1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This coordinates the per-module state used while generating code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenModule.h" 15 #include "CGCUDARuntime.h" 16 #include "CGCXXABI.h" 17 #include "CGCall.h" 18 #include "CGDebugInfo.h" 19 #include "CGObjCRuntime.h" 20 #include "CGOpenCLRuntime.h" 21 #include "CodeGenFunction.h" 22 #include "CodeGenPGO.h" 23 #include "CodeGenTBAA.h" 24 #include "TargetInfo.h" 25 #include "clang/AST/ASTContext.h" 26 #include "clang/AST/CharUnits.h" 27 #include "clang/AST/DeclCXX.h" 28 #include "clang/AST/DeclObjC.h" 29 #include "clang/AST/DeclTemplate.h" 30 #include "clang/AST/Mangle.h" 31 #include "clang/AST/RecordLayout.h" 32 #include "clang/AST/RecursiveASTVisitor.h" 33 #include "clang/Basic/Builtins.h" 34 #include "clang/Basic/CharInfo.h" 35 #include "clang/Basic/Diagnostic.h" 36 #include "clang/Basic/Module.h" 37 #include "clang/Basic/SourceManager.h" 38 #include "clang/Basic/TargetInfo.h" 39 #include "clang/Basic/Version.h" 40 #include "clang/Frontend/CodeGenOptions.h" 41 #include "clang/Sema/SemaDiagnostic.h" 42 #include "llvm/ADT/APSInt.h" 43 #include "llvm/ADT/Triple.h" 44 #include "llvm/IR/CallingConv.h" 45 #include "llvm/IR/DataLayout.h" 46 #include "llvm/IR/Intrinsics.h" 47 #include "llvm/IR/LLVMContext.h" 48 #include "llvm/IR/Module.h" 49 #include "llvm/Support/CallSite.h" 50 #include "llvm/Support/ConvertUTF.h" 51 #include "llvm/Support/ErrorHandling.h" 52 53 using namespace clang; 54 using namespace CodeGen; 55 56 static const char AnnotationSection[] = "llvm.metadata"; 57 58 static CGCXXABI *createCXXABI(CodeGenModule &CGM) { 59 switch (CGM.getTarget().getCXXABI().getKind()) { 60 case TargetCXXABI::GenericAArch64: 61 case TargetCXXABI::GenericARM: 62 case TargetCXXABI::iOS: 63 case TargetCXXABI::GenericItanium: 64 return CreateItaniumCXXABI(CGM); 65 case TargetCXXABI::Microsoft: 66 return CreateMicrosoftCXXABI(CGM); 67 } 68 69 llvm_unreachable("invalid C++ ABI kind"); 70 } 71 72 CodeGenModule::CodeGenModule(ASTContext &C, const CodeGenOptions &CGO, 73 llvm::Module &M, const llvm::DataLayout &TD, 74 DiagnosticsEngine &diags) 75 : Context(C), LangOpts(C.getLangOpts()), CodeGenOpts(CGO), TheModule(M), 76 Diags(diags), TheDataLayout(TD), Target(C.getTargetInfo()), 77 ABI(createCXXABI(*this)), VMContext(M.getContext()), TBAA(0), 78 TheTargetCodeGenInfo(0), Types(*this), VTables(*this), ObjCRuntime(0), 79 OpenCLRuntime(0), CUDARuntime(0), DebugInfo(0), ARCData(0), 80 NoObjCARCExceptionsMetadata(0), RRData(0), PGOData(0), 81 CFConstantStringClassRef(0), 82 ConstantStringClassRef(0), NSConstantStringType(0), 83 NSConcreteGlobalBlock(0), NSConcreteStackBlock(0), BlockObjectAssign(0), 84 BlockObjectDispose(0), BlockDescriptorType(0), GenericBlockLiteralType(0), 85 LifetimeStartFn(0), LifetimeEndFn(0), 86 SanitizerBlacklist( 87 llvm::SpecialCaseList::createOrDie(CGO.SanitizerBlacklistFile)), 88 SanOpts(SanitizerBlacklist->isIn(M) ? SanitizerOptions::Disabled 89 : LangOpts.Sanitize) { 90 91 // Initialize the type cache. 92 llvm::LLVMContext &LLVMContext = M.getContext(); 93 VoidTy = llvm::Type::getVoidTy(LLVMContext); 94 Int8Ty = llvm::Type::getInt8Ty(LLVMContext); 95 Int16Ty = llvm::Type::getInt16Ty(LLVMContext); 96 Int32Ty = llvm::Type::getInt32Ty(LLVMContext); 97 Int64Ty = llvm::Type::getInt64Ty(LLVMContext); 98 FloatTy = llvm::Type::getFloatTy(LLVMContext); 99 DoubleTy = llvm::Type::getDoubleTy(LLVMContext); 100 PointerWidthInBits = C.getTargetInfo().getPointerWidth(0); 101 PointerAlignInBytes = 102 C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(0)).getQuantity(); 103 IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth()); 104 IntPtrTy = llvm::IntegerType::get(LLVMContext, PointerWidthInBits); 105 Int8PtrTy = Int8Ty->getPointerTo(0); 106 Int8PtrPtrTy = Int8PtrTy->getPointerTo(0); 107 108 RuntimeCC = getTargetCodeGenInfo().getABIInfo().getRuntimeCC(); 109 110 if (LangOpts.ObjC1) 111 createObjCRuntime(); 112 if (LangOpts.OpenCL) 113 createOpenCLRuntime(); 114 if (LangOpts.CUDA) 115 createCUDARuntime(); 116 117 // Enable TBAA unless it's suppressed. ThreadSanitizer needs TBAA even at O0. 118 if (SanOpts.Thread || 119 (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0)) 120 TBAA = new CodeGenTBAA(Context, VMContext, CodeGenOpts, getLangOpts(), 121 getCXXABI().getMangleContext()); 122 123 // If debug info or coverage generation is enabled, create the CGDebugInfo 124 // object. 125 if (CodeGenOpts.getDebugInfo() != CodeGenOptions::NoDebugInfo || 126 CodeGenOpts.EmitGcovArcs || 127 CodeGenOpts.EmitGcovNotes) 128 DebugInfo = new CGDebugInfo(*this); 129 130 Block.GlobalUniqueCount = 0; 131 132 if (C.getLangOpts().ObjCAutoRefCount) 133 ARCData = new ARCEntrypoints(); 134 RRData = new RREntrypoints(); 135 136 if (!CodeGenOpts.InstrProfileInput.empty()) 137 PGOData = new PGOProfileData(*this, CodeGenOpts.InstrProfileInput); 138 } 139 140 CodeGenModule::~CodeGenModule() { 141 delete ObjCRuntime; 142 delete OpenCLRuntime; 143 delete CUDARuntime; 144 delete TheTargetCodeGenInfo; 145 delete TBAA; 146 delete DebugInfo; 147 delete ARCData; 148 delete RRData; 149 } 150 151 void CodeGenModule::createObjCRuntime() { 152 // This is just isGNUFamily(), but we want to force implementors of 153 // new ABIs to decide how best to do this. 154 switch (LangOpts.ObjCRuntime.getKind()) { 155 case ObjCRuntime::GNUstep: 156 case ObjCRuntime::GCC: 157 case ObjCRuntime::ObjFW: 158 ObjCRuntime = CreateGNUObjCRuntime(*this); 159 return; 160 161 case ObjCRuntime::FragileMacOSX: 162 case ObjCRuntime::MacOSX: 163 case ObjCRuntime::iOS: 164 ObjCRuntime = CreateMacObjCRuntime(*this); 165 return; 166 } 167 llvm_unreachable("bad runtime kind"); 168 } 169 170 void CodeGenModule::createOpenCLRuntime() { 171 OpenCLRuntime = new CGOpenCLRuntime(*this); 172 } 173 174 void CodeGenModule::createCUDARuntime() { 175 CUDARuntime = CreateNVCUDARuntime(*this); 176 } 177 178 void CodeGenModule::applyReplacements() { 179 for (ReplacementsTy::iterator I = Replacements.begin(), 180 E = Replacements.end(); 181 I != E; ++I) { 182 StringRef MangledName = I->first(); 183 llvm::Constant *Replacement = I->second; 184 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 185 if (!Entry) 186 continue; 187 llvm::Function *OldF = cast<llvm::Function>(Entry); 188 llvm::Function *NewF = dyn_cast<llvm::Function>(Replacement); 189 if (!NewF) { 190 llvm::ConstantExpr *CE = cast<llvm::ConstantExpr>(Replacement); 191 assert(CE->getOpcode() == llvm::Instruction::BitCast || 192 CE->getOpcode() == llvm::Instruction::GetElementPtr); 193 NewF = dyn_cast<llvm::Function>(CE->getOperand(0)); 194 } 195 196 // Replace old with new, but keep the old order. 197 OldF->replaceAllUsesWith(Replacement); 198 if (NewF) { 199 NewF->removeFromParent(); 200 OldF->getParent()->getFunctionList().insertAfter(OldF, NewF); 201 } 202 OldF->eraseFromParent(); 203 } 204 } 205 206 void CodeGenModule::checkAliases() { 207 bool Error = false; 208 for (std::vector<GlobalDecl>::iterator I = Aliases.begin(), 209 E = Aliases.end(); I != E; ++I) { 210 const GlobalDecl &GD = *I; 211 const ValueDecl *D = cast<ValueDecl>(GD.getDecl()); 212 const AliasAttr *AA = D->getAttr<AliasAttr>(); 213 StringRef MangledName = getMangledName(GD); 214 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 215 llvm::GlobalAlias *Alias = cast<llvm::GlobalAlias>(Entry); 216 llvm::GlobalValue *GV = Alias->getAliasedGlobal(); 217 if (GV->isDeclaration()) { 218 Error = true; 219 getDiags().Report(AA->getLocation(), diag::err_alias_to_undefined); 220 } else if (!Alias->resolveAliasedGlobal(/*stopOnWeak*/ false)) { 221 Error = true; 222 getDiags().Report(AA->getLocation(), diag::err_cyclic_alias); 223 } 224 } 225 if (!Error) 226 return; 227 228 for (std::vector<GlobalDecl>::iterator I = Aliases.begin(), 229 E = Aliases.end(); I != E; ++I) { 230 const GlobalDecl &GD = *I; 231 StringRef MangledName = getMangledName(GD); 232 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 233 llvm::GlobalAlias *Alias = cast<llvm::GlobalAlias>(Entry); 234 Alias->replaceAllUsesWith(llvm::UndefValue::get(Alias->getType())); 235 Alias->eraseFromParent(); 236 } 237 } 238 239 void CodeGenModule::clear() { 240 DeferredDeclsToEmit.clear(); 241 } 242 243 void CodeGenModule::Release() { 244 EmitDeferred(); 245 applyReplacements(); 246 checkAliases(); 247 EmitCXXGlobalInitFunc(); 248 EmitCXXGlobalDtorFunc(); 249 EmitCXXThreadLocalInitFunc(); 250 if (ObjCRuntime) 251 if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction()) 252 AddGlobalCtor(ObjCInitFunction); 253 EmitCtorList(GlobalCtors, "llvm.global_ctors"); 254 EmitCtorList(GlobalDtors, "llvm.global_dtors"); 255 EmitGlobalAnnotations(); 256 EmitStaticExternCAliases(); 257 EmitLLVMUsed(); 258 259 if (CodeGenOpts.Autolink && 260 (Context.getLangOpts().Modules || !LinkerOptionsMetadata.empty())) { 261 EmitModuleLinkOptions(); 262 } 263 if (CodeGenOpts.DwarfVersion) 264 // We actually want the latest version when there are conflicts. 265 // We can change from Warning to Latest if such mode is supported. 266 getModule().addModuleFlag(llvm::Module::Warning, "Dwarf Version", 267 CodeGenOpts.DwarfVersion); 268 if (DebugInfo) 269 // We support a single version in the linked module: error out when 270 // modules do not have the same version. We are going to implement dropping 271 // debug info when the version number is not up-to-date. Once that is 272 // done, the bitcode linker is not going to see modules with different 273 // version numbers. 274 getModule().addModuleFlag(llvm::Module::Error, "Debug Info Version", 275 llvm::DEBUG_METADATA_VERSION); 276 277 SimplifyPersonality(); 278 279 if (getCodeGenOpts().EmitDeclMetadata) 280 EmitDeclMetadata(); 281 282 if (getCodeGenOpts().EmitGcovArcs || getCodeGenOpts().EmitGcovNotes) 283 EmitCoverageFile(); 284 285 if (DebugInfo) 286 DebugInfo->finalize(); 287 288 EmitVersionIdentMetadata(); 289 } 290 291 void CodeGenModule::UpdateCompletedType(const TagDecl *TD) { 292 // Make sure that this type is translated. 293 Types.UpdateCompletedType(TD); 294 } 295 296 llvm::MDNode *CodeGenModule::getTBAAInfo(QualType QTy) { 297 if (!TBAA) 298 return 0; 299 return TBAA->getTBAAInfo(QTy); 300 } 301 302 llvm::MDNode *CodeGenModule::getTBAAInfoForVTablePtr() { 303 if (!TBAA) 304 return 0; 305 return TBAA->getTBAAInfoForVTablePtr(); 306 } 307 308 llvm::MDNode *CodeGenModule::getTBAAStructInfo(QualType QTy) { 309 if (!TBAA) 310 return 0; 311 return TBAA->getTBAAStructInfo(QTy); 312 } 313 314 llvm::MDNode *CodeGenModule::getTBAAStructTypeInfo(QualType QTy) { 315 if (!TBAA) 316 return 0; 317 return TBAA->getTBAAStructTypeInfo(QTy); 318 } 319 320 llvm::MDNode *CodeGenModule::getTBAAStructTagInfo(QualType BaseTy, 321 llvm::MDNode *AccessN, 322 uint64_t O) { 323 if (!TBAA) 324 return 0; 325 return TBAA->getTBAAStructTagInfo(BaseTy, AccessN, O); 326 } 327 328 /// Decorate the instruction with a TBAA tag. For both scalar TBAA 329 /// and struct-path aware TBAA, the tag has the same format: 330 /// base type, access type and offset. 331 /// When ConvertTypeToTag is true, we create a tag based on the scalar type. 332 void CodeGenModule::DecorateInstruction(llvm::Instruction *Inst, 333 llvm::MDNode *TBAAInfo, 334 bool ConvertTypeToTag) { 335 if (ConvertTypeToTag && TBAA) 336 Inst->setMetadata(llvm::LLVMContext::MD_tbaa, 337 TBAA->getTBAAScalarTagInfo(TBAAInfo)); 338 else 339 Inst->setMetadata(llvm::LLVMContext::MD_tbaa, TBAAInfo); 340 } 341 342 void CodeGenModule::Error(SourceLocation loc, StringRef error) { 343 unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, error); 344 getDiags().Report(Context.getFullLoc(loc), diagID); 345 } 346 347 /// ErrorUnsupported - Print out an error that codegen doesn't support the 348 /// specified stmt yet. 349 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type) { 350 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, 351 "cannot compile this %0 yet"); 352 std::string Msg = Type; 353 getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID) 354 << Msg << S->getSourceRange(); 355 } 356 357 /// ErrorUnsupported - Print out an error that codegen doesn't support the 358 /// specified decl yet. 359 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type) { 360 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, 361 "cannot compile this %0 yet"); 362 std::string Msg = Type; 363 getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg; 364 } 365 366 llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) { 367 return llvm::ConstantInt::get(SizeTy, size.getQuantity()); 368 } 369 370 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV, 371 const NamedDecl *D) const { 372 // Internal definitions always have default visibility. 373 if (GV->hasLocalLinkage()) { 374 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 375 return; 376 } 377 378 // Set visibility for definitions. 379 LinkageInfo LV = D->getLinkageAndVisibility(); 380 if (LV.isVisibilityExplicit() || !GV->hasAvailableExternallyLinkage()) 381 GV->setVisibility(GetLLVMVisibility(LV.getVisibility())); 382 } 383 384 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(StringRef S) { 385 return llvm::StringSwitch<llvm::GlobalVariable::ThreadLocalMode>(S) 386 .Case("global-dynamic", llvm::GlobalVariable::GeneralDynamicTLSModel) 387 .Case("local-dynamic", llvm::GlobalVariable::LocalDynamicTLSModel) 388 .Case("initial-exec", llvm::GlobalVariable::InitialExecTLSModel) 389 .Case("local-exec", llvm::GlobalVariable::LocalExecTLSModel); 390 } 391 392 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel( 393 CodeGenOptions::TLSModel M) { 394 switch (M) { 395 case CodeGenOptions::GeneralDynamicTLSModel: 396 return llvm::GlobalVariable::GeneralDynamicTLSModel; 397 case CodeGenOptions::LocalDynamicTLSModel: 398 return llvm::GlobalVariable::LocalDynamicTLSModel; 399 case CodeGenOptions::InitialExecTLSModel: 400 return llvm::GlobalVariable::InitialExecTLSModel; 401 case CodeGenOptions::LocalExecTLSModel: 402 return llvm::GlobalVariable::LocalExecTLSModel; 403 } 404 llvm_unreachable("Invalid TLS model!"); 405 } 406 407 void CodeGenModule::setTLSMode(llvm::GlobalVariable *GV, 408 const VarDecl &D) const { 409 assert(D.getTLSKind() && "setting TLS mode on non-TLS var!"); 410 411 llvm::GlobalVariable::ThreadLocalMode TLM; 412 TLM = GetLLVMTLSModel(CodeGenOpts.getDefaultTLSModel()); 413 414 // Override the TLS model if it is explicitly specified. 415 if (const TLSModelAttr *Attr = D.getAttr<TLSModelAttr>()) { 416 TLM = GetLLVMTLSModel(Attr->getModel()); 417 } 418 419 GV->setThreadLocalMode(TLM); 420 } 421 422 /// Set the symbol visibility of type information (vtable and RTTI) 423 /// associated with the given type. 424 void CodeGenModule::setTypeVisibility(llvm::GlobalValue *GV, 425 const CXXRecordDecl *RD, 426 TypeVisibilityKind TVK) const { 427 setGlobalVisibility(GV, RD); 428 429 if (!CodeGenOpts.HiddenWeakVTables) 430 return; 431 432 // We never want to drop the visibility for RTTI names. 433 if (TVK == TVK_ForRTTIName) 434 return; 435 436 // We want to drop the visibility to hidden for weak type symbols. 437 // This isn't possible if there might be unresolved references 438 // elsewhere that rely on this symbol being visible. 439 440 // This should be kept roughly in sync with setThunkVisibility 441 // in CGVTables.cpp. 442 443 // Preconditions. 444 if (GV->getLinkage() != llvm::GlobalVariable::LinkOnceODRLinkage || 445 GV->getVisibility() != llvm::GlobalVariable::DefaultVisibility) 446 return; 447 448 // Don't override an explicit visibility attribute. 449 if (RD->getExplicitVisibility(NamedDecl::VisibilityForType)) 450 return; 451 452 switch (RD->getTemplateSpecializationKind()) { 453 // We have to disable the optimization if this is an EI definition 454 // because there might be EI declarations in other shared objects. 455 case TSK_ExplicitInstantiationDefinition: 456 case TSK_ExplicitInstantiationDeclaration: 457 return; 458 459 // Every use of a non-template class's type information has to emit it. 460 case TSK_Undeclared: 461 break; 462 463 // In theory, implicit instantiations can ignore the possibility of 464 // an explicit instantiation declaration because there necessarily 465 // must be an EI definition somewhere with default visibility. In 466 // practice, it's possible to have an explicit instantiation for 467 // an arbitrary template class, and linkers aren't necessarily able 468 // to deal with mixed-visibility symbols. 469 case TSK_ExplicitSpecialization: 470 case TSK_ImplicitInstantiation: 471 return; 472 } 473 474 // If there's a key function, there may be translation units 475 // that don't have the key function's definition. But ignore 476 // this if we're emitting RTTI under -fno-rtti. 477 if (!(TVK != TVK_ForRTTI) || LangOpts.RTTI) { 478 // FIXME: what should we do if we "lose" the key function during 479 // the emission of the file? 480 if (Context.getCurrentKeyFunction(RD)) 481 return; 482 } 483 484 // Otherwise, drop the visibility to hidden. 485 GV->setVisibility(llvm::GlobalValue::HiddenVisibility); 486 GV->setUnnamedAddr(true); 487 } 488 489 StringRef CodeGenModule::getMangledName(GlobalDecl GD) { 490 const NamedDecl *ND = cast<NamedDecl>(GD.getDecl()); 491 492 StringRef &Str = MangledDeclNames[GD.getCanonicalDecl()]; 493 if (!Str.empty()) 494 return Str; 495 496 if (!getCXXABI().getMangleContext().shouldMangleDeclName(ND)) { 497 IdentifierInfo *II = ND->getIdentifier(); 498 assert(II && "Attempt to mangle unnamed decl."); 499 500 Str = II->getName(); 501 return Str; 502 } 503 504 SmallString<256> Buffer; 505 llvm::raw_svector_ostream Out(Buffer); 506 if (const CXXConstructorDecl *D = dyn_cast<CXXConstructorDecl>(ND)) 507 getCXXABI().getMangleContext().mangleCXXCtor(D, GD.getCtorType(), Out); 508 else if (const CXXDestructorDecl *D = dyn_cast<CXXDestructorDecl>(ND)) 509 getCXXABI().getMangleContext().mangleCXXDtor(D, GD.getDtorType(), Out); 510 else 511 getCXXABI().getMangleContext().mangleName(ND, Out); 512 513 // Allocate space for the mangled name. 514 Out.flush(); 515 size_t Length = Buffer.size(); 516 char *Name = MangledNamesAllocator.Allocate<char>(Length); 517 std::copy(Buffer.begin(), Buffer.end(), Name); 518 519 Str = StringRef(Name, Length); 520 521 return Str; 522 } 523 524 void CodeGenModule::getBlockMangledName(GlobalDecl GD, MangleBuffer &Buffer, 525 const BlockDecl *BD) { 526 MangleContext &MangleCtx = getCXXABI().getMangleContext(); 527 const Decl *D = GD.getDecl(); 528 llvm::raw_svector_ostream Out(Buffer.getBuffer()); 529 if (D == 0) 530 MangleCtx.mangleGlobalBlock(BD, 531 dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()), Out); 532 else if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(D)) 533 MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out); 534 else if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(D)) 535 MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out); 536 else 537 MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out); 538 } 539 540 llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) { 541 return getModule().getNamedValue(Name); 542 } 543 544 /// AddGlobalCtor - Add a function to the list that will be called before 545 /// main() runs. 546 void CodeGenModule::AddGlobalCtor(llvm::Function * Ctor, int Priority) { 547 // FIXME: Type coercion of void()* types. 548 GlobalCtors.push_back(std::make_pair(Ctor, Priority)); 549 } 550 551 /// AddGlobalDtor - Add a function to the list that will be called 552 /// when the module is unloaded. 553 void CodeGenModule::AddGlobalDtor(llvm::Function * Dtor, int Priority) { 554 // FIXME: Type coercion of void()* types. 555 GlobalDtors.push_back(std::make_pair(Dtor, Priority)); 556 } 557 558 void CodeGenModule::EmitCtorList(const CtorList &Fns, const char *GlobalName) { 559 // Ctor function type is void()*. 560 llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false); 561 llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy); 562 563 // Get the type of a ctor entry, { i32, void ()* }. 564 llvm::StructType *CtorStructTy = 565 llvm::StructType::get(Int32Ty, llvm::PointerType::getUnqual(CtorFTy), NULL); 566 567 // Construct the constructor and destructor arrays. 568 SmallVector<llvm::Constant*, 8> Ctors; 569 for (CtorList::const_iterator I = Fns.begin(), E = Fns.end(); I != E; ++I) { 570 llvm::Constant *S[] = { 571 llvm::ConstantInt::get(Int32Ty, I->second, false), 572 llvm::ConstantExpr::getBitCast(I->first, CtorPFTy) 573 }; 574 Ctors.push_back(llvm::ConstantStruct::get(CtorStructTy, S)); 575 } 576 577 if (!Ctors.empty()) { 578 llvm::ArrayType *AT = llvm::ArrayType::get(CtorStructTy, Ctors.size()); 579 new llvm::GlobalVariable(TheModule, AT, false, 580 llvm::GlobalValue::AppendingLinkage, 581 llvm::ConstantArray::get(AT, Ctors), 582 GlobalName); 583 } 584 } 585 586 llvm::GlobalValue::LinkageTypes 587 CodeGenModule::getFunctionLinkage(GlobalDecl GD) { 588 const FunctionDecl *D = cast<FunctionDecl>(GD.getDecl()); 589 590 GVALinkage Linkage = getContext().GetGVALinkageForFunction(D); 591 592 if (Linkage == GVA_Internal) 593 return llvm::Function::InternalLinkage; 594 595 if (D->hasAttr<DLLExportAttr>()) 596 return llvm::Function::ExternalLinkage; 597 598 if (D->hasAttr<WeakAttr>()) 599 return llvm::Function::WeakAnyLinkage; 600 601 // In C99 mode, 'inline' functions are guaranteed to have a strong 602 // definition somewhere else, so we can use available_externally linkage. 603 if (Linkage == GVA_C99Inline) 604 return llvm::Function::AvailableExternallyLinkage; 605 606 // Note that Apple's kernel linker doesn't support symbol 607 // coalescing, so we need to avoid linkonce and weak linkages there. 608 // Normally, this means we just map to internal, but for explicit 609 // instantiations we'll map to external. 610 611 // In C++, the compiler has to emit a definition in every translation unit 612 // that references the function. We should use linkonce_odr because 613 // a) if all references in this translation unit are optimized away, we 614 // don't need to codegen it. b) if the function persists, it needs to be 615 // merged with other definitions. c) C++ has the ODR, so we know the 616 // definition is dependable. 617 if (Linkage == GVA_CXXInline || Linkage == GVA_TemplateInstantiation) 618 return !Context.getLangOpts().AppleKext 619 ? llvm::Function::LinkOnceODRLinkage 620 : llvm::Function::InternalLinkage; 621 622 // An explicit instantiation of a template has weak linkage, since 623 // explicit instantiations can occur in multiple translation units 624 // and must all be equivalent. However, we are not allowed to 625 // throw away these explicit instantiations. 626 if (Linkage == GVA_ExplicitTemplateInstantiation) 627 return !Context.getLangOpts().AppleKext 628 ? llvm::Function::WeakODRLinkage 629 : llvm::Function::ExternalLinkage; 630 631 // Destructor variants in the Microsoft C++ ABI are always linkonce_odr thunks 632 // emitted on an as-needed basis. 633 if (isa<CXXDestructorDecl>(D) && 634 getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D), 635 GD.getDtorType())) 636 return llvm::Function::LinkOnceODRLinkage; 637 638 // Otherwise, we have strong external linkage. 639 assert(Linkage == GVA_StrongExternal); 640 return llvm::Function::ExternalLinkage; 641 } 642 643 644 /// SetFunctionDefinitionAttributes - Set attributes for a global. 645 /// 646 /// FIXME: This is currently only done for aliases and functions, but not for 647 /// variables (these details are set in EmitGlobalVarDefinition for variables). 648 void CodeGenModule::SetFunctionDefinitionAttributes(const FunctionDecl *D, 649 llvm::GlobalValue *GV) { 650 SetCommonAttributes(D, GV); 651 } 652 653 void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D, 654 const CGFunctionInfo &Info, 655 llvm::Function *F) { 656 unsigned CallingConv; 657 AttributeListType AttributeList; 658 ConstructAttributeList(Info, D, AttributeList, CallingConv, false); 659 F->setAttributes(llvm::AttributeSet::get(getLLVMContext(), AttributeList)); 660 F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv)); 661 } 662 663 /// Determines whether the language options require us to model 664 /// unwind exceptions. We treat -fexceptions as mandating this 665 /// except under the fragile ObjC ABI with only ObjC exceptions 666 /// enabled. This means, for example, that C with -fexceptions 667 /// enables this. 668 static bool hasUnwindExceptions(const LangOptions &LangOpts) { 669 // If exceptions are completely disabled, obviously this is false. 670 if (!LangOpts.Exceptions) return false; 671 672 // If C++ exceptions are enabled, this is true. 673 if (LangOpts.CXXExceptions) return true; 674 675 // If ObjC exceptions are enabled, this depends on the ABI. 676 if (LangOpts.ObjCExceptions) { 677 return LangOpts.ObjCRuntime.hasUnwindExceptions(); 678 } 679 680 return true; 681 } 682 683 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D, 684 llvm::Function *F) { 685 llvm::AttrBuilder B; 686 687 if (CodeGenOpts.UnwindTables) 688 B.addAttribute(llvm::Attribute::UWTable); 689 690 if (!hasUnwindExceptions(LangOpts)) 691 B.addAttribute(llvm::Attribute::NoUnwind); 692 693 if (D->hasAttr<NakedAttr>()) { 694 // Naked implies noinline: we should not be inlining such functions. 695 B.addAttribute(llvm::Attribute::Naked); 696 B.addAttribute(llvm::Attribute::NoInline); 697 } else if (D->hasAttr<NoInlineAttr>()) { 698 B.addAttribute(llvm::Attribute::NoInline); 699 } else if ((D->hasAttr<AlwaysInlineAttr>() || 700 D->hasAttr<ForceInlineAttr>()) && 701 !F->getAttributes().hasAttribute(llvm::AttributeSet::FunctionIndex, 702 llvm::Attribute::NoInline)) { 703 // (noinline wins over always_inline, and we can't specify both in IR) 704 B.addAttribute(llvm::Attribute::AlwaysInline); 705 } 706 707 if (D->hasAttr<ColdAttr>()) { 708 B.addAttribute(llvm::Attribute::OptimizeForSize); 709 B.addAttribute(llvm::Attribute::Cold); 710 } 711 712 if (D->hasAttr<MinSizeAttr>()) 713 B.addAttribute(llvm::Attribute::MinSize); 714 715 if (LangOpts.getStackProtector() == LangOptions::SSPOn) 716 B.addAttribute(llvm::Attribute::StackProtect); 717 else if (LangOpts.getStackProtector() == LangOptions::SSPReq) 718 B.addAttribute(llvm::Attribute::StackProtectReq); 719 720 // Add sanitizer attributes if function is not blacklisted. 721 if (!SanitizerBlacklist->isIn(*F)) { 722 // When AddressSanitizer is enabled, set SanitizeAddress attribute 723 // unless __attribute__((no_sanitize_address)) is used. 724 if (SanOpts.Address && !D->hasAttr<NoSanitizeAddressAttr>()) 725 B.addAttribute(llvm::Attribute::SanitizeAddress); 726 // Same for ThreadSanitizer and __attribute__((no_sanitize_thread)) 727 if (SanOpts.Thread && !D->hasAttr<NoSanitizeThreadAttr>()) { 728 B.addAttribute(llvm::Attribute::SanitizeThread); 729 } 730 // Same for MemorySanitizer and __attribute__((no_sanitize_memory)) 731 if (SanOpts.Memory && !D->hasAttr<NoSanitizeMemoryAttr>()) 732 B.addAttribute(llvm::Attribute::SanitizeMemory); 733 } 734 735 F->addAttributes(llvm::AttributeSet::FunctionIndex, 736 llvm::AttributeSet::get( 737 F->getContext(), llvm::AttributeSet::FunctionIndex, B)); 738 739 if (isa<CXXConstructorDecl>(D) || isa<CXXDestructorDecl>(D)) 740 F->setUnnamedAddr(true); 741 else if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) 742 if (MD->isVirtual()) 743 F->setUnnamedAddr(true); 744 745 unsigned alignment = D->getMaxAlignment() / Context.getCharWidth(); 746 if (alignment) 747 F->setAlignment(alignment); 748 749 // C++ ABI requires 2-byte alignment for member functions. 750 if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D)) 751 F->setAlignment(2); 752 } 753 754 void CodeGenModule::SetCommonAttributes(const Decl *D, 755 llvm::GlobalValue *GV) { 756 if (const NamedDecl *ND = dyn_cast<NamedDecl>(D)) 757 setGlobalVisibility(GV, ND); 758 else 759 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 760 761 if (D->hasAttr<UsedAttr>()) 762 AddUsedGlobal(GV); 763 764 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) 765 GV->setSection(SA->getName()); 766 767 // Alias cannot have attributes. Filter them here. 768 if (!isa<llvm::GlobalAlias>(GV)) 769 getTargetCodeGenInfo().SetTargetAttributes(D, GV, *this); 770 } 771 772 void CodeGenModule::SetInternalFunctionAttributes(const Decl *D, 773 llvm::Function *F, 774 const CGFunctionInfo &FI) { 775 SetLLVMFunctionAttributes(D, FI, F); 776 SetLLVMFunctionAttributesForDefinition(D, F); 777 778 F->setLinkage(llvm::Function::InternalLinkage); 779 780 SetCommonAttributes(D, F); 781 } 782 783 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD, 784 llvm::Function *F, 785 bool IsIncompleteFunction) { 786 if (unsigned IID = F->getIntrinsicID()) { 787 // If this is an intrinsic function, set the function's attributes 788 // to the intrinsic's attributes. 789 F->setAttributes(llvm::Intrinsic::getAttributes(getLLVMContext(), 790 (llvm::Intrinsic::ID)IID)); 791 return; 792 } 793 794 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 795 796 if (!IsIncompleteFunction) 797 SetLLVMFunctionAttributes(FD, getTypes().arrangeGlobalDeclaration(GD), F); 798 799 if (getCXXABI().HasThisReturn(GD)) { 800 assert(!F->arg_empty() && 801 F->arg_begin()->getType() 802 ->canLosslesslyBitCastTo(F->getReturnType()) && 803 "unexpected this return"); 804 F->addAttribute(1, llvm::Attribute::Returned); 805 } 806 807 // Only a few attributes are set on declarations; these may later be 808 // overridden by a definition. 809 810 if (FD->hasAttr<DLLImportAttr>()) { 811 F->setLinkage(llvm::Function::ExternalLinkage); 812 F->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass); 813 } else if (FD->hasAttr<WeakAttr>() || 814 FD->isWeakImported()) { 815 // "extern_weak" is overloaded in LLVM; we probably should have 816 // separate linkage types for this. 817 F->setLinkage(llvm::Function::ExternalWeakLinkage); 818 } else { 819 F->setLinkage(llvm::Function::ExternalLinkage); 820 if (FD->hasAttr<DLLExportAttr>()) 821 F->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass); 822 823 LinkageInfo LV = FD->getLinkageAndVisibility(); 824 if (LV.getLinkage() == ExternalLinkage && LV.isVisibilityExplicit()) { 825 F->setVisibility(GetLLVMVisibility(LV.getVisibility())); 826 } 827 } 828 829 if (const SectionAttr *SA = FD->getAttr<SectionAttr>()) 830 F->setSection(SA->getName()); 831 832 // A replaceable global allocation function does not act like a builtin by 833 // default, only if it is invoked by a new-expression or delete-expression. 834 if (FD->isReplaceableGlobalAllocationFunction()) 835 F->addAttribute(llvm::AttributeSet::FunctionIndex, 836 llvm::Attribute::NoBuiltin); 837 } 838 839 void CodeGenModule::AddUsedGlobal(llvm::GlobalValue *GV) { 840 assert(!GV->isDeclaration() && 841 "Only globals with definition can force usage."); 842 LLVMUsed.push_back(GV); 843 } 844 845 void CodeGenModule::EmitLLVMUsed() { 846 // Don't create llvm.used if there is no need. 847 if (LLVMUsed.empty()) 848 return; 849 850 // Convert LLVMUsed to what ConstantArray needs. 851 SmallVector<llvm::Constant*, 8> UsedArray; 852 UsedArray.resize(LLVMUsed.size()); 853 for (unsigned i = 0, e = LLVMUsed.size(); i != e; ++i) { 854 UsedArray[i] = 855 llvm::ConstantExpr::getBitCast(cast<llvm::Constant>(&*LLVMUsed[i]), 856 Int8PtrTy); 857 } 858 859 if (UsedArray.empty()) 860 return; 861 llvm::ArrayType *ATy = llvm::ArrayType::get(Int8PtrTy, UsedArray.size()); 862 863 llvm::GlobalVariable *GV = 864 new llvm::GlobalVariable(getModule(), ATy, false, 865 llvm::GlobalValue::AppendingLinkage, 866 llvm::ConstantArray::get(ATy, UsedArray), 867 "llvm.used"); 868 869 GV->setSection("llvm.metadata"); 870 } 871 872 void CodeGenModule::AppendLinkerOptions(StringRef Opts) { 873 llvm::Value *MDOpts = llvm::MDString::get(getLLVMContext(), Opts); 874 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 875 } 876 877 void CodeGenModule::AddDetectMismatch(StringRef Name, StringRef Value) { 878 llvm::SmallString<32> Opt; 879 getTargetCodeGenInfo().getDetectMismatchOption(Name, Value, Opt); 880 llvm::Value *MDOpts = llvm::MDString::get(getLLVMContext(), Opt); 881 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 882 } 883 884 void CodeGenModule::AddDependentLib(StringRef Lib) { 885 llvm::SmallString<24> Opt; 886 getTargetCodeGenInfo().getDependentLibraryOption(Lib, Opt); 887 llvm::Value *MDOpts = llvm::MDString::get(getLLVMContext(), Opt); 888 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 889 } 890 891 /// \brief Add link options implied by the given module, including modules 892 /// it depends on, using a postorder walk. 893 static void addLinkOptionsPostorder(CodeGenModule &CGM, 894 Module *Mod, 895 SmallVectorImpl<llvm::Value *> &Metadata, 896 llvm::SmallPtrSet<Module *, 16> &Visited) { 897 // Import this module's parent. 898 if (Mod->Parent && Visited.insert(Mod->Parent)) { 899 addLinkOptionsPostorder(CGM, Mod->Parent, Metadata, Visited); 900 } 901 902 // Import this module's dependencies. 903 for (unsigned I = Mod->Imports.size(); I > 0; --I) { 904 if (Visited.insert(Mod->Imports[I-1])) 905 addLinkOptionsPostorder(CGM, Mod->Imports[I-1], Metadata, Visited); 906 } 907 908 // Add linker options to link against the libraries/frameworks 909 // described by this module. 910 llvm::LLVMContext &Context = CGM.getLLVMContext(); 911 for (unsigned I = Mod->LinkLibraries.size(); I > 0; --I) { 912 // Link against a framework. Frameworks are currently Darwin only, so we 913 // don't to ask TargetCodeGenInfo for the spelling of the linker option. 914 if (Mod->LinkLibraries[I-1].IsFramework) { 915 llvm::Value *Args[2] = { 916 llvm::MDString::get(Context, "-framework"), 917 llvm::MDString::get(Context, Mod->LinkLibraries[I-1].Library) 918 }; 919 920 Metadata.push_back(llvm::MDNode::get(Context, Args)); 921 continue; 922 } 923 924 // Link against a library. 925 llvm::SmallString<24> Opt; 926 CGM.getTargetCodeGenInfo().getDependentLibraryOption( 927 Mod->LinkLibraries[I-1].Library, Opt); 928 llvm::Value *OptString = llvm::MDString::get(Context, Opt); 929 Metadata.push_back(llvm::MDNode::get(Context, OptString)); 930 } 931 } 932 933 void CodeGenModule::EmitModuleLinkOptions() { 934 // Collect the set of all of the modules we want to visit to emit link 935 // options, which is essentially the imported modules and all of their 936 // non-explicit child modules. 937 llvm::SetVector<clang::Module *> LinkModules; 938 llvm::SmallPtrSet<clang::Module *, 16> Visited; 939 SmallVector<clang::Module *, 16> Stack; 940 941 // Seed the stack with imported modules. 942 for (llvm::SetVector<clang::Module *>::iterator M = ImportedModules.begin(), 943 MEnd = ImportedModules.end(); 944 M != MEnd; ++M) { 945 if (Visited.insert(*M)) 946 Stack.push_back(*M); 947 } 948 949 // Find all of the modules to import, making a little effort to prune 950 // non-leaf modules. 951 while (!Stack.empty()) { 952 clang::Module *Mod = Stack.pop_back_val(); 953 954 bool AnyChildren = false; 955 956 // Visit the submodules of this module. 957 for (clang::Module::submodule_iterator Sub = Mod->submodule_begin(), 958 SubEnd = Mod->submodule_end(); 959 Sub != SubEnd; ++Sub) { 960 // Skip explicit children; they need to be explicitly imported to be 961 // linked against. 962 if ((*Sub)->IsExplicit) 963 continue; 964 965 if (Visited.insert(*Sub)) { 966 Stack.push_back(*Sub); 967 AnyChildren = true; 968 } 969 } 970 971 // We didn't find any children, so add this module to the list of 972 // modules to link against. 973 if (!AnyChildren) { 974 LinkModules.insert(Mod); 975 } 976 } 977 978 // Add link options for all of the imported modules in reverse topological 979 // order. We don't do anything to try to order import link flags with respect 980 // to linker options inserted by things like #pragma comment(). 981 SmallVector<llvm::Value *, 16> MetadataArgs; 982 Visited.clear(); 983 for (llvm::SetVector<clang::Module *>::iterator M = LinkModules.begin(), 984 MEnd = LinkModules.end(); 985 M != MEnd; ++M) { 986 if (Visited.insert(*M)) 987 addLinkOptionsPostorder(*this, *M, MetadataArgs, Visited); 988 } 989 std::reverse(MetadataArgs.begin(), MetadataArgs.end()); 990 LinkerOptionsMetadata.append(MetadataArgs.begin(), MetadataArgs.end()); 991 992 // Add the linker options metadata flag. 993 getModule().addModuleFlag(llvm::Module::AppendUnique, "Linker Options", 994 llvm::MDNode::get(getLLVMContext(), 995 LinkerOptionsMetadata)); 996 } 997 998 void CodeGenModule::EmitDeferred() { 999 // Emit code for any potentially referenced deferred decls. Since a 1000 // previously unused static decl may become used during the generation of code 1001 // for a static function, iterate until no changes are made. 1002 1003 while (true) { 1004 if (!DeferredVTables.empty()) { 1005 EmitDeferredVTables(); 1006 1007 // Emitting a v-table doesn't directly cause more v-tables to 1008 // become deferred, although it can cause functions to be 1009 // emitted that then need those v-tables. 1010 assert(DeferredVTables.empty()); 1011 } 1012 1013 // Stop if we're out of both deferred v-tables and deferred declarations. 1014 if (DeferredDeclsToEmit.empty()) break; 1015 1016 DeferredGlobal &G = DeferredDeclsToEmit.back(); 1017 GlobalDecl D = G.GD; 1018 llvm::GlobalValue *GV = G.GV; 1019 DeferredDeclsToEmit.pop_back(); 1020 1021 assert(GV == GetGlobalValue(getMangledName(D))); 1022 // Check to see if we've already emitted this. This is necessary 1023 // for a couple of reasons: first, decls can end up in the 1024 // deferred-decls queue multiple times, and second, decls can end 1025 // up with definitions in unusual ways (e.g. by an extern inline 1026 // function acquiring a strong function redefinition). Just 1027 // ignore these cases. 1028 if(!GV->isDeclaration()) 1029 continue; 1030 1031 // Otherwise, emit the definition and move on to the next one. 1032 EmitGlobalDefinition(D, GV); 1033 } 1034 } 1035 1036 void CodeGenModule::EmitGlobalAnnotations() { 1037 if (Annotations.empty()) 1038 return; 1039 1040 // Create a new global variable for the ConstantStruct in the Module. 1041 llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get( 1042 Annotations[0]->getType(), Annotations.size()), Annotations); 1043 llvm::GlobalValue *gv = new llvm::GlobalVariable(getModule(), 1044 Array->getType(), false, llvm::GlobalValue::AppendingLinkage, Array, 1045 "llvm.global.annotations"); 1046 gv->setSection(AnnotationSection); 1047 } 1048 1049 llvm::Constant *CodeGenModule::EmitAnnotationString(StringRef Str) { 1050 llvm::Constant *&AStr = AnnotationStrings[Str]; 1051 if (AStr) 1052 return AStr; 1053 1054 // Not found yet, create a new global. 1055 llvm::Constant *s = llvm::ConstantDataArray::getString(getLLVMContext(), Str); 1056 llvm::GlobalValue *gv = new llvm::GlobalVariable(getModule(), s->getType(), 1057 true, llvm::GlobalValue::PrivateLinkage, s, ".str"); 1058 gv->setSection(AnnotationSection); 1059 gv->setUnnamedAddr(true); 1060 AStr = gv; 1061 return gv; 1062 } 1063 1064 llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) { 1065 SourceManager &SM = getContext().getSourceManager(); 1066 PresumedLoc PLoc = SM.getPresumedLoc(Loc); 1067 if (PLoc.isValid()) 1068 return EmitAnnotationString(PLoc.getFilename()); 1069 return EmitAnnotationString(SM.getBufferName(Loc)); 1070 } 1071 1072 llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) { 1073 SourceManager &SM = getContext().getSourceManager(); 1074 PresumedLoc PLoc = SM.getPresumedLoc(L); 1075 unsigned LineNo = PLoc.isValid() ? PLoc.getLine() : 1076 SM.getExpansionLineNumber(L); 1077 return llvm::ConstantInt::get(Int32Ty, LineNo); 1078 } 1079 1080 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV, 1081 const AnnotateAttr *AA, 1082 SourceLocation L) { 1083 // Get the globals for file name, annotation, and the line number. 1084 llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()), 1085 *UnitGV = EmitAnnotationUnit(L), 1086 *LineNoCst = EmitAnnotationLineNo(L); 1087 1088 // Create the ConstantStruct for the global annotation. 1089 llvm::Constant *Fields[4] = { 1090 llvm::ConstantExpr::getBitCast(GV, Int8PtrTy), 1091 llvm::ConstantExpr::getBitCast(AnnoGV, Int8PtrTy), 1092 llvm::ConstantExpr::getBitCast(UnitGV, Int8PtrTy), 1093 LineNoCst 1094 }; 1095 return llvm::ConstantStruct::getAnon(Fields); 1096 } 1097 1098 void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D, 1099 llvm::GlobalValue *GV) { 1100 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 1101 // Get the struct elements for these annotations. 1102 for (specific_attr_iterator<AnnotateAttr> 1103 ai = D->specific_attr_begin<AnnotateAttr>(), 1104 ae = D->specific_attr_end<AnnotateAttr>(); ai != ae; ++ai) 1105 Annotations.push_back(EmitAnnotateAttr(GV, *ai, D->getLocation())); 1106 } 1107 1108 bool CodeGenModule::MayDeferGeneration(const ValueDecl *Global) { 1109 // Never defer when EmitAllDecls is specified. 1110 if (LangOpts.EmitAllDecls) 1111 return false; 1112 1113 return !getContext().DeclMustBeEmitted(Global); 1114 } 1115 1116 llvm::Constant *CodeGenModule::GetAddrOfUuidDescriptor( 1117 const CXXUuidofExpr* E) { 1118 // Sema has verified that IIDSource has a __declspec(uuid()), and that its 1119 // well-formed. 1120 StringRef Uuid = E->getUuidAsStringRef(Context); 1121 std::string Name = "_GUID_" + Uuid.lower(); 1122 std::replace(Name.begin(), Name.end(), '-', '_'); 1123 1124 // Look for an existing global. 1125 if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name)) 1126 return GV; 1127 1128 llvm::Constant *Init = EmitUuidofInitializer(Uuid, E->getType()); 1129 assert(Init && "failed to initialize as constant"); 1130 1131 llvm::GlobalVariable *GV = new llvm::GlobalVariable( 1132 getModule(), Init->getType(), 1133 /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name); 1134 return GV; 1135 } 1136 1137 llvm::Constant *CodeGenModule::GetWeakRefReference(const ValueDecl *VD) { 1138 const AliasAttr *AA = VD->getAttr<AliasAttr>(); 1139 assert(AA && "No alias?"); 1140 1141 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType()); 1142 1143 // See if there is already something with the target's name in the module. 1144 llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee()); 1145 if (Entry) { 1146 unsigned AS = getContext().getTargetAddressSpace(VD->getType()); 1147 return llvm::ConstantExpr::getBitCast(Entry, DeclTy->getPointerTo(AS)); 1148 } 1149 1150 llvm::Constant *Aliasee; 1151 if (isa<llvm::FunctionType>(DeclTy)) 1152 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, 1153 GlobalDecl(cast<FunctionDecl>(VD)), 1154 /*ForVTable=*/false); 1155 else 1156 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), 1157 llvm::PointerType::getUnqual(DeclTy), 0); 1158 1159 llvm::GlobalValue* F = cast<llvm::GlobalValue>(Aliasee); 1160 F->setLinkage(llvm::Function::ExternalWeakLinkage); 1161 WeakRefReferences.insert(F); 1162 1163 return Aliasee; 1164 } 1165 1166 void CodeGenModule::EmitGlobal(GlobalDecl GD) { 1167 const ValueDecl *Global = cast<ValueDecl>(GD.getDecl()); 1168 1169 // Weak references don't produce any output by themselves. 1170 if (Global->hasAttr<WeakRefAttr>()) 1171 return; 1172 1173 // If this is an alias definition (which otherwise looks like a declaration) 1174 // emit it now. 1175 if (Global->hasAttr<AliasAttr>()) 1176 return EmitAliasDefinition(GD); 1177 1178 // If this is CUDA, be selective about which declarations we emit. 1179 if (LangOpts.CUDA) { 1180 if (CodeGenOpts.CUDAIsDevice) { 1181 if (!Global->hasAttr<CUDADeviceAttr>() && 1182 !Global->hasAttr<CUDAGlobalAttr>() && 1183 !Global->hasAttr<CUDAConstantAttr>() && 1184 !Global->hasAttr<CUDASharedAttr>()) 1185 return; 1186 } else { 1187 if (!Global->hasAttr<CUDAHostAttr>() && ( 1188 Global->hasAttr<CUDADeviceAttr>() || 1189 Global->hasAttr<CUDAConstantAttr>() || 1190 Global->hasAttr<CUDASharedAttr>())) 1191 return; 1192 } 1193 } 1194 1195 // Ignore declarations, they will be emitted on their first use. 1196 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) { 1197 // Forward declarations are emitted lazily on first use. 1198 if (!FD->doesThisDeclarationHaveABody()) { 1199 if (!FD->doesDeclarationForceExternallyVisibleDefinition()) 1200 return; 1201 1202 const FunctionDecl *InlineDefinition = 0; 1203 FD->getBody(InlineDefinition); 1204 1205 StringRef MangledName = getMangledName(GD); 1206 DeferredDecls.erase(MangledName); 1207 EmitGlobalDefinition(InlineDefinition); 1208 return; 1209 } 1210 } else { 1211 const VarDecl *VD = cast<VarDecl>(Global); 1212 assert(VD->isFileVarDecl() && "Cannot emit local var decl as global."); 1213 1214 if (VD->isThisDeclarationADefinition() != VarDecl::Definition) 1215 return; 1216 } 1217 1218 // Defer code generation when possible if this is a static definition, inline 1219 // function etc. These we only want to emit if they are used. 1220 if (!MayDeferGeneration(Global)) { 1221 // Emit the definition if it can't be deferred. 1222 EmitGlobalDefinition(GD); 1223 return; 1224 } 1225 1226 // If we're deferring emission of a C++ variable with an 1227 // initializer, remember the order in which it appeared in the file. 1228 if (getLangOpts().CPlusPlus && isa<VarDecl>(Global) && 1229 cast<VarDecl>(Global)->hasInit()) { 1230 DelayedCXXInitPosition[Global] = CXXGlobalInits.size(); 1231 CXXGlobalInits.push_back(0); 1232 } 1233 1234 // If the value has already been used, add it directly to the 1235 // DeferredDeclsToEmit list. 1236 StringRef MangledName = getMangledName(GD); 1237 if (llvm::GlobalValue *GV = GetGlobalValue(MangledName)) 1238 addDeferredDeclToEmit(GV, GD); 1239 else { 1240 // Otherwise, remember that we saw a deferred decl with this name. The 1241 // first use of the mangled name will cause it to move into 1242 // DeferredDeclsToEmit. 1243 DeferredDecls[MangledName] = GD; 1244 } 1245 } 1246 1247 namespace { 1248 struct FunctionIsDirectlyRecursive : 1249 public RecursiveASTVisitor<FunctionIsDirectlyRecursive> { 1250 const StringRef Name; 1251 const Builtin::Context &BI; 1252 bool Result; 1253 FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C) : 1254 Name(N), BI(C), Result(false) { 1255 } 1256 typedef RecursiveASTVisitor<FunctionIsDirectlyRecursive> Base; 1257 1258 bool TraverseCallExpr(CallExpr *E) { 1259 const FunctionDecl *FD = E->getDirectCallee(); 1260 if (!FD) 1261 return true; 1262 AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>(); 1263 if (Attr && Name == Attr->getLabel()) { 1264 Result = true; 1265 return false; 1266 } 1267 unsigned BuiltinID = FD->getBuiltinID(); 1268 if (!BuiltinID) 1269 return true; 1270 StringRef BuiltinName = BI.GetName(BuiltinID); 1271 if (BuiltinName.startswith("__builtin_") && 1272 Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) { 1273 Result = true; 1274 return false; 1275 } 1276 return true; 1277 } 1278 }; 1279 } 1280 1281 // isTriviallyRecursive - Check if this function calls another 1282 // decl that, because of the asm attribute or the other decl being a builtin, 1283 // ends up pointing to itself. 1284 bool 1285 CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) { 1286 StringRef Name; 1287 if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) { 1288 // asm labels are a special kind of mangling we have to support. 1289 AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>(); 1290 if (!Attr) 1291 return false; 1292 Name = Attr->getLabel(); 1293 } else { 1294 Name = FD->getName(); 1295 } 1296 1297 FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo); 1298 Walker.TraverseFunctionDecl(const_cast<FunctionDecl*>(FD)); 1299 return Walker.Result; 1300 } 1301 1302 bool 1303 CodeGenModule::shouldEmitFunction(GlobalDecl GD) { 1304 if (getFunctionLinkage(GD) != llvm::Function::AvailableExternallyLinkage) 1305 return true; 1306 const FunctionDecl *F = cast<FunctionDecl>(GD.getDecl()); 1307 if (CodeGenOpts.OptimizationLevel == 0 && 1308 !F->hasAttr<AlwaysInlineAttr>() && !F->hasAttr<ForceInlineAttr>()) 1309 return false; 1310 // PR9614. Avoid cases where the source code is lying to us. An available 1311 // externally function should have an equivalent function somewhere else, 1312 // but a function that calls itself is clearly not equivalent to the real 1313 // implementation. 1314 // This happens in glibc's btowc and in some configure checks. 1315 return !isTriviallyRecursive(F); 1316 } 1317 1318 /// If the type for the method's class was generated by 1319 /// CGDebugInfo::createContextChain(), the cache contains only a 1320 /// limited DIType without any declarations. Since EmitFunctionStart() 1321 /// needs to find the canonical declaration for each method, we need 1322 /// to construct the complete type prior to emitting the method. 1323 void CodeGenModule::CompleteDIClassType(const CXXMethodDecl* D) { 1324 if (!D->isInstance()) 1325 return; 1326 1327 if (CGDebugInfo *DI = getModuleDebugInfo()) 1328 if (getCodeGenOpts().getDebugInfo() >= CodeGenOptions::LimitedDebugInfo) { 1329 const PointerType *ThisPtr = 1330 cast<PointerType>(D->getThisType(getContext())); 1331 DI->getOrCreateRecordType(ThisPtr->getPointeeType(), D->getLocation()); 1332 } 1333 } 1334 1335 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD, llvm::GlobalValue *GV) { 1336 const ValueDecl *D = cast<ValueDecl>(GD.getDecl()); 1337 1338 PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(), 1339 Context.getSourceManager(), 1340 "Generating code for declaration"); 1341 1342 if (isa<FunctionDecl>(D)) { 1343 // At -O0, don't generate IR for functions with available_externally 1344 // linkage. 1345 if (!shouldEmitFunction(GD)) 1346 return; 1347 1348 if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) { 1349 CompleteDIClassType(Method); 1350 // Make sure to emit the definition(s) before we emit the thunks. 1351 // This is necessary for the generation of certain thunks. 1352 if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(Method)) 1353 EmitCXXConstructor(CD, GD.getCtorType()); 1354 else if (const CXXDestructorDecl *DD =dyn_cast<CXXDestructorDecl>(Method)) 1355 EmitCXXDestructor(DD, GD.getDtorType()); 1356 else 1357 EmitGlobalFunctionDefinition(GD, GV); 1358 1359 if (Method->isVirtual()) 1360 getVTables().EmitThunks(GD); 1361 1362 return; 1363 } 1364 1365 return EmitGlobalFunctionDefinition(GD, GV); 1366 } 1367 1368 if (const VarDecl *VD = dyn_cast<VarDecl>(D)) 1369 return EmitGlobalVarDefinition(VD); 1370 1371 llvm_unreachable("Invalid argument to EmitGlobalDefinition()"); 1372 } 1373 1374 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the 1375 /// module, create and return an llvm Function with the specified type. If there 1376 /// is something in the module with the specified name, return it potentially 1377 /// bitcasted to the right type. 1378 /// 1379 /// If D is non-null, it specifies a decl that correspond to this. This is used 1380 /// to set the attributes on the function when it is first created. 1381 llvm::Constant * 1382 CodeGenModule::GetOrCreateLLVMFunction(StringRef MangledName, 1383 llvm::Type *Ty, 1384 GlobalDecl GD, bool ForVTable, 1385 bool DontDefer, 1386 llvm::AttributeSet ExtraAttrs) { 1387 const Decl *D = GD.getDecl(); 1388 1389 // Lookup the entry, lazily creating it if necessary. 1390 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 1391 if (Entry) { 1392 if (WeakRefReferences.erase(Entry)) { 1393 const FunctionDecl *FD = cast_or_null<FunctionDecl>(D); 1394 if (FD && !FD->hasAttr<WeakAttr>()) 1395 Entry->setLinkage(llvm::Function::ExternalLinkage); 1396 } 1397 1398 if (Entry->getType()->getElementType() == Ty) 1399 return Entry; 1400 1401 // Make sure the result is of the correct type. 1402 return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo()); 1403 } 1404 1405 // This function doesn't have a complete type (for example, the return 1406 // type is an incomplete struct). Use a fake type instead, and make 1407 // sure not to try to set attributes. 1408 bool IsIncompleteFunction = false; 1409 1410 llvm::FunctionType *FTy; 1411 if (isa<llvm::FunctionType>(Ty)) { 1412 FTy = cast<llvm::FunctionType>(Ty); 1413 } else { 1414 FTy = llvm::FunctionType::get(VoidTy, false); 1415 IsIncompleteFunction = true; 1416 } 1417 1418 llvm::Function *F = llvm::Function::Create(FTy, 1419 llvm::Function::ExternalLinkage, 1420 MangledName, &getModule()); 1421 assert(F->getName() == MangledName && "name was uniqued!"); 1422 if (D) 1423 SetFunctionAttributes(GD, F, IsIncompleteFunction); 1424 if (ExtraAttrs.hasAttributes(llvm::AttributeSet::FunctionIndex)) { 1425 llvm::AttrBuilder B(ExtraAttrs, llvm::AttributeSet::FunctionIndex); 1426 F->addAttributes(llvm::AttributeSet::FunctionIndex, 1427 llvm::AttributeSet::get(VMContext, 1428 llvm::AttributeSet::FunctionIndex, 1429 B)); 1430 } 1431 1432 if (!DontDefer) { 1433 // All MSVC dtors other than the base dtor are linkonce_odr and delegate to 1434 // each other bottoming out with the base dtor. Therefore we emit non-base 1435 // dtors on usage, even if there is no dtor definition in the TU. 1436 if (D && isa<CXXDestructorDecl>(D) && 1437 getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D), 1438 GD.getDtorType())) 1439 addDeferredDeclToEmit(F, GD); 1440 1441 // This is the first use or definition of a mangled name. If there is a 1442 // deferred decl with this name, remember that we need to emit it at the end 1443 // of the file. 1444 llvm::StringMap<GlobalDecl>::iterator DDI = DeferredDecls.find(MangledName); 1445 if (DDI != DeferredDecls.end()) { 1446 // Move the potentially referenced deferred decl to the 1447 // DeferredDeclsToEmit list, and remove it from DeferredDecls (since we 1448 // don't need it anymore). 1449 addDeferredDeclToEmit(F, DDI->second); 1450 DeferredDecls.erase(DDI); 1451 1452 // Otherwise, if this is a sized deallocation function, emit a weak 1453 // definition 1454 // for it at the end of the translation unit. 1455 } else if (D && cast<FunctionDecl>(D) 1456 ->getCorrespondingUnsizedGlobalDeallocationFunction()) { 1457 addDeferredDeclToEmit(F, GD); 1458 1459 // Otherwise, there are cases we have to worry about where we're 1460 // using a declaration for which we must emit a definition but where 1461 // we might not find a top-level definition: 1462 // - member functions defined inline in their classes 1463 // - friend functions defined inline in some class 1464 // - special member functions with implicit definitions 1465 // If we ever change our AST traversal to walk into class methods, 1466 // this will be unnecessary. 1467 // 1468 // We also don't emit a definition for a function if it's going to be an 1469 // entry 1470 // in a vtable, unless it's already marked as used. 1471 } else if (getLangOpts().CPlusPlus && D) { 1472 // Look for a declaration that's lexically in a record. 1473 const FunctionDecl *FD = cast<FunctionDecl>(D); 1474 FD = FD->getMostRecentDecl(); 1475 do { 1476 if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) { 1477 if (FD->isImplicit() && !ForVTable) { 1478 assert(FD->isUsed() && 1479 "Sema didn't mark implicit function as used!"); 1480 addDeferredDeclToEmit(F, GD.getWithDecl(FD)); 1481 break; 1482 } else if (FD->doesThisDeclarationHaveABody()) { 1483 addDeferredDeclToEmit(F, GD.getWithDecl(FD)); 1484 break; 1485 } 1486 } 1487 FD = FD->getPreviousDecl(); 1488 } while (FD); 1489 } 1490 } 1491 1492 // Make sure the result is of the requested type. 1493 if (!IsIncompleteFunction) { 1494 assert(F->getType()->getElementType() == Ty); 1495 return F; 1496 } 1497 1498 llvm::Type *PTy = llvm::PointerType::getUnqual(Ty); 1499 return llvm::ConstantExpr::getBitCast(F, PTy); 1500 } 1501 1502 /// GetAddrOfFunction - Return the address of the given function. If Ty is 1503 /// non-null, then this function will use the specified type if it has to 1504 /// create it (this occurs when we see a definition of the function). 1505 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD, 1506 llvm::Type *Ty, 1507 bool ForVTable, 1508 bool DontDefer) { 1509 // If there was no specific requested type, just convert it now. 1510 if (!Ty) 1511 Ty = getTypes().ConvertType(cast<ValueDecl>(GD.getDecl())->getType()); 1512 1513 StringRef MangledName = getMangledName(GD); 1514 return GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable, DontDefer); 1515 } 1516 1517 /// CreateRuntimeFunction - Create a new runtime function with the specified 1518 /// type and name. 1519 llvm::Constant * 1520 CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy, 1521 StringRef Name, 1522 llvm::AttributeSet ExtraAttrs) { 1523 llvm::Constant *C = 1524 GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false, 1525 /*DontDefer=*/false, ExtraAttrs); 1526 if (llvm::Function *F = dyn_cast<llvm::Function>(C)) 1527 if (F->empty()) 1528 F->setCallingConv(getRuntimeCC()); 1529 return C; 1530 } 1531 1532 /// isTypeConstant - Determine whether an object of this type can be emitted 1533 /// as a constant. 1534 /// 1535 /// If ExcludeCtor is true, the duration when the object's constructor runs 1536 /// will not be considered. The caller will need to verify that the object is 1537 /// not written to during its construction. 1538 bool CodeGenModule::isTypeConstant(QualType Ty, bool ExcludeCtor) { 1539 if (!Ty.isConstant(Context) && !Ty->isReferenceType()) 1540 return false; 1541 1542 if (Context.getLangOpts().CPlusPlus) { 1543 if (const CXXRecordDecl *Record 1544 = Context.getBaseElementType(Ty)->getAsCXXRecordDecl()) 1545 return ExcludeCtor && !Record->hasMutableFields() && 1546 Record->hasTrivialDestructor(); 1547 } 1548 1549 return true; 1550 } 1551 1552 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module, 1553 /// create and return an llvm GlobalVariable with the specified type. If there 1554 /// is something in the module with the specified name, return it potentially 1555 /// bitcasted to the right type. 1556 /// 1557 /// If D is non-null, it specifies a decl that correspond to this. This is used 1558 /// to set the attributes on the global when it is first created. 1559 llvm::Constant * 1560 CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName, 1561 llvm::PointerType *Ty, 1562 const VarDecl *D, 1563 bool UnnamedAddr) { 1564 // Lookup the entry, lazily creating it if necessary. 1565 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 1566 if (Entry) { 1567 if (WeakRefReferences.erase(Entry)) { 1568 if (D && !D->hasAttr<WeakAttr>()) 1569 Entry->setLinkage(llvm::Function::ExternalLinkage); 1570 } 1571 1572 if (UnnamedAddr) 1573 Entry->setUnnamedAddr(true); 1574 1575 if (Entry->getType() == Ty) 1576 return Entry; 1577 1578 // Make sure the result is of the correct type. 1579 if (Entry->getType()->getAddressSpace() != Ty->getAddressSpace()) 1580 return llvm::ConstantExpr::getAddrSpaceCast(Entry, Ty); 1581 1582 return llvm::ConstantExpr::getBitCast(Entry, Ty); 1583 } 1584 1585 unsigned AddrSpace = GetGlobalVarAddressSpace(D, Ty->getAddressSpace()); 1586 llvm::GlobalVariable *GV = 1587 new llvm::GlobalVariable(getModule(), Ty->getElementType(), false, 1588 llvm::GlobalValue::ExternalLinkage, 1589 0, MangledName, 0, 1590 llvm::GlobalVariable::NotThreadLocal, AddrSpace); 1591 1592 // This is the first use or definition of a mangled name. If there is a 1593 // deferred decl with this name, remember that we need to emit it at the end 1594 // of the file. 1595 llvm::StringMap<GlobalDecl>::iterator DDI = DeferredDecls.find(MangledName); 1596 if (DDI != DeferredDecls.end()) { 1597 // Move the potentially referenced deferred decl to the DeferredDeclsToEmit 1598 // list, and remove it from DeferredDecls (since we don't need it anymore). 1599 addDeferredDeclToEmit(GV, DDI->second); 1600 DeferredDecls.erase(DDI); 1601 } 1602 1603 // Handle things which are present even on external declarations. 1604 if (D) { 1605 // FIXME: This code is overly simple and should be merged with other global 1606 // handling. 1607 GV->setConstant(isTypeConstant(D->getType(), false)); 1608 1609 // Set linkage and visibility in case we never see a definition. 1610 LinkageInfo LV = D->getLinkageAndVisibility(); 1611 if (LV.getLinkage() != ExternalLinkage) { 1612 // Don't set internal linkage on declarations. 1613 } else { 1614 if (D->hasAttr<DLLImportAttr>()) { 1615 GV->setLinkage(llvm::GlobalValue::ExternalLinkage); 1616 GV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass); 1617 } else if (D->hasAttr<WeakAttr>() || D->isWeakImported()) 1618 GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage); 1619 1620 // Set visibility on a declaration only if it's explicit. 1621 if (LV.isVisibilityExplicit()) 1622 GV->setVisibility(GetLLVMVisibility(LV.getVisibility())); 1623 } 1624 1625 if (D->getTLSKind()) { 1626 if (D->getTLSKind() == VarDecl::TLS_Dynamic) 1627 CXXThreadLocals.push_back(std::make_pair(D, GV)); 1628 setTLSMode(GV, *D); 1629 } 1630 1631 // If required by the ABI, treat declarations of static data members with 1632 // inline initializers as definitions. 1633 if (getCXXABI().isInlineInitializedStaticDataMemberLinkOnce() && 1634 D->isStaticDataMember() && D->hasInit() && 1635 !D->isThisDeclarationADefinition()) 1636 EmitGlobalVarDefinition(D); 1637 } 1638 1639 if (AddrSpace != Ty->getAddressSpace()) 1640 return llvm::ConstantExpr::getAddrSpaceCast(GV, Ty); 1641 1642 return GV; 1643 } 1644 1645 1646 llvm::GlobalVariable * 1647 CodeGenModule::CreateOrReplaceCXXRuntimeVariable(StringRef Name, 1648 llvm::Type *Ty, 1649 llvm::GlobalValue::LinkageTypes Linkage) { 1650 llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name); 1651 llvm::GlobalVariable *OldGV = 0; 1652 1653 1654 if (GV) { 1655 // Check if the variable has the right type. 1656 if (GV->getType()->getElementType() == Ty) 1657 return GV; 1658 1659 // Because C++ name mangling, the only way we can end up with an already 1660 // existing global with the same name is if it has been declared extern "C". 1661 assert(GV->isDeclaration() && "Declaration has wrong type!"); 1662 OldGV = GV; 1663 } 1664 1665 // Create a new variable. 1666 GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true, 1667 Linkage, 0, Name); 1668 1669 if (OldGV) { 1670 // Replace occurrences of the old variable if needed. 1671 GV->takeName(OldGV); 1672 1673 if (!OldGV->use_empty()) { 1674 llvm::Constant *NewPtrForOldDecl = 1675 llvm::ConstantExpr::getBitCast(GV, OldGV->getType()); 1676 OldGV->replaceAllUsesWith(NewPtrForOldDecl); 1677 } 1678 1679 OldGV->eraseFromParent(); 1680 } 1681 1682 return GV; 1683 } 1684 1685 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the 1686 /// given global variable. If Ty is non-null and if the global doesn't exist, 1687 /// then it will be created with the specified type instead of whatever the 1688 /// normal requested type would be. 1689 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D, 1690 llvm::Type *Ty) { 1691 assert(D->hasGlobalStorage() && "Not a global variable"); 1692 QualType ASTTy = D->getType(); 1693 if (Ty == 0) 1694 Ty = getTypes().ConvertTypeForMem(ASTTy); 1695 1696 llvm::PointerType *PTy = 1697 llvm::PointerType::get(Ty, getContext().getTargetAddressSpace(ASTTy)); 1698 1699 StringRef MangledName = getMangledName(D); 1700 return GetOrCreateLLVMGlobal(MangledName, PTy, D); 1701 } 1702 1703 /// CreateRuntimeVariable - Create a new runtime global variable with the 1704 /// specified type and name. 1705 llvm::Constant * 1706 CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty, 1707 StringRef Name) { 1708 return GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), 0, 1709 true); 1710 } 1711 1712 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) { 1713 assert(!D->getInit() && "Cannot emit definite definitions here!"); 1714 1715 if (MayDeferGeneration(D)) { 1716 // If we have not seen a reference to this variable yet, place it 1717 // into the deferred declarations table to be emitted if needed 1718 // later. 1719 StringRef MangledName = getMangledName(D); 1720 if (!GetGlobalValue(MangledName)) { 1721 DeferredDecls[MangledName] = D; 1722 return; 1723 } 1724 } 1725 1726 // The tentative definition is the only definition. 1727 EmitGlobalVarDefinition(D); 1728 } 1729 1730 CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const { 1731 return Context.toCharUnitsFromBits( 1732 TheDataLayout.getTypeStoreSizeInBits(Ty)); 1733 } 1734 1735 unsigned CodeGenModule::GetGlobalVarAddressSpace(const VarDecl *D, 1736 unsigned AddrSpace) { 1737 if (LangOpts.CUDA && CodeGenOpts.CUDAIsDevice) { 1738 if (D->hasAttr<CUDAConstantAttr>()) 1739 AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_constant); 1740 else if (D->hasAttr<CUDASharedAttr>()) 1741 AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_shared); 1742 else 1743 AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_device); 1744 } 1745 1746 return AddrSpace; 1747 } 1748 1749 template<typename SomeDecl> 1750 void CodeGenModule::MaybeHandleStaticInExternC(const SomeDecl *D, 1751 llvm::GlobalValue *GV) { 1752 if (!getLangOpts().CPlusPlus) 1753 return; 1754 1755 // Must have 'used' attribute, or else inline assembly can't rely on 1756 // the name existing. 1757 if (!D->template hasAttr<UsedAttr>()) 1758 return; 1759 1760 // Must have internal linkage and an ordinary name. 1761 if (!D->getIdentifier() || D->getFormalLinkage() != InternalLinkage) 1762 return; 1763 1764 // Must be in an extern "C" context. Entities declared directly within 1765 // a record are not extern "C" even if the record is in such a context. 1766 const SomeDecl *First = D->getFirstDecl(); 1767 if (First->getDeclContext()->isRecord() || !First->isInExternCContext()) 1768 return; 1769 1770 // OK, this is an internal linkage entity inside an extern "C" linkage 1771 // specification. Make a note of that so we can give it the "expected" 1772 // mangled name if nothing else is using that name. 1773 std::pair<StaticExternCMap::iterator, bool> R = 1774 StaticExternCValues.insert(std::make_pair(D->getIdentifier(), GV)); 1775 1776 // If we have multiple internal linkage entities with the same name 1777 // in extern "C" regions, none of them gets that name. 1778 if (!R.second) 1779 R.first->second = 0; 1780 } 1781 1782 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D) { 1783 llvm::Constant *Init = 0; 1784 QualType ASTTy = D->getType(); 1785 CXXRecordDecl *RD = ASTTy->getBaseElementTypeUnsafe()->getAsCXXRecordDecl(); 1786 bool NeedsGlobalCtor = false; 1787 bool NeedsGlobalDtor = RD && !RD->hasTrivialDestructor(); 1788 1789 const VarDecl *InitDecl; 1790 const Expr *InitExpr = D->getAnyInitializer(InitDecl); 1791 1792 if (!InitExpr) { 1793 // This is a tentative definition; tentative definitions are 1794 // implicitly initialized with { 0 }. 1795 // 1796 // Note that tentative definitions are only emitted at the end of 1797 // a translation unit, so they should never have incomplete 1798 // type. In addition, EmitTentativeDefinition makes sure that we 1799 // never attempt to emit a tentative definition if a real one 1800 // exists. A use may still exists, however, so we still may need 1801 // to do a RAUW. 1802 assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type"); 1803 Init = EmitNullConstant(D->getType()); 1804 } else { 1805 initializedGlobalDecl = GlobalDecl(D); 1806 Init = EmitConstantInit(*InitDecl); 1807 1808 if (!Init) { 1809 QualType T = InitExpr->getType(); 1810 if (D->getType()->isReferenceType()) 1811 T = D->getType(); 1812 1813 if (getLangOpts().CPlusPlus) { 1814 Init = EmitNullConstant(T); 1815 NeedsGlobalCtor = true; 1816 } else { 1817 ErrorUnsupported(D, "static initializer"); 1818 Init = llvm::UndefValue::get(getTypes().ConvertType(T)); 1819 } 1820 } else { 1821 // We don't need an initializer, so remove the entry for the delayed 1822 // initializer position (just in case this entry was delayed) if we 1823 // also don't need to register a destructor. 1824 if (getLangOpts().CPlusPlus && !NeedsGlobalDtor) 1825 DelayedCXXInitPosition.erase(D); 1826 } 1827 } 1828 1829 llvm::Type* InitType = Init->getType(); 1830 llvm::Constant *Entry = GetAddrOfGlobalVar(D, InitType); 1831 1832 // Strip off a bitcast if we got one back. 1833 if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) { 1834 assert(CE->getOpcode() == llvm::Instruction::BitCast || 1835 CE->getOpcode() == llvm::Instruction::AddrSpaceCast || 1836 // All zero index gep. 1837 CE->getOpcode() == llvm::Instruction::GetElementPtr); 1838 Entry = CE->getOperand(0); 1839 } 1840 1841 // Entry is now either a Function or GlobalVariable. 1842 llvm::GlobalVariable *GV = dyn_cast<llvm::GlobalVariable>(Entry); 1843 1844 // We have a definition after a declaration with the wrong type. 1845 // We must make a new GlobalVariable* and update everything that used OldGV 1846 // (a declaration or tentative definition) with the new GlobalVariable* 1847 // (which will be a definition). 1848 // 1849 // This happens if there is a prototype for a global (e.g. 1850 // "extern int x[];") and then a definition of a different type (e.g. 1851 // "int x[10];"). This also happens when an initializer has a different type 1852 // from the type of the global (this happens with unions). 1853 if (GV == 0 || 1854 GV->getType()->getElementType() != InitType || 1855 GV->getType()->getAddressSpace() != 1856 GetGlobalVarAddressSpace(D, getContext().getTargetAddressSpace(ASTTy))) { 1857 1858 // Move the old entry aside so that we'll create a new one. 1859 Entry->setName(StringRef()); 1860 1861 // Make a new global with the correct type, this is now guaranteed to work. 1862 GV = cast<llvm::GlobalVariable>(GetAddrOfGlobalVar(D, InitType)); 1863 1864 // Replace all uses of the old global with the new global 1865 llvm::Constant *NewPtrForOldDecl = 1866 llvm::ConstantExpr::getBitCast(GV, Entry->getType()); 1867 Entry->replaceAllUsesWith(NewPtrForOldDecl); 1868 1869 // Erase the old global, since it is no longer used. 1870 cast<llvm::GlobalValue>(Entry)->eraseFromParent(); 1871 } 1872 1873 MaybeHandleStaticInExternC(D, GV); 1874 1875 if (D->hasAttr<AnnotateAttr>()) 1876 AddGlobalAnnotations(D, GV); 1877 1878 GV->setInitializer(Init); 1879 1880 // If it is safe to mark the global 'constant', do so now. 1881 GV->setConstant(!NeedsGlobalCtor && !NeedsGlobalDtor && 1882 isTypeConstant(D->getType(), true)); 1883 1884 GV->setAlignment(getContext().getDeclAlign(D).getQuantity()); 1885 1886 // Set the llvm linkage type as appropriate. 1887 llvm::GlobalValue::LinkageTypes Linkage = 1888 GetLLVMLinkageVarDefinition(D, GV->isConstant()); 1889 GV->setLinkage(Linkage); 1890 if (D->hasAttr<DLLImportAttr>()) 1891 GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass); 1892 else if (D->hasAttr<DLLExportAttr>()) 1893 GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass); 1894 1895 // If required by the ABI, give definitions of static data members with inline 1896 // initializers linkonce_odr linkage. 1897 if (getCXXABI().isInlineInitializedStaticDataMemberLinkOnce() && 1898 D->isStaticDataMember() && InitExpr && 1899 !InitDecl->isThisDeclarationADefinition()) 1900 GV->setLinkage(llvm::GlobalVariable::LinkOnceODRLinkage); 1901 1902 if (Linkage == llvm::GlobalVariable::CommonLinkage) 1903 // common vars aren't constant even if declared const. 1904 GV->setConstant(false); 1905 1906 SetCommonAttributes(D, GV); 1907 1908 // Emit the initializer function if necessary. 1909 if (NeedsGlobalCtor || NeedsGlobalDtor) 1910 EmitCXXGlobalVarDeclInitFunc(D, GV, NeedsGlobalCtor); 1911 1912 // If we are compiling with ASan, add metadata indicating dynamically 1913 // initialized globals. 1914 if (SanOpts.Address && NeedsGlobalCtor) { 1915 llvm::Module &M = getModule(); 1916 1917 llvm::NamedMDNode *DynamicInitializers = 1918 M.getOrInsertNamedMetadata("llvm.asan.dynamically_initialized_globals"); 1919 llvm::Value *GlobalToAdd[] = { GV }; 1920 llvm::MDNode *ThisGlobal = llvm::MDNode::get(VMContext, GlobalToAdd); 1921 DynamicInitializers->addOperand(ThisGlobal); 1922 } 1923 1924 // Emit global variable debug information. 1925 if (CGDebugInfo *DI = getModuleDebugInfo()) 1926 if (getCodeGenOpts().getDebugInfo() >= CodeGenOptions::LimitedDebugInfo) 1927 DI->EmitGlobalVariable(GV, D); 1928 } 1929 1930 llvm::GlobalValue::LinkageTypes 1931 CodeGenModule::GetLLVMLinkageVarDefinition(const VarDecl *D, bool isConstant) { 1932 GVALinkage Linkage = getContext().GetGVALinkageForVariable(D); 1933 if (Linkage == GVA_Internal) 1934 return llvm::Function::InternalLinkage; 1935 else if (D->hasAttr<DLLImportAttr>()) 1936 return llvm::Function::ExternalLinkage; 1937 else if (D->hasAttr<DLLExportAttr>()) 1938 return llvm::Function::ExternalLinkage; 1939 else if (D->hasAttr<SelectAnyAttr>()) { 1940 // selectany symbols are externally visible, so use weak instead of 1941 // linkonce. MSVC optimizes away references to const selectany globals, so 1942 // all definitions should be the same and ODR linkage should be used. 1943 // http://msdn.microsoft.com/en-us/library/5tkz6s71.aspx 1944 return llvm::GlobalVariable::WeakODRLinkage; 1945 } else if (D->hasAttr<WeakAttr>()) { 1946 if (isConstant) 1947 return llvm::GlobalVariable::WeakODRLinkage; 1948 else 1949 return llvm::GlobalVariable::WeakAnyLinkage; 1950 } else if (Linkage == GVA_TemplateInstantiation || 1951 Linkage == GVA_ExplicitTemplateInstantiation) 1952 return llvm::GlobalVariable::WeakODRLinkage; 1953 else if (!getLangOpts().CPlusPlus && 1954 ((!CodeGenOpts.NoCommon && !D->hasAttr<NoCommonAttr>()) || 1955 D->hasAttr<CommonAttr>()) && 1956 !D->hasExternalStorage() && !D->getInit() && 1957 !D->hasAttr<SectionAttr>() && !D->getTLSKind() && 1958 !D->hasAttr<WeakImportAttr>()) { 1959 // Thread local vars aren't considered common linkage. 1960 return llvm::GlobalVariable::CommonLinkage; 1961 } else if (D->getTLSKind() == VarDecl::TLS_Dynamic && 1962 getTarget().getTriple().isMacOSX()) 1963 // On Darwin, the backing variable for a C++11 thread_local variable always 1964 // has internal linkage; all accesses should just be calls to the 1965 // Itanium-specified entry point, which has the normal linkage of the 1966 // variable. 1967 return llvm::GlobalValue::InternalLinkage; 1968 return llvm::GlobalVariable::ExternalLinkage; 1969 } 1970 1971 /// Replace the uses of a function that was declared with a non-proto type. 1972 /// We want to silently drop extra arguments from call sites 1973 static void replaceUsesOfNonProtoConstant(llvm::Constant *old, 1974 llvm::Function *newFn) { 1975 // Fast path. 1976 if (old->use_empty()) return; 1977 1978 llvm::Type *newRetTy = newFn->getReturnType(); 1979 SmallVector<llvm::Value*, 4> newArgs; 1980 1981 for (llvm::Value::use_iterator ui = old->use_begin(), ue = old->use_end(); 1982 ui != ue; ) { 1983 llvm::Value::use_iterator use = ui++; // Increment before the use is erased. 1984 llvm::User *user = *use; 1985 1986 // Recognize and replace uses of bitcasts. Most calls to 1987 // unprototyped functions will use bitcasts. 1988 if (llvm::ConstantExpr *bitcast = dyn_cast<llvm::ConstantExpr>(user)) { 1989 if (bitcast->getOpcode() == llvm::Instruction::BitCast) 1990 replaceUsesOfNonProtoConstant(bitcast, newFn); 1991 continue; 1992 } 1993 1994 // Recognize calls to the function. 1995 llvm::CallSite callSite(user); 1996 if (!callSite) continue; 1997 if (!callSite.isCallee(use)) continue; 1998 1999 // If the return types don't match exactly, then we can't 2000 // transform this call unless it's dead. 2001 if (callSite->getType() != newRetTy && !callSite->use_empty()) 2002 continue; 2003 2004 // Get the call site's attribute list. 2005 SmallVector<llvm::AttributeSet, 8> newAttrs; 2006 llvm::AttributeSet oldAttrs = callSite.getAttributes(); 2007 2008 // Collect any return attributes from the call. 2009 if (oldAttrs.hasAttributes(llvm::AttributeSet::ReturnIndex)) 2010 newAttrs.push_back( 2011 llvm::AttributeSet::get(newFn->getContext(), 2012 oldAttrs.getRetAttributes())); 2013 2014 // If the function was passed too few arguments, don't transform. 2015 unsigned newNumArgs = newFn->arg_size(); 2016 if (callSite.arg_size() < newNumArgs) continue; 2017 2018 // If extra arguments were passed, we silently drop them. 2019 // If any of the types mismatch, we don't transform. 2020 unsigned argNo = 0; 2021 bool dontTransform = false; 2022 for (llvm::Function::arg_iterator ai = newFn->arg_begin(), 2023 ae = newFn->arg_end(); ai != ae; ++ai, ++argNo) { 2024 if (callSite.getArgument(argNo)->getType() != ai->getType()) { 2025 dontTransform = true; 2026 break; 2027 } 2028 2029 // Add any parameter attributes. 2030 if (oldAttrs.hasAttributes(argNo + 1)) 2031 newAttrs. 2032 push_back(llvm:: 2033 AttributeSet::get(newFn->getContext(), 2034 oldAttrs.getParamAttributes(argNo + 1))); 2035 } 2036 if (dontTransform) 2037 continue; 2038 2039 if (oldAttrs.hasAttributes(llvm::AttributeSet::FunctionIndex)) 2040 newAttrs.push_back(llvm::AttributeSet::get(newFn->getContext(), 2041 oldAttrs.getFnAttributes())); 2042 2043 // Okay, we can transform this. Create the new call instruction and copy 2044 // over the required information. 2045 newArgs.append(callSite.arg_begin(), callSite.arg_begin() + argNo); 2046 2047 llvm::CallSite newCall; 2048 if (callSite.isCall()) { 2049 newCall = llvm::CallInst::Create(newFn, newArgs, "", 2050 callSite.getInstruction()); 2051 } else { 2052 llvm::InvokeInst *oldInvoke = 2053 cast<llvm::InvokeInst>(callSite.getInstruction()); 2054 newCall = llvm::InvokeInst::Create(newFn, 2055 oldInvoke->getNormalDest(), 2056 oldInvoke->getUnwindDest(), 2057 newArgs, "", 2058 callSite.getInstruction()); 2059 } 2060 newArgs.clear(); // for the next iteration 2061 2062 if (!newCall->getType()->isVoidTy()) 2063 newCall->takeName(callSite.getInstruction()); 2064 newCall.setAttributes( 2065 llvm::AttributeSet::get(newFn->getContext(), newAttrs)); 2066 newCall.setCallingConv(callSite.getCallingConv()); 2067 2068 // Finally, remove the old call, replacing any uses with the new one. 2069 if (!callSite->use_empty()) 2070 callSite->replaceAllUsesWith(newCall.getInstruction()); 2071 2072 // Copy debug location attached to CI. 2073 if (!callSite->getDebugLoc().isUnknown()) 2074 newCall->setDebugLoc(callSite->getDebugLoc()); 2075 callSite->eraseFromParent(); 2076 } 2077 } 2078 2079 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we 2080 /// implement a function with no prototype, e.g. "int foo() {}". If there are 2081 /// existing call uses of the old function in the module, this adjusts them to 2082 /// call the new function directly. 2083 /// 2084 /// This is not just a cleanup: the always_inline pass requires direct calls to 2085 /// functions to be able to inline them. If there is a bitcast in the way, it 2086 /// won't inline them. Instcombine normally deletes these calls, but it isn't 2087 /// run at -O0. 2088 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old, 2089 llvm::Function *NewFn) { 2090 // If we're redefining a global as a function, don't transform it. 2091 if (!isa<llvm::Function>(Old)) return; 2092 2093 replaceUsesOfNonProtoConstant(Old, NewFn); 2094 } 2095 2096 void CodeGenModule::HandleCXXStaticMemberVarInstantiation(VarDecl *VD) { 2097 TemplateSpecializationKind TSK = VD->getTemplateSpecializationKind(); 2098 // If we have a definition, this might be a deferred decl. If the 2099 // instantiation is explicit, make sure we emit it at the end. 2100 if (VD->getDefinition() && TSK == TSK_ExplicitInstantiationDefinition) 2101 GetAddrOfGlobalVar(VD); 2102 2103 EmitTopLevelDecl(VD); 2104 } 2105 2106 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD, 2107 llvm::GlobalValue *GV) { 2108 const FunctionDecl *D = cast<FunctionDecl>(GD.getDecl()); 2109 2110 // Compute the function info and LLVM type. 2111 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 2112 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 2113 2114 // Get or create the prototype for the function. 2115 llvm::Constant *Entry = 2116 GV ? GV 2117 : GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer*/ true); 2118 2119 // Strip off a bitcast if we got one back. 2120 if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) { 2121 assert(CE->getOpcode() == llvm::Instruction::BitCast); 2122 Entry = CE->getOperand(0); 2123 } 2124 2125 if (!cast<llvm::GlobalValue>(Entry)->isDeclaration()) { 2126 getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name); 2127 return; 2128 } 2129 2130 if (cast<llvm::GlobalValue>(Entry)->getType()->getElementType() != Ty) { 2131 llvm::GlobalValue *OldFn = cast<llvm::GlobalValue>(Entry); 2132 2133 // If the types mismatch then we have to rewrite the definition. 2134 assert(OldFn->isDeclaration() && 2135 "Shouldn't replace non-declaration"); 2136 2137 // F is the Function* for the one with the wrong type, we must make a new 2138 // Function* and update everything that used F (a declaration) with the new 2139 // Function* (which will be a definition). 2140 // 2141 // This happens if there is a prototype for a function 2142 // (e.g. "int f()") and then a definition of a different type 2143 // (e.g. "int f(int x)"). Move the old function aside so that it 2144 // doesn't interfere with GetAddrOfFunction. 2145 OldFn->setName(StringRef()); 2146 llvm::Function *NewFn = cast<llvm::Function>(GetAddrOfFunction(GD, Ty)); 2147 2148 // This might be an implementation of a function without a 2149 // prototype, in which case, try to do special replacement of 2150 // calls which match the new prototype. The really key thing here 2151 // is that we also potentially drop arguments from the call site 2152 // so as to make a direct call, which makes the inliner happier 2153 // and suppresses a number of optimizer warnings (!) about 2154 // dropping arguments. 2155 if (!OldFn->use_empty()) { 2156 ReplaceUsesOfNonProtoTypeWithRealFunction(OldFn, NewFn); 2157 OldFn->removeDeadConstantUsers(); 2158 } 2159 2160 // Replace uses of F with the Function we will endow with a body. 2161 if (!Entry->use_empty()) { 2162 llvm::Constant *NewPtrForOldDecl = 2163 llvm::ConstantExpr::getBitCast(NewFn, Entry->getType()); 2164 Entry->replaceAllUsesWith(NewPtrForOldDecl); 2165 } 2166 2167 // Ok, delete the old function now, which is dead. 2168 OldFn->eraseFromParent(); 2169 2170 Entry = NewFn; 2171 } 2172 2173 // We need to set linkage and visibility on the function before 2174 // generating code for it because various parts of IR generation 2175 // want to propagate this information down (e.g. to local static 2176 // declarations). 2177 llvm::Function *Fn = cast<llvm::Function>(Entry); 2178 setFunctionLinkage(GD, Fn); 2179 2180 // FIXME: this is redundant with part of SetFunctionDefinitionAttributes 2181 setGlobalVisibility(Fn, D); 2182 2183 MaybeHandleStaticInExternC(D, Fn); 2184 2185 CodeGenFunction(*this).GenerateCode(D, Fn, FI); 2186 2187 SetFunctionDefinitionAttributes(D, Fn); 2188 SetLLVMFunctionAttributesForDefinition(D, Fn); 2189 2190 if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>()) 2191 AddGlobalCtor(Fn, CA->getPriority()); 2192 if (const DestructorAttr *DA = D->getAttr<DestructorAttr>()) 2193 AddGlobalDtor(Fn, DA->getPriority()); 2194 if (D->hasAttr<AnnotateAttr>()) 2195 AddGlobalAnnotations(D, Fn); 2196 2197 llvm::Function *PGOInit = CodeGenPGO::emitInitialization(*this); 2198 if (PGOInit) 2199 AddGlobalCtor(PGOInit, 0); 2200 } 2201 2202 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) { 2203 const ValueDecl *D = cast<ValueDecl>(GD.getDecl()); 2204 const AliasAttr *AA = D->getAttr<AliasAttr>(); 2205 assert(AA && "Not an alias?"); 2206 2207 StringRef MangledName = getMangledName(GD); 2208 2209 // If there is a definition in the module, then it wins over the alias. 2210 // This is dubious, but allow it to be safe. Just ignore the alias. 2211 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 2212 if (Entry && !Entry->isDeclaration()) 2213 return; 2214 2215 Aliases.push_back(GD); 2216 2217 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType()); 2218 2219 // Create a reference to the named value. This ensures that it is emitted 2220 // if a deferred decl. 2221 llvm::Constant *Aliasee; 2222 if (isa<llvm::FunctionType>(DeclTy)) 2223 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GD, 2224 /*ForVTable=*/false); 2225 else 2226 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), 2227 llvm::PointerType::getUnqual(DeclTy), 0); 2228 2229 // Create the new alias itself, but don't set a name yet. 2230 llvm::GlobalValue *GA = 2231 new llvm::GlobalAlias(Aliasee->getType(), 2232 llvm::Function::ExternalLinkage, 2233 "", Aliasee, &getModule()); 2234 2235 if (Entry) { 2236 assert(Entry->isDeclaration()); 2237 2238 // If there is a declaration in the module, then we had an extern followed 2239 // by the alias, as in: 2240 // extern int test6(); 2241 // ... 2242 // int test6() __attribute__((alias("test7"))); 2243 // 2244 // Remove it and replace uses of it with the alias. 2245 GA->takeName(Entry); 2246 2247 Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA, 2248 Entry->getType())); 2249 Entry->eraseFromParent(); 2250 } else { 2251 GA->setName(MangledName); 2252 } 2253 2254 // Set attributes which are particular to an alias; this is a 2255 // specialization of the attributes which may be set on a global 2256 // variable/function. 2257 if (D->hasAttr<DLLExportAttr>()) { 2258 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { 2259 // The dllexport attribute is ignored for undefined symbols. 2260 if (FD->hasBody()) 2261 GA->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass); 2262 } else { 2263 GA->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass); 2264 } 2265 } else if (D->hasAttr<WeakAttr>() || 2266 D->hasAttr<WeakRefAttr>() || 2267 D->isWeakImported()) { 2268 GA->setLinkage(llvm::Function::WeakAnyLinkage); 2269 } 2270 2271 SetCommonAttributes(D, GA); 2272 } 2273 2274 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID, 2275 ArrayRef<llvm::Type*> Tys) { 2276 return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID, 2277 Tys); 2278 } 2279 2280 static llvm::StringMapEntry<llvm::Constant*> & 2281 GetConstantCFStringEntry(llvm::StringMap<llvm::Constant*> &Map, 2282 const StringLiteral *Literal, 2283 bool TargetIsLSB, 2284 bool &IsUTF16, 2285 unsigned &StringLength) { 2286 StringRef String = Literal->getString(); 2287 unsigned NumBytes = String.size(); 2288 2289 // Check for simple case. 2290 if (!Literal->containsNonAsciiOrNull()) { 2291 StringLength = NumBytes; 2292 return Map.GetOrCreateValue(String); 2293 } 2294 2295 // Otherwise, convert the UTF8 literals into a string of shorts. 2296 IsUTF16 = true; 2297 2298 SmallVector<UTF16, 128> ToBuf(NumBytes + 1); // +1 for ending nulls. 2299 const UTF8 *FromPtr = (const UTF8 *)String.data(); 2300 UTF16 *ToPtr = &ToBuf[0]; 2301 2302 (void)ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, 2303 &ToPtr, ToPtr + NumBytes, 2304 strictConversion); 2305 2306 // ConvertUTF8toUTF16 returns the length in ToPtr. 2307 StringLength = ToPtr - &ToBuf[0]; 2308 2309 // Add an explicit null. 2310 *ToPtr = 0; 2311 return Map. 2312 GetOrCreateValue(StringRef(reinterpret_cast<const char *>(ToBuf.data()), 2313 (StringLength + 1) * 2)); 2314 } 2315 2316 static llvm::StringMapEntry<llvm::Constant*> & 2317 GetConstantStringEntry(llvm::StringMap<llvm::Constant*> &Map, 2318 const StringLiteral *Literal, 2319 unsigned &StringLength) { 2320 StringRef String = Literal->getString(); 2321 StringLength = String.size(); 2322 return Map.GetOrCreateValue(String); 2323 } 2324 2325 llvm::Constant * 2326 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) { 2327 unsigned StringLength = 0; 2328 bool isUTF16 = false; 2329 llvm::StringMapEntry<llvm::Constant*> &Entry = 2330 GetConstantCFStringEntry(CFConstantStringMap, Literal, 2331 getDataLayout().isLittleEndian(), 2332 isUTF16, StringLength); 2333 2334 if (llvm::Constant *C = Entry.getValue()) 2335 return C; 2336 2337 llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty); 2338 llvm::Constant *Zeros[] = { Zero, Zero }; 2339 llvm::Value *V; 2340 2341 // If we don't already have it, get __CFConstantStringClassReference. 2342 if (!CFConstantStringClassRef) { 2343 llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy); 2344 Ty = llvm::ArrayType::get(Ty, 0); 2345 llvm::Constant *GV = CreateRuntimeVariable(Ty, 2346 "__CFConstantStringClassReference"); 2347 // Decay array -> ptr 2348 V = llvm::ConstantExpr::getGetElementPtr(GV, Zeros); 2349 CFConstantStringClassRef = V; 2350 } 2351 else 2352 V = CFConstantStringClassRef; 2353 2354 QualType CFTy = getContext().getCFConstantStringType(); 2355 2356 llvm::StructType *STy = 2357 cast<llvm::StructType>(getTypes().ConvertType(CFTy)); 2358 2359 llvm::Constant *Fields[4]; 2360 2361 // Class pointer. 2362 Fields[0] = cast<llvm::ConstantExpr>(V); 2363 2364 // Flags. 2365 llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy); 2366 Fields[1] = isUTF16 ? llvm::ConstantInt::get(Ty, 0x07d0) : 2367 llvm::ConstantInt::get(Ty, 0x07C8); 2368 2369 // String pointer. 2370 llvm::Constant *C = 0; 2371 if (isUTF16) { 2372 ArrayRef<uint16_t> Arr = 2373 llvm::makeArrayRef<uint16_t>(reinterpret_cast<uint16_t*>( 2374 const_cast<char *>(Entry.getKey().data())), 2375 Entry.getKey().size() / 2); 2376 C = llvm::ConstantDataArray::get(VMContext, Arr); 2377 } else { 2378 C = llvm::ConstantDataArray::getString(VMContext, Entry.getKey()); 2379 } 2380 2381 llvm::GlobalValue::LinkageTypes Linkage; 2382 if (isUTF16) 2383 // FIXME: why do utf strings get "_" labels instead of "L" labels? 2384 Linkage = llvm::GlobalValue::InternalLinkage; 2385 else 2386 Linkage = llvm::GlobalValue::PrivateLinkage; 2387 2388 // Note: -fwritable-strings doesn't make the backing store strings of 2389 // CFStrings writable. (See <rdar://problem/10657500>) 2390 llvm::GlobalVariable *GV = 2391 new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true, 2392 Linkage, C, ".str"); 2393 GV->setUnnamedAddr(true); 2394 // Don't enforce the target's minimum global alignment, since the only use 2395 // of the string is via this class initializer. 2396 // FIXME: We set the section explicitly to avoid a bug in ld64 224.1. Without 2397 // it LLVM can merge the string with a non unnamed_addr one during LTO. Doing 2398 // that changes the section it ends in, which surprises ld64. 2399 if (isUTF16) { 2400 CharUnits Align = getContext().getTypeAlignInChars(getContext().ShortTy); 2401 GV->setAlignment(Align.getQuantity()); 2402 GV->setSection("__TEXT,__ustring"); 2403 } else { 2404 CharUnits Align = getContext().getTypeAlignInChars(getContext().CharTy); 2405 GV->setAlignment(Align.getQuantity()); 2406 GV->setSection("__TEXT,__cstring,cstring_literals"); 2407 } 2408 2409 // String. 2410 Fields[2] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros); 2411 2412 if (isUTF16) 2413 // Cast the UTF16 string to the correct type. 2414 Fields[2] = llvm::ConstantExpr::getBitCast(Fields[2], Int8PtrTy); 2415 2416 // String length. 2417 Ty = getTypes().ConvertType(getContext().LongTy); 2418 Fields[3] = llvm::ConstantInt::get(Ty, StringLength); 2419 2420 // The struct. 2421 C = llvm::ConstantStruct::get(STy, Fields); 2422 GV = new llvm::GlobalVariable(getModule(), C->getType(), true, 2423 llvm::GlobalVariable::PrivateLinkage, C, 2424 "_unnamed_cfstring_"); 2425 GV->setSection("__DATA,__cfstring"); 2426 Entry.setValue(GV); 2427 2428 return GV; 2429 } 2430 2431 llvm::Constant * 2432 CodeGenModule::GetAddrOfConstantString(const StringLiteral *Literal) { 2433 unsigned StringLength = 0; 2434 llvm::StringMapEntry<llvm::Constant*> &Entry = 2435 GetConstantStringEntry(CFConstantStringMap, Literal, StringLength); 2436 2437 if (llvm::Constant *C = Entry.getValue()) 2438 return C; 2439 2440 llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty); 2441 llvm::Constant *Zeros[] = { Zero, Zero }; 2442 llvm::Value *V; 2443 // If we don't already have it, get _NSConstantStringClassReference. 2444 if (!ConstantStringClassRef) { 2445 std::string StringClass(getLangOpts().ObjCConstantStringClass); 2446 llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy); 2447 llvm::Constant *GV; 2448 if (LangOpts.ObjCRuntime.isNonFragile()) { 2449 std::string str = 2450 StringClass.empty() ? "OBJC_CLASS_$_NSConstantString" 2451 : "OBJC_CLASS_$_" + StringClass; 2452 GV = getObjCRuntime().GetClassGlobal(str); 2453 // Make sure the result is of the correct type. 2454 llvm::Type *PTy = llvm::PointerType::getUnqual(Ty); 2455 V = llvm::ConstantExpr::getBitCast(GV, PTy); 2456 ConstantStringClassRef = V; 2457 } else { 2458 std::string str = 2459 StringClass.empty() ? "_NSConstantStringClassReference" 2460 : "_" + StringClass + "ClassReference"; 2461 llvm::Type *PTy = llvm::ArrayType::get(Ty, 0); 2462 GV = CreateRuntimeVariable(PTy, str); 2463 // Decay array -> ptr 2464 V = llvm::ConstantExpr::getGetElementPtr(GV, Zeros); 2465 ConstantStringClassRef = V; 2466 } 2467 } 2468 else 2469 V = ConstantStringClassRef; 2470 2471 if (!NSConstantStringType) { 2472 // Construct the type for a constant NSString. 2473 RecordDecl *D = Context.buildImplicitRecord("__builtin_NSString"); 2474 D->startDefinition(); 2475 2476 QualType FieldTypes[3]; 2477 2478 // const int *isa; 2479 FieldTypes[0] = Context.getPointerType(Context.IntTy.withConst()); 2480 // const char *str; 2481 FieldTypes[1] = Context.getPointerType(Context.CharTy.withConst()); 2482 // unsigned int length; 2483 FieldTypes[2] = Context.UnsignedIntTy; 2484 2485 // Create fields 2486 for (unsigned i = 0; i < 3; ++i) { 2487 FieldDecl *Field = FieldDecl::Create(Context, D, 2488 SourceLocation(), 2489 SourceLocation(), 0, 2490 FieldTypes[i], /*TInfo=*/0, 2491 /*BitWidth=*/0, 2492 /*Mutable=*/false, 2493 ICIS_NoInit); 2494 Field->setAccess(AS_public); 2495 D->addDecl(Field); 2496 } 2497 2498 D->completeDefinition(); 2499 QualType NSTy = Context.getTagDeclType(D); 2500 NSConstantStringType = cast<llvm::StructType>(getTypes().ConvertType(NSTy)); 2501 } 2502 2503 llvm::Constant *Fields[3]; 2504 2505 // Class pointer. 2506 Fields[0] = cast<llvm::ConstantExpr>(V); 2507 2508 // String pointer. 2509 llvm::Constant *C = 2510 llvm::ConstantDataArray::getString(VMContext, Entry.getKey()); 2511 2512 llvm::GlobalValue::LinkageTypes Linkage; 2513 bool isConstant; 2514 Linkage = llvm::GlobalValue::PrivateLinkage; 2515 isConstant = !LangOpts.WritableStrings; 2516 2517 llvm::GlobalVariable *GV = 2518 new llvm::GlobalVariable(getModule(), C->getType(), isConstant, Linkage, C, 2519 ".str"); 2520 GV->setUnnamedAddr(true); 2521 // Don't enforce the target's minimum global alignment, since the only use 2522 // of the string is via this class initializer. 2523 CharUnits Align = getContext().getTypeAlignInChars(getContext().CharTy); 2524 GV->setAlignment(Align.getQuantity()); 2525 Fields[1] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros); 2526 2527 // String length. 2528 llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy); 2529 Fields[2] = llvm::ConstantInt::get(Ty, StringLength); 2530 2531 // The struct. 2532 C = llvm::ConstantStruct::get(NSConstantStringType, Fields); 2533 GV = new llvm::GlobalVariable(getModule(), C->getType(), true, 2534 llvm::GlobalVariable::PrivateLinkage, C, 2535 "_unnamed_nsstring_"); 2536 const char *NSStringSection = "__OBJC,__cstring_object,regular,no_dead_strip"; 2537 const char *NSStringNonFragileABISection = 2538 "__DATA,__objc_stringobj,regular,no_dead_strip"; 2539 // FIXME. Fix section. 2540 GV->setSection(LangOpts.ObjCRuntime.isNonFragile() 2541 ? NSStringNonFragileABISection 2542 : NSStringSection); 2543 Entry.setValue(GV); 2544 2545 return GV; 2546 } 2547 2548 QualType CodeGenModule::getObjCFastEnumerationStateType() { 2549 if (ObjCFastEnumerationStateType.isNull()) { 2550 RecordDecl *D = Context.buildImplicitRecord("__objcFastEnumerationState"); 2551 D->startDefinition(); 2552 2553 QualType FieldTypes[] = { 2554 Context.UnsignedLongTy, 2555 Context.getPointerType(Context.getObjCIdType()), 2556 Context.getPointerType(Context.UnsignedLongTy), 2557 Context.getConstantArrayType(Context.UnsignedLongTy, 2558 llvm::APInt(32, 5), ArrayType::Normal, 0) 2559 }; 2560 2561 for (size_t i = 0; i < 4; ++i) { 2562 FieldDecl *Field = FieldDecl::Create(Context, 2563 D, 2564 SourceLocation(), 2565 SourceLocation(), 0, 2566 FieldTypes[i], /*TInfo=*/0, 2567 /*BitWidth=*/0, 2568 /*Mutable=*/false, 2569 ICIS_NoInit); 2570 Field->setAccess(AS_public); 2571 D->addDecl(Field); 2572 } 2573 2574 D->completeDefinition(); 2575 ObjCFastEnumerationStateType = Context.getTagDeclType(D); 2576 } 2577 2578 return ObjCFastEnumerationStateType; 2579 } 2580 2581 llvm::Constant * 2582 CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) { 2583 assert(!E->getType()->isPointerType() && "Strings are always arrays"); 2584 2585 // Don't emit it as the address of the string, emit the string data itself 2586 // as an inline array. 2587 if (E->getCharByteWidth() == 1) { 2588 SmallString<64> Str(E->getString()); 2589 2590 // Resize the string to the right size, which is indicated by its type. 2591 const ConstantArrayType *CAT = Context.getAsConstantArrayType(E->getType()); 2592 Str.resize(CAT->getSize().getZExtValue()); 2593 return llvm::ConstantDataArray::getString(VMContext, Str, false); 2594 } 2595 2596 llvm::ArrayType *AType = 2597 cast<llvm::ArrayType>(getTypes().ConvertType(E->getType())); 2598 llvm::Type *ElemTy = AType->getElementType(); 2599 unsigned NumElements = AType->getNumElements(); 2600 2601 // Wide strings have either 2-byte or 4-byte elements. 2602 if (ElemTy->getPrimitiveSizeInBits() == 16) { 2603 SmallVector<uint16_t, 32> Elements; 2604 Elements.reserve(NumElements); 2605 2606 for(unsigned i = 0, e = E->getLength(); i != e; ++i) 2607 Elements.push_back(E->getCodeUnit(i)); 2608 Elements.resize(NumElements); 2609 return llvm::ConstantDataArray::get(VMContext, Elements); 2610 } 2611 2612 assert(ElemTy->getPrimitiveSizeInBits() == 32); 2613 SmallVector<uint32_t, 32> Elements; 2614 Elements.reserve(NumElements); 2615 2616 for(unsigned i = 0, e = E->getLength(); i != e; ++i) 2617 Elements.push_back(E->getCodeUnit(i)); 2618 Elements.resize(NumElements); 2619 return llvm::ConstantDataArray::get(VMContext, Elements); 2620 } 2621 2622 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a 2623 /// constant array for the given string literal. 2624 llvm::Constant * 2625 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S) { 2626 CharUnits Align = getContext().getAlignOfGlobalVarInChars(S->getType()); 2627 if (S->isAscii() || S->isUTF8()) { 2628 SmallString<64> Str(S->getString()); 2629 2630 // Resize the string to the right size, which is indicated by its type. 2631 const ConstantArrayType *CAT = Context.getAsConstantArrayType(S->getType()); 2632 Str.resize(CAT->getSize().getZExtValue()); 2633 return GetAddrOfConstantString(Str, /*GlobalName*/ 0, Align.getQuantity()); 2634 } 2635 2636 // FIXME: the following does not memoize wide strings. 2637 llvm::Constant *C = GetConstantArrayFromStringLiteral(S); 2638 llvm::GlobalVariable *GV = 2639 new llvm::GlobalVariable(getModule(),C->getType(), 2640 !LangOpts.WritableStrings, 2641 llvm::GlobalValue::PrivateLinkage, 2642 C,".str"); 2643 2644 GV->setAlignment(Align.getQuantity()); 2645 GV->setUnnamedAddr(true); 2646 return GV; 2647 } 2648 2649 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant 2650 /// array for the given ObjCEncodeExpr node. 2651 llvm::Constant * 2652 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) { 2653 std::string Str; 2654 getContext().getObjCEncodingForType(E->getEncodedType(), Str); 2655 2656 return GetAddrOfConstantCString(Str); 2657 } 2658 2659 2660 /// GenerateWritableString -- Creates storage for a string literal. 2661 static llvm::GlobalVariable *GenerateStringLiteral(StringRef str, 2662 bool constant, 2663 CodeGenModule &CGM, 2664 const char *GlobalName, 2665 unsigned Alignment) { 2666 // Create Constant for this string literal. Don't add a '\0'. 2667 llvm::Constant *C = 2668 llvm::ConstantDataArray::getString(CGM.getLLVMContext(), str, false); 2669 2670 // OpenCL v1.1 s6.5.3: a string literal is in the constant address space. 2671 unsigned AddrSpace = 0; 2672 if (CGM.getLangOpts().OpenCL) 2673 AddrSpace = CGM.getContext().getTargetAddressSpace(LangAS::opencl_constant); 2674 2675 // Create a global variable for this string 2676 llvm::GlobalVariable *GV = new llvm::GlobalVariable( 2677 CGM.getModule(), C->getType(), constant, 2678 llvm::GlobalValue::PrivateLinkage, C, GlobalName, 0, 2679 llvm::GlobalVariable::NotThreadLocal, AddrSpace); 2680 GV->setAlignment(Alignment); 2681 GV->setUnnamedAddr(true); 2682 return GV; 2683 } 2684 2685 /// GetAddrOfConstantString - Returns a pointer to a character array 2686 /// containing the literal. This contents are exactly that of the 2687 /// given string, i.e. it will not be null terminated automatically; 2688 /// see GetAddrOfConstantCString. Note that whether the result is 2689 /// actually a pointer to an LLVM constant depends on 2690 /// Feature.WriteableStrings. 2691 /// 2692 /// The result has pointer to array type. 2693 llvm::Constant *CodeGenModule::GetAddrOfConstantString(StringRef Str, 2694 const char *GlobalName, 2695 unsigned Alignment) { 2696 // Get the default prefix if a name wasn't specified. 2697 if (!GlobalName) 2698 GlobalName = ".str"; 2699 2700 if (Alignment == 0) 2701 Alignment = getContext().getAlignOfGlobalVarInChars(getContext().CharTy) 2702 .getQuantity(); 2703 2704 // Don't share any string literals if strings aren't constant. 2705 if (LangOpts.WritableStrings) 2706 return GenerateStringLiteral(Str, false, *this, GlobalName, Alignment); 2707 2708 llvm::StringMapEntry<llvm::GlobalVariable *> &Entry = 2709 ConstantStringMap.GetOrCreateValue(Str); 2710 2711 if (llvm::GlobalVariable *GV = Entry.getValue()) { 2712 if (Alignment > GV->getAlignment()) { 2713 GV->setAlignment(Alignment); 2714 } 2715 return GV; 2716 } 2717 2718 // Create a global variable for this. 2719 llvm::GlobalVariable *GV = GenerateStringLiteral(Str, true, *this, GlobalName, 2720 Alignment); 2721 Entry.setValue(GV); 2722 return GV; 2723 } 2724 2725 /// GetAddrOfConstantCString - Returns a pointer to a character 2726 /// array containing the literal and a terminating '\0' 2727 /// character. The result has pointer to array type. 2728 llvm::Constant *CodeGenModule::GetAddrOfConstantCString(const std::string &Str, 2729 const char *GlobalName, 2730 unsigned Alignment) { 2731 StringRef StrWithNull(Str.c_str(), Str.size() + 1); 2732 return GetAddrOfConstantString(StrWithNull, GlobalName, Alignment); 2733 } 2734 2735 llvm::Constant *CodeGenModule::GetAddrOfGlobalTemporary( 2736 const MaterializeTemporaryExpr *E, const Expr *Init) { 2737 assert((E->getStorageDuration() == SD_Static || 2738 E->getStorageDuration() == SD_Thread) && "not a global temporary"); 2739 const VarDecl *VD = cast<VarDecl>(E->getExtendingDecl()); 2740 2741 // If we're not materializing a subobject of the temporary, keep the 2742 // cv-qualifiers from the type of the MaterializeTemporaryExpr. 2743 QualType MaterializedType = Init->getType(); 2744 if (Init == E->GetTemporaryExpr()) 2745 MaterializedType = E->getType(); 2746 2747 llvm::Constant *&Slot = MaterializedGlobalTemporaryMap[E]; 2748 if (Slot) 2749 return Slot; 2750 2751 // FIXME: If an externally-visible declaration extends multiple temporaries, 2752 // we need to give each temporary the same name in every translation unit (and 2753 // we also need to make the temporaries externally-visible). 2754 SmallString<256> Name; 2755 llvm::raw_svector_ostream Out(Name); 2756 getCXXABI().getMangleContext().mangleReferenceTemporary(VD, Out); 2757 Out.flush(); 2758 2759 APValue *Value = 0; 2760 if (E->getStorageDuration() == SD_Static) { 2761 // We might have a cached constant initializer for this temporary. Note 2762 // that this might have a different value from the value computed by 2763 // evaluating the initializer if the surrounding constant expression 2764 // modifies the temporary. 2765 Value = getContext().getMaterializedTemporaryValue(E, false); 2766 if (Value && Value->isUninit()) 2767 Value = 0; 2768 } 2769 2770 // Try evaluating it now, it might have a constant initializer. 2771 Expr::EvalResult EvalResult; 2772 if (!Value && Init->EvaluateAsRValue(EvalResult, getContext()) && 2773 !EvalResult.hasSideEffects()) 2774 Value = &EvalResult.Val; 2775 2776 llvm::Constant *InitialValue = 0; 2777 bool Constant = false; 2778 llvm::Type *Type; 2779 if (Value) { 2780 // The temporary has a constant initializer, use it. 2781 InitialValue = EmitConstantValue(*Value, MaterializedType, 0); 2782 Constant = isTypeConstant(MaterializedType, /*ExcludeCtor*/Value); 2783 Type = InitialValue->getType(); 2784 } else { 2785 // No initializer, the initialization will be provided when we 2786 // initialize the declaration which performed lifetime extension. 2787 Type = getTypes().ConvertTypeForMem(MaterializedType); 2788 } 2789 2790 // Create a global variable for this lifetime-extended temporary. 2791 llvm::GlobalVariable *GV = 2792 new llvm::GlobalVariable(getModule(), Type, Constant, 2793 llvm::GlobalValue::PrivateLinkage, 2794 InitialValue, Name.c_str()); 2795 GV->setAlignment( 2796 getContext().getTypeAlignInChars(MaterializedType).getQuantity()); 2797 if (VD->getTLSKind()) 2798 setTLSMode(GV, *VD); 2799 Slot = GV; 2800 return GV; 2801 } 2802 2803 /// EmitObjCPropertyImplementations - Emit information for synthesized 2804 /// properties for an implementation. 2805 void CodeGenModule::EmitObjCPropertyImplementations(const 2806 ObjCImplementationDecl *D) { 2807 for (ObjCImplementationDecl::propimpl_iterator 2808 i = D->propimpl_begin(), e = D->propimpl_end(); i != e; ++i) { 2809 ObjCPropertyImplDecl *PID = *i; 2810 2811 // Dynamic is just for type-checking. 2812 if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) { 2813 ObjCPropertyDecl *PD = PID->getPropertyDecl(); 2814 2815 // Determine which methods need to be implemented, some may have 2816 // been overridden. Note that ::isPropertyAccessor is not the method 2817 // we want, that just indicates if the decl came from a 2818 // property. What we want to know is if the method is defined in 2819 // this implementation. 2820 if (!D->getInstanceMethod(PD->getGetterName())) 2821 CodeGenFunction(*this).GenerateObjCGetter( 2822 const_cast<ObjCImplementationDecl *>(D), PID); 2823 if (!PD->isReadOnly() && 2824 !D->getInstanceMethod(PD->getSetterName())) 2825 CodeGenFunction(*this).GenerateObjCSetter( 2826 const_cast<ObjCImplementationDecl *>(D), PID); 2827 } 2828 } 2829 } 2830 2831 static bool needsDestructMethod(ObjCImplementationDecl *impl) { 2832 const ObjCInterfaceDecl *iface = impl->getClassInterface(); 2833 for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin(); 2834 ivar; ivar = ivar->getNextIvar()) 2835 if (ivar->getType().isDestructedType()) 2836 return true; 2837 2838 return false; 2839 } 2840 2841 /// EmitObjCIvarInitializations - Emit information for ivar initialization 2842 /// for an implementation. 2843 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) { 2844 // We might need a .cxx_destruct even if we don't have any ivar initializers. 2845 if (needsDestructMethod(D)) { 2846 IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct"); 2847 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 2848 ObjCMethodDecl *DTORMethod = 2849 ObjCMethodDecl::Create(getContext(), D->getLocation(), D->getLocation(), 2850 cxxSelector, getContext().VoidTy, 0, D, 2851 /*isInstance=*/true, /*isVariadic=*/false, 2852 /*isPropertyAccessor=*/true, /*isImplicitlyDeclared=*/true, 2853 /*isDefined=*/false, ObjCMethodDecl::Required); 2854 D->addInstanceMethod(DTORMethod); 2855 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false); 2856 D->setHasDestructors(true); 2857 } 2858 2859 // If the implementation doesn't have any ivar initializers, we don't need 2860 // a .cxx_construct. 2861 if (D->getNumIvarInitializers() == 0) 2862 return; 2863 2864 IdentifierInfo *II = &getContext().Idents.get(".cxx_construct"); 2865 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 2866 // The constructor returns 'self'. 2867 ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(getContext(), 2868 D->getLocation(), 2869 D->getLocation(), 2870 cxxSelector, 2871 getContext().getObjCIdType(), 0, 2872 D, /*isInstance=*/true, 2873 /*isVariadic=*/false, 2874 /*isPropertyAccessor=*/true, 2875 /*isImplicitlyDeclared=*/true, 2876 /*isDefined=*/false, 2877 ObjCMethodDecl::Required); 2878 D->addInstanceMethod(CTORMethod); 2879 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true); 2880 D->setHasNonZeroConstructors(true); 2881 } 2882 2883 /// EmitNamespace - Emit all declarations in a namespace. 2884 void CodeGenModule::EmitNamespace(const NamespaceDecl *ND) { 2885 for (RecordDecl::decl_iterator I = ND->decls_begin(), E = ND->decls_end(); 2886 I != E; ++I) { 2887 if (const VarDecl *VD = dyn_cast<VarDecl>(*I)) 2888 if (VD->getTemplateSpecializationKind() != TSK_ExplicitSpecialization && 2889 VD->getTemplateSpecializationKind() != TSK_Undeclared) 2890 continue; 2891 EmitTopLevelDecl(*I); 2892 } 2893 } 2894 2895 // EmitLinkageSpec - Emit all declarations in a linkage spec. 2896 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) { 2897 if (LSD->getLanguage() != LinkageSpecDecl::lang_c && 2898 LSD->getLanguage() != LinkageSpecDecl::lang_cxx) { 2899 ErrorUnsupported(LSD, "linkage spec"); 2900 return; 2901 } 2902 2903 for (RecordDecl::decl_iterator I = LSD->decls_begin(), E = LSD->decls_end(); 2904 I != E; ++I) { 2905 // Meta-data for ObjC class includes references to implemented methods. 2906 // Generate class's method definitions first. 2907 if (ObjCImplDecl *OID = dyn_cast<ObjCImplDecl>(*I)) { 2908 for (ObjCContainerDecl::method_iterator M = OID->meth_begin(), 2909 MEnd = OID->meth_end(); 2910 M != MEnd; ++M) 2911 EmitTopLevelDecl(*M); 2912 } 2913 EmitTopLevelDecl(*I); 2914 } 2915 } 2916 2917 /// EmitTopLevelDecl - Emit code for a single top level declaration. 2918 void CodeGenModule::EmitTopLevelDecl(Decl *D) { 2919 // Ignore dependent declarations. 2920 if (D->getDeclContext() && D->getDeclContext()->isDependentContext()) 2921 return; 2922 2923 switch (D->getKind()) { 2924 case Decl::CXXConversion: 2925 case Decl::CXXMethod: 2926 case Decl::Function: 2927 // Skip function templates 2928 if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() || 2929 cast<FunctionDecl>(D)->isLateTemplateParsed()) 2930 return; 2931 2932 EmitGlobal(cast<FunctionDecl>(D)); 2933 break; 2934 2935 case Decl::Var: 2936 // Skip variable templates 2937 if (cast<VarDecl>(D)->getDescribedVarTemplate()) 2938 return; 2939 case Decl::VarTemplateSpecialization: 2940 EmitGlobal(cast<VarDecl>(D)); 2941 break; 2942 2943 // Indirect fields from global anonymous structs and unions can be 2944 // ignored; only the actual variable requires IR gen support. 2945 case Decl::IndirectField: 2946 break; 2947 2948 // C++ Decls 2949 case Decl::Namespace: 2950 EmitNamespace(cast<NamespaceDecl>(D)); 2951 break; 2952 // No code generation needed. 2953 case Decl::UsingShadow: 2954 case Decl::Using: 2955 case Decl::ClassTemplate: 2956 case Decl::VarTemplate: 2957 case Decl::VarTemplatePartialSpecialization: 2958 case Decl::FunctionTemplate: 2959 case Decl::TypeAliasTemplate: 2960 case Decl::Block: 2961 case Decl::Empty: 2962 break; 2963 case Decl::NamespaceAlias: 2964 if (CGDebugInfo *DI = getModuleDebugInfo()) 2965 DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(*D)); 2966 return; 2967 case Decl::UsingDirective: // using namespace X; [C++] 2968 if (CGDebugInfo *DI = getModuleDebugInfo()) 2969 DI->EmitUsingDirective(cast<UsingDirectiveDecl>(*D)); 2970 return; 2971 case Decl::CXXConstructor: 2972 // Skip function templates 2973 if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() || 2974 cast<FunctionDecl>(D)->isLateTemplateParsed()) 2975 return; 2976 2977 getCXXABI().EmitCXXConstructors(cast<CXXConstructorDecl>(D)); 2978 break; 2979 case Decl::CXXDestructor: 2980 if (cast<FunctionDecl>(D)->isLateTemplateParsed()) 2981 return; 2982 getCXXABI().EmitCXXDestructors(cast<CXXDestructorDecl>(D)); 2983 break; 2984 2985 case Decl::StaticAssert: 2986 // Nothing to do. 2987 break; 2988 2989 // Objective-C Decls 2990 2991 // Forward declarations, no (immediate) code generation. 2992 case Decl::ObjCInterface: 2993 case Decl::ObjCCategory: 2994 break; 2995 2996 case Decl::ObjCProtocol: { 2997 ObjCProtocolDecl *Proto = cast<ObjCProtocolDecl>(D); 2998 if (Proto->isThisDeclarationADefinition()) 2999 ObjCRuntime->GenerateProtocol(Proto); 3000 break; 3001 } 3002 3003 case Decl::ObjCCategoryImpl: 3004 // Categories have properties but don't support synthesize so we 3005 // can ignore them here. 3006 ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D)); 3007 break; 3008 3009 case Decl::ObjCImplementation: { 3010 ObjCImplementationDecl *OMD = cast<ObjCImplementationDecl>(D); 3011 EmitObjCPropertyImplementations(OMD); 3012 EmitObjCIvarInitializations(OMD); 3013 ObjCRuntime->GenerateClass(OMD); 3014 // Emit global variable debug information. 3015 if (CGDebugInfo *DI = getModuleDebugInfo()) 3016 if (getCodeGenOpts().getDebugInfo() >= CodeGenOptions::LimitedDebugInfo) 3017 DI->getOrCreateInterfaceType(getContext().getObjCInterfaceType( 3018 OMD->getClassInterface()), OMD->getLocation()); 3019 break; 3020 } 3021 case Decl::ObjCMethod: { 3022 ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(D); 3023 // If this is not a prototype, emit the body. 3024 if (OMD->getBody()) 3025 CodeGenFunction(*this).GenerateObjCMethod(OMD); 3026 break; 3027 } 3028 case Decl::ObjCCompatibleAlias: 3029 ObjCRuntime->RegisterAlias(cast<ObjCCompatibleAliasDecl>(D)); 3030 break; 3031 3032 case Decl::LinkageSpec: 3033 EmitLinkageSpec(cast<LinkageSpecDecl>(D)); 3034 break; 3035 3036 case Decl::FileScopeAsm: { 3037 FileScopeAsmDecl *AD = cast<FileScopeAsmDecl>(D); 3038 StringRef AsmString = AD->getAsmString()->getString(); 3039 3040 const std::string &S = getModule().getModuleInlineAsm(); 3041 if (S.empty()) 3042 getModule().setModuleInlineAsm(AsmString); 3043 else if (S.end()[-1] == '\n') 3044 getModule().setModuleInlineAsm(S + AsmString.str()); 3045 else 3046 getModule().setModuleInlineAsm(S + '\n' + AsmString.str()); 3047 break; 3048 } 3049 3050 case Decl::Import: { 3051 ImportDecl *Import = cast<ImportDecl>(D); 3052 3053 // Ignore import declarations that come from imported modules. 3054 if (clang::Module *Owner = Import->getOwningModule()) { 3055 if (getLangOpts().CurrentModule.empty() || 3056 Owner->getTopLevelModule()->Name == getLangOpts().CurrentModule) 3057 break; 3058 } 3059 3060 ImportedModules.insert(Import->getImportedModule()); 3061 break; 3062 } 3063 3064 default: 3065 // Make sure we handled everything we should, every other kind is a 3066 // non-top-level decl. FIXME: Would be nice to have an isTopLevelDeclKind 3067 // function. Need to recode Decl::Kind to do that easily. 3068 assert(isa<TypeDecl>(D) && "Unsupported decl kind"); 3069 } 3070 } 3071 3072 /// Turns the given pointer into a constant. 3073 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context, 3074 const void *Ptr) { 3075 uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr); 3076 llvm::Type *i64 = llvm::Type::getInt64Ty(Context); 3077 return llvm::ConstantInt::get(i64, PtrInt); 3078 } 3079 3080 static void EmitGlobalDeclMetadata(CodeGenModule &CGM, 3081 llvm::NamedMDNode *&GlobalMetadata, 3082 GlobalDecl D, 3083 llvm::GlobalValue *Addr) { 3084 if (!GlobalMetadata) 3085 GlobalMetadata = 3086 CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs"); 3087 3088 // TODO: should we report variant information for ctors/dtors? 3089 llvm::Value *Ops[] = { 3090 Addr, 3091 GetPointerConstant(CGM.getLLVMContext(), D.getDecl()) 3092 }; 3093 GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops)); 3094 } 3095 3096 /// For each function which is declared within an extern "C" region and marked 3097 /// as 'used', but has internal linkage, create an alias from the unmangled 3098 /// name to the mangled name if possible. People expect to be able to refer 3099 /// to such functions with an unmangled name from inline assembly within the 3100 /// same translation unit. 3101 void CodeGenModule::EmitStaticExternCAliases() { 3102 for (StaticExternCMap::iterator I = StaticExternCValues.begin(), 3103 E = StaticExternCValues.end(); 3104 I != E; ++I) { 3105 IdentifierInfo *Name = I->first; 3106 llvm::GlobalValue *Val = I->second; 3107 if (Val && !getModule().getNamedValue(Name->getName())) 3108 AddUsedGlobal(new llvm::GlobalAlias(Val->getType(), Val->getLinkage(), 3109 Name->getName(), Val, &getModule())); 3110 } 3111 } 3112 3113 /// Emits metadata nodes associating all the global values in the 3114 /// current module with the Decls they came from. This is useful for 3115 /// projects using IR gen as a subroutine. 3116 /// 3117 /// Since there's currently no way to associate an MDNode directly 3118 /// with an llvm::GlobalValue, we create a global named metadata 3119 /// with the name 'clang.global.decl.ptrs'. 3120 void CodeGenModule::EmitDeclMetadata() { 3121 llvm::NamedMDNode *GlobalMetadata = 0; 3122 3123 // StaticLocalDeclMap 3124 for (llvm::DenseMap<GlobalDecl,StringRef>::iterator 3125 I = MangledDeclNames.begin(), E = MangledDeclNames.end(); 3126 I != E; ++I) { 3127 llvm::GlobalValue *Addr = getModule().getNamedValue(I->second); 3128 EmitGlobalDeclMetadata(*this, GlobalMetadata, I->first, Addr); 3129 } 3130 } 3131 3132 /// Emits metadata nodes for all the local variables in the current 3133 /// function. 3134 void CodeGenFunction::EmitDeclMetadata() { 3135 if (LocalDeclMap.empty()) return; 3136 3137 llvm::LLVMContext &Context = getLLVMContext(); 3138 3139 // Find the unique metadata ID for this name. 3140 unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr"); 3141 3142 llvm::NamedMDNode *GlobalMetadata = 0; 3143 3144 for (llvm::DenseMap<const Decl*, llvm::Value*>::iterator 3145 I = LocalDeclMap.begin(), E = LocalDeclMap.end(); I != E; ++I) { 3146 const Decl *D = I->first; 3147 llvm::Value *Addr = I->second; 3148 3149 if (llvm::AllocaInst *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) { 3150 llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D); 3151 Alloca->setMetadata(DeclPtrKind, llvm::MDNode::get(Context, DAddr)); 3152 } else if (llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>(Addr)) { 3153 GlobalDecl GD = GlobalDecl(cast<VarDecl>(D)); 3154 EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV); 3155 } 3156 } 3157 } 3158 3159 void CodeGenModule::EmitVersionIdentMetadata() { 3160 llvm::NamedMDNode *IdentMetadata = 3161 TheModule.getOrInsertNamedMetadata("llvm.ident"); 3162 std::string Version = getClangFullVersion(); 3163 llvm::LLVMContext &Ctx = TheModule.getContext(); 3164 3165 llvm::Value *IdentNode[] = { 3166 llvm::MDString::get(Ctx, Version) 3167 }; 3168 IdentMetadata->addOperand(llvm::MDNode::get(Ctx, IdentNode)); 3169 } 3170 3171 void CodeGenModule::EmitCoverageFile() { 3172 if (!getCodeGenOpts().CoverageFile.empty()) { 3173 if (llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu")) { 3174 llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov"); 3175 llvm::LLVMContext &Ctx = TheModule.getContext(); 3176 llvm::MDString *CoverageFile = 3177 llvm::MDString::get(Ctx, getCodeGenOpts().CoverageFile); 3178 for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) { 3179 llvm::MDNode *CU = CUNode->getOperand(i); 3180 llvm::Value *node[] = { CoverageFile, CU }; 3181 llvm::MDNode *N = llvm::MDNode::get(Ctx, node); 3182 GCov->addOperand(N); 3183 } 3184 } 3185 } 3186 } 3187 3188 llvm::Constant *CodeGenModule::EmitUuidofInitializer(StringRef Uuid, 3189 QualType GuidType) { 3190 // Sema has checked that all uuid strings are of the form 3191 // "12345678-1234-1234-1234-1234567890ab". 3192 assert(Uuid.size() == 36); 3193 for (unsigned i = 0; i < 36; ++i) { 3194 if (i == 8 || i == 13 || i == 18 || i == 23) assert(Uuid[i] == '-'); 3195 else assert(isHexDigit(Uuid[i])); 3196 } 3197 3198 const unsigned Field3ValueOffsets[8] = { 19, 21, 24, 26, 28, 30, 32, 34 }; 3199 3200 llvm::Constant *Field3[8]; 3201 for (unsigned Idx = 0; Idx < 8; ++Idx) 3202 Field3[Idx] = llvm::ConstantInt::get( 3203 Int8Ty, Uuid.substr(Field3ValueOffsets[Idx], 2), 16); 3204 3205 llvm::Constant *Fields[4] = { 3206 llvm::ConstantInt::get(Int32Ty, Uuid.substr(0, 8), 16), 3207 llvm::ConstantInt::get(Int16Ty, Uuid.substr(9, 4), 16), 3208 llvm::ConstantInt::get(Int16Ty, Uuid.substr(14, 4), 16), 3209 llvm::ConstantArray::get(llvm::ArrayType::get(Int8Ty, 8), Field3) 3210 }; 3211 3212 return llvm::ConstantStruct::getAnon(Fields); 3213 } 3214