xref: /llvm-project/clang/lib/CodeGen/CodeGenModule.cpp (revision 699f5d6bbc43fbd62e60f913379565bd86c6df8c)
1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This coordinates the per-module state used while generating code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenModule.h"
15 #include "CGBlocks.h"
16 #include "CGCUDARuntime.h"
17 #include "CGCXXABI.h"
18 #include "CGCall.h"
19 #include "CGDebugInfo.h"
20 #include "CGObjCRuntime.h"
21 #include "CGOpenCLRuntime.h"
22 #include "CGOpenMPRuntime.h"
23 #include "CGOpenMPRuntimeNVPTX.h"
24 #include "CodeGenFunction.h"
25 #include "CodeGenPGO.h"
26 #include "ConstantEmitter.h"
27 #include "CoverageMappingGen.h"
28 #include "TargetInfo.h"
29 #include "clang/AST/ASTContext.h"
30 #include "clang/AST/CharUnits.h"
31 #include "clang/AST/DeclCXX.h"
32 #include "clang/AST/DeclObjC.h"
33 #include "clang/AST/DeclTemplate.h"
34 #include "clang/AST/Mangle.h"
35 #include "clang/AST/RecordLayout.h"
36 #include "clang/AST/RecursiveASTVisitor.h"
37 #include "clang/Basic/Builtins.h"
38 #include "clang/Basic/CharInfo.h"
39 #include "clang/Basic/Diagnostic.h"
40 #include "clang/Basic/Module.h"
41 #include "clang/Basic/SourceManager.h"
42 #include "clang/Basic/TargetInfo.h"
43 #include "clang/Basic/Version.h"
44 #include "clang/CodeGen/ConstantInitBuilder.h"
45 #include "clang/Frontend/CodeGenOptions.h"
46 #include "clang/Sema/SemaDiagnostic.h"
47 #include "llvm/ADT/Triple.h"
48 #include "llvm/Analysis/TargetLibraryInfo.h"
49 #include "llvm/IR/CallSite.h"
50 #include "llvm/IR/CallingConv.h"
51 #include "llvm/IR/DataLayout.h"
52 #include "llvm/IR/Intrinsics.h"
53 #include "llvm/IR/LLVMContext.h"
54 #include "llvm/IR/Module.h"
55 #include "llvm/ProfileData/InstrProfReader.h"
56 #include "llvm/Support/ConvertUTF.h"
57 #include "llvm/Support/ErrorHandling.h"
58 #include "llvm/Support/MD5.h"
59 
60 using namespace clang;
61 using namespace CodeGen;
62 
63 static llvm::cl::opt<bool> LimitedCoverage(
64     "limited-coverage-experimental", llvm::cl::ZeroOrMore, llvm::cl::Hidden,
65     llvm::cl::desc("Emit limited coverage mapping information (experimental)"),
66     llvm::cl::init(false));
67 
68 static const char AnnotationSection[] = "llvm.metadata";
69 
70 static CGCXXABI *createCXXABI(CodeGenModule &CGM) {
71   switch (CGM.getTarget().getCXXABI().getKind()) {
72   case TargetCXXABI::GenericAArch64:
73   case TargetCXXABI::GenericARM:
74   case TargetCXXABI::iOS:
75   case TargetCXXABI::iOS64:
76   case TargetCXXABI::WatchOS:
77   case TargetCXXABI::GenericMIPS:
78   case TargetCXXABI::GenericItanium:
79   case TargetCXXABI::WebAssembly:
80     return CreateItaniumCXXABI(CGM);
81   case TargetCXXABI::Microsoft:
82     return CreateMicrosoftCXXABI(CGM);
83   }
84 
85   llvm_unreachable("invalid C++ ABI kind");
86 }
87 
88 CodeGenModule::CodeGenModule(ASTContext &C, const HeaderSearchOptions &HSO,
89                              const PreprocessorOptions &PPO,
90                              const CodeGenOptions &CGO, llvm::Module &M,
91                              DiagnosticsEngine &diags,
92                              CoverageSourceInfo *CoverageInfo)
93     : Context(C), LangOpts(C.getLangOpts()), HeaderSearchOpts(HSO),
94       PreprocessorOpts(PPO), CodeGenOpts(CGO), TheModule(M), Diags(diags),
95       Target(C.getTargetInfo()), ABI(createCXXABI(*this)),
96       VMContext(M.getContext()), Types(*this), VTables(*this),
97       SanitizerMD(new SanitizerMetadata(*this)) {
98 
99   // Initialize the type cache.
100   llvm::LLVMContext &LLVMContext = M.getContext();
101   VoidTy = llvm::Type::getVoidTy(LLVMContext);
102   Int8Ty = llvm::Type::getInt8Ty(LLVMContext);
103   Int16Ty = llvm::Type::getInt16Ty(LLVMContext);
104   Int32Ty = llvm::Type::getInt32Ty(LLVMContext);
105   Int64Ty = llvm::Type::getInt64Ty(LLVMContext);
106   HalfTy = llvm::Type::getHalfTy(LLVMContext);
107   FloatTy = llvm::Type::getFloatTy(LLVMContext);
108   DoubleTy = llvm::Type::getDoubleTy(LLVMContext);
109   PointerWidthInBits = C.getTargetInfo().getPointerWidth(0);
110   PointerAlignInBytes =
111     C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(0)).getQuantity();
112   SizeSizeInBytes =
113     C.toCharUnitsFromBits(C.getTargetInfo().getMaxPointerWidth()).getQuantity();
114   IntAlignInBytes =
115     C.toCharUnitsFromBits(C.getTargetInfo().getIntAlign()).getQuantity();
116   IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth());
117   IntPtrTy = llvm::IntegerType::get(LLVMContext,
118     C.getTargetInfo().getMaxPointerWidth());
119   Int8PtrTy = Int8Ty->getPointerTo(0);
120   Int8PtrPtrTy = Int8PtrTy->getPointerTo(0);
121   AllocaInt8PtrTy = Int8Ty->getPointerTo(
122       M.getDataLayout().getAllocaAddrSpace());
123   ASTAllocaAddressSpace = getTargetCodeGenInfo().getASTAllocaAddressSpace();
124 
125   RuntimeCC = getTargetCodeGenInfo().getABIInfo().getRuntimeCC();
126   BuiltinCC = getTargetCodeGenInfo().getABIInfo().getBuiltinCC();
127 
128   if (LangOpts.ObjC1)
129     createObjCRuntime();
130   if (LangOpts.OpenCL)
131     createOpenCLRuntime();
132   if (LangOpts.OpenMP)
133     createOpenMPRuntime();
134   if (LangOpts.CUDA)
135     createCUDARuntime();
136 
137   // Enable TBAA unless it's suppressed. ThreadSanitizer needs TBAA even at O0.
138   if (LangOpts.Sanitize.has(SanitizerKind::Thread) ||
139       (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0))
140     TBAA.reset(new CodeGenTBAA(Context, TheModule, CodeGenOpts, getLangOpts(),
141                                getCXXABI().getMangleContext()));
142 
143   // If debug info or coverage generation is enabled, create the CGDebugInfo
144   // object.
145   if (CodeGenOpts.getDebugInfo() != codegenoptions::NoDebugInfo ||
146       CodeGenOpts.EmitGcovArcs || CodeGenOpts.EmitGcovNotes)
147     DebugInfo.reset(new CGDebugInfo(*this));
148 
149   Block.GlobalUniqueCount = 0;
150 
151   if (C.getLangOpts().ObjC1)
152     ObjCData.reset(new ObjCEntrypoints());
153 
154   if (CodeGenOpts.hasProfileClangUse()) {
155     auto ReaderOrErr = llvm::IndexedInstrProfReader::create(
156         CodeGenOpts.ProfileInstrumentUsePath);
157     if (auto E = ReaderOrErr.takeError()) {
158       unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
159                                               "Could not read profile %0: %1");
160       llvm::handleAllErrors(std::move(E), [&](const llvm::ErrorInfoBase &EI) {
161         getDiags().Report(DiagID) << CodeGenOpts.ProfileInstrumentUsePath
162                                   << EI.message();
163       });
164     } else
165       PGOReader = std::move(ReaderOrErr.get());
166   }
167 
168   // If coverage mapping generation is enabled, create the
169   // CoverageMappingModuleGen object.
170   if (CodeGenOpts.CoverageMapping)
171     CoverageMapping.reset(new CoverageMappingModuleGen(*this, *CoverageInfo));
172 }
173 
174 CodeGenModule::~CodeGenModule() {}
175 
176 void CodeGenModule::createObjCRuntime() {
177   // This is just isGNUFamily(), but we want to force implementors of
178   // new ABIs to decide how best to do this.
179   switch (LangOpts.ObjCRuntime.getKind()) {
180   case ObjCRuntime::GNUstep:
181   case ObjCRuntime::GCC:
182   case ObjCRuntime::ObjFW:
183     ObjCRuntime.reset(CreateGNUObjCRuntime(*this));
184     return;
185 
186   case ObjCRuntime::FragileMacOSX:
187   case ObjCRuntime::MacOSX:
188   case ObjCRuntime::iOS:
189   case ObjCRuntime::WatchOS:
190     ObjCRuntime.reset(CreateMacObjCRuntime(*this));
191     return;
192   }
193   llvm_unreachable("bad runtime kind");
194 }
195 
196 void CodeGenModule::createOpenCLRuntime() {
197   OpenCLRuntime.reset(new CGOpenCLRuntime(*this));
198 }
199 
200 void CodeGenModule::createOpenMPRuntime() {
201   // Select a specialized code generation class based on the target, if any.
202   // If it does not exist use the default implementation.
203   switch (getTriple().getArch()) {
204   case llvm::Triple::nvptx:
205   case llvm::Triple::nvptx64:
206     assert(getLangOpts().OpenMPIsDevice &&
207            "OpenMP NVPTX is only prepared to deal with device code.");
208     OpenMPRuntime.reset(new CGOpenMPRuntimeNVPTX(*this));
209     break;
210   default:
211     if (LangOpts.OpenMPSimd)
212       OpenMPRuntime.reset(new CGOpenMPSIMDRuntime(*this));
213     else
214       OpenMPRuntime.reset(new CGOpenMPRuntime(*this));
215     break;
216   }
217 }
218 
219 void CodeGenModule::createCUDARuntime() {
220   CUDARuntime.reset(CreateNVCUDARuntime(*this));
221 }
222 
223 void CodeGenModule::addReplacement(StringRef Name, llvm::Constant *C) {
224   Replacements[Name] = C;
225 }
226 
227 void CodeGenModule::applyReplacements() {
228   for (auto &I : Replacements) {
229     StringRef MangledName = I.first();
230     llvm::Constant *Replacement = I.second;
231     llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
232     if (!Entry)
233       continue;
234     auto *OldF = cast<llvm::Function>(Entry);
235     auto *NewF = dyn_cast<llvm::Function>(Replacement);
236     if (!NewF) {
237       if (auto *Alias = dyn_cast<llvm::GlobalAlias>(Replacement)) {
238         NewF = dyn_cast<llvm::Function>(Alias->getAliasee());
239       } else {
240         auto *CE = cast<llvm::ConstantExpr>(Replacement);
241         assert(CE->getOpcode() == llvm::Instruction::BitCast ||
242                CE->getOpcode() == llvm::Instruction::GetElementPtr);
243         NewF = dyn_cast<llvm::Function>(CE->getOperand(0));
244       }
245     }
246 
247     // Replace old with new, but keep the old order.
248     OldF->replaceAllUsesWith(Replacement);
249     if (NewF) {
250       NewF->removeFromParent();
251       OldF->getParent()->getFunctionList().insertAfter(OldF->getIterator(),
252                                                        NewF);
253     }
254     OldF->eraseFromParent();
255   }
256 }
257 
258 void CodeGenModule::addGlobalValReplacement(llvm::GlobalValue *GV, llvm::Constant *C) {
259   GlobalValReplacements.push_back(std::make_pair(GV, C));
260 }
261 
262 void CodeGenModule::applyGlobalValReplacements() {
263   for (auto &I : GlobalValReplacements) {
264     llvm::GlobalValue *GV = I.first;
265     llvm::Constant *C = I.second;
266 
267     GV->replaceAllUsesWith(C);
268     GV->eraseFromParent();
269   }
270 }
271 
272 // This is only used in aliases that we created and we know they have a
273 // linear structure.
274 static const llvm::GlobalObject *getAliasedGlobal(
275     const llvm::GlobalIndirectSymbol &GIS) {
276   llvm::SmallPtrSet<const llvm::GlobalIndirectSymbol*, 4> Visited;
277   const llvm::Constant *C = &GIS;
278   for (;;) {
279     C = C->stripPointerCasts();
280     if (auto *GO = dyn_cast<llvm::GlobalObject>(C))
281       return GO;
282     // stripPointerCasts will not walk over weak aliases.
283     auto *GIS2 = dyn_cast<llvm::GlobalIndirectSymbol>(C);
284     if (!GIS2)
285       return nullptr;
286     if (!Visited.insert(GIS2).second)
287       return nullptr;
288     C = GIS2->getIndirectSymbol();
289   }
290 }
291 
292 void CodeGenModule::checkAliases() {
293   // Check if the constructed aliases are well formed. It is really unfortunate
294   // that we have to do this in CodeGen, but we only construct mangled names
295   // and aliases during codegen.
296   bool Error = false;
297   DiagnosticsEngine &Diags = getDiags();
298   for (const GlobalDecl &GD : Aliases) {
299     const auto *D = cast<ValueDecl>(GD.getDecl());
300     SourceLocation Location;
301     bool IsIFunc = D->hasAttr<IFuncAttr>();
302     if (const Attr *A = D->getDefiningAttr())
303       Location = A->getLocation();
304     else
305       llvm_unreachable("Not an alias or ifunc?");
306     StringRef MangledName = getMangledName(GD);
307     llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
308     auto *Alias  = cast<llvm::GlobalIndirectSymbol>(Entry);
309     const llvm::GlobalValue *GV = getAliasedGlobal(*Alias);
310     if (!GV) {
311       Error = true;
312       Diags.Report(Location, diag::err_cyclic_alias) << IsIFunc;
313     } else if (GV->isDeclaration()) {
314       Error = true;
315       Diags.Report(Location, diag::err_alias_to_undefined)
316           << IsIFunc << IsIFunc;
317     } else if (IsIFunc) {
318       // Check resolver function type.
319       llvm::FunctionType *FTy = dyn_cast<llvm::FunctionType>(
320           GV->getType()->getPointerElementType());
321       assert(FTy);
322       if (!FTy->getReturnType()->isPointerTy())
323         Diags.Report(Location, diag::err_ifunc_resolver_return);
324       if (FTy->getNumParams())
325         Diags.Report(Location, diag::err_ifunc_resolver_params);
326     }
327 
328     llvm::Constant *Aliasee = Alias->getIndirectSymbol();
329     llvm::GlobalValue *AliaseeGV;
330     if (auto CE = dyn_cast<llvm::ConstantExpr>(Aliasee))
331       AliaseeGV = cast<llvm::GlobalValue>(CE->getOperand(0));
332     else
333       AliaseeGV = cast<llvm::GlobalValue>(Aliasee);
334 
335     if (const SectionAttr *SA = D->getAttr<SectionAttr>()) {
336       StringRef AliasSection = SA->getName();
337       if (AliasSection != AliaseeGV->getSection())
338         Diags.Report(SA->getLocation(), diag::warn_alias_with_section)
339             << AliasSection << IsIFunc << IsIFunc;
340     }
341 
342     // We have to handle alias to weak aliases in here. LLVM itself disallows
343     // this since the object semantics would not match the IL one. For
344     // compatibility with gcc we implement it by just pointing the alias
345     // to its aliasee's aliasee. We also warn, since the user is probably
346     // expecting the link to be weak.
347     if (auto GA = dyn_cast<llvm::GlobalIndirectSymbol>(AliaseeGV)) {
348       if (GA->isInterposable()) {
349         Diags.Report(Location, diag::warn_alias_to_weak_alias)
350             << GV->getName() << GA->getName() << IsIFunc;
351         Aliasee = llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(
352             GA->getIndirectSymbol(), Alias->getType());
353         Alias->setIndirectSymbol(Aliasee);
354       }
355     }
356   }
357   if (!Error)
358     return;
359 
360   for (const GlobalDecl &GD : Aliases) {
361     StringRef MangledName = getMangledName(GD);
362     llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
363     auto *Alias = dyn_cast<llvm::GlobalIndirectSymbol>(Entry);
364     Alias->replaceAllUsesWith(llvm::UndefValue::get(Alias->getType()));
365     Alias->eraseFromParent();
366   }
367 }
368 
369 void CodeGenModule::clear() {
370   DeferredDeclsToEmit.clear();
371   if (OpenMPRuntime)
372     OpenMPRuntime->clear();
373 }
374 
375 void InstrProfStats::reportDiagnostics(DiagnosticsEngine &Diags,
376                                        StringRef MainFile) {
377   if (!hasDiagnostics())
378     return;
379   if (VisitedInMainFile > 0 && VisitedInMainFile == MissingInMainFile) {
380     if (MainFile.empty())
381       MainFile = "<stdin>";
382     Diags.Report(diag::warn_profile_data_unprofiled) << MainFile;
383   } else {
384     if (Mismatched > 0)
385       Diags.Report(diag::warn_profile_data_out_of_date) << Visited << Mismatched;
386 
387     if (Missing > 0)
388       Diags.Report(diag::warn_profile_data_missing) << Visited << Missing;
389   }
390 }
391 
392 void CodeGenModule::Release() {
393   EmitDeferred();
394   EmitVTablesOpportunistically();
395   applyGlobalValReplacements();
396   applyReplacements();
397   checkAliases();
398   emitMultiVersionFunctions();
399   EmitCXXGlobalInitFunc();
400   EmitCXXGlobalDtorFunc();
401   EmitCXXThreadLocalInitFunc();
402   if (ObjCRuntime)
403     if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction())
404       AddGlobalCtor(ObjCInitFunction);
405   if (Context.getLangOpts().CUDA && !Context.getLangOpts().CUDAIsDevice &&
406       CUDARuntime) {
407     if (llvm::Function *CudaCtorFunction = CUDARuntime->makeModuleCtorFunction())
408       AddGlobalCtor(CudaCtorFunction);
409     if (llvm::Function *CudaDtorFunction = CUDARuntime->makeModuleDtorFunction())
410       AddGlobalDtor(CudaDtorFunction);
411   }
412   if (OpenMPRuntime)
413     if (llvm::Function *OpenMPRegistrationFunction =
414             OpenMPRuntime->emitRegistrationFunction()) {
415       auto ComdatKey = OpenMPRegistrationFunction->hasComdat() ?
416         OpenMPRegistrationFunction : nullptr;
417       AddGlobalCtor(OpenMPRegistrationFunction, 0, ComdatKey);
418     }
419   if (PGOReader) {
420     getModule().setProfileSummary(PGOReader->getSummary().getMD(VMContext));
421     if (PGOStats.hasDiagnostics())
422       PGOStats.reportDiagnostics(getDiags(), getCodeGenOpts().MainFileName);
423   }
424   EmitCtorList(GlobalCtors, "llvm.global_ctors");
425   EmitCtorList(GlobalDtors, "llvm.global_dtors");
426   EmitGlobalAnnotations();
427   EmitStaticExternCAliases();
428   EmitDeferredUnusedCoverageMappings();
429   if (CoverageMapping)
430     CoverageMapping->emit();
431   if (CodeGenOpts.SanitizeCfiCrossDso) {
432     CodeGenFunction(*this).EmitCfiCheckFail();
433     CodeGenFunction(*this).EmitCfiCheckStub();
434   }
435   emitAtAvailableLinkGuard();
436   emitLLVMUsed();
437   if (SanStats)
438     SanStats->finish();
439 
440   if (CodeGenOpts.Autolink &&
441       (Context.getLangOpts().Modules || !LinkerOptionsMetadata.empty())) {
442     EmitModuleLinkOptions();
443   }
444 
445   // Record mregparm value now so it is visible through rest of codegen.
446   if (Context.getTargetInfo().getTriple().getArch() == llvm::Triple::x86)
447     getModule().addModuleFlag(llvm::Module::Error, "NumRegisterParameters",
448                               CodeGenOpts.NumRegisterParameters);
449 
450   if (CodeGenOpts.DwarfVersion) {
451     // We actually want the latest version when there are conflicts.
452     // We can change from Warning to Latest if such mode is supported.
453     getModule().addModuleFlag(llvm::Module::Warning, "Dwarf Version",
454                               CodeGenOpts.DwarfVersion);
455   }
456   if (CodeGenOpts.EmitCodeView) {
457     // Indicate that we want CodeView in the metadata.
458     getModule().addModuleFlag(llvm::Module::Warning, "CodeView", 1);
459   }
460   if (CodeGenOpts.ControlFlowGuard) {
461     // We want function ID tables for Control Flow Guard.
462     getModule().addModuleFlag(llvm::Module::Warning, "cfguard", 1);
463   }
464   if (CodeGenOpts.OptimizationLevel > 0 && CodeGenOpts.StrictVTablePointers) {
465     // We don't support LTO with 2 with different StrictVTablePointers
466     // FIXME: we could support it by stripping all the information introduced
467     // by StrictVTablePointers.
468 
469     getModule().addModuleFlag(llvm::Module::Error, "StrictVTablePointers",1);
470 
471     llvm::Metadata *Ops[2] = {
472               llvm::MDString::get(VMContext, "StrictVTablePointers"),
473               llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
474                   llvm::Type::getInt32Ty(VMContext), 1))};
475 
476     getModule().addModuleFlag(llvm::Module::Require,
477                               "StrictVTablePointersRequirement",
478                               llvm::MDNode::get(VMContext, Ops));
479   }
480   if (DebugInfo)
481     // We support a single version in the linked module. The LLVM
482     // parser will drop debug info with a different version number
483     // (and warn about it, too).
484     getModule().addModuleFlag(llvm::Module::Warning, "Debug Info Version",
485                               llvm::DEBUG_METADATA_VERSION);
486 
487   // We need to record the widths of enums and wchar_t, so that we can generate
488   // the correct build attributes in the ARM backend. wchar_size is also used by
489   // TargetLibraryInfo.
490   uint64_t WCharWidth =
491       Context.getTypeSizeInChars(Context.getWideCharType()).getQuantity();
492   getModule().addModuleFlag(llvm::Module::Error, "wchar_size", WCharWidth);
493 
494   llvm::Triple::ArchType Arch = Context.getTargetInfo().getTriple().getArch();
495   if (   Arch == llvm::Triple::arm
496       || Arch == llvm::Triple::armeb
497       || Arch == llvm::Triple::thumb
498       || Arch == llvm::Triple::thumbeb) {
499     // The minimum width of an enum in bytes
500     uint64_t EnumWidth = Context.getLangOpts().ShortEnums ? 1 : 4;
501     getModule().addModuleFlag(llvm::Module::Error, "min_enum_size", EnumWidth);
502   }
503 
504   if (CodeGenOpts.SanitizeCfiCrossDso) {
505     // Indicate that we want cross-DSO control flow integrity checks.
506     getModule().addModuleFlag(llvm::Module::Override, "Cross-DSO CFI", 1);
507   }
508 
509   if (CodeGenOpts.CFProtectionReturn &&
510       Target.checkCFProtectionReturnSupported(getDiags())) {
511     // Indicate that we want to instrument return control flow protection.
512     getModule().addModuleFlag(llvm::Module::Override, "cf-protection-return",
513                               1);
514   }
515 
516   if (CodeGenOpts.CFProtectionBranch &&
517       Target.checkCFProtectionBranchSupported(getDiags())) {
518     // Indicate that we want to instrument branch control flow protection.
519     getModule().addModuleFlag(llvm::Module::Override, "cf-protection-branch",
520                               1);
521   }
522 
523   if (LangOpts.CUDAIsDevice && getTriple().isNVPTX()) {
524     // Indicate whether __nvvm_reflect should be configured to flush denormal
525     // floating point values to 0.  (This corresponds to its "__CUDA_FTZ"
526     // property.)
527     getModule().addModuleFlag(llvm::Module::Override, "nvvm-reflect-ftz",
528                               LangOpts.CUDADeviceFlushDenormalsToZero ? 1 : 0);
529   }
530 
531   // Emit OpenCL specific module metadata: OpenCL/SPIR version.
532   if (LangOpts.OpenCL) {
533     EmitOpenCLMetadata();
534     // Emit SPIR version.
535     if (getTriple().getArch() == llvm::Triple::spir ||
536         getTriple().getArch() == llvm::Triple::spir64) {
537       // SPIR v2.0 s2.12 - The SPIR version used by the module is stored in the
538       // opencl.spir.version named metadata.
539       llvm::Metadata *SPIRVerElts[] = {
540           llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
541               Int32Ty, LangOpts.OpenCLVersion / 100)),
542           llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
543               Int32Ty, (LangOpts.OpenCLVersion / 100 > 1) ? 0 : 2))};
544       llvm::NamedMDNode *SPIRVerMD =
545           TheModule.getOrInsertNamedMetadata("opencl.spir.version");
546       llvm::LLVMContext &Ctx = TheModule.getContext();
547       SPIRVerMD->addOperand(llvm::MDNode::get(Ctx, SPIRVerElts));
548     }
549   }
550 
551   if (uint32_t PLevel = Context.getLangOpts().PICLevel) {
552     assert(PLevel < 3 && "Invalid PIC Level");
553     getModule().setPICLevel(static_cast<llvm::PICLevel::Level>(PLevel));
554     if (Context.getLangOpts().PIE)
555       getModule().setPIELevel(static_cast<llvm::PIELevel::Level>(PLevel));
556   }
557 
558   SimplifyPersonality();
559 
560   if (getCodeGenOpts().EmitDeclMetadata)
561     EmitDeclMetadata();
562 
563   if (getCodeGenOpts().EmitGcovArcs || getCodeGenOpts().EmitGcovNotes)
564     EmitCoverageFile();
565 
566   if (DebugInfo)
567     DebugInfo->finalize();
568 
569   EmitVersionIdentMetadata();
570 
571   EmitTargetMetadata();
572 }
573 
574 void CodeGenModule::EmitOpenCLMetadata() {
575   // SPIR v2.0 s2.13 - The OpenCL version used by the module is stored in the
576   // opencl.ocl.version named metadata node.
577   llvm::Metadata *OCLVerElts[] = {
578       llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
579           Int32Ty, LangOpts.OpenCLVersion / 100)),
580       llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
581           Int32Ty, (LangOpts.OpenCLVersion % 100) / 10))};
582   llvm::NamedMDNode *OCLVerMD =
583       TheModule.getOrInsertNamedMetadata("opencl.ocl.version");
584   llvm::LLVMContext &Ctx = TheModule.getContext();
585   OCLVerMD->addOperand(llvm::MDNode::get(Ctx, OCLVerElts));
586 }
587 
588 void CodeGenModule::UpdateCompletedType(const TagDecl *TD) {
589   // Make sure that this type is translated.
590   Types.UpdateCompletedType(TD);
591 }
592 
593 void CodeGenModule::RefreshTypeCacheForClass(const CXXRecordDecl *RD) {
594   // Make sure that this type is translated.
595   Types.RefreshTypeCacheForClass(RD);
596 }
597 
598 llvm::MDNode *CodeGenModule::getTBAATypeInfo(QualType QTy) {
599   if (!TBAA)
600     return nullptr;
601   return TBAA->getTypeInfo(QTy);
602 }
603 
604 TBAAAccessInfo CodeGenModule::getTBAAAccessInfo(QualType AccessType) {
605   // Pointee values may have incomplete types, but they shall never be
606   // dereferenced.
607   if (AccessType->isIncompleteType())
608     return TBAAAccessInfo::getIncompleteInfo();
609 
610   uint64_t Size = Context.getTypeSizeInChars(AccessType).getQuantity();
611   return TBAAAccessInfo(getTBAATypeInfo(AccessType), Size);
612 }
613 
614 TBAAAccessInfo
615 CodeGenModule::getTBAAVTablePtrAccessInfo(llvm::Type *VTablePtrType) {
616   if (!TBAA)
617     return TBAAAccessInfo();
618   return TBAA->getVTablePtrAccessInfo(VTablePtrType);
619 }
620 
621 llvm::MDNode *CodeGenModule::getTBAAStructInfo(QualType QTy) {
622   if (!TBAA)
623     return nullptr;
624   return TBAA->getTBAAStructInfo(QTy);
625 }
626 
627 llvm::MDNode *CodeGenModule::getTBAABaseTypeInfo(QualType QTy) {
628   if (!TBAA)
629     return nullptr;
630   return TBAA->getBaseTypeInfo(QTy);
631 }
632 
633 llvm::MDNode *CodeGenModule::getTBAAAccessTagInfo(TBAAAccessInfo Info) {
634   if (!TBAA)
635     return nullptr;
636   return TBAA->getAccessTagInfo(Info);
637 }
638 
639 TBAAAccessInfo CodeGenModule::mergeTBAAInfoForCast(TBAAAccessInfo SourceInfo,
640                                                    TBAAAccessInfo TargetInfo) {
641   if (!TBAA)
642     return TBAAAccessInfo();
643   return TBAA->mergeTBAAInfoForCast(SourceInfo, TargetInfo);
644 }
645 
646 TBAAAccessInfo
647 CodeGenModule::mergeTBAAInfoForConditionalOperator(TBAAAccessInfo InfoA,
648                                                    TBAAAccessInfo InfoB) {
649   if (!TBAA)
650     return TBAAAccessInfo();
651   return TBAA->mergeTBAAInfoForConditionalOperator(InfoA, InfoB);
652 }
653 
654 TBAAAccessInfo
655 CodeGenModule::mergeTBAAInfoForMemoryTransfer(TBAAAccessInfo DestInfo,
656                                               TBAAAccessInfo SrcInfo) {
657   if (!TBAA)
658     return TBAAAccessInfo();
659   return TBAA->mergeTBAAInfoForConditionalOperator(DestInfo, SrcInfo);
660 }
661 
662 void CodeGenModule::DecorateInstructionWithTBAA(llvm::Instruction *Inst,
663                                                 TBAAAccessInfo TBAAInfo) {
664   if (llvm::MDNode *Tag = getTBAAAccessTagInfo(TBAAInfo))
665     Inst->setMetadata(llvm::LLVMContext::MD_tbaa, Tag);
666 }
667 
668 void CodeGenModule::DecorateInstructionWithInvariantGroup(
669     llvm::Instruction *I, const CXXRecordDecl *RD) {
670   I->setMetadata(llvm::LLVMContext::MD_invariant_group,
671                  llvm::MDNode::get(getLLVMContext(), {}));
672 }
673 
674 void CodeGenModule::Error(SourceLocation loc, StringRef message) {
675   unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, "%0");
676   getDiags().Report(Context.getFullLoc(loc), diagID) << message;
677 }
678 
679 /// ErrorUnsupported - Print out an error that codegen doesn't support the
680 /// specified stmt yet.
681 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type) {
682   unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
683                                                "cannot compile this %0 yet");
684   std::string Msg = Type;
685   getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID)
686     << Msg << S->getSourceRange();
687 }
688 
689 /// ErrorUnsupported - Print out an error that codegen doesn't support the
690 /// specified decl yet.
691 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type) {
692   unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
693                                                "cannot compile this %0 yet");
694   std::string Msg = Type;
695   getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg;
696 }
697 
698 llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) {
699   return llvm::ConstantInt::get(SizeTy, size.getQuantity());
700 }
701 
702 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV,
703                                         const NamedDecl *D) const {
704   if (GV->hasDLLImportStorageClass())
705     return;
706   // Internal definitions always have default visibility.
707   if (GV->hasLocalLinkage()) {
708     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
709     return;
710   }
711 
712   // Set visibility for definitions.
713   LinkageInfo LV = D->getLinkageAndVisibility();
714   if (LV.isVisibilityExplicit() || !GV->isDeclarationForLinker())
715     GV->setVisibility(GetLLVMVisibility(LV.getVisibility()));
716 }
717 
718 static bool shouldAssumeDSOLocal(const CodeGenModule &CGM,
719                                  llvm::GlobalValue *GV, const NamedDecl *D) {
720   const llvm::Triple &TT = CGM.getTriple();
721   // Only handle ELF for now.
722   if (!TT.isOSBinFormatELF())
723     return false;
724 
725   // If this is not an executable, don't assume anything is local.
726   const auto &CGOpts = CGM.getCodeGenOpts();
727   llvm::Reloc::Model RM = CGOpts.RelocationModel;
728   const auto &LOpts = CGM.getLangOpts();
729   if (RM != llvm::Reloc::Static && !LOpts.PIE)
730     return false;
731 
732   // A definition cannot be preempted from an executable.
733   if (!GV->isDeclarationForLinker())
734     return true;
735 
736   // Most PIC code sequences that assume that a symbol is local cannot produce a
737   // 0 if it turns out the symbol is undefined. While this is ABI and relocation
738   // depended, it seems worth it to handle it here.
739   if (RM == llvm::Reloc::PIC_ && GV->hasExternalWeakLinkage())
740     return false;
741 
742   // PPC has no copy relocations and cannot use a plt entry as a symbol address.
743   llvm::Triple::ArchType Arch = TT.getArch();
744   if (Arch == llvm::Triple::ppc || Arch == llvm::Triple::ppc64 ||
745       Arch == llvm::Triple::ppc64le)
746     return false;
747 
748   // If we can use copy relocations we can assume it is local.
749   if (isa<VarDecl>(D) &&
750       (RM == llvm::Reloc::Static || CGOpts.PIECopyRelocations))
751     return true;
752 
753   // If we can use a plt entry as the symbol address we can assume it
754   // is local.
755   // FIXME: This should work for PIE, but the gold linker doesn't support it.
756   if (isa<FunctionDecl>(D) && !CGOpts.NoPLT && RM == llvm::Reloc::Static)
757     return true;
758 
759   // Otherwise don't assue it is local.
760   return false;
761 }
762 
763 void CodeGenModule::setDSOLocal(llvm::GlobalValue *GV,
764                                 const NamedDecl *D) const {
765   if (shouldAssumeDSOLocal(*this, GV, D))
766     GV->setDSOLocal(true);
767 }
768 
769 void CodeGenModule::setGVProperties(llvm::GlobalValue *GV,
770                                     const NamedDecl *D) const {
771   setGlobalVisibility(GV, D);
772   setDSOLocal(GV, D);
773 }
774 
775 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(StringRef S) {
776   return llvm::StringSwitch<llvm::GlobalVariable::ThreadLocalMode>(S)
777       .Case("global-dynamic", llvm::GlobalVariable::GeneralDynamicTLSModel)
778       .Case("local-dynamic", llvm::GlobalVariable::LocalDynamicTLSModel)
779       .Case("initial-exec", llvm::GlobalVariable::InitialExecTLSModel)
780       .Case("local-exec", llvm::GlobalVariable::LocalExecTLSModel);
781 }
782 
783 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(
784     CodeGenOptions::TLSModel M) {
785   switch (M) {
786   case CodeGenOptions::GeneralDynamicTLSModel:
787     return llvm::GlobalVariable::GeneralDynamicTLSModel;
788   case CodeGenOptions::LocalDynamicTLSModel:
789     return llvm::GlobalVariable::LocalDynamicTLSModel;
790   case CodeGenOptions::InitialExecTLSModel:
791     return llvm::GlobalVariable::InitialExecTLSModel;
792   case CodeGenOptions::LocalExecTLSModel:
793     return llvm::GlobalVariable::LocalExecTLSModel;
794   }
795   llvm_unreachable("Invalid TLS model!");
796 }
797 
798 void CodeGenModule::setTLSMode(llvm::GlobalValue *GV, const VarDecl &D) const {
799   assert(D.getTLSKind() && "setting TLS mode on non-TLS var!");
800 
801   llvm::GlobalValue::ThreadLocalMode TLM;
802   TLM = GetLLVMTLSModel(CodeGenOpts.getDefaultTLSModel());
803 
804   // Override the TLS model if it is explicitly specified.
805   if (const TLSModelAttr *Attr = D.getAttr<TLSModelAttr>()) {
806     TLM = GetLLVMTLSModel(Attr->getModel());
807   }
808 
809   GV->setThreadLocalMode(TLM);
810 }
811 
812 static void AppendTargetMangling(const CodeGenModule &CGM,
813                                  const TargetAttr *Attr, raw_ostream &Out) {
814   if (Attr->isDefaultVersion())
815     return;
816 
817   Out << '.';
818   const auto &Target = CGM.getTarget();
819   TargetAttr::ParsedTargetAttr Info =
820       Attr->parse([&Target](StringRef LHS, StringRef RHS) {
821                     // Multiversioning doesn't allow "no-${feature}", so we can
822                     // only have "+" prefixes here.
823                     assert(LHS.startswith("+") && RHS.startswith("+") &&
824                            "Features should always have a prefix.");
825                     return Target.multiVersionSortPriority(LHS.substr(1)) >
826                            Target.multiVersionSortPriority(RHS.substr(1));
827                   });
828 
829   bool IsFirst = true;
830 
831   if (!Info.Architecture.empty()) {
832     IsFirst = false;
833     Out << "arch_" << Info.Architecture;
834   }
835 
836   for (StringRef Feat : Info.Features) {
837     if (!IsFirst)
838       Out << '_';
839     IsFirst = false;
840     Out << Feat.substr(1);
841   }
842 }
843 
844 static std::string getMangledNameImpl(const CodeGenModule &CGM, GlobalDecl GD,
845                                       const NamedDecl *ND,
846                                       bool OmitTargetMangling = false) {
847   SmallString<256> Buffer;
848   llvm::raw_svector_ostream Out(Buffer);
849   MangleContext &MC = CGM.getCXXABI().getMangleContext();
850   if (MC.shouldMangleDeclName(ND)) {
851     llvm::raw_svector_ostream Out(Buffer);
852     if (const auto *D = dyn_cast<CXXConstructorDecl>(ND))
853       MC.mangleCXXCtor(D, GD.getCtorType(), Out);
854     else if (const auto *D = dyn_cast<CXXDestructorDecl>(ND))
855       MC.mangleCXXDtor(D, GD.getDtorType(), Out);
856     else
857       MC.mangleName(ND, Out);
858   } else {
859     IdentifierInfo *II = ND->getIdentifier();
860     assert(II && "Attempt to mangle unnamed decl.");
861     const auto *FD = dyn_cast<FunctionDecl>(ND);
862 
863     if (FD &&
864         FD->getType()->castAs<FunctionType>()->getCallConv() == CC_X86RegCall) {
865       llvm::raw_svector_ostream Out(Buffer);
866       Out << "__regcall3__" << II->getName();
867     } else {
868       Out << II->getName();
869     }
870   }
871 
872   if (const auto *FD = dyn_cast<FunctionDecl>(ND))
873     if (FD->isMultiVersion() && !OmitTargetMangling)
874       AppendTargetMangling(CGM, FD->getAttr<TargetAttr>(), Out);
875   return Out.str();
876 }
877 
878 void CodeGenModule::UpdateMultiVersionNames(GlobalDecl GD,
879                                             const FunctionDecl *FD) {
880   if (!FD->isMultiVersion())
881     return;
882 
883   // Get the name of what this would be without the 'target' attribute.  This
884   // allows us to lookup the version that was emitted when this wasn't a
885   // multiversion function.
886   std::string NonTargetName =
887       getMangledNameImpl(*this, GD, FD, /*OmitTargetMangling=*/true);
888   GlobalDecl OtherGD;
889   if (lookupRepresentativeDecl(NonTargetName, OtherGD)) {
890     assert(OtherGD.getCanonicalDecl()
891                .getDecl()
892                ->getAsFunction()
893                ->isMultiVersion() &&
894            "Other GD should now be a multiversioned function");
895     // OtherFD is the version of this function that was mangled BEFORE
896     // becoming a MultiVersion function.  It potentially needs to be updated.
897     const FunctionDecl *OtherFD =
898         OtherGD.getCanonicalDecl().getDecl()->getAsFunction();
899     std::string OtherName = getMangledNameImpl(*this, OtherGD, OtherFD);
900     // This is so that if the initial version was already the 'default'
901     // version, we don't try to update it.
902     if (OtherName != NonTargetName) {
903       // Remove instead of erase, since others may have stored the StringRef
904       // to this.
905       const auto ExistingRecord = Manglings.find(NonTargetName);
906       if (ExistingRecord != std::end(Manglings))
907         Manglings.remove(&(*ExistingRecord));
908       auto Result = Manglings.insert(std::make_pair(OtherName, OtherGD));
909       MangledDeclNames[OtherGD.getCanonicalDecl()] = Result.first->first();
910       if (llvm::GlobalValue *Entry = GetGlobalValue(NonTargetName))
911         Entry->setName(OtherName);
912     }
913   }
914 }
915 
916 StringRef CodeGenModule::getMangledName(GlobalDecl GD) {
917   GlobalDecl CanonicalGD = GD.getCanonicalDecl();
918 
919   // Some ABIs don't have constructor variants.  Make sure that base and
920   // complete constructors get mangled the same.
921   if (const auto *CD = dyn_cast<CXXConstructorDecl>(CanonicalGD.getDecl())) {
922     if (!getTarget().getCXXABI().hasConstructorVariants()) {
923       CXXCtorType OrigCtorType = GD.getCtorType();
924       assert(OrigCtorType == Ctor_Base || OrigCtorType == Ctor_Complete);
925       if (OrigCtorType == Ctor_Base)
926         CanonicalGD = GlobalDecl(CD, Ctor_Complete);
927     }
928   }
929 
930   auto FoundName = MangledDeclNames.find(CanonicalGD);
931   if (FoundName != MangledDeclNames.end())
932     return FoundName->second;
933 
934 
935   // Keep the first result in the case of a mangling collision.
936   const auto *ND = cast<NamedDecl>(GD.getDecl());
937   auto Result =
938       Manglings.insert(std::make_pair(getMangledNameImpl(*this, GD, ND), GD));
939   return MangledDeclNames[CanonicalGD] = Result.first->first();
940 }
941 
942 StringRef CodeGenModule::getBlockMangledName(GlobalDecl GD,
943                                              const BlockDecl *BD) {
944   MangleContext &MangleCtx = getCXXABI().getMangleContext();
945   const Decl *D = GD.getDecl();
946 
947   SmallString<256> Buffer;
948   llvm::raw_svector_ostream Out(Buffer);
949   if (!D)
950     MangleCtx.mangleGlobalBlock(BD,
951       dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()), Out);
952   else if (const auto *CD = dyn_cast<CXXConstructorDecl>(D))
953     MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out);
954   else if (const auto *DD = dyn_cast<CXXDestructorDecl>(D))
955     MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out);
956   else
957     MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out);
958 
959   auto Result = Manglings.insert(std::make_pair(Out.str(), BD));
960   return Result.first->first();
961 }
962 
963 llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) {
964   return getModule().getNamedValue(Name);
965 }
966 
967 /// AddGlobalCtor - Add a function to the list that will be called before
968 /// main() runs.
969 void CodeGenModule::AddGlobalCtor(llvm::Function *Ctor, int Priority,
970                                   llvm::Constant *AssociatedData) {
971   // FIXME: Type coercion of void()* types.
972   GlobalCtors.push_back(Structor(Priority, Ctor, AssociatedData));
973 }
974 
975 /// AddGlobalDtor - Add a function to the list that will be called
976 /// when the module is unloaded.
977 void CodeGenModule::AddGlobalDtor(llvm::Function *Dtor, int Priority) {
978   // FIXME: Type coercion of void()* types.
979   GlobalDtors.push_back(Structor(Priority, Dtor, nullptr));
980 }
981 
982 void CodeGenModule::EmitCtorList(CtorList &Fns, const char *GlobalName) {
983   if (Fns.empty()) return;
984 
985   // Ctor function type is void()*.
986   llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false);
987   llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy);
988 
989   // Get the type of a ctor entry, { i32, void ()*, i8* }.
990   llvm::StructType *CtorStructTy = llvm::StructType::get(
991       Int32Ty, llvm::PointerType::getUnqual(CtorFTy), VoidPtrTy);
992 
993   // Construct the constructor and destructor arrays.
994   ConstantInitBuilder builder(*this);
995   auto ctors = builder.beginArray(CtorStructTy);
996   for (const auto &I : Fns) {
997     auto ctor = ctors.beginStruct(CtorStructTy);
998     ctor.addInt(Int32Ty, I.Priority);
999     ctor.add(llvm::ConstantExpr::getBitCast(I.Initializer, CtorPFTy));
1000     if (I.AssociatedData)
1001       ctor.add(llvm::ConstantExpr::getBitCast(I.AssociatedData, VoidPtrTy));
1002     else
1003       ctor.addNullPointer(VoidPtrTy);
1004     ctor.finishAndAddTo(ctors);
1005   }
1006 
1007   auto list =
1008     ctors.finishAndCreateGlobal(GlobalName, getPointerAlign(),
1009                                 /*constant*/ false,
1010                                 llvm::GlobalValue::AppendingLinkage);
1011 
1012   // The LTO linker doesn't seem to like it when we set an alignment
1013   // on appending variables.  Take it off as a workaround.
1014   list->setAlignment(0);
1015 
1016   Fns.clear();
1017 }
1018 
1019 llvm::GlobalValue::LinkageTypes
1020 CodeGenModule::getFunctionLinkage(GlobalDecl GD) {
1021   const auto *D = cast<FunctionDecl>(GD.getDecl());
1022 
1023   GVALinkage Linkage = getContext().GetGVALinkageForFunction(D);
1024 
1025   if (isa<CXXDestructorDecl>(D) &&
1026       getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D),
1027                                          GD.getDtorType())) {
1028     // Destructor variants in the Microsoft C++ ABI are always internal or
1029     // linkonce_odr thunks emitted on an as-needed basis.
1030     return Linkage == GVA_Internal ? llvm::GlobalValue::InternalLinkage
1031                                    : llvm::GlobalValue::LinkOnceODRLinkage;
1032   }
1033 
1034   if (isa<CXXConstructorDecl>(D) &&
1035       cast<CXXConstructorDecl>(D)->isInheritingConstructor() &&
1036       Context.getTargetInfo().getCXXABI().isMicrosoft()) {
1037     // Our approach to inheriting constructors is fundamentally different from
1038     // that used by the MS ABI, so keep our inheriting constructor thunks
1039     // internal rather than trying to pick an unambiguous mangling for them.
1040     return llvm::GlobalValue::InternalLinkage;
1041   }
1042 
1043   return getLLVMLinkageForDeclarator(D, Linkage, /*isConstantVariable=*/false);
1044 }
1045 
1046 void CodeGenModule::setFunctionDLLStorageClass(GlobalDecl GD, llvm::Function *F) {
1047   const auto *FD = cast<FunctionDecl>(GD.getDecl());
1048 
1049   if (const auto *Dtor = dyn_cast_or_null<CXXDestructorDecl>(FD)) {
1050     if (getCXXABI().useThunkForDtorVariant(Dtor, GD.getDtorType())) {
1051       // Don't dllexport/import destructor thunks.
1052       F->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
1053       return;
1054     }
1055   }
1056 
1057   if (FD->hasAttr<DLLImportAttr>())
1058     F->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass);
1059   else if (FD->hasAttr<DLLExportAttr>())
1060     F->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass);
1061   else
1062     F->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass);
1063 }
1064 
1065 llvm::ConstantInt *CodeGenModule::CreateCrossDsoCfiTypeId(llvm::Metadata *MD) {
1066   llvm::MDString *MDS = dyn_cast<llvm::MDString>(MD);
1067   if (!MDS) return nullptr;
1068 
1069   return llvm::ConstantInt::get(Int64Ty, llvm::MD5Hash(MDS->getString()));
1070 }
1071 
1072 void CodeGenModule::setFunctionDefinitionAttributes(const FunctionDecl *D,
1073                                                     llvm::Function *F) {
1074   setNonAliasAttributes(D, F);
1075 }
1076 
1077 void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D,
1078                                               const CGFunctionInfo &Info,
1079                                               llvm::Function *F) {
1080   unsigned CallingConv;
1081   llvm::AttributeList PAL;
1082   ConstructAttributeList(F->getName(), Info, D, PAL, CallingConv, false);
1083   F->setAttributes(PAL);
1084   F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv));
1085 }
1086 
1087 /// Determines whether the language options require us to model
1088 /// unwind exceptions.  We treat -fexceptions as mandating this
1089 /// except under the fragile ObjC ABI with only ObjC exceptions
1090 /// enabled.  This means, for example, that C with -fexceptions
1091 /// enables this.
1092 static bool hasUnwindExceptions(const LangOptions &LangOpts) {
1093   // If exceptions are completely disabled, obviously this is false.
1094   if (!LangOpts.Exceptions) return false;
1095 
1096   // If C++ exceptions are enabled, this is true.
1097   if (LangOpts.CXXExceptions) return true;
1098 
1099   // If ObjC exceptions are enabled, this depends on the ABI.
1100   if (LangOpts.ObjCExceptions) {
1101     return LangOpts.ObjCRuntime.hasUnwindExceptions();
1102   }
1103 
1104   return true;
1105 }
1106 
1107 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D,
1108                                                            llvm::Function *F) {
1109   llvm::AttrBuilder B;
1110 
1111   if (CodeGenOpts.UnwindTables)
1112     B.addAttribute(llvm::Attribute::UWTable);
1113 
1114   if (!hasUnwindExceptions(LangOpts))
1115     B.addAttribute(llvm::Attribute::NoUnwind);
1116 
1117   if (LangOpts.getStackProtector() == LangOptions::SSPOn)
1118     B.addAttribute(llvm::Attribute::StackProtect);
1119   else if (LangOpts.getStackProtector() == LangOptions::SSPStrong)
1120     B.addAttribute(llvm::Attribute::StackProtectStrong);
1121   else if (LangOpts.getStackProtector() == LangOptions::SSPReq)
1122     B.addAttribute(llvm::Attribute::StackProtectReq);
1123 
1124   if (!D) {
1125     // If we don't have a declaration to control inlining, the function isn't
1126     // explicitly marked as alwaysinline for semantic reasons, and inlining is
1127     // disabled, mark the function as noinline.
1128     if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline) &&
1129         CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining)
1130       B.addAttribute(llvm::Attribute::NoInline);
1131 
1132     F->addAttributes(llvm::AttributeList::FunctionIndex, B);
1133     return;
1134   }
1135 
1136   // Track whether we need to add the optnone LLVM attribute,
1137   // starting with the default for this optimization level.
1138   bool ShouldAddOptNone =
1139       !CodeGenOpts.DisableO0ImplyOptNone && CodeGenOpts.OptimizationLevel == 0;
1140   // We can't add optnone in the following cases, it won't pass the verifier.
1141   ShouldAddOptNone &= !D->hasAttr<MinSizeAttr>();
1142   ShouldAddOptNone &= !F->hasFnAttribute(llvm::Attribute::AlwaysInline);
1143   ShouldAddOptNone &= !D->hasAttr<AlwaysInlineAttr>();
1144 
1145   if (ShouldAddOptNone || D->hasAttr<OptimizeNoneAttr>()) {
1146     B.addAttribute(llvm::Attribute::OptimizeNone);
1147 
1148     // OptimizeNone implies noinline; we should not be inlining such functions.
1149     B.addAttribute(llvm::Attribute::NoInline);
1150     assert(!F->hasFnAttribute(llvm::Attribute::AlwaysInline) &&
1151            "OptimizeNone and AlwaysInline on same function!");
1152 
1153     // We still need to handle naked functions even though optnone subsumes
1154     // much of their semantics.
1155     if (D->hasAttr<NakedAttr>())
1156       B.addAttribute(llvm::Attribute::Naked);
1157 
1158     // OptimizeNone wins over OptimizeForSize and MinSize.
1159     F->removeFnAttr(llvm::Attribute::OptimizeForSize);
1160     F->removeFnAttr(llvm::Attribute::MinSize);
1161   } else if (D->hasAttr<NakedAttr>()) {
1162     // Naked implies noinline: we should not be inlining such functions.
1163     B.addAttribute(llvm::Attribute::Naked);
1164     B.addAttribute(llvm::Attribute::NoInline);
1165   } else if (D->hasAttr<NoDuplicateAttr>()) {
1166     B.addAttribute(llvm::Attribute::NoDuplicate);
1167   } else if (D->hasAttr<NoInlineAttr>()) {
1168     B.addAttribute(llvm::Attribute::NoInline);
1169   } else if (D->hasAttr<AlwaysInlineAttr>() &&
1170              !F->hasFnAttribute(llvm::Attribute::NoInline)) {
1171     // (noinline wins over always_inline, and we can't specify both in IR)
1172     B.addAttribute(llvm::Attribute::AlwaysInline);
1173   } else if (CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining) {
1174     // If we're not inlining, then force everything that isn't always_inline to
1175     // carry an explicit noinline attribute.
1176     if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline))
1177       B.addAttribute(llvm::Attribute::NoInline);
1178   } else {
1179     // Otherwise, propagate the inline hint attribute and potentially use its
1180     // absence to mark things as noinline.
1181     if (auto *FD = dyn_cast<FunctionDecl>(D)) {
1182       if (any_of(FD->redecls(), [&](const FunctionDecl *Redecl) {
1183             return Redecl->isInlineSpecified();
1184           })) {
1185         B.addAttribute(llvm::Attribute::InlineHint);
1186       } else if (CodeGenOpts.getInlining() ==
1187                      CodeGenOptions::OnlyHintInlining &&
1188                  !FD->isInlined() &&
1189                  !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) {
1190         B.addAttribute(llvm::Attribute::NoInline);
1191       }
1192     }
1193   }
1194 
1195   // Add other optimization related attributes if we are optimizing this
1196   // function.
1197   if (!D->hasAttr<OptimizeNoneAttr>()) {
1198     if (D->hasAttr<ColdAttr>()) {
1199       if (!ShouldAddOptNone)
1200         B.addAttribute(llvm::Attribute::OptimizeForSize);
1201       B.addAttribute(llvm::Attribute::Cold);
1202     }
1203 
1204     if (D->hasAttr<MinSizeAttr>())
1205       B.addAttribute(llvm::Attribute::MinSize);
1206   }
1207 
1208   F->addAttributes(llvm::AttributeList::FunctionIndex, B);
1209 
1210   unsigned alignment = D->getMaxAlignment() / Context.getCharWidth();
1211   if (alignment)
1212     F->setAlignment(alignment);
1213 
1214   // Some C++ ABIs require 2-byte alignment for member functions, in order to
1215   // reserve a bit for differentiating between virtual and non-virtual member
1216   // functions. If the current target's C++ ABI requires this and this is a
1217   // member function, set its alignment accordingly.
1218   if (getTarget().getCXXABI().areMemberFunctionsAligned()) {
1219     if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D))
1220       F->setAlignment(2);
1221   }
1222 
1223   // In the cross-dso CFI mode, we want !type attributes on definitions only.
1224   if (CodeGenOpts.SanitizeCfiCrossDso)
1225     if (auto *FD = dyn_cast<FunctionDecl>(D))
1226       CreateFunctionTypeMetadata(FD, F);
1227 }
1228 
1229 void CodeGenModule::SetCommonAttributes(const Decl *D,
1230                                         llvm::GlobalValue *GV) {
1231   if (const auto *ND = dyn_cast_or_null<NamedDecl>(D))
1232     setGVProperties(GV, ND);
1233   else
1234     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
1235 
1236   if (D && D->hasAttr<UsedAttr>())
1237     addUsedGlobal(GV);
1238 }
1239 
1240 void CodeGenModule::setAliasAttributes(const Decl *D,
1241                                        llvm::GlobalValue *GV) {
1242   SetCommonAttributes(D, GV);
1243 
1244   // Process the dllexport attribute based on whether the original definition
1245   // (not necessarily the aliasee) was exported.
1246   if (D->hasAttr<DLLExportAttr>())
1247     GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass);
1248 }
1249 
1250 void CodeGenModule::setNonAliasAttributes(const Decl *D,
1251                                           llvm::GlobalObject *GO) {
1252   SetCommonAttributes(D, GO);
1253 
1254   if (D) {
1255     if (auto *GV = dyn_cast<llvm::GlobalVariable>(GO)) {
1256       if (auto *SA = D->getAttr<PragmaClangBSSSectionAttr>())
1257         GV->addAttribute("bss-section", SA->getName());
1258       if (auto *SA = D->getAttr<PragmaClangDataSectionAttr>())
1259         GV->addAttribute("data-section", SA->getName());
1260       if (auto *SA = D->getAttr<PragmaClangRodataSectionAttr>())
1261         GV->addAttribute("rodata-section", SA->getName());
1262     }
1263 
1264     if (auto *F = dyn_cast<llvm::Function>(GO)) {
1265       if (auto *SA = D->getAttr<PragmaClangTextSectionAttr>())
1266        if (!D->getAttr<SectionAttr>())
1267          F->addFnAttr("implicit-section-name", SA->getName());
1268     }
1269 
1270     if (const SectionAttr *SA = D->getAttr<SectionAttr>())
1271       GO->setSection(SA->getName());
1272   }
1273 
1274   getTargetCodeGenInfo().setTargetAttributes(D, GO, *this);
1275 }
1276 
1277 void CodeGenModule::SetInternalFunctionAttributes(const Decl *D,
1278                                                   llvm::Function *F,
1279                                                   const CGFunctionInfo &FI) {
1280   SetLLVMFunctionAttributes(D, FI, F);
1281   SetLLVMFunctionAttributesForDefinition(D, F);
1282 
1283   F->setLinkage(llvm::Function::InternalLinkage);
1284 
1285   setNonAliasAttributes(D, F);
1286 }
1287 
1288 static void setLinkageForGV(llvm::GlobalValue *GV,
1289                             const NamedDecl *ND) {
1290   // Set linkage and visibility in case we never see a definition.
1291   LinkageInfo LV = ND->getLinkageAndVisibility();
1292   if (!isExternallyVisible(LV.getLinkage())) {
1293     // Don't set internal linkage on declarations.
1294   } else {
1295     if (ND->hasAttr<DLLImportAttr>()) {
1296       GV->setLinkage(llvm::GlobalValue::ExternalLinkage);
1297       GV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass);
1298     } else if (ND->hasAttr<DLLExportAttr>()) {
1299       GV->setLinkage(llvm::GlobalValue::ExternalLinkage);
1300     } else if (ND->hasAttr<WeakAttr>() || ND->isWeakImported()) {
1301       // "extern_weak" is overloaded in LLVM; we probably should have
1302       // separate linkage types for this.
1303       GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage);
1304     }
1305   }
1306 }
1307 
1308 void CodeGenModule::CreateFunctionTypeMetadata(const FunctionDecl *FD,
1309                                                llvm::Function *F) {
1310   // Only if we are checking indirect calls.
1311   if (!LangOpts.Sanitize.has(SanitizerKind::CFIICall))
1312     return;
1313 
1314   // Non-static class methods are handled via vtable pointer checks elsewhere.
1315   if (isa<CXXMethodDecl>(FD) && !cast<CXXMethodDecl>(FD)->isStatic())
1316     return;
1317 
1318   // Additionally, if building with cross-DSO support...
1319   if (CodeGenOpts.SanitizeCfiCrossDso) {
1320     // Skip available_externally functions. They won't be codegen'ed in the
1321     // current module anyway.
1322     if (getContext().GetGVALinkageForFunction(FD) == GVA_AvailableExternally)
1323       return;
1324   }
1325 
1326   llvm::Metadata *MD = CreateMetadataIdentifierForType(FD->getType());
1327   F->addTypeMetadata(0, MD);
1328   F->addTypeMetadata(0, CreateMetadataIdentifierGeneralized(FD->getType()));
1329 
1330   // Emit a hash-based bit set entry for cross-DSO calls.
1331   if (CodeGenOpts.SanitizeCfiCrossDso)
1332     if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD))
1333       F->addTypeMetadata(0, llvm::ConstantAsMetadata::get(CrossDsoTypeId));
1334 }
1335 
1336 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD, llvm::Function *F,
1337                                           bool IsIncompleteFunction,
1338                                           bool IsThunk) {
1339 
1340   if (llvm::Intrinsic::ID IID = F->getIntrinsicID()) {
1341     // If this is an intrinsic function, set the function's attributes
1342     // to the intrinsic's attributes.
1343     F->setAttributes(llvm::Intrinsic::getAttributes(getLLVMContext(), IID));
1344     return;
1345   }
1346 
1347   const auto *FD = cast<FunctionDecl>(GD.getDecl());
1348 
1349   if (!IsIncompleteFunction) {
1350     SetLLVMFunctionAttributes(FD, getTypes().arrangeGlobalDeclaration(GD), F);
1351     // Setup target-specific attributes.
1352     if (F->isDeclaration())
1353       getTargetCodeGenInfo().setTargetAttributes(FD, F, *this);
1354   }
1355 
1356   // Add the Returned attribute for "this", except for iOS 5 and earlier
1357   // where substantial code, including the libstdc++ dylib, was compiled with
1358   // GCC and does not actually return "this".
1359   if (!IsThunk && getCXXABI().HasThisReturn(GD) &&
1360       !(getTriple().isiOS() && getTriple().isOSVersionLT(6))) {
1361     assert(!F->arg_empty() &&
1362            F->arg_begin()->getType()
1363              ->canLosslesslyBitCastTo(F->getReturnType()) &&
1364            "unexpected this return");
1365     F->addAttribute(1, llvm::Attribute::Returned);
1366   }
1367 
1368   // Only a few attributes are set on declarations; these may later be
1369   // overridden by a definition.
1370 
1371   setLinkageForGV(F, FD);
1372   setGVProperties(F, FD);
1373 
1374   if (FD->getAttr<PragmaClangTextSectionAttr>()) {
1375     F->addFnAttr("implicit-section-name");
1376   }
1377 
1378   if (const SectionAttr *SA = FD->getAttr<SectionAttr>())
1379     F->setSection(SA->getName());
1380 
1381   if (FD->isReplaceableGlobalAllocationFunction()) {
1382     // A replaceable global allocation function does not act like a builtin by
1383     // default, only if it is invoked by a new-expression or delete-expression.
1384     F->addAttribute(llvm::AttributeList::FunctionIndex,
1385                     llvm::Attribute::NoBuiltin);
1386 
1387     // A sane operator new returns a non-aliasing pointer.
1388     // FIXME: Also add NonNull attribute to the return value
1389     // for the non-nothrow forms?
1390     auto Kind = FD->getDeclName().getCXXOverloadedOperator();
1391     if (getCodeGenOpts().AssumeSaneOperatorNew &&
1392         (Kind == OO_New || Kind == OO_Array_New))
1393       F->addAttribute(llvm::AttributeList::ReturnIndex,
1394                       llvm::Attribute::NoAlias);
1395   }
1396 
1397   if (isa<CXXConstructorDecl>(FD) || isa<CXXDestructorDecl>(FD))
1398     F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
1399   else if (const auto *MD = dyn_cast<CXXMethodDecl>(FD))
1400     if (MD->isVirtual())
1401       F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
1402 
1403   // Don't emit entries for function declarations in the cross-DSO mode. This
1404   // is handled with better precision by the receiving DSO.
1405   if (!CodeGenOpts.SanitizeCfiCrossDso)
1406     CreateFunctionTypeMetadata(FD, F);
1407 
1408   if (getLangOpts().OpenMP && FD->hasAttr<OMPDeclareSimdDeclAttr>())
1409     getOpenMPRuntime().emitDeclareSimdFunction(FD, F);
1410 }
1411 
1412 void CodeGenModule::addUsedGlobal(llvm::GlobalValue *GV) {
1413   assert(!GV->isDeclaration() &&
1414          "Only globals with definition can force usage.");
1415   LLVMUsed.emplace_back(GV);
1416 }
1417 
1418 void CodeGenModule::addCompilerUsedGlobal(llvm::GlobalValue *GV) {
1419   assert(!GV->isDeclaration() &&
1420          "Only globals with definition can force usage.");
1421   LLVMCompilerUsed.emplace_back(GV);
1422 }
1423 
1424 static void emitUsed(CodeGenModule &CGM, StringRef Name,
1425                      std::vector<llvm::WeakTrackingVH> &List) {
1426   // Don't create llvm.used if there is no need.
1427   if (List.empty())
1428     return;
1429 
1430   // Convert List to what ConstantArray needs.
1431   SmallVector<llvm::Constant*, 8> UsedArray;
1432   UsedArray.resize(List.size());
1433   for (unsigned i = 0, e = List.size(); i != e; ++i) {
1434     UsedArray[i] =
1435         llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(
1436             cast<llvm::Constant>(&*List[i]), CGM.Int8PtrTy);
1437   }
1438 
1439   if (UsedArray.empty())
1440     return;
1441   llvm::ArrayType *ATy = llvm::ArrayType::get(CGM.Int8PtrTy, UsedArray.size());
1442 
1443   auto *GV = new llvm::GlobalVariable(
1444       CGM.getModule(), ATy, false, llvm::GlobalValue::AppendingLinkage,
1445       llvm::ConstantArray::get(ATy, UsedArray), Name);
1446 
1447   GV->setSection("llvm.metadata");
1448 }
1449 
1450 void CodeGenModule::emitLLVMUsed() {
1451   emitUsed(*this, "llvm.used", LLVMUsed);
1452   emitUsed(*this, "llvm.compiler.used", LLVMCompilerUsed);
1453 }
1454 
1455 void CodeGenModule::AppendLinkerOptions(StringRef Opts) {
1456   auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opts);
1457   LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
1458 }
1459 
1460 void CodeGenModule::AddDetectMismatch(StringRef Name, StringRef Value) {
1461   llvm::SmallString<32> Opt;
1462   getTargetCodeGenInfo().getDetectMismatchOption(Name, Value, Opt);
1463   auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt);
1464   LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
1465 }
1466 
1467 void CodeGenModule::AddELFLibDirective(StringRef Lib) {
1468   auto &C = getLLVMContext();
1469   LinkerOptionsMetadata.push_back(llvm::MDNode::get(
1470       C, {llvm::MDString::get(C, "lib"), llvm::MDString::get(C, Lib)}));
1471 }
1472 
1473 void CodeGenModule::AddDependentLib(StringRef Lib) {
1474   llvm::SmallString<24> Opt;
1475   getTargetCodeGenInfo().getDependentLibraryOption(Lib, Opt);
1476   auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt);
1477   LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
1478 }
1479 
1480 /// \brief Add link options implied by the given module, including modules
1481 /// it depends on, using a postorder walk.
1482 static void addLinkOptionsPostorder(CodeGenModule &CGM, Module *Mod,
1483                                     SmallVectorImpl<llvm::MDNode *> &Metadata,
1484                                     llvm::SmallPtrSet<Module *, 16> &Visited) {
1485   // Import this module's parent.
1486   if (Mod->Parent && Visited.insert(Mod->Parent).second) {
1487     addLinkOptionsPostorder(CGM, Mod->Parent, Metadata, Visited);
1488   }
1489 
1490   // Import this module's dependencies.
1491   for (unsigned I = Mod->Imports.size(); I > 0; --I) {
1492     if (Visited.insert(Mod->Imports[I - 1]).second)
1493       addLinkOptionsPostorder(CGM, Mod->Imports[I-1], Metadata, Visited);
1494   }
1495 
1496   // Add linker options to link against the libraries/frameworks
1497   // described by this module.
1498   llvm::LLVMContext &Context = CGM.getLLVMContext();
1499   for (unsigned I = Mod->LinkLibraries.size(); I > 0; --I) {
1500     // Link against a framework.  Frameworks are currently Darwin only, so we
1501     // don't to ask TargetCodeGenInfo for the spelling of the linker option.
1502     if (Mod->LinkLibraries[I-1].IsFramework) {
1503       llvm::Metadata *Args[2] = {
1504           llvm::MDString::get(Context, "-framework"),
1505           llvm::MDString::get(Context, Mod->LinkLibraries[I - 1].Library)};
1506 
1507       Metadata.push_back(llvm::MDNode::get(Context, Args));
1508       continue;
1509     }
1510 
1511     // Link against a library.
1512     llvm::SmallString<24> Opt;
1513     CGM.getTargetCodeGenInfo().getDependentLibraryOption(
1514       Mod->LinkLibraries[I-1].Library, Opt);
1515     auto *OptString = llvm::MDString::get(Context, Opt);
1516     Metadata.push_back(llvm::MDNode::get(Context, OptString));
1517   }
1518 }
1519 
1520 void CodeGenModule::EmitModuleLinkOptions() {
1521   // Collect the set of all of the modules we want to visit to emit link
1522   // options, which is essentially the imported modules and all of their
1523   // non-explicit child modules.
1524   llvm::SetVector<clang::Module *> LinkModules;
1525   llvm::SmallPtrSet<clang::Module *, 16> Visited;
1526   SmallVector<clang::Module *, 16> Stack;
1527 
1528   // Seed the stack with imported modules.
1529   for (Module *M : ImportedModules) {
1530     // Do not add any link flags when an implementation TU of a module imports
1531     // a header of that same module.
1532     if (M->getTopLevelModuleName() == getLangOpts().CurrentModule &&
1533         !getLangOpts().isCompilingModule())
1534       continue;
1535     if (Visited.insert(M).second)
1536       Stack.push_back(M);
1537   }
1538 
1539   // Find all of the modules to import, making a little effort to prune
1540   // non-leaf modules.
1541   while (!Stack.empty()) {
1542     clang::Module *Mod = Stack.pop_back_val();
1543 
1544     bool AnyChildren = false;
1545 
1546     // Visit the submodules of this module.
1547     for (clang::Module::submodule_iterator Sub = Mod->submodule_begin(),
1548                                         SubEnd = Mod->submodule_end();
1549          Sub != SubEnd; ++Sub) {
1550       // Skip explicit children; they need to be explicitly imported to be
1551       // linked against.
1552       if ((*Sub)->IsExplicit)
1553         continue;
1554 
1555       if (Visited.insert(*Sub).second) {
1556         Stack.push_back(*Sub);
1557         AnyChildren = true;
1558       }
1559     }
1560 
1561     // We didn't find any children, so add this module to the list of
1562     // modules to link against.
1563     if (!AnyChildren) {
1564       LinkModules.insert(Mod);
1565     }
1566   }
1567 
1568   // Add link options for all of the imported modules in reverse topological
1569   // order.  We don't do anything to try to order import link flags with respect
1570   // to linker options inserted by things like #pragma comment().
1571   SmallVector<llvm::MDNode *, 16> MetadataArgs;
1572   Visited.clear();
1573   for (Module *M : LinkModules)
1574     if (Visited.insert(M).second)
1575       addLinkOptionsPostorder(*this, M, MetadataArgs, Visited);
1576   std::reverse(MetadataArgs.begin(), MetadataArgs.end());
1577   LinkerOptionsMetadata.append(MetadataArgs.begin(), MetadataArgs.end());
1578 
1579   // Add the linker options metadata flag.
1580   auto *NMD = getModule().getOrInsertNamedMetadata("llvm.linker.options");
1581   for (auto *MD : LinkerOptionsMetadata)
1582     NMD->addOperand(MD);
1583 }
1584 
1585 void CodeGenModule::EmitDeferred() {
1586   // Emit code for any potentially referenced deferred decls.  Since a
1587   // previously unused static decl may become used during the generation of code
1588   // for a static function, iterate until no changes are made.
1589 
1590   if (!DeferredVTables.empty()) {
1591     EmitDeferredVTables();
1592 
1593     // Emitting a vtable doesn't directly cause more vtables to
1594     // become deferred, although it can cause functions to be
1595     // emitted that then need those vtables.
1596     assert(DeferredVTables.empty());
1597   }
1598 
1599   // Stop if we're out of both deferred vtables and deferred declarations.
1600   if (DeferredDeclsToEmit.empty())
1601     return;
1602 
1603   // Grab the list of decls to emit. If EmitGlobalDefinition schedules more
1604   // work, it will not interfere with this.
1605   std::vector<GlobalDecl> CurDeclsToEmit;
1606   CurDeclsToEmit.swap(DeferredDeclsToEmit);
1607 
1608   for (GlobalDecl &D : CurDeclsToEmit) {
1609     // We should call GetAddrOfGlobal with IsForDefinition set to true in order
1610     // to get GlobalValue with exactly the type we need, not something that
1611     // might had been created for another decl with the same mangled name but
1612     // different type.
1613     llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>(
1614         GetAddrOfGlobal(D, ForDefinition));
1615 
1616     // In case of different address spaces, we may still get a cast, even with
1617     // IsForDefinition equal to true. Query mangled names table to get
1618     // GlobalValue.
1619     if (!GV)
1620       GV = GetGlobalValue(getMangledName(D));
1621 
1622     // Make sure GetGlobalValue returned non-null.
1623     assert(GV);
1624 
1625     // Check to see if we've already emitted this.  This is necessary
1626     // for a couple of reasons: first, decls can end up in the
1627     // deferred-decls queue multiple times, and second, decls can end
1628     // up with definitions in unusual ways (e.g. by an extern inline
1629     // function acquiring a strong function redefinition).  Just
1630     // ignore these cases.
1631     if (!GV->isDeclaration())
1632       continue;
1633 
1634     // Otherwise, emit the definition and move on to the next one.
1635     EmitGlobalDefinition(D, GV);
1636 
1637     // If we found out that we need to emit more decls, do that recursively.
1638     // This has the advantage that the decls are emitted in a DFS and related
1639     // ones are close together, which is convenient for testing.
1640     if (!DeferredVTables.empty() || !DeferredDeclsToEmit.empty()) {
1641       EmitDeferred();
1642       assert(DeferredVTables.empty() && DeferredDeclsToEmit.empty());
1643     }
1644   }
1645 }
1646 
1647 void CodeGenModule::EmitVTablesOpportunistically() {
1648   // Try to emit external vtables as available_externally if they have emitted
1649   // all inlined virtual functions.  It runs after EmitDeferred() and therefore
1650   // is not allowed to create new references to things that need to be emitted
1651   // lazily. Note that it also uses fact that we eagerly emitting RTTI.
1652 
1653   assert((OpportunisticVTables.empty() || shouldOpportunisticallyEmitVTables())
1654          && "Only emit opportunistic vtables with optimizations");
1655 
1656   for (const CXXRecordDecl *RD : OpportunisticVTables) {
1657     assert(getVTables().isVTableExternal(RD) &&
1658            "This queue should only contain external vtables");
1659     if (getCXXABI().canSpeculativelyEmitVTable(RD))
1660       VTables.GenerateClassData(RD);
1661   }
1662   OpportunisticVTables.clear();
1663 }
1664 
1665 void CodeGenModule::EmitGlobalAnnotations() {
1666   if (Annotations.empty())
1667     return;
1668 
1669   // Create a new global variable for the ConstantStruct in the Module.
1670   llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get(
1671     Annotations[0]->getType(), Annotations.size()), Annotations);
1672   auto *gv = new llvm::GlobalVariable(getModule(), Array->getType(), false,
1673                                       llvm::GlobalValue::AppendingLinkage,
1674                                       Array, "llvm.global.annotations");
1675   gv->setSection(AnnotationSection);
1676 }
1677 
1678 llvm::Constant *CodeGenModule::EmitAnnotationString(StringRef Str) {
1679   llvm::Constant *&AStr = AnnotationStrings[Str];
1680   if (AStr)
1681     return AStr;
1682 
1683   // Not found yet, create a new global.
1684   llvm::Constant *s = llvm::ConstantDataArray::getString(getLLVMContext(), Str);
1685   auto *gv =
1686       new llvm::GlobalVariable(getModule(), s->getType(), true,
1687                                llvm::GlobalValue::PrivateLinkage, s, ".str");
1688   gv->setSection(AnnotationSection);
1689   gv->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
1690   AStr = gv;
1691   return gv;
1692 }
1693 
1694 llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) {
1695   SourceManager &SM = getContext().getSourceManager();
1696   PresumedLoc PLoc = SM.getPresumedLoc(Loc);
1697   if (PLoc.isValid())
1698     return EmitAnnotationString(PLoc.getFilename());
1699   return EmitAnnotationString(SM.getBufferName(Loc));
1700 }
1701 
1702 llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) {
1703   SourceManager &SM = getContext().getSourceManager();
1704   PresumedLoc PLoc = SM.getPresumedLoc(L);
1705   unsigned LineNo = PLoc.isValid() ? PLoc.getLine() :
1706     SM.getExpansionLineNumber(L);
1707   return llvm::ConstantInt::get(Int32Ty, LineNo);
1708 }
1709 
1710 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV,
1711                                                 const AnnotateAttr *AA,
1712                                                 SourceLocation L) {
1713   // Get the globals for file name, annotation, and the line number.
1714   llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()),
1715                  *UnitGV = EmitAnnotationUnit(L),
1716                  *LineNoCst = EmitAnnotationLineNo(L);
1717 
1718   // Create the ConstantStruct for the global annotation.
1719   llvm::Constant *Fields[4] = {
1720     llvm::ConstantExpr::getBitCast(GV, Int8PtrTy),
1721     llvm::ConstantExpr::getBitCast(AnnoGV, Int8PtrTy),
1722     llvm::ConstantExpr::getBitCast(UnitGV, Int8PtrTy),
1723     LineNoCst
1724   };
1725   return llvm::ConstantStruct::getAnon(Fields);
1726 }
1727 
1728 void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D,
1729                                          llvm::GlobalValue *GV) {
1730   assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
1731   // Get the struct elements for these annotations.
1732   for (const auto *I : D->specific_attrs<AnnotateAttr>())
1733     Annotations.push_back(EmitAnnotateAttr(GV, I, D->getLocation()));
1734 }
1735 
1736 bool CodeGenModule::isInSanitizerBlacklist(SanitizerMask Kind,
1737                                            llvm::Function *Fn,
1738                                            SourceLocation Loc) const {
1739   const auto &SanitizerBL = getContext().getSanitizerBlacklist();
1740   // Blacklist by function name.
1741   if (SanitizerBL.isBlacklistedFunction(Kind, Fn->getName()))
1742     return true;
1743   // Blacklist by location.
1744   if (Loc.isValid())
1745     return SanitizerBL.isBlacklistedLocation(Kind, Loc);
1746   // If location is unknown, this may be a compiler-generated function. Assume
1747   // it's located in the main file.
1748   auto &SM = Context.getSourceManager();
1749   if (const auto *MainFile = SM.getFileEntryForID(SM.getMainFileID())) {
1750     return SanitizerBL.isBlacklistedFile(Kind, MainFile->getName());
1751   }
1752   return false;
1753 }
1754 
1755 bool CodeGenModule::isInSanitizerBlacklist(llvm::GlobalVariable *GV,
1756                                            SourceLocation Loc, QualType Ty,
1757                                            StringRef Category) const {
1758   // For now globals can be blacklisted only in ASan and KASan.
1759   const SanitizerMask EnabledAsanMask = LangOpts.Sanitize.Mask &
1760       (SanitizerKind::Address | SanitizerKind::KernelAddress | SanitizerKind::HWAddress);
1761   if (!EnabledAsanMask)
1762     return false;
1763   const auto &SanitizerBL = getContext().getSanitizerBlacklist();
1764   if (SanitizerBL.isBlacklistedGlobal(EnabledAsanMask, GV->getName(), Category))
1765     return true;
1766   if (SanitizerBL.isBlacklistedLocation(EnabledAsanMask, Loc, Category))
1767     return true;
1768   // Check global type.
1769   if (!Ty.isNull()) {
1770     // Drill down the array types: if global variable of a fixed type is
1771     // blacklisted, we also don't instrument arrays of them.
1772     while (auto AT = dyn_cast<ArrayType>(Ty.getTypePtr()))
1773       Ty = AT->getElementType();
1774     Ty = Ty.getCanonicalType().getUnqualifiedType();
1775     // We allow to blacklist only record types (classes, structs etc.)
1776     if (Ty->isRecordType()) {
1777       std::string TypeStr = Ty.getAsString(getContext().getPrintingPolicy());
1778       if (SanitizerBL.isBlacklistedType(EnabledAsanMask, TypeStr, Category))
1779         return true;
1780     }
1781   }
1782   return false;
1783 }
1784 
1785 bool CodeGenModule::imbueXRayAttrs(llvm::Function *Fn, SourceLocation Loc,
1786                                    StringRef Category) const {
1787   if (!LangOpts.XRayInstrument)
1788     return false;
1789   const auto &XRayFilter = getContext().getXRayFilter();
1790   using ImbueAttr = XRayFunctionFilter::ImbueAttribute;
1791   auto Attr = XRayFunctionFilter::ImbueAttribute::NONE;
1792   if (Loc.isValid())
1793     Attr = XRayFilter.shouldImbueLocation(Loc, Category);
1794   if (Attr == ImbueAttr::NONE)
1795     Attr = XRayFilter.shouldImbueFunction(Fn->getName());
1796   switch (Attr) {
1797   case ImbueAttr::NONE:
1798     return false;
1799   case ImbueAttr::ALWAYS:
1800     Fn->addFnAttr("function-instrument", "xray-always");
1801     break;
1802   case ImbueAttr::ALWAYS_ARG1:
1803     Fn->addFnAttr("function-instrument", "xray-always");
1804     Fn->addFnAttr("xray-log-args", "1");
1805     break;
1806   case ImbueAttr::NEVER:
1807     Fn->addFnAttr("function-instrument", "xray-never");
1808     break;
1809   }
1810   return true;
1811 }
1812 
1813 bool CodeGenModule::MustBeEmitted(const ValueDecl *Global) {
1814   // Never defer when EmitAllDecls is specified.
1815   if (LangOpts.EmitAllDecls)
1816     return true;
1817 
1818   return getContext().DeclMustBeEmitted(Global);
1819 }
1820 
1821 bool CodeGenModule::MayBeEmittedEagerly(const ValueDecl *Global) {
1822   if (const auto *FD = dyn_cast<FunctionDecl>(Global))
1823     if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
1824       // Implicit template instantiations may change linkage if they are later
1825       // explicitly instantiated, so they should not be emitted eagerly.
1826       return false;
1827   if (const auto *VD = dyn_cast<VarDecl>(Global))
1828     if (Context.getInlineVariableDefinitionKind(VD) ==
1829         ASTContext::InlineVariableDefinitionKind::WeakUnknown)
1830       // A definition of an inline constexpr static data member may change
1831       // linkage later if it's redeclared outside the class.
1832       return false;
1833   // If OpenMP is enabled and threadprivates must be generated like TLS, delay
1834   // codegen for global variables, because they may be marked as threadprivate.
1835   if (LangOpts.OpenMP && LangOpts.OpenMPUseTLS &&
1836       getContext().getTargetInfo().isTLSSupported() && isa<VarDecl>(Global))
1837     return false;
1838 
1839   return true;
1840 }
1841 
1842 ConstantAddress CodeGenModule::GetAddrOfUuidDescriptor(
1843     const CXXUuidofExpr* E) {
1844   // Sema has verified that IIDSource has a __declspec(uuid()), and that its
1845   // well-formed.
1846   StringRef Uuid = E->getUuidStr();
1847   std::string Name = "_GUID_" + Uuid.lower();
1848   std::replace(Name.begin(), Name.end(), '-', '_');
1849 
1850   // The UUID descriptor should be pointer aligned.
1851   CharUnits Alignment = CharUnits::fromQuantity(PointerAlignInBytes);
1852 
1853   // Look for an existing global.
1854   if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name))
1855     return ConstantAddress(GV, Alignment);
1856 
1857   llvm::Constant *Init = EmitUuidofInitializer(Uuid);
1858   assert(Init && "failed to initialize as constant");
1859 
1860   auto *GV = new llvm::GlobalVariable(
1861       getModule(), Init->getType(),
1862       /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name);
1863   if (supportsCOMDAT())
1864     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
1865   return ConstantAddress(GV, Alignment);
1866 }
1867 
1868 ConstantAddress CodeGenModule::GetWeakRefReference(const ValueDecl *VD) {
1869   const AliasAttr *AA = VD->getAttr<AliasAttr>();
1870   assert(AA && "No alias?");
1871 
1872   CharUnits Alignment = getContext().getDeclAlign(VD);
1873   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType());
1874 
1875   // See if there is already something with the target's name in the module.
1876   llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee());
1877   if (Entry) {
1878     unsigned AS = getContext().getTargetAddressSpace(VD->getType());
1879     auto Ptr = llvm::ConstantExpr::getBitCast(Entry, DeclTy->getPointerTo(AS));
1880     return ConstantAddress(Ptr, Alignment);
1881   }
1882 
1883   llvm::Constant *Aliasee;
1884   if (isa<llvm::FunctionType>(DeclTy))
1885     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy,
1886                                       GlobalDecl(cast<FunctionDecl>(VD)),
1887                                       /*ForVTable=*/false);
1888   else
1889     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
1890                                     llvm::PointerType::getUnqual(DeclTy),
1891                                     nullptr);
1892 
1893   auto *F = cast<llvm::GlobalValue>(Aliasee);
1894   F->setLinkage(llvm::Function::ExternalWeakLinkage);
1895   WeakRefReferences.insert(F);
1896 
1897   return ConstantAddress(Aliasee, Alignment);
1898 }
1899 
1900 void CodeGenModule::EmitGlobal(GlobalDecl GD) {
1901   const auto *Global = cast<ValueDecl>(GD.getDecl());
1902 
1903   // Weak references don't produce any output by themselves.
1904   if (Global->hasAttr<WeakRefAttr>())
1905     return;
1906 
1907   // If this is an alias definition (which otherwise looks like a declaration)
1908   // emit it now.
1909   if (Global->hasAttr<AliasAttr>())
1910     return EmitAliasDefinition(GD);
1911 
1912   // IFunc like an alias whose value is resolved at runtime by calling resolver.
1913   if (Global->hasAttr<IFuncAttr>())
1914     return emitIFuncDefinition(GD);
1915 
1916   // If this is CUDA, be selective about which declarations we emit.
1917   if (LangOpts.CUDA) {
1918     if (LangOpts.CUDAIsDevice) {
1919       if (!Global->hasAttr<CUDADeviceAttr>() &&
1920           !Global->hasAttr<CUDAGlobalAttr>() &&
1921           !Global->hasAttr<CUDAConstantAttr>() &&
1922           !Global->hasAttr<CUDASharedAttr>())
1923         return;
1924     } else {
1925       // We need to emit host-side 'shadows' for all global
1926       // device-side variables because the CUDA runtime needs their
1927       // size and host-side address in order to provide access to
1928       // their device-side incarnations.
1929 
1930       // So device-only functions are the only things we skip.
1931       if (isa<FunctionDecl>(Global) && !Global->hasAttr<CUDAHostAttr>() &&
1932           Global->hasAttr<CUDADeviceAttr>())
1933         return;
1934 
1935       assert((isa<FunctionDecl>(Global) || isa<VarDecl>(Global)) &&
1936              "Expected Variable or Function");
1937     }
1938   }
1939 
1940   if (LangOpts.OpenMP) {
1941     // If this is OpenMP device, check if it is legal to emit this global
1942     // normally.
1943     if (OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(GD))
1944       return;
1945     if (auto *DRD = dyn_cast<OMPDeclareReductionDecl>(Global)) {
1946       if (MustBeEmitted(Global))
1947         EmitOMPDeclareReduction(DRD);
1948       return;
1949     }
1950   }
1951 
1952   // Ignore declarations, they will be emitted on their first use.
1953   if (const auto *FD = dyn_cast<FunctionDecl>(Global)) {
1954     // Forward declarations are emitted lazily on first use.
1955     if (!FD->doesThisDeclarationHaveABody()) {
1956       if (!FD->doesDeclarationForceExternallyVisibleDefinition())
1957         return;
1958 
1959       StringRef MangledName = getMangledName(GD);
1960 
1961       // Compute the function info and LLVM type.
1962       const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
1963       llvm::Type *Ty = getTypes().GetFunctionType(FI);
1964 
1965       GetOrCreateLLVMFunction(MangledName, Ty, GD, /*ForVTable=*/false,
1966                               /*DontDefer=*/false);
1967       return;
1968     }
1969   } else {
1970     const auto *VD = cast<VarDecl>(Global);
1971     assert(VD->isFileVarDecl() && "Cannot emit local var decl as global.");
1972     // We need to emit device-side global CUDA variables even if a
1973     // variable does not have a definition -- we still need to define
1974     // host-side shadow for it.
1975     bool MustEmitForCuda = LangOpts.CUDA && !LangOpts.CUDAIsDevice &&
1976                            !VD->hasDefinition() &&
1977                            (VD->hasAttr<CUDAConstantAttr>() ||
1978                             VD->hasAttr<CUDADeviceAttr>());
1979     if (!MustEmitForCuda &&
1980         VD->isThisDeclarationADefinition() != VarDecl::Definition &&
1981         !Context.isMSStaticDataMemberInlineDefinition(VD)) {
1982       // If this declaration may have caused an inline variable definition to
1983       // change linkage, make sure that it's emitted.
1984       if (Context.getInlineVariableDefinitionKind(VD) ==
1985           ASTContext::InlineVariableDefinitionKind::Strong)
1986         GetAddrOfGlobalVar(VD);
1987       return;
1988     }
1989   }
1990 
1991   // Defer code generation to first use when possible, e.g. if this is an inline
1992   // function. If the global must always be emitted, do it eagerly if possible
1993   // to benefit from cache locality.
1994   if (MustBeEmitted(Global) && MayBeEmittedEagerly(Global)) {
1995     // Emit the definition if it can't be deferred.
1996     EmitGlobalDefinition(GD);
1997     return;
1998   }
1999 
2000   // If we're deferring emission of a C++ variable with an
2001   // initializer, remember the order in which it appeared in the file.
2002   if (getLangOpts().CPlusPlus && isa<VarDecl>(Global) &&
2003       cast<VarDecl>(Global)->hasInit()) {
2004     DelayedCXXInitPosition[Global] = CXXGlobalInits.size();
2005     CXXGlobalInits.push_back(nullptr);
2006   }
2007 
2008   StringRef MangledName = getMangledName(GD);
2009   if (GetGlobalValue(MangledName) != nullptr) {
2010     // The value has already been used and should therefore be emitted.
2011     addDeferredDeclToEmit(GD);
2012   } else if (MustBeEmitted(Global)) {
2013     // The value must be emitted, but cannot be emitted eagerly.
2014     assert(!MayBeEmittedEagerly(Global));
2015     addDeferredDeclToEmit(GD);
2016   } else {
2017     // Otherwise, remember that we saw a deferred decl with this name.  The
2018     // first use of the mangled name will cause it to move into
2019     // DeferredDeclsToEmit.
2020     DeferredDecls[MangledName] = GD;
2021   }
2022 }
2023 
2024 // Check if T is a class type with a destructor that's not dllimport.
2025 static bool HasNonDllImportDtor(QualType T) {
2026   if (const auto *RT = T->getBaseElementTypeUnsafe()->getAs<RecordType>())
2027     if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl()))
2028       if (RD->getDestructor() && !RD->getDestructor()->hasAttr<DLLImportAttr>())
2029         return true;
2030 
2031   return false;
2032 }
2033 
2034 namespace {
2035   struct FunctionIsDirectlyRecursive :
2036     public RecursiveASTVisitor<FunctionIsDirectlyRecursive> {
2037     const StringRef Name;
2038     const Builtin::Context &BI;
2039     bool Result;
2040     FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C) :
2041       Name(N), BI(C), Result(false) {
2042     }
2043     typedef RecursiveASTVisitor<FunctionIsDirectlyRecursive> Base;
2044 
2045     bool TraverseCallExpr(CallExpr *E) {
2046       const FunctionDecl *FD = E->getDirectCallee();
2047       if (!FD)
2048         return true;
2049       AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
2050       if (Attr && Name == Attr->getLabel()) {
2051         Result = true;
2052         return false;
2053       }
2054       unsigned BuiltinID = FD->getBuiltinID();
2055       if (!BuiltinID || !BI.isLibFunction(BuiltinID))
2056         return true;
2057       StringRef BuiltinName = BI.getName(BuiltinID);
2058       if (BuiltinName.startswith("__builtin_") &&
2059           Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) {
2060         Result = true;
2061         return false;
2062       }
2063       return true;
2064     }
2065   };
2066 
2067   // Make sure we're not referencing non-imported vars or functions.
2068   struct DLLImportFunctionVisitor
2069       : public RecursiveASTVisitor<DLLImportFunctionVisitor> {
2070     bool SafeToInline = true;
2071 
2072     bool shouldVisitImplicitCode() const { return true; }
2073 
2074     bool VisitVarDecl(VarDecl *VD) {
2075       if (VD->getTLSKind()) {
2076         // A thread-local variable cannot be imported.
2077         SafeToInline = false;
2078         return SafeToInline;
2079       }
2080 
2081       // A variable definition might imply a destructor call.
2082       if (VD->isThisDeclarationADefinition())
2083         SafeToInline = !HasNonDllImportDtor(VD->getType());
2084 
2085       return SafeToInline;
2086     }
2087 
2088     bool VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) {
2089       if (const auto *D = E->getTemporary()->getDestructor())
2090         SafeToInline = D->hasAttr<DLLImportAttr>();
2091       return SafeToInline;
2092     }
2093 
2094     bool VisitDeclRefExpr(DeclRefExpr *E) {
2095       ValueDecl *VD = E->getDecl();
2096       if (isa<FunctionDecl>(VD))
2097         SafeToInline = VD->hasAttr<DLLImportAttr>();
2098       else if (VarDecl *V = dyn_cast<VarDecl>(VD))
2099         SafeToInline = !V->hasGlobalStorage() || V->hasAttr<DLLImportAttr>();
2100       return SafeToInline;
2101     }
2102 
2103     bool VisitCXXConstructExpr(CXXConstructExpr *E) {
2104       SafeToInline = E->getConstructor()->hasAttr<DLLImportAttr>();
2105       return SafeToInline;
2106     }
2107 
2108     bool VisitCXXMemberCallExpr(CXXMemberCallExpr *E) {
2109       CXXMethodDecl *M = E->getMethodDecl();
2110       if (!M) {
2111         // Call through a pointer to member function. This is safe to inline.
2112         SafeToInline = true;
2113       } else {
2114         SafeToInline = M->hasAttr<DLLImportAttr>();
2115       }
2116       return SafeToInline;
2117     }
2118 
2119     bool VisitCXXDeleteExpr(CXXDeleteExpr *E) {
2120       SafeToInline = E->getOperatorDelete()->hasAttr<DLLImportAttr>();
2121       return SafeToInline;
2122     }
2123 
2124     bool VisitCXXNewExpr(CXXNewExpr *E) {
2125       SafeToInline = E->getOperatorNew()->hasAttr<DLLImportAttr>();
2126       return SafeToInline;
2127     }
2128   };
2129 }
2130 
2131 // isTriviallyRecursive - Check if this function calls another
2132 // decl that, because of the asm attribute or the other decl being a builtin,
2133 // ends up pointing to itself.
2134 bool
2135 CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) {
2136   StringRef Name;
2137   if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) {
2138     // asm labels are a special kind of mangling we have to support.
2139     AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
2140     if (!Attr)
2141       return false;
2142     Name = Attr->getLabel();
2143   } else {
2144     Name = FD->getName();
2145   }
2146 
2147   FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo);
2148   Walker.TraverseFunctionDecl(const_cast<FunctionDecl*>(FD));
2149   return Walker.Result;
2150 }
2151 
2152 bool CodeGenModule::shouldEmitFunction(GlobalDecl GD) {
2153   if (getFunctionLinkage(GD) != llvm::Function::AvailableExternallyLinkage)
2154     return true;
2155   const auto *F = cast<FunctionDecl>(GD.getDecl());
2156   if (CodeGenOpts.OptimizationLevel == 0 && !F->hasAttr<AlwaysInlineAttr>())
2157     return false;
2158 
2159   if (F->hasAttr<DLLImportAttr>()) {
2160     // Check whether it would be safe to inline this dllimport function.
2161     DLLImportFunctionVisitor Visitor;
2162     Visitor.TraverseFunctionDecl(const_cast<FunctionDecl*>(F));
2163     if (!Visitor.SafeToInline)
2164       return false;
2165 
2166     if (const CXXDestructorDecl *Dtor = dyn_cast<CXXDestructorDecl>(F)) {
2167       // Implicit destructor invocations aren't captured in the AST, so the
2168       // check above can't see them. Check for them manually here.
2169       for (const Decl *Member : Dtor->getParent()->decls())
2170         if (isa<FieldDecl>(Member))
2171           if (HasNonDllImportDtor(cast<FieldDecl>(Member)->getType()))
2172             return false;
2173       for (const CXXBaseSpecifier &B : Dtor->getParent()->bases())
2174         if (HasNonDllImportDtor(B.getType()))
2175           return false;
2176     }
2177   }
2178 
2179   // PR9614. Avoid cases where the source code is lying to us. An available
2180   // externally function should have an equivalent function somewhere else,
2181   // but a function that calls itself is clearly not equivalent to the real
2182   // implementation.
2183   // This happens in glibc's btowc and in some configure checks.
2184   return !isTriviallyRecursive(F);
2185 }
2186 
2187 bool CodeGenModule::shouldOpportunisticallyEmitVTables() {
2188   return CodeGenOpts.OptimizationLevel > 0;
2189 }
2190 
2191 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD, llvm::GlobalValue *GV) {
2192   const auto *D = cast<ValueDecl>(GD.getDecl());
2193 
2194   PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(),
2195                                  Context.getSourceManager(),
2196                                  "Generating code for declaration");
2197 
2198   if (isa<FunctionDecl>(D)) {
2199     // At -O0, don't generate IR for functions with available_externally
2200     // linkage.
2201     if (!shouldEmitFunction(GD))
2202       return;
2203 
2204     if (const auto *Method = dyn_cast<CXXMethodDecl>(D)) {
2205       // Make sure to emit the definition(s) before we emit the thunks.
2206       // This is necessary for the generation of certain thunks.
2207       if (const auto *CD = dyn_cast<CXXConstructorDecl>(Method))
2208         ABI->emitCXXStructor(CD, getFromCtorType(GD.getCtorType()));
2209       else if (const auto *DD = dyn_cast<CXXDestructorDecl>(Method))
2210         ABI->emitCXXStructor(DD, getFromDtorType(GD.getDtorType()));
2211       else
2212         EmitGlobalFunctionDefinition(GD, GV);
2213 
2214       if (Method->isVirtual())
2215         getVTables().EmitThunks(GD);
2216 
2217       return;
2218     }
2219 
2220     return EmitGlobalFunctionDefinition(GD, GV);
2221   }
2222 
2223   if (const auto *VD = dyn_cast<VarDecl>(D))
2224     return EmitGlobalVarDefinition(VD, !VD->hasDefinition());
2225 
2226   llvm_unreachable("Invalid argument to EmitGlobalDefinition()");
2227 }
2228 
2229 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
2230                                                       llvm::Function *NewFn);
2231 
2232 void CodeGenModule::emitMultiVersionFunctions() {
2233   for (GlobalDecl GD : MultiVersionFuncs) {
2234     SmallVector<CodeGenFunction::MultiVersionResolverOption, 10> Options;
2235     const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
2236     getContext().forEachMultiversionedFunctionVersion(
2237         FD, [this, &GD, &Options](const FunctionDecl *CurFD) {
2238           GlobalDecl CurGD{
2239               (CurFD->isDefined() ? CurFD->getDefinition() : CurFD)};
2240           StringRef MangledName = getMangledName(CurGD);
2241           llvm::Constant *Func = GetGlobalValue(MangledName);
2242           if (!Func) {
2243             if (CurFD->isDefined()) {
2244               EmitGlobalFunctionDefinition(CurGD, nullptr);
2245               Func = GetGlobalValue(MangledName);
2246             } else {
2247               const CGFunctionInfo &FI =
2248                   getTypes().arrangeGlobalDeclaration(GD);
2249               llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
2250               Func = GetAddrOfFunction(CurGD, Ty, /*ForVTable=*/false,
2251                                        /*DontDefer=*/false, ForDefinition);
2252             }
2253             assert(Func && "This should have just been created");
2254           }
2255           Options.emplace_back(getTarget(), cast<llvm::Function>(Func),
2256                                CurFD->getAttr<TargetAttr>()->parse());
2257         });
2258 
2259     llvm::Function *ResolverFunc = cast<llvm::Function>(
2260         GetGlobalValue((getMangledName(GD) + ".resolver").str()));
2261     if (supportsCOMDAT())
2262       ResolverFunc->setComdat(
2263           getModule().getOrInsertComdat(ResolverFunc->getName()));
2264     std::stable_sort(
2265         Options.begin(), Options.end(),
2266         std::greater<CodeGenFunction::MultiVersionResolverOption>());
2267     CodeGenFunction CGF(*this);
2268     CGF.EmitMultiVersionResolver(ResolverFunc, Options);
2269   }
2270 }
2271 
2272 /// If an ifunc for the specified mangled name is not in the module, create and
2273 /// return an llvm IFunc Function with the specified type.
2274 llvm::Constant *
2275 CodeGenModule::GetOrCreateMultiVersionIFunc(GlobalDecl GD, llvm::Type *DeclTy,
2276                                             StringRef MangledName,
2277                                             const FunctionDecl *FD) {
2278   std::string IFuncName = (MangledName + ".ifunc").str();
2279   if (llvm::GlobalValue *IFuncGV = GetGlobalValue(IFuncName))
2280     return IFuncGV;
2281 
2282   // Since this is the first time we've created this IFunc, make sure
2283   // that we put this multiversioned function into the list to be
2284   // replaced later.
2285   MultiVersionFuncs.push_back(GD);
2286 
2287   std::string ResolverName = (MangledName + ".resolver").str();
2288   llvm::Type *ResolverType = llvm::FunctionType::get(
2289       llvm::PointerType::get(DeclTy,
2290                              Context.getTargetAddressSpace(FD->getType())),
2291       false);
2292   llvm::Constant *Resolver =
2293       GetOrCreateLLVMFunction(ResolverName, ResolverType, GlobalDecl{},
2294                               /*ForVTable=*/false);
2295   llvm::GlobalIFunc *GIF = llvm::GlobalIFunc::create(
2296       DeclTy, 0, llvm::Function::ExternalLinkage, "", Resolver, &getModule());
2297   GIF->setName(IFuncName);
2298   SetCommonAttributes(FD, GIF);
2299 
2300   return GIF;
2301 }
2302 
2303 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the
2304 /// module, create and return an llvm Function with the specified type. If there
2305 /// is something in the module with the specified name, return it potentially
2306 /// bitcasted to the right type.
2307 ///
2308 /// If D is non-null, it specifies a decl that correspond to this.  This is used
2309 /// to set the attributes on the function when it is first created.
2310 llvm::Constant *CodeGenModule::GetOrCreateLLVMFunction(
2311     StringRef MangledName, llvm::Type *Ty, GlobalDecl GD, bool ForVTable,
2312     bool DontDefer, bool IsThunk, llvm::AttributeList ExtraAttrs,
2313     ForDefinition_t IsForDefinition) {
2314   const Decl *D = GD.getDecl();
2315 
2316   // Any attempts to use a MultiVersion function should result in retrieving
2317   // the iFunc instead. Name Mangling will handle the rest of the changes.
2318   if (const FunctionDecl *FD = cast_or_null<FunctionDecl>(D)) {
2319     if (FD->isMultiVersion() && FD->getAttr<TargetAttr>()->isDefaultVersion()) {
2320       UpdateMultiVersionNames(GD, FD);
2321       if (!IsForDefinition)
2322         return GetOrCreateMultiVersionIFunc(GD, Ty, MangledName, FD);
2323     }
2324   }
2325 
2326   // Lookup the entry, lazily creating it if necessary.
2327   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
2328   if (Entry) {
2329     if (WeakRefReferences.erase(Entry)) {
2330       const FunctionDecl *FD = cast_or_null<FunctionDecl>(D);
2331       if (FD && !FD->hasAttr<WeakAttr>())
2332         Entry->setLinkage(llvm::Function::ExternalLinkage);
2333     }
2334 
2335     // Handle dropped DLL attributes.
2336     if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>())
2337       Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
2338 
2339     // If there are two attempts to define the same mangled name, issue an
2340     // error.
2341     if (IsForDefinition && !Entry->isDeclaration()) {
2342       GlobalDecl OtherGD;
2343       // Check that GD is not yet in DiagnosedConflictingDefinitions is required
2344       // to make sure that we issue an error only once.
2345       if (lookupRepresentativeDecl(MangledName, OtherGD) &&
2346           (GD.getCanonicalDecl().getDecl() !=
2347            OtherGD.getCanonicalDecl().getDecl()) &&
2348           DiagnosedConflictingDefinitions.insert(GD).second) {
2349         getDiags().Report(D->getLocation(),
2350                           diag::err_duplicate_mangled_name);
2351         getDiags().Report(OtherGD.getDecl()->getLocation(),
2352                           diag::note_previous_definition);
2353       }
2354     }
2355 
2356     if ((isa<llvm::Function>(Entry) || isa<llvm::GlobalAlias>(Entry)) &&
2357         (Entry->getType()->getElementType() == Ty)) {
2358       return Entry;
2359     }
2360 
2361     // Make sure the result is of the correct type.
2362     // (If function is requested for a definition, we always need to create a new
2363     // function, not just return a bitcast.)
2364     if (!IsForDefinition)
2365       return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo());
2366   }
2367 
2368   // This function doesn't have a complete type (for example, the return
2369   // type is an incomplete struct). Use a fake type instead, and make
2370   // sure not to try to set attributes.
2371   bool IsIncompleteFunction = false;
2372 
2373   llvm::FunctionType *FTy;
2374   if (isa<llvm::FunctionType>(Ty)) {
2375     FTy = cast<llvm::FunctionType>(Ty);
2376   } else {
2377     FTy = llvm::FunctionType::get(VoidTy, false);
2378     IsIncompleteFunction = true;
2379   }
2380 
2381   llvm::Function *F =
2382       llvm::Function::Create(FTy, llvm::Function::ExternalLinkage,
2383                              Entry ? StringRef() : MangledName, &getModule());
2384 
2385   // If we already created a function with the same mangled name (but different
2386   // type) before, take its name and add it to the list of functions to be
2387   // replaced with F at the end of CodeGen.
2388   //
2389   // This happens if there is a prototype for a function (e.g. "int f()") and
2390   // then a definition of a different type (e.g. "int f(int x)").
2391   if (Entry) {
2392     F->takeName(Entry);
2393 
2394     // This might be an implementation of a function without a prototype, in
2395     // which case, try to do special replacement of calls which match the new
2396     // prototype.  The really key thing here is that we also potentially drop
2397     // arguments from the call site so as to make a direct call, which makes the
2398     // inliner happier and suppresses a number of optimizer warnings (!) about
2399     // dropping arguments.
2400     if (!Entry->use_empty()) {
2401       ReplaceUsesOfNonProtoTypeWithRealFunction(Entry, F);
2402       Entry->removeDeadConstantUsers();
2403     }
2404 
2405     llvm::Constant *BC = llvm::ConstantExpr::getBitCast(
2406         F, Entry->getType()->getElementType()->getPointerTo());
2407     addGlobalValReplacement(Entry, BC);
2408   }
2409 
2410   assert(F->getName() == MangledName && "name was uniqued!");
2411   if (D)
2412     SetFunctionAttributes(GD, F, IsIncompleteFunction, IsThunk);
2413   if (ExtraAttrs.hasAttributes(llvm::AttributeList::FunctionIndex)) {
2414     llvm::AttrBuilder B(ExtraAttrs, llvm::AttributeList::FunctionIndex);
2415     F->addAttributes(llvm::AttributeList::FunctionIndex, B);
2416   }
2417 
2418   if (!DontDefer) {
2419     // All MSVC dtors other than the base dtor are linkonce_odr and delegate to
2420     // each other bottoming out with the base dtor.  Therefore we emit non-base
2421     // dtors on usage, even if there is no dtor definition in the TU.
2422     if (D && isa<CXXDestructorDecl>(D) &&
2423         getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D),
2424                                            GD.getDtorType()))
2425       addDeferredDeclToEmit(GD);
2426 
2427     // This is the first use or definition of a mangled name.  If there is a
2428     // deferred decl with this name, remember that we need to emit it at the end
2429     // of the file.
2430     auto DDI = DeferredDecls.find(MangledName);
2431     if (DDI != DeferredDecls.end()) {
2432       // Move the potentially referenced deferred decl to the
2433       // DeferredDeclsToEmit list, and remove it from DeferredDecls (since we
2434       // don't need it anymore).
2435       addDeferredDeclToEmit(DDI->second);
2436       DeferredDecls.erase(DDI);
2437 
2438       // Otherwise, there are cases we have to worry about where we're
2439       // using a declaration for which we must emit a definition but where
2440       // we might not find a top-level definition:
2441       //   - member functions defined inline in their classes
2442       //   - friend functions defined inline in some class
2443       //   - special member functions with implicit definitions
2444       // If we ever change our AST traversal to walk into class methods,
2445       // this will be unnecessary.
2446       //
2447       // We also don't emit a definition for a function if it's going to be an
2448       // entry in a vtable, unless it's already marked as used.
2449     } else if (getLangOpts().CPlusPlus && D) {
2450       // Look for a declaration that's lexically in a record.
2451       for (const auto *FD = cast<FunctionDecl>(D)->getMostRecentDecl(); FD;
2452            FD = FD->getPreviousDecl()) {
2453         if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) {
2454           if (FD->doesThisDeclarationHaveABody()) {
2455             addDeferredDeclToEmit(GD.getWithDecl(FD));
2456             break;
2457           }
2458         }
2459       }
2460     }
2461   }
2462 
2463   // Make sure the result is of the requested type.
2464   if (!IsIncompleteFunction) {
2465     assert(F->getType()->getElementType() == Ty);
2466     return F;
2467   }
2468 
2469   llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
2470   return llvm::ConstantExpr::getBitCast(F, PTy);
2471 }
2472 
2473 /// GetAddrOfFunction - Return the address of the given function.  If Ty is
2474 /// non-null, then this function will use the specified type if it has to
2475 /// create it (this occurs when we see a definition of the function).
2476 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD,
2477                                                  llvm::Type *Ty,
2478                                                  bool ForVTable,
2479                                                  bool DontDefer,
2480                                               ForDefinition_t IsForDefinition) {
2481   // If there was no specific requested type, just convert it now.
2482   if (!Ty) {
2483     const auto *FD = cast<FunctionDecl>(GD.getDecl());
2484     auto CanonTy = Context.getCanonicalType(FD->getType());
2485     Ty = getTypes().ConvertFunctionType(CanonTy, FD);
2486   }
2487 
2488   StringRef MangledName = getMangledName(GD);
2489   return GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable, DontDefer,
2490                                  /*IsThunk=*/false, llvm::AttributeList(),
2491                                  IsForDefinition);
2492 }
2493 
2494 static const FunctionDecl *
2495 GetRuntimeFunctionDecl(ASTContext &C, StringRef Name) {
2496   TranslationUnitDecl *TUDecl = C.getTranslationUnitDecl();
2497   DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl);
2498 
2499   IdentifierInfo &CII = C.Idents.get(Name);
2500   for (const auto &Result : DC->lookup(&CII))
2501     if (const auto FD = dyn_cast<FunctionDecl>(Result))
2502       return FD;
2503 
2504   if (!C.getLangOpts().CPlusPlus)
2505     return nullptr;
2506 
2507   // Demangle the premangled name from getTerminateFn()
2508   IdentifierInfo &CXXII =
2509       (Name == "_ZSt9terminatev" || Name == "\01?terminate@@YAXXZ")
2510           ? C.Idents.get("terminate")
2511           : C.Idents.get(Name);
2512 
2513   for (const auto &N : {"__cxxabiv1", "std"}) {
2514     IdentifierInfo &NS = C.Idents.get(N);
2515     for (const auto &Result : DC->lookup(&NS)) {
2516       NamespaceDecl *ND = dyn_cast<NamespaceDecl>(Result);
2517       if (auto LSD = dyn_cast<LinkageSpecDecl>(Result))
2518         for (const auto &Result : LSD->lookup(&NS))
2519           if ((ND = dyn_cast<NamespaceDecl>(Result)))
2520             break;
2521 
2522       if (ND)
2523         for (const auto &Result : ND->lookup(&CXXII))
2524           if (const auto *FD = dyn_cast<FunctionDecl>(Result))
2525             return FD;
2526     }
2527   }
2528 
2529   return nullptr;
2530 }
2531 
2532 /// CreateRuntimeFunction - Create a new runtime function with the specified
2533 /// type and name.
2534 llvm::Constant *
2535 CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy, StringRef Name,
2536                                      llvm::AttributeList ExtraAttrs,
2537                                      bool Local) {
2538   llvm::Constant *C =
2539       GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false,
2540                               /*DontDefer=*/false, /*IsThunk=*/false,
2541                               ExtraAttrs);
2542 
2543   if (auto *F = dyn_cast<llvm::Function>(C)) {
2544     if (F->empty()) {
2545       F->setCallingConv(getRuntimeCC());
2546 
2547       if (!Local && getTriple().isOSBinFormatCOFF() &&
2548           !getCodeGenOpts().LTOVisibilityPublicStd &&
2549           !getTriple().isWindowsGNUEnvironment()) {
2550         const FunctionDecl *FD = GetRuntimeFunctionDecl(Context, Name);
2551         if (!FD || FD->hasAttr<DLLImportAttr>()) {
2552           F->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass);
2553           F->setLinkage(llvm::GlobalValue::ExternalLinkage);
2554         }
2555       }
2556     }
2557   }
2558 
2559   return C;
2560 }
2561 
2562 /// CreateBuiltinFunction - Create a new builtin function with the specified
2563 /// type and name.
2564 llvm::Constant *
2565 CodeGenModule::CreateBuiltinFunction(llvm::FunctionType *FTy, StringRef Name,
2566                                      llvm::AttributeList ExtraAttrs) {
2567   llvm::Constant *C =
2568       GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false,
2569                               /*DontDefer=*/false, /*IsThunk=*/false, ExtraAttrs);
2570   if (auto *F = dyn_cast<llvm::Function>(C))
2571     if (F->empty())
2572       F->setCallingConv(getBuiltinCC());
2573   return C;
2574 }
2575 
2576 /// isTypeConstant - Determine whether an object of this type can be emitted
2577 /// as a constant.
2578 ///
2579 /// If ExcludeCtor is true, the duration when the object's constructor runs
2580 /// will not be considered. The caller will need to verify that the object is
2581 /// not written to during its construction.
2582 bool CodeGenModule::isTypeConstant(QualType Ty, bool ExcludeCtor) {
2583   if (!Ty.isConstant(Context) && !Ty->isReferenceType())
2584     return false;
2585 
2586   if (Context.getLangOpts().CPlusPlus) {
2587     if (const CXXRecordDecl *Record
2588           = Context.getBaseElementType(Ty)->getAsCXXRecordDecl())
2589       return ExcludeCtor && !Record->hasMutableFields() &&
2590              Record->hasTrivialDestructor();
2591   }
2592 
2593   return true;
2594 }
2595 
2596 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module,
2597 /// create and return an llvm GlobalVariable with the specified type.  If there
2598 /// is something in the module with the specified name, return it potentially
2599 /// bitcasted to the right type.
2600 ///
2601 /// If D is non-null, it specifies a decl that correspond to this.  This is used
2602 /// to set the attributes on the global when it is first created.
2603 ///
2604 /// If IsForDefinition is true, it is guranteed that an actual global with
2605 /// type Ty will be returned, not conversion of a variable with the same
2606 /// mangled name but some other type.
2607 llvm::Constant *
2608 CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName,
2609                                      llvm::PointerType *Ty,
2610                                      const VarDecl *D,
2611                                      ForDefinition_t IsForDefinition) {
2612   // Lookup the entry, lazily creating it if necessary.
2613   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
2614   if (Entry) {
2615     if (WeakRefReferences.erase(Entry)) {
2616       if (D && !D->hasAttr<WeakAttr>())
2617         Entry->setLinkage(llvm::Function::ExternalLinkage);
2618     }
2619 
2620     // Handle dropped DLL attributes.
2621     if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>())
2622       Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
2623 
2624     if (Entry->getType() == Ty)
2625       return Entry;
2626 
2627     // If there are two attempts to define the same mangled name, issue an
2628     // error.
2629     if (IsForDefinition && !Entry->isDeclaration()) {
2630       GlobalDecl OtherGD;
2631       const VarDecl *OtherD;
2632 
2633       // Check that D is not yet in DiagnosedConflictingDefinitions is required
2634       // to make sure that we issue an error only once.
2635       if (D && lookupRepresentativeDecl(MangledName, OtherGD) &&
2636           (D->getCanonicalDecl() != OtherGD.getCanonicalDecl().getDecl()) &&
2637           (OtherD = dyn_cast<VarDecl>(OtherGD.getDecl())) &&
2638           OtherD->hasInit() &&
2639           DiagnosedConflictingDefinitions.insert(D).second) {
2640         getDiags().Report(D->getLocation(),
2641                           diag::err_duplicate_mangled_name);
2642         getDiags().Report(OtherGD.getDecl()->getLocation(),
2643                           diag::note_previous_definition);
2644       }
2645     }
2646 
2647     // Make sure the result is of the correct type.
2648     if (Entry->getType()->getAddressSpace() != Ty->getAddressSpace())
2649       return llvm::ConstantExpr::getAddrSpaceCast(Entry, Ty);
2650 
2651     // (If global is requested for a definition, we always need to create a new
2652     // global, not just return a bitcast.)
2653     if (!IsForDefinition)
2654       return llvm::ConstantExpr::getBitCast(Entry, Ty);
2655   }
2656 
2657   auto AddrSpace = GetGlobalVarAddressSpace(D);
2658   auto TargetAddrSpace = getContext().getTargetAddressSpace(AddrSpace);
2659 
2660   auto *GV = new llvm::GlobalVariable(
2661       getModule(), Ty->getElementType(), false,
2662       llvm::GlobalValue::ExternalLinkage, nullptr, MangledName, nullptr,
2663       llvm::GlobalVariable::NotThreadLocal, TargetAddrSpace);
2664 
2665   // If we already created a global with the same mangled name (but different
2666   // type) before, take its name and remove it from its parent.
2667   if (Entry) {
2668     GV->takeName(Entry);
2669 
2670     if (!Entry->use_empty()) {
2671       llvm::Constant *NewPtrForOldDecl =
2672           llvm::ConstantExpr::getBitCast(GV, Entry->getType());
2673       Entry->replaceAllUsesWith(NewPtrForOldDecl);
2674     }
2675 
2676     Entry->eraseFromParent();
2677   }
2678 
2679   // This is the first use or definition of a mangled name.  If there is a
2680   // deferred decl with this name, remember that we need to emit it at the end
2681   // of the file.
2682   auto DDI = DeferredDecls.find(MangledName);
2683   if (DDI != DeferredDecls.end()) {
2684     // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
2685     // list, and remove it from DeferredDecls (since we don't need it anymore).
2686     addDeferredDeclToEmit(DDI->second);
2687     DeferredDecls.erase(DDI);
2688   }
2689 
2690   // Handle things which are present even on external declarations.
2691   if (D) {
2692     // FIXME: This code is overly simple and should be merged with other global
2693     // handling.
2694     GV->setConstant(isTypeConstant(D->getType(), false));
2695 
2696     GV->setAlignment(getContext().getDeclAlign(D).getQuantity());
2697 
2698     setLinkageForGV(GV, D);
2699     setGVProperties(GV, D);
2700 
2701     if (D->getTLSKind()) {
2702       if (D->getTLSKind() == VarDecl::TLS_Dynamic)
2703         CXXThreadLocals.push_back(D);
2704       setTLSMode(GV, *D);
2705     }
2706 
2707     // If required by the ABI, treat declarations of static data members with
2708     // inline initializers as definitions.
2709     if (getContext().isMSStaticDataMemberInlineDefinition(D)) {
2710       EmitGlobalVarDefinition(D);
2711     }
2712 
2713     // Emit section information for extern variables.
2714     if (D->hasExternalStorage()) {
2715       if (const SectionAttr *SA = D->getAttr<SectionAttr>())
2716         GV->setSection(SA->getName());
2717     }
2718 
2719     // Handle XCore specific ABI requirements.
2720     if (getTriple().getArch() == llvm::Triple::xcore &&
2721         D->getLanguageLinkage() == CLanguageLinkage &&
2722         D->getType().isConstant(Context) &&
2723         isExternallyVisible(D->getLinkageAndVisibility().getLinkage()))
2724       GV->setSection(".cp.rodata");
2725 
2726     // Check if we a have a const declaration with an initializer, we may be
2727     // able to emit it as available_externally to expose it's value to the
2728     // optimizer.
2729     if (Context.getLangOpts().CPlusPlus && GV->hasExternalLinkage() &&
2730         D->getType().isConstQualified() && !GV->hasInitializer() &&
2731         !D->hasDefinition() && D->hasInit() && !D->hasAttr<DLLImportAttr>()) {
2732       const auto *Record =
2733           Context.getBaseElementType(D->getType())->getAsCXXRecordDecl();
2734       bool HasMutableFields = Record && Record->hasMutableFields();
2735       if (!HasMutableFields) {
2736         const VarDecl *InitDecl;
2737         const Expr *InitExpr = D->getAnyInitializer(InitDecl);
2738         if (InitExpr) {
2739           ConstantEmitter emitter(*this);
2740           llvm::Constant *Init = emitter.tryEmitForInitializer(*InitDecl);
2741           if (Init) {
2742             auto *InitType = Init->getType();
2743             if (GV->getType()->getElementType() != InitType) {
2744               // The type of the initializer does not match the definition.
2745               // This happens when an initializer has a different type from
2746               // the type of the global (because of padding at the end of a
2747               // structure for instance).
2748               GV->setName(StringRef());
2749               // Make a new global with the correct type, this is now guaranteed
2750               // to work.
2751               auto *NewGV = cast<llvm::GlobalVariable>(
2752                   GetAddrOfGlobalVar(D, InitType, IsForDefinition));
2753 
2754               // Erase the old global, since it is no longer used.
2755               cast<llvm::GlobalValue>(GV)->eraseFromParent();
2756               GV = NewGV;
2757             } else {
2758               GV->setInitializer(Init);
2759               GV->setConstant(true);
2760               GV->setLinkage(llvm::GlobalValue::AvailableExternallyLinkage);
2761             }
2762             emitter.finalize(GV);
2763           }
2764         }
2765       }
2766     }
2767   }
2768 
2769   LangAS ExpectedAS =
2770       D ? D->getType().getAddressSpace()
2771         : (LangOpts.OpenCL ? LangAS::opencl_global : LangAS::Default);
2772   assert(getContext().getTargetAddressSpace(ExpectedAS) ==
2773          Ty->getPointerAddressSpace());
2774   if (AddrSpace != ExpectedAS)
2775     return getTargetCodeGenInfo().performAddrSpaceCast(*this, GV, AddrSpace,
2776                                                        ExpectedAS, Ty);
2777 
2778   return GV;
2779 }
2780 
2781 llvm::Constant *
2782 CodeGenModule::GetAddrOfGlobal(GlobalDecl GD,
2783                                ForDefinition_t IsForDefinition) {
2784   const Decl *D = GD.getDecl();
2785   if (isa<CXXConstructorDecl>(D))
2786     return getAddrOfCXXStructor(cast<CXXConstructorDecl>(D),
2787                                 getFromCtorType(GD.getCtorType()),
2788                                 /*FnInfo=*/nullptr, /*FnType=*/nullptr,
2789                                 /*DontDefer=*/false, IsForDefinition);
2790   else if (isa<CXXDestructorDecl>(D))
2791     return getAddrOfCXXStructor(cast<CXXDestructorDecl>(D),
2792                                 getFromDtorType(GD.getDtorType()),
2793                                 /*FnInfo=*/nullptr, /*FnType=*/nullptr,
2794                                 /*DontDefer=*/false, IsForDefinition);
2795   else if (isa<CXXMethodDecl>(D)) {
2796     auto FInfo = &getTypes().arrangeCXXMethodDeclaration(
2797         cast<CXXMethodDecl>(D));
2798     auto Ty = getTypes().GetFunctionType(*FInfo);
2799     return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false,
2800                              IsForDefinition);
2801   } else if (isa<FunctionDecl>(D)) {
2802     const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
2803     llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
2804     return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false,
2805                              IsForDefinition);
2806   } else
2807     return GetAddrOfGlobalVar(cast<VarDecl>(D), /*Ty=*/nullptr,
2808                               IsForDefinition);
2809 }
2810 
2811 llvm::GlobalVariable *
2812 CodeGenModule::CreateOrReplaceCXXRuntimeVariable(StringRef Name,
2813                                       llvm::Type *Ty,
2814                                       llvm::GlobalValue::LinkageTypes Linkage) {
2815   llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name);
2816   llvm::GlobalVariable *OldGV = nullptr;
2817 
2818   if (GV) {
2819     // Check if the variable has the right type.
2820     if (GV->getType()->getElementType() == Ty)
2821       return GV;
2822 
2823     // Because C++ name mangling, the only way we can end up with an already
2824     // existing global with the same name is if it has been declared extern "C".
2825     assert(GV->isDeclaration() && "Declaration has wrong type!");
2826     OldGV = GV;
2827   }
2828 
2829   // Create a new variable.
2830   GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true,
2831                                 Linkage, nullptr, Name);
2832 
2833   if (OldGV) {
2834     // Replace occurrences of the old variable if needed.
2835     GV->takeName(OldGV);
2836 
2837     if (!OldGV->use_empty()) {
2838       llvm::Constant *NewPtrForOldDecl =
2839       llvm::ConstantExpr::getBitCast(GV, OldGV->getType());
2840       OldGV->replaceAllUsesWith(NewPtrForOldDecl);
2841     }
2842 
2843     OldGV->eraseFromParent();
2844   }
2845 
2846   if (supportsCOMDAT() && GV->isWeakForLinker() &&
2847       !GV->hasAvailableExternallyLinkage())
2848     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
2849 
2850   return GV;
2851 }
2852 
2853 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the
2854 /// given global variable.  If Ty is non-null and if the global doesn't exist,
2855 /// then it will be created with the specified type instead of whatever the
2856 /// normal requested type would be. If IsForDefinition is true, it is guranteed
2857 /// that an actual global with type Ty will be returned, not conversion of a
2858 /// variable with the same mangled name but some other type.
2859 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D,
2860                                                   llvm::Type *Ty,
2861                                            ForDefinition_t IsForDefinition) {
2862   assert(D->hasGlobalStorage() && "Not a global variable");
2863   QualType ASTTy = D->getType();
2864   if (!Ty)
2865     Ty = getTypes().ConvertTypeForMem(ASTTy);
2866 
2867   llvm::PointerType *PTy =
2868     llvm::PointerType::get(Ty, getContext().getTargetAddressSpace(ASTTy));
2869 
2870   StringRef MangledName = getMangledName(D);
2871   return GetOrCreateLLVMGlobal(MangledName, PTy, D, IsForDefinition);
2872 }
2873 
2874 /// CreateRuntimeVariable - Create a new runtime global variable with the
2875 /// specified type and name.
2876 llvm::Constant *
2877 CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty,
2878                                      StringRef Name) {
2879   return GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), nullptr);
2880 }
2881 
2882 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) {
2883   assert(!D->getInit() && "Cannot emit definite definitions here!");
2884 
2885   StringRef MangledName = getMangledName(D);
2886   llvm::GlobalValue *GV = GetGlobalValue(MangledName);
2887 
2888   // We already have a definition, not declaration, with the same mangled name.
2889   // Emitting of declaration is not required (and actually overwrites emitted
2890   // definition).
2891   if (GV && !GV->isDeclaration())
2892     return;
2893 
2894   // If we have not seen a reference to this variable yet, place it into the
2895   // deferred declarations table to be emitted if needed later.
2896   if (!MustBeEmitted(D) && !GV) {
2897       DeferredDecls[MangledName] = D;
2898       return;
2899   }
2900 
2901   // The tentative definition is the only definition.
2902   EmitGlobalVarDefinition(D);
2903 }
2904 
2905 CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const {
2906   return Context.toCharUnitsFromBits(
2907       getDataLayout().getTypeStoreSizeInBits(Ty));
2908 }
2909 
2910 LangAS CodeGenModule::GetGlobalVarAddressSpace(const VarDecl *D) {
2911   LangAS AddrSpace = LangAS::Default;
2912   if (LangOpts.OpenCL) {
2913     AddrSpace = D ? D->getType().getAddressSpace() : LangAS::opencl_global;
2914     assert(AddrSpace == LangAS::opencl_global ||
2915            AddrSpace == LangAS::opencl_constant ||
2916            AddrSpace == LangAS::opencl_local ||
2917            AddrSpace >= LangAS::FirstTargetAddressSpace);
2918     return AddrSpace;
2919   }
2920 
2921   if (LangOpts.CUDA && LangOpts.CUDAIsDevice) {
2922     if (D && D->hasAttr<CUDAConstantAttr>())
2923       return LangAS::cuda_constant;
2924     else if (D && D->hasAttr<CUDASharedAttr>())
2925       return LangAS::cuda_shared;
2926     else
2927       return LangAS::cuda_device;
2928   }
2929 
2930   return getTargetCodeGenInfo().getGlobalVarAddressSpace(*this, D);
2931 }
2932 
2933 template<typename SomeDecl>
2934 void CodeGenModule::MaybeHandleStaticInExternC(const SomeDecl *D,
2935                                                llvm::GlobalValue *GV) {
2936   if (!getLangOpts().CPlusPlus)
2937     return;
2938 
2939   // Must have 'used' attribute, or else inline assembly can't rely on
2940   // the name existing.
2941   if (!D->template hasAttr<UsedAttr>())
2942     return;
2943 
2944   // Must have internal linkage and an ordinary name.
2945   if (!D->getIdentifier() || D->getFormalLinkage() != InternalLinkage)
2946     return;
2947 
2948   // Must be in an extern "C" context. Entities declared directly within
2949   // a record are not extern "C" even if the record is in such a context.
2950   const SomeDecl *First = D->getFirstDecl();
2951   if (First->getDeclContext()->isRecord() || !First->isInExternCContext())
2952     return;
2953 
2954   // OK, this is an internal linkage entity inside an extern "C" linkage
2955   // specification. Make a note of that so we can give it the "expected"
2956   // mangled name if nothing else is using that name.
2957   std::pair<StaticExternCMap::iterator, bool> R =
2958       StaticExternCValues.insert(std::make_pair(D->getIdentifier(), GV));
2959 
2960   // If we have multiple internal linkage entities with the same name
2961   // in extern "C" regions, none of them gets that name.
2962   if (!R.second)
2963     R.first->second = nullptr;
2964 }
2965 
2966 static bool shouldBeInCOMDAT(CodeGenModule &CGM, const Decl &D) {
2967   if (!CGM.supportsCOMDAT())
2968     return false;
2969 
2970   if (D.hasAttr<SelectAnyAttr>())
2971     return true;
2972 
2973   GVALinkage Linkage;
2974   if (auto *VD = dyn_cast<VarDecl>(&D))
2975     Linkage = CGM.getContext().GetGVALinkageForVariable(VD);
2976   else
2977     Linkage = CGM.getContext().GetGVALinkageForFunction(cast<FunctionDecl>(&D));
2978 
2979   switch (Linkage) {
2980   case GVA_Internal:
2981   case GVA_AvailableExternally:
2982   case GVA_StrongExternal:
2983     return false;
2984   case GVA_DiscardableODR:
2985   case GVA_StrongODR:
2986     return true;
2987   }
2988   llvm_unreachable("No such linkage");
2989 }
2990 
2991 void CodeGenModule::maybeSetTrivialComdat(const Decl &D,
2992                                           llvm::GlobalObject &GO) {
2993   if (!shouldBeInCOMDAT(*this, D))
2994     return;
2995   GO.setComdat(TheModule.getOrInsertComdat(GO.getName()));
2996 }
2997 
2998 /// Pass IsTentative as true if you want to create a tentative definition.
2999 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D,
3000                                             bool IsTentative) {
3001   // OpenCL global variables of sampler type are translated to function calls,
3002   // therefore no need to be translated.
3003   QualType ASTTy = D->getType();
3004   if (getLangOpts().OpenCL && ASTTy->isSamplerT())
3005     return;
3006 
3007   llvm::Constant *Init = nullptr;
3008   CXXRecordDecl *RD = ASTTy->getBaseElementTypeUnsafe()->getAsCXXRecordDecl();
3009   bool NeedsGlobalCtor = false;
3010   bool NeedsGlobalDtor = RD && !RD->hasTrivialDestructor();
3011 
3012   const VarDecl *InitDecl;
3013   const Expr *InitExpr = D->getAnyInitializer(InitDecl);
3014 
3015   Optional<ConstantEmitter> emitter;
3016 
3017   // CUDA E.2.4.1 "__shared__ variables cannot have an initialization
3018   // as part of their declaration."  Sema has already checked for
3019   // error cases, so we just need to set Init to UndefValue.
3020   if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice &&
3021       D->hasAttr<CUDASharedAttr>())
3022     Init = llvm::UndefValue::get(getTypes().ConvertType(ASTTy));
3023   else if (!InitExpr) {
3024     // This is a tentative definition; tentative definitions are
3025     // implicitly initialized with { 0 }.
3026     //
3027     // Note that tentative definitions are only emitted at the end of
3028     // a translation unit, so they should never have incomplete
3029     // type. In addition, EmitTentativeDefinition makes sure that we
3030     // never attempt to emit a tentative definition if a real one
3031     // exists. A use may still exists, however, so we still may need
3032     // to do a RAUW.
3033     assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type");
3034     Init = EmitNullConstant(D->getType());
3035   } else {
3036     initializedGlobalDecl = GlobalDecl(D);
3037     emitter.emplace(*this);
3038     Init = emitter->tryEmitForInitializer(*InitDecl);
3039 
3040     if (!Init) {
3041       QualType T = InitExpr->getType();
3042       if (D->getType()->isReferenceType())
3043         T = D->getType();
3044 
3045       if (getLangOpts().CPlusPlus) {
3046         Init = EmitNullConstant(T);
3047         NeedsGlobalCtor = true;
3048       } else {
3049         ErrorUnsupported(D, "static initializer");
3050         Init = llvm::UndefValue::get(getTypes().ConvertType(T));
3051       }
3052     } else {
3053       // We don't need an initializer, so remove the entry for the delayed
3054       // initializer position (just in case this entry was delayed) if we
3055       // also don't need to register a destructor.
3056       if (getLangOpts().CPlusPlus && !NeedsGlobalDtor)
3057         DelayedCXXInitPosition.erase(D);
3058     }
3059   }
3060 
3061   llvm::Type* InitType = Init->getType();
3062   llvm::Constant *Entry =
3063       GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative));
3064 
3065   // Strip off a bitcast if we got one back.
3066   if (auto *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
3067     assert(CE->getOpcode() == llvm::Instruction::BitCast ||
3068            CE->getOpcode() == llvm::Instruction::AddrSpaceCast ||
3069            // All zero index gep.
3070            CE->getOpcode() == llvm::Instruction::GetElementPtr);
3071     Entry = CE->getOperand(0);
3072   }
3073 
3074   // Entry is now either a Function or GlobalVariable.
3075   auto *GV = dyn_cast<llvm::GlobalVariable>(Entry);
3076 
3077   // We have a definition after a declaration with the wrong type.
3078   // We must make a new GlobalVariable* and update everything that used OldGV
3079   // (a declaration or tentative definition) with the new GlobalVariable*
3080   // (which will be a definition).
3081   //
3082   // This happens if there is a prototype for a global (e.g.
3083   // "extern int x[];") and then a definition of a different type (e.g.
3084   // "int x[10];"). This also happens when an initializer has a different type
3085   // from the type of the global (this happens with unions).
3086   if (!GV || GV->getType()->getElementType() != InitType ||
3087       GV->getType()->getAddressSpace() !=
3088           getContext().getTargetAddressSpace(GetGlobalVarAddressSpace(D))) {
3089 
3090     // Move the old entry aside so that we'll create a new one.
3091     Entry->setName(StringRef());
3092 
3093     // Make a new global with the correct type, this is now guaranteed to work.
3094     GV = cast<llvm::GlobalVariable>(
3095         GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative)));
3096 
3097     // Replace all uses of the old global with the new global
3098     llvm::Constant *NewPtrForOldDecl =
3099         llvm::ConstantExpr::getBitCast(GV, Entry->getType());
3100     Entry->replaceAllUsesWith(NewPtrForOldDecl);
3101 
3102     // Erase the old global, since it is no longer used.
3103     cast<llvm::GlobalValue>(Entry)->eraseFromParent();
3104   }
3105 
3106   MaybeHandleStaticInExternC(D, GV);
3107 
3108   if (D->hasAttr<AnnotateAttr>())
3109     AddGlobalAnnotations(D, GV);
3110 
3111   // Set the llvm linkage type as appropriate.
3112   llvm::GlobalValue::LinkageTypes Linkage =
3113       getLLVMLinkageVarDefinition(D, GV->isConstant());
3114 
3115   // CUDA B.2.1 "The __device__ qualifier declares a variable that resides on
3116   // the device. [...]"
3117   // CUDA B.2.2 "The __constant__ qualifier, optionally used together with
3118   // __device__, declares a variable that: [...]
3119   // Is accessible from all the threads within the grid and from the host
3120   // through the runtime library (cudaGetSymbolAddress() / cudaGetSymbolSize()
3121   // / cudaMemcpyToSymbol() / cudaMemcpyFromSymbol())."
3122   if (GV && LangOpts.CUDA) {
3123     if (LangOpts.CUDAIsDevice) {
3124       if (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>())
3125         GV->setExternallyInitialized(true);
3126     } else {
3127       // Host-side shadows of external declarations of device-side
3128       // global variables become internal definitions. These have to
3129       // be internal in order to prevent name conflicts with global
3130       // host variables with the same name in a different TUs.
3131       if (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>()) {
3132         Linkage = llvm::GlobalValue::InternalLinkage;
3133 
3134         // Shadow variables and their properties must be registered
3135         // with CUDA runtime.
3136         unsigned Flags = 0;
3137         if (!D->hasDefinition())
3138           Flags |= CGCUDARuntime::ExternDeviceVar;
3139         if (D->hasAttr<CUDAConstantAttr>())
3140           Flags |= CGCUDARuntime::ConstantDeviceVar;
3141         getCUDARuntime().registerDeviceVar(*GV, Flags);
3142       } else if (D->hasAttr<CUDASharedAttr>())
3143         // __shared__ variables are odd. Shadows do get created, but
3144         // they are not registered with the CUDA runtime, so they
3145         // can't really be used to access their device-side
3146         // counterparts. It's not clear yet whether it's nvcc's bug or
3147         // a feature, but we've got to do the same for compatibility.
3148         Linkage = llvm::GlobalValue::InternalLinkage;
3149     }
3150   }
3151 
3152   GV->setInitializer(Init);
3153   if (emitter) emitter->finalize(GV);
3154 
3155   // If it is safe to mark the global 'constant', do so now.
3156   GV->setConstant(!NeedsGlobalCtor && !NeedsGlobalDtor &&
3157                   isTypeConstant(D->getType(), true));
3158 
3159   // If it is in a read-only section, mark it 'constant'.
3160   if (const SectionAttr *SA = D->getAttr<SectionAttr>()) {
3161     const ASTContext::SectionInfo &SI = Context.SectionInfos[SA->getName()];
3162     if ((SI.SectionFlags & ASTContext::PSF_Write) == 0)
3163       GV->setConstant(true);
3164   }
3165 
3166   GV->setAlignment(getContext().getDeclAlign(D).getQuantity());
3167 
3168 
3169   // On Darwin, if the normal linkage of a C++ thread_local variable is
3170   // LinkOnce or Weak, we keep the normal linkage to prevent multiple
3171   // copies within a linkage unit; otherwise, the backing variable has
3172   // internal linkage and all accesses should just be calls to the
3173   // Itanium-specified entry point, which has the normal linkage of the
3174   // variable. This is to preserve the ability to change the implementation
3175   // behind the scenes.
3176   if (!D->isStaticLocal() && D->getTLSKind() == VarDecl::TLS_Dynamic &&
3177       Context.getTargetInfo().getTriple().isOSDarwin() &&
3178       !llvm::GlobalVariable::isLinkOnceLinkage(Linkage) &&
3179       !llvm::GlobalVariable::isWeakLinkage(Linkage))
3180     Linkage = llvm::GlobalValue::InternalLinkage;
3181 
3182   GV->setLinkage(Linkage);
3183   if (D->hasAttr<DLLImportAttr>())
3184     GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass);
3185   else if (D->hasAttr<DLLExportAttr>())
3186     GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass);
3187   else
3188     GV->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass);
3189 
3190   if (Linkage == llvm::GlobalVariable::CommonLinkage) {
3191     // common vars aren't constant even if declared const.
3192     GV->setConstant(false);
3193     // Tentative definition of global variables may be initialized with
3194     // non-zero null pointers. In this case they should have weak linkage
3195     // since common linkage must have zero initializer and must not have
3196     // explicit section therefore cannot have non-zero initial value.
3197     if (!GV->getInitializer()->isNullValue())
3198       GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage);
3199   }
3200 
3201   setNonAliasAttributes(D, GV);
3202 
3203   if (D->getTLSKind() && !GV->isThreadLocal()) {
3204     if (D->getTLSKind() == VarDecl::TLS_Dynamic)
3205       CXXThreadLocals.push_back(D);
3206     setTLSMode(GV, *D);
3207   }
3208 
3209   maybeSetTrivialComdat(*D, *GV);
3210 
3211   // Emit the initializer function if necessary.
3212   if (NeedsGlobalCtor || NeedsGlobalDtor)
3213     EmitCXXGlobalVarDeclInitFunc(D, GV, NeedsGlobalCtor);
3214 
3215   SanitizerMD->reportGlobalToASan(GV, *D, NeedsGlobalCtor);
3216 
3217   // Emit global variable debug information.
3218   if (CGDebugInfo *DI = getModuleDebugInfo())
3219     if (getCodeGenOpts().getDebugInfo() >= codegenoptions::LimitedDebugInfo)
3220       DI->EmitGlobalVariable(GV, D);
3221 }
3222 
3223 static bool isVarDeclStrongDefinition(const ASTContext &Context,
3224                                       CodeGenModule &CGM, const VarDecl *D,
3225                                       bool NoCommon) {
3226   // Don't give variables common linkage if -fno-common was specified unless it
3227   // was overridden by a NoCommon attribute.
3228   if ((NoCommon || D->hasAttr<NoCommonAttr>()) && !D->hasAttr<CommonAttr>())
3229     return true;
3230 
3231   // C11 6.9.2/2:
3232   //   A declaration of an identifier for an object that has file scope without
3233   //   an initializer, and without a storage-class specifier or with the
3234   //   storage-class specifier static, constitutes a tentative definition.
3235   if (D->getInit() || D->hasExternalStorage())
3236     return true;
3237 
3238   // A variable cannot be both common and exist in a section.
3239   if (D->hasAttr<SectionAttr>())
3240     return true;
3241 
3242   // A variable cannot be both common and exist in a section.
3243   // We dont try to determine which is the right section in the front-end.
3244   // If no specialized section name is applicable, it will resort to default.
3245   if (D->hasAttr<PragmaClangBSSSectionAttr>() ||
3246       D->hasAttr<PragmaClangDataSectionAttr>() ||
3247       D->hasAttr<PragmaClangRodataSectionAttr>())
3248     return true;
3249 
3250   // Thread local vars aren't considered common linkage.
3251   if (D->getTLSKind())
3252     return true;
3253 
3254   // Tentative definitions marked with WeakImportAttr are true definitions.
3255   if (D->hasAttr<WeakImportAttr>())
3256     return true;
3257 
3258   // A variable cannot be both common and exist in a comdat.
3259   if (shouldBeInCOMDAT(CGM, *D))
3260     return true;
3261 
3262   // Declarations with a required alignment do not have common linkage in MSVC
3263   // mode.
3264   if (Context.getTargetInfo().getCXXABI().isMicrosoft()) {
3265     if (D->hasAttr<AlignedAttr>())
3266       return true;
3267     QualType VarType = D->getType();
3268     if (Context.isAlignmentRequired(VarType))
3269       return true;
3270 
3271     if (const auto *RT = VarType->getAs<RecordType>()) {
3272       const RecordDecl *RD = RT->getDecl();
3273       for (const FieldDecl *FD : RD->fields()) {
3274         if (FD->isBitField())
3275           continue;
3276         if (FD->hasAttr<AlignedAttr>())
3277           return true;
3278         if (Context.isAlignmentRequired(FD->getType()))
3279           return true;
3280       }
3281     }
3282   }
3283 
3284   return false;
3285 }
3286 
3287 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageForDeclarator(
3288     const DeclaratorDecl *D, GVALinkage Linkage, bool IsConstantVariable) {
3289   if (Linkage == GVA_Internal)
3290     return llvm::Function::InternalLinkage;
3291 
3292   if (D->hasAttr<WeakAttr>()) {
3293     if (IsConstantVariable)
3294       return llvm::GlobalVariable::WeakODRLinkage;
3295     else
3296       return llvm::GlobalVariable::WeakAnyLinkage;
3297   }
3298 
3299   // We are guaranteed to have a strong definition somewhere else,
3300   // so we can use available_externally linkage.
3301   if (Linkage == GVA_AvailableExternally)
3302     return llvm::GlobalValue::AvailableExternallyLinkage;
3303 
3304   // Note that Apple's kernel linker doesn't support symbol
3305   // coalescing, so we need to avoid linkonce and weak linkages there.
3306   // Normally, this means we just map to internal, but for explicit
3307   // instantiations we'll map to external.
3308 
3309   // In C++, the compiler has to emit a definition in every translation unit
3310   // that references the function.  We should use linkonce_odr because
3311   // a) if all references in this translation unit are optimized away, we
3312   // don't need to codegen it.  b) if the function persists, it needs to be
3313   // merged with other definitions. c) C++ has the ODR, so we know the
3314   // definition is dependable.
3315   if (Linkage == GVA_DiscardableODR)
3316     return !Context.getLangOpts().AppleKext ? llvm::Function::LinkOnceODRLinkage
3317                                             : llvm::Function::InternalLinkage;
3318 
3319   // An explicit instantiation of a template has weak linkage, since
3320   // explicit instantiations can occur in multiple translation units
3321   // and must all be equivalent. However, we are not allowed to
3322   // throw away these explicit instantiations.
3323   //
3324   // We don't currently support CUDA device code spread out across multiple TUs,
3325   // so say that CUDA templates are either external (for kernels) or internal.
3326   // This lets llvm perform aggressive inter-procedural optimizations.
3327   if (Linkage == GVA_StrongODR) {
3328     if (Context.getLangOpts().AppleKext)
3329       return llvm::Function::ExternalLinkage;
3330     if (Context.getLangOpts().CUDA && Context.getLangOpts().CUDAIsDevice)
3331       return D->hasAttr<CUDAGlobalAttr>() ? llvm::Function::ExternalLinkage
3332                                           : llvm::Function::InternalLinkage;
3333     return llvm::Function::WeakODRLinkage;
3334   }
3335 
3336   // C++ doesn't have tentative definitions and thus cannot have common
3337   // linkage.
3338   if (!getLangOpts().CPlusPlus && isa<VarDecl>(D) &&
3339       !isVarDeclStrongDefinition(Context, *this, cast<VarDecl>(D),
3340                                  CodeGenOpts.NoCommon))
3341     return llvm::GlobalVariable::CommonLinkage;
3342 
3343   // selectany symbols are externally visible, so use weak instead of
3344   // linkonce.  MSVC optimizes away references to const selectany globals, so
3345   // all definitions should be the same and ODR linkage should be used.
3346   // http://msdn.microsoft.com/en-us/library/5tkz6s71.aspx
3347   if (D->hasAttr<SelectAnyAttr>())
3348     return llvm::GlobalVariable::WeakODRLinkage;
3349 
3350   // Otherwise, we have strong external linkage.
3351   assert(Linkage == GVA_StrongExternal);
3352   return llvm::GlobalVariable::ExternalLinkage;
3353 }
3354 
3355 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageVarDefinition(
3356     const VarDecl *VD, bool IsConstant) {
3357   GVALinkage Linkage = getContext().GetGVALinkageForVariable(VD);
3358   return getLLVMLinkageForDeclarator(VD, Linkage, IsConstant);
3359 }
3360 
3361 /// Replace the uses of a function that was declared with a non-proto type.
3362 /// We want to silently drop extra arguments from call sites
3363 static void replaceUsesOfNonProtoConstant(llvm::Constant *old,
3364                                           llvm::Function *newFn) {
3365   // Fast path.
3366   if (old->use_empty()) return;
3367 
3368   llvm::Type *newRetTy = newFn->getReturnType();
3369   SmallVector<llvm::Value*, 4> newArgs;
3370   SmallVector<llvm::OperandBundleDef, 1> newBundles;
3371 
3372   for (llvm::Value::use_iterator ui = old->use_begin(), ue = old->use_end();
3373          ui != ue; ) {
3374     llvm::Value::use_iterator use = ui++; // Increment before the use is erased.
3375     llvm::User *user = use->getUser();
3376 
3377     // Recognize and replace uses of bitcasts.  Most calls to
3378     // unprototyped functions will use bitcasts.
3379     if (auto *bitcast = dyn_cast<llvm::ConstantExpr>(user)) {
3380       if (bitcast->getOpcode() == llvm::Instruction::BitCast)
3381         replaceUsesOfNonProtoConstant(bitcast, newFn);
3382       continue;
3383     }
3384 
3385     // Recognize calls to the function.
3386     llvm::CallSite callSite(user);
3387     if (!callSite) continue;
3388     if (!callSite.isCallee(&*use)) continue;
3389 
3390     // If the return types don't match exactly, then we can't
3391     // transform this call unless it's dead.
3392     if (callSite->getType() != newRetTy && !callSite->use_empty())
3393       continue;
3394 
3395     // Get the call site's attribute list.
3396     SmallVector<llvm::AttributeSet, 8> newArgAttrs;
3397     llvm::AttributeList oldAttrs = callSite.getAttributes();
3398 
3399     // If the function was passed too few arguments, don't transform.
3400     unsigned newNumArgs = newFn->arg_size();
3401     if (callSite.arg_size() < newNumArgs) continue;
3402 
3403     // If extra arguments were passed, we silently drop them.
3404     // If any of the types mismatch, we don't transform.
3405     unsigned argNo = 0;
3406     bool dontTransform = false;
3407     for (llvm::Argument &A : newFn->args()) {
3408       if (callSite.getArgument(argNo)->getType() != A.getType()) {
3409         dontTransform = true;
3410         break;
3411       }
3412 
3413       // Add any parameter attributes.
3414       newArgAttrs.push_back(oldAttrs.getParamAttributes(argNo));
3415       argNo++;
3416     }
3417     if (dontTransform)
3418       continue;
3419 
3420     // Okay, we can transform this.  Create the new call instruction and copy
3421     // over the required information.
3422     newArgs.append(callSite.arg_begin(), callSite.arg_begin() + argNo);
3423 
3424     // Copy over any operand bundles.
3425     callSite.getOperandBundlesAsDefs(newBundles);
3426 
3427     llvm::CallSite newCall;
3428     if (callSite.isCall()) {
3429       newCall = llvm::CallInst::Create(newFn, newArgs, newBundles, "",
3430                                        callSite.getInstruction());
3431     } else {
3432       auto *oldInvoke = cast<llvm::InvokeInst>(callSite.getInstruction());
3433       newCall = llvm::InvokeInst::Create(newFn,
3434                                          oldInvoke->getNormalDest(),
3435                                          oldInvoke->getUnwindDest(),
3436                                          newArgs, newBundles, "",
3437                                          callSite.getInstruction());
3438     }
3439     newArgs.clear(); // for the next iteration
3440 
3441     if (!newCall->getType()->isVoidTy())
3442       newCall->takeName(callSite.getInstruction());
3443     newCall.setAttributes(llvm::AttributeList::get(
3444         newFn->getContext(), oldAttrs.getFnAttributes(),
3445         oldAttrs.getRetAttributes(), newArgAttrs));
3446     newCall.setCallingConv(callSite.getCallingConv());
3447 
3448     // Finally, remove the old call, replacing any uses with the new one.
3449     if (!callSite->use_empty())
3450       callSite->replaceAllUsesWith(newCall.getInstruction());
3451 
3452     // Copy debug location attached to CI.
3453     if (callSite->getDebugLoc())
3454       newCall->setDebugLoc(callSite->getDebugLoc());
3455 
3456     callSite->eraseFromParent();
3457   }
3458 }
3459 
3460 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we
3461 /// implement a function with no prototype, e.g. "int foo() {}".  If there are
3462 /// existing call uses of the old function in the module, this adjusts them to
3463 /// call the new function directly.
3464 ///
3465 /// This is not just a cleanup: the always_inline pass requires direct calls to
3466 /// functions to be able to inline them.  If there is a bitcast in the way, it
3467 /// won't inline them.  Instcombine normally deletes these calls, but it isn't
3468 /// run at -O0.
3469 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
3470                                                       llvm::Function *NewFn) {
3471   // If we're redefining a global as a function, don't transform it.
3472   if (!isa<llvm::Function>(Old)) return;
3473 
3474   replaceUsesOfNonProtoConstant(Old, NewFn);
3475 }
3476 
3477 void CodeGenModule::HandleCXXStaticMemberVarInstantiation(VarDecl *VD) {
3478   auto DK = VD->isThisDeclarationADefinition();
3479   if (DK == VarDecl::Definition && VD->hasAttr<DLLImportAttr>())
3480     return;
3481 
3482   TemplateSpecializationKind TSK = VD->getTemplateSpecializationKind();
3483   // If we have a definition, this might be a deferred decl. If the
3484   // instantiation is explicit, make sure we emit it at the end.
3485   if (VD->getDefinition() && TSK == TSK_ExplicitInstantiationDefinition)
3486     GetAddrOfGlobalVar(VD);
3487 
3488   EmitTopLevelDecl(VD);
3489 }
3490 
3491 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD,
3492                                                  llvm::GlobalValue *GV) {
3493   const auto *D = cast<FunctionDecl>(GD.getDecl());
3494 
3495   // Compute the function info and LLVM type.
3496   const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
3497   llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
3498 
3499   // Get or create the prototype for the function.
3500   if (!GV || (GV->getType()->getElementType() != Ty))
3501     GV = cast<llvm::GlobalValue>(GetAddrOfFunction(GD, Ty, /*ForVTable=*/false,
3502                                                    /*DontDefer=*/true,
3503                                                    ForDefinition));
3504 
3505   // Already emitted.
3506   if (!GV->isDeclaration())
3507     return;
3508 
3509   // We need to set linkage and visibility on the function before
3510   // generating code for it because various parts of IR generation
3511   // want to propagate this information down (e.g. to local static
3512   // declarations).
3513   auto *Fn = cast<llvm::Function>(GV);
3514   setFunctionLinkage(GD, Fn);
3515   setFunctionDLLStorageClass(GD, Fn);
3516 
3517   // FIXME: this is redundant with part of setFunctionDefinitionAttributes
3518   setGVProperties(Fn, D);
3519 
3520   MaybeHandleStaticInExternC(D, Fn);
3521 
3522   maybeSetTrivialComdat(*D, *Fn);
3523 
3524   CodeGenFunction(*this).GenerateCode(D, Fn, FI);
3525 
3526   setFunctionDefinitionAttributes(D, Fn);
3527   SetLLVMFunctionAttributesForDefinition(D, Fn);
3528 
3529   if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>())
3530     AddGlobalCtor(Fn, CA->getPriority());
3531   if (const DestructorAttr *DA = D->getAttr<DestructorAttr>())
3532     AddGlobalDtor(Fn, DA->getPriority());
3533   if (D->hasAttr<AnnotateAttr>())
3534     AddGlobalAnnotations(D, Fn);
3535 }
3536 
3537 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) {
3538   const auto *D = cast<ValueDecl>(GD.getDecl());
3539   const AliasAttr *AA = D->getAttr<AliasAttr>();
3540   assert(AA && "Not an alias?");
3541 
3542   StringRef MangledName = getMangledName(GD);
3543 
3544   if (AA->getAliasee() == MangledName) {
3545     Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0;
3546     return;
3547   }
3548 
3549   // If there is a definition in the module, then it wins over the alias.
3550   // This is dubious, but allow it to be safe.  Just ignore the alias.
3551   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
3552   if (Entry && !Entry->isDeclaration())
3553     return;
3554 
3555   Aliases.push_back(GD);
3556 
3557   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
3558 
3559   // Create a reference to the named value.  This ensures that it is emitted
3560   // if a deferred decl.
3561   llvm::Constant *Aliasee;
3562   if (isa<llvm::FunctionType>(DeclTy))
3563     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GD,
3564                                       /*ForVTable=*/false);
3565   else
3566     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
3567                                     llvm::PointerType::getUnqual(DeclTy),
3568                                     /*D=*/nullptr);
3569 
3570   // Create the new alias itself, but don't set a name yet.
3571   auto *GA = llvm::GlobalAlias::create(
3572       DeclTy, 0, llvm::Function::ExternalLinkage, "", Aliasee, &getModule());
3573 
3574   if (Entry) {
3575     if (GA->getAliasee() == Entry) {
3576       Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0;
3577       return;
3578     }
3579 
3580     assert(Entry->isDeclaration());
3581 
3582     // If there is a declaration in the module, then we had an extern followed
3583     // by the alias, as in:
3584     //   extern int test6();
3585     //   ...
3586     //   int test6() __attribute__((alias("test7")));
3587     //
3588     // Remove it and replace uses of it with the alias.
3589     GA->takeName(Entry);
3590 
3591     Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA,
3592                                                           Entry->getType()));
3593     Entry->eraseFromParent();
3594   } else {
3595     GA->setName(MangledName);
3596   }
3597 
3598   // Set attributes which are particular to an alias; this is a
3599   // specialization of the attributes which may be set on a global
3600   // variable/function.
3601   if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakRefAttr>() ||
3602       D->isWeakImported()) {
3603     GA->setLinkage(llvm::Function::WeakAnyLinkage);
3604   }
3605 
3606   if (const auto *VD = dyn_cast<VarDecl>(D))
3607     if (VD->getTLSKind())
3608       setTLSMode(GA, *VD);
3609 
3610   setAliasAttributes(D, GA);
3611 }
3612 
3613 void CodeGenModule::emitIFuncDefinition(GlobalDecl GD) {
3614   const auto *D = cast<ValueDecl>(GD.getDecl());
3615   const IFuncAttr *IFA = D->getAttr<IFuncAttr>();
3616   assert(IFA && "Not an ifunc?");
3617 
3618   StringRef MangledName = getMangledName(GD);
3619 
3620   if (IFA->getResolver() == MangledName) {
3621     Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1;
3622     return;
3623   }
3624 
3625   // Report an error if some definition overrides ifunc.
3626   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
3627   if (Entry && !Entry->isDeclaration()) {
3628     GlobalDecl OtherGD;
3629     if (lookupRepresentativeDecl(MangledName, OtherGD) &&
3630         DiagnosedConflictingDefinitions.insert(GD).second) {
3631       Diags.Report(D->getLocation(), diag::err_duplicate_mangled_name);
3632       Diags.Report(OtherGD.getDecl()->getLocation(),
3633                    diag::note_previous_definition);
3634     }
3635     return;
3636   }
3637 
3638   Aliases.push_back(GD);
3639 
3640   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
3641   llvm::Constant *Resolver =
3642       GetOrCreateLLVMFunction(IFA->getResolver(), DeclTy, GD,
3643                               /*ForVTable=*/false);
3644   llvm::GlobalIFunc *GIF =
3645       llvm::GlobalIFunc::create(DeclTy, 0, llvm::Function::ExternalLinkage,
3646                                 "", Resolver, &getModule());
3647   if (Entry) {
3648     if (GIF->getResolver() == Entry) {
3649       Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1;
3650       return;
3651     }
3652     assert(Entry->isDeclaration());
3653 
3654     // If there is a declaration in the module, then we had an extern followed
3655     // by the ifunc, as in:
3656     //   extern int test();
3657     //   ...
3658     //   int test() __attribute__((ifunc("resolver")));
3659     //
3660     // Remove it and replace uses of it with the ifunc.
3661     GIF->takeName(Entry);
3662 
3663     Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GIF,
3664                                                           Entry->getType()));
3665     Entry->eraseFromParent();
3666   } else
3667     GIF->setName(MangledName);
3668 
3669   SetCommonAttributes(D, GIF);
3670 }
3671 
3672 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,
3673                                             ArrayRef<llvm::Type*> Tys) {
3674   return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID,
3675                                          Tys);
3676 }
3677 
3678 static llvm::StringMapEntry<llvm::GlobalVariable *> &
3679 GetConstantCFStringEntry(llvm::StringMap<llvm::GlobalVariable *> &Map,
3680                          const StringLiteral *Literal, bool TargetIsLSB,
3681                          bool &IsUTF16, unsigned &StringLength) {
3682   StringRef String = Literal->getString();
3683   unsigned NumBytes = String.size();
3684 
3685   // Check for simple case.
3686   if (!Literal->containsNonAsciiOrNull()) {
3687     StringLength = NumBytes;
3688     return *Map.insert(std::make_pair(String, nullptr)).first;
3689   }
3690 
3691   // Otherwise, convert the UTF8 literals into a string of shorts.
3692   IsUTF16 = true;
3693 
3694   SmallVector<llvm::UTF16, 128> ToBuf(NumBytes + 1); // +1 for ending nulls.
3695   const llvm::UTF8 *FromPtr = (const llvm::UTF8 *)String.data();
3696   llvm::UTF16 *ToPtr = &ToBuf[0];
3697 
3698   (void)llvm::ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, &ToPtr,
3699                                  ToPtr + NumBytes, llvm::strictConversion);
3700 
3701   // ConvertUTF8toUTF16 returns the length in ToPtr.
3702   StringLength = ToPtr - &ToBuf[0];
3703 
3704   // Add an explicit null.
3705   *ToPtr = 0;
3706   return *Map.insert(std::make_pair(
3707                          StringRef(reinterpret_cast<const char *>(ToBuf.data()),
3708                                    (StringLength + 1) * 2),
3709                          nullptr)).first;
3710 }
3711 
3712 ConstantAddress
3713 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) {
3714   unsigned StringLength = 0;
3715   bool isUTF16 = false;
3716   llvm::StringMapEntry<llvm::GlobalVariable *> &Entry =
3717       GetConstantCFStringEntry(CFConstantStringMap, Literal,
3718                                getDataLayout().isLittleEndian(), isUTF16,
3719                                StringLength);
3720 
3721   if (auto *C = Entry.second)
3722     return ConstantAddress(C, CharUnits::fromQuantity(C->getAlignment()));
3723 
3724   llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty);
3725   llvm::Constant *Zeros[] = { Zero, Zero };
3726 
3727   // If we don't already have it, get __CFConstantStringClassReference.
3728   if (!CFConstantStringClassRef) {
3729     llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
3730     Ty = llvm::ArrayType::get(Ty, 0);
3731     llvm::Constant *GV =
3732         CreateRuntimeVariable(Ty, "__CFConstantStringClassReference");
3733 
3734     if (getTriple().isOSBinFormatCOFF()) {
3735       IdentifierInfo &II = getContext().Idents.get(GV->getName());
3736       TranslationUnitDecl *TUDecl = getContext().getTranslationUnitDecl();
3737       DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl);
3738       llvm::GlobalValue *CGV = cast<llvm::GlobalValue>(GV);
3739 
3740       const VarDecl *VD = nullptr;
3741       for (const auto &Result : DC->lookup(&II))
3742         if ((VD = dyn_cast<VarDecl>(Result)))
3743           break;
3744 
3745       if (!VD || !VD->hasAttr<DLLExportAttr>()) {
3746         CGV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass);
3747         CGV->setLinkage(llvm::GlobalValue::ExternalLinkage);
3748       } else {
3749         CGV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass);
3750         CGV->setLinkage(llvm::GlobalValue::ExternalLinkage);
3751       }
3752     }
3753 
3754     // Decay array -> ptr
3755     CFConstantStringClassRef =
3756         llvm::ConstantExpr::getGetElementPtr(Ty, GV, Zeros);
3757   }
3758 
3759   QualType CFTy = getContext().getCFConstantStringType();
3760 
3761   auto *STy = cast<llvm::StructType>(getTypes().ConvertType(CFTy));
3762 
3763   ConstantInitBuilder Builder(*this);
3764   auto Fields = Builder.beginStruct(STy);
3765 
3766   // Class pointer.
3767   Fields.add(cast<llvm::ConstantExpr>(CFConstantStringClassRef));
3768 
3769   // Flags.
3770   Fields.addInt(IntTy, isUTF16 ? 0x07d0 : 0x07C8);
3771 
3772   // String pointer.
3773   llvm::Constant *C = nullptr;
3774   if (isUTF16) {
3775     auto Arr = llvm::makeArrayRef(
3776         reinterpret_cast<uint16_t *>(const_cast<char *>(Entry.first().data())),
3777         Entry.first().size() / 2);
3778     C = llvm::ConstantDataArray::get(VMContext, Arr);
3779   } else {
3780     C = llvm::ConstantDataArray::getString(VMContext, Entry.first());
3781   }
3782 
3783   // Note: -fwritable-strings doesn't make the backing store strings of
3784   // CFStrings writable. (See <rdar://problem/10657500>)
3785   auto *GV =
3786       new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true,
3787                                llvm::GlobalValue::PrivateLinkage, C, ".str");
3788   GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
3789   // Don't enforce the target's minimum global alignment, since the only use
3790   // of the string is via this class initializer.
3791   CharUnits Align = isUTF16
3792                         ? getContext().getTypeAlignInChars(getContext().ShortTy)
3793                         : getContext().getTypeAlignInChars(getContext().CharTy);
3794   GV->setAlignment(Align.getQuantity());
3795 
3796   // FIXME: We set the section explicitly to avoid a bug in ld64 224.1.
3797   // Without it LLVM can merge the string with a non unnamed_addr one during
3798   // LTO.  Doing that changes the section it ends in, which surprises ld64.
3799   if (getTriple().isOSBinFormatMachO())
3800     GV->setSection(isUTF16 ? "__TEXT,__ustring"
3801                            : "__TEXT,__cstring,cstring_literals");
3802 
3803   // String.
3804   llvm::Constant *Str =
3805       llvm::ConstantExpr::getGetElementPtr(GV->getValueType(), GV, Zeros);
3806 
3807   if (isUTF16)
3808     // Cast the UTF16 string to the correct type.
3809     Str = llvm::ConstantExpr::getBitCast(Str, Int8PtrTy);
3810   Fields.add(Str);
3811 
3812   // String length.
3813   auto Ty = getTypes().ConvertType(getContext().LongTy);
3814   Fields.addInt(cast<llvm::IntegerType>(Ty), StringLength);
3815 
3816   CharUnits Alignment = getPointerAlign();
3817 
3818   // The struct.
3819   GV = Fields.finishAndCreateGlobal("_unnamed_cfstring_", Alignment,
3820                                     /*isConstant=*/false,
3821                                     llvm::GlobalVariable::PrivateLinkage);
3822   switch (getTriple().getObjectFormat()) {
3823   case llvm::Triple::UnknownObjectFormat:
3824     llvm_unreachable("unknown file format");
3825   case llvm::Triple::COFF:
3826   case llvm::Triple::ELF:
3827   case llvm::Triple::Wasm:
3828     GV->setSection("cfstring");
3829     break;
3830   case llvm::Triple::MachO:
3831     GV->setSection("__DATA,__cfstring");
3832     break;
3833   }
3834   Entry.second = GV;
3835 
3836   return ConstantAddress(GV, Alignment);
3837 }
3838 
3839 bool CodeGenModule::getExpressionLocationsEnabled() const {
3840   return !CodeGenOpts.EmitCodeView || CodeGenOpts.DebugColumnInfo;
3841 }
3842 
3843 QualType CodeGenModule::getObjCFastEnumerationStateType() {
3844   if (ObjCFastEnumerationStateType.isNull()) {
3845     RecordDecl *D = Context.buildImplicitRecord("__objcFastEnumerationState");
3846     D->startDefinition();
3847 
3848     QualType FieldTypes[] = {
3849       Context.UnsignedLongTy,
3850       Context.getPointerType(Context.getObjCIdType()),
3851       Context.getPointerType(Context.UnsignedLongTy),
3852       Context.getConstantArrayType(Context.UnsignedLongTy,
3853                            llvm::APInt(32, 5), ArrayType::Normal, 0)
3854     };
3855 
3856     for (size_t i = 0; i < 4; ++i) {
3857       FieldDecl *Field = FieldDecl::Create(Context,
3858                                            D,
3859                                            SourceLocation(),
3860                                            SourceLocation(), nullptr,
3861                                            FieldTypes[i], /*TInfo=*/nullptr,
3862                                            /*BitWidth=*/nullptr,
3863                                            /*Mutable=*/false,
3864                                            ICIS_NoInit);
3865       Field->setAccess(AS_public);
3866       D->addDecl(Field);
3867     }
3868 
3869     D->completeDefinition();
3870     ObjCFastEnumerationStateType = Context.getTagDeclType(D);
3871   }
3872 
3873   return ObjCFastEnumerationStateType;
3874 }
3875 
3876 llvm::Constant *
3877 CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) {
3878   assert(!E->getType()->isPointerType() && "Strings are always arrays");
3879 
3880   // Don't emit it as the address of the string, emit the string data itself
3881   // as an inline array.
3882   if (E->getCharByteWidth() == 1) {
3883     SmallString<64> Str(E->getString());
3884 
3885     // Resize the string to the right size, which is indicated by its type.
3886     const ConstantArrayType *CAT = Context.getAsConstantArrayType(E->getType());
3887     Str.resize(CAT->getSize().getZExtValue());
3888     return llvm::ConstantDataArray::getString(VMContext, Str, false);
3889   }
3890 
3891   auto *AType = cast<llvm::ArrayType>(getTypes().ConvertType(E->getType()));
3892   llvm::Type *ElemTy = AType->getElementType();
3893   unsigned NumElements = AType->getNumElements();
3894 
3895   // Wide strings have either 2-byte or 4-byte elements.
3896   if (ElemTy->getPrimitiveSizeInBits() == 16) {
3897     SmallVector<uint16_t, 32> Elements;
3898     Elements.reserve(NumElements);
3899 
3900     for(unsigned i = 0, e = E->getLength(); i != e; ++i)
3901       Elements.push_back(E->getCodeUnit(i));
3902     Elements.resize(NumElements);
3903     return llvm::ConstantDataArray::get(VMContext, Elements);
3904   }
3905 
3906   assert(ElemTy->getPrimitiveSizeInBits() == 32);
3907   SmallVector<uint32_t, 32> Elements;
3908   Elements.reserve(NumElements);
3909 
3910   for(unsigned i = 0, e = E->getLength(); i != e; ++i)
3911     Elements.push_back(E->getCodeUnit(i));
3912   Elements.resize(NumElements);
3913   return llvm::ConstantDataArray::get(VMContext, Elements);
3914 }
3915 
3916 static llvm::GlobalVariable *
3917 GenerateStringLiteral(llvm::Constant *C, llvm::GlobalValue::LinkageTypes LT,
3918                       CodeGenModule &CGM, StringRef GlobalName,
3919                       CharUnits Alignment) {
3920   // OpenCL v1.2 s6.5.3: a string literal is in the constant address space.
3921   unsigned AddrSpace = 0;
3922   if (CGM.getLangOpts().OpenCL)
3923     AddrSpace = CGM.getContext().getTargetAddressSpace(LangAS::opencl_constant);
3924 
3925   llvm::Module &M = CGM.getModule();
3926   // Create a global variable for this string
3927   auto *GV = new llvm::GlobalVariable(
3928       M, C->getType(), !CGM.getLangOpts().WritableStrings, LT, C, GlobalName,
3929       nullptr, llvm::GlobalVariable::NotThreadLocal, AddrSpace);
3930   GV->setAlignment(Alignment.getQuantity());
3931   GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
3932   if (GV->isWeakForLinker()) {
3933     assert(CGM.supportsCOMDAT() && "Only COFF uses weak string literals");
3934     GV->setComdat(M.getOrInsertComdat(GV->getName()));
3935   }
3936 
3937   return GV;
3938 }
3939 
3940 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a
3941 /// constant array for the given string literal.
3942 ConstantAddress
3943 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S,
3944                                                   StringRef Name) {
3945   CharUnits Alignment = getContext().getAlignOfGlobalVarInChars(S->getType());
3946 
3947   llvm::Constant *C = GetConstantArrayFromStringLiteral(S);
3948   llvm::GlobalVariable **Entry = nullptr;
3949   if (!LangOpts.WritableStrings) {
3950     Entry = &ConstantStringMap[C];
3951     if (auto GV = *Entry) {
3952       if (Alignment.getQuantity() > GV->getAlignment())
3953         GV->setAlignment(Alignment.getQuantity());
3954       return ConstantAddress(GV, Alignment);
3955     }
3956   }
3957 
3958   SmallString<256> MangledNameBuffer;
3959   StringRef GlobalVariableName;
3960   llvm::GlobalValue::LinkageTypes LT;
3961 
3962   // Mangle the string literal if the ABI allows for it.  However, we cannot
3963   // do this if  we are compiling with ASan or -fwritable-strings because they
3964   // rely on strings having normal linkage.
3965   if (!LangOpts.WritableStrings &&
3966       !LangOpts.Sanitize.has(SanitizerKind::Address) &&
3967       getCXXABI().getMangleContext().shouldMangleStringLiteral(S)) {
3968     llvm::raw_svector_ostream Out(MangledNameBuffer);
3969     getCXXABI().getMangleContext().mangleStringLiteral(S, Out);
3970 
3971     LT = llvm::GlobalValue::LinkOnceODRLinkage;
3972     GlobalVariableName = MangledNameBuffer;
3973   } else {
3974     LT = llvm::GlobalValue::PrivateLinkage;
3975     GlobalVariableName = Name;
3976   }
3977 
3978   auto GV = GenerateStringLiteral(C, LT, *this, GlobalVariableName, Alignment);
3979   if (Entry)
3980     *Entry = GV;
3981 
3982   SanitizerMD->reportGlobalToASan(GV, S->getStrTokenLoc(0), "<string literal>",
3983                                   QualType());
3984   return ConstantAddress(GV, Alignment);
3985 }
3986 
3987 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant
3988 /// array for the given ObjCEncodeExpr node.
3989 ConstantAddress
3990 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) {
3991   std::string Str;
3992   getContext().getObjCEncodingForType(E->getEncodedType(), Str);
3993 
3994   return GetAddrOfConstantCString(Str);
3995 }
3996 
3997 /// GetAddrOfConstantCString - Returns a pointer to a character array containing
3998 /// the literal and a terminating '\0' character.
3999 /// The result has pointer to array type.
4000 ConstantAddress CodeGenModule::GetAddrOfConstantCString(
4001     const std::string &Str, const char *GlobalName) {
4002   StringRef StrWithNull(Str.c_str(), Str.size() + 1);
4003   CharUnits Alignment =
4004     getContext().getAlignOfGlobalVarInChars(getContext().CharTy);
4005 
4006   llvm::Constant *C =
4007       llvm::ConstantDataArray::getString(getLLVMContext(), StrWithNull, false);
4008 
4009   // Don't share any string literals if strings aren't constant.
4010   llvm::GlobalVariable **Entry = nullptr;
4011   if (!LangOpts.WritableStrings) {
4012     Entry = &ConstantStringMap[C];
4013     if (auto GV = *Entry) {
4014       if (Alignment.getQuantity() > GV->getAlignment())
4015         GV->setAlignment(Alignment.getQuantity());
4016       return ConstantAddress(GV, Alignment);
4017     }
4018   }
4019 
4020   // Get the default prefix if a name wasn't specified.
4021   if (!GlobalName)
4022     GlobalName = ".str";
4023   // Create a global variable for this.
4024   auto GV = GenerateStringLiteral(C, llvm::GlobalValue::PrivateLinkage, *this,
4025                                   GlobalName, Alignment);
4026   if (Entry)
4027     *Entry = GV;
4028   return ConstantAddress(GV, Alignment);
4029 }
4030 
4031 ConstantAddress CodeGenModule::GetAddrOfGlobalTemporary(
4032     const MaterializeTemporaryExpr *E, const Expr *Init) {
4033   assert((E->getStorageDuration() == SD_Static ||
4034           E->getStorageDuration() == SD_Thread) && "not a global temporary");
4035   const auto *VD = cast<VarDecl>(E->getExtendingDecl());
4036 
4037   // If we're not materializing a subobject of the temporary, keep the
4038   // cv-qualifiers from the type of the MaterializeTemporaryExpr.
4039   QualType MaterializedType = Init->getType();
4040   if (Init == E->GetTemporaryExpr())
4041     MaterializedType = E->getType();
4042 
4043   CharUnits Align = getContext().getTypeAlignInChars(MaterializedType);
4044 
4045   if (llvm::Constant *Slot = MaterializedGlobalTemporaryMap[E])
4046     return ConstantAddress(Slot, Align);
4047 
4048   // FIXME: If an externally-visible declaration extends multiple temporaries,
4049   // we need to give each temporary the same name in every translation unit (and
4050   // we also need to make the temporaries externally-visible).
4051   SmallString<256> Name;
4052   llvm::raw_svector_ostream Out(Name);
4053   getCXXABI().getMangleContext().mangleReferenceTemporary(
4054       VD, E->getManglingNumber(), Out);
4055 
4056   APValue *Value = nullptr;
4057   if (E->getStorageDuration() == SD_Static) {
4058     // We might have a cached constant initializer for this temporary. Note
4059     // that this might have a different value from the value computed by
4060     // evaluating the initializer if the surrounding constant expression
4061     // modifies the temporary.
4062     Value = getContext().getMaterializedTemporaryValue(E, false);
4063     if (Value && Value->isUninit())
4064       Value = nullptr;
4065   }
4066 
4067   // Try evaluating it now, it might have a constant initializer.
4068   Expr::EvalResult EvalResult;
4069   if (!Value && Init->EvaluateAsRValue(EvalResult, getContext()) &&
4070       !EvalResult.hasSideEffects())
4071     Value = &EvalResult.Val;
4072 
4073   LangAS AddrSpace =
4074       VD ? GetGlobalVarAddressSpace(VD) : MaterializedType.getAddressSpace();
4075 
4076   Optional<ConstantEmitter> emitter;
4077   llvm::Constant *InitialValue = nullptr;
4078   bool Constant = false;
4079   llvm::Type *Type;
4080   if (Value) {
4081     // The temporary has a constant initializer, use it.
4082     emitter.emplace(*this);
4083     InitialValue = emitter->emitForInitializer(*Value, AddrSpace,
4084                                                MaterializedType);
4085     Constant = isTypeConstant(MaterializedType, /*ExcludeCtor*/Value);
4086     Type = InitialValue->getType();
4087   } else {
4088     // No initializer, the initialization will be provided when we
4089     // initialize the declaration which performed lifetime extension.
4090     Type = getTypes().ConvertTypeForMem(MaterializedType);
4091   }
4092 
4093   // Create a global variable for this lifetime-extended temporary.
4094   llvm::GlobalValue::LinkageTypes Linkage =
4095       getLLVMLinkageVarDefinition(VD, Constant);
4096   if (Linkage == llvm::GlobalVariable::ExternalLinkage) {
4097     const VarDecl *InitVD;
4098     if (VD->isStaticDataMember() && VD->getAnyInitializer(InitVD) &&
4099         isa<CXXRecordDecl>(InitVD->getLexicalDeclContext())) {
4100       // Temporaries defined inside a class get linkonce_odr linkage because the
4101       // class can be defined in multipe translation units.
4102       Linkage = llvm::GlobalVariable::LinkOnceODRLinkage;
4103     } else {
4104       // There is no need for this temporary to have external linkage if the
4105       // VarDecl has external linkage.
4106       Linkage = llvm::GlobalVariable::InternalLinkage;
4107     }
4108   }
4109   auto TargetAS = getContext().getTargetAddressSpace(AddrSpace);
4110   auto *GV = new llvm::GlobalVariable(
4111       getModule(), Type, Constant, Linkage, InitialValue, Name.c_str(),
4112       /*InsertBefore=*/nullptr, llvm::GlobalVariable::NotThreadLocal, TargetAS);
4113   if (emitter) emitter->finalize(GV);
4114   setGVProperties(GV, VD);
4115   GV->setAlignment(Align.getQuantity());
4116   if (supportsCOMDAT() && GV->isWeakForLinker())
4117     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
4118   if (VD->getTLSKind())
4119     setTLSMode(GV, *VD);
4120   llvm::Constant *CV = GV;
4121   if (AddrSpace != LangAS::Default)
4122     CV = getTargetCodeGenInfo().performAddrSpaceCast(
4123         *this, GV, AddrSpace, LangAS::Default,
4124         Type->getPointerTo(
4125             getContext().getTargetAddressSpace(LangAS::Default)));
4126   MaterializedGlobalTemporaryMap[E] = CV;
4127   return ConstantAddress(CV, Align);
4128 }
4129 
4130 /// EmitObjCPropertyImplementations - Emit information for synthesized
4131 /// properties for an implementation.
4132 void CodeGenModule::EmitObjCPropertyImplementations(const
4133                                                     ObjCImplementationDecl *D) {
4134   for (const auto *PID : D->property_impls()) {
4135     // Dynamic is just for type-checking.
4136     if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) {
4137       ObjCPropertyDecl *PD = PID->getPropertyDecl();
4138 
4139       // Determine which methods need to be implemented, some may have
4140       // been overridden. Note that ::isPropertyAccessor is not the method
4141       // we want, that just indicates if the decl came from a
4142       // property. What we want to know is if the method is defined in
4143       // this implementation.
4144       if (!D->getInstanceMethod(PD->getGetterName()))
4145         CodeGenFunction(*this).GenerateObjCGetter(
4146                                  const_cast<ObjCImplementationDecl *>(D), PID);
4147       if (!PD->isReadOnly() &&
4148           !D->getInstanceMethod(PD->getSetterName()))
4149         CodeGenFunction(*this).GenerateObjCSetter(
4150                                  const_cast<ObjCImplementationDecl *>(D), PID);
4151     }
4152   }
4153 }
4154 
4155 static bool needsDestructMethod(ObjCImplementationDecl *impl) {
4156   const ObjCInterfaceDecl *iface = impl->getClassInterface();
4157   for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin();
4158        ivar; ivar = ivar->getNextIvar())
4159     if (ivar->getType().isDestructedType())
4160       return true;
4161 
4162   return false;
4163 }
4164 
4165 static bool AllTrivialInitializers(CodeGenModule &CGM,
4166                                    ObjCImplementationDecl *D) {
4167   CodeGenFunction CGF(CGM);
4168   for (ObjCImplementationDecl::init_iterator B = D->init_begin(),
4169        E = D->init_end(); B != E; ++B) {
4170     CXXCtorInitializer *CtorInitExp = *B;
4171     Expr *Init = CtorInitExp->getInit();
4172     if (!CGF.isTrivialInitializer(Init))
4173       return false;
4174   }
4175   return true;
4176 }
4177 
4178 /// EmitObjCIvarInitializations - Emit information for ivar initialization
4179 /// for an implementation.
4180 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) {
4181   // We might need a .cxx_destruct even if we don't have any ivar initializers.
4182   if (needsDestructMethod(D)) {
4183     IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct");
4184     Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
4185     ObjCMethodDecl *DTORMethod =
4186       ObjCMethodDecl::Create(getContext(), D->getLocation(), D->getLocation(),
4187                              cxxSelector, getContext().VoidTy, nullptr, D,
4188                              /*isInstance=*/true, /*isVariadic=*/false,
4189                           /*isPropertyAccessor=*/true, /*isImplicitlyDeclared=*/true,
4190                              /*isDefined=*/false, ObjCMethodDecl::Required);
4191     D->addInstanceMethod(DTORMethod);
4192     CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false);
4193     D->setHasDestructors(true);
4194   }
4195 
4196   // If the implementation doesn't have any ivar initializers, we don't need
4197   // a .cxx_construct.
4198   if (D->getNumIvarInitializers() == 0 ||
4199       AllTrivialInitializers(*this, D))
4200     return;
4201 
4202   IdentifierInfo *II = &getContext().Idents.get(".cxx_construct");
4203   Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
4204   // The constructor returns 'self'.
4205   ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(getContext(),
4206                                                 D->getLocation(),
4207                                                 D->getLocation(),
4208                                                 cxxSelector,
4209                                                 getContext().getObjCIdType(),
4210                                                 nullptr, D, /*isInstance=*/true,
4211                                                 /*isVariadic=*/false,
4212                                                 /*isPropertyAccessor=*/true,
4213                                                 /*isImplicitlyDeclared=*/true,
4214                                                 /*isDefined=*/false,
4215                                                 ObjCMethodDecl::Required);
4216   D->addInstanceMethod(CTORMethod);
4217   CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true);
4218   D->setHasNonZeroConstructors(true);
4219 }
4220 
4221 // EmitLinkageSpec - Emit all declarations in a linkage spec.
4222 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) {
4223   if (LSD->getLanguage() != LinkageSpecDecl::lang_c &&
4224       LSD->getLanguage() != LinkageSpecDecl::lang_cxx) {
4225     ErrorUnsupported(LSD, "linkage spec");
4226     return;
4227   }
4228 
4229   EmitDeclContext(LSD);
4230 }
4231 
4232 void CodeGenModule::EmitDeclContext(const DeclContext *DC) {
4233   for (auto *I : DC->decls()) {
4234     // Unlike other DeclContexts, the contents of an ObjCImplDecl at TU scope
4235     // are themselves considered "top-level", so EmitTopLevelDecl on an
4236     // ObjCImplDecl does not recursively visit them. We need to do that in
4237     // case they're nested inside another construct (LinkageSpecDecl /
4238     // ExportDecl) that does stop them from being considered "top-level".
4239     if (auto *OID = dyn_cast<ObjCImplDecl>(I)) {
4240       for (auto *M : OID->methods())
4241         EmitTopLevelDecl(M);
4242     }
4243 
4244     EmitTopLevelDecl(I);
4245   }
4246 }
4247 
4248 /// EmitTopLevelDecl - Emit code for a single top level declaration.
4249 void CodeGenModule::EmitTopLevelDecl(Decl *D) {
4250   // Ignore dependent declarations.
4251   if (D->isTemplated())
4252     return;
4253 
4254   switch (D->getKind()) {
4255   case Decl::CXXConversion:
4256   case Decl::CXXMethod:
4257   case Decl::Function:
4258     EmitGlobal(cast<FunctionDecl>(D));
4259     // Always provide some coverage mapping
4260     // even for the functions that aren't emitted.
4261     AddDeferredUnusedCoverageMapping(D);
4262     break;
4263 
4264   case Decl::CXXDeductionGuide:
4265     // Function-like, but does not result in code emission.
4266     break;
4267 
4268   case Decl::Var:
4269   case Decl::Decomposition:
4270   case Decl::VarTemplateSpecialization:
4271     EmitGlobal(cast<VarDecl>(D));
4272     if (auto *DD = dyn_cast<DecompositionDecl>(D))
4273       for (auto *B : DD->bindings())
4274         if (auto *HD = B->getHoldingVar())
4275           EmitGlobal(HD);
4276     break;
4277 
4278   // Indirect fields from global anonymous structs and unions can be
4279   // ignored; only the actual variable requires IR gen support.
4280   case Decl::IndirectField:
4281     break;
4282 
4283   // C++ Decls
4284   case Decl::Namespace:
4285     EmitDeclContext(cast<NamespaceDecl>(D));
4286     break;
4287   case Decl::ClassTemplateSpecialization: {
4288     const auto *Spec = cast<ClassTemplateSpecializationDecl>(D);
4289     if (DebugInfo &&
4290         Spec->getSpecializationKind() == TSK_ExplicitInstantiationDefinition &&
4291         Spec->hasDefinition())
4292       DebugInfo->completeTemplateDefinition(*Spec);
4293   } LLVM_FALLTHROUGH;
4294   case Decl::CXXRecord:
4295     if (DebugInfo) {
4296       if (auto *ES = D->getASTContext().getExternalSource())
4297         if (ES->hasExternalDefinitions(D) == ExternalASTSource::EK_Never)
4298           DebugInfo->completeUnusedClass(cast<CXXRecordDecl>(*D));
4299     }
4300     // Emit any static data members, they may be definitions.
4301     for (auto *I : cast<CXXRecordDecl>(D)->decls())
4302       if (isa<VarDecl>(I) || isa<CXXRecordDecl>(I))
4303         EmitTopLevelDecl(I);
4304     break;
4305     // No code generation needed.
4306   case Decl::UsingShadow:
4307   case Decl::ClassTemplate:
4308   case Decl::VarTemplate:
4309   case Decl::VarTemplatePartialSpecialization:
4310   case Decl::FunctionTemplate:
4311   case Decl::TypeAliasTemplate:
4312   case Decl::Block:
4313   case Decl::Empty:
4314     break;
4315   case Decl::Using:          // using X; [C++]
4316     if (CGDebugInfo *DI = getModuleDebugInfo())
4317         DI->EmitUsingDecl(cast<UsingDecl>(*D));
4318     return;
4319   case Decl::NamespaceAlias:
4320     if (CGDebugInfo *DI = getModuleDebugInfo())
4321         DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(*D));
4322     return;
4323   case Decl::UsingDirective: // using namespace X; [C++]
4324     if (CGDebugInfo *DI = getModuleDebugInfo())
4325       DI->EmitUsingDirective(cast<UsingDirectiveDecl>(*D));
4326     return;
4327   case Decl::CXXConstructor:
4328     getCXXABI().EmitCXXConstructors(cast<CXXConstructorDecl>(D));
4329     break;
4330   case Decl::CXXDestructor:
4331     getCXXABI().EmitCXXDestructors(cast<CXXDestructorDecl>(D));
4332     break;
4333 
4334   case Decl::StaticAssert:
4335     // Nothing to do.
4336     break;
4337 
4338   // Objective-C Decls
4339 
4340   // Forward declarations, no (immediate) code generation.
4341   case Decl::ObjCInterface:
4342   case Decl::ObjCCategory:
4343     break;
4344 
4345   case Decl::ObjCProtocol: {
4346     auto *Proto = cast<ObjCProtocolDecl>(D);
4347     if (Proto->isThisDeclarationADefinition())
4348       ObjCRuntime->GenerateProtocol(Proto);
4349     break;
4350   }
4351 
4352   case Decl::ObjCCategoryImpl:
4353     // Categories have properties but don't support synthesize so we
4354     // can ignore them here.
4355     ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D));
4356     break;
4357 
4358   case Decl::ObjCImplementation: {
4359     auto *OMD = cast<ObjCImplementationDecl>(D);
4360     EmitObjCPropertyImplementations(OMD);
4361     EmitObjCIvarInitializations(OMD);
4362     ObjCRuntime->GenerateClass(OMD);
4363     // Emit global variable debug information.
4364     if (CGDebugInfo *DI = getModuleDebugInfo())
4365       if (getCodeGenOpts().getDebugInfo() >= codegenoptions::LimitedDebugInfo)
4366         DI->getOrCreateInterfaceType(getContext().getObjCInterfaceType(
4367             OMD->getClassInterface()), OMD->getLocation());
4368     break;
4369   }
4370   case Decl::ObjCMethod: {
4371     auto *OMD = cast<ObjCMethodDecl>(D);
4372     // If this is not a prototype, emit the body.
4373     if (OMD->getBody())
4374       CodeGenFunction(*this).GenerateObjCMethod(OMD);
4375     break;
4376   }
4377   case Decl::ObjCCompatibleAlias:
4378     ObjCRuntime->RegisterAlias(cast<ObjCCompatibleAliasDecl>(D));
4379     break;
4380 
4381   case Decl::PragmaComment: {
4382     const auto *PCD = cast<PragmaCommentDecl>(D);
4383     switch (PCD->getCommentKind()) {
4384     case PCK_Unknown:
4385       llvm_unreachable("unexpected pragma comment kind");
4386     case PCK_Linker:
4387       AppendLinkerOptions(PCD->getArg());
4388       break;
4389     case PCK_Lib:
4390       if (getTarget().getTriple().isOSBinFormatELF() &&
4391           !getTarget().getTriple().isPS4())
4392         AddELFLibDirective(PCD->getArg());
4393       else
4394         AddDependentLib(PCD->getArg());
4395       break;
4396     case PCK_Compiler:
4397     case PCK_ExeStr:
4398     case PCK_User:
4399       break; // We ignore all of these.
4400     }
4401     break;
4402   }
4403 
4404   case Decl::PragmaDetectMismatch: {
4405     const auto *PDMD = cast<PragmaDetectMismatchDecl>(D);
4406     AddDetectMismatch(PDMD->getName(), PDMD->getValue());
4407     break;
4408   }
4409 
4410   case Decl::LinkageSpec:
4411     EmitLinkageSpec(cast<LinkageSpecDecl>(D));
4412     break;
4413 
4414   case Decl::FileScopeAsm: {
4415     // File-scope asm is ignored during device-side CUDA compilation.
4416     if (LangOpts.CUDA && LangOpts.CUDAIsDevice)
4417       break;
4418     // File-scope asm is ignored during device-side OpenMP compilation.
4419     if (LangOpts.OpenMPIsDevice)
4420       break;
4421     auto *AD = cast<FileScopeAsmDecl>(D);
4422     getModule().appendModuleInlineAsm(AD->getAsmString()->getString());
4423     break;
4424   }
4425 
4426   case Decl::Import: {
4427     auto *Import = cast<ImportDecl>(D);
4428 
4429     // If we've already imported this module, we're done.
4430     if (!ImportedModules.insert(Import->getImportedModule()))
4431       break;
4432 
4433     // Emit debug information for direct imports.
4434     if (!Import->getImportedOwningModule()) {
4435       if (CGDebugInfo *DI = getModuleDebugInfo())
4436         DI->EmitImportDecl(*Import);
4437     }
4438 
4439     // Find all of the submodules and emit the module initializers.
4440     llvm::SmallPtrSet<clang::Module *, 16> Visited;
4441     SmallVector<clang::Module *, 16> Stack;
4442     Visited.insert(Import->getImportedModule());
4443     Stack.push_back(Import->getImportedModule());
4444 
4445     while (!Stack.empty()) {
4446       clang::Module *Mod = Stack.pop_back_val();
4447       if (!EmittedModuleInitializers.insert(Mod).second)
4448         continue;
4449 
4450       for (auto *D : Context.getModuleInitializers(Mod))
4451         EmitTopLevelDecl(D);
4452 
4453       // Visit the submodules of this module.
4454       for (clang::Module::submodule_iterator Sub = Mod->submodule_begin(),
4455                                              SubEnd = Mod->submodule_end();
4456            Sub != SubEnd; ++Sub) {
4457         // Skip explicit children; they need to be explicitly imported to emit
4458         // the initializers.
4459         if ((*Sub)->IsExplicit)
4460           continue;
4461 
4462         if (Visited.insert(*Sub).second)
4463           Stack.push_back(*Sub);
4464       }
4465     }
4466     break;
4467   }
4468 
4469   case Decl::Export:
4470     EmitDeclContext(cast<ExportDecl>(D));
4471     break;
4472 
4473   case Decl::OMPThreadPrivate:
4474     EmitOMPThreadPrivateDecl(cast<OMPThreadPrivateDecl>(D));
4475     break;
4476 
4477   case Decl::OMPDeclareReduction:
4478     EmitOMPDeclareReduction(cast<OMPDeclareReductionDecl>(D));
4479     break;
4480 
4481   default:
4482     // Make sure we handled everything we should, every other kind is a
4483     // non-top-level decl.  FIXME: Would be nice to have an isTopLevelDeclKind
4484     // function. Need to recode Decl::Kind to do that easily.
4485     assert(isa<TypeDecl>(D) && "Unsupported decl kind");
4486     break;
4487   }
4488 }
4489 
4490 void CodeGenModule::AddDeferredUnusedCoverageMapping(Decl *D) {
4491   // Do we need to generate coverage mapping?
4492   if (!CodeGenOpts.CoverageMapping)
4493     return;
4494   switch (D->getKind()) {
4495   case Decl::CXXConversion:
4496   case Decl::CXXMethod:
4497   case Decl::Function:
4498   case Decl::ObjCMethod:
4499   case Decl::CXXConstructor:
4500   case Decl::CXXDestructor: {
4501     if (!cast<FunctionDecl>(D)->doesThisDeclarationHaveABody())
4502       return;
4503     SourceManager &SM = getContext().getSourceManager();
4504     if (LimitedCoverage && SM.getMainFileID() != SM.getFileID(D->getLocStart()))
4505       return;
4506     auto I = DeferredEmptyCoverageMappingDecls.find(D);
4507     if (I == DeferredEmptyCoverageMappingDecls.end())
4508       DeferredEmptyCoverageMappingDecls[D] = true;
4509     break;
4510   }
4511   default:
4512     break;
4513   };
4514 }
4515 
4516 void CodeGenModule::ClearUnusedCoverageMapping(const Decl *D) {
4517   // Do we need to generate coverage mapping?
4518   if (!CodeGenOpts.CoverageMapping)
4519     return;
4520   if (const auto *Fn = dyn_cast<FunctionDecl>(D)) {
4521     if (Fn->isTemplateInstantiation())
4522       ClearUnusedCoverageMapping(Fn->getTemplateInstantiationPattern());
4523   }
4524   auto I = DeferredEmptyCoverageMappingDecls.find(D);
4525   if (I == DeferredEmptyCoverageMappingDecls.end())
4526     DeferredEmptyCoverageMappingDecls[D] = false;
4527   else
4528     I->second = false;
4529 }
4530 
4531 void CodeGenModule::EmitDeferredUnusedCoverageMappings() {
4532   // We call takeVector() here to avoid use-after-free.
4533   // FIXME: DeferredEmptyCoverageMappingDecls is getting mutated because
4534   // we deserialize function bodies to emit coverage info for them, and that
4535   // deserializes more declarations. How should we handle that case?
4536   for (const auto &Entry : DeferredEmptyCoverageMappingDecls.takeVector()) {
4537     if (!Entry.second)
4538       continue;
4539     const Decl *D = Entry.first;
4540     switch (D->getKind()) {
4541     case Decl::CXXConversion:
4542     case Decl::CXXMethod:
4543     case Decl::Function:
4544     case Decl::ObjCMethod: {
4545       CodeGenPGO PGO(*this);
4546       GlobalDecl GD(cast<FunctionDecl>(D));
4547       PGO.emitEmptyCounterMapping(D, getMangledName(GD),
4548                                   getFunctionLinkage(GD));
4549       break;
4550     }
4551     case Decl::CXXConstructor: {
4552       CodeGenPGO PGO(*this);
4553       GlobalDecl GD(cast<CXXConstructorDecl>(D), Ctor_Base);
4554       PGO.emitEmptyCounterMapping(D, getMangledName(GD),
4555                                   getFunctionLinkage(GD));
4556       break;
4557     }
4558     case Decl::CXXDestructor: {
4559       CodeGenPGO PGO(*this);
4560       GlobalDecl GD(cast<CXXDestructorDecl>(D), Dtor_Base);
4561       PGO.emitEmptyCounterMapping(D, getMangledName(GD),
4562                                   getFunctionLinkage(GD));
4563       break;
4564     }
4565     default:
4566       break;
4567     };
4568   }
4569 }
4570 
4571 /// Turns the given pointer into a constant.
4572 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context,
4573                                           const void *Ptr) {
4574   uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr);
4575   llvm::Type *i64 = llvm::Type::getInt64Ty(Context);
4576   return llvm::ConstantInt::get(i64, PtrInt);
4577 }
4578 
4579 static void EmitGlobalDeclMetadata(CodeGenModule &CGM,
4580                                    llvm::NamedMDNode *&GlobalMetadata,
4581                                    GlobalDecl D,
4582                                    llvm::GlobalValue *Addr) {
4583   if (!GlobalMetadata)
4584     GlobalMetadata =
4585       CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs");
4586 
4587   // TODO: should we report variant information for ctors/dtors?
4588   llvm::Metadata *Ops[] = {llvm::ConstantAsMetadata::get(Addr),
4589                            llvm::ConstantAsMetadata::get(GetPointerConstant(
4590                                CGM.getLLVMContext(), D.getDecl()))};
4591   GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops));
4592 }
4593 
4594 /// For each function which is declared within an extern "C" region and marked
4595 /// as 'used', but has internal linkage, create an alias from the unmangled
4596 /// name to the mangled name if possible. People expect to be able to refer
4597 /// to such functions with an unmangled name from inline assembly within the
4598 /// same translation unit.
4599 void CodeGenModule::EmitStaticExternCAliases() {
4600   // Don't do anything if we're generating CUDA device code -- the NVPTX
4601   // assembly target doesn't support aliases.
4602   if (Context.getTargetInfo().getTriple().isNVPTX())
4603     return;
4604   for (auto &I : StaticExternCValues) {
4605     IdentifierInfo *Name = I.first;
4606     llvm::GlobalValue *Val = I.second;
4607     if (Val && !getModule().getNamedValue(Name->getName()))
4608       addUsedGlobal(llvm::GlobalAlias::create(Name->getName(), Val));
4609   }
4610 }
4611 
4612 bool CodeGenModule::lookupRepresentativeDecl(StringRef MangledName,
4613                                              GlobalDecl &Result) const {
4614   auto Res = Manglings.find(MangledName);
4615   if (Res == Manglings.end())
4616     return false;
4617   Result = Res->getValue();
4618   return true;
4619 }
4620 
4621 /// Emits metadata nodes associating all the global values in the
4622 /// current module with the Decls they came from.  This is useful for
4623 /// projects using IR gen as a subroutine.
4624 ///
4625 /// Since there's currently no way to associate an MDNode directly
4626 /// with an llvm::GlobalValue, we create a global named metadata
4627 /// with the name 'clang.global.decl.ptrs'.
4628 void CodeGenModule::EmitDeclMetadata() {
4629   llvm::NamedMDNode *GlobalMetadata = nullptr;
4630 
4631   for (auto &I : MangledDeclNames) {
4632     llvm::GlobalValue *Addr = getModule().getNamedValue(I.second);
4633     // Some mangled names don't necessarily have an associated GlobalValue
4634     // in this module, e.g. if we mangled it for DebugInfo.
4635     if (Addr)
4636       EmitGlobalDeclMetadata(*this, GlobalMetadata, I.first, Addr);
4637   }
4638 }
4639 
4640 /// Emits metadata nodes for all the local variables in the current
4641 /// function.
4642 void CodeGenFunction::EmitDeclMetadata() {
4643   if (LocalDeclMap.empty()) return;
4644 
4645   llvm::LLVMContext &Context = getLLVMContext();
4646 
4647   // Find the unique metadata ID for this name.
4648   unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr");
4649 
4650   llvm::NamedMDNode *GlobalMetadata = nullptr;
4651 
4652   for (auto &I : LocalDeclMap) {
4653     const Decl *D = I.first;
4654     llvm::Value *Addr = I.second.getPointer();
4655     if (auto *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) {
4656       llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D);
4657       Alloca->setMetadata(
4658           DeclPtrKind, llvm::MDNode::get(
4659                            Context, llvm::ValueAsMetadata::getConstant(DAddr)));
4660     } else if (auto *GV = dyn_cast<llvm::GlobalValue>(Addr)) {
4661       GlobalDecl GD = GlobalDecl(cast<VarDecl>(D));
4662       EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV);
4663     }
4664   }
4665 }
4666 
4667 void CodeGenModule::EmitVersionIdentMetadata() {
4668   llvm::NamedMDNode *IdentMetadata =
4669     TheModule.getOrInsertNamedMetadata("llvm.ident");
4670   std::string Version = getClangFullVersion();
4671   llvm::LLVMContext &Ctx = TheModule.getContext();
4672 
4673   llvm::Metadata *IdentNode[] = {llvm::MDString::get(Ctx, Version)};
4674   IdentMetadata->addOperand(llvm::MDNode::get(Ctx, IdentNode));
4675 }
4676 
4677 void CodeGenModule::EmitTargetMetadata() {
4678   // Warning, new MangledDeclNames may be appended within this loop.
4679   // We rely on MapVector insertions adding new elements to the end
4680   // of the container.
4681   // FIXME: Move this loop into the one target that needs it, and only
4682   // loop over those declarations for which we couldn't emit the target
4683   // metadata when we emitted the declaration.
4684   for (unsigned I = 0; I != MangledDeclNames.size(); ++I) {
4685     auto Val = *(MangledDeclNames.begin() + I);
4686     const Decl *D = Val.first.getDecl()->getMostRecentDecl();
4687     llvm::GlobalValue *GV = GetGlobalValue(Val.second);
4688     getTargetCodeGenInfo().emitTargetMD(D, GV, *this);
4689   }
4690 }
4691 
4692 void CodeGenModule::EmitCoverageFile() {
4693   if (getCodeGenOpts().CoverageDataFile.empty() &&
4694       getCodeGenOpts().CoverageNotesFile.empty())
4695     return;
4696 
4697   llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu");
4698   if (!CUNode)
4699     return;
4700 
4701   llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov");
4702   llvm::LLVMContext &Ctx = TheModule.getContext();
4703   auto *CoverageDataFile =
4704       llvm::MDString::get(Ctx, getCodeGenOpts().CoverageDataFile);
4705   auto *CoverageNotesFile =
4706       llvm::MDString::get(Ctx, getCodeGenOpts().CoverageNotesFile);
4707   for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) {
4708     llvm::MDNode *CU = CUNode->getOperand(i);
4709     llvm::Metadata *Elts[] = {CoverageNotesFile, CoverageDataFile, CU};
4710     GCov->addOperand(llvm::MDNode::get(Ctx, Elts));
4711   }
4712 }
4713 
4714 llvm::Constant *CodeGenModule::EmitUuidofInitializer(StringRef Uuid) {
4715   // Sema has checked that all uuid strings are of the form
4716   // "12345678-1234-1234-1234-1234567890ab".
4717   assert(Uuid.size() == 36);
4718   for (unsigned i = 0; i < 36; ++i) {
4719     if (i == 8 || i == 13 || i == 18 || i == 23) assert(Uuid[i] == '-');
4720     else                                         assert(isHexDigit(Uuid[i]));
4721   }
4722 
4723   // The starts of all bytes of Field3 in Uuid. Field 3 is "1234-1234567890ab".
4724   const unsigned Field3ValueOffsets[8] = { 19, 21, 24, 26, 28, 30, 32, 34 };
4725 
4726   llvm::Constant *Field3[8];
4727   for (unsigned Idx = 0; Idx < 8; ++Idx)
4728     Field3[Idx] = llvm::ConstantInt::get(
4729         Int8Ty, Uuid.substr(Field3ValueOffsets[Idx], 2), 16);
4730 
4731   llvm::Constant *Fields[4] = {
4732     llvm::ConstantInt::get(Int32Ty, Uuid.substr(0,  8), 16),
4733     llvm::ConstantInt::get(Int16Ty, Uuid.substr(9,  4), 16),
4734     llvm::ConstantInt::get(Int16Ty, Uuid.substr(14, 4), 16),
4735     llvm::ConstantArray::get(llvm::ArrayType::get(Int8Ty, 8), Field3)
4736   };
4737 
4738   return llvm::ConstantStruct::getAnon(Fields);
4739 }
4740 
4741 llvm::Constant *CodeGenModule::GetAddrOfRTTIDescriptor(QualType Ty,
4742                                                        bool ForEH) {
4743   // Return a bogus pointer if RTTI is disabled, unless it's for EH.
4744   // FIXME: should we even be calling this method if RTTI is disabled
4745   // and it's not for EH?
4746   if (!ForEH && !getLangOpts().RTTI)
4747     return llvm::Constant::getNullValue(Int8PtrTy);
4748 
4749   if (ForEH && Ty->isObjCObjectPointerType() &&
4750       LangOpts.ObjCRuntime.isGNUFamily())
4751     return ObjCRuntime->GetEHType(Ty);
4752 
4753   return getCXXABI().getAddrOfRTTIDescriptor(Ty);
4754 }
4755 
4756 void CodeGenModule::EmitOMPThreadPrivateDecl(const OMPThreadPrivateDecl *D) {
4757   // Do not emit threadprivates in simd-only mode.
4758   if (LangOpts.OpenMP && LangOpts.OpenMPSimd)
4759     return;
4760   for (auto RefExpr : D->varlists()) {
4761     auto *VD = cast<VarDecl>(cast<DeclRefExpr>(RefExpr)->getDecl());
4762     bool PerformInit =
4763         VD->getAnyInitializer() &&
4764         !VD->getAnyInitializer()->isConstantInitializer(getContext(),
4765                                                         /*ForRef=*/false);
4766 
4767     Address Addr(GetAddrOfGlobalVar(VD), getContext().getDeclAlign(VD));
4768     if (auto InitFunction = getOpenMPRuntime().emitThreadPrivateVarDefinition(
4769             VD, Addr, RefExpr->getLocStart(), PerformInit))
4770       CXXGlobalInits.push_back(InitFunction);
4771   }
4772 }
4773 
4774 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierForType(QualType T) {
4775   llvm::Metadata *&InternalId = MetadataIdMap[T.getCanonicalType()];
4776   if (InternalId)
4777     return InternalId;
4778 
4779   if (isExternallyVisible(T->getLinkage())) {
4780     std::string OutName;
4781     llvm::raw_string_ostream Out(OutName);
4782     getCXXABI().getMangleContext().mangleTypeName(T, Out);
4783 
4784     InternalId = llvm::MDString::get(getLLVMContext(), Out.str());
4785   } else {
4786     InternalId = llvm::MDNode::getDistinct(getLLVMContext(),
4787                                            llvm::ArrayRef<llvm::Metadata *>());
4788   }
4789 
4790   return InternalId;
4791 }
4792 
4793 // Generalize pointer types to a void pointer with the qualifiers of the
4794 // originally pointed-to type, e.g. 'const char *' and 'char * const *'
4795 // generalize to 'const void *' while 'char *' and 'const char **' generalize to
4796 // 'void *'.
4797 static QualType GeneralizeType(ASTContext &Ctx, QualType Ty) {
4798   if (!Ty->isPointerType())
4799     return Ty;
4800 
4801   return Ctx.getPointerType(
4802       QualType(Ctx.VoidTy).withCVRQualifiers(
4803           Ty->getPointeeType().getCVRQualifiers()));
4804 }
4805 
4806 // Apply type generalization to a FunctionType's return and argument types
4807 static QualType GeneralizeFunctionType(ASTContext &Ctx, QualType Ty) {
4808   if (auto *FnType = Ty->getAs<FunctionProtoType>()) {
4809     SmallVector<QualType, 8> GeneralizedParams;
4810     for (auto &Param : FnType->param_types())
4811       GeneralizedParams.push_back(GeneralizeType(Ctx, Param));
4812 
4813     return Ctx.getFunctionType(
4814         GeneralizeType(Ctx, FnType->getReturnType()),
4815         GeneralizedParams, FnType->getExtProtoInfo());
4816   }
4817 
4818   if (auto *FnType = Ty->getAs<FunctionNoProtoType>())
4819     return Ctx.getFunctionNoProtoType(
4820         GeneralizeType(Ctx, FnType->getReturnType()));
4821 
4822   llvm_unreachable("Encountered unknown FunctionType");
4823 }
4824 
4825 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierGeneralized(QualType T) {
4826   T = GeneralizeFunctionType(getContext(), T);
4827 
4828   llvm::Metadata *&InternalId = GeneralizedMetadataIdMap[T.getCanonicalType()];
4829   if (InternalId)
4830     return InternalId;
4831 
4832   if (isExternallyVisible(T->getLinkage())) {
4833     std::string OutName;
4834     llvm::raw_string_ostream Out(OutName);
4835     getCXXABI().getMangleContext().mangleTypeName(T, Out);
4836     Out << ".generalized";
4837 
4838     InternalId = llvm::MDString::get(getLLVMContext(), Out.str());
4839   } else {
4840     InternalId = llvm::MDNode::getDistinct(getLLVMContext(),
4841                                            llvm::ArrayRef<llvm::Metadata *>());
4842   }
4843 
4844   return InternalId;
4845 }
4846 
4847 /// Returns whether this module needs the "all-vtables" type identifier.
4848 bool CodeGenModule::NeedAllVtablesTypeId() const {
4849   // Returns true if at least one of vtable-based CFI checkers is enabled and
4850   // is not in the trapping mode.
4851   return ((LangOpts.Sanitize.has(SanitizerKind::CFIVCall) &&
4852            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIVCall)) ||
4853           (LangOpts.Sanitize.has(SanitizerKind::CFINVCall) &&
4854            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFINVCall)) ||
4855           (LangOpts.Sanitize.has(SanitizerKind::CFIDerivedCast) &&
4856            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIDerivedCast)) ||
4857           (LangOpts.Sanitize.has(SanitizerKind::CFIUnrelatedCast) &&
4858            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIUnrelatedCast)));
4859 }
4860 
4861 void CodeGenModule::AddVTableTypeMetadata(llvm::GlobalVariable *VTable,
4862                                           CharUnits Offset,
4863                                           const CXXRecordDecl *RD) {
4864   llvm::Metadata *MD =
4865       CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0));
4866   VTable->addTypeMetadata(Offset.getQuantity(), MD);
4867 
4868   if (CodeGenOpts.SanitizeCfiCrossDso)
4869     if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD))
4870       VTable->addTypeMetadata(Offset.getQuantity(),
4871                               llvm::ConstantAsMetadata::get(CrossDsoTypeId));
4872 
4873   if (NeedAllVtablesTypeId()) {
4874     llvm::Metadata *MD = llvm::MDString::get(getLLVMContext(), "all-vtables");
4875     VTable->addTypeMetadata(Offset.getQuantity(), MD);
4876   }
4877 }
4878 
4879 // Fills in the supplied string map with the set of target features for the
4880 // passed in function.
4881 void CodeGenModule::getFunctionFeatureMap(llvm::StringMap<bool> &FeatureMap,
4882                                           const FunctionDecl *FD) {
4883   StringRef TargetCPU = Target.getTargetOpts().CPU;
4884   if (const auto *TD = FD->getAttr<TargetAttr>()) {
4885     // If we have a TargetAttr build up the feature map based on that.
4886     TargetAttr::ParsedTargetAttr ParsedAttr = TD->parse();
4887 
4888     ParsedAttr.Features.erase(
4889         llvm::remove_if(ParsedAttr.Features,
4890                         [&](const std::string &Feat) {
4891                           return !Target.isValidFeatureName(
4892                               StringRef{Feat}.substr(1));
4893                         }),
4894         ParsedAttr.Features.end());
4895 
4896     // Make a copy of the features as passed on the command line into the
4897     // beginning of the additional features from the function to override.
4898     ParsedAttr.Features.insert(ParsedAttr.Features.begin(),
4899                             Target.getTargetOpts().FeaturesAsWritten.begin(),
4900                             Target.getTargetOpts().FeaturesAsWritten.end());
4901 
4902     if (ParsedAttr.Architecture != "" &&
4903         Target.isValidCPUName(ParsedAttr.Architecture))
4904       TargetCPU = ParsedAttr.Architecture;
4905 
4906     // Now populate the feature map, first with the TargetCPU which is either
4907     // the default or a new one from the target attribute string. Then we'll use
4908     // the passed in features (FeaturesAsWritten) along with the new ones from
4909     // the attribute.
4910     Target.initFeatureMap(FeatureMap, getDiags(), TargetCPU,
4911                           ParsedAttr.Features);
4912   } else {
4913     Target.initFeatureMap(FeatureMap, getDiags(), TargetCPU,
4914                           Target.getTargetOpts().Features);
4915   }
4916 }
4917 
4918 llvm::SanitizerStatReport &CodeGenModule::getSanStats() {
4919   if (!SanStats)
4920     SanStats = llvm::make_unique<llvm::SanitizerStatReport>(&getModule());
4921 
4922   return *SanStats;
4923 }
4924 llvm::Value *
4925 CodeGenModule::createOpenCLIntToSamplerConversion(const Expr *E,
4926                                                   CodeGenFunction &CGF) {
4927   llvm::Constant *C = ConstantEmitter(CGF).emitAbstract(E, E->getType());
4928   auto SamplerT = getOpenCLRuntime().getSamplerType(E->getType().getTypePtr());
4929   auto FTy = llvm::FunctionType::get(SamplerT, {C->getType()}, false);
4930   return CGF.Builder.CreateCall(CreateRuntimeFunction(FTy,
4931                                 "__translate_sampler_initializer"),
4932                                 {C});
4933 }
4934