1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This coordinates the per-module state used while generating code. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "CodeGenModule.h" 14 #include "CGBlocks.h" 15 #include "CGCUDARuntime.h" 16 #include "CGCXXABI.h" 17 #include "CGCall.h" 18 #include "CGDebugInfo.h" 19 #include "CGObjCRuntime.h" 20 #include "CGOpenCLRuntime.h" 21 #include "CGOpenMPRuntime.h" 22 #include "CGOpenMPRuntimeAMDGCN.h" 23 #include "CGOpenMPRuntimeNVPTX.h" 24 #include "CodeGenFunction.h" 25 #include "CodeGenPGO.h" 26 #include "ConstantEmitter.h" 27 #include "CoverageMappingGen.h" 28 #include "TargetInfo.h" 29 #include "clang/AST/ASTContext.h" 30 #include "clang/AST/CharUnits.h" 31 #include "clang/AST/DeclCXX.h" 32 #include "clang/AST/DeclObjC.h" 33 #include "clang/AST/DeclTemplate.h" 34 #include "clang/AST/Mangle.h" 35 #include "clang/AST/RecordLayout.h" 36 #include "clang/AST/RecursiveASTVisitor.h" 37 #include "clang/AST/StmtVisitor.h" 38 #include "clang/Basic/Builtins.h" 39 #include "clang/Basic/CharInfo.h" 40 #include "clang/Basic/CodeGenOptions.h" 41 #include "clang/Basic/Diagnostic.h" 42 #include "clang/Basic/FileManager.h" 43 #include "clang/Basic/Module.h" 44 #include "clang/Basic/SourceManager.h" 45 #include "clang/Basic/TargetInfo.h" 46 #include "clang/Basic/Version.h" 47 #include "clang/CodeGen/ConstantInitBuilder.h" 48 #include "clang/Frontend/FrontendDiagnostic.h" 49 #include "llvm/ADT/StringSwitch.h" 50 #include "llvm/ADT/Triple.h" 51 #include "llvm/Analysis/TargetLibraryInfo.h" 52 #include "llvm/Frontend/OpenMP/OMPIRBuilder.h" 53 #include "llvm/IR/CallingConv.h" 54 #include "llvm/IR/DataLayout.h" 55 #include "llvm/IR/Intrinsics.h" 56 #include "llvm/IR/LLVMContext.h" 57 #include "llvm/IR/Module.h" 58 #include "llvm/IR/ProfileSummary.h" 59 #include "llvm/ProfileData/InstrProfReader.h" 60 #include "llvm/Support/CodeGen.h" 61 #include "llvm/Support/CommandLine.h" 62 #include "llvm/Support/ConvertUTF.h" 63 #include "llvm/Support/ErrorHandling.h" 64 #include "llvm/Support/MD5.h" 65 #include "llvm/Support/TimeProfiler.h" 66 67 using namespace clang; 68 using namespace CodeGen; 69 70 static llvm::cl::opt<bool> LimitedCoverage( 71 "limited-coverage-experimental", llvm::cl::ZeroOrMore, llvm::cl::Hidden, 72 llvm::cl::desc("Emit limited coverage mapping information (experimental)"), 73 llvm::cl::init(false)); 74 75 static const char AnnotationSection[] = "llvm.metadata"; 76 77 static CGCXXABI *createCXXABI(CodeGenModule &CGM) { 78 switch (CGM.getContext().getCXXABIKind()) { 79 #define ITANIUM_CXXABI(Name, Str) case TargetCXXABI::Name: 80 #define CXXABI(Name, Str) 81 #include "clang/Basic/TargetCXXABI.def" 82 return CreateItaniumCXXABI(CGM); 83 #define MICROSOFT_CXXABI(Name, Str) case TargetCXXABI::Name: 84 #define CXXABI(Name, Str) 85 #include "clang/Basic/TargetCXXABI.def" 86 return CreateMicrosoftCXXABI(CGM); 87 } 88 89 llvm_unreachable("invalid C++ ABI kind"); 90 } 91 92 CodeGenModule::CodeGenModule(ASTContext &C, const HeaderSearchOptions &HSO, 93 const PreprocessorOptions &PPO, 94 const CodeGenOptions &CGO, llvm::Module &M, 95 DiagnosticsEngine &diags, 96 CoverageSourceInfo *CoverageInfo) 97 : Context(C), LangOpts(C.getLangOpts()), HeaderSearchOpts(HSO), 98 PreprocessorOpts(PPO), CodeGenOpts(CGO), TheModule(M), Diags(diags), 99 Target(C.getTargetInfo()), ABI(createCXXABI(*this)), 100 VMContext(M.getContext()), Types(*this), VTables(*this), 101 SanitizerMD(new SanitizerMetadata(*this)) { 102 103 // Initialize the type cache. 104 llvm::LLVMContext &LLVMContext = M.getContext(); 105 VoidTy = llvm::Type::getVoidTy(LLVMContext); 106 Int8Ty = llvm::Type::getInt8Ty(LLVMContext); 107 Int16Ty = llvm::Type::getInt16Ty(LLVMContext); 108 Int32Ty = llvm::Type::getInt32Ty(LLVMContext); 109 Int64Ty = llvm::Type::getInt64Ty(LLVMContext); 110 HalfTy = llvm::Type::getHalfTy(LLVMContext); 111 BFloatTy = llvm::Type::getBFloatTy(LLVMContext); 112 FloatTy = llvm::Type::getFloatTy(LLVMContext); 113 DoubleTy = llvm::Type::getDoubleTy(LLVMContext); 114 PointerWidthInBits = C.getTargetInfo().getPointerWidth(0); 115 PointerAlignInBytes = 116 C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(0)).getQuantity(); 117 SizeSizeInBytes = 118 C.toCharUnitsFromBits(C.getTargetInfo().getMaxPointerWidth()).getQuantity(); 119 IntAlignInBytes = 120 C.toCharUnitsFromBits(C.getTargetInfo().getIntAlign()).getQuantity(); 121 IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth()); 122 IntPtrTy = llvm::IntegerType::get(LLVMContext, 123 C.getTargetInfo().getMaxPointerWidth()); 124 Int8PtrTy = Int8Ty->getPointerTo(0); 125 Int8PtrPtrTy = Int8PtrTy->getPointerTo(0); 126 AllocaInt8PtrTy = Int8Ty->getPointerTo( 127 M.getDataLayout().getAllocaAddrSpace()); 128 ASTAllocaAddressSpace = getTargetCodeGenInfo().getASTAllocaAddressSpace(); 129 130 RuntimeCC = getTargetCodeGenInfo().getABIInfo().getRuntimeCC(); 131 132 if (LangOpts.ObjC) 133 createObjCRuntime(); 134 if (LangOpts.OpenCL) 135 createOpenCLRuntime(); 136 if (LangOpts.OpenMP) 137 createOpenMPRuntime(); 138 if (LangOpts.CUDA) 139 createCUDARuntime(); 140 141 // Enable TBAA unless it's suppressed. ThreadSanitizer needs TBAA even at O0. 142 if (LangOpts.Sanitize.has(SanitizerKind::Thread) || 143 (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0)) 144 TBAA.reset(new CodeGenTBAA(Context, TheModule, CodeGenOpts, getLangOpts(), 145 getCXXABI().getMangleContext())); 146 147 // If debug info or coverage generation is enabled, create the CGDebugInfo 148 // object. 149 if (CodeGenOpts.getDebugInfo() != codegenoptions::NoDebugInfo || 150 CodeGenOpts.EmitGcovArcs || CodeGenOpts.EmitGcovNotes) 151 DebugInfo.reset(new CGDebugInfo(*this)); 152 153 Block.GlobalUniqueCount = 0; 154 155 if (C.getLangOpts().ObjC) 156 ObjCData.reset(new ObjCEntrypoints()); 157 158 if (CodeGenOpts.hasProfileClangUse()) { 159 auto ReaderOrErr = llvm::IndexedInstrProfReader::create( 160 CodeGenOpts.ProfileInstrumentUsePath, CodeGenOpts.ProfileRemappingFile); 161 if (auto E = ReaderOrErr.takeError()) { 162 unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error, 163 "Could not read profile %0: %1"); 164 llvm::handleAllErrors(std::move(E), [&](const llvm::ErrorInfoBase &EI) { 165 getDiags().Report(DiagID) << CodeGenOpts.ProfileInstrumentUsePath 166 << EI.message(); 167 }); 168 } else 169 PGOReader = std::move(ReaderOrErr.get()); 170 } 171 172 // If coverage mapping generation is enabled, create the 173 // CoverageMappingModuleGen object. 174 if (CodeGenOpts.CoverageMapping) 175 CoverageMapping.reset(new CoverageMappingModuleGen(*this, *CoverageInfo)); 176 } 177 178 CodeGenModule::~CodeGenModule() {} 179 180 void CodeGenModule::createObjCRuntime() { 181 // This is just isGNUFamily(), but we want to force implementors of 182 // new ABIs to decide how best to do this. 183 switch (LangOpts.ObjCRuntime.getKind()) { 184 case ObjCRuntime::GNUstep: 185 case ObjCRuntime::GCC: 186 case ObjCRuntime::ObjFW: 187 ObjCRuntime.reset(CreateGNUObjCRuntime(*this)); 188 return; 189 190 case ObjCRuntime::FragileMacOSX: 191 case ObjCRuntime::MacOSX: 192 case ObjCRuntime::iOS: 193 case ObjCRuntime::WatchOS: 194 ObjCRuntime.reset(CreateMacObjCRuntime(*this)); 195 return; 196 } 197 llvm_unreachable("bad runtime kind"); 198 } 199 200 void CodeGenModule::createOpenCLRuntime() { 201 OpenCLRuntime.reset(new CGOpenCLRuntime(*this)); 202 } 203 204 void CodeGenModule::createOpenMPRuntime() { 205 // Select a specialized code generation class based on the target, if any. 206 // If it does not exist use the default implementation. 207 switch (getTriple().getArch()) { 208 case llvm::Triple::nvptx: 209 case llvm::Triple::nvptx64: 210 assert(getLangOpts().OpenMPIsDevice && 211 "OpenMP NVPTX is only prepared to deal with device code."); 212 OpenMPRuntime.reset(new CGOpenMPRuntimeNVPTX(*this)); 213 break; 214 case llvm::Triple::amdgcn: 215 assert(getLangOpts().OpenMPIsDevice && 216 "OpenMP AMDGCN is only prepared to deal with device code."); 217 OpenMPRuntime.reset(new CGOpenMPRuntimeAMDGCN(*this)); 218 break; 219 default: 220 if (LangOpts.OpenMPSimd) 221 OpenMPRuntime.reset(new CGOpenMPSIMDRuntime(*this)); 222 else 223 OpenMPRuntime.reset(new CGOpenMPRuntime(*this)); 224 break; 225 } 226 } 227 228 void CodeGenModule::createCUDARuntime() { 229 CUDARuntime.reset(CreateNVCUDARuntime(*this)); 230 } 231 232 void CodeGenModule::addReplacement(StringRef Name, llvm::Constant *C) { 233 Replacements[Name] = C; 234 } 235 236 void CodeGenModule::applyReplacements() { 237 for (auto &I : Replacements) { 238 StringRef MangledName = I.first(); 239 llvm::Constant *Replacement = I.second; 240 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 241 if (!Entry) 242 continue; 243 auto *OldF = cast<llvm::Function>(Entry); 244 auto *NewF = dyn_cast<llvm::Function>(Replacement); 245 if (!NewF) { 246 if (auto *Alias = dyn_cast<llvm::GlobalAlias>(Replacement)) { 247 NewF = dyn_cast<llvm::Function>(Alias->getAliasee()); 248 } else { 249 auto *CE = cast<llvm::ConstantExpr>(Replacement); 250 assert(CE->getOpcode() == llvm::Instruction::BitCast || 251 CE->getOpcode() == llvm::Instruction::GetElementPtr); 252 NewF = dyn_cast<llvm::Function>(CE->getOperand(0)); 253 } 254 } 255 256 // Replace old with new, but keep the old order. 257 OldF->replaceAllUsesWith(Replacement); 258 if (NewF) { 259 NewF->removeFromParent(); 260 OldF->getParent()->getFunctionList().insertAfter(OldF->getIterator(), 261 NewF); 262 } 263 OldF->eraseFromParent(); 264 } 265 } 266 267 void CodeGenModule::addGlobalValReplacement(llvm::GlobalValue *GV, llvm::Constant *C) { 268 GlobalValReplacements.push_back(std::make_pair(GV, C)); 269 } 270 271 void CodeGenModule::applyGlobalValReplacements() { 272 for (auto &I : GlobalValReplacements) { 273 llvm::GlobalValue *GV = I.first; 274 llvm::Constant *C = I.second; 275 276 GV->replaceAllUsesWith(C); 277 GV->eraseFromParent(); 278 } 279 } 280 281 // This is only used in aliases that we created and we know they have a 282 // linear structure. 283 static const llvm::GlobalObject *getAliasedGlobal( 284 const llvm::GlobalIndirectSymbol &GIS) { 285 llvm::SmallPtrSet<const llvm::GlobalIndirectSymbol*, 4> Visited; 286 const llvm::Constant *C = &GIS; 287 for (;;) { 288 C = C->stripPointerCasts(); 289 if (auto *GO = dyn_cast<llvm::GlobalObject>(C)) 290 return GO; 291 // stripPointerCasts will not walk over weak aliases. 292 auto *GIS2 = dyn_cast<llvm::GlobalIndirectSymbol>(C); 293 if (!GIS2) 294 return nullptr; 295 if (!Visited.insert(GIS2).second) 296 return nullptr; 297 C = GIS2->getIndirectSymbol(); 298 } 299 } 300 301 void CodeGenModule::checkAliases() { 302 // Check if the constructed aliases are well formed. It is really unfortunate 303 // that we have to do this in CodeGen, but we only construct mangled names 304 // and aliases during codegen. 305 bool Error = false; 306 DiagnosticsEngine &Diags = getDiags(); 307 for (const GlobalDecl &GD : Aliases) { 308 const auto *D = cast<ValueDecl>(GD.getDecl()); 309 SourceLocation Location; 310 bool IsIFunc = D->hasAttr<IFuncAttr>(); 311 if (const Attr *A = D->getDefiningAttr()) 312 Location = A->getLocation(); 313 else 314 llvm_unreachable("Not an alias or ifunc?"); 315 StringRef MangledName = getMangledName(GD); 316 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 317 auto *Alias = cast<llvm::GlobalIndirectSymbol>(Entry); 318 const llvm::GlobalValue *GV = getAliasedGlobal(*Alias); 319 if (!GV) { 320 Error = true; 321 Diags.Report(Location, diag::err_cyclic_alias) << IsIFunc; 322 } else if (GV->isDeclaration()) { 323 Error = true; 324 Diags.Report(Location, diag::err_alias_to_undefined) 325 << IsIFunc << IsIFunc; 326 } else if (IsIFunc) { 327 // Check resolver function type. 328 llvm::FunctionType *FTy = dyn_cast<llvm::FunctionType>( 329 GV->getType()->getPointerElementType()); 330 assert(FTy); 331 if (!FTy->getReturnType()->isPointerTy()) 332 Diags.Report(Location, diag::err_ifunc_resolver_return); 333 } 334 335 llvm::Constant *Aliasee = Alias->getIndirectSymbol(); 336 llvm::GlobalValue *AliaseeGV; 337 if (auto CE = dyn_cast<llvm::ConstantExpr>(Aliasee)) 338 AliaseeGV = cast<llvm::GlobalValue>(CE->getOperand(0)); 339 else 340 AliaseeGV = cast<llvm::GlobalValue>(Aliasee); 341 342 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) { 343 StringRef AliasSection = SA->getName(); 344 if (AliasSection != AliaseeGV->getSection()) 345 Diags.Report(SA->getLocation(), diag::warn_alias_with_section) 346 << AliasSection << IsIFunc << IsIFunc; 347 } 348 349 // We have to handle alias to weak aliases in here. LLVM itself disallows 350 // this since the object semantics would not match the IL one. For 351 // compatibility with gcc we implement it by just pointing the alias 352 // to its aliasee's aliasee. We also warn, since the user is probably 353 // expecting the link to be weak. 354 if (auto GA = dyn_cast<llvm::GlobalIndirectSymbol>(AliaseeGV)) { 355 if (GA->isInterposable()) { 356 Diags.Report(Location, diag::warn_alias_to_weak_alias) 357 << GV->getName() << GA->getName() << IsIFunc; 358 Aliasee = llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast( 359 GA->getIndirectSymbol(), Alias->getType()); 360 Alias->setIndirectSymbol(Aliasee); 361 } 362 } 363 } 364 if (!Error) 365 return; 366 367 for (const GlobalDecl &GD : Aliases) { 368 StringRef MangledName = getMangledName(GD); 369 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 370 auto *Alias = dyn_cast<llvm::GlobalIndirectSymbol>(Entry); 371 Alias->replaceAllUsesWith(llvm::UndefValue::get(Alias->getType())); 372 Alias->eraseFromParent(); 373 } 374 } 375 376 void CodeGenModule::clear() { 377 DeferredDeclsToEmit.clear(); 378 if (OpenMPRuntime) 379 OpenMPRuntime->clear(); 380 } 381 382 void InstrProfStats::reportDiagnostics(DiagnosticsEngine &Diags, 383 StringRef MainFile) { 384 if (!hasDiagnostics()) 385 return; 386 if (VisitedInMainFile > 0 && VisitedInMainFile == MissingInMainFile) { 387 if (MainFile.empty()) 388 MainFile = "<stdin>"; 389 Diags.Report(diag::warn_profile_data_unprofiled) << MainFile; 390 } else { 391 if (Mismatched > 0) 392 Diags.Report(diag::warn_profile_data_out_of_date) << Visited << Mismatched; 393 394 if (Missing > 0) 395 Diags.Report(diag::warn_profile_data_missing) << Visited << Missing; 396 } 397 } 398 399 void CodeGenModule::Release() { 400 EmitDeferred(); 401 EmitVTablesOpportunistically(); 402 applyGlobalValReplacements(); 403 applyReplacements(); 404 checkAliases(); 405 emitMultiVersionFunctions(); 406 EmitCXXGlobalInitFunc(); 407 EmitCXXGlobalCleanUpFunc(); 408 registerGlobalDtorsWithAtExit(); 409 EmitCXXThreadLocalInitFunc(); 410 if (ObjCRuntime) 411 if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction()) 412 AddGlobalCtor(ObjCInitFunction); 413 if (Context.getLangOpts().CUDA && !Context.getLangOpts().CUDAIsDevice && 414 CUDARuntime) { 415 if (llvm::Function *CudaCtorFunction = 416 CUDARuntime->makeModuleCtorFunction()) 417 AddGlobalCtor(CudaCtorFunction); 418 } 419 if (OpenMPRuntime) { 420 if (llvm::Function *OpenMPRequiresDirectiveRegFun = 421 OpenMPRuntime->emitRequiresDirectiveRegFun()) { 422 AddGlobalCtor(OpenMPRequiresDirectiveRegFun, 0); 423 } 424 OpenMPRuntime->createOffloadEntriesAndInfoMetadata(); 425 OpenMPRuntime->clear(); 426 } 427 if (PGOReader) { 428 getModule().setProfileSummary( 429 PGOReader->getSummary(/* UseCS */ false).getMD(VMContext), 430 llvm::ProfileSummary::PSK_Instr); 431 if (PGOStats.hasDiagnostics()) 432 PGOStats.reportDiagnostics(getDiags(), getCodeGenOpts().MainFileName); 433 } 434 EmitCtorList(GlobalCtors, "llvm.global_ctors"); 435 EmitCtorList(GlobalDtors, "llvm.global_dtors"); 436 EmitGlobalAnnotations(); 437 EmitStaticExternCAliases(); 438 EmitDeferredUnusedCoverageMappings(); 439 if (CoverageMapping) 440 CoverageMapping->emit(); 441 if (CodeGenOpts.SanitizeCfiCrossDso) { 442 CodeGenFunction(*this).EmitCfiCheckFail(); 443 CodeGenFunction(*this).EmitCfiCheckStub(); 444 } 445 emitAtAvailableLinkGuard(); 446 if (Context.getTargetInfo().getTriple().isWasm() && 447 !Context.getTargetInfo().getTriple().isOSEmscripten()) { 448 EmitMainVoidAlias(); 449 } 450 emitLLVMUsed(); 451 if (SanStats) 452 SanStats->finish(); 453 454 if (CodeGenOpts.Autolink && 455 (Context.getLangOpts().Modules || !LinkerOptionsMetadata.empty())) { 456 EmitModuleLinkOptions(); 457 } 458 459 // On ELF we pass the dependent library specifiers directly to the linker 460 // without manipulating them. This is in contrast to other platforms where 461 // they are mapped to a specific linker option by the compiler. This 462 // difference is a result of the greater variety of ELF linkers and the fact 463 // that ELF linkers tend to handle libraries in a more complicated fashion 464 // than on other platforms. This forces us to defer handling the dependent 465 // libs to the linker. 466 // 467 // CUDA/HIP device and host libraries are different. Currently there is no 468 // way to differentiate dependent libraries for host or device. Existing 469 // usage of #pragma comment(lib, *) is intended for host libraries on 470 // Windows. Therefore emit llvm.dependent-libraries only for host. 471 if (!ELFDependentLibraries.empty() && !Context.getLangOpts().CUDAIsDevice) { 472 auto *NMD = getModule().getOrInsertNamedMetadata("llvm.dependent-libraries"); 473 for (auto *MD : ELFDependentLibraries) 474 NMD->addOperand(MD); 475 } 476 477 // Record mregparm value now so it is visible through rest of codegen. 478 if (Context.getTargetInfo().getTriple().getArch() == llvm::Triple::x86) 479 getModule().addModuleFlag(llvm::Module::Error, "NumRegisterParameters", 480 CodeGenOpts.NumRegisterParameters); 481 482 if (CodeGenOpts.DwarfVersion) { 483 getModule().addModuleFlag(llvm::Module::Max, "Dwarf Version", 484 CodeGenOpts.DwarfVersion); 485 } 486 487 if (Context.getLangOpts().SemanticInterposition) 488 // Require various optimization to respect semantic interposition. 489 getModule().setSemanticInterposition(1); 490 else if (Context.getLangOpts().ExplicitNoSemanticInterposition) 491 // Allow dso_local on applicable targets. 492 getModule().setSemanticInterposition(0); 493 494 if (CodeGenOpts.EmitCodeView) { 495 // Indicate that we want CodeView in the metadata. 496 getModule().addModuleFlag(llvm::Module::Warning, "CodeView", 1); 497 } 498 if (CodeGenOpts.CodeViewGHash) { 499 getModule().addModuleFlag(llvm::Module::Warning, "CodeViewGHash", 1); 500 } 501 if (CodeGenOpts.ControlFlowGuard) { 502 // Function ID tables and checks for Control Flow Guard (cfguard=2). 503 getModule().addModuleFlag(llvm::Module::Warning, "cfguard", 2); 504 } else if (CodeGenOpts.ControlFlowGuardNoChecks) { 505 // Function ID tables for Control Flow Guard (cfguard=1). 506 getModule().addModuleFlag(llvm::Module::Warning, "cfguard", 1); 507 } 508 if (CodeGenOpts.OptimizationLevel > 0 && CodeGenOpts.StrictVTablePointers) { 509 // We don't support LTO with 2 with different StrictVTablePointers 510 // FIXME: we could support it by stripping all the information introduced 511 // by StrictVTablePointers. 512 513 getModule().addModuleFlag(llvm::Module::Error, "StrictVTablePointers",1); 514 515 llvm::Metadata *Ops[2] = { 516 llvm::MDString::get(VMContext, "StrictVTablePointers"), 517 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 518 llvm::Type::getInt32Ty(VMContext), 1))}; 519 520 getModule().addModuleFlag(llvm::Module::Require, 521 "StrictVTablePointersRequirement", 522 llvm::MDNode::get(VMContext, Ops)); 523 } 524 if (getModuleDebugInfo()) 525 // We support a single version in the linked module. The LLVM 526 // parser will drop debug info with a different version number 527 // (and warn about it, too). 528 getModule().addModuleFlag(llvm::Module::Warning, "Debug Info Version", 529 llvm::DEBUG_METADATA_VERSION); 530 531 // We need to record the widths of enums and wchar_t, so that we can generate 532 // the correct build attributes in the ARM backend. wchar_size is also used by 533 // TargetLibraryInfo. 534 uint64_t WCharWidth = 535 Context.getTypeSizeInChars(Context.getWideCharType()).getQuantity(); 536 getModule().addModuleFlag(llvm::Module::Error, "wchar_size", WCharWidth); 537 538 llvm::Triple::ArchType Arch = Context.getTargetInfo().getTriple().getArch(); 539 if ( Arch == llvm::Triple::arm 540 || Arch == llvm::Triple::armeb 541 || Arch == llvm::Triple::thumb 542 || Arch == llvm::Triple::thumbeb) { 543 // The minimum width of an enum in bytes 544 uint64_t EnumWidth = Context.getLangOpts().ShortEnums ? 1 : 4; 545 getModule().addModuleFlag(llvm::Module::Error, "min_enum_size", EnumWidth); 546 } 547 548 if (Arch == llvm::Triple::riscv32 || Arch == llvm::Triple::riscv64) { 549 StringRef ABIStr = Target.getABI(); 550 llvm::LLVMContext &Ctx = TheModule.getContext(); 551 getModule().addModuleFlag(llvm::Module::Error, "target-abi", 552 llvm::MDString::get(Ctx, ABIStr)); 553 } 554 555 if (CodeGenOpts.SanitizeCfiCrossDso) { 556 // Indicate that we want cross-DSO control flow integrity checks. 557 getModule().addModuleFlag(llvm::Module::Override, "Cross-DSO CFI", 1); 558 } 559 560 if (CodeGenOpts.WholeProgramVTables) { 561 // Indicate whether VFE was enabled for this module, so that the 562 // vcall_visibility metadata added under whole program vtables is handled 563 // appropriately in the optimizer. 564 getModule().addModuleFlag(llvm::Module::Error, "Virtual Function Elim", 565 CodeGenOpts.VirtualFunctionElimination); 566 } 567 568 if (LangOpts.Sanitize.has(SanitizerKind::CFIICall)) { 569 getModule().addModuleFlag(llvm::Module::Override, 570 "CFI Canonical Jump Tables", 571 CodeGenOpts.SanitizeCfiCanonicalJumpTables); 572 } 573 574 if (CodeGenOpts.CFProtectionReturn && 575 Target.checkCFProtectionReturnSupported(getDiags())) { 576 // Indicate that we want to instrument return control flow protection. 577 getModule().addModuleFlag(llvm::Module::Override, "cf-protection-return", 578 1); 579 } 580 581 if (CodeGenOpts.CFProtectionBranch && 582 Target.checkCFProtectionBranchSupported(getDiags())) { 583 // Indicate that we want to instrument branch control flow protection. 584 getModule().addModuleFlag(llvm::Module::Override, "cf-protection-branch", 585 1); 586 } 587 588 if (Arch == llvm::Triple::aarch64 || Arch == llvm::Triple::aarch64_32 || 589 Arch == llvm::Triple::aarch64_be) { 590 getModule().addModuleFlag(llvm::Module::Error, 591 "branch-target-enforcement", 592 LangOpts.BranchTargetEnforcement); 593 594 getModule().addModuleFlag(llvm::Module::Error, "sign-return-address", 595 LangOpts.hasSignReturnAddress()); 596 597 getModule().addModuleFlag(llvm::Module::Error, "sign-return-address-all", 598 LangOpts.isSignReturnAddressScopeAll()); 599 600 getModule().addModuleFlag(llvm::Module::Error, 601 "sign-return-address-with-bkey", 602 !LangOpts.isSignReturnAddressWithAKey()); 603 } 604 605 if (LangOpts.CUDAIsDevice && getTriple().isNVPTX()) { 606 // Indicate whether __nvvm_reflect should be configured to flush denormal 607 // floating point values to 0. (This corresponds to its "__CUDA_FTZ" 608 // property.) 609 getModule().addModuleFlag(llvm::Module::Override, "nvvm-reflect-ftz", 610 CodeGenOpts.FP32DenormalMode.Output != 611 llvm::DenormalMode::IEEE); 612 } 613 614 // Emit OpenCL specific module metadata: OpenCL/SPIR version. 615 if (LangOpts.OpenCL) { 616 EmitOpenCLMetadata(); 617 // Emit SPIR version. 618 if (getTriple().isSPIR()) { 619 // SPIR v2.0 s2.12 - The SPIR version used by the module is stored in the 620 // opencl.spir.version named metadata. 621 // C++ is backwards compatible with OpenCL v2.0. 622 auto Version = LangOpts.OpenCLCPlusPlus ? 200 : LangOpts.OpenCLVersion; 623 llvm::Metadata *SPIRVerElts[] = { 624 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 625 Int32Ty, Version / 100)), 626 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 627 Int32Ty, (Version / 100 > 1) ? 0 : 2))}; 628 llvm::NamedMDNode *SPIRVerMD = 629 TheModule.getOrInsertNamedMetadata("opencl.spir.version"); 630 llvm::LLVMContext &Ctx = TheModule.getContext(); 631 SPIRVerMD->addOperand(llvm::MDNode::get(Ctx, SPIRVerElts)); 632 } 633 } 634 635 if (uint32_t PLevel = Context.getLangOpts().PICLevel) { 636 assert(PLevel < 3 && "Invalid PIC Level"); 637 getModule().setPICLevel(static_cast<llvm::PICLevel::Level>(PLevel)); 638 if (Context.getLangOpts().PIE) 639 getModule().setPIELevel(static_cast<llvm::PIELevel::Level>(PLevel)); 640 } 641 642 if (getCodeGenOpts().CodeModel.size() > 0) { 643 unsigned CM = llvm::StringSwitch<unsigned>(getCodeGenOpts().CodeModel) 644 .Case("tiny", llvm::CodeModel::Tiny) 645 .Case("small", llvm::CodeModel::Small) 646 .Case("kernel", llvm::CodeModel::Kernel) 647 .Case("medium", llvm::CodeModel::Medium) 648 .Case("large", llvm::CodeModel::Large) 649 .Default(~0u); 650 if (CM != ~0u) { 651 llvm::CodeModel::Model codeModel = static_cast<llvm::CodeModel::Model>(CM); 652 getModule().setCodeModel(codeModel); 653 } 654 } 655 656 if (CodeGenOpts.NoPLT) 657 getModule().setRtLibUseGOT(); 658 659 SimplifyPersonality(); 660 661 if (getCodeGenOpts().EmitDeclMetadata) 662 EmitDeclMetadata(); 663 664 if (getCodeGenOpts().EmitGcovArcs || getCodeGenOpts().EmitGcovNotes) 665 EmitCoverageFile(); 666 667 if (CGDebugInfo *DI = getModuleDebugInfo()) 668 DI->finalize(); 669 670 if (getCodeGenOpts().EmitVersionIdentMetadata) 671 EmitVersionIdentMetadata(); 672 673 if (!getCodeGenOpts().RecordCommandLine.empty()) 674 EmitCommandLineMetadata(); 675 676 getTargetCodeGenInfo().emitTargetMetadata(*this, MangledDeclNames); 677 678 EmitBackendOptionsMetadata(getCodeGenOpts()); 679 } 680 681 void CodeGenModule::EmitOpenCLMetadata() { 682 // SPIR v2.0 s2.13 - The OpenCL version used by the module is stored in the 683 // opencl.ocl.version named metadata node. 684 // C++ is backwards compatible with OpenCL v2.0. 685 // FIXME: We might need to add CXX version at some point too? 686 auto Version = LangOpts.OpenCLCPlusPlus ? 200 : LangOpts.OpenCLVersion; 687 llvm::Metadata *OCLVerElts[] = { 688 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 689 Int32Ty, Version / 100)), 690 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 691 Int32Ty, (Version % 100) / 10))}; 692 llvm::NamedMDNode *OCLVerMD = 693 TheModule.getOrInsertNamedMetadata("opencl.ocl.version"); 694 llvm::LLVMContext &Ctx = TheModule.getContext(); 695 OCLVerMD->addOperand(llvm::MDNode::get(Ctx, OCLVerElts)); 696 } 697 698 void CodeGenModule::EmitBackendOptionsMetadata( 699 const CodeGenOptions CodeGenOpts) { 700 switch (getTriple().getArch()) { 701 default: 702 break; 703 case llvm::Triple::riscv32: 704 case llvm::Triple::riscv64: 705 getModule().addModuleFlag(llvm::Module::Error, "SmallDataLimit", 706 CodeGenOpts.SmallDataLimit); 707 break; 708 } 709 } 710 711 void CodeGenModule::UpdateCompletedType(const TagDecl *TD) { 712 // Make sure that this type is translated. 713 Types.UpdateCompletedType(TD); 714 } 715 716 void CodeGenModule::RefreshTypeCacheForClass(const CXXRecordDecl *RD) { 717 // Make sure that this type is translated. 718 Types.RefreshTypeCacheForClass(RD); 719 } 720 721 llvm::MDNode *CodeGenModule::getTBAATypeInfo(QualType QTy) { 722 if (!TBAA) 723 return nullptr; 724 return TBAA->getTypeInfo(QTy); 725 } 726 727 TBAAAccessInfo CodeGenModule::getTBAAAccessInfo(QualType AccessType) { 728 if (!TBAA) 729 return TBAAAccessInfo(); 730 if (getLangOpts().CUDAIsDevice) { 731 // As CUDA builtin surface/texture types are replaced, skip generating TBAA 732 // access info. 733 if (AccessType->isCUDADeviceBuiltinSurfaceType()) { 734 if (getTargetCodeGenInfo().getCUDADeviceBuiltinSurfaceDeviceType() != 735 nullptr) 736 return TBAAAccessInfo(); 737 } else if (AccessType->isCUDADeviceBuiltinTextureType()) { 738 if (getTargetCodeGenInfo().getCUDADeviceBuiltinTextureDeviceType() != 739 nullptr) 740 return TBAAAccessInfo(); 741 } 742 } 743 return TBAA->getAccessInfo(AccessType); 744 } 745 746 TBAAAccessInfo 747 CodeGenModule::getTBAAVTablePtrAccessInfo(llvm::Type *VTablePtrType) { 748 if (!TBAA) 749 return TBAAAccessInfo(); 750 return TBAA->getVTablePtrAccessInfo(VTablePtrType); 751 } 752 753 llvm::MDNode *CodeGenModule::getTBAAStructInfo(QualType QTy) { 754 if (!TBAA) 755 return nullptr; 756 return TBAA->getTBAAStructInfo(QTy); 757 } 758 759 llvm::MDNode *CodeGenModule::getTBAABaseTypeInfo(QualType QTy) { 760 if (!TBAA) 761 return nullptr; 762 return TBAA->getBaseTypeInfo(QTy); 763 } 764 765 llvm::MDNode *CodeGenModule::getTBAAAccessTagInfo(TBAAAccessInfo Info) { 766 if (!TBAA) 767 return nullptr; 768 return TBAA->getAccessTagInfo(Info); 769 } 770 771 TBAAAccessInfo CodeGenModule::mergeTBAAInfoForCast(TBAAAccessInfo SourceInfo, 772 TBAAAccessInfo TargetInfo) { 773 if (!TBAA) 774 return TBAAAccessInfo(); 775 return TBAA->mergeTBAAInfoForCast(SourceInfo, TargetInfo); 776 } 777 778 TBAAAccessInfo 779 CodeGenModule::mergeTBAAInfoForConditionalOperator(TBAAAccessInfo InfoA, 780 TBAAAccessInfo InfoB) { 781 if (!TBAA) 782 return TBAAAccessInfo(); 783 return TBAA->mergeTBAAInfoForConditionalOperator(InfoA, InfoB); 784 } 785 786 TBAAAccessInfo 787 CodeGenModule::mergeTBAAInfoForMemoryTransfer(TBAAAccessInfo DestInfo, 788 TBAAAccessInfo SrcInfo) { 789 if (!TBAA) 790 return TBAAAccessInfo(); 791 return TBAA->mergeTBAAInfoForConditionalOperator(DestInfo, SrcInfo); 792 } 793 794 void CodeGenModule::DecorateInstructionWithTBAA(llvm::Instruction *Inst, 795 TBAAAccessInfo TBAAInfo) { 796 if (llvm::MDNode *Tag = getTBAAAccessTagInfo(TBAAInfo)) 797 Inst->setMetadata(llvm::LLVMContext::MD_tbaa, Tag); 798 } 799 800 void CodeGenModule::DecorateInstructionWithInvariantGroup( 801 llvm::Instruction *I, const CXXRecordDecl *RD) { 802 I->setMetadata(llvm::LLVMContext::MD_invariant_group, 803 llvm::MDNode::get(getLLVMContext(), {})); 804 } 805 806 void CodeGenModule::Error(SourceLocation loc, StringRef message) { 807 unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, "%0"); 808 getDiags().Report(Context.getFullLoc(loc), diagID) << message; 809 } 810 811 /// ErrorUnsupported - Print out an error that codegen doesn't support the 812 /// specified stmt yet. 813 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type) { 814 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, 815 "cannot compile this %0 yet"); 816 std::string Msg = Type; 817 getDiags().Report(Context.getFullLoc(S->getBeginLoc()), DiagID) 818 << Msg << S->getSourceRange(); 819 } 820 821 /// ErrorUnsupported - Print out an error that codegen doesn't support the 822 /// specified decl yet. 823 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type) { 824 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, 825 "cannot compile this %0 yet"); 826 std::string Msg = Type; 827 getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg; 828 } 829 830 llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) { 831 return llvm::ConstantInt::get(SizeTy, size.getQuantity()); 832 } 833 834 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV, 835 const NamedDecl *D) const { 836 if (GV->hasDLLImportStorageClass()) 837 return; 838 // Internal definitions always have default visibility. 839 if (GV->hasLocalLinkage()) { 840 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 841 return; 842 } 843 if (!D) 844 return; 845 // Set visibility for definitions, and for declarations if requested globally 846 // or set explicitly. 847 LinkageInfo LV = D->getLinkageAndVisibility(); 848 if (LV.isVisibilityExplicit() || getLangOpts().SetVisibilityForExternDecls || 849 !GV->isDeclarationForLinker()) 850 GV->setVisibility(GetLLVMVisibility(LV.getVisibility())); 851 } 852 853 static bool shouldAssumeDSOLocal(const CodeGenModule &CGM, 854 llvm::GlobalValue *GV) { 855 if (GV->hasLocalLinkage()) 856 return true; 857 858 if (!GV->hasDefaultVisibility() && !GV->hasExternalWeakLinkage()) 859 return true; 860 861 // DLLImport explicitly marks the GV as external. 862 if (GV->hasDLLImportStorageClass()) 863 return false; 864 865 const llvm::Triple &TT = CGM.getTriple(); 866 if (TT.isWindowsGNUEnvironment()) { 867 // In MinGW, variables without DLLImport can still be automatically 868 // imported from a DLL by the linker; don't mark variables that 869 // potentially could come from another DLL as DSO local. 870 if (GV->isDeclarationForLinker() && isa<llvm::GlobalVariable>(GV) && 871 !GV->isThreadLocal()) 872 return false; 873 } 874 875 // On COFF, don't mark 'extern_weak' symbols as DSO local. If these symbols 876 // remain unresolved in the link, they can be resolved to zero, which is 877 // outside the current DSO. 878 if (TT.isOSBinFormatCOFF() && GV->hasExternalWeakLinkage()) 879 return false; 880 881 // Every other GV is local on COFF. 882 // Make an exception for windows OS in the triple: Some firmware builds use 883 // *-win32-macho triples. This (accidentally?) produced windows relocations 884 // without GOT tables in older clang versions; Keep this behaviour. 885 // FIXME: even thread local variables? 886 if (TT.isOSBinFormatCOFF() || (TT.isOSWindows() && TT.isOSBinFormatMachO())) 887 return true; 888 889 // Only handle COFF and ELF for now. 890 if (!TT.isOSBinFormatELF()) 891 return false; 892 893 // If this is not an executable, don't assume anything is local. 894 const auto &CGOpts = CGM.getCodeGenOpts(); 895 llvm::Reloc::Model RM = CGOpts.RelocationModel; 896 const auto &LOpts = CGM.getLangOpts(); 897 if (RM != llvm::Reloc::Static && !LOpts.PIE) 898 return false; 899 900 // A definition cannot be preempted from an executable. 901 if (!GV->isDeclarationForLinker()) 902 return true; 903 904 // Most PIC code sequences that assume that a symbol is local cannot produce a 905 // 0 if it turns out the symbol is undefined. While this is ABI and relocation 906 // depended, it seems worth it to handle it here. 907 if (RM == llvm::Reloc::PIC_ && GV->hasExternalWeakLinkage()) 908 return false; 909 910 // PPC has no copy relocations and cannot use a plt entry as a symbol address. 911 llvm::Triple::ArchType Arch = TT.getArch(); 912 if (Arch == llvm::Triple::ppc || Arch == llvm::Triple::ppc64 || 913 Arch == llvm::Triple::ppc64le) 914 return false; 915 916 // If we can use copy relocations we can assume it is local. 917 if (auto *Var = dyn_cast<llvm::GlobalVariable>(GV)) 918 if (!Var->isThreadLocal() && 919 (RM == llvm::Reloc::Static || CGOpts.PIECopyRelocations)) 920 return true; 921 922 // If we can use a plt entry as the symbol address we can assume it 923 // is local. 924 // FIXME: This should work for PIE, but the gold linker doesn't support it. 925 if (isa<llvm::Function>(GV) && !CGOpts.NoPLT && RM == llvm::Reloc::Static) 926 return true; 927 928 // Otherwise don't assume it is local. 929 return false; 930 } 931 932 void CodeGenModule::setDSOLocal(llvm::GlobalValue *GV) const { 933 GV->setDSOLocal(shouldAssumeDSOLocal(*this, GV)); 934 } 935 936 void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV, 937 GlobalDecl GD) const { 938 const auto *D = dyn_cast<NamedDecl>(GD.getDecl()); 939 // C++ destructors have a few C++ ABI specific special cases. 940 if (const auto *Dtor = dyn_cast_or_null<CXXDestructorDecl>(D)) { 941 getCXXABI().setCXXDestructorDLLStorage(GV, Dtor, GD.getDtorType()); 942 return; 943 } 944 setDLLImportDLLExport(GV, D); 945 } 946 947 void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV, 948 const NamedDecl *D) const { 949 if (D && D->isExternallyVisible()) { 950 if (D->hasAttr<DLLImportAttr>()) 951 GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass); 952 else if (D->hasAttr<DLLExportAttr>() && !GV->isDeclarationForLinker()) 953 GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass); 954 } 955 } 956 957 void CodeGenModule::setGVProperties(llvm::GlobalValue *GV, 958 GlobalDecl GD) const { 959 setDLLImportDLLExport(GV, GD); 960 setGVPropertiesAux(GV, dyn_cast<NamedDecl>(GD.getDecl())); 961 } 962 963 void CodeGenModule::setGVProperties(llvm::GlobalValue *GV, 964 const NamedDecl *D) const { 965 setDLLImportDLLExport(GV, D); 966 setGVPropertiesAux(GV, D); 967 } 968 969 void CodeGenModule::setGVPropertiesAux(llvm::GlobalValue *GV, 970 const NamedDecl *D) const { 971 setGlobalVisibility(GV, D); 972 setDSOLocal(GV); 973 GV->setPartition(CodeGenOpts.SymbolPartition); 974 } 975 976 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(StringRef S) { 977 return llvm::StringSwitch<llvm::GlobalVariable::ThreadLocalMode>(S) 978 .Case("global-dynamic", llvm::GlobalVariable::GeneralDynamicTLSModel) 979 .Case("local-dynamic", llvm::GlobalVariable::LocalDynamicTLSModel) 980 .Case("initial-exec", llvm::GlobalVariable::InitialExecTLSModel) 981 .Case("local-exec", llvm::GlobalVariable::LocalExecTLSModel); 982 } 983 984 llvm::GlobalVariable::ThreadLocalMode 985 CodeGenModule::GetDefaultLLVMTLSModel() const { 986 switch (CodeGenOpts.getDefaultTLSModel()) { 987 case CodeGenOptions::GeneralDynamicTLSModel: 988 return llvm::GlobalVariable::GeneralDynamicTLSModel; 989 case CodeGenOptions::LocalDynamicTLSModel: 990 return llvm::GlobalVariable::LocalDynamicTLSModel; 991 case CodeGenOptions::InitialExecTLSModel: 992 return llvm::GlobalVariable::InitialExecTLSModel; 993 case CodeGenOptions::LocalExecTLSModel: 994 return llvm::GlobalVariable::LocalExecTLSModel; 995 } 996 llvm_unreachable("Invalid TLS model!"); 997 } 998 999 void CodeGenModule::setTLSMode(llvm::GlobalValue *GV, const VarDecl &D) const { 1000 assert(D.getTLSKind() && "setting TLS mode on non-TLS var!"); 1001 1002 llvm::GlobalValue::ThreadLocalMode TLM; 1003 TLM = GetDefaultLLVMTLSModel(); 1004 1005 // Override the TLS model if it is explicitly specified. 1006 if (const TLSModelAttr *Attr = D.getAttr<TLSModelAttr>()) { 1007 TLM = GetLLVMTLSModel(Attr->getModel()); 1008 } 1009 1010 GV->setThreadLocalMode(TLM); 1011 } 1012 1013 static std::string getCPUSpecificMangling(const CodeGenModule &CGM, 1014 StringRef Name) { 1015 const TargetInfo &Target = CGM.getTarget(); 1016 return (Twine('.') + Twine(Target.CPUSpecificManglingCharacter(Name))).str(); 1017 } 1018 1019 static void AppendCPUSpecificCPUDispatchMangling(const CodeGenModule &CGM, 1020 const CPUSpecificAttr *Attr, 1021 unsigned CPUIndex, 1022 raw_ostream &Out) { 1023 // cpu_specific gets the current name, dispatch gets the resolver if IFunc is 1024 // supported. 1025 if (Attr) 1026 Out << getCPUSpecificMangling(CGM, Attr->getCPUName(CPUIndex)->getName()); 1027 else if (CGM.getTarget().supportsIFunc()) 1028 Out << ".resolver"; 1029 } 1030 1031 static void AppendTargetMangling(const CodeGenModule &CGM, 1032 const TargetAttr *Attr, raw_ostream &Out) { 1033 if (Attr->isDefaultVersion()) 1034 return; 1035 1036 Out << '.'; 1037 const TargetInfo &Target = CGM.getTarget(); 1038 ParsedTargetAttr Info = 1039 Attr->parse([&Target](StringRef LHS, StringRef RHS) { 1040 // Multiversioning doesn't allow "no-${feature}", so we can 1041 // only have "+" prefixes here. 1042 assert(LHS.startswith("+") && RHS.startswith("+") && 1043 "Features should always have a prefix."); 1044 return Target.multiVersionSortPriority(LHS.substr(1)) > 1045 Target.multiVersionSortPriority(RHS.substr(1)); 1046 }); 1047 1048 bool IsFirst = true; 1049 1050 if (!Info.Architecture.empty()) { 1051 IsFirst = false; 1052 Out << "arch_" << Info.Architecture; 1053 } 1054 1055 for (StringRef Feat : Info.Features) { 1056 if (!IsFirst) 1057 Out << '_'; 1058 IsFirst = false; 1059 Out << Feat.substr(1); 1060 } 1061 } 1062 1063 static std::string getMangledNameImpl(const CodeGenModule &CGM, GlobalDecl GD, 1064 const NamedDecl *ND, 1065 bool OmitMultiVersionMangling = false) { 1066 SmallString<256> Buffer; 1067 llvm::raw_svector_ostream Out(Buffer); 1068 MangleContext &MC = CGM.getCXXABI().getMangleContext(); 1069 if (MC.shouldMangleDeclName(ND)) 1070 MC.mangleName(GD.getWithDecl(ND), Out); 1071 else { 1072 IdentifierInfo *II = ND->getIdentifier(); 1073 assert(II && "Attempt to mangle unnamed decl."); 1074 const auto *FD = dyn_cast<FunctionDecl>(ND); 1075 1076 if (FD && 1077 FD->getType()->castAs<FunctionType>()->getCallConv() == CC_X86RegCall) { 1078 Out << "__regcall3__" << II->getName(); 1079 } else if (FD && FD->hasAttr<CUDAGlobalAttr>() && 1080 GD.getKernelReferenceKind() == KernelReferenceKind::Stub) { 1081 Out << "__device_stub__" << II->getName(); 1082 } else { 1083 Out << II->getName(); 1084 } 1085 } 1086 1087 if (const auto *FD = dyn_cast<FunctionDecl>(ND)) 1088 if (FD->isMultiVersion() && !OmitMultiVersionMangling) { 1089 switch (FD->getMultiVersionKind()) { 1090 case MultiVersionKind::CPUDispatch: 1091 case MultiVersionKind::CPUSpecific: 1092 AppendCPUSpecificCPUDispatchMangling(CGM, 1093 FD->getAttr<CPUSpecificAttr>(), 1094 GD.getMultiVersionIndex(), Out); 1095 break; 1096 case MultiVersionKind::Target: 1097 AppendTargetMangling(CGM, FD->getAttr<TargetAttr>(), Out); 1098 break; 1099 case MultiVersionKind::None: 1100 llvm_unreachable("None multiversion type isn't valid here"); 1101 } 1102 } 1103 1104 return std::string(Out.str()); 1105 } 1106 1107 void CodeGenModule::UpdateMultiVersionNames(GlobalDecl GD, 1108 const FunctionDecl *FD) { 1109 if (!FD->isMultiVersion()) 1110 return; 1111 1112 // Get the name of what this would be without the 'target' attribute. This 1113 // allows us to lookup the version that was emitted when this wasn't a 1114 // multiversion function. 1115 std::string NonTargetName = 1116 getMangledNameImpl(*this, GD, FD, /*OmitMultiVersionMangling=*/true); 1117 GlobalDecl OtherGD; 1118 if (lookupRepresentativeDecl(NonTargetName, OtherGD)) { 1119 assert(OtherGD.getCanonicalDecl() 1120 .getDecl() 1121 ->getAsFunction() 1122 ->isMultiVersion() && 1123 "Other GD should now be a multiversioned function"); 1124 // OtherFD is the version of this function that was mangled BEFORE 1125 // becoming a MultiVersion function. It potentially needs to be updated. 1126 const FunctionDecl *OtherFD = OtherGD.getCanonicalDecl() 1127 .getDecl() 1128 ->getAsFunction() 1129 ->getMostRecentDecl(); 1130 std::string OtherName = getMangledNameImpl(*this, OtherGD, OtherFD); 1131 // This is so that if the initial version was already the 'default' 1132 // version, we don't try to update it. 1133 if (OtherName != NonTargetName) { 1134 // Remove instead of erase, since others may have stored the StringRef 1135 // to this. 1136 const auto ExistingRecord = Manglings.find(NonTargetName); 1137 if (ExistingRecord != std::end(Manglings)) 1138 Manglings.remove(&(*ExistingRecord)); 1139 auto Result = Manglings.insert(std::make_pair(OtherName, OtherGD)); 1140 MangledDeclNames[OtherGD.getCanonicalDecl()] = Result.first->first(); 1141 if (llvm::GlobalValue *Entry = GetGlobalValue(NonTargetName)) 1142 Entry->setName(OtherName); 1143 } 1144 } 1145 } 1146 1147 StringRef CodeGenModule::getMangledName(GlobalDecl GD) { 1148 GlobalDecl CanonicalGD = GD.getCanonicalDecl(); 1149 1150 // Some ABIs don't have constructor variants. Make sure that base and 1151 // complete constructors get mangled the same. 1152 if (const auto *CD = dyn_cast<CXXConstructorDecl>(CanonicalGD.getDecl())) { 1153 if (!getTarget().getCXXABI().hasConstructorVariants()) { 1154 CXXCtorType OrigCtorType = GD.getCtorType(); 1155 assert(OrigCtorType == Ctor_Base || OrigCtorType == Ctor_Complete); 1156 if (OrigCtorType == Ctor_Base) 1157 CanonicalGD = GlobalDecl(CD, Ctor_Complete); 1158 } 1159 } 1160 1161 auto FoundName = MangledDeclNames.find(CanonicalGD); 1162 if (FoundName != MangledDeclNames.end()) 1163 return FoundName->second; 1164 1165 // Keep the first result in the case of a mangling collision. 1166 const auto *ND = cast<NamedDecl>(GD.getDecl()); 1167 std::string MangledName = getMangledNameImpl(*this, GD, ND); 1168 1169 // Ensure either we have different ABIs between host and device compilations, 1170 // says host compilation following MSVC ABI but device compilation follows 1171 // Itanium C++ ABI or, if they follow the same ABI, kernel names after 1172 // mangling should be the same after name stubbing. The later checking is 1173 // very important as the device kernel name being mangled in host-compilation 1174 // is used to resolve the device binaries to be executed. Inconsistent naming 1175 // result in undefined behavior. Even though we cannot check that naming 1176 // directly between host- and device-compilations, the host- and 1177 // device-mangling in host compilation could help catching certain ones. 1178 assert(!isa<FunctionDecl>(ND) || !ND->hasAttr<CUDAGlobalAttr>() || 1179 getLangOpts().CUDAIsDevice || 1180 (getContext().getAuxTargetInfo() && 1181 (getContext().getAuxTargetInfo()->getCXXABI() != 1182 getContext().getTargetInfo().getCXXABI())) || 1183 getCUDARuntime().getDeviceSideName(ND) == 1184 getMangledNameImpl( 1185 *this, 1186 GD.getWithKernelReferenceKind(KernelReferenceKind::Kernel), 1187 ND)); 1188 1189 auto Result = Manglings.insert(std::make_pair(MangledName, GD)); 1190 return MangledDeclNames[CanonicalGD] = Result.first->first(); 1191 } 1192 1193 StringRef CodeGenModule::getBlockMangledName(GlobalDecl GD, 1194 const BlockDecl *BD) { 1195 MangleContext &MangleCtx = getCXXABI().getMangleContext(); 1196 const Decl *D = GD.getDecl(); 1197 1198 SmallString<256> Buffer; 1199 llvm::raw_svector_ostream Out(Buffer); 1200 if (!D) 1201 MangleCtx.mangleGlobalBlock(BD, 1202 dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()), Out); 1203 else if (const auto *CD = dyn_cast<CXXConstructorDecl>(D)) 1204 MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out); 1205 else if (const auto *DD = dyn_cast<CXXDestructorDecl>(D)) 1206 MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out); 1207 else 1208 MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out); 1209 1210 auto Result = Manglings.insert(std::make_pair(Out.str(), BD)); 1211 return Result.first->first(); 1212 } 1213 1214 llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) { 1215 return getModule().getNamedValue(Name); 1216 } 1217 1218 /// AddGlobalCtor - Add a function to the list that will be called before 1219 /// main() runs. 1220 void CodeGenModule::AddGlobalCtor(llvm::Function *Ctor, int Priority, 1221 llvm::Constant *AssociatedData) { 1222 // FIXME: Type coercion of void()* types. 1223 GlobalCtors.push_back(Structor(Priority, Ctor, AssociatedData)); 1224 } 1225 1226 /// AddGlobalDtor - Add a function to the list that will be called 1227 /// when the module is unloaded. 1228 void CodeGenModule::AddGlobalDtor(llvm::Function *Dtor, int Priority) { 1229 if (CodeGenOpts.RegisterGlobalDtorsWithAtExit) { 1230 if (getCXXABI().useSinitAndSterm()) 1231 llvm::report_fatal_error( 1232 "register global dtors with atexit() is not supported yet"); 1233 DtorsUsingAtExit[Priority].push_back(Dtor); 1234 return; 1235 } 1236 1237 // FIXME: Type coercion of void()* types. 1238 GlobalDtors.push_back(Structor(Priority, Dtor, nullptr)); 1239 } 1240 1241 void CodeGenModule::EmitCtorList(CtorList &Fns, const char *GlobalName) { 1242 if (Fns.empty()) return; 1243 1244 // Ctor function type is void()*. 1245 llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false); 1246 llvm::Type *CtorPFTy = llvm::PointerType::get(CtorFTy, 1247 TheModule.getDataLayout().getProgramAddressSpace()); 1248 1249 // Get the type of a ctor entry, { i32, void ()*, i8* }. 1250 llvm::StructType *CtorStructTy = llvm::StructType::get( 1251 Int32Ty, CtorPFTy, VoidPtrTy); 1252 1253 // Construct the constructor and destructor arrays. 1254 ConstantInitBuilder builder(*this); 1255 auto ctors = builder.beginArray(CtorStructTy); 1256 for (const auto &I : Fns) { 1257 auto ctor = ctors.beginStruct(CtorStructTy); 1258 ctor.addInt(Int32Ty, I.Priority); 1259 ctor.add(llvm::ConstantExpr::getBitCast(I.Initializer, CtorPFTy)); 1260 if (I.AssociatedData) 1261 ctor.add(llvm::ConstantExpr::getBitCast(I.AssociatedData, VoidPtrTy)); 1262 else 1263 ctor.addNullPointer(VoidPtrTy); 1264 ctor.finishAndAddTo(ctors); 1265 } 1266 1267 auto list = 1268 ctors.finishAndCreateGlobal(GlobalName, getPointerAlign(), 1269 /*constant*/ false, 1270 llvm::GlobalValue::AppendingLinkage); 1271 1272 // The LTO linker doesn't seem to like it when we set an alignment 1273 // on appending variables. Take it off as a workaround. 1274 list->setAlignment(llvm::None); 1275 1276 Fns.clear(); 1277 } 1278 1279 llvm::GlobalValue::LinkageTypes 1280 CodeGenModule::getFunctionLinkage(GlobalDecl GD) { 1281 const auto *D = cast<FunctionDecl>(GD.getDecl()); 1282 1283 GVALinkage Linkage = getContext().GetGVALinkageForFunction(D); 1284 1285 if (const auto *Dtor = dyn_cast<CXXDestructorDecl>(D)) 1286 return getCXXABI().getCXXDestructorLinkage(Linkage, Dtor, GD.getDtorType()); 1287 1288 if (isa<CXXConstructorDecl>(D) && 1289 cast<CXXConstructorDecl>(D)->isInheritingConstructor() && 1290 Context.getTargetInfo().getCXXABI().isMicrosoft()) { 1291 // Our approach to inheriting constructors is fundamentally different from 1292 // that used by the MS ABI, so keep our inheriting constructor thunks 1293 // internal rather than trying to pick an unambiguous mangling for them. 1294 return llvm::GlobalValue::InternalLinkage; 1295 } 1296 1297 return getLLVMLinkageForDeclarator(D, Linkage, /*IsConstantVariable=*/false); 1298 } 1299 1300 llvm::ConstantInt *CodeGenModule::CreateCrossDsoCfiTypeId(llvm::Metadata *MD) { 1301 llvm::MDString *MDS = dyn_cast<llvm::MDString>(MD); 1302 if (!MDS) return nullptr; 1303 1304 return llvm::ConstantInt::get(Int64Ty, llvm::MD5Hash(MDS->getString())); 1305 } 1306 1307 void CodeGenModule::SetLLVMFunctionAttributes(GlobalDecl GD, 1308 const CGFunctionInfo &Info, 1309 llvm::Function *F) { 1310 unsigned CallingConv; 1311 llvm::AttributeList PAL; 1312 ConstructAttributeList(F->getName(), Info, GD, PAL, CallingConv, false); 1313 F->setAttributes(PAL); 1314 F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv)); 1315 } 1316 1317 static void removeImageAccessQualifier(std::string& TyName) { 1318 std::string ReadOnlyQual("__read_only"); 1319 std::string::size_type ReadOnlyPos = TyName.find(ReadOnlyQual); 1320 if (ReadOnlyPos != std::string::npos) 1321 // "+ 1" for the space after access qualifier. 1322 TyName.erase(ReadOnlyPos, ReadOnlyQual.size() + 1); 1323 else { 1324 std::string WriteOnlyQual("__write_only"); 1325 std::string::size_type WriteOnlyPos = TyName.find(WriteOnlyQual); 1326 if (WriteOnlyPos != std::string::npos) 1327 TyName.erase(WriteOnlyPos, WriteOnlyQual.size() + 1); 1328 else { 1329 std::string ReadWriteQual("__read_write"); 1330 std::string::size_type ReadWritePos = TyName.find(ReadWriteQual); 1331 if (ReadWritePos != std::string::npos) 1332 TyName.erase(ReadWritePos, ReadWriteQual.size() + 1); 1333 } 1334 } 1335 } 1336 1337 // Returns the address space id that should be produced to the 1338 // kernel_arg_addr_space metadata. This is always fixed to the ids 1339 // as specified in the SPIR 2.0 specification in order to differentiate 1340 // for example in clGetKernelArgInfo() implementation between the address 1341 // spaces with targets without unique mapping to the OpenCL address spaces 1342 // (basically all single AS CPUs). 1343 static unsigned ArgInfoAddressSpace(LangAS AS) { 1344 switch (AS) { 1345 case LangAS::opencl_global: 1346 return 1; 1347 case LangAS::opencl_constant: 1348 return 2; 1349 case LangAS::opencl_local: 1350 return 3; 1351 case LangAS::opencl_generic: 1352 return 4; // Not in SPIR 2.0 specs. 1353 case LangAS::opencl_global_device: 1354 return 5; 1355 case LangAS::opencl_global_host: 1356 return 6; 1357 default: 1358 return 0; // Assume private. 1359 } 1360 } 1361 1362 void CodeGenModule::GenOpenCLArgMetadata(llvm::Function *Fn, 1363 const FunctionDecl *FD, 1364 CodeGenFunction *CGF) { 1365 assert(((FD && CGF) || (!FD && !CGF)) && 1366 "Incorrect use - FD and CGF should either be both null or not!"); 1367 // Create MDNodes that represent the kernel arg metadata. 1368 // Each MDNode is a list in the form of "key", N number of values which is 1369 // the same number of values as their are kernel arguments. 1370 1371 const PrintingPolicy &Policy = Context.getPrintingPolicy(); 1372 1373 // MDNode for the kernel argument address space qualifiers. 1374 SmallVector<llvm::Metadata *, 8> addressQuals; 1375 1376 // MDNode for the kernel argument access qualifiers (images only). 1377 SmallVector<llvm::Metadata *, 8> accessQuals; 1378 1379 // MDNode for the kernel argument type names. 1380 SmallVector<llvm::Metadata *, 8> argTypeNames; 1381 1382 // MDNode for the kernel argument base type names. 1383 SmallVector<llvm::Metadata *, 8> argBaseTypeNames; 1384 1385 // MDNode for the kernel argument type qualifiers. 1386 SmallVector<llvm::Metadata *, 8> argTypeQuals; 1387 1388 // MDNode for the kernel argument names. 1389 SmallVector<llvm::Metadata *, 8> argNames; 1390 1391 if (FD && CGF) 1392 for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i) { 1393 const ParmVarDecl *parm = FD->getParamDecl(i); 1394 QualType ty = parm->getType(); 1395 std::string typeQuals; 1396 1397 if (ty->isPointerType()) { 1398 QualType pointeeTy = ty->getPointeeType(); 1399 1400 // Get address qualifier. 1401 addressQuals.push_back( 1402 llvm::ConstantAsMetadata::get(CGF->Builder.getInt32( 1403 ArgInfoAddressSpace(pointeeTy.getAddressSpace())))); 1404 1405 // Get argument type name. 1406 std::string typeName = 1407 pointeeTy.getUnqualifiedType().getAsString(Policy) + "*"; 1408 1409 // Turn "unsigned type" to "utype" 1410 std::string::size_type pos = typeName.find("unsigned"); 1411 if (pointeeTy.isCanonical() && pos != std::string::npos) 1412 typeName.erase(pos + 1, 8); 1413 1414 argTypeNames.push_back(llvm::MDString::get(VMContext, typeName)); 1415 1416 std::string baseTypeName = 1417 pointeeTy.getUnqualifiedType().getCanonicalType().getAsString( 1418 Policy) + 1419 "*"; 1420 1421 // Turn "unsigned type" to "utype" 1422 pos = baseTypeName.find("unsigned"); 1423 if (pos != std::string::npos) 1424 baseTypeName.erase(pos + 1, 8); 1425 1426 argBaseTypeNames.push_back( 1427 llvm::MDString::get(VMContext, baseTypeName)); 1428 1429 // Get argument type qualifiers: 1430 if (ty.isRestrictQualified()) 1431 typeQuals = "restrict"; 1432 if (pointeeTy.isConstQualified() || 1433 (pointeeTy.getAddressSpace() == LangAS::opencl_constant)) 1434 typeQuals += typeQuals.empty() ? "const" : " const"; 1435 if (pointeeTy.isVolatileQualified()) 1436 typeQuals += typeQuals.empty() ? "volatile" : " volatile"; 1437 } else { 1438 uint32_t AddrSpc = 0; 1439 bool isPipe = ty->isPipeType(); 1440 if (ty->isImageType() || isPipe) 1441 AddrSpc = ArgInfoAddressSpace(LangAS::opencl_global); 1442 1443 addressQuals.push_back( 1444 llvm::ConstantAsMetadata::get(CGF->Builder.getInt32(AddrSpc))); 1445 1446 // Get argument type name. 1447 std::string typeName; 1448 if (isPipe) 1449 typeName = ty.getCanonicalType() 1450 ->castAs<PipeType>() 1451 ->getElementType() 1452 .getAsString(Policy); 1453 else 1454 typeName = ty.getUnqualifiedType().getAsString(Policy); 1455 1456 // Turn "unsigned type" to "utype" 1457 std::string::size_type pos = typeName.find("unsigned"); 1458 if (ty.isCanonical() && pos != std::string::npos) 1459 typeName.erase(pos + 1, 8); 1460 1461 std::string baseTypeName; 1462 if (isPipe) 1463 baseTypeName = ty.getCanonicalType() 1464 ->castAs<PipeType>() 1465 ->getElementType() 1466 .getCanonicalType() 1467 .getAsString(Policy); 1468 else 1469 baseTypeName = 1470 ty.getUnqualifiedType().getCanonicalType().getAsString(Policy); 1471 1472 // Remove access qualifiers on images 1473 // (as they are inseparable from type in clang implementation, 1474 // but OpenCL spec provides a special query to get access qualifier 1475 // via clGetKernelArgInfo with CL_KERNEL_ARG_ACCESS_QUALIFIER): 1476 if (ty->isImageType()) { 1477 removeImageAccessQualifier(typeName); 1478 removeImageAccessQualifier(baseTypeName); 1479 } 1480 1481 argTypeNames.push_back(llvm::MDString::get(VMContext, typeName)); 1482 1483 // Turn "unsigned type" to "utype" 1484 pos = baseTypeName.find("unsigned"); 1485 if (pos != std::string::npos) 1486 baseTypeName.erase(pos + 1, 8); 1487 1488 argBaseTypeNames.push_back( 1489 llvm::MDString::get(VMContext, baseTypeName)); 1490 1491 if (isPipe) 1492 typeQuals = "pipe"; 1493 } 1494 1495 argTypeQuals.push_back(llvm::MDString::get(VMContext, typeQuals)); 1496 1497 // Get image and pipe access qualifier: 1498 if (ty->isImageType() || ty->isPipeType()) { 1499 const Decl *PDecl = parm; 1500 if (auto *TD = dyn_cast<TypedefType>(ty)) 1501 PDecl = TD->getDecl(); 1502 const OpenCLAccessAttr *A = PDecl->getAttr<OpenCLAccessAttr>(); 1503 if (A && A->isWriteOnly()) 1504 accessQuals.push_back(llvm::MDString::get(VMContext, "write_only")); 1505 else if (A && A->isReadWrite()) 1506 accessQuals.push_back(llvm::MDString::get(VMContext, "read_write")); 1507 else 1508 accessQuals.push_back(llvm::MDString::get(VMContext, "read_only")); 1509 } else 1510 accessQuals.push_back(llvm::MDString::get(VMContext, "none")); 1511 1512 // Get argument name. 1513 argNames.push_back(llvm::MDString::get(VMContext, parm->getName())); 1514 } 1515 1516 Fn->setMetadata("kernel_arg_addr_space", 1517 llvm::MDNode::get(VMContext, addressQuals)); 1518 Fn->setMetadata("kernel_arg_access_qual", 1519 llvm::MDNode::get(VMContext, accessQuals)); 1520 Fn->setMetadata("kernel_arg_type", 1521 llvm::MDNode::get(VMContext, argTypeNames)); 1522 Fn->setMetadata("kernel_arg_base_type", 1523 llvm::MDNode::get(VMContext, argBaseTypeNames)); 1524 Fn->setMetadata("kernel_arg_type_qual", 1525 llvm::MDNode::get(VMContext, argTypeQuals)); 1526 if (getCodeGenOpts().EmitOpenCLArgMetadata) 1527 Fn->setMetadata("kernel_arg_name", 1528 llvm::MDNode::get(VMContext, argNames)); 1529 } 1530 1531 /// Determines whether the language options require us to model 1532 /// unwind exceptions. We treat -fexceptions as mandating this 1533 /// except under the fragile ObjC ABI with only ObjC exceptions 1534 /// enabled. This means, for example, that C with -fexceptions 1535 /// enables this. 1536 static bool hasUnwindExceptions(const LangOptions &LangOpts) { 1537 // If exceptions are completely disabled, obviously this is false. 1538 if (!LangOpts.Exceptions) return false; 1539 1540 // If C++ exceptions are enabled, this is true. 1541 if (LangOpts.CXXExceptions) return true; 1542 1543 // If ObjC exceptions are enabled, this depends on the ABI. 1544 if (LangOpts.ObjCExceptions) { 1545 return LangOpts.ObjCRuntime.hasUnwindExceptions(); 1546 } 1547 1548 return true; 1549 } 1550 1551 static bool requiresMemberFunctionPointerTypeMetadata(CodeGenModule &CGM, 1552 const CXXMethodDecl *MD) { 1553 // Check that the type metadata can ever actually be used by a call. 1554 if (!CGM.getCodeGenOpts().LTOUnit || 1555 !CGM.HasHiddenLTOVisibility(MD->getParent())) 1556 return false; 1557 1558 // Only functions whose address can be taken with a member function pointer 1559 // need this sort of type metadata. 1560 return !MD->isStatic() && !MD->isVirtual() && !isa<CXXConstructorDecl>(MD) && 1561 !isa<CXXDestructorDecl>(MD); 1562 } 1563 1564 std::vector<const CXXRecordDecl *> 1565 CodeGenModule::getMostBaseClasses(const CXXRecordDecl *RD) { 1566 llvm::SetVector<const CXXRecordDecl *> MostBases; 1567 1568 std::function<void (const CXXRecordDecl *)> CollectMostBases; 1569 CollectMostBases = [&](const CXXRecordDecl *RD) { 1570 if (RD->getNumBases() == 0) 1571 MostBases.insert(RD); 1572 for (const CXXBaseSpecifier &B : RD->bases()) 1573 CollectMostBases(B.getType()->getAsCXXRecordDecl()); 1574 }; 1575 CollectMostBases(RD); 1576 return MostBases.takeVector(); 1577 } 1578 1579 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D, 1580 llvm::Function *F) { 1581 llvm::AttrBuilder B; 1582 1583 if (CodeGenOpts.UnwindTables) 1584 B.addAttribute(llvm::Attribute::UWTable); 1585 1586 if (CodeGenOpts.StackClashProtector) 1587 B.addAttribute("probe-stack", "inline-asm"); 1588 1589 if (!hasUnwindExceptions(LangOpts)) 1590 B.addAttribute(llvm::Attribute::NoUnwind); 1591 1592 if (!D || !D->hasAttr<NoStackProtectorAttr>()) { 1593 if (LangOpts.getStackProtector() == LangOptions::SSPOn) 1594 B.addAttribute(llvm::Attribute::StackProtect); 1595 else if (LangOpts.getStackProtector() == LangOptions::SSPStrong) 1596 B.addAttribute(llvm::Attribute::StackProtectStrong); 1597 else if (LangOpts.getStackProtector() == LangOptions::SSPReq) 1598 B.addAttribute(llvm::Attribute::StackProtectReq); 1599 } 1600 1601 if (!D) { 1602 // If we don't have a declaration to control inlining, the function isn't 1603 // explicitly marked as alwaysinline for semantic reasons, and inlining is 1604 // disabled, mark the function as noinline. 1605 if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline) && 1606 CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining) 1607 B.addAttribute(llvm::Attribute::NoInline); 1608 1609 F->addAttributes(llvm::AttributeList::FunctionIndex, B); 1610 return; 1611 } 1612 1613 // Track whether we need to add the optnone LLVM attribute, 1614 // starting with the default for this optimization level. 1615 bool ShouldAddOptNone = 1616 !CodeGenOpts.DisableO0ImplyOptNone && CodeGenOpts.OptimizationLevel == 0; 1617 // We can't add optnone in the following cases, it won't pass the verifier. 1618 ShouldAddOptNone &= !D->hasAttr<MinSizeAttr>(); 1619 ShouldAddOptNone &= !D->hasAttr<AlwaysInlineAttr>(); 1620 1621 // Add optnone, but do so only if the function isn't always_inline. 1622 if ((ShouldAddOptNone || D->hasAttr<OptimizeNoneAttr>()) && 1623 !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) { 1624 B.addAttribute(llvm::Attribute::OptimizeNone); 1625 1626 // OptimizeNone implies noinline; we should not be inlining such functions. 1627 B.addAttribute(llvm::Attribute::NoInline); 1628 1629 // We still need to handle naked functions even though optnone subsumes 1630 // much of their semantics. 1631 if (D->hasAttr<NakedAttr>()) 1632 B.addAttribute(llvm::Attribute::Naked); 1633 1634 // OptimizeNone wins over OptimizeForSize and MinSize. 1635 F->removeFnAttr(llvm::Attribute::OptimizeForSize); 1636 F->removeFnAttr(llvm::Attribute::MinSize); 1637 } else if (D->hasAttr<NakedAttr>()) { 1638 // Naked implies noinline: we should not be inlining such functions. 1639 B.addAttribute(llvm::Attribute::Naked); 1640 B.addAttribute(llvm::Attribute::NoInline); 1641 } else if (D->hasAttr<NoDuplicateAttr>()) { 1642 B.addAttribute(llvm::Attribute::NoDuplicate); 1643 } else if (D->hasAttr<NoInlineAttr>() && !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) { 1644 // Add noinline if the function isn't always_inline. 1645 B.addAttribute(llvm::Attribute::NoInline); 1646 } else if (D->hasAttr<AlwaysInlineAttr>() && 1647 !F->hasFnAttribute(llvm::Attribute::NoInline)) { 1648 // (noinline wins over always_inline, and we can't specify both in IR) 1649 B.addAttribute(llvm::Attribute::AlwaysInline); 1650 } else if (CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining) { 1651 // If we're not inlining, then force everything that isn't always_inline to 1652 // carry an explicit noinline attribute. 1653 if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline)) 1654 B.addAttribute(llvm::Attribute::NoInline); 1655 } else { 1656 // Otherwise, propagate the inline hint attribute and potentially use its 1657 // absence to mark things as noinline. 1658 if (auto *FD = dyn_cast<FunctionDecl>(D)) { 1659 // Search function and template pattern redeclarations for inline. 1660 auto CheckForInline = [](const FunctionDecl *FD) { 1661 auto CheckRedeclForInline = [](const FunctionDecl *Redecl) { 1662 return Redecl->isInlineSpecified(); 1663 }; 1664 if (any_of(FD->redecls(), CheckRedeclForInline)) 1665 return true; 1666 const FunctionDecl *Pattern = FD->getTemplateInstantiationPattern(); 1667 if (!Pattern) 1668 return false; 1669 return any_of(Pattern->redecls(), CheckRedeclForInline); 1670 }; 1671 if (CheckForInline(FD)) { 1672 B.addAttribute(llvm::Attribute::InlineHint); 1673 } else if (CodeGenOpts.getInlining() == 1674 CodeGenOptions::OnlyHintInlining && 1675 !FD->isInlined() && 1676 !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) { 1677 B.addAttribute(llvm::Attribute::NoInline); 1678 } 1679 } 1680 } 1681 1682 // Add other optimization related attributes if we are optimizing this 1683 // function. 1684 if (!D->hasAttr<OptimizeNoneAttr>()) { 1685 if (D->hasAttr<ColdAttr>()) { 1686 if (!ShouldAddOptNone) 1687 B.addAttribute(llvm::Attribute::OptimizeForSize); 1688 B.addAttribute(llvm::Attribute::Cold); 1689 } 1690 1691 if (D->hasAttr<MinSizeAttr>()) 1692 B.addAttribute(llvm::Attribute::MinSize); 1693 } 1694 1695 F->addAttributes(llvm::AttributeList::FunctionIndex, B); 1696 1697 unsigned alignment = D->getMaxAlignment() / Context.getCharWidth(); 1698 if (alignment) 1699 F->setAlignment(llvm::Align(alignment)); 1700 1701 if (!D->hasAttr<AlignedAttr>()) 1702 if (LangOpts.FunctionAlignment) 1703 F->setAlignment(llvm::Align(1ull << LangOpts.FunctionAlignment)); 1704 1705 // Some C++ ABIs require 2-byte alignment for member functions, in order to 1706 // reserve a bit for differentiating between virtual and non-virtual member 1707 // functions. If the current target's C++ ABI requires this and this is a 1708 // member function, set its alignment accordingly. 1709 if (getTarget().getCXXABI().areMemberFunctionsAligned()) { 1710 if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D)) 1711 F->setAlignment(llvm::Align(2)); 1712 } 1713 1714 // In the cross-dso CFI mode with canonical jump tables, we want !type 1715 // attributes on definitions only. 1716 if (CodeGenOpts.SanitizeCfiCrossDso && 1717 CodeGenOpts.SanitizeCfiCanonicalJumpTables) { 1718 if (auto *FD = dyn_cast<FunctionDecl>(D)) { 1719 // Skip available_externally functions. They won't be codegen'ed in the 1720 // current module anyway. 1721 if (getContext().GetGVALinkageForFunction(FD) != GVA_AvailableExternally) 1722 CreateFunctionTypeMetadataForIcall(FD, F); 1723 } 1724 } 1725 1726 // Emit type metadata on member functions for member function pointer checks. 1727 // These are only ever necessary on definitions; we're guaranteed that the 1728 // definition will be present in the LTO unit as a result of LTO visibility. 1729 auto *MD = dyn_cast<CXXMethodDecl>(D); 1730 if (MD && requiresMemberFunctionPointerTypeMetadata(*this, MD)) { 1731 for (const CXXRecordDecl *Base : getMostBaseClasses(MD->getParent())) { 1732 llvm::Metadata *Id = 1733 CreateMetadataIdentifierForType(Context.getMemberPointerType( 1734 MD->getType(), Context.getRecordType(Base).getTypePtr())); 1735 F->addTypeMetadata(0, Id); 1736 } 1737 } 1738 } 1739 1740 void CodeGenModule::SetCommonAttributes(GlobalDecl GD, llvm::GlobalValue *GV) { 1741 const Decl *D = GD.getDecl(); 1742 if (dyn_cast_or_null<NamedDecl>(D)) 1743 setGVProperties(GV, GD); 1744 else 1745 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 1746 1747 if (D && D->hasAttr<UsedAttr>()) 1748 addUsedGlobal(GV); 1749 1750 if (CodeGenOpts.KeepStaticConsts && D && isa<VarDecl>(D)) { 1751 const auto *VD = cast<VarDecl>(D); 1752 if (VD->getType().isConstQualified() && 1753 VD->getStorageDuration() == SD_Static) 1754 addUsedGlobal(GV); 1755 } 1756 } 1757 1758 bool CodeGenModule::GetCPUAndFeaturesAttributes(GlobalDecl GD, 1759 llvm::AttrBuilder &Attrs) { 1760 // Add target-cpu and target-features attributes to functions. If 1761 // we have a decl for the function and it has a target attribute then 1762 // parse that and add it to the feature set. 1763 StringRef TargetCPU = getTarget().getTargetOpts().CPU; 1764 StringRef TuneCPU = getTarget().getTargetOpts().TuneCPU; 1765 std::vector<std::string> Features; 1766 const auto *FD = dyn_cast_or_null<FunctionDecl>(GD.getDecl()); 1767 FD = FD ? FD->getMostRecentDecl() : FD; 1768 const auto *TD = FD ? FD->getAttr<TargetAttr>() : nullptr; 1769 const auto *SD = FD ? FD->getAttr<CPUSpecificAttr>() : nullptr; 1770 bool AddedAttr = false; 1771 if (TD || SD) { 1772 llvm::StringMap<bool> FeatureMap; 1773 getContext().getFunctionFeatureMap(FeatureMap, GD); 1774 1775 // Produce the canonical string for this set of features. 1776 for (const llvm::StringMap<bool>::value_type &Entry : FeatureMap) 1777 Features.push_back((Entry.getValue() ? "+" : "-") + Entry.getKey().str()); 1778 1779 // Now add the target-cpu and target-features to the function. 1780 // While we populated the feature map above, we still need to 1781 // get and parse the target attribute so we can get the cpu for 1782 // the function. 1783 if (TD) { 1784 ParsedTargetAttr ParsedAttr = TD->parse(); 1785 if (!ParsedAttr.Architecture.empty() && 1786 getTarget().isValidCPUName(ParsedAttr.Architecture)) { 1787 TargetCPU = ParsedAttr.Architecture; 1788 TuneCPU = ""; // Clear the tune CPU. 1789 } 1790 if (!ParsedAttr.Tune.empty() && 1791 getTarget().isValidCPUName(ParsedAttr.Tune)) 1792 TuneCPU = ParsedAttr.Tune; 1793 } 1794 } else { 1795 // Otherwise just add the existing target cpu and target features to the 1796 // function. 1797 Features = getTarget().getTargetOpts().Features; 1798 } 1799 1800 if (!TargetCPU.empty()) { 1801 Attrs.addAttribute("target-cpu", TargetCPU); 1802 AddedAttr = true; 1803 } 1804 if (!TuneCPU.empty()) { 1805 Attrs.addAttribute("tune-cpu", TuneCPU); 1806 AddedAttr = true; 1807 } 1808 if (!Features.empty()) { 1809 llvm::sort(Features); 1810 Attrs.addAttribute("target-features", llvm::join(Features, ",")); 1811 AddedAttr = true; 1812 } 1813 1814 return AddedAttr; 1815 } 1816 1817 void CodeGenModule::setNonAliasAttributes(GlobalDecl GD, 1818 llvm::GlobalObject *GO) { 1819 const Decl *D = GD.getDecl(); 1820 SetCommonAttributes(GD, GO); 1821 1822 if (D) { 1823 if (auto *GV = dyn_cast<llvm::GlobalVariable>(GO)) { 1824 if (auto *SA = D->getAttr<PragmaClangBSSSectionAttr>()) 1825 GV->addAttribute("bss-section", SA->getName()); 1826 if (auto *SA = D->getAttr<PragmaClangDataSectionAttr>()) 1827 GV->addAttribute("data-section", SA->getName()); 1828 if (auto *SA = D->getAttr<PragmaClangRodataSectionAttr>()) 1829 GV->addAttribute("rodata-section", SA->getName()); 1830 if (auto *SA = D->getAttr<PragmaClangRelroSectionAttr>()) 1831 GV->addAttribute("relro-section", SA->getName()); 1832 } 1833 1834 if (auto *F = dyn_cast<llvm::Function>(GO)) { 1835 if (auto *SA = D->getAttr<PragmaClangTextSectionAttr>()) 1836 if (!D->getAttr<SectionAttr>()) 1837 F->addFnAttr("implicit-section-name", SA->getName()); 1838 1839 llvm::AttrBuilder Attrs; 1840 if (GetCPUAndFeaturesAttributes(GD, Attrs)) { 1841 // We know that GetCPUAndFeaturesAttributes will always have the 1842 // newest set, since it has the newest possible FunctionDecl, so the 1843 // new ones should replace the old. 1844 llvm::AttrBuilder RemoveAttrs; 1845 RemoveAttrs.addAttribute("target-cpu"); 1846 RemoveAttrs.addAttribute("target-features"); 1847 RemoveAttrs.addAttribute("tune-cpu"); 1848 F->removeAttributes(llvm::AttributeList::FunctionIndex, RemoveAttrs); 1849 F->addAttributes(llvm::AttributeList::FunctionIndex, Attrs); 1850 } 1851 } 1852 1853 if (const auto *CSA = D->getAttr<CodeSegAttr>()) 1854 GO->setSection(CSA->getName()); 1855 else if (const auto *SA = D->getAttr<SectionAttr>()) 1856 GO->setSection(SA->getName()); 1857 } 1858 1859 getTargetCodeGenInfo().setTargetAttributes(D, GO, *this); 1860 } 1861 1862 void CodeGenModule::SetInternalFunctionAttributes(GlobalDecl GD, 1863 llvm::Function *F, 1864 const CGFunctionInfo &FI) { 1865 const Decl *D = GD.getDecl(); 1866 SetLLVMFunctionAttributes(GD, FI, F); 1867 SetLLVMFunctionAttributesForDefinition(D, F); 1868 1869 F->setLinkage(llvm::Function::InternalLinkage); 1870 1871 setNonAliasAttributes(GD, F); 1872 } 1873 1874 static void setLinkageForGV(llvm::GlobalValue *GV, const NamedDecl *ND) { 1875 // Set linkage and visibility in case we never see a definition. 1876 LinkageInfo LV = ND->getLinkageAndVisibility(); 1877 // Don't set internal linkage on declarations. 1878 // "extern_weak" is overloaded in LLVM; we probably should have 1879 // separate linkage types for this. 1880 if (isExternallyVisible(LV.getLinkage()) && 1881 (ND->hasAttr<WeakAttr>() || ND->isWeakImported())) 1882 GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage); 1883 } 1884 1885 void CodeGenModule::CreateFunctionTypeMetadataForIcall(const FunctionDecl *FD, 1886 llvm::Function *F) { 1887 // Only if we are checking indirect calls. 1888 if (!LangOpts.Sanitize.has(SanitizerKind::CFIICall)) 1889 return; 1890 1891 // Non-static class methods are handled via vtable or member function pointer 1892 // checks elsewhere. 1893 if (isa<CXXMethodDecl>(FD) && !cast<CXXMethodDecl>(FD)->isStatic()) 1894 return; 1895 1896 llvm::Metadata *MD = CreateMetadataIdentifierForType(FD->getType()); 1897 F->addTypeMetadata(0, MD); 1898 F->addTypeMetadata(0, CreateMetadataIdentifierGeneralized(FD->getType())); 1899 1900 // Emit a hash-based bit set entry for cross-DSO calls. 1901 if (CodeGenOpts.SanitizeCfiCrossDso) 1902 if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD)) 1903 F->addTypeMetadata(0, llvm::ConstantAsMetadata::get(CrossDsoTypeId)); 1904 } 1905 1906 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD, llvm::Function *F, 1907 bool IsIncompleteFunction, 1908 bool IsThunk) { 1909 1910 if (llvm::Intrinsic::ID IID = F->getIntrinsicID()) { 1911 // If this is an intrinsic function, set the function's attributes 1912 // to the intrinsic's attributes. 1913 F->setAttributes(llvm::Intrinsic::getAttributes(getLLVMContext(), IID)); 1914 return; 1915 } 1916 1917 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 1918 1919 if (!IsIncompleteFunction) 1920 SetLLVMFunctionAttributes(GD, getTypes().arrangeGlobalDeclaration(GD), F); 1921 1922 // Add the Returned attribute for "this", except for iOS 5 and earlier 1923 // where substantial code, including the libstdc++ dylib, was compiled with 1924 // GCC and does not actually return "this". 1925 if (!IsThunk && getCXXABI().HasThisReturn(GD) && 1926 !(getTriple().isiOS() && getTriple().isOSVersionLT(6))) { 1927 assert(!F->arg_empty() && 1928 F->arg_begin()->getType() 1929 ->canLosslesslyBitCastTo(F->getReturnType()) && 1930 "unexpected this return"); 1931 F->addAttribute(1, llvm::Attribute::Returned); 1932 } 1933 1934 // Only a few attributes are set on declarations; these may later be 1935 // overridden by a definition. 1936 1937 setLinkageForGV(F, FD); 1938 setGVProperties(F, FD); 1939 1940 // Setup target-specific attributes. 1941 if (!IsIncompleteFunction && F->isDeclaration()) 1942 getTargetCodeGenInfo().setTargetAttributes(FD, F, *this); 1943 1944 if (const auto *CSA = FD->getAttr<CodeSegAttr>()) 1945 F->setSection(CSA->getName()); 1946 else if (const auto *SA = FD->getAttr<SectionAttr>()) 1947 F->setSection(SA->getName()); 1948 1949 // If we plan on emitting this inline builtin, we can't treat it as a builtin. 1950 if (FD->isInlineBuiltinDeclaration()) { 1951 const FunctionDecl *FDBody; 1952 bool HasBody = FD->hasBody(FDBody); 1953 (void)HasBody; 1954 assert(HasBody && "Inline builtin declarations should always have an " 1955 "available body!"); 1956 if (shouldEmitFunction(FDBody)) 1957 F->addAttribute(llvm::AttributeList::FunctionIndex, 1958 llvm::Attribute::NoBuiltin); 1959 } 1960 1961 if (FD->isReplaceableGlobalAllocationFunction()) { 1962 // A replaceable global allocation function does not act like a builtin by 1963 // default, only if it is invoked by a new-expression or delete-expression. 1964 F->addAttribute(llvm::AttributeList::FunctionIndex, 1965 llvm::Attribute::NoBuiltin); 1966 } 1967 1968 if (isa<CXXConstructorDecl>(FD) || isa<CXXDestructorDecl>(FD)) 1969 F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 1970 else if (const auto *MD = dyn_cast<CXXMethodDecl>(FD)) 1971 if (MD->isVirtual()) 1972 F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 1973 1974 // Don't emit entries for function declarations in the cross-DSO mode. This 1975 // is handled with better precision by the receiving DSO. But if jump tables 1976 // are non-canonical then we need type metadata in order to produce the local 1977 // jump table. 1978 if (!CodeGenOpts.SanitizeCfiCrossDso || 1979 !CodeGenOpts.SanitizeCfiCanonicalJumpTables) 1980 CreateFunctionTypeMetadataForIcall(FD, F); 1981 1982 if (getLangOpts().OpenMP && FD->hasAttr<OMPDeclareSimdDeclAttr>()) 1983 getOpenMPRuntime().emitDeclareSimdFunction(FD, F); 1984 1985 if (const auto *CB = FD->getAttr<CallbackAttr>()) { 1986 // Annotate the callback behavior as metadata: 1987 // - The callback callee (as argument number). 1988 // - The callback payloads (as argument numbers). 1989 llvm::LLVMContext &Ctx = F->getContext(); 1990 llvm::MDBuilder MDB(Ctx); 1991 1992 // The payload indices are all but the first one in the encoding. The first 1993 // identifies the callback callee. 1994 int CalleeIdx = *CB->encoding_begin(); 1995 ArrayRef<int> PayloadIndices(CB->encoding_begin() + 1, CB->encoding_end()); 1996 F->addMetadata(llvm::LLVMContext::MD_callback, 1997 *llvm::MDNode::get(Ctx, {MDB.createCallbackEncoding( 1998 CalleeIdx, PayloadIndices, 1999 /* VarArgsArePassed */ false)})); 2000 } 2001 } 2002 2003 void CodeGenModule::addUsedGlobal(llvm::GlobalValue *GV) { 2004 assert((isa<llvm::Function>(GV) || !GV->isDeclaration()) && 2005 "Only globals with definition can force usage."); 2006 LLVMUsed.emplace_back(GV); 2007 } 2008 2009 void CodeGenModule::addCompilerUsedGlobal(llvm::GlobalValue *GV) { 2010 assert(!GV->isDeclaration() && 2011 "Only globals with definition can force usage."); 2012 LLVMCompilerUsed.emplace_back(GV); 2013 } 2014 2015 static void emitUsed(CodeGenModule &CGM, StringRef Name, 2016 std::vector<llvm::WeakTrackingVH> &List) { 2017 // Don't create llvm.used if there is no need. 2018 if (List.empty()) 2019 return; 2020 2021 // Convert List to what ConstantArray needs. 2022 SmallVector<llvm::Constant*, 8> UsedArray; 2023 UsedArray.resize(List.size()); 2024 for (unsigned i = 0, e = List.size(); i != e; ++i) { 2025 UsedArray[i] = 2026 llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast( 2027 cast<llvm::Constant>(&*List[i]), CGM.Int8PtrTy); 2028 } 2029 2030 if (UsedArray.empty()) 2031 return; 2032 llvm::ArrayType *ATy = llvm::ArrayType::get(CGM.Int8PtrTy, UsedArray.size()); 2033 2034 auto *GV = new llvm::GlobalVariable( 2035 CGM.getModule(), ATy, false, llvm::GlobalValue::AppendingLinkage, 2036 llvm::ConstantArray::get(ATy, UsedArray), Name); 2037 2038 GV->setSection("llvm.metadata"); 2039 } 2040 2041 void CodeGenModule::emitLLVMUsed() { 2042 emitUsed(*this, "llvm.used", LLVMUsed); 2043 emitUsed(*this, "llvm.compiler.used", LLVMCompilerUsed); 2044 } 2045 2046 void CodeGenModule::AppendLinkerOptions(StringRef Opts) { 2047 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opts); 2048 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 2049 } 2050 2051 void CodeGenModule::AddDetectMismatch(StringRef Name, StringRef Value) { 2052 llvm::SmallString<32> Opt; 2053 getTargetCodeGenInfo().getDetectMismatchOption(Name, Value, Opt); 2054 if (Opt.empty()) 2055 return; 2056 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt); 2057 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 2058 } 2059 2060 void CodeGenModule::AddDependentLib(StringRef Lib) { 2061 auto &C = getLLVMContext(); 2062 if (getTarget().getTriple().isOSBinFormatELF()) { 2063 ELFDependentLibraries.push_back( 2064 llvm::MDNode::get(C, llvm::MDString::get(C, Lib))); 2065 return; 2066 } 2067 2068 llvm::SmallString<24> Opt; 2069 getTargetCodeGenInfo().getDependentLibraryOption(Lib, Opt); 2070 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt); 2071 LinkerOptionsMetadata.push_back(llvm::MDNode::get(C, MDOpts)); 2072 } 2073 2074 /// Add link options implied by the given module, including modules 2075 /// it depends on, using a postorder walk. 2076 static void addLinkOptionsPostorder(CodeGenModule &CGM, Module *Mod, 2077 SmallVectorImpl<llvm::MDNode *> &Metadata, 2078 llvm::SmallPtrSet<Module *, 16> &Visited) { 2079 // Import this module's parent. 2080 if (Mod->Parent && Visited.insert(Mod->Parent).second) { 2081 addLinkOptionsPostorder(CGM, Mod->Parent, Metadata, Visited); 2082 } 2083 2084 // Import this module's dependencies. 2085 for (unsigned I = Mod->Imports.size(); I > 0; --I) { 2086 if (Visited.insert(Mod->Imports[I - 1]).second) 2087 addLinkOptionsPostorder(CGM, Mod->Imports[I-1], Metadata, Visited); 2088 } 2089 2090 // Add linker options to link against the libraries/frameworks 2091 // described by this module. 2092 llvm::LLVMContext &Context = CGM.getLLVMContext(); 2093 bool IsELF = CGM.getTarget().getTriple().isOSBinFormatELF(); 2094 2095 // For modules that use export_as for linking, use that module 2096 // name instead. 2097 if (Mod->UseExportAsModuleLinkName) 2098 return; 2099 2100 for (unsigned I = Mod->LinkLibraries.size(); I > 0; --I) { 2101 // Link against a framework. Frameworks are currently Darwin only, so we 2102 // don't to ask TargetCodeGenInfo for the spelling of the linker option. 2103 if (Mod->LinkLibraries[I-1].IsFramework) { 2104 llvm::Metadata *Args[2] = { 2105 llvm::MDString::get(Context, "-framework"), 2106 llvm::MDString::get(Context, Mod->LinkLibraries[I - 1].Library)}; 2107 2108 Metadata.push_back(llvm::MDNode::get(Context, Args)); 2109 continue; 2110 } 2111 2112 // Link against a library. 2113 if (IsELF) { 2114 llvm::Metadata *Args[2] = { 2115 llvm::MDString::get(Context, "lib"), 2116 llvm::MDString::get(Context, Mod->LinkLibraries[I - 1].Library), 2117 }; 2118 Metadata.push_back(llvm::MDNode::get(Context, Args)); 2119 } else { 2120 llvm::SmallString<24> Opt; 2121 CGM.getTargetCodeGenInfo().getDependentLibraryOption( 2122 Mod->LinkLibraries[I - 1].Library, Opt); 2123 auto *OptString = llvm::MDString::get(Context, Opt); 2124 Metadata.push_back(llvm::MDNode::get(Context, OptString)); 2125 } 2126 } 2127 } 2128 2129 void CodeGenModule::EmitModuleLinkOptions() { 2130 // Collect the set of all of the modules we want to visit to emit link 2131 // options, which is essentially the imported modules and all of their 2132 // non-explicit child modules. 2133 llvm::SetVector<clang::Module *> LinkModules; 2134 llvm::SmallPtrSet<clang::Module *, 16> Visited; 2135 SmallVector<clang::Module *, 16> Stack; 2136 2137 // Seed the stack with imported modules. 2138 for (Module *M : ImportedModules) { 2139 // Do not add any link flags when an implementation TU of a module imports 2140 // a header of that same module. 2141 if (M->getTopLevelModuleName() == getLangOpts().CurrentModule && 2142 !getLangOpts().isCompilingModule()) 2143 continue; 2144 if (Visited.insert(M).second) 2145 Stack.push_back(M); 2146 } 2147 2148 // Find all of the modules to import, making a little effort to prune 2149 // non-leaf modules. 2150 while (!Stack.empty()) { 2151 clang::Module *Mod = Stack.pop_back_val(); 2152 2153 bool AnyChildren = false; 2154 2155 // Visit the submodules of this module. 2156 for (const auto &SM : Mod->submodules()) { 2157 // Skip explicit children; they need to be explicitly imported to be 2158 // linked against. 2159 if (SM->IsExplicit) 2160 continue; 2161 2162 if (Visited.insert(SM).second) { 2163 Stack.push_back(SM); 2164 AnyChildren = true; 2165 } 2166 } 2167 2168 // We didn't find any children, so add this module to the list of 2169 // modules to link against. 2170 if (!AnyChildren) { 2171 LinkModules.insert(Mod); 2172 } 2173 } 2174 2175 // Add link options for all of the imported modules in reverse topological 2176 // order. We don't do anything to try to order import link flags with respect 2177 // to linker options inserted by things like #pragma comment(). 2178 SmallVector<llvm::MDNode *, 16> MetadataArgs; 2179 Visited.clear(); 2180 for (Module *M : LinkModules) 2181 if (Visited.insert(M).second) 2182 addLinkOptionsPostorder(*this, M, MetadataArgs, Visited); 2183 std::reverse(MetadataArgs.begin(), MetadataArgs.end()); 2184 LinkerOptionsMetadata.append(MetadataArgs.begin(), MetadataArgs.end()); 2185 2186 // Add the linker options metadata flag. 2187 auto *NMD = getModule().getOrInsertNamedMetadata("llvm.linker.options"); 2188 for (auto *MD : LinkerOptionsMetadata) 2189 NMD->addOperand(MD); 2190 } 2191 2192 void CodeGenModule::EmitDeferred() { 2193 // Emit deferred declare target declarations. 2194 if (getLangOpts().OpenMP && !getLangOpts().OpenMPSimd) 2195 getOpenMPRuntime().emitDeferredTargetDecls(); 2196 2197 // Emit code for any potentially referenced deferred decls. Since a 2198 // previously unused static decl may become used during the generation of code 2199 // for a static function, iterate until no changes are made. 2200 2201 if (!DeferredVTables.empty()) { 2202 EmitDeferredVTables(); 2203 2204 // Emitting a vtable doesn't directly cause more vtables to 2205 // become deferred, although it can cause functions to be 2206 // emitted that then need those vtables. 2207 assert(DeferredVTables.empty()); 2208 } 2209 2210 // Emit CUDA/HIP static device variables referenced by host code only. 2211 if (getLangOpts().CUDA) 2212 for (auto V : getContext().CUDAStaticDeviceVarReferencedByHost) 2213 DeferredDeclsToEmit.push_back(V); 2214 2215 // Stop if we're out of both deferred vtables and deferred declarations. 2216 if (DeferredDeclsToEmit.empty()) 2217 return; 2218 2219 // Grab the list of decls to emit. If EmitGlobalDefinition schedules more 2220 // work, it will not interfere with this. 2221 std::vector<GlobalDecl> CurDeclsToEmit; 2222 CurDeclsToEmit.swap(DeferredDeclsToEmit); 2223 2224 for (GlobalDecl &D : CurDeclsToEmit) { 2225 // We should call GetAddrOfGlobal with IsForDefinition set to true in order 2226 // to get GlobalValue with exactly the type we need, not something that 2227 // might had been created for another decl with the same mangled name but 2228 // different type. 2229 llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>( 2230 GetAddrOfGlobal(D, ForDefinition)); 2231 2232 // In case of different address spaces, we may still get a cast, even with 2233 // IsForDefinition equal to true. Query mangled names table to get 2234 // GlobalValue. 2235 if (!GV) 2236 GV = GetGlobalValue(getMangledName(D)); 2237 2238 // Make sure GetGlobalValue returned non-null. 2239 assert(GV); 2240 2241 // Check to see if we've already emitted this. This is necessary 2242 // for a couple of reasons: first, decls can end up in the 2243 // deferred-decls queue multiple times, and second, decls can end 2244 // up with definitions in unusual ways (e.g. by an extern inline 2245 // function acquiring a strong function redefinition). Just 2246 // ignore these cases. 2247 if (!GV->isDeclaration()) 2248 continue; 2249 2250 // If this is OpenMP, check if it is legal to emit this global normally. 2251 if (LangOpts.OpenMP && OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(D)) 2252 continue; 2253 2254 // Otherwise, emit the definition and move on to the next one. 2255 EmitGlobalDefinition(D, GV); 2256 2257 // If we found out that we need to emit more decls, do that recursively. 2258 // This has the advantage that the decls are emitted in a DFS and related 2259 // ones are close together, which is convenient for testing. 2260 if (!DeferredVTables.empty() || !DeferredDeclsToEmit.empty()) { 2261 EmitDeferred(); 2262 assert(DeferredVTables.empty() && DeferredDeclsToEmit.empty()); 2263 } 2264 } 2265 } 2266 2267 void CodeGenModule::EmitVTablesOpportunistically() { 2268 // Try to emit external vtables as available_externally if they have emitted 2269 // all inlined virtual functions. It runs after EmitDeferred() and therefore 2270 // is not allowed to create new references to things that need to be emitted 2271 // lazily. Note that it also uses fact that we eagerly emitting RTTI. 2272 2273 assert((OpportunisticVTables.empty() || shouldOpportunisticallyEmitVTables()) 2274 && "Only emit opportunistic vtables with optimizations"); 2275 2276 for (const CXXRecordDecl *RD : OpportunisticVTables) { 2277 assert(getVTables().isVTableExternal(RD) && 2278 "This queue should only contain external vtables"); 2279 if (getCXXABI().canSpeculativelyEmitVTable(RD)) 2280 VTables.GenerateClassData(RD); 2281 } 2282 OpportunisticVTables.clear(); 2283 } 2284 2285 void CodeGenModule::EmitGlobalAnnotations() { 2286 if (Annotations.empty()) 2287 return; 2288 2289 // Create a new global variable for the ConstantStruct in the Module. 2290 llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get( 2291 Annotations[0]->getType(), Annotations.size()), Annotations); 2292 auto *gv = new llvm::GlobalVariable(getModule(), Array->getType(), false, 2293 llvm::GlobalValue::AppendingLinkage, 2294 Array, "llvm.global.annotations"); 2295 gv->setSection(AnnotationSection); 2296 } 2297 2298 llvm::Constant *CodeGenModule::EmitAnnotationString(StringRef Str) { 2299 llvm::Constant *&AStr = AnnotationStrings[Str]; 2300 if (AStr) 2301 return AStr; 2302 2303 // Not found yet, create a new global. 2304 llvm::Constant *s = llvm::ConstantDataArray::getString(getLLVMContext(), Str); 2305 auto *gv = 2306 new llvm::GlobalVariable(getModule(), s->getType(), true, 2307 llvm::GlobalValue::PrivateLinkage, s, ".str"); 2308 gv->setSection(AnnotationSection); 2309 gv->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 2310 AStr = gv; 2311 return gv; 2312 } 2313 2314 llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) { 2315 SourceManager &SM = getContext().getSourceManager(); 2316 PresumedLoc PLoc = SM.getPresumedLoc(Loc); 2317 if (PLoc.isValid()) 2318 return EmitAnnotationString(PLoc.getFilename()); 2319 return EmitAnnotationString(SM.getBufferName(Loc)); 2320 } 2321 2322 llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) { 2323 SourceManager &SM = getContext().getSourceManager(); 2324 PresumedLoc PLoc = SM.getPresumedLoc(L); 2325 unsigned LineNo = PLoc.isValid() ? PLoc.getLine() : 2326 SM.getExpansionLineNumber(L); 2327 return llvm::ConstantInt::get(Int32Ty, LineNo); 2328 } 2329 2330 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV, 2331 const AnnotateAttr *AA, 2332 SourceLocation L) { 2333 // Get the globals for file name, annotation, and the line number. 2334 llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()), 2335 *UnitGV = EmitAnnotationUnit(L), 2336 *LineNoCst = EmitAnnotationLineNo(L); 2337 2338 llvm::Constant *ASZeroGV = GV; 2339 if (GV->getAddressSpace() != 0) { 2340 ASZeroGV = llvm::ConstantExpr::getAddrSpaceCast( 2341 GV, GV->getValueType()->getPointerTo(0)); 2342 } 2343 2344 // Create the ConstantStruct for the global annotation. 2345 llvm::Constant *Fields[4] = { 2346 llvm::ConstantExpr::getBitCast(ASZeroGV, Int8PtrTy), 2347 llvm::ConstantExpr::getBitCast(AnnoGV, Int8PtrTy), 2348 llvm::ConstantExpr::getBitCast(UnitGV, Int8PtrTy), 2349 LineNoCst 2350 }; 2351 return llvm::ConstantStruct::getAnon(Fields); 2352 } 2353 2354 void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D, 2355 llvm::GlobalValue *GV) { 2356 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 2357 // Get the struct elements for these annotations. 2358 for (const auto *I : D->specific_attrs<AnnotateAttr>()) 2359 Annotations.push_back(EmitAnnotateAttr(GV, I, D->getLocation())); 2360 } 2361 2362 bool CodeGenModule::isInSanitizerBlacklist(SanitizerMask Kind, 2363 llvm::Function *Fn, 2364 SourceLocation Loc) const { 2365 const auto &SanitizerBL = getContext().getSanitizerBlacklist(); 2366 // Blacklist by function name. 2367 if (SanitizerBL.isBlacklistedFunction(Kind, Fn->getName())) 2368 return true; 2369 // Blacklist by location. 2370 if (Loc.isValid()) 2371 return SanitizerBL.isBlacklistedLocation(Kind, Loc); 2372 // If location is unknown, this may be a compiler-generated function. Assume 2373 // it's located in the main file. 2374 auto &SM = Context.getSourceManager(); 2375 if (const auto *MainFile = SM.getFileEntryForID(SM.getMainFileID())) { 2376 return SanitizerBL.isBlacklistedFile(Kind, MainFile->getName()); 2377 } 2378 return false; 2379 } 2380 2381 bool CodeGenModule::isInSanitizerBlacklist(llvm::GlobalVariable *GV, 2382 SourceLocation Loc, QualType Ty, 2383 StringRef Category) const { 2384 // For now globals can be blacklisted only in ASan and KASan. 2385 const SanitizerMask EnabledAsanMask = 2386 LangOpts.Sanitize.Mask & 2387 (SanitizerKind::Address | SanitizerKind::KernelAddress | 2388 SanitizerKind::HWAddress | SanitizerKind::KernelHWAddress | 2389 SanitizerKind::MemTag); 2390 if (!EnabledAsanMask) 2391 return false; 2392 const auto &SanitizerBL = getContext().getSanitizerBlacklist(); 2393 if (SanitizerBL.isBlacklistedGlobal(EnabledAsanMask, GV->getName(), Category)) 2394 return true; 2395 if (SanitizerBL.isBlacklistedLocation(EnabledAsanMask, Loc, Category)) 2396 return true; 2397 // Check global type. 2398 if (!Ty.isNull()) { 2399 // Drill down the array types: if global variable of a fixed type is 2400 // blacklisted, we also don't instrument arrays of them. 2401 while (auto AT = dyn_cast<ArrayType>(Ty.getTypePtr())) 2402 Ty = AT->getElementType(); 2403 Ty = Ty.getCanonicalType().getUnqualifiedType(); 2404 // We allow to blacklist only record types (classes, structs etc.) 2405 if (Ty->isRecordType()) { 2406 std::string TypeStr = Ty.getAsString(getContext().getPrintingPolicy()); 2407 if (SanitizerBL.isBlacklistedType(EnabledAsanMask, TypeStr, Category)) 2408 return true; 2409 } 2410 } 2411 return false; 2412 } 2413 2414 bool CodeGenModule::imbueXRayAttrs(llvm::Function *Fn, SourceLocation Loc, 2415 StringRef Category) const { 2416 const auto &XRayFilter = getContext().getXRayFilter(); 2417 using ImbueAttr = XRayFunctionFilter::ImbueAttribute; 2418 auto Attr = ImbueAttr::NONE; 2419 if (Loc.isValid()) 2420 Attr = XRayFilter.shouldImbueLocation(Loc, Category); 2421 if (Attr == ImbueAttr::NONE) 2422 Attr = XRayFilter.shouldImbueFunction(Fn->getName()); 2423 switch (Attr) { 2424 case ImbueAttr::NONE: 2425 return false; 2426 case ImbueAttr::ALWAYS: 2427 Fn->addFnAttr("function-instrument", "xray-always"); 2428 break; 2429 case ImbueAttr::ALWAYS_ARG1: 2430 Fn->addFnAttr("function-instrument", "xray-always"); 2431 Fn->addFnAttr("xray-log-args", "1"); 2432 break; 2433 case ImbueAttr::NEVER: 2434 Fn->addFnAttr("function-instrument", "xray-never"); 2435 break; 2436 } 2437 return true; 2438 } 2439 2440 bool CodeGenModule::MustBeEmitted(const ValueDecl *Global) { 2441 // Never defer when EmitAllDecls is specified. 2442 if (LangOpts.EmitAllDecls) 2443 return true; 2444 2445 if (CodeGenOpts.KeepStaticConsts) { 2446 const auto *VD = dyn_cast<VarDecl>(Global); 2447 if (VD && VD->getType().isConstQualified() && 2448 VD->getStorageDuration() == SD_Static) 2449 return true; 2450 } 2451 2452 return getContext().DeclMustBeEmitted(Global); 2453 } 2454 2455 bool CodeGenModule::MayBeEmittedEagerly(const ValueDecl *Global) { 2456 if (const auto *FD = dyn_cast<FunctionDecl>(Global)) { 2457 if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation) 2458 // Implicit template instantiations may change linkage if they are later 2459 // explicitly instantiated, so they should not be emitted eagerly. 2460 return false; 2461 // In OpenMP 5.0 function may be marked as device_type(nohost) and we should 2462 // not emit them eagerly unless we sure that the function must be emitted on 2463 // the host. 2464 if (LangOpts.OpenMP >= 50 && !LangOpts.OpenMPSimd && 2465 !LangOpts.OpenMPIsDevice && 2466 !OMPDeclareTargetDeclAttr::getDeviceType(FD) && 2467 !FD->isUsed(/*CheckUsedAttr=*/false) && !FD->isReferenced()) 2468 return false; 2469 } 2470 if (const auto *VD = dyn_cast<VarDecl>(Global)) 2471 if (Context.getInlineVariableDefinitionKind(VD) == 2472 ASTContext::InlineVariableDefinitionKind::WeakUnknown) 2473 // A definition of an inline constexpr static data member may change 2474 // linkage later if it's redeclared outside the class. 2475 return false; 2476 // If OpenMP is enabled and threadprivates must be generated like TLS, delay 2477 // codegen for global variables, because they may be marked as threadprivate. 2478 if (LangOpts.OpenMP && LangOpts.OpenMPUseTLS && 2479 getContext().getTargetInfo().isTLSSupported() && isa<VarDecl>(Global) && 2480 !isTypeConstant(Global->getType(), false) && 2481 !OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(Global)) 2482 return false; 2483 2484 return true; 2485 } 2486 2487 ConstantAddress CodeGenModule::GetAddrOfMSGuidDecl(const MSGuidDecl *GD) { 2488 StringRef Name = getMangledName(GD); 2489 2490 // The UUID descriptor should be pointer aligned. 2491 CharUnits Alignment = CharUnits::fromQuantity(PointerAlignInBytes); 2492 2493 // Look for an existing global. 2494 if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name)) 2495 return ConstantAddress(GV, Alignment); 2496 2497 ConstantEmitter Emitter(*this); 2498 llvm::Constant *Init; 2499 2500 APValue &V = GD->getAsAPValue(); 2501 if (!V.isAbsent()) { 2502 // If possible, emit the APValue version of the initializer. In particular, 2503 // this gets the type of the constant right. 2504 Init = Emitter.emitForInitializer( 2505 GD->getAsAPValue(), GD->getType().getAddressSpace(), GD->getType()); 2506 } else { 2507 // As a fallback, directly construct the constant. 2508 // FIXME: This may get padding wrong under esoteric struct layout rules. 2509 // MSVC appears to create a complete type 'struct __s_GUID' that it 2510 // presumably uses to represent these constants. 2511 MSGuidDecl::Parts Parts = GD->getParts(); 2512 llvm::Constant *Fields[4] = { 2513 llvm::ConstantInt::get(Int32Ty, Parts.Part1), 2514 llvm::ConstantInt::get(Int16Ty, Parts.Part2), 2515 llvm::ConstantInt::get(Int16Ty, Parts.Part3), 2516 llvm::ConstantDataArray::getRaw( 2517 StringRef(reinterpret_cast<char *>(Parts.Part4And5), 8), 8, 2518 Int8Ty)}; 2519 Init = llvm::ConstantStruct::getAnon(Fields); 2520 } 2521 2522 auto *GV = new llvm::GlobalVariable( 2523 getModule(), Init->getType(), 2524 /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name); 2525 if (supportsCOMDAT()) 2526 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 2527 setDSOLocal(GV); 2528 2529 llvm::Constant *Addr = GV; 2530 if (!V.isAbsent()) { 2531 Emitter.finalize(GV); 2532 } else { 2533 llvm::Type *Ty = getTypes().ConvertTypeForMem(GD->getType()); 2534 Addr = llvm::ConstantExpr::getBitCast( 2535 GV, Ty->getPointerTo(GV->getAddressSpace())); 2536 } 2537 return ConstantAddress(Addr, Alignment); 2538 } 2539 2540 ConstantAddress CodeGenModule::GetWeakRefReference(const ValueDecl *VD) { 2541 const AliasAttr *AA = VD->getAttr<AliasAttr>(); 2542 assert(AA && "No alias?"); 2543 2544 CharUnits Alignment = getContext().getDeclAlign(VD); 2545 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType()); 2546 2547 // See if there is already something with the target's name in the module. 2548 llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee()); 2549 if (Entry) { 2550 unsigned AS = getContext().getTargetAddressSpace(VD->getType()); 2551 auto Ptr = llvm::ConstantExpr::getBitCast(Entry, DeclTy->getPointerTo(AS)); 2552 return ConstantAddress(Ptr, Alignment); 2553 } 2554 2555 llvm::Constant *Aliasee; 2556 if (isa<llvm::FunctionType>(DeclTy)) 2557 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, 2558 GlobalDecl(cast<FunctionDecl>(VD)), 2559 /*ForVTable=*/false); 2560 else 2561 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), 2562 llvm::PointerType::getUnqual(DeclTy), 2563 nullptr); 2564 2565 auto *F = cast<llvm::GlobalValue>(Aliasee); 2566 F->setLinkage(llvm::Function::ExternalWeakLinkage); 2567 WeakRefReferences.insert(F); 2568 2569 return ConstantAddress(Aliasee, Alignment); 2570 } 2571 2572 void CodeGenModule::EmitGlobal(GlobalDecl GD) { 2573 const auto *Global = cast<ValueDecl>(GD.getDecl()); 2574 2575 // Weak references don't produce any output by themselves. 2576 if (Global->hasAttr<WeakRefAttr>()) 2577 return; 2578 2579 // If this is an alias definition (which otherwise looks like a declaration) 2580 // emit it now. 2581 if (Global->hasAttr<AliasAttr>()) 2582 return EmitAliasDefinition(GD); 2583 2584 // IFunc like an alias whose value is resolved at runtime by calling resolver. 2585 if (Global->hasAttr<IFuncAttr>()) 2586 return emitIFuncDefinition(GD); 2587 2588 // If this is a cpu_dispatch multiversion function, emit the resolver. 2589 if (Global->hasAttr<CPUDispatchAttr>()) 2590 return emitCPUDispatchDefinition(GD); 2591 2592 // If this is CUDA, be selective about which declarations we emit. 2593 if (LangOpts.CUDA) { 2594 if (LangOpts.CUDAIsDevice) { 2595 if (!Global->hasAttr<CUDADeviceAttr>() && 2596 !Global->hasAttr<CUDAGlobalAttr>() && 2597 !Global->hasAttr<CUDAConstantAttr>() && 2598 !Global->hasAttr<CUDASharedAttr>() && 2599 !Global->getType()->isCUDADeviceBuiltinSurfaceType() && 2600 !Global->getType()->isCUDADeviceBuiltinTextureType()) 2601 return; 2602 } else { 2603 // We need to emit host-side 'shadows' for all global 2604 // device-side variables because the CUDA runtime needs their 2605 // size and host-side address in order to provide access to 2606 // their device-side incarnations. 2607 2608 // So device-only functions are the only things we skip. 2609 if (isa<FunctionDecl>(Global) && !Global->hasAttr<CUDAHostAttr>() && 2610 Global->hasAttr<CUDADeviceAttr>()) 2611 return; 2612 2613 assert((isa<FunctionDecl>(Global) || isa<VarDecl>(Global)) && 2614 "Expected Variable or Function"); 2615 } 2616 } 2617 2618 if (LangOpts.OpenMP) { 2619 // If this is OpenMP, check if it is legal to emit this global normally. 2620 if (OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(GD)) 2621 return; 2622 if (auto *DRD = dyn_cast<OMPDeclareReductionDecl>(Global)) { 2623 if (MustBeEmitted(Global)) 2624 EmitOMPDeclareReduction(DRD); 2625 return; 2626 } else if (auto *DMD = dyn_cast<OMPDeclareMapperDecl>(Global)) { 2627 if (MustBeEmitted(Global)) 2628 EmitOMPDeclareMapper(DMD); 2629 return; 2630 } 2631 } 2632 2633 // Ignore declarations, they will be emitted on their first use. 2634 if (const auto *FD = dyn_cast<FunctionDecl>(Global)) { 2635 // Forward declarations are emitted lazily on first use. 2636 if (!FD->doesThisDeclarationHaveABody()) { 2637 if (!FD->doesDeclarationForceExternallyVisibleDefinition()) 2638 return; 2639 2640 StringRef MangledName = getMangledName(GD); 2641 2642 // Compute the function info and LLVM type. 2643 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 2644 llvm::Type *Ty = getTypes().GetFunctionType(FI); 2645 2646 GetOrCreateLLVMFunction(MangledName, Ty, GD, /*ForVTable=*/false, 2647 /*DontDefer=*/false); 2648 return; 2649 } 2650 } else { 2651 const auto *VD = cast<VarDecl>(Global); 2652 assert(VD->isFileVarDecl() && "Cannot emit local var decl as global."); 2653 if (VD->isThisDeclarationADefinition() != VarDecl::Definition && 2654 !Context.isMSStaticDataMemberInlineDefinition(VD)) { 2655 if (LangOpts.OpenMP) { 2656 // Emit declaration of the must-be-emitted declare target variable. 2657 if (llvm::Optional<OMPDeclareTargetDeclAttr::MapTypeTy> Res = 2658 OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD)) { 2659 bool UnifiedMemoryEnabled = 2660 getOpenMPRuntime().hasRequiresUnifiedSharedMemory(); 2661 if (*Res == OMPDeclareTargetDeclAttr::MT_To && 2662 !UnifiedMemoryEnabled) { 2663 (void)GetAddrOfGlobalVar(VD); 2664 } else { 2665 assert(((*Res == OMPDeclareTargetDeclAttr::MT_Link) || 2666 (*Res == OMPDeclareTargetDeclAttr::MT_To && 2667 UnifiedMemoryEnabled)) && 2668 "Link clause or to clause with unified memory expected."); 2669 (void)getOpenMPRuntime().getAddrOfDeclareTargetVar(VD); 2670 } 2671 2672 return; 2673 } 2674 } 2675 // If this declaration may have caused an inline variable definition to 2676 // change linkage, make sure that it's emitted. 2677 if (Context.getInlineVariableDefinitionKind(VD) == 2678 ASTContext::InlineVariableDefinitionKind::Strong) 2679 GetAddrOfGlobalVar(VD); 2680 return; 2681 } 2682 } 2683 2684 // Defer code generation to first use when possible, e.g. if this is an inline 2685 // function. If the global must always be emitted, do it eagerly if possible 2686 // to benefit from cache locality. 2687 if (MustBeEmitted(Global) && MayBeEmittedEagerly(Global)) { 2688 // Emit the definition if it can't be deferred. 2689 EmitGlobalDefinition(GD); 2690 return; 2691 } 2692 2693 // If we're deferring emission of a C++ variable with an 2694 // initializer, remember the order in which it appeared in the file. 2695 if (getLangOpts().CPlusPlus && isa<VarDecl>(Global) && 2696 cast<VarDecl>(Global)->hasInit()) { 2697 DelayedCXXInitPosition[Global] = CXXGlobalInits.size(); 2698 CXXGlobalInits.push_back(nullptr); 2699 } 2700 2701 StringRef MangledName = getMangledName(GD); 2702 if (GetGlobalValue(MangledName) != nullptr) { 2703 // The value has already been used and should therefore be emitted. 2704 addDeferredDeclToEmit(GD); 2705 } else if (MustBeEmitted(Global)) { 2706 // The value must be emitted, but cannot be emitted eagerly. 2707 assert(!MayBeEmittedEagerly(Global)); 2708 addDeferredDeclToEmit(GD); 2709 } else { 2710 // Otherwise, remember that we saw a deferred decl with this name. The 2711 // first use of the mangled name will cause it to move into 2712 // DeferredDeclsToEmit. 2713 DeferredDecls[MangledName] = GD; 2714 } 2715 } 2716 2717 // Check if T is a class type with a destructor that's not dllimport. 2718 static bool HasNonDllImportDtor(QualType T) { 2719 if (const auto *RT = T->getBaseElementTypeUnsafe()->getAs<RecordType>()) 2720 if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl())) 2721 if (RD->getDestructor() && !RD->getDestructor()->hasAttr<DLLImportAttr>()) 2722 return true; 2723 2724 return false; 2725 } 2726 2727 namespace { 2728 struct FunctionIsDirectlyRecursive 2729 : public ConstStmtVisitor<FunctionIsDirectlyRecursive, bool> { 2730 const StringRef Name; 2731 const Builtin::Context &BI; 2732 FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C) 2733 : Name(N), BI(C) {} 2734 2735 bool VisitCallExpr(const CallExpr *E) { 2736 const FunctionDecl *FD = E->getDirectCallee(); 2737 if (!FD) 2738 return false; 2739 AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>(); 2740 if (Attr && Name == Attr->getLabel()) 2741 return true; 2742 unsigned BuiltinID = FD->getBuiltinID(); 2743 if (!BuiltinID || !BI.isLibFunction(BuiltinID)) 2744 return false; 2745 StringRef BuiltinName = BI.getName(BuiltinID); 2746 if (BuiltinName.startswith("__builtin_") && 2747 Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) { 2748 return true; 2749 } 2750 return false; 2751 } 2752 2753 bool VisitStmt(const Stmt *S) { 2754 for (const Stmt *Child : S->children()) 2755 if (Child && this->Visit(Child)) 2756 return true; 2757 return false; 2758 } 2759 }; 2760 2761 // Make sure we're not referencing non-imported vars or functions. 2762 struct DLLImportFunctionVisitor 2763 : public RecursiveASTVisitor<DLLImportFunctionVisitor> { 2764 bool SafeToInline = true; 2765 2766 bool shouldVisitImplicitCode() const { return true; } 2767 2768 bool VisitVarDecl(VarDecl *VD) { 2769 if (VD->getTLSKind()) { 2770 // A thread-local variable cannot be imported. 2771 SafeToInline = false; 2772 return SafeToInline; 2773 } 2774 2775 // A variable definition might imply a destructor call. 2776 if (VD->isThisDeclarationADefinition()) 2777 SafeToInline = !HasNonDllImportDtor(VD->getType()); 2778 2779 return SafeToInline; 2780 } 2781 2782 bool VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) { 2783 if (const auto *D = E->getTemporary()->getDestructor()) 2784 SafeToInline = D->hasAttr<DLLImportAttr>(); 2785 return SafeToInline; 2786 } 2787 2788 bool VisitDeclRefExpr(DeclRefExpr *E) { 2789 ValueDecl *VD = E->getDecl(); 2790 if (isa<FunctionDecl>(VD)) 2791 SafeToInline = VD->hasAttr<DLLImportAttr>(); 2792 else if (VarDecl *V = dyn_cast<VarDecl>(VD)) 2793 SafeToInline = !V->hasGlobalStorage() || V->hasAttr<DLLImportAttr>(); 2794 return SafeToInline; 2795 } 2796 2797 bool VisitCXXConstructExpr(CXXConstructExpr *E) { 2798 SafeToInline = E->getConstructor()->hasAttr<DLLImportAttr>(); 2799 return SafeToInline; 2800 } 2801 2802 bool VisitCXXMemberCallExpr(CXXMemberCallExpr *E) { 2803 CXXMethodDecl *M = E->getMethodDecl(); 2804 if (!M) { 2805 // Call through a pointer to member function. This is safe to inline. 2806 SafeToInline = true; 2807 } else { 2808 SafeToInline = M->hasAttr<DLLImportAttr>(); 2809 } 2810 return SafeToInline; 2811 } 2812 2813 bool VisitCXXDeleteExpr(CXXDeleteExpr *E) { 2814 SafeToInline = E->getOperatorDelete()->hasAttr<DLLImportAttr>(); 2815 return SafeToInline; 2816 } 2817 2818 bool VisitCXXNewExpr(CXXNewExpr *E) { 2819 SafeToInline = E->getOperatorNew()->hasAttr<DLLImportAttr>(); 2820 return SafeToInline; 2821 } 2822 }; 2823 } 2824 2825 // isTriviallyRecursive - Check if this function calls another 2826 // decl that, because of the asm attribute or the other decl being a builtin, 2827 // ends up pointing to itself. 2828 bool 2829 CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) { 2830 StringRef Name; 2831 if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) { 2832 // asm labels are a special kind of mangling we have to support. 2833 AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>(); 2834 if (!Attr) 2835 return false; 2836 Name = Attr->getLabel(); 2837 } else { 2838 Name = FD->getName(); 2839 } 2840 2841 FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo); 2842 const Stmt *Body = FD->getBody(); 2843 return Body ? Walker.Visit(Body) : false; 2844 } 2845 2846 bool CodeGenModule::shouldEmitFunction(GlobalDecl GD) { 2847 if (getFunctionLinkage(GD) != llvm::Function::AvailableExternallyLinkage) 2848 return true; 2849 const auto *F = cast<FunctionDecl>(GD.getDecl()); 2850 if (CodeGenOpts.OptimizationLevel == 0 && !F->hasAttr<AlwaysInlineAttr>()) 2851 return false; 2852 2853 if (F->hasAttr<DLLImportAttr>()) { 2854 // Check whether it would be safe to inline this dllimport function. 2855 DLLImportFunctionVisitor Visitor; 2856 Visitor.TraverseFunctionDecl(const_cast<FunctionDecl*>(F)); 2857 if (!Visitor.SafeToInline) 2858 return false; 2859 2860 if (const CXXDestructorDecl *Dtor = dyn_cast<CXXDestructorDecl>(F)) { 2861 // Implicit destructor invocations aren't captured in the AST, so the 2862 // check above can't see them. Check for them manually here. 2863 for (const Decl *Member : Dtor->getParent()->decls()) 2864 if (isa<FieldDecl>(Member)) 2865 if (HasNonDllImportDtor(cast<FieldDecl>(Member)->getType())) 2866 return false; 2867 for (const CXXBaseSpecifier &B : Dtor->getParent()->bases()) 2868 if (HasNonDllImportDtor(B.getType())) 2869 return false; 2870 } 2871 } 2872 2873 // PR9614. Avoid cases where the source code is lying to us. An available 2874 // externally function should have an equivalent function somewhere else, 2875 // but a function that calls itself through asm label/`__builtin_` trickery is 2876 // clearly not equivalent to the real implementation. 2877 // This happens in glibc's btowc and in some configure checks. 2878 return !isTriviallyRecursive(F); 2879 } 2880 2881 bool CodeGenModule::shouldOpportunisticallyEmitVTables() { 2882 return CodeGenOpts.OptimizationLevel > 0; 2883 } 2884 2885 void CodeGenModule::EmitMultiVersionFunctionDefinition(GlobalDecl GD, 2886 llvm::GlobalValue *GV) { 2887 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 2888 2889 if (FD->isCPUSpecificMultiVersion()) { 2890 auto *Spec = FD->getAttr<CPUSpecificAttr>(); 2891 for (unsigned I = 0; I < Spec->cpus_size(); ++I) 2892 EmitGlobalFunctionDefinition(GD.getWithMultiVersionIndex(I), nullptr); 2893 // Requires multiple emits. 2894 } else 2895 EmitGlobalFunctionDefinition(GD, GV); 2896 } 2897 2898 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD, llvm::GlobalValue *GV) { 2899 const auto *D = cast<ValueDecl>(GD.getDecl()); 2900 2901 PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(), 2902 Context.getSourceManager(), 2903 "Generating code for declaration"); 2904 2905 if (const auto *FD = dyn_cast<FunctionDecl>(D)) { 2906 // At -O0, don't generate IR for functions with available_externally 2907 // linkage. 2908 if (!shouldEmitFunction(GD)) 2909 return; 2910 2911 llvm::TimeTraceScope TimeScope("CodeGen Function", [&]() { 2912 std::string Name; 2913 llvm::raw_string_ostream OS(Name); 2914 FD->getNameForDiagnostic(OS, getContext().getPrintingPolicy(), 2915 /*Qualified=*/true); 2916 return Name; 2917 }); 2918 2919 if (const auto *Method = dyn_cast<CXXMethodDecl>(D)) { 2920 // Make sure to emit the definition(s) before we emit the thunks. 2921 // This is necessary for the generation of certain thunks. 2922 if (isa<CXXConstructorDecl>(Method) || isa<CXXDestructorDecl>(Method)) 2923 ABI->emitCXXStructor(GD); 2924 else if (FD->isMultiVersion()) 2925 EmitMultiVersionFunctionDefinition(GD, GV); 2926 else 2927 EmitGlobalFunctionDefinition(GD, GV); 2928 2929 if (Method->isVirtual()) 2930 getVTables().EmitThunks(GD); 2931 2932 return; 2933 } 2934 2935 if (FD->isMultiVersion()) 2936 return EmitMultiVersionFunctionDefinition(GD, GV); 2937 return EmitGlobalFunctionDefinition(GD, GV); 2938 } 2939 2940 if (const auto *VD = dyn_cast<VarDecl>(D)) 2941 return EmitGlobalVarDefinition(VD, !VD->hasDefinition()); 2942 2943 llvm_unreachable("Invalid argument to EmitGlobalDefinition()"); 2944 } 2945 2946 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old, 2947 llvm::Function *NewFn); 2948 2949 static unsigned 2950 TargetMVPriority(const TargetInfo &TI, 2951 const CodeGenFunction::MultiVersionResolverOption &RO) { 2952 unsigned Priority = 0; 2953 for (StringRef Feat : RO.Conditions.Features) 2954 Priority = std::max(Priority, TI.multiVersionSortPriority(Feat)); 2955 2956 if (!RO.Conditions.Architecture.empty()) 2957 Priority = std::max( 2958 Priority, TI.multiVersionSortPriority(RO.Conditions.Architecture)); 2959 return Priority; 2960 } 2961 2962 void CodeGenModule::emitMultiVersionFunctions() { 2963 for (GlobalDecl GD : MultiVersionFuncs) { 2964 SmallVector<CodeGenFunction::MultiVersionResolverOption, 10> Options; 2965 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 2966 getContext().forEachMultiversionedFunctionVersion( 2967 FD, [this, &GD, &Options](const FunctionDecl *CurFD) { 2968 GlobalDecl CurGD{ 2969 (CurFD->isDefined() ? CurFD->getDefinition() : CurFD)}; 2970 StringRef MangledName = getMangledName(CurGD); 2971 llvm::Constant *Func = GetGlobalValue(MangledName); 2972 if (!Func) { 2973 if (CurFD->isDefined()) { 2974 EmitGlobalFunctionDefinition(CurGD, nullptr); 2975 Func = GetGlobalValue(MangledName); 2976 } else { 2977 const CGFunctionInfo &FI = 2978 getTypes().arrangeGlobalDeclaration(GD); 2979 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 2980 Func = GetAddrOfFunction(CurGD, Ty, /*ForVTable=*/false, 2981 /*DontDefer=*/false, ForDefinition); 2982 } 2983 assert(Func && "This should have just been created"); 2984 } 2985 2986 const auto *TA = CurFD->getAttr<TargetAttr>(); 2987 llvm::SmallVector<StringRef, 8> Feats; 2988 TA->getAddedFeatures(Feats); 2989 2990 Options.emplace_back(cast<llvm::Function>(Func), 2991 TA->getArchitecture(), Feats); 2992 }); 2993 2994 llvm::Function *ResolverFunc; 2995 const TargetInfo &TI = getTarget(); 2996 2997 if (TI.supportsIFunc() || FD->isTargetMultiVersion()) { 2998 ResolverFunc = cast<llvm::Function>( 2999 GetGlobalValue((getMangledName(GD) + ".resolver").str())); 3000 ResolverFunc->setLinkage(llvm::Function::WeakODRLinkage); 3001 } else { 3002 ResolverFunc = cast<llvm::Function>(GetGlobalValue(getMangledName(GD))); 3003 } 3004 3005 if (supportsCOMDAT()) 3006 ResolverFunc->setComdat( 3007 getModule().getOrInsertComdat(ResolverFunc->getName())); 3008 3009 llvm::stable_sort( 3010 Options, [&TI](const CodeGenFunction::MultiVersionResolverOption &LHS, 3011 const CodeGenFunction::MultiVersionResolverOption &RHS) { 3012 return TargetMVPriority(TI, LHS) > TargetMVPriority(TI, RHS); 3013 }); 3014 CodeGenFunction CGF(*this); 3015 CGF.EmitMultiVersionResolver(ResolverFunc, Options); 3016 } 3017 } 3018 3019 void CodeGenModule::emitCPUDispatchDefinition(GlobalDecl GD) { 3020 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 3021 assert(FD && "Not a FunctionDecl?"); 3022 const auto *DD = FD->getAttr<CPUDispatchAttr>(); 3023 assert(DD && "Not a cpu_dispatch Function?"); 3024 llvm::Type *DeclTy = getTypes().ConvertType(FD->getType()); 3025 3026 if (const auto *CXXFD = dyn_cast<CXXMethodDecl>(FD)) { 3027 const CGFunctionInfo &FInfo = getTypes().arrangeCXXMethodDeclaration(CXXFD); 3028 DeclTy = getTypes().GetFunctionType(FInfo); 3029 } 3030 3031 StringRef ResolverName = getMangledName(GD); 3032 3033 llvm::Type *ResolverType; 3034 GlobalDecl ResolverGD; 3035 if (getTarget().supportsIFunc()) 3036 ResolverType = llvm::FunctionType::get( 3037 llvm::PointerType::get(DeclTy, 3038 Context.getTargetAddressSpace(FD->getType())), 3039 false); 3040 else { 3041 ResolverType = DeclTy; 3042 ResolverGD = GD; 3043 } 3044 3045 auto *ResolverFunc = cast<llvm::Function>(GetOrCreateLLVMFunction( 3046 ResolverName, ResolverType, ResolverGD, /*ForVTable=*/false)); 3047 ResolverFunc->setLinkage(llvm::Function::WeakODRLinkage); 3048 if (supportsCOMDAT()) 3049 ResolverFunc->setComdat( 3050 getModule().getOrInsertComdat(ResolverFunc->getName())); 3051 3052 SmallVector<CodeGenFunction::MultiVersionResolverOption, 10> Options; 3053 const TargetInfo &Target = getTarget(); 3054 unsigned Index = 0; 3055 for (const IdentifierInfo *II : DD->cpus()) { 3056 // Get the name of the target function so we can look it up/create it. 3057 std::string MangledName = getMangledNameImpl(*this, GD, FD, true) + 3058 getCPUSpecificMangling(*this, II->getName()); 3059 3060 llvm::Constant *Func = GetGlobalValue(MangledName); 3061 3062 if (!Func) { 3063 GlobalDecl ExistingDecl = Manglings.lookup(MangledName); 3064 if (ExistingDecl.getDecl() && 3065 ExistingDecl.getDecl()->getAsFunction()->isDefined()) { 3066 EmitGlobalFunctionDefinition(ExistingDecl, nullptr); 3067 Func = GetGlobalValue(MangledName); 3068 } else { 3069 if (!ExistingDecl.getDecl()) 3070 ExistingDecl = GD.getWithMultiVersionIndex(Index); 3071 3072 Func = GetOrCreateLLVMFunction( 3073 MangledName, DeclTy, ExistingDecl, 3074 /*ForVTable=*/false, /*DontDefer=*/true, 3075 /*IsThunk=*/false, llvm::AttributeList(), ForDefinition); 3076 } 3077 } 3078 3079 llvm::SmallVector<StringRef, 32> Features; 3080 Target.getCPUSpecificCPUDispatchFeatures(II->getName(), Features); 3081 llvm::transform(Features, Features.begin(), 3082 [](StringRef Str) { return Str.substr(1); }); 3083 Features.erase(std::remove_if( 3084 Features.begin(), Features.end(), [&Target](StringRef Feat) { 3085 return !Target.validateCpuSupports(Feat); 3086 }), Features.end()); 3087 Options.emplace_back(cast<llvm::Function>(Func), StringRef{}, Features); 3088 ++Index; 3089 } 3090 3091 llvm::sort( 3092 Options, [](const CodeGenFunction::MultiVersionResolverOption &LHS, 3093 const CodeGenFunction::MultiVersionResolverOption &RHS) { 3094 return CodeGenFunction::GetX86CpuSupportsMask(LHS.Conditions.Features) > 3095 CodeGenFunction::GetX86CpuSupportsMask(RHS.Conditions.Features); 3096 }); 3097 3098 // If the list contains multiple 'default' versions, such as when it contains 3099 // 'pentium' and 'generic', don't emit the call to the generic one (since we 3100 // always run on at least a 'pentium'). We do this by deleting the 'least 3101 // advanced' (read, lowest mangling letter). 3102 while (Options.size() > 1 && 3103 CodeGenFunction::GetX86CpuSupportsMask( 3104 (Options.end() - 2)->Conditions.Features) == 0) { 3105 StringRef LHSName = (Options.end() - 2)->Function->getName(); 3106 StringRef RHSName = (Options.end() - 1)->Function->getName(); 3107 if (LHSName.compare(RHSName) < 0) 3108 Options.erase(Options.end() - 2); 3109 else 3110 Options.erase(Options.end() - 1); 3111 } 3112 3113 CodeGenFunction CGF(*this); 3114 CGF.EmitMultiVersionResolver(ResolverFunc, Options); 3115 3116 if (getTarget().supportsIFunc()) { 3117 std::string AliasName = getMangledNameImpl( 3118 *this, GD, FD, /*OmitMultiVersionMangling=*/true); 3119 llvm::Constant *AliasFunc = GetGlobalValue(AliasName); 3120 if (!AliasFunc) { 3121 auto *IFunc = cast<llvm::GlobalIFunc>(GetOrCreateLLVMFunction( 3122 AliasName, DeclTy, GD, /*ForVTable=*/false, /*DontDefer=*/true, 3123 /*IsThunk=*/false, llvm::AttributeList(), NotForDefinition)); 3124 auto *GA = llvm::GlobalAlias::create( 3125 DeclTy, 0, getFunctionLinkage(GD), AliasName, IFunc, &getModule()); 3126 GA->setLinkage(llvm::Function::WeakODRLinkage); 3127 SetCommonAttributes(GD, GA); 3128 } 3129 } 3130 } 3131 3132 /// If a dispatcher for the specified mangled name is not in the module, create 3133 /// and return an llvm Function with the specified type. 3134 llvm::Constant *CodeGenModule::GetOrCreateMultiVersionResolver( 3135 GlobalDecl GD, llvm::Type *DeclTy, const FunctionDecl *FD) { 3136 std::string MangledName = 3137 getMangledNameImpl(*this, GD, FD, /*OmitMultiVersionMangling=*/true); 3138 3139 // Holds the name of the resolver, in ifunc mode this is the ifunc (which has 3140 // a separate resolver). 3141 std::string ResolverName = MangledName; 3142 if (getTarget().supportsIFunc()) 3143 ResolverName += ".ifunc"; 3144 else if (FD->isTargetMultiVersion()) 3145 ResolverName += ".resolver"; 3146 3147 // If this already exists, just return that one. 3148 if (llvm::GlobalValue *ResolverGV = GetGlobalValue(ResolverName)) 3149 return ResolverGV; 3150 3151 // Since this is the first time we've created this IFunc, make sure 3152 // that we put this multiversioned function into the list to be 3153 // replaced later if necessary (target multiversioning only). 3154 if (!FD->isCPUDispatchMultiVersion() && !FD->isCPUSpecificMultiVersion()) 3155 MultiVersionFuncs.push_back(GD); 3156 3157 if (getTarget().supportsIFunc()) { 3158 llvm::Type *ResolverType = llvm::FunctionType::get( 3159 llvm::PointerType::get( 3160 DeclTy, getContext().getTargetAddressSpace(FD->getType())), 3161 false); 3162 llvm::Constant *Resolver = GetOrCreateLLVMFunction( 3163 MangledName + ".resolver", ResolverType, GlobalDecl{}, 3164 /*ForVTable=*/false); 3165 llvm::GlobalIFunc *GIF = llvm::GlobalIFunc::create( 3166 DeclTy, 0, llvm::Function::WeakODRLinkage, "", Resolver, &getModule()); 3167 GIF->setName(ResolverName); 3168 SetCommonAttributes(FD, GIF); 3169 3170 return GIF; 3171 } 3172 3173 llvm::Constant *Resolver = GetOrCreateLLVMFunction( 3174 ResolverName, DeclTy, GlobalDecl{}, /*ForVTable=*/false); 3175 assert(isa<llvm::GlobalValue>(Resolver) && 3176 "Resolver should be created for the first time"); 3177 SetCommonAttributes(FD, cast<llvm::GlobalValue>(Resolver)); 3178 return Resolver; 3179 } 3180 3181 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the 3182 /// module, create and return an llvm Function with the specified type. If there 3183 /// is something in the module with the specified name, return it potentially 3184 /// bitcasted to the right type. 3185 /// 3186 /// If D is non-null, it specifies a decl that correspond to this. This is used 3187 /// to set the attributes on the function when it is first created. 3188 llvm::Constant *CodeGenModule::GetOrCreateLLVMFunction( 3189 StringRef MangledName, llvm::Type *Ty, GlobalDecl GD, bool ForVTable, 3190 bool DontDefer, bool IsThunk, llvm::AttributeList ExtraAttrs, 3191 ForDefinition_t IsForDefinition) { 3192 const Decl *D = GD.getDecl(); 3193 3194 // Any attempts to use a MultiVersion function should result in retrieving 3195 // the iFunc instead. Name Mangling will handle the rest of the changes. 3196 if (const FunctionDecl *FD = cast_or_null<FunctionDecl>(D)) { 3197 // For the device mark the function as one that should be emitted. 3198 if (getLangOpts().OpenMPIsDevice && OpenMPRuntime && 3199 !OpenMPRuntime->markAsGlobalTarget(GD) && FD->isDefined() && 3200 !DontDefer && !IsForDefinition) { 3201 if (const FunctionDecl *FDDef = FD->getDefinition()) { 3202 GlobalDecl GDDef; 3203 if (const auto *CD = dyn_cast<CXXConstructorDecl>(FDDef)) 3204 GDDef = GlobalDecl(CD, GD.getCtorType()); 3205 else if (const auto *DD = dyn_cast<CXXDestructorDecl>(FDDef)) 3206 GDDef = GlobalDecl(DD, GD.getDtorType()); 3207 else 3208 GDDef = GlobalDecl(FDDef); 3209 EmitGlobal(GDDef); 3210 } 3211 } 3212 3213 if (FD->isMultiVersion()) { 3214 if (FD->hasAttr<TargetAttr>()) 3215 UpdateMultiVersionNames(GD, FD); 3216 if (!IsForDefinition) 3217 return GetOrCreateMultiVersionResolver(GD, Ty, FD); 3218 } 3219 } 3220 3221 // Lookup the entry, lazily creating it if necessary. 3222 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 3223 if (Entry) { 3224 if (WeakRefReferences.erase(Entry)) { 3225 const FunctionDecl *FD = cast_or_null<FunctionDecl>(D); 3226 if (FD && !FD->hasAttr<WeakAttr>()) 3227 Entry->setLinkage(llvm::Function::ExternalLinkage); 3228 } 3229 3230 // Handle dropped DLL attributes. 3231 if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>()) { 3232 Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 3233 setDSOLocal(Entry); 3234 } 3235 3236 // If there are two attempts to define the same mangled name, issue an 3237 // error. 3238 if (IsForDefinition && !Entry->isDeclaration()) { 3239 GlobalDecl OtherGD; 3240 // Check that GD is not yet in DiagnosedConflictingDefinitions is required 3241 // to make sure that we issue an error only once. 3242 if (lookupRepresentativeDecl(MangledName, OtherGD) && 3243 (GD.getCanonicalDecl().getDecl() != 3244 OtherGD.getCanonicalDecl().getDecl()) && 3245 DiagnosedConflictingDefinitions.insert(GD).second) { 3246 getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name) 3247 << MangledName; 3248 getDiags().Report(OtherGD.getDecl()->getLocation(), 3249 diag::note_previous_definition); 3250 } 3251 } 3252 3253 if ((isa<llvm::Function>(Entry) || isa<llvm::GlobalAlias>(Entry)) && 3254 (Entry->getValueType() == Ty)) { 3255 return Entry; 3256 } 3257 3258 // Make sure the result is of the correct type. 3259 // (If function is requested for a definition, we always need to create a new 3260 // function, not just return a bitcast.) 3261 if (!IsForDefinition) 3262 return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo()); 3263 } 3264 3265 // This function doesn't have a complete type (for example, the return 3266 // type is an incomplete struct). Use a fake type instead, and make 3267 // sure not to try to set attributes. 3268 bool IsIncompleteFunction = false; 3269 3270 llvm::FunctionType *FTy; 3271 if (isa<llvm::FunctionType>(Ty)) { 3272 FTy = cast<llvm::FunctionType>(Ty); 3273 } else { 3274 FTy = llvm::FunctionType::get(VoidTy, false); 3275 IsIncompleteFunction = true; 3276 } 3277 3278 llvm::Function *F = 3279 llvm::Function::Create(FTy, llvm::Function::ExternalLinkage, 3280 Entry ? StringRef() : MangledName, &getModule()); 3281 3282 // If we already created a function with the same mangled name (but different 3283 // type) before, take its name and add it to the list of functions to be 3284 // replaced with F at the end of CodeGen. 3285 // 3286 // This happens if there is a prototype for a function (e.g. "int f()") and 3287 // then a definition of a different type (e.g. "int f(int x)"). 3288 if (Entry) { 3289 F->takeName(Entry); 3290 3291 // This might be an implementation of a function without a prototype, in 3292 // which case, try to do special replacement of calls which match the new 3293 // prototype. The really key thing here is that we also potentially drop 3294 // arguments from the call site so as to make a direct call, which makes the 3295 // inliner happier and suppresses a number of optimizer warnings (!) about 3296 // dropping arguments. 3297 if (!Entry->use_empty()) { 3298 ReplaceUsesOfNonProtoTypeWithRealFunction(Entry, F); 3299 Entry->removeDeadConstantUsers(); 3300 } 3301 3302 llvm::Constant *BC = llvm::ConstantExpr::getBitCast( 3303 F, Entry->getValueType()->getPointerTo()); 3304 addGlobalValReplacement(Entry, BC); 3305 } 3306 3307 assert(F->getName() == MangledName && "name was uniqued!"); 3308 if (D) 3309 SetFunctionAttributes(GD, F, IsIncompleteFunction, IsThunk); 3310 if (ExtraAttrs.hasAttributes(llvm::AttributeList::FunctionIndex)) { 3311 llvm::AttrBuilder B(ExtraAttrs, llvm::AttributeList::FunctionIndex); 3312 F->addAttributes(llvm::AttributeList::FunctionIndex, B); 3313 } 3314 3315 if (!DontDefer) { 3316 // All MSVC dtors other than the base dtor are linkonce_odr and delegate to 3317 // each other bottoming out with the base dtor. Therefore we emit non-base 3318 // dtors on usage, even if there is no dtor definition in the TU. 3319 if (D && isa<CXXDestructorDecl>(D) && 3320 getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D), 3321 GD.getDtorType())) 3322 addDeferredDeclToEmit(GD); 3323 3324 // This is the first use or definition of a mangled name. If there is a 3325 // deferred decl with this name, remember that we need to emit it at the end 3326 // of the file. 3327 auto DDI = DeferredDecls.find(MangledName); 3328 if (DDI != DeferredDecls.end()) { 3329 // Move the potentially referenced deferred decl to the 3330 // DeferredDeclsToEmit list, and remove it from DeferredDecls (since we 3331 // don't need it anymore). 3332 addDeferredDeclToEmit(DDI->second); 3333 DeferredDecls.erase(DDI); 3334 3335 // Otherwise, there are cases we have to worry about where we're 3336 // using a declaration for which we must emit a definition but where 3337 // we might not find a top-level definition: 3338 // - member functions defined inline in their classes 3339 // - friend functions defined inline in some class 3340 // - special member functions with implicit definitions 3341 // If we ever change our AST traversal to walk into class methods, 3342 // this will be unnecessary. 3343 // 3344 // We also don't emit a definition for a function if it's going to be an 3345 // entry in a vtable, unless it's already marked as used. 3346 } else if (getLangOpts().CPlusPlus && D) { 3347 // Look for a declaration that's lexically in a record. 3348 for (const auto *FD = cast<FunctionDecl>(D)->getMostRecentDecl(); FD; 3349 FD = FD->getPreviousDecl()) { 3350 if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) { 3351 if (FD->doesThisDeclarationHaveABody()) { 3352 addDeferredDeclToEmit(GD.getWithDecl(FD)); 3353 break; 3354 } 3355 } 3356 } 3357 } 3358 } 3359 3360 // Make sure the result is of the requested type. 3361 if (!IsIncompleteFunction) { 3362 assert(F->getFunctionType() == Ty); 3363 return F; 3364 } 3365 3366 llvm::Type *PTy = llvm::PointerType::getUnqual(Ty); 3367 return llvm::ConstantExpr::getBitCast(F, PTy); 3368 } 3369 3370 /// GetAddrOfFunction - Return the address of the given function. If Ty is 3371 /// non-null, then this function will use the specified type if it has to 3372 /// create it (this occurs when we see a definition of the function). 3373 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD, 3374 llvm::Type *Ty, 3375 bool ForVTable, 3376 bool DontDefer, 3377 ForDefinition_t IsForDefinition) { 3378 assert(!cast<FunctionDecl>(GD.getDecl())->isConsteval() && 3379 "consteval function should never be emitted"); 3380 // If there was no specific requested type, just convert it now. 3381 if (!Ty) { 3382 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 3383 Ty = getTypes().ConvertType(FD->getType()); 3384 } 3385 3386 // Devirtualized destructor calls may come through here instead of via 3387 // getAddrOfCXXStructor. Make sure we use the MS ABI base destructor instead 3388 // of the complete destructor when necessary. 3389 if (const auto *DD = dyn_cast<CXXDestructorDecl>(GD.getDecl())) { 3390 if (getTarget().getCXXABI().isMicrosoft() && 3391 GD.getDtorType() == Dtor_Complete && 3392 DD->getParent()->getNumVBases() == 0) 3393 GD = GlobalDecl(DD, Dtor_Base); 3394 } 3395 3396 StringRef MangledName = getMangledName(GD); 3397 return GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable, DontDefer, 3398 /*IsThunk=*/false, llvm::AttributeList(), 3399 IsForDefinition); 3400 } 3401 3402 static const FunctionDecl * 3403 GetRuntimeFunctionDecl(ASTContext &C, StringRef Name) { 3404 TranslationUnitDecl *TUDecl = C.getTranslationUnitDecl(); 3405 DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl); 3406 3407 IdentifierInfo &CII = C.Idents.get(Name); 3408 for (const auto &Result : DC->lookup(&CII)) 3409 if (const auto FD = dyn_cast<FunctionDecl>(Result)) 3410 return FD; 3411 3412 if (!C.getLangOpts().CPlusPlus) 3413 return nullptr; 3414 3415 // Demangle the premangled name from getTerminateFn() 3416 IdentifierInfo &CXXII = 3417 (Name == "_ZSt9terminatev" || Name == "?terminate@@YAXXZ") 3418 ? C.Idents.get("terminate") 3419 : C.Idents.get(Name); 3420 3421 for (const auto &N : {"__cxxabiv1", "std"}) { 3422 IdentifierInfo &NS = C.Idents.get(N); 3423 for (const auto &Result : DC->lookup(&NS)) { 3424 NamespaceDecl *ND = dyn_cast<NamespaceDecl>(Result); 3425 if (auto LSD = dyn_cast<LinkageSpecDecl>(Result)) 3426 for (const auto &Result : LSD->lookup(&NS)) 3427 if ((ND = dyn_cast<NamespaceDecl>(Result))) 3428 break; 3429 3430 if (ND) 3431 for (const auto &Result : ND->lookup(&CXXII)) 3432 if (const auto *FD = dyn_cast<FunctionDecl>(Result)) 3433 return FD; 3434 } 3435 } 3436 3437 return nullptr; 3438 } 3439 3440 /// CreateRuntimeFunction - Create a new runtime function with the specified 3441 /// type and name. 3442 llvm::FunctionCallee 3443 CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy, StringRef Name, 3444 llvm::AttributeList ExtraAttrs, bool Local, 3445 bool AssumeConvergent) { 3446 if (AssumeConvergent) { 3447 ExtraAttrs = 3448 ExtraAttrs.addAttribute(VMContext, llvm::AttributeList::FunctionIndex, 3449 llvm::Attribute::Convergent); 3450 } 3451 3452 llvm::Constant *C = 3453 GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false, 3454 /*DontDefer=*/false, /*IsThunk=*/false, 3455 ExtraAttrs); 3456 3457 if (auto *F = dyn_cast<llvm::Function>(C)) { 3458 if (F->empty()) { 3459 F->setCallingConv(getRuntimeCC()); 3460 3461 // In Windows Itanium environments, try to mark runtime functions 3462 // dllimport. For Mingw and MSVC, don't. We don't really know if the user 3463 // will link their standard library statically or dynamically. Marking 3464 // functions imported when they are not imported can cause linker errors 3465 // and warnings. 3466 if (!Local && getTriple().isWindowsItaniumEnvironment() && 3467 !getCodeGenOpts().LTOVisibilityPublicStd) { 3468 const FunctionDecl *FD = GetRuntimeFunctionDecl(Context, Name); 3469 if (!FD || FD->hasAttr<DLLImportAttr>()) { 3470 F->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass); 3471 F->setLinkage(llvm::GlobalValue::ExternalLinkage); 3472 } 3473 } 3474 setDSOLocal(F); 3475 } 3476 } 3477 3478 return {FTy, C}; 3479 } 3480 3481 /// isTypeConstant - Determine whether an object of this type can be emitted 3482 /// as a constant. 3483 /// 3484 /// If ExcludeCtor is true, the duration when the object's constructor runs 3485 /// will not be considered. The caller will need to verify that the object is 3486 /// not written to during its construction. 3487 bool CodeGenModule::isTypeConstant(QualType Ty, bool ExcludeCtor) { 3488 if (!Ty.isConstant(Context) && !Ty->isReferenceType()) 3489 return false; 3490 3491 if (Context.getLangOpts().CPlusPlus) { 3492 if (const CXXRecordDecl *Record 3493 = Context.getBaseElementType(Ty)->getAsCXXRecordDecl()) 3494 return ExcludeCtor && !Record->hasMutableFields() && 3495 Record->hasTrivialDestructor(); 3496 } 3497 3498 return true; 3499 } 3500 3501 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module, 3502 /// create and return an llvm GlobalVariable with the specified type. If there 3503 /// is something in the module with the specified name, return it potentially 3504 /// bitcasted to the right type. 3505 /// 3506 /// If D is non-null, it specifies a decl that correspond to this. This is used 3507 /// to set the attributes on the global when it is first created. 3508 /// 3509 /// If IsForDefinition is true, it is guaranteed that an actual global with 3510 /// type Ty will be returned, not conversion of a variable with the same 3511 /// mangled name but some other type. 3512 llvm::Constant * 3513 CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName, 3514 llvm::PointerType *Ty, 3515 const VarDecl *D, 3516 ForDefinition_t IsForDefinition) { 3517 // Lookup the entry, lazily creating it if necessary. 3518 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 3519 if (Entry) { 3520 if (WeakRefReferences.erase(Entry)) { 3521 if (D && !D->hasAttr<WeakAttr>()) 3522 Entry->setLinkage(llvm::Function::ExternalLinkage); 3523 } 3524 3525 // Handle dropped DLL attributes. 3526 if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>()) 3527 Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 3528 3529 if (LangOpts.OpenMP && !LangOpts.OpenMPSimd && D) 3530 getOpenMPRuntime().registerTargetGlobalVariable(D, Entry); 3531 3532 if (Entry->getType() == Ty) 3533 return Entry; 3534 3535 // If there are two attempts to define the same mangled name, issue an 3536 // error. 3537 if (IsForDefinition && !Entry->isDeclaration()) { 3538 GlobalDecl OtherGD; 3539 const VarDecl *OtherD; 3540 3541 // Check that D is not yet in DiagnosedConflictingDefinitions is required 3542 // to make sure that we issue an error only once. 3543 if (D && lookupRepresentativeDecl(MangledName, OtherGD) && 3544 (D->getCanonicalDecl() != OtherGD.getCanonicalDecl().getDecl()) && 3545 (OtherD = dyn_cast<VarDecl>(OtherGD.getDecl())) && 3546 OtherD->hasInit() && 3547 DiagnosedConflictingDefinitions.insert(D).second) { 3548 getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name) 3549 << MangledName; 3550 getDiags().Report(OtherGD.getDecl()->getLocation(), 3551 diag::note_previous_definition); 3552 } 3553 } 3554 3555 // Make sure the result is of the correct type. 3556 if (Entry->getType()->getAddressSpace() != Ty->getAddressSpace()) 3557 return llvm::ConstantExpr::getAddrSpaceCast(Entry, Ty); 3558 3559 // (If global is requested for a definition, we always need to create a new 3560 // global, not just return a bitcast.) 3561 if (!IsForDefinition) 3562 return llvm::ConstantExpr::getBitCast(Entry, Ty); 3563 } 3564 3565 auto AddrSpace = GetGlobalVarAddressSpace(D); 3566 auto TargetAddrSpace = getContext().getTargetAddressSpace(AddrSpace); 3567 3568 auto *GV = new llvm::GlobalVariable( 3569 getModule(), Ty->getElementType(), false, 3570 llvm::GlobalValue::ExternalLinkage, nullptr, MangledName, nullptr, 3571 llvm::GlobalVariable::NotThreadLocal, TargetAddrSpace); 3572 3573 // If we already created a global with the same mangled name (but different 3574 // type) before, take its name and remove it from its parent. 3575 if (Entry) { 3576 GV->takeName(Entry); 3577 3578 if (!Entry->use_empty()) { 3579 llvm::Constant *NewPtrForOldDecl = 3580 llvm::ConstantExpr::getBitCast(GV, Entry->getType()); 3581 Entry->replaceAllUsesWith(NewPtrForOldDecl); 3582 } 3583 3584 Entry->eraseFromParent(); 3585 } 3586 3587 // This is the first use or definition of a mangled name. If there is a 3588 // deferred decl with this name, remember that we need to emit it at the end 3589 // of the file. 3590 auto DDI = DeferredDecls.find(MangledName); 3591 if (DDI != DeferredDecls.end()) { 3592 // Move the potentially referenced deferred decl to the DeferredDeclsToEmit 3593 // list, and remove it from DeferredDecls (since we don't need it anymore). 3594 addDeferredDeclToEmit(DDI->second); 3595 DeferredDecls.erase(DDI); 3596 } 3597 3598 // Handle things which are present even on external declarations. 3599 if (D) { 3600 if (LangOpts.OpenMP && !LangOpts.OpenMPSimd) 3601 getOpenMPRuntime().registerTargetGlobalVariable(D, GV); 3602 3603 // FIXME: This code is overly simple and should be merged with other global 3604 // handling. 3605 GV->setConstant(isTypeConstant(D->getType(), false)); 3606 3607 GV->setAlignment(getContext().getDeclAlign(D).getAsAlign()); 3608 3609 setLinkageForGV(GV, D); 3610 3611 if (D->getTLSKind()) { 3612 if (D->getTLSKind() == VarDecl::TLS_Dynamic) 3613 CXXThreadLocals.push_back(D); 3614 setTLSMode(GV, *D); 3615 } 3616 3617 setGVProperties(GV, D); 3618 3619 // If required by the ABI, treat declarations of static data members with 3620 // inline initializers as definitions. 3621 if (getContext().isMSStaticDataMemberInlineDefinition(D)) { 3622 EmitGlobalVarDefinition(D); 3623 } 3624 3625 // Emit section information for extern variables. 3626 if (D->hasExternalStorage()) { 3627 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) 3628 GV->setSection(SA->getName()); 3629 } 3630 3631 // Handle XCore specific ABI requirements. 3632 if (getTriple().getArch() == llvm::Triple::xcore && 3633 D->getLanguageLinkage() == CLanguageLinkage && 3634 D->getType().isConstant(Context) && 3635 isExternallyVisible(D->getLinkageAndVisibility().getLinkage())) 3636 GV->setSection(".cp.rodata"); 3637 3638 // Check if we a have a const declaration with an initializer, we may be 3639 // able to emit it as available_externally to expose it's value to the 3640 // optimizer. 3641 if (Context.getLangOpts().CPlusPlus && GV->hasExternalLinkage() && 3642 D->getType().isConstQualified() && !GV->hasInitializer() && 3643 !D->hasDefinition() && D->hasInit() && !D->hasAttr<DLLImportAttr>()) { 3644 const auto *Record = 3645 Context.getBaseElementType(D->getType())->getAsCXXRecordDecl(); 3646 bool HasMutableFields = Record && Record->hasMutableFields(); 3647 if (!HasMutableFields) { 3648 const VarDecl *InitDecl; 3649 const Expr *InitExpr = D->getAnyInitializer(InitDecl); 3650 if (InitExpr) { 3651 ConstantEmitter emitter(*this); 3652 llvm::Constant *Init = emitter.tryEmitForInitializer(*InitDecl); 3653 if (Init) { 3654 auto *InitType = Init->getType(); 3655 if (GV->getValueType() != InitType) { 3656 // The type of the initializer does not match the definition. 3657 // This happens when an initializer has a different type from 3658 // the type of the global (because of padding at the end of a 3659 // structure for instance). 3660 GV->setName(StringRef()); 3661 // Make a new global with the correct type, this is now guaranteed 3662 // to work. 3663 auto *NewGV = cast<llvm::GlobalVariable>( 3664 GetAddrOfGlobalVar(D, InitType, IsForDefinition) 3665 ->stripPointerCasts()); 3666 3667 // Erase the old global, since it is no longer used. 3668 GV->eraseFromParent(); 3669 GV = NewGV; 3670 } else { 3671 GV->setInitializer(Init); 3672 GV->setConstant(true); 3673 GV->setLinkage(llvm::GlobalValue::AvailableExternallyLinkage); 3674 } 3675 emitter.finalize(GV); 3676 } 3677 } 3678 } 3679 } 3680 } 3681 3682 if (GV->isDeclaration()) 3683 getTargetCodeGenInfo().setTargetAttributes(D, GV, *this); 3684 3685 LangAS ExpectedAS = 3686 D ? D->getType().getAddressSpace() 3687 : (LangOpts.OpenCL ? LangAS::opencl_global : LangAS::Default); 3688 assert(getContext().getTargetAddressSpace(ExpectedAS) == 3689 Ty->getPointerAddressSpace()); 3690 if (AddrSpace != ExpectedAS) 3691 return getTargetCodeGenInfo().performAddrSpaceCast(*this, GV, AddrSpace, 3692 ExpectedAS, Ty); 3693 3694 return GV; 3695 } 3696 3697 llvm::Constant * 3698 CodeGenModule::GetAddrOfGlobal(GlobalDecl GD, ForDefinition_t IsForDefinition) { 3699 const Decl *D = GD.getDecl(); 3700 3701 if (isa<CXXConstructorDecl>(D) || isa<CXXDestructorDecl>(D)) 3702 return getAddrOfCXXStructor(GD, /*FnInfo=*/nullptr, /*FnType=*/nullptr, 3703 /*DontDefer=*/false, IsForDefinition); 3704 3705 if (isa<CXXMethodDecl>(D)) { 3706 auto FInfo = 3707 &getTypes().arrangeCXXMethodDeclaration(cast<CXXMethodDecl>(D)); 3708 auto Ty = getTypes().GetFunctionType(*FInfo); 3709 return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false, 3710 IsForDefinition); 3711 } 3712 3713 if (isa<FunctionDecl>(D)) { 3714 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 3715 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 3716 return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false, 3717 IsForDefinition); 3718 } 3719 3720 return GetAddrOfGlobalVar(cast<VarDecl>(D), /*Ty=*/nullptr, IsForDefinition); 3721 } 3722 3723 llvm::GlobalVariable *CodeGenModule::CreateOrReplaceCXXRuntimeVariable( 3724 StringRef Name, llvm::Type *Ty, llvm::GlobalValue::LinkageTypes Linkage, 3725 unsigned Alignment) { 3726 llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name); 3727 llvm::GlobalVariable *OldGV = nullptr; 3728 3729 if (GV) { 3730 // Check if the variable has the right type. 3731 if (GV->getValueType() == Ty) 3732 return GV; 3733 3734 // Because C++ name mangling, the only way we can end up with an already 3735 // existing global with the same name is if it has been declared extern "C". 3736 assert(GV->isDeclaration() && "Declaration has wrong type!"); 3737 OldGV = GV; 3738 } 3739 3740 // Create a new variable. 3741 GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true, 3742 Linkage, nullptr, Name); 3743 3744 if (OldGV) { 3745 // Replace occurrences of the old variable if needed. 3746 GV->takeName(OldGV); 3747 3748 if (!OldGV->use_empty()) { 3749 llvm::Constant *NewPtrForOldDecl = 3750 llvm::ConstantExpr::getBitCast(GV, OldGV->getType()); 3751 OldGV->replaceAllUsesWith(NewPtrForOldDecl); 3752 } 3753 3754 OldGV->eraseFromParent(); 3755 } 3756 3757 if (supportsCOMDAT() && GV->isWeakForLinker() && 3758 !GV->hasAvailableExternallyLinkage()) 3759 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 3760 3761 GV->setAlignment(llvm::MaybeAlign(Alignment)); 3762 3763 return GV; 3764 } 3765 3766 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the 3767 /// given global variable. If Ty is non-null and if the global doesn't exist, 3768 /// then it will be created with the specified type instead of whatever the 3769 /// normal requested type would be. If IsForDefinition is true, it is guaranteed 3770 /// that an actual global with type Ty will be returned, not conversion of a 3771 /// variable with the same mangled name but some other type. 3772 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D, 3773 llvm::Type *Ty, 3774 ForDefinition_t IsForDefinition) { 3775 assert(D->hasGlobalStorage() && "Not a global variable"); 3776 QualType ASTTy = D->getType(); 3777 if (!Ty) 3778 Ty = getTypes().ConvertTypeForMem(ASTTy); 3779 3780 llvm::PointerType *PTy = 3781 llvm::PointerType::get(Ty, getContext().getTargetAddressSpace(ASTTy)); 3782 3783 StringRef MangledName = getMangledName(D); 3784 return GetOrCreateLLVMGlobal(MangledName, PTy, D, IsForDefinition); 3785 } 3786 3787 /// CreateRuntimeVariable - Create a new runtime global variable with the 3788 /// specified type and name. 3789 llvm::Constant * 3790 CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty, 3791 StringRef Name) { 3792 auto PtrTy = 3793 getContext().getLangOpts().OpenCL 3794 ? llvm::PointerType::get( 3795 Ty, getContext().getTargetAddressSpace(LangAS::opencl_global)) 3796 : llvm::PointerType::getUnqual(Ty); 3797 auto *Ret = GetOrCreateLLVMGlobal(Name, PtrTy, nullptr); 3798 setDSOLocal(cast<llvm::GlobalValue>(Ret->stripPointerCasts())); 3799 return Ret; 3800 } 3801 3802 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) { 3803 assert(!D->getInit() && "Cannot emit definite definitions here!"); 3804 3805 StringRef MangledName = getMangledName(D); 3806 llvm::GlobalValue *GV = GetGlobalValue(MangledName); 3807 3808 // We already have a definition, not declaration, with the same mangled name. 3809 // Emitting of declaration is not required (and actually overwrites emitted 3810 // definition). 3811 if (GV && !GV->isDeclaration()) 3812 return; 3813 3814 // If we have not seen a reference to this variable yet, place it into the 3815 // deferred declarations table to be emitted if needed later. 3816 if (!MustBeEmitted(D) && !GV) { 3817 DeferredDecls[MangledName] = D; 3818 return; 3819 } 3820 3821 // The tentative definition is the only definition. 3822 EmitGlobalVarDefinition(D); 3823 } 3824 3825 void CodeGenModule::EmitExternalDeclaration(const VarDecl *D) { 3826 EmitExternalVarDeclaration(D); 3827 } 3828 3829 CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const { 3830 return Context.toCharUnitsFromBits( 3831 getDataLayout().getTypeStoreSizeInBits(Ty)); 3832 } 3833 3834 LangAS CodeGenModule::GetGlobalVarAddressSpace(const VarDecl *D) { 3835 LangAS AddrSpace = LangAS::Default; 3836 if (LangOpts.OpenCL) { 3837 AddrSpace = D ? D->getType().getAddressSpace() : LangAS::opencl_global; 3838 assert(AddrSpace == LangAS::opencl_global || 3839 AddrSpace == LangAS::opencl_global_device || 3840 AddrSpace == LangAS::opencl_global_host || 3841 AddrSpace == LangAS::opencl_constant || 3842 AddrSpace == LangAS::opencl_local || 3843 AddrSpace >= LangAS::FirstTargetAddressSpace); 3844 return AddrSpace; 3845 } 3846 3847 if (LangOpts.CUDA && LangOpts.CUDAIsDevice) { 3848 if (D && D->hasAttr<CUDAConstantAttr>()) 3849 return LangAS::cuda_constant; 3850 else if (D && D->hasAttr<CUDASharedAttr>()) 3851 return LangAS::cuda_shared; 3852 else if (D && D->hasAttr<CUDADeviceAttr>()) 3853 return LangAS::cuda_device; 3854 else if (D && D->getType().isConstQualified()) 3855 return LangAS::cuda_constant; 3856 else 3857 return LangAS::cuda_device; 3858 } 3859 3860 if (LangOpts.OpenMP) { 3861 LangAS AS; 3862 if (OpenMPRuntime->hasAllocateAttributeForGlobalVar(D, AS)) 3863 return AS; 3864 } 3865 return getTargetCodeGenInfo().getGlobalVarAddressSpace(*this, D); 3866 } 3867 3868 LangAS CodeGenModule::getStringLiteralAddressSpace() const { 3869 // OpenCL v1.2 s6.5.3: a string literal is in the constant address space. 3870 if (LangOpts.OpenCL) 3871 return LangAS::opencl_constant; 3872 if (auto AS = getTarget().getConstantAddressSpace()) 3873 return AS.getValue(); 3874 return LangAS::Default; 3875 } 3876 3877 // In address space agnostic languages, string literals are in default address 3878 // space in AST. However, certain targets (e.g. amdgcn) request them to be 3879 // emitted in constant address space in LLVM IR. To be consistent with other 3880 // parts of AST, string literal global variables in constant address space 3881 // need to be casted to default address space before being put into address 3882 // map and referenced by other part of CodeGen. 3883 // In OpenCL, string literals are in constant address space in AST, therefore 3884 // they should not be casted to default address space. 3885 static llvm::Constant * 3886 castStringLiteralToDefaultAddressSpace(CodeGenModule &CGM, 3887 llvm::GlobalVariable *GV) { 3888 llvm::Constant *Cast = GV; 3889 if (!CGM.getLangOpts().OpenCL) { 3890 if (auto AS = CGM.getTarget().getConstantAddressSpace()) { 3891 if (AS != LangAS::Default) 3892 Cast = CGM.getTargetCodeGenInfo().performAddrSpaceCast( 3893 CGM, GV, AS.getValue(), LangAS::Default, 3894 GV->getValueType()->getPointerTo( 3895 CGM.getContext().getTargetAddressSpace(LangAS::Default))); 3896 } 3897 } 3898 return Cast; 3899 } 3900 3901 template<typename SomeDecl> 3902 void CodeGenModule::MaybeHandleStaticInExternC(const SomeDecl *D, 3903 llvm::GlobalValue *GV) { 3904 if (!getLangOpts().CPlusPlus) 3905 return; 3906 3907 // Must have 'used' attribute, or else inline assembly can't rely on 3908 // the name existing. 3909 if (!D->template hasAttr<UsedAttr>()) 3910 return; 3911 3912 // Must have internal linkage and an ordinary name. 3913 if (!D->getIdentifier() || D->getFormalLinkage() != InternalLinkage) 3914 return; 3915 3916 // Must be in an extern "C" context. Entities declared directly within 3917 // a record are not extern "C" even if the record is in such a context. 3918 const SomeDecl *First = D->getFirstDecl(); 3919 if (First->getDeclContext()->isRecord() || !First->isInExternCContext()) 3920 return; 3921 3922 // OK, this is an internal linkage entity inside an extern "C" linkage 3923 // specification. Make a note of that so we can give it the "expected" 3924 // mangled name if nothing else is using that name. 3925 std::pair<StaticExternCMap::iterator, bool> R = 3926 StaticExternCValues.insert(std::make_pair(D->getIdentifier(), GV)); 3927 3928 // If we have multiple internal linkage entities with the same name 3929 // in extern "C" regions, none of them gets that name. 3930 if (!R.second) 3931 R.first->second = nullptr; 3932 } 3933 3934 static bool shouldBeInCOMDAT(CodeGenModule &CGM, const Decl &D) { 3935 if (!CGM.supportsCOMDAT()) 3936 return false; 3937 3938 // Do not set COMDAT attribute for CUDA/HIP stub functions to prevent 3939 // them being "merged" by the COMDAT Folding linker optimization. 3940 if (D.hasAttr<CUDAGlobalAttr>()) 3941 return false; 3942 3943 if (D.hasAttr<SelectAnyAttr>()) 3944 return true; 3945 3946 GVALinkage Linkage; 3947 if (auto *VD = dyn_cast<VarDecl>(&D)) 3948 Linkage = CGM.getContext().GetGVALinkageForVariable(VD); 3949 else 3950 Linkage = CGM.getContext().GetGVALinkageForFunction(cast<FunctionDecl>(&D)); 3951 3952 switch (Linkage) { 3953 case GVA_Internal: 3954 case GVA_AvailableExternally: 3955 case GVA_StrongExternal: 3956 return false; 3957 case GVA_DiscardableODR: 3958 case GVA_StrongODR: 3959 return true; 3960 } 3961 llvm_unreachable("No such linkage"); 3962 } 3963 3964 void CodeGenModule::maybeSetTrivialComdat(const Decl &D, 3965 llvm::GlobalObject &GO) { 3966 if (!shouldBeInCOMDAT(*this, D)) 3967 return; 3968 GO.setComdat(TheModule.getOrInsertComdat(GO.getName())); 3969 } 3970 3971 /// Pass IsTentative as true if you want to create a tentative definition. 3972 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D, 3973 bool IsTentative) { 3974 // OpenCL global variables of sampler type are translated to function calls, 3975 // therefore no need to be translated. 3976 QualType ASTTy = D->getType(); 3977 if (getLangOpts().OpenCL && ASTTy->isSamplerT()) 3978 return; 3979 3980 // If this is OpenMP device, check if it is legal to emit this global 3981 // normally. 3982 if (LangOpts.OpenMPIsDevice && OpenMPRuntime && 3983 OpenMPRuntime->emitTargetGlobalVariable(D)) 3984 return; 3985 3986 llvm::Constant *Init = nullptr; 3987 bool NeedsGlobalCtor = false; 3988 bool NeedsGlobalDtor = 3989 D->needsDestruction(getContext()) == QualType::DK_cxx_destructor; 3990 3991 const VarDecl *InitDecl; 3992 const Expr *InitExpr = D->getAnyInitializer(InitDecl); 3993 3994 Optional<ConstantEmitter> emitter; 3995 3996 // CUDA E.2.4.1 "__shared__ variables cannot have an initialization 3997 // as part of their declaration." Sema has already checked for 3998 // error cases, so we just need to set Init to UndefValue. 3999 bool IsCUDASharedVar = 4000 getLangOpts().CUDAIsDevice && D->hasAttr<CUDASharedAttr>(); 4001 // Shadows of initialized device-side global variables are also left 4002 // undefined. 4003 bool IsCUDAShadowVar = 4004 !getLangOpts().CUDAIsDevice && 4005 (D->hasAttr<CUDAConstantAttr>() || D->hasAttr<CUDADeviceAttr>() || 4006 D->hasAttr<CUDASharedAttr>()); 4007 bool IsCUDADeviceShadowVar = 4008 getLangOpts().CUDAIsDevice && 4009 (D->getType()->isCUDADeviceBuiltinSurfaceType() || 4010 D->getType()->isCUDADeviceBuiltinTextureType()); 4011 // HIP pinned shadow of initialized host-side global variables are also 4012 // left undefined. 4013 if (getLangOpts().CUDA && 4014 (IsCUDASharedVar || IsCUDAShadowVar || IsCUDADeviceShadowVar)) 4015 Init = llvm::UndefValue::get(getTypes().ConvertType(ASTTy)); 4016 else if (D->hasAttr<LoaderUninitializedAttr>()) 4017 Init = llvm::UndefValue::get(getTypes().ConvertType(ASTTy)); 4018 else if (!InitExpr) { 4019 // This is a tentative definition; tentative definitions are 4020 // implicitly initialized with { 0 }. 4021 // 4022 // Note that tentative definitions are only emitted at the end of 4023 // a translation unit, so they should never have incomplete 4024 // type. In addition, EmitTentativeDefinition makes sure that we 4025 // never attempt to emit a tentative definition if a real one 4026 // exists. A use may still exists, however, so we still may need 4027 // to do a RAUW. 4028 assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type"); 4029 Init = EmitNullConstant(D->getType()); 4030 } else { 4031 initializedGlobalDecl = GlobalDecl(D); 4032 emitter.emplace(*this); 4033 Init = emitter->tryEmitForInitializer(*InitDecl); 4034 4035 if (!Init) { 4036 QualType T = InitExpr->getType(); 4037 if (D->getType()->isReferenceType()) 4038 T = D->getType(); 4039 4040 if (getLangOpts().CPlusPlus) { 4041 Init = EmitNullConstant(T); 4042 NeedsGlobalCtor = true; 4043 } else { 4044 ErrorUnsupported(D, "static initializer"); 4045 Init = llvm::UndefValue::get(getTypes().ConvertType(T)); 4046 } 4047 } else { 4048 // We don't need an initializer, so remove the entry for the delayed 4049 // initializer position (just in case this entry was delayed) if we 4050 // also don't need to register a destructor. 4051 if (getLangOpts().CPlusPlus && !NeedsGlobalDtor) 4052 DelayedCXXInitPosition.erase(D); 4053 } 4054 } 4055 4056 llvm::Type* InitType = Init->getType(); 4057 llvm::Constant *Entry = 4058 GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative)); 4059 4060 // Strip off pointer casts if we got them. 4061 Entry = Entry->stripPointerCasts(); 4062 4063 // Entry is now either a Function or GlobalVariable. 4064 auto *GV = dyn_cast<llvm::GlobalVariable>(Entry); 4065 4066 // We have a definition after a declaration with the wrong type. 4067 // We must make a new GlobalVariable* and update everything that used OldGV 4068 // (a declaration or tentative definition) with the new GlobalVariable* 4069 // (which will be a definition). 4070 // 4071 // This happens if there is a prototype for a global (e.g. 4072 // "extern int x[];") and then a definition of a different type (e.g. 4073 // "int x[10];"). This also happens when an initializer has a different type 4074 // from the type of the global (this happens with unions). 4075 if (!GV || GV->getValueType() != InitType || 4076 GV->getType()->getAddressSpace() != 4077 getContext().getTargetAddressSpace(GetGlobalVarAddressSpace(D))) { 4078 4079 // Move the old entry aside so that we'll create a new one. 4080 Entry->setName(StringRef()); 4081 4082 // Make a new global with the correct type, this is now guaranteed to work. 4083 GV = cast<llvm::GlobalVariable>( 4084 GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative)) 4085 ->stripPointerCasts()); 4086 4087 // Replace all uses of the old global with the new global 4088 llvm::Constant *NewPtrForOldDecl = 4089 llvm::ConstantExpr::getBitCast(GV, Entry->getType()); 4090 Entry->replaceAllUsesWith(NewPtrForOldDecl); 4091 4092 // Erase the old global, since it is no longer used. 4093 cast<llvm::GlobalValue>(Entry)->eraseFromParent(); 4094 } 4095 4096 MaybeHandleStaticInExternC(D, GV); 4097 4098 if (D->hasAttr<AnnotateAttr>()) 4099 AddGlobalAnnotations(D, GV); 4100 4101 // Set the llvm linkage type as appropriate. 4102 llvm::GlobalValue::LinkageTypes Linkage = 4103 getLLVMLinkageVarDefinition(D, GV->isConstant()); 4104 4105 // CUDA B.2.1 "The __device__ qualifier declares a variable that resides on 4106 // the device. [...]" 4107 // CUDA B.2.2 "The __constant__ qualifier, optionally used together with 4108 // __device__, declares a variable that: [...] 4109 // Is accessible from all the threads within the grid and from the host 4110 // through the runtime library (cudaGetSymbolAddress() / cudaGetSymbolSize() 4111 // / cudaMemcpyToSymbol() / cudaMemcpyFromSymbol())." 4112 if (GV && LangOpts.CUDA) { 4113 if (LangOpts.CUDAIsDevice) { 4114 if (Linkage != llvm::GlobalValue::InternalLinkage && 4115 (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>())) 4116 GV->setExternallyInitialized(true); 4117 } else { 4118 // Host-side shadows of external declarations of device-side 4119 // global variables become internal definitions. These have to 4120 // be internal in order to prevent name conflicts with global 4121 // host variables with the same name in a different TUs. 4122 if (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>()) { 4123 Linkage = llvm::GlobalValue::InternalLinkage; 4124 // Shadow variables and their properties must be registered with CUDA 4125 // runtime. Skip Extern global variables, which will be registered in 4126 // the TU where they are defined. 4127 // 4128 // Don't register a C++17 inline variable. The local symbol can be 4129 // discarded and referencing a discarded local symbol from outside the 4130 // comdat (__cuda_register_globals) is disallowed by the ELF spec. 4131 // TODO: Reject __device__ constexpr and __device__ inline in Sema. 4132 if (!D->hasExternalStorage() && !D->isInline()) 4133 getCUDARuntime().registerDeviceVar(D, *GV, !D->hasDefinition(), 4134 D->hasAttr<CUDAConstantAttr>()); 4135 } else if (D->hasAttr<CUDASharedAttr>()) { 4136 // __shared__ variables are odd. Shadows do get created, but 4137 // they are not registered with the CUDA runtime, so they 4138 // can't really be used to access their device-side 4139 // counterparts. It's not clear yet whether it's nvcc's bug or 4140 // a feature, but we've got to do the same for compatibility. 4141 Linkage = llvm::GlobalValue::InternalLinkage; 4142 } else if (D->getType()->isCUDADeviceBuiltinSurfaceType() || 4143 D->getType()->isCUDADeviceBuiltinTextureType()) { 4144 // Builtin surfaces and textures and their template arguments are 4145 // also registered with CUDA runtime. 4146 Linkage = llvm::GlobalValue::InternalLinkage; 4147 const ClassTemplateSpecializationDecl *TD = 4148 cast<ClassTemplateSpecializationDecl>( 4149 D->getType()->getAs<RecordType>()->getDecl()); 4150 const TemplateArgumentList &Args = TD->getTemplateArgs(); 4151 if (TD->hasAttr<CUDADeviceBuiltinSurfaceTypeAttr>()) { 4152 assert(Args.size() == 2 && 4153 "Unexpected number of template arguments of CUDA device " 4154 "builtin surface type."); 4155 auto SurfType = Args[1].getAsIntegral(); 4156 if (!D->hasExternalStorage()) 4157 getCUDARuntime().registerDeviceSurf(D, *GV, !D->hasDefinition(), 4158 SurfType.getSExtValue()); 4159 } else { 4160 assert(Args.size() == 3 && 4161 "Unexpected number of template arguments of CUDA device " 4162 "builtin texture type."); 4163 auto TexType = Args[1].getAsIntegral(); 4164 auto Normalized = Args[2].getAsIntegral(); 4165 if (!D->hasExternalStorage()) 4166 getCUDARuntime().registerDeviceTex(D, *GV, !D->hasDefinition(), 4167 TexType.getSExtValue(), 4168 Normalized.getZExtValue()); 4169 } 4170 } 4171 } 4172 } 4173 4174 GV->setInitializer(Init); 4175 if (emitter) 4176 emitter->finalize(GV); 4177 4178 // If it is safe to mark the global 'constant', do so now. 4179 GV->setConstant(!NeedsGlobalCtor && !NeedsGlobalDtor && 4180 isTypeConstant(D->getType(), true)); 4181 4182 // If it is in a read-only section, mark it 'constant'. 4183 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) { 4184 const ASTContext::SectionInfo &SI = Context.SectionInfos[SA->getName()]; 4185 if ((SI.SectionFlags & ASTContext::PSF_Write) == 0) 4186 GV->setConstant(true); 4187 } 4188 4189 GV->setAlignment(getContext().getDeclAlign(D).getAsAlign()); 4190 4191 // On Darwin, unlike other Itanium C++ ABI platforms, the thread-wrapper 4192 // function is only defined alongside the variable, not also alongside 4193 // callers. Normally, all accesses to a thread_local go through the 4194 // thread-wrapper in order to ensure initialization has occurred, underlying 4195 // variable will never be used other than the thread-wrapper, so it can be 4196 // converted to internal linkage. 4197 // 4198 // However, if the variable has the 'constinit' attribute, it _can_ be 4199 // referenced directly, without calling the thread-wrapper, so the linkage 4200 // must not be changed. 4201 // 4202 // Additionally, if the variable isn't plain external linkage, e.g. if it's 4203 // weak or linkonce, the de-duplication semantics are important to preserve, 4204 // so we don't change the linkage. 4205 if (D->getTLSKind() == VarDecl::TLS_Dynamic && 4206 Linkage == llvm::GlobalValue::ExternalLinkage && 4207 Context.getTargetInfo().getTriple().isOSDarwin() && 4208 !D->hasAttr<ConstInitAttr>()) 4209 Linkage = llvm::GlobalValue::InternalLinkage; 4210 4211 GV->setLinkage(Linkage); 4212 if (D->hasAttr<DLLImportAttr>()) 4213 GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass); 4214 else if (D->hasAttr<DLLExportAttr>()) 4215 GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass); 4216 else 4217 GV->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass); 4218 4219 if (Linkage == llvm::GlobalVariable::CommonLinkage) { 4220 // common vars aren't constant even if declared const. 4221 GV->setConstant(false); 4222 // Tentative definition of global variables may be initialized with 4223 // non-zero null pointers. In this case they should have weak linkage 4224 // since common linkage must have zero initializer and must not have 4225 // explicit section therefore cannot have non-zero initial value. 4226 if (!GV->getInitializer()->isNullValue()) 4227 GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage); 4228 } 4229 4230 setNonAliasAttributes(D, GV); 4231 4232 if (D->getTLSKind() && !GV->isThreadLocal()) { 4233 if (D->getTLSKind() == VarDecl::TLS_Dynamic) 4234 CXXThreadLocals.push_back(D); 4235 setTLSMode(GV, *D); 4236 } 4237 4238 maybeSetTrivialComdat(*D, *GV); 4239 4240 // Emit the initializer function if necessary. 4241 if (NeedsGlobalCtor || NeedsGlobalDtor) 4242 EmitCXXGlobalVarDeclInitFunc(D, GV, NeedsGlobalCtor); 4243 4244 SanitizerMD->reportGlobalToASan(GV, *D, NeedsGlobalCtor); 4245 4246 // Emit global variable debug information. 4247 if (CGDebugInfo *DI = getModuleDebugInfo()) 4248 if (getCodeGenOpts().hasReducedDebugInfo()) 4249 DI->EmitGlobalVariable(GV, D); 4250 } 4251 4252 void CodeGenModule::EmitExternalVarDeclaration(const VarDecl *D) { 4253 if (CGDebugInfo *DI = getModuleDebugInfo()) 4254 if (getCodeGenOpts().hasReducedDebugInfo()) { 4255 QualType ASTTy = D->getType(); 4256 llvm::Type *Ty = getTypes().ConvertTypeForMem(D->getType()); 4257 llvm::PointerType *PTy = 4258 llvm::PointerType::get(Ty, getContext().getTargetAddressSpace(ASTTy)); 4259 llvm::Constant *GV = GetOrCreateLLVMGlobal(D->getName(), PTy, D); 4260 DI->EmitExternalVariable( 4261 cast<llvm::GlobalVariable>(GV->stripPointerCasts()), D); 4262 } 4263 } 4264 4265 static bool isVarDeclStrongDefinition(const ASTContext &Context, 4266 CodeGenModule &CGM, const VarDecl *D, 4267 bool NoCommon) { 4268 // Don't give variables common linkage if -fno-common was specified unless it 4269 // was overridden by a NoCommon attribute. 4270 if ((NoCommon || D->hasAttr<NoCommonAttr>()) && !D->hasAttr<CommonAttr>()) 4271 return true; 4272 4273 // C11 6.9.2/2: 4274 // A declaration of an identifier for an object that has file scope without 4275 // an initializer, and without a storage-class specifier or with the 4276 // storage-class specifier static, constitutes a tentative definition. 4277 if (D->getInit() || D->hasExternalStorage()) 4278 return true; 4279 4280 // A variable cannot be both common and exist in a section. 4281 if (D->hasAttr<SectionAttr>()) 4282 return true; 4283 4284 // A variable cannot be both common and exist in a section. 4285 // We don't try to determine which is the right section in the front-end. 4286 // If no specialized section name is applicable, it will resort to default. 4287 if (D->hasAttr<PragmaClangBSSSectionAttr>() || 4288 D->hasAttr<PragmaClangDataSectionAttr>() || 4289 D->hasAttr<PragmaClangRelroSectionAttr>() || 4290 D->hasAttr<PragmaClangRodataSectionAttr>()) 4291 return true; 4292 4293 // Thread local vars aren't considered common linkage. 4294 if (D->getTLSKind()) 4295 return true; 4296 4297 // Tentative definitions marked with WeakImportAttr are true definitions. 4298 if (D->hasAttr<WeakImportAttr>()) 4299 return true; 4300 4301 // A variable cannot be both common and exist in a comdat. 4302 if (shouldBeInCOMDAT(CGM, *D)) 4303 return true; 4304 4305 // Declarations with a required alignment do not have common linkage in MSVC 4306 // mode. 4307 if (Context.getTargetInfo().getCXXABI().isMicrosoft()) { 4308 if (D->hasAttr<AlignedAttr>()) 4309 return true; 4310 QualType VarType = D->getType(); 4311 if (Context.isAlignmentRequired(VarType)) 4312 return true; 4313 4314 if (const auto *RT = VarType->getAs<RecordType>()) { 4315 const RecordDecl *RD = RT->getDecl(); 4316 for (const FieldDecl *FD : RD->fields()) { 4317 if (FD->isBitField()) 4318 continue; 4319 if (FD->hasAttr<AlignedAttr>()) 4320 return true; 4321 if (Context.isAlignmentRequired(FD->getType())) 4322 return true; 4323 } 4324 } 4325 } 4326 4327 // Microsoft's link.exe doesn't support alignments greater than 32 bytes for 4328 // common symbols, so symbols with greater alignment requirements cannot be 4329 // common. 4330 // Other COFF linkers (ld.bfd and LLD) support arbitrary power-of-two 4331 // alignments for common symbols via the aligncomm directive, so this 4332 // restriction only applies to MSVC environments. 4333 if (Context.getTargetInfo().getTriple().isKnownWindowsMSVCEnvironment() && 4334 Context.getTypeAlignIfKnown(D->getType()) > 4335 Context.toBits(CharUnits::fromQuantity(32))) 4336 return true; 4337 4338 return false; 4339 } 4340 4341 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageForDeclarator( 4342 const DeclaratorDecl *D, GVALinkage Linkage, bool IsConstantVariable) { 4343 if (Linkage == GVA_Internal) 4344 return llvm::Function::InternalLinkage; 4345 4346 if (D->hasAttr<WeakAttr>()) { 4347 if (IsConstantVariable) 4348 return llvm::GlobalVariable::WeakODRLinkage; 4349 else 4350 return llvm::GlobalVariable::WeakAnyLinkage; 4351 } 4352 4353 if (const auto *FD = D->getAsFunction()) 4354 if (FD->isMultiVersion() && Linkage == GVA_AvailableExternally) 4355 return llvm::GlobalVariable::LinkOnceAnyLinkage; 4356 4357 // We are guaranteed to have a strong definition somewhere else, 4358 // so we can use available_externally linkage. 4359 if (Linkage == GVA_AvailableExternally) 4360 return llvm::GlobalValue::AvailableExternallyLinkage; 4361 4362 // Note that Apple's kernel linker doesn't support symbol 4363 // coalescing, so we need to avoid linkonce and weak linkages there. 4364 // Normally, this means we just map to internal, but for explicit 4365 // instantiations we'll map to external. 4366 4367 // In C++, the compiler has to emit a definition in every translation unit 4368 // that references the function. We should use linkonce_odr because 4369 // a) if all references in this translation unit are optimized away, we 4370 // don't need to codegen it. b) if the function persists, it needs to be 4371 // merged with other definitions. c) C++ has the ODR, so we know the 4372 // definition is dependable. 4373 if (Linkage == GVA_DiscardableODR) 4374 return !Context.getLangOpts().AppleKext ? llvm::Function::LinkOnceODRLinkage 4375 : llvm::Function::InternalLinkage; 4376 4377 // An explicit instantiation of a template has weak linkage, since 4378 // explicit instantiations can occur in multiple translation units 4379 // and must all be equivalent. However, we are not allowed to 4380 // throw away these explicit instantiations. 4381 // 4382 // We don't currently support CUDA device code spread out across multiple TUs, 4383 // so say that CUDA templates are either external (for kernels) or internal. 4384 // This lets llvm perform aggressive inter-procedural optimizations. 4385 if (Linkage == GVA_StrongODR) { 4386 if (Context.getLangOpts().AppleKext) 4387 return llvm::Function::ExternalLinkage; 4388 if (Context.getLangOpts().CUDA && Context.getLangOpts().CUDAIsDevice) 4389 return D->hasAttr<CUDAGlobalAttr>() ? llvm::Function::ExternalLinkage 4390 : llvm::Function::InternalLinkage; 4391 return llvm::Function::WeakODRLinkage; 4392 } 4393 4394 // C++ doesn't have tentative definitions and thus cannot have common 4395 // linkage. 4396 if (!getLangOpts().CPlusPlus && isa<VarDecl>(D) && 4397 !isVarDeclStrongDefinition(Context, *this, cast<VarDecl>(D), 4398 CodeGenOpts.NoCommon)) 4399 return llvm::GlobalVariable::CommonLinkage; 4400 4401 // selectany symbols are externally visible, so use weak instead of 4402 // linkonce. MSVC optimizes away references to const selectany globals, so 4403 // all definitions should be the same and ODR linkage should be used. 4404 // http://msdn.microsoft.com/en-us/library/5tkz6s71.aspx 4405 if (D->hasAttr<SelectAnyAttr>()) 4406 return llvm::GlobalVariable::WeakODRLinkage; 4407 4408 // Otherwise, we have strong external linkage. 4409 assert(Linkage == GVA_StrongExternal); 4410 return llvm::GlobalVariable::ExternalLinkage; 4411 } 4412 4413 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageVarDefinition( 4414 const VarDecl *VD, bool IsConstant) { 4415 GVALinkage Linkage = getContext().GetGVALinkageForVariable(VD); 4416 return getLLVMLinkageForDeclarator(VD, Linkage, IsConstant); 4417 } 4418 4419 /// Replace the uses of a function that was declared with a non-proto type. 4420 /// We want to silently drop extra arguments from call sites 4421 static void replaceUsesOfNonProtoConstant(llvm::Constant *old, 4422 llvm::Function *newFn) { 4423 // Fast path. 4424 if (old->use_empty()) return; 4425 4426 llvm::Type *newRetTy = newFn->getReturnType(); 4427 SmallVector<llvm::Value*, 4> newArgs; 4428 SmallVector<llvm::OperandBundleDef, 1> newBundles; 4429 4430 for (llvm::Value::use_iterator ui = old->use_begin(), ue = old->use_end(); 4431 ui != ue; ) { 4432 llvm::Value::use_iterator use = ui++; // Increment before the use is erased. 4433 llvm::User *user = use->getUser(); 4434 4435 // Recognize and replace uses of bitcasts. Most calls to 4436 // unprototyped functions will use bitcasts. 4437 if (auto *bitcast = dyn_cast<llvm::ConstantExpr>(user)) { 4438 if (bitcast->getOpcode() == llvm::Instruction::BitCast) 4439 replaceUsesOfNonProtoConstant(bitcast, newFn); 4440 continue; 4441 } 4442 4443 // Recognize calls to the function. 4444 llvm::CallBase *callSite = dyn_cast<llvm::CallBase>(user); 4445 if (!callSite) continue; 4446 if (!callSite->isCallee(&*use)) 4447 continue; 4448 4449 // If the return types don't match exactly, then we can't 4450 // transform this call unless it's dead. 4451 if (callSite->getType() != newRetTy && !callSite->use_empty()) 4452 continue; 4453 4454 // Get the call site's attribute list. 4455 SmallVector<llvm::AttributeSet, 8> newArgAttrs; 4456 llvm::AttributeList oldAttrs = callSite->getAttributes(); 4457 4458 // If the function was passed too few arguments, don't transform. 4459 unsigned newNumArgs = newFn->arg_size(); 4460 if (callSite->arg_size() < newNumArgs) 4461 continue; 4462 4463 // If extra arguments were passed, we silently drop them. 4464 // If any of the types mismatch, we don't transform. 4465 unsigned argNo = 0; 4466 bool dontTransform = false; 4467 for (llvm::Argument &A : newFn->args()) { 4468 if (callSite->getArgOperand(argNo)->getType() != A.getType()) { 4469 dontTransform = true; 4470 break; 4471 } 4472 4473 // Add any parameter attributes. 4474 newArgAttrs.push_back(oldAttrs.getParamAttributes(argNo)); 4475 argNo++; 4476 } 4477 if (dontTransform) 4478 continue; 4479 4480 // Okay, we can transform this. Create the new call instruction and copy 4481 // over the required information. 4482 newArgs.append(callSite->arg_begin(), callSite->arg_begin() + argNo); 4483 4484 // Copy over any operand bundles. 4485 callSite->getOperandBundlesAsDefs(newBundles); 4486 4487 llvm::CallBase *newCall; 4488 if (dyn_cast<llvm::CallInst>(callSite)) { 4489 newCall = 4490 llvm::CallInst::Create(newFn, newArgs, newBundles, "", callSite); 4491 } else { 4492 auto *oldInvoke = cast<llvm::InvokeInst>(callSite); 4493 newCall = llvm::InvokeInst::Create(newFn, oldInvoke->getNormalDest(), 4494 oldInvoke->getUnwindDest(), newArgs, 4495 newBundles, "", callSite); 4496 } 4497 newArgs.clear(); // for the next iteration 4498 4499 if (!newCall->getType()->isVoidTy()) 4500 newCall->takeName(callSite); 4501 newCall->setAttributes(llvm::AttributeList::get( 4502 newFn->getContext(), oldAttrs.getFnAttributes(), 4503 oldAttrs.getRetAttributes(), newArgAttrs)); 4504 newCall->setCallingConv(callSite->getCallingConv()); 4505 4506 // Finally, remove the old call, replacing any uses with the new one. 4507 if (!callSite->use_empty()) 4508 callSite->replaceAllUsesWith(newCall); 4509 4510 // Copy debug location attached to CI. 4511 if (callSite->getDebugLoc()) 4512 newCall->setDebugLoc(callSite->getDebugLoc()); 4513 4514 callSite->eraseFromParent(); 4515 } 4516 } 4517 4518 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we 4519 /// implement a function with no prototype, e.g. "int foo() {}". If there are 4520 /// existing call uses of the old function in the module, this adjusts them to 4521 /// call the new function directly. 4522 /// 4523 /// This is not just a cleanup: the always_inline pass requires direct calls to 4524 /// functions to be able to inline them. If there is a bitcast in the way, it 4525 /// won't inline them. Instcombine normally deletes these calls, but it isn't 4526 /// run at -O0. 4527 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old, 4528 llvm::Function *NewFn) { 4529 // If we're redefining a global as a function, don't transform it. 4530 if (!isa<llvm::Function>(Old)) return; 4531 4532 replaceUsesOfNonProtoConstant(Old, NewFn); 4533 } 4534 4535 void CodeGenModule::HandleCXXStaticMemberVarInstantiation(VarDecl *VD) { 4536 auto DK = VD->isThisDeclarationADefinition(); 4537 if (DK == VarDecl::Definition && VD->hasAttr<DLLImportAttr>()) 4538 return; 4539 4540 TemplateSpecializationKind TSK = VD->getTemplateSpecializationKind(); 4541 // If we have a definition, this might be a deferred decl. If the 4542 // instantiation is explicit, make sure we emit it at the end. 4543 if (VD->getDefinition() && TSK == TSK_ExplicitInstantiationDefinition) 4544 GetAddrOfGlobalVar(VD); 4545 4546 EmitTopLevelDecl(VD); 4547 } 4548 4549 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD, 4550 llvm::GlobalValue *GV) { 4551 const auto *D = cast<FunctionDecl>(GD.getDecl()); 4552 4553 // Compute the function info and LLVM type. 4554 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 4555 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 4556 4557 // Get or create the prototype for the function. 4558 if (!GV || (GV->getValueType() != Ty)) 4559 GV = cast<llvm::GlobalValue>(GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, 4560 /*DontDefer=*/true, 4561 ForDefinition)); 4562 4563 // Already emitted. 4564 if (!GV->isDeclaration()) 4565 return; 4566 4567 // We need to set linkage and visibility on the function before 4568 // generating code for it because various parts of IR generation 4569 // want to propagate this information down (e.g. to local static 4570 // declarations). 4571 auto *Fn = cast<llvm::Function>(GV); 4572 setFunctionLinkage(GD, Fn); 4573 4574 // FIXME: this is redundant with part of setFunctionDefinitionAttributes 4575 setGVProperties(Fn, GD); 4576 4577 MaybeHandleStaticInExternC(D, Fn); 4578 4579 4580 maybeSetTrivialComdat(*D, *Fn); 4581 4582 CodeGenFunction(*this).GenerateCode(GD, Fn, FI); 4583 4584 setNonAliasAttributes(GD, Fn); 4585 SetLLVMFunctionAttributesForDefinition(D, Fn); 4586 4587 if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>()) 4588 AddGlobalCtor(Fn, CA->getPriority()); 4589 if (const DestructorAttr *DA = D->getAttr<DestructorAttr>()) 4590 AddGlobalDtor(Fn, DA->getPriority()); 4591 if (D->hasAttr<AnnotateAttr>()) 4592 AddGlobalAnnotations(D, Fn); 4593 } 4594 4595 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) { 4596 const auto *D = cast<ValueDecl>(GD.getDecl()); 4597 const AliasAttr *AA = D->getAttr<AliasAttr>(); 4598 assert(AA && "Not an alias?"); 4599 4600 StringRef MangledName = getMangledName(GD); 4601 4602 if (AA->getAliasee() == MangledName) { 4603 Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0; 4604 return; 4605 } 4606 4607 // If there is a definition in the module, then it wins over the alias. 4608 // This is dubious, but allow it to be safe. Just ignore the alias. 4609 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 4610 if (Entry && !Entry->isDeclaration()) 4611 return; 4612 4613 Aliases.push_back(GD); 4614 4615 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType()); 4616 4617 // Create a reference to the named value. This ensures that it is emitted 4618 // if a deferred decl. 4619 llvm::Constant *Aliasee; 4620 llvm::GlobalValue::LinkageTypes LT; 4621 if (isa<llvm::FunctionType>(DeclTy)) { 4622 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GD, 4623 /*ForVTable=*/false); 4624 LT = getFunctionLinkage(GD); 4625 } else { 4626 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), 4627 llvm::PointerType::getUnqual(DeclTy), 4628 /*D=*/nullptr); 4629 LT = getLLVMLinkageVarDefinition(cast<VarDecl>(GD.getDecl()), 4630 D->getType().isConstQualified()); 4631 } 4632 4633 // Create the new alias itself, but don't set a name yet. 4634 unsigned AS = Aliasee->getType()->getPointerAddressSpace(); 4635 auto *GA = 4636 llvm::GlobalAlias::create(DeclTy, AS, LT, "", Aliasee, &getModule()); 4637 4638 if (Entry) { 4639 if (GA->getAliasee() == Entry) { 4640 Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0; 4641 return; 4642 } 4643 4644 assert(Entry->isDeclaration()); 4645 4646 // If there is a declaration in the module, then we had an extern followed 4647 // by the alias, as in: 4648 // extern int test6(); 4649 // ... 4650 // int test6() __attribute__((alias("test7"))); 4651 // 4652 // Remove it and replace uses of it with the alias. 4653 GA->takeName(Entry); 4654 4655 Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA, 4656 Entry->getType())); 4657 Entry->eraseFromParent(); 4658 } else { 4659 GA->setName(MangledName); 4660 } 4661 4662 // Set attributes which are particular to an alias; this is a 4663 // specialization of the attributes which may be set on a global 4664 // variable/function. 4665 if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakRefAttr>() || 4666 D->isWeakImported()) { 4667 GA->setLinkage(llvm::Function::WeakAnyLinkage); 4668 } 4669 4670 if (const auto *VD = dyn_cast<VarDecl>(D)) 4671 if (VD->getTLSKind()) 4672 setTLSMode(GA, *VD); 4673 4674 SetCommonAttributes(GD, GA); 4675 } 4676 4677 void CodeGenModule::emitIFuncDefinition(GlobalDecl GD) { 4678 const auto *D = cast<ValueDecl>(GD.getDecl()); 4679 const IFuncAttr *IFA = D->getAttr<IFuncAttr>(); 4680 assert(IFA && "Not an ifunc?"); 4681 4682 StringRef MangledName = getMangledName(GD); 4683 4684 if (IFA->getResolver() == MangledName) { 4685 Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1; 4686 return; 4687 } 4688 4689 // Report an error if some definition overrides ifunc. 4690 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 4691 if (Entry && !Entry->isDeclaration()) { 4692 GlobalDecl OtherGD; 4693 if (lookupRepresentativeDecl(MangledName, OtherGD) && 4694 DiagnosedConflictingDefinitions.insert(GD).second) { 4695 Diags.Report(D->getLocation(), diag::err_duplicate_mangled_name) 4696 << MangledName; 4697 Diags.Report(OtherGD.getDecl()->getLocation(), 4698 diag::note_previous_definition); 4699 } 4700 return; 4701 } 4702 4703 Aliases.push_back(GD); 4704 4705 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType()); 4706 llvm::Constant *Resolver = 4707 GetOrCreateLLVMFunction(IFA->getResolver(), DeclTy, GD, 4708 /*ForVTable=*/false); 4709 llvm::GlobalIFunc *GIF = 4710 llvm::GlobalIFunc::create(DeclTy, 0, llvm::Function::ExternalLinkage, 4711 "", Resolver, &getModule()); 4712 if (Entry) { 4713 if (GIF->getResolver() == Entry) { 4714 Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1; 4715 return; 4716 } 4717 assert(Entry->isDeclaration()); 4718 4719 // If there is a declaration in the module, then we had an extern followed 4720 // by the ifunc, as in: 4721 // extern int test(); 4722 // ... 4723 // int test() __attribute__((ifunc("resolver"))); 4724 // 4725 // Remove it and replace uses of it with the ifunc. 4726 GIF->takeName(Entry); 4727 4728 Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GIF, 4729 Entry->getType())); 4730 Entry->eraseFromParent(); 4731 } else 4732 GIF->setName(MangledName); 4733 4734 SetCommonAttributes(GD, GIF); 4735 } 4736 4737 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID, 4738 ArrayRef<llvm::Type*> Tys) { 4739 return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID, 4740 Tys); 4741 } 4742 4743 static llvm::StringMapEntry<llvm::GlobalVariable *> & 4744 GetConstantCFStringEntry(llvm::StringMap<llvm::GlobalVariable *> &Map, 4745 const StringLiteral *Literal, bool TargetIsLSB, 4746 bool &IsUTF16, unsigned &StringLength) { 4747 StringRef String = Literal->getString(); 4748 unsigned NumBytes = String.size(); 4749 4750 // Check for simple case. 4751 if (!Literal->containsNonAsciiOrNull()) { 4752 StringLength = NumBytes; 4753 return *Map.insert(std::make_pair(String, nullptr)).first; 4754 } 4755 4756 // Otherwise, convert the UTF8 literals into a string of shorts. 4757 IsUTF16 = true; 4758 4759 SmallVector<llvm::UTF16, 128> ToBuf(NumBytes + 1); // +1 for ending nulls. 4760 const llvm::UTF8 *FromPtr = (const llvm::UTF8 *)String.data(); 4761 llvm::UTF16 *ToPtr = &ToBuf[0]; 4762 4763 (void)llvm::ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, &ToPtr, 4764 ToPtr + NumBytes, llvm::strictConversion); 4765 4766 // ConvertUTF8toUTF16 returns the length in ToPtr. 4767 StringLength = ToPtr - &ToBuf[0]; 4768 4769 // Add an explicit null. 4770 *ToPtr = 0; 4771 return *Map.insert(std::make_pair( 4772 StringRef(reinterpret_cast<const char *>(ToBuf.data()), 4773 (StringLength + 1) * 2), 4774 nullptr)).first; 4775 } 4776 4777 ConstantAddress 4778 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) { 4779 unsigned StringLength = 0; 4780 bool isUTF16 = false; 4781 llvm::StringMapEntry<llvm::GlobalVariable *> &Entry = 4782 GetConstantCFStringEntry(CFConstantStringMap, Literal, 4783 getDataLayout().isLittleEndian(), isUTF16, 4784 StringLength); 4785 4786 if (auto *C = Entry.second) 4787 return ConstantAddress(C, CharUnits::fromQuantity(C->getAlignment())); 4788 4789 llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty); 4790 llvm::Constant *Zeros[] = { Zero, Zero }; 4791 4792 const ASTContext &Context = getContext(); 4793 const llvm::Triple &Triple = getTriple(); 4794 4795 const auto CFRuntime = getLangOpts().CFRuntime; 4796 const bool IsSwiftABI = 4797 static_cast<unsigned>(CFRuntime) >= 4798 static_cast<unsigned>(LangOptions::CoreFoundationABI::Swift); 4799 const bool IsSwift4_1 = CFRuntime == LangOptions::CoreFoundationABI::Swift4_1; 4800 4801 // If we don't already have it, get __CFConstantStringClassReference. 4802 if (!CFConstantStringClassRef) { 4803 const char *CFConstantStringClassName = "__CFConstantStringClassReference"; 4804 llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy); 4805 Ty = llvm::ArrayType::get(Ty, 0); 4806 4807 switch (CFRuntime) { 4808 default: break; 4809 case LangOptions::CoreFoundationABI::Swift: LLVM_FALLTHROUGH; 4810 case LangOptions::CoreFoundationABI::Swift5_0: 4811 CFConstantStringClassName = 4812 Triple.isOSDarwin() ? "$s15SwiftFoundation19_NSCFConstantStringCN" 4813 : "$s10Foundation19_NSCFConstantStringCN"; 4814 Ty = IntPtrTy; 4815 break; 4816 case LangOptions::CoreFoundationABI::Swift4_2: 4817 CFConstantStringClassName = 4818 Triple.isOSDarwin() ? "$S15SwiftFoundation19_NSCFConstantStringCN" 4819 : "$S10Foundation19_NSCFConstantStringCN"; 4820 Ty = IntPtrTy; 4821 break; 4822 case LangOptions::CoreFoundationABI::Swift4_1: 4823 CFConstantStringClassName = 4824 Triple.isOSDarwin() ? "__T015SwiftFoundation19_NSCFConstantStringCN" 4825 : "__T010Foundation19_NSCFConstantStringCN"; 4826 Ty = IntPtrTy; 4827 break; 4828 } 4829 4830 llvm::Constant *C = CreateRuntimeVariable(Ty, CFConstantStringClassName); 4831 4832 if (Triple.isOSBinFormatELF() || Triple.isOSBinFormatCOFF()) { 4833 llvm::GlobalValue *GV = nullptr; 4834 4835 if ((GV = dyn_cast<llvm::GlobalValue>(C))) { 4836 IdentifierInfo &II = Context.Idents.get(GV->getName()); 4837 TranslationUnitDecl *TUDecl = Context.getTranslationUnitDecl(); 4838 DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl); 4839 4840 const VarDecl *VD = nullptr; 4841 for (const auto &Result : DC->lookup(&II)) 4842 if ((VD = dyn_cast<VarDecl>(Result))) 4843 break; 4844 4845 if (Triple.isOSBinFormatELF()) { 4846 if (!VD) 4847 GV->setLinkage(llvm::GlobalValue::ExternalLinkage); 4848 } else { 4849 GV->setLinkage(llvm::GlobalValue::ExternalLinkage); 4850 if (!VD || !VD->hasAttr<DLLExportAttr>()) 4851 GV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass); 4852 else 4853 GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass); 4854 } 4855 4856 setDSOLocal(GV); 4857 } 4858 } 4859 4860 // Decay array -> ptr 4861 CFConstantStringClassRef = 4862 IsSwiftABI ? llvm::ConstantExpr::getPtrToInt(C, Ty) 4863 : llvm::ConstantExpr::getGetElementPtr(Ty, C, Zeros); 4864 } 4865 4866 QualType CFTy = Context.getCFConstantStringType(); 4867 4868 auto *STy = cast<llvm::StructType>(getTypes().ConvertType(CFTy)); 4869 4870 ConstantInitBuilder Builder(*this); 4871 auto Fields = Builder.beginStruct(STy); 4872 4873 // Class pointer. 4874 Fields.add(cast<llvm::ConstantExpr>(CFConstantStringClassRef)); 4875 4876 // Flags. 4877 if (IsSwiftABI) { 4878 Fields.addInt(IntPtrTy, IsSwift4_1 ? 0x05 : 0x01); 4879 Fields.addInt(Int64Ty, isUTF16 ? 0x07d0 : 0x07c8); 4880 } else { 4881 Fields.addInt(IntTy, isUTF16 ? 0x07d0 : 0x07C8); 4882 } 4883 4884 // String pointer. 4885 llvm::Constant *C = nullptr; 4886 if (isUTF16) { 4887 auto Arr = llvm::makeArrayRef( 4888 reinterpret_cast<uint16_t *>(const_cast<char *>(Entry.first().data())), 4889 Entry.first().size() / 2); 4890 C = llvm::ConstantDataArray::get(VMContext, Arr); 4891 } else { 4892 C = llvm::ConstantDataArray::getString(VMContext, Entry.first()); 4893 } 4894 4895 // Note: -fwritable-strings doesn't make the backing store strings of 4896 // CFStrings writable. (See <rdar://problem/10657500>) 4897 auto *GV = 4898 new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true, 4899 llvm::GlobalValue::PrivateLinkage, C, ".str"); 4900 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 4901 // Don't enforce the target's minimum global alignment, since the only use 4902 // of the string is via this class initializer. 4903 CharUnits Align = isUTF16 ? Context.getTypeAlignInChars(Context.ShortTy) 4904 : Context.getTypeAlignInChars(Context.CharTy); 4905 GV->setAlignment(Align.getAsAlign()); 4906 4907 // FIXME: We set the section explicitly to avoid a bug in ld64 224.1. 4908 // Without it LLVM can merge the string with a non unnamed_addr one during 4909 // LTO. Doing that changes the section it ends in, which surprises ld64. 4910 if (Triple.isOSBinFormatMachO()) 4911 GV->setSection(isUTF16 ? "__TEXT,__ustring" 4912 : "__TEXT,__cstring,cstring_literals"); 4913 // Make sure the literal ends up in .rodata to allow for safe ICF and for 4914 // the static linker to adjust permissions to read-only later on. 4915 else if (Triple.isOSBinFormatELF()) 4916 GV->setSection(".rodata"); 4917 4918 // String. 4919 llvm::Constant *Str = 4920 llvm::ConstantExpr::getGetElementPtr(GV->getValueType(), GV, Zeros); 4921 4922 if (isUTF16) 4923 // Cast the UTF16 string to the correct type. 4924 Str = llvm::ConstantExpr::getBitCast(Str, Int8PtrTy); 4925 Fields.add(Str); 4926 4927 // String length. 4928 llvm::IntegerType *LengthTy = 4929 llvm::IntegerType::get(getModule().getContext(), 4930 Context.getTargetInfo().getLongWidth()); 4931 if (IsSwiftABI) { 4932 if (CFRuntime == LangOptions::CoreFoundationABI::Swift4_1 || 4933 CFRuntime == LangOptions::CoreFoundationABI::Swift4_2) 4934 LengthTy = Int32Ty; 4935 else 4936 LengthTy = IntPtrTy; 4937 } 4938 Fields.addInt(LengthTy, StringLength); 4939 4940 // Swift ABI requires 8-byte alignment to ensure that the _Atomic(uint64_t) is 4941 // properly aligned on 32-bit platforms. 4942 CharUnits Alignment = 4943 IsSwiftABI ? Context.toCharUnitsFromBits(64) : getPointerAlign(); 4944 4945 // The struct. 4946 GV = Fields.finishAndCreateGlobal("_unnamed_cfstring_", Alignment, 4947 /*isConstant=*/false, 4948 llvm::GlobalVariable::PrivateLinkage); 4949 GV->addAttribute("objc_arc_inert"); 4950 switch (Triple.getObjectFormat()) { 4951 case llvm::Triple::UnknownObjectFormat: 4952 llvm_unreachable("unknown file format"); 4953 case llvm::Triple::GOFF: 4954 llvm_unreachable("GOFF is not yet implemented"); 4955 case llvm::Triple::XCOFF: 4956 llvm_unreachable("XCOFF is not yet implemented"); 4957 case llvm::Triple::COFF: 4958 case llvm::Triple::ELF: 4959 case llvm::Triple::Wasm: 4960 GV->setSection("cfstring"); 4961 break; 4962 case llvm::Triple::MachO: 4963 GV->setSection("__DATA,__cfstring"); 4964 break; 4965 } 4966 Entry.second = GV; 4967 4968 return ConstantAddress(GV, Alignment); 4969 } 4970 4971 bool CodeGenModule::getExpressionLocationsEnabled() const { 4972 return !CodeGenOpts.EmitCodeView || CodeGenOpts.DebugColumnInfo; 4973 } 4974 4975 QualType CodeGenModule::getObjCFastEnumerationStateType() { 4976 if (ObjCFastEnumerationStateType.isNull()) { 4977 RecordDecl *D = Context.buildImplicitRecord("__objcFastEnumerationState"); 4978 D->startDefinition(); 4979 4980 QualType FieldTypes[] = { 4981 Context.UnsignedLongTy, 4982 Context.getPointerType(Context.getObjCIdType()), 4983 Context.getPointerType(Context.UnsignedLongTy), 4984 Context.getConstantArrayType(Context.UnsignedLongTy, 4985 llvm::APInt(32, 5), nullptr, ArrayType::Normal, 0) 4986 }; 4987 4988 for (size_t i = 0; i < 4; ++i) { 4989 FieldDecl *Field = FieldDecl::Create(Context, 4990 D, 4991 SourceLocation(), 4992 SourceLocation(), nullptr, 4993 FieldTypes[i], /*TInfo=*/nullptr, 4994 /*BitWidth=*/nullptr, 4995 /*Mutable=*/false, 4996 ICIS_NoInit); 4997 Field->setAccess(AS_public); 4998 D->addDecl(Field); 4999 } 5000 5001 D->completeDefinition(); 5002 ObjCFastEnumerationStateType = Context.getTagDeclType(D); 5003 } 5004 5005 return ObjCFastEnumerationStateType; 5006 } 5007 5008 llvm::Constant * 5009 CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) { 5010 assert(!E->getType()->isPointerType() && "Strings are always arrays"); 5011 5012 // Don't emit it as the address of the string, emit the string data itself 5013 // as an inline array. 5014 if (E->getCharByteWidth() == 1) { 5015 SmallString<64> Str(E->getString()); 5016 5017 // Resize the string to the right size, which is indicated by its type. 5018 const ConstantArrayType *CAT = Context.getAsConstantArrayType(E->getType()); 5019 Str.resize(CAT->getSize().getZExtValue()); 5020 return llvm::ConstantDataArray::getString(VMContext, Str, false); 5021 } 5022 5023 auto *AType = cast<llvm::ArrayType>(getTypes().ConvertType(E->getType())); 5024 llvm::Type *ElemTy = AType->getElementType(); 5025 unsigned NumElements = AType->getNumElements(); 5026 5027 // Wide strings have either 2-byte or 4-byte elements. 5028 if (ElemTy->getPrimitiveSizeInBits() == 16) { 5029 SmallVector<uint16_t, 32> Elements; 5030 Elements.reserve(NumElements); 5031 5032 for(unsigned i = 0, e = E->getLength(); i != e; ++i) 5033 Elements.push_back(E->getCodeUnit(i)); 5034 Elements.resize(NumElements); 5035 return llvm::ConstantDataArray::get(VMContext, Elements); 5036 } 5037 5038 assert(ElemTy->getPrimitiveSizeInBits() == 32); 5039 SmallVector<uint32_t, 32> Elements; 5040 Elements.reserve(NumElements); 5041 5042 for(unsigned i = 0, e = E->getLength(); i != e; ++i) 5043 Elements.push_back(E->getCodeUnit(i)); 5044 Elements.resize(NumElements); 5045 return llvm::ConstantDataArray::get(VMContext, Elements); 5046 } 5047 5048 static llvm::GlobalVariable * 5049 GenerateStringLiteral(llvm::Constant *C, llvm::GlobalValue::LinkageTypes LT, 5050 CodeGenModule &CGM, StringRef GlobalName, 5051 CharUnits Alignment) { 5052 unsigned AddrSpace = CGM.getContext().getTargetAddressSpace( 5053 CGM.getStringLiteralAddressSpace()); 5054 5055 llvm::Module &M = CGM.getModule(); 5056 // Create a global variable for this string 5057 auto *GV = new llvm::GlobalVariable( 5058 M, C->getType(), !CGM.getLangOpts().WritableStrings, LT, C, GlobalName, 5059 nullptr, llvm::GlobalVariable::NotThreadLocal, AddrSpace); 5060 GV->setAlignment(Alignment.getAsAlign()); 5061 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 5062 if (GV->isWeakForLinker()) { 5063 assert(CGM.supportsCOMDAT() && "Only COFF uses weak string literals"); 5064 GV->setComdat(M.getOrInsertComdat(GV->getName())); 5065 } 5066 CGM.setDSOLocal(GV); 5067 5068 return GV; 5069 } 5070 5071 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a 5072 /// constant array for the given string literal. 5073 ConstantAddress 5074 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S, 5075 StringRef Name) { 5076 CharUnits Alignment = getContext().getAlignOfGlobalVarInChars(S->getType()); 5077 5078 llvm::Constant *C = GetConstantArrayFromStringLiteral(S); 5079 llvm::GlobalVariable **Entry = nullptr; 5080 if (!LangOpts.WritableStrings) { 5081 Entry = &ConstantStringMap[C]; 5082 if (auto GV = *Entry) { 5083 if (Alignment.getQuantity() > GV->getAlignment()) 5084 GV->setAlignment(Alignment.getAsAlign()); 5085 return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV), 5086 Alignment); 5087 } 5088 } 5089 5090 SmallString<256> MangledNameBuffer; 5091 StringRef GlobalVariableName; 5092 llvm::GlobalValue::LinkageTypes LT; 5093 5094 // Mangle the string literal if that's how the ABI merges duplicate strings. 5095 // Don't do it if they are writable, since we don't want writes in one TU to 5096 // affect strings in another. 5097 if (getCXXABI().getMangleContext().shouldMangleStringLiteral(S) && 5098 !LangOpts.WritableStrings) { 5099 llvm::raw_svector_ostream Out(MangledNameBuffer); 5100 getCXXABI().getMangleContext().mangleStringLiteral(S, Out); 5101 LT = llvm::GlobalValue::LinkOnceODRLinkage; 5102 GlobalVariableName = MangledNameBuffer; 5103 } else { 5104 LT = llvm::GlobalValue::PrivateLinkage; 5105 GlobalVariableName = Name; 5106 } 5107 5108 auto GV = GenerateStringLiteral(C, LT, *this, GlobalVariableName, Alignment); 5109 if (Entry) 5110 *Entry = GV; 5111 5112 SanitizerMD->reportGlobalToASan(GV, S->getStrTokenLoc(0), "<string literal>", 5113 QualType()); 5114 5115 return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV), 5116 Alignment); 5117 } 5118 5119 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant 5120 /// array for the given ObjCEncodeExpr node. 5121 ConstantAddress 5122 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) { 5123 std::string Str; 5124 getContext().getObjCEncodingForType(E->getEncodedType(), Str); 5125 5126 return GetAddrOfConstantCString(Str); 5127 } 5128 5129 /// GetAddrOfConstantCString - Returns a pointer to a character array containing 5130 /// the literal and a terminating '\0' character. 5131 /// The result has pointer to array type. 5132 ConstantAddress CodeGenModule::GetAddrOfConstantCString( 5133 const std::string &Str, const char *GlobalName) { 5134 StringRef StrWithNull(Str.c_str(), Str.size() + 1); 5135 CharUnits Alignment = 5136 getContext().getAlignOfGlobalVarInChars(getContext().CharTy); 5137 5138 llvm::Constant *C = 5139 llvm::ConstantDataArray::getString(getLLVMContext(), StrWithNull, false); 5140 5141 // Don't share any string literals if strings aren't constant. 5142 llvm::GlobalVariable **Entry = nullptr; 5143 if (!LangOpts.WritableStrings) { 5144 Entry = &ConstantStringMap[C]; 5145 if (auto GV = *Entry) { 5146 if (Alignment.getQuantity() > GV->getAlignment()) 5147 GV->setAlignment(Alignment.getAsAlign()); 5148 return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV), 5149 Alignment); 5150 } 5151 } 5152 5153 // Get the default prefix if a name wasn't specified. 5154 if (!GlobalName) 5155 GlobalName = ".str"; 5156 // Create a global variable for this. 5157 auto GV = GenerateStringLiteral(C, llvm::GlobalValue::PrivateLinkage, *this, 5158 GlobalName, Alignment); 5159 if (Entry) 5160 *Entry = GV; 5161 5162 return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV), 5163 Alignment); 5164 } 5165 5166 ConstantAddress CodeGenModule::GetAddrOfGlobalTemporary( 5167 const MaterializeTemporaryExpr *E, const Expr *Init) { 5168 assert((E->getStorageDuration() == SD_Static || 5169 E->getStorageDuration() == SD_Thread) && "not a global temporary"); 5170 const auto *VD = cast<VarDecl>(E->getExtendingDecl()); 5171 5172 // If we're not materializing a subobject of the temporary, keep the 5173 // cv-qualifiers from the type of the MaterializeTemporaryExpr. 5174 QualType MaterializedType = Init->getType(); 5175 if (Init == E->getSubExpr()) 5176 MaterializedType = E->getType(); 5177 5178 CharUnits Align = getContext().getTypeAlignInChars(MaterializedType); 5179 5180 if (llvm::Constant *Slot = MaterializedGlobalTemporaryMap[E]) 5181 return ConstantAddress(Slot, Align); 5182 5183 // FIXME: If an externally-visible declaration extends multiple temporaries, 5184 // we need to give each temporary the same name in every translation unit (and 5185 // we also need to make the temporaries externally-visible). 5186 SmallString<256> Name; 5187 llvm::raw_svector_ostream Out(Name); 5188 getCXXABI().getMangleContext().mangleReferenceTemporary( 5189 VD, E->getManglingNumber(), Out); 5190 5191 APValue *Value = nullptr; 5192 if (E->getStorageDuration() == SD_Static && VD && VD->evaluateValue()) { 5193 // If the initializer of the extending declaration is a constant 5194 // initializer, we should have a cached constant initializer for this 5195 // temporary. Note that this might have a different value from the value 5196 // computed by evaluating the initializer if the surrounding constant 5197 // expression modifies the temporary. 5198 Value = E->getOrCreateValue(false); 5199 } 5200 5201 // Try evaluating it now, it might have a constant initializer. 5202 Expr::EvalResult EvalResult; 5203 if (!Value && Init->EvaluateAsRValue(EvalResult, getContext()) && 5204 !EvalResult.hasSideEffects()) 5205 Value = &EvalResult.Val; 5206 5207 LangAS AddrSpace = 5208 VD ? GetGlobalVarAddressSpace(VD) : MaterializedType.getAddressSpace(); 5209 5210 Optional<ConstantEmitter> emitter; 5211 llvm::Constant *InitialValue = nullptr; 5212 bool Constant = false; 5213 llvm::Type *Type; 5214 if (Value) { 5215 // The temporary has a constant initializer, use it. 5216 emitter.emplace(*this); 5217 InitialValue = emitter->emitForInitializer(*Value, AddrSpace, 5218 MaterializedType); 5219 Constant = isTypeConstant(MaterializedType, /*ExcludeCtor*/Value); 5220 Type = InitialValue->getType(); 5221 } else { 5222 // No initializer, the initialization will be provided when we 5223 // initialize the declaration which performed lifetime extension. 5224 Type = getTypes().ConvertTypeForMem(MaterializedType); 5225 } 5226 5227 // Create a global variable for this lifetime-extended temporary. 5228 llvm::GlobalValue::LinkageTypes Linkage = 5229 getLLVMLinkageVarDefinition(VD, Constant); 5230 if (Linkage == llvm::GlobalVariable::ExternalLinkage) { 5231 const VarDecl *InitVD; 5232 if (VD->isStaticDataMember() && VD->getAnyInitializer(InitVD) && 5233 isa<CXXRecordDecl>(InitVD->getLexicalDeclContext())) { 5234 // Temporaries defined inside a class get linkonce_odr linkage because the 5235 // class can be defined in multiple translation units. 5236 Linkage = llvm::GlobalVariable::LinkOnceODRLinkage; 5237 } else { 5238 // There is no need for this temporary to have external linkage if the 5239 // VarDecl has external linkage. 5240 Linkage = llvm::GlobalVariable::InternalLinkage; 5241 } 5242 } 5243 auto TargetAS = getContext().getTargetAddressSpace(AddrSpace); 5244 auto *GV = new llvm::GlobalVariable( 5245 getModule(), Type, Constant, Linkage, InitialValue, Name.c_str(), 5246 /*InsertBefore=*/nullptr, llvm::GlobalVariable::NotThreadLocal, TargetAS); 5247 if (emitter) emitter->finalize(GV); 5248 setGVProperties(GV, VD); 5249 GV->setAlignment(Align.getAsAlign()); 5250 if (supportsCOMDAT() && GV->isWeakForLinker()) 5251 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 5252 if (VD->getTLSKind()) 5253 setTLSMode(GV, *VD); 5254 llvm::Constant *CV = GV; 5255 if (AddrSpace != LangAS::Default) 5256 CV = getTargetCodeGenInfo().performAddrSpaceCast( 5257 *this, GV, AddrSpace, LangAS::Default, 5258 Type->getPointerTo( 5259 getContext().getTargetAddressSpace(LangAS::Default))); 5260 MaterializedGlobalTemporaryMap[E] = CV; 5261 return ConstantAddress(CV, Align); 5262 } 5263 5264 /// EmitObjCPropertyImplementations - Emit information for synthesized 5265 /// properties for an implementation. 5266 void CodeGenModule::EmitObjCPropertyImplementations(const 5267 ObjCImplementationDecl *D) { 5268 for (const auto *PID : D->property_impls()) { 5269 // Dynamic is just for type-checking. 5270 if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) { 5271 ObjCPropertyDecl *PD = PID->getPropertyDecl(); 5272 5273 // Determine which methods need to be implemented, some may have 5274 // been overridden. Note that ::isPropertyAccessor is not the method 5275 // we want, that just indicates if the decl came from a 5276 // property. What we want to know is if the method is defined in 5277 // this implementation. 5278 auto *Getter = PID->getGetterMethodDecl(); 5279 if (!Getter || Getter->isSynthesizedAccessorStub()) 5280 CodeGenFunction(*this).GenerateObjCGetter( 5281 const_cast<ObjCImplementationDecl *>(D), PID); 5282 auto *Setter = PID->getSetterMethodDecl(); 5283 if (!PD->isReadOnly() && (!Setter || Setter->isSynthesizedAccessorStub())) 5284 CodeGenFunction(*this).GenerateObjCSetter( 5285 const_cast<ObjCImplementationDecl *>(D), PID); 5286 } 5287 } 5288 } 5289 5290 static bool needsDestructMethod(ObjCImplementationDecl *impl) { 5291 const ObjCInterfaceDecl *iface = impl->getClassInterface(); 5292 for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin(); 5293 ivar; ivar = ivar->getNextIvar()) 5294 if (ivar->getType().isDestructedType()) 5295 return true; 5296 5297 return false; 5298 } 5299 5300 static bool AllTrivialInitializers(CodeGenModule &CGM, 5301 ObjCImplementationDecl *D) { 5302 CodeGenFunction CGF(CGM); 5303 for (ObjCImplementationDecl::init_iterator B = D->init_begin(), 5304 E = D->init_end(); B != E; ++B) { 5305 CXXCtorInitializer *CtorInitExp = *B; 5306 Expr *Init = CtorInitExp->getInit(); 5307 if (!CGF.isTrivialInitializer(Init)) 5308 return false; 5309 } 5310 return true; 5311 } 5312 5313 /// EmitObjCIvarInitializations - Emit information for ivar initialization 5314 /// for an implementation. 5315 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) { 5316 // We might need a .cxx_destruct even if we don't have any ivar initializers. 5317 if (needsDestructMethod(D)) { 5318 IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct"); 5319 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 5320 ObjCMethodDecl *DTORMethod = ObjCMethodDecl::Create( 5321 getContext(), D->getLocation(), D->getLocation(), cxxSelector, 5322 getContext().VoidTy, nullptr, D, 5323 /*isInstance=*/true, /*isVariadic=*/false, 5324 /*isPropertyAccessor=*/true, /*isSynthesizedAccessorStub=*/false, 5325 /*isImplicitlyDeclared=*/true, 5326 /*isDefined=*/false, ObjCMethodDecl::Required); 5327 D->addInstanceMethod(DTORMethod); 5328 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false); 5329 D->setHasDestructors(true); 5330 } 5331 5332 // If the implementation doesn't have any ivar initializers, we don't need 5333 // a .cxx_construct. 5334 if (D->getNumIvarInitializers() == 0 || 5335 AllTrivialInitializers(*this, D)) 5336 return; 5337 5338 IdentifierInfo *II = &getContext().Idents.get(".cxx_construct"); 5339 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 5340 // The constructor returns 'self'. 5341 ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create( 5342 getContext(), D->getLocation(), D->getLocation(), cxxSelector, 5343 getContext().getObjCIdType(), nullptr, D, /*isInstance=*/true, 5344 /*isVariadic=*/false, 5345 /*isPropertyAccessor=*/true, /*isSynthesizedAccessorStub=*/false, 5346 /*isImplicitlyDeclared=*/true, 5347 /*isDefined=*/false, ObjCMethodDecl::Required); 5348 D->addInstanceMethod(CTORMethod); 5349 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true); 5350 D->setHasNonZeroConstructors(true); 5351 } 5352 5353 // EmitLinkageSpec - Emit all declarations in a linkage spec. 5354 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) { 5355 if (LSD->getLanguage() != LinkageSpecDecl::lang_c && 5356 LSD->getLanguage() != LinkageSpecDecl::lang_cxx) { 5357 ErrorUnsupported(LSD, "linkage spec"); 5358 return; 5359 } 5360 5361 EmitDeclContext(LSD); 5362 } 5363 5364 void CodeGenModule::EmitDeclContext(const DeclContext *DC) { 5365 for (auto *I : DC->decls()) { 5366 // Unlike other DeclContexts, the contents of an ObjCImplDecl at TU scope 5367 // are themselves considered "top-level", so EmitTopLevelDecl on an 5368 // ObjCImplDecl does not recursively visit them. We need to do that in 5369 // case they're nested inside another construct (LinkageSpecDecl / 5370 // ExportDecl) that does stop them from being considered "top-level". 5371 if (auto *OID = dyn_cast<ObjCImplDecl>(I)) { 5372 for (auto *M : OID->methods()) 5373 EmitTopLevelDecl(M); 5374 } 5375 5376 EmitTopLevelDecl(I); 5377 } 5378 } 5379 5380 /// EmitTopLevelDecl - Emit code for a single top level declaration. 5381 void CodeGenModule::EmitTopLevelDecl(Decl *D) { 5382 // Ignore dependent declarations. 5383 if (D->isTemplated()) 5384 return; 5385 5386 // Consteval function shouldn't be emitted. 5387 if (auto *FD = dyn_cast<FunctionDecl>(D)) 5388 if (FD->isConsteval()) 5389 return; 5390 5391 switch (D->getKind()) { 5392 case Decl::CXXConversion: 5393 case Decl::CXXMethod: 5394 case Decl::Function: 5395 EmitGlobal(cast<FunctionDecl>(D)); 5396 // Always provide some coverage mapping 5397 // even for the functions that aren't emitted. 5398 AddDeferredUnusedCoverageMapping(D); 5399 break; 5400 5401 case Decl::CXXDeductionGuide: 5402 // Function-like, but does not result in code emission. 5403 break; 5404 5405 case Decl::Var: 5406 case Decl::Decomposition: 5407 case Decl::VarTemplateSpecialization: 5408 EmitGlobal(cast<VarDecl>(D)); 5409 if (auto *DD = dyn_cast<DecompositionDecl>(D)) 5410 for (auto *B : DD->bindings()) 5411 if (auto *HD = B->getHoldingVar()) 5412 EmitGlobal(HD); 5413 break; 5414 5415 // Indirect fields from global anonymous structs and unions can be 5416 // ignored; only the actual variable requires IR gen support. 5417 case Decl::IndirectField: 5418 break; 5419 5420 // C++ Decls 5421 case Decl::Namespace: 5422 EmitDeclContext(cast<NamespaceDecl>(D)); 5423 break; 5424 case Decl::ClassTemplateSpecialization: { 5425 const auto *Spec = cast<ClassTemplateSpecializationDecl>(D); 5426 if (CGDebugInfo *DI = getModuleDebugInfo()) 5427 if (Spec->getSpecializationKind() == 5428 TSK_ExplicitInstantiationDefinition && 5429 Spec->hasDefinition()) 5430 DI->completeTemplateDefinition(*Spec); 5431 } LLVM_FALLTHROUGH; 5432 case Decl::CXXRecord: { 5433 CXXRecordDecl *CRD = cast<CXXRecordDecl>(D); 5434 if (CGDebugInfo *DI = getModuleDebugInfo()) { 5435 if (CRD->hasDefinition()) 5436 DI->EmitAndRetainType(getContext().getRecordType(cast<RecordDecl>(D))); 5437 if (auto *ES = D->getASTContext().getExternalSource()) 5438 if (ES->hasExternalDefinitions(D) == ExternalASTSource::EK_Never) 5439 DI->completeUnusedClass(*CRD); 5440 } 5441 // Emit any static data members, they may be definitions. 5442 for (auto *I : CRD->decls()) 5443 if (isa<VarDecl>(I) || isa<CXXRecordDecl>(I)) 5444 EmitTopLevelDecl(I); 5445 break; 5446 } 5447 // No code generation needed. 5448 case Decl::UsingShadow: 5449 case Decl::ClassTemplate: 5450 case Decl::VarTemplate: 5451 case Decl::Concept: 5452 case Decl::VarTemplatePartialSpecialization: 5453 case Decl::FunctionTemplate: 5454 case Decl::TypeAliasTemplate: 5455 case Decl::Block: 5456 case Decl::Empty: 5457 case Decl::Binding: 5458 break; 5459 case Decl::Using: // using X; [C++] 5460 if (CGDebugInfo *DI = getModuleDebugInfo()) 5461 DI->EmitUsingDecl(cast<UsingDecl>(*D)); 5462 break; 5463 case Decl::NamespaceAlias: 5464 if (CGDebugInfo *DI = getModuleDebugInfo()) 5465 DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(*D)); 5466 break; 5467 case Decl::UsingDirective: // using namespace X; [C++] 5468 if (CGDebugInfo *DI = getModuleDebugInfo()) 5469 DI->EmitUsingDirective(cast<UsingDirectiveDecl>(*D)); 5470 break; 5471 case Decl::CXXConstructor: 5472 getCXXABI().EmitCXXConstructors(cast<CXXConstructorDecl>(D)); 5473 break; 5474 case Decl::CXXDestructor: 5475 getCXXABI().EmitCXXDestructors(cast<CXXDestructorDecl>(D)); 5476 break; 5477 5478 case Decl::StaticAssert: 5479 // Nothing to do. 5480 break; 5481 5482 // Objective-C Decls 5483 5484 // Forward declarations, no (immediate) code generation. 5485 case Decl::ObjCInterface: 5486 case Decl::ObjCCategory: 5487 break; 5488 5489 case Decl::ObjCProtocol: { 5490 auto *Proto = cast<ObjCProtocolDecl>(D); 5491 if (Proto->isThisDeclarationADefinition()) 5492 ObjCRuntime->GenerateProtocol(Proto); 5493 break; 5494 } 5495 5496 case Decl::ObjCCategoryImpl: 5497 // Categories have properties but don't support synthesize so we 5498 // can ignore them here. 5499 ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D)); 5500 break; 5501 5502 case Decl::ObjCImplementation: { 5503 auto *OMD = cast<ObjCImplementationDecl>(D); 5504 EmitObjCPropertyImplementations(OMD); 5505 EmitObjCIvarInitializations(OMD); 5506 ObjCRuntime->GenerateClass(OMD); 5507 // Emit global variable debug information. 5508 if (CGDebugInfo *DI = getModuleDebugInfo()) 5509 if (getCodeGenOpts().hasReducedDebugInfo()) 5510 DI->getOrCreateInterfaceType(getContext().getObjCInterfaceType( 5511 OMD->getClassInterface()), OMD->getLocation()); 5512 break; 5513 } 5514 case Decl::ObjCMethod: { 5515 auto *OMD = cast<ObjCMethodDecl>(D); 5516 // If this is not a prototype, emit the body. 5517 if (OMD->getBody()) 5518 CodeGenFunction(*this).GenerateObjCMethod(OMD); 5519 break; 5520 } 5521 case Decl::ObjCCompatibleAlias: 5522 ObjCRuntime->RegisterAlias(cast<ObjCCompatibleAliasDecl>(D)); 5523 break; 5524 5525 case Decl::PragmaComment: { 5526 const auto *PCD = cast<PragmaCommentDecl>(D); 5527 switch (PCD->getCommentKind()) { 5528 case PCK_Unknown: 5529 llvm_unreachable("unexpected pragma comment kind"); 5530 case PCK_Linker: 5531 AppendLinkerOptions(PCD->getArg()); 5532 break; 5533 case PCK_Lib: 5534 AddDependentLib(PCD->getArg()); 5535 break; 5536 case PCK_Compiler: 5537 case PCK_ExeStr: 5538 case PCK_User: 5539 break; // We ignore all of these. 5540 } 5541 break; 5542 } 5543 5544 case Decl::PragmaDetectMismatch: { 5545 const auto *PDMD = cast<PragmaDetectMismatchDecl>(D); 5546 AddDetectMismatch(PDMD->getName(), PDMD->getValue()); 5547 break; 5548 } 5549 5550 case Decl::LinkageSpec: 5551 EmitLinkageSpec(cast<LinkageSpecDecl>(D)); 5552 break; 5553 5554 case Decl::FileScopeAsm: { 5555 // File-scope asm is ignored during device-side CUDA compilation. 5556 if (LangOpts.CUDA && LangOpts.CUDAIsDevice) 5557 break; 5558 // File-scope asm is ignored during device-side OpenMP compilation. 5559 if (LangOpts.OpenMPIsDevice) 5560 break; 5561 auto *AD = cast<FileScopeAsmDecl>(D); 5562 getModule().appendModuleInlineAsm(AD->getAsmString()->getString()); 5563 break; 5564 } 5565 5566 case Decl::Import: { 5567 auto *Import = cast<ImportDecl>(D); 5568 5569 // If we've already imported this module, we're done. 5570 if (!ImportedModules.insert(Import->getImportedModule())) 5571 break; 5572 5573 // Emit debug information for direct imports. 5574 if (!Import->getImportedOwningModule()) { 5575 if (CGDebugInfo *DI = getModuleDebugInfo()) 5576 DI->EmitImportDecl(*Import); 5577 } 5578 5579 // Find all of the submodules and emit the module initializers. 5580 llvm::SmallPtrSet<clang::Module *, 16> Visited; 5581 SmallVector<clang::Module *, 16> Stack; 5582 Visited.insert(Import->getImportedModule()); 5583 Stack.push_back(Import->getImportedModule()); 5584 5585 while (!Stack.empty()) { 5586 clang::Module *Mod = Stack.pop_back_val(); 5587 if (!EmittedModuleInitializers.insert(Mod).second) 5588 continue; 5589 5590 for (auto *D : Context.getModuleInitializers(Mod)) 5591 EmitTopLevelDecl(D); 5592 5593 // Visit the submodules of this module. 5594 for (clang::Module::submodule_iterator Sub = Mod->submodule_begin(), 5595 SubEnd = Mod->submodule_end(); 5596 Sub != SubEnd; ++Sub) { 5597 // Skip explicit children; they need to be explicitly imported to emit 5598 // the initializers. 5599 if ((*Sub)->IsExplicit) 5600 continue; 5601 5602 if (Visited.insert(*Sub).second) 5603 Stack.push_back(*Sub); 5604 } 5605 } 5606 break; 5607 } 5608 5609 case Decl::Export: 5610 EmitDeclContext(cast<ExportDecl>(D)); 5611 break; 5612 5613 case Decl::OMPThreadPrivate: 5614 EmitOMPThreadPrivateDecl(cast<OMPThreadPrivateDecl>(D)); 5615 break; 5616 5617 case Decl::OMPAllocate: 5618 break; 5619 5620 case Decl::OMPDeclareReduction: 5621 EmitOMPDeclareReduction(cast<OMPDeclareReductionDecl>(D)); 5622 break; 5623 5624 case Decl::OMPDeclareMapper: 5625 EmitOMPDeclareMapper(cast<OMPDeclareMapperDecl>(D)); 5626 break; 5627 5628 case Decl::OMPRequires: 5629 EmitOMPRequiresDecl(cast<OMPRequiresDecl>(D)); 5630 break; 5631 5632 case Decl::Typedef: 5633 case Decl::TypeAlias: // using foo = bar; [C++11] 5634 if (CGDebugInfo *DI = getModuleDebugInfo()) 5635 DI->EmitAndRetainType( 5636 getContext().getTypedefType(cast<TypedefNameDecl>(D))); 5637 break; 5638 5639 case Decl::Record: 5640 if (CGDebugInfo *DI = getModuleDebugInfo()) 5641 if (cast<RecordDecl>(D)->getDefinition()) 5642 DI->EmitAndRetainType(getContext().getRecordType(cast<RecordDecl>(D))); 5643 break; 5644 5645 case Decl::Enum: 5646 if (CGDebugInfo *DI = getModuleDebugInfo()) 5647 if (cast<EnumDecl>(D)->getDefinition()) 5648 DI->EmitAndRetainType(getContext().getEnumType(cast<EnumDecl>(D))); 5649 break; 5650 5651 default: 5652 // Make sure we handled everything we should, every other kind is a 5653 // non-top-level decl. FIXME: Would be nice to have an isTopLevelDeclKind 5654 // function. Need to recode Decl::Kind to do that easily. 5655 assert(isa<TypeDecl>(D) && "Unsupported decl kind"); 5656 break; 5657 } 5658 } 5659 5660 void CodeGenModule::AddDeferredUnusedCoverageMapping(Decl *D) { 5661 // Do we need to generate coverage mapping? 5662 if (!CodeGenOpts.CoverageMapping) 5663 return; 5664 switch (D->getKind()) { 5665 case Decl::CXXConversion: 5666 case Decl::CXXMethod: 5667 case Decl::Function: 5668 case Decl::ObjCMethod: 5669 case Decl::CXXConstructor: 5670 case Decl::CXXDestructor: { 5671 if (!cast<FunctionDecl>(D)->doesThisDeclarationHaveABody()) 5672 break; 5673 SourceManager &SM = getContext().getSourceManager(); 5674 if (LimitedCoverage && SM.getMainFileID() != SM.getFileID(D->getBeginLoc())) 5675 break; 5676 auto I = DeferredEmptyCoverageMappingDecls.find(D); 5677 if (I == DeferredEmptyCoverageMappingDecls.end()) 5678 DeferredEmptyCoverageMappingDecls[D] = true; 5679 break; 5680 } 5681 default: 5682 break; 5683 }; 5684 } 5685 5686 void CodeGenModule::ClearUnusedCoverageMapping(const Decl *D) { 5687 // Do we need to generate coverage mapping? 5688 if (!CodeGenOpts.CoverageMapping) 5689 return; 5690 if (const auto *Fn = dyn_cast<FunctionDecl>(D)) { 5691 if (Fn->isTemplateInstantiation()) 5692 ClearUnusedCoverageMapping(Fn->getTemplateInstantiationPattern()); 5693 } 5694 auto I = DeferredEmptyCoverageMappingDecls.find(D); 5695 if (I == DeferredEmptyCoverageMappingDecls.end()) 5696 DeferredEmptyCoverageMappingDecls[D] = false; 5697 else 5698 I->second = false; 5699 } 5700 5701 void CodeGenModule::EmitDeferredUnusedCoverageMappings() { 5702 // We call takeVector() here to avoid use-after-free. 5703 // FIXME: DeferredEmptyCoverageMappingDecls is getting mutated because 5704 // we deserialize function bodies to emit coverage info for them, and that 5705 // deserializes more declarations. How should we handle that case? 5706 for (const auto &Entry : DeferredEmptyCoverageMappingDecls.takeVector()) { 5707 if (!Entry.second) 5708 continue; 5709 const Decl *D = Entry.first; 5710 switch (D->getKind()) { 5711 case Decl::CXXConversion: 5712 case Decl::CXXMethod: 5713 case Decl::Function: 5714 case Decl::ObjCMethod: { 5715 CodeGenPGO PGO(*this); 5716 GlobalDecl GD(cast<FunctionDecl>(D)); 5717 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 5718 getFunctionLinkage(GD)); 5719 break; 5720 } 5721 case Decl::CXXConstructor: { 5722 CodeGenPGO PGO(*this); 5723 GlobalDecl GD(cast<CXXConstructorDecl>(D), Ctor_Base); 5724 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 5725 getFunctionLinkage(GD)); 5726 break; 5727 } 5728 case Decl::CXXDestructor: { 5729 CodeGenPGO PGO(*this); 5730 GlobalDecl GD(cast<CXXDestructorDecl>(D), Dtor_Base); 5731 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 5732 getFunctionLinkage(GD)); 5733 break; 5734 } 5735 default: 5736 break; 5737 }; 5738 } 5739 } 5740 5741 void CodeGenModule::EmitMainVoidAlias() { 5742 // In order to transition away from "__original_main" gracefully, emit an 5743 // alias for "main" in the no-argument case so that libc can detect when 5744 // new-style no-argument main is in used. 5745 if (llvm::Function *F = getModule().getFunction("main")) { 5746 if (!F->isDeclaration() && F->arg_size() == 0 && !F->isVarArg() && 5747 F->getReturnType()->isIntegerTy(Context.getTargetInfo().getIntWidth())) 5748 addUsedGlobal(llvm::GlobalAlias::create("__main_void", F)); 5749 } 5750 } 5751 5752 /// Turns the given pointer into a constant. 5753 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context, 5754 const void *Ptr) { 5755 uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr); 5756 llvm::Type *i64 = llvm::Type::getInt64Ty(Context); 5757 return llvm::ConstantInt::get(i64, PtrInt); 5758 } 5759 5760 static void EmitGlobalDeclMetadata(CodeGenModule &CGM, 5761 llvm::NamedMDNode *&GlobalMetadata, 5762 GlobalDecl D, 5763 llvm::GlobalValue *Addr) { 5764 if (!GlobalMetadata) 5765 GlobalMetadata = 5766 CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs"); 5767 5768 // TODO: should we report variant information for ctors/dtors? 5769 llvm::Metadata *Ops[] = {llvm::ConstantAsMetadata::get(Addr), 5770 llvm::ConstantAsMetadata::get(GetPointerConstant( 5771 CGM.getLLVMContext(), D.getDecl()))}; 5772 GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops)); 5773 } 5774 5775 /// For each function which is declared within an extern "C" region and marked 5776 /// as 'used', but has internal linkage, create an alias from the unmangled 5777 /// name to the mangled name if possible. People expect to be able to refer 5778 /// to such functions with an unmangled name from inline assembly within the 5779 /// same translation unit. 5780 void CodeGenModule::EmitStaticExternCAliases() { 5781 if (!getTargetCodeGenInfo().shouldEmitStaticExternCAliases()) 5782 return; 5783 for (auto &I : StaticExternCValues) { 5784 IdentifierInfo *Name = I.first; 5785 llvm::GlobalValue *Val = I.second; 5786 if (Val && !getModule().getNamedValue(Name->getName())) 5787 addUsedGlobal(llvm::GlobalAlias::create(Name->getName(), Val)); 5788 } 5789 } 5790 5791 bool CodeGenModule::lookupRepresentativeDecl(StringRef MangledName, 5792 GlobalDecl &Result) const { 5793 auto Res = Manglings.find(MangledName); 5794 if (Res == Manglings.end()) 5795 return false; 5796 Result = Res->getValue(); 5797 return true; 5798 } 5799 5800 /// Emits metadata nodes associating all the global values in the 5801 /// current module with the Decls they came from. This is useful for 5802 /// projects using IR gen as a subroutine. 5803 /// 5804 /// Since there's currently no way to associate an MDNode directly 5805 /// with an llvm::GlobalValue, we create a global named metadata 5806 /// with the name 'clang.global.decl.ptrs'. 5807 void CodeGenModule::EmitDeclMetadata() { 5808 llvm::NamedMDNode *GlobalMetadata = nullptr; 5809 5810 for (auto &I : MangledDeclNames) { 5811 llvm::GlobalValue *Addr = getModule().getNamedValue(I.second); 5812 // Some mangled names don't necessarily have an associated GlobalValue 5813 // in this module, e.g. if we mangled it for DebugInfo. 5814 if (Addr) 5815 EmitGlobalDeclMetadata(*this, GlobalMetadata, I.first, Addr); 5816 } 5817 } 5818 5819 /// Emits metadata nodes for all the local variables in the current 5820 /// function. 5821 void CodeGenFunction::EmitDeclMetadata() { 5822 if (LocalDeclMap.empty()) return; 5823 5824 llvm::LLVMContext &Context = getLLVMContext(); 5825 5826 // Find the unique metadata ID for this name. 5827 unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr"); 5828 5829 llvm::NamedMDNode *GlobalMetadata = nullptr; 5830 5831 for (auto &I : LocalDeclMap) { 5832 const Decl *D = I.first; 5833 llvm::Value *Addr = I.second.getPointer(); 5834 if (auto *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) { 5835 llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D); 5836 Alloca->setMetadata( 5837 DeclPtrKind, llvm::MDNode::get( 5838 Context, llvm::ValueAsMetadata::getConstant(DAddr))); 5839 } else if (auto *GV = dyn_cast<llvm::GlobalValue>(Addr)) { 5840 GlobalDecl GD = GlobalDecl(cast<VarDecl>(D)); 5841 EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV); 5842 } 5843 } 5844 } 5845 5846 void CodeGenModule::EmitVersionIdentMetadata() { 5847 llvm::NamedMDNode *IdentMetadata = 5848 TheModule.getOrInsertNamedMetadata("llvm.ident"); 5849 std::string Version = getClangFullVersion(); 5850 llvm::LLVMContext &Ctx = TheModule.getContext(); 5851 5852 llvm::Metadata *IdentNode[] = {llvm::MDString::get(Ctx, Version)}; 5853 IdentMetadata->addOperand(llvm::MDNode::get(Ctx, IdentNode)); 5854 } 5855 5856 void CodeGenModule::EmitCommandLineMetadata() { 5857 llvm::NamedMDNode *CommandLineMetadata = 5858 TheModule.getOrInsertNamedMetadata("llvm.commandline"); 5859 std::string CommandLine = getCodeGenOpts().RecordCommandLine; 5860 llvm::LLVMContext &Ctx = TheModule.getContext(); 5861 5862 llvm::Metadata *CommandLineNode[] = {llvm::MDString::get(Ctx, CommandLine)}; 5863 CommandLineMetadata->addOperand(llvm::MDNode::get(Ctx, CommandLineNode)); 5864 } 5865 5866 void CodeGenModule::EmitCoverageFile() { 5867 if (getCodeGenOpts().CoverageDataFile.empty() && 5868 getCodeGenOpts().CoverageNotesFile.empty()) 5869 return; 5870 5871 llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu"); 5872 if (!CUNode) 5873 return; 5874 5875 llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov"); 5876 llvm::LLVMContext &Ctx = TheModule.getContext(); 5877 auto *CoverageDataFile = 5878 llvm::MDString::get(Ctx, getCodeGenOpts().CoverageDataFile); 5879 auto *CoverageNotesFile = 5880 llvm::MDString::get(Ctx, getCodeGenOpts().CoverageNotesFile); 5881 for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) { 5882 llvm::MDNode *CU = CUNode->getOperand(i); 5883 llvm::Metadata *Elts[] = {CoverageNotesFile, CoverageDataFile, CU}; 5884 GCov->addOperand(llvm::MDNode::get(Ctx, Elts)); 5885 } 5886 } 5887 5888 llvm::Constant *CodeGenModule::GetAddrOfRTTIDescriptor(QualType Ty, 5889 bool ForEH) { 5890 // Return a bogus pointer if RTTI is disabled, unless it's for EH. 5891 // FIXME: should we even be calling this method if RTTI is disabled 5892 // and it's not for EH? 5893 if ((!ForEH && !getLangOpts().RTTI) || getLangOpts().CUDAIsDevice || 5894 (getLangOpts().OpenMP && getLangOpts().OpenMPIsDevice && 5895 getTriple().isNVPTX())) 5896 return llvm::Constant::getNullValue(Int8PtrTy); 5897 5898 if (ForEH && Ty->isObjCObjectPointerType() && 5899 LangOpts.ObjCRuntime.isGNUFamily()) 5900 return ObjCRuntime->GetEHType(Ty); 5901 5902 return getCXXABI().getAddrOfRTTIDescriptor(Ty); 5903 } 5904 5905 void CodeGenModule::EmitOMPThreadPrivateDecl(const OMPThreadPrivateDecl *D) { 5906 // Do not emit threadprivates in simd-only mode. 5907 if (LangOpts.OpenMP && LangOpts.OpenMPSimd) 5908 return; 5909 for (auto RefExpr : D->varlists()) { 5910 auto *VD = cast<VarDecl>(cast<DeclRefExpr>(RefExpr)->getDecl()); 5911 bool PerformInit = 5912 VD->getAnyInitializer() && 5913 !VD->getAnyInitializer()->isConstantInitializer(getContext(), 5914 /*ForRef=*/false); 5915 5916 Address Addr(GetAddrOfGlobalVar(VD), getContext().getDeclAlign(VD)); 5917 if (auto InitFunction = getOpenMPRuntime().emitThreadPrivateVarDefinition( 5918 VD, Addr, RefExpr->getBeginLoc(), PerformInit)) 5919 CXXGlobalInits.push_back(InitFunction); 5920 } 5921 } 5922 5923 llvm::Metadata * 5924 CodeGenModule::CreateMetadataIdentifierImpl(QualType T, MetadataTypeMap &Map, 5925 StringRef Suffix) { 5926 llvm::Metadata *&InternalId = Map[T.getCanonicalType()]; 5927 if (InternalId) 5928 return InternalId; 5929 5930 if (isExternallyVisible(T->getLinkage())) { 5931 std::string OutName; 5932 llvm::raw_string_ostream Out(OutName); 5933 getCXXABI().getMangleContext().mangleTypeName(T, Out); 5934 Out << Suffix; 5935 5936 InternalId = llvm::MDString::get(getLLVMContext(), Out.str()); 5937 } else { 5938 InternalId = llvm::MDNode::getDistinct(getLLVMContext(), 5939 llvm::ArrayRef<llvm::Metadata *>()); 5940 } 5941 5942 return InternalId; 5943 } 5944 5945 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierForType(QualType T) { 5946 return CreateMetadataIdentifierImpl(T, MetadataIdMap, ""); 5947 } 5948 5949 llvm::Metadata * 5950 CodeGenModule::CreateMetadataIdentifierForVirtualMemPtrType(QualType T) { 5951 return CreateMetadataIdentifierImpl(T, VirtualMetadataIdMap, ".virtual"); 5952 } 5953 5954 // Generalize pointer types to a void pointer with the qualifiers of the 5955 // originally pointed-to type, e.g. 'const char *' and 'char * const *' 5956 // generalize to 'const void *' while 'char *' and 'const char **' generalize to 5957 // 'void *'. 5958 static QualType GeneralizeType(ASTContext &Ctx, QualType Ty) { 5959 if (!Ty->isPointerType()) 5960 return Ty; 5961 5962 return Ctx.getPointerType( 5963 QualType(Ctx.VoidTy).withCVRQualifiers( 5964 Ty->getPointeeType().getCVRQualifiers())); 5965 } 5966 5967 // Apply type generalization to a FunctionType's return and argument types 5968 static QualType GeneralizeFunctionType(ASTContext &Ctx, QualType Ty) { 5969 if (auto *FnType = Ty->getAs<FunctionProtoType>()) { 5970 SmallVector<QualType, 8> GeneralizedParams; 5971 for (auto &Param : FnType->param_types()) 5972 GeneralizedParams.push_back(GeneralizeType(Ctx, Param)); 5973 5974 return Ctx.getFunctionType( 5975 GeneralizeType(Ctx, FnType->getReturnType()), 5976 GeneralizedParams, FnType->getExtProtoInfo()); 5977 } 5978 5979 if (auto *FnType = Ty->getAs<FunctionNoProtoType>()) 5980 return Ctx.getFunctionNoProtoType( 5981 GeneralizeType(Ctx, FnType->getReturnType())); 5982 5983 llvm_unreachable("Encountered unknown FunctionType"); 5984 } 5985 5986 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierGeneralized(QualType T) { 5987 return CreateMetadataIdentifierImpl(GeneralizeFunctionType(getContext(), T), 5988 GeneralizedMetadataIdMap, ".generalized"); 5989 } 5990 5991 /// Returns whether this module needs the "all-vtables" type identifier. 5992 bool CodeGenModule::NeedAllVtablesTypeId() const { 5993 // Returns true if at least one of vtable-based CFI checkers is enabled and 5994 // is not in the trapping mode. 5995 return ((LangOpts.Sanitize.has(SanitizerKind::CFIVCall) && 5996 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIVCall)) || 5997 (LangOpts.Sanitize.has(SanitizerKind::CFINVCall) && 5998 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFINVCall)) || 5999 (LangOpts.Sanitize.has(SanitizerKind::CFIDerivedCast) && 6000 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIDerivedCast)) || 6001 (LangOpts.Sanitize.has(SanitizerKind::CFIUnrelatedCast) && 6002 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIUnrelatedCast))); 6003 } 6004 6005 void CodeGenModule::AddVTableTypeMetadata(llvm::GlobalVariable *VTable, 6006 CharUnits Offset, 6007 const CXXRecordDecl *RD) { 6008 llvm::Metadata *MD = 6009 CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0)); 6010 VTable->addTypeMetadata(Offset.getQuantity(), MD); 6011 6012 if (CodeGenOpts.SanitizeCfiCrossDso) 6013 if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD)) 6014 VTable->addTypeMetadata(Offset.getQuantity(), 6015 llvm::ConstantAsMetadata::get(CrossDsoTypeId)); 6016 6017 if (NeedAllVtablesTypeId()) { 6018 llvm::Metadata *MD = llvm::MDString::get(getLLVMContext(), "all-vtables"); 6019 VTable->addTypeMetadata(Offset.getQuantity(), MD); 6020 } 6021 } 6022 6023 llvm::SanitizerStatReport &CodeGenModule::getSanStats() { 6024 if (!SanStats) 6025 SanStats = std::make_unique<llvm::SanitizerStatReport>(&getModule()); 6026 6027 return *SanStats; 6028 } 6029 llvm::Value * 6030 CodeGenModule::createOpenCLIntToSamplerConversion(const Expr *E, 6031 CodeGenFunction &CGF) { 6032 llvm::Constant *C = ConstantEmitter(CGF).emitAbstract(E, E->getType()); 6033 auto SamplerT = getOpenCLRuntime().getSamplerType(E->getType().getTypePtr()); 6034 auto FTy = llvm::FunctionType::get(SamplerT, {C->getType()}, false); 6035 return CGF.Builder.CreateCall(CreateRuntimeFunction(FTy, 6036 "__translate_sampler_initializer"), 6037 {C}); 6038 } 6039 6040 CharUnits CodeGenModule::getNaturalPointeeTypeAlignment( 6041 QualType T, LValueBaseInfo *BaseInfo, TBAAAccessInfo *TBAAInfo) { 6042 return getNaturalTypeAlignment(T->getPointeeType(), BaseInfo, TBAAInfo, 6043 /* forPointeeType= */ true); 6044 } 6045 6046 CharUnits CodeGenModule::getNaturalTypeAlignment(QualType T, 6047 LValueBaseInfo *BaseInfo, 6048 TBAAAccessInfo *TBAAInfo, 6049 bool forPointeeType) { 6050 if (TBAAInfo) 6051 *TBAAInfo = getTBAAAccessInfo(T); 6052 6053 // FIXME: This duplicates logic in ASTContext::getTypeAlignIfKnown. But 6054 // that doesn't return the information we need to compute BaseInfo. 6055 6056 // Honor alignment typedef attributes even on incomplete types. 6057 // We also honor them straight for C++ class types, even as pointees; 6058 // there's an expressivity gap here. 6059 if (auto TT = T->getAs<TypedefType>()) { 6060 if (auto Align = TT->getDecl()->getMaxAlignment()) { 6061 if (BaseInfo) 6062 *BaseInfo = LValueBaseInfo(AlignmentSource::AttributedType); 6063 return getContext().toCharUnitsFromBits(Align); 6064 } 6065 } 6066 6067 bool AlignForArray = T->isArrayType(); 6068 6069 // Analyze the base element type, so we don't get confused by incomplete 6070 // array types. 6071 T = getContext().getBaseElementType(T); 6072 6073 if (T->isIncompleteType()) { 6074 // We could try to replicate the logic from 6075 // ASTContext::getTypeAlignIfKnown, but nothing uses the alignment if the 6076 // type is incomplete, so it's impossible to test. We could try to reuse 6077 // getTypeAlignIfKnown, but that doesn't return the information we need 6078 // to set BaseInfo. So just ignore the possibility that the alignment is 6079 // greater than one. 6080 if (BaseInfo) 6081 *BaseInfo = LValueBaseInfo(AlignmentSource::Type); 6082 return CharUnits::One(); 6083 } 6084 6085 if (BaseInfo) 6086 *BaseInfo = LValueBaseInfo(AlignmentSource::Type); 6087 6088 CharUnits Alignment; 6089 // For C++ class pointees, we don't know whether we're pointing at a 6090 // base or a complete object, so we generally need to use the 6091 // non-virtual alignment. 6092 const CXXRecordDecl *RD; 6093 if (forPointeeType && !AlignForArray && (RD = T->getAsCXXRecordDecl())) { 6094 Alignment = getClassPointerAlignment(RD); 6095 } else { 6096 Alignment = getContext().getTypeAlignInChars(T); 6097 if (T.getQualifiers().hasUnaligned()) 6098 Alignment = CharUnits::One(); 6099 } 6100 6101 // Cap to the global maximum type alignment unless the alignment 6102 // was somehow explicit on the type. 6103 if (unsigned MaxAlign = getLangOpts().MaxTypeAlign) { 6104 if (Alignment.getQuantity() > MaxAlign && 6105 !getContext().isAlignmentRequired(T)) 6106 Alignment = CharUnits::fromQuantity(MaxAlign); 6107 } 6108 return Alignment; 6109 } 6110 6111 bool CodeGenModule::stopAutoInit() { 6112 unsigned StopAfter = getContext().getLangOpts().TrivialAutoVarInitStopAfter; 6113 if (StopAfter) { 6114 // This number is positive only when -ftrivial-auto-var-init-stop-after=* is 6115 // used 6116 if (NumAutoVarInit >= StopAfter) { 6117 return true; 6118 } 6119 if (!NumAutoVarInit) { 6120 unsigned DiagID = getDiags().getCustomDiagID( 6121 DiagnosticsEngine::Warning, 6122 "-ftrivial-auto-var-init-stop-after=%0 has been enabled to limit the " 6123 "number of times ftrivial-auto-var-init=%1 gets applied."); 6124 getDiags().Report(DiagID) 6125 << StopAfter 6126 << (getContext().getLangOpts().getTrivialAutoVarInit() == 6127 LangOptions::TrivialAutoVarInitKind::Zero 6128 ? "zero" 6129 : "pattern"); 6130 } 6131 ++NumAutoVarInit; 6132 } 6133 return false; 6134 } 6135