xref: /llvm-project/clang/lib/CodeGen/CodeGenModule.cpp (revision 6c10a66ec7732e8b7afd8ac0260c2e572fbe0a31)
1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This coordinates the per-module state used while generating code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenModule.h"
15 #include "CGBlocks.h"
16 #include "CGCUDARuntime.h"
17 #include "CGCXXABI.h"
18 #include "CGCall.h"
19 #include "CGDebugInfo.h"
20 #include "CGObjCRuntime.h"
21 #include "CGOpenCLRuntime.h"
22 #include "CGOpenMPRuntime.h"
23 #include "CGOpenMPRuntimeNVPTX.h"
24 #include "CodeGenFunction.h"
25 #include "CodeGenPGO.h"
26 #include "ConstantEmitter.h"
27 #include "CoverageMappingGen.h"
28 #include "TargetInfo.h"
29 #include "clang/AST/ASTContext.h"
30 #include "clang/AST/CharUnits.h"
31 #include "clang/AST/DeclCXX.h"
32 #include "clang/AST/DeclObjC.h"
33 #include "clang/AST/DeclTemplate.h"
34 #include "clang/AST/Mangle.h"
35 #include "clang/AST/RecordLayout.h"
36 #include "clang/AST/RecursiveASTVisitor.h"
37 #include "clang/Basic/Builtins.h"
38 #include "clang/Basic/CharInfo.h"
39 #include "clang/Basic/Diagnostic.h"
40 #include "clang/Basic/Module.h"
41 #include "clang/Basic/SourceManager.h"
42 #include "clang/Basic/TargetInfo.h"
43 #include "clang/Basic/Version.h"
44 #include "clang/CodeGen/ConstantInitBuilder.h"
45 #include "clang/Frontend/CodeGenOptions.h"
46 #include "clang/Sema/SemaDiagnostic.h"
47 #include "llvm/ADT/Triple.h"
48 #include "llvm/Analysis/TargetLibraryInfo.h"
49 #include "llvm/IR/CallSite.h"
50 #include "llvm/IR/CallingConv.h"
51 #include "llvm/IR/DataLayout.h"
52 #include "llvm/IR/Intrinsics.h"
53 #include "llvm/IR/LLVMContext.h"
54 #include "llvm/IR/Module.h"
55 #include "llvm/ProfileData/InstrProfReader.h"
56 #include "llvm/Support/ConvertUTF.h"
57 #include "llvm/Support/ErrorHandling.h"
58 #include "llvm/Support/MD5.h"
59 
60 using namespace clang;
61 using namespace CodeGen;
62 
63 static llvm::cl::opt<bool> LimitedCoverage(
64     "limited-coverage-experimental", llvm::cl::ZeroOrMore, llvm::cl::Hidden,
65     llvm::cl::desc("Emit limited coverage mapping information (experimental)"),
66     llvm::cl::init(false));
67 
68 static const char AnnotationSection[] = "llvm.metadata";
69 
70 static CGCXXABI *createCXXABI(CodeGenModule &CGM) {
71   switch (CGM.getTarget().getCXXABI().getKind()) {
72   case TargetCXXABI::GenericAArch64:
73   case TargetCXXABI::GenericARM:
74   case TargetCXXABI::iOS:
75   case TargetCXXABI::iOS64:
76   case TargetCXXABI::WatchOS:
77   case TargetCXXABI::GenericMIPS:
78   case TargetCXXABI::GenericItanium:
79   case TargetCXXABI::WebAssembly:
80     return CreateItaniumCXXABI(CGM);
81   case TargetCXXABI::Microsoft:
82     return CreateMicrosoftCXXABI(CGM);
83   }
84 
85   llvm_unreachable("invalid C++ ABI kind");
86 }
87 
88 CodeGenModule::CodeGenModule(ASTContext &C, const HeaderSearchOptions &HSO,
89                              const PreprocessorOptions &PPO,
90                              const CodeGenOptions &CGO, llvm::Module &M,
91                              DiagnosticsEngine &diags,
92                              CoverageSourceInfo *CoverageInfo)
93     : Context(C), LangOpts(C.getLangOpts()), HeaderSearchOpts(HSO),
94       PreprocessorOpts(PPO), CodeGenOpts(CGO), TheModule(M), Diags(diags),
95       Target(C.getTargetInfo()), ABI(createCXXABI(*this)),
96       VMContext(M.getContext()), Types(*this), VTables(*this),
97       SanitizerMD(new SanitizerMetadata(*this)) {
98 
99   // Initialize the type cache.
100   llvm::LLVMContext &LLVMContext = M.getContext();
101   VoidTy = llvm::Type::getVoidTy(LLVMContext);
102   Int8Ty = llvm::Type::getInt8Ty(LLVMContext);
103   Int16Ty = llvm::Type::getInt16Ty(LLVMContext);
104   Int32Ty = llvm::Type::getInt32Ty(LLVMContext);
105   Int64Ty = llvm::Type::getInt64Ty(LLVMContext);
106   HalfTy = llvm::Type::getHalfTy(LLVMContext);
107   FloatTy = llvm::Type::getFloatTy(LLVMContext);
108   DoubleTy = llvm::Type::getDoubleTy(LLVMContext);
109   PointerWidthInBits = C.getTargetInfo().getPointerWidth(0);
110   PointerAlignInBytes =
111     C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(0)).getQuantity();
112   SizeSizeInBytes =
113     C.toCharUnitsFromBits(C.getTargetInfo().getMaxPointerWidth()).getQuantity();
114   IntAlignInBytes =
115     C.toCharUnitsFromBits(C.getTargetInfo().getIntAlign()).getQuantity();
116   IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth());
117   IntPtrTy = llvm::IntegerType::get(LLVMContext,
118     C.getTargetInfo().getMaxPointerWidth());
119   Int8PtrTy = Int8Ty->getPointerTo(0);
120   Int8PtrPtrTy = Int8PtrTy->getPointerTo(0);
121   AllocaInt8PtrTy = Int8Ty->getPointerTo(
122       M.getDataLayout().getAllocaAddrSpace());
123   ASTAllocaAddressSpace = getTargetCodeGenInfo().getASTAllocaAddressSpace();
124 
125   RuntimeCC = getTargetCodeGenInfo().getABIInfo().getRuntimeCC();
126 
127   if (LangOpts.ObjC1)
128     createObjCRuntime();
129   if (LangOpts.OpenCL)
130     createOpenCLRuntime();
131   if (LangOpts.OpenMP)
132     createOpenMPRuntime();
133   if (LangOpts.CUDA)
134     createCUDARuntime();
135 
136   // Enable TBAA unless it's suppressed. ThreadSanitizer needs TBAA even at O0.
137   if (LangOpts.Sanitize.has(SanitizerKind::Thread) ||
138       (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0))
139     TBAA.reset(new CodeGenTBAA(Context, TheModule, CodeGenOpts, getLangOpts(),
140                                getCXXABI().getMangleContext()));
141 
142   // If debug info or coverage generation is enabled, create the CGDebugInfo
143   // object.
144   if (CodeGenOpts.getDebugInfo() != codegenoptions::NoDebugInfo ||
145       CodeGenOpts.EmitGcovArcs || CodeGenOpts.EmitGcovNotes)
146     DebugInfo.reset(new CGDebugInfo(*this));
147 
148   Block.GlobalUniqueCount = 0;
149 
150   if (C.getLangOpts().ObjC1)
151     ObjCData.reset(new ObjCEntrypoints());
152 
153   if (CodeGenOpts.hasProfileClangUse()) {
154     auto ReaderOrErr = llvm::IndexedInstrProfReader::create(
155         CodeGenOpts.ProfileInstrumentUsePath);
156     if (auto E = ReaderOrErr.takeError()) {
157       unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
158                                               "Could not read profile %0: %1");
159       llvm::handleAllErrors(std::move(E), [&](const llvm::ErrorInfoBase &EI) {
160         getDiags().Report(DiagID) << CodeGenOpts.ProfileInstrumentUsePath
161                                   << EI.message();
162       });
163     } else
164       PGOReader = std::move(ReaderOrErr.get());
165   }
166 
167   // If coverage mapping generation is enabled, create the
168   // CoverageMappingModuleGen object.
169   if (CodeGenOpts.CoverageMapping)
170     CoverageMapping.reset(new CoverageMappingModuleGen(*this, *CoverageInfo));
171 }
172 
173 CodeGenModule::~CodeGenModule() {}
174 
175 void CodeGenModule::createObjCRuntime() {
176   // This is just isGNUFamily(), but we want to force implementors of
177   // new ABIs to decide how best to do this.
178   switch (LangOpts.ObjCRuntime.getKind()) {
179   case ObjCRuntime::GNUstep:
180   case ObjCRuntime::GCC:
181   case ObjCRuntime::ObjFW:
182     ObjCRuntime.reset(CreateGNUObjCRuntime(*this));
183     return;
184 
185   case ObjCRuntime::FragileMacOSX:
186   case ObjCRuntime::MacOSX:
187   case ObjCRuntime::iOS:
188   case ObjCRuntime::WatchOS:
189     ObjCRuntime.reset(CreateMacObjCRuntime(*this));
190     return;
191   }
192   llvm_unreachable("bad runtime kind");
193 }
194 
195 void CodeGenModule::createOpenCLRuntime() {
196   OpenCLRuntime.reset(new CGOpenCLRuntime(*this));
197 }
198 
199 void CodeGenModule::createOpenMPRuntime() {
200   // Select a specialized code generation class based on the target, if any.
201   // If it does not exist use the default implementation.
202   switch (getTriple().getArch()) {
203   case llvm::Triple::nvptx:
204   case llvm::Triple::nvptx64:
205     assert(getLangOpts().OpenMPIsDevice &&
206            "OpenMP NVPTX is only prepared to deal with device code.");
207     OpenMPRuntime.reset(new CGOpenMPRuntimeNVPTX(*this));
208     break;
209   default:
210     if (LangOpts.OpenMPSimd)
211       OpenMPRuntime.reset(new CGOpenMPSIMDRuntime(*this));
212     else
213       OpenMPRuntime.reset(new CGOpenMPRuntime(*this));
214     break;
215   }
216 }
217 
218 void CodeGenModule::createCUDARuntime() {
219   CUDARuntime.reset(CreateNVCUDARuntime(*this));
220 }
221 
222 void CodeGenModule::addReplacement(StringRef Name, llvm::Constant *C) {
223   Replacements[Name] = C;
224 }
225 
226 void CodeGenModule::applyReplacements() {
227   for (auto &I : Replacements) {
228     StringRef MangledName = I.first();
229     llvm::Constant *Replacement = I.second;
230     llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
231     if (!Entry)
232       continue;
233     auto *OldF = cast<llvm::Function>(Entry);
234     auto *NewF = dyn_cast<llvm::Function>(Replacement);
235     if (!NewF) {
236       if (auto *Alias = dyn_cast<llvm::GlobalAlias>(Replacement)) {
237         NewF = dyn_cast<llvm::Function>(Alias->getAliasee());
238       } else {
239         auto *CE = cast<llvm::ConstantExpr>(Replacement);
240         assert(CE->getOpcode() == llvm::Instruction::BitCast ||
241                CE->getOpcode() == llvm::Instruction::GetElementPtr);
242         NewF = dyn_cast<llvm::Function>(CE->getOperand(0));
243       }
244     }
245 
246     // Replace old with new, but keep the old order.
247     OldF->replaceAllUsesWith(Replacement);
248     if (NewF) {
249       NewF->removeFromParent();
250       OldF->getParent()->getFunctionList().insertAfter(OldF->getIterator(),
251                                                        NewF);
252     }
253     OldF->eraseFromParent();
254   }
255 }
256 
257 void CodeGenModule::addGlobalValReplacement(llvm::GlobalValue *GV, llvm::Constant *C) {
258   GlobalValReplacements.push_back(std::make_pair(GV, C));
259 }
260 
261 void CodeGenModule::applyGlobalValReplacements() {
262   for (auto &I : GlobalValReplacements) {
263     llvm::GlobalValue *GV = I.first;
264     llvm::Constant *C = I.second;
265 
266     GV->replaceAllUsesWith(C);
267     GV->eraseFromParent();
268   }
269 }
270 
271 // This is only used in aliases that we created and we know they have a
272 // linear structure.
273 static const llvm::GlobalObject *getAliasedGlobal(
274     const llvm::GlobalIndirectSymbol &GIS) {
275   llvm::SmallPtrSet<const llvm::GlobalIndirectSymbol*, 4> Visited;
276   const llvm::Constant *C = &GIS;
277   for (;;) {
278     C = C->stripPointerCasts();
279     if (auto *GO = dyn_cast<llvm::GlobalObject>(C))
280       return GO;
281     // stripPointerCasts will not walk over weak aliases.
282     auto *GIS2 = dyn_cast<llvm::GlobalIndirectSymbol>(C);
283     if (!GIS2)
284       return nullptr;
285     if (!Visited.insert(GIS2).second)
286       return nullptr;
287     C = GIS2->getIndirectSymbol();
288   }
289 }
290 
291 void CodeGenModule::checkAliases() {
292   // Check if the constructed aliases are well formed. It is really unfortunate
293   // that we have to do this in CodeGen, but we only construct mangled names
294   // and aliases during codegen.
295   bool Error = false;
296   DiagnosticsEngine &Diags = getDiags();
297   for (const GlobalDecl &GD : Aliases) {
298     const auto *D = cast<ValueDecl>(GD.getDecl());
299     SourceLocation Location;
300     bool IsIFunc = D->hasAttr<IFuncAttr>();
301     if (const Attr *A = D->getDefiningAttr())
302       Location = A->getLocation();
303     else
304       llvm_unreachable("Not an alias or ifunc?");
305     StringRef MangledName = getMangledName(GD);
306     llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
307     auto *Alias  = cast<llvm::GlobalIndirectSymbol>(Entry);
308     const llvm::GlobalValue *GV = getAliasedGlobal(*Alias);
309     if (!GV) {
310       Error = true;
311       Diags.Report(Location, diag::err_cyclic_alias) << IsIFunc;
312     } else if (GV->isDeclaration()) {
313       Error = true;
314       Diags.Report(Location, diag::err_alias_to_undefined)
315           << IsIFunc << IsIFunc;
316     } else if (IsIFunc) {
317       // Check resolver function type.
318       llvm::FunctionType *FTy = dyn_cast<llvm::FunctionType>(
319           GV->getType()->getPointerElementType());
320       assert(FTy);
321       if (!FTy->getReturnType()->isPointerTy())
322         Diags.Report(Location, diag::err_ifunc_resolver_return);
323       if (FTy->getNumParams())
324         Diags.Report(Location, diag::err_ifunc_resolver_params);
325     }
326 
327     llvm::Constant *Aliasee = Alias->getIndirectSymbol();
328     llvm::GlobalValue *AliaseeGV;
329     if (auto CE = dyn_cast<llvm::ConstantExpr>(Aliasee))
330       AliaseeGV = cast<llvm::GlobalValue>(CE->getOperand(0));
331     else
332       AliaseeGV = cast<llvm::GlobalValue>(Aliasee);
333 
334     if (const SectionAttr *SA = D->getAttr<SectionAttr>()) {
335       StringRef AliasSection = SA->getName();
336       if (AliasSection != AliaseeGV->getSection())
337         Diags.Report(SA->getLocation(), diag::warn_alias_with_section)
338             << AliasSection << IsIFunc << IsIFunc;
339     }
340 
341     // We have to handle alias to weak aliases in here. LLVM itself disallows
342     // this since the object semantics would not match the IL one. For
343     // compatibility with gcc we implement it by just pointing the alias
344     // to its aliasee's aliasee. We also warn, since the user is probably
345     // expecting the link to be weak.
346     if (auto GA = dyn_cast<llvm::GlobalIndirectSymbol>(AliaseeGV)) {
347       if (GA->isInterposable()) {
348         Diags.Report(Location, diag::warn_alias_to_weak_alias)
349             << GV->getName() << GA->getName() << IsIFunc;
350         Aliasee = llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(
351             GA->getIndirectSymbol(), Alias->getType());
352         Alias->setIndirectSymbol(Aliasee);
353       }
354     }
355   }
356   if (!Error)
357     return;
358 
359   for (const GlobalDecl &GD : Aliases) {
360     StringRef MangledName = getMangledName(GD);
361     llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
362     auto *Alias = dyn_cast<llvm::GlobalIndirectSymbol>(Entry);
363     Alias->replaceAllUsesWith(llvm::UndefValue::get(Alias->getType()));
364     Alias->eraseFromParent();
365   }
366 }
367 
368 void CodeGenModule::clear() {
369   DeferredDeclsToEmit.clear();
370   if (OpenMPRuntime)
371     OpenMPRuntime->clear();
372 }
373 
374 void InstrProfStats::reportDiagnostics(DiagnosticsEngine &Diags,
375                                        StringRef MainFile) {
376   if (!hasDiagnostics())
377     return;
378   if (VisitedInMainFile > 0 && VisitedInMainFile == MissingInMainFile) {
379     if (MainFile.empty())
380       MainFile = "<stdin>";
381     Diags.Report(diag::warn_profile_data_unprofiled) << MainFile;
382   } else {
383     if (Mismatched > 0)
384       Diags.Report(diag::warn_profile_data_out_of_date) << Visited << Mismatched;
385 
386     if (Missing > 0)
387       Diags.Report(diag::warn_profile_data_missing) << Visited << Missing;
388   }
389 }
390 
391 void CodeGenModule::Release() {
392   EmitDeferred();
393   EmitVTablesOpportunistically();
394   applyGlobalValReplacements();
395   applyReplacements();
396   checkAliases();
397   emitMultiVersionFunctions();
398   EmitCXXGlobalInitFunc();
399   EmitCXXGlobalDtorFunc();
400   registerGlobalDtorsWithAtExit();
401   EmitCXXThreadLocalInitFunc();
402   if (ObjCRuntime)
403     if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction())
404       AddGlobalCtor(ObjCInitFunction);
405   if (Context.getLangOpts().CUDA && !Context.getLangOpts().CUDAIsDevice &&
406       CUDARuntime) {
407     if (llvm::Function *CudaCtorFunction = CUDARuntime->makeModuleCtorFunction())
408       AddGlobalCtor(CudaCtorFunction);
409     if (llvm::Function *CudaDtorFunction = CUDARuntime->makeModuleDtorFunction())
410       AddGlobalDtor(CudaDtorFunction);
411   }
412   if (OpenMPRuntime) {
413     if (llvm::Function *OpenMPRegistrationFunction =
414             OpenMPRuntime->emitRegistrationFunction()) {
415       auto ComdatKey = OpenMPRegistrationFunction->hasComdat() ?
416         OpenMPRegistrationFunction : nullptr;
417       AddGlobalCtor(OpenMPRegistrationFunction, 0, ComdatKey);
418     }
419     OpenMPRuntime->clear();
420   }
421   if (PGOReader) {
422     getModule().setProfileSummary(PGOReader->getSummary().getMD(VMContext));
423     if (PGOStats.hasDiagnostics())
424       PGOStats.reportDiagnostics(getDiags(), getCodeGenOpts().MainFileName);
425   }
426   EmitCtorList(GlobalCtors, "llvm.global_ctors");
427   EmitCtorList(GlobalDtors, "llvm.global_dtors");
428   EmitGlobalAnnotations();
429   EmitStaticExternCAliases();
430   EmitDeferredUnusedCoverageMappings();
431   if (CoverageMapping)
432     CoverageMapping->emit();
433   if (CodeGenOpts.SanitizeCfiCrossDso) {
434     CodeGenFunction(*this).EmitCfiCheckFail();
435     CodeGenFunction(*this).EmitCfiCheckStub();
436   }
437   emitAtAvailableLinkGuard();
438   emitLLVMUsed();
439   if (SanStats)
440     SanStats->finish();
441 
442   if (CodeGenOpts.Autolink &&
443       (Context.getLangOpts().Modules || !LinkerOptionsMetadata.empty())) {
444     EmitModuleLinkOptions();
445   }
446 
447   // Record mregparm value now so it is visible through rest of codegen.
448   if (Context.getTargetInfo().getTriple().getArch() == llvm::Triple::x86)
449     getModule().addModuleFlag(llvm::Module::Error, "NumRegisterParameters",
450                               CodeGenOpts.NumRegisterParameters);
451 
452   if (CodeGenOpts.DwarfVersion) {
453     // We actually want the latest version when there are conflicts.
454     // We can change from Warning to Latest if such mode is supported.
455     getModule().addModuleFlag(llvm::Module::Warning, "Dwarf Version",
456                               CodeGenOpts.DwarfVersion);
457   }
458   if (CodeGenOpts.EmitCodeView) {
459     // Indicate that we want CodeView in the metadata.
460     getModule().addModuleFlag(llvm::Module::Warning, "CodeView", 1);
461   }
462   if (CodeGenOpts.ControlFlowGuard) {
463     // We want function ID tables for Control Flow Guard.
464     getModule().addModuleFlag(llvm::Module::Warning, "cfguard", 1);
465   }
466   if (CodeGenOpts.OptimizationLevel > 0 && CodeGenOpts.StrictVTablePointers) {
467     // We don't support LTO with 2 with different StrictVTablePointers
468     // FIXME: we could support it by stripping all the information introduced
469     // by StrictVTablePointers.
470 
471     getModule().addModuleFlag(llvm::Module::Error, "StrictVTablePointers",1);
472 
473     llvm::Metadata *Ops[2] = {
474               llvm::MDString::get(VMContext, "StrictVTablePointers"),
475               llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
476                   llvm::Type::getInt32Ty(VMContext), 1))};
477 
478     getModule().addModuleFlag(llvm::Module::Require,
479                               "StrictVTablePointersRequirement",
480                               llvm::MDNode::get(VMContext, Ops));
481   }
482   if (DebugInfo)
483     // We support a single version in the linked module. The LLVM
484     // parser will drop debug info with a different version number
485     // (and warn about it, too).
486     getModule().addModuleFlag(llvm::Module::Warning, "Debug Info Version",
487                               llvm::DEBUG_METADATA_VERSION);
488 
489   // We need to record the widths of enums and wchar_t, so that we can generate
490   // the correct build attributes in the ARM backend. wchar_size is also used by
491   // TargetLibraryInfo.
492   uint64_t WCharWidth =
493       Context.getTypeSizeInChars(Context.getWideCharType()).getQuantity();
494   getModule().addModuleFlag(llvm::Module::Error, "wchar_size", WCharWidth);
495 
496   llvm::Triple::ArchType Arch = Context.getTargetInfo().getTriple().getArch();
497   if (   Arch == llvm::Triple::arm
498       || Arch == llvm::Triple::armeb
499       || Arch == llvm::Triple::thumb
500       || Arch == llvm::Triple::thumbeb) {
501     // The minimum width of an enum in bytes
502     uint64_t EnumWidth = Context.getLangOpts().ShortEnums ? 1 : 4;
503     getModule().addModuleFlag(llvm::Module::Error, "min_enum_size", EnumWidth);
504   }
505 
506   if (CodeGenOpts.SanitizeCfiCrossDso) {
507     // Indicate that we want cross-DSO control flow integrity checks.
508     getModule().addModuleFlag(llvm::Module::Override, "Cross-DSO CFI", 1);
509   }
510 
511   if (CodeGenOpts.CFProtectionReturn &&
512       Target.checkCFProtectionReturnSupported(getDiags())) {
513     // Indicate that we want to instrument return control flow protection.
514     getModule().addModuleFlag(llvm::Module::Override, "cf-protection-return",
515                               1);
516   }
517 
518   if (CodeGenOpts.CFProtectionBranch &&
519       Target.checkCFProtectionBranchSupported(getDiags())) {
520     // Indicate that we want to instrument branch control flow protection.
521     getModule().addModuleFlag(llvm::Module::Override, "cf-protection-branch",
522                               1);
523   }
524 
525   if (LangOpts.CUDAIsDevice && getTriple().isNVPTX()) {
526     // Indicate whether __nvvm_reflect should be configured to flush denormal
527     // floating point values to 0.  (This corresponds to its "__CUDA_FTZ"
528     // property.)
529     getModule().addModuleFlag(llvm::Module::Override, "nvvm-reflect-ftz",
530                               LangOpts.CUDADeviceFlushDenormalsToZero ? 1 : 0);
531   }
532 
533   // Emit OpenCL specific module metadata: OpenCL/SPIR version.
534   if (LangOpts.OpenCL) {
535     EmitOpenCLMetadata();
536     // Emit SPIR version.
537     if (getTriple().getArch() == llvm::Triple::spir ||
538         getTriple().getArch() == llvm::Triple::spir64) {
539       // SPIR v2.0 s2.12 - The SPIR version used by the module is stored in the
540       // opencl.spir.version named metadata.
541       llvm::Metadata *SPIRVerElts[] = {
542           llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
543               Int32Ty, LangOpts.OpenCLVersion / 100)),
544           llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
545               Int32Ty, (LangOpts.OpenCLVersion / 100 > 1) ? 0 : 2))};
546       llvm::NamedMDNode *SPIRVerMD =
547           TheModule.getOrInsertNamedMetadata("opencl.spir.version");
548       llvm::LLVMContext &Ctx = TheModule.getContext();
549       SPIRVerMD->addOperand(llvm::MDNode::get(Ctx, SPIRVerElts));
550     }
551   }
552 
553   if (uint32_t PLevel = Context.getLangOpts().PICLevel) {
554     assert(PLevel < 3 && "Invalid PIC Level");
555     getModule().setPICLevel(static_cast<llvm::PICLevel::Level>(PLevel));
556     if (Context.getLangOpts().PIE)
557       getModule().setPIELevel(static_cast<llvm::PIELevel::Level>(PLevel));
558   }
559 
560   if (CodeGenOpts.NoPLT)
561     getModule().setRtLibUseGOT();
562 
563   SimplifyPersonality();
564 
565   if (getCodeGenOpts().EmitDeclMetadata)
566     EmitDeclMetadata();
567 
568   if (getCodeGenOpts().EmitGcovArcs || getCodeGenOpts().EmitGcovNotes)
569     EmitCoverageFile();
570 
571   if (DebugInfo)
572     DebugInfo->finalize();
573 
574   if (getCodeGenOpts().EmitVersionIdentMetadata)
575     EmitVersionIdentMetadata();
576 
577   EmitTargetMetadata();
578 }
579 
580 void CodeGenModule::EmitOpenCLMetadata() {
581   // SPIR v2.0 s2.13 - The OpenCL version used by the module is stored in the
582   // opencl.ocl.version named metadata node.
583   llvm::Metadata *OCLVerElts[] = {
584       llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
585           Int32Ty, LangOpts.OpenCLVersion / 100)),
586       llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
587           Int32Ty, (LangOpts.OpenCLVersion % 100) / 10))};
588   llvm::NamedMDNode *OCLVerMD =
589       TheModule.getOrInsertNamedMetadata("opencl.ocl.version");
590   llvm::LLVMContext &Ctx = TheModule.getContext();
591   OCLVerMD->addOperand(llvm::MDNode::get(Ctx, OCLVerElts));
592 }
593 
594 void CodeGenModule::UpdateCompletedType(const TagDecl *TD) {
595   // Make sure that this type is translated.
596   Types.UpdateCompletedType(TD);
597 }
598 
599 void CodeGenModule::RefreshTypeCacheForClass(const CXXRecordDecl *RD) {
600   // Make sure that this type is translated.
601   Types.RefreshTypeCacheForClass(RD);
602 }
603 
604 llvm::MDNode *CodeGenModule::getTBAATypeInfo(QualType QTy) {
605   if (!TBAA)
606     return nullptr;
607   return TBAA->getTypeInfo(QTy);
608 }
609 
610 TBAAAccessInfo CodeGenModule::getTBAAAccessInfo(QualType AccessType) {
611   if (!TBAA)
612     return TBAAAccessInfo();
613   return TBAA->getAccessInfo(AccessType);
614 }
615 
616 TBAAAccessInfo
617 CodeGenModule::getTBAAVTablePtrAccessInfo(llvm::Type *VTablePtrType) {
618   if (!TBAA)
619     return TBAAAccessInfo();
620   return TBAA->getVTablePtrAccessInfo(VTablePtrType);
621 }
622 
623 llvm::MDNode *CodeGenModule::getTBAAStructInfo(QualType QTy) {
624   if (!TBAA)
625     return nullptr;
626   return TBAA->getTBAAStructInfo(QTy);
627 }
628 
629 llvm::MDNode *CodeGenModule::getTBAABaseTypeInfo(QualType QTy) {
630   if (!TBAA)
631     return nullptr;
632   return TBAA->getBaseTypeInfo(QTy);
633 }
634 
635 llvm::MDNode *CodeGenModule::getTBAAAccessTagInfo(TBAAAccessInfo Info) {
636   if (!TBAA)
637     return nullptr;
638   return TBAA->getAccessTagInfo(Info);
639 }
640 
641 TBAAAccessInfo CodeGenModule::mergeTBAAInfoForCast(TBAAAccessInfo SourceInfo,
642                                                    TBAAAccessInfo TargetInfo) {
643   if (!TBAA)
644     return TBAAAccessInfo();
645   return TBAA->mergeTBAAInfoForCast(SourceInfo, TargetInfo);
646 }
647 
648 TBAAAccessInfo
649 CodeGenModule::mergeTBAAInfoForConditionalOperator(TBAAAccessInfo InfoA,
650                                                    TBAAAccessInfo InfoB) {
651   if (!TBAA)
652     return TBAAAccessInfo();
653   return TBAA->mergeTBAAInfoForConditionalOperator(InfoA, InfoB);
654 }
655 
656 TBAAAccessInfo
657 CodeGenModule::mergeTBAAInfoForMemoryTransfer(TBAAAccessInfo DestInfo,
658                                               TBAAAccessInfo SrcInfo) {
659   if (!TBAA)
660     return TBAAAccessInfo();
661   return TBAA->mergeTBAAInfoForConditionalOperator(DestInfo, SrcInfo);
662 }
663 
664 void CodeGenModule::DecorateInstructionWithTBAA(llvm::Instruction *Inst,
665                                                 TBAAAccessInfo TBAAInfo) {
666   if (llvm::MDNode *Tag = getTBAAAccessTagInfo(TBAAInfo))
667     Inst->setMetadata(llvm::LLVMContext::MD_tbaa, Tag);
668 }
669 
670 void CodeGenModule::DecorateInstructionWithInvariantGroup(
671     llvm::Instruction *I, const CXXRecordDecl *RD) {
672   I->setMetadata(llvm::LLVMContext::MD_invariant_group,
673                  llvm::MDNode::get(getLLVMContext(), {}));
674 }
675 
676 void CodeGenModule::Error(SourceLocation loc, StringRef message) {
677   unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, "%0");
678   getDiags().Report(Context.getFullLoc(loc), diagID) << message;
679 }
680 
681 /// ErrorUnsupported - Print out an error that codegen doesn't support the
682 /// specified stmt yet.
683 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type) {
684   unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
685                                                "cannot compile this %0 yet");
686   std::string Msg = Type;
687   getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID)
688     << Msg << S->getSourceRange();
689 }
690 
691 /// ErrorUnsupported - Print out an error that codegen doesn't support the
692 /// specified decl yet.
693 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type) {
694   unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
695                                                "cannot compile this %0 yet");
696   std::string Msg = Type;
697   getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg;
698 }
699 
700 llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) {
701   return llvm::ConstantInt::get(SizeTy, size.getQuantity());
702 }
703 
704 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV,
705                                         const NamedDecl *D) const {
706   if (GV->hasDLLImportStorageClass())
707     return;
708   // Internal definitions always have default visibility.
709   if (GV->hasLocalLinkage()) {
710     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
711     return;
712   }
713   if (!D)
714     return;
715   // Set visibility for definitions.
716   LinkageInfo LV = D->getLinkageAndVisibility();
717   if (LV.isVisibilityExplicit() || !GV->isDeclarationForLinker())
718     GV->setVisibility(GetLLVMVisibility(LV.getVisibility()));
719 }
720 
721 static bool shouldAssumeDSOLocal(const CodeGenModule &CGM,
722                                  llvm::GlobalValue *GV) {
723   if (GV->hasLocalLinkage())
724     return true;
725 
726   if (!GV->hasDefaultVisibility() && !GV->hasExternalWeakLinkage())
727     return true;
728 
729   // DLLImport explicitly marks the GV as external.
730   if (GV->hasDLLImportStorageClass())
731     return false;
732 
733   const llvm::Triple &TT = CGM.getTriple();
734   // Every other GV is local on COFF.
735   // Make an exception for windows OS in the triple: Some firmware builds use
736   // *-win32-macho triples. This (accidentally?) produced windows relocations
737   // without GOT tables in older clang versions; Keep this behaviour.
738   // FIXME: even thread local variables?
739   if (TT.isOSBinFormatCOFF() || (TT.isOSWindows() && TT.isOSBinFormatMachO()))
740     return true;
741 
742   // Only handle COFF and ELF for now.
743   if (!TT.isOSBinFormatELF())
744     return false;
745 
746   // If this is not an executable, don't assume anything is local.
747   const auto &CGOpts = CGM.getCodeGenOpts();
748   llvm::Reloc::Model RM = CGOpts.RelocationModel;
749   const auto &LOpts = CGM.getLangOpts();
750   if (RM != llvm::Reloc::Static && !LOpts.PIE)
751     return false;
752 
753   // A definition cannot be preempted from an executable.
754   if (!GV->isDeclarationForLinker())
755     return true;
756 
757   // Most PIC code sequences that assume that a symbol is local cannot produce a
758   // 0 if it turns out the symbol is undefined. While this is ABI and relocation
759   // depended, it seems worth it to handle it here.
760   if (RM == llvm::Reloc::PIC_ && GV->hasExternalWeakLinkage())
761     return false;
762 
763   // PPC has no copy relocations and cannot use a plt entry as a symbol address.
764   llvm::Triple::ArchType Arch = TT.getArch();
765   if (Arch == llvm::Triple::ppc || Arch == llvm::Triple::ppc64 ||
766       Arch == llvm::Triple::ppc64le)
767     return false;
768 
769   // If we can use copy relocations we can assume it is local.
770   if (auto *Var = dyn_cast<llvm::GlobalVariable>(GV))
771     if (!Var->isThreadLocal() &&
772         (RM == llvm::Reloc::Static || CGOpts.PIECopyRelocations))
773       return true;
774 
775   // If we can use a plt entry as the symbol address we can assume it
776   // is local.
777   // FIXME: This should work for PIE, but the gold linker doesn't support it.
778   if (isa<llvm::Function>(GV) && !CGOpts.NoPLT && RM == llvm::Reloc::Static)
779     return true;
780 
781   // Otherwise don't assue it is local.
782   return false;
783 }
784 
785 void CodeGenModule::setDSOLocal(llvm::GlobalValue *GV) const {
786   GV->setDSOLocal(shouldAssumeDSOLocal(*this, GV));
787 }
788 
789 void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV,
790                                           GlobalDecl GD) const {
791   const auto *D = dyn_cast<NamedDecl>(GD.getDecl());
792   // C++ destructors have a few C++ ABI specific special cases.
793   if (const auto *Dtor = dyn_cast_or_null<CXXDestructorDecl>(D)) {
794     getCXXABI().setCXXDestructorDLLStorage(GV, Dtor, GD.getDtorType());
795     return;
796   }
797   setDLLImportDLLExport(GV, D);
798 }
799 
800 void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV,
801                                           const NamedDecl *D) const {
802   if (D && D->isExternallyVisible()) {
803     if (D->hasAttr<DLLImportAttr>())
804       GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass);
805     else if (D->hasAttr<DLLExportAttr>() && !GV->isDeclarationForLinker())
806       GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass);
807   }
808 }
809 
810 void CodeGenModule::setGVProperties(llvm::GlobalValue *GV,
811                                     GlobalDecl GD) const {
812   setDLLImportDLLExport(GV, GD);
813   setGlobalVisibilityAndLocal(GV, dyn_cast<NamedDecl>(GD.getDecl()));
814 }
815 
816 void CodeGenModule::setGVProperties(llvm::GlobalValue *GV,
817                                     const NamedDecl *D) const {
818   setDLLImportDLLExport(GV, D);
819   setGlobalVisibilityAndLocal(GV, D);
820 }
821 
822 void CodeGenModule::setGlobalVisibilityAndLocal(llvm::GlobalValue *GV,
823                                                 const NamedDecl *D) const {
824   setGlobalVisibility(GV, D);
825   setDSOLocal(GV);
826 }
827 
828 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(StringRef S) {
829   return llvm::StringSwitch<llvm::GlobalVariable::ThreadLocalMode>(S)
830       .Case("global-dynamic", llvm::GlobalVariable::GeneralDynamicTLSModel)
831       .Case("local-dynamic", llvm::GlobalVariable::LocalDynamicTLSModel)
832       .Case("initial-exec", llvm::GlobalVariable::InitialExecTLSModel)
833       .Case("local-exec", llvm::GlobalVariable::LocalExecTLSModel);
834 }
835 
836 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(
837     CodeGenOptions::TLSModel M) {
838   switch (M) {
839   case CodeGenOptions::GeneralDynamicTLSModel:
840     return llvm::GlobalVariable::GeneralDynamicTLSModel;
841   case CodeGenOptions::LocalDynamicTLSModel:
842     return llvm::GlobalVariable::LocalDynamicTLSModel;
843   case CodeGenOptions::InitialExecTLSModel:
844     return llvm::GlobalVariable::InitialExecTLSModel;
845   case CodeGenOptions::LocalExecTLSModel:
846     return llvm::GlobalVariable::LocalExecTLSModel;
847   }
848   llvm_unreachable("Invalid TLS model!");
849 }
850 
851 void CodeGenModule::setTLSMode(llvm::GlobalValue *GV, const VarDecl &D) const {
852   assert(D.getTLSKind() && "setting TLS mode on non-TLS var!");
853 
854   llvm::GlobalValue::ThreadLocalMode TLM;
855   TLM = GetLLVMTLSModel(CodeGenOpts.getDefaultTLSModel());
856 
857   // Override the TLS model if it is explicitly specified.
858   if (const TLSModelAttr *Attr = D.getAttr<TLSModelAttr>()) {
859     TLM = GetLLVMTLSModel(Attr->getModel());
860   }
861 
862   GV->setThreadLocalMode(TLM);
863 }
864 
865 static void AppendTargetMangling(const CodeGenModule &CGM,
866                                  const TargetAttr *Attr, raw_ostream &Out) {
867   if (Attr->isDefaultVersion())
868     return;
869 
870   Out << '.';
871   const auto &Target = CGM.getTarget();
872   TargetAttr::ParsedTargetAttr Info =
873       Attr->parse([&Target](StringRef LHS, StringRef RHS) {
874                     // Multiversioning doesn't allow "no-${feature}", so we can
875                     // only have "+" prefixes here.
876                     assert(LHS.startswith("+") && RHS.startswith("+") &&
877                            "Features should always have a prefix.");
878                     return Target.multiVersionSortPriority(LHS.substr(1)) >
879                            Target.multiVersionSortPriority(RHS.substr(1));
880                   });
881 
882   bool IsFirst = true;
883 
884   if (!Info.Architecture.empty()) {
885     IsFirst = false;
886     Out << "arch_" << Info.Architecture;
887   }
888 
889   for (StringRef Feat : Info.Features) {
890     if (!IsFirst)
891       Out << '_';
892     IsFirst = false;
893     Out << Feat.substr(1);
894   }
895 }
896 
897 static std::string getMangledNameImpl(const CodeGenModule &CGM, GlobalDecl GD,
898                                       const NamedDecl *ND,
899                                       bool OmitTargetMangling = false) {
900   SmallString<256> Buffer;
901   llvm::raw_svector_ostream Out(Buffer);
902   MangleContext &MC = CGM.getCXXABI().getMangleContext();
903   if (MC.shouldMangleDeclName(ND)) {
904     llvm::raw_svector_ostream Out(Buffer);
905     if (const auto *D = dyn_cast<CXXConstructorDecl>(ND))
906       MC.mangleCXXCtor(D, GD.getCtorType(), Out);
907     else if (const auto *D = dyn_cast<CXXDestructorDecl>(ND))
908       MC.mangleCXXDtor(D, GD.getDtorType(), Out);
909     else
910       MC.mangleName(ND, Out);
911   } else {
912     IdentifierInfo *II = ND->getIdentifier();
913     assert(II && "Attempt to mangle unnamed decl.");
914     const auto *FD = dyn_cast<FunctionDecl>(ND);
915 
916     if (FD &&
917         FD->getType()->castAs<FunctionType>()->getCallConv() == CC_X86RegCall) {
918       llvm::raw_svector_ostream Out(Buffer);
919       Out << "__regcall3__" << II->getName();
920     } else {
921       Out << II->getName();
922     }
923   }
924 
925   if (const auto *FD = dyn_cast<FunctionDecl>(ND))
926     if (FD->isMultiVersion() && !OmitTargetMangling)
927       AppendTargetMangling(CGM, FD->getAttr<TargetAttr>(), Out);
928   return Out.str();
929 }
930 
931 void CodeGenModule::UpdateMultiVersionNames(GlobalDecl GD,
932                                             const FunctionDecl *FD) {
933   if (!FD->isMultiVersion())
934     return;
935 
936   // Get the name of what this would be without the 'target' attribute.  This
937   // allows us to lookup the version that was emitted when this wasn't a
938   // multiversion function.
939   std::string NonTargetName =
940       getMangledNameImpl(*this, GD, FD, /*OmitTargetMangling=*/true);
941   GlobalDecl OtherGD;
942   if (lookupRepresentativeDecl(NonTargetName, OtherGD)) {
943     assert(OtherGD.getCanonicalDecl()
944                .getDecl()
945                ->getAsFunction()
946                ->isMultiVersion() &&
947            "Other GD should now be a multiversioned function");
948     // OtherFD is the version of this function that was mangled BEFORE
949     // becoming a MultiVersion function.  It potentially needs to be updated.
950     const FunctionDecl *OtherFD =
951         OtherGD.getCanonicalDecl().getDecl()->getAsFunction();
952     std::string OtherName = getMangledNameImpl(*this, OtherGD, OtherFD);
953     // This is so that if the initial version was already the 'default'
954     // version, we don't try to update it.
955     if (OtherName != NonTargetName) {
956       // Remove instead of erase, since others may have stored the StringRef
957       // to this.
958       const auto ExistingRecord = Manglings.find(NonTargetName);
959       if (ExistingRecord != std::end(Manglings))
960         Manglings.remove(&(*ExistingRecord));
961       auto Result = Manglings.insert(std::make_pair(OtherName, OtherGD));
962       MangledDeclNames[OtherGD.getCanonicalDecl()] = Result.first->first();
963       if (llvm::GlobalValue *Entry = GetGlobalValue(NonTargetName))
964         Entry->setName(OtherName);
965     }
966   }
967 }
968 
969 StringRef CodeGenModule::getMangledName(GlobalDecl GD) {
970   GlobalDecl CanonicalGD = GD.getCanonicalDecl();
971 
972   // Some ABIs don't have constructor variants.  Make sure that base and
973   // complete constructors get mangled the same.
974   if (const auto *CD = dyn_cast<CXXConstructorDecl>(CanonicalGD.getDecl())) {
975     if (!getTarget().getCXXABI().hasConstructorVariants()) {
976       CXXCtorType OrigCtorType = GD.getCtorType();
977       assert(OrigCtorType == Ctor_Base || OrigCtorType == Ctor_Complete);
978       if (OrigCtorType == Ctor_Base)
979         CanonicalGD = GlobalDecl(CD, Ctor_Complete);
980     }
981   }
982 
983   auto FoundName = MangledDeclNames.find(CanonicalGD);
984   if (FoundName != MangledDeclNames.end())
985     return FoundName->second;
986 
987 
988   // Keep the first result in the case of a mangling collision.
989   const auto *ND = cast<NamedDecl>(GD.getDecl());
990   auto Result =
991       Manglings.insert(std::make_pair(getMangledNameImpl(*this, GD, ND), GD));
992   return MangledDeclNames[CanonicalGD] = Result.first->first();
993 }
994 
995 StringRef CodeGenModule::getBlockMangledName(GlobalDecl GD,
996                                              const BlockDecl *BD) {
997   MangleContext &MangleCtx = getCXXABI().getMangleContext();
998   const Decl *D = GD.getDecl();
999 
1000   SmallString<256> Buffer;
1001   llvm::raw_svector_ostream Out(Buffer);
1002   if (!D)
1003     MangleCtx.mangleGlobalBlock(BD,
1004       dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()), Out);
1005   else if (const auto *CD = dyn_cast<CXXConstructorDecl>(D))
1006     MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out);
1007   else if (const auto *DD = dyn_cast<CXXDestructorDecl>(D))
1008     MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out);
1009   else
1010     MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out);
1011 
1012   auto Result = Manglings.insert(std::make_pair(Out.str(), BD));
1013   return Result.first->first();
1014 }
1015 
1016 llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) {
1017   return getModule().getNamedValue(Name);
1018 }
1019 
1020 /// AddGlobalCtor - Add a function to the list that will be called before
1021 /// main() runs.
1022 void CodeGenModule::AddGlobalCtor(llvm::Function *Ctor, int Priority,
1023                                   llvm::Constant *AssociatedData) {
1024   // FIXME: Type coercion of void()* types.
1025   GlobalCtors.push_back(Structor(Priority, Ctor, AssociatedData));
1026 }
1027 
1028 /// AddGlobalDtor - Add a function to the list that will be called
1029 /// when the module is unloaded.
1030 void CodeGenModule::AddGlobalDtor(llvm::Function *Dtor, int Priority) {
1031   if (CodeGenOpts.RegisterGlobalDtorsWithAtExit) {
1032     DtorsUsingAtExit[Priority].push_back(Dtor);
1033     return;
1034   }
1035 
1036   // FIXME: Type coercion of void()* types.
1037   GlobalDtors.push_back(Structor(Priority, Dtor, nullptr));
1038 }
1039 
1040 void CodeGenModule::EmitCtorList(CtorList &Fns, const char *GlobalName) {
1041   if (Fns.empty()) return;
1042 
1043   // Ctor function type is void()*.
1044   llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false);
1045   llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy);
1046 
1047   // Get the type of a ctor entry, { i32, void ()*, i8* }.
1048   llvm::StructType *CtorStructTy = llvm::StructType::get(
1049       Int32Ty, llvm::PointerType::getUnqual(CtorFTy), VoidPtrTy);
1050 
1051   // Construct the constructor and destructor arrays.
1052   ConstantInitBuilder builder(*this);
1053   auto ctors = builder.beginArray(CtorStructTy);
1054   for (const auto &I : Fns) {
1055     auto ctor = ctors.beginStruct(CtorStructTy);
1056     ctor.addInt(Int32Ty, I.Priority);
1057     ctor.add(llvm::ConstantExpr::getBitCast(I.Initializer, CtorPFTy));
1058     if (I.AssociatedData)
1059       ctor.add(llvm::ConstantExpr::getBitCast(I.AssociatedData, VoidPtrTy));
1060     else
1061       ctor.addNullPointer(VoidPtrTy);
1062     ctor.finishAndAddTo(ctors);
1063   }
1064 
1065   auto list =
1066     ctors.finishAndCreateGlobal(GlobalName, getPointerAlign(),
1067                                 /*constant*/ false,
1068                                 llvm::GlobalValue::AppendingLinkage);
1069 
1070   // The LTO linker doesn't seem to like it when we set an alignment
1071   // on appending variables.  Take it off as a workaround.
1072   list->setAlignment(0);
1073 
1074   Fns.clear();
1075 }
1076 
1077 llvm::GlobalValue::LinkageTypes
1078 CodeGenModule::getFunctionLinkage(GlobalDecl GD) {
1079   const auto *D = cast<FunctionDecl>(GD.getDecl());
1080 
1081   GVALinkage Linkage = getContext().GetGVALinkageForFunction(D);
1082 
1083   if (const auto *Dtor = dyn_cast<CXXDestructorDecl>(D))
1084     return getCXXABI().getCXXDestructorLinkage(Linkage, Dtor, GD.getDtorType());
1085 
1086   if (isa<CXXConstructorDecl>(D) &&
1087       cast<CXXConstructorDecl>(D)->isInheritingConstructor() &&
1088       Context.getTargetInfo().getCXXABI().isMicrosoft()) {
1089     // Our approach to inheriting constructors is fundamentally different from
1090     // that used by the MS ABI, so keep our inheriting constructor thunks
1091     // internal rather than trying to pick an unambiguous mangling for them.
1092     return llvm::GlobalValue::InternalLinkage;
1093   }
1094 
1095   return getLLVMLinkageForDeclarator(D, Linkage, /*isConstantVariable=*/false);
1096 }
1097 
1098 llvm::ConstantInt *CodeGenModule::CreateCrossDsoCfiTypeId(llvm::Metadata *MD) {
1099   llvm::MDString *MDS = dyn_cast<llvm::MDString>(MD);
1100   if (!MDS) return nullptr;
1101 
1102   return llvm::ConstantInt::get(Int64Ty, llvm::MD5Hash(MDS->getString()));
1103 }
1104 
1105 void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D,
1106                                               const CGFunctionInfo &Info,
1107                                               llvm::Function *F) {
1108   unsigned CallingConv;
1109   llvm::AttributeList PAL;
1110   ConstructAttributeList(F->getName(), Info, D, PAL, CallingConv, false);
1111   F->setAttributes(PAL);
1112   F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv));
1113 }
1114 
1115 /// Determines whether the language options require us to model
1116 /// unwind exceptions.  We treat -fexceptions as mandating this
1117 /// except under the fragile ObjC ABI with only ObjC exceptions
1118 /// enabled.  This means, for example, that C with -fexceptions
1119 /// enables this.
1120 static bool hasUnwindExceptions(const LangOptions &LangOpts) {
1121   // If exceptions are completely disabled, obviously this is false.
1122   if (!LangOpts.Exceptions) return false;
1123 
1124   // If C++ exceptions are enabled, this is true.
1125   if (LangOpts.CXXExceptions) return true;
1126 
1127   // If ObjC exceptions are enabled, this depends on the ABI.
1128   if (LangOpts.ObjCExceptions) {
1129     return LangOpts.ObjCRuntime.hasUnwindExceptions();
1130   }
1131 
1132   return true;
1133 }
1134 
1135 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D,
1136                                                            llvm::Function *F) {
1137   llvm::AttrBuilder B;
1138 
1139   if (CodeGenOpts.UnwindTables)
1140     B.addAttribute(llvm::Attribute::UWTable);
1141 
1142   if (!hasUnwindExceptions(LangOpts))
1143     B.addAttribute(llvm::Attribute::NoUnwind);
1144 
1145   if (!D || !D->hasAttr<NoStackProtectorAttr>()) {
1146     if (LangOpts.getStackProtector() == LangOptions::SSPOn)
1147       B.addAttribute(llvm::Attribute::StackProtect);
1148     else if (LangOpts.getStackProtector() == LangOptions::SSPStrong)
1149       B.addAttribute(llvm::Attribute::StackProtectStrong);
1150     else if (LangOpts.getStackProtector() == LangOptions::SSPReq)
1151       B.addAttribute(llvm::Attribute::StackProtectReq);
1152   }
1153 
1154   if (!D) {
1155     // If we don't have a declaration to control inlining, the function isn't
1156     // explicitly marked as alwaysinline for semantic reasons, and inlining is
1157     // disabled, mark the function as noinline.
1158     if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline) &&
1159         CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining)
1160       B.addAttribute(llvm::Attribute::NoInline);
1161 
1162     F->addAttributes(llvm::AttributeList::FunctionIndex, B);
1163     return;
1164   }
1165 
1166   // Track whether we need to add the optnone LLVM attribute,
1167   // starting with the default for this optimization level.
1168   bool ShouldAddOptNone =
1169       !CodeGenOpts.DisableO0ImplyOptNone && CodeGenOpts.OptimizationLevel == 0;
1170   // We can't add optnone in the following cases, it won't pass the verifier.
1171   ShouldAddOptNone &= !D->hasAttr<MinSizeAttr>();
1172   ShouldAddOptNone &= !F->hasFnAttribute(llvm::Attribute::AlwaysInline);
1173   ShouldAddOptNone &= !D->hasAttr<AlwaysInlineAttr>();
1174 
1175   if (ShouldAddOptNone || D->hasAttr<OptimizeNoneAttr>()) {
1176     B.addAttribute(llvm::Attribute::OptimizeNone);
1177 
1178     // OptimizeNone implies noinline; we should not be inlining such functions.
1179     B.addAttribute(llvm::Attribute::NoInline);
1180     assert(!F->hasFnAttribute(llvm::Attribute::AlwaysInline) &&
1181            "OptimizeNone and AlwaysInline on same function!");
1182 
1183     // We still need to handle naked functions even though optnone subsumes
1184     // much of their semantics.
1185     if (D->hasAttr<NakedAttr>())
1186       B.addAttribute(llvm::Attribute::Naked);
1187 
1188     // OptimizeNone wins over OptimizeForSize and MinSize.
1189     F->removeFnAttr(llvm::Attribute::OptimizeForSize);
1190     F->removeFnAttr(llvm::Attribute::MinSize);
1191   } else if (D->hasAttr<NakedAttr>()) {
1192     // Naked implies noinline: we should not be inlining such functions.
1193     B.addAttribute(llvm::Attribute::Naked);
1194     B.addAttribute(llvm::Attribute::NoInline);
1195   } else if (D->hasAttr<NoDuplicateAttr>()) {
1196     B.addAttribute(llvm::Attribute::NoDuplicate);
1197   } else if (D->hasAttr<NoInlineAttr>()) {
1198     B.addAttribute(llvm::Attribute::NoInline);
1199   } else if (D->hasAttr<AlwaysInlineAttr>() &&
1200              !F->hasFnAttribute(llvm::Attribute::NoInline)) {
1201     // (noinline wins over always_inline, and we can't specify both in IR)
1202     B.addAttribute(llvm::Attribute::AlwaysInline);
1203   } else if (CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining) {
1204     // If we're not inlining, then force everything that isn't always_inline to
1205     // carry an explicit noinline attribute.
1206     if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline))
1207       B.addAttribute(llvm::Attribute::NoInline);
1208   } else {
1209     // Otherwise, propagate the inline hint attribute and potentially use its
1210     // absence to mark things as noinline.
1211     if (auto *FD = dyn_cast<FunctionDecl>(D)) {
1212       if (any_of(FD->redecls(), [&](const FunctionDecl *Redecl) {
1213             return Redecl->isInlineSpecified();
1214           })) {
1215         B.addAttribute(llvm::Attribute::InlineHint);
1216       } else if (CodeGenOpts.getInlining() ==
1217                      CodeGenOptions::OnlyHintInlining &&
1218                  !FD->isInlined() &&
1219                  !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) {
1220         B.addAttribute(llvm::Attribute::NoInline);
1221       }
1222     }
1223   }
1224 
1225   // Add other optimization related attributes if we are optimizing this
1226   // function.
1227   if (!D->hasAttr<OptimizeNoneAttr>()) {
1228     if (D->hasAttr<ColdAttr>()) {
1229       if (!ShouldAddOptNone)
1230         B.addAttribute(llvm::Attribute::OptimizeForSize);
1231       B.addAttribute(llvm::Attribute::Cold);
1232     }
1233 
1234     if (D->hasAttr<MinSizeAttr>())
1235       B.addAttribute(llvm::Attribute::MinSize);
1236   }
1237 
1238   F->addAttributes(llvm::AttributeList::FunctionIndex, B);
1239 
1240   unsigned alignment = D->getMaxAlignment() / Context.getCharWidth();
1241   if (alignment)
1242     F->setAlignment(alignment);
1243 
1244   if (!D->hasAttr<AlignedAttr>())
1245     if (LangOpts.FunctionAlignment)
1246       F->setAlignment(1 << LangOpts.FunctionAlignment);
1247 
1248   // Some C++ ABIs require 2-byte alignment for member functions, in order to
1249   // reserve a bit for differentiating between virtual and non-virtual member
1250   // functions. If the current target's C++ ABI requires this and this is a
1251   // member function, set its alignment accordingly.
1252   if (getTarget().getCXXABI().areMemberFunctionsAligned()) {
1253     if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D))
1254       F->setAlignment(2);
1255   }
1256 
1257   // In the cross-dso CFI mode, we want !type attributes on definitions only.
1258   if (CodeGenOpts.SanitizeCfiCrossDso)
1259     if (auto *FD = dyn_cast<FunctionDecl>(D))
1260       CreateFunctionTypeMetadata(FD, F);
1261 }
1262 
1263 void CodeGenModule::SetCommonAttributes(GlobalDecl GD, llvm::GlobalValue *GV) {
1264   const Decl *D = GD.getDecl();
1265   if (dyn_cast_or_null<NamedDecl>(D))
1266     setGVProperties(GV, GD);
1267   else
1268     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
1269 
1270   if (D && D->hasAttr<UsedAttr>())
1271     addUsedGlobal(GV);
1272 }
1273 
1274 bool CodeGenModule::GetCPUAndFeaturesAttributes(const Decl *D,
1275                                                 llvm::AttrBuilder &Attrs) {
1276   // Add target-cpu and target-features attributes to functions. If
1277   // we have a decl for the function and it has a target attribute then
1278   // parse that and add it to the feature set.
1279   StringRef TargetCPU = getTarget().getTargetOpts().CPU;
1280   std::vector<std::string> Features;
1281   const auto *FD = dyn_cast_or_null<FunctionDecl>(D);
1282   FD = FD ? FD->getMostRecentDecl() : FD;
1283   const auto *TD = FD ? FD->getAttr<TargetAttr>() : nullptr;
1284   bool AddedAttr = false;
1285   if (TD) {
1286     llvm::StringMap<bool> FeatureMap;
1287     getFunctionFeatureMap(FeatureMap, FD);
1288 
1289     // Produce the canonical string for this set of features.
1290     for (const llvm::StringMap<bool>::value_type &Entry : FeatureMap)
1291       Features.push_back((Entry.getValue() ? "+" : "-") + Entry.getKey().str());
1292 
1293     // Now add the target-cpu and target-features to the function.
1294     // While we populated the feature map above, we still need to
1295     // get and parse the target attribute so we can get the cpu for
1296     // the function.
1297     TargetAttr::ParsedTargetAttr ParsedAttr = TD->parse();
1298     if (ParsedAttr.Architecture != "" &&
1299         getTarget().isValidCPUName(ParsedAttr.Architecture))
1300       TargetCPU = ParsedAttr.Architecture;
1301   } else {
1302     // Otherwise just add the existing target cpu and target features to the
1303     // function.
1304     Features = getTarget().getTargetOpts().Features;
1305   }
1306 
1307   if (TargetCPU != "") {
1308     Attrs.addAttribute("target-cpu", TargetCPU);
1309     AddedAttr = true;
1310   }
1311   if (!Features.empty()) {
1312     llvm::sort(Features.begin(), Features.end());
1313     Attrs.addAttribute("target-features", llvm::join(Features, ","));
1314     AddedAttr = true;
1315   }
1316 
1317   return AddedAttr;
1318 }
1319 
1320 void CodeGenModule::setNonAliasAttributes(GlobalDecl GD,
1321                                           llvm::GlobalObject *GO) {
1322   const Decl *D = GD.getDecl();
1323   SetCommonAttributes(GD, GO);
1324 
1325   if (D) {
1326     if (auto *GV = dyn_cast<llvm::GlobalVariable>(GO)) {
1327       if (auto *SA = D->getAttr<PragmaClangBSSSectionAttr>())
1328         GV->addAttribute("bss-section", SA->getName());
1329       if (auto *SA = D->getAttr<PragmaClangDataSectionAttr>())
1330         GV->addAttribute("data-section", SA->getName());
1331       if (auto *SA = D->getAttr<PragmaClangRodataSectionAttr>())
1332         GV->addAttribute("rodata-section", SA->getName());
1333     }
1334 
1335     if (auto *F = dyn_cast<llvm::Function>(GO)) {
1336       if (auto *SA = D->getAttr<PragmaClangTextSectionAttr>())
1337         if (!D->getAttr<SectionAttr>())
1338           F->addFnAttr("implicit-section-name", SA->getName());
1339 
1340       llvm::AttrBuilder Attrs;
1341       if (GetCPUAndFeaturesAttributes(D, Attrs)) {
1342         // We know that GetCPUAndFeaturesAttributes will always have the
1343         // newest set, since it has the newest possible FunctionDecl, so the
1344         // new ones should replace the old.
1345         F->removeFnAttr("target-cpu");
1346         F->removeFnAttr("target-features");
1347         F->addAttributes(llvm::AttributeList::FunctionIndex, Attrs);
1348       }
1349     }
1350 
1351     if (const SectionAttr *SA = D->getAttr<SectionAttr>())
1352       GO->setSection(SA->getName());
1353   }
1354 
1355   getTargetCodeGenInfo().setTargetAttributes(D, GO, *this);
1356 }
1357 
1358 void CodeGenModule::SetInternalFunctionAttributes(GlobalDecl GD,
1359                                                   llvm::Function *F,
1360                                                   const CGFunctionInfo &FI) {
1361   const Decl *D = GD.getDecl();
1362   SetLLVMFunctionAttributes(D, FI, F);
1363   SetLLVMFunctionAttributesForDefinition(D, F);
1364 
1365   F->setLinkage(llvm::Function::InternalLinkage);
1366 
1367   setNonAliasAttributes(GD, F);
1368 }
1369 
1370 static void setLinkageForGV(llvm::GlobalValue *GV, const NamedDecl *ND) {
1371   // Set linkage and visibility in case we never see a definition.
1372   LinkageInfo LV = ND->getLinkageAndVisibility();
1373   // Don't set internal linkage on declarations.
1374   // "extern_weak" is overloaded in LLVM; we probably should have
1375   // separate linkage types for this.
1376   if (isExternallyVisible(LV.getLinkage()) &&
1377       (ND->hasAttr<WeakAttr>() || ND->isWeakImported()))
1378     GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage);
1379 }
1380 
1381 void CodeGenModule::CreateFunctionTypeMetadata(const FunctionDecl *FD,
1382                                                llvm::Function *F) {
1383   // Only if we are checking indirect calls.
1384   if (!LangOpts.Sanitize.has(SanitizerKind::CFIICall))
1385     return;
1386 
1387   // Non-static class methods are handled via vtable pointer checks elsewhere.
1388   if (isa<CXXMethodDecl>(FD) && !cast<CXXMethodDecl>(FD)->isStatic())
1389     return;
1390 
1391   // Additionally, if building with cross-DSO support...
1392   if (CodeGenOpts.SanitizeCfiCrossDso) {
1393     // Skip available_externally functions. They won't be codegen'ed in the
1394     // current module anyway.
1395     if (getContext().GetGVALinkageForFunction(FD) == GVA_AvailableExternally)
1396       return;
1397   }
1398 
1399   llvm::Metadata *MD = CreateMetadataIdentifierForType(FD->getType());
1400   F->addTypeMetadata(0, MD);
1401   F->addTypeMetadata(0, CreateMetadataIdentifierGeneralized(FD->getType()));
1402 
1403   // Emit a hash-based bit set entry for cross-DSO calls.
1404   if (CodeGenOpts.SanitizeCfiCrossDso)
1405     if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD))
1406       F->addTypeMetadata(0, llvm::ConstantAsMetadata::get(CrossDsoTypeId));
1407 }
1408 
1409 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD, llvm::Function *F,
1410                                           bool IsIncompleteFunction,
1411                                           bool IsThunk) {
1412 
1413   if (llvm::Intrinsic::ID IID = F->getIntrinsicID()) {
1414     // If this is an intrinsic function, set the function's attributes
1415     // to the intrinsic's attributes.
1416     F->setAttributes(llvm::Intrinsic::getAttributes(getLLVMContext(), IID));
1417     return;
1418   }
1419 
1420   const auto *FD = cast<FunctionDecl>(GD.getDecl());
1421 
1422   if (!IsIncompleteFunction) {
1423     SetLLVMFunctionAttributes(FD, getTypes().arrangeGlobalDeclaration(GD), F);
1424     // Setup target-specific attributes.
1425     if (F->isDeclaration())
1426       getTargetCodeGenInfo().setTargetAttributes(FD, F, *this);
1427   }
1428 
1429   // Add the Returned attribute for "this", except for iOS 5 and earlier
1430   // where substantial code, including the libstdc++ dylib, was compiled with
1431   // GCC and does not actually return "this".
1432   if (!IsThunk && getCXXABI().HasThisReturn(GD) &&
1433       !(getTriple().isiOS() && getTriple().isOSVersionLT(6))) {
1434     assert(!F->arg_empty() &&
1435            F->arg_begin()->getType()
1436              ->canLosslesslyBitCastTo(F->getReturnType()) &&
1437            "unexpected this return");
1438     F->addAttribute(1, llvm::Attribute::Returned);
1439   }
1440 
1441   // Only a few attributes are set on declarations; these may later be
1442   // overridden by a definition.
1443 
1444   setLinkageForGV(F, FD);
1445   setGVProperties(F, FD);
1446 
1447   if (FD->getAttr<PragmaClangTextSectionAttr>()) {
1448     F->addFnAttr("implicit-section-name");
1449   }
1450 
1451   if (const SectionAttr *SA = FD->getAttr<SectionAttr>())
1452     F->setSection(SA->getName());
1453 
1454   if (FD->isReplaceableGlobalAllocationFunction()) {
1455     // A replaceable global allocation function does not act like a builtin by
1456     // default, only if it is invoked by a new-expression or delete-expression.
1457     F->addAttribute(llvm::AttributeList::FunctionIndex,
1458                     llvm::Attribute::NoBuiltin);
1459 
1460     // A sane operator new returns a non-aliasing pointer.
1461     // FIXME: Also add NonNull attribute to the return value
1462     // for the non-nothrow forms?
1463     auto Kind = FD->getDeclName().getCXXOverloadedOperator();
1464     if (getCodeGenOpts().AssumeSaneOperatorNew &&
1465         (Kind == OO_New || Kind == OO_Array_New))
1466       F->addAttribute(llvm::AttributeList::ReturnIndex,
1467                       llvm::Attribute::NoAlias);
1468   }
1469 
1470   if (isa<CXXConstructorDecl>(FD) || isa<CXXDestructorDecl>(FD))
1471     F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
1472   else if (const auto *MD = dyn_cast<CXXMethodDecl>(FD))
1473     if (MD->isVirtual())
1474       F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
1475 
1476   // Don't emit entries for function declarations in the cross-DSO mode. This
1477   // is handled with better precision by the receiving DSO.
1478   if (!CodeGenOpts.SanitizeCfiCrossDso)
1479     CreateFunctionTypeMetadata(FD, F);
1480 
1481   if (getLangOpts().OpenMP && FD->hasAttr<OMPDeclareSimdDeclAttr>())
1482     getOpenMPRuntime().emitDeclareSimdFunction(FD, F);
1483 }
1484 
1485 void CodeGenModule::addUsedGlobal(llvm::GlobalValue *GV) {
1486   assert(!GV->isDeclaration() &&
1487          "Only globals with definition can force usage.");
1488   LLVMUsed.emplace_back(GV);
1489 }
1490 
1491 void CodeGenModule::addCompilerUsedGlobal(llvm::GlobalValue *GV) {
1492   assert(!GV->isDeclaration() &&
1493          "Only globals with definition can force usage.");
1494   LLVMCompilerUsed.emplace_back(GV);
1495 }
1496 
1497 static void emitUsed(CodeGenModule &CGM, StringRef Name,
1498                      std::vector<llvm::WeakTrackingVH> &List) {
1499   // Don't create llvm.used if there is no need.
1500   if (List.empty())
1501     return;
1502 
1503   // Convert List to what ConstantArray needs.
1504   SmallVector<llvm::Constant*, 8> UsedArray;
1505   UsedArray.resize(List.size());
1506   for (unsigned i = 0, e = List.size(); i != e; ++i) {
1507     UsedArray[i] =
1508         llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(
1509             cast<llvm::Constant>(&*List[i]), CGM.Int8PtrTy);
1510   }
1511 
1512   if (UsedArray.empty())
1513     return;
1514   llvm::ArrayType *ATy = llvm::ArrayType::get(CGM.Int8PtrTy, UsedArray.size());
1515 
1516   auto *GV = new llvm::GlobalVariable(
1517       CGM.getModule(), ATy, false, llvm::GlobalValue::AppendingLinkage,
1518       llvm::ConstantArray::get(ATy, UsedArray), Name);
1519 
1520   GV->setSection("llvm.metadata");
1521 }
1522 
1523 void CodeGenModule::emitLLVMUsed() {
1524   emitUsed(*this, "llvm.used", LLVMUsed);
1525   emitUsed(*this, "llvm.compiler.used", LLVMCompilerUsed);
1526 }
1527 
1528 void CodeGenModule::AppendLinkerOptions(StringRef Opts) {
1529   auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opts);
1530   LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
1531 }
1532 
1533 void CodeGenModule::AddDetectMismatch(StringRef Name, StringRef Value) {
1534   llvm::SmallString<32> Opt;
1535   getTargetCodeGenInfo().getDetectMismatchOption(Name, Value, Opt);
1536   auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt);
1537   LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
1538 }
1539 
1540 void CodeGenModule::AddELFLibDirective(StringRef Lib) {
1541   auto &C = getLLVMContext();
1542   LinkerOptionsMetadata.push_back(llvm::MDNode::get(
1543       C, {llvm::MDString::get(C, "lib"), llvm::MDString::get(C, Lib)}));
1544 }
1545 
1546 void CodeGenModule::AddDependentLib(StringRef Lib) {
1547   llvm::SmallString<24> Opt;
1548   getTargetCodeGenInfo().getDependentLibraryOption(Lib, Opt);
1549   auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt);
1550   LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
1551 }
1552 
1553 /// Add link options implied by the given module, including modules
1554 /// it depends on, using a postorder walk.
1555 static void addLinkOptionsPostorder(CodeGenModule &CGM, Module *Mod,
1556                                     SmallVectorImpl<llvm::MDNode *> &Metadata,
1557                                     llvm::SmallPtrSet<Module *, 16> &Visited) {
1558   // Import this module's parent.
1559   if (Mod->Parent && Visited.insert(Mod->Parent).second) {
1560     addLinkOptionsPostorder(CGM, Mod->Parent, Metadata, Visited);
1561   }
1562 
1563   // Import this module's dependencies.
1564   for (unsigned I = Mod->Imports.size(); I > 0; --I) {
1565     if (Visited.insert(Mod->Imports[I - 1]).second)
1566       addLinkOptionsPostorder(CGM, Mod->Imports[I-1], Metadata, Visited);
1567   }
1568 
1569   // Add linker options to link against the libraries/frameworks
1570   // described by this module.
1571   llvm::LLVMContext &Context = CGM.getLLVMContext();
1572 
1573   // For modules that use export_as for linking, use that module
1574   // name instead.
1575   if (Mod->UseExportAsModuleLinkName)
1576     return;
1577 
1578   for (unsigned I = Mod->LinkLibraries.size(); I > 0; --I) {
1579     // Link against a framework.  Frameworks are currently Darwin only, so we
1580     // don't to ask TargetCodeGenInfo for the spelling of the linker option.
1581     if (Mod->LinkLibraries[I-1].IsFramework) {
1582       llvm::Metadata *Args[2] = {
1583           llvm::MDString::get(Context, "-framework"),
1584           llvm::MDString::get(Context, Mod->LinkLibraries[I - 1].Library)};
1585 
1586       Metadata.push_back(llvm::MDNode::get(Context, Args));
1587       continue;
1588     }
1589 
1590     // Link against a library.
1591     llvm::SmallString<24> Opt;
1592     CGM.getTargetCodeGenInfo().getDependentLibraryOption(
1593       Mod->LinkLibraries[I-1].Library, Opt);
1594     auto *OptString = llvm::MDString::get(Context, Opt);
1595     Metadata.push_back(llvm::MDNode::get(Context, OptString));
1596   }
1597 }
1598 
1599 void CodeGenModule::EmitModuleLinkOptions() {
1600   // Collect the set of all of the modules we want to visit to emit link
1601   // options, which is essentially the imported modules and all of their
1602   // non-explicit child modules.
1603   llvm::SetVector<clang::Module *> LinkModules;
1604   llvm::SmallPtrSet<clang::Module *, 16> Visited;
1605   SmallVector<clang::Module *, 16> Stack;
1606 
1607   // Seed the stack with imported modules.
1608   for (Module *M : ImportedModules) {
1609     // Do not add any link flags when an implementation TU of a module imports
1610     // a header of that same module.
1611     if (M->getTopLevelModuleName() == getLangOpts().CurrentModule &&
1612         !getLangOpts().isCompilingModule())
1613       continue;
1614     if (Visited.insert(M).second)
1615       Stack.push_back(M);
1616   }
1617 
1618   // Find all of the modules to import, making a little effort to prune
1619   // non-leaf modules.
1620   while (!Stack.empty()) {
1621     clang::Module *Mod = Stack.pop_back_val();
1622 
1623     bool AnyChildren = false;
1624 
1625     // Visit the submodules of this module.
1626     for (clang::Module::submodule_iterator Sub = Mod->submodule_begin(),
1627                                         SubEnd = Mod->submodule_end();
1628          Sub != SubEnd; ++Sub) {
1629       // Skip explicit children; they need to be explicitly imported to be
1630       // linked against.
1631       if ((*Sub)->IsExplicit)
1632         continue;
1633 
1634       if (Visited.insert(*Sub).second) {
1635         Stack.push_back(*Sub);
1636         AnyChildren = true;
1637       }
1638     }
1639 
1640     // We didn't find any children, so add this module to the list of
1641     // modules to link against.
1642     if (!AnyChildren) {
1643       LinkModules.insert(Mod);
1644     }
1645   }
1646 
1647   // Add link options for all of the imported modules in reverse topological
1648   // order.  We don't do anything to try to order import link flags with respect
1649   // to linker options inserted by things like #pragma comment().
1650   SmallVector<llvm::MDNode *, 16> MetadataArgs;
1651   Visited.clear();
1652   for (Module *M : LinkModules)
1653     if (Visited.insert(M).second)
1654       addLinkOptionsPostorder(*this, M, MetadataArgs, Visited);
1655   std::reverse(MetadataArgs.begin(), MetadataArgs.end());
1656   LinkerOptionsMetadata.append(MetadataArgs.begin(), MetadataArgs.end());
1657 
1658   // Add the linker options metadata flag.
1659   auto *NMD = getModule().getOrInsertNamedMetadata("llvm.linker.options");
1660   for (auto *MD : LinkerOptionsMetadata)
1661     NMD->addOperand(MD);
1662 }
1663 
1664 void CodeGenModule::EmitDeferred() {
1665   // Emit code for any potentially referenced deferred decls.  Since a
1666   // previously unused static decl may become used during the generation of code
1667   // for a static function, iterate until no changes are made.
1668 
1669   if (!DeferredVTables.empty()) {
1670     EmitDeferredVTables();
1671 
1672     // Emitting a vtable doesn't directly cause more vtables to
1673     // become deferred, although it can cause functions to be
1674     // emitted that then need those vtables.
1675     assert(DeferredVTables.empty());
1676   }
1677 
1678   // Stop if we're out of both deferred vtables and deferred declarations.
1679   if (DeferredDeclsToEmit.empty())
1680     return;
1681 
1682   // Grab the list of decls to emit. If EmitGlobalDefinition schedules more
1683   // work, it will not interfere with this.
1684   std::vector<GlobalDecl> CurDeclsToEmit;
1685   CurDeclsToEmit.swap(DeferredDeclsToEmit);
1686 
1687   for (GlobalDecl &D : CurDeclsToEmit) {
1688     // We should call GetAddrOfGlobal with IsForDefinition set to true in order
1689     // to get GlobalValue with exactly the type we need, not something that
1690     // might had been created for another decl with the same mangled name but
1691     // different type.
1692     llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>(
1693         GetAddrOfGlobal(D, ForDefinition));
1694 
1695     // In case of different address spaces, we may still get a cast, even with
1696     // IsForDefinition equal to true. Query mangled names table to get
1697     // GlobalValue.
1698     if (!GV)
1699       GV = GetGlobalValue(getMangledName(D));
1700 
1701     // Make sure GetGlobalValue returned non-null.
1702     assert(GV);
1703 
1704     // Check to see if we've already emitted this.  This is necessary
1705     // for a couple of reasons: first, decls can end up in the
1706     // deferred-decls queue multiple times, and second, decls can end
1707     // up with definitions in unusual ways (e.g. by an extern inline
1708     // function acquiring a strong function redefinition).  Just
1709     // ignore these cases.
1710     if (!GV->isDeclaration())
1711       continue;
1712 
1713     // Otherwise, emit the definition and move on to the next one.
1714     EmitGlobalDefinition(D, GV);
1715 
1716     // If we found out that we need to emit more decls, do that recursively.
1717     // This has the advantage that the decls are emitted in a DFS and related
1718     // ones are close together, which is convenient for testing.
1719     if (!DeferredVTables.empty() || !DeferredDeclsToEmit.empty()) {
1720       EmitDeferred();
1721       assert(DeferredVTables.empty() && DeferredDeclsToEmit.empty());
1722     }
1723   }
1724 }
1725 
1726 void CodeGenModule::EmitVTablesOpportunistically() {
1727   // Try to emit external vtables as available_externally if they have emitted
1728   // all inlined virtual functions.  It runs after EmitDeferred() and therefore
1729   // is not allowed to create new references to things that need to be emitted
1730   // lazily. Note that it also uses fact that we eagerly emitting RTTI.
1731 
1732   assert((OpportunisticVTables.empty() || shouldOpportunisticallyEmitVTables())
1733          && "Only emit opportunistic vtables with optimizations");
1734 
1735   for (const CXXRecordDecl *RD : OpportunisticVTables) {
1736     assert(getVTables().isVTableExternal(RD) &&
1737            "This queue should only contain external vtables");
1738     if (getCXXABI().canSpeculativelyEmitVTable(RD))
1739       VTables.GenerateClassData(RD);
1740   }
1741   OpportunisticVTables.clear();
1742 }
1743 
1744 void CodeGenModule::EmitGlobalAnnotations() {
1745   if (Annotations.empty())
1746     return;
1747 
1748   // Create a new global variable for the ConstantStruct in the Module.
1749   llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get(
1750     Annotations[0]->getType(), Annotations.size()), Annotations);
1751   auto *gv = new llvm::GlobalVariable(getModule(), Array->getType(), false,
1752                                       llvm::GlobalValue::AppendingLinkage,
1753                                       Array, "llvm.global.annotations");
1754   gv->setSection(AnnotationSection);
1755 }
1756 
1757 llvm::Constant *CodeGenModule::EmitAnnotationString(StringRef Str) {
1758   llvm::Constant *&AStr = AnnotationStrings[Str];
1759   if (AStr)
1760     return AStr;
1761 
1762   // Not found yet, create a new global.
1763   llvm::Constant *s = llvm::ConstantDataArray::getString(getLLVMContext(), Str);
1764   auto *gv =
1765       new llvm::GlobalVariable(getModule(), s->getType(), true,
1766                                llvm::GlobalValue::PrivateLinkage, s, ".str");
1767   gv->setSection(AnnotationSection);
1768   gv->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
1769   AStr = gv;
1770   return gv;
1771 }
1772 
1773 llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) {
1774   SourceManager &SM = getContext().getSourceManager();
1775   PresumedLoc PLoc = SM.getPresumedLoc(Loc);
1776   if (PLoc.isValid())
1777     return EmitAnnotationString(PLoc.getFilename());
1778   return EmitAnnotationString(SM.getBufferName(Loc));
1779 }
1780 
1781 llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) {
1782   SourceManager &SM = getContext().getSourceManager();
1783   PresumedLoc PLoc = SM.getPresumedLoc(L);
1784   unsigned LineNo = PLoc.isValid() ? PLoc.getLine() :
1785     SM.getExpansionLineNumber(L);
1786   return llvm::ConstantInt::get(Int32Ty, LineNo);
1787 }
1788 
1789 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV,
1790                                                 const AnnotateAttr *AA,
1791                                                 SourceLocation L) {
1792   // Get the globals for file name, annotation, and the line number.
1793   llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()),
1794                  *UnitGV = EmitAnnotationUnit(L),
1795                  *LineNoCst = EmitAnnotationLineNo(L);
1796 
1797   // Create the ConstantStruct for the global annotation.
1798   llvm::Constant *Fields[4] = {
1799     llvm::ConstantExpr::getBitCast(GV, Int8PtrTy),
1800     llvm::ConstantExpr::getBitCast(AnnoGV, Int8PtrTy),
1801     llvm::ConstantExpr::getBitCast(UnitGV, Int8PtrTy),
1802     LineNoCst
1803   };
1804   return llvm::ConstantStruct::getAnon(Fields);
1805 }
1806 
1807 void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D,
1808                                          llvm::GlobalValue *GV) {
1809   assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
1810   // Get the struct elements for these annotations.
1811   for (const auto *I : D->specific_attrs<AnnotateAttr>())
1812     Annotations.push_back(EmitAnnotateAttr(GV, I, D->getLocation()));
1813 }
1814 
1815 bool CodeGenModule::isInSanitizerBlacklist(SanitizerMask Kind,
1816                                            llvm::Function *Fn,
1817                                            SourceLocation Loc) const {
1818   const auto &SanitizerBL = getContext().getSanitizerBlacklist();
1819   // Blacklist by function name.
1820   if (SanitizerBL.isBlacklistedFunction(Kind, Fn->getName()))
1821     return true;
1822   // Blacklist by location.
1823   if (Loc.isValid())
1824     return SanitizerBL.isBlacklistedLocation(Kind, Loc);
1825   // If location is unknown, this may be a compiler-generated function. Assume
1826   // it's located in the main file.
1827   auto &SM = Context.getSourceManager();
1828   if (const auto *MainFile = SM.getFileEntryForID(SM.getMainFileID())) {
1829     return SanitizerBL.isBlacklistedFile(Kind, MainFile->getName());
1830   }
1831   return false;
1832 }
1833 
1834 bool CodeGenModule::isInSanitizerBlacklist(llvm::GlobalVariable *GV,
1835                                            SourceLocation Loc, QualType Ty,
1836                                            StringRef Category) const {
1837   // For now globals can be blacklisted only in ASan and KASan.
1838   const SanitizerMask EnabledAsanMask = LangOpts.Sanitize.Mask &
1839       (SanitizerKind::Address | SanitizerKind::KernelAddress |
1840        SanitizerKind::HWAddress | SanitizerKind::KernelHWAddress);
1841   if (!EnabledAsanMask)
1842     return false;
1843   const auto &SanitizerBL = getContext().getSanitizerBlacklist();
1844   if (SanitizerBL.isBlacklistedGlobal(EnabledAsanMask, GV->getName(), Category))
1845     return true;
1846   if (SanitizerBL.isBlacklistedLocation(EnabledAsanMask, Loc, Category))
1847     return true;
1848   // Check global type.
1849   if (!Ty.isNull()) {
1850     // Drill down the array types: if global variable of a fixed type is
1851     // blacklisted, we also don't instrument arrays of them.
1852     while (auto AT = dyn_cast<ArrayType>(Ty.getTypePtr()))
1853       Ty = AT->getElementType();
1854     Ty = Ty.getCanonicalType().getUnqualifiedType();
1855     // We allow to blacklist only record types (classes, structs etc.)
1856     if (Ty->isRecordType()) {
1857       std::string TypeStr = Ty.getAsString(getContext().getPrintingPolicy());
1858       if (SanitizerBL.isBlacklistedType(EnabledAsanMask, TypeStr, Category))
1859         return true;
1860     }
1861   }
1862   return false;
1863 }
1864 
1865 bool CodeGenModule::imbueXRayAttrs(llvm::Function *Fn, SourceLocation Loc,
1866                                    StringRef Category) const {
1867   if (!LangOpts.XRayInstrument)
1868     return false;
1869 
1870   const auto &XRayFilter = getContext().getXRayFilter();
1871   using ImbueAttr = XRayFunctionFilter::ImbueAttribute;
1872   auto Attr = ImbueAttr::NONE;
1873   if (Loc.isValid())
1874     Attr = XRayFilter.shouldImbueLocation(Loc, Category);
1875   if (Attr == ImbueAttr::NONE)
1876     Attr = XRayFilter.shouldImbueFunction(Fn->getName());
1877   switch (Attr) {
1878   case ImbueAttr::NONE:
1879     return false;
1880   case ImbueAttr::ALWAYS:
1881     Fn->addFnAttr("function-instrument", "xray-always");
1882     break;
1883   case ImbueAttr::ALWAYS_ARG1:
1884     Fn->addFnAttr("function-instrument", "xray-always");
1885     Fn->addFnAttr("xray-log-args", "1");
1886     break;
1887   case ImbueAttr::NEVER:
1888     Fn->addFnAttr("function-instrument", "xray-never");
1889     break;
1890   }
1891   return true;
1892 }
1893 
1894 bool CodeGenModule::MustBeEmitted(const ValueDecl *Global) {
1895   // Never defer when EmitAllDecls is specified.
1896   if (LangOpts.EmitAllDecls)
1897     return true;
1898 
1899   return getContext().DeclMustBeEmitted(Global);
1900 }
1901 
1902 bool CodeGenModule::MayBeEmittedEagerly(const ValueDecl *Global) {
1903   if (const auto *FD = dyn_cast<FunctionDecl>(Global))
1904     if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
1905       // Implicit template instantiations may change linkage if they are later
1906       // explicitly instantiated, so they should not be emitted eagerly.
1907       return false;
1908   if (const auto *VD = dyn_cast<VarDecl>(Global))
1909     if (Context.getInlineVariableDefinitionKind(VD) ==
1910         ASTContext::InlineVariableDefinitionKind::WeakUnknown)
1911       // A definition of an inline constexpr static data member may change
1912       // linkage later if it's redeclared outside the class.
1913       return false;
1914   // If OpenMP is enabled and threadprivates must be generated like TLS, delay
1915   // codegen for global variables, because they may be marked as threadprivate.
1916   if (LangOpts.OpenMP && LangOpts.OpenMPUseTLS &&
1917       getContext().getTargetInfo().isTLSSupported() && isa<VarDecl>(Global))
1918     return false;
1919 
1920   return true;
1921 }
1922 
1923 ConstantAddress CodeGenModule::GetAddrOfUuidDescriptor(
1924     const CXXUuidofExpr* E) {
1925   // Sema has verified that IIDSource has a __declspec(uuid()), and that its
1926   // well-formed.
1927   StringRef Uuid = E->getUuidStr();
1928   std::string Name = "_GUID_" + Uuid.lower();
1929   std::replace(Name.begin(), Name.end(), '-', '_');
1930 
1931   // The UUID descriptor should be pointer aligned.
1932   CharUnits Alignment = CharUnits::fromQuantity(PointerAlignInBytes);
1933 
1934   // Look for an existing global.
1935   if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name))
1936     return ConstantAddress(GV, Alignment);
1937 
1938   llvm::Constant *Init = EmitUuidofInitializer(Uuid);
1939   assert(Init && "failed to initialize as constant");
1940 
1941   auto *GV = new llvm::GlobalVariable(
1942       getModule(), Init->getType(),
1943       /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name);
1944   if (supportsCOMDAT())
1945     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
1946   setDSOLocal(GV);
1947   return ConstantAddress(GV, Alignment);
1948 }
1949 
1950 ConstantAddress CodeGenModule::GetWeakRefReference(const ValueDecl *VD) {
1951   const AliasAttr *AA = VD->getAttr<AliasAttr>();
1952   assert(AA && "No alias?");
1953 
1954   CharUnits Alignment = getContext().getDeclAlign(VD);
1955   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType());
1956 
1957   // See if there is already something with the target's name in the module.
1958   llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee());
1959   if (Entry) {
1960     unsigned AS = getContext().getTargetAddressSpace(VD->getType());
1961     auto Ptr = llvm::ConstantExpr::getBitCast(Entry, DeclTy->getPointerTo(AS));
1962     return ConstantAddress(Ptr, Alignment);
1963   }
1964 
1965   llvm::Constant *Aliasee;
1966   if (isa<llvm::FunctionType>(DeclTy))
1967     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy,
1968                                       GlobalDecl(cast<FunctionDecl>(VD)),
1969                                       /*ForVTable=*/false);
1970   else
1971     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
1972                                     llvm::PointerType::getUnqual(DeclTy),
1973                                     nullptr);
1974 
1975   auto *F = cast<llvm::GlobalValue>(Aliasee);
1976   F->setLinkage(llvm::Function::ExternalWeakLinkage);
1977   WeakRefReferences.insert(F);
1978 
1979   return ConstantAddress(Aliasee, Alignment);
1980 }
1981 
1982 void CodeGenModule::EmitGlobal(GlobalDecl GD) {
1983   const auto *Global = cast<ValueDecl>(GD.getDecl());
1984 
1985   // Weak references don't produce any output by themselves.
1986   if (Global->hasAttr<WeakRefAttr>())
1987     return;
1988 
1989   // If this is an alias definition (which otherwise looks like a declaration)
1990   // emit it now.
1991   if (Global->hasAttr<AliasAttr>())
1992     return EmitAliasDefinition(GD);
1993 
1994   // IFunc like an alias whose value is resolved at runtime by calling resolver.
1995   if (Global->hasAttr<IFuncAttr>())
1996     return emitIFuncDefinition(GD);
1997 
1998   // If this is CUDA, be selective about which declarations we emit.
1999   if (LangOpts.CUDA) {
2000     if (LangOpts.CUDAIsDevice) {
2001       if (!Global->hasAttr<CUDADeviceAttr>() &&
2002           !Global->hasAttr<CUDAGlobalAttr>() &&
2003           !Global->hasAttr<CUDAConstantAttr>() &&
2004           !Global->hasAttr<CUDASharedAttr>())
2005         return;
2006     } else {
2007       // We need to emit host-side 'shadows' for all global
2008       // device-side variables because the CUDA runtime needs their
2009       // size and host-side address in order to provide access to
2010       // their device-side incarnations.
2011 
2012       // So device-only functions are the only things we skip.
2013       if (isa<FunctionDecl>(Global) && !Global->hasAttr<CUDAHostAttr>() &&
2014           Global->hasAttr<CUDADeviceAttr>())
2015         return;
2016 
2017       assert((isa<FunctionDecl>(Global) || isa<VarDecl>(Global)) &&
2018              "Expected Variable or Function");
2019     }
2020   }
2021 
2022   if (LangOpts.OpenMP) {
2023     // If this is OpenMP device, check if it is legal to emit this global
2024     // normally.
2025     if (OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(GD))
2026       return;
2027     if (auto *DRD = dyn_cast<OMPDeclareReductionDecl>(Global)) {
2028       if (MustBeEmitted(Global))
2029         EmitOMPDeclareReduction(DRD);
2030       return;
2031     }
2032   }
2033 
2034   // Ignore declarations, they will be emitted on their first use.
2035   if (const auto *FD = dyn_cast<FunctionDecl>(Global)) {
2036     // Forward declarations are emitted lazily on first use.
2037     if (!FD->doesThisDeclarationHaveABody()) {
2038       if (!FD->doesDeclarationForceExternallyVisibleDefinition())
2039         return;
2040 
2041       StringRef MangledName = getMangledName(GD);
2042 
2043       // Compute the function info and LLVM type.
2044       const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
2045       llvm::Type *Ty = getTypes().GetFunctionType(FI);
2046 
2047       GetOrCreateLLVMFunction(MangledName, Ty, GD, /*ForVTable=*/false,
2048                               /*DontDefer=*/false);
2049       return;
2050     }
2051   } else {
2052     const auto *VD = cast<VarDecl>(Global);
2053     assert(VD->isFileVarDecl() && "Cannot emit local var decl as global.");
2054     // We need to emit device-side global CUDA variables even if a
2055     // variable does not have a definition -- we still need to define
2056     // host-side shadow for it.
2057     bool MustEmitForCuda = LangOpts.CUDA && !LangOpts.CUDAIsDevice &&
2058                            !VD->hasDefinition() &&
2059                            (VD->hasAttr<CUDAConstantAttr>() ||
2060                             VD->hasAttr<CUDADeviceAttr>());
2061     if (!MustEmitForCuda &&
2062         VD->isThisDeclarationADefinition() != VarDecl::Definition &&
2063         !Context.isMSStaticDataMemberInlineDefinition(VD)) {
2064       // If this declaration may have caused an inline variable definition to
2065       // change linkage, make sure that it's emitted.
2066       if (Context.getInlineVariableDefinitionKind(VD) ==
2067           ASTContext::InlineVariableDefinitionKind::Strong)
2068         GetAddrOfGlobalVar(VD);
2069       return;
2070     }
2071   }
2072 
2073   // Defer code generation to first use when possible, e.g. if this is an inline
2074   // function. If the global must always be emitted, do it eagerly if possible
2075   // to benefit from cache locality.
2076   if (MustBeEmitted(Global) && MayBeEmittedEagerly(Global)) {
2077     // Emit the definition if it can't be deferred.
2078     EmitGlobalDefinition(GD);
2079     return;
2080   }
2081 
2082   // If we're deferring emission of a C++ variable with an
2083   // initializer, remember the order in which it appeared in the file.
2084   if (getLangOpts().CPlusPlus && isa<VarDecl>(Global) &&
2085       cast<VarDecl>(Global)->hasInit()) {
2086     DelayedCXXInitPosition[Global] = CXXGlobalInits.size();
2087     CXXGlobalInits.push_back(nullptr);
2088   }
2089 
2090   StringRef MangledName = getMangledName(GD);
2091   if (GetGlobalValue(MangledName) != nullptr) {
2092     // The value has already been used and should therefore be emitted.
2093     addDeferredDeclToEmit(GD);
2094   } else if (MustBeEmitted(Global)) {
2095     // The value must be emitted, but cannot be emitted eagerly.
2096     assert(!MayBeEmittedEagerly(Global));
2097     addDeferredDeclToEmit(GD);
2098   } else {
2099     // Otherwise, remember that we saw a deferred decl with this name.  The
2100     // first use of the mangled name will cause it to move into
2101     // DeferredDeclsToEmit.
2102     DeferredDecls[MangledName] = GD;
2103   }
2104 }
2105 
2106 // Check if T is a class type with a destructor that's not dllimport.
2107 static bool HasNonDllImportDtor(QualType T) {
2108   if (const auto *RT = T->getBaseElementTypeUnsafe()->getAs<RecordType>())
2109     if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl()))
2110       if (RD->getDestructor() && !RD->getDestructor()->hasAttr<DLLImportAttr>())
2111         return true;
2112 
2113   return false;
2114 }
2115 
2116 namespace {
2117   struct FunctionIsDirectlyRecursive :
2118     public RecursiveASTVisitor<FunctionIsDirectlyRecursive> {
2119     const StringRef Name;
2120     const Builtin::Context &BI;
2121     bool Result;
2122     FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C) :
2123       Name(N), BI(C), Result(false) {
2124     }
2125     typedef RecursiveASTVisitor<FunctionIsDirectlyRecursive> Base;
2126 
2127     bool TraverseCallExpr(CallExpr *E) {
2128       const FunctionDecl *FD = E->getDirectCallee();
2129       if (!FD)
2130         return true;
2131       AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
2132       if (Attr && Name == Attr->getLabel()) {
2133         Result = true;
2134         return false;
2135       }
2136       unsigned BuiltinID = FD->getBuiltinID();
2137       if (!BuiltinID || !BI.isLibFunction(BuiltinID))
2138         return true;
2139       StringRef BuiltinName = BI.getName(BuiltinID);
2140       if (BuiltinName.startswith("__builtin_") &&
2141           Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) {
2142         Result = true;
2143         return false;
2144       }
2145       return true;
2146     }
2147   };
2148 
2149   // Make sure we're not referencing non-imported vars or functions.
2150   struct DLLImportFunctionVisitor
2151       : public RecursiveASTVisitor<DLLImportFunctionVisitor> {
2152     bool SafeToInline = true;
2153 
2154     bool shouldVisitImplicitCode() const { return true; }
2155 
2156     bool VisitVarDecl(VarDecl *VD) {
2157       if (VD->getTLSKind()) {
2158         // A thread-local variable cannot be imported.
2159         SafeToInline = false;
2160         return SafeToInline;
2161       }
2162 
2163       // A variable definition might imply a destructor call.
2164       if (VD->isThisDeclarationADefinition())
2165         SafeToInline = !HasNonDllImportDtor(VD->getType());
2166 
2167       return SafeToInline;
2168     }
2169 
2170     bool VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) {
2171       if (const auto *D = E->getTemporary()->getDestructor())
2172         SafeToInline = D->hasAttr<DLLImportAttr>();
2173       return SafeToInline;
2174     }
2175 
2176     bool VisitDeclRefExpr(DeclRefExpr *E) {
2177       ValueDecl *VD = E->getDecl();
2178       if (isa<FunctionDecl>(VD))
2179         SafeToInline = VD->hasAttr<DLLImportAttr>();
2180       else if (VarDecl *V = dyn_cast<VarDecl>(VD))
2181         SafeToInline = !V->hasGlobalStorage() || V->hasAttr<DLLImportAttr>();
2182       return SafeToInline;
2183     }
2184 
2185     bool VisitCXXConstructExpr(CXXConstructExpr *E) {
2186       SafeToInline = E->getConstructor()->hasAttr<DLLImportAttr>();
2187       return SafeToInline;
2188     }
2189 
2190     bool VisitCXXMemberCallExpr(CXXMemberCallExpr *E) {
2191       CXXMethodDecl *M = E->getMethodDecl();
2192       if (!M) {
2193         // Call through a pointer to member function. This is safe to inline.
2194         SafeToInline = true;
2195       } else {
2196         SafeToInline = M->hasAttr<DLLImportAttr>();
2197       }
2198       return SafeToInline;
2199     }
2200 
2201     bool VisitCXXDeleteExpr(CXXDeleteExpr *E) {
2202       SafeToInline = E->getOperatorDelete()->hasAttr<DLLImportAttr>();
2203       return SafeToInline;
2204     }
2205 
2206     bool VisitCXXNewExpr(CXXNewExpr *E) {
2207       SafeToInline = E->getOperatorNew()->hasAttr<DLLImportAttr>();
2208       return SafeToInline;
2209     }
2210   };
2211 }
2212 
2213 // isTriviallyRecursive - Check if this function calls another
2214 // decl that, because of the asm attribute or the other decl being a builtin,
2215 // ends up pointing to itself.
2216 bool
2217 CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) {
2218   StringRef Name;
2219   if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) {
2220     // asm labels are a special kind of mangling we have to support.
2221     AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
2222     if (!Attr)
2223       return false;
2224     Name = Attr->getLabel();
2225   } else {
2226     Name = FD->getName();
2227   }
2228 
2229   FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo);
2230   Walker.TraverseFunctionDecl(const_cast<FunctionDecl*>(FD));
2231   return Walker.Result;
2232 }
2233 
2234 bool CodeGenModule::shouldEmitFunction(GlobalDecl GD) {
2235   if (getFunctionLinkage(GD) != llvm::Function::AvailableExternallyLinkage)
2236     return true;
2237   const auto *F = cast<FunctionDecl>(GD.getDecl());
2238   if (CodeGenOpts.OptimizationLevel == 0 && !F->hasAttr<AlwaysInlineAttr>())
2239     return false;
2240 
2241   if (F->hasAttr<DLLImportAttr>()) {
2242     // Check whether it would be safe to inline this dllimport function.
2243     DLLImportFunctionVisitor Visitor;
2244     Visitor.TraverseFunctionDecl(const_cast<FunctionDecl*>(F));
2245     if (!Visitor.SafeToInline)
2246       return false;
2247 
2248     if (const CXXDestructorDecl *Dtor = dyn_cast<CXXDestructorDecl>(F)) {
2249       // Implicit destructor invocations aren't captured in the AST, so the
2250       // check above can't see them. Check for them manually here.
2251       for (const Decl *Member : Dtor->getParent()->decls())
2252         if (isa<FieldDecl>(Member))
2253           if (HasNonDllImportDtor(cast<FieldDecl>(Member)->getType()))
2254             return false;
2255       for (const CXXBaseSpecifier &B : Dtor->getParent()->bases())
2256         if (HasNonDllImportDtor(B.getType()))
2257           return false;
2258     }
2259   }
2260 
2261   // PR9614. Avoid cases where the source code is lying to us. An available
2262   // externally function should have an equivalent function somewhere else,
2263   // but a function that calls itself is clearly not equivalent to the real
2264   // implementation.
2265   // This happens in glibc's btowc and in some configure checks.
2266   return !isTriviallyRecursive(F);
2267 }
2268 
2269 bool CodeGenModule::shouldOpportunisticallyEmitVTables() {
2270   return CodeGenOpts.OptimizationLevel > 0;
2271 }
2272 
2273 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD, llvm::GlobalValue *GV) {
2274   const auto *D = cast<ValueDecl>(GD.getDecl());
2275 
2276   PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(),
2277                                  Context.getSourceManager(),
2278                                  "Generating code for declaration");
2279 
2280   if (isa<FunctionDecl>(D)) {
2281     // At -O0, don't generate IR for functions with available_externally
2282     // linkage.
2283     if (!shouldEmitFunction(GD))
2284       return;
2285 
2286     if (const auto *Method = dyn_cast<CXXMethodDecl>(D)) {
2287       // Make sure to emit the definition(s) before we emit the thunks.
2288       // This is necessary for the generation of certain thunks.
2289       if (const auto *CD = dyn_cast<CXXConstructorDecl>(Method))
2290         ABI->emitCXXStructor(CD, getFromCtorType(GD.getCtorType()));
2291       else if (const auto *DD = dyn_cast<CXXDestructorDecl>(Method))
2292         ABI->emitCXXStructor(DD, getFromDtorType(GD.getDtorType()));
2293       else
2294         EmitGlobalFunctionDefinition(GD, GV);
2295 
2296       if (Method->isVirtual())
2297         getVTables().EmitThunks(GD);
2298 
2299       return;
2300     }
2301 
2302     return EmitGlobalFunctionDefinition(GD, GV);
2303   }
2304 
2305   if (const auto *VD = dyn_cast<VarDecl>(D))
2306     return EmitGlobalVarDefinition(VD, !VD->hasDefinition());
2307 
2308   llvm_unreachable("Invalid argument to EmitGlobalDefinition()");
2309 }
2310 
2311 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
2312                                                       llvm::Function *NewFn);
2313 
2314 void CodeGenModule::emitMultiVersionFunctions() {
2315   for (GlobalDecl GD : MultiVersionFuncs) {
2316     SmallVector<CodeGenFunction::MultiVersionResolverOption, 10> Options;
2317     const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
2318     getContext().forEachMultiversionedFunctionVersion(
2319         FD, [this, &GD, &Options](const FunctionDecl *CurFD) {
2320           GlobalDecl CurGD{
2321               (CurFD->isDefined() ? CurFD->getDefinition() : CurFD)};
2322           StringRef MangledName = getMangledName(CurGD);
2323           llvm::Constant *Func = GetGlobalValue(MangledName);
2324           if (!Func) {
2325             if (CurFD->isDefined()) {
2326               EmitGlobalFunctionDefinition(CurGD, nullptr);
2327               Func = GetGlobalValue(MangledName);
2328             } else {
2329               const CGFunctionInfo &FI =
2330                   getTypes().arrangeGlobalDeclaration(GD);
2331               llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
2332               Func = GetAddrOfFunction(CurGD, Ty, /*ForVTable=*/false,
2333                                        /*DontDefer=*/false, ForDefinition);
2334             }
2335             assert(Func && "This should have just been created");
2336           }
2337           Options.emplace_back(getTarget(), cast<llvm::Function>(Func),
2338                                CurFD->getAttr<TargetAttr>()->parse());
2339         });
2340 
2341     llvm::Function *ResolverFunc = cast<llvm::Function>(
2342         GetGlobalValue((getMangledName(GD) + ".resolver").str()));
2343     if (supportsCOMDAT())
2344       ResolverFunc->setComdat(
2345           getModule().getOrInsertComdat(ResolverFunc->getName()));
2346     std::stable_sort(
2347         Options.begin(), Options.end(),
2348         std::greater<CodeGenFunction::MultiVersionResolverOption>());
2349     CodeGenFunction CGF(*this);
2350     CGF.EmitMultiVersionResolver(ResolverFunc, Options);
2351   }
2352 }
2353 
2354 /// If an ifunc for the specified mangled name is not in the module, create and
2355 /// return an llvm IFunc Function with the specified type.
2356 llvm::Constant *
2357 CodeGenModule::GetOrCreateMultiVersionIFunc(GlobalDecl GD, llvm::Type *DeclTy,
2358                                             StringRef MangledName,
2359                                             const FunctionDecl *FD) {
2360   std::string IFuncName = (MangledName + ".ifunc").str();
2361   if (llvm::GlobalValue *IFuncGV = GetGlobalValue(IFuncName))
2362     return IFuncGV;
2363 
2364   // Since this is the first time we've created this IFunc, make sure
2365   // that we put this multiversioned function into the list to be
2366   // replaced later.
2367   MultiVersionFuncs.push_back(GD);
2368 
2369   std::string ResolverName = (MangledName + ".resolver").str();
2370   llvm::Type *ResolverType = llvm::FunctionType::get(
2371       llvm::PointerType::get(DeclTy,
2372                              Context.getTargetAddressSpace(FD->getType())),
2373       false);
2374   llvm::Constant *Resolver =
2375       GetOrCreateLLVMFunction(ResolverName, ResolverType, GlobalDecl{},
2376                               /*ForVTable=*/false);
2377   llvm::GlobalIFunc *GIF = llvm::GlobalIFunc::create(
2378       DeclTy, 0, llvm::Function::ExternalLinkage, "", Resolver, &getModule());
2379   GIF->setName(IFuncName);
2380   SetCommonAttributes(FD, GIF);
2381 
2382   return GIF;
2383 }
2384 
2385 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the
2386 /// module, create and return an llvm Function with the specified type. If there
2387 /// is something in the module with the specified name, return it potentially
2388 /// bitcasted to the right type.
2389 ///
2390 /// If D is non-null, it specifies a decl that correspond to this.  This is used
2391 /// to set the attributes on the function when it is first created.
2392 llvm::Constant *CodeGenModule::GetOrCreateLLVMFunction(
2393     StringRef MangledName, llvm::Type *Ty, GlobalDecl GD, bool ForVTable,
2394     bool DontDefer, bool IsThunk, llvm::AttributeList ExtraAttrs,
2395     ForDefinition_t IsForDefinition) {
2396   const Decl *D = GD.getDecl();
2397 
2398   // Any attempts to use a MultiVersion function should result in retrieving
2399   // the iFunc instead. Name Mangling will handle the rest of the changes.
2400   if (const FunctionDecl *FD = cast_or_null<FunctionDecl>(D)) {
2401     // For the device mark the function as one that should be emitted.
2402     if (getLangOpts().OpenMPIsDevice && OpenMPRuntime &&
2403         !OpenMPRuntime->markAsGlobalTarget(GD) && FD->isDefined() &&
2404         !DontDefer && !IsForDefinition) {
2405       const FunctionDecl *FDDef = FD->getDefinition();
2406       GlobalDecl GDDef;
2407       if (const auto *CD = dyn_cast<CXXConstructorDecl>(FDDef))
2408         GDDef = GlobalDecl(CD, GD.getCtorType());
2409       else if (const auto *DD = dyn_cast<CXXDestructorDecl>(FDDef))
2410         GDDef = GlobalDecl(DD, GD.getDtorType());
2411       else
2412         GDDef = GlobalDecl(FDDef);
2413       addDeferredDeclToEmit(GDDef);
2414     }
2415 
2416     if (FD->isMultiVersion() && FD->getAttr<TargetAttr>()->isDefaultVersion()) {
2417       UpdateMultiVersionNames(GD, FD);
2418       if (!IsForDefinition)
2419         return GetOrCreateMultiVersionIFunc(GD, Ty, MangledName, FD);
2420     }
2421   }
2422 
2423   // Lookup the entry, lazily creating it if necessary.
2424   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
2425   if (Entry) {
2426     if (WeakRefReferences.erase(Entry)) {
2427       const FunctionDecl *FD = cast_or_null<FunctionDecl>(D);
2428       if (FD && !FD->hasAttr<WeakAttr>())
2429         Entry->setLinkage(llvm::Function::ExternalLinkage);
2430     }
2431 
2432     // Handle dropped DLL attributes.
2433     if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>()) {
2434       Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
2435       setDSOLocal(Entry);
2436     }
2437 
2438     // If there are two attempts to define the same mangled name, issue an
2439     // error.
2440     if (IsForDefinition && !Entry->isDeclaration()) {
2441       GlobalDecl OtherGD;
2442       // Check that GD is not yet in DiagnosedConflictingDefinitions is required
2443       // to make sure that we issue an error only once.
2444       if (lookupRepresentativeDecl(MangledName, OtherGD) &&
2445           (GD.getCanonicalDecl().getDecl() !=
2446            OtherGD.getCanonicalDecl().getDecl()) &&
2447           DiagnosedConflictingDefinitions.insert(GD).second) {
2448         getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name)
2449             << MangledName;
2450         getDiags().Report(OtherGD.getDecl()->getLocation(),
2451                           diag::note_previous_definition);
2452       }
2453     }
2454 
2455     if ((isa<llvm::Function>(Entry) || isa<llvm::GlobalAlias>(Entry)) &&
2456         (Entry->getType()->getElementType() == Ty)) {
2457       return Entry;
2458     }
2459 
2460     // Make sure the result is of the correct type.
2461     // (If function is requested for a definition, we always need to create a new
2462     // function, not just return a bitcast.)
2463     if (!IsForDefinition)
2464       return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo());
2465   }
2466 
2467   // This function doesn't have a complete type (for example, the return
2468   // type is an incomplete struct). Use a fake type instead, and make
2469   // sure not to try to set attributes.
2470   bool IsIncompleteFunction = false;
2471 
2472   llvm::FunctionType *FTy;
2473   if (isa<llvm::FunctionType>(Ty)) {
2474     FTy = cast<llvm::FunctionType>(Ty);
2475   } else {
2476     FTy = llvm::FunctionType::get(VoidTy, false);
2477     IsIncompleteFunction = true;
2478   }
2479 
2480   llvm::Function *F =
2481       llvm::Function::Create(FTy, llvm::Function::ExternalLinkage,
2482                              Entry ? StringRef() : MangledName, &getModule());
2483 
2484   // If we already created a function with the same mangled name (but different
2485   // type) before, take its name and add it to the list of functions to be
2486   // replaced with F at the end of CodeGen.
2487   //
2488   // This happens if there is a prototype for a function (e.g. "int f()") and
2489   // then a definition of a different type (e.g. "int f(int x)").
2490   if (Entry) {
2491     F->takeName(Entry);
2492 
2493     // This might be an implementation of a function without a prototype, in
2494     // which case, try to do special replacement of calls which match the new
2495     // prototype.  The really key thing here is that we also potentially drop
2496     // arguments from the call site so as to make a direct call, which makes the
2497     // inliner happier and suppresses a number of optimizer warnings (!) about
2498     // dropping arguments.
2499     if (!Entry->use_empty()) {
2500       ReplaceUsesOfNonProtoTypeWithRealFunction(Entry, F);
2501       Entry->removeDeadConstantUsers();
2502     }
2503 
2504     llvm::Constant *BC = llvm::ConstantExpr::getBitCast(
2505         F, Entry->getType()->getElementType()->getPointerTo());
2506     addGlobalValReplacement(Entry, BC);
2507   }
2508 
2509   assert(F->getName() == MangledName && "name was uniqued!");
2510   if (D)
2511     SetFunctionAttributes(GD, F, IsIncompleteFunction, IsThunk);
2512   if (ExtraAttrs.hasAttributes(llvm::AttributeList::FunctionIndex)) {
2513     llvm::AttrBuilder B(ExtraAttrs, llvm::AttributeList::FunctionIndex);
2514     F->addAttributes(llvm::AttributeList::FunctionIndex, B);
2515   }
2516 
2517   if (!DontDefer) {
2518     // All MSVC dtors other than the base dtor are linkonce_odr and delegate to
2519     // each other bottoming out with the base dtor.  Therefore we emit non-base
2520     // dtors on usage, even if there is no dtor definition in the TU.
2521     if (D && isa<CXXDestructorDecl>(D) &&
2522         getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D),
2523                                            GD.getDtorType()))
2524       addDeferredDeclToEmit(GD);
2525 
2526     // This is the first use or definition of a mangled name.  If there is a
2527     // deferred decl with this name, remember that we need to emit it at the end
2528     // of the file.
2529     auto DDI = DeferredDecls.find(MangledName);
2530     if (DDI != DeferredDecls.end()) {
2531       // Move the potentially referenced deferred decl to the
2532       // DeferredDeclsToEmit list, and remove it from DeferredDecls (since we
2533       // don't need it anymore).
2534       addDeferredDeclToEmit(DDI->second);
2535       DeferredDecls.erase(DDI);
2536 
2537       // Otherwise, there are cases we have to worry about where we're
2538       // using a declaration for which we must emit a definition but where
2539       // we might not find a top-level definition:
2540       //   - member functions defined inline in their classes
2541       //   - friend functions defined inline in some class
2542       //   - special member functions with implicit definitions
2543       // If we ever change our AST traversal to walk into class methods,
2544       // this will be unnecessary.
2545       //
2546       // We also don't emit a definition for a function if it's going to be an
2547       // entry in a vtable, unless it's already marked as used.
2548     } else if (getLangOpts().CPlusPlus && D) {
2549       // Look for a declaration that's lexically in a record.
2550       for (const auto *FD = cast<FunctionDecl>(D)->getMostRecentDecl(); FD;
2551            FD = FD->getPreviousDecl()) {
2552         if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) {
2553           if (FD->doesThisDeclarationHaveABody()) {
2554             addDeferredDeclToEmit(GD.getWithDecl(FD));
2555             break;
2556           }
2557         }
2558       }
2559     }
2560   }
2561 
2562   // Make sure the result is of the requested type.
2563   if (!IsIncompleteFunction) {
2564     assert(F->getType()->getElementType() == Ty);
2565     return F;
2566   }
2567 
2568   llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
2569   return llvm::ConstantExpr::getBitCast(F, PTy);
2570 }
2571 
2572 /// GetAddrOfFunction - Return the address of the given function.  If Ty is
2573 /// non-null, then this function will use the specified type if it has to
2574 /// create it (this occurs when we see a definition of the function).
2575 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD,
2576                                                  llvm::Type *Ty,
2577                                                  bool ForVTable,
2578                                                  bool DontDefer,
2579                                               ForDefinition_t IsForDefinition) {
2580   // If there was no specific requested type, just convert it now.
2581   if (!Ty) {
2582     const auto *FD = cast<FunctionDecl>(GD.getDecl());
2583     auto CanonTy = Context.getCanonicalType(FD->getType());
2584     Ty = getTypes().ConvertFunctionType(CanonTy, FD);
2585   }
2586 
2587   // Devirtualized destructor calls may come through here instead of via
2588   // getAddrOfCXXStructor. Make sure we use the MS ABI base destructor instead
2589   // of the complete destructor when necessary.
2590   if (const auto *DD = dyn_cast<CXXDestructorDecl>(GD.getDecl())) {
2591     if (getTarget().getCXXABI().isMicrosoft() &&
2592         GD.getDtorType() == Dtor_Complete &&
2593         DD->getParent()->getNumVBases() == 0)
2594       GD = GlobalDecl(DD, Dtor_Base);
2595   }
2596 
2597   StringRef MangledName = getMangledName(GD);
2598   return GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable, DontDefer,
2599                                  /*IsThunk=*/false, llvm::AttributeList(),
2600                                  IsForDefinition);
2601 }
2602 
2603 static const FunctionDecl *
2604 GetRuntimeFunctionDecl(ASTContext &C, StringRef Name) {
2605   TranslationUnitDecl *TUDecl = C.getTranslationUnitDecl();
2606   DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl);
2607 
2608   IdentifierInfo &CII = C.Idents.get(Name);
2609   for (const auto &Result : DC->lookup(&CII))
2610     if (const auto FD = dyn_cast<FunctionDecl>(Result))
2611       return FD;
2612 
2613   if (!C.getLangOpts().CPlusPlus)
2614     return nullptr;
2615 
2616   // Demangle the premangled name from getTerminateFn()
2617   IdentifierInfo &CXXII =
2618       (Name == "_ZSt9terminatev" || Name == "?terminate@@YAXXZ")
2619           ? C.Idents.get("terminate")
2620           : C.Idents.get(Name);
2621 
2622   for (const auto &N : {"__cxxabiv1", "std"}) {
2623     IdentifierInfo &NS = C.Idents.get(N);
2624     for (const auto &Result : DC->lookup(&NS)) {
2625       NamespaceDecl *ND = dyn_cast<NamespaceDecl>(Result);
2626       if (auto LSD = dyn_cast<LinkageSpecDecl>(Result))
2627         for (const auto &Result : LSD->lookup(&NS))
2628           if ((ND = dyn_cast<NamespaceDecl>(Result)))
2629             break;
2630 
2631       if (ND)
2632         for (const auto &Result : ND->lookup(&CXXII))
2633           if (const auto *FD = dyn_cast<FunctionDecl>(Result))
2634             return FD;
2635     }
2636   }
2637 
2638   return nullptr;
2639 }
2640 
2641 /// CreateRuntimeFunction - Create a new runtime function with the specified
2642 /// type and name.
2643 llvm::Constant *
2644 CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy, StringRef Name,
2645                                      llvm::AttributeList ExtraAttrs,
2646                                      bool Local) {
2647   llvm::Constant *C =
2648       GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false,
2649                               /*DontDefer=*/false, /*IsThunk=*/false,
2650                               ExtraAttrs);
2651 
2652   if (auto *F = dyn_cast<llvm::Function>(C)) {
2653     if (F->empty()) {
2654       F->setCallingConv(getRuntimeCC());
2655 
2656       if (!Local && getTriple().isOSBinFormatCOFF() &&
2657           !getCodeGenOpts().LTOVisibilityPublicStd &&
2658           !getTriple().isWindowsGNUEnvironment()) {
2659         const FunctionDecl *FD = GetRuntimeFunctionDecl(Context, Name);
2660         if (!FD || FD->hasAttr<DLLImportAttr>()) {
2661           F->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass);
2662           F->setLinkage(llvm::GlobalValue::ExternalLinkage);
2663         }
2664       }
2665       setDSOLocal(F);
2666     }
2667   }
2668 
2669   return C;
2670 }
2671 
2672 /// CreateBuiltinFunction - Create a new builtin function with the specified
2673 /// type and name.
2674 llvm::Constant *
2675 CodeGenModule::CreateBuiltinFunction(llvm::FunctionType *FTy, StringRef Name,
2676                                      llvm::AttributeList ExtraAttrs) {
2677   return CreateRuntimeFunction(FTy, Name, ExtraAttrs, true);
2678 }
2679 
2680 /// isTypeConstant - Determine whether an object of this type can be emitted
2681 /// as a constant.
2682 ///
2683 /// If ExcludeCtor is true, the duration when the object's constructor runs
2684 /// will not be considered. The caller will need to verify that the object is
2685 /// not written to during its construction.
2686 bool CodeGenModule::isTypeConstant(QualType Ty, bool ExcludeCtor) {
2687   if (!Ty.isConstant(Context) && !Ty->isReferenceType())
2688     return false;
2689 
2690   if (Context.getLangOpts().CPlusPlus) {
2691     if (const CXXRecordDecl *Record
2692           = Context.getBaseElementType(Ty)->getAsCXXRecordDecl())
2693       return ExcludeCtor && !Record->hasMutableFields() &&
2694              Record->hasTrivialDestructor();
2695   }
2696 
2697   return true;
2698 }
2699 
2700 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module,
2701 /// create and return an llvm GlobalVariable with the specified type.  If there
2702 /// is something in the module with the specified name, return it potentially
2703 /// bitcasted to the right type.
2704 ///
2705 /// If D is non-null, it specifies a decl that correspond to this.  This is used
2706 /// to set the attributes on the global when it is first created.
2707 ///
2708 /// If IsForDefinition is true, it is guaranteed that an actual global with
2709 /// type Ty will be returned, not conversion of a variable with the same
2710 /// mangled name but some other type.
2711 llvm::Constant *
2712 CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName,
2713                                      llvm::PointerType *Ty,
2714                                      const VarDecl *D,
2715                                      ForDefinition_t IsForDefinition) {
2716   // Lookup the entry, lazily creating it if necessary.
2717   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
2718   if (Entry) {
2719     if (WeakRefReferences.erase(Entry)) {
2720       if (D && !D->hasAttr<WeakAttr>())
2721         Entry->setLinkage(llvm::Function::ExternalLinkage);
2722     }
2723 
2724     // Handle dropped DLL attributes.
2725     if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>())
2726       Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
2727 
2728     if (LangOpts.OpenMP && !LangOpts.OpenMPSimd && D)
2729       getOpenMPRuntime().registerTargetGlobalVariable(D, Entry);
2730 
2731     if (Entry->getType() == Ty)
2732       return Entry;
2733 
2734     // If there are two attempts to define the same mangled name, issue an
2735     // error.
2736     if (IsForDefinition && !Entry->isDeclaration()) {
2737       GlobalDecl OtherGD;
2738       const VarDecl *OtherD;
2739 
2740       // Check that D is not yet in DiagnosedConflictingDefinitions is required
2741       // to make sure that we issue an error only once.
2742       if (D && lookupRepresentativeDecl(MangledName, OtherGD) &&
2743           (D->getCanonicalDecl() != OtherGD.getCanonicalDecl().getDecl()) &&
2744           (OtherD = dyn_cast<VarDecl>(OtherGD.getDecl())) &&
2745           OtherD->hasInit() &&
2746           DiagnosedConflictingDefinitions.insert(D).second) {
2747         getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name)
2748             << MangledName;
2749         getDiags().Report(OtherGD.getDecl()->getLocation(),
2750                           diag::note_previous_definition);
2751       }
2752     }
2753 
2754     // Make sure the result is of the correct type.
2755     if (Entry->getType()->getAddressSpace() != Ty->getAddressSpace())
2756       return llvm::ConstantExpr::getAddrSpaceCast(Entry, Ty);
2757 
2758     // (If global is requested for a definition, we always need to create a new
2759     // global, not just return a bitcast.)
2760     if (!IsForDefinition)
2761       return llvm::ConstantExpr::getBitCast(Entry, Ty);
2762   }
2763 
2764   auto AddrSpace = GetGlobalVarAddressSpace(D);
2765   auto TargetAddrSpace = getContext().getTargetAddressSpace(AddrSpace);
2766 
2767   auto *GV = new llvm::GlobalVariable(
2768       getModule(), Ty->getElementType(), false,
2769       llvm::GlobalValue::ExternalLinkage, nullptr, MangledName, nullptr,
2770       llvm::GlobalVariable::NotThreadLocal, TargetAddrSpace);
2771 
2772   // If we already created a global with the same mangled name (but different
2773   // type) before, take its name and remove it from its parent.
2774   if (Entry) {
2775     GV->takeName(Entry);
2776 
2777     if (!Entry->use_empty()) {
2778       llvm::Constant *NewPtrForOldDecl =
2779           llvm::ConstantExpr::getBitCast(GV, Entry->getType());
2780       Entry->replaceAllUsesWith(NewPtrForOldDecl);
2781     }
2782 
2783     Entry->eraseFromParent();
2784   }
2785 
2786   // This is the first use or definition of a mangled name.  If there is a
2787   // deferred decl with this name, remember that we need to emit it at the end
2788   // of the file.
2789   auto DDI = DeferredDecls.find(MangledName);
2790   if (DDI != DeferredDecls.end()) {
2791     // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
2792     // list, and remove it from DeferredDecls (since we don't need it anymore).
2793     addDeferredDeclToEmit(DDI->second);
2794     DeferredDecls.erase(DDI);
2795   }
2796 
2797   // Handle things which are present even on external declarations.
2798   if (D) {
2799     if (LangOpts.OpenMP && !LangOpts.OpenMPSimd)
2800       getOpenMPRuntime().registerTargetGlobalVariable(D, GV);
2801 
2802     // FIXME: This code is overly simple and should be merged with other global
2803     // handling.
2804     GV->setConstant(isTypeConstant(D->getType(), false));
2805 
2806     GV->setAlignment(getContext().getDeclAlign(D).getQuantity());
2807 
2808     setLinkageForGV(GV, D);
2809 
2810     if (D->getTLSKind()) {
2811       if (D->getTLSKind() == VarDecl::TLS_Dynamic)
2812         CXXThreadLocals.push_back(D);
2813       setTLSMode(GV, *D);
2814     }
2815 
2816     setGVProperties(GV, D);
2817 
2818     // If required by the ABI, treat declarations of static data members with
2819     // inline initializers as definitions.
2820     if (getContext().isMSStaticDataMemberInlineDefinition(D)) {
2821       EmitGlobalVarDefinition(D);
2822     }
2823 
2824     // Emit section information for extern variables.
2825     if (D->hasExternalStorage()) {
2826       if (const SectionAttr *SA = D->getAttr<SectionAttr>())
2827         GV->setSection(SA->getName());
2828     }
2829 
2830     // Handle XCore specific ABI requirements.
2831     if (getTriple().getArch() == llvm::Triple::xcore &&
2832         D->getLanguageLinkage() == CLanguageLinkage &&
2833         D->getType().isConstant(Context) &&
2834         isExternallyVisible(D->getLinkageAndVisibility().getLinkage()))
2835       GV->setSection(".cp.rodata");
2836 
2837     // Check if we a have a const declaration with an initializer, we may be
2838     // able to emit it as available_externally to expose it's value to the
2839     // optimizer.
2840     if (Context.getLangOpts().CPlusPlus && GV->hasExternalLinkage() &&
2841         D->getType().isConstQualified() && !GV->hasInitializer() &&
2842         !D->hasDefinition() && D->hasInit() && !D->hasAttr<DLLImportAttr>()) {
2843       const auto *Record =
2844           Context.getBaseElementType(D->getType())->getAsCXXRecordDecl();
2845       bool HasMutableFields = Record && Record->hasMutableFields();
2846       if (!HasMutableFields) {
2847         const VarDecl *InitDecl;
2848         const Expr *InitExpr = D->getAnyInitializer(InitDecl);
2849         if (InitExpr) {
2850           ConstantEmitter emitter(*this);
2851           llvm::Constant *Init = emitter.tryEmitForInitializer(*InitDecl);
2852           if (Init) {
2853             auto *InitType = Init->getType();
2854             if (GV->getType()->getElementType() != InitType) {
2855               // The type of the initializer does not match the definition.
2856               // This happens when an initializer has a different type from
2857               // the type of the global (because of padding at the end of a
2858               // structure for instance).
2859               GV->setName(StringRef());
2860               // Make a new global with the correct type, this is now guaranteed
2861               // to work.
2862               auto *NewGV = cast<llvm::GlobalVariable>(
2863                   GetAddrOfGlobalVar(D, InitType, IsForDefinition));
2864 
2865               // Erase the old global, since it is no longer used.
2866               GV->eraseFromParent();
2867               GV = NewGV;
2868             } else {
2869               GV->setInitializer(Init);
2870               GV->setConstant(true);
2871               GV->setLinkage(llvm::GlobalValue::AvailableExternallyLinkage);
2872             }
2873             emitter.finalize(GV);
2874           }
2875         }
2876       }
2877     }
2878   }
2879 
2880   LangAS ExpectedAS =
2881       D ? D->getType().getAddressSpace()
2882         : (LangOpts.OpenCL ? LangAS::opencl_global : LangAS::Default);
2883   assert(getContext().getTargetAddressSpace(ExpectedAS) ==
2884          Ty->getPointerAddressSpace());
2885   if (AddrSpace != ExpectedAS)
2886     return getTargetCodeGenInfo().performAddrSpaceCast(*this, GV, AddrSpace,
2887                                                        ExpectedAS, Ty);
2888 
2889   return GV;
2890 }
2891 
2892 llvm::Constant *
2893 CodeGenModule::GetAddrOfGlobal(GlobalDecl GD,
2894                                ForDefinition_t IsForDefinition) {
2895   const Decl *D = GD.getDecl();
2896   if (isa<CXXConstructorDecl>(D))
2897     return getAddrOfCXXStructor(cast<CXXConstructorDecl>(D),
2898                                 getFromCtorType(GD.getCtorType()),
2899                                 /*FnInfo=*/nullptr, /*FnType=*/nullptr,
2900                                 /*DontDefer=*/false, IsForDefinition);
2901   else if (isa<CXXDestructorDecl>(D))
2902     return getAddrOfCXXStructor(cast<CXXDestructorDecl>(D),
2903                                 getFromDtorType(GD.getDtorType()),
2904                                 /*FnInfo=*/nullptr, /*FnType=*/nullptr,
2905                                 /*DontDefer=*/false, IsForDefinition);
2906   else if (isa<CXXMethodDecl>(D)) {
2907     auto FInfo = &getTypes().arrangeCXXMethodDeclaration(
2908         cast<CXXMethodDecl>(D));
2909     auto Ty = getTypes().GetFunctionType(*FInfo);
2910     return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false,
2911                              IsForDefinition);
2912   } else if (isa<FunctionDecl>(D)) {
2913     const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
2914     llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
2915     return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false,
2916                              IsForDefinition);
2917   } else
2918     return GetAddrOfGlobalVar(cast<VarDecl>(D), /*Ty=*/nullptr,
2919                               IsForDefinition);
2920 }
2921 
2922 llvm::GlobalVariable *
2923 CodeGenModule::CreateOrReplaceCXXRuntimeVariable(StringRef Name,
2924                                       llvm::Type *Ty,
2925                                       llvm::GlobalValue::LinkageTypes Linkage) {
2926   llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name);
2927   llvm::GlobalVariable *OldGV = nullptr;
2928 
2929   if (GV) {
2930     // Check if the variable has the right type.
2931     if (GV->getType()->getElementType() == Ty)
2932       return GV;
2933 
2934     // Because C++ name mangling, the only way we can end up with an already
2935     // existing global with the same name is if it has been declared extern "C".
2936     assert(GV->isDeclaration() && "Declaration has wrong type!");
2937     OldGV = GV;
2938   }
2939 
2940   // Create a new variable.
2941   GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true,
2942                                 Linkage, nullptr, Name);
2943 
2944   if (OldGV) {
2945     // Replace occurrences of the old variable if needed.
2946     GV->takeName(OldGV);
2947 
2948     if (!OldGV->use_empty()) {
2949       llvm::Constant *NewPtrForOldDecl =
2950       llvm::ConstantExpr::getBitCast(GV, OldGV->getType());
2951       OldGV->replaceAllUsesWith(NewPtrForOldDecl);
2952     }
2953 
2954     OldGV->eraseFromParent();
2955   }
2956 
2957   if (supportsCOMDAT() && GV->isWeakForLinker() &&
2958       !GV->hasAvailableExternallyLinkage())
2959     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
2960 
2961   return GV;
2962 }
2963 
2964 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the
2965 /// given global variable.  If Ty is non-null and if the global doesn't exist,
2966 /// then it will be created with the specified type instead of whatever the
2967 /// normal requested type would be. If IsForDefinition is true, it is guaranteed
2968 /// that an actual global with type Ty will be returned, not conversion of a
2969 /// variable with the same mangled name but some other type.
2970 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D,
2971                                                   llvm::Type *Ty,
2972                                            ForDefinition_t IsForDefinition) {
2973   assert(D->hasGlobalStorage() && "Not a global variable");
2974   QualType ASTTy = D->getType();
2975   if (!Ty)
2976     Ty = getTypes().ConvertTypeForMem(ASTTy);
2977 
2978   llvm::PointerType *PTy =
2979     llvm::PointerType::get(Ty, getContext().getTargetAddressSpace(ASTTy));
2980 
2981   StringRef MangledName = getMangledName(D);
2982   return GetOrCreateLLVMGlobal(MangledName, PTy, D, IsForDefinition);
2983 }
2984 
2985 /// CreateRuntimeVariable - Create a new runtime global variable with the
2986 /// specified type and name.
2987 llvm::Constant *
2988 CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty,
2989                                      StringRef Name) {
2990   auto *Ret =
2991       GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), nullptr);
2992   setDSOLocal(cast<llvm::GlobalValue>(Ret->stripPointerCasts()));
2993   return Ret;
2994 }
2995 
2996 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) {
2997   assert(!D->getInit() && "Cannot emit definite definitions here!");
2998 
2999   StringRef MangledName = getMangledName(D);
3000   llvm::GlobalValue *GV = GetGlobalValue(MangledName);
3001 
3002   // We already have a definition, not declaration, with the same mangled name.
3003   // Emitting of declaration is not required (and actually overwrites emitted
3004   // definition).
3005   if (GV && !GV->isDeclaration())
3006     return;
3007 
3008   // If we have not seen a reference to this variable yet, place it into the
3009   // deferred declarations table to be emitted if needed later.
3010   if (!MustBeEmitted(D) && !GV) {
3011       DeferredDecls[MangledName] = D;
3012       return;
3013   }
3014 
3015   // The tentative definition is the only definition.
3016   EmitGlobalVarDefinition(D);
3017 }
3018 
3019 CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const {
3020   return Context.toCharUnitsFromBits(
3021       getDataLayout().getTypeStoreSizeInBits(Ty));
3022 }
3023 
3024 LangAS CodeGenModule::GetGlobalVarAddressSpace(const VarDecl *D) {
3025   LangAS AddrSpace = LangAS::Default;
3026   if (LangOpts.OpenCL) {
3027     AddrSpace = D ? D->getType().getAddressSpace() : LangAS::opencl_global;
3028     assert(AddrSpace == LangAS::opencl_global ||
3029            AddrSpace == LangAS::opencl_constant ||
3030            AddrSpace == LangAS::opencl_local ||
3031            AddrSpace >= LangAS::FirstTargetAddressSpace);
3032     return AddrSpace;
3033   }
3034 
3035   if (LangOpts.CUDA && LangOpts.CUDAIsDevice) {
3036     if (D && D->hasAttr<CUDAConstantAttr>())
3037       return LangAS::cuda_constant;
3038     else if (D && D->hasAttr<CUDASharedAttr>())
3039       return LangAS::cuda_shared;
3040     else
3041       return LangAS::cuda_device;
3042   }
3043 
3044   return getTargetCodeGenInfo().getGlobalVarAddressSpace(*this, D);
3045 }
3046 
3047 LangAS CodeGenModule::getStringLiteralAddressSpace() const {
3048   // OpenCL v1.2 s6.5.3: a string literal is in the constant address space.
3049   if (LangOpts.OpenCL)
3050     return LangAS::opencl_constant;
3051   if (auto AS = getTarget().getConstantAddressSpace())
3052     return AS.getValue();
3053   return LangAS::Default;
3054 }
3055 
3056 // In address space agnostic languages, string literals are in default address
3057 // space in AST. However, certain targets (e.g. amdgcn) request them to be
3058 // emitted in constant address space in LLVM IR. To be consistent with other
3059 // parts of AST, string literal global variables in constant address space
3060 // need to be casted to default address space before being put into address
3061 // map and referenced by other part of CodeGen.
3062 // In OpenCL, string literals are in constant address space in AST, therefore
3063 // they should not be casted to default address space.
3064 static llvm::Constant *
3065 castStringLiteralToDefaultAddressSpace(CodeGenModule &CGM,
3066                                        llvm::GlobalVariable *GV) {
3067   llvm::Constant *Cast = GV;
3068   if (!CGM.getLangOpts().OpenCL) {
3069     if (auto AS = CGM.getTarget().getConstantAddressSpace()) {
3070       if (AS != LangAS::Default)
3071         Cast = CGM.getTargetCodeGenInfo().performAddrSpaceCast(
3072             CGM, GV, AS.getValue(), LangAS::Default,
3073             GV->getValueType()->getPointerTo(
3074                 CGM.getContext().getTargetAddressSpace(LangAS::Default)));
3075     }
3076   }
3077   return Cast;
3078 }
3079 
3080 template<typename SomeDecl>
3081 void CodeGenModule::MaybeHandleStaticInExternC(const SomeDecl *D,
3082                                                llvm::GlobalValue *GV) {
3083   if (!getLangOpts().CPlusPlus)
3084     return;
3085 
3086   // Must have 'used' attribute, or else inline assembly can't rely on
3087   // the name existing.
3088   if (!D->template hasAttr<UsedAttr>())
3089     return;
3090 
3091   // Must have internal linkage and an ordinary name.
3092   if (!D->getIdentifier() || D->getFormalLinkage() != InternalLinkage)
3093     return;
3094 
3095   // Must be in an extern "C" context. Entities declared directly within
3096   // a record are not extern "C" even if the record is in such a context.
3097   const SomeDecl *First = D->getFirstDecl();
3098   if (First->getDeclContext()->isRecord() || !First->isInExternCContext())
3099     return;
3100 
3101   // OK, this is an internal linkage entity inside an extern "C" linkage
3102   // specification. Make a note of that so we can give it the "expected"
3103   // mangled name if nothing else is using that name.
3104   std::pair<StaticExternCMap::iterator, bool> R =
3105       StaticExternCValues.insert(std::make_pair(D->getIdentifier(), GV));
3106 
3107   // If we have multiple internal linkage entities with the same name
3108   // in extern "C" regions, none of them gets that name.
3109   if (!R.second)
3110     R.first->second = nullptr;
3111 }
3112 
3113 static bool shouldBeInCOMDAT(CodeGenModule &CGM, const Decl &D) {
3114   if (!CGM.supportsCOMDAT())
3115     return false;
3116 
3117   if (D.hasAttr<SelectAnyAttr>())
3118     return true;
3119 
3120   GVALinkage Linkage;
3121   if (auto *VD = dyn_cast<VarDecl>(&D))
3122     Linkage = CGM.getContext().GetGVALinkageForVariable(VD);
3123   else
3124     Linkage = CGM.getContext().GetGVALinkageForFunction(cast<FunctionDecl>(&D));
3125 
3126   switch (Linkage) {
3127   case GVA_Internal:
3128   case GVA_AvailableExternally:
3129   case GVA_StrongExternal:
3130     return false;
3131   case GVA_DiscardableODR:
3132   case GVA_StrongODR:
3133     return true;
3134   }
3135   llvm_unreachable("No such linkage");
3136 }
3137 
3138 void CodeGenModule::maybeSetTrivialComdat(const Decl &D,
3139                                           llvm::GlobalObject &GO) {
3140   if (!shouldBeInCOMDAT(*this, D))
3141     return;
3142   GO.setComdat(TheModule.getOrInsertComdat(GO.getName()));
3143 }
3144 
3145 /// Pass IsTentative as true if you want to create a tentative definition.
3146 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D,
3147                                             bool IsTentative) {
3148   // OpenCL global variables of sampler type are translated to function calls,
3149   // therefore no need to be translated.
3150   QualType ASTTy = D->getType();
3151   if (getLangOpts().OpenCL && ASTTy->isSamplerT())
3152     return;
3153 
3154   // If this is OpenMP device, check if it is legal to emit this global
3155   // normally.
3156   if (LangOpts.OpenMPIsDevice && OpenMPRuntime &&
3157       OpenMPRuntime->emitTargetGlobalVariable(D))
3158     return;
3159 
3160   llvm::Constant *Init = nullptr;
3161   CXXRecordDecl *RD = ASTTy->getBaseElementTypeUnsafe()->getAsCXXRecordDecl();
3162   bool NeedsGlobalCtor = false;
3163   bool NeedsGlobalDtor = RD && !RD->hasTrivialDestructor();
3164 
3165   const VarDecl *InitDecl;
3166   const Expr *InitExpr = D->getAnyInitializer(InitDecl);
3167 
3168   Optional<ConstantEmitter> emitter;
3169 
3170   // CUDA E.2.4.1 "__shared__ variables cannot have an initialization
3171   // as part of their declaration."  Sema has already checked for
3172   // error cases, so we just need to set Init to UndefValue.
3173   if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice &&
3174       D->hasAttr<CUDASharedAttr>())
3175     Init = llvm::UndefValue::get(getTypes().ConvertType(ASTTy));
3176   else if (!InitExpr) {
3177     // This is a tentative definition; tentative definitions are
3178     // implicitly initialized with { 0 }.
3179     //
3180     // Note that tentative definitions are only emitted at the end of
3181     // a translation unit, so they should never have incomplete
3182     // type. In addition, EmitTentativeDefinition makes sure that we
3183     // never attempt to emit a tentative definition if a real one
3184     // exists. A use may still exists, however, so we still may need
3185     // to do a RAUW.
3186     assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type");
3187     Init = EmitNullConstant(D->getType());
3188   } else {
3189     initializedGlobalDecl = GlobalDecl(D);
3190     emitter.emplace(*this);
3191     Init = emitter->tryEmitForInitializer(*InitDecl);
3192 
3193     if (!Init) {
3194       QualType T = InitExpr->getType();
3195       if (D->getType()->isReferenceType())
3196         T = D->getType();
3197 
3198       if (getLangOpts().CPlusPlus) {
3199         Init = EmitNullConstant(T);
3200         NeedsGlobalCtor = true;
3201       } else {
3202         ErrorUnsupported(D, "static initializer");
3203         Init = llvm::UndefValue::get(getTypes().ConvertType(T));
3204       }
3205     } else {
3206       // We don't need an initializer, so remove the entry for the delayed
3207       // initializer position (just in case this entry was delayed) if we
3208       // also don't need to register a destructor.
3209       if (getLangOpts().CPlusPlus && !NeedsGlobalDtor)
3210         DelayedCXXInitPosition.erase(D);
3211     }
3212   }
3213 
3214   llvm::Type* InitType = Init->getType();
3215   llvm::Constant *Entry =
3216       GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative));
3217 
3218   // Strip off a bitcast if we got one back.
3219   if (auto *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
3220     assert(CE->getOpcode() == llvm::Instruction::BitCast ||
3221            CE->getOpcode() == llvm::Instruction::AddrSpaceCast ||
3222            // All zero index gep.
3223            CE->getOpcode() == llvm::Instruction::GetElementPtr);
3224     Entry = CE->getOperand(0);
3225   }
3226 
3227   // Entry is now either a Function or GlobalVariable.
3228   auto *GV = dyn_cast<llvm::GlobalVariable>(Entry);
3229 
3230   // We have a definition after a declaration with the wrong type.
3231   // We must make a new GlobalVariable* and update everything that used OldGV
3232   // (a declaration or tentative definition) with the new GlobalVariable*
3233   // (which will be a definition).
3234   //
3235   // This happens if there is a prototype for a global (e.g.
3236   // "extern int x[];") and then a definition of a different type (e.g.
3237   // "int x[10];"). This also happens when an initializer has a different type
3238   // from the type of the global (this happens with unions).
3239   if (!GV || GV->getType()->getElementType() != InitType ||
3240       GV->getType()->getAddressSpace() !=
3241           getContext().getTargetAddressSpace(GetGlobalVarAddressSpace(D))) {
3242 
3243     // Move the old entry aside so that we'll create a new one.
3244     Entry->setName(StringRef());
3245 
3246     // Make a new global with the correct type, this is now guaranteed to work.
3247     GV = cast<llvm::GlobalVariable>(
3248         GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative)));
3249 
3250     // Replace all uses of the old global with the new global
3251     llvm::Constant *NewPtrForOldDecl =
3252         llvm::ConstantExpr::getBitCast(GV, Entry->getType());
3253     Entry->replaceAllUsesWith(NewPtrForOldDecl);
3254 
3255     // Erase the old global, since it is no longer used.
3256     cast<llvm::GlobalValue>(Entry)->eraseFromParent();
3257   }
3258 
3259   MaybeHandleStaticInExternC(D, GV);
3260 
3261   if (D->hasAttr<AnnotateAttr>())
3262     AddGlobalAnnotations(D, GV);
3263 
3264   // Set the llvm linkage type as appropriate.
3265   llvm::GlobalValue::LinkageTypes Linkage =
3266       getLLVMLinkageVarDefinition(D, GV->isConstant());
3267 
3268   // CUDA B.2.1 "The __device__ qualifier declares a variable that resides on
3269   // the device. [...]"
3270   // CUDA B.2.2 "The __constant__ qualifier, optionally used together with
3271   // __device__, declares a variable that: [...]
3272   // Is accessible from all the threads within the grid and from the host
3273   // through the runtime library (cudaGetSymbolAddress() / cudaGetSymbolSize()
3274   // / cudaMemcpyToSymbol() / cudaMemcpyFromSymbol())."
3275   if (GV && LangOpts.CUDA) {
3276     if (LangOpts.CUDAIsDevice) {
3277       if (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>())
3278         GV->setExternallyInitialized(true);
3279     } else {
3280       // Host-side shadows of external declarations of device-side
3281       // global variables become internal definitions. These have to
3282       // be internal in order to prevent name conflicts with global
3283       // host variables with the same name in a different TUs.
3284       if (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>()) {
3285         Linkage = llvm::GlobalValue::InternalLinkage;
3286 
3287         // Shadow variables and their properties must be registered
3288         // with CUDA runtime.
3289         unsigned Flags = 0;
3290         if (!D->hasDefinition())
3291           Flags |= CGCUDARuntime::ExternDeviceVar;
3292         if (D->hasAttr<CUDAConstantAttr>())
3293           Flags |= CGCUDARuntime::ConstantDeviceVar;
3294         getCUDARuntime().registerDeviceVar(*GV, Flags);
3295       } else if (D->hasAttr<CUDASharedAttr>())
3296         // __shared__ variables are odd. Shadows do get created, but
3297         // they are not registered with the CUDA runtime, so they
3298         // can't really be used to access their device-side
3299         // counterparts. It's not clear yet whether it's nvcc's bug or
3300         // a feature, but we've got to do the same for compatibility.
3301         Linkage = llvm::GlobalValue::InternalLinkage;
3302     }
3303   }
3304 
3305   GV->setInitializer(Init);
3306   if (emitter) emitter->finalize(GV);
3307 
3308   // If it is safe to mark the global 'constant', do so now.
3309   GV->setConstant(!NeedsGlobalCtor && !NeedsGlobalDtor &&
3310                   isTypeConstant(D->getType(), true));
3311 
3312   // If it is in a read-only section, mark it 'constant'.
3313   if (const SectionAttr *SA = D->getAttr<SectionAttr>()) {
3314     const ASTContext::SectionInfo &SI = Context.SectionInfos[SA->getName()];
3315     if ((SI.SectionFlags & ASTContext::PSF_Write) == 0)
3316       GV->setConstant(true);
3317   }
3318 
3319   GV->setAlignment(getContext().getDeclAlign(D).getQuantity());
3320 
3321 
3322   // On Darwin, if the normal linkage of a C++ thread_local variable is
3323   // LinkOnce or Weak, we keep the normal linkage to prevent multiple
3324   // copies within a linkage unit; otherwise, the backing variable has
3325   // internal linkage and all accesses should just be calls to the
3326   // Itanium-specified entry point, which has the normal linkage of the
3327   // variable. This is to preserve the ability to change the implementation
3328   // behind the scenes.
3329   if (!D->isStaticLocal() && D->getTLSKind() == VarDecl::TLS_Dynamic &&
3330       Context.getTargetInfo().getTriple().isOSDarwin() &&
3331       !llvm::GlobalVariable::isLinkOnceLinkage(Linkage) &&
3332       !llvm::GlobalVariable::isWeakLinkage(Linkage))
3333     Linkage = llvm::GlobalValue::InternalLinkage;
3334 
3335   GV->setLinkage(Linkage);
3336   if (D->hasAttr<DLLImportAttr>())
3337     GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass);
3338   else if (D->hasAttr<DLLExportAttr>())
3339     GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass);
3340   else
3341     GV->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass);
3342 
3343   if (Linkage == llvm::GlobalVariable::CommonLinkage) {
3344     // common vars aren't constant even if declared const.
3345     GV->setConstant(false);
3346     // Tentative definition of global variables may be initialized with
3347     // non-zero null pointers. In this case they should have weak linkage
3348     // since common linkage must have zero initializer and must not have
3349     // explicit section therefore cannot have non-zero initial value.
3350     if (!GV->getInitializer()->isNullValue())
3351       GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage);
3352   }
3353 
3354   setNonAliasAttributes(D, GV);
3355 
3356   if (D->getTLSKind() && !GV->isThreadLocal()) {
3357     if (D->getTLSKind() == VarDecl::TLS_Dynamic)
3358       CXXThreadLocals.push_back(D);
3359     setTLSMode(GV, *D);
3360   }
3361 
3362   maybeSetTrivialComdat(*D, *GV);
3363 
3364   // Emit the initializer function if necessary.
3365   if (NeedsGlobalCtor || NeedsGlobalDtor)
3366     EmitCXXGlobalVarDeclInitFunc(D, GV, NeedsGlobalCtor);
3367 
3368   SanitizerMD->reportGlobalToASan(GV, *D, NeedsGlobalCtor);
3369 
3370   // Emit global variable debug information.
3371   if (CGDebugInfo *DI = getModuleDebugInfo())
3372     if (getCodeGenOpts().getDebugInfo() >= codegenoptions::LimitedDebugInfo)
3373       DI->EmitGlobalVariable(GV, D);
3374 }
3375 
3376 static bool isVarDeclStrongDefinition(const ASTContext &Context,
3377                                       CodeGenModule &CGM, const VarDecl *D,
3378                                       bool NoCommon) {
3379   // Don't give variables common linkage if -fno-common was specified unless it
3380   // was overridden by a NoCommon attribute.
3381   if ((NoCommon || D->hasAttr<NoCommonAttr>()) && !D->hasAttr<CommonAttr>())
3382     return true;
3383 
3384   // C11 6.9.2/2:
3385   //   A declaration of an identifier for an object that has file scope without
3386   //   an initializer, and without a storage-class specifier or with the
3387   //   storage-class specifier static, constitutes a tentative definition.
3388   if (D->getInit() || D->hasExternalStorage())
3389     return true;
3390 
3391   // A variable cannot be both common and exist in a section.
3392   if (D->hasAttr<SectionAttr>())
3393     return true;
3394 
3395   // A variable cannot be both common and exist in a section.
3396   // We don't try to determine which is the right section in the front-end.
3397   // If no specialized section name is applicable, it will resort to default.
3398   if (D->hasAttr<PragmaClangBSSSectionAttr>() ||
3399       D->hasAttr<PragmaClangDataSectionAttr>() ||
3400       D->hasAttr<PragmaClangRodataSectionAttr>())
3401     return true;
3402 
3403   // Thread local vars aren't considered common linkage.
3404   if (D->getTLSKind())
3405     return true;
3406 
3407   // Tentative definitions marked with WeakImportAttr are true definitions.
3408   if (D->hasAttr<WeakImportAttr>())
3409     return true;
3410 
3411   // A variable cannot be both common and exist in a comdat.
3412   if (shouldBeInCOMDAT(CGM, *D))
3413     return true;
3414 
3415   // Declarations with a required alignment do not have common linkage in MSVC
3416   // mode.
3417   if (Context.getTargetInfo().getCXXABI().isMicrosoft()) {
3418     if (D->hasAttr<AlignedAttr>())
3419       return true;
3420     QualType VarType = D->getType();
3421     if (Context.isAlignmentRequired(VarType))
3422       return true;
3423 
3424     if (const auto *RT = VarType->getAs<RecordType>()) {
3425       const RecordDecl *RD = RT->getDecl();
3426       for (const FieldDecl *FD : RD->fields()) {
3427         if (FD->isBitField())
3428           continue;
3429         if (FD->hasAttr<AlignedAttr>())
3430           return true;
3431         if (Context.isAlignmentRequired(FD->getType()))
3432           return true;
3433       }
3434     }
3435   }
3436 
3437   return false;
3438 }
3439 
3440 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageForDeclarator(
3441     const DeclaratorDecl *D, GVALinkage Linkage, bool IsConstantVariable) {
3442   if (Linkage == GVA_Internal)
3443     return llvm::Function::InternalLinkage;
3444 
3445   if (D->hasAttr<WeakAttr>()) {
3446     if (IsConstantVariable)
3447       return llvm::GlobalVariable::WeakODRLinkage;
3448     else
3449       return llvm::GlobalVariable::WeakAnyLinkage;
3450   }
3451 
3452   // We are guaranteed to have a strong definition somewhere else,
3453   // so we can use available_externally linkage.
3454   if (Linkage == GVA_AvailableExternally)
3455     return llvm::GlobalValue::AvailableExternallyLinkage;
3456 
3457   // Note that Apple's kernel linker doesn't support symbol
3458   // coalescing, so we need to avoid linkonce and weak linkages there.
3459   // Normally, this means we just map to internal, but for explicit
3460   // instantiations we'll map to external.
3461 
3462   // In C++, the compiler has to emit a definition in every translation unit
3463   // that references the function.  We should use linkonce_odr because
3464   // a) if all references in this translation unit are optimized away, we
3465   // don't need to codegen it.  b) if the function persists, it needs to be
3466   // merged with other definitions. c) C++ has the ODR, so we know the
3467   // definition is dependable.
3468   if (Linkage == GVA_DiscardableODR)
3469     return !Context.getLangOpts().AppleKext ? llvm::Function::LinkOnceODRLinkage
3470                                             : llvm::Function::InternalLinkage;
3471 
3472   // An explicit instantiation of a template has weak linkage, since
3473   // explicit instantiations can occur in multiple translation units
3474   // and must all be equivalent. However, we are not allowed to
3475   // throw away these explicit instantiations.
3476   //
3477   // We don't currently support CUDA device code spread out across multiple TUs,
3478   // so say that CUDA templates are either external (for kernels) or internal.
3479   // This lets llvm perform aggressive inter-procedural optimizations.
3480   if (Linkage == GVA_StrongODR) {
3481     if (Context.getLangOpts().AppleKext)
3482       return llvm::Function::ExternalLinkage;
3483     if (Context.getLangOpts().CUDA && Context.getLangOpts().CUDAIsDevice)
3484       return D->hasAttr<CUDAGlobalAttr>() ? llvm::Function::ExternalLinkage
3485                                           : llvm::Function::InternalLinkage;
3486     return llvm::Function::WeakODRLinkage;
3487   }
3488 
3489   // C++ doesn't have tentative definitions and thus cannot have common
3490   // linkage.
3491   if (!getLangOpts().CPlusPlus && isa<VarDecl>(D) &&
3492       !isVarDeclStrongDefinition(Context, *this, cast<VarDecl>(D),
3493                                  CodeGenOpts.NoCommon))
3494     return llvm::GlobalVariable::CommonLinkage;
3495 
3496   // selectany symbols are externally visible, so use weak instead of
3497   // linkonce.  MSVC optimizes away references to const selectany globals, so
3498   // all definitions should be the same and ODR linkage should be used.
3499   // http://msdn.microsoft.com/en-us/library/5tkz6s71.aspx
3500   if (D->hasAttr<SelectAnyAttr>())
3501     return llvm::GlobalVariable::WeakODRLinkage;
3502 
3503   // Otherwise, we have strong external linkage.
3504   assert(Linkage == GVA_StrongExternal);
3505   return llvm::GlobalVariable::ExternalLinkage;
3506 }
3507 
3508 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageVarDefinition(
3509     const VarDecl *VD, bool IsConstant) {
3510   GVALinkage Linkage = getContext().GetGVALinkageForVariable(VD);
3511   return getLLVMLinkageForDeclarator(VD, Linkage, IsConstant);
3512 }
3513 
3514 /// Replace the uses of a function that was declared with a non-proto type.
3515 /// We want to silently drop extra arguments from call sites
3516 static void replaceUsesOfNonProtoConstant(llvm::Constant *old,
3517                                           llvm::Function *newFn) {
3518   // Fast path.
3519   if (old->use_empty()) return;
3520 
3521   llvm::Type *newRetTy = newFn->getReturnType();
3522   SmallVector<llvm::Value*, 4> newArgs;
3523   SmallVector<llvm::OperandBundleDef, 1> newBundles;
3524 
3525   for (llvm::Value::use_iterator ui = old->use_begin(), ue = old->use_end();
3526          ui != ue; ) {
3527     llvm::Value::use_iterator use = ui++; // Increment before the use is erased.
3528     llvm::User *user = use->getUser();
3529 
3530     // Recognize and replace uses of bitcasts.  Most calls to
3531     // unprototyped functions will use bitcasts.
3532     if (auto *bitcast = dyn_cast<llvm::ConstantExpr>(user)) {
3533       if (bitcast->getOpcode() == llvm::Instruction::BitCast)
3534         replaceUsesOfNonProtoConstant(bitcast, newFn);
3535       continue;
3536     }
3537 
3538     // Recognize calls to the function.
3539     llvm::CallSite callSite(user);
3540     if (!callSite) continue;
3541     if (!callSite.isCallee(&*use)) continue;
3542 
3543     // If the return types don't match exactly, then we can't
3544     // transform this call unless it's dead.
3545     if (callSite->getType() != newRetTy && !callSite->use_empty())
3546       continue;
3547 
3548     // Get the call site's attribute list.
3549     SmallVector<llvm::AttributeSet, 8> newArgAttrs;
3550     llvm::AttributeList oldAttrs = callSite.getAttributes();
3551 
3552     // If the function was passed too few arguments, don't transform.
3553     unsigned newNumArgs = newFn->arg_size();
3554     if (callSite.arg_size() < newNumArgs) continue;
3555 
3556     // If extra arguments were passed, we silently drop them.
3557     // If any of the types mismatch, we don't transform.
3558     unsigned argNo = 0;
3559     bool dontTransform = false;
3560     for (llvm::Argument &A : newFn->args()) {
3561       if (callSite.getArgument(argNo)->getType() != A.getType()) {
3562         dontTransform = true;
3563         break;
3564       }
3565 
3566       // Add any parameter attributes.
3567       newArgAttrs.push_back(oldAttrs.getParamAttributes(argNo));
3568       argNo++;
3569     }
3570     if (dontTransform)
3571       continue;
3572 
3573     // Okay, we can transform this.  Create the new call instruction and copy
3574     // over the required information.
3575     newArgs.append(callSite.arg_begin(), callSite.arg_begin() + argNo);
3576 
3577     // Copy over any operand bundles.
3578     callSite.getOperandBundlesAsDefs(newBundles);
3579 
3580     llvm::CallSite newCall;
3581     if (callSite.isCall()) {
3582       newCall = llvm::CallInst::Create(newFn, newArgs, newBundles, "",
3583                                        callSite.getInstruction());
3584     } else {
3585       auto *oldInvoke = cast<llvm::InvokeInst>(callSite.getInstruction());
3586       newCall = llvm::InvokeInst::Create(newFn,
3587                                          oldInvoke->getNormalDest(),
3588                                          oldInvoke->getUnwindDest(),
3589                                          newArgs, newBundles, "",
3590                                          callSite.getInstruction());
3591     }
3592     newArgs.clear(); // for the next iteration
3593 
3594     if (!newCall->getType()->isVoidTy())
3595       newCall->takeName(callSite.getInstruction());
3596     newCall.setAttributes(llvm::AttributeList::get(
3597         newFn->getContext(), oldAttrs.getFnAttributes(),
3598         oldAttrs.getRetAttributes(), newArgAttrs));
3599     newCall.setCallingConv(callSite.getCallingConv());
3600 
3601     // Finally, remove the old call, replacing any uses with the new one.
3602     if (!callSite->use_empty())
3603       callSite->replaceAllUsesWith(newCall.getInstruction());
3604 
3605     // Copy debug location attached to CI.
3606     if (callSite->getDebugLoc())
3607       newCall->setDebugLoc(callSite->getDebugLoc());
3608 
3609     callSite->eraseFromParent();
3610   }
3611 }
3612 
3613 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we
3614 /// implement a function with no prototype, e.g. "int foo() {}".  If there are
3615 /// existing call uses of the old function in the module, this adjusts them to
3616 /// call the new function directly.
3617 ///
3618 /// This is not just a cleanup: the always_inline pass requires direct calls to
3619 /// functions to be able to inline them.  If there is a bitcast in the way, it
3620 /// won't inline them.  Instcombine normally deletes these calls, but it isn't
3621 /// run at -O0.
3622 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
3623                                                       llvm::Function *NewFn) {
3624   // If we're redefining a global as a function, don't transform it.
3625   if (!isa<llvm::Function>(Old)) return;
3626 
3627   replaceUsesOfNonProtoConstant(Old, NewFn);
3628 }
3629 
3630 void CodeGenModule::HandleCXXStaticMemberVarInstantiation(VarDecl *VD) {
3631   auto DK = VD->isThisDeclarationADefinition();
3632   if (DK == VarDecl::Definition && VD->hasAttr<DLLImportAttr>())
3633     return;
3634 
3635   TemplateSpecializationKind TSK = VD->getTemplateSpecializationKind();
3636   // If we have a definition, this might be a deferred decl. If the
3637   // instantiation is explicit, make sure we emit it at the end.
3638   if (VD->getDefinition() && TSK == TSK_ExplicitInstantiationDefinition)
3639     GetAddrOfGlobalVar(VD);
3640 
3641   EmitTopLevelDecl(VD);
3642 }
3643 
3644 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD,
3645                                                  llvm::GlobalValue *GV) {
3646   const auto *D = cast<FunctionDecl>(GD.getDecl());
3647 
3648   // Compute the function info and LLVM type.
3649   const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
3650   llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
3651 
3652   // Get or create the prototype for the function.
3653   if (!GV || (GV->getType()->getElementType() != Ty))
3654     GV = cast<llvm::GlobalValue>(GetAddrOfFunction(GD, Ty, /*ForVTable=*/false,
3655                                                    /*DontDefer=*/true,
3656                                                    ForDefinition));
3657 
3658   // Already emitted.
3659   if (!GV->isDeclaration())
3660     return;
3661 
3662   // We need to set linkage and visibility on the function before
3663   // generating code for it because various parts of IR generation
3664   // want to propagate this information down (e.g. to local static
3665   // declarations).
3666   auto *Fn = cast<llvm::Function>(GV);
3667   setFunctionLinkage(GD, Fn);
3668 
3669   // FIXME: this is redundant with part of setFunctionDefinitionAttributes
3670   setGVProperties(Fn, GD);
3671 
3672   MaybeHandleStaticInExternC(D, Fn);
3673 
3674 
3675   maybeSetTrivialComdat(*D, *Fn);
3676 
3677   CodeGenFunction(*this).GenerateCode(D, Fn, FI);
3678 
3679   setNonAliasAttributes(GD, Fn);
3680   SetLLVMFunctionAttributesForDefinition(D, Fn);
3681 
3682   if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>())
3683     AddGlobalCtor(Fn, CA->getPriority());
3684   if (const DestructorAttr *DA = D->getAttr<DestructorAttr>())
3685     AddGlobalDtor(Fn, DA->getPriority());
3686   if (D->hasAttr<AnnotateAttr>())
3687     AddGlobalAnnotations(D, Fn);
3688 }
3689 
3690 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) {
3691   const auto *D = cast<ValueDecl>(GD.getDecl());
3692   const AliasAttr *AA = D->getAttr<AliasAttr>();
3693   assert(AA && "Not an alias?");
3694 
3695   StringRef MangledName = getMangledName(GD);
3696 
3697   if (AA->getAliasee() == MangledName) {
3698     Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0;
3699     return;
3700   }
3701 
3702   // If there is a definition in the module, then it wins over the alias.
3703   // This is dubious, but allow it to be safe.  Just ignore the alias.
3704   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
3705   if (Entry && !Entry->isDeclaration())
3706     return;
3707 
3708   Aliases.push_back(GD);
3709 
3710   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
3711 
3712   // Create a reference to the named value.  This ensures that it is emitted
3713   // if a deferred decl.
3714   llvm::Constant *Aliasee;
3715   if (isa<llvm::FunctionType>(DeclTy))
3716     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GD,
3717                                       /*ForVTable=*/false);
3718   else
3719     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
3720                                     llvm::PointerType::getUnqual(DeclTy),
3721                                     /*D=*/nullptr);
3722 
3723   // Create the new alias itself, but don't set a name yet.
3724   auto *GA = llvm::GlobalAlias::create(
3725       DeclTy, 0, llvm::Function::ExternalLinkage, "", Aliasee, &getModule());
3726 
3727   if (Entry) {
3728     if (GA->getAliasee() == Entry) {
3729       Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0;
3730       return;
3731     }
3732 
3733     assert(Entry->isDeclaration());
3734 
3735     // If there is a declaration in the module, then we had an extern followed
3736     // by the alias, as in:
3737     //   extern int test6();
3738     //   ...
3739     //   int test6() __attribute__((alias("test7")));
3740     //
3741     // Remove it and replace uses of it with the alias.
3742     GA->takeName(Entry);
3743 
3744     Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA,
3745                                                           Entry->getType()));
3746     Entry->eraseFromParent();
3747   } else {
3748     GA->setName(MangledName);
3749   }
3750 
3751   // Set attributes which are particular to an alias; this is a
3752   // specialization of the attributes which may be set on a global
3753   // variable/function.
3754   if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakRefAttr>() ||
3755       D->isWeakImported()) {
3756     GA->setLinkage(llvm::Function::WeakAnyLinkage);
3757   }
3758 
3759   if (const auto *VD = dyn_cast<VarDecl>(D))
3760     if (VD->getTLSKind())
3761       setTLSMode(GA, *VD);
3762 
3763   SetCommonAttributes(GD, GA);
3764 }
3765 
3766 void CodeGenModule::emitIFuncDefinition(GlobalDecl GD) {
3767   const auto *D = cast<ValueDecl>(GD.getDecl());
3768   const IFuncAttr *IFA = D->getAttr<IFuncAttr>();
3769   assert(IFA && "Not an ifunc?");
3770 
3771   StringRef MangledName = getMangledName(GD);
3772 
3773   if (IFA->getResolver() == MangledName) {
3774     Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1;
3775     return;
3776   }
3777 
3778   // Report an error if some definition overrides ifunc.
3779   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
3780   if (Entry && !Entry->isDeclaration()) {
3781     GlobalDecl OtherGD;
3782     if (lookupRepresentativeDecl(MangledName, OtherGD) &&
3783         DiagnosedConflictingDefinitions.insert(GD).second) {
3784       Diags.Report(D->getLocation(), diag::err_duplicate_mangled_name)
3785           << MangledName;
3786       Diags.Report(OtherGD.getDecl()->getLocation(),
3787                    diag::note_previous_definition);
3788     }
3789     return;
3790   }
3791 
3792   Aliases.push_back(GD);
3793 
3794   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
3795   llvm::Constant *Resolver =
3796       GetOrCreateLLVMFunction(IFA->getResolver(), DeclTy, GD,
3797                               /*ForVTable=*/false);
3798   llvm::GlobalIFunc *GIF =
3799       llvm::GlobalIFunc::create(DeclTy, 0, llvm::Function::ExternalLinkage,
3800                                 "", Resolver, &getModule());
3801   if (Entry) {
3802     if (GIF->getResolver() == Entry) {
3803       Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1;
3804       return;
3805     }
3806     assert(Entry->isDeclaration());
3807 
3808     // If there is a declaration in the module, then we had an extern followed
3809     // by the ifunc, as in:
3810     //   extern int test();
3811     //   ...
3812     //   int test() __attribute__((ifunc("resolver")));
3813     //
3814     // Remove it and replace uses of it with the ifunc.
3815     GIF->takeName(Entry);
3816 
3817     Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GIF,
3818                                                           Entry->getType()));
3819     Entry->eraseFromParent();
3820   } else
3821     GIF->setName(MangledName);
3822 
3823   SetCommonAttributes(GD, GIF);
3824 }
3825 
3826 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,
3827                                             ArrayRef<llvm::Type*> Tys) {
3828   return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID,
3829                                          Tys);
3830 }
3831 
3832 static llvm::StringMapEntry<llvm::GlobalVariable *> &
3833 GetConstantCFStringEntry(llvm::StringMap<llvm::GlobalVariable *> &Map,
3834                          const StringLiteral *Literal, bool TargetIsLSB,
3835                          bool &IsUTF16, unsigned &StringLength) {
3836   StringRef String = Literal->getString();
3837   unsigned NumBytes = String.size();
3838 
3839   // Check for simple case.
3840   if (!Literal->containsNonAsciiOrNull()) {
3841     StringLength = NumBytes;
3842     return *Map.insert(std::make_pair(String, nullptr)).first;
3843   }
3844 
3845   // Otherwise, convert the UTF8 literals into a string of shorts.
3846   IsUTF16 = true;
3847 
3848   SmallVector<llvm::UTF16, 128> ToBuf(NumBytes + 1); // +1 for ending nulls.
3849   const llvm::UTF8 *FromPtr = (const llvm::UTF8 *)String.data();
3850   llvm::UTF16 *ToPtr = &ToBuf[0];
3851 
3852   (void)llvm::ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, &ToPtr,
3853                                  ToPtr + NumBytes, llvm::strictConversion);
3854 
3855   // ConvertUTF8toUTF16 returns the length in ToPtr.
3856   StringLength = ToPtr - &ToBuf[0];
3857 
3858   // Add an explicit null.
3859   *ToPtr = 0;
3860   return *Map.insert(std::make_pair(
3861                          StringRef(reinterpret_cast<const char *>(ToBuf.data()),
3862                                    (StringLength + 1) * 2),
3863                          nullptr)).first;
3864 }
3865 
3866 ConstantAddress
3867 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) {
3868   unsigned StringLength = 0;
3869   bool isUTF16 = false;
3870   llvm::StringMapEntry<llvm::GlobalVariable *> &Entry =
3871       GetConstantCFStringEntry(CFConstantStringMap, Literal,
3872                                getDataLayout().isLittleEndian(), isUTF16,
3873                                StringLength);
3874 
3875   if (auto *C = Entry.second)
3876     return ConstantAddress(C, CharUnits::fromQuantity(C->getAlignment()));
3877 
3878   llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty);
3879   llvm::Constant *Zeros[] = { Zero, Zero };
3880 
3881   // If we don't already have it, get __CFConstantStringClassReference.
3882   if (!CFConstantStringClassRef) {
3883     llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
3884     Ty = llvm::ArrayType::get(Ty, 0);
3885     llvm::GlobalValue *GV = cast<llvm::GlobalValue>(
3886         CreateRuntimeVariable(Ty, "__CFConstantStringClassReference"));
3887 
3888     if (getTriple().isOSBinFormatCOFF()) {
3889       IdentifierInfo &II = getContext().Idents.get(GV->getName());
3890       TranslationUnitDecl *TUDecl = getContext().getTranslationUnitDecl();
3891       DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl);
3892 
3893       const VarDecl *VD = nullptr;
3894       for (const auto &Result : DC->lookup(&II))
3895         if ((VD = dyn_cast<VarDecl>(Result)))
3896           break;
3897 
3898       if (!VD || !VD->hasAttr<DLLExportAttr>()) {
3899         GV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass);
3900         GV->setLinkage(llvm::GlobalValue::ExternalLinkage);
3901       } else {
3902         GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass);
3903         GV->setLinkage(llvm::GlobalValue::ExternalLinkage);
3904       }
3905     }
3906     setDSOLocal(GV);
3907 
3908     // Decay array -> ptr
3909     CFConstantStringClassRef =
3910         llvm::ConstantExpr::getGetElementPtr(Ty, GV, Zeros);
3911   }
3912 
3913   QualType CFTy = getContext().getCFConstantStringType();
3914 
3915   auto *STy = cast<llvm::StructType>(getTypes().ConvertType(CFTy));
3916 
3917   ConstantInitBuilder Builder(*this);
3918   auto Fields = Builder.beginStruct(STy);
3919 
3920   // Class pointer.
3921   Fields.add(cast<llvm::ConstantExpr>(CFConstantStringClassRef));
3922 
3923   // Flags.
3924   Fields.addInt(IntTy, isUTF16 ? 0x07d0 : 0x07C8);
3925 
3926   // String pointer.
3927   llvm::Constant *C = nullptr;
3928   if (isUTF16) {
3929     auto Arr = llvm::makeArrayRef(
3930         reinterpret_cast<uint16_t *>(const_cast<char *>(Entry.first().data())),
3931         Entry.first().size() / 2);
3932     C = llvm::ConstantDataArray::get(VMContext, Arr);
3933   } else {
3934     C = llvm::ConstantDataArray::getString(VMContext, Entry.first());
3935   }
3936 
3937   // Note: -fwritable-strings doesn't make the backing store strings of
3938   // CFStrings writable. (See <rdar://problem/10657500>)
3939   auto *GV =
3940       new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true,
3941                                llvm::GlobalValue::PrivateLinkage, C, ".str");
3942   GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
3943   // Don't enforce the target's minimum global alignment, since the only use
3944   // of the string is via this class initializer.
3945   CharUnits Align = isUTF16
3946                         ? getContext().getTypeAlignInChars(getContext().ShortTy)
3947                         : getContext().getTypeAlignInChars(getContext().CharTy);
3948   GV->setAlignment(Align.getQuantity());
3949 
3950   // FIXME: We set the section explicitly to avoid a bug in ld64 224.1.
3951   // Without it LLVM can merge the string with a non unnamed_addr one during
3952   // LTO.  Doing that changes the section it ends in, which surprises ld64.
3953   if (getTriple().isOSBinFormatMachO())
3954     GV->setSection(isUTF16 ? "__TEXT,__ustring"
3955                            : "__TEXT,__cstring,cstring_literals");
3956 
3957   // String.
3958   llvm::Constant *Str =
3959       llvm::ConstantExpr::getGetElementPtr(GV->getValueType(), GV, Zeros);
3960 
3961   if (isUTF16)
3962     // Cast the UTF16 string to the correct type.
3963     Str = llvm::ConstantExpr::getBitCast(Str, Int8PtrTy);
3964   Fields.add(Str);
3965 
3966   // String length.
3967   auto Ty = getTypes().ConvertType(getContext().LongTy);
3968   Fields.addInt(cast<llvm::IntegerType>(Ty), StringLength);
3969 
3970   CharUnits Alignment = getPointerAlign();
3971 
3972   // The struct.
3973   GV = Fields.finishAndCreateGlobal("_unnamed_cfstring_", Alignment,
3974                                     /*isConstant=*/false,
3975                                     llvm::GlobalVariable::PrivateLinkage);
3976   switch (getTriple().getObjectFormat()) {
3977   case llvm::Triple::UnknownObjectFormat:
3978     llvm_unreachable("unknown file format");
3979   case llvm::Triple::COFF:
3980   case llvm::Triple::ELF:
3981   case llvm::Triple::Wasm:
3982     GV->setSection("cfstring");
3983     break;
3984   case llvm::Triple::MachO:
3985     GV->setSection("__DATA,__cfstring");
3986     break;
3987   }
3988   Entry.second = GV;
3989 
3990   return ConstantAddress(GV, Alignment);
3991 }
3992 
3993 bool CodeGenModule::getExpressionLocationsEnabled() const {
3994   return !CodeGenOpts.EmitCodeView || CodeGenOpts.DebugColumnInfo;
3995 }
3996 
3997 QualType CodeGenModule::getObjCFastEnumerationStateType() {
3998   if (ObjCFastEnumerationStateType.isNull()) {
3999     RecordDecl *D = Context.buildImplicitRecord("__objcFastEnumerationState");
4000     D->startDefinition();
4001 
4002     QualType FieldTypes[] = {
4003       Context.UnsignedLongTy,
4004       Context.getPointerType(Context.getObjCIdType()),
4005       Context.getPointerType(Context.UnsignedLongTy),
4006       Context.getConstantArrayType(Context.UnsignedLongTy,
4007                            llvm::APInt(32, 5), ArrayType::Normal, 0)
4008     };
4009 
4010     for (size_t i = 0; i < 4; ++i) {
4011       FieldDecl *Field = FieldDecl::Create(Context,
4012                                            D,
4013                                            SourceLocation(),
4014                                            SourceLocation(), nullptr,
4015                                            FieldTypes[i], /*TInfo=*/nullptr,
4016                                            /*BitWidth=*/nullptr,
4017                                            /*Mutable=*/false,
4018                                            ICIS_NoInit);
4019       Field->setAccess(AS_public);
4020       D->addDecl(Field);
4021     }
4022 
4023     D->completeDefinition();
4024     ObjCFastEnumerationStateType = Context.getTagDeclType(D);
4025   }
4026 
4027   return ObjCFastEnumerationStateType;
4028 }
4029 
4030 llvm::Constant *
4031 CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) {
4032   assert(!E->getType()->isPointerType() && "Strings are always arrays");
4033 
4034   // Don't emit it as the address of the string, emit the string data itself
4035   // as an inline array.
4036   if (E->getCharByteWidth() == 1) {
4037     SmallString<64> Str(E->getString());
4038 
4039     // Resize the string to the right size, which is indicated by its type.
4040     const ConstantArrayType *CAT = Context.getAsConstantArrayType(E->getType());
4041     Str.resize(CAT->getSize().getZExtValue());
4042     return llvm::ConstantDataArray::getString(VMContext, Str, false);
4043   }
4044 
4045   auto *AType = cast<llvm::ArrayType>(getTypes().ConvertType(E->getType()));
4046   llvm::Type *ElemTy = AType->getElementType();
4047   unsigned NumElements = AType->getNumElements();
4048 
4049   // Wide strings have either 2-byte or 4-byte elements.
4050   if (ElemTy->getPrimitiveSizeInBits() == 16) {
4051     SmallVector<uint16_t, 32> Elements;
4052     Elements.reserve(NumElements);
4053 
4054     for(unsigned i = 0, e = E->getLength(); i != e; ++i)
4055       Elements.push_back(E->getCodeUnit(i));
4056     Elements.resize(NumElements);
4057     return llvm::ConstantDataArray::get(VMContext, Elements);
4058   }
4059 
4060   assert(ElemTy->getPrimitiveSizeInBits() == 32);
4061   SmallVector<uint32_t, 32> Elements;
4062   Elements.reserve(NumElements);
4063 
4064   for(unsigned i = 0, e = E->getLength(); i != e; ++i)
4065     Elements.push_back(E->getCodeUnit(i));
4066   Elements.resize(NumElements);
4067   return llvm::ConstantDataArray::get(VMContext, Elements);
4068 }
4069 
4070 static llvm::GlobalVariable *
4071 GenerateStringLiteral(llvm::Constant *C, llvm::GlobalValue::LinkageTypes LT,
4072                       CodeGenModule &CGM, StringRef GlobalName,
4073                       CharUnits Alignment) {
4074   unsigned AddrSpace = CGM.getContext().getTargetAddressSpace(
4075       CGM.getStringLiteralAddressSpace());
4076 
4077   llvm::Module &M = CGM.getModule();
4078   // Create a global variable for this string
4079   auto *GV = new llvm::GlobalVariable(
4080       M, C->getType(), !CGM.getLangOpts().WritableStrings, LT, C, GlobalName,
4081       nullptr, llvm::GlobalVariable::NotThreadLocal, AddrSpace);
4082   GV->setAlignment(Alignment.getQuantity());
4083   GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
4084   if (GV->isWeakForLinker()) {
4085     assert(CGM.supportsCOMDAT() && "Only COFF uses weak string literals");
4086     GV->setComdat(M.getOrInsertComdat(GV->getName()));
4087   }
4088   CGM.setDSOLocal(GV);
4089 
4090   return GV;
4091 }
4092 
4093 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a
4094 /// constant array for the given string literal.
4095 ConstantAddress
4096 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S,
4097                                                   StringRef Name) {
4098   CharUnits Alignment = getContext().getAlignOfGlobalVarInChars(S->getType());
4099 
4100   llvm::Constant *C = GetConstantArrayFromStringLiteral(S);
4101   llvm::GlobalVariable **Entry = nullptr;
4102   if (!LangOpts.WritableStrings) {
4103     Entry = &ConstantStringMap[C];
4104     if (auto GV = *Entry) {
4105       if (Alignment.getQuantity() > GV->getAlignment())
4106         GV->setAlignment(Alignment.getQuantity());
4107       return ConstantAddress(GV, Alignment);
4108     }
4109   }
4110 
4111   SmallString<256> MangledNameBuffer;
4112   StringRef GlobalVariableName;
4113   llvm::GlobalValue::LinkageTypes LT;
4114 
4115   // Mangle the string literal if that's how the ABI merges duplicate strings.
4116   // Don't do it if they are writable, since we don't want writes in one TU to
4117   // affect strings in another.
4118   if (getCXXABI().getMangleContext().shouldMangleStringLiteral(S) &&
4119       !LangOpts.WritableStrings) {
4120     llvm::raw_svector_ostream Out(MangledNameBuffer);
4121     getCXXABI().getMangleContext().mangleStringLiteral(S, Out);
4122     LT = llvm::GlobalValue::LinkOnceODRLinkage;
4123     GlobalVariableName = MangledNameBuffer;
4124   } else {
4125     LT = llvm::GlobalValue::PrivateLinkage;
4126     GlobalVariableName = Name;
4127   }
4128 
4129   auto GV = GenerateStringLiteral(C, LT, *this, GlobalVariableName, Alignment);
4130   if (Entry)
4131     *Entry = GV;
4132 
4133   SanitizerMD->reportGlobalToASan(GV, S->getStrTokenLoc(0), "<string literal>",
4134                                   QualType());
4135 
4136   return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV),
4137                          Alignment);
4138 }
4139 
4140 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant
4141 /// array for the given ObjCEncodeExpr node.
4142 ConstantAddress
4143 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) {
4144   std::string Str;
4145   getContext().getObjCEncodingForType(E->getEncodedType(), Str);
4146 
4147   return GetAddrOfConstantCString(Str);
4148 }
4149 
4150 /// GetAddrOfConstantCString - Returns a pointer to a character array containing
4151 /// the literal and a terminating '\0' character.
4152 /// The result has pointer to array type.
4153 ConstantAddress CodeGenModule::GetAddrOfConstantCString(
4154     const std::string &Str, const char *GlobalName) {
4155   StringRef StrWithNull(Str.c_str(), Str.size() + 1);
4156   CharUnits Alignment =
4157     getContext().getAlignOfGlobalVarInChars(getContext().CharTy);
4158 
4159   llvm::Constant *C =
4160       llvm::ConstantDataArray::getString(getLLVMContext(), StrWithNull, false);
4161 
4162   // Don't share any string literals if strings aren't constant.
4163   llvm::GlobalVariable **Entry = nullptr;
4164   if (!LangOpts.WritableStrings) {
4165     Entry = &ConstantStringMap[C];
4166     if (auto GV = *Entry) {
4167       if (Alignment.getQuantity() > GV->getAlignment())
4168         GV->setAlignment(Alignment.getQuantity());
4169       return ConstantAddress(GV, Alignment);
4170     }
4171   }
4172 
4173   // Get the default prefix if a name wasn't specified.
4174   if (!GlobalName)
4175     GlobalName = ".str";
4176   // Create a global variable for this.
4177   auto GV = GenerateStringLiteral(C, llvm::GlobalValue::PrivateLinkage, *this,
4178                                   GlobalName, Alignment);
4179   if (Entry)
4180     *Entry = GV;
4181 
4182   return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV),
4183                          Alignment);
4184 }
4185 
4186 ConstantAddress CodeGenModule::GetAddrOfGlobalTemporary(
4187     const MaterializeTemporaryExpr *E, const Expr *Init) {
4188   assert((E->getStorageDuration() == SD_Static ||
4189           E->getStorageDuration() == SD_Thread) && "not a global temporary");
4190   const auto *VD = cast<VarDecl>(E->getExtendingDecl());
4191 
4192   // If we're not materializing a subobject of the temporary, keep the
4193   // cv-qualifiers from the type of the MaterializeTemporaryExpr.
4194   QualType MaterializedType = Init->getType();
4195   if (Init == E->GetTemporaryExpr())
4196     MaterializedType = E->getType();
4197 
4198   CharUnits Align = getContext().getTypeAlignInChars(MaterializedType);
4199 
4200   if (llvm::Constant *Slot = MaterializedGlobalTemporaryMap[E])
4201     return ConstantAddress(Slot, Align);
4202 
4203   // FIXME: If an externally-visible declaration extends multiple temporaries,
4204   // we need to give each temporary the same name in every translation unit (and
4205   // we also need to make the temporaries externally-visible).
4206   SmallString<256> Name;
4207   llvm::raw_svector_ostream Out(Name);
4208   getCXXABI().getMangleContext().mangleReferenceTemporary(
4209       VD, E->getManglingNumber(), Out);
4210 
4211   APValue *Value = nullptr;
4212   if (E->getStorageDuration() == SD_Static) {
4213     // We might have a cached constant initializer for this temporary. Note
4214     // that this might have a different value from the value computed by
4215     // evaluating the initializer if the surrounding constant expression
4216     // modifies the temporary.
4217     Value = getContext().getMaterializedTemporaryValue(E, false);
4218     if (Value && Value->isUninit())
4219       Value = nullptr;
4220   }
4221 
4222   // Try evaluating it now, it might have a constant initializer.
4223   Expr::EvalResult EvalResult;
4224   if (!Value && Init->EvaluateAsRValue(EvalResult, getContext()) &&
4225       !EvalResult.hasSideEffects())
4226     Value = &EvalResult.Val;
4227 
4228   LangAS AddrSpace =
4229       VD ? GetGlobalVarAddressSpace(VD) : MaterializedType.getAddressSpace();
4230 
4231   Optional<ConstantEmitter> emitter;
4232   llvm::Constant *InitialValue = nullptr;
4233   bool Constant = false;
4234   llvm::Type *Type;
4235   if (Value) {
4236     // The temporary has a constant initializer, use it.
4237     emitter.emplace(*this);
4238     InitialValue = emitter->emitForInitializer(*Value, AddrSpace,
4239                                                MaterializedType);
4240     Constant = isTypeConstant(MaterializedType, /*ExcludeCtor*/Value);
4241     Type = InitialValue->getType();
4242   } else {
4243     // No initializer, the initialization will be provided when we
4244     // initialize the declaration which performed lifetime extension.
4245     Type = getTypes().ConvertTypeForMem(MaterializedType);
4246   }
4247 
4248   // Create a global variable for this lifetime-extended temporary.
4249   llvm::GlobalValue::LinkageTypes Linkage =
4250       getLLVMLinkageVarDefinition(VD, Constant);
4251   if (Linkage == llvm::GlobalVariable::ExternalLinkage) {
4252     const VarDecl *InitVD;
4253     if (VD->isStaticDataMember() && VD->getAnyInitializer(InitVD) &&
4254         isa<CXXRecordDecl>(InitVD->getLexicalDeclContext())) {
4255       // Temporaries defined inside a class get linkonce_odr linkage because the
4256       // class can be defined in multiple translation units.
4257       Linkage = llvm::GlobalVariable::LinkOnceODRLinkage;
4258     } else {
4259       // There is no need for this temporary to have external linkage if the
4260       // VarDecl has external linkage.
4261       Linkage = llvm::GlobalVariable::InternalLinkage;
4262     }
4263   }
4264   auto TargetAS = getContext().getTargetAddressSpace(AddrSpace);
4265   auto *GV = new llvm::GlobalVariable(
4266       getModule(), Type, Constant, Linkage, InitialValue, Name.c_str(),
4267       /*InsertBefore=*/nullptr, llvm::GlobalVariable::NotThreadLocal, TargetAS);
4268   if (emitter) emitter->finalize(GV);
4269   setGVProperties(GV, VD);
4270   GV->setAlignment(Align.getQuantity());
4271   if (supportsCOMDAT() && GV->isWeakForLinker())
4272     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
4273   if (VD->getTLSKind())
4274     setTLSMode(GV, *VD);
4275   llvm::Constant *CV = GV;
4276   if (AddrSpace != LangAS::Default)
4277     CV = getTargetCodeGenInfo().performAddrSpaceCast(
4278         *this, GV, AddrSpace, LangAS::Default,
4279         Type->getPointerTo(
4280             getContext().getTargetAddressSpace(LangAS::Default)));
4281   MaterializedGlobalTemporaryMap[E] = CV;
4282   return ConstantAddress(CV, Align);
4283 }
4284 
4285 /// EmitObjCPropertyImplementations - Emit information for synthesized
4286 /// properties for an implementation.
4287 void CodeGenModule::EmitObjCPropertyImplementations(const
4288                                                     ObjCImplementationDecl *D) {
4289   for (const auto *PID : D->property_impls()) {
4290     // Dynamic is just for type-checking.
4291     if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) {
4292       ObjCPropertyDecl *PD = PID->getPropertyDecl();
4293 
4294       // Determine which methods need to be implemented, some may have
4295       // been overridden. Note that ::isPropertyAccessor is not the method
4296       // we want, that just indicates if the decl came from a
4297       // property. What we want to know is if the method is defined in
4298       // this implementation.
4299       if (!D->getInstanceMethod(PD->getGetterName()))
4300         CodeGenFunction(*this).GenerateObjCGetter(
4301                                  const_cast<ObjCImplementationDecl *>(D), PID);
4302       if (!PD->isReadOnly() &&
4303           !D->getInstanceMethod(PD->getSetterName()))
4304         CodeGenFunction(*this).GenerateObjCSetter(
4305                                  const_cast<ObjCImplementationDecl *>(D), PID);
4306     }
4307   }
4308 }
4309 
4310 static bool needsDestructMethod(ObjCImplementationDecl *impl) {
4311   const ObjCInterfaceDecl *iface = impl->getClassInterface();
4312   for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin();
4313        ivar; ivar = ivar->getNextIvar())
4314     if (ivar->getType().isDestructedType())
4315       return true;
4316 
4317   return false;
4318 }
4319 
4320 static bool AllTrivialInitializers(CodeGenModule &CGM,
4321                                    ObjCImplementationDecl *D) {
4322   CodeGenFunction CGF(CGM);
4323   for (ObjCImplementationDecl::init_iterator B = D->init_begin(),
4324        E = D->init_end(); B != E; ++B) {
4325     CXXCtorInitializer *CtorInitExp = *B;
4326     Expr *Init = CtorInitExp->getInit();
4327     if (!CGF.isTrivialInitializer(Init))
4328       return false;
4329   }
4330   return true;
4331 }
4332 
4333 /// EmitObjCIvarInitializations - Emit information for ivar initialization
4334 /// for an implementation.
4335 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) {
4336   // We might need a .cxx_destruct even if we don't have any ivar initializers.
4337   if (needsDestructMethod(D)) {
4338     IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct");
4339     Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
4340     ObjCMethodDecl *DTORMethod =
4341       ObjCMethodDecl::Create(getContext(), D->getLocation(), D->getLocation(),
4342                              cxxSelector, getContext().VoidTy, nullptr, D,
4343                              /*isInstance=*/true, /*isVariadic=*/false,
4344                           /*isPropertyAccessor=*/true, /*isImplicitlyDeclared=*/true,
4345                              /*isDefined=*/false, ObjCMethodDecl::Required);
4346     D->addInstanceMethod(DTORMethod);
4347     CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false);
4348     D->setHasDestructors(true);
4349   }
4350 
4351   // If the implementation doesn't have any ivar initializers, we don't need
4352   // a .cxx_construct.
4353   if (D->getNumIvarInitializers() == 0 ||
4354       AllTrivialInitializers(*this, D))
4355     return;
4356 
4357   IdentifierInfo *II = &getContext().Idents.get(".cxx_construct");
4358   Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
4359   // The constructor returns 'self'.
4360   ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(getContext(),
4361                                                 D->getLocation(),
4362                                                 D->getLocation(),
4363                                                 cxxSelector,
4364                                                 getContext().getObjCIdType(),
4365                                                 nullptr, D, /*isInstance=*/true,
4366                                                 /*isVariadic=*/false,
4367                                                 /*isPropertyAccessor=*/true,
4368                                                 /*isImplicitlyDeclared=*/true,
4369                                                 /*isDefined=*/false,
4370                                                 ObjCMethodDecl::Required);
4371   D->addInstanceMethod(CTORMethod);
4372   CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true);
4373   D->setHasNonZeroConstructors(true);
4374 }
4375 
4376 // EmitLinkageSpec - Emit all declarations in a linkage spec.
4377 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) {
4378   if (LSD->getLanguage() != LinkageSpecDecl::lang_c &&
4379       LSD->getLanguage() != LinkageSpecDecl::lang_cxx) {
4380     ErrorUnsupported(LSD, "linkage spec");
4381     return;
4382   }
4383 
4384   EmitDeclContext(LSD);
4385 }
4386 
4387 void CodeGenModule::EmitDeclContext(const DeclContext *DC) {
4388   for (auto *I : DC->decls()) {
4389     // Unlike other DeclContexts, the contents of an ObjCImplDecl at TU scope
4390     // are themselves considered "top-level", so EmitTopLevelDecl on an
4391     // ObjCImplDecl does not recursively visit them. We need to do that in
4392     // case they're nested inside another construct (LinkageSpecDecl /
4393     // ExportDecl) that does stop them from being considered "top-level".
4394     if (auto *OID = dyn_cast<ObjCImplDecl>(I)) {
4395       for (auto *M : OID->methods())
4396         EmitTopLevelDecl(M);
4397     }
4398 
4399     EmitTopLevelDecl(I);
4400   }
4401 }
4402 
4403 /// EmitTopLevelDecl - Emit code for a single top level declaration.
4404 void CodeGenModule::EmitTopLevelDecl(Decl *D) {
4405   // Ignore dependent declarations.
4406   if (D->isTemplated())
4407     return;
4408 
4409   switch (D->getKind()) {
4410   case Decl::CXXConversion:
4411   case Decl::CXXMethod:
4412   case Decl::Function:
4413     EmitGlobal(cast<FunctionDecl>(D));
4414     // Always provide some coverage mapping
4415     // even for the functions that aren't emitted.
4416     AddDeferredUnusedCoverageMapping(D);
4417     break;
4418 
4419   case Decl::CXXDeductionGuide:
4420     // Function-like, but does not result in code emission.
4421     break;
4422 
4423   case Decl::Var:
4424   case Decl::Decomposition:
4425   case Decl::VarTemplateSpecialization:
4426     EmitGlobal(cast<VarDecl>(D));
4427     if (auto *DD = dyn_cast<DecompositionDecl>(D))
4428       for (auto *B : DD->bindings())
4429         if (auto *HD = B->getHoldingVar())
4430           EmitGlobal(HD);
4431     break;
4432 
4433   // Indirect fields from global anonymous structs and unions can be
4434   // ignored; only the actual variable requires IR gen support.
4435   case Decl::IndirectField:
4436     break;
4437 
4438   // C++ Decls
4439   case Decl::Namespace:
4440     EmitDeclContext(cast<NamespaceDecl>(D));
4441     break;
4442   case Decl::ClassTemplateSpecialization: {
4443     const auto *Spec = cast<ClassTemplateSpecializationDecl>(D);
4444     if (DebugInfo &&
4445         Spec->getSpecializationKind() == TSK_ExplicitInstantiationDefinition &&
4446         Spec->hasDefinition())
4447       DebugInfo->completeTemplateDefinition(*Spec);
4448   } LLVM_FALLTHROUGH;
4449   case Decl::CXXRecord:
4450     if (DebugInfo) {
4451       if (auto *ES = D->getASTContext().getExternalSource())
4452         if (ES->hasExternalDefinitions(D) == ExternalASTSource::EK_Never)
4453           DebugInfo->completeUnusedClass(cast<CXXRecordDecl>(*D));
4454     }
4455     // Emit any static data members, they may be definitions.
4456     for (auto *I : cast<CXXRecordDecl>(D)->decls())
4457       if (isa<VarDecl>(I) || isa<CXXRecordDecl>(I))
4458         EmitTopLevelDecl(I);
4459     break;
4460     // No code generation needed.
4461   case Decl::UsingShadow:
4462   case Decl::ClassTemplate:
4463   case Decl::VarTemplate:
4464   case Decl::VarTemplatePartialSpecialization:
4465   case Decl::FunctionTemplate:
4466   case Decl::TypeAliasTemplate:
4467   case Decl::Block:
4468   case Decl::Empty:
4469     break;
4470   case Decl::Using:          // using X; [C++]
4471     if (CGDebugInfo *DI = getModuleDebugInfo())
4472         DI->EmitUsingDecl(cast<UsingDecl>(*D));
4473     return;
4474   case Decl::NamespaceAlias:
4475     if (CGDebugInfo *DI = getModuleDebugInfo())
4476         DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(*D));
4477     return;
4478   case Decl::UsingDirective: // using namespace X; [C++]
4479     if (CGDebugInfo *DI = getModuleDebugInfo())
4480       DI->EmitUsingDirective(cast<UsingDirectiveDecl>(*D));
4481     return;
4482   case Decl::CXXConstructor:
4483     getCXXABI().EmitCXXConstructors(cast<CXXConstructorDecl>(D));
4484     break;
4485   case Decl::CXXDestructor:
4486     getCXXABI().EmitCXXDestructors(cast<CXXDestructorDecl>(D));
4487     break;
4488 
4489   case Decl::StaticAssert:
4490     // Nothing to do.
4491     break;
4492 
4493   // Objective-C Decls
4494 
4495   // Forward declarations, no (immediate) code generation.
4496   case Decl::ObjCInterface:
4497   case Decl::ObjCCategory:
4498     break;
4499 
4500   case Decl::ObjCProtocol: {
4501     auto *Proto = cast<ObjCProtocolDecl>(D);
4502     if (Proto->isThisDeclarationADefinition())
4503       ObjCRuntime->GenerateProtocol(Proto);
4504     break;
4505   }
4506 
4507   case Decl::ObjCCategoryImpl:
4508     // Categories have properties but don't support synthesize so we
4509     // can ignore them here.
4510     ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D));
4511     break;
4512 
4513   case Decl::ObjCImplementation: {
4514     auto *OMD = cast<ObjCImplementationDecl>(D);
4515     EmitObjCPropertyImplementations(OMD);
4516     EmitObjCIvarInitializations(OMD);
4517     ObjCRuntime->GenerateClass(OMD);
4518     // Emit global variable debug information.
4519     if (CGDebugInfo *DI = getModuleDebugInfo())
4520       if (getCodeGenOpts().getDebugInfo() >= codegenoptions::LimitedDebugInfo)
4521         DI->getOrCreateInterfaceType(getContext().getObjCInterfaceType(
4522             OMD->getClassInterface()), OMD->getLocation());
4523     break;
4524   }
4525   case Decl::ObjCMethod: {
4526     auto *OMD = cast<ObjCMethodDecl>(D);
4527     // If this is not a prototype, emit the body.
4528     if (OMD->getBody())
4529       CodeGenFunction(*this).GenerateObjCMethod(OMD);
4530     break;
4531   }
4532   case Decl::ObjCCompatibleAlias:
4533     ObjCRuntime->RegisterAlias(cast<ObjCCompatibleAliasDecl>(D));
4534     break;
4535 
4536   case Decl::PragmaComment: {
4537     const auto *PCD = cast<PragmaCommentDecl>(D);
4538     switch (PCD->getCommentKind()) {
4539     case PCK_Unknown:
4540       llvm_unreachable("unexpected pragma comment kind");
4541     case PCK_Linker:
4542       AppendLinkerOptions(PCD->getArg());
4543       break;
4544     case PCK_Lib:
4545       if (getTarget().getTriple().isOSBinFormatELF() &&
4546           !getTarget().getTriple().isPS4())
4547         AddELFLibDirective(PCD->getArg());
4548       else
4549         AddDependentLib(PCD->getArg());
4550       break;
4551     case PCK_Compiler:
4552     case PCK_ExeStr:
4553     case PCK_User:
4554       break; // We ignore all of these.
4555     }
4556     break;
4557   }
4558 
4559   case Decl::PragmaDetectMismatch: {
4560     const auto *PDMD = cast<PragmaDetectMismatchDecl>(D);
4561     AddDetectMismatch(PDMD->getName(), PDMD->getValue());
4562     break;
4563   }
4564 
4565   case Decl::LinkageSpec:
4566     EmitLinkageSpec(cast<LinkageSpecDecl>(D));
4567     break;
4568 
4569   case Decl::FileScopeAsm: {
4570     // File-scope asm is ignored during device-side CUDA compilation.
4571     if (LangOpts.CUDA && LangOpts.CUDAIsDevice)
4572       break;
4573     // File-scope asm is ignored during device-side OpenMP compilation.
4574     if (LangOpts.OpenMPIsDevice)
4575       break;
4576     auto *AD = cast<FileScopeAsmDecl>(D);
4577     getModule().appendModuleInlineAsm(AD->getAsmString()->getString());
4578     break;
4579   }
4580 
4581   case Decl::Import: {
4582     auto *Import = cast<ImportDecl>(D);
4583 
4584     // If we've already imported this module, we're done.
4585     if (!ImportedModules.insert(Import->getImportedModule()))
4586       break;
4587 
4588     // Emit debug information for direct imports.
4589     if (!Import->getImportedOwningModule()) {
4590       if (CGDebugInfo *DI = getModuleDebugInfo())
4591         DI->EmitImportDecl(*Import);
4592     }
4593 
4594     // Find all of the submodules and emit the module initializers.
4595     llvm::SmallPtrSet<clang::Module *, 16> Visited;
4596     SmallVector<clang::Module *, 16> Stack;
4597     Visited.insert(Import->getImportedModule());
4598     Stack.push_back(Import->getImportedModule());
4599 
4600     while (!Stack.empty()) {
4601       clang::Module *Mod = Stack.pop_back_val();
4602       if (!EmittedModuleInitializers.insert(Mod).second)
4603         continue;
4604 
4605       for (auto *D : Context.getModuleInitializers(Mod))
4606         EmitTopLevelDecl(D);
4607 
4608       // Visit the submodules of this module.
4609       for (clang::Module::submodule_iterator Sub = Mod->submodule_begin(),
4610                                              SubEnd = Mod->submodule_end();
4611            Sub != SubEnd; ++Sub) {
4612         // Skip explicit children; they need to be explicitly imported to emit
4613         // the initializers.
4614         if ((*Sub)->IsExplicit)
4615           continue;
4616 
4617         if (Visited.insert(*Sub).second)
4618           Stack.push_back(*Sub);
4619       }
4620     }
4621     break;
4622   }
4623 
4624   case Decl::Export:
4625     EmitDeclContext(cast<ExportDecl>(D));
4626     break;
4627 
4628   case Decl::OMPThreadPrivate:
4629     EmitOMPThreadPrivateDecl(cast<OMPThreadPrivateDecl>(D));
4630     break;
4631 
4632   case Decl::OMPDeclareReduction:
4633     EmitOMPDeclareReduction(cast<OMPDeclareReductionDecl>(D));
4634     break;
4635 
4636   default:
4637     // Make sure we handled everything we should, every other kind is a
4638     // non-top-level decl.  FIXME: Would be nice to have an isTopLevelDeclKind
4639     // function. Need to recode Decl::Kind to do that easily.
4640     assert(isa<TypeDecl>(D) && "Unsupported decl kind");
4641     break;
4642   }
4643 }
4644 
4645 void CodeGenModule::AddDeferredUnusedCoverageMapping(Decl *D) {
4646   // Do we need to generate coverage mapping?
4647   if (!CodeGenOpts.CoverageMapping)
4648     return;
4649   switch (D->getKind()) {
4650   case Decl::CXXConversion:
4651   case Decl::CXXMethod:
4652   case Decl::Function:
4653   case Decl::ObjCMethod:
4654   case Decl::CXXConstructor:
4655   case Decl::CXXDestructor: {
4656     if (!cast<FunctionDecl>(D)->doesThisDeclarationHaveABody())
4657       return;
4658     SourceManager &SM = getContext().getSourceManager();
4659     if (LimitedCoverage && SM.getMainFileID() != SM.getFileID(D->getLocStart()))
4660       return;
4661     auto I = DeferredEmptyCoverageMappingDecls.find(D);
4662     if (I == DeferredEmptyCoverageMappingDecls.end())
4663       DeferredEmptyCoverageMappingDecls[D] = true;
4664     break;
4665   }
4666   default:
4667     break;
4668   };
4669 }
4670 
4671 void CodeGenModule::ClearUnusedCoverageMapping(const Decl *D) {
4672   // Do we need to generate coverage mapping?
4673   if (!CodeGenOpts.CoverageMapping)
4674     return;
4675   if (const auto *Fn = dyn_cast<FunctionDecl>(D)) {
4676     if (Fn->isTemplateInstantiation())
4677       ClearUnusedCoverageMapping(Fn->getTemplateInstantiationPattern());
4678   }
4679   auto I = DeferredEmptyCoverageMappingDecls.find(D);
4680   if (I == DeferredEmptyCoverageMappingDecls.end())
4681     DeferredEmptyCoverageMappingDecls[D] = false;
4682   else
4683     I->second = false;
4684 }
4685 
4686 void CodeGenModule::EmitDeferredUnusedCoverageMappings() {
4687   // We call takeVector() here to avoid use-after-free.
4688   // FIXME: DeferredEmptyCoverageMappingDecls is getting mutated because
4689   // we deserialize function bodies to emit coverage info for them, and that
4690   // deserializes more declarations. How should we handle that case?
4691   for (const auto &Entry : DeferredEmptyCoverageMappingDecls.takeVector()) {
4692     if (!Entry.second)
4693       continue;
4694     const Decl *D = Entry.first;
4695     switch (D->getKind()) {
4696     case Decl::CXXConversion:
4697     case Decl::CXXMethod:
4698     case Decl::Function:
4699     case Decl::ObjCMethod: {
4700       CodeGenPGO PGO(*this);
4701       GlobalDecl GD(cast<FunctionDecl>(D));
4702       PGO.emitEmptyCounterMapping(D, getMangledName(GD),
4703                                   getFunctionLinkage(GD));
4704       break;
4705     }
4706     case Decl::CXXConstructor: {
4707       CodeGenPGO PGO(*this);
4708       GlobalDecl GD(cast<CXXConstructorDecl>(D), Ctor_Base);
4709       PGO.emitEmptyCounterMapping(D, getMangledName(GD),
4710                                   getFunctionLinkage(GD));
4711       break;
4712     }
4713     case Decl::CXXDestructor: {
4714       CodeGenPGO PGO(*this);
4715       GlobalDecl GD(cast<CXXDestructorDecl>(D), Dtor_Base);
4716       PGO.emitEmptyCounterMapping(D, getMangledName(GD),
4717                                   getFunctionLinkage(GD));
4718       break;
4719     }
4720     default:
4721       break;
4722     };
4723   }
4724 }
4725 
4726 /// Turns the given pointer into a constant.
4727 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context,
4728                                           const void *Ptr) {
4729   uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr);
4730   llvm::Type *i64 = llvm::Type::getInt64Ty(Context);
4731   return llvm::ConstantInt::get(i64, PtrInt);
4732 }
4733 
4734 static void EmitGlobalDeclMetadata(CodeGenModule &CGM,
4735                                    llvm::NamedMDNode *&GlobalMetadata,
4736                                    GlobalDecl D,
4737                                    llvm::GlobalValue *Addr) {
4738   if (!GlobalMetadata)
4739     GlobalMetadata =
4740       CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs");
4741 
4742   // TODO: should we report variant information for ctors/dtors?
4743   llvm::Metadata *Ops[] = {llvm::ConstantAsMetadata::get(Addr),
4744                            llvm::ConstantAsMetadata::get(GetPointerConstant(
4745                                CGM.getLLVMContext(), D.getDecl()))};
4746   GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops));
4747 }
4748 
4749 /// For each function which is declared within an extern "C" region and marked
4750 /// as 'used', but has internal linkage, create an alias from the unmangled
4751 /// name to the mangled name if possible. People expect to be able to refer
4752 /// to such functions with an unmangled name from inline assembly within the
4753 /// same translation unit.
4754 void CodeGenModule::EmitStaticExternCAliases() {
4755   if (!getTargetCodeGenInfo().shouldEmitStaticExternCAliases())
4756     return;
4757   for (auto &I : StaticExternCValues) {
4758     IdentifierInfo *Name = I.first;
4759     llvm::GlobalValue *Val = I.second;
4760     if (Val && !getModule().getNamedValue(Name->getName()))
4761       addUsedGlobal(llvm::GlobalAlias::create(Name->getName(), Val));
4762   }
4763 }
4764 
4765 bool CodeGenModule::lookupRepresentativeDecl(StringRef MangledName,
4766                                              GlobalDecl &Result) const {
4767   auto Res = Manglings.find(MangledName);
4768   if (Res == Manglings.end())
4769     return false;
4770   Result = Res->getValue();
4771   return true;
4772 }
4773 
4774 /// Emits metadata nodes associating all the global values in the
4775 /// current module with the Decls they came from.  This is useful for
4776 /// projects using IR gen as a subroutine.
4777 ///
4778 /// Since there's currently no way to associate an MDNode directly
4779 /// with an llvm::GlobalValue, we create a global named metadata
4780 /// with the name 'clang.global.decl.ptrs'.
4781 void CodeGenModule::EmitDeclMetadata() {
4782   llvm::NamedMDNode *GlobalMetadata = nullptr;
4783 
4784   for (auto &I : MangledDeclNames) {
4785     llvm::GlobalValue *Addr = getModule().getNamedValue(I.second);
4786     // Some mangled names don't necessarily have an associated GlobalValue
4787     // in this module, e.g. if we mangled it for DebugInfo.
4788     if (Addr)
4789       EmitGlobalDeclMetadata(*this, GlobalMetadata, I.first, Addr);
4790   }
4791 }
4792 
4793 /// Emits metadata nodes for all the local variables in the current
4794 /// function.
4795 void CodeGenFunction::EmitDeclMetadata() {
4796   if (LocalDeclMap.empty()) return;
4797 
4798   llvm::LLVMContext &Context = getLLVMContext();
4799 
4800   // Find the unique metadata ID for this name.
4801   unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr");
4802 
4803   llvm::NamedMDNode *GlobalMetadata = nullptr;
4804 
4805   for (auto &I : LocalDeclMap) {
4806     const Decl *D = I.first;
4807     llvm::Value *Addr = I.second.getPointer();
4808     if (auto *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) {
4809       llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D);
4810       Alloca->setMetadata(
4811           DeclPtrKind, llvm::MDNode::get(
4812                            Context, llvm::ValueAsMetadata::getConstant(DAddr)));
4813     } else if (auto *GV = dyn_cast<llvm::GlobalValue>(Addr)) {
4814       GlobalDecl GD = GlobalDecl(cast<VarDecl>(D));
4815       EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV);
4816     }
4817   }
4818 }
4819 
4820 void CodeGenModule::EmitVersionIdentMetadata() {
4821   llvm::NamedMDNode *IdentMetadata =
4822     TheModule.getOrInsertNamedMetadata("llvm.ident");
4823   std::string Version = getClangFullVersion();
4824   llvm::LLVMContext &Ctx = TheModule.getContext();
4825 
4826   llvm::Metadata *IdentNode[] = {llvm::MDString::get(Ctx, Version)};
4827   IdentMetadata->addOperand(llvm::MDNode::get(Ctx, IdentNode));
4828 }
4829 
4830 void CodeGenModule::EmitTargetMetadata() {
4831   // Warning, new MangledDeclNames may be appended within this loop.
4832   // We rely on MapVector insertions adding new elements to the end
4833   // of the container.
4834   // FIXME: Move this loop into the one target that needs it, and only
4835   // loop over those declarations for which we couldn't emit the target
4836   // metadata when we emitted the declaration.
4837   for (unsigned I = 0; I != MangledDeclNames.size(); ++I) {
4838     auto Val = *(MangledDeclNames.begin() + I);
4839     const Decl *D = Val.first.getDecl()->getMostRecentDecl();
4840     llvm::GlobalValue *GV = GetGlobalValue(Val.second);
4841     getTargetCodeGenInfo().emitTargetMD(D, GV, *this);
4842   }
4843 }
4844 
4845 void CodeGenModule::EmitCoverageFile() {
4846   if (getCodeGenOpts().CoverageDataFile.empty() &&
4847       getCodeGenOpts().CoverageNotesFile.empty())
4848     return;
4849 
4850   llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu");
4851   if (!CUNode)
4852     return;
4853 
4854   llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov");
4855   llvm::LLVMContext &Ctx = TheModule.getContext();
4856   auto *CoverageDataFile =
4857       llvm::MDString::get(Ctx, getCodeGenOpts().CoverageDataFile);
4858   auto *CoverageNotesFile =
4859       llvm::MDString::get(Ctx, getCodeGenOpts().CoverageNotesFile);
4860   for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) {
4861     llvm::MDNode *CU = CUNode->getOperand(i);
4862     llvm::Metadata *Elts[] = {CoverageNotesFile, CoverageDataFile, CU};
4863     GCov->addOperand(llvm::MDNode::get(Ctx, Elts));
4864   }
4865 }
4866 
4867 llvm::Constant *CodeGenModule::EmitUuidofInitializer(StringRef Uuid) {
4868   // Sema has checked that all uuid strings are of the form
4869   // "12345678-1234-1234-1234-1234567890ab".
4870   assert(Uuid.size() == 36);
4871   for (unsigned i = 0; i < 36; ++i) {
4872     if (i == 8 || i == 13 || i == 18 || i == 23) assert(Uuid[i] == '-');
4873     else                                         assert(isHexDigit(Uuid[i]));
4874   }
4875 
4876   // The starts of all bytes of Field3 in Uuid. Field 3 is "1234-1234567890ab".
4877   const unsigned Field3ValueOffsets[8] = { 19, 21, 24, 26, 28, 30, 32, 34 };
4878 
4879   llvm::Constant *Field3[8];
4880   for (unsigned Idx = 0; Idx < 8; ++Idx)
4881     Field3[Idx] = llvm::ConstantInt::get(
4882         Int8Ty, Uuid.substr(Field3ValueOffsets[Idx], 2), 16);
4883 
4884   llvm::Constant *Fields[4] = {
4885     llvm::ConstantInt::get(Int32Ty, Uuid.substr(0,  8), 16),
4886     llvm::ConstantInt::get(Int16Ty, Uuid.substr(9,  4), 16),
4887     llvm::ConstantInt::get(Int16Ty, Uuid.substr(14, 4), 16),
4888     llvm::ConstantArray::get(llvm::ArrayType::get(Int8Ty, 8), Field3)
4889   };
4890 
4891   return llvm::ConstantStruct::getAnon(Fields);
4892 }
4893 
4894 llvm::Constant *CodeGenModule::GetAddrOfRTTIDescriptor(QualType Ty,
4895                                                        bool ForEH) {
4896   // Return a bogus pointer if RTTI is disabled, unless it's for EH.
4897   // FIXME: should we even be calling this method if RTTI is disabled
4898   // and it's not for EH?
4899   if ((!ForEH && !getLangOpts().RTTI) || getLangOpts().CUDAIsDevice)
4900     return llvm::Constant::getNullValue(Int8PtrTy);
4901 
4902   if (ForEH && Ty->isObjCObjectPointerType() &&
4903       LangOpts.ObjCRuntime.isGNUFamily())
4904     return ObjCRuntime->GetEHType(Ty);
4905 
4906   return getCXXABI().getAddrOfRTTIDescriptor(Ty);
4907 }
4908 
4909 void CodeGenModule::EmitOMPThreadPrivateDecl(const OMPThreadPrivateDecl *D) {
4910   // Do not emit threadprivates in simd-only mode.
4911   if (LangOpts.OpenMP && LangOpts.OpenMPSimd)
4912     return;
4913   for (auto RefExpr : D->varlists()) {
4914     auto *VD = cast<VarDecl>(cast<DeclRefExpr>(RefExpr)->getDecl());
4915     bool PerformInit =
4916         VD->getAnyInitializer() &&
4917         !VD->getAnyInitializer()->isConstantInitializer(getContext(),
4918                                                         /*ForRef=*/false);
4919 
4920     Address Addr(GetAddrOfGlobalVar(VD), getContext().getDeclAlign(VD));
4921     if (auto InitFunction = getOpenMPRuntime().emitThreadPrivateVarDefinition(
4922             VD, Addr, RefExpr->getLocStart(), PerformInit))
4923       CXXGlobalInits.push_back(InitFunction);
4924   }
4925 }
4926 
4927 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierForType(QualType T) {
4928   llvm::Metadata *&InternalId = MetadataIdMap[T.getCanonicalType()];
4929   if (InternalId)
4930     return InternalId;
4931 
4932   if (isExternallyVisible(T->getLinkage())) {
4933     std::string OutName;
4934     llvm::raw_string_ostream Out(OutName);
4935     getCXXABI().getMangleContext().mangleTypeName(T, Out);
4936 
4937     InternalId = llvm::MDString::get(getLLVMContext(), Out.str());
4938   } else {
4939     InternalId = llvm::MDNode::getDistinct(getLLVMContext(),
4940                                            llvm::ArrayRef<llvm::Metadata *>());
4941   }
4942 
4943   return InternalId;
4944 }
4945 
4946 // Generalize pointer types to a void pointer with the qualifiers of the
4947 // originally pointed-to type, e.g. 'const char *' and 'char * const *'
4948 // generalize to 'const void *' while 'char *' and 'const char **' generalize to
4949 // 'void *'.
4950 static QualType GeneralizeType(ASTContext &Ctx, QualType Ty) {
4951   if (!Ty->isPointerType())
4952     return Ty;
4953 
4954   return Ctx.getPointerType(
4955       QualType(Ctx.VoidTy).withCVRQualifiers(
4956           Ty->getPointeeType().getCVRQualifiers()));
4957 }
4958 
4959 // Apply type generalization to a FunctionType's return and argument types
4960 static QualType GeneralizeFunctionType(ASTContext &Ctx, QualType Ty) {
4961   if (auto *FnType = Ty->getAs<FunctionProtoType>()) {
4962     SmallVector<QualType, 8> GeneralizedParams;
4963     for (auto &Param : FnType->param_types())
4964       GeneralizedParams.push_back(GeneralizeType(Ctx, Param));
4965 
4966     return Ctx.getFunctionType(
4967         GeneralizeType(Ctx, FnType->getReturnType()),
4968         GeneralizedParams, FnType->getExtProtoInfo());
4969   }
4970 
4971   if (auto *FnType = Ty->getAs<FunctionNoProtoType>())
4972     return Ctx.getFunctionNoProtoType(
4973         GeneralizeType(Ctx, FnType->getReturnType()));
4974 
4975   llvm_unreachable("Encountered unknown FunctionType");
4976 }
4977 
4978 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierGeneralized(QualType T) {
4979   T = GeneralizeFunctionType(getContext(), T);
4980 
4981   llvm::Metadata *&InternalId = GeneralizedMetadataIdMap[T.getCanonicalType()];
4982   if (InternalId)
4983     return InternalId;
4984 
4985   if (isExternallyVisible(T->getLinkage())) {
4986     std::string OutName;
4987     llvm::raw_string_ostream Out(OutName);
4988     getCXXABI().getMangleContext().mangleTypeName(T, Out);
4989     Out << ".generalized";
4990 
4991     InternalId = llvm::MDString::get(getLLVMContext(), Out.str());
4992   } else {
4993     InternalId = llvm::MDNode::getDistinct(getLLVMContext(),
4994                                            llvm::ArrayRef<llvm::Metadata *>());
4995   }
4996 
4997   return InternalId;
4998 }
4999 
5000 /// Returns whether this module needs the "all-vtables" type identifier.
5001 bool CodeGenModule::NeedAllVtablesTypeId() const {
5002   // Returns true if at least one of vtable-based CFI checkers is enabled and
5003   // is not in the trapping mode.
5004   return ((LangOpts.Sanitize.has(SanitizerKind::CFIVCall) &&
5005            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIVCall)) ||
5006           (LangOpts.Sanitize.has(SanitizerKind::CFINVCall) &&
5007            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFINVCall)) ||
5008           (LangOpts.Sanitize.has(SanitizerKind::CFIDerivedCast) &&
5009            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIDerivedCast)) ||
5010           (LangOpts.Sanitize.has(SanitizerKind::CFIUnrelatedCast) &&
5011            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIUnrelatedCast)));
5012 }
5013 
5014 void CodeGenModule::AddVTableTypeMetadata(llvm::GlobalVariable *VTable,
5015                                           CharUnits Offset,
5016                                           const CXXRecordDecl *RD) {
5017   llvm::Metadata *MD =
5018       CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0));
5019   VTable->addTypeMetadata(Offset.getQuantity(), MD);
5020 
5021   if (CodeGenOpts.SanitizeCfiCrossDso)
5022     if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD))
5023       VTable->addTypeMetadata(Offset.getQuantity(),
5024                               llvm::ConstantAsMetadata::get(CrossDsoTypeId));
5025 
5026   if (NeedAllVtablesTypeId()) {
5027     llvm::Metadata *MD = llvm::MDString::get(getLLVMContext(), "all-vtables");
5028     VTable->addTypeMetadata(Offset.getQuantity(), MD);
5029   }
5030 }
5031 
5032 TargetAttr::ParsedTargetAttr CodeGenModule::filterFunctionTargetAttrs(const TargetAttr *TD) {
5033   assert(TD != nullptr);
5034   TargetAttr::ParsedTargetAttr ParsedAttr = TD->parse();
5035 
5036   ParsedAttr.Features.erase(
5037       llvm::remove_if(ParsedAttr.Features,
5038                       [&](const std::string &Feat) {
5039                         return !Target.isValidFeatureName(
5040                             StringRef{Feat}.substr(1));
5041                       }),
5042       ParsedAttr.Features.end());
5043   return ParsedAttr;
5044 }
5045 
5046 
5047 // Fills in the supplied string map with the set of target features for the
5048 // passed in function.
5049 void CodeGenModule::getFunctionFeatureMap(llvm::StringMap<bool> &FeatureMap,
5050                                           const FunctionDecl *FD) {
5051   StringRef TargetCPU = Target.getTargetOpts().CPU;
5052   if (const auto *TD = FD->getAttr<TargetAttr>()) {
5053     TargetAttr::ParsedTargetAttr ParsedAttr = filterFunctionTargetAttrs(TD);
5054 
5055     // Make a copy of the features as passed on the command line into the
5056     // beginning of the additional features from the function to override.
5057     ParsedAttr.Features.insert(ParsedAttr.Features.begin(),
5058                             Target.getTargetOpts().FeaturesAsWritten.begin(),
5059                             Target.getTargetOpts().FeaturesAsWritten.end());
5060 
5061     if (ParsedAttr.Architecture != "" &&
5062         Target.isValidCPUName(ParsedAttr.Architecture))
5063       TargetCPU = ParsedAttr.Architecture;
5064 
5065     // Now populate the feature map, first with the TargetCPU which is either
5066     // the default or a new one from the target attribute string. Then we'll use
5067     // the passed in features (FeaturesAsWritten) along with the new ones from
5068     // the attribute.
5069     Target.initFeatureMap(FeatureMap, getDiags(), TargetCPU,
5070                           ParsedAttr.Features);
5071   } else {
5072     Target.initFeatureMap(FeatureMap, getDiags(), TargetCPU,
5073                           Target.getTargetOpts().Features);
5074   }
5075 }
5076 
5077 llvm::SanitizerStatReport &CodeGenModule::getSanStats() {
5078   if (!SanStats)
5079     SanStats = llvm::make_unique<llvm::SanitizerStatReport>(&getModule());
5080 
5081   return *SanStats;
5082 }
5083 llvm::Value *
5084 CodeGenModule::createOpenCLIntToSamplerConversion(const Expr *E,
5085                                                   CodeGenFunction &CGF) {
5086   llvm::Constant *C = ConstantEmitter(CGF).emitAbstract(E, E->getType());
5087   auto SamplerT = getOpenCLRuntime().getSamplerType(E->getType().getTypePtr());
5088   auto FTy = llvm::FunctionType::get(SamplerT, {C->getType()}, false);
5089   return CGF.Builder.CreateCall(CreateRuntimeFunction(FTy,
5090                                 "__translate_sampler_initializer"),
5091                                 {C});
5092 }
5093