProtector() == LangOptions::SSPReq) 875 B.addAttribute(llvm::Attribute::StackProtectReq); 876 877 if (!D) { 878 // If we don't have a declaration to control inlining, the function isn't 879 // explicitly marked as alwaysinline for semantic reasons, and inlining is 880 // disabled, mark the function as noinline. 881 if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline) && 882 CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining) 883 B.addAttribute(llvm::Attribute::NoInline); 884 885 F->addAttributes(llvm::AttributeSet::FunctionIndex, 886 llvm::AttributeSet::get( 887 F->getContext(), 888 llvm::AttributeSet::FunctionIndex, B)); 889 return; 890 } 891 892 if (D->hasAttr<OptimizeNoneAttr>()) { 893 B.addAttribute(llvm::Attribute::OptimizeNone); 894 895 // OptimizeNone implies noinline; we should not be inlining such functions. 896 B.addAttribute(llvm::Attribute::NoInline); 897 assert(!F->hasFnAttribute(llvm::Attribute::AlwaysInline) && 898 "OptimizeNone and AlwaysInline on same function!"); 899 900 // We still need to handle naked functions even though optnone subsumes 901 // much of their semantics. 902 if (D->hasAttr<NakedAttr>()) 903 B.addAttribute(llvm::Attribute::Naked); 904 905 // OptimizeNone wins over OptimizeForSize and MinSize. 906 F->removeFnAttr(llvm::Attribute::OptimizeForSize); 907 F->removeFnAttr(llvm::Attribute::MinSize); 908 } else if (D->hasAttr<NakedAttr>()) { 909 // Naked implies noinline: we should not be inlining such functions. 910 B.addAttribute(llvm::Attribute::Naked); 911 B.addAttribute(llvm::Attribute::NoInline); 912 } else if (D->hasAttr<NoDuplicateAttr>()) { 913 B.addAttribute(llvm::Attribute::NoDuplicate); 914 } else if (D->hasAttr<NoInlineAttr>()) { 915 B.addAttribute(llvm::Attribute::NoInline); 916 } else if (D->hasAttr<AlwaysInlineAttr>() && 917 !F->hasFnAttribute(llvm::Attribute::NoInline)) { 918 // (noinline wins over always_inline, and we can't specify both in IR) 919 B.addAttribute(llvm::Attribute::AlwaysInline); 920 } else if (CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining) { 921 // If we're not inlining, then force everything that isn't always_inline to 922 // carry an explicit noinline attribute. 923 if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline)) 924 B.addAttribute(llvm::Attribute::NoInline); 925 } else { 926 // Otherwise, propagate the inline hint attribute and potentially use its 927 // absence to mark things as noinline. 928 if (auto *FD = dyn_cast<FunctionDecl>(D)) { 929 if (any_of(FD->redecls(), [&](const FunctionDecl *Redecl) { 930 return Redecl->isInlineSpecified(); 931 })) { 932 B.addAttribute(llvm::Attribute::InlineHint); 933 } else if (CodeGenOpts.getInlining() == 934 CodeGenOptions::OnlyHintInlining && 935 !FD->isInlined() && 936 !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) { 937 B.addAttribute(llvm::Attribute::NoInline); 938 } 939 } 940 } 941 942 // Add other optimization related attributes if we are optimizing this 943 // function. 944 if (!D->hasAttr<OptimizeNoneAttr>()) { 945 if (D->hasAttr<ColdAttr>()) { 946 B.addAttribute(llvm::Attribute::OptimizeForSize); 947 B.addAttribute(llvm::Attribute::Cold); 948 } 949 950 if (D->hasAttr<MinSizeAttr>()) 951 B.addAttribute(llvm::Attribute::MinSize); 952 } 953 954 F->addAttributes(llvm::AttributeSet::FunctionIndex, 955 llvm::AttributeSet::get( 956 F->getContext(), llvm::AttributeSet::FunctionIndex, B)); 957 958 unsigned alignment = D->getMaxAlignment() / Context.getCharWidth(); 959 if (alignment) 960 F->setAlignment(alignment); 961 962 // Some C++ ABIs require 2-byte alignment for member functions, in order to 963 // reserve a bit for differentiating between virtual and non-virtual member 964 // functions. If the current target's C++ ABI requires this and this is a 965 // member function, set its alignment accordingly. 966 if (getTarget().getCXXABI().areMemberFunctionsAligned()) { 967 if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D)) 968 F->setAlignment(2); 969 } 970 971 // In the cross-dso CFI mode, we want !type attributes on definitions only. 972 if (CodeGenOpts.SanitizeCfiCrossDso) 973 if (auto *FD = dyn_cast<FunctionDecl>(D)) 974 CreateFunctionTypeMetadata(FD, F); 975 } 976 977 void CodeGenModule::SetCommonAttributes(const Decl *D, 978 llvm::GlobalValue *GV) { 979 if (const auto *ND = dyn_cast_or_null<NamedDecl>(D)) 980 setGlobalVisibility(GV, ND); 981 else 982 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 983 984 if (D && D->hasAttr<UsedAttr>()) 985 addUsedGlobal(GV); 986 } 987 988 void CodeGenModule::setAliasAttributes(const Decl *D, 989 llvm::GlobalValue *GV) { 990 SetCommonAttributes(D, GV); 991 992 // Process the dllexport attribute based on whether the original definition 993 // (not necessarily the aliasee) was exported. 994 if (D->hasAttr<DLLExportAttr>()) 995 GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass); 996 } 997 998 void CodeGenModule::setNonAliasAttributes(const Decl *D, 999 llvm::GlobalObject *GO) { 1000 SetCommonAttributes(D, GO); 1001 1002 if (D) 1003 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) 1004 GO->setSection(SA->getName()); 1005 1006 getTargetCodeGenInfo().setTargetAttributes(D, GO, *this); 1007 } 1008 1009 void CodeGenModule::SetInternalFunctionAttributes(const Decl *D, 1010 llvm::Function *F, 1011 const CGFunctionInfo &FI) { 1012 SetLLVMFunctionAttributes(D, FI, F); 1013 SetLLVMFunctionAttributesForDefinition(D, F); 1014 1015 F->setLinkage(llvm::Function::InternalLinkage); 1016 1017 setNonAliasAttributes(D, F); 1018 } 1019 1020 static void setLinkageAndVisibilityForGV(llvm::GlobalValue *GV, 1021 const NamedDecl *ND) { 1022 // Set linkage and visibility in case we never see a definition. 1023 LinkageInfo LV = ND->getLinkageAndVisibility(); 1024 if (LV.getLinkage() != ExternalLinkage) { 1025 // Don't set internal linkage on declarations. 1026 } else { 1027 if (ND->hasAttr<DLLImportAttr>()) { 1028 GV->setLinkage(llvm::GlobalValue::ExternalLinkage); 1029 GV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass); 1030 } else if (ND->hasAttr<DLLExportAttr>()) { 1031 GV->setLinkage(llvm::GlobalValue::ExternalLinkage); 1032 GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass); 1033 } else if (ND->hasAttr<WeakAttr>() || ND->isWeakImported()) { 1034 // "extern_weak" is overloaded in LLVM; we probably should have 1035 // separate linkage types for this. 1036 GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage); 1037 } 1038 1039 // Set visibility on a declaration only if it's explicit. 1040 if (LV.isVisibilityExplicit()) 1041 GV->setVisibility(CodeGenModule::GetLLVMVisibility(LV.getVisibility())); 1042 } 1043 } 1044 1045 void CodeGenModule::CreateFunctionTypeMetadata(const FunctionDecl *FD, 1046 llvm::Function *F) { 1047 // Only if we are checking indirect calls. 1048 if (!LangOpts.Sanitize.has(SanitizerKind::CFIICall)) 1049 return; 1050 1051 // Non-static class methods are handled via vtable pointer checks elsewhere. 1052 if (isa<CXXMethodDecl>(FD) && !cast<CXXMethodDecl>(FD)->isStatic()) 1053 return; 1054 1055 // Additionally, if building with cross-DSO support... 1056 if (CodeGenOpts.SanitizeCfiCrossDso) { 1057 // Skip available_externally functions. They won't be codegen'ed in the 1058 // current module anyway. 1059 if (getContext().GetGVALinkageForFunction(FD) == GVA_AvailableExternally) 1060 return; 1061 } 1062 1063 llvm::Metadata *MD = CreateMetadataIdentifierForType(FD->getType()); 1064 F->addTypeMetadata(0, MD); 1065 1066 // Emit a hash-based bit set entry for cross-DSO calls. 1067 if (CodeGenOpts.SanitizeCfiCrossDso) 1068 if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD)) 1069 F->addTypeMetadata(0, llvm::ConstantAsMetadata::get(CrossDsoTypeId)); 1070 } 1071 1072 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD, llvm::Function *F, 1073 bool IsIncompleteFunction, 1074 bool IsThunk) { 1075 if (llvm::Intrinsic::ID IID = F->getIntrinsicID()) { 1076 // If this is an intrinsic function, set the function's attributes 1077 // to the intrinsic's attributes. 1078 F->setAttributes(llvm::Intrinsic::getAttributes(getLLVMContext(), IID)); 1079 return; 1080 } 1081 1082 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 1083 1084 if (!IsIncompleteFunction) 1085 SetLLVMFunctionAttributes(FD, getTypes().arrangeGlobalDeclaration(GD), F); 1086 1087 // Add the Returned attribute for "this", except for iOS 5 and earlier 1088 // where substantial code, including the libstdc++ dylib, was compiled with 1089 // GCC and does not actually return "this". 1090 if (!IsThunk && getCXXABI().HasThisReturn(GD) && 1091 !(getTriple().isiOS() && getTriple().isOSVersionLT(6))) { 1092 assert(!F->arg_empty() && 1093 F->arg_begin()->getType() 1094 ->canLosslesslyBitCastTo(F->getReturnType()) && 1095 "unexpected this return"); 1096 F->addAttribute(1, llvm::Attribute::Returned); 1097 } 1098 1099 // Only a few attributes are set on declarations; these may later be 1100 // overridden by a definition. 1101 1102 setLinkageAndVisibilityForGV(F, FD); 1103 1104 if (const SectionAttr *SA = FD->getAttr<SectionAttr>()) 1105 F->setSection(SA->getName()); 1106 1107 if (FD->isReplaceableGlobalAllocationFunction()) { 1108 // A replaceable global allocation function does not act like a builtin by 1109 // default, only if it is invoked by a new-expression or delete-expression. 1110 F->addAttribute(llvm::AttributeSet::FunctionIndex, 1111 llvm::Attribute::NoBuiltin); 1112 1113 // A sane operator new returns a non-aliasing pointer. 1114 // FIXME: Also add NonNull attribute to the return value 1115 // for the non-nothrow forms? 1116 auto Kind = FD->getDeclName().getCXXOverloadedOperator(); 1117 if (getCodeGenOpts().AssumeSaneOperatorNew && 1118 (Kind == OO_New || Kind == OO_Array_New)) 1119 F->addAttribute(llvm::AttributeSet::ReturnIndex, 1120 llvm::Attribute::NoAlias); 1121 } 1122 1123 if (isa<CXXConstructorDecl>(FD) || isa<CXXDestructorDecl>(FD)) 1124 F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 1125 else if (const auto *MD = dyn_cast<CXXMethodDecl>(FD)) 1126 if (MD->isVirtual()) 1127 F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 1128 1129 // Don't emit entries for function declarations in the cross-DSO mode. This 1130 // is handled with better precision by the receiving DSO. 1131 if (!CodeGenOpts.SanitizeCfiCrossDso) 1132 CreateFunctionTypeMetadata(FD, F); 1133 } 1134 1135 void CodeGenModule::addUsedGlobal(llvm::GlobalValue *GV) { 1136 assert(!GV->isDeclaration() && 1137 "Only globals with definition can force usage."); 1138 LLVMUsed.emplace_back(GV); 1139 } 1140 1141 void CodeGenModule::addCompilerUsedGlobal(llvm::GlobalValue *GV) { 1142 assert(!GV->isDeclaration() && 1143 "Only globals with definition can force usage."); 1144 LLVMCompilerUsed.emplace_back(GV); 1145 } 1146 1147 static void emitUsed(CodeGenModule &CGM, StringRef Name, 1148 std::vector<llvm::WeakVH> &List) { 1149 // Don't create llvm.used if there is no need. 1150 if (List.empty()) 1151 return; 1152 1153 // Convert List to what ConstantArray needs. 1154 SmallVector<llvm::Constant*, 8> UsedArray; 1155 UsedArray.resize(List.size()); 1156 for (unsigned i = 0, e = List.size(); i != e; ++i) { 1157 UsedArray[i] = 1158 llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast( 1159 cast<llvm::Constant>(&*List[i]), CGM.Int8PtrTy); 1160 } 1161 1162 if (UsedArray.empty()) 1163 return; 1164 llvm::ArrayType *ATy = llvm::ArrayType::get(CGM.Int8PtrTy, UsedArray.size()); 1165 1166 auto *GV = new llvm::GlobalVariable( 1167 CGM.getModule(), ATy, false, llvm::GlobalValue::AppendingLinkage, 1168 llvm::ConstantArray::get(ATy, UsedArray), Name); 1169 1170 GV->setSection("llvm.metadata"); 1171 } 1172 1173 void CodeGenModule::emitLLVMUsed() { 1174 emitUsed(*this, "llvm.used", LLVMUsed); 1175 emitUsed(*this, "llvm.compiler.used", LLVMCompilerUsed); 1176 } 1177 1178 void CodeGenModule::AppendLinkerOptions(StringRef Opts) { 1179 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opts); 1180 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 1181 } 1182 1183 void CodeGenModule::AddDetectMismatch(StringRef Name, StringRef Value) { 1184 llvm::SmallString<32> Opt; 1185 getTargetCodeGenInfo().getDetectMismatchOption(Name, Value, Opt); 1186 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt); 1187 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 1188 } 1189 1190 void CodeGenModule::AddDependentLib(StringRef Lib) { 1191 llvm::SmallString<24> Opt; 1192 getTargetCodeGenInfo().getDependentLibraryOption(Lib, Opt); 1193 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt); 1194 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 1195 } 1196 1197 /// \brief Add link options implied by the given module, including modules 1198 /// it depends on, using a postorder walk. 1199 static void addLinkOptionsPostorder(CodeGenModule &CGM, Module *Mod, 1200 SmallVectorImpl<llvm::Metadata *> &Metadata, 1201 llvm::SmallPtrSet<Module *, 16> &Visited) { 1202 // Import this module's parent. 1203 if (Mod->Parent && Visited.insert(Mod->Parent).second) { 1204 addLinkOptionsPostorder(CGM, Mod->Parent, Metadata, Visited); 1205 } 1206 1207 // Import this module's dependencies. 1208 for (unsigned I = Mod->Imports.size(); I > 0; --I) { 1209 if (Visited.insert(Mod->Imports[I - 1]).second) 1210 addLinkOptionsPostorder(CGM, Mod->Imports[I-1], Metadata, Visited); 1211 } 1212 1213 // Add linker options to link against the libraries/frameworks 1214 // described by this module. 1215 llvm::LLVMContext &Context = CGM.getLLVMContext(); 1216 for (unsigned I = Mod->LinkLibraries.size(); I > 0; --I) { 1217 // Link against a framework. Frameworks are currently Darwin only, so we 1218 // don't to ask TargetCodeGenInfo for the spelling of the linker option. 1219 if (Mod->LinkLibraries[I-1].IsFramework) { 1220 llvm::Metadata *Args[2] = { 1221 llvm::MDString::get(Context, "-framework"), 1222 llvm::MDString::get(Context, Mod->LinkLibraries[I - 1].Library)}; 1223 1224 Metadata.push_back(llvm::MDNode::get(Context, Args)); 1225 continue; 1226 } 1227 1228 // Link against a library. 1229 llvm::SmallString<24> Opt; 1230 CGM.getTargetCodeGenInfo().getDependentLibraryOption( 1231 Mod->LinkLibraries[I-1].Library, Opt); 1232 auto *OptString = llvm::MDString::get(Context, Opt); 1233 Metadata.push_back(llvm::MDNode::get(Context, OptString)); 1234 } 1235 } 1236 1237 void CodeGenModule::EmitModuleLinkOptions() { 1238 // Collect the set of all of the modules we want to visit to emit link 1239 // options, which is essentially the imported modules and all of their 1240 // non-explicit child modules. 1241 llvm::SetVector<clang::Module *> LinkModules; 1242 llvm::SmallPtrSet<clang::Module *, 16> Visited; 1243 SmallVector<clang::Module *, 16> Stack; 1244 1245 // Seed the stack with imported modules. 1246 for (Module *M : ImportedModules) { 1247 // Do not add any link flags when an implementation TU of a module imports 1248 // a header of that same module. 1249 if (M->getTopLevelModuleName() == getLangOpts().CurrentModule && 1250 !getLangOpts().isCompilingModule()) 1251 continue; 1252 if (Visited.insert(M).second) 1253 Stack.push_back(M); 1254 } 1255 1256 // Find all of the modules to import, making a little effort to prune 1257 // non-leaf modules. 1258 while (!Stack.empty()) { 1259 clang::Module *Mod = Stack.pop_back_val(); 1260 1261 bool AnyChildren = false; 1262 1263 // Visit the submodules of this module. 1264 for (clang::Module::submodule_iterator Sub = Mod->submodule_begin(), 1265 SubEnd = Mod->submodule_end(); 1266 Sub != SubEnd; ++Sub) { 1267 // Skip explicit children; they need to be explicitly imported to be 1268 // linked against. 1269 if ((*Sub)->IsExplicit) 1270 continue; 1271 1272 if (Visited.insert(*Sub).second) { 1273 Stack.push_back(*Sub); 1274 AnyChildren = true; 1275 } 1276 } 1277 1278 // We didn't find any children, so add this module to the list of 1279 // modules to link against. 1280 if (!AnyChildren) { 1281 LinkModules.insert(Mod); 1282 } 1283 } 1284 1285 // Add link options for all of the imported modules in reverse topological 1286 // order. We don't do anything to try to order import link flags with respect 1287 // to linker options inserted by things like #pragma comment(). 1288 SmallVector<llvm::Metadata *, 16> MetadataArgs; 1289 Visited.clear(); 1290 for (Module *M : LinkModules) 1291 if (Visited.insert(M).second) 1292 addLinkOptionsPostorder(*this, M, MetadataArgs, Visited); 1293 std::reverse(MetadataArgs.begin(), MetadataArgs.end()); 1294 LinkerOptionsMetadata.append(MetadataArgs.begin(), MetadataArgs.end()); 1295 1296 // Add the linker options metadata flag. 1297 getModule().addModuleFlag(llvm::Module::AppendUnique, "Linker Options", 1298 llvm::MDNode::get(getLLVMContext(), 1299 LinkerOptionsMetadata)); 1300 } 1301 1302 void CodeGenModule::EmitDeferred() { 1303 // Emit code for any potentially referenced deferred decls. Since a 1304 // previously unused static decl may become used during the generation of code 1305 // for a static function, iterate until no changes are made. 1306 1307 if (!DeferredVTables.empty()) { 1308 EmitDeferredVTables(); 1309 1310 // Emitting a vtable doesn't directly cause more vtables to 1311 // become deferred, although it can cause functions to be 1312 // emitted that then need those vtables. 1313 assert(DeferredVTables.empty()); 1314 } 1315 1316 // Stop if we're out of both deferred vtables and deferred declarations. 1317 if (DeferredDeclsToEmit.empty()) 1318 return; 1319 1320 // Grab the list of decls to emit. If EmitGlobalDefinition schedules more 1321 // work, it will not interfere with this. 1322 std::vector<DeferredGlobal> CurDeclsToEmit; 1323 CurDeclsToEmit.swap(DeferredDeclsToEmit); 1324 1325 for (DeferredGlobal &G : CurDeclsToEmit) { 1326 GlobalDecl D = G.GD; 1327 G.GV = nullptr; 1328 1329 // We should call GetAddrOfGlobal with IsForDefinition set to true in order 1330 // to get GlobalValue with exactly the type we need, not something that 1331 // might had been created for another decl with the same mangled name but 1332 // different type. 1333 llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>( 1334 GetAddrOfGlobal(D, ForDefinition)); 1335 1336 // In case of different address spaces, we may still get a cast, even with 1337 // IsForDefinition equal to true. Query mangled names table to get 1338 // GlobalValue. 1339 if (!GV) 1340 GV = GetGlobalValue(getMangledName(D)); 1341 1342 // Make sure GetGlobalValue returned non-null. 1343 assert(GV); 1344 1345 // Check to see if we've already emitted this. This is necessary 1346 // for a couple of reasons: first, decls can end up in the 1347 // deferred-decls queue multiple times, and second, decls can end 1348 // up with definitions in unusual ways (e.g. by an extern inline 1349 // function acquiring a strong function redefinition). Just 1350 // ignore these cases. 1351 if (!GV->isDeclaration()) 1352 continue; 1353 1354 // Otherwise, emit the definition and move on to the next one. 1355 EmitGlobalDefinition(D, GV); 1356 1357 // If we found out that we need to emit more decls, do that recursively. 1358 // This has the advantage that the decls are emitted in a DFS and related 1359 // ones are close together, which is convenient for testing. 1360 if (!DeferredVTables.empty() || !DeferredDeclsToEmit.empty()) { 1361 EmitDeferred(); 1362 assert(DeferredVTables.empty() && DeferredDeclsToEmit.empty()); 1363 } 1364 } 1365 } 1366 1367 void CodeGenModule::EmitGlobalAnnotations() { 1368 if (Annotations.empty()) 1369 return; 1370 1371 // Create a new global variable for the ConstantStruct in the Module. 1372 llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get( 1373 Annotations[0]->getType(), Annotations.size()), Annotations); 1374 auto *gv = new llvm::GlobalVariable(getModule(), Array->getType(), false, 1375 llvm::GlobalValue::AppendingLinkage, 1376 Array, "llvm.global.annotations"); 1377 gv->setSection(AnnotationSection); 1378 } 1379 1380 llvm::Constant *CodeGenModule::EmitAnnotationString(StringRef Str) { 1381 llvm::Constant *&AStr = AnnotationStrings[Str]; 1382 if (AStr) 1383 return AStr; 1384 1385 // Not found yet, create a new global. 1386 llvm::Constant *s = llvm::ConstantDataArray::getString(getLLVMContext(), Str); 1387 auto *gv = 1388 new llvm::GlobalVariable(getModule(), s->getType(), true, 1389 llvm::GlobalValue::PrivateLinkage, s, ".str"); 1390 gv->setSection(AnnotationSection); 1391 gv->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 1392 AStr = gv; 1393 return gv; 1394 } 1395 1396 llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) { 1397 SourceManager &SM = getContext().getSourceManager(); 1398 PresumedLoc PLoc = SM.getPresumedLoc(Loc); 1399 if (PLoc.isValid()) 1400 return EmitAnnotationString(PLoc.getFilename()); 1401 return EmitAnnotationString(SM.getBufferName(Loc)); 1402 } 1403 1404 llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) { 1405 SourceManager &SM = getContext().getSourceManager(); 1406 PresumedLoc PLoc = SM.getPresumedLoc(L); 1407 unsigned LineNo = PLoc.isValid() ? PLoc.getLine() : 1408 SM.getExpansionLineNumber(L); 1409 return llvm::ConstantInt::get(Int32Ty, LineNo); 1410 } 1411 1412 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV, 1413 const AnnotateAttr *AA, 1414 SourceLocation L) { 1415 // Get the globals for file name, annotation, and the line number. 1416 llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()), 1417 *UnitGV = EmitAnnotationUnit(L), 1418 *LineNoCst = EmitAnnotationLineNo(L); 1419 1420 // Create the ConstantStruct for the global annotation. 1421 llvm::Constant *Fields[4] = { 1422 llvm::ConstantExpr::getBitCast(GV, Int8PtrTy), 1423 llvm::ConstantExpr::getBitCast(AnnoGV, Int8PtrTy), 1424 llvm::ConstantExpr::getBitCast(UnitGV, Int8PtrTy), 1425 LineNoCst 1426 }; 1427 return llvm::ConstantStruct::getAnon(Fields); 1428 } 1429 1430 void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D, 1431 llvm::GlobalValue *GV) { 1432 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 1433 // Get the struct elements for these annotations. 1434 for (const auto *I : D->specific_attrs<AnnotateAttr>()) 1435 Annotations.push_back(EmitAnnotateAttr(GV, I, D->getLocation())); 1436 } 1437 1438 bool CodeGenModule::isInSanitizerBlacklist(llvm::Function *Fn, 1439 SourceLocation Loc) const { 1440 const auto &SanitizerBL = getContext().getSanitizerBlacklist(); 1441 // Blacklist by function name. 1442 if (SanitizerBL.isBlacklistedFunction(Fn->getName())) 1443 return true; 1444 // Blacklist by location. 1445 if (Loc.isValid()) 1446 return SanitizerBL.isBlacklistedLocation(Loc); 1447 // If location is unknown, this may be a compiler-generated function. Assume 1448 // it's located in the main file. 1449 auto &SM = Context.getSourceManager(); 1450 if (const auto *MainFile = SM.getFileEntryForID(SM.getMainFileID())) { 1451 return SanitizerBL.isBlacklistedFile(MainFile->getName()); 1452 } 1453 return false; 1454 } 1455 1456 bool CodeGenModule::isInSanitizerBlacklist(llvm::GlobalVariable *GV, 1457 SourceLocation Loc, QualType Ty, 1458 StringRef Category) const { 1459 // For now globals can be blacklisted only in ASan and KASan. 1460 if (!LangOpts.Sanitize.hasOneOf( 1461 SanitizerKind::Address | SanitizerKind::KernelAddress)) 1462 return false; 1463 const auto &SanitizerBL = getContext().getSanitizerBlacklist(); 1464 if (SanitizerBL.isBlacklistedGlobal(GV->getName(), Category)) 1465 return true; 1466 if (SanitizerBL.isBlacklistedLocation(Loc, Category)) 1467 return true; 1468 // Check global type. 1469 if (!Ty.isNull()) { 1470 // Drill down the array types: if global variable of a fixed type is 1471 // blacklisted, we also don't instrument arrays of them. 1472 while (auto AT = dyn_cast<ArrayType>(Ty.getTypePtr())) 1473 Ty = AT->getElementType(); 1474 Ty = Ty.getCanonicalType().getUnqualifiedType(); 1475 // We allow to blacklist only record types (classes, structs etc.) 1476 if (Ty->isRecordType()) { 1477 std::string TypeStr = Ty.getAsString(getContext().getPrintingPolicy()); 1478 if (SanitizerBL.isBlacklistedType(TypeStr, Category)) 1479 return true; 1480 } 1481 } 1482 return false; 1483 } 1484 1485 bool CodeGenModule::MustBeEmitted(const ValueDecl *Global) { 1486 // Never defer when EmitAllDecls is specified. 1487 if (LangOpts.EmitAllDecls) 1488 return true; 1489 1490 return getContext().DeclMustBeEmitted(Global); 1491 } 1492 1493 bool CodeGenModule::MayBeEmittedEagerly(const ValueDecl *Global) { 1494 if (const auto *FD = dyn_cast<FunctionDecl>(Global)) 1495 if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation) 1496 // Implicit template instantiations may change linkage if they are later 1497 // explicitly instantiated, so they should not be emitted eagerly. 1498 return false; 1499 if (const auto *VD = dyn_cast<VarDecl>(Global)) 1500 if (Context.getInlineVariableDefinitionKind(VD) == 1501 ASTContext::InlineVariableDefinitionKind::WeakUnknown) 1502 // A definition of an inline constexpr static data member may change 1503 // linkage later if it's redeclared outside the class. 1504 return false; 1505 // If OpenMP is enabled and threadprivates must be generated like TLS, delay 1506 // codegen for global variables, because they may be marked as threadprivate. 1507 if (LangOpts.OpenMP && LangOpts.OpenMPUseTLS && 1508 getContext().getTargetInfo().isTLSSupported() && isa<VarDecl>(Global)) 1509 return false; 1510 1511 return true; 1512 } 1513 1514 ConstantAddress CodeGenModule::GetAddrOfUuidDescriptor( 1515 const CXXUuidofExpr* E) { 1516 // Sema has verified that IIDSource has a __declspec(uuid()), and that its 1517 // well-formed. 1518 StringRef Uuid = E->getUuidStr(); 1519 std::string Name = "_GUID_" + Uuid.lower(); 1520 std::replace(Name.begin(), Name.end(), '-', '_'); 1521 1522 // The UUID descriptor should be pointer aligned. 1523 CharUnits Alignment = CharUnits::fromQuantity(PointerAlignInBytes); 1524 1525 // Look for an existing global. 1526 if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name)) 1527 return ConstantAddress(GV, Alignment); 1528 1529 llvm::Constant *Init = EmitUuidofInitializer(Uuid); 1530 assert(Init && "failed to initialize as constant"); 1531 1532 auto *GV = new llvm::GlobalVariable( 1533 getModule(), Init->getType(), 1534 /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name); 1535 if (supportsCOMDAT()) 1536 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 1537 return ConstantAddress(GV, Alignment); 1538 } 1539 1540 ConstantAddress CodeGenModule::GetWeakRefReference(const ValueDecl *VD) { 1541 const AliasAttr *AA = VD->getAttr<AliasAttr>(); 1542 assert(AA && "No alias?"); 1543 1544 CharUnits Alignment = getContext().getDeclAlign(VD); 1545 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType()); 1546 1547 // See if there is already something with the target's name in the module. 1548 llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee()); 1549 if (Entry) { 1550 unsigned AS = getContext().getTargetAddressSpace(VD->getType()); 1551 auto Ptr = llvm::ConstantExpr::getBitCast(Entry, DeclTy->getPointerTo(AS)); 1552 return ConstantAddress(Ptr, Alignment); 1553 } 1554 1555 llvm::Constant *Aliasee; 1556 if (isa<llvm::FunctionType>(DeclTy)) 1557 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, 1558 GlobalDecl(cast<FunctionDecl>(VD)), 1559 /*ForVTable=*/false); 1560 else 1561 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), 1562 llvm::PointerType::getUnqual(DeclTy), 1563 nullptr); 1564 1565 auto *F = cast<llvm::GlobalValue>(Aliasee); 1566 F->setLinkage(llvm::Function::ExternalWeakLinkage); 1567 WeakRefReferences.insert(F); 1568 1569 return ConstantAddress(Aliasee, Alignment); 1570 } 1571 1572 void CodeGenModule::EmitGlobal(GlobalDecl GD) { 1573 const auto *Global = cast<ValueDecl>(GD.getDecl()); 1574 1575 // Weak references don't produce any output by themselves. 1576 if (Global->hasAttr<WeakRefAttr>()) 1577 return; 1578 1579 // If this is an alias definition (which otherwise looks like a declaration) 1580 // emit it now. 1581 if (Global->hasAttr<AliasAttr>()) 1582 return EmitAliasDefinition(GD); 1583 1584 // IFunc like an alias whose value is resolved at runtime by calling resolver. 1585 if (Global->hasAttr<IFuncAttr>()) 1586 return emitIFuncDefinition(GD); 1587 1588 // If this is CUDA, be selective about which declarations we emit. 1589 if (LangOpts.CUDA) { 1590 if (LangOpts.CUDAIsDevice) { 1591 if (!Global->hasAttr<CUDADeviceAttr>() && 1592 !Global->hasAttr<CUDAGlobalAttr>() && 1593 !Global->hasAttr<CUDAConstantAttr>() && 1594 !Global->hasAttr<CUDASharedAttr>()) 1595 return; 1596 } else { 1597 // We need to emit host-side 'shadows' for all global 1598 // device-side variables because the CUDA runtime needs their 1599 // size and host-side address in order to provide access to 1600 // their device-side incarnations. 1601 1602 // So device-only functions are the only things we skip. 1603 if (isa<FunctionDecl>(Global) && !Global->hasAttr<CUDAHostAttr>() && 1604 Global->hasAttr<CUDADeviceAttr>()) 1605 return; 1606 1607 assert((isa<FunctionDecl>(Global) || isa<VarDecl>(Global)) && 1608 "Expected Variable or Function"); 1609 } 1610 } 1611 1612 if (LangOpts.OpenMP) { 1613 // If this is OpenMP device, check if it is legal to emit this global 1614 // normally. 1615 if (OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(GD)) 1616 return; 1617 if (auto *DRD = dyn_cast<OMPDeclareReductionDecl>(Global)) { 1618 if (MustBeEmitted(Global)) 1619 EmitOMPDeclareReduction(DRD); 1620 return; 1621 } 1622 } 1623 1624 // Ignore declarations, they will be emitted on their first use. 1625 if (const auto *FD = dyn_cast<FunctionDecl>(Global)) { 1626 // Forward declarations are emitted lazily on first use. 1627 if (!FD->doesThisDeclarationHaveABody()) { 1628 if (!FD->doesDeclarationForceExternallyVisibleDefinition()) 1629 return; 1630 1631 StringRef MangledName = getMangledName(GD); 1632 1633 // Compute the function info and LLVM type. 1634 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 1635 llvm::Type *Ty = getTypes().GetFunctionType(FI); 1636 1637 GetOrCreateLLVMFunction(MangledName, Ty, GD, /*ForVTable=*/false, 1638 /*DontDefer=*/false); 1639 return; 1640 } 1641 } else { 1642 const auto *VD = cast<VarDecl>(Global); 1643 assert(VD->isFileVarDecl() && "Cannot emit local var decl as global."); 1644 // We need to emit device-side global CUDA variables even if a 1645 // variable does not have a definition -- we still need to define 1646 // host-side shadow for it. 1647 bool MustEmitForCuda = LangOpts.CUDA && !LangOpts.CUDAIsDevice && 1648 !VD->hasDefinition() && 1649 (VD->hasAttr<CUDAConstantAttr>() || 1650 VD->hasAttr<CUDADeviceAttr>()); 1651 if (!MustEmitForCuda && 1652 VD->isThisDeclarationADefinition() != VarDecl::Definition && 1653 !Context.isMSStaticDataMemberInlineDefinition(VD)) { 1654 // If this declaration may have caused an inline variable definition to 1655 // change linkage, make sure that it's emitted. 1656 if (Context.getInlineVariableDefinitionKind(VD) == 1657 ASTContext::InlineVariableDefinitionKind::Strong) 1658 GetAddrOfGlobalVar(VD); 1659 return; 1660 } 1661 } 1662 1663 // Defer code generation to first use when possible, e.g. if this is an inline 1664 // function. If the global must always be emitted, do it eagerly if possible 1665 // to benefit from cache locality. 1666 if (MustBeEmitted(Global) && MayBeEmittedEagerly(Global)) { 1667 // Emit the definition if it can't be deferred. 1668 EmitGlobalDefinition(GD); 1669 return; 1670 } 1671 1672 // If we're deferring emission of a C++ variable with an 1673 // initializer, remember the order in which it appeared in the file. 1674 if (getLangOpts().CPlusPlus && isa<VarDecl>(Global) && 1675 cast<VarDecl>(Global)->hasInit()) { 1676 DelayedCXXInitPosition[Global] = CXXGlobalInits.size(); 1677 CXXGlobalInits.push_back(nullptr); 1678 } 1679 1680 StringRef MangledName = getMangledName(GD); 1681 if (llvm::GlobalValue *GV = GetGlobalValue(MangledName)) { 1682 // The value has already been used and should therefore be emitted. 1683 addDeferredDeclToEmit(GV, GD); 1684 } else if (MustBeEmitted(Global)) { 1685 // The value must be emitted, but cannot be emitted eagerly. 1686 assert(!MayBeEmittedEagerly(Global)); 1687 addDeferredDeclToEmit(/*GV=*/nullptr, GD); 1688 } else { 1689 // Otherwise, remember that we saw a deferred decl with this name. The 1690 // first use of the mangled name will cause it to move into 1691 // DeferredDeclsToEmit. 1692 DeferredDecls[MangledName] = GD; 1693 } 1694 } 1695 1696 namespace { 1697 struct FunctionIsDirectlyRecursive : 1698 public RecursiveASTVisitor<FunctionIsDirectlyRecursive> { 1699 const StringRef Name; 1700 const Builtin::Context &BI; 1701 bool Result; 1702 FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C) : 1703 Name(N), BI(C), Result(false) { 1704 } 1705 typedef RecursiveASTVisitor<FunctionIsDirectlyRecursive> Base; 1706 1707 bool TraverseCallExpr(CallExpr *E) { 1708 const FunctionDecl *FD = E->getDirectCallee(); 1709 if (!FD) 1710 return true; 1711 AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>(); 1712 if (Attr && Name == Attr->getLabel()) { 1713 Result = true; 1714 return false; 1715 } 1716 unsigned BuiltinID = FD->getBuiltinID(); 1717 if (!BuiltinID || !BI.isLibFunction(BuiltinID)) 1718 return true; 1719 StringRef BuiltinName = BI.getName(BuiltinID); 1720 if (BuiltinName.startswith("__builtin_") && 1721 Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) { 1722 Result = true; 1723 return false; 1724 } 1725 return true; 1726 } 1727 }; 1728 1729 struct DLLImportFunctionVisitor 1730 : public RecursiveASTVisitor<DLLImportFunctionVisitor> { 1731 bool SafeToInline = true; 1732 1733 bool shouldVisitImplicitCode() const { return true; } 1734 1735 bool VisitVarDecl(VarDecl *VD) { 1736 // A thread-local variable cannot be imported. 1737 SafeToInline = !VD->getTLSKind(); 1738 return SafeToInline; 1739 } 1740 1741 // Make sure we're not referencing non-imported vars or functions. 1742 bool VisitDeclRefExpr(DeclRefExpr *E) { 1743 ValueDecl *VD = E->getDecl(); 1744 if (isa<FunctionDecl>(VD)) 1745 SafeToInline = VD->hasAttr<DLLImportAttr>(); 1746 else if (VarDecl *V = dyn_cast<VarDecl>(VD)) 1747 SafeToInline = !V->hasGlobalStorage() || V->hasAttr<DLLImportAttr>(); 1748 return SafeToInline; 1749 } 1750 bool VisitCXXConstructExpr(CXXConstructExpr *E) { 1751 SafeToInline = E->getConstructor()->hasAttr<DLLImportAttr>(); 1752 return SafeToInline; 1753 } 1754 bool VisitCXXMemberCallExpr(CXXMemberCallExpr *E) { 1755 CXXMethodDecl *M = E->getMethodDecl(); 1756 if (!M) { 1757 // Call through a pointer to member function. This is safe to inline. 1758 SafeToInline = true; 1759 } else { 1760 SafeToInline = M->hasAttr<DLLImportAttr>(); 1761 } 1762 return SafeToInline; 1763 } 1764 bool VisitCXXDeleteExpr(CXXDeleteExpr *E) { 1765 SafeToInline = E->getOperatorDelete()->hasAttr<DLLImportAttr>(); 1766 return SafeToInline; 1767 } 1768 bool VisitCXXNewExpr(CXXNewExpr *E) { 1769 SafeToInline = E->getOperatorNew()->hasAttr<DLLImportAttr>(); 1770 return SafeToInline; 1771 } 1772 }; 1773 } 1774 1775 // isTriviallyRecursive - Check if this function calls another 1776 // decl that, because of the asm attribute or the other decl being a builtin, 1777 // ends up pointing to itself. 1778 bool 1779 CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) { 1780 StringRef Name; 1781 if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) { 1782 // asm labels are a special kind of mangling we have to support. 1783 AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>(); 1784 if (!Attr) 1785 return false; 1786 Name = Attr->getLabel(); 1787 } else { 1788 Name = FD->getName(); 1789 } 1790 1791 FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo); 1792 Walker.TraverseFunctionDecl(const_cast<FunctionDecl*>(FD)); 1793 return Walker.Result; 1794 } 1795 1796 // Check if T is a class type with a destructor that's not dllimport. 1797 static bool HasNonDllImportDtor(QualType T) { 1798 if (const auto *RT = T->getBaseElementTypeUnsafe()->getAs<RecordType>()) 1799 if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl())) 1800 if (RD->getDestructor() && !RD->getDestructor()->hasAttr<DLLImportAttr>()) 1801 return true; 1802 1803 return false; 1804 } 1805 1806 bool CodeGenModule::shouldEmitFunction(GlobalDecl GD) { 1807 if (getFunctionLinkage(GD) != llvm::Function::AvailableExternallyLinkage) 1808 return true; 1809 const auto *F = cast<FunctionDecl>(GD.getDecl()); 1810 if (CodeGenOpts.OptimizationLevel == 0 && !F->hasAttr<AlwaysInlineAttr>()) 1811 return false; 1812 1813 if (F->hasAttr<DLLImportAttr>()) { 1814 // Check whether it would be safe to inline this dllimport function. 1815 DLLImportFunctionVisitor Visitor; 1816 Visitor.TraverseFunctionDecl(const_cast<FunctionDecl*>(F)); 1817 if (!Visitor.SafeToInline) 1818 return false; 1819 1820 if (const CXXDestructorDecl *Dtor = dyn_cast<CXXDestructorDecl>(F)) { 1821 // Implicit destructor invocations aren't captured in the AST, so the 1822 // check above can't see them. Check for them manually here. 1823 for (const Decl *Member : Dtor->getParent()->decls()) 1824 if (isa<FieldDecl>(Member)) 1825 if (HasNonDllImportDtor(cast<FieldDecl>(Member)->getType())) 1826 return false; 1827 for (const CXXBaseSpecifier &B : Dtor->getParent()->bases()) 1828 if (HasNonDllImportDtor(B.getType())) 1829 return false; 1830 } 1831 } 1832 1833 // PR9614. Avoid cases where the source code is lying to us. An available 1834 // externally function should have an equivalent function somewhere else, 1835 // but a function that calls itself is clearly not equivalent to the real 1836 // implementation. 1837 // This happens in glibc's btowc and in some configure checks. 1838 return !isTriviallyRecursive(F); 1839 } 1840 1841 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD, llvm::GlobalValue *GV) { 1842 const auto *D = cast<ValueDecl>(GD.getDecl()); 1843 1844 PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(), 1845 Context.getSourceManager(), 1846 "Generating code for declaration"); 1847 1848 if (isa<FunctionDecl>(D)) { 1849 // At -O0, don't generate IR for functions with available_externally 1850 // linkage. 1851 if (!shouldEmitFunction(GD)) 1852 return; 1853 1854 if (const auto *Method = dyn_cast<CXXMethodDecl>(D)) { 1855 // Make sure to emit the definition(s) before we emit the thunks. 1856 // This is necessary for the generation of certain thunks. 1857 if (const auto *CD = dyn_cast<CXXConstructorDecl>(Method)) 1858 ABI->emitCXXStructor(CD, getFromCtorType(GD.getCtorType())); 1859 else if (const auto *DD = dyn_cast<CXXDestructorDecl>(Method)) 1860 ABI->emitCXXStructor(DD, getFromDtorType(GD.getDtorType())); 1861 else 1862 EmitGlobalFunctionDefinition(GD, GV); 1863 1864 if (Method->isVirtual()) 1865 getVTables().EmitThunks(GD); 1866 1867 return; 1868 } 1869 1870 return EmitGlobalFunctionDefinition(GD, GV); 1871 } 1872 1873 if (const auto *VD = dyn_cast<VarDecl>(D)) 1874 return EmitGlobalVarDefinition(VD, !VD->hasDefinition()); 1875 1876 llvm_unreachable("Invalid argument to EmitGlobalDefinition()"); 1877 } 1878 1879 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old, 1880 llvm::Function *NewFn); 1881 1882 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the 1883 /// module, create and return an llvm Function with the specified type. If there 1884 /// is something in the module with the specified name, return it potentially 1885 /// bitcasted to the right type. 1886 /// 1887 /// If D is non-null, it specifies a decl that correspond to this. This is used 1888 /// to set the attributes on the function when it is first created. 1889 llvm::Constant * 1890 CodeGenModule::GetOrCreateLLVMFunction(StringRef MangledName, 1891 llvm::Type *Ty, 1892 GlobalDecl GD, bool ForVTable, 1893 bool DontDefer, bool IsThunk, 1894 llvm::AttributeSet ExtraAttrs, 1895 ForDefinition_t IsForDefinition) { 1896 const Decl *D = GD.getDecl(); 1897 1898 // Lookup the entry, lazily creating it if necessary. 1899 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 1900 if (Entry) { 1901 if (WeakRefReferences.erase(Entry)) { 1902 const FunctionDecl *FD = cast_or_null<FunctionDecl>(D); 1903 if (FD && !FD->hasAttr<WeakAttr>()) 1904 Entry->setLinkage(llvm::Function::ExternalLinkage); 1905 } 1906 1907 // Handle dropped DLL attributes. 1908 if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>()) 1909 Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 1910 1911 // If there are two attempts to define the same mangled name, issue an 1912 // error. 1913 if (IsForDefinition && !Entry->isDeclaration()) { 1914 GlobalDecl OtherGD; 1915 // Check that GD is not yet in DiagnosedConflictingDefinitions is required 1916 // to make sure that we issue an error only once. 1917 if (lookupRepresentativeDecl(MangledName, OtherGD) && 1918 (GD.getCanonicalDecl().getDecl() != 1919 OtherGD.getCanonicalDecl().getDecl()) && 1920 DiagnosedConflictingDefinitions.insert(GD).second) { 1921 getDiags().Report(D->getLocation(), 1922 diag::err_duplicate_mangled_name); 1923 getDiags().Report(OtherGD.getDecl()->getLocation(), 1924 diag::note_previous_definition); 1925 } 1926 } 1927 1928 if ((isa<llvm::Function>(Entry) || isa<llvm::GlobalAlias>(Entry)) && 1929 (Entry->getType()->getElementType() == Ty)) { 1930 return Entry; 1931 } 1932 1933 // Make sure the result is of the correct type. 1934 // (If function is requested for a definition, we always need to create a new 1935 // function, not just return a bitcast.) 1936 if (!IsForDefinition) 1937 return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo()); 1938 } 1939 1940 // This function doesn't have a complete type (for example, the return 1941 // type is an incomplete struct). Use a fake type instead, and make 1942 // sure not to try to set attributes. 1943 bool IsIncompleteFunction = false; 1944 1945 llvm::FunctionType *FTy; 1946 if (isa<llvm::FunctionType>(Ty)) { 1947 FTy = cast<llvm::FunctionType>(Ty); 1948 } else { 1949 FTy = llvm::FunctionType::get(VoidTy, false); 1950 IsIncompleteFunction = true; 1951 } 1952 1953 llvm::Function *F = 1954 llvm::Function::Create(FTy, llvm::Function::ExternalLinkage, 1955 Entry ? StringRef() : MangledName, &getModule()); 1956 1957 // If we already created a function with the same mangled name (but different 1958 // type) before, take its name and add it to the list of functions to be 1959 // replaced with F at the end of CodeGen. 1960 // 1961 // This happens if there is a prototype for a function (e.g. "int f()") and 1962 // then a definition of a different type (e.g. "int f(int x)"). 1963 if (Entry) { 1964 F->takeName(Entry); 1965 1966 // This might be an implementation of a function without a prototype, in 1967 // which case, try to do special replacement of calls which match the new 1968 // prototype. The really key thing here is that we also potentially drop 1969 // arguments from the call site so as to make a direct call, which makes the 1970 // inliner happier and suppresses a number of optimizer warnings (!) about 1971 // dropping arguments. 1972 if (!Entry->use_empty()) { 1973 ReplaceUsesOfNonProtoTypeWithRealFunction(Entry, F); 1974 Entry->removeDeadConstantUsers(); 1975 } 1976 1977 llvm::Constant *BC = llvm::ConstantExpr::getBitCast( 1978 F, Entry->getType()->getElementType()->getPointerTo()); 1979 addGlobalValReplacement(Entry, BC); 1980 } 1981 1982 assert(F->getName() == MangledName && "name was uniqued!"); 1983 if (D) 1984 SetFunctionAttributes(GD, F, IsIncompleteFunction, IsThunk); 1985 if (ExtraAttrs.hasAttributes(llvm::AttributeSet::FunctionIndex)) { 1986 llvm::AttrBuilder B(ExtraAttrs, llvm::AttributeSet::FunctionIndex); 1987 F->addAttributes(llvm::AttributeSet::FunctionIndex, 1988 llvm::AttributeSet::get(VMContext, 1989 llvm::AttributeSet::FunctionIndex, 1990 B)); 1991 } 1992 1993 if (!DontDefer) { 1994 // All MSVC dtors other than the base dtor are linkonce_odr and delegate to 1995 // each other bottoming out with the base dtor. Therefore we emit non-base 1996 // dtors on usage, even if there is no dtor definition in the TU. 1997 if (D && isa<CXXDestructorDecl>(D) && 1998 getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D), 1999 GD.getDtorType())) 2000 addDeferredDeclToEmit(F, GD); 2001 2002 // This is the first use or definition of a mangled name. If there is a 2003 // deferred decl with this name, remember that we need to emit it at the end 2004 // of the file. 2005 auto DDI = DeferredDecls.find(MangledName); 2006 if (DDI != DeferredDecls.end()) { 2007 // Move the potentially referenced deferred decl to the 2008 // DeferredDeclsToEmit list, and remove it from DeferredDecls (since we 2009 // don't need it anymore). 2010 addDeferredDeclToEmit(F, DDI->second); 2011 DeferredDecls.erase(DDI); 2012 2013 // Otherwise, there are cases we have to worry about where we're 2014 // using a declaration for which we must emit a definition but where 2015 // we might not find a top-level definition: 2016 // - member functions defined inline in their classes 2017 // - friend functions defined inline in some class 2018 // - special member functions with implicit definitions 2019 // If we ever change our AST traversal to walk into class methods, 2020 // this will be unnecessary. 2021 // 2022 // We also don't emit a definition for a function if it's going to be an 2023 // entry in a vtable, unless it's already marked as used. 2024 } else if (getLangOpts().CPlusPlus && D) { 2025 // Look for a declaration that's lexically in a record. 2026 for (const auto *FD = cast<FunctionDecl>(D)->getMostRecentDecl(); FD; 2027 FD = FD->getPreviousDecl()) { 2028 if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) { 2029 if (FD->doesThisDeclarationHaveABody()) { 2030 addDeferredDeclToEmit(F, GD.getWithDecl(FD)); 2031 break; 2032 } 2033 } 2034 } 2035 } 2036 } 2037 2038 // Make sure the result is of the requested type. 2039 if (!IsIncompleteFunction) { 2040 assert(F->getType()->getElementType() == Ty); 2041 return F; 2042 } 2043 2044 llvm::Type *PTy = llvm::PointerType::getUnqual(Ty); 2045 return llvm::ConstantExpr::getBitCast(F, PTy); 2046 } 2047 2048 /// GetAddrOfFunction - Return the address of the given function. If Ty is 2049 /// non-null, then this function will use the specified type if it has to 2050 /// create it (this occurs when we see a definition of the function). 2051 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD, 2052 llvm::Type *Ty, 2053 bool ForVTable, 2054 bool DontDefer, 2055 ForDefinition_t IsForDefinition) { 2056 // If there was no specific requested type, just convert it now. 2057 if (!Ty) { 2058 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 2059 auto CanonTy = Context.getCanonicalType(FD->getType()); 2060 Ty = getTypes().ConvertFunctionType(CanonTy, FD); 2061 } 2062 2063 StringRef MangledName = getMangledName(GD); 2064 return GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable, DontDefer, 2065 /*IsThunk=*/false, llvm::AttributeSet(), 2066 IsForDefinition); 2067 } 2068 2069 static const FunctionDecl * 2070 GetRuntimeFunctionDecl(ASTContext &C, StringRef Name) { 2071 TranslationUnitDecl *TUDecl = C.getTranslationUnitDecl(); 2072 DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl); 2073 2074 IdentifierInfo &CII = C.Idents.get(Name); 2075 for (const auto &Result : DC->lookup(&CII)) 2076 if (const auto FD = dyn_cast<FunctionDecl>(Result)) 2077 return FD; 2078 2079 if (!C.getLangOpts().CPlusPlus) 2080 return nullptr; 2081 2082 // Demangle the premangled name from getTerminateFn() 2083 IdentifierInfo &CXXII = 2084 (Name == "_ZSt9terminatev" || Name == "\01?terminate@@YAXXZ") 2085 ? C.Idents.get("terminate") 2086 : C.Idents.get(Name); 2087 2088 for (const auto &N : {"__cxxabiv1", "std"}) { 2089 IdentifierInfo &NS = C.Idents.get(N); 2090 for (const auto &Result : DC->lookup(&NS)) { 2091 NamespaceDecl *ND = dyn_cast<NamespaceDecl>(Result); 2092 if (auto LSD = dyn_cast<LinkageSpecDecl>(Result)) 2093 for (const auto &Result : LSD->lookup(&NS)) 2094 if ((ND = dyn_cast<NamespaceDecl>(Result))) 2095 break; 2096 2097 if (ND) 2098 for (const auto &Result : ND->lookup(&CXXII)) 2099 if (const auto *FD = dyn_cast<FunctionDecl>(Result)) 2100 return FD; 2101 } 2102 } 2103 2104 return nullptr; 2105 } 2106 2107 /// CreateRuntimeFunction - Create a new runtime function with the specified 2108 /// type and name. 2109 llvm::Constant * 2110 CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy, StringRef Name, 2111 llvm::AttributeSet ExtraAttrs, 2112 bool Local) { 2113 llvm::Constant *C = 2114 GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false, 2115 /*DontDefer=*/false, /*IsThunk=*/false, 2116 ExtraAttrs); 2117 2118 if (auto *F = dyn_cast<llvm::Function>(C)) { 2119 if (F->empty()) { 2120 F->setCallingConv(getRuntimeCC()); 2121 2122 if (!Local && getTriple().isOSBinFormatCOFF() && 2123 !getCodeGenOpts().LTOVisibilityPublicStd) { 2124 const FunctionDecl *FD = GetRuntimeFunctionDecl(Context, Name); 2125 if (!FD || FD->hasAttr<DLLImportAttr>()) { 2126 F->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass); 2127 F->setLinkage(llvm::GlobalValue::ExternalLinkage); 2128 } 2129 } 2130 } 2131 } 2132 2133 return C; 2134 } 2135 2136 /// CreateBuiltinFunction - Create a new builtin function with the specified 2137 /// type and name. 2138 llvm::Constant * 2139 CodeGenModule::CreateBuiltinFunction(llvm::FunctionType *FTy, 2140 StringRef Name, 2141 llvm::AttributeSet ExtraAttrs) { 2142 llvm::Constant *C = 2143 GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false, 2144 /*DontDefer=*/false, /*IsThunk=*/false, ExtraAttrs); 2145 if (auto *F = dyn_cast<llvm::Function>(C)) 2146 if (F->empty()) 2147 F->setCallingConv(getBuiltinCC()); 2148 return C; 2149 } 2150 2151 /// isTypeConstant - Determine whether an object of this type can be emitted 2152 /// as a constant. 2153 /// 2154 /// If ExcludeCtor is true, the duration when the object's constructor runs 2155 /// will not be considered. The caller will need to verify that the object is 2156 /// not written to during its construction. 2157 bool CodeGenModule::isTypeConstant(QualType Ty, bool ExcludeCtor) { 2158 if (!Ty.isConstant(Context) && !Ty->isReferenceType()) 2159 return false; 2160 2161 if (Context.getLangOpts().CPlusPlus) { 2162 if (const CXXRecordDecl *Record 2163 = Context.getBaseElementType(Ty)->getAsCXXRecordDecl()) 2164 return ExcludeCtor && !Record->hasMutableFields() && 2165 Record->hasTrivialDestructor(); 2166 } 2167 2168 return true; 2169 } 2170 2171 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module, 2172 /// create and return an llvm GlobalVariable with the specified type. If there 2173 /// is something in the module with the specified name, return it potentially 2174 /// bitcasted to the right type. 2175 /// 2176 /// If D is non-null, it specifies a decl that correspond to this. This is used 2177 /// to set the attributes on the global when it is first created. 2178 /// 2179 /// If IsForDefinition is true, it is guranteed that an actual global with 2180 /// type Ty will be returned, not conversion of a variable with the same 2181 /// mangled name but some other type. 2182 llvm::Constant * 2183 CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName, 2184 llvm::PointerType *Ty, 2185 const VarDecl *D, 2186 ForDefinition_t IsForDefinition) { 2187 // Lookup the entry, lazily creating it if necessary. 2188 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 2189 if (Entry) { 2190 if (WeakRefReferences.erase(Entry)) { 2191 if (D && !D->hasAttr<WeakAttr>()) 2192 Entry->setLinkage(llvm::Function::ExternalLinkage); 2193 } 2194 2195 // Handle dropped DLL attributes. 2196 if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>()) 2197 Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 2198 2199 if (Entry->getType() == Ty) 2200 return Entry; 2201 2202 // If there are two attempts to define the same mangled name, issue an 2203 // error. 2204 if (IsForDefinition && !Entry->isDeclaration()) { 2205 GlobalDecl OtherGD; 2206 const VarDecl *OtherD; 2207 2208 // Check that D is not yet in DiagnosedConflictingDefinitions is required 2209 // to make sure that we issue an error only once. 2210 if (D && lookupRepresentativeDecl(MangledName, OtherGD) && 2211 (D->getCanonicalDecl() != OtherGD.getCanonicalDecl().getDecl()) && 2212 (OtherD = dyn_cast<VarDecl>(OtherGD.getDecl())) && 2213 OtherD->hasInit() && 2214 DiagnosedConflictingDefinitions.insert(D).second) { 2215 getDiags().Report(D->getLocation(), 2216 diag::err_duplicate_mangled_name); 2217 getDiags().Report(OtherGD.getDecl()->getLocation(), 2218 diag::note_previous_definition); 2219 } 2220 } 2221 2222 // Make sure the result is of the correct type. 2223 if (Entry->getType()->getAddressSpace() != Ty->getAddressSpace()) 2224 return llvm::ConstantExpr::getAddrSpaceCast(Entry, Ty); 2225 2226 // (If global is requested for a definition, we always need to create a new 2227 // global, not just return a bitcast.) 2228 if (!IsForDefinition) 2229 return llvm::ConstantExpr::getBitCast(Entry, Ty); 2230 } 2231 2232 unsigned AddrSpace = GetGlobalVarAddressSpace(D, Ty->getAddressSpace()); 2233 auto *GV = new llvm::GlobalVariable( 2234 getModule(), Ty->getElementType(), false, 2235 llvm::GlobalValue::ExternalLinkage, nullptr, MangledName, nullptr, 2236 llvm::GlobalVariable::NotThreadLocal, AddrSpace); 2237 2238 // If we already created a global with the same mangled name (but different 2239 // type) before, take its name and remove it from its parent. 2240 if (Entry) { 2241 GV->takeName(Entry); 2242 2243 if (!Entry->use_empty()) { 2244 llvm::Constant *NewPtrForOldDecl = 2245 llvm::ConstantExpr::getBitCast(GV, Entry->getType()); 2246 Entry->replaceAllUsesWith(NewPtrForOldDecl); 2247 } 2248 2249 Entry->eraseFromParent(); 2250 } 2251 2252 // This is the first use or definition of a mangled name. If there is a 2253 // deferred decl with this name, remember that we need to emit it at the end 2254 // of the file. 2255 auto DDI = DeferredDecls.find(MangledName); 2256 if (DDI != DeferredDecls.end()) { 2257 // Move the potentially referenced deferred decl to the DeferredDeclsToEmit 2258 // list, and remove it from DeferredDecls (since we don't need it anymore). 2259 addDeferredDeclToEmit(GV, DDI->second); 2260 DeferredDecls.erase(DDI); 2261 } 2262 2263 // Handle things which are present even on external declarations. 2264 if (D) { 2265 // FIXME: This code is overly simple and should be merged with other global 2266 // handling. 2267 GV->setConstant(isTypeConstant(D->getType(), false)); 2268 2269 GV->setAlignment(getContext().getDeclAlign(D).getQuantity()); 2270 2271 setLinkageAndVisibilityForGV(GV, D); 2272 2273 if (D->getTLSKind()) { 2274 if (D->getTLSKind() == VarDecl::TLS_Dynamic) 2275 CXXThreadLocals.push_back(D); 2276 setTLSMode(GV, *D); 2277 } 2278 2279 // If required by the ABI, treat declarations of static data members with 2280 // inline initializers as definitions. 2281 if (getContext().isMSStaticDataMemberInlineDefinition(D)) { 2282 EmitGlobalVarDefinition(D); 2283 } 2284 2285 // Handle XCore specific ABI requirements. 2286 if (getTriple().getArch() == llvm::Triple::xcore && 2287 D->getLanguageLinkage() == CLanguageLinkage && 2288 D->getType().isConstant(Context) && 2289 isExternallyVisible(D->getLinkageAndVisibility().getLinkage())) 2290 GV->setSection(".cp.rodata"); 2291 } 2292 2293 if (AddrSpace != Ty->getAddressSpace()) 2294 return llvm::ConstantExpr::getAddrSpaceCast(GV, Ty); 2295 2296 return GV; 2297 } 2298 2299 llvm::Constant * 2300 CodeGenModule::GetAddrOfGlobal(GlobalDecl GD, 2301 ForDefinition_t IsForDefinition) { 2302 const Decl *D = GD.getDecl(); 2303 if (isa<CXXConstructorDecl>(D)) 2304 return getAddrOfCXXStructor(cast<CXXConstructorDecl>(D), 2305 getFromCtorType(GD.getCtorType()), 2306 /*FnInfo=*/nullptr, /*FnType=*/nullptr, 2307 /*DontDefer=*/false, IsForDefinition); 2308 else if (isa<CXXDestructorDecl>(D)) 2309 return getAddrOfCXXStructor(cast<CXXDestructorDecl>(D), 2310 getFromDtorType(GD.getDtorType()), 2311 /*FnInfo=*/nullptr, /*FnType=*/nullptr, 2312 /*DontDefer=*/false, IsForDefinition); 2313 else if (isa<CXXMethodDecl>(D)) { 2314 auto FInfo = &getTypes().arrangeCXXMethodDeclaration( 2315 cast<CXXMethodDecl>(D)); 2316 auto Ty = getTypes().GetFunctionType(*FInfo); 2317 return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false, 2318 IsForDefinition); 2319 } else if (isa<FunctionDecl>(D)) { 2320 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 2321 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 2322 return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false, 2323 IsForDefinition); 2324 } else 2325 return GetAddrOfGlobalVar(cast<VarDecl>(D), /*Ty=*/nullptr, 2326 IsForDefinition); 2327 } 2328 2329 llvm::GlobalVariable * 2330 CodeGenModule::CreateOrReplaceCXXRuntimeVariable(StringRef Name, 2331 llvm::Type *Ty, 2332 llvm::GlobalValue::LinkageTypes Linkage) { 2333 llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name); 2334 llvm::GlobalVariable *OldGV = nullptr; 2335 2336 if (GV) { 2337 // Check if the variable has the right type. 2338 if (GV->getType()->getElementType() == Ty) 2339 return GV; 2340 2341 // Because C++ name mangling, the only way we can end up with an already 2342 // existing global with the same name is if it has been declared extern "C". 2343 assert(GV->isDeclaration() && "Declaration has wrong type!"); 2344 OldGV = GV; 2345 } 2346 2347 // Create a new variable. 2348 GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true, 2349 Linkage, nullptr, Name); 2350 2351 if (OldGV) { 2352 // Replace occurrences of the old variable if needed. 2353 GV->takeName(OldGV); 2354 2355 if (!OldGV->use_empty()) { 2356 llvm::Constant *NewPtrForOldDecl = 2357 llvm::ConstantExpr::getBitCast(GV, OldGV->getType()); 2358 OldGV->replaceAllUsesWith(NewPtrForOldDecl); 2359 } 2360 2361 OldGV->eraseFromParent(); 2362 } 2363 2364 if (supportsCOMDAT() && GV->isWeakForLinker() && 2365 !GV->hasAvailableExternallyLinkage()) 2366 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 2367 2368 return GV; 2369 } 2370 2371 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the 2372 /// given global variable. If Ty is non-null and if the global doesn't exist, 2373 /// then it will be created with the specified type instead of whatever the 2374 /// normal requested type would be. If IsForDefinition is true, it is guranteed 2375 /// that an actual global with type Ty will be returned, not conversion of a 2376 /// variable with the same mangled name but some other type. 2377 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D, 2378 llvm::Type *Ty, 2379 ForDefinition_t IsForDefinition) { 2380 assert(D->hasGlobalStorage() && "Not a global variable"); 2381 QualType ASTTy = D->getType(); 2382 if (!Ty) 2383 Ty = getTypes().ConvertTypeForMem(ASTTy); 2384 2385 llvm::PointerType *PTy = 2386 llvm::PointerType::get(Ty, getContext().getTargetAddressSpace(ASTTy)); 2387 2388 StringRef MangledName = getMangledName(D); 2389 return GetOrCreateLLVMGlobal(MangledName, PTy, D, IsForDefinition); 2390 } 2391 2392 /// CreateRuntimeVariable - Create a new runtime global variable with the 2393 /// specified type and name. 2394 llvm::Constant * 2395 CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty, 2396 StringRef Name) { 2397 return GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), nullptr); 2398 } 2399 2400 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) { 2401 assert(!D->getInit() && "Cannot emit definite definitions here!"); 2402 2403 StringRef MangledName = getMangledName(D); 2404 llvm::GlobalValue *GV = GetGlobalValue(MangledName); 2405 2406 // We already have a definition, not declaration, with the same mangled name. 2407 // Emitting of declaration is not required (and actually overwrites emitted 2408 // definition). 2409 if (GV && !GV->isDeclaration()) 2410 return; 2411 2412 // If we have not seen a reference to this variable yet, place it into the 2413 // deferred declarations table to be emitted if needed later. 2414 if (!MustBeEmitted(D) && !GV) { 2415 DeferredDecls[MangledName] = D; 2416 return; 2417 } 2418 2419 // The tentative definition is the only definition. 2420 EmitGlobalVarDefinition(D); 2421 } 2422 2423 CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const { 2424 return Context.toCharUnitsFromBits( 2425 getDataLayout().getTypeStoreSizeInBits(Ty)); 2426 } 2427 2428 unsigned CodeGenModule::GetGlobalVarAddressSpace(const VarDecl *D, 2429 unsigned AddrSpace) { 2430 if (D && LangOpts.CUDA && LangOpts.CUDAIsDevice) { 2431 if (D->hasAttr<CUDAConstantAttr>()) 2432 AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_constant); 2433 else if (D->hasAttr<CUDASharedAttr>()) 2434 AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_shared); 2435 else 2436 AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_device); 2437 } 2438 2439 return AddrSpace; 2440 } 2441 2442 template<typename SomeDecl> 2443 void CodeGenModule::MaybeHandleStaticInExternC(const SomeDecl *D, 2444 llvm::GlobalValue *GV) { 2445 if (!getLangOpts().CPlusPlus) 2446 return; 2447 2448 // Must have 'used' attribute, or else inline assembly can't rely on 2449 // the name existing. 2450 if (!D->template hasAttr<UsedAttr>()) 2451 return; 2452 2453 // Must have internal linkage and an ordinary name. 2454 if (!D->getIdentifier() || D->getFormalLinkage() != InternalLinkage) 2455 return; 2456 2457 // Must be in an extern "C" context. Entities declared directly within 2458 // a record are not extern "C" even if the record is in such a context. 2459 const SomeDecl *First = D->getFirstDecl(); 2460 if (First->getDeclContext()->isRecord() || !First->isInExternCContext()) 2461 return; 2462 2463 // OK, this is an internal linkage entity inside an extern "C" linkage 2464 // specification. Make a note of that so we can give it the "expected" 2465 // mangled name if nothing else is using that name. 2466 std::pair<StaticExternCMap::iterator, bool> R = 2467 StaticExternCValues.insert(std::make_pair(D->getIdentifier(), GV)); 2468 2469 // If we have multiple internal linkage entities with the same name 2470 // in extern "C" regions, none of them gets that name. 2471 if (!R.second) 2472 R.first->second = nullptr; 2473 } 2474 2475 static bool shouldBeInCOMDAT(CodeGenModule &CGM, const Decl &D) { 2476 if (!CGM.supportsCOMDAT()) 2477 return false; 2478 2479 if (D.hasAttr<SelectAnyAttr>()) 2480 return true; 2481 2482 GVALinkage Linkage; 2483 if (auto *VD = dyn_cast<VarDecl>(&D)) 2484 Linkage = CGM.getContext().GetGVALinkageForVariable(VD); 2485 else 2486 Linkage = CGM.getContext().GetGVALinkageForFunction(cast<FunctionDecl>(&D)); 2487 2488 switch (Linkage) { 2489 case GVA_Internal: 2490 case GVA_AvailableExternally: 2491 case GVA_StrongExternal: 2492 return false; 2493 case GVA_DiscardableODR: 2494 case GVA_StrongODR: 2495 return true; 2496 } 2497 llvm_unreachable("No such linkage"); 2498 } 2499 2500 void CodeGenModule::maybeSetTrivialComdat(const Decl &D, 2501 llvm::GlobalObject &GO) { 2502 if (!shouldBeInCOMDAT(*this, D)) 2503 return; 2504 GO.setComdat(TheModule.getOrInsertComdat(GO.getName())); 2505 } 2506 2507 /// Pass IsTentative as true if you want to create a tentative definition. 2508 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D, 2509 bool IsTentative) { 2510 // OpenCL global variables of sampler type are translated to function calls, 2511 // therefore no need to be translated. 2512 QualType ASTTy = D->getType(); 2513 if (getLangOpts().OpenCL && ASTTy->isSamplerT()) 2514 return; 2515 2516 llvm::Constant *Init = nullptr; 2517 CXXRecordDecl *RD = ASTTy->getBaseElementTypeUnsafe()->getAsCXXRecordDecl(); 2518 bool NeedsGlobalCtor = false; 2519 bool NeedsGlobalDtor = RD && !RD->hasTrivialDestructor(); 2520 2521 const VarDecl *InitDecl; 2522 const Expr *InitExpr = D->getAnyInitializer(InitDecl); 2523 2524 // CUDA E.2.4.1 "__shared__ variables cannot have an initialization 2525 // as part of their declaration." Sema has already checked for 2526 // error cases, so we just need to set Init to UndefValue. 2527 if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice && 2528 D->hasAttr<CUDASharedAttr>()) 2529 Init = llvm::UndefValue::get(getTypes().ConvertType(ASTTy)); 2530 else if (!InitExpr) { 2531 // This is a tentative definition; tentative definitions are 2532 // implicitly initialized with { 0 }. 2533 // 2534 // Note that tentative definitions are only emitted at the end of 2535 // a translation unit, so they should never have incomplete 2536 // type. In addition, EmitTentativeDefinition makes sure that we 2537 // never attempt to emit a tentative definition if a real one 2538 // exists. A use may still exists, however, so we still may need 2539 // to do a RAUW. 2540 assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type"); 2541 Init = EmitNullConstant(D->getType()); 2542 } else { 2543 initializedGlobalDecl = GlobalDecl(D); 2544 Init = EmitConstantInit(*InitDecl); 2545 2546 if (!Init) { 2547 QualType T = InitExpr->getType(); 2548 if (D->getType()->isReferenceType()) 2549 T = D->getType(); 2550 2551 if (getLangOpts().CPlusPlus) { 2552 Init = EmitNullConstant(T); 2553 NeedsGlobalCtor = true; 2554 } else { 2555 ErrorUnsupported(D, "static initializer"); 2556 Init = llvm::UndefValue::get(getTypes().ConvertType(T)); 2557 } 2558 } else { 2559 // We don't need an initializer, so remove the entry for the delayed 2560 // initializer position (just in case this entry was delayed) if we 2561 // also don't need to register a destructor. 2562 if (getLangOpts().CPlusPlus && !NeedsGlobalDtor) 2563 DelayedCXXInitPosition.erase(D); 2564 } 2565 } 2566 2567 llvm::Type* InitType = Init->getType(); 2568 llvm::Constant *Entry = 2569 GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative)); 2570 2571 // Strip off a bitcast if we got one back. 2572 if (auto *CE = dyn_cast<llvm::ConstantExpr>(Entry)) { 2573 assert(CE->getOpcode() == llvm::Instruction::BitCast || 2574 CE->getOpcode() == llvm::Instruction::AddrSpaceCast || 2575 // All zero index gep. 2576 CE->getOpcode() == llvm::Instruction::GetElementPtr); 2577 Entry = CE->getOperand(0); 2578 } 2579 2580 // Entry is now either a Function or GlobalVariable. 2581 auto *GV = dyn_cast<llvm::GlobalVariable>(Entry); 2582 2583 // We have a definition after a declaration with the wrong type. 2584 // We must make a new GlobalVariable* and update everything that used OldGV 2585 // (a declaration or tentative definition) with the new GlobalVariable* 2586 // (which will be a definition). 2587 // 2588 // This happens if there is a prototype for a global (e.g. 2589 // "extern int x[];") and then a definition of a different type (e.g. 2590 // "int x[10];"). This also happens when an initializer has a different type 2591 // from the type of the global (this happens with unions). 2592 if (!GV || 2593 GV->getType()->getElementType() != InitType || 2594 GV->getType()->getAddressSpace() != 2595 GetGlobalVarAddressSpace(D, getContext().getTargetAddressSpace(ASTTy))) { 2596 2597 // Move the old entry aside so that we'll create a new one. 2598 Entry->setName(StringRef()); 2599 2600 // Make a new global with the correct type, this is now guaranteed to work. 2601 GV = cast<llvm::GlobalVariable>( 2602 GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative))); 2603 2604 // Replace all uses of the old global with the new global 2605 llvm::Constant *NewPtrForOldDecl = 2606 llvm::ConstantExpr::getBitCast(GV, Entry->getType()); 2607 Entry->replaceAllUsesWith(NewPtrForOldDecl); 2608 2609 // Erase the old global, since it is no longer used. 2610 cast<llvm::GlobalValue>(Entry)->eraseFromParent(); 2611 } 2612 2613 MaybeHandleStaticInExternC(D, GV); 2614 2615 if (D->hasAttr<AnnotateAttr>()) 2616 AddGlobalAnnotations(D, GV); 2617 2618 // Set the llvm linkage type as appropriate. 2619 llvm::GlobalValue::LinkageTypes Linkage = 2620 getLLVMLinkageVarDefinition(D, GV->isConstant()); 2621 2622 // CUDA B.2.1 "The __device__ qualifier declares a variable that resides on 2623 // the device. [...]" 2624 // CUDA B.2.2 "The __constant__ qualifier, optionally used together with 2625 // __device__, declares a variable that: [...] 2626 // Is accessible from all the threads within the grid and from the host 2627 // through the runtime library (cudaGetSymbolAddress() / cudaGetSymbolSize() 2628 // / cudaMemcpyToSymbol() / cudaMemcpyFromSymbol())." 2629 if (GV && LangOpts.CUDA) { 2630 if (LangOpts.CUDAIsDevice) { 2631 if (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>()) 2632 GV->setExternallyInitialized(true); 2633 } else { 2634 // Host-side shadows of external declarations of device-side 2635 // global variables become internal definitions. These have to 2636 // be internal in order to prevent name conflicts with global 2637 // host variables with the same name in a different TUs. 2638 if (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>()) { 2639 Linkage = llvm::GlobalValue::InternalLinkage; 2640 2641 // Shadow variables and their properties must be registered 2642 // with CUDA runtime. 2643 unsigned Flags = 0; 2644 if (!D->hasDefinition()) 2645 Flags |= CGCUDARuntime::ExternDeviceVar; 2646 if (D->hasAttr<CUDAConstantAttr>()) 2647 Flags |= CGCUDARuntime::ConstantDeviceVar; 2648 getCUDARuntime().registerDeviceVar(*GV, Flags); 2649 } else if (D->hasAttr<CUDASharedAttr>()) 2650 // __shared__ variables are odd. Shadows do get created, but 2651 // they are not registered with the CUDA runtime, so they 2652 // can't really be used to access their device-side 2653 // counterparts. It's not clear yet whether it's nvcc's bug or 2654 // a feature, but we've got to do the same for compatibility. 2655 Linkage = llvm::GlobalValue::InternalLinkage; 2656 } 2657 } 2658 GV->setInitializer(Init); 2659 2660 // If it is safe to mark the global 'constant', do so now. 2661 GV->setConstant(!NeedsGlobalCtor && !NeedsGlobalDtor && 2662 isTypeConstant(D->getType(), true)); 2663 2664 // If it is in a read-only section, mark it 'constant'. 2665 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) { 2666 const ASTContext::SectionInfo &SI = Context.SectionInfos[SA->getName()]; 2667 if ((SI.SectionFlags & ASTContext::PSF_Write) == 0) 2668 GV->setConstant(true); 2669 } 2670 2671 GV->setAlignment(getContext().getDeclAlign(D).getQuantity()); 2672 2673 2674 // On Darwin, if the normal linkage of a C++ thread_local variable is 2675 // LinkOnce or Weak, we keep the normal linkage to prevent multiple 2676 // copies within a linkage unit; otherwise, the backing variable has 2677 // internal linkage and all accesses should just be calls to the 2678 // Itanium-specified entry point, which has the normal linkage of the 2679 // variable. This is to preserve the ability to change the implementation 2680 // behind the scenes. 2681 if (!D->isStaticLocal() && D->getTLSKind() == VarDecl::TLS_Dynamic && 2682 Context.getTargetInfo().getTriple().isOSDarwin() && 2683 !llvm::GlobalVariable::isLinkOnceLinkage(Linkage) && 2684 !llvm::GlobalVariable::isWeakLinkage(Linkage)) 2685 Linkage = llvm::GlobalValue::InternalLinkage; 2686 2687 GV->setLinkage(Linkage); 2688 if (D->hasAttr<DLLImportAttr>()) 2689 GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass); 2690 else if (D->hasAttr<DLLExportAttr>()) 2691 GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass); 2692 else 2693 GV->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass); 2694 2695 if (Linkage == llvm::GlobalVariable::CommonLinkage) { 2696 // common vars aren't constant even if declared const. 2697 GV->setConstant(false); 2698 // Tentative definition of global variables may be initialized with 2699 // non-zero null pointers. In this case they should have weak linkage 2700 // since common linkage must have zero initializer and must not have 2701 // explicit section therefore cannot have non-zero initial value. 2702 if (!GV->getInitializer()->isNullValue()) 2703 GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage); 2704 } 2705 2706 setNonAliasAttributes(D, GV); 2707 2708 if (D->getTLSKind() && !GV->isThreadLocal()) { 2709 if (D->getTLSKind() == VarDecl::TLS_Dynamic) 2710 CXXThreadLocals.push_back(D); 2711 setTLSMode(GV, *D); 2712 } 2713 2714 maybeSetTrivialComdat(*D, *GV); 2715 2716 // Emit the initializer function if necessary. 2717 if (NeedsGlobalCtor || NeedsGlobalDtor) 2718 EmitCXXGlobalVarDeclInitFunc(D, GV, NeedsGlobalCtor); 2719 2720 SanitizerMD->reportGlobalToASan(GV, *D, NeedsGlobalCtor); 2721 2722 // Emit global variable debug information. 2723 if (CGDebugInfo *DI = getModuleDebugInfo()) 2724 if (getCodeGenOpts().getDebugInfo() >= codegenoptions::LimitedDebugInfo) 2725 DI->EmitGlobalVariable(GV, D); 2726 } 2727 2728 static bool isVarDeclStrongDefinition(const ASTContext &Context, 2729 CodeGenModule &CGM, const VarDecl *D, 2730 bool NoCommon) { 2731 // Don't give variables common linkage if -fno-common was specified unless it 2732 // was overridden by a NoCommon attribute. 2733 if ((NoCommon || D->hasAttr<NoCommonAttr>()) && !D->hasAttr<CommonAttr>()) 2734 return true; 2735 2736 // C11 6.9.2/2: 2737 // A declaration of an identifier for an object that has file scope without 2738 // an initializer, and without a storage-class specifier or with the 2739 // storage-class specifier static, constitutes a tentative definition. 2740 if (D->getInit() || D->hasExternalStorage()) 2741 return true; 2742 2743 // A variable cannot be both common and exist in a section. 2744 if (D->hasAttr<SectionAttr>()) 2745 return true; 2746 2747 // Thread local vars aren't considered common linkage. 2748 if (D->getTLSKind()) 2749 return true; 2750 2751 // Tentative definitions marked with WeakImportAttr are true definitions. 2752 if (D->hasAttr<WeakImportAttr>()) 2753 return true; 2754 2755 // A variable cannot be both common and exist in a comdat. 2756 if (shouldBeInCOMDAT(CGM, *D)) 2757 return true; 2758 2759 // Declarations with a required alignment do not have common linkage in MSVC 2760 // mode. 2761 if (Context.getTargetInfo().getCXXABI().isMicrosoft()) { 2762 if (D->hasAttr<AlignedAttr>()) 2763 return true; 2764 QualType VarType = D->getType(); 2765 if (Context.isAlignmentRequired(VarType)) 2766 return true; 2767 2768 if (const auto *RT = VarType->getAs<RecordType>()) { 2769 const RecordDecl *RD = RT->getDecl(); 2770 for (const FieldDecl *FD : RD->fields()) { 2771 if (FD->isBitField()) 2772 continue; 2773 if (FD->hasAttr<AlignedAttr>()) 2774 return true; 2775 if (Context.isAlignmentRequired(FD->getType())) 2776 return true; 2777 } 2778 } 2779 } 2780 2781 return false; 2782 } 2783 2784 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageForDeclarator( 2785 const DeclaratorDecl *D, GVALinkage Linkage, bool IsConstantVariable) { 2786 if (Linkage == GVA_Internal) 2787 return llvm::Function::InternalLinkage; 2788 2789 if (D->hasAttr<WeakAttr>()) { 2790 if (IsConstantVariable) 2791 return llvm::GlobalVariable::WeakODRLinkage; 2792 else 2793 return llvm::GlobalVariable::WeakAnyLinkage; 2794 } 2795 2796 // We are guaranteed to have a strong definition somewhere else, 2797 // so we can use available_externally linkage. 2798 if (Linkage == GVA_AvailableExternally) 2799 return llvm::GlobalValue::AvailableExternallyLinkage; 2800 2801 // Note that Apple's kernel linker doesn't support symbol 2802 // coalescing, so we need to avoid linkonce and weak linkages there. 2803 // Normally, this means we just map to internal, but for explicit 2804 // instantiations we'll map to external. 2805 2806 // In C++, the compiler has to emit a definition in every translation unit 2807 // that references the function. We should use linkonce_odr because 2808 // a) if all references in this translation unit are optimized away, we 2809 // don't need to codegen it. b) if the function persists, it needs to be 2810 // merged with other definitions. c) C++ has the ODR, so we know the 2811 // definition is dependable. 2812 if (Linkage == GVA_DiscardableODR) 2813 return !Context.getLangOpts().AppleKext ? llvm::Function::LinkOnceODRLinkage 2814 : llvm::Function::InternalLinkage; 2815 2816 // An explicit instantiation of a template has weak linkage, since 2817 // explicit instantiations can occur in multiple translation units 2818 // and must all be equivalent. However, we are not allowed to 2819 // throw away these explicit instantiations. 2820 // 2821 // We don't currently support CUDA device code spread out across multiple TUs, 2822 // so say that CUDA templates are either external (for kernels) or internal. 2823 // This lets llvm perform aggressive inter-procedural optimizations. 2824 if (Linkage == GVA_StrongODR) { 2825 if (Context.getLangOpts().AppleKext) 2826 return llvm::Function::ExternalLinkage; 2827 if (Context.getLangOpts().CUDA && Context.getLangOpts().CUDAIsDevice) 2828 return D->hasAttr<CUDAGlobalAttr>() ? llvm::Function::ExternalLinkage 2829 : llvm::Function::InternalLinkage; 2830 return llvm::Function::WeakODRLinkage; 2831 } 2832 2833 // C++ doesn't have tentative definitions and thus cannot have common 2834 // linkage. 2835 if (!getLangOpts().CPlusPlus && isa<VarDecl>(D) && 2836 !isVarDeclStrongDefinition(Context, *this, cast<VarDecl>(D), 2837 CodeGenOpts.NoCommon)) 2838 return llvm::GlobalVariable::CommonLinkage; 2839 2840 // selectany symbols are externally visible, so use weak instead of 2841 // linkonce. MSVC optimizes away references to const selectany globals, so 2842 // all definitions should be the same and ODR linkage should be used. 2843 // http://msdn.microsoft.com/en-us/library/5tkz6s71.aspx 2844 if (D->hasAttr<SelectAnyAttr>()) 2845 return llvm::GlobalVariable::WeakODRLinkage; 2846 2847 // Otherwise, we have strong external linkage. 2848 assert(Linkage == GVA_StrongExternal); 2849 return llvm::GlobalVariable::ExternalLinkage; 2850 } 2851 2852 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageVarDefinition( 2853 const VarDecl *VD, bool IsConstant) { 2854 GVALinkage Linkage = getContext().GetGVALinkageForVariable(VD); 2855 return getLLVMLinkageForDeclarator(VD, Linkage, IsConstant); 2856 } 2857 2858 /// Replace the uses of a function that was declared with a non-proto type. 2859 /// We want to silently drop extra arguments from call sites 2860 static void replaceUsesOfNonProtoConstant(llvm::Constant *old, 2861 llvm::Function *newFn) { 2862 // Fast path. 2863 if (old->use_empty()) return; 2864 2865 llvm::Type *newRetTy = newFn->getReturnType(); 2866 SmallVector<llvm::Value*, 4> newArgs; 2867 SmallVector<llvm::OperandBundleDef, 1> newBundles; 2868 2869 for (llvm::Value::use_iterator ui = old->use_begin(), ue = old->use_end(); 2870 ui != ue; ) { 2871 llvm::Value::use_iterator use = ui++; // Increment before the use is erased. 2872 llvm::User *user = use->getUser(); 2873 2874 // Recognize and replace uses of bitcasts. Most calls to 2875 // unprototyped functions will use bitcasts. 2876 if (auto *bitcast = dyn_cast<llvm::ConstantExpr>(user)) { 2877 if (bitcast->getOpcode() == llvm::Instruction::BitCast) 2878 replaceUsesOfNonProtoConstant(bitcast, newFn); 2879 continue; 2880 } 2881 2882 // Recognize calls to the function. 2883 llvm::CallSite callSite(user); 2884 if (!callSite) continue; 2885 if (!callSite.isCallee(&*use)) continue; 2886 2887 // If the return types don't match exactly, then we can't 2888 // transform this call unless it's dead. 2889 if (callSite->getType() != newRetTy && !callSite->use_empty()) 2890 continue; 2891 2892 // Get the call site's attribute list. 2893 SmallVector<llvm::AttributeSet, 8> newAttrs; 2894 llvm::AttributeSet oldAttrs = callSite.getAttributes(); 2895 2896 // Collect any return attributes from the call. 2897 if (oldAttrs.hasAttributes(llvm::AttributeSet::ReturnIndex)) 2898 newAttrs.push_back( 2899 llvm::AttributeSet::get(newFn->getContext(), 2900 oldAttrs.getRetAttributes())); 2901 2902 // If the function was passed too few arguments, don't transform. 2903 unsigned newNumArgs = newFn->arg_size(); 2904 if (callSite.arg_size() < newNumArgs) continue; 2905 2906 // If extra arguments were passed, we silently drop them. 2907 // If any of the types mismatch, we don't transform. 2908 unsigned argNo = 0; 2909 bool dontTransform = false; 2910 for (llvm::Function::arg_iterator ai = newFn->arg_begin(), 2911 ae = newFn->arg_end(); ai != ae; ++ai, ++argNo) { 2912 if (callSite.getArgument(argNo)->getType() != ai->getType()) { 2913 dontTransform = true; 2914 break; 2915 } 2916 2917 // Add any parameter attributes. 2918 if (oldAttrs.hasAttributes(argNo + 1)) 2919 newAttrs. 2920 push_back(llvm:: 2921 AttributeSet::get(newFn->getContext(), 2922 oldAttrs.getParamAttributes(argNo + 1))); 2923 } 2924 if (dontTransform) 2925 continue; 2926 2927 if (oldAttrs.hasAttributes(llvm::AttributeSet::FunctionIndex)) 2928 newAttrs.push_back(llvm::AttributeSet::get(newFn->getContext(), 2929 oldAttrs.getFnAttributes())); 2930 2931 // Okay, we can transform this. Create the new call instruction and copy 2932 // over the required information. 2933 newArgs.append(callSite.arg_begin(), callSite.arg_begin() + argNo); 2934 2935 // Copy over any operand bundles. 2936 callSite.getOperandBundlesAsDefs(newBundles); 2937 2938 llvm::CallSite newCall; 2939 if (callSite.isCall()) { 2940 newCall = llvm::CallInst::Create(newFn, newArgs, newBundles, "", 2941 callSite.getInstruction()); 2942 } else { 2943 auto *oldInvoke = cast<llvm::InvokeInst>(callSite.getInstruction()); 2944 newCall = llvm::InvokeInst::Create(newFn, 2945 oldInvoke->getNormalDest(), 2946 oldInvoke->getUnwindDest(), 2947 newArgs, newBundles, "", 2948 callSite.getInstruction()); 2949 } 2950 newArgs.clear(); // for the next iteration 2951 2952 if (!newCall->getType()->isVoidTy()) 2953 newCall->takeName(callSite.getInstruction()); 2954 newCall.setAttributes( 2955 llvm::AttributeSet::get(newFn->getContext(), newAttrs)); 2956 newCall.setCallingConv(callSite.getCallingConv()); 2957 2958 // Finally, remove the old call, replacing any uses with the new one. 2959 if (!callSite->use_empty()) 2960 callSite->replaceAllUsesWith(newCall.getInstruction()); 2961 2962 // Copy debug location attached to CI. 2963 if (callSite->getDebugLoc()) 2964 newCall->setDebugLoc(callSite->getDebugLoc()); 2965 2966 callSite->eraseFromParent(); 2967 } 2968 } 2969 2970 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we 2971 /// implement a function with no prototype, e.g. "int foo() {}". If there are 2972 /// existing call uses of the old function in the module, this adjusts them to 2973 /// call the new function directly. 2974 /// 2975 /// This is not just a cleanup: the always_inline pass requires direct calls to 2976 /// functions to be able to inline them. If there is a bitcast in the way, it 2977 /// won't inline them. Instcombine normally deletes these calls, but it isn't 2978 /// run at -O0. 2979 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old, 2980 llvm::Function *NewFn) { 2981 // If we're redefining a global as a function, don't transform it. 2982 if (!isa<llvm::Function>(Old)) return; 2983 2984 replaceUsesOfNonProtoConstant(Old, NewFn); 2985 } 2986 2987 void CodeGenModule::HandleCXXStaticMemberVarInstantiation(VarDecl *VD) { 2988 auto DK = VD->isThisDeclarationADefinition(); 2989 if (DK == VarDecl::Definition && VD->hasAttr<DLLImportAttr>()) 2990 return; 2991 2992 TemplateSpecializationKind TSK = VD->getTemplateSpecializationKind(); 2993 // If we have a definition, this might be a deferred decl. If the 2994 // instantiation is explicit, make sure we emit it at the end. 2995 if (VD->getDefinition() && TSK == TSK_ExplicitInstantiationDefinition) 2996 GetAddrOfGlobalVar(VD); 2997 2998 EmitTopLevelDecl(VD); 2999 } 3000 3001 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD, 3002 llvm::GlobalValue *GV) { 3003 const auto *D = cast<FunctionDecl>(GD.getDecl()); 3004 3005 // Compute the function info and LLVM type. 3006 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 3007 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 3008 3009 // Get or create the prototype for the function. 3010 if (!GV || (GV->getType()->getElementType() != Ty)) 3011 GV = cast<llvm::GlobalValue>(GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, 3012 /*DontDefer=*/true, 3013 ForDefinition)); 3014 3015 // Already emitted. 3016 if (!GV->isDeclaration()) 3017 return; 3018 3019 // We need to set linkage and visibility on the function before 3020 // generating code for it because various parts of IR generation 3021 // want to propagate this information down (e.g. to local static 3022 // declarations). 3023 auto *Fn = cast<llvm::Function>(GV); 3024 setFunctionLinkage(GD, Fn); 3025 setFunctionDLLStorageClass(GD, Fn); 3026 3027 // FIXME: this is redundant with part of setFunctionDefinitionAttributes 3028 setGlobalVisibility(Fn, D); 3029 3030 MaybeHandleStaticInExternC(D, Fn); 3031 3032 maybeSetTrivialComdat(*D, *Fn); 3033 3034 CodeGenFunction(*this).GenerateCode(D, Fn, FI); 3035 3036 setFunctionDefinitionAttributes(D, Fn); 3037 SetLLVMFunctionAttributesForDefinition(D, Fn); 3038 3039 if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>()) 3040 AddGlobalCtor(Fn, CA->getPriority()); 3041 if (const DestructorAttr *DA = D->getAttr<DestructorAttr>()) 3042 AddGlobalDtor(Fn, DA->getPriority()); 3043 if (D->hasAttr<AnnotateAttr>()) 3044 AddGlobalAnnotations(D, Fn); 3045 } 3046 3047 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) { 3048 const auto *D = cast<ValueDecl>(GD.getDecl()); 3049 const AliasAttr *AA = D->getAttr<AliasAttr>(); 3050 assert(AA && "Not an alias?"); 3051 3052 StringRef MangledName = getMangledName(GD); 3053 3054 if (AA->getAliasee() == MangledName) { 3055 Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0; 3056 return; 3057 } 3058 3059 // If there is a definition in the module, then it wins over the alias. 3060 // This is dubious, but allow it to be safe. Just ignore the alias. 3061 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 3062 if (Entry && !Entry->isDeclaration()) 3063 return; 3064 3065 Aliases.push_back(GD); 3066 3067 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType()); 3068 3069 // Create a reference to the named value. This ensures that it is emitted 3070 // if a deferred decl. 3071 llvm::Constant *Aliasee; 3072 if (isa<llvm::FunctionType>(DeclTy)) 3073 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GD, 3074 /*ForVTable=*/false); 3075 else 3076 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), 3077 llvm::PointerType::getUnqual(DeclTy), 3078 /*D=*/nullptr); 3079 3080 // Create the new alias itself, but don't set a name yet. 3081 auto *GA = llvm::GlobalAlias::create( 3082 DeclTy, 0, llvm::Function::ExternalLinkage, "", Aliasee, &getModule()); 3083 3084 if (Entry) { 3085 if (GA->getAliasee() == Entry) { 3086 Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0; 3087 return; 3088 } 3089 3090 assert(Entry->isDeclaration()); 3091 3092 // If there is a declaration in the module, then we had an extern followed 3093 // by the alias, as in: 3094 // extern int test6(); 3095 // ... 3096 // int test6() __attribute__((alias("test7"))); 3097 // 3098 // Remove it and replace uses of it with the alias. 3099 GA->takeName(Entry); 3100 3101 Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA, 3102 Entry->getType())); 3103 Entry->eraseFromParent(); 3104 } else { 3105 GA->setName(MangledName); 3106 } 3107 3108 // Set attributes which are particular to an alias; this is a 3109 // specialization of the attributes which may be set on a global 3110 // variable/function. 3111 if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakRefAttr>() || 3112 D->isWeakImported()) { 3113 GA->setLinkage(llvm::Function::WeakAnyLinkage); 3114 } 3115 3116 if (const auto *VD = dyn_cast<VarDecl>(D)) 3117 if (VD->getTLSKind()) 3118 setTLSMode(GA, *VD); 3119 3120 setAliasAttributes(D, GA); 3121 } 3122 3123 void CodeGenModule::emitIFuncDefinition(GlobalDecl GD) { 3124 const auto *D = cast<ValueDecl>(GD.getDecl()); 3125 const IFuncAttr *IFA = D->getAttr<IFuncAttr>(); 3126 assert(IFA && "Not an ifunc?"); 3127 3128 StringRef MangledName = getMangledName(GD); 3129 3130 if (IFA->getResolver() == MangledName) { 3131 Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1; 3132 return; 3133 } 3134 3135 // Report an error if some definition overrides ifunc. 3136 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 3137 if (Entry && !Entry->isDeclaration()) { 3138 GlobalDecl OtherGD; 3139 if (lookupRepresentativeDecl(MangledName, OtherGD) && 3140 DiagnosedConflictingDefinitions.insert(GD).second) { 3141 Diags.Report(D->getLocation(), diag::err_duplicate_mangled_name); 3142 Diags.Report(OtherGD.getDecl()->getLocation(), 3143 diag::note_previous_definition); 3144 } 3145 return; 3146 } 3147 3148 Aliases.push_back(GD); 3149 3150 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType()); 3151 llvm::Constant *Resolver = 3152 GetOrCreateLLVMFunction(IFA->getResolver(), DeclTy, GD, 3153 /*ForVTable=*/false); 3154 llvm::GlobalIFunc *GIF = 3155 llvm::GlobalIFunc::create(DeclTy, 0, llvm::Function::ExternalLinkage, 3156 "", Resolver, &getModule()); 3157 if (Entry) { 3158 if (GIF->getResolver() == Entry) { 3159 Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1; 3160 return; 3161 } 3162 assert(Entry->isDeclaration()); 3163 3164 // If there is a declaration in the module, then we had an extern followed 3165 // by the ifunc, as in: 3166 // extern int test(); 3167 // ... 3168 // int test() __attribute__((ifunc("resolver"))); 3169 // 3170 // Remove it and replace uses of it with the ifunc. 3171 GIF->takeName(Entry); 3172 3173 Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GIF, 3174 Entry->getType())); 3175 Entry->eraseFromParent(); 3176 } else 3177 GIF->setName(MangledName); 3178 3179 SetCommonAttributes(D, GIF); 3180 } 3181 3182 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID, 3183 ArrayRef<llvm::Type*> Tys) { 3184 return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID, 3185 Tys); 3186 } 3187 3188 static llvm::StringMapEntry<llvm::GlobalVariable *> & 3189 GetConstantCFStringEntry(llvm::StringMap<llvm::GlobalVariable *> &Map, 3190 const StringLiteral *Literal, bool TargetIsLSB, 3191 bool &IsUTF16, unsigned &StringLength) { 3192 StringRef String = Literal->getString(); 3193 unsigned NumBytes = String.size(); 3194 3195 // Check for simple case. 3196 if (!Literal->containsNonAsciiOrNull()) { 3197 StringLength = NumBytes; 3198 return *Map.insert(std::make_pair(String, nullptr)).first; 3199 } 3200 3201 // Otherwise, convert the UTF8 literals into a string of shorts. 3202 IsUTF16 = true; 3203 3204 SmallVector<llvm::UTF16, 128> ToBuf(NumBytes + 1); // +1 for ending nulls. 3205 const llvm::UTF8 *FromPtr = (const llvm::UTF8 *)String.data(); 3206 llvm::UTF16 *ToPtr = &ToBuf[0]; 3207 3208 (void)llvm::ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, &ToPtr, 3209 ToPtr + NumBytes, llvm::strictConversion); 3210 3211 // ConvertUTF8toUTF16 returns the length in ToPtr. 3212 StringLength = ToPtr - &ToBuf[0]; 3213 3214 // Add an explicit null. 3215 *ToPtr = 0; 3216 return *Map.insert(std::make_pair( 3217 StringRef(reinterpret_cast<const char *>(ToBuf.data()), 3218 (StringLength + 1) * 2), 3219 nullptr)).first; 3220 } 3221 3222 ConstantAddress 3223 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) { 3224 unsigned StringLength = 0; 3225 bool isUTF16 = false; 3226 llvm::StringMapEntry<llvm::GlobalVariable *> &Entry = 3227 GetConstantCFStringEntry(CFConstantStringMap, Literal, 3228 getDataLayout().isLittleEndian(), isUTF16, 3229 StringLength); 3230 3231 if (auto *C = Entry.second) 3232 return ConstantAddress(C, CharUnits::fromQuantity(C->getAlignment())); 3233 3234 llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty); 3235 llvm::Constant *Zeros[] = { Zero, Zero }; 3236 3237 // If we don't already have it, get __CFConstantStringClassReference. 3238 if (!CFConstantStringClassRef) { 3239 llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy); 3240 Ty = llvm::ArrayType::get(Ty, 0); 3241 llvm::Constant *GV = 3242 CreateRuntimeVariable(Ty, "__CFConstantStringClassReference"); 3243 3244 if (getTriple().isOSBinFormatCOFF()) { 3245 IdentifierInfo &II = getContext().Idents.get(GV->getName()); 3246 TranslationUnitDecl *TUDecl = getContext().getTranslationUnitDecl(); 3247 DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl); 3248 llvm::GlobalValue *CGV = cast<llvm::GlobalValue>(GV); 3249 3250 const VarDecl *VD = nullptr; 3251 for (const auto &Result : DC->lookup(&II)) 3252 if ((VD = dyn_cast<VarDecl>(Result))) 3253 break; 3254 3255 if (!VD || !VD->hasAttr<DLLExportAttr>()) { 3256 CGV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass); 3257 CGV->setLinkage(llvm::GlobalValue::ExternalLinkage); 3258 } else { 3259 CGV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass); 3260 CGV->setLinkage(llvm::GlobalValue::ExternalLinkage); 3261 } 3262 } 3263 3264 // Decay array -> ptr 3265 CFConstantStringClassRef = 3266 llvm::ConstantExpr::getGetElementPtr(Ty, GV, Zeros); 3267 } 3268 3269 QualType CFTy = getContext().getCFConstantStringType(); 3270 3271 auto *STy = cast<llvm::StructType>(getTypes().ConvertType(CFTy)); 3272 3273 ConstantInitBuilder Builder(*this); 3274 auto Fields = Builder.beginStruct(STy); 3275 3276 // Class pointer. 3277 Fields.add(cast<llvm::ConstantExpr>(CFConstantStringClassRef)); 3278 3279 // Flags. 3280 Fields.addInt(IntTy, isUTF16 ? 0x07d0 : 0x07C8); 3281 3282 // String pointer. 3283 llvm::Constant *C = nullptr; 3284 if (isUTF16) { 3285 auto Arr = llvm::makeArrayRef( 3286 reinterpret_cast<uint16_t *>(const_cast<char *>(Entry.first().data())), 3287 Entry.first().size() / 2); 3288 C = llvm::ConstantDataArray::get(VMContext, Arr); 3289 } else { 3290 C = llvm::ConstantDataArray::getString(VMContext, Entry.first()); 3291 } 3292 3293 // Note: -fwritable-strings doesn't make the backing store strings of 3294 // CFStrings writable. (See <rdar://problem/10657500>) 3295 auto *GV = 3296 new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true, 3297 llvm::GlobalValue::PrivateLinkage, C, ".str"); 3298 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 3299 // Don't enforce the target's minimum global alignment, since the only use 3300 // of the string is via this class initializer. 3301 CharUnits Align = isUTF16 3302 ? getContext().getTypeAlignInChars(getContext().ShortTy) 3303 : getContext().getTypeAlignInChars(getContext().CharTy); 3304 GV->setAlignment(Align.getQuantity()); 3305 3306 // FIXME: We set the section explicitly to avoid a bug in ld64 224.1. 3307 // Without it LLVM can merge the string with a non unnamed_addr one during 3308 // LTO. Doing that changes the section it ends in, which surprises ld64. 3309 if (getTriple().isOSBinFormatMachO()) 3310 GV->setSection(isUTF16 ? "__TEXT,__ustring" 3311 : "__TEXT,__cstring,cstring_literals"); 3312 3313 // String. 3314 llvm::Constant *Str = 3315 llvm::ConstantExpr::getGetElementPtr(GV->getValueType(), GV, Zeros); 3316 3317 if (isUTF16) 3318 // Cast the UTF16 string to the correct type. 3319 Str = llvm::ConstantExpr::getBitCast(Str, Int8PtrTy); 3320 Fields.add(Str); 3321 3322 // String length. 3323 auto Ty = getTypes().ConvertType(getContext().LongTy); 3324 Fields.addInt(cast<llvm::IntegerType>(Ty), StringLength); 3325 3326 CharUnits Alignment = getPointerAlign(); 3327 3328 // The struct. 3329 GV = Fields.finishAndCreateGlobal("_unnamed_cfstring_", Alignment, 3330 /*isConstant=*/false, 3331 llvm::GlobalVariable::PrivateLinkage); 3332 switch (getTriple().getObjectFormat()) { 3333 case llvm::Triple::UnknownObjectFormat: 3334 llvm_unreachable("unknown file format"); 3335 case llvm::Triple::COFF: 3336 case llvm::Triple::ELF: 3337 case llvm::Triple::Wasm: 3338 GV->setSection("cfstring"); 3339 break; 3340 case llvm::Triple::MachO: 3341 GV->setSection("__DATA,__cfstring"); 3342 break; 3343 } 3344 Entry.second = GV; 3345 3346 return ConstantAddress(GV, Alignment); 3347 } 3348 3349 QualType CodeGenModule::getObjCFastEnumerationStateType() { 3350 if (ObjCFastEnumerationStateType.isNull()) { 3351 RecordDecl *D = Context.buildImplicitRecord("__objcFastEnumerationState"); 3352 D->startDefinition(); 3353 3354 QualType FieldTypes[] = { 3355 Context.UnsignedLongTy, 3356 Context.getPointerType(Context.getObjCIdType()), 3357 Context.getPointerType(Context.UnsignedLongTy), 3358 Context.getConstantArrayType(Context.UnsignedLongTy, 3359 llvm::APInt(32, 5), ArrayType::Normal, 0) 3360 }; 3361 3362 for (size_t i = 0; i < 4; ++i) { 3363 FieldDecl *Field = FieldDecl::Create(Context, 3364 D, 3365 SourceLocation(), 3366 SourceLocation(), nullptr, 3367 FieldTypes[i], /*TInfo=*/nullptr, 3368 /*BitWidth=*/nullptr, 3369 /*Mutable=*/false, 3370 ICIS_NoInit); 3371 Field->setAccess(AS_public); 3372 D->addDecl(Field); 3373 } 3374 3375 D->completeDefinition(); 3376 ObjCFastEnumerationStateType = Context.getTagDeclType(D); 3377 } 3378 3379 return ObjCFastEnumerationStateType; 3380 } 3381 3382 llvm::Constant * 3383 CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) { 3384 assert(!E->getType()->isPointerType() && "Strings are always arrays"); 3385 3386 // Don't emit it as the address of the string, emit the string data itself 3387 // as an inline array. 3388 if (E->getCharByteWidth() == 1) { 3389 SmallString<64> Str(E->getString()); 3390 3391 // Resize the string to the right size, which is indicated by its type. 3392 const ConstantArrayType *CAT = Context.getAsConstantArrayType(E->getType()); 3393 Str.resize(CAT->getSize().getZExtValue()); 3394 return llvm::ConstantDataArray::getString(VMContext, Str, false); 3395 } 3396 3397 auto *AType = cast<llvm::ArrayType>(getTypes().ConvertType(E->getType())); 3398 llvm::Type *ElemTy = AType->getElementType(); 3399 unsigned NumElements = AType->getNumElements(); 3400 3401 // Wide strings have either 2-byte or 4-byte elements. 3402 if (ElemTy->getPrimitiveSizeInBits() == 16) { 3403 SmallVector<uint16_t, 32> Elements; 3404 Elements.reserve(NumElements); 3405 3406 for(unsigned i = 0, e = E->getLength(); i != e; ++i) 3407 Elements.push_back(E->getCodeUnit(i)); 3408 Elements.resize(NumElements); 3409 return llvm::ConstantDataArray::get(VMContext, Elements); 3410 } 3411 3412 assert(ElemTy->getPrimitiveSizeInBits() == 32); 3413 SmallVector<uint32_t, 32> Elements; 3414 Elements.reserve(NumElements); 3415 3416 for(unsigned i = 0, e = E->getLength(); i != e; ++i) 3417 Elements.push_back(E->getCodeUnit(i)); 3418 Elements.resize(NumElements); 3419 return llvm::ConstantDataArray::get(VMContext, Elements); 3420 } 3421 3422 static llvm::GlobalVariable * 3423 GenerateStringLiteral(llvm::Constant *C, llvm::GlobalValue::LinkageTypes LT, 3424 CodeGenModule &CGM, StringRef GlobalName, 3425 CharUnits Alignment) { 3426 // OpenCL v1.2 s6.5.3: a string literal is in the constant address space. 3427 unsigned AddrSpace = 0; 3428 if (CGM.getLangOpts().OpenCL) 3429 AddrSpace = CGM.getContext().getTargetAddressSpace(LangAS::opencl_constant); 3430 3431 llvm::Module &M = CGM.getModule(); 3432 // Create a global variable for this string 3433 auto *GV = new llvm::GlobalVariable( 3434 M, C->getType(), !CGM.getLangOpts().WritableStrings, LT, C, GlobalName, 3435 nullptr, llvm::GlobalVariable::NotThreadLocal, AddrSpace); 3436 GV->setAlignment(Alignment.getQuantity()); 3437 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 3438 if (GV->isWeakForLinker()) { 3439 assert(CGM.supportsCOMDAT() && "Only COFF uses weak string literals"); 3440 GV->setComdat(M.getOrInsertComdat(GV->getName())); 3441 } 3442 3443 return GV; 3444 } 3445 3446 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a 3447 /// constant array for the given string literal. 3448 ConstantAddress 3449 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S, 3450 StringRef Name) { 3451 CharUnits Alignment = getContext().getAlignOfGlobalVarInChars(S->getType()); 3452 3453 llvm::Constant *C = GetConstantArrayFromStringLiteral(S); 3454 llvm::GlobalVariable **Entry = nullptr; 3455 if (!LangOpts.WritableStrings) { 3456 Entry = &ConstantStringMap[C]; 3457 if (auto GV = *Entry) { 3458 if (Alignment.getQuantity() > GV->getAlignment()) 3459 GV->setAlignment(Alignment.getQuantity()); 3460 return ConstantAddress(GV, Alignment); 3461 } 3462 } 3463 3464 SmallString<256> MangledNameBuffer; 3465 StringRef GlobalVariableName; 3466 llvm::GlobalValue::LinkageTypes LT; 3467 3468 // Mangle the string literal if the ABI allows for it. However, we cannot 3469 // do this if we are compiling with ASan or -fwritable-strings because they 3470 // rely on strings having normal linkage. 3471 if (!LangOpts.WritableStrings && 3472 !LangOpts.Sanitize.has(SanitizerKind::Address) && 3473 getCXXABI().getMangleContext().shouldMangleStringLiteral(S)) { 3474 llvm::raw_svector_ostream Out(MangledNameBuffer); 3475 getCXXABI().getMangleContext().mangleStringLiteral(S, Out); 3476 3477 LT = llvm::GlobalValue::LinkOnceODRLinkage; 3478 GlobalVariableName = MangledNameBuffer; 3479 } else { 3480 LT = llvm::GlobalValue::PrivateLinkage; 3481 GlobalVariableName = Name; 3482 } 3483 3484 auto GV = GenerateStringLiteral(C, LT, *this, GlobalVariableName, Alignment); 3485 if (Entry) 3486 *Entry = GV; 3487 3488 SanitizerMD->reportGlobalToASan(GV, S->getStrTokenLoc(0), "<string literal>", 3489 QualType()); 3490 return ConstantAddress(GV, Alignment); 3491 } 3492 3493 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant 3494 /// array for the given ObjCEncodeExpr node. 3495 ConstantAddress 3496 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) { 3497 std::string Str; 3498 getContext().getObjCEncodingForType(E->getEncodedType(), Str); 3499 3500 return GetAddrOfConstantCString(Str); 3501 } 3502 3503 /// GetAddrOfConstantCString - Returns a pointer to a character array containing 3504 /// the literal and a terminating '\0' character. 3505 /// The result has pointer to array type. 3506 ConstantAddress CodeGenModule::GetAddrOfConstantCString( 3507 const std::string &Str, const char *GlobalName) { 3508 StringRef StrWithNull(Str.c_str(), Str.size() + 1); 3509 CharUnits Alignment = 3510 getContext().getAlignOfGlobalVarInChars(getContext().CharTy); 3511 3512 llvm::Constant *C = 3513 llvm::ConstantDataArray::getString(getLLVMContext(), StrWithNull, false); 3514 3515 // Don't share any string literals if strings aren't constant. 3516 llvm::GlobalVariable **Entry = nullptr; 3517 if (!LangOpts.WritableStrings) { 3518 Entry = &ConstantStringMap[C]; 3519 if (auto GV = *Entry) { 3520 if (Alignment.getQuantity() > GV->getAlignment()) 3521 GV->setAlignment(Alignment.getQuantity()); 3522 return ConstantAddress(GV, Alignment); 3523 } 3524 } 3525 3526 // Get the default prefix if a name wasn't specified. 3527 if (!GlobalName) 3528 GlobalName = ".str"; 3529 // Create a global variable for this. 3530 auto GV = GenerateStringLiteral(C, llvm::GlobalValue::PrivateLinkage, *this, 3531 GlobalName, Alignment); 3532 if (Entry) 3533 *Entry = GV; 3534 return ConstantAddress(GV, Alignment); 3535 } 3536 3537 ConstantAddress CodeGenModule::GetAddrOfGlobalTemporary( 3538 const MaterializeTemporaryExpr *E, const Expr *Init) { 3539 assert((E->getStorageDuration() == SD_Static || 3540 E->getStorageDuration() == SD_Thread) && "not a global temporary"); 3541 const auto *VD = cast<VarDecl>(E->getExtendingDecl()); 3542 3543 // If we're not materializing a subobject of the temporary, keep the 3544 // cv-qualifiers from the type of the MaterializeTemporaryExpr. 3545 QualType MaterializedType = Init->getType(); 3546 if (Init == E->GetTemporaryExpr()) 3547 MaterializedType = E->getType(); 3548 3549 CharUnits Align = getContext().getTypeAlignInChars(MaterializedType); 3550 3551 if (llvm::Constant *Slot = MaterializedGlobalTemporaryMap[E]) 3552 return ConstantAddress(Slot, Align); 3553 3554 // FIXME: If an externally-visible declaration extends multiple temporaries, 3555 // we need to give each temporary the same name in every translation unit (and 3556 // we also need to make the temporaries externally-visible). 3557 SmallString<256> Name; 3558 llvm::raw_svector_ostream Out(Name); 3559 getCXXABI().getMangleContext().mangleReferenceTemporary( 3560 VD, E->getManglingNumber(), Out); 3561 3562 APValue *Value = nullptr; 3563 if (E->getStorageDuration() == SD_Static) { 3564 // We might have a cached constant initializer for this temporary. Note 3565 // that this might have a different value from the value computed by 3566 // evaluating the initializer if the surrounding constant expression 3567 // modifies the temporary. 3568 Value = getContext().getMaterializedTemporaryValue(E, false); 3569 if (Value && Value->isUninit()) 3570 Value = nullptr; 3571 } 3572 3573 // Try evaluating it now, it might have a constant initializer. 3574 Expr::EvalResult EvalResult; 3575 if (!Value && Init->EvaluateAsRValue(EvalResult, getContext()) && 3576 !EvalResult.hasSideEffects()) 3577 Value = &EvalResult.Val; 3578 3579 llvm::Constant *InitialValue = nullptr; 3580 bool Constant = false; 3581 llvm::Type *Type; 3582 if (Value) { 3583 // The temporary has a constant initializer, use it. 3584 InitialValue = EmitConstantValue(*Value, MaterializedType, nullptr); 3585 Constant = isTypeConstant(MaterializedType, /*ExcludeCtor*/Value); 3586 Type = InitialValue->getType(); 3587 } else { 3588 // No initializer, the initialization will be provided when we 3589 // initialize the declaration which performed lifetime extension. 3590 Type = getTypes().ConvertTypeForMem(MaterializedType); 3591 } 3592 3593 // Create a global variable for this lifetime-extended temporary. 3594 llvm::GlobalValue::LinkageTypes Linkage = 3595 getLLVMLinkageVarDefinition(VD, Constant); 3596 if (Linkage == llvm::GlobalVariable::ExternalLinkage) { 3597 const VarDecl *InitVD; 3598 if (VD->isStaticDataMember() && VD->getAnyInitializer(InitVD) && 3599 isa<CXXRecordDecl>(InitVD->getLexicalDeclContext())) { 3600 // Temporaries defined inside a class get linkonce_odr linkage because the 3601 // class can be defined in multipe translation units. 3602 Linkage = llvm::GlobalVariable::LinkOnceODRLinkage; 3603 } else { 3604 // There is no need for this temporary to have external linkage if the 3605 // VarDecl has external linkage. 3606 Linkage = llvm::GlobalVariable::InternalLinkage; 3607 } 3608 } 3609 unsigned AddrSpace = GetGlobalVarAddressSpace( 3610 VD, getContext().getTargetAddressSpace(MaterializedType)); 3611 auto *GV = new llvm::GlobalVariable( 3612 getModule(), Type, Constant, Linkage, InitialValue, Name.c_str(), 3613 /*InsertBefore=*/nullptr, llvm::GlobalVariable::NotThreadLocal, 3614 AddrSpace); 3615 setGlobalVisibility(GV, VD); 3616 GV->setAlignment(Align.getQuantity()); 3617 if (supportsCOMDAT() && GV->isWeakForLinker()) 3618 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 3619 if (VD->getTLSKind()) 3620 setTLSMode(GV, *VD); 3621 MaterializedGlobalTemporaryMap[E] = GV; 3622 return ConstantAddress(GV, Align); 3623 } 3624 3625 /// EmitObjCPropertyImplementations - Emit information for synthesized 3626 /// properties for an implementation. 3627 void CodeGenModule::EmitObjCPropertyImplementations(const 3628 ObjCImplementationDecl *D) { 3629 for (const auto *PID : D->property_impls()) { 3630 // Dynamic is just for type-checking. 3631 if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) { 3632 ObjCPropertyDecl *PD = PID->getPropertyDecl(); 3633 3634 // Determine which methods need to be implemented, some may have 3635 // been overridden. Note that ::isPropertyAccessor is not the method 3636 // we want, that just indicates if the decl came from a 3637 // property. What we want to know is if the method is defined in 3638 // this implementation. 3639 if (!D->getInstanceMethod(PD->getGetterName())) 3640 CodeGenFunction(*this).GenerateObjCGetter( 3641 const_cast<ObjCImplementationDecl *>(D), PID); 3642 if (!PD->isReadOnly() && 3643 !D->getInstanceMethod(PD->getSetterName())) 3644 CodeGenFunction(*this).GenerateObjCSetter( 3645 const_cast<ObjCImplementationDecl *>(D), PID); 3646 } 3647 } 3648 } 3649 3650 static bool needsDestructMethod(ObjCImplementationDecl *impl) { 3651 const ObjCInterfaceDecl *iface = impl->getClassInterface(); 3652 for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin(); 3653 ivar; ivar = ivar->getNextIvar()) 3654 if (ivar->getType().isDestructedType()) 3655 return true; 3656 3657 return false; 3658 } 3659 3660 static bool AllTrivialInitializers(CodeGenModule &CGM, 3661 ObjCImplementationDecl *D) { 3662 CodeGenFunction CGF(CGM); 3663 for (ObjCImplementationDecl::init_iterator B = D->init_begin(), 3664 E = D->init_end(); B != E; ++B) { 3665 CXXCtorInitializer *CtorInitExp = *B; 3666 Expr *Init = CtorInitExp->getInit(); 3667 if (!CGF.isTrivialInitializer(Init)) 3668 return false; 3669 } 3670 return true; 3671 } 3672 3673 /// EmitObjCIvarInitializations - Emit information for ivar initialization 3674 /// for an implementation. 3675 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) { 3676 // We might need a .cxx_destruct even if we don't have any ivar initializers. 3677 if (needsDestructMethod(D)) { 3678 IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct"); 3679 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 3680 ObjCMethodDecl *DTORMethod = 3681 ObjCMethodDecl::Create(getContext(), D->getLocation(), D->getLocation(), 3682 cxxSelector, getContext().VoidTy, nullptr, D, 3683 /*isInstance=*/true, /*isVariadic=*/false, 3684 /*isPropertyAccessor=*/true, /*isImplicitlyDeclared=*/true, 3685 /*isDefined=*/false, ObjCMethodDecl::Required); 3686 D->addInstanceMethod(DTORMethod); 3687 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false); 3688 D->setHasDestructors(true); 3689 } 3690 3691 // If the implementation doesn't have any ivar initializers, we don't need 3692 // a .cxx_construct. 3693 if (D->getNumIvarInitializers() == 0 || 3694 AllTrivialInitializers(*this, D)) 3695 return; 3696 3697 IdentifierInfo *II = &getContext().Idents.get(".cxx_construct"); 3698 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 3699 // The constructor returns 'self'. 3700 ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(getContext(), 3701 D->getLocation(), 3702 D->getLocation(), 3703 cxxSelector, 3704 getContext().getObjCIdType(), 3705 nullptr, D, /*isInstance=*/true, 3706 /*isVariadic=*/false, 3707 /*isPropertyAccessor=*/true, 3708 /*isImplicitlyDeclared=*/true, 3709 /*isDefined=*/false, 3710 ObjCMethodDecl::Required); 3711 D->addInstanceMethod(CTORMethod); 3712 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true); 3713 D->setHasNonZeroConstructors(true); 3714 } 3715 3716 // EmitLinkageSpec - Emit all declarations in a linkage spec. 3717 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) { 3718 if (LSD->getLanguage() != LinkageSpecDecl::lang_c && 3719 LSD->getLanguage() != LinkageSpecDecl::lang_cxx) { 3720 ErrorUnsupported(LSD, "linkage spec"); 3721 return; 3722 } 3723 3724 EmitDeclContext(LSD); 3725 } 3726 3727 void CodeGenModule::EmitDeclContext(const DeclContext *DC) { 3728 for (auto *I : DC->decls()) { 3729 // Unlike other DeclContexts, the contents of an ObjCImplDecl at TU scope 3730 // are themselves considered "top-level", so EmitTopLevelDecl on an 3731 // ObjCImplDecl does not recursively visit them. We need to do that in 3732 // case they're nested inside another construct (LinkageSpecDecl / 3733 // ExportDecl) that does stop them from being considered "top-level". 3734 if (auto *OID = dyn_cast<ObjCImplDecl>(I)) { 3735 for (auto *M : OID->methods()) 3736 EmitTopLevelDecl(M); 3737 } 3738 3739 EmitTopLevelDecl(I); 3740 } 3741 } 3742 3743 /// EmitTopLevelDecl - Emit code for a single top level declaration. 3744 void CodeGenModule::EmitTopLevelDecl(Decl *D) { 3745 // Ignore dependent declarations. 3746 if (D->getDeclContext() && D->getDeclContext()->isDependentContext()) 3747 return; 3748 3749 switch (D->getKind()) { 3750 case Decl::CXXConversion: 3751 case Decl::CXXMethod: 3752 case Decl::Function: 3753 // Skip function templates 3754 if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() || 3755 cast<FunctionDecl>(D)->isLateTemplateParsed()) 3756 return; 3757 3758 EmitGlobal(cast<FunctionDecl>(D)); 3759 // Always provide some coverage mapping 3760 // even for the functions that aren't emitted. 3761 AddDeferredUnusedCoverageMapping(D); 3762 break; 3763 3764 case Decl::Var: 3765 case Decl::Decomposition: 3766 // Skip variable templates 3767 if (cast<VarDecl>(D)->getDescribedVarTemplate()) 3768 return; 3769 case Decl::VarTemplateSpecialization: 3770 EmitGlobal(cast<VarDecl>(D)); 3771 if (auto *DD = dyn_cast<DecompositionDecl>(D)) 3772 for (auto *B : DD->bindings()) 3773 if (auto *HD = B->getHoldingVar()) 3774 EmitGlobal(HD); 3775 break; 3776 3777 // Indirect fields from global anonymous structs and unions can be 3778 // ignored; only the actual variable requires IR gen support. 3779 case Decl::IndirectField: 3780 break; 3781 3782 // C++ Decls 3783 case Decl::Namespace: 3784 EmitDeclContext(cast<NamespaceDecl>(D)); 3785 break; 3786 case Decl::CXXRecord: 3787 // Emit any static data members, they may be definitions. 3788 for (auto *I : cast<CXXRecordDecl>(D)->decls()) 3789 if (isa<VarDecl>(I) || isa<CXXRecordDecl>(I)) 3790 EmitTopLevelDecl(I); 3791 break; 3792 // No code generation needed. 3793 case Decl::UsingShadow: 3794 case Decl::ClassTemplate: 3795 case Decl::VarTemplate: 3796 case Decl::VarTemplatePartialSpecialization: 3797 case Decl::FunctionTemplate: 3798 case Decl::TypeAliasTemplate: 3799 case Decl::Block: 3800 case Decl::Empty: 3801 break; 3802 case Decl::Using: // using X; [C++] 3803 if (CGDebugInfo *DI = getModuleDebugInfo()) 3804 DI->EmitUsingDecl(cast<UsingDecl>(*D)); 3805 return; 3806 case Decl::NamespaceAlias: 3807 if (CGDebugInfo *DI = getModuleDebugInfo()) 3808 DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(*D)); 3809 return; 3810 case Decl::UsingDirective: // using namespace X; [C++] 3811 if (CGDebugInfo *DI = getModuleDebugInfo()) 3812 DI->EmitUsingDirective(cast<UsingDirectiveDecl>(*D)); 3813 return; 3814 case Decl::CXXConstructor: 3815 // Skip function templates 3816 if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() || 3817 cast<FunctionDecl>(D)->isLateTemplateParsed()) 3818 return; 3819 3820 getCXXABI().EmitCXXConstructors(cast<CXXConstructorDecl>(D)); 3821 break; 3822 case Decl::CXXDestructor: 3823 if (cast<FunctionDecl>(D)->isLateTemplateParsed()) 3824 return; 3825 getCXXABI().EmitCXXDestructors(cast<CXXDestructorDecl>(D)); 3826 break; 3827 3828 case Decl::StaticAssert: 3829 // Nothing to do. 3830 break; 3831 3832 // Objective-C Decls 3833 3834 // Forward declarations, no (immediate) code generation. 3835 case Decl::ObjCInterface: 3836 case Decl::ObjCCategory: 3837 break; 3838 3839 case Decl::ObjCProtocol: { 3840 auto *Proto = cast<ObjCProtocolDecl>(D); 3841 if (Proto->isThisDeclarationADefinition()) 3842 ObjCRuntime->GenerateProtocol(Proto); 3843 break; 3844 } 3845 3846 case Decl::ObjCCategoryImpl: 3847 // Categories have properties but don't support synthesize so we 3848 // can ignore them here. 3849 ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D)); 3850 break; 3851 3852 case Decl::ObjCImplementation: { 3853 auto *OMD = cast<ObjCImplementationDecl>(D); 3854 EmitObjCPropertyImplementations(OMD); 3855 EmitObjCIvarInitializations(OMD); 3856 ObjCRuntime->GenerateClass(OMD); 3857 // Emit global variable debug information. 3858 if (CGDebugInfo *DI = getModuleDebugInfo()) 3859 if (getCodeGenOpts().getDebugInfo() >= codegenoptions::LimitedDebugInfo) 3860 DI->getOrCreateInterfaceType(getContext().getObjCInterfaceType( 3861 OMD->getClassInterface()), OMD->getLocation()); 3862 break; 3863 } 3864 case Decl::ObjCMethod: { 3865 auto *OMD = cast<ObjCMethodDecl>(D); 3866 // If this is not a prototype, emit the body. 3867 if (OMD->getBody()) 3868 CodeGenFunction(*this).GenerateObjCMethod(OMD); 3869 break; 3870 } 3871 case Decl::ObjCCompatibleAlias: 3872 ObjCRuntime->RegisterAlias(cast<ObjCCompatibleAliasDecl>(D)); 3873 break; 3874 3875 case Decl::PragmaComment: { 3876 const auto *PCD = cast<PragmaCommentDecl>(D); 3877 switch (PCD->getCommentKind()) { 3878 case PCK_Unknown: 3879 llvm_unreachable("unexpected pragma comment kind"); 3880 case PCK_Linker: 3881 AppendLinkerOptions(PCD->getArg()); 3882 break; 3883 case PCK_Lib: 3884 AddDependentLib(PCD->getArg()); 3885 break; 3886 case PCK_Compiler: 3887 case PCK_ExeStr: 3888 case PCK_User: 3889 break; // We ignore all of these. 3890 } 3891 break; 3892 } 3893 3894 case Decl::PragmaDetectMismatch: { 3895 const auto *PDMD = cast<PragmaDetectMismatchDecl>(D); 3896 AddDetectMismatch(PDMD->getName(), PDMD->getValue()); 3897 break; 3898 } 3899 3900 case Decl::LinkageSpec: 3901 EmitLinkageSpec(cast<LinkageSpecDecl>(D)); 3902 break; 3903 3904 case Decl::FileScopeAsm: { 3905 // File-scope asm is ignored during device-side CUDA compilation. 3906 if (LangOpts.CUDA && LangOpts.CUDAIsDevice) 3907 break; 3908 // File-scope asm is ignored during device-side OpenMP compilation. 3909 if (LangOpts.OpenMPIsDevice) 3910 break; 3911 auto *AD = cast<FileScopeAsmDecl>(D); 3912 getModule().appendModuleInlineAsm(AD->getAsmString()->getString()); 3913 break; 3914 } 3915 3916 case Decl::Import: { 3917 auto *Import = cast<ImportDecl>(D); 3918 3919 // If we've already imported this module, we're done. 3920 if (!ImportedModules.insert(Import->getImportedModule())) 3921 break; 3922 3923 // Emit debug information for direct imports. 3924 if (!Import->getImportedOwningModule()) { 3925 if (CGDebugInfo *DI = getModuleDebugInfo()) 3926 DI->EmitImportDecl(*Import); 3927 } 3928 3929 // Find all of the submodules and emit the module initializers. 3930 llvm::SmallPtrSet<clang::Module *, 16> Visited; 3931 SmallVector<clang::Module *, 16> Stack; 3932 Visited.insert(Import->getImportedModule()); 3933 Stack.push_back(Import->getImportedModule()); 3934 3935 while (!Stack.empty()) { 3936 clang::Module *Mod = Stack.pop_back_val(); 3937 if (!EmittedModuleInitializers.insert(Mod).second) 3938 continue; 3939 3940 for (auto *D : Context.getModuleInitializers(Mod)) 3941 EmitTopLevelDecl(D); 3942 3943 // Visit the submodules of this module. 3944 for (clang::Module::submodule_iterator Sub = Mod->submodule_begin(), 3945 SubEnd = Mod->submodule_end(); 3946 Sub != SubEnd; ++Sub) { 3947 // Skip explicit children; they need to be explicitly imported to emit 3948 // the initializers. 3949 if ((*Sub)->IsExplicit) 3950 continue; 3951 3952 if (Visited.insert(*Sub).second) 3953 Stack.push_back(*Sub); 3954 } 3955 } 3956 break; 3957 } 3958 3959 case Decl::Export: 3960 EmitDeclContext(cast<ExportDecl>(D)); 3961 break; 3962 3963 case Decl::OMPThreadPrivate: 3964 EmitOMPThreadPrivateDecl(cast<OMPThreadPrivateDecl>(D)); 3965 break; 3966 3967 case Decl::ClassTemplateSpecialization: { 3968 const auto *Spec = cast<ClassTemplateSpecializationDecl>(D); 3969 if (DebugInfo && 3970 Spec->getSpecializationKind() == TSK_ExplicitInstantiationDefinition && 3971 Spec->hasDefinition()) 3972 DebugInfo->completeTemplateDefinition(*Spec); 3973 break; 3974 } 3975 3976 case Decl::OMPDeclareReduction: 3977 EmitOMPDeclareReduction(cast<OMPDeclareReductionDecl>(D)); 3978 break; 3979 3980 default: 3981 // Make sure we handled everything we should, every other kind is a 3982 // non-top-level decl. FIXME: Would be nice to have an isTopLevelDeclKind 3983 // function. Need to recode Decl::Kind to do that easily. 3984 assert(isa<TypeDecl>(D) && "Unsupported decl kind"); 3985 break; 3986 } 3987 } 3988 3989 void CodeGenModule::AddDeferredUnusedCoverageMapping(Decl *D) { 3990 // Do we need to generate coverage mapping? 3991 if (!CodeGenOpts.CoverageMapping) 3992 return; 3993 switch (D->getKind()) { 3994 case Decl::CXXConversion: 3995 case Decl::CXXMethod: 3996 case Decl::Function: 3997 case Decl::ObjCMethod: 3998 case Decl::CXXConstructor: 3999 case Decl::CXXDestructor: { 4000 if (!cast<FunctionDecl>(D)->doesThisDeclarationHaveABody()) 4001 return; 4002 auto I = DeferredEmptyCoverageMappingDecls.find(D); 4003 if (I == DeferredEmptyCoverageMappingDecls.end()) 4004 DeferredEmptyCoverageMappingDecls[D] = true; 4005 break; 4006 } 4007 default: 4008 break; 4009 }; 4010 } 4011 4012 void CodeGenModule::ClearUnusedCoverageMapping(const Decl *D) { 4013 // Do we need to generate coverage mapping? 4014 if (!CodeGenOpts.CoverageMapping) 4015 return; 4016 if (const auto *Fn = dyn_cast<FunctionDecl>(D)) { 4017 if (Fn->isTemplateInstantiation()) 4018 ClearUnusedCoverageMapping(Fn->getTemplateInstantiationPattern()); 4019 } 4020 auto I = DeferredEmptyCoverageMappingDecls.find(D); 4021 if (I == DeferredEmptyCoverageMappingDecls.end()) 4022 DeferredEmptyCoverageMappingDecls[D] = false; 4023 else 4024 I->second = false; 4025 } 4026 4027 void CodeGenModule::EmitDeferredUnusedCoverageMappings() { 4028 std::vector<const Decl *> DeferredDecls; 4029 for (const auto &I : DeferredEmptyCoverageMappingDecls) { 4030 if (!I.second) 4031 continue; 4032 DeferredDecls.push_back(I.first); 4033 } 4034 // Sort the declarations by their location to make sure that the tests get a 4035 // predictable order for the coverage mapping for the unused declarations. 4036 if (CodeGenOpts.DumpCoverageMapping) 4037 std::sort(DeferredDecls.begin(), DeferredDecls.end(), 4038 [] (const Decl *LHS, const Decl *RHS) { 4039 return LHS->getLocStart() < RHS->getLocStart(); 4040 }); 4041 for (const auto *D : DeferredDecls) { 4042 switch (D->getKind()) { 4043 case Decl::CXXConversion: 4044 case Decl::CXXMethod: 4045 case Decl::Function: 4046 case Decl::ObjCMethod: { 4047 CodeGenPGO PGO(*this); 4048 GlobalDecl GD(cast<FunctionDecl>(D)); 4049 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 4050 getFunctionLinkage(GD)); 4051 break; 4052 } 4053 case Decl::CXXConstructor: { 4054 CodeGenPGO PGO(*this); 4055 GlobalDecl GD(cast<CXXConstructorDecl>(D), Ctor_Base); 4056 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 4057 getFunctionLinkage(GD)); 4058 break; 4059 } 4060 case Decl::CXXDestructor: { 4061 CodeGenPGO PGO(*this); 4062 GlobalDecl GD(cast<CXXDestructorDecl>(D), Dtor_Base); 4063 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 4064 getFunctionLinkage(GD)); 4065 break; 4066 } 4067 default: 4068 break; 4069 }; 4070 } 4071 } 4072 4073 /// Turns the given pointer into a constant. 4074 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context, 4075 const void *Ptr) { 4076 uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr); 4077 llvm::Type *i64 = llvm::Type::getInt64Ty(Context); 4078 return llvm::ConstantInt::get(i64, PtrInt); 4079 } 4080 4081 static void EmitGlobalDeclMetadata(CodeGenModule &CGM, 4082 llvm::NamedMDNode *&GlobalMetadata, 4083 GlobalDecl D, 4084 llvm::GlobalValue *Addr) { 4085 if (!GlobalMetadata) 4086 GlobalMetadata = 4087 CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs"); 4088 4089 // TODO: should we report variant information for ctors/dtors? 4090 llvm::Metadata *Ops[] = {llvm::ConstantAsMetadata::get(Addr), 4091 llvm::ConstantAsMetadata::get(GetPointerConstant( 4092 CGM.getLLVMContext(), D.getDecl()))}; 4093 GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops)); 4094 } 4095 4096 /// For each function which is declared within an extern "C" region and marked 4097 /// as 'used', but has internal linkage, create an alias from the unmangled 4098 /// name to the mangled name if possible. People expect to be able to refer 4099 /// to such functions with an unmangled name from inline assembly within the 4100 /// same translation unit. 4101 void CodeGenModule::EmitStaticExternCAliases() { 4102 // Don't do anything if we're generating CUDA device code -- the NVPTX 4103 // assembly target doesn't support aliases. 4104 if (Context.getTargetInfo().getTriple().isNVPTX()) 4105 return; 4106 for (auto &I : StaticExternCValues) { 4107 IdentifierInfo *Name = I.first; 4108 llvm::GlobalValue *Val = I.second; 4109 if (Val && !getModule().getNamedValue(Name->getName())) 4110 addUsedGlobal(llvm::GlobalAlias::create(Name->getName(), Val)); 4111 } 4112 } 4113 4114 bool CodeGenModule::lookupRepresentativeDecl(StringRef MangledName, 4115 GlobalDecl &Result) const { 4116 auto Res = Manglings.find(MangledName); 4117 if (Res == Manglings.end()) 4118 return false; 4119 Result = Res->getValue(); 4120 return true; 4121 } 4122 4123 /// Emits metadata nodes associating all the global values in the 4124 /// current module with the Decls they came from. This is useful for 4125 /// projects using IR gen as a subroutine. 4126 /// 4127 /// Since there's currently no way to associate an MDNode directly 4128 /// with an llvm::GlobalValue, we create a global named metadata 4129 /// with the name 'clang.global.decl.ptrs'. 4130 void CodeGenModule::EmitDeclMetadata() { 4131 llvm::NamedMDNode *GlobalMetadata = nullptr; 4132 4133 for (auto &I : MangledDeclNames) { 4134 llvm::GlobalValue *Addr = getModule().getNamedValue(I.second); 4135 // Some mangled names don't necessarily have an associated GlobalValue 4136 // in this module, e.g. if we mangled it for DebugInfo. 4137 if (Addr) 4138 EmitGlobalDeclMetadata(*this, GlobalMetadata, I.first, Addr); 4139 } 4140 } 4141 4142 /// Emits metadata nodes for all the local variables in the current 4143 /// function. 4144 void CodeGenFunction::EmitDeclMetadata() { 4145 if (LocalDeclMap.empty()) return; 4146 4147 llvm::LLVMContext &Context = getLLVMContext(); 4148 4149 // Find the unique metadata ID for this name. 4150 unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr"); 4151 4152 llvm::NamedMDNode *GlobalMetadata = nullptr; 4153 4154 for (auto &I : LocalDeclMap) { 4155 const Decl *D = I.first; 4156 llvm::Value *Addr = I.second.getPointer(); 4157 if (auto *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) { 4158 llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D); 4159 Alloca->setMetadata( 4160 DeclPtrKind, llvm::MDNode::get( 4161 Context, llvm::ValueAsMetadata::getConstant(DAddr))); 4162 } else if (auto *GV = dyn_cast<llvm::GlobalValue>(Addr)) { 4163 GlobalDecl GD = GlobalDecl(cast<VarDecl>(D)); 4164 EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV); 4165 } 4166 } 4167 } 4168 4169 void CodeGenModule::EmitVersionIdentMetadata() { 4170 llvm::NamedMDNode *IdentMetadata = 4171 TheModule.getOrInsertNamedMetadata("llvm.ident"); 4172 std::string Version = getClangFullVersion(); 4173 llvm::LLVMContext &Ctx = TheModule.getContext(); 4174 4175 llvm::Metadata *IdentNode[] = {llvm::MDString::get(Ctx, Version)}; 4176 IdentMetadata->addOperand(llvm::MDNode::get(Ctx, IdentNode)); 4177 } 4178 4179 void CodeGenModule::EmitTargetMetadata() { 4180 // Warning, new MangledDeclNames may be appended within this loop. 4181 // We rely on MapVector insertions adding new elements to the end 4182 // of the container. 4183 // FIXME: Move this loop into the one target that needs it, and only 4184 // loop over those declarations for which we couldn't emit the target 4185 // metadata when we emitted the declaration. 4186 for (unsigned I = 0; I != MangledDeclNames.size(); ++I) { 4187 auto Val = *(MangledDeclNames.begin() + I); 4188 const Decl *D = Val.first.getDecl()->getMostRecentDecl(); 4189 llvm::GlobalValue *GV = GetGlobalValue(Val.second); 4190 getTargetCodeGenInfo().emitTargetMD(D, GV, *this); 4191 } 4192 } 4193 4194 void CodeGenModule::EmitCoverageFile() { 4195 if (getCodeGenOpts().CoverageDataFile.empty() && 4196 getCodeGenOpts().CoverageNotesFile.empty()) 4197 return; 4198 4199 llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu"); 4200 if (!CUNode) 4201 return; 4202 4203 llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov"); 4204 llvm::LLVMContext &Ctx = TheModule.getContext(); 4205 auto *CoverageDataFile = 4206 llvm::MDString::get(Ctx, getCodeGenOpts().CoverageDataFile); 4207 auto *CoverageNotesFile = 4208 llvm::MDString::get(Ctx, getCodeGenOpts().CoverageNotesFile); 4209 for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) { 4210 llvm::MDNode *CU = CUNode->getOperand(i); 4211 llvm::Metadata *Elts[] = {CoverageNotesFile, CoverageDataFile, CU}; 4212 GCov->addOperand(llvm::MDNode::get(Ctx, Elts)); 4213 } 4214 } 4215 4216 llvm::Constant *CodeGenModule::EmitUuidofInitializer(StringRef Uuid) { 4217 // Sema has checked that all uuid strings are of the form 4218 // "12345678-1234-1234-1234-1234567890ab". 4219 assert(Uuid.size() == 36); 4220 for (unsigned i = 0; i < 36; ++i) { 4221 if (i == 8 || i == 13 || i == 18 || i == 23) assert(Uuid[i] == '-'); 4222 else assert(isHexDigit(Uuid[i])); 4223 } 4224 4225 // The starts of all bytes of Field3 in Uuid. Field 3 is "1234-1234567890ab". 4226 const unsigned Field3ValueOffsets[8] = { 19, 21, 24, 26, 28, 30, 32, 34 }; 4227 4228 llvm::Constant *Field3[8]; 4229 for (unsigned Idx = 0; Idx < 8; ++Idx) 4230 Field3[Idx] = llvm::ConstantInt::get( 4231 Int8Ty, Uuid.substr(Field3ValueOffsets[Idx], 2), 16); 4232 4233 llvm::Constant *Fields[4] = { 4234 llvm::ConstantInt::get(Int32Ty, Uuid.substr(0, 8), 16), 4235 llvm::ConstantInt::get(Int16Ty, Uuid.substr(9, 4), 16), 4236 llvm::ConstantInt::get(Int16Ty, Uuid.substr(14, 4), 16), 4237 llvm::ConstantArray::get(llvm::ArrayType::get(Int8Ty, 8), Field3) 4238 }; 4239 4240 return llvm::ConstantStruct::getAnon(Fields); 4241 } 4242 4243 llvm::Constant *CodeGenModule::GetAddrOfRTTIDescriptor(QualType Ty, 4244 bool ForEH) { 4245 // Return a bogus pointer if RTTI is disabled, unless it's for EH. 4246 // FIXME: should we even be calling this method if RTTI is disabled 4247 // and it's not for EH? 4248 if (!ForEH && !getLangOpts().RTTI) 4249 return llvm::Constant::getNullValue(Int8PtrTy); 4250 4251 if (ForEH && Ty->isObjCObjectPointerType() && 4252 LangOpts.ObjCRuntime.isGNUFamily()) 4253 return ObjCRuntime->GetEHType(Ty); 4254 4255 return getCXXABI().getAddrOfRTTIDescriptor(Ty); 4256 } 4257 4258 void CodeGenModule::EmitOMPThreadPrivateDecl(const OMPThreadPrivateDecl *D) { 4259 for (auto RefExpr : D->varlists()) { 4260 auto *VD = cast<VarDecl>(cast<DeclRefExpr>(RefExpr)->getDecl()); 4261 bool PerformInit = 4262 VD->getAnyInitializer() && 4263 !VD->getAnyInitializer()->isConstantInitializer(getContext(), 4264 /*ForRef=*/false); 4265 4266 Address Addr(GetAddrOfGlobalVar(VD), getContext().getDeclAlign(VD)); 4267 if (auto InitFunction = getOpenMPRuntime().emitThreadPrivateVarDefinition( 4268 VD, Addr, RefExpr->getLocStart(), PerformInit)) 4269 CXXGlobalInits.push_back(InitFunction); 4270 } 4271 } 4272 4273 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierForType(QualType T) { 4274 llvm::Metadata *&InternalId = MetadataIdMap[T.getCanonicalType()]; 4275 if (InternalId) 4276 return InternalId; 4277 4278 if (isExternallyVisible(T->getLinkage())) { 4279 std::string OutName; 4280 llvm::raw_string_ostream Out(OutName); 4281 getCXXABI().getMangleContext().mangleTypeName(T, Out); 4282 4283 InternalId = llvm::MDString::get(getLLVMContext(), Out.str()); 4284 } else { 4285 InternalId = llvm::MDNode::getDistinct(getLLVMContext(), 4286 llvm::ArrayRef<llvm::Metadata *>()); 4287 } 4288 4289 return InternalId; 4290 } 4291 4292 /// Returns whether this module needs the "all-vtables" type identifier. 4293 bool CodeGenModule::NeedAllVtablesTypeId() const { 4294 // Returns true if at least one of vtable-based CFI checkers is enabled and 4295 // is not in the trapping mode. 4296 return ((LangOpts.Sanitize.has(SanitizerKind::CFIVCall) && 4297 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIVCall)) || 4298 (LangOpts.Sanitize.has(SanitizerKind::CFINVCall) && 4299 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFINVCall)) || 4300 (LangOpts.Sanitize.has(SanitizerKind::CFIDerivedCast) && 4301 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIDerivedCast)) || 4302 (LangOpts.Sanitize.has(SanitizerKind::CFIUnrelatedCast) && 4303 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIUnrelatedCast))); 4304 } 4305 4306 void CodeGenModule::AddVTableTypeMetadata(llvm::GlobalVariable *VTable, 4307 CharUnits Offset, 4308 const CXXRecordDecl *RD) { 4309 llvm::Metadata *MD = 4310 CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0)); 4311 VTable->addTypeMetadata(Offset.getQuantity(), MD); 4312 4313 if (CodeGenOpts.SanitizeCfiCrossDso) 4314 if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD)) 4315 VTable->addTypeMetadata(Offset.getQuantity(), 4316 llvm::ConstantAsMetadata::get(CrossDsoTypeId)); 4317 4318 if (NeedAllVtablesTypeId()) { 4319 llvm::Metadata *MD = llvm::MDString::get(getLLVMContext(), "all-vtables"); 4320 VTable->addTypeMetadata(Offset.getQuantity(), MD); 4321 } 4322 } 4323 4324 // Fills in the supplied string map with the set of target features for the 4325 // passed in function. 4326 void CodeGenModule::getFunctionFeatureMap(llvm::StringMap<bool> &FeatureMap, 4327 const FunctionDecl *FD) { 4328 StringRef TargetCPU = Target.getTargetOpts().CPU; 4329 if (const auto *TD = FD->getAttr<TargetAttr>()) { 4330 // If we have a TargetAttr build up the feature map based on that. 4331 TargetAttr::ParsedTargetAttr ParsedAttr = TD->parse(); 4332 4333 // Make a copy of the features as passed on the command line into the 4334 // beginning of the additional features from the function to override. 4335 ParsedAttr.first.insert(ParsedAttr.first.begin(), 4336 Target.getTargetOpts().FeaturesAsWritten.begin(), 4337 Target.getTargetOpts().FeaturesAsWritten.end()); 4338 4339 if (ParsedAttr.second != "") 4340 TargetCPU = ParsedAttr.second; 4341 4342 // Now populate the feature map, first with the TargetCPU which is either 4343 // the default or a new one from the target attribute string. Then we'll use 4344 // the passed in features (FeaturesAsWritten) along with the new ones from 4345 // the attribute. 4346 Target.initFeatureMap(FeatureMap, getDiags(), TargetCPU, ParsedAttr.first); 4347 } else { 4348 Target.initFeatureMap(FeatureMap, getDiags(), TargetCPU, 4349 Target.getTargetOpts().Features); 4350 } 4351 } 4352 4353 llvm::SanitizerStatReport &CodeGenModule::getSanStats() { 4354 if (!SanStats) 4355 SanStats = llvm::make_unique<llvm::SanitizerStatReport>(&getModule()); 4356 4357 return *SanStats; 4358 } 4359 llvm::Value * 4360 CodeGenModule::createOpenCLIntToSamplerConversion(const Expr *E, 4361 CodeGenFunction &CGF) { 4362 llvm::Constant *C = EmitConstantExpr(E, E->getType(), &CGF); 4363 auto SamplerT = getOpenCLRuntime().getSamplerType(); 4364 auto FTy = llvm::FunctionType::get(SamplerT, {C->getType()}, false); 4365 return CGF.Builder.CreateCall(CreateRuntimeFunction(FTy, 4366 "__translate_sampler_initializer"), 4367 {C}); 4368 } 4369