xref: /llvm-project/clang/lib/CodeGen/CodeGenModule.cpp (revision 6907ce2f8f7410b179beb6e2db9c8d16a257ce9f)
1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This coordinates the per-module state used while generating code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenModule.h"
15 #include "CGBlocks.h"
16 #include "CGCUDARuntime.h"
17 #include "CGCXXABI.h"
18 #include "CGCall.h"
19 #include "CGDebugInfo.h"
20 #include "CGObjCRuntime.h"
21 #include "CGOpenCLRuntime.h"
22 #include "CGOpenMPRuntime.h"
23 #include "CGOpenMPRuntimeNVPTX.h"
24 #include "CodeGenFunction.h"
25 #include "CodeGenPGO.h"
26 #include "ConstantEmitter.h"
27 #include "CoverageMappingGen.h"
28 #include "TargetInfo.h"
29 #include "clang/AST/ASTContext.h"
30 #include "clang/AST/CharUnits.h"
31 #include "clang/AST/DeclCXX.h"
32 #include "clang/AST/DeclObjC.h"
33 #include "clang/AST/DeclTemplate.h"
34 #include "clang/AST/Mangle.h"
35 #include "clang/AST/RecordLayout.h"
36 #include "clang/AST/RecursiveASTVisitor.h"
37 #include "clang/Basic/Builtins.h"
38 #include "clang/Basic/CharInfo.h"
39 #include "clang/Basic/Diagnostic.h"
40 #include "clang/Basic/Module.h"
41 #include "clang/Basic/SourceManager.h"
42 #include "clang/Basic/TargetInfo.h"
43 #include "clang/Basic/Version.h"
44 #include "clang/CodeGen/ConstantInitBuilder.h"
45 #include "clang/Frontend/CodeGenOptions.h"
46 #include "clang/Sema/SemaDiagnostic.h"
47 #include "llvm/ADT/Triple.h"
48 #include "llvm/Analysis/TargetLibraryInfo.h"
49 #include "llvm/IR/CallSite.h"
50 #include "llvm/IR/CallingConv.h"
51 #include "llvm/IR/DataLayout.h"
52 #include "llvm/IR/Intrinsics.h"
53 #include "llvm/IR/LLVMContext.h"
54 #include "llvm/IR/Module.h"
55 #include "llvm/ProfileData/InstrProfReader.h"
56 #include "llvm/Support/ConvertUTF.h"
57 #include "llvm/Support/ErrorHandling.h"
58 #include "llvm/Support/MD5.h"
59 
60 using namespace clang;
61 using namespace CodeGen;
62 
63 static llvm::cl::opt<bool> LimitedCoverage(
64     "limited-coverage-experimental", llvm::cl::ZeroOrMore, llvm::cl::Hidden,
65     llvm::cl::desc("Emit limited coverage mapping information (experimental)"),
66     llvm::cl::init(false));
67 
68 static const char AnnotationSection[] = "llvm.metadata";
69 
70 static CGCXXABI *createCXXABI(CodeGenModule &CGM) {
71   switch (CGM.getTarget().getCXXABI().getKind()) {
72   case TargetCXXABI::GenericAArch64:
73   case TargetCXXABI::GenericARM:
74   case TargetCXXABI::iOS:
75   case TargetCXXABI::iOS64:
76   case TargetCXXABI::WatchOS:
77   case TargetCXXABI::GenericMIPS:
78   case TargetCXXABI::GenericItanium:
79   case TargetCXXABI::WebAssembly:
80     return CreateItaniumCXXABI(CGM);
81   case TargetCXXABI::Microsoft:
82     return CreateMicrosoftCXXABI(CGM);
83   }
84 
85   llvm_unreachable("invalid C++ ABI kind");
86 }
87 
88 CodeGenModule::CodeGenModule(ASTContext &C, const HeaderSearchOptions &HSO,
89                              const PreprocessorOptions &PPO,
90                              const CodeGenOptions &CGO, llvm::Module &M,
91                              DiagnosticsEngine &diags,
92                              CoverageSourceInfo *CoverageInfo)
93     : Context(C), LangOpts(C.getLangOpts()), HeaderSearchOpts(HSO),
94       PreprocessorOpts(PPO), CodeGenOpts(CGO), TheModule(M), Diags(diags),
95       Target(C.getTargetInfo()), ABI(createCXXABI(*this)),
96       VMContext(M.getContext()), Types(*this), VTables(*this),
97       SanitizerMD(new SanitizerMetadata(*this)) {
98 
99   // Initialize the type cache.
100   llvm::LLVMContext &LLVMContext = M.getContext();
101   VoidTy = llvm::Type::getVoidTy(LLVMContext);
102   Int8Ty = llvm::Type::getInt8Ty(LLVMContext);
103   Int16Ty = llvm::Type::getInt16Ty(LLVMContext);
104   Int32Ty = llvm::Type::getInt32Ty(LLVMContext);
105   Int64Ty = llvm::Type::getInt64Ty(LLVMContext);
106   HalfTy = llvm::Type::getHalfTy(LLVMContext);
107   FloatTy = llvm::Type::getFloatTy(LLVMContext);
108   DoubleTy = llvm::Type::getDoubleTy(LLVMContext);
109   PointerWidthInBits = C.getTargetInfo().getPointerWidth(0);
110   PointerAlignInBytes =
111     C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(0)).getQuantity();
112   SizeSizeInBytes =
113     C.toCharUnitsFromBits(C.getTargetInfo().getMaxPointerWidth()).getQuantity();
114   IntAlignInBytes =
115     C.toCharUnitsFromBits(C.getTargetInfo().getIntAlign()).getQuantity();
116   IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth());
117   IntPtrTy = llvm::IntegerType::get(LLVMContext,
118     C.getTargetInfo().getMaxPointerWidth());
119   Int8PtrTy = Int8Ty->getPointerTo(0);
120   Int8PtrPtrTy = Int8PtrTy->getPointerTo(0);
121   AllocaInt8PtrTy = Int8Ty->getPointerTo(
122       M.getDataLayout().getAllocaAddrSpace());
123   ASTAllocaAddressSpace = getTargetCodeGenInfo().getASTAllocaAddressSpace();
124 
125   RuntimeCC = getTargetCodeGenInfo().getABIInfo().getRuntimeCC();
126 
127   if (LangOpts.ObjC1)
128     createObjCRuntime();
129   if (LangOpts.OpenCL)
130     createOpenCLRuntime();
131   if (LangOpts.OpenMP)
132     createOpenMPRuntime();
133   if (LangOpts.CUDA)
134     createCUDARuntime();
135 
136   // Enable TBAA unless it's suppressed. ThreadSanitizer needs TBAA even at O0.
137   if (LangOpts.Sanitize.has(SanitizerKind::Thread) ||
138       (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0))
139     TBAA.reset(new CodeGenTBAA(Context, TheModule, CodeGenOpts, getLangOpts(),
140                                getCXXABI().getMangleContext()));
141 
142   // If debug info or coverage generation is enabled, create the CGDebugInfo
143   // object.
144   if (CodeGenOpts.getDebugInfo() != codegenoptions::NoDebugInfo ||
145       CodeGenOpts.EmitGcovArcs || CodeGenOpts.EmitGcovNotes)
146     DebugInfo.reset(new CGDebugInfo(*this));
147 
148   Block.GlobalUniqueCount = 0;
149 
150   if (C.getLangOpts().ObjC1)
151     ObjCData.reset(new ObjCEntrypoints());
152 
153   if (CodeGenOpts.hasProfileClangUse()) {
154     auto ReaderOrErr = llvm::IndexedInstrProfReader::create(
155         CodeGenOpts.ProfileInstrumentUsePath);
156     if (auto E = ReaderOrErr.takeError()) {
157       unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
158                                               "Could not read profile %0: %1");
159       llvm::handleAllErrors(std::move(E), [&](const llvm::ErrorInfoBase &EI) {
160         getDiags().Report(DiagID) << CodeGenOpts.ProfileInstrumentUsePath
161                                   << EI.message();
162       });
163     } else
164       PGOReader = std::move(ReaderOrErr.get());
165   }
166 
167   // If coverage mapping generation is enabled, create the
168   // CoverageMappingModuleGen object.
169   if (CodeGenOpts.CoverageMapping)
170     CoverageMapping.reset(new CoverageMappingModuleGen(*this, *CoverageInfo));
171 }
172 
173 CodeGenModule::~CodeGenModule() {}
174 
175 void CodeGenModule::createObjCRuntime() {
176   // This is just isGNUFamily(), but we want to force implementors of
177   // new ABIs to decide how best to do this.
178   switch (LangOpts.ObjCRuntime.getKind()) {
179   case ObjCRuntime::GNUstep:
180   case ObjCRuntime::GCC:
181   case ObjCRuntime::ObjFW:
182     ObjCRuntime.reset(CreateGNUObjCRuntime(*this));
183     return;
184 
185   case ObjCRuntime::FragileMacOSX:
186   case ObjCRuntime::MacOSX:
187   case ObjCRuntime::iOS:
188   case ObjCRuntime::WatchOS:
189     ObjCRuntime.reset(CreateMacObjCRuntime(*this));
190     return;
191   }
192   llvm_unreachable("bad runtime kind");
193 }
194 
195 void CodeGenModule::createOpenCLRuntime() {
196   OpenCLRuntime.reset(new CGOpenCLRuntime(*this));
197 }
198 
199 void CodeGenModule::createOpenMPRuntime() {
200   // Select a specialized code generation class based on the target, if any.
201   // If it does not exist use the default implementation.
202   switch (getTriple().getArch()) {
203   case llvm::Triple::nvptx:
204   case llvm::Triple::nvptx64:
205     assert(getLangOpts().OpenMPIsDevice &&
206            "OpenMP NVPTX is only prepared to deal with device code.");
207     OpenMPRuntime.reset(new CGOpenMPRuntimeNVPTX(*this));
208     break;
209   default:
210     if (LangOpts.OpenMPSimd)
211       OpenMPRuntime.reset(new CGOpenMPSIMDRuntime(*this));
212     else
213       OpenMPRuntime.reset(new CGOpenMPRuntime(*this));
214     break;
215   }
216 }
217 
218 void CodeGenModule::createCUDARuntime() {
219   CUDARuntime.reset(CreateNVCUDARuntime(*this));
220 }
221 
222 void CodeGenModule::addReplacement(StringRef Name, llvm::Constant *C) {
223   Replacements[Name] = C;
224 }
225 
226 void CodeGenModule::applyReplacements() {
227   for (auto &I : Replacements) {
228     StringRef MangledName = I.first();
229     llvm::Constant *Replacement = I.second;
230     llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
231     if (!Entry)
232       continue;
233     auto *OldF = cast<llvm::Function>(Entry);
234     auto *NewF = dyn_cast<llvm::Function>(Replacement);
235     if (!NewF) {
236       if (auto *Alias = dyn_cast<llvm::GlobalAlias>(Replacement)) {
237         NewF = dyn_cast<llvm::Function>(Alias->getAliasee());
238       } else {
239         auto *CE = cast<llvm::ConstantExpr>(Replacement);
240         assert(CE->getOpcode() == llvm::Instruction::BitCast ||
241                CE->getOpcode() == llvm::Instruction::GetElementPtr);
242         NewF = dyn_cast<llvm::Function>(CE->getOperand(0));
243       }
244     }
245 
246     // Replace old with new, but keep the old order.
247     OldF->replaceAllUsesWith(Replacement);
248     if (NewF) {
249       NewF->removeFromParent();
250       OldF->getParent()->getFunctionList().insertAfter(OldF->getIterator(),
251                                                        NewF);
252     }
253     OldF->eraseFromParent();
254   }
255 }
256 
257 void CodeGenModule::addGlobalValReplacement(llvm::GlobalValue *GV, llvm::Constant *C) {
258   GlobalValReplacements.push_back(std::make_pair(GV, C));
259 }
260 
261 void CodeGenModule::applyGlobalValReplacements() {
262   for (auto &I : GlobalValReplacements) {
263     llvm::GlobalValue *GV = I.first;
264     llvm::Constant *C = I.second;
265 
266     GV->replaceAllUsesWith(C);
267     GV->eraseFromParent();
268   }
269 }
270 
271 // This is only used in aliases that we created and we know they have a
272 // linear structure.
273 static const llvm::GlobalObject *getAliasedGlobal(
274     const llvm::GlobalIndirectSymbol &GIS) {
275   llvm::SmallPtrSet<const llvm::GlobalIndirectSymbol*, 4> Visited;
276   const llvm::Constant *C = &GIS;
277   for (;;) {
278     C = C->stripPointerCasts();
279     if (auto *GO = dyn_cast<llvm::GlobalObject>(C))
280       return GO;
281     // stripPointerCasts will not walk over weak aliases.
282     auto *GIS2 = dyn_cast<llvm::GlobalIndirectSymbol>(C);
283     if (!GIS2)
284       return nullptr;
285     if (!Visited.insert(GIS2).second)
286       return nullptr;
287     C = GIS2->getIndirectSymbol();
288   }
289 }
290 
291 void CodeGenModule::checkAliases() {
292   // Check if the constructed aliases are well formed. It is really unfortunate
293   // that we have to do this in CodeGen, but we only construct mangled names
294   // and aliases during codegen.
295   bool Error = false;
296   DiagnosticsEngine &Diags = getDiags();
297   for (const GlobalDecl &GD : Aliases) {
298     const auto *D = cast<ValueDecl>(GD.getDecl());
299     SourceLocation Location;
300     bool IsIFunc = D->hasAttr<IFuncAttr>();
301     if (const Attr *A = D->getDefiningAttr())
302       Location = A->getLocation();
303     else
304       llvm_unreachable("Not an alias or ifunc?");
305     StringRef MangledName = getMangledName(GD);
306     llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
307     auto *Alias  = cast<llvm::GlobalIndirectSymbol>(Entry);
308     const llvm::GlobalValue *GV = getAliasedGlobal(*Alias);
309     if (!GV) {
310       Error = true;
311       Diags.Report(Location, diag::err_cyclic_alias) << IsIFunc;
312     } else if (GV->isDeclaration()) {
313       Error = true;
314       Diags.Report(Location, diag::err_alias_to_undefined)
315           << IsIFunc << IsIFunc;
316     } else if (IsIFunc) {
317       // Check resolver function type.
318       llvm::FunctionType *FTy = dyn_cast<llvm::FunctionType>(
319           GV->getType()->getPointerElementType());
320       assert(FTy);
321       if (!FTy->getReturnType()->isPointerTy())
322         Diags.Report(Location, diag::err_ifunc_resolver_return);
323       if (FTy->getNumParams())
324         Diags.Report(Location, diag::err_ifunc_resolver_params);
325     }
326 
327     llvm::Constant *Aliasee = Alias->getIndirectSymbol();
328     llvm::GlobalValue *AliaseeGV;
329     if (auto CE = dyn_cast<llvm::ConstantExpr>(Aliasee))
330       AliaseeGV = cast<llvm::GlobalValue>(CE->getOperand(0));
331     else
332       AliaseeGV = cast<llvm::GlobalValue>(Aliasee);
333 
334     if (const SectionAttr *SA = D->getAttr<SectionAttr>()) {
335       StringRef AliasSection = SA->getName();
336       if (AliasSection != AliaseeGV->getSection())
337         Diags.Report(SA->getLocation(), diag::warn_alias_with_section)
338             << AliasSection << IsIFunc << IsIFunc;
339     }
340 
341     // We have to handle alias to weak aliases in here. LLVM itself disallows
342     // this since the object semantics would not match the IL one. For
343     // compatibility with gcc we implement it by just pointing the alias
344     // to its aliasee's aliasee. We also warn, since the user is probably
345     // expecting the link to be weak.
346     if (auto GA = dyn_cast<llvm::GlobalIndirectSymbol>(AliaseeGV)) {
347       if (GA->isInterposable()) {
348         Diags.Report(Location, diag::warn_alias_to_weak_alias)
349             << GV->getName() << GA->getName() << IsIFunc;
350         Aliasee = llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(
351             GA->getIndirectSymbol(), Alias->getType());
352         Alias->setIndirectSymbol(Aliasee);
353       }
354     }
355   }
356   if (!Error)
357     return;
358 
359   for (const GlobalDecl &GD : Aliases) {
360     StringRef MangledName = getMangledName(GD);
361     llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
362     auto *Alias = dyn_cast<llvm::GlobalIndirectSymbol>(Entry);
363     Alias->replaceAllUsesWith(llvm::UndefValue::get(Alias->getType()));
364     Alias->eraseFromParent();
365   }
366 }
367 
368 void CodeGenModule::clear() {
369   DeferredDeclsToEmit.clear();
370   if (OpenMPRuntime)
371     OpenMPRuntime->clear();
372 }
373 
374 void InstrProfStats::reportDiagnostics(DiagnosticsEngine &Diags,
375                                        StringRef MainFile) {
376   if (!hasDiagnostics())
377     return;
378   if (VisitedInMainFile > 0 && VisitedInMainFile == MissingInMainFile) {
379     if (MainFile.empty())
380       MainFile = "<stdin>";
381     Diags.Report(diag::warn_profile_data_unprofiled) << MainFile;
382   } else {
383     if (Mismatched > 0)
384       Diags.Report(diag::warn_profile_data_out_of_date) << Visited << Mismatched;
385 
386     if (Missing > 0)
387       Diags.Report(diag::warn_profile_data_missing) << Visited << Missing;
388   }
389 }
390 
391 void CodeGenModule::Release() {
392   EmitDeferred();
393   EmitVTablesOpportunistically();
394   applyGlobalValReplacements();
395   applyReplacements();
396   checkAliases();
397   emitMultiVersionFunctions();
398   EmitCXXGlobalInitFunc();
399   EmitCXXGlobalDtorFunc();
400   registerGlobalDtorsWithAtExit();
401   EmitCXXThreadLocalInitFunc();
402   if (ObjCRuntime)
403     if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction())
404       AddGlobalCtor(ObjCInitFunction);
405   if (Context.getLangOpts().CUDA && !Context.getLangOpts().CUDAIsDevice &&
406       CUDARuntime) {
407     if (llvm::Function *CudaCtorFunction =
408             CUDARuntime->makeModuleCtorFunction())
409       AddGlobalCtor(CudaCtorFunction);
410   }
411   if (OpenMPRuntime) {
412     if (llvm::Function *OpenMPRegistrationFunction =
413             OpenMPRuntime->emitRegistrationFunction()) {
414       auto ComdatKey = OpenMPRegistrationFunction->hasComdat() ?
415         OpenMPRegistrationFunction : nullptr;
416       AddGlobalCtor(OpenMPRegistrationFunction, 0, ComdatKey);
417     }
418     OpenMPRuntime->clear();
419   }
420   if (PGOReader) {
421     getModule().setProfileSummary(PGOReader->getSummary().getMD(VMContext));
422     if (PGOStats.hasDiagnostics())
423       PGOStats.reportDiagnostics(getDiags(), getCodeGenOpts().MainFileName);
424   }
425   EmitCtorList(GlobalCtors, "llvm.global_ctors");
426   EmitCtorList(GlobalDtors, "llvm.global_dtors");
427   EmitGlobalAnnotations();
428   EmitStaticExternCAliases();
429   EmitDeferredUnusedCoverageMappings();
430   if (CoverageMapping)
431     CoverageMapping->emit();
432   if (CodeGenOpts.SanitizeCfiCrossDso) {
433     CodeGenFunction(*this).EmitCfiCheckFail();
434     CodeGenFunction(*this).EmitCfiCheckStub();
435   }
436   emitAtAvailableLinkGuard();
437   emitLLVMUsed();
438   if (SanStats)
439     SanStats->finish();
440 
441   if (CodeGenOpts.Autolink &&
442       (Context.getLangOpts().Modules || !LinkerOptionsMetadata.empty())) {
443     EmitModuleLinkOptions();
444   }
445 
446   // Record mregparm value now so it is visible through rest of codegen.
447   if (Context.getTargetInfo().getTriple().getArch() == llvm::Triple::x86)
448     getModule().addModuleFlag(llvm::Module::Error, "NumRegisterParameters",
449                               CodeGenOpts.NumRegisterParameters);
450 
451   if (CodeGenOpts.DwarfVersion) {
452     // We actually want the latest version when there are conflicts.
453     // We can change from Warning to Latest if such mode is supported.
454     getModule().addModuleFlag(llvm::Module::Warning, "Dwarf Version",
455                               CodeGenOpts.DwarfVersion);
456   }
457   if (CodeGenOpts.EmitCodeView) {
458     // Indicate that we want CodeView in the metadata.
459     getModule().addModuleFlag(llvm::Module::Warning, "CodeView", 1);
460   }
461   if (CodeGenOpts.ControlFlowGuard) {
462     // We want function ID tables for Control Flow Guard.
463     getModule().addModuleFlag(llvm::Module::Warning, "cfguard", 1);
464   }
465   if (CodeGenOpts.OptimizationLevel > 0 && CodeGenOpts.StrictVTablePointers) {
466     // We don't support LTO with 2 with different StrictVTablePointers
467     // FIXME: we could support it by stripping all the information introduced
468     // by StrictVTablePointers.
469 
470     getModule().addModuleFlag(llvm::Module::Error, "StrictVTablePointers",1);
471 
472     llvm::Metadata *Ops[2] = {
473               llvm::MDString::get(VMContext, "StrictVTablePointers"),
474               llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
475                   llvm::Type::getInt32Ty(VMContext), 1))};
476 
477     getModule().addModuleFlag(llvm::Module::Require,
478                               "StrictVTablePointersRequirement",
479                               llvm::MDNode::get(VMContext, Ops));
480   }
481   if (DebugInfo)
482     // We support a single version in the linked module. The LLVM
483     // parser will drop debug info with a different version number
484     // (and warn about it, too).
485     getModule().addModuleFlag(llvm::Module::Warning, "Debug Info Version",
486                               llvm::DEBUG_METADATA_VERSION);
487 
488   // We need to record the widths of enums and wchar_t, so that we can generate
489   // the correct build attributes in the ARM backend. wchar_size is also used by
490   // TargetLibraryInfo.
491   uint64_t WCharWidth =
492       Context.getTypeSizeInChars(Context.getWideCharType()).getQuantity();
493   getModule().addModuleFlag(llvm::Module::Error, "wchar_size", WCharWidth);
494 
495   llvm::Triple::ArchType Arch = Context.getTargetInfo().getTriple().getArch();
496   if (   Arch == llvm::Triple::arm
497       || Arch == llvm::Triple::armeb
498       || Arch == llvm::Triple::thumb
499       || Arch == llvm::Triple::thumbeb) {
500     // The minimum width of an enum in bytes
501     uint64_t EnumWidth = Context.getLangOpts().ShortEnums ? 1 : 4;
502     getModule().addModuleFlag(llvm::Module::Error, "min_enum_size", EnumWidth);
503   }
504 
505   if (CodeGenOpts.SanitizeCfiCrossDso) {
506     // Indicate that we want cross-DSO control flow integrity checks.
507     getModule().addModuleFlag(llvm::Module::Override, "Cross-DSO CFI", 1);
508   }
509 
510   if (CodeGenOpts.CFProtectionReturn &&
511       Target.checkCFProtectionReturnSupported(getDiags())) {
512     // Indicate that we want to instrument return control flow protection.
513     getModule().addModuleFlag(llvm::Module::Override, "cf-protection-return",
514                               1);
515   }
516 
517   if (CodeGenOpts.CFProtectionBranch &&
518       Target.checkCFProtectionBranchSupported(getDiags())) {
519     // Indicate that we want to instrument branch control flow protection.
520     getModule().addModuleFlag(llvm::Module::Override, "cf-protection-branch",
521                               1);
522   }
523 
524   if (LangOpts.CUDAIsDevice && getTriple().isNVPTX()) {
525     // Indicate whether __nvvm_reflect should be configured to flush denormal
526     // floating point values to 0.  (This corresponds to its "__CUDA_FTZ"
527     // property.)
528     getModule().addModuleFlag(llvm::Module::Override, "nvvm-reflect-ftz",
529                               CodeGenOpts.FlushDenorm ? 1 : 0);
530   }
531 
532   // Emit OpenCL specific module metadata: OpenCL/SPIR version.
533   if (LangOpts.OpenCL) {
534     EmitOpenCLMetadata();
535     // Emit SPIR version.
536     if (getTriple().getArch() == llvm::Triple::spir ||
537         getTriple().getArch() == llvm::Triple::spir64) {
538       // SPIR v2.0 s2.12 - The SPIR version used by the module is stored in the
539       // opencl.spir.version named metadata.
540       llvm::Metadata *SPIRVerElts[] = {
541           llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
542               Int32Ty, LangOpts.OpenCLVersion / 100)),
543           llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
544               Int32Ty, (LangOpts.OpenCLVersion / 100 > 1) ? 0 : 2))};
545       llvm::NamedMDNode *SPIRVerMD =
546           TheModule.getOrInsertNamedMetadata("opencl.spir.version");
547       llvm::LLVMContext &Ctx = TheModule.getContext();
548       SPIRVerMD->addOperand(llvm::MDNode::get(Ctx, SPIRVerElts));
549     }
550   }
551 
552   if (uint32_t PLevel = Context.getLangOpts().PICLevel) {
553     assert(PLevel < 3 && "Invalid PIC Level");
554     getModule().setPICLevel(static_cast<llvm::PICLevel::Level>(PLevel));
555     if (Context.getLangOpts().PIE)
556       getModule().setPIELevel(static_cast<llvm::PIELevel::Level>(PLevel));
557   }
558 
559   if (CodeGenOpts.NoPLT)
560     getModule().setRtLibUseGOT();
561 
562   SimplifyPersonality();
563 
564   if (getCodeGenOpts().EmitDeclMetadata)
565     EmitDeclMetadata();
566 
567   if (getCodeGenOpts().EmitGcovArcs || getCodeGenOpts().EmitGcovNotes)
568     EmitCoverageFile();
569 
570   if (DebugInfo)
571     DebugInfo->finalize();
572 
573   if (getCodeGenOpts().EmitVersionIdentMetadata)
574     EmitVersionIdentMetadata();
575 
576   EmitTargetMetadata();
577 }
578 
579 void CodeGenModule::EmitOpenCLMetadata() {
580   // SPIR v2.0 s2.13 - The OpenCL version used by the module is stored in the
581   // opencl.ocl.version named metadata node.
582   llvm::Metadata *OCLVerElts[] = {
583       llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
584           Int32Ty, LangOpts.OpenCLVersion / 100)),
585       llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
586           Int32Ty, (LangOpts.OpenCLVersion % 100) / 10))};
587   llvm::NamedMDNode *OCLVerMD =
588       TheModule.getOrInsertNamedMetadata("opencl.ocl.version");
589   llvm::LLVMContext &Ctx = TheModule.getContext();
590   OCLVerMD->addOperand(llvm::MDNode::get(Ctx, OCLVerElts));
591 }
592 
593 void CodeGenModule::UpdateCompletedType(const TagDecl *TD) {
594   // Make sure that this type is translated.
595   Types.UpdateCompletedType(TD);
596 }
597 
598 void CodeGenModule::RefreshTypeCacheForClass(const CXXRecordDecl *RD) {
599   // Make sure that this type is translated.
600   Types.RefreshTypeCacheForClass(RD);
601 }
602 
603 llvm::MDNode *CodeGenModule::getTBAATypeInfo(QualType QTy) {
604   if (!TBAA)
605     return nullptr;
606   return TBAA->getTypeInfo(QTy);
607 }
608 
609 TBAAAccessInfo CodeGenModule::getTBAAAccessInfo(QualType AccessType) {
610   if (!TBAA)
611     return TBAAAccessInfo();
612   return TBAA->getAccessInfo(AccessType);
613 }
614 
615 TBAAAccessInfo
616 CodeGenModule::getTBAAVTablePtrAccessInfo(llvm::Type *VTablePtrType) {
617   if (!TBAA)
618     return TBAAAccessInfo();
619   return TBAA->getVTablePtrAccessInfo(VTablePtrType);
620 }
621 
622 llvm::MDNode *CodeGenModule::getTBAAStructInfo(QualType QTy) {
623   if (!TBAA)
624     return nullptr;
625   return TBAA->getTBAAStructInfo(QTy);
626 }
627 
628 llvm::MDNode *CodeGenModule::getTBAABaseTypeInfo(QualType QTy) {
629   if (!TBAA)
630     return nullptr;
631   return TBAA->getBaseTypeInfo(QTy);
632 }
633 
634 llvm::MDNode *CodeGenModule::getTBAAAccessTagInfo(TBAAAccessInfo Info) {
635   if (!TBAA)
636     return nullptr;
637   return TBAA->getAccessTagInfo(Info);
638 }
639 
640 TBAAAccessInfo CodeGenModule::mergeTBAAInfoForCast(TBAAAccessInfo SourceInfo,
641                                                    TBAAAccessInfo TargetInfo) {
642   if (!TBAA)
643     return TBAAAccessInfo();
644   return TBAA->mergeTBAAInfoForCast(SourceInfo, TargetInfo);
645 }
646 
647 TBAAAccessInfo
648 CodeGenModule::mergeTBAAInfoForConditionalOperator(TBAAAccessInfo InfoA,
649                                                    TBAAAccessInfo InfoB) {
650   if (!TBAA)
651     return TBAAAccessInfo();
652   return TBAA->mergeTBAAInfoForConditionalOperator(InfoA, InfoB);
653 }
654 
655 TBAAAccessInfo
656 CodeGenModule::mergeTBAAInfoForMemoryTransfer(TBAAAccessInfo DestInfo,
657                                               TBAAAccessInfo SrcInfo) {
658   if (!TBAA)
659     return TBAAAccessInfo();
660   return TBAA->mergeTBAAInfoForConditionalOperator(DestInfo, SrcInfo);
661 }
662 
663 void CodeGenModule::DecorateInstructionWithTBAA(llvm::Instruction *Inst,
664                                                 TBAAAccessInfo TBAAInfo) {
665   if (llvm::MDNode *Tag = getTBAAAccessTagInfo(TBAAInfo))
666     Inst->setMetadata(llvm::LLVMContext::MD_tbaa, Tag);
667 }
668 
669 void CodeGenModule::DecorateInstructionWithInvariantGroup(
670     llvm::Instruction *I, const CXXRecordDecl *RD) {
671   I->setMetadata(llvm::LLVMContext::MD_invariant_group,
672                  llvm::MDNode::get(getLLVMContext(), {}));
673 }
674 
675 void CodeGenModule::Error(SourceLocation loc, StringRef message) {
676   unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, "%0");
677   getDiags().Report(Context.getFullLoc(loc), diagID) << message;
678 }
679 
680 /// ErrorUnsupported - Print out an error that codegen doesn't support the
681 /// specified stmt yet.
682 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type) {
683   unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
684                                                "cannot compile this %0 yet");
685   std::string Msg = Type;
686   getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID)
687     << Msg << S->getSourceRange();
688 }
689 
690 /// ErrorUnsupported - Print out an error that codegen doesn't support the
691 /// specified decl yet.
692 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type) {
693   unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
694                                                "cannot compile this %0 yet");
695   std::string Msg = Type;
696   getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg;
697 }
698 
699 llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) {
700   return llvm::ConstantInt::get(SizeTy, size.getQuantity());
701 }
702 
703 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV,
704                                         const NamedDecl *D) const {
705   if (GV->hasDLLImportStorageClass())
706     return;
707   // Internal definitions always have default visibility.
708   if (GV->hasLocalLinkage()) {
709     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
710     return;
711   }
712   if (!D)
713     return;
714   // Set visibility for definitions.
715   LinkageInfo LV = D->getLinkageAndVisibility();
716   if (LV.isVisibilityExplicit() || !GV->isDeclarationForLinker())
717     GV->setVisibility(GetLLVMVisibility(LV.getVisibility()));
718 }
719 
720 static bool shouldAssumeDSOLocal(const CodeGenModule &CGM,
721                                  llvm::GlobalValue *GV) {
722   if (GV->hasLocalLinkage())
723     return true;
724 
725   if (!GV->hasDefaultVisibility() && !GV->hasExternalWeakLinkage())
726     return true;
727 
728   // DLLImport explicitly marks the GV as external.
729   if (GV->hasDLLImportStorageClass())
730     return false;
731 
732   const llvm::Triple &TT = CGM.getTriple();
733   // Every other GV is local on COFF.
734   // Make an exception for windows OS in the triple: Some firmware builds use
735   // *-win32-macho triples. This (accidentally?) produced windows relocations
736   // without GOT tables in older clang versions; Keep this behaviour.
737   // FIXME: even thread local variables?
738   if (TT.isOSBinFormatCOFF() || (TT.isOSWindows() && TT.isOSBinFormatMachO()))
739     return true;
740 
741   // Only handle COFF and ELF for now.
742   if (!TT.isOSBinFormatELF())
743     return false;
744 
745   // If this is not an executable, don't assume anything is local.
746   const auto &CGOpts = CGM.getCodeGenOpts();
747   llvm::Reloc::Model RM = CGOpts.RelocationModel;
748   const auto &LOpts = CGM.getLangOpts();
749   if (RM != llvm::Reloc::Static && !LOpts.PIE)
750     return false;
751 
752   // A definition cannot be preempted from an executable.
753   if (!GV->isDeclarationForLinker())
754     return true;
755 
756   // Most PIC code sequences that assume that a symbol is local cannot produce a
757   // 0 if it turns out the symbol is undefined. While this is ABI and relocation
758   // depended, it seems worth it to handle it here.
759   if (RM == llvm::Reloc::PIC_ && GV->hasExternalWeakLinkage())
760     return false;
761 
762   // PPC has no copy relocations and cannot use a plt entry as a symbol address.
763   llvm::Triple::ArchType Arch = TT.getArch();
764   if (Arch == llvm::Triple::ppc || Arch == llvm::Triple::ppc64 ||
765       Arch == llvm::Triple::ppc64le)
766     return false;
767 
768   // If we can use copy relocations we can assume it is local.
769   if (auto *Var = dyn_cast<llvm::GlobalVariable>(GV))
770     if (!Var->isThreadLocal() &&
771         (RM == llvm::Reloc::Static || CGOpts.PIECopyRelocations))
772       return true;
773 
774   // If we can use a plt entry as the symbol address we can assume it
775   // is local.
776   // FIXME: This should work for PIE, but the gold linker doesn't support it.
777   if (isa<llvm::Function>(GV) && !CGOpts.NoPLT && RM == llvm::Reloc::Static)
778     return true;
779 
780   // Otherwise don't assue it is local.
781   return false;
782 }
783 
784 void CodeGenModule::setDSOLocal(llvm::GlobalValue *GV) const {
785   GV->setDSOLocal(shouldAssumeDSOLocal(*this, GV));
786 }
787 
788 void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV,
789                                           GlobalDecl GD) const {
790   const auto *D = dyn_cast<NamedDecl>(GD.getDecl());
791   // C++ destructors have a few C++ ABI specific special cases.
792   if (const auto *Dtor = dyn_cast_or_null<CXXDestructorDecl>(D)) {
793     getCXXABI().setCXXDestructorDLLStorage(GV, Dtor, GD.getDtorType());
794     return;
795   }
796   setDLLImportDLLExport(GV, D);
797 }
798 
799 void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV,
800                                           const NamedDecl *D) const {
801   if (D && D->isExternallyVisible()) {
802     if (D->hasAttr<DLLImportAttr>())
803       GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass);
804     else if (D->hasAttr<DLLExportAttr>() && !GV->isDeclarationForLinker())
805       GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass);
806   }
807 }
808 
809 void CodeGenModule::setGVProperties(llvm::GlobalValue *GV,
810                                     GlobalDecl GD) const {
811   setDLLImportDLLExport(GV, GD);
812   setGlobalVisibilityAndLocal(GV, dyn_cast<NamedDecl>(GD.getDecl()));
813 }
814 
815 void CodeGenModule::setGVProperties(llvm::GlobalValue *GV,
816                                     const NamedDecl *D) const {
817   setDLLImportDLLExport(GV, D);
818   setGlobalVisibilityAndLocal(GV, D);
819 }
820 
821 void CodeGenModule::setGlobalVisibilityAndLocal(llvm::GlobalValue *GV,
822                                                 const NamedDecl *D) const {
823   setGlobalVisibility(GV, D);
824   setDSOLocal(GV);
825 }
826 
827 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(StringRef S) {
828   return llvm::StringSwitch<llvm::GlobalVariable::ThreadLocalMode>(S)
829       .Case("global-dynamic", llvm::GlobalVariable::GeneralDynamicTLSModel)
830       .Case("local-dynamic", llvm::GlobalVariable::LocalDynamicTLSModel)
831       .Case("initial-exec", llvm::GlobalVariable::InitialExecTLSModel)
832       .Case("local-exec", llvm::GlobalVariable::LocalExecTLSModel);
833 }
834 
835 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(
836     CodeGenOptions::TLSModel M) {
837   switch (M) {
838   case CodeGenOptions::GeneralDynamicTLSModel:
839     return llvm::GlobalVariable::GeneralDynamicTLSModel;
840   case CodeGenOptions::LocalDynamicTLSModel:
841     return llvm::GlobalVariable::LocalDynamicTLSModel;
842   case CodeGenOptions::InitialExecTLSModel:
843     return llvm::GlobalVariable::InitialExecTLSModel;
844   case CodeGenOptions::LocalExecTLSModel:
845     return llvm::GlobalVariable::LocalExecTLSModel;
846   }
847   llvm_unreachable("Invalid TLS model!");
848 }
849 
850 void CodeGenModule::setTLSMode(llvm::GlobalValue *GV, const VarDecl &D) const {
851   assert(D.getTLSKind() && "setting TLS mode on non-TLS var!");
852 
853   llvm::GlobalValue::ThreadLocalMode TLM;
854   TLM = GetLLVMTLSModel(CodeGenOpts.getDefaultTLSModel());
855 
856   // Override the TLS model if it is explicitly specified.
857   if (const TLSModelAttr *Attr = D.getAttr<TLSModelAttr>()) {
858     TLM = GetLLVMTLSModel(Attr->getModel());
859   }
860 
861   GV->setThreadLocalMode(TLM);
862 }
863 
864 static std::string getCPUSpecificMangling(const CodeGenModule &CGM,
865                                           StringRef Name) {
866   const TargetInfo &Target = CGM.getTarget();
867   return (Twine('.') + Twine(Target.CPUSpecificManglingCharacter(Name))).str();
868 }
869 
870 static void AppendCPUSpecificCPUDispatchMangling(const CodeGenModule &CGM,
871                                                  const CPUSpecificAttr *Attr,
872                                                  raw_ostream &Out) {
873   // cpu_specific gets the current name, dispatch gets the resolver.
874   if (Attr)
875     Out << getCPUSpecificMangling(CGM, Attr->getCurCPUName()->getName());
876   else
877     Out << ".resolver";
878 }
879 
880 static void AppendTargetMangling(const CodeGenModule &CGM,
881                                  const TargetAttr *Attr, raw_ostream &Out) {
882   if (Attr->isDefaultVersion())
883     return;
884 
885   Out << '.';
886   const TargetInfo &Target = CGM.getTarget();
887   TargetAttr::ParsedTargetAttr Info =
888       Attr->parse([&Target](StringRef LHS, StringRef RHS) {
889         // Multiversioning doesn't allow "no-${feature}", so we can
890         // only have "+" prefixes here.
891         assert(LHS.startswith("+") && RHS.startswith("+") &&
892                "Features should always have a prefix.");
893         return Target.multiVersionSortPriority(LHS.substr(1)) >
894                Target.multiVersionSortPriority(RHS.substr(1));
895       });
896 
897   bool IsFirst = true;
898 
899   if (!Info.Architecture.empty()) {
900     IsFirst = false;
901     Out << "arch_" << Info.Architecture;
902   }
903 
904   for (StringRef Feat : Info.Features) {
905     if (!IsFirst)
906       Out << '_';
907     IsFirst = false;
908     Out << Feat.substr(1);
909   }
910 }
911 
912 static std::string getMangledNameImpl(const CodeGenModule &CGM, GlobalDecl GD,
913                                       const NamedDecl *ND,
914                                       bool OmitMultiVersionMangling = false) {
915   SmallString<256> Buffer;
916   llvm::raw_svector_ostream Out(Buffer);
917   MangleContext &MC = CGM.getCXXABI().getMangleContext();
918   if (MC.shouldMangleDeclName(ND)) {
919     llvm::raw_svector_ostream Out(Buffer);
920     if (const auto *D = dyn_cast<CXXConstructorDecl>(ND))
921       MC.mangleCXXCtor(D, GD.getCtorType(), Out);
922     else if (const auto *D = dyn_cast<CXXDestructorDecl>(ND))
923       MC.mangleCXXDtor(D, GD.getDtorType(), Out);
924     else
925       MC.mangleName(ND, Out);
926   } else {
927     IdentifierInfo *II = ND->getIdentifier();
928     assert(II && "Attempt to mangle unnamed decl.");
929     const auto *FD = dyn_cast<FunctionDecl>(ND);
930 
931     if (FD &&
932         FD->getType()->castAs<FunctionType>()->getCallConv() == CC_X86RegCall) {
933       llvm::raw_svector_ostream Out(Buffer);
934       Out << "__regcall3__" << II->getName();
935     } else {
936       Out << II->getName();
937     }
938   }
939 
940   if (const auto *FD = dyn_cast<FunctionDecl>(ND))
941     if (FD->isMultiVersion() && !OmitMultiVersionMangling) {
942       if (FD->isCPUDispatchMultiVersion() || FD->isCPUSpecificMultiVersion())
943         AppendCPUSpecificCPUDispatchMangling(
944             CGM, FD->getAttr<CPUSpecificAttr>(), Out);
945       else
946         AppendTargetMangling(CGM, FD->getAttr<TargetAttr>(), Out);
947     }
948 
949   return Out.str();
950 }
951 
952 void CodeGenModule::UpdateMultiVersionNames(GlobalDecl GD,
953                                             const FunctionDecl *FD) {
954   if (!FD->isMultiVersion())
955     return;
956 
957   // Get the name of what this would be without the 'target' attribute.  This
958   // allows us to lookup the version that was emitted when this wasn't a
959   // multiversion function.
960   std::string NonTargetName =
961       getMangledNameImpl(*this, GD, FD, /*OmitMultiVersionMangling=*/true);
962   GlobalDecl OtherGD;
963   if (lookupRepresentativeDecl(NonTargetName, OtherGD)) {
964     assert(OtherGD.getCanonicalDecl()
965                .getDecl()
966                ->getAsFunction()
967                ->isMultiVersion() &&
968            "Other GD should now be a multiversioned function");
969     // OtherFD is the version of this function that was mangled BEFORE
970     // becoming a MultiVersion function.  It potentially needs to be updated.
971     const FunctionDecl *OtherFD =
972         OtherGD.getCanonicalDecl().getDecl()->getAsFunction();
973     std::string OtherName = getMangledNameImpl(*this, OtherGD, OtherFD);
974     // This is so that if the initial version was already the 'default'
975     // version, we don't try to update it.
976     if (OtherName != NonTargetName) {
977       // Remove instead of erase, since others may have stored the StringRef
978       // to this.
979       const auto ExistingRecord = Manglings.find(NonTargetName);
980       if (ExistingRecord != std::end(Manglings))
981         Manglings.remove(&(*ExistingRecord));
982       auto Result = Manglings.insert(std::make_pair(OtherName, OtherGD));
983       MangledDeclNames[OtherGD.getCanonicalDecl()] = Result.first->first();
984       if (llvm::GlobalValue *Entry = GetGlobalValue(NonTargetName))
985         Entry->setName(OtherName);
986     }
987   }
988 }
989 
990 StringRef CodeGenModule::getMangledName(GlobalDecl GD) {
991   GlobalDecl CanonicalGD = GD.getCanonicalDecl();
992 
993   // Some ABIs don't have constructor variants.  Make sure that base and
994   // complete constructors get mangled the same.
995   if (const auto *CD = dyn_cast<CXXConstructorDecl>(CanonicalGD.getDecl())) {
996     if (!getTarget().getCXXABI().hasConstructorVariants()) {
997       CXXCtorType OrigCtorType = GD.getCtorType();
998       assert(OrigCtorType == Ctor_Base || OrigCtorType == Ctor_Complete);
999       if (OrigCtorType == Ctor_Base)
1000         CanonicalGD = GlobalDecl(CD, Ctor_Complete);
1001     }
1002   }
1003 
1004   const auto *FD = dyn_cast<FunctionDecl>(GD.getDecl());
1005   // Since CPUSpecific can require multiple emits per decl, store the manglings
1006   // separately.
1007   if (FD &&
1008       (FD->isCPUDispatchMultiVersion() || FD->isCPUSpecificMultiVersion())) {
1009     const auto *SD = FD->getAttr<CPUSpecificAttr>();
1010 
1011     std::pair<GlobalDecl, unsigned> SpecCanonicalGD{
1012         CanonicalGD,
1013         SD ? SD->ActiveArgIndex : std::numeric_limits<unsigned>::max()};
1014 
1015     auto FoundName = CPUSpecificMangledDeclNames.find(SpecCanonicalGD);
1016     if (FoundName != CPUSpecificMangledDeclNames.end())
1017       return FoundName->second;
1018 
1019     auto Result = CPUSpecificManglings.insert(
1020         std::make_pair(getMangledNameImpl(*this, GD, FD), SpecCanonicalGD));
1021     return CPUSpecificMangledDeclNames[SpecCanonicalGD] = Result.first->first();
1022   }
1023 
1024   auto FoundName = MangledDeclNames.find(CanonicalGD);
1025   if (FoundName != MangledDeclNames.end())
1026     return FoundName->second;
1027 
1028   // Keep the first result in the case of a mangling collision.
1029   const auto *ND = cast<NamedDecl>(GD.getDecl());
1030   auto Result =
1031       Manglings.insert(std::make_pair(getMangledNameImpl(*this, GD, ND), GD));
1032   return MangledDeclNames[CanonicalGD] = Result.first->first();
1033 }
1034 
1035 StringRef CodeGenModule::getBlockMangledName(GlobalDecl GD,
1036                                              const BlockDecl *BD) {
1037   MangleContext &MangleCtx = getCXXABI().getMangleContext();
1038   const Decl *D = GD.getDecl();
1039 
1040   SmallString<256> Buffer;
1041   llvm::raw_svector_ostream Out(Buffer);
1042   if (!D)
1043     MangleCtx.mangleGlobalBlock(BD,
1044       dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()), Out);
1045   else if (const auto *CD = dyn_cast<CXXConstructorDecl>(D))
1046     MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out);
1047   else if (const auto *DD = dyn_cast<CXXDestructorDecl>(D))
1048     MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out);
1049   else
1050     MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out);
1051 
1052   auto Result = Manglings.insert(std::make_pair(Out.str(), BD));
1053   return Result.first->first();
1054 }
1055 
1056 llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) {
1057   return getModule().getNamedValue(Name);
1058 }
1059 
1060 /// AddGlobalCtor - Add a function to the list that will be called before
1061 /// main() runs.
1062 void CodeGenModule::AddGlobalCtor(llvm::Function *Ctor, int Priority,
1063                                   llvm::Constant *AssociatedData) {
1064   // FIXME: Type coercion of void()* types.
1065   GlobalCtors.push_back(Structor(Priority, Ctor, AssociatedData));
1066 }
1067 
1068 /// AddGlobalDtor - Add a function to the list that will be called
1069 /// when the module is unloaded.
1070 void CodeGenModule::AddGlobalDtor(llvm::Function *Dtor, int Priority) {
1071   if (CodeGenOpts.RegisterGlobalDtorsWithAtExit) {
1072     DtorsUsingAtExit[Priority].push_back(Dtor);
1073     return;
1074   }
1075 
1076   // FIXME: Type coercion of void()* types.
1077   GlobalDtors.push_back(Structor(Priority, Dtor, nullptr));
1078 }
1079 
1080 void CodeGenModule::EmitCtorList(CtorList &Fns, const char *GlobalName) {
1081   if (Fns.empty()) return;
1082 
1083   // Ctor function type is void()*.
1084   llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false);
1085   llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy);
1086 
1087   // Get the type of a ctor entry, { i32, void ()*, i8* }.
1088   llvm::StructType *CtorStructTy = llvm::StructType::get(
1089       Int32Ty, llvm::PointerType::getUnqual(CtorFTy), VoidPtrTy);
1090 
1091   // Construct the constructor and destructor arrays.
1092   ConstantInitBuilder builder(*this);
1093   auto ctors = builder.beginArray(CtorStructTy);
1094   for (const auto &I : Fns) {
1095     auto ctor = ctors.beginStruct(CtorStructTy);
1096     ctor.addInt(Int32Ty, I.Priority);
1097     ctor.add(llvm::ConstantExpr::getBitCast(I.Initializer, CtorPFTy));
1098     if (I.AssociatedData)
1099       ctor.add(llvm::ConstantExpr::getBitCast(I.AssociatedData, VoidPtrTy));
1100     else
1101       ctor.addNullPointer(VoidPtrTy);
1102     ctor.finishAndAddTo(ctors);
1103   }
1104 
1105   auto list =
1106     ctors.finishAndCreateGlobal(GlobalName, getPointerAlign(),
1107                                 /*constant*/ false,
1108                                 llvm::GlobalValue::AppendingLinkage);
1109 
1110   // The LTO linker doesn't seem to like it when we set an alignment
1111   // on appending variables.  Take it off as a workaround.
1112   list->setAlignment(0);
1113 
1114   Fns.clear();
1115 }
1116 
1117 llvm::GlobalValue::LinkageTypes
1118 CodeGenModule::getFunctionLinkage(GlobalDecl GD) {
1119   const auto *D = cast<FunctionDecl>(GD.getDecl());
1120 
1121   GVALinkage Linkage = getContext().GetGVALinkageForFunction(D);
1122 
1123   if (const auto *Dtor = dyn_cast<CXXDestructorDecl>(D))
1124     return getCXXABI().getCXXDestructorLinkage(Linkage, Dtor, GD.getDtorType());
1125 
1126   if (isa<CXXConstructorDecl>(D) &&
1127       cast<CXXConstructorDecl>(D)->isInheritingConstructor() &&
1128       Context.getTargetInfo().getCXXABI().isMicrosoft()) {
1129     // Our approach to inheriting constructors is fundamentally different from
1130     // that used by the MS ABI, so keep our inheriting constructor thunks
1131     // internal rather than trying to pick an unambiguous mangling for them.
1132     return llvm::GlobalValue::InternalLinkage;
1133   }
1134 
1135   return getLLVMLinkageForDeclarator(D, Linkage, /*isConstantVariable=*/false);
1136 }
1137 
1138 llvm::ConstantInt *CodeGenModule::CreateCrossDsoCfiTypeId(llvm::Metadata *MD) {
1139   llvm::MDString *MDS = dyn_cast<llvm::MDString>(MD);
1140   if (!MDS) return nullptr;
1141 
1142   return llvm::ConstantInt::get(Int64Ty, llvm::MD5Hash(MDS->getString()));
1143 }
1144 
1145 void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D,
1146                                               const CGFunctionInfo &Info,
1147                                               llvm::Function *F) {
1148   unsigned CallingConv;
1149   llvm::AttributeList PAL;
1150   ConstructAttributeList(F->getName(), Info, D, PAL, CallingConv, false);
1151   F->setAttributes(PAL);
1152   F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv));
1153 }
1154 
1155 /// Determines whether the language options require us to model
1156 /// unwind exceptions.  We treat -fexceptions as mandating this
1157 /// except under the fragile ObjC ABI with only ObjC exceptions
1158 /// enabled.  This means, for example, that C with -fexceptions
1159 /// enables this.
1160 static bool hasUnwindExceptions(const LangOptions &LangOpts) {
1161   // If exceptions are completely disabled, obviously this is false.
1162   if (!LangOpts.Exceptions) return false;
1163 
1164   // If C++ exceptions are enabled, this is true.
1165   if (LangOpts.CXXExceptions) return true;
1166 
1167   // If ObjC exceptions are enabled, this depends on the ABI.
1168   if (LangOpts.ObjCExceptions) {
1169     return LangOpts.ObjCRuntime.hasUnwindExceptions();
1170   }
1171 
1172   return true;
1173 }
1174 
1175 static bool requiresMemberFunctionPointerTypeMetadata(CodeGenModule &CGM,
1176                                                       const CXXMethodDecl *MD) {
1177   // Check that the type metadata can ever actually be used by a call.
1178   if (!CGM.getCodeGenOpts().LTOUnit ||
1179       !CGM.HasHiddenLTOVisibility(MD->getParent()))
1180     return false;
1181 
1182   // Only functions whose address can be taken with a member function pointer
1183   // need this sort of type metadata.
1184   return !MD->isStatic() && !MD->isVirtual() && !isa<CXXConstructorDecl>(MD) &&
1185          !isa<CXXDestructorDecl>(MD);
1186 }
1187 
1188 std::vector<const CXXRecordDecl *>
1189 CodeGenModule::getMostBaseClasses(const CXXRecordDecl *RD) {
1190   llvm::SetVector<const CXXRecordDecl *> MostBases;
1191 
1192   std::function<void (const CXXRecordDecl *)> CollectMostBases;
1193   CollectMostBases = [&](const CXXRecordDecl *RD) {
1194     if (RD->getNumBases() == 0)
1195       MostBases.insert(RD);
1196     for (const CXXBaseSpecifier &B : RD->bases())
1197       CollectMostBases(B.getType()->getAsCXXRecordDecl());
1198   };
1199   CollectMostBases(RD);
1200   return MostBases.takeVector();
1201 }
1202 
1203 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D,
1204                                                            llvm::Function *F) {
1205   llvm::AttrBuilder B;
1206 
1207   if (CodeGenOpts.UnwindTables)
1208     B.addAttribute(llvm::Attribute::UWTable);
1209 
1210   if (!hasUnwindExceptions(LangOpts))
1211     B.addAttribute(llvm::Attribute::NoUnwind);
1212 
1213   if (!D || !D->hasAttr<NoStackProtectorAttr>()) {
1214     if (LangOpts.getStackProtector() == LangOptions::SSPOn)
1215       B.addAttribute(llvm::Attribute::StackProtect);
1216     else if (LangOpts.getStackProtector() == LangOptions::SSPStrong)
1217       B.addAttribute(llvm::Attribute::StackProtectStrong);
1218     else if (LangOpts.getStackProtector() == LangOptions::SSPReq)
1219       B.addAttribute(llvm::Attribute::StackProtectReq);
1220   }
1221 
1222   if (!D) {
1223     // If we don't have a declaration to control inlining, the function isn't
1224     // explicitly marked as alwaysinline for semantic reasons, and inlining is
1225     // disabled, mark the function as noinline.
1226     if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline) &&
1227         CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining)
1228       B.addAttribute(llvm::Attribute::NoInline);
1229 
1230     F->addAttributes(llvm::AttributeList::FunctionIndex, B);
1231     return;
1232   }
1233 
1234   // Track whether we need to add the optnone LLVM attribute,
1235   // starting with the default for this optimization level.
1236   bool ShouldAddOptNone =
1237       !CodeGenOpts.DisableO0ImplyOptNone && CodeGenOpts.OptimizationLevel == 0;
1238   // We can't add optnone in the following cases, it won't pass the verifier.
1239   ShouldAddOptNone &= !D->hasAttr<MinSizeAttr>();
1240   ShouldAddOptNone &= !F->hasFnAttribute(llvm::Attribute::AlwaysInline);
1241   ShouldAddOptNone &= !D->hasAttr<AlwaysInlineAttr>();
1242 
1243   if (ShouldAddOptNone || D->hasAttr<OptimizeNoneAttr>()) {
1244     B.addAttribute(llvm::Attribute::OptimizeNone);
1245 
1246     // OptimizeNone implies noinline; we should not be inlining such functions.
1247     B.addAttribute(llvm::Attribute::NoInline);
1248     assert(!F->hasFnAttribute(llvm::Attribute::AlwaysInline) &&
1249            "OptimizeNone and AlwaysInline on same function!");
1250 
1251     // We still need to handle naked functions even though optnone subsumes
1252     // much of their semantics.
1253     if (D->hasAttr<NakedAttr>())
1254       B.addAttribute(llvm::Attribute::Naked);
1255 
1256     // OptimizeNone wins over OptimizeForSize and MinSize.
1257     F->removeFnAttr(llvm::Attribute::OptimizeForSize);
1258     F->removeFnAttr(llvm::Attribute::MinSize);
1259   } else if (D->hasAttr<NakedAttr>()) {
1260     // Naked implies noinline: we should not be inlining such functions.
1261     B.addAttribute(llvm::Attribute::Naked);
1262     B.addAttribute(llvm::Attribute::NoInline);
1263   } else if (D->hasAttr<NoDuplicateAttr>()) {
1264     B.addAttribute(llvm::Attribute::NoDuplicate);
1265   } else if (D->hasAttr<NoInlineAttr>()) {
1266     B.addAttribute(llvm::Attribute::NoInline);
1267   } else if (D->hasAttr<AlwaysInlineAttr>() &&
1268              !F->hasFnAttribute(llvm::Attribute::NoInline)) {
1269     // (noinline wins over always_inline, and we can't specify both in IR)
1270     B.addAttribute(llvm::Attribute::AlwaysInline);
1271   } else if (CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining) {
1272     // If we're not inlining, then force everything that isn't always_inline to
1273     // carry an explicit noinline attribute.
1274     if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline))
1275       B.addAttribute(llvm::Attribute::NoInline);
1276   } else {
1277     // Otherwise, propagate the inline hint attribute and potentially use its
1278     // absence to mark things as noinline.
1279     if (auto *FD = dyn_cast<FunctionDecl>(D)) {
1280       if (any_of(FD->redecls(), [&](const FunctionDecl *Redecl) {
1281             return Redecl->isInlineSpecified();
1282           })) {
1283         B.addAttribute(llvm::Attribute::InlineHint);
1284       } else if (CodeGenOpts.getInlining() ==
1285                      CodeGenOptions::OnlyHintInlining &&
1286                  !FD->isInlined() &&
1287                  !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) {
1288         B.addAttribute(llvm::Attribute::NoInline);
1289       }
1290     }
1291   }
1292 
1293   // Add other optimization related attributes if we are optimizing this
1294   // function.
1295   if (!D->hasAttr<OptimizeNoneAttr>()) {
1296     if (D->hasAttr<ColdAttr>()) {
1297       if (!ShouldAddOptNone)
1298         B.addAttribute(llvm::Attribute::OptimizeForSize);
1299       B.addAttribute(llvm::Attribute::Cold);
1300     }
1301 
1302     if (D->hasAttr<MinSizeAttr>())
1303       B.addAttribute(llvm::Attribute::MinSize);
1304   }
1305 
1306   F->addAttributes(llvm::AttributeList::FunctionIndex, B);
1307 
1308   unsigned alignment = D->getMaxAlignment() / Context.getCharWidth();
1309   if (alignment)
1310     F->setAlignment(alignment);
1311 
1312   if (!D->hasAttr<AlignedAttr>())
1313     if (LangOpts.FunctionAlignment)
1314       F->setAlignment(1 << LangOpts.FunctionAlignment);
1315 
1316   // Some C++ ABIs require 2-byte alignment for member functions, in order to
1317   // reserve a bit for differentiating between virtual and non-virtual member
1318   // functions. If the current target's C++ ABI requires this and this is a
1319   // member function, set its alignment accordingly.
1320   if (getTarget().getCXXABI().areMemberFunctionsAligned()) {
1321     if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D))
1322       F->setAlignment(2);
1323   }
1324 
1325   // In the cross-dso CFI mode, we want !type attributes on definitions only.
1326   if (CodeGenOpts.SanitizeCfiCrossDso)
1327     if (auto *FD = dyn_cast<FunctionDecl>(D))
1328       CreateFunctionTypeMetadataForIcall(FD, F);
1329 
1330   // Emit type metadata on member functions for member function pointer checks.
1331   // These are only ever necessary on definitions; we're guaranteed that the
1332   // definition will be present in the LTO unit as a result of LTO visibility.
1333   auto *MD = dyn_cast<CXXMethodDecl>(D);
1334   if (MD && requiresMemberFunctionPointerTypeMetadata(*this, MD)) {
1335     for (const CXXRecordDecl *Base : getMostBaseClasses(MD->getParent())) {
1336       llvm::Metadata *Id =
1337           CreateMetadataIdentifierForType(Context.getMemberPointerType(
1338               MD->getType(), Context.getRecordType(Base).getTypePtr()));
1339       F->addTypeMetadata(0, Id);
1340     }
1341   }
1342 }
1343 
1344 void CodeGenModule::SetCommonAttributes(GlobalDecl GD, llvm::GlobalValue *GV) {
1345   const Decl *D = GD.getDecl();
1346   if (dyn_cast_or_null<NamedDecl>(D))
1347     setGVProperties(GV, GD);
1348   else
1349     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
1350 
1351   if (D && D->hasAttr<UsedAttr>())
1352     addUsedGlobal(GV);
1353 }
1354 
1355 bool CodeGenModule::GetCPUAndFeaturesAttributes(const Decl *D,
1356                                                 llvm::AttrBuilder &Attrs) {
1357   // Add target-cpu and target-features attributes to functions. If
1358   // we have a decl for the function and it has a target attribute then
1359   // parse that and add it to the feature set.
1360   StringRef TargetCPU = getTarget().getTargetOpts().CPU;
1361   std::vector<std::string> Features;
1362   const auto *FD = dyn_cast_or_null<FunctionDecl>(D);
1363   FD = FD ? FD->getMostRecentDecl() : FD;
1364   const auto *TD = FD ? FD->getAttr<TargetAttr>() : nullptr;
1365   const auto *SD = FD ? FD->getAttr<CPUSpecificAttr>() : nullptr;
1366   bool AddedAttr = false;
1367   if (TD || SD) {
1368     llvm::StringMap<bool> FeatureMap;
1369     getFunctionFeatureMap(FeatureMap, FD);
1370 
1371     // Produce the canonical string for this set of features.
1372     for (const llvm::StringMap<bool>::value_type &Entry : FeatureMap)
1373       Features.push_back((Entry.getValue() ? "+" : "-") + Entry.getKey().str());
1374 
1375     // Now add the target-cpu and target-features to the function.
1376     // While we populated the feature map above, we still need to
1377     // get and parse the target attribute so we can get the cpu for
1378     // the function.
1379     if (TD) {
1380       TargetAttr::ParsedTargetAttr ParsedAttr = TD->parse();
1381       if (ParsedAttr.Architecture != "" &&
1382           getTarget().isValidCPUName(ParsedAttr.Architecture))
1383         TargetCPU = ParsedAttr.Architecture;
1384     }
1385   } else {
1386     // Otherwise just add the existing target cpu and target features to the
1387     // function.
1388     Features = getTarget().getTargetOpts().Features;
1389   }
1390 
1391   if (TargetCPU != "") {
1392     Attrs.addAttribute("target-cpu", TargetCPU);
1393     AddedAttr = true;
1394   }
1395   if (!Features.empty()) {
1396     llvm::sort(Features.begin(), Features.end());
1397     Attrs.addAttribute("target-features", llvm::join(Features, ","));
1398     AddedAttr = true;
1399   }
1400 
1401   return AddedAttr;
1402 }
1403 
1404 void CodeGenModule::setNonAliasAttributes(GlobalDecl GD,
1405                                           llvm::GlobalObject *GO) {
1406   const Decl *D = GD.getDecl();
1407   SetCommonAttributes(GD, GO);
1408 
1409   if (D) {
1410     if (auto *GV = dyn_cast<llvm::GlobalVariable>(GO)) {
1411       if (auto *SA = D->getAttr<PragmaClangBSSSectionAttr>())
1412         GV->addAttribute("bss-section", SA->getName());
1413       if (auto *SA = D->getAttr<PragmaClangDataSectionAttr>())
1414         GV->addAttribute("data-section", SA->getName());
1415       if (auto *SA = D->getAttr<PragmaClangRodataSectionAttr>())
1416         GV->addAttribute("rodata-section", SA->getName());
1417     }
1418 
1419     if (auto *F = dyn_cast<llvm::Function>(GO)) {
1420       if (auto *SA = D->getAttr<PragmaClangTextSectionAttr>())
1421         if (!D->getAttr<SectionAttr>())
1422           F->addFnAttr("implicit-section-name", SA->getName());
1423 
1424       llvm::AttrBuilder Attrs;
1425       if (GetCPUAndFeaturesAttributes(D, Attrs)) {
1426         // We know that GetCPUAndFeaturesAttributes will always have the
1427         // newest set, since it has the newest possible FunctionDecl, so the
1428         // new ones should replace the old.
1429         F->removeFnAttr("target-cpu");
1430         F->removeFnAttr("target-features");
1431         F->addAttributes(llvm::AttributeList::FunctionIndex, Attrs);
1432       }
1433     }
1434 
1435     if (const auto *CSA = D->getAttr<CodeSegAttr>())
1436       GO->setSection(CSA->getName());
1437     else if (const auto *SA = D->getAttr<SectionAttr>())
1438       GO->setSection(SA->getName());
1439   }
1440 
1441   getTargetCodeGenInfo().setTargetAttributes(D, GO, *this);
1442 }
1443 
1444 void CodeGenModule::SetInternalFunctionAttributes(GlobalDecl GD,
1445                                                   llvm::Function *F,
1446                                                   const CGFunctionInfo &FI) {
1447   const Decl *D = GD.getDecl();
1448   SetLLVMFunctionAttributes(D, FI, F);
1449   SetLLVMFunctionAttributesForDefinition(D, F);
1450 
1451   F->setLinkage(llvm::Function::InternalLinkage);
1452 
1453   setNonAliasAttributes(GD, F);
1454 }
1455 
1456 static void setLinkageForGV(llvm::GlobalValue *GV, const NamedDecl *ND) {
1457   // Set linkage and visibility in case we never see a definition.
1458   LinkageInfo LV = ND->getLinkageAndVisibility();
1459   // Don't set internal linkage on declarations.
1460   // "extern_weak" is overloaded in LLVM; we probably should have
1461   // separate linkage types for this.
1462   if (isExternallyVisible(LV.getLinkage()) &&
1463       (ND->hasAttr<WeakAttr>() || ND->isWeakImported()))
1464     GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage);
1465 }
1466 
1467 void CodeGenModule::CreateFunctionTypeMetadataForIcall(const FunctionDecl *FD,
1468                                                        llvm::Function *F) {
1469   // Only if we are checking indirect calls.
1470   if (!LangOpts.Sanitize.has(SanitizerKind::CFIICall))
1471     return;
1472 
1473   // Non-static class methods are handled via vtable or member function pointer
1474   // checks elsewhere.
1475   if (isa<CXXMethodDecl>(FD) && !cast<CXXMethodDecl>(FD)->isStatic())
1476     return;
1477 
1478   // Additionally, if building with cross-DSO support...
1479   if (CodeGenOpts.SanitizeCfiCrossDso) {
1480     // Skip available_externally functions. They won't be codegen'ed in the
1481     // current module anyway.
1482     if (getContext().GetGVALinkageForFunction(FD) == GVA_AvailableExternally)
1483       return;
1484   }
1485 
1486   llvm::Metadata *MD = CreateMetadataIdentifierForType(FD->getType());
1487   F->addTypeMetadata(0, MD);
1488   F->addTypeMetadata(0, CreateMetadataIdentifierGeneralized(FD->getType()));
1489 
1490   // Emit a hash-based bit set entry for cross-DSO calls.
1491   if (CodeGenOpts.SanitizeCfiCrossDso)
1492     if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD))
1493       F->addTypeMetadata(0, llvm::ConstantAsMetadata::get(CrossDsoTypeId));
1494 }
1495 
1496 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD, llvm::Function *F,
1497                                           bool IsIncompleteFunction,
1498                                           bool IsThunk) {
1499 
1500   if (llvm::Intrinsic::ID IID = F->getIntrinsicID()) {
1501     // If this is an intrinsic function, set the function's attributes
1502     // to the intrinsic's attributes.
1503     F->setAttributes(llvm::Intrinsic::getAttributes(getLLVMContext(), IID));
1504     return;
1505   }
1506 
1507   const auto *FD = cast<FunctionDecl>(GD.getDecl());
1508 
1509   if (!IsIncompleteFunction) {
1510     SetLLVMFunctionAttributes(FD, getTypes().arrangeGlobalDeclaration(GD), F);
1511     // Setup target-specific attributes.
1512     if (F->isDeclaration())
1513       getTargetCodeGenInfo().setTargetAttributes(FD, F, *this);
1514   }
1515 
1516   // Add the Returned attribute for "this", except for iOS 5 and earlier
1517   // where substantial code, including the libstdc++ dylib, was compiled with
1518   // GCC and does not actually return "this".
1519   if (!IsThunk && getCXXABI().HasThisReturn(GD) &&
1520       !(getTriple().isiOS() && getTriple().isOSVersionLT(6))) {
1521     assert(!F->arg_empty() &&
1522            F->arg_begin()->getType()
1523              ->canLosslesslyBitCastTo(F->getReturnType()) &&
1524            "unexpected this return");
1525     F->addAttribute(1, llvm::Attribute::Returned);
1526   }
1527 
1528   // Only a few attributes are set on declarations; these may later be
1529   // overridden by a definition.
1530 
1531   setLinkageForGV(F, FD);
1532   setGVProperties(F, FD);
1533 
1534   if (const auto *CSA = FD->getAttr<CodeSegAttr>())
1535     F->setSection(CSA->getName());
1536   else if (const auto *SA = FD->getAttr<SectionAttr>())
1537      F->setSection(SA->getName());
1538 
1539   if (FD->isReplaceableGlobalAllocationFunction()) {
1540     // A replaceable global allocation function does not act like a builtin by
1541     // default, only if it is invoked by a new-expression or delete-expression.
1542     F->addAttribute(llvm::AttributeList::FunctionIndex,
1543                     llvm::Attribute::NoBuiltin);
1544 
1545     // A sane operator new returns a non-aliasing pointer.
1546     // FIXME: Also add NonNull attribute to the return value
1547     // for the non-nothrow forms?
1548     auto Kind = FD->getDeclName().getCXXOverloadedOperator();
1549     if (getCodeGenOpts().AssumeSaneOperatorNew &&
1550         (Kind == OO_New || Kind == OO_Array_New))
1551       F->addAttribute(llvm::AttributeList::ReturnIndex,
1552                       llvm::Attribute::NoAlias);
1553   }
1554 
1555   if (isa<CXXConstructorDecl>(FD) || isa<CXXDestructorDecl>(FD))
1556     F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
1557   else if (const auto *MD = dyn_cast<CXXMethodDecl>(FD))
1558     if (MD->isVirtual())
1559       F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
1560 
1561   // Don't emit entries for function declarations in the cross-DSO mode. This
1562   // is handled with better precision by the receiving DSO.
1563   if (!CodeGenOpts.SanitizeCfiCrossDso)
1564     CreateFunctionTypeMetadataForIcall(FD, F);
1565 
1566   if (getLangOpts().OpenMP && FD->hasAttr<OMPDeclareSimdDeclAttr>())
1567     getOpenMPRuntime().emitDeclareSimdFunction(FD, F);
1568 }
1569 
1570 void CodeGenModule::addUsedGlobal(llvm::GlobalValue *GV) {
1571   assert(!GV->isDeclaration() &&
1572          "Only globals with definition can force usage.");
1573   LLVMUsed.emplace_back(GV);
1574 }
1575 
1576 void CodeGenModule::addCompilerUsedGlobal(llvm::GlobalValue *GV) {
1577   assert(!GV->isDeclaration() &&
1578          "Only globals with definition can force usage.");
1579   LLVMCompilerUsed.emplace_back(GV);
1580 }
1581 
1582 static void emitUsed(CodeGenModule &CGM, StringRef Name,
1583                      std::vector<llvm::WeakTrackingVH> &List) {
1584   // Don't create llvm.used if there is no need.
1585   if (List.empty())
1586     return;
1587 
1588   // Convert List to what ConstantArray needs.
1589   SmallVector<llvm::Constant*, 8> UsedArray;
1590   UsedArray.resize(List.size());
1591   for (unsigned i = 0, e = List.size(); i != e; ++i) {
1592     UsedArray[i] =
1593         llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(
1594             cast<llvm::Constant>(&*List[i]), CGM.Int8PtrTy);
1595   }
1596 
1597   if (UsedArray.empty())
1598     return;
1599   llvm::ArrayType *ATy = llvm::ArrayType::get(CGM.Int8PtrTy, UsedArray.size());
1600 
1601   auto *GV = new llvm::GlobalVariable(
1602       CGM.getModule(), ATy, false, llvm::GlobalValue::AppendingLinkage,
1603       llvm::ConstantArray::get(ATy, UsedArray), Name);
1604 
1605   GV->setSection("llvm.metadata");
1606 }
1607 
1608 void CodeGenModule::emitLLVMUsed() {
1609   emitUsed(*this, "llvm.used", LLVMUsed);
1610   emitUsed(*this, "llvm.compiler.used", LLVMCompilerUsed);
1611 }
1612 
1613 void CodeGenModule::AppendLinkerOptions(StringRef Opts) {
1614   auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opts);
1615   LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
1616 }
1617 
1618 void CodeGenModule::AddDetectMismatch(StringRef Name, StringRef Value) {
1619   llvm::SmallString<32> Opt;
1620   getTargetCodeGenInfo().getDetectMismatchOption(Name, Value, Opt);
1621   auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt);
1622   LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
1623 }
1624 
1625 void CodeGenModule::AddELFLibDirective(StringRef Lib) {
1626   auto &C = getLLVMContext();
1627   LinkerOptionsMetadata.push_back(llvm::MDNode::get(
1628       C, {llvm::MDString::get(C, "lib"), llvm::MDString::get(C, Lib)}));
1629 }
1630 
1631 void CodeGenModule::AddDependentLib(StringRef Lib) {
1632   llvm::SmallString<24> Opt;
1633   getTargetCodeGenInfo().getDependentLibraryOption(Lib, Opt);
1634   auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt);
1635   LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
1636 }
1637 
1638 /// Add link options implied by the given module, including modules
1639 /// it depends on, using a postorder walk.
1640 static void addLinkOptionsPostorder(CodeGenModule &CGM, Module *Mod,
1641                                     SmallVectorImpl<llvm::MDNode *> &Metadata,
1642                                     llvm::SmallPtrSet<Module *, 16> &Visited) {
1643   // Import this module's parent.
1644   if (Mod->Parent && Visited.insert(Mod->Parent).second) {
1645     addLinkOptionsPostorder(CGM, Mod->Parent, Metadata, Visited);
1646   }
1647 
1648   // Import this module's dependencies.
1649   for (unsigned I = Mod->Imports.size(); I > 0; --I) {
1650     if (Visited.insert(Mod->Imports[I - 1]).second)
1651       addLinkOptionsPostorder(CGM, Mod->Imports[I-1], Metadata, Visited);
1652   }
1653 
1654   // Add linker options to link against the libraries/frameworks
1655   // described by this module.
1656   llvm::LLVMContext &Context = CGM.getLLVMContext();
1657 
1658   // For modules that use export_as for linking, use that module
1659   // name instead.
1660   if (Mod->UseExportAsModuleLinkName)
1661     return;
1662 
1663   for (unsigned I = Mod->LinkLibraries.size(); I > 0; --I) {
1664     // Link against a framework.  Frameworks are currently Darwin only, so we
1665     // don't to ask TargetCodeGenInfo for the spelling of the linker option.
1666     if (Mod->LinkLibraries[I-1].IsFramework) {
1667       llvm::Metadata *Args[2] = {
1668           llvm::MDString::get(Context, "-framework"),
1669           llvm::MDString::get(Context, Mod->LinkLibraries[I - 1].Library)};
1670 
1671       Metadata.push_back(llvm::MDNode::get(Context, Args));
1672       continue;
1673     }
1674 
1675     // Link against a library.
1676     llvm::SmallString<24> Opt;
1677     CGM.getTargetCodeGenInfo().getDependentLibraryOption(
1678       Mod->LinkLibraries[I-1].Library, Opt);
1679     auto *OptString = llvm::MDString::get(Context, Opt);
1680     Metadata.push_back(llvm::MDNode::get(Context, OptString));
1681   }
1682 }
1683 
1684 void CodeGenModule::EmitModuleLinkOptions() {
1685   // Collect the set of all of the modules we want to visit to emit link
1686   // options, which is essentially the imported modules and all of their
1687   // non-explicit child modules.
1688   llvm::SetVector<clang::Module *> LinkModules;
1689   llvm::SmallPtrSet<clang::Module *, 16> Visited;
1690   SmallVector<clang::Module *, 16> Stack;
1691 
1692   // Seed the stack with imported modules.
1693   for (Module *M : ImportedModules) {
1694     // Do not add any link flags when an implementation TU of a module imports
1695     // a header of that same module.
1696     if (M->getTopLevelModuleName() == getLangOpts().CurrentModule &&
1697         !getLangOpts().isCompilingModule())
1698       continue;
1699     if (Visited.insert(M).second)
1700       Stack.push_back(M);
1701   }
1702 
1703   // Find all of the modules to import, making a little effort to prune
1704   // non-leaf modules.
1705   while (!Stack.empty()) {
1706     clang::Module *Mod = Stack.pop_back_val();
1707 
1708     bool AnyChildren = false;
1709 
1710     // Visit the submodules of this module.
1711     for (clang::Module::submodule_iterator Sub = Mod->submodule_begin(),
1712                                         SubEnd = Mod->submodule_end();
1713          Sub != SubEnd; ++Sub) {
1714       // Skip explicit children; they need to be explicitly imported to be
1715       // linked against.
1716       if ((*Sub)->IsExplicit)
1717         continue;
1718 
1719       if (Visited.insert(*Sub).second) {
1720         Stack.push_back(*Sub);
1721         AnyChildren = true;
1722       }
1723     }
1724 
1725     // We didn't find any children, so add this module to the list of
1726     // modules to link against.
1727     if (!AnyChildren) {
1728       LinkModules.insert(Mod);
1729     }
1730   }
1731 
1732   // Add link options for all of the imported modules in reverse topological
1733   // order.  We don't do anything to try to order import link flags with respect
1734   // to linker options inserted by things like #pragma comment().
1735   SmallVector<llvm::MDNode *, 16> MetadataArgs;
1736   Visited.clear();
1737   for (Module *M : LinkModules)
1738     if (Visited.insert(M).second)
1739       addLinkOptionsPostorder(*this, M, MetadataArgs, Visited);
1740   std::reverse(MetadataArgs.begin(), MetadataArgs.end());
1741   LinkerOptionsMetadata.append(MetadataArgs.begin(), MetadataArgs.end());
1742 
1743   // Add the linker options metadata flag.
1744   auto *NMD = getModule().getOrInsertNamedMetadata("llvm.linker.options");
1745   for (auto *MD : LinkerOptionsMetadata)
1746     NMD->addOperand(MD);
1747 }
1748 
1749 void CodeGenModule::EmitDeferred() {
1750   // Emit code for any potentially referenced deferred decls.  Since a
1751   // previously unused static decl may become used during the generation of code
1752   // for a static function, iterate until no changes are made.
1753 
1754   if (!DeferredVTables.empty()) {
1755     EmitDeferredVTables();
1756 
1757     // Emitting a vtable doesn't directly cause more vtables to
1758     // become deferred, although it can cause functions to be
1759     // emitted that then need those vtables.
1760     assert(DeferredVTables.empty());
1761   }
1762 
1763   // Stop if we're out of both deferred vtables and deferred declarations.
1764   if (DeferredDeclsToEmit.empty())
1765     return;
1766 
1767   // Grab the list of decls to emit. If EmitGlobalDefinition schedules more
1768   // work, it will not interfere with this.
1769   std::vector<GlobalDecl> CurDeclsToEmit;
1770   CurDeclsToEmit.swap(DeferredDeclsToEmit);
1771 
1772   for (GlobalDecl &D : CurDeclsToEmit) {
1773     // We should call GetAddrOfGlobal with IsForDefinition set to true in order
1774     // to get GlobalValue with exactly the type we need, not something that
1775     // might had been created for another decl with the same mangled name but
1776     // different type.
1777     llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>(
1778         GetAddrOfGlobal(D, ForDefinition));
1779 
1780     // In case of different address spaces, we may still get a cast, even with
1781     // IsForDefinition equal to true. Query mangled names table to get
1782     // GlobalValue.
1783     if (!GV)
1784       GV = GetGlobalValue(getMangledName(D));
1785 
1786     // Make sure GetGlobalValue returned non-null.
1787     assert(GV);
1788 
1789     // Check to see if we've already emitted this.  This is necessary
1790     // for a couple of reasons: first, decls can end up in the
1791     // deferred-decls queue multiple times, and second, decls can end
1792     // up with definitions in unusual ways (e.g. by an extern inline
1793     // function acquiring a strong function redefinition).  Just
1794     // ignore these cases.
1795     if (!GV->isDeclaration())
1796       continue;
1797 
1798     // Otherwise, emit the definition and move on to the next one.
1799     EmitGlobalDefinition(D, GV);
1800 
1801     // If we found out that we need to emit more decls, do that recursively.
1802     // This has the advantage that the decls are emitted in a DFS and related
1803     // ones are close together, which is convenient for testing.
1804     if (!DeferredVTables.empty() || !DeferredDeclsToEmit.empty()) {
1805       EmitDeferred();
1806       assert(DeferredVTables.empty() && DeferredDeclsToEmit.empty());
1807     }
1808   }
1809 }
1810 
1811 void CodeGenModule::EmitVTablesOpportunistically() {
1812   // Try to emit external vtables as available_externally if they have emitted
1813   // all inlined virtual functions.  It runs after EmitDeferred() and therefore
1814   // is not allowed to create new references to things that need to be emitted
1815   // lazily. Note that it also uses fact that we eagerly emitting RTTI.
1816 
1817   assert((OpportunisticVTables.empty() || shouldOpportunisticallyEmitVTables())
1818          && "Only emit opportunistic vtables with optimizations");
1819 
1820   for (const CXXRecordDecl *RD : OpportunisticVTables) {
1821     assert(getVTables().isVTableExternal(RD) &&
1822            "This queue should only contain external vtables");
1823     if (getCXXABI().canSpeculativelyEmitVTable(RD))
1824       VTables.GenerateClassData(RD);
1825   }
1826   OpportunisticVTables.clear();
1827 }
1828 
1829 void CodeGenModule::EmitGlobalAnnotations() {
1830   if (Annotations.empty())
1831     return;
1832 
1833   // Create a new global variable for the ConstantStruct in the Module.
1834   llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get(
1835     Annotations[0]->getType(), Annotations.size()), Annotations);
1836   auto *gv = new llvm::GlobalVariable(getModule(), Array->getType(), false,
1837                                       llvm::GlobalValue::AppendingLinkage,
1838                                       Array, "llvm.global.annotations");
1839   gv->setSection(AnnotationSection);
1840 }
1841 
1842 llvm::Constant *CodeGenModule::EmitAnnotationString(StringRef Str) {
1843   llvm::Constant *&AStr = AnnotationStrings[Str];
1844   if (AStr)
1845     return AStr;
1846 
1847   // Not found yet, create a new global.
1848   llvm::Constant *s = llvm::ConstantDataArray::getString(getLLVMContext(), Str);
1849   auto *gv =
1850       new llvm::GlobalVariable(getModule(), s->getType(), true,
1851                                llvm::GlobalValue::PrivateLinkage, s, ".str");
1852   gv->setSection(AnnotationSection);
1853   gv->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
1854   AStr = gv;
1855   return gv;
1856 }
1857 
1858 llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) {
1859   SourceManager &SM = getContext().getSourceManager();
1860   PresumedLoc PLoc = SM.getPresumedLoc(Loc);
1861   if (PLoc.isValid())
1862     return EmitAnnotationString(PLoc.getFilename());
1863   return EmitAnnotationString(SM.getBufferName(Loc));
1864 }
1865 
1866 llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) {
1867   SourceManager &SM = getContext().getSourceManager();
1868   PresumedLoc PLoc = SM.getPresumedLoc(L);
1869   unsigned LineNo = PLoc.isValid() ? PLoc.getLine() :
1870     SM.getExpansionLineNumber(L);
1871   return llvm::ConstantInt::get(Int32Ty, LineNo);
1872 }
1873 
1874 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV,
1875                                                 const AnnotateAttr *AA,
1876                                                 SourceLocation L) {
1877   // Get the globals for file name, annotation, and the line number.
1878   llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()),
1879                  *UnitGV = EmitAnnotationUnit(L),
1880                  *LineNoCst = EmitAnnotationLineNo(L);
1881 
1882   // Create the ConstantStruct for the global annotation.
1883   llvm::Constant *Fields[4] = {
1884     llvm::ConstantExpr::getBitCast(GV, Int8PtrTy),
1885     llvm::ConstantExpr::getBitCast(AnnoGV, Int8PtrTy),
1886     llvm::ConstantExpr::getBitCast(UnitGV, Int8PtrTy),
1887     LineNoCst
1888   };
1889   return llvm::ConstantStruct::getAnon(Fields);
1890 }
1891 
1892 void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D,
1893                                          llvm::GlobalValue *GV) {
1894   assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
1895   // Get the struct elements for these annotations.
1896   for (const auto *I : D->specific_attrs<AnnotateAttr>())
1897     Annotations.push_back(EmitAnnotateAttr(GV, I, D->getLocation()));
1898 }
1899 
1900 bool CodeGenModule::isInSanitizerBlacklist(SanitizerMask Kind,
1901                                            llvm::Function *Fn,
1902                                            SourceLocation Loc) const {
1903   const auto &SanitizerBL = getContext().getSanitizerBlacklist();
1904   // Blacklist by function name.
1905   if (SanitizerBL.isBlacklistedFunction(Kind, Fn->getName()))
1906     return true;
1907   // Blacklist by location.
1908   if (Loc.isValid())
1909     return SanitizerBL.isBlacklistedLocation(Kind, Loc);
1910   // If location is unknown, this may be a compiler-generated function. Assume
1911   // it's located in the main file.
1912   auto &SM = Context.getSourceManager();
1913   if (const auto *MainFile = SM.getFileEntryForID(SM.getMainFileID())) {
1914     return SanitizerBL.isBlacklistedFile(Kind, MainFile->getName());
1915   }
1916   return false;
1917 }
1918 
1919 bool CodeGenModule::isInSanitizerBlacklist(llvm::GlobalVariable *GV,
1920                                            SourceLocation Loc, QualType Ty,
1921                                            StringRef Category) const {
1922   // For now globals can be blacklisted only in ASan and KASan.
1923   const SanitizerMask EnabledAsanMask = LangOpts.Sanitize.Mask &
1924       (SanitizerKind::Address | SanitizerKind::KernelAddress |
1925        SanitizerKind::HWAddress | SanitizerKind::KernelHWAddress);
1926   if (!EnabledAsanMask)
1927     return false;
1928   const auto &SanitizerBL = getContext().getSanitizerBlacklist();
1929   if (SanitizerBL.isBlacklistedGlobal(EnabledAsanMask, GV->getName(), Category))
1930     return true;
1931   if (SanitizerBL.isBlacklistedLocation(EnabledAsanMask, Loc, Category))
1932     return true;
1933   // Check global type.
1934   if (!Ty.isNull()) {
1935     // Drill down the array types: if global variable of a fixed type is
1936     // blacklisted, we also don't instrument arrays of them.
1937     while (auto AT = dyn_cast<ArrayType>(Ty.getTypePtr()))
1938       Ty = AT->getElementType();
1939     Ty = Ty.getCanonicalType().getUnqualifiedType();
1940     // We allow to blacklist only record types (classes, structs etc.)
1941     if (Ty->isRecordType()) {
1942       std::string TypeStr = Ty.getAsString(getContext().getPrintingPolicy());
1943       if (SanitizerBL.isBlacklistedType(EnabledAsanMask, TypeStr, Category))
1944         return true;
1945     }
1946   }
1947   return false;
1948 }
1949 
1950 bool CodeGenModule::imbueXRayAttrs(llvm::Function *Fn, SourceLocation Loc,
1951                                    StringRef Category) const {
1952   if (!LangOpts.XRayInstrument)
1953     return false;
1954 
1955   const auto &XRayFilter = getContext().getXRayFilter();
1956   using ImbueAttr = XRayFunctionFilter::ImbueAttribute;
1957   auto Attr = ImbueAttr::NONE;
1958   if (Loc.isValid())
1959     Attr = XRayFilter.shouldImbueLocation(Loc, Category);
1960   if (Attr == ImbueAttr::NONE)
1961     Attr = XRayFilter.shouldImbueFunction(Fn->getName());
1962   switch (Attr) {
1963   case ImbueAttr::NONE:
1964     return false;
1965   case ImbueAttr::ALWAYS:
1966     Fn->addFnAttr("function-instrument", "xray-always");
1967     break;
1968   case ImbueAttr::ALWAYS_ARG1:
1969     Fn->addFnAttr("function-instrument", "xray-always");
1970     Fn->addFnAttr("xray-log-args", "1");
1971     break;
1972   case ImbueAttr::NEVER:
1973     Fn->addFnAttr("function-instrument", "xray-never");
1974     break;
1975   }
1976   return true;
1977 }
1978 
1979 bool CodeGenModule::MustBeEmitted(const ValueDecl *Global) {
1980   // Never defer when EmitAllDecls is specified.
1981   if (LangOpts.EmitAllDecls)
1982     return true;
1983 
1984   return getContext().DeclMustBeEmitted(Global);
1985 }
1986 
1987 bool CodeGenModule::MayBeEmittedEagerly(const ValueDecl *Global) {
1988   if (const auto *FD = dyn_cast<FunctionDecl>(Global))
1989     if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
1990       // Implicit template instantiations may change linkage if they are later
1991       // explicitly instantiated, so they should not be emitted eagerly.
1992       return false;
1993   if (const auto *VD = dyn_cast<VarDecl>(Global))
1994     if (Context.getInlineVariableDefinitionKind(VD) ==
1995         ASTContext::InlineVariableDefinitionKind::WeakUnknown)
1996       // A definition of an inline constexpr static data member may change
1997       // linkage later if it's redeclared outside the class.
1998       return false;
1999   // If OpenMP is enabled and threadprivates must be generated like TLS, delay
2000   // codegen for global variables, because they may be marked as threadprivate.
2001   if (LangOpts.OpenMP && LangOpts.OpenMPUseTLS &&
2002       getContext().getTargetInfo().isTLSSupported() && isa<VarDecl>(Global) &&
2003       !isTypeConstant(Global->getType(), false))
2004     return false;
2005 
2006   return true;
2007 }
2008 
2009 ConstantAddress CodeGenModule::GetAddrOfUuidDescriptor(
2010     const CXXUuidofExpr* E) {
2011   // Sema has verified that IIDSource has a __declspec(uuid()), and that its
2012   // well-formed.
2013   StringRef Uuid = E->getUuidStr();
2014   std::string Name = "_GUID_" + Uuid.lower();
2015   std::replace(Name.begin(), Name.end(), '-', '_');
2016 
2017   // The UUID descriptor should be pointer aligned.
2018   CharUnits Alignment = CharUnits::fromQuantity(PointerAlignInBytes);
2019 
2020   // Look for an existing global.
2021   if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name))
2022     return ConstantAddress(GV, Alignment);
2023 
2024   llvm::Constant *Init = EmitUuidofInitializer(Uuid);
2025   assert(Init && "failed to initialize as constant");
2026 
2027   auto *GV = new llvm::GlobalVariable(
2028       getModule(), Init->getType(),
2029       /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name);
2030   if (supportsCOMDAT())
2031     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
2032   setDSOLocal(GV);
2033   return ConstantAddress(GV, Alignment);
2034 }
2035 
2036 ConstantAddress CodeGenModule::GetWeakRefReference(const ValueDecl *VD) {
2037   const AliasAttr *AA = VD->getAttr<AliasAttr>();
2038   assert(AA && "No alias?");
2039 
2040   CharUnits Alignment = getContext().getDeclAlign(VD);
2041   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType());
2042 
2043   // See if there is already something with the target's name in the module.
2044   llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee());
2045   if (Entry) {
2046     unsigned AS = getContext().getTargetAddressSpace(VD->getType());
2047     auto Ptr = llvm::ConstantExpr::getBitCast(Entry, DeclTy->getPointerTo(AS));
2048     return ConstantAddress(Ptr, Alignment);
2049   }
2050 
2051   llvm::Constant *Aliasee;
2052   if (isa<llvm::FunctionType>(DeclTy))
2053     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy,
2054                                       GlobalDecl(cast<FunctionDecl>(VD)),
2055                                       /*ForVTable=*/false);
2056   else
2057     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
2058                                     llvm::PointerType::getUnqual(DeclTy),
2059                                     nullptr);
2060 
2061   auto *F = cast<llvm::GlobalValue>(Aliasee);
2062   F->setLinkage(llvm::Function::ExternalWeakLinkage);
2063   WeakRefReferences.insert(F);
2064 
2065   return ConstantAddress(Aliasee, Alignment);
2066 }
2067 
2068 void CodeGenModule::EmitGlobal(GlobalDecl GD) {
2069   const auto *Global = cast<ValueDecl>(GD.getDecl());
2070 
2071   // Weak references don't produce any output by themselves.
2072   if (Global->hasAttr<WeakRefAttr>())
2073     return;
2074 
2075   // If this is an alias definition (which otherwise looks like a declaration)
2076   // emit it now.
2077   if (Global->hasAttr<AliasAttr>())
2078     return EmitAliasDefinition(GD);
2079 
2080   // IFunc like an alias whose value is resolved at runtime by calling resolver.
2081   if (Global->hasAttr<IFuncAttr>())
2082     return emitIFuncDefinition(GD);
2083 
2084   // If this is a cpu_dispatch multiversion function, emit the resolver.
2085   if (Global->hasAttr<CPUDispatchAttr>())
2086     return emitCPUDispatchDefinition(GD);
2087 
2088   // If this is CUDA, be selective about which declarations we emit.
2089   if (LangOpts.CUDA) {
2090     if (LangOpts.CUDAIsDevice) {
2091       if (!Global->hasAttr<CUDADeviceAttr>() &&
2092           !Global->hasAttr<CUDAGlobalAttr>() &&
2093           !Global->hasAttr<CUDAConstantAttr>() &&
2094           !Global->hasAttr<CUDASharedAttr>())
2095         return;
2096     } else {
2097       // We need to emit host-side 'shadows' for all global
2098       // device-side variables because the CUDA runtime needs their
2099       // size and host-side address in order to provide access to
2100       // their device-side incarnations.
2101 
2102       // So device-only functions are the only things we skip.
2103       if (isa<FunctionDecl>(Global) && !Global->hasAttr<CUDAHostAttr>() &&
2104           Global->hasAttr<CUDADeviceAttr>())
2105         return;
2106 
2107       assert((isa<FunctionDecl>(Global) || isa<VarDecl>(Global)) &&
2108              "Expected Variable or Function");
2109     }
2110   }
2111 
2112   if (LangOpts.OpenMP) {
2113     // If this is OpenMP device, check if it is legal to emit this global
2114     // normally.
2115     if (OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(GD))
2116       return;
2117     if (auto *DRD = dyn_cast<OMPDeclareReductionDecl>(Global)) {
2118       if (MustBeEmitted(Global))
2119         EmitOMPDeclareReduction(DRD);
2120       return;
2121     }
2122   }
2123 
2124   // Ignore declarations, they will be emitted on their first use.
2125   if (const auto *FD = dyn_cast<FunctionDecl>(Global)) {
2126     // Forward declarations are emitted lazily on first use.
2127     if (!FD->doesThisDeclarationHaveABody()) {
2128       if (!FD->doesDeclarationForceExternallyVisibleDefinition())
2129         return;
2130 
2131       StringRef MangledName = getMangledName(GD);
2132 
2133       // Compute the function info and LLVM type.
2134       const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
2135       llvm::Type *Ty = getTypes().GetFunctionType(FI);
2136 
2137       GetOrCreateLLVMFunction(MangledName, Ty, GD, /*ForVTable=*/false,
2138                               /*DontDefer=*/false);
2139       return;
2140     }
2141   } else {
2142     const auto *VD = cast<VarDecl>(Global);
2143     assert(VD->isFileVarDecl() && "Cannot emit local var decl as global.");
2144     // We need to emit device-side global CUDA variables even if a
2145     // variable does not have a definition -- we still need to define
2146     // host-side shadow for it.
2147     bool MustEmitForCuda = LangOpts.CUDA && !LangOpts.CUDAIsDevice &&
2148                            !VD->hasDefinition() &&
2149                            (VD->hasAttr<CUDAConstantAttr>() ||
2150                             VD->hasAttr<CUDADeviceAttr>());
2151     if (!MustEmitForCuda &&
2152         VD->isThisDeclarationADefinition() != VarDecl::Definition &&
2153         !Context.isMSStaticDataMemberInlineDefinition(VD)) {
2154       // If this declaration may have caused an inline variable definition to
2155       // change linkage, make sure that it's emitted.
2156       if (Context.getInlineVariableDefinitionKind(VD) ==
2157           ASTContext::InlineVariableDefinitionKind::Strong)
2158         GetAddrOfGlobalVar(VD);
2159       return;
2160     }
2161   }
2162 
2163   // Defer code generation to first use when possible, e.g. if this is an inline
2164   // function. If the global must always be emitted, do it eagerly if possible
2165   // to benefit from cache locality.
2166   if (MustBeEmitted(Global) && MayBeEmittedEagerly(Global)) {
2167     // Emit the definition if it can't be deferred.
2168     EmitGlobalDefinition(GD);
2169     return;
2170   }
2171 
2172   // If we're deferring emission of a C++ variable with an
2173   // initializer, remember the order in which it appeared in the file.
2174   if (getLangOpts().CPlusPlus && isa<VarDecl>(Global) &&
2175       cast<VarDecl>(Global)->hasInit()) {
2176     DelayedCXXInitPosition[Global] = CXXGlobalInits.size();
2177     CXXGlobalInits.push_back(nullptr);
2178   }
2179 
2180   StringRef MangledName = getMangledName(GD);
2181   if (GetGlobalValue(MangledName) != nullptr) {
2182     // The value has already been used and should therefore be emitted.
2183     addDeferredDeclToEmit(GD);
2184   } else if (MustBeEmitted(Global)) {
2185     // The value must be emitted, but cannot be emitted eagerly.
2186     assert(!MayBeEmittedEagerly(Global));
2187     addDeferredDeclToEmit(GD);
2188   } else {
2189     // Otherwise, remember that we saw a deferred decl with this name.  The
2190     // first use of the mangled name will cause it to move into
2191     // DeferredDeclsToEmit.
2192     DeferredDecls[MangledName] = GD;
2193   }
2194 }
2195 
2196 // Check if T is a class type with a destructor that's not dllimport.
2197 static bool HasNonDllImportDtor(QualType T) {
2198   if (const auto *RT = T->getBaseElementTypeUnsafe()->getAs<RecordType>())
2199     if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl()))
2200       if (RD->getDestructor() && !RD->getDestructor()->hasAttr<DLLImportAttr>())
2201         return true;
2202 
2203   return false;
2204 }
2205 
2206 namespace {
2207   struct FunctionIsDirectlyRecursive :
2208     public RecursiveASTVisitor<FunctionIsDirectlyRecursive> {
2209     const StringRef Name;
2210     const Builtin::Context &BI;
2211     bool Result;
2212     FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C) :
2213       Name(N), BI(C), Result(false) {
2214     }
2215     typedef RecursiveASTVisitor<FunctionIsDirectlyRecursive> Base;
2216 
2217     bool TraverseCallExpr(CallExpr *E) {
2218       const FunctionDecl *FD = E->getDirectCallee();
2219       if (!FD)
2220         return true;
2221       AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
2222       if (Attr && Name == Attr->getLabel()) {
2223         Result = true;
2224         return false;
2225       }
2226       unsigned BuiltinID = FD->getBuiltinID();
2227       if (!BuiltinID || !BI.isLibFunction(BuiltinID))
2228         return true;
2229       StringRef BuiltinName = BI.getName(BuiltinID);
2230       if (BuiltinName.startswith("__builtin_") &&
2231           Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) {
2232         Result = true;
2233         return false;
2234       }
2235       return true;
2236     }
2237   };
2238 
2239   // Make sure we're not referencing non-imported vars or functions.
2240   struct DLLImportFunctionVisitor
2241       : public RecursiveASTVisitor<DLLImportFunctionVisitor> {
2242     bool SafeToInline = true;
2243 
2244     bool shouldVisitImplicitCode() const { return true; }
2245 
2246     bool VisitVarDecl(VarDecl *VD) {
2247       if (VD->getTLSKind()) {
2248         // A thread-local variable cannot be imported.
2249         SafeToInline = false;
2250         return SafeToInline;
2251       }
2252 
2253       // A variable definition might imply a destructor call.
2254       if (VD->isThisDeclarationADefinition())
2255         SafeToInline = !HasNonDllImportDtor(VD->getType());
2256 
2257       return SafeToInline;
2258     }
2259 
2260     bool VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) {
2261       if (const auto *D = E->getTemporary()->getDestructor())
2262         SafeToInline = D->hasAttr<DLLImportAttr>();
2263       return SafeToInline;
2264     }
2265 
2266     bool VisitDeclRefExpr(DeclRefExpr *E) {
2267       ValueDecl *VD = E->getDecl();
2268       if (isa<FunctionDecl>(VD))
2269         SafeToInline = VD->hasAttr<DLLImportAttr>();
2270       else if (VarDecl *V = dyn_cast<VarDecl>(VD))
2271         SafeToInline = !V->hasGlobalStorage() || V->hasAttr<DLLImportAttr>();
2272       return SafeToInline;
2273     }
2274 
2275     bool VisitCXXConstructExpr(CXXConstructExpr *E) {
2276       SafeToInline = E->getConstructor()->hasAttr<DLLImportAttr>();
2277       return SafeToInline;
2278     }
2279 
2280     bool VisitCXXMemberCallExpr(CXXMemberCallExpr *E) {
2281       CXXMethodDecl *M = E->getMethodDecl();
2282       if (!M) {
2283         // Call through a pointer to member function. This is safe to inline.
2284         SafeToInline = true;
2285       } else {
2286         SafeToInline = M->hasAttr<DLLImportAttr>();
2287       }
2288       return SafeToInline;
2289     }
2290 
2291     bool VisitCXXDeleteExpr(CXXDeleteExpr *E) {
2292       SafeToInline = E->getOperatorDelete()->hasAttr<DLLImportAttr>();
2293       return SafeToInline;
2294     }
2295 
2296     bool VisitCXXNewExpr(CXXNewExpr *E) {
2297       SafeToInline = E->getOperatorNew()->hasAttr<DLLImportAttr>();
2298       return SafeToInline;
2299     }
2300   };
2301 }
2302 
2303 // isTriviallyRecursive - Check if this function calls another
2304 // decl that, because of the asm attribute or the other decl being a builtin,
2305 // ends up pointing to itself.
2306 bool
2307 CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) {
2308   StringRef Name;
2309   if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) {
2310     // asm labels are a special kind of mangling we have to support.
2311     AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
2312     if (!Attr)
2313       return false;
2314     Name = Attr->getLabel();
2315   } else {
2316     Name = FD->getName();
2317   }
2318 
2319   FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo);
2320   Walker.TraverseFunctionDecl(const_cast<FunctionDecl*>(FD));
2321   return Walker.Result;
2322 }
2323 
2324 bool CodeGenModule::shouldEmitFunction(GlobalDecl GD) {
2325   if (getFunctionLinkage(GD) != llvm::Function::AvailableExternallyLinkage)
2326     return true;
2327   const auto *F = cast<FunctionDecl>(GD.getDecl());
2328   if (CodeGenOpts.OptimizationLevel == 0 && !F->hasAttr<AlwaysInlineAttr>())
2329     return false;
2330 
2331   if (F->hasAttr<DLLImportAttr>()) {
2332     // Check whether it would be safe to inline this dllimport function.
2333     DLLImportFunctionVisitor Visitor;
2334     Visitor.TraverseFunctionDecl(const_cast<FunctionDecl*>(F));
2335     if (!Visitor.SafeToInline)
2336       return false;
2337 
2338     if (const CXXDestructorDecl *Dtor = dyn_cast<CXXDestructorDecl>(F)) {
2339       // Implicit destructor invocations aren't captured in the AST, so the
2340       // check above can't see them. Check for them manually here.
2341       for (const Decl *Member : Dtor->getParent()->decls())
2342         if (isa<FieldDecl>(Member))
2343           if (HasNonDllImportDtor(cast<FieldDecl>(Member)->getType()))
2344             return false;
2345       for (const CXXBaseSpecifier &B : Dtor->getParent()->bases())
2346         if (HasNonDllImportDtor(B.getType()))
2347           return false;
2348     }
2349   }
2350 
2351   // PR9614. Avoid cases where the source code is lying to us. An available
2352   // externally function should have an equivalent function somewhere else,
2353   // but a function that calls itself is clearly not equivalent to the real
2354   // implementation.
2355   // This happens in glibc's btowc and in some configure checks.
2356   return !isTriviallyRecursive(F);
2357 }
2358 
2359 bool CodeGenModule::shouldOpportunisticallyEmitVTables() {
2360   return CodeGenOpts.OptimizationLevel > 0;
2361 }
2362 
2363 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD, llvm::GlobalValue *GV) {
2364   const auto *D = cast<ValueDecl>(GD.getDecl());
2365 
2366   PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(),
2367                                  Context.getSourceManager(),
2368                                  "Generating code for declaration");
2369 
2370   if (isa<FunctionDecl>(D)) {
2371     // At -O0, don't generate IR for functions with available_externally
2372     // linkage.
2373     if (!shouldEmitFunction(GD))
2374       return;
2375 
2376     if (const auto *Method = dyn_cast<CXXMethodDecl>(D)) {
2377       // Make sure to emit the definition(s) before we emit the thunks.
2378       // This is necessary for the generation of certain thunks.
2379       if (const auto *CD = dyn_cast<CXXConstructorDecl>(Method))
2380         ABI->emitCXXStructor(CD, getFromCtorType(GD.getCtorType()));
2381       else if (const auto *DD = dyn_cast<CXXDestructorDecl>(Method))
2382         ABI->emitCXXStructor(DD, getFromDtorType(GD.getDtorType()));
2383       else
2384         EmitGlobalFunctionDefinition(GD, GV);
2385 
2386       if (Method->isVirtual())
2387         getVTables().EmitThunks(GD);
2388 
2389       return;
2390     }
2391 
2392     return EmitGlobalFunctionDefinition(GD, GV);
2393   }
2394 
2395   if (const auto *VD = dyn_cast<VarDecl>(D))
2396     return EmitGlobalVarDefinition(VD, !VD->hasDefinition());
2397 
2398   llvm_unreachable("Invalid argument to EmitGlobalDefinition()");
2399 }
2400 
2401 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
2402                                                       llvm::Function *NewFn);
2403 
2404 void CodeGenModule::emitMultiVersionFunctions() {
2405   for (GlobalDecl GD : MultiVersionFuncs) {
2406     SmallVector<CodeGenFunction::TargetMultiVersionResolverOption, 10> Options;
2407     const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
2408     getContext().forEachMultiversionedFunctionVersion(
2409         FD, [this, &GD, &Options](const FunctionDecl *CurFD) {
2410           GlobalDecl CurGD{
2411               (CurFD->isDefined() ? CurFD->getDefinition() : CurFD)};
2412           StringRef MangledName = getMangledName(CurGD);
2413           llvm::Constant *Func = GetGlobalValue(MangledName);
2414           if (!Func) {
2415             if (CurFD->isDefined()) {
2416               EmitGlobalFunctionDefinition(CurGD, nullptr);
2417               Func = GetGlobalValue(MangledName);
2418             } else {
2419               const CGFunctionInfo &FI =
2420                   getTypes().arrangeGlobalDeclaration(GD);
2421               llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
2422               Func = GetAddrOfFunction(CurGD, Ty, /*ForVTable=*/false,
2423                                        /*DontDefer=*/false, ForDefinition);
2424             }
2425             assert(Func && "This should have just been created");
2426           }
2427           Options.emplace_back(getTarget(), cast<llvm::Function>(Func),
2428                                CurFD->getAttr<TargetAttr>()->parse());
2429         });
2430 
2431     llvm::Function *ResolverFunc = cast<llvm::Function>(
2432         GetGlobalValue((getMangledName(GD) + ".resolver").str()));
2433     if (supportsCOMDAT())
2434       ResolverFunc->setComdat(
2435           getModule().getOrInsertComdat(ResolverFunc->getName()));
2436     std::stable_sort(
2437         Options.begin(), Options.end(),
2438         std::greater<CodeGenFunction::TargetMultiVersionResolverOption>());
2439     CodeGenFunction CGF(*this);
2440     CGF.EmitTargetMultiVersionResolver(ResolverFunc, Options);
2441   }
2442 }
2443 
2444 void CodeGenModule::emitCPUDispatchDefinition(GlobalDecl GD) {
2445   const auto *FD = cast<FunctionDecl>(GD.getDecl());
2446   assert(FD && "Not a FunctionDecl?");
2447   const auto *DD = FD->getAttr<CPUDispatchAttr>();
2448   assert(DD && "Not a cpu_dispatch Function?");
2449   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(FD->getType());
2450 
2451   StringRef ResolverName = getMangledName(GD);
2452   llvm::Type *ResolverType = llvm::FunctionType::get(
2453       llvm::PointerType::get(DeclTy,
2454                              Context.getTargetAddressSpace(FD->getType())),
2455       false);
2456   auto *ResolverFunc = cast<llvm::Function>(
2457       GetOrCreateLLVMFunction(ResolverName, ResolverType, GlobalDecl{},
2458                               /*ForVTable=*/false));
2459 
2460   SmallVector<CodeGenFunction::CPUDispatchMultiVersionResolverOption, 10>
2461       Options;
2462   const TargetInfo &Target = getTarget();
2463   for (const IdentifierInfo *II : DD->cpus()) {
2464     // Get the name of the target function so we can look it up/create it.
2465     std::string MangledName = getMangledNameImpl(*this, GD, FD, true) +
2466                               getCPUSpecificMangling(*this, II->getName());
2467     llvm::Constant *Func = GetOrCreateLLVMFunction(
2468         MangledName, DeclTy, GD, /*ForVTable=*/false, /*DontDefer=*/false,
2469         /*IsThunk=*/false, llvm::AttributeList(), ForDefinition);
2470     llvm::SmallVector<StringRef, 32> Features;
2471     Target.getCPUSpecificCPUDispatchFeatures(II->getName(), Features);
2472     llvm::transform(Features, Features.begin(),
2473                     [](StringRef Str) { return Str.substr(1); });
2474     Features.erase(std::remove_if(
2475         Features.begin(), Features.end(), [&Target](StringRef Feat) {
2476           return !Target.validateCpuSupports(Feat);
2477         }), Features.end());
2478     Options.emplace_back(cast<llvm::Function>(Func),
2479                          CodeGenFunction::GetX86CpuSupportsMask(Features));
2480   }
2481 
2482   llvm::sort(
2483       Options.begin(), Options.end(),
2484       std::greater<CodeGenFunction::CPUDispatchMultiVersionResolverOption>());
2485   CodeGenFunction CGF(*this);
2486   CGF.EmitCPUDispatchMultiVersionResolver(ResolverFunc, Options);
2487 }
2488 
2489 /// If an ifunc for the specified mangled name is not in the module, create and
2490 /// return an llvm IFunc Function with the specified type.
2491 llvm::Constant *
2492 CodeGenModule::GetOrCreateMultiVersionIFunc(GlobalDecl GD, llvm::Type *DeclTy,
2493                                             const FunctionDecl *FD) {
2494   std::string MangledName =
2495       getMangledNameImpl(*this, GD, FD, /*OmitMultiVersionMangling=*/true);
2496   std::string IFuncName = MangledName + ".ifunc";
2497   if (llvm::GlobalValue *IFuncGV = GetGlobalValue(IFuncName))
2498     return IFuncGV;
2499 
2500   // Since this is the first time we've created this IFunc, make sure
2501   // that we put this multiversioned function into the list to be
2502   // replaced later if necessary (target multiversioning only).
2503   if (!FD->isCPUDispatchMultiVersion() && !FD->isCPUSpecificMultiVersion())
2504     MultiVersionFuncs.push_back(GD);
2505 
2506   std::string ResolverName = MangledName + ".resolver";
2507   llvm::Type *ResolverType = llvm::FunctionType::get(
2508       llvm::PointerType::get(DeclTy,
2509                              Context.getTargetAddressSpace(FD->getType())),
2510       false);
2511   llvm::Constant *Resolver =
2512       GetOrCreateLLVMFunction(ResolverName, ResolverType, GlobalDecl{},
2513                               /*ForVTable=*/false);
2514   llvm::GlobalIFunc *GIF = llvm::GlobalIFunc::create(
2515       DeclTy, 0, llvm::Function::ExternalLinkage, "", Resolver, &getModule());
2516   GIF->setName(IFuncName);
2517   SetCommonAttributes(FD, GIF);
2518 
2519   return GIF;
2520 }
2521 
2522 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the
2523 /// module, create and return an llvm Function with the specified type. If there
2524 /// is something in the module with the specified name, return it potentially
2525 /// bitcasted to the right type.
2526 ///
2527 /// If D is non-null, it specifies a decl that correspond to this.  This is used
2528 /// to set the attributes on the function when it is first created.
2529 llvm::Constant *CodeGenModule::GetOrCreateLLVMFunction(
2530     StringRef MangledName, llvm::Type *Ty, GlobalDecl GD, bool ForVTable,
2531     bool DontDefer, bool IsThunk, llvm::AttributeList ExtraAttrs,
2532     ForDefinition_t IsForDefinition) {
2533   const Decl *D = GD.getDecl();
2534 
2535   // Any attempts to use a MultiVersion function should result in retrieving
2536   // the iFunc instead. Name Mangling will handle the rest of the changes.
2537   if (const FunctionDecl *FD = cast_or_null<FunctionDecl>(D)) {
2538     // For the device mark the function as one that should be emitted.
2539     if (getLangOpts().OpenMPIsDevice && OpenMPRuntime &&
2540         !OpenMPRuntime->markAsGlobalTarget(GD) && FD->isDefined() &&
2541         !DontDefer && !IsForDefinition) {
2542       const FunctionDecl *FDDef = FD->getDefinition();
2543       GlobalDecl GDDef;
2544       if (const auto *CD = dyn_cast<CXXConstructorDecl>(FDDef))
2545         GDDef = GlobalDecl(CD, GD.getCtorType());
2546       else if (const auto *DD = dyn_cast<CXXDestructorDecl>(FDDef))
2547         GDDef = GlobalDecl(DD, GD.getDtorType());
2548       else
2549         GDDef = GlobalDecl(FDDef);
2550       addDeferredDeclToEmit(GDDef);
2551     }
2552 
2553     if (FD->isMultiVersion()) {
2554       const auto *TA = FD->getAttr<TargetAttr>();
2555       if (TA && TA->isDefaultVersion())
2556         UpdateMultiVersionNames(GD, FD);
2557       if (!IsForDefinition)
2558         return GetOrCreateMultiVersionIFunc(GD, Ty, FD);
2559     }
2560   }
2561 
2562   // Lookup the entry, lazily creating it if necessary.
2563   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
2564   if (Entry) {
2565     if (WeakRefReferences.erase(Entry)) {
2566       const FunctionDecl *FD = cast_or_null<FunctionDecl>(D);
2567       if (FD && !FD->hasAttr<WeakAttr>())
2568         Entry->setLinkage(llvm::Function::ExternalLinkage);
2569     }
2570 
2571     // Handle dropped DLL attributes.
2572     if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>()) {
2573       Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
2574       setDSOLocal(Entry);
2575     }
2576 
2577     // If there are two attempts to define the same mangled name, issue an
2578     // error.
2579     if (IsForDefinition && !Entry->isDeclaration()) {
2580       GlobalDecl OtherGD;
2581       // Check that GD is not yet in DiagnosedConflictingDefinitions is required
2582       // to make sure that we issue an error only once.
2583       if (lookupRepresentativeDecl(MangledName, OtherGD) &&
2584           (GD.getCanonicalDecl().getDecl() !=
2585            OtherGD.getCanonicalDecl().getDecl()) &&
2586           DiagnosedConflictingDefinitions.insert(GD).second) {
2587         getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name)
2588             << MangledName;
2589         getDiags().Report(OtherGD.getDecl()->getLocation(),
2590                           diag::note_previous_definition);
2591       }
2592     }
2593 
2594     if ((isa<llvm::Function>(Entry) || isa<llvm::GlobalAlias>(Entry)) &&
2595         (Entry->getType()->getElementType() == Ty)) {
2596       return Entry;
2597     }
2598 
2599     // Make sure the result is of the correct type.
2600     // (If function is requested for a definition, we always need to create a new
2601     // function, not just return a bitcast.)
2602     if (!IsForDefinition)
2603       return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo());
2604   }
2605 
2606   // This function doesn't have a complete type (for example, the return
2607   // type is an incomplete struct). Use a fake type instead, and make
2608   // sure not to try to set attributes.
2609   bool IsIncompleteFunction = false;
2610 
2611   llvm::FunctionType *FTy;
2612   if (isa<llvm::FunctionType>(Ty)) {
2613     FTy = cast<llvm::FunctionType>(Ty);
2614   } else {
2615     FTy = llvm::FunctionType::get(VoidTy, false);
2616     IsIncompleteFunction = true;
2617   }
2618 
2619   llvm::Function *F =
2620       llvm::Function::Create(FTy, llvm::Function::ExternalLinkage,
2621                              Entry ? StringRef() : MangledName, &getModule());
2622 
2623   // If we already created a function with the same mangled name (but different
2624   // type) before, take its name and add it to the list of functions to be
2625   // replaced with F at the end of CodeGen.
2626   //
2627   // This happens if there is a prototype for a function (e.g. "int f()") and
2628   // then a definition of a different type (e.g. "int f(int x)").
2629   if (Entry) {
2630     F->takeName(Entry);
2631 
2632     // This might be an implementation of a function without a prototype, in
2633     // which case, try to do special replacement of calls which match the new
2634     // prototype.  The really key thing here is that we also potentially drop
2635     // arguments from the call site so as to make a direct call, which makes the
2636     // inliner happier and suppresses a number of optimizer warnings (!) about
2637     // dropping arguments.
2638     if (!Entry->use_empty()) {
2639       ReplaceUsesOfNonProtoTypeWithRealFunction(Entry, F);
2640       Entry->removeDeadConstantUsers();
2641     }
2642 
2643     llvm::Constant *BC = llvm::ConstantExpr::getBitCast(
2644         F, Entry->getType()->getElementType()->getPointerTo());
2645     addGlobalValReplacement(Entry, BC);
2646   }
2647 
2648   assert(F->getName() == MangledName && "name was uniqued!");
2649   if (D)
2650     SetFunctionAttributes(GD, F, IsIncompleteFunction, IsThunk);
2651   if (ExtraAttrs.hasAttributes(llvm::AttributeList::FunctionIndex)) {
2652     llvm::AttrBuilder B(ExtraAttrs, llvm::AttributeList::FunctionIndex);
2653     F->addAttributes(llvm::AttributeList::FunctionIndex, B);
2654   }
2655 
2656   if (!DontDefer) {
2657     // All MSVC dtors other than the base dtor are linkonce_odr and delegate to
2658     // each other bottoming out with the base dtor.  Therefore we emit non-base
2659     // dtors on usage, even if there is no dtor definition in the TU.
2660     if (D && isa<CXXDestructorDecl>(D) &&
2661         getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D),
2662                                            GD.getDtorType()))
2663       addDeferredDeclToEmit(GD);
2664 
2665     // This is the first use or definition of a mangled name.  If there is a
2666     // deferred decl with this name, remember that we need to emit it at the end
2667     // of the file.
2668     auto DDI = DeferredDecls.find(MangledName);
2669     if (DDI != DeferredDecls.end()) {
2670       // Move the potentially referenced deferred decl to the
2671       // DeferredDeclsToEmit list, and remove it from DeferredDecls (since we
2672       // don't need it anymore).
2673       addDeferredDeclToEmit(DDI->second);
2674       DeferredDecls.erase(DDI);
2675 
2676       // Otherwise, there are cases we have to worry about where we're
2677       // using a declaration for which we must emit a definition but where
2678       // we might not find a top-level definition:
2679       //   - member functions defined inline in their classes
2680       //   - friend functions defined inline in some class
2681       //   - special member functions with implicit definitions
2682       // If we ever change our AST traversal to walk into class methods,
2683       // this will be unnecessary.
2684       //
2685       // We also don't emit a definition for a function if it's going to be an
2686       // entry in a vtable, unless it's already marked as used.
2687     } else if (getLangOpts().CPlusPlus && D) {
2688       // Look for a declaration that's lexically in a record.
2689       for (const auto *FD = cast<FunctionDecl>(D)->getMostRecentDecl(); FD;
2690            FD = FD->getPreviousDecl()) {
2691         if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) {
2692           if (FD->doesThisDeclarationHaveABody()) {
2693             addDeferredDeclToEmit(GD.getWithDecl(FD));
2694             break;
2695           }
2696         }
2697       }
2698     }
2699   }
2700 
2701   // Make sure the result is of the requested type.
2702   if (!IsIncompleteFunction) {
2703     assert(F->getType()->getElementType() == Ty);
2704     return F;
2705   }
2706 
2707   llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
2708   return llvm::ConstantExpr::getBitCast(F, PTy);
2709 }
2710 
2711 /// GetAddrOfFunction - Return the address of the given function.  If Ty is
2712 /// non-null, then this function will use the specified type if it has to
2713 /// create it (this occurs when we see a definition of the function).
2714 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD,
2715                                                  llvm::Type *Ty,
2716                                                  bool ForVTable,
2717                                                  bool DontDefer,
2718                                               ForDefinition_t IsForDefinition) {
2719   // If there was no specific requested type, just convert it now.
2720   if (!Ty) {
2721     const auto *FD = cast<FunctionDecl>(GD.getDecl());
2722     auto CanonTy = Context.getCanonicalType(FD->getType());
2723     Ty = getTypes().ConvertFunctionType(CanonTy, FD);
2724   }
2725 
2726   // Devirtualized destructor calls may come through here instead of via
2727   // getAddrOfCXXStructor. Make sure we use the MS ABI base destructor instead
2728   // of the complete destructor when necessary.
2729   if (const auto *DD = dyn_cast<CXXDestructorDecl>(GD.getDecl())) {
2730     if (getTarget().getCXXABI().isMicrosoft() &&
2731         GD.getDtorType() == Dtor_Complete &&
2732         DD->getParent()->getNumVBases() == 0)
2733       GD = GlobalDecl(DD, Dtor_Base);
2734   }
2735 
2736   StringRef MangledName = getMangledName(GD);
2737   return GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable, DontDefer,
2738                                  /*IsThunk=*/false, llvm::AttributeList(),
2739                                  IsForDefinition);
2740 }
2741 
2742 static const FunctionDecl *
2743 GetRuntimeFunctionDecl(ASTContext &C, StringRef Name) {
2744   TranslationUnitDecl *TUDecl = C.getTranslationUnitDecl();
2745   DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl);
2746 
2747   IdentifierInfo &CII = C.Idents.get(Name);
2748   for (const auto &Result : DC->lookup(&CII))
2749     if (const auto FD = dyn_cast<FunctionDecl>(Result))
2750       return FD;
2751 
2752   if (!C.getLangOpts().CPlusPlus)
2753     return nullptr;
2754 
2755   // Demangle the premangled name from getTerminateFn()
2756   IdentifierInfo &CXXII =
2757       (Name == "_ZSt9terminatev" || Name == "?terminate@@YAXXZ")
2758           ? C.Idents.get("terminate")
2759           : C.Idents.get(Name);
2760 
2761   for (const auto &N : {"__cxxabiv1", "std"}) {
2762     IdentifierInfo &NS = C.Idents.get(N);
2763     for (const auto &Result : DC->lookup(&NS)) {
2764       NamespaceDecl *ND = dyn_cast<NamespaceDecl>(Result);
2765       if (auto LSD = dyn_cast<LinkageSpecDecl>(Result))
2766         for (const auto &Result : LSD->lookup(&NS))
2767           if ((ND = dyn_cast<NamespaceDecl>(Result)))
2768             break;
2769 
2770       if (ND)
2771         for (const auto &Result : ND->lookup(&CXXII))
2772           if (const auto *FD = dyn_cast<FunctionDecl>(Result))
2773             return FD;
2774     }
2775   }
2776 
2777   return nullptr;
2778 }
2779 
2780 /// CreateRuntimeFunction - Create a new runtime function with the specified
2781 /// type and name.
2782 llvm::Constant *
2783 CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy, StringRef Name,
2784                                      llvm::AttributeList ExtraAttrs,
2785                                      bool Local) {
2786   llvm::Constant *C =
2787       GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false,
2788                               /*DontDefer=*/false, /*IsThunk=*/false,
2789                               ExtraAttrs);
2790 
2791   if (auto *F = dyn_cast<llvm::Function>(C)) {
2792     if (F->empty()) {
2793       F->setCallingConv(getRuntimeCC());
2794 
2795       if (!Local && getTriple().isOSBinFormatCOFF() &&
2796           !getCodeGenOpts().LTOVisibilityPublicStd &&
2797           !getTriple().isWindowsGNUEnvironment()) {
2798         const FunctionDecl *FD = GetRuntimeFunctionDecl(Context, Name);
2799         if (!FD || FD->hasAttr<DLLImportAttr>()) {
2800           F->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass);
2801           F->setLinkage(llvm::GlobalValue::ExternalLinkage);
2802         }
2803       }
2804       setDSOLocal(F);
2805     }
2806   }
2807 
2808   return C;
2809 }
2810 
2811 /// CreateBuiltinFunction - Create a new builtin function with the specified
2812 /// type and name.
2813 llvm::Constant *
2814 CodeGenModule::CreateBuiltinFunction(llvm::FunctionType *FTy, StringRef Name,
2815                                      llvm::AttributeList ExtraAttrs) {
2816   return CreateRuntimeFunction(FTy, Name, ExtraAttrs, true);
2817 }
2818 
2819 /// isTypeConstant - Determine whether an object of this type can be emitted
2820 /// as a constant.
2821 ///
2822 /// If ExcludeCtor is true, the duration when the object's constructor runs
2823 /// will not be considered. The caller will need to verify that the object is
2824 /// not written to during its construction.
2825 bool CodeGenModule::isTypeConstant(QualType Ty, bool ExcludeCtor) {
2826   if (!Ty.isConstant(Context) && !Ty->isReferenceType())
2827     return false;
2828 
2829   if (Context.getLangOpts().CPlusPlus) {
2830     if (const CXXRecordDecl *Record
2831           = Context.getBaseElementType(Ty)->getAsCXXRecordDecl())
2832       return ExcludeCtor && !Record->hasMutableFields() &&
2833              Record->hasTrivialDestructor();
2834   }
2835 
2836   return true;
2837 }
2838 
2839 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module,
2840 /// create and return an llvm GlobalVariable with the specified type.  If there
2841 /// is something in the module with the specified name, return it potentially
2842 /// bitcasted to the right type.
2843 ///
2844 /// If D is non-null, it specifies a decl that correspond to this.  This is used
2845 /// to set the attributes on the global when it is first created.
2846 ///
2847 /// If IsForDefinition is true, it is guaranteed that an actual global with
2848 /// type Ty will be returned, not conversion of a variable with the same
2849 /// mangled name but some other type.
2850 llvm::Constant *
2851 CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName,
2852                                      llvm::PointerType *Ty,
2853                                      const VarDecl *D,
2854                                      ForDefinition_t IsForDefinition) {
2855   // Lookup the entry, lazily creating it if necessary.
2856   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
2857   if (Entry) {
2858     if (WeakRefReferences.erase(Entry)) {
2859       if (D && !D->hasAttr<WeakAttr>())
2860         Entry->setLinkage(llvm::Function::ExternalLinkage);
2861     }
2862 
2863     // Handle dropped DLL attributes.
2864     if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>())
2865       Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
2866 
2867     if (LangOpts.OpenMP && !LangOpts.OpenMPSimd && D)
2868       getOpenMPRuntime().registerTargetGlobalVariable(D, Entry);
2869 
2870     if (Entry->getType() == Ty)
2871       return Entry;
2872 
2873     // If there are two attempts to define the same mangled name, issue an
2874     // error.
2875     if (IsForDefinition && !Entry->isDeclaration()) {
2876       GlobalDecl OtherGD;
2877       const VarDecl *OtherD;
2878 
2879       // Check that D is not yet in DiagnosedConflictingDefinitions is required
2880       // to make sure that we issue an error only once.
2881       if (D && lookupRepresentativeDecl(MangledName, OtherGD) &&
2882           (D->getCanonicalDecl() != OtherGD.getCanonicalDecl().getDecl()) &&
2883           (OtherD = dyn_cast<VarDecl>(OtherGD.getDecl())) &&
2884           OtherD->hasInit() &&
2885           DiagnosedConflictingDefinitions.insert(D).second) {
2886         getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name)
2887             << MangledName;
2888         getDiags().Report(OtherGD.getDecl()->getLocation(),
2889                           diag::note_previous_definition);
2890       }
2891     }
2892 
2893     // Make sure the result is of the correct type.
2894     if (Entry->getType()->getAddressSpace() != Ty->getAddressSpace())
2895       return llvm::ConstantExpr::getAddrSpaceCast(Entry, Ty);
2896 
2897     // (If global is requested for a definition, we always need to create a new
2898     // global, not just return a bitcast.)
2899     if (!IsForDefinition)
2900       return llvm::ConstantExpr::getBitCast(Entry, Ty);
2901   }
2902 
2903   auto AddrSpace = GetGlobalVarAddressSpace(D);
2904   auto TargetAddrSpace = getContext().getTargetAddressSpace(AddrSpace);
2905 
2906   auto *GV = new llvm::GlobalVariable(
2907       getModule(), Ty->getElementType(), false,
2908       llvm::GlobalValue::ExternalLinkage, nullptr, MangledName, nullptr,
2909       llvm::GlobalVariable::NotThreadLocal, TargetAddrSpace);
2910 
2911   // If we already created a global with the same mangled name (but different
2912   // type) before, take its name and remove it from its parent.
2913   if (Entry) {
2914     GV->takeName(Entry);
2915 
2916     if (!Entry->use_empty()) {
2917       llvm::Constant *NewPtrForOldDecl =
2918           llvm::ConstantExpr::getBitCast(GV, Entry->getType());
2919       Entry->replaceAllUsesWith(NewPtrForOldDecl);
2920     }
2921 
2922     Entry->eraseFromParent();
2923   }
2924 
2925   // This is the first use or definition of a mangled name.  If there is a
2926   // deferred decl with this name, remember that we need to emit it at the end
2927   // of the file.
2928   auto DDI = DeferredDecls.find(MangledName);
2929   if (DDI != DeferredDecls.end()) {
2930     // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
2931     // list, and remove it from DeferredDecls (since we don't need it anymore).
2932     addDeferredDeclToEmit(DDI->second);
2933     DeferredDecls.erase(DDI);
2934   }
2935 
2936   // Handle things which are present even on external declarations.
2937   if (D) {
2938     if (LangOpts.OpenMP && !LangOpts.OpenMPSimd)
2939       getOpenMPRuntime().registerTargetGlobalVariable(D, GV);
2940 
2941     // FIXME: This code is overly simple and should be merged with other global
2942     // handling.
2943     GV->setConstant(isTypeConstant(D->getType(), false));
2944 
2945     GV->setAlignment(getContext().getDeclAlign(D).getQuantity());
2946 
2947     setLinkageForGV(GV, D);
2948 
2949     if (D->getTLSKind()) {
2950       if (D->getTLSKind() == VarDecl::TLS_Dynamic)
2951         CXXThreadLocals.push_back(D);
2952       setTLSMode(GV, *D);
2953     }
2954 
2955     setGVProperties(GV, D);
2956 
2957     // If required by the ABI, treat declarations of static data members with
2958     // inline initializers as definitions.
2959     if (getContext().isMSStaticDataMemberInlineDefinition(D)) {
2960       EmitGlobalVarDefinition(D);
2961     }
2962 
2963     // Emit section information for extern variables.
2964     if (D->hasExternalStorage()) {
2965       if (const SectionAttr *SA = D->getAttr<SectionAttr>())
2966         GV->setSection(SA->getName());
2967     }
2968 
2969     // Handle XCore specific ABI requirements.
2970     if (getTriple().getArch() == llvm::Triple::xcore &&
2971         D->getLanguageLinkage() == CLanguageLinkage &&
2972         D->getType().isConstant(Context) &&
2973         isExternallyVisible(D->getLinkageAndVisibility().getLinkage()))
2974       GV->setSection(".cp.rodata");
2975 
2976     // Check if we a have a const declaration with an initializer, we may be
2977     // able to emit it as available_externally to expose it's value to the
2978     // optimizer.
2979     if (Context.getLangOpts().CPlusPlus && GV->hasExternalLinkage() &&
2980         D->getType().isConstQualified() && !GV->hasInitializer() &&
2981         !D->hasDefinition() && D->hasInit() && !D->hasAttr<DLLImportAttr>()) {
2982       const auto *Record =
2983           Context.getBaseElementType(D->getType())->getAsCXXRecordDecl();
2984       bool HasMutableFields = Record && Record->hasMutableFields();
2985       if (!HasMutableFields) {
2986         const VarDecl *InitDecl;
2987         const Expr *InitExpr = D->getAnyInitializer(InitDecl);
2988         if (InitExpr) {
2989           ConstantEmitter emitter(*this);
2990           llvm::Constant *Init = emitter.tryEmitForInitializer(*InitDecl);
2991           if (Init) {
2992             auto *InitType = Init->getType();
2993             if (GV->getType()->getElementType() != InitType) {
2994               // The type of the initializer does not match the definition.
2995               // This happens when an initializer has a different type from
2996               // the type of the global (because of padding at the end of a
2997               // structure for instance).
2998               GV->setName(StringRef());
2999               // Make a new global with the correct type, this is now guaranteed
3000               // to work.
3001               auto *NewGV = cast<llvm::GlobalVariable>(
3002                   GetAddrOfGlobalVar(D, InitType, IsForDefinition));
3003 
3004               // Erase the old global, since it is no longer used.
3005               GV->eraseFromParent();
3006               GV = NewGV;
3007             } else {
3008               GV->setInitializer(Init);
3009               GV->setConstant(true);
3010               GV->setLinkage(llvm::GlobalValue::AvailableExternallyLinkage);
3011             }
3012             emitter.finalize(GV);
3013           }
3014         }
3015       }
3016     }
3017   }
3018 
3019   LangAS ExpectedAS =
3020       D ? D->getType().getAddressSpace()
3021         : (LangOpts.OpenCL ? LangAS::opencl_global : LangAS::Default);
3022   assert(getContext().getTargetAddressSpace(ExpectedAS) ==
3023          Ty->getPointerAddressSpace());
3024   if (AddrSpace != ExpectedAS)
3025     return getTargetCodeGenInfo().performAddrSpaceCast(*this, GV, AddrSpace,
3026                                                        ExpectedAS, Ty);
3027 
3028   return GV;
3029 }
3030 
3031 llvm::Constant *
3032 CodeGenModule::GetAddrOfGlobal(GlobalDecl GD,
3033                                ForDefinition_t IsForDefinition) {
3034   const Decl *D = GD.getDecl();
3035   if (isa<CXXConstructorDecl>(D))
3036     return getAddrOfCXXStructor(cast<CXXConstructorDecl>(D),
3037                                 getFromCtorType(GD.getCtorType()),
3038                                 /*FnInfo=*/nullptr, /*FnType=*/nullptr,
3039                                 /*DontDefer=*/false, IsForDefinition);
3040   else if (isa<CXXDestructorDecl>(D))
3041     return getAddrOfCXXStructor(cast<CXXDestructorDecl>(D),
3042                                 getFromDtorType(GD.getDtorType()),
3043                                 /*FnInfo=*/nullptr, /*FnType=*/nullptr,
3044                                 /*DontDefer=*/false, IsForDefinition);
3045   else if (isa<CXXMethodDecl>(D)) {
3046     auto FInfo = &getTypes().arrangeCXXMethodDeclaration(
3047         cast<CXXMethodDecl>(D));
3048     auto Ty = getTypes().GetFunctionType(*FInfo);
3049     return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false,
3050                              IsForDefinition);
3051   } else if (isa<FunctionDecl>(D)) {
3052     const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
3053     llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
3054     return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false,
3055                              IsForDefinition);
3056   } else
3057     return GetAddrOfGlobalVar(cast<VarDecl>(D), /*Ty=*/nullptr,
3058                               IsForDefinition);
3059 }
3060 
3061 llvm::GlobalVariable *
3062 CodeGenModule::CreateOrReplaceCXXRuntimeVariable(StringRef Name,
3063                                       llvm::Type *Ty,
3064                                       llvm::GlobalValue::LinkageTypes Linkage) {
3065   llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name);
3066   llvm::GlobalVariable *OldGV = nullptr;
3067 
3068   if (GV) {
3069     // Check if the variable has the right type.
3070     if (GV->getType()->getElementType() == Ty)
3071       return GV;
3072 
3073     // Because C++ name mangling, the only way we can end up with an already
3074     // existing global with the same name is if it has been declared extern "C".
3075     assert(GV->isDeclaration() && "Declaration has wrong type!");
3076     OldGV = GV;
3077   }
3078 
3079   // Create a new variable.
3080   GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true,
3081                                 Linkage, nullptr, Name);
3082 
3083   if (OldGV) {
3084     // Replace occurrences of the old variable if needed.
3085     GV->takeName(OldGV);
3086 
3087     if (!OldGV->use_empty()) {
3088       llvm::Constant *NewPtrForOldDecl =
3089       llvm::ConstantExpr::getBitCast(GV, OldGV->getType());
3090       OldGV->replaceAllUsesWith(NewPtrForOldDecl);
3091     }
3092 
3093     OldGV->eraseFromParent();
3094   }
3095 
3096   if (supportsCOMDAT() && GV->isWeakForLinker() &&
3097       !GV->hasAvailableExternallyLinkage())
3098     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
3099 
3100   return GV;
3101 }
3102 
3103 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the
3104 /// given global variable.  If Ty is non-null and if the global doesn't exist,
3105 /// then it will be created with the specified type instead of whatever the
3106 /// normal requested type would be. If IsForDefinition is true, it is guaranteed
3107 /// that an actual global with type Ty will be returned, not conversion of a
3108 /// variable with the same mangled name but some other type.
3109 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D,
3110                                                   llvm::Type *Ty,
3111                                            ForDefinition_t IsForDefinition) {
3112   assert(D->hasGlobalStorage() && "Not a global variable");
3113   QualType ASTTy = D->getType();
3114   if (!Ty)
3115     Ty = getTypes().ConvertTypeForMem(ASTTy);
3116 
3117   llvm::PointerType *PTy =
3118     llvm::PointerType::get(Ty, getContext().getTargetAddressSpace(ASTTy));
3119 
3120   StringRef MangledName = getMangledName(D);
3121   return GetOrCreateLLVMGlobal(MangledName, PTy, D, IsForDefinition);
3122 }
3123 
3124 /// CreateRuntimeVariable - Create a new runtime global variable with the
3125 /// specified type and name.
3126 llvm::Constant *
3127 CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty,
3128                                      StringRef Name) {
3129   auto *Ret =
3130       GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), nullptr);
3131   setDSOLocal(cast<llvm::GlobalValue>(Ret->stripPointerCasts()));
3132   return Ret;
3133 }
3134 
3135 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) {
3136   assert(!D->getInit() && "Cannot emit definite definitions here!");
3137 
3138   StringRef MangledName = getMangledName(D);
3139   llvm::GlobalValue *GV = GetGlobalValue(MangledName);
3140 
3141   // We already have a definition, not declaration, with the same mangled name.
3142   // Emitting of declaration is not required (and actually overwrites emitted
3143   // definition).
3144   if (GV && !GV->isDeclaration())
3145     return;
3146 
3147   // If we have not seen a reference to this variable yet, place it into the
3148   // deferred declarations table to be emitted if needed later.
3149   if (!MustBeEmitted(D) && !GV) {
3150       DeferredDecls[MangledName] = D;
3151       return;
3152   }
3153 
3154   // The tentative definition is the only definition.
3155   EmitGlobalVarDefinition(D);
3156 }
3157 
3158 CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const {
3159   return Context.toCharUnitsFromBits(
3160       getDataLayout().getTypeStoreSizeInBits(Ty));
3161 }
3162 
3163 LangAS CodeGenModule::GetGlobalVarAddressSpace(const VarDecl *D) {
3164   LangAS AddrSpace = LangAS::Default;
3165   if (LangOpts.OpenCL) {
3166     AddrSpace = D ? D->getType().getAddressSpace() : LangAS::opencl_global;
3167     assert(AddrSpace == LangAS::opencl_global ||
3168            AddrSpace == LangAS::opencl_constant ||
3169            AddrSpace == LangAS::opencl_local ||
3170            AddrSpace >= LangAS::FirstTargetAddressSpace);
3171     return AddrSpace;
3172   }
3173 
3174   if (LangOpts.CUDA && LangOpts.CUDAIsDevice) {
3175     if (D && D->hasAttr<CUDAConstantAttr>())
3176       return LangAS::cuda_constant;
3177     else if (D && D->hasAttr<CUDASharedAttr>())
3178       return LangAS::cuda_shared;
3179     else if (D && D->hasAttr<CUDADeviceAttr>())
3180       return LangAS::cuda_device;
3181     else if (D && D->getType().isConstQualified())
3182       return LangAS::cuda_constant;
3183     else
3184       return LangAS::cuda_device;
3185   }
3186 
3187   return getTargetCodeGenInfo().getGlobalVarAddressSpace(*this, D);
3188 }
3189 
3190 LangAS CodeGenModule::getStringLiteralAddressSpace() const {
3191   // OpenCL v1.2 s6.5.3: a string literal is in the constant address space.
3192   if (LangOpts.OpenCL)
3193     return LangAS::opencl_constant;
3194   if (auto AS = getTarget().getConstantAddressSpace())
3195     return AS.getValue();
3196   return LangAS::Default;
3197 }
3198 
3199 // In address space agnostic languages, string literals are in default address
3200 // space in AST. However, certain targets (e.g. amdgcn) request them to be
3201 // emitted in constant address space in LLVM IR. To be consistent with other
3202 // parts of AST, string literal global variables in constant address space
3203 // need to be casted to default address space before being put into address
3204 // map and referenced by other part of CodeGen.
3205 // In OpenCL, string literals are in constant address space in AST, therefore
3206 // they should not be casted to default address space.
3207 static llvm::Constant *
3208 castStringLiteralToDefaultAddressSpace(CodeGenModule &CGM,
3209                                        llvm::GlobalVariable *GV) {
3210   llvm::Constant *Cast = GV;
3211   if (!CGM.getLangOpts().OpenCL) {
3212     if (auto AS = CGM.getTarget().getConstantAddressSpace()) {
3213       if (AS != LangAS::Default)
3214         Cast = CGM.getTargetCodeGenInfo().performAddrSpaceCast(
3215             CGM, GV, AS.getValue(), LangAS::Default,
3216             GV->getValueType()->getPointerTo(
3217                 CGM.getContext().getTargetAddressSpace(LangAS::Default)));
3218     }
3219   }
3220   return Cast;
3221 }
3222 
3223 template<typename SomeDecl>
3224 void CodeGenModule::MaybeHandleStaticInExternC(const SomeDecl *D,
3225                                                llvm::GlobalValue *GV) {
3226   if (!getLangOpts().CPlusPlus)
3227     return;
3228 
3229   // Must have 'used' attribute, or else inline assembly can't rely on
3230   // the name existing.
3231   if (!D->template hasAttr<UsedAttr>())
3232     return;
3233 
3234   // Must have internal linkage and an ordinary name.
3235   if (!D->getIdentifier() || D->getFormalLinkage() != InternalLinkage)
3236     return;
3237 
3238   // Must be in an extern "C" context. Entities declared directly within
3239   // a record are not extern "C" even if the record is in such a context.
3240   const SomeDecl *First = D->getFirstDecl();
3241   if (First->getDeclContext()->isRecord() || !First->isInExternCContext())
3242     return;
3243 
3244   // OK, this is an internal linkage entity inside an extern "C" linkage
3245   // specification. Make a note of that so we can give it the "expected"
3246   // mangled name if nothing else is using that name.
3247   std::pair<StaticExternCMap::iterator, bool> R =
3248       StaticExternCValues.insert(std::make_pair(D->getIdentifier(), GV));
3249 
3250   // If we have multiple internal linkage entities with the same name
3251   // in extern "C" regions, none of them gets that name.
3252   if (!R.second)
3253     R.first->second = nullptr;
3254 }
3255 
3256 static bool shouldBeInCOMDAT(CodeGenModule &CGM, const Decl &D) {
3257   if (!CGM.supportsCOMDAT())
3258     return false;
3259 
3260   if (D.hasAttr<SelectAnyAttr>())
3261     return true;
3262 
3263   GVALinkage Linkage;
3264   if (auto *VD = dyn_cast<VarDecl>(&D))
3265     Linkage = CGM.getContext().GetGVALinkageForVariable(VD);
3266   else
3267     Linkage = CGM.getContext().GetGVALinkageForFunction(cast<FunctionDecl>(&D));
3268 
3269   switch (Linkage) {
3270   case GVA_Internal:
3271   case GVA_AvailableExternally:
3272   case GVA_StrongExternal:
3273     return false;
3274   case GVA_DiscardableODR:
3275   case GVA_StrongODR:
3276     return true;
3277   }
3278   llvm_unreachable("No such linkage");
3279 }
3280 
3281 void CodeGenModule::maybeSetTrivialComdat(const Decl &D,
3282                                           llvm::GlobalObject &GO) {
3283   if (!shouldBeInCOMDAT(*this, D))
3284     return;
3285   GO.setComdat(TheModule.getOrInsertComdat(GO.getName()));
3286 }
3287 
3288 /// Pass IsTentative as true if you want to create a tentative definition.
3289 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D,
3290                                             bool IsTentative) {
3291   // OpenCL global variables of sampler type are translated to function calls,
3292   // therefore no need to be translated.
3293   QualType ASTTy = D->getType();
3294   if (getLangOpts().OpenCL && ASTTy->isSamplerT())
3295     return;
3296 
3297   // If this is OpenMP device, check if it is legal to emit this global
3298   // normally.
3299   if (LangOpts.OpenMPIsDevice && OpenMPRuntime &&
3300       OpenMPRuntime->emitTargetGlobalVariable(D))
3301     return;
3302 
3303   llvm::Constant *Init = nullptr;
3304   CXXRecordDecl *RD = ASTTy->getBaseElementTypeUnsafe()->getAsCXXRecordDecl();
3305   bool NeedsGlobalCtor = false;
3306   bool NeedsGlobalDtor = RD && !RD->hasTrivialDestructor();
3307 
3308   const VarDecl *InitDecl;
3309   const Expr *InitExpr = D->getAnyInitializer(InitDecl);
3310 
3311   Optional<ConstantEmitter> emitter;
3312 
3313   // CUDA E.2.4.1 "__shared__ variables cannot have an initialization
3314   // as part of their declaration."  Sema has already checked for
3315   // error cases, so we just need to set Init to UndefValue.
3316   if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice &&
3317       D->hasAttr<CUDASharedAttr>())
3318     Init = llvm::UndefValue::get(getTypes().ConvertType(ASTTy));
3319   else if (!InitExpr) {
3320     // This is a tentative definition; tentative definitions are
3321     // implicitly initialized with { 0 }.
3322     //
3323     // Note that tentative definitions are only emitted at the end of
3324     // a translation unit, so they should never have incomplete
3325     // type. In addition, EmitTentativeDefinition makes sure that we
3326     // never attempt to emit a tentative definition if a real one
3327     // exists. A use may still exists, however, so we still may need
3328     // to do a RAUW.
3329     assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type");
3330     Init = EmitNullConstant(D->getType());
3331   } else {
3332     initializedGlobalDecl = GlobalDecl(D);
3333     emitter.emplace(*this);
3334     Init = emitter->tryEmitForInitializer(*InitDecl);
3335 
3336     if (!Init) {
3337       QualType T = InitExpr->getType();
3338       if (D->getType()->isReferenceType())
3339         T = D->getType();
3340 
3341       if (getLangOpts().CPlusPlus) {
3342         Init = EmitNullConstant(T);
3343         NeedsGlobalCtor = true;
3344       } else {
3345         ErrorUnsupported(D, "static initializer");
3346         Init = llvm::UndefValue::get(getTypes().ConvertType(T));
3347       }
3348     } else {
3349       // We don't need an initializer, so remove the entry for the delayed
3350       // initializer position (just in case this entry was delayed) if we
3351       // also don't need to register a destructor.
3352       if (getLangOpts().CPlusPlus && !NeedsGlobalDtor)
3353         DelayedCXXInitPosition.erase(D);
3354     }
3355   }
3356 
3357   llvm::Type* InitType = Init->getType();
3358   llvm::Constant *Entry =
3359       GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative));
3360 
3361   // Strip off a bitcast if we got one back.
3362   if (auto *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
3363     assert(CE->getOpcode() == llvm::Instruction::BitCast ||
3364            CE->getOpcode() == llvm::Instruction::AddrSpaceCast ||
3365            // All zero index gep.
3366            CE->getOpcode() == llvm::Instruction::GetElementPtr);
3367     Entry = CE->getOperand(0);
3368   }
3369 
3370   // Entry is now either a Function or GlobalVariable.
3371   auto *GV = dyn_cast<llvm::GlobalVariable>(Entry);
3372 
3373   // We have a definition after a declaration with the wrong type.
3374   // We must make a new GlobalVariable* and update everything that used OldGV
3375   // (a declaration or tentative definition) with the new GlobalVariable*
3376   // (which will be a definition).
3377   //
3378   // This happens if there is a prototype for a global (e.g.
3379   // "extern int x[];") and then a definition of a different type (e.g.
3380   // "int x[10];"). This also happens when an initializer has a different type
3381   // from the type of the global (this happens with unions).
3382   if (!GV || GV->getType()->getElementType() != InitType ||
3383       GV->getType()->getAddressSpace() !=
3384           getContext().getTargetAddressSpace(GetGlobalVarAddressSpace(D))) {
3385 
3386     // Move the old entry aside so that we'll create a new one.
3387     Entry->setName(StringRef());
3388 
3389     // Make a new global with the correct type, this is now guaranteed to work.
3390     GV = cast<llvm::GlobalVariable>(
3391         GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative)));
3392 
3393     // Replace all uses of the old global with the new global
3394     llvm::Constant *NewPtrForOldDecl =
3395         llvm::ConstantExpr::getBitCast(GV, Entry->getType());
3396     Entry->replaceAllUsesWith(NewPtrForOldDecl);
3397 
3398     // Erase the old global, since it is no longer used.
3399     cast<llvm::GlobalValue>(Entry)->eraseFromParent();
3400   }
3401 
3402   MaybeHandleStaticInExternC(D, GV);
3403 
3404   if (D->hasAttr<AnnotateAttr>())
3405     AddGlobalAnnotations(D, GV);
3406 
3407   // Set the llvm linkage type as appropriate.
3408   llvm::GlobalValue::LinkageTypes Linkage =
3409       getLLVMLinkageVarDefinition(D, GV->isConstant());
3410 
3411   // CUDA B.2.1 "The __device__ qualifier declares a variable that resides on
3412   // the device. [...]"
3413   // CUDA B.2.2 "The __constant__ qualifier, optionally used together with
3414   // __device__, declares a variable that: [...]
3415   // Is accessible from all the threads within the grid and from the host
3416   // through the runtime library (cudaGetSymbolAddress() / cudaGetSymbolSize()
3417   // / cudaMemcpyToSymbol() / cudaMemcpyFromSymbol())."
3418   if (GV && LangOpts.CUDA) {
3419     if (LangOpts.CUDAIsDevice) {
3420       if (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>())
3421         GV->setExternallyInitialized(true);
3422     } else {
3423       // Host-side shadows of external declarations of device-side
3424       // global variables become internal definitions. These have to
3425       // be internal in order to prevent name conflicts with global
3426       // host variables with the same name in a different TUs.
3427       if (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>()) {
3428         Linkage = llvm::GlobalValue::InternalLinkage;
3429 
3430         // Shadow variables and their properties must be registered
3431         // with CUDA runtime.
3432         unsigned Flags = 0;
3433         if (!D->hasDefinition())
3434           Flags |= CGCUDARuntime::ExternDeviceVar;
3435         if (D->hasAttr<CUDAConstantAttr>())
3436           Flags |= CGCUDARuntime::ConstantDeviceVar;
3437         getCUDARuntime().registerDeviceVar(*GV, Flags);
3438       } else if (D->hasAttr<CUDASharedAttr>())
3439         // __shared__ variables are odd. Shadows do get created, but
3440         // they are not registered with the CUDA runtime, so they
3441         // can't really be used to access their device-side
3442         // counterparts. It's not clear yet whether it's nvcc's bug or
3443         // a feature, but we've got to do the same for compatibility.
3444         Linkage = llvm::GlobalValue::InternalLinkage;
3445     }
3446   }
3447 
3448   GV->setInitializer(Init);
3449   if (emitter) emitter->finalize(GV);
3450 
3451   // If it is safe to mark the global 'constant', do so now.
3452   GV->setConstant(!NeedsGlobalCtor && !NeedsGlobalDtor &&
3453                   isTypeConstant(D->getType(), true));
3454 
3455   // If it is in a read-only section, mark it 'constant'.
3456   if (const SectionAttr *SA = D->getAttr<SectionAttr>()) {
3457     const ASTContext::SectionInfo &SI = Context.SectionInfos[SA->getName()];
3458     if ((SI.SectionFlags & ASTContext::PSF_Write) == 0)
3459       GV->setConstant(true);
3460   }
3461 
3462   GV->setAlignment(getContext().getDeclAlign(D).getQuantity());
3463 
3464 
3465   // On Darwin, if the normal linkage of a C++ thread_local variable is
3466   // LinkOnce or Weak, we keep the normal linkage to prevent multiple
3467   // copies within a linkage unit; otherwise, the backing variable has
3468   // internal linkage and all accesses should just be calls to the
3469   // Itanium-specified entry point, which has the normal linkage of the
3470   // variable. This is to preserve the ability to change the implementation
3471   // behind the scenes.
3472   if (!D->isStaticLocal() && D->getTLSKind() == VarDecl::TLS_Dynamic &&
3473       Context.getTargetInfo().getTriple().isOSDarwin() &&
3474       !llvm::GlobalVariable::isLinkOnceLinkage(Linkage) &&
3475       !llvm::GlobalVariable::isWeakLinkage(Linkage))
3476     Linkage = llvm::GlobalValue::InternalLinkage;
3477 
3478   GV->setLinkage(Linkage);
3479   if (D->hasAttr<DLLImportAttr>())
3480     GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass);
3481   else if (D->hasAttr<DLLExportAttr>())
3482     GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass);
3483   else
3484     GV->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass);
3485 
3486   if (Linkage == llvm::GlobalVariable::CommonLinkage) {
3487     // common vars aren't constant even if declared const.
3488     GV->setConstant(false);
3489     // Tentative definition of global variables may be initialized with
3490     // non-zero null pointers. In this case they should have weak linkage
3491     // since common linkage must have zero initializer and must not have
3492     // explicit section therefore cannot have non-zero initial value.
3493     if (!GV->getInitializer()->isNullValue())
3494       GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage);
3495   }
3496 
3497   setNonAliasAttributes(D, GV);
3498 
3499   if (D->getTLSKind() && !GV->isThreadLocal()) {
3500     if (D->getTLSKind() == VarDecl::TLS_Dynamic)
3501       CXXThreadLocals.push_back(D);
3502     setTLSMode(GV, *D);
3503   }
3504 
3505   maybeSetTrivialComdat(*D, *GV);
3506 
3507   // Emit the initializer function if necessary.
3508   if (NeedsGlobalCtor || NeedsGlobalDtor)
3509     EmitCXXGlobalVarDeclInitFunc(D, GV, NeedsGlobalCtor);
3510 
3511   SanitizerMD->reportGlobalToASan(GV, *D, NeedsGlobalCtor);
3512 
3513   // Emit global variable debug information.
3514   if (CGDebugInfo *DI = getModuleDebugInfo())
3515     if (getCodeGenOpts().getDebugInfo() >= codegenoptions::LimitedDebugInfo)
3516       DI->EmitGlobalVariable(GV, D);
3517 }
3518 
3519 static bool isVarDeclStrongDefinition(const ASTContext &Context,
3520                                       CodeGenModule &CGM, const VarDecl *D,
3521                                       bool NoCommon) {
3522   // Don't give variables common linkage if -fno-common was specified unless it
3523   // was overridden by a NoCommon attribute.
3524   if ((NoCommon || D->hasAttr<NoCommonAttr>()) && !D->hasAttr<CommonAttr>())
3525     return true;
3526 
3527   // C11 6.9.2/2:
3528   //   A declaration of an identifier for an object that has file scope without
3529   //   an initializer, and without a storage-class specifier or with the
3530   //   storage-class specifier static, constitutes a tentative definition.
3531   if (D->getInit() || D->hasExternalStorage())
3532     return true;
3533 
3534   // A variable cannot be both common and exist in a section.
3535   if (D->hasAttr<SectionAttr>())
3536     return true;
3537 
3538   // A variable cannot be both common and exist in a section.
3539   // We don't try to determine which is the right section in the front-end.
3540   // If no specialized section name is applicable, it will resort to default.
3541   if (D->hasAttr<PragmaClangBSSSectionAttr>() ||
3542       D->hasAttr<PragmaClangDataSectionAttr>() ||
3543       D->hasAttr<PragmaClangRodataSectionAttr>())
3544     return true;
3545 
3546   // Thread local vars aren't considered common linkage.
3547   if (D->getTLSKind())
3548     return true;
3549 
3550   // Tentative definitions marked with WeakImportAttr are true definitions.
3551   if (D->hasAttr<WeakImportAttr>())
3552     return true;
3553 
3554   // A variable cannot be both common and exist in a comdat.
3555   if (shouldBeInCOMDAT(CGM, *D))
3556     return true;
3557 
3558   // Declarations with a required alignment do not have common linkage in MSVC
3559   // mode.
3560   if (Context.getTargetInfo().getCXXABI().isMicrosoft()) {
3561     if (D->hasAttr<AlignedAttr>())
3562       return true;
3563     QualType VarType = D->getType();
3564     if (Context.isAlignmentRequired(VarType))
3565       return true;
3566 
3567     if (const auto *RT = VarType->getAs<RecordType>()) {
3568       const RecordDecl *RD = RT->getDecl();
3569       for (const FieldDecl *FD : RD->fields()) {
3570         if (FD->isBitField())
3571           continue;
3572         if (FD->hasAttr<AlignedAttr>())
3573           return true;
3574         if (Context.isAlignmentRequired(FD->getType()))
3575           return true;
3576       }
3577     }
3578   }
3579 
3580   return false;
3581 }
3582 
3583 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageForDeclarator(
3584     const DeclaratorDecl *D, GVALinkage Linkage, bool IsConstantVariable) {
3585   if (Linkage == GVA_Internal)
3586     return llvm::Function::InternalLinkage;
3587 
3588   if (D->hasAttr<WeakAttr>()) {
3589     if (IsConstantVariable)
3590       return llvm::GlobalVariable::WeakODRLinkage;
3591     else
3592       return llvm::GlobalVariable::WeakAnyLinkage;
3593   }
3594 
3595   // We are guaranteed to have a strong definition somewhere else,
3596   // so we can use available_externally linkage.
3597   if (Linkage == GVA_AvailableExternally)
3598     return llvm::GlobalValue::AvailableExternallyLinkage;
3599 
3600   // Note that Apple's kernel linker doesn't support symbol
3601   // coalescing, so we need to avoid linkonce and weak linkages there.
3602   // Normally, this means we just map to internal, but for explicit
3603   // instantiations we'll map to external.
3604 
3605   // In C++, the compiler has to emit a definition in every translation unit
3606   // that references the function.  We should use linkonce_odr because
3607   // a) if all references in this translation unit are optimized away, we
3608   // don't need to codegen it.  b) if the function persists, it needs to be
3609   // merged with other definitions. c) C++ has the ODR, so we know the
3610   // definition is dependable.
3611   if (Linkage == GVA_DiscardableODR)
3612     return !Context.getLangOpts().AppleKext ? llvm::Function::LinkOnceODRLinkage
3613                                             : llvm::Function::InternalLinkage;
3614 
3615   // An explicit instantiation of a template has weak linkage, since
3616   // explicit instantiations can occur in multiple translation units
3617   // and must all be equivalent. However, we are not allowed to
3618   // throw away these explicit instantiations.
3619   //
3620   // We don't currently support CUDA device code spread out across multiple TUs,
3621   // so say that CUDA templates are either external (for kernels) or internal.
3622   // This lets llvm perform aggressive inter-procedural optimizations.
3623   if (Linkage == GVA_StrongODR) {
3624     if (Context.getLangOpts().AppleKext)
3625       return llvm::Function::ExternalLinkage;
3626     if (Context.getLangOpts().CUDA && Context.getLangOpts().CUDAIsDevice)
3627       return D->hasAttr<CUDAGlobalAttr>() ? llvm::Function::ExternalLinkage
3628                                           : llvm::Function::InternalLinkage;
3629     return llvm::Function::WeakODRLinkage;
3630   }
3631 
3632   // C++ doesn't have tentative definitions and thus cannot have common
3633   // linkage.
3634   if (!getLangOpts().CPlusPlus && isa<VarDecl>(D) &&
3635       !isVarDeclStrongDefinition(Context, *this, cast<VarDecl>(D),
3636                                  CodeGenOpts.NoCommon))
3637     return llvm::GlobalVariable::CommonLinkage;
3638 
3639   // selectany symbols are externally visible, so use weak instead of
3640   // linkonce.  MSVC optimizes away references to const selectany globals, so
3641   // all definitions should be the same and ODR linkage should be used.
3642   // http://msdn.microsoft.com/en-us/library/5tkz6s71.aspx
3643   if (D->hasAttr<SelectAnyAttr>())
3644     return llvm::GlobalVariable::WeakODRLinkage;
3645 
3646   // Otherwise, we have strong external linkage.
3647   assert(Linkage == GVA_StrongExternal);
3648   return llvm::GlobalVariable::ExternalLinkage;
3649 }
3650 
3651 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageVarDefinition(
3652     const VarDecl *VD, bool IsConstant) {
3653   GVALinkage Linkage = getContext().GetGVALinkageForVariable(VD);
3654   return getLLVMLinkageForDeclarator(VD, Linkage, IsConstant);
3655 }
3656 
3657 /// Replace the uses of a function that was declared with a non-proto type.
3658 /// We want to silently drop extra arguments from call sites
3659 static void replaceUsesOfNonProtoConstant(llvm::Constant *old,
3660                                           llvm::Function *newFn) {
3661   // Fast path.
3662   if (old->use_empty()) return;
3663 
3664   llvm::Type *newRetTy = newFn->getReturnType();
3665   SmallVector<llvm::Value*, 4> newArgs;
3666   SmallVector<llvm::OperandBundleDef, 1> newBundles;
3667 
3668   for (llvm::Value::use_iterator ui = old->use_begin(), ue = old->use_end();
3669          ui != ue; ) {
3670     llvm::Value::use_iterator use = ui++; // Increment before the use is erased.
3671     llvm::User *user = use->getUser();
3672 
3673     // Recognize and replace uses of bitcasts.  Most calls to
3674     // unprototyped functions will use bitcasts.
3675     if (auto *bitcast = dyn_cast<llvm::ConstantExpr>(user)) {
3676       if (bitcast->getOpcode() == llvm::Instruction::BitCast)
3677         replaceUsesOfNonProtoConstant(bitcast, newFn);
3678       continue;
3679     }
3680 
3681     // Recognize calls to the function.
3682     llvm::CallSite callSite(user);
3683     if (!callSite) continue;
3684     if (!callSite.isCallee(&*use)) continue;
3685 
3686     // If the return types don't match exactly, then we can't
3687     // transform this call unless it's dead.
3688     if (callSite->getType() != newRetTy && !callSite->use_empty())
3689       continue;
3690 
3691     // Get the call site's attribute list.
3692     SmallVector<llvm::AttributeSet, 8> newArgAttrs;
3693     llvm::AttributeList oldAttrs = callSite.getAttributes();
3694 
3695     // If the function was passed too few arguments, don't transform.
3696     unsigned newNumArgs = newFn->arg_size();
3697     if (callSite.arg_size() < newNumArgs) continue;
3698 
3699     // If extra arguments were passed, we silently drop them.
3700     // If any of the types mismatch, we don't transform.
3701     unsigned argNo = 0;
3702     bool dontTransform = false;
3703     for (llvm::Argument &A : newFn->args()) {
3704       if (callSite.getArgument(argNo)->getType() != A.getType()) {
3705         dontTransform = true;
3706         break;
3707       }
3708 
3709       // Add any parameter attributes.
3710       newArgAttrs.push_back(oldAttrs.getParamAttributes(argNo));
3711       argNo++;
3712     }
3713     if (dontTransform)
3714       continue;
3715 
3716     // Okay, we can transform this.  Create the new call instruction and copy
3717     // over the required information.
3718     newArgs.append(callSite.arg_begin(), callSite.arg_begin() + argNo);
3719 
3720     // Copy over any operand bundles.
3721     callSite.getOperandBundlesAsDefs(newBundles);
3722 
3723     llvm::CallSite newCall;
3724     if (callSite.isCall()) {
3725       newCall = llvm::CallInst::Create(newFn, newArgs, newBundles, "",
3726                                        callSite.getInstruction());
3727     } else {
3728       auto *oldInvoke = cast<llvm::InvokeInst>(callSite.getInstruction());
3729       newCall = llvm::InvokeInst::Create(newFn,
3730                                          oldInvoke->getNormalDest(),
3731                                          oldInvoke->getUnwindDest(),
3732                                          newArgs, newBundles, "",
3733                                          callSite.getInstruction());
3734     }
3735     newArgs.clear(); // for the next iteration
3736 
3737     if (!newCall->getType()->isVoidTy())
3738       newCall->takeName(callSite.getInstruction());
3739     newCall.setAttributes(llvm::AttributeList::get(
3740         newFn->getContext(), oldAttrs.getFnAttributes(),
3741         oldAttrs.getRetAttributes(), newArgAttrs));
3742     newCall.setCallingConv(callSite.getCallingConv());
3743 
3744     // Finally, remove the old call, replacing any uses with the new one.
3745     if (!callSite->use_empty())
3746       callSite->replaceAllUsesWith(newCall.getInstruction());
3747 
3748     // Copy debug location attached to CI.
3749     if (callSite->getDebugLoc())
3750       newCall->setDebugLoc(callSite->getDebugLoc());
3751 
3752     callSite->eraseFromParent();
3753   }
3754 }
3755 
3756 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we
3757 /// implement a function with no prototype, e.g. "int foo() {}".  If there are
3758 /// existing call uses of the old function in the module, this adjusts them to
3759 /// call the new function directly.
3760 ///
3761 /// This is not just a cleanup: the always_inline pass requires direct calls to
3762 /// functions to be able to inline them.  If there is a bitcast in the way, it
3763 /// won't inline them.  Instcombine normally deletes these calls, but it isn't
3764 /// run at -O0.
3765 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
3766                                                       llvm::Function *NewFn) {
3767   // If we're redefining a global as a function, don't transform it.
3768   if (!isa<llvm::Function>(Old)) return;
3769 
3770   replaceUsesOfNonProtoConstant(Old, NewFn);
3771 }
3772 
3773 void CodeGenModule::HandleCXXStaticMemberVarInstantiation(VarDecl *VD) {
3774   auto DK = VD->isThisDeclarationADefinition();
3775   if (DK == VarDecl::Definition && VD->hasAttr<DLLImportAttr>())
3776     return;
3777 
3778   TemplateSpecializationKind TSK = VD->getTemplateSpecializationKind();
3779   // If we have a definition, this might be a deferred decl. If the
3780   // instantiation is explicit, make sure we emit it at the end.
3781   if (VD->getDefinition() && TSK == TSK_ExplicitInstantiationDefinition)
3782     GetAddrOfGlobalVar(VD);
3783 
3784   EmitTopLevelDecl(VD);
3785 }
3786 
3787 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD,
3788                                                  llvm::GlobalValue *GV) {
3789   const auto *D = cast<FunctionDecl>(GD.getDecl());
3790 
3791   // Compute the function info and LLVM type.
3792   const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
3793   llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
3794 
3795   // Get or create the prototype for the function.
3796   if (!GV || (GV->getType()->getElementType() != Ty))
3797     GV = cast<llvm::GlobalValue>(GetAddrOfFunction(GD, Ty, /*ForVTable=*/false,
3798                                                    /*DontDefer=*/true,
3799                                                    ForDefinition));
3800 
3801   // Already emitted.
3802   if (!GV->isDeclaration())
3803     return;
3804 
3805   // We need to set linkage and visibility on the function before
3806   // generating code for it because various parts of IR generation
3807   // want to propagate this information down (e.g. to local static
3808   // declarations).
3809   auto *Fn = cast<llvm::Function>(GV);
3810   setFunctionLinkage(GD, Fn);
3811 
3812   // FIXME: this is redundant with part of setFunctionDefinitionAttributes
3813   setGVProperties(Fn, GD);
3814 
3815   MaybeHandleStaticInExternC(D, Fn);
3816 
3817 
3818   maybeSetTrivialComdat(*D, *Fn);
3819 
3820   CodeGenFunction(*this).GenerateCode(D, Fn, FI);
3821 
3822   setNonAliasAttributes(GD, Fn);
3823   SetLLVMFunctionAttributesForDefinition(D, Fn);
3824 
3825   if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>())
3826     AddGlobalCtor(Fn, CA->getPriority());
3827   if (const DestructorAttr *DA = D->getAttr<DestructorAttr>())
3828     AddGlobalDtor(Fn, DA->getPriority());
3829   if (D->hasAttr<AnnotateAttr>())
3830     AddGlobalAnnotations(D, Fn);
3831 
3832   if (D->isCPUSpecificMultiVersion()) {
3833     auto *Spec = D->getAttr<CPUSpecificAttr>();
3834     // If there is another specific version we need to emit, do so here.
3835     if (Spec->ActiveArgIndex + 1 < Spec->cpus_size()) {
3836       ++Spec->ActiveArgIndex;
3837       EmitGlobalFunctionDefinition(GD, nullptr);
3838     }
3839   }
3840 }
3841 
3842 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) {
3843   const auto *D = cast<ValueDecl>(GD.getDecl());
3844   const AliasAttr *AA = D->getAttr<AliasAttr>();
3845   assert(AA && "Not an alias?");
3846 
3847   StringRef MangledName = getMangledName(GD);
3848 
3849   if (AA->getAliasee() == MangledName) {
3850     Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0;
3851     return;
3852   }
3853 
3854   // If there is a definition in the module, then it wins over the alias.
3855   // This is dubious, but allow it to be safe.  Just ignore the alias.
3856   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
3857   if (Entry && !Entry->isDeclaration())
3858     return;
3859 
3860   Aliases.push_back(GD);
3861 
3862   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
3863 
3864   // Create a reference to the named value.  This ensures that it is emitted
3865   // if a deferred decl.
3866   llvm::Constant *Aliasee;
3867   if (isa<llvm::FunctionType>(DeclTy))
3868     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GD,
3869                                       /*ForVTable=*/false);
3870   else
3871     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
3872                                     llvm::PointerType::getUnqual(DeclTy),
3873                                     /*D=*/nullptr);
3874 
3875   // Create the new alias itself, but don't set a name yet.
3876   auto *GA = llvm::GlobalAlias::create(
3877       DeclTy, 0, llvm::Function::ExternalLinkage, "", Aliasee, &getModule());
3878 
3879   if (Entry) {
3880     if (GA->getAliasee() == Entry) {
3881       Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0;
3882       return;
3883     }
3884 
3885     assert(Entry->isDeclaration());
3886 
3887     // If there is a declaration in the module, then we had an extern followed
3888     // by the alias, as in:
3889     //   extern int test6();
3890     //   ...
3891     //   int test6() __attribute__((alias("test7")));
3892     //
3893     // Remove it and replace uses of it with the alias.
3894     GA->takeName(Entry);
3895 
3896     Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA,
3897                                                           Entry->getType()));
3898     Entry->eraseFromParent();
3899   } else {
3900     GA->setName(MangledName);
3901   }
3902 
3903   // Set attributes which are particular to an alias; this is a
3904   // specialization of the attributes which may be set on a global
3905   // variable/function.
3906   if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakRefAttr>() ||
3907       D->isWeakImported()) {
3908     GA->setLinkage(llvm::Function::WeakAnyLinkage);
3909   }
3910 
3911   if (const auto *VD = dyn_cast<VarDecl>(D))
3912     if (VD->getTLSKind())
3913       setTLSMode(GA, *VD);
3914 
3915   SetCommonAttributes(GD, GA);
3916 }
3917 
3918 void CodeGenModule::emitIFuncDefinition(GlobalDecl GD) {
3919   const auto *D = cast<ValueDecl>(GD.getDecl());
3920   const IFuncAttr *IFA = D->getAttr<IFuncAttr>();
3921   assert(IFA && "Not an ifunc?");
3922 
3923   StringRef MangledName = getMangledName(GD);
3924 
3925   if (IFA->getResolver() == MangledName) {
3926     Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1;
3927     return;
3928   }
3929 
3930   // Report an error if some definition overrides ifunc.
3931   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
3932   if (Entry && !Entry->isDeclaration()) {
3933     GlobalDecl OtherGD;
3934     if (lookupRepresentativeDecl(MangledName, OtherGD) &&
3935         DiagnosedConflictingDefinitions.insert(GD).second) {
3936       Diags.Report(D->getLocation(), diag::err_duplicate_mangled_name)
3937           << MangledName;
3938       Diags.Report(OtherGD.getDecl()->getLocation(),
3939                    diag::note_previous_definition);
3940     }
3941     return;
3942   }
3943 
3944   Aliases.push_back(GD);
3945 
3946   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
3947   llvm::Constant *Resolver =
3948       GetOrCreateLLVMFunction(IFA->getResolver(), DeclTy, GD,
3949                               /*ForVTable=*/false);
3950   llvm::GlobalIFunc *GIF =
3951       llvm::GlobalIFunc::create(DeclTy, 0, llvm::Function::ExternalLinkage,
3952                                 "", Resolver, &getModule());
3953   if (Entry) {
3954     if (GIF->getResolver() == Entry) {
3955       Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1;
3956       return;
3957     }
3958     assert(Entry->isDeclaration());
3959 
3960     // If there is a declaration in the module, then we had an extern followed
3961     // by the ifunc, as in:
3962     //   extern int test();
3963     //   ...
3964     //   int test() __attribute__((ifunc("resolver")));
3965     //
3966     // Remove it and replace uses of it with the ifunc.
3967     GIF->takeName(Entry);
3968 
3969     Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GIF,
3970                                                           Entry->getType()));
3971     Entry->eraseFromParent();
3972   } else
3973     GIF->setName(MangledName);
3974 
3975   SetCommonAttributes(GD, GIF);
3976 }
3977 
3978 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,
3979                                             ArrayRef<llvm::Type*> Tys) {
3980   return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID,
3981                                          Tys);
3982 }
3983 
3984 static llvm::StringMapEntry<llvm::GlobalVariable *> &
3985 GetConstantCFStringEntry(llvm::StringMap<llvm::GlobalVariable *> &Map,
3986                          const StringLiteral *Literal, bool TargetIsLSB,
3987                          bool &IsUTF16, unsigned &StringLength) {
3988   StringRef String = Literal->getString();
3989   unsigned NumBytes = String.size();
3990 
3991   // Check for simple case.
3992   if (!Literal->containsNonAsciiOrNull()) {
3993     StringLength = NumBytes;
3994     return *Map.insert(std::make_pair(String, nullptr)).first;
3995   }
3996 
3997   // Otherwise, convert the UTF8 literals into a string of shorts.
3998   IsUTF16 = true;
3999 
4000   SmallVector<llvm::UTF16, 128> ToBuf(NumBytes + 1); // +1 for ending nulls.
4001   const llvm::UTF8 *FromPtr = (const llvm::UTF8 *)String.data();
4002   llvm::UTF16 *ToPtr = &ToBuf[0];
4003 
4004   (void)llvm::ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, &ToPtr,
4005                                  ToPtr + NumBytes, llvm::strictConversion);
4006 
4007   // ConvertUTF8toUTF16 returns the length in ToPtr.
4008   StringLength = ToPtr - &ToBuf[0];
4009 
4010   // Add an explicit null.
4011   *ToPtr = 0;
4012   return *Map.insert(std::make_pair(
4013                          StringRef(reinterpret_cast<const char *>(ToBuf.data()),
4014                                    (StringLength + 1) * 2),
4015                          nullptr)).first;
4016 }
4017 
4018 ConstantAddress
4019 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) {
4020   unsigned StringLength = 0;
4021   bool isUTF16 = false;
4022   llvm::StringMapEntry<llvm::GlobalVariable *> &Entry =
4023       GetConstantCFStringEntry(CFConstantStringMap, Literal,
4024                                getDataLayout().isLittleEndian(), isUTF16,
4025                                StringLength);
4026 
4027   if (auto *C = Entry.second)
4028     return ConstantAddress(C, CharUnits::fromQuantity(C->getAlignment()));
4029 
4030   llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty);
4031   llvm::Constant *Zeros[] = { Zero, Zero };
4032 
4033   // If we don't already have it, get __CFConstantStringClassReference.
4034   if (!CFConstantStringClassRef) {
4035     llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
4036     Ty = llvm::ArrayType::get(Ty, 0);
4037     llvm::GlobalValue *GV = cast<llvm::GlobalValue>(
4038         CreateRuntimeVariable(Ty, "__CFConstantStringClassReference"));
4039 
4040     if (getTriple().isOSBinFormatCOFF()) {
4041       IdentifierInfo &II = getContext().Idents.get(GV->getName());
4042       TranslationUnitDecl *TUDecl = getContext().getTranslationUnitDecl();
4043       DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl);
4044 
4045       const VarDecl *VD = nullptr;
4046       for (const auto &Result : DC->lookup(&II))
4047         if ((VD = dyn_cast<VarDecl>(Result)))
4048           break;
4049 
4050       if (!VD || !VD->hasAttr<DLLExportAttr>()) {
4051         GV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass);
4052         GV->setLinkage(llvm::GlobalValue::ExternalLinkage);
4053       } else {
4054         GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass);
4055         GV->setLinkage(llvm::GlobalValue::ExternalLinkage);
4056       }
4057     }
4058     setDSOLocal(GV);
4059 
4060     // Decay array -> ptr
4061     CFConstantStringClassRef =
4062         llvm::ConstantExpr::getGetElementPtr(Ty, GV, Zeros);
4063   }
4064 
4065   QualType CFTy = getContext().getCFConstantStringType();
4066 
4067   auto *STy = cast<llvm::StructType>(getTypes().ConvertType(CFTy));
4068 
4069   ConstantInitBuilder Builder(*this);
4070   auto Fields = Builder.beginStruct(STy);
4071 
4072   // Class pointer.
4073   Fields.add(cast<llvm::ConstantExpr>(CFConstantStringClassRef));
4074 
4075   // Flags.
4076   Fields.addInt(IntTy, isUTF16 ? 0x07d0 : 0x07C8);
4077 
4078   // String pointer.
4079   llvm::Constant *C = nullptr;
4080   if (isUTF16) {
4081     auto Arr = llvm::makeArrayRef(
4082         reinterpret_cast<uint16_t *>(const_cast<char *>(Entry.first().data())),
4083         Entry.first().size() / 2);
4084     C = llvm::ConstantDataArray::get(VMContext, Arr);
4085   } else {
4086     C = llvm::ConstantDataArray::getString(VMContext, Entry.first());
4087   }
4088 
4089   // Note: -fwritable-strings doesn't make the backing store strings of
4090   // CFStrings writable. (See <rdar://problem/10657500>)
4091   auto *GV =
4092       new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true,
4093                                llvm::GlobalValue::PrivateLinkage, C, ".str");
4094   GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
4095   // Don't enforce the target's minimum global alignment, since the only use
4096   // of the string is via this class initializer.
4097   CharUnits Align = isUTF16
4098                         ? getContext().getTypeAlignInChars(getContext().ShortTy)
4099                         : getContext().getTypeAlignInChars(getContext().CharTy);
4100   GV->setAlignment(Align.getQuantity());
4101 
4102   // FIXME: We set the section explicitly to avoid a bug in ld64 224.1.
4103   // Without it LLVM can merge the string with a non unnamed_addr one during
4104   // LTO.  Doing that changes the section it ends in, which surprises ld64.
4105   if (getTriple().isOSBinFormatMachO())
4106     GV->setSection(isUTF16 ? "__TEXT,__ustring"
4107                            : "__TEXT,__cstring,cstring_literals");
4108 
4109   // String.
4110   llvm::Constant *Str =
4111       llvm::ConstantExpr::getGetElementPtr(GV->getValueType(), GV, Zeros);
4112 
4113   if (isUTF16)
4114     // Cast the UTF16 string to the correct type.
4115     Str = llvm::ConstantExpr::getBitCast(Str, Int8PtrTy);
4116   Fields.add(Str);
4117 
4118   // String length.
4119   auto Ty = getTypes().ConvertType(getContext().LongTy);
4120   Fields.addInt(cast<llvm::IntegerType>(Ty), StringLength);
4121 
4122   CharUnits Alignment = getPointerAlign();
4123 
4124   // The struct.
4125   GV = Fields.finishAndCreateGlobal("_unnamed_cfstring_", Alignment,
4126                                     /*isConstant=*/false,
4127                                     llvm::GlobalVariable::PrivateLinkage);
4128   switch (getTriple().getObjectFormat()) {
4129   case llvm::Triple::UnknownObjectFormat:
4130     llvm_unreachable("unknown file format");
4131   case llvm::Triple::COFF:
4132   case llvm::Triple::ELF:
4133   case llvm::Triple::Wasm:
4134     GV->setSection("cfstring");
4135     break;
4136   case llvm::Triple::MachO:
4137     GV->setSection("__DATA,__cfstring");
4138     break;
4139   }
4140   Entry.second = GV;
4141 
4142   return ConstantAddress(GV, Alignment);
4143 }
4144 
4145 bool CodeGenModule::getExpressionLocationsEnabled() const {
4146   return !CodeGenOpts.EmitCodeView || CodeGenOpts.DebugColumnInfo;
4147 }
4148 
4149 QualType CodeGenModule::getObjCFastEnumerationStateType() {
4150   if (ObjCFastEnumerationStateType.isNull()) {
4151     RecordDecl *D = Context.buildImplicitRecord("__objcFastEnumerationState");
4152     D->startDefinition();
4153 
4154     QualType FieldTypes[] = {
4155       Context.UnsignedLongTy,
4156       Context.getPointerType(Context.getObjCIdType()),
4157       Context.getPointerType(Context.UnsignedLongTy),
4158       Context.getConstantArrayType(Context.UnsignedLongTy,
4159                            llvm::APInt(32, 5), ArrayType::Normal, 0)
4160     };
4161 
4162     for (size_t i = 0; i < 4; ++i) {
4163       FieldDecl *Field = FieldDecl::Create(Context,
4164                                            D,
4165                                            SourceLocation(),
4166                                            SourceLocation(), nullptr,
4167                                            FieldTypes[i], /*TInfo=*/nullptr,
4168                                            /*BitWidth=*/nullptr,
4169                                            /*Mutable=*/false,
4170                                            ICIS_NoInit);
4171       Field->setAccess(AS_public);
4172       D->addDecl(Field);
4173     }
4174 
4175     D->completeDefinition();
4176     ObjCFastEnumerationStateType = Context.getTagDeclType(D);
4177   }
4178 
4179   return ObjCFastEnumerationStateType;
4180 }
4181 
4182 llvm::Constant *
4183 CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) {
4184   assert(!E->getType()->isPointerType() && "Strings are always arrays");
4185 
4186   // Don't emit it as the address of the string, emit the string data itself
4187   // as an inline array.
4188   if (E->getCharByteWidth() == 1) {
4189     SmallString<64> Str(E->getString());
4190 
4191     // Resize the string to the right size, which is indicated by its type.
4192     const ConstantArrayType *CAT = Context.getAsConstantArrayType(E->getType());
4193     Str.resize(CAT->getSize().getZExtValue());
4194     return llvm::ConstantDataArray::getString(VMContext, Str, false);
4195   }
4196 
4197   auto *AType = cast<llvm::ArrayType>(getTypes().ConvertType(E->getType()));
4198   llvm::Type *ElemTy = AType->getElementType();
4199   unsigned NumElements = AType->getNumElements();
4200 
4201   // Wide strings have either 2-byte or 4-byte elements.
4202   if (ElemTy->getPrimitiveSizeInBits() == 16) {
4203     SmallVector<uint16_t, 32> Elements;
4204     Elements.reserve(NumElements);
4205 
4206     for(unsigned i = 0, e = E->getLength(); i != e; ++i)
4207       Elements.push_back(E->getCodeUnit(i));
4208     Elements.resize(NumElements);
4209     return llvm::ConstantDataArray::get(VMContext, Elements);
4210   }
4211 
4212   assert(ElemTy->getPrimitiveSizeInBits() == 32);
4213   SmallVector<uint32_t, 32> Elements;
4214   Elements.reserve(NumElements);
4215 
4216   for(unsigned i = 0, e = E->getLength(); i != e; ++i)
4217     Elements.push_back(E->getCodeUnit(i));
4218   Elements.resize(NumElements);
4219   return llvm::ConstantDataArray::get(VMContext, Elements);
4220 }
4221 
4222 static llvm::GlobalVariable *
4223 GenerateStringLiteral(llvm::Constant *C, llvm::GlobalValue::LinkageTypes LT,
4224                       CodeGenModule &CGM, StringRef GlobalName,
4225                       CharUnits Alignment) {
4226   unsigned AddrSpace = CGM.getContext().getTargetAddressSpace(
4227       CGM.getStringLiteralAddressSpace());
4228 
4229   llvm::Module &M = CGM.getModule();
4230   // Create a global variable for this string
4231   auto *GV = new llvm::GlobalVariable(
4232       M, C->getType(), !CGM.getLangOpts().WritableStrings, LT, C, GlobalName,
4233       nullptr, llvm::GlobalVariable::NotThreadLocal, AddrSpace);
4234   GV->setAlignment(Alignment.getQuantity());
4235   GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
4236   if (GV->isWeakForLinker()) {
4237     assert(CGM.supportsCOMDAT() && "Only COFF uses weak string literals");
4238     GV->setComdat(M.getOrInsertComdat(GV->getName()));
4239   }
4240   CGM.setDSOLocal(GV);
4241 
4242   return GV;
4243 }
4244 
4245 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a
4246 /// constant array for the given string literal.
4247 ConstantAddress
4248 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S,
4249                                                   StringRef Name) {
4250   CharUnits Alignment = getContext().getAlignOfGlobalVarInChars(S->getType());
4251 
4252   llvm::Constant *C = GetConstantArrayFromStringLiteral(S);
4253   llvm::GlobalVariable **Entry = nullptr;
4254   if (!LangOpts.WritableStrings) {
4255     Entry = &ConstantStringMap[C];
4256     if (auto GV = *Entry) {
4257       if (Alignment.getQuantity() > GV->getAlignment())
4258         GV->setAlignment(Alignment.getQuantity());
4259       return ConstantAddress(GV, Alignment);
4260     }
4261   }
4262 
4263   SmallString<256> MangledNameBuffer;
4264   StringRef GlobalVariableName;
4265   llvm::GlobalValue::LinkageTypes LT;
4266 
4267   // Mangle the string literal if the ABI allows for it.  However, we cannot
4268   // do this if  we are compiling with ASan or -fwritable-strings because they
4269   // rely on strings having normal linkage.
4270   if (!LangOpts.WritableStrings &&
4271       !LangOpts.Sanitize.has(SanitizerKind::Address) &&
4272       getCXXABI().getMangleContext().shouldMangleStringLiteral(S)) {
4273     llvm::raw_svector_ostream Out(MangledNameBuffer);
4274     getCXXABI().getMangleContext().mangleStringLiteral(S, Out);
4275 
4276     LT = llvm::GlobalValue::LinkOnceODRLinkage;
4277     GlobalVariableName = MangledNameBuffer;
4278   } else {
4279     LT = llvm::GlobalValue::PrivateLinkage;
4280     GlobalVariableName = Name;
4281   }
4282 
4283   auto GV = GenerateStringLiteral(C, LT, *this, GlobalVariableName, Alignment);
4284   if (Entry)
4285     *Entry = GV;
4286 
4287   SanitizerMD->reportGlobalToASan(GV, S->getStrTokenLoc(0), "<string literal>",
4288                                   QualType());
4289 
4290   return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV),
4291                          Alignment);
4292 }
4293 
4294 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant
4295 /// array for the given ObjCEncodeExpr node.
4296 ConstantAddress
4297 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) {
4298   std::string Str;
4299   getContext().getObjCEncodingForType(E->getEncodedType(), Str);
4300 
4301   return GetAddrOfConstantCString(Str);
4302 }
4303 
4304 /// GetAddrOfConstantCString - Returns a pointer to a character array containing
4305 /// the literal and a terminating '\0' character.
4306 /// The result has pointer to array type.
4307 ConstantAddress CodeGenModule::GetAddrOfConstantCString(
4308     const std::string &Str, const char *GlobalName) {
4309   StringRef StrWithNull(Str.c_str(), Str.size() + 1);
4310   CharUnits Alignment =
4311     getContext().getAlignOfGlobalVarInChars(getContext().CharTy);
4312 
4313   llvm::Constant *C =
4314       llvm::ConstantDataArray::getString(getLLVMContext(), StrWithNull, false);
4315 
4316   // Don't share any string literals if strings aren't constant.
4317   llvm::GlobalVariable **Entry = nullptr;
4318   if (!LangOpts.WritableStrings) {
4319     Entry = &ConstantStringMap[C];
4320     if (auto GV = *Entry) {
4321       if (Alignment.getQuantity() > GV->getAlignment())
4322         GV->setAlignment(Alignment.getQuantity());
4323       return ConstantAddress(GV, Alignment);
4324     }
4325   }
4326 
4327   // Get the default prefix if a name wasn't specified.
4328   if (!GlobalName)
4329     GlobalName = ".str";
4330   // Create a global variable for this.
4331   auto GV = GenerateStringLiteral(C, llvm::GlobalValue::PrivateLinkage, *this,
4332                                   GlobalName, Alignment);
4333   if (Entry)
4334     *Entry = GV;
4335 
4336   return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV),
4337                          Alignment);
4338 }
4339 
4340 ConstantAddress CodeGenModule::GetAddrOfGlobalTemporary(
4341     const MaterializeTemporaryExpr *E, const Expr *Init) {
4342   assert((E->getStorageDuration() == SD_Static ||
4343           E->getStorageDuration() == SD_Thread) && "not a global temporary");
4344   const auto *VD = cast<VarDecl>(E->getExtendingDecl());
4345 
4346   // If we're not materializing a subobject of the temporary, keep the
4347   // cv-qualifiers from the type of the MaterializeTemporaryExpr.
4348   QualType MaterializedType = Init->getType();
4349   if (Init == E->GetTemporaryExpr())
4350     MaterializedType = E->getType();
4351 
4352   CharUnits Align = getContext().getTypeAlignInChars(MaterializedType);
4353 
4354   if (llvm::Constant *Slot = MaterializedGlobalTemporaryMap[E])
4355     return ConstantAddress(Slot, Align);
4356 
4357   // FIXME: If an externally-visible declaration extends multiple temporaries,
4358   // we need to give each temporary the same name in every translation unit (and
4359   // we also need to make the temporaries externally-visible).
4360   SmallString<256> Name;
4361   llvm::raw_svector_ostream Out(Name);
4362   getCXXABI().getMangleContext().mangleReferenceTemporary(
4363       VD, E->getManglingNumber(), Out);
4364 
4365   APValue *Value = nullptr;
4366   if (E->getStorageDuration() == SD_Static) {
4367     // We might have a cached constant initializer for this temporary. Note
4368     // that this might have a different value from the value computed by
4369     // evaluating the initializer if the surrounding constant expression
4370     // modifies the temporary.
4371     Value = getContext().getMaterializedTemporaryValue(E, false);
4372     if (Value && Value->isUninit())
4373       Value = nullptr;
4374   }
4375 
4376   // Try evaluating it now, it might have a constant initializer.
4377   Expr::EvalResult EvalResult;
4378   if (!Value && Init->EvaluateAsRValue(EvalResult, getContext()) &&
4379       !EvalResult.hasSideEffects())
4380     Value = &EvalResult.Val;
4381 
4382   LangAS AddrSpace =
4383       VD ? GetGlobalVarAddressSpace(VD) : MaterializedType.getAddressSpace();
4384 
4385   Optional<ConstantEmitter> emitter;
4386   llvm::Constant *InitialValue = nullptr;
4387   bool Constant = false;
4388   llvm::Type *Type;
4389   if (Value) {
4390     // The temporary has a constant initializer, use it.
4391     emitter.emplace(*this);
4392     InitialValue = emitter->emitForInitializer(*Value, AddrSpace,
4393                                                MaterializedType);
4394     Constant = isTypeConstant(MaterializedType, /*ExcludeCtor*/Value);
4395     Type = InitialValue->getType();
4396   } else {
4397     // No initializer, the initialization will be provided when we
4398     // initialize the declaration which performed lifetime extension.
4399     Type = getTypes().ConvertTypeForMem(MaterializedType);
4400   }
4401 
4402   // Create a global variable for this lifetime-extended temporary.
4403   llvm::GlobalValue::LinkageTypes Linkage =
4404       getLLVMLinkageVarDefinition(VD, Constant);
4405   if (Linkage == llvm::GlobalVariable::ExternalLinkage) {
4406     const VarDecl *InitVD;
4407     if (VD->isStaticDataMember() && VD->getAnyInitializer(InitVD) &&
4408         isa<CXXRecordDecl>(InitVD->getLexicalDeclContext())) {
4409       // Temporaries defined inside a class get linkonce_odr linkage because the
4410       // class can be defined in multiple translation units.
4411       Linkage = llvm::GlobalVariable::LinkOnceODRLinkage;
4412     } else {
4413       // There is no need for this temporary to have external linkage if the
4414       // VarDecl has external linkage.
4415       Linkage = llvm::GlobalVariable::InternalLinkage;
4416     }
4417   }
4418   auto TargetAS = getContext().getTargetAddressSpace(AddrSpace);
4419   auto *GV = new llvm::GlobalVariable(
4420       getModule(), Type, Constant, Linkage, InitialValue, Name.c_str(),
4421       /*InsertBefore=*/nullptr, llvm::GlobalVariable::NotThreadLocal, TargetAS);
4422   if (emitter) emitter->finalize(GV);
4423   setGVProperties(GV, VD);
4424   GV->setAlignment(Align.getQuantity());
4425   if (supportsCOMDAT() && GV->isWeakForLinker())
4426     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
4427   if (VD->getTLSKind())
4428     setTLSMode(GV, *VD);
4429   llvm::Constant *CV = GV;
4430   if (AddrSpace != LangAS::Default)
4431     CV = getTargetCodeGenInfo().performAddrSpaceCast(
4432         *this, GV, AddrSpace, LangAS::Default,
4433         Type->getPointerTo(
4434             getContext().getTargetAddressSpace(LangAS::Default)));
4435   MaterializedGlobalTemporaryMap[E] = CV;
4436   return ConstantAddress(CV, Align);
4437 }
4438 
4439 /// EmitObjCPropertyImplementations - Emit information for synthesized
4440 /// properties for an implementation.
4441 void CodeGenModule::EmitObjCPropertyImplementations(const
4442                                                     ObjCImplementationDecl *D) {
4443   for (const auto *PID : D->property_impls()) {
4444     // Dynamic is just for type-checking.
4445     if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) {
4446       ObjCPropertyDecl *PD = PID->getPropertyDecl();
4447 
4448       // Determine which methods need to be implemented, some may have
4449       // been overridden. Note that ::isPropertyAccessor is not the method
4450       // we want, that just indicates if the decl came from a
4451       // property. What we want to know is if the method is defined in
4452       // this implementation.
4453       if (!D->getInstanceMethod(PD->getGetterName()))
4454         CodeGenFunction(*this).GenerateObjCGetter(
4455                                  const_cast<ObjCImplementationDecl *>(D), PID);
4456       if (!PD->isReadOnly() &&
4457           !D->getInstanceMethod(PD->getSetterName()))
4458         CodeGenFunction(*this).GenerateObjCSetter(
4459                                  const_cast<ObjCImplementationDecl *>(D), PID);
4460     }
4461   }
4462 }
4463 
4464 static bool needsDestructMethod(ObjCImplementationDecl *impl) {
4465   const ObjCInterfaceDecl *iface = impl->getClassInterface();
4466   for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin();
4467        ivar; ivar = ivar->getNextIvar())
4468     if (ivar->getType().isDestructedType())
4469       return true;
4470 
4471   return false;
4472 }
4473 
4474 static bool AllTrivialInitializers(CodeGenModule &CGM,
4475                                    ObjCImplementationDecl *D) {
4476   CodeGenFunction CGF(CGM);
4477   for (ObjCImplementationDecl::init_iterator B = D->init_begin(),
4478        E = D->init_end(); B != E; ++B) {
4479     CXXCtorInitializer *CtorInitExp = *B;
4480     Expr *Init = CtorInitExp->getInit();
4481     if (!CGF.isTrivialInitializer(Init))
4482       return false;
4483   }
4484   return true;
4485 }
4486 
4487 /// EmitObjCIvarInitializations - Emit information for ivar initialization
4488 /// for an implementation.
4489 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) {
4490   // We might need a .cxx_destruct even if we don't have any ivar initializers.
4491   if (needsDestructMethod(D)) {
4492     IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct");
4493     Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
4494     ObjCMethodDecl *DTORMethod =
4495       ObjCMethodDecl::Create(getContext(), D->getLocation(), D->getLocation(),
4496                              cxxSelector, getContext().VoidTy, nullptr, D,
4497                              /*isInstance=*/true, /*isVariadic=*/false,
4498                           /*isPropertyAccessor=*/true, /*isImplicitlyDeclared=*/true,
4499                              /*isDefined=*/false, ObjCMethodDecl::Required);
4500     D->addInstanceMethod(DTORMethod);
4501     CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false);
4502     D->setHasDestructors(true);
4503   }
4504 
4505   // If the implementation doesn't have any ivar initializers, we don't need
4506   // a .cxx_construct.
4507   if (D->getNumIvarInitializers() == 0 ||
4508       AllTrivialInitializers(*this, D))
4509     return;
4510 
4511   IdentifierInfo *II = &getContext().Idents.get(".cxx_construct");
4512   Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
4513   // The constructor returns 'self'.
4514   ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(getContext(),
4515                                                 D->getLocation(),
4516                                                 D->getLocation(),
4517                                                 cxxSelector,
4518                                                 getContext().getObjCIdType(),
4519                                                 nullptr, D, /*isInstance=*/true,
4520                                                 /*isVariadic=*/false,
4521                                                 /*isPropertyAccessor=*/true,
4522                                                 /*isImplicitlyDeclared=*/true,
4523                                                 /*isDefined=*/false,
4524                                                 ObjCMethodDecl::Required);
4525   D->addInstanceMethod(CTORMethod);
4526   CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true);
4527   D->setHasNonZeroConstructors(true);
4528 }
4529 
4530 // EmitLinkageSpec - Emit all declarations in a linkage spec.
4531 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) {
4532   if (LSD->getLanguage() != LinkageSpecDecl::lang_c &&
4533       LSD->getLanguage() != LinkageSpecDecl::lang_cxx) {
4534     ErrorUnsupported(LSD, "linkage spec");
4535     return;
4536   }
4537 
4538   EmitDeclContext(LSD);
4539 }
4540 
4541 void CodeGenModule::EmitDeclContext(const DeclContext *DC) {
4542   for (auto *I : DC->decls()) {
4543     // Unlike other DeclContexts, the contents of an ObjCImplDecl at TU scope
4544     // are themselves considered "top-level", so EmitTopLevelDecl on an
4545     // ObjCImplDecl does not recursively visit them. We need to do that in
4546     // case they're nested inside another construct (LinkageSpecDecl /
4547     // ExportDecl) that does stop them from being considered "top-level".
4548     if (auto *OID = dyn_cast<ObjCImplDecl>(I)) {
4549       for (auto *M : OID->methods())
4550         EmitTopLevelDecl(M);
4551     }
4552 
4553     EmitTopLevelDecl(I);
4554   }
4555 }
4556 
4557 /// EmitTopLevelDecl - Emit code for a single top level declaration.
4558 void CodeGenModule::EmitTopLevelDecl(Decl *D) {
4559   // Ignore dependent declarations.
4560   if (D->isTemplated())
4561     return;
4562 
4563   switch (D->getKind()) {
4564   case Decl::CXXConversion:
4565   case Decl::CXXMethod:
4566   case Decl::Function:
4567     EmitGlobal(cast<FunctionDecl>(D));
4568     // Always provide some coverage mapping
4569     // even for the functions that aren't emitted.
4570     AddDeferredUnusedCoverageMapping(D);
4571     break;
4572 
4573   case Decl::CXXDeductionGuide:
4574     // Function-like, but does not result in code emission.
4575     break;
4576 
4577   case Decl::Var:
4578   case Decl::Decomposition:
4579   case Decl::VarTemplateSpecialization:
4580     EmitGlobal(cast<VarDecl>(D));
4581     if (auto *DD = dyn_cast<DecompositionDecl>(D))
4582       for (auto *B : DD->bindings())
4583         if (auto *HD = B->getHoldingVar())
4584           EmitGlobal(HD);
4585     break;
4586 
4587   // Indirect fields from global anonymous structs and unions can be
4588   // ignored; only the actual variable requires IR gen support.
4589   case Decl::IndirectField:
4590     break;
4591 
4592   // C++ Decls
4593   case Decl::Namespace:
4594     EmitDeclContext(cast<NamespaceDecl>(D));
4595     break;
4596   case Decl::ClassTemplateSpecialization: {
4597     const auto *Spec = cast<ClassTemplateSpecializationDecl>(D);
4598     if (DebugInfo &&
4599         Spec->getSpecializationKind() == TSK_ExplicitInstantiationDefinition &&
4600         Spec->hasDefinition())
4601       DebugInfo->completeTemplateDefinition(*Spec);
4602   } LLVM_FALLTHROUGH;
4603   case Decl::CXXRecord:
4604     if (DebugInfo) {
4605       if (auto *ES = D->getASTContext().getExternalSource())
4606         if (ES->hasExternalDefinitions(D) == ExternalASTSource::EK_Never)
4607           DebugInfo->completeUnusedClass(cast<CXXRecordDecl>(*D));
4608     }
4609     // Emit any static data members, they may be definitions.
4610     for (auto *I : cast<CXXRecordDecl>(D)->decls())
4611       if (isa<VarDecl>(I) || isa<CXXRecordDecl>(I))
4612         EmitTopLevelDecl(I);
4613     break;
4614     // No code generation needed.
4615   case Decl::UsingShadow:
4616   case Decl::ClassTemplate:
4617   case Decl::VarTemplate:
4618   case Decl::VarTemplatePartialSpecialization:
4619   case Decl::FunctionTemplate:
4620   case Decl::TypeAliasTemplate:
4621   case Decl::Block:
4622   case Decl::Empty:
4623     break;
4624   case Decl::Using:          // using X; [C++]
4625     if (CGDebugInfo *DI = getModuleDebugInfo())
4626         DI->EmitUsingDecl(cast<UsingDecl>(*D));
4627     return;
4628   case Decl::NamespaceAlias:
4629     if (CGDebugInfo *DI = getModuleDebugInfo())
4630         DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(*D));
4631     return;
4632   case Decl::UsingDirective: // using namespace X; [C++]
4633     if (CGDebugInfo *DI = getModuleDebugInfo())
4634       DI->EmitUsingDirective(cast<UsingDirectiveDecl>(*D));
4635     return;
4636   case Decl::CXXConstructor:
4637     getCXXABI().EmitCXXConstructors(cast<CXXConstructorDecl>(D));
4638     break;
4639   case Decl::CXXDestructor:
4640     getCXXABI().EmitCXXDestructors(cast<CXXDestructorDecl>(D));
4641     break;
4642 
4643   case Decl::StaticAssert:
4644     // Nothing to do.
4645     break;
4646 
4647   // Objective-C Decls
4648 
4649   // Forward declarations, no (immediate) code generation.
4650   case Decl::ObjCInterface:
4651   case Decl::ObjCCategory:
4652     break;
4653 
4654   case Decl::ObjCProtocol: {
4655     auto *Proto = cast<ObjCProtocolDecl>(D);
4656     if (Proto->isThisDeclarationADefinition())
4657       ObjCRuntime->GenerateProtocol(Proto);
4658     break;
4659   }
4660 
4661   case Decl::ObjCCategoryImpl:
4662     // Categories have properties but don't support synthesize so we
4663     // can ignore them here.
4664     ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D));
4665     break;
4666 
4667   case Decl::ObjCImplementation: {
4668     auto *OMD = cast<ObjCImplementationDecl>(D);
4669     EmitObjCPropertyImplementations(OMD);
4670     EmitObjCIvarInitializations(OMD);
4671     ObjCRuntime->GenerateClass(OMD);
4672     // Emit global variable debug information.
4673     if (CGDebugInfo *DI = getModuleDebugInfo())
4674       if (getCodeGenOpts().getDebugInfo() >= codegenoptions::LimitedDebugInfo)
4675         DI->getOrCreateInterfaceType(getContext().getObjCInterfaceType(
4676             OMD->getClassInterface()), OMD->getLocation());
4677     break;
4678   }
4679   case Decl::ObjCMethod: {
4680     auto *OMD = cast<ObjCMethodDecl>(D);
4681     // If this is not a prototype, emit the body.
4682     if (OMD->getBody())
4683       CodeGenFunction(*this).GenerateObjCMethod(OMD);
4684     break;
4685   }
4686   case Decl::ObjCCompatibleAlias:
4687     ObjCRuntime->RegisterAlias(cast<ObjCCompatibleAliasDecl>(D));
4688     break;
4689 
4690   case Decl::PragmaComment: {
4691     const auto *PCD = cast<PragmaCommentDecl>(D);
4692     switch (PCD->getCommentKind()) {
4693     case PCK_Unknown:
4694       llvm_unreachable("unexpected pragma comment kind");
4695     case PCK_Linker:
4696       AppendLinkerOptions(PCD->getArg());
4697       break;
4698     case PCK_Lib:
4699       if (getTarget().getTriple().isOSBinFormatELF() &&
4700           !getTarget().getTriple().isPS4())
4701         AddELFLibDirective(PCD->getArg());
4702       else
4703         AddDependentLib(PCD->getArg());
4704       break;
4705     case PCK_Compiler:
4706     case PCK_ExeStr:
4707     case PCK_User:
4708       break; // We ignore all of these.
4709     }
4710     break;
4711   }
4712 
4713   case Decl::PragmaDetectMismatch: {
4714     const auto *PDMD = cast<PragmaDetectMismatchDecl>(D);
4715     AddDetectMismatch(PDMD->getName(), PDMD->getValue());
4716     break;
4717   }
4718 
4719   case Decl::LinkageSpec:
4720     EmitLinkageSpec(cast<LinkageSpecDecl>(D));
4721     break;
4722 
4723   case Decl::FileScopeAsm: {
4724     // File-scope asm is ignored during device-side CUDA compilation.
4725     if (LangOpts.CUDA && LangOpts.CUDAIsDevice)
4726       break;
4727     // File-scope asm is ignored during device-side OpenMP compilation.
4728     if (LangOpts.OpenMPIsDevice)
4729       break;
4730     auto *AD = cast<FileScopeAsmDecl>(D);
4731     getModule().appendModuleInlineAsm(AD->getAsmString()->getString());
4732     break;
4733   }
4734 
4735   case Decl::Import: {
4736     auto *Import = cast<ImportDecl>(D);
4737 
4738     // If we've already imported this module, we're done.
4739     if (!ImportedModules.insert(Import->getImportedModule()))
4740       break;
4741 
4742     // Emit debug information for direct imports.
4743     if (!Import->getImportedOwningModule()) {
4744       if (CGDebugInfo *DI = getModuleDebugInfo())
4745         DI->EmitImportDecl(*Import);
4746     }
4747 
4748     // Find all of the submodules and emit the module initializers.
4749     llvm::SmallPtrSet<clang::Module *, 16> Visited;
4750     SmallVector<clang::Module *, 16> Stack;
4751     Visited.insert(Import->getImportedModule());
4752     Stack.push_back(Import->getImportedModule());
4753 
4754     while (!Stack.empty()) {
4755       clang::Module *Mod = Stack.pop_back_val();
4756       if (!EmittedModuleInitializers.insert(Mod).second)
4757         continue;
4758 
4759       for (auto *D : Context.getModuleInitializers(Mod))
4760         EmitTopLevelDecl(D);
4761 
4762       // Visit the submodules of this module.
4763       for (clang::Module::submodule_iterator Sub = Mod->submodule_begin(),
4764                                              SubEnd = Mod->submodule_end();
4765            Sub != SubEnd; ++Sub) {
4766         // Skip explicit children; they need to be explicitly imported to emit
4767         // the initializers.
4768         if ((*Sub)->IsExplicit)
4769           continue;
4770 
4771         if (Visited.insert(*Sub).second)
4772           Stack.push_back(*Sub);
4773       }
4774     }
4775     break;
4776   }
4777 
4778   case Decl::Export:
4779     EmitDeclContext(cast<ExportDecl>(D));
4780     break;
4781 
4782   case Decl::OMPThreadPrivate:
4783     EmitOMPThreadPrivateDecl(cast<OMPThreadPrivateDecl>(D));
4784     break;
4785 
4786   case Decl::OMPDeclareReduction:
4787     EmitOMPDeclareReduction(cast<OMPDeclareReductionDecl>(D));
4788     break;
4789 
4790   default:
4791     // Make sure we handled everything we should, every other kind is a
4792     // non-top-level decl.  FIXME: Would be nice to have an isTopLevelDeclKind
4793     // function. Need to recode Decl::Kind to do that easily.
4794     assert(isa<TypeDecl>(D) && "Unsupported decl kind");
4795     break;
4796   }
4797 }
4798 
4799 void CodeGenModule::AddDeferredUnusedCoverageMapping(Decl *D) {
4800   // Do we need to generate coverage mapping?
4801   if (!CodeGenOpts.CoverageMapping)
4802     return;
4803   switch (D->getKind()) {
4804   case Decl::CXXConversion:
4805   case Decl::CXXMethod:
4806   case Decl::Function:
4807   case Decl::ObjCMethod:
4808   case Decl::CXXConstructor:
4809   case Decl::CXXDestructor: {
4810     if (!cast<FunctionDecl>(D)->doesThisDeclarationHaveABody())
4811       return;
4812     SourceManager &SM = getContext().getSourceManager();
4813     if (LimitedCoverage && SM.getMainFileID() != SM.getFileID(D->getLocStart()))
4814       return;
4815     auto I = DeferredEmptyCoverageMappingDecls.find(D);
4816     if (I == DeferredEmptyCoverageMappingDecls.end())
4817       DeferredEmptyCoverageMappingDecls[D] = true;
4818     break;
4819   }
4820   default:
4821     break;
4822   };
4823 }
4824 
4825 void CodeGenModule::ClearUnusedCoverageMapping(const Decl *D) {
4826   // Do we need to generate coverage mapping?
4827   if (!CodeGenOpts.CoverageMapping)
4828     return;
4829   if (const auto *Fn = dyn_cast<FunctionDecl>(D)) {
4830     if (Fn->isTemplateInstantiation())
4831       ClearUnusedCoverageMapping(Fn->getTemplateInstantiationPattern());
4832   }
4833   auto I = DeferredEmptyCoverageMappingDecls.find(D);
4834   if (I == DeferredEmptyCoverageMappingDecls.end())
4835     DeferredEmptyCoverageMappingDecls[D] = false;
4836   else
4837     I->second = false;
4838 }
4839 
4840 void CodeGenModule::EmitDeferredUnusedCoverageMappings() {
4841   // We call takeVector() here to avoid use-after-free.
4842   // FIXME: DeferredEmptyCoverageMappingDecls is getting mutated because
4843   // we deserialize function bodies to emit coverage info for them, and that
4844   // deserializes more declarations. How should we handle that case?
4845   for (const auto &Entry : DeferredEmptyCoverageMappingDecls.takeVector()) {
4846     if (!Entry.second)
4847       continue;
4848     const Decl *D = Entry.first;
4849     switch (D->getKind()) {
4850     case Decl::CXXConversion:
4851     case Decl::CXXMethod:
4852     case Decl::Function:
4853     case Decl::ObjCMethod: {
4854       CodeGenPGO PGO(*this);
4855       GlobalDecl GD(cast<FunctionDecl>(D));
4856       PGO.emitEmptyCounterMapping(D, getMangledName(GD),
4857                                   getFunctionLinkage(GD));
4858       break;
4859     }
4860     case Decl::CXXConstructor: {
4861       CodeGenPGO PGO(*this);
4862       GlobalDecl GD(cast<CXXConstructorDecl>(D), Ctor_Base);
4863       PGO.emitEmptyCounterMapping(D, getMangledName(GD),
4864                                   getFunctionLinkage(GD));
4865       break;
4866     }
4867     case Decl::CXXDestructor: {
4868       CodeGenPGO PGO(*this);
4869       GlobalDecl GD(cast<CXXDestructorDecl>(D), Dtor_Base);
4870       PGO.emitEmptyCounterMapping(D, getMangledName(GD),
4871                                   getFunctionLinkage(GD));
4872       break;
4873     }
4874     default:
4875       break;
4876     };
4877   }
4878 }
4879 
4880 /// Turns the given pointer into a constant.
4881 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context,
4882                                           const void *Ptr) {
4883   uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr);
4884   llvm::Type *i64 = llvm::Type::getInt64Ty(Context);
4885   return llvm::ConstantInt::get(i64, PtrInt);
4886 }
4887 
4888 static void EmitGlobalDeclMetadata(CodeGenModule &CGM,
4889                                    llvm::NamedMDNode *&GlobalMetadata,
4890                                    GlobalDecl D,
4891                                    llvm::GlobalValue *Addr) {
4892   if (!GlobalMetadata)
4893     GlobalMetadata =
4894       CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs");
4895 
4896   // TODO: should we report variant information for ctors/dtors?
4897   llvm::Metadata *Ops[] = {llvm::ConstantAsMetadata::get(Addr),
4898                            llvm::ConstantAsMetadata::get(GetPointerConstant(
4899                                CGM.getLLVMContext(), D.getDecl()))};
4900   GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops));
4901 }
4902 
4903 /// For each function which is declared within an extern "C" region and marked
4904 /// as 'used', but has internal linkage, create an alias from the unmangled
4905 /// name to the mangled name if possible. People expect to be able to refer
4906 /// to such functions with an unmangled name from inline assembly within the
4907 /// same translation unit.
4908 void CodeGenModule::EmitStaticExternCAliases() {
4909   if (!getTargetCodeGenInfo().shouldEmitStaticExternCAliases())
4910     return;
4911   for (auto &I : StaticExternCValues) {
4912     IdentifierInfo *Name = I.first;
4913     llvm::GlobalValue *Val = I.second;
4914     if (Val && !getModule().getNamedValue(Name->getName()))
4915       addUsedGlobal(llvm::GlobalAlias::create(Name->getName(), Val));
4916   }
4917 }
4918 
4919 bool CodeGenModule::lookupRepresentativeDecl(StringRef MangledName,
4920                                              GlobalDecl &Result) const {
4921   auto Res = Manglings.find(MangledName);
4922   if (Res == Manglings.end())
4923     return false;
4924   Result = Res->getValue();
4925   return true;
4926 }
4927 
4928 /// Emits metadata nodes associating all the global values in the
4929 /// current module with the Decls they came from.  This is useful for
4930 /// projects using IR gen as a subroutine.
4931 ///
4932 /// Since there's currently no way to associate an MDNode directly
4933 /// with an llvm::GlobalValue, we create a global named metadata
4934 /// with the name 'clang.global.decl.ptrs'.
4935 void CodeGenModule::EmitDeclMetadata() {
4936   llvm::NamedMDNode *GlobalMetadata = nullptr;
4937 
4938   for (auto &I : MangledDeclNames) {
4939     llvm::GlobalValue *Addr = getModule().getNamedValue(I.second);
4940     // Some mangled names don't necessarily have an associated GlobalValue
4941     // in this module, e.g. if we mangled it for DebugInfo.
4942     if (Addr)
4943       EmitGlobalDeclMetadata(*this, GlobalMetadata, I.first, Addr);
4944   }
4945 }
4946 
4947 /// Emits metadata nodes for all the local variables in the current
4948 /// function.
4949 void CodeGenFunction::EmitDeclMetadata() {
4950   if (LocalDeclMap.empty()) return;
4951 
4952   llvm::LLVMContext &Context = getLLVMContext();
4953 
4954   // Find the unique metadata ID for this name.
4955   unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr");
4956 
4957   llvm::NamedMDNode *GlobalMetadata = nullptr;
4958 
4959   for (auto &I : LocalDeclMap) {
4960     const Decl *D = I.first;
4961     llvm::Value *Addr = I.second.getPointer();
4962     if (auto *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) {
4963       llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D);
4964       Alloca->setMetadata(
4965           DeclPtrKind, llvm::MDNode::get(
4966                            Context, llvm::ValueAsMetadata::getConstant(DAddr)));
4967     } else if (auto *GV = dyn_cast<llvm::GlobalValue>(Addr)) {
4968       GlobalDecl GD = GlobalDecl(cast<VarDecl>(D));
4969       EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV);
4970     }
4971   }
4972 }
4973 
4974 void CodeGenModule::EmitVersionIdentMetadata() {
4975   llvm::NamedMDNode *IdentMetadata =
4976     TheModule.getOrInsertNamedMetadata("llvm.ident");
4977   std::string Version = getClangFullVersion();
4978   llvm::LLVMContext &Ctx = TheModule.getContext();
4979 
4980   llvm::Metadata *IdentNode[] = {llvm::MDString::get(Ctx, Version)};
4981   IdentMetadata->addOperand(llvm::MDNode::get(Ctx, IdentNode));
4982 }
4983 
4984 void CodeGenModule::EmitTargetMetadata() {
4985   // Warning, new MangledDeclNames may be appended within this loop.
4986   // We rely on MapVector insertions adding new elements to the end
4987   // of the container.
4988   // FIXME: Move this loop into the one target that needs it, and only
4989   // loop over those declarations for which we couldn't emit the target
4990   // metadata when we emitted the declaration.
4991   for (unsigned I = 0; I != MangledDeclNames.size(); ++I) {
4992     auto Val = *(MangledDeclNames.begin() + I);
4993     const Decl *D = Val.first.getDecl()->getMostRecentDecl();
4994     llvm::GlobalValue *GV = GetGlobalValue(Val.second);
4995     getTargetCodeGenInfo().emitTargetMD(D, GV, *this);
4996   }
4997 }
4998 
4999 void CodeGenModule::EmitCoverageFile() {
5000   if (getCodeGenOpts().CoverageDataFile.empty() &&
5001       getCodeGenOpts().CoverageNotesFile.empty())
5002     return;
5003 
5004   llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu");
5005   if (!CUNode)
5006     return;
5007 
5008   llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov");
5009   llvm::LLVMContext &Ctx = TheModule.getContext();
5010   auto *CoverageDataFile =
5011       llvm::MDString::get(Ctx, getCodeGenOpts().CoverageDataFile);
5012   auto *CoverageNotesFile =
5013       llvm::MDString::get(Ctx, getCodeGenOpts().CoverageNotesFile);
5014   for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) {
5015     llvm::MDNode *CU = CUNode->getOperand(i);
5016     llvm::Metadata *Elts[] = {CoverageNotesFile, CoverageDataFile, CU};
5017     GCov->addOperand(llvm::MDNode::get(Ctx, Elts));
5018   }
5019 }
5020 
5021 llvm::Constant *CodeGenModule::EmitUuidofInitializer(StringRef Uuid) {
5022   // Sema has checked that all uuid strings are of the form
5023   // "12345678-1234-1234-1234-1234567890ab".
5024   assert(Uuid.size() == 36);
5025   for (unsigned i = 0; i < 36; ++i) {
5026     if (i == 8 || i == 13 || i == 18 || i == 23) assert(Uuid[i] == '-');
5027     else                                         assert(isHexDigit(Uuid[i]));
5028   }
5029 
5030   // The starts of all bytes of Field3 in Uuid. Field 3 is "1234-1234567890ab".
5031   const unsigned Field3ValueOffsets[8] = { 19, 21, 24, 26, 28, 30, 32, 34 };
5032 
5033   llvm::Constant *Field3[8];
5034   for (unsigned Idx = 0; Idx < 8; ++Idx)
5035     Field3[Idx] = llvm::ConstantInt::get(
5036         Int8Ty, Uuid.substr(Field3ValueOffsets[Idx], 2), 16);
5037 
5038   llvm::Constant *Fields[4] = {
5039     llvm::ConstantInt::get(Int32Ty, Uuid.substr(0,  8), 16),
5040     llvm::ConstantInt::get(Int16Ty, Uuid.substr(9,  4), 16),
5041     llvm::ConstantInt::get(Int16Ty, Uuid.substr(14, 4), 16),
5042     llvm::ConstantArray::get(llvm::ArrayType::get(Int8Ty, 8), Field3)
5043   };
5044 
5045   return llvm::ConstantStruct::getAnon(Fields);
5046 }
5047 
5048 llvm::Constant *CodeGenModule::GetAddrOfRTTIDescriptor(QualType Ty,
5049                                                        bool ForEH) {
5050   // Return a bogus pointer if RTTI is disabled, unless it's for EH.
5051   // FIXME: should we even be calling this method if RTTI is disabled
5052   // and it's not for EH?
5053   if ((!ForEH && !getLangOpts().RTTI) || getLangOpts().CUDAIsDevice)
5054     return llvm::Constant::getNullValue(Int8PtrTy);
5055 
5056   if (ForEH && Ty->isObjCObjectPointerType() &&
5057       LangOpts.ObjCRuntime.isGNUFamily())
5058     return ObjCRuntime->GetEHType(Ty);
5059 
5060   return getCXXABI().getAddrOfRTTIDescriptor(Ty);
5061 }
5062 
5063 void CodeGenModule::EmitOMPThreadPrivateDecl(const OMPThreadPrivateDecl *D) {
5064   // Do not emit threadprivates in simd-only mode.
5065   if (LangOpts.OpenMP && LangOpts.OpenMPSimd)
5066     return;
5067   for (auto RefExpr : D->varlists()) {
5068     auto *VD = cast<VarDecl>(cast<DeclRefExpr>(RefExpr)->getDecl());
5069     bool PerformInit =
5070         VD->getAnyInitializer() &&
5071         !VD->getAnyInitializer()->isConstantInitializer(getContext(),
5072                                                         /*ForRef=*/false);
5073 
5074     Address Addr(GetAddrOfGlobalVar(VD), getContext().getDeclAlign(VD));
5075     if (auto InitFunction = getOpenMPRuntime().emitThreadPrivateVarDefinition(
5076             VD, Addr, RefExpr->getLocStart(), PerformInit))
5077       CXXGlobalInits.push_back(InitFunction);
5078   }
5079 }
5080 
5081 llvm::Metadata *
5082 CodeGenModule::CreateMetadataIdentifierImpl(QualType T, MetadataTypeMap &Map,
5083                                             StringRef Suffix) {
5084   llvm::Metadata *&InternalId = Map[T.getCanonicalType()];
5085   if (InternalId)
5086     return InternalId;
5087 
5088   if (isExternallyVisible(T->getLinkage())) {
5089     std::string OutName;
5090     llvm::raw_string_ostream Out(OutName);
5091     getCXXABI().getMangleContext().mangleTypeName(T, Out);
5092     Out << Suffix;
5093 
5094     InternalId = llvm::MDString::get(getLLVMContext(), Out.str());
5095   } else {
5096     InternalId = llvm::MDNode::getDistinct(getLLVMContext(),
5097                                            llvm::ArrayRef<llvm::Metadata *>());
5098   }
5099 
5100   return InternalId;
5101 }
5102 
5103 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierForType(QualType T) {
5104   return CreateMetadataIdentifierImpl(T, MetadataIdMap, "");
5105 }
5106 
5107 llvm::Metadata *
5108 CodeGenModule::CreateMetadataIdentifierForVirtualMemPtrType(QualType T) {
5109   return CreateMetadataIdentifierImpl(T, VirtualMetadataIdMap, ".virtual");
5110 }
5111 
5112 // Generalize pointer types to a void pointer with the qualifiers of the
5113 // originally pointed-to type, e.g. 'const char *' and 'char * const *'
5114 // generalize to 'const void *' while 'char *' and 'const char **' generalize to
5115 // 'void *'.
5116 static QualType GeneralizeType(ASTContext &Ctx, QualType Ty) {
5117   if (!Ty->isPointerType())
5118     return Ty;
5119 
5120   return Ctx.getPointerType(
5121       QualType(Ctx.VoidTy).withCVRQualifiers(
5122           Ty->getPointeeType().getCVRQualifiers()));
5123 }
5124 
5125 // Apply type generalization to a FunctionType's return and argument types
5126 static QualType GeneralizeFunctionType(ASTContext &Ctx, QualType Ty) {
5127   if (auto *FnType = Ty->getAs<FunctionProtoType>()) {
5128     SmallVector<QualType, 8> GeneralizedParams;
5129     for (auto &Param : FnType->param_types())
5130       GeneralizedParams.push_back(GeneralizeType(Ctx, Param));
5131 
5132     return Ctx.getFunctionType(
5133         GeneralizeType(Ctx, FnType->getReturnType()),
5134         GeneralizedParams, FnType->getExtProtoInfo());
5135   }
5136 
5137   if (auto *FnType = Ty->getAs<FunctionNoProtoType>())
5138     return Ctx.getFunctionNoProtoType(
5139         GeneralizeType(Ctx, FnType->getReturnType()));
5140 
5141   llvm_unreachable("Encountered unknown FunctionType");
5142 }
5143 
5144 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierGeneralized(QualType T) {
5145   return CreateMetadataIdentifierImpl(GeneralizeFunctionType(getContext(), T),
5146                                       GeneralizedMetadataIdMap, ".generalized");
5147 }
5148 
5149 /// Returns whether this module needs the "all-vtables" type identifier.
5150 bool CodeGenModule::NeedAllVtablesTypeId() const {
5151   // Returns true if at least one of vtable-based CFI checkers is enabled and
5152   // is not in the trapping mode.
5153   return ((LangOpts.Sanitize.has(SanitizerKind::CFIVCall) &&
5154            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIVCall)) ||
5155           (LangOpts.Sanitize.has(SanitizerKind::CFINVCall) &&
5156            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFINVCall)) ||
5157           (LangOpts.Sanitize.has(SanitizerKind::CFIDerivedCast) &&
5158            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIDerivedCast)) ||
5159           (LangOpts.Sanitize.has(SanitizerKind::CFIUnrelatedCast) &&
5160            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIUnrelatedCast)));
5161 }
5162 
5163 void CodeGenModule::AddVTableTypeMetadata(llvm::GlobalVariable *VTable,
5164                                           CharUnits Offset,
5165                                           const CXXRecordDecl *RD) {
5166   llvm::Metadata *MD =
5167       CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0));
5168   VTable->addTypeMetadata(Offset.getQuantity(), MD);
5169 
5170   if (CodeGenOpts.SanitizeCfiCrossDso)
5171     if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD))
5172       VTable->addTypeMetadata(Offset.getQuantity(),
5173                               llvm::ConstantAsMetadata::get(CrossDsoTypeId));
5174 
5175   if (NeedAllVtablesTypeId()) {
5176     llvm::Metadata *MD = llvm::MDString::get(getLLVMContext(), "all-vtables");
5177     VTable->addTypeMetadata(Offset.getQuantity(), MD);
5178   }
5179 }
5180 
5181 TargetAttr::ParsedTargetAttr CodeGenModule::filterFunctionTargetAttrs(const TargetAttr *TD) {
5182   assert(TD != nullptr);
5183   TargetAttr::ParsedTargetAttr ParsedAttr = TD->parse();
5184 
5185   ParsedAttr.Features.erase(
5186       llvm::remove_if(ParsedAttr.Features,
5187                       [&](const std::string &Feat) {
5188                         return !Target.isValidFeatureName(
5189                             StringRef{Feat}.substr(1));
5190                       }),
5191       ParsedAttr.Features.end());
5192   return ParsedAttr;
5193 }
5194 
5195 
5196 // Fills in the supplied string map with the set of target features for the
5197 // passed in function.
5198 void CodeGenModule::getFunctionFeatureMap(llvm::StringMap<bool> &FeatureMap,
5199                                           const FunctionDecl *FD) {
5200   StringRef TargetCPU = Target.getTargetOpts().CPU;
5201   if (const auto *TD = FD->getAttr<TargetAttr>()) {
5202     TargetAttr::ParsedTargetAttr ParsedAttr = filterFunctionTargetAttrs(TD);
5203 
5204     // Make a copy of the features as passed on the command line into the
5205     // beginning of the additional features from the function to override.
5206     ParsedAttr.Features.insert(ParsedAttr.Features.begin(),
5207                             Target.getTargetOpts().FeaturesAsWritten.begin(),
5208                             Target.getTargetOpts().FeaturesAsWritten.end());
5209 
5210     if (ParsedAttr.Architecture != "" &&
5211         Target.isValidCPUName(ParsedAttr.Architecture))
5212       TargetCPU = ParsedAttr.Architecture;
5213 
5214     // Now populate the feature map, first with the TargetCPU which is either
5215     // the default or a new one from the target attribute string. Then we'll use
5216     // the passed in features (FeaturesAsWritten) along with the new ones from
5217     // the attribute.
5218     Target.initFeatureMap(FeatureMap, getDiags(), TargetCPU,
5219                           ParsedAttr.Features);
5220   } else if (const auto *SD = FD->getAttr<CPUSpecificAttr>()) {
5221     llvm::SmallVector<StringRef, 32> FeaturesTmp;
5222     Target.getCPUSpecificCPUDispatchFeatures(SD->getCurCPUName()->getName(),
5223                                              FeaturesTmp);
5224     std::vector<std::string> Features(FeaturesTmp.begin(), FeaturesTmp.end());
5225     Target.initFeatureMap(FeatureMap, getDiags(), TargetCPU, Features);
5226   } else {
5227     Target.initFeatureMap(FeatureMap, getDiags(), TargetCPU,
5228                           Target.getTargetOpts().Features);
5229   }
5230 }
5231 
5232 llvm::SanitizerStatReport &CodeGenModule::getSanStats() {
5233   if (!SanStats)
5234     SanStats = llvm::make_unique<llvm::SanitizerStatReport>(&getModule());
5235 
5236   return *SanStats;
5237 }
5238 llvm::Value *
5239 CodeGenModule::createOpenCLIntToSamplerConversion(const Expr *E,
5240                                                   CodeGenFunction &CGF) {
5241   llvm::Constant *C = ConstantEmitter(CGF).emitAbstract(E, E->getType());
5242   auto SamplerT = getOpenCLRuntime().getSamplerType(E->getType().getTypePtr());
5243   auto FTy = llvm::FunctionType::get(SamplerT, {C->getType()}, false);
5244   return CGF.Builder.CreateCall(CreateRuntimeFunction(FTy,
5245                                 "__translate_sampler_initializer"),
5246                                 {C});
5247 }
5248