1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This coordinates the per-module state used while generating code. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "CodeGenModule.h" 14 #include "CGBlocks.h" 15 #include "CGCUDARuntime.h" 16 #include "CGCXXABI.h" 17 #include "CGCall.h" 18 #include "CGDebugInfo.h" 19 #include "CGObjCRuntime.h" 20 #include "CGOpenCLRuntime.h" 21 #include "CGOpenMPRuntime.h" 22 #include "CGOpenMPRuntimeNVPTX.h" 23 #include "CodeGenFunction.h" 24 #include "CodeGenPGO.h" 25 #include "ConstantEmitter.h" 26 #include "CoverageMappingGen.h" 27 #include "TargetInfo.h" 28 #include "clang/AST/ASTContext.h" 29 #include "clang/AST/CharUnits.h" 30 #include "clang/AST/DeclCXX.h" 31 #include "clang/AST/DeclObjC.h" 32 #include "clang/AST/DeclTemplate.h" 33 #include "clang/AST/Mangle.h" 34 #include "clang/AST/RecordLayout.h" 35 #include "clang/AST/RecursiveASTVisitor.h" 36 #include "clang/AST/StmtVisitor.h" 37 #include "clang/Basic/Builtins.h" 38 #include "clang/Basic/CharInfo.h" 39 #include "clang/Basic/CodeGenOptions.h" 40 #include "clang/Basic/Diagnostic.h" 41 #include "clang/Basic/Module.h" 42 #include "clang/Basic/SourceManager.h" 43 #include "clang/Basic/TargetInfo.h" 44 #include "clang/Basic/Version.h" 45 #include "clang/CodeGen/ConstantInitBuilder.h" 46 #include "clang/Frontend/FrontendDiagnostic.h" 47 #include "llvm/ADT/StringSwitch.h" 48 #include "llvm/ADT/Triple.h" 49 #include "llvm/Analysis/TargetLibraryInfo.h" 50 #include "llvm/IR/CallingConv.h" 51 #include "llvm/IR/DataLayout.h" 52 #include "llvm/IR/Intrinsics.h" 53 #include "llvm/IR/LLVMContext.h" 54 #include "llvm/IR/Module.h" 55 #include "llvm/IR/ProfileSummary.h" 56 #include "llvm/ProfileData/InstrProfReader.h" 57 #include "llvm/Support/CodeGen.h" 58 #include "llvm/Support/ConvertUTF.h" 59 #include "llvm/Support/ErrorHandling.h" 60 #include "llvm/Support/MD5.h" 61 #include "llvm/Support/TimeProfiler.h" 62 63 using namespace clang; 64 using namespace CodeGen; 65 66 static llvm::cl::opt<bool> LimitedCoverage( 67 "limited-coverage-experimental", llvm::cl::ZeroOrMore, llvm::cl::Hidden, 68 llvm::cl::desc("Emit limited coverage mapping information (experimental)"), 69 llvm::cl::init(false)); 70 71 static const char AnnotationSection[] = "llvm.metadata"; 72 73 static CGCXXABI *createCXXABI(CodeGenModule &CGM) { 74 switch (CGM.getTarget().getCXXABI().getKind()) { 75 case TargetCXXABI::GenericAArch64: 76 case TargetCXXABI::GenericARM: 77 case TargetCXXABI::iOS: 78 case TargetCXXABI::iOS64: 79 case TargetCXXABI::WatchOS: 80 case TargetCXXABI::GenericMIPS: 81 case TargetCXXABI::GenericItanium: 82 case TargetCXXABI::WebAssembly: 83 return CreateItaniumCXXABI(CGM); 84 case TargetCXXABI::Microsoft: 85 return CreateMicrosoftCXXABI(CGM); 86 } 87 88 llvm_unreachable("invalid C++ ABI kind"); 89 } 90 91 CodeGenModule::CodeGenModule(ASTContext &C, const HeaderSearchOptions &HSO, 92 const PreprocessorOptions &PPO, 93 const CodeGenOptions &CGO, llvm::Module &M, 94 DiagnosticsEngine &diags, 95 CoverageSourceInfo *CoverageInfo) 96 : Context(C), LangOpts(C.getLangOpts()), HeaderSearchOpts(HSO), 97 PreprocessorOpts(PPO), CodeGenOpts(CGO), TheModule(M), Diags(diags), 98 Target(C.getTargetInfo()), ABI(createCXXABI(*this)), 99 VMContext(M.getContext()), Types(*this), VTables(*this), 100 SanitizerMD(new SanitizerMetadata(*this)) { 101 102 // Initialize the type cache. 103 llvm::LLVMContext &LLVMContext = M.getContext(); 104 VoidTy = llvm::Type::getVoidTy(LLVMContext); 105 Int8Ty = llvm::Type::getInt8Ty(LLVMContext); 106 Int16Ty = llvm::Type::getInt16Ty(LLVMContext); 107 Int32Ty = llvm::Type::getInt32Ty(LLVMContext); 108 Int64Ty = llvm::Type::getInt64Ty(LLVMContext); 109 HalfTy = llvm::Type::getHalfTy(LLVMContext); 110 FloatTy = llvm::Type::getFloatTy(LLVMContext); 111 DoubleTy = llvm::Type::getDoubleTy(LLVMContext); 112 PointerWidthInBits = C.getTargetInfo().getPointerWidth(0); 113 PointerAlignInBytes = 114 C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(0)).getQuantity(); 115 SizeSizeInBytes = 116 C.toCharUnitsFromBits(C.getTargetInfo().getMaxPointerWidth()).getQuantity(); 117 IntAlignInBytes = 118 C.toCharUnitsFromBits(C.getTargetInfo().getIntAlign()).getQuantity(); 119 IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth()); 120 IntPtrTy = llvm::IntegerType::get(LLVMContext, 121 C.getTargetInfo().getMaxPointerWidth()); 122 Int8PtrTy = Int8Ty->getPointerTo(0); 123 Int8PtrPtrTy = Int8PtrTy->getPointerTo(0); 124 AllocaInt8PtrTy = Int8Ty->getPointerTo( 125 M.getDataLayout().getAllocaAddrSpace()); 126 ASTAllocaAddressSpace = getTargetCodeGenInfo().getASTAllocaAddressSpace(); 127 128 RuntimeCC = getTargetCodeGenInfo().getABIInfo().getRuntimeCC(); 129 130 if (LangOpts.ObjC) 131 createObjCRuntime(); 132 if (LangOpts.OpenCL) 133 createOpenCLRuntime(); 134 if (LangOpts.OpenMP) 135 createOpenMPRuntime(); 136 if (LangOpts.CUDA) 137 createCUDARuntime(); 138 139 // Enable TBAA unless it's suppressed. ThreadSanitizer needs TBAA even at O0. 140 if (LangOpts.Sanitize.has(SanitizerKind::Thread) || 141 (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0)) 142 TBAA.reset(new CodeGenTBAA(Context, TheModule, CodeGenOpts, getLangOpts(), 143 getCXXABI().getMangleContext())); 144 145 // If debug info or coverage generation is enabled, create the CGDebugInfo 146 // object. 147 if (CodeGenOpts.getDebugInfo() != codegenoptions::NoDebugInfo || 148 CodeGenOpts.EmitGcovArcs || CodeGenOpts.EmitGcovNotes) 149 DebugInfo.reset(new CGDebugInfo(*this)); 150 151 Block.GlobalUniqueCount = 0; 152 153 if (C.getLangOpts().ObjC) 154 ObjCData.reset(new ObjCEntrypoints()); 155 156 if (CodeGenOpts.hasProfileClangUse()) { 157 auto ReaderOrErr = llvm::IndexedInstrProfReader::create( 158 CodeGenOpts.ProfileInstrumentUsePath, CodeGenOpts.ProfileRemappingFile); 159 if (auto E = ReaderOrErr.takeError()) { 160 unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error, 161 "Could not read profile %0: %1"); 162 llvm::handleAllErrors(std::move(E), [&](const llvm::ErrorInfoBase &EI) { 163 getDiags().Report(DiagID) << CodeGenOpts.ProfileInstrumentUsePath 164 << EI.message(); 165 }); 166 } else 167 PGOReader = std::move(ReaderOrErr.get()); 168 } 169 170 // If coverage mapping generation is enabled, create the 171 // CoverageMappingModuleGen object. 172 if (CodeGenOpts.CoverageMapping) 173 CoverageMapping.reset(new CoverageMappingModuleGen(*this, *CoverageInfo)); 174 } 175 176 CodeGenModule::~CodeGenModule() {} 177 178 void CodeGenModule::createObjCRuntime() { 179 // This is just isGNUFamily(), but we want to force implementors of 180 // new ABIs to decide how best to do this. 181 switch (LangOpts.ObjCRuntime.getKind()) { 182 case ObjCRuntime::GNUstep: 183 case ObjCRuntime::GCC: 184 case ObjCRuntime::ObjFW: 185 ObjCRuntime.reset(CreateGNUObjCRuntime(*this)); 186 return; 187 188 case ObjCRuntime::FragileMacOSX: 189 case ObjCRuntime::MacOSX: 190 case ObjCRuntime::iOS: 191 case ObjCRuntime::WatchOS: 192 ObjCRuntime.reset(CreateMacObjCRuntime(*this)); 193 return; 194 } 195 llvm_unreachable("bad runtime kind"); 196 } 197 198 void CodeGenModule::createOpenCLRuntime() { 199 OpenCLRuntime.reset(new CGOpenCLRuntime(*this)); 200 } 201 202 void CodeGenModule::createOpenMPRuntime() { 203 // Select a specialized code generation class based on the target, if any. 204 // If it does not exist use the default implementation. 205 switch (getTriple().getArch()) { 206 case llvm::Triple::nvptx: 207 case llvm::Triple::nvptx64: 208 assert(getLangOpts().OpenMPIsDevice && 209 "OpenMP NVPTX is only prepared to deal with device code."); 210 OpenMPRuntime.reset(new CGOpenMPRuntimeNVPTX(*this)); 211 break; 212 default: 213 if (LangOpts.OpenMPSimd) 214 OpenMPRuntime.reset(new CGOpenMPSIMDRuntime(*this)); 215 else 216 OpenMPRuntime.reset(new CGOpenMPRuntime(*this)); 217 break; 218 } 219 } 220 221 void CodeGenModule::createCUDARuntime() { 222 CUDARuntime.reset(CreateNVCUDARuntime(*this)); 223 } 224 225 void CodeGenModule::addReplacement(StringRef Name, llvm::Constant *C) { 226 Replacements[Name] = C; 227 } 228 229 void CodeGenModule::applyReplacements() { 230 for (auto &I : Replacements) { 231 StringRef MangledName = I.first(); 232 llvm::Constant *Replacement = I.second; 233 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 234 if (!Entry) 235 continue; 236 auto *OldF = cast<llvm::Function>(Entry); 237 auto *NewF = dyn_cast<llvm::Function>(Replacement); 238 if (!NewF) { 239 if (auto *Alias = dyn_cast<llvm::GlobalAlias>(Replacement)) { 240 NewF = dyn_cast<llvm::Function>(Alias->getAliasee()); 241 } else { 242 auto *CE = cast<llvm::ConstantExpr>(Replacement); 243 assert(CE->getOpcode() == llvm::Instruction::BitCast || 244 CE->getOpcode() == llvm::Instruction::GetElementPtr); 245 NewF = dyn_cast<llvm::Function>(CE->getOperand(0)); 246 } 247 } 248 249 // Replace old with new, but keep the old order. 250 OldF->replaceAllUsesWith(Replacement); 251 if (NewF) { 252 NewF->removeFromParent(); 253 OldF->getParent()->getFunctionList().insertAfter(OldF->getIterator(), 254 NewF); 255 } 256 OldF->eraseFromParent(); 257 } 258 } 259 260 void CodeGenModule::addGlobalValReplacement(llvm::GlobalValue *GV, llvm::Constant *C) { 261 GlobalValReplacements.push_back(std::make_pair(GV, C)); 262 } 263 264 void CodeGenModule::applyGlobalValReplacements() { 265 for (auto &I : GlobalValReplacements) { 266 llvm::GlobalValue *GV = I.first; 267 llvm::Constant *C = I.second; 268 269 GV->replaceAllUsesWith(C); 270 GV->eraseFromParent(); 271 } 272 } 273 274 // This is only used in aliases that we created and we know they have a 275 // linear structure. 276 static const llvm::GlobalObject *getAliasedGlobal( 277 const llvm::GlobalIndirectSymbol &GIS) { 278 llvm::SmallPtrSet<const llvm::GlobalIndirectSymbol*, 4> Visited; 279 const llvm::Constant *C = &GIS; 280 for (;;) { 281 C = C->stripPointerCasts(); 282 if (auto *GO = dyn_cast<llvm::GlobalObject>(C)) 283 return GO; 284 // stripPointerCasts will not walk over weak aliases. 285 auto *GIS2 = dyn_cast<llvm::GlobalIndirectSymbol>(C); 286 if (!GIS2) 287 return nullptr; 288 if (!Visited.insert(GIS2).second) 289 return nullptr; 290 C = GIS2->getIndirectSymbol(); 291 } 292 } 293 294 void CodeGenModule::checkAliases() { 295 // Check if the constructed aliases are well formed. It is really unfortunate 296 // that we have to do this in CodeGen, but we only construct mangled names 297 // and aliases during codegen. 298 bool Error = false; 299 DiagnosticsEngine &Diags = getDiags(); 300 for (const GlobalDecl &GD : Aliases) { 301 const auto *D = cast<ValueDecl>(GD.getDecl()); 302 SourceLocation Location; 303 bool IsIFunc = D->hasAttr<IFuncAttr>(); 304 if (const Attr *A = D->getDefiningAttr()) 305 Location = A->getLocation(); 306 else 307 llvm_unreachable("Not an alias or ifunc?"); 308 StringRef MangledName = getMangledName(GD); 309 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 310 auto *Alias = cast<llvm::GlobalIndirectSymbol>(Entry); 311 const llvm::GlobalValue *GV = getAliasedGlobal(*Alias); 312 if (!GV) { 313 Error = true; 314 Diags.Report(Location, diag::err_cyclic_alias) << IsIFunc; 315 } else if (GV->isDeclaration()) { 316 Error = true; 317 Diags.Report(Location, diag::err_alias_to_undefined) 318 << IsIFunc << IsIFunc; 319 } else if (IsIFunc) { 320 // Check resolver function type. 321 llvm::FunctionType *FTy = dyn_cast<llvm::FunctionType>( 322 GV->getType()->getPointerElementType()); 323 assert(FTy); 324 if (!FTy->getReturnType()->isPointerTy()) 325 Diags.Report(Location, diag::err_ifunc_resolver_return); 326 } 327 328 llvm::Constant *Aliasee = Alias->getIndirectSymbol(); 329 llvm::GlobalValue *AliaseeGV; 330 if (auto CE = dyn_cast<llvm::ConstantExpr>(Aliasee)) 331 AliaseeGV = cast<llvm::GlobalValue>(CE->getOperand(0)); 332 else 333 AliaseeGV = cast<llvm::GlobalValue>(Aliasee); 334 335 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) { 336 StringRef AliasSection = SA->getName(); 337 if (AliasSection != AliaseeGV->getSection()) 338 Diags.Report(SA->getLocation(), diag::warn_alias_with_section) 339 << AliasSection << IsIFunc << IsIFunc; 340 } 341 342 // We have to handle alias to weak aliases in here. LLVM itself disallows 343 // this since the object semantics would not match the IL one. For 344 // compatibility with gcc we implement it by just pointing the alias 345 // to its aliasee's aliasee. We also warn, since the user is probably 346 // expecting the link to be weak. 347 if (auto GA = dyn_cast<llvm::GlobalIndirectSymbol>(AliaseeGV)) { 348 if (GA->isInterposable()) { 349 Diags.Report(Location, diag::warn_alias_to_weak_alias) 350 << GV->getName() << GA->getName() << IsIFunc; 351 Aliasee = llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast( 352 GA->getIndirectSymbol(), Alias->getType()); 353 Alias->setIndirectSymbol(Aliasee); 354 } 355 } 356 } 357 if (!Error) 358 return; 359 360 for (const GlobalDecl &GD : Aliases) { 361 StringRef MangledName = getMangledName(GD); 362 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 363 auto *Alias = dyn_cast<llvm::GlobalIndirectSymbol>(Entry); 364 Alias->replaceAllUsesWith(llvm::UndefValue::get(Alias->getType())); 365 Alias->eraseFromParent(); 366 } 367 } 368 369 void CodeGenModule::clear() { 370 DeferredDeclsToEmit.clear(); 371 if (OpenMPRuntime) 372 OpenMPRuntime->clear(); 373 } 374 375 void InstrProfStats::reportDiagnostics(DiagnosticsEngine &Diags, 376 StringRef MainFile) { 377 if (!hasDiagnostics()) 378 return; 379 if (VisitedInMainFile > 0 && VisitedInMainFile == MissingInMainFile) { 380 if (MainFile.empty()) 381 MainFile = "<stdin>"; 382 Diags.Report(diag::warn_profile_data_unprofiled) << MainFile; 383 } else { 384 if (Mismatched > 0) 385 Diags.Report(diag::warn_profile_data_out_of_date) << Visited << Mismatched; 386 387 if (Missing > 0) 388 Diags.Report(diag::warn_profile_data_missing) << Visited << Missing; 389 } 390 } 391 392 void CodeGenModule::Release() { 393 EmitDeferred(); 394 EmitVTablesOpportunistically(); 395 applyGlobalValReplacements(); 396 applyReplacements(); 397 checkAliases(); 398 emitMultiVersionFunctions(); 399 EmitCXXGlobalInitFunc(); 400 EmitCXXGlobalDtorFunc(); 401 registerGlobalDtorsWithAtExit(); 402 EmitCXXThreadLocalInitFunc(); 403 if (ObjCRuntime) 404 if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction()) 405 AddGlobalCtor(ObjCInitFunction); 406 if (Context.getLangOpts().CUDA && !Context.getLangOpts().CUDAIsDevice && 407 CUDARuntime) { 408 if (llvm::Function *CudaCtorFunction = 409 CUDARuntime->makeModuleCtorFunction()) 410 AddGlobalCtor(CudaCtorFunction); 411 } 412 if (OpenMPRuntime) { 413 if (llvm::Function *OpenMPRegistrationFunction = 414 OpenMPRuntime->emitRegistrationFunction()) { 415 auto ComdatKey = OpenMPRegistrationFunction->hasComdat() ? 416 OpenMPRegistrationFunction : nullptr; 417 AddGlobalCtor(OpenMPRegistrationFunction, 0, ComdatKey); 418 } 419 OpenMPRuntime->clear(); 420 } 421 if (PGOReader) { 422 getModule().setProfileSummary( 423 PGOReader->getSummary(/* UseCS */ false).getMD(VMContext), 424 llvm::ProfileSummary::PSK_Instr); 425 if (PGOStats.hasDiagnostics()) 426 PGOStats.reportDiagnostics(getDiags(), getCodeGenOpts().MainFileName); 427 } 428 EmitCtorList(GlobalCtors, "llvm.global_ctors"); 429 EmitCtorList(GlobalDtors, "llvm.global_dtors"); 430 EmitGlobalAnnotations(); 431 EmitStaticExternCAliases(); 432 EmitDeferredUnusedCoverageMappings(); 433 if (CoverageMapping) 434 CoverageMapping->emit(); 435 if (CodeGenOpts.SanitizeCfiCrossDso) { 436 CodeGenFunction(*this).EmitCfiCheckFail(); 437 CodeGenFunction(*this).EmitCfiCheckStub(); 438 } 439 emitAtAvailableLinkGuard(); 440 emitLLVMUsed(); 441 if (SanStats) 442 SanStats->finish(); 443 444 if (CodeGenOpts.Autolink && 445 (Context.getLangOpts().Modules || !LinkerOptionsMetadata.empty())) { 446 EmitModuleLinkOptions(); 447 } 448 449 // Record mregparm value now so it is visible through rest of codegen. 450 if (Context.getTargetInfo().getTriple().getArch() == llvm::Triple::x86) 451 getModule().addModuleFlag(llvm::Module::Error, "NumRegisterParameters", 452 CodeGenOpts.NumRegisterParameters); 453 454 if (CodeGenOpts.DwarfVersion) { 455 // We actually want the latest version when there are conflicts. 456 // We can change from Warning to Latest if such mode is supported. 457 getModule().addModuleFlag(llvm::Module::Warning, "Dwarf Version", 458 CodeGenOpts.DwarfVersion); 459 } 460 if (CodeGenOpts.EmitCodeView) { 461 // Indicate that we want CodeView in the metadata. 462 getModule().addModuleFlag(llvm::Module::Warning, "CodeView", 1); 463 } 464 if (CodeGenOpts.CodeViewGHash) { 465 getModule().addModuleFlag(llvm::Module::Warning, "CodeViewGHash", 1); 466 } 467 if (CodeGenOpts.ControlFlowGuard) { 468 // We want function ID tables for Control Flow Guard. 469 getModule().addModuleFlag(llvm::Module::Warning, "cfguardtable", 1); 470 } 471 if (CodeGenOpts.OptimizationLevel > 0 && CodeGenOpts.StrictVTablePointers) { 472 // We don't support LTO with 2 with different StrictVTablePointers 473 // FIXME: we could support it by stripping all the information introduced 474 // by StrictVTablePointers. 475 476 getModule().addModuleFlag(llvm::Module::Error, "StrictVTablePointers",1); 477 478 llvm::Metadata *Ops[2] = { 479 llvm::MDString::get(VMContext, "StrictVTablePointers"), 480 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 481 llvm::Type::getInt32Ty(VMContext), 1))}; 482 483 getModule().addModuleFlag(llvm::Module::Require, 484 "StrictVTablePointersRequirement", 485 llvm::MDNode::get(VMContext, Ops)); 486 } 487 if (DebugInfo) 488 // We support a single version in the linked module. The LLVM 489 // parser will drop debug info with a different version number 490 // (and warn about it, too). 491 getModule().addModuleFlag(llvm::Module::Warning, "Debug Info Version", 492 llvm::DEBUG_METADATA_VERSION); 493 494 // We need to record the widths of enums and wchar_t, so that we can generate 495 // the correct build attributes in the ARM backend. wchar_size is also used by 496 // TargetLibraryInfo. 497 uint64_t WCharWidth = 498 Context.getTypeSizeInChars(Context.getWideCharType()).getQuantity(); 499 getModule().addModuleFlag(llvm::Module::Error, "wchar_size", WCharWidth); 500 501 llvm::Triple::ArchType Arch = Context.getTargetInfo().getTriple().getArch(); 502 if ( Arch == llvm::Triple::arm 503 || Arch == llvm::Triple::armeb 504 || Arch == llvm::Triple::thumb 505 || Arch == llvm::Triple::thumbeb) { 506 // The minimum width of an enum in bytes 507 uint64_t EnumWidth = Context.getLangOpts().ShortEnums ? 1 : 4; 508 getModule().addModuleFlag(llvm::Module::Error, "min_enum_size", EnumWidth); 509 } 510 511 if (CodeGenOpts.SanitizeCfiCrossDso) { 512 // Indicate that we want cross-DSO control flow integrity checks. 513 getModule().addModuleFlag(llvm::Module::Override, "Cross-DSO CFI", 1); 514 } 515 516 if (CodeGenOpts.CFProtectionReturn && 517 Target.checkCFProtectionReturnSupported(getDiags())) { 518 // Indicate that we want to instrument return control flow protection. 519 getModule().addModuleFlag(llvm::Module::Override, "cf-protection-return", 520 1); 521 } 522 523 if (CodeGenOpts.CFProtectionBranch && 524 Target.checkCFProtectionBranchSupported(getDiags())) { 525 // Indicate that we want to instrument branch control flow protection. 526 getModule().addModuleFlag(llvm::Module::Override, "cf-protection-branch", 527 1); 528 } 529 530 if (LangOpts.CUDAIsDevice && getTriple().isNVPTX()) { 531 // Indicate whether __nvvm_reflect should be configured to flush denormal 532 // floating point values to 0. (This corresponds to its "__CUDA_FTZ" 533 // property.) 534 getModule().addModuleFlag(llvm::Module::Override, "nvvm-reflect-ftz", 535 CodeGenOpts.FlushDenorm ? 1 : 0); 536 } 537 538 // Emit OpenCL specific module metadata: OpenCL/SPIR version. 539 if (LangOpts.OpenCL) { 540 EmitOpenCLMetadata(); 541 // Emit SPIR version. 542 if (getTriple().getArch() == llvm::Triple::spir || 543 getTriple().getArch() == llvm::Triple::spir64) { 544 // SPIR v2.0 s2.12 - The SPIR version used by the module is stored in the 545 // opencl.spir.version named metadata. 546 llvm::Metadata *SPIRVerElts[] = { 547 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 548 Int32Ty, LangOpts.OpenCLVersion / 100)), 549 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 550 Int32Ty, (LangOpts.OpenCLVersion / 100 > 1) ? 0 : 2))}; 551 llvm::NamedMDNode *SPIRVerMD = 552 TheModule.getOrInsertNamedMetadata("opencl.spir.version"); 553 llvm::LLVMContext &Ctx = TheModule.getContext(); 554 SPIRVerMD->addOperand(llvm::MDNode::get(Ctx, SPIRVerElts)); 555 } 556 } 557 558 if (uint32_t PLevel = Context.getLangOpts().PICLevel) { 559 assert(PLevel < 3 && "Invalid PIC Level"); 560 getModule().setPICLevel(static_cast<llvm::PICLevel::Level>(PLevel)); 561 if (Context.getLangOpts().PIE) 562 getModule().setPIELevel(static_cast<llvm::PIELevel::Level>(PLevel)); 563 } 564 565 if (getCodeGenOpts().CodeModel.size() > 0) { 566 unsigned CM = llvm::StringSwitch<unsigned>(getCodeGenOpts().CodeModel) 567 .Case("tiny", llvm::CodeModel::Tiny) 568 .Case("small", llvm::CodeModel::Small) 569 .Case("kernel", llvm::CodeModel::Kernel) 570 .Case("medium", llvm::CodeModel::Medium) 571 .Case("large", llvm::CodeModel::Large) 572 .Default(~0u); 573 if (CM != ~0u) { 574 llvm::CodeModel::Model codeModel = static_cast<llvm::CodeModel::Model>(CM); 575 getModule().setCodeModel(codeModel); 576 } 577 } 578 579 if (CodeGenOpts.NoPLT) 580 getModule().setRtLibUseGOT(); 581 582 SimplifyPersonality(); 583 584 if (getCodeGenOpts().EmitDeclMetadata) 585 EmitDeclMetadata(); 586 587 if (getCodeGenOpts().EmitGcovArcs || getCodeGenOpts().EmitGcovNotes) 588 EmitCoverageFile(); 589 590 if (DebugInfo) 591 DebugInfo->finalize(); 592 593 if (getCodeGenOpts().EmitVersionIdentMetadata) 594 EmitVersionIdentMetadata(); 595 596 if (!getCodeGenOpts().RecordCommandLine.empty()) 597 EmitCommandLineMetadata(); 598 599 EmitTargetMetadata(); 600 } 601 602 void CodeGenModule::EmitOpenCLMetadata() { 603 // SPIR v2.0 s2.13 - The OpenCL version used by the module is stored in the 604 // opencl.ocl.version named metadata node. 605 llvm::Metadata *OCLVerElts[] = { 606 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 607 Int32Ty, LangOpts.OpenCLVersion / 100)), 608 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 609 Int32Ty, (LangOpts.OpenCLVersion % 100) / 10))}; 610 llvm::NamedMDNode *OCLVerMD = 611 TheModule.getOrInsertNamedMetadata("opencl.ocl.version"); 612 llvm::LLVMContext &Ctx = TheModule.getContext(); 613 OCLVerMD->addOperand(llvm::MDNode::get(Ctx, OCLVerElts)); 614 } 615 616 void CodeGenModule::UpdateCompletedType(const TagDecl *TD) { 617 // Make sure that this type is translated. 618 Types.UpdateCompletedType(TD); 619 } 620 621 void CodeGenModule::RefreshTypeCacheForClass(const CXXRecordDecl *RD) { 622 // Make sure that this type is translated. 623 Types.RefreshTypeCacheForClass(RD); 624 } 625 626 llvm::MDNode *CodeGenModule::getTBAATypeInfo(QualType QTy) { 627 if (!TBAA) 628 return nullptr; 629 return TBAA->getTypeInfo(QTy); 630 } 631 632 TBAAAccessInfo CodeGenModule::getTBAAAccessInfo(QualType AccessType) { 633 if (!TBAA) 634 return TBAAAccessInfo(); 635 return TBAA->getAccessInfo(AccessType); 636 } 637 638 TBAAAccessInfo 639 CodeGenModule::getTBAAVTablePtrAccessInfo(llvm::Type *VTablePtrType) { 640 if (!TBAA) 641 return TBAAAccessInfo(); 642 return TBAA->getVTablePtrAccessInfo(VTablePtrType); 643 } 644 645 llvm::MDNode *CodeGenModule::getTBAAStructInfo(QualType QTy) { 646 if (!TBAA) 647 return nullptr; 648 return TBAA->getTBAAStructInfo(QTy); 649 } 650 651 llvm::MDNode *CodeGenModule::getTBAABaseTypeInfo(QualType QTy) { 652 if (!TBAA) 653 return nullptr; 654 return TBAA->getBaseTypeInfo(QTy); 655 } 656 657 llvm::MDNode *CodeGenModule::getTBAAAccessTagInfo(TBAAAccessInfo Info) { 658 if (!TBAA) 659 return nullptr; 660 return TBAA->getAccessTagInfo(Info); 661 } 662 663 TBAAAccessInfo CodeGenModule::mergeTBAAInfoForCast(TBAAAccessInfo SourceInfo, 664 TBAAAccessInfo TargetInfo) { 665 if (!TBAA) 666 return TBAAAccessInfo(); 667 return TBAA->mergeTBAAInfoForCast(SourceInfo, TargetInfo); 668 } 669 670 TBAAAccessInfo 671 CodeGenModule::mergeTBAAInfoForConditionalOperator(TBAAAccessInfo InfoA, 672 TBAAAccessInfo InfoB) { 673 if (!TBAA) 674 return TBAAAccessInfo(); 675 return TBAA->mergeTBAAInfoForConditionalOperator(InfoA, InfoB); 676 } 677 678 TBAAAccessInfo 679 CodeGenModule::mergeTBAAInfoForMemoryTransfer(TBAAAccessInfo DestInfo, 680 TBAAAccessInfo SrcInfo) { 681 if (!TBAA) 682 return TBAAAccessInfo(); 683 return TBAA->mergeTBAAInfoForConditionalOperator(DestInfo, SrcInfo); 684 } 685 686 void CodeGenModule::DecorateInstructionWithTBAA(llvm::Instruction *Inst, 687 TBAAAccessInfo TBAAInfo) { 688 if (llvm::MDNode *Tag = getTBAAAccessTagInfo(TBAAInfo)) 689 Inst->setMetadata(llvm::LLVMContext::MD_tbaa, Tag); 690 } 691 692 void CodeGenModule::DecorateInstructionWithInvariantGroup( 693 llvm::Instruction *I, const CXXRecordDecl *RD) { 694 I->setMetadata(llvm::LLVMContext::MD_invariant_group, 695 llvm::MDNode::get(getLLVMContext(), {})); 696 } 697 698 void CodeGenModule::Error(SourceLocation loc, StringRef message) { 699 unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, "%0"); 700 getDiags().Report(Context.getFullLoc(loc), diagID) << message; 701 } 702 703 /// ErrorUnsupported - Print out an error that codegen doesn't support the 704 /// specified stmt yet. 705 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type) { 706 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, 707 "cannot compile this %0 yet"); 708 std::string Msg = Type; 709 getDiags().Report(Context.getFullLoc(S->getBeginLoc()), DiagID) 710 << Msg << S->getSourceRange(); 711 } 712 713 /// ErrorUnsupported - Print out an error that codegen doesn't support the 714 /// specified decl yet. 715 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type) { 716 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, 717 "cannot compile this %0 yet"); 718 std::string Msg = Type; 719 getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg; 720 } 721 722 llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) { 723 return llvm::ConstantInt::get(SizeTy, size.getQuantity()); 724 } 725 726 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV, 727 const NamedDecl *D) const { 728 if (GV->hasDLLImportStorageClass()) 729 return; 730 // Internal definitions always have default visibility. 731 if (GV->hasLocalLinkage()) { 732 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 733 return; 734 } 735 if (!D) 736 return; 737 // Set visibility for definitions, and for declarations if requested globally 738 // or set explicitly. 739 LinkageInfo LV = D->getLinkageAndVisibility(); 740 if (LV.isVisibilityExplicit() || getLangOpts().SetVisibilityForExternDecls || 741 !GV->isDeclarationForLinker()) 742 GV->setVisibility(GetLLVMVisibility(LV.getVisibility())); 743 } 744 745 static bool shouldAssumeDSOLocal(const CodeGenModule &CGM, 746 llvm::GlobalValue *GV) { 747 if (GV->hasLocalLinkage()) 748 return true; 749 750 if (!GV->hasDefaultVisibility() && !GV->hasExternalWeakLinkage()) 751 return true; 752 753 // DLLImport explicitly marks the GV as external. 754 if (GV->hasDLLImportStorageClass()) 755 return false; 756 757 const llvm::Triple &TT = CGM.getTriple(); 758 if (TT.isWindowsGNUEnvironment()) { 759 // In MinGW, variables without DLLImport can still be automatically 760 // imported from a DLL by the linker; don't mark variables that 761 // potentially could come from another DLL as DSO local. 762 if (GV->isDeclarationForLinker() && isa<llvm::GlobalVariable>(GV) && 763 !GV->isThreadLocal()) 764 return false; 765 } 766 767 // On COFF, don't mark 'extern_weak' symbols as DSO local. If these symbols 768 // remain unresolved in the link, they can be resolved to zero, which is 769 // outside the current DSO. 770 if (TT.isOSBinFormatCOFF() && GV->hasExternalWeakLinkage()) 771 return false; 772 773 // Every other GV is local on COFF. 774 // Make an exception for windows OS in the triple: Some firmware builds use 775 // *-win32-macho triples. This (accidentally?) produced windows relocations 776 // without GOT tables in older clang versions; Keep this behaviour. 777 // FIXME: even thread local variables? 778 if (TT.isOSBinFormatCOFF() || (TT.isOSWindows() && TT.isOSBinFormatMachO())) 779 return true; 780 781 // Only handle COFF and ELF for now. 782 if (!TT.isOSBinFormatELF()) 783 return false; 784 785 // If this is not an executable, don't assume anything is local. 786 const auto &CGOpts = CGM.getCodeGenOpts(); 787 llvm::Reloc::Model RM = CGOpts.RelocationModel; 788 const auto &LOpts = CGM.getLangOpts(); 789 if (RM != llvm::Reloc::Static && !LOpts.PIE) 790 return false; 791 792 // A definition cannot be preempted from an executable. 793 if (!GV->isDeclarationForLinker()) 794 return true; 795 796 // Most PIC code sequences that assume that a symbol is local cannot produce a 797 // 0 if it turns out the symbol is undefined. While this is ABI and relocation 798 // depended, it seems worth it to handle it here. 799 if (RM == llvm::Reloc::PIC_ && GV->hasExternalWeakLinkage()) 800 return false; 801 802 // PPC has no copy relocations and cannot use a plt entry as a symbol address. 803 llvm::Triple::ArchType Arch = TT.getArch(); 804 if (Arch == llvm::Triple::ppc || Arch == llvm::Triple::ppc64 || 805 Arch == llvm::Triple::ppc64le) 806 return false; 807 808 // If we can use copy relocations we can assume it is local. 809 if (auto *Var = dyn_cast<llvm::GlobalVariable>(GV)) 810 if (!Var->isThreadLocal() && 811 (RM == llvm::Reloc::Static || CGOpts.PIECopyRelocations)) 812 return true; 813 814 // If we can use a plt entry as the symbol address we can assume it 815 // is local. 816 // FIXME: This should work for PIE, but the gold linker doesn't support it. 817 if (isa<llvm::Function>(GV) && !CGOpts.NoPLT && RM == llvm::Reloc::Static) 818 return true; 819 820 // Otherwise don't assue it is local. 821 return false; 822 } 823 824 void CodeGenModule::setDSOLocal(llvm::GlobalValue *GV) const { 825 GV->setDSOLocal(shouldAssumeDSOLocal(*this, GV)); 826 } 827 828 void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV, 829 GlobalDecl GD) const { 830 const auto *D = dyn_cast<NamedDecl>(GD.getDecl()); 831 // C++ destructors have a few C++ ABI specific special cases. 832 if (const auto *Dtor = dyn_cast_or_null<CXXDestructorDecl>(D)) { 833 getCXXABI().setCXXDestructorDLLStorage(GV, Dtor, GD.getDtorType()); 834 return; 835 } 836 setDLLImportDLLExport(GV, D); 837 } 838 839 void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV, 840 const NamedDecl *D) const { 841 if (D && D->isExternallyVisible()) { 842 if (D->hasAttr<DLLImportAttr>()) 843 GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass); 844 else if (D->hasAttr<DLLExportAttr>() && !GV->isDeclarationForLinker()) 845 GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass); 846 } 847 } 848 849 void CodeGenModule::setGVProperties(llvm::GlobalValue *GV, 850 GlobalDecl GD) const { 851 setDLLImportDLLExport(GV, GD); 852 setGlobalVisibilityAndLocal(GV, dyn_cast<NamedDecl>(GD.getDecl())); 853 } 854 855 void CodeGenModule::setGVProperties(llvm::GlobalValue *GV, 856 const NamedDecl *D) const { 857 setDLLImportDLLExport(GV, D); 858 setGlobalVisibilityAndLocal(GV, D); 859 } 860 861 void CodeGenModule::setGlobalVisibilityAndLocal(llvm::GlobalValue *GV, 862 const NamedDecl *D) const { 863 setGlobalVisibility(GV, D); 864 setDSOLocal(GV); 865 } 866 867 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(StringRef S) { 868 return llvm::StringSwitch<llvm::GlobalVariable::ThreadLocalMode>(S) 869 .Case("global-dynamic", llvm::GlobalVariable::GeneralDynamicTLSModel) 870 .Case("local-dynamic", llvm::GlobalVariable::LocalDynamicTLSModel) 871 .Case("initial-exec", llvm::GlobalVariable::InitialExecTLSModel) 872 .Case("local-exec", llvm::GlobalVariable::LocalExecTLSModel); 873 } 874 875 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel( 876 CodeGenOptions::TLSModel M) { 877 switch (M) { 878 case CodeGenOptions::GeneralDynamicTLSModel: 879 return llvm::GlobalVariable::GeneralDynamicTLSModel; 880 case CodeGenOptions::LocalDynamicTLSModel: 881 return llvm::GlobalVariable::LocalDynamicTLSModel; 882 case CodeGenOptions::InitialExecTLSModel: 883 return llvm::GlobalVariable::InitialExecTLSModel; 884 case CodeGenOptions::LocalExecTLSModel: 885 return llvm::GlobalVariable::LocalExecTLSModel; 886 } 887 llvm_unreachable("Invalid TLS model!"); 888 } 889 890 void CodeGenModule::setTLSMode(llvm::GlobalValue *GV, const VarDecl &D) const { 891 assert(D.getTLSKind() && "setting TLS mode on non-TLS var!"); 892 893 llvm::GlobalValue::ThreadLocalMode TLM; 894 TLM = GetLLVMTLSModel(CodeGenOpts.getDefaultTLSModel()); 895 896 // Override the TLS model if it is explicitly specified. 897 if (const TLSModelAttr *Attr = D.getAttr<TLSModelAttr>()) { 898 TLM = GetLLVMTLSModel(Attr->getModel()); 899 } 900 901 GV->setThreadLocalMode(TLM); 902 } 903 904 static std::string getCPUSpecificMangling(const CodeGenModule &CGM, 905 StringRef Name) { 906 const TargetInfo &Target = CGM.getTarget(); 907 return (Twine('.') + Twine(Target.CPUSpecificManglingCharacter(Name))).str(); 908 } 909 910 static void AppendCPUSpecificCPUDispatchMangling(const CodeGenModule &CGM, 911 const CPUSpecificAttr *Attr, 912 unsigned CPUIndex, 913 raw_ostream &Out) { 914 // cpu_specific gets the current name, dispatch gets the resolver if IFunc is 915 // supported. 916 if (Attr) 917 Out << getCPUSpecificMangling(CGM, Attr->getCPUName(CPUIndex)->getName()); 918 else if (CGM.getTarget().supportsIFunc()) 919 Out << ".resolver"; 920 } 921 922 static void AppendTargetMangling(const CodeGenModule &CGM, 923 const TargetAttr *Attr, raw_ostream &Out) { 924 if (Attr->isDefaultVersion()) 925 return; 926 927 Out << '.'; 928 const TargetInfo &Target = CGM.getTarget(); 929 TargetAttr::ParsedTargetAttr Info = 930 Attr->parse([&Target](StringRef LHS, StringRef RHS) { 931 // Multiversioning doesn't allow "no-${feature}", so we can 932 // only have "+" prefixes here. 933 assert(LHS.startswith("+") && RHS.startswith("+") && 934 "Features should always have a prefix."); 935 return Target.multiVersionSortPriority(LHS.substr(1)) > 936 Target.multiVersionSortPriority(RHS.substr(1)); 937 }); 938 939 bool IsFirst = true; 940 941 if (!Info.Architecture.empty()) { 942 IsFirst = false; 943 Out << "arch_" << Info.Architecture; 944 } 945 946 for (StringRef Feat : Info.Features) { 947 if (!IsFirst) 948 Out << '_'; 949 IsFirst = false; 950 Out << Feat.substr(1); 951 } 952 } 953 954 static std::string getMangledNameImpl(const CodeGenModule &CGM, GlobalDecl GD, 955 const NamedDecl *ND, 956 bool OmitMultiVersionMangling = false) { 957 SmallString<256> Buffer; 958 llvm::raw_svector_ostream Out(Buffer); 959 MangleContext &MC = CGM.getCXXABI().getMangleContext(); 960 if (MC.shouldMangleDeclName(ND)) { 961 llvm::raw_svector_ostream Out(Buffer); 962 if (const auto *D = dyn_cast<CXXConstructorDecl>(ND)) 963 MC.mangleCXXCtor(D, GD.getCtorType(), Out); 964 else if (const auto *D = dyn_cast<CXXDestructorDecl>(ND)) 965 MC.mangleCXXDtor(D, GD.getDtorType(), Out); 966 else 967 MC.mangleName(ND, Out); 968 } else { 969 IdentifierInfo *II = ND->getIdentifier(); 970 assert(II && "Attempt to mangle unnamed decl."); 971 const auto *FD = dyn_cast<FunctionDecl>(ND); 972 973 if (FD && 974 FD->getType()->castAs<FunctionType>()->getCallConv() == CC_X86RegCall) { 975 llvm::raw_svector_ostream Out(Buffer); 976 Out << "__regcall3__" << II->getName(); 977 } else { 978 Out << II->getName(); 979 } 980 } 981 982 if (const auto *FD = dyn_cast<FunctionDecl>(ND)) 983 if (FD->isMultiVersion() && !OmitMultiVersionMangling) { 984 switch (FD->getMultiVersionKind()) { 985 case MultiVersionKind::CPUDispatch: 986 case MultiVersionKind::CPUSpecific: 987 AppendCPUSpecificCPUDispatchMangling(CGM, 988 FD->getAttr<CPUSpecificAttr>(), 989 GD.getMultiVersionIndex(), Out); 990 break; 991 case MultiVersionKind::Target: 992 AppendTargetMangling(CGM, FD->getAttr<TargetAttr>(), Out); 993 break; 994 case MultiVersionKind::None: 995 llvm_unreachable("None multiversion type isn't valid here"); 996 } 997 } 998 999 return Out.str(); 1000 } 1001 1002 void CodeGenModule::UpdateMultiVersionNames(GlobalDecl GD, 1003 const FunctionDecl *FD) { 1004 if (!FD->isMultiVersion()) 1005 return; 1006 1007 // Get the name of what this would be without the 'target' attribute. This 1008 // allows us to lookup the version that was emitted when this wasn't a 1009 // multiversion function. 1010 std::string NonTargetName = 1011 getMangledNameImpl(*this, GD, FD, /*OmitMultiVersionMangling=*/true); 1012 GlobalDecl OtherGD; 1013 if (lookupRepresentativeDecl(NonTargetName, OtherGD)) { 1014 assert(OtherGD.getCanonicalDecl() 1015 .getDecl() 1016 ->getAsFunction() 1017 ->isMultiVersion() && 1018 "Other GD should now be a multiversioned function"); 1019 // OtherFD is the version of this function that was mangled BEFORE 1020 // becoming a MultiVersion function. It potentially needs to be updated. 1021 const FunctionDecl *OtherFD = OtherGD.getCanonicalDecl() 1022 .getDecl() 1023 ->getAsFunction() 1024 ->getMostRecentDecl(); 1025 std::string OtherName = getMangledNameImpl(*this, OtherGD, OtherFD); 1026 // This is so that if the initial version was already the 'default' 1027 // version, we don't try to update it. 1028 if (OtherName != NonTargetName) { 1029 // Remove instead of erase, since others may have stored the StringRef 1030 // to this. 1031 const auto ExistingRecord = Manglings.find(NonTargetName); 1032 if (ExistingRecord != std::end(Manglings)) 1033 Manglings.remove(&(*ExistingRecord)); 1034 auto Result = Manglings.insert(std::make_pair(OtherName, OtherGD)); 1035 MangledDeclNames[OtherGD.getCanonicalDecl()] = Result.first->first(); 1036 if (llvm::GlobalValue *Entry = GetGlobalValue(NonTargetName)) 1037 Entry->setName(OtherName); 1038 } 1039 } 1040 } 1041 1042 StringRef CodeGenModule::getMangledName(GlobalDecl GD) { 1043 GlobalDecl CanonicalGD = GD.getCanonicalDecl(); 1044 1045 // Some ABIs don't have constructor variants. Make sure that base and 1046 // complete constructors get mangled the same. 1047 if (const auto *CD = dyn_cast<CXXConstructorDecl>(CanonicalGD.getDecl())) { 1048 if (!getTarget().getCXXABI().hasConstructorVariants()) { 1049 CXXCtorType OrigCtorType = GD.getCtorType(); 1050 assert(OrigCtorType == Ctor_Base || OrigCtorType == Ctor_Complete); 1051 if (OrigCtorType == Ctor_Base) 1052 CanonicalGD = GlobalDecl(CD, Ctor_Complete); 1053 } 1054 } 1055 1056 auto FoundName = MangledDeclNames.find(CanonicalGD); 1057 if (FoundName != MangledDeclNames.end()) 1058 return FoundName->second; 1059 1060 // Keep the first result in the case of a mangling collision. 1061 const auto *ND = cast<NamedDecl>(GD.getDecl()); 1062 std::string MangledName = getMangledNameImpl(*this, GD, ND); 1063 1064 // Postfix kernel stub names with .stub to differentiate them from kernel 1065 // names in device binaries. This is to facilitate the debugger to find 1066 // the correct symbols for kernels in the device binary. 1067 if (auto *FD = dyn_cast<FunctionDecl>(GD.getDecl())) 1068 if (getLangOpts().HIP && !getLangOpts().CUDAIsDevice && 1069 FD->hasAttr<CUDAGlobalAttr>()) 1070 MangledName = MangledName + ".stub"; 1071 1072 auto Result = Manglings.insert(std::make_pair(MangledName, GD)); 1073 return MangledDeclNames[CanonicalGD] = Result.first->first(); 1074 } 1075 1076 StringRef CodeGenModule::getBlockMangledName(GlobalDecl GD, 1077 const BlockDecl *BD) { 1078 MangleContext &MangleCtx = getCXXABI().getMangleContext(); 1079 const Decl *D = GD.getDecl(); 1080 1081 SmallString<256> Buffer; 1082 llvm::raw_svector_ostream Out(Buffer); 1083 if (!D) 1084 MangleCtx.mangleGlobalBlock(BD, 1085 dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()), Out); 1086 else if (const auto *CD = dyn_cast<CXXConstructorDecl>(D)) 1087 MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out); 1088 else if (const auto *DD = dyn_cast<CXXDestructorDecl>(D)) 1089 MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out); 1090 else 1091 MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out); 1092 1093 auto Result = Manglings.insert(std::make_pair(Out.str(), BD)); 1094 return Result.first->first(); 1095 } 1096 1097 llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) { 1098 return getModule().getNamedValue(Name); 1099 } 1100 1101 /// AddGlobalCtor - Add a function to the list that will be called before 1102 /// main() runs. 1103 void CodeGenModule::AddGlobalCtor(llvm::Function *Ctor, int Priority, 1104 llvm::Constant *AssociatedData) { 1105 // FIXME: Type coercion of void()* types. 1106 GlobalCtors.push_back(Structor(Priority, Ctor, AssociatedData)); 1107 } 1108 1109 /// AddGlobalDtor - Add a function to the list that will be called 1110 /// when the module is unloaded. 1111 void CodeGenModule::AddGlobalDtor(llvm::Function *Dtor, int Priority) { 1112 if (CodeGenOpts.RegisterGlobalDtorsWithAtExit) { 1113 DtorsUsingAtExit[Priority].push_back(Dtor); 1114 return; 1115 } 1116 1117 // FIXME: Type coercion of void()* types. 1118 GlobalDtors.push_back(Structor(Priority, Dtor, nullptr)); 1119 } 1120 1121 void CodeGenModule::EmitCtorList(CtorList &Fns, const char *GlobalName) { 1122 if (Fns.empty()) return; 1123 1124 // Ctor function type is void()*. 1125 llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false); 1126 llvm::Type *CtorPFTy = llvm::PointerType::get(CtorFTy, 1127 TheModule.getDataLayout().getProgramAddressSpace()); 1128 1129 // Get the type of a ctor entry, { i32, void ()*, i8* }. 1130 llvm::StructType *CtorStructTy = llvm::StructType::get( 1131 Int32Ty, CtorPFTy, VoidPtrTy); 1132 1133 // Construct the constructor and destructor arrays. 1134 ConstantInitBuilder builder(*this); 1135 auto ctors = builder.beginArray(CtorStructTy); 1136 for (const auto &I : Fns) { 1137 auto ctor = ctors.beginStruct(CtorStructTy); 1138 ctor.addInt(Int32Ty, I.Priority); 1139 ctor.add(llvm::ConstantExpr::getBitCast(I.Initializer, CtorPFTy)); 1140 if (I.AssociatedData) 1141 ctor.add(llvm::ConstantExpr::getBitCast(I.AssociatedData, VoidPtrTy)); 1142 else 1143 ctor.addNullPointer(VoidPtrTy); 1144 ctor.finishAndAddTo(ctors); 1145 } 1146 1147 auto list = 1148 ctors.finishAndCreateGlobal(GlobalName, getPointerAlign(), 1149 /*constant*/ false, 1150 llvm::GlobalValue::AppendingLinkage); 1151 1152 // The LTO linker doesn't seem to like it when we set an alignment 1153 // on appending variables. Take it off as a workaround. 1154 list->setAlignment(0); 1155 1156 Fns.clear(); 1157 } 1158 1159 llvm::GlobalValue::LinkageTypes 1160 CodeGenModule::getFunctionLinkage(GlobalDecl GD) { 1161 const auto *D = cast<FunctionDecl>(GD.getDecl()); 1162 1163 GVALinkage Linkage = getContext().GetGVALinkageForFunction(D); 1164 1165 if (const auto *Dtor = dyn_cast<CXXDestructorDecl>(D)) 1166 return getCXXABI().getCXXDestructorLinkage(Linkage, Dtor, GD.getDtorType()); 1167 1168 if (isa<CXXConstructorDecl>(D) && 1169 cast<CXXConstructorDecl>(D)->isInheritingConstructor() && 1170 Context.getTargetInfo().getCXXABI().isMicrosoft()) { 1171 // Our approach to inheriting constructors is fundamentally different from 1172 // that used by the MS ABI, so keep our inheriting constructor thunks 1173 // internal rather than trying to pick an unambiguous mangling for them. 1174 return llvm::GlobalValue::InternalLinkage; 1175 } 1176 1177 return getLLVMLinkageForDeclarator(D, Linkage, /*isConstantVariable=*/false); 1178 } 1179 1180 llvm::ConstantInt *CodeGenModule::CreateCrossDsoCfiTypeId(llvm::Metadata *MD) { 1181 llvm::MDString *MDS = dyn_cast<llvm::MDString>(MD); 1182 if (!MDS) return nullptr; 1183 1184 return llvm::ConstantInt::get(Int64Ty, llvm::MD5Hash(MDS->getString())); 1185 } 1186 1187 void CodeGenModule::SetLLVMFunctionAttributes(GlobalDecl GD, 1188 const CGFunctionInfo &Info, 1189 llvm::Function *F) { 1190 unsigned CallingConv; 1191 llvm::AttributeList PAL; 1192 ConstructAttributeList(F->getName(), Info, GD, PAL, CallingConv, false); 1193 F->setAttributes(PAL); 1194 F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv)); 1195 } 1196 1197 /// Determines whether the language options require us to model 1198 /// unwind exceptions. We treat -fexceptions as mandating this 1199 /// except under the fragile ObjC ABI with only ObjC exceptions 1200 /// enabled. This means, for example, that C with -fexceptions 1201 /// enables this. 1202 static bool hasUnwindExceptions(const LangOptions &LangOpts) { 1203 // If exceptions are completely disabled, obviously this is false. 1204 if (!LangOpts.Exceptions) return false; 1205 1206 // If C++ exceptions are enabled, this is true. 1207 if (LangOpts.CXXExceptions) return true; 1208 1209 // If ObjC exceptions are enabled, this depends on the ABI. 1210 if (LangOpts.ObjCExceptions) { 1211 return LangOpts.ObjCRuntime.hasUnwindExceptions(); 1212 } 1213 1214 return true; 1215 } 1216 1217 static bool requiresMemberFunctionPointerTypeMetadata(CodeGenModule &CGM, 1218 const CXXMethodDecl *MD) { 1219 // Check that the type metadata can ever actually be used by a call. 1220 if (!CGM.getCodeGenOpts().LTOUnit || 1221 !CGM.HasHiddenLTOVisibility(MD->getParent())) 1222 return false; 1223 1224 // Only functions whose address can be taken with a member function pointer 1225 // need this sort of type metadata. 1226 return !MD->isStatic() && !MD->isVirtual() && !isa<CXXConstructorDecl>(MD) && 1227 !isa<CXXDestructorDecl>(MD); 1228 } 1229 1230 std::vector<const CXXRecordDecl *> 1231 CodeGenModule::getMostBaseClasses(const CXXRecordDecl *RD) { 1232 llvm::SetVector<const CXXRecordDecl *> MostBases; 1233 1234 std::function<void (const CXXRecordDecl *)> CollectMostBases; 1235 CollectMostBases = [&](const CXXRecordDecl *RD) { 1236 if (RD->getNumBases() == 0) 1237 MostBases.insert(RD); 1238 for (const CXXBaseSpecifier &B : RD->bases()) 1239 CollectMostBases(B.getType()->getAsCXXRecordDecl()); 1240 }; 1241 CollectMostBases(RD); 1242 return MostBases.takeVector(); 1243 } 1244 1245 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D, 1246 llvm::Function *F) { 1247 llvm::AttrBuilder B; 1248 1249 if (CodeGenOpts.UnwindTables) 1250 B.addAttribute(llvm::Attribute::UWTable); 1251 1252 if (!hasUnwindExceptions(LangOpts)) 1253 B.addAttribute(llvm::Attribute::NoUnwind); 1254 1255 if (!D || !D->hasAttr<NoStackProtectorAttr>()) { 1256 if (LangOpts.getStackProtector() == LangOptions::SSPOn) 1257 B.addAttribute(llvm::Attribute::StackProtect); 1258 else if (LangOpts.getStackProtector() == LangOptions::SSPStrong) 1259 B.addAttribute(llvm::Attribute::StackProtectStrong); 1260 else if (LangOpts.getStackProtector() == LangOptions::SSPReq) 1261 B.addAttribute(llvm::Attribute::StackProtectReq); 1262 } 1263 1264 if (!D) { 1265 // If we don't have a declaration to control inlining, the function isn't 1266 // explicitly marked as alwaysinline for semantic reasons, and inlining is 1267 // disabled, mark the function as noinline. 1268 if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline) && 1269 CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining) 1270 B.addAttribute(llvm::Attribute::NoInline); 1271 1272 F->addAttributes(llvm::AttributeList::FunctionIndex, B); 1273 return; 1274 } 1275 1276 // Track whether we need to add the optnone LLVM attribute, 1277 // starting with the default for this optimization level. 1278 bool ShouldAddOptNone = 1279 !CodeGenOpts.DisableO0ImplyOptNone && CodeGenOpts.OptimizationLevel == 0; 1280 // We can't add optnone in the following cases, it won't pass the verifier. 1281 ShouldAddOptNone &= !D->hasAttr<MinSizeAttr>(); 1282 ShouldAddOptNone &= !F->hasFnAttribute(llvm::Attribute::AlwaysInline); 1283 ShouldAddOptNone &= !D->hasAttr<AlwaysInlineAttr>(); 1284 1285 if (ShouldAddOptNone || D->hasAttr<OptimizeNoneAttr>()) { 1286 B.addAttribute(llvm::Attribute::OptimizeNone); 1287 1288 // OptimizeNone implies noinline; we should not be inlining such functions. 1289 B.addAttribute(llvm::Attribute::NoInline); 1290 assert(!F->hasFnAttribute(llvm::Attribute::AlwaysInline) && 1291 "OptimizeNone and AlwaysInline on same function!"); 1292 1293 // We still need to handle naked functions even though optnone subsumes 1294 // much of their semantics. 1295 if (D->hasAttr<NakedAttr>()) 1296 B.addAttribute(llvm::Attribute::Naked); 1297 1298 // OptimizeNone wins over OptimizeForSize and MinSize. 1299 F->removeFnAttr(llvm::Attribute::OptimizeForSize); 1300 F->removeFnAttr(llvm::Attribute::MinSize); 1301 } else if (D->hasAttr<NakedAttr>()) { 1302 // Naked implies noinline: we should not be inlining such functions. 1303 B.addAttribute(llvm::Attribute::Naked); 1304 B.addAttribute(llvm::Attribute::NoInline); 1305 } else if (D->hasAttr<NoDuplicateAttr>()) { 1306 B.addAttribute(llvm::Attribute::NoDuplicate); 1307 } else if (D->hasAttr<NoInlineAttr>()) { 1308 B.addAttribute(llvm::Attribute::NoInline); 1309 } else if (D->hasAttr<AlwaysInlineAttr>() && 1310 !F->hasFnAttribute(llvm::Attribute::NoInline)) { 1311 // (noinline wins over always_inline, and we can't specify both in IR) 1312 B.addAttribute(llvm::Attribute::AlwaysInline); 1313 } else if (CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining) { 1314 // If we're not inlining, then force everything that isn't always_inline to 1315 // carry an explicit noinline attribute. 1316 if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline)) 1317 B.addAttribute(llvm::Attribute::NoInline); 1318 } else { 1319 // Otherwise, propagate the inline hint attribute and potentially use its 1320 // absence to mark things as noinline. 1321 if (auto *FD = dyn_cast<FunctionDecl>(D)) { 1322 // Search function and template pattern redeclarations for inline. 1323 auto CheckForInline = [](const FunctionDecl *FD) { 1324 auto CheckRedeclForInline = [](const FunctionDecl *Redecl) { 1325 return Redecl->isInlineSpecified(); 1326 }; 1327 if (any_of(FD->redecls(), CheckRedeclForInline)) 1328 return true; 1329 const FunctionDecl *Pattern = FD->getTemplateInstantiationPattern(); 1330 if (!Pattern) 1331 return false; 1332 return any_of(Pattern->redecls(), CheckRedeclForInline); 1333 }; 1334 if (CheckForInline(FD)) { 1335 B.addAttribute(llvm::Attribute::InlineHint); 1336 } else if (CodeGenOpts.getInlining() == 1337 CodeGenOptions::OnlyHintInlining && 1338 !FD->isInlined() && 1339 !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) { 1340 B.addAttribute(llvm::Attribute::NoInline); 1341 } 1342 } 1343 } 1344 1345 // Add other optimization related attributes if we are optimizing this 1346 // function. 1347 if (!D->hasAttr<OptimizeNoneAttr>()) { 1348 if (D->hasAttr<ColdAttr>()) { 1349 if (!ShouldAddOptNone) 1350 B.addAttribute(llvm::Attribute::OptimizeForSize); 1351 B.addAttribute(llvm::Attribute::Cold); 1352 } 1353 1354 if (D->hasAttr<MinSizeAttr>()) 1355 B.addAttribute(llvm::Attribute::MinSize); 1356 } 1357 1358 F->addAttributes(llvm::AttributeList::FunctionIndex, B); 1359 1360 unsigned alignment = D->getMaxAlignment() / Context.getCharWidth(); 1361 if (alignment) 1362 F->setAlignment(alignment); 1363 1364 if (!D->hasAttr<AlignedAttr>()) 1365 if (LangOpts.FunctionAlignment) 1366 F->setAlignment(1 << LangOpts.FunctionAlignment); 1367 1368 // Some C++ ABIs require 2-byte alignment for member functions, in order to 1369 // reserve a bit for differentiating between virtual and non-virtual member 1370 // functions. If the current target's C++ ABI requires this and this is a 1371 // member function, set its alignment accordingly. 1372 if (getTarget().getCXXABI().areMemberFunctionsAligned()) { 1373 if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D)) 1374 F->setAlignment(2); 1375 } 1376 1377 // In the cross-dso CFI mode, we want !type attributes on definitions only. 1378 if (CodeGenOpts.SanitizeCfiCrossDso) 1379 if (auto *FD = dyn_cast<FunctionDecl>(D)) 1380 CreateFunctionTypeMetadataForIcall(FD, F); 1381 1382 // Emit type metadata on member functions for member function pointer checks. 1383 // These are only ever necessary on definitions; we're guaranteed that the 1384 // definition will be present in the LTO unit as a result of LTO visibility. 1385 auto *MD = dyn_cast<CXXMethodDecl>(D); 1386 if (MD && requiresMemberFunctionPointerTypeMetadata(*this, MD)) { 1387 for (const CXXRecordDecl *Base : getMostBaseClasses(MD->getParent())) { 1388 llvm::Metadata *Id = 1389 CreateMetadataIdentifierForType(Context.getMemberPointerType( 1390 MD->getType(), Context.getRecordType(Base).getTypePtr())); 1391 F->addTypeMetadata(0, Id); 1392 } 1393 } 1394 } 1395 1396 void CodeGenModule::SetCommonAttributes(GlobalDecl GD, llvm::GlobalValue *GV) { 1397 const Decl *D = GD.getDecl(); 1398 if (dyn_cast_or_null<NamedDecl>(D)) 1399 setGVProperties(GV, GD); 1400 else 1401 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 1402 1403 if (D && D->hasAttr<UsedAttr>()) 1404 addUsedGlobal(GV); 1405 1406 if (CodeGenOpts.KeepStaticConsts && D && isa<VarDecl>(D)) { 1407 const auto *VD = cast<VarDecl>(D); 1408 if (VD->getType().isConstQualified() && 1409 VD->getStorageDuration() == SD_Static) 1410 addUsedGlobal(GV); 1411 } 1412 } 1413 1414 bool CodeGenModule::GetCPUAndFeaturesAttributes(GlobalDecl GD, 1415 llvm::AttrBuilder &Attrs) { 1416 // Add target-cpu and target-features attributes to functions. If 1417 // we have a decl for the function and it has a target attribute then 1418 // parse that and add it to the feature set. 1419 StringRef TargetCPU = getTarget().getTargetOpts().CPU; 1420 std::vector<std::string> Features; 1421 const auto *FD = dyn_cast_or_null<FunctionDecl>(GD.getDecl()); 1422 FD = FD ? FD->getMostRecentDecl() : FD; 1423 const auto *TD = FD ? FD->getAttr<TargetAttr>() : nullptr; 1424 const auto *SD = FD ? FD->getAttr<CPUSpecificAttr>() : nullptr; 1425 bool AddedAttr = false; 1426 if (TD || SD) { 1427 llvm::StringMap<bool> FeatureMap; 1428 getFunctionFeatureMap(FeatureMap, GD); 1429 1430 // Produce the canonical string for this set of features. 1431 for (const llvm::StringMap<bool>::value_type &Entry : FeatureMap) 1432 Features.push_back((Entry.getValue() ? "+" : "-") + Entry.getKey().str()); 1433 1434 // Now add the target-cpu and target-features to the function. 1435 // While we populated the feature map above, we still need to 1436 // get and parse the target attribute so we can get the cpu for 1437 // the function. 1438 if (TD) { 1439 TargetAttr::ParsedTargetAttr ParsedAttr = TD->parse(); 1440 if (ParsedAttr.Architecture != "" && 1441 getTarget().isValidCPUName(ParsedAttr.Architecture)) 1442 TargetCPU = ParsedAttr.Architecture; 1443 } 1444 } else { 1445 // Otherwise just add the existing target cpu and target features to the 1446 // function. 1447 Features = getTarget().getTargetOpts().Features; 1448 } 1449 1450 if (TargetCPU != "") { 1451 Attrs.addAttribute("target-cpu", TargetCPU); 1452 AddedAttr = true; 1453 } 1454 if (!Features.empty()) { 1455 llvm::sort(Features); 1456 Attrs.addAttribute("target-features", llvm::join(Features, ",")); 1457 AddedAttr = true; 1458 } 1459 1460 return AddedAttr; 1461 } 1462 1463 void CodeGenModule::setNonAliasAttributes(GlobalDecl GD, 1464 llvm::GlobalObject *GO) { 1465 const Decl *D = GD.getDecl(); 1466 SetCommonAttributes(GD, GO); 1467 1468 if (D) { 1469 if (auto *GV = dyn_cast<llvm::GlobalVariable>(GO)) { 1470 if (auto *SA = D->getAttr<PragmaClangBSSSectionAttr>()) 1471 GV->addAttribute("bss-section", SA->getName()); 1472 if (auto *SA = D->getAttr<PragmaClangDataSectionAttr>()) 1473 GV->addAttribute("data-section", SA->getName()); 1474 if (auto *SA = D->getAttr<PragmaClangRodataSectionAttr>()) 1475 GV->addAttribute("rodata-section", SA->getName()); 1476 } 1477 1478 if (auto *F = dyn_cast<llvm::Function>(GO)) { 1479 if (auto *SA = D->getAttr<PragmaClangTextSectionAttr>()) 1480 if (!D->getAttr<SectionAttr>()) 1481 F->addFnAttr("implicit-section-name", SA->getName()); 1482 1483 llvm::AttrBuilder Attrs; 1484 if (GetCPUAndFeaturesAttributes(GD, Attrs)) { 1485 // We know that GetCPUAndFeaturesAttributes will always have the 1486 // newest set, since it has the newest possible FunctionDecl, so the 1487 // new ones should replace the old. 1488 F->removeFnAttr("target-cpu"); 1489 F->removeFnAttr("target-features"); 1490 F->addAttributes(llvm::AttributeList::FunctionIndex, Attrs); 1491 } 1492 } 1493 1494 if (const auto *CSA = D->getAttr<CodeSegAttr>()) 1495 GO->setSection(CSA->getName()); 1496 else if (const auto *SA = D->getAttr<SectionAttr>()) 1497 GO->setSection(SA->getName()); 1498 } 1499 1500 getTargetCodeGenInfo().setTargetAttributes(D, GO, *this); 1501 } 1502 1503 void CodeGenModule::SetInternalFunctionAttributes(GlobalDecl GD, 1504 llvm::Function *F, 1505 const CGFunctionInfo &FI) { 1506 const Decl *D = GD.getDecl(); 1507 SetLLVMFunctionAttributes(GD, FI, F); 1508 SetLLVMFunctionAttributesForDefinition(D, F); 1509 1510 F->setLinkage(llvm::Function::InternalLinkage); 1511 1512 setNonAliasAttributes(GD, F); 1513 } 1514 1515 static void setLinkageForGV(llvm::GlobalValue *GV, const NamedDecl *ND) { 1516 // Set linkage and visibility in case we never see a definition. 1517 LinkageInfo LV = ND->getLinkageAndVisibility(); 1518 // Don't set internal linkage on declarations. 1519 // "extern_weak" is overloaded in LLVM; we probably should have 1520 // separate linkage types for this. 1521 if (isExternallyVisible(LV.getLinkage()) && 1522 (ND->hasAttr<WeakAttr>() || ND->isWeakImported())) 1523 GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage); 1524 } 1525 1526 void CodeGenModule::CreateFunctionTypeMetadataForIcall(const FunctionDecl *FD, 1527 llvm::Function *F) { 1528 // Only if we are checking indirect calls. 1529 if (!LangOpts.Sanitize.has(SanitizerKind::CFIICall)) 1530 return; 1531 1532 // Non-static class methods are handled via vtable or member function pointer 1533 // checks elsewhere. 1534 if (isa<CXXMethodDecl>(FD) && !cast<CXXMethodDecl>(FD)->isStatic()) 1535 return; 1536 1537 // Additionally, if building with cross-DSO support... 1538 if (CodeGenOpts.SanitizeCfiCrossDso) { 1539 // Skip available_externally functions. They won't be codegen'ed in the 1540 // current module anyway. 1541 if (getContext().GetGVALinkageForFunction(FD) == GVA_AvailableExternally) 1542 return; 1543 } 1544 1545 llvm::Metadata *MD = CreateMetadataIdentifierForType(FD->getType()); 1546 F->addTypeMetadata(0, MD); 1547 F->addTypeMetadata(0, CreateMetadataIdentifierGeneralized(FD->getType())); 1548 1549 // Emit a hash-based bit set entry for cross-DSO calls. 1550 if (CodeGenOpts.SanitizeCfiCrossDso) 1551 if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD)) 1552 F->addTypeMetadata(0, llvm::ConstantAsMetadata::get(CrossDsoTypeId)); 1553 } 1554 1555 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD, llvm::Function *F, 1556 bool IsIncompleteFunction, 1557 bool IsThunk) { 1558 1559 if (llvm::Intrinsic::ID IID = F->getIntrinsicID()) { 1560 // If this is an intrinsic function, set the function's attributes 1561 // to the intrinsic's attributes. 1562 F->setAttributes(llvm::Intrinsic::getAttributes(getLLVMContext(), IID)); 1563 return; 1564 } 1565 1566 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 1567 1568 if (!IsIncompleteFunction) 1569 SetLLVMFunctionAttributes(GD, getTypes().arrangeGlobalDeclaration(GD), F); 1570 1571 // Add the Returned attribute for "this", except for iOS 5 and earlier 1572 // where substantial code, including the libstdc++ dylib, was compiled with 1573 // GCC and does not actually return "this". 1574 if (!IsThunk && getCXXABI().HasThisReturn(GD) && 1575 !(getTriple().isiOS() && getTriple().isOSVersionLT(6))) { 1576 assert(!F->arg_empty() && 1577 F->arg_begin()->getType() 1578 ->canLosslesslyBitCastTo(F->getReturnType()) && 1579 "unexpected this return"); 1580 F->addAttribute(1, llvm::Attribute::Returned); 1581 } 1582 1583 // Only a few attributes are set on declarations; these may later be 1584 // overridden by a definition. 1585 1586 setLinkageForGV(F, FD); 1587 setGVProperties(F, FD); 1588 1589 // Setup target-specific attributes. 1590 if (!IsIncompleteFunction && F->isDeclaration()) 1591 getTargetCodeGenInfo().setTargetAttributes(FD, F, *this); 1592 1593 if (const auto *CSA = FD->getAttr<CodeSegAttr>()) 1594 F->setSection(CSA->getName()); 1595 else if (const auto *SA = FD->getAttr<SectionAttr>()) 1596 F->setSection(SA->getName()); 1597 1598 if (FD->isReplaceableGlobalAllocationFunction()) { 1599 // A replaceable global allocation function does not act like a builtin by 1600 // default, only if it is invoked by a new-expression or delete-expression. 1601 F->addAttribute(llvm::AttributeList::FunctionIndex, 1602 llvm::Attribute::NoBuiltin); 1603 1604 // A sane operator new returns a non-aliasing pointer. 1605 // FIXME: Also add NonNull attribute to the return value 1606 // for the non-nothrow forms? 1607 auto Kind = FD->getDeclName().getCXXOverloadedOperator(); 1608 if (getCodeGenOpts().AssumeSaneOperatorNew && 1609 (Kind == OO_New || Kind == OO_Array_New)) 1610 F->addAttribute(llvm::AttributeList::ReturnIndex, 1611 llvm::Attribute::NoAlias); 1612 } 1613 1614 if (isa<CXXConstructorDecl>(FD) || isa<CXXDestructorDecl>(FD)) 1615 F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 1616 else if (const auto *MD = dyn_cast<CXXMethodDecl>(FD)) 1617 if (MD->isVirtual()) 1618 F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 1619 1620 // Don't emit entries for function declarations in the cross-DSO mode. This 1621 // is handled with better precision by the receiving DSO. 1622 if (!CodeGenOpts.SanitizeCfiCrossDso) 1623 CreateFunctionTypeMetadataForIcall(FD, F); 1624 1625 if (getLangOpts().OpenMP && FD->hasAttr<OMPDeclareSimdDeclAttr>()) 1626 getOpenMPRuntime().emitDeclareSimdFunction(FD, F); 1627 1628 if (const auto *CB = FD->getAttr<CallbackAttr>()) { 1629 // Annotate the callback behavior as metadata: 1630 // - The callback callee (as argument number). 1631 // - The callback payloads (as argument numbers). 1632 llvm::LLVMContext &Ctx = F->getContext(); 1633 llvm::MDBuilder MDB(Ctx); 1634 1635 // The payload indices are all but the first one in the encoding. The first 1636 // identifies the callback callee. 1637 int CalleeIdx = *CB->encoding_begin(); 1638 ArrayRef<int> PayloadIndices(CB->encoding_begin() + 1, CB->encoding_end()); 1639 F->addMetadata(llvm::LLVMContext::MD_callback, 1640 *llvm::MDNode::get(Ctx, {MDB.createCallbackEncoding( 1641 CalleeIdx, PayloadIndices, 1642 /* VarArgsArePassed */ false)})); 1643 } 1644 } 1645 1646 void CodeGenModule::addUsedGlobal(llvm::GlobalValue *GV) { 1647 assert(!GV->isDeclaration() && 1648 "Only globals with definition can force usage."); 1649 LLVMUsed.emplace_back(GV); 1650 } 1651 1652 void CodeGenModule::addCompilerUsedGlobal(llvm::GlobalValue *GV) { 1653 assert(!GV->isDeclaration() && 1654 "Only globals with definition can force usage."); 1655 LLVMCompilerUsed.emplace_back(GV); 1656 } 1657 1658 static void emitUsed(CodeGenModule &CGM, StringRef Name, 1659 std::vector<llvm::WeakTrackingVH> &List) { 1660 // Don't create llvm.used if there is no need. 1661 if (List.empty()) 1662 return; 1663 1664 // Convert List to what ConstantArray needs. 1665 SmallVector<llvm::Constant*, 8> UsedArray; 1666 UsedArray.resize(List.size()); 1667 for (unsigned i = 0, e = List.size(); i != e; ++i) { 1668 UsedArray[i] = 1669 llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast( 1670 cast<llvm::Constant>(&*List[i]), CGM.Int8PtrTy); 1671 } 1672 1673 if (UsedArray.empty()) 1674 return; 1675 llvm::ArrayType *ATy = llvm::ArrayType::get(CGM.Int8PtrTy, UsedArray.size()); 1676 1677 auto *GV = new llvm::GlobalVariable( 1678 CGM.getModule(), ATy, false, llvm::GlobalValue::AppendingLinkage, 1679 llvm::ConstantArray::get(ATy, UsedArray), Name); 1680 1681 GV->setSection("llvm.metadata"); 1682 } 1683 1684 void CodeGenModule::emitLLVMUsed() { 1685 emitUsed(*this, "llvm.used", LLVMUsed); 1686 emitUsed(*this, "llvm.compiler.used", LLVMCompilerUsed); 1687 } 1688 1689 void CodeGenModule::AppendLinkerOptions(StringRef Opts) { 1690 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opts); 1691 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 1692 } 1693 1694 void CodeGenModule::AddDetectMismatch(StringRef Name, StringRef Value) { 1695 llvm::SmallString<32> Opt; 1696 getTargetCodeGenInfo().getDetectMismatchOption(Name, Value, Opt); 1697 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt); 1698 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 1699 } 1700 1701 void CodeGenModule::AddELFLibDirective(StringRef Lib) { 1702 auto &C = getLLVMContext(); 1703 LinkerOptionsMetadata.push_back(llvm::MDNode::get( 1704 C, {llvm::MDString::get(C, "lib"), llvm::MDString::get(C, Lib)})); 1705 } 1706 1707 void CodeGenModule::AddDependentLib(StringRef Lib) { 1708 llvm::SmallString<24> Opt; 1709 getTargetCodeGenInfo().getDependentLibraryOption(Lib, Opt); 1710 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt); 1711 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 1712 } 1713 1714 /// Add link options implied by the given module, including modules 1715 /// it depends on, using a postorder walk. 1716 static void addLinkOptionsPostorder(CodeGenModule &CGM, Module *Mod, 1717 SmallVectorImpl<llvm::MDNode *> &Metadata, 1718 llvm::SmallPtrSet<Module *, 16> &Visited) { 1719 // Import this module's parent. 1720 if (Mod->Parent && Visited.insert(Mod->Parent).second) { 1721 addLinkOptionsPostorder(CGM, Mod->Parent, Metadata, Visited); 1722 } 1723 1724 // Import this module's dependencies. 1725 for (unsigned I = Mod->Imports.size(); I > 0; --I) { 1726 if (Visited.insert(Mod->Imports[I - 1]).second) 1727 addLinkOptionsPostorder(CGM, Mod->Imports[I-1], Metadata, Visited); 1728 } 1729 1730 // Add linker options to link against the libraries/frameworks 1731 // described by this module. 1732 llvm::LLVMContext &Context = CGM.getLLVMContext(); 1733 bool IsELF = CGM.getTarget().getTriple().isOSBinFormatELF(); 1734 bool IsPS4 = CGM.getTarget().getTriple().isPS4(); 1735 1736 // For modules that use export_as for linking, use that module 1737 // name instead. 1738 if (Mod->UseExportAsModuleLinkName) 1739 return; 1740 1741 for (unsigned I = Mod->LinkLibraries.size(); I > 0; --I) { 1742 // Link against a framework. Frameworks are currently Darwin only, so we 1743 // don't to ask TargetCodeGenInfo for the spelling of the linker option. 1744 if (Mod->LinkLibraries[I-1].IsFramework) { 1745 llvm::Metadata *Args[2] = { 1746 llvm::MDString::get(Context, "-framework"), 1747 llvm::MDString::get(Context, Mod->LinkLibraries[I - 1].Library)}; 1748 1749 Metadata.push_back(llvm::MDNode::get(Context, Args)); 1750 continue; 1751 } 1752 1753 // Link against a library. 1754 if (IsELF && !IsPS4) { 1755 llvm::Metadata *Args[2] = { 1756 llvm::MDString::get(Context, "lib"), 1757 llvm::MDString::get(Context, Mod->LinkLibraries[I - 1].Library), 1758 }; 1759 Metadata.push_back(llvm::MDNode::get(Context, Args)); 1760 } else { 1761 llvm::SmallString<24> Opt; 1762 CGM.getTargetCodeGenInfo().getDependentLibraryOption( 1763 Mod->LinkLibraries[I - 1].Library, Opt); 1764 auto *OptString = llvm::MDString::get(Context, Opt); 1765 Metadata.push_back(llvm::MDNode::get(Context, OptString)); 1766 } 1767 } 1768 } 1769 1770 void CodeGenModule::EmitModuleLinkOptions() { 1771 // Collect the set of all of the modules we want to visit to emit link 1772 // options, which is essentially the imported modules and all of their 1773 // non-explicit child modules. 1774 llvm::SetVector<clang::Module *> LinkModules; 1775 llvm::SmallPtrSet<clang::Module *, 16> Visited; 1776 SmallVector<clang::Module *, 16> Stack; 1777 1778 // Seed the stack with imported modules. 1779 for (Module *M : ImportedModules) { 1780 // Do not add any link flags when an implementation TU of a module imports 1781 // a header of that same module. 1782 if (M->getTopLevelModuleName() == getLangOpts().CurrentModule && 1783 !getLangOpts().isCompilingModule()) 1784 continue; 1785 if (Visited.insert(M).second) 1786 Stack.push_back(M); 1787 } 1788 1789 // Find all of the modules to import, making a little effort to prune 1790 // non-leaf modules. 1791 while (!Stack.empty()) { 1792 clang::Module *Mod = Stack.pop_back_val(); 1793 1794 bool AnyChildren = false; 1795 1796 // Visit the submodules of this module. 1797 for (const auto &SM : Mod->submodules()) { 1798 // Skip explicit children; they need to be explicitly imported to be 1799 // linked against. 1800 if (SM->IsExplicit) 1801 continue; 1802 1803 if (Visited.insert(SM).second) { 1804 Stack.push_back(SM); 1805 AnyChildren = true; 1806 } 1807 } 1808 1809 // We didn't find any children, so add this module to the list of 1810 // modules to link against. 1811 if (!AnyChildren) { 1812 LinkModules.insert(Mod); 1813 } 1814 } 1815 1816 // Add link options for all of the imported modules in reverse topological 1817 // order. We don't do anything to try to order import link flags with respect 1818 // to linker options inserted by things like #pragma comment(). 1819 SmallVector<llvm::MDNode *, 16> MetadataArgs; 1820 Visited.clear(); 1821 for (Module *M : LinkModules) 1822 if (Visited.insert(M).second) 1823 addLinkOptionsPostorder(*this, M, MetadataArgs, Visited); 1824 std::reverse(MetadataArgs.begin(), MetadataArgs.end()); 1825 LinkerOptionsMetadata.append(MetadataArgs.begin(), MetadataArgs.end()); 1826 1827 // Add the linker options metadata flag. 1828 auto *NMD = getModule().getOrInsertNamedMetadata("llvm.linker.options"); 1829 for (auto *MD : LinkerOptionsMetadata) 1830 NMD->addOperand(MD); 1831 } 1832 1833 void CodeGenModule::EmitDeferred() { 1834 // Emit deferred declare target declarations. 1835 if (getLangOpts().OpenMP && !getLangOpts().OpenMPSimd) 1836 getOpenMPRuntime().emitDeferredTargetDecls(); 1837 1838 // Emit code for any potentially referenced deferred decls. Since a 1839 // previously unused static decl may become used during the generation of code 1840 // for a static function, iterate until no changes are made. 1841 1842 if (!DeferredVTables.empty()) { 1843 EmitDeferredVTables(); 1844 1845 // Emitting a vtable doesn't directly cause more vtables to 1846 // become deferred, although it can cause functions to be 1847 // emitted that then need those vtables. 1848 assert(DeferredVTables.empty()); 1849 } 1850 1851 // Stop if we're out of both deferred vtables and deferred declarations. 1852 if (DeferredDeclsToEmit.empty()) 1853 return; 1854 1855 // Grab the list of decls to emit. If EmitGlobalDefinition schedules more 1856 // work, it will not interfere with this. 1857 std::vector<GlobalDecl> CurDeclsToEmit; 1858 CurDeclsToEmit.swap(DeferredDeclsToEmit); 1859 1860 for (GlobalDecl &D : CurDeclsToEmit) { 1861 // We should call GetAddrOfGlobal with IsForDefinition set to true in order 1862 // to get GlobalValue with exactly the type we need, not something that 1863 // might had been created for another decl with the same mangled name but 1864 // different type. 1865 llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>( 1866 GetAddrOfGlobal(D, ForDefinition)); 1867 1868 // In case of different address spaces, we may still get a cast, even with 1869 // IsForDefinition equal to true. Query mangled names table to get 1870 // GlobalValue. 1871 if (!GV) 1872 GV = GetGlobalValue(getMangledName(D)); 1873 1874 // Make sure GetGlobalValue returned non-null. 1875 assert(GV); 1876 1877 // Check to see if we've already emitted this. This is necessary 1878 // for a couple of reasons: first, decls can end up in the 1879 // deferred-decls queue multiple times, and second, decls can end 1880 // up with definitions in unusual ways (e.g. by an extern inline 1881 // function acquiring a strong function redefinition). Just 1882 // ignore these cases. 1883 if (!GV->isDeclaration()) 1884 continue; 1885 1886 // Otherwise, emit the definition and move on to the next one. 1887 EmitGlobalDefinition(D, GV); 1888 1889 // If we found out that we need to emit more decls, do that recursively. 1890 // This has the advantage that the decls are emitted in a DFS and related 1891 // ones are close together, which is convenient for testing. 1892 if (!DeferredVTables.empty() || !DeferredDeclsToEmit.empty()) { 1893 EmitDeferred(); 1894 assert(DeferredVTables.empty() && DeferredDeclsToEmit.empty()); 1895 } 1896 } 1897 } 1898 1899 void CodeGenModule::EmitVTablesOpportunistically() { 1900 // Try to emit external vtables as available_externally if they have emitted 1901 // all inlined virtual functions. It runs after EmitDeferred() and therefore 1902 // is not allowed to create new references to things that need to be emitted 1903 // lazily. Note that it also uses fact that we eagerly emitting RTTI. 1904 1905 assert((OpportunisticVTables.empty() || shouldOpportunisticallyEmitVTables()) 1906 && "Only emit opportunistic vtables with optimizations"); 1907 1908 for (const CXXRecordDecl *RD : OpportunisticVTables) { 1909 assert(getVTables().isVTableExternal(RD) && 1910 "This queue should only contain external vtables"); 1911 if (getCXXABI().canSpeculativelyEmitVTable(RD)) 1912 VTables.GenerateClassData(RD); 1913 } 1914 OpportunisticVTables.clear(); 1915 } 1916 1917 void CodeGenModule::EmitGlobalAnnotations() { 1918 if (Annotations.empty()) 1919 return; 1920 1921 // Create a new global variable for the ConstantStruct in the Module. 1922 llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get( 1923 Annotations[0]->getType(), Annotations.size()), Annotations); 1924 auto *gv = new llvm::GlobalVariable(getModule(), Array->getType(), false, 1925 llvm::GlobalValue::AppendingLinkage, 1926 Array, "llvm.global.annotations"); 1927 gv->setSection(AnnotationSection); 1928 } 1929 1930 llvm::Constant *CodeGenModule::EmitAnnotationString(StringRef Str) { 1931 llvm::Constant *&AStr = AnnotationStrings[Str]; 1932 if (AStr) 1933 return AStr; 1934 1935 // Not found yet, create a new global. 1936 llvm::Constant *s = llvm::ConstantDataArray::getString(getLLVMContext(), Str); 1937 auto *gv = 1938 new llvm::GlobalVariable(getModule(), s->getType(), true, 1939 llvm::GlobalValue::PrivateLinkage, s, ".str"); 1940 gv->setSection(AnnotationSection); 1941 gv->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 1942 AStr = gv; 1943 return gv; 1944 } 1945 1946 llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) { 1947 SourceManager &SM = getContext().getSourceManager(); 1948 PresumedLoc PLoc = SM.getPresumedLoc(Loc); 1949 if (PLoc.isValid()) 1950 return EmitAnnotationString(PLoc.getFilename()); 1951 return EmitAnnotationString(SM.getBufferName(Loc)); 1952 } 1953 1954 llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) { 1955 SourceManager &SM = getContext().getSourceManager(); 1956 PresumedLoc PLoc = SM.getPresumedLoc(L); 1957 unsigned LineNo = PLoc.isValid() ? PLoc.getLine() : 1958 SM.getExpansionLineNumber(L); 1959 return llvm::ConstantInt::get(Int32Ty, LineNo); 1960 } 1961 1962 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV, 1963 const AnnotateAttr *AA, 1964 SourceLocation L) { 1965 // Get the globals for file name, annotation, and the line number. 1966 llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()), 1967 *UnitGV = EmitAnnotationUnit(L), 1968 *LineNoCst = EmitAnnotationLineNo(L); 1969 1970 // Create the ConstantStruct for the global annotation. 1971 llvm::Constant *Fields[4] = { 1972 llvm::ConstantExpr::getBitCast(GV, Int8PtrTy), 1973 llvm::ConstantExpr::getBitCast(AnnoGV, Int8PtrTy), 1974 llvm::ConstantExpr::getBitCast(UnitGV, Int8PtrTy), 1975 LineNoCst 1976 }; 1977 return llvm::ConstantStruct::getAnon(Fields); 1978 } 1979 1980 void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D, 1981 llvm::GlobalValue *GV) { 1982 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 1983 // Get the struct elements for these annotations. 1984 for (const auto *I : D->specific_attrs<AnnotateAttr>()) 1985 Annotations.push_back(EmitAnnotateAttr(GV, I, D->getLocation())); 1986 } 1987 1988 bool CodeGenModule::isInSanitizerBlacklist(SanitizerMask Kind, 1989 llvm::Function *Fn, 1990 SourceLocation Loc) const { 1991 const auto &SanitizerBL = getContext().getSanitizerBlacklist(); 1992 // Blacklist by function name. 1993 if (SanitizerBL.isBlacklistedFunction(Kind, Fn->getName())) 1994 return true; 1995 // Blacklist by location. 1996 if (Loc.isValid()) 1997 return SanitizerBL.isBlacklistedLocation(Kind, Loc); 1998 // If location is unknown, this may be a compiler-generated function. Assume 1999 // it's located in the main file. 2000 auto &SM = Context.getSourceManager(); 2001 if (const auto *MainFile = SM.getFileEntryForID(SM.getMainFileID())) { 2002 return SanitizerBL.isBlacklistedFile(Kind, MainFile->getName()); 2003 } 2004 return false; 2005 } 2006 2007 bool CodeGenModule::isInSanitizerBlacklist(llvm::GlobalVariable *GV, 2008 SourceLocation Loc, QualType Ty, 2009 StringRef Category) const { 2010 // For now globals can be blacklisted only in ASan and KASan. 2011 const SanitizerMask EnabledAsanMask = LangOpts.Sanitize.Mask & 2012 (SanitizerKind::Address | SanitizerKind::KernelAddress | 2013 SanitizerKind::HWAddress | SanitizerKind::KernelHWAddress); 2014 if (!EnabledAsanMask) 2015 return false; 2016 const auto &SanitizerBL = getContext().getSanitizerBlacklist(); 2017 if (SanitizerBL.isBlacklistedGlobal(EnabledAsanMask, GV->getName(), Category)) 2018 return true; 2019 if (SanitizerBL.isBlacklistedLocation(EnabledAsanMask, Loc, Category)) 2020 return true; 2021 // Check global type. 2022 if (!Ty.isNull()) { 2023 // Drill down the array types: if global variable of a fixed type is 2024 // blacklisted, we also don't instrument arrays of them. 2025 while (auto AT = dyn_cast<ArrayType>(Ty.getTypePtr())) 2026 Ty = AT->getElementType(); 2027 Ty = Ty.getCanonicalType().getUnqualifiedType(); 2028 // We allow to blacklist only record types (classes, structs etc.) 2029 if (Ty->isRecordType()) { 2030 std::string TypeStr = Ty.getAsString(getContext().getPrintingPolicy()); 2031 if (SanitizerBL.isBlacklistedType(EnabledAsanMask, TypeStr, Category)) 2032 return true; 2033 } 2034 } 2035 return false; 2036 } 2037 2038 bool CodeGenModule::imbueXRayAttrs(llvm::Function *Fn, SourceLocation Loc, 2039 StringRef Category) const { 2040 const auto &XRayFilter = getContext().getXRayFilter(); 2041 using ImbueAttr = XRayFunctionFilter::ImbueAttribute; 2042 auto Attr = ImbueAttr::NONE; 2043 if (Loc.isValid()) 2044 Attr = XRayFilter.shouldImbueLocation(Loc, Category); 2045 if (Attr == ImbueAttr::NONE) 2046 Attr = XRayFilter.shouldImbueFunction(Fn->getName()); 2047 switch (Attr) { 2048 case ImbueAttr::NONE: 2049 return false; 2050 case ImbueAttr::ALWAYS: 2051 Fn->addFnAttr("function-instrument", "xray-always"); 2052 break; 2053 case ImbueAttr::ALWAYS_ARG1: 2054 Fn->addFnAttr("function-instrument", "xray-always"); 2055 Fn->addFnAttr("xray-log-args", "1"); 2056 break; 2057 case ImbueAttr::NEVER: 2058 Fn->addFnAttr("function-instrument", "xray-never"); 2059 break; 2060 } 2061 return true; 2062 } 2063 2064 bool CodeGenModule::MustBeEmitted(const ValueDecl *Global) { 2065 // Never defer when EmitAllDecls is specified. 2066 if (LangOpts.EmitAllDecls) 2067 return true; 2068 2069 if (CodeGenOpts.KeepStaticConsts) { 2070 const auto *VD = dyn_cast<VarDecl>(Global); 2071 if (VD && VD->getType().isConstQualified() && 2072 VD->getStorageDuration() == SD_Static) 2073 return true; 2074 } 2075 2076 return getContext().DeclMustBeEmitted(Global); 2077 } 2078 2079 bool CodeGenModule::MayBeEmittedEagerly(const ValueDecl *Global) { 2080 if (const auto *FD = dyn_cast<FunctionDecl>(Global)) 2081 if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation) 2082 // Implicit template instantiations may change linkage if they are later 2083 // explicitly instantiated, so they should not be emitted eagerly. 2084 return false; 2085 if (const auto *VD = dyn_cast<VarDecl>(Global)) 2086 if (Context.getInlineVariableDefinitionKind(VD) == 2087 ASTContext::InlineVariableDefinitionKind::WeakUnknown) 2088 // A definition of an inline constexpr static data member may change 2089 // linkage later if it's redeclared outside the class. 2090 return false; 2091 // If OpenMP is enabled and threadprivates must be generated like TLS, delay 2092 // codegen for global variables, because they may be marked as threadprivate. 2093 if (LangOpts.OpenMP && LangOpts.OpenMPUseTLS && 2094 getContext().getTargetInfo().isTLSSupported() && isa<VarDecl>(Global) && 2095 !isTypeConstant(Global->getType(), false) && 2096 !OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(Global)) 2097 return false; 2098 2099 return true; 2100 } 2101 2102 ConstantAddress CodeGenModule::GetAddrOfUuidDescriptor( 2103 const CXXUuidofExpr* E) { 2104 // Sema has verified that IIDSource has a __declspec(uuid()), and that its 2105 // well-formed. 2106 StringRef Uuid = E->getUuidStr(); 2107 std::string Name = "_GUID_" + Uuid.lower(); 2108 std::replace(Name.begin(), Name.end(), '-', '_'); 2109 2110 // The UUID descriptor should be pointer aligned. 2111 CharUnits Alignment = CharUnits::fromQuantity(PointerAlignInBytes); 2112 2113 // Look for an existing global. 2114 if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name)) 2115 return ConstantAddress(GV, Alignment); 2116 2117 llvm::Constant *Init = EmitUuidofInitializer(Uuid); 2118 assert(Init && "failed to initialize as constant"); 2119 2120 auto *GV = new llvm::GlobalVariable( 2121 getModule(), Init->getType(), 2122 /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name); 2123 if (supportsCOMDAT()) 2124 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 2125 setDSOLocal(GV); 2126 return ConstantAddress(GV, Alignment); 2127 } 2128 2129 ConstantAddress CodeGenModule::GetWeakRefReference(const ValueDecl *VD) { 2130 const AliasAttr *AA = VD->getAttr<AliasAttr>(); 2131 assert(AA && "No alias?"); 2132 2133 CharUnits Alignment = getContext().getDeclAlign(VD); 2134 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType()); 2135 2136 // See if there is already something with the target's name in the module. 2137 llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee()); 2138 if (Entry) { 2139 unsigned AS = getContext().getTargetAddressSpace(VD->getType()); 2140 auto Ptr = llvm::ConstantExpr::getBitCast(Entry, DeclTy->getPointerTo(AS)); 2141 return ConstantAddress(Ptr, Alignment); 2142 } 2143 2144 llvm::Constant *Aliasee; 2145 if (isa<llvm::FunctionType>(DeclTy)) 2146 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, 2147 GlobalDecl(cast<FunctionDecl>(VD)), 2148 /*ForVTable=*/false); 2149 else 2150 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), 2151 llvm::PointerType::getUnqual(DeclTy), 2152 nullptr); 2153 2154 auto *F = cast<llvm::GlobalValue>(Aliasee); 2155 F->setLinkage(llvm::Function::ExternalWeakLinkage); 2156 WeakRefReferences.insert(F); 2157 2158 return ConstantAddress(Aliasee, Alignment); 2159 } 2160 2161 void CodeGenModule::EmitGlobal(GlobalDecl GD) { 2162 const auto *Global = cast<ValueDecl>(GD.getDecl()); 2163 2164 // Weak references don't produce any output by themselves. 2165 if (Global->hasAttr<WeakRefAttr>()) 2166 return; 2167 2168 // If this is an alias definition (which otherwise looks like a declaration) 2169 // emit it now. 2170 if (Global->hasAttr<AliasAttr>()) 2171 return EmitAliasDefinition(GD); 2172 2173 // IFunc like an alias whose value is resolved at runtime by calling resolver. 2174 if (Global->hasAttr<IFuncAttr>()) 2175 return emitIFuncDefinition(GD); 2176 2177 // If this is a cpu_dispatch multiversion function, emit the resolver. 2178 if (Global->hasAttr<CPUDispatchAttr>()) 2179 return emitCPUDispatchDefinition(GD); 2180 2181 // If this is CUDA, be selective about which declarations we emit. 2182 if (LangOpts.CUDA) { 2183 if (LangOpts.CUDAIsDevice) { 2184 if (!Global->hasAttr<CUDADeviceAttr>() && 2185 !Global->hasAttr<CUDAGlobalAttr>() && 2186 !Global->hasAttr<CUDAConstantAttr>() && 2187 !Global->hasAttr<CUDASharedAttr>()) 2188 return; 2189 } else { 2190 // We need to emit host-side 'shadows' for all global 2191 // device-side variables because the CUDA runtime needs their 2192 // size and host-side address in order to provide access to 2193 // their device-side incarnations. 2194 2195 // So device-only functions are the only things we skip. 2196 if (isa<FunctionDecl>(Global) && !Global->hasAttr<CUDAHostAttr>() && 2197 Global->hasAttr<CUDADeviceAttr>()) 2198 return; 2199 2200 assert((isa<FunctionDecl>(Global) || isa<VarDecl>(Global)) && 2201 "Expected Variable or Function"); 2202 } 2203 } 2204 2205 if (LangOpts.OpenMP) { 2206 // If this is OpenMP device, check if it is legal to emit this global 2207 // normally. 2208 if (OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(GD)) 2209 return; 2210 if (auto *DRD = dyn_cast<OMPDeclareReductionDecl>(Global)) { 2211 if (MustBeEmitted(Global)) 2212 EmitOMPDeclareReduction(DRD); 2213 return; 2214 } else if (auto *DMD = dyn_cast<OMPDeclareMapperDecl>(Global)) { 2215 if (MustBeEmitted(Global)) 2216 EmitOMPDeclareMapper(DMD); 2217 return; 2218 } 2219 } 2220 2221 // Ignore declarations, they will be emitted on their first use. 2222 if (const auto *FD = dyn_cast<FunctionDecl>(Global)) { 2223 // Forward declarations are emitted lazily on first use. 2224 if (!FD->doesThisDeclarationHaveABody()) { 2225 if (!FD->doesDeclarationForceExternallyVisibleDefinition()) 2226 return; 2227 2228 StringRef MangledName = getMangledName(GD); 2229 2230 // Compute the function info and LLVM type. 2231 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 2232 llvm::Type *Ty = getTypes().GetFunctionType(FI); 2233 2234 GetOrCreateLLVMFunction(MangledName, Ty, GD, /*ForVTable=*/false, 2235 /*DontDefer=*/false); 2236 return; 2237 } 2238 } else { 2239 const auto *VD = cast<VarDecl>(Global); 2240 assert(VD->isFileVarDecl() && "Cannot emit local var decl as global."); 2241 if (VD->isThisDeclarationADefinition() != VarDecl::Definition && 2242 !Context.isMSStaticDataMemberInlineDefinition(VD)) { 2243 if (LangOpts.OpenMP) { 2244 // Emit declaration of the must-be-emitted declare target variable. 2245 if (llvm::Optional<OMPDeclareTargetDeclAttr::MapTypeTy> Res = 2246 OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD)) { 2247 if (*Res == OMPDeclareTargetDeclAttr::MT_To) { 2248 (void)GetAddrOfGlobalVar(VD); 2249 } else { 2250 assert(*Res == OMPDeclareTargetDeclAttr::MT_Link && 2251 "link claue expected."); 2252 (void)getOpenMPRuntime().getAddrOfDeclareTargetLink(VD); 2253 } 2254 return; 2255 } 2256 } 2257 // If this declaration may have caused an inline variable definition to 2258 // change linkage, make sure that it's emitted. 2259 if (Context.getInlineVariableDefinitionKind(VD) == 2260 ASTContext::InlineVariableDefinitionKind::Strong) 2261 GetAddrOfGlobalVar(VD); 2262 return; 2263 } 2264 } 2265 2266 // Defer code generation to first use when possible, e.g. if this is an inline 2267 // function. If the global must always be emitted, do it eagerly if possible 2268 // to benefit from cache locality. 2269 if (MustBeEmitted(Global) && MayBeEmittedEagerly(Global)) { 2270 // Emit the definition if it can't be deferred. 2271 EmitGlobalDefinition(GD); 2272 return; 2273 } 2274 2275 // If we're deferring emission of a C++ variable with an 2276 // initializer, remember the order in which it appeared in the file. 2277 if (getLangOpts().CPlusPlus && isa<VarDecl>(Global) && 2278 cast<VarDecl>(Global)->hasInit()) { 2279 DelayedCXXInitPosition[Global] = CXXGlobalInits.size(); 2280 CXXGlobalInits.push_back(nullptr); 2281 } 2282 2283 StringRef MangledName = getMangledName(GD); 2284 if (GetGlobalValue(MangledName) != nullptr) { 2285 // The value has already been used and should therefore be emitted. 2286 addDeferredDeclToEmit(GD); 2287 } else if (MustBeEmitted(Global)) { 2288 // The value must be emitted, but cannot be emitted eagerly. 2289 assert(!MayBeEmittedEagerly(Global)); 2290 addDeferredDeclToEmit(GD); 2291 } else { 2292 // Otherwise, remember that we saw a deferred decl with this name. The 2293 // first use of the mangled name will cause it to move into 2294 // DeferredDeclsToEmit. 2295 DeferredDecls[MangledName] = GD; 2296 } 2297 } 2298 2299 // Check if T is a class type with a destructor that's not dllimport. 2300 static bool HasNonDllImportDtor(QualType T) { 2301 if (const auto *RT = T->getBaseElementTypeUnsafe()->getAs<RecordType>()) 2302 if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl())) 2303 if (RD->getDestructor() && !RD->getDestructor()->hasAttr<DLLImportAttr>()) 2304 return true; 2305 2306 return false; 2307 } 2308 2309 namespace { 2310 struct FunctionIsDirectlyRecursive 2311 : public ConstStmtVisitor<FunctionIsDirectlyRecursive, bool> { 2312 const StringRef Name; 2313 const Builtin::Context &BI; 2314 FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C) 2315 : Name(N), BI(C) {} 2316 2317 bool VisitCallExpr(const CallExpr *E) { 2318 const FunctionDecl *FD = E->getDirectCallee(); 2319 if (!FD) 2320 return false; 2321 AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>(); 2322 if (Attr && Name == Attr->getLabel()) 2323 return true; 2324 unsigned BuiltinID = FD->getBuiltinID(); 2325 if (!BuiltinID || !BI.isLibFunction(BuiltinID)) 2326 return false; 2327 StringRef BuiltinName = BI.getName(BuiltinID); 2328 if (BuiltinName.startswith("__builtin_") && 2329 Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) { 2330 return true; 2331 } 2332 return false; 2333 } 2334 2335 bool VisitStmt(const Stmt *S) { 2336 for (const Stmt *Child : S->children()) 2337 if (Child && this->Visit(Child)) 2338 return true; 2339 return false; 2340 } 2341 }; 2342 2343 // Make sure we're not referencing non-imported vars or functions. 2344 struct DLLImportFunctionVisitor 2345 : public RecursiveASTVisitor<DLLImportFunctionVisitor> { 2346 bool SafeToInline = true; 2347 2348 bool shouldVisitImplicitCode() const { return true; } 2349 2350 bool VisitVarDecl(VarDecl *VD) { 2351 if (VD->getTLSKind()) { 2352 // A thread-local variable cannot be imported. 2353 SafeToInline = false; 2354 return SafeToInline; 2355 } 2356 2357 // A variable definition might imply a destructor call. 2358 if (VD->isThisDeclarationADefinition()) 2359 SafeToInline = !HasNonDllImportDtor(VD->getType()); 2360 2361 return SafeToInline; 2362 } 2363 2364 bool VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) { 2365 if (const auto *D = E->getTemporary()->getDestructor()) 2366 SafeToInline = D->hasAttr<DLLImportAttr>(); 2367 return SafeToInline; 2368 } 2369 2370 bool VisitDeclRefExpr(DeclRefExpr *E) { 2371 ValueDecl *VD = E->getDecl(); 2372 if (isa<FunctionDecl>(VD)) 2373 SafeToInline = VD->hasAttr<DLLImportAttr>(); 2374 else if (VarDecl *V = dyn_cast<VarDecl>(VD)) 2375 SafeToInline = !V->hasGlobalStorage() || V->hasAttr<DLLImportAttr>(); 2376 return SafeToInline; 2377 } 2378 2379 bool VisitCXXConstructExpr(CXXConstructExpr *E) { 2380 SafeToInline = E->getConstructor()->hasAttr<DLLImportAttr>(); 2381 return SafeToInline; 2382 } 2383 2384 bool VisitCXXMemberCallExpr(CXXMemberCallExpr *E) { 2385 CXXMethodDecl *M = E->getMethodDecl(); 2386 if (!M) { 2387 // Call through a pointer to member function. This is safe to inline. 2388 SafeToInline = true; 2389 } else { 2390 SafeToInline = M->hasAttr<DLLImportAttr>(); 2391 } 2392 return SafeToInline; 2393 } 2394 2395 bool VisitCXXDeleteExpr(CXXDeleteExpr *E) { 2396 SafeToInline = E->getOperatorDelete()->hasAttr<DLLImportAttr>(); 2397 return SafeToInline; 2398 } 2399 2400 bool VisitCXXNewExpr(CXXNewExpr *E) { 2401 SafeToInline = E->getOperatorNew()->hasAttr<DLLImportAttr>(); 2402 return SafeToInline; 2403 } 2404 }; 2405 } 2406 2407 // isTriviallyRecursive - Check if this function calls another 2408 // decl that, because of the asm attribute or the other decl being a builtin, 2409 // ends up pointing to itself. 2410 bool 2411 CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) { 2412 StringRef Name; 2413 if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) { 2414 // asm labels are a special kind of mangling we have to support. 2415 AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>(); 2416 if (!Attr) 2417 return false; 2418 Name = Attr->getLabel(); 2419 } else { 2420 Name = FD->getName(); 2421 } 2422 2423 FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo); 2424 const Stmt *Body = FD->getBody(); 2425 return Body ? Walker.Visit(Body) : false; 2426 } 2427 2428 bool CodeGenModule::shouldEmitFunction(GlobalDecl GD) { 2429 if (getFunctionLinkage(GD) != llvm::Function::AvailableExternallyLinkage) 2430 return true; 2431 const auto *F = cast<FunctionDecl>(GD.getDecl()); 2432 if (CodeGenOpts.OptimizationLevel == 0 && !F->hasAttr<AlwaysInlineAttr>()) 2433 return false; 2434 2435 if (F->hasAttr<DLLImportAttr>()) { 2436 // Check whether it would be safe to inline this dllimport function. 2437 DLLImportFunctionVisitor Visitor; 2438 Visitor.TraverseFunctionDecl(const_cast<FunctionDecl*>(F)); 2439 if (!Visitor.SafeToInline) 2440 return false; 2441 2442 if (const CXXDestructorDecl *Dtor = dyn_cast<CXXDestructorDecl>(F)) { 2443 // Implicit destructor invocations aren't captured in the AST, so the 2444 // check above can't see them. Check for them manually here. 2445 for (const Decl *Member : Dtor->getParent()->decls()) 2446 if (isa<FieldDecl>(Member)) 2447 if (HasNonDllImportDtor(cast<FieldDecl>(Member)->getType())) 2448 return false; 2449 for (const CXXBaseSpecifier &B : Dtor->getParent()->bases()) 2450 if (HasNonDllImportDtor(B.getType())) 2451 return false; 2452 } 2453 } 2454 2455 // PR9614. Avoid cases where the source code is lying to us. An available 2456 // externally function should have an equivalent function somewhere else, 2457 // but a function that calls itself is clearly not equivalent to the real 2458 // implementation. 2459 // This happens in glibc's btowc and in some configure checks. 2460 return !isTriviallyRecursive(F); 2461 } 2462 2463 bool CodeGenModule::shouldOpportunisticallyEmitVTables() { 2464 return CodeGenOpts.OptimizationLevel > 0; 2465 } 2466 2467 void CodeGenModule::EmitMultiVersionFunctionDefinition(GlobalDecl GD, 2468 llvm::GlobalValue *GV) { 2469 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 2470 2471 if (FD->isCPUSpecificMultiVersion()) { 2472 auto *Spec = FD->getAttr<CPUSpecificAttr>(); 2473 for (unsigned I = 0; I < Spec->cpus_size(); ++I) 2474 EmitGlobalFunctionDefinition(GD.getWithMultiVersionIndex(I), nullptr); 2475 // Requires multiple emits. 2476 } else 2477 EmitGlobalFunctionDefinition(GD, GV); 2478 } 2479 2480 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD, llvm::GlobalValue *GV) { 2481 const auto *D = cast<ValueDecl>(GD.getDecl()); 2482 2483 PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(), 2484 Context.getSourceManager(), 2485 "Generating code for declaration"); 2486 2487 if (const auto *FD = dyn_cast<FunctionDecl>(D)) { 2488 // At -O0, don't generate IR for functions with available_externally 2489 // linkage. 2490 if (!shouldEmitFunction(GD)) 2491 return; 2492 2493 llvm::TimeTraceScope TimeScope( 2494 "CodeGen Function", [&]() { return FD->getQualifiedNameAsString(); }); 2495 2496 if (const auto *Method = dyn_cast<CXXMethodDecl>(D)) { 2497 // Make sure to emit the definition(s) before we emit the thunks. 2498 // This is necessary for the generation of certain thunks. 2499 if (isa<CXXConstructorDecl>(Method) || isa<CXXDestructorDecl>(Method)) 2500 ABI->emitCXXStructor(GD); 2501 else if (FD->isMultiVersion()) 2502 EmitMultiVersionFunctionDefinition(GD, GV); 2503 else 2504 EmitGlobalFunctionDefinition(GD, GV); 2505 2506 if (Method->isVirtual()) 2507 getVTables().EmitThunks(GD); 2508 2509 return; 2510 } 2511 2512 if (FD->isMultiVersion()) 2513 return EmitMultiVersionFunctionDefinition(GD, GV); 2514 return EmitGlobalFunctionDefinition(GD, GV); 2515 } 2516 2517 if (const auto *VD = dyn_cast<VarDecl>(D)) 2518 return EmitGlobalVarDefinition(VD, !VD->hasDefinition()); 2519 2520 llvm_unreachable("Invalid argument to EmitGlobalDefinition()"); 2521 } 2522 2523 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old, 2524 llvm::Function *NewFn); 2525 2526 static unsigned 2527 TargetMVPriority(const TargetInfo &TI, 2528 const CodeGenFunction::MultiVersionResolverOption &RO) { 2529 unsigned Priority = 0; 2530 for (StringRef Feat : RO.Conditions.Features) 2531 Priority = std::max(Priority, TI.multiVersionSortPriority(Feat)); 2532 2533 if (!RO.Conditions.Architecture.empty()) 2534 Priority = std::max( 2535 Priority, TI.multiVersionSortPriority(RO.Conditions.Architecture)); 2536 return Priority; 2537 } 2538 2539 void CodeGenModule::emitMultiVersionFunctions() { 2540 for (GlobalDecl GD : MultiVersionFuncs) { 2541 SmallVector<CodeGenFunction::MultiVersionResolverOption, 10> Options; 2542 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 2543 getContext().forEachMultiversionedFunctionVersion( 2544 FD, [this, &GD, &Options](const FunctionDecl *CurFD) { 2545 GlobalDecl CurGD{ 2546 (CurFD->isDefined() ? CurFD->getDefinition() : CurFD)}; 2547 StringRef MangledName = getMangledName(CurGD); 2548 llvm::Constant *Func = GetGlobalValue(MangledName); 2549 if (!Func) { 2550 if (CurFD->isDefined()) { 2551 EmitGlobalFunctionDefinition(CurGD, nullptr); 2552 Func = GetGlobalValue(MangledName); 2553 } else { 2554 const CGFunctionInfo &FI = 2555 getTypes().arrangeGlobalDeclaration(GD); 2556 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 2557 Func = GetAddrOfFunction(CurGD, Ty, /*ForVTable=*/false, 2558 /*DontDefer=*/false, ForDefinition); 2559 } 2560 assert(Func && "This should have just been created"); 2561 } 2562 2563 const auto *TA = CurFD->getAttr<TargetAttr>(); 2564 llvm::SmallVector<StringRef, 8> Feats; 2565 TA->getAddedFeatures(Feats); 2566 2567 Options.emplace_back(cast<llvm::Function>(Func), 2568 TA->getArchitecture(), Feats); 2569 }); 2570 2571 llvm::Function *ResolverFunc; 2572 const TargetInfo &TI = getTarget(); 2573 2574 if (TI.supportsIFunc() || FD->isTargetMultiVersion()) 2575 ResolverFunc = cast<llvm::Function>( 2576 GetGlobalValue((getMangledName(GD) + ".resolver").str())); 2577 else 2578 ResolverFunc = cast<llvm::Function>(GetGlobalValue(getMangledName(GD))); 2579 2580 if (supportsCOMDAT()) 2581 ResolverFunc->setComdat( 2582 getModule().getOrInsertComdat(ResolverFunc->getName())); 2583 2584 llvm::stable_sort( 2585 Options, [&TI](const CodeGenFunction::MultiVersionResolverOption &LHS, 2586 const CodeGenFunction::MultiVersionResolverOption &RHS) { 2587 return TargetMVPriority(TI, LHS) > TargetMVPriority(TI, RHS); 2588 }); 2589 CodeGenFunction CGF(*this); 2590 CGF.EmitMultiVersionResolver(ResolverFunc, Options); 2591 } 2592 } 2593 2594 void CodeGenModule::emitCPUDispatchDefinition(GlobalDecl GD) { 2595 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 2596 assert(FD && "Not a FunctionDecl?"); 2597 const auto *DD = FD->getAttr<CPUDispatchAttr>(); 2598 assert(DD && "Not a cpu_dispatch Function?"); 2599 llvm::Type *DeclTy = getTypes().ConvertType(FD->getType()); 2600 2601 if (const auto *CXXFD = dyn_cast<CXXMethodDecl>(FD)) { 2602 const CGFunctionInfo &FInfo = getTypes().arrangeCXXMethodDeclaration(CXXFD); 2603 DeclTy = getTypes().GetFunctionType(FInfo); 2604 } 2605 2606 StringRef ResolverName = getMangledName(GD); 2607 2608 llvm::Type *ResolverType; 2609 GlobalDecl ResolverGD; 2610 if (getTarget().supportsIFunc()) 2611 ResolverType = llvm::FunctionType::get( 2612 llvm::PointerType::get(DeclTy, 2613 Context.getTargetAddressSpace(FD->getType())), 2614 false); 2615 else { 2616 ResolverType = DeclTy; 2617 ResolverGD = GD; 2618 } 2619 2620 auto *ResolverFunc = cast<llvm::Function>(GetOrCreateLLVMFunction( 2621 ResolverName, ResolverType, ResolverGD, /*ForVTable=*/false)); 2622 2623 SmallVector<CodeGenFunction::MultiVersionResolverOption, 10> Options; 2624 const TargetInfo &Target = getTarget(); 2625 unsigned Index = 0; 2626 for (const IdentifierInfo *II : DD->cpus()) { 2627 // Get the name of the target function so we can look it up/create it. 2628 std::string MangledName = getMangledNameImpl(*this, GD, FD, true) + 2629 getCPUSpecificMangling(*this, II->getName()); 2630 2631 llvm::Constant *Func = GetGlobalValue(MangledName); 2632 2633 if (!Func) { 2634 GlobalDecl ExistingDecl = Manglings.lookup(MangledName); 2635 if (ExistingDecl.getDecl() && 2636 ExistingDecl.getDecl()->getAsFunction()->isDefined()) { 2637 EmitGlobalFunctionDefinition(ExistingDecl, nullptr); 2638 Func = GetGlobalValue(MangledName); 2639 } else { 2640 if (!ExistingDecl.getDecl()) 2641 ExistingDecl = GD.getWithMultiVersionIndex(Index); 2642 2643 Func = GetOrCreateLLVMFunction( 2644 MangledName, DeclTy, ExistingDecl, 2645 /*ForVTable=*/false, /*DontDefer=*/true, 2646 /*IsThunk=*/false, llvm::AttributeList(), ForDefinition); 2647 } 2648 } 2649 2650 llvm::SmallVector<StringRef, 32> Features; 2651 Target.getCPUSpecificCPUDispatchFeatures(II->getName(), Features); 2652 llvm::transform(Features, Features.begin(), 2653 [](StringRef Str) { return Str.substr(1); }); 2654 Features.erase(std::remove_if( 2655 Features.begin(), Features.end(), [&Target](StringRef Feat) { 2656 return !Target.validateCpuSupports(Feat); 2657 }), Features.end()); 2658 Options.emplace_back(cast<llvm::Function>(Func), StringRef{}, Features); 2659 ++Index; 2660 } 2661 2662 llvm::sort( 2663 Options, [](const CodeGenFunction::MultiVersionResolverOption &LHS, 2664 const CodeGenFunction::MultiVersionResolverOption &RHS) { 2665 return CodeGenFunction::GetX86CpuSupportsMask(LHS.Conditions.Features) > 2666 CodeGenFunction::GetX86CpuSupportsMask(RHS.Conditions.Features); 2667 }); 2668 2669 // If the list contains multiple 'default' versions, such as when it contains 2670 // 'pentium' and 'generic', don't emit the call to the generic one (since we 2671 // always run on at least a 'pentium'). We do this by deleting the 'least 2672 // advanced' (read, lowest mangling letter). 2673 while (Options.size() > 1 && 2674 CodeGenFunction::GetX86CpuSupportsMask( 2675 (Options.end() - 2)->Conditions.Features) == 0) { 2676 StringRef LHSName = (Options.end() - 2)->Function->getName(); 2677 StringRef RHSName = (Options.end() - 1)->Function->getName(); 2678 if (LHSName.compare(RHSName) < 0) 2679 Options.erase(Options.end() - 2); 2680 else 2681 Options.erase(Options.end() - 1); 2682 } 2683 2684 CodeGenFunction CGF(*this); 2685 CGF.EmitMultiVersionResolver(ResolverFunc, Options); 2686 } 2687 2688 /// If a dispatcher for the specified mangled name is not in the module, create 2689 /// and return an llvm Function with the specified type. 2690 llvm::Constant *CodeGenModule::GetOrCreateMultiVersionResolver( 2691 GlobalDecl GD, llvm::Type *DeclTy, const FunctionDecl *FD) { 2692 std::string MangledName = 2693 getMangledNameImpl(*this, GD, FD, /*OmitMultiVersionMangling=*/true); 2694 2695 // Holds the name of the resolver, in ifunc mode this is the ifunc (which has 2696 // a separate resolver). 2697 std::string ResolverName = MangledName; 2698 if (getTarget().supportsIFunc()) 2699 ResolverName += ".ifunc"; 2700 else if (FD->isTargetMultiVersion()) 2701 ResolverName += ".resolver"; 2702 2703 // If this already exists, just return that one. 2704 if (llvm::GlobalValue *ResolverGV = GetGlobalValue(ResolverName)) 2705 return ResolverGV; 2706 2707 // Since this is the first time we've created this IFunc, make sure 2708 // that we put this multiversioned function into the list to be 2709 // replaced later if necessary (target multiversioning only). 2710 if (!FD->isCPUDispatchMultiVersion() && !FD->isCPUSpecificMultiVersion()) 2711 MultiVersionFuncs.push_back(GD); 2712 2713 if (getTarget().supportsIFunc()) { 2714 llvm::Type *ResolverType = llvm::FunctionType::get( 2715 llvm::PointerType::get( 2716 DeclTy, getContext().getTargetAddressSpace(FD->getType())), 2717 false); 2718 llvm::Constant *Resolver = GetOrCreateLLVMFunction( 2719 MangledName + ".resolver", ResolverType, GlobalDecl{}, 2720 /*ForVTable=*/false); 2721 llvm::GlobalIFunc *GIF = llvm::GlobalIFunc::create( 2722 DeclTy, 0, llvm::Function::ExternalLinkage, "", Resolver, &getModule()); 2723 GIF->setName(ResolverName); 2724 SetCommonAttributes(FD, GIF); 2725 2726 return GIF; 2727 } 2728 2729 llvm::Constant *Resolver = GetOrCreateLLVMFunction( 2730 ResolverName, DeclTy, GlobalDecl{}, /*ForVTable=*/false); 2731 assert(isa<llvm::GlobalValue>(Resolver) && 2732 "Resolver should be created for the first time"); 2733 SetCommonAttributes(FD, cast<llvm::GlobalValue>(Resolver)); 2734 return Resolver; 2735 } 2736 2737 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the 2738 /// module, create and return an llvm Function with the specified type. If there 2739 /// is something in the module with the specified name, return it potentially 2740 /// bitcasted to the right type. 2741 /// 2742 /// If D is non-null, it specifies a decl that correspond to this. This is used 2743 /// to set the attributes on the function when it is first created. 2744 llvm::Constant *CodeGenModule::GetOrCreateLLVMFunction( 2745 StringRef MangledName, llvm::Type *Ty, GlobalDecl GD, bool ForVTable, 2746 bool DontDefer, bool IsThunk, llvm::AttributeList ExtraAttrs, 2747 ForDefinition_t IsForDefinition) { 2748 const Decl *D = GD.getDecl(); 2749 2750 // Any attempts to use a MultiVersion function should result in retrieving 2751 // the iFunc instead. Name Mangling will handle the rest of the changes. 2752 if (const FunctionDecl *FD = cast_or_null<FunctionDecl>(D)) { 2753 // For the device mark the function as one that should be emitted. 2754 if (getLangOpts().OpenMPIsDevice && OpenMPRuntime && 2755 !OpenMPRuntime->markAsGlobalTarget(GD) && FD->isDefined() && 2756 !DontDefer && !IsForDefinition) { 2757 if (const FunctionDecl *FDDef = FD->getDefinition()) { 2758 GlobalDecl GDDef; 2759 if (const auto *CD = dyn_cast<CXXConstructorDecl>(FDDef)) 2760 GDDef = GlobalDecl(CD, GD.getCtorType()); 2761 else if (const auto *DD = dyn_cast<CXXDestructorDecl>(FDDef)) 2762 GDDef = GlobalDecl(DD, GD.getDtorType()); 2763 else 2764 GDDef = GlobalDecl(FDDef); 2765 EmitGlobal(GDDef); 2766 } 2767 } 2768 2769 if (FD->isMultiVersion()) { 2770 const auto *TA = FD->getAttr<TargetAttr>(); 2771 if (TA && TA->isDefaultVersion()) 2772 UpdateMultiVersionNames(GD, FD); 2773 if (!IsForDefinition) 2774 return GetOrCreateMultiVersionResolver(GD, Ty, FD); 2775 } 2776 } 2777 2778 // Lookup the entry, lazily creating it if necessary. 2779 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 2780 if (Entry) { 2781 if (WeakRefReferences.erase(Entry)) { 2782 const FunctionDecl *FD = cast_or_null<FunctionDecl>(D); 2783 if (FD && !FD->hasAttr<WeakAttr>()) 2784 Entry->setLinkage(llvm::Function::ExternalLinkage); 2785 } 2786 2787 // Handle dropped DLL attributes. 2788 if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>()) { 2789 Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 2790 setDSOLocal(Entry); 2791 } 2792 2793 // If there are two attempts to define the same mangled name, issue an 2794 // error. 2795 if (IsForDefinition && !Entry->isDeclaration()) { 2796 GlobalDecl OtherGD; 2797 // Check that GD is not yet in DiagnosedConflictingDefinitions is required 2798 // to make sure that we issue an error only once. 2799 if (lookupRepresentativeDecl(MangledName, OtherGD) && 2800 (GD.getCanonicalDecl().getDecl() != 2801 OtherGD.getCanonicalDecl().getDecl()) && 2802 DiagnosedConflictingDefinitions.insert(GD).second) { 2803 getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name) 2804 << MangledName; 2805 getDiags().Report(OtherGD.getDecl()->getLocation(), 2806 diag::note_previous_definition); 2807 } 2808 } 2809 2810 if ((isa<llvm::Function>(Entry) || isa<llvm::GlobalAlias>(Entry)) && 2811 (Entry->getType()->getElementType() == Ty)) { 2812 return Entry; 2813 } 2814 2815 // Make sure the result is of the correct type. 2816 // (If function is requested for a definition, we always need to create a new 2817 // function, not just return a bitcast.) 2818 if (!IsForDefinition) 2819 return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo()); 2820 } 2821 2822 // This function doesn't have a complete type (for example, the return 2823 // type is an incomplete struct). Use a fake type instead, and make 2824 // sure not to try to set attributes. 2825 bool IsIncompleteFunction = false; 2826 2827 llvm::FunctionType *FTy; 2828 if (isa<llvm::FunctionType>(Ty)) { 2829 FTy = cast<llvm::FunctionType>(Ty); 2830 } else { 2831 FTy = llvm::FunctionType::get(VoidTy, false); 2832 IsIncompleteFunction = true; 2833 } 2834 2835 llvm::Function *F = 2836 llvm::Function::Create(FTy, llvm::Function::ExternalLinkage, 2837 Entry ? StringRef() : MangledName, &getModule()); 2838 2839 // If we already created a function with the same mangled name (but different 2840 // type) before, take its name and add it to the list of functions to be 2841 // replaced with F at the end of CodeGen. 2842 // 2843 // This happens if there is a prototype for a function (e.g. "int f()") and 2844 // then a definition of a different type (e.g. "int f(int x)"). 2845 if (Entry) { 2846 F->takeName(Entry); 2847 2848 // This might be an implementation of a function without a prototype, in 2849 // which case, try to do special replacement of calls which match the new 2850 // prototype. The really key thing here is that we also potentially drop 2851 // arguments from the call site so as to make a direct call, which makes the 2852 // inliner happier and suppresses a number of optimizer warnings (!) about 2853 // dropping arguments. 2854 if (!Entry->use_empty()) { 2855 ReplaceUsesOfNonProtoTypeWithRealFunction(Entry, F); 2856 Entry->removeDeadConstantUsers(); 2857 } 2858 2859 llvm::Constant *BC = llvm::ConstantExpr::getBitCast( 2860 F, Entry->getType()->getElementType()->getPointerTo()); 2861 addGlobalValReplacement(Entry, BC); 2862 } 2863 2864 assert(F->getName() == MangledName && "name was uniqued!"); 2865 if (D) 2866 SetFunctionAttributes(GD, F, IsIncompleteFunction, IsThunk); 2867 if (ExtraAttrs.hasAttributes(llvm::AttributeList::FunctionIndex)) { 2868 llvm::AttrBuilder B(ExtraAttrs, llvm::AttributeList::FunctionIndex); 2869 F->addAttributes(llvm::AttributeList::FunctionIndex, B); 2870 } 2871 2872 if (!DontDefer) { 2873 // All MSVC dtors other than the base dtor are linkonce_odr and delegate to 2874 // each other bottoming out with the base dtor. Therefore we emit non-base 2875 // dtors on usage, even if there is no dtor definition in the TU. 2876 if (D && isa<CXXDestructorDecl>(D) && 2877 getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D), 2878 GD.getDtorType())) 2879 addDeferredDeclToEmit(GD); 2880 2881 // This is the first use or definition of a mangled name. If there is a 2882 // deferred decl with this name, remember that we need to emit it at the end 2883 // of the file. 2884 auto DDI = DeferredDecls.find(MangledName); 2885 if (DDI != DeferredDecls.end()) { 2886 // Move the potentially referenced deferred decl to the 2887 // DeferredDeclsToEmit list, and remove it from DeferredDecls (since we 2888 // don't need it anymore). 2889 addDeferredDeclToEmit(DDI->second); 2890 DeferredDecls.erase(DDI); 2891 2892 // Otherwise, there are cases we have to worry about where we're 2893 // using a declaration for which we must emit a definition but where 2894 // we might not find a top-level definition: 2895 // - member functions defined inline in their classes 2896 // - friend functions defined inline in some class 2897 // - special member functions with implicit definitions 2898 // If we ever change our AST traversal to walk into class methods, 2899 // this will be unnecessary. 2900 // 2901 // We also don't emit a definition for a function if it's going to be an 2902 // entry in a vtable, unless it's already marked as used. 2903 } else if (getLangOpts().CPlusPlus && D) { 2904 // Look for a declaration that's lexically in a record. 2905 for (const auto *FD = cast<FunctionDecl>(D)->getMostRecentDecl(); FD; 2906 FD = FD->getPreviousDecl()) { 2907 if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) { 2908 if (FD->doesThisDeclarationHaveABody()) { 2909 addDeferredDeclToEmit(GD.getWithDecl(FD)); 2910 break; 2911 } 2912 } 2913 } 2914 } 2915 } 2916 2917 // Make sure the result is of the requested type. 2918 if (!IsIncompleteFunction) { 2919 assert(F->getType()->getElementType() == Ty); 2920 return F; 2921 } 2922 2923 llvm::Type *PTy = llvm::PointerType::getUnqual(Ty); 2924 return llvm::ConstantExpr::getBitCast(F, PTy); 2925 } 2926 2927 /// GetAddrOfFunction - Return the address of the given function. If Ty is 2928 /// non-null, then this function will use the specified type if it has to 2929 /// create it (this occurs when we see a definition of the function). 2930 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD, 2931 llvm::Type *Ty, 2932 bool ForVTable, 2933 bool DontDefer, 2934 ForDefinition_t IsForDefinition) { 2935 // If there was no specific requested type, just convert it now. 2936 if (!Ty) { 2937 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 2938 Ty = getTypes().ConvertType(FD->getType()); 2939 } 2940 2941 // Devirtualized destructor calls may come through here instead of via 2942 // getAddrOfCXXStructor. Make sure we use the MS ABI base destructor instead 2943 // of the complete destructor when necessary. 2944 if (const auto *DD = dyn_cast<CXXDestructorDecl>(GD.getDecl())) { 2945 if (getTarget().getCXXABI().isMicrosoft() && 2946 GD.getDtorType() == Dtor_Complete && 2947 DD->getParent()->getNumVBases() == 0) 2948 GD = GlobalDecl(DD, Dtor_Base); 2949 } 2950 2951 StringRef MangledName = getMangledName(GD); 2952 return GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable, DontDefer, 2953 /*IsThunk=*/false, llvm::AttributeList(), 2954 IsForDefinition); 2955 } 2956 2957 static const FunctionDecl * 2958 GetRuntimeFunctionDecl(ASTContext &C, StringRef Name) { 2959 TranslationUnitDecl *TUDecl = C.getTranslationUnitDecl(); 2960 DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl); 2961 2962 IdentifierInfo &CII = C.Idents.get(Name); 2963 for (const auto &Result : DC->lookup(&CII)) 2964 if (const auto FD = dyn_cast<FunctionDecl>(Result)) 2965 return FD; 2966 2967 if (!C.getLangOpts().CPlusPlus) 2968 return nullptr; 2969 2970 // Demangle the premangled name from getTerminateFn() 2971 IdentifierInfo &CXXII = 2972 (Name == "_ZSt9terminatev" || Name == "?terminate@@YAXXZ") 2973 ? C.Idents.get("terminate") 2974 : C.Idents.get(Name); 2975 2976 for (const auto &N : {"__cxxabiv1", "std"}) { 2977 IdentifierInfo &NS = C.Idents.get(N); 2978 for (const auto &Result : DC->lookup(&NS)) { 2979 NamespaceDecl *ND = dyn_cast<NamespaceDecl>(Result); 2980 if (auto LSD = dyn_cast<LinkageSpecDecl>(Result)) 2981 for (const auto &Result : LSD->lookup(&NS)) 2982 if ((ND = dyn_cast<NamespaceDecl>(Result))) 2983 break; 2984 2985 if (ND) 2986 for (const auto &Result : ND->lookup(&CXXII)) 2987 if (const auto *FD = dyn_cast<FunctionDecl>(Result)) 2988 return FD; 2989 } 2990 } 2991 2992 return nullptr; 2993 } 2994 2995 /// CreateRuntimeFunction - Create a new runtime function with the specified 2996 /// type and name. 2997 llvm::FunctionCallee 2998 CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy, StringRef Name, 2999 llvm::AttributeList ExtraAttrs, 3000 bool Local) { 3001 llvm::Constant *C = 3002 GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false, 3003 /*DontDefer=*/false, /*IsThunk=*/false, 3004 ExtraAttrs); 3005 3006 if (auto *F = dyn_cast<llvm::Function>(C)) { 3007 if (F->empty()) { 3008 F->setCallingConv(getRuntimeCC()); 3009 3010 // In Windows Itanium environments, try to mark runtime functions 3011 // dllimport. For Mingw and MSVC, don't. We don't really know if the user 3012 // will link their standard library statically or dynamically. Marking 3013 // functions imported when they are not imported can cause linker errors 3014 // and warnings. 3015 if (!Local && getTriple().isWindowsItaniumEnvironment() && 3016 !getCodeGenOpts().LTOVisibilityPublicStd) { 3017 const FunctionDecl *FD = GetRuntimeFunctionDecl(Context, Name); 3018 if (!FD || FD->hasAttr<DLLImportAttr>()) { 3019 F->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass); 3020 F->setLinkage(llvm::GlobalValue::ExternalLinkage); 3021 } 3022 } 3023 setDSOLocal(F); 3024 } 3025 } 3026 3027 return {FTy, C}; 3028 } 3029 3030 /// isTypeConstant - Determine whether an object of this type can be emitted 3031 /// as a constant. 3032 /// 3033 /// If ExcludeCtor is true, the duration when the object's constructor runs 3034 /// will not be considered. The caller will need to verify that the object is 3035 /// not written to during its construction. 3036 bool CodeGenModule::isTypeConstant(QualType Ty, bool ExcludeCtor) { 3037 if (!Ty.isConstant(Context) && !Ty->isReferenceType()) 3038 return false; 3039 3040 if (Context.getLangOpts().CPlusPlus) { 3041 if (const CXXRecordDecl *Record 3042 = Context.getBaseElementType(Ty)->getAsCXXRecordDecl()) 3043 return ExcludeCtor && !Record->hasMutableFields() && 3044 Record->hasTrivialDestructor(); 3045 } 3046 3047 return true; 3048 } 3049 3050 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module, 3051 /// create and return an llvm GlobalVariable with the specified type. If there 3052 /// is something in the module with the specified name, return it potentially 3053 /// bitcasted to the right type. 3054 /// 3055 /// If D is non-null, it specifies a decl that correspond to this. This is used 3056 /// to set the attributes on the global when it is first created. 3057 /// 3058 /// If IsForDefinition is true, it is guaranteed that an actual global with 3059 /// type Ty will be returned, not conversion of a variable with the same 3060 /// mangled name but some other type. 3061 llvm::Constant * 3062 CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName, 3063 llvm::PointerType *Ty, 3064 const VarDecl *D, 3065 ForDefinition_t IsForDefinition) { 3066 // Lookup the entry, lazily creating it if necessary. 3067 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 3068 if (Entry) { 3069 if (WeakRefReferences.erase(Entry)) { 3070 if (D && !D->hasAttr<WeakAttr>()) 3071 Entry->setLinkage(llvm::Function::ExternalLinkage); 3072 } 3073 3074 // Handle dropped DLL attributes. 3075 if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>()) 3076 Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 3077 3078 if (LangOpts.OpenMP && !LangOpts.OpenMPSimd && D) 3079 getOpenMPRuntime().registerTargetGlobalVariable(D, Entry); 3080 3081 if (Entry->getType() == Ty) 3082 return Entry; 3083 3084 // If there are two attempts to define the same mangled name, issue an 3085 // error. 3086 if (IsForDefinition && !Entry->isDeclaration()) { 3087 GlobalDecl OtherGD; 3088 const VarDecl *OtherD; 3089 3090 // Check that D is not yet in DiagnosedConflictingDefinitions is required 3091 // to make sure that we issue an error only once. 3092 if (D && lookupRepresentativeDecl(MangledName, OtherGD) && 3093 (D->getCanonicalDecl() != OtherGD.getCanonicalDecl().getDecl()) && 3094 (OtherD = dyn_cast<VarDecl>(OtherGD.getDecl())) && 3095 OtherD->hasInit() && 3096 DiagnosedConflictingDefinitions.insert(D).second) { 3097 getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name) 3098 << MangledName; 3099 getDiags().Report(OtherGD.getDecl()->getLocation(), 3100 diag::note_previous_definition); 3101 } 3102 } 3103 3104 // Make sure the result is of the correct type. 3105 if (Entry->getType()->getAddressSpace() != Ty->getAddressSpace()) 3106 return llvm::ConstantExpr::getAddrSpaceCast(Entry, Ty); 3107 3108 // (If global is requested for a definition, we always need to create a new 3109 // global, not just return a bitcast.) 3110 if (!IsForDefinition) 3111 return llvm::ConstantExpr::getBitCast(Entry, Ty); 3112 } 3113 3114 auto AddrSpace = GetGlobalVarAddressSpace(D); 3115 auto TargetAddrSpace = getContext().getTargetAddressSpace(AddrSpace); 3116 3117 auto *GV = new llvm::GlobalVariable( 3118 getModule(), Ty->getElementType(), false, 3119 llvm::GlobalValue::ExternalLinkage, nullptr, MangledName, nullptr, 3120 llvm::GlobalVariable::NotThreadLocal, TargetAddrSpace); 3121 3122 // If we already created a global with the same mangled name (but different 3123 // type) before, take its name and remove it from its parent. 3124 if (Entry) { 3125 GV->takeName(Entry); 3126 3127 if (!Entry->use_empty()) { 3128 llvm::Constant *NewPtrForOldDecl = 3129 llvm::ConstantExpr::getBitCast(GV, Entry->getType()); 3130 Entry->replaceAllUsesWith(NewPtrForOldDecl); 3131 } 3132 3133 Entry->eraseFromParent(); 3134 } 3135 3136 // This is the first use or definition of a mangled name. If there is a 3137 // deferred decl with this name, remember that we need to emit it at the end 3138 // of the file. 3139 auto DDI = DeferredDecls.find(MangledName); 3140 if (DDI != DeferredDecls.end()) { 3141 // Move the potentially referenced deferred decl to the DeferredDeclsToEmit 3142 // list, and remove it from DeferredDecls (since we don't need it anymore). 3143 addDeferredDeclToEmit(DDI->second); 3144 DeferredDecls.erase(DDI); 3145 } 3146 3147 // Handle things which are present even on external declarations. 3148 if (D) { 3149 if (LangOpts.OpenMP && !LangOpts.OpenMPSimd) 3150 getOpenMPRuntime().registerTargetGlobalVariable(D, GV); 3151 3152 // FIXME: This code is overly simple and should be merged with other global 3153 // handling. 3154 GV->setConstant(isTypeConstant(D->getType(), false)); 3155 3156 GV->setAlignment(getContext().getDeclAlign(D).getQuantity()); 3157 3158 setLinkageForGV(GV, D); 3159 3160 if (D->getTLSKind()) { 3161 if (D->getTLSKind() == VarDecl::TLS_Dynamic) 3162 CXXThreadLocals.push_back(D); 3163 setTLSMode(GV, *D); 3164 } 3165 3166 setGVProperties(GV, D); 3167 3168 // If required by the ABI, treat declarations of static data members with 3169 // inline initializers as definitions. 3170 if (getContext().isMSStaticDataMemberInlineDefinition(D)) { 3171 EmitGlobalVarDefinition(D); 3172 } 3173 3174 // Emit section information for extern variables. 3175 if (D->hasExternalStorage()) { 3176 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) 3177 GV->setSection(SA->getName()); 3178 } 3179 3180 // Handle XCore specific ABI requirements. 3181 if (getTriple().getArch() == llvm::Triple::xcore && 3182 D->getLanguageLinkage() == CLanguageLinkage && 3183 D->getType().isConstant(Context) && 3184 isExternallyVisible(D->getLinkageAndVisibility().getLinkage())) 3185 GV->setSection(".cp.rodata"); 3186 3187 // Check if we a have a const declaration with an initializer, we may be 3188 // able to emit it as available_externally to expose it's value to the 3189 // optimizer. 3190 if (Context.getLangOpts().CPlusPlus && GV->hasExternalLinkage() && 3191 D->getType().isConstQualified() && !GV->hasInitializer() && 3192 !D->hasDefinition() && D->hasInit() && !D->hasAttr<DLLImportAttr>()) { 3193 const auto *Record = 3194 Context.getBaseElementType(D->getType())->getAsCXXRecordDecl(); 3195 bool HasMutableFields = Record && Record->hasMutableFields(); 3196 if (!HasMutableFields) { 3197 const VarDecl *InitDecl; 3198 const Expr *InitExpr = D->getAnyInitializer(InitDecl); 3199 if (InitExpr) { 3200 ConstantEmitter emitter(*this); 3201 llvm::Constant *Init = emitter.tryEmitForInitializer(*InitDecl); 3202 if (Init) { 3203 auto *InitType = Init->getType(); 3204 if (GV->getType()->getElementType() != InitType) { 3205 // The type of the initializer does not match the definition. 3206 // This happens when an initializer has a different type from 3207 // the type of the global (because of padding at the end of a 3208 // structure for instance). 3209 GV->setName(StringRef()); 3210 // Make a new global with the correct type, this is now guaranteed 3211 // to work. 3212 auto *NewGV = cast<llvm::GlobalVariable>( 3213 GetAddrOfGlobalVar(D, InitType, IsForDefinition)); 3214 3215 // Erase the old global, since it is no longer used. 3216 GV->eraseFromParent(); 3217 GV = NewGV; 3218 } else { 3219 GV->setInitializer(Init); 3220 GV->setConstant(true); 3221 GV->setLinkage(llvm::GlobalValue::AvailableExternallyLinkage); 3222 } 3223 emitter.finalize(GV); 3224 } 3225 } 3226 } 3227 } 3228 } 3229 3230 LangAS ExpectedAS = 3231 D ? D->getType().getAddressSpace() 3232 : (LangOpts.OpenCL ? LangAS::opencl_global : LangAS::Default); 3233 assert(getContext().getTargetAddressSpace(ExpectedAS) == 3234 Ty->getPointerAddressSpace()); 3235 if (AddrSpace != ExpectedAS) 3236 return getTargetCodeGenInfo().performAddrSpaceCast(*this, GV, AddrSpace, 3237 ExpectedAS, Ty); 3238 3239 if (GV->isDeclaration()) 3240 getTargetCodeGenInfo().setTargetAttributes(D, GV, *this); 3241 3242 return GV; 3243 } 3244 3245 llvm::Constant * 3246 CodeGenModule::GetAddrOfGlobal(GlobalDecl GD, 3247 ForDefinition_t IsForDefinition) { 3248 const Decl *D = GD.getDecl(); 3249 if (isa<CXXConstructorDecl>(D) || isa<CXXDestructorDecl>(D)) 3250 return getAddrOfCXXStructor(GD, /*FnInfo=*/nullptr, /*FnType=*/nullptr, 3251 /*DontDefer=*/false, IsForDefinition); 3252 else if (isa<CXXMethodDecl>(D)) { 3253 auto FInfo = &getTypes().arrangeCXXMethodDeclaration( 3254 cast<CXXMethodDecl>(D)); 3255 auto Ty = getTypes().GetFunctionType(*FInfo); 3256 return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false, 3257 IsForDefinition); 3258 } else if (isa<FunctionDecl>(D)) { 3259 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 3260 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 3261 return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false, 3262 IsForDefinition); 3263 } else 3264 return GetAddrOfGlobalVar(cast<VarDecl>(D), /*Ty=*/nullptr, 3265 IsForDefinition); 3266 } 3267 3268 llvm::GlobalVariable *CodeGenModule::CreateOrReplaceCXXRuntimeVariable( 3269 StringRef Name, llvm::Type *Ty, llvm::GlobalValue::LinkageTypes Linkage, 3270 unsigned Alignment) { 3271 llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name); 3272 llvm::GlobalVariable *OldGV = nullptr; 3273 3274 if (GV) { 3275 // Check if the variable has the right type. 3276 if (GV->getType()->getElementType() == Ty) 3277 return GV; 3278 3279 // Because C++ name mangling, the only way we can end up with an already 3280 // existing global with the same name is if it has been declared extern "C". 3281 assert(GV->isDeclaration() && "Declaration has wrong type!"); 3282 OldGV = GV; 3283 } 3284 3285 // Create a new variable. 3286 GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true, 3287 Linkage, nullptr, Name); 3288 3289 if (OldGV) { 3290 // Replace occurrences of the old variable if needed. 3291 GV->takeName(OldGV); 3292 3293 if (!OldGV->use_empty()) { 3294 llvm::Constant *NewPtrForOldDecl = 3295 llvm::ConstantExpr::getBitCast(GV, OldGV->getType()); 3296 OldGV->replaceAllUsesWith(NewPtrForOldDecl); 3297 } 3298 3299 OldGV->eraseFromParent(); 3300 } 3301 3302 if (supportsCOMDAT() && GV->isWeakForLinker() && 3303 !GV->hasAvailableExternallyLinkage()) 3304 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 3305 3306 GV->setAlignment(Alignment); 3307 3308 return GV; 3309 } 3310 3311 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the 3312 /// given global variable. If Ty is non-null and if the global doesn't exist, 3313 /// then it will be created with the specified type instead of whatever the 3314 /// normal requested type would be. If IsForDefinition is true, it is guaranteed 3315 /// that an actual global with type Ty will be returned, not conversion of a 3316 /// variable with the same mangled name but some other type. 3317 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D, 3318 llvm::Type *Ty, 3319 ForDefinition_t IsForDefinition) { 3320 assert(D->hasGlobalStorage() && "Not a global variable"); 3321 QualType ASTTy = D->getType(); 3322 if (!Ty) 3323 Ty = getTypes().ConvertTypeForMem(ASTTy); 3324 3325 llvm::PointerType *PTy = 3326 llvm::PointerType::get(Ty, getContext().getTargetAddressSpace(ASTTy)); 3327 3328 StringRef MangledName = getMangledName(D); 3329 return GetOrCreateLLVMGlobal(MangledName, PTy, D, IsForDefinition); 3330 } 3331 3332 /// CreateRuntimeVariable - Create a new runtime global variable with the 3333 /// specified type and name. 3334 llvm::Constant * 3335 CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty, 3336 StringRef Name) { 3337 auto *Ret = 3338 GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), nullptr); 3339 setDSOLocal(cast<llvm::GlobalValue>(Ret->stripPointerCasts())); 3340 return Ret; 3341 } 3342 3343 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) { 3344 assert(!D->getInit() && "Cannot emit definite definitions here!"); 3345 3346 StringRef MangledName = getMangledName(D); 3347 llvm::GlobalValue *GV = GetGlobalValue(MangledName); 3348 3349 // We already have a definition, not declaration, with the same mangled name. 3350 // Emitting of declaration is not required (and actually overwrites emitted 3351 // definition). 3352 if (GV && !GV->isDeclaration()) 3353 return; 3354 3355 // If we have not seen a reference to this variable yet, place it into the 3356 // deferred declarations table to be emitted if needed later. 3357 if (!MustBeEmitted(D) && !GV) { 3358 DeferredDecls[MangledName] = D; 3359 return; 3360 } 3361 3362 // The tentative definition is the only definition. 3363 EmitGlobalVarDefinition(D); 3364 } 3365 3366 CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const { 3367 return Context.toCharUnitsFromBits( 3368 getDataLayout().getTypeStoreSizeInBits(Ty)); 3369 } 3370 3371 LangAS CodeGenModule::GetGlobalVarAddressSpace(const VarDecl *D) { 3372 LangAS AddrSpace = LangAS::Default; 3373 if (LangOpts.OpenCL) { 3374 AddrSpace = D ? D->getType().getAddressSpace() : LangAS::opencl_global; 3375 assert(AddrSpace == LangAS::opencl_global || 3376 AddrSpace == LangAS::opencl_constant || 3377 AddrSpace == LangAS::opencl_local || 3378 AddrSpace >= LangAS::FirstTargetAddressSpace); 3379 return AddrSpace; 3380 } 3381 3382 if (LangOpts.CUDA && LangOpts.CUDAIsDevice) { 3383 if (D && D->hasAttr<CUDAConstantAttr>()) 3384 return LangAS::cuda_constant; 3385 else if (D && D->hasAttr<CUDASharedAttr>()) 3386 return LangAS::cuda_shared; 3387 else if (D && D->hasAttr<CUDADeviceAttr>()) 3388 return LangAS::cuda_device; 3389 else if (D && D->getType().isConstQualified()) 3390 return LangAS::cuda_constant; 3391 else 3392 return LangAS::cuda_device; 3393 } 3394 3395 if (LangOpts.OpenMP) { 3396 LangAS AS; 3397 if (OpenMPRuntime->hasAllocateAttributeForGlobalVar(D, AS)) 3398 return AS; 3399 } 3400 return getTargetCodeGenInfo().getGlobalVarAddressSpace(*this, D); 3401 } 3402 3403 LangAS CodeGenModule::getStringLiteralAddressSpace() const { 3404 // OpenCL v1.2 s6.5.3: a string literal is in the constant address space. 3405 if (LangOpts.OpenCL) 3406 return LangAS::opencl_constant; 3407 if (auto AS = getTarget().getConstantAddressSpace()) 3408 return AS.getValue(); 3409 return LangAS::Default; 3410 } 3411 3412 // In address space agnostic languages, string literals are in default address 3413 // space in AST. However, certain targets (e.g. amdgcn) request them to be 3414 // emitted in constant address space in LLVM IR. To be consistent with other 3415 // parts of AST, string literal global variables in constant address space 3416 // need to be casted to default address space before being put into address 3417 // map and referenced by other part of CodeGen. 3418 // In OpenCL, string literals are in constant address space in AST, therefore 3419 // they should not be casted to default address space. 3420 static llvm::Constant * 3421 castStringLiteralToDefaultAddressSpace(CodeGenModule &CGM, 3422 llvm::GlobalVariable *GV) { 3423 llvm::Constant *Cast = GV; 3424 if (!CGM.getLangOpts().OpenCL) { 3425 if (auto AS = CGM.getTarget().getConstantAddressSpace()) { 3426 if (AS != LangAS::Default) 3427 Cast = CGM.getTargetCodeGenInfo().performAddrSpaceCast( 3428 CGM, GV, AS.getValue(), LangAS::Default, 3429 GV->getValueType()->getPointerTo( 3430 CGM.getContext().getTargetAddressSpace(LangAS::Default))); 3431 } 3432 } 3433 return Cast; 3434 } 3435 3436 template<typename SomeDecl> 3437 void CodeGenModule::MaybeHandleStaticInExternC(const SomeDecl *D, 3438 llvm::GlobalValue *GV) { 3439 if (!getLangOpts().CPlusPlus) 3440 return; 3441 3442 // Must have 'used' attribute, or else inline assembly can't rely on 3443 // the name existing. 3444 if (!D->template hasAttr<UsedAttr>()) 3445 return; 3446 3447 // Must have internal linkage and an ordinary name. 3448 if (!D->getIdentifier() || D->getFormalLinkage() != InternalLinkage) 3449 return; 3450 3451 // Must be in an extern "C" context. Entities declared directly within 3452 // a record are not extern "C" even if the record is in such a context. 3453 const SomeDecl *First = D->getFirstDecl(); 3454 if (First->getDeclContext()->isRecord() || !First->isInExternCContext()) 3455 return; 3456 3457 // OK, this is an internal linkage entity inside an extern "C" linkage 3458 // specification. Make a note of that so we can give it the "expected" 3459 // mangled name if nothing else is using that name. 3460 std::pair<StaticExternCMap::iterator, bool> R = 3461 StaticExternCValues.insert(std::make_pair(D->getIdentifier(), GV)); 3462 3463 // If we have multiple internal linkage entities with the same name 3464 // in extern "C" regions, none of them gets that name. 3465 if (!R.second) 3466 R.first->second = nullptr; 3467 } 3468 3469 static bool shouldBeInCOMDAT(CodeGenModule &CGM, const Decl &D) { 3470 if (!CGM.supportsCOMDAT()) 3471 return false; 3472 3473 if (D.hasAttr<SelectAnyAttr>()) 3474 return true; 3475 3476 GVALinkage Linkage; 3477 if (auto *VD = dyn_cast<VarDecl>(&D)) 3478 Linkage = CGM.getContext().GetGVALinkageForVariable(VD); 3479 else 3480 Linkage = CGM.getContext().GetGVALinkageForFunction(cast<FunctionDecl>(&D)); 3481 3482 switch (Linkage) { 3483 case GVA_Internal: 3484 case GVA_AvailableExternally: 3485 case GVA_StrongExternal: 3486 return false; 3487 case GVA_DiscardableODR: 3488 case GVA_StrongODR: 3489 return true; 3490 } 3491 llvm_unreachable("No such linkage"); 3492 } 3493 3494 void CodeGenModule::maybeSetTrivialComdat(const Decl &D, 3495 llvm::GlobalObject &GO) { 3496 if (!shouldBeInCOMDAT(*this, D)) 3497 return; 3498 GO.setComdat(TheModule.getOrInsertComdat(GO.getName())); 3499 } 3500 3501 /// Pass IsTentative as true if you want to create a tentative definition. 3502 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D, 3503 bool IsTentative) { 3504 // OpenCL global variables of sampler type are translated to function calls, 3505 // therefore no need to be translated. 3506 QualType ASTTy = D->getType(); 3507 if (getLangOpts().OpenCL && ASTTy->isSamplerT()) 3508 return; 3509 3510 // If this is OpenMP device, check if it is legal to emit this global 3511 // normally. 3512 if (LangOpts.OpenMPIsDevice && OpenMPRuntime && 3513 OpenMPRuntime->emitTargetGlobalVariable(D)) 3514 return; 3515 3516 llvm::Constant *Init = nullptr; 3517 CXXRecordDecl *RD = ASTTy->getBaseElementTypeUnsafe()->getAsCXXRecordDecl(); 3518 bool NeedsGlobalCtor = false; 3519 bool NeedsGlobalDtor = RD && !RD->hasTrivialDestructor(); 3520 3521 const VarDecl *InitDecl; 3522 const Expr *InitExpr = D->getAnyInitializer(InitDecl); 3523 3524 Optional<ConstantEmitter> emitter; 3525 3526 // CUDA E.2.4.1 "__shared__ variables cannot have an initialization 3527 // as part of their declaration." Sema has already checked for 3528 // error cases, so we just need to set Init to UndefValue. 3529 bool IsCUDASharedVar = 3530 getLangOpts().CUDAIsDevice && D->hasAttr<CUDASharedAttr>(); 3531 // Shadows of initialized device-side global variables are also left 3532 // undefined. 3533 bool IsCUDAShadowVar = 3534 !getLangOpts().CUDAIsDevice && 3535 (D->hasAttr<CUDAConstantAttr>() || D->hasAttr<CUDADeviceAttr>() || 3536 D->hasAttr<CUDASharedAttr>()); 3537 if (getLangOpts().CUDA && (IsCUDASharedVar || IsCUDAShadowVar)) 3538 Init = llvm::UndefValue::get(getTypes().ConvertType(ASTTy)); 3539 else if (!InitExpr) { 3540 // This is a tentative definition; tentative definitions are 3541 // implicitly initialized with { 0 }. 3542 // 3543 // Note that tentative definitions are only emitted at the end of 3544 // a translation unit, so they should never have incomplete 3545 // type. In addition, EmitTentativeDefinition makes sure that we 3546 // never attempt to emit a tentative definition if a real one 3547 // exists. A use may still exists, however, so we still may need 3548 // to do a RAUW. 3549 assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type"); 3550 Init = EmitNullConstant(D->getType()); 3551 } else { 3552 initializedGlobalDecl = GlobalDecl(D); 3553 emitter.emplace(*this); 3554 Init = emitter->tryEmitForInitializer(*InitDecl); 3555 3556 if (!Init) { 3557 QualType T = InitExpr->getType(); 3558 if (D->getType()->isReferenceType()) 3559 T = D->getType(); 3560 3561 if (getLangOpts().CPlusPlus) { 3562 Init = EmitNullConstant(T); 3563 NeedsGlobalCtor = true; 3564 } else { 3565 ErrorUnsupported(D, "static initializer"); 3566 Init = llvm::UndefValue::get(getTypes().ConvertType(T)); 3567 } 3568 } else { 3569 // We don't need an initializer, so remove the entry for the delayed 3570 // initializer position (just in case this entry was delayed) if we 3571 // also don't need to register a destructor. 3572 if (getLangOpts().CPlusPlus && !NeedsGlobalDtor) 3573 DelayedCXXInitPosition.erase(D); 3574 } 3575 } 3576 3577 llvm::Type* InitType = Init->getType(); 3578 llvm::Constant *Entry = 3579 GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative)); 3580 3581 // Strip off a bitcast if we got one back. 3582 if (auto *CE = dyn_cast<llvm::ConstantExpr>(Entry)) { 3583 assert(CE->getOpcode() == llvm::Instruction::BitCast || 3584 CE->getOpcode() == llvm::Instruction::AddrSpaceCast || 3585 // All zero index gep. 3586 CE->getOpcode() == llvm::Instruction::GetElementPtr); 3587 Entry = CE->getOperand(0); 3588 } 3589 3590 // Entry is now either a Function or GlobalVariable. 3591 auto *GV = dyn_cast<llvm::GlobalVariable>(Entry); 3592 3593 // We have a definition after a declaration with the wrong type. 3594 // We must make a new GlobalVariable* and update everything that used OldGV 3595 // (a declaration or tentative definition) with the new GlobalVariable* 3596 // (which will be a definition). 3597 // 3598 // This happens if there is a prototype for a global (e.g. 3599 // "extern int x[];") and then a definition of a different type (e.g. 3600 // "int x[10];"). This also happens when an initializer has a different type 3601 // from the type of the global (this happens with unions). 3602 if (!GV || GV->getType()->getElementType() != InitType || 3603 GV->getType()->getAddressSpace() != 3604 getContext().getTargetAddressSpace(GetGlobalVarAddressSpace(D))) { 3605 3606 // Move the old entry aside so that we'll create a new one. 3607 Entry->setName(StringRef()); 3608 3609 // Make a new global with the correct type, this is now guaranteed to work. 3610 GV = cast<llvm::GlobalVariable>( 3611 GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative))); 3612 3613 // Replace all uses of the old global with the new global 3614 llvm::Constant *NewPtrForOldDecl = 3615 llvm::ConstantExpr::getBitCast(GV, Entry->getType()); 3616 Entry->replaceAllUsesWith(NewPtrForOldDecl); 3617 3618 // Erase the old global, since it is no longer used. 3619 cast<llvm::GlobalValue>(Entry)->eraseFromParent(); 3620 } 3621 3622 MaybeHandleStaticInExternC(D, GV); 3623 3624 if (D->hasAttr<AnnotateAttr>()) 3625 AddGlobalAnnotations(D, GV); 3626 3627 // Set the llvm linkage type as appropriate. 3628 llvm::GlobalValue::LinkageTypes Linkage = 3629 getLLVMLinkageVarDefinition(D, GV->isConstant()); 3630 3631 // CUDA B.2.1 "The __device__ qualifier declares a variable that resides on 3632 // the device. [...]" 3633 // CUDA B.2.2 "The __constant__ qualifier, optionally used together with 3634 // __device__, declares a variable that: [...] 3635 // Is accessible from all the threads within the grid and from the host 3636 // through the runtime library (cudaGetSymbolAddress() / cudaGetSymbolSize() 3637 // / cudaMemcpyToSymbol() / cudaMemcpyFromSymbol())." 3638 if (GV && LangOpts.CUDA) { 3639 if (LangOpts.CUDAIsDevice) { 3640 if (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>()) 3641 GV->setExternallyInitialized(true); 3642 } else { 3643 // Host-side shadows of external declarations of device-side 3644 // global variables become internal definitions. These have to 3645 // be internal in order to prevent name conflicts with global 3646 // host variables with the same name in a different TUs. 3647 if (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>()) { 3648 Linkage = llvm::GlobalValue::InternalLinkage; 3649 3650 // Shadow variables and their properties must be registered 3651 // with CUDA runtime. 3652 unsigned Flags = 0; 3653 if (!D->hasDefinition()) 3654 Flags |= CGCUDARuntime::ExternDeviceVar; 3655 if (D->hasAttr<CUDAConstantAttr>()) 3656 Flags |= CGCUDARuntime::ConstantDeviceVar; 3657 // Extern global variables will be registered in the TU where they are 3658 // defined. 3659 if (!D->hasExternalStorage()) 3660 getCUDARuntime().registerDeviceVar(D, *GV, Flags); 3661 } else if (D->hasAttr<CUDASharedAttr>()) 3662 // __shared__ variables are odd. Shadows do get created, but 3663 // they are not registered with the CUDA runtime, so they 3664 // can't really be used to access their device-side 3665 // counterparts. It's not clear yet whether it's nvcc's bug or 3666 // a feature, but we've got to do the same for compatibility. 3667 Linkage = llvm::GlobalValue::InternalLinkage; 3668 } 3669 } 3670 3671 GV->setInitializer(Init); 3672 if (emitter) emitter->finalize(GV); 3673 3674 // If it is safe to mark the global 'constant', do so now. 3675 GV->setConstant(!NeedsGlobalCtor && !NeedsGlobalDtor && 3676 isTypeConstant(D->getType(), true)); 3677 3678 // If it is in a read-only section, mark it 'constant'. 3679 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) { 3680 const ASTContext::SectionInfo &SI = Context.SectionInfos[SA->getName()]; 3681 if ((SI.SectionFlags & ASTContext::PSF_Write) == 0) 3682 GV->setConstant(true); 3683 } 3684 3685 GV->setAlignment(getContext().getDeclAlign(D).getQuantity()); 3686 3687 3688 // On Darwin, if the normal linkage of a C++ thread_local variable is 3689 // LinkOnce or Weak, we keep the normal linkage to prevent multiple 3690 // copies within a linkage unit; otherwise, the backing variable has 3691 // internal linkage and all accesses should just be calls to the 3692 // Itanium-specified entry point, which has the normal linkage of the 3693 // variable. This is to preserve the ability to change the implementation 3694 // behind the scenes. 3695 if (!D->isStaticLocal() && D->getTLSKind() == VarDecl::TLS_Dynamic && 3696 Context.getTargetInfo().getTriple().isOSDarwin() && 3697 !llvm::GlobalVariable::isLinkOnceLinkage(Linkage) && 3698 !llvm::GlobalVariable::isWeakLinkage(Linkage)) 3699 Linkage = llvm::GlobalValue::InternalLinkage; 3700 3701 GV->setLinkage(Linkage); 3702 if (D->hasAttr<DLLImportAttr>()) 3703 GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass); 3704 else if (D->hasAttr<DLLExportAttr>()) 3705 GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass); 3706 else 3707 GV->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass); 3708 3709 if (Linkage == llvm::GlobalVariable::CommonLinkage) { 3710 // common vars aren't constant even if declared const. 3711 GV->setConstant(false); 3712 // Tentative definition of global variables may be initialized with 3713 // non-zero null pointers. In this case they should have weak linkage 3714 // since common linkage must have zero initializer and must not have 3715 // explicit section therefore cannot have non-zero initial value. 3716 if (!GV->getInitializer()->isNullValue()) 3717 GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage); 3718 } 3719 3720 setNonAliasAttributes(D, GV); 3721 3722 if (D->getTLSKind() && !GV->isThreadLocal()) { 3723 if (D->getTLSKind() == VarDecl::TLS_Dynamic) 3724 CXXThreadLocals.push_back(D); 3725 setTLSMode(GV, *D); 3726 } 3727 3728 maybeSetTrivialComdat(*D, *GV); 3729 3730 // Emit the initializer function if necessary. 3731 if (NeedsGlobalCtor || NeedsGlobalDtor) 3732 EmitCXXGlobalVarDeclInitFunc(D, GV, NeedsGlobalCtor); 3733 3734 SanitizerMD->reportGlobalToASan(GV, *D, NeedsGlobalCtor); 3735 3736 // Emit global variable debug information. 3737 if (CGDebugInfo *DI = getModuleDebugInfo()) 3738 if (getCodeGenOpts().getDebugInfo() >= codegenoptions::LimitedDebugInfo) 3739 DI->EmitGlobalVariable(GV, D); 3740 } 3741 3742 static bool isVarDeclStrongDefinition(const ASTContext &Context, 3743 CodeGenModule &CGM, const VarDecl *D, 3744 bool NoCommon) { 3745 // Don't give variables common linkage if -fno-common was specified unless it 3746 // was overridden by a NoCommon attribute. 3747 if ((NoCommon || D->hasAttr<NoCommonAttr>()) && !D->hasAttr<CommonAttr>()) 3748 return true; 3749 3750 // C11 6.9.2/2: 3751 // A declaration of an identifier for an object that has file scope without 3752 // an initializer, and without a storage-class specifier or with the 3753 // storage-class specifier static, constitutes a tentative definition. 3754 if (D->getInit() || D->hasExternalStorage()) 3755 return true; 3756 3757 // A variable cannot be both common and exist in a section. 3758 if (D->hasAttr<SectionAttr>()) 3759 return true; 3760 3761 // A variable cannot be both common and exist in a section. 3762 // We don't try to determine which is the right section in the front-end. 3763 // If no specialized section name is applicable, it will resort to default. 3764 if (D->hasAttr<PragmaClangBSSSectionAttr>() || 3765 D->hasAttr<PragmaClangDataSectionAttr>() || 3766 D->hasAttr<PragmaClangRodataSectionAttr>()) 3767 return true; 3768 3769 // Thread local vars aren't considered common linkage. 3770 if (D->getTLSKind()) 3771 return true; 3772 3773 // Tentative definitions marked with WeakImportAttr are true definitions. 3774 if (D->hasAttr<WeakImportAttr>()) 3775 return true; 3776 3777 // A variable cannot be both common and exist in a comdat. 3778 if (shouldBeInCOMDAT(CGM, *D)) 3779 return true; 3780 3781 // Declarations with a required alignment do not have common linkage in MSVC 3782 // mode. 3783 if (Context.getTargetInfo().getCXXABI().isMicrosoft()) { 3784 if (D->hasAttr<AlignedAttr>()) 3785 return true; 3786 QualType VarType = D->getType(); 3787 if (Context.isAlignmentRequired(VarType)) 3788 return true; 3789 3790 if (const auto *RT = VarType->getAs<RecordType>()) { 3791 const RecordDecl *RD = RT->getDecl(); 3792 for (const FieldDecl *FD : RD->fields()) { 3793 if (FD->isBitField()) 3794 continue; 3795 if (FD->hasAttr<AlignedAttr>()) 3796 return true; 3797 if (Context.isAlignmentRequired(FD->getType())) 3798 return true; 3799 } 3800 } 3801 } 3802 3803 // Microsoft's link.exe doesn't support alignments greater than 32 bytes for 3804 // common symbols, so symbols with greater alignment requirements cannot be 3805 // common. 3806 // Other COFF linkers (ld.bfd and LLD) support arbitrary power-of-two 3807 // alignments for common symbols via the aligncomm directive, so this 3808 // restriction only applies to MSVC environments. 3809 if (Context.getTargetInfo().getTriple().isKnownWindowsMSVCEnvironment() && 3810 Context.getTypeAlignIfKnown(D->getType()) > 3811 Context.toBits(CharUnits::fromQuantity(32))) 3812 return true; 3813 3814 return false; 3815 } 3816 3817 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageForDeclarator( 3818 const DeclaratorDecl *D, GVALinkage Linkage, bool IsConstantVariable) { 3819 if (Linkage == GVA_Internal) 3820 return llvm::Function::InternalLinkage; 3821 3822 if (D->hasAttr<WeakAttr>()) { 3823 if (IsConstantVariable) 3824 return llvm::GlobalVariable::WeakODRLinkage; 3825 else 3826 return llvm::GlobalVariable::WeakAnyLinkage; 3827 } 3828 3829 if (const auto *FD = D->getAsFunction()) 3830 if (FD->isMultiVersion() && Linkage == GVA_AvailableExternally) 3831 return llvm::GlobalVariable::LinkOnceAnyLinkage; 3832 3833 // We are guaranteed to have a strong definition somewhere else, 3834 // so we can use available_externally linkage. 3835 if (Linkage == GVA_AvailableExternally) 3836 return llvm::GlobalValue::AvailableExternallyLinkage; 3837 3838 // Note that Apple's kernel linker doesn't support symbol 3839 // coalescing, so we need to avoid linkonce and weak linkages there. 3840 // Normally, this means we just map to internal, but for explicit 3841 // instantiations we'll map to external. 3842 3843 // In C++, the compiler has to emit a definition in every translation unit 3844 // that references the function. We should use linkonce_odr because 3845 // a) if all references in this translation unit are optimized away, we 3846 // don't need to codegen it. b) if the function persists, it needs to be 3847 // merged with other definitions. c) C++ has the ODR, so we know the 3848 // definition is dependable. 3849 if (Linkage == GVA_DiscardableODR) 3850 return !Context.getLangOpts().AppleKext ? llvm::Function::LinkOnceODRLinkage 3851 : llvm::Function::InternalLinkage; 3852 3853 // An explicit instantiation of a template has weak linkage, since 3854 // explicit instantiations can occur in multiple translation units 3855 // and must all be equivalent. However, we are not allowed to 3856 // throw away these explicit instantiations. 3857 // 3858 // We don't currently support CUDA device code spread out across multiple TUs, 3859 // so say that CUDA templates are either external (for kernels) or internal. 3860 // This lets llvm perform aggressive inter-procedural optimizations. 3861 if (Linkage == GVA_StrongODR) { 3862 if (Context.getLangOpts().AppleKext) 3863 return llvm::Function::ExternalLinkage; 3864 if (Context.getLangOpts().CUDA && Context.getLangOpts().CUDAIsDevice) 3865 return D->hasAttr<CUDAGlobalAttr>() ? llvm::Function::ExternalLinkage 3866 : llvm::Function::InternalLinkage; 3867 return llvm::Function::WeakODRLinkage; 3868 } 3869 3870 // C++ doesn't have tentative definitions and thus cannot have common 3871 // linkage. 3872 if (!getLangOpts().CPlusPlus && isa<VarDecl>(D) && 3873 !isVarDeclStrongDefinition(Context, *this, cast<VarDecl>(D), 3874 CodeGenOpts.NoCommon)) 3875 return llvm::GlobalVariable::CommonLinkage; 3876 3877 // selectany symbols are externally visible, so use weak instead of 3878 // linkonce. MSVC optimizes away references to const selectany globals, so 3879 // all definitions should be the same and ODR linkage should be used. 3880 // http://msdn.microsoft.com/en-us/library/5tkz6s71.aspx 3881 if (D->hasAttr<SelectAnyAttr>()) 3882 return llvm::GlobalVariable::WeakODRLinkage; 3883 3884 // Otherwise, we have strong external linkage. 3885 assert(Linkage == GVA_StrongExternal); 3886 return llvm::GlobalVariable::ExternalLinkage; 3887 } 3888 3889 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageVarDefinition( 3890 const VarDecl *VD, bool IsConstant) { 3891 GVALinkage Linkage = getContext().GetGVALinkageForVariable(VD); 3892 return getLLVMLinkageForDeclarator(VD, Linkage, IsConstant); 3893 } 3894 3895 /// Replace the uses of a function that was declared with a non-proto type. 3896 /// We want to silently drop extra arguments from call sites 3897 static void replaceUsesOfNonProtoConstant(llvm::Constant *old, 3898 llvm::Function *newFn) { 3899 // Fast path. 3900 if (old->use_empty()) return; 3901 3902 llvm::Type *newRetTy = newFn->getReturnType(); 3903 SmallVector<llvm::Value*, 4> newArgs; 3904 SmallVector<llvm::OperandBundleDef, 1> newBundles; 3905 3906 for (llvm::Value::use_iterator ui = old->use_begin(), ue = old->use_end(); 3907 ui != ue; ) { 3908 llvm::Value::use_iterator use = ui++; // Increment before the use is erased. 3909 llvm::User *user = use->getUser(); 3910 3911 // Recognize and replace uses of bitcasts. Most calls to 3912 // unprototyped functions will use bitcasts. 3913 if (auto *bitcast = dyn_cast<llvm::ConstantExpr>(user)) { 3914 if (bitcast->getOpcode() == llvm::Instruction::BitCast) 3915 replaceUsesOfNonProtoConstant(bitcast, newFn); 3916 continue; 3917 } 3918 3919 // Recognize calls to the function. 3920 llvm::CallBase *callSite = dyn_cast<llvm::CallBase>(user); 3921 if (!callSite) continue; 3922 if (!callSite->isCallee(&*use)) 3923 continue; 3924 3925 // If the return types don't match exactly, then we can't 3926 // transform this call unless it's dead. 3927 if (callSite->getType() != newRetTy && !callSite->use_empty()) 3928 continue; 3929 3930 // Get the call site's attribute list. 3931 SmallVector<llvm::AttributeSet, 8> newArgAttrs; 3932 llvm::AttributeList oldAttrs = callSite->getAttributes(); 3933 3934 // If the function was passed too few arguments, don't transform. 3935 unsigned newNumArgs = newFn->arg_size(); 3936 if (callSite->arg_size() < newNumArgs) 3937 continue; 3938 3939 // If extra arguments were passed, we silently drop them. 3940 // If any of the types mismatch, we don't transform. 3941 unsigned argNo = 0; 3942 bool dontTransform = false; 3943 for (llvm::Argument &A : newFn->args()) { 3944 if (callSite->getArgOperand(argNo)->getType() != A.getType()) { 3945 dontTransform = true; 3946 break; 3947 } 3948 3949 // Add any parameter attributes. 3950 newArgAttrs.push_back(oldAttrs.getParamAttributes(argNo)); 3951 argNo++; 3952 } 3953 if (dontTransform) 3954 continue; 3955 3956 // Okay, we can transform this. Create the new call instruction and copy 3957 // over the required information. 3958 newArgs.append(callSite->arg_begin(), callSite->arg_begin() + argNo); 3959 3960 // Copy over any operand bundles. 3961 callSite->getOperandBundlesAsDefs(newBundles); 3962 3963 llvm::CallBase *newCall; 3964 if (dyn_cast<llvm::CallInst>(callSite)) { 3965 newCall = 3966 llvm::CallInst::Create(newFn, newArgs, newBundles, "", callSite); 3967 } else { 3968 auto *oldInvoke = cast<llvm::InvokeInst>(callSite); 3969 newCall = llvm::InvokeInst::Create(newFn, oldInvoke->getNormalDest(), 3970 oldInvoke->getUnwindDest(), newArgs, 3971 newBundles, "", callSite); 3972 } 3973 newArgs.clear(); // for the next iteration 3974 3975 if (!newCall->getType()->isVoidTy()) 3976 newCall->takeName(callSite); 3977 newCall->setAttributes(llvm::AttributeList::get( 3978 newFn->getContext(), oldAttrs.getFnAttributes(), 3979 oldAttrs.getRetAttributes(), newArgAttrs)); 3980 newCall->setCallingConv(callSite->getCallingConv()); 3981 3982 // Finally, remove the old call, replacing any uses with the new one. 3983 if (!callSite->use_empty()) 3984 callSite->replaceAllUsesWith(newCall); 3985 3986 // Copy debug location attached to CI. 3987 if (callSite->getDebugLoc()) 3988 newCall->setDebugLoc(callSite->getDebugLoc()); 3989 3990 callSite->eraseFromParent(); 3991 } 3992 } 3993 3994 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we 3995 /// implement a function with no prototype, e.g. "int foo() {}". If there are 3996 /// existing call uses of the old function in the module, this adjusts them to 3997 /// call the new function directly. 3998 /// 3999 /// This is not just a cleanup: the always_inline pass requires direct calls to 4000 /// functions to be able to inline them. If there is a bitcast in the way, it 4001 /// won't inline them. Instcombine normally deletes these calls, but it isn't 4002 /// run at -O0. 4003 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old, 4004 llvm::Function *NewFn) { 4005 // If we're redefining a global as a function, don't transform it. 4006 if (!isa<llvm::Function>(Old)) return; 4007 4008 replaceUsesOfNonProtoConstant(Old, NewFn); 4009 } 4010 4011 void CodeGenModule::HandleCXXStaticMemberVarInstantiation(VarDecl *VD) { 4012 auto DK = VD->isThisDeclarationADefinition(); 4013 if (DK == VarDecl::Definition && VD->hasAttr<DLLImportAttr>()) 4014 return; 4015 4016 TemplateSpecializationKind TSK = VD->getTemplateSpecializationKind(); 4017 // If we have a definition, this might be a deferred decl. If the 4018 // instantiation is explicit, make sure we emit it at the end. 4019 if (VD->getDefinition() && TSK == TSK_ExplicitInstantiationDefinition) 4020 GetAddrOfGlobalVar(VD); 4021 4022 EmitTopLevelDecl(VD); 4023 } 4024 4025 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD, 4026 llvm::GlobalValue *GV) { 4027 const auto *D = cast<FunctionDecl>(GD.getDecl()); 4028 4029 // Compute the function info and LLVM type. 4030 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 4031 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 4032 4033 // Get or create the prototype for the function. 4034 if (!GV || (GV->getType()->getElementType() != Ty)) 4035 GV = cast<llvm::GlobalValue>(GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, 4036 /*DontDefer=*/true, 4037 ForDefinition)); 4038 4039 // Already emitted. 4040 if (!GV->isDeclaration()) 4041 return; 4042 4043 // We need to set linkage and visibility on the function before 4044 // generating code for it because various parts of IR generation 4045 // want to propagate this information down (e.g. to local static 4046 // declarations). 4047 auto *Fn = cast<llvm::Function>(GV); 4048 setFunctionLinkage(GD, Fn); 4049 4050 // FIXME: this is redundant with part of setFunctionDefinitionAttributes 4051 setGVProperties(Fn, GD); 4052 4053 MaybeHandleStaticInExternC(D, Fn); 4054 4055 4056 maybeSetTrivialComdat(*D, *Fn); 4057 4058 CodeGenFunction(*this).GenerateCode(D, Fn, FI); 4059 4060 setNonAliasAttributes(GD, Fn); 4061 SetLLVMFunctionAttributesForDefinition(D, Fn); 4062 4063 if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>()) 4064 AddGlobalCtor(Fn, CA->getPriority()); 4065 if (const DestructorAttr *DA = D->getAttr<DestructorAttr>()) 4066 AddGlobalDtor(Fn, DA->getPriority()); 4067 if (D->hasAttr<AnnotateAttr>()) 4068 AddGlobalAnnotations(D, Fn); 4069 } 4070 4071 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) { 4072 const auto *D = cast<ValueDecl>(GD.getDecl()); 4073 const AliasAttr *AA = D->getAttr<AliasAttr>(); 4074 assert(AA && "Not an alias?"); 4075 4076 StringRef MangledName = getMangledName(GD); 4077 4078 if (AA->getAliasee() == MangledName) { 4079 Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0; 4080 return; 4081 } 4082 4083 // If there is a definition in the module, then it wins over the alias. 4084 // This is dubious, but allow it to be safe. Just ignore the alias. 4085 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 4086 if (Entry && !Entry->isDeclaration()) 4087 return; 4088 4089 Aliases.push_back(GD); 4090 4091 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType()); 4092 4093 // Create a reference to the named value. This ensures that it is emitted 4094 // if a deferred decl. 4095 llvm::Constant *Aliasee; 4096 if (isa<llvm::FunctionType>(DeclTy)) 4097 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GD, 4098 /*ForVTable=*/false); 4099 else 4100 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), 4101 llvm::PointerType::getUnqual(DeclTy), 4102 /*D=*/nullptr); 4103 4104 // Create the new alias itself, but don't set a name yet. 4105 auto *GA = llvm::GlobalAlias::create( 4106 DeclTy, 0, llvm::Function::ExternalLinkage, "", Aliasee, &getModule()); 4107 4108 if (Entry) { 4109 if (GA->getAliasee() == Entry) { 4110 Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0; 4111 return; 4112 } 4113 4114 assert(Entry->isDeclaration()); 4115 4116 // If there is a declaration in the module, then we had an extern followed 4117 // by the alias, as in: 4118 // extern int test6(); 4119 // ... 4120 // int test6() __attribute__((alias("test7"))); 4121 // 4122 // Remove it and replace uses of it with the alias. 4123 GA->takeName(Entry); 4124 4125 Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA, 4126 Entry->getType())); 4127 Entry->eraseFromParent(); 4128 } else { 4129 GA->setName(MangledName); 4130 } 4131 4132 // Set attributes which are particular to an alias; this is a 4133 // specialization of the attributes which may be set on a global 4134 // variable/function. 4135 if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakRefAttr>() || 4136 D->isWeakImported()) { 4137 GA->setLinkage(llvm::Function::WeakAnyLinkage); 4138 } 4139 4140 if (const auto *VD = dyn_cast<VarDecl>(D)) 4141 if (VD->getTLSKind()) 4142 setTLSMode(GA, *VD); 4143 4144 SetCommonAttributes(GD, GA); 4145 } 4146 4147 void CodeGenModule::emitIFuncDefinition(GlobalDecl GD) { 4148 const auto *D = cast<ValueDecl>(GD.getDecl()); 4149 const IFuncAttr *IFA = D->getAttr<IFuncAttr>(); 4150 assert(IFA && "Not an ifunc?"); 4151 4152 StringRef MangledName = getMangledName(GD); 4153 4154 if (IFA->getResolver() == MangledName) { 4155 Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1; 4156 return; 4157 } 4158 4159 // Report an error if some definition overrides ifunc. 4160 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 4161 if (Entry && !Entry->isDeclaration()) { 4162 GlobalDecl OtherGD; 4163 if (lookupRepresentativeDecl(MangledName, OtherGD) && 4164 DiagnosedConflictingDefinitions.insert(GD).second) { 4165 Diags.Report(D->getLocation(), diag::err_duplicate_mangled_name) 4166 << MangledName; 4167 Diags.Report(OtherGD.getDecl()->getLocation(), 4168 diag::note_previous_definition); 4169 } 4170 return; 4171 } 4172 4173 Aliases.push_back(GD); 4174 4175 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType()); 4176 llvm::Constant *Resolver = 4177 GetOrCreateLLVMFunction(IFA->getResolver(), DeclTy, GD, 4178 /*ForVTable=*/false); 4179 llvm::GlobalIFunc *GIF = 4180 llvm::GlobalIFunc::create(DeclTy, 0, llvm::Function::ExternalLinkage, 4181 "", Resolver, &getModule()); 4182 if (Entry) { 4183 if (GIF->getResolver() == Entry) { 4184 Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1; 4185 return; 4186 } 4187 assert(Entry->isDeclaration()); 4188 4189 // If there is a declaration in the module, then we had an extern followed 4190 // by the ifunc, as in: 4191 // extern int test(); 4192 // ... 4193 // int test() __attribute__((ifunc("resolver"))); 4194 // 4195 // Remove it and replace uses of it with the ifunc. 4196 GIF->takeName(Entry); 4197 4198 Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GIF, 4199 Entry->getType())); 4200 Entry->eraseFromParent(); 4201 } else 4202 GIF->setName(MangledName); 4203 4204 SetCommonAttributes(GD, GIF); 4205 } 4206 4207 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID, 4208 ArrayRef<llvm::Type*> Tys) { 4209 return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID, 4210 Tys); 4211 } 4212 4213 static llvm::StringMapEntry<llvm::GlobalVariable *> & 4214 GetConstantCFStringEntry(llvm::StringMap<llvm::GlobalVariable *> &Map, 4215 const StringLiteral *Literal, bool TargetIsLSB, 4216 bool &IsUTF16, unsigned &StringLength) { 4217 StringRef String = Literal->getString(); 4218 unsigned NumBytes = String.size(); 4219 4220 // Check for simple case. 4221 if (!Literal->containsNonAsciiOrNull()) { 4222 StringLength = NumBytes; 4223 return *Map.insert(std::make_pair(String, nullptr)).first; 4224 } 4225 4226 // Otherwise, convert the UTF8 literals into a string of shorts. 4227 IsUTF16 = true; 4228 4229 SmallVector<llvm::UTF16, 128> ToBuf(NumBytes + 1); // +1 for ending nulls. 4230 const llvm::UTF8 *FromPtr = (const llvm::UTF8 *)String.data(); 4231 llvm::UTF16 *ToPtr = &ToBuf[0]; 4232 4233 (void)llvm::ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, &ToPtr, 4234 ToPtr + NumBytes, llvm::strictConversion); 4235 4236 // ConvertUTF8toUTF16 returns the length in ToPtr. 4237 StringLength = ToPtr - &ToBuf[0]; 4238 4239 // Add an explicit null. 4240 *ToPtr = 0; 4241 return *Map.insert(std::make_pair( 4242 StringRef(reinterpret_cast<const char *>(ToBuf.data()), 4243 (StringLength + 1) * 2), 4244 nullptr)).first; 4245 } 4246 4247 ConstantAddress 4248 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) { 4249 unsigned StringLength = 0; 4250 bool isUTF16 = false; 4251 llvm::StringMapEntry<llvm::GlobalVariable *> &Entry = 4252 GetConstantCFStringEntry(CFConstantStringMap, Literal, 4253 getDataLayout().isLittleEndian(), isUTF16, 4254 StringLength); 4255 4256 if (auto *C = Entry.second) 4257 return ConstantAddress(C, CharUnits::fromQuantity(C->getAlignment())); 4258 4259 llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty); 4260 llvm::Constant *Zeros[] = { Zero, Zero }; 4261 4262 const ASTContext &Context = getContext(); 4263 const llvm::Triple &Triple = getTriple(); 4264 4265 const auto CFRuntime = getLangOpts().CFRuntime; 4266 const bool IsSwiftABI = 4267 static_cast<unsigned>(CFRuntime) >= 4268 static_cast<unsigned>(LangOptions::CoreFoundationABI::Swift); 4269 const bool IsSwift4_1 = CFRuntime == LangOptions::CoreFoundationABI::Swift4_1; 4270 4271 // If we don't already have it, get __CFConstantStringClassReference. 4272 if (!CFConstantStringClassRef) { 4273 const char *CFConstantStringClassName = "__CFConstantStringClassReference"; 4274 llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy); 4275 Ty = llvm::ArrayType::get(Ty, 0); 4276 4277 switch (CFRuntime) { 4278 default: break; 4279 case LangOptions::CoreFoundationABI::Swift: LLVM_FALLTHROUGH; 4280 case LangOptions::CoreFoundationABI::Swift5_0: 4281 CFConstantStringClassName = 4282 Triple.isOSDarwin() ? "$s15SwiftFoundation19_NSCFConstantStringCN" 4283 : "$s10Foundation19_NSCFConstantStringCN"; 4284 Ty = IntPtrTy; 4285 break; 4286 case LangOptions::CoreFoundationABI::Swift4_2: 4287 CFConstantStringClassName = 4288 Triple.isOSDarwin() ? "$S15SwiftFoundation19_NSCFConstantStringCN" 4289 : "$S10Foundation19_NSCFConstantStringCN"; 4290 Ty = IntPtrTy; 4291 break; 4292 case LangOptions::CoreFoundationABI::Swift4_1: 4293 CFConstantStringClassName = 4294 Triple.isOSDarwin() ? "__T015SwiftFoundation19_NSCFConstantStringCN" 4295 : "__T010Foundation19_NSCFConstantStringCN"; 4296 Ty = IntPtrTy; 4297 break; 4298 } 4299 4300 llvm::Constant *C = CreateRuntimeVariable(Ty, CFConstantStringClassName); 4301 4302 if (Triple.isOSBinFormatELF() || Triple.isOSBinFormatCOFF()) { 4303 llvm::GlobalValue *GV = nullptr; 4304 4305 if ((GV = dyn_cast<llvm::GlobalValue>(C))) { 4306 IdentifierInfo &II = Context.Idents.get(GV->getName()); 4307 TranslationUnitDecl *TUDecl = Context.getTranslationUnitDecl(); 4308 DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl); 4309 4310 const VarDecl *VD = nullptr; 4311 for (const auto &Result : DC->lookup(&II)) 4312 if ((VD = dyn_cast<VarDecl>(Result))) 4313 break; 4314 4315 if (Triple.isOSBinFormatELF()) { 4316 if (!VD) 4317 GV->setLinkage(llvm::GlobalValue::ExternalLinkage); 4318 } else { 4319 GV->setLinkage(llvm::GlobalValue::ExternalLinkage); 4320 if (!VD || !VD->hasAttr<DLLExportAttr>()) 4321 GV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass); 4322 else 4323 GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass); 4324 } 4325 4326 setDSOLocal(GV); 4327 } 4328 } 4329 4330 // Decay array -> ptr 4331 CFConstantStringClassRef = 4332 IsSwiftABI ? llvm::ConstantExpr::getPtrToInt(C, Ty) 4333 : llvm::ConstantExpr::getGetElementPtr(Ty, C, Zeros); 4334 } 4335 4336 QualType CFTy = Context.getCFConstantStringType(); 4337 4338 auto *STy = cast<llvm::StructType>(getTypes().ConvertType(CFTy)); 4339 4340 ConstantInitBuilder Builder(*this); 4341 auto Fields = Builder.beginStruct(STy); 4342 4343 // Class pointer. 4344 Fields.add(cast<llvm::ConstantExpr>(CFConstantStringClassRef)); 4345 4346 // Flags. 4347 if (IsSwiftABI) { 4348 Fields.addInt(IntPtrTy, IsSwift4_1 ? 0x05 : 0x01); 4349 Fields.addInt(Int64Ty, isUTF16 ? 0x07d0 : 0x07c8); 4350 } else { 4351 Fields.addInt(IntTy, isUTF16 ? 0x07d0 : 0x07C8); 4352 } 4353 4354 // String pointer. 4355 llvm::Constant *C = nullptr; 4356 if (isUTF16) { 4357 auto Arr = llvm::makeArrayRef( 4358 reinterpret_cast<uint16_t *>(const_cast<char *>(Entry.first().data())), 4359 Entry.first().size() / 2); 4360 C = llvm::ConstantDataArray::get(VMContext, Arr); 4361 } else { 4362 C = llvm::ConstantDataArray::getString(VMContext, Entry.first()); 4363 } 4364 4365 // Note: -fwritable-strings doesn't make the backing store strings of 4366 // CFStrings writable. (See <rdar://problem/10657500>) 4367 auto *GV = 4368 new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true, 4369 llvm::GlobalValue::PrivateLinkage, C, ".str"); 4370 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 4371 // Don't enforce the target's minimum global alignment, since the only use 4372 // of the string is via this class initializer. 4373 CharUnits Align = isUTF16 ? Context.getTypeAlignInChars(Context.ShortTy) 4374 : Context.getTypeAlignInChars(Context.CharTy); 4375 GV->setAlignment(Align.getQuantity()); 4376 4377 // FIXME: We set the section explicitly to avoid a bug in ld64 224.1. 4378 // Without it LLVM can merge the string with a non unnamed_addr one during 4379 // LTO. Doing that changes the section it ends in, which surprises ld64. 4380 if (Triple.isOSBinFormatMachO()) 4381 GV->setSection(isUTF16 ? "__TEXT,__ustring" 4382 : "__TEXT,__cstring,cstring_literals"); 4383 // Make sure the literal ends up in .rodata to allow for safe ICF and for 4384 // the static linker to adjust permissions to read-only later on. 4385 else if (Triple.isOSBinFormatELF()) 4386 GV->setSection(".rodata"); 4387 4388 // String. 4389 llvm::Constant *Str = 4390 llvm::ConstantExpr::getGetElementPtr(GV->getValueType(), GV, Zeros); 4391 4392 if (isUTF16) 4393 // Cast the UTF16 string to the correct type. 4394 Str = llvm::ConstantExpr::getBitCast(Str, Int8PtrTy); 4395 Fields.add(Str); 4396 4397 // String length. 4398 llvm::IntegerType *LengthTy = 4399 llvm::IntegerType::get(getModule().getContext(), 4400 Context.getTargetInfo().getLongWidth()); 4401 if (IsSwiftABI) { 4402 if (CFRuntime == LangOptions::CoreFoundationABI::Swift4_1 || 4403 CFRuntime == LangOptions::CoreFoundationABI::Swift4_2) 4404 LengthTy = Int32Ty; 4405 else 4406 LengthTy = IntPtrTy; 4407 } 4408 Fields.addInt(LengthTy, StringLength); 4409 4410 CharUnits Alignment = getPointerAlign(); 4411 4412 // The struct. 4413 GV = Fields.finishAndCreateGlobal("_unnamed_cfstring_", Alignment, 4414 /*isConstant=*/false, 4415 llvm::GlobalVariable::PrivateLinkage); 4416 switch (Triple.getObjectFormat()) { 4417 case llvm::Triple::UnknownObjectFormat: 4418 llvm_unreachable("unknown file format"); 4419 case llvm::Triple::XCOFF: 4420 llvm_unreachable("XCOFF is not yet implemented"); 4421 case llvm::Triple::COFF: 4422 case llvm::Triple::ELF: 4423 case llvm::Triple::Wasm: 4424 GV->setSection("cfstring"); 4425 break; 4426 case llvm::Triple::MachO: 4427 GV->setSection("__DATA,__cfstring"); 4428 break; 4429 } 4430 Entry.second = GV; 4431 4432 return ConstantAddress(GV, Alignment); 4433 } 4434 4435 bool CodeGenModule::getExpressionLocationsEnabled() const { 4436 return !CodeGenOpts.EmitCodeView || CodeGenOpts.DebugColumnInfo; 4437 } 4438 4439 QualType CodeGenModule::getObjCFastEnumerationStateType() { 4440 if (ObjCFastEnumerationStateType.isNull()) { 4441 RecordDecl *D = Context.buildImplicitRecord("__objcFastEnumerationState"); 4442 D->startDefinition(); 4443 4444 QualType FieldTypes[] = { 4445 Context.UnsignedLongTy, 4446 Context.getPointerType(Context.getObjCIdType()), 4447 Context.getPointerType(Context.UnsignedLongTy), 4448 Context.getConstantArrayType(Context.UnsignedLongTy, 4449 llvm::APInt(32, 5), ArrayType::Normal, 0) 4450 }; 4451 4452 for (size_t i = 0; i < 4; ++i) { 4453 FieldDecl *Field = FieldDecl::Create(Context, 4454 D, 4455 SourceLocation(), 4456 SourceLocation(), nullptr, 4457 FieldTypes[i], /*TInfo=*/nullptr, 4458 /*BitWidth=*/nullptr, 4459 /*Mutable=*/false, 4460 ICIS_NoInit); 4461 Field->setAccess(AS_public); 4462 D->addDecl(Field); 4463 } 4464 4465 D->completeDefinition(); 4466 ObjCFastEnumerationStateType = Context.getTagDeclType(D); 4467 } 4468 4469 return ObjCFastEnumerationStateType; 4470 } 4471 4472 llvm::Constant * 4473 CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) { 4474 assert(!E->getType()->isPointerType() && "Strings are always arrays"); 4475 4476 // Don't emit it as the address of the string, emit the string data itself 4477 // as an inline array. 4478 if (E->getCharByteWidth() == 1) { 4479 SmallString<64> Str(E->getString()); 4480 4481 // Resize the string to the right size, which is indicated by its type. 4482 const ConstantArrayType *CAT = Context.getAsConstantArrayType(E->getType()); 4483 Str.resize(CAT->getSize().getZExtValue()); 4484 return llvm::ConstantDataArray::getString(VMContext, Str, false); 4485 } 4486 4487 auto *AType = cast<llvm::ArrayType>(getTypes().ConvertType(E->getType())); 4488 llvm::Type *ElemTy = AType->getElementType(); 4489 unsigned NumElements = AType->getNumElements(); 4490 4491 // Wide strings have either 2-byte or 4-byte elements. 4492 if (ElemTy->getPrimitiveSizeInBits() == 16) { 4493 SmallVector<uint16_t, 32> Elements; 4494 Elements.reserve(NumElements); 4495 4496 for(unsigned i = 0, e = E->getLength(); i != e; ++i) 4497 Elements.push_back(E->getCodeUnit(i)); 4498 Elements.resize(NumElements); 4499 return llvm::ConstantDataArray::get(VMContext, Elements); 4500 } 4501 4502 assert(ElemTy->getPrimitiveSizeInBits() == 32); 4503 SmallVector<uint32_t, 32> Elements; 4504 Elements.reserve(NumElements); 4505 4506 for(unsigned i = 0, e = E->getLength(); i != e; ++i) 4507 Elements.push_back(E->getCodeUnit(i)); 4508 Elements.resize(NumElements); 4509 return llvm::ConstantDataArray::get(VMContext, Elements); 4510 } 4511 4512 static llvm::GlobalVariable * 4513 GenerateStringLiteral(llvm::Constant *C, llvm::GlobalValue::LinkageTypes LT, 4514 CodeGenModule &CGM, StringRef GlobalName, 4515 CharUnits Alignment) { 4516 unsigned AddrSpace = CGM.getContext().getTargetAddressSpace( 4517 CGM.getStringLiteralAddressSpace()); 4518 4519 llvm::Module &M = CGM.getModule(); 4520 // Create a global variable for this string 4521 auto *GV = new llvm::GlobalVariable( 4522 M, C->getType(), !CGM.getLangOpts().WritableStrings, LT, C, GlobalName, 4523 nullptr, llvm::GlobalVariable::NotThreadLocal, AddrSpace); 4524 GV->setAlignment(Alignment.getQuantity()); 4525 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 4526 if (GV->isWeakForLinker()) { 4527 assert(CGM.supportsCOMDAT() && "Only COFF uses weak string literals"); 4528 GV->setComdat(M.getOrInsertComdat(GV->getName())); 4529 } 4530 CGM.setDSOLocal(GV); 4531 4532 return GV; 4533 } 4534 4535 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a 4536 /// constant array for the given string literal. 4537 ConstantAddress 4538 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S, 4539 StringRef Name) { 4540 CharUnits Alignment = getContext().getAlignOfGlobalVarInChars(S->getType()); 4541 4542 llvm::Constant *C = GetConstantArrayFromStringLiteral(S); 4543 llvm::GlobalVariable **Entry = nullptr; 4544 if (!LangOpts.WritableStrings) { 4545 Entry = &ConstantStringMap[C]; 4546 if (auto GV = *Entry) { 4547 if (Alignment.getQuantity() > GV->getAlignment()) 4548 GV->setAlignment(Alignment.getQuantity()); 4549 return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV), 4550 Alignment); 4551 } 4552 } 4553 4554 SmallString<256> MangledNameBuffer; 4555 StringRef GlobalVariableName; 4556 llvm::GlobalValue::LinkageTypes LT; 4557 4558 // Mangle the string literal if that's how the ABI merges duplicate strings. 4559 // Don't do it if they are writable, since we don't want writes in one TU to 4560 // affect strings in another. 4561 if (getCXXABI().getMangleContext().shouldMangleStringLiteral(S) && 4562 !LangOpts.WritableStrings) { 4563 llvm::raw_svector_ostream Out(MangledNameBuffer); 4564 getCXXABI().getMangleContext().mangleStringLiteral(S, Out); 4565 LT = llvm::GlobalValue::LinkOnceODRLinkage; 4566 GlobalVariableName = MangledNameBuffer; 4567 } else { 4568 LT = llvm::GlobalValue::PrivateLinkage; 4569 GlobalVariableName = Name; 4570 } 4571 4572 auto GV = GenerateStringLiteral(C, LT, *this, GlobalVariableName, Alignment); 4573 if (Entry) 4574 *Entry = GV; 4575 4576 SanitizerMD->reportGlobalToASan(GV, S->getStrTokenLoc(0), "<string literal>", 4577 QualType()); 4578 4579 return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV), 4580 Alignment); 4581 } 4582 4583 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant 4584 /// array for the given ObjCEncodeExpr node. 4585 ConstantAddress 4586 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) { 4587 std::string Str; 4588 getContext().getObjCEncodingForType(E->getEncodedType(), Str); 4589 4590 return GetAddrOfConstantCString(Str); 4591 } 4592 4593 /// GetAddrOfConstantCString - Returns a pointer to a character array containing 4594 /// the literal and a terminating '\0' character. 4595 /// The result has pointer to array type. 4596 ConstantAddress CodeGenModule::GetAddrOfConstantCString( 4597 const std::string &Str, const char *GlobalName) { 4598 StringRef StrWithNull(Str.c_str(), Str.size() + 1); 4599 CharUnits Alignment = 4600 getContext().getAlignOfGlobalVarInChars(getContext().CharTy); 4601 4602 llvm::Constant *C = 4603 llvm::ConstantDataArray::getString(getLLVMContext(), StrWithNull, false); 4604 4605 // Don't share any string literals if strings aren't constant. 4606 llvm::GlobalVariable **Entry = nullptr; 4607 if (!LangOpts.WritableStrings) { 4608 Entry = &ConstantStringMap[C]; 4609 if (auto GV = *Entry) { 4610 if (Alignment.getQuantity() > GV->getAlignment()) 4611 GV->setAlignment(Alignment.getQuantity()); 4612 return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV), 4613 Alignment); 4614 } 4615 } 4616 4617 // Get the default prefix if a name wasn't specified. 4618 if (!GlobalName) 4619 GlobalName = ".str"; 4620 // Create a global variable for this. 4621 auto GV = GenerateStringLiteral(C, llvm::GlobalValue::PrivateLinkage, *this, 4622 GlobalName, Alignment); 4623 if (Entry) 4624 *Entry = GV; 4625 4626 return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV), 4627 Alignment); 4628 } 4629 4630 ConstantAddress CodeGenModule::GetAddrOfGlobalTemporary( 4631 const MaterializeTemporaryExpr *E, const Expr *Init) { 4632 assert((E->getStorageDuration() == SD_Static || 4633 E->getStorageDuration() == SD_Thread) && "not a global temporary"); 4634 const auto *VD = cast<VarDecl>(E->getExtendingDecl()); 4635 4636 // If we're not materializing a subobject of the temporary, keep the 4637 // cv-qualifiers from the type of the MaterializeTemporaryExpr. 4638 QualType MaterializedType = Init->getType(); 4639 if (Init == E->GetTemporaryExpr()) 4640 MaterializedType = E->getType(); 4641 4642 CharUnits Align = getContext().getTypeAlignInChars(MaterializedType); 4643 4644 if (llvm::Constant *Slot = MaterializedGlobalTemporaryMap[E]) 4645 return ConstantAddress(Slot, Align); 4646 4647 // FIXME: If an externally-visible declaration extends multiple temporaries, 4648 // we need to give each temporary the same name in every translation unit (and 4649 // we also need to make the temporaries externally-visible). 4650 SmallString<256> Name; 4651 llvm::raw_svector_ostream Out(Name); 4652 getCXXABI().getMangleContext().mangleReferenceTemporary( 4653 VD, E->getManglingNumber(), Out); 4654 4655 APValue *Value = nullptr; 4656 if (E->getStorageDuration() == SD_Static) { 4657 // We might have a cached constant initializer for this temporary. Note 4658 // that this might have a different value from the value computed by 4659 // evaluating the initializer if the surrounding constant expression 4660 // modifies the temporary. 4661 Value = getContext().getMaterializedTemporaryValue(E, false); 4662 if (Value && Value->isUninit()) 4663 Value = nullptr; 4664 } 4665 4666 // Try evaluating it now, it might have a constant initializer. 4667 Expr::EvalResult EvalResult; 4668 if (!Value && Init->EvaluateAsRValue(EvalResult, getContext()) && 4669 !EvalResult.hasSideEffects()) 4670 Value = &EvalResult.Val; 4671 4672 LangAS AddrSpace = 4673 VD ? GetGlobalVarAddressSpace(VD) : MaterializedType.getAddressSpace(); 4674 4675 Optional<ConstantEmitter> emitter; 4676 llvm::Constant *InitialValue = nullptr; 4677 bool Constant = false; 4678 llvm::Type *Type; 4679 if (Value) { 4680 // The temporary has a constant initializer, use it. 4681 emitter.emplace(*this); 4682 InitialValue = emitter->emitForInitializer(*Value, AddrSpace, 4683 MaterializedType); 4684 Constant = isTypeConstant(MaterializedType, /*ExcludeCtor*/Value); 4685 Type = InitialValue->getType(); 4686 } else { 4687 // No initializer, the initialization will be provided when we 4688 // initialize the declaration which performed lifetime extension. 4689 Type = getTypes().ConvertTypeForMem(MaterializedType); 4690 } 4691 4692 // Create a global variable for this lifetime-extended temporary. 4693 llvm::GlobalValue::LinkageTypes Linkage = 4694 getLLVMLinkageVarDefinition(VD, Constant); 4695 if (Linkage == llvm::GlobalVariable::ExternalLinkage) { 4696 const VarDecl *InitVD; 4697 if (VD->isStaticDataMember() && VD->getAnyInitializer(InitVD) && 4698 isa<CXXRecordDecl>(InitVD->getLexicalDeclContext())) { 4699 // Temporaries defined inside a class get linkonce_odr linkage because the 4700 // class can be defined in multiple translation units. 4701 Linkage = llvm::GlobalVariable::LinkOnceODRLinkage; 4702 } else { 4703 // There is no need for this temporary to have external linkage if the 4704 // VarDecl has external linkage. 4705 Linkage = llvm::GlobalVariable::InternalLinkage; 4706 } 4707 } 4708 auto TargetAS = getContext().getTargetAddressSpace(AddrSpace); 4709 auto *GV = new llvm::GlobalVariable( 4710 getModule(), Type, Constant, Linkage, InitialValue, Name.c_str(), 4711 /*InsertBefore=*/nullptr, llvm::GlobalVariable::NotThreadLocal, TargetAS); 4712 if (emitter) emitter->finalize(GV); 4713 setGVProperties(GV, VD); 4714 GV->setAlignment(Align.getQuantity()); 4715 if (supportsCOMDAT() && GV->isWeakForLinker()) 4716 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 4717 if (VD->getTLSKind()) 4718 setTLSMode(GV, *VD); 4719 llvm::Constant *CV = GV; 4720 if (AddrSpace != LangAS::Default) 4721 CV = getTargetCodeGenInfo().performAddrSpaceCast( 4722 *this, GV, AddrSpace, LangAS::Default, 4723 Type->getPointerTo( 4724 getContext().getTargetAddressSpace(LangAS::Default))); 4725 MaterializedGlobalTemporaryMap[E] = CV; 4726 return ConstantAddress(CV, Align); 4727 } 4728 4729 /// EmitObjCPropertyImplementations - Emit information for synthesized 4730 /// properties for an implementation. 4731 void CodeGenModule::EmitObjCPropertyImplementations(const 4732 ObjCImplementationDecl *D) { 4733 for (const auto *PID : D->property_impls()) { 4734 // Dynamic is just for type-checking. 4735 if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) { 4736 ObjCPropertyDecl *PD = PID->getPropertyDecl(); 4737 4738 // Determine which methods need to be implemented, some may have 4739 // been overridden. Note that ::isPropertyAccessor is not the method 4740 // we want, that just indicates if the decl came from a 4741 // property. What we want to know is if the method is defined in 4742 // this implementation. 4743 if (!D->getInstanceMethod(PD->getGetterName())) 4744 CodeGenFunction(*this).GenerateObjCGetter( 4745 const_cast<ObjCImplementationDecl *>(D), PID); 4746 if (!PD->isReadOnly() && 4747 !D->getInstanceMethod(PD->getSetterName())) 4748 CodeGenFunction(*this).GenerateObjCSetter( 4749 const_cast<ObjCImplementationDecl *>(D), PID); 4750 } 4751 } 4752 } 4753 4754 static bool needsDestructMethod(ObjCImplementationDecl *impl) { 4755 const ObjCInterfaceDecl *iface = impl->getClassInterface(); 4756 for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin(); 4757 ivar; ivar = ivar->getNextIvar()) 4758 if (ivar->getType().isDestructedType()) 4759 return true; 4760 4761 return false; 4762 } 4763 4764 static bool AllTrivialInitializers(CodeGenModule &CGM, 4765 ObjCImplementationDecl *D) { 4766 CodeGenFunction CGF(CGM); 4767 for (ObjCImplementationDecl::init_iterator B = D->init_begin(), 4768 E = D->init_end(); B != E; ++B) { 4769 CXXCtorInitializer *CtorInitExp = *B; 4770 Expr *Init = CtorInitExp->getInit(); 4771 if (!CGF.isTrivialInitializer(Init)) 4772 return false; 4773 } 4774 return true; 4775 } 4776 4777 /// EmitObjCIvarInitializations - Emit information for ivar initialization 4778 /// for an implementation. 4779 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) { 4780 // We might need a .cxx_destruct even if we don't have any ivar initializers. 4781 if (needsDestructMethod(D)) { 4782 IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct"); 4783 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 4784 ObjCMethodDecl *DTORMethod = 4785 ObjCMethodDecl::Create(getContext(), D->getLocation(), D->getLocation(), 4786 cxxSelector, getContext().VoidTy, nullptr, D, 4787 /*isInstance=*/true, /*isVariadic=*/false, 4788 /*isPropertyAccessor=*/true, /*isImplicitlyDeclared=*/true, 4789 /*isDefined=*/false, ObjCMethodDecl::Required); 4790 D->addInstanceMethod(DTORMethod); 4791 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false); 4792 D->setHasDestructors(true); 4793 } 4794 4795 // If the implementation doesn't have any ivar initializers, we don't need 4796 // a .cxx_construct. 4797 if (D->getNumIvarInitializers() == 0 || 4798 AllTrivialInitializers(*this, D)) 4799 return; 4800 4801 IdentifierInfo *II = &getContext().Idents.get(".cxx_construct"); 4802 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 4803 // The constructor returns 'self'. 4804 ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(getContext(), 4805 D->getLocation(), 4806 D->getLocation(), 4807 cxxSelector, 4808 getContext().getObjCIdType(), 4809 nullptr, D, /*isInstance=*/true, 4810 /*isVariadic=*/false, 4811 /*isPropertyAccessor=*/true, 4812 /*isImplicitlyDeclared=*/true, 4813 /*isDefined=*/false, 4814 ObjCMethodDecl::Required); 4815 D->addInstanceMethod(CTORMethod); 4816 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true); 4817 D->setHasNonZeroConstructors(true); 4818 } 4819 4820 // EmitLinkageSpec - Emit all declarations in a linkage spec. 4821 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) { 4822 if (LSD->getLanguage() != LinkageSpecDecl::lang_c && 4823 LSD->getLanguage() != LinkageSpecDecl::lang_cxx) { 4824 ErrorUnsupported(LSD, "linkage spec"); 4825 return; 4826 } 4827 4828 EmitDeclContext(LSD); 4829 } 4830 4831 void CodeGenModule::EmitDeclContext(const DeclContext *DC) { 4832 for (auto *I : DC->decls()) { 4833 // Unlike other DeclContexts, the contents of an ObjCImplDecl at TU scope 4834 // are themselves considered "top-level", so EmitTopLevelDecl on an 4835 // ObjCImplDecl does not recursively visit them. We need to do that in 4836 // case they're nested inside another construct (LinkageSpecDecl / 4837 // ExportDecl) that does stop them from being considered "top-level". 4838 if (auto *OID = dyn_cast<ObjCImplDecl>(I)) { 4839 for (auto *M : OID->methods()) 4840 EmitTopLevelDecl(M); 4841 } 4842 4843 EmitTopLevelDecl(I); 4844 } 4845 } 4846 4847 /// EmitTopLevelDecl - Emit code for a single top level declaration. 4848 void CodeGenModule::EmitTopLevelDecl(Decl *D) { 4849 // Ignore dependent declarations. 4850 if (D->isTemplated()) 4851 return; 4852 4853 switch (D->getKind()) { 4854 case Decl::CXXConversion: 4855 case Decl::CXXMethod: 4856 case Decl::Function: 4857 EmitGlobal(cast<FunctionDecl>(D)); 4858 // Always provide some coverage mapping 4859 // even for the functions that aren't emitted. 4860 AddDeferredUnusedCoverageMapping(D); 4861 break; 4862 4863 case Decl::CXXDeductionGuide: 4864 // Function-like, but does not result in code emission. 4865 break; 4866 4867 case Decl::Var: 4868 case Decl::Decomposition: 4869 case Decl::VarTemplateSpecialization: 4870 EmitGlobal(cast<VarDecl>(D)); 4871 if (auto *DD = dyn_cast<DecompositionDecl>(D)) 4872 for (auto *B : DD->bindings()) 4873 if (auto *HD = B->getHoldingVar()) 4874 EmitGlobal(HD); 4875 break; 4876 4877 // Indirect fields from global anonymous structs and unions can be 4878 // ignored; only the actual variable requires IR gen support. 4879 case Decl::IndirectField: 4880 break; 4881 4882 // C++ Decls 4883 case Decl::Namespace: 4884 EmitDeclContext(cast<NamespaceDecl>(D)); 4885 break; 4886 case Decl::ClassTemplateSpecialization: { 4887 const auto *Spec = cast<ClassTemplateSpecializationDecl>(D); 4888 if (DebugInfo && 4889 Spec->getSpecializationKind() == TSK_ExplicitInstantiationDefinition && 4890 Spec->hasDefinition()) 4891 DebugInfo->completeTemplateDefinition(*Spec); 4892 } LLVM_FALLTHROUGH; 4893 case Decl::CXXRecord: 4894 if (DebugInfo) { 4895 if (auto *ES = D->getASTContext().getExternalSource()) 4896 if (ES->hasExternalDefinitions(D) == ExternalASTSource::EK_Never) 4897 DebugInfo->completeUnusedClass(cast<CXXRecordDecl>(*D)); 4898 } 4899 // Emit any static data members, they may be definitions. 4900 for (auto *I : cast<CXXRecordDecl>(D)->decls()) 4901 if (isa<VarDecl>(I) || isa<CXXRecordDecl>(I)) 4902 EmitTopLevelDecl(I); 4903 break; 4904 // No code generation needed. 4905 case Decl::UsingShadow: 4906 case Decl::ClassTemplate: 4907 case Decl::VarTemplate: 4908 case Decl::VarTemplatePartialSpecialization: 4909 case Decl::FunctionTemplate: 4910 case Decl::TypeAliasTemplate: 4911 case Decl::Block: 4912 case Decl::Empty: 4913 case Decl::Binding: 4914 break; 4915 case Decl::Using: // using X; [C++] 4916 if (CGDebugInfo *DI = getModuleDebugInfo()) 4917 DI->EmitUsingDecl(cast<UsingDecl>(*D)); 4918 return; 4919 case Decl::NamespaceAlias: 4920 if (CGDebugInfo *DI = getModuleDebugInfo()) 4921 DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(*D)); 4922 return; 4923 case Decl::UsingDirective: // using namespace X; [C++] 4924 if (CGDebugInfo *DI = getModuleDebugInfo()) 4925 DI->EmitUsingDirective(cast<UsingDirectiveDecl>(*D)); 4926 return; 4927 case Decl::CXXConstructor: 4928 getCXXABI().EmitCXXConstructors(cast<CXXConstructorDecl>(D)); 4929 break; 4930 case Decl::CXXDestructor: 4931 getCXXABI().EmitCXXDestructors(cast<CXXDestructorDecl>(D)); 4932 break; 4933 4934 case Decl::StaticAssert: 4935 // Nothing to do. 4936 break; 4937 4938 // Objective-C Decls 4939 4940 // Forward declarations, no (immediate) code generation. 4941 case Decl::ObjCInterface: 4942 case Decl::ObjCCategory: 4943 break; 4944 4945 case Decl::ObjCProtocol: { 4946 auto *Proto = cast<ObjCProtocolDecl>(D); 4947 if (Proto->isThisDeclarationADefinition()) 4948 ObjCRuntime->GenerateProtocol(Proto); 4949 break; 4950 } 4951 4952 case Decl::ObjCCategoryImpl: 4953 // Categories have properties but don't support synthesize so we 4954 // can ignore them here. 4955 ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D)); 4956 break; 4957 4958 case Decl::ObjCImplementation: { 4959 auto *OMD = cast<ObjCImplementationDecl>(D); 4960 EmitObjCPropertyImplementations(OMD); 4961 EmitObjCIvarInitializations(OMD); 4962 ObjCRuntime->GenerateClass(OMD); 4963 // Emit global variable debug information. 4964 if (CGDebugInfo *DI = getModuleDebugInfo()) 4965 if (getCodeGenOpts().getDebugInfo() >= codegenoptions::LimitedDebugInfo) 4966 DI->getOrCreateInterfaceType(getContext().getObjCInterfaceType( 4967 OMD->getClassInterface()), OMD->getLocation()); 4968 break; 4969 } 4970 case Decl::ObjCMethod: { 4971 auto *OMD = cast<ObjCMethodDecl>(D); 4972 // If this is not a prototype, emit the body. 4973 if (OMD->getBody()) 4974 CodeGenFunction(*this).GenerateObjCMethod(OMD); 4975 break; 4976 } 4977 case Decl::ObjCCompatibleAlias: 4978 ObjCRuntime->RegisterAlias(cast<ObjCCompatibleAliasDecl>(D)); 4979 break; 4980 4981 case Decl::PragmaComment: { 4982 const auto *PCD = cast<PragmaCommentDecl>(D); 4983 switch (PCD->getCommentKind()) { 4984 case PCK_Unknown: 4985 llvm_unreachable("unexpected pragma comment kind"); 4986 case PCK_Linker: 4987 AppendLinkerOptions(PCD->getArg()); 4988 break; 4989 case PCK_Lib: 4990 if (getTarget().getTriple().isOSBinFormatELF() && 4991 !getTarget().getTriple().isPS4()) 4992 AddELFLibDirective(PCD->getArg()); 4993 else 4994 AddDependentLib(PCD->getArg()); 4995 break; 4996 case PCK_Compiler: 4997 case PCK_ExeStr: 4998 case PCK_User: 4999 break; // We ignore all of these. 5000 } 5001 break; 5002 } 5003 5004 case Decl::PragmaDetectMismatch: { 5005 const auto *PDMD = cast<PragmaDetectMismatchDecl>(D); 5006 AddDetectMismatch(PDMD->getName(), PDMD->getValue()); 5007 break; 5008 } 5009 5010 case Decl::LinkageSpec: 5011 EmitLinkageSpec(cast<LinkageSpecDecl>(D)); 5012 break; 5013 5014 case Decl::FileScopeAsm: { 5015 // File-scope asm is ignored during device-side CUDA compilation. 5016 if (LangOpts.CUDA && LangOpts.CUDAIsDevice) 5017 break; 5018 // File-scope asm is ignored during device-side OpenMP compilation. 5019 if (LangOpts.OpenMPIsDevice) 5020 break; 5021 auto *AD = cast<FileScopeAsmDecl>(D); 5022 getModule().appendModuleInlineAsm(AD->getAsmString()->getString()); 5023 break; 5024 } 5025 5026 case Decl::Import: { 5027 auto *Import = cast<ImportDecl>(D); 5028 5029 // If we've already imported this module, we're done. 5030 if (!ImportedModules.insert(Import->getImportedModule())) 5031 break; 5032 5033 // Emit debug information for direct imports. 5034 if (!Import->getImportedOwningModule()) { 5035 if (CGDebugInfo *DI = getModuleDebugInfo()) 5036 DI->EmitImportDecl(*Import); 5037 } 5038 5039 // Find all of the submodules and emit the module initializers. 5040 llvm::SmallPtrSet<clang::Module *, 16> Visited; 5041 SmallVector<clang::Module *, 16> Stack; 5042 Visited.insert(Import->getImportedModule()); 5043 Stack.push_back(Import->getImportedModule()); 5044 5045 while (!Stack.empty()) { 5046 clang::Module *Mod = Stack.pop_back_val(); 5047 if (!EmittedModuleInitializers.insert(Mod).second) 5048 continue; 5049 5050 for (auto *D : Context.getModuleInitializers(Mod)) 5051 EmitTopLevelDecl(D); 5052 5053 // Visit the submodules of this module. 5054 for (clang::Module::submodule_iterator Sub = Mod->submodule_begin(), 5055 SubEnd = Mod->submodule_end(); 5056 Sub != SubEnd; ++Sub) { 5057 // Skip explicit children; they need to be explicitly imported to emit 5058 // the initializers. 5059 if ((*Sub)->IsExplicit) 5060 continue; 5061 5062 if (Visited.insert(*Sub).second) 5063 Stack.push_back(*Sub); 5064 } 5065 } 5066 break; 5067 } 5068 5069 case Decl::Export: 5070 EmitDeclContext(cast<ExportDecl>(D)); 5071 break; 5072 5073 case Decl::OMPThreadPrivate: 5074 EmitOMPThreadPrivateDecl(cast<OMPThreadPrivateDecl>(D)); 5075 break; 5076 5077 case Decl::OMPAllocate: 5078 break; 5079 5080 case Decl::OMPDeclareReduction: 5081 EmitOMPDeclareReduction(cast<OMPDeclareReductionDecl>(D)); 5082 break; 5083 5084 case Decl::OMPDeclareMapper: 5085 EmitOMPDeclareMapper(cast<OMPDeclareMapperDecl>(D)); 5086 break; 5087 5088 case Decl::OMPRequires: 5089 EmitOMPRequiresDecl(cast<OMPRequiresDecl>(D)); 5090 break; 5091 5092 default: 5093 // Make sure we handled everything we should, every other kind is a 5094 // non-top-level decl. FIXME: Would be nice to have an isTopLevelDeclKind 5095 // function. Need to recode Decl::Kind to do that easily. 5096 assert(isa<TypeDecl>(D) && "Unsupported decl kind"); 5097 break; 5098 } 5099 } 5100 5101 void CodeGenModule::AddDeferredUnusedCoverageMapping(Decl *D) { 5102 // Do we need to generate coverage mapping? 5103 if (!CodeGenOpts.CoverageMapping) 5104 return; 5105 switch (D->getKind()) { 5106 case Decl::CXXConversion: 5107 case Decl::CXXMethod: 5108 case Decl::Function: 5109 case Decl::ObjCMethod: 5110 case Decl::CXXConstructor: 5111 case Decl::CXXDestructor: { 5112 if (!cast<FunctionDecl>(D)->doesThisDeclarationHaveABody()) 5113 return; 5114 SourceManager &SM = getContext().getSourceManager(); 5115 if (LimitedCoverage && SM.getMainFileID() != SM.getFileID(D->getBeginLoc())) 5116 return; 5117 auto I = DeferredEmptyCoverageMappingDecls.find(D); 5118 if (I == DeferredEmptyCoverageMappingDecls.end()) 5119 DeferredEmptyCoverageMappingDecls[D] = true; 5120 break; 5121 } 5122 default: 5123 break; 5124 }; 5125 } 5126 5127 void CodeGenModule::ClearUnusedCoverageMapping(const Decl *D) { 5128 // Do we need to generate coverage mapping? 5129 if (!CodeGenOpts.CoverageMapping) 5130 return; 5131 if (const auto *Fn = dyn_cast<FunctionDecl>(D)) { 5132 if (Fn->isTemplateInstantiation()) 5133 ClearUnusedCoverageMapping(Fn->getTemplateInstantiationPattern()); 5134 } 5135 auto I = DeferredEmptyCoverageMappingDecls.find(D); 5136 if (I == DeferredEmptyCoverageMappingDecls.end()) 5137 DeferredEmptyCoverageMappingDecls[D] = false; 5138 else 5139 I->second = false; 5140 } 5141 5142 void CodeGenModule::EmitDeferredUnusedCoverageMappings() { 5143 // We call takeVector() here to avoid use-after-free. 5144 // FIXME: DeferredEmptyCoverageMappingDecls is getting mutated because 5145 // we deserialize function bodies to emit coverage info for them, and that 5146 // deserializes more declarations. How should we handle that case? 5147 for (const auto &Entry : DeferredEmptyCoverageMappingDecls.takeVector()) { 5148 if (!Entry.second) 5149 continue; 5150 const Decl *D = Entry.first; 5151 switch (D->getKind()) { 5152 case Decl::CXXConversion: 5153 case Decl::CXXMethod: 5154 case Decl::Function: 5155 case Decl::ObjCMethod: { 5156 CodeGenPGO PGO(*this); 5157 GlobalDecl GD(cast<FunctionDecl>(D)); 5158 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 5159 getFunctionLinkage(GD)); 5160 break; 5161 } 5162 case Decl::CXXConstructor: { 5163 CodeGenPGO PGO(*this); 5164 GlobalDecl GD(cast<CXXConstructorDecl>(D), Ctor_Base); 5165 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 5166 getFunctionLinkage(GD)); 5167 break; 5168 } 5169 case Decl::CXXDestructor: { 5170 CodeGenPGO PGO(*this); 5171 GlobalDecl GD(cast<CXXDestructorDecl>(D), Dtor_Base); 5172 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 5173 getFunctionLinkage(GD)); 5174 break; 5175 } 5176 default: 5177 break; 5178 }; 5179 } 5180 } 5181 5182 /// Turns the given pointer into a constant. 5183 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context, 5184 const void *Ptr) { 5185 uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr); 5186 llvm::Type *i64 = llvm::Type::getInt64Ty(Context); 5187 return llvm::ConstantInt::get(i64, PtrInt); 5188 } 5189 5190 static void EmitGlobalDeclMetadata(CodeGenModule &CGM, 5191 llvm::NamedMDNode *&GlobalMetadata, 5192 GlobalDecl D, 5193 llvm::GlobalValue *Addr) { 5194 if (!GlobalMetadata) 5195 GlobalMetadata = 5196 CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs"); 5197 5198 // TODO: should we report variant information for ctors/dtors? 5199 llvm::Metadata *Ops[] = {llvm::ConstantAsMetadata::get(Addr), 5200 llvm::ConstantAsMetadata::get(GetPointerConstant( 5201 CGM.getLLVMContext(), D.getDecl()))}; 5202 GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops)); 5203 } 5204 5205 /// For each function which is declared within an extern "C" region and marked 5206 /// as 'used', but has internal linkage, create an alias from the unmangled 5207 /// name to the mangled name if possible. People expect to be able to refer 5208 /// to such functions with an unmangled name from inline assembly within the 5209 /// same translation unit. 5210 void CodeGenModule::EmitStaticExternCAliases() { 5211 if (!getTargetCodeGenInfo().shouldEmitStaticExternCAliases()) 5212 return; 5213 for (auto &I : StaticExternCValues) { 5214 IdentifierInfo *Name = I.first; 5215 llvm::GlobalValue *Val = I.second; 5216 if (Val && !getModule().getNamedValue(Name->getName())) 5217 addUsedGlobal(llvm::GlobalAlias::create(Name->getName(), Val)); 5218 } 5219 } 5220 5221 bool CodeGenModule::lookupRepresentativeDecl(StringRef MangledName, 5222 GlobalDecl &Result) const { 5223 auto Res = Manglings.find(MangledName); 5224 if (Res == Manglings.end()) 5225 return false; 5226 Result = Res->getValue(); 5227 return true; 5228 } 5229 5230 /// Emits metadata nodes associating all the global values in the 5231 /// current module with the Decls they came from. This is useful for 5232 /// projects using IR gen as a subroutine. 5233 /// 5234 /// Since there's currently no way to associate an MDNode directly 5235 /// with an llvm::GlobalValue, we create a global named metadata 5236 /// with the name 'clang.global.decl.ptrs'. 5237 void CodeGenModule::EmitDeclMetadata() { 5238 llvm::NamedMDNode *GlobalMetadata = nullptr; 5239 5240 for (auto &I : MangledDeclNames) { 5241 llvm::GlobalValue *Addr = getModule().getNamedValue(I.second); 5242 // Some mangled names don't necessarily have an associated GlobalValue 5243 // in this module, e.g. if we mangled it for DebugInfo. 5244 if (Addr) 5245 EmitGlobalDeclMetadata(*this, GlobalMetadata, I.first, Addr); 5246 } 5247 } 5248 5249 /// Emits metadata nodes for all the local variables in the current 5250 /// function. 5251 void CodeGenFunction::EmitDeclMetadata() { 5252 if (LocalDeclMap.empty()) return; 5253 5254 llvm::LLVMContext &Context = getLLVMContext(); 5255 5256 // Find the unique metadata ID for this name. 5257 unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr"); 5258 5259 llvm::NamedMDNode *GlobalMetadata = nullptr; 5260 5261 for (auto &I : LocalDeclMap) { 5262 const Decl *D = I.first; 5263 llvm::Value *Addr = I.second.getPointer(); 5264 if (auto *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) { 5265 llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D); 5266 Alloca->setMetadata( 5267 DeclPtrKind, llvm::MDNode::get( 5268 Context, llvm::ValueAsMetadata::getConstant(DAddr))); 5269 } else if (auto *GV = dyn_cast<llvm::GlobalValue>(Addr)) { 5270 GlobalDecl GD = GlobalDecl(cast<VarDecl>(D)); 5271 EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV); 5272 } 5273 } 5274 } 5275 5276 void CodeGenModule::EmitVersionIdentMetadata() { 5277 llvm::NamedMDNode *IdentMetadata = 5278 TheModule.getOrInsertNamedMetadata("llvm.ident"); 5279 std::string Version = getClangFullVersion(); 5280 llvm::LLVMContext &Ctx = TheModule.getContext(); 5281 5282 llvm::Metadata *IdentNode[] = {llvm::MDString::get(Ctx, Version)}; 5283 IdentMetadata->addOperand(llvm::MDNode::get(Ctx, IdentNode)); 5284 } 5285 5286 void CodeGenModule::EmitCommandLineMetadata() { 5287 llvm::NamedMDNode *CommandLineMetadata = 5288 TheModule.getOrInsertNamedMetadata("llvm.commandline"); 5289 std::string CommandLine = getCodeGenOpts().RecordCommandLine; 5290 llvm::LLVMContext &Ctx = TheModule.getContext(); 5291 5292 llvm::Metadata *CommandLineNode[] = {llvm::MDString::get(Ctx, CommandLine)}; 5293 CommandLineMetadata->addOperand(llvm::MDNode::get(Ctx, CommandLineNode)); 5294 } 5295 5296 void CodeGenModule::EmitTargetMetadata() { 5297 // Warning, new MangledDeclNames may be appended within this loop. 5298 // We rely on MapVector insertions adding new elements to the end 5299 // of the container. 5300 // FIXME: Move this loop into the one target that needs it, and only 5301 // loop over those declarations for which we couldn't emit the target 5302 // metadata when we emitted the declaration. 5303 for (unsigned I = 0; I != MangledDeclNames.size(); ++I) { 5304 auto Val = *(MangledDeclNames.begin() + I); 5305 const Decl *D = Val.first.getDecl()->getMostRecentDecl(); 5306 llvm::GlobalValue *GV = GetGlobalValue(Val.second); 5307 getTargetCodeGenInfo().emitTargetMD(D, GV, *this); 5308 } 5309 } 5310 5311 void CodeGenModule::EmitCoverageFile() { 5312 if (getCodeGenOpts().CoverageDataFile.empty() && 5313 getCodeGenOpts().CoverageNotesFile.empty()) 5314 return; 5315 5316 llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu"); 5317 if (!CUNode) 5318 return; 5319 5320 llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov"); 5321 llvm::LLVMContext &Ctx = TheModule.getContext(); 5322 auto *CoverageDataFile = 5323 llvm::MDString::get(Ctx, getCodeGenOpts().CoverageDataFile); 5324 auto *CoverageNotesFile = 5325 llvm::MDString::get(Ctx, getCodeGenOpts().CoverageNotesFile); 5326 for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) { 5327 llvm::MDNode *CU = CUNode->getOperand(i); 5328 llvm::Metadata *Elts[] = {CoverageNotesFile, CoverageDataFile, CU}; 5329 GCov->addOperand(llvm::MDNode::get(Ctx, Elts)); 5330 } 5331 } 5332 5333 llvm::Constant *CodeGenModule::EmitUuidofInitializer(StringRef Uuid) { 5334 // Sema has checked that all uuid strings are of the form 5335 // "12345678-1234-1234-1234-1234567890ab". 5336 assert(Uuid.size() == 36); 5337 for (unsigned i = 0; i < 36; ++i) { 5338 if (i == 8 || i == 13 || i == 18 || i == 23) assert(Uuid[i] == '-'); 5339 else assert(isHexDigit(Uuid[i])); 5340 } 5341 5342 // The starts of all bytes of Field3 in Uuid. Field 3 is "1234-1234567890ab". 5343 const unsigned Field3ValueOffsets[8] = { 19, 21, 24, 26, 28, 30, 32, 34 }; 5344 5345 llvm::Constant *Field3[8]; 5346 for (unsigned Idx = 0; Idx < 8; ++Idx) 5347 Field3[Idx] = llvm::ConstantInt::get( 5348 Int8Ty, Uuid.substr(Field3ValueOffsets[Idx], 2), 16); 5349 5350 llvm::Constant *Fields[4] = { 5351 llvm::ConstantInt::get(Int32Ty, Uuid.substr(0, 8), 16), 5352 llvm::ConstantInt::get(Int16Ty, Uuid.substr(9, 4), 16), 5353 llvm::ConstantInt::get(Int16Ty, Uuid.substr(14, 4), 16), 5354 llvm::ConstantArray::get(llvm::ArrayType::get(Int8Ty, 8), Field3) 5355 }; 5356 5357 return llvm::ConstantStruct::getAnon(Fields); 5358 } 5359 5360 llvm::Constant *CodeGenModule::GetAddrOfRTTIDescriptor(QualType Ty, 5361 bool ForEH) { 5362 // Return a bogus pointer if RTTI is disabled, unless it's for EH. 5363 // FIXME: should we even be calling this method if RTTI is disabled 5364 // and it's not for EH? 5365 if ((!ForEH && !getLangOpts().RTTI) || getLangOpts().CUDAIsDevice) 5366 return llvm::Constant::getNullValue(Int8PtrTy); 5367 5368 if (ForEH && Ty->isObjCObjectPointerType() && 5369 LangOpts.ObjCRuntime.isGNUFamily()) 5370 return ObjCRuntime->GetEHType(Ty); 5371 5372 return getCXXABI().getAddrOfRTTIDescriptor(Ty); 5373 } 5374 5375 void CodeGenModule::EmitOMPThreadPrivateDecl(const OMPThreadPrivateDecl *D) { 5376 // Do not emit threadprivates in simd-only mode. 5377 if (LangOpts.OpenMP && LangOpts.OpenMPSimd) 5378 return; 5379 for (auto RefExpr : D->varlists()) { 5380 auto *VD = cast<VarDecl>(cast<DeclRefExpr>(RefExpr)->getDecl()); 5381 bool PerformInit = 5382 VD->getAnyInitializer() && 5383 !VD->getAnyInitializer()->isConstantInitializer(getContext(), 5384 /*ForRef=*/false); 5385 5386 Address Addr(GetAddrOfGlobalVar(VD), getContext().getDeclAlign(VD)); 5387 if (auto InitFunction = getOpenMPRuntime().emitThreadPrivateVarDefinition( 5388 VD, Addr, RefExpr->getBeginLoc(), PerformInit)) 5389 CXXGlobalInits.push_back(InitFunction); 5390 } 5391 } 5392 5393 llvm::Metadata * 5394 CodeGenModule::CreateMetadataIdentifierImpl(QualType T, MetadataTypeMap &Map, 5395 StringRef Suffix) { 5396 llvm::Metadata *&InternalId = Map[T.getCanonicalType()]; 5397 if (InternalId) 5398 return InternalId; 5399 5400 if (isExternallyVisible(T->getLinkage())) { 5401 std::string OutName; 5402 llvm::raw_string_ostream Out(OutName); 5403 getCXXABI().getMangleContext().mangleTypeName(T, Out); 5404 Out << Suffix; 5405 5406 InternalId = llvm::MDString::get(getLLVMContext(), Out.str()); 5407 } else { 5408 InternalId = llvm::MDNode::getDistinct(getLLVMContext(), 5409 llvm::ArrayRef<llvm::Metadata *>()); 5410 } 5411 5412 return InternalId; 5413 } 5414 5415 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierForType(QualType T) { 5416 return CreateMetadataIdentifierImpl(T, MetadataIdMap, ""); 5417 } 5418 5419 llvm::Metadata * 5420 CodeGenModule::CreateMetadataIdentifierForVirtualMemPtrType(QualType T) { 5421 return CreateMetadataIdentifierImpl(T, VirtualMetadataIdMap, ".virtual"); 5422 } 5423 5424 // Generalize pointer types to a void pointer with the qualifiers of the 5425 // originally pointed-to type, e.g. 'const char *' and 'char * const *' 5426 // generalize to 'const void *' while 'char *' and 'const char **' generalize to 5427 // 'void *'. 5428 static QualType GeneralizeType(ASTContext &Ctx, QualType Ty) { 5429 if (!Ty->isPointerType()) 5430 return Ty; 5431 5432 return Ctx.getPointerType( 5433 QualType(Ctx.VoidTy).withCVRQualifiers( 5434 Ty->getPointeeType().getCVRQualifiers())); 5435 } 5436 5437 // Apply type generalization to a FunctionType's return and argument types 5438 static QualType GeneralizeFunctionType(ASTContext &Ctx, QualType Ty) { 5439 if (auto *FnType = Ty->getAs<FunctionProtoType>()) { 5440 SmallVector<QualType, 8> GeneralizedParams; 5441 for (auto &Param : FnType->param_types()) 5442 GeneralizedParams.push_back(GeneralizeType(Ctx, Param)); 5443 5444 return Ctx.getFunctionType( 5445 GeneralizeType(Ctx, FnType->getReturnType()), 5446 GeneralizedParams, FnType->getExtProtoInfo()); 5447 } 5448 5449 if (auto *FnType = Ty->getAs<FunctionNoProtoType>()) 5450 return Ctx.getFunctionNoProtoType( 5451 GeneralizeType(Ctx, FnType->getReturnType())); 5452 5453 llvm_unreachable("Encountered unknown FunctionType"); 5454 } 5455 5456 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierGeneralized(QualType T) { 5457 return CreateMetadataIdentifierImpl(GeneralizeFunctionType(getContext(), T), 5458 GeneralizedMetadataIdMap, ".generalized"); 5459 } 5460 5461 /// Returns whether this module needs the "all-vtables" type identifier. 5462 bool CodeGenModule::NeedAllVtablesTypeId() const { 5463 // Returns true if at least one of vtable-based CFI checkers is enabled and 5464 // is not in the trapping mode. 5465 return ((LangOpts.Sanitize.has(SanitizerKind::CFIVCall) && 5466 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIVCall)) || 5467 (LangOpts.Sanitize.has(SanitizerKind::CFINVCall) && 5468 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFINVCall)) || 5469 (LangOpts.Sanitize.has(SanitizerKind::CFIDerivedCast) && 5470 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIDerivedCast)) || 5471 (LangOpts.Sanitize.has(SanitizerKind::CFIUnrelatedCast) && 5472 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIUnrelatedCast))); 5473 } 5474 5475 void CodeGenModule::AddVTableTypeMetadata(llvm::GlobalVariable *VTable, 5476 CharUnits Offset, 5477 const CXXRecordDecl *RD) { 5478 llvm::Metadata *MD = 5479 CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0)); 5480 VTable->addTypeMetadata(Offset.getQuantity(), MD); 5481 5482 if (CodeGenOpts.SanitizeCfiCrossDso) 5483 if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD)) 5484 VTable->addTypeMetadata(Offset.getQuantity(), 5485 llvm::ConstantAsMetadata::get(CrossDsoTypeId)); 5486 5487 if (NeedAllVtablesTypeId()) { 5488 llvm::Metadata *MD = llvm::MDString::get(getLLVMContext(), "all-vtables"); 5489 VTable->addTypeMetadata(Offset.getQuantity(), MD); 5490 } 5491 } 5492 5493 TargetAttr::ParsedTargetAttr CodeGenModule::filterFunctionTargetAttrs(const TargetAttr *TD) { 5494 assert(TD != nullptr); 5495 TargetAttr::ParsedTargetAttr ParsedAttr = TD->parse(); 5496 5497 ParsedAttr.Features.erase( 5498 llvm::remove_if(ParsedAttr.Features, 5499 [&](const std::string &Feat) { 5500 return !Target.isValidFeatureName( 5501 StringRef{Feat}.substr(1)); 5502 }), 5503 ParsedAttr.Features.end()); 5504 return ParsedAttr; 5505 } 5506 5507 5508 // Fills in the supplied string map with the set of target features for the 5509 // passed in function. 5510 void CodeGenModule::getFunctionFeatureMap(llvm::StringMap<bool> &FeatureMap, 5511 GlobalDecl GD) { 5512 StringRef TargetCPU = Target.getTargetOpts().CPU; 5513 const FunctionDecl *FD = GD.getDecl()->getAsFunction(); 5514 if (const auto *TD = FD->getAttr<TargetAttr>()) { 5515 TargetAttr::ParsedTargetAttr ParsedAttr = filterFunctionTargetAttrs(TD); 5516 5517 // Make a copy of the features as passed on the command line into the 5518 // beginning of the additional features from the function to override. 5519 ParsedAttr.Features.insert(ParsedAttr.Features.begin(), 5520 Target.getTargetOpts().FeaturesAsWritten.begin(), 5521 Target.getTargetOpts().FeaturesAsWritten.end()); 5522 5523 if (ParsedAttr.Architecture != "" && 5524 Target.isValidCPUName(ParsedAttr.Architecture)) 5525 TargetCPU = ParsedAttr.Architecture; 5526 5527 // Now populate the feature map, first with the TargetCPU which is either 5528 // the default or a new one from the target attribute string. Then we'll use 5529 // the passed in features (FeaturesAsWritten) along with the new ones from 5530 // the attribute. 5531 Target.initFeatureMap(FeatureMap, getDiags(), TargetCPU, 5532 ParsedAttr.Features); 5533 } else if (const auto *SD = FD->getAttr<CPUSpecificAttr>()) { 5534 llvm::SmallVector<StringRef, 32> FeaturesTmp; 5535 Target.getCPUSpecificCPUDispatchFeatures( 5536 SD->getCPUName(GD.getMultiVersionIndex())->getName(), FeaturesTmp); 5537 std::vector<std::string> Features(FeaturesTmp.begin(), FeaturesTmp.end()); 5538 Target.initFeatureMap(FeatureMap, getDiags(), TargetCPU, Features); 5539 } else { 5540 Target.initFeatureMap(FeatureMap, getDiags(), TargetCPU, 5541 Target.getTargetOpts().Features); 5542 } 5543 } 5544 5545 llvm::SanitizerStatReport &CodeGenModule::getSanStats() { 5546 if (!SanStats) 5547 SanStats = llvm::make_unique<llvm::SanitizerStatReport>(&getModule()); 5548 5549 return *SanStats; 5550 } 5551 llvm::Value * 5552 CodeGenModule::createOpenCLIntToSamplerConversion(const Expr *E, 5553 CodeGenFunction &CGF) { 5554 llvm::Constant *C = ConstantEmitter(CGF).emitAbstract(E, E->getType()); 5555 auto SamplerT = getOpenCLRuntime().getSamplerType(E->getType().getTypePtr()); 5556 auto FTy = llvm::FunctionType::get(SamplerT, {C->getType()}, false); 5557 return CGF.Builder.CreateCall(CreateRuntimeFunction(FTy, 5558 "__translate_sampler_initializer"), 5559 {C}); 5560 } 5561