1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This coordinates the per-module state used while generating code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenModule.h" 15 #include "CGBlocks.h" 16 #include "CGCUDARuntime.h" 17 #include "CGCXXABI.h" 18 #include "CGCall.h" 19 #include "CGDebugInfo.h" 20 #include "CGObjCRuntime.h" 21 #include "CGOpenCLRuntime.h" 22 #include "CGOpenMPRuntime.h" 23 #include "CGOpenMPRuntimeNVPTX.h" 24 #include "CodeGenFunction.h" 25 #include "CodeGenPGO.h" 26 #include "CodeGenTBAA.h" 27 #include "CoverageMappingGen.h" 28 #include "TargetInfo.h" 29 #include "clang/AST/ASTContext.h" 30 #include "clang/AST/CharUnits.h" 31 #include "clang/AST/DeclCXX.h" 32 #include "clang/AST/DeclObjC.h" 33 #include "clang/AST/DeclTemplate.h" 34 #include "clang/AST/Mangle.h" 35 #include "clang/AST/RecordLayout.h" 36 #include "clang/AST/RecursiveASTVisitor.h" 37 #include "clang/Basic/Builtins.h" 38 #include "clang/Basic/CharInfo.h" 39 #include "clang/Basic/Diagnostic.h" 40 #include "clang/Basic/Module.h" 41 #include "clang/Basic/SourceManager.h" 42 #include "clang/Basic/TargetInfo.h" 43 #include "clang/Basic/Version.h" 44 #include "clang/CodeGen/ConstantInitBuilder.h" 45 #include "clang/Frontend/CodeGenOptions.h" 46 #include "clang/Sema/SemaDiagnostic.h" 47 #include "llvm/ADT/Triple.h" 48 #include "llvm/Analysis/TargetLibraryInfo.h" 49 #include "llvm/IR/CallSite.h" 50 #include "llvm/IR/CallingConv.h" 51 #include "llvm/IR/DataLayout.h" 52 #include "llvm/IR/Intrinsics.h" 53 #include "llvm/IR/LLVMContext.h" 54 #include "llvm/IR/Module.h" 55 #include "llvm/ProfileData/InstrProfReader.h" 56 #include "llvm/Support/ConvertUTF.h" 57 #include "llvm/Support/ErrorHandling.h" 58 #include "llvm/Support/MD5.h" 59 60 using namespace clang; 61 using namespace CodeGen; 62 63 static const char AnnotationSection[] = "llvm.metadata"; 64 65 static CGCXXABI *createCXXABI(CodeGenModule &CGM) { 66 switch (CGM.getTarget().getCXXABI().getKind()) { 67 case TargetCXXABI::GenericAArch64: 68 case TargetCXXABI::GenericARM: 69 case TargetCXXABI::iOS: 70 case TargetCXXABI::iOS64: 71 case TargetCXXABI::WatchOS: 72 case TargetCXXABI::GenericMIPS: 73 case TargetCXXABI::GenericItanium: 74 case TargetCXXABI::WebAssembly: 75 return CreateItaniumCXXABI(CGM); 76 case TargetCXXABI::Microsoft: 77 return CreateMicrosoftCXXABI(CGM); 78 } 79 80 llvm_unreachable("invalid C++ ABI kind"); 81 } 82 83 CodeGenModule::CodeGenModule(ASTContext &C, const HeaderSearchOptions &HSO, 84 const PreprocessorOptions &PPO, 85 const CodeGenOptions &CGO, llvm::Module &M, 86 DiagnosticsEngine &diags, 87 CoverageSourceInfo *CoverageInfo) 88 : Context(C), LangOpts(C.getLangOpts()), HeaderSearchOpts(HSO), 89 PreprocessorOpts(PPO), CodeGenOpts(CGO), TheModule(M), Diags(diags), 90 Target(C.getTargetInfo()), ABI(createCXXABI(*this)), 91 VMContext(M.getContext()), Types(*this), VTables(*this), 92 SanitizerMD(new SanitizerMetadata(*this)) { 93 94 // Initialize the type cache. 95 llvm::LLVMContext &LLVMContext = M.getContext(); 96 VoidTy = llvm::Type::getVoidTy(LLVMContext); 97 Int8Ty = llvm::Type::getInt8Ty(LLVMContext); 98 Int16Ty = llvm::Type::getInt16Ty(LLVMContext); 99 Int32Ty = llvm::Type::getInt32Ty(LLVMContext); 100 Int64Ty = llvm::Type::getInt64Ty(LLVMContext); 101 FloatTy = llvm::Type::getFloatTy(LLVMContext); 102 DoubleTy = llvm::Type::getDoubleTy(LLVMContext); 103 PointerWidthInBits = C.getTargetInfo().getPointerWidth(0); 104 PointerAlignInBytes = 105 C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(0)).getQuantity(); 106 SizeSizeInBytes = 107 C.toCharUnitsFromBits(C.getTargetInfo().getMaxPointerWidth()).getQuantity(); 108 IntAlignInBytes = 109 C.toCharUnitsFromBits(C.getTargetInfo().getIntAlign()).getQuantity(); 110 IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth()); 111 IntPtrTy = llvm::IntegerType::get(LLVMContext, 112 C.getTargetInfo().getMaxPointerWidth()); 113 Int8PtrTy = Int8Ty->getPointerTo(0); 114 Int8PtrPtrTy = Int8PtrTy->getPointerTo(0); 115 AllocaInt8PtrTy = Int8Ty->getPointerTo( 116 M.getDataLayout().getAllocaAddrSpace()); 117 ASTAllocaAddressSpace = getTargetCodeGenInfo().getASTAllocaAddressSpace(); 118 119 RuntimeCC = getTargetCodeGenInfo().getABIInfo().getRuntimeCC(); 120 BuiltinCC = getTargetCodeGenInfo().getABIInfo().getBuiltinCC(); 121 122 if (LangOpts.ObjC1) 123 createObjCRuntime(); 124 if (LangOpts.OpenCL) 125 createOpenCLRuntime(); 126 if (LangOpts.OpenMP) 127 createOpenMPRuntime(); 128 if (LangOpts.CUDA) 129 createCUDARuntime(); 130 131 // Enable TBAA unless it's suppressed. ThreadSanitizer needs TBAA even at O0. 132 if (LangOpts.Sanitize.has(SanitizerKind::Thread) || 133 (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0)) 134 TBAA.reset(new CodeGenTBAA(Context, VMContext, CodeGenOpts, getLangOpts(), 135 getCXXABI().getMangleContext())); 136 137 // If debug info or coverage generation is enabled, create the CGDebugInfo 138 // object. 139 if (CodeGenOpts.getDebugInfo() != codegenoptions::NoDebugInfo || 140 CodeGenOpts.EmitGcovArcs || CodeGenOpts.EmitGcovNotes) 141 DebugInfo.reset(new CGDebugInfo(*this)); 142 143 Block.GlobalUniqueCount = 0; 144 145 if (C.getLangOpts().ObjC1) 146 ObjCData.reset(new ObjCEntrypoints()); 147 148 if (CodeGenOpts.hasProfileClangUse()) { 149 auto ReaderOrErr = llvm::IndexedInstrProfReader::create( 150 CodeGenOpts.ProfileInstrumentUsePath); 151 if (auto E = ReaderOrErr.takeError()) { 152 unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error, 153 "Could not read profile %0: %1"); 154 llvm::handleAllErrors(std::move(E), [&](const llvm::ErrorInfoBase &EI) { 155 getDiags().Report(DiagID) << CodeGenOpts.ProfileInstrumentUsePath 156 << EI.message(); 157 }); 158 } else 159 PGOReader = std::move(ReaderOrErr.get()); 160 } 161 162 // If coverage mapping generation is enabled, create the 163 // CoverageMappingModuleGen object. 164 if (CodeGenOpts.CoverageMapping) 165 CoverageMapping.reset(new CoverageMappingModuleGen(*this, *CoverageInfo)); 166 } 167 168 CodeGenModule::~CodeGenModule() {} 169 170 void CodeGenModule::createObjCRuntime() { 171 // This is just isGNUFamily(), but we want to force implementors of 172 // new ABIs to decide how best to do this. 173 switch (LangOpts.ObjCRuntime.getKind()) { 174 case ObjCRuntime::GNUstep: 175 case ObjCRuntime::GCC: 176 case ObjCRuntime::ObjFW: 177 ObjCRuntime.reset(CreateGNUObjCRuntime(*this)); 178 return; 179 180 case ObjCRuntime::FragileMacOSX: 181 case ObjCRuntime::MacOSX: 182 case ObjCRuntime::iOS: 183 case ObjCRuntime::WatchOS: 184 ObjCRuntime.reset(CreateMacObjCRuntime(*this)); 185 return; 186 } 187 llvm_unreachable("bad runtime kind"); 188 } 189 190 void CodeGenModule::createOpenCLRuntime() { 191 OpenCLRuntime.reset(new CGOpenCLRuntime(*this)); 192 } 193 194 void CodeGenModule::createOpenMPRuntime() { 195 // Select a specialized code generation class based on the target, if any. 196 // If it does not exist use the default implementation. 197 switch (getTriple().getArch()) { 198 case llvm::Triple::nvptx: 199 case llvm::Triple::nvptx64: 200 assert(getLangOpts().OpenMPIsDevice && 201 "OpenMP NVPTX is only prepared to deal with device code."); 202 OpenMPRuntime.reset(new CGOpenMPRuntimeNVPTX(*this)); 203 break; 204 default: 205 OpenMPRuntime.reset(new CGOpenMPRuntime(*this)); 206 break; 207 } 208 } 209 210 void CodeGenModule::createCUDARuntime() { 211 CUDARuntime.reset(CreateNVCUDARuntime(*this)); 212 } 213 214 void CodeGenModule::addReplacement(StringRef Name, llvm::Constant *C) { 215 Replacements[Name] = C; 216 } 217 218 void CodeGenModule::applyReplacements() { 219 for (auto &I : Replacements) { 220 StringRef MangledName = I.first(); 221 llvm::Constant *Replacement = I.second; 222 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 223 if (!Entry) 224 continue; 225 auto *OldF = cast<llvm::Function>(Entry); 226 auto *NewF = dyn_cast<llvm::Function>(Replacement); 227 if (!NewF) { 228 if (auto *Alias = dyn_cast<llvm::GlobalAlias>(Replacement)) { 229 NewF = dyn_cast<llvm::Function>(Alias->getAliasee()); 230 } else { 231 auto *CE = cast<llvm::ConstantExpr>(Replacement); 232 assert(CE->getOpcode() == llvm::Instruction::BitCast || 233 CE->getOpcode() == llvm::Instruction::GetElementPtr); 234 NewF = dyn_cast<llvm::Function>(CE->getOperand(0)); 235 } 236 } 237 238 // Replace old with new, but keep the old order. 239 OldF->replaceAllUsesWith(Replacement); 240 if (NewF) { 241 NewF->removeFromParent(); 242 OldF->getParent()->getFunctionList().insertAfter(OldF->getIterator(), 243 NewF); 244 } 245 OldF->eraseFromParent(); 246 } 247 } 248 249 void CodeGenModule::addGlobalValReplacement(llvm::GlobalValue *GV, llvm::Constant *C) { 250 GlobalValReplacements.push_back(std::make_pair(GV, C)); 251 } 252 253 void CodeGenModule::applyGlobalValReplacements() { 254 for (auto &I : GlobalValReplacements) { 255 llvm::GlobalValue *GV = I.first; 256 llvm::Constant *C = I.second; 257 258 GV->replaceAllUsesWith(C); 259 GV->eraseFromParent(); 260 } 261 } 262 263 // This is only used in aliases that we created and we know they have a 264 // linear structure. 265 static const llvm::GlobalObject *getAliasedGlobal( 266 const llvm::GlobalIndirectSymbol &GIS) { 267 llvm::SmallPtrSet<const llvm::GlobalIndirectSymbol*, 4> Visited; 268 const llvm::Constant *C = &GIS; 269 for (;;) { 270 C = C->stripPointerCasts(); 271 if (auto *GO = dyn_cast<llvm::GlobalObject>(C)) 272 return GO; 273 // stripPointerCasts will not walk over weak aliases. 274 auto *GIS2 = dyn_cast<llvm::GlobalIndirectSymbol>(C); 275 if (!GIS2) 276 return nullptr; 277 if (!Visited.insert(GIS2).second) 278 return nullptr; 279 C = GIS2->getIndirectSymbol(); 280 } 281 } 282 283 void CodeGenModule::checkAliases() { 284 // Check if the constructed aliases are well formed. It is really unfortunate 285 // that we have to do this in CodeGen, but we only construct mangled names 286 // and aliases during codegen. 287 bool Error = false; 288 DiagnosticsEngine &Diags = getDiags(); 289 for (const GlobalDecl &GD : Aliases) { 290 const auto *D = cast<ValueDecl>(GD.getDecl()); 291 SourceLocation Location; 292 bool IsIFunc = D->hasAttr<IFuncAttr>(); 293 if (const Attr *A = D->getDefiningAttr()) 294 Location = A->getLocation(); 295 else 296 llvm_unreachable("Not an alias or ifunc?"); 297 StringRef MangledName = getMangledName(GD); 298 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 299 auto *Alias = cast<llvm::GlobalIndirectSymbol>(Entry); 300 const llvm::GlobalValue *GV = getAliasedGlobal(*Alias); 301 if (!GV) { 302 Error = true; 303 Diags.Report(Location, diag::err_cyclic_alias) << IsIFunc; 304 } else if (GV->isDeclaration()) { 305 Error = true; 306 Diags.Report(Location, diag::err_alias_to_undefined) 307 << IsIFunc << IsIFunc; 308 } else if (IsIFunc) { 309 // Check resolver function type. 310 llvm::FunctionType *FTy = dyn_cast<llvm::FunctionType>( 311 GV->getType()->getPointerElementType()); 312 assert(FTy); 313 if (!FTy->getReturnType()->isPointerTy()) 314 Diags.Report(Location, diag::err_ifunc_resolver_return); 315 if (FTy->getNumParams()) 316 Diags.Report(Location, diag::err_ifunc_resolver_params); 317 } 318 319 llvm::Constant *Aliasee = Alias->getIndirectSymbol(); 320 llvm::GlobalValue *AliaseeGV; 321 if (auto CE = dyn_cast<llvm::ConstantExpr>(Aliasee)) 322 AliaseeGV = cast<llvm::GlobalValue>(CE->getOperand(0)); 323 else 324 AliaseeGV = cast<llvm::GlobalValue>(Aliasee); 325 326 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) { 327 StringRef AliasSection = SA->getName(); 328 if (AliasSection != AliaseeGV->getSection()) 329 Diags.Report(SA->getLocation(), diag::warn_alias_with_section) 330 << AliasSection << IsIFunc << IsIFunc; 331 } 332 333 // We have to handle alias to weak aliases in here. LLVM itself disallows 334 // this since the object semantics would not match the IL one. For 335 // compatibility with gcc we implement it by just pointing the alias 336 // to its aliasee's aliasee. We also warn, since the user is probably 337 // expecting the link to be weak. 338 if (auto GA = dyn_cast<llvm::GlobalIndirectSymbol>(AliaseeGV)) { 339 if (GA->isInterposable()) { 340 Diags.Report(Location, diag::warn_alias_to_weak_alias) 341 << GV->getName() << GA->getName() << IsIFunc; 342 Aliasee = llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast( 343 GA->getIndirectSymbol(), Alias->getType()); 344 Alias->setIndirectSymbol(Aliasee); 345 } 346 } 347 } 348 if (!Error) 349 return; 350 351 for (const GlobalDecl &GD : Aliases) { 352 StringRef MangledName = getMangledName(GD); 353 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 354 auto *Alias = dyn_cast<llvm::GlobalIndirectSymbol>(Entry); 355 Alias->replaceAllUsesWith(llvm::UndefValue::get(Alias->getType())); 356 Alias->eraseFromParent(); 357 } 358 } 359 360 void CodeGenModule::clear() { 361 DeferredDeclsToEmit.clear(); 362 if (OpenMPRuntime) 363 OpenMPRuntime->clear(); 364 } 365 366 void InstrProfStats::reportDiagnostics(DiagnosticsEngine &Diags, 367 StringRef MainFile) { 368 if (!hasDiagnostics()) 369 return; 370 if (VisitedInMainFile > 0 && VisitedInMainFile == MissingInMainFile) { 371 if (MainFile.empty()) 372 MainFile = "<stdin>"; 373 Diags.Report(diag::warn_profile_data_unprofiled) << MainFile; 374 } else { 375 if (Mismatched > 0) 376 Diags.Report(diag::warn_profile_data_out_of_date) << Visited << Mismatched; 377 378 if (Missing > 0) 379 Diags.Report(diag::warn_profile_data_missing) << Visited << Missing; 380 } 381 } 382 383 void CodeGenModule::Release() { 384 EmitDeferred(); 385 applyGlobalValReplacements(); 386 applyReplacements(); 387 checkAliases(); 388 EmitCXXGlobalInitFunc(); 389 EmitCXXGlobalDtorFunc(); 390 EmitCXXThreadLocalInitFunc(); 391 if (ObjCRuntime) 392 if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction()) 393 AddGlobalCtor(ObjCInitFunction); 394 if (Context.getLangOpts().CUDA && !Context.getLangOpts().CUDAIsDevice && 395 CUDARuntime) { 396 if (llvm::Function *CudaCtorFunction = CUDARuntime->makeModuleCtorFunction()) 397 AddGlobalCtor(CudaCtorFunction); 398 if (llvm::Function *CudaDtorFunction = CUDARuntime->makeModuleDtorFunction()) 399 AddGlobalDtor(CudaDtorFunction); 400 } 401 if (OpenMPRuntime) 402 if (llvm::Function *OpenMPRegistrationFunction = 403 OpenMPRuntime->emitRegistrationFunction()) { 404 auto ComdatKey = OpenMPRegistrationFunction->hasComdat() ? 405 OpenMPRegistrationFunction : nullptr; 406 AddGlobalCtor(OpenMPRegistrationFunction, 0, ComdatKey); 407 } 408 if (PGOReader) { 409 getModule().setProfileSummary(PGOReader->getSummary().getMD(VMContext)); 410 if (PGOStats.hasDiagnostics()) 411 PGOStats.reportDiagnostics(getDiags(), getCodeGenOpts().MainFileName); 412 } 413 EmitCtorList(GlobalCtors, "llvm.global_ctors"); 414 EmitCtorList(GlobalDtors, "llvm.global_dtors"); 415 EmitGlobalAnnotations(); 416 EmitStaticExternCAliases(); 417 EmitDeferredUnusedCoverageMappings(); 418 if (CoverageMapping) 419 CoverageMapping->emit(); 420 if (CodeGenOpts.SanitizeCfiCrossDso) { 421 CodeGenFunction(*this).EmitCfiCheckFail(); 422 CodeGenFunction(*this).EmitCfiCheckStub(); 423 } 424 emitAtAvailableLinkGuard(); 425 emitLLVMUsed(); 426 if (SanStats) 427 SanStats->finish(); 428 429 if (CodeGenOpts.Autolink && 430 (Context.getLangOpts().Modules || !LinkerOptionsMetadata.empty())) { 431 EmitModuleLinkOptions(); 432 } 433 434 // Record mregparm value now so it is visible through rest of codegen. 435 if (Context.getTargetInfo().getTriple().getArch() == llvm::Triple::x86) 436 getModule().addModuleFlag(llvm::Module::Error, "NumRegisterParameters", 437 CodeGenOpts.NumRegisterParameters); 438 439 if (CodeGenOpts.DwarfVersion) { 440 // We actually want the latest version when there are conflicts. 441 // We can change from Warning to Latest if such mode is supported. 442 getModule().addModuleFlag(llvm::Module::Warning, "Dwarf Version", 443 CodeGenOpts.DwarfVersion); 444 } 445 if (CodeGenOpts.EmitCodeView) { 446 // Indicate that we want CodeView in the metadata. 447 getModule().addModuleFlag(llvm::Module::Warning, "CodeView", 1); 448 } 449 if (CodeGenOpts.OptimizationLevel > 0 && CodeGenOpts.StrictVTablePointers) { 450 // We don't support LTO with 2 with different StrictVTablePointers 451 // FIXME: we could support it by stripping all the information introduced 452 // by StrictVTablePointers. 453 454 getModule().addModuleFlag(llvm::Module::Error, "StrictVTablePointers",1); 455 456 llvm::Metadata *Ops[2] = { 457 llvm::MDString::get(VMContext, "StrictVTablePointers"), 458 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 459 llvm::Type::getInt32Ty(VMContext), 1))}; 460 461 getModule().addModuleFlag(llvm::Module::Require, 462 "StrictVTablePointersRequirement", 463 llvm::MDNode::get(VMContext, Ops)); 464 } 465 if (DebugInfo) 466 // We support a single version in the linked module. The LLVM 467 // parser will drop debug info with a different version number 468 // (and warn about it, too). 469 getModule().addModuleFlag(llvm::Module::Warning, "Debug Info Version", 470 llvm::DEBUG_METADATA_VERSION); 471 472 // Width of wchar_t in bytes 473 uint64_t WCharWidth = 474 Context.getTypeSizeInChars(Context.getWideCharType()).getQuantity(); 475 assert(LangOpts.ShortWChar || 476 llvm::TargetLibraryInfoImpl::getTargetWCharSize(Target.getTriple()) == 477 Target.getWCharWidth() / 8 && 478 "LLVM wchar_t size out of sync"); 479 480 // We need to record the widths of enums and wchar_t, so that we can generate 481 // the correct build attributes in the ARM backend. wchar_size is also used by 482 // TargetLibraryInfo. 483 getModule().addModuleFlag(llvm::Module::Error, "wchar_size", WCharWidth); 484 485 llvm::Triple::ArchType Arch = Context.getTargetInfo().getTriple().getArch(); 486 if ( Arch == llvm::Triple::arm 487 || Arch == llvm::Triple::armeb 488 || Arch == llvm::Triple::thumb 489 || Arch == llvm::Triple::thumbeb) { 490 // The minimum width of an enum in bytes 491 uint64_t EnumWidth = Context.getLangOpts().ShortEnums ? 1 : 4; 492 getModule().addModuleFlag(llvm::Module::Error, "min_enum_size", EnumWidth); 493 } 494 495 if (CodeGenOpts.SanitizeCfiCrossDso) { 496 // Indicate that we want cross-DSO control flow integrity checks. 497 getModule().addModuleFlag(llvm::Module::Override, "Cross-DSO CFI", 1); 498 } 499 500 if (LangOpts.CUDAIsDevice && getTriple().isNVPTX()) { 501 // Indicate whether __nvvm_reflect should be configured to flush denormal 502 // floating point values to 0. (This corresponds to its "__CUDA_FTZ" 503 // property.) 504 getModule().addModuleFlag(llvm::Module::Override, "nvvm-reflect-ftz", 505 LangOpts.CUDADeviceFlushDenormalsToZero ? 1 : 0); 506 } 507 508 if (uint32_t PLevel = Context.getLangOpts().PICLevel) { 509 assert(PLevel < 3 && "Invalid PIC Level"); 510 getModule().setPICLevel(static_cast<llvm::PICLevel::Level>(PLevel)); 511 if (Context.getLangOpts().PIE) 512 getModule().setPIELevel(static_cast<llvm::PIELevel::Level>(PLevel)); 513 } 514 515 SimplifyPersonality(); 516 517 if (getCodeGenOpts().EmitDeclMetadata) 518 EmitDeclMetadata(); 519 520 if (getCodeGenOpts().EmitGcovArcs || getCodeGenOpts().EmitGcovNotes) 521 EmitCoverageFile(); 522 523 if (DebugInfo) 524 DebugInfo->finalize(); 525 526 EmitVersionIdentMetadata(); 527 528 EmitTargetMetadata(); 529 } 530 531 void CodeGenModule::UpdateCompletedType(const TagDecl *TD) { 532 // Make sure that this type is translated. 533 Types.UpdateCompletedType(TD); 534 } 535 536 void CodeGenModule::RefreshTypeCacheForClass(const CXXRecordDecl *RD) { 537 // Make sure that this type is translated. 538 Types.RefreshTypeCacheForClass(RD); 539 } 540 541 llvm::MDNode *CodeGenModule::getTBAAInfo(QualType QTy) { 542 if (!TBAA) 543 return nullptr; 544 return TBAA->getTBAAInfo(QTy); 545 } 546 547 llvm::MDNode *CodeGenModule::getTBAAInfoForVTablePtr() { 548 if (!TBAA) 549 return nullptr; 550 return TBAA->getTBAAInfoForVTablePtr(); 551 } 552 553 llvm::MDNode *CodeGenModule::getTBAAStructInfo(QualType QTy) { 554 if (!TBAA) 555 return nullptr; 556 return TBAA->getTBAAStructInfo(QTy); 557 } 558 559 llvm::MDNode *CodeGenModule::getTBAAStructTagInfo(QualType BaseTy, 560 llvm::MDNode *AccessN, 561 uint64_t O) { 562 if (!TBAA) 563 return nullptr; 564 return TBAA->getTBAAStructTagInfo(BaseTy, AccessN, O); 565 } 566 567 /// Decorate the instruction with a TBAA tag. For both scalar TBAA 568 /// and struct-path aware TBAA, the tag has the same format: 569 /// base type, access type and offset. 570 /// When ConvertTypeToTag is true, we create a tag based on the scalar type. 571 void CodeGenModule::DecorateInstructionWithTBAA(llvm::Instruction *Inst, 572 llvm::MDNode *TBAAInfo, 573 bool ConvertTypeToTag) { 574 if (ConvertTypeToTag && TBAA) 575 Inst->setMetadata(llvm::LLVMContext::MD_tbaa, 576 TBAA->getTBAAScalarTagInfo(TBAAInfo)); 577 else 578 Inst->setMetadata(llvm::LLVMContext::MD_tbaa, TBAAInfo); 579 } 580 581 void CodeGenModule::DecorateInstructionWithInvariantGroup( 582 llvm::Instruction *I, const CXXRecordDecl *RD) { 583 I->setMetadata(llvm::LLVMContext::MD_invariant_group, 584 llvm::MDNode::get(getLLVMContext(), {})); 585 } 586 587 void CodeGenModule::Error(SourceLocation loc, StringRef message) { 588 unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, "%0"); 589 getDiags().Report(Context.getFullLoc(loc), diagID) << message; 590 } 591 592 /// ErrorUnsupported - Print out an error that codegen doesn't support the 593 /// specified stmt yet. 594 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type) { 595 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, 596 "cannot compile this %0 yet"); 597 std::string Msg = Type; 598 getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID) 599 << Msg << S->getSourceRange(); 600 } 601 602 /// ErrorUnsupported - Print out an error that codegen doesn't support the 603 /// specified decl yet. 604 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type) { 605 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, 606 "cannot compile this %0 yet"); 607 std::string Msg = Type; 608 getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg; 609 } 610 611 llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) { 612 return llvm::ConstantInt::get(SizeTy, size.getQuantity()); 613 } 614 615 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV, 616 const NamedDecl *D) const { 617 // Internal definitions always have default visibility. 618 if (GV->hasLocalLinkage()) { 619 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 620 return; 621 } 622 623 // Set visibility for definitions. 624 LinkageInfo LV = D->getLinkageAndVisibility(); 625 if (LV.isVisibilityExplicit() || !GV->hasAvailableExternallyLinkage()) 626 GV->setVisibility(GetLLVMVisibility(LV.getVisibility())); 627 } 628 629 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(StringRef S) { 630 return llvm::StringSwitch<llvm::GlobalVariable::ThreadLocalMode>(S) 631 .Case("global-dynamic", llvm::GlobalVariable::GeneralDynamicTLSModel) 632 .Case("local-dynamic", llvm::GlobalVariable::LocalDynamicTLSModel) 633 .Case("initial-exec", llvm::GlobalVariable::InitialExecTLSModel) 634 .Case("local-exec", llvm::GlobalVariable::LocalExecTLSModel); 635 } 636 637 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel( 638 CodeGenOptions::TLSModel M) { 639 switch (M) { 640 case CodeGenOptions::GeneralDynamicTLSModel: 641 return llvm::GlobalVariable::GeneralDynamicTLSModel; 642 case CodeGenOptions::LocalDynamicTLSModel: 643 return llvm::GlobalVariable::LocalDynamicTLSModel; 644 case CodeGenOptions::InitialExecTLSModel: 645 return llvm::GlobalVariable::InitialExecTLSModel; 646 case CodeGenOptions::LocalExecTLSModel: 647 return llvm::GlobalVariable::LocalExecTLSModel; 648 } 649 llvm_unreachable("Invalid TLS model!"); 650 } 651 652 void CodeGenModule::setTLSMode(llvm::GlobalValue *GV, const VarDecl &D) const { 653 assert(D.getTLSKind() && "setting TLS mode on non-TLS var!"); 654 655 llvm::GlobalValue::ThreadLocalMode TLM; 656 TLM = GetLLVMTLSModel(CodeGenOpts.getDefaultTLSModel()); 657 658 // Override the TLS model if it is explicitly specified. 659 if (const TLSModelAttr *Attr = D.getAttr<TLSModelAttr>()) { 660 TLM = GetLLVMTLSModel(Attr->getModel()); 661 } 662 663 GV->setThreadLocalMode(TLM); 664 } 665 666 StringRef CodeGenModule::getMangledName(GlobalDecl GD) { 667 GlobalDecl CanonicalGD = GD.getCanonicalDecl(); 668 669 // Some ABIs don't have constructor variants. Make sure that base and 670 // complete constructors get mangled the same. 671 if (const auto *CD = dyn_cast<CXXConstructorDecl>(CanonicalGD.getDecl())) { 672 if (!getTarget().getCXXABI().hasConstructorVariants()) { 673 CXXCtorType OrigCtorType = GD.getCtorType(); 674 assert(OrigCtorType == Ctor_Base || OrigCtorType == Ctor_Complete); 675 if (OrigCtorType == Ctor_Base) 676 CanonicalGD = GlobalDecl(CD, Ctor_Complete); 677 } 678 } 679 680 StringRef &FoundStr = MangledDeclNames[CanonicalGD]; 681 if (!FoundStr.empty()) 682 return FoundStr; 683 684 const auto *ND = cast<NamedDecl>(GD.getDecl()); 685 SmallString<256> Buffer; 686 StringRef Str; 687 if (getCXXABI().getMangleContext().shouldMangleDeclName(ND)) { 688 llvm::raw_svector_ostream Out(Buffer); 689 if (const auto *D = dyn_cast<CXXConstructorDecl>(ND)) 690 getCXXABI().getMangleContext().mangleCXXCtor(D, GD.getCtorType(), Out); 691 else if (const auto *D = dyn_cast<CXXDestructorDecl>(ND)) 692 getCXXABI().getMangleContext().mangleCXXDtor(D, GD.getDtorType(), Out); 693 else 694 getCXXABI().getMangleContext().mangleName(ND, Out); 695 Str = Out.str(); 696 } else { 697 IdentifierInfo *II = ND->getIdentifier(); 698 assert(II && "Attempt to mangle unnamed decl."); 699 const auto *FD = dyn_cast<FunctionDecl>(ND); 700 701 if (FD && 702 FD->getType()->castAs<FunctionType>()->getCallConv() == CC_X86RegCall) { 703 llvm::raw_svector_ostream Out(Buffer); 704 Out << "__regcall3__" << II->getName(); 705 Str = Out.str(); 706 } else { 707 Str = II->getName(); 708 } 709 } 710 711 // Keep the first result in the case of a mangling collision. 712 auto Result = Manglings.insert(std::make_pair(Str, GD)); 713 return FoundStr = Result.first->first(); 714 } 715 716 StringRef CodeGenModule::getBlockMangledName(GlobalDecl GD, 717 const BlockDecl *BD) { 718 MangleContext &MangleCtx = getCXXABI().getMangleContext(); 719 const Decl *D = GD.getDecl(); 720 721 SmallString<256> Buffer; 722 llvm::raw_svector_ostream Out(Buffer); 723 if (!D) 724 MangleCtx.mangleGlobalBlock(BD, 725 dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()), Out); 726 else if (const auto *CD = dyn_cast<CXXConstructorDecl>(D)) 727 MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out); 728 else if (const auto *DD = dyn_cast<CXXDestructorDecl>(D)) 729 MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out); 730 else 731 MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out); 732 733 auto Result = Manglings.insert(std::make_pair(Out.str(), BD)); 734 return Result.first->first(); 735 } 736 737 llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) { 738 return getModule().getNamedValue(Name); 739 } 740 741 /// AddGlobalCtor - Add a function to the list that will be called before 742 /// main() runs. 743 void CodeGenModule::AddGlobalCtor(llvm::Function *Ctor, int Priority, 744 llvm::Constant *AssociatedData) { 745 // FIXME: Type coercion of void()* types. 746 GlobalCtors.push_back(Structor(Priority, Ctor, AssociatedData)); 747 } 748 749 /// AddGlobalDtor - Add a function to the list that will be called 750 /// when the module is unloaded. 751 void CodeGenModule::AddGlobalDtor(llvm::Function *Dtor, int Priority) { 752 // FIXME: Type coercion of void()* types. 753 GlobalDtors.push_back(Structor(Priority, Dtor, nullptr)); 754 } 755 756 void CodeGenModule::EmitCtorList(CtorList &Fns, const char *GlobalName) { 757 if (Fns.empty()) return; 758 759 // Ctor function type is void()*. 760 llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false); 761 llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy); 762 763 // Get the type of a ctor entry, { i32, void ()*, i8* }. 764 llvm::StructType *CtorStructTy = llvm::StructType::get( 765 Int32Ty, llvm::PointerType::getUnqual(CtorFTy), VoidPtrTy); 766 767 // Construct the constructor and destructor arrays. 768 ConstantInitBuilder builder(*this); 769 auto ctors = builder.beginArray(CtorStructTy); 770 for (const auto &I : Fns) { 771 auto ctor = ctors.beginStruct(CtorStructTy); 772 ctor.addInt(Int32Ty, I.Priority); 773 ctor.add(llvm::ConstantExpr::getBitCast(I.Initializer, CtorPFTy)); 774 if (I.AssociatedData) 775 ctor.add(llvm::ConstantExpr::getBitCast(I.AssociatedData, VoidPtrTy)); 776 else 777 ctor.addNullPointer(VoidPtrTy); 778 ctor.finishAndAddTo(ctors); 779 } 780 781 auto list = 782 ctors.finishAndCreateGlobal(GlobalName, getPointerAlign(), 783 /*constant*/ false, 784 llvm::GlobalValue::AppendingLinkage); 785 786 // The LTO linker doesn't seem to like it when we set an alignment 787 // on appending variables. Take it off as a workaround. 788 list->setAlignment(0); 789 790 Fns.clear(); 791 } 792 793 llvm::GlobalValue::LinkageTypes 794 CodeGenModule::getFunctionLinkage(GlobalDecl GD) { 795 const auto *D = cast<FunctionDecl>(GD.getDecl()); 796 797 GVALinkage Linkage = getContext().GetGVALinkageForFunction(D); 798 799 if (isa<CXXDestructorDecl>(D) && 800 getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D), 801 GD.getDtorType())) { 802 // Destructor variants in the Microsoft C++ ABI are always internal or 803 // linkonce_odr thunks emitted on an as-needed basis. 804 return Linkage == GVA_Internal ? llvm::GlobalValue::InternalLinkage 805 : llvm::GlobalValue::LinkOnceODRLinkage; 806 } 807 808 if (isa<CXXConstructorDecl>(D) && 809 cast<CXXConstructorDecl>(D)->isInheritingConstructor() && 810 Context.getTargetInfo().getCXXABI().isMicrosoft()) { 811 // Our approach to inheriting constructors is fundamentally different from 812 // that used by the MS ABI, so keep our inheriting constructor thunks 813 // internal rather than trying to pick an unambiguous mangling for them. 814 return llvm::GlobalValue::InternalLinkage; 815 } 816 817 return getLLVMLinkageForDeclarator(D, Linkage, /*isConstantVariable=*/false); 818 } 819 820 void CodeGenModule::setFunctionDLLStorageClass(GlobalDecl GD, llvm::Function *F) { 821 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 822 823 if (const auto *Dtor = dyn_cast_or_null<CXXDestructorDecl>(FD)) { 824 if (getCXXABI().useThunkForDtorVariant(Dtor, GD.getDtorType())) { 825 // Don't dllexport/import destructor thunks. 826 F->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 827 return; 828 } 829 } 830 831 if (FD->hasAttr<DLLImportAttr>()) 832 F->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass); 833 else if (FD->hasAttr<DLLExportAttr>()) 834 F->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass); 835 else 836 F->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass); 837 } 838 839 llvm::ConstantInt *CodeGenModule::CreateCrossDsoCfiTypeId(llvm::Metadata *MD) { 840 llvm::MDString *MDS = dyn_cast<llvm::MDString>(MD); 841 if (!MDS) return nullptr; 842 843 return llvm::ConstantInt::get(Int64Ty, llvm::MD5Hash(MDS->getString())); 844 } 845 846 void CodeGenModule::setFunctionDefinitionAttributes(const FunctionDecl *D, 847 llvm::Function *F) { 848 setNonAliasAttributes(D, F); 849 } 850 851 void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D, 852 const CGFunctionInfo &Info, 853 llvm::Function *F) { 854 unsigned CallingConv; 855 llvm::AttributeList PAL; 856 ConstructAttributeList(F->getName(), Info, D, PAL, CallingConv, false); 857 F->setAttributes(PAL); 858 F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv)); 859 } 860 861 /// Determines whether the language options require us to model 862 /// unwind exceptions. We treat -fexceptions as mandating this 863 /// except under the fragile ObjC ABI with only ObjC exceptions 864 /// enabled. This means, for example, that C with -fexceptions 865 /// enables this. 866 static bool hasUnwindExceptions(const LangOptions &LangOpts) { 867 // If exceptions are completely disabled, obviously this is false. 868 if (!LangOpts.Exceptions) return false; 869 870 // If C++ exceptions are enabled, this is true. 871 if (LangOpts.CXXExceptions) return true; 872 873 // If ObjC exceptions are enabled, this depends on the ABI. 874 if (LangOpts.ObjCExceptions) { 875 return LangOpts.ObjCRuntime.hasUnwindExceptions(); 876 } 877 878 return true; 879 } 880 881 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D, 882 llvm::Function *F) { 883 llvm::AttrBuilder B; 884 885 if (CodeGenOpts.UnwindTables) 886 B.addAttribute(llvm::Attribute::UWTable); 887 888 if (!hasUnwindExceptions(LangOpts)) 889 B.addAttribute(llvm::Attribute::NoUnwind); 890 891 if (LangOpts.getStackProtector() == LangOptions::SSPOn) 892 B.addAttribute(llvm::Attribute::StackProtect); 893 else if (LangOpts.getStackProtector() == LangOptions::SSPStrong) 894 B.addAttribute(llvm::Attribute::StackProtectStrong); 895 else if (LangOpts.getStackProtector() == LangOptions::SSPReq) 896 B.addAttribute(llvm::Attribute::StackProtectReq); 897 898 if (!D) { 899 // If we don't have a declaration to control inlining, the function isn't 900 // explicitly marked as alwaysinline for semantic reasons, and inlining is 901 // disabled, mark the function as noinline. 902 if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline) && 903 CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining) 904 B.addAttribute(llvm::Attribute::NoInline); 905 906 F->addAttributes(llvm::AttributeList::FunctionIndex, B); 907 return; 908 } 909 910 // Track whether we need to add the optnone LLVM attribute, 911 // starting with the default for this optimization level. 912 bool ShouldAddOptNone = 913 !CodeGenOpts.DisableO0ImplyOptNone && CodeGenOpts.OptimizationLevel == 0; 914 // We can't add optnone in the following cases, it won't pass the verifier. 915 ShouldAddOptNone &= !D->hasAttr<MinSizeAttr>(); 916 ShouldAddOptNone &= !F->hasFnAttribute(llvm::Attribute::AlwaysInline); 917 ShouldAddOptNone &= !D->hasAttr<AlwaysInlineAttr>(); 918 919 if (ShouldAddOptNone || D->hasAttr<OptimizeNoneAttr>()) { 920 B.addAttribute(llvm::Attribute::OptimizeNone); 921 922 // OptimizeNone implies noinline; we should not be inlining such functions. 923 B.addAttribute(llvm::Attribute::NoInline); 924 assert(!F->hasFnAttribute(llvm::Attribute::AlwaysInline) && 925 "OptimizeNone and AlwaysInline on same function!"); 926 927 // We still need to handle naked functions even though optnone subsumes 928 // much of their semantics. 929 if (D->hasAttr<NakedAttr>()) 930 B.addAttribute(llvm::Attribute::Naked); 931 932 // OptimizeNone wins over OptimizeForSize and MinSize. 933 F->removeFnAttr(llvm::Attribute::OptimizeForSize); 934 F->removeFnAttr(llvm::Attribute::MinSize); 935 } else if (D->hasAttr<NakedAttr>()) { 936 // Naked implies noinline: we should not be inlining such functions. 937 B.addAttribute(llvm::Attribute::Naked); 938 B.addAttribute(llvm::Attribute::NoInline); 939 } else if (D->hasAttr<NoDuplicateAttr>()) { 940 B.addAttribute(llvm::Attribute::NoDuplicate); 941 } else if (D->hasAttr<NoInlineAttr>()) { 942 B.addAttribute(llvm::Attribute::NoInline); 943 } else if (D->hasAttr<AlwaysInlineAttr>() && 944 !F->hasFnAttribute(llvm::Attribute::NoInline)) { 945 // (noinline wins over always_inline, and we can't specify both in IR) 946 B.addAttribute(llvm::Attribute::AlwaysInline); 947 } else if (CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining) { 948 // If we're not inlining, then force everything that isn't always_inline to 949 // carry an explicit noinline attribute. 950 if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline)) 951 B.addAttribute(llvm::Attribute::NoInline); 952 } else { 953 // Otherwise, propagate the inline hint attribute and potentially use its 954 // absence to mark things as noinline. 955 if (auto *FD = dyn_cast<FunctionDecl>(D)) { 956 if (any_of(FD->redecls(), [&](const FunctionDecl *Redecl) { 957 return Redecl->isInlineSpecified(); 958 })) { 959 B.addAttribute(llvm::Attribute::InlineHint); 960 } else if (CodeGenOpts.getInlining() == 961 CodeGenOptions::OnlyHintInlining && 962 !FD->isInlined() && 963 !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) { 964 B.addAttribute(llvm::Attribute::NoInline); 965 } 966 } 967 } 968 969 // Add other optimization related attributes if we are optimizing this 970 // function. 971 if (!D->hasAttr<OptimizeNoneAttr>()) { 972 if (D->hasAttr<ColdAttr>()) { 973 if (!ShouldAddOptNone) 974 B.addAttribute(llvm::Attribute::OptimizeForSize); 975 B.addAttribute(llvm::Attribute::Cold); 976 } 977 978 if (D->hasAttr<MinSizeAttr>()) 979 B.addAttribute(llvm::Attribute::MinSize); 980 } 981 982 F->addAttributes(llvm::AttributeList::FunctionIndex, B); 983 984 unsigned alignment = D->getMaxAlignment() / Context.getCharWidth(); 985 if (alignment) 986 F->setAlignment(alignment); 987 988 // Some C++ ABIs require 2-byte alignment for member functions, in order to 989 // reserve a bit for differentiating between virtual and non-virtual member 990 // functions. If the current target's C++ ABI requires this and this is a 991 // member function, set its alignment accordingly. 992 if (getTarget().getCXXABI().areMemberFunctionsAligned()) { 993 if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D)) 994 F->setAlignment(2); 995 } 996 997 // In the cross-dso CFI mode, we want !type attributes on definitions only. 998 if (CodeGenOpts.SanitizeCfiCrossDso) 999 if (auto *FD = dyn_cast<FunctionDecl>(D)) 1000 CreateFunctionTypeMetadata(FD, F); 1001 } 1002 1003 void CodeGenModule::SetCommonAttributes(const Decl *D, 1004 llvm::GlobalValue *GV) { 1005 if (const auto *ND = dyn_cast_or_null<NamedDecl>(D)) 1006 setGlobalVisibility(GV, ND); 1007 else 1008 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 1009 1010 if (D && D->hasAttr<UsedAttr>()) 1011 addUsedGlobal(GV); 1012 } 1013 1014 void CodeGenModule::setAliasAttributes(const Decl *D, 1015 llvm::GlobalValue *GV) { 1016 SetCommonAttributes(D, GV); 1017 1018 // Process the dllexport attribute based on whether the original definition 1019 // (not necessarily the aliasee) was exported. 1020 if (D->hasAttr<DLLExportAttr>()) 1021 GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass); 1022 } 1023 1024 void CodeGenModule::setNonAliasAttributes(const Decl *D, 1025 llvm::GlobalObject *GO) { 1026 SetCommonAttributes(D, GO); 1027 1028 if (D) 1029 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) 1030 GO->setSection(SA->getName()); 1031 1032 getTargetCodeGenInfo().setTargetAttributes(D, GO, *this); 1033 } 1034 1035 void CodeGenModule::SetInternalFunctionAttributes(const Decl *D, 1036 llvm::Function *F, 1037 const CGFunctionInfo &FI) { 1038 SetLLVMFunctionAttributes(D, FI, F); 1039 SetLLVMFunctionAttributesForDefinition(D, F); 1040 1041 F->setLinkage(llvm::Function::InternalLinkage); 1042 1043 setNonAliasAttributes(D, F); 1044 } 1045 1046 static void setLinkageAndVisibilityForGV(llvm::GlobalValue *GV, 1047 const NamedDecl *ND) { 1048 // Set linkage and visibility in case we never see a definition. 1049 LinkageInfo LV = ND->getLinkageAndVisibility(); 1050 if (LV.getLinkage() != ExternalLinkage) { 1051 // Don't set internal linkage on declarations. 1052 } else { 1053 if (ND->hasAttr<DLLImportAttr>()) { 1054 GV->setLinkage(llvm::GlobalValue::ExternalLinkage); 1055 GV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass); 1056 } else if (ND->hasAttr<DLLExportAttr>()) { 1057 GV->setLinkage(llvm::GlobalValue::ExternalLinkage); 1058 } else if (ND->hasAttr<WeakAttr>() || ND->isWeakImported()) { 1059 // "extern_weak" is overloaded in LLVM; we probably should have 1060 // separate linkage types for this. 1061 GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage); 1062 } 1063 1064 // Set visibility on a declaration only if it's explicit. 1065 if (LV.isVisibilityExplicit()) 1066 GV->setVisibility(CodeGenModule::GetLLVMVisibility(LV.getVisibility())); 1067 } 1068 } 1069 1070 void CodeGenModule::CreateFunctionTypeMetadata(const FunctionDecl *FD, 1071 llvm::Function *F) { 1072 // Only if we are checking indirect calls. 1073 if (!LangOpts.Sanitize.has(SanitizerKind::CFIICall)) 1074 return; 1075 1076 // Non-static class methods are handled via vtable pointer checks elsewhere. 1077 if (isa<CXXMethodDecl>(FD) && !cast<CXXMethodDecl>(FD)->isStatic()) 1078 return; 1079 1080 // Additionally, if building with cross-DSO support... 1081 if (CodeGenOpts.SanitizeCfiCrossDso) { 1082 // Skip available_externally functions. They won't be codegen'ed in the 1083 // current module anyway. 1084 if (getContext().GetGVALinkageForFunction(FD) == GVA_AvailableExternally) 1085 return; 1086 } 1087 1088 llvm::Metadata *MD = CreateMetadataIdentifierForType(FD->getType()); 1089 F->addTypeMetadata(0, MD); 1090 1091 // Emit a hash-based bit set entry for cross-DSO calls. 1092 if (CodeGenOpts.SanitizeCfiCrossDso) 1093 if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD)) 1094 F->addTypeMetadata(0, llvm::ConstantAsMetadata::get(CrossDsoTypeId)); 1095 } 1096 1097 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD, llvm::Function *F, 1098 bool IsIncompleteFunction, 1099 bool IsThunk) { 1100 if (llvm::Intrinsic::ID IID = F->getIntrinsicID()) { 1101 // If this is an intrinsic function, set the function's attributes 1102 // to the intrinsic's attributes. 1103 F->setAttributes(llvm::Intrinsic::getAttributes(getLLVMContext(), IID)); 1104 return; 1105 } 1106 1107 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 1108 1109 if (!IsIncompleteFunction) 1110 SetLLVMFunctionAttributes(FD, getTypes().arrangeGlobalDeclaration(GD), F); 1111 1112 // Add the Returned attribute for "this", except for iOS 5 and earlier 1113 // where substantial code, including the libstdc++ dylib, was compiled with 1114 // GCC and does not actually return "this". 1115 if (!IsThunk && getCXXABI().HasThisReturn(GD) && 1116 !(getTriple().isiOS() && getTriple().isOSVersionLT(6))) { 1117 assert(!F->arg_empty() && 1118 F->arg_begin()->getType() 1119 ->canLosslesslyBitCastTo(F->getReturnType()) && 1120 "unexpected this return"); 1121 F->addAttribute(1, llvm::Attribute::Returned); 1122 } 1123 1124 // Only a few attributes are set on declarations; these may later be 1125 // overridden by a definition. 1126 1127 setLinkageAndVisibilityForGV(F, FD); 1128 1129 if (const SectionAttr *SA = FD->getAttr<SectionAttr>()) 1130 F->setSection(SA->getName()); 1131 1132 if (FD->isReplaceableGlobalAllocationFunction()) { 1133 // A replaceable global allocation function does not act like a builtin by 1134 // default, only if it is invoked by a new-expression or delete-expression. 1135 F->addAttribute(llvm::AttributeList::FunctionIndex, 1136 llvm::Attribute::NoBuiltin); 1137 1138 // A sane operator new returns a non-aliasing pointer. 1139 // FIXME: Also add NonNull attribute to the return value 1140 // for the non-nothrow forms? 1141 auto Kind = FD->getDeclName().getCXXOverloadedOperator(); 1142 if (getCodeGenOpts().AssumeSaneOperatorNew && 1143 (Kind == OO_New || Kind == OO_Array_New)) 1144 F->addAttribute(llvm::AttributeList::ReturnIndex, 1145 llvm::Attribute::NoAlias); 1146 } 1147 1148 if (isa<CXXConstructorDecl>(FD) || isa<CXXDestructorDecl>(FD)) 1149 F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 1150 else if (const auto *MD = dyn_cast<CXXMethodDecl>(FD)) 1151 if (MD->isVirtual()) 1152 F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 1153 1154 // Don't emit entries for function declarations in the cross-DSO mode. This 1155 // is handled with better precision by the receiving DSO. 1156 if (!CodeGenOpts.SanitizeCfiCrossDso) 1157 CreateFunctionTypeMetadata(FD, F); 1158 } 1159 1160 void CodeGenModule::addUsedGlobal(llvm::GlobalValue *GV) { 1161 assert(!GV->isDeclaration() && 1162 "Only globals with definition can force usage."); 1163 LLVMUsed.emplace_back(GV); 1164 } 1165 1166 void CodeGenModule::addCompilerUsedGlobal(llvm::GlobalValue *GV) { 1167 assert(!GV->isDeclaration() && 1168 "Only globals with definition can force usage."); 1169 LLVMCompilerUsed.emplace_back(GV); 1170 } 1171 1172 static void emitUsed(CodeGenModule &CGM, StringRef Name, 1173 std::vector<llvm::WeakTrackingVH> &List) { 1174 // Don't create llvm.used if there is no need. 1175 if (List.empty()) 1176 return; 1177 1178 // Convert List to what ConstantArray needs. 1179 SmallVector<llvm::Constant*, 8> UsedArray; 1180 UsedArray.resize(List.size()); 1181 for (unsigned i = 0, e = List.size(); i != e; ++i) { 1182 UsedArray[i] = 1183 llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast( 1184 cast<llvm::Constant>(&*List[i]), CGM.Int8PtrTy); 1185 } 1186 1187 if (UsedArray.empty()) 1188 return; 1189 llvm::ArrayType *ATy = llvm::ArrayType::get(CGM.Int8PtrTy, UsedArray.size()); 1190 1191 auto *GV = new llvm::GlobalVariable( 1192 CGM.getModule(), ATy, false, llvm::GlobalValue::AppendingLinkage, 1193 llvm::ConstantArray::get(ATy, UsedArray), Name); 1194 1195 GV->setSection("llvm.metadata"); 1196 } 1197 1198 void CodeGenModule::emitLLVMUsed() { 1199 emitUsed(*this, "llvm.used", LLVMUsed); 1200 emitUsed(*this, "llvm.compiler.used", LLVMCompilerUsed); 1201 } 1202 1203 void CodeGenModule::AppendLinkerOptions(StringRef Opts) { 1204 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opts); 1205 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 1206 } 1207 1208 void CodeGenModule::AddDetectMismatch(StringRef Name, StringRef Value) { 1209 llvm::SmallString<32> Opt; 1210 getTargetCodeGenInfo().getDetectMismatchOption(Name, Value, Opt); 1211 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt); 1212 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 1213 } 1214 1215 void CodeGenModule::AddDependentLib(StringRef Lib) { 1216 llvm::SmallString<24> Opt; 1217 getTargetCodeGenInfo().getDependentLibraryOption(Lib, Opt); 1218 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt); 1219 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 1220 } 1221 1222 /// \brief Add link options implied by the given module, including modules 1223 /// it depends on, using a postorder walk. 1224 static void addLinkOptionsPostorder(CodeGenModule &CGM, Module *Mod, 1225 SmallVectorImpl<llvm::Metadata *> &Metadata, 1226 llvm::SmallPtrSet<Module *, 16> &Visited) { 1227 // Import this module's parent. 1228 if (Mod->Parent && Visited.insert(Mod->Parent).second) { 1229 addLinkOptionsPostorder(CGM, Mod->Parent, Metadata, Visited); 1230 } 1231 1232 // Import this module's dependencies. 1233 for (unsigned I = Mod->Imports.size(); I > 0; --I) { 1234 if (Visited.insert(Mod->Imports[I - 1]).second) 1235 addLinkOptionsPostorder(CGM, Mod->Imports[I-1], Metadata, Visited); 1236 } 1237 1238 // Add linker options to link against the libraries/frameworks 1239 // described by this module. 1240 llvm::LLVMContext &Context = CGM.getLLVMContext(); 1241 for (unsigned I = Mod->LinkLibraries.size(); I > 0; --I) { 1242 // Link against a framework. Frameworks are currently Darwin only, so we 1243 // don't to ask TargetCodeGenInfo for the spelling of the linker option. 1244 if (Mod->LinkLibraries[I-1].IsFramework) { 1245 llvm::Metadata *Args[2] = { 1246 llvm::MDString::get(Context, "-framework"), 1247 llvm::MDString::get(Context, Mod->LinkLibraries[I - 1].Library)}; 1248 1249 Metadata.push_back(llvm::MDNode::get(Context, Args)); 1250 continue; 1251 } 1252 1253 // Link against a library. 1254 llvm::SmallString<24> Opt; 1255 CGM.getTargetCodeGenInfo().getDependentLibraryOption( 1256 Mod->LinkLibraries[I-1].Library, Opt); 1257 auto *OptString = llvm::MDString::get(Context, Opt); 1258 Metadata.push_back(llvm::MDNode::get(Context, OptString)); 1259 } 1260 } 1261 1262 void CodeGenModule::EmitModuleLinkOptions() { 1263 // Collect the set of all of the modules we want to visit to emit link 1264 // options, which is essentially the imported modules and all of their 1265 // non-explicit child modules. 1266 llvm::SetVector<clang::Module *> LinkModules; 1267 llvm::SmallPtrSet<clang::Module *, 16> Visited; 1268 SmallVector<clang::Module *, 16> Stack; 1269 1270 // Seed the stack with imported modules. 1271 for (Module *M : ImportedModules) { 1272 // Do not add any link flags when an implementation TU of a module imports 1273 // a header of that same module. 1274 if (M->getTopLevelModuleName() == getLangOpts().CurrentModule && 1275 !getLangOpts().isCompilingModule()) 1276 continue; 1277 if (Visited.insert(M).second) 1278 Stack.push_back(M); 1279 } 1280 1281 // Find all of the modules to import, making a little effort to prune 1282 // non-leaf modules. 1283 while (!Stack.empty()) { 1284 clang::Module *Mod = Stack.pop_back_val(); 1285 1286 bool AnyChildren = false; 1287 1288 // Visit the submodules of this module. 1289 for (clang::Module::submodule_iterator Sub = Mod->submodule_begin(), 1290 SubEnd = Mod->submodule_end(); 1291 Sub != SubEnd; ++Sub) { 1292 // Skip explicit children; they need to be explicitly imported to be 1293 // linked against. 1294 if ((*Sub)->IsExplicit) 1295 continue; 1296 1297 if (Visited.insert(*Sub).second) { 1298 Stack.push_back(*Sub); 1299 AnyChildren = true; 1300 } 1301 } 1302 1303 // We didn't find any children, so add this module to the list of 1304 // modules to link against. 1305 if (!AnyChildren) { 1306 LinkModules.insert(Mod); 1307 } 1308 } 1309 1310 // Add link options for all of the imported modules in reverse topological 1311 // order. We don't do anything to try to order import link flags with respect 1312 // to linker options inserted by things like #pragma comment(). 1313 SmallVector<llvm::Metadata *, 16> MetadataArgs; 1314 Visited.clear(); 1315 for (Module *M : LinkModules) 1316 if (Visited.insert(M).second) 1317 addLinkOptionsPostorder(*this, M, MetadataArgs, Visited); 1318 std::reverse(MetadataArgs.begin(), MetadataArgs.end()); 1319 LinkerOptionsMetadata.append(MetadataArgs.begin(), MetadataArgs.end()); 1320 1321 // Add the linker options metadata flag. 1322 getModule().addModuleFlag(llvm::Module::AppendUnique, "Linker Options", 1323 llvm::MDNode::get(getLLVMContext(), 1324 LinkerOptionsMetadata)); 1325 } 1326 1327 void CodeGenModule::EmitDeferred() { 1328 // Emit code for any potentially referenced deferred decls. Since a 1329 // previously unused static decl may become used during the generation of code 1330 // for a static function, iterate until no changes are made. 1331 1332 if (!DeferredVTables.empty()) { 1333 EmitDeferredVTables(); 1334 1335 // Emitting a vtable doesn't directly cause more vtables to 1336 // become deferred, although it can cause functions to be 1337 // emitted that then need those vtables. 1338 assert(DeferredVTables.empty()); 1339 } 1340 1341 // Stop if we're out of both deferred vtables and deferred declarations. 1342 if (DeferredDeclsToEmit.empty()) 1343 return; 1344 1345 // Grab the list of decls to emit. If EmitGlobalDefinition schedules more 1346 // work, it will not interfere with this. 1347 std::vector<GlobalDecl> CurDeclsToEmit; 1348 CurDeclsToEmit.swap(DeferredDeclsToEmit); 1349 1350 for (GlobalDecl &D : CurDeclsToEmit) { 1351 // We should call GetAddrOfGlobal with IsForDefinition set to true in order 1352 // to get GlobalValue with exactly the type we need, not something that 1353 // might had been created for another decl with the same mangled name but 1354 // different type. 1355 llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>( 1356 GetAddrOfGlobal(D, ForDefinition)); 1357 1358 // In case of different address spaces, we may still get a cast, even with 1359 // IsForDefinition equal to true. Query mangled names table to get 1360 // GlobalValue. 1361 if (!GV) 1362 GV = GetGlobalValue(getMangledName(D)); 1363 1364 // Make sure GetGlobalValue returned non-null. 1365 assert(GV); 1366 1367 // Check to see if we've already emitted this. This is necessary 1368 // for a couple of reasons: first, decls can end up in the 1369 // deferred-decls queue multiple times, and second, decls can end 1370 // up with definitions in unusual ways (e.g. by an extern inline 1371 // function acquiring a strong function redefinition). Just 1372 // ignore these cases. 1373 if (!GV->isDeclaration()) 1374 continue; 1375 1376 // Otherwise, emit the definition and move on to the next one. 1377 EmitGlobalDefinition(D, GV); 1378 1379 // If we found out that we need to emit more decls, do that recursively. 1380 // This has the advantage that the decls are emitted in a DFS and related 1381 // ones are close together, which is convenient for testing. 1382 if (!DeferredVTables.empty() || !DeferredDeclsToEmit.empty()) { 1383 EmitDeferred(); 1384 assert(DeferredVTables.empty() && DeferredDeclsToEmit.empty()); 1385 } 1386 } 1387 } 1388 1389 void CodeGenModule::EmitGlobalAnnotations() { 1390 if (Annotations.empty()) 1391 return; 1392 1393 // Create a new global variable for the ConstantStruct in the Module. 1394 llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get( 1395 Annotations[0]->getType(), Annotations.size()), Annotations); 1396 auto *gv = new llvm::GlobalVariable(getModule(), Array->getType(), false, 1397 llvm::GlobalValue::AppendingLinkage, 1398 Array, "llvm.global.annotations"); 1399 gv->setSection(AnnotationSection); 1400 } 1401 1402 llvm::Constant *CodeGenModule::EmitAnnotationString(StringRef Str) { 1403 llvm::Constant *&AStr = AnnotationStrings[Str]; 1404 if (AStr) 1405 return AStr; 1406 1407 // Not found yet, create a new global. 1408 llvm::Constant *s = llvm::ConstantDataArray::getString(getLLVMContext(), Str); 1409 auto *gv = 1410 new llvm::GlobalVariable(getModule(), s->getType(), true, 1411 llvm::GlobalValue::PrivateLinkage, s, ".str"); 1412 gv->setSection(AnnotationSection); 1413 gv->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 1414 AStr = gv; 1415 return gv; 1416 } 1417 1418 llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) { 1419 SourceManager &SM = getContext().getSourceManager(); 1420 PresumedLoc PLoc = SM.getPresumedLoc(Loc); 1421 if (PLoc.isValid()) 1422 return EmitAnnotationString(PLoc.getFilename()); 1423 return EmitAnnotationString(SM.getBufferName(Loc)); 1424 } 1425 1426 llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) { 1427 SourceManager &SM = getContext().getSourceManager(); 1428 PresumedLoc PLoc = SM.getPresumedLoc(L); 1429 unsigned LineNo = PLoc.isValid() ? PLoc.getLine() : 1430 SM.getExpansionLineNumber(L); 1431 return llvm::ConstantInt::get(Int32Ty, LineNo); 1432 } 1433 1434 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV, 1435 const AnnotateAttr *AA, 1436 SourceLocation L) { 1437 // Get the globals for file name, annotation, and the line number. 1438 llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()), 1439 *UnitGV = EmitAnnotationUnit(L), 1440 *LineNoCst = EmitAnnotationLineNo(L); 1441 1442 // Create the ConstantStruct for the global annotation. 1443 llvm::Constant *Fields[4] = { 1444 llvm::ConstantExpr::getBitCast(GV, Int8PtrTy), 1445 llvm::ConstantExpr::getBitCast(AnnoGV, Int8PtrTy), 1446 llvm::ConstantExpr::getBitCast(UnitGV, Int8PtrTy), 1447 LineNoCst 1448 }; 1449 return llvm::ConstantStruct::getAnon(Fields); 1450 } 1451 1452 void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D, 1453 llvm::GlobalValue *GV) { 1454 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 1455 // Get the struct elements for these annotations. 1456 for (const auto *I : D->specific_attrs<AnnotateAttr>()) 1457 Annotations.push_back(EmitAnnotateAttr(GV, I, D->getLocation())); 1458 } 1459 1460 bool CodeGenModule::isInSanitizerBlacklist(llvm::Function *Fn, 1461 SourceLocation Loc) const { 1462 const auto &SanitizerBL = getContext().getSanitizerBlacklist(); 1463 // Blacklist by function name. 1464 if (SanitizerBL.isBlacklistedFunction(Fn->getName())) 1465 return true; 1466 // Blacklist by location. 1467 if (Loc.isValid()) 1468 return SanitizerBL.isBlacklistedLocation(Loc); 1469 // If location is unknown, this may be a compiler-generated function. Assume 1470 // it's located in the main file. 1471 auto &SM = Context.getSourceManager(); 1472 if (const auto *MainFile = SM.getFileEntryForID(SM.getMainFileID())) { 1473 return SanitizerBL.isBlacklistedFile(MainFile->getName()); 1474 } 1475 return false; 1476 } 1477 1478 bool CodeGenModule::isInSanitizerBlacklist(llvm::GlobalVariable *GV, 1479 SourceLocation Loc, QualType Ty, 1480 StringRef Category) const { 1481 // For now globals can be blacklisted only in ASan and KASan. 1482 if (!LangOpts.Sanitize.hasOneOf( 1483 SanitizerKind::Address | SanitizerKind::KernelAddress)) 1484 return false; 1485 const auto &SanitizerBL = getContext().getSanitizerBlacklist(); 1486 if (SanitizerBL.isBlacklistedGlobal(GV->getName(), Category)) 1487 return true; 1488 if (SanitizerBL.isBlacklistedLocation(Loc, Category)) 1489 return true; 1490 // Check global type. 1491 if (!Ty.isNull()) { 1492 // Drill down the array types: if global variable of a fixed type is 1493 // blacklisted, we also don't instrument arrays of them. 1494 while (auto AT = dyn_cast<ArrayType>(Ty.getTypePtr())) 1495 Ty = AT->getElementType(); 1496 Ty = Ty.getCanonicalType().getUnqualifiedType(); 1497 // We allow to blacklist only record types (classes, structs etc.) 1498 if (Ty->isRecordType()) { 1499 std::string TypeStr = Ty.getAsString(getContext().getPrintingPolicy()); 1500 if (SanitizerBL.isBlacklistedType(TypeStr, Category)) 1501 return true; 1502 } 1503 } 1504 return false; 1505 } 1506 1507 bool CodeGenModule::imbueXRayAttrs(llvm::Function *Fn, SourceLocation Loc, 1508 StringRef Category) const { 1509 if (!LangOpts.XRayInstrument) 1510 return false; 1511 const auto &XRayFilter = getContext().getXRayFilter(); 1512 using ImbueAttr = XRayFunctionFilter::ImbueAttribute; 1513 auto Attr = XRayFunctionFilter::ImbueAttribute::NONE; 1514 if (Loc.isValid()) 1515 Attr = XRayFilter.shouldImbueLocation(Loc, Category); 1516 if (Attr == ImbueAttr::NONE) 1517 Attr = XRayFilter.shouldImbueFunction(Fn->getName()); 1518 switch (Attr) { 1519 case ImbueAttr::NONE: 1520 return false; 1521 case ImbueAttr::ALWAYS: 1522 Fn->addFnAttr("function-instrument", "xray-always"); 1523 break; 1524 case ImbueAttr::ALWAYS_ARG1: 1525 Fn->addFnAttr("function-instrument", "xray-always"); 1526 Fn->addFnAttr("xray-log-args", "1"); 1527 break; 1528 case ImbueAttr::NEVER: 1529 Fn->addFnAttr("function-instrument", "xray-never"); 1530 break; 1531 } 1532 return true; 1533 } 1534 1535 bool CodeGenModule::MustBeEmitted(const ValueDecl *Global) { 1536 // Never defer when EmitAllDecls is specified. 1537 if (LangOpts.EmitAllDecls) 1538 return true; 1539 1540 return getContext().DeclMustBeEmitted(Global); 1541 } 1542 1543 bool CodeGenModule::MayBeEmittedEagerly(const ValueDecl *Global) { 1544 if (const auto *FD = dyn_cast<FunctionDecl>(Global)) 1545 if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation) 1546 // Implicit template instantiations may change linkage if they are later 1547 // explicitly instantiated, so they should not be emitted eagerly. 1548 return false; 1549 if (const auto *VD = dyn_cast<VarDecl>(Global)) 1550 if (Context.getInlineVariableDefinitionKind(VD) == 1551 ASTContext::InlineVariableDefinitionKind::WeakUnknown) 1552 // A definition of an inline constexpr static data member may change 1553 // linkage later if it's redeclared outside the class. 1554 return false; 1555 // If OpenMP is enabled and threadprivates must be generated like TLS, delay 1556 // codegen for global variables, because they may be marked as threadprivate. 1557 if (LangOpts.OpenMP && LangOpts.OpenMPUseTLS && 1558 getContext().getTargetInfo().isTLSSupported() && isa<VarDecl>(Global)) 1559 return false; 1560 1561 return true; 1562 } 1563 1564 ConstantAddress CodeGenModule::GetAddrOfUuidDescriptor( 1565 const CXXUuidofExpr* E) { 1566 // Sema has verified that IIDSource has a __declspec(uuid()), and that its 1567 // well-formed. 1568 StringRef Uuid = E->getUuidStr(); 1569 std::string Name = "_GUID_" + Uuid.lower(); 1570 std::replace(Name.begin(), Name.end(), '-', '_'); 1571 1572 // The UUID descriptor should be pointer aligned. 1573 CharUnits Alignment = CharUnits::fromQuantity(PointerAlignInBytes); 1574 1575 // Look for an existing global. 1576 if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name)) 1577 return ConstantAddress(GV, Alignment); 1578 1579 llvm::Constant *Init = EmitUuidofInitializer(Uuid); 1580 assert(Init && "failed to initialize as constant"); 1581 1582 auto *GV = new llvm::GlobalVariable( 1583 getModule(), Init->getType(), 1584 /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name); 1585 if (supportsCOMDAT()) 1586 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 1587 return ConstantAddress(GV, Alignment); 1588 } 1589 1590 ConstantAddress CodeGenModule::GetWeakRefReference(const ValueDecl *VD) { 1591 const AliasAttr *AA = VD->getAttr<AliasAttr>(); 1592 assert(AA && "No alias?"); 1593 1594 CharUnits Alignment = getContext().getDeclAlign(VD); 1595 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType()); 1596 1597 // See if there is already something with the target's name in the module. 1598 llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee()); 1599 if (Entry) { 1600 unsigned AS = getContext().getTargetAddressSpace(VD->getType()); 1601 auto Ptr = llvm::ConstantExpr::getBitCast(Entry, DeclTy->getPointerTo(AS)); 1602 return ConstantAddress(Ptr, Alignment); 1603 } 1604 1605 llvm::Constant *Aliasee; 1606 if (isa<llvm::FunctionType>(DeclTy)) 1607 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, 1608 GlobalDecl(cast<FunctionDecl>(VD)), 1609 /*ForVTable=*/false); 1610 else 1611 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), 1612 llvm::PointerType::getUnqual(DeclTy), 1613 nullptr); 1614 1615 auto *F = cast<llvm::GlobalValue>(Aliasee); 1616 F->setLinkage(llvm::Function::ExternalWeakLinkage); 1617 WeakRefReferences.insert(F); 1618 1619 return ConstantAddress(Aliasee, Alignment); 1620 } 1621 1622 void CodeGenModule::EmitGlobal(GlobalDecl GD) { 1623 const auto *Global = cast<ValueDecl>(GD.getDecl()); 1624 1625 // Weak references don't produce any output by themselves. 1626 if (Global->hasAttr<WeakRefAttr>()) 1627 return; 1628 1629 // If this is an alias definition (which otherwise looks like a declaration) 1630 // emit it now. 1631 if (Global->hasAttr<AliasAttr>()) 1632 return EmitAliasDefinition(GD); 1633 1634 // IFunc like an alias whose value is resolved at runtime by calling resolver. 1635 if (Global->hasAttr<IFuncAttr>()) 1636 return emitIFuncDefinition(GD); 1637 1638 // If this is CUDA, be selective about which declarations we emit. 1639 if (LangOpts.CUDA) { 1640 if (LangOpts.CUDAIsDevice) { 1641 if (!Global->hasAttr<CUDADeviceAttr>() && 1642 !Global->hasAttr<CUDAGlobalAttr>() && 1643 !Global->hasAttr<CUDAConstantAttr>() && 1644 !Global->hasAttr<CUDASharedAttr>()) 1645 return; 1646 } else { 1647 // We need to emit host-side 'shadows' for all global 1648 // device-side variables because the CUDA runtime needs their 1649 // size and host-side address in order to provide access to 1650 // their device-side incarnations. 1651 1652 // So device-only functions are the only things we skip. 1653 if (isa<FunctionDecl>(Global) && !Global->hasAttr<CUDAHostAttr>() && 1654 Global->hasAttr<CUDADeviceAttr>()) 1655 return; 1656 1657 assert((isa<FunctionDecl>(Global) || isa<VarDecl>(Global)) && 1658 "Expected Variable or Function"); 1659 } 1660 } 1661 1662 if (LangOpts.OpenMP) { 1663 // If this is OpenMP device, check if it is legal to emit this global 1664 // normally. 1665 if (OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(GD)) 1666 return; 1667 if (auto *DRD = dyn_cast<OMPDeclareReductionDecl>(Global)) { 1668 if (MustBeEmitted(Global)) 1669 EmitOMPDeclareReduction(DRD); 1670 return; 1671 } 1672 } 1673 1674 // Ignore declarations, they will be emitted on their first use. 1675 if (const auto *FD = dyn_cast<FunctionDecl>(Global)) { 1676 // Forward declarations are emitted lazily on first use. 1677 if (!FD->doesThisDeclarationHaveABody()) { 1678 if (!FD->doesDeclarationForceExternallyVisibleDefinition()) 1679 return; 1680 1681 StringRef MangledName = getMangledName(GD); 1682 1683 // Compute the function info and LLVM type. 1684 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 1685 llvm::Type *Ty = getTypes().GetFunctionType(FI); 1686 1687 GetOrCreateLLVMFunction(MangledName, Ty, GD, /*ForVTable=*/false, 1688 /*DontDefer=*/false); 1689 return; 1690 } 1691 } else { 1692 const auto *VD = cast<VarDecl>(Global); 1693 assert(VD->isFileVarDecl() && "Cannot emit local var decl as global."); 1694 // We need to emit device-side global CUDA variables even if a 1695 // variable does not have a definition -- we still need to define 1696 // host-side shadow for it. 1697 bool MustEmitForCuda = LangOpts.CUDA && !LangOpts.CUDAIsDevice && 1698 !VD->hasDefinition() && 1699 (VD->hasAttr<CUDAConstantAttr>() || 1700 VD->hasAttr<CUDADeviceAttr>()); 1701 if (!MustEmitForCuda && 1702 VD->isThisDeclarationADefinition() != VarDecl::Definition && 1703 !Context.isMSStaticDataMemberInlineDefinition(VD)) { 1704 // If this declaration may have caused an inline variable definition to 1705 // change linkage, make sure that it's emitted. 1706 if (Context.getInlineVariableDefinitionKind(VD) == 1707 ASTContext::InlineVariableDefinitionKind::Strong) 1708 GetAddrOfGlobalVar(VD); 1709 return; 1710 } 1711 } 1712 1713 // Defer code generation to first use when possible, e.g. if this is an inline 1714 // function. If the global must always be emitted, do it eagerly if possible 1715 // to benefit from cache locality. 1716 if (MustBeEmitted(Global) && MayBeEmittedEagerly(Global)) { 1717 // Emit the definition if it can't be deferred. 1718 EmitGlobalDefinition(GD); 1719 return; 1720 } 1721 1722 // If we're deferring emission of a C++ variable with an 1723 // initializer, remember the order in which it appeared in the file. 1724 if (getLangOpts().CPlusPlus && isa<VarDecl>(Global) && 1725 cast<VarDecl>(Global)->hasInit()) { 1726 DelayedCXXInitPosition[Global] = CXXGlobalInits.size(); 1727 CXXGlobalInits.push_back(nullptr); 1728 } 1729 1730 StringRef MangledName = getMangledName(GD); 1731 if (GetGlobalValue(MangledName) != nullptr) { 1732 // The value has already been used and should therefore be emitted. 1733 addDeferredDeclToEmit(GD); 1734 } else if (MustBeEmitted(Global)) { 1735 // The value must be emitted, but cannot be emitted eagerly. 1736 assert(!MayBeEmittedEagerly(Global)); 1737 addDeferredDeclToEmit(GD); 1738 } else { 1739 // Otherwise, remember that we saw a deferred decl with this name. The 1740 // first use of the mangled name will cause it to move into 1741 // DeferredDeclsToEmit. 1742 DeferredDecls[MangledName] = GD; 1743 } 1744 } 1745 1746 // Check if T is a class type with a destructor that's not dllimport. 1747 static bool HasNonDllImportDtor(QualType T) { 1748 if (const auto *RT = T->getBaseElementTypeUnsafe()->getAs<RecordType>()) 1749 if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl())) 1750 if (RD->getDestructor() && !RD->getDestructor()->hasAttr<DLLImportAttr>()) 1751 return true; 1752 1753 return false; 1754 } 1755 1756 namespace { 1757 struct FunctionIsDirectlyRecursive : 1758 public RecursiveASTVisitor<FunctionIsDirectlyRecursive> { 1759 const StringRef Name; 1760 const Builtin::Context &BI; 1761 bool Result; 1762 FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C) : 1763 Name(N), BI(C), Result(false) { 1764 } 1765 typedef RecursiveASTVisitor<FunctionIsDirectlyRecursive> Base; 1766 1767 bool TraverseCallExpr(CallExpr *E) { 1768 const FunctionDecl *FD = E->getDirectCallee(); 1769 if (!FD) 1770 return true; 1771 AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>(); 1772 if (Attr && Name == Attr->getLabel()) { 1773 Result = true; 1774 return false; 1775 } 1776 unsigned BuiltinID = FD->getBuiltinID(); 1777 if (!BuiltinID || !BI.isLibFunction(BuiltinID)) 1778 return true; 1779 StringRef BuiltinName = BI.getName(BuiltinID); 1780 if (BuiltinName.startswith("__builtin_") && 1781 Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) { 1782 Result = true; 1783 return false; 1784 } 1785 return true; 1786 } 1787 }; 1788 1789 // Make sure we're not referencing non-imported vars or functions. 1790 struct DLLImportFunctionVisitor 1791 : public RecursiveASTVisitor<DLLImportFunctionVisitor> { 1792 bool SafeToInline = true; 1793 1794 bool shouldVisitImplicitCode() const { return true; } 1795 1796 bool VisitVarDecl(VarDecl *VD) { 1797 if (VD->getTLSKind()) { 1798 // A thread-local variable cannot be imported. 1799 SafeToInline = false; 1800 return SafeToInline; 1801 } 1802 1803 // A variable definition might imply a destructor call. 1804 if (VD->isThisDeclarationADefinition()) 1805 SafeToInline = !HasNonDllImportDtor(VD->getType()); 1806 1807 return SafeToInline; 1808 } 1809 1810 bool VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) { 1811 if (const auto *D = E->getTemporary()->getDestructor()) 1812 SafeToInline = D->hasAttr<DLLImportAttr>(); 1813 return SafeToInline; 1814 } 1815 1816 bool VisitDeclRefExpr(DeclRefExpr *E) { 1817 ValueDecl *VD = E->getDecl(); 1818 if (isa<FunctionDecl>(VD)) 1819 SafeToInline = VD->hasAttr<DLLImportAttr>(); 1820 else if (VarDecl *V = dyn_cast<VarDecl>(VD)) 1821 SafeToInline = !V->hasGlobalStorage() || V->hasAttr<DLLImportAttr>(); 1822 return SafeToInline; 1823 } 1824 1825 bool VisitCXXConstructExpr(CXXConstructExpr *E) { 1826 SafeToInline = E->getConstructor()->hasAttr<DLLImportAttr>(); 1827 return SafeToInline; 1828 } 1829 1830 bool VisitCXXMemberCallExpr(CXXMemberCallExpr *E) { 1831 CXXMethodDecl *M = E->getMethodDecl(); 1832 if (!M) { 1833 // Call through a pointer to member function. This is safe to inline. 1834 SafeToInline = true; 1835 } else { 1836 SafeToInline = M->hasAttr<DLLImportAttr>(); 1837 } 1838 return SafeToInline; 1839 } 1840 1841 bool VisitCXXDeleteExpr(CXXDeleteExpr *E) { 1842 SafeToInline = E->getOperatorDelete()->hasAttr<DLLImportAttr>(); 1843 return SafeToInline; 1844 } 1845 1846 bool VisitCXXNewExpr(CXXNewExpr *E) { 1847 SafeToInline = E->getOperatorNew()->hasAttr<DLLImportAttr>(); 1848 return SafeToInline; 1849 } 1850 }; 1851 } 1852 1853 // isTriviallyRecursive - Check if this function calls another 1854 // decl that, because of the asm attribute or the other decl being a builtin, 1855 // ends up pointing to itself. 1856 bool 1857 CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) { 1858 StringRef Name; 1859 if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) { 1860 // asm labels are a special kind of mangling we have to support. 1861 AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>(); 1862 if (!Attr) 1863 return false; 1864 Name = Attr->getLabel(); 1865 } else { 1866 Name = FD->getName(); 1867 } 1868 1869 FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo); 1870 Walker.TraverseFunctionDecl(const_cast<FunctionDecl*>(FD)); 1871 return Walker.Result; 1872 } 1873 1874 bool CodeGenModule::shouldEmitFunction(GlobalDecl GD) { 1875 if (getFunctionLinkage(GD) != llvm::Function::AvailableExternallyLinkage) 1876 return true; 1877 const auto *F = cast<FunctionDecl>(GD.getDecl()); 1878 if (CodeGenOpts.OptimizationLevel == 0 && !F->hasAttr<AlwaysInlineAttr>()) 1879 return false; 1880 1881 if (F->hasAttr<DLLImportAttr>()) { 1882 // Check whether it would be safe to inline this dllimport function. 1883 DLLImportFunctionVisitor Visitor; 1884 Visitor.TraverseFunctionDecl(const_cast<FunctionDecl*>(F)); 1885 if (!Visitor.SafeToInline) 1886 return false; 1887 1888 if (const CXXDestructorDecl *Dtor = dyn_cast<CXXDestructorDecl>(F)) { 1889 // Implicit destructor invocations aren't captured in the AST, so the 1890 // check above can't see them. Check for them manually here. 1891 for (const Decl *Member : Dtor->getParent()->decls()) 1892 if (isa<FieldDecl>(Member)) 1893 if (HasNonDllImportDtor(cast<FieldDecl>(Member)->getType())) 1894 return false; 1895 for (const CXXBaseSpecifier &B : Dtor->getParent()->bases()) 1896 if (HasNonDllImportDtor(B.getType())) 1897 return false; 1898 } 1899 } 1900 1901 // PR9614. Avoid cases where the source code is lying to us. An available 1902 // externally function should have an equivalent function somewhere else, 1903 // but a function that calls itself is clearly not equivalent to the real 1904 // implementation. 1905 // This happens in glibc's btowc and in some configure checks. 1906 return !isTriviallyRecursive(F); 1907 } 1908 1909 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD, llvm::GlobalValue *GV) { 1910 const auto *D = cast<ValueDecl>(GD.getDecl()); 1911 1912 PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(), 1913 Context.getSourceManager(), 1914 "Generating code for declaration"); 1915 1916 if (isa<FunctionDecl>(D)) { 1917 // At -O0, don't generate IR for functions with available_externally 1918 // linkage. 1919 if (!shouldEmitFunction(GD)) 1920 return; 1921 1922 if (const auto *Method = dyn_cast<CXXMethodDecl>(D)) { 1923 // Make sure to emit the definition(s) before we emit the thunks. 1924 // This is necessary for the generation of certain thunks. 1925 if (const auto *CD = dyn_cast<CXXConstructorDecl>(Method)) 1926 ABI->emitCXXStructor(CD, getFromCtorType(GD.getCtorType())); 1927 else if (const auto *DD = dyn_cast<CXXDestructorDecl>(Method)) 1928 ABI->emitCXXStructor(DD, getFromDtorType(GD.getDtorType())); 1929 else 1930 EmitGlobalFunctionDefinition(GD, GV); 1931 1932 if (Method->isVirtual()) 1933 getVTables().EmitThunks(GD); 1934 1935 return; 1936 } 1937 1938 return EmitGlobalFunctionDefinition(GD, GV); 1939 } 1940 1941 if (const auto *VD = dyn_cast<VarDecl>(D)) 1942 return EmitGlobalVarDefinition(VD, !VD->hasDefinition()); 1943 1944 llvm_unreachable("Invalid argument to EmitGlobalDefinition()"); 1945 } 1946 1947 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old, 1948 llvm::Function *NewFn); 1949 1950 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the 1951 /// module, create and return an llvm Function with the specified type. If there 1952 /// is something in the module with the specified name, return it potentially 1953 /// bitcasted to the right type. 1954 /// 1955 /// If D is non-null, it specifies a decl that correspond to this. This is used 1956 /// to set the attributes on the function when it is first created. 1957 llvm::Constant *CodeGenModule::GetOrCreateLLVMFunction( 1958 StringRef MangledName, llvm::Type *Ty, GlobalDecl GD, bool ForVTable, 1959 bool DontDefer, bool IsThunk, llvm::AttributeList ExtraAttrs, 1960 ForDefinition_t IsForDefinition) { 1961 const Decl *D = GD.getDecl(); 1962 1963 // Lookup the entry, lazily creating it if necessary. 1964 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 1965 if (Entry) { 1966 if (WeakRefReferences.erase(Entry)) { 1967 const FunctionDecl *FD = cast_or_null<FunctionDecl>(D); 1968 if (FD && !FD->hasAttr<WeakAttr>()) 1969 Entry->setLinkage(llvm::Function::ExternalLinkage); 1970 } 1971 1972 // Handle dropped DLL attributes. 1973 if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>()) 1974 Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 1975 1976 // If there are two attempts to define the same mangled name, issue an 1977 // error. 1978 if (IsForDefinition && !Entry->isDeclaration()) { 1979 GlobalDecl OtherGD; 1980 // Check that GD is not yet in DiagnosedConflictingDefinitions is required 1981 // to make sure that we issue an error only once. 1982 if (lookupRepresentativeDecl(MangledName, OtherGD) && 1983 (GD.getCanonicalDecl().getDecl() != 1984 OtherGD.getCanonicalDecl().getDecl()) && 1985 DiagnosedConflictingDefinitions.insert(GD).second) { 1986 getDiags().Report(D->getLocation(), 1987 diag::err_duplicate_mangled_name); 1988 getDiags().Report(OtherGD.getDecl()->getLocation(), 1989 diag::note_previous_definition); 1990 } 1991 } 1992 1993 if ((isa<llvm::Function>(Entry) || isa<llvm::GlobalAlias>(Entry)) && 1994 (Entry->getType()->getElementType() == Ty)) { 1995 return Entry; 1996 } 1997 1998 // Make sure the result is of the correct type. 1999 // (If function is requested for a definition, we always need to create a new 2000 // function, not just return a bitcast.) 2001 if (!IsForDefinition) 2002 return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo()); 2003 } 2004 2005 // This function doesn't have a complete type (for example, the return 2006 // type is an incomplete struct). Use a fake type instead, and make 2007 // sure not to try to set attributes. 2008 bool IsIncompleteFunction = false; 2009 2010 llvm::FunctionType *FTy; 2011 if (isa<llvm::FunctionType>(Ty)) { 2012 FTy = cast<llvm::FunctionType>(Ty); 2013 } else { 2014 FTy = llvm::FunctionType::get(VoidTy, false); 2015 IsIncompleteFunction = true; 2016 } 2017 2018 llvm::Function *F = 2019 llvm::Function::Create(FTy, llvm::Function::ExternalLinkage, 2020 Entry ? StringRef() : MangledName, &getModule()); 2021 2022 // If we already created a function with the same mangled name (but different 2023 // type) before, take its name and add it to the list of functions to be 2024 // replaced with F at the end of CodeGen. 2025 // 2026 // This happens if there is a prototype for a function (e.g. "int f()") and 2027 // then a definition of a different type (e.g. "int f(int x)"). 2028 if (Entry) { 2029 F->takeName(Entry); 2030 2031 // This might be an implementation of a function without a prototype, in 2032 // which case, try to do special replacement of calls which match the new 2033 // prototype. The really key thing here is that we also potentially drop 2034 // arguments from the call site so as to make a direct call, which makes the 2035 // inliner happier and suppresses a number of optimizer warnings (!) about 2036 // dropping arguments. 2037 if (!Entry->use_empty()) { 2038 ReplaceUsesOfNonProtoTypeWithRealFunction(Entry, F); 2039 Entry->removeDeadConstantUsers(); 2040 } 2041 2042 llvm::Constant *BC = llvm::ConstantExpr::getBitCast( 2043 F, Entry->getType()->getElementType()->getPointerTo()); 2044 addGlobalValReplacement(Entry, BC); 2045 } 2046 2047 assert(F->getName() == MangledName && "name was uniqued!"); 2048 if (D) 2049 SetFunctionAttributes(GD, F, IsIncompleteFunction, IsThunk); 2050 if (ExtraAttrs.hasAttributes(llvm::AttributeList::FunctionIndex)) { 2051 llvm::AttrBuilder B(ExtraAttrs, llvm::AttributeList::FunctionIndex); 2052 F->addAttributes(llvm::AttributeList::FunctionIndex, B); 2053 } 2054 2055 if (!DontDefer) { 2056 // All MSVC dtors other than the base dtor are linkonce_odr and delegate to 2057 // each other bottoming out with the base dtor. Therefore we emit non-base 2058 // dtors on usage, even if there is no dtor definition in the TU. 2059 if (D && isa<CXXDestructorDecl>(D) && 2060 getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D), 2061 GD.getDtorType())) 2062 addDeferredDeclToEmit(GD); 2063 2064 // This is the first use or definition of a mangled name. If there is a 2065 // deferred decl with this name, remember that we need to emit it at the end 2066 // of the file. 2067 auto DDI = DeferredDecls.find(MangledName); 2068 if (DDI != DeferredDecls.end()) { 2069 // Move the potentially referenced deferred decl to the 2070 // DeferredDeclsToEmit list, and remove it from DeferredDecls (since we 2071 // don't need it anymore). 2072 addDeferredDeclToEmit(DDI->second); 2073 DeferredDecls.erase(DDI); 2074 2075 // Otherwise, there are cases we have to worry about where we're 2076 // using a declaration for which we must emit a definition but where 2077 // we might not find a top-level definition: 2078 // - member functions defined inline in their classes 2079 // - friend functions defined inline in some class 2080 // - special member functions with implicit definitions 2081 // If we ever change our AST traversal to walk into class methods, 2082 // this will be unnecessary. 2083 // 2084 // We also don't emit a definition for a function if it's going to be an 2085 // entry in a vtable, unless it's already marked as used. 2086 } else if (getLangOpts().CPlusPlus && D) { 2087 // Look for a declaration that's lexically in a record. 2088 for (const auto *FD = cast<FunctionDecl>(D)->getMostRecentDecl(); FD; 2089 FD = FD->getPreviousDecl()) { 2090 if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) { 2091 if (FD->doesThisDeclarationHaveABody()) { 2092 addDeferredDeclToEmit(GD.getWithDecl(FD)); 2093 break; 2094 } 2095 } 2096 } 2097 } 2098 } 2099 2100 // Make sure the result is of the requested type. 2101 if (!IsIncompleteFunction) { 2102 assert(F->getType()->getElementType() == Ty); 2103 return F; 2104 } 2105 2106 llvm::Type *PTy = llvm::PointerType::getUnqual(Ty); 2107 return llvm::ConstantExpr::getBitCast(F, PTy); 2108 } 2109 2110 /// GetAddrOfFunction - Return the address of the given function. If Ty is 2111 /// non-null, then this function will use the specified type if it has to 2112 /// create it (this occurs when we see a definition of the function). 2113 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD, 2114 llvm::Type *Ty, 2115 bool ForVTable, 2116 bool DontDefer, 2117 ForDefinition_t IsForDefinition) { 2118 // If there was no specific requested type, just convert it now. 2119 if (!Ty) { 2120 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 2121 auto CanonTy = Context.getCanonicalType(FD->getType()); 2122 Ty = getTypes().ConvertFunctionType(CanonTy, FD); 2123 } 2124 2125 StringRef MangledName = getMangledName(GD); 2126 return GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable, DontDefer, 2127 /*IsThunk=*/false, llvm::AttributeList(), 2128 IsForDefinition); 2129 } 2130 2131 static const FunctionDecl * 2132 GetRuntimeFunctionDecl(ASTContext &C, StringRef Name) { 2133 TranslationUnitDecl *TUDecl = C.getTranslationUnitDecl(); 2134 DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl); 2135 2136 IdentifierInfo &CII = C.Idents.get(Name); 2137 for (const auto &Result : DC->lookup(&CII)) 2138 if (const auto FD = dyn_cast<FunctionDecl>(Result)) 2139 return FD; 2140 2141 if (!C.getLangOpts().CPlusPlus) 2142 return nullptr; 2143 2144 // Demangle the premangled name from getTerminateFn() 2145 IdentifierInfo &CXXII = 2146 (Name == "_ZSt9terminatev" || Name == "\01?terminate@@YAXXZ") 2147 ? C.Idents.get("terminate") 2148 : C.Idents.get(Name); 2149 2150 for (const auto &N : {"__cxxabiv1", "std"}) { 2151 IdentifierInfo &NS = C.Idents.get(N); 2152 for (const auto &Result : DC->lookup(&NS)) { 2153 NamespaceDecl *ND = dyn_cast<NamespaceDecl>(Result); 2154 if (auto LSD = dyn_cast<LinkageSpecDecl>(Result)) 2155 for (const auto &Result : LSD->lookup(&NS)) 2156 if ((ND = dyn_cast<NamespaceDecl>(Result))) 2157 break; 2158 2159 if (ND) 2160 for (const auto &Result : ND->lookup(&CXXII)) 2161 if (const auto *FD = dyn_cast<FunctionDecl>(Result)) 2162 return FD; 2163 } 2164 } 2165 2166 return nullptr; 2167 } 2168 2169 /// CreateRuntimeFunction - Create a new runtime function with the specified 2170 /// type and name. 2171 llvm::Constant * 2172 CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy, StringRef Name, 2173 llvm::AttributeList ExtraAttrs, 2174 bool Local) { 2175 llvm::Constant *C = 2176 GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false, 2177 /*DontDefer=*/false, /*IsThunk=*/false, 2178 ExtraAttrs); 2179 2180 if (auto *F = dyn_cast<llvm::Function>(C)) { 2181 if (F->empty()) { 2182 F->setCallingConv(getRuntimeCC()); 2183 2184 if (!Local && getTriple().isOSBinFormatCOFF() && 2185 !getCodeGenOpts().LTOVisibilityPublicStd) { 2186 const FunctionDecl *FD = GetRuntimeFunctionDecl(Context, Name); 2187 if (!FD || FD->hasAttr<DLLImportAttr>()) { 2188 F->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass); 2189 F->setLinkage(llvm::GlobalValue::ExternalLinkage); 2190 } 2191 } 2192 } 2193 } 2194 2195 return C; 2196 } 2197 2198 /// CreateBuiltinFunction - Create a new builtin function with the specified 2199 /// type and name. 2200 llvm::Constant * 2201 CodeGenModule::CreateBuiltinFunction(llvm::FunctionType *FTy, StringRef Name, 2202 llvm::AttributeList ExtraAttrs) { 2203 llvm::Constant *C = 2204 GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false, 2205 /*DontDefer=*/false, /*IsThunk=*/false, ExtraAttrs); 2206 if (auto *F = dyn_cast<llvm::Function>(C)) 2207 if (F->empty()) 2208 F->setCallingConv(getBuiltinCC()); 2209 return C; 2210 } 2211 2212 /// isTypeConstant - Determine whether an object of this type can be emitted 2213 /// as a constant. 2214 /// 2215 /// If ExcludeCtor is true, the duration when the object's constructor runs 2216 /// will not be considered. The caller will need to verify that the object is 2217 /// not written to during its construction. 2218 bool CodeGenModule::isTypeConstant(QualType Ty, bool ExcludeCtor) { 2219 if (!Ty.isConstant(Context) && !Ty->isReferenceType()) 2220 return false; 2221 2222 if (Context.getLangOpts().CPlusPlus) { 2223 if (const CXXRecordDecl *Record 2224 = Context.getBaseElementType(Ty)->getAsCXXRecordDecl()) 2225 return ExcludeCtor && !Record->hasMutableFields() && 2226 Record->hasTrivialDestructor(); 2227 } 2228 2229 return true; 2230 } 2231 2232 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module, 2233 /// create and return an llvm GlobalVariable with the specified type. If there 2234 /// is something in the module with the specified name, return it potentially 2235 /// bitcasted to the right type. 2236 /// 2237 /// If D is non-null, it specifies a decl that correspond to this. This is used 2238 /// to set the attributes on the global when it is first created. 2239 /// 2240 /// If IsForDefinition is true, it is guranteed that an actual global with 2241 /// type Ty will be returned, not conversion of a variable with the same 2242 /// mangled name but some other type. 2243 llvm::Constant * 2244 CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName, 2245 llvm::PointerType *Ty, 2246 const VarDecl *D, 2247 ForDefinition_t IsForDefinition) { 2248 // Lookup the entry, lazily creating it if necessary. 2249 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 2250 if (Entry) { 2251 if (WeakRefReferences.erase(Entry)) { 2252 if (D && !D->hasAttr<WeakAttr>()) 2253 Entry->setLinkage(llvm::Function::ExternalLinkage); 2254 } 2255 2256 // Handle dropped DLL attributes. 2257 if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>()) 2258 Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 2259 2260 if (Entry->getType() == Ty) 2261 return Entry; 2262 2263 // If there are two attempts to define the same mangled name, issue an 2264 // error. 2265 if (IsForDefinition && !Entry->isDeclaration()) { 2266 GlobalDecl OtherGD; 2267 const VarDecl *OtherD; 2268 2269 // Check that D is not yet in DiagnosedConflictingDefinitions is required 2270 // to make sure that we issue an error only once. 2271 if (D && lookupRepresentativeDecl(MangledName, OtherGD) && 2272 (D->getCanonicalDecl() != OtherGD.getCanonicalDecl().getDecl()) && 2273 (OtherD = dyn_cast<VarDecl>(OtherGD.getDecl())) && 2274 OtherD->hasInit() && 2275 DiagnosedConflictingDefinitions.insert(D).second) { 2276 getDiags().Report(D->getLocation(), 2277 diag::err_duplicate_mangled_name); 2278 getDiags().Report(OtherGD.getDecl()->getLocation(), 2279 diag::note_previous_definition); 2280 } 2281 } 2282 2283 // Make sure the result is of the correct type. 2284 if (Entry->getType()->getAddressSpace() != Ty->getAddressSpace()) 2285 return llvm::ConstantExpr::getAddrSpaceCast(Entry, Ty); 2286 2287 // (If global is requested for a definition, we always need to create a new 2288 // global, not just return a bitcast.) 2289 if (!IsForDefinition) 2290 return llvm::ConstantExpr::getBitCast(Entry, Ty); 2291 } 2292 2293 unsigned AddrSpace = GetGlobalVarAddressSpace(D, Ty->getAddressSpace()); 2294 auto *GV = new llvm::GlobalVariable( 2295 getModule(), Ty->getElementType(), false, 2296 llvm::GlobalValue::ExternalLinkage, nullptr, MangledName, nullptr, 2297 llvm::GlobalVariable::NotThreadLocal, AddrSpace); 2298 2299 // If we already created a global with the same mangled name (but different 2300 // type) before, take its name and remove it from its parent. 2301 if (Entry) { 2302 GV->takeName(Entry); 2303 2304 if (!Entry->use_empty()) { 2305 llvm::Constant *NewPtrForOldDecl = 2306 llvm::ConstantExpr::getBitCast(GV, Entry->getType()); 2307 Entry->replaceAllUsesWith(NewPtrForOldDecl); 2308 } 2309 2310 Entry->eraseFromParent(); 2311 } 2312 2313 // This is the first use or definition of a mangled name. If there is a 2314 // deferred decl with this name, remember that we need to emit it at the end 2315 // of the file. 2316 auto DDI = DeferredDecls.find(MangledName); 2317 if (DDI != DeferredDecls.end()) { 2318 // Move the potentially referenced deferred decl to the DeferredDeclsToEmit 2319 // list, and remove it from DeferredDecls (since we don't need it anymore). 2320 addDeferredDeclToEmit(DDI->second); 2321 DeferredDecls.erase(DDI); 2322 } 2323 2324 // Handle things which are present even on external declarations. 2325 if (D) { 2326 // FIXME: This code is overly simple and should be merged with other global 2327 // handling. 2328 GV->setConstant(isTypeConstant(D->getType(), false)); 2329 2330 GV->setAlignment(getContext().getDeclAlign(D).getQuantity()); 2331 2332 setLinkageAndVisibilityForGV(GV, D); 2333 2334 if (D->getTLSKind()) { 2335 if (D->getTLSKind() == VarDecl::TLS_Dynamic) 2336 CXXThreadLocals.push_back(D); 2337 setTLSMode(GV, *D); 2338 } 2339 2340 // If required by the ABI, treat declarations of static data members with 2341 // inline initializers as definitions. 2342 if (getContext().isMSStaticDataMemberInlineDefinition(D)) { 2343 EmitGlobalVarDefinition(D); 2344 } 2345 2346 // Handle XCore specific ABI requirements. 2347 if (getTriple().getArch() == llvm::Triple::xcore && 2348 D->getLanguageLinkage() == CLanguageLinkage && 2349 D->getType().isConstant(Context) && 2350 isExternallyVisible(D->getLinkageAndVisibility().getLinkage())) 2351 GV->setSection(".cp.rodata"); 2352 } 2353 2354 if (AddrSpace != Ty->getAddressSpace()) 2355 return llvm::ConstantExpr::getAddrSpaceCast(GV, Ty); 2356 2357 return GV; 2358 } 2359 2360 llvm::Constant * 2361 CodeGenModule::GetAddrOfGlobal(GlobalDecl GD, 2362 ForDefinition_t IsForDefinition) { 2363 const Decl *D = GD.getDecl(); 2364 if (isa<CXXConstructorDecl>(D)) 2365 return getAddrOfCXXStructor(cast<CXXConstructorDecl>(D), 2366 getFromCtorType(GD.getCtorType()), 2367 /*FnInfo=*/nullptr, /*FnType=*/nullptr, 2368 /*DontDefer=*/false, IsForDefinition); 2369 else if (isa<CXXDestructorDecl>(D)) 2370 return getAddrOfCXXStructor(cast<CXXDestructorDecl>(D), 2371 getFromDtorType(GD.getDtorType()), 2372 /*FnInfo=*/nullptr, /*FnType=*/nullptr, 2373 /*DontDefer=*/false, IsForDefinition); 2374 else if (isa<CXXMethodDecl>(D)) { 2375 auto FInfo = &getTypes().arrangeCXXMethodDeclaration( 2376 cast<CXXMethodDecl>(D)); 2377 auto Ty = getTypes().GetFunctionType(*FInfo); 2378 return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false, 2379 IsForDefinition); 2380 } else if (isa<FunctionDecl>(D)) { 2381 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 2382 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 2383 return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false, 2384 IsForDefinition); 2385 } else 2386 return GetAddrOfGlobalVar(cast<VarDecl>(D), /*Ty=*/nullptr, 2387 IsForDefinition); 2388 } 2389 2390 llvm::GlobalVariable * 2391 CodeGenModule::CreateOrReplaceCXXRuntimeVariable(StringRef Name, 2392 llvm::Type *Ty, 2393 llvm::GlobalValue::LinkageTypes Linkage) { 2394 llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name); 2395 llvm::GlobalVariable *OldGV = nullptr; 2396 2397 if (GV) { 2398 // Check if the variable has the right type. 2399 if (GV->getType()->getElementType() == Ty) 2400 return GV; 2401 2402 // Because C++ name mangling, the only way we can end up with an already 2403 // existing global with the same name is if it has been declared extern "C". 2404 assert(GV->isDeclaration() && "Declaration has wrong type!"); 2405 OldGV = GV; 2406 } 2407 2408 // Create a new variable. 2409 GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true, 2410 Linkage, nullptr, Name); 2411 2412 if (OldGV) { 2413 // Replace occurrences of the old variable if needed. 2414 GV->takeName(OldGV); 2415 2416 if (!OldGV->use_empty()) { 2417 llvm::Constant *NewPtrForOldDecl = 2418 llvm::ConstantExpr::getBitCast(GV, OldGV->getType()); 2419 OldGV->replaceAllUsesWith(NewPtrForOldDecl); 2420 } 2421 2422 OldGV->eraseFromParent(); 2423 } 2424 2425 if (supportsCOMDAT() && GV->isWeakForLinker() && 2426 !GV->hasAvailableExternallyLinkage()) 2427 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 2428 2429 return GV; 2430 } 2431 2432 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the 2433 /// given global variable. If Ty is non-null and if the global doesn't exist, 2434 /// then it will be created with the specified type instead of whatever the 2435 /// normal requested type would be. If IsForDefinition is true, it is guranteed 2436 /// that an actual global with type Ty will be returned, not conversion of a 2437 /// variable with the same mangled name but some other type. 2438 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D, 2439 llvm::Type *Ty, 2440 ForDefinition_t IsForDefinition) { 2441 assert(D->hasGlobalStorage() && "Not a global variable"); 2442 QualType ASTTy = D->getType(); 2443 if (!Ty) 2444 Ty = getTypes().ConvertTypeForMem(ASTTy); 2445 2446 llvm::PointerType *PTy = 2447 llvm::PointerType::get(Ty, getContext().getTargetAddressSpace(ASTTy)); 2448 2449 StringRef MangledName = getMangledName(D); 2450 return GetOrCreateLLVMGlobal(MangledName, PTy, D, IsForDefinition); 2451 } 2452 2453 /// CreateRuntimeVariable - Create a new runtime global variable with the 2454 /// specified type and name. 2455 llvm::Constant * 2456 CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty, 2457 StringRef Name) { 2458 return GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), nullptr); 2459 } 2460 2461 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) { 2462 assert(!D->getInit() && "Cannot emit definite definitions here!"); 2463 2464 StringRef MangledName = getMangledName(D); 2465 llvm::GlobalValue *GV = GetGlobalValue(MangledName); 2466 2467 // We already have a definition, not declaration, with the same mangled name. 2468 // Emitting of declaration is not required (and actually overwrites emitted 2469 // definition). 2470 if (GV && !GV->isDeclaration()) 2471 return; 2472 2473 // If we have not seen a reference to this variable yet, place it into the 2474 // deferred declarations table to be emitted if needed later. 2475 if (!MustBeEmitted(D) && !GV) { 2476 DeferredDecls[MangledName] = D; 2477 return; 2478 } 2479 2480 // The tentative definition is the only definition. 2481 EmitGlobalVarDefinition(D); 2482 } 2483 2484 CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const { 2485 return Context.toCharUnitsFromBits( 2486 getDataLayout().getTypeStoreSizeInBits(Ty)); 2487 } 2488 2489 unsigned CodeGenModule::GetGlobalVarAddressSpace(const VarDecl *D, 2490 unsigned AddrSpace) { 2491 if (D && LangOpts.CUDA && LangOpts.CUDAIsDevice) { 2492 if (D->hasAttr<CUDAConstantAttr>()) 2493 AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_constant); 2494 else if (D->hasAttr<CUDASharedAttr>()) 2495 AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_shared); 2496 else 2497 AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_device); 2498 } 2499 2500 return AddrSpace; 2501 } 2502 2503 template<typename SomeDecl> 2504 void CodeGenModule::MaybeHandleStaticInExternC(const SomeDecl *D, 2505 llvm::GlobalValue *GV) { 2506 if (!getLangOpts().CPlusPlus) 2507 return; 2508 2509 // Must have 'used' attribute, or else inline assembly can't rely on 2510 // the name existing. 2511 if (!D->template hasAttr<UsedAttr>()) 2512 return; 2513 2514 // Must have internal linkage and an ordinary name. 2515 if (!D->getIdentifier() || D->getFormalLinkage() != InternalLinkage) 2516 return; 2517 2518 // Must be in an extern "C" context. Entities declared directly within 2519 // a record are not extern "C" even if the record is in such a context. 2520 const SomeDecl *First = D->getFirstDecl(); 2521 if (First->getDeclContext()->isRecord() || !First->isInExternCContext()) 2522 return; 2523 2524 // OK, this is an internal linkage entity inside an extern "C" linkage 2525 // specification. Make a note of that so we can give it the "expected" 2526 // mangled name if nothing else is using that name. 2527 std::pair<StaticExternCMap::iterator, bool> R = 2528 StaticExternCValues.insert(std::make_pair(D->getIdentifier(), GV)); 2529 2530 // If we have multiple internal linkage entities with the same name 2531 // in extern "C" regions, none of them gets that name. 2532 if (!R.second) 2533 R.first->second = nullptr; 2534 } 2535 2536 static bool shouldBeInCOMDAT(CodeGenModule &CGM, const Decl &D) { 2537 if (!CGM.supportsCOMDAT()) 2538 return false; 2539 2540 if (D.hasAttr<SelectAnyAttr>()) 2541 return true; 2542 2543 GVALinkage Linkage; 2544 if (auto *VD = dyn_cast<VarDecl>(&D)) 2545 Linkage = CGM.getContext().GetGVALinkageForVariable(VD); 2546 else 2547 Linkage = CGM.getContext().GetGVALinkageForFunction(cast<FunctionDecl>(&D)); 2548 2549 switch (Linkage) { 2550 case GVA_Internal: 2551 case GVA_AvailableExternally: 2552 case GVA_StrongExternal: 2553 return false; 2554 case GVA_DiscardableODR: 2555 case GVA_StrongODR: 2556 return true; 2557 } 2558 llvm_unreachable("No such linkage"); 2559 } 2560 2561 void CodeGenModule::maybeSetTrivialComdat(const Decl &D, 2562 llvm::GlobalObject &GO) { 2563 if (!shouldBeInCOMDAT(*this, D)) 2564 return; 2565 GO.setComdat(TheModule.getOrInsertComdat(GO.getName())); 2566 } 2567 2568 /// Pass IsTentative as true if you want to create a tentative definition. 2569 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D, 2570 bool IsTentative) { 2571 // OpenCL global variables of sampler type are translated to function calls, 2572 // therefore no need to be translated. 2573 QualType ASTTy = D->getType(); 2574 if (getLangOpts().OpenCL && ASTTy->isSamplerT()) 2575 return; 2576 2577 llvm::Constant *Init = nullptr; 2578 CXXRecordDecl *RD = ASTTy->getBaseElementTypeUnsafe()->getAsCXXRecordDecl(); 2579 bool NeedsGlobalCtor = false; 2580 bool NeedsGlobalDtor = RD && !RD->hasTrivialDestructor(); 2581 2582 const VarDecl *InitDecl; 2583 const Expr *InitExpr = D->getAnyInitializer(InitDecl); 2584 2585 // CUDA E.2.4.1 "__shared__ variables cannot have an initialization 2586 // as part of their declaration." Sema has already checked for 2587 // error cases, so we just need to set Init to UndefValue. 2588 if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice && 2589 D->hasAttr<CUDASharedAttr>()) 2590 Init = llvm::UndefValue::get(getTypes().ConvertType(ASTTy)); 2591 else if (!InitExpr) { 2592 // This is a tentative definition; tentative definitions are 2593 // implicitly initialized with { 0 }. 2594 // 2595 // Note that tentative definitions are only emitted at the end of 2596 // a translation unit, so they should never have incomplete 2597 // type. In addition, EmitTentativeDefinition makes sure that we 2598 // never attempt to emit a tentative definition if a real one 2599 // exists. A use may still exists, however, so we still may need 2600 // to do a RAUW. 2601 assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type"); 2602 Init = EmitNullConstant(D->getType()); 2603 } else { 2604 initializedGlobalDecl = GlobalDecl(D); 2605 Init = EmitConstantInit(*InitDecl); 2606 2607 if (!Init) { 2608 QualType T = InitExpr->getType(); 2609 if (D->getType()->isReferenceType()) 2610 T = D->getType(); 2611 2612 if (getLangOpts().CPlusPlus) { 2613 Init = EmitNullConstant(T); 2614 NeedsGlobalCtor = true; 2615 } else { 2616 ErrorUnsupported(D, "static initializer"); 2617 Init = llvm::UndefValue::get(getTypes().ConvertType(T)); 2618 } 2619 } else { 2620 // We don't need an initializer, so remove the entry for the delayed 2621 // initializer position (just in case this entry was delayed) if we 2622 // also don't need to register a destructor. 2623 if (getLangOpts().CPlusPlus && !NeedsGlobalDtor) 2624 DelayedCXXInitPosition.erase(D); 2625 } 2626 } 2627 2628 llvm::Type* InitType = Init->getType(); 2629 llvm::Constant *Entry = 2630 GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative)); 2631 2632 // Strip off a bitcast if we got one back. 2633 if (auto *CE = dyn_cast<llvm::ConstantExpr>(Entry)) { 2634 assert(CE->getOpcode() == llvm::Instruction::BitCast || 2635 CE->getOpcode() == llvm::Instruction::AddrSpaceCast || 2636 // All zero index gep. 2637 CE->getOpcode() == llvm::Instruction::GetElementPtr); 2638 Entry = CE->getOperand(0); 2639 } 2640 2641 // Entry is now either a Function or GlobalVariable. 2642 auto *GV = dyn_cast<llvm::GlobalVariable>(Entry); 2643 2644 // We have a definition after a declaration with the wrong type. 2645 // We must make a new GlobalVariable* and update everything that used OldGV 2646 // (a declaration or tentative definition) with the new GlobalVariable* 2647 // (which will be a definition). 2648 // 2649 // This happens if there is a prototype for a global (e.g. 2650 // "extern int x[];") and then a definition of a different type (e.g. 2651 // "int x[10];"). This also happens when an initializer has a different type 2652 // from the type of the global (this happens with unions). 2653 if (!GV || 2654 GV->getType()->getElementType() != InitType || 2655 GV->getType()->getAddressSpace() != 2656 GetGlobalVarAddressSpace(D, getContext().getTargetAddressSpace(ASTTy))) { 2657 2658 // Move the old entry aside so that we'll create a new one. 2659 Entry->setName(StringRef()); 2660 2661 // Make a new global with the correct type, this is now guaranteed to work. 2662 GV = cast<llvm::GlobalVariable>( 2663 GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative))); 2664 2665 // Replace all uses of the old global with the new global 2666 llvm::Constant *NewPtrForOldDecl = 2667 llvm::ConstantExpr::getBitCast(GV, Entry->getType()); 2668 Entry->replaceAllUsesWith(NewPtrForOldDecl); 2669 2670 // Erase the old global, since it is no longer used. 2671 cast<llvm::GlobalValue>(Entry)->eraseFromParent(); 2672 } 2673 2674 MaybeHandleStaticInExternC(D, GV); 2675 2676 if (D->hasAttr<AnnotateAttr>()) 2677 AddGlobalAnnotations(D, GV); 2678 2679 // Set the llvm linkage type as appropriate. 2680 llvm::GlobalValue::LinkageTypes Linkage = 2681 getLLVMLinkageVarDefinition(D, GV->isConstant()); 2682 2683 // CUDA B.2.1 "The __device__ qualifier declares a variable that resides on 2684 // the device. [...]" 2685 // CUDA B.2.2 "The __constant__ qualifier, optionally used together with 2686 // __device__, declares a variable that: [...] 2687 // Is accessible from all the threads within the grid and from the host 2688 // through the runtime library (cudaGetSymbolAddress() / cudaGetSymbolSize() 2689 // / cudaMemcpyToSymbol() / cudaMemcpyFromSymbol())." 2690 if (GV && LangOpts.CUDA) { 2691 if (LangOpts.CUDAIsDevice) { 2692 if (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>()) 2693 GV->setExternallyInitialized(true); 2694 } else { 2695 // Host-side shadows of external declarations of device-side 2696 // global variables become internal definitions. These have to 2697 // be internal in order to prevent name conflicts with global 2698 // host variables with the same name in a different TUs. 2699 if (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>()) { 2700 Linkage = llvm::GlobalValue::InternalLinkage; 2701 2702 // Shadow variables and their properties must be registered 2703 // with CUDA runtime. 2704 unsigned Flags = 0; 2705 if (!D->hasDefinition()) 2706 Flags |= CGCUDARuntime::ExternDeviceVar; 2707 if (D->hasAttr<CUDAConstantAttr>()) 2708 Flags |= CGCUDARuntime::ConstantDeviceVar; 2709 getCUDARuntime().registerDeviceVar(*GV, Flags); 2710 } else if (D->hasAttr<CUDASharedAttr>()) 2711 // __shared__ variables are odd. Shadows do get created, but 2712 // they are not registered with the CUDA runtime, so they 2713 // can't really be used to access their device-side 2714 // counterparts. It's not clear yet whether it's nvcc's bug or 2715 // a feature, but we've got to do the same for compatibility. 2716 Linkage = llvm::GlobalValue::InternalLinkage; 2717 } 2718 } 2719 GV->setInitializer(Init); 2720 2721 // If it is safe to mark the global 'constant', do so now. 2722 GV->setConstant(!NeedsGlobalCtor && !NeedsGlobalDtor && 2723 isTypeConstant(D->getType(), true)); 2724 2725 // If it is in a read-only section, mark it 'constant'. 2726 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) { 2727 const ASTContext::SectionInfo &SI = Context.SectionInfos[SA->getName()]; 2728 if ((SI.SectionFlags & ASTContext::PSF_Write) == 0) 2729 GV->setConstant(true); 2730 } 2731 2732 GV->setAlignment(getContext().getDeclAlign(D).getQuantity()); 2733 2734 2735 // On Darwin, if the normal linkage of a C++ thread_local variable is 2736 // LinkOnce or Weak, we keep the normal linkage to prevent multiple 2737 // copies within a linkage unit; otherwise, the backing variable has 2738 // internal linkage and all accesses should just be calls to the 2739 // Itanium-specified entry point, which has the normal linkage of the 2740 // variable. This is to preserve the ability to change the implementation 2741 // behind the scenes. 2742 if (!D->isStaticLocal() && D->getTLSKind() == VarDecl::TLS_Dynamic && 2743 Context.getTargetInfo().getTriple().isOSDarwin() && 2744 !llvm::GlobalVariable::isLinkOnceLinkage(Linkage) && 2745 !llvm::GlobalVariable::isWeakLinkage(Linkage)) 2746 Linkage = llvm::GlobalValue::InternalLinkage; 2747 2748 GV->setLinkage(Linkage); 2749 if (D->hasAttr<DLLImportAttr>()) 2750 GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass); 2751 else if (D->hasAttr<DLLExportAttr>()) 2752 GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass); 2753 else 2754 GV->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass); 2755 2756 if (Linkage == llvm::GlobalVariable::CommonLinkage) { 2757 // common vars aren't constant even if declared const. 2758 GV->setConstant(false); 2759 // Tentative definition of global variables may be initialized with 2760 // non-zero null pointers. In this case they should have weak linkage 2761 // since common linkage must have zero initializer and must not have 2762 // explicit section therefore cannot have non-zero initial value. 2763 if (!GV->getInitializer()->isNullValue()) 2764 GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage); 2765 } 2766 2767 setNonAliasAttributes(D, GV); 2768 2769 if (D->getTLSKind() && !GV->isThreadLocal()) { 2770 if (D->getTLSKind() == VarDecl::TLS_Dynamic) 2771 CXXThreadLocals.push_back(D); 2772 setTLSMode(GV, *D); 2773 } 2774 2775 maybeSetTrivialComdat(*D, *GV); 2776 2777 // Emit the initializer function if necessary. 2778 if (NeedsGlobalCtor || NeedsGlobalDtor) 2779 EmitCXXGlobalVarDeclInitFunc(D, GV, NeedsGlobalCtor); 2780 2781 SanitizerMD->reportGlobalToASan(GV, *D, NeedsGlobalCtor); 2782 2783 // Emit global variable debug information. 2784 if (CGDebugInfo *DI = getModuleDebugInfo()) 2785 if (getCodeGenOpts().getDebugInfo() >= codegenoptions::LimitedDebugInfo) 2786 DI->EmitGlobalVariable(GV, D); 2787 } 2788 2789 static bool isVarDeclStrongDefinition(const ASTContext &Context, 2790 CodeGenModule &CGM, const VarDecl *D, 2791 bool NoCommon) { 2792 // Don't give variables common linkage if -fno-common was specified unless it 2793 // was overridden by a NoCommon attribute. 2794 if ((NoCommon || D->hasAttr<NoCommonAttr>()) && !D->hasAttr<CommonAttr>()) 2795 return true; 2796 2797 // C11 6.9.2/2: 2798 // A declaration of an identifier for an object that has file scope without 2799 // an initializer, and without a storage-class specifier or with the 2800 // storage-class specifier static, constitutes a tentative definition. 2801 if (D->getInit() || D->hasExternalStorage()) 2802 return true; 2803 2804 // A variable cannot be both common and exist in a section. 2805 if (D->hasAttr<SectionAttr>()) 2806 return true; 2807 2808 // Thread local vars aren't considered common linkage. 2809 if (D->getTLSKind()) 2810 return true; 2811 2812 // Tentative definitions marked with WeakImportAttr are true definitions. 2813 if (D->hasAttr<WeakImportAttr>()) 2814 return true; 2815 2816 // A variable cannot be both common and exist in a comdat. 2817 if (shouldBeInCOMDAT(CGM, *D)) 2818 return true; 2819 2820 // Declarations with a required alignment do not have common linkage in MSVC 2821 // mode. 2822 if (Context.getTargetInfo().getCXXABI().isMicrosoft()) { 2823 if (D->hasAttr<AlignedAttr>()) 2824 return true; 2825 QualType VarType = D->getType(); 2826 if (Context.isAlignmentRequired(VarType)) 2827 return true; 2828 2829 if (const auto *RT = VarType->getAs<RecordType>()) { 2830 const RecordDecl *RD = RT->getDecl(); 2831 for (const FieldDecl *FD : RD->fields()) { 2832 if (FD->isBitField()) 2833 continue; 2834 if (FD->hasAttr<AlignedAttr>()) 2835 return true; 2836 if (Context.isAlignmentRequired(FD->getType())) 2837 return true; 2838 } 2839 } 2840 } 2841 2842 return false; 2843 } 2844 2845 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageForDeclarator( 2846 const DeclaratorDecl *D, GVALinkage Linkage, bool IsConstantVariable) { 2847 if (Linkage == GVA_Internal) 2848 return llvm::Function::InternalLinkage; 2849 2850 if (D->hasAttr<WeakAttr>()) { 2851 if (IsConstantVariable) 2852 return llvm::GlobalVariable::WeakODRLinkage; 2853 else 2854 return llvm::GlobalVariable::WeakAnyLinkage; 2855 } 2856 2857 // We are guaranteed to have a strong definition somewhere else, 2858 // so we can use available_externally linkage. 2859 if (Linkage == GVA_AvailableExternally) 2860 return llvm::GlobalValue::AvailableExternallyLinkage; 2861 2862 // Note that Apple's kernel linker doesn't support symbol 2863 // coalescing, so we need to avoid linkonce and weak linkages there. 2864 // Normally, this means we just map to internal, but for explicit 2865 // instantiations we'll map to external. 2866 2867 // In C++, the compiler has to emit a definition in every translation unit 2868 // that references the function. We should use linkonce_odr because 2869 // a) if all references in this translation unit are optimized away, we 2870 // don't need to codegen it. b) if the function persists, it needs to be 2871 // merged with other definitions. c) C++ has the ODR, so we know the 2872 // definition is dependable. 2873 if (Linkage == GVA_DiscardableODR) 2874 return !Context.getLangOpts().AppleKext ? llvm::Function::LinkOnceODRLinkage 2875 : llvm::Function::InternalLinkage; 2876 2877 // An explicit instantiation of a template has weak linkage, since 2878 // explicit instantiations can occur in multiple translation units 2879 // and must all be equivalent. However, we are not allowed to 2880 // throw away these explicit instantiations. 2881 // 2882 // We don't currently support CUDA device code spread out across multiple TUs, 2883 // so say that CUDA templates are either external (for kernels) or internal. 2884 // This lets llvm perform aggressive inter-procedural optimizations. 2885 if (Linkage == GVA_StrongODR) { 2886 if (Context.getLangOpts().AppleKext) 2887 return llvm::Function::ExternalLinkage; 2888 if (Context.getLangOpts().CUDA && Context.getLangOpts().CUDAIsDevice) 2889 return D->hasAttr<CUDAGlobalAttr>() ? llvm::Function::ExternalLinkage 2890 : llvm::Function::InternalLinkage; 2891 return llvm::Function::WeakODRLinkage; 2892 } 2893 2894 // C++ doesn't have tentative definitions and thus cannot have common 2895 // linkage. 2896 if (!getLangOpts().CPlusPlus && isa<VarDecl>(D) && 2897 !isVarDeclStrongDefinition(Context, *this, cast<VarDecl>(D), 2898 CodeGenOpts.NoCommon)) 2899 return llvm::GlobalVariable::CommonLinkage; 2900 2901 // selectany symbols are externally visible, so use weak instead of 2902 // linkonce. MSVC optimizes away references to const selectany globals, so 2903 // all definitions should be the same and ODR linkage should be used. 2904 // http://msdn.microsoft.com/en-us/library/5tkz6s71.aspx 2905 if (D->hasAttr<SelectAnyAttr>()) 2906 return llvm::GlobalVariable::WeakODRLinkage; 2907 2908 // Otherwise, we have strong external linkage. 2909 assert(Linkage == GVA_StrongExternal); 2910 return llvm::GlobalVariable::ExternalLinkage; 2911 } 2912 2913 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageVarDefinition( 2914 const VarDecl *VD, bool IsConstant) { 2915 GVALinkage Linkage = getContext().GetGVALinkageForVariable(VD); 2916 return getLLVMLinkageForDeclarator(VD, Linkage, IsConstant); 2917 } 2918 2919 /// Replace the uses of a function that was declared with a non-proto type. 2920 /// We want to silently drop extra arguments from call sites 2921 static void replaceUsesOfNonProtoConstant(llvm::Constant *old, 2922 llvm::Function *newFn) { 2923 // Fast path. 2924 if (old->use_empty()) return; 2925 2926 llvm::Type *newRetTy = newFn->getReturnType(); 2927 SmallVector<llvm::Value*, 4> newArgs; 2928 SmallVector<llvm::OperandBundleDef, 1> newBundles; 2929 2930 for (llvm::Value::use_iterator ui = old->use_begin(), ue = old->use_end(); 2931 ui != ue; ) { 2932 llvm::Value::use_iterator use = ui++; // Increment before the use is erased. 2933 llvm::User *user = use->getUser(); 2934 2935 // Recognize and replace uses of bitcasts. Most calls to 2936 // unprototyped functions will use bitcasts. 2937 if (auto *bitcast = dyn_cast<llvm::ConstantExpr>(user)) { 2938 if (bitcast->getOpcode() == llvm::Instruction::BitCast) 2939 replaceUsesOfNonProtoConstant(bitcast, newFn); 2940 continue; 2941 } 2942 2943 // Recognize calls to the function. 2944 llvm::CallSite callSite(user); 2945 if (!callSite) continue; 2946 if (!callSite.isCallee(&*use)) continue; 2947 2948 // If the return types don't match exactly, then we can't 2949 // transform this call unless it's dead. 2950 if (callSite->getType() != newRetTy && !callSite->use_empty()) 2951 continue; 2952 2953 // Get the call site's attribute list. 2954 SmallVector<llvm::AttributeSet, 8> newArgAttrs; 2955 llvm::AttributeList oldAttrs = callSite.getAttributes(); 2956 2957 // If the function was passed too few arguments, don't transform. 2958 unsigned newNumArgs = newFn->arg_size(); 2959 if (callSite.arg_size() < newNumArgs) continue; 2960 2961 // If extra arguments were passed, we silently drop them. 2962 // If any of the types mismatch, we don't transform. 2963 unsigned argNo = 0; 2964 bool dontTransform = false; 2965 for (llvm::Argument &A : newFn->args()) { 2966 if (callSite.getArgument(argNo)->getType() != A.getType()) { 2967 dontTransform = true; 2968 break; 2969 } 2970 2971 // Add any parameter attributes. 2972 newArgAttrs.push_back(oldAttrs.getParamAttributes(argNo)); 2973 argNo++; 2974 } 2975 if (dontTransform) 2976 continue; 2977 2978 // Okay, we can transform this. Create the new call instruction and copy 2979 // over the required information. 2980 newArgs.append(callSite.arg_begin(), callSite.arg_begin() + argNo); 2981 2982 // Copy over any operand bundles. 2983 callSite.getOperandBundlesAsDefs(newBundles); 2984 2985 llvm::CallSite newCall; 2986 if (callSite.isCall()) { 2987 newCall = llvm::CallInst::Create(newFn, newArgs, newBundles, "", 2988 callSite.getInstruction()); 2989 } else { 2990 auto *oldInvoke = cast<llvm::InvokeInst>(callSite.getInstruction()); 2991 newCall = llvm::InvokeInst::Create(newFn, 2992 oldInvoke->getNormalDest(), 2993 oldInvoke->getUnwindDest(), 2994 newArgs, newBundles, "", 2995 callSite.getInstruction()); 2996 } 2997 newArgs.clear(); // for the next iteration 2998 2999 if (!newCall->getType()->isVoidTy()) 3000 newCall->takeName(callSite.getInstruction()); 3001 newCall.setAttributes(llvm::AttributeList::get( 3002 newFn->getContext(), oldAttrs.getFnAttributes(), 3003 oldAttrs.getRetAttributes(), newArgAttrs)); 3004 newCall.setCallingConv(callSite.getCallingConv()); 3005 3006 // Finally, remove the old call, replacing any uses with the new one. 3007 if (!callSite->use_empty()) 3008 callSite->replaceAllUsesWith(newCall.getInstruction()); 3009 3010 // Copy debug location attached to CI. 3011 if (callSite->getDebugLoc()) 3012 newCall->setDebugLoc(callSite->getDebugLoc()); 3013 3014 callSite->eraseFromParent(); 3015 } 3016 } 3017 3018 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we 3019 /// implement a function with no prototype, e.g. "int foo() {}". If there are 3020 /// existing call uses of the old function in the module, this adjusts them to 3021 /// call the new function directly. 3022 /// 3023 /// This is not just a cleanup: the always_inline pass requires direct calls to 3024 /// functions to be able to inline them. If there is a bitcast in the way, it 3025 /// won't inline them. Instcombine normally deletes these calls, but it isn't 3026 /// run at -O0. 3027 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old, 3028 llvm::Function *NewFn) { 3029 // If we're redefining a global as a function, don't transform it. 3030 if (!isa<llvm::Function>(Old)) return; 3031 3032 replaceUsesOfNonProtoConstant(Old, NewFn); 3033 } 3034 3035 void CodeGenModule::HandleCXXStaticMemberVarInstantiation(VarDecl *VD) { 3036 auto DK = VD->isThisDeclarationADefinition(); 3037 if (DK == VarDecl::Definition && VD->hasAttr<DLLImportAttr>()) 3038 return; 3039 3040 TemplateSpecializationKind TSK = VD->getTemplateSpecializationKind(); 3041 // If we have a definition, this might be a deferred decl. If the 3042 // instantiation is explicit, make sure we emit it at the end. 3043 if (VD->getDefinition() && TSK == TSK_ExplicitInstantiationDefinition) 3044 GetAddrOfGlobalVar(VD); 3045 3046 EmitTopLevelDecl(VD); 3047 } 3048 3049 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD, 3050 llvm::GlobalValue *GV) { 3051 const auto *D = cast<FunctionDecl>(GD.getDecl()); 3052 3053 // Compute the function info and LLVM type. 3054 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 3055 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 3056 3057 // Get or create the prototype for the function. 3058 if (!GV || (GV->getType()->getElementType() != Ty)) 3059 GV = cast<llvm::GlobalValue>(GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, 3060 /*DontDefer=*/true, 3061 ForDefinition)); 3062 3063 // Already emitted. 3064 if (!GV->isDeclaration()) 3065 return; 3066 3067 // We need to set linkage and visibility on the function before 3068 // generating code for it because various parts of IR generation 3069 // want to propagate this information down (e.g. to local static 3070 // declarations). 3071 auto *Fn = cast<llvm::Function>(GV); 3072 setFunctionLinkage(GD, Fn); 3073 setFunctionDLLStorageClass(GD, Fn); 3074 3075 // FIXME: this is redundant with part of setFunctionDefinitionAttributes 3076 setGlobalVisibility(Fn, D); 3077 3078 MaybeHandleStaticInExternC(D, Fn); 3079 3080 maybeSetTrivialComdat(*D, *Fn); 3081 3082 CodeGenFunction(*this).GenerateCode(D, Fn, FI); 3083 3084 setFunctionDefinitionAttributes(D, Fn); 3085 SetLLVMFunctionAttributesForDefinition(D, Fn); 3086 3087 if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>()) 3088 AddGlobalCtor(Fn, CA->getPriority()); 3089 if (const DestructorAttr *DA = D->getAttr<DestructorAttr>()) 3090 AddGlobalDtor(Fn, DA->getPriority()); 3091 if (D->hasAttr<AnnotateAttr>()) 3092 AddGlobalAnnotations(D, Fn); 3093 } 3094 3095 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) { 3096 const auto *D = cast<ValueDecl>(GD.getDecl()); 3097 const AliasAttr *AA = D->getAttr<AliasAttr>(); 3098 assert(AA && "Not an alias?"); 3099 3100 StringRef MangledName = getMangledName(GD); 3101 3102 if (AA->getAliasee() == MangledName) { 3103 Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0; 3104 return; 3105 } 3106 3107 // If there is a definition in the module, then it wins over the alias. 3108 // This is dubious, but allow it to be safe. Just ignore the alias. 3109 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 3110 if (Entry && !Entry->isDeclaration()) 3111 return; 3112 3113 Aliases.push_back(GD); 3114 3115 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType()); 3116 3117 // Create a reference to the named value. This ensures that it is emitted 3118 // if a deferred decl. 3119 llvm::Constant *Aliasee; 3120 if (isa<llvm::FunctionType>(DeclTy)) 3121 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GD, 3122 /*ForVTable=*/false); 3123 else 3124 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), 3125 llvm::PointerType::getUnqual(DeclTy), 3126 /*D=*/nullptr); 3127 3128 // Create the new alias itself, but don't set a name yet. 3129 auto *GA = llvm::GlobalAlias::create( 3130 DeclTy, 0, llvm::Function::ExternalLinkage, "", Aliasee, &getModule()); 3131 3132 if (Entry) { 3133 if (GA->getAliasee() == Entry) { 3134 Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0; 3135 return; 3136 } 3137 3138 assert(Entry->isDeclaration()); 3139 3140 // If there is a declaration in the module, then we had an extern followed 3141 // by the alias, as in: 3142 // extern int test6(); 3143 // ... 3144 // int test6() __attribute__((alias("test7"))); 3145 // 3146 // Remove it and replace uses of it with the alias. 3147 GA->takeName(Entry); 3148 3149 Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA, 3150 Entry->getType())); 3151 Entry->eraseFromParent(); 3152 } else { 3153 GA->setName(MangledName); 3154 } 3155 3156 // Set attributes which are particular to an alias; this is a 3157 // specialization of the attributes which may be set on a global 3158 // variable/function. 3159 if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakRefAttr>() || 3160 D->isWeakImported()) { 3161 GA->setLinkage(llvm::Function::WeakAnyLinkage); 3162 } 3163 3164 if (const auto *VD = dyn_cast<VarDecl>(D)) 3165 if (VD->getTLSKind()) 3166 setTLSMode(GA, *VD); 3167 3168 setAliasAttributes(D, GA); 3169 } 3170 3171 void CodeGenModule::emitIFuncDefinition(GlobalDecl GD) { 3172 const auto *D = cast<ValueDecl>(GD.getDecl()); 3173 const IFuncAttr *IFA = D->getAttr<IFuncAttr>(); 3174 assert(IFA && "Not an ifunc?"); 3175 3176 StringRef MangledName = getMangledName(GD); 3177 3178 if (IFA->getResolver() == MangledName) { 3179 Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1; 3180 return; 3181 } 3182 3183 // Report an error if some definition overrides ifunc. 3184 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 3185 if (Entry && !Entry->isDeclaration()) { 3186 GlobalDecl OtherGD; 3187 if (lookupRepresentativeDecl(MangledName, OtherGD) && 3188 DiagnosedConflictingDefinitions.insert(GD).second) { 3189 Diags.Report(D->getLocation(), diag::err_duplicate_mangled_name); 3190 Diags.Report(OtherGD.getDecl()->getLocation(), 3191 diag::note_previous_definition); 3192 } 3193 return; 3194 } 3195 3196 Aliases.push_back(GD); 3197 3198 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType()); 3199 llvm::Constant *Resolver = 3200 GetOrCreateLLVMFunction(IFA->getResolver(), DeclTy, GD, 3201 /*ForVTable=*/false); 3202 llvm::GlobalIFunc *GIF = 3203 llvm::GlobalIFunc::create(DeclTy, 0, llvm::Function::ExternalLinkage, 3204 "", Resolver, &getModule()); 3205 if (Entry) { 3206 if (GIF->getResolver() == Entry) { 3207 Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1; 3208 return; 3209 } 3210 assert(Entry->isDeclaration()); 3211 3212 // If there is a declaration in the module, then we had an extern followed 3213 // by the ifunc, as in: 3214 // extern int test(); 3215 // ... 3216 // int test() __attribute__((ifunc("resolver"))); 3217 // 3218 // Remove it and replace uses of it with the ifunc. 3219 GIF->takeName(Entry); 3220 3221 Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GIF, 3222 Entry->getType())); 3223 Entry->eraseFromParent(); 3224 } else 3225 GIF->setName(MangledName); 3226 3227 SetCommonAttributes(D, GIF); 3228 } 3229 3230 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID, 3231 ArrayRef<llvm::Type*> Tys) { 3232 return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID, 3233 Tys); 3234 } 3235 3236 static llvm::StringMapEntry<llvm::GlobalVariable *> & 3237 GetConstantCFStringEntry(llvm::StringMap<llvm::GlobalVariable *> &Map, 3238 const StringLiteral *Literal, bool TargetIsLSB, 3239 bool &IsUTF16, unsigned &StringLength) { 3240 StringRef String = Literal->getString(); 3241 unsigned NumBytes = String.size(); 3242 3243 // Check for simple case. 3244 if (!Literal->containsNonAsciiOrNull()) { 3245 StringLength = NumBytes; 3246 return *Map.insert(std::make_pair(String, nullptr)).first; 3247 } 3248 3249 // Otherwise, convert the UTF8 literals into a string of shorts. 3250 IsUTF16 = true; 3251 3252 SmallVector<llvm::UTF16, 128> ToBuf(NumBytes + 1); // +1 for ending nulls. 3253 const llvm::UTF8 *FromPtr = (const llvm::UTF8 *)String.data(); 3254 llvm::UTF16 *ToPtr = &ToBuf[0]; 3255 3256 (void)llvm::ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, &ToPtr, 3257 ToPtr + NumBytes, llvm::strictConversion); 3258 3259 // ConvertUTF8toUTF16 returns the length in ToPtr. 3260 StringLength = ToPtr - &ToBuf[0]; 3261 3262 // Add an explicit null. 3263 *ToPtr = 0; 3264 return *Map.insert(std::make_pair( 3265 StringRef(reinterpret_cast<const char *>(ToBuf.data()), 3266 (StringLength + 1) * 2), 3267 nullptr)).first; 3268 } 3269 3270 ConstantAddress 3271 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) { 3272 unsigned StringLength = 0; 3273 bool isUTF16 = false; 3274 llvm::StringMapEntry<llvm::GlobalVariable *> &Entry = 3275 GetConstantCFStringEntry(CFConstantStringMap, Literal, 3276 getDataLayout().isLittleEndian(), isUTF16, 3277 StringLength); 3278 3279 if (auto *C = Entry.second) 3280 return ConstantAddress(C, CharUnits::fromQuantity(C->getAlignment())); 3281 3282 llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty); 3283 llvm::Constant *Zeros[] = { Zero, Zero }; 3284 3285 // If we don't already have it, get __CFConstantStringClassReference. 3286 if (!CFConstantStringClassRef) { 3287 llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy); 3288 Ty = llvm::ArrayType::get(Ty, 0); 3289 llvm::Constant *GV = 3290 CreateRuntimeVariable(Ty, "__CFConstantStringClassReference"); 3291 3292 if (getTriple().isOSBinFormatCOFF()) { 3293 IdentifierInfo &II = getContext().Idents.get(GV->getName()); 3294 TranslationUnitDecl *TUDecl = getContext().getTranslationUnitDecl(); 3295 DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl); 3296 llvm::GlobalValue *CGV = cast<llvm::GlobalValue>(GV); 3297 3298 const VarDecl *VD = nullptr; 3299 for (const auto &Result : DC->lookup(&II)) 3300 if ((VD = dyn_cast<VarDecl>(Result))) 3301 break; 3302 3303 if (!VD || !VD->hasAttr<DLLExportAttr>()) { 3304 CGV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass); 3305 CGV->setLinkage(llvm::GlobalValue::ExternalLinkage); 3306 } else { 3307 CGV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass); 3308 CGV->setLinkage(llvm::GlobalValue::ExternalLinkage); 3309 } 3310 } 3311 3312 // Decay array -> ptr 3313 CFConstantStringClassRef = 3314 llvm::ConstantExpr::getGetElementPtr(Ty, GV, Zeros); 3315 } 3316 3317 QualType CFTy = getContext().getCFConstantStringType(); 3318 3319 auto *STy = cast<llvm::StructType>(getTypes().ConvertType(CFTy)); 3320 3321 ConstantInitBuilder Builder(*this); 3322 auto Fields = Builder.beginStruct(STy); 3323 3324 // Class pointer. 3325 Fields.add(cast<llvm::ConstantExpr>(CFConstantStringClassRef)); 3326 3327 // Flags. 3328 Fields.addInt(IntTy, isUTF16 ? 0x07d0 : 0x07C8); 3329 3330 // String pointer. 3331 llvm::Constant *C = nullptr; 3332 if (isUTF16) { 3333 auto Arr = llvm::makeArrayRef( 3334 reinterpret_cast<uint16_t *>(const_cast<char *>(Entry.first().data())), 3335 Entry.first().size() / 2); 3336 C = llvm::ConstantDataArray::get(VMContext, Arr); 3337 } else { 3338 C = llvm::ConstantDataArray::getString(VMContext, Entry.first()); 3339 } 3340 3341 // Note: -fwritable-strings doesn't make the backing store strings of 3342 // CFStrings writable. (See <rdar://problem/10657500>) 3343 auto *GV = 3344 new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true, 3345 llvm::GlobalValue::PrivateLinkage, C, ".str"); 3346 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 3347 // Don't enforce the target's minimum global alignment, since the only use 3348 // of the string is via this class initializer. 3349 CharUnits Align = isUTF16 3350 ? getContext().getTypeAlignInChars(getContext().ShortTy) 3351 : getContext().getTypeAlignInChars(getContext().CharTy); 3352 GV->setAlignment(Align.getQuantity()); 3353 3354 // FIXME: We set the section explicitly to avoid a bug in ld64 224.1. 3355 // Without it LLVM can merge the string with a non unnamed_addr one during 3356 // LTO. Doing that changes the section it ends in, which surprises ld64. 3357 if (getTriple().isOSBinFormatMachO()) 3358 GV->setSection(isUTF16 ? "__TEXT,__ustring" 3359 : "__TEXT,__cstring,cstring_literals"); 3360 3361 // String. 3362 llvm::Constant *Str = 3363 llvm::ConstantExpr::getGetElementPtr(GV->getValueType(), GV, Zeros); 3364 3365 if (isUTF16) 3366 // Cast the UTF16 string to the correct type. 3367 Str = llvm::ConstantExpr::getBitCast(Str, Int8PtrTy); 3368 Fields.add(Str); 3369 3370 // String length. 3371 auto Ty = getTypes().ConvertType(getContext().LongTy); 3372 Fields.addInt(cast<llvm::IntegerType>(Ty), StringLength); 3373 3374 CharUnits Alignment = getPointerAlign(); 3375 3376 // The struct. 3377 GV = Fields.finishAndCreateGlobal("_unnamed_cfstring_", Alignment, 3378 /*isConstant=*/false, 3379 llvm::GlobalVariable::PrivateLinkage); 3380 switch (getTriple().getObjectFormat()) { 3381 case llvm::Triple::UnknownObjectFormat: 3382 llvm_unreachable("unknown file format"); 3383 case llvm::Triple::COFF: 3384 case llvm::Triple::ELF: 3385 case llvm::Triple::Wasm: 3386 GV->setSection("cfstring"); 3387 break; 3388 case llvm::Triple::MachO: 3389 GV->setSection("__DATA,__cfstring"); 3390 break; 3391 } 3392 Entry.second = GV; 3393 3394 return ConstantAddress(GV, Alignment); 3395 } 3396 3397 QualType CodeGenModule::getObjCFastEnumerationStateType() { 3398 if (ObjCFastEnumerationStateType.isNull()) { 3399 RecordDecl *D = Context.buildImplicitRecord("__objcFastEnumerationState"); 3400 D->startDefinition(); 3401 3402 QualType FieldTypes[] = { 3403 Context.UnsignedLongTy, 3404 Context.getPointerType(Context.getObjCIdType()), 3405 Context.getPointerType(Context.UnsignedLongTy), 3406 Context.getConstantArrayType(Context.UnsignedLongTy, 3407 llvm::APInt(32, 5), ArrayType::Normal, 0) 3408 }; 3409 3410 for (size_t i = 0; i < 4; ++i) { 3411 FieldDecl *Field = FieldDecl::Create(Context, 3412 D, 3413 SourceLocation(), 3414 SourceLocation(), nullptr, 3415 FieldTypes[i], /*TInfo=*/nullptr, 3416 /*BitWidth=*/nullptr, 3417 /*Mutable=*/false, 3418 ICIS_NoInit); 3419 Field->setAccess(AS_public); 3420 D->addDecl(Field); 3421 } 3422 3423 D->completeDefinition(); 3424 ObjCFastEnumerationStateType = Context.getTagDeclType(D); 3425 } 3426 3427 return ObjCFastEnumerationStateType; 3428 } 3429 3430 llvm::Constant * 3431 CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) { 3432 assert(!E->getType()->isPointerType() && "Strings are always arrays"); 3433 3434 // Don't emit it as the address of the string, emit the string data itself 3435 // as an inline array. 3436 if (E->getCharByteWidth() == 1) { 3437 SmallString<64> Str(E->getString()); 3438 3439 // Resize the string to the right size, which is indicated by its type. 3440 const ConstantArrayType *CAT = Context.getAsConstantArrayType(E->getType()); 3441 Str.resize(CAT->getSize().getZExtValue()); 3442 return llvm::ConstantDataArray::getString(VMContext, Str, false); 3443 } 3444 3445 auto *AType = cast<llvm::ArrayType>(getTypes().ConvertType(E->getType())); 3446 llvm::Type *ElemTy = AType->getElementType(); 3447 unsigned NumElements = AType->getNumElements(); 3448 3449 // Wide strings have either 2-byte or 4-byte elements. 3450 if (ElemTy->getPrimitiveSizeInBits() == 16) { 3451 SmallVector<uint16_t, 32> Elements; 3452 Elements.reserve(NumElements); 3453 3454 for(unsigned i = 0, e = E->getLength(); i != e; ++i) 3455 Elements.push_back(E->getCodeUnit(i)); 3456 Elements.resize(NumElements); 3457 return llvm::ConstantDataArray::get(VMContext, Elements); 3458 } 3459 3460 assert(ElemTy->getPrimitiveSizeInBits() == 32); 3461 SmallVector<uint32_t, 32> Elements; 3462 Elements.reserve(NumElements); 3463 3464 for(unsigned i = 0, e = E->getLength(); i != e; ++i) 3465 Elements.push_back(E->getCodeUnit(i)); 3466 Elements.resize(NumElements); 3467 return llvm::ConstantDataArray::get(VMContext, Elements); 3468 } 3469 3470 static llvm::GlobalVariable * 3471 GenerateStringLiteral(llvm::Constant *C, llvm::GlobalValue::LinkageTypes LT, 3472 CodeGenModule &CGM, StringRef GlobalName, 3473 CharUnits Alignment) { 3474 // OpenCL v1.2 s6.5.3: a string literal is in the constant address space. 3475 unsigned AddrSpace = 0; 3476 if (CGM.getLangOpts().OpenCL) 3477 AddrSpace = CGM.getContext().getTargetAddressSpace(LangAS::opencl_constant); 3478 3479 llvm::Module &M = CGM.getModule(); 3480 // Create a global variable for this string 3481 auto *GV = new llvm::GlobalVariable( 3482 M, C->getType(), !CGM.getLangOpts().WritableStrings, LT, C, GlobalName, 3483 nullptr, llvm::GlobalVariable::NotThreadLocal, AddrSpace); 3484 GV->setAlignment(Alignment.getQuantity()); 3485 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 3486 if (GV->isWeakForLinker()) { 3487 assert(CGM.supportsCOMDAT() && "Only COFF uses weak string literals"); 3488 GV->setComdat(M.getOrInsertComdat(GV->getName())); 3489 } 3490 3491 return GV; 3492 } 3493 3494 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a 3495 /// constant array for the given string literal. 3496 ConstantAddress 3497 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S, 3498 StringRef Name) { 3499 CharUnits Alignment = getContext().getAlignOfGlobalVarInChars(S->getType()); 3500 3501 llvm::Constant *C = GetConstantArrayFromStringLiteral(S); 3502 llvm::GlobalVariable **Entry = nullptr; 3503 if (!LangOpts.WritableStrings) { 3504 Entry = &ConstantStringMap[C]; 3505 if (auto GV = *Entry) { 3506 if (Alignment.getQuantity() > GV->getAlignment()) 3507 GV->setAlignment(Alignment.getQuantity()); 3508 return ConstantAddress(GV, Alignment); 3509 } 3510 } 3511 3512 SmallString<256> MangledNameBuffer; 3513 StringRef GlobalVariableName; 3514 llvm::GlobalValue::LinkageTypes LT; 3515 3516 // Mangle the string literal if the ABI allows for it. However, we cannot 3517 // do this if we are compiling with ASan or -fwritable-strings because they 3518 // rely on strings having normal linkage. 3519 if (!LangOpts.WritableStrings && 3520 !LangOpts.Sanitize.has(SanitizerKind::Address) && 3521 getCXXABI().getMangleContext().shouldMangleStringLiteral(S)) { 3522 llvm::raw_svector_ostream Out(MangledNameBuffer); 3523 getCXXABI().getMangleContext().mangleStringLiteral(S, Out); 3524 3525 LT = llvm::GlobalValue::LinkOnceODRLinkage; 3526 GlobalVariableName = MangledNameBuffer; 3527 } else { 3528 LT = llvm::GlobalValue::PrivateLinkage; 3529 GlobalVariableName = Name; 3530 } 3531 3532 auto GV = GenerateStringLiteral(C, LT, *this, GlobalVariableName, Alignment); 3533 if (Entry) 3534 *Entry = GV; 3535 3536 SanitizerMD->reportGlobalToASan(GV, S->getStrTokenLoc(0), "<string literal>", 3537 QualType()); 3538 return ConstantAddress(GV, Alignment); 3539 } 3540 3541 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant 3542 /// array for the given ObjCEncodeExpr node. 3543 ConstantAddress 3544 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) { 3545 std::string Str; 3546 getContext().getObjCEncodingForType(E->getEncodedType(), Str); 3547 3548 return GetAddrOfConstantCString(Str); 3549 } 3550 3551 /// GetAddrOfConstantCString - Returns a pointer to a character array containing 3552 /// the literal and a terminating '\0' character. 3553 /// The result has pointer to array type. 3554 ConstantAddress CodeGenModule::GetAddrOfConstantCString( 3555 const std::string &Str, const char *GlobalName) { 3556 StringRef StrWithNull(Str.c_str(), Str.size() + 1); 3557 CharUnits Alignment = 3558 getContext().getAlignOfGlobalVarInChars(getContext().CharTy); 3559 3560 llvm::Constant *C = 3561 llvm::ConstantDataArray::getString(getLLVMContext(), StrWithNull, false); 3562 3563 // Don't share any string literals if strings aren't constant. 3564 llvm::GlobalVariable **Entry = nullptr; 3565 if (!LangOpts.WritableStrings) { 3566 Entry = &ConstantStringMap[C]; 3567 if (auto GV = *Entry) { 3568 if (Alignment.getQuantity() > GV->getAlignment()) 3569 GV->setAlignment(Alignment.getQuantity()); 3570 return ConstantAddress(GV, Alignment); 3571 } 3572 } 3573 3574 // Get the default prefix if a name wasn't specified. 3575 if (!GlobalName) 3576 GlobalName = ".str"; 3577 // Create a global variable for this. 3578 auto GV = GenerateStringLiteral(C, llvm::GlobalValue::PrivateLinkage, *this, 3579 GlobalName, Alignment); 3580 if (Entry) 3581 *Entry = GV; 3582 return ConstantAddress(GV, Alignment); 3583 } 3584 3585 ConstantAddress CodeGenModule::GetAddrOfGlobalTemporary( 3586 const MaterializeTemporaryExpr *E, const Expr *Init) { 3587 assert((E->getStorageDuration() == SD_Static || 3588 E->getStorageDuration() == SD_Thread) && "not a global temporary"); 3589 const auto *VD = cast<VarDecl>(E->getExtendingDecl()); 3590 3591 // If we're not materializing a subobject of the temporary, keep the 3592 // cv-qualifiers from the type of the MaterializeTemporaryExpr. 3593 QualType MaterializedType = Init->getType(); 3594 if (Init == E->GetTemporaryExpr()) 3595 MaterializedType = E->getType(); 3596 3597 CharUnits Align = getContext().getTypeAlignInChars(MaterializedType); 3598 3599 if (llvm::Constant *Slot = MaterializedGlobalTemporaryMap[E]) 3600 return ConstantAddress(Slot, Align); 3601 3602 // FIXME: If an externally-visible declaration extends multiple temporaries, 3603 // we need to give each temporary the same name in every translation unit (and 3604 // we also need to make the temporaries externally-visible). 3605 SmallString<256> Name; 3606 llvm::raw_svector_ostream Out(Name); 3607 getCXXABI().getMangleContext().mangleReferenceTemporary( 3608 VD, E->getManglingNumber(), Out); 3609 3610 APValue *Value = nullptr; 3611 if (E->getStorageDuration() == SD_Static) { 3612 // We might have a cached constant initializer for this temporary. Note 3613 // that this might have a different value from the value computed by 3614 // evaluating the initializer if the surrounding constant expression 3615 // modifies the temporary. 3616 Value = getContext().getMaterializedTemporaryValue(E, false); 3617 if (Value && Value->isUninit()) 3618 Value = nullptr; 3619 } 3620 3621 // Try evaluating it now, it might have a constant initializer. 3622 Expr::EvalResult EvalResult; 3623 if (!Value && Init->EvaluateAsRValue(EvalResult, getContext()) && 3624 !EvalResult.hasSideEffects()) 3625 Value = &EvalResult.Val; 3626 3627 llvm::Constant *InitialValue = nullptr; 3628 bool Constant = false; 3629 llvm::Type *Type; 3630 if (Value) { 3631 // The temporary has a constant initializer, use it. 3632 InitialValue = EmitConstantValue(*Value, MaterializedType, nullptr); 3633 Constant = isTypeConstant(MaterializedType, /*ExcludeCtor*/Value); 3634 Type = InitialValue->getType(); 3635 } else { 3636 // No initializer, the initialization will be provided when we 3637 // initialize the declaration which performed lifetime extension. 3638 Type = getTypes().ConvertTypeForMem(MaterializedType); 3639 } 3640 3641 // Create a global variable for this lifetime-extended temporary. 3642 llvm::GlobalValue::LinkageTypes Linkage = 3643 getLLVMLinkageVarDefinition(VD, Constant); 3644 if (Linkage == llvm::GlobalVariable::ExternalLinkage) { 3645 const VarDecl *InitVD; 3646 if (VD->isStaticDataMember() && VD->getAnyInitializer(InitVD) && 3647 isa<CXXRecordDecl>(InitVD->getLexicalDeclContext())) { 3648 // Temporaries defined inside a class get linkonce_odr linkage because the 3649 // class can be defined in multipe translation units. 3650 Linkage = llvm::GlobalVariable::LinkOnceODRLinkage; 3651 } else { 3652 // There is no need for this temporary to have external linkage if the 3653 // VarDecl has external linkage. 3654 Linkage = llvm::GlobalVariable::InternalLinkage; 3655 } 3656 } 3657 unsigned AddrSpace = GetGlobalVarAddressSpace( 3658 VD, getContext().getTargetAddressSpace(MaterializedType)); 3659 auto *GV = new llvm::GlobalVariable( 3660 getModule(), Type, Constant, Linkage, InitialValue, Name.c_str(), 3661 /*InsertBefore=*/nullptr, llvm::GlobalVariable::NotThreadLocal, 3662 AddrSpace); 3663 setGlobalVisibility(GV, VD); 3664 GV->setAlignment(Align.getQuantity()); 3665 if (supportsCOMDAT() && GV->isWeakForLinker()) 3666 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 3667 if (VD->getTLSKind()) 3668 setTLSMode(GV, *VD); 3669 MaterializedGlobalTemporaryMap[E] = GV; 3670 return ConstantAddress(GV, Align); 3671 } 3672 3673 /// EmitObjCPropertyImplementations - Emit information for synthesized 3674 /// properties for an implementation. 3675 void CodeGenModule::EmitObjCPropertyImplementations(const 3676 ObjCImplementationDecl *D) { 3677 for (const auto *PID : D->property_impls()) { 3678 // Dynamic is just for type-checking. 3679 if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) { 3680 ObjCPropertyDecl *PD = PID->getPropertyDecl(); 3681 3682 // Determine which methods need to be implemented, some may have 3683 // been overridden. Note that ::isPropertyAccessor is not the method 3684 // we want, that just indicates if the decl came from a 3685 // property. What we want to know is if the method is defined in 3686 // this implementation. 3687 if (!D->getInstanceMethod(PD->getGetterName())) 3688 CodeGenFunction(*this).GenerateObjCGetter( 3689 const_cast<ObjCImplementationDecl *>(D), PID); 3690 if (!PD->isReadOnly() && 3691 !D->getInstanceMethod(PD->getSetterName())) 3692 CodeGenFunction(*this).GenerateObjCSetter( 3693 const_cast<ObjCImplementationDecl *>(D), PID); 3694 } 3695 } 3696 } 3697 3698 static bool needsDestructMethod(ObjCImplementationDecl *impl) { 3699 const ObjCInterfaceDecl *iface = impl->getClassInterface(); 3700 for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin(); 3701 ivar; ivar = ivar->getNextIvar()) 3702 if (ivar->getType().isDestructedType()) 3703 return true; 3704 3705 return false; 3706 } 3707 3708 static bool AllTrivialInitializers(CodeGenModule &CGM, 3709 ObjCImplementationDecl *D) { 3710 CodeGenFunction CGF(CGM); 3711 for (ObjCImplementationDecl::init_iterator B = D->init_begin(), 3712 E = D->init_end(); B != E; ++B) { 3713 CXXCtorInitializer *CtorInitExp = *B; 3714 Expr *Init = CtorInitExp->getInit(); 3715 if (!CGF.isTrivialInitializer(Init)) 3716 return false; 3717 } 3718 return true; 3719 } 3720 3721 /// EmitObjCIvarInitializations - Emit information for ivar initialization 3722 /// for an implementation. 3723 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) { 3724 // We might need a .cxx_destruct even if we don't have any ivar initializers. 3725 if (needsDestructMethod(D)) { 3726 IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct"); 3727 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 3728 ObjCMethodDecl *DTORMethod = 3729 ObjCMethodDecl::Create(getContext(), D->getLocation(), D->getLocation(), 3730 cxxSelector, getContext().VoidTy, nullptr, D, 3731 /*isInstance=*/true, /*isVariadic=*/false, 3732 /*isPropertyAccessor=*/true, /*isImplicitlyDeclared=*/true, 3733 /*isDefined=*/false, ObjCMethodDecl::Required); 3734 D->addInstanceMethod(DTORMethod); 3735 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false); 3736 D->setHasDestructors(true); 3737 } 3738 3739 // If the implementation doesn't have any ivar initializers, we don't need 3740 // a .cxx_construct. 3741 if (D->getNumIvarInitializers() == 0 || 3742 AllTrivialInitializers(*this, D)) 3743 return; 3744 3745 IdentifierInfo *II = &getContext().Idents.get(".cxx_construct"); 3746 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 3747 // The constructor returns 'self'. 3748 ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(getContext(), 3749 D->getLocation(), 3750 D->getLocation(), 3751 cxxSelector, 3752 getContext().getObjCIdType(), 3753 nullptr, D, /*isInstance=*/true, 3754 /*isVariadic=*/false, 3755 /*isPropertyAccessor=*/true, 3756 /*isImplicitlyDeclared=*/true, 3757 /*isDefined=*/false, 3758 ObjCMethodDecl::Required); 3759 D->addInstanceMethod(CTORMethod); 3760 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true); 3761 D->setHasNonZeroConstructors(true); 3762 } 3763 3764 // EmitLinkageSpec - Emit all declarations in a linkage spec. 3765 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) { 3766 if (LSD->getLanguage() != LinkageSpecDecl::lang_c && 3767 LSD->getLanguage() != LinkageSpecDecl::lang_cxx) { 3768 ErrorUnsupported(LSD, "linkage spec"); 3769 return; 3770 } 3771 3772 EmitDeclContext(LSD); 3773 } 3774 3775 void CodeGenModule::EmitDeclContext(const DeclContext *DC) { 3776 for (auto *I : DC->decls()) { 3777 // Unlike other DeclContexts, the contents of an ObjCImplDecl at TU scope 3778 // are themselves considered "top-level", so EmitTopLevelDecl on an 3779 // ObjCImplDecl does not recursively visit them. We need to do that in 3780 // case they're nested inside another construct (LinkageSpecDecl / 3781 // ExportDecl) that does stop them from being considered "top-level". 3782 if (auto *OID = dyn_cast<ObjCImplDecl>(I)) { 3783 for (auto *M : OID->methods()) 3784 EmitTopLevelDecl(M); 3785 } 3786 3787 EmitTopLevelDecl(I); 3788 } 3789 } 3790 3791 /// EmitTopLevelDecl - Emit code for a single top level declaration. 3792 void CodeGenModule::EmitTopLevelDecl(Decl *D) { 3793 // Ignore dependent declarations. 3794 if (D->getDeclContext() && D->getDeclContext()->isDependentContext()) 3795 return; 3796 3797 switch (D->getKind()) { 3798 case Decl::CXXConversion: 3799 case Decl::CXXMethod: 3800 case Decl::Function: 3801 // Skip function templates 3802 if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() || 3803 cast<FunctionDecl>(D)->isLateTemplateParsed()) 3804 return; 3805 3806 EmitGlobal(cast<FunctionDecl>(D)); 3807 // Always provide some coverage mapping 3808 // even for the functions that aren't emitted. 3809 AddDeferredUnusedCoverageMapping(D); 3810 break; 3811 3812 case Decl::CXXDeductionGuide: 3813 // Function-like, but does not result in code emission. 3814 break; 3815 3816 case Decl::Var: 3817 case Decl::Decomposition: 3818 // Skip variable templates 3819 if (cast<VarDecl>(D)->getDescribedVarTemplate()) 3820 return; 3821 case Decl::VarTemplateSpecialization: 3822 EmitGlobal(cast<VarDecl>(D)); 3823 if (auto *DD = dyn_cast<DecompositionDecl>(D)) 3824 for (auto *B : DD->bindings()) 3825 if (auto *HD = B->getHoldingVar()) 3826 EmitGlobal(HD); 3827 break; 3828 3829 // Indirect fields from global anonymous structs and unions can be 3830 // ignored; only the actual variable requires IR gen support. 3831 case Decl::IndirectField: 3832 break; 3833 3834 // C++ Decls 3835 case Decl::Namespace: 3836 EmitDeclContext(cast<NamespaceDecl>(D)); 3837 break; 3838 case Decl::CXXRecord: 3839 if (DebugInfo) { 3840 if (auto *ES = D->getASTContext().getExternalSource()) 3841 if (ES->hasExternalDefinitions(D) == ExternalASTSource::EK_Never) 3842 DebugInfo->completeUnusedClass(cast<CXXRecordDecl>(*D)); 3843 } 3844 // Emit any static data members, they may be definitions. 3845 for (auto *I : cast<CXXRecordDecl>(D)->decls()) 3846 if (isa<VarDecl>(I) || isa<CXXRecordDecl>(I)) 3847 EmitTopLevelDecl(I); 3848 break; 3849 // No code generation needed. 3850 case Decl::UsingShadow: 3851 case Decl::ClassTemplate: 3852 case Decl::VarTemplate: 3853 case Decl::VarTemplatePartialSpecialization: 3854 case Decl::FunctionTemplate: 3855 case Decl::TypeAliasTemplate: 3856 case Decl::Block: 3857 case Decl::Empty: 3858 break; 3859 case Decl::Using: // using X; [C++] 3860 if (CGDebugInfo *DI = getModuleDebugInfo()) 3861 DI->EmitUsingDecl(cast<UsingDecl>(*D)); 3862 return; 3863 case Decl::NamespaceAlias: 3864 if (CGDebugInfo *DI = getModuleDebugInfo()) 3865 DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(*D)); 3866 return; 3867 case Decl::UsingDirective: // using namespace X; [C++] 3868 if (CGDebugInfo *DI = getModuleDebugInfo()) 3869 DI->EmitUsingDirective(cast<UsingDirectiveDecl>(*D)); 3870 return; 3871 case Decl::CXXConstructor: 3872 // Skip function templates 3873 if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() || 3874 cast<FunctionDecl>(D)->isLateTemplateParsed()) 3875 return; 3876 3877 getCXXABI().EmitCXXConstructors(cast<CXXConstructorDecl>(D)); 3878 break; 3879 case Decl::CXXDestructor: 3880 if (cast<FunctionDecl>(D)->isLateTemplateParsed()) 3881 return; 3882 getCXXABI().EmitCXXDestructors(cast<CXXDestructorDecl>(D)); 3883 break; 3884 3885 case Decl::StaticAssert: 3886 // Nothing to do. 3887 break; 3888 3889 // Objective-C Decls 3890 3891 // Forward declarations, no (immediate) code generation. 3892 case Decl::ObjCInterface: 3893 case Decl::ObjCCategory: 3894 break; 3895 3896 case Decl::ObjCProtocol: { 3897 auto *Proto = cast<ObjCProtocolDecl>(D); 3898 if (Proto->isThisDeclarationADefinition()) 3899 ObjCRuntime->GenerateProtocol(Proto); 3900 break; 3901 } 3902 3903 case Decl::ObjCCategoryImpl: 3904 // Categories have properties but don't support synthesize so we 3905 // can ignore them here. 3906 ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D)); 3907 break; 3908 3909 case Decl::ObjCImplementation: { 3910 auto *OMD = cast<ObjCImplementationDecl>(D); 3911 EmitObjCPropertyImplementations(OMD); 3912 EmitObjCIvarInitializations(OMD); 3913 ObjCRuntime->GenerateClass(OMD); 3914 // Emit global variable debug information. 3915 if (CGDebugInfo *DI = getModuleDebugInfo()) 3916 if (getCodeGenOpts().getDebugInfo() >= codegenoptions::LimitedDebugInfo) 3917 DI->getOrCreateInterfaceType(getContext().getObjCInterfaceType( 3918 OMD->getClassInterface()), OMD->getLocation()); 3919 break; 3920 } 3921 case Decl::ObjCMethod: { 3922 auto *OMD = cast<ObjCMethodDecl>(D); 3923 // If this is not a prototype, emit the body. 3924 if (OMD->getBody()) 3925 CodeGenFunction(*this).GenerateObjCMethod(OMD); 3926 break; 3927 } 3928 case Decl::ObjCCompatibleAlias: 3929 ObjCRuntime->RegisterAlias(cast<ObjCCompatibleAliasDecl>(D)); 3930 break; 3931 3932 case Decl::PragmaComment: { 3933 const auto *PCD = cast<PragmaCommentDecl>(D); 3934 switch (PCD->getCommentKind()) { 3935 case PCK_Unknown: 3936 llvm_unreachable("unexpected pragma comment kind"); 3937 case PCK_Linker: 3938 AppendLinkerOptions(PCD->getArg()); 3939 break; 3940 case PCK_Lib: 3941 AddDependentLib(PCD->getArg()); 3942 break; 3943 case PCK_Compiler: 3944 case PCK_ExeStr: 3945 case PCK_User: 3946 break; // We ignore all of these. 3947 } 3948 break; 3949 } 3950 3951 case Decl::PragmaDetectMismatch: { 3952 const auto *PDMD = cast<PragmaDetectMismatchDecl>(D); 3953 AddDetectMismatch(PDMD->getName(), PDMD->getValue()); 3954 break; 3955 } 3956 3957 case Decl::LinkageSpec: 3958 EmitLinkageSpec(cast<LinkageSpecDecl>(D)); 3959 break; 3960 3961 case Decl::FileScopeAsm: { 3962 // File-scope asm is ignored during device-side CUDA compilation. 3963 if (LangOpts.CUDA && LangOpts.CUDAIsDevice) 3964 break; 3965 // File-scope asm is ignored during device-side OpenMP compilation. 3966 if (LangOpts.OpenMPIsDevice) 3967 break; 3968 auto *AD = cast<FileScopeAsmDecl>(D); 3969 getModule().appendModuleInlineAsm(AD->getAsmString()->getString()); 3970 break; 3971 } 3972 3973 case Decl::Import: { 3974 auto *Import = cast<ImportDecl>(D); 3975 3976 // If we've already imported this module, we're done. 3977 if (!ImportedModules.insert(Import->getImportedModule())) 3978 break; 3979 3980 // Emit debug information for direct imports. 3981 if (!Import->getImportedOwningModule()) { 3982 if (CGDebugInfo *DI = getModuleDebugInfo()) 3983 DI->EmitImportDecl(*Import); 3984 } 3985 3986 // Find all of the submodules and emit the module initializers. 3987 llvm::SmallPtrSet<clang::Module *, 16> Visited; 3988 SmallVector<clang::Module *, 16> Stack; 3989 Visited.insert(Import->getImportedModule()); 3990 Stack.push_back(Import->getImportedModule()); 3991 3992 while (!Stack.empty()) { 3993 clang::Module *Mod = Stack.pop_back_val(); 3994 if (!EmittedModuleInitializers.insert(Mod).second) 3995 continue; 3996 3997 for (auto *D : Context.getModuleInitializers(Mod)) 3998 EmitTopLevelDecl(D); 3999 4000 // Visit the submodules of this module. 4001 for (clang::Module::submodule_iterator Sub = Mod->submodule_begin(), 4002 SubEnd = Mod->submodule_end(); 4003 Sub != SubEnd; ++Sub) { 4004 // Skip explicit children; they need to be explicitly imported to emit 4005 // the initializers. 4006 if ((*Sub)->IsExplicit) 4007 continue; 4008 4009 if (Visited.insert(*Sub).second) 4010 Stack.push_back(*Sub); 4011 } 4012 } 4013 break; 4014 } 4015 4016 case Decl::Export: 4017 EmitDeclContext(cast<ExportDecl>(D)); 4018 break; 4019 4020 case Decl::OMPThreadPrivate: 4021 EmitOMPThreadPrivateDecl(cast<OMPThreadPrivateDecl>(D)); 4022 break; 4023 4024 case Decl::ClassTemplateSpecialization: { 4025 const auto *Spec = cast<ClassTemplateSpecializationDecl>(D); 4026 if (DebugInfo && 4027 Spec->getSpecializationKind() == TSK_ExplicitInstantiationDefinition && 4028 Spec->hasDefinition()) 4029 DebugInfo->completeTemplateDefinition(*Spec); 4030 break; 4031 } 4032 4033 case Decl::OMPDeclareReduction: 4034 EmitOMPDeclareReduction(cast<OMPDeclareReductionDecl>(D)); 4035 break; 4036 4037 default: 4038 // Make sure we handled everything we should, every other kind is a 4039 // non-top-level decl. FIXME: Would be nice to have an isTopLevelDeclKind 4040 // function. Need to recode Decl::Kind to do that easily. 4041 assert(isa<TypeDecl>(D) && "Unsupported decl kind"); 4042 break; 4043 } 4044 } 4045 4046 void CodeGenModule::AddDeferredUnusedCoverageMapping(Decl *D) { 4047 // Do we need to generate coverage mapping? 4048 if (!CodeGenOpts.CoverageMapping) 4049 return; 4050 switch (D->getKind()) { 4051 case Decl::CXXConversion: 4052 case Decl::CXXMethod: 4053 case Decl::Function: 4054 case Decl::ObjCMethod: 4055 case Decl::CXXConstructor: 4056 case Decl::CXXDestructor: { 4057 if (!cast<FunctionDecl>(D)->doesThisDeclarationHaveABody()) 4058 return; 4059 auto I = DeferredEmptyCoverageMappingDecls.find(D); 4060 if (I == DeferredEmptyCoverageMappingDecls.end()) 4061 DeferredEmptyCoverageMappingDecls[D] = true; 4062 break; 4063 } 4064 default: 4065 break; 4066 }; 4067 } 4068 4069 void CodeGenModule::ClearUnusedCoverageMapping(const Decl *D) { 4070 // Do we need to generate coverage mapping? 4071 if (!CodeGenOpts.CoverageMapping) 4072 return; 4073 if (const auto *Fn = dyn_cast<FunctionDecl>(D)) { 4074 if (Fn->isTemplateInstantiation()) 4075 ClearUnusedCoverageMapping(Fn->getTemplateInstantiationPattern()); 4076 } 4077 auto I = DeferredEmptyCoverageMappingDecls.find(D); 4078 if (I == DeferredEmptyCoverageMappingDecls.end()) 4079 DeferredEmptyCoverageMappingDecls[D] = false; 4080 else 4081 I->second = false; 4082 } 4083 4084 void CodeGenModule::EmitDeferredUnusedCoverageMappings() { 4085 std::vector<const Decl *> DeferredDecls; 4086 for (const auto &I : DeferredEmptyCoverageMappingDecls) { 4087 if (!I.second) 4088 continue; 4089 DeferredDecls.push_back(I.first); 4090 } 4091 // Sort the declarations by their location to make sure that the tests get a 4092 // predictable order for the coverage mapping for the unused declarations. 4093 if (CodeGenOpts.DumpCoverageMapping) 4094 std::sort(DeferredDecls.begin(), DeferredDecls.end(), 4095 [] (const Decl *LHS, const Decl *RHS) { 4096 return LHS->getLocStart() < RHS->getLocStart(); 4097 }); 4098 for (const auto *D : DeferredDecls) { 4099 switch (D->getKind()) { 4100 case Decl::CXXConversion: 4101 case Decl::CXXMethod: 4102 case Decl::Function: 4103 case Decl::ObjCMethod: { 4104 CodeGenPGO PGO(*this); 4105 GlobalDecl GD(cast<FunctionDecl>(D)); 4106 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 4107 getFunctionLinkage(GD)); 4108 break; 4109 } 4110 case Decl::CXXConstructor: { 4111 CodeGenPGO PGO(*this); 4112 GlobalDecl GD(cast<CXXConstructorDecl>(D), Ctor_Base); 4113 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 4114 getFunctionLinkage(GD)); 4115 break; 4116 } 4117 case Decl::CXXDestructor: { 4118 CodeGenPGO PGO(*this); 4119 GlobalDecl GD(cast<CXXDestructorDecl>(D), Dtor_Base); 4120 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 4121 getFunctionLinkage(GD)); 4122 break; 4123 } 4124 default: 4125 break; 4126 }; 4127 } 4128 } 4129 4130 /// Turns the given pointer into a constant. 4131 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context, 4132 const void *Ptr) { 4133 uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr); 4134 llvm::Type *i64 = llvm::Type::getInt64Ty(Context); 4135 return llvm::ConstantInt::get(i64, PtrInt); 4136 } 4137 4138 static void EmitGlobalDeclMetadata(CodeGenModule &CGM, 4139 llvm::NamedMDNode *&GlobalMetadata, 4140 GlobalDecl D, 4141 llvm::GlobalValue *Addr) { 4142 if (!GlobalMetadata) 4143 GlobalMetadata = 4144 CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs"); 4145 4146 // TODO: should we report variant information for ctors/dtors? 4147 llvm::Metadata *Ops[] = {llvm::ConstantAsMetadata::get(Addr), 4148 llvm::ConstantAsMetadata::get(GetPointerConstant( 4149 CGM.getLLVMContext(), D.getDecl()))}; 4150 GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops)); 4151 } 4152 4153 /// For each function which is declared within an extern "C" region and marked 4154 /// as 'used', but has internal linkage, create an alias from the unmangled 4155 /// name to the mangled name if possible. People expect to be able to refer 4156 /// to such functions with an unmangled name from inline assembly within the 4157 /// same translation unit. 4158 void CodeGenModule::EmitStaticExternCAliases() { 4159 // Don't do anything if we're generating CUDA device code -- the NVPTX 4160 // assembly target doesn't support aliases. 4161 if (Context.getTargetInfo().getTriple().isNVPTX()) 4162 return; 4163 for (auto &I : StaticExternCValues) { 4164 IdentifierInfo *Name = I.first; 4165 llvm::GlobalValue *Val = I.second; 4166 if (Val && !getModule().getNamedValue(Name->getName())) 4167 addUsedGlobal(llvm::GlobalAlias::create(Name->getName(), Val)); 4168 } 4169 } 4170 4171 bool CodeGenModule::lookupRepresentativeDecl(StringRef MangledName, 4172 GlobalDecl &Result) const { 4173 auto Res = Manglings.find(MangledName); 4174 if (Res == Manglings.end()) 4175 return false; 4176 Result = Res->getValue(); 4177 return true; 4178 } 4179 4180 /// Emits metadata nodes associating all the global values in the 4181 /// current module with the Decls they came from. This is useful for 4182 /// projects using IR gen as a subroutine. 4183 /// 4184 /// Since there's currently no way to associate an MDNode directly 4185 /// with an llvm::GlobalValue, we create a global named metadata 4186 /// with the name 'clang.global.decl.ptrs'. 4187 void CodeGenModule::EmitDeclMetadata() { 4188 llvm::NamedMDNode *GlobalMetadata = nullptr; 4189 4190 for (auto &I : MangledDeclNames) { 4191 llvm::GlobalValue *Addr = getModule().getNamedValue(I.second); 4192 // Some mangled names don't necessarily have an associated GlobalValue 4193 // in this module, e.g. if we mangled it for DebugInfo. 4194 if (Addr) 4195 EmitGlobalDeclMetadata(*this, GlobalMetadata, I.first, Addr); 4196 } 4197 } 4198 4199 /// Emits metadata nodes for all the local variables in the current 4200 /// function. 4201 void CodeGenFunction::EmitDeclMetadata() { 4202 if (LocalDeclMap.empty()) return; 4203 4204 llvm::LLVMContext &Context = getLLVMContext(); 4205 4206 // Find the unique metadata ID for this name. 4207 unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr"); 4208 4209 llvm::NamedMDNode *GlobalMetadata = nullptr; 4210 4211 for (auto &I : LocalDeclMap) { 4212 const Decl *D = I.first; 4213 llvm::Value *Addr = I.second.getPointer(); 4214 if (auto *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) { 4215 llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D); 4216 Alloca->setMetadata( 4217 DeclPtrKind, llvm::MDNode::get( 4218 Context, llvm::ValueAsMetadata::getConstant(DAddr))); 4219 } else if (auto *GV = dyn_cast<llvm::GlobalValue>(Addr)) { 4220 GlobalDecl GD = GlobalDecl(cast<VarDecl>(D)); 4221 EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV); 4222 } 4223 } 4224 } 4225 4226 void CodeGenModule::EmitVersionIdentMetadata() { 4227 llvm::NamedMDNode *IdentMetadata = 4228 TheModule.getOrInsertNamedMetadata("llvm.ident"); 4229 std::string Version = getClangFullVersion(); 4230 llvm::LLVMContext &Ctx = TheModule.getContext(); 4231 4232 llvm::Metadata *IdentNode[] = {llvm::MDString::get(Ctx, Version)}; 4233 IdentMetadata->addOperand(llvm::MDNode::get(Ctx, IdentNode)); 4234 } 4235 4236 void CodeGenModule::EmitTargetMetadata() { 4237 // Warning, new MangledDeclNames may be appended within this loop. 4238 // We rely on MapVector insertions adding new elements to the end 4239 // of the container. 4240 // FIXME: Move this loop into the one target that needs it, and only 4241 // loop over those declarations for which we couldn't emit the target 4242 // metadata when we emitted the declaration. 4243 for (unsigned I = 0; I != MangledDeclNames.size(); ++I) { 4244 auto Val = *(MangledDeclNames.begin() + I); 4245 const Decl *D = Val.first.getDecl()->getMostRecentDecl(); 4246 llvm::GlobalValue *GV = GetGlobalValue(Val.second); 4247 getTargetCodeGenInfo().emitTargetMD(D, GV, *this); 4248 } 4249 } 4250 4251 void CodeGenModule::EmitCoverageFile() { 4252 if (getCodeGenOpts().CoverageDataFile.empty() && 4253 getCodeGenOpts().CoverageNotesFile.empty()) 4254 return; 4255 4256 llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu"); 4257 if (!CUNode) 4258 return; 4259 4260 llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov"); 4261 llvm::LLVMContext &Ctx = TheModule.getContext(); 4262 auto *CoverageDataFile = 4263 llvm::MDString::get(Ctx, getCodeGenOpts().CoverageDataFile); 4264 auto *CoverageNotesFile = 4265 llvm::MDString::get(Ctx, getCodeGenOpts().CoverageNotesFile); 4266 for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) { 4267 llvm::MDNode *CU = CUNode->getOperand(i); 4268 llvm::Metadata *Elts[] = {CoverageNotesFile, CoverageDataFile, CU}; 4269 GCov->addOperand(llvm::MDNode::get(Ctx, Elts)); 4270 } 4271 } 4272 4273 llvm::Constant *CodeGenModule::EmitUuidofInitializer(StringRef Uuid) { 4274 // Sema has checked that all uuid strings are of the form 4275 // "12345678-1234-1234-1234-1234567890ab". 4276 assert(Uuid.size() == 36); 4277 for (unsigned i = 0; i < 36; ++i) { 4278 if (i == 8 || i == 13 || i == 18 || i == 23) assert(Uuid[i] == '-'); 4279 else assert(isHexDigit(Uuid[i])); 4280 } 4281 4282 // The starts of all bytes of Field3 in Uuid. Field 3 is "1234-1234567890ab". 4283 const unsigned Field3ValueOffsets[8] = { 19, 21, 24, 26, 28, 30, 32, 34 }; 4284 4285 llvm::Constant *Field3[8]; 4286 for (unsigned Idx = 0; Idx < 8; ++Idx) 4287 Field3[Idx] = llvm::ConstantInt::get( 4288 Int8Ty, Uuid.substr(Field3ValueOffsets[Idx], 2), 16); 4289 4290 llvm::Constant *Fields[4] = { 4291 llvm::ConstantInt::get(Int32Ty, Uuid.substr(0, 8), 16), 4292 llvm::ConstantInt::get(Int16Ty, Uuid.substr(9, 4), 16), 4293 llvm::ConstantInt::get(Int16Ty, Uuid.substr(14, 4), 16), 4294 llvm::ConstantArray::get(llvm::ArrayType::get(Int8Ty, 8), Field3) 4295 }; 4296 4297 return llvm::ConstantStruct::getAnon(Fields); 4298 } 4299 4300 llvm::Constant *CodeGenModule::GetAddrOfRTTIDescriptor(QualType Ty, 4301 bool ForEH) { 4302 // Return a bogus pointer if RTTI is disabled, unless it's for EH. 4303 // FIXME: should we even be calling this method if RTTI is disabled 4304 // and it's not for EH? 4305 if (!ForEH && !getLangOpts().RTTI) 4306 return llvm::Constant::getNullValue(Int8PtrTy); 4307 4308 if (ForEH && Ty->isObjCObjectPointerType() && 4309 LangOpts.ObjCRuntime.isGNUFamily()) 4310 return ObjCRuntime->GetEHType(Ty); 4311 4312 return getCXXABI().getAddrOfRTTIDescriptor(Ty); 4313 } 4314 4315 void CodeGenModule::EmitOMPThreadPrivateDecl(const OMPThreadPrivateDecl *D) { 4316 for (auto RefExpr : D->varlists()) { 4317 auto *VD = cast<VarDecl>(cast<DeclRefExpr>(RefExpr)->getDecl()); 4318 bool PerformInit = 4319 VD->getAnyInitializer() && 4320 !VD->getAnyInitializer()->isConstantInitializer(getContext(), 4321 /*ForRef=*/false); 4322 4323 Address Addr(GetAddrOfGlobalVar(VD), getContext().getDeclAlign(VD)); 4324 if (auto InitFunction = getOpenMPRuntime().emitThreadPrivateVarDefinition( 4325 VD, Addr, RefExpr->getLocStart(), PerformInit)) 4326 CXXGlobalInits.push_back(InitFunction); 4327 } 4328 } 4329 4330 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierForType(QualType T) { 4331 llvm::Metadata *&InternalId = MetadataIdMap[T.getCanonicalType()]; 4332 if (InternalId) 4333 return InternalId; 4334 4335 if (isExternallyVisible(T->getLinkage())) { 4336 std::string OutName; 4337 llvm::raw_string_ostream Out(OutName); 4338 getCXXABI().getMangleContext().mangleTypeName(T, Out); 4339 4340 InternalId = llvm::MDString::get(getLLVMContext(), Out.str()); 4341 } else { 4342 InternalId = llvm::MDNode::getDistinct(getLLVMContext(), 4343 llvm::ArrayRef<llvm::Metadata *>()); 4344 } 4345 4346 return InternalId; 4347 } 4348 4349 /// Returns whether this module needs the "all-vtables" type identifier. 4350 bool CodeGenModule::NeedAllVtablesTypeId() const { 4351 // Returns true if at least one of vtable-based CFI checkers is enabled and 4352 // is not in the trapping mode. 4353 return ((LangOpts.Sanitize.has(SanitizerKind::CFIVCall) && 4354 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIVCall)) || 4355 (LangOpts.Sanitize.has(SanitizerKind::CFINVCall) && 4356 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFINVCall)) || 4357 (LangOpts.Sanitize.has(SanitizerKind::CFIDerivedCast) && 4358 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIDerivedCast)) || 4359 (LangOpts.Sanitize.has(SanitizerKind::CFIUnrelatedCast) && 4360 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIUnrelatedCast))); 4361 } 4362 4363 void CodeGenModule::AddVTableTypeMetadata(llvm::GlobalVariable *VTable, 4364 CharUnits Offset, 4365 const CXXRecordDecl *RD) { 4366 llvm::Metadata *MD = 4367 CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0)); 4368 VTable->addTypeMetadata(Offset.getQuantity(), MD); 4369 4370 if (CodeGenOpts.SanitizeCfiCrossDso) 4371 if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD)) 4372 VTable->addTypeMetadata(Offset.getQuantity(), 4373 llvm::ConstantAsMetadata::get(CrossDsoTypeId)); 4374 4375 if (NeedAllVtablesTypeId()) { 4376 llvm::Metadata *MD = llvm::MDString::get(getLLVMContext(), "all-vtables"); 4377 VTable->addTypeMetadata(Offset.getQuantity(), MD); 4378 } 4379 } 4380 4381 // Fills in the supplied string map with the set of target features for the 4382 // passed in function. 4383 void CodeGenModule::getFunctionFeatureMap(llvm::StringMap<bool> &FeatureMap, 4384 const FunctionDecl *FD) { 4385 StringRef TargetCPU = Target.getTargetOpts().CPU; 4386 if (const auto *TD = FD->getAttr<TargetAttr>()) { 4387 // If we have a TargetAttr build up the feature map based on that. 4388 TargetAttr::ParsedTargetAttr ParsedAttr = TD->parse(); 4389 4390 // Make a copy of the features as passed on the command line into the 4391 // beginning of the additional features from the function to override. 4392 ParsedAttr.first.insert(ParsedAttr.first.begin(), 4393 Target.getTargetOpts().FeaturesAsWritten.begin(), 4394 Target.getTargetOpts().FeaturesAsWritten.end()); 4395 4396 if (ParsedAttr.second != "") 4397 TargetCPU = ParsedAttr.second; 4398 4399 // Now populate the feature map, first with the TargetCPU which is either 4400 // the default or a new one from the target attribute string. Then we'll use 4401 // the passed in features (FeaturesAsWritten) along with the new ones from 4402 // the attribute. 4403 Target.initFeatureMap(FeatureMap, getDiags(), TargetCPU, ParsedAttr.first); 4404 } else { 4405 Target.initFeatureMap(FeatureMap, getDiags(), TargetCPU, 4406 Target.getTargetOpts().Features); 4407 } 4408 } 4409 4410 llvm::SanitizerStatReport &CodeGenModule::getSanStats() { 4411 if (!SanStats) 4412 SanStats = llvm::make_unique<llvm::SanitizerStatReport>(&getModule()); 4413 4414 return *SanStats; 4415 } 4416 llvm::Value * 4417 CodeGenModule::createOpenCLIntToSamplerConversion(const Expr *E, 4418 CodeGenFunction &CGF) { 4419 llvm::Constant *C = EmitConstantExpr(E, E->getType(), &CGF); 4420 auto SamplerT = getOpenCLRuntime().getSamplerType(); 4421 auto FTy = llvm::FunctionType::get(SamplerT, {C->getType()}, false); 4422 return CGF.Builder.CreateCall(CreateRuntimeFunction(FTy, 4423 "__translate_sampler_initializer"), 4424 {C}); 4425 } 4426