1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This coordinates the per-module state used while generating code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenModule.h" 15 #include "CGBlocks.h" 16 #include "CGCUDARuntime.h" 17 #include "CGCXXABI.h" 18 #include "CGCall.h" 19 #include "CGDebugInfo.h" 20 #include "CGObjCRuntime.h" 21 #include "CGOpenCLRuntime.h" 22 #include "CGOpenMPRuntime.h" 23 #include "CGOpenMPRuntimeNVPTX.h" 24 #include "CodeGenFunction.h" 25 #include "CodeGenPGO.h" 26 #include "ConstantEmitter.h" 27 #include "CoverageMappingGen.h" 28 #include "TargetInfo.h" 29 #include "clang/AST/ASTContext.h" 30 #include "clang/AST/CharUnits.h" 31 #include "clang/AST/DeclCXX.h" 32 #include "clang/AST/DeclObjC.h" 33 #include "clang/AST/DeclTemplate.h" 34 #include "clang/AST/Mangle.h" 35 #include "clang/AST/RecordLayout.h" 36 #include "clang/AST/RecursiveASTVisitor.h" 37 #include "clang/Basic/Builtins.h" 38 #include "clang/Basic/CharInfo.h" 39 #include "clang/Basic/Diagnostic.h" 40 #include "clang/Basic/Module.h" 41 #include "clang/Basic/SourceManager.h" 42 #include "clang/Basic/TargetInfo.h" 43 #include "clang/Basic/Version.h" 44 #include "clang/CodeGen/ConstantInitBuilder.h" 45 #include "clang/Frontend/CodeGenOptions.h" 46 #include "clang/Sema/SemaDiagnostic.h" 47 #include "llvm/ADT/Triple.h" 48 #include "llvm/Analysis/TargetLibraryInfo.h" 49 #include "llvm/IR/CallSite.h" 50 #include "llvm/IR/CallingConv.h" 51 #include "llvm/IR/DataLayout.h" 52 #include "llvm/IR/Intrinsics.h" 53 #include "llvm/IR/LLVMContext.h" 54 #include "llvm/IR/Module.h" 55 #include "llvm/ProfileData/InstrProfReader.h" 56 #include "llvm/Support/ConvertUTF.h" 57 #include "llvm/Support/ErrorHandling.h" 58 #include "llvm/Support/MD5.h" 59 60 using namespace clang; 61 using namespace CodeGen; 62 63 static llvm::cl::opt<bool> LimitedCoverage( 64 "limited-coverage-experimental", llvm::cl::ZeroOrMore, llvm::cl::Hidden, 65 llvm::cl::desc("Emit limited coverage mapping information (experimental)"), 66 llvm::cl::init(false)); 67 68 static const char AnnotationSection[] = "llvm.metadata"; 69 70 static CGCXXABI *createCXXABI(CodeGenModule &CGM) { 71 switch (CGM.getTarget().getCXXABI().getKind()) { 72 case TargetCXXABI::GenericAArch64: 73 case TargetCXXABI::GenericARM: 74 case TargetCXXABI::iOS: 75 case TargetCXXABI::iOS64: 76 case TargetCXXABI::WatchOS: 77 case TargetCXXABI::GenericMIPS: 78 case TargetCXXABI::GenericItanium: 79 case TargetCXXABI::WebAssembly: 80 return CreateItaniumCXXABI(CGM); 81 case TargetCXXABI::Microsoft: 82 return CreateMicrosoftCXXABI(CGM); 83 } 84 85 llvm_unreachable("invalid C++ ABI kind"); 86 } 87 88 CodeGenModule::CodeGenModule(ASTContext &C, const HeaderSearchOptions &HSO, 89 const PreprocessorOptions &PPO, 90 const CodeGenOptions &CGO, llvm::Module &M, 91 DiagnosticsEngine &diags, 92 CoverageSourceInfo *CoverageInfo) 93 : Context(C), LangOpts(C.getLangOpts()), HeaderSearchOpts(HSO), 94 PreprocessorOpts(PPO), CodeGenOpts(CGO), TheModule(M), Diags(diags), 95 Target(C.getTargetInfo()), ABI(createCXXABI(*this)), 96 VMContext(M.getContext()), Types(*this), VTables(*this), 97 SanitizerMD(new SanitizerMetadata(*this)) { 98 99 // Initialize the type cache. 100 llvm::LLVMContext &LLVMContext = M.getContext(); 101 VoidTy = llvm::Type::getVoidTy(LLVMContext); 102 Int8Ty = llvm::Type::getInt8Ty(LLVMContext); 103 Int16Ty = llvm::Type::getInt16Ty(LLVMContext); 104 Int32Ty = llvm::Type::getInt32Ty(LLVMContext); 105 Int64Ty = llvm::Type::getInt64Ty(LLVMContext); 106 HalfTy = llvm::Type::getHalfTy(LLVMContext); 107 FloatTy = llvm::Type::getFloatTy(LLVMContext); 108 DoubleTy = llvm::Type::getDoubleTy(LLVMContext); 109 PointerWidthInBits = C.getTargetInfo().getPointerWidth(0); 110 PointerAlignInBytes = 111 C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(0)).getQuantity(); 112 SizeSizeInBytes = 113 C.toCharUnitsFromBits(C.getTargetInfo().getMaxPointerWidth()).getQuantity(); 114 IntAlignInBytes = 115 C.toCharUnitsFromBits(C.getTargetInfo().getIntAlign()).getQuantity(); 116 IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth()); 117 IntPtrTy = llvm::IntegerType::get(LLVMContext, 118 C.getTargetInfo().getMaxPointerWidth()); 119 Int8PtrTy = Int8Ty->getPointerTo(0); 120 Int8PtrPtrTy = Int8PtrTy->getPointerTo(0); 121 AllocaInt8PtrTy = Int8Ty->getPointerTo( 122 M.getDataLayout().getAllocaAddrSpace()); 123 ASTAllocaAddressSpace = getTargetCodeGenInfo().getASTAllocaAddressSpace(); 124 125 RuntimeCC = getTargetCodeGenInfo().getABIInfo().getRuntimeCC(); 126 127 if (LangOpts.ObjC1) 128 createObjCRuntime(); 129 if (LangOpts.OpenCL) 130 createOpenCLRuntime(); 131 if (LangOpts.OpenMP) 132 createOpenMPRuntime(); 133 if (LangOpts.CUDA) 134 createCUDARuntime(); 135 136 // Enable TBAA unless it's suppressed. ThreadSanitizer needs TBAA even at O0. 137 if (LangOpts.Sanitize.has(SanitizerKind::Thread) || 138 (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0)) 139 TBAA.reset(new CodeGenTBAA(Context, TheModule, CodeGenOpts, getLangOpts(), 140 getCXXABI().getMangleContext())); 141 142 // If debug info or coverage generation is enabled, create the CGDebugInfo 143 // object. 144 if (CodeGenOpts.getDebugInfo() != codegenoptions::NoDebugInfo || 145 CodeGenOpts.EmitGcovArcs || CodeGenOpts.EmitGcovNotes) 146 DebugInfo.reset(new CGDebugInfo(*this)); 147 148 Block.GlobalUniqueCount = 0; 149 150 if (C.getLangOpts().ObjC1) 151 ObjCData.reset(new ObjCEntrypoints()); 152 153 if (CodeGenOpts.hasProfileClangUse()) { 154 auto ReaderOrErr = llvm::IndexedInstrProfReader::create( 155 CodeGenOpts.ProfileInstrumentUsePath); 156 if (auto E = ReaderOrErr.takeError()) { 157 unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error, 158 "Could not read profile %0: %1"); 159 llvm::handleAllErrors(std::move(E), [&](const llvm::ErrorInfoBase &EI) { 160 getDiags().Report(DiagID) << CodeGenOpts.ProfileInstrumentUsePath 161 << EI.message(); 162 }); 163 } else 164 PGOReader = std::move(ReaderOrErr.get()); 165 } 166 167 // If coverage mapping generation is enabled, create the 168 // CoverageMappingModuleGen object. 169 if (CodeGenOpts.CoverageMapping) 170 CoverageMapping.reset(new CoverageMappingModuleGen(*this, *CoverageInfo)); 171 } 172 173 CodeGenModule::~CodeGenModule() {} 174 175 void CodeGenModule::createObjCRuntime() { 176 // This is just isGNUFamily(), but we want to force implementors of 177 // new ABIs to decide how best to do this. 178 switch (LangOpts.ObjCRuntime.getKind()) { 179 case ObjCRuntime::GNUstep: 180 case ObjCRuntime::GCC: 181 case ObjCRuntime::ObjFW: 182 ObjCRuntime.reset(CreateGNUObjCRuntime(*this)); 183 return; 184 185 case ObjCRuntime::FragileMacOSX: 186 case ObjCRuntime::MacOSX: 187 case ObjCRuntime::iOS: 188 case ObjCRuntime::WatchOS: 189 ObjCRuntime.reset(CreateMacObjCRuntime(*this)); 190 return; 191 } 192 llvm_unreachable("bad runtime kind"); 193 } 194 195 void CodeGenModule::createOpenCLRuntime() { 196 OpenCLRuntime.reset(new CGOpenCLRuntime(*this)); 197 } 198 199 void CodeGenModule::createOpenMPRuntime() { 200 // Select a specialized code generation class based on the target, if any. 201 // If it does not exist use the default implementation. 202 switch (getTriple().getArch()) { 203 case llvm::Triple::nvptx: 204 case llvm::Triple::nvptx64: 205 assert(getLangOpts().OpenMPIsDevice && 206 "OpenMP NVPTX is only prepared to deal with device code."); 207 OpenMPRuntime.reset(new CGOpenMPRuntimeNVPTX(*this)); 208 break; 209 default: 210 if (LangOpts.OpenMPSimd) 211 OpenMPRuntime.reset(new CGOpenMPSIMDRuntime(*this)); 212 else 213 OpenMPRuntime.reset(new CGOpenMPRuntime(*this)); 214 break; 215 } 216 } 217 218 void CodeGenModule::createCUDARuntime() { 219 CUDARuntime.reset(CreateNVCUDARuntime(*this)); 220 } 221 222 void CodeGenModule::addReplacement(StringRef Name, llvm::Constant *C) { 223 Replacements[Name] = C; 224 } 225 226 void CodeGenModule::applyReplacements() { 227 for (auto &I : Replacements) { 228 StringRef MangledName = I.first(); 229 llvm::Constant *Replacement = I.second; 230 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 231 if (!Entry) 232 continue; 233 auto *OldF = cast<llvm::Function>(Entry); 234 auto *NewF = dyn_cast<llvm::Function>(Replacement); 235 if (!NewF) { 236 if (auto *Alias = dyn_cast<llvm::GlobalAlias>(Replacement)) { 237 NewF = dyn_cast<llvm::Function>(Alias->getAliasee()); 238 } else { 239 auto *CE = cast<llvm::ConstantExpr>(Replacement); 240 assert(CE->getOpcode() == llvm::Instruction::BitCast || 241 CE->getOpcode() == llvm::Instruction::GetElementPtr); 242 NewF = dyn_cast<llvm::Function>(CE->getOperand(0)); 243 } 244 } 245 246 // Replace old with new, but keep the old order. 247 OldF->replaceAllUsesWith(Replacement); 248 if (NewF) { 249 NewF->removeFromParent(); 250 OldF->getParent()->getFunctionList().insertAfter(OldF->getIterator(), 251 NewF); 252 } 253 OldF->eraseFromParent(); 254 } 255 } 256 257 void CodeGenModule::addGlobalValReplacement(llvm::GlobalValue *GV, llvm::Constant *C) { 258 GlobalValReplacements.push_back(std::make_pair(GV, C)); 259 } 260 261 void CodeGenModule::applyGlobalValReplacements() { 262 for (auto &I : GlobalValReplacements) { 263 llvm::GlobalValue *GV = I.first; 264 llvm::Constant *C = I.second; 265 266 GV->replaceAllUsesWith(C); 267 GV->eraseFromParent(); 268 } 269 } 270 271 // This is only used in aliases that we created and we know they have a 272 // linear structure. 273 static const llvm::GlobalObject *getAliasedGlobal( 274 const llvm::GlobalIndirectSymbol &GIS) { 275 llvm::SmallPtrSet<const llvm::GlobalIndirectSymbol*, 4> Visited; 276 const llvm::Constant *C = &GIS; 277 for (;;) { 278 C = C->stripPointerCasts(); 279 if (auto *GO = dyn_cast<llvm::GlobalObject>(C)) 280 return GO; 281 // stripPointerCasts will not walk over weak aliases. 282 auto *GIS2 = dyn_cast<llvm::GlobalIndirectSymbol>(C); 283 if (!GIS2) 284 return nullptr; 285 if (!Visited.insert(GIS2).second) 286 return nullptr; 287 C = GIS2->getIndirectSymbol(); 288 } 289 } 290 291 void CodeGenModule::checkAliases() { 292 // Check if the constructed aliases are well formed. It is really unfortunate 293 // that we have to do this in CodeGen, but we only construct mangled names 294 // and aliases during codegen. 295 bool Error = false; 296 DiagnosticsEngine &Diags = getDiags(); 297 for (const GlobalDecl &GD : Aliases) { 298 const auto *D = cast<ValueDecl>(GD.getDecl()); 299 SourceLocation Location; 300 bool IsIFunc = D->hasAttr<IFuncAttr>(); 301 if (const Attr *A = D->getDefiningAttr()) 302 Location = A->getLocation(); 303 else 304 llvm_unreachable("Not an alias or ifunc?"); 305 StringRef MangledName = getMangledName(GD); 306 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 307 auto *Alias = cast<llvm::GlobalIndirectSymbol>(Entry); 308 const llvm::GlobalValue *GV = getAliasedGlobal(*Alias); 309 if (!GV) { 310 Error = true; 311 Diags.Report(Location, diag::err_cyclic_alias) << IsIFunc; 312 } else if (GV->isDeclaration()) { 313 Error = true; 314 Diags.Report(Location, diag::err_alias_to_undefined) 315 << IsIFunc << IsIFunc; 316 } else if (IsIFunc) { 317 // Check resolver function type. 318 llvm::FunctionType *FTy = dyn_cast<llvm::FunctionType>( 319 GV->getType()->getPointerElementType()); 320 assert(FTy); 321 if (!FTy->getReturnType()->isPointerTy()) 322 Diags.Report(Location, diag::err_ifunc_resolver_return); 323 if (FTy->getNumParams()) 324 Diags.Report(Location, diag::err_ifunc_resolver_params); 325 } 326 327 llvm::Constant *Aliasee = Alias->getIndirectSymbol(); 328 llvm::GlobalValue *AliaseeGV; 329 if (auto CE = dyn_cast<llvm::ConstantExpr>(Aliasee)) 330 AliaseeGV = cast<llvm::GlobalValue>(CE->getOperand(0)); 331 else 332 AliaseeGV = cast<llvm::GlobalValue>(Aliasee); 333 334 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) { 335 StringRef AliasSection = SA->getName(); 336 if (AliasSection != AliaseeGV->getSection()) 337 Diags.Report(SA->getLocation(), diag::warn_alias_with_section) 338 << AliasSection << IsIFunc << IsIFunc; 339 } 340 341 // We have to handle alias to weak aliases in here. LLVM itself disallows 342 // this since the object semantics would not match the IL one. For 343 // compatibility with gcc we implement it by just pointing the alias 344 // to its aliasee's aliasee. We also warn, since the user is probably 345 // expecting the link to be weak. 346 if (auto GA = dyn_cast<llvm::GlobalIndirectSymbol>(AliaseeGV)) { 347 if (GA->isInterposable()) { 348 Diags.Report(Location, diag::warn_alias_to_weak_alias) 349 << GV->getName() << GA->getName() << IsIFunc; 350 Aliasee = llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast( 351 GA->getIndirectSymbol(), Alias->getType()); 352 Alias->setIndirectSymbol(Aliasee); 353 } 354 } 355 } 356 if (!Error) 357 return; 358 359 for (const GlobalDecl &GD : Aliases) { 360 StringRef MangledName = getMangledName(GD); 361 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 362 auto *Alias = dyn_cast<llvm::GlobalIndirectSymbol>(Entry); 363 Alias->replaceAllUsesWith(llvm::UndefValue::get(Alias->getType())); 364 Alias->eraseFromParent(); 365 } 366 } 367 368 void CodeGenModule::clear() { 369 DeferredDeclsToEmit.clear(); 370 if (OpenMPRuntime) 371 OpenMPRuntime->clear(); 372 } 373 374 void InstrProfStats::reportDiagnostics(DiagnosticsEngine &Diags, 375 StringRef MainFile) { 376 if (!hasDiagnostics()) 377 return; 378 if (VisitedInMainFile > 0 && VisitedInMainFile == MissingInMainFile) { 379 if (MainFile.empty()) 380 MainFile = "<stdin>"; 381 Diags.Report(diag::warn_profile_data_unprofiled) << MainFile; 382 } else { 383 if (Mismatched > 0) 384 Diags.Report(diag::warn_profile_data_out_of_date) << Visited << Mismatched; 385 386 if (Missing > 0) 387 Diags.Report(diag::warn_profile_data_missing) << Visited << Missing; 388 } 389 } 390 391 void CodeGenModule::Release() { 392 EmitDeferred(); 393 EmitVTablesOpportunistically(); 394 applyGlobalValReplacements(); 395 applyReplacements(); 396 checkAliases(); 397 emitMultiVersionFunctions(); 398 EmitCXXGlobalInitFunc(); 399 EmitCXXGlobalDtorFunc(); 400 registerGlobalDtorsWithAtExit(); 401 EmitCXXThreadLocalInitFunc(); 402 if (ObjCRuntime) 403 if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction()) 404 AddGlobalCtor(ObjCInitFunction); 405 if (Context.getLangOpts().CUDA && !Context.getLangOpts().CUDAIsDevice && 406 CUDARuntime) { 407 if (llvm::Function *CudaCtorFunction = 408 CUDARuntime->makeModuleCtorFunction()) 409 AddGlobalCtor(CudaCtorFunction); 410 } 411 if (OpenMPRuntime) { 412 if (llvm::Function *OpenMPRegistrationFunction = 413 OpenMPRuntime->emitRegistrationFunction()) { 414 auto ComdatKey = OpenMPRegistrationFunction->hasComdat() ? 415 OpenMPRegistrationFunction : nullptr; 416 AddGlobalCtor(OpenMPRegistrationFunction, 0, ComdatKey); 417 } 418 OpenMPRuntime->clear(); 419 } 420 if (PGOReader) { 421 getModule().setProfileSummary(PGOReader->getSummary().getMD(VMContext)); 422 if (PGOStats.hasDiagnostics()) 423 PGOStats.reportDiagnostics(getDiags(), getCodeGenOpts().MainFileName); 424 } 425 EmitCtorList(GlobalCtors, "llvm.global_ctors"); 426 EmitCtorList(GlobalDtors, "llvm.global_dtors"); 427 EmitGlobalAnnotations(); 428 EmitStaticExternCAliases(); 429 EmitDeferredUnusedCoverageMappings(); 430 if (CoverageMapping) 431 CoverageMapping->emit(); 432 if (CodeGenOpts.SanitizeCfiCrossDso) { 433 CodeGenFunction(*this).EmitCfiCheckFail(); 434 CodeGenFunction(*this).EmitCfiCheckStub(); 435 } 436 emitAtAvailableLinkGuard(); 437 emitLLVMUsed(); 438 if (SanStats) 439 SanStats->finish(); 440 441 if (CodeGenOpts.Autolink && 442 (Context.getLangOpts().Modules || !LinkerOptionsMetadata.empty())) { 443 EmitModuleLinkOptions(); 444 } 445 446 // Record mregparm value now so it is visible through rest of codegen. 447 if (Context.getTargetInfo().getTriple().getArch() == llvm::Triple::x86) 448 getModule().addModuleFlag(llvm::Module::Error, "NumRegisterParameters", 449 CodeGenOpts.NumRegisterParameters); 450 451 if (CodeGenOpts.DwarfVersion) { 452 // We actually want the latest version when there are conflicts. 453 // We can change from Warning to Latest if such mode is supported. 454 getModule().addModuleFlag(llvm::Module::Warning, "Dwarf Version", 455 CodeGenOpts.DwarfVersion); 456 } 457 if (CodeGenOpts.EmitCodeView) { 458 // Indicate that we want CodeView in the metadata. 459 getModule().addModuleFlag(llvm::Module::Warning, "CodeView", 1); 460 } 461 if (CodeGenOpts.ControlFlowGuard) { 462 // We want function ID tables for Control Flow Guard. 463 getModule().addModuleFlag(llvm::Module::Warning, "cfguard", 1); 464 } 465 if (CodeGenOpts.OptimizationLevel > 0 && CodeGenOpts.StrictVTablePointers) { 466 // We don't support LTO with 2 with different StrictVTablePointers 467 // FIXME: we could support it by stripping all the information introduced 468 // by StrictVTablePointers. 469 470 getModule().addModuleFlag(llvm::Module::Error, "StrictVTablePointers",1); 471 472 llvm::Metadata *Ops[2] = { 473 llvm::MDString::get(VMContext, "StrictVTablePointers"), 474 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 475 llvm::Type::getInt32Ty(VMContext), 1))}; 476 477 getModule().addModuleFlag(llvm::Module::Require, 478 "StrictVTablePointersRequirement", 479 llvm::MDNode::get(VMContext, Ops)); 480 } 481 if (DebugInfo) 482 // We support a single version in the linked module. The LLVM 483 // parser will drop debug info with a different version number 484 // (and warn about it, too). 485 getModule().addModuleFlag(llvm::Module::Warning, "Debug Info Version", 486 llvm::DEBUG_METADATA_VERSION); 487 488 // We need to record the widths of enums and wchar_t, so that we can generate 489 // the correct build attributes in the ARM backend. wchar_size is also used by 490 // TargetLibraryInfo. 491 uint64_t WCharWidth = 492 Context.getTypeSizeInChars(Context.getWideCharType()).getQuantity(); 493 getModule().addModuleFlag(llvm::Module::Error, "wchar_size", WCharWidth); 494 495 llvm::Triple::ArchType Arch = Context.getTargetInfo().getTriple().getArch(); 496 if ( Arch == llvm::Triple::arm 497 || Arch == llvm::Triple::armeb 498 || Arch == llvm::Triple::thumb 499 || Arch == llvm::Triple::thumbeb) { 500 // The minimum width of an enum in bytes 501 uint64_t EnumWidth = Context.getLangOpts().ShortEnums ? 1 : 4; 502 getModule().addModuleFlag(llvm::Module::Error, "min_enum_size", EnumWidth); 503 } 504 505 if (CodeGenOpts.SanitizeCfiCrossDso) { 506 // Indicate that we want cross-DSO control flow integrity checks. 507 getModule().addModuleFlag(llvm::Module::Override, "Cross-DSO CFI", 1); 508 } 509 510 if (CodeGenOpts.CFProtectionReturn && 511 Target.checkCFProtectionReturnSupported(getDiags())) { 512 // Indicate that we want to instrument return control flow protection. 513 getModule().addModuleFlag(llvm::Module::Override, "cf-protection-return", 514 1); 515 } 516 517 if (CodeGenOpts.CFProtectionBranch && 518 Target.checkCFProtectionBranchSupported(getDiags())) { 519 // Indicate that we want to instrument branch control flow protection. 520 getModule().addModuleFlag(llvm::Module::Override, "cf-protection-branch", 521 1); 522 } 523 524 if (LangOpts.CUDAIsDevice && getTriple().isNVPTX()) { 525 // Indicate whether __nvvm_reflect should be configured to flush denormal 526 // floating point values to 0. (This corresponds to its "__CUDA_FTZ" 527 // property.) 528 getModule().addModuleFlag(llvm::Module::Override, "nvvm-reflect-ftz", 529 CodeGenOpts.FlushDenorm ? 1 : 0); 530 } 531 532 // Emit OpenCL specific module metadata: OpenCL/SPIR version. 533 if (LangOpts.OpenCL) { 534 EmitOpenCLMetadata(); 535 // Emit SPIR version. 536 if (getTriple().getArch() == llvm::Triple::spir || 537 getTriple().getArch() == llvm::Triple::spir64) { 538 // SPIR v2.0 s2.12 - The SPIR version used by the module is stored in the 539 // opencl.spir.version named metadata. 540 llvm::Metadata *SPIRVerElts[] = { 541 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 542 Int32Ty, LangOpts.OpenCLVersion / 100)), 543 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 544 Int32Ty, (LangOpts.OpenCLVersion / 100 > 1) ? 0 : 2))}; 545 llvm::NamedMDNode *SPIRVerMD = 546 TheModule.getOrInsertNamedMetadata("opencl.spir.version"); 547 llvm::LLVMContext &Ctx = TheModule.getContext(); 548 SPIRVerMD->addOperand(llvm::MDNode::get(Ctx, SPIRVerElts)); 549 } 550 } 551 552 if (uint32_t PLevel = Context.getLangOpts().PICLevel) { 553 assert(PLevel < 3 && "Invalid PIC Level"); 554 getModule().setPICLevel(static_cast<llvm::PICLevel::Level>(PLevel)); 555 if (Context.getLangOpts().PIE) 556 getModule().setPIELevel(static_cast<llvm::PIELevel::Level>(PLevel)); 557 } 558 559 if (CodeGenOpts.NoPLT) 560 getModule().setRtLibUseGOT(); 561 562 SimplifyPersonality(); 563 564 if (getCodeGenOpts().EmitDeclMetadata) 565 EmitDeclMetadata(); 566 567 if (getCodeGenOpts().EmitGcovArcs || getCodeGenOpts().EmitGcovNotes) 568 EmitCoverageFile(); 569 570 if (DebugInfo) 571 DebugInfo->finalize(); 572 573 if (getCodeGenOpts().EmitVersionIdentMetadata) 574 EmitVersionIdentMetadata(); 575 576 EmitTargetMetadata(); 577 } 578 579 void CodeGenModule::EmitOpenCLMetadata() { 580 // SPIR v2.0 s2.13 - The OpenCL version used by the module is stored in the 581 // opencl.ocl.version named metadata node. 582 llvm::Metadata *OCLVerElts[] = { 583 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 584 Int32Ty, LangOpts.OpenCLVersion / 100)), 585 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 586 Int32Ty, (LangOpts.OpenCLVersion % 100) / 10))}; 587 llvm::NamedMDNode *OCLVerMD = 588 TheModule.getOrInsertNamedMetadata("opencl.ocl.version"); 589 llvm::LLVMContext &Ctx = TheModule.getContext(); 590 OCLVerMD->addOperand(llvm::MDNode::get(Ctx, OCLVerElts)); 591 } 592 593 void CodeGenModule::UpdateCompletedType(const TagDecl *TD) { 594 // Make sure that this type is translated. 595 Types.UpdateCompletedType(TD); 596 } 597 598 void CodeGenModule::RefreshTypeCacheForClass(const CXXRecordDecl *RD) { 599 // Make sure that this type is translated. 600 Types.RefreshTypeCacheForClass(RD); 601 } 602 603 llvm::MDNode *CodeGenModule::getTBAATypeInfo(QualType QTy) { 604 if (!TBAA) 605 return nullptr; 606 return TBAA->getTypeInfo(QTy); 607 } 608 609 TBAAAccessInfo CodeGenModule::getTBAAAccessInfo(QualType AccessType) { 610 if (!TBAA) 611 return TBAAAccessInfo(); 612 return TBAA->getAccessInfo(AccessType); 613 } 614 615 TBAAAccessInfo 616 CodeGenModule::getTBAAVTablePtrAccessInfo(llvm::Type *VTablePtrType) { 617 if (!TBAA) 618 return TBAAAccessInfo(); 619 return TBAA->getVTablePtrAccessInfo(VTablePtrType); 620 } 621 622 llvm::MDNode *CodeGenModule::getTBAAStructInfo(QualType QTy) { 623 if (!TBAA) 624 return nullptr; 625 return TBAA->getTBAAStructInfo(QTy); 626 } 627 628 llvm::MDNode *CodeGenModule::getTBAABaseTypeInfo(QualType QTy) { 629 if (!TBAA) 630 return nullptr; 631 return TBAA->getBaseTypeInfo(QTy); 632 } 633 634 llvm::MDNode *CodeGenModule::getTBAAAccessTagInfo(TBAAAccessInfo Info) { 635 if (!TBAA) 636 return nullptr; 637 return TBAA->getAccessTagInfo(Info); 638 } 639 640 TBAAAccessInfo CodeGenModule::mergeTBAAInfoForCast(TBAAAccessInfo SourceInfo, 641 TBAAAccessInfo TargetInfo) { 642 if (!TBAA) 643 return TBAAAccessInfo(); 644 return TBAA->mergeTBAAInfoForCast(SourceInfo, TargetInfo); 645 } 646 647 TBAAAccessInfo 648 CodeGenModule::mergeTBAAInfoForConditionalOperator(TBAAAccessInfo InfoA, 649 TBAAAccessInfo InfoB) { 650 if (!TBAA) 651 return TBAAAccessInfo(); 652 return TBAA->mergeTBAAInfoForConditionalOperator(InfoA, InfoB); 653 } 654 655 TBAAAccessInfo 656 CodeGenModule::mergeTBAAInfoForMemoryTransfer(TBAAAccessInfo DestInfo, 657 TBAAAccessInfo SrcInfo) { 658 if (!TBAA) 659 return TBAAAccessInfo(); 660 return TBAA->mergeTBAAInfoForConditionalOperator(DestInfo, SrcInfo); 661 } 662 663 void CodeGenModule::DecorateInstructionWithTBAA(llvm::Instruction *Inst, 664 TBAAAccessInfo TBAAInfo) { 665 if (llvm::MDNode *Tag = getTBAAAccessTagInfo(TBAAInfo)) 666 Inst->setMetadata(llvm::LLVMContext::MD_tbaa, Tag); 667 } 668 669 void CodeGenModule::DecorateInstructionWithInvariantGroup( 670 llvm::Instruction *I, const CXXRecordDecl *RD) { 671 I->setMetadata(llvm::LLVMContext::MD_invariant_group, 672 llvm::MDNode::get(getLLVMContext(), {})); 673 } 674 675 void CodeGenModule::Error(SourceLocation loc, StringRef message) { 676 unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, "%0"); 677 getDiags().Report(Context.getFullLoc(loc), diagID) << message; 678 } 679 680 /// ErrorUnsupported - Print out an error that codegen doesn't support the 681 /// specified stmt yet. 682 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type) { 683 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, 684 "cannot compile this %0 yet"); 685 std::string Msg = Type; 686 getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID) 687 << Msg << S->getSourceRange(); 688 } 689 690 /// ErrorUnsupported - Print out an error that codegen doesn't support the 691 /// specified decl yet. 692 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type) { 693 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, 694 "cannot compile this %0 yet"); 695 std::string Msg = Type; 696 getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg; 697 } 698 699 llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) { 700 return llvm::ConstantInt::get(SizeTy, size.getQuantity()); 701 } 702 703 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV, 704 const NamedDecl *D) const { 705 if (GV->hasDLLImportStorageClass()) 706 return; 707 // Internal definitions always have default visibility. 708 if (GV->hasLocalLinkage()) { 709 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 710 return; 711 } 712 if (!D) 713 return; 714 // Set visibility for definitions. 715 LinkageInfo LV = D->getLinkageAndVisibility(); 716 if (LV.isVisibilityExplicit() || !GV->isDeclarationForLinker()) 717 GV->setVisibility(GetLLVMVisibility(LV.getVisibility())); 718 } 719 720 static bool shouldAssumeDSOLocal(const CodeGenModule &CGM, 721 llvm::GlobalValue *GV) { 722 if (GV->hasLocalLinkage()) 723 return true; 724 725 if (!GV->hasDefaultVisibility() && !GV->hasExternalWeakLinkage()) 726 return true; 727 728 // DLLImport explicitly marks the GV as external. 729 if (GV->hasDLLImportStorageClass()) 730 return false; 731 732 const llvm::Triple &TT = CGM.getTriple(); 733 // Every other GV is local on COFF. 734 // Make an exception for windows OS in the triple: Some firmware builds use 735 // *-win32-macho triples. This (accidentally?) produced windows relocations 736 // without GOT tables in older clang versions; Keep this behaviour. 737 // FIXME: even thread local variables? 738 if (TT.isOSBinFormatCOFF() || (TT.isOSWindows() && TT.isOSBinFormatMachO())) 739 return true; 740 741 // Only handle COFF and ELF for now. 742 if (!TT.isOSBinFormatELF()) 743 return false; 744 745 // If this is not an executable, don't assume anything is local. 746 const auto &CGOpts = CGM.getCodeGenOpts(); 747 llvm::Reloc::Model RM = CGOpts.RelocationModel; 748 const auto &LOpts = CGM.getLangOpts(); 749 if (RM != llvm::Reloc::Static && !LOpts.PIE) 750 return false; 751 752 // A definition cannot be preempted from an executable. 753 if (!GV->isDeclarationForLinker()) 754 return true; 755 756 // Most PIC code sequences that assume that a symbol is local cannot produce a 757 // 0 if it turns out the symbol is undefined. While this is ABI and relocation 758 // depended, it seems worth it to handle it here. 759 if (RM == llvm::Reloc::PIC_ && GV->hasExternalWeakLinkage()) 760 return false; 761 762 // PPC has no copy relocations and cannot use a plt entry as a symbol address. 763 llvm::Triple::ArchType Arch = TT.getArch(); 764 if (Arch == llvm::Triple::ppc || Arch == llvm::Triple::ppc64 || 765 Arch == llvm::Triple::ppc64le) 766 return false; 767 768 // If we can use copy relocations we can assume it is local. 769 if (auto *Var = dyn_cast<llvm::GlobalVariable>(GV)) 770 if (!Var->isThreadLocal() && 771 (RM == llvm::Reloc::Static || CGOpts.PIECopyRelocations)) 772 return true; 773 774 // If we can use a plt entry as the symbol address we can assume it 775 // is local. 776 // FIXME: This should work for PIE, but the gold linker doesn't support it. 777 if (isa<llvm::Function>(GV) && !CGOpts.NoPLT && RM == llvm::Reloc::Static) 778 return true; 779 780 // Otherwise don't assue it is local. 781 return false; 782 } 783 784 void CodeGenModule::setDSOLocal(llvm::GlobalValue *GV) const { 785 GV->setDSOLocal(shouldAssumeDSOLocal(*this, GV)); 786 } 787 788 void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV, 789 GlobalDecl GD) const { 790 const auto *D = dyn_cast<NamedDecl>(GD.getDecl()); 791 // C++ destructors have a few C++ ABI specific special cases. 792 if (const auto *Dtor = dyn_cast_or_null<CXXDestructorDecl>(D)) { 793 getCXXABI().setCXXDestructorDLLStorage(GV, Dtor, GD.getDtorType()); 794 return; 795 } 796 setDLLImportDLLExport(GV, D); 797 } 798 799 void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV, 800 const NamedDecl *D) const { 801 if (D && D->isExternallyVisible()) { 802 if (D->hasAttr<DLLImportAttr>()) 803 GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass); 804 else if (D->hasAttr<DLLExportAttr>() && !GV->isDeclarationForLinker()) 805 GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass); 806 } 807 } 808 809 void CodeGenModule::setGVProperties(llvm::GlobalValue *GV, 810 GlobalDecl GD) const { 811 setDLLImportDLLExport(GV, GD); 812 setGlobalVisibilityAndLocal(GV, dyn_cast<NamedDecl>(GD.getDecl())); 813 } 814 815 void CodeGenModule::setGVProperties(llvm::GlobalValue *GV, 816 const NamedDecl *D) const { 817 setDLLImportDLLExport(GV, D); 818 setGlobalVisibilityAndLocal(GV, D); 819 } 820 821 void CodeGenModule::setGlobalVisibilityAndLocal(llvm::GlobalValue *GV, 822 const NamedDecl *D) const { 823 setGlobalVisibility(GV, D); 824 setDSOLocal(GV); 825 } 826 827 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(StringRef S) { 828 return llvm::StringSwitch<llvm::GlobalVariable::ThreadLocalMode>(S) 829 .Case("global-dynamic", llvm::GlobalVariable::GeneralDynamicTLSModel) 830 .Case("local-dynamic", llvm::GlobalVariable::LocalDynamicTLSModel) 831 .Case("initial-exec", llvm::GlobalVariable::InitialExecTLSModel) 832 .Case("local-exec", llvm::GlobalVariable::LocalExecTLSModel); 833 } 834 835 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel( 836 CodeGenOptions::TLSModel M) { 837 switch (M) { 838 case CodeGenOptions::GeneralDynamicTLSModel: 839 return llvm::GlobalVariable::GeneralDynamicTLSModel; 840 case CodeGenOptions::LocalDynamicTLSModel: 841 return llvm::GlobalVariable::LocalDynamicTLSModel; 842 case CodeGenOptions::InitialExecTLSModel: 843 return llvm::GlobalVariable::InitialExecTLSModel; 844 case CodeGenOptions::LocalExecTLSModel: 845 return llvm::GlobalVariable::LocalExecTLSModel; 846 } 847 llvm_unreachable("Invalid TLS model!"); 848 } 849 850 void CodeGenModule::setTLSMode(llvm::GlobalValue *GV, const VarDecl &D) const { 851 assert(D.getTLSKind() && "setting TLS mode on non-TLS var!"); 852 853 llvm::GlobalValue::ThreadLocalMode TLM; 854 TLM = GetLLVMTLSModel(CodeGenOpts.getDefaultTLSModel()); 855 856 // Override the TLS model if it is explicitly specified. 857 if (const TLSModelAttr *Attr = D.getAttr<TLSModelAttr>()) { 858 TLM = GetLLVMTLSModel(Attr->getModel()); 859 } 860 861 GV->setThreadLocalMode(TLM); 862 } 863 864 static std::string getCPUSpecificMangling(const CodeGenModule &CGM, 865 StringRef Name) { 866 const TargetInfo &Target = CGM.getTarget(); 867 return (Twine('.') + Twine(Target.CPUSpecificManglingCharacter(Name))).str(); 868 } 869 870 static void AppendCPUSpecificCPUDispatchMangling(const CodeGenModule &CGM, 871 const CPUSpecificAttr *Attr, 872 raw_ostream &Out) { 873 // cpu_specific gets the current name, dispatch gets the resolver. 874 if (Attr) 875 Out << getCPUSpecificMangling(CGM, Attr->getCurCPUName()->getName()); 876 else 877 Out << ".resolver"; 878 } 879 880 static void AppendTargetMangling(const CodeGenModule &CGM, 881 const TargetAttr *Attr, raw_ostream &Out) { 882 if (Attr->isDefaultVersion()) 883 return; 884 885 Out << '.'; 886 const TargetInfo &Target = CGM.getTarget(); 887 TargetAttr::ParsedTargetAttr Info = 888 Attr->parse([&Target](StringRef LHS, StringRef RHS) { 889 // Multiversioning doesn't allow "no-${feature}", so we can 890 // only have "+" prefixes here. 891 assert(LHS.startswith("+") && RHS.startswith("+") && 892 "Features should always have a prefix."); 893 return Target.multiVersionSortPriority(LHS.substr(1)) > 894 Target.multiVersionSortPriority(RHS.substr(1)); 895 }); 896 897 bool IsFirst = true; 898 899 if (!Info.Architecture.empty()) { 900 IsFirst = false; 901 Out << "arch_" << Info.Architecture; 902 } 903 904 for (StringRef Feat : Info.Features) { 905 if (!IsFirst) 906 Out << '_'; 907 IsFirst = false; 908 Out << Feat.substr(1); 909 } 910 } 911 912 static std::string getMangledNameImpl(const CodeGenModule &CGM, GlobalDecl GD, 913 const NamedDecl *ND, 914 bool OmitMultiVersionMangling = false) { 915 SmallString<256> Buffer; 916 llvm::raw_svector_ostream Out(Buffer); 917 MangleContext &MC = CGM.getCXXABI().getMangleContext(); 918 if (MC.shouldMangleDeclName(ND)) { 919 llvm::raw_svector_ostream Out(Buffer); 920 if (const auto *D = dyn_cast<CXXConstructorDecl>(ND)) 921 MC.mangleCXXCtor(D, GD.getCtorType(), Out); 922 else if (const auto *D = dyn_cast<CXXDestructorDecl>(ND)) 923 MC.mangleCXXDtor(D, GD.getDtorType(), Out); 924 else 925 MC.mangleName(ND, Out); 926 } else { 927 IdentifierInfo *II = ND->getIdentifier(); 928 assert(II && "Attempt to mangle unnamed decl."); 929 const auto *FD = dyn_cast<FunctionDecl>(ND); 930 931 if (FD && 932 FD->getType()->castAs<FunctionType>()->getCallConv() == CC_X86RegCall) { 933 llvm::raw_svector_ostream Out(Buffer); 934 Out << "__regcall3__" << II->getName(); 935 } else { 936 Out << II->getName(); 937 } 938 } 939 940 if (const auto *FD = dyn_cast<FunctionDecl>(ND)) 941 if (FD->isMultiVersion() && !OmitMultiVersionMangling) { 942 if (FD->isCPUDispatchMultiVersion() || FD->isCPUSpecificMultiVersion()) 943 AppendCPUSpecificCPUDispatchMangling( 944 CGM, FD->getAttr<CPUSpecificAttr>(), Out); 945 else 946 AppendTargetMangling(CGM, FD->getAttr<TargetAttr>(), Out); 947 } 948 949 return Out.str(); 950 } 951 952 void CodeGenModule::UpdateMultiVersionNames(GlobalDecl GD, 953 const FunctionDecl *FD) { 954 if (!FD->isMultiVersion()) 955 return; 956 957 // Get the name of what this would be without the 'target' attribute. This 958 // allows us to lookup the version that was emitted when this wasn't a 959 // multiversion function. 960 std::string NonTargetName = 961 getMangledNameImpl(*this, GD, FD, /*OmitMultiVersionMangling=*/true); 962 GlobalDecl OtherGD; 963 if (lookupRepresentativeDecl(NonTargetName, OtherGD)) { 964 assert(OtherGD.getCanonicalDecl() 965 .getDecl() 966 ->getAsFunction() 967 ->isMultiVersion() && 968 "Other GD should now be a multiversioned function"); 969 // OtherFD is the version of this function that was mangled BEFORE 970 // becoming a MultiVersion function. It potentially needs to be updated. 971 const FunctionDecl *OtherFD = 972 OtherGD.getCanonicalDecl().getDecl()->getAsFunction(); 973 std::string OtherName = getMangledNameImpl(*this, OtherGD, OtherFD); 974 // This is so that if the initial version was already the 'default' 975 // version, we don't try to update it. 976 if (OtherName != NonTargetName) { 977 // Remove instead of erase, since others may have stored the StringRef 978 // to this. 979 const auto ExistingRecord = Manglings.find(NonTargetName); 980 if (ExistingRecord != std::end(Manglings)) 981 Manglings.remove(&(*ExistingRecord)); 982 auto Result = Manglings.insert(std::make_pair(OtherName, OtherGD)); 983 MangledDeclNames[OtherGD.getCanonicalDecl()] = Result.first->first(); 984 if (llvm::GlobalValue *Entry = GetGlobalValue(NonTargetName)) 985 Entry->setName(OtherName); 986 } 987 } 988 } 989 990 StringRef CodeGenModule::getMangledName(GlobalDecl GD) { 991 GlobalDecl CanonicalGD = GD.getCanonicalDecl(); 992 993 // Some ABIs don't have constructor variants. Make sure that base and 994 // complete constructors get mangled the same. 995 if (const auto *CD = dyn_cast<CXXConstructorDecl>(CanonicalGD.getDecl())) { 996 if (!getTarget().getCXXABI().hasConstructorVariants()) { 997 CXXCtorType OrigCtorType = GD.getCtorType(); 998 assert(OrigCtorType == Ctor_Base || OrigCtorType == Ctor_Complete); 999 if (OrigCtorType == Ctor_Base) 1000 CanonicalGD = GlobalDecl(CD, Ctor_Complete); 1001 } 1002 } 1003 1004 const auto *FD = dyn_cast<FunctionDecl>(GD.getDecl()); 1005 // Since CPUSpecific can require multiple emits per decl, store the manglings 1006 // separately. 1007 if (FD && 1008 (FD->isCPUDispatchMultiVersion() || FD->isCPUSpecificMultiVersion())) { 1009 const auto *SD = FD->getAttr<CPUSpecificAttr>(); 1010 1011 std::pair<GlobalDecl, unsigned> SpecCanonicalGD{ 1012 CanonicalGD, 1013 SD ? SD->ActiveArgIndex : std::numeric_limits<unsigned>::max()}; 1014 1015 auto FoundName = CPUSpecificMangledDeclNames.find(SpecCanonicalGD); 1016 if (FoundName != CPUSpecificMangledDeclNames.end()) 1017 return FoundName->second; 1018 1019 auto Result = CPUSpecificManglings.insert( 1020 std::make_pair(getMangledNameImpl(*this, GD, FD), SpecCanonicalGD)); 1021 return CPUSpecificMangledDeclNames[SpecCanonicalGD] = Result.first->first(); 1022 } 1023 1024 auto FoundName = MangledDeclNames.find(CanonicalGD); 1025 if (FoundName != MangledDeclNames.end()) 1026 return FoundName->second; 1027 1028 // Keep the first result in the case of a mangling collision. 1029 const auto *ND = cast<NamedDecl>(GD.getDecl()); 1030 auto Result = 1031 Manglings.insert(std::make_pair(getMangledNameImpl(*this, GD, ND), GD)); 1032 return MangledDeclNames[CanonicalGD] = Result.first->first(); 1033 } 1034 1035 StringRef CodeGenModule::getBlockMangledName(GlobalDecl GD, 1036 const BlockDecl *BD) { 1037 MangleContext &MangleCtx = getCXXABI().getMangleContext(); 1038 const Decl *D = GD.getDecl(); 1039 1040 SmallString<256> Buffer; 1041 llvm::raw_svector_ostream Out(Buffer); 1042 if (!D) 1043 MangleCtx.mangleGlobalBlock(BD, 1044 dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()), Out); 1045 else if (const auto *CD = dyn_cast<CXXConstructorDecl>(D)) 1046 MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out); 1047 else if (const auto *DD = dyn_cast<CXXDestructorDecl>(D)) 1048 MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out); 1049 else 1050 MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out); 1051 1052 auto Result = Manglings.insert(std::make_pair(Out.str(), BD)); 1053 return Result.first->first(); 1054 } 1055 1056 llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) { 1057 return getModule().getNamedValue(Name); 1058 } 1059 1060 /// AddGlobalCtor - Add a function to the list that will be called before 1061 /// main() runs. 1062 void CodeGenModule::AddGlobalCtor(llvm::Function *Ctor, int Priority, 1063 llvm::Constant *AssociatedData) { 1064 // FIXME: Type coercion of void()* types. 1065 GlobalCtors.push_back(Structor(Priority, Ctor, AssociatedData)); 1066 } 1067 1068 /// AddGlobalDtor - Add a function to the list that will be called 1069 /// when the module is unloaded. 1070 void CodeGenModule::AddGlobalDtor(llvm::Function *Dtor, int Priority) { 1071 if (CodeGenOpts.RegisterGlobalDtorsWithAtExit) { 1072 DtorsUsingAtExit[Priority].push_back(Dtor); 1073 return; 1074 } 1075 1076 // FIXME: Type coercion of void()* types. 1077 GlobalDtors.push_back(Structor(Priority, Dtor, nullptr)); 1078 } 1079 1080 void CodeGenModule::EmitCtorList(CtorList &Fns, const char *GlobalName) { 1081 if (Fns.empty()) return; 1082 1083 // Ctor function type is void()*. 1084 llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false); 1085 llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy); 1086 1087 // Get the type of a ctor entry, { i32, void ()*, i8* }. 1088 llvm::StructType *CtorStructTy = llvm::StructType::get( 1089 Int32Ty, llvm::PointerType::getUnqual(CtorFTy), VoidPtrTy); 1090 1091 // Construct the constructor and destructor arrays. 1092 ConstantInitBuilder builder(*this); 1093 auto ctors = builder.beginArray(CtorStructTy); 1094 for (const auto &I : Fns) { 1095 auto ctor = ctors.beginStruct(CtorStructTy); 1096 ctor.addInt(Int32Ty, I.Priority); 1097 ctor.add(llvm::ConstantExpr::getBitCast(I.Initializer, CtorPFTy)); 1098 if (I.AssociatedData) 1099 ctor.add(llvm::ConstantExpr::getBitCast(I.AssociatedData, VoidPtrTy)); 1100 else 1101 ctor.addNullPointer(VoidPtrTy); 1102 ctor.finishAndAddTo(ctors); 1103 } 1104 1105 auto list = 1106 ctors.finishAndCreateGlobal(GlobalName, getPointerAlign(), 1107 /*constant*/ false, 1108 llvm::GlobalValue::AppendingLinkage); 1109 1110 // The LTO linker doesn't seem to like it when we set an alignment 1111 // on appending variables. Take it off as a workaround. 1112 list->setAlignment(0); 1113 1114 Fns.clear(); 1115 } 1116 1117 llvm::GlobalValue::LinkageTypes 1118 CodeGenModule::getFunctionLinkage(GlobalDecl GD) { 1119 const auto *D = cast<FunctionDecl>(GD.getDecl()); 1120 1121 GVALinkage Linkage = getContext().GetGVALinkageForFunction(D); 1122 1123 if (const auto *Dtor = dyn_cast<CXXDestructorDecl>(D)) 1124 return getCXXABI().getCXXDestructorLinkage(Linkage, Dtor, GD.getDtorType()); 1125 1126 if (isa<CXXConstructorDecl>(D) && 1127 cast<CXXConstructorDecl>(D)->isInheritingConstructor() && 1128 Context.getTargetInfo().getCXXABI().isMicrosoft()) { 1129 // Our approach to inheriting constructors is fundamentally different from 1130 // that used by the MS ABI, so keep our inheriting constructor thunks 1131 // internal rather than trying to pick an unambiguous mangling for them. 1132 return llvm::GlobalValue::InternalLinkage; 1133 } 1134 1135 return getLLVMLinkageForDeclarator(D, Linkage, /*isConstantVariable=*/false); 1136 } 1137 1138 llvm::ConstantInt *CodeGenModule::CreateCrossDsoCfiTypeId(llvm::Metadata *MD) { 1139 llvm::MDString *MDS = dyn_cast<llvm::MDString>(MD); 1140 if (!MDS) return nullptr; 1141 1142 return llvm::ConstantInt::get(Int64Ty, llvm::MD5Hash(MDS->getString())); 1143 } 1144 1145 void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D, 1146 const CGFunctionInfo &Info, 1147 llvm::Function *F) { 1148 unsigned CallingConv; 1149 llvm::AttributeList PAL; 1150 ConstructAttributeList(F->getName(), Info, D, PAL, CallingConv, false); 1151 F->setAttributes(PAL); 1152 F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv)); 1153 } 1154 1155 /// Determines whether the language options require us to model 1156 /// unwind exceptions. We treat -fexceptions as mandating this 1157 /// except under the fragile ObjC ABI with only ObjC exceptions 1158 /// enabled. This means, for example, that C with -fexceptions 1159 /// enables this. 1160 static bool hasUnwindExceptions(const LangOptions &LangOpts) { 1161 // If exceptions are completely disabled, obviously this is false. 1162 if (!LangOpts.Exceptions) return false; 1163 1164 // If C++ exceptions are enabled, this is true. 1165 if (LangOpts.CXXExceptions) return true; 1166 1167 // If ObjC exceptions are enabled, this depends on the ABI. 1168 if (LangOpts.ObjCExceptions) { 1169 return LangOpts.ObjCRuntime.hasUnwindExceptions(); 1170 } 1171 1172 return true; 1173 } 1174 1175 static bool requiresMemberFunctionPointerTypeMetadata(CodeGenModule &CGM, 1176 const CXXMethodDecl *MD) { 1177 // Check that the type metadata can ever actually be used by a call. 1178 if (!CGM.getCodeGenOpts().LTOUnit || 1179 !CGM.HasHiddenLTOVisibility(MD->getParent())) 1180 return false; 1181 1182 // Only functions whose address can be taken with a member function pointer 1183 // need this sort of type metadata. 1184 return !MD->isStatic() && !MD->isVirtual() && !isa<CXXConstructorDecl>(MD) && 1185 !isa<CXXDestructorDecl>(MD); 1186 } 1187 1188 std::vector<const CXXRecordDecl *> 1189 CodeGenModule::getMostBaseClasses(const CXXRecordDecl *RD) { 1190 llvm::SetVector<const CXXRecordDecl *> MostBases; 1191 1192 std::function<void (const CXXRecordDecl *)> CollectMostBases; 1193 CollectMostBases = [&](const CXXRecordDecl *RD) { 1194 if (RD->getNumBases() == 0) 1195 MostBases.insert(RD); 1196 for (const CXXBaseSpecifier &B : RD->bases()) 1197 CollectMostBases(B.getType()->getAsCXXRecordDecl()); 1198 }; 1199 CollectMostBases(RD); 1200 return MostBases.takeVector(); 1201 } 1202 1203 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D, 1204 llvm::Function *F) { 1205 llvm::AttrBuilder B; 1206 1207 if (CodeGenOpts.UnwindTables) 1208 B.addAttribute(llvm::Attribute::UWTable); 1209 1210 if (!hasUnwindExceptions(LangOpts)) 1211 B.addAttribute(llvm::Attribute::NoUnwind); 1212 1213 if (!D || !D->hasAttr<NoStackProtectorAttr>()) { 1214 if (LangOpts.getStackProtector() == LangOptions::SSPOn) 1215 B.addAttribute(llvm::Attribute::StackProtect); 1216 else if (LangOpts.getStackProtector() == LangOptions::SSPStrong) 1217 B.addAttribute(llvm::Attribute::StackProtectStrong); 1218 else if (LangOpts.getStackProtector() == LangOptions::SSPReq) 1219 B.addAttribute(llvm::Attribute::StackProtectReq); 1220 } 1221 1222 if (!D) { 1223 // If we don't have a declaration to control inlining, the function isn't 1224 // explicitly marked as alwaysinline for semantic reasons, and inlining is 1225 // disabled, mark the function as noinline. 1226 if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline) && 1227 CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining) 1228 B.addAttribute(llvm::Attribute::NoInline); 1229 1230 F->addAttributes(llvm::AttributeList::FunctionIndex, B); 1231 return; 1232 } 1233 1234 // Track whether we need to add the optnone LLVM attribute, 1235 // starting with the default for this optimization level. 1236 bool ShouldAddOptNone = 1237 !CodeGenOpts.DisableO0ImplyOptNone && CodeGenOpts.OptimizationLevel == 0; 1238 // We can't add optnone in the following cases, it won't pass the verifier. 1239 ShouldAddOptNone &= !D->hasAttr<MinSizeAttr>(); 1240 ShouldAddOptNone &= !F->hasFnAttribute(llvm::Attribute::AlwaysInline); 1241 ShouldAddOptNone &= !D->hasAttr<AlwaysInlineAttr>(); 1242 1243 if (ShouldAddOptNone || D->hasAttr<OptimizeNoneAttr>()) { 1244 B.addAttribute(llvm::Attribute::OptimizeNone); 1245 1246 // OptimizeNone implies noinline; we should not be inlining such functions. 1247 B.addAttribute(llvm::Attribute::NoInline); 1248 assert(!F->hasFnAttribute(llvm::Attribute::AlwaysInline) && 1249 "OptimizeNone and AlwaysInline on same function!"); 1250 1251 // We still need to handle naked functions even though optnone subsumes 1252 // much of their semantics. 1253 if (D->hasAttr<NakedAttr>()) 1254 B.addAttribute(llvm::Attribute::Naked); 1255 1256 // OptimizeNone wins over OptimizeForSize and MinSize. 1257 F->removeFnAttr(llvm::Attribute::OptimizeForSize); 1258 F->removeFnAttr(llvm::Attribute::MinSize); 1259 } else if (D->hasAttr<NakedAttr>()) { 1260 // Naked implies noinline: we should not be inlining such functions. 1261 B.addAttribute(llvm::Attribute::Naked); 1262 B.addAttribute(llvm::Attribute::NoInline); 1263 } else if (D->hasAttr<NoDuplicateAttr>()) { 1264 B.addAttribute(llvm::Attribute::NoDuplicate); 1265 } else if (D->hasAttr<NoInlineAttr>()) { 1266 B.addAttribute(llvm::Attribute::NoInline); 1267 } else if (D->hasAttr<AlwaysInlineAttr>() && 1268 !F->hasFnAttribute(llvm::Attribute::NoInline)) { 1269 // (noinline wins over always_inline, and we can't specify both in IR) 1270 B.addAttribute(llvm::Attribute::AlwaysInline); 1271 } else if (CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining) { 1272 // If we're not inlining, then force everything that isn't always_inline to 1273 // carry an explicit noinline attribute. 1274 if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline)) 1275 B.addAttribute(llvm::Attribute::NoInline); 1276 } else { 1277 // Otherwise, propagate the inline hint attribute and potentially use its 1278 // absence to mark things as noinline. 1279 if (auto *FD = dyn_cast<FunctionDecl>(D)) { 1280 if (any_of(FD->redecls(), [&](const FunctionDecl *Redecl) { 1281 return Redecl->isInlineSpecified(); 1282 })) { 1283 B.addAttribute(llvm::Attribute::InlineHint); 1284 } else if (CodeGenOpts.getInlining() == 1285 CodeGenOptions::OnlyHintInlining && 1286 !FD->isInlined() && 1287 !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) { 1288 B.addAttribute(llvm::Attribute::NoInline); 1289 } 1290 } 1291 } 1292 1293 // Add other optimization related attributes if we are optimizing this 1294 // function. 1295 if (!D->hasAttr<OptimizeNoneAttr>()) { 1296 if (D->hasAttr<ColdAttr>()) { 1297 if (!ShouldAddOptNone) 1298 B.addAttribute(llvm::Attribute::OptimizeForSize); 1299 B.addAttribute(llvm::Attribute::Cold); 1300 } 1301 1302 if (D->hasAttr<MinSizeAttr>()) 1303 B.addAttribute(llvm::Attribute::MinSize); 1304 } 1305 1306 F->addAttributes(llvm::AttributeList::FunctionIndex, B); 1307 1308 unsigned alignment = D->getMaxAlignment() / Context.getCharWidth(); 1309 if (alignment) 1310 F->setAlignment(alignment); 1311 1312 if (!D->hasAttr<AlignedAttr>()) 1313 if (LangOpts.FunctionAlignment) 1314 F->setAlignment(1 << LangOpts.FunctionAlignment); 1315 1316 // Some C++ ABIs require 2-byte alignment for member functions, in order to 1317 // reserve a bit for differentiating between virtual and non-virtual member 1318 // functions. If the current target's C++ ABI requires this and this is a 1319 // member function, set its alignment accordingly. 1320 if (getTarget().getCXXABI().areMemberFunctionsAligned()) { 1321 if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D)) 1322 F->setAlignment(2); 1323 } 1324 1325 // In the cross-dso CFI mode, we want !type attributes on definitions only. 1326 if (CodeGenOpts.SanitizeCfiCrossDso) 1327 if (auto *FD = dyn_cast<FunctionDecl>(D)) 1328 CreateFunctionTypeMetadataForIcall(FD, F); 1329 1330 // Emit type metadata on member functions for member function pointer checks. 1331 // These are only ever necessary on definitions; we're guaranteed that the 1332 // definition will be present in the LTO unit as a result of LTO visibility. 1333 auto *MD = dyn_cast<CXXMethodDecl>(D); 1334 if (MD && requiresMemberFunctionPointerTypeMetadata(*this, MD)) { 1335 for (const CXXRecordDecl *Base : getMostBaseClasses(MD->getParent())) { 1336 llvm::Metadata *Id = 1337 CreateMetadataIdentifierForType(Context.getMemberPointerType( 1338 MD->getType(), Context.getRecordType(Base).getTypePtr())); 1339 F->addTypeMetadata(0, Id); 1340 } 1341 } 1342 } 1343 1344 void CodeGenModule::SetCommonAttributes(GlobalDecl GD, llvm::GlobalValue *GV) { 1345 const Decl *D = GD.getDecl(); 1346 if (dyn_cast_or_null<NamedDecl>(D)) 1347 setGVProperties(GV, GD); 1348 else 1349 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 1350 1351 if (D && D->hasAttr<UsedAttr>()) 1352 addUsedGlobal(GV); 1353 } 1354 1355 bool CodeGenModule::GetCPUAndFeaturesAttributes(const Decl *D, 1356 llvm::AttrBuilder &Attrs) { 1357 // Add target-cpu and target-features attributes to functions. If 1358 // we have a decl for the function and it has a target attribute then 1359 // parse that and add it to the feature set. 1360 StringRef TargetCPU = getTarget().getTargetOpts().CPU; 1361 std::vector<std::string> Features; 1362 const auto *FD = dyn_cast_or_null<FunctionDecl>(D); 1363 FD = FD ? FD->getMostRecentDecl() : FD; 1364 const auto *TD = FD ? FD->getAttr<TargetAttr>() : nullptr; 1365 const auto *SD = FD ? FD->getAttr<CPUSpecificAttr>() : nullptr; 1366 bool AddedAttr = false; 1367 if (TD || SD) { 1368 llvm::StringMap<bool> FeatureMap; 1369 getFunctionFeatureMap(FeatureMap, FD); 1370 1371 // Produce the canonical string for this set of features. 1372 for (const llvm::StringMap<bool>::value_type &Entry : FeatureMap) 1373 Features.push_back((Entry.getValue() ? "+" : "-") + Entry.getKey().str()); 1374 1375 // Now add the target-cpu and target-features to the function. 1376 // While we populated the feature map above, we still need to 1377 // get and parse the target attribute so we can get the cpu for 1378 // the function. 1379 if (TD) { 1380 TargetAttr::ParsedTargetAttr ParsedAttr = TD->parse(); 1381 if (ParsedAttr.Architecture != "" && 1382 getTarget().isValidCPUName(ParsedAttr.Architecture)) 1383 TargetCPU = ParsedAttr.Architecture; 1384 } 1385 } else { 1386 // Otherwise just add the existing target cpu and target features to the 1387 // function. 1388 Features = getTarget().getTargetOpts().Features; 1389 } 1390 1391 if (TargetCPU != "") { 1392 Attrs.addAttribute("target-cpu", TargetCPU); 1393 AddedAttr = true; 1394 } 1395 if (!Features.empty()) { 1396 llvm::sort(Features.begin(), Features.end()); 1397 Attrs.addAttribute("target-features", llvm::join(Features, ",")); 1398 AddedAttr = true; 1399 } 1400 1401 return AddedAttr; 1402 } 1403 1404 void CodeGenModule::setNonAliasAttributes(GlobalDecl GD, 1405 llvm::GlobalObject *GO) { 1406 const Decl *D = GD.getDecl(); 1407 SetCommonAttributes(GD, GO); 1408 1409 if (D) { 1410 if (auto *GV = dyn_cast<llvm::GlobalVariable>(GO)) { 1411 if (auto *SA = D->getAttr<PragmaClangBSSSectionAttr>()) 1412 GV->addAttribute("bss-section", SA->getName()); 1413 if (auto *SA = D->getAttr<PragmaClangDataSectionAttr>()) 1414 GV->addAttribute("data-section", SA->getName()); 1415 if (auto *SA = D->getAttr<PragmaClangRodataSectionAttr>()) 1416 GV->addAttribute("rodata-section", SA->getName()); 1417 } 1418 1419 if (auto *F = dyn_cast<llvm::Function>(GO)) { 1420 if (auto *SA = D->getAttr<PragmaClangTextSectionAttr>()) 1421 if (!D->getAttr<SectionAttr>()) 1422 F->addFnAttr("implicit-section-name", SA->getName()); 1423 1424 llvm::AttrBuilder Attrs; 1425 if (GetCPUAndFeaturesAttributes(D, Attrs)) { 1426 // We know that GetCPUAndFeaturesAttributes will always have the 1427 // newest set, since it has the newest possible FunctionDecl, so the 1428 // new ones should replace the old. 1429 F->removeFnAttr("target-cpu"); 1430 F->removeFnAttr("target-features"); 1431 F->addAttributes(llvm::AttributeList::FunctionIndex, Attrs); 1432 } 1433 } 1434 1435 if (const auto *CSA = D->getAttr<CodeSegAttr>()) 1436 GO->setSection(CSA->getName()); 1437 else if (const auto *SA = D->getAttr<SectionAttr>()) 1438 GO->setSection(SA->getName()); 1439 } 1440 1441 getTargetCodeGenInfo().setTargetAttributes(D, GO, *this); 1442 } 1443 1444 void CodeGenModule::SetInternalFunctionAttributes(GlobalDecl GD, 1445 llvm::Function *F, 1446 const CGFunctionInfo &FI) { 1447 const Decl *D = GD.getDecl(); 1448 SetLLVMFunctionAttributes(D, FI, F); 1449 SetLLVMFunctionAttributesForDefinition(D, F); 1450 1451 F->setLinkage(llvm::Function::InternalLinkage); 1452 1453 setNonAliasAttributes(GD, F); 1454 } 1455 1456 static void setLinkageForGV(llvm::GlobalValue *GV, const NamedDecl *ND) { 1457 // Set linkage and visibility in case we never see a definition. 1458 LinkageInfo LV = ND->getLinkageAndVisibility(); 1459 // Don't set internal linkage on declarations. 1460 // "extern_weak" is overloaded in LLVM; we probably should have 1461 // separate linkage types for this. 1462 if (isExternallyVisible(LV.getLinkage()) && 1463 (ND->hasAttr<WeakAttr>() || ND->isWeakImported())) 1464 GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage); 1465 } 1466 1467 void CodeGenModule::CreateFunctionTypeMetadataForIcall(const FunctionDecl *FD, 1468 llvm::Function *F) { 1469 // Only if we are checking indirect calls. 1470 if (!LangOpts.Sanitize.has(SanitizerKind::CFIICall)) 1471 return; 1472 1473 // Non-static class methods are handled via vtable or member function pointer 1474 // checks elsewhere. 1475 if (isa<CXXMethodDecl>(FD) && !cast<CXXMethodDecl>(FD)->isStatic()) 1476 return; 1477 1478 // Additionally, if building with cross-DSO support... 1479 if (CodeGenOpts.SanitizeCfiCrossDso) { 1480 // Skip available_externally functions. They won't be codegen'ed in the 1481 // current module anyway. 1482 if (getContext().GetGVALinkageForFunction(FD) == GVA_AvailableExternally) 1483 return; 1484 } 1485 1486 llvm::Metadata *MD = CreateMetadataIdentifierForType(FD->getType()); 1487 F->addTypeMetadata(0, MD); 1488 F->addTypeMetadata(0, CreateMetadataIdentifierGeneralized(FD->getType())); 1489 1490 // Emit a hash-based bit set entry for cross-DSO calls. 1491 if (CodeGenOpts.SanitizeCfiCrossDso) 1492 if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD)) 1493 F->addTypeMetadata(0, llvm::ConstantAsMetadata::get(CrossDsoTypeId)); 1494 } 1495 1496 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD, llvm::Function *F, 1497 bool IsIncompleteFunction, 1498 bool IsThunk) { 1499 1500 if (llvm::Intrinsic::ID IID = F->getIntrinsicID()) { 1501 // If this is an intrinsic function, set the function's attributes 1502 // to the intrinsic's attributes. 1503 F->setAttributes(llvm::Intrinsic::getAttributes(getLLVMContext(), IID)); 1504 return; 1505 } 1506 1507 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 1508 1509 if (!IsIncompleteFunction) { 1510 SetLLVMFunctionAttributes(FD, getTypes().arrangeGlobalDeclaration(GD), F); 1511 // Setup target-specific attributes. 1512 if (F->isDeclaration()) 1513 getTargetCodeGenInfo().setTargetAttributes(FD, F, *this); 1514 } 1515 1516 // Add the Returned attribute for "this", except for iOS 5 and earlier 1517 // where substantial code, including the libstdc++ dylib, was compiled with 1518 // GCC and does not actually return "this". 1519 if (!IsThunk && getCXXABI().HasThisReturn(GD) && 1520 !(getTriple().isiOS() && getTriple().isOSVersionLT(6))) { 1521 assert(!F->arg_empty() && 1522 F->arg_begin()->getType() 1523 ->canLosslesslyBitCastTo(F->getReturnType()) && 1524 "unexpected this return"); 1525 F->addAttribute(1, llvm::Attribute::Returned); 1526 } 1527 1528 // Only a few attributes are set on declarations; these may later be 1529 // overridden by a definition. 1530 1531 setLinkageForGV(F, FD); 1532 setGVProperties(F, FD); 1533 1534 if (const auto *CSA = FD->getAttr<CodeSegAttr>()) 1535 F->setSection(CSA->getName()); 1536 else if (const auto *SA = FD->getAttr<SectionAttr>()) 1537 F->setSection(SA->getName()); 1538 1539 if (FD->isReplaceableGlobalAllocationFunction()) { 1540 // A replaceable global allocation function does not act like a builtin by 1541 // default, only if it is invoked by a new-expression or delete-expression. 1542 F->addAttribute(llvm::AttributeList::FunctionIndex, 1543 llvm::Attribute::NoBuiltin); 1544 1545 // A sane operator new returns a non-aliasing pointer. 1546 // FIXME: Also add NonNull attribute to the return value 1547 // for the non-nothrow forms? 1548 auto Kind = FD->getDeclName().getCXXOverloadedOperator(); 1549 if (getCodeGenOpts().AssumeSaneOperatorNew && 1550 (Kind == OO_New || Kind == OO_Array_New)) 1551 F->addAttribute(llvm::AttributeList::ReturnIndex, 1552 llvm::Attribute::NoAlias); 1553 } 1554 1555 if (isa<CXXConstructorDecl>(FD) || isa<CXXDestructorDecl>(FD)) 1556 F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 1557 else if (const auto *MD = dyn_cast<CXXMethodDecl>(FD)) 1558 if (MD->isVirtual()) 1559 F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 1560 1561 // Don't emit entries for function declarations in the cross-DSO mode. This 1562 // is handled with better precision by the receiving DSO. 1563 if (!CodeGenOpts.SanitizeCfiCrossDso) 1564 CreateFunctionTypeMetadataForIcall(FD, F); 1565 1566 if (getLangOpts().OpenMP && FD->hasAttr<OMPDeclareSimdDeclAttr>()) 1567 getOpenMPRuntime().emitDeclareSimdFunction(FD, F); 1568 } 1569 1570 void CodeGenModule::addUsedGlobal(llvm::GlobalValue *GV) { 1571 assert(!GV->isDeclaration() && 1572 "Only globals with definition can force usage."); 1573 LLVMUsed.emplace_back(GV); 1574 } 1575 1576 void CodeGenModule::addCompilerUsedGlobal(llvm::GlobalValue *GV) { 1577 assert(!GV->isDeclaration() && 1578 "Only globals with definition can force usage."); 1579 LLVMCompilerUsed.emplace_back(GV); 1580 } 1581 1582 static void emitUsed(CodeGenModule &CGM, StringRef Name, 1583 std::vector<llvm::WeakTrackingVH> &List) { 1584 // Don't create llvm.used if there is no need. 1585 if (List.empty()) 1586 return; 1587 1588 // Convert List to what ConstantArray needs. 1589 SmallVector<llvm::Constant*, 8> UsedArray; 1590 UsedArray.resize(List.size()); 1591 for (unsigned i = 0, e = List.size(); i != e; ++i) { 1592 UsedArray[i] = 1593 llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast( 1594 cast<llvm::Constant>(&*List[i]), CGM.Int8PtrTy); 1595 } 1596 1597 if (UsedArray.empty()) 1598 return; 1599 llvm::ArrayType *ATy = llvm::ArrayType::get(CGM.Int8PtrTy, UsedArray.size()); 1600 1601 auto *GV = new llvm::GlobalVariable( 1602 CGM.getModule(), ATy, false, llvm::GlobalValue::AppendingLinkage, 1603 llvm::ConstantArray::get(ATy, UsedArray), Name); 1604 1605 GV->setSection("llvm.metadata"); 1606 } 1607 1608 void CodeGenModule::emitLLVMUsed() { 1609 emitUsed(*this, "llvm.used", LLVMUsed); 1610 emitUsed(*this, "llvm.compiler.used", LLVMCompilerUsed); 1611 } 1612 1613 void CodeGenModule::AppendLinkerOptions(StringRef Opts) { 1614 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opts); 1615 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 1616 } 1617 1618 void CodeGenModule::AddDetectMismatch(StringRef Name, StringRef Value) { 1619 llvm::SmallString<32> Opt; 1620 getTargetCodeGenInfo().getDetectMismatchOption(Name, Value, Opt); 1621 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt); 1622 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 1623 } 1624 1625 void CodeGenModule::AddELFLibDirective(StringRef Lib) { 1626 auto &C = getLLVMContext(); 1627 LinkerOptionsMetadata.push_back(llvm::MDNode::get( 1628 C, {llvm::MDString::get(C, "lib"), llvm::MDString::get(C, Lib)})); 1629 } 1630 1631 void CodeGenModule::AddDependentLib(StringRef Lib) { 1632 llvm::SmallString<24> Opt; 1633 getTargetCodeGenInfo().getDependentLibraryOption(Lib, Opt); 1634 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt); 1635 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 1636 } 1637 1638 /// Add link options implied by the given module, including modules 1639 /// it depends on, using a postorder walk. 1640 static void addLinkOptionsPostorder(CodeGenModule &CGM, Module *Mod, 1641 SmallVectorImpl<llvm::MDNode *> &Metadata, 1642 llvm::SmallPtrSet<Module *, 16> &Visited) { 1643 // Import this module's parent. 1644 if (Mod->Parent && Visited.insert(Mod->Parent).second) { 1645 addLinkOptionsPostorder(CGM, Mod->Parent, Metadata, Visited); 1646 } 1647 1648 // Import this module's dependencies. 1649 for (unsigned I = Mod->Imports.size(); I > 0; --I) { 1650 if (Visited.insert(Mod->Imports[I - 1]).second) 1651 addLinkOptionsPostorder(CGM, Mod->Imports[I-1], Metadata, Visited); 1652 } 1653 1654 // Add linker options to link against the libraries/frameworks 1655 // described by this module. 1656 llvm::LLVMContext &Context = CGM.getLLVMContext(); 1657 1658 // For modules that use export_as for linking, use that module 1659 // name instead. 1660 if (Mod->UseExportAsModuleLinkName) 1661 return; 1662 1663 for (unsigned I = Mod->LinkLibraries.size(); I > 0; --I) { 1664 // Link against a framework. Frameworks are currently Darwin only, so we 1665 // don't to ask TargetCodeGenInfo for the spelling of the linker option. 1666 if (Mod->LinkLibraries[I-1].IsFramework) { 1667 llvm::Metadata *Args[2] = { 1668 llvm::MDString::get(Context, "-framework"), 1669 llvm::MDString::get(Context, Mod->LinkLibraries[I - 1].Library)}; 1670 1671 Metadata.push_back(llvm::MDNode::get(Context, Args)); 1672 continue; 1673 } 1674 1675 // Link against a library. 1676 llvm::SmallString<24> Opt; 1677 CGM.getTargetCodeGenInfo().getDependentLibraryOption( 1678 Mod->LinkLibraries[I-1].Library, Opt); 1679 auto *OptString = llvm::MDString::get(Context, Opt); 1680 Metadata.push_back(llvm::MDNode::get(Context, OptString)); 1681 } 1682 } 1683 1684 void CodeGenModule::EmitModuleLinkOptions() { 1685 // Collect the set of all of the modules we want to visit to emit link 1686 // options, which is essentially the imported modules and all of their 1687 // non-explicit child modules. 1688 llvm::SetVector<clang::Module *> LinkModules; 1689 llvm::SmallPtrSet<clang::Module *, 16> Visited; 1690 SmallVector<clang::Module *, 16> Stack; 1691 1692 // Seed the stack with imported modules. 1693 for (Module *M : ImportedModules) { 1694 // Do not add any link flags when an implementation TU of a module imports 1695 // a header of that same module. 1696 if (M->getTopLevelModuleName() == getLangOpts().CurrentModule && 1697 !getLangOpts().isCompilingModule()) 1698 continue; 1699 if (Visited.insert(M).second) 1700 Stack.push_back(M); 1701 } 1702 1703 // Find all of the modules to import, making a little effort to prune 1704 // non-leaf modules. 1705 while (!Stack.empty()) { 1706 clang::Module *Mod = Stack.pop_back_val(); 1707 1708 bool AnyChildren = false; 1709 1710 // Visit the submodules of this module. 1711 for (clang::Module::submodule_iterator Sub = Mod->submodule_begin(), 1712 SubEnd = Mod->submodule_end(); 1713 Sub != SubEnd; ++Sub) { 1714 // Skip explicit children; they need to be explicitly imported to be 1715 // linked against. 1716 if ((*Sub)->IsExplicit) 1717 continue; 1718 1719 if (Visited.insert(*Sub).second) { 1720 Stack.push_back(*Sub); 1721 AnyChildren = true; 1722 } 1723 } 1724 1725 // We didn't find any children, so add this module to the list of 1726 // modules to link against. 1727 if (!AnyChildren) { 1728 LinkModules.insert(Mod); 1729 } 1730 } 1731 1732 // Add link options for all of the imported modules in reverse topological 1733 // order. We don't do anything to try to order import link flags with respect 1734 // to linker options inserted by things like #pragma comment(). 1735 SmallVector<llvm::MDNode *, 16> MetadataArgs; 1736 Visited.clear(); 1737 for (Module *M : LinkModules) 1738 if (Visited.insert(M).second) 1739 addLinkOptionsPostorder(*this, M, MetadataArgs, Visited); 1740 std::reverse(MetadataArgs.begin(), MetadataArgs.end()); 1741 LinkerOptionsMetadata.append(MetadataArgs.begin(), MetadataArgs.end()); 1742 1743 // Add the linker options metadata flag. 1744 auto *NMD = getModule().getOrInsertNamedMetadata("llvm.linker.options"); 1745 for (auto *MD : LinkerOptionsMetadata) 1746 NMD->addOperand(MD); 1747 } 1748 1749 void CodeGenModule::EmitDeferred() { 1750 // Emit code for any potentially referenced deferred decls. Since a 1751 // previously unused static decl may become used during the generation of code 1752 // for a static function, iterate until no changes are made. 1753 1754 if (!DeferredVTables.empty()) { 1755 EmitDeferredVTables(); 1756 1757 // Emitting a vtable doesn't directly cause more vtables to 1758 // become deferred, although it can cause functions to be 1759 // emitted that then need those vtables. 1760 assert(DeferredVTables.empty()); 1761 } 1762 1763 // Stop if we're out of both deferred vtables and deferred declarations. 1764 if (DeferredDeclsToEmit.empty()) 1765 return; 1766 1767 // Grab the list of decls to emit. If EmitGlobalDefinition schedules more 1768 // work, it will not interfere with this. 1769 std::vector<GlobalDecl> CurDeclsToEmit; 1770 CurDeclsToEmit.swap(DeferredDeclsToEmit); 1771 1772 for (GlobalDecl &D : CurDeclsToEmit) { 1773 // We should call GetAddrOfGlobal with IsForDefinition set to true in order 1774 // to get GlobalValue with exactly the type we need, not something that 1775 // might had been created for another decl with the same mangled name but 1776 // different type. 1777 llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>( 1778 GetAddrOfGlobal(D, ForDefinition)); 1779 1780 // In case of different address spaces, we may still get a cast, even with 1781 // IsForDefinition equal to true. Query mangled names table to get 1782 // GlobalValue. 1783 if (!GV) 1784 GV = GetGlobalValue(getMangledName(D)); 1785 1786 // Make sure GetGlobalValue returned non-null. 1787 assert(GV); 1788 1789 // Check to see if we've already emitted this. This is necessary 1790 // for a couple of reasons: first, decls can end up in the 1791 // deferred-decls queue multiple times, and second, decls can end 1792 // up with definitions in unusual ways (e.g. by an extern inline 1793 // function acquiring a strong function redefinition). Just 1794 // ignore these cases. 1795 if (!GV->isDeclaration()) 1796 continue; 1797 1798 // Otherwise, emit the definition and move on to the next one. 1799 EmitGlobalDefinition(D, GV); 1800 1801 // If we found out that we need to emit more decls, do that recursively. 1802 // This has the advantage that the decls are emitted in a DFS and related 1803 // ones are close together, which is convenient for testing. 1804 if (!DeferredVTables.empty() || !DeferredDeclsToEmit.empty()) { 1805 EmitDeferred(); 1806 assert(DeferredVTables.empty() && DeferredDeclsToEmit.empty()); 1807 } 1808 } 1809 } 1810 1811 void CodeGenModule::EmitVTablesOpportunistically() { 1812 // Try to emit external vtables as available_externally if they have emitted 1813 // all inlined virtual functions. It runs after EmitDeferred() and therefore 1814 // is not allowed to create new references to things that need to be emitted 1815 // lazily. Note that it also uses fact that we eagerly emitting RTTI. 1816 1817 assert((OpportunisticVTables.empty() || shouldOpportunisticallyEmitVTables()) 1818 && "Only emit opportunistic vtables with optimizations"); 1819 1820 for (const CXXRecordDecl *RD : OpportunisticVTables) { 1821 assert(getVTables().isVTableExternal(RD) && 1822 "This queue should only contain external vtables"); 1823 if (getCXXABI().canSpeculativelyEmitVTable(RD)) 1824 VTables.GenerateClassData(RD); 1825 } 1826 OpportunisticVTables.clear(); 1827 } 1828 1829 void CodeGenModule::EmitGlobalAnnotations() { 1830 if (Annotations.empty()) 1831 return; 1832 1833 // Create a new global variable for the ConstantStruct in the Module. 1834 llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get( 1835 Annotations[0]->getType(), Annotations.size()), Annotations); 1836 auto *gv = new llvm::GlobalVariable(getModule(), Array->getType(), false, 1837 llvm::GlobalValue::AppendingLinkage, 1838 Array, "llvm.global.annotations"); 1839 gv->setSection(AnnotationSection); 1840 } 1841 1842 llvm::Constant *CodeGenModule::EmitAnnotationString(StringRef Str) { 1843 llvm::Constant *&AStr = AnnotationStrings[Str]; 1844 if (AStr) 1845 return AStr; 1846 1847 // Not found yet, create a new global. 1848 llvm::Constant *s = llvm::ConstantDataArray::getString(getLLVMContext(), Str); 1849 auto *gv = 1850 new llvm::GlobalVariable(getModule(), s->getType(), true, 1851 llvm::GlobalValue::PrivateLinkage, s, ".str"); 1852 gv->setSection(AnnotationSection); 1853 gv->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 1854 AStr = gv; 1855 return gv; 1856 } 1857 1858 llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) { 1859 SourceManager &SM = getContext().getSourceManager(); 1860 PresumedLoc PLoc = SM.getPresumedLoc(Loc); 1861 if (PLoc.isValid()) 1862 return EmitAnnotationString(PLoc.getFilename()); 1863 return EmitAnnotationString(SM.getBufferName(Loc)); 1864 } 1865 1866 llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) { 1867 SourceManager &SM = getContext().getSourceManager(); 1868 PresumedLoc PLoc = SM.getPresumedLoc(L); 1869 unsigned LineNo = PLoc.isValid() ? PLoc.getLine() : 1870 SM.getExpansionLineNumber(L); 1871 return llvm::ConstantInt::get(Int32Ty, LineNo); 1872 } 1873 1874 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV, 1875 const AnnotateAttr *AA, 1876 SourceLocation L) { 1877 // Get the globals for file name, annotation, and the line number. 1878 llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()), 1879 *UnitGV = EmitAnnotationUnit(L), 1880 *LineNoCst = EmitAnnotationLineNo(L); 1881 1882 // Create the ConstantStruct for the global annotation. 1883 llvm::Constant *Fields[4] = { 1884 llvm::ConstantExpr::getBitCast(GV, Int8PtrTy), 1885 llvm::ConstantExpr::getBitCast(AnnoGV, Int8PtrTy), 1886 llvm::ConstantExpr::getBitCast(UnitGV, Int8PtrTy), 1887 LineNoCst 1888 }; 1889 return llvm::ConstantStruct::getAnon(Fields); 1890 } 1891 1892 void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D, 1893 llvm::GlobalValue *GV) { 1894 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 1895 // Get the struct elements for these annotations. 1896 for (const auto *I : D->specific_attrs<AnnotateAttr>()) 1897 Annotations.push_back(EmitAnnotateAttr(GV, I, D->getLocation())); 1898 } 1899 1900 bool CodeGenModule::isInSanitizerBlacklist(SanitizerMask Kind, 1901 llvm::Function *Fn, 1902 SourceLocation Loc) const { 1903 const auto &SanitizerBL = getContext().getSanitizerBlacklist(); 1904 // Blacklist by function name. 1905 if (SanitizerBL.isBlacklistedFunction(Kind, Fn->getName())) 1906 return true; 1907 // Blacklist by location. 1908 if (Loc.isValid()) 1909 return SanitizerBL.isBlacklistedLocation(Kind, Loc); 1910 // If location is unknown, this may be a compiler-generated function. Assume 1911 // it's located in the main file. 1912 auto &SM = Context.getSourceManager(); 1913 if (const auto *MainFile = SM.getFileEntryForID(SM.getMainFileID())) { 1914 return SanitizerBL.isBlacklistedFile(Kind, MainFile->getName()); 1915 } 1916 return false; 1917 } 1918 1919 bool CodeGenModule::isInSanitizerBlacklist(llvm::GlobalVariable *GV, 1920 SourceLocation Loc, QualType Ty, 1921 StringRef Category) const { 1922 // For now globals can be blacklisted only in ASan and KASan. 1923 const SanitizerMask EnabledAsanMask = LangOpts.Sanitize.Mask & 1924 (SanitizerKind::Address | SanitizerKind::KernelAddress | 1925 SanitizerKind::HWAddress | SanitizerKind::KernelHWAddress); 1926 if (!EnabledAsanMask) 1927 return false; 1928 const auto &SanitizerBL = getContext().getSanitizerBlacklist(); 1929 if (SanitizerBL.isBlacklistedGlobal(EnabledAsanMask, GV->getName(), Category)) 1930 return true; 1931 if (SanitizerBL.isBlacklistedLocation(EnabledAsanMask, Loc, Category)) 1932 return true; 1933 // Check global type. 1934 if (!Ty.isNull()) { 1935 // Drill down the array types: if global variable of a fixed type is 1936 // blacklisted, we also don't instrument arrays of them. 1937 while (auto AT = dyn_cast<ArrayType>(Ty.getTypePtr())) 1938 Ty = AT->getElementType(); 1939 Ty = Ty.getCanonicalType().getUnqualifiedType(); 1940 // We allow to blacklist only record types (classes, structs etc.) 1941 if (Ty->isRecordType()) { 1942 std::string TypeStr = Ty.getAsString(getContext().getPrintingPolicy()); 1943 if (SanitizerBL.isBlacklistedType(EnabledAsanMask, TypeStr, Category)) 1944 return true; 1945 } 1946 } 1947 return false; 1948 } 1949 1950 bool CodeGenModule::imbueXRayAttrs(llvm::Function *Fn, SourceLocation Loc, 1951 StringRef Category) const { 1952 if (!LangOpts.XRayInstrument) 1953 return false; 1954 1955 const auto &XRayFilter = getContext().getXRayFilter(); 1956 using ImbueAttr = XRayFunctionFilter::ImbueAttribute; 1957 auto Attr = ImbueAttr::NONE; 1958 if (Loc.isValid()) 1959 Attr = XRayFilter.shouldImbueLocation(Loc, Category); 1960 if (Attr == ImbueAttr::NONE) 1961 Attr = XRayFilter.shouldImbueFunction(Fn->getName()); 1962 switch (Attr) { 1963 case ImbueAttr::NONE: 1964 return false; 1965 case ImbueAttr::ALWAYS: 1966 Fn->addFnAttr("function-instrument", "xray-always"); 1967 break; 1968 case ImbueAttr::ALWAYS_ARG1: 1969 Fn->addFnAttr("function-instrument", "xray-always"); 1970 Fn->addFnAttr("xray-log-args", "1"); 1971 break; 1972 case ImbueAttr::NEVER: 1973 Fn->addFnAttr("function-instrument", "xray-never"); 1974 break; 1975 } 1976 return true; 1977 } 1978 1979 bool CodeGenModule::MustBeEmitted(const ValueDecl *Global) { 1980 // Never defer when EmitAllDecls is specified. 1981 if (LangOpts.EmitAllDecls) 1982 return true; 1983 1984 return getContext().DeclMustBeEmitted(Global); 1985 } 1986 1987 bool CodeGenModule::MayBeEmittedEagerly(const ValueDecl *Global) { 1988 if (const auto *FD = dyn_cast<FunctionDecl>(Global)) 1989 if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation) 1990 // Implicit template instantiations may change linkage if they are later 1991 // explicitly instantiated, so they should not be emitted eagerly. 1992 return false; 1993 if (const auto *VD = dyn_cast<VarDecl>(Global)) 1994 if (Context.getInlineVariableDefinitionKind(VD) == 1995 ASTContext::InlineVariableDefinitionKind::WeakUnknown) 1996 // A definition of an inline constexpr static data member may change 1997 // linkage later if it's redeclared outside the class. 1998 return false; 1999 // If OpenMP is enabled and threadprivates must be generated like TLS, delay 2000 // codegen for global variables, because they may be marked as threadprivate. 2001 if (LangOpts.OpenMP && LangOpts.OpenMPUseTLS && 2002 getContext().getTargetInfo().isTLSSupported() && isa<VarDecl>(Global) && 2003 !isTypeConstant(Global->getType(), false)) 2004 return false; 2005 2006 return true; 2007 } 2008 2009 ConstantAddress CodeGenModule::GetAddrOfUuidDescriptor( 2010 const CXXUuidofExpr* E) { 2011 // Sema has verified that IIDSource has a __declspec(uuid()), and that its 2012 // well-formed. 2013 StringRef Uuid = E->getUuidStr(); 2014 std::string Name = "_GUID_" + Uuid.lower(); 2015 std::replace(Name.begin(), Name.end(), '-', '_'); 2016 2017 // The UUID descriptor should be pointer aligned. 2018 CharUnits Alignment = CharUnits::fromQuantity(PointerAlignInBytes); 2019 2020 // Look for an existing global. 2021 if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name)) 2022 return ConstantAddress(GV, Alignment); 2023 2024 llvm::Constant *Init = EmitUuidofInitializer(Uuid); 2025 assert(Init && "failed to initialize as constant"); 2026 2027 auto *GV = new llvm::GlobalVariable( 2028 getModule(), Init->getType(), 2029 /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name); 2030 if (supportsCOMDAT()) 2031 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 2032 setDSOLocal(GV); 2033 return ConstantAddress(GV, Alignment); 2034 } 2035 2036 ConstantAddress CodeGenModule::GetWeakRefReference(const ValueDecl *VD) { 2037 const AliasAttr *AA = VD->getAttr<AliasAttr>(); 2038 assert(AA && "No alias?"); 2039 2040 CharUnits Alignment = getContext().getDeclAlign(VD); 2041 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType()); 2042 2043 // See if there is already something with the target's name in the module. 2044 llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee()); 2045 if (Entry) { 2046 unsigned AS = getContext().getTargetAddressSpace(VD->getType()); 2047 auto Ptr = llvm::ConstantExpr::getBitCast(Entry, DeclTy->getPointerTo(AS)); 2048 return ConstantAddress(Ptr, Alignment); 2049 } 2050 2051 llvm::Constant *Aliasee; 2052 if (isa<llvm::FunctionType>(DeclTy)) 2053 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, 2054 GlobalDecl(cast<FunctionDecl>(VD)), 2055 /*ForVTable=*/false); 2056 else 2057 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), 2058 llvm::PointerType::getUnqual(DeclTy), 2059 nullptr); 2060 2061 auto *F = cast<llvm::GlobalValue>(Aliasee); 2062 F->setLinkage(llvm::Function::ExternalWeakLinkage); 2063 WeakRefReferences.insert(F); 2064 2065 return ConstantAddress(Aliasee, Alignment); 2066 } 2067 2068 void CodeGenModule::EmitGlobal(GlobalDecl GD) { 2069 const auto *Global = cast<ValueDecl>(GD.getDecl()); 2070 2071 // Weak references don't produce any output by themselves. 2072 if (Global->hasAttr<WeakRefAttr>()) 2073 return; 2074 2075 // If this is an alias definition (which otherwise looks like a declaration) 2076 // emit it now. 2077 if (Global->hasAttr<AliasAttr>()) 2078 return EmitAliasDefinition(GD); 2079 2080 // IFunc like an alias whose value is resolved at runtime by calling resolver. 2081 if (Global->hasAttr<IFuncAttr>()) 2082 return emitIFuncDefinition(GD); 2083 2084 // If this is a cpu_dispatch multiversion function, emit the resolver. 2085 if (Global->hasAttr<CPUDispatchAttr>()) 2086 return emitCPUDispatchDefinition(GD); 2087 2088 // If this is CUDA, be selective about which declarations we emit. 2089 if (LangOpts.CUDA) { 2090 if (LangOpts.CUDAIsDevice) { 2091 if (!Global->hasAttr<CUDADeviceAttr>() && 2092 !Global->hasAttr<CUDAGlobalAttr>() && 2093 !Global->hasAttr<CUDAConstantAttr>() && 2094 !Global->hasAttr<CUDASharedAttr>()) 2095 return; 2096 } else { 2097 // We need to emit host-side 'shadows' for all global 2098 // device-side variables because the CUDA runtime needs their 2099 // size and host-side address in order to provide access to 2100 // their device-side incarnations. 2101 2102 // So device-only functions are the only things we skip. 2103 if (isa<FunctionDecl>(Global) && !Global->hasAttr<CUDAHostAttr>() && 2104 Global->hasAttr<CUDADeviceAttr>()) 2105 return; 2106 2107 assert((isa<FunctionDecl>(Global) || isa<VarDecl>(Global)) && 2108 "Expected Variable or Function"); 2109 } 2110 } 2111 2112 if (LangOpts.OpenMP) { 2113 // If this is OpenMP device, check if it is legal to emit this global 2114 // normally. 2115 if (OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(GD)) 2116 return; 2117 if (auto *DRD = dyn_cast<OMPDeclareReductionDecl>(Global)) { 2118 if (MustBeEmitted(Global)) 2119 EmitOMPDeclareReduction(DRD); 2120 return; 2121 } 2122 } 2123 2124 // Ignore declarations, they will be emitted on their first use. 2125 if (const auto *FD = dyn_cast<FunctionDecl>(Global)) { 2126 // Forward declarations are emitted lazily on first use. 2127 if (!FD->doesThisDeclarationHaveABody()) { 2128 if (!FD->doesDeclarationForceExternallyVisibleDefinition()) 2129 return; 2130 2131 StringRef MangledName = getMangledName(GD); 2132 2133 // Compute the function info and LLVM type. 2134 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 2135 llvm::Type *Ty = getTypes().GetFunctionType(FI); 2136 2137 GetOrCreateLLVMFunction(MangledName, Ty, GD, /*ForVTable=*/false, 2138 /*DontDefer=*/false); 2139 return; 2140 } 2141 } else { 2142 const auto *VD = cast<VarDecl>(Global); 2143 assert(VD->isFileVarDecl() && "Cannot emit local var decl as global."); 2144 // We need to emit device-side global CUDA variables even if a 2145 // variable does not have a definition -- we still need to define 2146 // host-side shadow for it. 2147 bool MustEmitForCuda = LangOpts.CUDA && !LangOpts.CUDAIsDevice && 2148 !VD->hasDefinition() && 2149 (VD->hasAttr<CUDAConstantAttr>() || 2150 VD->hasAttr<CUDADeviceAttr>()); 2151 if (!MustEmitForCuda && 2152 VD->isThisDeclarationADefinition() != VarDecl::Definition && 2153 !Context.isMSStaticDataMemberInlineDefinition(VD)) { 2154 // If this declaration may have caused an inline variable definition to 2155 // change linkage, make sure that it's emitted. 2156 if (Context.getInlineVariableDefinitionKind(VD) == 2157 ASTContext::InlineVariableDefinitionKind::Strong) 2158 GetAddrOfGlobalVar(VD); 2159 return; 2160 } 2161 } 2162 2163 // Defer code generation to first use when possible, e.g. if this is an inline 2164 // function. If the global must always be emitted, do it eagerly if possible 2165 // to benefit from cache locality. 2166 if (MustBeEmitted(Global) && MayBeEmittedEagerly(Global)) { 2167 // Emit the definition if it can't be deferred. 2168 EmitGlobalDefinition(GD); 2169 return; 2170 } 2171 2172 // If we're deferring emission of a C++ variable with an 2173 // initializer, remember the order in which it appeared in the file. 2174 if (getLangOpts().CPlusPlus && isa<VarDecl>(Global) && 2175 cast<VarDecl>(Global)->hasInit()) { 2176 DelayedCXXInitPosition[Global] = CXXGlobalInits.size(); 2177 CXXGlobalInits.push_back(nullptr); 2178 } 2179 2180 StringRef MangledName = getMangledName(GD); 2181 if (GetGlobalValue(MangledName) != nullptr) { 2182 // The value has already been used and should therefore be emitted. 2183 addDeferredDeclToEmit(GD); 2184 } else if (MustBeEmitted(Global)) { 2185 // The value must be emitted, but cannot be emitted eagerly. 2186 assert(!MayBeEmittedEagerly(Global)); 2187 addDeferredDeclToEmit(GD); 2188 } else { 2189 // Otherwise, remember that we saw a deferred decl with this name. The 2190 // first use of the mangled name will cause it to move into 2191 // DeferredDeclsToEmit. 2192 DeferredDecls[MangledName] = GD; 2193 } 2194 } 2195 2196 // Check if T is a class type with a destructor that's not dllimport. 2197 static bool HasNonDllImportDtor(QualType T) { 2198 if (const auto *RT = T->getBaseElementTypeUnsafe()->getAs<RecordType>()) 2199 if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl())) 2200 if (RD->getDestructor() && !RD->getDestructor()->hasAttr<DLLImportAttr>()) 2201 return true; 2202 2203 return false; 2204 } 2205 2206 namespace { 2207 struct FunctionIsDirectlyRecursive : 2208 public RecursiveASTVisitor<FunctionIsDirectlyRecursive> { 2209 const StringRef Name; 2210 const Builtin::Context &BI; 2211 bool Result; 2212 FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C) : 2213 Name(N), BI(C), Result(false) { 2214 } 2215 typedef RecursiveASTVisitor<FunctionIsDirectlyRecursive> Base; 2216 2217 bool TraverseCallExpr(CallExpr *E) { 2218 const FunctionDecl *FD = E->getDirectCallee(); 2219 if (!FD) 2220 return true; 2221 AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>(); 2222 if (Attr && Name == Attr->getLabel()) { 2223 Result = true; 2224 return false; 2225 } 2226 unsigned BuiltinID = FD->getBuiltinID(); 2227 if (!BuiltinID || !BI.isLibFunction(BuiltinID)) 2228 return true; 2229 StringRef BuiltinName = BI.getName(BuiltinID); 2230 if (BuiltinName.startswith("__builtin_") && 2231 Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) { 2232 Result = true; 2233 return false; 2234 } 2235 return true; 2236 } 2237 }; 2238 2239 // Make sure we're not referencing non-imported vars or functions. 2240 struct DLLImportFunctionVisitor 2241 : public RecursiveASTVisitor<DLLImportFunctionVisitor> { 2242 bool SafeToInline = true; 2243 2244 bool shouldVisitImplicitCode() const { return true; } 2245 2246 bool VisitVarDecl(VarDecl *VD) { 2247 if (VD->getTLSKind()) { 2248 // A thread-local variable cannot be imported. 2249 SafeToInline = false; 2250 return SafeToInline; 2251 } 2252 2253 // A variable definition might imply a destructor call. 2254 if (VD->isThisDeclarationADefinition()) 2255 SafeToInline = !HasNonDllImportDtor(VD->getType()); 2256 2257 return SafeToInline; 2258 } 2259 2260 bool VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) { 2261 if (const auto *D = E->getTemporary()->getDestructor()) 2262 SafeToInline = D->hasAttr<DLLImportAttr>(); 2263 return SafeToInline; 2264 } 2265 2266 bool VisitDeclRefExpr(DeclRefExpr *E) { 2267 ValueDecl *VD = E->getDecl(); 2268 if (isa<FunctionDecl>(VD)) 2269 SafeToInline = VD->hasAttr<DLLImportAttr>(); 2270 else if (VarDecl *V = dyn_cast<VarDecl>(VD)) 2271 SafeToInline = !V->hasGlobalStorage() || V->hasAttr<DLLImportAttr>(); 2272 return SafeToInline; 2273 } 2274 2275 bool VisitCXXConstructExpr(CXXConstructExpr *E) { 2276 SafeToInline = E->getConstructor()->hasAttr<DLLImportAttr>(); 2277 return SafeToInline; 2278 } 2279 2280 bool VisitCXXMemberCallExpr(CXXMemberCallExpr *E) { 2281 CXXMethodDecl *M = E->getMethodDecl(); 2282 if (!M) { 2283 // Call through a pointer to member function. This is safe to inline. 2284 SafeToInline = true; 2285 } else { 2286 SafeToInline = M->hasAttr<DLLImportAttr>(); 2287 } 2288 return SafeToInline; 2289 } 2290 2291 bool VisitCXXDeleteExpr(CXXDeleteExpr *E) { 2292 SafeToInline = E->getOperatorDelete()->hasAttr<DLLImportAttr>(); 2293 return SafeToInline; 2294 } 2295 2296 bool VisitCXXNewExpr(CXXNewExpr *E) { 2297 SafeToInline = E->getOperatorNew()->hasAttr<DLLImportAttr>(); 2298 return SafeToInline; 2299 } 2300 }; 2301 } 2302 2303 // isTriviallyRecursive - Check if this function calls another 2304 // decl that, because of the asm attribute or the other decl being a builtin, 2305 // ends up pointing to itself. 2306 bool 2307 CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) { 2308 StringRef Name; 2309 if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) { 2310 // asm labels are a special kind of mangling we have to support. 2311 AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>(); 2312 if (!Attr) 2313 return false; 2314 Name = Attr->getLabel(); 2315 } else { 2316 Name = FD->getName(); 2317 } 2318 2319 FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo); 2320 Walker.TraverseFunctionDecl(const_cast<FunctionDecl*>(FD)); 2321 return Walker.Result; 2322 } 2323 2324 bool CodeGenModule::shouldEmitFunction(GlobalDecl GD) { 2325 if (getFunctionLinkage(GD) != llvm::Function::AvailableExternallyLinkage) 2326 return true; 2327 const auto *F = cast<FunctionDecl>(GD.getDecl()); 2328 if (CodeGenOpts.OptimizationLevel == 0 && !F->hasAttr<AlwaysInlineAttr>()) 2329 return false; 2330 2331 if (F->hasAttr<DLLImportAttr>()) { 2332 // Check whether it would be safe to inline this dllimport function. 2333 DLLImportFunctionVisitor Visitor; 2334 Visitor.TraverseFunctionDecl(const_cast<FunctionDecl*>(F)); 2335 if (!Visitor.SafeToInline) 2336 return false; 2337 2338 if (const CXXDestructorDecl *Dtor = dyn_cast<CXXDestructorDecl>(F)) { 2339 // Implicit destructor invocations aren't captured in the AST, so the 2340 // check above can't see them. Check for them manually here. 2341 for (const Decl *Member : Dtor->getParent()->decls()) 2342 if (isa<FieldDecl>(Member)) 2343 if (HasNonDllImportDtor(cast<FieldDecl>(Member)->getType())) 2344 return false; 2345 for (const CXXBaseSpecifier &B : Dtor->getParent()->bases()) 2346 if (HasNonDllImportDtor(B.getType())) 2347 return false; 2348 } 2349 } 2350 2351 // PR9614. Avoid cases where the source code is lying to us. An available 2352 // externally function should have an equivalent function somewhere else, 2353 // but a function that calls itself is clearly not equivalent to the real 2354 // implementation. 2355 // This happens in glibc's btowc and in some configure checks. 2356 return !isTriviallyRecursive(F); 2357 } 2358 2359 bool CodeGenModule::shouldOpportunisticallyEmitVTables() { 2360 return CodeGenOpts.OptimizationLevel > 0; 2361 } 2362 2363 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD, llvm::GlobalValue *GV) { 2364 const auto *D = cast<ValueDecl>(GD.getDecl()); 2365 2366 PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(), 2367 Context.getSourceManager(), 2368 "Generating code for declaration"); 2369 2370 if (isa<FunctionDecl>(D)) { 2371 // At -O0, don't generate IR for functions with available_externally 2372 // linkage. 2373 if (!shouldEmitFunction(GD)) 2374 return; 2375 2376 if (const auto *Method = dyn_cast<CXXMethodDecl>(D)) { 2377 // Make sure to emit the definition(s) before we emit the thunks. 2378 // This is necessary for the generation of certain thunks. 2379 if (const auto *CD = dyn_cast<CXXConstructorDecl>(Method)) 2380 ABI->emitCXXStructor(CD, getFromCtorType(GD.getCtorType())); 2381 else if (const auto *DD = dyn_cast<CXXDestructorDecl>(Method)) 2382 ABI->emitCXXStructor(DD, getFromDtorType(GD.getDtorType())); 2383 else 2384 EmitGlobalFunctionDefinition(GD, GV); 2385 2386 if (Method->isVirtual()) 2387 getVTables().EmitThunks(GD); 2388 2389 return; 2390 } 2391 2392 return EmitGlobalFunctionDefinition(GD, GV); 2393 } 2394 2395 if (const auto *VD = dyn_cast<VarDecl>(D)) 2396 return EmitGlobalVarDefinition(VD, !VD->hasDefinition()); 2397 2398 llvm_unreachable("Invalid argument to EmitGlobalDefinition()"); 2399 } 2400 2401 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old, 2402 llvm::Function *NewFn); 2403 2404 void CodeGenModule::emitMultiVersionFunctions() { 2405 for (GlobalDecl GD : MultiVersionFuncs) { 2406 SmallVector<CodeGenFunction::TargetMultiVersionResolverOption, 10> Options; 2407 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 2408 getContext().forEachMultiversionedFunctionVersion( 2409 FD, [this, &GD, &Options](const FunctionDecl *CurFD) { 2410 GlobalDecl CurGD{ 2411 (CurFD->isDefined() ? CurFD->getDefinition() : CurFD)}; 2412 StringRef MangledName = getMangledName(CurGD); 2413 llvm::Constant *Func = GetGlobalValue(MangledName); 2414 if (!Func) { 2415 if (CurFD->isDefined()) { 2416 EmitGlobalFunctionDefinition(CurGD, nullptr); 2417 Func = GetGlobalValue(MangledName); 2418 } else { 2419 const CGFunctionInfo &FI = 2420 getTypes().arrangeGlobalDeclaration(GD); 2421 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 2422 Func = GetAddrOfFunction(CurGD, Ty, /*ForVTable=*/false, 2423 /*DontDefer=*/false, ForDefinition); 2424 } 2425 assert(Func && "This should have just been created"); 2426 } 2427 Options.emplace_back(getTarget(), cast<llvm::Function>(Func), 2428 CurFD->getAttr<TargetAttr>()->parse()); 2429 }); 2430 2431 llvm::Function *ResolverFunc = cast<llvm::Function>( 2432 GetGlobalValue((getMangledName(GD) + ".resolver").str())); 2433 if (supportsCOMDAT()) 2434 ResolverFunc->setComdat( 2435 getModule().getOrInsertComdat(ResolverFunc->getName())); 2436 std::stable_sort( 2437 Options.begin(), Options.end(), 2438 std::greater<CodeGenFunction::TargetMultiVersionResolverOption>()); 2439 CodeGenFunction CGF(*this); 2440 CGF.EmitTargetMultiVersionResolver(ResolverFunc, Options); 2441 } 2442 } 2443 2444 void CodeGenModule::emitCPUDispatchDefinition(GlobalDecl GD) { 2445 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 2446 assert(FD && "Not a FunctionDecl?"); 2447 const auto *DD = FD->getAttr<CPUDispatchAttr>(); 2448 assert(DD && "Not a cpu_dispatch Function?"); 2449 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(FD->getType()); 2450 2451 StringRef ResolverName = getMangledName(GD); 2452 llvm::Type *ResolverType = llvm::FunctionType::get( 2453 llvm::PointerType::get(DeclTy, 2454 Context.getTargetAddressSpace(FD->getType())), 2455 false); 2456 auto *ResolverFunc = cast<llvm::Function>( 2457 GetOrCreateLLVMFunction(ResolverName, ResolverType, GlobalDecl{}, 2458 /*ForVTable=*/false)); 2459 2460 SmallVector<CodeGenFunction::CPUDispatchMultiVersionResolverOption, 10> 2461 Options; 2462 const TargetInfo &Target = getTarget(); 2463 for (const IdentifierInfo *II : DD->cpus()) { 2464 // Get the name of the target function so we can look it up/create it. 2465 std::string MangledName = getMangledNameImpl(*this, GD, FD, true) + 2466 getCPUSpecificMangling(*this, II->getName()); 2467 llvm::Constant *Func = GetOrCreateLLVMFunction( 2468 MangledName, DeclTy, GD, /*ForVTable=*/false, /*DontDefer=*/false, 2469 /*IsThunk=*/false, llvm::AttributeList(), ForDefinition); 2470 llvm::SmallVector<StringRef, 32> Features; 2471 Target.getCPUSpecificCPUDispatchFeatures(II->getName(), Features); 2472 llvm::transform(Features, Features.begin(), 2473 [](StringRef Str) { return Str.substr(1); }); 2474 Features.erase(std::remove_if( 2475 Features.begin(), Features.end(), [&Target](StringRef Feat) { 2476 return !Target.validateCpuSupports(Feat); 2477 }), Features.end()); 2478 Options.emplace_back(cast<llvm::Function>(Func), 2479 CodeGenFunction::GetX86CpuSupportsMask(Features)); 2480 } 2481 2482 llvm::sort( 2483 Options.begin(), Options.end(), 2484 std::greater<CodeGenFunction::CPUDispatchMultiVersionResolverOption>()); 2485 CodeGenFunction CGF(*this); 2486 CGF.EmitCPUDispatchMultiVersionResolver(ResolverFunc, Options); 2487 } 2488 2489 /// If an ifunc for the specified mangled name is not in the module, create and 2490 /// return an llvm IFunc Function with the specified type. 2491 llvm::Constant * 2492 CodeGenModule::GetOrCreateMultiVersionIFunc(GlobalDecl GD, llvm::Type *DeclTy, 2493 const FunctionDecl *FD) { 2494 std::string MangledName = 2495 getMangledNameImpl(*this, GD, FD, /*OmitMultiVersionMangling=*/true); 2496 std::string IFuncName = MangledName + ".ifunc"; 2497 if (llvm::GlobalValue *IFuncGV = GetGlobalValue(IFuncName)) 2498 return IFuncGV; 2499 2500 // Since this is the first time we've created this IFunc, make sure 2501 // that we put this multiversioned function into the list to be 2502 // replaced later if necessary (target multiversioning only). 2503 if (!FD->isCPUDispatchMultiVersion() && !FD->isCPUSpecificMultiVersion()) 2504 MultiVersionFuncs.push_back(GD); 2505 2506 std::string ResolverName = MangledName + ".resolver"; 2507 llvm::Type *ResolverType = llvm::FunctionType::get( 2508 llvm::PointerType::get(DeclTy, 2509 Context.getTargetAddressSpace(FD->getType())), 2510 false); 2511 llvm::Constant *Resolver = 2512 GetOrCreateLLVMFunction(ResolverName, ResolverType, GlobalDecl{}, 2513 /*ForVTable=*/false); 2514 llvm::GlobalIFunc *GIF = llvm::GlobalIFunc::create( 2515 DeclTy, 0, llvm::Function::ExternalLinkage, "", Resolver, &getModule()); 2516 GIF->setName(IFuncName); 2517 SetCommonAttributes(FD, GIF); 2518 2519 return GIF; 2520 } 2521 2522 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the 2523 /// module, create and return an llvm Function with the specified type. If there 2524 /// is something in the module with the specified name, return it potentially 2525 /// bitcasted to the right type. 2526 /// 2527 /// If D is non-null, it specifies a decl that correspond to this. This is used 2528 /// to set the attributes on the function when it is first created. 2529 llvm::Constant *CodeGenModule::GetOrCreateLLVMFunction( 2530 StringRef MangledName, llvm::Type *Ty, GlobalDecl GD, bool ForVTable, 2531 bool DontDefer, bool IsThunk, llvm::AttributeList ExtraAttrs, 2532 ForDefinition_t IsForDefinition) { 2533 const Decl *D = GD.getDecl(); 2534 2535 // Any attempts to use a MultiVersion function should result in retrieving 2536 // the iFunc instead. Name Mangling will handle the rest of the changes. 2537 if (const FunctionDecl *FD = cast_or_null<FunctionDecl>(D)) { 2538 // For the device mark the function as one that should be emitted. 2539 if (getLangOpts().OpenMPIsDevice && OpenMPRuntime && 2540 !OpenMPRuntime->markAsGlobalTarget(GD) && FD->isDefined() && 2541 !DontDefer && !IsForDefinition) { 2542 const FunctionDecl *FDDef = FD->getDefinition(); 2543 GlobalDecl GDDef; 2544 if (const auto *CD = dyn_cast<CXXConstructorDecl>(FDDef)) 2545 GDDef = GlobalDecl(CD, GD.getCtorType()); 2546 else if (const auto *DD = dyn_cast<CXXDestructorDecl>(FDDef)) 2547 GDDef = GlobalDecl(DD, GD.getDtorType()); 2548 else 2549 GDDef = GlobalDecl(FDDef); 2550 addDeferredDeclToEmit(GDDef); 2551 } 2552 2553 if (FD->isMultiVersion()) { 2554 const auto *TA = FD->getAttr<TargetAttr>(); 2555 if (TA && TA->isDefaultVersion()) 2556 UpdateMultiVersionNames(GD, FD); 2557 if (!IsForDefinition) 2558 return GetOrCreateMultiVersionIFunc(GD, Ty, FD); 2559 } 2560 } 2561 2562 // Lookup the entry, lazily creating it if necessary. 2563 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 2564 if (Entry) { 2565 if (WeakRefReferences.erase(Entry)) { 2566 const FunctionDecl *FD = cast_or_null<FunctionDecl>(D); 2567 if (FD && !FD->hasAttr<WeakAttr>()) 2568 Entry->setLinkage(llvm::Function::ExternalLinkage); 2569 } 2570 2571 // Handle dropped DLL attributes. 2572 if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>()) { 2573 Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 2574 setDSOLocal(Entry); 2575 } 2576 2577 // If there are two attempts to define the same mangled name, issue an 2578 // error. 2579 if (IsForDefinition && !Entry->isDeclaration()) { 2580 GlobalDecl OtherGD; 2581 // Check that GD is not yet in DiagnosedConflictingDefinitions is required 2582 // to make sure that we issue an error only once. 2583 if (lookupRepresentativeDecl(MangledName, OtherGD) && 2584 (GD.getCanonicalDecl().getDecl() != 2585 OtherGD.getCanonicalDecl().getDecl()) && 2586 DiagnosedConflictingDefinitions.insert(GD).second) { 2587 getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name) 2588 << MangledName; 2589 getDiags().Report(OtherGD.getDecl()->getLocation(), 2590 diag::note_previous_definition); 2591 } 2592 } 2593 2594 if ((isa<llvm::Function>(Entry) || isa<llvm::GlobalAlias>(Entry)) && 2595 (Entry->getType()->getElementType() == Ty)) { 2596 return Entry; 2597 } 2598 2599 // Make sure the result is of the correct type. 2600 // (If function is requested for a definition, we always need to create a new 2601 // function, not just return a bitcast.) 2602 if (!IsForDefinition) 2603 return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo()); 2604 } 2605 2606 // This function doesn't have a complete type (for example, the return 2607 // type is an incomplete struct). Use a fake type instead, and make 2608 // sure not to try to set attributes. 2609 bool IsIncompleteFunction = false; 2610 2611 llvm::FunctionType *FTy; 2612 if (isa<llvm::FunctionType>(Ty)) { 2613 FTy = cast<llvm::FunctionType>(Ty); 2614 } else { 2615 FTy = llvm::FunctionType::get(VoidTy, false); 2616 IsIncompleteFunction = true; 2617 } 2618 2619 llvm::Function *F = 2620 llvm::Function::Create(FTy, llvm::Function::ExternalLinkage, 2621 Entry ? StringRef() : MangledName, &getModule()); 2622 2623 // If we already created a function with the same mangled name (but different 2624 // type) before, take its name and add it to the list of functions to be 2625 // replaced with F at the end of CodeGen. 2626 // 2627 // This happens if there is a prototype for a function (e.g. "int f()") and 2628 // then a definition of a different type (e.g. "int f(int x)"). 2629 if (Entry) { 2630 F->takeName(Entry); 2631 2632 // This might be an implementation of a function without a prototype, in 2633 // which case, try to do special replacement of calls which match the new 2634 // prototype. The really key thing here is that we also potentially drop 2635 // arguments from the call site so as to make a direct call, which makes the 2636 // inliner happier and suppresses a number of optimizer warnings (!) about 2637 // dropping arguments. 2638 if (!Entry->use_empty()) { 2639 ReplaceUsesOfNonProtoTypeWithRealFunction(Entry, F); 2640 Entry->removeDeadConstantUsers(); 2641 } 2642 2643 llvm::Constant *BC = llvm::ConstantExpr::getBitCast( 2644 F, Entry->getType()->getElementType()->getPointerTo()); 2645 addGlobalValReplacement(Entry, BC); 2646 } 2647 2648 assert(F->getName() == MangledName && "name was uniqued!"); 2649 if (D) 2650 SetFunctionAttributes(GD, F, IsIncompleteFunction, IsThunk); 2651 if (ExtraAttrs.hasAttributes(llvm::AttributeList::FunctionIndex)) { 2652 llvm::AttrBuilder B(ExtraAttrs, llvm::AttributeList::FunctionIndex); 2653 F->addAttributes(llvm::AttributeList::FunctionIndex, B); 2654 } 2655 2656 if (!DontDefer) { 2657 // All MSVC dtors other than the base dtor are linkonce_odr and delegate to 2658 // each other bottoming out with the base dtor. Therefore we emit non-base 2659 // dtors on usage, even if there is no dtor definition in the TU. 2660 if (D && isa<CXXDestructorDecl>(D) && 2661 getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D), 2662 GD.getDtorType())) 2663 addDeferredDeclToEmit(GD); 2664 2665 // This is the first use or definition of a mangled name. If there is a 2666 // deferred decl with this name, remember that we need to emit it at the end 2667 // of the file. 2668 auto DDI = DeferredDecls.find(MangledName); 2669 if (DDI != DeferredDecls.end()) { 2670 // Move the potentially referenced deferred decl to the 2671 // DeferredDeclsToEmit list, and remove it from DeferredDecls (since we 2672 // don't need it anymore). 2673 addDeferredDeclToEmit(DDI->second); 2674 DeferredDecls.erase(DDI); 2675 2676 // Otherwise, there are cases we have to worry about where we're 2677 // using a declaration for which we must emit a definition but where 2678 // we might not find a top-level definition: 2679 // - member functions defined inline in their classes 2680 // - friend functions defined inline in some class 2681 // - special member functions with implicit definitions 2682 // If we ever change our AST traversal to walk into class methods, 2683 // this will be unnecessary. 2684 // 2685 // We also don't emit a definition for a function if it's going to be an 2686 // entry in a vtable, unless it's already marked as used. 2687 } else if (getLangOpts().CPlusPlus && D) { 2688 // Look for a declaration that's lexically in a record. 2689 for (const auto *FD = cast<FunctionDecl>(D)->getMostRecentDecl(); FD; 2690 FD = FD->getPreviousDecl()) { 2691 if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) { 2692 if (FD->doesThisDeclarationHaveABody()) { 2693 addDeferredDeclToEmit(GD.getWithDecl(FD)); 2694 break; 2695 } 2696 } 2697 } 2698 } 2699 } 2700 2701 // Make sure the result is of the requested type. 2702 if (!IsIncompleteFunction) { 2703 assert(F->getType()->getElementType() == Ty); 2704 return F; 2705 } 2706 2707 llvm::Type *PTy = llvm::PointerType::getUnqual(Ty); 2708 return llvm::ConstantExpr::getBitCast(F, PTy); 2709 } 2710 2711 /// GetAddrOfFunction - Return the address of the given function. If Ty is 2712 /// non-null, then this function will use the specified type if it has to 2713 /// create it (this occurs when we see a definition of the function). 2714 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD, 2715 llvm::Type *Ty, 2716 bool ForVTable, 2717 bool DontDefer, 2718 ForDefinition_t IsForDefinition) { 2719 // If there was no specific requested type, just convert it now. 2720 if (!Ty) { 2721 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 2722 auto CanonTy = Context.getCanonicalType(FD->getType()); 2723 Ty = getTypes().ConvertFunctionType(CanonTy, FD); 2724 } 2725 2726 // Devirtualized destructor calls may come through here instead of via 2727 // getAddrOfCXXStructor. Make sure we use the MS ABI base destructor instead 2728 // of the complete destructor when necessary. 2729 if (const auto *DD = dyn_cast<CXXDestructorDecl>(GD.getDecl())) { 2730 if (getTarget().getCXXABI().isMicrosoft() && 2731 GD.getDtorType() == Dtor_Complete && 2732 DD->getParent()->getNumVBases() == 0) 2733 GD = GlobalDecl(DD, Dtor_Base); 2734 } 2735 2736 StringRef MangledName = getMangledName(GD); 2737 return GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable, DontDefer, 2738 /*IsThunk=*/false, llvm::AttributeList(), 2739 IsForDefinition); 2740 } 2741 2742 static const FunctionDecl * 2743 GetRuntimeFunctionDecl(ASTContext &C, StringRef Name) { 2744 TranslationUnitDecl *TUDecl = C.getTranslationUnitDecl(); 2745 DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl); 2746 2747 IdentifierInfo &CII = C.Idents.get(Name); 2748 for (const auto &Result : DC->lookup(&CII)) 2749 if (const auto FD = dyn_cast<FunctionDecl>(Result)) 2750 return FD; 2751 2752 if (!C.getLangOpts().CPlusPlus) 2753 return nullptr; 2754 2755 // Demangle the premangled name from getTerminateFn() 2756 IdentifierInfo &CXXII = 2757 (Name == "_ZSt9terminatev" || Name == "?terminate@@YAXXZ") 2758 ? C.Idents.get("terminate") 2759 : C.Idents.get(Name); 2760 2761 for (const auto &N : {"__cxxabiv1", "std"}) { 2762 IdentifierInfo &NS = C.Idents.get(N); 2763 for (const auto &Result : DC->lookup(&NS)) { 2764 NamespaceDecl *ND = dyn_cast<NamespaceDecl>(Result); 2765 if (auto LSD = dyn_cast<LinkageSpecDecl>(Result)) 2766 for (const auto &Result : LSD->lookup(&NS)) 2767 if ((ND = dyn_cast<NamespaceDecl>(Result))) 2768 break; 2769 2770 if (ND) 2771 for (const auto &Result : ND->lookup(&CXXII)) 2772 if (const auto *FD = dyn_cast<FunctionDecl>(Result)) 2773 return FD; 2774 } 2775 } 2776 2777 return nullptr; 2778 } 2779 2780 /// CreateRuntimeFunction - Create a new runtime function with the specified 2781 /// type and name. 2782 llvm::Constant * 2783 CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy, StringRef Name, 2784 llvm::AttributeList ExtraAttrs, 2785 bool Local) { 2786 llvm::Constant *C = 2787 GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false, 2788 /*DontDefer=*/false, /*IsThunk=*/false, 2789 ExtraAttrs); 2790 2791 if (auto *F = dyn_cast<llvm::Function>(C)) { 2792 if (F->empty()) { 2793 F->setCallingConv(getRuntimeCC()); 2794 2795 if (!Local && getTriple().isOSBinFormatCOFF() && 2796 !getCodeGenOpts().LTOVisibilityPublicStd && 2797 !getTriple().isWindowsGNUEnvironment()) { 2798 const FunctionDecl *FD = GetRuntimeFunctionDecl(Context, Name); 2799 if (!FD || FD->hasAttr<DLLImportAttr>()) { 2800 F->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass); 2801 F->setLinkage(llvm::GlobalValue::ExternalLinkage); 2802 } 2803 } 2804 setDSOLocal(F); 2805 } 2806 } 2807 2808 return C; 2809 } 2810 2811 /// CreateBuiltinFunction - Create a new builtin function with the specified 2812 /// type and name. 2813 llvm::Constant * 2814 CodeGenModule::CreateBuiltinFunction(llvm::FunctionType *FTy, StringRef Name, 2815 llvm::AttributeList ExtraAttrs) { 2816 return CreateRuntimeFunction(FTy, Name, ExtraAttrs, true); 2817 } 2818 2819 /// isTypeConstant - Determine whether an object of this type can be emitted 2820 /// as a constant. 2821 /// 2822 /// If ExcludeCtor is true, the duration when the object's constructor runs 2823 /// will not be considered. The caller will need to verify that the object is 2824 /// not written to during its construction. 2825 bool CodeGenModule::isTypeConstant(QualType Ty, bool ExcludeCtor) { 2826 if (!Ty.isConstant(Context) && !Ty->isReferenceType()) 2827 return false; 2828 2829 if (Context.getLangOpts().CPlusPlus) { 2830 if (const CXXRecordDecl *Record 2831 = Context.getBaseElementType(Ty)->getAsCXXRecordDecl()) 2832 return ExcludeCtor && !Record->hasMutableFields() && 2833 Record->hasTrivialDestructor(); 2834 } 2835 2836 return true; 2837 } 2838 2839 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module, 2840 /// create and return an llvm GlobalVariable with the specified type. If there 2841 /// is something in the module with the specified name, return it potentially 2842 /// bitcasted to the right type. 2843 /// 2844 /// If D is non-null, it specifies a decl that correspond to this. This is used 2845 /// to set the attributes on the global when it is first created. 2846 /// 2847 /// If IsForDefinition is true, it is guaranteed that an actual global with 2848 /// type Ty will be returned, not conversion of a variable with the same 2849 /// mangled name but some other type. 2850 llvm::Constant * 2851 CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName, 2852 llvm::PointerType *Ty, 2853 const VarDecl *D, 2854 ForDefinition_t IsForDefinition) { 2855 // Lookup the entry, lazily creating it if necessary. 2856 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 2857 if (Entry) { 2858 if (WeakRefReferences.erase(Entry)) { 2859 if (D && !D->hasAttr<WeakAttr>()) 2860 Entry->setLinkage(llvm::Function::ExternalLinkage); 2861 } 2862 2863 // Handle dropped DLL attributes. 2864 if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>()) 2865 Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 2866 2867 if (LangOpts.OpenMP && !LangOpts.OpenMPSimd && D) 2868 getOpenMPRuntime().registerTargetGlobalVariable(D, Entry); 2869 2870 if (Entry->getType() == Ty) 2871 return Entry; 2872 2873 // If there are two attempts to define the same mangled name, issue an 2874 // error. 2875 if (IsForDefinition && !Entry->isDeclaration()) { 2876 GlobalDecl OtherGD; 2877 const VarDecl *OtherD; 2878 2879 // Check that D is not yet in DiagnosedConflictingDefinitions is required 2880 // to make sure that we issue an error only once. 2881 if (D && lookupRepresentativeDecl(MangledName, OtherGD) && 2882 (D->getCanonicalDecl() != OtherGD.getCanonicalDecl().getDecl()) && 2883 (OtherD = dyn_cast<VarDecl>(OtherGD.getDecl())) && 2884 OtherD->hasInit() && 2885 DiagnosedConflictingDefinitions.insert(D).second) { 2886 getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name) 2887 << MangledName; 2888 getDiags().Report(OtherGD.getDecl()->getLocation(), 2889 diag::note_previous_definition); 2890 } 2891 } 2892 2893 // Make sure the result is of the correct type. 2894 if (Entry->getType()->getAddressSpace() != Ty->getAddressSpace()) 2895 return llvm::ConstantExpr::getAddrSpaceCast(Entry, Ty); 2896 2897 // (If global is requested for a definition, we always need to create a new 2898 // global, not just return a bitcast.) 2899 if (!IsForDefinition) 2900 return llvm::ConstantExpr::getBitCast(Entry, Ty); 2901 } 2902 2903 auto AddrSpace = GetGlobalVarAddressSpace(D); 2904 auto TargetAddrSpace = getContext().getTargetAddressSpace(AddrSpace); 2905 2906 auto *GV = new llvm::GlobalVariable( 2907 getModule(), Ty->getElementType(), false, 2908 llvm::GlobalValue::ExternalLinkage, nullptr, MangledName, nullptr, 2909 llvm::GlobalVariable::NotThreadLocal, TargetAddrSpace); 2910 2911 // If we already created a global with the same mangled name (but different 2912 // type) before, take its name and remove it from its parent. 2913 if (Entry) { 2914 GV->takeName(Entry); 2915 2916 if (!Entry->use_empty()) { 2917 llvm::Constant *NewPtrForOldDecl = 2918 llvm::ConstantExpr::getBitCast(GV, Entry->getType()); 2919 Entry->replaceAllUsesWith(NewPtrForOldDecl); 2920 } 2921 2922 Entry->eraseFromParent(); 2923 } 2924 2925 // This is the first use or definition of a mangled name. If there is a 2926 // deferred decl with this name, remember that we need to emit it at the end 2927 // of the file. 2928 auto DDI = DeferredDecls.find(MangledName); 2929 if (DDI != DeferredDecls.end()) { 2930 // Move the potentially referenced deferred decl to the DeferredDeclsToEmit 2931 // list, and remove it from DeferredDecls (since we don't need it anymore). 2932 addDeferredDeclToEmit(DDI->second); 2933 DeferredDecls.erase(DDI); 2934 } 2935 2936 // Handle things which are present even on external declarations. 2937 if (D) { 2938 if (LangOpts.OpenMP && !LangOpts.OpenMPSimd) 2939 getOpenMPRuntime().registerTargetGlobalVariable(D, GV); 2940 2941 // FIXME: This code is overly simple and should be merged with other global 2942 // handling. 2943 GV->setConstant(isTypeConstant(D->getType(), false)); 2944 2945 GV->setAlignment(getContext().getDeclAlign(D).getQuantity()); 2946 2947 setLinkageForGV(GV, D); 2948 2949 if (D->getTLSKind()) { 2950 if (D->getTLSKind() == VarDecl::TLS_Dynamic) 2951 CXXThreadLocals.push_back(D); 2952 setTLSMode(GV, *D); 2953 } 2954 2955 setGVProperties(GV, D); 2956 2957 // If required by the ABI, treat declarations of static data members with 2958 // inline initializers as definitions. 2959 if (getContext().isMSStaticDataMemberInlineDefinition(D)) { 2960 EmitGlobalVarDefinition(D); 2961 } 2962 2963 // Emit section information for extern variables. 2964 if (D->hasExternalStorage()) { 2965 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) 2966 GV->setSection(SA->getName()); 2967 } 2968 2969 // Handle XCore specific ABI requirements. 2970 if (getTriple().getArch() == llvm::Triple::xcore && 2971 D->getLanguageLinkage() == CLanguageLinkage && 2972 D->getType().isConstant(Context) && 2973 isExternallyVisible(D->getLinkageAndVisibility().getLinkage())) 2974 GV->setSection(".cp.rodata"); 2975 2976 // Check if we a have a const declaration with an initializer, we may be 2977 // able to emit it as available_externally to expose it's value to the 2978 // optimizer. 2979 if (Context.getLangOpts().CPlusPlus && GV->hasExternalLinkage() && 2980 D->getType().isConstQualified() && !GV->hasInitializer() && 2981 !D->hasDefinition() && D->hasInit() && !D->hasAttr<DLLImportAttr>()) { 2982 const auto *Record = 2983 Context.getBaseElementType(D->getType())->getAsCXXRecordDecl(); 2984 bool HasMutableFields = Record && Record->hasMutableFields(); 2985 if (!HasMutableFields) { 2986 const VarDecl *InitDecl; 2987 const Expr *InitExpr = D->getAnyInitializer(InitDecl); 2988 if (InitExpr) { 2989 ConstantEmitter emitter(*this); 2990 llvm::Constant *Init = emitter.tryEmitForInitializer(*InitDecl); 2991 if (Init) { 2992 auto *InitType = Init->getType(); 2993 if (GV->getType()->getElementType() != InitType) { 2994 // The type of the initializer does not match the definition. 2995 // This happens when an initializer has a different type from 2996 // the type of the global (because of padding at the end of a 2997 // structure for instance). 2998 GV->setName(StringRef()); 2999 // Make a new global with the correct type, this is now guaranteed 3000 // to work. 3001 auto *NewGV = cast<llvm::GlobalVariable>( 3002 GetAddrOfGlobalVar(D, InitType, IsForDefinition)); 3003 3004 // Erase the old global, since it is no longer used. 3005 GV->eraseFromParent(); 3006 GV = NewGV; 3007 } else { 3008 GV->setInitializer(Init); 3009 GV->setConstant(true); 3010 GV->setLinkage(llvm::GlobalValue::AvailableExternallyLinkage); 3011 } 3012 emitter.finalize(GV); 3013 } 3014 } 3015 } 3016 } 3017 } 3018 3019 LangAS ExpectedAS = 3020 D ? D->getType().getAddressSpace() 3021 : (LangOpts.OpenCL ? LangAS::opencl_global : LangAS::Default); 3022 assert(getContext().getTargetAddressSpace(ExpectedAS) == 3023 Ty->getPointerAddressSpace()); 3024 if (AddrSpace != ExpectedAS) 3025 return getTargetCodeGenInfo().performAddrSpaceCast(*this, GV, AddrSpace, 3026 ExpectedAS, Ty); 3027 3028 return GV; 3029 } 3030 3031 llvm::Constant * 3032 CodeGenModule::GetAddrOfGlobal(GlobalDecl GD, 3033 ForDefinition_t IsForDefinition) { 3034 const Decl *D = GD.getDecl(); 3035 if (isa<CXXConstructorDecl>(D)) 3036 return getAddrOfCXXStructor(cast<CXXConstructorDecl>(D), 3037 getFromCtorType(GD.getCtorType()), 3038 /*FnInfo=*/nullptr, /*FnType=*/nullptr, 3039 /*DontDefer=*/false, IsForDefinition); 3040 else if (isa<CXXDestructorDecl>(D)) 3041 return getAddrOfCXXStructor(cast<CXXDestructorDecl>(D), 3042 getFromDtorType(GD.getDtorType()), 3043 /*FnInfo=*/nullptr, /*FnType=*/nullptr, 3044 /*DontDefer=*/false, IsForDefinition); 3045 else if (isa<CXXMethodDecl>(D)) { 3046 auto FInfo = &getTypes().arrangeCXXMethodDeclaration( 3047 cast<CXXMethodDecl>(D)); 3048 auto Ty = getTypes().GetFunctionType(*FInfo); 3049 return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false, 3050 IsForDefinition); 3051 } else if (isa<FunctionDecl>(D)) { 3052 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 3053 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 3054 return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false, 3055 IsForDefinition); 3056 } else 3057 return GetAddrOfGlobalVar(cast<VarDecl>(D), /*Ty=*/nullptr, 3058 IsForDefinition); 3059 } 3060 3061 llvm::GlobalVariable * 3062 CodeGenModule::CreateOrReplaceCXXRuntimeVariable(StringRef Name, 3063 llvm::Type *Ty, 3064 llvm::GlobalValue::LinkageTypes Linkage) { 3065 llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name); 3066 llvm::GlobalVariable *OldGV = nullptr; 3067 3068 if (GV) { 3069 // Check if the variable has the right type. 3070 if (GV->getType()->getElementType() == Ty) 3071 return GV; 3072 3073 // Because C++ name mangling, the only way we can end up with an already 3074 // existing global with the same name is if it has been declared extern "C". 3075 assert(GV->isDeclaration() && "Declaration has wrong type!"); 3076 OldGV = GV; 3077 } 3078 3079 // Create a new variable. 3080 GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true, 3081 Linkage, nullptr, Name); 3082 3083 if (OldGV) { 3084 // Replace occurrences of the old variable if needed. 3085 GV->takeName(OldGV); 3086 3087 if (!OldGV->use_empty()) { 3088 llvm::Constant *NewPtrForOldDecl = 3089 llvm::ConstantExpr::getBitCast(GV, OldGV->getType()); 3090 OldGV->replaceAllUsesWith(NewPtrForOldDecl); 3091 } 3092 3093 OldGV->eraseFromParent(); 3094 } 3095 3096 if (supportsCOMDAT() && GV->isWeakForLinker() && 3097 !GV->hasAvailableExternallyLinkage()) 3098 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 3099 3100 return GV; 3101 } 3102 3103 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the 3104 /// given global variable. If Ty is non-null and if the global doesn't exist, 3105 /// then it will be created with the specified type instead of whatever the 3106 /// normal requested type would be. If IsForDefinition is true, it is guaranteed 3107 /// that an actual global with type Ty will be returned, not conversion of a 3108 /// variable with the same mangled name but some other type. 3109 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D, 3110 llvm::Type *Ty, 3111 ForDefinition_t IsForDefinition) { 3112 assert(D->hasGlobalStorage() && "Not a global variable"); 3113 QualType ASTTy = D->getType(); 3114 if (!Ty) 3115 Ty = getTypes().ConvertTypeForMem(ASTTy); 3116 3117 llvm::PointerType *PTy = 3118 llvm::PointerType::get(Ty, getContext().getTargetAddressSpace(ASTTy)); 3119 3120 StringRef MangledName = getMangledName(D); 3121 return GetOrCreateLLVMGlobal(MangledName, PTy, D, IsForDefinition); 3122 } 3123 3124 /// CreateRuntimeVariable - Create a new runtime global variable with the 3125 /// specified type and name. 3126 llvm::Constant * 3127 CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty, 3128 StringRef Name) { 3129 auto *Ret = 3130 GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), nullptr); 3131 setDSOLocal(cast<llvm::GlobalValue>(Ret->stripPointerCasts())); 3132 return Ret; 3133 } 3134 3135 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) { 3136 assert(!D->getInit() && "Cannot emit definite definitions here!"); 3137 3138 StringRef MangledName = getMangledName(D); 3139 llvm::GlobalValue *GV = GetGlobalValue(MangledName); 3140 3141 // We already have a definition, not declaration, with the same mangled name. 3142 // Emitting of declaration is not required (and actually overwrites emitted 3143 // definition). 3144 if (GV && !GV->isDeclaration()) 3145 return; 3146 3147 // If we have not seen a reference to this variable yet, place it into the 3148 // deferred declarations table to be emitted if needed later. 3149 if (!MustBeEmitted(D) && !GV) { 3150 DeferredDecls[MangledName] = D; 3151 return; 3152 } 3153 3154 // The tentative definition is the only definition. 3155 EmitGlobalVarDefinition(D); 3156 } 3157 3158 CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const { 3159 return Context.toCharUnitsFromBits( 3160 getDataLayout().getTypeStoreSizeInBits(Ty)); 3161 } 3162 3163 LangAS CodeGenModule::GetGlobalVarAddressSpace(const VarDecl *D) { 3164 LangAS AddrSpace = LangAS::Default; 3165 if (LangOpts.OpenCL) { 3166 AddrSpace = D ? D->getType().getAddressSpace() : LangAS::opencl_global; 3167 assert(AddrSpace == LangAS::opencl_global || 3168 AddrSpace == LangAS::opencl_constant || 3169 AddrSpace == LangAS::opencl_local || 3170 AddrSpace >= LangAS::FirstTargetAddressSpace); 3171 return AddrSpace; 3172 } 3173 3174 if (LangOpts.CUDA && LangOpts.CUDAIsDevice) { 3175 if (D && D->hasAttr<CUDAConstantAttr>()) 3176 return LangAS::cuda_constant; 3177 else if (D && D->hasAttr<CUDASharedAttr>()) 3178 return LangAS::cuda_shared; 3179 else if (D && D->hasAttr<CUDADeviceAttr>()) 3180 return LangAS::cuda_device; 3181 else if (D && D->getType().isConstQualified()) 3182 return LangAS::cuda_constant; 3183 else 3184 return LangAS::cuda_device; 3185 } 3186 3187 return getTargetCodeGenInfo().getGlobalVarAddressSpace(*this, D); 3188 } 3189 3190 LangAS CodeGenModule::getStringLiteralAddressSpace() const { 3191 // OpenCL v1.2 s6.5.3: a string literal is in the constant address space. 3192 if (LangOpts.OpenCL) 3193 return LangAS::opencl_constant; 3194 if (auto AS = getTarget().getConstantAddressSpace()) 3195 return AS.getValue(); 3196 return LangAS::Default; 3197 } 3198 3199 // In address space agnostic languages, string literals are in default address 3200 // space in AST. However, certain targets (e.g. amdgcn) request them to be 3201 // emitted in constant address space in LLVM IR. To be consistent with other 3202 // parts of AST, string literal global variables in constant address space 3203 // need to be casted to default address space before being put into address 3204 // map and referenced by other part of CodeGen. 3205 // In OpenCL, string literals are in constant address space in AST, therefore 3206 // they should not be casted to default address space. 3207 static llvm::Constant * 3208 castStringLiteralToDefaultAddressSpace(CodeGenModule &CGM, 3209 llvm::GlobalVariable *GV) { 3210 llvm::Constant *Cast = GV; 3211 if (!CGM.getLangOpts().OpenCL) { 3212 if (auto AS = CGM.getTarget().getConstantAddressSpace()) { 3213 if (AS != LangAS::Default) 3214 Cast = CGM.getTargetCodeGenInfo().performAddrSpaceCast( 3215 CGM, GV, AS.getValue(), LangAS::Default, 3216 GV->getValueType()->getPointerTo( 3217 CGM.getContext().getTargetAddressSpace(LangAS::Default))); 3218 } 3219 } 3220 return Cast; 3221 } 3222 3223 template<typename SomeDecl> 3224 void CodeGenModule::MaybeHandleStaticInExternC(const SomeDecl *D, 3225 llvm::GlobalValue *GV) { 3226 if (!getLangOpts().CPlusPlus) 3227 return; 3228 3229 // Must have 'used' attribute, or else inline assembly can't rely on 3230 // the name existing. 3231 if (!D->template hasAttr<UsedAttr>()) 3232 return; 3233 3234 // Must have internal linkage and an ordinary name. 3235 if (!D->getIdentifier() || D->getFormalLinkage() != InternalLinkage) 3236 return; 3237 3238 // Must be in an extern "C" context. Entities declared directly within 3239 // a record are not extern "C" even if the record is in such a context. 3240 const SomeDecl *First = D->getFirstDecl(); 3241 if (First->getDeclContext()->isRecord() || !First->isInExternCContext()) 3242 return; 3243 3244 // OK, this is an internal linkage entity inside an extern "C" linkage 3245 // specification. Make a note of that so we can give it the "expected" 3246 // mangled name if nothing else is using that name. 3247 std::pair<StaticExternCMap::iterator, bool> R = 3248 StaticExternCValues.insert(std::make_pair(D->getIdentifier(), GV)); 3249 3250 // If we have multiple internal linkage entities with the same name 3251 // in extern "C" regions, none of them gets that name. 3252 if (!R.second) 3253 R.first->second = nullptr; 3254 } 3255 3256 static bool shouldBeInCOMDAT(CodeGenModule &CGM, const Decl &D) { 3257 if (!CGM.supportsCOMDAT()) 3258 return false; 3259 3260 if (D.hasAttr<SelectAnyAttr>()) 3261 return true; 3262 3263 GVALinkage Linkage; 3264 if (auto *VD = dyn_cast<VarDecl>(&D)) 3265 Linkage = CGM.getContext().GetGVALinkageForVariable(VD); 3266 else 3267 Linkage = CGM.getContext().GetGVALinkageForFunction(cast<FunctionDecl>(&D)); 3268 3269 switch (Linkage) { 3270 case GVA_Internal: 3271 case GVA_AvailableExternally: 3272 case GVA_StrongExternal: 3273 return false; 3274 case GVA_DiscardableODR: 3275 case GVA_StrongODR: 3276 return true; 3277 } 3278 llvm_unreachable("No such linkage"); 3279 } 3280 3281 void CodeGenModule::maybeSetTrivialComdat(const Decl &D, 3282 llvm::GlobalObject &GO) { 3283 if (!shouldBeInCOMDAT(*this, D)) 3284 return; 3285 GO.setComdat(TheModule.getOrInsertComdat(GO.getName())); 3286 } 3287 3288 /// Pass IsTentative as true if you want to create a tentative definition. 3289 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D, 3290 bool IsTentative) { 3291 // OpenCL global variables of sampler type are translated to function calls, 3292 // therefore no need to be translated. 3293 QualType ASTTy = D->getType(); 3294 if (getLangOpts().OpenCL && ASTTy->isSamplerT()) 3295 return; 3296 3297 // If this is OpenMP device, check if it is legal to emit this global 3298 // normally. 3299 if (LangOpts.OpenMPIsDevice && OpenMPRuntime && 3300 OpenMPRuntime->emitTargetGlobalVariable(D)) 3301 return; 3302 3303 llvm::Constant *Init = nullptr; 3304 CXXRecordDecl *RD = ASTTy->getBaseElementTypeUnsafe()->getAsCXXRecordDecl(); 3305 bool NeedsGlobalCtor = false; 3306 bool NeedsGlobalDtor = RD && !RD->hasTrivialDestructor(); 3307 3308 const VarDecl *InitDecl; 3309 const Expr *InitExpr = D->getAnyInitializer(InitDecl); 3310 3311 Optional<ConstantEmitter> emitter; 3312 3313 // CUDA E.2.4.1 "__shared__ variables cannot have an initialization 3314 // as part of their declaration." Sema has already checked for 3315 // error cases, so we just need to set Init to UndefValue. 3316 if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice && 3317 D->hasAttr<CUDASharedAttr>()) 3318 Init = llvm::UndefValue::get(getTypes().ConvertType(ASTTy)); 3319 else if (!InitExpr) { 3320 // This is a tentative definition; tentative definitions are 3321 // implicitly initialized with { 0 }. 3322 // 3323 // Note that tentative definitions are only emitted at the end of 3324 // a translation unit, so they should never have incomplete 3325 // type. In addition, EmitTentativeDefinition makes sure that we 3326 // never attempt to emit a tentative definition if a real one 3327 // exists. A use may still exists, however, so we still may need 3328 // to do a RAUW. 3329 assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type"); 3330 Init = EmitNullConstant(D->getType()); 3331 } else { 3332 initializedGlobalDecl = GlobalDecl(D); 3333 emitter.emplace(*this); 3334 Init = emitter->tryEmitForInitializer(*InitDecl); 3335 3336 if (!Init) { 3337 QualType T = InitExpr->getType(); 3338 if (D->getType()->isReferenceType()) 3339 T = D->getType(); 3340 3341 if (getLangOpts().CPlusPlus) { 3342 Init = EmitNullConstant(T); 3343 NeedsGlobalCtor = true; 3344 } else { 3345 ErrorUnsupported(D, "static initializer"); 3346 Init = llvm::UndefValue::get(getTypes().ConvertType(T)); 3347 } 3348 } else { 3349 // We don't need an initializer, so remove the entry for the delayed 3350 // initializer position (just in case this entry was delayed) if we 3351 // also don't need to register a destructor. 3352 if (getLangOpts().CPlusPlus && !NeedsGlobalDtor) 3353 DelayedCXXInitPosition.erase(D); 3354 } 3355 } 3356 3357 llvm::Type* InitType = Init->getType(); 3358 llvm::Constant *Entry = 3359 GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative)); 3360 3361 // Strip off a bitcast if we got one back. 3362 if (auto *CE = dyn_cast<llvm::ConstantExpr>(Entry)) { 3363 assert(CE->getOpcode() == llvm::Instruction::BitCast || 3364 CE->getOpcode() == llvm::Instruction::AddrSpaceCast || 3365 // All zero index gep. 3366 CE->getOpcode() == llvm::Instruction::GetElementPtr); 3367 Entry = CE->getOperand(0); 3368 } 3369 3370 // Entry is now either a Function or GlobalVariable. 3371 auto *GV = dyn_cast<llvm::GlobalVariable>(Entry); 3372 3373 // We have a definition after a declaration with the wrong type. 3374 // We must make a new GlobalVariable* and update everything that used OldGV 3375 // (a declaration or tentative definition) with the new GlobalVariable* 3376 // (which will be a definition). 3377 // 3378 // This happens if there is a prototype for a global (e.g. 3379 // "extern int x[];") and then a definition of a different type (e.g. 3380 // "int x[10];"). This also happens when an initializer has a different type 3381 // from the type of the global (this happens with unions). 3382 if (!GV || GV->getType()->getElementType() != InitType || 3383 GV->getType()->getAddressSpace() != 3384 getContext().getTargetAddressSpace(GetGlobalVarAddressSpace(D))) { 3385 3386 // Move the old entry aside so that we'll create a new one. 3387 Entry->setName(StringRef()); 3388 3389 // Make a new global with the correct type, this is now guaranteed to work. 3390 GV = cast<llvm::GlobalVariable>( 3391 GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative))); 3392 3393 // Replace all uses of the old global with the new global 3394 llvm::Constant *NewPtrForOldDecl = 3395 llvm::ConstantExpr::getBitCast(GV, Entry->getType()); 3396 Entry->replaceAllUsesWith(NewPtrForOldDecl); 3397 3398 // Erase the old global, since it is no longer used. 3399 cast<llvm::GlobalValue>(Entry)->eraseFromParent(); 3400 } 3401 3402 MaybeHandleStaticInExternC(D, GV); 3403 3404 if (D->hasAttr<AnnotateAttr>()) 3405 AddGlobalAnnotations(D, GV); 3406 3407 // Set the llvm linkage type as appropriate. 3408 llvm::GlobalValue::LinkageTypes Linkage = 3409 getLLVMLinkageVarDefinition(D, GV->isConstant()); 3410 3411 // CUDA B.2.1 "The __device__ qualifier declares a variable that resides on 3412 // the device. [...]" 3413 // CUDA B.2.2 "The __constant__ qualifier, optionally used together with 3414 // __device__, declares a variable that: [...] 3415 // Is accessible from all the threads within the grid and from the host 3416 // through the runtime library (cudaGetSymbolAddress() / cudaGetSymbolSize() 3417 // / cudaMemcpyToSymbol() / cudaMemcpyFromSymbol())." 3418 if (GV && LangOpts.CUDA) { 3419 if (LangOpts.CUDAIsDevice) { 3420 if (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>()) 3421 GV->setExternallyInitialized(true); 3422 } else { 3423 // Host-side shadows of external declarations of device-side 3424 // global variables become internal definitions. These have to 3425 // be internal in order to prevent name conflicts with global 3426 // host variables with the same name in a different TUs. 3427 if (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>()) { 3428 Linkage = llvm::GlobalValue::InternalLinkage; 3429 3430 // Shadow variables and their properties must be registered 3431 // with CUDA runtime. 3432 unsigned Flags = 0; 3433 if (!D->hasDefinition()) 3434 Flags |= CGCUDARuntime::ExternDeviceVar; 3435 if (D->hasAttr<CUDAConstantAttr>()) 3436 Flags |= CGCUDARuntime::ConstantDeviceVar; 3437 getCUDARuntime().registerDeviceVar(*GV, Flags); 3438 } else if (D->hasAttr<CUDASharedAttr>()) 3439 // __shared__ variables are odd. Shadows do get created, but 3440 // they are not registered with the CUDA runtime, so they 3441 // can't really be used to access their device-side 3442 // counterparts. It's not clear yet whether it's nvcc's bug or 3443 // a feature, but we've got to do the same for compatibility. 3444 Linkage = llvm::GlobalValue::InternalLinkage; 3445 } 3446 } 3447 3448 GV->setInitializer(Init); 3449 if (emitter) emitter->finalize(GV); 3450 3451 // If it is safe to mark the global 'constant', do so now. 3452 GV->setConstant(!NeedsGlobalCtor && !NeedsGlobalDtor && 3453 isTypeConstant(D->getType(), true)); 3454 3455 // If it is in a read-only section, mark it 'constant'. 3456 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) { 3457 const ASTContext::SectionInfo &SI = Context.SectionInfos[SA->getName()]; 3458 if ((SI.SectionFlags & ASTContext::PSF_Write) == 0) 3459 GV->setConstant(true); 3460 } 3461 3462 GV->setAlignment(getContext().getDeclAlign(D).getQuantity()); 3463 3464 3465 // On Darwin, if the normal linkage of a C++ thread_local variable is 3466 // LinkOnce or Weak, we keep the normal linkage to prevent multiple 3467 // copies within a linkage unit; otherwise, the backing variable has 3468 // internal linkage and all accesses should just be calls to the 3469 // Itanium-specified entry point, which has the normal linkage of the 3470 // variable. This is to preserve the ability to change the implementation 3471 // behind the scenes. 3472 if (!D->isStaticLocal() && D->getTLSKind() == VarDecl::TLS_Dynamic && 3473 Context.getTargetInfo().getTriple().isOSDarwin() && 3474 !llvm::GlobalVariable::isLinkOnceLinkage(Linkage) && 3475 !llvm::GlobalVariable::isWeakLinkage(Linkage)) 3476 Linkage = llvm::GlobalValue::InternalLinkage; 3477 3478 GV->setLinkage(Linkage); 3479 if (D->hasAttr<DLLImportAttr>()) 3480 GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass); 3481 else if (D->hasAttr<DLLExportAttr>()) 3482 GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass); 3483 else 3484 GV->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass); 3485 3486 if (Linkage == llvm::GlobalVariable::CommonLinkage) { 3487 // common vars aren't constant even if declared const. 3488 GV->setConstant(false); 3489 // Tentative definition of global variables may be initialized with 3490 // non-zero null pointers. In this case they should have weak linkage 3491 // since common linkage must have zero initializer and must not have 3492 // explicit section therefore cannot have non-zero initial value. 3493 if (!GV->getInitializer()->isNullValue()) 3494 GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage); 3495 } 3496 3497 setNonAliasAttributes(D, GV); 3498 3499 if (D->getTLSKind() && !GV->isThreadLocal()) { 3500 if (D->getTLSKind() == VarDecl::TLS_Dynamic) 3501 CXXThreadLocals.push_back(D); 3502 setTLSMode(GV, *D); 3503 } 3504 3505 maybeSetTrivialComdat(*D, *GV); 3506 3507 // Emit the initializer function if necessary. 3508 if (NeedsGlobalCtor || NeedsGlobalDtor) 3509 EmitCXXGlobalVarDeclInitFunc(D, GV, NeedsGlobalCtor); 3510 3511 SanitizerMD->reportGlobalToASan(GV, *D, NeedsGlobalCtor); 3512 3513 // Emit global variable debug information. 3514 if (CGDebugInfo *DI = getModuleDebugInfo()) 3515 if (getCodeGenOpts().getDebugInfo() >= codegenoptions::LimitedDebugInfo) 3516 DI->EmitGlobalVariable(GV, D); 3517 } 3518 3519 static bool isVarDeclStrongDefinition(const ASTContext &Context, 3520 CodeGenModule &CGM, const VarDecl *D, 3521 bool NoCommon) { 3522 // Don't give variables common linkage if -fno-common was specified unless it 3523 // was overridden by a NoCommon attribute. 3524 if ((NoCommon || D->hasAttr<NoCommonAttr>()) && !D->hasAttr<CommonAttr>()) 3525 return true; 3526 3527 // C11 6.9.2/2: 3528 // A declaration of an identifier for an object that has file scope without 3529 // an initializer, and without a storage-class specifier or with the 3530 // storage-class specifier static, constitutes a tentative definition. 3531 if (D->getInit() || D->hasExternalStorage()) 3532 return true; 3533 3534 // A variable cannot be both common and exist in a section. 3535 if (D->hasAttr<SectionAttr>()) 3536 return true; 3537 3538 // A variable cannot be both common and exist in a section. 3539 // We don't try to determine which is the right section in the front-end. 3540 // If no specialized section name is applicable, it will resort to default. 3541 if (D->hasAttr<PragmaClangBSSSectionAttr>() || 3542 D->hasAttr<PragmaClangDataSectionAttr>() || 3543 D->hasAttr<PragmaClangRodataSectionAttr>()) 3544 return true; 3545 3546 // Thread local vars aren't considered common linkage. 3547 if (D->getTLSKind()) 3548 return true; 3549 3550 // Tentative definitions marked with WeakImportAttr are true definitions. 3551 if (D->hasAttr<WeakImportAttr>()) 3552 return true; 3553 3554 // A variable cannot be both common and exist in a comdat. 3555 if (shouldBeInCOMDAT(CGM, *D)) 3556 return true; 3557 3558 // Declarations with a required alignment do not have common linkage in MSVC 3559 // mode. 3560 if (Context.getTargetInfo().getCXXABI().isMicrosoft()) { 3561 if (D->hasAttr<AlignedAttr>()) 3562 return true; 3563 QualType VarType = D->getType(); 3564 if (Context.isAlignmentRequired(VarType)) 3565 return true; 3566 3567 if (const auto *RT = VarType->getAs<RecordType>()) { 3568 const RecordDecl *RD = RT->getDecl(); 3569 for (const FieldDecl *FD : RD->fields()) { 3570 if (FD->isBitField()) 3571 continue; 3572 if (FD->hasAttr<AlignedAttr>()) 3573 return true; 3574 if (Context.isAlignmentRequired(FD->getType())) 3575 return true; 3576 } 3577 } 3578 } 3579 3580 return false; 3581 } 3582 3583 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageForDeclarator( 3584 const DeclaratorDecl *D, GVALinkage Linkage, bool IsConstantVariable) { 3585 if (Linkage == GVA_Internal) 3586 return llvm::Function::InternalLinkage; 3587 3588 if (D->hasAttr<WeakAttr>()) { 3589 if (IsConstantVariable) 3590 return llvm::GlobalVariable::WeakODRLinkage; 3591 else 3592 return llvm::GlobalVariable::WeakAnyLinkage; 3593 } 3594 3595 // We are guaranteed to have a strong definition somewhere else, 3596 // so we can use available_externally linkage. 3597 if (Linkage == GVA_AvailableExternally) 3598 return llvm::GlobalValue::AvailableExternallyLinkage; 3599 3600 // Note that Apple's kernel linker doesn't support symbol 3601 // coalescing, so we need to avoid linkonce and weak linkages there. 3602 // Normally, this means we just map to internal, but for explicit 3603 // instantiations we'll map to external. 3604 3605 // In C++, the compiler has to emit a definition in every translation unit 3606 // that references the function. We should use linkonce_odr because 3607 // a) if all references in this translation unit are optimized away, we 3608 // don't need to codegen it. b) if the function persists, it needs to be 3609 // merged with other definitions. c) C++ has the ODR, so we know the 3610 // definition is dependable. 3611 if (Linkage == GVA_DiscardableODR) 3612 return !Context.getLangOpts().AppleKext ? llvm::Function::LinkOnceODRLinkage 3613 : llvm::Function::InternalLinkage; 3614 3615 // An explicit instantiation of a template has weak linkage, since 3616 // explicit instantiations can occur in multiple translation units 3617 // and must all be equivalent. However, we are not allowed to 3618 // throw away these explicit instantiations. 3619 // 3620 // We don't currently support CUDA device code spread out across multiple TUs, 3621 // so say that CUDA templates are either external (for kernels) or internal. 3622 // This lets llvm perform aggressive inter-procedural optimizations. 3623 if (Linkage == GVA_StrongODR) { 3624 if (Context.getLangOpts().AppleKext) 3625 return llvm::Function::ExternalLinkage; 3626 if (Context.getLangOpts().CUDA && Context.getLangOpts().CUDAIsDevice) 3627 return D->hasAttr<CUDAGlobalAttr>() ? llvm::Function::ExternalLinkage 3628 : llvm::Function::InternalLinkage; 3629 return llvm::Function::WeakODRLinkage; 3630 } 3631 3632 // C++ doesn't have tentative definitions and thus cannot have common 3633 // linkage. 3634 if (!getLangOpts().CPlusPlus && isa<VarDecl>(D) && 3635 !isVarDeclStrongDefinition(Context, *this, cast<VarDecl>(D), 3636 CodeGenOpts.NoCommon)) 3637 return llvm::GlobalVariable::CommonLinkage; 3638 3639 // selectany symbols are externally visible, so use weak instead of 3640 // linkonce. MSVC optimizes away references to const selectany globals, so 3641 // all definitions should be the same and ODR linkage should be used. 3642 // http://msdn.microsoft.com/en-us/library/5tkz6s71.aspx 3643 if (D->hasAttr<SelectAnyAttr>()) 3644 return llvm::GlobalVariable::WeakODRLinkage; 3645 3646 // Otherwise, we have strong external linkage. 3647 assert(Linkage == GVA_StrongExternal); 3648 return llvm::GlobalVariable::ExternalLinkage; 3649 } 3650 3651 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageVarDefinition( 3652 const VarDecl *VD, bool IsConstant) { 3653 GVALinkage Linkage = getContext().GetGVALinkageForVariable(VD); 3654 return getLLVMLinkageForDeclarator(VD, Linkage, IsConstant); 3655 } 3656 3657 /// Replace the uses of a function that was declared with a non-proto type. 3658 /// We want to silently drop extra arguments from call sites 3659 static void replaceUsesOfNonProtoConstant(llvm::Constant *old, 3660 llvm::Function *newFn) { 3661 // Fast path. 3662 if (old->use_empty()) return; 3663 3664 llvm::Type *newRetTy = newFn->getReturnType(); 3665 SmallVector<llvm::Value*, 4> newArgs; 3666 SmallVector<llvm::OperandBundleDef, 1> newBundles; 3667 3668 for (llvm::Value::use_iterator ui = old->use_begin(), ue = old->use_end(); 3669 ui != ue; ) { 3670 llvm::Value::use_iterator use = ui++; // Increment before the use is erased. 3671 llvm::User *user = use->getUser(); 3672 3673 // Recognize and replace uses of bitcasts. Most calls to 3674 // unprototyped functions will use bitcasts. 3675 if (auto *bitcast = dyn_cast<llvm::ConstantExpr>(user)) { 3676 if (bitcast->getOpcode() == llvm::Instruction::BitCast) 3677 replaceUsesOfNonProtoConstant(bitcast, newFn); 3678 continue; 3679 } 3680 3681 // Recognize calls to the function. 3682 llvm::CallSite callSite(user); 3683 if (!callSite) continue; 3684 if (!callSite.isCallee(&*use)) continue; 3685 3686 // If the return types don't match exactly, then we can't 3687 // transform this call unless it's dead. 3688 if (callSite->getType() != newRetTy && !callSite->use_empty()) 3689 continue; 3690 3691 // Get the call site's attribute list. 3692 SmallVector<llvm::AttributeSet, 8> newArgAttrs; 3693 llvm::AttributeList oldAttrs = callSite.getAttributes(); 3694 3695 // If the function was passed too few arguments, don't transform. 3696 unsigned newNumArgs = newFn->arg_size(); 3697 if (callSite.arg_size() < newNumArgs) continue; 3698 3699 // If extra arguments were passed, we silently drop them. 3700 // If any of the types mismatch, we don't transform. 3701 unsigned argNo = 0; 3702 bool dontTransform = false; 3703 for (llvm::Argument &A : newFn->args()) { 3704 if (callSite.getArgument(argNo)->getType() != A.getType()) { 3705 dontTransform = true; 3706 break; 3707 } 3708 3709 // Add any parameter attributes. 3710 newArgAttrs.push_back(oldAttrs.getParamAttributes(argNo)); 3711 argNo++; 3712 } 3713 if (dontTransform) 3714 continue; 3715 3716 // Okay, we can transform this. Create the new call instruction and copy 3717 // over the required information. 3718 newArgs.append(callSite.arg_begin(), callSite.arg_begin() + argNo); 3719 3720 // Copy over any operand bundles. 3721 callSite.getOperandBundlesAsDefs(newBundles); 3722 3723 llvm::CallSite newCall; 3724 if (callSite.isCall()) { 3725 newCall = llvm::CallInst::Create(newFn, newArgs, newBundles, "", 3726 callSite.getInstruction()); 3727 } else { 3728 auto *oldInvoke = cast<llvm::InvokeInst>(callSite.getInstruction()); 3729 newCall = llvm::InvokeInst::Create(newFn, 3730 oldInvoke->getNormalDest(), 3731 oldInvoke->getUnwindDest(), 3732 newArgs, newBundles, "", 3733 callSite.getInstruction()); 3734 } 3735 newArgs.clear(); // for the next iteration 3736 3737 if (!newCall->getType()->isVoidTy()) 3738 newCall->takeName(callSite.getInstruction()); 3739 newCall.setAttributes(llvm::AttributeList::get( 3740 newFn->getContext(), oldAttrs.getFnAttributes(), 3741 oldAttrs.getRetAttributes(), newArgAttrs)); 3742 newCall.setCallingConv(callSite.getCallingConv()); 3743 3744 // Finally, remove the old call, replacing any uses with the new one. 3745 if (!callSite->use_empty()) 3746 callSite->replaceAllUsesWith(newCall.getInstruction()); 3747 3748 // Copy debug location attached to CI. 3749 if (callSite->getDebugLoc()) 3750 newCall->setDebugLoc(callSite->getDebugLoc()); 3751 3752 callSite->eraseFromParent(); 3753 } 3754 } 3755 3756 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we 3757 /// implement a function with no prototype, e.g. "int foo() {}". If there are 3758 /// existing call uses of the old function in the module, this adjusts them to 3759 /// call the new function directly. 3760 /// 3761 /// This is not just a cleanup: the always_inline pass requires direct calls to 3762 /// functions to be able to inline them. If there is a bitcast in the way, it 3763 /// won't inline them. Instcombine normally deletes these calls, but it isn't 3764 /// run at -O0. 3765 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old, 3766 llvm::Function *NewFn) { 3767 // If we're redefining a global as a function, don't transform it. 3768 if (!isa<llvm::Function>(Old)) return; 3769 3770 replaceUsesOfNonProtoConstant(Old, NewFn); 3771 } 3772 3773 void CodeGenModule::HandleCXXStaticMemberVarInstantiation(VarDecl *VD) { 3774 auto DK = VD->isThisDeclarationADefinition(); 3775 if (DK == VarDecl::Definition && VD->hasAttr<DLLImportAttr>()) 3776 return; 3777 3778 TemplateSpecializationKind TSK = VD->getTemplateSpecializationKind(); 3779 // If we have a definition, this might be a deferred decl. If the 3780 // instantiation is explicit, make sure we emit it at the end. 3781 if (VD->getDefinition() && TSK == TSK_ExplicitInstantiationDefinition) 3782 GetAddrOfGlobalVar(VD); 3783 3784 EmitTopLevelDecl(VD); 3785 } 3786 3787 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD, 3788 llvm::GlobalValue *GV) { 3789 const auto *D = cast<FunctionDecl>(GD.getDecl()); 3790 3791 // Compute the function info and LLVM type. 3792 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 3793 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 3794 3795 // Get or create the prototype for the function. 3796 if (!GV || (GV->getType()->getElementType() != Ty)) 3797 GV = cast<llvm::GlobalValue>(GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, 3798 /*DontDefer=*/true, 3799 ForDefinition)); 3800 3801 // Already emitted. 3802 if (!GV->isDeclaration()) 3803 return; 3804 3805 // We need to set linkage and visibility on the function before 3806 // generating code for it because various parts of IR generation 3807 // want to propagate this information down (e.g. to local static 3808 // declarations). 3809 auto *Fn = cast<llvm::Function>(GV); 3810 setFunctionLinkage(GD, Fn); 3811 3812 // FIXME: this is redundant with part of setFunctionDefinitionAttributes 3813 setGVProperties(Fn, GD); 3814 3815 MaybeHandleStaticInExternC(D, Fn); 3816 3817 3818 maybeSetTrivialComdat(*D, *Fn); 3819 3820 CodeGenFunction(*this).GenerateCode(D, Fn, FI); 3821 3822 setNonAliasAttributes(GD, Fn); 3823 SetLLVMFunctionAttributesForDefinition(D, Fn); 3824 3825 if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>()) 3826 AddGlobalCtor(Fn, CA->getPriority()); 3827 if (const DestructorAttr *DA = D->getAttr<DestructorAttr>()) 3828 AddGlobalDtor(Fn, DA->getPriority()); 3829 if (D->hasAttr<AnnotateAttr>()) 3830 AddGlobalAnnotations(D, Fn); 3831 3832 if (D->isCPUSpecificMultiVersion()) { 3833 auto *Spec = D->getAttr<CPUSpecificAttr>(); 3834 // If there is another specific version we need to emit, do so here. 3835 if (Spec->ActiveArgIndex + 1 < Spec->cpus_size()) { 3836 ++Spec->ActiveArgIndex; 3837 EmitGlobalFunctionDefinition(GD, nullptr); 3838 } 3839 } 3840 } 3841 3842 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) { 3843 const auto *D = cast<ValueDecl>(GD.getDecl()); 3844 const AliasAttr *AA = D->getAttr<AliasAttr>(); 3845 assert(AA && "Not an alias?"); 3846 3847 StringRef MangledName = getMangledName(GD); 3848 3849 if (AA->getAliasee() == MangledName) { 3850 Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0; 3851 return; 3852 } 3853 3854 // If there is a definition in the module, then it wins over the alias. 3855 // This is dubious, but allow it to be safe. Just ignore the alias. 3856 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 3857 if (Entry && !Entry->isDeclaration()) 3858 return; 3859 3860 Aliases.push_back(GD); 3861 3862 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType()); 3863 3864 // Create a reference to the named value. This ensures that it is emitted 3865 // if a deferred decl. 3866 llvm::Constant *Aliasee; 3867 if (isa<llvm::FunctionType>(DeclTy)) 3868 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GD, 3869 /*ForVTable=*/false); 3870 else 3871 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), 3872 llvm::PointerType::getUnqual(DeclTy), 3873 /*D=*/nullptr); 3874 3875 // Create the new alias itself, but don't set a name yet. 3876 auto *GA = llvm::GlobalAlias::create( 3877 DeclTy, 0, llvm::Function::ExternalLinkage, "", Aliasee, &getModule()); 3878 3879 if (Entry) { 3880 if (GA->getAliasee() == Entry) { 3881 Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0; 3882 return; 3883 } 3884 3885 assert(Entry->isDeclaration()); 3886 3887 // If there is a declaration in the module, then we had an extern followed 3888 // by the alias, as in: 3889 // extern int test6(); 3890 // ... 3891 // int test6() __attribute__((alias("test7"))); 3892 // 3893 // Remove it and replace uses of it with the alias. 3894 GA->takeName(Entry); 3895 3896 Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA, 3897 Entry->getType())); 3898 Entry->eraseFromParent(); 3899 } else { 3900 GA->setName(MangledName); 3901 } 3902 3903 // Set attributes which are particular to an alias; this is a 3904 // specialization of the attributes which may be set on a global 3905 // variable/function. 3906 if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakRefAttr>() || 3907 D->isWeakImported()) { 3908 GA->setLinkage(llvm::Function::WeakAnyLinkage); 3909 } 3910 3911 if (const auto *VD = dyn_cast<VarDecl>(D)) 3912 if (VD->getTLSKind()) 3913 setTLSMode(GA, *VD); 3914 3915 SetCommonAttributes(GD, GA); 3916 } 3917 3918 void CodeGenModule::emitIFuncDefinition(GlobalDecl GD) { 3919 const auto *D = cast<ValueDecl>(GD.getDecl()); 3920 const IFuncAttr *IFA = D->getAttr<IFuncAttr>(); 3921 assert(IFA && "Not an ifunc?"); 3922 3923 StringRef MangledName = getMangledName(GD); 3924 3925 if (IFA->getResolver() == MangledName) { 3926 Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1; 3927 return; 3928 } 3929 3930 // Report an error if some definition overrides ifunc. 3931 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 3932 if (Entry && !Entry->isDeclaration()) { 3933 GlobalDecl OtherGD; 3934 if (lookupRepresentativeDecl(MangledName, OtherGD) && 3935 DiagnosedConflictingDefinitions.insert(GD).second) { 3936 Diags.Report(D->getLocation(), diag::err_duplicate_mangled_name) 3937 << MangledName; 3938 Diags.Report(OtherGD.getDecl()->getLocation(), 3939 diag::note_previous_definition); 3940 } 3941 return; 3942 } 3943 3944 Aliases.push_back(GD); 3945 3946 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType()); 3947 llvm::Constant *Resolver = 3948 GetOrCreateLLVMFunction(IFA->getResolver(), DeclTy, GD, 3949 /*ForVTable=*/false); 3950 llvm::GlobalIFunc *GIF = 3951 llvm::GlobalIFunc::create(DeclTy, 0, llvm::Function::ExternalLinkage, 3952 "", Resolver, &getModule()); 3953 if (Entry) { 3954 if (GIF->getResolver() == Entry) { 3955 Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1; 3956 return; 3957 } 3958 assert(Entry->isDeclaration()); 3959 3960 // If there is a declaration in the module, then we had an extern followed 3961 // by the ifunc, as in: 3962 // extern int test(); 3963 // ... 3964 // int test() __attribute__((ifunc("resolver"))); 3965 // 3966 // Remove it and replace uses of it with the ifunc. 3967 GIF->takeName(Entry); 3968 3969 Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GIF, 3970 Entry->getType())); 3971 Entry->eraseFromParent(); 3972 } else 3973 GIF->setName(MangledName); 3974 3975 SetCommonAttributes(GD, GIF); 3976 } 3977 3978 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID, 3979 ArrayRef<llvm::Type*> Tys) { 3980 return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID, 3981 Tys); 3982 } 3983 3984 static llvm::StringMapEntry<llvm::GlobalVariable *> & 3985 GetConstantCFStringEntry(llvm::StringMap<llvm::GlobalVariable *> &Map, 3986 const StringLiteral *Literal, bool TargetIsLSB, 3987 bool &IsUTF16, unsigned &StringLength) { 3988 StringRef String = Literal->getString(); 3989 unsigned NumBytes = String.size(); 3990 3991 // Check for simple case. 3992 if (!Literal->containsNonAsciiOrNull()) { 3993 StringLength = NumBytes; 3994 return *Map.insert(std::make_pair(String, nullptr)).first; 3995 } 3996 3997 // Otherwise, convert the UTF8 literals into a string of shorts. 3998 IsUTF16 = true; 3999 4000 SmallVector<llvm::UTF16, 128> ToBuf(NumBytes + 1); // +1 for ending nulls. 4001 const llvm::UTF8 *FromPtr = (const llvm::UTF8 *)String.data(); 4002 llvm::UTF16 *ToPtr = &ToBuf[0]; 4003 4004 (void)llvm::ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, &ToPtr, 4005 ToPtr + NumBytes, llvm::strictConversion); 4006 4007 // ConvertUTF8toUTF16 returns the length in ToPtr. 4008 StringLength = ToPtr - &ToBuf[0]; 4009 4010 // Add an explicit null. 4011 *ToPtr = 0; 4012 return *Map.insert(std::make_pair( 4013 StringRef(reinterpret_cast<const char *>(ToBuf.data()), 4014 (StringLength + 1) * 2), 4015 nullptr)).first; 4016 } 4017 4018 ConstantAddress 4019 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) { 4020 unsigned StringLength = 0; 4021 bool isUTF16 = false; 4022 llvm::StringMapEntry<llvm::GlobalVariable *> &Entry = 4023 GetConstantCFStringEntry(CFConstantStringMap, Literal, 4024 getDataLayout().isLittleEndian(), isUTF16, 4025 StringLength); 4026 4027 if (auto *C = Entry.second) 4028 return ConstantAddress(C, CharUnits::fromQuantity(C->getAlignment())); 4029 4030 llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty); 4031 llvm::Constant *Zeros[] = { Zero, Zero }; 4032 4033 // If we don't already have it, get __CFConstantStringClassReference. 4034 if (!CFConstantStringClassRef) { 4035 llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy); 4036 Ty = llvm::ArrayType::get(Ty, 0); 4037 llvm::GlobalValue *GV = cast<llvm::GlobalValue>( 4038 CreateRuntimeVariable(Ty, "__CFConstantStringClassReference")); 4039 4040 if (getTriple().isOSBinFormatCOFF()) { 4041 IdentifierInfo &II = getContext().Idents.get(GV->getName()); 4042 TranslationUnitDecl *TUDecl = getContext().getTranslationUnitDecl(); 4043 DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl); 4044 4045 const VarDecl *VD = nullptr; 4046 for (const auto &Result : DC->lookup(&II)) 4047 if ((VD = dyn_cast<VarDecl>(Result))) 4048 break; 4049 4050 if (!VD || !VD->hasAttr<DLLExportAttr>()) { 4051 GV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass); 4052 GV->setLinkage(llvm::GlobalValue::ExternalLinkage); 4053 } else { 4054 GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass); 4055 GV->setLinkage(llvm::GlobalValue::ExternalLinkage); 4056 } 4057 } 4058 setDSOLocal(GV); 4059 4060 // Decay array -> ptr 4061 CFConstantStringClassRef = 4062 llvm::ConstantExpr::getGetElementPtr(Ty, GV, Zeros); 4063 } 4064 4065 QualType CFTy = getContext().getCFConstantStringType(); 4066 4067 auto *STy = cast<llvm::StructType>(getTypes().ConvertType(CFTy)); 4068 4069 ConstantInitBuilder Builder(*this); 4070 auto Fields = Builder.beginStruct(STy); 4071 4072 // Class pointer. 4073 Fields.add(cast<llvm::ConstantExpr>(CFConstantStringClassRef)); 4074 4075 // Flags. 4076 Fields.addInt(IntTy, isUTF16 ? 0x07d0 : 0x07C8); 4077 4078 // String pointer. 4079 llvm::Constant *C = nullptr; 4080 if (isUTF16) { 4081 auto Arr = llvm::makeArrayRef( 4082 reinterpret_cast<uint16_t *>(const_cast<char *>(Entry.first().data())), 4083 Entry.first().size() / 2); 4084 C = llvm::ConstantDataArray::get(VMContext, Arr); 4085 } else { 4086 C = llvm::ConstantDataArray::getString(VMContext, Entry.first()); 4087 } 4088 4089 // Note: -fwritable-strings doesn't make the backing store strings of 4090 // CFStrings writable. (See <rdar://problem/10657500>) 4091 auto *GV = 4092 new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true, 4093 llvm::GlobalValue::PrivateLinkage, C, ".str"); 4094 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 4095 // Don't enforce the target's minimum global alignment, since the only use 4096 // of the string is via this class initializer. 4097 CharUnits Align = isUTF16 4098 ? getContext().getTypeAlignInChars(getContext().ShortTy) 4099 : getContext().getTypeAlignInChars(getContext().CharTy); 4100 GV->setAlignment(Align.getQuantity()); 4101 4102 // FIXME: We set the section explicitly to avoid a bug in ld64 224.1. 4103 // Without it LLVM can merge the string with a non unnamed_addr one during 4104 // LTO. Doing that changes the section it ends in, which surprises ld64. 4105 if (getTriple().isOSBinFormatMachO()) 4106 GV->setSection(isUTF16 ? "__TEXT,__ustring" 4107 : "__TEXT,__cstring,cstring_literals"); 4108 4109 // String. 4110 llvm::Constant *Str = 4111 llvm::ConstantExpr::getGetElementPtr(GV->getValueType(), GV, Zeros); 4112 4113 if (isUTF16) 4114 // Cast the UTF16 string to the correct type. 4115 Str = llvm::ConstantExpr::getBitCast(Str, Int8PtrTy); 4116 Fields.add(Str); 4117 4118 // String length. 4119 auto Ty = getTypes().ConvertType(getContext().LongTy); 4120 Fields.addInt(cast<llvm::IntegerType>(Ty), StringLength); 4121 4122 CharUnits Alignment = getPointerAlign(); 4123 4124 // The struct. 4125 GV = Fields.finishAndCreateGlobal("_unnamed_cfstring_", Alignment, 4126 /*isConstant=*/false, 4127 llvm::GlobalVariable::PrivateLinkage); 4128 switch (getTriple().getObjectFormat()) { 4129 case llvm::Triple::UnknownObjectFormat: 4130 llvm_unreachable("unknown file format"); 4131 case llvm::Triple::COFF: 4132 case llvm::Triple::ELF: 4133 case llvm::Triple::Wasm: 4134 GV->setSection("cfstring"); 4135 break; 4136 case llvm::Triple::MachO: 4137 GV->setSection("__DATA,__cfstring"); 4138 break; 4139 } 4140 Entry.second = GV; 4141 4142 return ConstantAddress(GV, Alignment); 4143 } 4144 4145 bool CodeGenModule::getExpressionLocationsEnabled() const { 4146 return !CodeGenOpts.EmitCodeView || CodeGenOpts.DebugColumnInfo; 4147 } 4148 4149 QualType CodeGenModule::getObjCFastEnumerationStateType() { 4150 if (ObjCFastEnumerationStateType.isNull()) { 4151 RecordDecl *D = Context.buildImplicitRecord("__objcFastEnumerationState"); 4152 D->startDefinition(); 4153 4154 QualType FieldTypes[] = { 4155 Context.UnsignedLongTy, 4156 Context.getPointerType(Context.getObjCIdType()), 4157 Context.getPointerType(Context.UnsignedLongTy), 4158 Context.getConstantArrayType(Context.UnsignedLongTy, 4159 llvm::APInt(32, 5), ArrayType::Normal, 0) 4160 }; 4161 4162 for (size_t i = 0; i < 4; ++i) { 4163 FieldDecl *Field = FieldDecl::Create(Context, 4164 D, 4165 SourceLocation(), 4166 SourceLocation(), nullptr, 4167 FieldTypes[i], /*TInfo=*/nullptr, 4168 /*BitWidth=*/nullptr, 4169 /*Mutable=*/false, 4170 ICIS_NoInit); 4171 Field->setAccess(AS_public); 4172 D->addDecl(Field); 4173 } 4174 4175 D->completeDefinition(); 4176 ObjCFastEnumerationStateType = Context.getTagDeclType(D); 4177 } 4178 4179 return ObjCFastEnumerationStateType; 4180 } 4181 4182 llvm::Constant * 4183 CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) { 4184 assert(!E->getType()->isPointerType() && "Strings are always arrays"); 4185 4186 // Don't emit it as the address of the string, emit the string data itself 4187 // as an inline array. 4188 if (E->getCharByteWidth() == 1) { 4189 SmallString<64> Str(E->getString()); 4190 4191 // Resize the string to the right size, which is indicated by its type. 4192 const ConstantArrayType *CAT = Context.getAsConstantArrayType(E->getType()); 4193 Str.resize(CAT->getSize().getZExtValue()); 4194 return llvm::ConstantDataArray::getString(VMContext, Str, false); 4195 } 4196 4197 auto *AType = cast<llvm::ArrayType>(getTypes().ConvertType(E->getType())); 4198 llvm::Type *ElemTy = AType->getElementType(); 4199 unsigned NumElements = AType->getNumElements(); 4200 4201 // Wide strings have either 2-byte or 4-byte elements. 4202 if (ElemTy->getPrimitiveSizeInBits() == 16) { 4203 SmallVector<uint16_t, 32> Elements; 4204 Elements.reserve(NumElements); 4205 4206 for(unsigned i = 0, e = E->getLength(); i != e; ++i) 4207 Elements.push_back(E->getCodeUnit(i)); 4208 Elements.resize(NumElements); 4209 return llvm::ConstantDataArray::get(VMContext, Elements); 4210 } 4211 4212 assert(ElemTy->getPrimitiveSizeInBits() == 32); 4213 SmallVector<uint32_t, 32> Elements; 4214 Elements.reserve(NumElements); 4215 4216 for(unsigned i = 0, e = E->getLength(); i != e; ++i) 4217 Elements.push_back(E->getCodeUnit(i)); 4218 Elements.resize(NumElements); 4219 return llvm::ConstantDataArray::get(VMContext, Elements); 4220 } 4221 4222 static llvm::GlobalVariable * 4223 GenerateStringLiteral(llvm::Constant *C, llvm::GlobalValue::LinkageTypes LT, 4224 CodeGenModule &CGM, StringRef GlobalName, 4225 CharUnits Alignment) { 4226 unsigned AddrSpace = CGM.getContext().getTargetAddressSpace( 4227 CGM.getStringLiteralAddressSpace()); 4228 4229 llvm::Module &M = CGM.getModule(); 4230 // Create a global variable for this string 4231 auto *GV = new llvm::GlobalVariable( 4232 M, C->getType(), !CGM.getLangOpts().WritableStrings, LT, C, GlobalName, 4233 nullptr, llvm::GlobalVariable::NotThreadLocal, AddrSpace); 4234 GV->setAlignment(Alignment.getQuantity()); 4235 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 4236 if (GV->isWeakForLinker()) { 4237 assert(CGM.supportsCOMDAT() && "Only COFF uses weak string literals"); 4238 GV->setComdat(M.getOrInsertComdat(GV->getName())); 4239 } 4240 CGM.setDSOLocal(GV); 4241 4242 return GV; 4243 } 4244 4245 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a 4246 /// constant array for the given string literal. 4247 ConstantAddress 4248 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S, 4249 StringRef Name) { 4250 CharUnits Alignment = getContext().getAlignOfGlobalVarInChars(S->getType()); 4251 4252 llvm::Constant *C = GetConstantArrayFromStringLiteral(S); 4253 llvm::GlobalVariable **Entry = nullptr; 4254 if (!LangOpts.WritableStrings) { 4255 Entry = &ConstantStringMap[C]; 4256 if (auto GV = *Entry) { 4257 if (Alignment.getQuantity() > GV->getAlignment()) 4258 GV->setAlignment(Alignment.getQuantity()); 4259 return ConstantAddress(GV, Alignment); 4260 } 4261 } 4262 4263 SmallString<256> MangledNameBuffer; 4264 StringRef GlobalVariableName; 4265 llvm::GlobalValue::LinkageTypes LT; 4266 4267 // Mangle the string literal if the ABI allows for it. However, we cannot 4268 // do this if we are compiling with ASan or -fwritable-strings because they 4269 // rely on strings having normal linkage. 4270 if (!LangOpts.WritableStrings && 4271 !LangOpts.Sanitize.has(SanitizerKind::Address) && 4272 getCXXABI().getMangleContext().shouldMangleStringLiteral(S)) { 4273 llvm::raw_svector_ostream Out(MangledNameBuffer); 4274 getCXXABI().getMangleContext().mangleStringLiteral(S, Out); 4275 4276 LT = llvm::GlobalValue::LinkOnceODRLinkage; 4277 GlobalVariableName = MangledNameBuffer; 4278 } else { 4279 LT = llvm::GlobalValue::PrivateLinkage; 4280 GlobalVariableName = Name; 4281 } 4282 4283 auto GV = GenerateStringLiteral(C, LT, *this, GlobalVariableName, Alignment); 4284 if (Entry) 4285 *Entry = GV; 4286 4287 SanitizerMD->reportGlobalToASan(GV, S->getStrTokenLoc(0), "<string literal>", 4288 QualType()); 4289 4290 return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV), 4291 Alignment); 4292 } 4293 4294 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant 4295 /// array for the given ObjCEncodeExpr node. 4296 ConstantAddress 4297 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) { 4298 std::string Str; 4299 getContext().getObjCEncodingForType(E->getEncodedType(), Str); 4300 4301 return GetAddrOfConstantCString(Str); 4302 } 4303 4304 /// GetAddrOfConstantCString - Returns a pointer to a character array containing 4305 /// the literal and a terminating '\0' character. 4306 /// The result has pointer to array type. 4307 ConstantAddress CodeGenModule::GetAddrOfConstantCString( 4308 const std::string &Str, const char *GlobalName) { 4309 StringRef StrWithNull(Str.c_str(), Str.size() + 1); 4310 CharUnits Alignment = 4311 getContext().getAlignOfGlobalVarInChars(getContext().CharTy); 4312 4313 llvm::Constant *C = 4314 llvm::ConstantDataArray::getString(getLLVMContext(), StrWithNull, false); 4315 4316 // Don't share any string literals if strings aren't constant. 4317 llvm::GlobalVariable **Entry = nullptr; 4318 if (!LangOpts.WritableStrings) { 4319 Entry = &ConstantStringMap[C]; 4320 if (auto GV = *Entry) { 4321 if (Alignment.getQuantity() > GV->getAlignment()) 4322 GV->setAlignment(Alignment.getQuantity()); 4323 return ConstantAddress(GV, Alignment); 4324 } 4325 } 4326 4327 // Get the default prefix if a name wasn't specified. 4328 if (!GlobalName) 4329 GlobalName = ".str"; 4330 // Create a global variable for this. 4331 auto GV = GenerateStringLiteral(C, llvm::GlobalValue::PrivateLinkage, *this, 4332 GlobalName, Alignment); 4333 if (Entry) 4334 *Entry = GV; 4335 4336 return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV), 4337 Alignment); 4338 } 4339 4340 ConstantAddress CodeGenModule::GetAddrOfGlobalTemporary( 4341 const MaterializeTemporaryExpr *E, const Expr *Init) { 4342 assert((E->getStorageDuration() == SD_Static || 4343 E->getStorageDuration() == SD_Thread) && "not a global temporary"); 4344 const auto *VD = cast<VarDecl>(E->getExtendingDecl()); 4345 4346 // If we're not materializing a subobject of the temporary, keep the 4347 // cv-qualifiers from the type of the MaterializeTemporaryExpr. 4348 QualType MaterializedType = Init->getType(); 4349 if (Init == E->GetTemporaryExpr()) 4350 MaterializedType = E->getType(); 4351 4352 CharUnits Align = getContext().getTypeAlignInChars(MaterializedType); 4353 4354 if (llvm::Constant *Slot = MaterializedGlobalTemporaryMap[E]) 4355 return ConstantAddress(Slot, Align); 4356 4357 // FIXME: If an externally-visible declaration extends multiple temporaries, 4358 // we need to give each temporary the same name in every translation unit (and 4359 // we also need to make the temporaries externally-visible). 4360 SmallString<256> Name; 4361 llvm::raw_svector_ostream Out(Name); 4362 getCXXABI().getMangleContext().mangleReferenceTemporary( 4363 VD, E->getManglingNumber(), Out); 4364 4365 APValue *Value = nullptr; 4366 if (E->getStorageDuration() == SD_Static) { 4367 // We might have a cached constant initializer for this temporary. Note 4368 // that this might have a different value from the value computed by 4369 // evaluating the initializer if the surrounding constant expression 4370 // modifies the temporary. 4371 Value = getContext().getMaterializedTemporaryValue(E, false); 4372 if (Value && Value->isUninit()) 4373 Value = nullptr; 4374 } 4375 4376 // Try evaluating it now, it might have a constant initializer. 4377 Expr::EvalResult EvalResult; 4378 if (!Value && Init->EvaluateAsRValue(EvalResult, getContext()) && 4379 !EvalResult.hasSideEffects()) 4380 Value = &EvalResult.Val; 4381 4382 LangAS AddrSpace = 4383 VD ? GetGlobalVarAddressSpace(VD) : MaterializedType.getAddressSpace(); 4384 4385 Optional<ConstantEmitter> emitter; 4386 llvm::Constant *InitialValue = nullptr; 4387 bool Constant = false; 4388 llvm::Type *Type; 4389 if (Value) { 4390 // The temporary has a constant initializer, use it. 4391 emitter.emplace(*this); 4392 InitialValue = emitter->emitForInitializer(*Value, AddrSpace, 4393 MaterializedType); 4394 Constant = isTypeConstant(MaterializedType, /*ExcludeCtor*/Value); 4395 Type = InitialValue->getType(); 4396 } else { 4397 // No initializer, the initialization will be provided when we 4398 // initialize the declaration which performed lifetime extension. 4399 Type = getTypes().ConvertTypeForMem(MaterializedType); 4400 } 4401 4402 // Create a global variable for this lifetime-extended temporary. 4403 llvm::GlobalValue::LinkageTypes Linkage = 4404 getLLVMLinkageVarDefinition(VD, Constant); 4405 if (Linkage == llvm::GlobalVariable::ExternalLinkage) { 4406 const VarDecl *InitVD; 4407 if (VD->isStaticDataMember() && VD->getAnyInitializer(InitVD) && 4408 isa<CXXRecordDecl>(InitVD->getLexicalDeclContext())) { 4409 // Temporaries defined inside a class get linkonce_odr linkage because the 4410 // class can be defined in multiple translation units. 4411 Linkage = llvm::GlobalVariable::LinkOnceODRLinkage; 4412 } else { 4413 // There is no need for this temporary to have external linkage if the 4414 // VarDecl has external linkage. 4415 Linkage = llvm::GlobalVariable::InternalLinkage; 4416 } 4417 } 4418 auto TargetAS = getContext().getTargetAddressSpace(AddrSpace); 4419 auto *GV = new llvm::GlobalVariable( 4420 getModule(), Type, Constant, Linkage, InitialValue, Name.c_str(), 4421 /*InsertBefore=*/nullptr, llvm::GlobalVariable::NotThreadLocal, TargetAS); 4422 if (emitter) emitter->finalize(GV); 4423 setGVProperties(GV, VD); 4424 GV->setAlignment(Align.getQuantity()); 4425 if (supportsCOMDAT() && GV->isWeakForLinker()) 4426 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 4427 if (VD->getTLSKind()) 4428 setTLSMode(GV, *VD); 4429 llvm::Constant *CV = GV; 4430 if (AddrSpace != LangAS::Default) 4431 CV = getTargetCodeGenInfo().performAddrSpaceCast( 4432 *this, GV, AddrSpace, LangAS::Default, 4433 Type->getPointerTo( 4434 getContext().getTargetAddressSpace(LangAS::Default))); 4435 MaterializedGlobalTemporaryMap[E] = CV; 4436 return ConstantAddress(CV, Align); 4437 } 4438 4439 /// EmitObjCPropertyImplementations - Emit information for synthesized 4440 /// properties for an implementation. 4441 void CodeGenModule::EmitObjCPropertyImplementations(const 4442 ObjCImplementationDecl *D) { 4443 for (const auto *PID : D->property_impls()) { 4444 // Dynamic is just for type-checking. 4445 if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) { 4446 ObjCPropertyDecl *PD = PID->getPropertyDecl(); 4447 4448 // Determine which methods need to be implemented, some may have 4449 // been overridden. Note that ::isPropertyAccessor is not the method 4450 // we want, that just indicates if the decl came from a 4451 // property. What we want to know is if the method is defined in 4452 // this implementation. 4453 if (!D->getInstanceMethod(PD->getGetterName())) 4454 CodeGenFunction(*this).GenerateObjCGetter( 4455 const_cast<ObjCImplementationDecl *>(D), PID); 4456 if (!PD->isReadOnly() && 4457 !D->getInstanceMethod(PD->getSetterName())) 4458 CodeGenFunction(*this).GenerateObjCSetter( 4459 const_cast<ObjCImplementationDecl *>(D), PID); 4460 } 4461 } 4462 } 4463 4464 static bool needsDestructMethod(ObjCImplementationDecl *impl) { 4465 const ObjCInterfaceDecl *iface = impl->getClassInterface(); 4466 for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin(); 4467 ivar; ivar = ivar->getNextIvar()) 4468 if (ivar->getType().isDestructedType()) 4469 return true; 4470 4471 return false; 4472 } 4473 4474 static bool AllTrivialInitializers(CodeGenModule &CGM, 4475 ObjCImplementationDecl *D) { 4476 CodeGenFunction CGF(CGM); 4477 for (ObjCImplementationDecl::init_iterator B = D->init_begin(), 4478 E = D->init_end(); B != E; ++B) { 4479 CXXCtorInitializer *CtorInitExp = *B; 4480 Expr *Init = CtorInitExp->getInit(); 4481 if (!CGF.isTrivialInitializer(Init)) 4482 return false; 4483 } 4484 return true; 4485 } 4486 4487 /// EmitObjCIvarInitializations - Emit information for ivar initialization 4488 /// for an implementation. 4489 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) { 4490 // We might need a .cxx_destruct even if we don't have any ivar initializers. 4491 if (needsDestructMethod(D)) { 4492 IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct"); 4493 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 4494 ObjCMethodDecl *DTORMethod = 4495 ObjCMethodDecl::Create(getContext(), D->getLocation(), D->getLocation(), 4496 cxxSelector, getContext().VoidTy, nullptr, D, 4497 /*isInstance=*/true, /*isVariadic=*/false, 4498 /*isPropertyAccessor=*/true, /*isImplicitlyDeclared=*/true, 4499 /*isDefined=*/false, ObjCMethodDecl::Required); 4500 D->addInstanceMethod(DTORMethod); 4501 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false); 4502 D->setHasDestructors(true); 4503 } 4504 4505 // If the implementation doesn't have any ivar initializers, we don't need 4506 // a .cxx_construct. 4507 if (D->getNumIvarInitializers() == 0 || 4508 AllTrivialInitializers(*this, D)) 4509 return; 4510 4511 IdentifierInfo *II = &getContext().Idents.get(".cxx_construct"); 4512 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 4513 // The constructor returns 'self'. 4514 ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(getContext(), 4515 D->getLocation(), 4516 D->getLocation(), 4517 cxxSelector, 4518 getContext().getObjCIdType(), 4519 nullptr, D, /*isInstance=*/true, 4520 /*isVariadic=*/false, 4521 /*isPropertyAccessor=*/true, 4522 /*isImplicitlyDeclared=*/true, 4523 /*isDefined=*/false, 4524 ObjCMethodDecl::Required); 4525 D->addInstanceMethod(CTORMethod); 4526 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true); 4527 D->setHasNonZeroConstructors(true); 4528 } 4529 4530 // EmitLinkageSpec - Emit all declarations in a linkage spec. 4531 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) { 4532 if (LSD->getLanguage() != LinkageSpecDecl::lang_c && 4533 LSD->getLanguage() != LinkageSpecDecl::lang_cxx) { 4534 ErrorUnsupported(LSD, "linkage spec"); 4535 return; 4536 } 4537 4538 EmitDeclContext(LSD); 4539 } 4540 4541 void CodeGenModule::EmitDeclContext(const DeclContext *DC) { 4542 for (auto *I : DC->decls()) { 4543 // Unlike other DeclContexts, the contents of an ObjCImplDecl at TU scope 4544 // are themselves considered "top-level", so EmitTopLevelDecl on an 4545 // ObjCImplDecl does not recursively visit them. We need to do that in 4546 // case they're nested inside another construct (LinkageSpecDecl / 4547 // ExportDecl) that does stop them from being considered "top-level". 4548 if (auto *OID = dyn_cast<ObjCImplDecl>(I)) { 4549 for (auto *M : OID->methods()) 4550 EmitTopLevelDecl(M); 4551 } 4552 4553 EmitTopLevelDecl(I); 4554 } 4555 } 4556 4557 /// EmitTopLevelDecl - Emit code for a single top level declaration. 4558 void CodeGenModule::EmitTopLevelDecl(Decl *D) { 4559 // Ignore dependent declarations. 4560 if (D->isTemplated()) 4561 return; 4562 4563 switch (D->getKind()) { 4564 case Decl::CXXConversion: 4565 case Decl::CXXMethod: 4566 case Decl::Function: 4567 EmitGlobal(cast<FunctionDecl>(D)); 4568 // Always provide some coverage mapping 4569 // even for the functions that aren't emitted. 4570 AddDeferredUnusedCoverageMapping(D); 4571 break; 4572 4573 case Decl::CXXDeductionGuide: 4574 // Function-like, but does not result in code emission. 4575 break; 4576 4577 case Decl::Var: 4578 case Decl::Decomposition: 4579 case Decl::VarTemplateSpecialization: 4580 EmitGlobal(cast<VarDecl>(D)); 4581 if (auto *DD = dyn_cast<DecompositionDecl>(D)) 4582 for (auto *B : DD->bindings()) 4583 if (auto *HD = B->getHoldingVar()) 4584 EmitGlobal(HD); 4585 break; 4586 4587 // Indirect fields from global anonymous structs and unions can be 4588 // ignored; only the actual variable requires IR gen support. 4589 case Decl::IndirectField: 4590 break; 4591 4592 // C++ Decls 4593 case Decl::Namespace: 4594 EmitDeclContext(cast<NamespaceDecl>(D)); 4595 break; 4596 case Decl::ClassTemplateSpecialization: { 4597 const auto *Spec = cast<ClassTemplateSpecializationDecl>(D); 4598 if (DebugInfo && 4599 Spec->getSpecializationKind() == TSK_ExplicitInstantiationDefinition && 4600 Spec->hasDefinition()) 4601 DebugInfo->completeTemplateDefinition(*Spec); 4602 } LLVM_FALLTHROUGH; 4603 case Decl::CXXRecord: 4604 if (DebugInfo) { 4605 if (auto *ES = D->getASTContext().getExternalSource()) 4606 if (ES->hasExternalDefinitions(D) == ExternalASTSource::EK_Never) 4607 DebugInfo->completeUnusedClass(cast<CXXRecordDecl>(*D)); 4608 } 4609 // Emit any static data members, they may be definitions. 4610 for (auto *I : cast<CXXRecordDecl>(D)->decls()) 4611 if (isa<VarDecl>(I) || isa<CXXRecordDecl>(I)) 4612 EmitTopLevelDecl(I); 4613 break; 4614 // No code generation needed. 4615 case Decl::UsingShadow: 4616 case Decl::ClassTemplate: 4617 case Decl::VarTemplate: 4618 case Decl::VarTemplatePartialSpecialization: 4619 case Decl::FunctionTemplate: 4620 case Decl::TypeAliasTemplate: 4621 case Decl::Block: 4622 case Decl::Empty: 4623 break; 4624 case Decl::Using: // using X; [C++] 4625 if (CGDebugInfo *DI = getModuleDebugInfo()) 4626 DI->EmitUsingDecl(cast<UsingDecl>(*D)); 4627 return; 4628 case Decl::NamespaceAlias: 4629 if (CGDebugInfo *DI = getModuleDebugInfo()) 4630 DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(*D)); 4631 return; 4632 case Decl::UsingDirective: // using namespace X; [C++] 4633 if (CGDebugInfo *DI = getModuleDebugInfo()) 4634 DI->EmitUsingDirective(cast<UsingDirectiveDecl>(*D)); 4635 return; 4636 case Decl::CXXConstructor: 4637 getCXXABI().EmitCXXConstructors(cast<CXXConstructorDecl>(D)); 4638 break; 4639 case Decl::CXXDestructor: 4640 getCXXABI().EmitCXXDestructors(cast<CXXDestructorDecl>(D)); 4641 break; 4642 4643 case Decl::StaticAssert: 4644 // Nothing to do. 4645 break; 4646 4647 // Objective-C Decls 4648 4649 // Forward declarations, no (immediate) code generation. 4650 case Decl::ObjCInterface: 4651 case Decl::ObjCCategory: 4652 break; 4653 4654 case Decl::ObjCProtocol: { 4655 auto *Proto = cast<ObjCProtocolDecl>(D); 4656 if (Proto->isThisDeclarationADefinition()) 4657 ObjCRuntime->GenerateProtocol(Proto); 4658 break; 4659 } 4660 4661 case Decl::ObjCCategoryImpl: 4662 // Categories have properties but don't support synthesize so we 4663 // can ignore them here. 4664 ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D)); 4665 break; 4666 4667 case Decl::ObjCImplementation: { 4668 auto *OMD = cast<ObjCImplementationDecl>(D); 4669 EmitObjCPropertyImplementations(OMD); 4670 EmitObjCIvarInitializations(OMD); 4671 ObjCRuntime->GenerateClass(OMD); 4672 // Emit global variable debug information. 4673 if (CGDebugInfo *DI = getModuleDebugInfo()) 4674 if (getCodeGenOpts().getDebugInfo() >= codegenoptions::LimitedDebugInfo) 4675 DI->getOrCreateInterfaceType(getContext().getObjCInterfaceType( 4676 OMD->getClassInterface()), OMD->getLocation()); 4677 break; 4678 } 4679 case Decl::ObjCMethod: { 4680 auto *OMD = cast<ObjCMethodDecl>(D); 4681 // If this is not a prototype, emit the body. 4682 if (OMD->getBody()) 4683 CodeGenFunction(*this).GenerateObjCMethod(OMD); 4684 break; 4685 } 4686 case Decl::ObjCCompatibleAlias: 4687 ObjCRuntime->RegisterAlias(cast<ObjCCompatibleAliasDecl>(D)); 4688 break; 4689 4690 case Decl::PragmaComment: { 4691 const auto *PCD = cast<PragmaCommentDecl>(D); 4692 switch (PCD->getCommentKind()) { 4693 case PCK_Unknown: 4694 llvm_unreachable("unexpected pragma comment kind"); 4695 case PCK_Linker: 4696 AppendLinkerOptions(PCD->getArg()); 4697 break; 4698 case PCK_Lib: 4699 if (getTarget().getTriple().isOSBinFormatELF() && 4700 !getTarget().getTriple().isPS4()) 4701 AddELFLibDirective(PCD->getArg()); 4702 else 4703 AddDependentLib(PCD->getArg()); 4704 break; 4705 case PCK_Compiler: 4706 case PCK_ExeStr: 4707 case PCK_User: 4708 break; // We ignore all of these. 4709 } 4710 break; 4711 } 4712 4713 case Decl::PragmaDetectMismatch: { 4714 const auto *PDMD = cast<PragmaDetectMismatchDecl>(D); 4715 AddDetectMismatch(PDMD->getName(), PDMD->getValue()); 4716 break; 4717 } 4718 4719 case Decl::LinkageSpec: 4720 EmitLinkageSpec(cast<LinkageSpecDecl>(D)); 4721 break; 4722 4723 case Decl::FileScopeAsm: { 4724 // File-scope asm is ignored during device-side CUDA compilation. 4725 if (LangOpts.CUDA && LangOpts.CUDAIsDevice) 4726 break; 4727 // File-scope asm is ignored during device-side OpenMP compilation. 4728 if (LangOpts.OpenMPIsDevice) 4729 break; 4730 auto *AD = cast<FileScopeAsmDecl>(D); 4731 getModule().appendModuleInlineAsm(AD->getAsmString()->getString()); 4732 break; 4733 } 4734 4735 case Decl::Import: { 4736 auto *Import = cast<ImportDecl>(D); 4737 4738 // If we've already imported this module, we're done. 4739 if (!ImportedModules.insert(Import->getImportedModule())) 4740 break; 4741 4742 // Emit debug information for direct imports. 4743 if (!Import->getImportedOwningModule()) { 4744 if (CGDebugInfo *DI = getModuleDebugInfo()) 4745 DI->EmitImportDecl(*Import); 4746 } 4747 4748 // Find all of the submodules and emit the module initializers. 4749 llvm::SmallPtrSet<clang::Module *, 16> Visited; 4750 SmallVector<clang::Module *, 16> Stack; 4751 Visited.insert(Import->getImportedModule()); 4752 Stack.push_back(Import->getImportedModule()); 4753 4754 while (!Stack.empty()) { 4755 clang::Module *Mod = Stack.pop_back_val(); 4756 if (!EmittedModuleInitializers.insert(Mod).second) 4757 continue; 4758 4759 for (auto *D : Context.getModuleInitializers(Mod)) 4760 EmitTopLevelDecl(D); 4761 4762 // Visit the submodules of this module. 4763 for (clang::Module::submodule_iterator Sub = Mod->submodule_begin(), 4764 SubEnd = Mod->submodule_end(); 4765 Sub != SubEnd; ++Sub) { 4766 // Skip explicit children; they need to be explicitly imported to emit 4767 // the initializers. 4768 if ((*Sub)->IsExplicit) 4769 continue; 4770 4771 if (Visited.insert(*Sub).second) 4772 Stack.push_back(*Sub); 4773 } 4774 } 4775 break; 4776 } 4777 4778 case Decl::Export: 4779 EmitDeclContext(cast<ExportDecl>(D)); 4780 break; 4781 4782 case Decl::OMPThreadPrivate: 4783 EmitOMPThreadPrivateDecl(cast<OMPThreadPrivateDecl>(D)); 4784 break; 4785 4786 case Decl::OMPDeclareReduction: 4787 EmitOMPDeclareReduction(cast<OMPDeclareReductionDecl>(D)); 4788 break; 4789 4790 default: 4791 // Make sure we handled everything we should, every other kind is a 4792 // non-top-level decl. FIXME: Would be nice to have an isTopLevelDeclKind 4793 // function. Need to recode Decl::Kind to do that easily. 4794 assert(isa<TypeDecl>(D) && "Unsupported decl kind"); 4795 break; 4796 } 4797 } 4798 4799 void CodeGenModule::AddDeferredUnusedCoverageMapping(Decl *D) { 4800 // Do we need to generate coverage mapping? 4801 if (!CodeGenOpts.CoverageMapping) 4802 return; 4803 switch (D->getKind()) { 4804 case Decl::CXXConversion: 4805 case Decl::CXXMethod: 4806 case Decl::Function: 4807 case Decl::ObjCMethod: 4808 case Decl::CXXConstructor: 4809 case Decl::CXXDestructor: { 4810 if (!cast<FunctionDecl>(D)->doesThisDeclarationHaveABody()) 4811 return; 4812 SourceManager &SM = getContext().getSourceManager(); 4813 if (LimitedCoverage && SM.getMainFileID() != SM.getFileID(D->getLocStart())) 4814 return; 4815 auto I = DeferredEmptyCoverageMappingDecls.find(D); 4816 if (I == DeferredEmptyCoverageMappingDecls.end()) 4817 DeferredEmptyCoverageMappingDecls[D] = true; 4818 break; 4819 } 4820 default: 4821 break; 4822 }; 4823 } 4824 4825 void CodeGenModule::ClearUnusedCoverageMapping(const Decl *D) { 4826 // Do we need to generate coverage mapping? 4827 if (!CodeGenOpts.CoverageMapping) 4828 return; 4829 if (const auto *Fn = dyn_cast<FunctionDecl>(D)) { 4830 if (Fn->isTemplateInstantiation()) 4831 ClearUnusedCoverageMapping(Fn->getTemplateInstantiationPattern()); 4832 } 4833 auto I = DeferredEmptyCoverageMappingDecls.find(D); 4834 if (I == DeferredEmptyCoverageMappingDecls.end()) 4835 DeferredEmptyCoverageMappingDecls[D] = false; 4836 else 4837 I->second = false; 4838 } 4839 4840 void CodeGenModule::EmitDeferredUnusedCoverageMappings() { 4841 // We call takeVector() here to avoid use-after-free. 4842 // FIXME: DeferredEmptyCoverageMappingDecls is getting mutated because 4843 // we deserialize function bodies to emit coverage info for them, and that 4844 // deserializes more declarations. How should we handle that case? 4845 for (const auto &Entry : DeferredEmptyCoverageMappingDecls.takeVector()) { 4846 if (!Entry.second) 4847 continue; 4848 const Decl *D = Entry.first; 4849 switch (D->getKind()) { 4850 case Decl::CXXConversion: 4851 case Decl::CXXMethod: 4852 case Decl::Function: 4853 case Decl::ObjCMethod: { 4854 CodeGenPGO PGO(*this); 4855 GlobalDecl GD(cast<FunctionDecl>(D)); 4856 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 4857 getFunctionLinkage(GD)); 4858 break; 4859 } 4860 case Decl::CXXConstructor: { 4861 CodeGenPGO PGO(*this); 4862 GlobalDecl GD(cast<CXXConstructorDecl>(D), Ctor_Base); 4863 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 4864 getFunctionLinkage(GD)); 4865 break; 4866 } 4867 case Decl::CXXDestructor: { 4868 CodeGenPGO PGO(*this); 4869 GlobalDecl GD(cast<CXXDestructorDecl>(D), Dtor_Base); 4870 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 4871 getFunctionLinkage(GD)); 4872 break; 4873 } 4874 default: 4875 break; 4876 }; 4877 } 4878 } 4879 4880 /// Turns the given pointer into a constant. 4881 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context, 4882 const void *Ptr) { 4883 uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr); 4884 llvm::Type *i64 = llvm::Type::getInt64Ty(Context); 4885 return llvm::ConstantInt::get(i64, PtrInt); 4886 } 4887 4888 static void EmitGlobalDeclMetadata(CodeGenModule &CGM, 4889 llvm::NamedMDNode *&GlobalMetadata, 4890 GlobalDecl D, 4891 llvm::GlobalValue *Addr) { 4892 if (!GlobalMetadata) 4893 GlobalMetadata = 4894 CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs"); 4895 4896 // TODO: should we report variant information for ctors/dtors? 4897 llvm::Metadata *Ops[] = {llvm::ConstantAsMetadata::get(Addr), 4898 llvm::ConstantAsMetadata::get(GetPointerConstant( 4899 CGM.getLLVMContext(), D.getDecl()))}; 4900 GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops)); 4901 } 4902 4903 /// For each function which is declared within an extern "C" region and marked 4904 /// as 'used', but has internal linkage, create an alias from the unmangled 4905 /// name to the mangled name if possible. People expect to be able to refer 4906 /// to such functions with an unmangled name from inline assembly within the 4907 /// same translation unit. 4908 void CodeGenModule::EmitStaticExternCAliases() { 4909 if (!getTargetCodeGenInfo().shouldEmitStaticExternCAliases()) 4910 return; 4911 for (auto &I : StaticExternCValues) { 4912 IdentifierInfo *Name = I.first; 4913 llvm::GlobalValue *Val = I.second; 4914 if (Val && !getModule().getNamedValue(Name->getName())) 4915 addUsedGlobal(llvm::GlobalAlias::create(Name->getName(), Val)); 4916 } 4917 } 4918 4919 bool CodeGenModule::lookupRepresentativeDecl(StringRef MangledName, 4920 GlobalDecl &Result) const { 4921 auto Res = Manglings.find(MangledName); 4922 if (Res == Manglings.end()) 4923 return false; 4924 Result = Res->getValue(); 4925 return true; 4926 } 4927 4928 /// Emits metadata nodes associating all the global values in the 4929 /// current module with the Decls they came from. This is useful for 4930 /// projects using IR gen as a subroutine. 4931 /// 4932 /// Since there's currently no way to associate an MDNode directly 4933 /// with an llvm::GlobalValue, we create a global named metadata 4934 /// with the name 'clang.global.decl.ptrs'. 4935 void CodeGenModule::EmitDeclMetadata() { 4936 llvm::NamedMDNode *GlobalMetadata = nullptr; 4937 4938 for (auto &I : MangledDeclNames) { 4939 llvm::GlobalValue *Addr = getModule().getNamedValue(I.second); 4940 // Some mangled names don't necessarily have an associated GlobalValue 4941 // in this module, e.g. if we mangled it for DebugInfo. 4942 if (Addr) 4943 EmitGlobalDeclMetadata(*this, GlobalMetadata, I.first, Addr); 4944 } 4945 } 4946 4947 /// Emits metadata nodes for all the local variables in the current 4948 /// function. 4949 void CodeGenFunction::EmitDeclMetadata() { 4950 if (LocalDeclMap.empty()) return; 4951 4952 llvm::LLVMContext &Context = getLLVMContext(); 4953 4954 // Find the unique metadata ID for this name. 4955 unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr"); 4956 4957 llvm::NamedMDNode *GlobalMetadata = nullptr; 4958 4959 for (auto &I : LocalDeclMap) { 4960 const Decl *D = I.first; 4961 llvm::Value *Addr = I.second.getPointer(); 4962 if (auto *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) { 4963 llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D); 4964 Alloca->setMetadata( 4965 DeclPtrKind, llvm::MDNode::get( 4966 Context, llvm::ValueAsMetadata::getConstant(DAddr))); 4967 } else if (auto *GV = dyn_cast<llvm::GlobalValue>(Addr)) { 4968 GlobalDecl GD = GlobalDecl(cast<VarDecl>(D)); 4969 EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV); 4970 } 4971 } 4972 } 4973 4974 void CodeGenModule::EmitVersionIdentMetadata() { 4975 llvm::NamedMDNode *IdentMetadata = 4976 TheModule.getOrInsertNamedMetadata("llvm.ident"); 4977 std::string Version = getClangFullVersion(); 4978 llvm::LLVMContext &Ctx = TheModule.getContext(); 4979 4980 llvm::Metadata *IdentNode[] = {llvm::MDString::get(Ctx, Version)}; 4981 IdentMetadata->addOperand(llvm::MDNode::get(Ctx, IdentNode)); 4982 } 4983 4984 void CodeGenModule::EmitTargetMetadata() { 4985 // Warning, new MangledDeclNames may be appended within this loop. 4986 // We rely on MapVector insertions adding new elements to the end 4987 // of the container. 4988 // FIXME: Move this loop into the one target that needs it, and only 4989 // loop over those declarations for which we couldn't emit the target 4990 // metadata when we emitted the declaration. 4991 for (unsigned I = 0; I != MangledDeclNames.size(); ++I) { 4992 auto Val = *(MangledDeclNames.begin() + I); 4993 const Decl *D = Val.first.getDecl()->getMostRecentDecl(); 4994 llvm::GlobalValue *GV = GetGlobalValue(Val.second); 4995 getTargetCodeGenInfo().emitTargetMD(D, GV, *this); 4996 } 4997 } 4998 4999 void CodeGenModule::EmitCoverageFile() { 5000 if (getCodeGenOpts().CoverageDataFile.empty() && 5001 getCodeGenOpts().CoverageNotesFile.empty()) 5002 return; 5003 5004 llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu"); 5005 if (!CUNode) 5006 return; 5007 5008 llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov"); 5009 llvm::LLVMContext &Ctx = TheModule.getContext(); 5010 auto *CoverageDataFile = 5011 llvm::MDString::get(Ctx, getCodeGenOpts().CoverageDataFile); 5012 auto *CoverageNotesFile = 5013 llvm::MDString::get(Ctx, getCodeGenOpts().CoverageNotesFile); 5014 for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) { 5015 llvm::MDNode *CU = CUNode->getOperand(i); 5016 llvm::Metadata *Elts[] = {CoverageNotesFile, CoverageDataFile, CU}; 5017 GCov->addOperand(llvm::MDNode::get(Ctx, Elts)); 5018 } 5019 } 5020 5021 llvm::Constant *CodeGenModule::EmitUuidofInitializer(StringRef Uuid) { 5022 // Sema has checked that all uuid strings are of the form 5023 // "12345678-1234-1234-1234-1234567890ab". 5024 assert(Uuid.size() == 36); 5025 for (unsigned i = 0; i < 36; ++i) { 5026 if (i == 8 || i == 13 || i == 18 || i == 23) assert(Uuid[i] == '-'); 5027 else assert(isHexDigit(Uuid[i])); 5028 } 5029 5030 // The starts of all bytes of Field3 in Uuid. Field 3 is "1234-1234567890ab". 5031 const unsigned Field3ValueOffsets[8] = { 19, 21, 24, 26, 28, 30, 32, 34 }; 5032 5033 llvm::Constant *Field3[8]; 5034 for (unsigned Idx = 0; Idx < 8; ++Idx) 5035 Field3[Idx] = llvm::ConstantInt::get( 5036 Int8Ty, Uuid.substr(Field3ValueOffsets[Idx], 2), 16); 5037 5038 llvm::Constant *Fields[4] = { 5039 llvm::ConstantInt::get(Int32Ty, Uuid.substr(0, 8), 16), 5040 llvm::ConstantInt::get(Int16Ty, Uuid.substr(9, 4), 16), 5041 llvm::ConstantInt::get(Int16Ty, Uuid.substr(14, 4), 16), 5042 llvm::ConstantArray::get(llvm::ArrayType::get(Int8Ty, 8), Field3) 5043 }; 5044 5045 return llvm::ConstantStruct::getAnon(Fields); 5046 } 5047 5048 llvm::Constant *CodeGenModule::GetAddrOfRTTIDescriptor(QualType Ty, 5049 bool ForEH) { 5050 // Return a bogus pointer if RTTI is disabled, unless it's for EH. 5051 // FIXME: should we even be calling this method if RTTI is disabled 5052 // and it's not for EH? 5053 if ((!ForEH && !getLangOpts().RTTI) || getLangOpts().CUDAIsDevice) 5054 return llvm::Constant::getNullValue(Int8PtrTy); 5055 5056 if (ForEH && Ty->isObjCObjectPointerType() && 5057 LangOpts.ObjCRuntime.isGNUFamily()) 5058 return ObjCRuntime->GetEHType(Ty); 5059 5060 return getCXXABI().getAddrOfRTTIDescriptor(Ty); 5061 } 5062 5063 void CodeGenModule::EmitOMPThreadPrivateDecl(const OMPThreadPrivateDecl *D) { 5064 // Do not emit threadprivates in simd-only mode. 5065 if (LangOpts.OpenMP && LangOpts.OpenMPSimd) 5066 return; 5067 for (auto RefExpr : D->varlists()) { 5068 auto *VD = cast<VarDecl>(cast<DeclRefExpr>(RefExpr)->getDecl()); 5069 bool PerformInit = 5070 VD->getAnyInitializer() && 5071 !VD->getAnyInitializer()->isConstantInitializer(getContext(), 5072 /*ForRef=*/false); 5073 5074 Address Addr(GetAddrOfGlobalVar(VD), getContext().getDeclAlign(VD)); 5075 if (auto InitFunction = getOpenMPRuntime().emitThreadPrivateVarDefinition( 5076 VD, Addr, RefExpr->getLocStart(), PerformInit)) 5077 CXXGlobalInits.push_back(InitFunction); 5078 } 5079 } 5080 5081 llvm::Metadata * 5082 CodeGenModule::CreateMetadataIdentifierImpl(QualType T, MetadataTypeMap &Map, 5083 StringRef Suffix) { 5084 llvm::Metadata *&InternalId = Map[T.getCanonicalType()]; 5085 if (InternalId) 5086 return InternalId; 5087 5088 if (isExternallyVisible(T->getLinkage())) { 5089 std::string OutName; 5090 llvm::raw_string_ostream Out(OutName); 5091 getCXXABI().getMangleContext().mangleTypeName(T, Out); 5092 Out << Suffix; 5093 5094 InternalId = llvm::MDString::get(getLLVMContext(), Out.str()); 5095 } else { 5096 InternalId = llvm::MDNode::getDistinct(getLLVMContext(), 5097 llvm::ArrayRef<llvm::Metadata *>()); 5098 } 5099 5100 return InternalId; 5101 } 5102 5103 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierForType(QualType T) { 5104 return CreateMetadataIdentifierImpl(T, MetadataIdMap, ""); 5105 } 5106 5107 llvm::Metadata * 5108 CodeGenModule::CreateMetadataIdentifierForVirtualMemPtrType(QualType T) { 5109 return CreateMetadataIdentifierImpl(T, VirtualMetadataIdMap, ".virtual"); 5110 } 5111 5112 // Generalize pointer types to a void pointer with the qualifiers of the 5113 // originally pointed-to type, e.g. 'const char *' and 'char * const *' 5114 // generalize to 'const void *' while 'char *' and 'const char **' generalize to 5115 // 'void *'. 5116 static QualType GeneralizeType(ASTContext &Ctx, QualType Ty) { 5117 if (!Ty->isPointerType()) 5118 return Ty; 5119 5120 return Ctx.getPointerType( 5121 QualType(Ctx.VoidTy).withCVRQualifiers( 5122 Ty->getPointeeType().getCVRQualifiers())); 5123 } 5124 5125 // Apply type generalization to a FunctionType's return and argument types 5126 static QualType GeneralizeFunctionType(ASTContext &Ctx, QualType Ty) { 5127 if (auto *FnType = Ty->getAs<FunctionProtoType>()) { 5128 SmallVector<QualType, 8> GeneralizedParams; 5129 for (auto &Param : FnType->param_types()) 5130 GeneralizedParams.push_back(GeneralizeType(Ctx, Param)); 5131 5132 return Ctx.getFunctionType( 5133 GeneralizeType(Ctx, FnType->getReturnType()), 5134 GeneralizedParams, FnType->getExtProtoInfo()); 5135 } 5136 5137 if (auto *FnType = Ty->getAs<FunctionNoProtoType>()) 5138 return Ctx.getFunctionNoProtoType( 5139 GeneralizeType(Ctx, FnType->getReturnType())); 5140 5141 llvm_unreachable("Encountered unknown FunctionType"); 5142 } 5143 5144 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierGeneralized(QualType T) { 5145 return CreateMetadataIdentifierImpl(GeneralizeFunctionType(getContext(), T), 5146 GeneralizedMetadataIdMap, ".generalized"); 5147 } 5148 5149 /// Returns whether this module needs the "all-vtables" type identifier. 5150 bool CodeGenModule::NeedAllVtablesTypeId() const { 5151 // Returns true if at least one of vtable-based CFI checkers is enabled and 5152 // is not in the trapping mode. 5153 return ((LangOpts.Sanitize.has(SanitizerKind::CFIVCall) && 5154 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIVCall)) || 5155 (LangOpts.Sanitize.has(SanitizerKind::CFINVCall) && 5156 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFINVCall)) || 5157 (LangOpts.Sanitize.has(SanitizerKind::CFIDerivedCast) && 5158 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIDerivedCast)) || 5159 (LangOpts.Sanitize.has(SanitizerKind::CFIUnrelatedCast) && 5160 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIUnrelatedCast))); 5161 } 5162 5163 void CodeGenModule::AddVTableTypeMetadata(llvm::GlobalVariable *VTable, 5164 CharUnits Offset, 5165 const CXXRecordDecl *RD) { 5166 llvm::Metadata *MD = 5167 CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0)); 5168 VTable->addTypeMetadata(Offset.getQuantity(), MD); 5169 5170 if (CodeGenOpts.SanitizeCfiCrossDso) 5171 if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD)) 5172 VTable->addTypeMetadata(Offset.getQuantity(), 5173 llvm::ConstantAsMetadata::get(CrossDsoTypeId)); 5174 5175 if (NeedAllVtablesTypeId()) { 5176 llvm::Metadata *MD = llvm::MDString::get(getLLVMContext(), "all-vtables"); 5177 VTable->addTypeMetadata(Offset.getQuantity(), MD); 5178 } 5179 } 5180 5181 TargetAttr::ParsedTargetAttr CodeGenModule::filterFunctionTargetAttrs(const TargetAttr *TD) { 5182 assert(TD != nullptr); 5183 TargetAttr::ParsedTargetAttr ParsedAttr = TD->parse(); 5184 5185 ParsedAttr.Features.erase( 5186 llvm::remove_if(ParsedAttr.Features, 5187 [&](const std::string &Feat) { 5188 return !Target.isValidFeatureName( 5189 StringRef{Feat}.substr(1)); 5190 }), 5191 ParsedAttr.Features.end()); 5192 return ParsedAttr; 5193 } 5194 5195 5196 // Fills in the supplied string map with the set of target features for the 5197 // passed in function. 5198 void CodeGenModule::getFunctionFeatureMap(llvm::StringMap<bool> &FeatureMap, 5199 const FunctionDecl *FD) { 5200 StringRef TargetCPU = Target.getTargetOpts().CPU; 5201 if (const auto *TD = FD->getAttr<TargetAttr>()) { 5202 TargetAttr::ParsedTargetAttr ParsedAttr = filterFunctionTargetAttrs(TD); 5203 5204 // Make a copy of the features as passed on the command line into the 5205 // beginning of the additional features from the function to override. 5206 ParsedAttr.Features.insert(ParsedAttr.Features.begin(), 5207 Target.getTargetOpts().FeaturesAsWritten.begin(), 5208 Target.getTargetOpts().FeaturesAsWritten.end()); 5209 5210 if (ParsedAttr.Architecture != "" && 5211 Target.isValidCPUName(ParsedAttr.Architecture)) 5212 TargetCPU = ParsedAttr.Architecture; 5213 5214 // Now populate the feature map, first with the TargetCPU which is either 5215 // the default or a new one from the target attribute string. Then we'll use 5216 // the passed in features (FeaturesAsWritten) along with the new ones from 5217 // the attribute. 5218 Target.initFeatureMap(FeatureMap, getDiags(), TargetCPU, 5219 ParsedAttr.Features); 5220 } else if (const auto *SD = FD->getAttr<CPUSpecificAttr>()) { 5221 llvm::SmallVector<StringRef, 32> FeaturesTmp; 5222 Target.getCPUSpecificCPUDispatchFeatures(SD->getCurCPUName()->getName(), 5223 FeaturesTmp); 5224 std::vector<std::string> Features(FeaturesTmp.begin(), FeaturesTmp.end()); 5225 Target.initFeatureMap(FeatureMap, getDiags(), TargetCPU, Features); 5226 } else { 5227 Target.initFeatureMap(FeatureMap, getDiags(), TargetCPU, 5228 Target.getTargetOpts().Features); 5229 } 5230 } 5231 5232 llvm::SanitizerStatReport &CodeGenModule::getSanStats() { 5233 if (!SanStats) 5234 SanStats = llvm::make_unique<llvm::SanitizerStatReport>(&getModule()); 5235 5236 return *SanStats; 5237 } 5238 llvm::Value * 5239 CodeGenModule::createOpenCLIntToSamplerConversion(const Expr *E, 5240 CodeGenFunction &CGF) { 5241 llvm::Constant *C = ConstantEmitter(CGF).emitAbstract(E, E->getType()); 5242 auto SamplerT = getOpenCLRuntime().getSamplerType(E->getType().getTypePtr()); 5243 auto FTy = llvm::FunctionType::get(SamplerT, {C->getType()}, false); 5244 return CGF.Builder.CreateCall(CreateRuntimeFunction(FTy, 5245 "__translate_sampler_initializer"), 5246 {C}); 5247 } 5248