xref: /llvm-project/clang/lib/CodeGen/CodeGenModule.cpp (revision 69e4746439d9a9ec6f1e3c7c7ddef9132c3f7467)
1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This coordinates the per-module state used while generating code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenModule.h"
15 #include "CGCUDARuntime.h"
16 #include "CGCXXABI.h"
17 #include "CGCall.h"
18 #include "CGDebugInfo.h"
19 #include "CGObjCRuntime.h"
20 #include "CGOpenCLRuntime.h"
21 #include "CodeGenFunction.h"
22 #include "CodeGenTBAA.h"
23 #include "TargetInfo.h"
24 #include "clang/AST/ASTContext.h"
25 #include "clang/AST/CharUnits.h"
26 #include "clang/AST/DeclCXX.h"
27 #include "clang/AST/DeclObjC.h"
28 #include "clang/AST/DeclTemplate.h"
29 #include "clang/AST/Mangle.h"
30 #include "clang/AST/RecordLayout.h"
31 #include "clang/AST/RecursiveASTVisitor.h"
32 #include "clang/Basic/Builtins.h"
33 #include "clang/Basic/ConvertUTF.h"
34 #include "clang/Basic/Diagnostic.h"
35 #include "clang/Basic/Module.h"
36 #include "clang/Basic/SourceManager.h"
37 #include "clang/Basic/TargetInfo.h"
38 #include "clang/Frontend/CodeGenOptions.h"
39 #include "llvm/ADT/APSInt.h"
40 #include "llvm/ADT/Triple.h"
41 #include "llvm/IR/CallingConv.h"
42 #include "llvm/IR/DataLayout.h"
43 #include "llvm/IR/Intrinsics.h"
44 #include "llvm/IR/LLVMContext.h"
45 #include "llvm/IR/Module.h"
46 #include "llvm/Support/CallSite.h"
47 #include "llvm/Support/ErrorHandling.h"
48 #include "llvm/Target/Mangler.h"
49 using namespace clang;
50 using namespace CodeGen;
51 
52 static const char AnnotationSection[] = "llvm.metadata";
53 
54 static CGCXXABI &createCXXABI(CodeGenModule &CGM) {
55   switch (CGM.getContext().getTargetInfo().getCXXABI()) {
56   case CXXABI_ARM: return *CreateARMCXXABI(CGM);
57   case CXXABI_Itanium: return *CreateItaniumCXXABI(CGM);
58   case CXXABI_Microsoft: return *CreateMicrosoftCXXABI(CGM);
59   }
60 
61   llvm_unreachable("invalid C++ ABI kind");
62 }
63 
64 
65 CodeGenModule::CodeGenModule(ASTContext &C, const CodeGenOptions &CGO,
66                              llvm::Module &M, const llvm::DataLayout &TD,
67                              DiagnosticsEngine &diags)
68   : Context(C), LangOpts(C.getLangOpts()), CodeGenOpts(CGO), TheModule(M),
69     TheDataLayout(TD), TheTargetCodeGenInfo(0), Diags(diags),
70     ABI(createCXXABI(*this)),
71     Types(*this),
72     TBAA(0),
73     VTables(*this), ObjCRuntime(0), OpenCLRuntime(0), CUDARuntime(0),
74     DebugInfo(0), ARCData(0), NoObjCARCExceptionsMetadata(0),
75     RRData(0), CFConstantStringClassRef(0),
76     ConstantStringClassRef(0), NSConstantStringType(0),
77     VMContext(M.getContext()),
78     NSConcreteGlobalBlock(0), NSConcreteStackBlock(0),
79     BlockObjectAssign(0), BlockObjectDispose(0),
80     BlockDescriptorType(0), GenericBlockLiteralType(0) {
81 
82   // Initialize the type cache.
83   llvm::LLVMContext &LLVMContext = M.getContext();
84   VoidTy = llvm::Type::getVoidTy(LLVMContext);
85   Int8Ty = llvm::Type::getInt8Ty(LLVMContext);
86   Int16Ty = llvm::Type::getInt16Ty(LLVMContext);
87   Int32Ty = llvm::Type::getInt32Ty(LLVMContext);
88   Int64Ty = llvm::Type::getInt64Ty(LLVMContext);
89   FloatTy = llvm::Type::getFloatTy(LLVMContext);
90   DoubleTy = llvm::Type::getDoubleTy(LLVMContext);
91   PointerWidthInBits = C.getTargetInfo().getPointerWidth(0);
92   PointerAlignInBytes =
93   C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(0)).getQuantity();
94   IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth());
95   IntPtrTy = llvm::IntegerType::get(LLVMContext, PointerWidthInBits);
96   Int8PtrTy = Int8Ty->getPointerTo(0);
97   Int8PtrPtrTy = Int8PtrTy->getPointerTo(0);
98 
99   if (LangOpts.ObjC1)
100     createObjCRuntime();
101   if (LangOpts.OpenCL)
102     createOpenCLRuntime();
103   if (LangOpts.CUDA)
104     createCUDARuntime();
105 
106   // Enable TBAA unless it's suppressed. ThreadSanitizer needs TBAA even at O0.
107   if (LangOpts.SanitizeThread ||
108       (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0))
109     TBAA = new CodeGenTBAA(Context, VMContext, CodeGenOpts, getLangOpts(),
110                            ABI.getMangleContext());
111 
112   // If debug info or coverage generation is enabled, create the CGDebugInfo
113   // object.
114   if (CodeGenOpts.getDebugInfo() != CodeGenOptions::NoDebugInfo ||
115       CodeGenOpts.EmitGcovArcs ||
116       CodeGenOpts.EmitGcovNotes)
117     DebugInfo = new CGDebugInfo(*this);
118 
119   Block.GlobalUniqueCount = 0;
120 
121   if (C.getLangOpts().ObjCAutoRefCount)
122     ARCData = new ARCEntrypoints();
123   RRData = new RREntrypoints();
124 }
125 
126 CodeGenModule::~CodeGenModule() {
127   delete ObjCRuntime;
128   delete OpenCLRuntime;
129   delete CUDARuntime;
130   delete TheTargetCodeGenInfo;
131   delete &ABI;
132   delete TBAA;
133   delete DebugInfo;
134   delete ARCData;
135   delete RRData;
136 }
137 
138 void CodeGenModule::createObjCRuntime() {
139   // This is just isGNUFamily(), but we want to force implementors of
140   // new ABIs to decide how best to do this.
141   switch (LangOpts.ObjCRuntime.getKind()) {
142   case ObjCRuntime::GNUstep:
143   case ObjCRuntime::GCC:
144   case ObjCRuntime::ObjFW:
145     ObjCRuntime = CreateGNUObjCRuntime(*this);
146     return;
147 
148   case ObjCRuntime::FragileMacOSX:
149   case ObjCRuntime::MacOSX:
150   case ObjCRuntime::iOS:
151     ObjCRuntime = CreateMacObjCRuntime(*this);
152     return;
153   }
154   llvm_unreachable("bad runtime kind");
155 }
156 
157 void CodeGenModule::createOpenCLRuntime() {
158   OpenCLRuntime = new CGOpenCLRuntime(*this);
159 }
160 
161 void CodeGenModule::createCUDARuntime() {
162   CUDARuntime = CreateNVCUDARuntime(*this);
163 }
164 
165 void CodeGenModule::Release() {
166   EmitDeferred();
167   EmitCXXGlobalInitFunc();
168   EmitCXXGlobalDtorFunc();
169   if (ObjCRuntime)
170     if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction())
171       AddGlobalCtor(ObjCInitFunction);
172   EmitCtorList(GlobalCtors, "llvm.global_ctors");
173   EmitCtorList(GlobalDtors, "llvm.global_dtors");
174   EmitGlobalAnnotations();
175   EmitLLVMUsed();
176 
177   if (CodeGenOpts.ModulesAutolink) {
178     EmitModuleLinkOptions();
179   }
180 
181   SimplifyPersonality();
182 
183   if (getCodeGenOpts().EmitDeclMetadata)
184     EmitDeclMetadata();
185 
186   if (getCodeGenOpts().EmitGcovArcs || getCodeGenOpts().EmitGcovNotes)
187     EmitCoverageFile();
188 
189   if (DebugInfo)
190     DebugInfo->finalize();
191 }
192 
193 void CodeGenModule::UpdateCompletedType(const TagDecl *TD) {
194   // Make sure that this type is translated.
195   Types.UpdateCompletedType(TD);
196 }
197 
198 llvm::MDNode *CodeGenModule::getTBAAInfo(QualType QTy) {
199   if (!TBAA)
200     return 0;
201   return TBAA->getTBAAInfo(QTy);
202 }
203 
204 llvm::MDNode *CodeGenModule::getTBAAInfoForVTablePtr() {
205   if (!TBAA)
206     return 0;
207   return TBAA->getTBAAInfoForVTablePtr();
208 }
209 
210 llvm::MDNode *CodeGenModule::getTBAAStructInfo(QualType QTy) {
211   if (!TBAA)
212     return 0;
213   return TBAA->getTBAAStructInfo(QTy);
214 }
215 
216 void CodeGenModule::DecorateInstruction(llvm::Instruction *Inst,
217                                         llvm::MDNode *TBAAInfo) {
218   Inst->setMetadata(llvm::LLVMContext::MD_tbaa, TBAAInfo);
219 }
220 
221 bool CodeGenModule::isTargetDarwin() const {
222   return getContext().getTargetInfo().getTriple().isOSDarwin();
223 }
224 
225 void CodeGenModule::Error(SourceLocation loc, StringRef error) {
226   unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, error);
227   getDiags().Report(Context.getFullLoc(loc), diagID);
228 }
229 
230 /// ErrorUnsupported - Print out an error that codegen doesn't support the
231 /// specified stmt yet.
232 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type,
233                                      bool OmitOnError) {
234   if (OmitOnError && getDiags().hasErrorOccurred())
235     return;
236   unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
237                                                "cannot compile this %0 yet");
238   std::string Msg = Type;
239   getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID)
240     << Msg << S->getSourceRange();
241 }
242 
243 /// ErrorUnsupported - Print out an error that codegen doesn't support the
244 /// specified decl yet.
245 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type,
246                                      bool OmitOnError) {
247   if (OmitOnError && getDiags().hasErrorOccurred())
248     return;
249   unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
250                                                "cannot compile this %0 yet");
251   std::string Msg = Type;
252   getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg;
253 }
254 
255 llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) {
256   return llvm::ConstantInt::get(SizeTy, size.getQuantity());
257 }
258 
259 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV,
260                                         const NamedDecl *D) const {
261   // Internal definitions always have default visibility.
262   if (GV->hasLocalLinkage()) {
263     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
264     return;
265   }
266 
267   // Set visibility for definitions.
268   NamedDecl::LinkageInfo LV = D->getLinkageAndVisibility();
269   if (LV.visibilityExplicit() || !GV->hasAvailableExternallyLinkage())
270     GV->setVisibility(GetLLVMVisibility(LV.visibility()));
271 }
272 
273 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(StringRef S) {
274   return llvm::StringSwitch<llvm::GlobalVariable::ThreadLocalMode>(S)
275       .Case("global-dynamic", llvm::GlobalVariable::GeneralDynamicTLSModel)
276       .Case("local-dynamic", llvm::GlobalVariable::LocalDynamicTLSModel)
277       .Case("initial-exec", llvm::GlobalVariable::InitialExecTLSModel)
278       .Case("local-exec", llvm::GlobalVariable::LocalExecTLSModel);
279 }
280 
281 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(
282     CodeGenOptions::TLSModel M) {
283   switch (M) {
284   case CodeGenOptions::GeneralDynamicTLSModel:
285     return llvm::GlobalVariable::GeneralDynamicTLSModel;
286   case CodeGenOptions::LocalDynamicTLSModel:
287     return llvm::GlobalVariable::LocalDynamicTLSModel;
288   case CodeGenOptions::InitialExecTLSModel:
289     return llvm::GlobalVariable::InitialExecTLSModel;
290   case CodeGenOptions::LocalExecTLSModel:
291     return llvm::GlobalVariable::LocalExecTLSModel;
292   }
293   llvm_unreachable("Invalid TLS model!");
294 }
295 
296 void CodeGenModule::setTLSMode(llvm::GlobalVariable *GV,
297                                const VarDecl &D) const {
298   assert(D.isThreadSpecified() && "setting TLS mode on non-TLS var!");
299 
300   llvm::GlobalVariable::ThreadLocalMode TLM;
301   TLM = GetLLVMTLSModel(CodeGenOpts.getDefaultTLSModel());
302 
303   // Override the TLS model if it is explicitly specified.
304   if (D.hasAttr<TLSModelAttr>()) {
305     const TLSModelAttr *Attr = D.getAttr<TLSModelAttr>();
306     TLM = GetLLVMTLSModel(Attr->getModel());
307   }
308 
309   GV->setThreadLocalMode(TLM);
310 }
311 
312 /// Set the symbol visibility of type information (vtable and RTTI)
313 /// associated with the given type.
314 void CodeGenModule::setTypeVisibility(llvm::GlobalValue *GV,
315                                       const CXXRecordDecl *RD,
316                                       TypeVisibilityKind TVK) const {
317   setGlobalVisibility(GV, RD);
318 
319   if (!CodeGenOpts.HiddenWeakVTables)
320     return;
321 
322   // We never want to drop the visibility for RTTI names.
323   if (TVK == TVK_ForRTTIName)
324     return;
325 
326   // We want to drop the visibility to hidden for weak type symbols.
327   // This isn't possible if there might be unresolved references
328   // elsewhere that rely on this symbol being visible.
329 
330   // This should be kept roughly in sync with setThunkVisibility
331   // in CGVTables.cpp.
332 
333   // Preconditions.
334   if (GV->getLinkage() != llvm::GlobalVariable::LinkOnceODRLinkage ||
335       GV->getVisibility() != llvm::GlobalVariable::DefaultVisibility)
336     return;
337 
338   // Don't override an explicit visibility attribute.
339   if (RD->getExplicitVisibility())
340     return;
341 
342   switch (RD->getTemplateSpecializationKind()) {
343   // We have to disable the optimization if this is an EI definition
344   // because there might be EI declarations in other shared objects.
345   case TSK_ExplicitInstantiationDefinition:
346   case TSK_ExplicitInstantiationDeclaration:
347     return;
348 
349   // Every use of a non-template class's type information has to emit it.
350   case TSK_Undeclared:
351     break;
352 
353   // In theory, implicit instantiations can ignore the possibility of
354   // an explicit instantiation declaration because there necessarily
355   // must be an EI definition somewhere with default visibility.  In
356   // practice, it's possible to have an explicit instantiation for
357   // an arbitrary template class, and linkers aren't necessarily able
358   // to deal with mixed-visibility symbols.
359   case TSK_ExplicitSpecialization:
360   case TSK_ImplicitInstantiation:
361     return;
362   }
363 
364   // If there's a key function, there may be translation units
365   // that don't have the key function's definition.  But ignore
366   // this if we're emitting RTTI under -fno-rtti.
367   if (!(TVK != TVK_ForRTTI) || LangOpts.RTTI) {
368     if (Context.getKeyFunction(RD))
369       return;
370   }
371 
372   // Otherwise, drop the visibility to hidden.
373   GV->setVisibility(llvm::GlobalValue::HiddenVisibility);
374   GV->setUnnamedAddr(true);
375 }
376 
377 StringRef CodeGenModule::getMangledName(GlobalDecl GD) {
378   const NamedDecl *ND = cast<NamedDecl>(GD.getDecl());
379 
380   StringRef &Str = MangledDeclNames[GD.getCanonicalDecl()];
381   if (!Str.empty())
382     return Str;
383 
384   if (!getCXXABI().getMangleContext().shouldMangleDeclName(ND)) {
385     IdentifierInfo *II = ND->getIdentifier();
386     assert(II && "Attempt to mangle unnamed decl.");
387 
388     Str = II->getName();
389     return Str;
390   }
391 
392   SmallString<256> Buffer;
393   llvm::raw_svector_ostream Out(Buffer);
394   if (const CXXConstructorDecl *D = dyn_cast<CXXConstructorDecl>(ND))
395     getCXXABI().getMangleContext().mangleCXXCtor(D, GD.getCtorType(), Out);
396   else if (const CXXDestructorDecl *D = dyn_cast<CXXDestructorDecl>(ND))
397     getCXXABI().getMangleContext().mangleCXXDtor(D, GD.getDtorType(), Out);
398   else if (const BlockDecl *BD = dyn_cast<BlockDecl>(ND))
399     getCXXABI().getMangleContext().mangleBlock(BD, Out,
400       dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()));
401   else
402     getCXXABI().getMangleContext().mangleName(ND, Out);
403 
404   // Allocate space for the mangled name.
405   Out.flush();
406   size_t Length = Buffer.size();
407   char *Name = MangledNamesAllocator.Allocate<char>(Length);
408   std::copy(Buffer.begin(), Buffer.end(), Name);
409 
410   Str = StringRef(Name, Length);
411 
412   return Str;
413 }
414 
415 void CodeGenModule::getBlockMangledName(GlobalDecl GD, MangleBuffer &Buffer,
416                                         const BlockDecl *BD) {
417   MangleContext &MangleCtx = getCXXABI().getMangleContext();
418   const Decl *D = GD.getDecl();
419   llvm::raw_svector_ostream Out(Buffer.getBuffer());
420   if (D == 0)
421     MangleCtx.mangleGlobalBlock(BD,
422       dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()), Out);
423   else if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(D))
424     MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out);
425   else if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(D))
426     MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out);
427   else
428     MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out);
429 }
430 
431 llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) {
432   return getModule().getNamedValue(Name);
433 }
434 
435 /// AddGlobalCtor - Add a function to the list that will be called before
436 /// main() runs.
437 void CodeGenModule::AddGlobalCtor(llvm::Function * Ctor, int Priority) {
438   // FIXME: Type coercion of void()* types.
439   GlobalCtors.push_back(std::make_pair(Ctor, Priority));
440 }
441 
442 /// AddGlobalDtor - Add a function to the list that will be called
443 /// when the module is unloaded.
444 void CodeGenModule::AddGlobalDtor(llvm::Function * Dtor, int Priority) {
445   // FIXME: Type coercion of void()* types.
446   GlobalDtors.push_back(std::make_pair(Dtor, Priority));
447 }
448 
449 void CodeGenModule::EmitCtorList(const CtorList &Fns, const char *GlobalName) {
450   // Ctor function type is void()*.
451   llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false);
452   llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy);
453 
454   // Get the type of a ctor entry, { i32, void ()* }.
455   llvm::StructType *CtorStructTy =
456     llvm::StructType::get(Int32Ty, llvm::PointerType::getUnqual(CtorFTy), NULL);
457 
458   // Construct the constructor and destructor arrays.
459   SmallVector<llvm::Constant*, 8> Ctors;
460   for (CtorList::const_iterator I = Fns.begin(), E = Fns.end(); I != E; ++I) {
461     llvm::Constant *S[] = {
462       llvm::ConstantInt::get(Int32Ty, I->second, false),
463       llvm::ConstantExpr::getBitCast(I->first, CtorPFTy)
464     };
465     Ctors.push_back(llvm::ConstantStruct::get(CtorStructTy, S));
466   }
467 
468   if (!Ctors.empty()) {
469     llvm::ArrayType *AT = llvm::ArrayType::get(CtorStructTy, Ctors.size());
470     new llvm::GlobalVariable(TheModule, AT, false,
471                              llvm::GlobalValue::AppendingLinkage,
472                              llvm::ConstantArray::get(AT, Ctors),
473                              GlobalName);
474   }
475 }
476 
477 llvm::GlobalValue::LinkageTypes
478 CodeGenModule::getFunctionLinkage(const FunctionDecl *D) {
479   GVALinkage Linkage = getContext().GetGVALinkageForFunction(D);
480 
481   if (Linkage == GVA_Internal)
482     return llvm::Function::InternalLinkage;
483 
484   if (D->hasAttr<DLLExportAttr>())
485     return llvm::Function::DLLExportLinkage;
486 
487   if (D->hasAttr<WeakAttr>())
488     return llvm::Function::WeakAnyLinkage;
489 
490   // In C99 mode, 'inline' functions are guaranteed to have a strong
491   // definition somewhere else, so we can use available_externally linkage.
492   if (Linkage == GVA_C99Inline)
493     return llvm::Function::AvailableExternallyLinkage;
494 
495   // Note that Apple's kernel linker doesn't support symbol
496   // coalescing, so we need to avoid linkonce and weak linkages there.
497   // Normally, this means we just map to internal, but for explicit
498   // instantiations we'll map to external.
499 
500   // In C++, the compiler has to emit a definition in every translation unit
501   // that references the function.  We should use linkonce_odr because
502   // a) if all references in this translation unit are optimized away, we
503   // don't need to codegen it.  b) if the function persists, it needs to be
504   // merged with other definitions. c) C++ has the ODR, so we know the
505   // definition is dependable.
506   if (Linkage == GVA_CXXInline || Linkage == GVA_TemplateInstantiation)
507     return !Context.getLangOpts().AppleKext
508              ? llvm::Function::LinkOnceODRLinkage
509              : llvm::Function::InternalLinkage;
510 
511   // An explicit instantiation of a template has weak linkage, since
512   // explicit instantiations can occur in multiple translation units
513   // and must all be equivalent. However, we are not allowed to
514   // throw away these explicit instantiations.
515   if (Linkage == GVA_ExplicitTemplateInstantiation)
516     return !Context.getLangOpts().AppleKext
517              ? llvm::Function::WeakODRLinkage
518              : llvm::Function::ExternalLinkage;
519 
520   // Otherwise, we have strong external linkage.
521   assert(Linkage == GVA_StrongExternal);
522   return llvm::Function::ExternalLinkage;
523 }
524 
525 
526 /// SetFunctionDefinitionAttributes - Set attributes for a global.
527 ///
528 /// FIXME: This is currently only done for aliases and functions, but not for
529 /// variables (these details are set in EmitGlobalVarDefinition for variables).
530 void CodeGenModule::SetFunctionDefinitionAttributes(const FunctionDecl *D,
531                                                     llvm::GlobalValue *GV) {
532   SetCommonAttributes(D, GV);
533 }
534 
535 void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D,
536                                               const CGFunctionInfo &Info,
537                                               llvm::Function *F) {
538   unsigned CallingConv;
539   AttributeListType AttributeList;
540   ConstructAttributeList(Info, D, AttributeList, CallingConv);
541   F->setAttributes(llvm::AttributeSet::get(getLLVMContext(), AttributeList));
542   F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv));
543 }
544 
545 /// Determines whether the language options require us to model
546 /// unwind exceptions.  We treat -fexceptions as mandating this
547 /// except under the fragile ObjC ABI with only ObjC exceptions
548 /// enabled.  This means, for example, that C with -fexceptions
549 /// enables this.
550 static bool hasUnwindExceptions(const LangOptions &LangOpts) {
551   // If exceptions are completely disabled, obviously this is false.
552   if (!LangOpts.Exceptions) return false;
553 
554   // If C++ exceptions are enabled, this is true.
555   if (LangOpts.CXXExceptions) return true;
556 
557   // If ObjC exceptions are enabled, this depends on the ABI.
558   if (LangOpts.ObjCExceptions) {
559     return LangOpts.ObjCRuntime.hasUnwindExceptions();
560   }
561 
562   return true;
563 }
564 
565 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D,
566                                                            llvm::Function *F) {
567   if (CodeGenOpts.UnwindTables)
568     F->setHasUWTable();
569 
570   if (!hasUnwindExceptions(LangOpts))
571     F->addFnAttr(llvm::Attribute::NoUnwind);
572 
573   if (D->hasAttr<NakedAttr>()) {
574     // Naked implies noinline: we should not be inlining such functions.
575     F->addFnAttr(llvm::Attribute::Naked);
576     F->addFnAttr(llvm::Attribute::NoInline);
577   }
578 
579   if (D->hasAttr<NoInlineAttr>())
580     F->addFnAttr(llvm::Attribute::NoInline);
581 
582   // (noinline wins over always_inline, and we can't specify both in IR)
583   if ((D->hasAttr<AlwaysInlineAttr>() || D->hasAttr<ForceInlineAttr>()) &&
584       !F->getAttributes().hasAttribute(llvm::AttributeSet::FunctionIndex,
585                                        llvm::Attribute::NoInline))
586     F->addFnAttr(llvm::Attribute::AlwaysInline);
587 
588   // FIXME: Communicate hot and cold attributes to LLVM more directly.
589   if (D->hasAttr<ColdAttr>())
590     F->addFnAttr(llvm::Attribute::OptimizeForSize);
591 
592   if (D->hasAttr<MinSizeAttr>())
593     F->addFnAttr(llvm::Attribute::MinSize);
594 
595   if (isa<CXXConstructorDecl>(D) || isa<CXXDestructorDecl>(D))
596     F->setUnnamedAddr(true);
597 
598   if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D))
599     if (MD->isVirtual())
600       F->setUnnamedAddr(true);
601 
602   if (LangOpts.getStackProtector() == LangOptions::SSPOn)
603     F->addFnAttr(llvm::Attribute::StackProtect);
604   else if (LangOpts.getStackProtector() == LangOptions::SSPReq)
605     F->addFnAttr(llvm::Attribute::StackProtectReq);
606 
607   if (LangOpts.SanitizeAddress) {
608     // When AddressSanitizer is enabled, set AddressSafety attribute
609     // unless __attribute__((no_address_safety_analysis)) is used.
610     if (!D->hasAttr<NoAddressSafetyAnalysisAttr>())
611       F->addFnAttr(llvm::Attribute::AddressSafety);
612   }
613 
614   unsigned alignment = D->getMaxAlignment() / Context.getCharWidth();
615   if (alignment)
616     F->setAlignment(alignment);
617 
618   // C++ ABI requires 2-byte alignment for member functions.
619   if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D))
620     F->setAlignment(2);
621 }
622 
623 void CodeGenModule::SetCommonAttributes(const Decl *D,
624                                         llvm::GlobalValue *GV) {
625   if (const NamedDecl *ND = dyn_cast<NamedDecl>(D))
626     setGlobalVisibility(GV, ND);
627   else
628     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
629 
630   if (D->hasAttr<UsedAttr>())
631     AddUsedGlobal(GV);
632 
633   if (const SectionAttr *SA = D->getAttr<SectionAttr>())
634     GV->setSection(SA->getName());
635 
636   getTargetCodeGenInfo().SetTargetAttributes(D, GV, *this);
637 }
638 
639 void CodeGenModule::SetInternalFunctionAttributes(const Decl *D,
640                                                   llvm::Function *F,
641                                                   const CGFunctionInfo &FI) {
642   SetLLVMFunctionAttributes(D, FI, F);
643   SetLLVMFunctionAttributesForDefinition(D, F);
644 
645   F->setLinkage(llvm::Function::InternalLinkage);
646 
647   SetCommonAttributes(D, F);
648 }
649 
650 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD,
651                                           llvm::Function *F,
652                                           bool IsIncompleteFunction) {
653   if (unsigned IID = F->getIntrinsicID()) {
654     // If this is an intrinsic function, set the function's attributes
655     // to the intrinsic's attributes.
656     F->setAttributes(llvm::Intrinsic::getAttributes(getLLVMContext(),
657                                                     (llvm::Intrinsic::ID)IID));
658     return;
659   }
660 
661   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
662 
663   if (!IsIncompleteFunction)
664     SetLLVMFunctionAttributes(FD, getTypes().arrangeGlobalDeclaration(GD), F);
665 
666   // Only a few attributes are set on declarations; these may later be
667   // overridden by a definition.
668 
669   if (FD->hasAttr<DLLImportAttr>()) {
670     F->setLinkage(llvm::Function::DLLImportLinkage);
671   } else if (FD->hasAttr<WeakAttr>() ||
672              FD->isWeakImported()) {
673     // "extern_weak" is overloaded in LLVM; we probably should have
674     // separate linkage types for this.
675     F->setLinkage(llvm::Function::ExternalWeakLinkage);
676   } else {
677     F->setLinkage(llvm::Function::ExternalLinkage);
678 
679     NamedDecl::LinkageInfo LV = FD->getLinkageAndVisibility();
680     if (LV.linkage() == ExternalLinkage && LV.visibilityExplicit()) {
681       F->setVisibility(GetLLVMVisibility(LV.visibility()));
682     }
683   }
684 
685   if (const SectionAttr *SA = FD->getAttr<SectionAttr>())
686     F->setSection(SA->getName());
687 }
688 
689 void CodeGenModule::AddUsedGlobal(llvm::GlobalValue *GV) {
690   assert(!GV->isDeclaration() &&
691          "Only globals with definition can force usage.");
692   LLVMUsed.push_back(GV);
693 }
694 
695 void CodeGenModule::EmitLLVMUsed() {
696   // Don't create llvm.used if there is no need.
697   if (LLVMUsed.empty())
698     return;
699 
700   // Convert LLVMUsed to what ConstantArray needs.
701   SmallVector<llvm::Constant*, 8> UsedArray;
702   UsedArray.resize(LLVMUsed.size());
703   for (unsigned i = 0, e = LLVMUsed.size(); i != e; ++i) {
704     UsedArray[i] =
705      llvm::ConstantExpr::getBitCast(cast<llvm::Constant>(&*LLVMUsed[i]),
706                                     Int8PtrTy);
707   }
708 
709   if (UsedArray.empty())
710     return;
711   llvm::ArrayType *ATy = llvm::ArrayType::get(Int8PtrTy, UsedArray.size());
712 
713   llvm::GlobalVariable *GV =
714     new llvm::GlobalVariable(getModule(), ATy, false,
715                              llvm::GlobalValue::AppendingLinkage,
716                              llvm::ConstantArray::get(ATy, UsedArray),
717                              "llvm.used");
718 
719   GV->setSection("llvm.metadata");
720 }
721 
722 /// \brief Add link options implied by the given module, including modules
723 /// it depends on, using a postorder walk.
724 static void addLinkOptionsPostorder(llvm::LLVMContext &Context,
725                                     Module *Mod,
726                                     SmallVectorImpl<llvm::Value *> &Metadata,
727                                     llvm::SmallPtrSet<Module *, 16> &Visited) {
728   // Import this module's parent.
729   if (Mod->Parent && Visited.insert(Mod->Parent)) {
730     addLinkOptionsPostorder(Context, Mod->Parent, Metadata, Visited);
731   }
732 
733   // Import this module's dependencies.
734   for (unsigned I = Mod->Imports.size(); I > 0; --I) {
735     if (Visited.insert(Mod->Imports[I-1]))
736       addLinkOptionsPostorder(Context, Mod->Imports[I-1], Metadata, Visited);
737   }
738 
739   // Add linker options to link against the libraries/frameworks
740   // described by this module.
741   for (unsigned I = Mod->LinkLibraries.size(); I > 0; --I) {
742     // FIXME: -lfoo is Unix-centric and -framework Foo is Darwin-centric.
743     // We need to know more about the linker to know how to encode these
744     // options propertly.
745 
746     // Link against a framework.
747     if (Mod->LinkLibraries[I-1].IsFramework) {
748       llvm::Value *Args[2] = {
749         llvm::MDString::get(Context, "-framework"),
750         llvm::MDString::get(Context, Mod->LinkLibraries[I-1].Library)
751       };
752 
753       Metadata.push_back(llvm::MDNode::get(Context, Args));
754       continue;
755     }
756 
757     // Link against a library.
758     llvm::Value *OptString
759     = llvm::MDString::get(Context,
760                           "-l" + Mod->LinkLibraries[I-1].Library);
761     Metadata.push_back(llvm::MDNode::get(Context, OptString));
762   }
763 }
764 
765 void CodeGenModule::EmitModuleLinkOptions() {
766   // Collect the set of all of the modules we want to visit to emit link
767   // options, which is essentially the imported modules and all of their
768   // non-explicit child modules.
769   llvm::SetVector<clang::Module *> LinkModules;
770   llvm::SmallPtrSet<clang::Module *, 16> Visited;
771   SmallVector<clang::Module *, 16> Stack;
772 
773   // Seed the stack with imported modules.
774   for (llvm::SetVector<clang::Module *>::iterator M = ImportedModules.begin(),
775                                                MEnd = ImportedModules.end();
776        M != MEnd; ++M) {
777     if (Visited.insert(*M))
778       Stack.push_back(*M);
779   }
780 
781   // Find all of the modules to import, making a little effort to prune
782   // non-leaf modules.
783   while (!Stack.empty()) {
784     clang::Module *Mod = Stack.back();
785     Stack.pop_back();
786 
787     bool AnyChildren = false;
788 
789     // Visit the submodules of this module.
790     for (clang::Module::submodule_iterator Sub = Mod->submodule_begin(),
791                                         SubEnd = Mod->submodule_end();
792          Sub != SubEnd; ++Sub) {
793       // Skip explicit children; they need to be explicitly imported to be
794       // linked against.
795       if ((*Sub)->IsExplicit)
796         continue;
797 
798       if (Visited.insert(*Sub)) {
799         Stack.push_back(*Sub);
800         AnyChildren = true;
801       }
802     }
803 
804     // We didn't find any children, so add this module to the list of
805     // modules to link against.
806     if (!AnyChildren) {
807       LinkModules.insert(Mod);
808     }
809   }
810 
811   // Add link options for all of the imported modules in reverse topological
812   // order.
813   SmallVector<llvm::Value *, 16> MetadataArgs;
814   Visited.clear();
815   for (llvm::SetVector<clang::Module *>::iterator M = LinkModules.begin(),
816                                                MEnd = LinkModules.end();
817        M != MEnd; ++M) {
818     if (Visited.insert(*M))
819       addLinkOptionsPostorder(getLLVMContext(), *M, MetadataArgs, Visited);
820   }
821   std::reverse(MetadataArgs.begin(), MetadataArgs.end());
822 
823   // Add the linker options metadata flag.
824   getModule().addModuleFlag(llvm::Module::AppendUnique, "Linker Options",
825                             llvm::MDNode::get(getLLVMContext(), MetadataArgs));
826 }
827 
828 void CodeGenModule::EmitDeferred() {
829   // Emit code for any potentially referenced deferred decls.  Since a
830   // previously unused static decl may become used during the generation of code
831   // for a static function, iterate until no changes are made.
832 
833   while (!DeferredDeclsToEmit.empty() || !DeferredVTables.empty()) {
834     if (!DeferredVTables.empty()) {
835       const CXXRecordDecl *RD = DeferredVTables.back();
836       DeferredVTables.pop_back();
837       getCXXABI().EmitVTables(RD);
838       continue;
839     }
840 
841     GlobalDecl D = DeferredDeclsToEmit.back();
842     DeferredDeclsToEmit.pop_back();
843 
844     // Check to see if we've already emitted this.  This is necessary
845     // for a couple of reasons: first, decls can end up in the
846     // deferred-decls queue multiple times, and second, decls can end
847     // up with definitions in unusual ways (e.g. by an extern inline
848     // function acquiring a strong function redefinition).  Just
849     // ignore these cases.
850     //
851     // TODO: That said, looking this up multiple times is very wasteful.
852     StringRef Name = getMangledName(D);
853     llvm::GlobalValue *CGRef = GetGlobalValue(Name);
854     assert(CGRef && "Deferred decl wasn't referenced?");
855 
856     if (!CGRef->isDeclaration())
857       continue;
858 
859     // GlobalAlias::isDeclaration() defers to the aliasee, but for our
860     // purposes an alias counts as a definition.
861     if (isa<llvm::GlobalAlias>(CGRef))
862       continue;
863 
864     // Otherwise, emit the definition and move on to the next one.
865     EmitGlobalDefinition(D);
866   }
867 }
868 
869 void CodeGenModule::EmitGlobalAnnotations() {
870   if (Annotations.empty())
871     return;
872 
873   // Create a new global variable for the ConstantStruct in the Module.
874   llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get(
875     Annotations[0]->getType(), Annotations.size()), Annotations);
876   llvm::GlobalValue *gv = new llvm::GlobalVariable(getModule(),
877     Array->getType(), false, llvm::GlobalValue::AppendingLinkage, Array,
878     "llvm.global.annotations");
879   gv->setSection(AnnotationSection);
880 }
881 
882 llvm::Constant *CodeGenModule::EmitAnnotationString(StringRef Str) {
883   llvm::StringMap<llvm::Constant*>::iterator i = AnnotationStrings.find(Str);
884   if (i != AnnotationStrings.end())
885     return i->second;
886 
887   // Not found yet, create a new global.
888   llvm::Constant *s = llvm::ConstantDataArray::getString(getLLVMContext(), Str);
889   llvm::GlobalValue *gv = new llvm::GlobalVariable(getModule(), s->getType(),
890     true, llvm::GlobalValue::PrivateLinkage, s, ".str");
891   gv->setSection(AnnotationSection);
892   gv->setUnnamedAddr(true);
893   AnnotationStrings[Str] = gv;
894   return gv;
895 }
896 
897 llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) {
898   SourceManager &SM = getContext().getSourceManager();
899   PresumedLoc PLoc = SM.getPresumedLoc(Loc);
900   if (PLoc.isValid())
901     return EmitAnnotationString(PLoc.getFilename());
902   return EmitAnnotationString(SM.getBufferName(Loc));
903 }
904 
905 llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) {
906   SourceManager &SM = getContext().getSourceManager();
907   PresumedLoc PLoc = SM.getPresumedLoc(L);
908   unsigned LineNo = PLoc.isValid() ? PLoc.getLine() :
909     SM.getExpansionLineNumber(L);
910   return llvm::ConstantInt::get(Int32Ty, LineNo);
911 }
912 
913 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV,
914                                                 const AnnotateAttr *AA,
915                                                 SourceLocation L) {
916   // Get the globals for file name, annotation, and the line number.
917   llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()),
918                  *UnitGV = EmitAnnotationUnit(L),
919                  *LineNoCst = EmitAnnotationLineNo(L);
920 
921   // Create the ConstantStruct for the global annotation.
922   llvm::Constant *Fields[4] = {
923     llvm::ConstantExpr::getBitCast(GV, Int8PtrTy),
924     llvm::ConstantExpr::getBitCast(AnnoGV, Int8PtrTy),
925     llvm::ConstantExpr::getBitCast(UnitGV, Int8PtrTy),
926     LineNoCst
927   };
928   return llvm::ConstantStruct::getAnon(Fields);
929 }
930 
931 void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D,
932                                          llvm::GlobalValue *GV) {
933   assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
934   // Get the struct elements for these annotations.
935   for (specific_attr_iterator<AnnotateAttr>
936        ai = D->specific_attr_begin<AnnotateAttr>(),
937        ae = D->specific_attr_end<AnnotateAttr>(); ai != ae; ++ai)
938     Annotations.push_back(EmitAnnotateAttr(GV, *ai, D->getLocation()));
939 }
940 
941 bool CodeGenModule::MayDeferGeneration(const ValueDecl *Global) {
942   // Never defer when EmitAllDecls is specified.
943   if (LangOpts.EmitAllDecls)
944     return false;
945 
946   return !getContext().DeclMustBeEmitted(Global);
947 }
948 
949 llvm::Constant *CodeGenModule::GetAddrOfUuidDescriptor(
950     const CXXUuidofExpr* E) {
951   // Sema has verified that IIDSource has a __declspec(uuid()), and that its
952   // well-formed.
953   StringRef Uuid;
954   if (E->isTypeOperand())
955     Uuid = CXXUuidofExpr::GetUuidAttrOfType(E->getTypeOperand())->getGuid();
956   else {
957     // Special case: __uuidof(0) means an all-zero GUID.
958     Expr *Op = E->getExprOperand();
959     if (!Op->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull))
960       Uuid = CXXUuidofExpr::GetUuidAttrOfType(Op->getType())->getGuid();
961     else
962       Uuid = "00000000-0000-0000-0000-000000000000";
963   }
964   std::string Name = "__uuid_" + Uuid.str();
965 
966   // Look for an existing global.
967   if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name))
968     return GV;
969 
970   llvm::Constant *Init = EmitUuidofInitializer(Uuid, E->getType());
971   assert(Init && "failed to initialize as constant");
972 
973   // GUIDs are assumed to be 16 bytes, spread over 4-2-2-8 bytes. However, the
974   // first field is declared as "long", which for many targets is 8 bytes.
975   // Those architectures are not supported. (With the MS abi, long is always 4
976   // bytes.)
977   llvm::Type *GuidType = getTypes().ConvertType(E->getType());
978   if (Init->getType() != GuidType) {
979     DiagnosticsEngine &Diags = getDiags();
980     unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
981         "__uuidof codegen is not supported on this architecture");
982     Diags.Report(E->getExprLoc(), DiagID) << E->getSourceRange();
983     Init = llvm::UndefValue::get(GuidType);
984   }
985 
986   llvm::GlobalVariable *GV = new llvm::GlobalVariable(getModule(), GuidType,
987       /*isConstant=*/true, llvm::GlobalValue::PrivateLinkage, Init, Name);
988   GV->setUnnamedAddr(true);
989   return GV;
990 }
991 
992 llvm::Constant *CodeGenModule::GetWeakRefReference(const ValueDecl *VD) {
993   const AliasAttr *AA = VD->getAttr<AliasAttr>();
994   assert(AA && "No alias?");
995 
996   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType());
997 
998   // See if there is already something with the target's name in the module.
999   llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee());
1000   if (Entry) {
1001     unsigned AS = getContext().getTargetAddressSpace(VD->getType());
1002     return llvm::ConstantExpr::getBitCast(Entry, DeclTy->getPointerTo(AS));
1003   }
1004 
1005   llvm::Constant *Aliasee;
1006   if (isa<llvm::FunctionType>(DeclTy))
1007     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy,
1008                                       GlobalDecl(cast<FunctionDecl>(VD)),
1009                                       /*ForVTable=*/false);
1010   else
1011     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
1012                                     llvm::PointerType::getUnqual(DeclTy), 0);
1013 
1014   llvm::GlobalValue* F = cast<llvm::GlobalValue>(Aliasee);
1015   F->setLinkage(llvm::Function::ExternalWeakLinkage);
1016   WeakRefReferences.insert(F);
1017 
1018   return Aliasee;
1019 }
1020 
1021 void CodeGenModule::EmitGlobal(GlobalDecl GD) {
1022   const ValueDecl *Global = cast<ValueDecl>(GD.getDecl());
1023 
1024   // Weak references don't produce any output by themselves.
1025   if (Global->hasAttr<WeakRefAttr>())
1026     return;
1027 
1028   // If this is an alias definition (which otherwise looks like a declaration)
1029   // emit it now.
1030   if (Global->hasAttr<AliasAttr>())
1031     return EmitAliasDefinition(GD);
1032 
1033   // If this is CUDA, be selective about which declarations we emit.
1034   if (LangOpts.CUDA) {
1035     if (CodeGenOpts.CUDAIsDevice) {
1036       if (!Global->hasAttr<CUDADeviceAttr>() &&
1037           !Global->hasAttr<CUDAGlobalAttr>() &&
1038           !Global->hasAttr<CUDAConstantAttr>() &&
1039           !Global->hasAttr<CUDASharedAttr>())
1040         return;
1041     } else {
1042       if (!Global->hasAttr<CUDAHostAttr>() && (
1043             Global->hasAttr<CUDADeviceAttr>() ||
1044             Global->hasAttr<CUDAConstantAttr>() ||
1045             Global->hasAttr<CUDASharedAttr>()))
1046         return;
1047     }
1048   }
1049 
1050   // Ignore declarations, they will be emitted on their first use.
1051   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) {
1052     // Forward declarations are emitted lazily on first use.
1053     if (!FD->doesThisDeclarationHaveABody()) {
1054       if (!FD->doesDeclarationForceExternallyVisibleDefinition())
1055         return;
1056 
1057       const FunctionDecl *InlineDefinition = 0;
1058       FD->getBody(InlineDefinition);
1059 
1060       StringRef MangledName = getMangledName(GD);
1061       DeferredDecls.erase(MangledName);
1062       EmitGlobalDefinition(InlineDefinition);
1063       return;
1064     }
1065   } else {
1066     const VarDecl *VD = cast<VarDecl>(Global);
1067     assert(VD->isFileVarDecl() && "Cannot emit local var decl as global.");
1068 
1069     if (VD->isThisDeclarationADefinition() != VarDecl::Definition)
1070       return;
1071   }
1072 
1073   // Defer code generation when possible if this is a static definition, inline
1074   // function etc.  These we only want to emit if they are used.
1075   if (!MayDeferGeneration(Global)) {
1076     // Emit the definition if it can't be deferred.
1077     EmitGlobalDefinition(GD);
1078     return;
1079   }
1080 
1081   // If we're deferring emission of a C++ variable with an
1082   // initializer, remember the order in which it appeared in the file.
1083   if (getLangOpts().CPlusPlus && isa<VarDecl>(Global) &&
1084       cast<VarDecl>(Global)->hasInit()) {
1085     DelayedCXXInitPosition[Global] = CXXGlobalInits.size();
1086     CXXGlobalInits.push_back(0);
1087   }
1088 
1089   // If the value has already been used, add it directly to the
1090   // DeferredDeclsToEmit list.
1091   StringRef MangledName = getMangledName(GD);
1092   if (GetGlobalValue(MangledName))
1093     DeferredDeclsToEmit.push_back(GD);
1094   else {
1095     // Otherwise, remember that we saw a deferred decl with this name.  The
1096     // first use of the mangled name will cause it to move into
1097     // DeferredDeclsToEmit.
1098     DeferredDecls[MangledName] = GD;
1099   }
1100 }
1101 
1102 namespace {
1103   struct FunctionIsDirectlyRecursive :
1104     public RecursiveASTVisitor<FunctionIsDirectlyRecursive> {
1105     const StringRef Name;
1106     const Builtin::Context &BI;
1107     bool Result;
1108     FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C) :
1109       Name(N), BI(C), Result(false) {
1110     }
1111     typedef RecursiveASTVisitor<FunctionIsDirectlyRecursive> Base;
1112 
1113     bool TraverseCallExpr(CallExpr *E) {
1114       const FunctionDecl *FD = E->getDirectCallee();
1115       if (!FD)
1116         return true;
1117       AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
1118       if (Attr && Name == Attr->getLabel()) {
1119         Result = true;
1120         return false;
1121       }
1122       unsigned BuiltinID = FD->getBuiltinID();
1123       if (!BuiltinID)
1124         return true;
1125       StringRef BuiltinName = BI.GetName(BuiltinID);
1126       if (BuiltinName.startswith("__builtin_") &&
1127           Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) {
1128         Result = true;
1129         return false;
1130       }
1131       return true;
1132     }
1133   };
1134 }
1135 
1136 // isTriviallyRecursive - Check if this function calls another
1137 // decl that, because of the asm attribute or the other decl being a builtin,
1138 // ends up pointing to itself.
1139 bool
1140 CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) {
1141   StringRef Name;
1142   if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) {
1143     // asm labels are a special kind of mangling we have to support.
1144     AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
1145     if (!Attr)
1146       return false;
1147     Name = Attr->getLabel();
1148   } else {
1149     Name = FD->getName();
1150   }
1151 
1152   FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo);
1153   Walker.TraverseFunctionDecl(const_cast<FunctionDecl*>(FD));
1154   return Walker.Result;
1155 }
1156 
1157 bool
1158 CodeGenModule::shouldEmitFunction(const FunctionDecl *F) {
1159   if (getFunctionLinkage(F) != llvm::Function::AvailableExternallyLinkage)
1160     return true;
1161   if (CodeGenOpts.OptimizationLevel == 0 &&
1162       !F->hasAttr<AlwaysInlineAttr>() && !F->hasAttr<ForceInlineAttr>())
1163     return false;
1164   // PR9614. Avoid cases where the source code is lying to us. An available
1165   // externally function should have an equivalent function somewhere else,
1166   // but a function that calls itself is clearly not equivalent to the real
1167   // implementation.
1168   // This happens in glibc's btowc and in some configure checks.
1169   return !isTriviallyRecursive(F);
1170 }
1171 
1172 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD) {
1173   const ValueDecl *D = cast<ValueDecl>(GD.getDecl());
1174 
1175   PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(),
1176                                  Context.getSourceManager(),
1177                                  "Generating code for declaration");
1178 
1179   if (const FunctionDecl *Function = dyn_cast<FunctionDecl>(D)) {
1180     // At -O0, don't generate IR for functions with available_externally
1181     // linkage.
1182     if (!shouldEmitFunction(Function))
1183       return;
1184 
1185     if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) {
1186       // Make sure to emit the definition(s) before we emit the thunks.
1187       // This is necessary for the generation of certain thunks.
1188       if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(Method))
1189         EmitCXXConstructor(CD, GD.getCtorType());
1190       else if (const CXXDestructorDecl *DD =dyn_cast<CXXDestructorDecl>(Method))
1191         EmitCXXDestructor(DD, GD.getDtorType());
1192       else
1193         EmitGlobalFunctionDefinition(GD);
1194 
1195       if (Method->isVirtual())
1196         getVTables().EmitThunks(GD);
1197 
1198       return;
1199     }
1200 
1201     return EmitGlobalFunctionDefinition(GD);
1202   }
1203 
1204   if (const VarDecl *VD = dyn_cast<VarDecl>(D))
1205     return EmitGlobalVarDefinition(VD);
1206 
1207   llvm_unreachable("Invalid argument to EmitGlobalDefinition()");
1208 }
1209 
1210 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the
1211 /// module, create and return an llvm Function with the specified type. If there
1212 /// is something in the module with the specified name, return it potentially
1213 /// bitcasted to the right type.
1214 ///
1215 /// If D is non-null, it specifies a decl that correspond to this.  This is used
1216 /// to set the attributes on the function when it is first created.
1217 llvm::Constant *
1218 CodeGenModule::GetOrCreateLLVMFunction(StringRef MangledName,
1219                                        llvm::Type *Ty,
1220                                        GlobalDecl D, bool ForVTable,
1221                                        llvm::Attribute ExtraAttrs) {
1222   // Lookup the entry, lazily creating it if necessary.
1223   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
1224   if (Entry) {
1225     if (WeakRefReferences.erase(Entry)) {
1226       const FunctionDecl *FD = cast_or_null<FunctionDecl>(D.getDecl());
1227       if (FD && !FD->hasAttr<WeakAttr>())
1228         Entry->setLinkage(llvm::Function::ExternalLinkage);
1229     }
1230 
1231     if (Entry->getType()->getElementType() == Ty)
1232       return Entry;
1233 
1234     // Make sure the result is of the correct type.
1235     return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo());
1236   }
1237 
1238   // This function doesn't have a complete type (for example, the return
1239   // type is an incomplete struct). Use a fake type instead, and make
1240   // sure not to try to set attributes.
1241   bool IsIncompleteFunction = false;
1242 
1243   llvm::FunctionType *FTy;
1244   if (isa<llvm::FunctionType>(Ty)) {
1245     FTy = cast<llvm::FunctionType>(Ty);
1246   } else {
1247     FTy = llvm::FunctionType::get(VoidTy, false);
1248     IsIncompleteFunction = true;
1249   }
1250 
1251   llvm::Function *F = llvm::Function::Create(FTy,
1252                                              llvm::Function::ExternalLinkage,
1253                                              MangledName, &getModule());
1254   assert(F->getName() == MangledName && "name was uniqued!");
1255   if (D.getDecl())
1256     SetFunctionAttributes(D, F, IsIncompleteFunction);
1257   if (ExtraAttrs.hasAttributes())
1258     F->addAttribute(llvm::AttributeSet::FunctionIndex, ExtraAttrs);
1259 
1260   // This is the first use or definition of a mangled name.  If there is a
1261   // deferred decl with this name, remember that we need to emit it at the end
1262   // of the file.
1263   llvm::StringMap<GlobalDecl>::iterator DDI = DeferredDecls.find(MangledName);
1264   if (DDI != DeferredDecls.end()) {
1265     // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
1266     // list, and remove it from DeferredDecls (since we don't need it anymore).
1267     DeferredDeclsToEmit.push_back(DDI->second);
1268     DeferredDecls.erase(DDI);
1269 
1270   // Otherwise, there are cases we have to worry about where we're
1271   // using a declaration for which we must emit a definition but where
1272   // we might not find a top-level definition:
1273   //   - member functions defined inline in their classes
1274   //   - friend functions defined inline in some class
1275   //   - special member functions with implicit definitions
1276   // If we ever change our AST traversal to walk into class methods,
1277   // this will be unnecessary.
1278   //
1279   // We also don't emit a definition for a function if it's going to be an entry
1280   // in a vtable, unless it's already marked as used.
1281   } else if (getLangOpts().CPlusPlus && D.getDecl()) {
1282     // Look for a declaration that's lexically in a record.
1283     const FunctionDecl *FD = cast<FunctionDecl>(D.getDecl());
1284     FD = FD->getMostRecentDecl();
1285     do {
1286       if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) {
1287         if (FD->isImplicit() && !ForVTable) {
1288           assert(FD->isUsed() && "Sema didn't mark implicit function as used!");
1289           DeferredDeclsToEmit.push_back(D.getWithDecl(FD));
1290           break;
1291         } else if (FD->doesThisDeclarationHaveABody()) {
1292           DeferredDeclsToEmit.push_back(D.getWithDecl(FD));
1293           break;
1294         }
1295       }
1296       FD = FD->getPreviousDecl();
1297     } while (FD);
1298   }
1299 
1300   // Make sure the result is of the requested type.
1301   if (!IsIncompleteFunction) {
1302     assert(F->getType()->getElementType() == Ty);
1303     return F;
1304   }
1305 
1306   llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
1307   return llvm::ConstantExpr::getBitCast(F, PTy);
1308 }
1309 
1310 /// GetAddrOfFunction - Return the address of the given function.  If Ty is
1311 /// non-null, then this function will use the specified type if it has to
1312 /// create it (this occurs when we see a definition of the function).
1313 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD,
1314                                                  llvm::Type *Ty,
1315                                                  bool ForVTable) {
1316   // If there was no specific requested type, just convert it now.
1317   if (!Ty)
1318     Ty = getTypes().ConvertType(cast<ValueDecl>(GD.getDecl())->getType());
1319 
1320   StringRef MangledName = getMangledName(GD);
1321   return GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable);
1322 }
1323 
1324 /// CreateRuntimeFunction - Create a new runtime function with the specified
1325 /// type and name.
1326 llvm::Constant *
1327 CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy,
1328                                      StringRef Name,
1329                                      llvm::Attribute ExtraAttrs) {
1330   return GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false,
1331                                  ExtraAttrs);
1332 }
1333 
1334 /// isTypeConstant - Determine whether an object of this type can be emitted
1335 /// as a constant.
1336 ///
1337 /// If ExcludeCtor is true, the duration when the object's constructor runs
1338 /// will not be considered. The caller will need to verify that the object is
1339 /// not written to during its construction.
1340 bool CodeGenModule::isTypeConstant(QualType Ty, bool ExcludeCtor) {
1341   if (!Ty.isConstant(Context) && !Ty->isReferenceType())
1342     return false;
1343 
1344   if (Context.getLangOpts().CPlusPlus) {
1345     if (const CXXRecordDecl *Record
1346           = Context.getBaseElementType(Ty)->getAsCXXRecordDecl())
1347       return ExcludeCtor && !Record->hasMutableFields() &&
1348              Record->hasTrivialDestructor();
1349   }
1350 
1351   return true;
1352 }
1353 
1354 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module,
1355 /// create and return an llvm GlobalVariable with the specified type.  If there
1356 /// is something in the module with the specified name, return it potentially
1357 /// bitcasted to the right type.
1358 ///
1359 /// If D is non-null, it specifies a decl that correspond to this.  This is used
1360 /// to set the attributes on the global when it is first created.
1361 llvm::Constant *
1362 CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName,
1363                                      llvm::PointerType *Ty,
1364                                      const VarDecl *D,
1365                                      bool UnnamedAddr) {
1366   // Lookup the entry, lazily creating it if necessary.
1367   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
1368   if (Entry) {
1369     if (WeakRefReferences.erase(Entry)) {
1370       if (D && !D->hasAttr<WeakAttr>())
1371         Entry->setLinkage(llvm::Function::ExternalLinkage);
1372     }
1373 
1374     if (UnnamedAddr)
1375       Entry->setUnnamedAddr(true);
1376 
1377     if (Entry->getType() == Ty)
1378       return Entry;
1379 
1380     // Make sure the result is of the correct type.
1381     return llvm::ConstantExpr::getBitCast(Entry, Ty);
1382   }
1383 
1384   // This is the first use or definition of a mangled name.  If there is a
1385   // deferred decl with this name, remember that we need to emit it at the end
1386   // of the file.
1387   llvm::StringMap<GlobalDecl>::iterator DDI = DeferredDecls.find(MangledName);
1388   if (DDI != DeferredDecls.end()) {
1389     // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
1390     // list, and remove it from DeferredDecls (since we don't need it anymore).
1391     DeferredDeclsToEmit.push_back(DDI->second);
1392     DeferredDecls.erase(DDI);
1393   }
1394 
1395   unsigned AddrSpace = GetGlobalVarAddressSpace(D, Ty->getAddressSpace());
1396   llvm::GlobalVariable *GV =
1397     new llvm::GlobalVariable(getModule(), Ty->getElementType(), false,
1398                              llvm::GlobalValue::ExternalLinkage,
1399                              0, MangledName, 0,
1400                              llvm::GlobalVariable::NotThreadLocal, AddrSpace);
1401 
1402   // Handle things which are present even on external declarations.
1403   if (D) {
1404     // FIXME: This code is overly simple and should be merged with other global
1405     // handling.
1406     GV->setConstant(isTypeConstant(D->getType(), false));
1407 
1408     // Set linkage and visibility in case we never see a definition.
1409     NamedDecl::LinkageInfo LV = D->getLinkageAndVisibility();
1410     if (LV.linkage() != ExternalLinkage) {
1411       // Don't set internal linkage on declarations.
1412     } else {
1413       if (D->hasAttr<DLLImportAttr>())
1414         GV->setLinkage(llvm::GlobalValue::DLLImportLinkage);
1415       else if (D->hasAttr<WeakAttr>() || D->isWeakImported())
1416         GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage);
1417 
1418       // Set visibility on a declaration only if it's explicit.
1419       if (LV.visibilityExplicit())
1420         GV->setVisibility(GetLLVMVisibility(LV.visibility()));
1421     }
1422 
1423     if (D->isThreadSpecified())
1424       setTLSMode(GV, *D);
1425   }
1426 
1427   if (AddrSpace != Ty->getAddressSpace())
1428     return llvm::ConstantExpr::getBitCast(GV, Ty);
1429   else
1430     return GV;
1431 }
1432 
1433 
1434 llvm::GlobalVariable *
1435 CodeGenModule::CreateOrReplaceCXXRuntimeVariable(StringRef Name,
1436                                       llvm::Type *Ty,
1437                                       llvm::GlobalValue::LinkageTypes Linkage) {
1438   llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name);
1439   llvm::GlobalVariable *OldGV = 0;
1440 
1441 
1442   if (GV) {
1443     // Check if the variable has the right type.
1444     if (GV->getType()->getElementType() == Ty)
1445       return GV;
1446 
1447     // Because C++ name mangling, the only way we can end up with an already
1448     // existing global with the same name is if it has been declared extern "C".
1449     assert(GV->isDeclaration() && "Declaration has wrong type!");
1450     OldGV = GV;
1451   }
1452 
1453   // Create a new variable.
1454   GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true,
1455                                 Linkage, 0, Name);
1456 
1457   if (OldGV) {
1458     // Replace occurrences of the old variable if needed.
1459     GV->takeName(OldGV);
1460 
1461     if (!OldGV->use_empty()) {
1462       llvm::Constant *NewPtrForOldDecl =
1463       llvm::ConstantExpr::getBitCast(GV, OldGV->getType());
1464       OldGV->replaceAllUsesWith(NewPtrForOldDecl);
1465     }
1466 
1467     OldGV->eraseFromParent();
1468   }
1469 
1470   return GV;
1471 }
1472 
1473 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the
1474 /// given global variable.  If Ty is non-null and if the global doesn't exist,
1475 /// then it will be created with the specified type instead of whatever the
1476 /// normal requested type would be.
1477 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D,
1478                                                   llvm::Type *Ty) {
1479   assert(D->hasGlobalStorage() && "Not a global variable");
1480   QualType ASTTy = D->getType();
1481   if (Ty == 0)
1482     Ty = getTypes().ConvertTypeForMem(ASTTy);
1483 
1484   llvm::PointerType *PTy =
1485     llvm::PointerType::get(Ty, getContext().getTargetAddressSpace(ASTTy));
1486 
1487   StringRef MangledName = getMangledName(D);
1488   return GetOrCreateLLVMGlobal(MangledName, PTy, D);
1489 }
1490 
1491 /// CreateRuntimeVariable - Create a new runtime global variable with the
1492 /// specified type and name.
1493 llvm::Constant *
1494 CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty,
1495                                      StringRef Name) {
1496   return GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), 0,
1497                                true);
1498 }
1499 
1500 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) {
1501   assert(!D->getInit() && "Cannot emit definite definitions here!");
1502 
1503   if (MayDeferGeneration(D)) {
1504     // If we have not seen a reference to this variable yet, place it
1505     // into the deferred declarations table to be emitted if needed
1506     // later.
1507     StringRef MangledName = getMangledName(D);
1508     if (!GetGlobalValue(MangledName)) {
1509       DeferredDecls[MangledName] = D;
1510       return;
1511     }
1512   }
1513 
1514   // The tentative definition is the only definition.
1515   EmitGlobalVarDefinition(D);
1516 }
1517 
1518 void CodeGenModule::EmitVTable(CXXRecordDecl *Class, bool DefinitionRequired) {
1519   if (DefinitionRequired)
1520     getCXXABI().EmitVTables(Class);
1521 }
1522 
1523 llvm::GlobalVariable::LinkageTypes
1524 CodeGenModule::getVTableLinkage(const CXXRecordDecl *RD) {
1525   if (RD->getLinkage() != ExternalLinkage)
1526     return llvm::GlobalVariable::InternalLinkage;
1527 
1528   if (const CXXMethodDecl *KeyFunction
1529                                     = RD->getASTContext().getKeyFunction(RD)) {
1530     // If this class has a key function, use that to determine the linkage of
1531     // the vtable.
1532     const FunctionDecl *Def = 0;
1533     if (KeyFunction->hasBody(Def))
1534       KeyFunction = cast<CXXMethodDecl>(Def);
1535 
1536     switch (KeyFunction->getTemplateSpecializationKind()) {
1537       case TSK_Undeclared:
1538       case TSK_ExplicitSpecialization:
1539         // When compiling with optimizations turned on, we emit all vtables,
1540         // even if the key function is not defined in the current translation
1541         // unit. If this is the case, use available_externally linkage.
1542         if (!Def && CodeGenOpts.OptimizationLevel)
1543           return llvm::GlobalVariable::AvailableExternallyLinkage;
1544 
1545         if (KeyFunction->isInlined())
1546           return !Context.getLangOpts().AppleKext ?
1547                    llvm::GlobalVariable::LinkOnceODRLinkage :
1548                    llvm::Function::InternalLinkage;
1549 
1550         return llvm::GlobalVariable::ExternalLinkage;
1551 
1552       case TSK_ImplicitInstantiation:
1553         return !Context.getLangOpts().AppleKext ?
1554                  llvm::GlobalVariable::LinkOnceODRLinkage :
1555                  llvm::Function::InternalLinkage;
1556 
1557       case TSK_ExplicitInstantiationDefinition:
1558         return !Context.getLangOpts().AppleKext ?
1559                  llvm::GlobalVariable::WeakODRLinkage :
1560                  llvm::Function::InternalLinkage;
1561 
1562       case TSK_ExplicitInstantiationDeclaration:
1563         // FIXME: Use available_externally linkage. However, this currently
1564         // breaks LLVM's build due to undefined symbols.
1565         //      return llvm::GlobalVariable::AvailableExternallyLinkage;
1566         return !Context.getLangOpts().AppleKext ?
1567                  llvm::GlobalVariable::LinkOnceODRLinkage :
1568                  llvm::Function::InternalLinkage;
1569     }
1570   }
1571 
1572   if (Context.getLangOpts().AppleKext)
1573     return llvm::Function::InternalLinkage;
1574 
1575   switch (RD->getTemplateSpecializationKind()) {
1576   case TSK_Undeclared:
1577   case TSK_ExplicitSpecialization:
1578   case TSK_ImplicitInstantiation:
1579     // FIXME: Use available_externally linkage. However, this currently
1580     // breaks LLVM's build due to undefined symbols.
1581     //   return llvm::GlobalVariable::AvailableExternallyLinkage;
1582   case TSK_ExplicitInstantiationDeclaration:
1583     return llvm::GlobalVariable::LinkOnceODRLinkage;
1584 
1585   case TSK_ExplicitInstantiationDefinition:
1586       return llvm::GlobalVariable::WeakODRLinkage;
1587   }
1588 
1589   llvm_unreachable("Invalid TemplateSpecializationKind!");
1590 }
1591 
1592 CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const {
1593     return Context.toCharUnitsFromBits(
1594       TheDataLayout.getTypeStoreSizeInBits(Ty));
1595 }
1596 
1597 llvm::Constant *
1598 CodeGenModule::MaybeEmitGlobalStdInitializerListInitializer(const VarDecl *D,
1599                                                        const Expr *rawInit) {
1600   ArrayRef<ExprWithCleanups::CleanupObject> cleanups;
1601   if (const ExprWithCleanups *withCleanups =
1602           dyn_cast<ExprWithCleanups>(rawInit)) {
1603     cleanups = withCleanups->getObjects();
1604     rawInit = withCleanups->getSubExpr();
1605   }
1606 
1607   const InitListExpr *init = dyn_cast<InitListExpr>(rawInit);
1608   if (!init || !init->initializesStdInitializerList() ||
1609       init->getNumInits() == 0)
1610     return 0;
1611 
1612   ASTContext &ctx = getContext();
1613   unsigned numInits = init->getNumInits();
1614   // FIXME: This check is here because we would otherwise silently miscompile
1615   // nested global std::initializer_lists. Better would be to have a real
1616   // implementation.
1617   for (unsigned i = 0; i < numInits; ++i) {
1618     const InitListExpr *inner = dyn_cast<InitListExpr>(init->getInit(i));
1619     if (inner && inner->initializesStdInitializerList()) {
1620       ErrorUnsupported(inner, "nested global std::initializer_list");
1621       return 0;
1622     }
1623   }
1624 
1625   // Synthesize a fake VarDecl for the array and initialize that.
1626   QualType elementType = init->getInit(0)->getType();
1627   llvm::APInt numElements(ctx.getTypeSize(ctx.getSizeType()), numInits);
1628   QualType arrayType = ctx.getConstantArrayType(elementType, numElements,
1629                                                 ArrayType::Normal, 0);
1630 
1631   IdentifierInfo *name = &ctx.Idents.get(D->getNameAsString() + "__initlist");
1632   TypeSourceInfo *sourceInfo = ctx.getTrivialTypeSourceInfo(
1633                                               arrayType, D->getLocation());
1634   VarDecl *backingArray = VarDecl::Create(ctx, const_cast<DeclContext*>(
1635                                                           D->getDeclContext()),
1636                                           D->getLocStart(), D->getLocation(),
1637                                           name, arrayType, sourceInfo,
1638                                           SC_Static, SC_Static);
1639 
1640   // Now clone the InitListExpr to initialize the array instead.
1641   // Incredible hack: we want to use the existing InitListExpr here, so we need
1642   // to tell it that it no longer initializes a std::initializer_list.
1643   ArrayRef<Expr*> Inits(const_cast<InitListExpr*>(init)->getInits(),
1644                         init->getNumInits());
1645   Expr *arrayInit = new (ctx) InitListExpr(ctx, init->getLBraceLoc(), Inits,
1646                                            init->getRBraceLoc());
1647   arrayInit->setType(arrayType);
1648 
1649   if (!cleanups.empty())
1650     arrayInit = ExprWithCleanups::Create(ctx, arrayInit, cleanups);
1651 
1652   backingArray->setInit(arrayInit);
1653 
1654   // Emit the definition of the array.
1655   EmitGlobalVarDefinition(backingArray);
1656 
1657   // Inspect the initializer list to validate it and determine its type.
1658   // FIXME: doing this every time is probably inefficient; caching would be nice
1659   RecordDecl *record = init->getType()->castAs<RecordType>()->getDecl();
1660   RecordDecl::field_iterator field = record->field_begin();
1661   if (field == record->field_end()) {
1662     ErrorUnsupported(D, "weird std::initializer_list");
1663     return 0;
1664   }
1665   QualType elementPtr = ctx.getPointerType(elementType.withConst());
1666   // Start pointer.
1667   if (!ctx.hasSameType(field->getType(), elementPtr)) {
1668     ErrorUnsupported(D, "weird std::initializer_list");
1669     return 0;
1670   }
1671   ++field;
1672   if (field == record->field_end()) {
1673     ErrorUnsupported(D, "weird std::initializer_list");
1674     return 0;
1675   }
1676   bool isStartEnd = false;
1677   if (ctx.hasSameType(field->getType(), elementPtr)) {
1678     // End pointer.
1679     isStartEnd = true;
1680   } else if(!ctx.hasSameType(field->getType(), ctx.getSizeType())) {
1681     ErrorUnsupported(D, "weird std::initializer_list");
1682     return 0;
1683   }
1684 
1685   // Now build an APValue representing the std::initializer_list.
1686   APValue initListValue(APValue::UninitStruct(), 0, 2);
1687   APValue &startField = initListValue.getStructField(0);
1688   APValue::LValuePathEntry startOffsetPathEntry;
1689   startOffsetPathEntry.ArrayIndex = 0;
1690   startField = APValue(APValue::LValueBase(backingArray),
1691                        CharUnits::fromQuantity(0),
1692                        llvm::makeArrayRef(startOffsetPathEntry),
1693                        /*IsOnePastTheEnd=*/false, 0);
1694 
1695   if (isStartEnd) {
1696     APValue &endField = initListValue.getStructField(1);
1697     APValue::LValuePathEntry endOffsetPathEntry;
1698     endOffsetPathEntry.ArrayIndex = numInits;
1699     endField = APValue(APValue::LValueBase(backingArray),
1700                        ctx.getTypeSizeInChars(elementType) * numInits,
1701                        llvm::makeArrayRef(endOffsetPathEntry),
1702                        /*IsOnePastTheEnd=*/true, 0);
1703   } else {
1704     APValue &sizeField = initListValue.getStructField(1);
1705     sizeField = APValue(llvm::APSInt(numElements));
1706   }
1707 
1708   // Emit the constant for the initializer_list.
1709   llvm::Constant *llvmInit =
1710       EmitConstantValueForMemory(initListValue, D->getType());
1711   assert(llvmInit && "failed to initialize as constant");
1712   return llvmInit;
1713 }
1714 
1715 unsigned CodeGenModule::GetGlobalVarAddressSpace(const VarDecl *D,
1716                                                  unsigned AddrSpace) {
1717   if (LangOpts.CUDA && CodeGenOpts.CUDAIsDevice) {
1718     if (D->hasAttr<CUDAConstantAttr>())
1719       AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_constant);
1720     else if (D->hasAttr<CUDASharedAttr>())
1721       AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_shared);
1722     else
1723       AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_device);
1724   }
1725 
1726   return AddrSpace;
1727 }
1728 
1729 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D) {
1730   llvm::Constant *Init = 0;
1731   QualType ASTTy = D->getType();
1732   CXXRecordDecl *RD = ASTTy->getBaseElementTypeUnsafe()->getAsCXXRecordDecl();
1733   bool NeedsGlobalCtor = false;
1734   bool NeedsGlobalDtor = RD && !RD->hasTrivialDestructor();
1735 
1736   const VarDecl *InitDecl;
1737   const Expr *InitExpr = D->getAnyInitializer(InitDecl);
1738 
1739   if (!InitExpr) {
1740     // This is a tentative definition; tentative definitions are
1741     // implicitly initialized with { 0 }.
1742     //
1743     // Note that tentative definitions are only emitted at the end of
1744     // a translation unit, so they should never have incomplete
1745     // type. In addition, EmitTentativeDefinition makes sure that we
1746     // never attempt to emit a tentative definition if a real one
1747     // exists. A use may still exists, however, so we still may need
1748     // to do a RAUW.
1749     assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type");
1750     Init = EmitNullConstant(D->getType());
1751   } else {
1752     // If this is a std::initializer_list, emit the special initializer.
1753     Init = MaybeEmitGlobalStdInitializerListInitializer(D, InitExpr);
1754     // An empty init list will perform zero-initialization, which happens
1755     // to be exactly what we want.
1756     // FIXME: It does so in a global constructor, which is *not* what we
1757     // want.
1758 
1759     if (!Init) {
1760       initializedGlobalDecl = GlobalDecl(D);
1761       Init = EmitConstantInit(*InitDecl);
1762     }
1763     if (!Init) {
1764       QualType T = InitExpr->getType();
1765       if (D->getType()->isReferenceType())
1766         T = D->getType();
1767 
1768       if (getLangOpts().CPlusPlus) {
1769         Init = EmitNullConstant(T);
1770         NeedsGlobalCtor = true;
1771       } else {
1772         ErrorUnsupported(D, "static initializer");
1773         Init = llvm::UndefValue::get(getTypes().ConvertType(T));
1774       }
1775     } else {
1776       // We don't need an initializer, so remove the entry for the delayed
1777       // initializer position (just in case this entry was delayed) if we
1778       // also don't need to register a destructor.
1779       if (getLangOpts().CPlusPlus && !NeedsGlobalDtor)
1780         DelayedCXXInitPosition.erase(D);
1781     }
1782   }
1783 
1784   llvm::Type* InitType = Init->getType();
1785   llvm::Constant *Entry = GetAddrOfGlobalVar(D, InitType);
1786 
1787   // Strip off a bitcast if we got one back.
1788   if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
1789     assert(CE->getOpcode() == llvm::Instruction::BitCast ||
1790            // all zero index gep.
1791            CE->getOpcode() == llvm::Instruction::GetElementPtr);
1792     Entry = CE->getOperand(0);
1793   }
1794 
1795   // Entry is now either a Function or GlobalVariable.
1796   llvm::GlobalVariable *GV = dyn_cast<llvm::GlobalVariable>(Entry);
1797 
1798   // We have a definition after a declaration with the wrong type.
1799   // We must make a new GlobalVariable* and update everything that used OldGV
1800   // (a declaration or tentative definition) with the new GlobalVariable*
1801   // (which will be a definition).
1802   //
1803   // This happens if there is a prototype for a global (e.g.
1804   // "extern int x[];") and then a definition of a different type (e.g.
1805   // "int x[10];"). This also happens when an initializer has a different type
1806   // from the type of the global (this happens with unions).
1807   if (GV == 0 ||
1808       GV->getType()->getElementType() != InitType ||
1809       GV->getType()->getAddressSpace() !=
1810        GetGlobalVarAddressSpace(D, getContext().getTargetAddressSpace(ASTTy))) {
1811 
1812     // Move the old entry aside so that we'll create a new one.
1813     Entry->setName(StringRef());
1814 
1815     // Make a new global with the correct type, this is now guaranteed to work.
1816     GV = cast<llvm::GlobalVariable>(GetAddrOfGlobalVar(D, InitType));
1817 
1818     // Replace all uses of the old global with the new global
1819     llvm::Constant *NewPtrForOldDecl =
1820         llvm::ConstantExpr::getBitCast(GV, Entry->getType());
1821     Entry->replaceAllUsesWith(NewPtrForOldDecl);
1822 
1823     // Erase the old global, since it is no longer used.
1824     cast<llvm::GlobalValue>(Entry)->eraseFromParent();
1825   }
1826 
1827   if (D->hasAttr<AnnotateAttr>())
1828     AddGlobalAnnotations(D, GV);
1829 
1830   GV->setInitializer(Init);
1831 
1832   // If it is safe to mark the global 'constant', do so now.
1833   GV->setConstant(!NeedsGlobalCtor && !NeedsGlobalDtor &&
1834                   isTypeConstant(D->getType(), true));
1835 
1836   GV->setAlignment(getContext().getDeclAlign(D).getQuantity());
1837 
1838   // Set the llvm linkage type as appropriate.
1839   llvm::GlobalValue::LinkageTypes Linkage =
1840     GetLLVMLinkageVarDefinition(D, GV);
1841   GV->setLinkage(Linkage);
1842   if (Linkage == llvm::GlobalVariable::CommonLinkage)
1843     // common vars aren't constant even if declared const.
1844     GV->setConstant(false);
1845 
1846   SetCommonAttributes(D, GV);
1847 
1848   // Emit the initializer function if necessary.
1849   if (NeedsGlobalCtor || NeedsGlobalDtor)
1850     EmitCXXGlobalVarDeclInitFunc(D, GV, NeedsGlobalCtor);
1851 
1852   // If we are compiling with ASan, add metadata indicating dynamically
1853   // initialized globals.
1854   if (LangOpts.SanitizeAddress && NeedsGlobalCtor) {
1855     llvm::Module &M = getModule();
1856 
1857     llvm::NamedMDNode *DynamicInitializers =
1858         M.getOrInsertNamedMetadata("llvm.asan.dynamically_initialized_globals");
1859     llvm::Value *GlobalToAdd[] = { GV };
1860     llvm::MDNode *ThisGlobal = llvm::MDNode::get(VMContext, GlobalToAdd);
1861     DynamicInitializers->addOperand(ThisGlobal);
1862   }
1863 
1864   // Emit global variable debug information.
1865   if (CGDebugInfo *DI = getModuleDebugInfo())
1866     if (getCodeGenOpts().getDebugInfo() >= CodeGenOptions::LimitedDebugInfo)
1867       DI->EmitGlobalVariable(GV, D);
1868 }
1869 
1870 llvm::GlobalValue::LinkageTypes
1871 CodeGenModule::GetLLVMLinkageVarDefinition(const VarDecl *D,
1872                                            llvm::GlobalVariable *GV) {
1873   GVALinkage Linkage = getContext().GetGVALinkageForVariable(D);
1874   if (Linkage == GVA_Internal)
1875     return llvm::Function::InternalLinkage;
1876   else if (D->hasAttr<DLLImportAttr>())
1877     return llvm::Function::DLLImportLinkage;
1878   else if (D->hasAttr<DLLExportAttr>())
1879     return llvm::Function::DLLExportLinkage;
1880   else if (D->hasAttr<WeakAttr>()) {
1881     if (GV->isConstant())
1882       return llvm::GlobalVariable::WeakODRLinkage;
1883     else
1884       return llvm::GlobalVariable::WeakAnyLinkage;
1885   } else if (Linkage == GVA_TemplateInstantiation ||
1886              Linkage == GVA_ExplicitTemplateInstantiation)
1887     return llvm::GlobalVariable::WeakODRLinkage;
1888   else if (!getLangOpts().CPlusPlus &&
1889            ((!CodeGenOpts.NoCommon && !D->getAttr<NoCommonAttr>()) ||
1890              D->getAttr<CommonAttr>()) &&
1891            !D->hasExternalStorage() && !D->getInit() &&
1892            !D->getAttr<SectionAttr>() && !D->isThreadSpecified() &&
1893            !D->getAttr<WeakImportAttr>()) {
1894     // Thread local vars aren't considered common linkage.
1895     return llvm::GlobalVariable::CommonLinkage;
1896   }
1897   return llvm::GlobalVariable::ExternalLinkage;
1898 }
1899 
1900 /// Replace the uses of a function that was declared with a non-proto type.
1901 /// We want to silently drop extra arguments from call sites
1902 static void replaceUsesOfNonProtoConstant(llvm::Constant *old,
1903                                           llvm::Function *newFn) {
1904   // Fast path.
1905   if (old->use_empty()) return;
1906 
1907   llvm::Type *newRetTy = newFn->getReturnType();
1908   SmallVector<llvm::Value*, 4> newArgs;
1909 
1910   for (llvm::Value::use_iterator ui = old->use_begin(), ue = old->use_end();
1911          ui != ue; ) {
1912     llvm::Value::use_iterator use = ui++; // Increment before the use is erased.
1913     llvm::User *user = *use;
1914 
1915     // Recognize and replace uses of bitcasts.  Most calls to
1916     // unprototyped functions will use bitcasts.
1917     if (llvm::ConstantExpr *bitcast = dyn_cast<llvm::ConstantExpr>(user)) {
1918       if (bitcast->getOpcode() == llvm::Instruction::BitCast)
1919         replaceUsesOfNonProtoConstant(bitcast, newFn);
1920       continue;
1921     }
1922 
1923     // Recognize calls to the function.
1924     llvm::CallSite callSite(user);
1925     if (!callSite) continue;
1926     if (!callSite.isCallee(use)) continue;
1927 
1928     // If the return types don't match exactly, then we can't
1929     // transform this call unless it's dead.
1930     if (callSite->getType() != newRetTy && !callSite->use_empty())
1931       continue;
1932 
1933     // Get the call site's attribute list.
1934     SmallVector<llvm::AttributeWithIndex, 8> newAttrs;
1935     llvm::AttributeSet oldAttrs = callSite.getAttributes();
1936 
1937     // Collect any return attributes from the call.
1938     llvm::Attribute returnAttrs = oldAttrs.getRetAttributes();
1939     if (returnAttrs.hasAttributes())
1940       newAttrs.push_back(llvm::AttributeWithIndex::get(
1941                                 llvm::AttributeSet::ReturnIndex, returnAttrs));
1942 
1943     // If the function was passed too few arguments, don't transform.
1944     unsigned newNumArgs = newFn->arg_size();
1945     if (callSite.arg_size() < newNumArgs) continue;
1946 
1947     // If extra arguments were passed, we silently drop them.
1948     // If any of the types mismatch, we don't transform.
1949     unsigned argNo = 0;
1950     bool dontTransform = false;
1951     for (llvm::Function::arg_iterator ai = newFn->arg_begin(),
1952            ae = newFn->arg_end(); ai != ae; ++ai, ++argNo) {
1953       if (callSite.getArgument(argNo)->getType() != ai->getType()) {
1954         dontTransform = true;
1955         break;
1956       }
1957 
1958       // Add any parameter attributes.
1959       llvm::Attribute pAttrs = oldAttrs.getParamAttributes(argNo + 1);
1960       if (pAttrs.hasAttributes())
1961         newAttrs.push_back(llvm::AttributeWithIndex::get(argNo + 1, pAttrs));
1962     }
1963     if (dontTransform)
1964       continue;
1965 
1966     llvm::Attribute fnAttrs = oldAttrs.getFnAttributes();
1967     if (fnAttrs.hasAttributes())
1968       newAttrs.push_back(llvm::
1969                        AttributeWithIndex::get(llvm::AttributeSet::FunctionIndex,
1970                                                fnAttrs));
1971 
1972     // Okay, we can transform this.  Create the new call instruction and copy
1973     // over the required information.
1974     newArgs.append(callSite.arg_begin(), callSite.arg_begin() + argNo);
1975 
1976     llvm::CallSite newCall;
1977     if (callSite.isCall()) {
1978       newCall = llvm::CallInst::Create(newFn, newArgs, "",
1979                                        callSite.getInstruction());
1980     } else {
1981       llvm::InvokeInst *oldInvoke =
1982         cast<llvm::InvokeInst>(callSite.getInstruction());
1983       newCall = llvm::InvokeInst::Create(newFn,
1984                                          oldInvoke->getNormalDest(),
1985                                          oldInvoke->getUnwindDest(),
1986                                          newArgs, "",
1987                                          callSite.getInstruction());
1988     }
1989     newArgs.clear(); // for the next iteration
1990 
1991     if (!newCall->getType()->isVoidTy())
1992       newCall->takeName(callSite.getInstruction());
1993     newCall.setAttributes(
1994                      llvm::AttributeSet::get(newFn->getContext(), newAttrs));
1995     newCall.setCallingConv(callSite.getCallingConv());
1996 
1997     // Finally, remove the old call, replacing any uses with the new one.
1998     if (!callSite->use_empty())
1999       callSite->replaceAllUsesWith(newCall.getInstruction());
2000 
2001     // Copy debug location attached to CI.
2002     if (!callSite->getDebugLoc().isUnknown())
2003       newCall->setDebugLoc(callSite->getDebugLoc());
2004     callSite->eraseFromParent();
2005   }
2006 }
2007 
2008 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we
2009 /// implement a function with no prototype, e.g. "int foo() {}".  If there are
2010 /// existing call uses of the old function in the module, this adjusts them to
2011 /// call the new function directly.
2012 ///
2013 /// This is not just a cleanup: the always_inline pass requires direct calls to
2014 /// functions to be able to inline them.  If there is a bitcast in the way, it
2015 /// won't inline them.  Instcombine normally deletes these calls, but it isn't
2016 /// run at -O0.
2017 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
2018                                                       llvm::Function *NewFn) {
2019   // If we're redefining a global as a function, don't transform it.
2020   if (!isa<llvm::Function>(Old)) return;
2021 
2022   replaceUsesOfNonProtoConstant(Old, NewFn);
2023 }
2024 
2025 void CodeGenModule::HandleCXXStaticMemberVarInstantiation(VarDecl *VD) {
2026   TemplateSpecializationKind TSK = VD->getTemplateSpecializationKind();
2027   // If we have a definition, this might be a deferred decl. If the
2028   // instantiation is explicit, make sure we emit it at the end.
2029   if (VD->getDefinition() && TSK == TSK_ExplicitInstantiationDefinition)
2030     GetAddrOfGlobalVar(VD);
2031 }
2032 
2033 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD) {
2034   const FunctionDecl *D = cast<FunctionDecl>(GD.getDecl());
2035 
2036   // Compute the function info and LLVM type.
2037   const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
2038   llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
2039 
2040   // Get or create the prototype for the function.
2041   llvm::Constant *Entry = GetAddrOfFunction(GD, Ty);
2042 
2043   // Strip off a bitcast if we got one back.
2044   if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
2045     assert(CE->getOpcode() == llvm::Instruction::BitCast);
2046     Entry = CE->getOperand(0);
2047   }
2048 
2049 
2050   if (cast<llvm::GlobalValue>(Entry)->getType()->getElementType() != Ty) {
2051     llvm::GlobalValue *OldFn = cast<llvm::GlobalValue>(Entry);
2052 
2053     // If the types mismatch then we have to rewrite the definition.
2054     assert(OldFn->isDeclaration() &&
2055            "Shouldn't replace non-declaration");
2056 
2057     // F is the Function* for the one with the wrong type, we must make a new
2058     // Function* and update everything that used F (a declaration) with the new
2059     // Function* (which will be a definition).
2060     //
2061     // This happens if there is a prototype for a function
2062     // (e.g. "int f()") and then a definition of a different type
2063     // (e.g. "int f(int x)").  Move the old function aside so that it
2064     // doesn't interfere with GetAddrOfFunction.
2065     OldFn->setName(StringRef());
2066     llvm::Function *NewFn = cast<llvm::Function>(GetAddrOfFunction(GD, Ty));
2067 
2068     // This might be an implementation of a function without a
2069     // prototype, in which case, try to do special replacement of
2070     // calls which match the new prototype.  The really key thing here
2071     // is that we also potentially drop arguments from the call site
2072     // so as to make a direct call, which makes the inliner happier
2073     // and suppresses a number of optimizer warnings (!) about
2074     // dropping arguments.
2075     if (!OldFn->use_empty()) {
2076       ReplaceUsesOfNonProtoTypeWithRealFunction(OldFn, NewFn);
2077       OldFn->removeDeadConstantUsers();
2078     }
2079 
2080     // Replace uses of F with the Function we will endow with a body.
2081     if (!Entry->use_empty()) {
2082       llvm::Constant *NewPtrForOldDecl =
2083         llvm::ConstantExpr::getBitCast(NewFn, Entry->getType());
2084       Entry->replaceAllUsesWith(NewPtrForOldDecl);
2085     }
2086 
2087     // Ok, delete the old function now, which is dead.
2088     OldFn->eraseFromParent();
2089 
2090     Entry = NewFn;
2091   }
2092 
2093   // We need to set linkage and visibility on the function before
2094   // generating code for it because various parts of IR generation
2095   // want to propagate this information down (e.g. to local static
2096   // declarations).
2097   llvm::Function *Fn = cast<llvm::Function>(Entry);
2098   setFunctionLinkage(D, Fn);
2099 
2100   // FIXME: this is redundant with part of SetFunctionDefinitionAttributes
2101   setGlobalVisibility(Fn, D);
2102 
2103   CodeGenFunction(*this).GenerateCode(D, Fn, FI);
2104 
2105   SetFunctionDefinitionAttributes(D, Fn);
2106   SetLLVMFunctionAttributesForDefinition(D, Fn);
2107 
2108   if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>())
2109     AddGlobalCtor(Fn, CA->getPriority());
2110   if (const DestructorAttr *DA = D->getAttr<DestructorAttr>())
2111     AddGlobalDtor(Fn, DA->getPriority());
2112   if (D->hasAttr<AnnotateAttr>())
2113     AddGlobalAnnotations(D, Fn);
2114 }
2115 
2116 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) {
2117   const ValueDecl *D = cast<ValueDecl>(GD.getDecl());
2118   const AliasAttr *AA = D->getAttr<AliasAttr>();
2119   assert(AA && "Not an alias?");
2120 
2121   StringRef MangledName = getMangledName(GD);
2122 
2123   // If there is a definition in the module, then it wins over the alias.
2124   // This is dubious, but allow it to be safe.  Just ignore the alias.
2125   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
2126   if (Entry && !Entry->isDeclaration())
2127     return;
2128 
2129   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
2130 
2131   // Create a reference to the named value.  This ensures that it is emitted
2132   // if a deferred decl.
2133   llvm::Constant *Aliasee;
2134   if (isa<llvm::FunctionType>(DeclTy))
2135     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GD,
2136                                       /*ForVTable=*/false);
2137   else
2138     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
2139                                     llvm::PointerType::getUnqual(DeclTy), 0);
2140 
2141   // Create the new alias itself, but don't set a name yet.
2142   llvm::GlobalValue *GA =
2143     new llvm::GlobalAlias(Aliasee->getType(),
2144                           llvm::Function::ExternalLinkage,
2145                           "", Aliasee, &getModule());
2146 
2147   if (Entry) {
2148     assert(Entry->isDeclaration());
2149 
2150     // If there is a declaration in the module, then we had an extern followed
2151     // by the alias, as in:
2152     //   extern int test6();
2153     //   ...
2154     //   int test6() __attribute__((alias("test7")));
2155     //
2156     // Remove it and replace uses of it with the alias.
2157     GA->takeName(Entry);
2158 
2159     Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA,
2160                                                           Entry->getType()));
2161     Entry->eraseFromParent();
2162   } else {
2163     GA->setName(MangledName);
2164   }
2165 
2166   // Set attributes which are particular to an alias; this is a
2167   // specialization of the attributes which may be set on a global
2168   // variable/function.
2169   if (D->hasAttr<DLLExportAttr>()) {
2170     if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
2171       // The dllexport attribute is ignored for undefined symbols.
2172       if (FD->hasBody())
2173         GA->setLinkage(llvm::Function::DLLExportLinkage);
2174     } else {
2175       GA->setLinkage(llvm::Function::DLLExportLinkage);
2176     }
2177   } else if (D->hasAttr<WeakAttr>() ||
2178              D->hasAttr<WeakRefAttr>() ||
2179              D->isWeakImported()) {
2180     GA->setLinkage(llvm::Function::WeakAnyLinkage);
2181   }
2182 
2183   SetCommonAttributes(D, GA);
2184 }
2185 
2186 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,
2187                                             ArrayRef<llvm::Type*> Tys) {
2188   return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID,
2189                                          Tys);
2190 }
2191 
2192 static llvm::StringMapEntry<llvm::Constant*> &
2193 GetConstantCFStringEntry(llvm::StringMap<llvm::Constant*> &Map,
2194                          const StringLiteral *Literal,
2195                          bool TargetIsLSB,
2196                          bool &IsUTF16,
2197                          unsigned &StringLength) {
2198   StringRef String = Literal->getString();
2199   unsigned NumBytes = String.size();
2200 
2201   // Check for simple case.
2202   if (!Literal->containsNonAsciiOrNull()) {
2203     StringLength = NumBytes;
2204     return Map.GetOrCreateValue(String);
2205   }
2206 
2207   // Otherwise, convert the UTF8 literals into a string of shorts.
2208   IsUTF16 = true;
2209 
2210   SmallVector<UTF16, 128> ToBuf(NumBytes + 1); // +1 for ending nulls.
2211   const UTF8 *FromPtr = (const UTF8 *)String.data();
2212   UTF16 *ToPtr = &ToBuf[0];
2213 
2214   (void)ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes,
2215                            &ToPtr, ToPtr + NumBytes,
2216                            strictConversion);
2217 
2218   // ConvertUTF8toUTF16 returns the length in ToPtr.
2219   StringLength = ToPtr - &ToBuf[0];
2220 
2221   // Add an explicit null.
2222   *ToPtr = 0;
2223   return Map.
2224     GetOrCreateValue(StringRef(reinterpret_cast<const char *>(ToBuf.data()),
2225                                (StringLength + 1) * 2));
2226 }
2227 
2228 static llvm::StringMapEntry<llvm::Constant*> &
2229 GetConstantStringEntry(llvm::StringMap<llvm::Constant*> &Map,
2230                        const StringLiteral *Literal,
2231                        unsigned &StringLength) {
2232   StringRef String = Literal->getString();
2233   StringLength = String.size();
2234   return Map.GetOrCreateValue(String);
2235 }
2236 
2237 llvm::Constant *
2238 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) {
2239   unsigned StringLength = 0;
2240   bool isUTF16 = false;
2241   llvm::StringMapEntry<llvm::Constant*> &Entry =
2242     GetConstantCFStringEntry(CFConstantStringMap, Literal,
2243                              getDataLayout().isLittleEndian(),
2244                              isUTF16, StringLength);
2245 
2246   if (llvm::Constant *C = Entry.getValue())
2247     return C;
2248 
2249   llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty);
2250   llvm::Constant *Zeros[] = { Zero, Zero };
2251 
2252   // If we don't already have it, get __CFConstantStringClassReference.
2253   if (!CFConstantStringClassRef) {
2254     llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
2255     Ty = llvm::ArrayType::get(Ty, 0);
2256     llvm::Constant *GV = CreateRuntimeVariable(Ty,
2257                                            "__CFConstantStringClassReference");
2258     // Decay array -> ptr
2259     CFConstantStringClassRef =
2260       llvm::ConstantExpr::getGetElementPtr(GV, Zeros);
2261   }
2262 
2263   QualType CFTy = getContext().getCFConstantStringType();
2264 
2265   llvm::StructType *STy =
2266     cast<llvm::StructType>(getTypes().ConvertType(CFTy));
2267 
2268   llvm::Constant *Fields[4];
2269 
2270   // Class pointer.
2271   Fields[0] = CFConstantStringClassRef;
2272 
2273   // Flags.
2274   llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy);
2275   Fields[1] = isUTF16 ? llvm::ConstantInt::get(Ty, 0x07d0) :
2276     llvm::ConstantInt::get(Ty, 0x07C8);
2277 
2278   // String pointer.
2279   llvm::Constant *C = 0;
2280   if (isUTF16) {
2281     ArrayRef<uint16_t> Arr =
2282       llvm::makeArrayRef<uint16_t>(reinterpret_cast<uint16_t*>(
2283                                      const_cast<char *>(Entry.getKey().data())),
2284                                    Entry.getKey().size() / 2);
2285     C = llvm::ConstantDataArray::get(VMContext, Arr);
2286   } else {
2287     C = llvm::ConstantDataArray::getString(VMContext, Entry.getKey());
2288   }
2289 
2290   llvm::GlobalValue::LinkageTypes Linkage;
2291   if (isUTF16)
2292     // FIXME: why do utf strings get "_" labels instead of "L" labels?
2293     Linkage = llvm::GlobalValue::InternalLinkage;
2294   else
2295     // FIXME: With OS X ld 123.2 (xcode 4) and LTO we would get a linker error
2296     // when using private linkage. It is not clear if this is a bug in ld
2297     // or a reasonable new restriction.
2298     Linkage = llvm::GlobalValue::LinkerPrivateLinkage;
2299 
2300   // Note: -fwritable-strings doesn't make the backing store strings of
2301   // CFStrings writable. (See <rdar://problem/10657500>)
2302   llvm::GlobalVariable *GV =
2303     new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true,
2304                              Linkage, C, ".str");
2305   GV->setUnnamedAddr(true);
2306   if (isUTF16) {
2307     CharUnits Align = getContext().getTypeAlignInChars(getContext().ShortTy);
2308     GV->setAlignment(Align.getQuantity());
2309   } else {
2310     CharUnits Align = getContext().getTypeAlignInChars(getContext().CharTy);
2311     GV->setAlignment(Align.getQuantity());
2312   }
2313 
2314   // String.
2315   Fields[2] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros);
2316 
2317   if (isUTF16)
2318     // Cast the UTF16 string to the correct type.
2319     Fields[2] = llvm::ConstantExpr::getBitCast(Fields[2], Int8PtrTy);
2320 
2321   // String length.
2322   Ty = getTypes().ConvertType(getContext().LongTy);
2323   Fields[3] = llvm::ConstantInt::get(Ty, StringLength);
2324 
2325   // The struct.
2326   C = llvm::ConstantStruct::get(STy, Fields);
2327   GV = new llvm::GlobalVariable(getModule(), C->getType(), true,
2328                                 llvm::GlobalVariable::PrivateLinkage, C,
2329                                 "_unnamed_cfstring_");
2330   if (const char *Sect = getContext().getTargetInfo().getCFStringSection())
2331     GV->setSection(Sect);
2332   Entry.setValue(GV);
2333 
2334   return GV;
2335 }
2336 
2337 static RecordDecl *
2338 CreateRecordDecl(const ASTContext &Ctx, RecordDecl::TagKind TK,
2339                  DeclContext *DC, IdentifierInfo *Id) {
2340   SourceLocation Loc;
2341   if (Ctx.getLangOpts().CPlusPlus)
2342     return CXXRecordDecl::Create(Ctx, TK, DC, Loc, Loc, Id);
2343   else
2344     return RecordDecl::Create(Ctx, TK, DC, Loc, Loc, Id);
2345 }
2346 
2347 llvm::Constant *
2348 CodeGenModule::GetAddrOfConstantString(const StringLiteral *Literal) {
2349   unsigned StringLength = 0;
2350   llvm::StringMapEntry<llvm::Constant*> &Entry =
2351     GetConstantStringEntry(CFConstantStringMap, Literal, StringLength);
2352 
2353   if (llvm::Constant *C = Entry.getValue())
2354     return C;
2355 
2356   llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty);
2357   llvm::Constant *Zeros[] = { Zero, Zero };
2358 
2359   // If we don't already have it, get _NSConstantStringClassReference.
2360   if (!ConstantStringClassRef) {
2361     std::string StringClass(getLangOpts().ObjCConstantStringClass);
2362     llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
2363     llvm::Constant *GV;
2364     if (LangOpts.ObjCRuntime.isNonFragile()) {
2365       std::string str =
2366         StringClass.empty() ? "OBJC_CLASS_$_NSConstantString"
2367                             : "OBJC_CLASS_$_" + StringClass;
2368       GV = getObjCRuntime().GetClassGlobal(str);
2369       // Make sure the result is of the correct type.
2370       llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
2371       ConstantStringClassRef =
2372         llvm::ConstantExpr::getBitCast(GV, PTy);
2373     } else {
2374       std::string str =
2375         StringClass.empty() ? "_NSConstantStringClassReference"
2376                             : "_" + StringClass + "ClassReference";
2377       llvm::Type *PTy = llvm::ArrayType::get(Ty, 0);
2378       GV = CreateRuntimeVariable(PTy, str);
2379       // Decay array -> ptr
2380       ConstantStringClassRef =
2381         llvm::ConstantExpr::getGetElementPtr(GV, Zeros);
2382     }
2383   }
2384 
2385   if (!NSConstantStringType) {
2386     // Construct the type for a constant NSString.
2387     RecordDecl *D = CreateRecordDecl(Context, TTK_Struct,
2388                                      Context.getTranslationUnitDecl(),
2389                                    &Context.Idents.get("__builtin_NSString"));
2390     D->startDefinition();
2391 
2392     QualType FieldTypes[3];
2393 
2394     // const int *isa;
2395     FieldTypes[0] = Context.getPointerType(Context.IntTy.withConst());
2396     // const char *str;
2397     FieldTypes[1] = Context.getPointerType(Context.CharTy.withConst());
2398     // unsigned int length;
2399     FieldTypes[2] = Context.UnsignedIntTy;
2400 
2401     // Create fields
2402     for (unsigned i = 0; i < 3; ++i) {
2403       FieldDecl *Field = FieldDecl::Create(Context, D,
2404                                            SourceLocation(),
2405                                            SourceLocation(), 0,
2406                                            FieldTypes[i], /*TInfo=*/0,
2407                                            /*BitWidth=*/0,
2408                                            /*Mutable=*/false,
2409                                            ICIS_NoInit);
2410       Field->setAccess(AS_public);
2411       D->addDecl(Field);
2412     }
2413 
2414     D->completeDefinition();
2415     QualType NSTy = Context.getTagDeclType(D);
2416     NSConstantStringType = cast<llvm::StructType>(getTypes().ConvertType(NSTy));
2417   }
2418 
2419   llvm::Constant *Fields[3];
2420 
2421   // Class pointer.
2422   Fields[0] = ConstantStringClassRef;
2423 
2424   // String pointer.
2425   llvm::Constant *C =
2426     llvm::ConstantDataArray::getString(VMContext, Entry.getKey());
2427 
2428   llvm::GlobalValue::LinkageTypes Linkage;
2429   bool isConstant;
2430   Linkage = llvm::GlobalValue::PrivateLinkage;
2431   isConstant = !LangOpts.WritableStrings;
2432 
2433   llvm::GlobalVariable *GV =
2434   new llvm::GlobalVariable(getModule(), C->getType(), isConstant, Linkage, C,
2435                            ".str");
2436   GV->setUnnamedAddr(true);
2437   CharUnits Align = getContext().getTypeAlignInChars(getContext().CharTy);
2438   GV->setAlignment(Align.getQuantity());
2439   Fields[1] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros);
2440 
2441   // String length.
2442   llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy);
2443   Fields[2] = llvm::ConstantInt::get(Ty, StringLength);
2444 
2445   // The struct.
2446   C = llvm::ConstantStruct::get(NSConstantStringType, Fields);
2447   GV = new llvm::GlobalVariable(getModule(), C->getType(), true,
2448                                 llvm::GlobalVariable::PrivateLinkage, C,
2449                                 "_unnamed_nsstring_");
2450   // FIXME. Fix section.
2451   if (const char *Sect =
2452         LangOpts.ObjCRuntime.isNonFragile()
2453           ? getContext().getTargetInfo().getNSStringNonFragileABISection()
2454           : getContext().getTargetInfo().getNSStringSection())
2455     GV->setSection(Sect);
2456   Entry.setValue(GV);
2457 
2458   return GV;
2459 }
2460 
2461 QualType CodeGenModule::getObjCFastEnumerationStateType() {
2462   if (ObjCFastEnumerationStateType.isNull()) {
2463     RecordDecl *D = CreateRecordDecl(Context, TTK_Struct,
2464                                      Context.getTranslationUnitDecl(),
2465                       &Context.Idents.get("__objcFastEnumerationState"));
2466     D->startDefinition();
2467 
2468     QualType FieldTypes[] = {
2469       Context.UnsignedLongTy,
2470       Context.getPointerType(Context.getObjCIdType()),
2471       Context.getPointerType(Context.UnsignedLongTy),
2472       Context.getConstantArrayType(Context.UnsignedLongTy,
2473                            llvm::APInt(32, 5), ArrayType::Normal, 0)
2474     };
2475 
2476     for (size_t i = 0; i < 4; ++i) {
2477       FieldDecl *Field = FieldDecl::Create(Context,
2478                                            D,
2479                                            SourceLocation(),
2480                                            SourceLocation(), 0,
2481                                            FieldTypes[i], /*TInfo=*/0,
2482                                            /*BitWidth=*/0,
2483                                            /*Mutable=*/false,
2484                                            ICIS_NoInit);
2485       Field->setAccess(AS_public);
2486       D->addDecl(Field);
2487     }
2488 
2489     D->completeDefinition();
2490     ObjCFastEnumerationStateType = Context.getTagDeclType(D);
2491   }
2492 
2493   return ObjCFastEnumerationStateType;
2494 }
2495 
2496 llvm::Constant *
2497 CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) {
2498   assert(!E->getType()->isPointerType() && "Strings are always arrays");
2499 
2500   // Don't emit it as the address of the string, emit the string data itself
2501   // as an inline array.
2502   if (E->getCharByteWidth() == 1) {
2503     SmallString<64> Str(E->getString());
2504 
2505     // Resize the string to the right size, which is indicated by its type.
2506     const ConstantArrayType *CAT = Context.getAsConstantArrayType(E->getType());
2507     Str.resize(CAT->getSize().getZExtValue());
2508     return llvm::ConstantDataArray::getString(VMContext, Str, false);
2509   }
2510 
2511   llvm::ArrayType *AType =
2512     cast<llvm::ArrayType>(getTypes().ConvertType(E->getType()));
2513   llvm::Type *ElemTy = AType->getElementType();
2514   unsigned NumElements = AType->getNumElements();
2515 
2516   // Wide strings have either 2-byte or 4-byte elements.
2517   if (ElemTy->getPrimitiveSizeInBits() == 16) {
2518     SmallVector<uint16_t, 32> Elements;
2519     Elements.reserve(NumElements);
2520 
2521     for(unsigned i = 0, e = E->getLength(); i != e; ++i)
2522       Elements.push_back(E->getCodeUnit(i));
2523     Elements.resize(NumElements);
2524     return llvm::ConstantDataArray::get(VMContext, Elements);
2525   }
2526 
2527   assert(ElemTy->getPrimitiveSizeInBits() == 32);
2528   SmallVector<uint32_t, 32> Elements;
2529   Elements.reserve(NumElements);
2530 
2531   for(unsigned i = 0, e = E->getLength(); i != e; ++i)
2532     Elements.push_back(E->getCodeUnit(i));
2533   Elements.resize(NumElements);
2534   return llvm::ConstantDataArray::get(VMContext, Elements);
2535 }
2536 
2537 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a
2538 /// constant array for the given string literal.
2539 llvm::Constant *
2540 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S) {
2541   CharUnits Align = getContext().getTypeAlignInChars(S->getType());
2542   if (S->isAscii() || S->isUTF8()) {
2543     SmallString<64> Str(S->getString());
2544 
2545     // Resize the string to the right size, which is indicated by its type.
2546     const ConstantArrayType *CAT = Context.getAsConstantArrayType(S->getType());
2547     Str.resize(CAT->getSize().getZExtValue());
2548     return GetAddrOfConstantString(Str, /*GlobalName*/ 0, Align.getQuantity());
2549   }
2550 
2551   // FIXME: the following does not memoize wide strings.
2552   llvm::Constant *C = GetConstantArrayFromStringLiteral(S);
2553   llvm::GlobalVariable *GV =
2554     new llvm::GlobalVariable(getModule(),C->getType(),
2555                              !LangOpts.WritableStrings,
2556                              llvm::GlobalValue::PrivateLinkage,
2557                              C,".str");
2558 
2559   GV->setAlignment(Align.getQuantity());
2560   GV->setUnnamedAddr(true);
2561   return GV;
2562 }
2563 
2564 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant
2565 /// array for the given ObjCEncodeExpr node.
2566 llvm::Constant *
2567 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) {
2568   std::string Str;
2569   getContext().getObjCEncodingForType(E->getEncodedType(), Str);
2570 
2571   return GetAddrOfConstantCString(Str);
2572 }
2573 
2574 
2575 /// GenerateWritableString -- Creates storage for a string literal.
2576 static llvm::GlobalVariable *GenerateStringLiteral(StringRef str,
2577                                              bool constant,
2578                                              CodeGenModule &CGM,
2579                                              const char *GlobalName,
2580                                              unsigned Alignment) {
2581   // Create Constant for this string literal. Don't add a '\0'.
2582   llvm::Constant *C =
2583       llvm::ConstantDataArray::getString(CGM.getLLVMContext(), str, false);
2584 
2585   // Create a global variable for this string
2586   llvm::GlobalVariable *GV =
2587     new llvm::GlobalVariable(CGM.getModule(), C->getType(), constant,
2588                              llvm::GlobalValue::PrivateLinkage,
2589                              C, GlobalName);
2590   GV->setAlignment(Alignment);
2591   GV->setUnnamedAddr(true);
2592   return GV;
2593 }
2594 
2595 /// GetAddrOfConstantString - Returns a pointer to a character array
2596 /// containing the literal. This contents are exactly that of the
2597 /// given string, i.e. it will not be null terminated automatically;
2598 /// see GetAddrOfConstantCString. Note that whether the result is
2599 /// actually a pointer to an LLVM constant depends on
2600 /// Feature.WriteableStrings.
2601 ///
2602 /// The result has pointer to array type.
2603 llvm::Constant *CodeGenModule::GetAddrOfConstantString(StringRef Str,
2604                                                        const char *GlobalName,
2605                                                        unsigned Alignment) {
2606   // Get the default prefix if a name wasn't specified.
2607   if (!GlobalName)
2608     GlobalName = ".str";
2609 
2610   // Don't share any string literals if strings aren't constant.
2611   if (LangOpts.WritableStrings)
2612     return GenerateStringLiteral(Str, false, *this, GlobalName, Alignment);
2613 
2614   llvm::StringMapEntry<llvm::GlobalVariable *> &Entry =
2615     ConstantStringMap.GetOrCreateValue(Str);
2616 
2617   if (llvm::GlobalVariable *GV = Entry.getValue()) {
2618     if (Alignment > GV->getAlignment()) {
2619       GV->setAlignment(Alignment);
2620     }
2621     return GV;
2622   }
2623 
2624   // Create a global variable for this.
2625   llvm::GlobalVariable *GV = GenerateStringLiteral(Str, true, *this, GlobalName,
2626                                                    Alignment);
2627   Entry.setValue(GV);
2628   return GV;
2629 }
2630 
2631 /// GetAddrOfConstantCString - Returns a pointer to a character
2632 /// array containing the literal and a terminating '\0'
2633 /// character. The result has pointer to array type.
2634 llvm::Constant *CodeGenModule::GetAddrOfConstantCString(const std::string &Str,
2635                                                         const char *GlobalName,
2636                                                         unsigned Alignment) {
2637   StringRef StrWithNull(Str.c_str(), Str.size() + 1);
2638   return GetAddrOfConstantString(StrWithNull, GlobalName, Alignment);
2639 }
2640 
2641 /// EmitObjCPropertyImplementations - Emit information for synthesized
2642 /// properties for an implementation.
2643 void CodeGenModule::EmitObjCPropertyImplementations(const
2644                                                     ObjCImplementationDecl *D) {
2645   for (ObjCImplementationDecl::propimpl_iterator
2646          i = D->propimpl_begin(), e = D->propimpl_end(); i != e; ++i) {
2647     ObjCPropertyImplDecl *PID = *i;
2648 
2649     // Dynamic is just for type-checking.
2650     if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) {
2651       ObjCPropertyDecl *PD = PID->getPropertyDecl();
2652 
2653       // Determine which methods need to be implemented, some may have
2654       // been overridden. Note that ::isPropertyAccessor is not the method
2655       // we want, that just indicates if the decl came from a
2656       // property. What we want to know is if the method is defined in
2657       // this implementation.
2658       if (!D->getInstanceMethod(PD->getGetterName()))
2659         CodeGenFunction(*this).GenerateObjCGetter(
2660                                  const_cast<ObjCImplementationDecl *>(D), PID);
2661       if (!PD->isReadOnly() &&
2662           !D->getInstanceMethod(PD->getSetterName()))
2663         CodeGenFunction(*this).GenerateObjCSetter(
2664                                  const_cast<ObjCImplementationDecl *>(D), PID);
2665     }
2666   }
2667 }
2668 
2669 static bool needsDestructMethod(ObjCImplementationDecl *impl) {
2670   const ObjCInterfaceDecl *iface = impl->getClassInterface();
2671   for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin();
2672        ivar; ivar = ivar->getNextIvar())
2673     if (ivar->getType().isDestructedType())
2674       return true;
2675 
2676   return false;
2677 }
2678 
2679 /// EmitObjCIvarInitializations - Emit information for ivar initialization
2680 /// for an implementation.
2681 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) {
2682   // We might need a .cxx_destruct even if we don't have any ivar initializers.
2683   if (needsDestructMethod(D)) {
2684     IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct");
2685     Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
2686     ObjCMethodDecl *DTORMethod =
2687       ObjCMethodDecl::Create(getContext(), D->getLocation(), D->getLocation(),
2688                              cxxSelector, getContext().VoidTy, 0, D,
2689                              /*isInstance=*/true, /*isVariadic=*/false,
2690                           /*isPropertyAccessor=*/true, /*isImplicitlyDeclared=*/true,
2691                              /*isDefined=*/false, ObjCMethodDecl::Required);
2692     D->addInstanceMethod(DTORMethod);
2693     CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false);
2694     D->setHasDestructors(true);
2695   }
2696 
2697   // If the implementation doesn't have any ivar initializers, we don't need
2698   // a .cxx_construct.
2699   if (D->getNumIvarInitializers() == 0)
2700     return;
2701 
2702   IdentifierInfo *II = &getContext().Idents.get(".cxx_construct");
2703   Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
2704   // The constructor returns 'self'.
2705   ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(getContext(),
2706                                                 D->getLocation(),
2707                                                 D->getLocation(),
2708                                                 cxxSelector,
2709                                                 getContext().getObjCIdType(), 0,
2710                                                 D, /*isInstance=*/true,
2711                                                 /*isVariadic=*/false,
2712                                                 /*isPropertyAccessor=*/true,
2713                                                 /*isImplicitlyDeclared=*/true,
2714                                                 /*isDefined=*/false,
2715                                                 ObjCMethodDecl::Required);
2716   D->addInstanceMethod(CTORMethod);
2717   CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true);
2718   D->setHasNonZeroConstructors(true);
2719 }
2720 
2721 /// EmitNamespace - Emit all declarations in a namespace.
2722 void CodeGenModule::EmitNamespace(const NamespaceDecl *ND) {
2723   for (RecordDecl::decl_iterator I = ND->decls_begin(), E = ND->decls_end();
2724        I != E; ++I)
2725     EmitTopLevelDecl(*I);
2726 }
2727 
2728 // EmitLinkageSpec - Emit all declarations in a linkage spec.
2729 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) {
2730   if (LSD->getLanguage() != LinkageSpecDecl::lang_c &&
2731       LSD->getLanguage() != LinkageSpecDecl::lang_cxx) {
2732     ErrorUnsupported(LSD, "linkage spec");
2733     return;
2734   }
2735 
2736   for (RecordDecl::decl_iterator I = LSD->decls_begin(), E = LSD->decls_end();
2737        I != E; ++I) {
2738     // Meta-data for ObjC class includes references to implemented methods.
2739     // Generate class's method definitions first.
2740     if (ObjCImplDecl *OID = dyn_cast<ObjCImplDecl>(*I)) {
2741       for (ObjCContainerDecl::method_iterator M = OID->meth_begin(),
2742            MEnd = OID->meth_end();
2743            M != MEnd; ++M)
2744         EmitTopLevelDecl(*M);
2745     }
2746     EmitTopLevelDecl(*I);
2747   }
2748 }
2749 
2750 /// EmitTopLevelDecl - Emit code for a single top level declaration.
2751 void CodeGenModule::EmitTopLevelDecl(Decl *D) {
2752   // If an error has occurred, stop code generation, but continue
2753   // parsing and semantic analysis (to ensure all warnings and errors
2754   // are emitted).
2755   if (Diags.hasErrorOccurred())
2756     return;
2757 
2758   // Ignore dependent declarations.
2759   if (D->getDeclContext() && D->getDeclContext()->isDependentContext())
2760     return;
2761 
2762   switch (D->getKind()) {
2763   case Decl::CXXConversion:
2764   case Decl::CXXMethod:
2765   case Decl::Function:
2766     // Skip function templates
2767     if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() ||
2768         cast<FunctionDecl>(D)->isLateTemplateParsed())
2769       return;
2770 
2771     EmitGlobal(cast<FunctionDecl>(D));
2772     break;
2773 
2774   case Decl::Var:
2775     EmitGlobal(cast<VarDecl>(D));
2776     break;
2777 
2778   // Indirect fields from global anonymous structs and unions can be
2779   // ignored; only the actual variable requires IR gen support.
2780   case Decl::IndirectField:
2781     break;
2782 
2783   // C++ Decls
2784   case Decl::Namespace:
2785     EmitNamespace(cast<NamespaceDecl>(D));
2786     break;
2787     // No code generation needed.
2788   case Decl::UsingShadow:
2789   case Decl::Using:
2790   case Decl::UsingDirective:
2791   case Decl::ClassTemplate:
2792   case Decl::FunctionTemplate:
2793   case Decl::TypeAliasTemplate:
2794   case Decl::NamespaceAlias:
2795   case Decl::Block:
2796     break;
2797   case Decl::CXXConstructor:
2798     // Skip function templates
2799     if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() ||
2800         cast<FunctionDecl>(D)->isLateTemplateParsed())
2801       return;
2802 
2803     EmitCXXConstructors(cast<CXXConstructorDecl>(D));
2804     break;
2805   case Decl::CXXDestructor:
2806     if (cast<FunctionDecl>(D)->isLateTemplateParsed())
2807       return;
2808     EmitCXXDestructors(cast<CXXDestructorDecl>(D));
2809     break;
2810 
2811   case Decl::StaticAssert:
2812     // Nothing to do.
2813     break;
2814 
2815   // Objective-C Decls
2816 
2817   // Forward declarations, no (immediate) code generation.
2818   case Decl::ObjCInterface:
2819   case Decl::ObjCCategory:
2820     break;
2821 
2822   case Decl::ObjCProtocol: {
2823     ObjCProtocolDecl *Proto = cast<ObjCProtocolDecl>(D);
2824     if (Proto->isThisDeclarationADefinition())
2825       ObjCRuntime->GenerateProtocol(Proto);
2826     break;
2827   }
2828 
2829   case Decl::ObjCCategoryImpl:
2830     // Categories have properties but don't support synthesize so we
2831     // can ignore them here.
2832     ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D));
2833     break;
2834 
2835   case Decl::ObjCImplementation: {
2836     ObjCImplementationDecl *OMD = cast<ObjCImplementationDecl>(D);
2837     EmitObjCPropertyImplementations(OMD);
2838     EmitObjCIvarInitializations(OMD);
2839     ObjCRuntime->GenerateClass(OMD);
2840     // Emit global variable debug information.
2841     if (CGDebugInfo *DI = getModuleDebugInfo())
2842       if (getCodeGenOpts().getDebugInfo() >= CodeGenOptions::LimitedDebugInfo)
2843         DI->getOrCreateInterfaceType(getContext().getObjCInterfaceType(
2844             OMD->getClassInterface()), OMD->getLocation());
2845     break;
2846   }
2847   case Decl::ObjCMethod: {
2848     ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(D);
2849     // If this is not a prototype, emit the body.
2850     if (OMD->getBody())
2851       CodeGenFunction(*this).GenerateObjCMethod(OMD);
2852     break;
2853   }
2854   case Decl::ObjCCompatibleAlias:
2855     ObjCRuntime->RegisterAlias(cast<ObjCCompatibleAliasDecl>(D));
2856     break;
2857 
2858   case Decl::LinkageSpec:
2859     EmitLinkageSpec(cast<LinkageSpecDecl>(D));
2860     break;
2861 
2862   case Decl::FileScopeAsm: {
2863     FileScopeAsmDecl *AD = cast<FileScopeAsmDecl>(D);
2864     StringRef AsmString = AD->getAsmString()->getString();
2865 
2866     const std::string &S = getModule().getModuleInlineAsm();
2867     if (S.empty())
2868       getModule().setModuleInlineAsm(AsmString);
2869     else if (S.end()[-1] == '\n')
2870       getModule().setModuleInlineAsm(S + AsmString.str());
2871     else
2872       getModule().setModuleInlineAsm(S + '\n' + AsmString.str());
2873     break;
2874   }
2875 
2876   case Decl::Import: {
2877     ImportDecl *Import = cast<ImportDecl>(D);
2878 
2879     // Ignore import declarations that come from imported modules.
2880     if (clang::Module *Owner = Import->getOwningModule()) {
2881       if (getLangOpts().CurrentModule.empty() ||
2882           Owner->getTopLevelModule()->Name == getLangOpts().CurrentModule)
2883         break;
2884     }
2885 
2886     ImportedModules.insert(Import->getImportedModule());
2887     break;
2888  }
2889 
2890   default:
2891     // Make sure we handled everything we should, every other kind is a
2892     // non-top-level decl.  FIXME: Would be nice to have an isTopLevelDeclKind
2893     // function. Need to recode Decl::Kind to do that easily.
2894     assert(isa<TypeDecl>(D) && "Unsupported decl kind");
2895   }
2896 }
2897 
2898 /// Turns the given pointer into a constant.
2899 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context,
2900                                           const void *Ptr) {
2901   uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr);
2902   llvm::Type *i64 = llvm::Type::getInt64Ty(Context);
2903   return llvm::ConstantInt::get(i64, PtrInt);
2904 }
2905 
2906 static void EmitGlobalDeclMetadata(CodeGenModule &CGM,
2907                                    llvm::NamedMDNode *&GlobalMetadata,
2908                                    GlobalDecl D,
2909                                    llvm::GlobalValue *Addr) {
2910   if (!GlobalMetadata)
2911     GlobalMetadata =
2912       CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs");
2913 
2914   // TODO: should we report variant information for ctors/dtors?
2915   llvm::Value *Ops[] = {
2916     Addr,
2917     GetPointerConstant(CGM.getLLVMContext(), D.getDecl())
2918   };
2919   GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops));
2920 }
2921 
2922 /// Emits metadata nodes associating all the global values in the
2923 /// current module with the Decls they came from.  This is useful for
2924 /// projects using IR gen as a subroutine.
2925 ///
2926 /// Since there's currently no way to associate an MDNode directly
2927 /// with an llvm::GlobalValue, we create a global named metadata
2928 /// with the name 'clang.global.decl.ptrs'.
2929 void CodeGenModule::EmitDeclMetadata() {
2930   llvm::NamedMDNode *GlobalMetadata = 0;
2931 
2932   // StaticLocalDeclMap
2933   for (llvm::DenseMap<GlobalDecl,StringRef>::iterator
2934          I = MangledDeclNames.begin(), E = MangledDeclNames.end();
2935        I != E; ++I) {
2936     llvm::GlobalValue *Addr = getModule().getNamedValue(I->second);
2937     EmitGlobalDeclMetadata(*this, GlobalMetadata, I->first, Addr);
2938   }
2939 }
2940 
2941 /// Emits metadata nodes for all the local variables in the current
2942 /// function.
2943 void CodeGenFunction::EmitDeclMetadata() {
2944   if (LocalDeclMap.empty()) return;
2945 
2946   llvm::LLVMContext &Context = getLLVMContext();
2947 
2948   // Find the unique metadata ID for this name.
2949   unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr");
2950 
2951   llvm::NamedMDNode *GlobalMetadata = 0;
2952 
2953   for (llvm::DenseMap<const Decl*, llvm::Value*>::iterator
2954          I = LocalDeclMap.begin(), E = LocalDeclMap.end(); I != E; ++I) {
2955     const Decl *D = I->first;
2956     llvm::Value *Addr = I->second;
2957 
2958     if (llvm::AllocaInst *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) {
2959       llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D);
2960       Alloca->setMetadata(DeclPtrKind, llvm::MDNode::get(Context, DAddr));
2961     } else if (llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>(Addr)) {
2962       GlobalDecl GD = GlobalDecl(cast<VarDecl>(D));
2963       EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV);
2964     }
2965   }
2966 }
2967 
2968 void CodeGenModule::EmitCoverageFile() {
2969   if (!getCodeGenOpts().CoverageFile.empty()) {
2970     if (llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu")) {
2971       llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov");
2972       llvm::LLVMContext &Ctx = TheModule.getContext();
2973       llvm::MDString *CoverageFile =
2974           llvm::MDString::get(Ctx, getCodeGenOpts().CoverageFile);
2975       for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) {
2976         llvm::MDNode *CU = CUNode->getOperand(i);
2977         llvm::Value *node[] = { CoverageFile, CU };
2978         llvm::MDNode *N = llvm::MDNode::get(Ctx, node);
2979         GCov->addOperand(N);
2980       }
2981     }
2982   }
2983 }
2984 
2985 llvm::Constant *CodeGenModule::EmitUuidofInitializer(StringRef Uuid,
2986                                                      QualType GuidType) {
2987   // Sema has checked that all uuid strings are of the form
2988   // "12345678-1234-1234-1234-1234567890ab".
2989   assert(Uuid.size() == 36);
2990   const char *Uuidstr = Uuid.data();
2991   for (int i = 0; i < 36; ++i) {
2992     if (i == 8 || i == 13 || i == 18 || i == 23) assert(Uuidstr[i] == '-');
2993     else                                         assert(isxdigit(Uuidstr[i]));
2994   }
2995 
2996   llvm::APInt Field0(32, StringRef(Uuidstr     , 8), 16);
2997   llvm::APInt Field1(16, StringRef(Uuidstr +  9, 4), 16);
2998   llvm::APInt Field2(16, StringRef(Uuidstr + 14, 4), 16);
2999   static const int Field3ValueOffsets[] = { 19, 21, 24, 26, 28, 30, 32, 34 };
3000 
3001   APValue InitStruct(APValue::UninitStruct(), /*NumBases=*/0, /*NumFields=*/4);
3002   InitStruct.getStructField(0) = APValue(llvm::APSInt(Field0));
3003   InitStruct.getStructField(1) = APValue(llvm::APSInt(Field1));
3004   InitStruct.getStructField(2) = APValue(llvm::APSInt(Field2));
3005   APValue& Arr = InitStruct.getStructField(3);
3006   Arr = APValue(APValue::UninitArray(), 8, 8);
3007   for (int t = 0; t < 8; ++t)
3008     Arr.getArrayInitializedElt(t) = APValue(llvm::APSInt(
3009           llvm::APInt(8, StringRef(Uuidstr + Field3ValueOffsets[t], 2), 16)));
3010 
3011   return EmitConstantValue(InitStruct, GuidType);
3012 }
3013