1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This coordinates the per-module state used while generating code. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "CodeGenModule.h" 14 #include "ABIInfo.h" 15 #include "CGBlocks.h" 16 #include "CGCUDARuntime.h" 17 #include "CGCXXABI.h" 18 #include "CGCall.h" 19 #include "CGDebugInfo.h" 20 #include "CGHLSLRuntime.h" 21 #include "CGObjCRuntime.h" 22 #include "CGOpenCLRuntime.h" 23 #include "CGOpenMPRuntime.h" 24 #include "CGOpenMPRuntimeGPU.h" 25 #include "CodeGenFunction.h" 26 #include "CodeGenPGO.h" 27 #include "ConstantEmitter.h" 28 #include "CoverageMappingGen.h" 29 #include "TargetInfo.h" 30 #include "clang/AST/ASTContext.h" 31 #include "clang/AST/CharUnits.h" 32 #include "clang/AST/DeclCXX.h" 33 #include "clang/AST/DeclObjC.h" 34 #include "clang/AST/DeclTemplate.h" 35 #include "clang/AST/Mangle.h" 36 #include "clang/AST/RecursiveASTVisitor.h" 37 #include "clang/AST/StmtVisitor.h" 38 #include "clang/Basic/Builtins.h" 39 #include "clang/Basic/CharInfo.h" 40 #include "clang/Basic/CodeGenOptions.h" 41 #include "clang/Basic/Diagnostic.h" 42 #include "clang/Basic/FileManager.h" 43 #include "clang/Basic/Module.h" 44 #include "clang/Basic/SourceManager.h" 45 #include "clang/Basic/TargetInfo.h" 46 #include "clang/Basic/Version.h" 47 #include "clang/CodeGen/BackendUtil.h" 48 #include "clang/CodeGen/ConstantInitBuilder.h" 49 #include "clang/Frontend/FrontendDiagnostic.h" 50 #include "llvm/ADT/STLExtras.h" 51 #include "llvm/ADT/StringExtras.h" 52 #include "llvm/ADT/StringSwitch.h" 53 #include "llvm/ADT/Triple.h" 54 #include "llvm/Analysis/TargetLibraryInfo.h" 55 #include "llvm/Frontend/OpenMP/OMPIRBuilder.h" 56 #include "llvm/IR/CallingConv.h" 57 #include "llvm/IR/DataLayout.h" 58 #include "llvm/IR/Intrinsics.h" 59 #include "llvm/IR/LLVMContext.h" 60 #include "llvm/IR/Module.h" 61 #include "llvm/IR/ProfileSummary.h" 62 #include "llvm/ProfileData/InstrProfReader.h" 63 #include "llvm/ProfileData/SampleProf.h" 64 #include "llvm/Support/CRC.h" 65 #include "llvm/Support/CodeGen.h" 66 #include "llvm/Support/CommandLine.h" 67 #include "llvm/Support/ConvertUTF.h" 68 #include "llvm/Support/ErrorHandling.h" 69 #include "llvm/Support/TimeProfiler.h" 70 #include "llvm/Support/X86TargetParser.h" 71 #include "llvm/Support/xxhash.h" 72 73 using namespace clang; 74 using namespace CodeGen; 75 76 static llvm::cl::opt<bool> LimitedCoverage( 77 "limited-coverage-experimental", llvm::cl::Hidden, 78 llvm::cl::desc("Emit limited coverage mapping information (experimental)")); 79 80 static const char AnnotationSection[] = "llvm.metadata"; 81 82 static CGCXXABI *createCXXABI(CodeGenModule &CGM) { 83 switch (CGM.getContext().getCXXABIKind()) { 84 case TargetCXXABI::AppleARM64: 85 case TargetCXXABI::Fuchsia: 86 case TargetCXXABI::GenericAArch64: 87 case TargetCXXABI::GenericARM: 88 case TargetCXXABI::iOS: 89 case TargetCXXABI::WatchOS: 90 case TargetCXXABI::GenericMIPS: 91 case TargetCXXABI::GenericItanium: 92 case TargetCXXABI::WebAssembly: 93 case TargetCXXABI::XL: 94 return CreateItaniumCXXABI(CGM); 95 case TargetCXXABI::Microsoft: 96 return CreateMicrosoftCXXABI(CGM); 97 } 98 99 llvm_unreachable("invalid C++ ABI kind"); 100 } 101 102 CodeGenModule::CodeGenModule(ASTContext &C, 103 IntrusiveRefCntPtr<llvm::vfs::FileSystem> FS, 104 const HeaderSearchOptions &HSO, 105 const PreprocessorOptions &PPO, 106 const CodeGenOptions &CGO, llvm::Module &M, 107 DiagnosticsEngine &diags, 108 CoverageSourceInfo *CoverageInfo) 109 : Context(C), LangOpts(C.getLangOpts()), FS(std::move(FS)), 110 HeaderSearchOpts(HSO), PreprocessorOpts(PPO), CodeGenOpts(CGO), 111 TheModule(M), Diags(diags), Target(C.getTargetInfo()), 112 ABI(createCXXABI(*this)), VMContext(M.getContext()), Types(*this), 113 VTables(*this), SanitizerMD(new SanitizerMetadata(*this)) { 114 115 // Initialize the type cache. 116 llvm::LLVMContext &LLVMContext = M.getContext(); 117 VoidTy = llvm::Type::getVoidTy(LLVMContext); 118 Int8Ty = llvm::Type::getInt8Ty(LLVMContext); 119 Int16Ty = llvm::Type::getInt16Ty(LLVMContext); 120 Int32Ty = llvm::Type::getInt32Ty(LLVMContext); 121 Int64Ty = llvm::Type::getInt64Ty(LLVMContext); 122 HalfTy = llvm::Type::getHalfTy(LLVMContext); 123 BFloatTy = llvm::Type::getBFloatTy(LLVMContext); 124 FloatTy = llvm::Type::getFloatTy(LLVMContext); 125 DoubleTy = llvm::Type::getDoubleTy(LLVMContext); 126 PointerWidthInBits = C.getTargetInfo().getPointerWidth(LangAS::Default); 127 PointerAlignInBytes = 128 C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(LangAS::Default)) 129 .getQuantity(); 130 SizeSizeInBytes = 131 C.toCharUnitsFromBits(C.getTargetInfo().getMaxPointerWidth()).getQuantity(); 132 IntAlignInBytes = 133 C.toCharUnitsFromBits(C.getTargetInfo().getIntAlign()).getQuantity(); 134 CharTy = 135 llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getCharWidth()); 136 IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth()); 137 IntPtrTy = llvm::IntegerType::get(LLVMContext, 138 C.getTargetInfo().getMaxPointerWidth()); 139 Int8PtrTy = Int8Ty->getPointerTo(0); 140 Int8PtrPtrTy = Int8PtrTy->getPointerTo(0); 141 const llvm::DataLayout &DL = M.getDataLayout(); 142 AllocaInt8PtrTy = Int8Ty->getPointerTo(DL.getAllocaAddrSpace()); 143 GlobalsInt8PtrTy = Int8Ty->getPointerTo(DL.getDefaultGlobalsAddressSpace()); 144 ConstGlobalsPtrTy = Int8Ty->getPointerTo( 145 C.getTargetAddressSpace(GetGlobalConstantAddressSpace())); 146 ASTAllocaAddressSpace = getTargetCodeGenInfo().getASTAllocaAddressSpace(); 147 148 // Build C++20 Module initializers. 149 // TODO: Add Microsoft here once we know the mangling required for the 150 // initializers. 151 CXX20ModuleInits = 152 LangOpts.CPlusPlusModules && getCXXABI().getMangleContext().getKind() == 153 ItaniumMangleContext::MK_Itanium; 154 155 RuntimeCC = getTargetCodeGenInfo().getABIInfo().getRuntimeCC(); 156 157 if (LangOpts.ObjC) 158 createObjCRuntime(); 159 if (LangOpts.OpenCL) 160 createOpenCLRuntime(); 161 if (LangOpts.OpenMP) 162 createOpenMPRuntime(); 163 if (LangOpts.CUDA) 164 createCUDARuntime(); 165 if (LangOpts.HLSL) 166 createHLSLRuntime(); 167 168 // Enable TBAA unless it's suppressed. ThreadSanitizer needs TBAA even at O0. 169 if (LangOpts.Sanitize.has(SanitizerKind::Thread) || 170 (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0)) 171 TBAA.reset(new CodeGenTBAA(Context, TheModule, CodeGenOpts, getLangOpts(), 172 getCXXABI().getMangleContext())); 173 174 // If debug info or coverage generation is enabled, create the CGDebugInfo 175 // object. 176 if (CodeGenOpts.getDebugInfo() != codegenoptions::NoDebugInfo || 177 CodeGenOpts.EmitGcovArcs || CodeGenOpts.EmitGcovNotes) 178 DebugInfo.reset(new CGDebugInfo(*this)); 179 180 Block.GlobalUniqueCount = 0; 181 182 if (C.getLangOpts().ObjC) 183 ObjCData.reset(new ObjCEntrypoints()); 184 185 if (CodeGenOpts.hasProfileClangUse()) { 186 auto ReaderOrErr = llvm::IndexedInstrProfReader::create( 187 CodeGenOpts.ProfileInstrumentUsePath, CodeGenOpts.ProfileRemappingFile); 188 // We're checking for profile read errors in CompilerInvocation, so if 189 // there was an error it should've already been caught. If it hasn't been 190 // somehow, trip an assertion. 191 assert(ReaderOrErr); 192 PGOReader = std::move(ReaderOrErr.get()); 193 } 194 195 // If coverage mapping generation is enabled, create the 196 // CoverageMappingModuleGen object. 197 if (CodeGenOpts.CoverageMapping) 198 CoverageMapping.reset(new CoverageMappingModuleGen(*this, *CoverageInfo)); 199 200 // Generate the module name hash here if needed. 201 if (CodeGenOpts.UniqueInternalLinkageNames && 202 !getModule().getSourceFileName().empty()) { 203 std::string Path = getModule().getSourceFileName(); 204 // Check if a path substitution is needed from the MacroPrefixMap. 205 for (const auto &Entry : LangOpts.MacroPrefixMap) 206 if (Path.rfind(Entry.first, 0) != std::string::npos) { 207 Path = Entry.second + Path.substr(Entry.first.size()); 208 break; 209 } 210 ModuleNameHash = llvm::getUniqueInternalLinkagePostfix(Path); 211 } 212 } 213 214 CodeGenModule::~CodeGenModule() {} 215 216 void CodeGenModule::createObjCRuntime() { 217 // This is just isGNUFamily(), but we want to force implementors of 218 // new ABIs to decide how best to do this. 219 switch (LangOpts.ObjCRuntime.getKind()) { 220 case ObjCRuntime::GNUstep: 221 case ObjCRuntime::GCC: 222 case ObjCRuntime::ObjFW: 223 ObjCRuntime.reset(CreateGNUObjCRuntime(*this)); 224 return; 225 226 case ObjCRuntime::FragileMacOSX: 227 case ObjCRuntime::MacOSX: 228 case ObjCRuntime::iOS: 229 case ObjCRuntime::WatchOS: 230 ObjCRuntime.reset(CreateMacObjCRuntime(*this)); 231 return; 232 } 233 llvm_unreachable("bad runtime kind"); 234 } 235 236 void CodeGenModule::createOpenCLRuntime() { 237 OpenCLRuntime.reset(new CGOpenCLRuntime(*this)); 238 } 239 240 void CodeGenModule::createOpenMPRuntime() { 241 // Select a specialized code generation class based on the target, if any. 242 // If it does not exist use the default implementation. 243 switch (getTriple().getArch()) { 244 case llvm::Triple::nvptx: 245 case llvm::Triple::nvptx64: 246 case llvm::Triple::amdgcn: 247 assert(getLangOpts().OpenMPIsDevice && 248 "OpenMP AMDGPU/NVPTX is only prepared to deal with device code."); 249 OpenMPRuntime.reset(new CGOpenMPRuntimeGPU(*this)); 250 break; 251 default: 252 if (LangOpts.OpenMPSimd) 253 OpenMPRuntime.reset(new CGOpenMPSIMDRuntime(*this)); 254 else 255 OpenMPRuntime.reset(new CGOpenMPRuntime(*this)); 256 break; 257 } 258 } 259 260 void CodeGenModule::createCUDARuntime() { 261 CUDARuntime.reset(CreateNVCUDARuntime(*this)); 262 } 263 264 void CodeGenModule::createHLSLRuntime() { 265 HLSLRuntime.reset(new CGHLSLRuntime(*this)); 266 } 267 268 void CodeGenModule::addReplacement(StringRef Name, llvm::Constant *C) { 269 Replacements[Name] = C; 270 } 271 272 void CodeGenModule::applyReplacements() { 273 for (auto &I : Replacements) { 274 StringRef MangledName = I.first(); 275 llvm::Constant *Replacement = I.second; 276 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 277 if (!Entry) 278 continue; 279 auto *OldF = cast<llvm::Function>(Entry); 280 auto *NewF = dyn_cast<llvm::Function>(Replacement); 281 if (!NewF) { 282 if (auto *Alias = dyn_cast<llvm::GlobalAlias>(Replacement)) { 283 NewF = dyn_cast<llvm::Function>(Alias->getAliasee()); 284 } else { 285 auto *CE = cast<llvm::ConstantExpr>(Replacement); 286 assert(CE->getOpcode() == llvm::Instruction::BitCast || 287 CE->getOpcode() == llvm::Instruction::GetElementPtr); 288 NewF = dyn_cast<llvm::Function>(CE->getOperand(0)); 289 } 290 } 291 292 // Replace old with new, but keep the old order. 293 OldF->replaceAllUsesWith(Replacement); 294 if (NewF) { 295 NewF->removeFromParent(); 296 OldF->getParent()->getFunctionList().insertAfter(OldF->getIterator(), 297 NewF); 298 } 299 OldF->eraseFromParent(); 300 } 301 } 302 303 void CodeGenModule::addGlobalValReplacement(llvm::GlobalValue *GV, llvm::Constant *C) { 304 GlobalValReplacements.push_back(std::make_pair(GV, C)); 305 } 306 307 void CodeGenModule::applyGlobalValReplacements() { 308 for (auto &I : GlobalValReplacements) { 309 llvm::GlobalValue *GV = I.first; 310 llvm::Constant *C = I.second; 311 312 GV->replaceAllUsesWith(C); 313 GV->eraseFromParent(); 314 } 315 } 316 317 // This is only used in aliases that we created and we know they have a 318 // linear structure. 319 static const llvm::GlobalValue *getAliasedGlobal(const llvm::GlobalValue *GV) { 320 const llvm::Constant *C; 321 if (auto *GA = dyn_cast<llvm::GlobalAlias>(GV)) 322 C = GA->getAliasee(); 323 else if (auto *GI = dyn_cast<llvm::GlobalIFunc>(GV)) 324 C = GI->getResolver(); 325 else 326 return GV; 327 328 const auto *AliaseeGV = dyn_cast<llvm::GlobalValue>(C->stripPointerCasts()); 329 if (!AliaseeGV) 330 return nullptr; 331 332 const llvm::GlobalValue *FinalGV = AliaseeGV->getAliaseeObject(); 333 if (FinalGV == GV) 334 return nullptr; 335 336 return FinalGV; 337 } 338 339 static bool checkAliasedGlobal(DiagnosticsEngine &Diags, 340 SourceLocation Location, bool IsIFunc, 341 const llvm::GlobalValue *Alias, 342 const llvm::GlobalValue *&GV) { 343 GV = getAliasedGlobal(Alias); 344 if (!GV) { 345 Diags.Report(Location, diag::err_cyclic_alias) << IsIFunc; 346 return false; 347 } 348 349 if (GV->isDeclaration()) { 350 Diags.Report(Location, diag::err_alias_to_undefined) << IsIFunc << IsIFunc; 351 return false; 352 } 353 354 if (IsIFunc) { 355 // Check resolver function type. 356 const auto *F = dyn_cast<llvm::Function>(GV); 357 if (!F) { 358 Diags.Report(Location, diag::err_alias_to_undefined) 359 << IsIFunc << IsIFunc; 360 return false; 361 } 362 363 llvm::FunctionType *FTy = F->getFunctionType(); 364 if (!FTy->getReturnType()->isPointerTy()) { 365 Diags.Report(Location, diag::err_ifunc_resolver_return); 366 return false; 367 } 368 } 369 370 return true; 371 } 372 373 void CodeGenModule::checkAliases() { 374 // Check if the constructed aliases are well formed. It is really unfortunate 375 // that we have to do this in CodeGen, but we only construct mangled names 376 // and aliases during codegen. 377 bool Error = false; 378 DiagnosticsEngine &Diags = getDiags(); 379 for (const GlobalDecl &GD : Aliases) { 380 const auto *D = cast<ValueDecl>(GD.getDecl()); 381 SourceLocation Location; 382 bool IsIFunc = D->hasAttr<IFuncAttr>(); 383 if (const Attr *A = D->getDefiningAttr()) 384 Location = A->getLocation(); 385 else 386 llvm_unreachable("Not an alias or ifunc?"); 387 388 StringRef MangledName = getMangledName(GD); 389 llvm::GlobalValue *Alias = GetGlobalValue(MangledName); 390 const llvm::GlobalValue *GV = nullptr; 391 if (!checkAliasedGlobal(Diags, Location, IsIFunc, Alias, GV)) { 392 Error = true; 393 continue; 394 } 395 396 llvm::Constant *Aliasee = 397 IsIFunc ? cast<llvm::GlobalIFunc>(Alias)->getResolver() 398 : cast<llvm::GlobalAlias>(Alias)->getAliasee(); 399 400 llvm::GlobalValue *AliaseeGV; 401 if (auto CE = dyn_cast<llvm::ConstantExpr>(Aliasee)) 402 AliaseeGV = cast<llvm::GlobalValue>(CE->getOperand(0)); 403 else 404 AliaseeGV = cast<llvm::GlobalValue>(Aliasee); 405 406 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) { 407 StringRef AliasSection = SA->getName(); 408 if (AliasSection != AliaseeGV->getSection()) 409 Diags.Report(SA->getLocation(), diag::warn_alias_with_section) 410 << AliasSection << IsIFunc << IsIFunc; 411 } 412 413 // We have to handle alias to weak aliases in here. LLVM itself disallows 414 // this since the object semantics would not match the IL one. For 415 // compatibility with gcc we implement it by just pointing the alias 416 // to its aliasee's aliasee. We also warn, since the user is probably 417 // expecting the link to be weak. 418 if (auto *GA = dyn_cast<llvm::GlobalAlias>(AliaseeGV)) { 419 if (GA->isInterposable()) { 420 Diags.Report(Location, diag::warn_alias_to_weak_alias) 421 << GV->getName() << GA->getName() << IsIFunc; 422 Aliasee = llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast( 423 GA->getAliasee(), Alias->getType()); 424 425 if (IsIFunc) 426 cast<llvm::GlobalIFunc>(Alias)->setResolver(Aliasee); 427 else 428 cast<llvm::GlobalAlias>(Alias)->setAliasee(Aliasee); 429 } 430 } 431 } 432 if (!Error) 433 return; 434 435 for (const GlobalDecl &GD : Aliases) { 436 StringRef MangledName = getMangledName(GD); 437 llvm::GlobalValue *Alias = GetGlobalValue(MangledName); 438 Alias->replaceAllUsesWith(llvm::UndefValue::get(Alias->getType())); 439 Alias->eraseFromParent(); 440 } 441 } 442 443 void CodeGenModule::clear() { 444 DeferredDeclsToEmit.clear(); 445 EmittedDeferredDecls.clear(); 446 if (OpenMPRuntime) 447 OpenMPRuntime->clear(); 448 } 449 450 void InstrProfStats::reportDiagnostics(DiagnosticsEngine &Diags, 451 StringRef MainFile) { 452 if (!hasDiagnostics()) 453 return; 454 if (VisitedInMainFile > 0 && VisitedInMainFile == MissingInMainFile) { 455 if (MainFile.empty()) 456 MainFile = "<stdin>"; 457 Diags.Report(diag::warn_profile_data_unprofiled) << MainFile; 458 } else { 459 if (Mismatched > 0) 460 Diags.Report(diag::warn_profile_data_out_of_date) << Visited << Mismatched; 461 462 if (Missing > 0) 463 Diags.Report(diag::warn_profile_data_missing) << Visited << Missing; 464 } 465 } 466 467 static void setVisibilityFromDLLStorageClass(const clang::LangOptions &LO, 468 llvm::Module &M) { 469 if (!LO.VisibilityFromDLLStorageClass) 470 return; 471 472 llvm::GlobalValue::VisibilityTypes DLLExportVisibility = 473 CodeGenModule::GetLLVMVisibility(LO.getDLLExportVisibility()); 474 llvm::GlobalValue::VisibilityTypes NoDLLStorageClassVisibility = 475 CodeGenModule::GetLLVMVisibility(LO.getNoDLLStorageClassVisibility()); 476 llvm::GlobalValue::VisibilityTypes ExternDeclDLLImportVisibility = 477 CodeGenModule::GetLLVMVisibility(LO.getExternDeclDLLImportVisibility()); 478 llvm::GlobalValue::VisibilityTypes ExternDeclNoDLLStorageClassVisibility = 479 CodeGenModule::GetLLVMVisibility( 480 LO.getExternDeclNoDLLStorageClassVisibility()); 481 482 for (llvm::GlobalValue &GV : M.global_values()) { 483 if (GV.hasAppendingLinkage() || GV.hasLocalLinkage()) 484 continue; 485 486 // Reset DSO locality before setting the visibility. This removes 487 // any effects that visibility options and annotations may have 488 // had on the DSO locality. Setting the visibility will implicitly set 489 // appropriate globals to DSO Local; however, this will be pessimistic 490 // w.r.t. to the normal compiler IRGen. 491 GV.setDSOLocal(false); 492 493 if (GV.isDeclarationForLinker()) { 494 GV.setVisibility(GV.getDLLStorageClass() == 495 llvm::GlobalValue::DLLImportStorageClass 496 ? ExternDeclDLLImportVisibility 497 : ExternDeclNoDLLStorageClassVisibility); 498 } else { 499 GV.setVisibility(GV.getDLLStorageClass() == 500 llvm::GlobalValue::DLLExportStorageClass 501 ? DLLExportVisibility 502 : NoDLLStorageClassVisibility); 503 } 504 505 GV.setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 506 } 507 } 508 509 void CodeGenModule::Release() { 510 Module *Primary = getContext().getModuleForCodeGen(); 511 if (CXX20ModuleInits && Primary && !Primary->isHeaderLikeModule()) 512 EmitModuleInitializers(Primary); 513 EmitDeferred(); 514 DeferredDecls.insert(EmittedDeferredDecls.begin(), 515 EmittedDeferredDecls.end()); 516 EmittedDeferredDecls.clear(); 517 EmitVTablesOpportunistically(); 518 applyGlobalValReplacements(); 519 applyReplacements(); 520 emitMultiVersionFunctions(); 521 522 if (Context.getLangOpts().IncrementalExtensions && 523 GlobalTopLevelStmtBlockInFlight.first) { 524 const TopLevelStmtDecl *TLSD = GlobalTopLevelStmtBlockInFlight.second; 525 GlobalTopLevelStmtBlockInFlight.first->FinishFunction(TLSD->getEndLoc()); 526 GlobalTopLevelStmtBlockInFlight = {nullptr, nullptr}; 527 } 528 529 if (CXX20ModuleInits && Primary && Primary->isInterfaceOrPartition()) 530 EmitCXXModuleInitFunc(Primary); 531 else 532 EmitCXXGlobalInitFunc(); 533 EmitCXXGlobalCleanUpFunc(); 534 registerGlobalDtorsWithAtExit(); 535 EmitCXXThreadLocalInitFunc(); 536 if (ObjCRuntime) 537 if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction()) 538 AddGlobalCtor(ObjCInitFunction); 539 if (Context.getLangOpts().CUDA && CUDARuntime) { 540 if (llvm::Function *CudaCtorFunction = CUDARuntime->finalizeModule()) 541 AddGlobalCtor(CudaCtorFunction); 542 } 543 if (OpenMPRuntime) { 544 if (llvm::Function *OpenMPRequiresDirectiveRegFun = 545 OpenMPRuntime->emitRequiresDirectiveRegFun()) { 546 AddGlobalCtor(OpenMPRequiresDirectiveRegFun, 0); 547 } 548 OpenMPRuntime->createOffloadEntriesAndInfoMetadata(); 549 OpenMPRuntime->clear(); 550 } 551 if (PGOReader) { 552 getModule().setProfileSummary( 553 PGOReader->getSummary(/* UseCS */ false).getMD(VMContext), 554 llvm::ProfileSummary::PSK_Instr); 555 if (PGOStats.hasDiagnostics()) 556 PGOStats.reportDiagnostics(getDiags(), getCodeGenOpts().MainFileName); 557 } 558 llvm::stable_sort(GlobalCtors, [](const Structor &L, const Structor &R) { 559 return L.LexOrder < R.LexOrder; 560 }); 561 EmitCtorList(GlobalCtors, "llvm.global_ctors"); 562 EmitCtorList(GlobalDtors, "llvm.global_dtors"); 563 EmitGlobalAnnotations(); 564 EmitStaticExternCAliases(); 565 checkAliases(); 566 EmitDeferredUnusedCoverageMappings(); 567 CodeGenPGO(*this).setValueProfilingFlag(getModule()); 568 if (CoverageMapping) 569 CoverageMapping->emit(); 570 if (CodeGenOpts.SanitizeCfiCrossDso) { 571 CodeGenFunction(*this).EmitCfiCheckFail(); 572 CodeGenFunction(*this).EmitCfiCheckStub(); 573 } 574 if (LangOpts.Sanitize.has(SanitizerKind::KCFI)) 575 finalizeKCFITypes(); 576 emitAtAvailableLinkGuard(); 577 if (Context.getTargetInfo().getTriple().isWasm()) 578 EmitMainVoidAlias(); 579 580 if (getTriple().isAMDGPU()) { 581 // Emit reference of __amdgpu_device_library_preserve_asan_functions to 582 // preserve ASAN functions in bitcode libraries. 583 if (LangOpts.Sanitize.has(SanitizerKind::Address)) { 584 auto *FT = llvm::FunctionType::get(VoidTy, {}); 585 auto *F = llvm::Function::Create( 586 FT, llvm::GlobalValue::ExternalLinkage, 587 "__amdgpu_device_library_preserve_asan_functions", &getModule()); 588 auto *Var = new llvm::GlobalVariable( 589 getModule(), FT->getPointerTo(), 590 /*isConstant=*/true, llvm::GlobalValue::WeakAnyLinkage, F, 591 "__amdgpu_device_library_preserve_asan_functions_ptr", nullptr, 592 llvm::GlobalVariable::NotThreadLocal); 593 addCompilerUsedGlobal(Var); 594 } 595 // Emit amdgpu_code_object_version module flag, which is code object version 596 // times 100. 597 if (getTarget().getTargetOpts().CodeObjectVersion != 598 TargetOptions::COV_None) { 599 getModule().addModuleFlag(llvm::Module::Error, 600 "amdgpu_code_object_version", 601 getTarget().getTargetOpts().CodeObjectVersion); 602 } 603 } 604 605 // Emit a global array containing all external kernels or device variables 606 // used by host functions and mark it as used for CUDA/HIP. This is necessary 607 // to get kernels or device variables in archives linked in even if these 608 // kernels or device variables are only used in host functions. 609 if (!Context.CUDAExternalDeviceDeclODRUsedByHost.empty()) { 610 SmallVector<llvm::Constant *, 8> UsedArray; 611 for (auto D : Context.CUDAExternalDeviceDeclODRUsedByHost) { 612 GlobalDecl GD; 613 if (auto *FD = dyn_cast<FunctionDecl>(D)) 614 GD = GlobalDecl(FD, KernelReferenceKind::Kernel); 615 else 616 GD = GlobalDecl(D); 617 UsedArray.push_back(llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast( 618 GetAddrOfGlobal(GD), Int8PtrTy)); 619 } 620 621 llvm::ArrayType *ATy = llvm::ArrayType::get(Int8PtrTy, UsedArray.size()); 622 623 auto *GV = new llvm::GlobalVariable( 624 getModule(), ATy, false, llvm::GlobalValue::InternalLinkage, 625 llvm::ConstantArray::get(ATy, UsedArray), "__clang_gpu_used_external"); 626 addCompilerUsedGlobal(GV); 627 } 628 629 emitLLVMUsed(); 630 if (SanStats) 631 SanStats->finish(); 632 633 if (CodeGenOpts.Autolink && 634 (Context.getLangOpts().Modules || !LinkerOptionsMetadata.empty())) { 635 EmitModuleLinkOptions(); 636 } 637 638 // On ELF we pass the dependent library specifiers directly to the linker 639 // without manipulating them. This is in contrast to other platforms where 640 // they are mapped to a specific linker option by the compiler. This 641 // difference is a result of the greater variety of ELF linkers and the fact 642 // that ELF linkers tend to handle libraries in a more complicated fashion 643 // than on other platforms. This forces us to defer handling the dependent 644 // libs to the linker. 645 // 646 // CUDA/HIP device and host libraries are different. Currently there is no 647 // way to differentiate dependent libraries for host or device. Existing 648 // usage of #pragma comment(lib, *) is intended for host libraries on 649 // Windows. Therefore emit llvm.dependent-libraries only for host. 650 if (!ELFDependentLibraries.empty() && !Context.getLangOpts().CUDAIsDevice) { 651 auto *NMD = getModule().getOrInsertNamedMetadata("llvm.dependent-libraries"); 652 for (auto *MD : ELFDependentLibraries) 653 NMD->addOperand(MD); 654 } 655 656 // Record mregparm value now so it is visible through rest of codegen. 657 if (Context.getTargetInfo().getTriple().getArch() == llvm::Triple::x86) 658 getModule().addModuleFlag(llvm::Module::Error, "NumRegisterParameters", 659 CodeGenOpts.NumRegisterParameters); 660 661 if (CodeGenOpts.DwarfVersion) { 662 getModule().addModuleFlag(llvm::Module::Max, "Dwarf Version", 663 CodeGenOpts.DwarfVersion); 664 } 665 666 if (CodeGenOpts.Dwarf64) 667 getModule().addModuleFlag(llvm::Module::Max, "DWARF64", 1); 668 669 if (Context.getLangOpts().SemanticInterposition) 670 // Require various optimization to respect semantic interposition. 671 getModule().setSemanticInterposition(true); 672 673 if (CodeGenOpts.EmitCodeView) { 674 // Indicate that we want CodeView in the metadata. 675 getModule().addModuleFlag(llvm::Module::Warning, "CodeView", 1); 676 } 677 if (CodeGenOpts.CodeViewGHash) { 678 getModule().addModuleFlag(llvm::Module::Warning, "CodeViewGHash", 1); 679 } 680 if (CodeGenOpts.ControlFlowGuard) { 681 // Function ID tables and checks for Control Flow Guard (cfguard=2). 682 getModule().addModuleFlag(llvm::Module::Warning, "cfguard", 2); 683 } else if (CodeGenOpts.ControlFlowGuardNoChecks) { 684 // Function ID tables for Control Flow Guard (cfguard=1). 685 getModule().addModuleFlag(llvm::Module::Warning, "cfguard", 1); 686 } 687 if (CodeGenOpts.EHContGuard) { 688 // Function ID tables for EH Continuation Guard. 689 getModule().addModuleFlag(llvm::Module::Warning, "ehcontguard", 1); 690 } 691 if (Context.getLangOpts().Kernel) { 692 // Note if we are compiling with /kernel. 693 getModule().addModuleFlag(llvm::Module::Warning, "ms-kernel", 1); 694 } 695 if (CodeGenOpts.OptimizationLevel > 0 && CodeGenOpts.StrictVTablePointers) { 696 // We don't support LTO with 2 with different StrictVTablePointers 697 // FIXME: we could support it by stripping all the information introduced 698 // by StrictVTablePointers. 699 700 getModule().addModuleFlag(llvm::Module::Error, "StrictVTablePointers",1); 701 702 llvm::Metadata *Ops[2] = { 703 llvm::MDString::get(VMContext, "StrictVTablePointers"), 704 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 705 llvm::Type::getInt32Ty(VMContext), 1))}; 706 707 getModule().addModuleFlag(llvm::Module::Require, 708 "StrictVTablePointersRequirement", 709 llvm::MDNode::get(VMContext, Ops)); 710 } 711 if (getModuleDebugInfo()) 712 // We support a single version in the linked module. The LLVM 713 // parser will drop debug info with a different version number 714 // (and warn about it, too). 715 getModule().addModuleFlag(llvm::Module::Warning, "Debug Info Version", 716 llvm::DEBUG_METADATA_VERSION); 717 718 // We need to record the widths of enums and wchar_t, so that we can generate 719 // the correct build attributes in the ARM backend. wchar_size is also used by 720 // TargetLibraryInfo. 721 uint64_t WCharWidth = 722 Context.getTypeSizeInChars(Context.getWideCharType()).getQuantity(); 723 getModule().addModuleFlag(llvm::Module::Error, "wchar_size", WCharWidth); 724 725 llvm::Triple::ArchType Arch = Context.getTargetInfo().getTriple().getArch(); 726 if ( Arch == llvm::Triple::arm 727 || Arch == llvm::Triple::armeb 728 || Arch == llvm::Triple::thumb 729 || Arch == llvm::Triple::thumbeb) { 730 // The minimum width of an enum in bytes 731 uint64_t EnumWidth = Context.getLangOpts().ShortEnums ? 1 : 4; 732 getModule().addModuleFlag(llvm::Module::Error, "min_enum_size", EnumWidth); 733 } 734 735 if (Arch == llvm::Triple::riscv32 || Arch == llvm::Triple::riscv64) { 736 StringRef ABIStr = Target.getABI(); 737 llvm::LLVMContext &Ctx = TheModule.getContext(); 738 getModule().addModuleFlag(llvm::Module::Error, "target-abi", 739 llvm::MDString::get(Ctx, ABIStr)); 740 } 741 742 if (CodeGenOpts.SanitizeCfiCrossDso) { 743 // Indicate that we want cross-DSO control flow integrity checks. 744 getModule().addModuleFlag(llvm::Module::Override, "Cross-DSO CFI", 1); 745 } 746 747 if (CodeGenOpts.WholeProgramVTables) { 748 // Indicate whether VFE was enabled for this module, so that the 749 // vcall_visibility metadata added under whole program vtables is handled 750 // appropriately in the optimizer. 751 getModule().addModuleFlag(llvm::Module::Error, "Virtual Function Elim", 752 CodeGenOpts.VirtualFunctionElimination); 753 } 754 755 if (LangOpts.Sanitize.has(SanitizerKind::CFIICall)) { 756 getModule().addModuleFlag(llvm::Module::Override, 757 "CFI Canonical Jump Tables", 758 CodeGenOpts.SanitizeCfiCanonicalJumpTables); 759 } 760 761 if (LangOpts.Sanitize.has(SanitizerKind::KCFI)) 762 getModule().addModuleFlag(llvm::Module::Override, "kcfi", 1); 763 764 if (CodeGenOpts.CFProtectionReturn && 765 Target.checkCFProtectionReturnSupported(getDiags())) { 766 // Indicate that we want to instrument return control flow protection. 767 getModule().addModuleFlag(llvm::Module::Min, "cf-protection-return", 768 1); 769 } 770 771 if (CodeGenOpts.CFProtectionBranch && 772 Target.checkCFProtectionBranchSupported(getDiags())) { 773 // Indicate that we want to instrument branch control flow protection. 774 getModule().addModuleFlag(llvm::Module::Min, "cf-protection-branch", 775 1); 776 } 777 778 if (CodeGenOpts.FunctionReturnThunks) 779 getModule().addModuleFlag(llvm::Module::Override, "function_return_thunk_extern", 1); 780 781 if (CodeGenOpts.IndirectBranchCSPrefix) 782 getModule().addModuleFlag(llvm::Module::Override, "indirect_branch_cs_prefix", 1); 783 784 // Add module metadata for return address signing (ignoring 785 // non-leaf/all) and stack tagging. These are actually turned on by function 786 // attributes, but we use module metadata to emit build attributes. This is 787 // needed for LTO, where the function attributes are inside bitcode 788 // serialised into a global variable by the time build attributes are 789 // emitted, so we can't access them. LTO objects could be compiled with 790 // different flags therefore module flags are set to "Min" behavior to achieve 791 // the same end result of the normal build where e.g BTI is off if any object 792 // doesn't support it. 793 if (Context.getTargetInfo().hasFeature("ptrauth") && 794 LangOpts.getSignReturnAddressScope() != 795 LangOptions::SignReturnAddressScopeKind::None) 796 getModule().addModuleFlag(llvm::Module::Override, 797 "sign-return-address-buildattr", 1); 798 if (LangOpts.Sanitize.has(SanitizerKind::MemtagStack)) 799 getModule().addModuleFlag(llvm::Module::Override, 800 "tag-stack-memory-buildattr", 1); 801 802 if (Arch == llvm::Triple::thumb || Arch == llvm::Triple::thumbeb || 803 Arch == llvm::Triple::arm || Arch == llvm::Triple::armeb || 804 Arch == llvm::Triple::aarch64 || Arch == llvm::Triple::aarch64_32 || 805 Arch == llvm::Triple::aarch64_be) { 806 if (LangOpts.BranchTargetEnforcement) 807 getModule().addModuleFlag(llvm::Module::Min, "branch-target-enforcement", 808 1); 809 if (LangOpts.hasSignReturnAddress()) 810 getModule().addModuleFlag(llvm::Module::Min, "sign-return-address", 1); 811 if (LangOpts.isSignReturnAddressScopeAll()) 812 getModule().addModuleFlag(llvm::Module::Min, "sign-return-address-all", 813 1); 814 if (!LangOpts.isSignReturnAddressWithAKey()) 815 getModule().addModuleFlag(llvm::Module::Min, 816 "sign-return-address-with-bkey", 1); 817 } 818 819 if (!CodeGenOpts.MemoryProfileOutput.empty()) { 820 llvm::LLVMContext &Ctx = TheModule.getContext(); 821 getModule().addModuleFlag( 822 llvm::Module::Error, "MemProfProfileFilename", 823 llvm::MDString::get(Ctx, CodeGenOpts.MemoryProfileOutput)); 824 } 825 826 if (LangOpts.CUDAIsDevice && getTriple().isNVPTX()) { 827 // Indicate whether __nvvm_reflect should be configured to flush denormal 828 // floating point values to 0. (This corresponds to its "__CUDA_FTZ" 829 // property.) 830 getModule().addModuleFlag(llvm::Module::Override, "nvvm-reflect-ftz", 831 CodeGenOpts.FP32DenormalMode.Output != 832 llvm::DenormalMode::IEEE); 833 } 834 835 if (LangOpts.EHAsynch) 836 getModule().addModuleFlag(llvm::Module::Warning, "eh-asynch", 1); 837 838 // Indicate whether this Module was compiled with -fopenmp 839 if (getLangOpts().OpenMP && !getLangOpts().OpenMPSimd) 840 getModule().addModuleFlag(llvm::Module::Max, "openmp", LangOpts.OpenMP); 841 if (getLangOpts().OpenMPIsDevice) 842 getModule().addModuleFlag(llvm::Module::Max, "openmp-device", 843 LangOpts.OpenMP); 844 845 // Emit OpenCL specific module metadata: OpenCL/SPIR version. 846 if (LangOpts.OpenCL || (LangOpts.CUDAIsDevice && getTriple().isSPIRV())) { 847 EmitOpenCLMetadata(); 848 // Emit SPIR version. 849 if (getTriple().isSPIR()) { 850 // SPIR v2.0 s2.12 - The SPIR version used by the module is stored in the 851 // opencl.spir.version named metadata. 852 // C++ for OpenCL has a distinct mapping for version compatibility with 853 // OpenCL. 854 auto Version = LangOpts.getOpenCLCompatibleVersion(); 855 llvm::Metadata *SPIRVerElts[] = { 856 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 857 Int32Ty, Version / 100)), 858 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 859 Int32Ty, (Version / 100 > 1) ? 0 : 2))}; 860 llvm::NamedMDNode *SPIRVerMD = 861 TheModule.getOrInsertNamedMetadata("opencl.spir.version"); 862 llvm::LLVMContext &Ctx = TheModule.getContext(); 863 SPIRVerMD->addOperand(llvm::MDNode::get(Ctx, SPIRVerElts)); 864 } 865 } 866 867 // HLSL related end of code gen work items. 868 if (LangOpts.HLSL) 869 getHLSLRuntime().finishCodeGen(); 870 871 if (uint32_t PLevel = Context.getLangOpts().PICLevel) { 872 assert(PLevel < 3 && "Invalid PIC Level"); 873 getModule().setPICLevel(static_cast<llvm::PICLevel::Level>(PLevel)); 874 if (Context.getLangOpts().PIE) 875 getModule().setPIELevel(static_cast<llvm::PIELevel::Level>(PLevel)); 876 } 877 878 if (getCodeGenOpts().CodeModel.size() > 0) { 879 unsigned CM = llvm::StringSwitch<unsigned>(getCodeGenOpts().CodeModel) 880 .Case("tiny", llvm::CodeModel::Tiny) 881 .Case("small", llvm::CodeModel::Small) 882 .Case("kernel", llvm::CodeModel::Kernel) 883 .Case("medium", llvm::CodeModel::Medium) 884 .Case("large", llvm::CodeModel::Large) 885 .Default(~0u); 886 if (CM != ~0u) { 887 llvm::CodeModel::Model codeModel = static_cast<llvm::CodeModel::Model>(CM); 888 getModule().setCodeModel(codeModel); 889 } 890 } 891 892 if (CodeGenOpts.NoPLT) 893 getModule().setRtLibUseGOT(); 894 if (CodeGenOpts.UnwindTables) 895 getModule().setUwtable(llvm::UWTableKind(CodeGenOpts.UnwindTables)); 896 897 switch (CodeGenOpts.getFramePointer()) { 898 case CodeGenOptions::FramePointerKind::None: 899 // 0 ("none") is the default. 900 break; 901 case CodeGenOptions::FramePointerKind::NonLeaf: 902 getModule().setFramePointer(llvm::FramePointerKind::NonLeaf); 903 break; 904 case CodeGenOptions::FramePointerKind::All: 905 getModule().setFramePointer(llvm::FramePointerKind::All); 906 break; 907 } 908 909 SimplifyPersonality(); 910 911 if (getCodeGenOpts().EmitDeclMetadata) 912 EmitDeclMetadata(); 913 914 if (getCodeGenOpts().EmitGcovArcs || getCodeGenOpts().EmitGcovNotes) 915 EmitCoverageFile(); 916 917 if (CGDebugInfo *DI = getModuleDebugInfo()) 918 DI->finalize(); 919 920 if (getCodeGenOpts().EmitVersionIdentMetadata) 921 EmitVersionIdentMetadata(); 922 923 if (!getCodeGenOpts().RecordCommandLine.empty()) 924 EmitCommandLineMetadata(); 925 926 if (!getCodeGenOpts().StackProtectorGuard.empty()) 927 getModule().setStackProtectorGuard(getCodeGenOpts().StackProtectorGuard); 928 if (!getCodeGenOpts().StackProtectorGuardReg.empty()) 929 getModule().setStackProtectorGuardReg( 930 getCodeGenOpts().StackProtectorGuardReg); 931 if (!getCodeGenOpts().StackProtectorGuardSymbol.empty()) 932 getModule().setStackProtectorGuardSymbol( 933 getCodeGenOpts().StackProtectorGuardSymbol); 934 if (getCodeGenOpts().StackProtectorGuardOffset != INT_MAX) 935 getModule().setStackProtectorGuardOffset( 936 getCodeGenOpts().StackProtectorGuardOffset); 937 if (getCodeGenOpts().StackAlignment) 938 getModule().setOverrideStackAlignment(getCodeGenOpts().StackAlignment); 939 if (getCodeGenOpts().SkipRaxSetup) 940 getModule().addModuleFlag(llvm::Module::Override, "SkipRaxSetup", 1); 941 942 getTargetCodeGenInfo().emitTargetMetadata(*this, MangledDeclNames); 943 944 EmitBackendOptionsMetadata(getCodeGenOpts()); 945 946 // If there is device offloading code embed it in the host now. 947 EmbedObject(&getModule(), CodeGenOpts, getDiags()); 948 949 // Set visibility from DLL storage class 950 // We do this at the end of LLVM IR generation; after any operation 951 // that might affect the DLL storage class or the visibility, and 952 // before anything that might act on these. 953 setVisibilityFromDLLStorageClass(LangOpts, getModule()); 954 } 955 956 void CodeGenModule::EmitOpenCLMetadata() { 957 // SPIR v2.0 s2.13 - The OpenCL version used by the module is stored in the 958 // opencl.ocl.version named metadata node. 959 // C++ for OpenCL has a distinct mapping for versions compatibile with OpenCL. 960 auto Version = LangOpts.getOpenCLCompatibleVersion(); 961 llvm::Metadata *OCLVerElts[] = { 962 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 963 Int32Ty, Version / 100)), 964 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 965 Int32Ty, (Version % 100) / 10))}; 966 llvm::NamedMDNode *OCLVerMD = 967 TheModule.getOrInsertNamedMetadata("opencl.ocl.version"); 968 llvm::LLVMContext &Ctx = TheModule.getContext(); 969 OCLVerMD->addOperand(llvm::MDNode::get(Ctx, OCLVerElts)); 970 } 971 972 void CodeGenModule::EmitBackendOptionsMetadata( 973 const CodeGenOptions CodeGenOpts) { 974 if (getTriple().isRISCV()) { 975 getModule().addModuleFlag(llvm::Module::Error, "SmallDataLimit", 976 CodeGenOpts.SmallDataLimit); 977 } 978 } 979 980 void CodeGenModule::UpdateCompletedType(const TagDecl *TD) { 981 // Make sure that this type is translated. 982 Types.UpdateCompletedType(TD); 983 } 984 985 void CodeGenModule::RefreshTypeCacheForClass(const CXXRecordDecl *RD) { 986 // Make sure that this type is translated. 987 Types.RefreshTypeCacheForClass(RD); 988 } 989 990 llvm::MDNode *CodeGenModule::getTBAATypeInfo(QualType QTy) { 991 if (!TBAA) 992 return nullptr; 993 return TBAA->getTypeInfo(QTy); 994 } 995 996 TBAAAccessInfo CodeGenModule::getTBAAAccessInfo(QualType AccessType) { 997 if (!TBAA) 998 return TBAAAccessInfo(); 999 if (getLangOpts().CUDAIsDevice) { 1000 // As CUDA builtin surface/texture types are replaced, skip generating TBAA 1001 // access info. 1002 if (AccessType->isCUDADeviceBuiltinSurfaceType()) { 1003 if (getTargetCodeGenInfo().getCUDADeviceBuiltinSurfaceDeviceType() != 1004 nullptr) 1005 return TBAAAccessInfo(); 1006 } else if (AccessType->isCUDADeviceBuiltinTextureType()) { 1007 if (getTargetCodeGenInfo().getCUDADeviceBuiltinTextureDeviceType() != 1008 nullptr) 1009 return TBAAAccessInfo(); 1010 } 1011 } 1012 return TBAA->getAccessInfo(AccessType); 1013 } 1014 1015 TBAAAccessInfo 1016 CodeGenModule::getTBAAVTablePtrAccessInfo(llvm::Type *VTablePtrType) { 1017 if (!TBAA) 1018 return TBAAAccessInfo(); 1019 return TBAA->getVTablePtrAccessInfo(VTablePtrType); 1020 } 1021 1022 llvm::MDNode *CodeGenModule::getTBAAStructInfo(QualType QTy) { 1023 if (!TBAA) 1024 return nullptr; 1025 return TBAA->getTBAAStructInfo(QTy); 1026 } 1027 1028 llvm::MDNode *CodeGenModule::getTBAABaseTypeInfo(QualType QTy) { 1029 if (!TBAA) 1030 return nullptr; 1031 return TBAA->getBaseTypeInfo(QTy); 1032 } 1033 1034 llvm::MDNode *CodeGenModule::getTBAAAccessTagInfo(TBAAAccessInfo Info) { 1035 if (!TBAA) 1036 return nullptr; 1037 return TBAA->getAccessTagInfo(Info); 1038 } 1039 1040 TBAAAccessInfo CodeGenModule::mergeTBAAInfoForCast(TBAAAccessInfo SourceInfo, 1041 TBAAAccessInfo TargetInfo) { 1042 if (!TBAA) 1043 return TBAAAccessInfo(); 1044 return TBAA->mergeTBAAInfoForCast(SourceInfo, TargetInfo); 1045 } 1046 1047 TBAAAccessInfo 1048 CodeGenModule::mergeTBAAInfoForConditionalOperator(TBAAAccessInfo InfoA, 1049 TBAAAccessInfo InfoB) { 1050 if (!TBAA) 1051 return TBAAAccessInfo(); 1052 return TBAA->mergeTBAAInfoForConditionalOperator(InfoA, InfoB); 1053 } 1054 1055 TBAAAccessInfo 1056 CodeGenModule::mergeTBAAInfoForMemoryTransfer(TBAAAccessInfo DestInfo, 1057 TBAAAccessInfo SrcInfo) { 1058 if (!TBAA) 1059 return TBAAAccessInfo(); 1060 return TBAA->mergeTBAAInfoForConditionalOperator(DestInfo, SrcInfo); 1061 } 1062 1063 void CodeGenModule::DecorateInstructionWithTBAA(llvm::Instruction *Inst, 1064 TBAAAccessInfo TBAAInfo) { 1065 if (llvm::MDNode *Tag = getTBAAAccessTagInfo(TBAAInfo)) 1066 Inst->setMetadata(llvm::LLVMContext::MD_tbaa, Tag); 1067 } 1068 1069 void CodeGenModule::DecorateInstructionWithInvariantGroup( 1070 llvm::Instruction *I, const CXXRecordDecl *RD) { 1071 I->setMetadata(llvm::LLVMContext::MD_invariant_group, 1072 llvm::MDNode::get(getLLVMContext(), {})); 1073 } 1074 1075 void CodeGenModule::Error(SourceLocation loc, StringRef message) { 1076 unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, "%0"); 1077 getDiags().Report(Context.getFullLoc(loc), diagID) << message; 1078 } 1079 1080 /// ErrorUnsupported - Print out an error that codegen doesn't support the 1081 /// specified stmt yet. 1082 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type) { 1083 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, 1084 "cannot compile this %0 yet"); 1085 std::string Msg = Type; 1086 getDiags().Report(Context.getFullLoc(S->getBeginLoc()), DiagID) 1087 << Msg << S->getSourceRange(); 1088 } 1089 1090 /// ErrorUnsupported - Print out an error that codegen doesn't support the 1091 /// specified decl yet. 1092 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type) { 1093 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, 1094 "cannot compile this %0 yet"); 1095 std::string Msg = Type; 1096 getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg; 1097 } 1098 1099 llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) { 1100 return llvm::ConstantInt::get(SizeTy, size.getQuantity()); 1101 } 1102 1103 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV, 1104 const NamedDecl *D) const { 1105 // Internal definitions always have default visibility. 1106 if (GV->hasLocalLinkage()) { 1107 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 1108 return; 1109 } 1110 if (!D) 1111 return; 1112 // Set visibility for definitions, and for declarations if requested globally 1113 // or set explicitly. 1114 LinkageInfo LV = D->getLinkageAndVisibility(); 1115 if (GV->hasDLLExportStorageClass() || GV->hasDLLImportStorageClass()) { 1116 // Reject incompatible dlllstorage and visibility annotations. 1117 if (!LV.isVisibilityExplicit()) 1118 return; 1119 if (GV->hasDLLExportStorageClass()) { 1120 if (LV.getVisibility() == HiddenVisibility) 1121 getDiags().Report(D->getLocation(), 1122 diag::err_hidden_visibility_dllexport); 1123 } else if (LV.getVisibility() != DefaultVisibility) { 1124 getDiags().Report(D->getLocation(), 1125 diag::err_non_default_visibility_dllimport); 1126 } 1127 return; 1128 } 1129 1130 if (LV.isVisibilityExplicit() || getLangOpts().SetVisibilityForExternDecls || 1131 !GV->isDeclarationForLinker()) 1132 GV->setVisibility(GetLLVMVisibility(LV.getVisibility())); 1133 } 1134 1135 static bool shouldAssumeDSOLocal(const CodeGenModule &CGM, 1136 llvm::GlobalValue *GV) { 1137 if (GV->hasLocalLinkage()) 1138 return true; 1139 1140 if (!GV->hasDefaultVisibility() && !GV->hasExternalWeakLinkage()) 1141 return true; 1142 1143 // DLLImport explicitly marks the GV as external. 1144 if (GV->hasDLLImportStorageClass()) 1145 return false; 1146 1147 const llvm::Triple &TT = CGM.getTriple(); 1148 if (TT.isWindowsGNUEnvironment()) { 1149 // In MinGW, variables without DLLImport can still be automatically 1150 // imported from a DLL by the linker; don't mark variables that 1151 // potentially could come from another DLL as DSO local. 1152 1153 // With EmulatedTLS, TLS variables can be autoimported from other DLLs 1154 // (and this actually happens in the public interface of libstdc++), so 1155 // such variables can't be marked as DSO local. (Native TLS variables 1156 // can't be dllimported at all, though.) 1157 if (GV->isDeclarationForLinker() && isa<llvm::GlobalVariable>(GV) && 1158 (!GV->isThreadLocal() || CGM.getCodeGenOpts().EmulatedTLS)) 1159 return false; 1160 } 1161 1162 // On COFF, don't mark 'extern_weak' symbols as DSO local. If these symbols 1163 // remain unresolved in the link, they can be resolved to zero, which is 1164 // outside the current DSO. 1165 if (TT.isOSBinFormatCOFF() && GV->hasExternalWeakLinkage()) 1166 return false; 1167 1168 // Every other GV is local on COFF. 1169 // Make an exception for windows OS in the triple: Some firmware builds use 1170 // *-win32-macho triples. This (accidentally?) produced windows relocations 1171 // without GOT tables in older clang versions; Keep this behaviour. 1172 // FIXME: even thread local variables? 1173 if (TT.isOSBinFormatCOFF() || (TT.isOSWindows() && TT.isOSBinFormatMachO())) 1174 return true; 1175 1176 // Only handle COFF and ELF for now. 1177 if (!TT.isOSBinFormatELF()) 1178 return false; 1179 1180 // If this is not an executable, don't assume anything is local. 1181 const auto &CGOpts = CGM.getCodeGenOpts(); 1182 llvm::Reloc::Model RM = CGOpts.RelocationModel; 1183 const auto &LOpts = CGM.getLangOpts(); 1184 if (RM != llvm::Reloc::Static && !LOpts.PIE) { 1185 // On ELF, if -fno-semantic-interposition is specified and the target 1186 // supports local aliases, there will be neither CC1 1187 // -fsemantic-interposition nor -fhalf-no-semantic-interposition. Set 1188 // dso_local on the function if using a local alias is preferable (can avoid 1189 // PLT indirection). 1190 if (!(isa<llvm::Function>(GV) && GV->canBenefitFromLocalAlias())) 1191 return false; 1192 return !(CGM.getLangOpts().SemanticInterposition || 1193 CGM.getLangOpts().HalfNoSemanticInterposition); 1194 } 1195 1196 // A definition cannot be preempted from an executable. 1197 if (!GV->isDeclarationForLinker()) 1198 return true; 1199 1200 // Most PIC code sequences that assume that a symbol is local cannot produce a 1201 // 0 if it turns out the symbol is undefined. While this is ABI and relocation 1202 // depended, it seems worth it to handle it here. 1203 if (RM == llvm::Reloc::PIC_ && GV->hasExternalWeakLinkage()) 1204 return false; 1205 1206 // PowerPC64 prefers TOC indirection to avoid copy relocations. 1207 if (TT.isPPC64()) 1208 return false; 1209 1210 if (CGOpts.DirectAccessExternalData) { 1211 // If -fdirect-access-external-data (default for -fno-pic), set dso_local 1212 // for non-thread-local variables. If the symbol is not defined in the 1213 // executable, a copy relocation will be needed at link time. dso_local is 1214 // excluded for thread-local variables because they generally don't support 1215 // copy relocations. 1216 if (auto *Var = dyn_cast<llvm::GlobalVariable>(GV)) 1217 if (!Var->isThreadLocal()) 1218 return true; 1219 1220 // -fno-pic sets dso_local on a function declaration to allow direct 1221 // accesses when taking its address (similar to a data symbol). If the 1222 // function is not defined in the executable, a canonical PLT entry will be 1223 // needed at link time. -fno-direct-access-external-data can avoid the 1224 // canonical PLT entry. We don't generalize this condition to -fpie/-fpic as 1225 // it could just cause trouble without providing perceptible benefits. 1226 if (isa<llvm::Function>(GV) && !CGOpts.NoPLT && RM == llvm::Reloc::Static) 1227 return true; 1228 } 1229 1230 // If we can use copy relocations we can assume it is local. 1231 1232 // Otherwise don't assume it is local. 1233 return false; 1234 } 1235 1236 void CodeGenModule::setDSOLocal(llvm::GlobalValue *GV) const { 1237 GV->setDSOLocal(shouldAssumeDSOLocal(*this, GV)); 1238 } 1239 1240 void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV, 1241 GlobalDecl GD) const { 1242 const auto *D = dyn_cast<NamedDecl>(GD.getDecl()); 1243 // C++ destructors have a few C++ ABI specific special cases. 1244 if (const auto *Dtor = dyn_cast_or_null<CXXDestructorDecl>(D)) { 1245 getCXXABI().setCXXDestructorDLLStorage(GV, Dtor, GD.getDtorType()); 1246 return; 1247 } 1248 setDLLImportDLLExport(GV, D); 1249 } 1250 1251 void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV, 1252 const NamedDecl *D) const { 1253 if (D && D->isExternallyVisible()) { 1254 if (D->hasAttr<DLLImportAttr>()) 1255 GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass); 1256 else if ((D->hasAttr<DLLExportAttr>() || 1257 shouldMapVisibilityToDLLExport(D)) && 1258 !GV->isDeclarationForLinker()) 1259 GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass); 1260 } 1261 } 1262 1263 void CodeGenModule::setGVProperties(llvm::GlobalValue *GV, 1264 GlobalDecl GD) const { 1265 setDLLImportDLLExport(GV, GD); 1266 setGVPropertiesAux(GV, dyn_cast<NamedDecl>(GD.getDecl())); 1267 } 1268 1269 void CodeGenModule::setGVProperties(llvm::GlobalValue *GV, 1270 const NamedDecl *D) const { 1271 setDLLImportDLLExport(GV, D); 1272 setGVPropertiesAux(GV, D); 1273 } 1274 1275 void CodeGenModule::setGVPropertiesAux(llvm::GlobalValue *GV, 1276 const NamedDecl *D) const { 1277 setGlobalVisibility(GV, D); 1278 setDSOLocal(GV); 1279 GV->setPartition(CodeGenOpts.SymbolPartition); 1280 } 1281 1282 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(StringRef S) { 1283 return llvm::StringSwitch<llvm::GlobalVariable::ThreadLocalMode>(S) 1284 .Case("global-dynamic", llvm::GlobalVariable::GeneralDynamicTLSModel) 1285 .Case("local-dynamic", llvm::GlobalVariable::LocalDynamicTLSModel) 1286 .Case("initial-exec", llvm::GlobalVariable::InitialExecTLSModel) 1287 .Case("local-exec", llvm::GlobalVariable::LocalExecTLSModel); 1288 } 1289 1290 llvm::GlobalVariable::ThreadLocalMode 1291 CodeGenModule::GetDefaultLLVMTLSModel() const { 1292 switch (CodeGenOpts.getDefaultTLSModel()) { 1293 case CodeGenOptions::GeneralDynamicTLSModel: 1294 return llvm::GlobalVariable::GeneralDynamicTLSModel; 1295 case CodeGenOptions::LocalDynamicTLSModel: 1296 return llvm::GlobalVariable::LocalDynamicTLSModel; 1297 case CodeGenOptions::InitialExecTLSModel: 1298 return llvm::GlobalVariable::InitialExecTLSModel; 1299 case CodeGenOptions::LocalExecTLSModel: 1300 return llvm::GlobalVariable::LocalExecTLSModel; 1301 } 1302 llvm_unreachable("Invalid TLS model!"); 1303 } 1304 1305 void CodeGenModule::setTLSMode(llvm::GlobalValue *GV, const VarDecl &D) const { 1306 assert(D.getTLSKind() && "setting TLS mode on non-TLS var!"); 1307 1308 llvm::GlobalValue::ThreadLocalMode TLM; 1309 TLM = GetDefaultLLVMTLSModel(); 1310 1311 // Override the TLS model if it is explicitly specified. 1312 if (const TLSModelAttr *Attr = D.getAttr<TLSModelAttr>()) { 1313 TLM = GetLLVMTLSModel(Attr->getModel()); 1314 } 1315 1316 GV->setThreadLocalMode(TLM); 1317 } 1318 1319 static std::string getCPUSpecificMangling(const CodeGenModule &CGM, 1320 StringRef Name) { 1321 const TargetInfo &Target = CGM.getTarget(); 1322 return (Twine('.') + Twine(Target.CPUSpecificManglingCharacter(Name))).str(); 1323 } 1324 1325 static void AppendCPUSpecificCPUDispatchMangling(const CodeGenModule &CGM, 1326 const CPUSpecificAttr *Attr, 1327 unsigned CPUIndex, 1328 raw_ostream &Out) { 1329 // cpu_specific gets the current name, dispatch gets the resolver if IFunc is 1330 // supported. 1331 if (Attr) 1332 Out << getCPUSpecificMangling(CGM, Attr->getCPUName(CPUIndex)->getName()); 1333 else if (CGM.getTarget().supportsIFunc()) 1334 Out << ".resolver"; 1335 } 1336 1337 static void AppendTargetMangling(const CodeGenModule &CGM, 1338 const TargetAttr *Attr, raw_ostream &Out) { 1339 if (Attr->isDefaultVersion()) 1340 return; 1341 1342 Out << '.'; 1343 const TargetInfo &Target = CGM.getTarget(); 1344 ParsedTargetAttr Info = Target.parseTargetAttr(Attr->getFeaturesStr()); 1345 llvm::sort(Info.Features, [&Target](StringRef LHS, StringRef RHS) { 1346 // Multiversioning doesn't allow "no-${feature}", so we can 1347 // only have "+" prefixes here. 1348 assert(LHS.startswith("+") && RHS.startswith("+") && 1349 "Features should always have a prefix."); 1350 return Target.multiVersionSortPriority(LHS.substr(1)) > 1351 Target.multiVersionSortPriority(RHS.substr(1)); 1352 }); 1353 1354 bool IsFirst = true; 1355 1356 if (!Info.CPU.empty()) { 1357 IsFirst = false; 1358 Out << "arch_" << Info.CPU; 1359 } 1360 1361 for (StringRef Feat : Info.Features) { 1362 if (!IsFirst) 1363 Out << '_'; 1364 IsFirst = false; 1365 Out << Feat.substr(1); 1366 } 1367 } 1368 1369 // Returns true if GD is a function decl with internal linkage and 1370 // needs a unique suffix after the mangled name. 1371 static bool isUniqueInternalLinkageDecl(GlobalDecl GD, 1372 CodeGenModule &CGM) { 1373 const Decl *D = GD.getDecl(); 1374 return !CGM.getModuleNameHash().empty() && isa<FunctionDecl>(D) && 1375 (CGM.getFunctionLinkage(GD) == llvm::GlobalValue::InternalLinkage); 1376 } 1377 1378 static void AppendTargetClonesMangling(const CodeGenModule &CGM, 1379 const TargetClonesAttr *Attr, 1380 unsigned VersionIndex, 1381 raw_ostream &Out) { 1382 Out << '.'; 1383 StringRef FeatureStr = Attr->getFeatureStr(VersionIndex); 1384 if (FeatureStr.startswith("arch=")) 1385 Out << "arch_" << FeatureStr.substr(sizeof("arch=") - 1); 1386 else 1387 Out << FeatureStr; 1388 1389 Out << '.' << Attr->getMangledIndex(VersionIndex); 1390 } 1391 1392 static std::string getMangledNameImpl(CodeGenModule &CGM, GlobalDecl GD, 1393 const NamedDecl *ND, 1394 bool OmitMultiVersionMangling = false) { 1395 SmallString<256> Buffer; 1396 llvm::raw_svector_ostream Out(Buffer); 1397 MangleContext &MC = CGM.getCXXABI().getMangleContext(); 1398 if (!CGM.getModuleNameHash().empty()) 1399 MC.needsUniqueInternalLinkageNames(); 1400 bool ShouldMangle = MC.shouldMangleDeclName(ND); 1401 if (ShouldMangle) 1402 MC.mangleName(GD.getWithDecl(ND), Out); 1403 else { 1404 IdentifierInfo *II = ND->getIdentifier(); 1405 assert(II && "Attempt to mangle unnamed decl."); 1406 const auto *FD = dyn_cast<FunctionDecl>(ND); 1407 1408 if (FD && 1409 FD->getType()->castAs<FunctionType>()->getCallConv() == CC_X86RegCall) { 1410 Out << "__regcall3__" << II->getName(); 1411 } else if (FD && FD->hasAttr<CUDAGlobalAttr>() && 1412 GD.getKernelReferenceKind() == KernelReferenceKind::Stub) { 1413 Out << "__device_stub__" << II->getName(); 1414 } else { 1415 Out << II->getName(); 1416 } 1417 } 1418 1419 // Check if the module name hash should be appended for internal linkage 1420 // symbols. This should come before multi-version target suffixes are 1421 // appended. This is to keep the name and module hash suffix of the 1422 // internal linkage function together. The unique suffix should only be 1423 // added when name mangling is done to make sure that the final name can 1424 // be properly demangled. For example, for C functions without prototypes, 1425 // name mangling is not done and the unique suffix should not be appeneded 1426 // then. 1427 if (ShouldMangle && isUniqueInternalLinkageDecl(GD, CGM)) { 1428 assert(CGM.getCodeGenOpts().UniqueInternalLinkageNames && 1429 "Hash computed when not explicitly requested"); 1430 Out << CGM.getModuleNameHash(); 1431 } 1432 1433 if (const auto *FD = dyn_cast<FunctionDecl>(ND)) 1434 if (FD->isMultiVersion() && !OmitMultiVersionMangling) { 1435 switch (FD->getMultiVersionKind()) { 1436 case MultiVersionKind::CPUDispatch: 1437 case MultiVersionKind::CPUSpecific: 1438 AppendCPUSpecificCPUDispatchMangling(CGM, 1439 FD->getAttr<CPUSpecificAttr>(), 1440 GD.getMultiVersionIndex(), Out); 1441 break; 1442 case MultiVersionKind::Target: 1443 AppendTargetMangling(CGM, FD->getAttr<TargetAttr>(), Out); 1444 break; 1445 case MultiVersionKind::TargetClones: 1446 AppendTargetClonesMangling(CGM, FD->getAttr<TargetClonesAttr>(), 1447 GD.getMultiVersionIndex(), Out); 1448 break; 1449 case MultiVersionKind::None: 1450 llvm_unreachable("None multiversion type isn't valid here"); 1451 } 1452 } 1453 1454 // Make unique name for device side static file-scope variable for HIP. 1455 if (CGM.getContext().shouldExternalize(ND) && 1456 CGM.getLangOpts().GPURelocatableDeviceCode && 1457 CGM.getLangOpts().CUDAIsDevice) 1458 CGM.printPostfixForExternalizedDecl(Out, ND); 1459 1460 return std::string(Out.str()); 1461 } 1462 1463 void CodeGenModule::UpdateMultiVersionNames(GlobalDecl GD, 1464 const FunctionDecl *FD, 1465 StringRef &CurName) { 1466 if (!FD->isMultiVersion()) 1467 return; 1468 1469 // Get the name of what this would be without the 'target' attribute. This 1470 // allows us to lookup the version that was emitted when this wasn't a 1471 // multiversion function. 1472 std::string NonTargetName = 1473 getMangledNameImpl(*this, GD, FD, /*OmitMultiVersionMangling=*/true); 1474 GlobalDecl OtherGD; 1475 if (lookupRepresentativeDecl(NonTargetName, OtherGD)) { 1476 assert(OtherGD.getCanonicalDecl() 1477 .getDecl() 1478 ->getAsFunction() 1479 ->isMultiVersion() && 1480 "Other GD should now be a multiversioned function"); 1481 // OtherFD is the version of this function that was mangled BEFORE 1482 // becoming a MultiVersion function. It potentially needs to be updated. 1483 const FunctionDecl *OtherFD = OtherGD.getCanonicalDecl() 1484 .getDecl() 1485 ->getAsFunction() 1486 ->getMostRecentDecl(); 1487 std::string OtherName = getMangledNameImpl(*this, OtherGD, OtherFD); 1488 // This is so that if the initial version was already the 'default' 1489 // version, we don't try to update it. 1490 if (OtherName != NonTargetName) { 1491 // Remove instead of erase, since others may have stored the StringRef 1492 // to this. 1493 const auto ExistingRecord = Manglings.find(NonTargetName); 1494 if (ExistingRecord != std::end(Manglings)) 1495 Manglings.remove(&(*ExistingRecord)); 1496 auto Result = Manglings.insert(std::make_pair(OtherName, OtherGD)); 1497 StringRef OtherNameRef = MangledDeclNames[OtherGD.getCanonicalDecl()] = 1498 Result.first->first(); 1499 // If this is the current decl is being created, make sure we update the name. 1500 if (GD.getCanonicalDecl() == OtherGD.getCanonicalDecl()) 1501 CurName = OtherNameRef; 1502 if (llvm::GlobalValue *Entry = GetGlobalValue(NonTargetName)) 1503 Entry->setName(OtherName); 1504 } 1505 } 1506 } 1507 1508 StringRef CodeGenModule::getMangledName(GlobalDecl GD) { 1509 GlobalDecl CanonicalGD = GD.getCanonicalDecl(); 1510 1511 // Some ABIs don't have constructor variants. Make sure that base and 1512 // complete constructors get mangled the same. 1513 if (const auto *CD = dyn_cast<CXXConstructorDecl>(CanonicalGD.getDecl())) { 1514 if (!getTarget().getCXXABI().hasConstructorVariants()) { 1515 CXXCtorType OrigCtorType = GD.getCtorType(); 1516 assert(OrigCtorType == Ctor_Base || OrigCtorType == Ctor_Complete); 1517 if (OrigCtorType == Ctor_Base) 1518 CanonicalGD = GlobalDecl(CD, Ctor_Complete); 1519 } 1520 } 1521 1522 // In CUDA/HIP device compilation with -fgpu-rdc, the mangled name of a 1523 // static device variable depends on whether the variable is referenced by 1524 // a host or device host function. Therefore the mangled name cannot be 1525 // cached. 1526 if (!LangOpts.CUDAIsDevice || !getContext().mayExternalize(GD.getDecl())) { 1527 auto FoundName = MangledDeclNames.find(CanonicalGD); 1528 if (FoundName != MangledDeclNames.end()) 1529 return FoundName->second; 1530 } 1531 1532 // Keep the first result in the case of a mangling collision. 1533 const auto *ND = cast<NamedDecl>(GD.getDecl()); 1534 std::string MangledName = getMangledNameImpl(*this, GD, ND); 1535 1536 // Ensure either we have different ABIs between host and device compilations, 1537 // says host compilation following MSVC ABI but device compilation follows 1538 // Itanium C++ ABI or, if they follow the same ABI, kernel names after 1539 // mangling should be the same after name stubbing. The later checking is 1540 // very important as the device kernel name being mangled in host-compilation 1541 // is used to resolve the device binaries to be executed. Inconsistent naming 1542 // result in undefined behavior. Even though we cannot check that naming 1543 // directly between host- and device-compilations, the host- and 1544 // device-mangling in host compilation could help catching certain ones. 1545 assert(!isa<FunctionDecl>(ND) || !ND->hasAttr<CUDAGlobalAttr>() || 1546 getContext().shouldExternalize(ND) || getLangOpts().CUDAIsDevice || 1547 (getContext().getAuxTargetInfo() && 1548 (getContext().getAuxTargetInfo()->getCXXABI() != 1549 getContext().getTargetInfo().getCXXABI())) || 1550 getCUDARuntime().getDeviceSideName(ND) == 1551 getMangledNameImpl( 1552 *this, 1553 GD.getWithKernelReferenceKind(KernelReferenceKind::Kernel), 1554 ND)); 1555 1556 auto Result = Manglings.insert(std::make_pair(MangledName, GD)); 1557 return MangledDeclNames[CanonicalGD] = Result.first->first(); 1558 } 1559 1560 StringRef CodeGenModule::getBlockMangledName(GlobalDecl GD, 1561 const BlockDecl *BD) { 1562 MangleContext &MangleCtx = getCXXABI().getMangleContext(); 1563 const Decl *D = GD.getDecl(); 1564 1565 SmallString<256> Buffer; 1566 llvm::raw_svector_ostream Out(Buffer); 1567 if (!D) 1568 MangleCtx.mangleGlobalBlock(BD, 1569 dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()), Out); 1570 else if (const auto *CD = dyn_cast<CXXConstructorDecl>(D)) 1571 MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out); 1572 else if (const auto *DD = dyn_cast<CXXDestructorDecl>(D)) 1573 MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out); 1574 else 1575 MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out); 1576 1577 auto Result = Manglings.insert(std::make_pair(Out.str(), BD)); 1578 return Result.first->first(); 1579 } 1580 1581 const GlobalDecl CodeGenModule::getMangledNameDecl(StringRef Name) { 1582 auto it = MangledDeclNames.begin(); 1583 while (it != MangledDeclNames.end()) { 1584 if (it->second == Name) 1585 return it->first; 1586 it++; 1587 } 1588 return GlobalDecl(); 1589 } 1590 1591 llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) { 1592 return getModule().getNamedValue(Name); 1593 } 1594 1595 /// AddGlobalCtor - Add a function to the list that will be called before 1596 /// main() runs. 1597 void CodeGenModule::AddGlobalCtor(llvm::Function *Ctor, int Priority, 1598 unsigned LexOrder, 1599 llvm::Constant *AssociatedData) { 1600 // FIXME: Type coercion of void()* types. 1601 GlobalCtors.push_back(Structor(Priority, LexOrder, Ctor, AssociatedData)); 1602 } 1603 1604 /// AddGlobalDtor - Add a function to the list that will be called 1605 /// when the module is unloaded. 1606 void CodeGenModule::AddGlobalDtor(llvm::Function *Dtor, int Priority, 1607 bool IsDtorAttrFunc) { 1608 if (CodeGenOpts.RegisterGlobalDtorsWithAtExit && 1609 (!getContext().getTargetInfo().getTriple().isOSAIX() || IsDtorAttrFunc)) { 1610 DtorsUsingAtExit[Priority].push_back(Dtor); 1611 return; 1612 } 1613 1614 // FIXME: Type coercion of void()* types. 1615 GlobalDtors.push_back(Structor(Priority, ~0U, Dtor, nullptr)); 1616 } 1617 1618 void CodeGenModule::EmitCtorList(CtorList &Fns, const char *GlobalName) { 1619 if (Fns.empty()) return; 1620 1621 // Ctor function type is void()*. 1622 llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false); 1623 llvm::Type *CtorPFTy = llvm::PointerType::get(CtorFTy, 1624 TheModule.getDataLayout().getProgramAddressSpace()); 1625 1626 // Get the type of a ctor entry, { i32, void ()*, i8* }. 1627 llvm::StructType *CtorStructTy = llvm::StructType::get( 1628 Int32Ty, CtorPFTy, VoidPtrTy); 1629 1630 // Construct the constructor and destructor arrays. 1631 ConstantInitBuilder builder(*this); 1632 auto ctors = builder.beginArray(CtorStructTy); 1633 for (const auto &I : Fns) { 1634 auto ctor = ctors.beginStruct(CtorStructTy); 1635 ctor.addInt(Int32Ty, I.Priority); 1636 ctor.add(llvm::ConstantExpr::getBitCast(I.Initializer, CtorPFTy)); 1637 if (I.AssociatedData) 1638 ctor.add(llvm::ConstantExpr::getBitCast(I.AssociatedData, VoidPtrTy)); 1639 else 1640 ctor.addNullPointer(VoidPtrTy); 1641 ctor.finishAndAddTo(ctors); 1642 } 1643 1644 auto list = 1645 ctors.finishAndCreateGlobal(GlobalName, getPointerAlign(), 1646 /*constant*/ false, 1647 llvm::GlobalValue::AppendingLinkage); 1648 1649 // The LTO linker doesn't seem to like it when we set an alignment 1650 // on appending variables. Take it off as a workaround. 1651 list->setAlignment(std::nullopt); 1652 1653 Fns.clear(); 1654 } 1655 1656 llvm::GlobalValue::LinkageTypes 1657 CodeGenModule::getFunctionLinkage(GlobalDecl GD) { 1658 const auto *D = cast<FunctionDecl>(GD.getDecl()); 1659 1660 GVALinkage Linkage = getContext().GetGVALinkageForFunction(D); 1661 1662 if (const auto *Dtor = dyn_cast<CXXDestructorDecl>(D)) 1663 return getCXXABI().getCXXDestructorLinkage(Linkage, Dtor, GD.getDtorType()); 1664 1665 if (isa<CXXConstructorDecl>(D) && 1666 cast<CXXConstructorDecl>(D)->isInheritingConstructor() && 1667 Context.getTargetInfo().getCXXABI().isMicrosoft()) { 1668 // Our approach to inheriting constructors is fundamentally different from 1669 // that used by the MS ABI, so keep our inheriting constructor thunks 1670 // internal rather than trying to pick an unambiguous mangling for them. 1671 return llvm::GlobalValue::InternalLinkage; 1672 } 1673 1674 return getLLVMLinkageForDeclarator(D, Linkage, /*IsConstantVariable=*/false); 1675 } 1676 1677 llvm::ConstantInt *CodeGenModule::CreateCrossDsoCfiTypeId(llvm::Metadata *MD) { 1678 llvm::MDString *MDS = dyn_cast<llvm::MDString>(MD); 1679 if (!MDS) return nullptr; 1680 1681 return llvm::ConstantInt::get(Int64Ty, llvm::MD5Hash(MDS->getString())); 1682 } 1683 1684 llvm::ConstantInt *CodeGenModule::CreateKCFITypeId(QualType T) { 1685 if (auto *FnType = T->getAs<FunctionProtoType>()) 1686 T = getContext().getFunctionType( 1687 FnType->getReturnType(), FnType->getParamTypes(), 1688 FnType->getExtProtoInfo().withExceptionSpec(EST_None)); 1689 1690 std::string OutName; 1691 llvm::raw_string_ostream Out(OutName); 1692 getCXXABI().getMangleContext().mangleTypeName(T, Out); 1693 1694 return llvm::ConstantInt::get(Int32Ty, 1695 static_cast<uint32_t>(llvm::xxHash64(OutName))); 1696 } 1697 1698 void CodeGenModule::SetLLVMFunctionAttributes(GlobalDecl GD, 1699 const CGFunctionInfo &Info, 1700 llvm::Function *F, bool IsThunk) { 1701 unsigned CallingConv; 1702 llvm::AttributeList PAL; 1703 ConstructAttributeList(F->getName(), Info, GD, PAL, CallingConv, 1704 /*AttrOnCallSite=*/false, IsThunk); 1705 F->setAttributes(PAL); 1706 F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv)); 1707 } 1708 1709 static void removeImageAccessQualifier(std::string& TyName) { 1710 std::string ReadOnlyQual("__read_only"); 1711 std::string::size_type ReadOnlyPos = TyName.find(ReadOnlyQual); 1712 if (ReadOnlyPos != std::string::npos) 1713 // "+ 1" for the space after access qualifier. 1714 TyName.erase(ReadOnlyPos, ReadOnlyQual.size() + 1); 1715 else { 1716 std::string WriteOnlyQual("__write_only"); 1717 std::string::size_type WriteOnlyPos = TyName.find(WriteOnlyQual); 1718 if (WriteOnlyPos != std::string::npos) 1719 TyName.erase(WriteOnlyPos, WriteOnlyQual.size() + 1); 1720 else { 1721 std::string ReadWriteQual("__read_write"); 1722 std::string::size_type ReadWritePos = TyName.find(ReadWriteQual); 1723 if (ReadWritePos != std::string::npos) 1724 TyName.erase(ReadWritePos, ReadWriteQual.size() + 1); 1725 } 1726 } 1727 } 1728 1729 // Returns the address space id that should be produced to the 1730 // kernel_arg_addr_space metadata. This is always fixed to the ids 1731 // as specified in the SPIR 2.0 specification in order to differentiate 1732 // for example in clGetKernelArgInfo() implementation between the address 1733 // spaces with targets without unique mapping to the OpenCL address spaces 1734 // (basically all single AS CPUs). 1735 static unsigned ArgInfoAddressSpace(LangAS AS) { 1736 switch (AS) { 1737 case LangAS::opencl_global: 1738 return 1; 1739 case LangAS::opencl_constant: 1740 return 2; 1741 case LangAS::opencl_local: 1742 return 3; 1743 case LangAS::opencl_generic: 1744 return 4; // Not in SPIR 2.0 specs. 1745 case LangAS::opencl_global_device: 1746 return 5; 1747 case LangAS::opencl_global_host: 1748 return 6; 1749 default: 1750 return 0; // Assume private. 1751 } 1752 } 1753 1754 void CodeGenModule::GenKernelArgMetadata(llvm::Function *Fn, 1755 const FunctionDecl *FD, 1756 CodeGenFunction *CGF) { 1757 assert(((FD && CGF) || (!FD && !CGF)) && 1758 "Incorrect use - FD and CGF should either be both null or not!"); 1759 // Create MDNodes that represent the kernel arg metadata. 1760 // Each MDNode is a list in the form of "key", N number of values which is 1761 // the same number of values as their are kernel arguments. 1762 1763 const PrintingPolicy &Policy = Context.getPrintingPolicy(); 1764 1765 // MDNode for the kernel argument address space qualifiers. 1766 SmallVector<llvm::Metadata *, 8> addressQuals; 1767 1768 // MDNode for the kernel argument access qualifiers (images only). 1769 SmallVector<llvm::Metadata *, 8> accessQuals; 1770 1771 // MDNode for the kernel argument type names. 1772 SmallVector<llvm::Metadata *, 8> argTypeNames; 1773 1774 // MDNode for the kernel argument base type names. 1775 SmallVector<llvm::Metadata *, 8> argBaseTypeNames; 1776 1777 // MDNode for the kernel argument type qualifiers. 1778 SmallVector<llvm::Metadata *, 8> argTypeQuals; 1779 1780 // MDNode for the kernel argument names. 1781 SmallVector<llvm::Metadata *, 8> argNames; 1782 1783 if (FD && CGF) 1784 for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i) { 1785 const ParmVarDecl *parm = FD->getParamDecl(i); 1786 // Get argument name. 1787 argNames.push_back(llvm::MDString::get(VMContext, parm->getName())); 1788 1789 if (!getLangOpts().OpenCL) 1790 continue; 1791 QualType ty = parm->getType(); 1792 std::string typeQuals; 1793 1794 // Get image and pipe access qualifier: 1795 if (ty->isImageType() || ty->isPipeType()) { 1796 const Decl *PDecl = parm; 1797 if (const auto *TD = ty->getAs<TypedefType>()) 1798 PDecl = TD->getDecl(); 1799 const OpenCLAccessAttr *A = PDecl->getAttr<OpenCLAccessAttr>(); 1800 if (A && A->isWriteOnly()) 1801 accessQuals.push_back(llvm::MDString::get(VMContext, "write_only")); 1802 else if (A && A->isReadWrite()) 1803 accessQuals.push_back(llvm::MDString::get(VMContext, "read_write")); 1804 else 1805 accessQuals.push_back(llvm::MDString::get(VMContext, "read_only")); 1806 } else 1807 accessQuals.push_back(llvm::MDString::get(VMContext, "none")); 1808 1809 auto getTypeSpelling = [&](QualType Ty) { 1810 auto typeName = Ty.getUnqualifiedType().getAsString(Policy); 1811 1812 if (Ty.isCanonical()) { 1813 StringRef typeNameRef = typeName; 1814 // Turn "unsigned type" to "utype" 1815 if (typeNameRef.consume_front("unsigned ")) 1816 return std::string("u") + typeNameRef.str(); 1817 if (typeNameRef.consume_front("signed ")) 1818 return typeNameRef.str(); 1819 } 1820 1821 return typeName; 1822 }; 1823 1824 if (ty->isPointerType()) { 1825 QualType pointeeTy = ty->getPointeeType(); 1826 1827 // Get address qualifier. 1828 addressQuals.push_back( 1829 llvm::ConstantAsMetadata::get(CGF->Builder.getInt32( 1830 ArgInfoAddressSpace(pointeeTy.getAddressSpace())))); 1831 1832 // Get argument type name. 1833 std::string typeName = getTypeSpelling(pointeeTy) + "*"; 1834 std::string baseTypeName = 1835 getTypeSpelling(pointeeTy.getCanonicalType()) + "*"; 1836 argTypeNames.push_back(llvm::MDString::get(VMContext, typeName)); 1837 argBaseTypeNames.push_back( 1838 llvm::MDString::get(VMContext, baseTypeName)); 1839 1840 // Get argument type qualifiers: 1841 if (ty.isRestrictQualified()) 1842 typeQuals = "restrict"; 1843 if (pointeeTy.isConstQualified() || 1844 (pointeeTy.getAddressSpace() == LangAS::opencl_constant)) 1845 typeQuals += typeQuals.empty() ? "const" : " const"; 1846 if (pointeeTy.isVolatileQualified()) 1847 typeQuals += typeQuals.empty() ? "volatile" : " volatile"; 1848 } else { 1849 uint32_t AddrSpc = 0; 1850 bool isPipe = ty->isPipeType(); 1851 if (ty->isImageType() || isPipe) 1852 AddrSpc = ArgInfoAddressSpace(LangAS::opencl_global); 1853 1854 addressQuals.push_back( 1855 llvm::ConstantAsMetadata::get(CGF->Builder.getInt32(AddrSpc))); 1856 1857 // Get argument type name. 1858 ty = isPipe ? ty->castAs<PipeType>()->getElementType() : ty; 1859 std::string typeName = getTypeSpelling(ty); 1860 std::string baseTypeName = getTypeSpelling(ty.getCanonicalType()); 1861 1862 // Remove access qualifiers on images 1863 // (as they are inseparable from type in clang implementation, 1864 // but OpenCL spec provides a special query to get access qualifier 1865 // via clGetKernelArgInfo with CL_KERNEL_ARG_ACCESS_QUALIFIER): 1866 if (ty->isImageType()) { 1867 removeImageAccessQualifier(typeName); 1868 removeImageAccessQualifier(baseTypeName); 1869 } 1870 1871 argTypeNames.push_back(llvm::MDString::get(VMContext, typeName)); 1872 argBaseTypeNames.push_back( 1873 llvm::MDString::get(VMContext, baseTypeName)); 1874 1875 if (isPipe) 1876 typeQuals = "pipe"; 1877 } 1878 argTypeQuals.push_back(llvm::MDString::get(VMContext, typeQuals)); 1879 } 1880 1881 if (getLangOpts().OpenCL) { 1882 Fn->setMetadata("kernel_arg_addr_space", 1883 llvm::MDNode::get(VMContext, addressQuals)); 1884 Fn->setMetadata("kernel_arg_access_qual", 1885 llvm::MDNode::get(VMContext, accessQuals)); 1886 Fn->setMetadata("kernel_arg_type", 1887 llvm::MDNode::get(VMContext, argTypeNames)); 1888 Fn->setMetadata("kernel_arg_base_type", 1889 llvm::MDNode::get(VMContext, argBaseTypeNames)); 1890 Fn->setMetadata("kernel_arg_type_qual", 1891 llvm::MDNode::get(VMContext, argTypeQuals)); 1892 } 1893 if (getCodeGenOpts().EmitOpenCLArgMetadata || 1894 getCodeGenOpts().HIPSaveKernelArgName) 1895 Fn->setMetadata("kernel_arg_name", 1896 llvm::MDNode::get(VMContext, argNames)); 1897 } 1898 1899 /// Determines whether the language options require us to model 1900 /// unwind exceptions. We treat -fexceptions as mandating this 1901 /// except under the fragile ObjC ABI with only ObjC exceptions 1902 /// enabled. This means, for example, that C with -fexceptions 1903 /// enables this. 1904 static bool hasUnwindExceptions(const LangOptions &LangOpts) { 1905 // If exceptions are completely disabled, obviously this is false. 1906 if (!LangOpts.Exceptions) return false; 1907 1908 // If C++ exceptions are enabled, this is true. 1909 if (LangOpts.CXXExceptions) return true; 1910 1911 // If ObjC exceptions are enabled, this depends on the ABI. 1912 if (LangOpts.ObjCExceptions) { 1913 return LangOpts.ObjCRuntime.hasUnwindExceptions(); 1914 } 1915 1916 return true; 1917 } 1918 1919 static bool requiresMemberFunctionPointerTypeMetadata(CodeGenModule &CGM, 1920 const CXXMethodDecl *MD) { 1921 // Check that the type metadata can ever actually be used by a call. 1922 if (!CGM.getCodeGenOpts().LTOUnit || 1923 !CGM.HasHiddenLTOVisibility(MD->getParent())) 1924 return false; 1925 1926 // Only functions whose address can be taken with a member function pointer 1927 // need this sort of type metadata. 1928 return !MD->isStatic() && !MD->isVirtual() && !isa<CXXConstructorDecl>(MD) && 1929 !isa<CXXDestructorDecl>(MD); 1930 } 1931 1932 std::vector<const CXXRecordDecl *> 1933 CodeGenModule::getMostBaseClasses(const CXXRecordDecl *RD) { 1934 llvm::SetVector<const CXXRecordDecl *> MostBases; 1935 1936 std::function<void (const CXXRecordDecl *)> CollectMostBases; 1937 CollectMostBases = [&](const CXXRecordDecl *RD) { 1938 if (RD->getNumBases() == 0) 1939 MostBases.insert(RD); 1940 for (const CXXBaseSpecifier &B : RD->bases()) 1941 CollectMostBases(B.getType()->getAsCXXRecordDecl()); 1942 }; 1943 CollectMostBases(RD); 1944 return MostBases.takeVector(); 1945 } 1946 1947 llvm::GlobalVariable * 1948 CodeGenModule::GetOrCreateRTTIProxyGlobalVariable(llvm::Constant *Addr) { 1949 auto It = RTTIProxyMap.find(Addr); 1950 if (It != RTTIProxyMap.end()) 1951 return It->second; 1952 1953 auto *FTRTTIProxy = new llvm::GlobalVariable( 1954 TheModule, Addr->getType(), 1955 /*isConstant=*/true, llvm::GlobalValue::PrivateLinkage, Addr, 1956 "__llvm_rtti_proxy"); 1957 FTRTTIProxy->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 1958 1959 RTTIProxyMap[Addr] = FTRTTIProxy; 1960 return FTRTTIProxy; 1961 } 1962 1963 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D, 1964 llvm::Function *F) { 1965 llvm::AttrBuilder B(F->getContext()); 1966 1967 if ((!D || !D->hasAttr<NoUwtableAttr>()) && CodeGenOpts.UnwindTables) 1968 B.addUWTableAttr(llvm::UWTableKind(CodeGenOpts.UnwindTables)); 1969 1970 if (CodeGenOpts.StackClashProtector) 1971 B.addAttribute("probe-stack", "inline-asm"); 1972 1973 if (!hasUnwindExceptions(LangOpts)) 1974 B.addAttribute(llvm::Attribute::NoUnwind); 1975 1976 if (D && D->hasAttr<NoStackProtectorAttr>()) 1977 ; // Do nothing. 1978 else if (D && D->hasAttr<StrictGuardStackCheckAttr>() && 1979 LangOpts.getStackProtector() == LangOptions::SSPOn) 1980 B.addAttribute(llvm::Attribute::StackProtectStrong); 1981 else if (LangOpts.getStackProtector() == LangOptions::SSPOn) 1982 B.addAttribute(llvm::Attribute::StackProtect); 1983 else if (LangOpts.getStackProtector() == LangOptions::SSPStrong) 1984 B.addAttribute(llvm::Attribute::StackProtectStrong); 1985 else if (LangOpts.getStackProtector() == LangOptions::SSPReq) 1986 B.addAttribute(llvm::Attribute::StackProtectReq); 1987 1988 if (!D) { 1989 // If we don't have a declaration to control inlining, the function isn't 1990 // explicitly marked as alwaysinline for semantic reasons, and inlining is 1991 // disabled, mark the function as noinline. 1992 if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline) && 1993 CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining) 1994 B.addAttribute(llvm::Attribute::NoInline); 1995 1996 F->addFnAttrs(B); 1997 return; 1998 } 1999 2000 // Track whether we need to add the optnone LLVM attribute, 2001 // starting with the default for this optimization level. 2002 bool ShouldAddOptNone = 2003 !CodeGenOpts.DisableO0ImplyOptNone && CodeGenOpts.OptimizationLevel == 0; 2004 // We can't add optnone in the following cases, it won't pass the verifier. 2005 ShouldAddOptNone &= !D->hasAttr<MinSizeAttr>(); 2006 ShouldAddOptNone &= !D->hasAttr<AlwaysInlineAttr>(); 2007 2008 // Add optnone, but do so only if the function isn't always_inline. 2009 if ((ShouldAddOptNone || D->hasAttr<OptimizeNoneAttr>()) && 2010 !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) { 2011 B.addAttribute(llvm::Attribute::OptimizeNone); 2012 2013 // OptimizeNone implies noinline; we should not be inlining such functions. 2014 B.addAttribute(llvm::Attribute::NoInline); 2015 2016 // We still need to handle naked functions even though optnone subsumes 2017 // much of their semantics. 2018 if (D->hasAttr<NakedAttr>()) 2019 B.addAttribute(llvm::Attribute::Naked); 2020 2021 // OptimizeNone wins over OptimizeForSize and MinSize. 2022 F->removeFnAttr(llvm::Attribute::OptimizeForSize); 2023 F->removeFnAttr(llvm::Attribute::MinSize); 2024 } else if (D->hasAttr<NakedAttr>()) { 2025 // Naked implies noinline: we should not be inlining such functions. 2026 B.addAttribute(llvm::Attribute::Naked); 2027 B.addAttribute(llvm::Attribute::NoInline); 2028 } else if (D->hasAttr<NoDuplicateAttr>()) { 2029 B.addAttribute(llvm::Attribute::NoDuplicate); 2030 } else if (D->hasAttr<NoInlineAttr>() && !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) { 2031 // Add noinline if the function isn't always_inline. 2032 B.addAttribute(llvm::Attribute::NoInline); 2033 } else if (D->hasAttr<AlwaysInlineAttr>() && 2034 !F->hasFnAttribute(llvm::Attribute::NoInline)) { 2035 // (noinline wins over always_inline, and we can't specify both in IR) 2036 B.addAttribute(llvm::Attribute::AlwaysInline); 2037 } else if (CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining) { 2038 // If we're not inlining, then force everything that isn't always_inline to 2039 // carry an explicit noinline attribute. 2040 if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline)) 2041 B.addAttribute(llvm::Attribute::NoInline); 2042 } else { 2043 // Otherwise, propagate the inline hint attribute and potentially use its 2044 // absence to mark things as noinline. 2045 if (auto *FD = dyn_cast<FunctionDecl>(D)) { 2046 // Search function and template pattern redeclarations for inline. 2047 auto CheckForInline = [](const FunctionDecl *FD) { 2048 auto CheckRedeclForInline = [](const FunctionDecl *Redecl) { 2049 return Redecl->isInlineSpecified(); 2050 }; 2051 if (any_of(FD->redecls(), CheckRedeclForInline)) 2052 return true; 2053 const FunctionDecl *Pattern = FD->getTemplateInstantiationPattern(); 2054 if (!Pattern) 2055 return false; 2056 return any_of(Pattern->redecls(), CheckRedeclForInline); 2057 }; 2058 if (CheckForInline(FD)) { 2059 B.addAttribute(llvm::Attribute::InlineHint); 2060 } else if (CodeGenOpts.getInlining() == 2061 CodeGenOptions::OnlyHintInlining && 2062 !FD->isInlined() && 2063 !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) { 2064 B.addAttribute(llvm::Attribute::NoInline); 2065 } 2066 } 2067 } 2068 2069 // Add other optimization related attributes if we are optimizing this 2070 // function. 2071 if (!D->hasAttr<OptimizeNoneAttr>()) { 2072 if (D->hasAttr<ColdAttr>()) { 2073 if (!ShouldAddOptNone) 2074 B.addAttribute(llvm::Attribute::OptimizeForSize); 2075 B.addAttribute(llvm::Attribute::Cold); 2076 } 2077 if (D->hasAttr<HotAttr>()) 2078 B.addAttribute(llvm::Attribute::Hot); 2079 if (D->hasAttr<MinSizeAttr>()) 2080 B.addAttribute(llvm::Attribute::MinSize); 2081 } 2082 2083 F->addFnAttrs(B); 2084 2085 unsigned alignment = D->getMaxAlignment() / Context.getCharWidth(); 2086 if (alignment) 2087 F->setAlignment(llvm::Align(alignment)); 2088 2089 if (!D->hasAttr<AlignedAttr>()) 2090 if (LangOpts.FunctionAlignment) 2091 F->setAlignment(llvm::Align(1ull << LangOpts.FunctionAlignment)); 2092 2093 // Some C++ ABIs require 2-byte alignment for member functions, in order to 2094 // reserve a bit for differentiating between virtual and non-virtual member 2095 // functions. If the current target's C++ ABI requires this and this is a 2096 // member function, set its alignment accordingly. 2097 if (getTarget().getCXXABI().areMemberFunctionsAligned()) { 2098 if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D)) 2099 F->setAlignment(llvm::Align(2)); 2100 } 2101 2102 // In the cross-dso CFI mode with canonical jump tables, we want !type 2103 // attributes on definitions only. 2104 if (CodeGenOpts.SanitizeCfiCrossDso && 2105 CodeGenOpts.SanitizeCfiCanonicalJumpTables) { 2106 if (auto *FD = dyn_cast<FunctionDecl>(D)) { 2107 // Skip available_externally functions. They won't be codegen'ed in the 2108 // current module anyway. 2109 if (getContext().GetGVALinkageForFunction(FD) != GVA_AvailableExternally) 2110 CreateFunctionTypeMetadataForIcall(FD, F); 2111 } 2112 } 2113 2114 // Emit type metadata on member functions for member function pointer checks. 2115 // These are only ever necessary on definitions; we're guaranteed that the 2116 // definition will be present in the LTO unit as a result of LTO visibility. 2117 auto *MD = dyn_cast<CXXMethodDecl>(D); 2118 if (MD && requiresMemberFunctionPointerTypeMetadata(*this, MD)) { 2119 for (const CXXRecordDecl *Base : getMostBaseClasses(MD->getParent())) { 2120 llvm::Metadata *Id = 2121 CreateMetadataIdentifierForType(Context.getMemberPointerType( 2122 MD->getType(), Context.getRecordType(Base).getTypePtr())); 2123 F->addTypeMetadata(0, Id); 2124 } 2125 } 2126 } 2127 2128 void CodeGenModule::setLLVMFunctionFEnvAttributes(const FunctionDecl *D, 2129 llvm::Function *F) { 2130 if (D->hasAttr<StrictFPAttr>()) { 2131 llvm::AttrBuilder FuncAttrs(F->getContext()); 2132 FuncAttrs.addAttribute("strictfp"); 2133 F->addFnAttrs(FuncAttrs); 2134 } 2135 } 2136 2137 void CodeGenModule::SetCommonAttributes(GlobalDecl GD, llvm::GlobalValue *GV) { 2138 const Decl *D = GD.getDecl(); 2139 if (isa_and_nonnull<NamedDecl>(D)) 2140 setGVProperties(GV, GD); 2141 else 2142 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 2143 2144 if (D && D->hasAttr<UsedAttr>()) 2145 addUsedOrCompilerUsedGlobal(GV); 2146 2147 if (CodeGenOpts.KeepStaticConsts && D && isa<VarDecl>(D)) { 2148 const auto *VD = cast<VarDecl>(D); 2149 if (VD->getType().isConstQualified() && 2150 VD->getStorageDuration() == SD_Static) 2151 addUsedOrCompilerUsedGlobal(GV); 2152 } 2153 } 2154 2155 bool CodeGenModule::GetCPUAndFeaturesAttributes(GlobalDecl GD, 2156 llvm::AttrBuilder &Attrs) { 2157 // Add target-cpu and target-features attributes to functions. If 2158 // we have a decl for the function and it has a target attribute then 2159 // parse that and add it to the feature set. 2160 StringRef TargetCPU = getTarget().getTargetOpts().CPU; 2161 StringRef TuneCPU = getTarget().getTargetOpts().TuneCPU; 2162 std::vector<std::string> Features; 2163 const auto *FD = dyn_cast_or_null<FunctionDecl>(GD.getDecl()); 2164 FD = FD ? FD->getMostRecentDecl() : FD; 2165 const auto *TD = FD ? FD->getAttr<TargetAttr>() : nullptr; 2166 const auto *SD = FD ? FD->getAttr<CPUSpecificAttr>() : nullptr; 2167 const auto *TC = FD ? FD->getAttr<TargetClonesAttr>() : nullptr; 2168 bool AddedAttr = false; 2169 if (TD || SD || TC) { 2170 llvm::StringMap<bool> FeatureMap; 2171 getContext().getFunctionFeatureMap(FeatureMap, GD); 2172 2173 // Produce the canonical string for this set of features. 2174 for (const llvm::StringMap<bool>::value_type &Entry : FeatureMap) 2175 Features.push_back((Entry.getValue() ? "+" : "-") + Entry.getKey().str()); 2176 2177 // Now add the target-cpu and target-features to the function. 2178 // While we populated the feature map above, we still need to 2179 // get and parse the target attribute so we can get the cpu for 2180 // the function. 2181 if (TD) { 2182 ParsedTargetAttr ParsedAttr = 2183 Target.parseTargetAttr(TD->getFeaturesStr()); 2184 if (!ParsedAttr.CPU.empty() && 2185 getTarget().isValidCPUName(ParsedAttr.CPU)) { 2186 TargetCPU = ParsedAttr.CPU; 2187 TuneCPU = ""; // Clear the tune CPU. 2188 } 2189 if (!ParsedAttr.Tune.empty() && 2190 getTarget().isValidCPUName(ParsedAttr.Tune)) 2191 TuneCPU = ParsedAttr.Tune; 2192 } 2193 2194 if (SD) { 2195 // Apply the given CPU name as the 'tune-cpu' so that the optimizer can 2196 // favor this processor. 2197 TuneCPU = getTarget().getCPUSpecificTuneName( 2198 SD->getCPUName(GD.getMultiVersionIndex())->getName()); 2199 } 2200 } else { 2201 // Otherwise just add the existing target cpu and target features to the 2202 // function. 2203 Features = getTarget().getTargetOpts().Features; 2204 } 2205 2206 if (!TargetCPU.empty()) { 2207 Attrs.addAttribute("target-cpu", TargetCPU); 2208 AddedAttr = true; 2209 } 2210 if (!TuneCPU.empty()) { 2211 Attrs.addAttribute("tune-cpu", TuneCPU); 2212 AddedAttr = true; 2213 } 2214 if (!Features.empty()) { 2215 llvm::sort(Features); 2216 Attrs.addAttribute("target-features", llvm::join(Features, ",")); 2217 AddedAttr = true; 2218 } 2219 2220 return AddedAttr; 2221 } 2222 2223 void CodeGenModule::setNonAliasAttributes(GlobalDecl GD, 2224 llvm::GlobalObject *GO) { 2225 const Decl *D = GD.getDecl(); 2226 SetCommonAttributes(GD, GO); 2227 2228 if (D) { 2229 if (auto *GV = dyn_cast<llvm::GlobalVariable>(GO)) { 2230 if (D->hasAttr<RetainAttr>()) 2231 addUsedGlobal(GV); 2232 if (auto *SA = D->getAttr<PragmaClangBSSSectionAttr>()) 2233 GV->addAttribute("bss-section", SA->getName()); 2234 if (auto *SA = D->getAttr<PragmaClangDataSectionAttr>()) 2235 GV->addAttribute("data-section", SA->getName()); 2236 if (auto *SA = D->getAttr<PragmaClangRodataSectionAttr>()) 2237 GV->addAttribute("rodata-section", SA->getName()); 2238 if (auto *SA = D->getAttr<PragmaClangRelroSectionAttr>()) 2239 GV->addAttribute("relro-section", SA->getName()); 2240 } 2241 2242 if (auto *F = dyn_cast<llvm::Function>(GO)) { 2243 if (D->hasAttr<RetainAttr>()) 2244 addUsedGlobal(F); 2245 if (auto *SA = D->getAttr<PragmaClangTextSectionAttr>()) 2246 if (!D->getAttr<SectionAttr>()) 2247 F->addFnAttr("implicit-section-name", SA->getName()); 2248 2249 llvm::AttrBuilder Attrs(F->getContext()); 2250 if (GetCPUAndFeaturesAttributes(GD, Attrs)) { 2251 // We know that GetCPUAndFeaturesAttributes will always have the 2252 // newest set, since it has the newest possible FunctionDecl, so the 2253 // new ones should replace the old. 2254 llvm::AttributeMask RemoveAttrs; 2255 RemoveAttrs.addAttribute("target-cpu"); 2256 RemoveAttrs.addAttribute("target-features"); 2257 RemoveAttrs.addAttribute("tune-cpu"); 2258 F->removeFnAttrs(RemoveAttrs); 2259 F->addFnAttrs(Attrs); 2260 } 2261 } 2262 2263 if (const auto *CSA = D->getAttr<CodeSegAttr>()) 2264 GO->setSection(CSA->getName()); 2265 else if (const auto *SA = D->getAttr<SectionAttr>()) 2266 GO->setSection(SA->getName()); 2267 } 2268 2269 getTargetCodeGenInfo().setTargetAttributes(D, GO, *this); 2270 } 2271 2272 void CodeGenModule::SetInternalFunctionAttributes(GlobalDecl GD, 2273 llvm::Function *F, 2274 const CGFunctionInfo &FI) { 2275 const Decl *D = GD.getDecl(); 2276 SetLLVMFunctionAttributes(GD, FI, F, /*IsThunk=*/false); 2277 SetLLVMFunctionAttributesForDefinition(D, F); 2278 2279 F->setLinkage(llvm::Function::InternalLinkage); 2280 2281 setNonAliasAttributes(GD, F); 2282 } 2283 2284 static void setLinkageForGV(llvm::GlobalValue *GV, const NamedDecl *ND) { 2285 // Set linkage and visibility in case we never see a definition. 2286 LinkageInfo LV = ND->getLinkageAndVisibility(); 2287 // Don't set internal linkage on declarations. 2288 // "extern_weak" is overloaded in LLVM; we probably should have 2289 // separate linkage types for this. 2290 if (isExternallyVisible(LV.getLinkage()) && 2291 (ND->hasAttr<WeakAttr>() || ND->isWeakImported())) 2292 GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage); 2293 } 2294 2295 void CodeGenModule::CreateFunctionTypeMetadataForIcall(const FunctionDecl *FD, 2296 llvm::Function *F) { 2297 // Only if we are checking indirect calls. 2298 if (!LangOpts.Sanitize.has(SanitizerKind::CFIICall)) 2299 return; 2300 2301 // Non-static class methods are handled via vtable or member function pointer 2302 // checks elsewhere. 2303 if (isa<CXXMethodDecl>(FD) && !cast<CXXMethodDecl>(FD)->isStatic()) 2304 return; 2305 2306 llvm::Metadata *MD = CreateMetadataIdentifierForType(FD->getType()); 2307 F->addTypeMetadata(0, MD); 2308 F->addTypeMetadata(0, CreateMetadataIdentifierGeneralized(FD->getType())); 2309 2310 // Emit a hash-based bit set entry for cross-DSO calls. 2311 if (CodeGenOpts.SanitizeCfiCrossDso) 2312 if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD)) 2313 F->addTypeMetadata(0, llvm::ConstantAsMetadata::get(CrossDsoTypeId)); 2314 } 2315 2316 void CodeGenModule::setKCFIType(const FunctionDecl *FD, llvm::Function *F) { 2317 if (isa<CXXMethodDecl>(FD) && !cast<CXXMethodDecl>(FD)->isStatic()) 2318 return; 2319 2320 llvm::LLVMContext &Ctx = F->getContext(); 2321 llvm::MDBuilder MDB(Ctx); 2322 F->setMetadata(llvm::LLVMContext::MD_kcfi_type, 2323 llvm::MDNode::get( 2324 Ctx, MDB.createConstant(CreateKCFITypeId(FD->getType())))); 2325 } 2326 2327 static bool allowKCFIIdentifier(StringRef Name) { 2328 // KCFI type identifier constants are only necessary for external assembly 2329 // functions, which means it's safe to skip unusual names. Subset of 2330 // MCAsmInfo::isAcceptableChar() and MCAsmInfoXCOFF::isAcceptableChar(). 2331 return llvm::all_of(Name, [](const char &C) { 2332 return llvm::isAlnum(C) || C == '_' || C == '.'; 2333 }); 2334 } 2335 2336 void CodeGenModule::finalizeKCFITypes() { 2337 llvm::Module &M = getModule(); 2338 for (auto &F : M.functions()) { 2339 // Remove KCFI type metadata from non-address-taken local functions. 2340 bool AddressTaken = F.hasAddressTaken(); 2341 if (!AddressTaken && F.hasLocalLinkage()) 2342 F.eraseMetadata(llvm::LLVMContext::MD_kcfi_type); 2343 2344 // Generate a constant with the expected KCFI type identifier for all 2345 // address-taken function declarations to support annotating indirectly 2346 // called assembly functions. 2347 if (!AddressTaken || !F.isDeclaration()) 2348 continue; 2349 2350 const llvm::ConstantInt *Type; 2351 if (const llvm::MDNode *MD = F.getMetadata(llvm::LLVMContext::MD_kcfi_type)) 2352 Type = llvm::mdconst::extract<llvm::ConstantInt>(MD->getOperand(0)); 2353 else 2354 continue; 2355 2356 StringRef Name = F.getName(); 2357 if (!allowKCFIIdentifier(Name)) 2358 continue; 2359 2360 std::string Asm = (".weak __kcfi_typeid_" + Name + "\n.set __kcfi_typeid_" + 2361 Name + ", " + Twine(Type->getZExtValue()) + "\n") 2362 .str(); 2363 M.appendModuleInlineAsm(Asm); 2364 } 2365 } 2366 2367 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD, llvm::Function *F, 2368 bool IsIncompleteFunction, 2369 bool IsThunk) { 2370 2371 if (llvm::Intrinsic::ID IID = F->getIntrinsicID()) { 2372 // If this is an intrinsic function, set the function's attributes 2373 // to the intrinsic's attributes. 2374 F->setAttributes(llvm::Intrinsic::getAttributes(getLLVMContext(), IID)); 2375 return; 2376 } 2377 2378 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 2379 2380 if (!IsIncompleteFunction) 2381 SetLLVMFunctionAttributes(GD, getTypes().arrangeGlobalDeclaration(GD), F, 2382 IsThunk); 2383 2384 // Add the Returned attribute for "this", except for iOS 5 and earlier 2385 // where substantial code, including the libstdc++ dylib, was compiled with 2386 // GCC and does not actually return "this". 2387 if (!IsThunk && getCXXABI().HasThisReturn(GD) && 2388 !(getTriple().isiOS() && getTriple().isOSVersionLT(6))) { 2389 assert(!F->arg_empty() && 2390 F->arg_begin()->getType() 2391 ->canLosslesslyBitCastTo(F->getReturnType()) && 2392 "unexpected this return"); 2393 F->addParamAttr(0, llvm::Attribute::Returned); 2394 } 2395 2396 // Only a few attributes are set on declarations; these may later be 2397 // overridden by a definition. 2398 2399 setLinkageForGV(F, FD); 2400 setGVProperties(F, FD); 2401 2402 // Setup target-specific attributes. 2403 if (!IsIncompleteFunction && F->isDeclaration()) 2404 getTargetCodeGenInfo().setTargetAttributes(FD, F, *this); 2405 2406 if (const auto *CSA = FD->getAttr<CodeSegAttr>()) 2407 F->setSection(CSA->getName()); 2408 else if (const auto *SA = FD->getAttr<SectionAttr>()) 2409 F->setSection(SA->getName()); 2410 2411 if (const auto *EA = FD->getAttr<ErrorAttr>()) { 2412 if (EA->isError()) 2413 F->addFnAttr("dontcall-error", EA->getUserDiagnostic()); 2414 else if (EA->isWarning()) 2415 F->addFnAttr("dontcall-warn", EA->getUserDiagnostic()); 2416 } 2417 2418 // If we plan on emitting this inline builtin, we can't treat it as a builtin. 2419 if (FD->isInlineBuiltinDeclaration()) { 2420 const FunctionDecl *FDBody; 2421 bool HasBody = FD->hasBody(FDBody); 2422 (void)HasBody; 2423 assert(HasBody && "Inline builtin declarations should always have an " 2424 "available body!"); 2425 if (shouldEmitFunction(FDBody)) 2426 F->addFnAttr(llvm::Attribute::NoBuiltin); 2427 } 2428 2429 if (FD->isReplaceableGlobalAllocationFunction()) { 2430 // A replaceable global allocation function does not act like a builtin by 2431 // default, only if it is invoked by a new-expression or delete-expression. 2432 F->addFnAttr(llvm::Attribute::NoBuiltin); 2433 } 2434 2435 if (isa<CXXConstructorDecl>(FD) || isa<CXXDestructorDecl>(FD)) 2436 F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 2437 else if (const auto *MD = dyn_cast<CXXMethodDecl>(FD)) 2438 if (MD->isVirtual()) 2439 F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 2440 2441 // Don't emit entries for function declarations in the cross-DSO mode. This 2442 // is handled with better precision by the receiving DSO. But if jump tables 2443 // are non-canonical then we need type metadata in order to produce the local 2444 // jump table. 2445 if (!CodeGenOpts.SanitizeCfiCrossDso || 2446 !CodeGenOpts.SanitizeCfiCanonicalJumpTables) 2447 CreateFunctionTypeMetadataForIcall(FD, F); 2448 2449 if (LangOpts.Sanitize.has(SanitizerKind::KCFI)) 2450 setKCFIType(FD, F); 2451 2452 if (getLangOpts().OpenMP && FD->hasAttr<OMPDeclareSimdDeclAttr>()) 2453 getOpenMPRuntime().emitDeclareSimdFunction(FD, F); 2454 2455 if (CodeGenOpts.InlineMaxStackSize != UINT_MAX) 2456 F->addFnAttr("inline-max-stacksize", llvm::utostr(CodeGenOpts.InlineMaxStackSize)); 2457 2458 if (const auto *CB = FD->getAttr<CallbackAttr>()) { 2459 // Annotate the callback behavior as metadata: 2460 // - The callback callee (as argument number). 2461 // - The callback payloads (as argument numbers). 2462 llvm::LLVMContext &Ctx = F->getContext(); 2463 llvm::MDBuilder MDB(Ctx); 2464 2465 // The payload indices are all but the first one in the encoding. The first 2466 // identifies the callback callee. 2467 int CalleeIdx = *CB->encoding_begin(); 2468 ArrayRef<int> PayloadIndices(CB->encoding_begin() + 1, CB->encoding_end()); 2469 F->addMetadata(llvm::LLVMContext::MD_callback, 2470 *llvm::MDNode::get(Ctx, {MDB.createCallbackEncoding( 2471 CalleeIdx, PayloadIndices, 2472 /* VarArgsArePassed */ false)})); 2473 } 2474 } 2475 2476 void CodeGenModule::addUsedGlobal(llvm::GlobalValue *GV) { 2477 assert((isa<llvm::Function>(GV) || !GV->isDeclaration()) && 2478 "Only globals with definition can force usage."); 2479 LLVMUsed.emplace_back(GV); 2480 } 2481 2482 void CodeGenModule::addCompilerUsedGlobal(llvm::GlobalValue *GV) { 2483 assert(!GV->isDeclaration() && 2484 "Only globals with definition can force usage."); 2485 LLVMCompilerUsed.emplace_back(GV); 2486 } 2487 2488 void CodeGenModule::addUsedOrCompilerUsedGlobal(llvm::GlobalValue *GV) { 2489 assert((isa<llvm::Function>(GV) || !GV->isDeclaration()) && 2490 "Only globals with definition can force usage."); 2491 if (getTriple().isOSBinFormatELF()) 2492 LLVMCompilerUsed.emplace_back(GV); 2493 else 2494 LLVMUsed.emplace_back(GV); 2495 } 2496 2497 static void emitUsed(CodeGenModule &CGM, StringRef Name, 2498 std::vector<llvm::WeakTrackingVH> &List) { 2499 // Don't create llvm.used if there is no need. 2500 if (List.empty()) 2501 return; 2502 2503 // Convert List to what ConstantArray needs. 2504 SmallVector<llvm::Constant*, 8> UsedArray; 2505 UsedArray.resize(List.size()); 2506 for (unsigned i = 0, e = List.size(); i != e; ++i) { 2507 UsedArray[i] = 2508 llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast( 2509 cast<llvm::Constant>(&*List[i]), CGM.Int8PtrTy); 2510 } 2511 2512 if (UsedArray.empty()) 2513 return; 2514 llvm::ArrayType *ATy = llvm::ArrayType::get(CGM.Int8PtrTy, UsedArray.size()); 2515 2516 auto *GV = new llvm::GlobalVariable( 2517 CGM.getModule(), ATy, false, llvm::GlobalValue::AppendingLinkage, 2518 llvm::ConstantArray::get(ATy, UsedArray), Name); 2519 2520 GV->setSection("llvm.metadata"); 2521 } 2522 2523 void CodeGenModule::emitLLVMUsed() { 2524 emitUsed(*this, "llvm.used", LLVMUsed); 2525 emitUsed(*this, "llvm.compiler.used", LLVMCompilerUsed); 2526 } 2527 2528 void CodeGenModule::AppendLinkerOptions(StringRef Opts) { 2529 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opts); 2530 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 2531 } 2532 2533 void CodeGenModule::AddDetectMismatch(StringRef Name, StringRef Value) { 2534 llvm::SmallString<32> Opt; 2535 getTargetCodeGenInfo().getDetectMismatchOption(Name, Value, Opt); 2536 if (Opt.empty()) 2537 return; 2538 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt); 2539 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 2540 } 2541 2542 void CodeGenModule::AddDependentLib(StringRef Lib) { 2543 auto &C = getLLVMContext(); 2544 if (getTarget().getTriple().isOSBinFormatELF()) { 2545 ELFDependentLibraries.push_back( 2546 llvm::MDNode::get(C, llvm::MDString::get(C, Lib))); 2547 return; 2548 } 2549 2550 llvm::SmallString<24> Opt; 2551 getTargetCodeGenInfo().getDependentLibraryOption(Lib, Opt); 2552 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt); 2553 LinkerOptionsMetadata.push_back(llvm::MDNode::get(C, MDOpts)); 2554 } 2555 2556 /// Add link options implied by the given module, including modules 2557 /// it depends on, using a postorder walk. 2558 static void addLinkOptionsPostorder(CodeGenModule &CGM, Module *Mod, 2559 SmallVectorImpl<llvm::MDNode *> &Metadata, 2560 llvm::SmallPtrSet<Module *, 16> &Visited) { 2561 // Import this module's parent. 2562 if (Mod->Parent && Visited.insert(Mod->Parent).second) { 2563 addLinkOptionsPostorder(CGM, Mod->Parent, Metadata, Visited); 2564 } 2565 2566 // Import this module's dependencies. 2567 for (Module *Import : llvm::reverse(Mod->Imports)) { 2568 if (Visited.insert(Import).second) 2569 addLinkOptionsPostorder(CGM, Import, Metadata, Visited); 2570 } 2571 2572 // Add linker options to link against the libraries/frameworks 2573 // described by this module. 2574 llvm::LLVMContext &Context = CGM.getLLVMContext(); 2575 bool IsELF = CGM.getTarget().getTriple().isOSBinFormatELF(); 2576 2577 // For modules that use export_as for linking, use that module 2578 // name instead. 2579 if (Mod->UseExportAsModuleLinkName) 2580 return; 2581 2582 for (const Module::LinkLibrary &LL : llvm::reverse(Mod->LinkLibraries)) { 2583 // Link against a framework. Frameworks are currently Darwin only, so we 2584 // don't to ask TargetCodeGenInfo for the spelling of the linker option. 2585 if (LL.IsFramework) { 2586 llvm::Metadata *Args[2] = {llvm::MDString::get(Context, "-framework"), 2587 llvm::MDString::get(Context, LL.Library)}; 2588 2589 Metadata.push_back(llvm::MDNode::get(Context, Args)); 2590 continue; 2591 } 2592 2593 // Link against a library. 2594 if (IsELF) { 2595 llvm::Metadata *Args[2] = { 2596 llvm::MDString::get(Context, "lib"), 2597 llvm::MDString::get(Context, LL.Library), 2598 }; 2599 Metadata.push_back(llvm::MDNode::get(Context, Args)); 2600 } else { 2601 llvm::SmallString<24> Opt; 2602 CGM.getTargetCodeGenInfo().getDependentLibraryOption(LL.Library, Opt); 2603 auto *OptString = llvm::MDString::get(Context, Opt); 2604 Metadata.push_back(llvm::MDNode::get(Context, OptString)); 2605 } 2606 } 2607 } 2608 2609 void CodeGenModule::EmitModuleInitializers(clang::Module *Primary) { 2610 // Emit the initializers in the order that sub-modules appear in the 2611 // source, first Global Module Fragments, if present. 2612 if (auto GMF = Primary->getGlobalModuleFragment()) { 2613 for (Decl *D : getContext().getModuleInitializers(GMF)) { 2614 if (isa<ImportDecl>(D)) 2615 continue; 2616 assert(isa<VarDecl>(D) && "GMF initializer decl is not a var?"); 2617 EmitTopLevelDecl(D); 2618 } 2619 } 2620 // Second any associated with the module, itself. 2621 for (Decl *D : getContext().getModuleInitializers(Primary)) { 2622 // Skip import decls, the inits for those are called explicitly. 2623 if (isa<ImportDecl>(D)) 2624 continue; 2625 EmitTopLevelDecl(D); 2626 } 2627 // Third any associated with the Privat eMOdule Fragment, if present. 2628 if (auto PMF = Primary->getPrivateModuleFragment()) { 2629 for (Decl *D : getContext().getModuleInitializers(PMF)) { 2630 assert(isa<VarDecl>(D) && "PMF initializer decl is not a var?"); 2631 EmitTopLevelDecl(D); 2632 } 2633 } 2634 } 2635 2636 void CodeGenModule::EmitModuleLinkOptions() { 2637 // Collect the set of all of the modules we want to visit to emit link 2638 // options, which is essentially the imported modules and all of their 2639 // non-explicit child modules. 2640 llvm::SetVector<clang::Module *> LinkModules; 2641 llvm::SmallPtrSet<clang::Module *, 16> Visited; 2642 SmallVector<clang::Module *, 16> Stack; 2643 2644 // Seed the stack with imported modules. 2645 for (Module *M : ImportedModules) { 2646 // Do not add any link flags when an implementation TU of a module imports 2647 // a header of that same module. 2648 if (M->getTopLevelModuleName() == getLangOpts().CurrentModule && 2649 !getLangOpts().isCompilingModule()) 2650 continue; 2651 if (Visited.insert(M).second) 2652 Stack.push_back(M); 2653 } 2654 2655 // Find all of the modules to import, making a little effort to prune 2656 // non-leaf modules. 2657 while (!Stack.empty()) { 2658 clang::Module *Mod = Stack.pop_back_val(); 2659 2660 bool AnyChildren = false; 2661 2662 // Visit the submodules of this module. 2663 for (const auto &SM : Mod->submodules()) { 2664 // Skip explicit children; they need to be explicitly imported to be 2665 // linked against. 2666 if (SM->IsExplicit) 2667 continue; 2668 2669 if (Visited.insert(SM).second) { 2670 Stack.push_back(SM); 2671 AnyChildren = true; 2672 } 2673 } 2674 2675 // We didn't find any children, so add this module to the list of 2676 // modules to link against. 2677 if (!AnyChildren) { 2678 LinkModules.insert(Mod); 2679 } 2680 } 2681 2682 // Add link options for all of the imported modules in reverse topological 2683 // order. We don't do anything to try to order import link flags with respect 2684 // to linker options inserted by things like #pragma comment(). 2685 SmallVector<llvm::MDNode *, 16> MetadataArgs; 2686 Visited.clear(); 2687 for (Module *M : LinkModules) 2688 if (Visited.insert(M).second) 2689 addLinkOptionsPostorder(*this, M, MetadataArgs, Visited); 2690 std::reverse(MetadataArgs.begin(), MetadataArgs.end()); 2691 LinkerOptionsMetadata.append(MetadataArgs.begin(), MetadataArgs.end()); 2692 2693 // Add the linker options metadata flag. 2694 auto *NMD = getModule().getOrInsertNamedMetadata("llvm.linker.options"); 2695 for (auto *MD : LinkerOptionsMetadata) 2696 NMD->addOperand(MD); 2697 } 2698 2699 void CodeGenModule::EmitDeferred() { 2700 // Emit deferred declare target declarations. 2701 if (getLangOpts().OpenMP && !getLangOpts().OpenMPSimd) 2702 getOpenMPRuntime().emitDeferredTargetDecls(); 2703 2704 // Emit code for any potentially referenced deferred decls. Since a 2705 // previously unused static decl may become used during the generation of code 2706 // for a static function, iterate until no changes are made. 2707 2708 if (!DeferredVTables.empty()) { 2709 EmitDeferredVTables(); 2710 2711 // Emitting a vtable doesn't directly cause more vtables to 2712 // become deferred, although it can cause functions to be 2713 // emitted that then need those vtables. 2714 assert(DeferredVTables.empty()); 2715 } 2716 2717 // Emit CUDA/HIP static device variables referenced by host code only. 2718 // Note we should not clear CUDADeviceVarODRUsedByHost since it is still 2719 // needed for further handling. 2720 if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice) 2721 llvm::append_range(DeferredDeclsToEmit, 2722 getContext().CUDADeviceVarODRUsedByHost); 2723 2724 // Stop if we're out of both deferred vtables and deferred declarations. 2725 if (DeferredDeclsToEmit.empty()) 2726 return; 2727 2728 // Grab the list of decls to emit. If EmitGlobalDefinition schedules more 2729 // work, it will not interfere with this. 2730 std::vector<GlobalDecl> CurDeclsToEmit; 2731 CurDeclsToEmit.swap(DeferredDeclsToEmit); 2732 2733 for (GlobalDecl &D : CurDeclsToEmit) { 2734 // We should call GetAddrOfGlobal with IsForDefinition set to true in order 2735 // to get GlobalValue with exactly the type we need, not something that 2736 // might had been created for another decl with the same mangled name but 2737 // different type. 2738 llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>( 2739 GetAddrOfGlobal(D, ForDefinition)); 2740 2741 // In case of different address spaces, we may still get a cast, even with 2742 // IsForDefinition equal to true. Query mangled names table to get 2743 // GlobalValue. 2744 if (!GV) 2745 GV = GetGlobalValue(getMangledName(D)); 2746 2747 // Make sure GetGlobalValue returned non-null. 2748 assert(GV); 2749 2750 // Check to see if we've already emitted this. This is necessary 2751 // for a couple of reasons: first, decls can end up in the 2752 // deferred-decls queue multiple times, and second, decls can end 2753 // up with definitions in unusual ways (e.g. by an extern inline 2754 // function acquiring a strong function redefinition). Just 2755 // ignore these cases. 2756 if (!GV->isDeclaration()) 2757 continue; 2758 2759 // If this is OpenMP, check if it is legal to emit this global normally. 2760 if (LangOpts.OpenMP && OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(D)) 2761 continue; 2762 2763 // Otherwise, emit the definition and move on to the next one. 2764 EmitGlobalDefinition(D, GV); 2765 2766 // If we found out that we need to emit more decls, do that recursively. 2767 // This has the advantage that the decls are emitted in a DFS and related 2768 // ones are close together, which is convenient for testing. 2769 if (!DeferredVTables.empty() || !DeferredDeclsToEmit.empty()) { 2770 EmitDeferred(); 2771 assert(DeferredVTables.empty() && DeferredDeclsToEmit.empty()); 2772 } 2773 } 2774 } 2775 2776 void CodeGenModule::EmitVTablesOpportunistically() { 2777 // Try to emit external vtables as available_externally if they have emitted 2778 // all inlined virtual functions. It runs after EmitDeferred() and therefore 2779 // is not allowed to create new references to things that need to be emitted 2780 // lazily. Note that it also uses fact that we eagerly emitting RTTI. 2781 2782 assert((OpportunisticVTables.empty() || shouldOpportunisticallyEmitVTables()) 2783 && "Only emit opportunistic vtables with optimizations"); 2784 2785 for (const CXXRecordDecl *RD : OpportunisticVTables) { 2786 assert(getVTables().isVTableExternal(RD) && 2787 "This queue should only contain external vtables"); 2788 if (getCXXABI().canSpeculativelyEmitVTable(RD)) 2789 VTables.GenerateClassData(RD); 2790 } 2791 OpportunisticVTables.clear(); 2792 } 2793 2794 void CodeGenModule::EmitGlobalAnnotations() { 2795 if (Annotations.empty()) 2796 return; 2797 2798 // Create a new global variable for the ConstantStruct in the Module. 2799 llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get( 2800 Annotations[0]->getType(), Annotations.size()), Annotations); 2801 auto *gv = new llvm::GlobalVariable(getModule(), Array->getType(), false, 2802 llvm::GlobalValue::AppendingLinkage, 2803 Array, "llvm.global.annotations"); 2804 gv->setSection(AnnotationSection); 2805 } 2806 2807 llvm::Constant *CodeGenModule::EmitAnnotationString(StringRef Str) { 2808 llvm::Constant *&AStr = AnnotationStrings[Str]; 2809 if (AStr) 2810 return AStr; 2811 2812 // Not found yet, create a new global. 2813 llvm::Constant *s = llvm::ConstantDataArray::getString(getLLVMContext(), Str); 2814 auto *gv = new llvm::GlobalVariable( 2815 getModule(), s->getType(), true, llvm::GlobalValue::PrivateLinkage, s, 2816 ".str", nullptr, llvm::GlobalValue::NotThreadLocal, 2817 ConstGlobalsPtrTy->getAddressSpace()); 2818 gv->setSection(AnnotationSection); 2819 gv->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 2820 AStr = gv; 2821 return gv; 2822 } 2823 2824 llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) { 2825 SourceManager &SM = getContext().getSourceManager(); 2826 PresumedLoc PLoc = SM.getPresumedLoc(Loc); 2827 if (PLoc.isValid()) 2828 return EmitAnnotationString(PLoc.getFilename()); 2829 return EmitAnnotationString(SM.getBufferName(Loc)); 2830 } 2831 2832 llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) { 2833 SourceManager &SM = getContext().getSourceManager(); 2834 PresumedLoc PLoc = SM.getPresumedLoc(L); 2835 unsigned LineNo = PLoc.isValid() ? PLoc.getLine() : 2836 SM.getExpansionLineNumber(L); 2837 return llvm::ConstantInt::get(Int32Ty, LineNo); 2838 } 2839 2840 llvm::Constant *CodeGenModule::EmitAnnotationArgs(const AnnotateAttr *Attr) { 2841 ArrayRef<Expr *> Exprs = {Attr->args_begin(), Attr->args_size()}; 2842 if (Exprs.empty()) 2843 return llvm::ConstantPointerNull::get(ConstGlobalsPtrTy); 2844 2845 llvm::FoldingSetNodeID ID; 2846 for (Expr *E : Exprs) { 2847 ID.Add(cast<clang::ConstantExpr>(E)->getAPValueResult()); 2848 } 2849 llvm::Constant *&Lookup = AnnotationArgs[ID.ComputeHash()]; 2850 if (Lookup) 2851 return Lookup; 2852 2853 llvm::SmallVector<llvm::Constant *, 4> LLVMArgs; 2854 LLVMArgs.reserve(Exprs.size()); 2855 ConstantEmitter ConstEmiter(*this); 2856 llvm::transform(Exprs, std::back_inserter(LLVMArgs), [&](const Expr *E) { 2857 const auto *CE = cast<clang::ConstantExpr>(E); 2858 return ConstEmiter.emitAbstract(CE->getBeginLoc(), CE->getAPValueResult(), 2859 CE->getType()); 2860 }); 2861 auto *Struct = llvm::ConstantStruct::getAnon(LLVMArgs); 2862 auto *GV = new llvm::GlobalVariable(getModule(), Struct->getType(), true, 2863 llvm::GlobalValue::PrivateLinkage, Struct, 2864 ".args"); 2865 GV->setSection(AnnotationSection); 2866 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 2867 auto *Bitcasted = llvm::ConstantExpr::getBitCast(GV, GlobalsInt8PtrTy); 2868 2869 Lookup = Bitcasted; 2870 return Bitcasted; 2871 } 2872 2873 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV, 2874 const AnnotateAttr *AA, 2875 SourceLocation L) { 2876 // Get the globals for file name, annotation, and the line number. 2877 llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()), 2878 *UnitGV = EmitAnnotationUnit(L), 2879 *LineNoCst = EmitAnnotationLineNo(L), 2880 *Args = EmitAnnotationArgs(AA); 2881 2882 llvm::Constant *GVInGlobalsAS = GV; 2883 if (GV->getAddressSpace() != 2884 getDataLayout().getDefaultGlobalsAddressSpace()) { 2885 GVInGlobalsAS = llvm::ConstantExpr::getAddrSpaceCast( 2886 GV, GV->getValueType()->getPointerTo( 2887 getDataLayout().getDefaultGlobalsAddressSpace())); 2888 } 2889 2890 // Create the ConstantStruct for the global annotation. 2891 llvm::Constant *Fields[] = { 2892 llvm::ConstantExpr::getBitCast(GVInGlobalsAS, GlobalsInt8PtrTy), 2893 llvm::ConstantExpr::getBitCast(AnnoGV, ConstGlobalsPtrTy), 2894 llvm::ConstantExpr::getBitCast(UnitGV, ConstGlobalsPtrTy), 2895 LineNoCst, 2896 Args, 2897 }; 2898 return llvm::ConstantStruct::getAnon(Fields); 2899 } 2900 2901 void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D, 2902 llvm::GlobalValue *GV) { 2903 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 2904 // Get the struct elements for these annotations. 2905 for (const auto *I : D->specific_attrs<AnnotateAttr>()) 2906 Annotations.push_back(EmitAnnotateAttr(GV, I, D->getLocation())); 2907 } 2908 2909 bool CodeGenModule::isInNoSanitizeList(SanitizerMask Kind, llvm::Function *Fn, 2910 SourceLocation Loc) const { 2911 const auto &NoSanitizeL = getContext().getNoSanitizeList(); 2912 // NoSanitize by function name. 2913 if (NoSanitizeL.containsFunction(Kind, Fn->getName())) 2914 return true; 2915 // NoSanitize by location. Check "mainfile" prefix. 2916 auto &SM = Context.getSourceManager(); 2917 const FileEntry &MainFile = *SM.getFileEntryForID(SM.getMainFileID()); 2918 if (NoSanitizeL.containsMainFile(Kind, MainFile.getName())) 2919 return true; 2920 2921 // Check "src" prefix. 2922 if (Loc.isValid()) 2923 return NoSanitizeL.containsLocation(Kind, Loc); 2924 // If location is unknown, this may be a compiler-generated function. Assume 2925 // it's located in the main file. 2926 return NoSanitizeL.containsFile(Kind, MainFile.getName()); 2927 } 2928 2929 bool CodeGenModule::isInNoSanitizeList(SanitizerMask Kind, 2930 llvm::GlobalVariable *GV, 2931 SourceLocation Loc, QualType Ty, 2932 StringRef Category) const { 2933 const auto &NoSanitizeL = getContext().getNoSanitizeList(); 2934 if (NoSanitizeL.containsGlobal(Kind, GV->getName(), Category)) 2935 return true; 2936 auto &SM = Context.getSourceManager(); 2937 if (NoSanitizeL.containsMainFile( 2938 Kind, SM.getFileEntryForID(SM.getMainFileID())->getName(), Category)) 2939 return true; 2940 if (NoSanitizeL.containsLocation(Kind, Loc, Category)) 2941 return true; 2942 2943 // Check global type. 2944 if (!Ty.isNull()) { 2945 // Drill down the array types: if global variable of a fixed type is 2946 // not sanitized, we also don't instrument arrays of them. 2947 while (auto AT = dyn_cast<ArrayType>(Ty.getTypePtr())) 2948 Ty = AT->getElementType(); 2949 Ty = Ty.getCanonicalType().getUnqualifiedType(); 2950 // Only record types (classes, structs etc.) are ignored. 2951 if (Ty->isRecordType()) { 2952 std::string TypeStr = Ty.getAsString(getContext().getPrintingPolicy()); 2953 if (NoSanitizeL.containsType(Kind, TypeStr, Category)) 2954 return true; 2955 } 2956 } 2957 return false; 2958 } 2959 2960 bool CodeGenModule::imbueXRayAttrs(llvm::Function *Fn, SourceLocation Loc, 2961 StringRef Category) const { 2962 const auto &XRayFilter = getContext().getXRayFilter(); 2963 using ImbueAttr = XRayFunctionFilter::ImbueAttribute; 2964 auto Attr = ImbueAttr::NONE; 2965 if (Loc.isValid()) 2966 Attr = XRayFilter.shouldImbueLocation(Loc, Category); 2967 if (Attr == ImbueAttr::NONE) 2968 Attr = XRayFilter.shouldImbueFunction(Fn->getName()); 2969 switch (Attr) { 2970 case ImbueAttr::NONE: 2971 return false; 2972 case ImbueAttr::ALWAYS: 2973 Fn->addFnAttr("function-instrument", "xray-always"); 2974 break; 2975 case ImbueAttr::ALWAYS_ARG1: 2976 Fn->addFnAttr("function-instrument", "xray-always"); 2977 Fn->addFnAttr("xray-log-args", "1"); 2978 break; 2979 case ImbueAttr::NEVER: 2980 Fn->addFnAttr("function-instrument", "xray-never"); 2981 break; 2982 } 2983 return true; 2984 } 2985 2986 ProfileList::ExclusionType 2987 CodeGenModule::isFunctionBlockedByProfileList(llvm::Function *Fn, 2988 SourceLocation Loc) const { 2989 const auto &ProfileList = getContext().getProfileList(); 2990 // If the profile list is empty, then instrument everything. 2991 if (ProfileList.isEmpty()) 2992 return ProfileList::Allow; 2993 CodeGenOptions::ProfileInstrKind Kind = getCodeGenOpts().getProfileInstr(); 2994 // First, check the function name. 2995 if (auto V = ProfileList.isFunctionExcluded(Fn->getName(), Kind)) 2996 return *V; 2997 // Next, check the source location. 2998 if (Loc.isValid()) 2999 if (auto V = ProfileList.isLocationExcluded(Loc, Kind)) 3000 return *V; 3001 // If location is unknown, this may be a compiler-generated function. Assume 3002 // it's located in the main file. 3003 auto &SM = Context.getSourceManager(); 3004 if (const auto *MainFile = SM.getFileEntryForID(SM.getMainFileID())) 3005 if (auto V = ProfileList.isFileExcluded(MainFile->getName(), Kind)) 3006 return *V; 3007 return ProfileList.getDefault(Kind); 3008 } 3009 3010 ProfileList::ExclusionType 3011 CodeGenModule::isFunctionBlockedFromProfileInstr(llvm::Function *Fn, 3012 SourceLocation Loc) const { 3013 auto V = isFunctionBlockedByProfileList(Fn, Loc); 3014 if (V != ProfileList::Allow) 3015 return V; 3016 3017 auto NumGroups = getCodeGenOpts().ProfileTotalFunctionGroups; 3018 if (NumGroups > 1) { 3019 auto Group = llvm::crc32(arrayRefFromStringRef(Fn->getName())) % NumGroups; 3020 if (Group != getCodeGenOpts().ProfileSelectedFunctionGroup) 3021 return ProfileList::Skip; 3022 } 3023 return ProfileList::Allow; 3024 } 3025 3026 bool CodeGenModule::MustBeEmitted(const ValueDecl *Global) { 3027 // Never defer when EmitAllDecls is specified. 3028 if (LangOpts.EmitAllDecls) 3029 return true; 3030 3031 if (CodeGenOpts.KeepStaticConsts) { 3032 const auto *VD = dyn_cast<VarDecl>(Global); 3033 if (VD && VD->getType().isConstQualified() && 3034 VD->getStorageDuration() == SD_Static) 3035 return true; 3036 } 3037 3038 return getContext().DeclMustBeEmitted(Global); 3039 } 3040 3041 bool CodeGenModule::MayBeEmittedEagerly(const ValueDecl *Global) { 3042 // In OpenMP 5.0 variables and function may be marked as 3043 // device_type(host/nohost) and we should not emit them eagerly unless we sure 3044 // that they must be emitted on the host/device. To be sure we need to have 3045 // seen a declare target with an explicit mentioning of the function, we know 3046 // we have if the level of the declare target attribute is -1. Note that we 3047 // check somewhere else if we should emit this at all. 3048 if (LangOpts.OpenMP >= 50 && !LangOpts.OpenMPSimd) { 3049 llvm::Optional<OMPDeclareTargetDeclAttr *> ActiveAttr = 3050 OMPDeclareTargetDeclAttr::getActiveAttr(Global); 3051 if (!ActiveAttr || (*ActiveAttr)->getLevel() != (unsigned)-1) 3052 return false; 3053 } 3054 3055 if (const auto *FD = dyn_cast<FunctionDecl>(Global)) { 3056 if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation) 3057 // Implicit template instantiations may change linkage if they are later 3058 // explicitly instantiated, so they should not be emitted eagerly. 3059 return false; 3060 } 3061 if (const auto *VD = dyn_cast<VarDecl>(Global)) { 3062 if (Context.getInlineVariableDefinitionKind(VD) == 3063 ASTContext::InlineVariableDefinitionKind::WeakUnknown) 3064 // A definition of an inline constexpr static data member may change 3065 // linkage later if it's redeclared outside the class. 3066 return false; 3067 if (CXX20ModuleInits && VD->getOwningModule() && 3068 !VD->getOwningModule()->isModuleMapModule()) { 3069 // For CXX20, module-owned initializers need to be deferred, since it is 3070 // not known at this point if they will be run for the current module or 3071 // as part of the initializer for an imported one. 3072 return false; 3073 } 3074 } 3075 // If OpenMP is enabled and threadprivates must be generated like TLS, delay 3076 // codegen for global variables, because they may be marked as threadprivate. 3077 if (LangOpts.OpenMP && LangOpts.OpenMPUseTLS && 3078 getContext().getTargetInfo().isTLSSupported() && isa<VarDecl>(Global) && 3079 !isTypeConstant(Global->getType(), false) && 3080 !OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(Global)) 3081 return false; 3082 3083 return true; 3084 } 3085 3086 ConstantAddress CodeGenModule::GetAddrOfMSGuidDecl(const MSGuidDecl *GD) { 3087 StringRef Name = getMangledName(GD); 3088 3089 // The UUID descriptor should be pointer aligned. 3090 CharUnits Alignment = CharUnits::fromQuantity(PointerAlignInBytes); 3091 3092 // Look for an existing global. 3093 if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name)) 3094 return ConstantAddress(GV, GV->getValueType(), Alignment); 3095 3096 ConstantEmitter Emitter(*this); 3097 llvm::Constant *Init; 3098 3099 APValue &V = GD->getAsAPValue(); 3100 if (!V.isAbsent()) { 3101 // If possible, emit the APValue version of the initializer. In particular, 3102 // this gets the type of the constant right. 3103 Init = Emitter.emitForInitializer( 3104 GD->getAsAPValue(), GD->getType().getAddressSpace(), GD->getType()); 3105 } else { 3106 // As a fallback, directly construct the constant. 3107 // FIXME: This may get padding wrong under esoteric struct layout rules. 3108 // MSVC appears to create a complete type 'struct __s_GUID' that it 3109 // presumably uses to represent these constants. 3110 MSGuidDecl::Parts Parts = GD->getParts(); 3111 llvm::Constant *Fields[4] = { 3112 llvm::ConstantInt::get(Int32Ty, Parts.Part1), 3113 llvm::ConstantInt::get(Int16Ty, Parts.Part2), 3114 llvm::ConstantInt::get(Int16Ty, Parts.Part3), 3115 llvm::ConstantDataArray::getRaw( 3116 StringRef(reinterpret_cast<char *>(Parts.Part4And5), 8), 8, 3117 Int8Ty)}; 3118 Init = llvm::ConstantStruct::getAnon(Fields); 3119 } 3120 3121 auto *GV = new llvm::GlobalVariable( 3122 getModule(), Init->getType(), 3123 /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name); 3124 if (supportsCOMDAT()) 3125 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 3126 setDSOLocal(GV); 3127 3128 if (!V.isAbsent()) { 3129 Emitter.finalize(GV); 3130 return ConstantAddress(GV, GV->getValueType(), Alignment); 3131 } 3132 3133 llvm::Type *Ty = getTypes().ConvertTypeForMem(GD->getType()); 3134 llvm::Constant *Addr = llvm::ConstantExpr::getBitCast( 3135 GV, Ty->getPointerTo(GV->getAddressSpace())); 3136 return ConstantAddress(Addr, Ty, Alignment); 3137 } 3138 3139 ConstantAddress CodeGenModule::GetAddrOfUnnamedGlobalConstantDecl( 3140 const UnnamedGlobalConstantDecl *GCD) { 3141 CharUnits Alignment = getContext().getTypeAlignInChars(GCD->getType()); 3142 3143 llvm::GlobalVariable **Entry = nullptr; 3144 Entry = &UnnamedGlobalConstantDeclMap[GCD]; 3145 if (*Entry) 3146 return ConstantAddress(*Entry, (*Entry)->getValueType(), Alignment); 3147 3148 ConstantEmitter Emitter(*this); 3149 llvm::Constant *Init; 3150 3151 const APValue &V = GCD->getValue(); 3152 3153 assert(!V.isAbsent()); 3154 Init = Emitter.emitForInitializer(V, GCD->getType().getAddressSpace(), 3155 GCD->getType()); 3156 3157 auto *GV = new llvm::GlobalVariable(getModule(), Init->getType(), 3158 /*isConstant=*/true, 3159 llvm::GlobalValue::PrivateLinkage, Init, 3160 ".constant"); 3161 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 3162 GV->setAlignment(Alignment.getAsAlign()); 3163 3164 Emitter.finalize(GV); 3165 3166 *Entry = GV; 3167 return ConstantAddress(GV, GV->getValueType(), Alignment); 3168 } 3169 3170 ConstantAddress CodeGenModule::GetAddrOfTemplateParamObject( 3171 const TemplateParamObjectDecl *TPO) { 3172 StringRef Name = getMangledName(TPO); 3173 CharUnits Alignment = getNaturalTypeAlignment(TPO->getType()); 3174 3175 if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name)) 3176 return ConstantAddress(GV, GV->getValueType(), Alignment); 3177 3178 ConstantEmitter Emitter(*this); 3179 llvm::Constant *Init = Emitter.emitForInitializer( 3180 TPO->getValue(), TPO->getType().getAddressSpace(), TPO->getType()); 3181 3182 if (!Init) { 3183 ErrorUnsupported(TPO, "template parameter object"); 3184 return ConstantAddress::invalid(); 3185 } 3186 3187 auto *GV = new llvm::GlobalVariable( 3188 getModule(), Init->getType(), 3189 /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name); 3190 if (supportsCOMDAT()) 3191 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 3192 Emitter.finalize(GV); 3193 3194 return ConstantAddress(GV, GV->getValueType(), Alignment); 3195 } 3196 3197 ConstantAddress CodeGenModule::GetWeakRefReference(const ValueDecl *VD) { 3198 const AliasAttr *AA = VD->getAttr<AliasAttr>(); 3199 assert(AA && "No alias?"); 3200 3201 CharUnits Alignment = getContext().getDeclAlign(VD); 3202 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType()); 3203 3204 // See if there is already something with the target's name in the module. 3205 llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee()); 3206 if (Entry) { 3207 unsigned AS = getTypes().getTargetAddressSpace(VD->getType()); 3208 auto Ptr = llvm::ConstantExpr::getBitCast(Entry, DeclTy->getPointerTo(AS)); 3209 return ConstantAddress(Ptr, DeclTy, Alignment); 3210 } 3211 3212 llvm::Constant *Aliasee; 3213 if (isa<llvm::FunctionType>(DeclTy)) 3214 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, 3215 GlobalDecl(cast<FunctionDecl>(VD)), 3216 /*ForVTable=*/false); 3217 else 3218 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), DeclTy, LangAS::Default, 3219 nullptr); 3220 3221 auto *F = cast<llvm::GlobalValue>(Aliasee); 3222 F->setLinkage(llvm::Function::ExternalWeakLinkage); 3223 WeakRefReferences.insert(F); 3224 3225 return ConstantAddress(Aliasee, DeclTy, Alignment); 3226 } 3227 3228 void CodeGenModule::EmitGlobal(GlobalDecl GD) { 3229 const auto *Global = cast<ValueDecl>(GD.getDecl()); 3230 3231 // Weak references don't produce any output by themselves. 3232 if (Global->hasAttr<WeakRefAttr>()) 3233 return; 3234 3235 // If this is an alias definition (which otherwise looks like a declaration) 3236 // emit it now. 3237 if (Global->hasAttr<AliasAttr>()) 3238 return EmitAliasDefinition(GD); 3239 3240 // IFunc like an alias whose value is resolved at runtime by calling resolver. 3241 if (Global->hasAttr<IFuncAttr>()) 3242 return emitIFuncDefinition(GD); 3243 3244 // If this is a cpu_dispatch multiversion function, emit the resolver. 3245 if (Global->hasAttr<CPUDispatchAttr>()) 3246 return emitCPUDispatchDefinition(GD); 3247 3248 // If this is CUDA, be selective about which declarations we emit. 3249 if (LangOpts.CUDA) { 3250 if (LangOpts.CUDAIsDevice) { 3251 if (!Global->hasAttr<CUDADeviceAttr>() && 3252 !Global->hasAttr<CUDAGlobalAttr>() && 3253 !Global->hasAttr<CUDAConstantAttr>() && 3254 !Global->hasAttr<CUDASharedAttr>() && 3255 !Global->getType()->isCUDADeviceBuiltinSurfaceType() && 3256 !Global->getType()->isCUDADeviceBuiltinTextureType()) 3257 return; 3258 } else { 3259 // We need to emit host-side 'shadows' for all global 3260 // device-side variables because the CUDA runtime needs their 3261 // size and host-side address in order to provide access to 3262 // their device-side incarnations. 3263 3264 // So device-only functions are the only things we skip. 3265 if (isa<FunctionDecl>(Global) && !Global->hasAttr<CUDAHostAttr>() && 3266 Global->hasAttr<CUDADeviceAttr>()) 3267 return; 3268 3269 assert((isa<FunctionDecl>(Global) || isa<VarDecl>(Global)) && 3270 "Expected Variable or Function"); 3271 } 3272 } 3273 3274 if (LangOpts.OpenMP) { 3275 // If this is OpenMP, check if it is legal to emit this global normally. 3276 if (OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(GD)) 3277 return; 3278 if (auto *DRD = dyn_cast<OMPDeclareReductionDecl>(Global)) { 3279 if (MustBeEmitted(Global)) 3280 EmitOMPDeclareReduction(DRD); 3281 return; 3282 } else if (auto *DMD = dyn_cast<OMPDeclareMapperDecl>(Global)) { 3283 if (MustBeEmitted(Global)) 3284 EmitOMPDeclareMapper(DMD); 3285 return; 3286 } 3287 } 3288 3289 // Ignore declarations, they will be emitted on their first use. 3290 if (const auto *FD = dyn_cast<FunctionDecl>(Global)) { 3291 // Forward declarations are emitted lazily on first use. 3292 if (!FD->doesThisDeclarationHaveABody()) { 3293 if (!FD->doesDeclarationForceExternallyVisibleDefinition()) 3294 return; 3295 3296 StringRef MangledName = getMangledName(GD); 3297 3298 // Compute the function info and LLVM type. 3299 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 3300 llvm::Type *Ty = getTypes().GetFunctionType(FI); 3301 3302 GetOrCreateLLVMFunction(MangledName, Ty, GD, /*ForVTable=*/false, 3303 /*DontDefer=*/false); 3304 return; 3305 } 3306 } else { 3307 const auto *VD = cast<VarDecl>(Global); 3308 assert(VD->isFileVarDecl() && "Cannot emit local var decl as global."); 3309 if (VD->isThisDeclarationADefinition() != VarDecl::Definition && 3310 !Context.isMSStaticDataMemberInlineDefinition(VD)) { 3311 if (LangOpts.OpenMP) { 3312 // Emit declaration of the must-be-emitted declare target variable. 3313 if (llvm::Optional<OMPDeclareTargetDeclAttr::MapTypeTy> Res = 3314 OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD)) { 3315 bool UnifiedMemoryEnabled = 3316 getOpenMPRuntime().hasRequiresUnifiedSharedMemory(); 3317 if ((*Res == OMPDeclareTargetDeclAttr::MT_To || 3318 *Res == OMPDeclareTargetDeclAttr::MT_Enter) && 3319 !UnifiedMemoryEnabled) { 3320 (void)GetAddrOfGlobalVar(VD); 3321 } else { 3322 assert(((*Res == OMPDeclareTargetDeclAttr::MT_Link) || 3323 ((*Res == OMPDeclareTargetDeclAttr::MT_To || 3324 *Res == OMPDeclareTargetDeclAttr::MT_Enter) && 3325 UnifiedMemoryEnabled)) && 3326 "Link clause or to clause with unified memory expected."); 3327 (void)getOpenMPRuntime().getAddrOfDeclareTargetVar(VD); 3328 } 3329 3330 return; 3331 } 3332 } 3333 // If this declaration may have caused an inline variable definition to 3334 // change linkage, make sure that it's emitted. 3335 if (Context.getInlineVariableDefinitionKind(VD) == 3336 ASTContext::InlineVariableDefinitionKind::Strong) 3337 GetAddrOfGlobalVar(VD); 3338 return; 3339 } 3340 } 3341 3342 // Defer code generation to first use when possible, e.g. if this is an inline 3343 // function. If the global must always be emitted, do it eagerly if possible 3344 // to benefit from cache locality. 3345 if (MustBeEmitted(Global) && MayBeEmittedEagerly(Global)) { 3346 // Emit the definition if it can't be deferred. 3347 EmitGlobalDefinition(GD); 3348 return; 3349 } 3350 3351 // If we're deferring emission of a C++ variable with an 3352 // initializer, remember the order in which it appeared in the file. 3353 if (getLangOpts().CPlusPlus && isa<VarDecl>(Global) && 3354 cast<VarDecl>(Global)->hasInit()) { 3355 DelayedCXXInitPosition[Global] = CXXGlobalInits.size(); 3356 CXXGlobalInits.push_back(nullptr); 3357 } 3358 3359 StringRef MangledName = getMangledName(GD); 3360 if (GetGlobalValue(MangledName) != nullptr) { 3361 // The value has already been used and should therefore be emitted. 3362 addDeferredDeclToEmit(GD); 3363 } else if (MustBeEmitted(Global)) { 3364 // The value must be emitted, but cannot be emitted eagerly. 3365 assert(!MayBeEmittedEagerly(Global)); 3366 addDeferredDeclToEmit(GD); 3367 EmittedDeferredDecls[MangledName] = GD; 3368 } else { 3369 // Otherwise, remember that we saw a deferred decl with this name. The 3370 // first use of the mangled name will cause it to move into 3371 // DeferredDeclsToEmit. 3372 DeferredDecls[MangledName] = GD; 3373 } 3374 } 3375 3376 // Check if T is a class type with a destructor that's not dllimport. 3377 static bool HasNonDllImportDtor(QualType T) { 3378 if (const auto *RT = T->getBaseElementTypeUnsafe()->getAs<RecordType>()) 3379 if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl())) 3380 if (RD->getDestructor() && !RD->getDestructor()->hasAttr<DLLImportAttr>()) 3381 return true; 3382 3383 return false; 3384 } 3385 3386 namespace { 3387 struct FunctionIsDirectlyRecursive 3388 : public ConstStmtVisitor<FunctionIsDirectlyRecursive, bool> { 3389 const StringRef Name; 3390 const Builtin::Context &BI; 3391 FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C) 3392 : Name(N), BI(C) {} 3393 3394 bool VisitCallExpr(const CallExpr *E) { 3395 const FunctionDecl *FD = E->getDirectCallee(); 3396 if (!FD) 3397 return false; 3398 AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>(); 3399 if (Attr && Name == Attr->getLabel()) 3400 return true; 3401 unsigned BuiltinID = FD->getBuiltinID(); 3402 if (!BuiltinID || !BI.isLibFunction(BuiltinID)) 3403 return false; 3404 StringRef BuiltinName = BI.getName(BuiltinID); 3405 if (BuiltinName.startswith("__builtin_") && 3406 Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) { 3407 return true; 3408 } 3409 return false; 3410 } 3411 3412 bool VisitStmt(const Stmt *S) { 3413 for (const Stmt *Child : S->children()) 3414 if (Child && this->Visit(Child)) 3415 return true; 3416 return false; 3417 } 3418 }; 3419 3420 // Make sure we're not referencing non-imported vars or functions. 3421 struct DLLImportFunctionVisitor 3422 : public RecursiveASTVisitor<DLLImportFunctionVisitor> { 3423 bool SafeToInline = true; 3424 3425 bool shouldVisitImplicitCode() const { return true; } 3426 3427 bool VisitVarDecl(VarDecl *VD) { 3428 if (VD->getTLSKind()) { 3429 // A thread-local variable cannot be imported. 3430 SafeToInline = false; 3431 return SafeToInline; 3432 } 3433 3434 // A variable definition might imply a destructor call. 3435 if (VD->isThisDeclarationADefinition()) 3436 SafeToInline = !HasNonDllImportDtor(VD->getType()); 3437 3438 return SafeToInline; 3439 } 3440 3441 bool VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) { 3442 if (const auto *D = E->getTemporary()->getDestructor()) 3443 SafeToInline = D->hasAttr<DLLImportAttr>(); 3444 return SafeToInline; 3445 } 3446 3447 bool VisitDeclRefExpr(DeclRefExpr *E) { 3448 ValueDecl *VD = E->getDecl(); 3449 if (isa<FunctionDecl>(VD)) 3450 SafeToInline = VD->hasAttr<DLLImportAttr>(); 3451 else if (VarDecl *V = dyn_cast<VarDecl>(VD)) 3452 SafeToInline = !V->hasGlobalStorage() || V->hasAttr<DLLImportAttr>(); 3453 return SafeToInline; 3454 } 3455 3456 bool VisitCXXConstructExpr(CXXConstructExpr *E) { 3457 SafeToInline = E->getConstructor()->hasAttr<DLLImportAttr>(); 3458 return SafeToInline; 3459 } 3460 3461 bool VisitCXXMemberCallExpr(CXXMemberCallExpr *E) { 3462 CXXMethodDecl *M = E->getMethodDecl(); 3463 if (!M) { 3464 // Call through a pointer to member function. This is safe to inline. 3465 SafeToInline = true; 3466 } else { 3467 SafeToInline = M->hasAttr<DLLImportAttr>(); 3468 } 3469 return SafeToInline; 3470 } 3471 3472 bool VisitCXXDeleteExpr(CXXDeleteExpr *E) { 3473 SafeToInline = E->getOperatorDelete()->hasAttr<DLLImportAttr>(); 3474 return SafeToInline; 3475 } 3476 3477 bool VisitCXXNewExpr(CXXNewExpr *E) { 3478 SafeToInline = E->getOperatorNew()->hasAttr<DLLImportAttr>(); 3479 return SafeToInline; 3480 } 3481 }; 3482 } 3483 3484 // isTriviallyRecursive - Check if this function calls another 3485 // decl that, because of the asm attribute or the other decl being a builtin, 3486 // ends up pointing to itself. 3487 bool 3488 CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) { 3489 StringRef Name; 3490 if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) { 3491 // asm labels are a special kind of mangling we have to support. 3492 AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>(); 3493 if (!Attr) 3494 return false; 3495 Name = Attr->getLabel(); 3496 } else { 3497 Name = FD->getName(); 3498 } 3499 3500 FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo); 3501 const Stmt *Body = FD->getBody(); 3502 return Body ? Walker.Visit(Body) : false; 3503 } 3504 3505 bool CodeGenModule::shouldEmitFunction(GlobalDecl GD) { 3506 if (getFunctionLinkage(GD) != llvm::Function::AvailableExternallyLinkage) 3507 return true; 3508 const auto *F = cast<FunctionDecl>(GD.getDecl()); 3509 if (CodeGenOpts.OptimizationLevel == 0 && !F->hasAttr<AlwaysInlineAttr>()) 3510 return false; 3511 3512 if (F->hasAttr<DLLImportAttr>() && !F->hasAttr<AlwaysInlineAttr>()) { 3513 // Check whether it would be safe to inline this dllimport function. 3514 DLLImportFunctionVisitor Visitor; 3515 Visitor.TraverseFunctionDecl(const_cast<FunctionDecl*>(F)); 3516 if (!Visitor.SafeToInline) 3517 return false; 3518 3519 if (const CXXDestructorDecl *Dtor = dyn_cast<CXXDestructorDecl>(F)) { 3520 // Implicit destructor invocations aren't captured in the AST, so the 3521 // check above can't see them. Check for them manually here. 3522 for (const Decl *Member : Dtor->getParent()->decls()) 3523 if (isa<FieldDecl>(Member)) 3524 if (HasNonDllImportDtor(cast<FieldDecl>(Member)->getType())) 3525 return false; 3526 for (const CXXBaseSpecifier &B : Dtor->getParent()->bases()) 3527 if (HasNonDllImportDtor(B.getType())) 3528 return false; 3529 } 3530 } 3531 3532 // Inline builtins declaration must be emitted. They often are fortified 3533 // functions. 3534 if (F->isInlineBuiltinDeclaration()) 3535 return true; 3536 3537 // PR9614. Avoid cases where the source code is lying to us. An available 3538 // externally function should have an equivalent function somewhere else, 3539 // but a function that calls itself through asm label/`__builtin_` trickery is 3540 // clearly not equivalent to the real implementation. 3541 // This happens in glibc's btowc and in some configure checks. 3542 return !isTriviallyRecursive(F); 3543 } 3544 3545 bool CodeGenModule::shouldOpportunisticallyEmitVTables() { 3546 return CodeGenOpts.OptimizationLevel > 0; 3547 } 3548 3549 void CodeGenModule::EmitMultiVersionFunctionDefinition(GlobalDecl GD, 3550 llvm::GlobalValue *GV) { 3551 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 3552 3553 if (FD->isCPUSpecificMultiVersion()) { 3554 auto *Spec = FD->getAttr<CPUSpecificAttr>(); 3555 for (unsigned I = 0; I < Spec->cpus_size(); ++I) 3556 EmitGlobalFunctionDefinition(GD.getWithMultiVersionIndex(I), nullptr); 3557 } else if (FD->isTargetClonesMultiVersion()) { 3558 auto *Clone = FD->getAttr<TargetClonesAttr>(); 3559 for (unsigned I = 0; I < Clone->featuresStrs_size(); ++I) 3560 if (Clone->isFirstOfVersion(I)) 3561 EmitGlobalFunctionDefinition(GD.getWithMultiVersionIndex(I), nullptr); 3562 // Ensure that the resolver function is also emitted. 3563 GetOrCreateMultiVersionResolver(GD); 3564 } else 3565 EmitGlobalFunctionDefinition(GD, GV); 3566 } 3567 3568 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD, llvm::GlobalValue *GV) { 3569 const auto *D = cast<ValueDecl>(GD.getDecl()); 3570 3571 PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(), 3572 Context.getSourceManager(), 3573 "Generating code for declaration"); 3574 3575 if (const auto *FD = dyn_cast<FunctionDecl>(D)) { 3576 // At -O0, don't generate IR for functions with available_externally 3577 // linkage. 3578 if (!shouldEmitFunction(GD)) 3579 return; 3580 3581 llvm::TimeTraceScope TimeScope("CodeGen Function", [&]() { 3582 std::string Name; 3583 llvm::raw_string_ostream OS(Name); 3584 FD->getNameForDiagnostic(OS, getContext().getPrintingPolicy(), 3585 /*Qualified=*/true); 3586 return Name; 3587 }); 3588 3589 if (const auto *Method = dyn_cast<CXXMethodDecl>(D)) { 3590 // Make sure to emit the definition(s) before we emit the thunks. 3591 // This is necessary for the generation of certain thunks. 3592 if (isa<CXXConstructorDecl>(Method) || isa<CXXDestructorDecl>(Method)) 3593 ABI->emitCXXStructor(GD); 3594 else if (FD->isMultiVersion()) 3595 EmitMultiVersionFunctionDefinition(GD, GV); 3596 else 3597 EmitGlobalFunctionDefinition(GD, GV); 3598 3599 if (Method->isVirtual()) 3600 getVTables().EmitThunks(GD); 3601 3602 return; 3603 } 3604 3605 if (FD->isMultiVersion()) 3606 return EmitMultiVersionFunctionDefinition(GD, GV); 3607 return EmitGlobalFunctionDefinition(GD, GV); 3608 } 3609 3610 if (const auto *VD = dyn_cast<VarDecl>(D)) 3611 return EmitGlobalVarDefinition(VD, !VD->hasDefinition()); 3612 3613 llvm_unreachable("Invalid argument to EmitGlobalDefinition()"); 3614 } 3615 3616 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old, 3617 llvm::Function *NewFn); 3618 3619 static unsigned 3620 TargetMVPriority(const TargetInfo &TI, 3621 const CodeGenFunction::MultiVersionResolverOption &RO) { 3622 unsigned Priority = 0; 3623 for (StringRef Feat : RO.Conditions.Features) 3624 Priority = std::max(Priority, TI.multiVersionSortPriority(Feat)); 3625 3626 if (!RO.Conditions.Architecture.empty()) 3627 Priority = std::max( 3628 Priority, TI.multiVersionSortPriority(RO.Conditions.Architecture)); 3629 return Priority; 3630 } 3631 3632 // Multiversion functions should be at most 'WeakODRLinkage' so that a different 3633 // TU can forward declare the function without causing problems. Particularly 3634 // in the cases of CPUDispatch, this causes issues. This also makes sure we 3635 // work with internal linkage functions, so that the same function name can be 3636 // used with internal linkage in multiple TUs. 3637 llvm::GlobalValue::LinkageTypes getMultiversionLinkage(CodeGenModule &CGM, 3638 GlobalDecl GD) { 3639 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 3640 if (FD->getFormalLinkage() == InternalLinkage) 3641 return llvm::GlobalValue::InternalLinkage; 3642 return llvm::GlobalValue::WeakODRLinkage; 3643 } 3644 3645 void CodeGenModule::emitMultiVersionFunctions() { 3646 std::vector<GlobalDecl> MVFuncsToEmit; 3647 MultiVersionFuncs.swap(MVFuncsToEmit); 3648 for (GlobalDecl GD : MVFuncsToEmit) { 3649 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 3650 assert(FD && "Expected a FunctionDecl"); 3651 3652 SmallVector<CodeGenFunction::MultiVersionResolverOption, 10> Options; 3653 if (FD->isTargetMultiVersion()) { 3654 getContext().forEachMultiversionedFunctionVersion( 3655 FD, [this, &GD, &Options](const FunctionDecl *CurFD) { 3656 GlobalDecl CurGD{ 3657 (CurFD->isDefined() ? CurFD->getDefinition() : CurFD)}; 3658 StringRef MangledName = getMangledName(CurGD); 3659 llvm::Constant *Func = GetGlobalValue(MangledName); 3660 if (!Func) { 3661 if (CurFD->isDefined()) { 3662 EmitGlobalFunctionDefinition(CurGD, nullptr); 3663 Func = GetGlobalValue(MangledName); 3664 } else { 3665 const CGFunctionInfo &FI = 3666 getTypes().arrangeGlobalDeclaration(GD); 3667 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 3668 Func = GetAddrOfFunction(CurGD, Ty, /*ForVTable=*/false, 3669 /*DontDefer=*/false, ForDefinition); 3670 } 3671 assert(Func && "This should have just been created"); 3672 } 3673 3674 const auto *TA = CurFD->getAttr<TargetAttr>(); 3675 llvm::SmallVector<StringRef, 8> Feats; 3676 TA->getAddedFeatures(Feats); 3677 3678 Options.emplace_back(cast<llvm::Function>(Func), 3679 TA->getArchitecture(), Feats); 3680 }); 3681 } else if (FD->isTargetClonesMultiVersion()) { 3682 const auto *TC = FD->getAttr<TargetClonesAttr>(); 3683 for (unsigned VersionIndex = 0; VersionIndex < TC->featuresStrs_size(); 3684 ++VersionIndex) { 3685 if (!TC->isFirstOfVersion(VersionIndex)) 3686 continue; 3687 GlobalDecl CurGD{(FD->isDefined() ? FD->getDefinition() : FD), 3688 VersionIndex}; 3689 StringRef Version = TC->getFeatureStr(VersionIndex); 3690 StringRef MangledName = getMangledName(CurGD); 3691 llvm::Constant *Func = GetGlobalValue(MangledName); 3692 if (!Func) { 3693 if (FD->isDefined()) { 3694 EmitGlobalFunctionDefinition(CurGD, nullptr); 3695 Func = GetGlobalValue(MangledName); 3696 } else { 3697 const CGFunctionInfo &FI = 3698 getTypes().arrangeGlobalDeclaration(CurGD); 3699 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 3700 Func = GetAddrOfFunction(CurGD, Ty, /*ForVTable=*/false, 3701 /*DontDefer=*/false, ForDefinition); 3702 } 3703 assert(Func && "This should have just been created"); 3704 } 3705 3706 StringRef Architecture; 3707 llvm::SmallVector<StringRef, 1> Feature; 3708 3709 if (Version.startswith("arch=")) 3710 Architecture = Version.drop_front(sizeof("arch=") - 1); 3711 else if (Version != "default") 3712 Feature.push_back(Version); 3713 3714 Options.emplace_back(cast<llvm::Function>(Func), Architecture, Feature); 3715 } 3716 } else { 3717 assert(0 && "Expected a target or target_clones multiversion function"); 3718 continue; 3719 } 3720 3721 llvm::Constant *ResolverConstant = GetOrCreateMultiVersionResolver(GD); 3722 if (auto *IFunc = dyn_cast<llvm::GlobalIFunc>(ResolverConstant)) 3723 ResolverConstant = IFunc->getResolver(); 3724 llvm::Function *ResolverFunc = cast<llvm::Function>(ResolverConstant); 3725 3726 ResolverFunc->setLinkage(getMultiversionLinkage(*this, GD)); 3727 3728 if (supportsCOMDAT()) 3729 ResolverFunc->setComdat( 3730 getModule().getOrInsertComdat(ResolverFunc->getName())); 3731 3732 const TargetInfo &TI = getTarget(); 3733 llvm::stable_sort( 3734 Options, [&TI](const CodeGenFunction::MultiVersionResolverOption &LHS, 3735 const CodeGenFunction::MultiVersionResolverOption &RHS) { 3736 return TargetMVPriority(TI, LHS) > TargetMVPriority(TI, RHS); 3737 }); 3738 CodeGenFunction CGF(*this); 3739 CGF.EmitMultiVersionResolver(ResolverFunc, Options); 3740 } 3741 3742 // Ensure that any additions to the deferred decls list caused by emitting a 3743 // variant are emitted. This can happen when the variant itself is inline and 3744 // calls a function without linkage. 3745 if (!MVFuncsToEmit.empty()) 3746 EmitDeferred(); 3747 3748 // Ensure that any additions to the multiversion funcs list from either the 3749 // deferred decls or the multiversion functions themselves are emitted. 3750 if (!MultiVersionFuncs.empty()) 3751 emitMultiVersionFunctions(); 3752 } 3753 3754 void CodeGenModule::emitCPUDispatchDefinition(GlobalDecl GD) { 3755 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 3756 assert(FD && "Not a FunctionDecl?"); 3757 assert(FD->isCPUDispatchMultiVersion() && "Not a multiversion function?"); 3758 const auto *DD = FD->getAttr<CPUDispatchAttr>(); 3759 assert(DD && "Not a cpu_dispatch Function?"); 3760 3761 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 3762 llvm::FunctionType *DeclTy = getTypes().GetFunctionType(FI); 3763 3764 StringRef ResolverName = getMangledName(GD); 3765 UpdateMultiVersionNames(GD, FD, ResolverName); 3766 3767 llvm::Type *ResolverType; 3768 GlobalDecl ResolverGD; 3769 if (getTarget().supportsIFunc()) { 3770 ResolverType = llvm::FunctionType::get( 3771 llvm::PointerType::get(DeclTy, 3772 getTypes().getTargetAddressSpace(FD->getType())), 3773 false); 3774 } 3775 else { 3776 ResolverType = DeclTy; 3777 ResolverGD = GD; 3778 } 3779 3780 auto *ResolverFunc = cast<llvm::Function>(GetOrCreateLLVMFunction( 3781 ResolverName, ResolverType, ResolverGD, /*ForVTable=*/false)); 3782 ResolverFunc->setLinkage(getMultiversionLinkage(*this, GD)); 3783 if (supportsCOMDAT()) 3784 ResolverFunc->setComdat( 3785 getModule().getOrInsertComdat(ResolverFunc->getName())); 3786 3787 SmallVector<CodeGenFunction::MultiVersionResolverOption, 10> Options; 3788 const TargetInfo &Target = getTarget(); 3789 unsigned Index = 0; 3790 for (const IdentifierInfo *II : DD->cpus()) { 3791 // Get the name of the target function so we can look it up/create it. 3792 std::string MangledName = getMangledNameImpl(*this, GD, FD, true) + 3793 getCPUSpecificMangling(*this, II->getName()); 3794 3795 llvm::Constant *Func = GetGlobalValue(MangledName); 3796 3797 if (!Func) { 3798 GlobalDecl ExistingDecl = Manglings.lookup(MangledName); 3799 if (ExistingDecl.getDecl() && 3800 ExistingDecl.getDecl()->getAsFunction()->isDefined()) { 3801 EmitGlobalFunctionDefinition(ExistingDecl, nullptr); 3802 Func = GetGlobalValue(MangledName); 3803 } else { 3804 if (!ExistingDecl.getDecl()) 3805 ExistingDecl = GD.getWithMultiVersionIndex(Index); 3806 3807 Func = GetOrCreateLLVMFunction( 3808 MangledName, DeclTy, ExistingDecl, 3809 /*ForVTable=*/false, /*DontDefer=*/true, 3810 /*IsThunk=*/false, llvm::AttributeList(), ForDefinition); 3811 } 3812 } 3813 3814 llvm::SmallVector<StringRef, 32> Features; 3815 Target.getCPUSpecificCPUDispatchFeatures(II->getName(), Features); 3816 llvm::transform(Features, Features.begin(), 3817 [](StringRef Str) { return Str.substr(1); }); 3818 llvm::erase_if(Features, [&Target](StringRef Feat) { 3819 return !Target.validateCpuSupports(Feat); 3820 }); 3821 Options.emplace_back(cast<llvm::Function>(Func), StringRef{}, Features); 3822 ++Index; 3823 } 3824 3825 llvm::stable_sort( 3826 Options, [](const CodeGenFunction::MultiVersionResolverOption &LHS, 3827 const CodeGenFunction::MultiVersionResolverOption &RHS) { 3828 return llvm::X86::getCpuSupportsMask(LHS.Conditions.Features) > 3829 llvm::X86::getCpuSupportsMask(RHS.Conditions.Features); 3830 }); 3831 3832 // If the list contains multiple 'default' versions, such as when it contains 3833 // 'pentium' and 'generic', don't emit the call to the generic one (since we 3834 // always run on at least a 'pentium'). We do this by deleting the 'least 3835 // advanced' (read, lowest mangling letter). 3836 while (Options.size() > 1 && 3837 llvm::X86::getCpuSupportsMask( 3838 (Options.end() - 2)->Conditions.Features) == 0) { 3839 StringRef LHSName = (Options.end() - 2)->Function->getName(); 3840 StringRef RHSName = (Options.end() - 1)->Function->getName(); 3841 if (LHSName.compare(RHSName) < 0) 3842 Options.erase(Options.end() - 2); 3843 else 3844 Options.erase(Options.end() - 1); 3845 } 3846 3847 CodeGenFunction CGF(*this); 3848 CGF.EmitMultiVersionResolver(ResolverFunc, Options); 3849 3850 if (getTarget().supportsIFunc()) { 3851 llvm::GlobalValue::LinkageTypes Linkage = getMultiversionLinkage(*this, GD); 3852 auto *IFunc = cast<llvm::GlobalValue>(GetOrCreateMultiVersionResolver(GD)); 3853 3854 // Fix up function declarations that were created for cpu_specific before 3855 // cpu_dispatch was known 3856 if (!isa<llvm::GlobalIFunc>(IFunc)) { 3857 assert(cast<llvm::Function>(IFunc)->isDeclaration()); 3858 auto *GI = llvm::GlobalIFunc::create(DeclTy, 0, Linkage, "", ResolverFunc, 3859 &getModule()); 3860 GI->takeName(IFunc); 3861 IFunc->replaceAllUsesWith(GI); 3862 IFunc->eraseFromParent(); 3863 IFunc = GI; 3864 } 3865 3866 std::string AliasName = getMangledNameImpl( 3867 *this, GD, FD, /*OmitMultiVersionMangling=*/true); 3868 llvm::Constant *AliasFunc = GetGlobalValue(AliasName); 3869 if (!AliasFunc) { 3870 auto *GA = llvm::GlobalAlias::create(DeclTy, 0, Linkage, AliasName, IFunc, 3871 &getModule()); 3872 SetCommonAttributes(GD, GA); 3873 } 3874 } 3875 } 3876 3877 /// If a dispatcher for the specified mangled name is not in the module, create 3878 /// and return an llvm Function with the specified type. 3879 llvm::Constant *CodeGenModule::GetOrCreateMultiVersionResolver(GlobalDecl GD) { 3880 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 3881 assert(FD && "Not a FunctionDecl?"); 3882 3883 std::string MangledName = 3884 getMangledNameImpl(*this, GD, FD, /*OmitMultiVersionMangling=*/true); 3885 3886 // Holds the name of the resolver, in ifunc mode this is the ifunc (which has 3887 // a separate resolver). 3888 std::string ResolverName = MangledName; 3889 if (getTarget().supportsIFunc()) 3890 ResolverName += ".ifunc"; 3891 else if (FD->isTargetMultiVersion()) 3892 ResolverName += ".resolver"; 3893 3894 // If the resolver has already been created, just return it. 3895 if (llvm::GlobalValue *ResolverGV = GetGlobalValue(ResolverName)) 3896 return ResolverGV; 3897 3898 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 3899 llvm::FunctionType *DeclTy = getTypes().GetFunctionType(FI); 3900 3901 // The resolver needs to be created. For target and target_clones, defer 3902 // creation until the end of the TU. 3903 if (FD->isTargetMultiVersion() || FD->isTargetClonesMultiVersion()) 3904 MultiVersionFuncs.push_back(GD); 3905 3906 // For cpu_specific, don't create an ifunc yet because we don't know if the 3907 // cpu_dispatch will be emitted in this translation unit. 3908 if (getTarget().supportsIFunc() && !FD->isCPUSpecificMultiVersion()) { 3909 llvm::Type *ResolverType = llvm::FunctionType::get( 3910 llvm::PointerType::get(DeclTy, 3911 getTypes().getTargetAddressSpace(FD->getType())), 3912 false); 3913 llvm::Constant *Resolver = GetOrCreateLLVMFunction( 3914 MangledName + ".resolver", ResolverType, GlobalDecl{}, 3915 /*ForVTable=*/false); 3916 llvm::GlobalIFunc *GIF = 3917 llvm::GlobalIFunc::create(DeclTy, 0, getMultiversionLinkage(*this, GD), 3918 "", Resolver, &getModule()); 3919 GIF->setName(ResolverName); 3920 SetCommonAttributes(FD, GIF); 3921 3922 return GIF; 3923 } 3924 3925 llvm::Constant *Resolver = GetOrCreateLLVMFunction( 3926 ResolverName, DeclTy, GlobalDecl{}, /*ForVTable=*/false); 3927 assert(isa<llvm::GlobalValue>(Resolver) && 3928 "Resolver should be created for the first time"); 3929 SetCommonAttributes(FD, cast<llvm::GlobalValue>(Resolver)); 3930 return Resolver; 3931 } 3932 3933 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the 3934 /// module, create and return an llvm Function with the specified type. If there 3935 /// is something in the module with the specified name, return it potentially 3936 /// bitcasted to the right type. 3937 /// 3938 /// If D is non-null, it specifies a decl that correspond to this. This is used 3939 /// to set the attributes on the function when it is first created. 3940 llvm::Constant *CodeGenModule::GetOrCreateLLVMFunction( 3941 StringRef MangledName, llvm::Type *Ty, GlobalDecl GD, bool ForVTable, 3942 bool DontDefer, bool IsThunk, llvm::AttributeList ExtraAttrs, 3943 ForDefinition_t IsForDefinition) { 3944 const Decl *D = GD.getDecl(); 3945 3946 // Any attempts to use a MultiVersion function should result in retrieving 3947 // the iFunc instead. Name Mangling will handle the rest of the changes. 3948 if (const FunctionDecl *FD = cast_or_null<FunctionDecl>(D)) { 3949 // For the device mark the function as one that should be emitted. 3950 if (getLangOpts().OpenMPIsDevice && OpenMPRuntime && 3951 !OpenMPRuntime->markAsGlobalTarget(GD) && FD->isDefined() && 3952 !DontDefer && !IsForDefinition) { 3953 if (const FunctionDecl *FDDef = FD->getDefinition()) { 3954 GlobalDecl GDDef; 3955 if (const auto *CD = dyn_cast<CXXConstructorDecl>(FDDef)) 3956 GDDef = GlobalDecl(CD, GD.getCtorType()); 3957 else if (const auto *DD = dyn_cast<CXXDestructorDecl>(FDDef)) 3958 GDDef = GlobalDecl(DD, GD.getDtorType()); 3959 else 3960 GDDef = GlobalDecl(FDDef); 3961 EmitGlobal(GDDef); 3962 } 3963 } 3964 3965 if (FD->isMultiVersion()) { 3966 UpdateMultiVersionNames(GD, FD, MangledName); 3967 if (!IsForDefinition) 3968 return GetOrCreateMultiVersionResolver(GD); 3969 } 3970 } 3971 3972 // Lookup the entry, lazily creating it if necessary. 3973 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 3974 if (Entry) { 3975 if (WeakRefReferences.erase(Entry)) { 3976 const FunctionDecl *FD = cast_or_null<FunctionDecl>(D); 3977 if (FD && !FD->hasAttr<WeakAttr>()) 3978 Entry->setLinkage(llvm::Function::ExternalLinkage); 3979 } 3980 3981 // Handle dropped DLL attributes. 3982 if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>() && 3983 !shouldMapVisibilityToDLLExport(cast_or_null<NamedDecl>(D))) { 3984 Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 3985 setDSOLocal(Entry); 3986 } 3987 3988 // If there are two attempts to define the same mangled name, issue an 3989 // error. 3990 if (IsForDefinition && !Entry->isDeclaration()) { 3991 GlobalDecl OtherGD; 3992 // Check that GD is not yet in DiagnosedConflictingDefinitions is required 3993 // to make sure that we issue an error only once. 3994 if (lookupRepresentativeDecl(MangledName, OtherGD) && 3995 (GD.getCanonicalDecl().getDecl() != 3996 OtherGD.getCanonicalDecl().getDecl()) && 3997 DiagnosedConflictingDefinitions.insert(GD).second) { 3998 getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name) 3999 << MangledName; 4000 getDiags().Report(OtherGD.getDecl()->getLocation(), 4001 diag::note_previous_definition); 4002 } 4003 } 4004 4005 if ((isa<llvm::Function>(Entry) || isa<llvm::GlobalAlias>(Entry)) && 4006 (Entry->getValueType() == Ty)) { 4007 return Entry; 4008 } 4009 4010 // Make sure the result is of the correct type. 4011 // (If function is requested for a definition, we always need to create a new 4012 // function, not just return a bitcast.) 4013 if (!IsForDefinition) 4014 return llvm::ConstantExpr::getBitCast( 4015 Entry, Ty->getPointerTo(Entry->getAddressSpace())); 4016 } 4017 4018 // This function doesn't have a complete type (for example, the return 4019 // type is an incomplete struct). Use a fake type instead, and make 4020 // sure not to try to set attributes. 4021 bool IsIncompleteFunction = false; 4022 4023 llvm::FunctionType *FTy; 4024 if (isa<llvm::FunctionType>(Ty)) { 4025 FTy = cast<llvm::FunctionType>(Ty); 4026 } else { 4027 FTy = llvm::FunctionType::get(VoidTy, false); 4028 IsIncompleteFunction = true; 4029 } 4030 4031 llvm::Function *F = 4032 llvm::Function::Create(FTy, llvm::Function::ExternalLinkage, 4033 Entry ? StringRef() : MangledName, &getModule()); 4034 4035 // If we already created a function with the same mangled name (but different 4036 // type) before, take its name and add it to the list of functions to be 4037 // replaced with F at the end of CodeGen. 4038 // 4039 // This happens if there is a prototype for a function (e.g. "int f()") and 4040 // then a definition of a different type (e.g. "int f(int x)"). 4041 if (Entry) { 4042 F->takeName(Entry); 4043 4044 // This might be an implementation of a function without a prototype, in 4045 // which case, try to do special replacement of calls which match the new 4046 // prototype. The really key thing here is that we also potentially drop 4047 // arguments from the call site so as to make a direct call, which makes the 4048 // inliner happier and suppresses a number of optimizer warnings (!) about 4049 // dropping arguments. 4050 if (!Entry->use_empty()) { 4051 ReplaceUsesOfNonProtoTypeWithRealFunction(Entry, F); 4052 Entry->removeDeadConstantUsers(); 4053 } 4054 4055 llvm::Constant *BC = llvm::ConstantExpr::getBitCast( 4056 F, Entry->getValueType()->getPointerTo(Entry->getAddressSpace())); 4057 addGlobalValReplacement(Entry, BC); 4058 } 4059 4060 assert(F->getName() == MangledName && "name was uniqued!"); 4061 if (D) 4062 SetFunctionAttributes(GD, F, IsIncompleteFunction, IsThunk); 4063 if (ExtraAttrs.hasFnAttrs()) { 4064 llvm::AttrBuilder B(F->getContext(), ExtraAttrs.getFnAttrs()); 4065 F->addFnAttrs(B); 4066 } 4067 4068 if (!DontDefer) { 4069 // All MSVC dtors other than the base dtor are linkonce_odr and delegate to 4070 // each other bottoming out with the base dtor. Therefore we emit non-base 4071 // dtors on usage, even if there is no dtor definition in the TU. 4072 if (isa_and_nonnull<CXXDestructorDecl>(D) && 4073 getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D), 4074 GD.getDtorType())) 4075 addDeferredDeclToEmit(GD); 4076 4077 // This is the first use or definition of a mangled name. If there is a 4078 // deferred decl with this name, remember that we need to emit it at the end 4079 // of the file. 4080 auto DDI = DeferredDecls.find(MangledName); 4081 if (DDI != DeferredDecls.end()) { 4082 // Move the potentially referenced deferred decl to the 4083 // DeferredDeclsToEmit list, and remove it from DeferredDecls (since we 4084 // don't need it anymore). 4085 addDeferredDeclToEmit(DDI->second); 4086 EmittedDeferredDecls[DDI->first] = DDI->second; 4087 DeferredDecls.erase(DDI); 4088 4089 // Otherwise, there are cases we have to worry about where we're 4090 // using a declaration for which we must emit a definition but where 4091 // we might not find a top-level definition: 4092 // - member functions defined inline in their classes 4093 // - friend functions defined inline in some class 4094 // - special member functions with implicit definitions 4095 // If we ever change our AST traversal to walk into class methods, 4096 // this will be unnecessary. 4097 // 4098 // We also don't emit a definition for a function if it's going to be an 4099 // entry in a vtable, unless it's already marked as used. 4100 } else if (getLangOpts().CPlusPlus && D) { 4101 // Look for a declaration that's lexically in a record. 4102 for (const auto *FD = cast<FunctionDecl>(D)->getMostRecentDecl(); FD; 4103 FD = FD->getPreviousDecl()) { 4104 if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) { 4105 if (FD->doesThisDeclarationHaveABody()) { 4106 addDeferredDeclToEmit(GD.getWithDecl(FD)); 4107 break; 4108 } 4109 } 4110 } 4111 } 4112 } 4113 4114 // Make sure the result is of the requested type. 4115 if (!IsIncompleteFunction) { 4116 assert(F->getFunctionType() == Ty); 4117 return F; 4118 } 4119 4120 return llvm::ConstantExpr::getBitCast(F, 4121 Ty->getPointerTo(F->getAddressSpace())); 4122 } 4123 4124 /// GetAddrOfFunction - Return the address of the given function. If Ty is 4125 /// non-null, then this function will use the specified type if it has to 4126 /// create it (this occurs when we see a definition of the function). 4127 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD, 4128 llvm::Type *Ty, 4129 bool ForVTable, 4130 bool DontDefer, 4131 ForDefinition_t IsForDefinition) { 4132 assert(!cast<FunctionDecl>(GD.getDecl())->isConsteval() && 4133 "consteval function should never be emitted"); 4134 // If there was no specific requested type, just convert it now. 4135 if (!Ty) { 4136 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 4137 Ty = getTypes().ConvertType(FD->getType()); 4138 } 4139 4140 // Devirtualized destructor calls may come through here instead of via 4141 // getAddrOfCXXStructor. Make sure we use the MS ABI base destructor instead 4142 // of the complete destructor when necessary. 4143 if (const auto *DD = dyn_cast<CXXDestructorDecl>(GD.getDecl())) { 4144 if (getTarget().getCXXABI().isMicrosoft() && 4145 GD.getDtorType() == Dtor_Complete && 4146 DD->getParent()->getNumVBases() == 0) 4147 GD = GlobalDecl(DD, Dtor_Base); 4148 } 4149 4150 StringRef MangledName = getMangledName(GD); 4151 auto *F = GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable, DontDefer, 4152 /*IsThunk=*/false, llvm::AttributeList(), 4153 IsForDefinition); 4154 // Returns kernel handle for HIP kernel stub function. 4155 if (LangOpts.CUDA && !LangOpts.CUDAIsDevice && 4156 cast<FunctionDecl>(GD.getDecl())->hasAttr<CUDAGlobalAttr>()) { 4157 auto *Handle = getCUDARuntime().getKernelHandle( 4158 cast<llvm::Function>(F->stripPointerCasts()), GD); 4159 if (IsForDefinition) 4160 return F; 4161 return llvm::ConstantExpr::getBitCast(Handle, Ty->getPointerTo()); 4162 } 4163 return F; 4164 } 4165 4166 llvm::Constant *CodeGenModule::GetFunctionStart(const ValueDecl *Decl) { 4167 llvm::GlobalValue *F = 4168 cast<llvm::GlobalValue>(GetAddrOfFunction(Decl)->stripPointerCasts()); 4169 4170 return llvm::ConstantExpr::getBitCast( 4171 llvm::NoCFIValue::get(F), 4172 llvm::Type::getInt8PtrTy(VMContext, F->getAddressSpace())); 4173 } 4174 4175 static const FunctionDecl * 4176 GetRuntimeFunctionDecl(ASTContext &C, StringRef Name) { 4177 TranslationUnitDecl *TUDecl = C.getTranslationUnitDecl(); 4178 DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl); 4179 4180 IdentifierInfo &CII = C.Idents.get(Name); 4181 for (const auto *Result : DC->lookup(&CII)) 4182 if (const auto *FD = dyn_cast<FunctionDecl>(Result)) 4183 return FD; 4184 4185 if (!C.getLangOpts().CPlusPlus) 4186 return nullptr; 4187 4188 // Demangle the premangled name from getTerminateFn() 4189 IdentifierInfo &CXXII = 4190 (Name == "_ZSt9terminatev" || Name == "?terminate@@YAXXZ") 4191 ? C.Idents.get("terminate") 4192 : C.Idents.get(Name); 4193 4194 for (const auto &N : {"__cxxabiv1", "std"}) { 4195 IdentifierInfo &NS = C.Idents.get(N); 4196 for (const auto *Result : DC->lookup(&NS)) { 4197 const NamespaceDecl *ND = dyn_cast<NamespaceDecl>(Result); 4198 if (auto *LSD = dyn_cast<LinkageSpecDecl>(Result)) 4199 for (const auto *Result : LSD->lookup(&NS)) 4200 if ((ND = dyn_cast<NamespaceDecl>(Result))) 4201 break; 4202 4203 if (ND) 4204 for (const auto *Result : ND->lookup(&CXXII)) 4205 if (const auto *FD = dyn_cast<FunctionDecl>(Result)) 4206 return FD; 4207 } 4208 } 4209 4210 return nullptr; 4211 } 4212 4213 /// CreateRuntimeFunction - Create a new runtime function with the specified 4214 /// type and name. 4215 llvm::FunctionCallee 4216 CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy, StringRef Name, 4217 llvm::AttributeList ExtraAttrs, bool Local, 4218 bool AssumeConvergent) { 4219 if (AssumeConvergent) { 4220 ExtraAttrs = 4221 ExtraAttrs.addFnAttribute(VMContext, llvm::Attribute::Convergent); 4222 } 4223 4224 llvm::Constant *C = 4225 GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false, 4226 /*DontDefer=*/false, /*IsThunk=*/false, 4227 ExtraAttrs); 4228 4229 if (auto *F = dyn_cast<llvm::Function>(C)) { 4230 if (F->empty()) { 4231 F->setCallingConv(getRuntimeCC()); 4232 4233 // In Windows Itanium environments, try to mark runtime functions 4234 // dllimport. For Mingw and MSVC, don't. We don't really know if the user 4235 // will link their standard library statically or dynamically. Marking 4236 // functions imported when they are not imported can cause linker errors 4237 // and warnings. 4238 if (!Local && getTriple().isWindowsItaniumEnvironment() && 4239 !getCodeGenOpts().LTOVisibilityPublicStd) { 4240 const FunctionDecl *FD = GetRuntimeFunctionDecl(Context, Name); 4241 if (!FD || FD->hasAttr<DLLImportAttr>()) { 4242 F->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass); 4243 F->setLinkage(llvm::GlobalValue::ExternalLinkage); 4244 } 4245 } 4246 setDSOLocal(F); 4247 } 4248 } 4249 4250 return {FTy, C}; 4251 } 4252 4253 /// isTypeConstant - Determine whether an object of this type can be emitted 4254 /// as a constant. 4255 /// 4256 /// If ExcludeCtor is true, the duration when the object's constructor runs 4257 /// will not be considered. The caller will need to verify that the object is 4258 /// not written to during its construction. 4259 bool CodeGenModule::isTypeConstant(QualType Ty, bool ExcludeCtor) { 4260 if (!Ty.isConstant(Context) && !Ty->isReferenceType()) 4261 return false; 4262 4263 if (Context.getLangOpts().CPlusPlus) { 4264 if (const CXXRecordDecl *Record 4265 = Context.getBaseElementType(Ty)->getAsCXXRecordDecl()) 4266 return ExcludeCtor && !Record->hasMutableFields() && 4267 Record->hasTrivialDestructor(); 4268 } 4269 4270 return true; 4271 } 4272 4273 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module, 4274 /// create and return an llvm GlobalVariable with the specified type and address 4275 /// space. If there is something in the module with the specified name, return 4276 /// it potentially bitcasted to the right type. 4277 /// 4278 /// If D is non-null, it specifies a decl that correspond to this. This is used 4279 /// to set the attributes on the global when it is first created. 4280 /// 4281 /// If IsForDefinition is true, it is guaranteed that an actual global with 4282 /// type Ty will be returned, not conversion of a variable with the same 4283 /// mangled name but some other type. 4284 llvm::Constant * 4285 CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName, llvm::Type *Ty, 4286 LangAS AddrSpace, const VarDecl *D, 4287 ForDefinition_t IsForDefinition) { 4288 // Lookup the entry, lazily creating it if necessary. 4289 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 4290 unsigned TargetAS = getContext().getTargetAddressSpace(AddrSpace); 4291 if (Entry) { 4292 if (WeakRefReferences.erase(Entry)) { 4293 if (D && !D->hasAttr<WeakAttr>()) 4294 Entry->setLinkage(llvm::Function::ExternalLinkage); 4295 } 4296 4297 // Handle dropped DLL attributes. 4298 if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>() && 4299 !shouldMapVisibilityToDLLExport(D)) 4300 Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 4301 4302 if (LangOpts.OpenMP && !LangOpts.OpenMPSimd && D) 4303 getOpenMPRuntime().registerTargetGlobalVariable(D, Entry); 4304 4305 if (Entry->getValueType() == Ty && Entry->getAddressSpace() == TargetAS) 4306 return Entry; 4307 4308 // If there are two attempts to define the same mangled name, issue an 4309 // error. 4310 if (IsForDefinition && !Entry->isDeclaration()) { 4311 GlobalDecl OtherGD; 4312 const VarDecl *OtherD; 4313 4314 // Check that D is not yet in DiagnosedConflictingDefinitions is required 4315 // to make sure that we issue an error only once. 4316 if (D && lookupRepresentativeDecl(MangledName, OtherGD) && 4317 (D->getCanonicalDecl() != OtherGD.getCanonicalDecl().getDecl()) && 4318 (OtherD = dyn_cast<VarDecl>(OtherGD.getDecl())) && 4319 OtherD->hasInit() && 4320 DiagnosedConflictingDefinitions.insert(D).second) { 4321 getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name) 4322 << MangledName; 4323 getDiags().Report(OtherGD.getDecl()->getLocation(), 4324 diag::note_previous_definition); 4325 } 4326 } 4327 4328 // Make sure the result is of the correct type. 4329 if (Entry->getType()->getAddressSpace() != TargetAS) { 4330 return llvm::ConstantExpr::getAddrSpaceCast(Entry, 4331 Ty->getPointerTo(TargetAS)); 4332 } 4333 4334 // (If global is requested for a definition, we always need to create a new 4335 // global, not just return a bitcast.) 4336 if (!IsForDefinition) 4337 return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo(TargetAS)); 4338 } 4339 4340 auto DAddrSpace = GetGlobalVarAddressSpace(D); 4341 4342 auto *GV = new llvm::GlobalVariable( 4343 getModule(), Ty, false, llvm::GlobalValue::ExternalLinkage, nullptr, 4344 MangledName, nullptr, llvm::GlobalVariable::NotThreadLocal, 4345 getContext().getTargetAddressSpace(DAddrSpace)); 4346 4347 // If we already created a global with the same mangled name (but different 4348 // type) before, take its name and remove it from its parent. 4349 if (Entry) { 4350 GV->takeName(Entry); 4351 4352 if (!Entry->use_empty()) { 4353 llvm::Constant *NewPtrForOldDecl = 4354 llvm::ConstantExpr::getBitCast(GV, Entry->getType()); 4355 Entry->replaceAllUsesWith(NewPtrForOldDecl); 4356 } 4357 4358 Entry->eraseFromParent(); 4359 } 4360 4361 // This is the first use or definition of a mangled name. If there is a 4362 // deferred decl with this name, remember that we need to emit it at the end 4363 // of the file. 4364 auto DDI = DeferredDecls.find(MangledName); 4365 if (DDI != DeferredDecls.end()) { 4366 // Move the potentially referenced deferred decl to the DeferredDeclsToEmit 4367 // list, and remove it from DeferredDecls (since we don't need it anymore). 4368 addDeferredDeclToEmit(DDI->second); 4369 EmittedDeferredDecls[DDI->first] = DDI->second; 4370 DeferredDecls.erase(DDI); 4371 } 4372 4373 // Handle things which are present even on external declarations. 4374 if (D) { 4375 if (LangOpts.OpenMP && !LangOpts.OpenMPSimd) 4376 getOpenMPRuntime().registerTargetGlobalVariable(D, GV); 4377 4378 // FIXME: This code is overly simple and should be merged with other global 4379 // handling. 4380 GV->setConstant(isTypeConstant(D->getType(), false)); 4381 4382 GV->setAlignment(getContext().getDeclAlign(D).getAsAlign()); 4383 4384 setLinkageForGV(GV, D); 4385 4386 if (D->getTLSKind()) { 4387 if (D->getTLSKind() == VarDecl::TLS_Dynamic) 4388 CXXThreadLocals.push_back(D); 4389 setTLSMode(GV, *D); 4390 } 4391 4392 setGVProperties(GV, D); 4393 4394 // If required by the ABI, treat declarations of static data members with 4395 // inline initializers as definitions. 4396 if (getContext().isMSStaticDataMemberInlineDefinition(D)) { 4397 EmitGlobalVarDefinition(D); 4398 } 4399 4400 // Emit section information for extern variables. 4401 if (D->hasExternalStorage()) { 4402 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) 4403 GV->setSection(SA->getName()); 4404 } 4405 4406 // Handle XCore specific ABI requirements. 4407 if (getTriple().getArch() == llvm::Triple::xcore && 4408 D->getLanguageLinkage() == CLanguageLinkage && 4409 D->getType().isConstant(Context) && 4410 isExternallyVisible(D->getLinkageAndVisibility().getLinkage())) 4411 GV->setSection(".cp.rodata"); 4412 4413 // Check if we a have a const declaration with an initializer, we may be 4414 // able to emit it as available_externally to expose it's value to the 4415 // optimizer. 4416 if (Context.getLangOpts().CPlusPlus && GV->hasExternalLinkage() && 4417 D->getType().isConstQualified() && !GV->hasInitializer() && 4418 !D->hasDefinition() && D->hasInit() && !D->hasAttr<DLLImportAttr>()) { 4419 const auto *Record = 4420 Context.getBaseElementType(D->getType())->getAsCXXRecordDecl(); 4421 bool HasMutableFields = Record && Record->hasMutableFields(); 4422 if (!HasMutableFields) { 4423 const VarDecl *InitDecl; 4424 const Expr *InitExpr = D->getAnyInitializer(InitDecl); 4425 if (InitExpr) { 4426 ConstantEmitter emitter(*this); 4427 llvm::Constant *Init = emitter.tryEmitForInitializer(*InitDecl); 4428 if (Init) { 4429 auto *InitType = Init->getType(); 4430 if (GV->getValueType() != InitType) { 4431 // The type of the initializer does not match the definition. 4432 // This happens when an initializer has a different type from 4433 // the type of the global (because of padding at the end of a 4434 // structure for instance). 4435 GV->setName(StringRef()); 4436 // Make a new global with the correct type, this is now guaranteed 4437 // to work. 4438 auto *NewGV = cast<llvm::GlobalVariable>( 4439 GetAddrOfGlobalVar(D, InitType, IsForDefinition) 4440 ->stripPointerCasts()); 4441 4442 // Erase the old global, since it is no longer used. 4443 GV->eraseFromParent(); 4444 GV = NewGV; 4445 } else { 4446 GV->setInitializer(Init); 4447 GV->setConstant(true); 4448 GV->setLinkage(llvm::GlobalValue::AvailableExternallyLinkage); 4449 } 4450 emitter.finalize(GV); 4451 } 4452 } 4453 } 4454 } 4455 } 4456 4457 if (GV->isDeclaration()) { 4458 getTargetCodeGenInfo().setTargetAttributes(D, GV, *this); 4459 // External HIP managed variables needed to be recorded for transformation 4460 // in both device and host compilations. 4461 if (getLangOpts().CUDA && D && D->hasAttr<HIPManagedAttr>() && 4462 D->hasExternalStorage()) 4463 getCUDARuntime().handleVarRegistration(D, *GV); 4464 } 4465 4466 if (D) 4467 SanitizerMD->reportGlobal(GV, *D); 4468 4469 LangAS ExpectedAS = 4470 D ? D->getType().getAddressSpace() 4471 : (LangOpts.OpenCL ? LangAS::opencl_global : LangAS::Default); 4472 assert(getContext().getTargetAddressSpace(ExpectedAS) == TargetAS); 4473 if (DAddrSpace != ExpectedAS) { 4474 return getTargetCodeGenInfo().performAddrSpaceCast( 4475 *this, GV, DAddrSpace, ExpectedAS, Ty->getPointerTo(TargetAS)); 4476 } 4477 4478 return GV; 4479 } 4480 4481 llvm::Constant * 4482 CodeGenModule::GetAddrOfGlobal(GlobalDecl GD, ForDefinition_t IsForDefinition) { 4483 const Decl *D = GD.getDecl(); 4484 4485 if (isa<CXXConstructorDecl>(D) || isa<CXXDestructorDecl>(D)) 4486 return getAddrOfCXXStructor(GD, /*FnInfo=*/nullptr, /*FnType=*/nullptr, 4487 /*DontDefer=*/false, IsForDefinition); 4488 4489 if (isa<CXXMethodDecl>(D)) { 4490 auto FInfo = 4491 &getTypes().arrangeCXXMethodDeclaration(cast<CXXMethodDecl>(D)); 4492 auto Ty = getTypes().GetFunctionType(*FInfo); 4493 return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false, 4494 IsForDefinition); 4495 } 4496 4497 if (isa<FunctionDecl>(D)) { 4498 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 4499 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 4500 return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false, 4501 IsForDefinition); 4502 } 4503 4504 return GetAddrOfGlobalVar(cast<VarDecl>(D), /*Ty=*/nullptr, IsForDefinition); 4505 } 4506 4507 llvm::GlobalVariable *CodeGenModule::CreateOrReplaceCXXRuntimeVariable( 4508 StringRef Name, llvm::Type *Ty, llvm::GlobalValue::LinkageTypes Linkage, 4509 unsigned Alignment) { 4510 llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name); 4511 llvm::GlobalVariable *OldGV = nullptr; 4512 4513 if (GV) { 4514 // Check if the variable has the right type. 4515 if (GV->getValueType() == Ty) 4516 return GV; 4517 4518 // Because C++ name mangling, the only way we can end up with an already 4519 // existing global with the same name is if it has been declared extern "C". 4520 assert(GV->isDeclaration() && "Declaration has wrong type!"); 4521 OldGV = GV; 4522 } 4523 4524 // Create a new variable. 4525 GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true, 4526 Linkage, nullptr, Name); 4527 4528 if (OldGV) { 4529 // Replace occurrences of the old variable if needed. 4530 GV->takeName(OldGV); 4531 4532 if (!OldGV->use_empty()) { 4533 llvm::Constant *NewPtrForOldDecl = 4534 llvm::ConstantExpr::getBitCast(GV, OldGV->getType()); 4535 OldGV->replaceAllUsesWith(NewPtrForOldDecl); 4536 } 4537 4538 OldGV->eraseFromParent(); 4539 } 4540 4541 if (supportsCOMDAT() && GV->isWeakForLinker() && 4542 !GV->hasAvailableExternallyLinkage()) 4543 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 4544 4545 GV->setAlignment(llvm::MaybeAlign(Alignment)); 4546 4547 return GV; 4548 } 4549 4550 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the 4551 /// given global variable. If Ty is non-null and if the global doesn't exist, 4552 /// then it will be created with the specified type instead of whatever the 4553 /// normal requested type would be. If IsForDefinition is true, it is guaranteed 4554 /// that an actual global with type Ty will be returned, not conversion of a 4555 /// variable with the same mangled name but some other type. 4556 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D, 4557 llvm::Type *Ty, 4558 ForDefinition_t IsForDefinition) { 4559 assert(D->hasGlobalStorage() && "Not a global variable"); 4560 QualType ASTTy = D->getType(); 4561 if (!Ty) 4562 Ty = getTypes().ConvertTypeForMem(ASTTy); 4563 4564 StringRef MangledName = getMangledName(D); 4565 return GetOrCreateLLVMGlobal(MangledName, Ty, ASTTy.getAddressSpace(), D, 4566 IsForDefinition); 4567 } 4568 4569 /// CreateRuntimeVariable - Create a new runtime global variable with the 4570 /// specified type and name. 4571 llvm::Constant * 4572 CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty, 4573 StringRef Name) { 4574 LangAS AddrSpace = getContext().getLangOpts().OpenCL ? LangAS::opencl_global 4575 : LangAS::Default; 4576 auto *Ret = GetOrCreateLLVMGlobal(Name, Ty, AddrSpace, nullptr); 4577 setDSOLocal(cast<llvm::GlobalValue>(Ret->stripPointerCasts())); 4578 return Ret; 4579 } 4580 4581 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) { 4582 assert(!D->getInit() && "Cannot emit definite definitions here!"); 4583 4584 StringRef MangledName = getMangledName(D); 4585 llvm::GlobalValue *GV = GetGlobalValue(MangledName); 4586 4587 // We already have a definition, not declaration, with the same mangled name. 4588 // Emitting of declaration is not required (and actually overwrites emitted 4589 // definition). 4590 if (GV && !GV->isDeclaration()) 4591 return; 4592 4593 // If we have not seen a reference to this variable yet, place it into the 4594 // deferred declarations table to be emitted if needed later. 4595 if (!MustBeEmitted(D) && !GV) { 4596 DeferredDecls[MangledName] = D; 4597 return; 4598 } 4599 4600 // The tentative definition is the only definition. 4601 EmitGlobalVarDefinition(D); 4602 } 4603 4604 void CodeGenModule::EmitExternalDeclaration(const VarDecl *D) { 4605 EmitExternalVarDeclaration(D); 4606 } 4607 4608 CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const { 4609 return Context.toCharUnitsFromBits( 4610 getDataLayout().getTypeStoreSizeInBits(Ty)); 4611 } 4612 4613 LangAS CodeGenModule::GetGlobalVarAddressSpace(const VarDecl *D) { 4614 if (LangOpts.OpenCL) { 4615 LangAS AS = D ? D->getType().getAddressSpace() : LangAS::opencl_global; 4616 assert(AS == LangAS::opencl_global || 4617 AS == LangAS::opencl_global_device || 4618 AS == LangAS::opencl_global_host || 4619 AS == LangAS::opencl_constant || 4620 AS == LangAS::opencl_local || 4621 AS >= LangAS::FirstTargetAddressSpace); 4622 return AS; 4623 } 4624 4625 if (LangOpts.SYCLIsDevice && 4626 (!D || D->getType().getAddressSpace() == LangAS::Default)) 4627 return LangAS::sycl_global; 4628 4629 if (LangOpts.CUDA && LangOpts.CUDAIsDevice) { 4630 if (D && D->hasAttr<CUDAConstantAttr>()) 4631 return LangAS::cuda_constant; 4632 else if (D && D->hasAttr<CUDASharedAttr>()) 4633 return LangAS::cuda_shared; 4634 else if (D && D->hasAttr<CUDADeviceAttr>()) 4635 return LangAS::cuda_device; 4636 else if (D && D->getType().isConstQualified()) 4637 return LangAS::cuda_constant; 4638 else 4639 return LangAS::cuda_device; 4640 } 4641 4642 if (LangOpts.OpenMP) { 4643 LangAS AS; 4644 if (OpenMPRuntime->hasAllocateAttributeForGlobalVar(D, AS)) 4645 return AS; 4646 } 4647 return getTargetCodeGenInfo().getGlobalVarAddressSpace(*this, D); 4648 } 4649 4650 LangAS CodeGenModule::GetGlobalConstantAddressSpace() const { 4651 // OpenCL v1.2 s6.5.3: a string literal is in the constant address space. 4652 if (LangOpts.OpenCL) 4653 return LangAS::opencl_constant; 4654 if (LangOpts.SYCLIsDevice) 4655 return LangAS::sycl_global; 4656 if (LangOpts.HIP && LangOpts.CUDAIsDevice && getTriple().isSPIRV()) 4657 // For HIPSPV map literals to cuda_device (maps to CrossWorkGroup in SPIR-V) 4658 // instead of default AS (maps to Generic in SPIR-V). Otherwise, we end up 4659 // with OpVariable instructions with Generic storage class which is not 4660 // allowed (SPIR-V V1.6 s3.42.8). Also, mapping literals to SPIR-V 4661 // UniformConstant storage class is not viable as pointers to it may not be 4662 // casted to Generic pointers which are used to model HIP's "flat" pointers. 4663 return LangAS::cuda_device; 4664 if (auto AS = getTarget().getConstantAddressSpace()) 4665 return *AS; 4666 return LangAS::Default; 4667 } 4668 4669 // In address space agnostic languages, string literals are in default address 4670 // space in AST. However, certain targets (e.g. amdgcn) request them to be 4671 // emitted in constant address space in LLVM IR. To be consistent with other 4672 // parts of AST, string literal global variables in constant address space 4673 // need to be casted to default address space before being put into address 4674 // map and referenced by other part of CodeGen. 4675 // In OpenCL, string literals are in constant address space in AST, therefore 4676 // they should not be casted to default address space. 4677 static llvm::Constant * 4678 castStringLiteralToDefaultAddressSpace(CodeGenModule &CGM, 4679 llvm::GlobalVariable *GV) { 4680 llvm::Constant *Cast = GV; 4681 if (!CGM.getLangOpts().OpenCL) { 4682 auto AS = CGM.GetGlobalConstantAddressSpace(); 4683 if (AS != LangAS::Default) 4684 Cast = CGM.getTargetCodeGenInfo().performAddrSpaceCast( 4685 CGM, GV, AS, LangAS::Default, 4686 GV->getValueType()->getPointerTo( 4687 CGM.getContext().getTargetAddressSpace(LangAS::Default))); 4688 } 4689 return Cast; 4690 } 4691 4692 template<typename SomeDecl> 4693 void CodeGenModule::MaybeHandleStaticInExternC(const SomeDecl *D, 4694 llvm::GlobalValue *GV) { 4695 if (!getLangOpts().CPlusPlus) 4696 return; 4697 4698 // Must have 'used' attribute, or else inline assembly can't rely on 4699 // the name existing. 4700 if (!D->template hasAttr<UsedAttr>()) 4701 return; 4702 4703 // Must have internal linkage and an ordinary name. 4704 if (!D->getIdentifier() || D->getFormalLinkage() != InternalLinkage) 4705 return; 4706 4707 // Must be in an extern "C" context. Entities declared directly within 4708 // a record are not extern "C" even if the record is in such a context. 4709 const SomeDecl *First = D->getFirstDecl(); 4710 if (First->getDeclContext()->isRecord() || !First->isInExternCContext()) 4711 return; 4712 4713 // OK, this is an internal linkage entity inside an extern "C" linkage 4714 // specification. Make a note of that so we can give it the "expected" 4715 // mangled name if nothing else is using that name. 4716 std::pair<StaticExternCMap::iterator, bool> R = 4717 StaticExternCValues.insert(std::make_pair(D->getIdentifier(), GV)); 4718 4719 // If we have multiple internal linkage entities with the same name 4720 // in extern "C" regions, none of them gets that name. 4721 if (!R.second) 4722 R.first->second = nullptr; 4723 } 4724 4725 static bool shouldBeInCOMDAT(CodeGenModule &CGM, const Decl &D) { 4726 if (!CGM.supportsCOMDAT()) 4727 return false; 4728 4729 if (D.hasAttr<SelectAnyAttr>()) 4730 return true; 4731 4732 GVALinkage Linkage; 4733 if (auto *VD = dyn_cast<VarDecl>(&D)) 4734 Linkage = CGM.getContext().GetGVALinkageForVariable(VD); 4735 else 4736 Linkage = CGM.getContext().GetGVALinkageForFunction(cast<FunctionDecl>(&D)); 4737 4738 switch (Linkage) { 4739 case GVA_Internal: 4740 case GVA_AvailableExternally: 4741 case GVA_StrongExternal: 4742 return false; 4743 case GVA_DiscardableODR: 4744 case GVA_StrongODR: 4745 return true; 4746 } 4747 llvm_unreachable("No such linkage"); 4748 } 4749 4750 void CodeGenModule::maybeSetTrivialComdat(const Decl &D, 4751 llvm::GlobalObject &GO) { 4752 if (!shouldBeInCOMDAT(*this, D)) 4753 return; 4754 GO.setComdat(TheModule.getOrInsertComdat(GO.getName())); 4755 } 4756 4757 /// Pass IsTentative as true if you want to create a tentative definition. 4758 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D, 4759 bool IsTentative) { 4760 // OpenCL global variables of sampler type are translated to function calls, 4761 // therefore no need to be translated. 4762 QualType ASTTy = D->getType(); 4763 if (getLangOpts().OpenCL && ASTTy->isSamplerT()) 4764 return; 4765 4766 // If this is OpenMP device, check if it is legal to emit this global 4767 // normally. 4768 if (LangOpts.OpenMPIsDevice && OpenMPRuntime && 4769 OpenMPRuntime->emitTargetGlobalVariable(D)) 4770 return; 4771 4772 llvm::TrackingVH<llvm::Constant> Init; 4773 bool NeedsGlobalCtor = false; 4774 bool NeedsGlobalDtor = 4775 D->needsDestruction(getContext()) == QualType::DK_cxx_destructor; 4776 4777 const VarDecl *InitDecl; 4778 const Expr *InitExpr = D->getAnyInitializer(InitDecl); 4779 4780 Optional<ConstantEmitter> emitter; 4781 4782 // CUDA E.2.4.1 "__shared__ variables cannot have an initialization 4783 // as part of their declaration." Sema has already checked for 4784 // error cases, so we just need to set Init to UndefValue. 4785 bool IsCUDASharedVar = 4786 getLangOpts().CUDAIsDevice && D->hasAttr<CUDASharedAttr>(); 4787 // Shadows of initialized device-side global variables are also left 4788 // undefined. 4789 // Managed Variables should be initialized on both host side and device side. 4790 bool IsCUDAShadowVar = 4791 !getLangOpts().CUDAIsDevice && !D->hasAttr<HIPManagedAttr>() && 4792 (D->hasAttr<CUDAConstantAttr>() || D->hasAttr<CUDADeviceAttr>() || 4793 D->hasAttr<CUDASharedAttr>()); 4794 bool IsCUDADeviceShadowVar = 4795 getLangOpts().CUDAIsDevice && !D->hasAttr<HIPManagedAttr>() && 4796 (D->getType()->isCUDADeviceBuiltinSurfaceType() || 4797 D->getType()->isCUDADeviceBuiltinTextureType()); 4798 if (getLangOpts().CUDA && 4799 (IsCUDASharedVar || IsCUDAShadowVar || IsCUDADeviceShadowVar)) 4800 Init = llvm::UndefValue::get(getTypes().ConvertTypeForMem(ASTTy)); 4801 else if (D->hasAttr<LoaderUninitializedAttr>()) 4802 Init = llvm::UndefValue::get(getTypes().ConvertTypeForMem(ASTTy)); 4803 else if (!InitExpr) { 4804 // This is a tentative definition; tentative definitions are 4805 // implicitly initialized with { 0 }. 4806 // 4807 // Note that tentative definitions are only emitted at the end of 4808 // a translation unit, so they should never have incomplete 4809 // type. In addition, EmitTentativeDefinition makes sure that we 4810 // never attempt to emit a tentative definition if a real one 4811 // exists. A use may still exists, however, so we still may need 4812 // to do a RAUW. 4813 assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type"); 4814 Init = EmitNullConstant(D->getType()); 4815 } else { 4816 initializedGlobalDecl = GlobalDecl(D); 4817 emitter.emplace(*this); 4818 llvm::Constant *Initializer = emitter->tryEmitForInitializer(*InitDecl); 4819 if (!Initializer) { 4820 QualType T = InitExpr->getType(); 4821 if (D->getType()->isReferenceType()) 4822 T = D->getType(); 4823 4824 if (getLangOpts().CPlusPlus) { 4825 if (InitDecl->hasFlexibleArrayInit(getContext())) 4826 ErrorUnsupported(D, "flexible array initializer"); 4827 Init = EmitNullConstant(T); 4828 NeedsGlobalCtor = true; 4829 } else { 4830 ErrorUnsupported(D, "static initializer"); 4831 Init = llvm::UndefValue::get(getTypes().ConvertType(T)); 4832 } 4833 } else { 4834 Init = Initializer; 4835 // We don't need an initializer, so remove the entry for the delayed 4836 // initializer position (just in case this entry was delayed) if we 4837 // also don't need to register a destructor. 4838 if (getLangOpts().CPlusPlus && !NeedsGlobalDtor) 4839 DelayedCXXInitPosition.erase(D); 4840 4841 #ifndef NDEBUG 4842 CharUnits VarSize = getContext().getTypeSizeInChars(ASTTy) + 4843 InitDecl->getFlexibleArrayInitChars(getContext()); 4844 CharUnits CstSize = CharUnits::fromQuantity( 4845 getDataLayout().getTypeAllocSize(Init->getType())); 4846 assert(VarSize == CstSize && "Emitted constant has unexpected size"); 4847 #endif 4848 } 4849 } 4850 4851 llvm::Type* InitType = Init->getType(); 4852 llvm::Constant *Entry = 4853 GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative)); 4854 4855 // Strip off pointer casts if we got them. 4856 Entry = Entry->stripPointerCasts(); 4857 4858 // Entry is now either a Function or GlobalVariable. 4859 auto *GV = dyn_cast<llvm::GlobalVariable>(Entry); 4860 4861 // We have a definition after a declaration with the wrong type. 4862 // We must make a new GlobalVariable* and update everything that used OldGV 4863 // (a declaration or tentative definition) with the new GlobalVariable* 4864 // (which will be a definition). 4865 // 4866 // This happens if there is a prototype for a global (e.g. 4867 // "extern int x[];") and then a definition of a different type (e.g. 4868 // "int x[10];"). This also happens when an initializer has a different type 4869 // from the type of the global (this happens with unions). 4870 if (!GV || GV->getValueType() != InitType || 4871 GV->getType()->getAddressSpace() != 4872 getContext().getTargetAddressSpace(GetGlobalVarAddressSpace(D))) { 4873 4874 // Move the old entry aside so that we'll create a new one. 4875 Entry->setName(StringRef()); 4876 4877 // Make a new global with the correct type, this is now guaranteed to work. 4878 GV = cast<llvm::GlobalVariable>( 4879 GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative)) 4880 ->stripPointerCasts()); 4881 4882 // Replace all uses of the old global with the new global 4883 llvm::Constant *NewPtrForOldDecl = 4884 llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, 4885 Entry->getType()); 4886 Entry->replaceAllUsesWith(NewPtrForOldDecl); 4887 4888 // Erase the old global, since it is no longer used. 4889 cast<llvm::GlobalValue>(Entry)->eraseFromParent(); 4890 } 4891 4892 MaybeHandleStaticInExternC(D, GV); 4893 4894 if (D->hasAttr<AnnotateAttr>()) 4895 AddGlobalAnnotations(D, GV); 4896 4897 // Set the llvm linkage type as appropriate. 4898 llvm::GlobalValue::LinkageTypes Linkage = 4899 getLLVMLinkageVarDefinition(D, GV->isConstant()); 4900 4901 // CUDA B.2.1 "The __device__ qualifier declares a variable that resides on 4902 // the device. [...]" 4903 // CUDA B.2.2 "The __constant__ qualifier, optionally used together with 4904 // __device__, declares a variable that: [...] 4905 // Is accessible from all the threads within the grid and from the host 4906 // through the runtime library (cudaGetSymbolAddress() / cudaGetSymbolSize() 4907 // / cudaMemcpyToSymbol() / cudaMemcpyFromSymbol())." 4908 if (GV && LangOpts.CUDA) { 4909 if (LangOpts.CUDAIsDevice) { 4910 if (Linkage != llvm::GlobalValue::InternalLinkage && 4911 (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>() || 4912 D->getType()->isCUDADeviceBuiltinSurfaceType() || 4913 D->getType()->isCUDADeviceBuiltinTextureType())) 4914 GV->setExternallyInitialized(true); 4915 } else { 4916 getCUDARuntime().internalizeDeviceSideVar(D, Linkage); 4917 } 4918 getCUDARuntime().handleVarRegistration(D, *GV); 4919 } 4920 4921 GV->setInitializer(Init); 4922 if (emitter) 4923 emitter->finalize(GV); 4924 4925 // If it is safe to mark the global 'constant', do so now. 4926 GV->setConstant(!NeedsGlobalCtor && !NeedsGlobalDtor && 4927 isTypeConstant(D->getType(), true)); 4928 4929 // If it is in a read-only section, mark it 'constant'. 4930 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) { 4931 const ASTContext::SectionInfo &SI = Context.SectionInfos[SA->getName()]; 4932 if ((SI.SectionFlags & ASTContext::PSF_Write) == 0) 4933 GV->setConstant(true); 4934 } 4935 4936 CharUnits AlignVal = getContext().getDeclAlign(D); 4937 // Check for alignment specifed in an 'omp allocate' directive. 4938 if (llvm::Optional<CharUnits> AlignValFromAllocate = 4939 getOMPAllocateAlignment(D)) 4940 AlignVal = *AlignValFromAllocate; 4941 GV->setAlignment(AlignVal.getAsAlign()); 4942 4943 // On Darwin, unlike other Itanium C++ ABI platforms, the thread-wrapper 4944 // function is only defined alongside the variable, not also alongside 4945 // callers. Normally, all accesses to a thread_local go through the 4946 // thread-wrapper in order to ensure initialization has occurred, underlying 4947 // variable will never be used other than the thread-wrapper, so it can be 4948 // converted to internal linkage. 4949 // 4950 // However, if the variable has the 'constinit' attribute, it _can_ be 4951 // referenced directly, without calling the thread-wrapper, so the linkage 4952 // must not be changed. 4953 // 4954 // Additionally, if the variable isn't plain external linkage, e.g. if it's 4955 // weak or linkonce, the de-duplication semantics are important to preserve, 4956 // so we don't change the linkage. 4957 if (D->getTLSKind() == VarDecl::TLS_Dynamic && 4958 Linkage == llvm::GlobalValue::ExternalLinkage && 4959 Context.getTargetInfo().getTriple().isOSDarwin() && 4960 !D->hasAttr<ConstInitAttr>()) 4961 Linkage = llvm::GlobalValue::InternalLinkage; 4962 4963 GV->setLinkage(Linkage); 4964 if (D->hasAttr<DLLImportAttr>()) 4965 GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass); 4966 else if (D->hasAttr<DLLExportAttr>()) 4967 GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass); 4968 else 4969 GV->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass); 4970 4971 if (Linkage == llvm::GlobalVariable::CommonLinkage) { 4972 // common vars aren't constant even if declared const. 4973 GV->setConstant(false); 4974 // Tentative definition of global variables may be initialized with 4975 // non-zero null pointers. In this case they should have weak linkage 4976 // since common linkage must have zero initializer and must not have 4977 // explicit section therefore cannot have non-zero initial value. 4978 if (!GV->getInitializer()->isNullValue()) 4979 GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage); 4980 } 4981 4982 setNonAliasAttributes(D, GV); 4983 4984 if (D->getTLSKind() && !GV->isThreadLocal()) { 4985 if (D->getTLSKind() == VarDecl::TLS_Dynamic) 4986 CXXThreadLocals.push_back(D); 4987 setTLSMode(GV, *D); 4988 } 4989 4990 maybeSetTrivialComdat(*D, *GV); 4991 4992 // Emit the initializer function if necessary. 4993 if (NeedsGlobalCtor || NeedsGlobalDtor) 4994 EmitCXXGlobalVarDeclInitFunc(D, GV, NeedsGlobalCtor); 4995 4996 SanitizerMD->reportGlobal(GV, *D, NeedsGlobalCtor); 4997 4998 // Emit global variable debug information. 4999 if (CGDebugInfo *DI = getModuleDebugInfo()) 5000 if (getCodeGenOpts().hasReducedDebugInfo()) 5001 DI->EmitGlobalVariable(GV, D); 5002 } 5003 5004 void CodeGenModule::EmitExternalVarDeclaration(const VarDecl *D) { 5005 if (CGDebugInfo *DI = getModuleDebugInfo()) 5006 if (getCodeGenOpts().hasReducedDebugInfo()) { 5007 QualType ASTTy = D->getType(); 5008 llvm::Type *Ty = getTypes().ConvertTypeForMem(D->getType()); 5009 llvm::Constant *GV = 5010 GetOrCreateLLVMGlobal(D->getName(), Ty, ASTTy.getAddressSpace(), D); 5011 DI->EmitExternalVariable( 5012 cast<llvm::GlobalVariable>(GV->stripPointerCasts()), D); 5013 } 5014 } 5015 5016 static bool isVarDeclStrongDefinition(const ASTContext &Context, 5017 CodeGenModule &CGM, const VarDecl *D, 5018 bool NoCommon) { 5019 // Don't give variables common linkage if -fno-common was specified unless it 5020 // was overridden by a NoCommon attribute. 5021 if ((NoCommon || D->hasAttr<NoCommonAttr>()) && !D->hasAttr<CommonAttr>()) 5022 return true; 5023 5024 // C11 6.9.2/2: 5025 // A declaration of an identifier for an object that has file scope without 5026 // an initializer, and without a storage-class specifier or with the 5027 // storage-class specifier static, constitutes a tentative definition. 5028 if (D->getInit() || D->hasExternalStorage()) 5029 return true; 5030 5031 // A variable cannot be both common and exist in a section. 5032 if (D->hasAttr<SectionAttr>()) 5033 return true; 5034 5035 // A variable cannot be both common and exist in a section. 5036 // We don't try to determine which is the right section in the front-end. 5037 // If no specialized section name is applicable, it will resort to default. 5038 if (D->hasAttr<PragmaClangBSSSectionAttr>() || 5039 D->hasAttr<PragmaClangDataSectionAttr>() || 5040 D->hasAttr<PragmaClangRelroSectionAttr>() || 5041 D->hasAttr<PragmaClangRodataSectionAttr>()) 5042 return true; 5043 5044 // Thread local vars aren't considered common linkage. 5045 if (D->getTLSKind()) 5046 return true; 5047 5048 // Tentative definitions marked with WeakImportAttr are true definitions. 5049 if (D->hasAttr<WeakImportAttr>()) 5050 return true; 5051 5052 // A variable cannot be both common and exist in a comdat. 5053 if (shouldBeInCOMDAT(CGM, *D)) 5054 return true; 5055 5056 // Declarations with a required alignment do not have common linkage in MSVC 5057 // mode. 5058 if (Context.getTargetInfo().getCXXABI().isMicrosoft()) { 5059 if (D->hasAttr<AlignedAttr>()) 5060 return true; 5061 QualType VarType = D->getType(); 5062 if (Context.isAlignmentRequired(VarType)) 5063 return true; 5064 5065 if (const auto *RT = VarType->getAs<RecordType>()) { 5066 const RecordDecl *RD = RT->getDecl(); 5067 for (const FieldDecl *FD : RD->fields()) { 5068 if (FD->isBitField()) 5069 continue; 5070 if (FD->hasAttr<AlignedAttr>()) 5071 return true; 5072 if (Context.isAlignmentRequired(FD->getType())) 5073 return true; 5074 } 5075 } 5076 } 5077 5078 // Microsoft's link.exe doesn't support alignments greater than 32 bytes for 5079 // common symbols, so symbols with greater alignment requirements cannot be 5080 // common. 5081 // Other COFF linkers (ld.bfd and LLD) support arbitrary power-of-two 5082 // alignments for common symbols via the aligncomm directive, so this 5083 // restriction only applies to MSVC environments. 5084 if (Context.getTargetInfo().getTriple().isKnownWindowsMSVCEnvironment() && 5085 Context.getTypeAlignIfKnown(D->getType()) > 5086 Context.toBits(CharUnits::fromQuantity(32))) 5087 return true; 5088 5089 return false; 5090 } 5091 5092 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageForDeclarator( 5093 const DeclaratorDecl *D, GVALinkage Linkage, bool IsConstantVariable) { 5094 if (Linkage == GVA_Internal) 5095 return llvm::Function::InternalLinkage; 5096 5097 if (D->hasAttr<WeakAttr>()) 5098 return llvm::GlobalVariable::WeakAnyLinkage; 5099 5100 if (const auto *FD = D->getAsFunction()) 5101 if (FD->isMultiVersion() && Linkage == GVA_AvailableExternally) 5102 return llvm::GlobalVariable::LinkOnceAnyLinkage; 5103 5104 // We are guaranteed to have a strong definition somewhere else, 5105 // so we can use available_externally linkage. 5106 if (Linkage == GVA_AvailableExternally) 5107 return llvm::GlobalValue::AvailableExternallyLinkage; 5108 5109 // Note that Apple's kernel linker doesn't support symbol 5110 // coalescing, so we need to avoid linkonce and weak linkages there. 5111 // Normally, this means we just map to internal, but for explicit 5112 // instantiations we'll map to external. 5113 5114 // In C++, the compiler has to emit a definition in every translation unit 5115 // that references the function. We should use linkonce_odr because 5116 // a) if all references in this translation unit are optimized away, we 5117 // don't need to codegen it. b) if the function persists, it needs to be 5118 // merged with other definitions. c) C++ has the ODR, so we know the 5119 // definition is dependable. 5120 if (Linkage == GVA_DiscardableODR) 5121 return !Context.getLangOpts().AppleKext ? llvm::Function::LinkOnceODRLinkage 5122 : llvm::Function::InternalLinkage; 5123 5124 // An explicit instantiation of a template has weak linkage, since 5125 // explicit instantiations can occur in multiple translation units 5126 // and must all be equivalent. However, we are not allowed to 5127 // throw away these explicit instantiations. 5128 // 5129 // CUDA/HIP: For -fno-gpu-rdc case, device code is limited to one TU, 5130 // so say that CUDA templates are either external (for kernels) or internal. 5131 // This lets llvm perform aggressive inter-procedural optimizations. For 5132 // -fgpu-rdc case, device function calls across multiple TU's are allowed, 5133 // therefore we need to follow the normal linkage paradigm. 5134 if (Linkage == GVA_StrongODR) { 5135 if (getLangOpts().AppleKext) 5136 return llvm::Function::ExternalLinkage; 5137 if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice && 5138 !getLangOpts().GPURelocatableDeviceCode) 5139 return D->hasAttr<CUDAGlobalAttr>() ? llvm::Function::ExternalLinkage 5140 : llvm::Function::InternalLinkage; 5141 return llvm::Function::WeakODRLinkage; 5142 } 5143 5144 // C++ doesn't have tentative definitions and thus cannot have common 5145 // linkage. 5146 if (!getLangOpts().CPlusPlus && isa<VarDecl>(D) && 5147 !isVarDeclStrongDefinition(Context, *this, cast<VarDecl>(D), 5148 CodeGenOpts.NoCommon)) 5149 return llvm::GlobalVariable::CommonLinkage; 5150 5151 // selectany symbols are externally visible, so use weak instead of 5152 // linkonce. MSVC optimizes away references to const selectany globals, so 5153 // all definitions should be the same and ODR linkage should be used. 5154 // http://msdn.microsoft.com/en-us/library/5tkz6s71.aspx 5155 if (D->hasAttr<SelectAnyAttr>()) 5156 return llvm::GlobalVariable::WeakODRLinkage; 5157 5158 // Otherwise, we have strong external linkage. 5159 assert(Linkage == GVA_StrongExternal); 5160 return llvm::GlobalVariable::ExternalLinkage; 5161 } 5162 5163 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageVarDefinition( 5164 const VarDecl *VD, bool IsConstant) { 5165 GVALinkage Linkage = getContext().GetGVALinkageForVariable(VD); 5166 return getLLVMLinkageForDeclarator(VD, Linkage, IsConstant); 5167 } 5168 5169 /// Replace the uses of a function that was declared with a non-proto type. 5170 /// We want to silently drop extra arguments from call sites 5171 static void replaceUsesOfNonProtoConstant(llvm::Constant *old, 5172 llvm::Function *newFn) { 5173 // Fast path. 5174 if (old->use_empty()) return; 5175 5176 llvm::Type *newRetTy = newFn->getReturnType(); 5177 SmallVector<llvm::Value*, 4> newArgs; 5178 5179 for (llvm::Value::use_iterator ui = old->use_begin(), ue = old->use_end(); 5180 ui != ue; ) { 5181 llvm::Value::use_iterator use = ui++; // Increment before the use is erased. 5182 llvm::User *user = use->getUser(); 5183 5184 // Recognize and replace uses of bitcasts. Most calls to 5185 // unprototyped functions will use bitcasts. 5186 if (auto *bitcast = dyn_cast<llvm::ConstantExpr>(user)) { 5187 if (bitcast->getOpcode() == llvm::Instruction::BitCast) 5188 replaceUsesOfNonProtoConstant(bitcast, newFn); 5189 continue; 5190 } 5191 5192 // Recognize calls to the function. 5193 llvm::CallBase *callSite = dyn_cast<llvm::CallBase>(user); 5194 if (!callSite) continue; 5195 if (!callSite->isCallee(&*use)) 5196 continue; 5197 5198 // If the return types don't match exactly, then we can't 5199 // transform this call unless it's dead. 5200 if (callSite->getType() != newRetTy && !callSite->use_empty()) 5201 continue; 5202 5203 // Get the call site's attribute list. 5204 SmallVector<llvm::AttributeSet, 8> newArgAttrs; 5205 llvm::AttributeList oldAttrs = callSite->getAttributes(); 5206 5207 // If the function was passed too few arguments, don't transform. 5208 unsigned newNumArgs = newFn->arg_size(); 5209 if (callSite->arg_size() < newNumArgs) 5210 continue; 5211 5212 // If extra arguments were passed, we silently drop them. 5213 // If any of the types mismatch, we don't transform. 5214 unsigned argNo = 0; 5215 bool dontTransform = false; 5216 for (llvm::Argument &A : newFn->args()) { 5217 if (callSite->getArgOperand(argNo)->getType() != A.getType()) { 5218 dontTransform = true; 5219 break; 5220 } 5221 5222 // Add any parameter attributes. 5223 newArgAttrs.push_back(oldAttrs.getParamAttrs(argNo)); 5224 argNo++; 5225 } 5226 if (dontTransform) 5227 continue; 5228 5229 // Okay, we can transform this. Create the new call instruction and copy 5230 // over the required information. 5231 newArgs.append(callSite->arg_begin(), callSite->arg_begin() + argNo); 5232 5233 // Copy over any operand bundles. 5234 SmallVector<llvm::OperandBundleDef, 1> newBundles; 5235 callSite->getOperandBundlesAsDefs(newBundles); 5236 5237 llvm::CallBase *newCall; 5238 if (isa<llvm::CallInst>(callSite)) { 5239 newCall = 5240 llvm::CallInst::Create(newFn, newArgs, newBundles, "", callSite); 5241 } else { 5242 auto *oldInvoke = cast<llvm::InvokeInst>(callSite); 5243 newCall = llvm::InvokeInst::Create(newFn, oldInvoke->getNormalDest(), 5244 oldInvoke->getUnwindDest(), newArgs, 5245 newBundles, "", callSite); 5246 } 5247 newArgs.clear(); // for the next iteration 5248 5249 if (!newCall->getType()->isVoidTy()) 5250 newCall->takeName(callSite); 5251 newCall->setAttributes( 5252 llvm::AttributeList::get(newFn->getContext(), oldAttrs.getFnAttrs(), 5253 oldAttrs.getRetAttrs(), newArgAttrs)); 5254 newCall->setCallingConv(callSite->getCallingConv()); 5255 5256 // Finally, remove the old call, replacing any uses with the new one. 5257 if (!callSite->use_empty()) 5258 callSite->replaceAllUsesWith(newCall); 5259 5260 // Copy debug location attached to CI. 5261 if (callSite->getDebugLoc()) 5262 newCall->setDebugLoc(callSite->getDebugLoc()); 5263 5264 callSite->eraseFromParent(); 5265 } 5266 } 5267 5268 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we 5269 /// implement a function with no prototype, e.g. "int foo() {}". If there are 5270 /// existing call uses of the old function in the module, this adjusts them to 5271 /// call the new function directly. 5272 /// 5273 /// This is not just a cleanup: the always_inline pass requires direct calls to 5274 /// functions to be able to inline them. If there is a bitcast in the way, it 5275 /// won't inline them. Instcombine normally deletes these calls, but it isn't 5276 /// run at -O0. 5277 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old, 5278 llvm::Function *NewFn) { 5279 // If we're redefining a global as a function, don't transform it. 5280 if (!isa<llvm::Function>(Old)) return; 5281 5282 replaceUsesOfNonProtoConstant(Old, NewFn); 5283 } 5284 5285 void CodeGenModule::HandleCXXStaticMemberVarInstantiation(VarDecl *VD) { 5286 auto DK = VD->isThisDeclarationADefinition(); 5287 if (DK == VarDecl::Definition && VD->hasAttr<DLLImportAttr>()) 5288 return; 5289 5290 TemplateSpecializationKind TSK = VD->getTemplateSpecializationKind(); 5291 // If we have a definition, this might be a deferred decl. If the 5292 // instantiation is explicit, make sure we emit it at the end. 5293 if (VD->getDefinition() && TSK == TSK_ExplicitInstantiationDefinition) 5294 GetAddrOfGlobalVar(VD); 5295 5296 EmitTopLevelDecl(VD); 5297 } 5298 5299 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD, 5300 llvm::GlobalValue *GV) { 5301 const auto *D = cast<FunctionDecl>(GD.getDecl()); 5302 5303 // Compute the function info and LLVM type. 5304 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 5305 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 5306 5307 // Get or create the prototype for the function. 5308 if (!GV || (GV->getValueType() != Ty)) 5309 GV = cast<llvm::GlobalValue>(GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, 5310 /*DontDefer=*/true, 5311 ForDefinition)); 5312 5313 // Already emitted. 5314 if (!GV->isDeclaration()) 5315 return; 5316 5317 // We need to set linkage and visibility on the function before 5318 // generating code for it because various parts of IR generation 5319 // want to propagate this information down (e.g. to local static 5320 // declarations). 5321 auto *Fn = cast<llvm::Function>(GV); 5322 setFunctionLinkage(GD, Fn); 5323 5324 // FIXME: this is redundant with part of setFunctionDefinitionAttributes 5325 setGVProperties(Fn, GD); 5326 5327 MaybeHandleStaticInExternC(D, Fn); 5328 5329 maybeSetTrivialComdat(*D, *Fn); 5330 5331 // Set CodeGen attributes that represent floating point environment. 5332 setLLVMFunctionFEnvAttributes(D, Fn); 5333 5334 CodeGenFunction(*this).GenerateCode(GD, Fn, FI); 5335 5336 setNonAliasAttributes(GD, Fn); 5337 SetLLVMFunctionAttributesForDefinition(D, Fn); 5338 5339 if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>()) 5340 AddGlobalCtor(Fn, CA->getPriority()); 5341 if (const DestructorAttr *DA = D->getAttr<DestructorAttr>()) 5342 AddGlobalDtor(Fn, DA->getPriority(), true); 5343 if (D->hasAttr<AnnotateAttr>()) 5344 AddGlobalAnnotations(D, Fn); 5345 } 5346 5347 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) { 5348 const auto *D = cast<ValueDecl>(GD.getDecl()); 5349 const AliasAttr *AA = D->getAttr<AliasAttr>(); 5350 assert(AA && "Not an alias?"); 5351 5352 StringRef MangledName = getMangledName(GD); 5353 5354 if (AA->getAliasee() == MangledName) { 5355 Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0; 5356 return; 5357 } 5358 5359 // If there is a definition in the module, then it wins over the alias. 5360 // This is dubious, but allow it to be safe. Just ignore the alias. 5361 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 5362 if (Entry && !Entry->isDeclaration()) 5363 return; 5364 5365 Aliases.push_back(GD); 5366 5367 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType()); 5368 5369 // Create a reference to the named value. This ensures that it is emitted 5370 // if a deferred decl. 5371 llvm::Constant *Aliasee; 5372 llvm::GlobalValue::LinkageTypes LT; 5373 if (isa<llvm::FunctionType>(DeclTy)) { 5374 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GD, 5375 /*ForVTable=*/false); 5376 LT = getFunctionLinkage(GD); 5377 } else { 5378 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), DeclTy, LangAS::Default, 5379 /*D=*/nullptr); 5380 if (const auto *VD = dyn_cast<VarDecl>(GD.getDecl())) 5381 LT = getLLVMLinkageVarDefinition(VD, D->getType().isConstQualified()); 5382 else 5383 LT = getFunctionLinkage(GD); 5384 } 5385 5386 // Create the new alias itself, but don't set a name yet. 5387 unsigned AS = Aliasee->getType()->getPointerAddressSpace(); 5388 auto *GA = 5389 llvm::GlobalAlias::create(DeclTy, AS, LT, "", Aliasee, &getModule()); 5390 5391 if (Entry) { 5392 if (GA->getAliasee() == Entry) { 5393 Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0; 5394 return; 5395 } 5396 5397 assert(Entry->isDeclaration()); 5398 5399 // If there is a declaration in the module, then we had an extern followed 5400 // by the alias, as in: 5401 // extern int test6(); 5402 // ... 5403 // int test6() __attribute__((alias("test7"))); 5404 // 5405 // Remove it and replace uses of it with the alias. 5406 GA->takeName(Entry); 5407 5408 Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA, 5409 Entry->getType())); 5410 Entry->eraseFromParent(); 5411 } else { 5412 GA->setName(MangledName); 5413 } 5414 5415 // Set attributes which are particular to an alias; this is a 5416 // specialization of the attributes which may be set on a global 5417 // variable/function. 5418 if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakRefAttr>() || 5419 D->isWeakImported()) { 5420 GA->setLinkage(llvm::Function::WeakAnyLinkage); 5421 } 5422 5423 if (const auto *VD = dyn_cast<VarDecl>(D)) 5424 if (VD->getTLSKind()) 5425 setTLSMode(GA, *VD); 5426 5427 SetCommonAttributes(GD, GA); 5428 5429 // Emit global alias debug information. 5430 if (isa<VarDecl>(D)) 5431 if (CGDebugInfo *DI = getModuleDebugInfo()) 5432 DI->EmitGlobalAlias(cast<llvm::GlobalValue>(GA->getAliasee()->stripPointerCasts()), GD); 5433 } 5434 5435 void CodeGenModule::emitIFuncDefinition(GlobalDecl GD) { 5436 const auto *D = cast<ValueDecl>(GD.getDecl()); 5437 const IFuncAttr *IFA = D->getAttr<IFuncAttr>(); 5438 assert(IFA && "Not an ifunc?"); 5439 5440 StringRef MangledName = getMangledName(GD); 5441 5442 if (IFA->getResolver() == MangledName) { 5443 Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1; 5444 return; 5445 } 5446 5447 // Report an error if some definition overrides ifunc. 5448 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 5449 if (Entry && !Entry->isDeclaration()) { 5450 GlobalDecl OtherGD; 5451 if (lookupRepresentativeDecl(MangledName, OtherGD) && 5452 DiagnosedConflictingDefinitions.insert(GD).second) { 5453 Diags.Report(D->getLocation(), diag::err_duplicate_mangled_name) 5454 << MangledName; 5455 Diags.Report(OtherGD.getDecl()->getLocation(), 5456 diag::note_previous_definition); 5457 } 5458 return; 5459 } 5460 5461 Aliases.push_back(GD); 5462 5463 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType()); 5464 llvm::Type *ResolverTy = llvm::GlobalIFunc::getResolverFunctionType(DeclTy); 5465 llvm::Constant *Resolver = 5466 GetOrCreateLLVMFunction(IFA->getResolver(), ResolverTy, {}, 5467 /*ForVTable=*/false); 5468 llvm::GlobalIFunc *GIF = 5469 llvm::GlobalIFunc::create(DeclTy, 0, llvm::Function::ExternalLinkage, 5470 "", Resolver, &getModule()); 5471 if (Entry) { 5472 if (GIF->getResolver() == Entry) { 5473 Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1; 5474 return; 5475 } 5476 assert(Entry->isDeclaration()); 5477 5478 // If there is a declaration in the module, then we had an extern followed 5479 // by the ifunc, as in: 5480 // extern int test(); 5481 // ... 5482 // int test() __attribute__((ifunc("resolver"))); 5483 // 5484 // Remove it and replace uses of it with the ifunc. 5485 GIF->takeName(Entry); 5486 5487 Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GIF, 5488 Entry->getType())); 5489 Entry->eraseFromParent(); 5490 } else 5491 GIF->setName(MangledName); 5492 5493 SetCommonAttributes(GD, GIF); 5494 } 5495 5496 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID, 5497 ArrayRef<llvm::Type*> Tys) { 5498 return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID, 5499 Tys); 5500 } 5501 5502 static llvm::StringMapEntry<llvm::GlobalVariable *> & 5503 GetConstantCFStringEntry(llvm::StringMap<llvm::GlobalVariable *> &Map, 5504 const StringLiteral *Literal, bool TargetIsLSB, 5505 bool &IsUTF16, unsigned &StringLength) { 5506 StringRef String = Literal->getString(); 5507 unsigned NumBytes = String.size(); 5508 5509 // Check for simple case. 5510 if (!Literal->containsNonAsciiOrNull()) { 5511 StringLength = NumBytes; 5512 return *Map.insert(std::make_pair(String, nullptr)).first; 5513 } 5514 5515 // Otherwise, convert the UTF8 literals into a string of shorts. 5516 IsUTF16 = true; 5517 5518 SmallVector<llvm::UTF16, 128> ToBuf(NumBytes + 1); // +1 for ending nulls. 5519 const llvm::UTF8 *FromPtr = (const llvm::UTF8 *)String.data(); 5520 llvm::UTF16 *ToPtr = &ToBuf[0]; 5521 5522 (void)llvm::ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, &ToPtr, 5523 ToPtr + NumBytes, llvm::strictConversion); 5524 5525 // ConvertUTF8toUTF16 returns the length in ToPtr. 5526 StringLength = ToPtr - &ToBuf[0]; 5527 5528 // Add an explicit null. 5529 *ToPtr = 0; 5530 return *Map.insert(std::make_pair( 5531 StringRef(reinterpret_cast<const char *>(ToBuf.data()), 5532 (StringLength + 1) * 2), 5533 nullptr)).first; 5534 } 5535 5536 ConstantAddress 5537 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) { 5538 unsigned StringLength = 0; 5539 bool isUTF16 = false; 5540 llvm::StringMapEntry<llvm::GlobalVariable *> &Entry = 5541 GetConstantCFStringEntry(CFConstantStringMap, Literal, 5542 getDataLayout().isLittleEndian(), isUTF16, 5543 StringLength); 5544 5545 if (auto *C = Entry.second) 5546 return ConstantAddress( 5547 C, C->getValueType(), CharUnits::fromQuantity(C->getAlignment())); 5548 5549 llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty); 5550 llvm::Constant *Zeros[] = { Zero, Zero }; 5551 5552 const ASTContext &Context = getContext(); 5553 const llvm::Triple &Triple = getTriple(); 5554 5555 const auto CFRuntime = getLangOpts().CFRuntime; 5556 const bool IsSwiftABI = 5557 static_cast<unsigned>(CFRuntime) >= 5558 static_cast<unsigned>(LangOptions::CoreFoundationABI::Swift); 5559 const bool IsSwift4_1 = CFRuntime == LangOptions::CoreFoundationABI::Swift4_1; 5560 5561 // If we don't already have it, get __CFConstantStringClassReference. 5562 if (!CFConstantStringClassRef) { 5563 const char *CFConstantStringClassName = "__CFConstantStringClassReference"; 5564 llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy); 5565 Ty = llvm::ArrayType::get(Ty, 0); 5566 5567 switch (CFRuntime) { 5568 default: break; 5569 case LangOptions::CoreFoundationABI::Swift: [[fallthrough]]; 5570 case LangOptions::CoreFoundationABI::Swift5_0: 5571 CFConstantStringClassName = 5572 Triple.isOSDarwin() ? "$s15SwiftFoundation19_NSCFConstantStringCN" 5573 : "$s10Foundation19_NSCFConstantStringCN"; 5574 Ty = IntPtrTy; 5575 break; 5576 case LangOptions::CoreFoundationABI::Swift4_2: 5577 CFConstantStringClassName = 5578 Triple.isOSDarwin() ? "$S15SwiftFoundation19_NSCFConstantStringCN" 5579 : "$S10Foundation19_NSCFConstantStringCN"; 5580 Ty = IntPtrTy; 5581 break; 5582 case LangOptions::CoreFoundationABI::Swift4_1: 5583 CFConstantStringClassName = 5584 Triple.isOSDarwin() ? "__T015SwiftFoundation19_NSCFConstantStringCN" 5585 : "__T010Foundation19_NSCFConstantStringCN"; 5586 Ty = IntPtrTy; 5587 break; 5588 } 5589 5590 llvm::Constant *C = CreateRuntimeVariable(Ty, CFConstantStringClassName); 5591 5592 if (Triple.isOSBinFormatELF() || Triple.isOSBinFormatCOFF()) { 5593 llvm::GlobalValue *GV = nullptr; 5594 5595 if ((GV = dyn_cast<llvm::GlobalValue>(C))) { 5596 IdentifierInfo &II = Context.Idents.get(GV->getName()); 5597 TranslationUnitDecl *TUDecl = Context.getTranslationUnitDecl(); 5598 DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl); 5599 5600 const VarDecl *VD = nullptr; 5601 for (const auto *Result : DC->lookup(&II)) 5602 if ((VD = dyn_cast<VarDecl>(Result))) 5603 break; 5604 5605 if (Triple.isOSBinFormatELF()) { 5606 if (!VD) 5607 GV->setLinkage(llvm::GlobalValue::ExternalLinkage); 5608 } else { 5609 GV->setLinkage(llvm::GlobalValue::ExternalLinkage); 5610 if (!VD || !VD->hasAttr<DLLExportAttr>()) 5611 GV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass); 5612 else 5613 GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass); 5614 } 5615 5616 setDSOLocal(GV); 5617 } 5618 } 5619 5620 // Decay array -> ptr 5621 CFConstantStringClassRef = 5622 IsSwiftABI ? llvm::ConstantExpr::getPtrToInt(C, Ty) 5623 : llvm::ConstantExpr::getGetElementPtr(Ty, C, Zeros); 5624 } 5625 5626 QualType CFTy = Context.getCFConstantStringType(); 5627 5628 auto *STy = cast<llvm::StructType>(getTypes().ConvertType(CFTy)); 5629 5630 ConstantInitBuilder Builder(*this); 5631 auto Fields = Builder.beginStruct(STy); 5632 5633 // Class pointer. 5634 Fields.add(cast<llvm::Constant>(CFConstantStringClassRef)); 5635 5636 // Flags. 5637 if (IsSwiftABI) { 5638 Fields.addInt(IntPtrTy, IsSwift4_1 ? 0x05 : 0x01); 5639 Fields.addInt(Int64Ty, isUTF16 ? 0x07d0 : 0x07c8); 5640 } else { 5641 Fields.addInt(IntTy, isUTF16 ? 0x07d0 : 0x07C8); 5642 } 5643 5644 // String pointer. 5645 llvm::Constant *C = nullptr; 5646 if (isUTF16) { 5647 auto Arr = llvm::makeArrayRef( 5648 reinterpret_cast<uint16_t *>(const_cast<char *>(Entry.first().data())), 5649 Entry.first().size() / 2); 5650 C = llvm::ConstantDataArray::get(VMContext, Arr); 5651 } else { 5652 C = llvm::ConstantDataArray::getString(VMContext, Entry.first()); 5653 } 5654 5655 // Note: -fwritable-strings doesn't make the backing store strings of 5656 // CFStrings writable. (See <rdar://problem/10657500>) 5657 auto *GV = 5658 new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true, 5659 llvm::GlobalValue::PrivateLinkage, C, ".str"); 5660 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 5661 // Don't enforce the target's minimum global alignment, since the only use 5662 // of the string is via this class initializer. 5663 CharUnits Align = isUTF16 ? Context.getTypeAlignInChars(Context.ShortTy) 5664 : Context.getTypeAlignInChars(Context.CharTy); 5665 GV->setAlignment(Align.getAsAlign()); 5666 5667 // FIXME: We set the section explicitly to avoid a bug in ld64 224.1. 5668 // Without it LLVM can merge the string with a non unnamed_addr one during 5669 // LTO. Doing that changes the section it ends in, which surprises ld64. 5670 if (Triple.isOSBinFormatMachO()) 5671 GV->setSection(isUTF16 ? "__TEXT,__ustring" 5672 : "__TEXT,__cstring,cstring_literals"); 5673 // Make sure the literal ends up in .rodata to allow for safe ICF and for 5674 // the static linker to adjust permissions to read-only later on. 5675 else if (Triple.isOSBinFormatELF()) 5676 GV->setSection(".rodata"); 5677 5678 // String. 5679 llvm::Constant *Str = 5680 llvm::ConstantExpr::getGetElementPtr(GV->getValueType(), GV, Zeros); 5681 5682 if (isUTF16) 5683 // Cast the UTF16 string to the correct type. 5684 Str = llvm::ConstantExpr::getBitCast(Str, Int8PtrTy); 5685 Fields.add(Str); 5686 5687 // String length. 5688 llvm::IntegerType *LengthTy = 5689 llvm::IntegerType::get(getModule().getContext(), 5690 Context.getTargetInfo().getLongWidth()); 5691 if (IsSwiftABI) { 5692 if (CFRuntime == LangOptions::CoreFoundationABI::Swift4_1 || 5693 CFRuntime == LangOptions::CoreFoundationABI::Swift4_2) 5694 LengthTy = Int32Ty; 5695 else 5696 LengthTy = IntPtrTy; 5697 } 5698 Fields.addInt(LengthTy, StringLength); 5699 5700 // Swift ABI requires 8-byte alignment to ensure that the _Atomic(uint64_t) is 5701 // properly aligned on 32-bit platforms. 5702 CharUnits Alignment = 5703 IsSwiftABI ? Context.toCharUnitsFromBits(64) : getPointerAlign(); 5704 5705 // The struct. 5706 GV = Fields.finishAndCreateGlobal("_unnamed_cfstring_", Alignment, 5707 /*isConstant=*/false, 5708 llvm::GlobalVariable::PrivateLinkage); 5709 GV->addAttribute("objc_arc_inert"); 5710 switch (Triple.getObjectFormat()) { 5711 case llvm::Triple::UnknownObjectFormat: 5712 llvm_unreachable("unknown file format"); 5713 case llvm::Triple::DXContainer: 5714 case llvm::Triple::GOFF: 5715 case llvm::Triple::SPIRV: 5716 case llvm::Triple::XCOFF: 5717 llvm_unreachable("unimplemented"); 5718 case llvm::Triple::COFF: 5719 case llvm::Triple::ELF: 5720 case llvm::Triple::Wasm: 5721 GV->setSection("cfstring"); 5722 break; 5723 case llvm::Triple::MachO: 5724 GV->setSection("__DATA,__cfstring"); 5725 break; 5726 } 5727 Entry.second = GV; 5728 5729 return ConstantAddress(GV, GV->getValueType(), Alignment); 5730 } 5731 5732 bool CodeGenModule::getExpressionLocationsEnabled() const { 5733 return !CodeGenOpts.EmitCodeView || CodeGenOpts.DebugColumnInfo; 5734 } 5735 5736 QualType CodeGenModule::getObjCFastEnumerationStateType() { 5737 if (ObjCFastEnumerationStateType.isNull()) { 5738 RecordDecl *D = Context.buildImplicitRecord("__objcFastEnumerationState"); 5739 D->startDefinition(); 5740 5741 QualType FieldTypes[] = { 5742 Context.UnsignedLongTy, 5743 Context.getPointerType(Context.getObjCIdType()), 5744 Context.getPointerType(Context.UnsignedLongTy), 5745 Context.getConstantArrayType(Context.UnsignedLongTy, 5746 llvm::APInt(32, 5), nullptr, ArrayType::Normal, 0) 5747 }; 5748 5749 for (size_t i = 0; i < 4; ++i) { 5750 FieldDecl *Field = FieldDecl::Create(Context, 5751 D, 5752 SourceLocation(), 5753 SourceLocation(), nullptr, 5754 FieldTypes[i], /*TInfo=*/nullptr, 5755 /*BitWidth=*/nullptr, 5756 /*Mutable=*/false, 5757 ICIS_NoInit); 5758 Field->setAccess(AS_public); 5759 D->addDecl(Field); 5760 } 5761 5762 D->completeDefinition(); 5763 ObjCFastEnumerationStateType = Context.getTagDeclType(D); 5764 } 5765 5766 return ObjCFastEnumerationStateType; 5767 } 5768 5769 llvm::Constant * 5770 CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) { 5771 assert(!E->getType()->isPointerType() && "Strings are always arrays"); 5772 5773 // Don't emit it as the address of the string, emit the string data itself 5774 // as an inline array. 5775 if (E->getCharByteWidth() == 1) { 5776 SmallString<64> Str(E->getString()); 5777 5778 // Resize the string to the right size, which is indicated by its type. 5779 const ConstantArrayType *CAT = Context.getAsConstantArrayType(E->getType()); 5780 Str.resize(CAT->getSize().getZExtValue()); 5781 return llvm::ConstantDataArray::getString(VMContext, Str, false); 5782 } 5783 5784 auto *AType = cast<llvm::ArrayType>(getTypes().ConvertType(E->getType())); 5785 llvm::Type *ElemTy = AType->getElementType(); 5786 unsigned NumElements = AType->getNumElements(); 5787 5788 // Wide strings have either 2-byte or 4-byte elements. 5789 if (ElemTy->getPrimitiveSizeInBits() == 16) { 5790 SmallVector<uint16_t, 32> Elements; 5791 Elements.reserve(NumElements); 5792 5793 for(unsigned i = 0, e = E->getLength(); i != e; ++i) 5794 Elements.push_back(E->getCodeUnit(i)); 5795 Elements.resize(NumElements); 5796 return llvm::ConstantDataArray::get(VMContext, Elements); 5797 } 5798 5799 assert(ElemTy->getPrimitiveSizeInBits() == 32); 5800 SmallVector<uint32_t, 32> Elements; 5801 Elements.reserve(NumElements); 5802 5803 for(unsigned i = 0, e = E->getLength(); i != e; ++i) 5804 Elements.push_back(E->getCodeUnit(i)); 5805 Elements.resize(NumElements); 5806 return llvm::ConstantDataArray::get(VMContext, Elements); 5807 } 5808 5809 static llvm::GlobalVariable * 5810 GenerateStringLiteral(llvm::Constant *C, llvm::GlobalValue::LinkageTypes LT, 5811 CodeGenModule &CGM, StringRef GlobalName, 5812 CharUnits Alignment) { 5813 unsigned AddrSpace = CGM.getContext().getTargetAddressSpace( 5814 CGM.GetGlobalConstantAddressSpace()); 5815 5816 llvm::Module &M = CGM.getModule(); 5817 // Create a global variable for this string 5818 auto *GV = new llvm::GlobalVariable( 5819 M, C->getType(), !CGM.getLangOpts().WritableStrings, LT, C, GlobalName, 5820 nullptr, llvm::GlobalVariable::NotThreadLocal, AddrSpace); 5821 GV->setAlignment(Alignment.getAsAlign()); 5822 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 5823 if (GV->isWeakForLinker()) { 5824 assert(CGM.supportsCOMDAT() && "Only COFF uses weak string literals"); 5825 GV->setComdat(M.getOrInsertComdat(GV->getName())); 5826 } 5827 CGM.setDSOLocal(GV); 5828 5829 return GV; 5830 } 5831 5832 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a 5833 /// constant array for the given string literal. 5834 ConstantAddress 5835 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S, 5836 StringRef Name) { 5837 CharUnits Alignment = getContext().getAlignOfGlobalVarInChars(S->getType()); 5838 5839 llvm::Constant *C = GetConstantArrayFromStringLiteral(S); 5840 llvm::GlobalVariable **Entry = nullptr; 5841 if (!LangOpts.WritableStrings) { 5842 Entry = &ConstantStringMap[C]; 5843 if (auto GV = *Entry) { 5844 if (uint64_t(Alignment.getQuantity()) > GV->getAlignment()) 5845 GV->setAlignment(Alignment.getAsAlign()); 5846 return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV), 5847 GV->getValueType(), Alignment); 5848 } 5849 } 5850 5851 SmallString<256> MangledNameBuffer; 5852 StringRef GlobalVariableName; 5853 llvm::GlobalValue::LinkageTypes LT; 5854 5855 // Mangle the string literal if that's how the ABI merges duplicate strings. 5856 // Don't do it if they are writable, since we don't want writes in one TU to 5857 // affect strings in another. 5858 if (getCXXABI().getMangleContext().shouldMangleStringLiteral(S) && 5859 !LangOpts.WritableStrings) { 5860 llvm::raw_svector_ostream Out(MangledNameBuffer); 5861 getCXXABI().getMangleContext().mangleStringLiteral(S, Out); 5862 LT = llvm::GlobalValue::LinkOnceODRLinkage; 5863 GlobalVariableName = MangledNameBuffer; 5864 } else { 5865 LT = llvm::GlobalValue::PrivateLinkage; 5866 GlobalVariableName = Name; 5867 } 5868 5869 auto GV = GenerateStringLiteral(C, LT, *this, GlobalVariableName, Alignment); 5870 5871 CGDebugInfo *DI = getModuleDebugInfo(); 5872 if (DI && getCodeGenOpts().hasReducedDebugInfo()) 5873 DI->AddStringLiteralDebugInfo(GV, S); 5874 5875 if (Entry) 5876 *Entry = GV; 5877 5878 SanitizerMD->reportGlobal(GV, S->getStrTokenLoc(0), "<string literal>"); 5879 5880 return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV), 5881 GV->getValueType(), Alignment); 5882 } 5883 5884 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant 5885 /// array for the given ObjCEncodeExpr node. 5886 ConstantAddress 5887 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) { 5888 std::string Str; 5889 getContext().getObjCEncodingForType(E->getEncodedType(), Str); 5890 5891 return GetAddrOfConstantCString(Str); 5892 } 5893 5894 /// GetAddrOfConstantCString - Returns a pointer to a character array containing 5895 /// the literal and a terminating '\0' character. 5896 /// The result has pointer to array type. 5897 ConstantAddress CodeGenModule::GetAddrOfConstantCString( 5898 const std::string &Str, const char *GlobalName) { 5899 StringRef StrWithNull(Str.c_str(), Str.size() + 1); 5900 CharUnits Alignment = 5901 getContext().getAlignOfGlobalVarInChars(getContext().CharTy); 5902 5903 llvm::Constant *C = 5904 llvm::ConstantDataArray::getString(getLLVMContext(), StrWithNull, false); 5905 5906 // Don't share any string literals if strings aren't constant. 5907 llvm::GlobalVariable **Entry = nullptr; 5908 if (!LangOpts.WritableStrings) { 5909 Entry = &ConstantStringMap[C]; 5910 if (auto GV = *Entry) { 5911 if (uint64_t(Alignment.getQuantity()) > GV->getAlignment()) 5912 GV->setAlignment(Alignment.getAsAlign()); 5913 return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV), 5914 GV->getValueType(), Alignment); 5915 } 5916 } 5917 5918 // Get the default prefix if a name wasn't specified. 5919 if (!GlobalName) 5920 GlobalName = ".str"; 5921 // Create a global variable for this. 5922 auto GV = GenerateStringLiteral(C, llvm::GlobalValue::PrivateLinkage, *this, 5923 GlobalName, Alignment); 5924 if (Entry) 5925 *Entry = GV; 5926 5927 return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV), 5928 GV->getValueType(), Alignment); 5929 } 5930 5931 ConstantAddress CodeGenModule::GetAddrOfGlobalTemporary( 5932 const MaterializeTemporaryExpr *E, const Expr *Init) { 5933 assert((E->getStorageDuration() == SD_Static || 5934 E->getStorageDuration() == SD_Thread) && "not a global temporary"); 5935 const auto *VD = cast<VarDecl>(E->getExtendingDecl()); 5936 5937 // If we're not materializing a subobject of the temporary, keep the 5938 // cv-qualifiers from the type of the MaterializeTemporaryExpr. 5939 QualType MaterializedType = Init->getType(); 5940 if (Init == E->getSubExpr()) 5941 MaterializedType = E->getType(); 5942 5943 CharUnits Align = getContext().getTypeAlignInChars(MaterializedType); 5944 5945 auto InsertResult = MaterializedGlobalTemporaryMap.insert({E, nullptr}); 5946 if (!InsertResult.second) { 5947 // We've seen this before: either we already created it or we're in the 5948 // process of doing so. 5949 if (!InsertResult.first->second) { 5950 // We recursively re-entered this function, probably during emission of 5951 // the initializer. Create a placeholder. We'll clean this up in the 5952 // outer call, at the end of this function. 5953 llvm::Type *Type = getTypes().ConvertTypeForMem(MaterializedType); 5954 InsertResult.first->second = new llvm::GlobalVariable( 5955 getModule(), Type, false, llvm::GlobalVariable::InternalLinkage, 5956 nullptr); 5957 } 5958 return ConstantAddress(InsertResult.first->second, 5959 llvm::cast<llvm::GlobalVariable>( 5960 InsertResult.first->second->stripPointerCasts()) 5961 ->getValueType(), 5962 Align); 5963 } 5964 5965 // FIXME: If an externally-visible declaration extends multiple temporaries, 5966 // we need to give each temporary the same name in every translation unit (and 5967 // we also need to make the temporaries externally-visible). 5968 SmallString<256> Name; 5969 llvm::raw_svector_ostream Out(Name); 5970 getCXXABI().getMangleContext().mangleReferenceTemporary( 5971 VD, E->getManglingNumber(), Out); 5972 5973 APValue *Value = nullptr; 5974 if (E->getStorageDuration() == SD_Static && VD && VD->evaluateValue()) { 5975 // If the initializer of the extending declaration is a constant 5976 // initializer, we should have a cached constant initializer for this 5977 // temporary. Note that this might have a different value from the value 5978 // computed by evaluating the initializer if the surrounding constant 5979 // expression modifies the temporary. 5980 Value = E->getOrCreateValue(false); 5981 } 5982 5983 // Try evaluating it now, it might have a constant initializer. 5984 Expr::EvalResult EvalResult; 5985 if (!Value && Init->EvaluateAsRValue(EvalResult, getContext()) && 5986 !EvalResult.hasSideEffects()) 5987 Value = &EvalResult.Val; 5988 5989 LangAS AddrSpace = 5990 VD ? GetGlobalVarAddressSpace(VD) : MaterializedType.getAddressSpace(); 5991 5992 Optional<ConstantEmitter> emitter; 5993 llvm::Constant *InitialValue = nullptr; 5994 bool Constant = false; 5995 llvm::Type *Type; 5996 if (Value) { 5997 // The temporary has a constant initializer, use it. 5998 emitter.emplace(*this); 5999 InitialValue = emitter->emitForInitializer(*Value, AddrSpace, 6000 MaterializedType); 6001 Constant = isTypeConstant(MaterializedType, /*ExcludeCtor*/Value); 6002 Type = InitialValue->getType(); 6003 } else { 6004 // No initializer, the initialization will be provided when we 6005 // initialize the declaration which performed lifetime extension. 6006 Type = getTypes().ConvertTypeForMem(MaterializedType); 6007 } 6008 6009 // Create a global variable for this lifetime-extended temporary. 6010 llvm::GlobalValue::LinkageTypes Linkage = 6011 getLLVMLinkageVarDefinition(VD, Constant); 6012 if (Linkage == llvm::GlobalVariable::ExternalLinkage) { 6013 const VarDecl *InitVD; 6014 if (VD->isStaticDataMember() && VD->getAnyInitializer(InitVD) && 6015 isa<CXXRecordDecl>(InitVD->getLexicalDeclContext())) { 6016 // Temporaries defined inside a class get linkonce_odr linkage because the 6017 // class can be defined in multiple translation units. 6018 Linkage = llvm::GlobalVariable::LinkOnceODRLinkage; 6019 } else { 6020 // There is no need for this temporary to have external linkage if the 6021 // VarDecl has external linkage. 6022 Linkage = llvm::GlobalVariable::InternalLinkage; 6023 } 6024 } 6025 auto TargetAS = getContext().getTargetAddressSpace(AddrSpace); 6026 auto *GV = new llvm::GlobalVariable( 6027 getModule(), Type, Constant, Linkage, InitialValue, Name.c_str(), 6028 /*InsertBefore=*/nullptr, llvm::GlobalVariable::NotThreadLocal, TargetAS); 6029 if (emitter) emitter->finalize(GV); 6030 // Don't assign dllimport or dllexport to local linkage globals. 6031 if (!llvm::GlobalValue::isLocalLinkage(Linkage)) { 6032 setGVProperties(GV, VD); 6033 if (GV->getDLLStorageClass() == llvm::GlobalVariable::DLLExportStorageClass) 6034 // The reference temporary should never be dllexport. 6035 GV->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass); 6036 } 6037 GV->setAlignment(Align.getAsAlign()); 6038 if (supportsCOMDAT() && GV->isWeakForLinker()) 6039 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 6040 if (VD->getTLSKind()) 6041 setTLSMode(GV, *VD); 6042 llvm::Constant *CV = GV; 6043 if (AddrSpace != LangAS::Default) 6044 CV = getTargetCodeGenInfo().performAddrSpaceCast( 6045 *this, GV, AddrSpace, LangAS::Default, 6046 Type->getPointerTo( 6047 getContext().getTargetAddressSpace(LangAS::Default))); 6048 6049 // Update the map with the new temporary. If we created a placeholder above, 6050 // replace it with the new global now. 6051 llvm::Constant *&Entry = MaterializedGlobalTemporaryMap[E]; 6052 if (Entry) { 6053 Entry->replaceAllUsesWith( 6054 llvm::ConstantExpr::getBitCast(CV, Entry->getType())); 6055 llvm::cast<llvm::GlobalVariable>(Entry)->eraseFromParent(); 6056 } 6057 Entry = CV; 6058 6059 return ConstantAddress(CV, Type, Align); 6060 } 6061 6062 /// EmitObjCPropertyImplementations - Emit information for synthesized 6063 /// properties for an implementation. 6064 void CodeGenModule::EmitObjCPropertyImplementations(const 6065 ObjCImplementationDecl *D) { 6066 for (const auto *PID : D->property_impls()) { 6067 // Dynamic is just for type-checking. 6068 if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) { 6069 ObjCPropertyDecl *PD = PID->getPropertyDecl(); 6070 6071 // Determine which methods need to be implemented, some may have 6072 // been overridden. Note that ::isPropertyAccessor is not the method 6073 // we want, that just indicates if the decl came from a 6074 // property. What we want to know is if the method is defined in 6075 // this implementation. 6076 auto *Getter = PID->getGetterMethodDecl(); 6077 if (!Getter || Getter->isSynthesizedAccessorStub()) 6078 CodeGenFunction(*this).GenerateObjCGetter( 6079 const_cast<ObjCImplementationDecl *>(D), PID); 6080 auto *Setter = PID->getSetterMethodDecl(); 6081 if (!PD->isReadOnly() && (!Setter || Setter->isSynthesizedAccessorStub())) 6082 CodeGenFunction(*this).GenerateObjCSetter( 6083 const_cast<ObjCImplementationDecl *>(D), PID); 6084 } 6085 } 6086 } 6087 6088 static bool needsDestructMethod(ObjCImplementationDecl *impl) { 6089 const ObjCInterfaceDecl *iface = impl->getClassInterface(); 6090 for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin(); 6091 ivar; ivar = ivar->getNextIvar()) 6092 if (ivar->getType().isDestructedType()) 6093 return true; 6094 6095 return false; 6096 } 6097 6098 static bool AllTrivialInitializers(CodeGenModule &CGM, 6099 ObjCImplementationDecl *D) { 6100 CodeGenFunction CGF(CGM); 6101 for (ObjCImplementationDecl::init_iterator B = D->init_begin(), 6102 E = D->init_end(); B != E; ++B) { 6103 CXXCtorInitializer *CtorInitExp = *B; 6104 Expr *Init = CtorInitExp->getInit(); 6105 if (!CGF.isTrivialInitializer(Init)) 6106 return false; 6107 } 6108 return true; 6109 } 6110 6111 /// EmitObjCIvarInitializations - Emit information for ivar initialization 6112 /// for an implementation. 6113 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) { 6114 // We might need a .cxx_destruct even if we don't have any ivar initializers. 6115 if (needsDestructMethod(D)) { 6116 IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct"); 6117 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 6118 ObjCMethodDecl *DTORMethod = ObjCMethodDecl::Create( 6119 getContext(), D->getLocation(), D->getLocation(), cxxSelector, 6120 getContext().VoidTy, nullptr, D, 6121 /*isInstance=*/true, /*isVariadic=*/false, 6122 /*isPropertyAccessor=*/true, /*isSynthesizedAccessorStub=*/false, 6123 /*isImplicitlyDeclared=*/true, 6124 /*isDefined=*/false, ObjCMethodDecl::Required); 6125 D->addInstanceMethod(DTORMethod); 6126 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false); 6127 D->setHasDestructors(true); 6128 } 6129 6130 // If the implementation doesn't have any ivar initializers, we don't need 6131 // a .cxx_construct. 6132 if (D->getNumIvarInitializers() == 0 || 6133 AllTrivialInitializers(*this, D)) 6134 return; 6135 6136 IdentifierInfo *II = &getContext().Idents.get(".cxx_construct"); 6137 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 6138 // The constructor returns 'self'. 6139 ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create( 6140 getContext(), D->getLocation(), D->getLocation(), cxxSelector, 6141 getContext().getObjCIdType(), nullptr, D, /*isInstance=*/true, 6142 /*isVariadic=*/false, 6143 /*isPropertyAccessor=*/true, /*isSynthesizedAccessorStub=*/false, 6144 /*isImplicitlyDeclared=*/true, 6145 /*isDefined=*/false, ObjCMethodDecl::Required); 6146 D->addInstanceMethod(CTORMethod); 6147 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true); 6148 D->setHasNonZeroConstructors(true); 6149 } 6150 6151 // EmitLinkageSpec - Emit all declarations in a linkage spec. 6152 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) { 6153 if (LSD->getLanguage() != LinkageSpecDecl::lang_c && 6154 LSD->getLanguage() != LinkageSpecDecl::lang_cxx) { 6155 ErrorUnsupported(LSD, "linkage spec"); 6156 return; 6157 } 6158 6159 EmitDeclContext(LSD); 6160 } 6161 6162 void CodeGenModule::EmitTopLevelStmt(const TopLevelStmtDecl *D) { 6163 std::unique_ptr<CodeGenFunction> &CurCGF = 6164 GlobalTopLevelStmtBlockInFlight.first; 6165 6166 // We emitted a top-level stmt but after it there is initialization. 6167 // Stop squashing the top-level stmts into a single function. 6168 if (CurCGF && CXXGlobalInits.back() != CurCGF->CurFn) { 6169 CurCGF->FinishFunction(D->getEndLoc()); 6170 CurCGF = nullptr; 6171 } 6172 6173 if (!CurCGF) { 6174 // void __stmts__N(void) 6175 // FIXME: Ask the ABI name mangler to pick a name. 6176 std::string Name = "__stmts__" + llvm::utostr(CXXGlobalInits.size()); 6177 FunctionArgList Args; 6178 QualType RetTy = getContext().VoidTy; 6179 const CGFunctionInfo &FnInfo = 6180 getTypes().arrangeBuiltinFunctionDeclaration(RetTy, Args); 6181 llvm::FunctionType *FnTy = getTypes().GetFunctionType(FnInfo); 6182 llvm::Function *Fn = llvm::Function::Create( 6183 FnTy, llvm::GlobalValue::InternalLinkage, Name, &getModule()); 6184 6185 CurCGF.reset(new CodeGenFunction(*this)); 6186 GlobalTopLevelStmtBlockInFlight.second = D; 6187 CurCGF->StartFunction(GlobalDecl(), RetTy, Fn, FnInfo, Args, 6188 D->getBeginLoc(), D->getBeginLoc()); 6189 CXXGlobalInits.push_back(Fn); 6190 } 6191 6192 CurCGF->EmitStmt(D->getStmt()); 6193 } 6194 6195 void CodeGenModule::EmitDeclContext(const DeclContext *DC) { 6196 for (auto *I : DC->decls()) { 6197 // Unlike other DeclContexts, the contents of an ObjCImplDecl at TU scope 6198 // are themselves considered "top-level", so EmitTopLevelDecl on an 6199 // ObjCImplDecl does not recursively visit them. We need to do that in 6200 // case they're nested inside another construct (LinkageSpecDecl / 6201 // ExportDecl) that does stop them from being considered "top-level". 6202 if (auto *OID = dyn_cast<ObjCImplDecl>(I)) { 6203 for (auto *M : OID->methods()) 6204 EmitTopLevelDecl(M); 6205 } 6206 6207 EmitTopLevelDecl(I); 6208 } 6209 } 6210 6211 /// EmitTopLevelDecl - Emit code for a single top level declaration. 6212 void CodeGenModule::EmitTopLevelDecl(Decl *D) { 6213 // Ignore dependent declarations. 6214 if (D->isTemplated()) 6215 return; 6216 6217 // Consteval function shouldn't be emitted. 6218 if (auto *FD = dyn_cast<FunctionDecl>(D)) 6219 if (FD->isConsteval()) 6220 return; 6221 6222 switch (D->getKind()) { 6223 case Decl::CXXConversion: 6224 case Decl::CXXMethod: 6225 case Decl::Function: 6226 EmitGlobal(cast<FunctionDecl>(D)); 6227 // Always provide some coverage mapping 6228 // even for the functions that aren't emitted. 6229 AddDeferredUnusedCoverageMapping(D); 6230 break; 6231 6232 case Decl::CXXDeductionGuide: 6233 // Function-like, but does not result in code emission. 6234 break; 6235 6236 case Decl::Var: 6237 case Decl::Decomposition: 6238 case Decl::VarTemplateSpecialization: 6239 EmitGlobal(cast<VarDecl>(D)); 6240 if (auto *DD = dyn_cast<DecompositionDecl>(D)) 6241 for (auto *B : DD->bindings()) 6242 if (auto *HD = B->getHoldingVar()) 6243 EmitGlobal(HD); 6244 break; 6245 6246 // Indirect fields from global anonymous structs and unions can be 6247 // ignored; only the actual variable requires IR gen support. 6248 case Decl::IndirectField: 6249 break; 6250 6251 // C++ Decls 6252 case Decl::Namespace: 6253 EmitDeclContext(cast<NamespaceDecl>(D)); 6254 break; 6255 case Decl::ClassTemplateSpecialization: { 6256 const auto *Spec = cast<ClassTemplateSpecializationDecl>(D); 6257 if (CGDebugInfo *DI = getModuleDebugInfo()) 6258 if (Spec->getSpecializationKind() == 6259 TSK_ExplicitInstantiationDefinition && 6260 Spec->hasDefinition()) 6261 DI->completeTemplateDefinition(*Spec); 6262 } [[fallthrough]]; 6263 case Decl::CXXRecord: { 6264 CXXRecordDecl *CRD = cast<CXXRecordDecl>(D); 6265 if (CGDebugInfo *DI = getModuleDebugInfo()) { 6266 if (CRD->hasDefinition()) 6267 DI->EmitAndRetainType(getContext().getRecordType(cast<RecordDecl>(D))); 6268 if (auto *ES = D->getASTContext().getExternalSource()) 6269 if (ES->hasExternalDefinitions(D) == ExternalASTSource::EK_Never) 6270 DI->completeUnusedClass(*CRD); 6271 } 6272 // Emit any static data members, they may be definitions. 6273 for (auto *I : CRD->decls()) 6274 if (isa<VarDecl>(I) || isa<CXXRecordDecl>(I)) 6275 EmitTopLevelDecl(I); 6276 break; 6277 } 6278 // No code generation needed. 6279 case Decl::UsingShadow: 6280 case Decl::ClassTemplate: 6281 case Decl::VarTemplate: 6282 case Decl::Concept: 6283 case Decl::VarTemplatePartialSpecialization: 6284 case Decl::FunctionTemplate: 6285 case Decl::TypeAliasTemplate: 6286 case Decl::Block: 6287 case Decl::Empty: 6288 case Decl::Binding: 6289 break; 6290 case Decl::Using: // using X; [C++] 6291 if (CGDebugInfo *DI = getModuleDebugInfo()) 6292 DI->EmitUsingDecl(cast<UsingDecl>(*D)); 6293 break; 6294 case Decl::UsingEnum: // using enum X; [C++] 6295 if (CGDebugInfo *DI = getModuleDebugInfo()) 6296 DI->EmitUsingEnumDecl(cast<UsingEnumDecl>(*D)); 6297 break; 6298 case Decl::NamespaceAlias: 6299 if (CGDebugInfo *DI = getModuleDebugInfo()) 6300 DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(*D)); 6301 break; 6302 case Decl::UsingDirective: // using namespace X; [C++] 6303 if (CGDebugInfo *DI = getModuleDebugInfo()) 6304 DI->EmitUsingDirective(cast<UsingDirectiveDecl>(*D)); 6305 break; 6306 case Decl::CXXConstructor: 6307 getCXXABI().EmitCXXConstructors(cast<CXXConstructorDecl>(D)); 6308 break; 6309 case Decl::CXXDestructor: 6310 getCXXABI().EmitCXXDestructors(cast<CXXDestructorDecl>(D)); 6311 break; 6312 6313 case Decl::StaticAssert: 6314 // Nothing to do. 6315 break; 6316 6317 // Objective-C Decls 6318 6319 // Forward declarations, no (immediate) code generation. 6320 case Decl::ObjCInterface: 6321 case Decl::ObjCCategory: 6322 break; 6323 6324 case Decl::ObjCProtocol: { 6325 auto *Proto = cast<ObjCProtocolDecl>(D); 6326 if (Proto->isThisDeclarationADefinition()) 6327 ObjCRuntime->GenerateProtocol(Proto); 6328 break; 6329 } 6330 6331 case Decl::ObjCCategoryImpl: 6332 // Categories have properties but don't support synthesize so we 6333 // can ignore them here. 6334 ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D)); 6335 break; 6336 6337 case Decl::ObjCImplementation: { 6338 auto *OMD = cast<ObjCImplementationDecl>(D); 6339 EmitObjCPropertyImplementations(OMD); 6340 EmitObjCIvarInitializations(OMD); 6341 ObjCRuntime->GenerateClass(OMD); 6342 // Emit global variable debug information. 6343 if (CGDebugInfo *DI = getModuleDebugInfo()) 6344 if (getCodeGenOpts().hasReducedDebugInfo()) 6345 DI->getOrCreateInterfaceType(getContext().getObjCInterfaceType( 6346 OMD->getClassInterface()), OMD->getLocation()); 6347 break; 6348 } 6349 case Decl::ObjCMethod: { 6350 auto *OMD = cast<ObjCMethodDecl>(D); 6351 // If this is not a prototype, emit the body. 6352 if (OMD->getBody()) 6353 CodeGenFunction(*this).GenerateObjCMethod(OMD); 6354 break; 6355 } 6356 case Decl::ObjCCompatibleAlias: 6357 ObjCRuntime->RegisterAlias(cast<ObjCCompatibleAliasDecl>(D)); 6358 break; 6359 6360 case Decl::PragmaComment: { 6361 const auto *PCD = cast<PragmaCommentDecl>(D); 6362 switch (PCD->getCommentKind()) { 6363 case PCK_Unknown: 6364 llvm_unreachable("unexpected pragma comment kind"); 6365 case PCK_Linker: 6366 AppendLinkerOptions(PCD->getArg()); 6367 break; 6368 case PCK_Lib: 6369 AddDependentLib(PCD->getArg()); 6370 break; 6371 case PCK_Compiler: 6372 case PCK_ExeStr: 6373 case PCK_User: 6374 break; // We ignore all of these. 6375 } 6376 break; 6377 } 6378 6379 case Decl::PragmaDetectMismatch: { 6380 const auto *PDMD = cast<PragmaDetectMismatchDecl>(D); 6381 AddDetectMismatch(PDMD->getName(), PDMD->getValue()); 6382 break; 6383 } 6384 6385 case Decl::LinkageSpec: 6386 EmitLinkageSpec(cast<LinkageSpecDecl>(D)); 6387 break; 6388 6389 case Decl::FileScopeAsm: { 6390 // File-scope asm is ignored during device-side CUDA compilation. 6391 if (LangOpts.CUDA && LangOpts.CUDAIsDevice) 6392 break; 6393 // File-scope asm is ignored during device-side OpenMP compilation. 6394 if (LangOpts.OpenMPIsDevice) 6395 break; 6396 // File-scope asm is ignored during device-side SYCL compilation. 6397 if (LangOpts.SYCLIsDevice) 6398 break; 6399 auto *AD = cast<FileScopeAsmDecl>(D); 6400 getModule().appendModuleInlineAsm(AD->getAsmString()->getString()); 6401 break; 6402 } 6403 6404 case Decl::TopLevelStmt: 6405 EmitTopLevelStmt(cast<TopLevelStmtDecl>(D)); 6406 break; 6407 6408 case Decl::Import: { 6409 auto *Import = cast<ImportDecl>(D); 6410 6411 // If we've already imported this module, we're done. 6412 if (!ImportedModules.insert(Import->getImportedModule())) 6413 break; 6414 6415 // Emit debug information for direct imports. 6416 if (!Import->getImportedOwningModule()) { 6417 if (CGDebugInfo *DI = getModuleDebugInfo()) 6418 DI->EmitImportDecl(*Import); 6419 } 6420 6421 // For C++ standard modules we are done - we will call the module 6422 // initializer for imported modules, and that will likewise call those for 6423 // any imports it has. 6424 if (CXX20ModuleInits && Import->getImportedOwningModule() && 6425 !Import->getImportedOwningModule()->isModuleMapModule()) 6426 break; 6427 6428 // For clang C++ module map modules the initializers for sub-modules are 6429 // emitted here. 6430 6431 // Find all of the submodules and emit the module initializers. 6432 llvm::SmallPtrSet<clang::Module *, 16> Visited; 6433 SmallVector<clang::Module *, 16> Stack; 6434 Visited.insert(Import->getImportedModule()); 6435 Stack.push_back(Import->getImportedModule()); 6436 6437 while (!Stack.empty()) { 6438 clang::Module *Mod = Stack.pop_back_val(); 6439 if (!EmittedModuleInitializers.insert(Mod).second) 6440 continue; 6441 6442 for (auto *D : Context.getModuleInitializers(Mod)) 6443 EmitTopLevelDecl(D); 6444 6445 // Visit the submodules of this module. 6446 for (clang::Module::submodule_iterator Sub = Mod->submodule_begin(), 6447 SubEnd = Mod->submodule_end(); 6448 Sub != SubEnd; ++Sub) { 6449 // Skip explicit children; they need to be explicitly imported to emit 6450 // the initializers. 6451 if ((*Sub)->IsExplicit) 6452 continue; 6453 6454 if (Visited.insert(*Sub).second) 6455 Stack.push_back(*Sub); 6456 } 6457 } 6458 break; 6459 } 6460 6461 case Decl::Export: 6462 EmitDeclContext(cast<ExportDecl>(D)); 6463 break; 6464 6465 case Decl::OMPThreadPrivate: 6466 EmitOMPThreadPrivateDecl(cast<OMPThreadPrivateDecl>(D)); 6467 break; 6468 6469 case Decl::OMPAllocate: 6470 EmitOMPAllocateDecl(cast<OMPAllocateDecl>(D)); 6471 break; 6472 6473 case Decl::OMPDeclareReduction: 6474 EmitOMPDeclareReduction(cast<OMPDeclareReductionDecl>(D)); 6475 break; 6476 6477 case Decl::OMPDeclareMapper: 6478 EmitOMPDeclareMapper(cast<OMPDeclareMapperDecl>(D)); 6479 break; 6480 6481 case Decl::OMPRequires: 6482 EmitOMPRequiresDecl(cast<OMPRequiresDecl>(D)); 6483 break; 6484 6485 case Decl::Typedef: 6486 case Decl::TypeAlias: // using foo = bar; [C++11] 6487 if (CGDebugInfo *DI = getModuleDebugInfo()) 6488 DI->EmitAndRetainType( 6489 getContext().getTypedefType(cast<TypedefNameDecl>(D))); 6490 break; 6491 6492 case Decl::Record: 6493 if (CGDebugInfo *DI = getModuleDebugInfo()) 6494 if (cast<RecordDecl>(D)->getDefinition()) 6495 DI->EmitAndRetainType(getContext().getRecordType(cast<RecordDecl>(D))); 6496 break; 6497 6498 case Decl::Enum: 6499 if (CGDebugInfo *DI = getModuleDebugInfo()) 6500 if (cast<EnumDecl>(D)->getDefinition()) 6501 DI->EmitAndRetainType(getContext().getEnumType(cast<EnumDecl>(D))); 6502 break; 6503 6504 case Decl::HLSLBuffer: 6505 getHLSLRuntime().addBuffer(cast<HLSLBufferDecl>(D)); 6506 break; 6507 6508 default: 6509 // Make sure we handled everything we should, every other kind is a 6510 // non-top-level decl. FIXME: Would be nice to have an isTopLevelDeclKind 6511 // function. Need to recode Decl::Kind to do that easily. 6512 assert(isa<TypeDecl>(D) && "Unsupported decl kind"); 6513 break; 6514 } 6515 } 6516 6517 void CodeGenModule::AddDeferredUnusedCoverageMapping(Decl *D) { 6518 // Do we need to generate coverage mapping? 6519 if (!CodeGenOpts.CoverageMapping) 6520 return; 6521 switch (D->getKind()) { 6522 case Decl::CXXConversion: 6523 case Decl::CXXMethod: 6524 case Decl::Function: 6525 case Decl::ObjCMethod: 6526 case Decl::CXXConstructor: 6527 case Decl::CXXDestructor: { 6528 if (!cast<FunctionDecl>(D)->doesThisDeclarationHaveABody()) 6529 break; 6530 SourceManager &SM = getContext().getSourceManager(); 6531 if (LimitedCoverage && SM.getMainFileID() != SM.getFileID(D->getBeginLoc())) 6532 break; 6533 auto I = DeferredEmptyCoverageMappingDecls.find(D); 6534 if (I == DeferredEmptyCoverageMappingDecls.end()) 6535 DeferredEmptyCoverageMappingDecls[D] = true; 6536 break; 6537 } 6538 default: 6539 break; 6540 }; 6541 } 6542 6543 void CodeGenModule::ClearUnusedCoverageMapping(const Decl *D) { 6544 // Do we need to generate coverage mapping? 6545 if (!CodeGenOpts.CoverageMapping) 6546 return; 6547 if (const auto *Fn = dyn_cast<FunctionDecl>(D)) { 6548 if (Fn->isTemplateInstantiation()) 6549 ClearUnusedCoverageMapping(Fn->getTemplateInstantiationPattern()); 6550 } 6551 auto I = DeferredEmptyCoverageMappingDecls.find(D); 6552 if (I == DeferredEmptyCoverageMappingDecls.end()) 6553 DeferredEmptyCoverageMappingDecls[D] = false; 6554 else 6555 I->second = false; 6556 } 6557 6558 void CodeGenModule::EmitDeferredUnusedCoverageMappings() { 6559 // We call takeVector() here to avoid use-after-free. 6560 // FIXME: DeferredEmptyCoverageMappingDecls is getting mutated because 6561 // we deserialize function bodies to emit coverage info for them, and that 6562 // deserializes more declarations. How should we handle that case? 6563 for (const auto &Entry : DeferredEmptyCoverageMappingDecls.takeVector()) { 6564 if (!Entry.second) 6565 continue; 6566 const Decl *D = Entry.first; 6567 switch (D->getKind()) { 6568 case Decl::CXXConversion: 6569 case Decl::CXXMethod: 6570 case Decl::Function: 6571 case Decl::ObjCMethod: { 6572 CodeGenPGO PGO(*this); 6573 GlobalDecl GD(cast<FunctionDecl>(D)); 6574 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 6575 getFunctionLinkage(GD)); 6576 break; 6577 } 6578 case Decl::CXXConstructor: { 6579 CodeGenPGO PGO(*this); 6580 GlobalDecl GD(cast<CXXConstructorDecl>(D), Ctor_Base); 6581 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 6582 getFunctionLinkage(GD)); 6583 break; 6584 } 6585 case Decl::CXXDestructor: { 6586 CodeGenPGO PGO(*this); 6587 GlobalDecl GD(cast<CXXDestructorDecl>(D), Dtor_Base); 6588 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 6589 getFunctionLinkage(GD)); 6590 break; 6591 } 6592 default: 6593 break; 6594 }; 6595 } 6596 } 6597 6598 void CodeGenModule::EmitMainVoidAlias() { 6599 // In order to transition away from "__original_main" gracefully, emit an 6600 // alias for "main" in the no-argument case so that libc can detect when 6601 // new-style no-argument main is in used. 6602 if (llvm::Function *F = getModule().getFunction("main")) { 6603 if (!F->isDeclaration() && F->arg_size() == 0 && !F->isVarArg() && 6604 F->getReturnType()->isIntegerTy(Context.getTargetInfo().getIntWidth())) { 6605 auto *GA = llvm::GlobalAlias::create("__main_void", F); 6606 GA->setVisibility(llvm::GlobalValue::HiddenVisibility); 6607 } 6608 } 6609 } 6610 6611 /// Turns the given pointer into a constant. 6612 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context, 6613 const void *Ptr) { 6614 uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr); 6615 llvm::Type *i64 = llvm::Type::getInt64Ty(Context); 6616 return llvm::ConstantInt::get(i64, PtrInt); 6617 } 6618 6619 static void EmitGlobalDeclMetadata(CodeGenModule &CGM, 6620 llvm::NamedMDNode *&GlobalMetadata, 6621 GlobalDecl D, 6622 llvm::GlobalValue *Addr) { 6623 if (!GlobalMetadata) 6624 GlobalMetadata = 6625 CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs"); 6626 6627 // TODO: should we report variant information for ctors/dtors? 6628 llvm::Metadata *Ops[] = {llvm::ConstantAsMetadata::get(Addr), 6629 llvm::ConstantAsMetadata::get(GetPointerConstant( 6630 CGM.getLLVMContext(), D.getDecl()))}; 6631 GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops)); 6632 } 6633 6634 bool CodeGenModule::CheckAndReplaceExternCIFuncs(llvm::GlobalValue *Elem, 6635 llvm::GlobalValue *CppFunc) { 6636 // Store the list of ifuncs we need to replace uses in. 6637 llvm::SmallVector<llvm::GlobalIFunc *> IFuncs; 6638 // List of ConstantExprs that we should be able to delete when we're done 6639 // here. 6640 llvm::SmallVector<llvm::ConstantExpr *> CEs; 6641 6642 // It isn't valid to replace the extern-C ifuncs if all we find is itself! 6643 if (Elem == CppFunc) 6644 return false; 6645 6646 // First make sure that all users of this are ifuncs (or ifuncs via a 6647 // bitcast), and collect the list of ifuncs and CEs so we can work on them 6648 // later. 6649 for (llvm::User *User : Elem->users()) { 6650 // Users can either be a bitcast ConstExpr that is used by the ifuncs, OR an 6651 // ifunc directly. In any other case, just give up, as we don't know what we 6652 // could break by changing those. 6653 if (auto *ConstExpr = dyn_cast<llvm::ConstantExpr>(User)) { 6654 if (ConstExpr->getOpcode() != llvm::Instruction::BitCast) 6655 return false; 6656 6657 for (llvm::User *CEUser : ConstExpr->users()) { 6658 if (auto *IFunc = dyn_cast<llvm::GlobalIFunc>(CEUser)) { 6659 IFuncs.push_back(IFunc); 6660 } else { 6661 return false; 6662 } 6663 } 6664 CEs.push_back(ConstExpr); 6665 } else if (auto *IFunc = dyn_cast<llvm::GlobalIFunc>(User)) { 6666 IFuncs.push_back(IFunc); 6667 } else { 6668 // This user is one we don't know how to handle, so fail redirection. This 6669 // will result in an ifunc retaining a resolver name that will ultimately 6670 // fail to be resolved to a defined function. 6671 return false; 6672 } 6673 } 6674 6675 // Now we know this is a valid case where we can do this alias replacement, we 6676 // need to remove all of the references to Elem (and the bitcasts!) so we can 6677 // delete it. 6678 for (llvm::GlobalIFunc *IFunc : IFuncs) 6679 IFunc->setResolver(nullptr); 6680 for (llvm::ConstantExpr *ConstExpr : CEs) 6681 ConstExpr->destroyConstant(); 6682 6683 // We should now be out of uses for the 'old' version of this function, so we 6684 // can erase it as well. 6685 Elem->eraseFromParent(); 6686 6687 for (llvm::GlobalIFunc *IFunc : IFuncs) { 6688 // The type of the resolver is always just a function-type that returns the 6689 // type of the IFunc, so create that here. If the type of the actual 6690 // resolver doesn't match, it just gets bitcast to the right thing. 6691 auto *ResolverTy = 6692 llvm::FunctionType::get(IFunc->getType(), /*isVarArg*/ false); 6693 llvm::Constant *Resolver = GetOrCreateLLVMFunction( 6694 CppFunc->getName(), ResolverTy, {}, /*ForVTable*/ false); 6695 IFunc->setResolver(Resolver); 6696 } 6697 return true; 6698 } 6699 6700 /// For each function which is declared within an extern "C" region and marked 6701 /// as 'used', but has internal linkage, create an alias from the unmangled 6702 /// name to the mangled name if possible. People expect to be able to refer 6703 /// to such functions with an unmangled name from inline assembly within the 6704 /// same translation unit. 6705 void CodeGenModule::EmitStaticExternCAliases() { 6706 if (!getTargetCodeGenInfo().shouldEmitStaticExternCAliases()) 6707 return; 6708 for (auto &I : StaticExternCValues) { 6709 IdentifierInfo *Name = I.first; 6710 llvm::GlobalValue *Val = I.second; 6711 6712 // If Val is null, that implies there were multiple declarations that each 6713 // had a claim to the unmangled name. In this case, generation of the alias 6714 // is suppressed. See CodeGenModule::MaybeHandleStaticInExternC. 6715 if (!Val) 6716 break; 6717 6718 llvm::GlobalValue *ExistingElem = 6719 getModule().getNamedValue(Name->getName()); 6720 6721 // If there is either not something already by this name, or we were able to 6722 // replace all uses from IFuncs, create the alias. 6723 if (!ExistingElem || CheckAndReplaceExternCIFuncs(ExistingElem, Val)) 6724 addCompilerUsedGlobal(llvm::GlobalAlias::create(Name->getName(), Val)); 6725 } 6726 } 6727 6728 bool CodeGenModule::lookupRepresentativeDecl(StringRef MangledName, 6729 GlobalDecl &Result) const { 6730 auto Res = Manglings.find(MangledName); 6731 if (Res == Manglings.end()) 6732 return false; 6733 Result = Res->getValue(); 6734 return true; 6735 } 6736 6737 /// Emits metadata nodes associating all the global values in the 6738 /// current module with the Decls they came from. This is useful for 6739 /// projects using IR gen as a subroutine. 6740 /// 6741 /// Since there's currently no way to associate an MDNode directly 6742 /// with an llvm::GlobalValue, we create a global named metadata 6743 /// with the name 'clang.global.decl.ptrs'. 6744 void CodeGenModule::EmitDeclMetadata() { 6745 llvm::NamedMDNode *GlobalMetadata = nullptr; 6746 6747 for (auto &I : MangledDeclNames) { 6748 llvm::GlobalValue *Addr = getModule().getNamedValue(I.second); 6749 // Some mangled names don't necessarily have an associated GlobalValue 6750 // in this module, e.g. if we mangled it for DebugInfo. 6751 if (Addr) 6752 EmitGlobalDeclMetadata(*this, GlobalMetadata, I.first, Addr); 6753 } 6754 } 6755 6756 /// Emits metadata nodes for all the local variables in the current 6757 /// function. 6758 void CodeGenFunction::EmitDeclMetadata() { 6759 if (LocalDeclMap.empty()) return; 6760 6761 llvm::LLVMContext &Context = getLLVMContext(); 6762 6763 // Find the unique metadata ID for this name. 6764 unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr"); 6765 6766 llvm::NamedMDNode *GlobalMetadata = nullptr; 6767 6768 for (auto &I : LocalDeclMap) { 6769 const Decl *D = I.first; 6770 llvm::Value *Addr = I.second.getPointer(); 6771 if (auto *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) { 6772 llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D); 6773 Alloca->setMetadata( 6774 DeclPtrKind, llvm::MDNode::get( 6775 Context, llvm::ValueAsMetadata::getConstant(DAddr))); 6776 } else if (auto *GV = dyn_cast<llvm::GlobalValue>(Addr)) { 6777 GlobalDecl GD = GlobalDecl(cast<VarDecl>(D)); 6778 EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV); 6779 } 6780 } 6781 } 6782 6783 void CodeGenModule::EmitVersionIdentMetadata() { 6784 llvm::NamedMDNode *IdentMetadata = 6785 TheModule.getOrInsertNamedMetadata("llvm.ident"); 6786 std::string Version = getClangFullVersion(); 6787 llvm::LLVMContext &Ctx = TheModule.getContext(); 6788 6789 llvm::Metadata *IdentNode[] = {llvm::MDString::get(Ctx, Version)}; 6790 IdentMetadata->addOperand(llvm::MDNode::get(Ctx, IdentNode)); 6791 } 6792 6793 void CodeGenModule::EmitCommandLineMetadata() { 6794 llvm::NamedMDNode *CommandLineMetadata = 6795 TheModule.getOrInsertNamedMetadata("llvm.commandline"); 6796 std::string CommandLine = getCodeGenOpts().RecordCommandLine; 6797 llvm::LLVMContext &Ctx = TheModule.getContext(); 6798 6799 llvm::Metadata *CommandLineNode[] = {llvm::MDString::get(Ctx, CommandLine)}; 6800 CommandLineMetadata->addOperand(llvm::MDNode::get(Ctx, CommandLineNode)); 6801 } 6802 6803 void CodeGenModule::EmitCoverageFile() { 6804 if (getCodeGenOpts().CoverageDataFile.empty() && 6805 getCodeGenOpts().CoverageNotesFile.empty()) 6806 return; 6807 6808 llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu"); 6809 if (!CUNode) 6810 return; 6811 6812 llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov"); 6813 llvm::LLVMContext &Ctx = TheModule.getContext(); 6814 auto *CoverageDataFile = 6815 llvm::MDString::get(Ctx, getCodeGenOpts().CoverageDataFile); 6816 auto *CoverageNotesFile = 6817 llvm::MDString::get(Ctx, getCodeGenOpts().CoverageNotesFile); 6818 for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) { 6819 llvm::MDNode *CU = CUNode->getOperand(i); 6820 llvm::Metadata *Elts[] = {CoverageNotesFile, CoverageDataFile, CU}; 6821 GCov->addOperand(llvm::MDNode::get(Ctx, Elts)); 6822 } 6823 } 6824 6825 llvm::Constant *CodeGenModule::GetAddrOfRTTIDescriptor(QualType Ty, 6826 bool ForEH) { 6827 // Return a bogus pointer if RTTI is disabled, unless it's for EH. 6828 // FIXME: should we even be calling this method if RTTI is disabled 6829 // and it's not for EH? 6830 if ((!ForEH && !getLangOpts().RTTI) || getLangOpts().CUDAIsDevice || 6831 (getLangOpts().OpenMP && getLangOpts().OpenMPIsDevice && 6832 getTriple().isNVPTX())) 6833 return llvm::Constant::getNullValue(Int8PtrTy); 6834 6835 if (ForEH && Ty->isObjCObjectPointerType() && 6836 LangOpts.ObjCRuntime.isGNUFamily()) 6837 return ObjCRuntime->GetEHType(Ty); 6838 6839 return getCXXABI().getAddrOfRTTIDescriptor(Ty); 6840 } 6841 6842 void CodeGenModule::EmitOMPThreadPrivateDecl(const OMPThreadPrivateDecl *D) { 6843 // Do not emit threadprivates in simd-only mode. 6844 if (LangOpts.OpenMP && LangOpts.OpenMPSimd) 6845 return; 6846 for (auto RefExpr : D->varlists()) { 6847 auto *VD = cast<VarDecl>(cast<DeclRefExpr>(RefExpr)->getDecl()); 6848 bool PerformInit = 6849 VD->getAnyInitializer() && 6850 !VD->getAnyInitializer()->isConstantInitializer(getContext(), 6851 /*ForRef=*/false); 6852 6853 Address Addr(GetAddrOfGlobalVar(VD), 6854 getTypes().ConvertTypeForMem(VD->getType()), 6855 getContext().getDeclAlign(VD)); 6856 if (auto InitFunction = getOpenMPRuntime().emitThreadPrivateVarDefinition( 6857 VD, Addr, RefExpr->getBeginLoc(), PerformInit)) 6858 CXXGlobalInits.push_back(InitFunction); 6859 } 6860 } 6861 6862 llvm::Metadata * 6863 CodeGenModule::CreateMetadataIdentifierImpl(QualType T, MetadataTypeMap &Map, 6864 StringRef Suffix) { 6865 if (auto *FnType = T->getAs<FunctionProtoType>()) 6866 T = getContext().getFunctionType( 6867 FnType->getReturnType(), FnType->getParamTypes(), 6868 FnType->getExtProtoInfo().withExceptionSpec(EST_None)); 6869 6870 llvm::Metadata *&InternalId = Map[T.getCanonicalType()]; 6871 if (InternalId) 6872 return InternalId; 6873 6874 if (isExternallyVisible(T->getLinkage())) { 6875 std::string OutName; 6876 llvm::raw_string_ostream Out(OutName); 6877 getCXXABI().getMangleContext().mangleTypeName(T, Out); 6878 Out << Suffix; 6879 6880 InternalId = llvm::MDString::get(getLLVMContext(), Out.str()); 6881 } else { 6882 InternalId = llvm::MDNode::getDistinct(getLLVMContext(), 6883 llvm::ArrayRef<llvm::Metadata *>()); 6884 } 6885 6886 return InternalId; 6887 } 6888 6889 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierForType(QualType T) { 6890 return CreateMetadataIdentifierImpl(T, MetadataIdMap, ""); 6891 } 6892 6893 llvm::Metadata * 6894 CodeGenModule::CreateMetadataIdentifierForVirtualMemPtrType(QualType T) { 6895 return CreateMetadataIdentifierImpl(T, VirtualMetadataIdMap, ".virtual"); 6896 } 6897 6898 // Generalize pointer types to a void pointer with the qualifiers of the 6899 // originally pointed-to type, e.g. 'const char *' and 'char * const *' 6900 // generalize to 'const void *' while 'char *' and 'const char **' generalize to 6901 // 'void *'. 6902 static QualType GeneralizeType(ASTContext &Ctx, QualType Ty) { 6903 if (!Ty->isPointerType()) 6904 return Ty; 6905 6906 return Ctx.getPointerType( 6907 QualType(Ctx.VoidTy).withCVRQualifiers( 6908 Ty->getPointeeType().getCVRQualifiers())); 6909 } 6910 6911 // Apply type generalization to a FunctionType's return and argument types 6912 static QualType GeneralizeFunctionType(ASTContext &Ctx, QualType Ty) { 6913 if (auto *FnType = Ty->getAs<FunctionProtoType>()) { 6914 SmallVector<QualType, 8> GeneralizedParams; 6915 for (auto &Param : FnType->param_types()) 6916 GeneralizedParams.push_back(GeneralizeType(Ctx, Param)); 6917 6918 return Ctx.getFunctionType( 6919 GeneralizeType(Ctx, FnType->getReturnType()), 6920 GeneralizedParams, FnType->getExtProtoInfo()); 6921 } 6922 6923 if (auto *FnType = Ty->getAs<FunctionNoProtoType>()) 6924 return Ctx.getFunctionNoProtoType( 6925 GeneralizeType(Ctx, FnType->getReturnType())); 6926 6927 llvm_unreachable("Encountered unknown FunctionType"); 6928 } 6929 6930 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierGeneralized(QualType T) { 6931 return CreateMetadataIdentifierImpl(GeneralizeFunctionType(getContext(), T), 6932 GeneralizedMetadataIdMap, ".generalized"); 6933 } 6934 6935 /// Returns whether this module needs the "all-vtables" type identifier. 6936 bool CodeGenModule::NeedAllVtablesTypeId() const { 6937 // Returns true if at least one of vtable-based CFI checkers is enabled and 6938 // is not in the trapping mode. 6939 return ((LangOpts.Sanitize.has(SanitizerKind::CFIVCall) && 6940 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIVCall)) || 6941 (LangOpts.Sanitize.has(SanitizerKind::CFINVCall) && 6942 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFINVCall)) || 6943 (LangOpts.Sanitize.has(SanitizerKind::CFIDerivedCast) && 6944 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIDerivedCast)) || 6945 (LangOpts.Sanitize.has(SanitizerKind::CFIUnrelatedCast) && 6946 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIUnrelatedCast))); 6947 } 6948 6949 void CodeGenModule::AddVTableTypeMetadata(llvm::GlobalVariable *VTable, 6950 CharUnits Offset, 6951 const CXXRecordDecl *RD) { 6952 llvm::Metadata *MD = 6953 CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0)); 6954 VTable->addTypeMetadata(Offset.getQuantity(), MD); 6955 6956 if (CodeGenOpts.SanitizeCfiCrossDso) 6957 if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD)) 6958 VTable->addTypeMetadata(Offset.getQuantity(), 6959 llvm::ConstantAsMetadata::get(CrossDsoTypeId)); 6960 6961 if (NeedAllVtablesTypeId()) { 6962 llvm::Metadata *MD = llvm::MDString::get(getLLVMContext(), "all-vtables"); 6963 VTable->addTypeMetadata(Offset.getQuantity(), MD); 6964 } 6965 } 6966 6967 llvm::SanitizerStatReport &CodeGenModule::getSanStats() { 6968 if (!SanStats) 6969 SanStats = std::make_unique<llvm::SanitizerStatReport>(&getModule()); 6970 6971 return *SanStats; 6972 } 6973 6974 llvm::Value * 6975 CodeGenModule::createOpenCLIntToSamplerConversion(const Expr *E, 6976 CodeGenFunction &CGF) { 6977 llvm::Constant *C = ConstantEmitter(CGF).emitAbstract(E, E->getType()); 6978 auto *SamplerT = getOpenCLRuntime().getSamplerType(E->getType().getTypePtr()); 6979 auto *FTy = llvm::FunctionType::get(SamplerT, {C->getType()}, false); 6980 auto *Call = CGF.EmitRuntimeCall( 6981 CreateRuntimeFunction(FTy, "__translate_sampler_initializer"), {C}); 6982 return Call; 6983 } 6984 6985 CharUnits CodeGenModule::getNaturalPointeeTypeAlignment( 6986 QualType T, LValueBaseInfo *BaseInfo, TBAAAccessInfo *TBAAInfo) { 6987 return getNaturalTypeAlignment(T->getPointeeType(), BaseInfo, TBAAInfo, 6988 /* forPointeeType= */ true); 6989 } 6990 6991 CharUnits CodeGenModule::getNaturalTypeAlignment(QualType T, 6992 LValueBaseInfo *BaseInfo, 6993 TBAAAccessInfo *TBAAInfo, 6994 bool forPointeeType) { 6995 if (TBAAInfo) 6996 *TBAAInfo = getTBAAAccessInfo(T); 6997 6998 // FIXME: This duplicates logic in ASTContext::getTypeAlignIfKnown. But 6999 // that doesn't return the information we need to compute BaseInfo. 7000 7001 // Honor alignment typedef attributes even on incomplete types. 7002 // We also honor them straight for C++ class types, even as pointees; 7003 // there's an expressivity gap here. 7004 if (auto TT = T->getAs<TypedefType>()) { 7005 if (auto Align = TT->getDecl()->getMaxAlignment()) { 7006 if (BaseInfo) 7007 *BaseInfo = LValueBaseInfo(AlignmentSource::AttributedType); 7008 return getContext().toCharUnitsFromBits(Align); 7009 } 7010 } 7011 7012 bool AlignForArray = T->isArrayType(); 7013 7014 // Analyze the base element type, so we don't get confused by incomplete 7015 // array types. 7016 T = getContext().getBaseElementType(T); 7017 7018 if (T->isIncompleteType()) { 7019 // We could try to replicate the logic from 7020 // ASTContext::getTypeAlignIfKnown, but nothing uses the alignment if the 7021 // type is incomplete, so it's impossible to test. We could try to reuse 7022 // getTypeAlignIfKnown, but that doesn't return the information we need 7023 // to set BaseInfo. So just ignore the possibility that the alignment is 7024 // greater than one. 7025 if (BaseInfo) 7026 *BaseInfo = LValueBaseInfo(AlignmentSource::Type); 7027 return CharUnits::One(); 7028 } 7029 7030 if (BaseInfo) 7031 *BaseInfo = LValueBaseInfo(AlignmentSource::Type); 7032 7033 CharUnits Alignment; 7034 const CXXRecordDecl *RD; 7035 if (T.getQualifiers().hasUnaligned()) { 7036 Alignment = CharUnits::One(); 7037 } else if (forPointeeType && !AlignForArray && 7038 (RD = T->getAsCXXRecordDecl())) { 7039 // For C++ class pointees, we don't know whether we're pointing at a 7040 // base or a complete object, so we generally need to use the 7041 // non-virtual alignment. 7042 Alignment = getClassPointerAlignment(RD); 7043 } else { 7044 Alignment = getContext().getTypeAlignInChars(T); 7045 } 7046 7047 // Cap to the global maximum type alignment unless the alignment 7048 // was somehow explicit on the type. 7049 if (unsigned MaxAlign = getLangOpts().MaxTypeAlign) { 7050 if (Alignment.getQuantity() > MaxAlign && 7051 !getContext().isAlignmentRequired(T)) 7052 Alignment = CharUnits::fromQuantity(MaxAlign); 7053 } 7054 return Alignment; 7055 } 7056 7057 bool CodeGenModule::stopAutoInit() { 7058 unsigned StopAfter = getContext().getLangOpts().TrivialAutoVarInitStopAfter; 7059 if (StopAfter) { 7060 // This number is positive only when -ftrivial-auto-var-init-stop-after=* is 7061 // used 7062 if (NumAutoVarInit >= StopAfter) { 7063 return true; 7064 } 7065 if (!NumAutoVarInit) { 7066 unsigned DiagID = getDiags().getCustomDiagID( 7067 DiagnosticsEngine::Warning, 7068 "-ftrivial-auto-var-init-stop-after=%0 has been enabled to limit the " 7069 "number of times ftrivial-auto-var-init=%1 gets applied."); 7070 getDiags().Report(DiagID) 7071 << StopAfter 7072 << (getContext().getLangOpts().getTrivialAutoVarInit() == 7073 LangOptions::TrivialAutoVarInitKind::Zero 7074 ? "zero" 7075 : "pattern"); 7076 } 7077 ++NumAutoVarInit; 7078 } 7079 return false; 7080 } 7081 7082 void CodeGenModule::printPostfixForExternalizedDecl(llvm::raw_ostream &OS, 7083 const Decl *D) const { 7084 // ptxas does not allow '.' in symbol names. On the other hand, HIP prefers 7085 // postfix beginning with '.' since the symbol name can be demangled. 7086 if (LangOpts.HIP) 7087 OS << (isa<VarDecl>(D) ? ".static." : ".intern."); 7088 else 7089 OS << (isa<VarDecl>(D) ? "__static__" : "__intern__"); 7090 7091 // If the CUID is not specified we try to generate a unique postfix. 7092 if (getLangOpts().CUID.empty()) { 7093 SourceManager &SM = getContext().getSourceManager(); 7094 PresumedLoc PLoc = SM.getPresumedLoc(D->getLocation()); 7095 assert(PLoc.isValid() && "Source location is expected to be valid."); 7096 7097 // Get the hash of the user defined macros. 7098 llvm::MD5 Hash; 7099 llvm::MD5::MD5Result Result; 7100 for (const auto &Arg : PreprocessorOpts.Macros) 7101 Hash.update(Arg.first); 7102 Hash.final(Result); 7103 7104 // Get the UniqueID for the file containing the decl. 7105 llvm::sys::fs::UniqueID ID; 7106 if (auto EC = llvm::sys::fs::getUniqueID(PLoc.getFilename(), ID)) { 7107 PLoc = SM.getPresumedLoc(D->getLocation(), /*UseLineDirectives=*/false); 7108 assert(PLoc.isValid() && "Source location is expected to be valid."); 7109 if (auto EC = llvm::sys::fs::getUniqueID(PLoc.getFilename(), ID)) 7110 SM.getDiagnostics().Report(diag::err_cannot_open_file) 7111 << PLoc.getFilename() << EC.message(); 7112 } 7113 OS << llvm::format("%x", ID.getFile()) << llvm::format("%x", ID.getDevice()) 7114 << "_" << llvm::utohexstr(Result.low(), /*LowerCase=*/true, /*Width=*/8); 7115 } else { 7116 OS << getContext().getCUIDHash(); 7117 } 7118 } 7119 7120 void CodeGenModule::moveLazyEmissionStates(CodeGenModule *NewBuilder) { 7121 assert(DeferredDeclsToEmit.empty() && 7122 "Should have emitted all decls deferred to emit."); 7123 assert(NewBuilder->DeferredDecls.empty() && 7124 "Newly created module should not have deferred decls"); 7125 NewBuilder->DeferredDecls = std::move(DeferredDecls); 7126 7127 assert(NewBuilder->DeferredVTables.empty() && 7128 "Newly created module should not have deferred vtables"); 7129 NewBuilder->DeferredVTables = std::move(DeferredVTables); 7130 7131 assert(NewBuilder->MangledDeclNames.empty() && 7132 "Newly created module should not have mangled decl names"); 7133 assert(NewBuilder->Manglings.empty() && 7134 "Newly created module should not have manglings"); 7135 NewBuilder->Manglings = std::move(Manglings); 7136 7137 assert(WeakRefReferences.empty() && "Not all WeakRefRefs have been applied"); 7138 NewBuilder->WeakRefReferences = std::move(WeakRefReferences); 7139 7140 NewBuilder->TBAA = std::move(TBAA); 7141 7142 assert(NewBuilder->EmittedDeferredDecls.empty() && 7143 "Still have (unmerged) EmittedDeferredDecls deferred decls"); 7144 7145 NewBuilder->EmittedDeferredDecls = std::move(EmittedDeferredDecls); 7146 7147 NewBuilder->ABI->MangleCtx = std::move(ABI->MangleCtx); 7148 } 7149