1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This coordinates the per-module state used while generating code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenModule.h" 15 #include "CGBlocks.h" 16 #include "CGCUDARuntime.h" 17 #include "CGCXXABI.h" 18 #include "CGCall.h" 19 #include "CGDebugInfo.h" 20 #include "CGObjCRuntime.h" 21 #include "CGOpenCLRuntime.h" 22 #include "CGOpenMPRuntime.h" 23 #include "CodeGenFunction.h" 24 #include "CodeGenPGO.h" 25 #include "CodeGenTBAA.h" 26 #include "CoverageMappingGen.h" 27 #include "TargetInfo.h" 28 #include "clang/AST/ASTContext.h" 29 #include "clang/AST/CharUnits.h" 30 #include "clang/AST/DeclCXX.h" 31 #include "clang/AST/DeclObjC.h" 32 #include "clang/AST/DeclTemplate.h" 33 #include "clang/AST/Mangle.h" 34 #include "clang/AST/RecordLayout.h" 35 #include "clang/AST/RecursiveASTVisitor.h" 36 #include "clang/Basic/Builtins.h" 37 #include "clang/Basic/CharInfo.h" 38 #include "clang/Basic/Diagnostic.h" 39 #include "clang/Basic/Module.h" 40 #include "clang/Basic/SourceManager.h" 41 #include "clang/Basic/TargetInfo.h" 42 #include "clang/Basic/Version.h" 43 #include "clang/Frontend/CodeGenOptions.h" 44 #include "clang/Sema/SemaDiagnostic.h" 45 #include "llvm/ADT/APSInt.h" 46 #include "llvm/ADT/Triple.h" 47 #include "llvm/IR/CallSite.h" 48 #include "llvm/IR/CallingConv.h" 49 #include "llvm/IR/DataLayout.h" 50 #include "llvm/IR/Intrinsics.h" 51 #include "llvm/IR/LLVMContext.h" 52 #include "llvm/IR/Module.h" 53 #include "llvm/ProfileData/InstrProfReader.h" 54 #include "llvm/Support/ConvertUTF.h" 55 #include "llvm/Support/ErrorHandling.h" 56 57 using namespace clang; 58 using namespace CodeGen; 59 60 static const char AnnotationSection[] = "llvm.metadata"; 61 62 static CGCXXABI *createCXXABI(CodeGenModule &CGM) { 63 switch (CGM.getTarget().getCXXABI().getKind()) { 64 case TargetCXXABI::GenericAArch64: 65 case TargetCXXABI::GenericARM: 66 case TargetCXXABI::iOS: 67 case TargetCXXABI::iOS64: 68 case TargetCXXABI::GenericMIPS: 69 case TargetCXXABI::GenericItanium: 70 case TargetCXXABI::WebAssembly: 71 return CreateItaniumCXXABI(CGM); 72 case TargetCXXABI::Microsoft: 73 return CreateMicrosoftCXXABI(CGM); 74 } 75 76 llvm_unreachable("invalid C++ ABI kind"); 77 } 78 79 CodeGenModule::CodeGenModule(ASTContext &C, const HeaderSearchOptions &HSO, 80 const PreprocessorOptions &PPO, 81 const CodeGenOptions &CGO, llvm::Module &M, 82 DiagnosticsEngine &diags, 83 CoverageSourceInfo *CoverageInfo) 84 : Context(C), LangOpts(C.getLangOpts()), HeaderSearchOpts(HSO), 85 PreprocessorOpts(PPO), CodeGenOpts(CGO), TheModule(M), Diags(diags), 86 Target(C.getTargetInfo()), ABI(createCXXABI(*this)), 87 VMContext(M.getContext()), TBAA(nullptr), TheTargetCodeGenInfo(nullptr), 88 Types(*this), VTables(*this), ObjCRuntime(nullptr), 89 OpenCLRuntime(nullptr), OpenMPRuntime(nullptr), CUDARuntime(nullptr), 90 DebugInfo(nullptr), ARCData(nullptr), 91 NoObjCARCExceptionsMetadata(nullptr), RRData(nullptr), PGOReader(nullptr), 92 CFConstantStringClassRef(nullptr), ConstantStringClassRef(nullptr), 93 NSConstantStringType(nullptr), NSConcreteGlobalBlock(nullptr), 94 NSConcreteStackBlock(nullptr), BlockObjectAssign(nullptr), 95 BlockObjectDispose(nullptr), BlockDescriptorType(nullptr), 96 GenericBlockLiteralType(nullptr), LifetimeStartFn(nullptr), 97 LifetimeEndFn(nullptr), SanitizerMD(new SanitizerMetadata(*this)) { 98 99 // Initialize the type cache. 100 llvm::LLVMContext &LLVMContext = M.getContext(); 101 VoidTy = llvm::Type::getVoidTy(LLVMContext); 102 Int8Ty = llvm::Type::getInt8Ty(LLVMContext); 103 Int16Ty = llvm::Type::getInt16Ty(LLVMContext); 104 Int32Ty = llvm::Type::getInt32Ty(LLVMContext); 105 Int64Ty = llvm::Type::getInt64Ty(LLVMContext); 106 FloatTy = llvm::Type::getFloatTy(LLVMContext); 107 DoubleTy = llvm::Type::getDoubleTy(LLVMContext); 108 PointerWidthInBits = C.getTargetInfo().getPointerWidth(0); 109 PointerAlignInBytes = 110 C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(0)).getQuantity(); 111 IntAlignInBytes = 112 C.toCharUnitsFromBits(C.getTargetInfo().getIntAlign()).getQuantity(); 113 IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth()); 114 IntPtrTy = llvm::IntegerType::get(LLVMContext, PointerWidthInBits); 115 Int8PtrTy = Int8Ty->getPointerTo(0); 116 Int8PtrPtrTy = Int8PtrTy->getPointerTo(0); 117 118 RuntimeCC = getTargetCodeGenInfo().getABIInfo().getRuntimeCC(); 119 BuiltinCC = getTargetCodeGenInfo().getABIInfo().getBuiltinCC(); 120 121 if (LangOpts.ObjC1) 122 createObjCRuntime(); 123 if (LangOpts.OpenCL) 124 createOpenCLRuntime(); 125 if (LangOpts.OpenMP) 126 createOpenMPRuntime(); 127 if (LangOpts.CUDA) 128 createCUDARuntime(); 129 130 // Enable TBAA unless it's suppressed. ThreadSanitizer needs TBAA even at O0. 131 if (LangOpts.Sanitize.has(SanitizerKind::Thread) || 132 (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0)) 133 TBAA = new CodeGenTBAA(Context, VMContext, CodeGenOpts, getLangOpts(), 134 getCXXABI().getMangleContext()); 135 136 // If debug info or coverage generation is enabled, create the CGDebugInfo 137 // object. 138 if (CodeGenOpts.getDebugInfo() != CodeGenOptions::NoDebugInfo || 139 CodeGenOpts.EmitGcovArcs || 140 CodeGenOpts.EmitGcovNotes) 141 DebugInfo = new CGDebugInfo(*this); 142 143 Block.GlobalUniqueCount = 0; 144 145 if (C.getLangOpts().ObjCAutoRefCount) 146 ARCData = new ARCEntrypoints(); 147 RRData = new RREntrypoints(); 148 149 if (!CodeGenOpts.InstrProfileInput.empty()) { 150 auto ReaderOrErr = 151 llvm::IndexedInstrProfReader::create(CodeGenOpts.InstrProfileInput); 152 if (std::error_code EC = ReaderOrErr.getError()) { 153 unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error, 154 "Could not read profile %0: %1"); 155 getDiags().Report(DiagID) << CodeGenOpts.InstrProfileInput 156 << EC.message(); 157 } else 158 PGOReader = std::move(ReaderOrErr.get()); 159 } 160 161 // If coverage mapping generation is enabled, create the 162 // CoverageMappingModuleGen object. 163 if (CodeGenOpts.CoverageMapping) 164 CoverageMapping.reset(new CoverageMappingModuleGen(*this, *CoverageInfo)); 165 } 166 167 CodeGenModule::~CodeGenModule() { 168 delete ObjCRuntime; 169 delete OpenCLRuntime; 170 delete OpenMPRuntime; 171 delete CUDARuntime; 172 delete TheTargetCodeGenInfo; 173 delete TBAA; 174 delete DebugInfo; 175 delete ARCData; 176 delete RRData; 177 } 178 179 void CodeGenModule::createObjCRuntime() { 180 // This is just isGNUFamily(), but we want to force implementors of 181 // new ABIs to decide how best to do this. 182 switch (LangOpts.ObjCRuntime.getKind()) { 183 case ObjCRuntime::GNUstep: 184 case ObjCRuntime::GCC: 185 case ObjCRuntime::ObjFW: 186 ObjCRuntime = CreateGNUObjCRuntime(*this); 187 return; 188 189 case ObjCRuntime::FragileMacOSX: 190 case ObjCRuntime::MacOSX: 191 case ObjCRuntime::iOS: 192 ObjCRuntime = CreateMacObjCRuntime(*this); 193 return; 194 } 195 llvm_unreachable("bad runtime kind"); 196 } 197 198 void CodeGenModule::createOpenCLRuntime() { 199 OpenCLRuntime = new CGOpenCLRuntime(*this); 200 } 201 202 void CodeGenModule::createOpenMPRuntime() { 203 OpenMPRuntime = new CGOpenMPRuntime(*this); 204 } 205 206 void CodeGenModule::createCUDARuntime() { 207 CUDARuntime = CreateNVCUDARuntime(*this); 208 } 209 210 void CodeGenModule::addReplacement(StringRef Name, llvm::Constant *C) { 211 Replacements[Name] = C; 212 } 213 214 void CodeGenModule::applyReplacements() { 215 for (auto &I : Replacements) { 216 StringRef MangledName = I.first(); 217 llvm::Constant *Replacement = I.second; 218 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 219 if (!Entry) 220 continue; 221 auto *OldF = cast<llvm::Function>(Entry); 222 auto *NewF = dyn_cast<llvm::Function>(Replacement); 223 if (!NewF) { 224 if (auto *Alias = dyn_cast<llvm::GlobalAlias>(Replacement)) { 225 NewF = dyn_cast<llvm::Function>(Alias->getAliasee()); 226 } else { 227 auto *CE = cast<llvm::ConstantExpr>(Replacement); 228 assert(CE->getOpcode() == llvm::Instruction::BitCast || 229 CE->getOpcode() == llvm::Instruction::GetElementPtr); 230 NewF = dyn_cast<llvm::Function>(CE->getOperand(0)); 231 } 232 } 233 234 // Replace old with new, but keep the old order. 235 OldF->replaceAllUsesWith(Replacement); 236 if (NewF) { 237 NewF->removeFromParent(); 238 OldF->getParent()->getFunctionList().insertAfter(OldF, NewF); 239 } 240 OldF->eraseFromParent(); 241 } 242 } 243 244 void CodeGenModule::addGlobalValReplacement(llvm::GlobalValue *GV, llvm::Constant *C) { 245 GlobalValReplacements.push_back(std::make_pair(GV, C)); 246 } 247 248 void CodeGenModule::applyGlobalValReplacements() { 249 for (auto &I : GlobalValReplacements) { 250 llvm::GlobalValue *GV = I.first; 251 llvm::Constant *C = I.second; 252 253 GV->replaceAllUsesWith(C); 254 GV->eraseFromParent(); 255 } 256 } 257 258 // This is only used in aliases that we created and we know they have a 259 // linear structure. 260 static const llvm::GlobalObject *getAliasedGlobal(const llvm::GlobalAlias &GA) { 261 llvm::SmallPtrSet<const llvm::GlobalAlias*, 4> Visited; 262 const llvm::Constant *C = &GA; 263 for (;;) { 264 C = C->stripPointerCasts(); 265 if (auto *GO = dyn_cast<llvm::GlobalObject>(C)) 266 return GO; 267 // stripPointerCasts will not walk over weak aliases. 268 auto *GA2 = dyn_cast<llvm::GlobalAlias>(C); 269 if (!GA2) 270 return nullptr; 271 if (!Visited.insert(GA2).second) 272 return nullptr; 273 C = GA2->getAliasee(); 274 } 275 } 276 277 void CodeGenModule::checkAliases() { 278 // Check if the constructed aliases are well formed. It is really unfortunate 279 // that we have to do this in CodeGen, but we only construct mangled names 280 // and aliases during codegen. 281 bool Error = false; 282 DiagnosticsEngine &Diags = getDiags(); 283 for (const GlobalDecl &GD : Aliases) { 284 const auto *D = cast<ValueDecl>(GD.getDecl()); 285 const AliasAttr *AA = D->getAttr<AliasAttr>(); 286 StringRef MangledName = getMangledName(GD); 287 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 288 auto *Alias = cast<llvm::GlobalAlias>(Entry); 289 const llvm::GlobalValue *GV = getAliasedGlobal(*Alias); 290 if (!GV) { 291 Error = true; 292 Diags.Report(AA->getLocation(), diag::err_cyclic_alias); 293 } else if (GV->isDeclaration()) { 294 Error = true; 295 Diags.Report(AA->getLocation(), diag::err_alias_to_undefined); 296 } 297 298 llvm::Constant *Aliasee = Alias->getAliasee(); 299 llvm::GlobalValue *AliaseeGV; 300 if (auto CE = dyn_cast<llvm::ConstantExpr>(Aliasee)) 301 AliaseeGV = cast<llvm::GlobalValue>(CE->getOperand(0)); 302 else 303 AliaseeGV = cast<llvm::GlobalValue>(Aliasee); 304 305 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) { 306 StringRef AliasSection = SA->getName(); 307 if (AliasSection != AliaseeGV->getSection()) 308 Diags.Report(SA->getLocation(), diag::warn_alias_with_section) 309 << AliasSection; 310 } 311 312 // We have to handle alias to weak aliases in here. LLVM itself disallows 313 // this since the object semantics would not match the IL one. For 314 // compatibility with gcc we implement it by just pointing the alias 315 // to its aliasee's aliasee. We also warn, since the user is probably 316 // expecting the link to be weak. 317 if (auto GA = dyn_cast<llvm::GlobalAlias>(AliaseeGV)) { 318 if (GA->mayBeOverridden()) { 319 Diags.Report(AA->getLocation(), diag::warn_alias_to_weak_alias) 320 << GV->getName() << GA->getName(); 321 Aliasee = llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast( 322 GA->getAliasee(), Alias->getType()); 323 Alias->setAliasee(Aliasee); 324 } 325 } 326 } 327 if (!Error) 328 return; 329 330 for (const GlobalDecl &GD : Aliases) { 331 StringRef MangledName = getMangledName(GD); 332 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 333 auto *Alias = cast<llvm::GlobalAlias>(Entry); 334 Alias->replaceAllUsesWith(llvm::UndefValue::get(Alias->getType())); 335 Alias->eraseFromParent(); 336 } 337 } 338 339 void CodeGenModule::clear() { 340 DeferredDeclsToEmit.clear(); 341 if (OpenMPRuntime) 342 OpenMPRuntime->clear(); 343 } 344 345 void InstrProfStats::reportDiagnostics(DiagnosticsEngine &Diags, 346 StringRef MainFile) { 347 if (!hasDiagnostics()) 348 return; 349 if (VisitedInMainFile > 0 && VisitedInMainFile == MissingInMainFile) { 350 if (MainFile.empty()) 351 MainFile = "<stdin>"; 352 Diags.Report(diag::warn_profile_data_unprofiled) << MainFile; 353 } else 354 Diags.Report(diag::warn_profile_data_out_of_date) << Visited << Missing 355 << Mismatched; 356 } 357 358 void CodeGenModule::Release() { 359 EmitDeferred(); 360 applyGlobalValReplacements(); 361 applyReplacements(); 362 checkAliases(); 363 EmitCXXGlobalInitFunc(); 364 EmitCXXGlobalDtorFunc(); 365 EmitCXXThreadLocalInitFunc(); 366 if (ObjCRuntime) 367 if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction()) 368 AddGlobalCtor(ObjCInitFunction); 369 if (Context.getLangOpts().CUDA && !Context.getLangOpts().CUDAIsDevice && 370 CUDARuntime) { 371 if (llvm::Function *CudaCtorFunction = CUDARuntime->makeModuleCtorFunction()) 372 AddGlobalCtor(CudaCtorFunction); 373 if (llvm::Function *CudaDtorFunction = CUDARuntime->makeModuleDtorFunction()) 374 AddGlobalDtor(CudaDtorFunction); 375 } 376 if (PGOReader && PGOStats.hasDiagnostics()) 377 PGOStats.reportDiagnostics(getDiags(), getCodeGenOpts().MainFileName); 378 EmitCtorList(GlobalCtors, "llvm.global_ctors"); 379 EmitCtorList(GlobalDtors, "llvm.global_dtors"); 380 EmitGlobalAnnotations(); 381 EmitStaticExternCAliases(); 382 EmitDeferredUnusedCoverageMappings(); 383 if (CoverageMapping) 384 CoverageMapping->emit(); 385 emitLLVMUsed(); 386 387 if (CodeGenOpts.Autolink && 388 (Context.getLangOpts().Modules || !LinkerOptionsMetadata.empty())) { 389 EmitModuleLinkOptions(); 390 } 391 if (CodeGenOpts.DwarfVersion) { 392 // We actually want the latest version when there are conflicts. 393 // We can change from Warning to Latest if such mode is supported. 394 getModule().addModuleFlag(llvm::Module::Warning, "Dwarf Version", 395 CodeGenOpts.DwarfVersion); 396 } 397 if (CodeGenOpts.EmitCodeView) { 398 // Indicate that we want CodeView in the metadata. 399 getModule().addModuleFlag(llvm::Module::Warning, "CodeView", 1); 400 } 401 if (DebugInfo) 402 // We support a single version in the linked module. The LLVM 403 // parser will drop debug info with a different version number 404 // (and warn about it, too). 405 getModule().addModuleFlag(llvm::Module::Warning, "Debug Info Version", 406 llvm::DEBUG_METADATA_VERSION); 407 408 // We need to record the widths of enums and wchar_t, so that we can generate 409 // the correct build attributes in the ARM backend. 410 llvm::Triple::ArchType Arch = Context.getTargetInfo().getTriple().getArch(); 411 if ( Arch == llvm::Triple::arm 412 || Arch == llvm::Triple::armeb 413 || Arch == llvm::Triple::thumb 414 || Arch == llvm::Triple::thumbeb) { 415 // Width of wchar_t in bytes 416 uint64_t WCharWidth = 417 Context.getTypeSizeInChars(Context.getWideCharType()).getQuantity(); 418 getModule().addModuleFlag(llvm::Module::Error, "wchar_size", WCharWidth); 419 420 // The minimum width of an enum in bytes 421 uint64_t EnumWidth = Context.getLangOpts().ShortEnums ? 1 : 4; 422 getModule().addModuleFlag(llvm::Module::Error, "min_enum_size", EnumWidth); 423 } 424 425 if (uint32_t PLevel = Context.getLangOpts().PICLevel) { 426 llvm::PICLevel::Level PL = llvm::PICLevel::Default; 427 switch (PLevel) { 428 case 0: break; 429 case 1: PL = llvm::PICLevel::Small; break; 430 case 2: PL = llvm::PICLevel::Large; break; 431 default: llvm_unreachable("Invalid PIC Level"); 432 } 433 434 getModule().setPICLevel(PL); 435 } 436 437 SimplifyPersonality(); 438 439 if (getCodeGenOpts().EmitDeclMetadata) 440 EmitDeclMetadata(); 441 442 if (getCodeGenOpts().EmitGcovArcs || getCodeGenOpts().EmitGcovNotes) 443 EmitCoverageFile(); 444 445 if (DebugInfo) 446 DebugInfo->finalize(); 447 448 EmitVersionIdentMetadata(); 449 450 EmitTargetMetadata(); 451 } 452 453 void CodeGenModule::UpdateCompletedType(const TagDecl *TD) { 454 // Make sure that this type is translated. 455 Types.UpdateCompletedType(TD); 456 } 457 458 llvm::MDNode *CodeGenModule::getTBAAInfo(QualType QTy) { 459 if (!TBAA) 460 return nullptr; 461 return TBAA->getTBAAInfo(QTy); 462 } 463 464 llvm::MDNode *CodeGenModule::getTBAAInfoForVTablePtr() { 465 if (!TBAA) 466 return nullptr; 467 return TBAA->getTBAAInfoForVTablePtr(); 468 } 469 470 llvm::MDNode *CodeGenModule::getTBAAStructInfo(QualType QTy) { 471 if (!TBAA) 472 return nullptr; 473 return TBAA->getTBAAStructInfo(QTy); 474 } 475 476 llvm::MDNode *CodeGenModule::getTBAAStructTypeInfo(QualType QTy) { 477 if (!TBAA) 478 return nullptr; 479 return TBAA->getTBAAStructTypeInfo(QTy); 480 } 481 482 llvm::MDNode *CodeGenModule::getTBAAStructTagInfo(QualType BaseTy, 483 llvm::MDNode *AccessN, 484 uint64_t O) { 485 if (!TBAA) 486 return nullptr; 487 return TBAA->getTBAAStructTagInfo(BaseTy, AccessN, O); 488 } 489 490 /// Decorate the instruction with a TBAA tag. For both scalar TBAA 491 /// and struct-path aware TBAA, the tag has the same format: 492 /// base type, access type and offset. 493 /// When ConvertTypeToTag is true, we create a tag based on the scalar type. 494 void CodeGenModule::DecorateInstruction(llvm::Instruction *Inst, 495 llvm::MDNode *TBAAInfo, 496 bool ConvertTypeToTag) { 497 if (ConvertTypeToTag && TBAA) 498 Inst->setMetadata(llvm::LLVMContext::MD_tbaa, 499 TBAA->getTBAAScalarTagInfo(TBAAInfo)); 500 else 501 Inst->setMetadata(llvm::LLVMContext::MD_tbaa, TBAAInfo); 502 } 503 504 void CodeGenModule::Error(SourceLocation loc, StringRef message) { 505 unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, "%0"); 506 getDiags().Report(Context.getFullLoc(loc), diagID) << message; 507 } 508 509 /// ErrorUnsupported - Print out an error that codegen doesn't support the 510 /// specified stmt yet. 511 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type) { 512 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, 513 "cannot compile this %0 yet"); 514 std::string Msg = Type; 515 getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID) 516 << Msg << S->getSourceRange(); 517 } 518 519 /// ErrorUnsupported - Print out an error that codegen doesn't support the 520 /// specified decl yet. 521 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type) { 522 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, 523 "cannot compile this %0 yet"); 524 std::string Msg = Type; 525 getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg; 526 } 527 528 llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) { 529 return llvm::ConstantInt::get(SizeTy, size.getQuantity()); 530 } 531 532 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV, 533 const NamedDecl *D) const { 534 // Internal definitions always have default visibility. 535 if (GV->hasLocalLinkage()) { 536 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 537 return; 538 } 539 540 // Set visibility for definitions. 541 LinkageInfo LV = D->getLinkageAndVisibility(); 542 if (LV.isVisibilityExplicit() || !GV->hasAvailableExternallyLinkage()) 543 GV->setVisibility(GetLLVMVisibility(LV.getVisibility())); 544 } 545 546 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(StringRef S) { 547 return llvm::StringSwitch<llvm::GlobalVariable::ThreadLocalMode>(S) 548 .Case("global-dynamic", llvm::GlobalVariable::GeneralDynamicTLSModel) 549 .Case("local-dynamic", llvm::GlobalVariable::LocalDynamicTLSModel) 550 .Case("initial-exec", llvm::GlobalVariable::InitialExecTLSModel) 551 .Case("local-exec", llvm::GlobalVariable::LocalExecTLSModel); 552 } 553 554 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel( 555 CodeGenOptions::TLSModel M) { 556 switch (M) { 557 case CodeGenOptions::GeneralDynamicTLSModel: 558 return llvm::GlobalVariable::GeneralDynamicTLSModel; 559 case CodeGenOptions::LocalDynamicTLSModel: 560 return llvm::GlobalVariable::LocalDynamicTLSModel; 561 case CodeGenOptions::InitialExecTLSModel: 562 return llvm::GlobalVariable::InitialExecTLSModel; 563 case CodeGenOptions::LocalExecTLSModel: 564 return llvm::GlobalVariable::LocalExecTLSModel; 565 } 566 llvm_unreachable("Invalid TLS model!"); 567 } 568 569 void CodeGenModule::setTLSMode(llvm::GlobalValue *GV, const VarDecl &D) const { 570 assert(D.getTLSKind() && "setting TLS mode on non-TLS var!"); 571 572 llvm::GlobalValue::ThreadLocalMode TLM; 573 TLM = GetLLVMTLSModel(CodeGenOpts.getDefaultTLSModel()); 574 575 // Override the TLS model if it is explicitly specified. 576 if (const TLSModelAttr *Attr = D.getAttr<TLSModelAttr>()) { 577 TLM = GetLLVMTLSModel(Attr->getModel()); 578 } 579 580 GV->setThreadLocalMode(TLM); 581 } 582 583 StringRef CodeGenModule::getMangledName(GlobalDecl GD) { 584 StringRef &FoundStr = MangledDeclNames[GD.getCanonicalDecl()]; 585 if (!FoundStr.empty()) 586 return FoundStr; 587 588 const auto *ND = cast<NamedDecl>(GD.getDecl()); 589 SmallString<256> Buffer; 590 StringRef Str; 591 if (getCXXABI().getMangleContext().shouldMangleDeclName(ND)) { 592 llvm::raw_svector_ostream Out(Buffer); 593 if (const auto *D = dyn_cast<CXXConstructorDecl>(ND)) 594 getCXXABI().getMangleContext().mangleCXXCtor(D, GD.getCtorType(), Out); 595 else if (const auto *D = dyn_cast<CXXDestructorDecl>(ND)) 596 getCXXABI().getMangleContext().mangleCXXDtor(D, GD.getDtorType(), Out); 597 else 598 getCXXABI().getMangleContext().mangleName(ND, Out); 599 Str = Out.str(); 600 } else { 601 IdentifierInfo *II = ND->getIdentifier(); 602 assert(II && "Attempt to mangle unnamed decl."); 603 Str = II->getName(); 604 } 605 606 // Keep the first result in the case of a mangling collision. 607 auto Result = Manglings.insert(std::make_pair(Str, GD)); 608 return FoundStr = Result.first->first(); 609 } 610 611 StringRef CodeGenModule::getBlockMangledName(GlobalDecl GD, 612 const BlockDecl *BD) { 613 MangleContext &MangleCtx = getCXXABI().getMangleContext(); 614 const Decl *D = GD.getDecl(); 615 616 SmallString<256> Buffer; 617 llvm::raw_svector_ostream Out(Buffer); 618 if (!D) 619 MangleCtx.mangleGlobalBlock(BD, 620 dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()), Out); 621 else if (const auto *CD = dyn_cast<CXXConstructorDecl>(D)) 622 MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out); 623 else if (const auto *DD = dyn_cast<CXXDestructorDecl>(D)) 624 MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out); 625 else 626 MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out); 627 628 auto Result = Manglings.insert(std::make_pair(Out.str(), BD)); 629 return Result.first->first(); 630 } 631 632 llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) { 633 return getModule().getNamedValue(Name); 634 } 635 636 /// AddGlobalCtor - Add a function to the list that will be called before 637 /// main() runs. 638 void CodeGenModule::AddGlobalCtor(llvm::Function *Ctor, int Priority, 639 llvm::Constant *AssociatedData) { 640 // FIXME: Type coercion of void()* types. 641 GlobalCtors.push_back(Structor(Priority, Ctor, AssociatedData)); 642 } 643 644 /// AddGlobalDtor - Add a function to the list that will be called 645 /// when the module is unloaded. 646 void CodeGenModule::AddGlobalDtor(llvm::Function *Dtor, int Priority) { 647 // FIXME: Type coercion of void()* types. 648 GlobalDtors.push_back(Structor(Priority, Dtor, nullptr)); 649 } 650 651 void CodeGenModule::EmitCtorList(const CtorList &Fns, const char *GlobalName) { 652 // Ctor function type is void()*. 653 llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false); 654 llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy); 655 656 // Get the type of a ctor entry, { i32, void ()*, i8* }. 657 llvm::StructType *CtorStructTy = llvm::StructType::get( 658 Int32Ty, llvm::PointerType::getUnqual(CtorFTy), VoidPtrTy, nullptr); 659 660 // Construct the constructor and destructor arrays. 661 SmallVector<llvm::Constant *, 8> Ctors; 662 for (const auto &I : Fns) { 663 llvm::Constant *S[] = { 664 llvm::ConstantInt::get(Int32Ty, I.Priority, false), 665 llvm::ConstantExpr::getBitCast(I.Initializer, CtorPFTy), 666 (I.AssociatedData 667 ? llvm::ConstantExpr::getBitCast(I.AssociatedData, VoidPtrTy) 668 : llvm::Constant::getNullValue(VoidPtrTy))}; 669 Ctors.push_back(llvm::ConstantStruct::get(CtorStructTy, S)); 670 } 671 672 if (!Ctors.empty()) { 673 llvm::ArrayType *AT = llvm::ArrayType::get(CtorStructTy, Ctors.size()); 674 new llvm::GlobalVariable(TheModule, AT, false, 675 llvm::GlobalValue::AppendingLinkage, 676 llvm::ConstantArray::get(AT, Ctors), 677 GlobalName); 678 } 679 } 680 681 llvm::GlobalValue::LinkageTypes 682 CodeGenModule::getFunctionLinkage(GlobalDecl GD) { 683 const auto *D = cast<FunctionDecl>(GD.getDecl()); 684 685 GVALinkage Linkage = getContext().GetGVALinkageForFunction(D); 686 687 if (isa<CXXDestructorDecl>(D) && 688 getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D), 689 GD.getDtorType())) { 690 // Destructor variants in the Microsoft C++ ABI are always internal or 691 // linkonce_odr thunks emitted on an as-needed basis. 692 return Linkage == GVA_Internal ? llvm::GlobalValue::InternalLinkage 693 : llvm::GlobalValue::LinkOnceODRLinkage; 694 } 695 696 return getLLVMLinkageForDeclarator(D, Linkage, /*isConstantVariable=*/false); 697 } 698 699 void CodeGenModule::setFunctionDLLStorageClass(GlobalDecl GD, llvm::Function *F) { 700 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 701 702 if (const auto *Dtor = dyn_cast_or_null<CXXDestructorDecl>(FD)) { 703 if (getCXXABI().useThunkForDtorVariant(Dtor, GD.getDtorType())) { 704 // Don't dllexport/import destructor thunks. 705 F->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 706 return; 707 } 708 } 709 710 if (FD->hasAttr<DLLImportAttr>()) 711 F->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass); 712 else if (FD->hasAttr<DLLExportAttr>()) 713 F->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass); 714 else 715 F->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass); 716 } 717 718 void CodeGenModule::setFunctionDefinitionAttributes(const FunctionDecl *D, 719 llvm::Function *F) { 720 setNonAliasAttributes(D, F); 721 } 722 723 void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D, 724 const CGFunctionInfo &Info, 725 llvm::Function *F) { 726 unsigned CallingConv; 727 AttributeListType AttributeList; 728 ConstructAttributeList(Info, D, AttributeList, CallingConv, false); 729 F->setAttributes(llvm::AttributeSet::get(getLLVMContext(), AttributeList)); 730 F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv)); 731 } 732 733 /// Determines whether the language options require us to model 734 /// unwind exceptions. We treat -fexceptions as mandating this 735 /// except under the fragile ObjC ABI with only ObjC exceptions 736 /// enabled. This means, for example, that C with -fexceptions 737 /// enables this. 738 static bool hasUnwindExceptions(const LangOptions &LangOpts) { 739 // If exceptions are completely disabled, obviously this is false. 740 if (!LangOpts.Exceptions) return false; 741 742 // If C++ exceptions are enabled, this is true. 743 if (LangOpts.CXXExceptions) return true; 744 745 // If ObjC exceptions are enabled, this depends on the ABI. 746 if (LangOpts.ObjCExceptions) { 747 return LangOpts.ObjCRuntime.hasUnwindExceptions(); 748 } 749 750 return true; 751 } 752 753 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D, 754 llvm::Function *F) { 755 llvm::AttrBuilder B; 756 757 if (CodeGenOpts.UnwindTables) 758 B.addAttribute(llvm::Attribute::UWTable); 759 760 if (!hasUnwindExceptions(LangOpts)) 761 B.addAttribute(llvm::Attribute::NoUnwind); 762 763 if (D->hasAttr<NakedAttr>()) { 764 // Naked implies noinline: we should not be inlining such functions. 765 B.addAttribute(llvm::Attribute::Naked); 766 B.addAttribute(llvm::Attribute::NoInline); 767 } else if (D->hasAttr<NoDuplicateAttr>()) { 768 B.addAttribute(llvm::Attribute::NoDuplicate); 769 } else if (D->hasAttr<NoInlineAttr>()) { 770 B.addAttribute(llvm::Attribute::NoInline); 771 } else if (D->hasAttr<AlwaysInlineAttr>() && 772 !F->getAttributes().hasAttribute(llvm::AttributeSet::FunctionIndex, 773 llvm::Attribute::NoInline)) { 774 // (noinline wins over always_inline, and we can't specify both in IR) 775 B.addAttribute(llvm::Attribute::AlwaysInline); 776 } 777 778 if (D->hasAttr<ColdAttr>()) { 779 if (!D->hasAttr<OptimizeNoneAttr>()) 780 B.addAttribute(llvm::Attribute::OptimizeForSize); 781 B.addAttribute(llvm::Attribute::Cold); 782 } 783 784 if (D->hasAttr<MinSizeAttr>()) 785 B.addAttribute(llvm::Attribute::MinSize); 786 787 if (LangOpts.getStackProtector() == LangOptions::SSPOn) 788 B.addAttribute(llvm::Attribute::StackProtect); 789 else if (LangOpts.getStackProtector() == LangOptions::SSPStrong) 790 B.addAttribute(llvm::Attribute::StackProtectStrong); 791 else if (LangOpts.getStackProtector() == LangOptions::SSPReq) 792 B.addAttribute(llvm::Attribute::StackProtectReq); 793 794 F->addAttributes(llvm::AttributeSet::FunctionIndex, 795 llvm::AttributeSet::get( 796 F->getContext(), llvm::AttributeSet::FunctionIndex, B)); 797 798 if (D->hasAttr<OptimizeNoneAttr>()) { 799 // OptimizeNone implies noinline; we should not be inlining such functions. 800 F->addFnAttr(llvm::Attribute::OptimizeNone); 801 F->addFnAttr(llvm::Attribute::NoInline); 802 803 // OptimizeNone wins over OptimizeForSize, MinSize, AlwaysInline. 804 assert(!F->hasFnAttribute(llvm::Attribute::OptimizeForSize) && 805 "OptimizeNone and OptimizeForSize on same function!"); 806 assert(!F->hasFnAttribute(llvm::Attribute::MinSize) && 807 "OptimizeNone and MinSize on same function!"); 808 assert(!F->hasFnAttribute(llvm::Attribute::AlwaysInline) && 809 "OptimizeNone and AlwaysInline on same function!"); 810 811 // Attribute 'inlinehint' has no effect on 'optnone' functions. 812 // Explicitly remove it from the set of function attributes. 813 F->removeFnAttr(llvm::Attribute::InlineHint); 814 } 815 816 if (isa<CXXConstructorDecl>(D) || isa<CXXDestructorDecl>(D)) 817 F->setUnnamedAddr(true); 818 else if (const auto *MD = dyn_cast<CXXMethodDecl>(D)) 819 if (MD->isVirtual()) 820 F->setUnnamedAddr(true); 821 822 unsigned alignment = D->getMaxAlignment() / Context.getCharWidth(); 823 if (alignment) 824 F->setAlignment(alignment); 825 826 // Some C++ ABIs require 2-byte alignment for member functions, in order to 827 // reserve a bit for differentiating between virtual and non-virtual member 828 // functions. If the current target's C++ ABI requires this and this is a 829 // member function, set its alignment accordingly. 830 if (getTarget().getCXXABI().areMemberFunctionsAligned()) { 831 if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D)) 832 F->setAlignment(2); 833 } 834 } 835 836 void CodeGenModule::SetCommonAttributes(const Decl *D, 837 llvm::GlobalValue *GV) { 838 if (const auto *ND = dyn_cast<NamedDecl>(D)) 839 setGlobalVisibility(GV, ND); 840 else 841 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 842 843 if (D->hasAttr<UsedAttr>()) 844 addUsedGlobal(GV); 845 } 846 847 void CodeGenModule::setAliasAttributes(const Decl *D, 848 llvm::GlobalValue *GV) { 849 SetCommonAttributes(D, GV); 850 851 // Process the dllexport attribute based on whether the original definition 852 // (not necessarily the aliasee) was exported. 853 if (D->hasAttr<DLLExportAttr>()) 854 GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass); 855 } 856 857 void CodeGenModule::setNonAliasAttributes(const Decl *D, 858 llvm::GlobalObject *GO) { 859 SetCommonAttributes(D, GO); 860 861 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) 862 GO->setSection(SA->getName()); 863 864 getTargetCodeGenInfo().setTargetAttributes(D, GO, *this); 865 } 866 867 void CodeGenModule::SetInternalFunctionAttributes(const Decl *D, 868 llvm::Function *F, 869 const CGFunctionInfo &FI) { 870 SetLLVMFunctionAttributes(D, FI, F); 871 SetLLVMFunctionAttributesForDefinition(D, F); 872 873 F->setLinkage(llvm::Function::InternalLinkage); 874 875 setNonAliasAttributes(D, F); 876 } 877 878 static void setLinkageAndVisibilityForGV(llvm::GlobalValue *GV, 879 const NamedDecl *ND) { 880 // Set linkage and visibility in case we never see a definition. 881 LinkageInfo LV = ND->getLinkageAndVisibility(); 882 if (LV.getLinkage() != ExternalLinkage) { 883 // Don't set internal linkage on declarations. 884 } else { 885 if (ND->hasAttr<DLLImportAttr>()) { 886 GV->setLinkage(llvm::GlobalValue::ExternalLinkage); 887 GV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass); 888 } else if (ND->hasAttr<DLLExportAttr>()) { 889 GV->setLinkage(llvm::GlobalValue::ExternalLinkage); 890 GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass); 891 } else if (ND->hasAttr<WeakAttr>() || ND->isWeakImported()) { 892 // "extern_weak" is overloaded in LLVM; we probably should have 893 // separate linkage types for this. 894 GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage); 895 } 896 897 // Set visibility on a declaration only if it's explicit. 898 if (LV.isVisibilityExplicit()) 899 GV->setVisibility(CodeGenModule::GetLLVMVisibility(LV.getVisibility())); 900 } 901 } 902 903 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD, llvm::Function *F, 904 bool IsIncompleteFunction, 905 bool IsThunk) { 906 if (llvm::Intrinsic::ID IID = F->getIntrinsicID()) { 907 // If this is an intrinsic function, set the function's attributes 908 // to the intrinsic's attributes. 909 F->setAttributes(llvm::Intrinsic::getAttributes(getLLVMContext(), IID)); 910 return; 911 } 912 913 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 914 915 if (!IsIncompleteFunction) 916 SetLLVMFunctionAttributes(FD, getTypes().arrangeGlobalDeclaration(GD), F); 917 918 // Add the Returned attribute for "this", except for iOS 5 and earlier 919 // where substantial code, including the libstdc++ dylib, was compiled with 920 // GCC and does not actually return "this". 921 if (!IsThunk && getCXXABI().HasThisReturn(GD) && 922 !(getTarget().getTriple().isiOS() && 923 getTarget().getTriple().isOSVersionLT(6))) { 924 assert(!F->arg_empty() && 925 F->arg_begin()->getType() 926 ->canLosslesslyBitCastTo(F->getReturnType()) && 927 "unexpected this return"); 928 F->addAttribute(1, llvm::Attribute::Returned); 929 } 930 931 // Only a few attributes are set on declarations; these may later be 932 // overridden by a definition. 933 934 setLinkageAndVisibilityForGV(F, FD); 935 936 if (const SectionAttr *SA = FD->getAttr<SectionAttr>()) 937 F->setSection(SA->getName()); 938 939 // A replaceable global allocation function does not act like a builtin by 940 // default, only if it is invoked by a new-expression or delete-expression. 941 if (FD->isReplaceableGlobalAllocationFunction()) 942 F->addAttribute(llvm::AttributeSet::FunctionIndex, 943 llvm::Attribute::NoBuiltin); 944 945 // If we are checking indirect calls and this is not a non-static member 946 // function, emit a bit set entry for the function type. 947 if (LangOpts.Sanitize.has(SanitizerKind::CFIICall) && 948 !(isa<CXXMethodDecl>(FD) && !cast<CXXMethodDecl>(FD)->isStatic())) { 949 llvm::NamedMDNode *BitsetsMD = 950 getModule().getOrInsertNamedMetadata("llvm.bitsets"); 951 952 llvm::Metadata *BitsetOps[] = { 953 CreateMetadataIdentifierForType(FD->getType()), 954 llvm::ConstantAsMetadata::get(F), 955 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(Int64Ty, 0))}; 956 BitsetsMD->addOperand(llvm::MDTuple::get(getLLVMContext(), BitsetOps)); 957 } 958 } 959 960 void CodeGenModule::addUsedGlobal(llvm::GlobalValue *GV) { 961 assert(!GV->isDeclaration() && 962 "Only globals with definition can force usage."); 963 LLVMUsed.emplace_back(GV); 964 } 965 966 void CodeGenModule::addCompilerUsedGlobal(llvm::GlobalValue *GV) { 967 assert(!GV->isDeclaration() && 968 "Only globals with definition can force usage."); 969 LLVMCompilerUsed.emplace_back(GV); 970 } 971 972 static void emitUsed(CodeGenModule &CGM, StringRef Name, 973 std::vector<llvm::WeakVH> &List) { 974 // Don't create llvm.used if there is no need. 975 if (List.empty()) 976 return; 977 978 // Convert List to what ConstantArray needs. 979 SmallVector<llvm::Constant*, 8> UsedArray; 980 UsedArray.resize(List.size()); 981 for (unsigned i = 0, e = List.size(); i != e; ++i) { 982 UsedArray[i] = 983 llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast( 984 cast<llvm::Constant>(&*List[i]), CGM.Int8PtrTy); 985 } 986 987 if (UsedArray.empty()) 988 return; 989 llvm::ArrayType *ATy = llvm::ArrayType::get(CGM.Int8PtrTy, UsedArray.size()); 990 991 auto *GV = new llvm::GlobalVariable( 992 CGM.getModule(), ATy, false, llvm::GlobalValue::AppendingLinkage, 993 llvm::ConstantArray::get(ATy, UsedArray), Name); 994 995 GV->setSection("llvm.metadata"); 996 } 997 998 void CodeGenModule::emitLLVMUsed() { 999 emitUsed(*this, "llvm.used", LLVMUsed); 1000 emitUsed(*this, "llvm.compiler.used", LLVMCompilerUsed); 1001 } 1002 1003 void CodeGenModule::AppendLinkerOptions(StringRef Opts) { 1004 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opts); 1005 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 1006 } 1007 1008 void CodeGenModule::AddDetectMismatch(StringRef Name, StringRef Value) { 1009 llvm::SmallString<32> Opt; 1010 getTargetCodeGenInfo().getDetectMismatchOption(Name, Value, Opt); 1011 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt); 1012 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 1013 } 1014 1015 void CodeGenModule::AddDependentLib(StringRef Lib) { 1016 llvm::SmallString<24> Opt; 1017 getTargetCodeGenInfo().getDependentLibraryOption(Lib, Opt); 1018 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt); 1019 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 1020 } 1021 1022 /// \brief Add link options implied by the given module, including modules 1023 /// it depends on, using a postorder walk. 1024 static void addLinkOptionsPostorder(CodeGenModule &CGM, Module *Mod, 1025 SmallVectorImpl<llvm::Metadata *> &Metadata, 1026 llvm::SmallPtrSet<Module *, 16> &Visited) { 1027 // Import this module's parent. 1028 if (Mod->Parent && Visited.insert(Mod->Parent).second) { 1029 addLinkOptionsPostorder(CGM, Mod->Parent, Metadata, Visited); 1030 } 1031 1032 // Import this module's dependencies. 1033 for (unsigned I = Mod->Imports.size(); I > 0; --I) { 1034 if (Visited.insert(Mod->Imports[I - 1]).second) 1035 addLinkOptionsPostorder(CGM, Mod->Imports[I-1], Metadata, Visited); 1036 } 1037 1038 // Add linker options to link against the libraries/frameworks 1039 // described by this module. 1040 llvm::LLVMContext &Context = CGM.getLLVMContext(); 1041 for (unsigned I = Mod->LinkLibraries.size(); I > 0; --I) { 1042 // Link against a framework. Frameworks are currently Darwin only, so we 1043 // don't to ask TargetCodeGenInfo for the spelling of the linker option. 1044 if (Mod->LinkLibraries[I-1].IsFramework) { 1045 llvm::Metadata *Args[2] = { 1046 llvm::MDString::get(Context, "-framework"), 1047 llvm::MDString::get(Context, Mod->LinkLibraries[I - 1].Library)}; 1048 1049 Metadata.push_back(llvm::MDNode::get(Context, Args)); 1050 continue; 1051 } 1052 1053 // Link against a library. 1054 llvm::SmallString<24> Opt; 1055 CGM.getTargetCodeGenInfo().getDependentLibraryOption( 1056 Mod->LinkLibraries[I-1].Library, Opt); 1057 auto *OptString = llvm::MDString::get(Context, Opt); 1058 Metadata.push_back(llvm::MDNode::get(Context, OptString)); 1059 } 1060 } 1061 1062 void CodeGenModule::EmitModuleLinkOptions() { 1063 // Collect the set of all of the modules we want to visit to emit link 1064 // options, which is essentially the imported modules and all of their 1065 // non-explicit child modules. 1066 llvm::SetVector<clang::Module *> LinkModules; 1067 llvm::SmallPtrSet<clang::Module *, 16> Visited; 1068 SmallVector<clang::Module *, 16> Stack; 1069 1070 // Seed the stack with imported modules. 1071 for (Module *M : ImportedModules) 1072 if (Visited.insert(M).second) 1073 Stack.push_back(M); 1074 1075 // Find all of the modules to import, making a little effort to prune 1076 // non-leaf modules. 1077 while (!Stack.empty()) { 1078 clang::Module *Mod = Stack.pop_back_val(); 1079 1080 bool AnyChildren = false; 1081 1082 // Visit the submodules of this module. 1083 for (clang::Module::submodule_iterator Sub = Mod->submodule_begin(), 1084 SubEnd = Mod->submodule_end(); 1085 Sub != SubEnd; ++Sub) { 1086 // Skip explicit children; they need to be explicitly imported to be 1087 // linked against. 1088 if ((*Sub)->IsExplicit) 1089 continue; 1090 1091 if (Visited.insert(*Sub).second) { 1092 Stack.push_back(*Sub); 1093 AnyChildren = true; 1094 } 1095 } 1096 1097 // We didn't find any children, so add this module to the list of 1098 // modules to link against. 1099 if (!AnyChildren) { 1100 LinkModules.insert(Mod); 1101 } 1102 } 1103 1104 // Add link options for all of the imported modules in reverse topological 1105 // order. We don't do anything to try to order import link flags with respect 1106 // to linker options inserted by things like #pragma comment(). 1107 SmallVector<llvm::Metadata *, 16> MetadataArgs; 1108 Visited.clear(); 1109 for (Module *M : LinkModules) 1110 if (Visited.insert(M).second) 1111 addLinkOptionsPostorder(*this, M, MetadataArgs, Visited); 1112 std::reverse(MetadataArgs.begin(), MetadataArgs.end()); 1113 LinkerOptionsMetadata.append(MetadataArgs.begin(), MetadataArgs.end()); 1114 1115 // Add the linker options metadata flag. 1116 getModule().addModuleFlag(llvm::Module::AppendUnique, "Linker Options", 1117 llvm::MDNode::get(getLLVMContext(), 1118 LinkerOptionsMetadata)); 1119 } 1120 1121 void CodeGenModule::EmitDeferred() { 1122 // Emit code for any potentially referenced deferred decls. Since a 1123 // previously unused static decl may become used during the generation of code 1124 // for a static function, iterate until no changes are made. 1125 1126 if (!DeferredVTables.empty()) { 1127 EmitDeferredVTables(); 1128 1129 // Emitting a v-table doesn't directly cause more v-tables to 1130 // become deferred, although it can cause functions to be 1131 // emitted that then need those v-tables. 1132 assert(DeferredVTables.empty()); 1133 } 1134 1135 // Stop if we're out of both deferred v-tables and deferred declarations. 1136 if (DeferredDeclsToEmit.empty()) 1137 return; 1138 1139 // Grab the list of decls to emit. If EmitGlobalDefinition schedules more 1140 // work, it will not interfere with this. 1141 std::vector<DeferredGlobal> CurDeclsToEmit; 1142 CurDeclsToEmit.swap(DeferredDeclsToEmit); 1143 1144 for (DeferredGlobal &G : CurDeclsToEmit) { 1145 GlobalDecl D = G.GD; 1146 llvm::GlobalValue *GV = G.GV; 1147 G.GV = nullptr; 1148 1149 // We should call GetAddrOfGlobal with IsForDefinition set to true in order 1150 // to get GlobalValue with exactly the type we need, not something that 1151 // might had been created for another decl with the same mangled name but 1152 // different type. 1153 // FIXME: Support for variables is not implemented yet. 1154 if (isa<FunctionDecl>(D.getDecl())) 1155 GV = cast<llvm::GlobalValue>(GetAddrOfGlobal(D, /*IsForDefinition=*/true)); 1156 else 1157 if (!GV) 1158 GV = GetGlobalValue(getMangledName(D)); 1159 1160 // Check to see if we've already emitted this. This is necessary 1161 // for a couple of reasons: first, decls can end up in the 1162 // deferred-decls queue multiple times, and second, decls can end 1163 // up with definitions in unusual ways (e.g. by an extern inline 1164 // function acquiring a strong function redefinition). Just 1165 // ignore these cases. 1166 if (GV && !GV->isDeclaration()) 1167 continue; 1168 1169 // Otherwise, emit the definition and move on to the next one. 1170 EmitGlobalDefinition(D, GV); 1171 1172 // If we found out that we need to emit more decls, do that recursively. 1173 // This has the advantage that the decls are emitted in a DFS and related 1174 // ones are close together, which is convenient for testing. 1175 if (!DeferredVTables.empty() || !DeferredDeclsToEmit.empty()) { 1176 EmitDeferred(); 1177 assert(DeferredVTables.empty() && DeferredDeclsToEmit.empty()); 1178 } 1179 } 1180 } 1181 1182 void CodeGenModule::EmitGlobalAnnotations() { 1183 if (Annotations.empty()) 1184 return; 1185 1186 // Create a new global variable for the ConstantStruct in the Module. 1187 llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get( 1188 Annotations[0]->getType(), Annotations.size()), Annotations); 1189 auto *gv = new llvm::GlobalVariable(getModule(), Array->getType(), false, 1190 llvm::GlobalValue::AppendingLinkage, 1191 Array, "llvm.global.annotations"); 1192 gv->setSection(AnnotationSection); 1193 } 1194 1195 llvm::Constant *CodeGenModule::EmitAnnotationString(StringRef Str) { 1196 llvm::Constant *&AStr = AnnotationStrings[Str]; 1197 if (AStr) 1198 return AStr; 1199 1200 // Not found yet, create a new global. 1201 llvm::Constant *s = llvm::ConstantDataArray::getString(getLLVMContext(), Str); 1202 auto *gv = 1203 new llvm::GlobalVariable(getModule(), s->getType(), true, 1204 llvm::GlobalValue::PrivateLinkage, s, ".str"); 1205 gv->setSection(AnnotationSection); 1206 gv->setUnnamedAddr(true); 1207 AStr = gv; 1208 return gv; 1209 } 1210 1211 llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) { 1212 SourceManager &SM = getContext().getSourceManager(); 1213 PresumedLoc PLoc = SM.getPresumedLoc(Loc); 1214 if (PLoc.isValid()) 1215 return EmitAnnotationString(PLoc.getFilename()); 1216 return EmitAnnotationString(SM.getBufferName(Loc)); 1217 } 1218 1219 llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) { 1220 SourceManager &SM = getContext().getSourceManager(); 1221 PresumedLoc PLoc = SM.getPresumedLoc(L); 1222 unsigned LineNo = PLoc.isValid() ? PLoc.getLine() : 1223 SM.getExpansionLineNumber(L); 1224 return llvm::ConstantInt::get(Int32Ty, LineNo); 1225 } 1226 1227 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV, 1228 const AnnotateAttr *AA, 1229 SourceLocation L) { 1230 // Get the globals for file name, annotation, and the line number. 1231 llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()), 1232 *UnitGV = EmitAnnotationUnit(L), 1233 *LineNoCst = EmitAnnotationLineNo(L); 1234 1235 // Create the ConstantStruct for the global annotation. 1236 llvm::Constant *Fields[4] = { 1237 llvm::ConstantExpr::getBitCast(GV, Int8PtrTy), 1238 llvm::ConstantExpr::getBitCast(AnnoGV, Int8PtrTy), 1239 llvm::ConstantExpr::getBitCast(UnitGV, Int8PtrTy), 1240 LineNoCst 1241 }; 1242 return llvm::ConstantStruct::getAnon(Fields); 1243 } 1244 1245 void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D, 1246 llvm::GlobalValue *GV) { 1247 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 1248 // Get the struct elements for these annotations. 1249 for (const auto *I : D->specific_attrs<AnnotateAttr>()) 1250 Annotations.push_back(EmitAnnotateAttr(GV, I, D->getLocation())); 1251 } 1252 1253 bool CodeGenModule::isInSanitizerBlacklist(llvm::Function *Fn, 1254 SourceLocation Loc) const { 1255 const auto &SanitizerBL = getContext().getSanitizerBlacklist(); 1256 // Blacklist by function name. 1257 if (SanitizerBL.isBlacklistedFunction(Fn->getName())) 1258 return true; 1259 // Blacklist by location. 1260 if (!Loc.isInvalid()) 1261 return SanitizerBL.isBlacklistedLocation(Loc); 1262 // If location is unknown, this may be a compiler-generated function. Assume 1263 // it's located in the main file. 1264 auto &SM = Context.getSourceManager(); 1265 if (const auto *MainFile = SM.getFileEntryForID(SM.getMainFileID())) { 1266 return SanitizerBL.isBlacklistedFile(MainFile->getName()); 1267 } 1268 return false; 1269 } 1270 1271 bool CodeGenModule::isInSanitizerBlacklist(llvm::GlobalVariable *GV, 1272 SourceLocation Loc, QualType Ty, 1273 StringRef Category) const { 1274 // For now globals can be blacklisted only in ASan and KASan. 1275 if (!LangOpts.Sanitize.hasOneOf( 1276 SanitizerKind::Address | SanitizerKind::KernelAddress)) 1277 return false; 1278 const auto &SanitizerBL = getContext().getSanitizerBlacklist(); 1279 if (SanitizerBL.isBlacklistedGlobal(GV->getName(), Category)) 1280 return true; 1281 if (SanitizerBL.isBlacklistedLocation(Loc, Category)) 1282 return true; 1283 // Check global type. 1284 if (!Ty.isNull()) { 1285 // Drill down the array types: if global variable of a fixed type is 1286 // blacklisted, we also don't instrument arrays of them. 1287 while (auto AT = dyn_cast<ArrayType>(Ty.getTypePtr())) 1288 Ty = AT->getElementType(); 1289 Ty = Ty.getCanonicalType().getUnqualifiedType(); 1290 // We allow to blacklist only record types (classes, structs etc.) 1291 if (Ty->isRecordType()) { 1292 std::string TypeStr = Ty.getAsString(getContext().getPrintingPolicy()); 1293 if (SanitizerBL.isBlacklistedType(TypeStr, Category)) 1294 return true; 1295 } 1296 } 1297 return false; 1298 } 1299 1300 bool CodeGenModule::MustBeEmitted(const ValueDecl *Global) { 1301 // Never defer when EmitAllDecls is specified. 1302 if (LangOpts.EmitAllDecls) 1303 return true; 1304 1305 return getContext().DeclMustBeEmitted(Global); 1306 } 1307 1308 bool CodeGenModule::MayBeEmittedEagerly(const ValueDecl *Global) { 1309 if (const auto *FD = dyn_cast<FunctionDecl>(Global)) 1310 if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation) 1311 // Implicit template instantiations may change linkage if they are later 1312 // explicitly instantiated, so they should not be emitted eagerly. 1313 return false; 1314 // If OpenMP is enabled and threadprivates must be generated like TLS, delay 1315 // codegen for global variables, because they may be marked as threadprivate. 1316 if (LangOpts.OpenMP && LangOpts.OpenMPUseTLS && 1317 getContext().getTargetInfo().isTLSSupported() && isa<VarDecl>(Global)) 1318 return false; 1319 1320 return true; 1321 } 1322 1323 ConstantAddress CodeGenModule::GetAddrOfUuidDescriptor( 1324 const CXXUuidofExpr* E) { 1325 // Sema has verified that IIDSource has a __declspec(uuid()), and that its 1326 // well-formed. 1327 StringRef Uuid = E->getUuidAsStringRef(Context); 1328 std::string Name = "_GUID_" + Uuid.lower(); 1329 std::replace(Name.begin(), Name.end(), '-', '_'); 1330 1331 // Contains a 32-bit field. 1332 CharUnits Alignment = CharUnits::fromQuantity(4); 1333 1334 // Look for an existing global. 1335 if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name)) 1336 return ConstantAddress(GV, Alignment); 1337 1338 llvm::Constant *Init = EmitUuidofInitializer(Uuid); 1339 assert(Init && "failed to initialize as constant"); 1340 1341 auto *GV = new llvm::GlobalVariable( 1342 getModule(), Init->getType(), 1343 /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name); 1344 if (supportsCOMDAT()) 1345 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 1346 return ConstantAddress(GV, Alignment); 1347 } 1348 1349 ConstantAddress CodeGenModule::GetWeakRefReference(const ValueDecl *VD) { 1350 const AliasAttr *AA = VD->getAttr<AliasAttr>(); 1351 assert(AA && "No alias?"); 1352 1353 CharUnits Alignment = getContext().getDeclAlign(VD); 1354 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType()); 1355 1356 // See if there is already something with the target's name in the module. 1357 llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee()); 1358 if (Entry) { 1359 unsigned AS = getContext().getTargetAddressSpace(VD->getType()); 1360 auto Ptr = llvm::ConstantExpr::getBitCast(Entry, DeclTy->getPointerTo(AS)); 1361 return ConstantAddress(Ptr, Alignment); 1362 } 1363 1364 llvm::Constant *Aliasee; 1365 if (isa<llvm::FunctionType>(DeclTy)) 1366 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, 1367 GlobalDecl(cast<FunctionDecl>(VD)), 1368 /*ForVTable=*/false); 1369 else 1370 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), 1371 llvm::PointerType::getUnqual(DeclTy), 1372 nullptr); 1373 1374 auto *F = cast<llvm::GlobalValue>(Aliasee); 1375 F->setLinkage(llvm::Function::ExternalWeakLinkage); 1376 WeakRefReferences.insert(F); 1377 1378 return ConstantAddress(Aliasee, Alignment); 1379 } 1380 1381 void CodeGenModule::EmitGlobal(GlobalDecl GD) { 1382 const auto *Global = cast<ValueDecl>(GD.getDecl()); 1383 1384 // Weak references don't produce any output by themselves. 1385 if (Global->hasAttr<WeakRefAttr>()) 1386 return; 1387 1388 // If this is an alias definition (which otherwise looks like a declaration) 1389 // emit it now. 1390 if (Global->hasAttr<AliasAttr>()) 1391 return EmitAliasDefinition(GD); 1392 1393 // If this is CUDA, be selective about which declarations we emit. 1394 if (LangOpts.CUDA) { 1395 if (LangOpts.CUDAIsDevice) { 1396 if (!Global->hasAttr<CUDADeviceAttr>() && 1397 !Global->hasAttr<CUDAGlobalAttr>() && 1398 !Global->hasAttr<CUDAConstantAttr>() && 1399 !Global->hasAttr<CUDASharedAttr>()) 1400 return; 1401 } else { 1402 if (!Global->hasAttr<CUDAHostAttr>() && ( 1403 Global->hasAttr<CUDADeviceAttr>() || 1404 Global->hasAttr<CUDAConstantAttr>() || 1405 Global->hasAttr<CUDASharedAttr>())) 1406 return; 1407 } 1408 } 1409 1410 // Ignore declarations, they will be emitted on their first use. 1411 if (const auto *FD = dyn_cast<FunctionDecl>(Global)) { 1412 // Forward declarations are emitted lazily on first use. 1413 if (!FD->doesThisDeclarationHaveABody()) { 1414 if (!FD->doesDeclarationForceExternallyVisibleDefinition()) 1415 return; 1416 1417 StringRef MangledName = getMangledName(GD); 1418 1419 // Compute the function info and LLVM type. 1420 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 1421 llvm::Type *Ty = getTypes().GetFunctionType(FI); 1422 1423 GetOrCreateLLVMFunction(MangledName, Ty, GD, /*ForVTable=*/false, 1424 /*DontDefer=*/false); 1425 return; 1426 } 1427 } else { 1428 const auto *VD = cast<VarDecl>(Global); 1429 assert(VD->isFileVarDecl() && "Cannot emit local var decl as global."); 1430 1431 if (VD->isThisDeclarationADefinition() != VarDecl::Definition && 1432 !Context.isMSStaticDataMemberInlineDefinition(VD)) 1433 return; 1434 } 1435 1436 // Defer code generation to first use when possible, e.g. if this is an inline 1437 // function. If the global must always be emitted, do it eagerly if possible 1438 // to benefit from cache locality. 1439 if (MustBeEmitted(Global) && MayBeEmittedEagerly(Global)) { 1440 // Emit the definition if it can't be deferred. 1441 EmitGlobalDefinition(GD); 1442 return; 1443 } 1444 1445 // If we're deferring emission of a C++ variable with an 1446 // initializer, remember the order in which it appeared in the file. 1447 if (getLangOpts().CPlusPlus && isa<VarDecl>(Global) && 1448 cast<VarDecl>(Global)->hasInit()) { 1449 DelayedCXXInitPosition[Global] = CXXGlobalInits.size(); 1450 CXXGlobalInits.push_back(nullptr); 1451 } 1452 1453 StringRef MangledName = getMangledName(GD); 1454 if (llvm::GlobalValue *GV = GetGlobalValue(MangledName)) { 1455 // The value has already been used and should therefore be emitted. 1456 addDeferredDeclToEmit(GV, GD); 1457 } else if (MustBeEmitted(Global)) { 1458 // The value must be emitted, but cannot be emitted eagerly. 1459 assert(!MayBeEmittedEagerly(Global)); 1460 addDeferredDeclToEmit(/*GV=*/nullptr, GD); 1461 } else { 1462 // Otherwise, remember that we saw a deferred decl with this name. The 1463 // first use of the mangled name will cause it to move into 1464 // DeferredDeclsToEmit. 1465 DeferredDecls[MangledName] = GD; 1466 } 1467 } 1468 1469 namespace { 1470 struct FunctionIsDirectlyRecursive : 1471 public RecursiveASTVisitor<FunctionIsDirectlyRecursive> { 1472 const StringRef Name; 1473 const Builtin::Context &BI; 1474 bool Result; 1475 FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C) : 1476 Name(N), BI(C), Result(false) { 1477 } 1478 typedef RecursiveASTVisitor<FunctionIsDirectlyRecursive> Base; 1479 1480 bool TraverseCallExpr(CallExpr *E) { 1481 const FunctionDecl *FD = E->getDirectCallee(); 1482 if (!FD) 1483 return true; 1484 AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>(); 1485 if (Attr && Name == Attr->getLabel()) { 1486 Result = true; 1487 return false; 1488 } 1489 unsigned BuiltinID = FD->getBuiltinID(); 1490 if (!BuiltinID || !BI.isLibFunction(BuiltinID)) 1491 return true; 1492 StringRef BuiltinName = BI.getName(BuiltinID); 1493 if (BuiltinName.startswith("__builtin_") && 1494 Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) { 1495 Result = true; 1496 return false; 1497 } 1498 return true; 1499 } 1500 }; 1501 1502 struct DLLImportFunctionVisitor 1503 : public RecursiveASTVisitor<DLLImportFunctionVisitor> { 1504 bool SafeToInline = true; 1505 1506 bool VisitVarDecl(VarDecl *VD) { 1507 // A thread-local variable cannot be imported. 1508 SafeToInline = !VD->getTLSKind(); 1509 return SafeToInline; 1510 } 1511 1512 // Make sure we're not referencing non-imported vars or functions. 1513 bool VisitDeclRefExpr(DeclRefExpr *E) { 1514 ValueDecl *VD = E->getDecl(); 1515 if (isa<FunctionDecl>(VD)) 1516 SafeToInline = VD->hasAttr<DLLImportAttr>(); 1517 else if (VarDecl *V = dyn_cast<VarDecl>(VD)) 1518 SafeToInline = !V->hasGlobalStorage() || V->hasAttr<DLLImportAttr>(); 1519 return SafeToInline; 1520 } 1521 bool VisitCXXDeleteExpr(CXXDeleteExpr *E) { 1522 SafeToInline = E->getOperatorDelete()->hasAttr<DLLImportAttr>(); 1523 return SafeToInline; 1524 } 1525 bool VisitCXXNewExpr(CXXNewExpr *E) { 1526 SafeToInline = E->getOperatorNew()->hasAttr<DLLImportAttr>(); 1527 return SafeToInline; 1528 } 1529 }; 1530 } 1531 1532 // isTriviallyRecursive - Check if this function calls another 1533 // decl that, because of the asm attribute or the other decl being a builtin, 1534 // ends up pointing to itself. 1535 bool 1536 CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) { 1537 StringRef Name; 1538 if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) { 1539 // asm labels are a special kind of mangling we have to support. 1540 AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>(); 1541 if (!Attr) 1542 return false; 1543 Name = Attr->getLabel(); 1544 } else { 1545 Name = FD->getName(); 1546 } 1547 1548 FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo); 1549 Walker.TraverseFunctionDecl(const_cast<FunctionDecl*>(FD)); 1550 return Walker.Result; 1551 } 1552 1553 bool 1554 CodeGenModule::shouldEmitFunction(GlobalDecl GD) { 1555 if (getFunctionLinkage(GD) != llvm::Function::AvailableExternallyLinkage) 1556 return true; 1557 const auto *F = cast<FunctionDecl>(GD.getDecl()); 1558 if (CodeGenOpts.OptimizationLevel == 0 && !F->hasAttr<AlwaysInlineAttr>()) 1559 return false; 1560 1561 if (F->hasAttr<DLLImportAttr>()) { 1562 // Check whether it would be safe to inline this dllimport function. 1563 DLLImportFunctionVisitor Visitor; 1564 Visitor.TraverseFunctionDecl(const_cast<FunctionDecl*>(F)); 1565 if (!Visitor.SafeToInline) 1566 return false; 1567 } 1568 1569 // PR9614. Avoid cases where the source code is lying to us. An available 1570 // externally function should have an equivalent function somewhere else, 1571 // but a function that calls itself is clearly not equivalent to the real 1572 // implementation. 1573 // This happens in glibc's btowc and in some configure checks. 1574 return !isTriviallyRecursive(F); 1575 } 1576 1577 /// If the type for the method's class was generated by 1578 /// CGDebugInfo::createContextChain(), the cache contains only a 1579 /// limited DIType without any declarations. Since EmitFunctionStart() 1580 /// needs to find the canonical declaration for each method, we need 1581 /// to construct the complete type prior to emitting the method. 1582 void CodeGenModule::CompleteDIClassType(const CXXMethodDecl* D) { 1583 if (!D->isInstance()) 1584 return; 1585 1586 if (CGDebugInfo *DI = getModuleDebugInfo()) 1587 if (getCodeGenOpts().getDebugInfo() >= CodeGenOptions::LimitedDebugInfo) { 1588 const auto *ThisPtr = cast<PointerType>(D->getThisType(getContext())); 1589 DI->getOrCreateRecordType(ThisPtr->getPointeeType(), D->getLocation()); 1590 } 1591 } 1592 1593 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD, llvm::GlobalValue *GV) { 1594 const auto *D = cast<ValueDecl>(GD.getDecl()); 1595 1596 PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(), 1597 Context.getSourceManager(), 1598 "Generating code for declaration"); 1599 1600 if (isa<FunctionDecl>(D)) { 1601 // At -O0, don't generate IR for functions with available_externally 1602 // linkage. 1603 if (!shouldEmitFunction(GD)) 1604 return; 1605 1606 if (const auto *Method = dyn_cast<CXXMethodDecl>(D)) { 1607 CompleteDIClassType(Method); 1608 // Make sure to emit the definition(s) before we emit the thunks. 1609 // This is necessary for the generation of certain thunks. 1610 if (const auto *CD = dyn_cast<CXXConstructorDecl>(Method)) 1611 ABI->emitCXXStructor(CD, getFromCtorType(GD.getCtorType())); 1612 else if (const auto *DD = dyn_cast<CXXDestructorDecl>(Method)) 1613 ABI->emitCXXStructor(DD, getFromDtorType(GD.getDtorType())); 1614 else 1615 EmitGlobalFunctionDefinition(GD, GV); 1616 1617 if (Method->isVirtual()) 1618 getVTables().EmitThunks(GD); 1619 1620 return; 1621 } 1622 1623 return EmitGlobalFunctionDefinition(GD, GV); 1624 } 1625 1626 if (const auto *VD = dyn_cast<VarDecl>(D)) 1627 return EmitGlobalVarDefinition(VD); 1628 1629 llvm_unreachable("Invalid argument to EmitGlobalDefinition()"); 1630 } 1631 1632 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old, 1633 llvm::Function *NewFn); 1634 1635 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the 1636 /// module, create and return an llvm Function with the specified type. If there 1637 /// is something in the module with the specified name, return it potentially 1638 /// bitcasted to the right type. 1639 /// 1640 /// If D is non-null, it specifies a decl that correspond to this. This is used 1641 /// to set the attributes on the function when it is first created. 1642 llvm::Constant * 1643 CodeGenModule::GetOrCreateLLVMFunction(StringRef MangledName, 1644 llvm::Type *Ty, 1645 GlobalDecl GD, bool ForVTable, 1646 bool DontDefer, bool IsThunk, 1647 llvm::AttributeSet ExtraAttrs, 1648 bool IsForDefinition) { 1649 const Decl *D = GD.getDecl(); 1650 1651 // Lookup the entry, lazily creating it if necessary. 1652 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 1653 if (Entry) { 1654 if (WeakRefReferences.erase(Entry)) { 1655 const FunctionDecl *FD = cast_or_null<FunctionDecl>(D); 1656 if (FD && !FD->hasAttr<WeakAttr>()) 1657 Entry->setLinkage(llvm::Function::ExternalLinkage); 1658 } 1659 1660 // Handle dropped DLL attributes. 1661 if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>()) 1662 Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 1663 1664 // If there are two attempts to define the same mangled name, issue an 1665 // error. 1666 if (IsForDefinition && !Entry->isDeclaration()) { 1667 GlobalDecl OtherGD; 1668 // Check that GD is not yet in ExplicitDefinitions is required to make 1669 // sure that we issue an error only once. 1670 if (lookupRepresentativeDecl(MangledName, OtherGD) && 1671 (GD.getCanonicalDecl().getDecl() != 1672 OtherGD.getCanonicalDecl().getDecl()) && 1673 DiagnosedConflictingDefinitions.insert(GD).second) { 1674 getDiags().Report(D->getLocation(), 1675 diag::err_duplicate_mangled_name); 1676 getDiags().Report(OtherGD.getDecl()->getLocation(), 1677 diag::note_previous_definition); 1678 } 1679 } 1680 1681 if ((isa<llvm::Function>(Entry) || isa<llvm::GlobalAlias>(Entry)) && 1682 (Entry->getType()->getElementType() == Ty)) { 1683 return Entry; 1684 } 1685 1686 // Make sure the result is of the correct type. 1687 // (If function is requested for a definition, we always need to create a new 1688 // function, not just return a bitcast.) 1689 if (!IsForDefinition) 1690 return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo()); 1691 } 1692 1693 // This function doesn't have a complete type (for example, the return 1694 // type is an incomplete struct). Use a fake type instead, and make 1695 // sure not to try to set attributes. 1696 bool IsIncompleteFunction = false; 1697 1698 llvm::FunctionType *FTy; 1699 if (isa<llvm::FunctionType>(Ty)) { 1700 FTy = cast<llvm::FunctionType>(Ty); 1701 } else { 1702 FTy = llvm::FunctionType::get(VoidTy, false); 1703 IsIncompleteFunction = true; 1704 } 1705 1706 llvm::Function *F = 1707 llvm::Function::Create(FTy, llvm::Function::ExternalLinkage, 1708 Entry ? StringRef() : MangledName, &getModule()); 1709 1710 // If we already created a function with the same mangled name (but different 1711 // type) before, take its name and add it to the list of functions to be 1712 // replaced with F at the end of CodeGen. 1713 // 1714 // This happens if there is a prototype for a function (e.g. "int f()") and 1715 // then a definition of a different type (e.g. "int f(int x)"). 1716 if (Entry) { 1717 F->takeName(Entry); 1718 1719 // This might be an implementation of a function without a prototype, in 1720 // which case, try to do special replacement of calls which match the new 1721 // prototype. The really key thing here is that we also potentially drop 1722 // arguments from the call site so as to make a direct call, which makes the 1723 // inliner happier and suppresses a number of optimizer warnings (!) about 1724 // dropping arguments. 1725 if (!Entry->use_empty()) { 1726 ReplaceUsesOfNonProtoTypeWithRealFunction(Entry, F); 1727 Entry->removeDeadConstantUsers(); 1728 } 1729 1730 llvm::Constant *BC = llvm::ConstantExpr::getBitCast( 1731 F, Entry->getType()->getElementType()->getPointerTo()); 1732 addGlobalValReplacement(Entry, BC); 1733 } 1734 1735 assert(F->getName() == MangledName && "name was uniqued!"); 1736 if (D) 1737 SetFunctionAttributes(GD, F, IsIncompleteFunction, IsThunk); 1738 if (ExtraAttrs.hasAttributes(llvm::AttributeSet::FunctionIndex)) { 1739 llvm::AttrBuilder B(ExtraAttrs, llvm::AttributeSet::FunctionIndex); 1740 F->addAttributes(llvm::AttributeSet::FunctionIndex, 1741 llvm::AttributeSet::get(VMContext, 1742 llvm::AttributeSet::FunctionIndex, 1743 B)); 1744 } 1745 1746 if (!DontDefer) { 1747 // All MSVC dtors other than the base dtor are linkonce_odr and delegate to 1748 // each other bottoming out with the base dtor. Therefore we emit non-base 1749 // dtors on usage, even if there is no dtor definition in the TU. 1750 if (D && isa<CXXDestructorDecl>(D) && 1751 getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D), 1752 GD.getDtorType())) 1753 addDeferredDeclToEmit(F, GD); 1754 1755 // This is the first use or definition of a mangled name. If there is a 1756 // deferred decl with this name, remember that we need to emit it at the end 1757 // of the file. 1758 auto DDI = DeferredDecls.find(MangledName); 1759 if (DDI != DeferredDecls.end()) { 1760 // Move the potentially referenced deferred decl to the 1761 // DeferredDeclsToEmit list, and remove it from DeferredDecls (since we 1762 // don't need it anymore). 1763 addDeferredDeclToEmit(F, DDI->second); 1764 DeferredDecls.erase(DDI); 1765 1766 // Otherwise, there are cases we have to worry about where we're 1767 // using a declaration for which we must emit a definition but where 1768 // we might not find a top-level definition: 1769 // - member functions defined inline in their classes 1770 // - friend functions defined inline in some class 1771 // - special member functions with implicit definitions 1772 // If we ever change our AST traversal to walk into class methods, 1773 // this will be unnecessary. 1774 // 1775 // We also don't emit a definition for a function if it's going to be an 1776 // entry in a vtable, unless it's already marked as used. 1777 } else if (getLangOpts().CPlusPlus && D) { 1778 // Look for a declaration that's lexically in a record. 1779 for (const auto *FD = cast<FunctionDecl>(D)->getMostRecentDecl(); FD; 1780 FD = FD->getPreviousDecl()) { 1781 if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) { 1782 if (FD->doesThisDeclarationHaveABody()) { 1783 addDeferredDeclToEmit(F, GD.getWithDecl(FD)); 1784 break; 1785 } 1786 } 1787 } 1788 } 1789 } 1790 1791 // Make sure the result is of the requested type. 1792 if (!IsIncompleteFunction) { 1793 assert(F->getType()->getElementType() == Ty); 1794 return F; 1795 } 1796 1797 llvm::Type *PTy = llvm::PointerType::getUnqual(Ty); 1798 return llvm::ConstantExpr::getBitCast(F, PTy); 1799 } 1800 1801 /// GetAddrOfFunction - Return the address of the given function. If Ty is 1802 /// non-null, then this function will use the specified type if it has to 1803 /// create it (this occurs when we see a definition of the function). 1804 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD, 1805 llvm::Type *Ty, 1806 bool ForVTable, 1807 bool DontDefer, 1808 bool IsForDefinition) { 1809 // If there was no specific requested type, just convert it now. 1810 if (!Ty) 1811 Ty = getTypes().ConvertType(cast<ValueDecl>(GD.getDecl())->getType()); 1812 1813 StringRef MangledName = getMangledName(GD); 1814 return GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable, DontDefer, 1815 /*IsThunk=*/false, llvm::AttributeSet(), 1816 IsForDefinition); 1817 } 1818 1819 /// CreateRuntimeFunction - Create a new runtime function with the specified 1820 /// type and name. 1821 llvm::Constant * 1822 CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy, 1823 StringRef Name, 1824 llvm::AttributeSet ExtraAttrs) { 1825 llvm::Constant *C = 1826 GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false, 1827 /*DontDefer=*/false, /*IsThunk=*/false, ExtraAttrs); 1828 if (auto *F = dyn_cast<llvm::Function>(C)) 1829 if (F->empty()) 1830 F->setCallingConv(getRuntimeCC()); 1831 return C; 1832 } 1833 1834 /// CreateBuiltinFunction - Create a new builtin function with the specified 1835 /// type and name. 1836 llvm::Constant * 1837 CodeGenModule::CreateBuiltinFunction(llvm::FunctionType *FTy, 1838 StringRef Name, 1839 llvm::AttributeSet ExtraAttrs) { 1840 llvm::Constant *C = 1841 GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false, 1842 /*DontDefer=*/false, /*IsThunk=*/false, ExtraAttrs); 1843 if (auto *F = dyn_cast<llvm::Function>(C)) 1844 if (F->empty()) 1845 F->setCallingConv(getBuiltinCC()); 1846 return C; 1847 } 1848 1849 /// isTypeConstant - Determine whether an object of this type can be emitted 1850 /// as a constant. 1851 /// 1852 /// If ExcludeCtor is true, the duration when the object's constructor runs 1853 /// will not be considered. The caller will need to verify that the object is 1854 /// not written to during its construction. 1855 bool CodeGenModule::isTypeConstant(QualType Ty, bool ExcludeCtor) { 1856 if (!Ty.isConstant(Context) && !Ty->isReferenceType()) 1857 return false; 1858 1859 if (Context.getLangOpts().CPlusPlus) { 1860 if (const CXXRecordDecl *Record 1861 = Context.getBaseElementType(Ty)->getAsCXXRecordDecl()) 1862 return ExcludeCtor && !Record->hasMutableFields() && 1863 Record->hasTrivialDestructor(); 1864 } 1865 1866 return true; 1867 } 1868 1869 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module, 1870 /// create and return an llvm GlobalVariable with the specified type. If there 1871 /// is something in the module with the specified name, return it potentially 1872 /// bitcasted to the right type. 1873 /// 1874 /// If D is non-null, it specifies a decl that correspond to this. This is used 1875 /// to set the attributes on the global when it is first created. 1876 llvm::Constant * 1877 CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName, 1878 llvm::PointerType *Ty, 1879 const VarDecl *D) { 1880 // Lookup the entry, lazily creating it if necessary. 1881 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 1882 if (Entry) { 1883 if (WeakRefReferences.erase(Entry)) { 1884 if (D && !D->hasAttr<WeakAttr>()) 1885 Entry->setLinkage(llvm::Function::ExternalLinkage); 1886 } 1887 1888 // Handle dropped DLL attributes. 1889 if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>()) 1890 Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 1891 1892 if (Entry->getType() == Ty) 1893 return Entry; 1894 1895 // Make sure the result is of the correct type. 1896 if (Entry->getType()->getAddressSpace() != Ty->getAddressSpace()) 1897 return llvm::ConstantExpr::getAddrSpaceCast(Entry, Ty); 1898 1899 return llvm::ConstantExpr::getBitCast(Entry, Ty); 1900 } 1901 1902 unsigned AddrSpace = GetGlobalVarAddressSpace(D, Ty->getAddressSpace()); 1903 auto *GV = new llvm::GlobalVariable( 1904 getModule(), Ty->getElementType(), false, 1905 llvm::GlobalValue::ExternalLinkage, nullptr, MangledName, nullptr, 1906 llvm::GlobalVariable::NotThreadLocal, AddrSpace); 1907 1908 // This is the first use or definition of a mangled name. If there is a 1909 // deferred decl with this name, remember that we need to emit it at the end 1910 // of the file. 1911 auto DDI = DeferredDecls.find(MangledName); 1912 if (DDI != DeferredDecls.end()) { 1913 // Move the potentially referenced deferred decl to the DeferredDeclsToEmit 1914 // list, and remove it from DeferredDecls (since we don't need it anymore). 1915 addDeferredDeclToEmit(GV, DDI->second); 1916 DeferredDecls.erase(DDI); 1917 } 1918 1919 // Handle things which are present even on external declarations. 1920 if (D) { 1921 // FIXME: This code is overly simple and should be merged with other global 1922 // handling. 1923 GV->setConstant(isTypeConstant(D->getType(), false)); 1924 1925 GV->setAlignment(getContext().getDeclAlign(D).getQuantity()); 1926 1927 setLinkageAndVisibilityForGV(GV, D); 1928 1929 if (D->getTLSKind()) { 1930 if (D->getTLSKind() == VarDecl::TLS_Dynamic) 1931 CXXThreadLocals.push_back(std::make_pair(D, GV)); 1932 setTLSMode(GV, *D); 1933 } 1934 1935 // If required by the ABI, treat declarations of static data members with 1936 // inline initializers as definitions. 1937 if (getContext().isMSStaticDataMemberInlineDefinition(D)) { 1938 EmitGlobalVarDefinition(D); 1939 } 1940 1941 // Handle XCore specific ABI requirements. 1942 if (getTarget().getTriple().getArch() == llvm::Triple::xcore && 1943 D->getLanguageLinkage() == CLanguageLinkage && 1944 D->getType().isConstant(Context) && 1945 isExternallyVisible(D->getLinkageAndVisibility().getLinkage())) 1946 GV->setSection(".cp.rodata"); 1947 } 1948 1949 if (AddrSpace != Ty->getAddressSpace()) 1950 return llvm::ConstantExpr::getAddrSpaceCast(GV, Ty); 1951 1952 return GV; 1953 } 1954 1955 llvm::Constant * 1956 CodeGenModule::GetAddrOfGlobal(GlobalDecl GD, 1957 bool IsForDefinition) { 1958 if (isa<CXXConstructorDecl>(GD.getDecl())) 1959 return getAddrOfCXXStructor(cast<CXXConstructorDecl>(GD.getDecl()), 1960 getFromCtorType(GD.getCtorType()), 1961 /*FnInfo=*/nullptr, /*FnType=*/nullptr, 1962 /*DontDefer=*/false, IsForDefinition); 1963 else if (isa<CXXDestructorDecl>(GD.getDecl())) 1964 return getAddrOfCXXStructor(cast<CXXDestructorDecl>(GD.getDecl()), 1965 getFromDtorType(GD.getDtorType()), 1966 /*FnInfo=*/nullptr, /*FnType=*/nullptr, 1967 /*DontDefer=*/false, IsForDefinition); 1968 else if (isa<CXXMethodDecl>(GD.getDecl())) { 1969 auto FInfo = &getTypes().arrangeCXXMethodDeclaration( 1970 cast<CXXMethodDecl>(GD.getDecl())); 1971 auto Ty = getTypes().GetFunctionType(*FInfo); 1972 return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false, 1973 IsForDefinition); 1974 } else if (isa<FunctionDecl>(GD.getDecl())) { 1975 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 1976 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 1977 return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false, 1978 IsForDefinition); 1979 } else 1980 return GetAddrOfGlobalVar(cast<VarDecl>(GD.getDecl())); 1981 } 1982 1983 llvm::GlobalVariable * 1984 CodeGenModule::CreateOrReplaceCXXRuntimeVariable(StringRef Name, 1985 llvm::Type *Ty, 1986 llvm::GlobalValue::LinkageTypes Linkage) { 1987 llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name); 1988 llvm::GlobalVariable *OldGV = nullptr; 1989 1990 if (GV) { 1991 // Check if the variable has the right type. 1992 if (GV->getType()->getElementType() == Ty) 1993 return GV; 1994 1995 // Because C++ name mangling, the only way we can end up with an already 1996 // existing global with the same name is if it has been declared extern "C". 1997 assert(GV->isDeclaration() && "Declaration has wrong type!"); 1998 OldGV = GV; 1999 } 2000 2001 // Create a new variable. 2002 GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true, 2003 Linkage, nullptr, Name); 2004 2005 if (OldGV) { 2006 // Replace occurrences of the old variable if needed. 2007 GV->takeName(OldGV); 2008 2009 if (!OldGV->use_empty()) { 2010 llvm::Constant *NewPtrForOldDecl = 2011 llvm::ConstantExpr::getBitCast(GV, OldGV->getType()); 2012 OldGV->replaceAllUsesWith(NewPtrForOldDecl); 2013 } 2014 2015 OldGV->eraseFromParent(); 2016 } 2017 2018 if (supportsCOMDAT() && GV->isWeakForLinker() && 2019 !GV->hasAvailableExternallyLinkage()) 2020 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 2021 2022 return GV; 2023 } 2024 2025 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the 2026 /// given global variable. If Ty is non-null and if the global doesn't exist, 2027 /// then it will be created with the specified type instead of whatever the 2028 /// normal requested type would be. 2029 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D, 2030 llvm::Type *Ty) { 2031 assert(D->hasGlobalStorage() && "Not a global variable"); 2032 QualType ASTTy = D->getType(); 2033 if (!Ty) 2034 Ty = getTypes().ConvertTypeForMem(ASTTy); 2035 2036 llvm::PointerType *PTy = 2037 llvm::PointerType::get(Ty, getContext().getTargetAddressSpace(ASTTy)); 2038 2039 StringRef MangledName = getMangledName(D); 2040 return GetOrCreateLLVMGlobal(MangledName, PTy, D); 2041 } 2042 2043 /// CreateRuntimeVariable - Create a new runtime global variable with the 2044 /// specified type and name. 2045 llvm::Constant * 2046 CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty, 2047 StringRef Name) { 2048 return GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), nullptr); 2049 } 2050 2051 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) { 2052 assert(!D->getInit() && "Cannot emit definite definitions here!"); 2053 2054 if (!MustBeEmitted(D)) { 2055 // If we have not seen a reference to this variable yet, place it 2056 // into the deferred declarations table to be emitted if needed 2057 // later. 2058 StringRef MangledName = getMangledName(D); 2059 if (!GetGlobalValue(MangledName)) { 2060 DeferredDecls[MangledName] = D; 2061 return; 2062 } 2063 } 2064 2065 // The tentative definition is the only definition. 2066 EmitGlobalVarDefinition(D); 2067 } 2068 2069 CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const { 2070 return Context.toCharUnitsFromBits( 2071 getDataLayout().getTypeStoreSizeInBits(Ty)); 2072 } 2073 2074 unsigned CodeGenModule::GetGlobalVarAddressSpace(const VarDecl *D, 2075 unsigned AddrSpace) { 2076 if (LangOpts.CUDA && LangOpts.CUDAIsDevice) { 2077 if (D->hasAttr<CUDAConstantAttr>()) 2078 AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_constant); 2079 else if (D->hasAttr<CUDASharedAttr>()) 2080 AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_shared); 2081 else 2082 AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_device); 2083 } 2084 2085 return AddrSpace; 2086 } 2087 2088 template<typename SomeDecl> 2089 void CodeGenModule::MaybeHandleStaticInExternC(const SomeDecl *D, 2090 llvm::GlobalValue *GV) { 2091 if (!getLangOpts().CPlusPlus) 2092 return; 2093 2094 // Must have 'used' attribute, or else inline assembly can't rely on 2095 // the name existing. 2096 if (!D->template hasAttr<UsedAttr>()) 2097 return; 2098 2099 // Must have internal linkage and an ordinary name. 2100 if (!D->getIdentifier() || D->getFormalLinkage() != InternalLinkage) 2101 return; 2102 2103 // Must be in an extern "C" context. Entities declared directly within 2104 // a record are not extern "C" even if the record is in such a context. 2105 const SomeDecl *First = D->getFirstDecl(); 2106 if (First->getDeclContext()->isRecord() || !First->isInExternCContext()) 2107 return; 2108 2109 // OK, this is an internal linkage entity inside an extern "C" linkage 2110 // specification. Make a note of that so we can give it the "expected" 2111 // mangled name if nothing else is using that name. 2112 std::pair<StaticExternCMap::iterator, bool> R = 2113 StaticExternCValues.insert(std::make_pair(D->getIdentifier(), GV)); 2114 2115 // If we have multiple internal linkage entities with the same name 2116 // in extern "C" regions, none of them gets that name. 2117 if (!R.second) 2118 R.first->second = nullptr; 2119 } 2120 2121 static bool shouldBeInCOMDAT(CodeGenModule &CGM, const Decl &D) { 2122 if (!CGM.supportsCOMDAT()) 2123 return false; 2124 2125 if (D.hasAttr<SelectAnyAttr>()) 2126 return true; 2127 2128 GVALinkage Linkage; 2129 if (auto *VD = dyn_cast<VarDecl>(&D)) 2130 Linkage = CGM.getContext().GetGVALinkageForVariable(VD); 2131 else 2132 Linkage = CGM.getContext().GetGVALinkageForFunction(cast<FunctionDecl>(&D)); 2133 2134 switch (Linkage) { 2135 case GVA_Internal: 2136 case GVA_AvailableExternally: 2137 case GVA_StrongExternal: 2138 return false; 2139 case GVA_DiscardableODR: 2140 case GVA_StrongODR: 2141 return true; 2142 } 2143 llvm_unreachable("No such linkage"); 2144 } 2145 2146 void CodeGenModule::maybeSetTrivialComdat(const Decl &D, 2147 llvm::GlobalObject &GO) { 2148 if (!shouldBeInCOMDAT(*this, D)) 2149 return; 2150 GO.setComdat(TheModule.getOrInsertComdat(GO.getName())); 2151 } 2152 2153 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D) { 2154 llvm::Constant *Init = nullptr; 2155 QualType ASTTy = D->getType(); 2156 CXXRecordDecl *RD = ASTTy->getBaseElementTypeUnsafe()->getAsCXXRecordDecl(); 2157 bool NeedsGlobalCtor = false; 2158 bool NeedsGlobalDtor = RD && !RD->hasTrivialDestructor(); 2159 2160 const VarDecl *InitDecl; 2161 const Expr *InitExpr = D->getAnyInitializer(InitDecl); 2162 2163 // CUDA E.2.4.1 "__shared__ variables cannot have an initialization as part 2164 // of their declaration." 2165 if (getLangOpts().CPlusPlus && getLangOpts().CUDAIsDevice 2166 && D->hasAttr<CUDASharedAttr>()) { 2167 if (InitExpr) { 2168 const auto *C = dyn_cast<CXXConstructExpr>(InitExpr); 2169 if (C == nullptr || !C->getConstructor()->hasTrivialBody()) 2170 Error(D->getLocation(), 2171 "__shared__ variable cannot have an initialization."); 2172 } 2173 Init = llvm::UndefValue::get(getTypes().ConvertType(ASTTy)); 2174 } else if (!InitExpr) { 2175 // This is a tentative definition; tentative definitions are 2176 // implicitly initialized with { 0 }. 2177 // 2178 // Note that tentative definitions are only emitted at the end of 2179 // a translation unit, so they should never have incomplete 2180 // type. In addition, EmitTentativeDefinition makes sure that we 2181 // never attempt to emit a tentative definition if a real one 2182 // exists. A use may still exists, however, so we still may need 2183 // to do a RAUW. 2184 assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type"); 2185 Init = EmitNullConstant(D->getType()); 2186 } else { 2187 initializedGlobalDecl = GlobalDecl(D); 2188 Init = EmitConstantInit(*InitDecl); 2189 2190 if (!Init) { 2191 QualType T = InitExpr->getType(); 2192 if (D->getType()->isReferenceType()) 2193 T = D->getType(); 2194 2195 if (getLangOpts().CPlusPlus) { 2196 Init = EmitNullConstant(T); 2197 NeedsGlobalCtor = true; 2198 } else { 2199 ErrorUnsupported(D, "static initializer"); 2200 Init = llvm::UndefValue::get(getTypes().ConvertType(T)); 2201 } 2202 } else { 2203 // We don't need an initializer, so remove the entry for the delayed 2204 // initializer position (just in case this entry was delayed) if we 2205 // also don't need to register a destructor. 2206 if (getLangOpts().CPlusPlus && !NeedsGlobalDtor) 2207 DelayedCXXInitPosition.erase(D); 2208 } 2209 } 2210 2211 llvm::Type* InitType = Init->getType(); 2212 llvm::Constant *Entry = GetAddrOfGlobalVar(D, InitType); 2213 2214 // Strip off a bitcast if we got one back. 2215 if (auto *CE = dyn_cast<llvm::ConstantExpr>(Entry)) { 2216 assert(CE->getOpcode() == llvm::Instruction::BitCast || 2217 CE->getOpcode() == llvm::Instruction::AddrSpaceCast || 2218 // All zero index gep. 2219 CE->getOpcode() == llvm::Instruction::GetElementPtr); 2220 Entry = CE->getOperand(0); 2221 } 2222 2223 // Entry is now either a Function or GlobalVariable. 2224 auto *GV = dyn_cast<llvm::GlobalVariable>(Entry); 2225 2226 // We have a definition after a declaration with the wrong type. 2227 // We must make a new GlobalVariable* and update everything that used OldGV 2228 // (a declaration or tentative definition) with the new GlobalVariable* 2229 // (which will be a definition). 2230 // 2231 // This happens if there is a prototype for a global (e.g. 2232 // "extern int x[];") and then a definition of a different type (e.g. 2233 // "int x[10];"). This also happens when an initializer has a different type 2234 // from the type of the global (this happens with unions). 2235 if (!GV || 2236 GV->getType()->getElementType() != InitType || 2237 GV->getType()->getAddressSpace() != 2238 GetGlobalVarAddressSpace(D, getContext().getTargetAddressSpace(ASTTy))) { 2239 2240 // Move the old entry aside so that we'll create a new one. 2241 Entry->setName(StringRef()); 2242 2243 // Make a new global with the correct type, this is now guaranteed to work. 2244 GV = cast<llvm::GlobalVariable>(GetAddrOfGlobalVar(D, InitType)); 2245 2246 // Replace all uses of the old global with the new global 2247 llvm::Constant *NewPtrForOldDecl = 2248 llvm::ConstantExpr::getBitCast(GV, Entry->getType()); 2249 Entry->replaceAllUsesWith(NewPtrForOldDecl); 2250 2251 // Erase the old global, since it is no longer used. 2252 cast<llvm::GlobalValue>(Entry)->eraseFromParent(); 2253 } 2254 2255 MaybeHandleStaticInExternC(D, GV); 2256 2257 if (D->hasAttr<AnnotateAttr>()) 2258 AddGlobalAnnotations(D, GV); 2259 2260 // CUDA B.2.1 "The __device__ qualifier declares a variable that resides on 2261 // the device. [...]" 2262 // CUDA B.2.2 "The __constant__ qualifier, optionally used together with 2263 // __device__, declares a variable that: [...] 2264 // Is accessible from all the threads within the grid and from the host 2265 // through the runtime library (cudaGetSymbolAddress() / cudaGetSymbolSize() 2266 // / cudaMemcpyToSymbol() / cudaMemcpyFromSymbol())." 2267 if (GV && LangOpts.CUDA && LangOpts.CUDAIsDevice && 2268 (D->hasAttr<CUDAConstantAttr>() || D->hasAttr<CUDADeviceAttr>())) { 2269 GV->setExternallyInitialized(true); 2270 } 2271 GV->setInitializer(Init); 2272 2273 // If it is safe to mark the global 'constant', do so now. 2274 GV->setConstant(!NeedsGlobalCtor && !NeedsGlobalDtor && 2275 isTypeConstant(D->getType(), true)); 2276 2277 // If it is in a read-only section, mark it 'constant'. 2278 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) { 2279 const ASTContext::SectionInfo &SI = Context.SectionInfos[SA->getName()]; 2280 if ((SI.SectionFlags & ASTContext::PSF_Write) == 0) 2281 GV->setConstant(true); 2282 } 2283 2284 GV->setAlignment(getContext().getDeclAlign(D).getQuantity()); 2285 2286 // Set the llvm linkage type as appropriate. 2287 llvm::GlobalValue::LinkageTypes Linkage = 2288 getLLVMLinkageVarDefinition(D, GV->isConstant()); 2289 2290 // On Darwin, the backing variable for a C++11 thread_local variable always 2291 // has internal linkage; all accesses should just be calls to the 2292 // Itanium-specified entry point, which has the normal linkage of the 2293 // variable. 2294 if (!D->isStaticLocal() && D->getTLSKind() == VarDecl::TLS_Dynamic && 2295 Context.getTargetInfo().getTriple().isMacOSX()) 2296 Linkage = llvm::GlobalValue::InternalLinkage; 2297 2298 GV->setLinkage(Linkage); 2299 if (D->hasAttr<DLLImportAttr>()) 2300 GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass); 2301 else if (D->hasAttr<DLLExportAttr>()) 2302 GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass); 2303 else 2304 GV->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass); 2305 2306 if (Linkage == llvm::GlobalVariable::CommonLinkage) 2307 // common vars aren't constant even if declared const. 2308 GV->setConstant(false); 2309 2310 setNonAliasAttributes(D, GV); 2311 2312 if (D->getTLSKind() && !GV->isThreadLocal()) { 2313 if (D->getTLSKind() == VarDecl::TLS_Dynamic) 2314 CXXThreadLocals.push_back(std::make_pair(D, GV)); 2315 setTLSMode(GV, *D); 2316 } 2317 2318 maybeSetTrivialComdat(*D, *GV); 2319 2320 // Emit the initializer function if necessary. 2321 if (NeedsGlobalCtor || NeedsGlobalDtor) 2322 EmitCXXGlobalVarDeclInitFunc(D, GV, NeedsGlobalCtor); 2323 2324 SanitizerMD->reportGlobalToASan(GV, *D, NeedsGlobalCtor); 2325 2326 // Emit global variable debug information. 2327 if (CGDebugInfo *DI = getModuleDebugInfo()) 2328 if (getCodeGenOpts().getDebugInfo() >= CodeGenOptions::LimitedDebugInfo) 2329 DI->EmitGlobalVariable(GV, D); 2330 } 2331 2332 static bool isVarDeclStrongDefinition(const ASTContext &Context, 2333 CodeGenModule &CGM, const VarDecl *D, 2334 bool NoCommon) { 2335 // Don't give variables common linkage if -fno-common was specified unless it 2336 // was overridden by a NoCommon attribute. 2337 if ((NoCommon || D->hasAttr<NoCommonAttr>()) && !D->hasAttr<CommonAttr>()) 2338 return true; 2339 2340 // C11 6.9.2/2: 2341 // A declaration of an identifier for an object that has file scope without 2342 // an initializer, and without a storage-class specifier or with the 2343 // storage-class specifier static, constitutes a tentative definition. 2344 if (D->getInit() || D->hasExternalStorage()) 2345 return true; 2346 2347 // A variable cannot be both common and exist in a section. 2348 if (D->hasAttr<SectionAttr>()) 2349 return true; 2350 2351 // Thread local vars aren't considered common linkage. 2352 if (D->getTLSKind()) 2353 return true; 2354 2355 // Tentative definitions marked with WeakImportAttr are true definitions. 2356 if (D->hasAttr<WeakImportAttr>()) 2357 return true; 2358 2359 // A variable cannot be both common and exist in a comdat. 2360 if (shouldBeInCOMDAT(CGM, *D)) 2361 return true; 2362 2363 // Declarations with a required alignment do not have common linakge in MSVC 2364 // mode. 2365 if (Context.getLangOpts().MSVCCompat) { 2366 if (D->hasAttr<AlignedAttr>()) 2367 return true; 2368 QualType VarType = D->getType(); 2369 if (Context.isAlignmentRequired(VarType)) 2370 return true; 2371 2372 if (const auto *RT = VarType->getAs<RecordType>()) { 2373 const RecordDecl *RD = RT->getDecl(); 2374 for (const FieldDecl *FD : RD->fields()) { 2375 if (FD->isBitField()) 2376 continue; 2377 if (FD->hasAttr<AlignedAttr>()) 2378 return true; 2379 if (Context.isAlignmentRequired(FD->getType())) 2380 return true; 2381 } 2382 } 2383 } 2384 2385 return false; 2386 } 2387 2388 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageForDeclarator( 2389 const DeclaratorDecl *D, GVALinkage Linkage, bool IsConstantVariable) { 2390 if (Linkage == GVA_Internal) 2391 return llvm::Function::InternalLinkage; 2392 2393 if (D->hasAttr<WeakAttr>()) { 2394 if (IsConstantVariable) 2395 return llvm::GlobalVariable::WeakODRLinkage; 2396 else 2397 return llvm::GlobalVariable::WeakAnyLinkage; 2398 } 2399 2400 // We are guaranteed to have a strong definition somewhere else, 2401 // so we can use available_externally linkage. 2402 if (Linkage == GVA_AvailableExternally) 2403 return llvm::Function::AvailableExternallyLinkage; 2404 2405 // Note that Apple's kernel linker doesn't support symbol 2406 // coalescing, so we need to avoid linkonce and weak linkages there. 2407 // Normally, this means we just map to internal, but for explicit 2408 // instantiations we'll map to external. 2409 2410 // In C++, the compiler has to emit a definition in every translation unit 2411 // that references the function. We should use linkonce_odr because 2412 // a) if all references in this translation unit are optimized away, we 2413 // don't need to codegen it. b) if the function persists, it needs to be 2414 // merged with other definitions. c) C++ has the ODR, so we know the 2415 // definition is dependable. 2416 if (Linkage == GVA_DiscardableODR) 2417 return !Context.getLangOpts().AppleKext ? llvm::Function::LinkOnceODRLinkage 2418 : llvm::Function::InternalLinkage; 2419 2420 // An explicit instantiation of a template has weak linkage, since 2421 // explicit instantiations can occur in multiple translation units 2422 // and must all be equivalent. However, we are not allowed to 2423 // throw away these explicit instantiations. 2424 if (Linkage == GVA_StrongODR) 2425 return !Context.getLangOpts().AppleKext ? llvm::Function::WeakODRLinkage 2426 : llvm::Function::ExternalLinkage; 2427 2428 // C++ doesn't have tentative definitions and thus cannot have common 2429 // linkage. 2430 if (!getLangOpts().CPlusPlus && isa<VarDecl>(D) && 2431 !isVarDeclStrongDefinition(Context, *this, cast<VarDecl>(D), 2432 CodeGenOpts.NoCommon)) 2433 return llvm::GlobalVariable::CommonLinkage; 2434 2435 // selectany symbols are externally visible, so use weak instead of 2436 // linkonce. MSVC optimizes away references to const selectany globals, so 2437 // all definitions should be the same and ODR linkage should be used. 2438 // http://msdn.microsoft.com/en-us/library/5tkz6s71.aspx 2439 if (D->hasAttr<SelectAnyAttr>()) 2440 return llvm::GlobalVariable::WeakODRLinkage; 2441 2442 // Otherwise, we have strong external linkage. 2443 assert(Linkage == GVA_StrongExternal); 2444 return llvm::GlobalVariable::ExternalLinkage; 2445 } 2446 2447 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageVarDefinition( 2448 const VarDecl *VD, bool IsConstant) { 2449 GVALinkage Linkage = getContext().GetGVALinkageForVariable(VD); 2450 return getLLVMLinkageForDeclarator(VD, Linkage, IsConstant); 2451 } 2452 2453 /// Replace the uses of a function that was declared with a non-proto type. 2454 /// We want to silently drop extra arguments from call sites 2455 static void replaceUsesOfNonProtoConstant(llvm::Constant *old, 2456 llvm::Function *newFn) { 2457 // Fast path. 2458 if (old->use_empty()) return; 2459 2460 llvm::Type *newRetTy = newFn->getReturnType(); 2461 SmallVector<llvm::Value*, 4> newArgs; 2462 2463 for (llvm::Value::use_iterator ui = old->use_begin(), ue = old->use_end(); 2464 ui != ue; ) { 2465 llvm::Value::use_iterator use = ui++; // Increment before the use is erased. 2466 llvm::User *user = use->getUser(); 2467 2468 // Recognize and replace uses of bitcasts. Most calls to 2469 // unprototyped functions will use bitcasts. 2470 if (auto *bitcast = dyn_cast<llvm::ConstantExpr>(user)) { 2471 if (bitcast->getOpcode() == llvm::Instruction::BitCast) 2472 replaceUsesOfNonProtoConstant(bitcast, newFn); 2473 continue; 2474 } 2475 2476 // Recognize calls to the function. 2477 llvm::CallSite callSite(user); 2478 if (!callSite) continue; 2479 if (!callSite.isCallee(&*use)) continue; 2480 2481 // If the return types don't match exactly, then we can't 2482 // transform this call unless it's dead. 2483 if (callSite->getType() != newRetTy && !callSite->use_empty()) 2484 continue; 2485 2486 // Get the call site's attribute list. 2487 SmallVector<llvm::AttributeSet, 8> newAttrs; 2488 llvm::AttributeSet oldAttrs = callSite.getAttributes(); 2489 2490 // Collect any return attributes from the call. 2491 if (oldAttrs.hasAttributes(llvm::AttributeSet::ReturnIndex)) 2492 newAttrs.push_back( 2493 llvm::AttributeSet::get(newFn->getContext(), 2494 oldAttrs.getRetAttributes())); 2495 2496 // If the function was passed too few arguments, don't transform. 2497 unsigned newNumArgs = newFn->arg_size(); 2498 if (callSite.arg_size() < newNumArgs) continue; 2499 2500 // If extra arguments were passed, we silently drop them. 2501 // If any of the types mismatch, we don't transform. 2502 unsigned argNo = 0; 2503 bool dontTransform = false; 2504 for (llvm::Function::arg_iterator ai = newFn->arg_begin(), 2505 ae = newFn->arg_end(); ai != ae; ++ai, ++argNo) { 2506 if (callSite.getArgument(argNo)->getType() != ai->getType()) { 2507 dontTransform = true; 2508 break; 2509 } 2510 2511 // Add any parameter attributes. 2512 if (oldAttrs.hasAttributes(argNo + 1)) 2513 newAttrs. 2514 push_back(llvm:: 2515 AttributeSet::get(newFn->getContext(), 2516 oldAttrs.getParamAttributes(argNo + 1))); 2517 } 2518 if (dontTransform) 2519 continue; 2520 2521 if (oldAttrs.hasAttributes(llvm::AttributeSet::FunctionIndex)) 2522 newAttrs.push_back(llvm::AttributeSet::get(newFn->getContext(), 2523 oldAttrs.getFnAttributes())); 2524 2525 // Okay, we can transform this. Create the new call instruction and copy 2526 // over the required information. 2527 newArgs.append(callSite.arg_begin(), callSite.arg_begin() + argNo); 2528 2529 llvm::CallSite newCall; 2530 if (callSite.isCall()) { 2531 newCall = llvm::CallInst::Create(newFn, newArgs, "", 2532 callSite.getInstruction()); 2533 } else { 2534 auto *oldInvoke = cast<llvm::InvokeInst>(callSite.getInstruction()); 2535 newCall = llvm::InvokeInst::Create(newFn, 2536 oldInvoke->getNormalDest(), 2537 oldInvoke->getUnwindDest(), 2538 newArgs, "", 2539 callSite.getInstruction()); 2540 } 2541 newArgs.clear(); // for the next iteration 2542 2543 if (!newCall->getType()->isVoidTy()) 2544 newCall->takeName(callSite.getInstruction()); 2545 newCall.setAttributes( 2546 llvm::AttributeSet::get(newFn->getContext(), newAttrs)); 2547 newCall.setCallingConv(callSite.getCallingConv()); 2548 2549 // Finally, remove the old call, replacing any uses with the new one. 2550 if (!callSite->use_empty()) 2551 callSite->replaceAllUsesWith(newCall.getInstruction()); 2552 2553 // Copy debug location attached to CI. 2554 if (callSite->getDebugLoc()) 2555 newCall->setDebugLoc(callSite->getDebugLoc()); 2556 callSite->eraseFromParent(); 2557 } 2558 } 2559 2560 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we 2561 /// implement a function with no prototype, e.g. "int foo() {}". If there are 2562 /// existing call uses of the old function in the module, this adjusts them to 2563 /// call the new function directly. 2564 /// 2565 /// This is not just a cleanup: the always_inline pass requires direct calls to 2566 /// functions to be able to inline them. If there is a bitcast in the way, it 2567 /// won't inline them. Instcombine normally deletes these calls, but it isn't 2568 /// run at -O0. 2569 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old, 2570 llvm::Function *NewFn) { 2571 // If we're redefining a global as a function, don't transform it. 2572 if (!isa<llvm::Function>(Old)) return; 2573 2574 replaceUsesOfNonProtoConstant(Old, NewFn); 2575 } 2576 2577 void CodeGenModule::HandleCXXStaticMemberVarInstantiation(VarDecl *VD) { 2578 TemplateSpecializationKind TSK = VD->getTemplateSpecializationKind(); 2579 // If we have a definition, this might be a deferred decl. If the 2580 // instantiation is explicit, make sure we emit it at the end. 2581 if (VD->getDefinition() && TSK == TSK_ExplicitInstantiationDefinition) 2582 GetAddrOfGlobalVar(VD); 2583 2584 EmitTopLevelDecl(VD); 2585 } 2586 2587 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD, 2588 llvm::GlobalValue *GV) { 2589 const auto *D = cast<FunctionDecl>(GD.getDecl()); 2590 2591 // Compute the function info and LLVM type. 2592 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 2593 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 2594 2595 // Get or create the prototype for the function. 2596 if (!GV || (GV->getType()->getElementType() != Ty)) 2597 GV = cast<llvm::GlobalValue>(GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, 2598 /*DontDefer=*/true, 2599 /*IsForDefinition=*/true)); 2600 2601 // Already emitted. 2602 if (!GV->isDeclaration()) 2603 return; 2604 2605 // We need to set linkage and visibility on the function before 2606 // generating code for it because various parts of IR generation 2607 // want to propagate this information down (e.g. to local static 2608 // declarations). 2609 auto *Fn = cast<llvm::Function>(GV); 2610 setFunctionLinkage(GD, Fn); 2611 setFunctionDLLStorageClass(GD, Fn); 2612 2613 // FIXME: this is redundant with part of setFunctionDefinitionAttributes 2614 setGlobalVisibility(Fn, D); 2615 2616 MaybeHandleStaticInExternC(D, Fn); 2617 2618 maybeSetTrivialComdat(*D, *Fn); 2619 2620 CodeGenFunction(*this).GenerateCode(D, Fn, FI); 2621 2622 setFunctionDefinitionAttributes(D, Fn); 2623 SetLLVMFunctionAttributesForDefinition(D, Fn); 2624 2625 if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>()) 2626 AddGlobalCtor(Fn, CA->getPriority()); 2627 if (const DestructorAttr *DA = D->getAttr<DestructorAttr>()) 2628 AddGlobalDtor(Fn, DA->getPriority()); 2629 if (D->hasAttr<AnnotateAttr>()) 2630 AddGlobalAnnotations(D, Fn); 2631 } 2632 2633 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) { 2634 const auto *D = cast<ValueDecl>(GD.getDecl()); 2635 const AliasAttr *AA = D->getAttr<AliasAttr>(); 2636 assert(AA && "Not an alias?"); 2637 2638 StringRef MangledName = getMangledName(GD); 2639 2640 if (AA->getAliasee() == MangledName) { 2641 Diags.Report(AA->getLocation(), diag::err_cyclic_alias); 2642 return; 2643 } 2644 2645 // If there is a definition in the module, then it wins over the alias. 2646 // This is dubious, but allow it to be safe. Just ignore the alias. 2647 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 2648 if (Entry && !Entry->isDeclaration()) 2649 return; 2650 2651 Aliases.push_back(GD); 2652 2653 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType()); 2654 2655 // Create a reference to the named value. This ensures that it is emitted 2656 // if a deferred decl. 2657 llvm::Constant *Aliasee; 2658 if (isa<llvm::FunctionType>(DeclTy)) 2659 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GD, 2660 /*ForVTable=*/false); 2661 else 2662 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), 2663 llvm::PointerType::getUnqual(DeclTy), 2664 /*D=*/nullptr); 2665 2666 // Create the new alias itself, but don't set a name yet. 2667 auto *GA = llvm::GlobalAlias::create( 2668 cast<llvm::PointerType>(Aliasee->getType()), 2669 llvm::Function::ExternalLinkage, "", Aliasee, &getModule()); 2670 2671 if (Entry) { 2672 if (GA->getAliasee() == Entry) { 2673 Diags.Report(AA->getLocation(), diag::err_cyclic_alias); 2674 return; 2675 } 2676 2677 assert(Entry->isDeclaration()); 2678 2679 // If there is a declaration in the module, then we had an extern followed 2680 // by the alias, as in: 2681 // extern int test6(); 2682 // ... 2683 // int test6() __attribute__((alias("test7"))); 2684 // 2685 // Remove it and replace uses of it with the alias. 2686 GA->takeName(Entry); 2687 2688 Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA, 2689 Entry->getType())); 2690 Entry->eraseFromParent(); 2691 } else { 2692 GA->setName(MangledName); 2693 } 2694 2695 // Set attributes which are particular to an alias; this is a 2696 // specialization of the attributes which may be set on a global 2697 // variable/function. 2698 if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakRefAttr>() || 2699 D->isWeakImported()) { 2700 GA->setLinkage(llvm::Function::WeakAnyLinkage); 2701 } 2702 2703 if (const auto *VD = dyn_cast<VarDecl>(D)) 2704 if (VD->getTLSKind()) 2705 setTLSMode(GA, *VD); 2706 2707 setAliasAttributes(D, GA); 2708 } 2709 2710 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID, 2711 ArrayRef<llvm::Type*> Tys) { 2712 return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID, 2713 Tys); 2714 } 2715 2716 static llvm::StringMapEntry<llvm::GlobalVariable *> & 2717 GetConstantCFStringEntry(llvm::StringMap<llvm::GlobalVariable *> &Map, 2718 const StringLiteral *Literal, bool TargetIsLSB, 2719 bool &IsUTF16, unsigned &StringLength) { 2720 StringRef String = Literal->getString(); 2721 unsigned NumBytes = String.size(); 2722 2723 // Check for simple case. 2724 if (!Literal->containsNonAsciiOrNull()) { 2725 StringLength = NumBytes; 2726 return *Map.insert(std::make_pair(String, nullptr)).first; 2727 } 2728 2729 // Otherwise, convert the UTF8 literals into a string of shorts. 2730 IsUTF16 = true; 2731 2732 SmallVector<UTF16, 128> ToBuf(NumBytes + 1); // +1 for ending nulls. 2733 const UTF8 *FromPtr = (const UTF8 *)String.data(); 2734 UTF16 *ToPtr = &ToBuf[0]; 2735 2736 (void)ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, 2737 &ToPtr, ToPtr + NumBytes, 2738 strictConversion); 2739 2740 // ConvertUTF8toUTF16 returns the length in ToPtr. 2741 StringLength = ToPtr - &ToBuf[0]; 2742 2743 // Add an explicit null. 2744 *ToPtr = 0; 2745 return *Map.insert(std::make_pair( 2746 StringRef(reinterpret_cast<const char *>(ToBuf.data()), 2747 (StringLength + 1) * 2), 2748 nullptr)).first; 2749 } 2750 2751 static llvm::StringMapEntry<llvm::GlobalVariable *> & 2752 GetConstantStringEntry(llvm::StringMap<llvm::GlobalVariable *> &Map, 2753 const StringLiteral *Literal, unsigned &StringLength) { 2754 StringRef String = Literal->getString(); 2755 StringLength = String.size(); 2756 return *Map.insert(std::make_pair(String, nullptr)).first; 2757 } 2758 2759 ConstantAddress 2760 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) { 2761 unsigned StringLength = 0; 2762 bool isUTF16 = false; 2763 llvm::StringMapEntry<llvm::GlobalVariable *> &Entry = 2764 GetConstantCFStringEntry(CFConstantStringMap, Literal, 2765 getDataLayout().isLittleEndian(), isUTF16, 2766 StringLength); 2767 2768 if (auto *C = Entry.second) 2769 return ConstantAddress(C, CharUnits::fromQuantity(C->getAlignment())); 2770 2771 llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty); 2772 llvm::Constant *Zeros[] = { Zero, Zero }; 2773 llvm::Value *V; 2774 2775 // If we don't already have it, get __CFConstantStringClassReference. 2776 if (!CFConstantStringClassRef) { 2777 llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy); 2778 Ty = llvm::ArrayType::get(Ty, 0); 2779 llvm::Constant *GV = CreateRuntimeVariable(Ty, 2780 "__CFConstantStringClassReference"); 2781 // Decay array -> ptr 2782 V = llvm::ConstantExpr::getGetElementPtr(Ty, GV, Zeros); 2783 CFConstantStringClassRef = V; 2784 } 2785 else 2786 V = CFConstantStringClassRef; 2787 2788 QualType CFTy = getContext().getCFConstantStringType(); 2789 2790 auto *STy = cast<llvm::StructType>(getTypes().ConvertType(CFTy)); 2791 2792 llvm::Constant *Fields[4]; 2793 2794 // Class pointer. 2795 Fields[0] = cast<llvm::ConstantExpr>(V); 2796 2797 // Flags. 2798 llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy); 2799 Fields[1] = isUTF16 ? llvm::ConstantInt::get(Ty, 0x07d0) : 2800 llvm::ConstantInt::get(Ty, 0x07C8); 2801 2802 // String pointer. 2803 llvm::Constant *C = nullptr; 2804 if (isUTF16) { 2805 ArrayRef<uint16_t> Arr = llvm::makeArrayRef<uint16_t>( 2806 reinterpret_cast<uint16_t *>(const_cast<char *>(Entry.first().data())), 2807 Entry.first().size() / 2); 2808 C = llvm::ConstantDataArray::get(VMContext, Arr); 2809 } else { 2810 C = llvm::ConstantDataArray::getString(VMContext, Entry.first()); 2811 } 2812 2813 // Note: -fwritable-strings doesn't make the backing store strings of 2814 // CFStrings writable. (See <rdar://problem/10657500>) 2815 auto *GV = 2816 new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true, 2817 llvm::GlobalValue::PrivateLinkage, C, ".str"); 2818 GV->setUnnamedAddr(true); 2819 // Don't enforce the target's minimum global alignment, since the only use 2820 // of the string is via this class initializer. 2821 // FIXME: We set the section explicitly to avoid a bug in ld64 224.1. Without 2822 // it LLVM can merge the string with a non unnamed_addr one during LTO. Doing 2823 // that changes the section it ends in, which surprises ld64. 2824 if (isUTF16) { 2825 CharUnits Align = getContext().getTypeAlignInChars(getContext().ShortTy); 2826 GV->setAlignment(Align.getQuantity()); 2827 GV->setSection("__TEXT,__ustring"); 2828 } else { 2829 CharUnits Align = getContext().getTypeAlignInChars(getContext().CharTy); 2830 GV->setAlignment(Align.getQuantity()); 2831 GV->setSection("__TEXT,__cstring,cstring_literals"); 2832 } 2833 2834 // String. 2835 Fields[2] = 2836 llvm::ConstantExpr::getGetElementPtr(GV->getValueType(), GV, Zeros); 2837 2838 if (isUTF16) 2839 // Cast the UTF16 string to the correct type. 2840 Fields[2] = llvm::ConstantExpr::getBitCast(Fields[2], Int8PtrTy); 2841 2842 // String length. 2843 Ty = getTypes().ConvertType(getContext().LongTy); 2844 Fields[3] = llvm::ConstantInt::get(Ty, StringLength); 2845 2846 CharUnits Alignment = getPointerAlign(); 2847 2848 // The struct. 2849 C = llvm::ConstantStruct::get(STy, Fields); 2850 GV = new llvm::GlobalVariable(getModule(), C->getType(), true, 2851 llvm::GlobalVariable::PrivateLinkage, C, 2852 "_unnamed_cfstring_"); 2853 GV->setSection("__DATA,__cfstring"); 2854 GV->setAlignment(Alignment.getQuantity()); 2855 Entry.second = GV; 2856 2857 return ConstantAddress(GV, Alignment); 2858 } 2859 2860 ConstantAddress 2861 CodeGenModule::GetAddrOfConstantString(const StringLiteral *Literal) { 2862 unsigned StringLength = 0; 2863 llvm::StringMapEntry<llvm::GlobalVariable *> &Entry = 2864 GetConstantStringEntry(CFConstantStringMap, Literal, StringLength); 2865 2866 if (auto *C = Entry.second) 2867 return ConstantAddress(C, CharUnits::fromQuantity(C->getAlignment())); 2868 2869 llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty); 2870 llvm::Constant *Zeros[] = { Zero, Zero }; 2871 llvm::Value *V; 2872 // If we don't already have it, get _NSConstantStringClassReference. 2873 if (!ConstantStringClassRef) { 2874 std::string StringClass(getLangOpts().ObjCConstantStringClass); 2875 llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy); 2876 llvm::Constant *GV; 2877 if (LangOpts.ObjCRuntime.isNonFragile()) { 2878 std::string str = 2879 StringClass.empty() ? "OBJC_CLASS_$_NSConstantString" 2880 : "OBJC_CLASS_$_" + StringClass; 2881 GV = getObjCRuntime().GetClassGlobal(str); 2882 // Make sure the result is of the correct type. 2883 llvm::Type *PTy = llvm::PointerType::getUnqual(Ty); 2884 V = llvm::ConstantExpr::getBitCast(GV, PTy); 2885 ConstantStringClassRef = V; 2886 } else { 2887 std::string str = 2888 StringClass.empty() ? "_NSConstantStringClassReference" 2889 : "_" + StringClass + "ClassReference"; 2890 llvm::Type *PTy = llvm::ArrayType::get(Ty, 0); 2891 GV = CreateRuntimeVariable(PTy, str); 2892 // Decay array -> ptr 2893 V = llvm::ConstantExpr::getGetElementPtr(PTy, GV, Zeros); 2894 ConstantStringClassRef = V; 2895 } 2896 } else 2897 V = ConstantStringClassRef; 2898 2899 if (!NSConstantStringType) { 2900 // Construct the type for a constant NSString. 2901 RecordDecl *D = Context.buildImplicitRecord("__builtin_NSString"); 2902 D->startDefinition(); 2903 2904 QualType FieldTypes[3]; 2905 2906 // const int *isa; 2907 FieldTypes[0] = Context.getPointerType(Context.IntTy.withConst()); 2908 // const char *str; 2909 FieldTypes[1] = Context.getPointerType(Context.CharTy.withConst()); 2910 // unsigned int length; 2911 FieldTypes[2] = Context.UnsignedIntTy; 2912 2913 // Create fields 2914 for (unsigned i = 0; i < 3; ++i) { 2915 FieldDecl *Field = FieldDecl::Create(Context, D, 2916 SourceLocation(), 2917 SourceLocation(), nullptr, 2918 FieldTypes[i], /*TInfo=*/nullptr, 2919 /*BitWidth=*/nullptr, 2920 /*Mutable=*/false, 2921 ICIS_NoInit); 2922 Field->setAccess(AS_public); 2923 D->addDecl(Field); 2924 } 2925 2926 D->completeDefinition(); 2927 QualType NSTy = Context.getTagDeclType(D); 2928 NSConstantStringType = cast<llvm::StructType>(getTypes().ConvertType(NSTy)); 2929 } 2930 2931 llvm::Constant *Fields[3]; 2932 2933 // Class pointer. 2934 Fields[0] = cast<llvm::ConstantExpr>(V); 2935 2936 // String pointer. 2937 llvm::Constant *C = 2938 llvm::ConstantDataArray::getString(VMContext, Entry.first()); 2939 2940 llvm::GlobalValue::LinkageTypes Linkage; 2941 bool isConstant; 2942 Linkage = llvm::GlobalValue::PrivateLinkage; 2943 isConstant = !LangOpts.WritableStrings; 2944 2945 auto *GV = new llvm::GlobalVariable(getModule(), C->getType(), isConstant, 2946 Linkage, C, ".str"); 2947 GV->setUnnamedAddr(true); 2948 // Don't enforce the target's minimum global alignment, since the only use 2949 // of the string is via this class initializer. 2950 CharUnits Align = getContext().getTypeAlignInChars(getContext().CharTy); 2951 GV->setAlignment(Align.getQuantity()); 2952 Fields[1] = 2953 llvm::ConstantExpr::getGetElementPtr(GV->getValueType(), GV, Zeros); 2954 2955 // String length. 2956 llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy); 2957 Fields[2] = llvm::ConstantInt::get(Ty, StringLength); 2958 2959 // The struct. 2960 CharUnits Alignment = getPointerAlign(); 2961 C = llvm::ConstantStruct::get(NSConstantStringType, Fields); 2962 GV = new llvm::GlobalVariable(getModule(), C->getType(), true, 2963 llvm::GlobalVariable::PrivateLinkage, C, 2964 "_unnamed_nsstring_"); 2965 GV->setAlignment(Alignment.getQuantity()); 2966 const char *NSStringSection = "__OBJC,__cstring_object,regular,no_dead_strip"; 2967 const char *NSStringNonFragileABISection = 2968 "__DATA,__objc_stringobj,regular,no_dead_strip"; 2969 // FIXME. Fix section. 2970 GV->setSection(LangOpts.ObjCRuntime.isNonFragile() 2971 ? NSStringNonFragileABISection 2972 : NSStringSection); 2973 Entry.second = GV; 2974 2975 return ConstantAddress(GV, Alignment); 2976 } 2977 2978 QualType CodeGenModule::getObjCFastEnumerationStateType() { 2979 if (ObjCFastEnumerationStateType.isNull()) { 2980 RecordDecl *D = Context.buildImplicitRecord("__objcFastEnumerationState"); 2981 D->startDefinition(); 2982 2983 QualType FieldTypes[] = { 2984 Context.UnsignedLongTy, 2985 Context.getPointerType(Context.getObjCIdType()), 2986 Context.getPointerType(Context.UnsignedLongTy), 2987 Context.getConstantArrayType(Context.UnsignedLongTy, 2988 llvm::APInt(32, 5), ArrayType::Normal, 0) 2989 }; 2990 2991 for (size_t i = 0; i < 4; ++i) { 2992 FieldDecl *Field = FieldDecl::Create(Context, 2993 D, 2994 SourceLocation(), 2995 SourceLocation(), nullptr, 2996 FieldTypes[i], /*TInfo=*/nullptr, 2997 /*BitWidth=*/nullptr, 2998 /*Mutable=*/false, 2999 ICIS_NoInit); 3000 Field->setAccess(AS_public); 3001 D->addDecl(Field); 3002 } 3003 3004 D->completeDefinition(); 3005 ObjCFastEnumerationStateType = Context.getTagDeclType(D); 3006 } 3007 3008 return ObjCFastEnumerationStateType; 3009 } 3010 3011 llvm::Constant * 3012 CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) { 3013 assert(!E->getType()->isPointerType() && "Strings are always arrays"); 3014 3015 // Don't emit it as the address of the string, emit the string data itself 3016 // as an inline array. 3017 if (E->getCharByteWidth() == 1) { 3018 SmallString<64> Str(E->getString()); 3019 3020 // Resize the string to the right size, which is indicated by its type. 3021 const ConstantArrayType *CAT = Context.getAsConstantArrayType(E->getType()); 3022 Str.resize(CAT->getSize().getZExtValue()); 3023 return llvm::ConstantDataArray::getString(VMContext, Str, false); 3024 } 3025 3026 auto *AType = cast<llvm::ArrayType>(getTypes().ConvertType(E->getType())); 3027 llvm::Type *ElemTy = AType->getElementType(); 3028 unsigned NumElements = AType->getNumElements(); 3029 3030 // Wide strings have either 2-byte or 4-byte elements. 3031 if (ElemTy->getPrimitiveSizeInBits() == 16) { 3032 SmallVector<uint16_t, 32> Elements; 3033 Elements.reserve(NumElements); 3034 3035 for(unsigned i = 0, e = E->getLength(); i != e; ++i) 3036 Elements.push_back(E->getCodeUnit(i)); 3037 Elements.resize(NumElements); 3038 return llvm::ConstantDataArray::get(VMContext, Elements); 3039 } 3040 3041 assert(ElemTy->getPrimitiveSizeInBits() == 32); 3042 SmallVector<uint32_t, 32> Elements; 3043 Elements.reserve(NumElements); 3044 3045 for(unsigned i = 0, e = E->getLength(); i != e; ++i) 3046 Elements.push_back(E->getCodeUnit(i)); 3047 Elements.resize(NumElements); 3048 return llvm::ConstantDataArray::get(VMContext, Elements); 3049 } 3050 3051 static llvm::GlobalVariable * 3052 GenerateStringLiteral(llvm::Constant *C, llvm::GlobalValue::LinkageTypes LT, 3053 CodeGenModule &CGM, StringRef GlobalName, 3054 CharUnits Alignment) { 3055 // OpenCL v1.2 s6.5.3: a string literal is in the constant address space. 3056 unsigned AddrSpace = 0; 3057 if (CGM.getLangOpts().OpenCL) 3058 AddrSpace = CGM.getContext().getTargetAddressSpace(LangAS::opencl_constant); 3059 3060 llvm::Module &M = CGM.getModule(); 3061 // Create a global variable for this string 3062 auto *GV = new llvm::GlobalVariable( 3063 M, C->getType(), !CGM.getLangOpts().WritableStrings, LT, C, GlobalName, 3064 nullptr, llvm::GlobalVariable::NotThreadLocal, AddrSpace); 3065 GV->setAlignment(Alignment.getQuantity()); 3066 GV->setUnnamedAddr(true); 3067 if (GV->isWeakForLinker()) { 3068 assert(CGM.supportsCOMDAT() && "Only COFF uses weak string literals"); 3069 GV->setComdat(M.getOrInsertComdat(GV->getName())); 3070 } 3071 3072 return GV; 3073 } 3074 3075 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a 3076 /// constant array for the given string literal. 3077 ConstantAddress 3078 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S, 3079 StringRef Name) { 3080 CharUnits Alignment = getContext().getAlignOfGlobalVarInChars(S->getType()); 3081 3082 llvm::Constant *C = GetConstantArrayFromStringLiteral(S); 3083 llvm::GlobalVariable **Entry = nullptr; 3084 if (!LangOpts.WritableStrings) { 3085 Entry = &ConstantStringMap[C]; 3086 if (auto GV = *Entry) { 3087 if (Alignment.getQuantity() > GV->getAlignment()) 3088 GV->setAlignment(Alignment.getQuantity()); 3089 return ConstantAddress(GV, Alignment); 3090 } 3091 } 3092 3093 SmallString<256> MangledNameBuffer; 3094 StringRef GlobalVariableName; 3095 llvm::GlobalValue::LinkageTypes LT; 3096 3097 // Mangle the string literal if the ABI allows for it. However, we cannot 3098 // do this if we are compiling with ASan or -fwritable-strings because they 3099 // rely on strings having normal linkage. 3100 if (!LangOpts.WritableStrings && 3101 !LangOpts.Sanitize.has(SanitizerKind::Address) && 3102 getCXXABI().getMangleContext().shouldMangleStringLiteral(S)) { 3103 llvm::raw_svector_ostream Out(MangledNameBuffer); 3104 getCXXABI().getMangleContext().mangleStringLiteral(S, Out); 3105 3106 LT = llvm::GlobalValue::LinkOnceODRLinkage; 3107 GlobalVariableName = MangledNameBuffer; 3108 } else { 3109 LT = llvm::GlobalValue::PrivateLinkage; 3110 GlobalVariableName = Name; 3111 } 3112 3113 auto GV = GenerateStringLiteral(C, LT, *this, GlobalVariableName, Alignment); 3114 if (Entry) 3115 *Entry = GV; 3116 3117 SanitizerMD->reportGlobalToASan(GV, S->getStrTokenLoc(0), "<string literal>", 3118 QualType()); 3119 return ConstantAddress(GV, Alignment); 3120 } 3121 3122 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant 3123 /// array for the given ObjCEncodeExpr node. 3124 ConstantAddress 3125 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) { 3126 std::string Str; 3127 getContext().getObjCEncodingForType(E->getEncodedType(), Str); 3128 3129 return GetAddrOfConstantCString(Str); 3130 } 3131 3132 /// GetAddrOfConstantCString - Returns a pointer to a character array containing 3133 /// the literal and a terminating '\0' character. 3134 /// The result has pointer to array type. 3135 ConstantAddress CodeGenModule::GetAddrOfConstantCString( 3136 const std::string &Str, const char *GlobalName) { 3137 StringRef StrWithNull(Str.c_str(), Str.size() + 1); 3138 CharUnits Alignment = 3139 getContext().getAlignOfGlobalVarInChars(getContext().CharTy); 3140 3141 llvm::Constant *C = 3142 llvm::ConstantDataArray::getString(getLLVMContext(), StrWithNull, false); 3143 3144 // Don't share any string literals if strings aren't constant. 3145 llvm::GlobalVariable **Entry = nullptr; 3146 if (!LangOpts.WritableStrings) { 3147 Entry = &ConstantStringMap[C]; 3148 if (auto GV = *Entry) { 3149 if (Alignment.getQuantity() > GV->getAlignment()) 3150 GV->setAlignment(Alignment.getQuantity()); 3151 return ConstantAddress(GV, Alignment); 3152 } 3153 } 3154 3155 // Get the default prefix if a name wasn't specified. 3156 if (!GlobalName) 3157 GlobalName = ".str"; 3158 // Create a global variable for this. 3159 auto GV = GenerateStringLiteral(C, llvm::GlobalValue::PrivateLinkage, *this, 3160 GlobalName, Alignment); 3161 if (Entry) 3162 *Entry = GV; 3163 return ConstantAddress(GV, Alignment); 3164 } 3165 3166 ConstantAddress CodeGenModule::GetAddrOfGlobalTemporary( 3167 const MaterializeTemporaryExpr *E, const Expr *Init) { 3168 assert((E->getStorageDuration() == SD_Static || 3169 E->getStorageDuration() == SD_Thread) && "not a global temporary"); 3170 const auto *VD = cast<VarDecl>(E->getExtendingDecl()); 3171 3172 // If we're not materializing a subobject of the temporary, keep the 3173 // cv-qualifiers from the type of the MaterializeTemporaryExpr. 3174 QualType MaterializedType = Init->getType(); 3175 if (Init == E->GetTemporaryExpr()) 3176 MaterializedType = E->getType(); 3177 3178 CharUnits Align = getContext().getTypeAlignInChars(MaterializedType); 3179 3180 if (llvm::Constant *Slot = MaterializedGlobalTemporaryMap[E]) 3181 return ConstantAddress(Slot, Align); 3182 3183 // FIXME: If an externally-visible declaration extends multiple temporaries, 3184 // we need to give each temporary the same name in every translation unit (and 3185 // we also need to make the temporaries externally-visible). 3186 SmallString<256> Name; 3187 llvm::raw_svector_ostream Out(Name); 3188 getCXXABI().getMangleContext().mangleReferenceTemporary( 3189 VD, E->getManglingNumber(), Out); 3190 3191 APValue *Value = nullptr; 3192 if (E->getStorageDuration() == SD_Static) { 3193 // We might have a cached constant initializer for this temporary. Note 3194 // that this might have a different value from the value computed by 3195 // evaluating the initializer if the surrounding constant expression 3196 // modifies the temporary. 3197 Value = getContext().getMaterializedTemporaryValue(E, false); 3198 if (Value && Value->isUninit()) 3199 Value = nullptr; 3200 } 3201 3202 // Try evaluating it now, it might have a constant initializer. 3203 Expr::EvalResult EvalResult; 3204 if (!Value && Init->EvaluateAsRValue(EvalResult, getContext()) && 3205 !EvalResult.hasSideEffects()) 3206 Value = &EvalResult.Val; 3207 3208 llvm::Constant *InitialValue = nullptr; 3209 bool Constant = false; 3210 llvm::Type *Type; 3211 if (Value) { 3212 // The temporary has a constant initializer, use it. 3213 InitialValue = EmitConstantValue(*Value, MaterializedType, nullptr); 3214 Constant = isTypeConstant(MaterializedType, /*ExcludeCtor*/Value); 3215 Type = InitialValue->getType(); 3216 } else { 3217 // No initializer, the initialization will be provided when we 3218 // initialize the declaration which performed lifetime extension. 3219 Type = getTypes().ConvertTypeForMem(MaterializedType); 3220 } 3221 3222 // Create a global variable for this lifetime-extended temporary. 3223 llvm::GlobalValue::LinkageTypes Linkage = 3224 getLLVMLinkageVarDefinition(VD, Constant); 3225 if (Linkage == llvm::GlobalVariable::ExternalLinkage) { 3226 const VarDecl *InitVD; 3227 if (VD->isStaticDataMember() && VD->getAnyInitializer(InitVD) && 3228 isa<CXXRecordDecl>(InitVD->getLexicalDeclContext())) { 3229 // Temporaries defined inside a class get linkonce_odr linkage because the 3230 // class can be defined in multipe translation units. 3231 Linkage = llvm::GlobalVariable::LinkOnceODRLinkage; 3232 } else { 3233 // There is no need for this temporary to have external linkage if the 3234 // VarDecl has external linkage. 3235 Linkage = llvm::GlobalVariable::InternalLinkage; 3236 } 3237 } 3238 unsigned AddrSpace = GetGlobalVarAddressSpace( 3239 VD, getContext().getTargetAddressSpace(MaterializedType)); 3240 auto *GV = new llvm::GlobalVariable( 3241 getModule(), Type, Constant, Linkage, InitialValue, Name.c_str(), 3242 /*InsertBefore=*/nullptr, llvm::GlobalVariable::NotThreadLocal, 3243 AddrSpace); 3244 setGlobalVisibility(GV, VD); 3245 GV->setAlignment(Align.getQuantity()); 3246 if (supportsCOMDAT() && GV->isWeakForLinker()) 3247 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 3248 if (VD->getTLSKind()) 3249 setTLSMode(GV, *VD); 3250 MaterializedGlobalTemporaryMap[E] = GV; 3251 return ConstantAddress(GV, Align); 3252 } 3253 3254 /// EmitObjCPropertyImplementations - Emit information for synthesized 3255 /// properties for an implementation. 3256 void CodeGenModule::EmitObjCPropertyImplementations(const 3257 ObjCImplementationDecl *D) { 3258 for (const auto *PID : D->property_impls()) { 3259 // Dynamic is just for type-checking. 3260 if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) { 3261 ObjCPropertyDecl *PD = PID->getPropertyDecl(); 3262 3263 // Determine which methods need to be implemented, some may have 3264 // been overridden. Note that ::isPropertyAccessor is not the method 3265 // we want, that just indicates if the decl came from a 3266 // property. What we want to know is if the method is defined in 3267 // this implementation. 3268 if (!D->getInstanceMethod(PD->getGetterName())) 3269 CodeGenFunction(*this).GenerateObjCGetter( 3270 const_cast<ObjCImplementationDecl *>(D), PID); 3271 if (!PD->isReadOnly() && 3272 !D->getInstanceMethod(PD->getSetterName())) 3273 CodeGenFunction(*this).GenerateObjCSetter( 3274 const_cast<ObjCImplementationDecl *>(D), PID); 3275 } 3276 } 3277 } 3278 3279 static bool needsDestructMethod(ObjCImplementationDecl *impl) { 3280 const ObjCInterfaceDecl *iface = impl->getClassInterface(); 3281 for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin(); 3282 ivar; ivar = ivar->getNextIvar()) 3283 if (ivar->getType().isDestructedType()) 3284 return true; 3285 3286 return false; 3287 } 3288 3289 static bool AllTrivialInitializers(CodeGenModule &CGM, 3290 ObjCImplementationDecl *D) { 3291 CodeGenFunction CGF(CGM); 3292 for (ObjCImplementationDecl::init_iterator B = D->init_begin(), 3293 E = D->init_end(); B != E; ++B) { 3294 CXXCtorInitializer *CtorInitExp = *B; 3295 Expr *Init = CtorInitExp->getInit(); 3296 if (!CGF.isTrivialInitializer(Init)) 3297 return false; 3298 } 3299 return true; 3300 } 3301 3302 /// EmitObjCIvarInitializations - Emit information for ivar initialization 3303 /// for an implementation. 3304 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) { 3305 // We might need a .cxx_destruct even if we don't have any ivar initializers. 3306 if (needsDestructMethod(D)) { 3307 IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct"); 3308 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 3309 ObjCMethodDecl *DTORMethod = 3310 ObjCMethodDecl::Create(getContext(), D->getLocation(), D->getLocation(), 3311 cxxSelector, getContext().VoidTy, nullptr, D, 3312 /*isInstance=*/true, /*isVariadic=*/false, 3313 /*isPropertyAccessor=*/true, /*isImplicitlyDeclared=*/true, 3314 /*isDefined=*/false, ObjCMethodDecl::Required); 3315 D->addInstanceMethod(DTORMethod); 3316 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false); 3317 D->setHasDestructors(true); 3318 } 3319 3320 // If the implementation doesn't have any ivar initializers, we don't need 3321 // a .cxx_construct. 3322 if (D->getNumIvarInitializers() == 0 || 3323 AllTrivialInitializers(*this, D)) 3324 return; 3325 3326 IdentifierInfo *II = &getContext().Idents.get(".cxx_construct"); 3327 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 3328 // The constructor returns 'self'. 3329 ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(getContext(), 3330 D->getLocation(), 3331 D->getLocation(), 3332 cxxSelector, 3333 getContext().getObjCIdType(), 3334 nullptr, D, /*isInstance=*/true, 3335 /*isVariadic=*/false, 3336 /*isPropertyAccessor=*/true, 3337 /*isImplicitlyDeclared=*/true, 3338 /*isDefined=*/false, 3339 ObjCMethodDecl::Required); 3340 D->addInstanceMethod(CTORMethod); 3341 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true); 3342 D->setHasNonZeroConstructors(true); 3343 } 3344 3345 /// EmitNamespace - Emit all declarations in a namespace. 3346 void CodeGenModule::EmitNamespace(const NamespaceDecl *ND) { 3347 for (auto *I : ND->decls()) { 3348 if (const auto *VD = dyn_cast<VarDecl>(I)) 3349 if (VD->getTemplateSpecializationKind() != TSK_ExplicitSpecialization && 3350 VD->getTemplateSpecializationKind() != TSK_Undeclared) 3351 continue; 3352 EmitTopLevelDecl(I); 3353 } 3354 } 3355 3356 // EmitLinkageSpec - Emit all declarations in a linkage spec. 3357 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) { 3358 if (LSD->getLanguage() != LinkageSpecDecl::lang_c && 3359 LSD->getLanguage() != LinkageSpecDecl::lang_cxx) { 3360 ErrorUnsupported(LSD, "linkage spec"); 3361 return; 3362 } 3363 3364 for (auto *I : LSD->decls()) { 3365 // Meta-data for ObjC class includes references to implemented methods. 3366 // Generate class's method definitions first. 3367 if (auto *OID = dyn_cast<ObjCImplDecl>(I)) { 3368 for (auto *M : OID->methods()) 3369 EmitTopLevelDecl(M); 3370 } 3371 EmitTopLevelDecl(I); 3372 } 3373 } 3374 3375 /// EmitTopLevelDecl - Emit code for a single top level declaration. 3376 void CodeGenModule::EmitTopLevelDecl(Decl *D) { 3377 // Ignore dependent declarations. 3378 if (D->getDeclContext() && D->getDeclContext()->isDependentContext()) 3379 return; 3380 3381 switch (D->getKind()) { 3382 case Decl::CXXConversion: 3383 case Decl::CXXMethod: 3384 case Decl::Function: 3385 // Skip function templates 3386 if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() || 3387 cast<FunctionDecl>(D)->isLateTemplateParsed()) 3388 return; 3389 3390 EmitGlobal(cast<FunctionDecl>(D)); 3391 // Always provide some coverage mapping 3392 // even for the functions that aren't emitted. 3393 AddDeferredUnusedCoverageMapping(D); 3394 break; 3395 3396 case Decl::Var: 3397 // Skip variable templates 3398 if (cast<VarDecl>(D)->getDescribedVarTemplate()) 3399 return; 3400 case Decl::VarTemplateSpecialization: 3401 EmitGlobal(cast<VarDecl>(D)); 3402 break; 3403 3404 // Indirect fields from global anonymous structs and unions can be 3405 // ignored; only the actual variable requires IR gen support. 3406 case Decl::IndirectField: 3407 break; 3408 3409 // C++ Decls 3410 case Decl::Namespace: 3411 EmitNamespace(cast<NamespaceDecl>(D)); 3412 break; 3413 // No code generation needed. 3414 case Decl::UsingShadow: 3415 case Decl::ClassTemplate: 3416 case Decl::VarTemplate: 3417 case Decl::VarTemplatePartialSpecialization: 3418 case Decl::FunctionTemplate: 3419 case Decl::TypeAliasTemplate: 3420 case Decl::Block: 3421 case Decl::Empty: 3422 break; 3423 case Decl::Using: // using X; [C++] 3424 if (CGDebugInfo *DI = getModuleDebugInfo()) 3425 DI->EmitUsingDecl(cast<UsingDecl>(*D)); 3426 return; 3427 case Decl::NamespaceAlias: 3428 if (CGDebugInfo *DI = getModuleDebugInfo()) 3429 DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(*D)); 3430 return; 3431 case Decl::UsingDirective: // using namespace X; [C++] 3432 if (CGDebugInfo *DI = getModuleDebugInfo()) 3433 DI->EmitUsingDirective(cast<UsingDirectiveDecl>(*D)); 3434 return; 3435 case Decl::CXXConstructor: 3436 // Skip function templates 3437 if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() || 3438 cast<FunctionDecl>(D)->isLateTemplateParsed()) 3439 return; 3440 3441 getCXXABI().EmitCXXConstructors(cast<CXXConstructorDecl>(D)); 3442 break; 3443 case Decl::CXXDestructor: 3444 if (cast<FunctionDecl>(D)->isLateTemplateParsed()) 3445 return; 3446 getCXXABI().EmitCXXDestructors(cast<CXXDestructorDecl>(D)); 3447 break; 3448 3449 case Decl::StaticAssert: 3450 // Nothing to do. 3451 break; 3452 3453 // Objective-C Decls 3454 3455 // Forward declarations, no (immediate) code generation. 3456 case Decl::ObjCInterface: 3457 case Decl::ObjCCategory: 3458 break; 3459 3460 case Decl::ObjCProtocol: { 3461 auto *Proto = cast<ObjCProtocolDecl>(D); 3462 if (Proto->isThisDeclarationADefinition()) 3463 ObjCRuntime->GenerateProtocol(Proto); 3464 break; 3465 } 3466 3467 case Decl::ObjCCategoryImpl: 3468 // Categories have properties but don't support synthesize so we 3469 // can ignore them here. 3470 ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D)); 3471 break; 3472 3473 case Decl::ObjCImplementation: { 3474 auto *OMD = cast<ObjCImplementationDecl>(D); 3475 EmitObjCPropertyImplementations(OMD); 3476 EmitObjCIvarInitializations(OMD); 3477 ObjCRuntime->GenerateClass(OMD); 3478 // Emit global variable debug information. 3479 if (CGDebugInfo *DI = getModuleDebugInfo()) 3480 if (getCodeGenOpts().getDebugInfo() >= CodeGenOptions::LimitedDebugInfo) 3481 DI->getOrCreateInterfaceType(getContext().getObjCInterfaceType( 3482 OMD->getClassInterface()), OMD->getLocation()); 3483 break; 3484 } 3485 case Decl::ObjCMethod: { 3486 auto *OMD = cast<ObjCMethodDecl>(D); 3487 // If this is not a prototype, emit the body. 3488 if (OMD->getBody()) 3489 CodeGenFunction(*this).GenerateObjCMethod(OMD); 3490 break; 3491 } 3492 case Decl::ObjCCompatibleAlias: 3493 ObjCRuntime->RegisterAlias(cast<ObjCCompatibleAliasDecl>(D)); 3494 break; 3495 3496 case Decl::LinkageSpec: 3497 EmitLinkageSpec(cast<LinkageSpecDecl>(D)); 3498 break; 3499 3500 case Decl::FileScopeAsm: { 3501 // File-scope asm is ignored during device-side CUDA compilation. 3502 if (LangOpts.CUDA && LangOpts.CUDAIsDevice) 3503 break; 3504 auto *AD = cast<FileScopeAsmDecl>(D); 3505 getModule().appendModuleInlineAsm(AD->getAsmString()->getString()); 3506 break; 3507 } 3508 3509 case Decl::Import: { 3510 auto *Import = cast<ImportDecl>(D); 3511 3512 // Ignore import declarations that come from imported modules. 3513 if (Import->getImportedOwningModule()) 3514 break; 3515 if (CGDebugInfo *DI = getModuleDebugInfo()) 3516 DI->EmitImportDecl(*Import); 3517 3518 ImportedModules.insert(Import->getImportedModule()); 3519 break; 3520 } 3521 3522 case Decl::OMPThreadPrivate: 3523 EmitOMPThreadPrivateDecl(cast<OMPThreadPrivateDecl>(D)); 3524 break; 3525 3526 case Decl::ClassTemplateSpecialization: { 3527 const auto *Spec = cast<ClassTemplateSpecializationDecl>(D); 3528 if (DebugInfo && 3529 Spec->getSpecializationKind() == TSK_ExplicitInstantiationDefinition && 3530 Spec->hasDefinition()) 3531 DebugInfo->completeTemplateDefinition(*Spec); 3532 break; 3533 } 3534 3535 default: 3536 // Make sure we handled everything we should, every other kind is a 3537 // non-top-level decl. FIXME: Would be nice to have an isTopLevelDeclKind 3538 // function. Need to recode Decl::Kind to do that easily. 3539 assert(isa<TypeDecl>(D) && "Unsupported decl kind"); 3540 break; 3541 } 3542 } 3543 3544 void CodeGenModule::AddDeferredUnusedCoverageMapping(Decl *D) { 3545 // Do we need to generate coverage mapping? 3546 if (!CodeGenOpts.CoverageMapping) 3547 return; 3548 switch (D->getKind()) { 3549 case Decl::CXXConversion: 3550 case Decl::CXXMethod: 3551 case Decl::Function: 3552 case Decl::ObjCMethod: 3553 case Decl::CXXConstructor: 3554 case Decl::CXXDestructor: { 3555 if (!cast<FunctionDecl>(D)->doesThisDeclarationHaveABody()) 3556 return; 3557 auto I = DeferredEmptyCoverageMappingDecls.find(D); 3558 if (I == DeferredEmptyCoverageMappingDecls.end()) 3559 DeferredEmptyCoverageMappingDecls[D] = true; 3560 break; 3561 } 3562 default: 3563 break; 3564 }; 3565 } 3566 3567 void CodeGenModule::ClearUnusedCoverageMapping(const Decl *D) { 3568 // Do we need to generate coverage mapping? 3569 if (!CodeGenOpts.CoverageMapping) 3570 return; 3571 if (const auto *Fn = dyn_cast<FunctionDecl>(D)) { 3572 if (Fn->isTemplateInstantiation()) 3573 ClearUnusedCoverageMapping(Fn->getTemplateInstantiationPattern()); 3574 } 3575 auto I = DeferredEmptyCoverageMappingDecls.find(D); 3576 if (I == DeferredEmptyCoverageMappingDecls.end()) 3577 DeferredEmptyCoverageMappingDecls[D] = false; 3578 else 3579 I->second = false; 3580 } 3581 3582 void CodeGenModule::EmitDeferredUnusedCoverageMappings() { 3583 std::vector<const Decl *> DeferredDecls; 3584 for (const auto &I : DeferredEmptyCoverageMappingDecls) { 3585 if (!I.second) 3586 continue; 3587 DeferredDecls.push_back(I.first); 3588 } 3589 // Sort the declarations by their location to make sure that the tests get a 3590 // predictable order for the coverage mapping for the unused declarations. 3591 if (CodeGenOpts.DumpCoverageMapping) 3592 std::sort(DeferredDecls.begin(), DeferredDecls.end(), 3593 [] (const Decl *LHS, const Decl *RHS) { 3594 return LHS->getLocStart() < RHS->getLocStart(); 3595 }); 3596 for (const auto *D : DeferredDecls) { 3597 switch (D->getKind()) { 3598 case Decl::CXXConversion: 3599 case Decl::CXXMethod: 3600 case Decl::Function: 3601 case Decl::ObjCMethod: { 3602 CodeGenPGO PGO(*this); 3603 GlobalDecl GD(cast<FunctionDecl>(D)); 3604 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 3605 getFunctionLinkage(GD)); 3606 break; 3607 } 3608 case Decl::CXXConstructor: { 3609 CodeGenPGO PGO(*this); 3610 GlobalDecl GD(cast<CXXConstructorDecl>(D), Ctor_Base); 3611 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 3612 getFunctionLinkage(GD)); 3613 break; 3614 } 3615 case Decl::CXXDestructor: { 3616 CodeGenPGO PGO(*this); 3617 GlobalDecl GD(cast<CXXDestructorDecl>(D), Dtor_Base); 3618 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 3619 getFunctionLinkage(GD)); 3620 break; 3621 } 3622 default: 3623 break; 3624 }; 3625 } 3626 } 3627 3628 /// Turns the given pointer into a constant. 3629 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context, 3630 const void *Ptr) { 3631 uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr); 3632 llvm::Type *i64 = llvm::Type::getInt64Ty(Context); 3633 return llvm::ConstantInt::get(i64, PtrInt); 3634 } 3635 3636 static void EmitGlobalDeclMetadata(CodeGenModule &CGM, 3637 llvm::NamedMDNode *&GlobalMetadata, 3638 GlobalDecl D, 3639 llvm::GlobalValue *Addr) { 3640 if (!GlobalMetadata) 3641 GlobalMetadata = 3642 CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs"); 3643 3644 // TODO: should we report variant information for ctors/dtors? 3645 llvm::Metadata *Ops[] = {llvm::ConstantAsMetadata::get(Addr), 3646 llvm::ConstantAsMetadata::get(GetPointerConstant( 3647 CGM.getLLVMContext(), D.getDecl()))}; 3648 GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops)); 3649 } 3650 3651 /// For each function which is declared within an extern "C" region and marked 3652 /// as 'used', but has internal linkage, create an alias from the unmangled 3653 /// name to the mangled name if possible. People expect to be able to refer 3654 /// to such functions with an unmangled name from inline assembly within the 3655 /// same translation unit. 3656 void CodeGenModule::EmitStaticExternCAliases() { 3657 for (auto &I : StaticExternCValues) { 3658 IdentifierInfo *Name = I.first; 3659 llvm::GlobalValue *Val = I.second; 3660 if (Val && !getModule().getNamedValue(Name->getName())) 3661 addUsedGlobal(llvm::GlobalAlias::create(Name->getName(), Val)); 3662 } 3663 } 3664 3665 bool CodeGenModule::lookupRepresentativeDecl(StringRef MangledName, 3666 GlobalDecl &Result) const { 3667 auto Res = Manglings.find(MangledName); 3668 if (Res == Manglings.end()) 3669 return false; 3670 Result = Res->getValue(); 3671 return true; 3672 } 3673 3674 /// Emits metadata nodes associating all the global values in the 3675 /// current module with the Decls they came from. This is useful for 3676 /// projects using IR gen as a subroutine. 3677 /// 3678 /// Since there's currently no way to associate an MDNode directly 3679 /// with an llvm::GlobalValue, we create a global named metadata 3680 /// with the name 'clang.global.decl.ptrs'. 3681 void CodeGenModule::EmitDeclMetadata() { 3682 llvm::NamedMDNode *GlobalMetadata = nullptr; 3683 3684 // StaticLocalDeclMap 3685 for (auto &I : MangledDeclNames) { 3686 llvm::GlobalValue *Addr = getModule().getNamedValue(I.second); 3687 EmitGlobalDeclMetadata(*this, GlobalMetadata, I.first, Addr); 3688 } 3689 } 3690 3691 /// Emits metadata nodes for all the local variables in the current 3692 /// function. 3693 void CodeGenFunction::EmitDeclMetadata() { 3694 if (LocalDeclMap.empty()) return; 3695 3696 llvm::LLVMContext &Context = getLLVMContext(); 3697 3698 // Find the unique metadata ID for this name. 3699 unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr"); 3700 3701 llvm::NamedMDNode *GlobalMetadata = nullptr; 3702 3703 for (auto &I : LocalDeclMap) { 3704 const Decl *D = I.first; 3705 llvm::Value *Addr = I.second.getPointer(); 3706 if (auto *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) { 3707 llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D); 3708 Alloca->setMetadata( 3709 DeclPtrKind, llvm::MDNode::get( 3710 Context, llvm::ValueAsMetadata::getConstant(DAddr))); 3711 } else if (auto *GV = dyn_cast<llvm::GlobalValue>(Addr)) { 3712 GlobalDecl GD = GlobalDecl(cast<VarDecl>(D)); 3713 EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV); 3714 } 3715 } 3716 } 3717 3718 void CodeGenModule::EmitVersionIdentMetadata() { 3719 llvm::NamedMDNode *IdentMetadata = 3720 TheModule.getOrInsertNamedMetadata("llvm.ident"); 3721 std::string Version = getClangFullVersion(); 3722 llvm::LLVMContext &Ctx = TheModule.getContext(); 3723 3724 llvm::Metadata *IdentNode[] = {llvm::MDString::get(Ctx, Version)}; 3725 IdentMetadata->addOperand(llvm::MDNode::get(Ctx, IdentNode)); 3726 } 3727 3728 void CodeGenModule::EmitTargetMetadata() { 3729 // Warning, new MangledDeclNames may be appended within this loop. 3730 // We rely on MapVector insertions adding new elements to the end 3731 // of the container. 3732 // FIXME: Move this loop into the one target that needs it, and only 3733 // loop over those declarations for which we couldn't emit the target 3734 // metadata when we emitted the declaration. 3735 for (unsigned I = 0; I != MangledDeclNames.size(); ++I) { 3736 auto Val = *(MangledDeclNames.begin() + I); 3737 const Decl *D = Val.first.getDecl()->getMostRecentDecl(); 3738 llvm::GlobalValue *GV = GetGlobalValue(Val.second); 3739 getTargetCodeGenInfo().emitTargetMD(D, GV, *this); 3740 } 3741 } 3742 3743 void CodeGenModule::EmitCoverageFile() { 3744 if (!getCodeGenOpts().CoverageFile.empty()) { 3745 if (llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu")) { 3746 llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov"); 3747 llvm::LLVMContext &Ctx = TheModule.getContext(); 3748 llvm::MDString *CoverageFile = 3749 llvm::MDString::get(Ctx, getCodeGenOpts().CoverageFile); 3750 for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) { 3751 llvm::MDNode *CU = CUNode->getOperand(i); 3752 llvm::Metadata *Elts[] = {CoverageFile, CU}; 3753 GCov->addOperand(llvm::MDNode::get(Ctx, Elts)); 3754 } 3755 } 3756 } 3757 } 3758 3759 llvm::Constant *CodeGenModule::EmitUuidofInitializer(StringRef Uuid) { 3760 // Sema has checked that all uuid strings are of the form 3761 // "12345678-1234-1234-1234-1234567890ab". 3762 assert(Uuid.size() == 36); 3763 for (unsigned i = 0; i < 36; ++i) { 3764 if (i == 8 || i == 13 || i == 18 || i == 23) assert(Uuid[i] == '-'); 3765 else assert(isHexDigit(Uuid[i])); 3766 } 3767 3768 // The starts of all bytes of Field3 in Uuid. Field 3 is "1234-1234567890ab". 3769 const unsigned Field3ValueOffsets[8] = { 19, 21, 24, 26, 28, 30, 32, 34 }; 3770 3771 llvm::Constant *Field3[8]; 3772 for (unsigned Idx = 0; Idx < 8; ++Idx) 3773 Field3[Idx] = llvm::ConstantInt::get( 3774 Int8Ty, Uuid.substr(Field3ValueOffsets[Idx], 2), 16); 3775 3776 llvm::Constant *Fields[4] = { 3777 llvm::ConstantInt::get(Int32Ty, Uuid.substr(0, 8), 16), 3778 llvm::ConstantInt::get(Int16Ty, Uuid.substr(9, 4), 16), 3779 llvm::ConstantInt::get(Int16Ty, Uuid.substr(14, 4), 16), 3780 llvm::ConstantArray::get(llvm::ArrayType::get(Int8Ty, 8), Field3) 3781 }; 3782 3783 return llvm::ConstantStruct::getAnon(Fields); 3784 } 3785 3786 llvm::Constant * 3787 CodeGenModule::getAddrOfCXXCatchHandlerType(QualType Ty, 3788 QualType CatchHandlerType) { 3789 return getCXXABI().getAddrOfCXXCatchHandlerType(Ty, CatchHandlerType); 3790 } 3791 3792 llvm::Constant *CodeGenModule::GetAddrOfRTTIDescriptor(QualType Ty, 3793 bool ForEH) { 3794 // Return a bogus pointer if RTTI is disabled, unless it's for EH. 3795 // FIXME: should we even be calling this method if RTTI is disabled 3796 // and it's not for EH? 3797 if (!ForEH && !getLangOpts().RTTI) 3798 return llvm::Constant::getNullValue(Int8PtrTy); 3799 3800 if (ForEH && Ty->isObjCObjectPointerType() && 3801 LangOpts.ObjCRuntime.isGNUFamily()) 3802 return ObjCRuntime->GetEHType(Ty); 3803 3804 return getCXXABI().getAddrOfRTTIDescriptor(Ty); 3805 } 3806 3807 void CodeGenModule::EmitOMPThreadPrivateDecl(const OMPThreadPrivateDecl *D) { 3808 for (auto RefExpr : D->varlists()) { 3809 auto *VD = cast<VarDecl>(cast<DeclRefExpr>(RefExpr)->getDecl()); 3810 bool PerformInit = 3811 VD->getAnyInitializer() && 3812 !VD->getAnyInitializer()->isConstantInitializer(getContext(), 3813 /*ForRef=*/false); 3814 3815 Address Addr(GetAddrOfGlobalVar(VD), getContext().getDeclAlign(VD)); 3816 if (auto InitFunction = getOpenMPRuntime().emitThreadPrivateVarDefinition( 3817 VD, Addr, RefExpr->getLocStart(), PerformInit)) 3818 CXXGlobalInits.push_back(InitFunction); 3819 } 3820 } 3821 3822 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierForType(QualType T) { 3823 llvm::Metadata *&InternalId = MetadataIdMap[T.getCanonicalType()]; 3824 if (InternalId) 3825 return InternalId; 3826 3827 if (isExternallyVisible(T->getLinkage())) { 3828 std::string OutName; 3829 llvm::raw_string_ostream Out(OutName); 3830 getCXXABI().getMangleContext().mangleTypeName(T, Out); 3831 3832 InternalId = llvm::MDString::get(getLLVMContext(), Out.str()); 3833 } else { 3834 InternalId = llvm::MDNode::getDistinct(getLLVMContext(), 3835 llvm::ArrayRef<llvm::Metadata *>()); 3836 } 3837 3838 return InternalId; 3839 } 3840 3841 llvm::MDTuple *CodeGenModule::CreateVTableBitSetEntry( 3842 llvm::GlobalVariable *VTable, CharUnits Offset, const CXXRecordDecl *RD) { 3843 llvm::Metadata *BitsetOps[] = { 3844 CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0)), 3845 llvm::ConstantAsMetadata::get(VTable), 3846 llvm::ConstantAsMetadata::get( 3847 llvm::ConstantInt::get(Int64Ty, Offset.getQuantity()))}; 3848 return llvm::MDTuple::get(getLLVMContext(), BitsetOps); 3849 } 3850