xref: /llvm-project/clang/lib/CodeGen/CodeGenModule.cpp (revision 6a4fa52b379425302825d38bb90c6f6934e3f090)
1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This coordinates the per-module state used while generating code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenModule.h"
15 #include "CGDebugInfo.h"
16 #include "CodeGenFunction.h"
17 #include "CodeGenTBAA.h"
18 #include "CGCall.h"
19 #include "CGCXXABI.h"
20 #include "CGObjCRuntime.h"
21 #include "TargetInfo.h"
22 #include "clang/Frontend/CodeGenOptions.h"
23 #include "clang/AST/ASTContext.h"
24 #include "clang/AST/CharUnits.h"
25 #include "clang/AST/DeclObjC.h"
26 #include "clang/AST/DeclCXX.h"
27 #include "clang/AST/DeclTemplate.h"
28 #include "clang/AST/Mangle.h"
29 #include "clang/AST/RecordLayout.h"
30 #include "clang/Basic/Builtins.h"
31 #include "clang/Basic/Diagnostic.h"
32 #include "clang/Basic/SourceManager.h"
33 #include "clang/Basic/TargetInfo.h"
34 #include "clang/Basic/ConvertUTF.h"
35 #include "llvm/CallingConv.h"
36 #include "llvm/Module.h"
37 #include "llvm/Intrinsics.h"
38 #include "llvm/LLVMContext.h"
39 #include "llvm/ADT/Triple.h"
40 #include "llvm/Target/Mangler.h"
41 #include "llvm/Target/TargetData.h"
42 #include "llvm/Support/CallSite.h"
43 #include "llvm/Support/ErrorHandling.h"
44 using namespace clang;
45 using namespace CodeGen;
46 
47 static CGCXXABI &createCXXABI(CodeGenModule &CGM) {
48   switch (CGM.getContext().Target.getCXXABI()) {
49   case CXXABI_ARM: return *CreateARMCXXABI(CGM);
50   case CXXABI_Itanium: return *CreateItaniumCXXABI(CGM);
51   case CXXABI_Microsoft: return *CreateMicrosoftCXXABI(CGM);
52   }
53 
54   llvm_unreachable("invalid C++ ABI kind");
55   return *CreateItaniumCXXABI(CGM);
56 }
57 
58 
59 CodeGenModule::CodeGenModule(ASTContext &C, const CodeGenOptions &CGO,
60                              llvm::Module &M, const llvm::TargetData &TD,
61                              Diagnostic &diags)
62   : Context(C), Features(C.getLangOptions()), CodeGenOpts(CGO), TheModule(M),
63     TheTargetData(TD), TheTargetCodeGenInfo(0), Diags(diags),
64     ABI(createCXXABI(*this)),
65     Types(C, M, TD, getTargetCodeGenInfo().getABIInfo(), ABI),
66     TBAA(0),
67     VTables(*this), Runtime(0),
68     CFConstantStringClassRef(0), ConstantStringClassRef(0),
69     VMContext(M.getContext()),
70     NSConcreteGlobalBlockDecl(0), NSConcreteStackBlockDecl(0),
71     NSConcreteGlobalBlock(0), NSConcreteStackBlock(0),
72     BlockObjectAssignDecl(0), BlockObjectDisposeDecl(0),
73     BlockObjectAssign(0), BlockObjectDispose(0),
74     BlockDescriptorType(0), GenericBlockLiteralType(0) {
75   if (!Features.ObjC1)
76     Runtime = 0;
77   else if (!Features.NeXTRuntime)
78     Runtime = CreateGNUObjCRuntime(*this);
79   else if (Features.ObjCNonFragileABI)
80     Runtime = CreateMacNonFragileABIObjCRuntime(*this);
81   else
82     Runtime = CreateMacObjCRuntime(*this);
83 
84   // Enable TBAA unless it's suppressed.
85   if (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0)
86     TBAA = new CodeGenTBAA(Context, VMContext, getLangOptions(),
87                            ABI.getMangleContext());
88 
89   // If debug info generation is enabled, create the CGDebugInfo object.
90   DebugInfo = CodeGenOpts.DebugInfo ? new CGDebugInfo(*this) : 0;
91 
92   Block.GlobalUniqueCount = 0;
93 
94   // Initialize the type cache.
95   llvm::LLVMContext &LLVMContext = M.getContext();
96   Int8Ty  = llvm::Type::getInt8Ty(LLVMContext);
97   Int32Ty  = llvm::Type::getInt32Ty(LLVMContext);
98   Int64Ty  = llvm::Type::getInt64Ty(LLVMContext);
99   PointerWidthInBits = C.Target.getPointerWidth(0);
100   PointerAlignInBytes =
101     C.toCharUnitsFromBits(C.Target.getPointerAlign(0)).getQuantity();
102   IntTy = llvm::IntegerType::get(LLVMContext, C.Target.getIntWidth());
103   IntPtrTy = llvm::IntegerType::get(LLVMContext, PointerWidthInBits);
104   Int8PtrTy = Int8Ty->getPointerTo(0);
105   Int8PtrPtrTy = Int8PtrTy->getPointerTo(0);
106 }
107 
108 CodeGenModule::~CodeGenModule() {
109   delete Runtime;
110   delete &ABI;
111   delete TBAA;
112   delete DebugInfo;
113 }
114 
115 void CodeGenModule::createObjCRuntime() {
116   if (!Features.NeXTRuntime)
117     Runtime = CreateGNUObjCRuntime(*this);
118   else if (Features.ObjCNonFragileABI)
119     Runtime = CreateMacNonFragileABIObjCRuntime(*this);
120   else
121     Runtime = CreateMacObjCRuntime(*this);
122 }
123 
124 void CodeGenModule::Release() {
125   EmitDeferred();
126   EmitCXXGlobalInitFunc();
127   EmitCXXGlobalDtorFunc();
128   if (Runtime)
129     if (llvm::Function *ObjCInitFunction = Runtime->ModuleInitFunction())
130       AddGlobalCtor(ObjCInitFunction);
131   EmitCtorList(GlobalCtors, "llvm.global_ctors");
132   EmitCtorList(GlobalDtors, "llvm.global_dtors");
133   EmitAnnotations();
134   EmitLLVMUsed();
135 
136   SimplifyPersonality();
137 
138   if (getCodeGenOpts().EmitDeclMetadata)
139     EmitDeclMetadata();
140 }
141 
142 llvm::MDNode *CodeGenModule::getTBAAInfo(QualType QTy) {
143   if (!TBAA)
144     return 0;
145   return TBAA->getTBAAInfo(QTy);
146 }
147 
148 void CodeGenModule::DecorateInstruction(llvm::Instruction *Inst,
149                                         llvm::MDNode *TBAAInfo) {
150   Inst->setMetadata(llvm::LLVMContext::MD_tbaa, TBAAInfo);
151 }
152 
153 bool CodeGenModule::isTargetDarwin() const {
154   return getContext().Target.getTriple().getOS() == llvm::Triple::Darwin;
155 }
156 
157 void CodeGenModule::Error(SourceLocation loc, llvm::StringRef error) {
158   unsigned diagID = getDiags().getCustomDiagID(Diagnostic::Error, error);
159   getDiags().Report(Context.getFullLoc(loc), diagID);
160 }
161 
162 /// ErrorUnsupported - Print out an error that codegen doesn't support the
163 /// specified stmt yet.
164 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type,
165                                      bool OmitOnError) {
166   if (OmitOnError && getDiags().hasErrorOccurred())
167     return;
168   unsigned DiagID = getDiags().getCustomDiagID(Diagnostic::Error,
169                                                "cannot compile this %0 yet");
170   std::string Msg = Type;
171   getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID)
172     << Msg << S->getSourceRange();
173 }
174 
175 /// ErrorUnsupported - Print out an error that codegen doesn't support the
176 /// specified decl yet.
177 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type,
178                                      bool OmitOnError) {
179   if (OmitOnError && getDiags().hasErrorOccurred())
180     return;
181   unsigned DiagID = getDiags().getCustomDiagID(Diagnostic::Error,
182                                                "cannot compile this %0 yet");
183   std::string Msg = Type;
184   getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg;
185 }
186 
187 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV,
188                                         const NamedDecl *D) const {
189   // Internal definitions always have default visibility.
190   if (GV->hasLocalLinkage()) {
191     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
192     return;
193   }
194 
195   // Set visibility for definitions.
196   NamedDecl::LinkageInfo LV = D->getLinkageAndVisibility();
197   if (LV.visibilityExplicit() || !GV->hasAvailableExternallyLinkage())
198     GV->setVisibility(GetLLVMVisibility(LV.visibility()));
199 }
200 
201 /// Set the symbol visibility of type information (vtable and RTTI)
202 /// associated with the given type.
203 void CodeGenModule::setTypeVisibility(llvm::GlobalValue *GV,
204                                       const CXXRecordDecl *RD,
205                                       TypeVisibilityKind TVK) const {
206   setGlobalVisibility(GV, RD);
207 
208   if (!CodeGenOpts.HiddenWeakVTables)
209     return;
210 
211   // We never want to drop the visibility for RTTI names.
212   if (TVK == TVK_ForRTTIName)
213     return;
214 
215   // We want to drop the visibility to hidden for weak type symbols.
216   // This isn't possible if there might be unresolved references
217   // elsewhere that rely on this symbol being visible.
218 
219   // This should be kept roughly in sync with setThunkVisibility
220   // in CGVTables.cpp.
221 
222   // Preconditions.
223   if (GV->getLinkage() != llvm::GlobalVariable::LinkOnceODRLinkage ||
224       GV->getVisibility() != llvm::GlobalVariable::DefaultVisibility)
225     return;
226 
227   // Don't override an explicit visibility attribute.
228   if (RD->hasAttr<VisibilityAttr>())
229     return;
230 
231   switch (RD->getTemplateSpecializationKind()) {
232   // We have to disable the optimization if this is an EI definition
233   // because there might be EI declarations in other shared objects.
234   case TSK_ExplicitInstantiationDefinition:
235   case TSK_ExplicitInstantiationDeclaration:
236     return;
237 
238   // Every use of a non-template class's type information has to emit it.
239   case TSK_Undeclared:
240     break;
241 
242   // In theory, implicit instantiations can ignore the possibility of
243   // an explicit instantiation declaration because there necessarily
244   // must be an EI definition somewhere with default visibility.  In
245   // practice, it's possible to have an explicit instantiation for
246   // an arbitrary template class, and linkers aren't necessarily able
247   // to deal with mixed-visibility symbols.
248   case TSK_ExplicitSpecialization:
249   case TSK_ImplicitInstantiation:
250     if (!CodeGenOpts.HiddenWeakTemplateVTables)
251       return;
252     break;
253   }
254 
255   // If there's a key function, there may be translation units
256   // that don't have the key function's definition.  But ignore
257   // this if we're emitting RTTI under -fno-rtti.
258   if (!(TVK != TVK_ForRTTI) || Features.RTTI) {
259     if (Context.getKeyFunction(RD))
260       return;
261   }
262 
263   // Otherwise, drop the visibility to hidden.
264   GV->setVisibility(llvm::GlobalValue::HiddenVisibility);
265   GV->setUnnamedAddr(true);
266 }
267 
268 llvm::StringRef CodeGenModule::getMangledName(GlobalDecl GD) {
269   const NamedDecl *ND = cast<NamedDecl>(GD.getDecl());
270 
271   llvm::StringRef &Str = MangledDeclNames[GD.getCanonicalDecl()];
272   if (!Str.empty())
273     return Str;
274 
275   if (!getCXXABI().getMangleContext().shouldMangleDeclName(ND)) {
276     IdentifierInfo *II = ND->getIdentifier();
277     assert(II && "Attempt to mangle unnamed decl.");
278 
279     Str = II->getName();
280     return Str;
281   }
282 
283   llvm::SmallString<256> Buffer;
284   llvm::raw_svector_ostream Out(Buffer);
285   if (const CXXConstructorDecl *D = dyn_cast<CXXConstructorDecl>(ND))
286     getCXXABI().getMangleContext().mangleCXXCtor(D, GD.getCtorType(), Out);
287   else if (const CXXDestructorDecl *D = dyn_cast<CXXDestructorDecl>(ND))
288     getCXXABI().getMangleContext().mangleCXXDtor(D, GD.getDtorType(), Out);
289   else if (const BlockDecl *BD = dyn_cast<BlockDecl>(ND))
290     getCXXABI().getMangleContext().mangleBlock(BD, Out);
291   else
292     getCXXABI().getMangleContext().mangleName(ND, Out);
293 
294   // Allocate space for the mangled name.
295   Out.flush();
296   size_t Length = Buffer.size();
297   char *Name = MangledNamesAllocator.Allocate<char>(Length);
298   std::copy(Buffer.begin(), Buffer.end(), Name);
299 
300   Str = llvm::StringRef(Name, Length);
301 
302   return Str;
303 }
304 
305 void CodeGenModule::getBlockMangledName(GlobalDecl GD, MangleBuffer &Buffer,
306                                         const BlockDecl *BD) {
307   MangleContext &MangleCtx = getCXXABI().getMangleContext();
308   const Decl *D = GD.getDecl();
309   llvm::raw_svector_ostream Out(Buffer.getBuffer());
310   if (D == 0)
311     MangleCtx.mangleGlobalBlock(BD, Out);
312   else if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(D))
313     MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out);
314   else if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(D))
315     MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out);
316   else
317     MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out);
318 }
319 
320 llvm::GlobalValue *CodeGenModule::GetGlobalValue(llvm::StringRef Name) {
321   return getModule().getNamedValue(Name);
322 }
323 
324 /// AddGlobalCtor - Add a function to the list that will be called before
325 /// main() runs.
326 void CodeGenModule::AddGlobalCtor(llvm::Function * Ctor, int Priority) {
327   // FIXME: Type coercion of void()* types.
328   GlobalCtors.push_back(std::make_pair(Ctor, Priority));
329 }
330 
331 /// AddGlobalDtor - Add a function to the list that will be called
332 /// when the module is unloaded.
333 void CodeGenModule::AddGlobalDtor(llvm::Function * Dtor, int Priority) {
334   // FIXME: Type coercion of void()* types.
335   GlobalDtors.push_back(std::make_pair(Dtor, Priority));
336 }
337 
338 void CodeGenModule::EmitCtorList(const CtorList &Fns, const char *GlobalName) {
339   // Ctor function type is void()*.
340   llvm::FunctionType* CtorFTy =
341     llvm::FunctionType::get(llvm::Type::getVoidTy(VMContext), false);
342   llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy);
343 
344   // Get the type of a ctor entry, { i32, void ()* }.
345   llvm::StructType* CtorStructTy =
346     llvm::StructType::get(VMContext, llvm::Type::getInt32Ty(VMContext),
347                           llvm::PointerType::getUnqual(CtorFTy), NULL);
348 
349   // Construct the constructor and destructor arrays.
350   std::vector<llvm::Constant*> Ctors;
351   for (CtorList::const_iterator I = Fns.begin(), E = Fns.end(); I != E; ++I) {
352     std::vector<llvm::Constant*> S;
353     S.push_back(llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext),
354                 I->second, false));
355     S.push_back(llvm::ConstantExpr::getBitCast(I->first, CtorPFTy));
356     Ctors.push_back(llvm::ConstantStruct::get(CtorStructTy, S));
357   }
358 
359   if (!Ctors.empty()) {
360     llvm::ArrayType *AT = llvm::ArrayType::get(CtorStructTy, Ctors.size());
361     new llvm::GlobalVariable(TheModule, AT, false,
362                              llvm::GlobalValue::AppendingLinkage,
363                              llvm::ConstantArray::get(AT, Ctors),
364                              GlobalName);
365   }
366 }
367 
368 void CodeGenModule::EmitAnnotations() {
369   if (Annotations.empty())
370     return;
371 
372   // Create a new global variable for the ConstantStruct in the Module.
373   llvm::Constant *Array =
374   llvm::ConstantArray::get(llvm::ArrayType::get(Annotations[0]->getType(),
375                                                 Annotations.size()),
376                            Annotations);
377   llvm::GlobalValue *gv =
378   new llvm::GlobalVariable(TheModule, Array->getType(), false,
379                            llvm::GlobalValue::AppendingLinkage, Array,
380                            "llvm.global.annotations");
381   gv->setSection("llvm.metadata");
382 }
383 
384 llvm::GlobalValue::LinkageTypes
385 CodeGenModule::getFunctionLinkage(const FunctionDecl *D) {
386   GVALinkage Linkage = getContext().GetGVALinkageForFunction(D);
387 
388   if (Linkage == GVA_Internal)
389     return llvm::Function::InternalLinkage;
390 
391   if (D->hasAttr<DLLExportAttr>())
392     return llvm::Function::DLLExportLinkage;
393 
394   if (D->hasAttr<WeakAttr>())
395     return llvm::Function::WeakAnyLinkage;
396 
397   // In C99 mode, 'inline' functions are guaranteed to have a strong
398   // definition somewhere else, so we can use available_externally linkage.
399   if (Linkage == GVA_C99Inline)
400     return llvm::Function::AvailableExternallyLinkage;
401 
402   // In C++, the compiler has to emit a definition in every translation unit
403   // that references the function.  We should use linkonce_odr because
404   // a) if all references in this translation unit are optimized away, we
405   // don't need to codegen it.  b) if the function persists, it needs to be
406   // merged with other definitions. c) C++ has the ODR, so we know the
407   // definition is dependable.
408   if (Linkage == GVA_CXXInline || Linkage == GVA_TemplateInstantiation)
409     return !Context.getLangOptions().AppleKext
410              ? llvm::Function::LinkOnceODRLinkage
411              : llvm::Function::InternalLinkage;
412 
413   // An explicit instantiation of a template has weak linkage, since
414   // explicit instantiations can occur in multiple translation units
415   // and must all be equivalent. However, we are not allowed to
416   // throw away these explicit instantiations.
417   if (Linkage == GVA_ExplicitTemplateInstantiation)
418     return !Context.getLangOptions().AppleKext
419              ? llvm::Function::WeakODRLinkage
420              : llvm::Function::InternalLinkage;
421 
422   // Otherwise, we have strong external linkage.
423   assert(Linkage == GVA_StrongExternal);
424   return llvm::Function::ExternalLinkage;
425 }
426 
427 
428 /// SetFunctionDefinitionAttributes - Set attributes for a global.
429 ///
430 /// FIXME: This is currently only done for aliases and functions, but not for
431 /// variables (these details are set in EmitGlobalVarDefinition for variables).
432 void CodeGenModule::SetFunctionDefinitionAttributes(const FunctionDecl *D,
433                                                     llvm::GlobalValue *GV) {
434   SetCommonAttributes(D, GV);
435 }
436 
437 void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D,
438                                               const CGFunctionInfo &Info,
439                                               llvm::Function *F) {
440   unsigned CallingConv;
441   AttributeListType AttributeList;
442   ConstructAttributeList(Info, D, AttributeList, CallingConv);
443   F->setAttributes(llvm::AttrListPtr::get(AttributeList.begin(),
444                                           AttributeList.size()));
445   F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv));
446 }
447 
448 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D,
449                                                            llvm::Function *F) {
450   if (!Features.Exceptions && !Features.ObjCNonFragileABI)
451     F->addFnAttr(llvm::Attribute::NoUnwind);
452 
453   if (D->hasAttr<AlwaysInlineAttr>())
454     F->addFnAttr(llvm::Attribute::AlwaysInline);
455 
456   if (D->hasAttr<NakedAttr>())
457     F->addFnAttr(llvm::Attribute::Naked);
458 
459   if (D->hasAttr<NoInlineAttr>())
460     F->addFnAttr(llvm::Attribute::NoInline);
461 
462   if (isa<CXXConstructorDecl>(D) || isa<CXXDestructorDecl>(D))
463     F->setUnnamedAddr(true);
464 
465   if (Features.getStackProtectorMode() == LangOptions::SSPOn)
466     F->addFnAttr(llvm::Attribute::StackProtect);
467   else if (Features.getStackProtectorMode() == LangOptions::SSPReq)
468     F->addFnAttr(llvm::Attribute::StackProtectReq);
469 
470   unsigned alignment = D->getMaxAlignment() / Context.getCharWidth();
471   if (alignment)
472     F->setAlignment(alignment);
473 
474   // C++ ABI requires 2-byte alignment for member functions.
475   if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D))
476     F->setAlignment(2);
477 }
478 
479 void CodeGenModule::SetCommonAttributes(const Decl *D,
480                                         llvm::GlobalValue *GV) {
481   if (const NamedDecl *ND = dyn_cast<NamedDecl>(D))
482     setGlobalVisibility(GV, ND);
483   else
484     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
485 
486   if (D->hasAttr<UsedAttr>())
487     AddUsedGlobal(GV);
488 
489   if (const SectionAttr *SA = D->getAttr<SectionAttr>())
490     GV->setSection(SA->getName());
491 
492   getTargetCodeGenInfo().SetTargetAttributes(D, GV, *this);
493 }
494 
495 void CodeGenModule::SetInternalFunctionAttributes(const Decl *D,
496                                                   llvm::Function *F,
497                                                   const CGFunctionInfo &FI) {
498   SetLLVMFunctionAttributes(D, FI, F);
499   SetLLVMFunctionAttributesForDefinition(D, F);
500 
501   F->setLinkage(llvm::Function::InternalLinkage);
502 
503   SetCommonAttributes(D, F);
504 }
505 
506 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD,
507                                           llvm::Function *F,
508                                           bool IsIncompleteFunction) {
509   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
510 
511   if (!IsIncompleteFunction)
512     SetLLVMFunctionAttributes(FD, getTypes().getFunctionInfo(GD), F);
513 
514   // Only a few attributes are set on declarations; these may later be
515   // overridden by a definition.
516 
517   if (FD->hasAttr<DLLImportAttr>()) {
518     F->setLinkage(llvm::Function::DLLImportLinkage);
519   } else if (FD->hasAttr<WeakAttr>() ||
520              FD->hasAttr<WeakImportAttr>()) {
521     // "extern_weak" is overloaded in LLVM; we probably should have
522     // separate linkage types for this.
523     F->setLinkage(llvm::Function::ExternalWeakLinkage);
524   } else {
525     F->setLinkage(llvm::Function::ExternalLinkage);
526 
527     NamedDecl::LinkageInfo LV = FD->getLinkageAndVisibility();
528     if (LV.linkage() == ExternalLinkage && LV.visibilityExplicit()) {
529       F->setVisibility(GetLLVMVisibility(LV.visibility()));
530     }
531   }
532 
533   if (const SectionAttr *SA = FD->getAttr<SectionAttr>())
534     F->setSection(SA->getName());
535 }
536 
537 void CodeGenModule::AddUsedGlobal(llvm::GlobalValue *GV) {
538   assert(!GV->isDeclaration() &&
539          "Only globals with definition can force usage.");
540   LLVMUsed.push_back(GV);
541 }
542 
543 void CodeGenModule::EmitLLVMUsed() {
544   // Don't create llvm.used if there is no need.
545   if (LLVMUsed.empty())
546     return;
547 
548   const llvm::Type *i8PTy = llvm::Type::getInt8PtrTy(VMContext);
549 
550   // Convert LLVMUsed to what ConstantArray needs.
551   std::vector<llvm::Constant*> UsedArray;
552   UsedArray.resize(LLVMUsed.size());
553   for (unsigned i = 0, e = LLVMUsed.size(); i != e; ++i) {
554     UsedArray[i] =
555      llvm::ConstantExpr::getBitCast(cast<llvm::Constant>(&*LLVMUsed[i]),
556                                       i8PTy);
557   }
558 
559   if (UsedArray.empty())
560     return;
561   llvm::ArrayType *ATy = llvm::ArrayType::get(i8PTy, UsedArray.size());
562 
563   llvm::GlobalVariable *GV =
564     new llvm::GlobalVariable(getModule(), ATy, false,
565                              llvm::GlobalValue::AppendingLinkage,
566                              llvm::ConstantArray::get(ATy, UsedArray),
567                              "llvm.used");
568 
569   GV->setSection("llvm.metadata");
570 }
571 
572 void CodeGenModule::EmitDeferred() {
573   // Emit code for any potentially referenced deferred decls.  Since a
574   // previously unused static decl may become used during the generation of code
575   // for a static function, iterate until no  changes are made.
576 
577   while (!DeferredDeclsToEmit.empty() || !DeferredVTables.empty()) {
578     if (!DeferredVTables.empty()) {
579       const CXXRecordDecl *RD = DeferredVTables.back();
580       DeferredVTables.pop_back();
581       getVTables().GenerateClassData(getVTableLinkage(RD), RD);
582       continue;
583     }
584 
585     GlobalDecl D = DeferredDeclsToEmit.back();
586     DeferredDeclsToEmit.pop_back();
587 
588     // Check to see if we've already emitted this.  This is necessary
589     // for a couple of reasons: first, decls can end up in the
590     // deferred-decls queue multiple times, and second, decls can end
591     // up with definitions in unusual ways (e.g. by an extern inline
592     // function acquiring a strong function redefinition).  Just
593     // ignore these cases.
594     //
595     // TODO: That said, looking this up multiple times is very wasteful.
596     llvm::StringRef Name = getMangledName(D);
597     llvm::GlobalValue *CGRef = GetGlobalValue(Name);
598     assert(CGRef && "Deferred decl wasn't referenced?");
599 
600     if (!CGRef->isDeclaration())
601       continue;
602 
603     // GlobalAlias::isDeclaration() defers to the aliasee, but for our
604     // purposes an alias counts as a definition.
605     if (isa<llvm::GlobalAlias>(CGRef))
606       continue;
607 
608     // Otherwise, emit the definition and move on to the next one.
609     EmitGlobalDefinition(D);
610   }
611 }
612 
613 /// EmitAnnotateAttr - Generate the llvm::ConstantStruct which contains the
614 /// annotation information for a given GlobalValue.  The annotation struct is
615 /// {i8 *, i8 *, i8 *, i32}.  The first field is a constant expression, the
616 /// GlobalValue being annotated.  The second field is the constant string
617 /// created from the AnnotateAttr's annotation.  The third field is a constant
618 /// string containing the name of the translation unit.  The fourth field is
619 /// the line number in the file of the annotated value declaration.
620 ///
621 /// FIXME: this does not unique the annotation string constants, as llvm-gcc
622 ///        appears to.
623 ///
624 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV,
625                                                 const AnnotateAttr *AA,
626                                                 unsigned LineNo) {
627   llvm::Module *M = &getModule();
628 
629   // get [N x i8] constants for the annotation string, and the filename string
630   // which are the 2nd and 3rd elements of the global annotation structure.
631   const llvm::Type *SBP = llvm::Type::getInt8PtrTy(VMContext);
632   llvm::Constant *anno = llvm::ConstantArray::get(VMContext,
633                                                   AA->getAnnotation(), true);
634   llvm::Constant *unit = llvm::ConstantArray::get(VMContext,
635                                                   M->getModuleIdentifier(),
636                                                   true);
637 
638   // Get the two global values corresponding to the ConstantArrays we just
639   // created to hold the bytes of the strings.
640   llvm::GlobalValue *annoGV =
641     new llvm::GlobalVariable(*M, anno->getType(), false,
642                              llvm::GlobalValue::PrivateLinkage, anno,
643                              GV->getName());
644   // translation unit name string, emitted into the llvm.metadata section.
645   llvm::GlobalValue *unitGV =
646     new llvm::GlobalVariable(*M, unit->getType(), false,
647                              llvm::GlobalValue::PrivateLinkage, unit,
648                              ".str");
649   unitGV->setUnnamedAddr(true);
650 
651   // Create the ConstantStruct for the global annotation.
652   llvm::Constant *Fields[4] = {
653     llvm::ConstantExpr::getBitCast(GV, SBP),
654     llvm::ConstantExpr::getBitCast(annoGV, SBP),
655     llvm::ConstantExpr::getBitCast(unitGV, SBP),
656     llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext), LineNo)
657   };
658   return llvm::ConstantStruct::get(VMContext, Fields, 4, false);
659 }
660 
661 bool CodeGenModule::MayDeferGeneration(const ValueDecl *Global) {
662   // Never defer when EmitAllDecls is specified.
663   if (Features.EmitAllDecls)
664     return false;
665 
666   return !getContext().DeclMustBeEmitted(Global);
667 }
668 
669 llvm::Constant *CodeGenModule::GetWeakRefReference(const ValueDecl *VD) {
670   const AliasAttr *AA = VD->getAttr<AliasAttr>();
671   assert(AA && "No alias?");
672 
673   const llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType());
674 
675   // See if there is already something with the target's name in the module.
676   llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee());
677 
678   llvm::Constant *Aliasee;
679   if (isa<llvm::FunctionType>(DeclTy))
680     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GlobalDecl(),
681                                       /*ForVTable=*/false);
682   else
683     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
684                                     llvm::PointerType::getUnqual(DeclTy), 0);
685   if (!Entry) {
686     llvm::GlobalValue* F = cast<llvm::GlobalValue>(Aliasee);
687     F->setLinkage(llvm::Function::ExternalWeakLinkage);
688     WeakRefReferences.insert(F);
689   }
690 
691   return Aliasee;
692 }
693 
694 void CodeGenModule::EmitGlobal(GlobalDecl GD) {
695   const ValueDecl *Global = cast<ValueDecl>(GD.getDecl());
696 
697   // Weak references don't produce any output by themselves.
698   if (Global->hasAttr<WeakRefAttr>())
699     return;
700 
701   // If this is an alias definition (which otherwise looks like a declaration)
702   // emit it now.
703   if (Global->hasAttr<AliasAttr>())
704     return EmitAliasDefinition(GD);
705 
706   // Ignore declarations, they will be emitted on their first use.
707   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) {
708     if (FD->getIdentifier()) {
709       llvm::StringRef Name = FD->getName();
710       if (Name == "_Block_object_assign") {
711         BlockObjectAssignDecl = FD;
712       } else if (Name == "_Block_object_dispose") {
713         BlockObjectDisposeDecl = FD;
714       }
715     }
716 
717     // Forward declarations are emitted lazily on first use.
718     if (!FD->isThisDeclarationADefinition())
719       return;
720   } else {
721     const VarDecl *VD = cast<VarDecl>(Global);
722     assert(VD->isFileVarDecl() && "Cannot emit local var decl as global.");
723 
724     if (VD->getIdentifier()) {
725       llvm::StringRef Name = VD->getName();
726       if (Name == "_NSConcreteGlobalBlock") {
727         NSConcreteGlobalBlockDecl = VD;
728       } else if (Name == "_NSConcreteStackBlock") {
729         NSConcreteStackBlockDecl = VD;
730       }
731     }
732 
733 
734     if (VD->isThisDeclarationADefinition() != VarDecl::Definition)
735       return;
736   }
737 
738   // Defer code generation when possible if this is a static definition, inline
739   // function etc.  These we only want to emit if they are used.
740   if (!MayDeferGeneration(Global)) {
741     // Emit the definition if it can't be deferred.
742     EmitGlobalDefinition(GD);
743     return;
744   }
745 
746   // If we're deferring emission of a C++ variable with an
747   // initializer, remember the order in which it appeared in the file.
748   if (getLangOptions().CPlusPlus && isa<VarDecl>(Global) &&
749       cast<VarDecl>(Global)->hasInit()) {
750     DelayedCXXInitPosition[Global] = CXXGlobalInits.size();
751     CXXGlobalInits.push_back(0);
752   }
753 
754   // If the value has already been used, add it directly to the
755   // DeferredDeclsToEmit list.
756   llvm::StringRef MangledName = getMangledName(GD);
757   if (GetGlobalValue(MangledName))
758     DeferredDeclsToEmit.push_back(GD);
759   else {
760     // Otherwise, remember that we saw a deferred decl with this name.  The
761     // first use of the mangled name will cause it to move into
762     // DeferredDeclsToEmit.
763     DeferredDecls[MangledName] = GD;
764   }
765 }
766 
767 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD) {
768   const ValueDecl *D = cast<ValueDecl>(GD.getDecl());
769 
770   PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(),
771                                  Context.getSourceManager(),
772                                  "Generating code for declaration");
773 
774   if (const FunctionDecl *Function = dyn_cast<FunctionDecl>(D)) {
775     // At -O0, don't generate IR for functions with available_externally
776     // linkage.
777     if (CodeGenOpts.OptimizationLevel == 0 &&
778         !Function->hasAttr<AlwaysInlineAttr>() &&
779         getFunctionLinkage(Function)
780                                   == llvm::Function::AvailableExternallyLinkage)
781       return;
782 
783     if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) {
784       if (Method->isVirtual())
785         getVTables().EmitThunks(GD);
786 
787       if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(Method))
788         return EmitCXXConstructor(CD, GD.getCtorType());
789 
790       if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(Method))
791         return EmitCXXDestructor(DD, GD.getDtorType());
792     }
793 
794     return EmitGlobalFunctionDefinition(GD);
795   }
796 
797   if (const VarDecl *VD = dyn_cast<VarDecl>(D))
798     return EmitGlobalVarDefinition(VD);
799 
800   assert(0 && "Invalid argument to EmitGlobalDefinition()");
801 }
802 
803 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the
804 /// module, create and return an llvm Function with the specified type. If there
805 /// is something in the module with the specified name, return it potentially
806 /// bitcasted to the right type.
807 ///
808 /// If D is non-null, it specifies a decl that correspond to this.  This is used
809 /// to set the attributes on the function when it is first created.
810 llvm::Constant *
811 CodeGenModule::GetOrCreateLLVMFunction(llvm::StringRef MangledName,
812                                        const llvm::Type *Ty,
813                                        GlobalDecl D, bool ForVTable) {
814   // Lookup the entry, lazily creating it if necessary.
815   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
816   if (Entry) {
817     if (WeakRefReferences.count(Entry)) {
818       const FunctionDecl *FD = cast_or_null<FunctionDecl>(D.getDecl());
819       if (FD && !FD->hasAttr<WeakAttr>())
820         Entry->setLinkage(llvm::Function::ExternalLinkage);
821 
822       WeakRefReferences.erase(Entry);
823     }
824 
825     if (Entry->getType()->getElementType() == Ty)
826       return Entry;
827 
828     // Make sure the result is of the correct type.
829     const llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
830     return llvm::ConstantExpr::getBitCast(Entry, PTy);
831   }
832 
833   // This function doesn't have a complete type (for example, the return
834   // type is an incomplete struct). Use a fake type instead, and make
835   // sure not to try to set attributes.
836   bool IsIncompleteFunction = false;
837 
838   const llvm::FunctionType *FTy;
839   if (isa<llvm::FunctionType>(Ty)) {
840     FTy = cast<llvm::FunctionType>(Ty);
841   } else {
842     FTy = llvm::FunctionType::get(llvm::Type::getVoidTy(VMContext), false);
843     IsIncompleteFunction = true;
844   }
845 
846   llvm::Function *F = llvm::Function::Create(FTy,
847                                              llvm::Function::ExternalLinkage,
848                                              MangledName, &getModule());
849   assert(F->getName() == MangledName && "name was uniqued!");
850   if (D.getDecl())
851     SetFunctionAttributes(D, F, IsIncompleteFunction);
852 
853   // This is the first use or definition of a mangled name.  If there is a
854   // deferred decl with this name, remember that we need to emit it at the end
855   // of the file.
856   llvm::StringMap<GlobalDecl>::iterator DDI = DeferredDecls.find(MangledName);
857   if (DDI != DeferredDecls.end()) {
858     // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
859     // list, and remove it from DeferredDecls (since we don't need it anymore).
860     DeferredDeclsToEmit.push_back(DDI->second);
861     DeferredDecls.erase(DDI);
862 
863   // Otherwise, there are cases we have to worry about where we're
864   // using a declaration for which we must emit a definition but where
865   // we might not find a top-level definition:
866   //   - member functions defined inline in their classes
867   //   - friend functions defined inline in some class
868   //   - special member functions with implicit definitions
869   // If we ever change our AST traversal to walk into class methods,
870   // this will be unnecessary.
871   //
872   // We also don't emit a definition for a function if it's going to be an entry
873   // in a vtable, unless it's already marked as used.
874   } else if (getLangOptions().CPlusPlus && D.getDecl()) {
875     // Look for a declaration that's lexically in a record.
876     const FunctionDecl *FD = cast<FunctionDecl>(D.getDecl());
877     do {
878       if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) {
879         if (FD->isImplicit() && !ForVTable) {
880           assert(FD->isUsed() && "Sema didn't mark implicit function as used!");
881           DeferredDeclsToEmit.push_back(D.getWithDecl(FD));
882           break;
883         } else if (FD->isThisDeclarationADefinition()) {
884           DeferredDeclsToEmit.push_back(D.getWithDecl(FD));
885           break;
886         }
887       }
888       FD = FD->getPreviousDeclaration();
889     } while (FD);
890   }
891 
892   // Make sure the result is of the requested type.
893   if (!IsIncompleteFunction) {
894     assert(F->getType()->getElementType() == Ty);
895     return F;
896   }
897 
898   const llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
899   return llvm::ConstantExpr::getBitCast(F, PTy);
900 }
901 
902 /// GetAddrOfFunction - Return the address of the given function.  If Ty is
903 /// non-null, then this function will use the specified type if it has to
904 /// create it (this occurs when we see a definition of the function).
905 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD,
906                                                  const llvm::Type *Ty,
907                                                  bool ForVTable) {
908   // If there was no specific requested type, just convert it now.
909   if (!Ty)
910     Ty = getTypes().ConvertType(cast<ValueDecl>(GD.getDecl())->getType());
911 
912   llvm::StringRef MangledName = getMangledName(GD);
913   return GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable);
914 }
915 
916 /// CreateRuntimeFunction - Create a new runtime function with the specified
917 /// type and name.
918 llvm::Constant *
919 CodeGenModule::CreateRuntimeFunction(const llvm::FunctionType *FTy,
920                                      llvm::StringRef Name) {
921   return GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false);
922 }
923 
924 static bool DeclIsConstantGlobal(ASTContext &Context, const VarDecl *D) {
925   if (!D->getType().isConstant(Context) && !D->getType()->isReferenceType())
926     return false;
927   if (Context.getLangOptions().CPlusPlus &&
928       Context.getBaseElementType(D->getType())->getAs<RecordType>()) {
929     // FIXME: We should do something fancier here!
930     return false;
931   }
932   return true;
933 }
934 
935 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module,
936 /// create and return an llvm GlobalVariable with the specified type.  If there
937 /// is something in the module with the specified name, return it potentially
938 /// bitcasted to the right type.
939 ///
940 /// If D is non-null, it specifies a decl that correspond to this.  This is used
941 /// to set the attributes on the global when it is first created.
942 llvm::Constant *
943 CodeGenModule::GetOrCreateLLVMGlobal(llvm::StringRef MangledName,
944                                      const llvm::PointerType *Ty,
945                                      const VarDecl *D,
946                                      bool UnnamedAddr) {
947   // Lookup the entry, lazily creating it if necessary.
948   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
949   if (Entry) {
950     if (WeakRefReferences.count(Entry)) {
951       if (D && !D->hasAttr<WeakAttr>())
952         Entry->setLinkage(llvm::Function::ExternalLinkage);
953 
954       WeakRefReferences.erase(Entry);
955     }
956 
957     if (UnnamedAddr)
958       Entry->setUnnamedAddr(true);
959 
960     if (Entry->getType() == Ty)
961       return Entry;
962 
963     // Make sure the result is of the correct type.
964     return llvm::ConstantExpr::getBitCast(Entry, Ty);
965   }
966 
967   // This is the first use or definition of a mangled name.  If there is a
968   // deferred decl with this name, remember that we need to emit it at the end
969   // of the file.
970   llvm::StringMap<GlobalDecl>::iterator DDI = DeferredDecls.find(MangledName);
971   if (DDI != DeferredDecls.end()) {
972     // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
973     // list, and remove it from DeferredDecls (since we don't need it anymore).
974     DeferredDeclsToEmit.push_back(DDI->second);
975     DeferredDecls.erase(DDI);
976   }
977 
978   llvm::GlobalVariable *GV =
979     new llvm::GlobalVariable(getModule(), Ty->getElementType(), false,
980                              llvm::GlobalValue::ExternalLinkage,
981                              0, MangledName, 0,
982                              false, Ty->getAddressSpace());
983 
984   // Handle things which are present even on external declarations.
985   if (D) {
986     // FIXME: This code is overly simple and should be merged with other global
987     // handling.
988     GV->setConstant(DeclIsConstantGlobal(Context, D));
989 
990     // Set linkage and visibility in case we never see a definition.
991     NamedDecl::LinkageInfo LV = D->getLinkageAndVisibility();
992     if (LV.linkage() != ExternalLinkage) {
993       // Don't set internal linkage on declarations.
994     } else {
995       if (D->hasAttr<DLLImportAttr>())
996         GV->setLinkage(llvm::GlobalValue::DLLImportLinkage);
997       else if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakImportAttr>())
998         GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage);
999 
1000       // Set visibility on a declaration only if it's explicit.
1001       if (LV.visibilityExplicit())
1002         GV->setVisibility(GetLLVMVisibility(LV.visibility()));
1003     }
1004 
1005     GV->setThreadLocal(D->isThreadSpecified());
1006   }
1007 
1008   return GV;
1009 }
1010 
1011 
1012 llvm::GlobalVariable *
1013 CodeGenModule::CreateOrReplaceCXXRuntimeVariable(llvm::StringRef Name,
1014                                       const llvm::Type *Ty,
1015                                       llvm::GlobalValue::LinkageTypes Linkage) {
1016   llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name);
1017   llvm::GlobalVariable *OldGV = 0;
1018 
1019 
1020   if (GV) {
1021     // Check if the variable has the right type.
1022     if (GV->getType()->getElementType() == Ty)
1023       return GV;
1024 
1025     // Because C++ name mangling, the only way we can end up with an already
1026     // existing global with the same name is if it has been declared extern "C".
1027       assert(GV->isDeclaration() && "Declaration has wrong type!");
1028     OldGV = GV;
1029   }
1030 
1031   // Create a new variable.
1032   GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true,
1033                                 Linkage, 0, Name);
1034 
1035   if (OldGV) {
1036     // Replace occurrences of the old variable if needed.
1037     GV->takeName(OldGV);
1038 
1039     if (!OldGV->use_empty()) {
1040       llvm::Constant *NewPtrForOldDecl =
1041       llvm::ConstantExpr::getBitCast(GV, OldGV->getType());
1042       OldGV->replaceAllUsesWith(NewPtrForOldDecl);
1043     }
1044 
1045     OldGV->eraseFromParent();
1046   }
1047 
1048   return GV;
1049 }
1050 
1051 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the
1052 /// given global variable.  If Ty is non-null and if the global doesn't exist,
1053 /// then it will be greated with the specified type instead of whatever the
1054 /// normal requested type would be.
1055 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D,
1056                                                   const llvm::Type *Ty) {
1057   assert(D->hasGlobalStorage() && "Not a global variable");
1058   QualType ASTTy = D->getType();
1059   if (Ty == 0)
1060     Ty = getTypes().ConvertTypeForMem(ASTTy);
1061 
1062   const llvm::PointerType *PTy =
1063     llvm::PointerType::get(Ty, getContext().getTargetAddressSpace(ASTTy));
1064 
1065   llvm::StringRef MangledName = getMangledName(D);
1066   return GetOrCreateLLVMGlobal(MangledName, PTy, D);
1067 }
1068 
1069 /// CreateRuntimeVariable - Create a new runtime global variable with the
1070 /// specified type and name.
1071 llvm::Constant *
1072 CodeGenModule::CreateRuntimeVariable(const llvm::Type *Ty,
1073                                      llvm::StringRef Name) {
1074   return GetOrCreateLLVMGlobal(Name,  llvm::PointerType::getUnqual(Ty), 0,
1075                                true);
1076 }
1077 
1078 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) {
1079   assert(!D->getInit() && "Cannot emit definite definitions here!");
1080 
1081   if (MayDeferGeneration(D)) {
1082     // If we have not seen a reference to this variable yet, place it
1083     // into the deferred declarations table to be emitted if needed
1084     // later.
1085     llvm::StringRef MangledName = getMangledName(D);
1086     if (!GetGlobalValue(MangledName)) {
1087       DeferredDecls[MangledName] = D;
1088       return;
1089     }
1090   }
1091 
1092   // The tentative definition is the only definition.
1093   EmitGlobalVarDefinition(D);
1094 }
1095 
1096 void CodeGenModule::EmitVTable(CXXRecordDecl *Class, bool DefinitionRequired) {
1097   if (DefinitionRequired)
1098     getVTables().GenerateClassData(getVTableLinkage(Class), Class);
1099 }
1100 
1101 llvm::GlobalVariable::LinkageTypes
1102 CodeGenModule::getVTableLinkage(const CXXRecordDecl *RD) {
1103   if (RD->isInAnonymousNamespace() || !RD->hasLinkage())
1104     return llvm::GlobalVariable::InternalLinkage;
1105 
1106   if (const CXXMethodDecl *KeyFunction
1107                                     = RD->getASTContext().getKeyFunction(RD)) {
1108     // If this class has a key function, use that to determine the linkage of
1109     // the vtable.
1110     const FunctionDecl *Def = 0;
1111     if (KeyFunction->hasBody(Def))
1112       KeyFunction = cast<CXXMethodDecl>(Def);
1113 
1114     switch (KeyFunction->getTemplateSpecializationKind()) {
1115       case TSK_Undeclared:
1116       case TSK_ExplicitSpecialization:
1117         // When compiling with optimizations turned on, we emit all vtables,
1118         // even if the key function is not defined in the current translation
1119         // unit. If this is the case, use available_externally linkage.
1120         if (!Def && CodeGenOpts.OptimizationLevel)
1121           return llvm::GlobalVariable::AvailableExternallyLinkage;
1122 
1123         if (KeyFunction->isInlined())
1124           return !Context.getLangOptions().AppleKext ?
1125                    llvm::GlobalVariable::LinkOnceODRLinkage :
1126                    llvm::Function::InternalLinkage;
1127 
1128         return llvm::GlobalVariable::ExternalLinkage;
1129 
1130       case TSK_ImplicitInstantiation:
1131         return !Context.getLangOptions().AppleKext ?
1132                  llvm::GlobalVariable::LinkOnceODRLinkage :
1133                  llvm::Function::InternalLinkage;
1134 
1135       case TSK_ExplicitInstantiationDefinition:
1136         return !Context.getLangOptions().AppleKext ?
1137                  llvm::GlobalVariable::WeakODRLinkage :
1138                  llvm::Function::InternalLinkage;
1139 
1140       case TSK_ExplicitInstantiationDeclaration:
1141         // FIXME: Use available_externally linkage. However, this currently
1142         // breaks LLVM's build due to undefined symbols.
1143         //      return llvm::GlobalVariable::AvailableExternallyLinkage;
1144         return !Context.getLangOptions().AppleKext ?
1145                  llvm::GlobalVariable::LinkOnceODRLinkage :
1146                  llvm::Function::InternalLinkage;
1147     }
1148   }
1149 
1150   if (Context.getLangOptions().AppleKext)
1151     return llvm::Function::InternalLinkage;
1152 
1153   switch (RD->getTemplateSpecializationKind()) {
1154   case TSK_Undeclared:
1155   case TSK_ExplicitSpecialization:
1156   case TSK_ImplicitInstantiation:
1157     // FIXME: Use available_externally linkage. However, this currently
1158     // breaks LLVM's build due to undefined symbols.
1159     //   return llvm::GlobalVariable::AvailableExternallyLinkage;
1160   case TSK_ExplicitInstantiationDeclaration:
1161     return llvm::GlobalVariable::LinkOnceODRLinkage;
1162 
1163   case TSK_ExplicitInstantiationDefinition:
1164       return llvm::GlobalVariable::WeakODRLinkage;
1165   }
1166 
1167   // Silence GCC warning.
1168   return llvm::GlobalVariable::LinkOnceODRLinkage;
1169 }
1170 
1171 CharUnits CodeGenModule::GetTargetTypeStoreSize(const llvm::Type *Ty) const {
1172     return Context.toCharUnitsFromBits(
1173       TheTargetData.getTypeStoreSizeInBits(Ty));
1174 }
1175 
1176 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D) {
1177   llvm::Constant *Init = 0;
1178   QualType ASTTy = D->getType();
1179   bool NonConstInit = false;
1180 
1181   const Expr *InitExpr = D->getAnyInitializer();
1182 
1183   if (!InitExpr) {
1184     // This is a tentative definition; tentative definitions are
1185     // implicitly initialized with { 0 }.
1186     //
1187     // Note that tentative definitions are only emitted at the end of
1188     // a translation unit, so they should never have incomplete
1189     // type. In addition, EmitTentativeDefinition makes sure that we
1190     // never attempt to emit a tentative definition if a real one
1191     // exists. A use may still exists, however, so we still may need
1192     // to do a RAUW.
1193     assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type");
1194     Init = EmitNullConstant(D->getType());
1195   } else {
1196     Init = EmitConstantExpr(InitExpr, D->getType());
1197     if (!Init) {
1198       QualType T = InitExpr->getType();
1199       if (D->getType()->isReferenceType())
1200         T = D->getType();
1201 
1202       if (getLangOptions().CPlusPlus) {
1203         Init = EmitNullConstant(T);
1204         NonConstInit = true;
1205       } else {
1206         ErrorUnsupported(D, "static initializer");
1207         Init = llvm::UndefValue::get(getTypes().ConvertType(T));
1208       }
1209     } else {
1210       // We don't need an initializer, so remove the entry for the delayed
1211       // initializer position (just in case this entry was delayed).
1212       if (getLangOptions().CPlusPlus)
1213         DelayedCXXInitPosition.erase(D);
1214     }
1215   }
1216 
1217   const llvm::Type* InitType = Init->getType();
1218   llvm::Constant *Entry = GetAddrOfGlobalVar(D, InitType);
1219 
1220   // Strip off a bitcast if we got one back.
1221   if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
1222     assert(CE->getOpcode() == llvm::Instruction::BitCast ||
1223            // all zero index gep.
1224            CE->getOpcode() == llvm::Instruction::GetElementPtr);
1225     Entry = CE->getOperand(0);
1226   }
1227 
1228   // Entry is now either a Function or GlobalVariable.
1229   llvm::GlobalVariable *GV = dyn_cast<llvm::GlobalVariable>(Entry);
1230 
1231   // We have a definition after a declaration with the wrong type.
1232   // We must make a new GlobalVariable* and update everything that used OldGV
1233   // (a declaration or tentative definition) with the new GlobalVariable*
1234   // (which will be a definition).
1235   //
1236   // This happens if there is a prototype for a global (e.g.
1237   // "extern int x[];") and then a definition of a different type (e.g.
1238   // "int x[10];"). This also happens when an initializer has a different type
1239   // from the type of the global (this happens with unions).
1240   if (GV == 0 ||
1241       GV->getType()->getElementType() != InitType ||
1242       GV->getType()->getAddressSpace() !=
1243         getContext().getTargetAddressSpace(ASTTy)) {
1244 
1245     // Move the old entry aside so that we'll create a new one.
1246     Entry->setName(llvm::StringRef());
1247 
1248     // Make a new global with the correct type, this is now guaranteed to work.
1249     GV = cast<llvm::GlobalVariable>(GetAddrOfGlobalVar(D, InitType));
1250 
1251     // Replace all uses of the old global with the new global
1252     llvm::Constant *NewPtrForOldDecl =
1253         llvm::ConstantExpr::getBitCast(GV, Entry->getType());
1254     Entry->replaceAllUsesWith(NewPtrForOldDecl);
1255 
1256     // Erase the old global, since it is no longer used.
1257     cast<llvm::GlobalValue>(Entry)->eraseFromParent();
1258   }
1259 
1260   if (const AnnotateAttr *AA = D->getAttr<AnnotateAttr>()) {
1261     SourceManager &SM = Context.getSourceManager();
1262     AddAnnotation(EmitAnnotateAttr(GV, AA,
1263                               SM.getInstantiationLineNumber(D->getLocation())));
1264   }
1265 
1266   GV->setInitializer(Init);
1267 
1268   // If it is safe to mark the global 'constant', do so now.
1269   GV->setConstant(false);
1270   if (!NonConstInit && DeclIsConstantGlobal(Context, D))
1271     GV->setConstant(true);
1272 
1273   GV->setAlignment(getContext().getDeclAlign(D).getQuantity());
1274 
1275   // Set the llvm linkage type as appropriate.
1276   llvm::GlobalValue::LinkageTypes Linkage =
1277     GetLLVMLinkageVarDefinition(D, GV);
1278   GV->setLinkage(Linkage);
1279   if (Linkage == llvm::GlobalVariable::CommonLinkage)
1280     // common vars aren't constant even if declared const.
1281     GV->setConstant(false);
1282 
1283   SetCommonAttributes(D, GV);
1284 
1285   // Emit the initializer function if necessary.
1286   if (NonConstInit)
1287     EmitCXXGlobalVarDeclInitFunc(D, GV);
1288 
1289   // Emit global variable debug information.
1290   if (CGDebugInfo *DI = getModuleDebugInfo()) {
1291     DI->setLocation(D->getLocation());
1292     DI->EmitGlobalVariable(GV, D);
1293   }
1294 }
1295 
1296 llvm::GlobalValue::LinkageTypes
1297 CodeGenModule::GetLLVMLinkageVarDefinition(const VarDecl *D,
1298                                            llvm::GlobalVariable *GV) {
1299   GVALinkage Linkage = getContext().GetGVALinkageForVariable(D);
1300   if (Linkage == GVA_Internal)
1301     return llvm::Function::InternalLinkage;
1302   else if (D->hasAttr<DLLImportAttr>())
1303     return llvm::Function::DLLImportLinkage;
1304   else if (D->hasAttr<DLLExportAttr>())
1305     return llvm::Function::DLLExportLinkage;
1306   else if (D->hasAttr<WeakAttr>()) {
1307     if (GV->isConstant())
1308       return llvm::GlobalVariable::WeakODRLinkage;
1309     else
1310       return llvm::GlobalVariable::WeakAnyLinkage;
1311   } else if (Linkage == GVA_TemplateInstantiation ||
1312              Linkage == GVA_ExplicitTemplateInstantiation)
1313     // FIXME: It seems like we can provide more specific linkage here
1314     // (LinkOnceODR, WeakODR).
1315     return llvm::GlobalVariable::WeakAnyLinkage;
1316   else if (!getLangOptions().CPlusPlus &&
1317            ((!CodeGenOpts.NoCommon && !D->getAttr<NoCommonAttr>()) ||
1318              D->getAttr<CommonAttr>()) &&
1319            !D->hasExternalStorage() && !D->getInit() &&
1320            !D->getAttr<SectionAttr>() && !D->isThreadSpecified()) {
1321     // Thread local vars aren't considered common linkage.
1322     return llvm::GlobalVariable::CommonLinkage;
1323   }
1324   return llvm::GlobalVariable::ExternalLinkage;
1325 }
1326 
1327 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we
1328 /// implement a function with no prototype, e.g. "int foo() {}".  If there are
1329 /// existing call uses of the old function in the module, this adjusts them to
1330 /// call the new function directly.
1331 ///
1332 /// This is not just a cleanup: the always_inline pass requires direct calls to
1333 /// functions to be able to inline them.  If there is a bitcast in the way, it
1334 /// won't inline them.  Instcombine normally deletes these calls, but it isn't
1335 /// run at -O0.
1336 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
1337                                                       llvm::Function *NewFn) {
1338   // If we're redefining a global as a function, don't transform it.
1339   llvm::Function *OldFn = dyn_cast<llvm::Function>(Old);
1340   if (OldFn == 0) return;
1341 
1342   const llvm::Type *NewRetTy = NewFn->getReturnType();
1343   llvm::SmallVector<llvm::Value*, 4> ArgList;
1344 
1345   for (llvm::Value::use_iterator UI = OldFn->use_begin(), E = OldFn->use_end();
1346        UI != E; ) {
1347     // TODO: Do invokes ever occur in C code?  If so, we should handle them too.
1348     llvm::Value::use_iterator I = UI++; // Increment before the CI is erased.
1349     llvm::CallInst *CI = dyn_cast<llvm::CallInst>(*I);
1350     if (!CI) continue; // FIXME: when we allow Invoke, just do CallSite CS(*I)
1351     llvm::CallSite CS(CI);
1352     if (!CI || !CS.isCallee(I)) continue;
1353 
1354     // If the return types don't match exactly, and if the call isn't dead, then
1355     // we can't transform this call.
1356     if (CI->getType() != NewRetTy && !CI->use_empty())
1357       continue;
1358 
1359     // If the function was passed too few arguments, don't transform.  If extra
1360     // arguments were passed, we silently drop them.  If any of the types
1361     // mismatch, we don't transform.
1362     unsigned ArgNo = 0;
1363     bool DontTransform = false;
1364     for (llvm::Function::arg_iterator AI = NewFn->arg_begin(),
1365          E = NewFn->arg_end(); AI != E; ++AI, ++ArgNo) {
1366       if (CS.arg_size() == ArgNo ||
1367           CS.getArgument(ArgNo)->getType() != AI->getType()) {
1368         DontTransform = true;
1369         break;
1370       }
1371     }
1372     if (DontTransform)
1373       continue;
1374 
1375     // Okay, we can transform this.  Create the new call instruction and copy
1376     // over the required information.
1377     ArgList.append(CS.arg_begin(), CS.arg_begin() + ArgNo);
1378     llvm::CallInst *NewCall = llvm::CallInst::Create(NewFn, ArgList.begin(),
1379                                                      ArgList.end(), "", CI);
1380     ArgList.clear();
1381     if (!NewCall->getType()->isVoidTy())
1382       NewCall->takeName(CI);
1383     NewCall->setAttributes(CI->getAttributes());
1384     NewCall->setCallingConv(CI->getCallingConv());
1385 
1386     // Finally, remove the old call, replacing any uses with the new one.
1387     if (!CI->use_empty())
1388       CI->replaceAllUsesWith(NewCall);
1389 
1390     // Copy debug location attached to CI.
1391     if (!CI->getDebugLoc().isUnknown())
1392       NewCall->setDebugLoc(CI->getDebugLoc());
1393     CI->eraseFromParent();
1394   }
1395 }
1396 
1397 
1398 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD) {
1399   const FunctionDecl *D = cast<FunctionDecl>(GD.getDecl());
1400 
1401   // Compute the function info and LLVM type.
1402   const CGFunctionInfo &FI = getTypes().getFunctionInfo(GD);
1403   bool variadic = false;
1404   if (const FunctionProtoType *fpt = D->getType()->getAs<FunctionProtoType>())
1405     variadic = fpt->isVariadic();
1406   const llvm::FunctionType *Ty = getTypes().GetFunctionType(FI, variadic, false);
1407 
1408   // Get or create the prototype for the function.
1409   llvm::Constant *Entry = GetAddrOfFunction(GD, Ty);
1410 
1411   // Strip off a bitcast if we got one back.
1412   if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
1413     assert(CE->getOpcode() == llvm::Instruction::BitCast);
1414     Entry = CE->getOperand(0);
1415   }
1416 
1417 
1418   if (cast<llvm::GlobalValue>(Entry)->getType()->getElementType() != Ty) {
1419     llvm::GlobalValue *OldFn = cast<llvm::GlobalValue>(Entry);
1420 
1421     // If the types mismatch then we have to rewrite the definition.
1422     assert(OldFn->isDeclaration() &&
1423            "Shouldn't replace non-declaration");
1424 
1425     // F is the Function* for the one with the wrong type, we must make a new
1426     // Function* and update everything that used F (a declaration) with the new
1427     // Function* (which will be a definition).
1428     //
1429     // This happens if there is a prototype for a function
1430     // (e.g. "int f()") and then a definition of a different type
1431     // (e.g. "int f(int x)").  Move the old function aside so that it
1432     // doesn't interfere with GetAddrOfFunction.
1433     OldFn->setName(llvm::StringRef());
1434     llvm::Function *NewFn = cast<llvm::Function>(GetAddrOfFunction(GD, Ty));
1435 
1436     // If this is an implementation of a function without a prototype, try to
1437     // replace any existing uses of the function (which may be calls) with uses
1438     // of the new function
1439     if (D->getType()->isFunctionNoProtoType()) {
1440       ReplaceUsesOfNonProtoTypeWithRealFunction(OldFn, NewFn);
1441       OldFn->removeDeadConstantUsers();
1442     }
1443 
1444     // Replace uses of F with the Function we will endow with a body.
1445     if (!Entry->use_empty()) {
1446       llvm::Constant *NewPtrForOldDecl =
1447         llvm::ConstantExpr::getBitCast(NewFn, Entry->getType());
1448       Entry->replaceAllUsesWith(NewPtrForOldDecl);
1449     }
1450 
1451     // Ok, delete the old function now, which is dead.
1452     OldFn->eraseFromParent();
1453 
1454     Entry = NewFn;
1455   }
1456 
1457   // We need to set linkage and visibility on the function before
1458   // generating code for it because various parts of IR generation
1459   // want to propagate this information down (e.g. to local static
1460   // declarations).
1461   llvm::Function *Fn = cast<llvm::Function>(Entry);
1462   setFunctionLinkage(D, Fn);
1463 
1464   // FIXME: this is redundant with part of SetFunctionDefinitionAttributes
1465   setGlobalVisibility(Fn, D);
1466 
1467   CodeGenFunction(*this).GenerateCode(D, Fn, FI);
1468 
1469   SetFunctionDefinitionAttributes(D, Fn);
1470   SetLLVMFunctionAttributesForDefinition(D, Fn);
1471 
1472   if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>())
1473     AddGlobalCtor(Fn, CA->getPriority());
1474   if (const DestructorAttr *DA = D->getAttr<DestructorAttr>())
1475     AddGlobalDtor(Fn, DA->getPriority());
1476 }
1477 
1478 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) {
1479   const ValueDecl *D = cast<ValueDecl>(GD.getDecl());
1480   const AliasAttr *AA = D->getAttr<AliasAttr>();
1481   assert(AA && "Not an alias?");
1482 
1483   llvm::StringRef MangledName = getMangledName(GD);
1484 
1485   // If there is a definition in the module, then it wins over the alias.
1486   // This is dubious, but allow it to be safe.  Just ignore the alias.
1487   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
1488   if (Entry && !Entry->isDeclaration())
1489     return;
1490 
1491   const llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
1492 
1493   // Create a reference to the named value.  This ensures that it is emitted
1494   // if a deferred decl.
1495   llvm::Constant *Aliasee;
1496   if (isa<llvm::FunctionType>(DeclTy))
1497     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GlobalDecl(),
1498                                       /*ForVTable=*/false);
1499   else
1500     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
1501                                     llvm::PointerType::getUnqual(DeclTy), 0);
1502 
1503   // Create the new alias itself, but don't set a name yet.
1504   llvm::GlobalValue *GA =
1505     new llvm::GlobalAlias(Aliasee->getType(),
1506                           llvm::Function::ExternalLinkage,
1507                           "", Aliasee, &getModule());
1508 
1509   if (Entry) {
1510     assert(Entry->isDeclaration());
1511 
1512     // If there is a declaration in the module, then we had an extern followed
1513     // by the alias, as in:
1514     //   extern int test6();
1515     //   ...
1516     //   int test6() __attribute__((alias("test7")));
1517     //
1518     // Remove it and replace uses of it with the alias.
1519     GA->takeName(Entry);
1520 
1521     Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA,
1522                                                           Entry->getType()));
1523     Entry->eraseFromParent();
1524   } else {
1525     GA->setName(MangledName);
1526   }
1527 
1528   // Set attributes which are particular to an alias; this is a
1529   // specialization of the attributes which may be set on a global
1530   // variable/function.
1531   if (D->hasAttr<DLLExportAttr>()) {
1532     if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
1533       // The dllexport attribute is ignored for undefined symbols.
1534       if (FD->hasBody())
1535         GA->setLinkage(llvm::Function::DLLExportLinkage);
1536     } else {
1537       GA->setLinkage(llvm::Function::DLLExportLinkage);
1538     }
1539   } else if (D->hasAttr<WeakAttr>() ||
1540              D->hasAttr<WeakRefAttr>() ||
1541              D->hasAttr<WeakImportAttr>()) {
1542     GA->setLinkage(llvm::Function::WeakAnyLinkage);
1543   }
1544 
1545   SetCommonAttributes(D, GA);
1546 }
1547 
1548 /// getBuiltinLibFunction - Given a builtin id for a function like
1549 /// "__builtin_fabsf", return a Function* for "fabsf".
1550 llvm::Value *CodeGenModule::getBuiltinLibFunction(const FunctionDecl *FD,
1551                                                   unsigned BuiltinID) {
1552   assert((Context.BuiltinInfo.isLibFunction(BuiltinID) ||
1553           Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) &&
1554          "isn't a lib fn");
1555 
1556   // Get the name, skip over the __builtin_ prefix (if necessary).
1557   const char *Name = Context.BuiltinInfo.GetName(BuiltinID);
1558   if (Context.BuiltinInfo.isLibFunction(BuiltinID))
1559     Name += 10;
1560 
1561   const llvm::FunctionType *Ty =
1562     cast<llvm::FunctionType>(getTypes().ConvertType(FD->getType()));
1563 
1564   return GetOrCreateLLVMFunction(Name, Ty, GlobalDecl(FD), /*ForVTable=*/false);
1565 }
1566 
1567 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,const llvm::Type **Tys,
1568                                             unsigned NumTys) {
1569   return llvm::Intrinsic::getDeclaration(&getModule(),
1570                                          (llvm::Intrinsic::ID)IID, Tys, NumTys);
1571 }
1572 
1573 static llvm::StringMapEntry<llvm::Constant*> &
1574 GetConstantCFStringEntry(llvm::StringMap<llvm::Constant*> &Map,
1575                          const StringLiteral *Literal,
1576                          bool TargetIsLSB,
1577                          bool &IsUTF16,
1578                          unsigned &StringLength) {
1579   llvm::StringRef String = Literal->getString();
1580   unsigned NumBytes = String.size();
1581 
1582   // Check for simple case.
1583   if (!Literal->containsNonAsciiOrNull()) {
1584     StringLength = NumBytes;
1585     return Map.GetOrCreateValue(String);
1586   }
1587 
1588   // Otherwise, convert the UTF8 literals into a byte string.
1589   llvm::SmallVector<UTF16, 128> ToBuf(NumBytes);
1590   const UTF8 *FromPtr = (UTF8 *)String.data();
1591   UTF16 *ToPtr = &ToBuf[0];
1592 
1593   (void)ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes,
1594                            &ToPtr, ToPtr + NumBytes,
1595                            strictConversion);
1596 
1597   // ConvertUTF8toUTF16 returns the length in ToPtr.
1598   StringLength = ToPtr - &ToBuf[0];
1599 
1600   // Render the UTF-16 string into a byte array and convert to the target byte
1601   // order.
1602   //
1603   // FIXME: This isn't something we should need to do here.
1604   llvm::SmallString<128> AsBytes;
1605   AsBytes.reserve(StringLength * 2);
1606   for (unsigned i = 0; i != StringLength; ++i) {
1607     unsigned short Val = ToBuf[i];
1608     if (TargetIsLSB) {
1609       AsBytes.push_back(Val & 0xFF);
1610       AsBytes.push_back(Val >> 8);
1611     } else {
1612       AsBytes.push_back(Val >> 8);
1613       AsBytes.push_back(Val & 0xFF);
1614     }
1615   }
1616   // Append one extra null character, the second is automatically added by our
1617   // caller.
1618   AsBytes.push_back(0);
1619 
1620   IsUTF16 = true;
1621   return Map.GetOrCreateValue(llvm::StringRef(AsBytes.data(), AsBytes.size()));
1622 }
1623 
1624 llvm::Constant *
1625 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) {
1626   unsigned StringLength = 0;
1627   bool isUTF16 = false;
1628   llvm::StringMapEntry<llvm::Constant*> &Entry =
1629     GetConstantCFStringEntry(CFConstantStringMap, Literal,
1630                              getTargetData().isLittleEndian(),
1631                              isUTF16, StringLength);
1632 
1633   if (llvm::Constant *C = Entry.getValue())
1634     return C;
1635 
1636   llvm::Constant *Zero =
1637       llvm::Constant::getNullValue(llvm::Type::getInt32Ty(VMContext));
1638   llvm::Constant *Zeros[] = { Zero, Zero };
1639 
1640   // If we don't already have it, get __CFConstantStringClassReference.
1641   if (!CFConstantStringClassRef) {
1642     const llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
1643     Ty = llvm::ArrayType::get(Ty, 0);
1644     llvm::Constant *GV = CreateRuntimeVariable(Ty,
1645                                            "__CFConstantStringClassReference");
1646     // Decay array -> ptr
1647     CFConstantStringClassRef =
1648       llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2);
1649   }
1650 
1651   QualType CFTy = getContext().getCFConstantStringType();
1652 
1653   const llvm::StructType *STy =
1654     cast<llvm::StructType>(getTypes().ConvertType(CFTy));
1655 
1656   std::vector<llvm::Constant*> Fields(4);
1657 
1658   // Class pointer.
1659   Fields[0] = CFConstantStringClassRef;
1660 
1661   // Flags.
1662   const llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy);
1663   Fields[1] = isUTF16 ? llvm::ConstantInt::get(Ty, 0x07d0) :
1664     llvm::ConstantInt::get(Ty, 0x07C8);
1665 
1666   // String pointer.
1667   llvm::Constant *C = llvm::ConstantArray::get(VMContext, Entry.getKey().str());
1668 
1669   llvm::GlobalValue::LinkageTypes Linkage;
1670   bool isConstant;
1671   if (isUTF16) {
1672     // FIXME: why do utf strings get "_" labels instead of "L" labels?
1673     Linkage = llvm::GlobalValue::InternalLinkage;
1674     // Note: -fwritable-strings doesn't make unicode CFStrings writable, but
1675     // does make plain ascii ones writable.
1676     isConstant = true;
1677   } else {
1678     // FIXME: With OS X ld 123.2 (xcode 4) and LTO we would get a linker error
1679     // when using private linkage. It is not clear if this is a bug in ld
1680     // or a reasonable new restriction.
1681     Linkage = llvm::GlobalValue::LinkerPrivateLinkage;
1682     isConstant = !Features.WritableStrings;
1683   }
1684 
1685   llvm::GlobalVariable *GV =
1686     new llvm::GlobalVariable(getModule(), C->getType(), isConstant, Linkage, C,
1687                              ".str");
1688   GV->setUnnamedAddr(true);
1689   if (isUTF16) {
1690     CharUnits Align = getContext().getTypeAlignInChars(getContext().ShortTy);
1691     GV->setAlignment(Align.getQuantity());
1692   }
1693   Fields[2] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2);
1694 
1695   // String length.
1696   Ty = getTypes().ConvertType(getContext().LongTy);
1697   Fields[3] = llvm::ConstantInt::get(Ty, StringLength);
1698 
1699   // The struct.
1700   C = llvm::ConstantStruct::get(STy, Fields);
1701   GV = new llvm::GlobalVariable(getModule(), C->getType(), true,
1702                                 llvm::GlobalVariable::PrivateLinkage, C,
1703                                 "_unnamed_cfstring_");
1704   if (const char *Sect = getContext().Target.getCFStringSection())
1705     GV->setSection(Sect);
1706   Entry.setValue(GV);
1707 
1708   return GV;
1709 }
1710 
1711 llvm::Constant *
1712 CodeGenModule::GetAddrOfConstantString(const StringLiteral *Literal) {
1713   unsigned StringLength = 0;
1714   bool isUTF16 = false;
1715   llvm::StringMapEntry<llvm::Constant*> &Entry =
1716     GetConstantCFStringEntry(CFConstantStringMap, Literal,
1717                              getTargetData().isLittleEndian(),
1718                              isUTF16, StringLength);
1719 
1720   if (llvm::Constant *C = Entry.getValue())
1721     return C;
1722 
1723   llvm::Constant *Zero =
1724   llvm::Constant::getNullValue(llvm::Type::getInt32Ty(VMContext));
1725   llvm::Constant *Zeros[] = { Zero, Zero };
1726 
1727   // If we don't already have it, get _NSConstantStringClassReference.
1728   if (!ConstantStringClassRef) {
1729     std::string StringClass(getLangOptions().ObjCConstantStringClass);
1730     const llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
1731     Ty = llvm::ArrayType::get(Ty, 0);
1732     llvm::Constant *GV;
1733     if (StringClass.empty())
1734       GV = CreateRuntimeVariable(Ty,
1735                                  Features.ObjCNonFragileABI ?
1736                                  "OBJC_CLASS_$_NSConstantString" :
1737                                  "_NSConstantStringClassReference");
1738     else {
1739       std::string str;
1740       if (Features.ObjCNonFragileABI)
1741         str = "OBJC_CLASS_$_" + StringClass;
1742       else
1743         str = "_" + StringClass + "ClassReference";
1744       GV = CreateRuntimeVariable(Ty, str);
1745     }
1746     // Decay array -> ptr
1747     ConstantStringClassRef =
1748     llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2);
1749   }
1750 
1751   QualType NSTy = getContext().getNSConstantStringType();
1752 
1753   const llvm::StructType *STy =
1754   cast<llvm::StructType>(getTypes().ConvertType(NSTy));
1755 
1756   std::vector<llvm::Constant*> Fields(3);
1757 
1758   // Class pointer.
1759   Fields[0] = ConstantStringClassRef;
1760 
1761   // String pointer.
1762   llvm::Constant *C = llvm::ConstantArray::get(VMContext, Entry.getKey().str());
1763 
1764   llvm::GlobalValue::LinkageTypes Linkage;
1765   bool isConstant;
1766   if (isUTF16) {
1767     // FIXME: why do utf strings get "_" labels instead of "L" labels?
1768     Linkage = llvm::GlobalValue::InternalLinkage;
1769     // Note: -fwritable-strings doesn't make unicode NSStrings writable, but
1770     // does make plain ascii ones writable.
1771     isConstant = true;
1772   } else {
1773     Linkage = llvm::GlobalValue::PrivateLinkage;
1774     isConstant = !Features.WritableStrings;
1775   }
1776 
1777   llvm::GlobalVariable *GV =
1778   new llvm::GlobalVariable(getModule(), C->getType(), isConstant, Linkage, C,
1779                            ".str");
1780   GV->setUnnamedAddr(true);
1781   if (isUTF16) {
1782     CharUnits Align = getContext().getTypeAlignInChars(getContext().ShortTy);
1783     GV->setAlignment(Align.getQuantity());
1784   }
1785   Fields[1] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2);
1786 
1787   // String length.
1788   const llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy);
1789   Fields[2] = llvm::ConstantInt::get(Ty, StringLength);
1790 
1791   // The struct.
1792   C = llvm::ConstantStruct::get(STy, Fields);
1793   GV = new llvm::GlobalVariable(getModule(), C->getType(), true,
1794                                 llvm::GlobalVariable::PrivateLinkage, C,
1795                                 "_unnamed_nsstring_");
1796   // FIXME. Fix section.
1797   if (const char *Sect =
1798         Features.ObjCNonFragileABI
1799           ? getContext().Target.getNSStringNonFragileABISection()
1800           : getContext().Target.getNSStringSection())
1801     GV->setSection(Sect);
1802   Entry.setValue(GV);
1803 
1804   return GV;
1805 }
1806 
1807 /// GetStringForStringLiteral - Return the appropriate bytes for a
1808 /// string literal, properly padded to match the literal type.
1809 std::string CodeGenModule::GetStringForStringLiteral(const StringLiteral *E) {
1810   const ASTContext &Context = getContext();
1811   const ConstantArrayType *CAT =
1812     Context.getAsConstantArrayType(E->getType());
1813   assert(CAT && "String isn't pointer or array!");
1814 
1815   // Resize the string to the right size.
1816   uint64_t RealLen = CAT->getSize().getZExtValue();
1817 
1818   if (E->isWide())
1819     RealLen *= Context.Target.getWCharWidth() / Context.getCharWidth();
1820 
1821   std::string Str = E->getString().str();
1822   Str.resize(RealLen, '\0');
1823 
1824   return Str;
1825 }
1826 
1827 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a
1828 /// constant array for the given string literal.
1829 llvm::Constant *
1830 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S) {
1831   // FIXME: This can be more efficient.
1832   // FIXME: We shouldn't need to bitcast the constant in the wide string case.
1833   llvm::Constant *C = GetAddrOfConstantString(GetStringForStringLiteral(S));
1834   if (S->isWide()) {
1835     llvm::Type *DestTy =
1836         llvm::PointerType::getUnqual(getTypes().ConvertType(S->getType()));
1837     C = llvm::ConstantExpr::getBitCast(C, DestTy);
1838   }
1839   return C;
1840 }
1841 
1842 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant
1843 /// array for the given ObjCEncodeExpr node.
1844 llvm::Constant *
1845 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) {
1846   std::string Str;
1847   getContext().getObjCEncodingForType(E->getEncodedType(), Str);
1848 
1849   return GetAddrOfConstantCString(Str);
1850 }
1851 
1852 
1853 /// GenerateWritableString -- Creates storage for a string literal.
1854 static llvm::Constant *GenerateStringLiteral(llvm::StringRef str,
1855                                              bool constant,
1856                                              CodeGenModule &CGM,
1857                                              const char *GlobalName) {
1858   // Create Constant for this string literal. Don't add a '\0'.
1859   llvm::Constant *C =
1860       llvm::ConstantArray::get(CGM.getLLVMContext(), str, false);
1861 
1862   // Create a global variable for this string
1863   llvm::GlobalVariable *GV =
1864     new llvm::GlobalVariable(CGM.getModule(), C->getType(), constant,
1865                              llvm::GlobalValue::PrivateLinkage,
1866                              C, GlobalName);
1867   GV->setUnnamedAddr(true);
1868   return GV;
1869 }
1870 
1871 /// GetAddrOfConstantString - Returns a pointer to a character array
1872 /// containing the literal. This contents are exactly that of the
1873 /// given string, i.e. it will not be null terminated automatically;
1874 /// see GetAddrOfConstantCString. Note that whether the result is
1875 /// actually a pointer to an LLVM constant depends on
1876 /// Feature.WriteableStrings.
1877 ///
1878 /// The result has pointer to array type.
1879 llvm::Constant *CodeGenModule::GetAddrOfConstantString(llvm::StringRef Str,
1880                                                        const char *GlobalName) {
1881   bool IsConstant = !Features.WritableStrings;
1882 
1883   // Get the default prefix if a name wasn't specified.
1884   if (!GlobalName)
1885     GlobalName = ".str";
1886 
1887   // Don't share any string literals if strings aren't constant.
1888   if (!IsConstant)
1889     return GenerateStringLiteral(Str, false, *this, GlobalName);
1890 
1891   llvm::StringMapEntry<llvm::Constant *> &Entry =
1892     ConstantStringMap.GetOrCreateValue(Str);
1893 
1894   if (Entry.getValue())
1895     return Entry.getValue();
1896 
1897   // Create a global variable for this.
1898   llvm::Constant *C = GenerateStringLiteral(Str, true, *this, GlobalName);
1899   Entry.setValue(C);
1900   return C;
1901 }
1902 
1903 /// GetAddrOfConstantCString - Returns a pointer to a character
1904 /// array containing the literal and a terminating '\0'
1905 /// character. The result has pointer to array type.
1906 llvm::Constant *CodeGenModule::GetAddrOfConstantCString(const std::string &Str,
1907                                                         const char *GlobalName){
1908   llvm::StringRef StrWithNull(Str.c_str(), Str.size() + 1);
1909   return GetAddrOfConstantString(StrWithNull, GlobalName);
1910 }
1911 
1912 /// EmitObjCPropertyImplementations - Emit information for synthesized
1913 /// properties for an implementation.
1914 void CodeGenModule::EmitObjCPropertyImplementations(const
1915                                                     ObjCImplementationDecl *D) {
1916   for (ObjCImplementationDecl::propimpl_iterator
1917          i = D->propimpl_begin(), e = D->propimpl_end(); i != e; ++i) {
1918     ObjCPropertyImplDecl *PID = *i;
1919 
1920     // Dynamic is just for type-checking.
1921     if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) {
1922       ObjCPropertyDecl *PD = PID->getPropertyDecl();
1923 
1924       // Determine which methods need to be implemented, some may have
1925       // been overridden. Note that ::isSynthesized is not the method
1926       // we want, that just indicates if the decl came from a
1927       // property. What we want to know is if the method is defined in
1928       // this implementation.
1929       if (!D->getInstanceMethod(PD->getGetterName()))
1930         CodeGenFunction(*this).GenerateObjCGetter(
1931                                  const_cast<ObjCImplementationDecl *>(D), PID);
1932       if (!PD->isReadOnly() &&
1933           !D->getInstanceMethod(PD->getSetterName()))
1934         CodeGenFunction(*this).GenerateObjCSetter(
1935                                  const_cast<ObjCImplementationDecl *>(D), PID);
1936     }
1937   }
1938 }
1939 
1940 static bool needsDestructMethod(ObjCImplementationDecl *impl) {
1941   ObjCInterfaceDecl *iface
1942     = const_cast<ObjCInterfaceDecl*>(impl->getClassInterface());
1943   for (ObjCIvarDecl *ivar = iface->all_declared_ivar_begin();
1944        ivar; ivar = ivar->getNextIvar())
1945     if (ivar->getType().isDestructedType())
1946       return true;
1947 
1948   return false;
1949 }
1950 
1951 /// EmitObjCIvarInitializations - Emit information for ivar initialization
1952 /// for an implementation.
1953 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) {
1954   // We might need a .cxx_destruct even if we don't have any ivar initializers.
1955   if (needsDestructMethod(D)) {
1956     IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct");
1957     Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
1958     ObjCMethodDecl *DTORMethod =
1959       ObjCMethodDecl::Create(getContext(), D->getLocation(), D->getLocation(),
1960                              cxxSelector, getContext().VoidTy, 0, D, true,
1961                              false, true, false, ObjCMethodDecl::Required);
1962     D->addInstanceMethod(DTORMethod);
1963     CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false);
1964   }
1965 
1966   // If the implementation doesn't have any ivar initializers, we don't need
1967   // a .cxx_construct.
1968   if (D->getNumIvarInitializers() == 0)
1969     return;
1970 
1971   IdentifierInfo *II = &getContext().Idents.get(".cxx_construct");
1972   Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
1973   // The constructor returns 'self'.
1974   ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(getContext(),
1975                                                 D->getLocation(),
1976                                                 D->getLocation(), cxxSelector,
1977                                                 getContext().getObjCIdType(), 0,
1978                                                 D, true, false, true, false,
1979                                                 ObjCMethodDecl::Required);
1980   D->addInstanceMethod(CTORMethod);
1981   CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true);
1982 }
1983 
1984 /// EmitNamespace - Emit all declarations in a namespace.
1985 void CodeGenModule::EmitNamespace(const NamespaceDecl *ND) {
1986   for (RecordDecl::decl_iterator I = ND->decls_begin(), E = ND->decls_end();
1987        I != E; ++I)
1988     EmitTopLevelDecl(*I);
1989 }
1990 
1991 // EmitLinkageSpec - Emit all declarations in a linkage spec.
1992 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) {
1993   if (LSD->getLanguage() != LinkageSpecDecl::lang_c &&
1994       LSD->getLanguage() != LinkageSpecDecl::lang_cxx) {
1995     ErrorUnsupported(LSD, "linkage spec");
1996     return;
1997   }
1998 
1999   for (RecordDecl::decl_iterator I = LSD->decls_begin(), E = LSD->decls_end();
2000        I != E; ++I)
2001     EmitTopLevelDecl(*I);
2002 }
2003 
2004 /// EmitTopLevelDecl - Emit code for a single top level declaration.
2005 void CodeGenModule::EmitTopLevelDecl(Decl *D) {
2006   // If an error has occurred, stop code generation, but continue
2007   // parsing and semantic analysis (to ensure all warnings and errors
2008   // are emitted).
2009   if (Diags.hasErrorOccurred())
2010     return;
2011 
2012   // Ignore dependent declarations.
2013   if (D->getDeclContext() && D->getDeclContext()->isDependentContext())
2014     return;
2015 
2016   switch (D->getKind()) {
2017   case Decl::CXXConversion:
2018   case Decl::CXXMethod:
2019   case Decl::Function:
2020     // Skip function templates
2021     if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate())
2022       return;
2023 
2024     EmitGlobal(cast<FunctionDecl>(D));
2025     break;
2026 
2027   case Decl::Var:
2028     EmitGlobal(cast<VarDecl>(D));
2029     break;
2030 
2031   // C++ Decls
2032   case Decl::Namespace:
2033     EmitNamespace(cast<NamespaceDecl>(D));
2034     break;
2035     // No code generation needed.
2036   case Decl::UsingShadow:
2037   case Decl::Using:
2038   case Decl::UsingDirective:
2039   case Decl::ClassTemplate:
2040   case Decl::FunctionTemplate:
2041   case Decl::NamespaceAlias:
2042     break;
2043   case Decl::CXXConstructor:
2044     // Skip function templates
2045     if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate())
2046       return;
2047 
2048     EmitCXXConstructors(cast<CXXConstructorDecl>(D));
2049     break;
2050   case Decl::CXXDestructor:
2051     EmitCXXDestructors(cast<CXXDestructorDecl>(D));
2052     break;
2053 
2054   case Decl::StaticAssert:
2055     // Nothing to do.
2056     break;
2057 
2058   // Objective-C Decls
2059 
2060   // Forward declarations, no (immediate) code generation.
2061   case Decl::ObjCClass:
2062   case Decl::ObjCForwardProtocol:
2063   case Decl::ObjCInterface:
2064     break;
2065 
2066     case Decl::ObjCCategory: {
2067       ObjCCategoryDecl *CD = cast<ObjCCategoryDecl>(D);
2068       if (CD->IsClassExtension() && CD->hasSynthBitfield())
2069         Context.ResetObjCLayout(CD->getClassInterface());
2070       break;
2071     }
2072 
2073 
2074   case Decl::ObjCProtocol:
2075     Runtime->GenerateProtocol(cast<ObjCProtocolDecl>(D));
2076     break;
2077 
2078   case Decl::ObjCCategoryImpl:
2079     // Categories have properties but don't support synthesize so we
2080     // can ignore them here.
2081     Runtime->GenerateCategory(cast<ObjCCategoryImplDecl>(D));
2082     break;
2083 
2084   case Decl::ObjCImplementation: {
2085     ObjCImplementationDecl *OMD = cast<ObjCImplementationDecl>(D);
2086     if (Features.ObjCNonFragileABI2 && OMD->hasSynthBitfield())
2087       Context.ResetObjCLayout(OMD->getClassInterface());
2088     EmitObjCPropertyImplementations(OMD);
2089     EmitObjCIvarInitializations(OMD);
2090     Runtime->GenerateClass(OMD);
2091     break;
2092   }
2093   case Decl::ObjCMethod: {
2094     ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(D);
2095     // If this is not a prototype, emit the body.
2096     if (OMD->getBody())
2097       CodeGenFunction(*this).GenerateObjCMethod(OMD);
2098     break;
2099   }
2100   case Decl::ObjCCompatibleAlias:
2101     // compatibility-alias is a directive and has no code gen.
2102     break;
2103 
2104   case Decl::LinkageSpec:
2105     EmitLinkageSpec(cast<LinkageSpecDecl>(D));
2106     break;
2107 
2108   case Decl::FileScopeAsm: {
2109     FileScopeAsmDecl *AD = cast<FileScopeAsmDecl>(D);
2110     llvm::StringRef AsmString = AD->getAsmString()->getString();
2111 
2112     const std::string &S = getModule().getModuleInlineAsm();
2113     if (S.empty())
2114       getModule().setModuleInlineAsm(AsmString);
2115     else
2116       getModule().setModuleInlineAsm(S + '\n' + AsmString.str());
2117     break;
2118   }
2119 
2120   default:
2121     // Make sure we handled everything we should, every other kind is a
2122     // non-top-level decl.  FIXME: Would be nice to have an isTopLevelDeclKind
2123     // function. Need to recode Decl::Kind to do that easily.
2124     assert(isa<TypeDecl>(D) && "Unsupported decl kind");
2125   }
2126 }
2127 
2128 /// Turns the given pointer into a constant.
2129 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context,
2130                                           const void *Ptr) {
2131   uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr);
2132   const llvm::Type *i64 = llvm::Type::getInt64Ty(Context);
2133   return llvm::ConstantInt::get(i64, PtrInt);
2134 }
2135 
2136 static void EmitGlobalDeclMetadata(CodeGenModule &CGM,
2137                                    llvm::NamedMDNode *&GlobalMetadata,
2138                                    GlobalDecl D,
2139                                    llvm::GlobalValue *Addr) {
2140   if (!GlobalMetadata)
2141     GlobalMetadata =
2142       CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs");
2143 
2144   // TODO: should we report variant information for ctors/dtors?
2145   llvm::Value *Ops[] = {
2146     Addr,
2147     GetPointerConstant(CGM.getLLVMContext(), D.getDecl())
2148   };
2149   GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops, 2));
2150 }
2151 
2152 /// Emits metadata nodes associating all the global values in the
2153 /// current module with the Decls they came from.  This is useful for
2154 /// projects using IR gen as a subroutine.
2155 ///
2156 /// Since there's currently no way to associate an MDNode directly
2157 /// with an llvm::GlobalValue, we create a global named metadata
2158 /// with the name 'clang.global.decl.ptrs'.
2159 void CodeGenModule::EmitDeclMetadata() {
2160   llvm::NamedMDNode *GlobalMetadata = 0;
2161 
2162   // StaticLocalDeclMap
2163   for (llvm::DenseMap<GlobalDecl,llvm::StringRef>::iterator
2164          I = MangledDeclNames.begin(), E = MangledDeclNames.end();
2165        I != E; ++I) {
2166     llvm::GlobalValue *Addr = getModule().getNamedValue(I->second);
2167     EmitGlobalDeclMetadata(*this, GlobalMetadata, I->first, Addr);
2168   }
2169 }
2170 
2171 /// Emits metadata nodes for all the local variables in the current
2172 /// function.
2173 void CodeGenFunction::EmitDeclMetadata() {
2174   if (LocalDeclMap.empty()) return;
2175 
2176   llvm::LLVMContext &Context = getLLVMContext();
2177 
2178   // Find the unique metadata ID for this name.
2179   unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr");
2180 
2181   llvm::NamedMDNode *GlobalMetadata = 0;
2182 
2183   for (llvm::DenseMap<const Decl*, llvm::Value*>::iterator
2184          I = LocalDeclMap.begin(), E = LocalDeclMap.end(); I != E; ++I) {
2185     const Decl *D = I->first;
2186     llvm::Value *Addr = I->second;
2187 
2188     if (llvm::AllocaInst *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) {
2189       llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D);
2190       Alloca->setMetadata(DeclPtrKind, llvm::MDNode::get(Context, &DAddr, 1));
2191     } else if (llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>(Addr)) {
2192       GlobalDecl GD = GlobalDecl(cast<VarDecl>(D));
2193       EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV);
2194     }
2195   }
2196 }
2197 
2198 ///@name Custom Runtime Function Interfaces
2199 ///@{
2200 //
2201 // FIXME: These can be eliminated once we can have clients just get the required
2202 // AST nodes from the builtin tables.
2203 
2204 llvm::Constant *CodeGenModule::getBlockObjectDispose() {
2205   if (BlockObjectDispose)
2206     return BlockObjectDispose;
2207 
2208   // If we saw an explicit decl, use that.
2209   if (BlockObjectDisposeDecl) {
2210     return BlockObjectDispose = GetAddrOfFunction(
2211       BlockObjectDisposeDecl,
2212       getTypes().GetFunctionType(BlockObjectDisposeDecl));
2213   }
2214 
2215   // Otherwise construct the function by hand.
2216   const llvm::FunctionType *FTy;
2217   std::vector<const llvm::Type*> ArgTys;
2218   const llvm::Type *ResultType = llvm::Type::getVoidTy(VMContext);
2219   ArgTys.push_back(Int8PtrTy);
2220   ArgTys.push_back(llvm::Type::getInt32Ty(VMContext));
2221   FTy = llvm::FunctionType::get(ResultType, ArgTys, false);
2222   return BlockObjectDispose =
2223     CreateRuntimeFunction(FTy, "_Block_object_dispose");
2224 }
2225 
2226 llvm::Constant *CodeGenModule::getBlockObjectAssign() {
2227   if (BlockObjectAssign)
2228     return BlockObjectAssign;
2229 
2230   // If we saw an explicit decl, use that.
2231   if (BlockObjectAssignDecl) {
2232     return BlockObjectAssign = GetAddrOfFunction(
2233       BlockObjectAssignDecl,
2234       getTypes().GetFunctionType(BlockObjectAssignDecl));
2235   }
2236 
2237   // Otherwise construct the function by hand.
2238   const llvm::FunctionType *FTy;
2239   std::vector<const llvm::Type*> ArgTys;
2240   const llvm::Type *ResultType = llvm::Type::getVoidTy(VMContext);
2241   ArgTys.push_back(Int8PtrTy);
2242   ArgTys.push_back(Int8PtrTy);
2243   ArgTys.push_back(llvm::Type::getInt32Ty(VMContext));
2244   FTy = llvm::FunctionType::get(ResultType, ArgTys, false);
2245   return BlockObjectAssign =
2246     CreateRuntimeFunction(FTy, "_Block_object_assign");
2247 }
2248 
2249 llvm::Constant *CodeGenModule::getNSConcreteGlobalBlock() {
2250   if (NSConcreteGlobalBlock)
2251     return NSConcreteGlobalBlock;
2252 
2253   // If we saw an explicit decl, use that.
2254   if (NSConcreteGlobalBlockDecl) {
2255     return NSConcreteGlobalBlock = GetAddrOfGlobalVar(
2256       NSConcreteGlobalBlockDecl,
2257       getTypes().ConvertType(NSConcreteGlobalBlockDecl->getType()));
2258   }
2259 
2260   // Otherwise construct the variable by hand.
2261   return NSConcreteGlobalBlock =
2262     CreateRuntimeVariable(Int8PtrTy, "_NSConcreteGlobalBlock");
2263 }
2264 
2265 llvm::Constant *CodeGenModule::getNSConcreteStackBlock() {
2266   if (NSConcreteStackBlock)
2267     return NSConcreteStackBlock;
2268 
2269   // If we saw an explicit decl, use that.
2270   if (NSConcreteStackBlockDecl) {
2271     return NSConcreteStackBlock = GetAddrOfGlobalVar(
2272       NSConcreteStackBlockDecl,
2273       getTypes().ConvertType(NSConcreteStackBlockDecl->getType()));
2274   }
2275 
2276   // Otherwise construct the variable by hand.
2277   return NSConcreteStackBlock =
2278     CreateRuntimeVariable(Int8PtrTy, "_NSConcreteStackBlock");
2279 }
2280 
2281 ///@}
2282